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ABSTRACT: This paper proposes a method for modeling a system’s response using data. In contrast to ap-
proaches that identify a limit state function, we focus on the case in which not all uncertain parameters affecting
the response are observable and the measured response is corrupted by noise. To this end, the system response
is not characterized by a limit state function but instead by a Random Predictor Model (RPM) having a non-
parametric structure. Consequently, the resulting failure probability is not a scalar but a random variable. This
variable accounts for the aleatory contributions of the model-form uncertainty and the measurement noise into
the response. Furthermore, we propose a framework that enables trading off the predicted range of failure prob-
abilities resulting from such an analysis with a measure of risk. In this context, risk is the percentage of all
predicted outcomes the analyst is willing to ignore. The reliability analysis of an aeroelastic structure subject to
flutter is used to illustrate the ideas proposed.

1 INTRODUCTION

Metamodeling (Simpson, Peplinski, Koch, & Allen
2001) refers to the process of creating a mathemati-
cal representation of a phenomenon based on input-
output data. This paper uses a metamodeling tech-
nique for constructing computational models describ-
ing the distribution of a continuous output variable.
These models are called Random Predictor Models
(RPMs) because the predicted output corresponding
to any given input is a random variable. One common
example of an RPM is a Gaussian Process (GP) model
(Rasmussen & Williams 2006, L. Munoz-Gonzales
2016). In contrast to GP models, which only lead uni-
modal and symmetric responses, we focus on RPMs
having a bounded support set and prescribed values
for the mean, and the second-, third-, and fourth-order
central moment functions. The manipulation of these
functions enables the generation of predictors that ac-
curately describe possibly skewed and multimodal re-
sponses typical of many physical phenomena.

This paper extends the developments on RPMs
made by the authors (Crespo, Giesy, & Kenny 2017a)
to account for sampling error in the moment esti-
mates. As an application, we use RPMs for the re-
liability and risk analysis of a flexible structure. To
make the paper self-contained, essential concepts are
presented. Supplemental information is available at
(Crespo, Giesy, & Kenny 2017b) and (Crespo, Giesy,
& Kenny 2017a).

2 PRELIMINARIES

Consider the continuous random variable z with sup-
port set1 ∆z = [zL, zU ], Probability Density Function
(PDF) fz : ∆z ⊂ R→ R+, and Cumulative Distribu-
tion Function (CDF) Fz : ∆z → [0,1]. Denote by mr

the r-th central moment of z, which is defined as

mr =

∫
∆z

(z − µ)rfz(z)dz, r = 0,1,2, . . . (1)

where µ is the expected value of z. Note that m0 = 1,
m1 = 0, m2 is the variance, m3 is the third-order cen-
tral moment, and m4 is the fourth-order central mo-
ment. Where reference is made to the r-th moment of
a random variable, we assume that the corresponding
integral in (1) converges for that distribution.

The random variables of interest will be con-
strained to have a bounded support set and given val-
ues for µ, m2, m3, and m4. The bounded support
constraint is ∆z ⊆ Ωz, where Ωz = [z, z], with z ≥
z given, whereas the moment constraints are given
by (1). The parameters of these constraints will be
grouped into the variable θz ∈ R6 given by

θz = [z, z,µ,m2,m3,m4] . (2)

Any random variable z having a support set contained
by [z, z] with moments µ, m2, m3, and m4 must sat-

1The support set ∆z of z with CDF Fz is the minimal closed
interval containing {z : 0 < Fz(z) < 1}.
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isfy the feasibility conditions g(θz)≤ 0 given in (Cre-
spo, Giesy, & Kenny 2017b). The realizations of θ sat-
isfying these conditions constitute the θ-feasible do-
main, Θ, defined as

Θ = {θ : g(θ) ≤ 0} . (3)

A member of Θ will be called θ-feasible. Determining
membership in Θ is a distribution-free assessment ap-
plicable to possibly infinitely many random variables
satisfying the desired constraints.

A particular class of random variables that can re-
alize most of Θ is proposed in (Crespo, Giesy, &
Kenny 2017b). This class is called staircase because
the PDF of its members is piecewise constant over
bins of equal width. Staircase variables, are calculated
by solving the convex optimization program

min
`≥0
{J(θ,nb) : A(θ,nb)` = b(θ), θ ∈ Θ} , (4)

where J is the cost function used for optimization,
nb is the number of bins partitioning Ωz, ` are the
PDF values at the bin centers, andA`= b are moment
matching constraints. Staircase variables enable mod-
eling complex phenomena efficiently. Staircase vari-
ables will be denoted as

z ∼ Sz(θz, nb, J). (5)

When the cost is chosen to be the entropy, E, we
obtain a maximal entropy staircase variable (Crespo,
Giesy, & Kenny 2017b). The points θ ∈ Θ for which
a staircase variable with nb bins exists constitutes
the staircase feasible domain, S(nb). As expected,
S(nb) ⊂ Θ. A detailed introduction to staircase vari-
ables is available at (Crespo, Giesy, & Kenny 2017b).

2.1 Effects of Sampling Error

This section evaluates the error caused by estimat-
ing the hyper-parameter θz in (2) from the measure-
ments z(1), . . . , z(N). A natural estimate of the bound
is Ωz = [mini{z(i)},maxi{z(i)}], whereas the mo-
ment estimates can be chosen to be the sampling2 mo-
ments µ̇, ṁ2, ṁ3 and ṁ4.

Lets first focus on the error incurred by using Ωz.
Finite values of N make Ωz an inner approximation
to ∆. Scenario optimization (Campi & Garatti 2008)
enables bounding the probability of the tails of the
PDF of z extending beyond the bound:

P [z 6∈ Ωz] = κq>` ≤ ε̂, (6)

where κ is the width of a staircase bin, ` ∈ Rnb is the
staircase likelihood at the bins, the i-th component of
q ∈ Rnb is equal to one when ci 6∈ Ωz and it is equal

2Sampling estimates will be denoted with a dot-superscript.

to zero otherwise,

ε̂ = 1− elog(β)/(N−1), (7)

and β is the confidence parameter. Equation (7)
is a formally verifiable, distribution-free and non-
asymptotic result applicable to any stationary Data
Generating Mechanism (DGM). Scenario optimiza-
tion theory states that Equation (7) holds with prob-
ability greater than 1− β, where β can be made very
small such that it losses any practical significance.
This probability is key for obtaining results that are
guaranteed independently of the DGM.

We now focus on the error in the sample moments.
This error, fully prescribed by the corresponding sam-
pling distributions, can be quantified by using boot-
strapping techniques. Alternatively, an asymptotic ap-
proximation to the sampling distribution, grounded in
the central limit theorem, can be used instead. Such a
distribution is given by the normal variables

µ ∼ Nµ

(
µ̇,

√
ṁ2

N

)
,

m2 ∼ Nm2

(
ṁ2,

√
ṁ4 − ṁ2

2

N

)
, (8)

m3 ∼ Nm3

(
ṁ3,

√
ṁ6 − ṁ2

3 − 6ṁ4ṁ2 + 9ṁ3
2

N

)
,

m4 ∼ Nm4

(
ṁ4,

√
ṁ8 − ṁ2

4 − 8ṁ5ṁ3 + 16ṁ2ṁ2
3

N

)
,

conditional on θ ∈ Θ, where ṁk, for k = 5,6,7,8
are the sample fifth, sixth, seventh and eighth central-
order moments. These expressions correspond to an
arbitrarily distributed variable z for a sufficiently
large value of N (Kendall & Stuart 1969). For small
values of N , bootstrapping techniques often yield a
more accurate approximation.

To account for sampling error in the calculation of
a staircase variable, the moment matching constraints
are replaced by the polynomial inequality constraints

µ ≤ µ(`) ≤ µ, (9)

m2 ≤m2(`) ≤m2, (10)

m3 ≤m3(`) ≤m3, (11)

m4 ≤m4(`) ≤m4, (12)

where µ(`) = r2`, m2(`) = r3`− µ2, m3(`) = r4`−
µ3 − 3µm2 and m4(`) = r5`− 4µm3 − 6µ2m2 − µ4

are the moments realized by the staircase variable,



ri is the i-th row vector of A in (4), and the mo-
ment bounds are the 1− α confidence intervals cor-
responding to the sampling distributions, e.g., µ̇ −
1.96

√
ṁ2/N ≤ µ(`) ≤ µ̇+ 1.96

√
ṁ2/N for a 95%

confidence interval. Note that the box of moments de-
fined by (9-12) might not be fully contained in Θ.

Sampling error can be accounted for by solving for
a maximal entropy staircase variable constrained by
Equations (6), and (9-12). The resulting staircase vari-
able will not account for the manner in which the sam-
pling distribution allocates probability within the box
of moments. This consideration can be taken into ac-
count by using a likelihood-dependent cost, such as

J(`) = −E(`)− log{L(`)}, (13)

where L =Nµ(`)Nm2(`)Nm3(`)Nm4(`) is the likelihood
function corresponding to the sampling distribution.

In summary, staircase variables provide (i) the abil-
ity to represent a wide range of density shapes, (ii)
the ability to represent most of the feasible space
Θ, (iii) the ability to account for the effects of hav-
ing a limited number of observations, and (iv) the
low-computational cost required to efficiently per-
form various uncertainty quantification tasks.

3 PREDICTOR MODELS

3.1 Problem Statement

A DGM is postulated to act on a vector of input
variables, x ∈ Rnx , to produce an output, y ∈ Rny .
In this article the focus will be on the single-output
(ny = 1) multi-input (nx ≥ 1) case. The dependency
of the output on the input is arbitrary. This covers
the case in which y is a function of x with all com-
ponents of x available (so there is only one output
value for each available input), the case in which y
is a function of x but not all components of x are
available (so there might be infinitely many outputs
for each measured input, and the case in which y is an
arbitrary random process of x. Assume that N Inde-
pendent and Identically Distributed (IID) input-output
pairs are obtained from a stationary DGM, and denote
by D =

{
x(i), y(i)

}
, for i = 1, . . .N the correspond-

ing data sequence. The main objective of a predic-
tor model is to generate a computational representa-
tion of a DGM based on the data in D. Two types of
predictors will be used hereafter. An Interval Predic-
tor Model (IPM) (Campi, Calafiore, & Garatti 2009,
Crespo, Kenny, & Giesy 2016) yields a bounded in-
terval of output values at any value of the input. The
desired IPM is a narrow interval wherein unobserved
data will fall with high probability. Conversely, a Ran-
dom Predictor Model (RPM) yields a random vari-
able at any value of the input. The desired RPM accu-
rately describes the probability distribution governing
the DGM. In the context of this article, this descrip-
tion is given by the range and the first four moments

of the output.

3.2 Interval Predictor Models

This section presents a means to calculate the support
set of an RPM. This will be carried out by finding
a baseline IPM using the same data sequence D that
will be used to construct the RPM.

An IPM assigns to each instance vector x ∈ X ⊆
Rnx a corresponding outcome interval in Y ⊆ R. That
is, an IPM is a set-valued map, Iy : x→ Iy(x) ⊆ Y ,
where Iy(x) is the prediction interval. Depending on
context, the term IPM will refer to either the function
Iy or its graph {(x, y) : x ∈ X,y ∈ Iy(x)} in X × Y .
A nonparametric IPM is given by

Iy(x) =
{[
y(x), y(x)

]
, y(x) ≥ y(x)

}
. (14)

where the functions y(x) and y(x) are the lower and
upper boundaries of the IPM respectively. A paramet-
ric IPM is obtained by associating to each x ∈ X the
set of outputs y that result from evaluating the func-
tion y = M(x, p) at all values of p in the set P , so

Iy(x,P ) = {y = M(x, p), p ∈ P}. (15)

Attention will be limited to the case in which the out-
put depends linearly on p and arbitrarily on x, so
y = p>ϕ(x), where ϕ(x) ∈ Rnp is an arbitrary ba-
sis. Several IPM types can be calculated within this
framework. In this paper we use the technique used in
(Crespo, Giesy, & Kenny 2017a).

Example 1: Next we use an analytically described
DGM of which we have full knowledge. Figure 1
shows the corresponding one percentiles. Note that
the support set, moments and modality of the DGM
are strongly nonlinear functions of the input. The
high concentration of percentile lines at the edge of
the support indicates a bimodal structure. N = 1000
IID observations were drawn from the DGM to form
the data sequence D. This data, shown in Figure 1,
was then used to construct an IPM with np = 20
terms and a Gaussian basis structure. That is, ϕi(x) =

e−(x−ui)2/vi , where ui ∈ R is a center and vi ∈ R is
a length-scale parameter, for i = 1, . . . np. Centers are
uniformly distributed over X = [−π,π], whereas the
length scale parameters are made all equal to π/5.
Figure 1 also shows the resulting IPM. Notice that
the IPM tightly encloses all the data as intended. An
IPM will be used to describe the support of the DGM,
whereas RPMs, introduced next, will be used to char-
acterize its distribution.

3.3 Random Predictor Models

An RPM is a mapping that assigns to each input vec-
tor x ∈ X a corresponding random variable Ry(x).
A non-parametric RPM is the random variable-valued



Figure 1. One-percentiles of the DGM (black lines), N = 1000
observations (red ×), and IPM limits (blue lines).

map given by

Ry(x) = {fy(x)(y(x)), y(x) ∈ ∆y(x)}, (16)

where fy(x) is the PDF of y at x ∈ X having the
support set ∆y(x) = [y(x), y(x)] ⊆ Y . By contrast,
a parametric RPM is obtained by associating to each
x ∈ X the set of outputs y corresponding to all val-
ues of p described by a random vector with joint PDF
fp(p) supported in ∆p, so

Ry (x, fp) = {y =M(x, p), p∼ fp(p), p∈∆p}. (17)

The RPMs used below assume a staircase structure.
As such, they require prescribing an input-dependent
hyper-parameter h(x) = [nb(x), θy(x)] for all x ∈ X .
Hereafter we will assume that nb(x) is a fixed con-
stant, and focus on the prescription of θy(x). Define as

θ̃y(x) =
[
ỹ(x), ỹ(x), µ̃y(x), m̃2,y(x), m̃3,y(x), m̃4,y(x)

]
,

a set of target functions prescribed according to the
data, and by θy(x) the set functions realized by an
RPM. An RPM that accurately represent the DGM
must make θy(x) close to θ̃y(x). The strategy for pre-
scribing θ̃y(x) according to the data sequence D pre-
sented in (Crespo, Giesy, & Kenny 2017b) will be
used here. θ̃y(x) is based on a weighted average of val-
ues y(i) for x(i) close to x.

A non-parametric RPMs with a staircase structure
can be readily calculated from the target functions
θ̃y(x) by making the prediction at any input value
x ∈ X realize the corresponding target. Once a set
of staircase-feasible target functions θ̃y(x) is obtained,
the RPM Sy(x)(θ̃y(x), nb, J) can be readily evaluated at
any value of the input. The resulting RPM will con-
form to the target regardless of the choice of J .

Example 2: Next we use the data sequence of the
DGM in Example 1 to derive an RPM. Figure 2 shows
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Figure 2. Support set (green), mean (blue), variance (red),
third-order- (black), and fourth-order-central moment (magenta)
functions corresponding to the DGM (solid) and to the target
(dashed-dotted).

the functions in θy(x) corresponding to the DGM
(solid lines) along with the target functions θ̃y(x)

(dashed lines). Note that the target functions approxi-
mate the DGM well in spite of only using N = 1000
observations. The difference between the two sets of
functions is caused by the limited amount of data
available and by using neighboring data to calculate
θ̃y(x). The targets θ̃y(x) in Figure 2 were used to build
the RPM Sy(x)(θ̃y(x),500,E). This RPM is staircase-
feasible throughout X . This was also the case for val-
ues of nb as small as 100. The plot at the top of Fig-
ure 3 shows the 1-percentiles of this RPM. This figure
was generated by calculating staircase variables over
a uniform grid of input values in X , sampling them,
smoothing the corresponding empirical CDF using a
Gaussian kernel (Silverman 1986), and grouping the
points belonging to the same percentile line. The mo-
ment functions attained by the RPM are indistinguish-
able from the targets shown in Figure 2. The com-
parison between the DGM, shown in Figure 1, and
the moment-matching RPM indicates excellent agree-
ment despite only using N = 1000 data points. Note
that RPM describes well the bimodal structure of the
DGM by replicating the regions where probability is
highly concentrated, i.e., the regions in the upper and
lower limit of the support where many percentile lines
coalesce. Furthermore the skewness of the probability
mass in the interior of the support set follows the same
oscillatory patterns present in the DGM.

Example 3: Next we study the effects of the sam-
pling error on the empirical target θ̃y(x), and on the
resulting staircase RPM. The observations prescrib-
ing the target functions at x are weighted according
to their separation from such a point (Crespo, Giesy,
& Kenny 2017a). The weight is the greatest when the
datum is at x, and it approaches zero as its separation



from x increases. For the functions shown in Figure
2, the number of observations having a non-negligible
weight ranges from 110 to 261. To quantify the spar-
sity of the dataset we define the equivalent number of
observations, ne, as

ne(x) =
N∑
i=1

w
(
x(i), x

)
. (18)

As such, the larger the value of ne the smaller the un-
certainty in the sample estimates. The value of ne cor-
responding to the functions in Figure 2 range from
47.15 to 112. This indicates that the dataset is sparse.
The effects of the sparsity in the data will be quan-
tified using the developments in Section 2.1. In par-
ticular, we will generate a maximal entropy RPM sat-
isfying the constraints (6) and (9-12) for N = ne(x).
In contrast to the RPM at the top of Figure 3, the re-
sulting RPM will not match moments estimated from
the data but instead, it will realize moment functions
bounded by their sample uncertainty. As such, we will
refer to this RPM as a moment-bounded RPM. Fig-

Figure 3. Moment-matching RPM (top), moment-bounded RPM
of maximal entropy (middle), and moment-bounded RPM (bot-
tom) based on Equation (13).

Figure 4. Optimal mean (blue), variance (red), third-order-
(black), and fourth-order-central moments (magenta) corre-
sponding to a moment-bounded RPM using maximal entropy
(solid lines), Equation (13) (dotted lines), and corresponding
sampling error ranges (shaded regions).

ure 4 shows the 95% confidence intervals of the four
moment functions. Note that the range of these inter-
vals exhibits oscillations, reaching their largest spread
near x = 0. These regions contain the moments real-
ized by staircase variables comprising the moment-
bounded RPM, which are shown as a solid lines. The
first three moments vary in the interior of their con-
fidence intervals whereas the fourth moment stays on
the lower limit. All but the fourth moment function
take on values that vary within the intervals. The un-
certainty in the sample moments increases the ex-
pected entropy Ex[E] of the RPM from −0.3642 to
0.7484.

Figure 3 shows the moment-matching RPM as well
as moment-bounded RPMs of maximal entropy. Note
that the most prominent features of the process, such
as the peaks at the boundaries of the support set and
the patterns of the lines in its interior, have faded in
the latter predictor. Furthermore, note that the deriva-
tive discontinuities in the moments of Figure 4 yield
derivative discontinuities in the percentile lines. Such
discontinuities can be eliminated by using a Kernel
smoother or by using another cost function. To this
end, we calculate a moment-bounded RPM having
the cost function in Equation (13). The corresponding
moment functions are shown as dotted lines in Fig-
ure 4. In contrast to the moments for the maximal en-
tropy formulation, the new moments have continuous
derivatives throughout X . The resulting RPM, shown
at the bottom of Figure 3, exhibits smooth percentile
lines. This is achieved at the expense of a minor en-
tropy reduction to Ex[E] = 0.73. As ne increases,
the width of the confidence intervals reduces mak-
ing moment-bounded RPMs converge to the moment-
matching RPM.

Example 4: Next we consider the reliability analy-



sis (Rackwitz 2001) of an airfoil subject to aeroe-
lastic flutter (Mahler, Touze, Doare, Habib, & Ker-
schen 2017). During flutter the pitch and plunge dy-
namics are coupled yielding a self-sustaining limit cy-
cle oscillation that might compromise the structural
integrity of an aircraft. The onset of flutter depends
on the free stream airflow speed v, as well as iner-
tial, geometrical, and material properties of the wing.
These parameters include the plunge and pitch stiff-
nesses, the aerodynamic lift, the location of the cen-
ter of mass, and the location of the elastic axis. In
this context, a reliability analysis seeks to quantify
the probability of flutter instability (i.e., probability
of failure) given probabilistic prescriptions for the pa-
rameters.

The objectives of this example are two-fold. First,
we use RPMs to characterize the system response.
Measurement error and model-form uncertainty make
the data and the response aleatory, thereby justify-
ing such a modeling choice. A deterministic response
model along with a probabilistic description of the
parametric uncertainty would enable the calculation
of the failure probability. However, when the response
is intrinsically aleatory, the failure probability can
only be determined to lie within a range of values. We
then explore the reduction in the range of failure prob-
abilities resulting from ignoring a (small) percentage
of the responses predicted by the RPM.

The stability of the system is evaluated by calcu-
lating the damping coefficient, y (i.e., the output in
the context of this paper) of the time response to a
given flow speed. As in (Canor, Caracoglia, & De-
noel 2015), damping is related to the real part of the
eigenvalues of a linear dynamic model. Non-negative
values of y denote an unstable system, whereas nega-
tives values correspond to a stable system. Hence, the
failure domain is defined as

F = {x : y(x|v) ≥ 0}. (19)

The measured output y depends on measurement er-
rors, as well as epistemic and aleatory uncertainties.
In this example we will divide the uncertain param-
eters into two groups. The primary group consists of
measurable parameters having a strong influence on
the output (e.g., stiffnesses), whereas the secondary
group consist of parameters that are either weakly
important, unmeasurable, or unknown to the ana-
lyst (e.g., measurement error, unsteady aerodynam-
ics, etc.). In this study the primary group of param-
eters constitute the input x. Note that variations in the
secondary parameters make y(x) aleatory. Hence, in
contrast to a standard reliability analysis for which
a parametric model explicitly prescribes the depen-
dency of the limit state on the uncertain parameters
(Sun, Wang, Rui, & Tong 2017), the limit state we are
aiming to identify will not be a deterministic function
of all the parameters, but instead a random process de-
pending on the primary parameters. This implies that

the failure probability will range on an interval whose
spread depends upon the manner in which the RPM
describing y(x) crosses zero (failure boundary).

For simplicity in the analysis, x will be assumed
to be a single non-dimensional parameter describing
the ratio of the pitch and plunge stiffnesses. Indepen-
dent input-output pairs D = {xi, yi} for i = 1, . . .N ,
were obtained by simulating the flutter dynamics of
N = 2500 individual airfoils. The randomness in the
output stems from variability of not only x but also of
the secondary aerodynamic and structural parameters
affecting y. It is expected that such parameters mostly
vary within 10% of their nominal value.

Figure 5 shows the input-output data for the free
stream airflow speeds v = 0.75, v = 0.79, v = 0.83,
v = 0.87, v = 0.91, v = 0.95. Each chosen airfoil was
evaluated at these speeds. Note that the number of
data points falling into the failure domain y ≥ 0 in-
creases with v. In all cases, however, the y = 0 mani-
fold is crossed by the nominal response near x = 2.8.
The response of a calibrated deterministic model, to
be referred to as a nominal response, is shown as a
solid curve. Whereas the nominal system for all but
the greatest speed crosses into the instability region at
x = 2.8, somewhere in v ∈ [0.91,0.95] the curve flips
to the opposite side of y = 0 (see the bottom plots
in Figure 5). Reliability analyses using the nominal
responses as the limit states will yield an abrupt dis-
continuity in the failure probability at that speed. This
sudden change in the response is caused by a bifur-
cation. The manner by which the system transitions
into instability (e.g, the region in x becoming unsta-
ble first) cannot be inferred from studying the nominal
system.

The data for all 6 speeds was processed and the re-
sulting moment functions were calculated. Figure 6
shows these functions and their corresponding uncer-
tainty ranges. Note the high sensitivity of the func-
tions to v. For instance, the variance varies consider-
ably throughout x converging to a small value when
x is large. Furthermore, the third-order central mo-
ment at x = 2.15 goes from being practically zero
to being large, first positive and then negative. Fea-
tures like these, driven by the dynamics of the sys-
tem, can not be accurately described by a GP model.
These functions were then used to calculate a maxi-
mal entropy RPM with nb = 300 bins. Figure 7 shows
the one-percentile curves for the resulting RPMs. The
excursion of individual percentiles into the instability
region prescribes the severity (i.e., what is the failure
probability for a fixed value of x and v) and the man-
ner (i.e., which x region transitions to instability first)
by which flutter occurs.

The crossing y(x|v) = 0 occurs over a range of x
values. Let’s formalize this notion by defining the τ -
percentile of the RPM as

yτ (x|v) = F−1
y(x|v)(τ/100), (20)



Figure 5. Nominal system response (solid line), and N = 2500
observations (blue ×) for several airflow speeds.

where Fy(x|v) is the distribution of the RPM for speed
v, and τ ∈ [0,100] is the percentile of interest. Hence,
y100(x|v) is the upper limit of the RPM and y0(x|v)
is the lower limit. The failure domain associated with
the τ -percentile at airspeed v is Fτ = {x : yτ (x|v) >

Figure 6. Mean (blue), second- (red), third-(black), and fourth-
order (magenta) central moments along with their sampling error
ranges (shaded areas).

Figure 7: RPMs for several airflow speeds.

0}, whereas the corresponding failure probability is

P [Fτ ] =

∫
Fτ
fx(x)dx, (21)

where fx(x) is the PDF of x. fx(x) can be prescribed
according to the available data or to expert opinion3.
Modeling the response as an RPM yields the failure
probability range

r(v) = [ P[F0],P[F100] ] . (22)

This range can be readily computed for any fx(x).
For instance, if x is a Beta random variable
with hyper-parameters 3 and 3 and support [0,3],
we obtain r(0.75) = [0.0040,0.0187], r(0.77) =
[0.0059,0.8814], r(0.79) = [0.0024,0.9948]. These
ranges account for all predicted outputs regardless of
their likelihood. The upper limit of some of these
ranges is distressingly close to one. However, it is
possible that a very small portion of the predicted re-
sponses is responsible for most of the spread in the
failure probability range. A couple of questions the
analyst might contemplate are as follows: If we are
willing to ignore some of the worst predicted outputs
what will be the corresponding reduction in the failure
probability range? How large should be such a reduc-

3If the realizations of x in D were controlled to ensure a good
coverage of the response function over the domain of interest X ,
they should not be used to prescribe a naturally occurring fx(x),
e.g., variations resulting from a manufacturing process.



tion (if any) to justify taking such a risk? By worst-
case outputs we mean those leading to the largest
decrease in the upper limit of the failure probabil-
ity range. In this context, the risk, to be denoted as
ζ ∈ [0,100], is the percentage of the worst-case pre-
dicted responses the analyst is willing to neglect. The
analyst might be willing to accept a small risk pro-
viding that the corresponding reduction in the failure
probability is sufficiently large. This will be the case
when the limits of r(v) are prescribed by extreme,
low-probability events occurring at the long tail of
a distribution. For a given ζ , the failure probability
range is given by

r(v, ζ) = [ P[F0],P[F100−ζ ] ] . (23)

Figure 8 shows P[F100−ζ ] as a function of the risk ζ
for several airflow speeds. This figure enables making
informed risk-based decisions regarding the reliabil-
ity assessment of the system. For instance, the range
of failure probabilities corresponding to a zero risk for
v = 0.77 is r(0.77,0) = [0.0059,0.8814]. These two
values correspond to the points on the v = 0.77 curve
for which the risk is 100 (smallest failure probabil-
ity) and zero (largest failure probability). This level of
risk implies that all predicted outcomes are accounted
for. If the analyst is willing to ignore the worst 2 per-
cent of the outputs, Figure 8 leads to r(0.77,2) =
[0.0059,0.0193]. These two values correspond to the
points on the v = 0.77 curve for which the risk is
100 (smallest failure probability) and 2 (largest fail-
ure probability). Therefore, a risk of 2 percent de-
creases the largest failure probability by 0.8621. This
illustrates that a small percentage of the predicted re-
sponses is responsible for most of the spread in the
range of failure probabilities, and that a risk averse ap-
proach might yield an overly conservative prediction.
Whereas the zero-risk interval contains all predicted
responses, the small-risk interval contains most of the
responses more tightly. This type of information en-
ables the analyst to avoid making overly conservative
assessments driven by extreme low-probability events
rarely seen in practice.

4 CONCLUSIONS

This paper illustrates the use of staircase RPMs by
applying them to the reliability analysis of an aeroe-
lastic structure. The ability of the staircase variables
to describe skewed and multimodal responses over
an input-dependent interval makes them well suited
for structural dynamics and controls applications. We
consider the case in which the predictor is designed to
match sample moments exactly (a setting applicable
to large datasets), as well as the case in which the pre-
dictor accounts for the uncertainty in those estimates
(a setting applicable to sparse datasets). The versatil-
ity and low computational cost of the proposed frame-
work makes it appropiate for a wide range of applica-

Figure 8: Failure probability vs. risk for several airflow speeds.

tions in science and engineering.
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