THEODORSEN'S AND GARRICK'S COMPUTATIONAL AEROELASTICITY, REVISITED

Boyd Perry, III
Distinguished Research Associate
Aeroelasticity Branch
NASA Langley Research Center Hampton, Virginia, USA

International Forum on Aeroelasticity and Structural Dynamics Savannah, Georgia
June 10-13, 2019

"Results of Theodorsen and Garrick Revisited"

by Thomas A. Zeiler
Journal of Aircraft
Vol. 37, No. 5, Sep-Oct 2000, pp. 918-920

Made known that -

- Some plots in the foundational trilogy of NACA reports on aeroelastic flutter by Theodore Theodorsen and I. E. Garrick are in error
- Some of these erroneous plots appear in classic texts on aeroelasticity

Recommended that -

- All of the plots in the foundational trilogy be recomputed and published

"Results of Theodorsen and Garrick Revisited"

by Thomas A. Zeiler
Journal of Aircraft
Vol. 37, No. 5, Sep-Oct 2000, pp. 918-920

Made known that -

- Some plots in the foundational trilogy of NACA reports on aeroelastic flutter by Theodore Theodorsen and I. E. Garrick are in error
- Some of these erroneous plots appear in classic texts on aeroelasticity

Recommended that -

- All of the plots in the foundational trilogy be recomputed and published

Cautioned that -

- "One does not set about lightly to correct the masters."

Works Containing Erroneous Plots

1. Theodorsen, T.: General Theory of Aerodynamic Instability and the Mechanism of Flutter. NACA Report No. 496, 1934.
2. Theodorsen, T. and Garrick, I. E.: Mechanism of Flutter, a Theoretical and Experimental Investigation of the Flutter Problem. NACA Report No. 685, 1940.
3. Theodorsen, T. and Garrick, I. E.: Flutter Calculations in Three Degrees of Freedom. NACA Report No. 741, 1942.
4. Bisplinghoff, R. L., Ashley, H., and Halfman, R. L.: Aeroelasticity, Addison-WesleyLongman, Reading, MA, 1955, pp. 539-543.
5. Bisplinghoff, R. L. and Ashley, H.: Principles of Aeroelasticity, Dover, New York, 1975, pp. 247-249.

Purpose of This Presentation

- Make known a multi-year effort to re-compute all of the example problems in the foundational trilogy of NACA reports
- Re-computations performed using the solution method specific to each NACA report
- Re-computations checked and re-checked using modern flutter solution methods
("One does not set about lightly to correct the masters.")
- NASA TP has been / will be published for each report in the trilogy
- Present outlines of Theodorsen's and Garrick's -
- Equations of motion
- Solution methods
- Present representative re-computations and comparisons with the originals

Publications of Re-Computed Results

Available on NASA Technical Report Server https://ntrs.nasa.gov/

Outline

- Background and Purpose
- Brief History
- Equations of Motion
- Solution Methods
- Re-Computations and Comparisons
- Concluding Remarks

1930's and 40's NACA Computing Environment

1930's and 40's NACA Computing Environment

- "Computers"

1930's and 40's NACA Computing Environment

- "Computers"

Employees whose job function was to perform computations

1930's and 40's NACA Computing Environment

- "Computers"

Employees whose job function was to perform computations

- Tools

1930's and 40's NACA Computing Environment

- "Computers"

Employees whose job function was to perform computations

- Tools
- Pencil and paper

1930's and 40's NACA Computing Environment

- "Computers"

Employees whose job function was to perform computations

- Tools
- Pencil and paper

- Slide rules

1930's and 40's NACA Computing Environment

- "Computers"

Employees whose job function
was to perform computations

- Tools
- Pencil and paper

- Slide rules

- Mechanical calculators
(comptometers - patented 1887)

1930's and 40's NACA Computing Environment

- "Computers"

Employees whose job function
was to Strong motivation to minimize

- Tools human time and effort required to
- Penci solve equations:
- Recast equations to eliminate -
- solution steps
- complex arithmetic
- Mechanical calculators
(comptometers - patented 1887)

1930's and 40's NACA Computing Environment

- "Computers"

Employees whose job function
was to

- Tools
- Penci

Unfortunately -
Human computers ...
... are prone to error

- Slide

- Mechanical calculators
(comptometers - patented 1887)

Outline

- Background and Purpose
- Brief History
- Equations of Motion
- Solution Methods
- Re-Computations and Comparisons
- Concluding Remarks

Assumptions Made in NACA 496

- Flow is potential, unsteady, incompressible
- "Wing" is two-dimensional typical section
- Three degrees of freedom
- Torsion - α
- Aileron deflection - β
- Vertical deflection (flexure) - h
- Wing motions are sinusoidal and infinitesimal
- Wing has no internal or solid friction, resulting in no internal damping

Assumptions Made in NACA 496

- Flow is potential, unsteady, incompressible
- "Wing" is two-dimensional typical section
- Three degrees of freedom
- Torsion - α
- Aileron deflection - β
- Vertical deflection (flexure) - h
- Wing motions are sinusoidal and infinitesimal
- Wing has no internalor solid friction, resulting in no internaldamping

Equations of Motion Collected

(A) $\ddot{\alpha}\left[r_{\alpha}^{2}+\kappa\left(\frac{1}{8}+a^{2}\right)\right]+\dot{\alpha} \frac{v}{b} \kappa\left(\frac{1}{2}-a\right)+\alpha \frac{C_{\alpha}}{M b^{2}}+\ddot{\beta}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\frac{T_{7}}{\pi} \kappa-(c-a) \frac{T_{1}}{\pi} \kappa\right]+\frac{1}{\pi} \dot{\beta} \kappa \frac{v}{b}\left[-2 p-\left(\frac{1}{2}-a\right) T_{4}\right]$

$$
+\beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi}\left(T_{4}+T_{10}\right)+\ddot{h}\left(x_{\alpha}-a \kappa\right) \frac{1}{\bar{b}}-2 \kappa\left(a+\frac{1}{2}\right) \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

(B) $\ddot{\alpha}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\kappa \frac{T_{7}}{\pi}-(c-a) \frac{T_{1}}{\pi} \kappa\right]+\dot{\alpha}\left(p-T_{1}-\frac{1}{2} T_{4}\right) \frac{v}{b} \frac{\kappa}{\pi}+\ddot{\beta}\left(r_{\beta}^{2}-\frac{1}{\pi^{\pi}} \kappa T_{3}\right)-\frac{1}{2 \pi^{2}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa$

$$
+\beta\left[\frac{C_{\beta}}{M b^{2}}+\frac{1}{\pi^{2}} \frac{v^{2}}{b^{\kappa}} \kappa\left(T_{5}-T_{s} T_{10}\right)\right]+\check{\hbar}\left(x_{\beta}-\frac{1}{\pi} \kappa T_{1}\right) \frac{1}{b}+\frac{T_{12}}{\pi} \kappa \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

(C) $\quad \ddot{\alpha}\left(x_{\alpha}-\kappa a\right)+\dot{\alpha} \frac{v}{b} \kappa+\ddot{\beta}\left(x_{\beta}-\frac{1}{\pi} T_{1} \kappa\right)-\dot{\beta} \frac{v}{b} T_{\alpha} \kappa \frac{1}{\pi}+\ddot{h}(1+\kappa) \frac{1}{b}+h \frac{C_{n}}{M} \frac{1}{b}$

$$
+2 \pi \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

Equations of Motion Collected

(A)

$$
\begin{aligned}
& \ddot{\alpha}\left[r_{\alpha}^{2}+\kappa\left(\frac{1}{8}+a^{2}\right)\right]+\dot{\alpha} \frac{v}{b} \kappa\left(\frac{1}{2}-a\right)+\alpha \frac{C_{\alpha}}{M b^{2}}+\ddot{\beta}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\frac{T_{7}}{\pi} \kappa-(c-a) \frac{T_{1}}{\pi} \kappa\right]+\frac{1}{\pi} \dot{\beta}^{2} \kappa\left[-2 p-\left(\frac{v}{b}-a\right) T_{4}\right] \\
& \quad+\beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi}\left(T_{4}+T_{10}\right)+\ddot{\hbar}\left(x_{\alpha}-a \kappa\right) \frac{1}{b}-2 \kappa\left(a+\frac{1}{2}\right) \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
\end{aligned}
$$

(B) $\quad \ddot{\alpha}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\kappa \frac{T_{7}}{\pi}-(c-a) \frac{T_{1}}{\pi}{ }^{\kappa}\right]+\dot{\alpha}\left(p-T_{1}-\frac{1}{2} T_{4}\right) \frac{v}{b} \frac{\kappa}{\pi}+\ddot{\beta}\left(r_{\beta}^{2}-\frac{1}{\pi^{2}} \kappa T_{3}\right)-\frac{1}{2 \pi^{2}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa$

$$
+\beta\left[\frac{C_{\beta}}{M b^{2}}+\frac{1}{\pi^{2}} \frac{v^{2}}{b^{2}} \kappa\left(T_{5}-T_{4} T_{10}\right)\right]+\ddot{\hbar}\left(x_{\beta}-\frac{1}{\pi} \kappa T_{1}\right) \frac{1}{b}+\frac{T_{12}}{\pi} \kappa \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

(C) $\quad \ddot{\alpha}\left(x_{\alpha}-\kappa a\right)+\dot{\alpha} \frac{v}{b} \kappa+\ddot{\beta}\left(x_{\beta}-\frac{1}{\pi} T_{1} \kappa\right)-\dot{\beta} \frac{v}{b} T_{\alpha} \kappa \frac{1}{\pi}+\ddot{h}(1+\kappa) \frac{1}{b}+h \frac{C_{n}}{M} \frac{1}{b}$

$$
+2 x \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

$(A)=$ Sum of moments about the elastic axis

Equations of Motion Collected

(A)

$$
\begin{aligned}
& \ddot{\alpha}\left[r_{\alpha}^{2}+\kappa\left(\frac{1}{8}+a^{2}\right)\right]+\dot{\alpha} \frac{v}{b} \kappa\left(\frac{1}{2}-a\right)+\alpha \frac{C_{\alpha}}{M b^{2}}+\ddot{\beta}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\frac{T_{7}}{\pi} \kappa-(c-a) \frac{T_{1}}{\pi} \kappa\right]+\frac{1}{\pi} \dot{\beta}^{2} \kappa\left[-2 p-\left(\frac{v}{b}-a\right) T_{4}\right] \\
& \quad+\beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi}\left(T_{4}+T_{10}\right)+\ddot{\hbar}\left(x_{\alpha}-a \kappa\right) \frac{1}{b}-2 \kappa\left(a+\frac{1}{2}\right) \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
\end{aligned}
$$

(B) $\quad \ddot{\alpha}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\kappa \frac{T_{7}}{\pi}-(c-a) \frac{T_{1}}{\pi}{ }^{\kappa}\right]+\dot{\alpha}\left(p-T_{1}-\frac{1}{2} T_{4}\right) \frac{v}{b} \frac{\kappa}{\pi}+\ddot{\beta}\left(r_{\beta}^{2}-\frac{1}{\pi^{2}} \kappa T_{3}\right)-\frac{1}{2 \pi^{2}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa$

$$
+\beta\left[\frac{C_{\beta}}{M b^{2}}+\frac{1}{\pi^{2}} \frac{v^{2}}{b^{2}} \kappa\left(T_{5}-T_{4} T_{10}\right)\right]+\ddot{\hbar}\left(x_{\beta}-\frac{1}{\pi} \kappa T_{1}\right) \frac{1}{b}+\frac{T_{12}}{\pi} \kappa \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

(C) $\quad \ddot{\alpha}\left(x_{\alpha}-\kappa a\right)+\dot{\alpha} \frac{v}{\dot{b}} \kappa+\ddot{\beta}\left(x_{\beta}-\frac{1}{\pi} T_{1} \kappa\right)-\dot{\beta} \frac{v}{b} T_{\alpha} \frac{1}{\pi}+\ddot{h}(1+\kappa) \frac{1}{b}+h \frac{C_{n}}{M} \frac{1}{b}$

$$
+2 \kappa \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

(A) = Sum of moments about the elastic axis
(B) = Sum of moments about the aileron hinge

Equations of Motion Collected

(A)

$$
\begin{aligned}
& \ddot{\alpha}\left[r_{\alpha}^{2}+\kappa\left(\frac{1}{8}+a^{2}\right)\right]+\dot{\alpha} \frac{v}{b} \kappa\left(\frac{1}{2}-a\right)+\alpha \frac{C_{\alpha}}{M b^{2}}+\ddot{\beta}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\frac{T_{7}}{\pi} \kappa-(c-a) \frac{T_{1}}{\pi} \kappa\right]+\frac{1}{\pi} \dot{\beta}^{2} \kappa\left[-2 p-\left(\frac{v}{b}-a\right) T_{4}\right] \\
& \quad+\beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi}\left(T_{4}+T_{10}\right)+\ddot{\hbar}\left(x_{\alpha}-a \kappa\right) \frac{1}{b}-2 \kappa\left(a+\frac{1}{2}\right) \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
\end{aligned}
$$

(B) $\ddot{\alpha}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\kappa \frac{T_{7}}{\pi}-(c-a) \frac{T_{1}}{\pi}{ }^{\kappa}\right]+\dot{\alpha}\left(p-T_{1}-\frac{1}{2} T_{4}\right) \frac{v}{b} \frac{\kappa}{\pi}+\ddot{\beta}\left(r_{\beta}^{2}-\frac{1}{\pi^{\pi}} \kappa T_{3}\right)-\frac{1}{2 \pi^{2}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa$

$$
+\beta\left[\frac{C_{\beta}}{M b^{2}}+\frac{1}{\pi^{2}} \frac{v^{2}}{b^{2}} \kappa\left(T_{5}-T_{4} T_{10}\right)\right]+\ddot{\hbar}\left(x_{\beta}-\frac{1}{\pi} \kappa T_{1}\right) \frac{1}{b}+\frac{T_{12}}{\pi} \kappa \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

(C) $\quad \ddot{\alpha}\left(x_{\alpha}-\kappa a\right)+\dot{\alpha} \frac{v}{\dot{b}} \kappa+\ddot{\beta}\left(x_{\beta}-\frac{1}{\pi} T_{1} \kappa\right)-\dot{\beta} \frac{v}{b} T_{\alpha} \frac{1}{\pi}+\ddot{h}(1+\kappa) \frac{1}{b}+h \frac{C_{n}}{M} \frac{1}{b}$

$$
+2 x \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

(A) = Sum of moments about the elastic axis
(B) = Sum of moments about the aileron hinge
(C) = Sum of forces in the vertical direction

Equations of Motion Collected

(A) $\ddot{\alpha}\left[r_{\alpha}^{2}\right.$
(B) $\ddot{\alpha}\left[r_{\beta}^{2}\right.$
(C) $\quad \ddot{\alpha}\left(x_{\alpha}\right.$

$$
\left.\left(\frac{1}{2}-a\right) T_{4}\right]
$$

$\left.\frac{1}{r} \dot{\beta}\right]=0$

Equations of Motion Collected

(A) $\ddot{\alpha}\left[r_{\alpha}^{2}+\kappa\left(\frac{1}{8}+a^{2}\right)\right]+\dot{\alpha} \frac{v}{b} \kappa\left(\frac{1}{2}-a\right)+\alpha \frac{C_{\alpha}}{M b^{2}}+\ddot{\beta}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\frac{T_{7}}{\pi} \kappa-(c-a) \frac{T_{1}}{\pi} \kappa\right]+\frac{1}{\pi} \dot{\beta} \kappa \frac{v}{b}\left[-2 p-\left(\frac{1}{2}-a\right) T_{4}\right]$

$$
+\beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi}\left(T_{4}+T_{10}\right)+\ddot{h}\left(x_{\alpha}-a \kappa\right) \frac{1}{\bar{b}}-2 \kappa\left(a+\frac{1}{2}\right) \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

(B) $\ddot{\alpha}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\kappa \frac{T_{7}}{\pi}-(c-a) \frac{T_{1}}{\pi} \kappa\right]+\dot{\alpha}\left(p-T_{1}-\frac{1}{2} T_{4}\right) \frac{v}{b} \frac{\kappa}{\pi}+\ddot{\beta}\left(r_{\beta}^{2}-\frac{1}{\pi^{\pi}} \kappa T_{3}\right)-\frac{1}{2 \pi^{2}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa$

$$
+\beta\left[\frac{C_{\beta}}{M b^{2}}+\frac{1}{\pi^{2}} \frac{v^{2}}{b^{\kappa}} \kappa\left(T_{5}-T_{s} T_{10}\right)\right]+\check{\hbar}\left(x_{\beta}-\frac{1}{\pi} \kappa T_{1}\right) \frac{1}{b}+\frac{T_{12}}{\pi} \kappa \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

(C) $\quad \ddot{\alpha}\left(x_{\alpha}-\kappa a\right)+\dot{\alpha} \frac{v}{b} \kappa+\ddot{\beta}\left(x_{\beta}-\frac{1}{\pi} T_{1} \kappa\right)-\dot{\beta} \frac{v}{b} T_{4} \kappa \frac{1}{\pi}+\ddot{h}(1+\kappa) \frac{1}{b}+h \frac{C_{n}}{M} \frac{1}{b}$

$$
+2 \pi \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

Equations of Motion Collected

(A)

$$
\begin{aligned}
& \ddot{\alpha}\left[r_{\alpha}^{2}+\kappa\left(\frac{1}{8}+a^{2}\right)\right]+\dot{\alpha} \frac{v}{b} \kappa\left(\frac{1}{2}-a\right)+\alpha \frac{C_{\alpha}}{M b^{2}}+\ddot{\beta}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\frac{T_{7}}{\pi} \kappa-(c-a) \frac{T_{1}}{\pi} \kappa\right]+\frac{1}{\pi} \dot{\beta}^{2} \kappa\left[-2 p-\left(\frac{v}{b}-a\right) T_{4}\right] \\
& \quad+\beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi}\left(T_{4}+T_{10}\right)+\ddot{\hbar}\left(x_{\alpha}-a \kappa\right) \frac{1}{b}-2 \kappa\left(a+\frac{1}{2}\right) \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
\end{aligned}
$$

(B) $\quad \ddot{\alpha}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\kappa \frac{T_{7}}{\pi}-(c-a) \frac{T_{1}}{\pi}{ }^{\kappa}\right]+\dot{\alpha}\left(p-T_{1}-\frac{1}{2} T_{4}\right) \frac{v}{b} \frac{\kappa}{\pi}+\ddot{\beta}\left(r_{\beta}^{2}-\frac{1}{\pi^{2}} \kappa T_{3}\right)-\frac{1}{2 \pi^{2}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa$

$$
+\beta\left[\frac{C_{\beta}}{M b^{2}}+\frac{1}{\pi^{2}} \frac{v^{2}}{b^{2}} \kappa\left(T_{5}-T_{4} T_{10}\right)\right]+\check{\hbar}\left(x_{\beta}-\frac{1}{\pi} \kappa T_{1}\right) \frac{1}{\bar{b}}+\frac{T_{12}}{\pi} \kappa \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

(C) $\quad \tilde{\alpha}\left(x_{\alpha}-\kappa a\right)+\dot{\alpha} \frac{v}{\dot{b}} \kappa+\ddot{\beta}\left(x_{\beta}-\frac{1}{\pi} T_{1} \kappa\right)-\dot{\beta} \frac{v}{b} T_{\kappa} \kappa \frac{1}{\pi}+\ddot{h}(1+\kappa) \frac{1}{b}+h \frac{C_{n}}{M} \frac{1}{\bar{b}}$

$$
+2 \pi \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

Steps taken to obtain "final" equations of motion:
(1) Make substitutions

$$
\begin{aligned}
\alpha & =\alpha_{0} e^{i k \frac{v}{b} t} \\
\beta & =\beta_{0} e^{i\left(k \frac{v}{b} t+\varphi_{1}\right)} \\
h & =h_{0} e^{i\left(k \frac{v}{b} t+\varphi_{2}\right)}
\end{aligned}
$$

Equations of Motion Collected

(A)

$$
\begin{aligned}
& \ddot{\alpha}\left[r_{\alpha}^{2}+\kappa\left(\frac{1}{8}+a^{2}\right)\right]+\dot{\alpha} \frac{v}{b} \kappa\left(\frac{1}{2}-a\right)+\alpha \frac{C_{\alpha}}{M b^{2}}+\ddot{\beta}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\frac{T_{7}}{\pi} \kappa-(c-a) \frac{T_{1}}{\pi} \kappa\right]+\frac{1}{\pi} \dot{\beta}^{2} \kappa\left[-2 p-\left(\frac{v}{b}-a\right) T_{4}\right] \\
& \quad+\beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi}\left(T_{4}+T_{10}\right)+\ddot{\hbar}\left(x_{\alpha}-a \kappa\right) \frac{1}{b}-2 \kappa\left(a+\frac{1}{2}\right) \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
\end{aligned}
$$

(B) $\quad \ddot{\alpha}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\kappa \frac{T_{7}}{\pi}-(c-a) \frac{T_{1}}{\pi}{ }^{\kappa}\right]+\dot{\alpha}\left(p-T_{1}-\frac{1}{2} T_{4}\right) \frac{v}{b} \frac{\kappa}{\pi}+\ddot{\beta}\left(r_{\beta}^{2}-\frac{1}{\pi^{2}} \kappa T_{3}\right)-\frac{1}{2 \pi^{2}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa$

$$
+\beta\left[\frac{C_{\beta}}{M b^{2}}+\frac{1}{\pi^{2}} \frac{v^{2}}{b^{2}} \kappa\left(T_{5}-T_{4} T_{10}\right)\right]+\check{\hbar}\left(x_{\beta}-\frac{1}{\pi} \kappa T_{1}\right) \frac{1}{\bar{b}}+\frac{T_{12}}{\pi} \kappa \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

(C) $\quad \tilde{\alpha}\left(x_{\alpha}-\kappa a\right)+\dot{\alpha} \frac{v}{\tilde{b}}+\ddot{\beta}\left(x_{\beta}-\frac{1}{\pi} T_{1} \kappa\right)-\dot{\beta} \frac{v}{b} T_{\mu} \kappa \frac{1}{\pi}+\ddot{\hbar}(1+\kappa) \frac{1}{b}+h \frac{C_{n}}{M} \frac{1}{\bar{b}}$

$$
+2 \pi \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

Steps taken to obtain "final" equations of motion:
(1) Make substitutions

$$
\left.\begin{array}{rl}
\alpha & =\alpha_{0} e^{i k \frac{v}{b} t} \\
\beta & =\beta_{0} e^{i\left(k \frac{v}{b} t+\varphi_{1}\right)} \\
h & =h_{0} e^{i\left(k \frac{v}{b} t+\varphi_{2}\right)}
\end{array}\right\} \quad \longrightarrow \quad \begin{aligned}
& \dot{\alpha}=i k \frac{v}{b} \alpha \\
& \quad \ddot{\alpha}=-\left(k \frac{v}{b}\right)^{2} \alpha \\
& \text { etc. }
\end{aligned}
$$

Equations of Motion Collected

(A)

$$
\begin{aligned}
& \ddot{\alpha}\left[r_{\alpha}^{2}+\kappa\left(\frac{1}{8}+a^{2}\right)\right]+\dot{\alpha} \frac{v}{\dot{b}} \kappa\left(\frac{1}{2}-a\right)+\frac{C_{\alpha}}{M b^{2}}+\ddot{\beta}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\frac{T_{7}}{\pi} \kappa-(c-a) \frac{T_{1}}{\pi} \kappa\right]+\frac{1}{\pi} \dot{\beta}_{\kappa} \frac{v}{b}\left[-2 p-\left(\frac{1}{2}-a\right) T_{4}\right] \\
& \quad+\beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi}\left(T_{4}+T_{10}\right)+\ddot{\hbar}\left(x_{\alpha}-a \kappa\right) \frac{1}{b}-2 \kappa\left(a+\frac{1}{2}\right) \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
\end{aligned}
$$

$$
\begin{equation*}
\ddot{\alpha}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\kappa \frac{T_{7}}{\pi}-(c-a) \frac{T_{1}}{\pi} \kappa\right]+\dot{\alpha}\left(p-\lambda-\frac{1}{2} T_{4}\right) \frac{v}{b} \frac{\kappa}{\pi}+\ddot{\beta}\left(r_{\beta}^{2}-\frac{1}{\pi^{x}} T_{3}\right)-\frac{1}{2 \pi^{2}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa \tag{B}
\end{equation*}
$$

$$
\left.+\beta\left[\frac{C_{\beta}}{M b^{2}}\right) \frac{1}{\pi^{2}} \frac{v^{2}}{b^{2}}\left(T_{5}-T_{4} T_{10}\right)\right]+\ddot{\hbar}\left(x_{B}-\frac{1}{\pi} \kappa T_{1}\right) \frac{1}{b}+\frac{T_{12}}{\pi} \pi \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

$$
\begin{equation*}
\frac{C_{n} 1}{M T} \frac{1}{b} \tag{C}
\end{equation*}
$$

After substitutions all terms, except these terms, contain v^{2}

Steps taken to obtain "final" equations of motion:
(1) Make substitutions

$$
\left.\begin{array}{rl}
\alpha & =\alpha_{0} e^{i k \frac{v}{b} t} \\
\beta & =\beta_{0} e^{i\left(k \frac{v}{b} t+\varphi_{1}\right)} \\
h & =h_{0} e^{i\left(k \frac{v}{b} t+\varphi_{2}\right)}
\end{array}\right\} \quad \longrightarrow \quad \begin{aligned}
& \dot{\alpha}=i k \frac{v}{b} \alpha \\
& \ddot{\alpha}=-\left(k \frac{v}{b}\right)^{2} \alpha \\
& \text { etc. }
\end{aligned}
$$

Equations of Motion Collected

(A)

$$
\begin{aligned}
& \ddot{\alpha}\left[r_{\alpha}^{2}+\kappa\left(\frac{1}{8}+a^{2}\right)\right]+\dot{\alpha} \dot{b} \kappa\left(\frac{1}{2}-a\right)+\left(\frac{C_{\alpha}}{M b^{2}}\right)+\ddot{\beta}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\frac{T_{7}}{\pi} \kappa-(c-a) \frac{T_{1}}{\pi} \kappa\right]+\frac{1}{\pi} \dot{\beta} \kappa \frac{v}{b}\left[-2 p-\left(\frac{1}{2}-a\right) T_{4}\right] \\
& \quad+\beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi}\left(T_{4}+T_{10}\right)+\tilde{\hbar}\left(x_{\alpha}-a_{\kappa}\right) \frac{1}{\hbar}-2 \kappa\left(a+\frac{1}{2}\right) \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10} v}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
\end{aligned}
$$

(B) $\ddot{\alpha}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\kappa \frac{T_{7}}{\pi}-(c-a) \frac{T_{1}}{\pi}{ }^{\kappa}\right]+\dot{\alpha}\left(p-T_{1}-\frac{1}{2} T_{4}\right) \frac{v}{b} \frac{\kappa}{\pi}+\ddot{\beta}\left(r_{\beta}^{2}-\frac{1}{\pi^{\pi}} \kappa T_{3}\right)-\frac{1}{2 \pi^{2}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa$

$$
+\beta\left[\frac{C_{\beta}}{M b^{2}}-\frac{1}{\pi^{2}} \frac{v^{2}}{b^{2}} \kappa\left(T_{5}-T_{4} T_{10}\right)\right]+\ddot{\hbar}\left(x_{\beta}-\frac{1}{\pi} \kappa T_{1}\right) \frac{1}{b}+\frac{T_{12}}{\pi} \kappa \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

(C) $\quad \vec{\alpha}\left(x_{\alpha}-\kappa a\right)+\dot{\alpha} \frac{v}{b} \kappa+\ddot{\beta}\left(x_{\beta}-\frac{1}{\pi} T_{1} \kappa\right)-\dot{\beta} \frac{v}{b} T_{\alpha} \kappa \frac{1}{\pi}+\ddot{h}(1+\kappa) \frac{1}{b}+\frac{C_{n}}{\frac{1}{b}}$

$$
+2 x \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

Steps taken to obtain "final" equations of motion:
(1) Make substitutions

$$
\left.\begin{array}{l}
\alpha=\alpha_{0} e^{i k \frac{v}{b} t} \\
\beta=\beta_{0} e^{i\left(k \frac{v}{b} t+\varphi_{1}\right)} \\
h=h_{0} e^{i\left(k \frac{v}{b} t+\varphi_{2}\right)}
\end{array}\right\} \quad \longrightarrow \quad \begin{aligned}
& \dot{\alpha}=i k \frac{v}{b} \alpha \\
& \quad \ddot{\alpha}=-\left(k \frac{v}{b}\right)^{2} \alpha \\
& \text { etc. }
\end{aligned}
$$

Equations of Motion Collected

(A)

$$
\begin{aligned}
& \left.\ddot{\alpha}\left[r_{\alpha}^{2}+\kappa\left(\frac{1}{8}+a^{2}\right)\right]+\dot{\alpha} \frac{v}{b} \kappa\left(\frac{1}{2}-a\right)+\frac{C_{\alpha}}{M b^{2}}\right)+\ddot{\beta}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\frac{T_{7}}{\pi} \kappa-(c-a) \frac{T_{1}}{\pi} \kappa\right]+\frac{1}{\pi} \dot{\beta}_{\kappa} \frac{v}{b}\left[-2 p-\left(\frac{1}{2}-a\right) T_{4}\right] \\
& \quad+\beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi}\left(T_{4}+T_{10}\right)+\ddot{\hbar}\left(x_{\alpha}-a_{\kappa}\right) \frac{1}{\bar{b}}-2 \kappa\left(a+\frac{1}{2}\right) \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi}\right]=0
\end{aligned}
$$

(B) $\ddot{\alpha}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\kappa \frac{T_{7}}{\pi}-(c-a) \frac{T_{1}}{\pi} \kappa\right]+\dot{\alpha}\left(p-T_{1}-\frac{1}{2} T_{4}\right) \frac{v}{b} \frac{\kappa}{\pi}+\ddot{\beta}\left(r_{\beta}^{2}-\frac{1}{\pi^{\alpha}} T_{3}\right)-\frac{1}{2 \pi^{2}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa$

$$
+\beta\left[\frac{C_{\beta}}{M b^{2}}-\frac{1}{\pi^{2}} \frac{v^{2}}{b^{2}} \kappa\left(T_{5}-T_{4} T_{10}\right)\right]+\ddot{\hbar}\left(x_{\beta}-\frac{1}{\pi} \kappa T_{1}\right) \frac{1}{b}+\frac{T_{12}}{\pi} \kappa \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

(C) $\quad \bar{\alpha}\left(x_{\alpha}-\kappa a\right)+\dot{\alpha} \frac{v}{b} \kappa+\ddot{\beta}\left(x_{\beta}-\frac{1}{\pi} T_{1} \kappa\right)-\dot{\beta} \frac{v}{b} T_{\alpha} \kappa \frac{1}{\pi}+\ddot{h}(1+\kappa) \frac{1}{b}+\frac{C_{\lambda}}{1} \frac{1}{b}$

$$
+2 \kappa \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

Steps taken to obtain "final" equations of motion:
(2) Normalize all equations by $\left(\frac{v}{b} k\right)^{2} \kappa$

Equations of Motion Collected

(A)

$$
\begin{aligned}
& \left.\ddot{\alpha}\left[r_{\alpha}^{2}+\kappa\left(\frac{1}{8}+a^{2}\right)\right]+\dot{\alpha} \frac{v}{b} \kappa\left(\frac{1}{2}-a\right)+\frac{C_{\alpha}}{M b^{2}}\right)+\ddot{\beta}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\frac{T_{7}}{\pi} \kappa-(c-a) \frac{T_{1}}{\pi} \kappa\right]+\frac{1}{\pi} \dot{\beta}^{2} \kappa\left[-2 p-\left(\frac{v}{b}-a\right) T_{4}\right] \\
& \quad+\beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi}\left(T_{4}+T_{10}\right)+\ddot{\hbar}\left(x_{\alpha}-a \kappa\right) \frac{1}{b}-2 \kappa\left(a+\frac{1}{2}\right) \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi}\right]=0
\end{aligned}
$$

$$
\begin{equation*}
\ddot{\alpha}\left[r_{\beta}^{2}+(c-a) x_{\beta}-\kappa \frac{T_{7}}{\pi}-(c-a) \frac{T_{1}}{\pi} \kappa\right]+\dot{\alpha}\left(p-\lambda-\frac{1}{2} T_{4}\right) \frac{v}{b} \frac{\kappa}{\pi}+\ddot{\beta}\left(r_{\beta}^{2}-\frac{1}{\pi^{x}} T_{3}\right)-\frac{1}{2 \pi^{2}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa \tag{B}
\end{equation*}
$$

$$
\left.+\beta\left[\frac{C_{\beta}}{M b^{2}}\right) \frac{1}{\pi^{2}} \frac{v^{2}}{b^{\kappa}}\left(T_{5}-T_{s} T_{10}\right)\right]+\ddot{\hbar}\left(x_{\beta}-\frac{1}{\pi} \kappa T_{1}\right) \frac{1}{b}+\frac{T_{12}}{\pi} \kappa \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{11}}{2 \pi} \dot{\beta}\right]=0
$$

$$
\begin{align*}
& \check{\alpha}\left(x_{\alpha}-\kappa a\right)+\dot{\alpha} \frac{v}{b} \kappa+\ddot{\beta}\left(x_{\beta}-\frac{1}{\pi} T_{\pi}\right)-\dot{\dot{\beta}} \frac{v}{b} T_{\alpha \kappa} \frac{1}{\pi}+\ddot{h}(1+\kappa) \frac{1}{b} t \tag{C}\\
& \quad+2 \kappa \frac{v C(k)}{b}\left[\frac{v \alpha}{b}+\frac{\dot{h}}{b}+\left(\frac{1}{2}-a\right) \dot{\alpha}+\frac{T_{10}}{\pi} \frac{v}{b} \beta+\frac{T_{*}}{2 \pi} \dot{\beta}\right]=0
\end{align*}
$$

$$
+\frac{C_{n} 1}{M \frac{1}{b}}
$$

After normalization only these terms contain $1 / v^{2}$

Steps taken to obtain "final" equations of motion:
(2) Normalize all equations by

$$
\left(\frac{v}{b} k\right)^{2} \kappa
$$

Final 3DOF Equations of Motion

(A)

$$
\begin{align*}
& \left(A_{a \alpha}+\Omega_{\alpha} X\right) \alpha+A_{a \beta} \beta+A_{a h} h=0 \\
& A_{b \alpha} \alpha+\left(A_{b \beta}+\Omega_{\beta} X\right) \beta+A_{b h} h=0 \tag{B}\\
& A_{c \alpha} \alpha+A_{c \beta} \beta+\left(A_{c h}+\Omega_{h} X\right) h=0 \tag{C}
\end{align*}
$$

where $A_{a \alpha}=R_{a \alpha}+i I_{a \alpha}$, etc.

Final 3DOF Equations of Motion

(A)

$$
\begin{aligned}
& \left(A_{a \alpha}+\Omega_{\alpha} X\right) \alpha+A_{a \beta} \beta+A_{a h} h=0 \\
& A_{b \alpha} \alpha+\left(A_{b \beta}+\left(\Omega_{\beta} X\right) \beta+A_{b h} h=0\right. \\
& \left.A_{c \alpha} \alpha+A_{c \beta} \beta+A_{c h}+\Omega_{h} X\right) h=0 \\
& \underbrace{\left(\frac{\omega_{\alpha} r_{\alpha}}{\omega_{r} r_{r}}\right)^{2}}_{\Omega_{\alpha}} \underbrace{2}_{X}\left(\frac{b \omega_{r} r_{r}}{v k}\right)^{2}
\end{aligned}
$$

Final 3DOF Equations of Motion

$$
\begin{array}{r}
\left(A_{a \alpha}+\Omega_{\alpha} X\right) \alpha+A_{a \beta} \beta+A_{a h} h=0 \tag{A}\\
A_{b \alpha} \alpha+\left(A_{b \beta}\right) \beta+A_{b h} h=0 \\
A_{c \alpha} \alpha+A_{c \beta} \beta+\left(\frac{\Omega_{\beta} X}{}=0\right. \\
\begin{array}{c}
\text { The } \Omega \text { s and } X \text { are central to } \\
\text { Theodorsen's solution methods }
\end{array} \Omega^{2} \frac{1}{\kappa}
\end{array}
$$

Final 3DOF Equations of Motion

-- with addition of structural damping terms --
(A)

$$
\left(A_{a \alpha}+\Omega_{\alpha}\left(1+i g_{\alpha}\right) X\right) \alpha+A_{a \beta} \beta+A_{a h} h=0
$$

$$
\begin{align*}
& A_{b \alpha} \alpha+\left(A_{b \beta}+\Omega_{\beta}\left(1+i g_{\beta}\right) X\right) \beta+A_{b h} h=0 \tag{B}\\
& A_{c \alpha} \alpha+A_{c \beta} \beta+\left(A_{c h}+\Omega_{h}\left(1+i g_{h}\right) X\right) h=0
\end{align*}
$$

Final 3DOF Equations of Motion

-- with addition of structural damping terms --
(A)

$$
\left(A_{a \alpha}+\Omega_{\alpha}\left(1+i g_{\alpha}\right) X\right) \alpha+A_{a \beta} \beta+A_{a h} h=0
$$

$$
\begin{align*}
& A_{b \alpha} \alpha+\left(A_{b \beta}+\Omega_{\beta}\left(1+i g_{\beta}\right) X\right) \beta+A_{b h} h=0 \tag{B}\\
& A_{c \alpha} \alpha+A_{c \beta} \beta+\left(A_{c h}+\Omega_{h}\left(1+i g_{h}\right) X\right) h=0
\end{align*}
$$

For all equations of motion, 2DOF and 3DOF, solution is obtained when their determinant is zero

Outline

- Background and Purpose
- Brief History
- Equations of Motion
- Solution Methods
- Re-Computations and Comparisons
- Concluding Remarks

Solution Methods

Solution Method 1
Employed in NACA 496
2DOF only
No g, allows ξ

Solution Method 2
Employed in NACA 685
2DOF or 3DOF
Allows g and ξ

Solution Method 3
Employed in NACA 741
2DOF or 3DOF
Allows g and ξ

Solution Methods

Solution Method 1	Solution Method 2	Solution Method 3
Employed in NACA 496	Employed in NACA 685	Employed in NACA 741
2DOF only	2DOF or 3DOF	2DOF or 3DOF
No g, allows ξ	Allows g and ξ	Allows g and ξ

Solution Methods

Solution Method 1
Employed in NACA 496
2DOF only
No g, allows ξ

Solution Method 2
Employed in NACA 685
2DOF or 3DOF
Allows g and ξ

Solution Method 3
Employed in NACA 741
2DOF or 3DOF
Allows g and ξ

Expand complex determinant

Separate into real and imaginary equations; set both to zero
2DOF Example - Torsion-Aileron (α, β)

$$
\left|\begin{array}{cc}
A_{a \alpha}+\Omega_{\alpha} X & A_{a \beta} \\
A_{b \alpha} & A_{b \beta}+\Omega_{\beta} X
\end{array}\right|=0 \quad \text { where } A_{i j}=R_{i j}+i I_{i j}
$$

Real equation

$$
\Omega_{\alpha} \Omega_{\beta} X^{2}+\left(\Omega_{\alpha} R_{b \beta}+\Omega_{\beta} R_{a \alpha}\right) X+\left(R_{a \alpha} R_{b \beta}-I_{a \alpha} I_{b \beta}-R_{a \beta} R_{b \alpha}+I_{a \beta} I_{b \alpha}\right)=0
$$

Imaginary equation

$$
\left(\Omega_{\alpha} I_{b \beta}+\Omega_{\beta} I_{a \alpha}\right) X+\left(R_{a \alpha} I_{b \beta}+R_{b \beta} I_{a \alpha}-R_{a \beta} I_{b \alpha}-I_{a \beta} R_{b \alpha}\right)=0
$$

Solution Methods

Solution Method 1
Employed in NACA 496
2DOF only
No g, allows ξ

Solution Method 2
Employed in NACA 685
2DOF or 3DOF
Allows g and ξ

Solution Method 3
Employed in NACA 741
2DOF or 3DOF
Allows g and ξ

Expand complex determinant
Separate into real and imaginary equations; set both to zero

2DOF Example - Torsion-Aileron (α, β)
Solution is obtained when real and imaginary equations are both satisfied for the same values of X and k

Real equation
$\Omega_{\alpha} \Omega_{\beta} X^{2}+\left(\Omega_{\alpha} R_{b \beta}+\Omega_{\beta} R_{a \alpha}\right) X+\left(R_{a \alpha} R_{b \beta}-I_{a \alpha} I_{b \beta}-R_{a \beta} R_{b \alpha}+I_{a \beta} I_{b \alpha}\right)=0$
Imaginary equation

$$
\left(\Omega_{\alpha} I_{b \beta}+\Omega_{\beta} I_{a \alpha}\right) X+\left(R_{a \alpha} I_{b \beta}+R_{b \beta} I_{a \alpha}-R_{a \beta} I_{b \alpha}-I_{a \beta} R_{b \alpha}\right)=0
$$

Solution Methods

Solution Method 1
Employed in NACA 496
2DOF only
No g, allows ξ

Solution Method 2
Employed in NACA 685
2DOF or 3DOF
Allows g and ξ

Solution Method 3
Employed in NACA 741
2DOF or 3DOF
Allows g and ξ

Expand complex determinant
Separate into real and imaginary equations; set both to zero

2DOF Example - Torsion-Aileron (α, β)

Solution Methods

Solution Method 1
Employed in NACA 496
2DOF only
No g, allows ξ

Solution Method 2
Employed in NACA 685 2DOF or 3DOF

Allows g and ξ

Straightforward PF or 3DOF
Allows g and ξ

Expand complex determinant
Separate into real and imaginary equations; set both to zero

2DOF Example - Torsion-Aileron (α, β)

Solution Methods

2DOF Example - Torsion-Aileron (α, β)

Solution Methods

$$
\begin{aligned}
& \Omega_{\alpha} \Omega_{\beta} X^{2}+\left(\Omega_{\alpha} R_{b \beta}+\Omega_{\beta} R_{a \alpha}\right) X+\left(R_{a \alpha} R_{b \beta}-I_{a \alpha} I_{b \beta}-R_{a \beta} R_{b \alpha}+I_{a \beta} I_{b \alpha}\right)=0 \\
& \left(\Omega_{\alpha} I_{b \beta}+\Omega_{\beta} I_{a \alpha}\right) X+\left(R_{a \alpha} I_{b \beta}+R_{b \beta} I_{a \alpha}-R_{a \beta} I_{b \alpha}-I_{a \beta} R_{b \alpha}\right)=0
\end{aligned}
$$

Solution Method 1

- Treat Ω_{α} and X as parameters
- Solve 2 equations in 2 unknowns, Ω_{α} and X

Solution Methods

$$
\begin{aligned}
& \Omega_{\alpha} \Omega_{\beta} X^{2}+\left(\Omega_{\alpha} R_{b \beta}+\Omega_{\beta} R_{a \alpha}\right) X+\left(R_{a \alpha} R_{b \beta}-I_{a \alpha} I_{b \beta}-R_{a \beta} R_{b \alpha}+I_{a \beta} I_{b \alpha}\right)=0 \\
& \left(\Omega_{\alpha} I_{b \beta}+\Omega_{\beta} I_{a \alpha}\right) X+\left(R_{a \alpha} I_{b \beta}+R_{b \beta} I_{a \alpha}-R_{a \beta} I_{b \alpha}-I_{a \beta} R_{b \alpha}\right)=0
\end{aligned}
$$

Solution Method 1

- Treat Ω_{α} and X as parameters
- Solve 2 equations in 2 unknowns, Ω_{α} and X

Solution Methods

$$
\begin{aligned}
& \Omega_{\alpha} \Omega_{\beta} X^{2}+\left(\Omega_{\alpha} R_{b \beta}+\Omega_{\beta} R_{a \alpha}\right) X+\left(R_{a \alpha} R_{b \beta}-I_{a \alpha} I_{b \beta}-R_{a \beta} R_{b \alpha}+I_{a \beta} I_{b \alpha}\right)=0 \\
& \left(\Omega_{\alpha} I_{b \beta}+\Omega_{\beta} I_{a \alpha}\right) X+\left(R_{a \alpha} I_{b \beta}+R_{b \beta} I_{a \alpha}-R_{a \beta} I_{b \alpha}-I_{a \beta} R_{b \alpha}\right)=0
\end{aligned}
$$

Solution Method 1

- Treat Ω_{α} and X as parameters
- Solve 2 equations in 2 unknowns, Ω_{α} and X

Solution Methods

$$
\begin{aligned}
& \Omega_{\alpha} \Omega_{\beta} X^{2}+\left(\Omega_{\alpha} R_{b \beta}+\Omega_{\beta} R_{a \alpha}\right) X+\left(R_{a \alpha} R_{b \beta}-I_{a \alpha} I_{b \beta}-R_{a \beta} R_{b \alpha}+I_{a \beta} I_{b \alpha}\right)=0 \\
& \left(\Omega_{\alpha} I_{b \beta}+\Omega_{\beta} I_{a \alpha}\right) X+\left(R_{a \alpha} I_{b \beta}+R_{b \beta} I_{a \alpha}-R_{a \beta} I_{b \alpha}-I_{a \beta} R_{b \alpha}\right)=0
\end{aligned}
$$

Solution Method 1

- Treat Ω_{α} and X as parameters
- Solve 2 equations in 2 unknowns, Ω_{α} and X

Solution Method 2

- Define Ω_{α} and Ω_{β}
- Treat X as a parameter
- Solve polynomial equations for X_{1} and X_{2}

Solution Methods

$$
\begin{aligned}
& \Omega_{\alpha} \Omega_{\beta} X^{2}+\left(\Omega_{\alpha} R_{b \beta}+\Omega_{\beta} R_{a \alpha}\right) X+\left(R_{a \alpha} R_{b \beta}-I_{a \alpha} I_{b \beta}-R_{a \beta} R_{b \alpha}+I_{a \beta} I_{b \alpha}\right)=0 \\
& \left(\Omega_{\alpha} I_{b \beta}+\Omega_{\beta} I_{a \alpha}\right) X+\left(R_{a \alpha} I_{b \beta}+R_{b \beta} I_{a \alpha}-R_{a \beta} I_{b \alpha}-I_{a \beta} R_{b \alpha}\right)=0
\end{aligned}
$$

Solution Method 1

- Treat Ω_{α} and X as parameters
- Solve 2 equations in 2 unknowns, Ω_{α} and X

Solution Method 2

- Define Ω_{α} and Ω_{β}
- Treat X as a parameter
- Solve polynomial equations for X_{1} and X_{2}

Solution Methods

$$
\begin{aligned}
& \Omega_{\alpha} \Omega_{\beta} X^{2}+\left(\Omega_{\alpha} R_{b \beta}+\Omega_{\beta} R_{a \alpha}\right) X+\left(R_{a \alpha} R_{b \beta}-I_{a \alpha} I_{b \beta}-R_{a \beta} R_{b \alpha}+I_{a \beta} I_{b \alpha}\right)=0 \\
& \left(\Omega_{\alpha} I_{b \beta}+\Omega_{\beta} I_{a \alpha}\right) X+\left(R_{a \alpha} I_{b \beta}+R_{b \beta} I_{a \alpha}-R_{a \beta} I_{b \alpha}-I_{a \beta} R_{b \alpha}\right)=0
\end{aligned}
$$

Solution Method 1

- Treat Ω_{α} and X as parameters
- Solve 2 equations in 2 unknowns, Ω_{α} and X

Solution Method 2

- Define Ω_{α} and Ω_{β}
- Treat X as a parameter
- Solve polynomial equations for X_{1} and X_{2}

Solution Method 3

- Define Ω_{α} and Ω_{β}
- Treat X as a parameter
- Employ method of elimination

$$
\longrightarrow\left\{\begin{array}{l}
a_{1} X+a_{0}=0 \\
b_{1} X+b_{0}=0
\end{array}\right.
$$

- Solve linear equations for X_{1} and X_{2}

Solution Methods

$$
\begin{aligned}
& \Omega_{\alpha} \Omega_{\beta} X^{2}+\left(\Omega_{\alpha} R_{b \beta}+\Omega_{\beta} R_{a \alpha}\right) X+\left(R_{a \alpha} R_{b \beta}-I_{a \alpha} I_{b \beta}-R_{a \beta} R_{b \alpha}+I_{a \beta} I_{b \alpha}\right)=0 \\
& \left(\Omega_{\alpha} I_{b \beta}+\Omega_{\beta} I_{a \alpha}\right) X+\left(R_{a \alpha} I_{b \beta}+R_{b \beta} I_{a \alpha}-R_{a \beta} I_{b \alpha}-I_{a \beta} R_{b \alpha}\right)=0
\end{aligned}
$$

Solution Method 1

- Treat Ω_{α} and X as parameters
- Solve 2 equations in 2 unknowns, Ω_{α} and X

Solution Method 2

- Define Ω_{α} and Ω_{β}
- Treat X as a parameter
- Solve polynomial equations for X_{1} and X_{2}

Solution Method 3

- Define Ω_{α} and Ω_{β}
- Treat X as a parameter
- Employ method of elimination

$$
\longrightarrow\left\{\begin{array}{l}
a_{1} X+a_{0}=0 \\
b_{1} X+b_{0}=0
\end{array}\right.
$$

- Solve linear equations for X_{1} and X_{2}

Outline

- Background and Purpose
- Brief History
- Equations of Motion
- Solution Methods
- Re-Computations and Comparisons
- Concluding Remarks

Comparisons for Solution Method 1 From NACA 496; Case 1

Effect of $\frac{\omega_{h}}{\omega_{\alpha}}$ on Flutter Velocity, v

Comparisons for Solution Method 1 From NACA 496; Case 1

Effect of $\frac{\omega_{h}}{\omega_{\alpha}}$ on Flutter Velocity, v

Comparisons for Solution Method 1

 From NACA 496; Case 1Effect of x_{α} on F

Comparisons for Solution Method 1 From NACA 496; Case 1

Effect of x_{α} on F

Comparisons for Solution Method 1 From NACA 496; Case 1

Effect of x_{α} on F

Comparisons for Solution Method 1 From NACA 496; Case 1

Effect of x_{α} on F

Comparisons for Solution Method 2
 From NACA 685; 2DOF

Comparisons for Solution Method 2 From NACA 685; Case 1

Effect of $\frac{\omega_{h}}{\omega_{\alpha}}$ on $\frac{v}{b \omega_{\alpha}}$ for various g_{h} and g_{α}

Comparisons for Solution Method 2 From NACA 685; Case 2

Effect of $\frac{\omega_{\beta}}{\omega_{h}}$ on $\frac{v}{b \omega_{h}}$ for various quantities

Comparisons for Solution Method 2 From NACA 685; Case 2

Effect of $\frac{\omega_{\beta}}{\omega_{h}}$ on $\frac{v}{b \omega_{h}}$ for various quantities In parts (b) and (d)
-
$\boldsymbol{x}_{\beta}=\frac{1}{60} \quad r_{\beta}^{2}=\frac{1}{120}$

Comparisons for Solution Method 3 From NACA 741; Case 2

Effect of $\frac{\omega_{\beta}}{\omega_{\alpha}}$ on $\frac{v}{b \omega_{a}}$ for various x_{β}

Comparisons for Solution Method 3 From NACA 741; Case 2

Effect of $\frac{\omega_{\beta}}{\omega_{\alpha}}$ on $\frac{v}{b \omega_{a}}$ for various x_{β}

Outline

- Background and Purpose
- Brief History
- Equations of Motion
- Solution Methods
- Re-Computations and Comparisons
- Concluding Remarks

Concluding Remarks

- In an AIAA Engineering Note Thomas A. Zeiler -
- Made known that numerical errors exist in three foundational reports on aeroelastic flutter and on early aeroelasticity texts
- Recommended that all of the plots in NACA 496, NACA 685, and NACA 741 be re-computed and published
- Current work is following Zeiler's recommendation by -
- Re-computing and checking all numerical examples in these foundational reports
- Comparing original and re-computed results
- Publishing and making known the existence of the re-computations
- This paper has presented -
- Theodorsen's and Garrick's equations and solution methods
- Representative examples of re-computations and comparisons
- Overall good agreement between original and re-computed results (with some notable discrepancies)

