THEODORSEN'S AND GARRICK'S COMPUTATIONAL AEROELASTICITY, REVISITED

Boyd Perry, III Distinguished Research Associate Aeroelasticity Branch NASA Langley Research Center Hampton, Virginia, USA

International Forum on Aeroelasticity and Structural Dynamics Savannah, Georgia June 10-13, 2019

"Results of Theodorsen and Garrick Revisited" by Thomas A. Zeiler *Journal of Aircraft* Vol. 37, No. 5, Sep-Oct 2000, pp. 918-920

VOLUME 37, NUMBER 5		SEPTEMBER-OCTOBER 2000		
The second	Journal of Aircraft	Vol. 37, No. 5	September-October 200	
FULL-LENGTH PA		CONTENTS-continued		
Aeroservoelastic Anal	Optimization of Flexible Wing W	/ithout Allerons for Rolling Maneuver	Khot K Appa E E Easten 89	
Nonlinear Aeroelastic	Analytical Prediction of Damage	e Growth in Notched Composite Panels Loaded in Co	mpression	
Limit Cycle Oscillation		C. G. Dávila, D		
Small Disturbance Eule		Effects on Side Force	Lim, S. C. Luo, E. K. R. Goh 90	
	ENGINEERING NOTES			
Near-Field Interaction e		eristics of Fighter Aircraft		
Prediction Measurement	Results of Theodorsen and Garr		T. A. Zeiler 91	
Numerical Study on Re		ing Rock.		
Hover Performance Pre		G. Pohit,	C. Venkatesan, A. K. Mallik 92	
Effect of Sweep on Buf	Novel Beetle Algorithm for Carte	sian Grid Generation in Two Dimensions	ava and K. S. Ravichandran 92	
A Solution-Adaptive Un	Comparison of Deterministic and	d Stochastic Optimization Algorithms for Generic Wir	g Design Problems	
Low Reynolds Number		X		
		n Fuel Turn Forebody Flow at High Alpha		
Reduced-Order Dynam	ounpublicitui vitaryata or 1-15 t	rolebody now at high Apria	Sector Street States State	
Euler-Based Dynamic #				
Optical Measurements				
Performance Enhancen				
Experimental Demonstr				
Variable Stiffness Spar				
Transonic Flutter Simul				
Response of Selected In				
Use of Strip Yield Appro				
GALAA.				
A Publication of the Amer JAIRAM 37(5) 745–936 (2000 ISSN 0021-8669				

Made known that –

- Some plots in the foundational trilogy of NACA reports on aeroelastic flutter by Theodore Theodorsen and I. E. Garrick are in error
- Some of these erroneous plots appear in classic texts on aeroelasticity

Recommended that –

 All of the plots in the foundational trilogy be recomputed and published

"Results of Theodorsen and Garrick Revisited" by Thomas A. Zeiler *Journal of Aircraft* Vol. 37, No. 5, Sep-Oct 2000, pp. 918-920

VOLUME 37, NUMBER 5		SEPTEMBER-OCTOBER 2000			
	Journal of Aircraft	Vol. 37, No. 5	September-October	200	
FULL-LENGTH PA		CONTENTS-continued			
Aeroservoelastic Analy	Optimization of Flexible Wing W	Optimization of Flexible Wing Without Allerons for Rolling Maneuver			
Nonlinear Aeroelastic	Analytical Prediction of Damage	Growth in Notched Composite Panels Loaded in	Compression	0.0	
Limit Cycle Oscillation		C. G. Dávil	a, D. R. Ambur, D. M. McGowan	89	
Small Disturbance Eule	Helical-Groove and Circular-Trip	Effects on Side Force K. B. Lua, T.	T. Lim, S. C. Luo, E. K. R. Goh	90	
	ENGINEERING NOTES				
Near-Field Interaction	4 Limit Cycle Oscillation Characte	ristics of Fighter Aircraft R. V	V. Bunton and C. M. Denegri Jr.	91	
Prediction Measureme	Results of Theodorsen and Garr			918	
Numerical Study on Re		ng Rock		92	
Hover Performance Pre	Elastomeric Damper Model and I	Limit Cycle Oscillation in Bearingless Helicopter I G. Po	lotor Blade hit, C. Venkatesan, A. K. Mallik	92:	
	Novel Beetle Algorithm for Carte	sian Grid Generation in Two Dimensions			
Effect of Sweep on But		A. Sriv		927	
A Solution-Adaptive Ur	companient of beterministic and	adoctastic optimization Algorithms for Generic	. X. Wang and M. Damodaran	925	
Low Reynolds Number		1 Fuel Turn		932	
Reduced-Order Dynam	Computational Analysis of F-15 F	Forebody Flow at High Alpha	K. E. Wurtzler	934	
Euler-Based Dynamic A					
Optical Measurements					
Performance Enhancen					
Experimental Demonstr					
Variable Stiffness Spar					
Transonic Flutter Simul					
Response of Selected In					
Use of Ohio Viold Ameri					
Use of Strip Yield Appre					
A Publication of the Amer JAIRAM 37(5) 745-936 (2000 ISSN 0021-8869					
1					

Made known that –

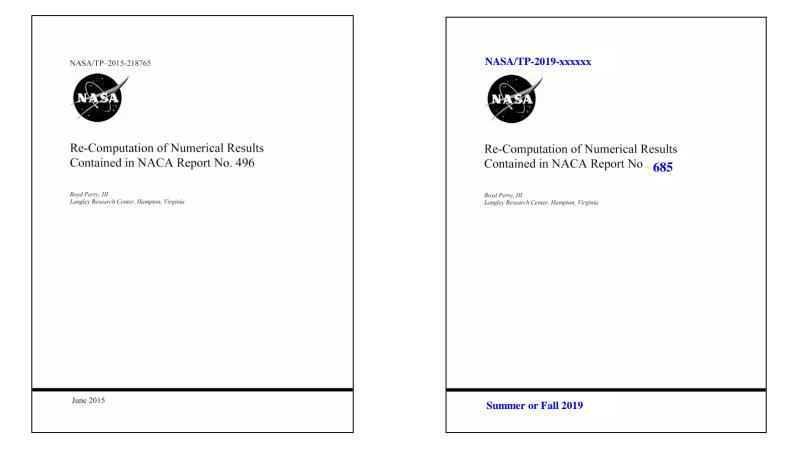
- Some plots in the foundational trilogy of NACA reports on aeroelastic flutter by Theodore Theodorsen and I. E. Garrick are in error
- Some of these erroneous plots appear in classic texts on aeroelasticity

Recommended that –

• All of the plots in the foundational trilogy be recomputed and published

Cautioned that –

• "One does not set about lightly to correct the masters."


Works Containing Erroneous Plots

- 1. Theodorsen, T.: *General Theory of Aerodynamic Instability and the Mechanism of Flutter*. NACA Report No. 496, 1934.
- 2. Theodorsen, T. and Garrick, I. E.: *Mechanism of Flutter, a Theoretical and Experimental Investigation of the Flutter Problem*. NACA Report No. 685, 1940.
- 3. Theodorsen, T. and Garrick, I. E.: *Flutter Calculations in Three Degrees of Freedom*. NACA Report No. 741, 1942.
- 4. Bisplinghoff, R. L., Ashley, H., and Halfman, R. L.: *Aeroelasticity*, Addison-Wesley-Longman, Reading, MA, 1955, pp. 539-543.
- 5. Bisplinghoff, R. L. and Ashley, H.: *Principles of Aeroelasticity*, Dover, New York, 1975, pp. 247-249.

Purpose of This Presentation

- Make known a multi-year effort to re-compute all of the example problems in the foundational trilogy of NACA reports
 - Re-computations performed using the solution method specific to each NACA report
 - Re-computations checked and re-checked using modern flutter solution methods
 ("One does not set about lightly to correct the masters")
 - ("One does not set about lightly to correct the masters.")
 - NASA TP has been / will be published for each report in the trilogy
- Present outlines of Theodorsen's and Garrick's
 - Equations of motion
 - Solution methods
- Present representative re-computations and comparisons with the originals

Publications of Re-Computed Results

Available on NASA Technical Report Server

https://ntrs.nasa.gov/

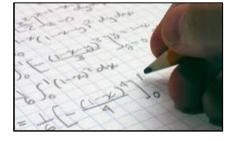
Outline

- Background and Purpose
- Brief History
- Equations of Motion
- Solution Methods
- Re-Computations and Comparisons
- Concluding Remarks

• "Computers"

 "Computers"
 Employees whose job function was to perform computations

- "Computers"
 Employees whose job function was to perform computations
- Tools



- "Computers"
 Employees whose job function was to perform computations
- Tools
 - Pencil and paper

- "Computers"
 Employees whose job function was to perform computations
- Tools
 - Pencil and paper



- "Computers"
 Employees whose job function was to perform computations
- Tools
 - Pencil and paper

– Slide rules

 Mechanical calculators (comptometers – patented 1887) 1930's

1940's

- "Computers" **Employees whose job function** was to Strong motivation to minimize human time and effort required to • Tools - Penci solve equations: Recast equations to eliminate -- solution steps - complex arithmetic – Slide
 - Mechanical calculators (comptometers – patented 1887)

1930's

1940's

15

- "Computers" Employees whose job function was to Unfortunately – • Tools Human computers ... Penci ... are prone to error – Slide
 - Mechanical calculators (comptometers – patented 1887)

1930's

1940's

16

Outline

- Background and Purpose
- Brief History
- Equations of Motion
- Solution Methods
- Re-Computations and Comparisons
- Concluding Remarks

Assumptions Made in NACA 496

- Flow is potential, unsteady, incompressible
- "Wing" is two-dimensional typical section
- Three degrees of freedom
 - Torsion α
 - Aileron deflection β
 - Vertical deflection (flexure) -h
- Wing motions are sinusoidal and infinitesimal
- Wing has no internal or solid friction, resulting in no internal damping

Assumptions Made in NACA 496

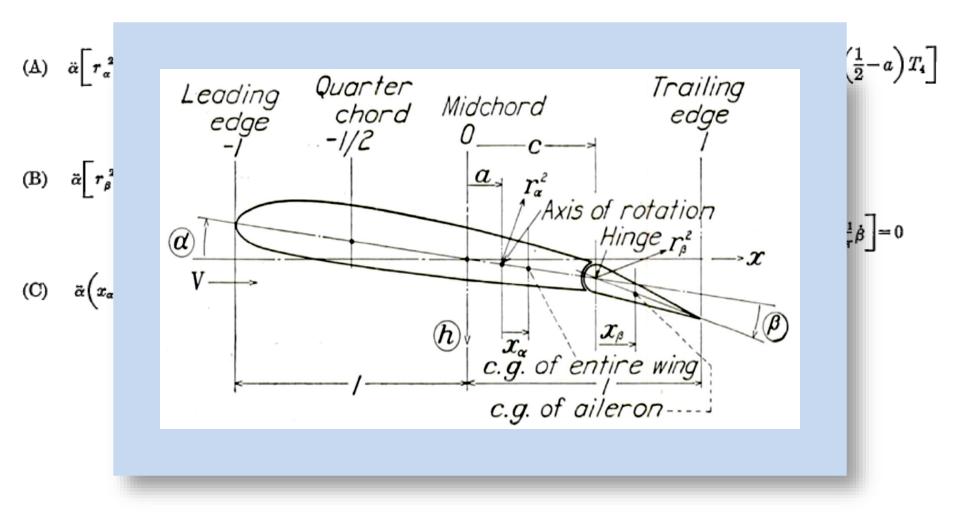
- Flow is potential, unsteady, incompressible
- "Wing" is two-dimensional typical section
- Three degrees of freedom
 - Torsion α
 - Aileron deflection β
 - Vertical deflection (flexure) -h
- Wing motions are sinusoidal and infinitesimal
- Wing has no internal or solid friction, resulting in no internal damping

Assumption removed in NACA 685 and NACA 741

$$\begin{aligned} (A) \quad \ddot{\alpha} \bigg[r_{\alpha}^{2} + \kappa \bigg(\frac{1}{8} + a^{2} \bigg) \bigg] + \dot{\alpha} \frac{v}{b} \kappa \bigg(\frac{1}{2} - a \bigg) + \alpha \frac{C_{\alpha}}{Mb^{2}} + \ddot{\beta} \bigg[r_{\beta}^{2} + (c - a)x_{\beta} - \frac{T_{7}}{\pi} \kappa - (c - a) \frac{T_{1}}{\pi} \kappa \bigg] + \frac{1}{\pi} \dot{\beta} \kappa \frac{v}{b} \bigg[-2p - \bigg(\frac{1}{2} - a \bigg) T_{4} \bigg] \\ &+ \beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi} (T_{4} + T_{10}) + \ddot{h} \bigg(x_{\alpha} - a\kappa \bigg) \frac{1}{b} - 2\kappa \bigg(a + \frac{1}{2} \bigg) \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ (B) \quad \ddot{\alpha} \bigg[r_{\beta}^{2} + (c - a)x_{\beta} - \kappa \frac{T_{7}}{\pi} - (c - a)\frac{T_{1}}{\pi} \bigg] + \dot{\alpha} \bigg(p - T_{1} - \frac{1}{2}T_{4} \bigg) \frac{v}{b} \frac{\kappa}{\pi} + \ddot{\beta} \bigg(r_{\beta}^{2} - \frac{1}{\pi} \kappa T_{3} \bigg) - \frac{1}{2\pi^{2}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa \\ &+ \beta \bigg[\frac{C_{\beta}}{Mb^{2}} + \frac{1}{\pi^{2}} \frac{v^{2}}{b^{2}} \kappa (T_{5} - T_{4} T_{10}) \bigg] + \ddot{h} \bigg(x_{\beta} - \frac{1}{\pi} \kappa T_{1} \bigg) \frac{1}{b} + \frac{T_{12}}{\pi} \kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ (C) \quad \ddot{\alpha} \bigg(x_{\alpha} - \kappa a \bigg) + \dot{\alpha} \frac{v}{b} \kappa + \ddot{\beta} \bigg(x_{\beta} - \frac{1}{\pi} T_{10} \bigg) - \dot{\beta} \frac{v}{b} T_{4} \kappa \frac{1}{\pi} + \ddot{h} (1 + \kappa) \frac{1}{b} + h \frac{C_{b}}{M} \frac{1}{b} \\ &+ 2\kappa \frac{vC(k)}{b} \bigg[\bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \end{aligned}$$

$$\begin{aligned} (A) \quad \ddot{\alpha} \bigg[r_{\alpha}^{2} + \kappa \bigg(\frac{1}{8} + a^{2} \bigg) \bigg] + \dot{\alpha} \frac{v}{b} \kappa \bigg(\frac{1}{2} - a \bigg) + \alpha \frac{C_{\alpha}}{Mb^{2}} + \ddot{\beta} \bigg[r_{\beta}^{2} + (c - a)x_{\beta} - \frac{T_{7}}{\pi} \kappa - (c - a) \frac{T_{1}}{\pi} \kappa \bigg] + \frac{1}{\pi} \dot{\beta} \kappa \frac{v}{b} \bigg[-2p - \bigg(\frac{1}{2} - a \bigg) T_{4} \bigg] \\ &+ \beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi} (T_{4} + T_{10}) + \ddot{h} \bigg(x_{\alpha} - a\kappa \bigg) \frac{1}{b} - 2\kappa \bigg(a + \frac{1}{2} \bigg) \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ (B) \quad \ddot{\alpha} \bigg[r_{\beta}^{2} + (c - a)x_{\beta} - \kappa \frac{T_{7}}{\pi} - (c - a)\frac{T_{1}}{\pi} \bigg] + \dot{\alpha} \bigg(p - T_{1} - \frac{1}{2}T_{4} \bigg) \frac{v}{b} \frac{\kappa}{\pi} + \ddot{\beta} \bigg(r_{\beta}^{2} - \frac{1}{\pi^{2}} \kappa T_{3} \bigg) - \frac{1}{2\pi^{3}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa \\ &+ \beta \bigg[\frac{C_{\beta}}{Mb^{2}} + \frac{1}{\pi^{3}} \frac{v^{2}}{b^{2}} \kappa (T_{5} - T_{4} T_{10}) \bigg] + \ddot{h} \bigg(x_{\beta} - \frac{1}{\pi} \kappa T_{1} \bigg) \frac{1}{b} + \frac{T_{12}}{\pi} \kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ \end{aligned} \\ (C) \quad \ddot{\alpha} \bigg(x_{\alpha} - \kappa a \bigg) + \dot{\alpha} \frac{v}{b} \kappa + \ddot{\beta} \bigg(x_{\beta} - \frac{1}{\pi} T_{1\kappa} \bigg) - \dot{\beta} \frac{v}{b} T_{4} \kappa \frac{1}{\pi} + \ddot{h} (1 + \kappa) \frac{1}{b} + h \frac{C_{b}}{M} \frac{1}{b} \bigg| \\ &+ 2\kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \end{aligned}$$

(A) = Sum of moments about the elastic axis


$$\begin{aligned} (A) \quad \ddot{\alpha} \bigg[r_{\alpha}^{2} + \kappa \bigg(\frac{1}{8} + a^{2} \bigg) \bigg] + \dot{\alpha} \frac{v}{b} \kappa \bigg(\frac{1}{2} - a \bigg) + \alpha \frac{C_{\alpha}}{Mb^{2}} + \ddot{\beta} \bigg[r_{\beta}^{2} + (c - a)x_{\beta} - \frac{T_{7}}{\pi} \kappa - (c - a) \frac{T_{1}}{\pi} \kappa \bigg] + \frac{1}{\pi} \dot{\beta} \kappa \frac{v}{b} \bigg[-2p - \bigg(\frac{1}{2} - a \bigg) T_{4} \bigg] \\ &+ \beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi} (T_{4} + T_{10}) + \ddot{h} \bigg(x_{\alpha} - a\kappa \bigg) \frac{1}{b} - 2\kappa \bigg(a + \frac{1}{2} \bigg) \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ (B) \quad \ddot{\alpha} \bigg[r_{\beta}^{2} + (c - a)x_{\beta} - \kappa \frac{T_{7}}{\pi} - (c - a)\frac{T_{1}}{\pi} \bigg] + \dot{\alpha} \bigg(p - T_{1} - \frac{1}{2}T_{4} \bigg) \frac{v}{b} \frac{\kappa}{\pi} + \ddot{\beta} \bigg(r_{\beta}^{2} - \frac{1}{\pi^{2}} \kappa T_{3} \bigg) - \frac{1}{2\pi^{3}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa \\ &+ \beta \bigg[\frac{C_{\beta}}{Mb^{2}} + \frac{1}{\pi^{3}} \frac{v^{2}}{b^{2}} \kappa (T_{5} - T_{4} T_{10}) \bigg] + \ddot{h} \bigg(x_{\beta} - \frac{1}{\pi} \kappa T_{1} \bigg) \frac{1}{b} + \frac{T_{12}}{\pi} \kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ \end{aligned} \\ (C) \quad \ddot{\alpha} \bigg(x_{\alpha} - \kappa a \bigg) + \dot{\alpha} \frac{v}{b} \kappa + \ddot{\beta} \bigg(x_{\beta} - \frac{1}{\pi} T_{1\kappa} \bigg) - \dot{\beta} \frac{v}{b} T_{4} \kappa \frac{1}{\pi} + \ddot{h} (1 + \kappa) \frac{1}{b} + h \frac{C_{b}}{M} \frac{1}{b} \bigg| \\ &+ 2\kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \end{aligned}$$

(A) = Sum of moments about the elastic axis

(B) = Sum of moments about the aileron hinge

$$\begin{aligned} (A) \quad \ddot{\alpha} \bigg[r_{\alpha}^{2} + \kappa \bigg(\frac{1}{8} + a^{2} \bigg) \bigg] + \dot{\alpha} \frac{v}{b} \kappa \bigg(\frac{1}{2} - a \bigg) + \alpha \frac{C_{\alpha}}{Mb^{2}} + \ddot{\beta} \bigg[r_{\beta}^{2} + (c - a)x_{\beta} - \frac{T_{7}}{\pi} \kappa - (c - a) \frac{T_{1}}{\pi} \kappa \bigg] + \frac{1}{\pi} \dot{\beta} \kappa \frac{v}{b} \bigg[-2p - \bigg(\frac{1}{2} - a \bigg) T_{4} \bigg] \\ &+ \beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi} (T_{4} + T_{10}) + \ddot{h} \bigg(x_{\alpha} - a\kappa \bigg) \frac{1}{b} - 2\kappa \bigg(a + \frac{1}{2} \bigg) \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ (B) \quad \ddot{\alpha} \bigg[r_{\beta}^{2} + (c - a)x_{\beta} - \kappa \frac{T_{7}}{\pi} - (c - a)\frac{T_{1}}{\pi} \kappa \bigg] + \dot{\alpha} \bigg(p - T_{1} - \frac{1}{2}T_{4} \bigg) \frac{v}{b} \frac{\kappa}{\pi} + \ddot{\beta} \bigg(r_{\beta}^{2} - \frac{1}{\pi^{3}} \kappa T_{3} \bigg) - \frac{1}{2\pi^{3}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa \\ &+ \beta \bigg[\frac{C_{\beta}}{Mb^{2}} + \frac{1}{\pi^{3}} \frac{v^{2}}{b^{2}} \kappa (T_{5} - T_{4} T_{10}) \bigg] + \ddot{h} \bigg(x_{\beta} - \frac{1}{\pi} \kappa T_{1} \bigg) \frac{1}{b} + \frac{T_{12}}{\pi} \kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ \end{aligned} \\ (C) \quad \ddot{\alpha} \bigg(x_{\alpha} - \kappa a \bigg) + \dot{\alpha} \frac{v}{b} \kappa + \ddot{\beta} \bigg(x_{\beta} - \frac{1}{\pi} T_{1\kappa} \bigg) - \dot{\beta} \frac{v}{b} T_{4} \kappa \frac{1}{\pi} + \ddot{h} (1 + \kappa) \frac{1}{b} + h \frac{C_{b}}{M} \frac{1}{b} \bigg| \\ &+ 2\kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \end{aligned}$$

- (A) = Sum of moments about the elastic axis
- (B) = Sum of moments about the aileron hinge
- (C) = Sum of forces in the vertical direction

$$\begin{aligned} (A) \quad \ddot{\alpha} \bigg[r_{\alpha}^{2} + \kappa \bigg(\frac{1}{8} + a^{2} \bigg) \bigg] + \dot{\alpha} \frac{v}{b} \kappa \bigg(\frac{1}{2} - a \bigg) + \alpha \frac{C_{\alpha}}{Mb^{2}} + \ddot{\beta} \bigg[r_{\beta}^{2} + (c - a)x_{\beta} - \frac{T_{7}}{\pi} \kappa - (c - a) \frac{T_{1}}{\pi} \kappa \bigg] + \frac{1}{\pi} \dot{\beta} \kappa \frac{v}{b} \bigg[-2p - \bigg(\frac{1}{2} - a \bigg) T_{4} \bigg] \\ &+ \beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi} (T_{4} + T_{10}) + \ddot{h} \bigg(x_{\alpha} - a\kappa \bigg) \frac{1}{b} - 2\kappa \bigg(a + \frac{1}{2} \bigg) \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ (B) \quad \ddot{\alpha} \bigg[r_{\beta}^{2} + (c - a)x_{\beta} - \kappa \frac{T_{7}}{\pi} - (c - a)\frac{T_{1}}{\pi} \bigg] + \dot{\alpha} \bigg(p - T_{1} - \frac{1}{2}T_{4} \bigg) \frac{v}{b} \frac{\kappa}{\pi} + \ddot{\beta} \bigg(r_{\beta}^{2} - \frac{1}{\pi} \kappa T_{3} \bigg) - \frac{1}{2\pi^{2}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa \\ &+ \beta \bigg[\frac{C_{\beta}}{Mb^{2}} + \frac{1}{\pi^{2}} \frac{v^{2}}{b^{2}} \kappa (T_{5} - T_{4} T_{10}) \bigg] + \ddot{h} \bigg(x_{\beta} - \frac{1}{\pi} \kappa T_{1} \bigg) \frac{1}{b} + \frac{T_{12}}{\pi} \kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ (C) \quad \ddot{\alpha} \bigg(x_{\alpha} - \kappa a \bigg) + \dot{\alpha} \frac{v}{b} \kappa + \ddot{\beta} \bigg(x_{\beta} - \frac{1}{\pi} T_{10} \bigg) - \dot{\beta} \frac{v}{b} T_{4} \kappa \frac{1}{\pi} + \ddot{h} (1 + \kappa) \frac{1}{b} + h \frac{C_{b}}{M} \frac{1}{b} \\ &+ 2\kappa \frac{vC(k)}{b} \bigg[\bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \end{aligned}$$

$$\begin{aligned} \text{(A)} \quad \ddot{\alpha} \bigg[r_{\alpha}^{2} + \kappa \bigg(\frac{1}{8} + a^{2} \bigg) \bigg] + \dot{\alpha} \frac{v}{b} \kappa \bigg(\frac{1}{2} - a \bigg) + \alpha \frac{G_{\alpha}}{Mb^{2}} + \ddot{\beta} \bigg[r_{\beta}^{2} + (c - a)x_{\beta} - \frac{T_{7}}{\pi} \kappa - (c - a) \frac{T_{1}}{\pi} \kappa \bigg] + \frac{1}{\pi} \dot{\beta} \kappa \frac{v}{b} \bigg[-2p - \bigg(\frac{1}{2} - a \bigg) T_{4} \bigg] \\ &+ \beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi} (T_{4} + T_{10}) + \ddot{h} \bigg(x_{\alpha} - a\kappa \bigg) \frac{1}{b} - 2\kappa \bigg(a + \frac{1}{2} \bigg) \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ \text{(B)} \quad \ddot{\alpha} \bigg[r_{\beta}^{2} + (c - a)x_{\beta} - \kappa \frac{T_{7}}{\pi} - (c - a)\frac{T_{1}}{\pi} \bigg] + \dot{\alpha} \bigg(p - T_{1} - \frac{1}{2}T_{4} \bigg) \frac{v}{b} \frac{\kappa}{\pi} + \ddot{\beta} \bigg(r_{\beta}^{2} - \frac{1}{\pi^{2}} \kappa T_{3} \bigg) - \frac{1}{2\pi^{2}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa \\ &+ \beta \bigg[\frac{C_{\beta}}{Mb^{2}} + \frac{1}{\pi^{3}} \frac{v^{2}}{b^{2}} \kappa (T_{5} - T_{4} T_{10}) \bigg] + \ddot{h} \bigg(x_{\beta} - \frac{1}{\pi} \kappa T_{1} \bigg) \frac{1}{b} + \frac{T_{12}}{\pi} \kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ \text{(C)} \quad \ddot{\alpha} \bigg(x_{\alpha} - \kappa a \bigg) + \dot{\alpha} \frac{v}{b} \kappa + \ddot{\beta} \bigg(x_{\beta} - \frac{1}{\pi} T_{1\kappa} \bigg) - \dot{\beta} \frac{v}{b} T_{4} \kappa \frac{1}{\pi} + \ddot{h} (1 + \kappa) \frac{1}{b} + h \frac{C_{b}}{M} \frac{1}{b} \\ &+ 2\kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \end{aligned}$$

Steps taken to obtain "final" equations of motion:

(1) Make substitutions $\alpha = \alpha_0 e^{ik\frac{v}{b}t}$ $\beta = \beta_0 e^{i(k\frac{v}{b}t)}$

$$\beta = \beta_0 e^{i(k\frac{v}{b}t + \varphi_1)}$$
$$h = h_0 e^{i(k\frac{v}{b}t + \varphi_2)}$$

$$\begin{aligned} \text{(A)} \quad \ddot{\alpha} \bigg[r_{\alpha}^{2} + \kappa \bigg(\frac{1}{8} + a^{2} \bigg) \bigg] + \dot{\alpha} \frac{v}{b} \kappa \bigg(\frac{1}{2} - a \bigg) + \alpha \frac{C_{\alpha}}{Mb^{2}} + \ddot{\beta} \bigg[r_{\beta}^{2} + (c - a)x_{\beta} - \frac{T_{7}}{\pi} \kappa - (c - a) \frac{T_{1}}{\pi} \kappa \bigg] + \frac{1}{\pi} \dot{\beta} \kappa \frac{v}{b} \bigg[-2p - \bigg(\frac{1}{2} - a \bigg) T_{4} \bigg] \\ &+ \beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi} (T_{4} + T_{10}) + \ddot{h} \bigg(x_{\alpha} - a\kappa \bigg) \frac{1}{b} - 2\kappa \bigg(a + \frac{1}{2} \bigg) \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ \text{(B)} \quad \ddot{\alpha} \bigg[r_{\beta}^{2} + (c - a)x_{\beta} - \kappa \frac{T_{7}}{\pi} - (c - a)\frac{T_{1}}{\pi} \bigg] + \dot{\alpha} \bigg(p - T_{1} - \frac{1}{2}T_{4} \bigg) \frac{v}{b} \frac{\kappa}{\pi} + \ddot{\beta} \bigg(r_{\beta}^{2} - \frac{1}{\pi^{2}} \kappa^{2} T_{3} \bigg) - \frac{1}{2\pi^{2}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa \\ &+ \beta \bigg[\frac{C_{\beta}}{Mb^{2}} + \frac{1}{\pi^{3}} \frac{v^{2}}{b^{2}} \kappa (T_{5} - T_{4} T_{10}) \bigg] + \ddot{h} \bigg(x_{\beta} - \frac{1}{\pi} \kappa T_{1} \bigg) \frac{1}{b} + \frac{T_{12}}{\pi} \kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ \text{(C)} \quad \ddot{\alpha} \bigg(x_{\alpha} - \kappa a \bigg) + \dot{\alpha} \frac{v}{b} \kappa + \ddot{\beta} \bigg(x_{\beta} - \frac{1}{\pi} T_{1} \kappa \bigg) - \dot{\beta} \frac{v}{b} T_{4} \kappa \frac{1}{\pi} + \ddot{h} (1 + \kappa) \frac{1}{b} + h \frac{C_{b}}{M} \frac{1}{b} \\ &+ 2\kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \end{aligned}$$

Steps taken to obtain "final" equations of motion:

(1) Make substitutions $\alpha = \alpha_0 e^{ik\frac{v}{b}t}$ $\beta = \beta_0 e^{i(k\frac{v}{b}t + \varphi_1)}$ $h = h_0 e^{i(k\frac{v}{b}t + \varphi_2)}$ $\dot{\alpha} = ik\frac{v}{b}\alpha$ $\ddot{\alpha} = -\left(k\frac{v}{b}\right)^2 \alpha$ etc.

$$\begin{aligned} (\Delta) \quad \ddot{\alpha} \bigg[r_{\alpha}^{2} + \kappa \bigg(\frac{1}{8} + a^{2} \bigg) \bigg] + \dot{\alpha} \frac{v}{b} \kappa \bigg(\frac{1}{2} - a \bigg) + \kappa \frac{G_{\alpha}}{Mb^{2}} + \ddot{\beta} \bigg[r_{\beta}^{2} + (c-a)x_{\beta} - \frac{T_{1}}{\pi}\kappa - (c-a) \frac{T_{1}}{\pi}\kappa \bigg] + \frac{1}{\pi} \dot{\beta}\kappa \frac{v}{b} \bigg[-2p - \bigg(\frac{1}{2} - a \bigg) T_{4} \bigg] \\ + \beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi} (T_{4} + T_{10}) + \ddot{h} \bigg(x_{\alpha} - a\kappa \bigg) \frac{1}{b} - 2\kappa \bigg(a + \frac{1}{2} \bigg) \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ (B) \quad \ddot{\alpha} \bigg[r_{\beta}^{2} + (c-a)x_{\beta} - \kappa \frac{T_{7}}{\pi} - (c-a)\frac{T_{1}}{\pi}\kappa \bigg] + \dot{\alpha} \bigg(p - T_{4} - \frac{1}{2}T_{4} \bigg) \frac{v}{b} \frac{\kappa}{\pi} + \ddot{\beta} \bigg(r_{\beta}^{2} - \frac{1}{\pi^{2}}x^{2}T_{3} \bigg) - \frac{1}{2\pi^{2}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa \\ + \beta \bigg[\frac{C_{\beta}}{Mb^{2}} + \frac{1}{\pi^{2}} \frac{v^{2}}{b^{2}} \kappa (T_{5} - T_{4}T_{10}) \bigg] + \ddot{h} \bigg(x_{\beta} - \frac{1}{\pi}\kappa T_{1} \bigg) \frac{1}{b} + \frac{T_{13}}{\pi} \cdot \kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ \end{aligned} \\ (C) \quad \ddot{\alpha} \bigg(x_{\alpha} - \kappa a \bigg) + \dot{\alpha} \frac{v}{b} \kappa + \ddot{\beta} \bigg(x_{\beta} - \frac{1}{\pi} T_{18} \bigg) - \dot{\beta} \frac{v}{b} T_{4} \kappa \frac{1}{\pi} + \ddot{h} (1 + \kappa) \frac{1}{b} + h \frac{C_{\beta}}{M} \frac{1}{b} \bigg) \\ + 2\kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \kappa + 2\kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \kappa + 2\kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \kappa + 2\kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \kappa + 2\kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \kappa + 2\kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \frac{v}{b} \beta \bigg] = 0 \\ \kappa + 2\kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{10}}{2\pi} \frac{v}{b} \beta \bigg]$$

Steps taken to obtain "final" equations of motion:

(1) Make substitutions

$$\begin{array}{c} \alpha = \alpha_0 e^{ik\frac{v}{b}t} & \dot{\alpha} = ik\frac{v}{b}\alpha \\ \beta = \beta_0 e^{i(k\frac{v}{b}t + \varphi_1)} & \longrightarrow & \ddot{\alpha} = -\left(k\frac{v}{b}\right)^2 \alpha \\ h = h_0 e^{i(k\frac{v}{b}t + \varphi_2)} & \text{etc.} \end{array}$$

$$\begin{aligned} (A) \quad \ddot{\alpha} \bigg[r_{\alpha}^{2} + \kappa \bigg(\frac{1}{8} + a^{2} \bigg) \bigg] + \dot{\alpha} \frac{v}{b} \kappa \bigg(\frac{1}{2} - a \bigg) + \kappa \frac{G_{\alpha}}{Mb^{2}} + \ddot{\beta} \bigg[r_{\beta}^{2} + (c - a)x_{\beta} - \frac{T_{7}}{\pi} \kappa - (c - a) \frac{T_{1}}{\pi} \kappa \bigg] + \frac{1}{\pi} \dot{\beta} \kappa \frac{v}{b} \bigg[-2p - \bigg(\frac{1}{2} - a \bigg) T_{4} \bigg] \\ &+ \beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi} (T_{4} + T_{10}) + \ddot{h} \bigg(x_{\alpha} - a\kappa \bigg) \frac{1}{b} - 2\kappa \bigg(a + \frac{1}{2} \bigg) \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ (B) \quad \ddot{\alpha} \bigg[r_{\beta}^{2} + (c - a)x_{\beta} - \kappa \frac{T_{7}}{\pi} - (c - a)\frac{T_{1}}{\pi} \bigg] + \dot{\alpha} \bigg(p - T_{1} - \frac{1}{2}T_{4} \bigg) \frac{v}{b} \frac{\kappa}{\pi} + \ddot{\beta} \bigg(r_{\beta}^{2} - \frac{1}{\pi} \kappa T_{3} \bigg) - \frac{1}{2\pi^{2}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa \\ &+ \beta \bigg[\underbrace{C_{\beta}}_{Mb^{2}} + \frac{1}{\pi^{3}} \frac{v^{2}}{b^{2}} \kappa (T_{5} - T_{4} T_{10}) \bigg] + \ddot{h} \bigg(x_{\beta} - \frac{1}{\pi} \kappa T_{1} \bigg) \frac{1}{b} + \frac{T_{12}}{\pi} \kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ (C) \quad \ddot{\alpha} \bigg(x_{\alpha} - \kappa a \bigg) + \dot{\alpha} \frac{v}{b} \kappa + \ddot{\beta} \bigg(x_{\beta} - \frac{1}{\pi} T_{1\kappa} \bigg) - \dot{\beta} \frac{v}{b} T_{4} \kappa \frac{1}{\pi} + \ddot{h} (1 + \kappa) \frac{1}{b} + h \underbrace{C_{b}} \frac{1}{M} \bigg) \\ &+ 2\kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \end{aligned}$$

Steps taken to obtain "final" equations of motion:

(1) Make substitutions $\alpha = \alpha_0 e^{ik\frac{v}{b}t}$ $\beta = \beta_0 e^{i(k\frac{v}{b}t + \varphi_1)}$ $h = h_0 e^{i(k\frac{v}{b}t + \varphi_2)}$ $\dot{\alpha} = ik\frac{v}{b}\alpha$ $\ddot{\alpha} = -\left(k\frac{v}{b}\right)^2 \alpha$ etc.

$$\begin{aligned} (A) \quad \ddot{\alpha} \bigg[r_{\alpha}^{2} + \kappa \bigg(\frac{1}{8} + a^{2} \bigg) \bigg] + \dot{\alpha} \frac{v}{b} \kappa \bigg(\frac{1}{2} - a \bigg) + \kappa \frac{C_{\alpha}}{Mb^{2}} + \ddot{\beta} \bigg[r_{\beta}^{2} + (c - a)x_{\beta} - \frac{T_{7}}{\pi} \kappa - (c - a) \frac{T_{1}}{\pi} \kappa \bigg] + \frac{1}{\pi} \dot{\beta} \kappa \frac{v}{b} \bigg[-2p - \bigg(\frac{1}{2} - a \bigg) T_{4} \bigg] \\ &+ \beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi} (T_{4} + T_{10}) + \ddot{h} \bigg(x_{\alpha} - a\kappa \bigg) \frac{1}{b} - 2\kappa \bigg(a + \frac{1}{2} \bigg) \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ (B) \quad \ddot{\alpha} \bigg[r_{\beta}^{2} + (c - a)x_{\beta} - \kappa \frac{T_{7}}{\pi} - (c - a)\frac{T_{1}}{\pi} \bigg] + \dot{\alpha} \bigg(p - T_{1} - \frac{1}{2}T_{4} \bigg) \frac{v}{b} \frac{\kappa}{\pi} + \ddot{\beta} \bigg(r_{\beta}^{2} - \frac{1}{\pi} \kappa T_{3} \bigg) - \frac{1}{2\pi^{2}} \dot{\beta} T_{4} T_{11} \frac{v}{b} \kappa \\ &+ \beta \bigg[\frac{C_{\beta}}{Mb^{2}} + \frac{1}{\pi^{2}} \frac{v^{2}}{b^{2}} \kappa (T_{5} - T_{4} T_{10}) \bigg] + \ddot{h} \bigg(x_{\beta} - \frac{1}{\pi} \kappa T_{1} \bigg) \frac{1}{b} + \frac{T_{12}}{\pi} \kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ (C) \quad \ddot{\alpha} \bigg(x_{\alpha} - \kappa a \bigg) + \dot{\alpha} \frac{v}{b} \kappa + \ddot{\beta} \bigg(x_{\beta} - \frac{1}{\pi} T_{1\kappa} \bigg) - \dot{\beta} \frac{v}{b} T_{4} \kappa \frac{1}{\pi} + \ddot{h} (1 + \kappa) \frac{1}{b} + h \bigg(\frac{C_{b}}{M} \frac{1}{b} \bigg) \\ &+ 2\kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \end{aligned}$$

Steps taken to obtain "final" equations of motion:

(2) Normalize all equations by $\left(\frac{v}{b}k\right)^2 \kappa$

$$\begin{aligned} \text{(A)} \quad \ddot{\alpha} \bigg[r_{\alpha}^{2} + \kappa \bigg(\frac{1}{8} + a^{2} \bigg) \bigg] + \dot{\alpha} \frac{v}{b} \kappa \bigg(\frac{1}{2} - a \bigg) + \kappa \frac{C_{\alpha}}{Mb^{2}} + \ddot{\beta} \bigg[r_{\beta}^{2} + (c-a)x_{\beta} - \frac{T_{7}}{\pi}\kappa - (c-a)\frac{T_{1}}{\pi}\kappa \bigg] + \frac{1}{\pi} \dot{\beta} \kappa \frac{v}{b} \bigg[-2p - \bigg(\frac{1}{2} - a \bigg) T_{4} \bigg] \\ &+ \beta \kappa \frac{v^{2}}{b^{2}} \frac{1}{\pi} (T_{4} + T_{10}) + \ddot{h} \bigg(x_{\alpha} - a\kappa \bigg) \frac{1}{b} - 2\kappa \bigg(a + \frac{1}{2} \bigg) \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b} \beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ \text{(B)} \quad \ddot{\alpha} \bigg[r_{\beta}^{2} + (c-a)x_{\beta} - \kappa \frac{T_{7}}{\pi} - (c-a)\frac{T_{1}}{\pi}\kappa \bigg] + \dot{\alpha} \bigg(p - T_{4} - \frac{1}{2}T_{4} \bigg) \frac{v}{b} \frac{\kappa}{\pi} + \ddot{\beta} \bigg(r_{\beta}^{2} - \frac{1}{\pi^{3}}\kappa^{2} \bigg) - \frac{1}{2\pi^{3}}\dot{\beta}T_{4}T_{11}\frac{v}{b}\kappa \\ &+ \beta \bigg[\frac{C_{\beta}}{Mb^{2}} \bigg] \frac{1}{\pi^{3}} \frac{v^{3}}{b^{2}}\kappa (T_{5} - T_{4}T_{10}) \bigg] + \ddot{h} \bigg(x_{\beta} - \frac{1}{\pi}\kappa T_{1} \bigg) \frac{1}{b} + \frac{T_{12}}{\pi} \kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b}\beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{aligned} \\ \text{(C)} \quad \ddot{\alpha} \bigg(x_{\alpha} - \kappa a \bigg) + \dot{\alpha} \frac{v}{b} \kappa + \ddot{\beta} \bigg(x_{\beta} - \frac{1}{\pi}T_{16} \bigg) - \dot{\beta} \frac{v}{b} T_{4}\kappa \frac{1}{\pi} + \ddot{h} (1 + \kappa) \frac{1}{b} + h \frac{C_{b}}{M} \frac{1}{b} \bigg) \\ &+ 2\kappa \frac{vC(k)}{b} \bigg[\frac{v\alpha}{b} + \frac{\dot{h}}{b} + \bigg(\frac{1}{2} - a \bigg) \dot{\alpha} + \frac{T_{10}}{\pi} \frac{v}{b}\beta + \frac{T_{11}}{2\pi} \dot{\beta} \bigg] = 0 \\ \end{array} \end{aligned}$$

Steps taken to obtain "final" equations of motion:

(2) Normalize all equations by
$$\left(\frac{v}{b}k\right)^2 \kappa$$

(A)
$$(A_{a\alpha} + \Omega_{\alpha}X)\alpha + A_{a\beta}\beta + A_{ah}h = 0$$

(B) $A_{b\alpha}\alpha + (A_{b\beta} + \Omega_{\beta}X)\beta + A_{bh}h = 0$
(C) $A_{c\alpha}\alpha + A_{c\beta}\beta + (A_{ch} + \Omega_{h}X)h = 0$

where
$$A_{a\alpha} = R_{a\alpha} + iI_{a\alpha}$$
, etc.

(A)
$$(A_{a\alpha} + \Omega_{\alpha}X)\alpha + A_{a\beta}\beta + A_{ah}h = 0$$

(B) $A_{b\alpha}\alpha + (A_{b\beta} + \Omega_{\beta}X)\beta + A_{bh}h = 0$
(C) $A_{c\alpha}\alpha + A_{c\beta}\beta + (A_{ch} + \Omega_{h}X)h = 0$
 $\left(\frac{\omega_{\alpha}r_{\alpha}}{\omega_{r}r_{r}}\right)^{2}\frac{1}{\kappa}\left(\frac{b\omega_{r}r_{r}}{vk}\right)^{2}$

(A)
$$(A_{a\alpha} + \Omega_{\alpha}X)\alpha + A_{a\beta}\beta + A_{ah}h = 0$$

(B) $A_{b\alpha}\alpha + (A_{b\beta} + \Omega_{\beta}X)\beta + A_{bh}h = 0$
(C) $A_{c\alpha}\alpha + A_{c\beta}\beta + (A_{ch} + \Omega_{h}X)h = 0$
The Ω s and X are central to
Theodorsen's solution methods
$$\begin{pmatrix} \omega_{\alpha}r_{\alpha} \\ \omega_{r}r_{r} \end{pmatrix}^{2} \frac{1}{\kappa} \left(\frac{b\omega_{r}r_{r}}{vk}\right)^{2}$$

-- with addition of structural damping terms --

(A)
$$(A_{a\alpha} + \Omega_{\alpha}(1 + ig_{\alpha})X)\alpha + A_{a\beta}\beta + A_{ah}h = 0$$

(B)
$$A_{b\alpha}\alpha + (A_{b\beta} + \Omega_{\beta}(1 + ig_{\beta})X)\beta + A_{bh}h = 0$$

(C)
$$A_{c\alpha}\alpha + A_{c\beta}\beta + (A_{ch} + \Omega_h (1 + ig_h)X)h = 0$$

-- with addition of structural damping terms --

(A)
$$(A_{a\alpha} + \Omega_{\alpha}(1 + ig_{\alpha})X)\alpha + A_{a\beta}\beta + A_{ah}h = 0$$

(B)
$$A_{b\alpha}\alpha + (A_{b\beta} + \Omega_{\beta}(1 + ig_{\beta})X)\beta + A_{bh}h = 0$$

(C)
$$A_{c\alpha}\alpha + A_{c\beta}\beta + (A_{ch} + \Omega_h (1 + ig_h)X)h = 0$$

For all equations of motion, 2DOF and 3DOF, solution is obtained when their determinant is zero

Outline

- Background and Purpose
- Brief History
- Equations of Motion
- Solution Methods
- Re-Computations and Comparisons
- Concluding Remarks

Solution Method 1

Employed in NACA 496 2DOF only No g, allows ξ

Solution Method 2

Employed in NACA 685 2DOF or 3DOF Allows g and ξ Solution Method 3

Employed in NACA 741 2DOF or 3DOF Allows g and ξ

Solution Method 1

Solution Method 2

Employed in NACA 496 2DOF only No g, allows ξ Employed in *NACA 685* 2DOF or 3DOF

Allows g and ξ

Solution Method 3

Employed in NACA 741 2DOF or 3DOF Allows g and ξ

Expand complex determinant

Separate into real and imaginary equations; set both to zero

Solution Method 1

Solution Method 2

Employed in NACA 496 2DOF only No g, allows ξ

Employed in NACA 685 2DOF or 3DOF Allows g and ξ Solution Method 3

Employed in NACA 741 2DOF or 3DOF Allows g and ξ

Expand complex determinant

Separate into real and imaginary equations; set both to zero

<u>2DOF Example – Torsion-Aileron (α , β)</u>

$$\begin{vmatrix} A_{a\alpha} + \Omega_{\alpha} X & A_{a\beta} \\ A_{b\alpha} & A_{b\beta} + \Omega_{\beta} X \end{vmatrix} = 0 \qquad \text{where } A_{ij} = R_{ij} + iI_{ij}$$

Real equation

$$\Omega_{\alpha}\Omega_{\beta}X^{2} + (\Omega_{\alpha}R_{b\beta} + \Omega_{\beta}R_{a\alpha})X + (R_{a\alpha}R_{b\beta} - I_{a\alpha}I_{b\beta} - R_{a\beta}R_{b\alpha} + I_{a\beta}I_{b\alpha}) = 0$$

Imaginary equation

$$\left(\Omega_{\alpha}I_{b\beta} + \Omega_{\beta}I_{a\alpha}\right)X + \left(R_{a\alpha}I_{b\beta} + R_{b\beta}I_{a\alpha} - R_{a\beta}I_{b\alpha} - I_{a\beta}R_{b\alpha}\right) = 0$$

Solution Method 1

Solution Method 2

Employed in NACA 496 2DOF only No g, allows ξ Employed in *NACA 685* 2DOF or 3DOF

Allows g and ξ

Solution Method 3

Employed in NACA 741 2DOF or 3DOF Allows g and ξ

Expand complex determinant

Separate into real and imaginary equations; set both to zero

<u>2DOF Example – Torsion-Aileron (α , β)</u>

Solution is obtained when real and imaginary equations are both satisfied <u>for the same values</u> of X and k

Real equation

$$\Omega_{\alpha}\Omega_{\beta}X^{2} + (\Omega_{\alpha}R_{b\beta} + \Omega_{\beta}R_{a\alpha})X + (R_{a\alpha}R_{b\beta} - I_{a\alpha}I_{b\beta} - R_{a\beta}R_{b\alpha} + I_{a\beta}I_{b\alpha}) = 0$$

Imaginary equation

$$\left(\Omega_{\alpha}I_{b\beta} + \Omega_{\beta}I_{a\alpha}\right)X + \left(R_{a\alpha}I_{b\beta} + R_{b\beta}I_{a\alpha} - R_{a\beta}I_{b\alpha} - I_{a\beta}R_{b\alpha}\right) = 0$$

Solution Method 1

Solution Method 2

Employed in *NACA 496* 2DOF only

No g, allows ξ

Do

this

for

many values

of k

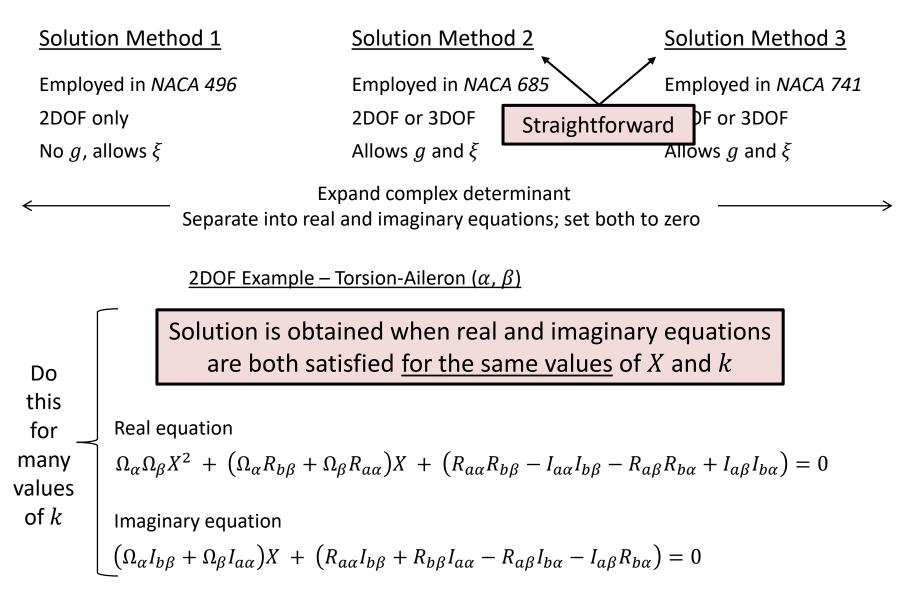
Employed in NACA 685 2DOF or 3DOF Allows g and ξ Solution Method 3

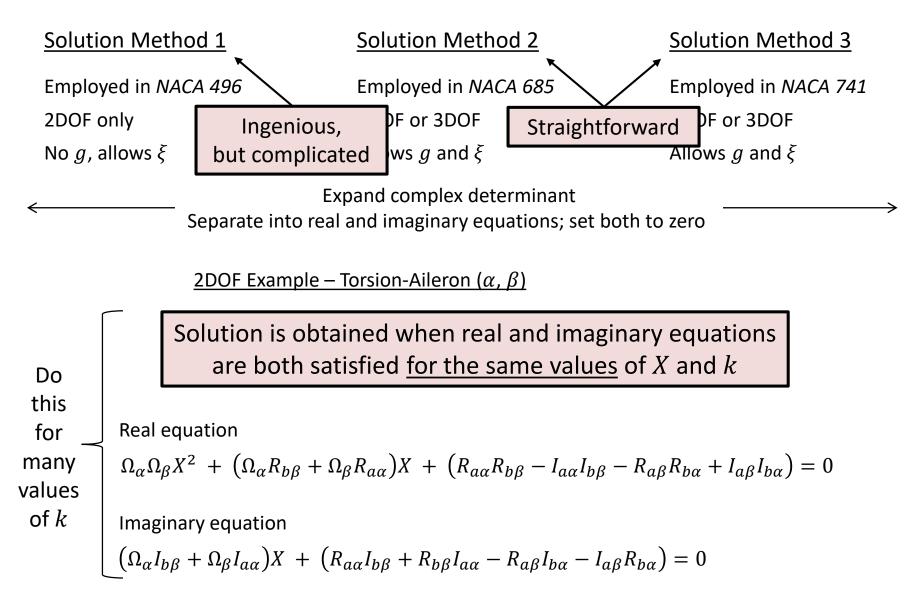
Employed in NACA 741 2DOF or 3DOF Allows g and ξ

Expand complex determinant

Separate into real and imaginary equations; set both to zero

<u>2DOF Example – Torsion-Aileron (α , β)</u>


Solution is obtained when real and imaginary equations are both satisfied for the same values of X and k

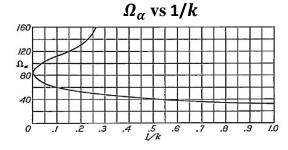

Real equation

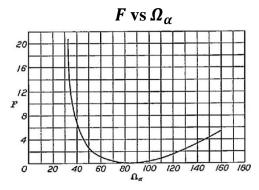
$$\Omega_{\alpha}\Omega_{\beta}X^{2} + (\Omega_{\alpha}R_{b\beta} + \Omega_{\beta}R_{a\alpha})X + (R_{a\alpha}R_{b\beta} - I_{a\alpha}I_{b\beta} - R_{a\beta}R_{b\alpha} + I_{a\beta}I_{b\alpha}) = 0$$

Imaginary equation

 $(\Omega_{\alpha}I_{b\beta} + \Omega_{\beta}I_{a\alpha})X + (R_{a\alpha}I_{b\beta} + R_{b\beta}I_{a\alpha} - R_{a\beta}I_{b\alpha} - I_{a\beta}R_{b\alpha}) = 0$

$$\Omega_{\alpha}\Omega_{\beta}X^{2} + (\Omega_{\alpha}R_{b\beta} + \Omega_{\beta}R_{a\alpha})X + (R_{a\alpha}R_{b\beta} - I_{a\alpha}I_{b\beta} - R_{a\beta}R_{b\alpha} + I_{a\beta}I_{b\alpha}) = 0$$
$$(\Omega_{\alpha}I_{b\beta} + \Omega_{\beta}I_{a\alpha})X + (R_{a\alpha}I_{b\beta} + R_{b\beta}I_{a\alpha} - R_{a\beta}I_{b\alpha} - I_{a\beta}R_{b\alpha}) = 0$$


Solution Method 1


- Treat Ω_{α} and X as parameters
- Solve 2 equations in 2 unknowns, Ω_{α} and X

$$\Omega_{\alpha}\Omega_{\beta}X^{2} + (\Omega_{\alpha}R_{b\beta} + \Omega_{\beta}R_{a\alpha})X + (R_{a\alpha}R_{b\beta} - I_{a\alpha}I_{b\beta} - R_{a\beta}R_{b\alpha} + I_{a\beta}I_{b\alpha}) = 0$$
$$(\Omega_{\alpha}I_{b\beta} + \Omega_{\beta}I_{a\alpha})X + (R_{a\alpha}I_{b\beta} + R_{b\beta}I_{a\alpha} - R_{a\beta}I_{b\alpha} - I_{a\beta}R_{b\alpha}) = 0$$

Solution Method 1

- Treat Ω_{α} and X as parameters
- Solve 2 equations in 2 unknowns, Ω_{α} and X

$$\Omega_{\alpha}\Omega_{\beta}X^{2} + (\Omega_{\alpha}R_{b\beta} + \Omega_{\beta}R_{a\alpha})X + (R_{a\alpha}R_{b\beta} - I_{a\alpha}I_{b\beta} - R_{a\beta}R_{b\alpha} + I_{a\beta}I_{b\alpha}) = 0$$
$$(\Omega_{\alpha}I_{b\beta} + \Omega_{\beta}I_{a\alpha})X + (R_{a\alpha}I_{b\beta} + R_{b\beta}I_{a\alpha} - R_{a\beta}I_{b\alpha} - I_{a\beta}R_{b\alpha}) = 0$$
$$\Omega_{\alpha} \text{ vs } 1/k$$

Identify Solution Method 1 problem-specific 120 $\kappa_f =$ Ω. value of Ω_{α} 80 Treat Ω_{α} and X as parameters ٠ Solve 2 equations in 2 unknowns, Ω_{α} and X٠ .2 .3 o ./ .4 .5 1/k .6 .7 $\Omega_{lpha} = \left(rac{\omega_{lpha}r_{lpha}}{\omega_{eta}r_{eta}}
ight)^2$ F vs Ω_{α} 20 $v_f = F \frac{br_\beta \omega_\beta}{dr_\beta}$ 16 $\sqrt{\kappa}$ F 80 100 120 Ω_a 0 60 140 160 180 Identify problem-specific

value of Ω_{α}

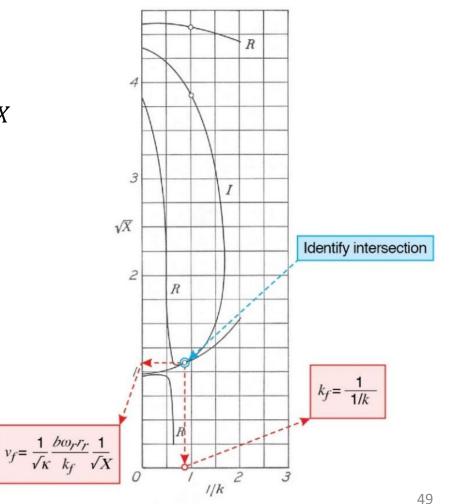
$$\Omega_{\alpha}\Omega_{\beta}X^{2} + (\Omega_{\alpha}R_{b\beta} + \Omega_{\beta}R_{a\alpha})X + (R_{a\alpha}R_{b\beta} - I_{a\alpha}I_{b\beta} - R_{a\beta}R_{b\alpha} + I_{a\beta}I_{b\alpha}) = 0$$
$$(\Omega_{\alpha}I_{b\beta} + \Omega_{\beta}I_{a\alpha})X + (R_{a\alpha}I_{b\beta} + R_{b\beta}I_{a\alpha} - R_{a\beta}I_{b\alpha} - I_{a\beta}R_{b\alpha}) = 0$$

Solution Method 1

- Treat Ω_{α} and X as parameters
- Solve 2 equations in 2 unknowns, Ω_{lpha} and X

Solution Method 2

- Define Ω_{α} and Ω_{β}
- Treat *X* as a parameter
- Solve polynomial equations for X₁ and X₂


$$\Omega_{\alpha}\Omega_{\beta}X^{2} + (\Omega_{\alpha}R_{b\beta} + \Omega_{\beta}R_{a\alpha})X + (R_{a\alpha}R_{b\beta} - I_{a\alpha}I_{b\beta} - R_{a\beta}R_{b\alpha} + I_{a\beta}I_{b\alpha}) = 0$$
$$(\Omega_{\alpha}I_{b\beta} + \Omega_{\beta}I_{a\alpha})X + (R_{a\alpha}I_{b\beta} + R_{b\beta}I_{a\alpha} - R_{a\beta}I_{b\alpha} - I_{a\beta}R_{b\alpha}) = 0$$

Solution Method 1

- Treat Ω_{α} and X as parameters
- Solve 2 equations in 2 unknowns, Ω_{α} and X

Solution Method 2

- Define Ω_{α} and Ω_{β}
- Treat *X* as a parameter
- Solve polynomial equations for X₁ and X₂

$$\Omega_{\alpha}\Omega_{\beta}X^{2} + (\Omega_{\alpha}R_{b\beta} + \Omega_{\beta}R_{a\alpha})X + (R_{a\alpha}R_{b\beta} - I_{a\alpha}I_{b\beta} - R_{a\beta}R_{b\alpha} + I_{a\beta}I_{b\alpha}) = 0$$
$$(\Omega_{\alpha}I_{b\beta} + \Omega_{\beta}I_{a\alpha})X + (R_{a\alpha}I_{b\beta} + R_{b\beta}I_{a\alpha} - R_{a\beta}I_{b\alpha} - I_{a\beta}R_{b\alpha}) = 0$$

Solution Method 1

- Treat Ω_{α} and X as parameters
- Solve 2 equations in 2 unknowns, Ω_{α} and X

Solution Method 2

- Define Ω_{α} and Ω_{β}
- Treat *X* as a parameter
- Solve polynomial equations for X₁ and X₂

Solution Method 3

- Define Ω_{α} and Ω_{β}
- Treat *X* as a parameter

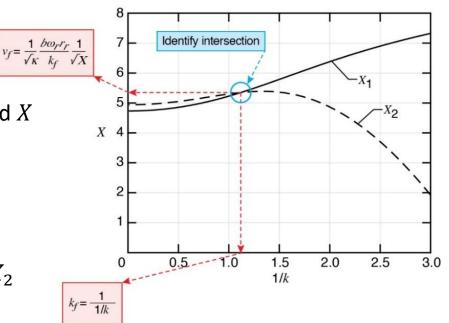
 $\checkmark \begin{bmatrix} a_1 X + a_0 = 0 \\ b_1 X + b_0 = 0 \end{bmatrix}$

- Employ method of elimination —
- Solve linear equations for X_1 and X_2

$$\Omega_{\alpha}\Omega_{\beta}X^{2} + (\Omega_{\alpha}R_{b\beta} + \Omega_{\beta}R_{a\alpha})X + (R_{a\alpha}R_{b\beta} - I_{a\alpha}I_{b\beta} - R_{a\beta}R_{b\alpha} + I_{a\beta}I_{b\alpha}) = 0$$
$$(\Omega_{\alpha}I_{b\beta} + \Omega_{\beta}I_{a\alpha})X + (R_{a\alpha}I_{b\beta} + R_{b\beta}I_{a\alpha} - R_{a\beta}I_{b\alpha} - I_{a\beta}R_{b\alpha}) = 0$$

 $\begin{vmatrix} a_1 X + a_0 = 0 \\ b_1 X + b_0 = 0 \end{vmatrix}$

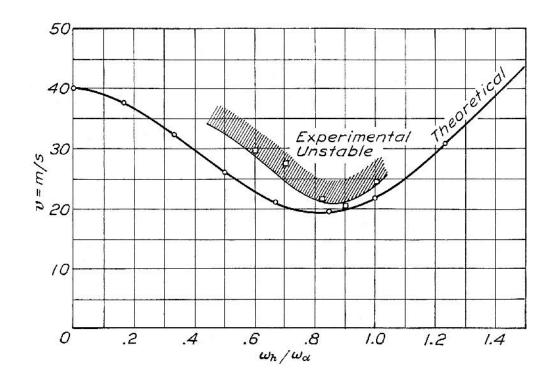
Solution Method 1

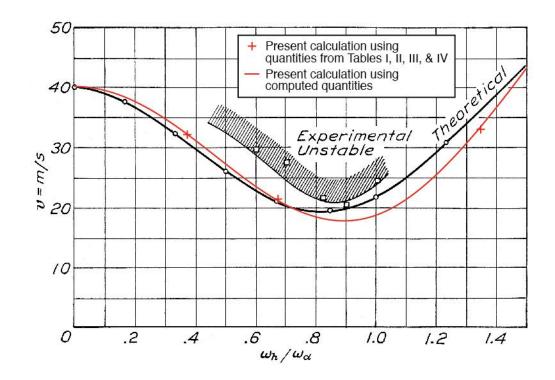

- Treat Ω_{α} and X as parameters
- Solve 2 equations in 2 unknowns, Ω_{α} and X

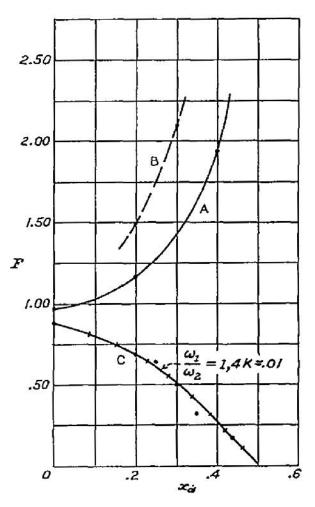
Solution Method 2

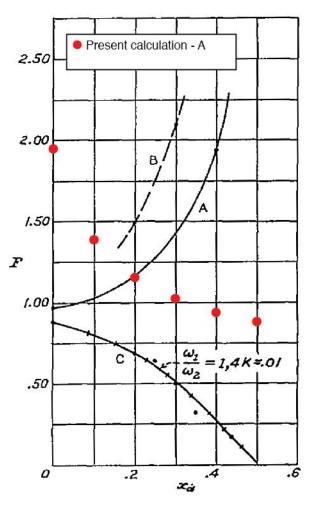
- Define Ω_{α} and Ω_{β}
- Treat *X* as a parameter
- Solve polynomial equations for X_1 and X_2

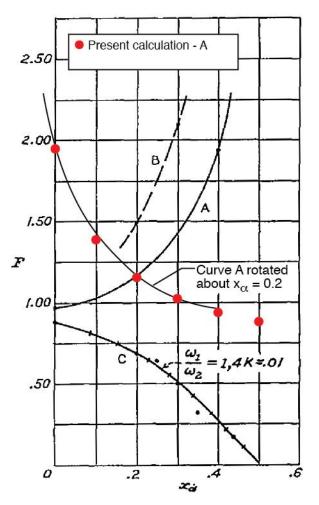
Solution Method 3

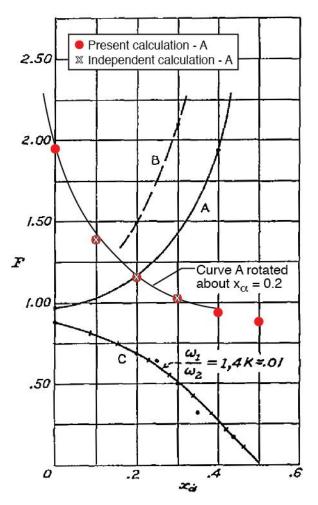

- Define Ω_{α} and Ω_{β}
- Treat *X* as a parameter
- Employ method of elimination -
- Solve linear equations for X₁ and X₂

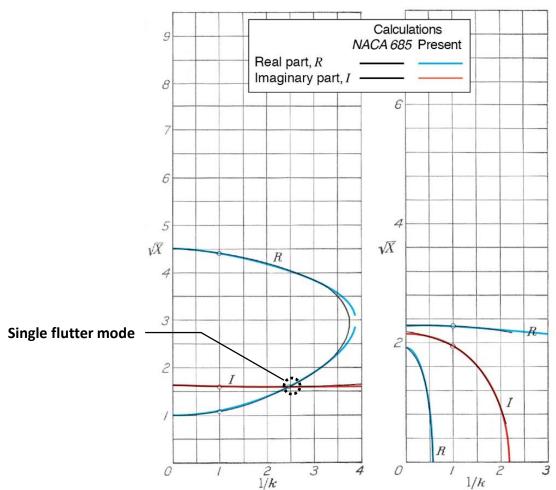

Outline

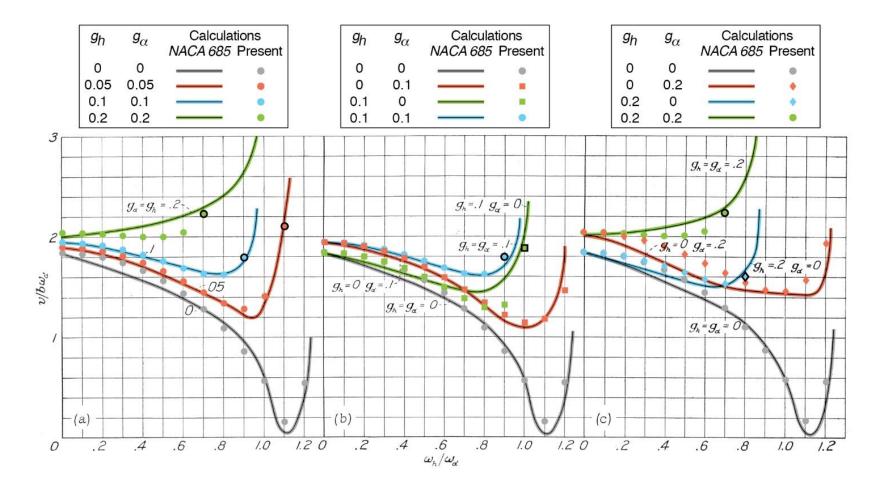

- Background and Purpose
- Brief History
- Equations of Motion
- Solution Methods
- Re-Computations and Comparisons
- Concluding Remarks


Effect of $\frac{\omega_h}{\omega_\alpha}$ on Flutter Velocity, v

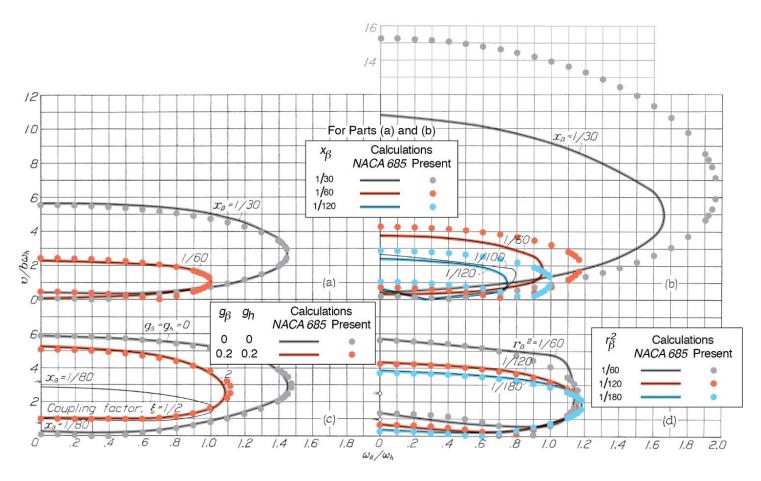



Effect of $\frac{\omega_h}{\omega_{\alpha}}$ on Flutter Velocity, v

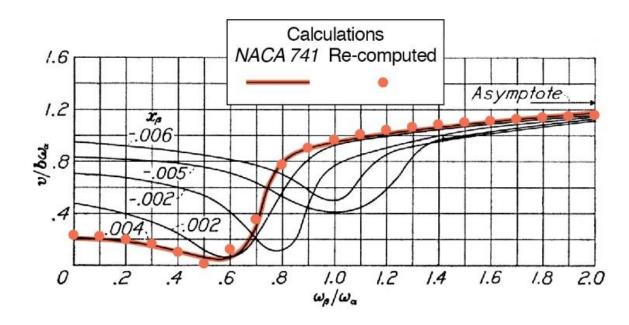




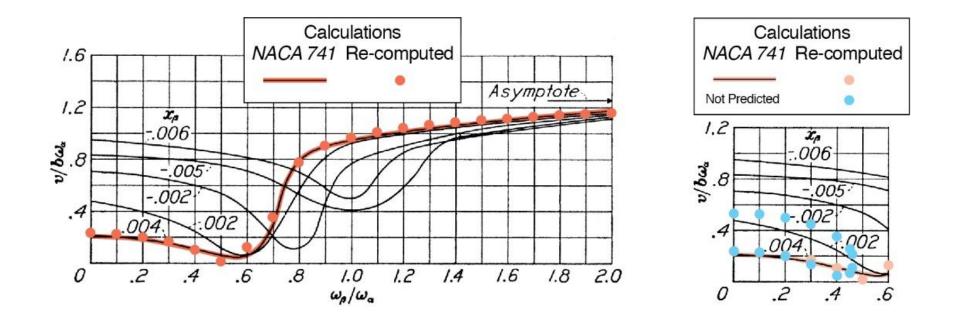
Comparisons for Solution Method 2 From NACA 685; 2DOF


Case 1 Case 2

Effect of $\frac{\omega_h}{\omega_\alpha}$ on $\frac{v}{b\omega_\alpha}$ for various g_h and g_α



Effect of $\frac{\omega_{\beta}}{\omega_{h}}$ on $\frac{v}{b\omega_{h}}$ for various quantities



Effect of $\frac{\omega_{\beta}}{\omega_{h}}$ on $\frac{v}{b\omega_{h}}$ for various quantities In parts (b) and (d) • $x_{\beta} = \frac{1}{60}$ $r_{\beta}^2 = \frac{1}{120}$ 14 . 12 10 For Parts (a) and (b) xa=1/30 Calculations xβ 8 NACA 685 Present 1/30 1/60 6 $x_{a} = 1/30$ 1/120 4 1/500 v/bwn 1/60 1/100 1120 (a) (b)-Calculations g_β g_h NACA 685 Present $g_{\beta} = g_{h} = 0$ 6 r_{β}^2 0 0 Calculations rs2=1/60 0.2 0.2 NACA 685 Present 120 1/60 $x_{\beta} = 1/80$ 1/120 1/180 1/180 Coupling factor, \$=1/2 (C) (d) .8 1.0 1.2 1.4 1.6 .2 .8 1.8 0 .4 .6 1.0 1.2 1.4 1.6 1.8 20 $\omega_{\rm B}/\omega_{\rm h}$

Effect of $\frac{\omega_{\beta}}{\omega_{\alpha}}$ on $\frac{v}{b\omega_{a}}$ for various x_{β}

Effect of $\frac{\omega_{\beta}}{\omega_{\alpha}}$ on $\frac{v}{b\omega_{a}}$ for various x_{β}

Outline

- Background and Purpose
- Brief History
- Equations of Motion
- Solution Methods
- Re-Computations and Comparisons
- Concluding Remarks

Concluding Remarks

- In an AIAA Engineering Note Thomas A. Zeiler
 - Made known that numerical errors exist in three foundational reports on aeroelastic flutter and on early aeroelasticity texts
 - Recommended that all of the plots in NACA 496, NACA 685, and NACA 741 be re-computed and published
- Current work is following Zeiler's recommendation by
 - Re-computing and checking all numerical examples in these foundational reports
 - Comparing original and re-computed results
 - Publishing and making known the existence of the re-computations
- This paper has presented
 - Theodorsen's and Garrick's equations and solution methods
 - Representative examples of re-computations and comparisons
 - Overall good agreement between original and re-computed results (with some notable discrepancies)