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Motion resembling that of a pendulum undergoing large-amplitude limit cycle oscillation
was observed during a series of flight tests of an unoccupied Orion Capsule Parachute
Assembly System (CPAS) comprised of two parachutes and a capsule payload. Large
excursions away from vertical by the capsule could cause it to strike the ground or ocean
at a large angle with respect to vertical, or at a large horizontal speed. These conditions
are undesirable because they would endanger the occupants of the capsule in an actual
mission. A simplified planar dynamics model in conjunction with a nonlinear normal force
coefficient vs. angle of attack model serves as the basis of an analytical investigation of the
fundamental dynamics of this pendulum motion. Output error methodology from system
identification theory was used to identify the parameters of the nonlinear aerodynamics
model. The identified model yielded excellent comparison with portions of flight test
data where the pendulum motion occurred. Due to the inherent nonlinear nature of the
pendulum motion limit cycle, traditional nonlinear analysis techniques were applied to gain
further insight into the system. Lyapunov’s direct method provided mathematical proof
in the absolute stability of the pendulum mode. Describing Function method was used
to predict the amplitude and frequency of the limit cycle oscillation. Finally, phase plane
analysis allowed easy visualization on the size and shape of the limit cycle with respect to
variations in key aerodynamic parameters.

I. Introduction

As discussed in Ref. [1], a series of flight tests was conducted to characterize the performance of the
Orion Multi Purpose Crew Vehicle (MPCV) parachute cluster. It is apparent from flight tests that the
two-parachute cluster/capsule system can undergo limit-cycle pendulum motion with large excursions from
vertical by the payload. The pendulum motion can result in the capsule striking the ground at a large angle
with respect to vertical, or at a large horizontal speed, both of which are highly undesirable. In Ref. [1]
Ray and Mach́ın describe the pendulum motion observed during flight testing and summarize a series of
studies performed in an attempt to understand the causes of the phenomenon. The pendulum motion was
not observed with the nominal three-main parachute configuration. In Ref. [2] Ali and etc. summarized
series of efforts taken by the Orion CPAS program on understanding and mitigating the two-parachute
cluster pendulum problem. The Program ultimately accepted the risks involved with the pendulum motion
associated with the two-parachute configuration and opted not to alter the design of the parachutes which
would diminish the performance of the nominal three-parachute configuration.

Over the past 50 years, a number of analytical, numerical, and experimental investigations have been
performed with the goal of understanding parachute pitch-plane dynamics (for example, Refs. [3]–[6]). Ref.
[7] used CFD to study the stability of various main parachute configurations from the Apollo and MPCV
programs. It was demonstrated that an increase in the porosity of the parachute improved its stability
characteristics hence reduced the severity of the pendulum motion. Figure 1 are representative plots of
normal force and axial force coefficients comparing a stable vs. unstable main parachute configuration. It is
apparent from the CN vs. α plot that unstable configuration has a negative slope at α = 0 and two stable
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equilibrium points at ±αo. As described in Ref. [7], by adding a “gap” in the parachute (increase porosity),
the CN slope becomes close to zero at α = 0 and is considered the stable configuration. In addition, the two
stable αo shift closer to α = 0. However, this modification comes at a cost in the reduction of the axial force
coefficient which results in a higher descent velocity. Ref. [6] and [8] provides similar insights regarding the
flow physics associated with non-porous vs. porous configurations and how it affects the parachute stability
characteristics.

Figure 1. CN and CA coefficients representative of unstable vs. stable parachute configurations

The current study focuses on the unstable MPCV main parachute design (modeled by the red curves in
Fig. 1) which it is highly susceptible to the pendulum motion under the two-main cluster configuration. A
planar dynamics model was developed9 to capture the fundamental characteristics of the pendulum motion.
Subsequently, the output-error method from system identification theory10 was applied to portions of the
two-parachute flight test data that exhibited pendulum motion. The identified planar aerodynamics model
along with the dynamics model produced excellent comparison with flight data. Due to the inherent non-
linear nature of the pendulum motion; nonlinear analysis techniques11 including Lyapunov’s direct method,
Describing Function method, and phase plane analysis were used to analyze the system to provided further
insight into the pendulum limit cycle oscillation. To the author’s knowledge, this is the first time a nonlinear
pendulum dynamic model has been used with system identification techniques to model pendulum motion of
the CPAS cluster composed of two-parachutes and a payload. Important note: the paper does not address
the mechanism that triggers the pendulum motion for the two-parachute configuration. It appears to be a
non-planar phenomenon and is still an area of active research.

The remainder of the paper is organized as follows. A simplified planar model of the system is presented
in Sec. II and used as the basis for an analytical study of the fundamental dynamics of pendulum motion.
In Sec. III, the output-error method from system identification theory was applied to portions of flight data
that exhibited pendulum motion and key parameters in the nonlinear aerodynamics model were extracted.
Section IV illustrates application of traditional analysis techniques for nonlinear system to provide further
insight into pendulum motion. Conclusions are presented in Sec. V. Note: Due to ITAR (International
Tariff and Arms Regulation) restrictions, all aerodynamic parameters shown in this paper are
placeholders. Y-axis labels have been removed for figures with flight data.

II. Planar Model

Despite this is a multi-body system in real life, Ref. [9] shows a planar dumbbell model is adequate in
capturing the underlying dynamics of the pendulum motion. The dumbbell model is illustrated in Fig. 2.
The capsule is modeled as a particle rather than an extended rigid body and aerodynamic forces acting on
the capsule were ignored.3 The two parachutes are treated as a single particle. The rigid body B contains
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two particles. Particle PC has a mass of mC , the total mass of two parachutes, which includes dry mass as
well as the mass of air trapped in each of the canopies. Particle PL has a mass of mL and represents the
capsule. Body B moves such that PC and PL remain at all times in a plane fixed in a Newtonian reference
frame N . A right-handed set of mutually perpendicular unit vectors n̂1, n̂2, and n̂3 is fixed in N . Unit
vectors n̂1 and n̂3 lie in the plane in which motion takes place, and are directed as shown in Fig. 2; n̂1

is horizontal, n̂2 is directed into the page, and n̂3 is vertical, directed downward. A right-handed set of
mutually perpendicular unit vectors b̂1, b̂2, and b̂3 is fixed in B. Unit vectors b̂1 and b̂3 are directed as
shown in Fig. 2; b̂1 has the same direction as the position vector rPCPL from PC to PL. Unit vector b̂2 is
directed into the page; note that it is fixed in N as well as in B. Further details of the dumbbell model can
be found in Ref. [9].
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Figure 2. Rigid Body Containing Two Particles.

The translational and rotational degrees of freedom (DOF) were derived in Ref. [9] and shown in Eqs. 1
and 2:

N aB
?

=
1

mC +mL

{
− [Ax sin θ +Az cos θ] n̂1 + [WC +WL −Ax cos θ +Az sin θ] n̂3

}
(1)

θ̈ +
1

mCL
[(mC g −WC) sin θ −Az] = 0 (2)

Ax, the resultant of the aerodynamic axial forces applied to the two parachutes, can be expressed as:

Ax = 2q∞SrefCA (3)

where q∞ is the dynamic pressure, Sref is the reference area of a single parachute, and CA is the drag
coefficient for a single parachute. Az, the resultant of the aerodynamic normal forces applied to the two
parachutes, can be expressed as:

Az = −2q∞SrefCN (4)

CN is the aerodynamic normal force coefficient for a single parachute. CA and CN are nonlinear functions
of α, the instantaneous angle of attack of the parachute, shown below. α can be approximated as the sum

of the swing angle, θ, with the induced angle of attack at the parachute location, RC θ̇
V∞

. In keeping with

traditional aerodynamic definitions, CA is applied in the direction of −b̂1, and CN is applied in the direction
of −b̂3.

CA = CAo +
1

2
CAααo(

α2

α2
o

− 1) (5)

CN (α) =
CNα
2α2

o

(α3 − α2
oα) (6)
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III. Output-Error Results

The first CPAS drop test with two main parachutes that exhibited significant pendulum motion was
CDT 3-11.1,2 According to Ref. [2], a third of the way into the full open portion of the main parachute
flight, the system developed a swinging motion of about 15 deg in amplitude, and increased up to 24 deg as
it approached the ground. During the pendulum motion, the system was translating towards the Northeast
due to the direction of the wind as it descended. The parachute cluster appears to have aligned its “weak”
axis with the direction of the wind. Ref. [1] defines the “weak” axis being parallel with the wind direction and
orthogonal to the plane of oscillation that contains the two parachutes. The motion can be approximated
as planar in nature; hence Eqs. 1 and 2 should be adequate in capturing the gross characteristics of the
pendulum motion.

The output-error method,10 widely used in parameter estimation for aircrafts was applied to the pendulum
portion of the CDT 3-11 flight data. To perform the optimization, the routine called oe.m in the SIDPAC
toolbox12 was used. The vector of parameters to be estimated was:

Θ = [CAo CAα αo CNα CNα̇ ] (7)

The aerodynamic model structures shown in Eq. 5 and 6 are based on previous studies3,4, 6, 7 and not identified
from the flight data. An additional damping term, CNα̇ was added to Eqs. (6) to account for unsteady time
lag effects in the rotational degree-of-freedom.9,13 The MPCV aerodynamic database suggests that for the
pendulum motion to occur, an unstable value of CNα̇ is required. The measurements from the flight data
to match are: θ (swing angle), Vn3,air (air relative velocity in the Down direction), Vlat,air (root-sum-square
of the air relative velocity in North and East directions). System parameters used in the planar dynamics
model are recorded in Table 1.

Table 1. System Parameters.

parameter value units

Sref (single parachute) 10563 ft2

L 235 ft

Capsule Weight, WL 21906 lbf

Dry Weight of Two Parachutes, WC 656 lbf

Total Mass of Two Parachutes, (dry and entrapped air), mC 614 slugs

Distance from System Center of Mass to Capsule CM, RL 114 ft

Winds act as the sole source of excitation to the two-parachute cluster system. In the flight data, the
best estimated winds are provided in the North, East, and Down directions. For it to be used in the planar
dynamics model, the flight winds in the North and East directions were resolved along the plane of the
pendulum oscillation as shown in Fig. 3. Output-error analysis converged within 80 iterations. Figure 4
shows comparison between the output-error model with the flight data. Other than the initial amplitude
mismatch during the first 15 seconds or so, the identified planar model appears to provide an excellent match
with flight data in the swing angle time history. The fundamental frequency (η Hz) of the swing angle is
virtually identical between the identified model with the flight data. The model swing angle amplitude is
within 20% of the flight. Vlat,air also shows good comparisons as well. The slightly larger differences in Vn3,air

is likely due to the lack of best estimated winds in the Down direction. Consider the drastic simplification
of the actual system dynamics (18 DOF, flexible riser lines, non-rigid parachutes, etc.), it is remarkable that
the planar dumbbell model can adequately predict the fundamental characteristics of the pendulum motion.
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Figure 3. CDT 3-11 Flight Winds

Figure 4. Output-error model with CDT 3-11 Flight Data

Table 2 shows the parameter estimation results from the output-error method. The estimated parameters
and the their standard errors are listed in columns 2 and 3, respectively. The standard errors were corrected
for colored residuals using the m colores.m function in SIDPAC.12 CNα̇ is positive (CZα̇ negative) and
therefore dynamically unstable as expected. Figures 5 to 7 are comparisons between the identified CN , CNα̇ ,
and CA vs. α models with the current MPCV aerodynamic database. For the static CN model, the trends
are similar, with the database showing a greater value for αo but a shallower slope of CN at αo (smaller
restoring force). For the damping derivative, the model indicates a constant CNα̇ whereas the database
shows variations with α. Furthermore, the model shows a significantly higher value of CNα̇ (more dynamic
instability). For CA, the database and the model show similiar trends with the database having a constant
value of CA between α = ±αo.
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Table 2. Parameter Estimation Results from CDT 3-11

parameter Θ̂ s(Θ̂)

CAo 0.8 0.05

CAα (rad−1) -0.2 0.1

αo (rad) 0.3 0.1

CNα (rad−1) 0.4 0.1

CNα̇ (rad/s)−1 1.5 0.3

Figure 5. CN vs. α, identified model vs. MPCV database

Figure 6. CNα̇ vs. α, identified model vs. MPCV database
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Figure 7. CA vs. α, identified model vs. MPCV database

The parameters identified from the CDT 3-11 flight shown in Table 2 were used to predict the pendulum
motion from the CDT 3-12 flight. According to Ref. [2], during the CDT 3-12 drop test the pendulum
motion occurred almost immediately after full inflation of the main parachutes and gradually increased to
an amplitude of approximately 24 deg until impact. Similar to the CDT 3-11 flight, the system was also
translating towards the Northeast due to the direction of the winds as it descended. Figure 8 shows the CDT
3-12 flight winds resolved in the plane of the pendulum oscillation. Figure 9 shows the comparison between
the model identified from CDT 3-11 flight with CDT 3-12 flight data. Once again, other than the initial
amplitude mismatch, the identified planar model appears to provide an excellent match with flight data in
the swing angle time history. Both model and flight data shows the swing angle fundamental frequency to
be η Hz while error in the amplitude of oscillation is within 10%. Vn3,air and Vlat,air shows good comparisons
as well.

Figure 8. CDT 3-12 Flight Winds
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Figure 9. Output Error Model with CDT 3-12 Flight Data

It is apparent that the identified planar dumbbell model appears to do a remarkable job in matching
the underlying dynamics of the pendulum motion in both the CDT 3-11 and 3-12 flight data. However,
its limitation should be re-emphasized. The dumbbell model is not capable of producing some of the more
complicated behaviors (such as the maypole and flyout motions) observed during the CDT 3-02 and 3-08
flights in which the pendulum motion did not occur.1,2 The model also does not predict how pendulum
motion is triggered. This appears to be a non-planar phenomenon that is highly dependent on the gradient
of the wind direction and magnitude. It is still a topic of ongoing research.

Finally, the current model does not provide much insight into why a cluster of three parachutes is more
resistant towards the pendulum motion compare to a cluster of two. According to Ref. [1], CDT 3-07 involved
three parachutes. Pendulum motion was observed during a brief interval in which the configuration of the
parachutes changed from the usual triangular arrangement to a collinear one with coincident projections of
all three parachutes onto the plane parallel to the wind direction. The oscillations damped out after the
parachutes regained their triangular configuration. Equations 1 to 6, therefore, are applicable in the case
of pendulum motion with three parachutes, with the following modifications: 1) WC and mC are the dry
weight and total mass of three parachutes. 2) A coefficient of 3 replaces 2 in Eqs. 3 and 4.

IV. Nonlinear Analysis

The pendulum mode associated with the two-parachute capsule system is inherently a nonlinear phe-
nomenon. In this section, several well-known techniques are used to analyze the nonlinear system.11 The
first is the phase plane analysis that allows one to visualize the system trajectories on a two-dimensional
plane. The second is the Describing Function (DF) method which approximates the nonlinear system as
a linear “equivalent” and applies an extension of the frequency response technique. The DF technique is
extremely useful in predicting the amplitude and frequency of limit cycle oscillations. Finally, Lyapunov’s
direct method allows formulation of a scalar energy-like function that allows a mathematical proof in the
stability of the pendulum mode.

A. Phase Plane

The second-order nature of the pendulum mode makes it an excellent system for phase plane analysis. Figure
10 shows the phase portraits of θ and α for several initial conditions that are inside, outside, and in close
proximity of the limit cycle curve. The trajectories all eventually converge to the closed orbit. It is also
apparent from Fig. 1 that the system has an unstable equilibrium point at the origin. Hence, for initial
conditions in the vicinity of the unstable origin would cause the system to be repelled towards the limit cycle
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orbit. Figure 11 shows the phase portraits of θ and α with a 25% reduction in the identified value of CNα .
The reduction in the restoring force at high α results in a slight increase in the amplitude of the limit cycle
oscillation.

Figure 10. Representation of the Pendulum Limit Cycle on a Phase Plane

Figure 11. Representation of the Pendulum Limit Cycle on a Phase Plane, 25% reduction in CNα

Note: there exist sub-regions on the α phase plane where the initial disturbance is small enough such that
the system settles on to one of the stable equilibrium points, ±αo (while θ converges to zero). These special
cases not considered because the paper strictly focuses on the pendulum motion after it has developed.
Figure 12 shows the phase portrait of θ and α for a parachute configuration with a stable CN vs. α profile
(same CNα̇ value). The amplitude of the swing angle limit cycle is reduced by a factor greater than 2 compare
to Fig. 10. This observation is consistent with description on parachute stability in Ref. [6]. It states in
reality both systems are unstable; however in the parachute community the one with substantial amplitude
of oscillation is considered unstable while the other is regarded as stable.
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Figure 12. Representation of the Pendulum Limit Cycle on a Phase Plane, Stable Configuration

B. Describing Function

The Describing Function (DF) method is an approximate linear technique for analyzing nonlinear systems.
It is an extension of the frequency response method for nonlinear systems. Unlike Lyapunov methods, DF
method does not hinge on the success of a trial-and-error search for a Lyapunov function and its main purpose
is to predict the amplitude and frequency of oscillation of limit cycles in nonlinear systems.11 Figure 13 is
a general depiction of the DF block diagram. It requires the nonlinear system to be separated by its linear
and nonlinear components.

Figure 13. Describing Function Block Diagram

The premise of the DF method is that there exists a limit cycle in the system in the form of:

x(t) = A sin(ωt) (8)

where A is the limit cycle amplitude and the ω being the frequency. The closed-loop characteristic equation
of the system can be represented as:

G(j, ω)N(A,ω) + 1 = 0 (9)

where G(j, ω) is the frequency response of the linear component and N(A,ω) is the approximate frequency
response of the nonlinear portion. N(A,ω) is the complex ratio of the fundamental component of the
nonlinear element given a sinusoidal input, ignoring the higher-frequency harmonics (characteristic associated
with nonlinear systems11). Unlike the traditional frequency response for a linear system, the describing
function of a nonlinear element is dependent on its amplitude, A.11 Equation 9 can be re-written as:

G(j, ω) = − 1

N(A,ω)
(10)
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Generally, one would graph both sides of the Eq. 10 on the complex plane and look for intersection points.
There are an infinite number of intersection points; however, only the intersection points with matched ω
indicates the possible existence of limit cycles. To analyze the pendulum mode limit cycle oscillation, the
rotational dynamics is of particular interest. Equation 2 can be re-written as:

θ̈ +
2q∞SrefCNα̇

mCL
θ̇ +

mCg − wC
mCL

sin θ +
2q∞Sref

mCL
CN (α) = 0 (11)

CN is a cubic function with α as shown in Eq. 6 and sin θ can be representated in its Taylor Series expansion
form:

sin θ = θ − θ3

6
+

θ5

120
+ ... (12)

The angle of attack at the parachute location can be approximated as the sum of the swing angle, θ, with
the induced angle of attack:

α = θ +
RC θ̇

V∞
(13)

Substitute Eq. 6 to 13 into Eq. 11, the rotational dynamics can be re-written strictly as a function of θ and
θ̇ and can be separated into linear and nonlinear components required for DF analysis:

θ̈ +
2q∞Sref

mCL

[
CNα̇ −

CNαRC
2V∞

]
θ̇ +

[mCg − wC
mCL

+
q∞Sref

mCL
CNα

]
θ︸ ︷︷ ︸

Linear

+

[
− mCg − wC

6mCL
θ3 +

q∞SrefCNα
mCLα2

o

(θ +
RC θ̇

V∞
)3
]

︸ ︷︷ ︸
Nonlinear

= 0

(14)

N(A,ω) is computed by passing a series of sinusoidal inputs, u(t) in the form shown in Eq. 8 through the
nonlinear element which has output, q(t), consisting of higher harmonics. Once q(t) has reached a period
solution, the last two periods are used to compute the Fourier integrals:14

a1 =
1

π

∫ π

−π
q(t) cos(ωt)d(ωt) (15)

b1 =
1

π

∫ π

−π
q(t) sin(ωt)d(ωt) (16)

The magnitude and phase of N(A,ω) can be determined from the Fourier coefficients:

|N | =
√
a21 + b21
A

(17)

φ(N) = tan−1
(a1
b1

)
(18)

According to the CDT 3-11 flight data, the amplitude of the limit cycle is around 0.3 rad with a frequency
of η Hz. With that in mind, the amplitude range of q(t) used for the DF analysis is kept between 0.2 to
0.36 rad with a frequency range of ηL Hz to ηH Hz. The frequency response of G(j, ω) and −1/N(A,ω) are
plotted on a Nyquist diagram for a range of values of A as shown in Fig. 14.
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Figure 14. Describing Function Analysis

Figure 14 shows multiple intersection locations between G(jω) with −1/N(A,ω); however, the one with
matched frequency occurs at A = 0.24 rad and ω = ζ rad/s. The DF analysis predicts the pendulum
limit cycle oscillation with a period of approximately T sec and an amplitude of 0.24 rad. The predicted
period of oscillation is identical to the flight data and model as shown in Fig. 4. The 25% difference in
the amplitude can be explained by the coupling of the translational and rotational dynamics as well as the
inherent approximations associated with the DF method. Figure 15 shows the discrete Fourier transform of
the model θ time history shown in Fig. 4. It has a fundamental frequency of η Hz, the second harmonic at
η2 Hz, and the third harmonic at η3 Hz. Only the fundamental frequency is retained in the DF analysis.

Figure 15. Discrete Fourier Transform
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C. Lyapunov’s Direct Method

Lyapunov’s direct method is the mathematical extension of a fundamental physical observation: if the total
energy of a system is continuously dissipated, then the system, whether linear or nonlinear, must eventually
settle down to an equilibritum point. Thus, the stability of the system may be concluded from this single
scalar function without explicit knowledge of the actual solutions.11 The energy function, V (x) has two
properties: 1) V (x) is strictly positive unless both state variables x and ẋ are zero, 2) the function is
monotonically decreasing or V̇ (x) ≤ 0. If V (x) exists, then global stability can be inferred. The nonlinear
rotational dynamics shown in Eq. 14 can be expanded and the constant coefficients can replaced by b, k1,
k2, etc.

θ̈ + bθ̇ + k1θ + k2θ
3 + k2a1θ

2θ̇ + k2a2θ̇
2θ + k2a3θ̇

3 = 0 (19)

since θ̇2 ≥ 0, k2a2θ̇
2 can be replaced with a positive time varying quantity, k3

θ̈ + bθ̇ + (k1 + k3)θ + k2θ
3 + k2a1θ

2θ̇ + k2a3θ̇
3 = 0 (20)

The form of Eq. 20 can be thought of as a nonlinear mass-spring-damper system. The Lyapunov function,
V , can be represented as the total mechanical energy:

V (θ, θ̇) =
1

2
θ̇2 +

∫ θ

0

(k1 + k3)θ + k2θ
3dθ (21)

V (θ, θ̇) =
1

2
θ̇2 +

1

2
(k1 + k3)θ2 +

1

4
k2θ

4 (22)

The derivative of V can be obtained:

V̇ (θ, θ̇) = θ̇θ̈ + (k1 + k3)θθ̇ + k2θ
3θ̇ (23)

V̇ (θ, θ̇) = θ̇[−bθ̇ − (k1 + k3)θ − k2θ3 − k2a1θ2θ̇ − k2a3θ̇3] + (k1 + k3)θθ̇ + k2θ
3θ̇ (24)

V̇ (θ, θ̇) = −bθ̇2 − k2a1θ2θ̇2 − k2a3θ̇4 (25)

V̇ is negative semi-definite, therefore V is considered to be a Lyapunov function for the system and the
global stability of the pendulum limit cycle can be inferred.

V. Conclusion

In this work, a simplified planar dumbbell dynamics model in conjunction with a nonlinear CN vs. α
aerodynamics model served as the basis of an analytical investigation into the fundamental dynamics of
pendulum motion for a two-parachute cluster system. Output error methodology from system identification
theory was used to identify the parameters of the nonlinear aerodynamics model. The identified model
yielded excellent comparison with portions of flight test data where the pendulum motion occurred. Due to
the inherent nonlinear nature of the pendulum motion limit cycle, traditional nonlinear analysis techniques
were applied to gain further insight into the system. Lyapunov’s direct method provided mathematical
proof in the absolute stability of the pendulum motion. Describing Function method was used to predict the
amplitude and frequency of the limit cycle oscillation. Finally, the phase plane analysis was used to visualize
the size and shape of the limit cycle with respect to variations in key aerodynamic parameters.
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