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A mechanics-based modeling approach is developed to rapidly predict damage in polymer 

matrix composites resulting from a low velocity impact event. The approach is incorporated 

into a computer code that provides an efficient means to assess the damage resistance for a 

range of material systems, layup configurations, and impact scenarios. It is envisioned that 

the developed approach will aid in early design and analysis of composite structures where 

sizing and layup decisions must be made, and evaluating the feasibility of a large number of 

laminate configurations using numerical approaches such as finite element analysis (FEA) is 

prohibitively expensive. Therefore, the goal of the modeling approach is to predict the impact 

damage size given the laminate configuration and impact scenario. This information can then 

be used to determine the residual strength of the material. To be useful in such a context, the 

tool is designed to run quickly (<2 minutes) to allow a large number of design cases to be 

investigated. The results presented demonstrate that the model is capable of efficiently 

predicting low velocity impact damage size, shape, and location within an acceptable accuracy 

suitable for preliminary design and analysis of composite structures.  
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I.  Introduction 

Impact resistance and subsequent reduction in residual strength are key properties needed for initial sizing and 

design of aerospace composite structures. Compression after impact (CAI) strength is of particular interest because of 

the significant reduction in compression strength due to impact – up to 60% [Maio et al., 2013]. Typically these 

properties are measured experimentally for each laminate configuration under consideration for design. Because of 

the large number of parameters defining the material such as laminate configuration (e.g., layup, ply thickness, and 

fiber architecture) and impact scenario (e.g., impactor radius, mass, and energy or velocity), performing tests for every 

possible combination is intractable (i.e., time consuming and prohibitively expensive). Therefore a small subset of 

combinations, typically based on past design experience, are tested and the results used for developing design 

allowables and/or design optimization. This approach inherently limits the design space and may result in sub-optimal 

design choices early in the design process and/or incorrect design decisions that can lead to expensive redesigns later 

on in the process.  

In order to mitigate the large expense of creating new data for composite laminate design optimization, a modeling 

framework for the prediction of barely visible impact damage (BVID) and CAI strength has been developed. It should 

be noted that, in this paper, the terms BVID and low velocity impact are used interchangeably to describe an impact 

event that results in predominantly sub-surface damage in the composite without significant surface damage or 

perforation. The modeling framework can serve effectively as a rapid design tool since it is based on closed-form 

analytical and semi-analytical methods requiring minimal user pre-processing and short computational run time. 

Details of the previously-developed rapid CAI strength model can be found in Refs. [Borkowski and Kumar, 2018a; 

Borkowski and Kumar, 2018b] which describe a model that takes as input impact damage information from an 

experiment or model and provides the CAI strength as output. The BVID model presented here is designed to couple 

with the rapid CAI model [Borkowski and Kumar, 2018a; Borkowski and Kumar, 2018b] in order to yield a 

comprehensive, mechanics-based rapid BVID/CAI strength prediction modeling framework. 

Predicting impact damage in composite plates involves first resolving the plate transient deformation/kinematics 

as a result of the impact event and then determining the resulting damage. Given the efficiency requirements of a rapid 

design and analysis tool, the form of the plate kinematic and damage prediction models must be chosen carefully. 

Extensive research has been conducted on the development of composite impact models. While a comprehensive 

overview of the field [Abrate, 2005] is beyond the scope of the current paper, a few works relevant to the developed 



model will be described. These works focus on mechanics-based methods, typically solved analytically or semi-

analytically, which can run in a few minutes or less compared to finite element analysis (FEA) based models that 

require longer runtimes on the order of hours. The problem of impact on a composite plate has been investigated by 

Sun and Chattopadhyay [1975], Dobyns [1981], Cairns and Lagace [1989], and Qian and Swanson [1990]. For 

composite plates, [Whitney and Pagano, 1970] demonstrated the significant contribution of shear deformation due to 

the high transverse shear compliance. Therefore in analyzing impact on composite laminates, the first-order shear 

deformation theory (FSDT) is recommended to avoid unrealistically stiff solutions. Dobyns [1981] expanded on the 

approach by Sun and Chattopadhyay [1975], which considered impact on a simply supported orthotropic Mindlin-

Reissner plate [Whitney and Pagano, 1970] with a point load, by replacing the concentrated impact load with uniform 

patch pressure to avoid the transverse shear stress singularity at the contact point. Since both Sun and Chattopadhyay 

[1975] and Dobyns [1981] analyzed simply supported plates, they were able to employ the Navier solution to simplify 

the governing equations of motion and achieve an exact solution. In order to employ more general boundary 

conditions, Cairns and Lagace [1989] and Qian and Swanson [1990] utilized the Rayleigh-Ritz variational method, 

along with appropriate assumed mode shapes which satisfy the essential boundary conditions, to solve for composite 

plate response under impact loading.  

While these methods have been shown capable of predicting the response of a composite plate to impact, few 

methods are also able to accurately simulate the resulting damage. A maximum transverse shear stress-based approach 

was employed by Dobyns [Dobyns, 1981] to estimate the size of delamination due to impact. In this approach, a scaled 

composite interlaminar shear strength is used in conjunction with the maximum interlaminar shear stress to predict 

the delamination size. Dobyns and other researchers (for example, [Dobyns, 1981; Chang and Chang, 1987; Brewer 

and Lagace, 1988]) have suggested that the scale factor can be treated as a material parameter, and is presumably, 

independent of laminate configuration or layup. However in preliminary investigations by the present authors, it was 

found that the stress-based scaling parameter is layup-dependent, and hence, is not suitable for design evaluation 

where multiple laminate configurations must be analyzed. In order to overcome this limitation, the present work uses 

a fracture-based approach for damage prediction, as discussed in Section IIB. Since the goal of the developed modeling 

framework is to rapidly predict impact damage and residual strength, an impact model capable of not only predicting 

plate transient response but also damage is desired. Therefore, components of various models from impact to 

composite damage are adapted to yield a comprehensive rapid BVID prediction model. 



The paper is organized as follows: in Section II we present the BVID model in two parts: 1) Plate model for 

transient response to impact presented in Section IIA and 2) Details of the impact damage model provided in Section 

IIB. In Section III we present the experimental setup and demonstrate the model’s ability to accurately predict impact 

damage over a wide range of laminates and impact parameters. Concluding remarks are presented in Section IV. 

II.  Low Velocity Impact Damage Model 

The impact model consists of two sequentially coupled steps. In the first step, the transient response of the 

composite laminate is calculated using plate kinematics coupled with the impactor motion via Hertzian contact 

interaction. In the second step, the stress field obtained from the first step is used to calculate the resulting damage.  

The model was designed to be as general as possible while still maintaining the requisite computational efficiency to 

serve as a rapid analysis tool. Since, to the authors’ knowledge, no model currently exists that satisfied all the features 

desired for a general, computationally efficient impact damage prediction tool, various components of individual 

models from existing literature were adapted into a framework that would satisfy this goal. In addition, enhancements 

were made to the component models for compatibility, improved accuracy, and greater generality. The salient features 

of the composite impact damage model for BVID prediction include: 

1. The deformation of the composite plate is governed by Mindlin-Reissner first-order shear deformation 

theory [Reissner, 1945; Mindlin, 1951; Whitney and Pagano, 1970].  

2. The solution to the transient impact problem is based on Lagrange’s equation of motion where the 

Rayleigh-Ritz method is used to discretize the solution space.  

3. This technique permits general application to plates with a wide range of boundary conditions and loads. 

In addition, the area of impact is finite and its location is arbitrary. This feature allows the model to 

simulate an impact event anywhere on the plate while the impact force is distributed over a finite area, 

thereby resulting in physically reasonable stresses under and near the impactor, which is crucial for 

predicting damage based on these stresses. 

4. Coupling between the impactor and the transient behavior of the plate is achieved through the Hertzian 

contact law. This results in a series of coupled equations where the plate vibration is driven by the force 

exerted on the plate by the impactor. 

5. The resulting impact-induced delamination state is computed using a fracture-based approach. In this 

approach, the strain energy (due to bending and transverse shear) stored in the laminate and released due 



to the initiation and propagation of damage is calculated and compared with the critical strain energy 

release rate to determine the location, shape, and size of delamination. 

A. Composite Plate Deformation Model 

The formulation for the transient impact deformation model presented here is adapted from Refs. [Dobyns and 

Porter, 1981; Cairns and Lagace, 1989; Qian and Swanson, 1990]. The impact analysis of the composite plate, 

assuming its global deformation is independent of the local impactor contact deformation details, is based on 

Lagrange’s equation of motion for conservative systems, 
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where x  is the generalized coordinates/modal amplitude, x  is the time derivative of the generalized 

coordinates/modal amplitude, and the Lagrangian function, L , is expressed as 

  L KE PE  (2) 

where KE  is the plate kinetic energy and PE  is the potential energy. Assuming that the in-plane and rotary inertia 

effects are negligible, as suggested by Refs. [Birman and Bert, 1987; Dobyns, 1981, Cairns and Lagace, 1989; Qian 

and Swanson, 1990], the kinetic energy of the plate can be expressed as a function of the plate lateral velocity (

( , , )w x y t ) as: 
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where   is the plate mass density, h  is the plate thickness, and the overdot indicates a derivative with respect to time. 

The potential energy for an anisotropic Mindlin-Reissner plate, neglecting membrane effects, includes the energy 

contributions from bending, transverse shear, and the work done by lateral impact loading [Whitney and Pagano, 

1970; Qian and Swanson, 1990]. The normal transverse and membrane deformation of the plate are assumed negligible 

and therefore not included in the potential energy. The resulting expression for the potential energy is: 
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where  
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is a surface integral taken over the entire plate and 
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is a surface integral over the contact area. Here 
xL  and yL  are the dimensions of the plate in the x  and y  directions, 

respectively,   and   are the locations of the impact in the x  and y  directions, respectively, pA  is the plate area, 

cA  is the time-dependent contact area, and , 2   cA . Fig. 1 provides a schematic of the plate with the impact 

location parameters highlighted. Additionally in Eq. (4), the components of D  and A  are the plate bending and 

transverse shear stiffnesses, respectively, k  is the shearing correction factor commonly used in FSDT [Mindlin, 1951], 

and ( , , )q x y t  is the lateral load on the plate. For the shearing correction factor, a value of 5/6 is prescribed based on 

previous studies demonstrating its adequacy for laminates comprising thin plies [Whitney and Pagano, 1970]. Note in 

the expression for PE the presence of 16D  and 26D  indicating that the bend-twist coupling of the plate is considered 

in the analysis. Due to the requisite orthogonality of the modal shape functions ( mX  and nY ), the lateral load can be 

expressed as 

 ( , , ) ( ) ( ) ( ) mn m n

m n

q x y t Q t X x Y y
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Fig. 1 Plate impact parameter illustration 

In order to discretize Lagrange’s equation of motion, the plate field variables (displacement and rotations) are 

approximated in discrete form. The series approximations for the transverse displacement ( w ) and planar rotations (

x
 and  y ) are presented in Eqs. (8), (9), and (10). In these equations, the field variables are represented as the sum 

of the product of modal amplitudes ( mnW , mnA , and mnB ), which are only functions of time, and assumed mode shape 

functions (
mX  and 

nY ), which are only functions of location and are assumed spatially separable. The prime on the 

assumed mode shape functions represents a derivative with respect to the independent spatial variable. The modal 

shape functions are chosen to satisfy the boundary conditions whereas the modal amplitudes must be determined 

through the solution methodology.  
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To satisfy the essential boundary conditions, the modal shape functions are chosen based on the combination of 

boundary conditions on the four plate sides which can include simply supported, clamped, or free. Dugundji [1988] 

determined approximate shape functions for generalized boundary conditions and arbitrary high-order modes. These 



shape functions allow for the simulation of any combination of edge boundary conditions while maintaining numerical 

stability for high-order modes which is required for plate transient analysis and impact. Here, a subset of these shape 

functions is provided for reference. Similar expressions can be determined for other combinations of boundary 

conditions using the approach outlined in [Dugundji, 1988]. For an FSDT plate simply supported on all four sides, 

Eq. (11) satisfies the necessary conditions of 0w  at x = 0, Lx
 and 0w  at y = 0, Ly  [Reddy, 2004]. 
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Fully clamped boundary conditions require that 0xw    at x = 0, Lx  and 0yw    at y = 0, Ly  [Reddy, 2004] 

therefore the modal shape functions in Eq. (12) are used to represent the spatially-dependent plate displacements and 

rotations. 
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(12) 

In substituting the series approximations for the transverse displacement, planar rotations, and lateral load into the 

expressions for kinetic and potential energy, performing the necessary differentiation and integration, and solving 

Lagrange’s equation of motion, one achieves three equations which can be solved for the three unknown modal 

amplitudes ( mnW , mnA , and mnB ). The first two equations resulting from  

 
0


 
 mn

L

A
 

(13) 

and 
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can be solved simultaneously for expressions of mnA  and mnB  with respect to mnW . These equations can then be 

substituted into the equation resulting from 
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to yield a single equation with respect to 
mnW , 

mnW , and 
mnQ . The resulting equation can be cast in the form 
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where   W  and  W  are matrices with components 
mnW  and 

mnW , respectively, and  S  and  T  are coefficient 

matrices. The force term   Q  is a function of the generalized forces ( )mnQ t  and the mode shapes as follows 
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The generalized forces ( )mnQ t  are computed via 
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where the lateral force, ( , , )q x y t , taken as a uniform distribution of the total contact force over the square contact 

area, can be expressed as 
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and therefore removed from the surface integral. Here, ( )F t  is the contact force distributed uniformly over a square 

area, cA , where  
22 ( )    

 c s sA R R t . sR  is the radius of the spherical indentor and   is the indentation of the 

plate expressed as 

 ( ) ( ) ( , , )   t u t w t
 (20) 

where ( )u t  is the displacement of the indentor and ( , , ) w t  is the plate lateral displacement at the impact location.  

Note that the contact area changes as a function of time-dependent plate indentation. The contact force is governed 

by Hertz contact law [Sun and Chen, 1985] 
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with the Hertzian contact stiffness expressed as [Qian and Swanson, 1990] 
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where 
33E  is the transverse Young’s modulus of the lamina. Assuming rigid-body dynamics of the impactor, Newton’s 

2nd law provides 

 ( ) F mu t
 (23) 

Therefore the motion of the impactor can be described via  
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where m  is the mass of the indentor. 

Because of the nonlinearity of the ODE in time governing the motion of the indentor, a predictor-corrector method 

is employed. This involves freezing ( )u t  and ( , , ) w t  to solve for ( )u t , then updating ( )u t  with the newly computed 

values of ( )u t  and ( , , ) w t . The procedure is continued until a converged value of ( )u t  is achieved. The coupled 

equations that govern the deformation of the plate and motion of the indentor (Eqs. (16) and (24), respectively) are 

solved numerically using the implicit Newmark   method [Newmark, 1959]. The basic equations of this method are  
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Assuming that the general form of the dynamic response of a damped system (i.e., equilibrium equation) is satisfied 

at time t t  provides 
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When 0B  in Eq. (26), it resembles the form of Eq. (16). Therefore, the solution for Eq. (16) can be achieved by 

applying Newmark’s   method as shown in Eq. (25). In this solution, Newmark’s constant average-acceleration 

scheme (trapezoidal rule) with =1/2  and =1/4  is employed to provide for unconditionally stable solution. The 

initial conditions for the numerical solution are shown in Eq. (27). 
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where 0v  is the initial velocity of the impactor. 

Once the series of equations is solved for mnW , the lateral displacement and in-plane rotations can be computed 

for each time step. It is then possible to compute the various strain components in the laminate such as interlaminar 

shear strain [Reddy, 2004] as follows 
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and  
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which can then be used to compute the resultant interlaminar shear forces [Reddy, 2004], 
xQ  and 

yQ , as seen in Eqs. 

(30) and (31), respectively.  
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The final output of the composite impact model is the displacement, strain, and stress fields over the entire plate for 

the duration of the impact event as well as the impactor displacement and force histories. 

B. Composite Plate Damage Model 

A failure model is required to determine the composite damage state from the predicted plate deformation and 

stresses due to impact. This model must be compatible with the previously described deformation model and maintain 

the desired computational efficiency. Using a single-layer theory such as FSDT precludes the use of more advanced 

damage or delamination modeling approaches such as those based on virtual crack closure technique (VCCT) 

[Krueger, 2004], cohesive zone model (CZM) [Turon et al., 2007], floating node method (FNM) [Chen et al., 2014], 

or extended finite element method (XFEM) [Tay et al., 2014] which require the damage to be explicitly modeled and 

are very computationally expensive. Furthermore, necessary simplicity of the desired modeling framework requires 

damage to be predicted in a post-processing sense rather than as progressive damage – therefore the presence of 

damage will not affect the plate kinematics. It will be demonstrated that for typical laminates and impact scenarios, 

sufficient accuracy is maintained through this one-way coupling damage prediction method.  

Preliminary efforts by the present authors investigating the feasibility of using a purely stress-based damage 

criterion, such as those presented in Refs. [Dobyns, 1981; Chang and Chang, 1987; Brewer and Lagace, 1988], 

determined that the damage parameters were sensitive to the laminate layup. For investigations within a single material 

system and layup, such an approach would suffice. However, since the intended use of the developed model is to serve 

as a sizing tool to optimize composite laminate configurations, including layup, minimizing calibration across layups 



is desired. In other words, ideally the damage model will have parameters that can be calibrated for a specific material 

system and used across layups. To address the deficiencies of a fully stress-based approach, an energy-based 

delamination propagation criterion was employed along with a stress-based damage initiation criterion. This 

combination allows strength to govern the initiation of damage and linear elastic fracture mechanics (LEFM) to control 

its propagation.  

Predicting the shape, size, and location of the BVID requires the discretization of the plate into a uniform array of 

small elements referred to as damage cells as seen in Fig. 2. In a typical analysis, over 12,000 damage cells are used 

to discretize a standard 75 x 125 mm plate. The choice of damage cell size does not affect the plate kinematics (i.e., 

no mesh dependence) but only the resolution of predicted damage. Each cell contains the effect of all through-

thickness plies comprising the laminate at that location. Provided with the plate kinematics at each time step from the 

composite plate deformation model, the BVID model determines whether damage is present at each discretized cell. 

The damage model employed for this effort is adapted from Zubillaga et al. [2014] and extended to apply to an FSDT 

plate subjected to impact loading.  

 

Fig. 2 Laminate discretization for damage prediction; damage cell size is a x b 

The LEFM-based damage model developed by Zubillaga et al. [2014] expands on the approaches by Refs. 

[O’Brien, 1984; Johnson and Chang, 2001b; Maimi et al, 2011] and assumes that delamination induced by transverse 

matrix cracking is a major contributor to composite laminate failure [Pagano and Schoeppner, 2000]. Experimental 

evidence of matrix cracks triggering delaminations which lead to composite failure is provided in Refs. [Crossman 

and Wang, 1982; Johnson and Chang, 2001a; Hallett et al., 2008; Wisnom et al., 2008]. In González et al. [2012], 

transverse matrix cracks are considered initiation points for delaminations. Additionally, under low velocity impact 

loading, it has been shown experimentally that matrix cracks precede delamination growth and that transverse matrix 



cracks serve as a precursor to delamination for BVID [Chang et al., 1990; Richardson and Wisheart, 1996; Topac et 

al., 2017]. The model is based on the idea that the laminate elastic strain energy released due to matrix crack induced 

delamination (MCID) provides the driving force for delamination propagation. The MCID model considers a laminate 

containing a transverse matrix crack under arbitrary loading conditions, as seen in Fig. 3. Delaminations initiate from 

the matrix crack boundaries along the interfaces of the cracked ply, separating the laminate into damaged (Region 2) 

and undamaged (Region 1 and 3) regions as shown in Fig. 3. There is also a transition zone between these regions that 

is not depicted in Fig. 3. As demonstrated by Zubillaga et al. [2014], the energy stored in the transition region is not a 

function of delamination length, s, if the cracks are sufficiently spaced. In the case of small crack spacing where the 

transition region stress fields interact, assuming an abrupt transition between damaged and undamaged regions (i.e., 

no transition region) yields a more conservative prediction of crack driving force [Zubillaga et al., 2014]. Therefore 

in this work, as is done in Zubillaga et al. [2014], the transition region is not considered for damage and failure 

prediction.  

 

Fig. 3 Laminate damage cell cross section with matrix crack induced delamination 

Since damage at each location in the plate is determined based on the strain energy available to propagate the 

delamination, the strain energy as a function of delamination length must be computed. Similar to how the potential 

energy is expressed over the entire plate in Eq. (4), the strain energy due to bending and transverse shear for a laminate 

can be written in integral form as 
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where   and   are the curvature and transverse shear strain, respectively [Cairns and Lagace, 1989]. By discretizing 

the plate into many small damage cells of dimension a x b as illustrated in Fig. 2, the curvature and transverse shear 

strain can be assumed constant within each damage cell and removed from the surface integral. Since the curvature 

and transverse shear (  and  ) are computed at the center of each damage cell, this assumption states that the value 



at the center of the damage cell is a good approximation of the mean value across the interval. By multiplying this 

value by the size of the damage cell, the midpoint rule can be employed to approximate the definite integral. Therefore 

the integral from Eq. (32), taken over a single damage cell, can be reduced to 
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where 
dcU  is the strain energy stored in a particular damage cell of size a x b. As shown in Fig. 3, the cross-section of 

each damage cell can be divided into pristine and damaged regions where the damaged region contains a transverse 

matrix crack inducing a delamination. The contribution of the pristine (Region 1 and 3) and damaged (Region 2) 

regions to the strain energy is  
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dc TS TSU a b s D A as D Ak k
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(34) 

where the first term on the right-hand side is the contribution of the pristine region and the second term is from the 

damaged region. *D  and *

TSA  are the reduced D  and 
TSA  matrices for the damaged region. It can be observed that as 

the delamination grows, energy is transferred from the pristine to the damaged regions. Next, the strain energy release 

rate, G , which describes the elastic energy released per change in delamination area, is derived using the expression 

shown in Eq. (35).   

  
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where m  is the number of delaminations per ply and ds  is the change in delamination length. Substituting Eq. (34) 

into Eq. (35) yields 
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where * D D D  and * TS TS TSA A A . 

Determining the reduced D  and TSA  matrices (
*D  and 

*

TSA ) requires that the effect of a transverse matrix crack 

and corresponding interfacial delaminations on the laminate behavior be carefully considered. For this, consider a 

hypothetical stack of three plies (N=3) as shown in Fig. 4. In the general case, this stack would represent all the plies 

comprising each damage cell of the discretized laminate (Fig. 2). It is assumed for this case that a transverse matrix 

crack (black vertical plane) in Ply 2 has initiated delaminations (hatched horizontal planes) at both interfaces of the 

damage cell. To determine the effect of this damage on the laminate elastic behavior, the contribution of the matrix 



crack is investigated first. The contribution of the transverse matrix crack aligned with the fibers in Ply 2 will be in 

the form of reduced matrix-dominated properties [Johnson and Chang, 2001b]. Therefore for the cracked ply, 

22 12 12 0  E G  while the fiber-dominated tensile modulus is unaffected (i.e., 
11 11E E ). Using Classical Laminate 

Theory (CLT), the laminate bending stiffness components can be determined by summing the bending stiffnesses of 

the individual plies in the damage cell stack, transformed to the laminate coordinate system, via 
*

1


N

k

k

D D . While 

the effect of transverse crack is accounted for in the bending stiffness ( D ) reduction, delaminations affect the 

transverse shear extensional stiffnesses (
TSA ). Due to the presence of interfacial delaminations, such as the hatched 

regions in Fig. 4, the damage cell stack will be unable to sustain laminate interlaminar shear loading (i.e., 

0yz xzG G  ). Therefore since ( , )TS yz xzA f G G , the interlaminar shear stiffness, and therefore the transverse shear 

extensional stiffnesses, of the damage cell stack will equal zero ( * 0TSA ). 

 

Fig. 4 Laminate damage cell stack with matrix crack induced delamination present 

This procedure is repeated for every layer in the laminate stack as shown in Fig. 5. Once the reduced laminate 

stiffness are known for each possible MCID position through the thickness, the energy-based model can be run at each 

time step for every damage cell. The computed value of strain energy release rate ( G ) can be compared with its critical 

value ( cG ) and once  cG G  for at least one layer, the delamination is assumed to propagate over the extent of the 

damage cell. 



 

Fig. 5 Procedure to determine strain energy release rate (SERR) for each potential MCID position 

 

The developed energy-based damage model determines whether a previously-initiated delamination will propagate 

and induce cell damage. In composite laminates under low velocity impact conditions, there typically exists a threshold 

impact velocity or energy below which no delamination will form [Choi and Chang, 1990; Schoeppner and Abrate, 

2000; González et al., 2011]. In order to capture this delamination threshold, the energy-based damage propagation 

model is coupled with a Hashin stress-based damage initiation model [Hashin, 1980] of the form 

 2 2 2

13 23   ILSS
 

(37) 

where ILSS  is the laminate strength for both components of interlaminar shear stress. Combining a stress-based 

initiation model with an energy-based growth model allows damage to be predicted over a large range of impact 

energies and damage sizes. 

III. Results and Discussion 

A large testing program over multiple fiber architectures, layups, impact velocities, and impactor masses, was 

conducted to validate the developed damage initiation and propagation model. Ultrasonic C-scan measurements were 

used to compare with the model predictions. The model accuracy was assessed against the experimental damage size 

and morphology.  

A. Material and Experimental Impact Testing 



Impact testing was performed on AS4/8552 composite plates of two fiber architectures – unidirectional (UD) tape 

and plain weave (PW) fabric – and three layups per architecture. The panels were manufactured and rough-cut in 

house and the specimens were finished and tested by the National Institute for Aviation Research (NIAR). The material 

properties of the AS4/8552 plies are consistent with the published data on this material system [González, 2011]. A 

summary of the fiber architecture/layup combinations tested is provided in Table 1. From this table, it can be observed 

that each architecture includes one quasi-isotropic (Layup 1), one “soft” (Layup 2), and one “hard” (Layup 3) layup. 

The layups referred to as “soft” or “hard” are those with fewer or more than 25% of the plies in the 0° orientation, 

respectively. At least three different impact velocities were tested for each architecture/layup combination, ranging 

from 123.7 to 445.6 cm/s (48.69 to 175.4 in/s). A hemispherical tup impactor with a diameter of 1.5875 cm (0.625 in) 

and mass of either 2.7 or 6.1 kg (5.96 or 13.45 lbm) were used for the impact tests. The various combinations of 

laminates, impact velocities, and impactor masses provided a wide range of damage from no damage to an area of 

9.33 cm2 (1.45 in2). The impact tests were performed following the procedure prescribed in ASTM D7136 [ASTM 

D7136, 2015], including using a plate size of 100 x 150 mm (4” x 6”) and the standard test fixture. In total, 54 impact 

tests were performed. Output from these tests included the load and impactor displacement histories. Following each 

test, through-thickness ultrasonic C-scan measurements were performed to determine the damage morphology and 

size. 

Table 1 Summary of composite impact test fiber architectures and layups 

 Unidirectional (UD) tape Plain weave (PW) fabric 

Layup 1 [45/0/-45/90]4s [45/0/-45/90]3s 

Layup 2 [45/-45/0/45/-45/90/45/-45/45/-45]2s [45/-45/0/45/-45/45/-45/90/45/-45]s 

Layup 3 [45/0/90/0/-45/0/45/0/-45/0]2s [0/90/45/0/90/0/90/-45/0/90]s 
 

B. Impact Damage Model Results and Validation 

The impact damage prediction model described in Section II was called upon to simulate the impact event and 

predict the resulting damage for all 54 cases tested. For each case, the test was replicated using the model including 

details of the prescribed fiber architecture, layup, and impact parameters. To validate the accuracy of the plate 

deformation model, the predicted contact force history is compared with the experiment. A typical force history output 

is shown in Fig. 6 for two different sets of boundary conditions, simply supported and clamped on all four sides which 

can be abbreviated as SSSS and CCCC, respectively. As previously described, the model was developed to be fully 



general in terms of boundary conditions; therefore any combination of simply supported, clamped, and free edge 

supports can be investigated. It is evident from the contact force history in Fig. 6 that the SSSS boundary condition 

most closely represents what is experienced during the ASTM D7136 test. This finding is in agreement with Refs. 

[Fuoss et al., 1998; González et al., 2011; Abir et al., 2017]. Using the fully simply supported boundary conditions, 

the model predicted the first half of the curve well indicating that the global plate deformation and boundary conditions 

are being simulated correctly. Near the peak of the contact force history, the curves begin to diverge due to the 

formation of damage. As mentioned, the developed damage model only contains one-way coupling (kinematics  

damage). Therefore the damage that is predicted to form during the load history does not have an impact on the contact 

force or plate deformation. An assessment of the model’s ability to predict impact damage size will be presented 

showing this simplifying assumption does not introduce appreciable error into the model.  

 

Fig. 6 Contact force history prediction 

After verifying that the model was capable of accurately modeling the plate transient deformation, simulations 

were performed to predict the composite damage for each of the 54 cases. The damage model runs for the uniform 

grid of damage cells as shown in Fig. 2 and produces a two dimensional (2D) profile of the resulting damage. The 

output is similar to the data obtained from a through-thickness C-scan since it provides a 2D profile of the damage 

without details of the damage position through the thickness. For preliminary design and analysis, this type of damage 

information is sufficient for comparison to experimental data and for computing plate residual strength. A comparison 

of the model results and C-scan data for the damaged UD cases is shown in Fig. 7. The model plate is shown in blue 

with yellow damaged cells overlaid on the C-scan images. The black region in the middle of the C-scan image is the 

experimental damage while the other black regions are the clamps and calibration markers. The white text overlaid on 



the images includes the specimen ID and impact velocity. The specimen ID includes the fiber architecture (UD in this 

case), layup (L1, L2, L3) and the specimen number. It can be observed that the modeled plate is smaller than the 

experimental plate because the exposed, unsupported region of the plate of size 75 x 125 mm (3” x 5”) is simulated in 

the model. 

a)  

b)  

c)  

Fig. 7 Unidirectional laminate impact damage prediction for a) Layup 1; b) Layup 2; c) Layup 3 

Comparisons between the size and shape of the predicted and measured damage in Fig. 7 demonstrate the ability 

of the model to accurately simulate impact damage over multiple layups and impactor velocities of the same UD fiber 

architecture. The only calibration required for the damage model involves determining the critical strain energy release 



rate, 
cG . Since the LEFM-based model predicts the total strain energy release rate ( G ) based on the energy released 

in the laminate due to a propagating MCID, there is no information available regarding the relative magnitudes of its 

individual components. Because of this lack of mode-mixity information, traditional delamination propagation criteria 

which compare the individual components of G  to their corresponding critical values cannot be used. Therefore the 

value of 
cG  is calibrated for a single case to match the experimental results. It was determined that a value between 

IcG  and 
IIcG  fits the experimental data well. For the UD and PW damage models, calibrated values of 391.4 J/m2 

(2.235 psi*in) and 1290 J/m2 (7.365 psi*in) were used. Bounding the calibrated value of 
cG  by 

IcG  and 
IIcG  indicates 

that the total G  predicted by the model contains a mixture of 
IG  and 

IIG  which can be calibrated from a single impact 

test on one laminate configuration (quasi-isotropic, in the present case). This greatly simplifies calibration. 

Importantly, it was determined that 
cG  is independent of layup, indicating that its value can be calibrated for one 

layup and used for any other layup of the same material system with similar ply thicknesses.  

Besides the qualitative assessment presented in Fig. 7, the damage area predictions were compared with the 

experimental results as shown in Fig. 8 where expA  is the experimental damage area measured via C-scan and simA  is 

the simulated damage area taken as the pixel area of the damage grid. In this figure, the blue dashed line indicates a 

perfect prediction while the red dotted lines provide the 30% error bounds. It can be observed that the model accurately 

predicts the impact damage area for most of the UD cases. Specifically, an error of 30% or less is maintained for 75% 

(12/16) of the damage cases with a mean error of 23.23%. This magnitude of error is typically acceptable for a 

modeling tool used for preliminary design and analysis. The cases that exceed the 30% error bounds are highlighted 

with a red “x” in the lower-right corner of the test image in Fig. 7. For some of the cases where the damage was 

overpredicted, additional failure modes, such as fiber splitting, can be observed in the experimental C-scans, such as 

for UD-L1-9 and UD-L2-2. Since the only energy dissipative mechanism considered in the model is delamination 

propagation, it is not surprising that the model overpredicts the damage in these cases. 



 

Fig. 8 Model damage prediction compared with experimental results for unidirectional laminate 

For the cases where impact resulted in damage as observed in the C-scan results, the model has been shown capable 

of accurately predicting BVID shape and size. However, the energy-based model cannot predict the threshold 

behavior, i.e., it cannot predict an abrupt drop to zero damage below a certain impact velocity. This behavior has been 

observed experimentally in Refs. [Choi and Chang, 1990; Schoeppner and Abrate, 2000; González et al., 2011]. The 

threshold impact velocity represents the initiation of rapid delamination formation and growth and is typically 

associated with the peak impact force and subsequent load drop [Zhang, 1998] (see also the experimental curve in Fig. 

6). This initiation of delamination at the threshold velocity is typically followed by stable delamination growth 

[Jackson and Poe, 1993], which the present energy-based damage model, as discussed in the foregoing, is able to 

predict. As a comprehensive impact damage prediction tool must also predict the threshold behavior, we combine the 

energy-based model with the strength-based model to determine the conditions where the transition from no 

delamination to finite delamination (as predicted by the energy model) occurs. The threshold behavior is typically 

represented as a plot of damage size versus impact velocity [Choi and Chang, 1992]. However, as the threshold 

velocity is a function of the plate dimension, boundary conditions, and layup, we cast the threshold phenomena in 

terms of a threshold damage size which represents the minimum delamination area required to serve as a pre-crack 

for the energy-based model. This threshold damage size is calibrated using the strength model (Eq. (37)) in conjunction 

with experimental threshold data for one laminate geometry (plate size, boundary condition) and layup. The threshold 

damage size is determined by modeling impact tests over a range of velocities and matching the predicted threshold 

damage velocity to the experiments using the strength-based model. At a minimum, at least one impact case resulting 



in delamination and one without delamination is required to determine the threshold velocity. Calibrating the threshold 

damage size for the UD and PW laminates gives the values of 0.435 and 0.629 cm2, respectively.  

Once the threshold damage size is calibrated, the overall impact damage prediction workflow is as follows: the 

strength-based model is used to predict the delamination size which is compared with the threshold damage size; if 

the predicted damage size is less that the threshold damage size, the delamination area is set to zero. Once the 

delamination size predicted by the strength model exceeds the threshold damage size, the energy-based damage model 

is used to predict the delamination size. As an illustration, this workflow is applied to the UD Layup 1 to predict the 

delamination size as a function of impact velocity. In Fig. 9a, the output of the stress-based model is shown. The 

intersection between the delamination area prediction and the experimentally determined threshold damage size 

determines the threshold velocity. The output of the combined (stress + energy based models) presented in Fig. 9b 

shows the overall predicted response. It is seen that the combined strength-based and energy-based model is able to 

capture the threshold behavior and is qualitatively consistent with the experimental data where no damage was seen 

until a velocity of 222.3 cm/s, followed by a monotonic increase in delamination area with impact velocity. It may 

also be noted from Fig. 9 that the stress-based model significantly under predicts the delamination area for impact 

velocities greater than the threshold velocity. On the other hand, as discussed earlier (see Fig. 8), the delamination 

area predicted by the energy-based model is in good agreement with the experimental data.   

a)  



b)  

Fig. 9 Model output over a range of velocities demonstrating a) the stress-based model prediction of damage 

threshold velocity and b) the overall model prediction of damage threshold and delamination propagation 

 

Once the damage model was fully calibrated for initiation in addition to propagation, validation over all UD test 

cases (27 in total) was conducted. This included all the cases presented in Fig. 7 and Fig. 8 as well as 11 cases where 

no damage existed following impact. The validation plot for all 27 cases is shown in Fig. 10 and a summary is provided 

in Table 2. Nine out of the 11 “no damage” cases are correctly predicted and overlap at the plot origin in Fig. 10. Two 

of the “no damage” cases, however, were predicted to have damage. Since the damage initiation model acts as a 

switch, if the model predicts the presence of damage incorrectly, the error will be large, as seen in the two points at 

exp 0A   that exceed the 30% error bounds. Fortunately this error is on the side of conservatism (i.e., predicting 

damage when there is none). Out of the 27 UD cases, the damage area was predicted within 30% for 21 cases and the 

mean error was 14.87%. 

 



 

Fig. 10 Unidirectional laminate impact damage results summary including “no damage” cases 

 

Table 2 Summary of unidirectional composite impact tests and simulation results 

Specimen 
Velocity 

(cm/s) 

Mass 

(kg) 

Damage 

area 

(cm2) 

Model 

area 

(cm2) 

Error 

UD-L1-1 241.9 2.703 4.781 3.361 -29.69% 

UD-L1-2 241.8 2.703 4.690 3.361 -28.34% 

UD-L1-3 134.5 2.703 0.000 0.000 0.00% 

UD-L1-4 133.5 2.703 0.000 0.000 0.00% 

UD-L1-5 376.4 2.703 7.781 8.439 8.46% 

UD-L1-6 378.3 2.703 7.626 8.561 12.27% 

UD-L1-7 240.5 2.703 4.581 3.361 -26.62% 

UD-L1-8 194.9 2.703 0.000 0.000 0.00% 

UD-L1-9 377.6 2.703 6.206 8.529 37.42% 

UD-L2-1 219.4 2.703 0.000 3.652 INF 

UD-L2-2 257.0 6.101 8.090 11.981 48.09% 

UD-L2-3 258.0 6.101 9.329 12.045 29.11% 

UD-L2-4 256.9 6.101 8.981 11.955 33.12% 

UD-L2-5 196.8 6.101 7.684 6.748 -12.17% 

UD-L2-6 192.2 6.101 5.981 6.477 8.31% 

UD-L2-7 136.0 6.101 0.000 0.000 0.00% 

UD-L2-8 133.0 6.101 0.000 0.000 0.00% 

UD-L2-9 133.4 6.101 0.000 0.000 0.00% 

UD-L3-1 289.5 2.703 0.000 5.890 INF 

UD-L3-2 255.9 6.101 9.271 10.219 10.23% 

UD-L3-3 253.9 6.101 7.632 9.910 29.84% 

UD-L3-4 254.7 6.101 7.219 10.052 39.23% 

UD-L3-5 196.3 6.101 5.458 5.910 8.27% 

UD-L3-6 192.2 6.101 6.335 5.665 -10.59% 



UD-L3-7 123.7 6.101 0.000 0.000 0.00% 

UD-L3-8 127.7 6.101 0.000 0.000 0.00% 

UD-L3-9 126.9 6.101 0.000 0.000 0.00% 
 

 

Similar to the UD impact cases, simulations were performed to replicate the tests performed on the PW specimens. 

Again, 27 tests were conducted for at least three velocities per layup. Comparison between the model and test damage 

profiles are shown in Fig. 11. In this series of tests, only one case (PW-L1-1) resulted in no damage. Evident from the 

overlaid damage plots in Fig. 11, the model is again proven capable of predicting the damage size and shape accurately. 

A quantitative comparison between measured and predicted damage area is shown in Fig. 12. It can be observed that 

a large majority of the predictions fall within the 30% error bounds. In fact, 78% of the cases (21/27) are predicted 

with less than 30% error with a mean error of 21.08%. Again, red “x” marks indicate the cases that exceed the 30% 

error bound in Fig. 11.  

It is also evident from Fig. 12 that there is a clustering of points near the lower 30% error bound corresponding to 

the lower velocity cases where the model is consistently underpredicting the damage area. Noting that the impactor 

cross-sectional area, annotated in Fig. 12, falls within this cluster of points, it is likely that the damage observed in the 

ultrasonic C-scan images is superficial and includes mostly surface ply damage. Since the model does not include 

intraply damage, it is not surprising that the area of the predicted damage, in the form of delamination, is smaller than 

what is seen experimentally.  

a)  



b)  

c)  

Fig. 11 Plain weave laminate impact damage prediction for a) Layup 1; b) Layup 2; c) Layup 3 

 



 

Fig. 12 Plain weave laminate impact damage results summary including “no damage” cases and highlighting 

individual laminate data 

One source of challenge associated with the development of a rapid tool for composite impact damage prediction 

is the simplifying assumptions that are required to maintain efficiency and applicability to preliminary design and 

analysis. One such assumption involves simplifying the damage behavior, as described in Section IIB, to be dominated 

by MCID. Also required is a simplified calibration process. In order for such a tool to have application in preliminary 

design and analysis, calibration should involve fitting the fewest possible parameters to the test data and these 

parameters should be applicable across a range of laminates and test conditions. As was mentioned in Section IIB, a 

purely stress-based failure criterion was found to lack the generality required. Specifically, the primary calibration 

parameter, laminate ILS strength factor, was found to be dependent on the laminate layup which would severely limit 

the utility of the tool for rapid design. For example, calibrating the laminate ILS strength factor to the UD-L1-1 impact 

case from Table 2 and predicting the BVID area for all the UD-L2 and UD-L3 cases yields average absolute errors of 

47% and 34%, respectively. Therefore it is clear that across layups, a fully stress-based approach is not ideal. In 

contrast, as seen in the validation results for the UD and PW laminates, the energy-based approach provides the 

necessary generality to accurately predict damage morphology and size over a wide range of layups, impactor masses, 

and impact velocities. To further investigate the sensitivity of the primary calibration parameter for the energy-based 

model, cG , different marker styles are used in Fig. 12 for each of the three layups. From this plot it can be observed 



that similar accuracy is maintain across all three layup configurations. This indicates that the calibration of the impact 

damage model is insensitive to layup and can be applied to the optimization of layup configurations. Finally, a detailed 

summary of the PW results are presented in Table 3. 

Table 3 Summary of plain weave composite impact tests and simulation results 

Specimen 
Velocity 

(cm/s) 

Mass 

(kg) 

Damage 

area 

(cm2) 

Model 

area 

(cm2) 

Error 

PW-L1-1 181.1 2.703 0.000 0.000 0.00% 

PW-L1-2 242.2 2.703 1.910 1.335 -30.07% 

PW-L1-3 243.8 2.703 0.574 1.381 140.45% 

PW-L1-4 379.7 2.703 3.897 4.090 4.97% 

PW-L1-5 382.1 2.703 4.548 4.148 -8.79% 

PW-L1-6 380.9 2.703 4.135 4.103 -0.78% 

PW-L1-7 439.8 2.703 4.729 5.897 24.69% 

PW-L1-8 443.2 2.703 4.671 6.052 29.56% 

PW-L1-9 445.6 2.703 4.961 6.142 23.80% 

PW-L2-1 366.2 2.703 3.045 3.368 10.59% 

PW-L2-2 254.3 2.703 1.929 1.303 -32.44% 

PW-L2-3 256.5 2.703 2.245 1.303 -41.95% 

PW-L2-4 256.9 2.703 2.232 1.323 -40.75% 

PW-L2-5 367.3 2.703 3.142 3.368 7.19% 

PW-L2-6 371.8 2.703 3.458 3.503 1.31% 

PW-L2-7 444.0 2.703 5.316 5.626 5.83% 

PW-L2-8 445.2 2.703 5.581 5.639 1.04% 

PW-L2-9 442.8 2.703 4.877 5.561 14.02% 

PW-L3-1 441.1 2.703 5.477 6.284 14.72% 

PW-L3-2 441.0 2.703 5.329 6.252 17.31% 

PW-L3-3 441.9 2.703 6.019 6.284 4.39% 

PW-L3-4 256.8 2.703 1.994 1.419 -28.80% 

PW-L3-5 257.5 2.703 2.052 1.452 -29.25% 

PW-L3-6 256.5 2.703 2.103 1.419 -32.52% 

PW-L3-7 378.6 2.703 3.684 4.123 11.91% 

PW-L3-8 379.5 2.703 4.568 4.123 -9.75% 

PW-L3-9 381.9 2.703 4.181 4.271 2.16% 
 

IV. Conclusion 

Preliminary design and analysis of composite structures requires access to efficient BVID models. Because of the 

significant reduction in residual strength of these materials when impacted [Maio et al., 2013], impact resistance and 

CAI strength are key design parameters. As such, in order to minimize the number of expensive tests required to 

design and optimize composite structures, a rapid BVID prediction tool was developed and validated against 



experimental impact data. The model is based the Rayleigh-Ritz method applied to a Mindlin-Reissner plate with 

arbitrary boundary conditions and subjected to an impact event. Damage is simulated as MCID using a strength-based 

initiation model and an LEFM-based propagation model. The mechanics-based modeling approach was chosen over 

more common FEA-based models in order to maintain the necessary efficiency for initial design and optimization; 

the developed model has a runtime of minutes rather than hours for a comparable FEA model. An extensive 

experimental program was conducted consisting of 54 total tests over multiple fiber architectures, layups, impact 

velocities, and impactor masses. Each of the 54 tests were simulated and the predicted damage size compared to C-

scan measurements. Validation included not only predicting the damage area, but also the damage threshold. It was 

shown that the developed model provides accurate predictions of damage size (error less than 30% for over 75% of 

cases) and runs in less than two minutes. Based on its demonstrated accuracy and efficiency, the developed BVID 

model can effectively serve as an integral part of a comprehensive BVID/CAI strength rapid analysis framework 

[Borkowski and Kumar, 2018a].  
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