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REVIEW

Targeting mitochondrial quality control for treating sarcopenia: lessons from
physical exercise
Anna Piccaa,b, Riccardo Calvania,b, Christiaan Leeuwenburghc, Hélio José Coelho-Juniora,d, Roberto Bernabeia,b,
Francesco Landia,b and Emanuele Marzettib

aUniversità Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy; bFondazione Policlinico Universitario “Agostino
Gemelli” IRCCS, Rome, Italy; cDepartment of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA; dApplied
Kinesiology Laboratory–LCA, School of Physical Education, University of Campinas, Campinas, Brazil

ABSTRACT
Introduction: Mitochondrial dysfunction is a hallmark of aging and hence is a candidate target for
intervention. Sarcopenia of aging is a prevalent condition and is associated with numerous negative
health outcomes. Alterations in mitochondrial homeostasis have been reported in sarcopenic muscle.
Area covered: We discuss the evidence that points to mitochondrial dysfunction having a causative
role in sarcopenia and the mechanisms involved in the accumulation of damaged mitochondria in the
aged muscle. We also discuss the effects of physical exercise on mitochondrial quality control and
muscle health in advanced age.
Expert opinion: In the aged muscle, the mitochondrial quality control axis is altered at several levels,
including proteostasis, biogenesis, dynamics, and autophagy. Mitochondrial dysfunction arising from
impaired quality control is thought to play a major role in the pathogenesis of sarcopenia. Physical exercise
is themost effective strategy for themanagement of sarcopenia. Improvements inmitochondrial health and
plasticity may mediate several beneficial effects of exercise in muscle. A greater understanding of the
molecular changes that occur in the aged muscle following exercise and how they impact mitochondrial
homeostasis is necessary for the exploration of potential targets that are amenable for interventions.
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1. Introduction

The natural course of aging is marked, among other phenom-
ena, by the progressive loss of muscle mass and strength/
function, referred to as sarcopenia. This condition is
a causative factor for an array of negative health-related
events (e.g., falls, morbidity, disability, loss of independence,
and mortality) [1]. At the tissue level, sarcopenia is character-
ized by increased levels of myonuclear apoptosis, reduced
muscle bioenergetic capacity, and increased reactive oxygen
species (ROS) production [2]. Given the central role played by
mitochondria in these processes, mitochondrial dysfunction
has become an actively investigated pathogenic mechanism
of sarcopenia [3]. Such a view is also rooted in the observation
that preservation of well-performing mitochondria ensures the
maintenance of muscle homeostasis during aging [4].

Mitochondria serve several functions within the cell, includ-
ing energy provision, calcium and iron buffering, iron-sulfur
cluster and heme biosynthesis, and regulation of programmed
cell death [5]. Due to these vital responsibilities, an integrated
system of quality control processes is in place to ensure the
maintenance of a functional mitochondrial pool [6]. Studies
have shown that, in the aged muscle, the mitochondrial qual-
ity control (MQC) axis is altered at several levels, including
proteostasis, biogenesis, dynamics, and autophagy [3,7].
Mitochondrial dysfunction arising from impaired quality

control, in turn, is supposed to be critically involved in the
pathogenesis of sarcopenia [6,8].

Yet, it is presently unclear whether these changes are attri-
butable to aging per se or occur as a consequence of other
phenomena, such as reduction in physical fitness and activity
levels or comorbidities [8–12]. Noticeably, engagement in reg-
ular exercise preserves muscle mass and strength [13], physical
performance [14], and myocyte mitochondrial function in
older adults [15]. These adaptations may be accomplished
through improvement of MQC [16].

This review summarizes the current understanding of the
mechanisms underlying mitochondrial dyshomeostasis in the
context of sarcopenia. A special focus is placed on the path-
ways modulated by physical exercise and that may be exploi-
table for developing/optimizing therapeutic interventions to
preserve muscle health in advanced age.

2. Mitochondrial quality control

MQC ensures the maintenance of a healthy mitochondrial
pool within the cell [17]. This task is accomplished through
a complex nucleus-mitochondrion crosstalk that orches-
trates several interrelated processes (i.e., protein folding
and degradation, mitochondrial biogenesis, mitochondrial
fission and fusion, and mitochondrial autophagy) (Figure 1).
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While mitochondrial biogenesis is necessary to generate an
adequate number of organelles, the removal of damaged/
dysfunctional mitochondria is vital to prevent their accumu-
lation. The selective removal of mitochondria, referred to as
mitophagy, is part of the larger, evolutionarily conserved
autophagy pathway.

2.1. Mitochondrial biogenesis

The generation of new mitochondria is attained through the
coordinated expression of nuclear and mitochondrial DNA
encoded genes (Figure 1). The process is orchestrated by
members of the peroxisome proliferator-activated receptor
(PPAR) gamma coactivator-1 (PGC-1) family of transcriptional
co-activators, namely PGC-1α and PGC-1β (reviewed in [18]).
Their interaction with several transcription factors [i.e., nuclear
respiratory factors 1 and 2 (NRF1 and NRF2), estrogen-related
receptor alpha (ERRα), and the PPAR family of transcription
factors] regulates the expression of mitochondrial proteins,
including mitochondrial transcription factor A (TFAM) and B2
(TFB2M) (reviewed in [18]). Once synthesized, TFAM and
TFB2M are imported into the mitochondrion where they
serve important housekeeping activities [18]. Specifically,
TFAM binds to mitochondrial DNA (mtDNA) either as
a histone-like protein that unwinds and bends mtDNA or to
specific non-coding regions (NCRs) [19]. Dysregulation of
TFAM binding to NCRs has been indicated as a potential
mechanism underlying the impairment of mitochondrial bio-
genesis in aged rat tissues, including the skeletal muscle [20].
Recent evidence also indicates that TFAM binds more avidly to
oxidized D-loop regions, the major site of transcriptional
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● Sarcopenia is the age-related loss of muscle mass and strength/
function and is associated with several negative health-related
events.

● A set of interrelated processes referred to as mitochondrial quality
control (MQC) (proteostasis, biogenesis, dynamics, and mitophagy) is
in place to ensure muscle cell homeostasis.

● Mitochondrial dysfunction amplified by failing quality control
mechanisms, is considered to be a relevant player in the pathophy-
siology of sarcopenia.
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ulates MQC in muscle.

● Current unknowns include the optimal window of exercise training
interventions (timing and intensity) able to improve MQC function to
prevent/combat sarcopenia.
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Figure 1. Mitochondrial quality control pathways elicited by physical exercise.
Mitochondrial biogenesis, dynamics, and autophagy cooperate to ensure mitochondrial homeostasis. Following exercise, the upregulation of peroxisome proliferator-activated receptor
(PPAR) gamma coactivator-1 alpha (PGC1α) controls the expression of several transcription factors (TFs) which activates the transcription of nuclear genes encoding mitochondrial proteins,
including mitochondrial transcription factor A (TFAM). TFAM is thereafter imported into mitochondria and binds to mitochondrial DNA (mtDNA). TFAM binding to mtDNA modulates its
replication and transcription and ultimately mitochondriogenesis. Mitochondrial morphology and turnover rely on dynamic processes mediated by fusion [mitofusin 1 (MFN1), MFN2, and
mitochondrial dynamin-like 120 kDa protein (OPA1)] and fission [dynamin 1-like protein (DNM1L) and mitochondrial fission 1 protein (FIS1)] proteins. Fusion facilitates the dilution of
damaged mitochondrial components while fission targets mitochondria to their subsequent clearance. Finally, a specialized autophagic pathway, referred to as mitophagy, is in place to
recycle organelle components. LC3, microtubule-associated proteins 1A/1B light chain 3; NRF1, nuclear respiratory factor 1; NRF2, nuclear respiratory factor 2; ROS, reactive oxygen species.

2 A. PICCA ET AL.



regulation, and contributes to impairing mitochondrial func-
tion in the aged heart [21]. Whether such a mechanism plays
a role in the setting of muscle aging is yet to be established.

Substantial evidence exists linking PGC-1α signaling to
muscle mass maintenance via its translocation from the cyto-
sol to the nucleus [22] and mitochondria [23]. The nuclear
control over mitochondrial protein synthesis is blunted in
aged muscles, suggesting reduced mitochondriogenesis [24].
Indeed, lower levels of PGC-1α and its downstream targets
have been reported in muscle of older persons [10].
Furthermore, the expression of PGC-1α in skeletal myocytes
has been positively correlated with oxidative capacity and
functional status in young and older adults [10]. Under muscle
atrophying conditions such as denervation, unloading, type II
diabetes, and aging, decreased abundance of PGC-1α mRNA
has been detected (reviewed in [3]). Conversely, maintenance
of PGC-1α expression preserves muscle mass during aging,
hind limb suspension, cachexia, denervation, and fasting,
through stimulating mitochondrial turnover [25]. PGC-1α also
acts by inhibiting the signaling cascade triggered by Forkhead
box O3a (FoxO3a), a potent transcriptional inducer of muscle
atrophy [26], and nuclear factor κB (NF-κB), a major regulator
of inflammation [27]. Blockade of these transcription factors, in
turn, prevents the activation of proteolytic systems without
affecting protein synthesis [28].

The muscle-protecting effects of PGC-1α have recently
been confirmed in old mice genetically engineered to over-
express this transcriptional cofactor in skeletal muscle [29]. In
this model, an increased expression of genes associated with
energy metabolism and muscle integrity and regeneration was
determined. These effects occurred without changes in
mtDNA deletion levels [29].

Splice variants of PGC-1α have been identified in skeletal mus-
cle. Truncated variants, NT-PGC-1α, are produced by alternative 3´
splicing of PGC-1α mRNA at exon 1a. Full-length and truncated
PGC-1α variants are expressed in the same proportion in muscle
[30]. In particular, the full-length isoforms (PGC-1α1, PGC-1α2, and
PGC-1α3) promote mitochondrial biogenesis and oxidative phos-
phorylation [31], whereas NT-PGC-1α-b (also termed PGC-1α4) is
involved in the regulation ofmusclemass [32,33]. PGC-1α4 expres-
sion is upregulated following resistance exercise and its overex-
pression induces hypertrophy in murine muscles [32,33].
Moreover, PGC-1α4 overexpression counteracts muscle loss
induced by hind limb suspension and during cachexia [33].
However, the relevance of PGC-1α4 to human muscle physiology
is presently unclear.

Diet and exercise modulate PGC-1α activity through NAD+-
dependent deacetylases sirtuins (SIRTs). SIRT1 (cytosolic) and
SIRT3 (mitochondrial) are the two isoforms mainly involved in
muscle maintenance. The expression of SIRT3 is reduced in aged
muscle,whilst it is inducedby oxidative stress following endurance
training in young and older adults [34]. Data from preclinical
models indicate that SIRT3 is a downstream target of PGC-1α and
is involved inmodulating energymetabolism and ROS production
[35]. Strategies targeting NAD+ levels (i.e., nicotinamide riboside
administration and calorie restriction) improve muscle health in
old mice by reducing hypoxia-inducible factor 1α (HIF-1α) levels
[36]. Moreover, boosting NAD+ levels by poly (ADP-ribose)

polymerase (PARP) inhibitors is protective againstmuscle dysfunc-
tion related to mitochondrial dyshomeostasis [37].

The aforementioned findings may explain the contribution
of age-related PGC-1α deficits to muscle loss and, at the same
time, suggest that this mediator represents a promising mole-
cular target for the management of sarcopenia.

2.2. Mitochondrial dynamics

Mitochondrial fusion and fission in conjunction with mitophagy
(mitochondrial autophagy) are essential for controlling organel-
lar plasticity and disposal (Figure 1). Under oxidative stress,
damaged mitochondria show reduced membrane potential
and are selectively targeted for mitophagic removal by fission.
Meanwhile, functional organelles continue to fuse and divide
and allow for mixing mtDNA andmetabolites along the network.

Electron microscopy analyses have shown aberrant mito-
chondria in several human and rodent tissues, including mus-
cle [38], indicating that mitochondrial dynamics are altered
during aging. Notably, morphological abnormalities of mito-
chondria are associated with changes in the expression of
several mediators of mitochondrial dynamics, including mito-
fusin (Mfn) 1 and 2, optic atrophy protein 1 (Opa1), dynamin-
related protein 1 (Drp1), and fission protein 1 (Fis1) [39–42].
Recently, a shift of dynamics signaling toward fission has been
shown in old hip-fractured patients with sarcopenia [43]. It
should be noted that fissioned mitochondria are less bioener-
getically efficient, produce greater amounts of ROS, and are
more prone to trigger myonuclear apoptosis [44,45]. In further
support of the involvement of mitochondrial fragmentation in
muscle atrophy, overexpression of Drp1 and Fis1 causes mus-
cle wasting in mice [45]. Along similar lines, downregulation of
fusion in myocytes has shown to induce muscle loss in murine
models [46,47]. In contrast with the proposition that excessive
mitochondrial fission is maladaptive, Rana et al. [48] found
that promoting mitochondrial fission in middle-aged flies is
beneficial to organismal health. Although a species-specific
regulation of mitochondrial dynamics may not be ruled out,
the existence of a life window in which upregulation of fission
prevents the accumulation of dysfunctional organelles
deserves further investigation.

Interestingly, downregulation of mitochondrial fusion in motor
neurons has been found to be an early event during the develop-
ment of amyotrophic lateral sclerosis in mice [49]. Furthermore,
Mfn2 deficiency induces mitochondrial dysfunction and increases
motor neuron vulnerability to glutamate excitotoxicity [50].

Though these findings point to the involvement of unba-
lanced mitochondrial dynamics in muscle aging, the extent to
which these alterations contribute to sarcopenia is presently
unclear. Further research is warranted to clarify the role of
aberrant mitochondrial dynamics in muscle wasting and iden-
tify relevant target for interventions.

2.3. Ubiquitin-proteasome system and mitochondrial
proteostasis

Mitoproteases are the first line of defense in response to mild
mitochondrial damage [51]. The system is composed of
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several proteases located in different organelle domains: mito-
chondrial matrix (i.e., soluble Lon and ClpP and the mem-
brane-bound m-AAA) [52] and inter-membrane space [i.e.,
membrane-bound i-AAA Yme1L1, soluble HtrA2/Omi, the
metallopeptidases OMA1, and the presenilins-associated
rhomboid-like protein (PARL)] [51]. The level and activity of
mitoproteases decline with aging [53,54], but the relevance of
this phenomenon to myocyte mitochondrial dysfunction in
the setting of sarcopenia is currently unknown.

The UPS is a catabolic pathway that, in conjunction with
the autophagy-lysosome system, controls intracellular pro-
tein recycling under the modulation of 5ʹ AMP-activated
protein kinase (AMPK) and the FoXO transcription factor
family [45]. The expression of constitutively active FoXO3
has shown to induce atrophy of cultured myotubes and
muscle wasting in mice by stimulating the transcription of
the ubiquitin ligase atrogin-1 (MAFbx) [55,56,57]. In addition,
FoXOs inhibit the muscle anabolic signaling of mammalian
target of rapamycin complex 1 (MTORC1) [58]. Notably, inhi-
bition of MTORC1 in muscles of tuberous sclerosis complex
(TSC) knockout mice is associated with loss of muscle mass
and strength and downregulation of mitophagy [59].

The control of UPS activity through FOXO seems to be
especially relevant during the final steps of protein degrada-
tion. Indeed, FoXOs activate lysosomal cathepsins and cytoso-
lic calpains leading to ATP-dependent UPS activation and
Muscle RING-finger protein-1 (MuRF-1) and MAFbx upregula-
tion [60]. However, whether alterations in FoXO-mediated
control of MTORC1 signaling or a failure in the regulation of
anabolic pathways trigger muscle protein breakdown during
aging remains to be established. Conflicting results have been
reported on the topic. Indeed, UPS mediators [61], 26S protea-
some, polyubiquitinated proteins [62], MuRF-1, and MAFbx
expression are all increased in hind limb muscles of sarcopenic
rats as compared with younger counterparts [62,63]. Similarly,
a higher expression of UPS components was found in the
quadriceps muscles of old persons relative to younger adults
[61]. However, other studies reported lower MuRF-1 and
MAFbx expression in muscles of old rats [64] and no changes
in the vastus lateralis of old humans [65]. Such discrepancies
might be explained by differences in age, sex and lifestyle
habits of the subjects under study as well as in the experi-
mental settings and methods used to measure the expression
and activity of MuRF-1 and MAFbx.

Mitochondrial protein turnover is also ensured by the cyto-
solic UPS under the control of several PGC-1α splice variants [66].
Stimulation of protein synthesis and downregulation of UPS
activity via PGC-1α2, PGC-1α3, and PGC-1α4 have been shown
in cultured myotubes and mouse skeletal muscle [33,67].
Furthermore, PGC-1α attenuates UPS-mediated muscle protein
degradation by blocking NF-κB and FoXO3 activity [26,27]. An
organelle stress-responsive system for protein degradation, the
mitochondrial unfolded protein response (UPRmt), is also in
place [68] and is composed mainly of AAA ATPase p97 and the
cofactor Npl4 [69]. The expression of mitochondrial stress pro-
teins (e.g., chaperonin 10 and 60, mtDnaJ, ClpP, Yme1) is induced
under stress conditions to promote mitochondrial proteostasis
[68]. However, if and to what extent UPRmt intervenes in muscle
aging warrants further investigation.

2.4. Mitophagy

The term mitophagy refers to the selective removal of
dysfunctional or unnecessary mitochondria through autop-
hagy [5]. This organellar recycling process is especially rele-
vant to muscle homeostasis given the high metabolic
demand and limited regenerative capacity of skeletal myo-
cytes [70]. As such, dysregulation of mitochondrial autop-
hagy has been indicated as a major pathogenic mechanism
of muscle wasting [2]. According to the garbage cata-
strophe theory of aging, the loss of efficiency of autophagy
would result in the progressive accumulation of cellular
‘waste’, including protein aggregates, damaged mitochon-
dria and lipofuscin, which further depresses autophagy [71].
This vicious circle eventually culminates in cell and tissue
degeneration. As a proof of concept, genetic ablation of
critical autophagy genes (i.e., Atg7) in mice has been shown
to induce inflammation, decrease myofiber size and number
(preferentially in fast-twitch fibers), impair muscle function,
and shorten survival [72,73]. Conversely, Atg5 overexpres-
sion stimulates autophagy and attenuates several aging
phenotypes, including myocyte mitochondrial dysfunction
and muscle weakness, while extending lifespan in mice [74].

During aging, the autophagic flux is reduced in murine
muscles [75]. Decreased protein levels of Atg7 and lipidated
microtubule-associated protein 1 light chain 3 (LC3 II) were
also found in muscle biopsies of sedentary older people [75],
which was markedly attenuated in senior sportsmen [75]. In
addition, lower LC3 expression has been detected in muscle
samples from old hip-fractured patients with sarcopenia [43].
Yet, increased or unvaried expression of key autophagy mar-
kers has been reported in muscles of aged rodents and
humans [42,44,45,76,77]. When interpreting these findings, it
should be considered that measurements of protein expres-
sion of autophagy mediators only provides a snapshot of
a highly dynamic process [78,79]. Therefore, the implementa-
tion of new methodologies allowing for accurate analysis of
autophagic flux are highly sought after to obtain more con-
clusive information on the actual involvement of dysfunctional
autophagy in sarcopenia [78,79].

3. Conclusion

Accumulating evidence indicates that an efficient MQC is
crucial for maintaining myocyte homeostasis. Indeed,
derangements at various critical MQC checkpoints underpin
mitochondrial dysfunction and muscle wasting during aging.
Noticeably, engagement in regular exercise, either aerobic or
resistance, prevents or even reverses the age-associated
impairment of MQC. This, in turn, contributes to fostering
mitochondrial function and muscle health in old age.

However, interpreting the outcome of changes in protein
expression of MQC mediators during aging and in response to
exercise is challenging. Important limitations exist in the tools
available for monitoring these processes in vivo, especially in
humans. Therefore, the development of new strategies and
experimental settings allowing for visualization of mitochon-
dria in living cells, together with novel biochemical
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approaches, is necessary to achieve a more comprehensive
understanding of MQC functioning.

4. Expert opinion

Growing evidence indicates that derangements in MQC are
involved in age- and disease-associated muscle wasting.
Hence, MQC has been proposed as a promising target for
developing novel therapeutic interventions against sarcope-
nia. As of now, physical exercise is the only strategy that has
consistently shown to promote muscle health, even in very
old, frail people [80]. Interestingly, this intervention acts as
a powerful modulator of MQC. Both aerobic and resistance
training ameliorates mitochondrial function and stimulates
mitochondriogenesis in muscle [81]. It should however be
considered that enhanced mitochondriogenesis does not
necessarily translate into a gain of function, unless the number
of damaged organelles is proportionally reduced. Indeed,
mitochondria carrying deleted mtDNA can proliferate by vir-
tue of a replicative advantage over those harboring wild-type
molecules [82]. This may be avoided if a fully working MQC
axis is in place. Although the whole spectrum of mitochondrial
adaptations elicited by chronic exercise has not yet been
disentangled, evidence has accumulated indicating that this
intervention acts at several MQC checkpoints beyond mito-
chondrial biogenesis [83,84]. Recently, a PGC-1α-p53 axis has
been shown to regulate apoptosis, autophagy, and mitophagy
in murine and human muscles [85]. It is hypothesized that
dysfunctional PGC-1α-p53 signaling may be involved in the
pathogenesis of sarcopenia. Interestingly, age-related
derangements of the PGC-1α-p53 axis are prevented by life-
long exercise training [85]. Another recent study showed that,
in muscles of old mice, while basal mitophagy was enhanced,
it did not increase following acute exercise compared with
younger controls [86]. These findings suggest that upregula-
tion of mitophagy may be an additional means through which
exercise promotes muscle health and that this adaption might
be blunted during aging.

The mammalian target of rapamycin (mTOR) is another
major signaling pathway modulated by exercise, though the
outcome is different depending on the training modality [87].
The activity of mTOR is finely tuned by two energy sensors,
the insulin-RACα serine/threonine protein kinase (Akt) and
AMPK [88]. Following a single bout of resistance exercise, Akt
is transiently activated, resulting in Rheb-mediated activation
of mTOR [89]. The latter, in turn, promotes muscle growth by
suppressing autophagy and stimulating protein synthesis [87].
The signaling cascade initiated by Akt does not seem to be
active during endurance training [90]. Under this training
modality, mTOR activity is suppressed by AMPK which also
phosphorylates FoXO3, thereby upregulating autophagy and
the UPS [91–93]. These adaptations may serve to mobilize
muscle protein as a source of energy. At same time, stimula-
tion of mitochondrial autophagy is necessary to clear exercise-
induced organellar damage [94]. Replenishment of the mito-
chondrial pool is ensured by the concomitant AMPK-mediated
upregulation of PGC-1α [93].

Stimulation of mitophagy by exercise may be particularly
beneficial in the aged muscle, as it may counteract the accrual

of mitochondrial damage. Notably, the mRNA abundance of
LC3-II, Atg7 and lysosome-associated membrane protein 2
(LAMP-2) was increased in the vastus lateralis muscle of old
overweight women following a 6-month weight-loss plus
moderate intensity exercise program [77]. Moreover, life-long
exercise (regular exercise in the past 30 years) was found to
maintain the expression of LC3-II and Atg7 in muscle of older
adults to levels similar as those of young controls [75]. Similar
adaptations have been observed in the plantaris muscle of old
rats on life-long exercise and mild calorie restriction [94]. It is
noteworthy that stimulation of autophagy was accompanied
by reduced levels of myonuclear apoptosis.

Taken as a whole, these findings suggest that the fine
tuning of MQC is a major mechanism whereby physical exer-
cise conveys its beneficial effects on skeletal muscle [81].
A deeper understanding of the molecular changes occurring
in the aged muscle following exercise and how they impact
mitochondrial homeostasis is necessary to identify relevant
target for drug development.
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