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Heat stress-induced deficits in growth, metabolic efficiency, and cardiovascular function
coincided with chronic systemic inflammation and hypercatecholaminemia in
ractopamine-supplemented feedlot lambs; Atypical cyclicity at puberty in beef cows is
associated with early deficits in muscling, metabolic indicators, and myoblast function in
offspring but does not impact feedlot performance.
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Our 1st study evaluated the effects of B-adrenergic agonist (ractopamine)
supplementation on growth, health, and wellbeing in heat-stressed feedlot wethers.
Chronic heat stress impaired growth, metabolism, and wellbeing even when the impact of
reduced feed intake was eliminated by pair-feeding. We observed systemic inflammation
and hypercatecholaminemia that were likely mediators of these deficits. Moreover,
ractopamine did not diminish any wellbeing indicators and improved muscle growth
without worsening the effects of heat stress.

Our 2nd study assessed the effects of pubertal cyclicity (weaning to 1st breeding)
in cows on myoblast-mediated muscle growth, metabolism, and growth efficiency of
their offspring. Maternal fertility and postnatal growth efficiency of offspring are
imperative to successful beef cattle production. A maternal condition was previously
identified in which cows exhibited irregular cyclicity patterns or were non-cyclic between
weaning and 1st breeding. This condition is thought to be associated with high
concentrations of androstenedione in their follicular fluid, which causes cows to be sub-

fertile but also wean heavier calves when they do become pregnant. We hypothesized that



calves from cows exhibiting irregular pubertal cyclicity would have enhanced growth
efficiency compared to calves from cows with normal pubertal cyclicity. To test this
hypothesis, we evaluated myoblast function, growth, and metabolism pre-weaning, as
well as growth efficiency in the feedlot and carcass characteristics at harvest in calves
from cows that were previously identified as having typical, start-stop, or non-cycling
pubertal cyclicity patterns. Calves from irregular cycling cows had reductions in insulin
sensitivity, plasma proteins and lipids paired with increased myoblast function and
reduced myoblast glycolytic capacity. Data independently and combined suggest calves
from cows with irregular cyclicity from weaning to 1st breeding have chronic
inflammation. While the specific mechanism of inflammation is unknown, further
research may allow mediators of abnormal cyclicity and offspring inflammation-induced

dysfunction to be elucidated.
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CHAPTER 1
LITERATURE REVIEW
INTRODUCTION

Continued increases in growth efficiency of beef cattle will help to secure the
global supply of high-quality protein for the growing population while also increasing
environmental sustainability. The use of growth-enhancing supplements including -
adrenergic agonists (BAA) and steroid implants are imperative to increasing beef cattle
growth efficiency (Hahn, 1999a; Nienaber and Hahn, 2007; Capper and Hayes, 2012).
However, it is critical that the use of growth-enhancing supplements does not increase the
risk to animal health and well-being. The effects of BAA on growth are well-documented
(Moloney et al., 1990; Beermann, 2002), but they could have detrimental effects on
health and well-being, as they stimulate  adrenergic pathways that are part of the
canonical stress response. Furthermore, it is well-documented that heat stress has
detrimental effects on growth, health, and well-being in livestock (Barnes et al., 2019a).
However, it remains unclear if BAA supplementation worsen the effects of heat stress.
Understanding the potential interacting effects of BAA and heat stress on growth, health,
and well-being is imperative to sustainable beef production and is thus among the
primary objectives of our research.

Myoblast function is the rate-limiting step in skeletal muscle growth, and thus
proper myoblast function is imperative to growth efficiency in beef cattle and other
livestock. Androgenic steroid hormones have been shown to increase growth efficiency
(Capper and Hayes, 2012) by increasing myogenesis (Singh et al., 2003), but the

androgenic effects of one specific steroid, androstenedione, have not been detailed. The



effects on muscle growth in females is particularly unclear. In general, however,
hyperandrogenism in women has been reported to have detrimental health effects,
including increasing the risk for obesity, type 2 diabetes, cardiovascular dysfunction, and
infertility (Azziz et al., 2009). Like growth efficiency, reproductive soundness is
necessary for efficient and profitable beef production, and thus understanding the effects
of high concentrations of androstenedione in follicular fluid of beef cows and their
offspring is important. Thus, our objective was to identify the effects of high
androstenedione in follicular fluid of cows on offspring muscle growth and metabolic
efficiency. In this literature review, I begin by discussing the dynamics of skeletal muscle
growth (Section 1), which is a primary output for beef production and a focal point of the
research portions of this thesis. I include a brief overview of the distinct phases of
myogenesis as well as the factors responsible for myogenic regulation. In Section Ill, |
review skeletal muscle glucose metabolism and the role it plays in glucose homeostasis,
which is the most primary substrate involved in skeletal muscle metabolism and growth.
In section IV, | review the physiology of androstenedione and the pathophysiology
associated with high concentrations of androstenedione. In section V, | review the use of
[-adrenergic agonists as skeletal muscle growth stimulants and their potential effects on
animal health and well-being. In section V1, | conclude by reviewing the effects of heat

stress on livestock and its impacts on production efficiency.

Stages & Regulation of Muscle Growth
Skeletal muscle growth occurs in several stages, beginning with proliferation of

the myogenic precursor cells that give rise to muscle stem cells called myoblasts during



embryonic development (Picard et al., 2002). During muscle growth, myoblasts
proliferate to maintain or even increase their population size. Most then exit the cell cycle
and differentiate before fusing to form multinucleated myotubes, but a small subset
become quiescent and are stored as satellite cells to maintain a source of future myoblasts
(Rehfeldt et al., 2000). In the bovine, myoblasts 1st arise in the fetus by 30 days post-
conception and differentiate/fuse into myotubes by 180 days post-conception (Chaze et
al., 2008). These initial myotubes mature to become the primary skeletal muscle fibers
(Rehfeldt et al., 2000). A 2nd myoblast wave will begin proliferating around 90 days post-
conception and differentiate/fuse into secondary muscle fibers (Chaze et al., 2008), which
are smaller in diameter and form around the primary fibers (Rehfeldt et al., 2000). As
fibers form, satellite cells are embedded in the basal lamina surrounding the fibers, where
they will remain in quiescence until needed for future skeletal muscle hypertrophy
(Rehfeldt et al., 2000). In most non-litter bearing mammals, myofiber number is static by
the early 3rd trimester (Chaze et al., 2008). Over the 3rd trimester and early neonatal
stages, myosin heavy chain isoforms associated with specific fiber types (i.e. fast-twitch
vs. slow-twitch, oxidative vs. glycolytic, red vs. white) become present as myotubes
mature into adult fibers (Chaze et al., 2008) by synthesizing proteins specific to muscle
cells (Allen et al., 1979). After birth, prenatal myosin isoforms slowly disappear and
muscle properties exhibit substantially less developmental plasticity (Chaze et al., 2008).
Skeletal muscle development is associated with and in some cases controlled by
expression patterns of transcription factors known as myogenic regulatory factors
(MRFs) (Muroya et al., 2002). Thus, these proteins can be used as biomarkers for specific

stages of myoblast function. Paired box 7 (Pax7) is unique to the myogenic precursor



cells (i.e. myoblasts and satellite cells) that will ultimately donate their nuclei to
myofibers for hypertrophic growth (Kuang et al., 2006). Pax7 is imperative in satellite
cell expansion and may also have a role in satellite cell self-renewal and maintenance
(Gunther et al., 2013). Myogenic factor 5 (Myf5) is expressed in satellite cells, during
activation, and proliferation (Muroya et al., 2002). Furthermore, Myf5 is believed to
activate skeletal muscle satellite cell self-renewal (Kuang et al., 2007). Myoblast
determination protein 1 (MyoD) is lowly expressed compared to Myf5 at the start of
proliferation but transitions into greater expression as proliferation proceeds.
Functionally, MyaoD is the primary driver of differentiation (Muroya et al., 2002).
Myogenin expression begins to increase in response to MyoD initiating the
differentiation process (Muroya et al., 2002). MyoD expression will decrease as
differentiation progresses into the terminal phase, and myogenin expression remains high
throughout terminal differentiation and fusion (Muroya et al., 2002). With skeletal
muscle fiber numbers determined before birth, postnatal growth is facilitated by muscle
fiber hypertrophy (Rehfeldt et al., 2000). This is dependent on the continued activation of
myoblasts and their ability to proliferate, differentiate, and effectively donate their nuclei
to existing muscle fibers via fusion (Rehfeldt et al., 2000). Increased nuclei accumulation
in skeletal muscle fibers increases the capacity for protein synthesis, resulting in greater
skeletal muscle hypertrophic growth (Bruusgaard et al., 2010).

In addition to its more canonical role in locomotion, skeletal muscle plays an
essential role in whole-body protein homeostasis (Wolfe, 2006). In the post-absorptive
state, skeletal muscle releases amino acids into the bloodstream to be utilized by other

tissues (Biolo et al., 1995; Wolfe, 2006). Conversely, dietary amino acid intake



replenishes muscle protein to compensate for the loss during the post-absorptive state
(Wolfe, 2006). Thus, amino acid influx promotes protein synthesis in order to maintain
the balance of protein flux, as protein is constantly broken down (Wolfe, 2006). Proper
maintenance of protein cycling is imperative for the essential functions of brain, heart,

liver, and other tissues (Wolfe, 2006).

Muscle Glucose Metabolism & Its Role in Glucose Homeostasis

Skeletal muscle is a key facilitator of healthy glucose homeostasis. Skeletal
muscle is the most abundant insulin-sensitive mammalian tissue, accounting for 85% of
insulin-stimulated glucose clearance (Carnagarin et al., 2015). Glucose homeostasis is
maintained in large part through precise regulation of muscle tissues by insulin and of
adipose and liver tissues by glucagon (Karlsson and Zierath, 2007). Hyperglycemia
following spikes in glucose absorption is the primary stimulus for the secretion of insulin
by the B-cells within pancreatic islets (Karlsson and Zierath, 2007). Insulin promotes the
clearance of glucose from circulation by stimulating its uptake predominantly into
skeletal muscle but also into liver and other soft tissues. It simultaneously suppresses
hepatic glucose production (Karlsson and Zierath, 2007). The insulin signaling pathways
(Figure 1) contribute to regulation of growth and metabolism in skeletal muscle
(Carnagarin et al., 2015). Insulin binds to its tyrosine kinase receptor on the plasma
membrane of skeletal muscle, activating a signaling cascade that ultimately results in the
translocation of the insulin-sensitive intracellular glucose transporter GLUT 4 to the
plasma membrane, thus facilitating glucose diffusion into the cell (Karlsson and Zierath,

