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ABSTRACT 

 Obesity is a worldwide rising pandemic disease and a great challenge for healthcare 

systems due to its associated disorders. Exercise, drugs and all sorts of dietary plans are typical 

weight loss options that overweight or obese individuals are offered besides more radical 

actions such as bariatric surgery. However, weight loss is sometimes incremental, especially 

at the very start of a regimen and this often leads to the patient dropping-out of a dietary 

program. Hence, there is a need to identify biomarkers that are affected over a 24-hour interval 

and use them to provide quantitative biofeedback on the efficiency of a diet. It would also 

allow personalised optimisation of dieting parameters with relevance to short-term. There is 

also a need to understand the effects of various food on these biomarkers and the mechanisms 

by which the food affects adipose tissue metabolism in particular.  

 This thesis describes for the first time the identification of insulin, lactate and 

angiotensin converting enzyme (ACE) as potential biomarkers of weight loss. Decreased 

levels of these biomarkers were observed in the urine of individuals following a low-calorie 

diet. Importantly, these changes preceded weight loss and were consistently associated with 

weight loss on the long term. Therefore, insulin, lactate and ACE are biomarkers that may be 

used to assess the metabolic benefits of a diet in its early stages where weight loss is not always 

a reliable parameter. 

 Further, nutritional means are identified by which ACE could be regulated and it is 

found that lemon extract (LE) down regulates ACE activity in adipocytes and is associated 

with both improved adipose insulin sensitivity and increased lipid mobilization. 

 In a proof of concept study, biomarkers have been identified that could provide 

molecular feedback on food intake behaviour. 
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CHAPTER ONE 

INTRODUCTION 

 

 

 

 

 

 

This figure illustrates lifestyle factors associated with healthy, overweight or obese 

individuals. The figure was designed using Paint and PowerPoint 2013. 
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1.0 SUMMARY 

 This chapter introduces the topic of this thesis, “Metabolic profiling and identification 

of biomarkers for weight loss” and provides the necessary background information. It also 

discusses the outstanding questions, aims and significance of the thesis and briefly outlines 

the experimental approaches used to address the questions and aims. 

 

1.1 OBESITY BURDEN 

 

A. TRENDS AND PREVALENCE 

 Obesity is a global epidemic with increasing incidence rates in developed and 

developing nations. According to the World Health Organization (WHO), more than 2 billion 

adults (39% of men and 40% of women) are overweight and >600 million of these are obese 

(1).  In 2016, there were 41 million children (≤5 years) who were overweight or obese (2). 

The worldwide prevalence has nearly tripled between 1975 and 2016 (3). Figure 1 shows the 

body mass index (BMI) trend among females and males across the globe. Red, purple and 

pink colour on the map corresponds to BMI ≥25kg/m2. BMI is defined as weight divided by 

the square of height (in kg/m2) and is used to classify normal weight (18.5-24.9 kg/m2), 

overweight (25-29.9 kg/m2), obesity (≥30 kg/m2) and severe obesity (≥40 kg/m2) (4). 

 

Figure 1: Worldwide distribution of body mass index in 2014. Global BMI standardized 

based on age for (a) women and (b) men (1). 



28 
 

 Obesity is associated with several comorbidities such as type 2 diabetes, cardiovascular 

diseases (CVDs), sleep apnoea, metabolic syndrome and certain types of cancer (5, 6). The 

progressive excess mortality is mainly due to vascular diseases and is probably largely causal. 

A study on 900,000 adults from Europe and the United States found that at 30-35 kg/m2 the 

survival rate is decreases by 4 years and at 40-45 kg/m2 the survival decreases by 10 years (7). 

 

B. CAUSES AND RISK FACTORS 

 Obesity is an incredibly complex disease that is associated with metabolic, genetic 

and behavioural deregulations. They should be studied in combination with environmental 

factors, socio-economic status, behaviour, education and genotype to understand obesity. All 

these factors affect caloric intake, thermogenesis, lipid utilization, nutrient turnover and 

differential fat storage in tissues (1, 8). 

 

I. GENETIC FACTORS 

 Inter-individual variations in the body may be due to genetic factors. Body weight is 

effected by genes coding for pro-opiomelanocortin (POMC), melanocortin 4 receptor, leptin 

and leptin receptor (1). Studies on twins and adopted children concluded that 25-50% of the 

risk for obesity is heritable (9).  Genome wide association studies (GWASs) have found >300 

loci associated with obesity. One such locus is fat mass and obesity-associated (FTO), which 

regulates adipocyte browning, thermogenesis and appetite (1, 10, 11). Epigenetic 

modifications are a result of internal (genetics and hormones) and external (diet and physical 

activity) factors. These are reversible and can be passed on to next generations.  For example, 

increased methylation of CpG and repressive histones on the POMC locus lead to lower leptin 

response in humans (9, 12, 13). Maternal obesity is associated with decreased methylation of 

the Znf483 gene, which is linked to adipocyte differentiation and increased risk of obesity in 

children (9, 14, 15).  

 

II. SOCIAL AND ECONOMIC FACTORS 

 The prevalence of obesity is rising in low socioeconomic population (SEP) groups 

showing a relationship between SEP and obesity. In the European Union (EU) alone, 50% of 

obesity in women and 26% of obesity in men is associated with the educational status (16). 

Low SEP are two times more likely to become obese than people of average socioeconomic 
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status (17). For various reasons, mothers from SEP are more often overweight and less likely 

to breastfeed than women from average socioeconomic status. In general, babies that are not 

breastfed and are born to obese mothers are more likely to have poor eating habits and become 

overweight in the later years of their lives (16).  

 

III. OTHER FACTORS 

 Obesity is often believed to be caused by an imbalance between energy intake [EI] 

(calories consumed) and expenditure (calories burnt) (18). This can be caused by a number of 

factors, for example, an increase in intake of high energy yielding food which are high in fat 

(19).  There is also a shift towards overeating due to inexpensive, easily accessible processed 

and large portions (20). Another cause is sedentary life style or low physical activity due to 

the nature of work and increased urbanization (or also culture). The other contribution factors 

to the obesity epidemic are sleep debt, shift work, ambient temperature, drugs, endocrine 

disrupters, ethnicity, age, intrauterine conditions, the microbiome, cigarette smoking and 

infections (21).     

  

C. COST OF OBESITY 

        Obesity imposes a large economic burden on countries, individuals and families. The 

cost of obesity can be broken down into direct and indirect costs. The direct cost is the one 

incurred by the health care systems for treating the condition and associated co-morbidities. 

The global impact of obesity was estimated to be US $2.0 trillion in 2014 (8). In 2015, UK 

spent ~£4.2 billion as a direct cost of obesity (22). The US alones spends 20.6% of its 

healthcare budget on treating obesity and obesity related diseases (23).  

 Indirect costs involve morbidity (presenteeism, absenteeism and disability) and mortality 

costs (premature death). Presenteeism is the cost accrued by the employee who is unable to 

work at full capacity. Absenteeism is the time during which an individual is absent from work 

because of illness. Disability is the absence from work due to physical or mental incapability. 

Premature mortality occurs from obesity related mortality and leads to the lost productivity 

costs. All these factors lead to cost that are incurred by the workplace, government and/or 

families. The UK incurred a total of £27 billion as indirect costs in 2015 (22).  

 Many low and middle income countries are facing a "double burden" of disease. They 

are not only dealing with infectious diseases and under-nutrition but also experiencing a rapid 

increase in non-communicable disease like obesity (24). Children in such countries suffer 
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from an increased risk of under-nutrition while being exposed to high fat, sugar, salt, 

micronutrient deficient food, which are lower in cost and nutrient value (2). 

 

1.2 OBESITY: CLINICAL DEFINITION AND 

MEASUREMENT 

 Obesity is defined as an abnormal deposition of fat that poses a health risk. BMI is 

the most commonly used tool to measure adiposity, however it might not be the most efficient 

method as it is unable to provide information about body fat distribution (25).  For example, 

elderly people lose muscle with age making BMI a less accurate indicator of body fat (26, 27).  

 BMI can be complemented with waist circumference (WC) or biometric impedance 

measurements, which gives a better representation of adiposity distribution to differential fat 

under the skin (subcutaneous) and intra-abdominal (visceral) (28). Visceral adipose tissue 

(VAT) is associated with metabolic risk and cardiovascular diseases (29). According to the 

National Institute for Health and Care Excellence (NICE) guidelines, WC>94cm (male) and 

WC ≥85cm (females) indicates a higher deposition of visceral fat (25). Biometric impedance 

involves estimation of body composition, particularly body fat. The health risk associated with 

obesity is identified by combining these methods, as shown below: 

 

BMI (kg/m
2
) Waist Circumference Risk of co-morbidities 

<18.5 <94 cm (men) 

<85 cm (women) 

Low 

≥94 cm (men) 

≥85 cm (women) 

Average 

18.5-22.9 <94 cm (men) 

<85 cm (women) 

Average 

≥94 cm (men) 

≥85 cm (women) 

Increased 

23-24.9 <94 cm (men) 

<85 cm (women) 

Increased 

≥94 cm (men) 

≥85 cm (women) 

Moderate 

25-29.9 <94 cm (men) Moderate 
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<85 cm (women) 

≥94 cm (men) 

≥85 cm (women) 

Severe 

≥30 <94 cm (men) 

<85 cm (women) 

Severe 

≥94 cm (men) 

≥85 cm (women) 

Very Severe 

 

Table 1: Identification of risk level for obesity related co-morbidities by combining BMI 

and Waist Circumference. Each BMI category in association with waist circumference is 

used to identify the risk for developing obesity related co-morbidities (25).  

 

1.3 OBESITY TREATMENT 

 

A. BARIATRIC SURGERY 

 Use of bariatric surgery is recommended to individuals with BMI >40 kg/m2 or BMI 

>35 kg/m2 with associated comorbidities or BMI 30-35 kg/m2 with type 2 diabetes (30). The 

different options available are shown in Table 2. 

 Type Roux-en-Y Gastric 

Bypass 

Sleeve Gastrectomy Gastric Banding 

Description A transection is made 

in the stomach to create 

a gastric pouch of ~1 

ounce capacity 

A majority of the 

stomach (80%) is 

removed  

 

Involves placement of an 

adjustable gastric band 

just near the proximal 

stomach to constrict the 

size of the gastric pouch 

and outlet.  

Mechanism The pouch limits the 

amount of food eaten 

and is digested further 

down in intestine 

Ghrelin, the appetite 

stimulation hormone 

reduces feeling of 

hunger and gastric 

Limits the food eaten 
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leading to decreased 

absorption of calories 

emptying is 

increased 

Reversible No  No  Yes  

Average 

Weight 

Loss 

60-80% of excess body 

weight is lost over 12-

18 months following 

the surgery 

50-60% of excess 

body weight is lost 

over 2 years 

following the surgery 

40-60% of excess body 

weight is lost over 3-4 

years following the 

surgery 

Risks Bowel obstruction, 

dumping syndrome, 

gallstones, hernias, 

low blood sugar, 

malnutrition, 

perforation and ulcers 

Gastrointestinal 

obstruction, hernias, 

gastroesophageal 

reflux, low blood 

sugar, malnutrition 

and vomiting 

Infection, deep vein 

thrombosis or pulmonary 

embolism and internal 

bleeding 

 

Table 2: Bariatric surgery. Different types of bariatric surgeries available (30-32).  

 Although surgeries lead to up to 60% average weight loss, the patients need to be on 

a lifelong controlled diet and regular exercise (32). Thus, there is a need for identification of 

other alternatives to treat obesity.    

 

B. DRUGS AND FUNCTIONAL FOOD 

 The use of drugs is limited to people who have a BMI >30 kg/m2 or >27 kg/m2 with 

associated morbidities (33). They do not cure obesity but help with weight loss. These drugs 

are approved in conjunction with diet and exercise [discussed later] (34, 35). Before 

prescribing the medication, the health professional will consider: 

i. likely benefits of weight loss 

ii. possible side effects 

iii. current health issues  

iv. medications 

v. family's medical history 

vi. cost 

 The medication needs to be reconsidered if no weight is lost after 12 weeks (36). 

Orlistat is the only drug approved for use in the UK. The different types of FDA-approved 

drugs available are shown in Table 3. 
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Drug: Orlistat 

Mechanism of Action Fat absorption/ reduction 

Average Weight Loss (%) 4 

Approved use Long term oral use 

Adverse Effects Malabsorption, Vitamin deficiencies, Oily 

stools and GI discomfort 

Receptor Molecular Pathway Lipase inhibitor 

Target Tissue Bowel/gut 

Drug: Lorcaserin 

Mechanism of Action Appetite suppressant 

Average Weight Loss (%) 3 

Approved use Long term oral use 

Adverse Effects Dizziness, Headaches, GI disturbances, 

Insomnia and Fatigue 

Receptor Molecular Pathway 5HT2c receptor agonist 

Target Tissue Hypothalamus and brainstem 

Drug: Liraglutide 

Mechanism of Action Appetite suppressant 

Average Weight Loss (%) 6 

Approved use Long term use by subcutaneous injection 

Adverse Effects GI discomfort, Hypoglycaemia Nausea and 

Diarrhoea 

Receptor Molecular Pathway GLP-1 receptor agonist 

Target Tissue Hypothalamus 

Drug: Phentermine/ topiramate 

Mechanism of Action Appetite suppressant 

Average Weight Loss (%) 9 

Approved use Long term oral use 

Adverse Effects Neurological dysfunction, Constipation, 

Dizziness, Headaches and Insomnia 

Receptor Molecular Pathway Release of serotonin, norepinephrine, and 

dopamine; inhibition of ionic conductance 
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and carbonic anhydrase; inhibition of 

voltage-gated sodium channels 

Target Tissue Hypothalamus and brainstem 

Drug: Bupropion/ naltrexone 

Mechanism of Action Appetite suppressant, Increased satiety 

perception 

Average Weight Loss (%) 6 

Approved use Long term oral use 

Adverse Effects Depression, Nausea/vomiting, Headaches, 

Dizziness and Cardiovascular impairment 

Receptor Molecular Pathway Dopamine and norepinephrine reuptake 

inhibitor; opioid receptor blocker and 

POMC activation 

Target Tissue Hypothalamus 

 

Table 3: FDA approved drugs for treatment of obesity. The table discusses the different drugs 

available for obesity treatment along with their mechanism of action, effects, target tissues 

and average weight loss. Adapted from (35).  

 These drugs have several side effects ranging from diarrhoea, oily stools, headache, 

insomnia, nausea, vomiting, increased blood pressure, tachycardia, myocardial infraction to 

stroke. Therefore, efforts have been made to find other active compounds to treat obesity.  

 Several bioactive compounds found in plants can also be used for the treatment of 

obesity. Functional foods are defined as dietary components that have a health benefit beyond 

the provision of basic nutrition (37). Food components can modulate hunger, satiety and 

energy expenditure (EE). In particular, benefits of plant bioactive compounds on metabolism 

have become a focus of multidisciplinary studies; and several plant extracts are studied in the 

prevention of obesity (38). Based on their nutritional value, such extracts have physiological 

benefits and reduce the risk of chronic diseases (39, 40). Phenols, anthocyanins and tannins, 

found in tea, berries and peas, have been demonstrated to decrease lipids, through the 

inhibition of lipase activity (41). Starch with high glycaemic index is associated with weight 

gain (42, 43) by causing increased insulin secretion (44). Diets rich in protein from vegetables 

(e.g. legumes) induce satiety and suppress intake and appetite (45, 46) by increasing peptide 

tyrosine tyrosine (PYY) levels and decreasing ghrelin hormone (47, 48).  Raspberries decrease 

serum glucose, insulin levels, leptin and body weight in mice fed high fat diet (49). Mango 

peel and bilberry extract inhibit adipocyte differentiation in the 3T3-L1 adipocyte cellular 
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model (50, 51). Citrus fruit species are associated with decreased inflammation and reduced 

oxidative stress markers in humans (52). Other studies have found bergamot, grapefruit and 

orange juice to be associated with decreased total cholesterol, low density lipoprotein (LDL) 

and glucose concentration in humans (53-55). Similar results have also been found in rats after 

lemon juice administration (56).  

 To summarize, the different plant-based compounds that are prescribed or used to 

reduce weight gain are shown in Table 4.  

 

Appetite 

Molecule Mechanism 

Saponins (gingenoside)  Satiety 

Fibre and polysaccharides (diverse) 

Terpenes (geniposide) 

Steroidal glycosides (P57A53) 

Polyphenols (proantho-cyanidins) 

Proteins (diverse) 

Energy Expenditure 

Molecule Mechanism 

Alkaloids (capsaicin)  Thermogenesis 

Flavonoids (diverse)  

Polyphenols (catechin) 

Fatty acids (MUFA, PUFA, ...) Beta-Oxidation Lipolysis/anti-lipogenesis 

Curcumin  Induction of brown fat-like phenotype 

Metabolism 

Molecule Mechanism 

Saponins (astragaloside IV, gingenoside)  Lipase inhibition, fat depletion 

Fibre  Lipid uptake reduction; Reduction of energy 

dietary value; Secretion of anorectic 

peptides 

Pseudo-tetrasaccharide, acarbose  Amylase inhibitor 

Polysaccharides (diverse)  Fat depletion 

Alkaloids (berberine betaine, piperine, 

capsaicin)  

Browning Fat depletion 
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Polyphenols (resveratrol, 

proanthocyanidins, epicatechin, diverse 

from tea)  

Adipogenesis inhibition; Fat depletion and 

absorption Lipase/amylase inhibition 

Table 4: Bioactive compounds currently prescribed or investigated to treat obesity (35). The 

table describes the different compounds, their source and mechanism of action. 

 

C. EXERCISE  

Physical activity is recommended for weight loss and management of obesity. 

Physical activity for around 1 hour per day is recommended to maintain the lost weight (1, 

57). Physical activity is defined as a bodily movement that require energy expenditure (58). 

Apart from weight loss, it also helps lowering the risk of diabetes and CVDs. However, studies 

with people doing exercise intervention have also seen that it yields smaller changes than what 

could be predicted (59). This is due, at least partly, to the fact that energy expenditure has a 

complex relationship with energy intake, exercise, food type, composition and hormones (60). 

Sex, age, BMI, ethnic background and genetics also play a role in a person’s response to 

exercise (60, 61).  

 

D. DIETS  

 Different dietary plans are widely available. They include caloric restriction (CR), the 

Atkins Diet, low fat diet, crash diet, Mediterranean diet, intermittent fasting and the ketogenic 

diet to name some of the most popular. Several of these diets have overlapping principles. For 

example, the Atkins diet is a low carbohydrate, low calorie diet focusing on maintaining of 

low insulin levels in the body (62). In the low fat diet, caloric consumption is achieved based 

on the principle that 1 gram of fat contains more than twice the calories than that of 1 gram of 

carbohydrates (63).  The most commonly followed diets revolve around CR or even complete 

fasting. CR diets typically reduce daily energy intake by 30-50% (64). It can be difficult to 

follow on the long term, as it requires continuous tracking of energy intake (65). Another 

available approach is intermittent fasting (IF). It involves restriction of energy intake for 1-3 

days in a week (66) by introducing short to medium term fasting (8 to 16 hours) to 1 -3 days 

a week. For the remaining days, one is allowed ad-libitum food consumption. In mice, IF has 

shown a positive effect on prolonging life span, glucose tolerance and insulin sensitivity (67, 

68). Alternate day fasting (ADF) is a type of IF involving one day of fasting (energy restriction 
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day) followed by a day where ad libitum food consumption is allowed, alternating fasting and 

non-fasting days (66). Decreases in glucose and insulin concentrations have been observed in 

all types of diets and are modulated by the number of fasting days (56). All these diets induce 

weight loss to various extents. However, weight maintenance is very variable amongst the 

diets, and largely depends on the individual’s adherence to the diet (65).  

 Besides food composition, another factor amenable to behaviour change is meal 

timing. Different studies have found evidence supporting that consuming a regular breakfast 

is associated with a lower body weight (69-72). There is also a plethora of metabolic studies 

that support that eating breakfast is preferable over eating dinner due to a phenomenon referred 

to as “afternoon diabetes”, in which insulin sensitivity is higher early during the day than it is 

on the evening (73-75). A crossover study comparing days with “breakfast and lunch” versus 

days with “lunch only” showed decreased clock gene expression in type 2 diabetic subjects in 

comparison to healthy individuals, while skipping of breakfast showed an altered response for 

clock gene profiles in both groups (76). On the other hand several studies indicate that body 

weight and food intake in individuals eating breakfast were relatively similar than those who 

omitted this meal (77-80). Gill and Panda (81) have demonstrated the extent to which adults 

display an irregular daily and weekly rhythm of eating and fasting, could be manoeuvred to 

obtain desirable health benefits. It might be possible to cater to such personal preferences, at 

least to some extent, without compromising weight loss success. 

 

E. SUPPORT NETWORKS  

 Many studies have shown that dieting is more successful when supported by social 

interactions, such exercising with a friend or dieting as a group (82, 83). A support network is 

a platform (in the real world and/or electronic) where people trying to lose weight come 

together sharing their stories, challenges, victories, feelings and provide support to others to 

help achieve their goals. People also share their food recipes, diet plan and physical activity 

routine on such networks. There are different types of networks available like Weight watchers 

and Slimming World. They allow people to remain enthusiastic, motivated, set goals, track 

progress and engaged in the weight loss plan being followed by them (62).  
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F. TECHNOLOGY AND APPS 

 With the explosion of social network and social media, technological support has 

dramatically increased in the last decade. Technological support available to help with weight 

loss includes diet trackers and activity monitors. Recording of eating patterns has been 

recognized as an effective step in managing weight gain / weight loss (84, 85). While the 

traditional paper version of the commonly used dietary questionnaire is considered tiring (86), 

there are numerous computer-assisted versions (87, 88) as well as apps and websites available 

for personal tracking of food intake (89, 90). However, regardless of interface, mis-reporting 

of food intake is a well-documented problem (86, 91), as it depends on self-awareness, honesty 

and motivation of the user (85). Often, unconscious bias of self-observation leads to under-

realization of food eaten (92).  

Energy expenditure on the other hand can potentially be tracked without bias using 

activity monitors, but they do not provide a direct link to weight loss. They may show the 

number of steps walked or run, calories consumed and/or heartbeat per minute but no direct 

information on weight loss (65). Even if a device that accurately measures caloric intake and 

expenditure was widely available, the information may not be sufficient to motivate a user to 

make changes in their behaviour that would result in weight loss.  Also, these devices are not 

100% tailored to an individual. They only give an estimate of the calories burnt based on 

weight and height, sometimes including gender and age, but they do not include any 

information on fat distribution or hormonal patterns. This information is therefore generic and 

there is a need for identification of parameters (such as biomarkers) to provide tailored 

feedback during dieting. This may palliate the fact that even when meticulously keeping 

records of food intake, individuals still find it challenging to lose weight (93). This is because 

the relationship between caloric intake and weight loss is not always linear (94). As a result, 

current approaches to lose weight loss generally do not work well (95), and the weight loss 

market is missing a device that is more directly coupled to the desired outcome, weight loss. 

 

1.4 MOLECULAR INFORMATION AND WEIGHT LOSS 

 

A. MARKERS OF ADIPOSITY 

 Quantitative biomarkers of weight loss do not exist yet, but biomarkers have been 

considered for a number of related areas. For example, urinary metabolic markers for 
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cardiovascular disease, blood pressure and adiposity have been identified (96, 97). Several 

metabolomics studies involving untargeted proton (1H) nuclear magnetic resonance 

spectroscopy (NMR) and ion exchange chromatography (IEC) on obese human and mice urine 

samples have identified metabolites associated with BMI and adiposity (96, 98), summarized 

in Figure 2. 

 

 

Figure 2: Urinary metabolic signatures of BMI and Adiposity in urine. The image was 

designed using Paint and PowerPoint 2013. The information for the metabolic signatures was 

obtained from (99).  

 One of these biomarkers is lactate, which has been studied as a potential marker for 

biofeedback in the thesis. Lactate is the by-product of glucose utilization by the organs and 

tissues during hypoxia or glycolysis (100). It helps to modulate oxygen release in hypoxic 

tissues and acts as a substrate for gluconeogenesis (101, 102). It also acts as a substrate for 

lipogenesis in liver and other tissues (103-105). Release of lactate in adipose tissue is often 

attributed to be a result of hypoxia, acidosis and stress (106, 107). Lactate production is known 

to increase in vitro in large adipocytes from obese animals and can reach up to 50-70% of 

glucose metabolized (108). Indeed, baseline lactate concentrations are higher in obese subjects 

as compared to lean subjects (109). This is due to the increased production of lactate as a result 

of increased adipose cell size. Since adipose cells in overweight and obese people are larger, 

there is constriction of blood vessels in adipose tissues. This restriction creates a hypoxic 

environment in the tissue leading to increased production of lactate (110-112). 
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B. MARKERS OF LONG-TERM WEIGHT LOSS 

 Several blood and physical markers are used to measure weight loss. It can involve 

measurement of hip/waist ratio, BMI, body fat and/or weight for physical markers and high-

density lipoprotein (HDL), low-density lipoprotein (LDL), fasting glucose in serum. In most 

diets the weight lost is rapidly regained after the end of the diet (the “yo-yo” effect), therefore 

investigating possibilities to use molecular information to predict whether the weight is kept 

off on a long-term is an interesting question. To find a marker for long-term weight loss, a 

panel of biomarkers was tested before and after an eight-week diet, and weight loss 

maintenance was determined after six months (96). In this study, angiotensin converting 

enzyme (ACE) is shown (amongst the extensive blood profiling for diverse protein and steroid 

hormones) to be the only potential predictor for sustained weight loss (113). At the end of the 

eight-week intervention, individuals with weight loss displayed decreased ACE concentration 

(~12%) (113), which supports the previously reported decreased ACE activity in overweight 

/ obese adults after dieting (114, 115). Building on this finding, ACE was investigated as a 

potential marker for biofeedback on a 24-hour interval. 

 ACE is a zinc metallopeptidase enzyme involved in the conversion of Angiotensin 

(Ang) I to Angiotensin II (113, 116). Ang I is obtained by cleavage of Angiotensinogen (AGT) 

with the help of renin. Ang II is well known for its role in increased blood pressure and 

retention of salt and water (116). Ang II is further degraded into the amino acid peptide 

fragment Ang (1-7) by ACE 1, a homologue of ACE (117). Like ACE, ACE 1 is also a 

membrane protein and is known to shed at its carboxy-terminus in vitro to yield soluble ACE 

1 (118). This process is catalysed by the metalloprotease ADAM 17 (119). Detection of ACE 

usually refers to detection of circulating soluble ACE 1, which has been observed in human 

urine using an activity assay based on fluorescence quenching (119). The circulating ACE 

lacks the transmembrane and cytosolic domains and has a molecular weight of 65 kDa. Like 

most enzymes, ACE does not act alone but in complex inter-relationships with numerous other 

regulatory agents. Animal models have shown increased adipose specific angiotensin (AGT) 

expression, secretion is involved in adipose tissue development (120). 

 The renin angiotensin system (RAS) is one of the most important systems that regulate 

cardiovascular and fluid homeostasis (121).  Along with conversion of Ang I to II, ACE is 

also involved in breakdown of bradykinin into inactive products (122). Inhibition of ACE 

lowers Ang II levels leading to decreased sympathetic stimulation, vasoconstriction and 

platelet aggregation (123). Lower Ang II levels also help in maintaining cell ß function by 

decreasing production of aldosterone (124). Increased bradykinin levels increase vasodilation, 

improve glucose uptake leading to improved insulin sensitivity (125-128). These benefits are 
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observed in people taking ACE inhibitors with a risk of developing cardiovascular diseases. 

A study on 3577 individuals taking Ramipril (an ACE inhibitor) showed a reduced risk of 

myocardial infarction, stroke, or cardiovascular death by 25% after 4.5 years (129).  

 

Figure 3: Conversion of Angiotensin I to Angiotensin II by ACE and functions of 

Angiotensin II. 

 

C. MARKERS OF NUTRITIONAL INTAKE 

 Several clinical studies have demonstrated an effect of nutrients and lifestyle on the 

prevention of metabolic disease and CVDs. Thus, identification of markers for different foods 

can help improve health but also improve compliance to the diet plan (130). Double labelled 

water (water with isotopes of deuterium and oxygen 18) is used to measure energy expenditure 

(EE) in an individual (131). Urine samples are collected to determine the rate of disappearance 

of each isotope form the body via mass spectrometry. This disappearance rate is further used 

to indirectly calculate carbon dioxide production to estimate total EE. EE is lower in obese 

and overweight population in comparison to healthy individuals. To be in an energy balance, 

energy intake (EI) should be equal to EE. Increased EE is associated with underreporting of 

food intake. Urine nitrogen is used as a biomarker for protein intake through dietary means 

(132). Constant dietary intake over longer periods are also associated with daily nitrogen 

intake and excretion (132). Hydrocarbons in breath are used as a means to measure lipid 

peroxidation. Peroxidation of n-6 and n-3 fatty acid release pentane and ethane respectively 

in to breath (133). Supplementation with β carotene reduces breath pentane levels significantly 

(134).  

 

 Markers for α and β carotene, lycopene and β-cryptoxanthin are correlated with serum 

cholesterol levels (135). Biomarkers for different foods include NMNA, a niacin-related 
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(vitamin B3) metabolite marker for coffee drinking (136), proline betaine for citrus fruit 

consumption (137) and O-acetyl carnitine for red meat intake (138). Dietary iron and zinc 

intakes are positively associated with CRP, an inflammatory marker (132, 139).  

 

 Although not a direct biomarker for nutritional intake, it is well known that in non-

diabetic individuals insulin concentrations vary dramatically with food intake. Previous work 

from our team has investigated insulin as a potential marker for biofeedback as a proof of 

concept (140) and we have compared lactate and ACE biomarker studies with the insulin 

results in this thesis (see chapter 3 and 5) (65). Insulin is a small peptide hormone, whose 

secretion is stimulated by increased levels of glucose in blood (141). Insulin regulates blood 

glucose homeostasis by increasing glucose uptake in muscles and fat cells and inhibits its 

production in liver (141). It varies with food intake in terms of meal composition, timing and 

quantity (74, 75, 142). Moreover, its concentration and action are under circadian regulation, 

giving rise to “afternoon diabetes” (73-75). This finding has been used to suggest that diet 

plans should incorporate meal timing (143) with the breakfast meal being the largest meal as 

opposed to the most common behaviour of highest food consumption in the evening (81, 143). 

Indeed, it is shown that a high-carbohydrate breakfast promotes greater weight loss than a diet 

low in carbohydrates by reducing food-cravings and increased satiety (144-146).  

 

D. MARKERS OF HUNGER AND SATIETY  

 Appetite can be expressed in terms of physical behaviour, peripheral physiology and 

central nervous system functions (147). People stop eating due to absence of hunger or because 

they feel full (148). Diet induced thermogenesis (DIT) is the amount of energy used above the 

basal rate during the breakdown of food in the body. DIT and satiety are positively correlated 

and DIT decreases hunger (149-151). Ghrelin is found to be associated with hunger. Infusion 

of ghrelin in healthy subjects lead to enhanced appetite and energy intake levels (152). Plasma 

concentration for ghrelin decreases after administration of glucose (153) and carbohydrates 

(154) but there is no suppression after high fat administrations (154, 155). Insulin and glucose 

are therefore indirectly related to satiety. There are also several biomarkers that are associated 

with the neurons involved in maintaining energy balance and homeostasis. Neuropeptide Y 

and agouti related protein (AgRP) are located in the hypothalamus and their expression is 

activated in conditions of fasting, negative energy balance and they increase the hunger level 

(9). Pro-opiomelanocortin (POMC) neurons release anorexic neuropeptide that reduces food 

intake (156). It is a target for certain anorexic drugs while leptin activates POMC neurons 

(157).  
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E. MARKERS OF INFLAMMATION 

 Normal adipose tissue expresses anti and pro inflammatory regulators to allow 

functioning of adipose tissue(158). Interleukin (IL) 4 is a major anti-inflammatory regulator 

that controls the expression of T helper (TH) type 2 cells, regulatory T cells (Tregs) and 

macrophages. Macrophage phenotype is divided into groups namely, classically activated 

macrophages (M1) and alternatively activated macrophages (M2). Expression of M2 

macrophages by IL4 promotes systemic insulin sensitivity in lean mice (159, 160). Many pro-

inflammatory marker levels increase in obese subjects. A cross-sectional meta-study has found 

association between C-reactive protein (CRP), a marker for systemic inflammation, and free 

fat mass (161-163). Increased levels of CRP and triglyceride (TG) are found in overweight 

women in comparison to normal weight women (164). With nutrition overload, lipid 

activation and increased energy storage, there is a switch from M2 to M1 (158). Adipocytes 

secrete adipokines such as leptin and adiponectin, which have opposing effects on immune 

cell functions. Leptin has pro-inflammatory effects and increases with increased nutrition 

uptake and stimulates production of IL 1, 6 and 12, and tumour necrosis factor α (TNFα), 

while adiponectin has anti-inflammatory effects and decreases with increase in adiposity 

(158). The overexpressed pro-inflammatory cytokines is found in obese individuals and one 

third of total circulating concentrations of IL-6 originate from adipose tissue (165). Levels of 

IL 6 decreases after 12 months of bariatric surgery in morbidly obese patients (166).  

 The increased energy substrates in obesity leads to increased reactive oxygen species 

(ROS) signalling and mitochondrial dysfunction (167). This is also associated with decreased 

insulin sensitivity (167).  c‐Jun N‐terminal kinases (JNK) and nuclear factor kappa-light-

chain-enhancer of activated B cells (NF‐κB) are regulated by ROS and are associated with 

obesity induced insulin resistance (168). JNK is involved in insulin secretion in beta cells and 

insulin sensitivity in liver and muscle cells (169).  NF‐κB is part of pro-inflammatory 

signalling pathway. In the presence of high ROS levels, JNK and NF‐κB are activated and 

their activation has shown to alter insulin sensitivity (170).   

 

1.5 MODELS OF OBESITY 

 Several animal and cellular models are used to better understand the disease and find 

treatments of obesity in humans. Different animal models of obesity are listed in Table 4, and 

different cellular models of obesity are listed in Table 5. 



44 
 

Model name Mutation 

ob/ob mouse leptin deficiency 

db/db mouse leptin receptor 

s/s mouse disrupted STAT3 signal of leptin receptor 

Zucker rat mutated leptin receptor 

Koletsky rat mutated leptin receptor (null mutation) 

ZDF rat mutated leptin receptor (fa/fa) 

Wistar Kyoto fatty rat Zucker /fa/fa x Wistar-Kyoto 

 

Table 5: Examples of animal models of obesity, adapted from (171).  

 

Model name Cell Type 

3T3‐L1 Pre-adipose cells 

3T3‐F442A Pre-adipose cells 

Ob17 Pre-adipose cells 

C3H10T1/2 Stem cells 

ES cells Stem cells 

DFAT cells Pluripotent cells 

 

Table 6: Cellular models of obesity, adapted from (172).  

 

A. 3T3-L1 

 3T3-L1 adipocytes are the most commonly used in vitro model to study fat cell 

biology, adipogenesis, metabolism and action of hormones on adipose tissue function (172). 

3T3L1 cells were obtained from mouse embryos. L1 is a continuous sub-strain of 3T3 and 

was originally deposited by Massachusetts Institute of Technology (MIT) in 1974. It was 

deposited without the passage number information and a seed stock with “unknown+4” 

passage number was developed (172). When undifferentiated, these cells have a fibroblast like 

morphology and are adherent in nature. The pre-adipocytes stage of the cells is maintained by 

keeping the confluency up to 70%. The induction of lipid formation occurs by exposure to 

insulin, dexamethasone and the phosphodiesterase inhibitor 3-isobutyl methyl xanthine 

(IBMX). Finally, after 4 days of exposure, the cells differentiate and there is accumulation of 
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lipids in the cells.  Adipocyte differentiation can also be increased in the presence of  

rosiglitazone, an agonist of the peroxisome proliferative activator receptor Ɣ (173). However, 

no significant difference in lipid accumulation was observed between cells treated or not with 

rosiglitazone and therefore rosiglitazone has not been used in any of the experiments in this 

thesis.   

 

Figure 4: Morphology of undifferentiated 3T3-L1 pre-adipocytes (left) and fully 

differentiated adipocytes (right). Typical images were taken using EVOS XL Core.  

 

1.6 OPEN QUESTIONS, THESIS GOALS AND 

RESEARCH PROGRAM  

 

A. OUTSTANDING QUESTIONS  

 There is a range of approaches available to lose weight from surgical or drug-based 

interventions to different diet programs. Weight loss plans involve following a certain diet 

regime and/or monitoring net caloric intake. To date, no dietary intervention combines 

molecular measurements with digital technology tracking life-style parameters such as food 

intake or exercise, despite the availability of many food tracker apps and websites.  

 All weight loss programs give a broad description of the diet plan, which is often 

arbitrary. In addition, every individual has a different metabolism and responds differently to 

a diet plan (65). Thus, personalised optimisation of the diet plan needs to be understood to 

determine how diet parameters can be adapted to an individual’s metabolism. Therefore, there 

is an unmet need to identify markers that could be correlated with life style and dietary habits. 
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Every molecule is part of a complex network and with many other metabolic agents, substrates 

and regulatory mechanisms so multiple markers might be identified.  

 While most diets are conducted on a long-term (e.g. several weeks), very little work 

has focused on a short-term modulation of biomarkers in response to a diet. Therefore, this 

thesis is centred on 24-hour intervals to quantitatively investigate different dietary conditions, 

to allow the optimization of dieting behaviours in the short-term.  

 Previous work in my primary supervisor’s lab showed the potential for quantifying 

insulin values in urine and potentially using that information to provide feedback to 

participants on how well they are doing with respect to their weight loss goal (140). However, 

insulin values alone may not replace or even help interpret a person’s metabolic profile or 

state, as it interacts with a large number of other metabolic agents, substrates and regulatory 

mechanisms. Thus, two additional molecules, lactate and ACE, have been chosen along with 

insulin, to investigate in detail how meal composition and timing may be optimized to assist 

dieting efforts. Individuals may use lactate and ACE urine levels as a quantitative, molecular 

guide to provide feedback even before weight loss is observed. Insulin levels in urine samples 

were quantified as part of the previous work but their relation with lactate and ACE has been 

studied as a part of this thesis. Thus, the major questions addressed in the thesis are whether 

or not lactate and/or ACE could be relevant biomarkers for weight loss to give feedback even 

before weight loss is observed and in the case of ACE, what the mechanisms underlying the 

connection to weight loss are.  

 

B. AIMS OF THE THESIS  

 This thesis aims at identifying biomarkers associated with weight loss that may prove 

useful for personalised feedback. It also involves exploration of lemon (a functional food) 

effects on adipocyte differentiation, and the role that ACE plays in weight loss associated 

with a lemon juice diet.  

 The thesis is divided into clinical and cellular studies, as outlined below. Lastly, a 

pilot clinical study on the lemon juice diet is described.  

 

I. CLINICAL STUDY 

 A clinical study was designed to test the proof of concept of using several candidate 

biomarkers for potential biofeedback to people undergoing a weight loss intervention by 

demonstrating their correlation with weight loss.  
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1) Identification of molecular markers (lactate, insulin and ACE) for short-term 

biofeedback (24 hour periods) [Chapter 3 and 5] (65, 174) 

2) What are the effects of different meal plan options on weight loss and molecular 

biomarkers? [Chapter 3 and 4] (65) 

3) What are the correlations of lactate, insulin and ACE levels with weight loss? 

[Chapter 3 and 5] (65, 174) 

4) Identification of new biomarkers by NMR [Chapter 6] 

 

II. CELLULAR STUDY 

 Lemon helps in losing weight (175) and might act as an ACE inhibitor (56). In the 

clinical study (see section I), ACE levels correlated with weight loss in overweight and obese 

population. Thus, cellular studies were conducted to establish the relationship between 

lemon and ACE expression, insulin sensitivity and fat accumulation in 3T3-L1 adipocytes. 

 

5) What are the effects of lemon extract on 3T3-L1 adipocytes differentiation? 

[Chapter 7] 

6) What are the different components in lemon extract (LE) that may be responsible 

for the effects observed? [Chapter 7] 

 

III. LEMON JUICE STUDY 

 In the cellular study, it was established that LE is associated with lipid breakdown in 

3T3 L1 adipocytes. To investigate the relevance of this observation in vivo, a pilot study was 

conducted to address the following question: 

7) What are the effects of lemon juice (LJ) on weight loss in humans on a short term? 

[Chapter 8] 
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C. OUTLINE OF EXPERIMENTAL APPROACHES 

 

I. CLINICAL STUDY 

  Ethics approval for the clinical studies was obtained from the Warwick 

Medical School Ethics committee BSREC (Appendix I and II).  

1) To quantify lactate, fluorescence based measurements were conducted involving 

conversion of lactate into pyruvate. ACE quantification was carried out using an 

ELISA kit from R&D Systems, Biotechne, UK. 

2) Statistical analyses were performed using IBM SPSS Statistics 24 and R. 

Associations between different variables were calculated using bivariate Pearson 

Coefficient analyses. Nonparametric Mann-Whitney U test was performed in 

some cases as indicated. One-way analysis of variance (ANOVA) was used to 

compare control groups with other groups. 

3) Different meal plan groups were studied using Nonparametric Mann-Whitney U 

and ANOVA tests. 

4) 1D NOESY and J-resolved (JRES) nuclear magnetic resonance (NMR) spectra 

were collected with the goal of identifying new biomarkers. The data was 

analysed using metabohunter software.   

 

II. CELLULAR STUDY 

5) To understand the effects of lemon extracts (LE) on ACE mRNA expression, 

Taqman RTPCR was conducted, and effects on ACE protein expression were 

studied via Western blot analysis. The relationship between insulin sensitivity and 

LE was established by studying protein expression of known signalling molecules 

in the insulin pathway via Western blot.  Furthermore, the effects of LE on 

lipolysis was established through Western blots, free glycerol assays and imaging 

techniques.    

6) HPLC-MS was performed to separate and identify different components in LE. 
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III. LEMON JUICE STUDY 

7) In a pilot study, the effects of lemon juice supplementation on ACE levels were 

investigated. Association between ACE levels and weight loss was studied. 

 

D. CONTRIBUTIONS OF THIS THESIS 

 

I. CLINICAL STUDY 

1) Conclusive evidence was presented for the novel concept of biomarkers for 

weight loss (as opposed to obesity and other long-term consequences of life-

style).  

2) It was found that skipping a meal in a day regardless of which one, while also 

recording all food and exercise events and collecting urine samples for subsequent 

molecular profiling, resulted in consistent weight loss, in comparison to control 

days in which any number of meals was allowed. 

3) With a meal-skipping diet, it was shown that insulin, ACE and lactate 

concentrations in urine correlate with weight loss, making these molecules 

potential candidates for quantitative feedback on whether dieting is working or 

not to the people trying to control their weight.   

4) More than 200 different compounds were identified in urine through NMR. The 

number of compounds identified varied with levels of biomarkers at the end of a 

dieting and a control day. 

 

II. CELLULAR STUDY 

5) Cellular studies demonstrated a connection between LE and ACE regulation in 

adipocytes. LE down regulated ACE activity and RNA expression in adipocytes. 

This was also associated with improved adipose insulin sensitivity and increased 

lipid mobilization.  

6) HPLC-MS allowed identification of the different compounds in LE, which was 

used in cellular studies. Citric acid and a mix of flavonoids and limonoids were 

identified in the extracts. 
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III. LEMON JUICE STUDY 

7) The pilot study with LJ in humans supported the previous findings that LJ has an 

effect on weight loss. This loss of weight was sustained for several days even 

when going back to a normal feeding routine. 

 

E. SIGNIFICANCE 

 A contribution to understanding the molecular mechanism(s) of the metabolic 

marker(s) identified during this research may have implications for obesity management and 

weight regain. The current technologies only allow keeping a record of activities such as 

exercise and food intake. The latter usually rely on self-reporting, which is prone to under-

realization of the amount of food consumed (176). Weight change during dieting is usually 

not sufficiently immediate to keep participants motivated. Thus, identification of changes in 

metabolic markers over 24-hour periods may provide a better understanding on how the body 

responds to certain interventions. The personalized molecular information may potentially 

help in understanding daily nutritional requirements and help dieters plan their activities 

(e.g.: food intake, exercise) accordingly. This may help reduce the obesity’s adverse effects 

on general health.  
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CHAPTER TWO 

EXPERIMENTAL PROCEDURES 

 

2.0 LIST OF SOLUTIONS  

The solutions listed below were used during the cellular experiments to conduct cell culture, 

western blot and cell staining.  

Name Description Source 

Routine 

Medium 

DMEM/F12+ 10% heat inactivated 

NCS 

From University of 

Warwick media 

preparation service (MPS) 

 

PenStrep 

Solution 

10000 I.U. /mL / 10000 μg/mL 

Penicillin/Streptomycin 

MPS 

Differentiation 

Medium 

DMEM/F12+ 10% heat inactivated 

FBS, 1 µg/mL Insulin, 250 nM 

Dexamethasone, 0.5 mM 3-isobutyl-

1-methylxanthine 

MPS 

Maintenance 

Medium 

DMEM/F12+ 10% FBS, 1 µg/mL 

Insulin 

MPS 

PBS 8 g/L NaCl, 0.2 g/L KCl, 1.44g/L 

Na2HPO4, 0.24 g/L KH2PO4, 

Adjusted to pH 7.4 with HCl  

MPS 

Trypsin/EDTA 

in HBSS 

Ca, -Mg: 8 g/L NaCl, 0.4 g/L KCl, 

48 mg/L Na2HPO4, 1 g/L glucose, 

60 mg/L KH2PO4, Phenol red to 1 

part in 100,000, 2.5 g/L Trypsin 

(1:250), 0.38 g/L EDTA, 0.35 g/L 

NaHCO3  

MPS 
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Freezing 

medium 

DMEM+10% DMSO 

 

MPS 

1.5M Tris-HCl 

(pH 8.8) 

Tris base 0.18 g/mL, adjust pH with 

6N HCl 

MPS 

0.5M Tris-HCl 

(pH 6.8) 

Tris base 0.06 g/mL, adjust pH with 

6N HCl 

MPS 

Sample Buffer 0.5M Tris-HCl (ph6.8), 10% SDS, 

25% glycerol, 1% bromophenol 

blue, 0.4mL β-mercaptoethanol 

Sigma-Aldrich 

Running 

Buffer 

25mM Tris, 190 mM glycine, 0.1% 

SDS, pH 8.8 

MPS 

Transfer 

Buffer 

25mM Tris, 190 mM glycine, 20% 

methanol 

MPS 

TBST 50mM Tris, 150mM NaCl, 0.1% 

Tween-20, Adjust pH to 7.4 with HCl 

 

MPS 

Oil Red O Stock 

Solution 

3 mg/mL Oil Red O in 100% 

isopropanol 

Sigma Aldrich 

RIPA 150 mM sodium chloride, 1.0% NP-40 

or Triton X-100, 0.5% sodium 

deoxycholate, 0.1% SDS, 50 mM Tris, 

pH 7.4  

Sigma Aldrich 

Glycine-

hydrazine buffer 

0.6 M 398 glycine and 0.5 M hydrazine, 

pH 9.2 

Sigma Aldrich 

Washing Buffer 0.05% Tween® 20 in PBS, pH 7.2-7.4 MPS 

Reagent Diluent 1% BSA in PBS, pH 7.2-7.4, 0.2 μm 

filtered 

MPS 

 

Table 7: List of solutions used in the experiments below.  

 

Antibody Concentration (µg/mL) 

Human Serum Lipase (HSL) 25 

Phospho Human Serum Lipase (pHSL) 153 

Protein Kinase B (AKT) 34 
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Phospho Protein Kinase B (AKT) 10 

Perilipin 47 

Glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) 

42 

Horse Radish Peroxidase (HRP) 100 

ACE 1 1 

  

Table 8: List of antibodies used in western blot. All antibodies were bought from Cell 

Signaling Technology (CST). 

 

2.1 CLINICAL PROCEDURES 

 

2.1.1 STUDY DESIGN  

 Participants were recruited through flyer and/or newsletter advertisements at the 

University of Warwick. They needed to be 18 years or older and not on any medication to be 

eligible for the study. Exclusion criteria included pregnancy and diagnosed diabetes. The 

ethics approval was given by Warwick Medical School Ethics committee BSREC (protocol 

identification REGO-2014-1318). All participants were informed about the study 

requirements and written consent from each participant were obtained. Participants provided 

information about their age, BMI, sex, weight (recorded every morning) and ethnicity.  

 

2.1.2 HEALTH PLATFORM 

 Intel IDX is a framework that allows building of cross-platform mobile applications, 

(Windows, Android and iOS) along with a web browser interface. It was used to develop the 

mobile and web application, available at https://agper.lnx.warwick.ac.uk/mobileHealth-web/. 

The programming was done using technologies such as HTML, Javascript and CSS. To enable 

device specific optimal user experiences, a responsive web design approach was adopted in 

implementing the application. Mobile app functionality and front-end browser was built using 

AngularJS (a JavaScript framework). All back-end support for the web interface and mobile 

app were built using Java and MariaDB database server. Programming language R was used 

https://agper.lnx.warwick.ac.uk/mobileHealth-web/
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to generate back end automation for providing users with graphical feedback. Data 

communication between the mobile and web applications and server was through HTTPs. 

 

2.1.3 MEAL PLANS 

 A diet day was defined as a day where the participant omitted one of the 3 main meals 

i.e. breakfast (B), lunch (L) or dinner (D). The total calories for the day were to be less than 

~1200KCal (± 50KCal). An optional snack (S) (<250± 50KCal) could be eaten only once in 

a day at a time chosen by the participant. All the meals (B, L, D, S) were defined according to 

i) calorie intake (<250KCal for S and >250KCal for B, L, D) summed over nearby entries 

(within 30 min) and ii) timing, being B before noon, L between noon and 3 pm and D after 4 

pm (Figure 1A). A control day was defined a day where the participant had three or more 

meals on that day.  

 According to these terms, the different meal plans were defined to describe an 

individual’s preference: i) B, L, [S]; ii) B, D, [S]; iii) L, D, [S]; iv) B or L or D, [S] for dieting 

days; and v), B,L,D, [S] or >3 meals for control days, where [S] denoted optional snack intake. 

Entries in the health platform were used to identify the meal plan an individual chose every 

day. The different meal plans were compared to weight changes observed over the respective 

24-hour period. Only those records were analysed that had a minimum of two meal records 

for the day (from 00:00h to 12:00h day +1). Any food item was allowed, and no specifications 

were given to participants for food composition. 

 The caloric intake was estimated by the meal information provided by the user. The 

participants either used the pre-entered meal options from the health platform or entered 

descriptions of their meals. The meal breakdown in protein, fat and carbohydrate was obtained 

from the fatsecret database (available at https:\\platform.fatsecret.com). For analysis purposes, 

it was converted into KCal by multiplying gram of protein, fat and carbohydrate by 9, 4 and 

4, respectively. The fasting period (during the day) was obtained by subtracting the time of 

the second meal from the first meal of the day. Similarly, the overnight fasting time was 

obtained for days where weight information was provided on the following day.   

 

2.1.4 URINE SAMPLE COLLECTION 

 Urine samples were collected in the home/work/leisure environment each time 

participants needed to empty their bladder. The total urine output was entered in the health 
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platform. Approximately 2-3 mL of urine was transferred using plastic pipettes to a pre-

labelled 2 x 1.5 mL Eppendorf tubes. Participants placed samples in a secure container in a 

freezer until transferred (on dry ice) to the university. For short term, samples were stored at 

4°C and later transferred to -80°C freezer (at University of Warwick) after 24 hours. 

 

2.1.5 SURVEY DESIGN 

 A short-self-administered questionnaire, designed using Google forms, was emailed 

to all participants who expressed an interest in the study, including those who decided to not 

continue with enrolment. The individuals participating in the survey were not linked to their 

identification in the platform, as the survey document (Google forms) and the digital health 

platform were independent of each other. This optional survey was completed by 48 people; 

and all 48 individuals had consented to participate in the survey.  

 The survey was divided into three parts:  

Section I: Motivation 

 Survey consisted of questions evaluating the understanding of an individual’s 

motivation in participating in the study. Options for participation included interest in losing 

weight, dieting, metabolic profile, health platform, being involved in medical research or any 

other reasons not specified in the list. These parameters were analysed together and when 

separated into 10-year bin-sized age groups.  

Section II: Dropout 

  The survey was used to identify the reasons for dropout such as difficulty of following 

a restrictive diet, complicated sample collection, time consuming, complicated health 

platform, no more interest in losing weight and diet was not as expected. The participants were 

also provided a free text field (to catch all possible reasons) to enter other factors that 

contributed to their dropout.  

Section III: Feedback 

 The health platform was developed in-house and the concept of identifying life-style 

markers was being tested. To develop this further, it was necessary to take participants 

feedback on the health platform and sample collection. Their personal input was requested on 

suggestions for the platform’s improvement. 
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2.1.6 LACTATE QUANTIFICATION IN URINE SAMPLES 

 Lactate dehydrogenase is the enzyme responsible for the interconversion of lactate 

into pyruvate following reduction of nicotinamide adenine dinucleotide (NAD) to its reduced 

form (NADH).  

 

Figure 5: Conversion of lactate to pyruvate and vice-versa 

 As it is a reversible reaction, to measure lactate there was a need of excess NAD 

(Figure 5). It is necessary to trap the formed pyruvate with hydrazine present in glycine-

hydrazine buffer (Sigma Aldrich, UK) as it would prevent the formed pyruvate to go back in 

the reversible reaction forming lactate. 

 The samples were centrifuged before analysis at 12,000 rpm for 15 minutes at room 

temperature. The experiments were done in 96-well solid black fluorescence plates. 10 mM 

lactate stock solution was prepared in glycine-hydrazine buffer. The standard reactions (25-

100 μM lactate) were prepared. A reaction mixture contacting 10 mg NAD, 2.0 mL glycine-

hydrazine solution, 4.0 mL water and 0.1 mL L-lactate dehydrogenase (mammalian cells only 

have L-form of the enzyme). 20, 20 and 130 μL of sample, standard and reaction mixture were 

added to each well respectively. The plate was then incubated for 15 minutes at 37°C. The 

fluorescence was read with excitation at 345-355nm and emission at 450-460nm using Perkin 

Elmer Wallac 1420 Victor 2 Microplate Reader.  

 

2.1.7 ACE QUANTIFICATION IN URINE SAMPLES 

 ACE was measured using an immune-sandwich based ELISA method based on the 

manufacturer’s instructions (R&D Systems, UK). First, a 96-well plate was coated with 100 

μL per well of the diluted Capture Antibody (R&D Systems). The goat anti-human ACE 

Capture Antibody was diluted to the working concentration (8000 ng/mL) in PBS. The plate 

was sealed and incubated overnight at room temperature. Each well was washed 3 times with 

400 μL of the wash buffer. Each well was then blocked with 300 μL of reagent diluent and the 

plate was incubated at room temperature for a minimum of 1 hour, after which the plate was 

washed as above. 
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 100 μL of urine samples or standards in reagent diluent was added to each well. The 

plate was sealed and incubated for 2 hours at room temperature. The plates were then washed 

as previously. 100 μL of the biotinylated goat anti-human ACE detection antibody (2000 

ng/mL) diluted in reagent diluent was added to each well. The plates were incubated for 2 

hours at room temperature. The plates were then washed as previously. 100 μL of the working 

dilution (1:10) of Streptavidin-HRP was added to each well. The plate was incubated for 20 

minutes at room temperature in the dark. The plate was then washed as previously. 100 μL of 

substrate solution (1:1 mixture of H2O2 and Tetramethylbenzidine) was added to each well 

and incubated for 20 minutes at room temperature. Reaction was stopped by adding 50 μL of 

stop solution (2N H2SO4) per well. The optical density (OD) of each well was measured at 

450 nm corrected at 540 nm (to allow correction for optical imperfections) using Synergy 

HTX multi-mode plate reader. 

 

2.1.8 INSULIN QUANTIFICATION IN URINE SAMPLES 

 Insulin in samples was measured using a Mesoscale Discovery Human Insulin Kit 

containing (catalogue number: K151 BZC-2) 96 well plates coated with insulin antibodies 

obtained from Mesoscale Inc. (www.mesoscale.com). The assay was performed according to 

the manufacturer’s instructions. The plates were analysed on a SECTOR Imager 6000 system. 

All samples (urine and plasma) were centrifuged prior to analysis at 12000 rpm for 5 min at 

room temperature. Insulin calibrators (supplied by the kit) were run in duplicate to generate 

an 8-point standard curve covering the 0–50,000 pg/mL range. The standard curve was 

modelled using least squares fitting algorithms so that signals from standards with known 

concentrations of insulin can be used to calculate insulin concentrations in samples. The MSD 

Discovery Workbench® analysis software was used to calculate the concentration of insulin 

in samples. The software uses a 4-parameter logistic model and includes a 1/Y2 weighting 

function. This allows for a better fit of data over a wide dynamic range (3–4 logs), particularly 

at lower insulin concentrations. The wide dynamic range of the assay allowed for the 

quantification of insulin in urine without the need for dilution nor concentration. 
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2.2 CELLULAR PROCEDURES 

 

2.2.1 CELL CULTURE AND ADIPOCYTE DIFFERENTIATION 

 3T3-L1 cells (obtained from Dr. Mark Christian at University of Warwick) were 

cultured in DMEM/F12 + 10% NCS with Pen-Strep antibiotic solution. The cells were 

incubated at 37°
 C and 5% CO2. They were kept below 50% confluency during routine culture. 

For differentiation, cells were plated and cultured to confluency (Day 0). They were then left 

for two days at confluence prior to addition of the induction medium (Day 2). These confluent 

cells were treated for 48 hours (until Day 4) with induction medium. The cells were then 

treated with maintenance medium for 48 hours (until Day 8). 

 

2.2.2 TRYPSINIZATION 

 Cells were first washed with PBS prior to trypsinization. 1 mL of trypsin was added 

to 10 cm dish and T-25 flask and 2mL to T-75 flask. Cells were incubated at 37°C for 2 

minutes to allow complete detachment of the cells from the surface (10 cm, T-25 and T-75). 

9 mL (10 cm dish), 4 mL (T-25 flask) and 13 mL (T-75 flask) of DMEM/F12 + 10% NCS 

was added to inactivate the trypsin. Cells were removed from the plate by pipetting up and 

down and transferred to new dishes in 1:10 dilution.  

 

2.2.3 FREEZING 

 For long-term storage of 3T3-L1 cells, up to 50% confluent plates (10 cm or T75-

flask) were trypsinized as shown above. The cells were centrifuged at 1,000 rpm for 10 

minutes. The supernatant was discarded, while the pellet was suspended in 3 mL of freezing 

medium. 1 mL aliquots were prepared in cryogenic vials and kept in a Styrofoam box at -80°C 

freezer overnight. The following day, vials were moved to a liquid nitrogen container.  

 

2.2.4 THAWING 

 The cryogenic vial was moved from liquid nitrogen to 37°C water-bath to allow 

thawing. The cells were transferred to a 15 mL falcon tube and slowly 5 mL of DMEM/F12 
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+ 10% NCS was added to the tube. Cells were pelleted at 1,000 rpm for 10 minutes; the 

supernatant was discarded and 9 mL of fresh DMEM/F12 + 10% NCS (supplemented with 

PenStrep) was added. The cells were re-suspended and transferred to a 10 cm dish at 37°C, 

5%CO2 incubator. The medium was changed 4-6 hours later to minimise DMSO exposure.  

 

2.2.5 LEMON EXTRACT TREATMENT  

 One lemon was squeezed into a 50 mL falcon tube. This solution was then frozen by 

placing the 50 mL falcon tube at -20°C for 24 hours. The frozen solution was kept on dry ice 

for 2 hours before freeze-drying. The solution was lyophilised overnight in an instrument 

named Alpha 2-4 LD plus made by Martin Christ Gefriertrocknungsanlagen GmbH 

(Germany).  The lyophilised powder was re-suspended in 10 mL of DMEM/F12. The pH was 

adjusted to 7 by adding sodium hydroxide.  

 

2.3 ANALYTICAL PROCEDURES 

 

2.3.1 RNA EXTRACTION 

 RNA was extracted using QIAzol Lysis Reagent. After removing the maintenance 

medium, 1 mL of QIAzol reagent was added directly to the cells in the culture dish per 10 cm2 

of dish surface area. The cells were lysed directly by pipetting the cells up and down several 

times. The homogenised sample was then incubated at room temperature for 5 minutes 

followed by addition of 0.2 mL of chloroform per 1 mL of lysis reagent. The tube was shaken 

vigorously for 15 seconds and centrifuged at 12,000 g for 15 minutes at 4°C. The aqueous 

layer was removed and transferred to a new tube. 0.5 mL of 100% isopropanol (per 1 mL of 

lysis reagent) was added and incubated for 10 minutes at room temperature. The solution was 

then centrifuged at 12,000 g for 10 minutes at 4°C. The supernatant was discarded, leaving 

only the RNA pellet. This was then washed with 1 mL of 75% ethanol (per 1 mL of lysis 

reagent) and vortexed briefly before centrifuging at 7,500 g for 5 minutes at 4°C. The wash 

was discarded and the pellet was air dried for 10 minutes. The pellet was re-suspended in 50 

µL of nuclease free water. The RNA solution was incubated at 55°C on a heat block for 10 

minutes to complete solubility of RNA. The extracted RNA was quantified using a 

NanoPhotometer N60. RNA was used for further work if OD260/OD280 was ≥1.90. It was either 

used for downstream applications or stored at -70°C.  
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2.3.2 CDNA SYNTHESIS 

 The cDNA synthesis was performed using a High-Capacity RNA to c-DNA kit 

(Thermo Scientific, UK). The Reverse transcriptase (RT) enzyme allows conversion of RNA 

to cDNA. 100 ng of total RNA is used in a 20 µL reaction. All the kit components were thawed 

on ice. The volume of the components needed were as follow: 

 

Component Volume per reaction 

+RT reaction (µL) -RT reaction (µL) 

2X RT Buffer Mix 10 10 

20X RT Enzyme Mix 1 - 

RNA sample Up to 9µL Up to 9µL 

Nuclease- free water Q.S.* to 20µL Q.S.* to 20µL 

Total per reaction 20 20 

 

Table 9: cDNA Synthesis Reaction Mix. * Quantity Sufficient 

 Aliquots of RT reaction mix were added to the reaction tubes and briefly centrifuged 

to spin down the contents and to eliminate any air bubbles. The tubes were then loaded to the 

thermal cycler with following cycling conditions:  

Setting Step 1 Step 2 Step 3 

Temperature (°C) 37 95 4 

Time (minutes) 60 5 ∞ 

Table 10: cDNA Synthesis Reaction Setting 

 The reverse transcription run was started and the cDNA generated was stored at 2-

8°C for short-term storage and at -25°C for long-term storage.  

 

2.3.3 REAL TIME POLYMERASE CHAIN REACTION (RTPCR) 

 RTPCR was performed on a 96 well reaction plate using Taqman primers (Taqman 

Gene expression Assay, ThermoScientific, UK) for the genes of interest. The cDNA samples 

and Taqman Gene expression Assay were thawed on ice.  The 20 µL reaction was prepared 

as follow:  



61 
 

Component Volume per reaction 

(µL) 

20X TaqMan® Gene 

Expression Assay 

1 

2X TaqMan® Gene 

Expression Master Mix‡ 

10 

cDNA template (100ng) 4 

RNase free water 5 

Total per reaction 20 

 

Table 11: RTPCR Reaction Mix 

 The plate was sealed and centrifuged briefly before loading in to the Applied 

Biosystems 7500 Fast Real-Time PCR System instrument. Real time PCR was run as follows:  

Stage Temp (°C) Time (mm:ss) 

Hold 50 2:00 

Hold 95 0:20 

Cycle 

(40 Cycles) 

95 0:03 

60 0:30 

 

Table 12: RTPCR Reaction Setting  

 The data was exported into an Excel file and analysed for fold change using the 

equations below: 

∆Ct = Ct gene test – Ct endogenous control  

∆∆Ct = ∆Ct sample1 – ∆Ct calibrator 

Fold Change= RQ = Relative quantification = 2-∆∆Ct 

 

2.3.4 PROTEIN EXTRACTION 

 LE-treated cells along with untreated cells (control) were used to study protein 

expression levels. Each well was washed with 1 and 5 mL of ice-cold PBS solution in 12 and 

6 well plate, respectively. 200 µL of lysis buffer solution was added to each well. Protease 

inhibitor cocktail Set V (Calbiochem, Germany) and phosphatase inhibitor cocktail 2 P5726 
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(Sigma-Aldrich, UK) were added at a concentration of 10 µL/mL of RIPA lysis buffer. The 

cells were scraped quickly using a cell scraper, collected in a 1.5 mL Eppendorf tube and 

placed on ice. The tubes were vortexed strongly every 2 minutes and kept on ice for 10 

minutes. The samples were then centrifuged at 12,000 rpm form 10 minutes at 4°C. The 

supernatant was collected in a fresh Eppendorf. An aliquot was taken for quantification and/or 

further analysis and the extracted protein was stored at -20°C. 

 

2.3.5 PROTEIN QUANTIFICATION 

 Protein concentrations were determined using the Modified Lowry’s Protein Assay. 

A calibration curve was obtained by making 0, 1, 5, 25, 125, 250, 500, 750, 1000 and 1500 

µg/mL BSA concentrations using a 2 mg/mL BSA stock solution. 1X Folin-Ciocalteu (FC) 

reagent was prepared by diluting the supplied reagent (1:1) with ultrapure water. 40 µL of 

each standard and sample was added into a microplate followed by 200 µL of Modified Lowry 

Reagent. The plate was mixed for 30 seconds and incubated at room temperature for 10 

minutes. 20 µL of prepared 1X FC Reagent was added to each well and mixed 30 second 

followed by incubation at room temperature for 30 minutes. Protein quantification was 

determined at 750 nm absorbance, using a Synergy HTX multi-mode plate reader. The 

concentration was determined using a BSA standard curve. 

 

2.3.6 SDS-PAGE  

 The acrylamide separating gel was made of 12% resolving and 4% stacking gels. 10 

mL resolving gel and 5 mL stacking gel was prepared. 30 µg protein sample were mixed with 

4X sample buffer solution and gel was run in running buffer solution at 50 Volts for 5 minutes 

and at 100V for 90 minutes.  

Gel Type Acrylamide 

(mL) 

Tris-HCl  

(mL) 

Water 

(mL) 

10% SDS 

(µL) 

10% 

APS  

(µL) 

 

TEMED 

(µL) 

Resolving 

(12%) 

4 2.5 (1.5M, 

pH 8.8) 

3.3 100 90 10 
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Stacking 

(4%) 

0.7 1.25 

(0.5M, 

pH6.8) 

2.94 50 10 10 

 

Table 13: SDS-PAGE Gel Composition 

 

2.3.7 WESTERN BLOTTING  

 The electrophoresis gel was equilibrated in ice-cold transfer buffer solution for 10 

minutes. Two sponges and six Whatman paper (for 1 gel) were also equilibrated in the same 

buffer. A polyvinylidene fluoride membrane (Thermo Scientific, UK) was activated in 

methanol for 10 minutes before being incubated in the transfer buffer for 10 minutes. These 

were assembled in a transfer sandwich cassette with the gel on anode and membrane on the 

cathode (Biorad system, UK). The cassette was then placed in the transfer tank and transfer 

was performed at 100 Volts for 45 minutes. The membrane was then blocked in 3% BSA in 

1X TBST solution for 1 hour at room temperature before being incubated overnight at 4°C 

under rotation in the primary antibody solution (1:1000) against the protein of interest. The 

blot was washed (3 times) with 25 mL TBST for 5 minutes and it was incubated with the 

appropriate secondary antibody (1:10,000) in 1X TBST for 1 hour at room temperature. The 

membrane was washed as before and dried for up to 5 second before being transferred to saran 

wrap. 600 µL of SuperSignal West Pico PLUS (Thermo Scientific, UK) developing solution 

was distributed evenly on the blot and the wrap was closed. Using secondary antibody as the 

enzyme label, luminescent substance in SuperSignal West Pico PLUS was oxidized by 

hydrogen peroxide and luminesced. The signal was detected when the blot was sensitized on 

photographic film. The image was taken using an Image Quant LAS4000 apparatus. 

 

2.3.8 FREE GLYCEROL RELEASE ASSAY 

 1x 12-well plate with differentiated 3T3L1 adipocytes was treated with LE, PBS 

(negative control) for 0, 2, 4, 6, 24 and 72 hours and 1 µM isoproterenol (positive control). 

The cells were pre-incubated with 1400 µL DMEM/F12 medium solution (without phenol 

red) for 2 hours. The cells were then either treated with LE or PBS for 72 hours. Prior to 

treatment (t=0) and at t=2, 4, 6, 24 and 72 hours after treatment, a media aliquot (200 µL) was 

taken and immediately frozen. After t=72 aliquot, the cells were lysed for protein extraction 

followed by protein quantification. Glycerol amount in each media was quantified using a free 

https://www.thermofisher.com/order/catalog/product/34580
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glycerol kit from Sigma-Aldrich, UK. A standard curve was performed using glycerol 

standard solution. 40 µL of media was added into 200 µL of glycerol free reagent solution in 

a 96-well plate. The samples were incubated at room temperature for 15 minutes and 

absorbance was measured at 540 nm using a Synergy HTX multi-mode plate reader. The 

amount of free glycerol was calculated using the standard curve and the amount was 

normalized by the amount of protein. 

 

2.3.9 INSULIN SENSITIVITY ASSAY 

 Cells were differentiated on a 12-well plate (Sec 2.2.1) until day 7. The cells were 

deprived of serum overnight. On Day 8, 3 out of 12 wells were incubated with 100 µg/mL of 

LE for 10 hours and then treated with 100 nM of insulin for 15 minutes. Proteins were 

extracted as described above and insulin receptor downstream target AKT was analysed by 

western blot. 

 

2.3.10 ACE INHIBITORY ACTIVITY ASSAY 

 ACE inhibitory activity was measured by a fluorometric assay following the method 

of (177). A potential ACE inhibitor would prevents conversion of Abz-GLY-PHe(NO2)-Pro 

to Abz-GLY by inhibiting ACE enzyme. 50 µL of LE (0, 50, 100 and 500 µg/mL) followed 

by 50 µL ACE (3 mU/mL) solution was added in each well of a black 96-well plate. The 

mixture was incubated at 37°C for 10 minutes. 200 µL of Abz-GLY-PHe(NO2)-Pro in 

150mM Tris base (pH 8.3) with 1.125 M NaCl was added to each well and fluorescence was 

measured at 360 nm (excitation) and 430 nm (emission) for t=0 using a Synergy HTX multi-

mode plate reader. The plate was then incubated for 30 minutes and reading was taken as 

mentioned above. The % inhibitory activity was calculated following the method in (178). 

Briefly, it was calculated as shown below:  

%inhibitory activity= 100 x [(A-C) / (A-B)] where A was the absorbance of ACE solution in 

buffer; B was the absorbance of buffer and C is the absorbance of ACE in LE.  

 

 

 



65 
 

2.3.11 CELL VIABILITY ASSAY 

 The cells were trypsinized as above and 50 µL of cell suspension was added in an 

eppendorf. Equal parts of 0.4% trypan blue dye were added to the cell suspension and mix by 

pipetting up and down. Place the cover slip on the haemocytometer and 10-20 µL of cell 

suspension on one side of the haemocytometer. Place the haemocytometer on the stage of a 

light microscope and the cells were counted by the in each large corner. The percentage of 

viable cells were calculated by dividing the number of viable cells by the number of total cells 

and multiplying by 100. 

 

2.4 IMAGING TECHNIQUES 

 

2.4.1 OIL- RED O STAINING 

 Oil red O staining was used to stain and detect lipids in cultured adipocytes. The 

medium was removed and cells were gently washed twice with a PBS solution. Cells were 

then fixed in 10% formalin (Sigma-Aldrich, UK) for 1 hour. Cells were washed with water 

and incubated with 60% isopropanol for 5 minutes. Oil Red O stock solution was prepared by 

reconstituting 3 mg/mL of Oil Red O powder in 100% isopropanol. The solution was mixed 

and left undisturbed for 20 minutes. The working solution was prepared by mixing 3 parts of 

stock solution with 2 parts of water. The solution was mixed and left undisturbed for 10 

minutes before being filtered through Whatman filter paper. The cells were then covered with 

the Oil Red O working solution for 20 minutes. The cells were then washed with water 5 times 

and covered with water to view under the microscope. The images were taken using EVOS 

XL Core. For quantification, the water was removed, and the wells were allowed to dry. Oil 

Red O dye was eluted in 1 mL of 100% isopropanol and incubated for 10 minutes with gentle 

shaking. The isopropanol was pipetted up and down several times ensuring that the dye is in 

solution. Absorbance was taken at 500 nm with 100% isopropanol as blank using a Synergy 

HTX multi-mode plate reader. 
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2.5 HIGH PERFORMANCE LIQUID 

CHROMATOGRAPHY (HPLC) 

 A Merck instrument equipped with L-7100 pump, L-7455 UV diode array detector, 

D-7000 chromate-integrator and a column separator was used for analysis. LE was separated 

on a C-18 column (250 mm x 5 mm x 4.6 mm). The mobile phase consisted of 0.04% formic 

acid in water (A) and acetonitrile (ACN) in 0.04% formic acid (B).  A gradient program was 

used as shown below. The flow rate for the mobile phase was 1mL/min. The column 

temperature was 25°C.  

Time (min) A: Water (0.04% 

Acetic Acid) 

B: Acetonitrile 

(0.04% Acetic Acid) 

Flow Rate 

(mL/min) 

0 95 5 1 

10 75 25 1 

20 60 40 1 

30 50 50 1 

35 5 95 1 

40 5 95 1 

50 95 5 1 

60 95 5 1 

 

Table 14: Low resolution HPLC gradient program 

 

2.6 MASS SPECTROSCOPY 

 Following the optimisation of the HPLC gradient, different compounds in LE were 

identified using mass spectrometry.  Data was acquired on the MaXis II Q-TOF instrument 

coupled with Dionex 3000RS UHPLC and the column used was Agilent Zorbax C18, 100 x 

2.1 mm. Mobile phase used was water/ACN with 0.1% ammonium, formic acid. The same 

gradient as in Table 14 with a reduced flow rate of 0.2 mL/min was used. 
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2.7 NUCLEAR MAGNETIC RESONANCE (NMR) 

 Urine samples were thawed and centrifuged at 12,000 rpm for 10 minutes. 60 µL of 

urine buffer was added to NMR tube followed by 540 µL of urine sample. Urine buffer (100 

mL) was prepared as mentioned in (179). 

 1.5 M KH2PO4 buffer was prepared in D2O. 100 mg TSP and 13 mg NaN3 was 

dissolved in 6 to 10 mL of D2O. Both solutions were mixed by sonication. The solution might 

appear cloudy, but it disappeared when the pH was adjusted to 7.4 by adding KOH pellets. 

The solution was transferred to a 100 mL volumetric flask and the volume was adjusted with 

D2O.  

 To aid in identification of metabolites found on diet and control day (see 2.1.3), 1D 

NOESY and 2D J-resolved (JRES) was performed on a Bruker spectrometer at 300K. The 

experiment was done as described in (1). A standard 2 mM sucrose sample (containing 0.5 

mM TSP, 2 mM NaN3 in 90% H2O:10% D2O) was loaded to check the performance of the 

water suppression functionality. The temperature was equilibrated after 5 minutes. The 

experimental parameters (Table 15 and 16) for urine were loaded.  

Pulse program noseygppr1d 

Time domain 65536 

Dummy scans 4 

Scans 32 

Sweep width 20 ppm 

Acquisition time 2.726 s 

Relaxation delay 4 s 

Receiver gain 90.5s 

Dwell time 41.6 µs 

Mixing time 0.01 s 

Line broadening 0.3 Hz 

Table 15: Experimental Parameters for Urine for 1D NOESY (179).  

 

Pulse program Jrespprqf 

Time domain 8192 in F2 

40 in F1 

Dummy scans 16 

Scans 2 
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Sweep width 16.7 ppm in F2 

0.13 in F1 

Acquisition time 0.41s in F2 

0.26 in F1 

Relaxation delay 2s 

Receiver gain 90.5 

Dwell time 50µs 

Line broadening 0.3Hz in F2 

03 in F1 

Table 16: Experimental Parameters for Urine for 2D JRES (179).  

 Peak assignments relied on established literature, such as the human metabolome 

database (HMDB) (2) and human urine metabolome (3). The peak assignment was decided 

using metabohunter (4). The Bruker Topspin 4.0.4 software package was used to quantify 

metabolites.  

 

2.8 STATISTICAL PROCEDURES 

 

2.8.1 CLINICAL STUDY  

 Statistical analyses were performed using IBM SPSS Statistics 24 and R. ANOVA 

was used to understand the effect of meal plan choice on weight loss. The control group was 

compared with BL, BD, LD and B or L or D using SPSS software. Tukey posthoc test was 

conducted on ANOVA data for further analysis of difference in each group. Similarly, control 

group was also compared to BL, BD, LD and B or L or D with or without consumption of a 

snack.  

 To understand the effect of caloric intake, total insulin, total lactate and overnight 

fasting time, Pearson Coefficient analysis was conducted using SPSS. This informed about 

the measure of the strength and direction of association that exists between two variables. To 

address the missing values, pairwise cases were excluded.  Nonparametric Mann-Whitney U 

test was performed to compare healthy, overweight and obese groups.  

 The parameters extracted from digital health platform and biomarker profile, were 

analysed using bivariate Pearson Coefficient analysis using R. Harrell Miscellaneous (hmisc) 
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and corrplot R packages were used for the data analysis and graphic representation. The 

following script was used for the analysis: 

Install.packages (“Hmisc”) 

Install.packages (“corrplot”)  

mydata=read.csv("filename.csv") 

mcor=cor(mydata, use="pairwise.complete.obs", method="pearson") 

cor.mtest <- function(mat, ...) { 

    mat <- as.matrix(mat) 

    n <- ncol(mat) 

    p.mat<- matrix(NA, n, n) 

    diag(p.mat) <- 0 

    for (i in 1:(n - 1)) { 

        for (j in (i + 1):n) {rcorr 

            tmp <- cor.test(mat[, i], mat[, j], ...) 

            p.mat[i, j] <- p.mat[j, i] <- tmp$p.value 

        } 

    } 

  colnames(p.mat) <- rownames(p.mat) <- colnames(mat) 

} 

p.mat=cor.mtest(mydata) 

rcorr(as.matrix(mydata[,1:21])) 

flattenCorrMatrix <- function(cormat, pmat) { 

 ut <- upper.tri(cormat) 

 data.frame(row = rownames(cormat)[row(cormat)[ut]],column = 

rownames(cormat)[col(cormat)[ut]], cor  =(cormat)[ut],p = pmat[ut]) 

} 
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res<-rcorr(as.matrix(mydata[,1:21])) 

flattenCorrMatrix(res$r, resp.mat$P) 

m= flattenCorrMatrix(res$r, res$P) 

corrplot(mcor, type="lower", order="alphabet", p.mat=p.mat, sig.level=0.01, 

tl.col="red",tl.srt=45,tl.cex=0.75)  

 

2.8.2 CELLULAR STUDY 

 Results were expressed as mean ± standard error mean (SEM). Differences between 

cells or treatments were tested for statistical significance using the unpaired Student's t test.  
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CHAPTER THREE 

LACTATE AND INSULIN ARE PREDICTORS OF 

WEIGHT LOSS OVER SHORT TERM (24 HOUR) 

PERIODS 

 

 

 

 

 

 

 

 

 

 

 

This figure illustrates personalised the feedback strategy with focus on lactate and insulin. 

The figure was designed using Paint and PowerPoint 2013. 
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3.0 SUMMARY 

 Numerous diets, apps and websites help guide and monitor dietary behaviour with the 

goal of losing weight, yet dieting success is highly dependent on personal preferences and 

circumstances. To enable a more quantitative approach to dieting, an integrated platform was 

developed that allowed tracking of life-style information alongside molecular biofeedback 

measurements using lactate and insulin levels in urine samples.  

 To facilitate weight loss, participants (≥18years) omitted one main meal from the 

usual three-meal routine. Daily caloric intake was restricted to ~1200 KCal with one optional 

snack ≤250 KCal. A mobile health platform (personalhealth.warwick.ac.uk) was developed 

and used to maintain diaries of food intake, weight, urine collection and volume. A survey 

was conducted to understand participants’ willingness to collect samples, motivation for 

taking part in the study and reasons for dropout.  

 Meal skipping resulted in weight loss after a 24-hour period in contrast to 3-meal 

control days regardless of the meal that was skipped, breakfast, lunch or dinner (p<0.001). 

Common reasons for engagement were interest in losing weight and personal metabolic 

profile. Total insulin and lactate values varied significantly between healthy and obese 

individuals at p=0.01 and 0.05, respectively. 

 In a proof of concept study with a meal-skipping diet, it has been shown that insulin 

and lactate values in urine correlate with weight loss, making these molecules potential 

candidates for quantitative feedback on diet efficiency to people dieting.  

 

3.1 INTRODUCTION 

Male obesity rates rose from 13.2% to 24.4% and from 16.4% to 25.1% in women 

over the period 1993 to 2012 (180). Obesity’s health related concerns (discussed in chapter 1) 

may be excellent motivating factors to lose weight for some individuals. However, achieving 

weight loss is challenging and failure to obtain results is demoralising (65). Most typical 

weight loss programs include a diet regime (with or without drugs), a fitness regime or a 

combination of these approaches.  There is a need of a device that involves use of biomolecules 

levels of a dieter to provide a biological feedback to understand the effects of lifestyle habits.  

The prerequisite for such a device is the identification of quantitative biomarkers of weight 

loss that have the potential to provide a feedback on the efficiency of the diet on a short term 

to the dieting individual, especially when weight loss is not always observed yet. 
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 Insulin and lactate were chosen as these are both known to vary with consumption of 

glucose, as well as with caloric intake overall (96, 181-183).  Skipping meals is often 

suggested for weight loss but there are controversies, in particular regarding omitting 

breakfast. Currently, there is an accumulation of facts with no consensus of the issue. Eating 

breakfast lowers body weight and leads to lower caloric intake in comparison to skipping this 

meal (69-72). Many studies indicate that breakfast eaters and skippers didn’t vary significantly 

in terms of body weight and nutrient intake (77-80). The concept of eating or skipping 

breakfast is controversial since some studies say it has negative impacts and some say this has 

no influence at all on body weight. Besides food composition, another factor amenable to 

behaviour change is meal timing. 

From a metabolic perspective it might be most efficient for weight loss to skip meals 

other than breakfast. This might be true especially for omitting dinner (65). However, from a 

behavioural and/or cultural perspective, breakfast and lunch may be the easiest meals to skip, 

and dinner the most difficult (65). Weighing between these alternate strategies requires 

quantitative analysis. Finally, in order to develop a tool for personalised feedback, understand 

the willingness of individuals to collect samples to obtain metabolic biomarker information 

has to be investigated.  

Here, the goal was to lay the foundation for a molecular feedback approach to assist 

dieting efforts. The aim was to obtain a better understanding of the complex interplay between 

possible molecular biomarkers of dieting behaviour, individuals’ personal preferences, their 

willingness to collect information and weight loss success. Specifically, 52 dieters were asked 

to record meal timing and composition using an electronic diary interface, along with 

collection of urine samples, and weight. The urine samples were analysed for lactate and 

insulin levels and the information was integrated with the digital health platform. The results 

provide a strong proof of concept that each molecule studied may be used for biofeedback on 

dieting effects, with a stronger correlation for insulin. 

 

 3.2 RESULTS 

 

3.2.1 STUDY DESIGN AND DATA COLLECTION 

 Initially, 146 individuals (recruited using flyer and newsletter advertisements) 

expressed interest in the study. Of these, 52 individuals became study participants (77% 

females and 23% males) and provided recorded data and urine samples (Figure 6a). 
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Participants received access to a web application at personalhealth.warwick.ac.uk, as well as 

an app “Digital Health Platform” for android and apple devices available in Google play and 

iTunes stores, respectively. Through this platform, participants entered weight, food and liquid 

intake (caloric intake), exercise, and urine sample collection and volume details. It was used 

to provide information on calories consumed during each meal and over a 24-hour period. The 

mobile health platform created a timeline of the logs or events that were entered by the user. 

This electronic information was sent to a web server that allowed users to store their 

information securely and access it anywhere using either a web browser based interface or a 

native mobile application from their smart phones or tablets. In addition to being a tool for 

logging time and other parameters, the application also served to seamlessly share information 

between the user and the analyst. It allowed researchers and cohort group participants to 

register, and manage the logistics of data collection. Researchers obtained analysis files in an 

anonymized fashion only through the website administrator. Ease of use and cross-platform 

support were the most important among the factors considered in the design of the health 

platform.  

 Urine samples were used to measure insulin and lactate levels, which were uploaded 

onto the platform. Participants collected samples and life-style data for control and diet days 

(see Methods).  
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Figure 6: Study Design. (a) Meal plan layout for the participants in a 24-hour period. (b) 

Flow diagram of the study design. (c) Comparison between demographic features of the study 

participants and the UK population. Overall numbers for the UK population was the 

arithmetic middle between the male and female values based on the assumption that the 

distribution of male and females in the statistics was approximately 50%. In this study, there 

was more females than males, so the overall number was obtained directly from the raw data. 

 

 

b 
 

Did not provided urine samples and/or 

life-style information due to: Busy 

schedule; Complicated sample 

collection; Loss of motivation  
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3.2.2 DEMOGRAPHICS OF STUDY PARTICIPANTS 

 According to the UK Health and Social Care Information Centre, the prevalence of 

overweight individuals in the UK population is age and gender dependent, with 9% (male) 

and 13% (female) in the 16–24 age group and 13% (male) and 35% (female) in the 50-69 age 

group (180). A similar pattern characterized the participants in this study (Figure 6). Grouping 

participants by age showed that the number of overweight study participants was lowest 

among younger adults (20-29 year old group, Figure 7a), increasing through middle age (ages 

30-59, Figure 7b-d), and only reducing among the oldest participants (ages 60-69, Figure 7e).  

The majority of study participants were in the normal and overweight groups (Figure 6f). The 

mean BMI of 27.2 kg/m2 observed in the UK population (180) parallels that of 27.0±5 kg/m2 

(mean ± standard deviation) in this study. Similarly, the weight and height values split by 

gender also mirrored those of the UK population (Figure 6c). This indicated that the sample 

of 52 participants was a good representation of the UK population. The mean BMI of males 

and females in the study were 26.0 and 28.0 kg/m2, respectively, which indicated that they 

were significantly different (p<0.001) within the study group (Figure 8). 

 

Figure 7: Demographic of study participants. Comparison of BMI of participants across 

different age groups (20-29, a; 30-39, b; 40-49, c; 50-59, d; 60-9, e). Comparison of BMI of 

participants across all age groups. BMI values are available for 31 participants out of 52. 

Significance levels are marked as follows: *p<0.05; **p<0.01. 
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Figure 8: Gender Differences. Comparison of different parameters across male and female 

groups with significance at p=0.05. 

 

3.2.3 DIET BEHAVIOUR: CALORIC INTAKE PATTERN 

 The timings of health platform entries on the 149 days of data entered by participants 

showed a wide spread from 7 am - midnight on a 24-hour scale (Figure 9a), with only night 

time (midnight to 7 am) receiving very few entries, in line with previous observations (81).  

There were a higher percentage of total entries on the health platform in the mornings and 

evenings, namely 33% and 32% of the total entries, respectively (Figure 9b). Many of the 

morning entries were weight and urine sample collections. When only food entries were 

plotted, entries clustered in the morning (around 7 am), at lunchtime (around 1 pm), and in the 

evening, peaking at 6 pm (Figure 9c). When entries were quantified by calories consumed, it 

could be seen that the largest calorie intake was in the evening, with 22% and 51% of the total 

calories recorded from 7-11 am and 4-9 pm, respectively (Figure 9d). A more detailed 

breakdown of entries as % food events per hour is shown in Figure 9e. Purple indicates meals, 

green snacks and blue/brown low-calorie drinks (including water and coffee). Most entries for 

caloric intake of >250KCal (i.e. a meal) were observed in just one hour from 6-7 pm (Figure 

9e). Many breakfast (B) “meals” were low in calories and were therefore classified here as 

snacks (S), see below. Caloric intake was significantly different for males and females 

(p=0.05, Figure 8). 
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Figure 9: More calories are consumed at dinner and breakfast and dinner combination 

were more popular than breakfast and lunch. (a) Polar plot of all entries of each individual 

plotted against the time of day (angular axis). Data from 50 individuals are shown.  24 hr rose 

plots showing (b) percentage of total entries from individuals, (c) percentage of ingestion 

events and (d) % of calories consumed. (e) Percentage of food events in 1 hr bins. The radial 

axis for each rose plot shows % of events. 
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3.2.4 DIET BEHAVIOUR: MEAL PLAN PREFERENCES  

 Out of the 52 participants, at least one entry with two meals (see Methods) was 

available for 43 people. Participants could freely choose the number of days they participated 

in the study, thus the number of days for which data was available varied for each participant 

and between participants. The majority followed the study plan for 1-2 days, while one 

participant collected data for up to 24 days. Thus, the 43 individuals collectively provided data 

for 147 days consisting of both, control (28) and diet (119) days. Participants were given a 

relatively free choice in meal plans, with the only restrictions being the omission of one of the 

3 main meals and the total number of calorie, as described in Methods. 

 The meal plan choices made by participants on the 147 days is shown graphically in 

Figure 10a. BL, the meal plan that would be metabolically optimal from a theoretical 

perspective (see Introduction), or the slightly modified BLS meal plan, were followed only on 

10 days. 19 days corresponded to the LD plan, while the largest number of 42 days was in the 

BD or BDS category. BDS was followed on 39% of the dieting days, and was thus the most 

popular meal choice, while the B[S] plan accounted for only 8% of the dieting days.  

 A graph of the spread of meal timing of individuals showed that participants followed 

similar eating patterns for all days if they provided samples and data for more than one day 

(Figure 10b). Another frequently followed meal plan was that of the single meal: 46 days had 

only one meal B, L or D (sometimes plus optional snack, B[S] or L[S] or D[S]). This large 

number likely arose from classification of what participants might have thought of as “meals” 

as snacks based on the 250KCal cut-off. In total, there were 26 control days (18% of the 147 

days), where people have had at least three meals (BLD, BLD[S] or more). On control days, 

whilst caloric intake was significantly higher (p <0.01) than on diet days, there were many 

days of low calorie intake as well. The control group is a group of days where the participants 

did not receive the intervention. Notably, individuals did not lose weight on calorie- restricted 

control days, suggesting that meal timing played an important role, perhaps more than caloric 

intake for losing weight (Figure 10c). 
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Figure 10: Skipping a meal resulted in weight loss. (a) Distribution of meal plans. The meal 

plan preference is calculated by assigning each day to a meal plan category (BL (“Plan 1”), 

BD (“Plan 2”), LD, Control and B or L or D) based on the definitions described in Methods. 

(b) Eating duration of individuals, error bars are standard deviations where individuals have 

provided more than one day data.  (c) Total caloric consumption by 52 participants across 
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meal groups (BL, BD, Control, LD and B or L or D). **Caloric intake is significantly different 

between group at p=0.01. 

  

3.2.5 DIETING SUCCESS BY STUDY PARTICIPANTS’ MEAL 

PLAN CHOICE 

 Weight change data were available for 43 out of the 52 participants for at least one 

24-hour period, therefore reducing the total of 147 days to 126 days. For ease of analysis, the 

weight change values were grouped into 3 groups: weight loss when the weight difference 

between the beginning and end of the 24-hour period was >0kg, weight gain for <0kg, and no 

change =0kg. Figure 11a shows the % of participants with weight change in each of these 

groups. One could clearly see that all diet meal plans resulted more often in weight loss as 

compared to the control days. Figure 11b shows the more detailed split into sub-groups taking 

whether or not a snack was eaten into account. Overall there did not appear to be a negative 

consequence of having the additional snack, although the size of the data was too small to 

ascertain the statistical significance of this statement. Because there was meal plan 

information for 21 days without weight change information, a fourth group “NA” (purple) was 

included in Figure 11a, b. 

 ANOVA was conducted to compare the control group with each of the other groups 

in Figure 11a (i.e. BL, BD, LD and B or L or D). Each group was significantly different from 

the control group (p<0.01). This indicated that skipping a meal resulted in weight loss 

irrespective of which meal of the day was skipped. Comparing weight loss with total caloric 

intake showed an inverse relation with Pearson Correlation significant at p=0.05 (Figure 11c). 

Finally, on days when participants achieved weight loss, the length of overnight fasting 

periods was inversely correlated to weight loss expressed as negative kg values (Pearson 

Correlation R=-0.21, p=0.016) (Figure 11d), i.e. the longer the fasting the greater the weight 

loss.  
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Figure 11: Weight loss is associated with fasting time and consumption of calories. (a) 

Effect of dieting on weight with respect to different meal groups. N/A refers to the days for 

which weight loss data is not available. Weight change is defined as weight loss (any change 

> 0kg), weight gain (any change <0kg), and no change (=0kg). One-way ANOVA analysis 

comparing control with other meal groups show significant difference at p=0.01** (p<.001) 

(b) Effect of dieting on weight with respect to different meal plan subgroups. (c) Plot of total 

caloric intake against weight difference. Pearson’s R= -0.21 correlation is significant at the 

0.05 level (p <0.05). (d) Plot of overnight fasting time against weight difference. Pearson’s 

R=-0.21 correlation is significant at the 0.05 level (p <0.05). 

 

3.2.6 MOTIVATION: REASONS TO PARTICIPATE IN THE 

STUDY 

 A survey was conducted to understand the reasons people were interested in the study. 

This included both, weight loss and urine sample collection (Figure 12). Interest in losing 

weight, involvement in research and knowledge of their metabolic profile were the main 

drivers behind the participant enrolment. There might be a difference in motivation for 

different age groups, as the 20-29 and 40-49 year age-group more often reported interest in 

their metabolic profile (33%), while the 30-39, 50-59 and 60-69 year age groups were more 
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motivated by losing weight (32, 32 and 20 % respectively). However, because of the small 

number of participants, it cannot be said if these differences were statistically significant.  

 

Figure 12: Survey Questionnaire.  Questionnaire designed with input from the research team 

and generated on google forms. For i), ii), ix) and xv) participants were allowed to choose 

more than one option. 
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3.2.7 DROPOUT ANALYSIS 

 Dropout rates in weight loss studies have been a prominent concern when promoting 

lifestyle and dietary changes in overweight and obese populations, as well as affecting the 

validity and generalisation of conclusions in weight loss studies (184). In this study, a similar 

trend was observed. At the first meeting, people were informed of the study requirements, 

which resulted in 70 out of the 146 initial participants to drop out of the study.  The 76 

remaining individuals who provided written consent for participation in the study received 

sample collection kits. 52 out of these 76 participants provided urine samples and life-style 

information through the online/mobile platforms. Thus, the dropout rate after the first meeting 

of 48% reduced to 16% when comparing to the initial number of people interested in the study, 

and 34% when comparing to the previous step (Figure 6b). 

 To identify the reasons for dropout, a survey was designed (Figure 12). Busy schedule, 

complicated sample collection and loss of motivation corresponded to 25%, 21% and 18% of 

the reasons chosen by people who participated in the survey, respectively. Apart from pre-

defined reasons, individuals also entered their personal hurdles through a free text option. 

Participants found it difficult to follow caloric restriction guidelines due to their active work 

life or the psychological stress given by the word “diet”. The fear of eating more after a day 

of dieting also made people drop out from the study. In addition, since the individuals in the 

study were UK based, they found it difficult to maintain the food diaries, as the fatsecret 

database used was an American food database. 

 

3.2.8 MOLECULAR INSULIN AND LACTATE BIOMARKER 

CORRELATE WITH LIFE-STYLE DATA 

 The urine samples collected by the participants were used to measure insulin and 

lactate levels and a 24-hour profile was obtained based on the values. Based on the profile and 

data entered in the health platform, all possible variables (23 in total) were studied (Figure 

13). The intra-individual variation of the biomarkers and caloric intake over a 24-hour period 

has been shown in Appendix V. The levels of biomarkers changed with different food eaten 

by the individual. Blue, green and pink corresponds to ACE, insulin and lactate respectively. 

Yellow triangles are the urine stamps, blue square corresponds to the weight of an individual 

and red circles corresponds to the multiple food entries added in the health platform in a day.  
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Figure 13: Variables found. Variables extracted from biomarker profiles and entries on the 

digital health platform (https://personalhealth.warwick.ac.uk/). 

 The cross-correlation matrix of all the 23 extracted parameters from biomarker 

profiles and the digital health platform are shown for the complete cohort in Figure 14 for an 

overall summary. The weight difference showed a positive correlation with BMI while a 

negative correlation with carbohydrates, fat and lactate levels before the second meal of the 

day and total calories was observed. This relationship between body weight loss and different 

variables over 24-hour might be associated with fluid loss and rather than loss of adipose tissue 

and or fat mass. Care needs to be taken with the interpretation as there has been no adjustment 

for the use of multiple comparison, thus leading to potential Type II error. 

Variables  
 

Extracted from biomarker profiles 
 
Volume of urine in 24 hour (mL)    
Biomarker mass in 24 hour for individuals who provided 3 or more urine samples  
Fasting biomarker value of 24 hours  
Last biomarker value of 24 hour  
Biomarker value following day     
Minimum biomarker value in 24 hour  
Maximum biomarker value in 24 hour  
Ratio of maximum/minimum  
Time of minimum biomarker value     
Time of maximum biomarker value     
Biomarker before breakfast     
Biomarker before lunch or dinner 
Total amount of biomarker/calories consumed over 24 hr 
Ratio of last biomarker value/following day value 

 
Variables from DHP entries  

 
Fasting time between breakfast and or dinner 
Total calories consumed over 24 hr 
Macronutrient content (g and kcal): Carbohydrate 
                                                                  Protein 
                                                                  Fat  
 
Anthropometrics 
 
Weight difference (kg) (weight before breakfast minus weight following morning) 
BMI 

 
Other 
 
Age 
Gender  

 
 
    
 

 

https://personalhealth.warwick.ac.uk/
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Figure 14: Correlation plot of measured variables. The correlation (or lack thereof) between 

the parameters is shown for 147 days. Correlations between the parameters were scaled from 

1.0 to -1.0. Blue indicates positive correlation while red indicates negative correlation. X 

indicates no correlation between the two parameters. 

 Furthermore, as expected, the total lactate and insulin parameters were strongly 

correlated with other parameters such as first, last, maximum, minimum and following day 

lactate and insulin concentrations. In particular, the weight difference (expressed as negative 

kg) showed a correlation with total calorie intake, which was significant at R=0.04 (p<0.05). 

Total insulin and total lactate were positively correlated to the total calorie intake (p<0.001, 

R=0.35 and R=0.03, respectively). Fasting, total, last, following day and maximum amounts 

for insulin and lactate had significant correlation with carbohydrate, fat and protein content in 

the meals (Figure 15d, e).  
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After taking out the outliers from the Figure 15 a, b and c, the correlation between weight 

difference and total caloric intake was maintained significant at p<0.05. Similarly, positive 

association between total insulin and total caloric intake was also retained significant at 

p<0.01. However, correlation is lost between total lactate and total caloric intake which was 

found otherwise significant at p<0.001. 

 

Figure 15: Individual correlation plots of selected parameters. (a) Weight difference versus 

total calories. (b) Total insulin versus total calories. (c) Total lactate versus total calories. (d 

Insulin parameters correlation with nutritional parameters: Panel I. Carbohydrate. Panel II. 

Fat. Panel III. Protein. (e) Lactate parameters correlation with nutritional parameters, as in 

(d). Significant correlations with macronutrient content were marked by ** or *, when 

significant at p=0.01** and p=0.05*, respectively. 

 

3.2.9 BIOMARKER AND BMI 

 BMI was correlated with several variables (Figure 14), therefore pre-defined BMI 

groups were investigated to analyse if they differed in correlation of variables discussed above 

a 

b 

c 

d: Insulin e: Lactate 
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(Figure 16). Segregation of the data into different BMI groups showed loss of correlation 

between weight loss and other variables in the obese and overweight groups while being 

sustained in the healthy group. Particularly, the insulin biomarker profiles in the overweight 

and obese group were dampened in comparison to the healthy group (Figure 17a). Total, 

fasting, last, following day and maximum insulin values were significantly higher in the obese 

group in comparison to healthy individuals (Figure 17b). Also, total and last lactate amounts 

increased in obese people in comparison to the healthy group (Figure 18a). Furthermore, total, 

maximum and minimum lactate values were higher in obese than in overweight individuals 

(Figure 18b), in accordance with previous findings of increased lactate levels in obese 

individuals (109). 

 

I. Healthy Weight BMI <25.00 
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II. Overweight BMI 25.00-29.99 
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Figure 16: Correlation plot of measured variables. Correlation plot of measured variables 

for healthy individuals with BMI up to 25 (panel I), in the overweight category with BMI in 

the range 25-30 (panel II) and the obese category with BMI >30 (panel III). 

 

III. Obese BMI >30 
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Figure 17: Insulin response is dependent on BMI. (a) Spread of total, fasting, last, following 

day insulin and total calories of all the participants in comparison to BMI. (b) Comparison of 

insulin parameters among healthy, overweight and obese participants. Significance levels are 

marked as follows: *p=0.05, **p=0.01, p=<0.001.  

 

Figure 18: Lactate response is dependent on BMI. (a) Spread of total, fasting, last, following 

day lactate and total calories of all the participants in comparison to BMI. (b) Comparison of 
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lactate parameters among healthy, overweight and obese participants. Significance levels are 

marked as follows: *p=0.05. **p=0.01.p=<0.001. 

 

3.2.10 BIOMARKER AND WEIGHT LOSS 

 Because weight loss was the identified desired outcome in the study, weight change 

versus biomarker levels were studied, as shown in Figure 19. Because of inaccuracies inherent 

to measuring weight, the weight change values were grouped into 4 groups: weight loss 

>0.5kg, weight loss 0.1-0.5kg, weight gain and no change. It was apparent that total insulin 

values varied most dramatically in the weight gain group, and was overall higher in the no 

weight and weight gain categories. Similar patterns were also observed for fasting, last, 

following day and maximum insulin values. This graph thus emphasized that insulin values, 

even individual ones, as opposed to all values collected over a 24-hour period, were potentially 

useful biomarkers for immediate feedback on dieting efficiency, with low values being likely 

predictive of weight loss, information which could only be obtained the day following a diet, 

too slow to be sufficiently motivating. 

 

Figure 19: Insulin response is associated with weight loss. Weight loss is associated with 

low insulin values. Weight change was grouped into four groups, no weight difference, weight 

gain or weigh loss between 0.1-0.5 kg and >0.5 kg. Significance levels are marked as follows: 

*p<0.05; **p<0.01. 
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3.3 DISCUSSION  

 The escalating obesity epidemic that might in part even be related to the recent decline 

in life expectancy in the USA (185, 186) requires novel approaches suitable to help people 

lose weight. In this study, the first attempt at developing quantitative, molecular feedback 

mechanisms for people dieting has been described. While biofeedback has been well 

established to be successful in diabetes (187), it has not been studied in people with no obvious 

signs of a disease. The approach used in this study, also differed from previous efforts at 

identifying biomarkers of sustained weight loss which had for example identified ACE levels, 

amongst others (113). While extremely useful, this information was long-term, and could not 

be used for immediate feedback to dieters. The present study has filled this gap. For the first 

time, it was demonstrated that metabolic markers could be used in conjunction with food 

intake behaviour and have the potential to predict weight loss. Thus, a person on a diet, in the 

future, could measure their insulin (or to a lesser extent, lactate) values and make a decision 

if it is acceptable to eat another meal that day, or what type of meal it should be. The current 

study has provided the proof of concept that biomarker measurements could be used in this 

context. Limitations of the study were the short-term nature of the diet (24-hour periods, as 

opposed to more realistic weeks/months of dieting) and the length and cost of the assay of 

insulin, and the need for urine samples. Thus, both assays for urine require a laboratory setting, 

making it not yet feasible to conduct a long-term study or investigate the effect on behaviour.  

 We are currently in the process of developing a rapid, cheap and home-based sensor 

for insulin and lactate (140), which would enable us to address these limitations in the future. 

As the majority of participants only provided data for 2-3 times 24-hour periods, a long term 

trial would be needed to demonstrate if similar conclusions could be reached over longer 

periods of dieting.  

 The study was intended as a proof of concept to demonstrate if molecular 

measurements might provide reliable information during dieting efforts. The most useful 

information for a dieter is weight loss. Thus, the main purpose of the study was to identify if 

there might be any correlation between molecular data and weight loss. Because this was an 

observational study with a relatively small number of participants (52), the treatments (which 

meal to skip and on what day) were not assigned randomly. Thus, the protocol of 

measurement, as well as sampling might cause the study not to be representative of the general 

population. Sources of sampling bias could be due to this being a volunteer sample, as well as 

a convenience sample imposed by the requirement to transfer urine samples to the laboratory 

for measurements. The bias associated with this was made evident by the large disparity 

between male and female participants (77% female, 23% male). Consequently, there might be 
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a sampling bias because participants were not chosen at random and they might exhibit 

different lifestyles. Since most participants worked or studied at the University of Warwick, 

participants could not be considered representatives of the UK population (although some of 

the demographics were similar), nor could the conclusions necessarily be extrapolated to 

people from other countries.   

 Another source of sampling bias introduced by the observational nature of the study 

was that participants were given the liberty to choose what days to diet, as well as what meals 

to skip. This has resulted in different meal plans to be followed for different number of days. 

Therefore, there was another instance of non-probability sampling, thus creating a possibility 

for statistical bias. There were also sources of response bias because participants were asked 

to record their data in an app, this meant that participants might forget or neglect to record 

data. Also, participants could have entered incorrect values for meal calories, thus indicating 

voluntary response bias. Another form of response bias, more unique to this study, was 

improper measurements bias by the participants.  

 Users were asked to record their weight, as well as collect samples of their urine. 

Incorrect sample storage, errors in measuring urine volume, could all result in inaccurate 

entries in the digital health platform. The body weight was self-reported by the participants. 

Improper weight and height measurement and difference in weighing scales might have 

generated variations in the data obtained. This limitation could be addressed by performing 

the height and weight measurements (performed by researches involved in the study) in the 

standardised conditions at the start and the end of the study. Providing guidelines like 

weighing before or after going to the toilet in the morning, measurement with or without 

clothes could also increase consistency in the measurements by the participants. Individuals 

entered information on health platform for 146 days but weight information was only provided 

for 126 days. The missing weight information for those 20 days could have affected the dieting 

success and biomarker levels and meal plan choice. Incorrect use of weighing machine, height 

measurement by the participants could have resulted in misclassification of individuals in BMI 

groups.  

 Lastly, no conclusions on causation were intended or could be inferred due to the high 

likelihood of confounding variables. One such variable was the fact that some individuals 

recorded data on consecutive days, while others on single days separated by days without data 

entries. There could have been an effect on some of the measurements after consecutive days 

of skipping meals. This, in turn, might have affected the conclusions of the study. Another 

possibly confounded variable was which meal was omitted. For example, participants might 

have skipped a meal that they regularly take, as opposed to skipping a meal where they 
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regularly skip. Also, other daily activities might also have had an effect on an individual’s 

weight loss and thus been confounded with other variables in the study. While the platform 

contained an entry form for physical activity, few entries were made.  

 In summary, the present study contained a number of sources for potential bias that 

could be addressed in future efforts. Most importantly, the data collected provided the 

necessary information to design a larger study in which participants would be randomly 

assigned to meal plans over longer periods of time. Given that the last insulin and lactate 

measurements of the day were the most informative, a future study could restrict sample 

collection to these samples, allowing for data collection over an entire diet period, which 

normally would take place over several weeks. Once participants would carry out these 

molecular measurements at home, recruiting participants outside of the university campus 

would allow broadening of the participant profiles. 

 Extensions to the study could also include improvements to the digital health 

platform. The current app provided the setting that allowed recording of life-style related data, 

including weight, food and drink intake, exercise, and urine sample collection details. It also 

provided automation for the analysis of the data. To broaden the use of the app additional 

access to local based food information databases need to be included (such as 

TESCO/Sainsbury’s basket for UK users). Increase in user-friendliness of the app could also 

help to target a wider audience.  With the wide-spread use of smartphones and tablets, apps 

that run on these devices have become a structural part of our lives (188). 74% of European 

and 73% of American adolescents use a smartphone on a regular basis (188). With the increase 

in abundance of such technologies came the development of fitness and health apps that could 

provide behavioural interventions (188, 189). However, Alley et al. (2017), have shown that 

there are only 25 apps that directly target sedentary behaviour, physical activity and/or diet. 

No app so far has provided personalised feedback using molecular measurement information. 

This was the gap this study was aiming to fill, which we hope could help target behaviour 

change in individuals, or in obesity clinics, weightwatcher programs and other organizations 

that aim to assist individuals or patients making life-style changes.  
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CHAPTER FOUR 

EFFECT OF LACTATE AND INSULIN ON DIFFERENT 

MEAL PLANS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This figure illustrates personalised feedback strategy with focus on the effects of meal plan 

choice. The figure was designed using Paint and PowerPoint 2013. 
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4.0 SUMMARY 

 Any diet might result in weight loss but all are prone to inter-individual variations in 

terms of behaviour, preferences and biological response. In this study, the effects of different 

meal plan on lactate and insulin levels were examined allowing integration of molecular 

information with meal scheduling choices.   

 Participants followed the similar instructions described in Chapter 3. Participants 

omitted one out of the 3 main meals. They also used the health platform to maintain diaries of 

food intake, weight, urine collection time and volume.  

 Analysis of insulin and lactate levels taken at different time of day revealed that 

insulin levels on the morning (before eating) of the diet day, before the second meal of the 

diet day and on the morning of the day following the diet day were all higher in the control 

group in comparison to diet groups (where one of the 3 main meal was skipped; p<0.01). 

Insulin levels on breakfast, dinner and a snack (BDS) meal option showed a correlation with 

weight loss and fasting time significant at p=0.05.  

 In this study the effects of different meal options on potential biomarker of weight 

loss (lactate and insulin) have been demonstrated. This information might be used as a 

therapeutic approach to improve health, in spite of the variation in the daily food consumed. 

 

4.1 INTRODUCTION 

Inter-individual behavioural and biological differences are amongst the causes for the 

lack of consensus on optimal diet recommendations (63). Setting realistic goals is perhaps the 

most important factor in dieting to avoid failure (63, 190). Even if a specific diet 

recommendation is scientifically sound, it may not be the most successful, due to human 

behaviour and inter-individual variations and preferences. In chapter 3, we have established 

that reduced food intake to 2 instead of 3 daily meals (either breakfast, lunch or dinner) 

resulted in weight loss regardless of which meal was omitted (65). 

In this study, the effects of different meal options chosen by the participants (when 

given flexibility in which meal they could skip) on lactate and insulin have been examined in 

more details.  
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4.2 RESULTS 

 

4.2.1 CALORIC PATTERN & MEAL PLANS CHOICE 

52 participants followed the study as described in the chapter 2 section 2.1.  They 

provided food intake information and urine samples for 147 days. Of the 147 days, there were 

11, 42, 15, 46 and 24 days for B/L, B/D, L/D, one meal per day and control days, respectively 

(Figure 20). The spread of BMI across different groups was similar showing that variations in 

biomarker level (discussed later; Figure 21) were not affected by participants’ BMI but due to 

their meal plan choice. 

 

Figure 20: Study Design. Flow diagram of the study design.  

 

Figure 21: Meal choice distribution in different BMI groups.  

Analysis of the health platform entries (of food entries) revealed that the participants followed 

the guideline of consumption of 1200 Kcal on diet days and >1200 Kcal on control days 
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(Figure 22A) with a few outliers. The highest caloric consumption was 3673 Kcal. 

Carbohydrate, protein and fat proportions in meals taken by the control group were higher 

compared to any of the diet groups (p=0.05) (Figure 22B, C & D) at the exception of the BL 

group that had higher carbohydrate intake (p=0.02; Figure 22B). The average carbohydrate 

consumption (KCal) was 640.17, 508.30, 943.81, 474.04 and 370.17 in B/L, B/D, control, L/D 

and “one meal in a day” group respectively. 168.49, 203.05, 354.76, 200.57 and 159.31 of 

protein (KCal) was consumed in in B/L, B/D, control, L/D and “one meal in a day” group 

respectively. 234.28, 307.82, 634.77, 392.27 and 245.11 of fat (KCal) was consumed in in 

B/L, B/D, control, L/D and “one meal in a day” group respectively.   

  

 

Figure 22: Caloric intake of study participants. Participants’ caloric pattern in the different 

meal groups. Significance levels are marked as follows: *p<0.05; **p<0.01. 
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4.2.2 OVERALL COMPARISON OF ALL DIET GROUPS 

COMBINED WITH THE CONTROL GROUP 

 ANOVA was used to compare the control group against all the diet groups combined. 

Confirming the findings described in Chapter 3, there was a significant (at p=0.001) difference 

in the calories consumed (Figure 23A) between control and diet groups. It also showed that 

the level for lactate and insulin were different in control and diet groups (combined).  

 Insulin levels in all the diet groups were consistently lower in comparison to the 

control group, regardless of the time of day they were measured. For instance, the mean value 

for the insulin levels in the morning of the diet was 34.19 µg in diet group vs. 67.87 µg in 

control group (p=0.06) (Figure 23B). Total insulin levels (which include all insulin 

concentrations recorded throughout the diet day) was 115.31 µg in diet groups vs. 297.11 µg 

in the control group (p<0.00010 (Figure 23C). Similarly, following day, maximum insulin 

level in a 24-hour period, insulin before first and second meal of the day were all higher in 

control groups than in the diet groups (Figure 23 B&C).  

 Similar analysis of lactate levels revealed similar trends as insulin (Figure 23D). The 

mean total lactate was 339.77 and 259.68 µg in control and diet groups, respectively, 

significant at p=0.15 (Figure 23D). The mean following day lactate was 89.08 and 52.13 µg 

in control and diet groups, respectively, significant at p=0.34 (Figure 23D). Similar decrease 

in maximum lactate levels was observed in diet groups in comparison to the control group 

(Figure 23D).  
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Figure 23: Comparison of control vs. all diet groups together. (a) Caloric comparison in 

control vs. diet groups together. Data from 52 individuals are shown. (n= 24 days and n= 

123 days in control groups and diet group, respectively)(b)& (c) Insulin amount from 52 

individuals. (n= 24 days and n= 123 days in control groups and diet group, respectively) (d) 

Lactate amount comparison from 52 participants. (n= 24 days and n= 123 days in control 

groups and diet group, respectively). Significance levels are marked as follows: *p<0.05; 

**p<0.01. 

 

4.2.3 INSULIN AND LACTATE PROFILE VARIES WITH 

DIFFERENT MEAL PLANS 

 Next, a correlation between meal plan choice and the variation in insulin and lactate 

values was investigated. Consistent with the results described above, it was observed that the 

insulin parameters (first, maximum, total and insulin before first meal of the day) were higher 
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in the control group in comparison to each of the different meal plans, significant at p=0.05 

(Figure 24). The minimum insulin was only higher in the control group when compared to the 

“single meal in a day” group at p=0.01. However, it was also found that the differences 

amongst different meals plans contributed to the overall effect. In particular, for the BDS meal 

plan, the total, maximum, minimum was significantly lower in comparison to the “single meal 

in a day” group (B or L or D) at p=0.01, 0.032, 0.038 respectively. Similarly, insulin before 

first meal of the day was significantly higher at p=0.268 in BDS in in comparison to the “single 

meal in a day” group.  

 Albeit with less significance, the lactate values also followed this trend, with 

minimum and maximum lactate being significantly higher and lower when comparing the 

BDS and the “one meal in a day” groups at p= 0.15 and 0.004, respectively. 

Figure 24: Insulin profile in different meal groups. Insulin variation in each group based on 

participants entries.  Data from 52 individuals are shown. *Insulin amounts significantly 

different at p=0.05. 

 

4.2.4 BDS CORRELATION WITH WEIGHT LOSS 

 The group who chose to have “one single meal a day” logged significantly more data 

on food with caloric content of 250 KCal or less in comparison to other groups. This had 

generated technical issues as the criteria for a snack was defined as any food bringing a 

maximum of 250 KCal and thus defining which of breakfast, lunch or dinner was omitted was 

unclear. Participants might be having what they considered a meal but since the total caloric 
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intake was equivalent to that a snack, this pseudo meal was considered as a snack. B/L, B/D, 

and control group had a small size of 11, 15 and 24 of days respectively. Weight change was 

observed in all the groups (see Chapter 3) but the small sample size hindered statistical 

analysis of lactate and insulin trends in these groups. Thus, the BDS group with a total of 42 

days was studied hereafter.  

 Following a Pearson correlation, individuals following BDS group showed a 

significant correlation with weight loss. Also, in BDS group, insulin before first meal of the 

day, maximum (at any point over a 24-interval), last (at the end of a 24-hour period) and total 

insulin amounts had a negative correlation with weight loss (Figure 25). This suggested that 

BDS plan was associated with weight loss after a 24 h interval, at least partly, due to lower 

insulin levels.  By following BDS meal, one could attain lower insulin values, which favoured 

weight loss at the end of a 24-hour interval. Total urine volume and carbohydrate consumption 

also had a negative correlation with weight loss, significant at p=0.05 (Figure 24).   

 

Figure 25: BDS is correlated with weight difference. Effects of BDS on weight difference 

showing Pearson’s correlation is significant at the 0.05 level (p <0.05). 
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4.2.5 INSULIN LEVELS IN BDS CORRELATION WITH 

FASTING TIME 

 Insulin levels in BDS group also showed a significant correlation with fasting time. 

Higher fasting length associated with decreased amounts of insulin before first meal of the 

day, maximum, following day, last and total insulin at the end of a 24-hour period (p=0.05; 

Figure 26). 

 

Figure 26: BDS is correlated with fasting time. Effects of BDS fasting time showing 

Pearson’s correlation is significant at the 0.05 level (p <0.05). 
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4.3 DISCUSSION  

 An important determinant for an ideal dietary intervention is to be culturally 

acceptable, safe and nutritionally adequate (191). It should also enhance the possibility of 

long-term compliance and weight maintenance. Different dietary plans have been tested and 

found to be beneficial for weight loss over short and long terms. Although recommendation 

and guidelines are usually provided for every diet type, yet there is no diet that provided 

personalized optimization. The current chapter filled this gap. For the first time, biomarker 

changes have been identified over a 24-hour interval on the basis of the meal plan chosen.  

The insulin levels in BDS where individual omitted lunch had a correlation with weight loss 

and fasting time.  

 In the study, lunch was the most popular meal to be omitted and dinner was the least 

popular. Most of the participants either studied or worked at the University of Warwick, 

therefore meal preferences could not be extrapolated to the general population. Skipping 

breakfast and eating heavy dinners have been found to be associated with abnormal 

metabolisms (192) and higher BMI (193, 194). Individuals participating in this study belonged 

to all ranges of BMI and it was found that any variation in lactate and insulin levels was 

independent of BMI.  

 The adherence of the participants was observed for the total calories consumption in 

a day on both control and diet days. Long-term adherence is not only important for initial 

weight loss but also weight maintenance (195). Adhering to a dietary intervention is difficult 

for many individuals (83). It has been found to be associated to weight loss success (196-198), 

which could be non-existent over a 24-hour period (65). In the study, the guidelines were 

followed even at instances where more than a single 24-hour data and urine sample collection 

was done. The participants could choose which days to diet, as well as which meals to omit. 

The different meal options chosen in the study showed different effects on insulin and lactate 

levels. Therefore, providing the molecular information over a short time might become a 

source of motivation leading to personalization of diet planning and ensuring better adherence. 

 Insulin levels in BDS were associated with weight difference and fasting time. Weight 

loss was observed in every diet plan but due to small sample size, only BDS was studied for 

statistical significance for insulin levels. Only 7.97, 10.86 and 17.39% of the total participants 

followed B/L, L/D and control meal plan, respectively.  30.42% of the participants chose the 

BDS plan next to “one meal in a day” plan, which was followed for 33.33% participants. As 

it was also the most popular plan in the study showing that popular choice also had a 

significant consequence. Such information might help initiate a behaviour change in 
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individuals, or in weightwatcher programs, obesity clinics, and other organizations that aim 

to assist individuals making life-style changes (65). 

  All analyses were based on a short-term interval study, therefore a longer intervention 

study would be necessary to investigate the effects of meal plan choice on insulin and lactate 

levels. Extension of the study involving the effects of different food items on insulin and 

lactate could help create a database which could replace the need of maintenance of food 

diaries in the future. The level of insulin and lactate in the urine could be used to determine 

the type of food eaten by an individual. Food diaries, questionnaires are often considered tiring 

(86), although there are numerous technology-based platforms such as websites (87, 88) , apps 

and computer-assisted versions available for personal tracking of food intake (89, 90). Mis-

reporting of food intake is a well-documented problem (86, 91). Making food diaries depend 

on motivation, honesty and self-awareness of the user (85) and suffer from the under-

estimation of food consumed (92). Creating a database with trend and levels of lactate and 

insulin of food items could help overcome such an issue.  
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CHAPTER FIVE 

ANGIOTENSIN CONVERTING ENZYME AS A 

PREDICTOR OF WEIGHT LOSS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This figure illustrates personalised feedback strategy with focus on Angiotensin Converting 

Enzyme (ACE). The figure was designed using Paint and PowerPoint 2013. 
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5.0 SUMMARY 

 Angiotensin Converting Enzyme (ACE) expression and activity is associated with 

obesity. It has been identified as a circulating factor that might predict sustained weight loss 

over longer times. Here, the aim was to evaluate whether ACE might be an early marker (over 

a 24 hour period) for weight loss. ACE quantification was performed in urine, using ELISA 

kit from R&D Systems, UK. 

 32 participants (78% females and 21% males; BMI 28.47 ± 4.87 kg/m2) followed a 

1200 KCal diet with an optional daily (<250 KCal) snack. Participants used an in-house 

generated health platform to provide urine and daily recordings of food intake and physical 

activity.  

 Following a day of dieting, ACE levels positively correlated with weight loss 

(p<0·05) and that this reduction was significantly more robust in individuals with a BMI >25 

(p<0·005). 

 In summary, the study demonstrated that ACE levels correlate with BMI and weight 

loss, as early as after 1 day of dieting, and thus ACE could be a potential early “biofeedback” 

marker for weight loss and diet efficiency. 

 

5.1 INTRODUCTION 

 Quantitative biomarkers have not been considered for providing early (especially over 

a 24-hour period) feedback to an individual undergoing a weight loss intervention. The goal 

is to identify a molecular marker that reports on dieting efficiency so that it can be used for 

feedback on this efficiency while weight loss may still not be observed. It is established 

previously that insulin and lactate (Chapter 3) could be potential early markers for dieting and 

this chapter introduces an additional marker, ACE, that may also be used as a feedback on diet 

efficiency.   
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5.2 RESULTS 

 

5.2.1 ACE CORRELATE WITH LIFE-STYLE DATA 

 The participants followed as described in Chapter 2 section 2.1. The multiple urine 

samples collected by the participants were used to measure ACE levels using the method 

described in Chapter 2. These values were then used to define a total of 14 parameters relating 

to biomarker profile or lifestyle data entered (Table17).   

Variable Description 

Extracted from Biomarker Profile 

Volume of urine in 24-hour (mL) Total volume of urine produced over a 24-

hour period 

First ACE value of 24-hour Obtained from the urine sample provided 

just before the first meal of the day 

Last ACE value of 24-hour Obtained from the last urine sample 

provided over a 24-hour period 

Total ACE value of 24-hour Summation of ACE values obtained from all 

the urine samples provided over a 24-hour 

period 

Following Day ACE Obtained from the first urine sample of the 

24-hour period (valid where participant 

provided more than 1-day worth of samples) 

Minimum ACE value in 24-hour The smallest amount of ACE amongst all the 

urine samples provided over a 24-hour 

period 

Maximum ACE value in 24-hour The largest amount of ACE amongst all the 

urine samples provided over a 24-hour 

period 

Time of maximum ACE in 24-hour Time stamp of the urine sample entry in the 

health platform that corresponds to the 

maximum ACE value 

Time of minimum ACE in 24-hour Time stamp of the urine sample entry in the 

health platform that corresponds to the 

minimum ACE value 
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Variable from Digital Health Platform (DHP) Entries 

Fasting time  Obtained by subtracting the time of the 

second meal from the first meal of the 

day 

Total calories  Obtained from summation of the caloric 

information of the food entries on DHP over 

a 24-hour period  

Weight Entered by the participant (measured every 

day in the morning)   

Weight difference Weight before breakfast minus weight 

following morning at the same time 

BMI Either entered by the participant or 

calculated based on the weight and height 

entry of the participant 

 

Table 17: Variables found. Variables extracted from ACE profile obtained from the urine 

samples and entries on the digital health platform (https://personalhealth.warwick.ac.uk/). 

 The cross-correlation matrix of all the 14 extracted variables from biomarker profiles 

and the digital health platform has been shown (for the complete cohort) in Figure 27 for an 

overall summary. As discussed in chapter 3, most of the participants provided data for 2-3 

days. First ACE was correlated with following day, last, maximum, minimum and total ACE 

(Figure 27).   

  

 

https://personalhealth.warwick.ac.uk/
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Figure 27: Correlation Matrix for ACE. Correlations between the variables (shown in table 

1). They were scaled from 1.0 to -1.0. Blue indicates positive correlation while red indicates 

negative correlation. X indicates no correlation between the two parameters which is 

significant at p=0.05. The size of the circles correspond to the strength of the correlation. 

Bigger the circle, stronger is the correlation between 2 variables.  

 

5.2.2 EFFECTS OF BMI ON ACE LEVELS 

 BMI correlated with ACE levels on the following day (Figure 27). Therefore, it was 

further investigated whether this association was also found in pre-defined BMI groups and 

whether correlations between ACE levels at different times (e.g.: first collection, last 

collection) could be found in these BMI groups.  
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 There was an association between BMI and ACE level on the following day (Figure 

28). Moreover, a linear trend was observed in BMI>25 group for the following day ACE levels 

(Figure 29).  No correlation was observed between ACE levels in the first or last collection 

and any BMI group (Figure 28). The decrease in ACE levels after a day of dieting was higher 

in individuals with BMI ≥25 (p<0·005; Figure 30). 

 

Figure 28: Spread of ACE values in comparison to BMI. ACE levels were quantified from 

the urine samples collected over the period of the study. First ACE was obtained from the 

urine sample provided just before the first meal of the day. Last ACE was obtained from the 

last sample collected in a 24 hour period. Total ACE is the summation of ACE values obtained 

from all the urine samples provided over a 24-hour period. Following day ACE was obtained 

from the first urine sample of the 24- hour period (valid where participant provided more than 

1 day worth of samples). 
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Figure 29: Trend in following day ACE and BMI. BMI≥25 group and following day ACE 

was positively correlated (R2=0.292) significant at p=0.015. Following day ACE obtained 

from the first urine sample of the 24- hour period (valid where participant provided more than 

1 day worth of samples). 

 

Figure 30: ACE response is dependent upon BMI. Following day ACE correlation was 

studied in different BMI groups. Following day ACE obtained from the first urine sample of 

the 24- hour period (valid where participant provided more than 1 day worth of samples). 

Significance level marked as **p<0.01.  

 

R2=0.292 
p=0.015 
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5.2.3 DEPENDENCE OF WEIGHT LOSS ON ACE LEVEL 

 As correlation between BMI and following day ACE has been identified, further 

examination was done to find a correlation between ACE levels and weight loss. Although 

correlation between weight loss and ACE level was not found when examining the whole 

cohort without any parameter refinement (Figure 27), a strong association between the 

following day ACE levels and weight loss in individuals with a BMI ≥25 group was found, 

significant at R2=0.274 and p=0.015 (Figure 31).   

 

Figure 31: ACE as an early biomarker for weight loss in individuals with a BMI≥25 . Plot 

of following day ACE against weight difference. R2=0274 and p=0.015. 

 

5.2.4 CORRELATION AMONG ACE, INSULIN AND LACTATE 

 Pearson Correlation was conducted to find association between ACE and insulin 

variables. First ACE correlated positively to first insulin, whilst last ACE correlated negatively 

with maximum and total insulin (Figure 32). Following day ACE also had a positive 

correlation with following day, maximum, minimum and total insulin (Figure 32).  To a lesser 

extent, ACE levels were also correlated to lactate values. Last ACE correlated positively to 

maximum and total lactate (Figure 33). Maximum ACE correlated to maximum lactate and 

minimum ACE correlated to minimum lactate (Figure 33). In chapter 3, it was shown that 

insulin and lactate levels (such as following day level) correlated with weight loss. Correlation 

with following day ACE variable showed that it might be usable in an exchangeable manner 

while analysing weight loss in an individual.   
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Figure 32: Correlation Matrix for ACE and Insulin. Correlations between the parameters 

were scaled from 1.0 to -1.0. Blue indicates positive correlation while red indicates negative 

correlation. X indicates no correlation between the two parameters which is significant at 

p=0.05. 
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Figure 33: Correlation Matrix for ACE and Lactate. Correlations between the parameters 

were scaled from 1.0 to -1.0. Blue indicates positive correlation while red indicates negative 

correlation. X indicates no correlation between the two parameters which is significant at 

p=0.05. 

 

5.3 DISCUSSION  

 ACE has been identified as an important predictor for sustained weight loss through 

profiling for blood protein and steroid hormones after a low caloric diet for 8 weeks (113). 

The extent of reduction in ACE separated the individuals who continued to lose weight from 

individuals who regained weight during a six-month maintenance period (113). Therefore, 

ACE appeared to be a good marker correlated with weight loss on a long term. However, the 
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goal here was to identify markers on a very short term, as early as 24 hours after the start of a 

diet regimen, to provide feedback to the individuals but also reassure the individuals about the 

efficiency of their diet. Thus, it was investigated whether correlation could be found between 

urine ACE levels and parameters such as BMI and weight loss. 

 Following day ACE levels correlated with BMI however, a stronger association was 

observed in BMI ≥25 group (overweight and obese individuals). The spread of ACE values 

among different BMI groups suggested that ACE might only be used as a predictor in 

overweight/obese population. This makes ACE a good “indictor” on the diet efficiency in 

individuals who are overweight/obese as it could give a feedback to the population who might 

require weight management the most. However, the size of the study limited the effect of this 

inference. Conducting a similar study over a larger cohort, and identifying ACE level patterns 

could palliate this. In addition, out the 147 days for the total study (Figure 5), ACE information 

was only available for 92 days and as such, the missing information might have affected the 

correlation between ACE levels and BMI and weight loss. 

 Another confounding variable was that some individuals recorded data on consecutive 

days, while others recorded data on single days separated by days without data entries. There 

could have been an effect on some of the measurements after consecutive days of omitting 

meals. This, in turn, might have affected the conclusions of the study. Lastly, individuals 

provided data collected for at least one 24-hour period, with a few exceptions where 

participants provided data for more than 2 weeks. Thus, there is a need for data collection over 

longer periods to determine whether ACE could be used as a potential biomarker prudentially 

for overweight or obese individuals.  

 In conclusion, the study demonstrated that ACE levels vary within a 24-hour interval 

after following a calorie-restricted diet. The inter-individual variation of ACE has shown that 

it could potentially be used as an early biofeedback marker on dieting and weight loss.  
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CHAPTER SIX 

IDENTIFICATIOIN OF NEW BIOMARKERS WITH 

NMR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This figure illustrates the personalised feedback strategy with focus on identification of new 

biomarkers with NMR. The figure was designed using Paint and PowerPoint 2013. 
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6.0 SUMMARY 

 1 H NMR spectra of urine contains thousands of sharp lines from predominantly low 

molecular weight metabolites. The peaks were assigned based on the chemical shifts using 

metabohunter software. Testing of the 3 urine samples from the clinical study showed 

identification of different metabolites on days with varied evening insulin levels. 

 

6.1 INTRODUCTION 

 Metabolic phenotyping of biological fluids involve the profiling of metabolites to 

understand their variations in response to genetic variation, lifestyle, drugs or any other stimuli 

(181). The profiles can help understanding the effects of these variations to evaluate the 

mechanisms involved in those interactions mentioned above (182, 183). Phenotyping has also 

been used to understand interactions between an individual and his/her nutrition and gut 

microbiome (184). Serum, urine and plasma are the most commonly studied fluids as the 

preparation for them is easier in comparison to tissue samples (185). NMR and MS are the 

most used techniques for metabolic profiling (186-188). Here, an exploratory study for 

identification of other metabolites apart from lactate, insulin and ACE using NMR 

spectroscopy has been discussed.   

 

6.2 RESULTS 

 

6.2.1 SAMPLE CHARACTERISTIC 

 To identify other makers for weight loss, a total of 3 samples from the clinical study 

were tested (described chapter 2, 3 and 4).  As last insulin of a day has been identified as a 

potential biofeedback marker for weight loss (chapter 3), so samples corresponding to the last 

urine sample collected over three different 24 hour periods were tested. The insulin values of 

the samples have been listed in Table 18.  

 

Sample Number Insulin (ng/mL) Insulin (pg) 

1 240 40 
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2 30 7 

3 210 48 

   

Table 18: Insulin levels in the urine samples tested via NMR.  

 

6.2.2 WATER SUPPRESSION  

 Water is present in biological samples at very high concentrations (10,000 times) than 

metabolites of interest. Thus, an unprepared magnetic resonance spectrum would be 

dominated by a major dominating water peak, making small molecules barely undetectable. 

To visualize these small molecules, the water peak must therefore be suppressed. Water 

suppression was done as mentioned in (179). To check the performance of water suppression, 

2mM sucrose sample prepared in in 2 mM sodium azide and 0.5mM 3-trimethylsilyl 

propionic-2, 2, 3, 3-d4 acid sodium salt (TSP) in 10% D2O: 90% H2O was tested. The 

suppression was accomplished using pre-saturation and relaxation delay of 10 seconds in 8 

scans. The spectrum before pre-saturation had a major water peak at 4.7 ppm (Figure 34). The 

spectrum after pre-saturation was suppressed and the line width was less than half height of 

TSP (internal standard) peak (Figure 35).  

 

Figure 34: 2mM sucrose 1D NMR spectrum before pre-saturation. The internal standard 

TSP is at 0ppm. 

TSP peak 
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Figure 35: 2mM sucrose 1D NMR spectrum after pre-saturation. The internal standard TSP 

is at 0ppm. 

 

6.2.3 1D NOESY 

6.2.3.1 URINE SPECTRA COMPARISON 

 1D NOESY spectra were obtained for the samples based on the parameters mentioned 

in Chapter 2. Overlay of spectra of sample 2 (low insulin level) against high insulin samples 

(#1 and 3) showed differences in the intensities of several peaks. Also, greater number of 

peaks were observed in sample 2 in comparison to sample 1 and 3 (Figure 36 and 37). 

Similarly, comparison of both high insulin samples (sample 1 and 3) showed similar NMR 

spectra (Figure 38).  

TSP peak 
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Figure 36: Comparison of sample 1 vs. 2. 1D NOESY spectrum is obtained with TSP as 

internal standard. 

 

Figure 37: Comparison of sample 3 vs. 2. 1D NOESY spectrum is obtained with TSP as 

internal standard.  



123 
 

 

Figure 38: Comparison of sample 1 vs. 3. 1D NOESY spectrum is obtained with TSP as 

internal standard.  

 

6.2.3.2 METABOLITE IDENTIFICATION 

 The Bruker Topspin 4.0.4 software package was used for peak picking and peak 

assignments relied on established literature, specifically, the human metabolome database 

(HMDB), human urine metabolome (99) and metabohunter (199) as shown in Figure 40 . 

Some of the peaks identified have been listed in Table 19.  On analysing the peaks and their 

intensities using metabohunter, a total of 663 and 329 compounds were observed in samples 

with low and high insulin respectively.  

 

Peak Metabolite 

1 Creatinine 

2 Citric acid 

3 Cis-aconitic acid 

4 Formic acid 

5 Methanol 
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6 Guanidoacetic acid 

7 Acetic acid 

8 L-cysteine 

9 Glycolic acid 

10 Creatine 

11 Isocitric acid 

12 Hippuric acid 

13 L-glutamine 

14 L-alanine 

15 L-lysine 

16 2- hydroxyglutaric acid 

17 D-glucose 

18 Indoxyl sulfate 

19 Trimethyl-N-oxide 

21 L-lactic acid 

22 Taurine 

23 L-threonine 

24 Dimethylamine 

25 Pyroglutamic acid 

26 Trigonelline 

27 Sucrose 

28 Trimethylamine 

29 L-cystine 

30 Mannitol 

31 L-histidine 

32 Imidazole 

33 Mandelic acid 

34 Dimethylglycine 

35 Cis-aconitic acid 

36 Urea 

37 Phenol 

38 Isobutyric acid 

39 Methylsuccinic acid 

40 3-aminoisobutyric acid 

41 L-fucose 
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42 N-acetylneuraminic acid 

43 Acetoacetic acid 

44 Alphaaminoadipic acid 

45 Phenylacetylglutamine 

 

Table 19: List of metabolites identified using human metabolome database (HMDB). 

 

Figure 39: Peak Assignment. Peak assignment was done using the human metabolome 

database (HMDB), the human urine metabolome and the metabohunter (99, 199).  

 

6.2.4 2D J-RESOLVED (JRES) SPECTRUM 

 2D JRES spectra were obtained for the urine samples selected from the clinical study. 

A representative spectrum obtained is shown in Figure 40. The analysis was done using a spin 

couple software, available at http://emar.riken.jp/spincpl/ (200).  This database has analysed 

standard chemical compounds in metabolic pathways for 2D-Jres spectrum. From the JRES 

spectrum obtained, peak picking was done using the Bruker Topspin 4.0.4 software package. 

Chemical shift (ppm) and J-value (interaction between two nuclear spins) were obtained.  This 

data was incorporated to the software, which generated a list of compounds identified in the 

samples. No new additional compounds were identified in comparison to compounds 

http://emar.riken.jp/spincpl/
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identified from 1D NOESY. Thus, the analysis of the remaining evening samples would be 

done using 1D NOESY technology only. 

 

 

Figure 40: 2D JRES spectrum of sample 2. F1 represents the J-coupling values and F2 

represents the chemical shift. 

 

6.3 DISCUSSION 

 It was found that 2 samples with similar insulin levels had similar spectra (Figure 38). 

These samples being from 2 different individuals suggested that there was little inter-

individual variability. However, analysis of additional samples would further be performed to 

confirm or infirm this trend.  

 The metabolite profile in urinary samples that had low or high insulin levels was also 

identified. There was a clear variation in type of metabolites found in these 2 types of samples 

(Figure 37). In particular, more metabolites were identified in samples associated with low 

insulin than in samples with high insulin levels. This suggested that these metabolite patterns 

variations might model weight loss. These initial finding would be completed by further 

investigating whether a diet could be characterized by a specific metabolite profile. 
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CHAPTER SEVEN 

LEMON EXTRACT REDUCES ANGIOTENSIN 

CONVERTING ENZYME (ACE) FUNCTION AND 

INCREASES INSULIN SENSITIVITY AND LIPOLYSIS 

IN MOUSE ADIPOCYTES 

 

 

 

 

 

 

 

 

 

 

 

This figure illustrates the effects of lemon extracts on Angiotensin Converting Enzyme (ACE) 

expression/activity in mouse adipocytes. The figure was designed using Paint and PowerPoint 

2013. 
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7.0 SUMMARY 

 ACE was identified as a potential biomarker for diet efficiency feedback (Chapter 5) 

and ACE expression varied with weight loss in overweight and obese people. In recent years, 

efforts have been made to identify means other than drugs, which might support or even 

increase weight loss. Interest has been focused particularly on the effects of specific nutrients, 

called functional foods, on health improvement. Lemon extracts (LE) appeared to improve 

weight loss and reduce ACE activity. Interestingly, ACE inhibitors (captopril, cilazapril and 

ramipril), which alter ACE activity, improve insulin sensitivity. Here, the aim was to establish 

the connection between LE and ACE and investigate the effects of LE on adipose tissue 

metabolism, using the 3T3-L1 adipocyte cell line.   

 LE treatment dramatically decreased lipid accumulation in vitro and lipolysis was 

increased in response to LE, as shown by a 5.5 ± 0.09 and 16.6 ± 1.2-fold-change in perilipin 

and pHSL protein expression levels respectively. ACE gene expression increased 12 ± 0.05-

fold during adipose differentiation. Interestingly, LE was reported to inhibit ACE and it was 

found that a short treatment with LE decreased ACE expression both at gene (80 ± 0.49%) 

and protein (55 ± 0.37%) levels. Consistently with reports showing that ACE reduction was 

associated with increased insulin sensitivity, it was found that LE (which decreases ACE 

expression) improved insulin sensitivity evidenced by a (3.74 ± 0.54) fold increase in the 

levels of insulin receptor downstream targets pAKT and GLUT4.  

 This established for the first time a molecular mechanism by which ACE might relay 

the effects of LE on lipid accumulation and insulin sensitivity. This strongly supported that 

LE-induced ACE inhibition promoted increased insulin sensitivity and breakdown of lipids. 

 

7.1 INTRODUCTION 

 ACE activity is a critical component of RAS and is responsible for the conversion of 

angiotensin I (Ang I) to angiotensin II (Ang II) (201). Ang II is involved in decreased insulin 

sensitivity, increased reactive oxygen species generation, decreased glucose uptake, regulation 

blood pressure and electrolyte balance (202). Increased production of Ang II is associated with 

increased lipogenesis in human adipose cells (203). It could induce differentiation leading to 

formation of mature adipocyte (204).   

 An individual’s metabolism is not only affected by genetics but also physical activity, 

diet, nutrition or lifestyle. Dietary interventions could be an effectual option for obesity and 
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its related disorders management (205, 206). Other studies have found bergamot, grapefruit 

and orange juice to be associated with decreased total cholesterol, low density lipoprotein 

(LDL) and glucose concentration (53-55) in humans. Administration of lemon juice decreased 

total cholesterol, LDL and glucose concentration in rats (56). Lemon extracts (LE) decreased 

ACE activity in rats (56).  

 The current study focuses on the effects of lemon extract on ACE expression, insulin 

sensitivity and fat accumulation in 3T3-L1 adipocytes. This would allow exploring the 

molecular mechanism by which ACE might relay the effects of LE. 

 

7.2 RESULTS 

 

7.2.1 LEMON EXTRACT DECREASES ACE GENE AND 

PROTEIN EXPRESSION AS WELL AS ACE ENZYMATIC 

ACTIVITY 

  

 A significant (p<0.002) and robust (12 ± 0.05-fold) increase in ACE gene expression 

was observed during 3T3L1 adipogenesis (Figure 41A).  Incubation of mature differentiated 

3T3L1 adipocytes with total LE (100 µg/mL; LE was prepared by freeze drying one squeezed 

lemon) resulted in a significant reduction of ACE gene expression, which was decreased by 

80% ± 0.49% after 10 hours (Figure 41B). Consistently with this, ACE 1 protein expression 

was significantly decreased by ~40-55 ± 0.37% (p=0.01) (Figure 41C&D) in differentiated 

3T3L1 adipocytes treated with LE. LE effects on ACE expression were dose dependent 

(Figure 41D) and importantly, ACE inhibitory activity was gradually inhibited (15-87%) with 

increasing concentrations of LE (Figure 41E).  ACE activity was studied using by measuring 

the conversion of ACE substrate Abz-GLY-PHe(NO2)-Pro into Abz-GLY product. 

Consistently with previous report (56), it was observed that LE prevented this conversion and 

therefore inhibited ACE activity.  
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Figure 41: Total lemon extracts decrease ACE expression and activity. A) ACE mRNA 

expression levels were quantified at the indicated days during 3T3L1 adipocyte 

differentiation. n= 3 independent experiments, P<0.001. B) Fully differentiated 3T3L1 

adipocytes were treated or not with lemon extracts (100µg/mL) for the indicated times and 

ACE mRNA expression levels were quantified. n= 3 experiments, P<0.05. C) 3T3L1 

differentiated adipocytes were incubated with 50,100 or 500µ/mL of lemon extract for 10 

hours. ACE 1 and GUT4 protein expression were assessed by immunoblotting. GAPDH was 

used as internal control. n=3. D) Signal quantification of ACE 1 and GLUT4 immunoblots E) 

LE inhibitory effects on ACE activity. Cells were treated with LE (50, 100 and 500 µg/mL) 

and conversion of Abz-GLY-PHe(NO2)-Pro to Abz-GLY was quantified as described in 

methods. n=3. **significant at p=0.01 and *significant at p=0.05.   
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7.2.2 LEMON EXTRACT DECREASES LIPID DROPLETS SIZE 

AND NUMBER IN 3T3-L1 ADIPOCYTES  

 Peroxisome proliferator-activated receptor gamma (PPARg) and Fatty Acid-Binding 

Protein 4 (FAPB4) are known markers of late adipose differentiation (22). Differentiated 

mature adipocytes treated with LE showed similar PPARg and FABP4 gene expression 

compared to control untreated adipocytes, suggesting that LE treatment was not affecting the 

adipogenesis process (Figure 42A).  

 Unexpectedly nonetheless, visualization of adipocytes by Oil red O staining showed 

that LE-treated adipocytes displayed a drastic reduction in lipid droplet numbers compared to 

control untreated cells (Figure 42B). The number of Oil red O stained cells after a 24-hour 

treatment with LE was decreased by up to 90% (p=0.034) (Figure 42C). Staining 

quantification showed a significant decrease (p<0.001) in absorbance for LE-treated cells, 

compared to control cells (Figure 42D). 

 

Figure 42: Lemon Extract decreases lipid droplets in 3T3-L1 adipocytes. A) Pparg and fabp4 

mRNA expression levels were quantified in adipocytes treated with and without LE 

(100µg/mL) for 8 days. n=3. B) Lipids were visualized using Oil Red staining.  Images are 
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representative of 3 experiments. C) Staining was quantified using ImageJ by calculating 

number of oil red stained cells in the section shown in B). D) Quantified oil red stain in treated 

and untreated adipocytes. **significant at p=0.01 and *significant at p=0.05.   

 

7.2.3 STIMULATION OF LIPOLYSIS BY LEMON EXTRACT 

  Perilipin and Hormone Sensitive Lipase (HSL) are known markers for mobilization 

of lipids through lipolysis (207). To understand the apparent decrease in lipid droplets, protein 

expression for perilipin and pHSL were analysed. Increased perilipin protein levels were 

observed with increasing dose of LE (Figure 43A&B). There was a 1.8, 3.8 and 5.5-fold 

increase of perilipin protein expression in 10 hours LE-treated cells, compared to untreated 

cells. Isoproterenol, a potent stimulator of lipolysis, was used as a positive control during the 

experiment. Consistently, an increase in phosphorylation levels of HSL (pHSL) in response 

to increasing doses of LE was also found. A 2.6, 6.5 and 16.6 fold change in pHSL levels in 

LE-treated differentiated cells was observed in comparison to control untreated differentiated 

cells (Figure 43C&D) after 10 hours of treatment. Supporting this, a free glycerol release assay 

(see chapter 2) was performed on mature adipocytes at t= 2, 4, 6, 10 and 24 hours (Figure 

43E) with different doses of LE. Hydrolysis of triglycerides through lipolysis lead to the 

release of free glycerol and free fatty acids (FFA).  A release of 23.08, 29.19 and 39.22 µg/mg 

of total protein of free glycerol was observed after 24-hour of treatment of 3T3-L1 cells with 

LE does of 50, 100 and 500 µg/mL respectively. At LE dose of 500µg/mL, a 4.02-fold higher 

release of free glycerol at t=2h in comparison to t=0h (Figure 43E). A similar increase (~3.5-

4.2 folds) was seen at t=10 and t=24 h for 50 and 100 µg/mL LE dose. To confirm that LE did 

not lead to cell death, cell viability assay was performed. The cells were treated with LE for 

72 hours and on an average 89.95±0.54, 92.12±0.24 and 91.87±0.12 % were viable even after 

72 hours (Figure 43F).   
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Figure 43: Stimulation of Lipolysis by Lemon Extract. A) Perilipin protein expression was 

assessed by immunoblot in cells treated with the indicated LE concentrations and stimulated 

or not with 1µM isoproterenol.  Blot for protein expression for perilipin and GADPH (loading 

control) in untreated differentiated cells (D), differentiated cells treated with LE dose of 

50µg/mL (LE50), differentiated cells treated with LE dose of 100µg/mL (LE100), 

differentiated cells treated with LE dose of 500µg/mL (LE500) and differentiated cells treated 

with isoproterenol (positive control). B) Signal quantification for protein expression for 

perilipin and GADPH (loading control) protein expression. C) Blot for protein expression for 

pHSL and HSL in D (untreated differentiated cells), differentiated cells treated with LE dose 

of 50µg/mL (LE50), differentiated cells treated with LE dose of 100µg/mL (LE100) and 

differentiated cells treated with LE dose of 500µg/mL (LE500). D) Quantified protein 

expression for pHSL and HSL in untreated differentiated cells (D), differentiated cells treated 

with LE dose of 50µg/mL (LE50), differentiated cells treated with LE dose of 100µg/mL 

(LE100) and differentiated cells treated with LE dose of 500µg/mL (LE500). E) Free glycerol 

release from treated and untreated cells after t=0, 2, 4, 6, 10 and 24 hours. F) Cell viability 
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at LE dose of 50, 100 and 500 µg/mL.  **significant at p=0.01 and *significant at p=0.05. 

For D) *significant at p=0.01 and #significant at p=0.05.   

 

7.2.4 LEMON EXTRACT INCREASES INSULIN SENSITIVITY 

 Protein Kinase B (AKT) is an important signalling molecule in the insulin pathway 

(208). Levels of Akt phosphorylation at the insulin site (S473) were increased in control cells 

after insulin stimulation, with no effects on total AKT expression. Interestingly, LE incubation 

accentuated the insulin response, evidenced by a 3.74-fold increase in AKT Ser473 

phosphorylation levels (compared to control; Figure 44A&B). A similar response was 

observed for GLUT4 expression, which was also increased in LE-treated cells (compared to 

untreated cells; Figure 44C&D).   

  

  

 

Figure 44: Lemon Extract increases Insulin Sensitivity in differentiated adipocytes. A) 

3T3L1 differentiated adipocytes were incubated or not with lemon extract for 10 hours before 

being treated with 100nM insulin for 10 min. Total AKT and phosphorylated AKT on S473 

protein levels were assessed by immunoblotting in untreated differentiated cells (D), 

differentiated cells treated with LE (D+LE), differentiated cells treated with 100nM insulin 

(D+I) and differentiated cells treated with LE and 100mn insulin (D+LE+I). n=3, p<0.05.  

B) Signal quantification of protein expression for AKT and pAKT in D (untreated 

differentiated cells), differentiated cells treated with LE (D+LE), differentiated cells treated 

with 100nM insulin (D+I) and differentiated cells treated with LE and 100mn insulin 
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(D+LE+I). C) 3T3L1 differentiated adipocytes were incubated or not with lemon extract for 

10 hours before being treated with 100nM insulin for 10 min. GLUT4 and GAPDH (loading 

control) (B) were assessed by immunoblotting in untreated differentiated cells (D), 

differentiated cells treated with LE (D+LE), differentiated cells treated with 100nM insulin 

(D+I) and differentiated cells treated with LE and 100mn insulin (D+LE+I). n=3, p<0.05.  

D) Quantified protein expression for GLUT4 and GADPH in untreated differentiated cells 

(D), differentiated cells treated with LE (D+LE), differentiated cells treated with 100nM 

insulin (D+I) and differentiated cells treated with LE and 100mn insulin (D+LE+I). 

**significant at p=0.01 and *significant at p=0.05.    

 

 

 

7.2.5 IDENTIFICATION OF LEMON CONSTITUENTS BY HPLC 

AND MS/MS 

 Having determined the effects of LE on adipocyte lipid utilization, further 

investigation was conducted to identify the compounds in the extract that could have been 

involved in the LE-induced increased lipolysis. HPLC has been routinely used to identify 

active components in plant extracts (38, 209, 210). For optimisation of HPLC conditions for 

LE, a low resolution HPLC was conducted. The low resolution HPLC created a chromatogram 

as shown below. The optimised conditions were run thrice to ensure reproducibility of the 

spectrum.  
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Figure 45: HPLC chromatogram of lemon extract. The extract was run C18 column with 

mobile phase of water and acetonitrile; repeated thrice.  

 Further, high resolution HPLC followed by mass spectroscopy was performed to 

obtain details on the nature of the different compounds of the extract.  A total of 16 compounds 

were identified (Table 20) through Mass/charge (m/z) (mass/charge/) fragmentation. This was 

compared to compounds in the PubChem database for identification. An example m/z 

fragmentation for citric acid has been shown in Figure 46 (remaining could be found in 

appendix III).  

 

RT(min

) 

[M-H]- Mol. 

Formula 

MS 

Fragments 

Name Class 

1.3 191.02  C6H7O7 133, 111 (iso)citric acid  Organic 

acid 

5.9 771.201  C33H39O2

1 

695, 547, 415, 

375, 353, 285, 

191 

Kaempferol-

Osophoroside -

Oglucoside  

Flavonol 

acylated 

glycoside 

13.1 711. 28 C34 H47 

O16 

693, 549, 341 Nomilinic acid -17- O - 

glucoside  

Limonoid 

14.7 693.277

5  

C34 H45 

O15 

531, 443, 341 Nomilinic acid-4-

Oglucoside  

Limonoid 
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2.6 651.  C29 H31 

O17 

507, 417, 341 Kaempferol acetyl 

dihexoside 

Flavonoid

-3-o-

glycoside

s 

13.1 649.251

3   

C32 H41 

O14 

413, 341 Limonin glucoside Limonoid 

8.9 625.17 C28 H33 

O16 

383, 312 Diosmetin-6, 8-di-C-

hexoside 

(Lucenin-2,4’-methyl 

ether) 

flavonoid

-7-o-

glycoside

s 

2.3 623.162

2    

C28 H31 

O16 

605, 533, 503, 

579, 443 

6,8-

C,CDiglucosyldiosmet

in isomer 

C-flavone 

glycoside 

2.7 623.156

5  

C28 H31 

O16 

605, 533, 503, 

413, 329 

C,CDiglucosyldiosmet

in  

C-

Flavone 

glycoside 

14.9 609.182

5 

C28 H33 

O15 

301.07 diosmetin-7-O-

rutinoside (diosmin) 

flavonoid

-7-o-

glycoside

s 

15.7 609.182

4 

C28 H33 

O15 

 Chrysoeriol 7-

rutinoside 

flavonoid

-7-o-

glycoside

s 

13.6 607.166

8 

C25 H31 

O15 

299,284 Diosmetin 7-O-

neohesperidoside 

Neodiosmin 

flavone 

14.7 607.166

8 

C25 H31 

O15 

299,283.8 Chrysoeriol -7-O-

neohesperidoside 

flavonoid

-7-o-

glycoside

s 

13.3 595.166

8 

C27 H31 

O15 

505, 457, 427, 

421, 409, 391, 

379, 355, 337, 

325, 307, 295  

Apigenin-6,8-di-C-

glucoside 

Flavonoid 
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13.0 287.055

6 

C15 H11 

O6 

151,135,125,10

7 

(2S)-Eriodictyol flavone 

36.7 269.24 C17 H37 

O2 

225,201,151 Apigenin flavone 

  

Table 20: List of compounds found in lemon extract.  

 

Figure 46: Iso-citric acid compound chromatogram found in lemon extract.  

7.3 DISCUSSION   

 This study demonstrated that ACE expression in 3T3-L1 adipocytes treated cells with 

LE decreased by ~80% after 10 hours of exposure. A study in overweight women drinking 

lemon juice (lemon juice with a mixture of maple and palm syrup), following abstinence from 

solid food for 7 days reduced body fat and increased insulin sensitivity (175). It was shown 

that differentiation to mature adipocytes induced an increase in ACE gene expression. This 

supported previous studies showing that higher ACE expression was associated with increased 

adiposity and fat deposition in murine and human (211, 212). Increased production of Ang II 

in adipose tissue has also been observed in diet-induced obese models (213, 214). The 

inhibitory effect of LE showed that it has a potential to act as a potential ACE inhibitor. Lemon 
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-MS, 1.3-1.5min #151-179

191.0197
1-

192.0231
1-

C₆H₇O₇, 191.0197
0.0

0.5

1.0

1.5

6x10

Intens.

0.00

0.25

0.50

0.75

1.00

1.25

6x10

186 188 190 192 194 196 198 m/z



139 
 

and lime juice has been found to inhibit ACE activity in a dose dependent manner in mouse 

models(56). 

 3T3-L1 cells showed improved insulin sensitivity after treatment with LE, evidenced 

by increased p-AKT and GLUT4 levels. Several studies testing citrus fruits have found 

increased insulin stimulated glucose uptake and improved glycemia and HbA1c (209, 210, 

215) in humans. Several flavonoids (a naturally occurring plant based nutrients) have been 

associated with biological activities. Some of the flavonoids found in citrus fruits are naringin, 

hesperidin, eriodictyol and nobiletin (210). These inhibit accumulation of triglycerides (TGs), 

increased HDL and decreased VLDL-TG section (216, 217). Healthy volunteers on hesperidin 

for 4 weeks showed a reduced cytokines and inflammatory markers in circulation (218-221). 

All the 16 compounds (a mix of flavonoids and limonoids) identified in LE (used in this study) 

haven’t been tested for their health benefits. These should be tested to identify the active 

compound leading to lipid mobilization and increased insulin sensitivity shown in this chapter.  

 To investigate the induction of lipolysis, protein expression of perilipin, pHSL were 

measured in combination with free glycerol release from treated and untreated adipocytes. In 

the LE-treated cells, an increase in free glycerol release along with perilipin and pHSL protein 

expression was observed, which supported a probable increased in lipid breakdown (222, 

223). The reduction of lipid content has often been associated with increased insulin sensitivity 

and glucose utilization (224). Consistently with this, expression of GLUT4 (the insulin-

dependent glucose transporter in adipocytes) (225) and pAKT were elevated after LE 

incubation.   

 The pathway for the potential effectiveness of lemon extract for weight loss can be 

described in 2 steps. LE decreased the ACE levels in the in-vitro model leading to increased 

insulin sensitivity by potentially increasing glucose uptake demonstrated by increased pAKT 

and GLUT4 signalling molecules which are involved in insulin signalling pathway. ACE was 

also involved in lipogenesis and /or adipose tissue development, so LE potentially acting as 

an ACE inhibitor induced lipolysis in the adipocyte demonstrated by increased pHSL levels.  

 A study involving drinking lemon juice decreased body fat, waist-hip ratio and 

decreased high-sensitive CRP in serum (175). Similar studies on citrus fruits such as orange 

juice, bergamot extract and grapefruit have found beneficial effects on lipid variables (53, 54, 

221). Drinking orange juice every day lowered concentrations of LDL, LDL/HDL ratio(55). 

Another study involving supplementation of every meal with grapefruit decreased body 

weight(54). It would be interesting to investigate if drinking lemon juice has an effect on the 

circulating ACE levels in blood/urine.  
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 CHAPTER EIGHT 

 

LEMON JUICE SUPPLIMENTATION STUDY IN 

HUMANS (PILOT) 

 

 

 

 

 

 

 

 

 

 

 

This figure illustrates lemon juice effects on Angiotensin Converting Enzyme (ACE) in 

humans. The figure was designed using Paint and PowerPoint 2013. 
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8.0 SUMMARY 

 ACE has been identified as a marker that correlated with weight maintenance, which 

is defined by a sustained weight without regain after a period of weight loss. In addition, 

chapter 5 described that ACE correlated with weight loss in individuals who fall in the 

overweight or obese category (BMI≥25) and provided an early feedback on diet potency. 

Supporting a role of ACE in diet feedback, chapter 6 demonstrated the effects of LE on mouse 

adipocyte leading to improved insulin sensitivity and lipid breakdown.  

 In this chapter, the effects lemon juice (LJ) dietary supplementation on ACE levels 

and weight loss have been discussed. In this pilot study, it was found that drinking LJ was 

positively correlated with weight loss and that weight loss was improved when LJ was 

combined with a calorie-restricted diet. Lastly, this weight loss was sustained even when 

normal (non-restricted) dietary habits were resumed.   

 

8.1 INTRODUCTION 

 As established in the previous chapter, LE has been found to be associated with 

increased lipid mobilization in adipocytes. LE also decreased ACE mRNA expression, activity 

and protein expression in 3T3-L1 cells. Drinking LJ has been found to decrease body fat, 

waist-hip ratio in serum in humans (175). Drinking orange juice daily loweres concentrations 

of LDL (55) and supplementation of every meal with grapefruit also decreases body weight 

(54).  

 In this pilot study, the effects of LJ supplementation on weight loss in the context a 

very low-calorie diet (VLCD), were investigated. The programme itself is not only restricted 

to ingesting lemon juice, but is also complemented with a mixture of Neera syrup (provides 

necessary minerals like iron, manganese, zinc, magnesium, calcium, sodium, copper and 

potassium.) which provides 600 to 800 KCal a day (175, 226).  Urine samples were provided 

over the course of several days and ACE was quantified as described in the Methods chapter.  

Batch Amount Syrup Lemon 

300 mL 10 mL 1 

1800 mL 60 mL 6 

Table 21: Composition of LJ consumed during the study.  
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8.2 RESULTS  

 

8.2.1. STUDY DESIGN AND CHARACTERISTICS 

 The study was followed for 7 days with 3 control (C), 2 abstinence (A) and 2 transition 

(T) days. “Abstinence days” were defined as 24-hour solid-food fasts. No solid food was 

allowed but liquids were allowed. The individual drank 1.5-2 L of LJ in the form of a Neera 

syrup that associates a blend of maple and palm tree syrups with LJ. The syrup has been 

described to have high amounts of minerals and trace elements to sustain a metabolism (175). 

The “Transition days” were defined as a combination of solid food (with no restriction on 

caloric intake) and 1.5- 2 L of LJ intake (also in the form of a Neera syrup). The “Control 

days” were defined as a 24-hour period without any food restriction. There was no intake of 

LJ but other liquids were allowed in similar volume (1.5-2 L) as on Abstinence or Transition 

days. On Control and Transition days, the solid food intake was similar to the routine of the 

participant. Abstinence, Transition and Control days were consecutive days, without any break 

(Table 22).  

Day # Day Type 

1 Control (C) 

2 

3 Lemon Juice only (Neera syrup)(A- 

Abstinence day) 4 

5 Lemon juice  (Neera syrup)+ Solid food (T- 

Transition day) 6 

7 Control (C) 

Table 22: Meal Plan for ACE study.   

  

8.2.2 CALORIC INTAKE PATTERN  

 The average total calories were 562Kcal on Abstinence days, 1744 Kcal on Transition 

days and 1508 KCal on Control days. On Abstinence days, lemon juice was taken along with 

a blend of Neera syrup, making the total caloric intake to ~550 KCal.  
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Figure 47: Caloric spread during the lemon juice study. C-Control day; A-Abstinence day; 

T-Transition day. 

 

8.2.3 WEIGHT LOSS PATTERN  

 Figure 48 shows the weight loss during the LJ programme on Control, Abstinence and 

Transition days. Any change in weight >0Kg was defined as weight loss, any change in weight 

<0Kg was defined as weight gain and any change in weight =0Kg was defined as no change. 

The weight was measured on every morning during the study. Following the day 1 of the 

study, weight gain was observed on the morning of the first abstinence day (day 2). As 

apparent, 4.5 kg weight (based on scale measurement) was lost on the second abstinence day 

showing that drinking only lemon juice (during the day) affected weight loss. A small weight 

loss remained during transition days. During the last two days (control), the weight lost 

appeared to be sustained that was lost during the abstinence (day 2 and 3) and transition days, 

i.e. lemon juice + solid food days (day 4 and 5).  
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Figure 48: Weight Change Pattern: Relation between weight and weight lost and the type of 

the day. C-Control day; A-Abstinence day; T-Transition day. The primary y-axis show the 

weight of the participant on the day (bars) and the secondary y-axis show the weight change 

(line).  

 

 

8.2.4 ACE LEVELS NEGATIVELY CORRELATED WITH 

CALORIE INTAKE 

 ACE levels were measured using the method described in Chapter 2. Based on the 

entries in the health platform, the average caloric intake was similar on transition and control 

days but drastically reduced on Abstinence days, as shown in Figure 1. Interestingly, the 

average ACE levels on transition and control days were very similar (877 and 790 ng, 

respectively) but total ACE was significantly increased (1517 pg) during Abstinence days 

where caloric intake was low (Figure 49).  This suggested a correlation between calorie intake 

and ACE levels, however statistical significance was not reached due to the low number of 

participants. 

1 2 3 4 5 6 7 
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Figure 49: Relationship between total ACE and total caloric intake. C-Control day; A-

Abstinence day; T-Transition day. 

 

8.3 DISCUSSION 

 A calorie-restricted diet supplemented with LJ appeared to alter ACE levels. The 

evidence suggested that the effects of LJ extended over subsequent days, as the ACE patterns 

were similar for Abstinence days (only LJ- day 3 and 4) and the subsequent Transition days 

(day 5 and 6). However, the sample size was too limited to reach statistical significance and 

the study would have to be confirmed in a larger cohort. The days with only LJ were recorded 

to have a caloric input of ~500kcal. In addition, to confirm the additional effects of LJ, controls 

would have to be taken with similar calorie on control days and abstinence days. According 

to Bayer et al (2006), in the LJ programme, the participants needed to follow 2-3 days of 

abstinence (LJ only) and 3-4 days of transition period (LJ + solid food). However, there were 

no indication of the effects of LJ on metabolism or general health, and no information is yet 

available on how many days of abstinence, transition (as well as control) are needed to obtain 

weight loss. The pattern of A, A, T, T and C was chosen arbitrarily, however additional studies 

would have to be conducted to evaluate the influence of the different combinations on weight 

loss (discussed in Chapter 9).  
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CHAPTER NINE 

SUMMARY AND FUTURE WORK 

 

 

 

 

 

 

 

 

 

 

 

 

 

This figure summarizes the personalised feedback strategy for a short term feedback. The 

figure was designed using Paint and PowerPoint 2013. 
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9.0 SUMMARY 

 This chapter discusses the highlights of the thesis and the future work that could be 

performed for taking the future steps toward personalised molecular feedback for weight loss. 

 

9.1 CONCLUSIONS  

A molecular feedback approach to assist dieting efforts and behavioural responses of 

people using a web- and mobile-based application was investigated. Skipping a meal in a day 

regardless of which one resulted in consistent weight loss for that day, in comparison to control 

days in which any number of meals was allowed. Insulin, ACE and lactate levels in urine 

showed correlations to BMI, caloric patterns and weight difference. Breakfast/Dinner (BDS) 

was the most commonly chosen meal plan where insulin showed a negative and positive 

correlation with weight differences and fasting time, respectively. ACE is the least studied 

molecule in terms of its association with dieting. Thus, cellular studies were conducted to 

identify nutritional means by which ACE could be regulated, assisting in weight loss. It was 

found that lemon extracts down regulated ACE activity in adipocytes and was associated with 

both improved adipose insulin sensitivity and increased lipid mobilization. Further, to support 

the in-vitro studies, a pilot scale study in humans was done suggesting the hypothesis that a 

low ACE level at the end of the day might signal weight loss for that day (as evidenced by the 

weight decrease the following morning). Furthermore, as expected the LJ diet appeared to 

alter ACE levels. The evidence so far suggested that the effects extended over subsequent 

days, as the ACE patterns were similar for LJ only days and the subsequent transition days. 

 

9.2 FUTURE WORK 

 

9.2.1 SHORT TERM GOAL 

 

I. NEW MARKER IDENTIFICATION THROUGH NMR  

 The feasibility of detecting variations in molecular markers over short periods of time 

(minimum 24-hour interval) has been established and correlated with weight change. 
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Encouraged by the results obtained, it is proposed to test the urine samples from the meal 

skipping study via NMR. This would allow identification of patterns in a 24-hour urinary 

profile of participants and potential other metabolites that might have potential to assist weight 

loss efforts. So far only 3 samples have been studied but testing all the samples obtained over 

147 days, could help in identification of different molecules involved, thereby shedding light 

on possible mechanisms involved in the process of weight loss. Testing multiple days from a 

single participant would also enable understanding of intra and inter variability in the urinary 

profile.  

  

II. IDENTIFICATION OF EFFECTS OF LE COMPONENTS  

 Different compounds in LE have been identified using HPLC-MS techniques. LE 

down regulated ACE activity in 3T3-L1 adipocytes and was associated with both improved 

adipose insulin sensitivity and increased lipid mobilization. The next step would be to identify 

the bioactive compounds in LE that are associated with these effects. HPLC with mass 

spectrometry techniques could be used to extract different fractions and later test these 

fractions for their potential metabolic effects. Incidentally, some of those compounds are 

commercially available and could also be studied with respect to their contribution to the 

observed metabolic effects. 

 

9.2.2 LONG TERM GOALS 

  

I. EFFECT OF LE ON ACE IN ANIMAL MODEL 

 Studying the change in expression of ACE in adipose tissue of control mice (C57Blk6) 

before and after an overnight fast would allow exploration of the results observed in 3T3-L1 

cell line. Overnight fasted animals would be sacrificed on the morning to collect tissue samples 

for ACE mRNA/protein quantification. The selection of a mouse model is motivated by their 

routine use as a mammalian model of obesity and diabetes. Mice provide an excellent fit for 

obesity and insulin-related studies since the mechanisms leading to obesity and underlying 

insulin function are remarkably similar to those in humans and technical approaches for 

modelling aspects of diet-induced metabolic disorders are established and standardized 

worldwide (171). 
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II. EFFECT OF LJ ON ACE IN HUMANS 

 The pilot scale study suggested that drinking LJ led to a low ACE level at the end of 

the day that might signal weight loss for that day (as evidenced by the weight decrease the 

following morning). More participants should be recruited to determine if similar patterns 

could be achieved and identify the reproducibility of the data obtained. The days with just LJ 

were recorded to have a caloric input of 200-500 KCal. Samples need to be collected for at 

least 2 days to verify how ACE levels would effected on days with similar caloric intake but 

without LJ. According to Bayer (2006), the lemon dieting program needs to be followed with 

2-3 days of abstinence (lime juice only) and 3-4 days of transition period (lime juice + solid 

food). Identification of total days of abstinence and transition period needs to be conducted to 

understand the required days to attain weight loss and for the maintenance of the lost weight. 

To achieve this, different groups need to follow the study for different combinations of 

abstinence (lemon juice only) and transition period (lemon juice + solid food) and observe the 

weight change at the end of the intervention. 

 

   

III. EFFECT OF LJ ON APPETITE 

 ACE interacts with uncoupling protein-2 (UCP2) (found in the hypothalamus) leading 

to regulation of neurons involved in food intake during fasting (226-228). It would be 

interesting to study the effect of lemon on an individual’s appetite. A survey should be 

designed, in which participants would rate their hunger on a scale of 0 to 5 while following 

the LJ plan. This option would be available as a part of the platform (designed for the meal 

skipping study) where they maintain their daily food and urine entries. This scale would also 

be used to rate their hunger on a control day (no caloric restriction) before they eat a meal. 

They would also rate their hunger before and after drinking lemon juice on abstinence and 

transition days. Analysis of these data points would help to identify if drinking LJ influenced 

an individual’s appetite. Similarly, effects on appetite could also be studied in animal models 

by analysing signs of withdrawal, tolerance and consumption behaviour.  
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Metabolomics Phenotyping in Disease Diagnostics and Personalised Health Care   -Date: 

27-30th October 2015 at Imperial College London. 

  



151 
 

BIBLIOGRAPHY 

1. González-Muniesa P, Mártinez-González M-A, Hu FB, Després J-P, Matsuzawa Y, 
Loos RJF, et al. Obesity. Nature Reviews Disease Primers. 2017;3:17034. 
2. Organisation WH. Obesity and overweight: World Helath Organisation; 2019 [cited 
2019 Feburary 28]. Available from: https://www.who.int/news-room/fact-
sheets/detail/obesity-and-overweight. 
3. Data and statistics. : World Health Organisation; 2015 [Available from: 
http://www.euro.who.int/en/health-topics/noncommunicable-diseases/obesity/data-and-
statistics. 
4. Després J-P. Body Fat Distribution and Risk of Cardiovascular Disease. Circulation. 
2012;126(10):1301-13. 
5. Abdelaal M, le Roux CW, Docherty NG. Morbidity and mortality associated with 
obesity. Annals of translational medicine. 2017;5(7):161-. 
6. Oh SW, Shin SA, Yun YH, Yoo T, Huh BY. Cut‐off Point of BMI and Obesity‐Related 
Comorbidities and Mortality in Middle‐Aged Koreans. Obesity Research. 2004;12(12):2031-
40. 
7. Prospective Studies C. Body-mass index and cause-specific mortality in 
900&#x2008;000 adults: collaborative analyses of 57 prospective studies. The Lancet. 
2009;373(9669):1083-96. 
8. Hruby A, Hu FB. The Epidemiology of Obesity: A Big Picture. PharmacoEconomics. 
2015;33(7):673-89. 
9. Schwartz MW, Seeley RJ, Zeltser LM, Leibel RL, Drewnowski A, Ravussin E, et al. 
Obesity Pathogenesis: An Endocrine Society Scientific Statement. Endocrine Reviews. 
2017;38(4):267-96. 
10. Claussnitzer M, Dankel SN, Kim K-H, Quon G, Meuleman W, Haugen C, et al. FTO 
Obesity Variant Circuitry and Adipocyte Browning in Humans. New England Journal of 
Medicine. 2015;373(10):895-907. 
11. Yang J, Loos RJF, Powell JE, Medland SE, Speliotes EK, Chasman DI, et al. FTO 
genotype is associated with phenotypic variability of body mass index. Nature. 
2012;490(7419):267-72. 
12. Plagemann A, Harder T, Brunn M, Harder A, Roepke K, Wittrock-Staar M, et al. 
Hypothalamic proopiomelanocortin promoter methylation becomes altered by early 
overfeeding: an epigenetic model of obesity and the metabolic syndrome. The Journal of 
physiology. 2009;587(Pt 20):4963-76. 
13. Marco A, Kisliouk T, Tabachnik T, Meiri N, Weller A. Overweight and CpG 
methylation of the Pomc promoter in offspring of high-fat-diet-fed dams are not 
"reprogrammed" by regular chow diet in rats. FASEB journal : official publication of the 
Federation of American Societies for Experimental Biology. 2014;28(9):4148-57. 
14. Borengasser SJ, Zhong Y, Kang P, Lindsey F, Ronis MJJ, Badger TM, et al. Maternal 
obesity enhances white adipose tissue differentiation and alters genome-scale DNA 
methylation in male rat offspring. Endocrinology. 2013;154(11):4113-25. 
15. Yang Q-Y, Liang J-F, Rogers CJ, Zhao J-X, Zhu M-J, Du M. Maternal obesity induces 
epigenetic modifications to facilitate Zfp423 expression and enhance adipogenic 
differentiation in fetal mice. Diabetes. 2013;62(11):3727-35. 
16. Robertson BLaA. Obesity and inequities: Guidance for addressing inequities in 
overweight and obesity. AREAGRAPHICA SNC DI TREVISAN GIANCARLO & FIGLI, Europe 
WHOROf; 2014 March 27, 2019. 
17. Ball K, Abbott G, Cleland V, Timperio A, Thornton L, Mishra G, et al. Resilience to 
obesity among socioeconomically disadvantaged women: the READI study. International 
Journal Of Obesity. 2011;36:855. 

https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
http://www.euro.who.int/en/health-topics/noncommunicable-diseases/obesity/data-and-statistics
http://www.euro.who.int/en/health-topics/noncommunicable-diseases/obesity/data-and-statistics


152 
 

18. Wright SM, Aronne LJ. Causes of obesity. Abdominal Radiology. 2012;37(5):730-2. 
19. Engin A. The Definition and Prevalence of Obesity and Metabolic Syndrome. In: 
Engin AB, Engin A, editors. Obesity and Lipotoxicity. Cham: Springer International 
Publishing; 2017. p. 1-17. 
20. Rolls BJ. The Supersizing of America: Portion Size and the Obesity Epidemic. 
Nutrition Today. 2003;38(2). 
21. Keith SW, Redden DT, Katzmarzyk PT, Boggiano MM, Hanlon EC, Benca RM, et al. 
Putative contributors to the secular increase in obesity: exploring the roads less traveled. 
International Journal Of Obesity. 2006;30:1585. 
22. Erixon F. Europe’s Obesity Challenge2016 Feburary 28,2019 [cited 2019:[1-13 pp.]. 
Available from: https://euagenda.eu/upload/publications/untitled-74063-ea.pdf. 
23. Lehnert T, Sonntag D, Konnopka A, Riedel-Heller S, König H-H. Economic costs of 
overweight and obesity. Best Practice & Research Clinical Endocrinology & Metabolism. 
2013;27(2):105-15. 
24. Kjellberg J, Tange Larsen A, Ibsen R, Højgaard B. The Socioeconomic Burden of 
Obesity. Obesity facts. 2017;10(5):493-502. 
25. Obesity W. Obesity Classification World Obesity: World Obesity; 2019 [Available 
from: https://www.worldobesity.org/about/about-obesity/obesity-classification. 
26. Adab P, Pallan M, Whincup PH. Is BMI the best measure of obesity? BMJ. 
2018;360:k1274. 
27. Chang S-H, Beason TS, Hunleth JM, Colditz GA. A systematic review of body fat 
distribution and mortality in older people. Maturitas. 2012;72(3):175-91. 
28. Seven E, Thuesen Betina H, Linneberg A, Jeppesen Jørgen L. Abdominal Adiposity 
Distribution Quantified by Ultrasound Imaging and Incident Hypertension in a General 
Population. Hypertension. 2016;68(5):1115-22. 
29. Merlotti C, Ceriani V, Morabito A, Pontiroli AE. Subcutaneous fat loss is greater 
than visceral fat loss with diet and exercise, weight-loss promoting drugs and bariatric 
surgery: a critical review and meta-analysis. International Journal Of Obesity. 2017;41:672. 
30. Wolfe BM, Kvach E, Eckel RH. Treatment of Obesity: Weight Loss and Bariatric 
Surgery. Circulation research. 2016;118(11):1844-55. 
31. NHS. Weight loss surgery NHS: NHS; 2019 [Available from: 
https://www.nhs.uk/conditions/weight-loss-surgery/. 
32. Buchwald H. The Evolution of Metabolic/Bariatric Surgery. Obesity Surgery. 
2014;24(8):1126-35. 
33. Apovian CM, Aronne LJ, Bessesen DH, McDonnell ME, Murad MH, Pagotto U, et al. 
Pharmacological Management of Obesity: An Endocrine Society Clinical Practice Guideline. 
The Journal of Clinical Endocrinology & Metabolism. 2015;100(2):342-62. 
34. Bray GA, Frühbeck G, Ryan DH, Wilding JPH. Management of obesity. The Lancet. 
2016;387(10031):1947-56. 
35. Solas M, Milagro FI, Martínez-Urbistondo D, Ramirez MJ, Martínez JA. Precision 
Obesity Treatments Including Pharmacogenetic and Nutrigenetic Approaches. Trends in 
Pharmacological Sciences. 2016;37(7):575-93. 
36. Gadde K. Prescription Medications to Treat Overweight and Obesity National 
Institute of Diabetes and Digestive and Kidney Diseases: National Institute of Diabetes and 
Digestive and Kidney Diseases; 2019 [Available from: https://www.niddk.nih.gov/health-
information/weight-management/prescription-medications-treat-overweight-obesity. 
37. Rajitha Sunkara MV. Functional Foods for Obesity Management. Food and Nutrition 
Sciences. 2014;5 11. 
38. Lu Y, Xi W, Ding X, Fan S, Zhang Y, Jiang D, et al. Citrange fruit extracts alleviate 
obesity-associated metabolic disorder in high-fat diet-induced obese C57BL/6 mouse. 
International journal of molecular sciences. 2013;14(12):23736-50. 

https://euagenda.eu/upload/publications/untitled-74063-ea.pdf
https://www.worldobesity.org/about/about-obesity/obesity-classification
https://www.nhs.uk/conditions/weight-loss-surgery/
https://www.niddk.nih.gov/health-information/weight-management/prescription-medications-treat-overweight-obesity
https://www.niddk.nih.gov/health-information/weight-management/prescription-medications-treat-overweight-obesity


153 
 

39. Estaquio C, Castetbon K, Kesse-Guyot E, Bertrais S, Deschamps Vr, Dauchet L, et al. 
The French National Nutrition and Health Program Score Is Associated with Nutritional 
Status and Risk of Major Chronic Diseases. The Journal of Nutrition. 2008;138(5):946-53. 
40. Liu S, Serdula M, Janket S-J, Cook NR, Sesso HD, Willett WC, et al. A Prospective 
Study of Fruit and Vegetable Intake and the Risk of Type 2 Diabetes in Women. Diabetes 
Care. 2004;27(12):2993. 
41. Sergent T, Vanderstraeten J, Winand J, Beguin P, Schneider Y-J. Phenolic 
compounds and plant extracts as potential natural anti-obesity substances. Food 
Chemistry. 2012;135(1):68-73. 
42. Scribner KB, Pawlak DB, Ludwig DS. Hepatic Steatosis and Increased Adiposity in 
Mice Consuming Rapidly vs. Slowly Absorbed Carbohydrate. Obesity. 2007;15(9):2190-9. 
43. Scribner KB, Pawlak DB, Aubin CM, Majzoub JA, Ludwig DS. Long-term effects of 
dietary glycemic index on adiposity, energy metabolism, and physical activity in mice. 
American Journal of Physiology-Endocrinology and Metabolism. 2008;295(5):E1126-E31. 
44. Aller EEJG, Abete I, Astrup A, Martinez JA, van Baak MA. Starches, sugars and 
obesity. Nutrients. 2011;3(3):341-69. 
45. Anderson GH, Moore SE. Dietary Proteins in the Regulation of Food Intake and 
Body Weight in Humans. The Journal of Nutrition. 2004;134(4):974S-9S. 
46. Crujeiras AB, Parra D, Abete I, Martínez JA. A hypocaloric diet enriched in legumes 
specifically mitigates lipid peroxidation in obese subjects. Free Radical Research. 
2007;41(4):498-506. 
47. Nilsson A, Johansson E, Ekström L, Björck I. Effects of a brown beans evening meal 
on metabolic risk markers and appetite regulating hormones at a subsequent standardized 
breakfast: a randomized cross-over study. PloS one. 2013;8(4):e59985-e. 
48. Lonnie M, Hooker E, Brunstrom JM, Corfe BM, Green MA, Watson AW, et al. 
Protein for Life: Review of Optimal Protein Intake, Sustainable Dietary Sources and the 
Effect on Appetite in Ageing Adults. Nutrients. 2018;10(3):360. 
49. Prior RL, E. Wilkes S, R. Rogers T, Khanal RC, Wu X, Howard LR. Purified Blueberry 
Anthocyanins and Blueberry Juice Alter Development of Obesity in Mice Fed an Obesogenic 
High-Fat Diet. Journal of Agricultural and Food Chemistry. 2010;58(7):3970-6. 
50. Suzuki R, Tanaka M, Takanashi M, Hussain A, Yuan B, Toyoda H, et al. 
Anthocyanidins-enriched bilberry extracts inhibit 3T3-L1 adipocyte differentiation via the 
insulin pathway. Nutrition & Metabolism. 2011;8(1):14. 
51. Taing M-W, Pierson J-T, Hoang VLT, Shaw PN, Dietzgen RG, Gidley MJ, et al. Mango 
fruit peel and flesh extracts affect adipogenesis in 3T3-L1 cells. Food & Function. 
2012;3(8):828-36. 
52. Coelho RCLA, Hermsdorff HHM, Bressan J. Anti-inflammatory Properties of Orange 
Juice: Possible Favorable Molecular and Metabolic Effects. Plant Foods for Human 
Nutrition. 2013;68(1):1-10. 
53. Mollace V, Sacco I, Janda E, Malara C, Ventrice D, Colica C, et al. Hypolipemic and 
hypoglycaemic activity of bergamot polyphenols: From animal models to human studies. 
Fitoterapia. 2011;82(3):309-16. 
54. Dow CA, Going SB, Chow H-HS, Patil BS, Thomson CA. The effects of daily 
consumption of grapefruit on body weight, lipids, and blood pressure in healthy, 
overweight adults. Metabolism - Clinical and Experimental. 2012;61(7):1026-35. 
55. Aptekmann NP, Cesar TB. Long-term orange juice consumption is associated with 
low LDL-cholesterol and apolipoprotein B in normal and moderately hypercholesterolemic 
subjects. Lipids in health and disease. 2013;12:119-. 
56. Oboh G, Bello FO, Ademosun AO, Akinyemi AJ, Adewuni TM. Antioxidant, 
hypolipidemic, and anti-angiotensin-1-converting enzyme properties of lemon (Citrus 



154 
 

limon) and lime (Citrus aurantifolia) juices. Comparative Clinical Pathology. 
2015;24(6):1395-406. 
57. Ryan AS, Serra MC, Goldberg AP. Metabolic Benefits of Prior Weight Loss with and 
without Exercise on Subsequent 6-Month Weight Regain. Obesity (Silver Spring, Md). 
2018;26(1):37-44. 
58. Organization WH. Physical Activity: World Helath Organization; 2019 [Available 
from: https://www.who.int/dietphysicalactivity/pa/en/. 
59. Thomas DM, Bouchard C, Church T, Slentz C, Kraus WE, Redman LM, et al. Why do 
individuals not lose more weight from an exercise intervention at a defined dose? An 
energy balance analysis. Obesity Reviews. 2012;13(10):835-47. 
60. Thomas DM, Kyle TK, Stanford FC. The gap between expectations and reality of 
exercise-induced weight loss is associated with discouragement. Preventive Medicine. 
2015;81:357-60. 
61. Luke A, Dugas L, Kramer H. Ethnicity, energy expenditure and obesity: are the 
observed black/white differences meaningful? Current Opinion in Endocrinology, Diabetes 
and Obesity. 2007;14(5). 
62. Soeliman FA, Azadbakht L. Weight loss maintenance: A review on dietary related 
strategies. Journal of research in medical sciences : the official journal of Isfahan University 
of Medical Sciences. 2014;19(3):268-75. 
63. Koliaki C, Spinos T, Spinou Μ, Brinia Μ-E, Mitsopoulou D, Katsilambros N. Defining 
the Optimal Dietary Approach for Safe, Effective and Sustainable Weight Loss in 
Overweight and Obese Adults. Healthcare (Basel, Switzerland). 2018;6(3):73. 
64. Omodei D, Fontana L. Calorie restriction and prevention of age-associated chronic 
disease. FEBS letters. 2011;585(11):1537-42. 
65. Shilpa Tejpal NS, Vijayalaxmi Manoharan, Joan Planas-Iglesias, Kate Myler and 
Judith Klein-Seetharaman. Towards Personalised Molecular Feedback for Weight Loss. BMC 
Obesity. 2019. 
66. Barnosky AR, Hoddy KK, Unterman TG, Varady KA. Intermittent fasting vs daily 
calorie restriction for type 2 diabetes prevention: a review of human findings. Translational 
Research. 2014;164(4):302-11. 
67. Anson RM, Guo Z, de Cabo R, Iyun T, Rios M, Hagepanos A, et al. Intermittent 
fasting dissociates beneficial effects of dietary restriction on glucose metabolism and 
neuronal resistance to injury from calorie intake. Proceedings of the National Academy of 
Sciences of the United States of America. 2003;100(10):6216-20. 
68. Hagemann I, Bock T, Buschard K. Intermittent Feeding and Fasting Reduces 
Diabetes Incidence in BB Rats AU - Pedersen, Charlotte R. Autoimmunity. 1999;30(4):243-
50. 
69. Gudzune KA, Doshi RS, Mehta AK, Chaudhry ZW, Jacobs DK, Vakil RM, et al. Efficacy 
of commercial weight loss programs: an updated systematic review. Annals of internal 
medicine. 2015;162(7):501-12. 
70. Affinita A, Catalani L, Cecchetto G, De Lorenzo G, Dilillo D, Donegani G, et al. 
Breakfast: a multidisciplinary approach. Italian Journal of Pediatrics. 2013;39(1):44. 
71. Neumann LB, Dunn A, Johnson D, Adams DJ, Baum IJ. Breakfast Macronutrient 
Composition Influences Thermic Effect of Feeding and Fat Oxidation in Young Women Who 
Habitually Skip Breakfast. Nutrients. 2016;8(8). 
72. Megson M, Wing R, Leahey TM. Effects of breakfast eating and eating frequency on 
body mass index and weight loss outcomes in adults enrolled in an obesity treatment 
program. Journal of Behavioral Medicine. 2017:1-7. 
73. Jarrett RJ, Keen H. Diurnal Variation of Oral Glucose Tolerance: a Possible Pointer to 
the Evolution of Diabetes Mellitus. British Medical Journal. 1969;2(5653):341-4. 

https://www.who.int/dietphysicalactivity/pa/en/


155 
 

74. Van Cauter E, Shapiro ET, Tillil H, Polonsky KS. Circadian modulation of glucose and 
insulin responses to meals: relationship to cortisol rhythm. American Journal of Physiology-
Endocrinology and Metabolism. 1992;262(4):E467-E75. 
75. Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and 
cardiovascular consequences of circadian misalignment. Proceedings of the National 
Academy of Sciences. 2009;106(11):4453. 
76. Jakubowicz D, Wainstein J, Landau Z, Raz I, Ahren B, Chapnik N, et al. Influences of 
Breakfast on Clock Gene Expression and Postprandial Glycemia in Healthy Individuals and 
Individuals With Diabetes: A Randomized Clinical Trial. Diabetes Care. 2017. 
77. Nooyens ACJ, Visscher TLS, Schuit AJ, van Rossum CTM, Verschuren WMM, van 
Mechelen W, et al. Effects of retirement on lifestyle in relation to changes in weight and 
waist circumference in Dutch men: a prospective study. Public Health Nutrition. 
2007;8(8):1266-74. 
78. Dhurandhar EJ, Dawson J, Alcorn A, Larsen LH, Thomas EA, Cardel M, et al. The 
effectiveness of breakfast recommendations on weight loss: a randomized controlled trial. 
The American Journal of Clinical Nutrition. 2014;100(2):507-13. 
79. Mohammadi D. The great breakfast myth. New Scientist. 2016;229(3066):39-41. 
80. Zhang L, Cordeiro SL, Liu J, Ma Y. The Association between Breakfast Skipping and 
Body Weight, Nutrient Intake, and Metabolic Measures among Participants with Metabolic 
Syndrome. Nutrients. 2017;9(4). 
81. Gill S, Panda S. A smartphone app reveals erratic diurnal eating patterns in humans 
that can be modulated for health benefits. Cell metabolism. 2015;22(5):789-98. 
82. Higgs S, Thomas J. Social influences on eating. Current Opinion in Behavioral 
Sciences. 2016;9:1-6. 
83. Lemstra M, Bird Y, Nwankwo C, Rogers M, Moraros J. Weight loss intervention 
adherence and factors promoting adherence: a meta-analysis. Patient preference and 
adherence. 2016;10:1547-59. 
84. Liu B, Young H, Crowe FL, Benson VS, Spencer EA, Key TJ, et al. Development and 
evaluation of the Oxford WebQ, a low-cost, web-based method for assessment of previous 
24 h dietary intakes in large-scale prospective studies. Public Health Nutrition. 
2011;14(11):1998-2005. 
85. Liu J, Johns E, Atallah L, Pettitt C, Lo B, Frost G, et al., editors. An Intelligent Food-
Intake Monitoring System Using Wearable Sensors. 2012 Ninth International Conference on 
Wearable and Implantable Body Sensor Networks; 2012 9-12 May 2012. 
86. Moshfegh AJ, Rhodes DG, Baer DJ, Murayi T, Clemens JC, Rumpler WV, et al. The US 
Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection 
of energy intakes. American Journal of Clinical Nutrition. 2008;88(2):324-32. 
87. Vereecken CA, Covents M, Matthys C, Maes L. Young adolescents' nutrition 
assessment on computer (YANA-C). Eur J Clin Nutr. 2005;59(5):658-67. 
88. 24th European Congress on Obesity (ECO2017), Porto, Portugal, May 17-20, 2017: 
Abstracts. Obesity Facts. 2017;10(suppl 1)(Suppl. 1):1-274. 
89. Inc A. Health & fitness - App store Downloads on iTunes. 2016 [Available from: 
https://itunes.apple.com/us/genre/ios-health-fitness/id6013?mt=8. 
90. Obesity – Android Apps on Google play [Available from: 
https://play.google.com/store/search?q=obesity&c=apps&docType=1&sp=CAFiCQoHb2Jlc2
l0eXoFGADAAQKKAQIIAQ%3D%3D%3AS%3AANO1ljJqCJM&hl=en_GB. 
91. Conway JM, Ingwersen LA, Vinyard BT, Moshfegh AJ. Effectiveness of the US 
Department of Agriculture 5-step multiple-pass method in assessing food intake in obese 
and nonobese women. American Journal of Clinical Nutrition. 2003;77(5):1171-8. 

https://itunes.apple.com/us/genre/ios-health-fitness/id6013?mt=8
https://play.google.com/store/search?q=obesity&c=apps&docType=1&sp=CAFiCQoHb2Jlc2l0eXoFGADAAQKKAQIIAQ%3D%3D%3AS%3AANO1ljJqCJM&hl=en_GB
https://play.google.com/store/search?q=obesity&c=apps&docType=1&sp=CAFiCQoHb2Jlc2l0eXoFGADAAQKKAQIIAQ%3D%3D%3AS%3AANO1ljJqCJM&hl=en_GB


156 
 

92. Scisco JL, Muth ER, Dong Y, Hoover AW. Slowing Bite-Rate Reduces Energy Intake: 
An Application of the Bite Counter Device. Journal of the American Dietetic 
Association.111(8):1231-5. 
93. Teixeira PJ, Silva MN, Mata J, Palmeira AL, Markland D. Motivation, self-
determination, and long-term weight control. Int J Behav Nutr Phys Act. 2012;9:22-9. 
94. Gong Z, Gong Z. Modeling the relationship between body weight and energy 
intake: A molecular diffusion-based approach. Biology Direct. 2012;7:19-. 
95. Elobeid MA, Padilla MA, McVie T, Thomas O, Brock DW, Musser B, et al. Missing 
Data in Randomized Clinical Trials for Weight Loss: Scope of the Problem, State of the Field, 
and Performance of Statistical Methods. PLOS ONE. 2009;4(8):e6624. 
96. Elliott P, Posma JM, Chan Q, Garcia-Perez I, Wijeyesekera A, Bictash M, et al. 
Urinary metabolic signatures of human adiposity. Science Translational Medicine. 
2015;7(285). 
97. Molitor J, Brown IJ, Chan Q, Papathomas M, Liverani S, Molitor N, et al. Blood 
Pressure Differences Associated With Optimal Macronutrient Intake Trial for Heart Health 
(OMNIHEART)-Like Diet Compared With a Typical American Diet. Hypertension. 
2014;64(6):1198-U86. 
98. Du F, Virtue A, Wang H, Yang X-F. Metabolomic analyses for atherosclerosis, 
diabetes, and obesity. Biomarker Research. 2013;1(1):17. 
99. Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, et al. The Human Urine 
Metabolome. PLOS ONE. 2013;8(9):e73076. 
100. Arriarán S, Agnelli S, Sabater D, Remesar X, Fernández-López JA, Alemany M. 
Evidences of basal lactate production in the main white adipose tissue sites of rats. Effects 
of sex and a cafeteria diet. PloS one. 2015;10(3):e0119572-e. 
101. Frayn KN, Coppack SW, Smith U. Evidence for lactate production by human adipose 
tissue in vivo. Diabetologia. 1990;33(12):740-1. 
102. Kerckhoffs DAJM, Arner P, Bolinder J. Lipolysis and Lactate Production in Human 
Skeletal Muscle and Adipose Tissue following Glucose Ingestion. Clinical Science. 
1998;94(1):71. 
103. Kevin O'Hea E, Leveille G. Significance of adipose tissue and liver as sites of FA 
synthesis in the pig and the efficiency of utilization of various substrates for 
lipogenesis1969. 338-44 p. 
104. Granata AL, Midrio M, Corsi A. Lactate oxidation by skeletal muscle during 
sustained contraction in vivo. Pflügers Archiv. 1976;366(2):247-50. 
105. D Lopaschuk G, L Collins-Nakai R, Itoi T. Developmental changes in energy substrate 
use by the heart1993. 1172-80 p. 
106. Lee Dong C, Sohn Hyun A, Park Z-Y, Oh S, Kang Yun K, Lee K-m, et al. A Lactate-
Induced Response to Hypoxia. Cell. 2015;161(3):595-609. 
107. Sestoft L, Bartels PD, Folke M. Pathophysiology of metabolic acidosis: effect of low 
pH on the hepatic uptake of lactate, pyruvate and alanine. Clinical Physiology. 
1982;2(1):51-8. 
108. Crawford SO, Hoogeveen RC, Brancati FL, Astor BC, Ballantyne CM, Schmidt MI, et 
al. Association of blood lactate with type 2 diabetes: the Atherosclerosis Risk in 
Communities Carotid MRI Study. International journal of epidemiology. 2010;39(6):1647-
55. 
109. Newby FD, Wilson LK, Thacker SV, DiGirolamo M. Adipocyte lactate production 
remains elevated during refeeding after fasting. American Journal of Physiology-
Endocrinology and Metabolism. 1990;259(6):E865-E71. 
110. Le Stunff C, F Bougnères P. Alterations of plasma lactate and glucose metabolism in 
obese children1996. E814-20 p. 



157 
 

111. Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, Ameneiros-Rodríguez E, 
Donapetry-García C, Vila-Altesor M, et al. Comprehensive review on lactate metabolism in 
human health. Mitochondrion. 2014;17:76-100. 
112. Serkova NJ, Jackman M, Brown JL, Liu T, Hirose R, Roberts JP, et al. Metabolic 
profiling of livers and blood from obese Zucker rats. Journal of Hepatology. 2006;44(5):956-
62. 
113. Wang P, Holst C, Andersen MR, Astrup A, Bouwman FG, van Otterdijk S, et al. Blood 
Profile of Proteins and Steroid Hormones Predicts Weight Change after Weight Loss with 
Interactions of Dietary Protein Level and Glycemic Index. PLOS ONE. 2011;6(2):e16773. 
114. Engeli S, Böhnke J, Gorzelniak K, Janke J, Schling P, Bader M, et al. Weight Loss and 
the Renin-Angiotensin-Aldosterone System. Hypertension. 2005;45(3):356-62. 
115. Harp JB, Henry SA, DiGirolamo M. Dietary Weight Loss Decreases Serum 
Angiotensin-Converting Enzyme Activity in Obese Adults. Obesity Research. 
2002;10(10):985-90. 
116. Brewster UC, Perazella MA. The renin-angiotensin-aldosterone system and the 
kidney: effects on kidney disease. The American Journal of Medicine. 2004;116(4):263-72. 
117. Xiao F, Hiremath S, Knoll G, Zimpelmann J, Srivaratharajah K, Jadhav D, et al. 
Increased Urinary Angiotensin-Converting Enzyme 2 in Renal Transplant Patients with 
Diabetes. PLOS ONE. 2012;7(5):e37649. 
118. Nesterovitch AB, Hogarth KD, Adarichev VA, Vinokour EI, Schwartz DE, Solway J, et 
al. Angiotensin I-Converting Enzyme Mutation (Trp1197Stop) Causes a Dramatic Increase in 
Blood ACE. PLOS ONE. 2009;4(12):e8282. 
119. Hattori MA, Ben G, Carmona A, E Casarini D. Angiotensin I-converting enzyme 
isoforms (high and low molecular weight) in urine of premature and full-term infants2000. 
1284-90 p. 
120. Goossens GH, Blaak EE, Van Baak MA. Possible involvement of the adipose tissue 
renin-angiotensin system in the pathophysiology of obesity and obesity-related disorders. 
Obesity Reviews. 2003;4(1):43-55. 
121. Gerstein HC. Cardiovascular and metabolic benefits of ACE inhibition: moving 
beyond blood pressure reduction. Diabetes Care. 2000;23(7):882. 
122. Lonn EM, Yusuf S, Jha P, Montague TJ, Teo KK, Benedict CR, et al. Emerging role of 
angiotensin-converting enzyme inhibitors in cardiac and vascular protection. Circulation. 
1994;90(4):2056-69. 
123. Düsing R. Pharmacological interventions into the renin-angiotensin system with 
ACE inhibitors and angiotensin II receptor antagonists: effects beyond blood pressure 
lowering. Ther Adv Cardiovasc Dis. 2016;10(3):151-61. 
124. Ferrannini E, Seghieri G, Muscelli E. Insulin and the Renin-Angiotensin-Aldosterone 
System: Influence of ACE Inhibition. Journal of Cardiovascular Pharmacology. 1994;24. 
125. Vuorinen-Markkola H, Yki-Järvinen H. Antihypertensive therapy with enalapril 
improves glucose storage and insulin sensitivity in hypertensive patients with 
non&#x2014;insulin-dependent diabetes mellitus. Metabolism - Clinical and Experimental. 
1995;44(1):85-9. 
126. Galletti F, Strazzullo P, Capaldo B, Carretta R, Fabris F, Ferrara L, et al. Controlled 
study of the effect of angiotensin converting enzyme inhibition versus calcium-entry 
blockade on insulin sensitivity in overweight hypertensive patients: Trandolapril Italian 
Study (TRIS)1999. 439-45 p. 
127. Henriksen EJ, Jacob S. Effects of captopril on glucose transport activity in skeletal 
muscle of obese Zucker rats. Metabolism - Clinical and Experimental. 1995;44(2):267-72. 
128. Henriksen EJ, Jacob S, Kinnick TR, Youngblood EB, Schmit MB, Dietze GJ. ACE 
inhibition and glucose transport in insulinresistant muscle: roles of bradykinin and nitric 



158 
 

oxide. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 
1999;277(1):R332-R6. 
129. Effects of ramipril on cardiovascular and microvascular outcomes in people with 
diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. The Lancet. 
2000;355(9200):253-9. 
130. Combs GF, Jr., Trumbo PR, McKinley MC, Milner J, Studenski S, Kimura T, et al. 
Biomarkers in nutrition: new frontiers in research and application. Annals of the New York 
Academy of Sciences. 2013;1278(1):1-10. 
131. Potischman N, Freudenheim JL. Biomarkers of Nutritional Exposure and Nutritional 
Status: An Overview. The Journal of Nutrition. 2003;133(3):873S-4S. 
132. Bingham SA. Urine Nitrogen as a Biomarker for the Validation of Dietary Protein 
Intake. The Journal of Nutrition. 2003;133(3):921S-4S. 
133. Mayne ST. Antioxidant Nutrients and Chronic Disease: Use of Biomarkers of 
Exposure and Oxidative Stress Status in Epidemiologic Research. The Journal of Nutrition. 
2003;133(3):933S-40S. 
134. Gottlieb K, Zarling EJ, Mobarhan S, Bowen P, Sugerman S. β‐Carotene decreases 
markers of lipid peroxidation in healthy volunteers. Nutrition and Cancer. 1993;19(2):207-
12. 
135. Fraser GE, Jaceldo-Siegl K, Henning SM, Fan J, Knutsen SF, Haddad EH, et al. 
Biomarkers of Dietary Intake Are Correlated with Corresponding Measures from Repeated 
Dietary Recalls and Food-Frequency Questionnaires in the Adventist Health Study-2. The 
Journal of nutrition. 2016;146(3):586-94. 
136. Lang R, Wahl A, Stark T, Hofmann T. Urinary N-methylpyridinium and trigonelline as 
candidate dietary biomarkers of coffee consumption. Mol Nutr Food Res. 
2011;55(11):1613-23. 
137. Heinzmann SS, Brown IJ, Chan Q, Bictash M, Dumas ME, Kochhar S, et al. Metabolic 
profiling strategy for discovery of nutritional biomarkers: proline betaine as a marker of 
citrus consumption. American Journal of Clinical Nutrition. 2010;92(2):436-43. 
138. Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in Diet and Lifestyle 
and Long-Term Weight Gain in Women and Men. New England Journal of Medicine. 
2011;364(25):2392-404. 
139. Symanski E, Delclos GL, de Oliveira Otto MCC, Nettleton JA, Alonso A, Jacobs DR, 
Jr., et al. Dietary Micronutrient Intakes Are Associated with Markers of Inflammation but 
Not with Markers of Subclinical Atherosclerosis. The Journal of Nutrition. 
2011;141(8):1508-15. 
140. Sanghera N, Anderson A, Nuar N, Xie C, Mitchell D, Klein-Seetharaman J. Insulin 
biosensor development: a case study. International Journal of Parallel, Emergent and 
Distributed Systems. 2017;32(1):119-38. 
141. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid 
metabolism. Nature. 2001;414:799. 
142. Stevenson E, Williams C, Nute M. The influence of the glycaemic index of breakfast 
and lunch on substrate utilisation during the postprandial periods and subsequent exercise. 
British Journal of Nutrition. 2005;93(6):885-93. 
143. Hampton SM, Johnston JD. Probing the diurnal regulation of glycemic control. 
Journal of Diabetes and its Complications. 2014;28(6):751-2. 
144. Jakubowicz D, Barnea M, Wainstein J, Froy O. High Caloric intake at breakfast vs. 
dinner differentially influences weight loss of overweight and obese women. Obesity. 
2013;21(12):2504-12. 
145. Almoosawi S, Prynne CJ, Hardy R, Stephen AM. Time-of-day and nutrient 
composition of eating occasions: prospective association with the metabolic syndrome in 
the 1946 British birth cohort. International journal of obesity (2005). 2013;37(5):725-31. 



159 
 

146. Jakubowicz D, Froy O, Wainstein J, Boaz M. Meal timing and composition influence 
ghrelin levels, appetite scores and weight loss maintenance in overweight and obese 
adults. Steroids. 2012;77(4):323-31. 
147. Stafleu A, Hendriks HFJ, Smeets PAM, Blom WAM, de Graaf C. Biomarkers of 
satiation and satiety. The American Journal of Clinical Nutrition. 2004;79(6):946-61. 
148. Mook DG, Votaw MC. How important is hedonism? Reasons given by college 
students for ending a meal. Appetite. 1992;18(1):69-75. 
149. Westerterp-Plantenga MS, Wijckmans-Duijsens NEG, Verboeket-Van De Venne 
WPHG, De Graaf K, Weststrate JA, Van Het Hof KH. Diet-Induced Thermogenesis and Satiety 
in Humans After Full-Fat and Reduced-Fat Meals. Physiology & Behavior. 1997;61(2):343-9. 
150. Westerterp-Plantenga MS, Rolland V, Wilson SAJ, Westerterp KR. Satiety related to 
24 h diet-induced thermogenesis during high protein/carbohydrate vs high fat diets 
measured in a respiration chamber. European Journal Of Clinical Nutrition. 1999;53:495. 
151. Crovetti R, Porrini M, Santangelo A, Testolin G. The influence of thermic effect of 
food on satiety. European Journal Of Clinical Nutrition. 1998;52:482. 
152. Wren AM, Murphy KG, Seal LJ, Cohen MA, Ghatei MA, Bloom SR, et al. Ghrelin 
Enhances Appetite and Increases Food Intake in Humans. The Journal of Clinical 
Endocrinology & Metabolism. 2001;86(12):5992-. 
153. Mizuta M, Mondal MS, Matsukura S, Shiiya T, Date Y, Nakazato M, et al. Plasma 
Ghrelin Levels in Lean and Obese Humans and the Effect of Glucose on Ghrelin Secretion. 
The Journal of Clinical Endocrinology & Metabolism. 2002;87(1):240-4. 
154. Matthys CC, Cummings DE, Callahan HS, Breen PA, Newby PD, Frayo RS, et al. Roles 
of Leptin and Ghrelin in the Loss of Body Weight Caused by a Low Fat, High Carbohydrate 
Diet. The Journal of Clinical Endocrinology & Metabolism. 2003;88(4):1577-86. 
155. Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation 
of food intake and body weight in humans: a review. Obesity Reviews. 2007;8(1):21-34. 
156. Schwartz MW, Seeley RJ, Woods SC, Weigle DS, Campfield LA, Burn P, et al. Leptin 
Increases Hypothalamic Pro-opiomelanocortin mRNA Expression in the Rostral Arcuate 
Nucleus. Diabetes. 1997;46(12):2119. 
157. Xu Y, Jones JE, Lauzon DA, Anderson JG, Balthasar N, Heisler LK, et al. A Serotonin 
and Melanocortin Circuit Mediates &lt;span class=&quot;sc&quot;&gt;d&lt;/span&gt;-
Fenfluramine Anorexia. The Journal of Neuroscience. 2010;30(44):14630. 
158. Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. Obesity, Inflammation, and 
Cancer. Annual Review of Pathology: Mechanisms of Disease. 2016;11(1):421-49. 
159. Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, Vats D, Morel CR, Goforth MH, et 
al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced 
insulin resistance. Cell metabolism. 2008;7(6):496-507. 
160. Ricardo-Gonzalez RR, Red Eagle A, Odegaard JI, Jouihan H, Morel CR, Heredia JE, et 
al. IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. 
Proceedings of the National Academy of Sciences of the United States of America. 
2010;107(52):22617-22. 
161. Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. The 
Lancet Diabetes & Endocrinology. 2015;3(3):207-15. 
162. Choi J, Joseph L, Pilote L. Obesity and C-reactive protein in various populations: a 
systematic review and meta-analysis. Obesity Reviews. 2013;14(3):232-44. 
163. Eagan TML, Aukrust P, Ueland T, Hardie JA, Johannessen A, Mollnes TE, et al. Body 
composition and plasma levels of inflammatory biomarkers in COPD. European Respiratory 
Journal. 2010;36(5):1027. 
164. N Klisic A, D Vasiljevic N, Simic T, Djukic T, Z Maksimovic M, Matic M. Association 
Between C-Reactive Protein, Anthropometric and Lipid Parameters Among Healthy Normal 
Weight and Overweight Postmenopausal Women in Montenegro2014. 12-6 p. 



160 
 

165. Ellulu MS, Patimah I, Khaza'ai H, Rahmat A, Abed Y. Obesity and inflammation: the 
linking mechanism and the complications. Archives of medical science : AMS. 
2017;13(4):851-63. 
166. Illán-Gómez F, Gonzálvez-Ortega M, Orea-Soler I, Alcaraz-Tafalla MS, Aragón-
Alonso A, Pascual-Díaz M, et al. Obesity and Inflammation: Change in Adiponectin, C-
Reactive Protein, Tumour Necrosis Factor-Alpha and Interleukin-6 After Bariatric Surgery. 
Obesity Surgery. 2012;22(6):950-5. 
167. McMurray F, Patten DA, Harper M-E. Reactive Oxygen Species and Oxidative Stress 
in Obesity—Recent Findings and Empirical Approaches. Obesity. 2016;24(11):2301-10. 
168. Finkel T. Signal transduction by reactive oxygen species. The Journal of cell biology. 
2011;194(1):7-15. 
169. Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, et al. A central role 
for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333-6. 
170. Tang T, Zhang J, Yin J, Staszkiewicz J, Gawronska-Kozak B, Jung DY, et al. Uncoupling 
of inflammation and insulin resistance by NF-kappaB in transgenic mice through elevated 
energy expenditure. The Journal of biological chemistry. 2010;285(7):4637-44. 
171. Lutz TA, Woods SC. Overview of animal models of obesity. Current protocols in 
pharmacology. 2012;Chapter 5:Unit5.61-Unit5. 
172. Morrison S, McGee SL. 3T3-L1 adipocytes display phenotypic characteristics of 
multiple adipocyte lineages. Adipocyte. 2015;4(4):295-302. 
173. Zebisch K, Voigt V, Wabitsch M, Brandsch M. Protocol for effective differentiation 
of 3T3-L1 cells to adipocytes. Analytical Biochemistry. 2012;425(1):88-90. 
174. Tejpal S, Bastie C, Seetharaman JK. Lemon Juice: A potential source of Angiotensin 
Converting Enzyme antagonism for weight loss and insulin resistance. Proceedings of the 
Nutrition Society. 2018;77(OCE4):E213. 
175. Kim MJ, Hwang JH, Ko HJ, Na HB, Kim JH. Lemon detox diet reduced body fat, 
insulin resistance, and serum hs-CRP level without hematological changes in overweight 
Korean women. Nutrition Research. 2015;35(5):409-20. 
176. Holzapfel C, Cresswell L, Ahern AL, Fuller NR, Eberhard M, Stoll J, et al. The 
challenge of a 2-year follow-up after intervention for weight loss in primary care. 
International journal of obesity (2005). 2014;38(6):806-11. 
177. Ángel Sentandreu M, Toldrá F. A fluorescence-based protocol for quantifying 
angiotensin-converting enzyme activity. Nature Protocols. 2006;1:2423. 
178. Guerrero L, Castillo J, Quiñones M, Garcia-Vallvé S, Arola L, Pujadas G, et al. 
Inhibition of angiotensin-converting enzyme activity by flavonoids: structure-activity 
relationship studies. PloS one. 2012;7(11):e49493-e. 
179. Dona AC, Jiménez B, Schäfer H, Humpfer E, Spraul M, Lewis MR, et al. Precision 
High-Throughput Proton NMR Spectroscopy of Human Urine, Serum, and Plasma for Large-
Scale Metabolic Phenotyping. Analytical Chemistry. 2014;86(19):9887-94. 
180. Moody RS, Alison. Adult obesity and overweight. 2014. 
181. Bressanello D, Liberto E, Collino M, Reichenbach SE, Benetti E, Chiazza F, et al. 
Urinary metabolic fingerprinting of mice with diet-induced metabolic derangements by 
parallel dual secondary column-dual detection two-dimensional comprehensive gas 
chromatography. Journal of Chromatography A. 2014;1361(Supplement C):265-76. 
182. Moore SC, Matthews CE, Sampson JN, Stolzenberg-Solomon RZ, Zheng W, Cai Q, et 
al. Human metabolic correlates of body mass index. Metabolomics : Official journal of the 
Metabolomic Society. 2014;10(2):259-69. 
183. Jourdan C, Petersen A-K, Gieger C, Döring A, Illig T, Wang-Sattler R, et al. Body Fat 
Free Mass Is Associated with the Serum Metabolite Profile in a Population-Based Study. 
PLoS ONE. 2012;7(6):e40009. 



161 
 

184. Gunnarsdóttir I, Sigurgeirsdóttir GK, Thórsdóttir I. Predictors of Dropping Out in a 
Weight Loss Intervention Trial. Annals of Nutrition and Metabolism. 2010;56(3):212-6. 
185. Walls HL, Backholer K, Proietto J, McNeil JJ. Obesity and Trends in Life Expectancy. 
Journal of Obesity. 2012;2012:107989. 
186. Crimmins EM PS, Cohen B. National Research Council (US) Panel on Understanding 
Divergent Trends in Longevity in High-Income Countries Washington (DC): National 
Academies Press (US); 2011 [Available from: 
https://www.ncbi.nlm.nih.gov/books/NBK62367/. 
187. McGinnis RA, McGrady A, Cox SA, Grower-Dowling KA. Biofeedback-Assisted 
Relaxation in Type 2 Diabetes. Diabetes Care. 2005;28(9):2145. 
188. Schoeppe S, Alley S, Rebar AL, Hayman M, Bray NA, Van Lippevelde W, et al. Apps 
to improve diet, physical activity and sedentary behaviour in children and adolescents: a 
review of quality, features and behaviour change techniques. The International Journal of 
Behavioral Nutrition and Physical Activity. 2017;14:83. 
189. Middelweerd A, Mollee JS, van der Wal CN, Brug J, te Velde SJ. Apps to promote 
physical activity among adults: a review and content analysis. The International Journal of 
Behavioral Nutrition and Physical Activity. 2014;11:97-. 
190. Byrne S, Cooper Z, Fairburn C. Weight maintenance and relapse in obesity: a 
qualitative study. International Journal Of Obesity. 2003;27:955. 
191. van Dooren C, Aiking H. Defining a nutritionally healthy, environmentally friendly, 
and culturally acceptable Low Lands Diet. The International Journal of Life Cycle 
Assessment. 2016;21(5):688-700. 
192. Watanabe Y, Saito I, Henmi I, Yoshimura K, Maruyama K, Yamauchi K, et al. 
Skipping Breakfast is Correlated with Obesity. Journal of rural medicine : JRM. 2014;9(2):51-
8. 
193. Sakurai M, Yoshita K, Nakamura K, Miura K, Takamura T, Nagasawa SY, et al. 
Skipping breakfast and 5-year changes in body mass index and waist circumference in 
Japanese men and women. Obesity science & practice. 2017;3(2):162-70. 
194. Wijtzes AI, Jansen W, Bouthoorn SH, van Lenthe FJ, Franco OH, Hofman A, et al. 
Meal-Skipping Behaviors and Body Fat in 6-Year-Old Children. The Journal of Pediatrics. 
2016;168:118-25.e2. 
195. Gibson AA, Sainsbury A. Strategies to Improve Adherence to Dietary Weight Loss 
Interventions in Research and Real-World Settings. Behavioral sciences (Basel, Switzerland). 
2017;7(3):44. 
196. Dansinger ML, Gleason J, Griffith JL, Selker HP, Schaefer EJ. Comparison of the 
atkins, ornish, weight watchers, and zone diets for weight loss and heart disease risk 
reduction: A randomized trial. JAMA. 2005;293(1):43-53. 
197. Alhassan S, Kim S, Bersamin A, King AC, Gardner CD. Dietary adherence and weight 
loss success among overweight women: results from the A TO Z weight loss study. 
International journal of obesity (2005). 2008;32(6):985-91. 
198. Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL, et al. 
Quantification of the effect of energy imbalance on bodyweight. Lancet (London, England). 
2011;378(9793):826-37. 
199. Tulpan D, Léger S, Belliveau L, Culf A, Čuperlović-Culf M. MetaboHunter: an 
automatic approach for identification of metabolites from 1H-NMR spectra of complex 
mixtures. BMC Bioinformatics. 2011;12(1):400. 
200. Kikuchi J, Tsuboi Y, Komatsu K, Gomi M, Chikayama E, Date Y. SpinCouple: 
Development of a Web Tool for Analyzing Metabolite Mixtures via Two-Dimensional J-
Resolved NMR Database. Analytical Chemistry. 2016;88(1):659-65. 

https://www.ncbi.nlm.nih.gov/books/NBK62367/


162 
 

201. Pan Y-H, Wang M, Huang Y-M, Wang Y-H, Chen Y-L, Geng L-J, et al. ACE Gene I/D 
Polymorphism and Obesity in 1,574 Patients with Type 2 Diabetes Mellitus. Disease 
markers. 2016;2016:7420540-. 
202. Patel Vaibhav B, Parajuli N, Oudit Gavin Y. Role of angiotensin-converting enzyme 2 
(ACE2) in diabetic cardiovascular complications. Clinical Science. 2014;126(7):471. 
203. Jones BH, Standridge MK, Moustaid N. Angiotensin II Increases Lipogenesis in 3T3-
L1 and Human Adipose Cells*. Endocrinology. 1997;138(4):1512-9. 
204. Darimont C, Vassaux G, Ailhaud G, Negrel R. Differentiation of preadipose cells: 
paracrine role of prostacyclin upon stimulation of adipose cells by angiotensin-II. 
Endocrinology. 1994;135(5):2030-6. 
205. Hill JO, Peters JC. Biomarkers and functional foods for obesity and diabetes. British 
Journal of Nutrition. 2002;88(S2):S213-S8. 
206. Alissa EM, Ferns GA. Functional foods and nutraceuticals in the primary prevention 
of cardiovascular diseases. Journal of nutrition and metabolism. 2012;2012:569486-. 
207. Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS. Regulation of lipolysis 
in adipocytes. Annual review of nutrition. 2007;27:79-101. 
208. Mackenzie RW, Elliott BT. Akt/PKB activation and insulin signaling: a novel insulin 
signaling pathway in the treatment of type 2 diabetes. Diabetes, metabolic syndrome and 
obesity : targets and therapy. 2014;7:55-64. 
209. Park H-J, Jung UJ, Cho S-J, Jung H-K, Shim S, Choi M-S. Citrus unshiu peel extract 
ameliorates hyperglycemia and hepatic steatosis by altering inflammation and hepatic 
glucose- and lipid-regulating enzymes in db/db mice. The Journal of Nutritional 
Biochemistry. 2013;24(2):419-27. 
210. Mulvihill EE, Burke AC, Huff MW. Citrus Flavonoids as Regulators of Lipoprotein 
Metabolism and Atherosclerosis. Annual Review of Nutrition. 2016;36(1):275-99. 
211. Eisenmann JC, Sarzynski MA, Glenn K, Rothschild M, Heelan KA. ACE I/D genotype, 
adiposity, and blood pressure in children. Cardiovascular diabetology. 2009;8:14-. 
212. Cooper R, McFarlane-Anderson N, I Bennett F, Wilks R, Puras A, Tewksbury D, et al. 
ACE, angiotensinogen and obesity: A potential pathway leading to hypertension1997. 107-
11 p. 
213. Yvan-Charvet L, Quignard-Boulangé A. Role of adipose tissue renin–angiotensin 
system in metabolic and inflammatory diseases associated with obesity. Kidney 
International. 2011;79(2):162-8. 
214. Hainault I, Nebout G, Turban S, Ardouin B, Ferré P, Quignard-Boulangé A. Adipose 
tissue-specific increase in angiotensinogen expression and secretion in the obese (fa/fa) 
Zucker rat. American Journal of Physiology-Endocrinology and Metabolism. 
2002;282(1):E59-E66. 
215. Choi JS, Yokozawa T, Oura H. Improvement of Hyperglycemia and Hyperlipemia in 
Streptozotocin-Diabetic Rats by a Methanolic Extract of Prunus davidiana Stems and Its 
Main Component, Prunin. Planta Med. 1991;57(03):208-11. 
216. Borradaile NM, de Dreu LE, Huff MW. Inhibition of Net HepG2 Cell Apolipoprotein B 
Secretion by the Citrus Flavonoid Naringenin Involves Activation of Phosphatidylinositol 3-
Kinase, Independent of Insulin Receptor Substrate-1 Phosphorylation. Diabetes. 
2003;52(10):2554. 
217. Lee SH, Park YB, Bae KH, Bok H, Kwon YK, Lee ES, et al. Cholesterol-Lowering 
Activity of Naringenin via Inhibition of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase 
and Acyl Coenzyme A:Cholesterol Acyltransferase in Rats. Annals of Nutrition and 
Metabolism. 1999;43(3):173-80. 
218. Assini JM, Mulvihill EE, Huff MW. Citrus flavonoids and lipid metabolism. Current 
Opinion in Lipidology. 2013;24(1). 



163 
 

219. Milenkovic D, Deval C, Dubray C, Mazur A, Morand C. Hesperidin Displays Relevant 
Role in the Nutrigenomic Effect of Orange Juice on Blood Leukocytes in Human Volunteers: 
A Randomized Controlled Cross-Over Study. PLOS ONE. 2011;6(11):e26669. 
220. Rizza S, Muniyappa R, Iantorno M, Kim J-a, Chen H, Pullikotil P, et al. Citrus 
polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while 
improving endothelial function and reducing inflammatory markers in patients with 
metabolic syndrome. The Journal of clinical endocrinology and metabolism. 
2011;96(5):E782-E92. 
221. Ghanim H, Sia CL, Upadhyay M, Korzeniewski K, Viswanathan P, Abuaysheh S, et al. 
Orange juice neutralizes the proinflammatory effect of a high-fat, high-carbohydrate meal 
and prevents endotoxin increase and Toll-like receptor expression. The American journal of 
clinical nutrition. 2010;91(4):940-9. 
222. Kern PA, Di Gregorio G, Lu T, Rassouli N, Ranganathan G. Perilipin Expression in 
Human Adipose Tissue Is Elevated with Obesity. The Journal of Clinical Endocrinology & 
Metabolism. 2004;89(3):1352-8. 
223. van der Merwe MT, Schlaphoff GP, Crowther NJ, Boyd IH, Gray IP, Joffe BI, et al. 
Lactate and Glycerol Release from Adipose Tissue in Lean, Obese, and Diabetic Women 
from South Africa1. The Journal of Clinical Endocrinology & Metabolism. 2001;86(7):3296-
303. 
224. Sears B, Perry M. The role of fatty acids in insulin resistance. Lipids in health and 
disease. 2015;14:121-. 
225. Atkinson BJ, Griesel BA, King CD, Josey MA, Olson AL. Moderate GLUT4 
overexpression improves insulin sensitivity and fasting triglyceridemia in high-fat diet-fed 
transgenic mice. Diabetes. 2013;62(7):2249-58. 
226. KA B. The Lemon detox diet: rejuvenation sensation. Grantham: Grantham: PNP 
Ltd; 2006. 128 p. 
227. Mobbs C. The “Domino Theory” of Hunger: The Hypothalamus Is Hot2007. 1-2 p. 
228. Souza BMd, Assmann TS, Kliemann LM, Gross JL, Canani LH, Crispim D. The role of 
uncoupling protein 2 (UCP2) on the development of type 2 diabetes mellitus and its chronic 

complications. Arquivos Brasileiros de Endocrinologia & Metabologia. 2011;55:239-48. 

 

 

 

 

 

 

 

 

 

 

 



164 
 

APPENDIX I 

 

 

 



165 
 

APPENDIX II 

 

 

 



166 
 

APPENDIX III 

 

 

 



167 
 

APPENDIX IV 

 

Figure 50: Apigenin compound chromatogram found in lemon extract.  
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Figure 51: (2S)-Eriodictyol compound chromatogram found in lemon extract.  
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Figure 52: Apigenin-6,8-di-C-glucoside compound chromatogram found in lemon extract.  
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Figure 53: Chrysoeriol -7-O-neohesperidoside compound chromatogram found in lemon 

extract.  
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Figure 54: Neodiosmin compound chromatogram found in lemon extract.  
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Figure 55: Chrysoeriol 7-rutinoside compound chromatogram found in lemon extract.  
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Figure 56: Diosmetin-7-O-rutinoside (diosmin) compound chromatogram found in lemon 

extract.  
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Figure 57: Isorhamnetin-3-O-rutinoside compound chromatogram found in lemon 

extract.  
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Figure 58: Diglucosyldiosmetin isomer C-flavone glyc. compound chromatogram found 

in lemon extract.  
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Figure 59: Diosmetin-6, 8-di-C-hexoside compound chromatogram found in lemon 

extract.  
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Figure 60: Limonin Glucoside compound chromatogram found in lemon extract.  
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Figure 61: Kaempferol acetyl dihexoside compound chromatogram found in lemon 

extract.  
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Figure 62: Nomilinic acid-4-Oglucoside Limonoid compound chromatogram found in 

lemon extract.  
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Figure 63: Nomilinic acid -17- O - glucoside Limonoid compound chromatogram found 

in lemon extract.  
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Figure 64: Kaempferol-Osophoroside -Oglucoside compound chromatogram found in 

lemon extract.  
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APPENDIX V 

 

Figure 65: The intra-individual variation of the biomarkers and caloric intake over a 24-

hour period. Blue, green and pink corresponds to ACE, insulin and lactate respectively. 

Yellow triangles are the urine stamps, blue square corresponds to the weight of an individual 

and red circles corresponds to the multiple food entries added in the health platform in a day. 

The image was created by Dr. Joan Planas using R.  
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