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The universally observed exponential increase in soil-surface CO2 efflux (‘soil respiration’; 

FS) with increasing temperature has led to speculation that global warming will accelerate 

soil organic carbon (SOC) decomposition1, reduce SOC storage, and drive a positive 

feedback to future warming2. However, interpreting temperature – FS relationships, and so 

modeling terrestrial carbon balance in a warmer world, is complicated by the many 

sources of respired carbon that contribute to FS (ref. 3) and a poor understanding of how 

temperature influences SOC decomposition rates4. Here we quantified FS, litterfall, bulk 

SOC and SOC fraction size and turnover, and total belowground carbon flux (TBCF) 

across a highly constrained 5.2°C mean annual temperature (MAT) gradient in tropical 

montane wet forest5. From these, we determined that: (i) increases in TBCF and litterfall 

explain >90% of the increase in FS with MAT; (ii) bulk SOC and SOC fraction size and 

turnover rate do not vary with MAT; and (iii) increases in TBCF and litterfall do not 

influence SOC storage or turnover on century to millennial time scales. This gradient study 

shows that for tropical montane wet forest, long-term and whole-ecosystem warming 

accelerates belowground carbon processes with no apparent impact on SOC storage. 
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Soils of the Earth annually release ~60 Gt of carbon (C) to the atmosphere via soil-surface CO2 

efflux (FS; ‘soil respiration’), dwarfing CO2 emissions from fossil fuel combustion by a factor of 

seven6. This large C flux is approximately balanced by the flux of C entering soils through total 

belowground C flux (TBCF; the sum of C flux to belowground to support root production and 

respiration, root exudates, herbivory, and symbionts) and litterfall7. Given the importance of soil 

organic C (SOC) in the global C cycle, the effects of warming on the balance of inputs and losses 

will have a large impact on the net sink strength of the terrestrial biosphere2. Efforts to quantify 

underlying processes, however, have been inadequate for projecting the effects of warming on 

terrestrial C balance4. For example, warming appears to be increasing global FS (ref. 1), but how 

much, if any, of this increase is derived from accelerated SOC decomposition remains poorly 

quantified. While many studies have documented short-term (annual to decadal) increases in 

SOC decomposition with warming, these responses often are ephemeral8, in part because of 

various acclimation processes including reduced substrate supply, microbial adjustments at 

cellular and community levels, and changes in litter and soil C quality4,8. Extrapolating short-

term results to long-term (centennial to millennial) responses is further complicated by 

observations that gross and net primary production also increase with warming9,10,11, with a 

corresponding increase in the amount of C sent belowground by plants11. Finally, SOC studies 

have failed to show changes in stock size with warming, with precipitation appearing to exert a 

much stronger influence on SOC storage than temperature12.  

To address these critical knowledge gaps, we tested two hypotheses on the potential response of 

SOC storage to long-term, whole-ecosystem warming. The first posits that warming increases the 

turnover rate for SOC, which drives the often-observed increase in FS (H1). This implies that 

current capacity of the world’s forests to retain SOC will decline with warming if increased 
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inputs do not keep pace with accelerated decomposition of SOC. Further, increased detrital 

production could stimulate SOC decomposition13,14,15 and accelerate net SOC loss. Our second 

hypothesis posits that warming-related increases in primary production drive higher FS via 

elevated aboveground and belowground carbon inputs11, and their subsequent conversion to CO2 

(H2). With H2, there need not be warming-driven increase in the turnover of older SOC as 

decomposition of the increased inputs can explain increased FS.  And while increased C inputs 

can stimulate SOC decomposition, thereby reducing storage, warmer temperatures can also 

accelerate processes of SOC formation16, with one potential outcome being no net change in 

SOC storage. These two hypotheses are conceptually straightforward, but tests have been lacking 

because of the logistical and technical difficulties associated with whole stand warming and the 

tracking of belowground C inputs. To date, results from artificial warming experiments, MAT 

gradient studies and ex situ incubation studies have been conflicting4,17. 

We directly tested our hypotheses about the response of SOC storage to warming by utilizing a 

whole-ecosystem study in tropical montane wet forest arrayed across a highly constrained 5.2°C 

MAT gradient5.  This MAT gradient represents a critical advance over previous gradient studies 

because the various factors that can affect ecosystem processes other than temperature are held 

constant5, including: soils (all Acrudoxic Hydrudands in four closely related soil series); parent 

material (all tephra-derived substrate of similar type and age); moisture (constant plant available 

soil moisture); vegetation (>85% of stand basal area across the MAT gradient is composed of 

one canopy and one mid-story species); and long-term disturbance history (late-stage aggrading 

forests). To further constrain this gradient and minimize disturbance effects, we selected plots 

that represent maximum biomass for a given MAT (ref. 5). 
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We previously reported that FS increased linearly and positively with MAT along this gradient5. 

Here we report that both TBCF and litterfall, representing the vast majority of detrital C inputs to 

soil, also increase linearly and positively with MAT (Fig. 1), in line with cross-site global 

analyses of the response of TBCF to rising temperature11. We then combined quantification of 

SOC stocks by depth (0-10 cm, 10-30 cm, 30-50 cm, and 50-91.5 cm) with radiocarbon-based 

mean residence time (MRT) estimates for bulk SOC across the MAT gradient. Strikingly, 

radiocarbon-based estimates of MRT revealed no relationship between SOC MRT and MAT for 

any depth (Fig. 2A-D). Similarly, MAT had no effect on radiocarbon-based estimates of turnover 

for four SOC fractions (soluble, light, intermediate and heavy) in 0-10 cm depth soils, those soils 

most likely to show a response to MAT (Supplemental Information; Fig. A1 and A2). In 

addition, neither SOC stocks at any depth (Fig 2E-H) nor SOC fraction size for surface soils 

(Supplemental Information; Fig. A1 & A2) varied with MAT. Because radiocarbon-based 

turnover rate for bulk SOC is a strong predictor of the turnover rate for acid-insoluble SOC 

(Supplemental Information; Fig. A3), we conclude that across our gradient, temperature has little 

detectable influence on turnover of bulk SOC, on the size and turnover of even fairly labile SOC 

fractions with high MRT, or on the size and turnover of the most stable C fractions in mineral 

soils. Lending further support for H2, SOC turnover estimated from stock and MRT 

measurements for bulk SOC represents <5% of FS, or ~0.39Mg C ha-1 yr-1. These numbers may 

underestimate the actual contribution of SOC decomposition to FS because bulk SOC MRT may 

not accurately capture the dynamics of the more rapidly cycling SOC pools. Relying on fraction 

size and MRT for SOC in 0-10 cm soils, we calculated a total flux of 0.40 Mg C ha-1 yr-1. 

Because this depth contributes >75% of SOC derived FS for the bulk SOC calculations, even a 
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doubling of our estimated SOC flux translates to <10% of FS being derived from decomposition 

of SOC that is > 1yr, in line with independent estimates for aggrading tropical forests18.  

Our results provide compelling evidence that, alone (e.g., not accompanied by changes in 

vegetation or moisture) and in the long-term (i.e., centuries to millennia), warming will have 

little effect on SOC storage in tropical montane wet forest. Critically, the lack of change in SOC 

stocks across this MAT gradient cannot be interpreted as faster SOC decomposition being offset 

by faster SOC formation rates due to increased inputs of detrital C and temperature effects on 

decomposition and formation processes16,18. This combination of balancing processes would 

necessarily drive down the age, and hence MRT of SOC and associated fractions, which we did 

not observe. Because aboveground litterfall and TBCF increased with MAT (Fig. 1), but MAT 

had no effect on SOC storage and turnover, we conclude that the additional C entering soils at 

warmer sites is being rapidly decomposed and released as CO2 from the rhizosphere or on the 

soil surface. Further, the lack of an MAT effect on SOC storage and MRT indicates that the 

increase in C inputs with warming are not driving an increase in SOC turnover13,14,15. 

The current perspective on SOC stabilization and decomposition is that physical protection 

mechanisms, including organo-mineral associations and protection within soil aggregates, exert a 

primary control on SOC decomposition19. Organo-mineral associations are particularly strong for 

soils containing short range order (SRO), or other poorly crystalline phases of Al such as 

allophane, imogolite, and organo-complexed Al (ref. 20). While the soils of our MAT gradient 

display some oxic properties typical of the Ultisols and Oxisols that dominate the lowland 

tropics5, they are relatively young (~20,000 yr) and of volcanic ash origin, and so some level of 

amorphous mineralogy is expected along with a strong positive influence on C stabilization20. 

The primary objective of mineralogical analyses here was to rule out the possibility that 
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temperature-mediated changes to soil mineralogy are driving the absence of SOC storage or 

MRT responses to warming. If increasing SRO mineral content were to result in more effective 

physical protection of SOC from decomposition at warmer temperatures, our results would be 

confounded and difficult to interpret. Consistent with previous research20, we found clear 

evidence of mineral control on SOC MRT (Fig. 4). However, SRO patterns were opposite in 

direction from those that would confound our results – cooler soils were associated with higher 

SRO content, which is to be expected given that soils weather more slowly at cooler 

temperatures. Specifically, we found significant relationships between SRO content and SOC 

MRT for soils at the two middle depths. For surface soils that were all low in SRO Al, bulk SOC 

MRTs are short – on the order of a century indicating rapid turnover, as has been previously 

documented in Hawaii20 and elsewhere in the tropics4. Yet SOC MRT for this depth is unrelated 

to MAT, indicating that controls on turnover in surface soils include some combination of low 

substrate availability2,8 and perhaps longer-term microbial adjustments to changes in MAT (ref. 

4,8,21). These findings are confirmed by analyses of fractionated 0-10 cm depth soils, which 

showed no discernable effect of MAT on the size or MRT of individual SOC fractions 

(Supplemental Information). For the two mid-depth soil layers where SRO minerals were 

abundant, soil mineralogy exerts a substantial influence on SOC MRT, but there is no apparent 

effect of MAT. Given the very long MRTs for SOC in the deepest soils (>10,000 yr), 

stabilization may be caused by a combination of high concentration of SRO minerals, but also 

additional factors such as primary organo-complexed Al, or concretions into micro-aggregates of 

crystalline Fe oxides that render C unavailable for microbial processing20.  

These results show that temperature can influence belowground processes through geological 

time scale effects on soil mineralogy (Fig. 3) as well as physiological time scale effects on 
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productivity (Fig. 4), which highlights the need for SOC studies to examine both the direct 

biochemical effects of temperature on SOC turnover, and any indirect geological or 

physiological effects of temperature on SOC turnover. Critically, the data presented here provide 

no evidence that warmer temperatures exert a direct effect on SOC storage via accelerated 

decomposition.  Conversely, our work shows a limited capacity of soils to retain the additional 

inputs from warming-related increases in primary production and belowground C inputs – either 

because increased inputs decompose more rapidly with warming or soils have a maximum 

capacity to protect and store organic C (ref. 22), with unprotected C being quickly mineralized. 

Notably, a 50% increase in detrital C inputs across MAT had little effect on SOC MRT or 

stock14,15. In contrast, nitrogen (N) has been implicated in the stabilization of detrital C through 

suppression of lignin degrading enzymes and formation of recalcitrant compounds23, and we 

observed warming related increases in the cycling and availability of soil N (unpublished data). 

Conversely, increases in rhizosphere carbon flux in Free Air CO2 Enrichment (FACE) 

experiments has been shown to increase soil organic N cycling through enhanced microbial and 

enzymatic activity24.  

The various lines of evidence presented here strongly support our second hypothesis: TBCF and 

litterfall increase with MAT, which drives higher FS, but neither elevated temperature nor 

increased detrital inputs affect storage or turnover of most SOC (Fig. 4). This conclusion aligns 

with recent evidence from FACE experiments showing that root exudation increased with 

exposure to elevated CO2, but increases in recent, root-derived C were rapidly respired and 

returned to the atmosphere24. This interpretation is supported by recent evidence from the arctic, 

where a two-decades experiment showed warming induced increases in microbial activity and 

but also increased mineral soil C storage25. 



8 
 

We note that forest floor mass declined linearly with rising MAT (from 450 to 300 g C / m2). 

Relying on a classic mass balance approach, we used forest floor mass and litterfall rates to 

estimate that turnover rates for unprotected fine detritus not associated with mineral soil are 2.3 

times faster at the warmest compared to the coolest site (litter turnover = MAT * (-0.17) + 3.77; 

r2=0.82; Q10 ≈ 4.5). These findings are in line with well-established responses of litter 

decomposition to temperature2,8. Further, earlier work from this gradient showed a strong pattern 

of declining coarse woody debris storage with warming26. These findings suggest that when 

detrital C is not protected, as is the case for fresh fine litter, coarse woody debris, or C newly 

released into the rhizosphere, substrate supply does not limit reaction rates and decomposition 

can respond much more strongly to increases in temperature than the substrate-limited 

decomposition of SOC protected by soil minerals8. Such an interpretation is consistent with 

recent findings showing that the temperature sensitivity of SOC decomposition depends strongly 

on the availability of labile C (ref. 27).  While our study does not address short-term warming 

responses, and findings from past studies are clearly mixed4,18, our findings for tropical montane 

wet forest point to an intriguing set of conclusions. Long-term warming alone: (i) increases 

belowground inputs, which in turn drive warming related increases in FS through accelerated 

cycling of labile, unprotected C; (ii) has no effect on the storage of bulk SOC, with neither SOC 

turnover nor formation responding to rising temperature; and (iii) has no effect on the 

distribution and turnover of SOC in soil C fractions. Overall, however, we caution that there is a 

strong need for a new generation of large-scale, cross-site studies that systematically address 

SOC responses to warming in the context of whole ecosystem process rates.  
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METHODS SUMMARY 

Site Description – This research took place on the eastern flank of Mauna Kea Volcano, Hawaii 

Island, within the Hawaii Experimental Tropical Forest and the Hakalau Forest National Wildlife 

Refuge. Forests are characterized as closed-canopy, Metrosideros polymorpha-dominated 

tropical montane wet forest. Soils are all Acrudoxic Hydrudands and are derived from tephra ash 

deposits from Mauna Kea volcanism. The underlying Pleistocene-aged flow is dominated by 

Hawaiite and mugearite5. The nearly constant and old age (>10,000 yr) of SOC in the deepest 

soil layer supports a constant substrate age across the MAT gradient. 

Plot Selection – To minimize disturbance history effects, repeat airborne Light Detection and 

Ranging (LiDAR) measurements of forest structure were used to select seven sites at each of six 

target elevations, where each site represents the maximum aboveground biomass present at a 

given elevation.  LiDAR-based information at a 1.12 m resolution was acquired with the 

Carnegie Airborne Observatory (CAO; ref. 28) to quantify mean tree height across each 

elevation band specified on a single substrate type and age (See Supplemental Information).  For 

the two coolest sites, LiDAR data were not available, and so traditional inventory techniques 

were used to identify two high biomass stands across a 4 km2 area of forest growing on the 

appropriate geology and soils5.  

Stock and Flux Measurements – We measured FS and litterfall in each of the nine 20 x 20 m 

plots located across a 5.2°C MAT gradient (ref. 5). We used a mass balance-based approach to 

estimate TBCF (ref. 18), which is defined as the annual total of C flux to belowground for the 

production and maintenance of roots, mycorrhizae and other symbionts, and C released as root 

exudates, herbivory or biomass turnover. Because this C must be respired or stored, TBCF can 

be estimated as: FS - litterfall + Δ [CS + CF + CR], where CS = mineral soil C, CF = forest floor C 
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and CR = live root C (ref. 18). We measured FS monthly using previously described methods5. 

We measured litterfall monthly in 8 permanently installed 0.174 m-2 collectors per plot, from 

which litter was collected, oven-dried and weighed using standard methods18. Both sets of flux 

measurements were conducted between April, 2009 and March, 2010. We assumed that annual 

change in soil C was negligible based on our radiocarbon analyses and findings for adjacent but 

more disturbed sites18. We also assumed that erosion and leaching losses of C were minor 

components of TBCF at our sites18 and so were not measured. Based on prior results18, we 

assumed that 10% of TBCF was allocated to coarse root growth. While relevant for TBCF 

accounting purposes, any errors associated with this assumption would have a minor influence 

on overall TBCF estimates18, and no effect on our SOC and FS estimates because coarse root C is 

long-lived. From previous work on error distribution in TBCF calculations18, we anticipate that 

error propagation in calculating TBCF is negligible. Soil temperature and moisture were 

recorded at the location and time of measurement using temperature probes and loggers5. 

Detailed repeat measurements across MAT showed no diurnal variation in soil surface CO2 

efflux, and so were not used to construct annual soil surface CO2 efflux budgets5. 

We measured forest floor mass across the gradient to understand litterfall decomposition rates 

through collections of all recognizable plant material (litter layer C) at eight 0.174 m-2 quadrats 

per plot. These samples were dried to constant weight and analyzed for [C] (Costech Elemental 

Combustion System). Mineral associated SOC (Mg C ha-1) was estimated across the gradient in 

three cores per plot (or five cores if coefficient of variation was > 25% based on the original 3 

cores) to 91.5 cm using a 5.75 cm diameter soil core with plastic sleeves, from which both C 

content as above and bulk density were determined18. We analyzed bulk density and %C from 

four depth increments (0-10 cm, 10-30 cm, 30-50 cm, and 50-91.5 cm) to determine C stocks.  
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Soil samples were physically separated into soluble, light, intermediate and heavy fractions using 

a sequential density fractionation method relying on progressively denser solutions of sodium 

poly-tungstate to isolate soil C fractions29. Sub-samples of bulk soil and soil fractions were 

ground to <150 micron mesh size for elemental and isotope analyses. Radiocarbon analyses of 

all bulk soils were completed at the Center for Accelerator Mass Spectrometry at Lawrence 

Livermore National Laboratory while fraction-based radio-carbon analyses were completed at 

Centre for Climate, Chronology, and the Environment at Queen's University Belfast (Details 

provided in Supplementary Information). Short range order (SRO) Al concentration was 

determined by hydroxylamine hydrochloride hydrochloric acid extraction method combined with 

16 hours of shaking30. Linear regression and diagnostic analyses for data conformance to 

assumptions were performed in SigmaPlot (Version 11.0). 
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Figure 1. Annual flux rates for litterfall (Panel a), TBCF (Panel b) and soil-surface CO2 efflux 

(Panel c) in tropical montane wet forest in Hawaii all showed strong linear increases with rising 

mean annual temperature (MAT). (n= 9).  
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Figure 2. Effects of mean annual temperature (MAT) on soil organic carbon (SOC) mean 

residence time (MRT; Panels a-d; Means; y-axis scale varies) and SOC stocks (Panels e-h; 

Means ±1 SE; y-axis scale varies) for 0-10, 10-30, 30-50, and 50-91.5 cm soil depths in tropical 
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montane forest in Hawaii. No error bars are provided for radiocarbon analyses as they were 

performed on one composite sample per site and depth. Regression analyses revealed that none 

of the relationships were significant, and so dashed lines represent means across all plots along 

the MAT gradient (n= 9). 
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Figure 3. The relationship between short range order aluminum (SRO Al) and the mean 

residence time (MRT) for soil organic carbon (SOC) for the four sampled depths in tropical 

montane wet forest in Hawaii. Across depth and mean annual temperature (MAT), SRO Al 

content explains > 66% of the variation in SOC MRT.  If the deepest soils, where the largest 

variability was found, are excluded then 75% of the variation in MRT is explained by SRO Al. 
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For the surface 10 cm of soil, SRO Al content was very low and there was no relationship with 

MAT. However, for 30-15 and 50-91.5 cm depth soils, SRO Al content was high and decreased 

linearly with increasing temperature (r2 = 0.35 and 0.54 for 30-50 and 50-91.5 cm depth soils, 

respectively; n=9). The SRO Al content of 10-30 cm depth soil was intermediate, but there was 

no pattern with MAT. 
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Figure 4. Our test of ecosystem response to increasing mean annual temperature (MAT) 

supports the hypothesis that nearly all of the temperature driven increase in soil-surface CO2 

efflux is derived from increased TBCF and secondarily from increased litterfall – both resulting 

from an anticipated increase in stand-level net primary productivity with warming.  Soil organic 

C (SOC) storage and turnover were unrelated to temperature across our 5.2°C MAT gradient, 

indicating that long-term, whole ecosystem warming increases belowground C cycling with no 

change in SOC storage. The lack of change in SOC MRT despite increased belowground inputs 

indicates little stimulation of SOC turnover due to higher inputs. Taken together, these findings 

show that over long-periods of time, SOC storage and turnover are not influenced by warming, 

but rather SOC stock and turnover appear to be controlled by physical, biological and chemical 

characteristics of soil. Fluxes (Mg C ha-1 yr-1) are in black and stocks are in blue (Mg C ha-1). 

Root increment is estimated to be 10% of TBCF (ref. 18). Litterfall sources contributed between 

17 and 22% to efflux, based on mass balance estimates for our plots and the calculation that litter 

decomposes within ~1 year of release from the canopy. Combining stock and bulk SOC MRT 

estimates, we calculate that decomposing SOC contributes < 5% of FS, with a mean contribution 
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to efflux of 0.39Mg C ha-1 yr-1. At 77 to 82%, TBCF is estimated to represent the large majority 

of FS. Forest floor mass for these mature forest plots turns over rapidly, even at the coolest sites, 

but the forest floor is assumed to be approximately in steady-state for a given site and so across 

the gradient. Given the very old dates for most SOC across plots and MRT-based estimates of 

SOC loss, we also assumed that SOC storage is in steady-state. Given steady-state, low rates of 

SOC loss are balanced by low formation rates of new SOC. �

�




	Article File
	All Figures
	Suggested Journal Cover Illustration

