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An unprecedented strengthening of Pacific Trade Winds since the late 1990s1 has caused 

wide-spread climate perturbations, including rapid sea level rise in the western tropical 

Pacific2-5, strengthening of Indo-Pacific ocean currents6,7, and an increased uptake of heat 

in the equatorial Pacific thermocline1. The corresponding intensification of the atmospheric 

Walker Circulation is also associated with sea surface cooling in the eastern Pacific, which 

has been identified as one of the contributors to the current pause in global surface 

warming1,8,9. In spite of recent progress in determining the climatic impacts of the Pacific 

Trade Wind acceleration, the cause of this pronounced trend in atmospheric circulation 

remains unknown. Here we analyze a series of climate model experiments along with 

observational data to show that the recent Atlantic sea surface temperature warming trend 

and the corresponding trans-basin displacements of the main atmospheric pressure centers 

were key drivers of the observed Walker Circulation intensification, eastern Pacific 

cooling, North American rainfall trends and western Pacific sea level rise. Our study 

suggests that global surface warming has been partly offset by the Pacific climate response 

to enhanced Atlantic warming since the early 1990s. 
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Given the importance of the recent wind-induced trends in Pacific sea level and surface 

temperature, it is vital to determine the underlying causes. Recent studies have focused mostly on 

the low frequency Pacific climate modes, such as the Pacific Decadal Oscillation10 (PDO) or the 

Interdecadal Pacific Oscillation11 (IPO) to explain Pacific wind shifts and the current pause in 

greenhouse warming8,9,12. However, the fact that this unprecedented 1992-2011 equatorial 

Pacific zonal wind trend1 is not consistent with a Pacific-only sea surface temperature (SST) 

driving mechanism5 suggests a role for dynamics outside the tropical Pacific in this atmospheric 

reorganization, such as from the Indian Ocean5,13, the Atlantic14 or both. This scenario is further 

supported by the fact that the Trade Wind intensification since the early 1990s is related to a 

global scale see-saw in atmospheric surface pressure, which is characterized by a positive sea 

level pressure (SLP) trend in the Pacific and a negative trend in the Indo-Atlantic region (Fig. 

1a). Our study uses a series of climate model experiments in combination with observational 

analyses to identify potential remote drivers of Pacific equatorial wind changes since the early 

1990s and their corresponding impacts on global climate. 

 

We first conduct a suite of 5 member ensemble of sensitivity experiments using the Community 

Atmospheric Model, version 4 (CAM4) atmospheric general circulation model (AGCM) (see 

Methods and Table S1) to further elucidate the underlying physical mechanism of the recent 

inter-basin SLP see-saw (Fig 1a) and its corresponding effects on the Pacific Trade Wind 

systems. We prescribe the trend in observed global SST anomalies (SSTA) over the period 1992-

2011 (Fig. 1a), which is characterized by an overall Atlantic warming, an eastern Pacific cooling 

trend and western subtropical Pacific and Indian Ocean warming. This pattern is in fact quite 

different from the typical global warming hiatus pattern simulated by Coupled General 
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Circulation Models9, which exhibits similar cooling trends across all tropical oceans. In response 

to the applied global SST trend forcing the AGCM experiment reproduces the observed global 

SLP see-saw, and the related intensification of tropical Pacific Trade Winds qualitatively well 

(Fig. 1c,d, Fig. S1 g,h, Fig S3a).  

 

It is important to note that in spite of capturing the overall sea level pressure and wind trend 

patterns (Figs. 1 c,d, S1 g,h), the CAM4 ensemble mean underestimates the magnitude of the 

central Pacific wind stress intensification by a factor of 3 (Table S2). The magnitude of the 

underestimated wind stress response of these AGCM ensemble simulations is consistent with the 

weaker surface Trade Wind response for this period simulated by an ensemble of 25 models of 

SST anomaly-forced AGCM experiments conducted as part of the Atmospheric Model Inter-

Comparison, version 5, (AMIP5) (See supplementary Information, Fig. S1 c,e & S2a). It should 

be noted here, that the simulated AMIP5 trends in zonal 850 hPa winds (Fig. S1 d,f, Table S3) 

are much more consistent with the reanalysis data than the surface stresses, thus indicating 

AGCM deficiencies in the downward mixing of momentum through the boundary layer. 

 

Next we carry out a series of CAM4 simulations, each with 5 ensemble members, with 

prescribed sea surface temperature forcing in some ocean areas and a slab mixed layer ocean in 

others to isolate the effect of different ocean basins on the Pacific Trade Wind intensification 

(see Methods and Table S1). The origin of the recent Pacific climate trends becomes apparent in 

the ensemble AGCM experiment that is forced only by Atlantic SSTA trends while using a 

mixed layer ocean in the Pacific, and prescribed climatological SST in the Indian Ocean (See 

supplementary Information, Table S1). In this experiment the global atmosphere and Pacific 
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SSTs can adjust to the remote observed Atlantic SSTA trend forcing. The ensemble mean results 

of this experiment demonstrate that the recent Atlantic warming generates a trans-basin 

(Pacific/Atlantic) SLP see-saw that is very similar to the observations (Fig. 1e and S3b). This 

generates a significant strengthening of the wind stress in the central Pacific (Fig. 1f), which can 

account on average for 90% of the trends simulated by the AGCM simulation forced by the 

observed SST trend everywhere (Fig. 1c and Table S2). The intensification of the Pacific trade 

winds in turn generates eastern tropical Pacific cooling (Fig. 1e) that closely resembles the 

observations (Fig. 1a); along with the negative phase of the PDO/IPO, which has been invoked 

previously to explain the recent global warming hiatus period12. Furthermore, we note that the 

precipitation response to the eastern Pacific cooling in the Atlantic SST-forced experiment (Fig. 

1f) closely resembles recent trends in observed precipitation7 (Fig. 1b), including the severe 

drought in the Southwestern United States. 

 

In order to better understand the dynamics of this trans-basin SLP see-saw, and the role of 

coupled Pacific air-sea interactions, CAM4 is forced in a third experiment with SSTA trends 

only in the Atlantic basin, however in this case both the Pacific and Indian ocean are subject to 

climatological SST forcing (no Pacific Ocean slab mixed layer) (Table S1). The trans-basin SLP 

see-saw response in this experiment (Fig. S4d) is qualitatively similar to the previous experiment 

which employed an active Pacific mixed layer (Fig. S4c), but the central/eastern equatorial 

Pacific pressure lobe is approximately half the magnitude (Fig. S3b). The vertical atmospheric 

velocity on the equator reveals that the Atlantic basin SSTA trend alone leads to upward motion 

over most of the Atlantic region and descending motion in the central-to-eastern equatorial 

Pacific (Fig. 2a). This directly links SSTs in the Atlantic region with the Pacific Ocean Walker 
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circulation consistent with earlier studies14,15. Allowing for Pacific air-sea thermal coupling (Fig. 

2b), and in particular the wind-evaporation SST feedback, the experiment with an active Pacific 

mixed layer generates stronger Pacific basin subsidence and an enhancement of the Walker 

circulation, in agreement with the global SST trend simulation (Fig. 2c) and the ERA40 

reanalysis (Fig. 2d).  

 

We also carry out a 5 member ensemble of CAM4 experiments that are forced only by Indian 

Ocean SSTA trends while using a mixed layer ocean in the Pacific, and prescribed climatological 

SST in the Atlantic Ocean (See supplementary Information, Table S1). The ensemble mean 

results of this experiment do not show a considerable trans-basin SLP see-saw and no significant 

wind stress anomalies in equatorial Pacific (Fig. S3c, S5 and Table S2) in contrast to recent 

studies5,13 that have proposed a more active role of Indian Ocean SST trends in causing Pacific 

Trade Wind changes. 

 

The comparison of the simulated Pacific SST trends in the Atlantic SST/Pacific mixed layer 

experiment (Fig 1e,f) with observations (Fig 1a,f) documents that the current Pacific Trade Wind 

strengthening and decadal cooling in the eastern Pacific, which contributes to the ongoing global 

warming hiatus8 and to the high rate of sea level rise in the western tropical Pacific2, can not be 

solely caused by internally generated Pacific Ocean variability. Our results highlight instead the 

importance of a recent rapid Atlantic warming16 seen since the 1990s and the ensuing Atlantic-

Pacific interactions (Fig. 1). This finding is consistent with recent modeling studies that 

identified a tight physical linkage between Atlantic and Pacific climate variability on decadal 

timescales14,15,17-21 and between Atlantic Ocean and mean Northern Hemisphere temperatures19. 
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Additional Atlantic SST sensitivity experiments with CAM4 show that the spatially averaged 

Atlantic SSTA trend (Fig. S6 c,d) and to a lesser degree its corresponding gradient component 

(with the spatially averaged Atlantic SST trend removed, Fig. S6 a,b) both contribute to the 

observed equatorial wind stress and SLP shifts. Furthermore, in a simulation forced with the 

Pacific SSTA trend/Atlantic mixed layer we find that the current Pacific SSTA trend acts to 

warm North Atlantic Ocean SSTs (Fig. S7), indicating a potential trans-basin positive feedback. 

Thus, Pacific SSTA trends also play an important role in controlling the trans-basin SSTA and 

SLP gradients.   

 

To further characterize the dynamics of this Trans-Basin Variability (TBV), we define a basin-

scale TBV SST index (Fig. 3b) as the monthly mean difference timeseries of Atlantic-Pacific 

SSTA (spatial average over 30oS-60oN, 70oW-20oE and 30oS-60oN, 120oE-90oW, respectively). 

The correlation between the 11-month running mean TBV SST index and the Atlantic and 

Pacific basin averaged interannual to multidecadal SSTA attains values of 0.66 and -0.37, 

respectively (Table S4), indicating that Atlantic SSTAs play the dominant role in controlling the 

TBV. The unfiltered TBV SST index is clearly related to the Pacific Trade Wind strength (Fig. 

3b) and displays pronounced decadal variability, and a spectral damping timescale of about 5 

years (Fig. S8) that translates into multi-year damped persistence skill. As a result of relatively 

cold Atlantic conditions after the Mt. Pinatubo eruption in 1991 and a warm Pacific with a long 

lasting El Niño event in the early 1990s, the TBV index was anomalously negative and the 

Pacific Trade Winds were anomalously weak (Fig. 3). The subsequent recovery and rapid 

Atlantic warming16 and cooling of the eastern Pacific reversed this gradient, reaching maximum 

values around ~2010-2012 (Fig. 3a). Consistent with the modeling results, these SSTA trends 
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caused anomalous low pressure over the Atlantic and higher pressure in the eastern Pacific (Fig. 

1e, 3b), which in turn enhanced easterly Trade Winds in the central tropical Pacific (Fig. 1f, 3b) 

as well as in off-equatorial regions. The TBV-related wind pattern subsequently played a 

significant role in the rapid sea-level acceleration in the western tropical Pacific2. Although the 

proposed trans-basin coupling mechanism successfully explains recent observed trends in Pacific 

climate (Fig. 3b) since the early 1990s and as documented by the CAM4 sensitivity experiments, 

it is clearly not the main driver for the multidecadal acceleration and deceleration of global 

surface warming prior to this period, as illustrated by the insignificant correlation between TBV 

and the detrended global mean SST signal (Table S4). 

 

By comparing the recent 20-yr trend (1992-2011) in the TBV SST index with long-term SST 

observations (Fig. 4a), we find that the former is unprecedented in the context of the 1872-1992 

observations22 (Fig. 4a). For the 1992-2011 trans-basin SLP trend (Fig. 4b) similarly low 

probabilities are identified with values below 0.27% (a 3 standard deviation (σ) event, NCEP223 

SLP data) and 0.034% (4.5σ event, 20th Century Reanalysis24 SLP data). Comparing the former 

with overlapping 20-year TBV trends in historical runs (1861-1980 CE, including greenhouse 

gas, aerosol, volcanic and solar forcings) and RCP8.5 Coupled General Circulation Model 

experiments (1981-2100), conducted as part of the Coupled Model Intercomparison Project25 

phase 5, it is found that the current trans-basin SST trend exceeds 3.5σ of the simulated 

overlapping 20-year model trends. These results and our global SST-forced CAM4 and AMIP5 

model analyses are indicative of a systematic underestimation of atmospheric trans-basin 

connections on decadal timescales in the current generation of climate models. However, as 



 8

noted above, issues with the downward mixing of momentum through the atmospheric boundary 

layer are likely to play some role in this underestimation. 

 

Our findings reveal that rapid Atlantic warming since the early 1990s led to an unusually rapid 

acceleration of the Pacific Trade Wind systems (Fig. 1e). Recent studies1,12 document that the 

corresponding tropical Pacific cooling, along with other processes, contributed to the observed 

decadal slowdown of global surface warming trends. We further demonstrated that trans-basin 

coupled atmosphere/ocean variability explains part of the recent decadal rainfall trends across the 

Pacific, including the severe California drought conditions. It is suggested that pronounced 

spectral power of the trans-basin variability index on decadal timescales as well as the long 

damping timescale (Fig. 3, S8), may translate into multi-year predictive skill17.  
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Figure Legends 

Fig. 1: Trends (1992-2011) of SST, SLP, wind stress and relative precipitation a) Observed 

surface temperature26 [C/year] (shading) and SLP27 [Pa/year] (contour); SLP trend contours 

range from -14 Pa to 14 Pa with a contour level of 4 Pa; negative contours are dashed. SLP 

significance levels are represented as stippling in Fig. S4; b) Observed relative precipitation 

trends (shading) and wind stress trends27 significant above the 95% level (vector). In both panels 

stippling indicates that the changes in the underlying shaded plots are significant above the 95% 

level; c) as in a), and d) as in b) but for CAM4 experiment forced with global observed SST 

trend (shading); e) as in a), and f) as in b), but for CAM4 experiment forced with Atlantic SST 

trend and Pacific mixed layer.  

 

Fig 2: a) Vertical equatorial atmospheric velocity trends (Pa s-1/year, shading) over the 1992-

2011 period from the CAM4 experiment forced with Atlantic SST trend, where SSTs are set to 

climatology in the Pacific and Indian Oceans. Overlying vectors represent the zonal wind trend 

and the vertical velocity scaled by a factor 300. b) as in a) but for the for CAM4 experiment 

forced with the observed Atlantic Ocean SST trend and Pacific mixed layer; c) as in a) but for 

the for CAM4 experiment forced with the global observed SST trend and Pacific mixed layer. d) 

same as a) but for the ERA-interim reanalysis. 

 

Fig. 3: Atlantic and Pacific SST anomalies and their effect on SLP anomaly and wind anomalies: 

a) Basin averaged Atlantic (orange, 30oS-60oN, 70oW-20oE) and Pacific (cyan, 30oS-60oN, 

120oE-90oW) SST anomalies from ERSST22; the solid red and blue lines represent 11-month 

running mean values of Atlantic and Pacific basin SST anomalies, respectively. b) detrended 
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SST anomaly difference (shading) (11-month running mean TBV index) between the red and 

blue timeseries in upper panel, western tropical Pacific (160oE-180oE and 5oS-5oN) detrended 

zonal surface wind velocity anomalies (black line) from 20th Century Reanalysis24 (11-month 

running mean filter), and the 11 month running mean of the detrended Atlantic/Pacific SLP 

anomaly difference24 (cyan, same areas as for SST). The table inset in b) displays the correlation 

coefficients calculated across the three displayed time series. 

 

Fig. 4: a) Normalized histogram of 20-year trends of the Trans-Basin Variability (TBV) SST 

index for the observations (ERSST22) pre 1991 (dashed black), 39 20th century CMIP5 

experiments (blue) and RCP8.5 experiments (1981-2100). The recent 1992-2011 value using the 

ERSST22 dataset is indicated by a black bar; b) same as a) but for the TBV SLP index (SLP 

averaged in 30oS-60oN, 70oW-20oE minus SLP in 30oS-60oN, 120oE-90oW) and using the 

observational SLP data estimated from the 20th Century reanalysis24. Black and yellow bars 

represent the recent 1992-2012 trends from the 20th Century24 and the NCEP2 reanalysis23, 

respectively. 
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Methods Summary 

To determine the effects of recent basin-wide Sea Surface Temperature (SST) trends on the 

atmospheric circulation and on SSTs in other ocean basins we utilize the CAM4 Atmospheric 

General Circulation Model (AGCM) in T42 horizontal resolution with 26 vertical layers28 in a 

series of AGCM and partially coupled AGCM sensitivity experiments (Table S1). The AGCM 

experiments have SST prescribed everywhere. The prescribed SSTs incorporate a climatological 

SST forcing29 component in combination with SST trends in specified regions. In the suite of 

partially coupled AGCM experiments, we prescribe the 1992-2011 SST trend in some basins 

while allowing the ocean in the other basin/basins to integrate the atmospheric heat fluxes using 

a slab ocean thermodynamic mixed layer (ML) model. In these partially coupled experiments 

CAM4 is coupled to the ML30, which includes spatially varying annual mean mixed layer depths. 

A detailed description of the experimental setup is provided in the Supplementary Information. 
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