
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 5-17-2020

Implementing TontineCoin Implementing TontineCoin

Prashant Pardeshi
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Information Security Commons, and the Other Computer Sciences Commons

Recommended Citation Recommended Citation
Pardeshi, Prashant, "Implementing TontineCoin" (2020). Master's Projects. 914.
https://scholarworks.sjsu.edu/etd_projects/914

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F914&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F914&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F914&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/914?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F914&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Implementing TontineCoin

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Prashant Pardeshi

May 2020

© 2020

Prashant Pardeshi

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Implementing TontineCoin

by

Prashant Pardeshi

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2020

Dr. Thomas Austin Department of Computer Science

Dr. Katerina Potika Department of Computer Science

Dr. Robert Chun Department of Computer Science

ABSTRACT

Implementing TontineCoin

by Prashant Pardeshi

One of the alternatives to proof-of-work (PoW) consensus protocols is proof-of-

stake (PoS) protocols, which address its energy and cost related issues. But they

suffer from the nothing-at-stake problem; validators (PoS miners) are bound to lose

nothing if they support multiple blockchain forks. Tendermint, a PoS protocol,

handles this problem by forcing validators to bond their stake and then seizing a

cheater’s stake when caught signing multiple competing blocks. The seized stake is

then evenly distributed amongst the rest of validators. However, as the number of

validators increases, the benefit in finding a cheater compared to the cost of monitoring

validators reduces, weakening the system’s defense against the problem. Previous

work on TontineCoin addresses this problem by utilizing the concept of tontines.

A tontine is an investment scheme in which each participant receives a portion of

benefits based on their share. As the number of participants in a tontine decreases,

individual benefit increases, which acts as a motivation for participants to eliminate

each other. Utilizing this feature in TontineCoin ensures that validators (participants

of a tontine) are highly motivated to monitor each other, thus strengthening the

system against the nothing-at-stake problem. This project implements a prototype of

Tendermint using the Spartan Gold codebase and develops TontineCoin based on it.

This implementation is the first implementation of the protocol, and simulates and

contrasts five different normal operations in both the Tendermint and TontineCoin

models. It also simulates and discusses how a nothing-at-stake attack is handled in

TontineCoin compared to Tendermint.

ACKNOWLEDGMENTS

I would like to convey my gratitude to my advisor Dr. Thomas Austin for his

assistance and guidance during the course of this project. I would also like to express

my appreciation towards the committee members Dr. Katerina Potika and Dr. Robert

Chun, for their inputs and feedback on this project.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

1.1 Problem . 5

1.2 Proposed Solution . 6

2 Background . 8

2.1 PoW cryptocurrencies . 8

2.2 Tendermint . 10

2.3 Tontine . 14

2.4 TontineCoin . 16

2.4.1 Tontine Formation . 17

2.4.2 Hybrid – The train model 17

2.5 Spartan Gold . 19

3 Tendermint Prototype Development 22

3.1 Driver . 22

3.2 Transaction . 23

3.3 Block . 24

3.4 Validator . 24

3.5 Vote . 28

4 TontineCoin Prototype Implementation 29

4.1 Driver . 29

4.2 Transaction . 30

vi

vii

4.3 Validator . 30

4.4 Tontine . 31

5 Contrasting Normal Operations of TontineCoin and Tendermint 33

5.1 Initialization . 33

5.2 Consensus process . 34

5.3 Transfer of coins from a client to another 35

5.4 Bonding of a client to the validators’ network 37

5.4.1 Bonding of a client in Tendermint 37

5.4.2 Bonding of a client in TontineCoin 38

5.5 Unbonding of a validator from the validators’ network 39

5.5.1 Unbonding of a validator in Tendermint 40

5.5.2 Unbonding of a validator in TontineCoin 40

6 Handling of nothing-at-stake in TontineCoin and Tendermint 50

6.1 Cheating scenario in Tendermint 50

6.2 Cheating scenario in TontineCoin 50

7 Conclusion and Future Enhancements 57

LIST OF REFERENCES . 59

LIST OF FIGURES

1 An overview of the consensus process in Tendermint 12

2 Initial balances of 3 clients and 4 validators in Tendermint 34

3 Initial balances of 9 clients and 5 validators in TontineCoin . . . 34

4 A genesis tontine of 5 validators in TontineCoin 34

5 Initial balances of 3 clients and 4 validators in Tendermint 35

6 Initial balances of 9 clients and 5 validators in TontineCoin . . . 36

7 A round of consensus in Tendermint 37

8 A round of consensus in TontineCoin 38

9 Creation and inclusion of a REG transaction in Tendermint . . . 39

10 UTXOs after the REG transaction created in Figure 9 in Tendermint 39

11 Balances after the REG transaction created in Figure 9 in
Tendermint . 40

12 Creation and inclusion of a REG transaction in TontineCoin . . . 40

13 UTXOs after the REG transaction created in Figure 12 in
TontineCoin . 41

14 Balances after the REG transaction created in Figure 12 in
TontineCoin . 41

15 A client posting a BND transaction in Tendermint 42

16 A validator adding the BND transaction created in Figure 15 in
Tendermint . 42

17 The client from Figure 15 as a proposer in Tendermint 43

18 A validator’s UTXOs after the BND transaction created in
Figure 15 in Tendermint . 43

viii

ix

19 Creation of tontines and submission of BID transactions in
TontineCoin . 43

20 A validator adding the BID transactions created in Figure 19 in
TontineCoin . 43

21 Selection of winner tontine from tontines created in Figure 19 in
TontineCoin . 44

22 A validator adding BND transactions of the tontine selected in
Figure 21 in their proposal in TontineCoin 44

23 A validator from the tontine selected in Figure 21 proposing a
block in TontineCoin . 44

24 A validator’s UTXOs after the BND transaction created in
Figure 21 in TontineCoin . 45

25 A validator posting a UND transaction in Tendermint 45

26 A validator unbonding in Tendermint after their UND transaction
is committed . 46

27 A round of block creation after the validator from Figure 25 is
unbonded in Tendermint . 46

28 A validator’s UTXOs displaying the UTXO of unbonded validator
from Figure 25 in Tendermint . 47

29 A validator posting a UND transaction in TontineCoin 47

30 A validator unbonding in Tontinecoin after their UND transaction
is committed . 48

31 A round of block creation after the validator from Figure 29 is
unbonded in TontineCoin . 48

32 A validator’s UTXOs displaying the UTXO of unbonded validator
from Figure 29 in TontineCoin 49

33 A cheater getting caught in Tendermint 51

34 Inclusion of EVD transaction created in Figure 33 and UND
transactions to seize cheater’s stake in Tendermint 51

x

35 Unbonding the cheater from Figure 33 in Tendermint 52

36 Seized UTXOs of the cheater from Figure 33 in Tendermint . . . 52

37 Updated wallets of validators after seizing the coins of the cheater
from Figure 33 in Tendermint . 53

38 A cheater getting caught in TontineCoin 53

39 Inclusion of EVD transaction created in Figure 38 and UND
transaction to seize cheater’s stake in TontineCoin 54

40 Unbonding the cheater from Figure 38 in TontineCoin 55

41 Seized UTXOs of the cheater from Figure 38 in TontineCoin . . . 55

42 Updated wallets of validators after seizing the coins of the cheater
from Figure 38 in TontineCoin 56

CHAPTER 1

Introduction

Bitcoin [1], often known as the first cryptocurrency, is a digital currency that

is based on peer-to-peer technology to enable instant payments. It is not operated

by any organization, any agency, or a bank. Invented in 2009 by an anonymous

developer named Satoshi Nakamoto, it utilizes the blockchain technology to maintain

transactions. Blockchain [2] is at the center of Bitcoin and handles the core mechanism

for it. It is a ledger made of blocks that is maintained by each node in the blockchain

network. A block in blockchain consists of valid transactions and other information

and is linked to its previous block by storing a cryptographic hash of it. A node creates

a block and broadcasts it in the network. If most of the nodes agree on that block,

they append it at the end of their chain. This process of coming to an agreement

is called consensus. Storing the cryptographic hash of the previous block provides

resistance to modification of the data. It provides data integrity such that data in

a block can only be altered when all the subsequent blocks are altered. Augmented

with other technologies such as distributed consensus mechanism, digital signature,

and cryptographic hash, blockchain powers various cryptocurrencies.

One of the most important distributed consensus mechanisms is proof-of-work

(PoW) [3] [4]. It is the driving force behind Bitcoin. In this mechanism, a prover (a

node which wants to prove something) can establish their claim to the verifiers (rest of

the nodes) by demonstrating that they have spent a certain amount of computational

effort. The verifiers can verify that the prover has spent the efforts by performing

minimal computations. This process achieves the purpose of consensus as everyone

agrees on something. There are different PoW schemes that use various algorithms

such as SHA-256 [5], Scrypt [6], Blake-256 [7], etc. Many cryptocurrencies such as

Bitcoin [1], Litecoin [8] [9] [10] [11], Ethereum [12] [13] [14], etc. are powered by PoW.

1

Although PoW is the most commonly used consensus mechanism in many cryp-

tocurrencies, it suffers from a few disadvantages such as:

1. Energy wastage: Due to its heavy computational nature, PoW has led to enor-

mous power consumption [15]. As per Bitcoin Energy Consumption Index [16],

the Bitcoin network ranks 38 in terms of energy consumption compared with

several countries.

2. Centralization: The increasing difficulty of the target value has led miners to

form mining pools and replace their general-purpose processors with expensive

special-purpose ASICs. Due to this, cryptocurrencies are not as decentralized as

they should be.

3. Useless calculations: Calculations performed by the miners in PoW are complex,

high energy-consuming, and of no use.

4. 51% attack: Although PoW makes it hard for miners to attack the system, it

does not provide complete immunity. If miners come together to form 51% of

the network’s hashing power, they can control the network by preventing the

blocks of the miners who have not joined them from getting accepted. They can

produce a block based on an old block instead of a previously committed block.

This will cause the blockchain to fork. A part of the network will follow the

old blockchain containing the previous block while the rest of the network will

follow the new blockchain containing the attacker’s block. Since the majority of

the network follows the new blockchain, the whole network will have to accept

it. This way, the attacker can void the transactions that have already been

validated in the previous block. If the attacker made some transfers in the

previous block, they could again use that money since those transactions were

2

never committed. This attack is called a double-spend attack.

Proof-of-stake (PoS) [17] is another distributed consensus mechanism. It is a

cost-effective and energy-efficient alternative to the PoW consensus model. Instead

of using computational resources for mining, participants in this model use their

wealth, i.e., their stake to gain a right to propose and verify blocks. A participant

receives the ability to produce blocks equivalent to the amount of coins they staked or

held. The more coins a participant owns, the more block producing power they have.

However, the power is not solely based on the amount of coins. Instead, different

cryptocurrencies use different methods based on the stake to select the next block

producer. This prevents a participant(s) with the highest stake to control the network.

Peercoin [18] is the first cryptocurrency that utilized PoS protocol. Its consensus

mechanism is based on the combination of both PoW and PoS models and uses the

concept of coin age. A coin age is the product of a participant’s coins and the duration

for which they were held or not spent. For example, if a participant received 10 coins

from another participant and held it for 50 days, that participant has accumulated

500 coin-days of coin age. Coin owner having high coin age has a higher probability

of producing the next block. The process of generating a new valid block is called as

minting. Peercoin introduced a new type of transaction named as coinstake transaction

(based on the Bitcoin’s coinbase transaction), which is included by the block producer

in their block. In this transaction, the block producer transfers themselves their coins,

thus resetting or consuming the corresponding coin age. This prevents a participant

with a high coin age to dominate minting. But, like Bitcoin, they also need to meet

a target in order to mint a block. However, this target is not the same for all the

participants. The more coin age a participant has, the easier it is to meet the target. A

block producer generates hashes based on a stake modifier (defined by the network and

3

recalculated after every 6 hours), their coins, and the current timestamp to compare

it with the target. Since hashing is performed over a limited search space compared

to Bitcoin’s unlimited search space, a significant amount of energy is not consumed.

Once a participant mints a block, they are eligible to produce the next block only

after 30 days. A participant’s probability to mint a block increases up till 90 days

and remains the same after that. In case if there is a fork, the blockchain with the

highest consumed coin age is selected by the network.

BlackCoin [19] [20] is the first cryptocurrency that utilized a pure PoS protocol.

It is based on Peercoin’s hybrid PoW/PoS protocol and addresses some of its issues.

In Peercoin’s model, a participant can keep on building their coin age, and once it

is the highest, they can fork the blockchain and double-spend their coins. Also, the

participants do not have to be online all the time. They can keep their node offline

until they have accumulated enough coin age, after which they can mint blocks and

again go offline. BlackCoin addressed these issues by removing the concept of coin age

from their protocol. This protocol is purely based on the stake of a participant. The

participants use their stake to verify new transactions and gain interest of 1% of the

total staked coins yearly. The staked coins remain in their wallet. The participants

have to unlock their wallet and be online to receive their stake rewards. To mint

a block, a participant has to meet a target, which is also based on the coins they

staked. By getting more participants to stake and be online, BlackCoin has reduced

the probability of the 51% attack.

Although the above PoS based cryptocurrencies offered low operational cost

and energy consumption, they suffered from nothing-at-stake [21] [22] problem. This

problem is an assumption that if a network’s blockchain forks, each participant in the

network will support every fork. This is expected from the participants since they gain

rewards for validating transactions. If they validate on all the chains, they increase

4

their gains. Also, it does not cost anything to a participant to validate since, in a

PoS network, participants have to stake to gain the validating right and not perform

any expensive computations like in a PoW network. In contrast to this, if miners in

a PoW network decide to mine on multiple chains simultaneously, they would have

to split their hashing power and mine on each chain, which reduces their chances to

mine a block.

Tendermint [23] is the first cryptocurrency that addressed nothing-at-stake

problem by adapting a protocol proposed by Cynthia et al. [24], which allows a

network to form a consensus in case of partial synchrony. Their protocol uses the

PoS model and provides resilience up to one-third of dishonest participants in the

network. In their protocol, a participant is required to bond their coins to gain the

right to propose and verify blocks. A participant, also known as a validator, cannot

use bonded coins until they are actively participating in the network. They receive

their coins back after a certain number of blocks are created once they have unbonded.

Tendermint handles the nothing-at-stake problem by penalizing a cheater by seizing

their stake when caught signing multiple competing blocks. The seized stake is then

evenly distributed amongst the rest of validators.

1.1 Problem

Although there are different variations of PoS available, Tendermint’s consensus

model is frequently used by other PoS systems. They handled the nothing-at-stake

problem by punishing cheaters by seizing their stake and eliminating them from

the network. A validator is cheating if they are validating blocks on multiple forks

simultaneously. To catch a cheater, a genuine validator has to observe the network and

report the cheating by submitting a type of transaction containing the cheater’s signed

competing blocks. Once the transaction is accepted by the network, the cheating

5

validator’s stake is seized and evenly distributed amongst the rest of validators.

While Tendermint’s protocol protects the network from the nothing-at-stake

problem, its defense weakens as the number of validators increases. As more validators

join the network, the number of shares in a seized stake increases. This does not

provide enough motivation to a genuine validator to monitor the network since the

benefit of finding a cheater compared to the cost of monitoring reduced. This, in turn,

also puts a limitation on the number of validators the system can support.

1.2 Proposed Solution

Previous work on TontineCoin [25] addresses this problem by utilizing the concept

of a tontine. A tontine is an investment scheme where each participant invests into

a common pool of money to raise a capital and receives a portion of benefits based

on their share. A feature of tontines is that as the number of participants decreases,

individual benefit increases, which acts as a motivation for participants to eliminate

each other. Utilizing this feature in TontineCoin ensures that validators (participants

of a tontine) are highly motivated to monitor each other, thus strengthening the

system against the nothing-at-stake problem.

This project implements a prototype of Tendermint using the Spartan Gold

codebase [26] and develops TontineCoin based on it. Spartan Gold is a simplified

blockchain-based cryptocurrency written in JavaScript. This implementation is the

first implementation of the protocol, and simulates and contrasts five different normal

operations in both the Tendermint and TontineCoin models. These operations are

initialization, the consensus process, transfer of coins among clients, bonding of clients,

and unbonding of validators. It also simulates and discusses how a nothing-at-stake

attack is handled in TontineCoin compared to Tendermint.

The remaining of the paper is organized as follows. Chapter 2 provides a back-

6

ground on PoW cryptocurrencies, Tendermint protocol, Tontine, TontineCoin model,

and Spartan Gold code base. Chapters 3 and 4 describes the development of the

Tendermint and TontineCoin prototypes, respectively. Chapter 5 shows and contrasts

the normal operations in both the models. Chapter 6 shows and compares handling

of a nothing-at-stake attack in both the models. Finally, chapter 6 presents the

conclusion and future enhancements.

7

CHAPTER 2

Background
2.1 PoW cryptocurrencies

Bitcoin [1] is based on Hashcash PoW [27] scheme, which uses SHA-256 hash

function. The participants in the Bitcoin’s PoW network are called miners. They

compete with each other to produce a block to receive a block reward. A block consists

of valid transactions, the previous block’s hash, a block version number, a timestamp,

a target value, and a nonce value. The miner whose block is accepted by most of the

network gets rewarded. To get their block to be accepted by other miners (verifiers),

a miner (prover) must solve a problem that requires a lot of computational power.

The problem is to produce a block whose cryptographic hash made by SHA-256 hash

function is less than the target value. The target value is an extremely large 256-bit

number that is common to all the miners. The difficulty for a miner to find a valid

block depends on how the target value is set. A lower target value is more difficult

to satisfy than a higher one. This problem is often defined as to find a hash that

starts with a certain number of zero bits. Miners try by setting an integer value

in the nonce field and incrementing it until they find a valid block. Once found, a

miner announces the block to other miners. Upon receiving, miners check the block’s

validity. If it contains invalid transactions or its SHA-256 hash is not less than the

target, it is discarded, and the receiver continues to find a valid block. Else, the

receiver adds the block in their blockchain and begins to find the next block. This

process of finding a valid block is called mining. The target value is recalculated after

every 2,016 generated blocks so that every block takes ten minutes to mine on an

average.

Litecoin [8] [9] [10] [11], a fork of Bitcoin, uses Scrypt algorithm in its PoW scheme.

Similar to SHA-256, Scrypt is computationally intensive as it is required to produce

8

large vectors of pseudorandom bits. But unlike SHA-256, Scrypt is also memory

intensive. Miners need to store these vectors in Random Access Memory (RAM)

so that they can be accessed whenever required. Since this type of mining requires

more amount of memory than the processing power, it is called as memory-hard or

memory-bound.

One of the purposes of Litecoin was to reduce the time required to produce a block

which they achieved by lowering the difficulty of the target value. Litecoin’s block

takes 2.5 minutes on average to produce. This allows it to confirm transactions 4 times

faster than Bitcoin. Similar to Bitcoin, the target value in Litecoin is recalculated

after every 2,016 generated blocks.

Another purpose of Litecoin was to prevent the use of special-purpose hardware,

known as Application-Specific Integrated Circuits (ASICs), from mining. ASICs are

the integrated circuits that perform a specific task rather than the general tasks.

When used for mining, ASICs produce more hashes per second than CPUs or GPUs.

The increasing target difficulty caused by the increasing number of miners in Bitcoin

forced them to switch from CPUs to GPUs and then to ASICs for mining [28]. These

caused the miners with general-purpose hardware to either join the miners having

ASICs or purchase expensive ASIC themselves for mining. Due to Scrypt and its

memory-intensive nature, Litecoin was initially successful in preventing ASICs mining.

But soon later, ASICs were developed, which were Scrypt-capable. Even though

Litecoin could not totally prevent ASICs mining, it hindered it as Scrypt-capable

ASICs are more expensive and complicated to produce than SHA256-capable ASICs.

Ethereum [12] [13] [14], a cryptocurrency and a decentralized application platform,

uses an algorithm named as Ethash in its PoW scheme. Similar to Bitcoin, miners in

Ethereum need to check if a cryptographic hash is less than the target value. But

instead of a block’s hash, Ethereum’s miners need to fetch random data from a dataset

9

known as Directed Acyclic Graph (DAG), hash it, and then compare it with the

target. DAG is a large dataset that is generated from a common pseudorandom cache

shared by all the miners. A miner requires to store the entire DAG in their memory

so that they can fetch the data, compute the hash, compare it with the target, and

repeat, in case the hash doesn’t satisfy the target. Similar to Scrypt, Ethash is a

memory-hard algorithm and offers resistance to ASICs. Ethereum’s block takes 12

seconds on average to produce. Similar to Bitcoin, the target value in Ethereum is

recalculated after every 2,016 generated blocks.

2.2 Tendermint

Tendermint [23] is a proof-of-stake consensus protocol in which the next block

producer is selected based on the amount of coins they hold and a weighted round-

robin algorithm [29]. Its design is similar to the design of the other blockchains. It

comprises a peer-to-peer network made of nodes that communicate with each other

to relay new information. Each node stores a copy of an ordered sequence of blocks

known as a blockchain. Clients in the network have accounts which are identified by

their public key or address. An account can hold some amount of coins. Transactions

between clients can cause their amount of coins to change. A client can submit a

transaction to the network to transfer coins from their account to others. By probing

the transactions of an account from the blockchain, the amount of coins held by it

can be determined.

Validator in a Tendermint network is analogous to a miner in a Bitcoin network

with a difference that they follow PoS protocol instead of PoW. They are the clients

that are allowed to produce or validate blocks in exchange for having their coins

locked or bonded. Their right is equal to the amount of the coins they bond.

Tendermint protocol allows four types of transactions –

10

1. Standard : This transaction type lets a client transfer coins to other clients.

2. Bond : This transaction type lets a client have its coins locked in exchange for

a right to become a validator. Their right is equal to the amount of the coins

they bond.

3. Unbonding : This transaction type lets a client regain its bonded coins releasing

its right to be a validator. The validator is free to use the bonded coins after a

predetermined amount of time has passed post the submission of the unbonding

transaction. This helps the network to identify a cheating validator before they

regain their coins.

4. Evidence: This transaction type lets a client publish evidence against a cheating

validator. If a validator validates or signs on two blocks at the same height,

another validator can submit an evidence transaction, including two conflicting

signatures. After the evidence transaction is accepted and committed in the

blockchain, the bonded coins of the cheating validator are destroyed, and the

validator is expelled from the validators set.

A block in the blockchain of Tendermint comprises of the following information:

1. Header: It contains the network name, the height of the blockchain, timestamp,

previous block’s hash, etc. A block’s hash is derived from the hashes of the

header, validation, and transactions of the block.

2. Validation for Block H-1 – These are the signatures of validators for the previous

block.

3. Transactions: These are the current transactions to be committed in the

blockchain.

11

Figure 1: An overview of the consensus process in Tendermint, adopted from [30]

Validators in Tendermint participate in a round-based consensus process, as

shown in Figure 1, to produce the next block. This process involves signing votes for a

block, and relaying them to others. In each round, a validator should broadcast three

types of votes: a prevote, a precommit, and a commit. A vote comprises the height

of the block, the round number, the type of vote, the block hash, and the signature.

Each round is made up of three steps: Propose, Prevote, and Precommit ; with two

additional steps Commit and NewHeight.

The block proposer for a round is selected based on a weighted round-robin

algorithm. Each validator maintains a priority queue of the accumulated powers of

all validators. At the beginning of a round, each validator increases them by their

associated validator’s stake and selects the first validator from the queue to be the

12

current proposer. Then, the proposer’s accumulated power is decremented by the

total stakes of all validators.

Once a proposer is selected, the consensus process follows the steps mentioned

earlier and proceeds in the following manner:

1. Propose: At the beginning of this step, the designated proposer broadcasts their

proposal (block) to their neighboring validators by signing it with their signature.

Upon receiving, a validator then broadcasts it to their neighbors.

2. Prevote: At the beginning of this step, a validator sends out a signed prevote

either for a block that they were locked onto from the previous round or the

block from the current round. In case, if they have not received a block or the

block they have is invalid, they send out a signed nil prevote.

3. Precommit: If a validator has received more than 2/3 of prevotes for a block,

they lock onto that block and broadcast a signed precommit for that block. Else,

if they have received more than 2/3 of nil prevotes for a block, they unlock onto

that block. In case, if they have not received 2/3 of either of the votes, they do

not sign or lock on a block.

At the end of this step, if a validator has received more than 2/3 of precommits

for a block, they move onto the commit step. Else, they continue to find the

next proposer for the next round.

4. Precommit: At this step, a validator waits for two conditions to be satisfied to

move on to the next round. They wait for the precommitted block to arrive

if they have not still received it. Once the block is received, they send out a

signed commit to other validators. They also wait till they receive 2/3 commits

from other validators. Once both the conditions are satisfied, they move onto

13

the NewHeight step.

5. NewHeight: A validator stays at this step for some predetermined interval

to gather remaining commits for the previous block at height H-1, given the

validator is at height H. After this, each validator then determines the next

block proposer.

While Tendermint’s PoS protocol is better than Bitcoin’s PoW protocol in ways

such as reduced power consumption, better energy efficiency, and improved block

production rate, it suffers from other issues.

One of the issues is an attack of denial-of-service (DoS) against proposers. Ten-

dermint expects validators to setup their Sentry Node system to prevent this at-

tack [31] [32]. This option is not embedded in Tendermint’s system. If a validator

opts-in, they have to take certain precautionary measures to maintain a node that is

fully fault-tolerant. Or else, they are eliminated from the network after a duration of

being offline.

Another issue is as the validators pool grows, the incentive to catch a cheater

compared to the cost of monitoring validators reduces, giving a de-facto limitation on

the number of validators the system can support.

2.3 Tontine

In his work on the history of tontines, McKeever [33] describes a tontine as an

investment scheme in which each shareholder deposits their amount, and in return,

they receive some benefit or profit while they are still alive. After a shareholder’s

death, their share is not transferred to their heir. Instead, it gets distributed among

other shareholders after a small number of them are the only ones left alive.

The tontine scheme is supposedly invented by an Italian banker named Lorenzo

de Tonti. In early 1650, he proposed the idea of a tontine to the king of France,

14

Louis XIV to raise revenue for the state. The idea was that each participant would

subscribe to the scheme by buying shares at 300 livres per share. The subscriber has

to nominate a third party who will then receive an annual payment based on their

age group and the interest gained on the initial raised capital. The share of a nominee

would increase when another nominee in the same age group dies.

This idea of de Tonti never got off the ground. Later in 1670, the very first

tontine was launched and operated by the city of Kampen, Holland.

France created its first national tontine in 1689, five years after the death of de

Tonti. At the end of the first French tontine, a widow named Charlotte Barbier was

the only subscriber remaining. She had received back 73,500 livres in return to her

original investment of 300 livres only [34].

In the late seventeenth century, the Treasury Secretary of the U.S., Alexander

Hamilton, put forward the idea of utilizing the tontine scheme to decrease the nation’s

debt [35]. Based on the tontine’s version proposed by the British Prime Minister

William in 1789, Hamilton’s tontine had a different payout structure than the usual

one. In Hamilton’s tontine scheme, when the members pool reduced to 20 percent of

the initial pool, the investor payments froze to the last beneficiaries. The surviving

members would still receive their dividends, but it would not increase even if the other

members die. Hamilton’s tontine scheme was rejected by Congress.

Tontines have been used as a medium to raise the capital for projects such as the

Richmond Bridge in London, the Tontine Hotel in Shropshire, and the Freemasons

Hall in London. The first house of the New York Stock Exchange, the Tontine Coffee

house, was built out of a tontine scheme and was the primary meeting place for traders

to buy and sell stocks. Tontines are also associated with life insurance policies. Post

mid-eighteenth century, the owner of Equitable Life Assurance Society, Henry Baldwin

Hyde, used tontines as a medium to sell life insurance policies [36]. At its peak, Hyde’s

15

company had sold 2/3 of the United States’ outstanding insurance policies. But these

policies required policyholders to maintain monthly payments, which led them to lose

their accumulated funds when a single installment was missed. Tontines were also

used as the Christmas saving schemes by the communities of Rhostyllen, a village in

the country of Wales [37].

Tontine offers profits to the individuals, which are the last surviving members

in the scheme. This implies that to gain benefits, a member can either outlive other

members or eliminate them by some means. Due to this nature, tontines are deemed

as bad investment schemes. Some US states such as New York and Wisconsin passed

laws that prohibited insurances that deferred dividends to more than five years [38].

However, this nature of tontine proves to be an advantage to solve Tendermint’s

“no monitoring” issue discussed in section 2.2. Using a tontine scheme in Tendermint,

a validator remains motivated to catch a cheater as the gains are high compared

to the cost of monitoring validators. This is because as the cheating validator gets

eliminated, the share of the catching validator increases. Here elimination does not

refer to the cheating member’s death. It denotes their removal from the validators

pool.

2.4 TontineCoin

TontineCoin [25] is a new PoS protocol based on the concept of a tontine. It

extends Tendermint’s PoS protocol to enforce a monitoring system to find out cheaters

by offering increased gains on catching them. The payout for catching a cheater in the

Tendermint system decreases as the validators pool expands. The cost of monitoring

the system compared to the returns in-turn is high. TontineCoin’s protocol keeps

a validator strongly motivated to check for a cheating validator since it is in their

benefit to do so. It is described as murder-based due to its similarity with the nature

16

of tontine.

2.4.1 Tontine Formation

A tontine in TontineCoin is a group of clients interested in validating. Validators

set in TontineCoin comprises of the tontines which are selected to join based on

following two different approaches:

1. Hybrid model : In this model, clients group together to form tontines. However,

tontine formation is not recorded on the main blockchain. Each tontine competes

to find a PoW, which is better than the current one in the network and submits

a bid whenever they find it. The tontine with the best proof at the end of the

bidding process joins the validators pool.

2. Pure PoS model : In this model, instead of forming groups, clients individually

submit a bond transaction in the network to become a validator. After receiving

a fixed number of requests, a new tontine is created with those requesting clients.

The new tontine joins the validators pool and stays active till the end of the

tontine.

For any of the above models, the number of active tontines in the network is

limited by a predefined number given by m. Each tontine is restricted to operate

for a fixed duration, after which it is removed from the validators set. Also, once a

tontine gets in the validators pool, its members function independently from their

co-members.

2.4.2 Hybrid – The train model

Hybrid model is the combination of both PoW and PoS protocols. Clients band

together to create tontines off-chain and compete with each other to find a proof that

beats the current proof in the network. Once found, they submit a bid transaction. At

the end of the bidding process, whichever tontine has the best bid joins the validators

17

set. Members of the tontine then function independent of each other.

This model is described as the train model since after every predefined number of

blocks given by N, the bidding process completes, and the selected tontine is added to

the validators pool. It is similar to a scheduled train.

2.4.2.1 Hybrid Tontine Formation

Clients interested in validating must stake some coins and group together off-

chain to form a tontine. The amount of staked coins in a tontine must be equal to a

predefined amount given by S. The following details are included in a bid transaction

by a tontine:

1. The block’s hash that contains the details of the last selected tontine.

2. The stake of each member collectively making up to S coins.

3. The share of each member. A member’s client id and their percentage of rewards

together make their share in a tontine.

4. Nonce.

A member’s percentage of rewards in a tontine depends on two factors, the amount

of coins they staked and the amount of computing power they offered. TontineCoin’s

model does not specify how they affect in deriving the percentage. It is likely that a

member having more staked coins and computing power than another member in the

same tontine will have a higher share in returns.

2.4.2.2 Hybrid Tontine Selection

Once formed, a tontine competes with other tontines in the bidding process to

find a PoW that beats the current proof on the blockchain. This current proof is

referred to as the current best bid, and the tontine that submitted this bid is known

as the current bid leader. A tontine submits a bid transaction to the network with

18

all the details discussed above once it finds a better proof than the current best

bid. A transaction fee is levied to restrict the tontines from submitting incorrect bid

transactions. The selection process follows the steps mentioned below:

1. A predetermined member potentially a leader from the tontine submits a bid

transaction in the network once they have a better PoW than the current bid

leader’s PoW.

2. After validating, the transaction is added in the current block by its producer.

3. If the submitted bid is better than the current best bid, the coins of current bid

leader are unbonded, and the owner of the better bid becomes the new current

bid leader.

4. Tontines continue to compete to find a PoW that beats the current bid leader’s

PoW until the selection block arrives. The selection block is the block at which

the bidding process ends, and the tontine of the current bid leader is added to

the validators pool.

5. The selected tontine begins functioning after a delay of a predefined number of

blocks, and its coins remain bonded until it ceases to operate.

6. If the number of active tontines in the network is greater than m, the oldest

tontine is removed from the validators set, and its coins are unbonded.

2.5 Spartan Gold

Spartan Gold [26] is a basic cryptocurrency built on a simplified version of a

blockchain. It is created in JavaScript and runs on a Node.js platform. Internally, it

uses a PoW consensus model to produce a block and is based on UTXO (Unspent

Transaction Output) model instead of Account/Balance model to keep track of coins.

19

It simulates a cryptocurrency network in which transactions happen between clients

and are validated and put into blocks by miners after mining. When the simulation

starts, the working of the network is displayed on the command line in the form of

logs. Spartan Gold comes with two pre-defined simulations, one which has a single

miner and the other that has two miners.

Driver module is the entry point of the Spartan Gold system. It creates clients,

miners and a genesis block and starts the simulation. The genesis block is the first

block of miners’ blockchain, which contains details of clients and miners and their

initial funds. UTXOs and the balances of both the entities are displayed some time

after the simulation starts to display the state of the system.

Transaction module allows a client to create transactions to transfer coins to

other clients. A transaction is made up of inputs, outputs and an id. Each input

in inputs contains a transaction ID of a transaction from which the coins should be

picked, the index of an output within that transaction, the public key that matches

the hash of the public key (address) of that output, and the signature that matches

the signature on the output when checked with the public key. It is in the form {txID,

outputIndex, pubKey, sig}. Each output in outputs contains a receiver’s address and

an amount to be transferred to them. It is in the form {amount, address}.

Wallet module allows a client to create a wallet in which they can store their

coins and public/private keys associated with them. A coin contains a UTXO, its

associated transaction ID, and the output index of that UTXO in that transaction. It

is in the form {output, txID, outputIndex}.

Block module allows a miner to produce a block. A block is made up of trans-

actions, the previous block’s hash, a PoW target, the block’s height, the time of it’s

creation, the UTXOs, and the coinbase transaction.

Clients are created using Client module. A client has a wallet to hold their coins

20

and a broadcast method to broadcast messages to other clients. They can create and

broadcast a transaction to transfer coins to other clients. They can receive the coins

if they have the public key for the address.

Miners are clients, but they also produce blocks in the network. Miner module

extends Client class and allows to create a miner. In addition to coins and a broadcast

method, a miner has a name and maintains a blockchain. When the simulation begins,

all miners start mining. Each miner creates a block based on the genesis block and

begins searching for an integer i.e. a proof which when added to the block gives a

hash value that is less than the block’s target. If a miner has found a proof, they

broadcast the block with the proof for other miners to validate and store in their

blockchain and then proceed with mining the next block. If they haven’t, after a

predefined interval of time, they pause to listen to other miners for their proofs. After

announcing, a miner adds a predefined number of coins as rewards to their wallet and

proceeds with mining the next block. Miners also add transactions to their blocks as

they are received and validated.

21

CHAPTER 3

Tendermint Prototype Development

This project implements a Tendermint’s prototype based on the Spartan Gold

code base in order to contrast its design with TontineCoin. The same components are

utilized but are modified to incorporate Tendermint’s protocol. Major changes are

made in Miner module to replace Spartan Gold’s PoW protocol with Tendermint’s PoS

protocol. Miner is renamed to Validator to keep the name consistent with the concept.

Also, Transaction module is modified to support three more types of transactions -

bonding, unbonding, and evidence - along with the existing type, standard, used to

transfer coins. A new module named Vote is added to allow a validator to create

votes for prevote and commit. This prototype of Tendermint follows UTXO model

instead of Account/Balance model. Also, it does not have precommit stage as it is in

the Tendermint’s protocol.

3.1 Driver

Similar to its predecessor, Driver module acts as the entry point of the Tendermint

system. It creates clients, validators and a genesis block and starts the simulation

of Tendermint’s protocol. In addition to a REG (standard) transaction that gives

clients and validators their initial funds, the genesis block contains BND (bonding)

transactions to bond the validators’ stakes. This module also simulates a transfer of

coins from a client to another using a REG transaction (described later), unbonding of

a validator from the network by posting a UND transaction (described later), bonding

of a client by posting a BND transaction (described later) with a stake, cheating of a

validator by proposing a conflicting block, and seizing their stake and ejecting them

by posting a EVD transaction by other validators. Also, after every predefined period

of time, UTXOs and the balances of all the clients are displayed to show the current

state of the system.

22

3.2 Transaction

Like its predecessor, Transaction module allows a client to create transactions.

But along with the transfers, i.e., the REG transactions, a validator can create BND,

UND, and EVD transactions. To incorporate this change, the transaction structure is

modified to have two more fields described below:

1. type: A transaction’s type which can be any of the following:

(a) REG : The type for a transaction to transfer coins.

(b) BND : The type for a transaction to stake coins and join the validators’

network.

(c) UND : The type for a transaction to receive staked coins and eject from

the validators’ network.

(d) EVD : The type for a transaction to report a dishonest validator with

evidence.

2. data: It contains the additional information required in a transaction. The

following are the details of data for each of the transaction type:

(a) In case of a REG transaction, it should contain receivers’ names. This

allows validators to maintain a legder of other validators’ names and their

coins.

(b) In case of a BND transaction, it should contain bonding validator’s name

and public key. This allows validators to maintain a store of public keys of

other validators.

(c) In case of a regular UND transaction, it should be empty. In case of a

seizing UND transaction, in which a validator posting it receives their

23

portion of the cheating validator’s stake, data it should contain the id of

the EVD transaction.

(d) In case of a EVD transaction, it should contain the cheating validator’s

name, their BND transaction and the conflicting blocks. inputs and outputs

should be empty.

The structure of an output in outputs is also changed to consist type so that different

types of UTXOs, i.e., REG, BND, and UND can be identified. Each output is of the

form {amount, address, type}.

The validation for REG, BND, and regular UND transactions remain the same

as it was in Spartan Gold. Additional validation is added for seizing UND transaction.

In that case, the id of the EVD transaction is retrieved from data and utxos is checked

if it contains it or not. In case it doesn’t, the transaction is discarded. Also, the hash

of the public key (address) and the signature from the input is not matched with the

matching UTXO’s address and signature. Both of these validations are skipped to

allow the validator posting the seizing UND transaction to receive their share of coins.

In case of a EVD transaction, currently, no validation is added. It can be a part of

the revised implementation.

3.3 Block

Similar to its predecessor, Block module allows a validator to produce a block. Its

structure is similar to that of Spartan Gold’s except it does not contain a target and

coinbase transaction and have two additional fields - a set of previous block commit

votes and the block creator’s signature.

3.4 Validator

Previously named as Miner, this module allows to create validators in the system.

Similar to its predecessor, it extends Client class. A validator is initialized with a

24

name, a Boolean value denoting whether they should cheat or not and another Boolean

value denoting whether they should detect cheating or not. They also have methods to

broadcast messages to other validators, add clients to the validators’ network, remove

validators from the validators’ network and send messages to a specific validator.

A validator maintains other validators’ stakes, accumulated powers, and the total

amount of staked coins, to be utilized in the consensus process. Additionally, they

maintain:

1. A legder of other validators’ coins to check if a validator posting a BND

transaction has the specified amount of coins.

2. Other validators’ public keys to verify a block proposer’s signature.

3. Other validators’ BND transactions utilized to retrieve a validator’s BND

transaction in case they post a UND transaction.

4. A proposer and their proposal for the current round.

5. prevotes and commits for the current proposal received from the other validators.

6. commits for the previous proposal.

7. The transactions received from clients to be added to the blockchain.

A validator walks through the following stages in a round of consensus:

1. findProposer : They unbond validators, if there are any, and send the current

state of the system to validators who have bonded to the validators’ network at

the end of the previous round. Then they proceed to find the current round’s

proposer, a validator whose accumulated power is maximum, and broadcast

their name.

25

2. receiveProposer : Upon receiving a proposer’s name, they check if all the received

proposers’ names are the same once they have received them from more than

2/3 of the total validators. If they are not the same, a message is displayed to

denote this, and then the receiving validator moves on to the next round. If

they are the same, the receiving validator sets its proposer field with the elected

proposer’s name and decrements its accumulated power by the total stakes.

3. propose: If the receiving validator themselves is the elected proposer, they create

a proposal, i.e., a block and broadcast it. The transactions received from clients

are added in the new block before broadcasting.

4. receiveProposal : Upon receiving a proposal, the validator validates it. If it is

valid, it is set as proposal, and the validator moves on to prevote stage. If it is

invalid, it is handled according to its invalidity (described later), and then the

validator moves on to the next round.

5. prevote: The validator creates a signed prevote and broadcasts it. Upon receiving

a prevote, the validator checks if it is signed by its owner. If it is not, an error

message is displayed to show this. Else, the validator moves on to commit stage

once they have received prevotes from more than 2/3 of the total validators.

6. commit : The validator creates a signed commit and broadcasts it. Upon

receiving a commit, the validator checks if it is signed by its owner. If it is

not, an error message is displayed to show this. Else, the validator moves on to

commit the block and finalize the round once they have received commits from

more than 2/3 of the total validators.

7. finalize: If the validator is set to cheat, they do not add the block in their

blockchain after a predefined block height is reached. This causes them to

26

cheat by proposing a block based on an old block. Later, if they receive a block

whose height is greater than the predefined block height, they broadcast a sync

request to get synced with the current state of the system. Those transactions

which are committed in the block are removed from transactions set maintained

by the validator. A seizing UND transaction is created to receive part of the

stakes of validators against whom EVD transactions are committed. Those

validators are unbonded at the beginning of the next round. Validators whose

BND transactions are committed are added to the validators’ network. If the

validator is proposer, they broadcast committed transactions to the clients and

validators so that they can add their UTXOs to their wallets. Proposer also

sends the current state of the system to validators who have requested for a

sync. In the end, they broadcast a message to start the next round of consensus.

A validator bonds to the validators’ network after their BND transaction is

committed in the blockchain. outputs of this transaction contains an output specifying

the validator’s amount of stake, their self-address and type as BND. If there is a

change amount after inputs are created, another output is added in outputs with that

amount, the validator’s self-address, and type as REG.

A validator unbonds from the validators’ network after their UND transaction

is committed in the blockchain. inputs of this transaction contains details to locate

outputs of the validator’s BND transaction and outputs contains details to receive

them at their specified address.

A validator’s stakes are seized after a EVD transaction against them is committed

in the blockchain. Each validator (except the cheater) creates a seizing UND trans-

action having inputs containing details to locate outputs of the cheating validator’s

BND transaction. outputs contains details to receive them at the address specified by

27

the validator. The amount in outputs is the equally divided share of that validator in

cheating validator’s stake.

A validator checks a block’s validity when they receive it from its proposer. A

block is invalid if its height is less than or equal to the validator’s current block’s

height. The received block is further validated based on the following conditions:

1. If the block’s height and signature are equal to the validator’s current block’s

height and signature, it is a conflicting block in which case a EVD transaction

is created using both the blocks and stored in transaction set for that validator

to add in their next proposal.

2. If the block’s previous block’s hash does not match with the validator’s current

block’s hash, it is invalid.

3. If the block’s signature does not match with its proposer’s signature, it is invalid.

If none of the above conditions are true, the block is valid.

3.5 Vote

This module allows a validator to create a vote. There are two types of vote –

prevote and commit. A vote has a block’s hash, a type, and a signature of its creator.

28

CHAPTER 4

TontineCoin Prototype Implementation

This chapter discusses the implementation details of the TontineCoin prototype.

It is built based on the developed Tendermint prototype and utilizes the same

components with the addition of a new component named Tontine that allows clients

to create tontines and bid to become validators. Validator module is modified to

provide support for bid transactions and to add the selected tontine in the validators’

network when the selection block is reached. In this prototype, the last tontine

to bid is selected instead of the tontine having the best PoW. Each validator is

associated with a tontine ID and a share in its tontine. Each validator monitors its

own tontine members for misbehavior. In case of a conflicting proposal, the cheater’s

tontine members create EVD transactions and broadcast it to the network, unlike

Tendermint’s validators, which keep EVD transactions to themselves to add in their

next proposal. This reduces the time taken by the network to seize cheater’s stake and

eject them. After these transactions are committed, the cheater’s tontine members

create seizing UND transactions to receive the coins according to their shares in their

tontine.

4.1 Driver

Similar to Tendermint, this module acts as the entry point of the TontineCoin

system and simulates the same operations as Tendermint’s. It first creates initial

clients and validators with their respective attributes. A genesis tontine is created

based on the initial validators, their shares, and stakes. A genesis block is created that

contains a REG transaction, and the BND transactions except the BND transactions

are retrieved from the genesis tontine that is included in data of the BID transaction

(described later) posted by the leader of genesis tontine. It is also added to the genesis

block.

29

To simulate bonding of clients, two more tontines are created based on new

validators, their shares, and stakes. The leaders of each of these tontines submit their

bid to join the validators’ network. The last tontine to submit a bid is selected to be

added to the validator’s network when the selection block is reached. This prototype

also simulates a cheating scenario similar to that of Tendermint.

4.2 Transaction

A new type of transaction is added in this module to allow new validators to

create bid transactions. The type of this transaction is BID, and its data should

include a tontine created using Tontine module. This transaction has empty inputs

and outputs. Also, in case of a BND transaction, data should have a validator’s share

and their tontine ID along with their name and public key.

4.3 Validator

In addition to its previous fields, a validator also maintains three new fields –

share to store their share in their tontine, tontineID to store the tontine’s ID to which

they belong, and currentBidLeader to store the current bid leader tontine. Along

with a stake, a validator also maintains other validator’s share and tontineID. Instead

of the total amount of stakes, a validator maintains the sum of the shares of all

validators.

A validator in TontineCoin walks through the same stages of consensus as they

are in Tendermint with the following changes:

1. findProposer : Instead of a validator’s stake, their share is added to their

accumulated power, and the validator having maximum accumulated power is

announced as the current round’s proposer.

2. receiveProposer : Instead of total stakes, the elected proposer’s accumulated

power is decremented by total shares.

30

3. finalize: In addition to the operations performed in its predecessor, the validator

updates the currentBidLeader with the tontine from the last BID transac-

tion. When a predefined block height (selection block) is reached, the BND

transactions from currentBidLeader are added to the transactions set.

Similar to Tendermint, in TontineCoin, a validator bonds, unbonds, and ejects

from the validators’ network after their associated transactions are committed in the

blockchain. But in TontineCoin, after a validator is unbonded, other validators update

shares of those validators whose tontineID match with the unbonding validator’s

tontineID as per the following formula:

𝑛 = 𝑜+ ((𝑜/(1− 𝑐)) * 𝑐)

where n is the validator’s new share, o is their old share, and c is the unbonding

validator’s share.

Also, instead of all validators, only those validators whose tontineID match with

proposer’s tontineID, check if the received block is a conflicting one or not. If yes,

those validators create EVD transactions and broadcast it to the network. After these

transactions are committed, they create and broadcast seizing UND transaction. A

validator’s share in the cheating validator’s stake is given by the formula discussed

above.

4.4 Tontine

This module allows a set of new validators to create a tontine. A tontine is made

up of the following fields:

1. nonce: An integer value.

2. members : A validator’s name with their share in the tontine, stake, and BND

transaction.

31

3. id : A tontine ID.

It is assumed that the validators’ total stake is equal to a predefined amount given by

MAX_AMNT, and the total share is 1. Each validator’s share is set to their share,

and tontineID is set to newly created tontine’s ID.

32

CHAPTER 5

Contrasting Normal Operations of TontineCoin and Tendermint

This chapter contrasts five different normal operations in both the Tendermint

and TontineCoin models. These operations are initialization, the consensus process,

transfer of coins among clients, bonding of clients, and unbonding of validators. Each

system’s Driver module is executed on Command Prompt on Windows 10 operating

system installed with Node.js execution environment. Tendermint model is simulated

with a network of 3 clients and 4 validators while TontineCoin with a network of 9

clients and 5 validators. The results are in the form of logs displayed on Command

Prompt.

5.1 Initialization

Initialization operation creates initial clients with their coins in their wallets,

initial validators with their stakes bonded in the system and a genesis block containing

a REG and BND transactions. It is similar in both the models except validators

of TontineCoin have shares in their tontines and their tontine IDs. Also, a genesis

tontine is created in the TontineCoin system for initial validators to bid and bond to

the system.

Figures 2 and 3 show initial balances of clients and validators in both the systems,

respectively. Tendermint system is initialized with 3 clients and 4 validators while

TontineCoin with 9 clients and 5 validators. In both the systems, the clients have

their coins in their wallets and validators have their stakes bonded in their systems.

Only validators of TontineCoin have shares in their tontines and their tontine IDs.

Figure 4 shows a genesis tontine of 5 validators, each of which has a share and

a stake. The tontine has a nonce, members and an ID. Unlike other tontines, BND

transactions are not included in a genesis tontine. They are created during the creation

of the genesis block.

33

Figure 2: Initial balances of 3 clients and 4 validators in Tendermint

Figure 3: Initial balances of 9 clients and 5 validators in TontineCoin

Figures 5 and 6 show initial UTXOs held by validators in both the systems,

respectively. Initial REG and BND outputs can be seen in these figures.

5.2 Consensus process

In both the systems, a round of consensus includes unbonding of validators,

syncing of validators bonded in the last round, election of a proposer, creation and

Figure 4: A genesis tontine of 5 validators in TontineCoin

34

Figure 5: Initial balances of 3 clients and 4 validators in Tendermint

broadcast of a proposal by the elected proposer, its validation by other validators,

prevote and commit stages, ejecting cheating validators, bonding validators, receiving

outputs, removal of transactions already committed, and addition of the proposal

in the blockchain. In addition to these operations, a validator in TontineCoin also

supports tontines’ BID transactions and selects currentBidLeader’s validators to bond

when the selection block is reached (discussed in 5.4.2).

Figures 7 and 8 show a round of consensus in both the systems, respectively. In

figure 7, Mickey is elected as the proposer in the Tendermint system, while in Figure 8,

Minnie is elected in the TontineCoin system.

5.3 Transfer of coins from a client to another

The process of transferring coins from a client to another is the same in both

the systems. Figures 9, 10 and 11 show a transfer of 40 coins from Alice to Tom in

35

Figure 6: Initial balances of 9 clients and 5 validators in TontineCoin

Tendermint. Figure 9 shows Alice creating a REG transaction to transfer coins at

an address provided by Tom. The same figure shows Popeye validating and adding

Alice’s REG transaction in his block. Other validators receive the block and confirm

it as a valid one. Figure 10 shows UTXOs held by Minnie that includes Tom’s UTXO

and Alice’s updated UTXO. Figure 11 shows their updated wallets. An extra coin is

deducted from Alice’s wallet as a transaction fee, which is actually not collected by

36

Figure 7: A round of consensus in Tendermint

any validator. This can be a rectified in the revised implementation.

Figures 12, 13, and 14 show a transfer of 10 coins from Alice to Bob in TontineCoin

in a similar way.

5.4 Bonding of a client to the validators’ network

Bonding of a client to the validators’ network in TontineCoin is different than that

in Tendermint. Clients in Tendermint submit BND transaction to get in the validators’

network while those in TontineCoin form tontines and submit BID transactions to

get in.

5.4.1 Bonding of a client in Tendermint

Figure 15 shows Tom posting a BND transaction to be a validator. Figure 16

shows Donald adding Tom’s BND transaction in his proposal. Figure 18 shows UTXOs

held by Popeye consisting of Tom’s UTXO. Figure 17 shows Tom as a proposer.

37

Figure 8: A round of consensus in TontineCoin

5.4.2 Bonding of a client in TontineCoin

Figure 19 shows Tom, Garfield, Snoopy, and Jerry creating a tontine and Aladdin

and Casper creating another one. Tom and Aladdin submit BID transactions for

their respective tontine. Figure 20 shows Dexter adding both the BID transactions in

his proposal. Figure 21 shows selection of Aladdin’s tontine by each of validators at

the selection block height. Figure 22 shows bonding of Aladdin and Casper to the

validators’ network. Figure 23 shows Aladdin as a proposer. Figure 24 shows UTXOs

held by Popeye consisting of Aladdin’s and Casper’s UTXOs. Aladdin’s UTXO is

changed because it is seized by his tontine members (cheating scenario discussed

in 6.2).

38

Figure 9: Creation and inclusion of REG transaction in Tendermint

Figure 10: UTXOs after the REG transaction created in Figure 9 in Tendermint

5.5 Unbonding of a validator from the validators’ network

Unbonding of a validator from the validators’ network in TontineCoin is similar

to that of in Tendermint. Valdators in both the systems submit a UND transaction

to receive their stake back and leave the network. However, in TontineCoin, those

validators’ shares are also updated who belonged to unbonded validator’s tontine.

39

Figure 11: Balances after the REG transaction created in Figure 9 in Tendermint

Figure 12: Creation and inclusion of REG transaction in TontineCoin

5.5.1 Unbonding of a validator in Tendermint

Figure 25 shows Minnie creating and broadcasting a UND transaction. Figure 26

shows Donald adding it in his proposal and Minnie unbonding after it is committed.

Figure 27 shows a round of block creation after Minnie is unbonded. Figure 28 shows

Mickey’s UTXOs consisting of Minnie’s unbonded UTXO.

5.5.2 Unbonding of a validator in TontineCoin

Figure 29 shows Minnie, a validator of tontine shown in Figure 4, creating and

broadcasting a UND transaction. Figure 30 shows Donald adding it in his proposal and

40

Figure 13: UTXOs after the REG transaction created in Figure 12 in TontineCoin

Figure 14: Balances after the REG transaction created in Figure 12 in TontineCoin

validators updating other validators’ shares after Minnie unbonding. Since Mickey,

Popeye, Donald, and Dexter belonged to Minnie’s tontine, their shares are updated.

Figure 31 shows a round of block creation after Minnie is unbonded. Figure 32 shows

Mickey’s UTXOs consisting of Minnie’s unbonded UTXO.

41

Figure 15: A client posting a BND transaction in Tendermint

Figure 16: A validator adding the BND transaction created in Figure 15 in Tendermint

42

Figure 17: The client from Figure 15 as a proposer in Tendermint

Figure 18: A validator’s UTXOs after the BND transaction created in Figure 15 in
Tendermint

Figure 19: Creation of tontines and submission of BID transactions in TontineCoin

Figure 20: A validator adding the BID transactions created in Figure 19 in TontineCoin

43

Figure 21: Selection of winner tontine from tontines created in Figure 19 in TontineCoin

Figure 22: A validator adding BND transactions of the tontine selected in Figure 21
in their proposal in TontineCoin

Figure 23: A validator from the tontine selected in Figure 21 proposing a block in
TontineCoin

44

Figure 24: A validator’s UTXOs after the BND transaction created in Figure 21 in
TontineCoin

Figure 25: A validator posting a UND transaction in Tendermint

45

Figure 26: A validator unbonding in Tendermint after their UND transaction is
committed

Figure 27: A round of block creation after the validator from Figure 25 is unbonded
in Tendermint

46

Figure 28: A validator’s UTXOs displaying the UTXO of unbonded validator from
Figure 25 in Tendermint

Figure 29: A validator posting a UND transaction in TontineCoin

47

Figure 30: A validator unbonding in Tontinecoin after their UND transaction is
committed

Figure 31: A round of block creation after the validator from Figure 29 is unbonded
in TontineCoin

48

Figure 32: A validator’s UTXOs displaying the UTXO of unbonded validator from
Figure 29 in TontineCoin

49

CHAPTER 6

Handling of nothing-at-stake in TontineCoin and Tendermint

This chapter shows and discusses how a nothing-at-stake attack is handled in

the TontineCoin model compared to the Tendermint model. A cheating scenario

is simulated in both the systems in the same environment and network created in

chapter 5. This scenario depicts a validator proposing a conflicting block and being

ejected from the network.

A validator in both the systems cheats when their faulty attribute is set, and

they propose two blocks of the same height and with the same signature consecutively.

In Tendermint, the cheating validator’s stake is equally divided among the rest of

validators. But in TontineCoin, it is divided among those validators who belong to

the cheating validator’s tontine. It is divided based on their share in their tontine.

6.1 Cheating scenario in Tendermint

Figure 33 shows Mickey proposing a conflicting block, and then Popeye and Donald

creating the EVD transactions. Figure 34 shows Donald adding his EVD transaction

in his proposal, and then Popeye and Donald creating the UND transactions. Figure 35

shows Tom adding them in his proposal, and then Mickey being unbonded from the

network. Figure 36 shows Popeye’s UTXOs consisting of the seized UTXOs. Figure 37

shows the updated wallets of validators after seizing the coins of Mickey.

6.2 Cheating scenario in TontineCoin

Figure 38 shows Aladdin proposing a conflicting block and then Casper creating

and broadcasting a EVD transaction. Figure 39 shows Popeye adding it in his proposal

and then Casper creating a UND transaction. Figure 40 shows Donald adding it in

his proposal, and then Aladdin being unbonded from the network. Figure 41 shows

Popeye’s UTXOs consisting of the seized UTXOs. Figure 42 shows the updated

wallets of validators after seizing the coins of Aladdin.

50

Figure 33: A cheater getting caught in Tendermint

Figure 34: Inclusion of EVD transaction created in Figure 33 and UND transactions
to seize cheater’s stake in Tendermint

51

Figure 35: Unbonding the cheater from Figure 33 in Tendermint

Figure 36: Seized UTXOs of the cheater from Figure 33 in Tendermint

52

Figure 37: Updated wallets of validators after seizing the coins of the cheater from
Figure 33 in Tendermint

Figure 38: A cheater getting caught in TontineCoin

53

Figure 39: Inclusion of EVD transaction created in Figure 38 and UND transaction
to seize cheater’s stake in TontineCoin

54

Figure 40: Unbonding the cheater from Figure 38 in TontineCoin

Figure 41: Seized UTXOs of the cheater from Figure 38 in TontineCoin

55

Figure 42: Updated wallets of validators after seizing the coins of the cheater from
Figure 38 in TontineCoin

56

CHAPTER 7

Conclusion and Future Enhancements

This project has implemented a prototype of Tendermint and built a TontineCoin

model based on it. It has simulated and contrasted five different normal operations

in both these prototypes. These operations are initialization, the consensus process,

transfer of coins among clients, bonding of clients, and unbonding of validators.

The TontineCoin model differs from the Tendermint model in the execution of the

above operations except for the transfer of coins. This project has also simulated

and discussed how a nothing-at-stake attack is handled in TontineCoin compared to

Tendermint. TontineCoin’s approach of monitoring and ejecting dishonest validators

differs from that of Tendermint’s.

There are a few areas in which the TontineCoin model can be improved in future.

A major enhancement would be to add support in it to validate TontineCoin’s claim

which ensures improved monitoring system provided the cost of monitoring is below its

benefit. Also, currently, a block in the TontineCoin model does not include the current

bid leader’s PoW and hence is not compared with the bidding tontine’s PoW. The

last tontine to bid before the selection block reaches is selected. This can be improved

in the future implementation. Additionally, since a cheating validator’s stake in

TontineCoin model is seized based on the associated tontine members’ fractional

shares, it is not completely seized. This can be seen in figure 41. The formula to

calculate the new share can be modified to handle the precision issue in the future

implementation.

The current implementation does not support a transaction fee in transactions.

This is expected to avoid clients and validators from posting false transactions. The

future implementation can be enhanced with this feature. Additionally, the current

implementation is name-based instead of address-based. This means a validator stores

57

other validator’s information based on their name instead of their public key or address.

This is not expected since a cryptocurrency is required to offer complete or partial

anonymity. This can be rectified in a revised implementation.

58

LIST OF REFERENCES

[1] S. Nakamoto, ‘‘Bitcoin: A peer-to-peer electronic cash system,’’ 2008.

[2] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, ‘‘Blockchain challenges
and opportunities: A survey,’’ International Journal of Web and Grid Services,
vol. 14, no. 4, pp. 352--375, 2018.

[3] C. Dwork and M. Naor, ‘‘Pricing via processing or combatting junk mail,’’ in
Annual International Cryptology Conference. Springer, 1992, pp. 139--147.

[4] M. Jakobsson and A. Juels, ‘‘Proofs of work and bread pudding protocols,’’
in Proceedings of the IFIP TC6/TC11 Joint Working Conference on Secure
Information Networks: Communications and Multimedia Security, ser. CMS ’99.
NLD: Kluwer, B.V., 1999, p. 258–272.

[5] H. Handschuh, SHA Family (Secure Hash Algorithm). Boston, MA: Springer
US, 2005, pp. 565--567. [Online]. Available: https://doi.org/10.1007/0-387-
23483-7_388

[6] C. Percival, ‘‘Stronger key derivation via sequential memory-hard functions.’’

[7] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein, ‘‘Blake2:
Simpler, smaller, fast as md5,’’ in Applied Cryptography and Network Security,
M. Jacobson, M. Locasto, P. Mohassel, and R. Safavi-Naini, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 119--135.

[8] ‘‘Litecoin - open source p2p digital currency,’’ https://litecoin.org, (Accessed on
01/03/2020).

[9] wedgethx. Youtube. ‘‘Charlie lee’s litecoin presentation at btc miami conference.’’
https://www.youtube.com/watch?v=Le5ByHtssnc. (Accessed on 01/03/2020).

[10] coblee, ‘‘[ann] litecoin - a lite version of bitcoin. launched!’’ https://bitcointalk.
org/index.php?topic=47417.0, Oct 2011, (Accessed on 01/03/2020).

[11] B. Asolo, ‘‘Litecoin scrypt algorithm explained,’’ https://www.mycryptopedia.
com/litecoin-scrypt-algorithm-explained/, Dec 2018, (Accessed on 01/03/2020).

[12] G. Wood et al., ‘‘Ethereum: A secure decentralised generalised transaction
ledger.’’

[13] B. Asolo, ‘‘Ethash explained,’’ https://www.mycryptopedia.com/ethash-
explained/, Jan 2019, (Accessed on 01/06/2020).

59

https://doi.org/10.1007/0-387-23483-7_388
https://doi.org/10.1007/0-387-23483-7_388
https://litecoin.org
https://www.youtube.com/watch?v=Le5ByHtssnc
https://bitcointalk.org/index.php?topic=47417.0
https://bitcointalk.org/index.php?topic=47417.0
https://www.mycryptopedia.com/litecoin-scrypt-algorithm-explained/
https://www.mycryptopedia.com/litecoin-scrypt-algorithm-explained/
https://www.mycryptopedia.com/ethash-explained/
https://www.mycryptopedia.com/ethash-explained/

[14] J. Ray, ‘‘Ethash,’’ https://github.com/ethereum/wiki/wiki/Ethash, 2018, (Ac-
cessed on 01/06/2020).

[15] K. J. O’Dwyer and D. Malone, ‘‘Bitcoin mining and its energy footprint,’’ 2014.

[16] ‘‘Bitcoin energy consumption index,’’ https://digiconomist.net/bitcoin-energy-
consumption, 2020, (Accessed on 04/06/2020).

[17] QuantumMechanic, ‘‘Proof of stake instead of proof of work,’’ https://bitcointalk.
org/index.php?topic=27787.0,, Jul 2011, (Accessed on 01/06/2020).

[18] S. King and S. Nadal, ‘‘Ppcoin: Peer-to-peer crypto-currency with proof-of-stake,’’
self-published paper, August, vol. 19, 2012.

[19] P. Vasin, ‘‘Blackcoin’s proof-of-stake protocol.’’

[20] ‘‘What is blackcoin?’’ https://www.americascardroom.eu/blackcoin-
cryptocurrency/, (Accessed on 01/08/2020).

[21] W. Li, S. Andreina, J.-M. Bohli, and G. Karame, ‘‘Securing proof-of-stake
blockchain protocols,’’ in Data Privacy Management, Cryptocurrencies and
Blockchain Technology. Springer, 2017, pp. 297--315.

[22] J. Martinez, ‘‘Understanding proof of stake: The nothing at stake the-
ory,’’ https://medium.com/coinmonks/understanding-proof-of-stake-the-nothing-
at-stake-theory-1f0d71bc027, Jun 2018, (Accessed on 01/08/2020).

[23] J. Kwon, ‘‘Tendermint: Consensus without mining,’’ Draft v. 0.6, fall, vol. 1,
no. 11, 2014.

[24] C. Dwork, N. Lynch, and L. Stockmeyer, ‘‘Consensus in the presence of partial
synchrony,’’ Journal of the ACM (JACM), vol. 35, no. 2, pp. 288--323, 1988.

[25] C. Pollett, T. Austin, K. Potika, and J. Rietz, ‘‘Tontinecoin: Murder-based
proof-of-stake,’’ 2020, unpublished.

[26] T. H. Austin, ‘‘Spartan gold,’’ https://github.com/taustin/spartan-gold, 2018,
(Accessed on 09/08/2019).

[27] A. Back, ‘‘Hashcash-a denial of service counter-measure,’’ 2002.

[28] M. Taylor, ‘‘The evolution of bitcoin hardware,’’ Computer, vol. 50, pp. 58--66,
01 2017.

[29] ‘‘Proposer selection procedure in tendermint,’’ https://docs.tendermint.com/
master/spec/reactors/consensus/proposer-selection.html, 2020, (Accessed on
10/18/2019).

60

https://github.com/ethereum/wiki/wiki/Ethash
https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption
https://bitcointalk.org/index.php?topic=27787.0,
https://bitcointalk.org/index.php?topic=27787.0,
https://www.americascardroom.eu/blackcoin-cryptocurrency/
https://www.americascardroom.eu/blackcoin-cryptocurrency/
https://medium.com/coinmonks/understanding-proof-of-stake-the-nothing-at-stake-theory-1f0d71bc027
https://medium.com/coinmonks/understanding-proof-of-stake-the-nothing-at-stake-theory-1f0d71bc027
https://github.com/taustin/spartan-gold
https://docs.tendermint.com/master/spec/reactors/consensus/proposer-selection.html
https://docs.tendermint.com/master/spec/reactors/consensus/proposer-selection.html

[30] ‘‘What is tendermint?’’ https://docs.tendermint.com/master/introduction/what-
is-tendermint.html, (Accessed on 10/31/2019).

[31] ‘‘Running in production,’’ https://tendermint.com/docs/tendermint-core/
running-in-production.html#dos-exposure-and-mitigation, 2020, (Accessed on
10/25/2019).

[32] C. Unchained, ‘‘Tendermint explained — bringing bft-based pos to the pub-
lic blockchain domain,’’ https://blog.cosmos.network/tendermint-explained-
bringing-bft-based-pos-to-the-public-blockchain-domain-f22e274a0fdb, May 2018,
(Accessed on 09/05/2019).

[33] K. McKeever, ‘‘A short history of tontines,’’ Fordham J. Corp. & Fin. L., vol. 15,
p. 491, 2009.

[34] G. Hirsch, ‘‘Tontines, tontine insurance, and commercial culture: Stevenson and
osbourne’s the wrong box,’’ Robert Louis Stevenson: Writer of Boundaries, pp.
83--94, 01 2006.

[35] R. M. Jennings, D. F. Swanson, and A. P. Trout, ‘‘Alexander hamilton’s tontine
proposal,’’ The William and Mary Quarterly: A Magazine of Early American
History, pp. 107--115, 1988.

[36] M. A. Milevsky, King William’s Tontine: why the retirement annuity of the
future should resemble its past. Cambridge University Press, 2015.

[37] ‘‘Rhostyllen: a history through pictures,’’ http://rhostyllen.info/misc.html, (Ac-
cessed on 12/10/2019).

[38] R. L. Ransom and R. Sutch, ‘‘Tontine insurance and the armstrong investigation:
a case of stifled innovation, 1868--1905,’’ The Journal of Economic History,
vol. 47, no. 2, pp. 379--390, 1987.

61

https://docs.tendermint.com/master/introduction/what-is-tendermint.html
https://docs.tendermint.com/master/introduction/what-is-tendermint.html
https://tendermint.com/docs/tendermint-core/running-in-production.html# dos-exposure-and-mitigation
https://tendermint.com/docs/tendermint-core/running-in-production.html# dos-exposure-and-mitigation
https://blog.cosmos.network/tendermint-explained-bringing-bft-based-pos-to-the-public-blockchain-domain-f22e274a0fdb
https://blog.cosmos.network/tendermint-explained-bringing-bft-based-pos-to-the-public-blockchain-domain-f22e274a0fdb
http://rhostyllen.info/misc.html

	Implementing TontineCoin
	Recommended Citation

	Introduction
	Problem
	Proposed Solution

	Background
	PoW cryptocurrencies
	Tendermint
	Tontine
	TontineCoin
	Tontine Formation
	Hybrid – The train model

	Spartan Gold

	Tendermint Prototype Development
	Driver
	Transaction
	Block
	Validator
	Vote

	TontineCoin Prototype Implementation
	Driver
	Transaction
	Validator
	Tontine

	Contrasting Normal Operations of TontineCoin and Tendermint
	Initialization
	Consensus process
	Transfer of coins from a client to another
	Bonding of a client to the validators’ network
	Bonding of a client in Tendermint
	Bonding of a client in TontineCoin

	Unbonding of a validator from the validators’ network
	Unbonding of a validator in Tendermint
	Unbonding of a validator in TontineCoin

	Handling of nothing-at-stake in TontineCoin and Tendermint
	Cheating scenario in Tendermint
	Cheating scenario in TontineCoin

	Conclusion and Future Enhancements
	LIST OF REFERENCES

