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ABSTRACT 

 

The proliferation of data from sources like social media, and sensor devices has 

become overwhelming for traditional data storage and analysis technologies to 

handle. This has prompted a radical improvement in data management techniques, 

tools and technologies to meet the increasing demand for effective collection, storage 

and curation of large data set. Most of the technologies are open-source.  

 

Big data is usually described as very large dataset. However, a major feature of big 

data is its velocity. Data flow in as continuous stream and require to be actioned in 

real-time to enable meaningful, relevant value. Although there is an explosion of 

technologies to handle big data, they are usually targeted at processing large dataset 

(historic) and real-time big data independently. Thus, the need for a unified 

framework to handle high volume dataset and real-time big data. This resulted in the 

development of models such as the Lambda architecture. 

 

Effective decision-making requires processing of historic data as well as real-time 

data. Some decision-making involves complex processes, depending on the 

likelihood of events. To handle uncertainty, probabilistic systems were designed. 

Probabilistic systems use  probabilistic models developed with probability theories 

such as hidden Markov models with inference algorithms to process data and 

produce probabilistic scores. However, development of these models requires 

extensive knowledge of statistics and machine learning, making it an uphill task to 

model real-life circumstances. A new research area called probabilistic programming 

has been introduced to alleviate this bottleneck. 

 

This research proposes the combination of modern open-source big data 

technologies with probabilistic programming and Lambda architecture on easy-to-get 

hardware to develop a highly fault-tolerant, and scalable processing tool to process 

both historic and real-time big data in real-time; a common solution. This system will 

empower decision makers with the capacity to make better informed resolutions 

especially in the face of uncertainty. 

 

The outcome of this research will be a technology product, built and assessed using 

experimental evaluation methods. This research will utilize the Design Science 

Research (DSR) methodology as it describes guidelines for the effective and rigorous 

construction and evaluation of an artefact. 
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Probabilistic programming in the big data domain is still at its infancy, however, the 

developed artefact demonstrated an important potential of probabilistic programming 

combined with Lambda architecture in the processing of big data. 

 

Keywords: Big Data, big data processing, probabilistic reasoning, probabilistic 

programming, Lambda architecture. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction 

This chapter starts with a description of the research background and motivation for 

this study in Section 1.2, and then the research problem is listed in Section 1.3. 

Section 1.5 presents the research questions. The aim and objectives of this research 

are outlined in Section 1.5 and Section 1.6 discusses delineation and assumptions of 

this study. The proposed methodology for this research is described in Section 1.7. 

Section 1.8 ends this chapter with a descriptive structure of the thesis. 

 

1.2 Background and Motivation 

Data is a collection of facts or statistics in an unorganized form usually for calculation, 

analysis and/or planning. Data is limitless and ubiquitous. As McAfee & Brynjolfsson 

(2012) pointed out, individuals, businesses, institutions and organizations are 

accumulating and producing massive amount of data than they know what to do with 

as a by-product of business processes, website tracking, finance, accounting among 

others. This increasing amount of data generated on a daily basis usually originates 

from multiple sources like sensors and mobile devices, and in different formats. 

 

Looking at data generated online, Fan & Bifet (2013, p. 1) wrote: “The web pages 

indexed by Google were around one million in 1998, but quickly reached one billion in 

2000 and have already exceeded one trillion in 2008.” This can be credited to social 

media applications like YouTube, Twitter, Instagram, etc., that allow its users to 

generate huge amount of data. Most of these data are continuously generated as 

streams and are volatile. This flood of data is called Big Data and according to 

Hansen (2013), it represents a significant innovation in data management. Big data 

simple put is data that is excessively large, very fast and thus, tough for extant 

traditional data management tools to process (Madden, 2012). 

 

Laney (2001) indicated high volume, velocity and variety, popularly called the 3Vs, as 

the three attributes that describe big data. This has formed the basis for most 

interpretations of big data. The cynosure of big data both in academia and industry 

has been on volume, albeit the significance of other Vs are recognised by many 

(Mishne et al., 2013). 

 

Volume refers to the increasing size of generated data. Velocity in big data is the 

capacity to garner information or value in real-time from large volume of continuous 
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data from different sources. This continuous high volume big data is also called Fast 

Data and is defined by Baer (2013) as a subset of big data as it encapsulates the 

velocity characteristics of big data. Variety denotes the dissimilar formats in which 

data is generated. Data could be in raw, semi-structured and structured formats 

(Baer, 2013; Katal et al., 2013; Kim et al., 2014; Tyagi et al., 2015; Hashem et al., 

2015; Landset et al., 2015). 

 

The classic 3V definition of big data has been extended due to explosion of the social 

media to include other Vs. An example is veracity. Veracity is concerned  with 

uncertainty in user generated data (Ularu et al., 2012; Jin et al., 2015). 

 

The era of big data brought about the need for drastic revision and improvement in 

data processing as traditional, relational data management technologies could not 

fulfil the performance requirements of big data (Gandomi & Haider, 2015). The 

limitation prompted research from academia, government and industry over the last 

decade. As a result, technologies are being developed to practically improve big data 

processing. Most of these technologies are open-sourced. An example is the 

MapReduce. 

 

MapReduce, initiated by Google, is a programming paradigm for concurrent and 

distributed processing of big data across multiple servers called clusters or grid with 

high fault tolerance (Lee et al., 2012). MapReduce fundamentally breaks down a big 

task into smaller tasks and processes them in parallel. The open-source Apache 

Hadoop supports the MapReduce paradigm. Hadoop is a highly scalable framework 

used for processing big data across several machines (Apache Software Foundation, 

2016). Apache Hadoop infrastructure comprises two main modules namely Hadoop 

Distributed File System (HDFS) and MapReduce. The purpose of HDFS is to provide 

fast and distributed access to data (Fan & Bifet, 2013). According to Ularu, Puican, 

Apostu, & Velicanu (2012), Hadoop is now the effective standard framework for 

processing big data. 

 

A notable amount of data is generated as data stream and require immediate 

processing to extract relevant value in real-time. The importance and benefits of 

analysing continuous stream of data in real-time cannot be understated (Lorentz, 

2013). Organizations need to gain insight from big data so that information such as 

opportunities, threats and performances are quickly spotted (Russom, 2013). 

However, the MapReduce paradigm implemented in the majority of big data 

technologies was designed to handle high throughput with less attention to the 
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velocity characteristics of big data (Hashem et al., 2015). Liu, Iftikhar, & Xie (2014) 

also emphasized that Hadoop lacks adequate support for real-time data processing 

and current algorithms are ineffectual in the analysis of big data. Thus, the need for 

technologies to handle big data streams. This birthed Distributed Stream Processing 

Engines – DSPEs (Gedik et al., 2008). DSPEs process continuous volatile high-

speed data as it arrives and provides approximate responses using probability. Some 

examples are Apache Storm and S4 (S. Chen et al., 2014). 

 

There are other technologies that coexist with the MapReduce and streaming model 

to handle big data processing. It is worthwhile to mention Zookeeper (a server 

enabling very reliable distributed harmonization), and NoSQL databases (for handling 

scalability in data storage and distributed data management). These state-of-the-art 

technologies form the software ecosystem for big data applications and have 

drastically improved the capturing, storing and analysing of big data. However, these 

technologies exist independently to solve specific big data problems. The streaming 

model is unsuitable for static big data, and the MapReduce paradigm is ineffective 

with fast big data stream. 

 

It is important to note that in order to provide insight and make sense out of big data, 

artificial intelligence and machine learning are used in the development of 

applications that empower computers to learn and identify complex patterns and 

knowledge hidden in data and automatically make intelligent predictions based on the 

data (Brown et al., 2011; Kraska et al., 2013). 

 

A fundamental research area in machine learning that addresses uncertainty in data 

is called probabilistic reasoning. Probabilistic reasoning has proven useful in handling 

the veracity characteristics of big data (Dobre & Xhafa, 2014; Ghahramani, 2015). 

There are automated applications that use probabilistic reasoning to process data. 

These applications are known as Probabilistic Reasoning Systems (Zadeh, 2003). 

 

Probabilistic reasoning systems use a probabilistic model and inference algorithm to 

perform computation on data. A probabilistic model is developed using Bayesian or 

Markov networks. This is usually a difficult task and requires extensive knowledge in 

these networks (Dobre & Xhafa, 2014). Again modelling real-life scenario as a 

probabilistic model is complex as a result of the difficulty (Sampson, 2015; Roy, 

2018). This led to the concept of Probabilistic Programming.  
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Probabilistic programming makes it easier to develop complex probabilistic models 

using the powerful features of a programming language in probabilistic modelling. 

 

1.3 Research Problem Statement 

The current software ecosystem of big data technologies is appropriate for 

processing huge amount of both historic and real-time data independently, providing 

distributed processing across several servers. On one hand, the parallel and 

distributed batch computing is suitable for processing large volume of historic data. 

On the other hand, distributed stream processing frameworks tackle processing of big 

data streams. Again, data from diverse sources includes inconsistences and is often 

incomplete, thus introducing data uncertainty. Nevertheless, decision makers most 

often require analysis of real-time events (fast data stream) based on specific relevant 

history or experience (static big data) using probabilistic reasoning to enhance apt 

decision and meaningful action especially in times of uncertainty. Thus, a fully 

automated real-time probabilistic reasoning system to process both static and fast big 

data is imperative (Asrtikis et al., 2012; Fan & Bifet, 2013; Jagadish et al., 2014; 

Twardowski & Ryzko, 2014; Tyagi et al., 2015; Bhadani & Jothimani, 2016; Qiu et al., 

2016). 

 

1.4 Research Questions 

Following the research problem statement, the principal research questions (RQs) are 

stated as follows: 

RQ 1: What are the existing real-time big data solutions developed using probabilistic 

programming? 

RQ 2: How can low latency be achieved when processing big data (both historic and 

real-time) using current open-source big data processing technologies and 

techniques in a cost-effective way? 

 

1.5 Research Aims & Objectives 

The sections on background and research problem presented above results in the 

primary aim of this study. The research aim is in two-fold and is summarized as 

follows: 

Goal 1: Find existing real-time probabilistic reasoning systems implemented using 

probabilistic programming that process both historic and real-time big data.  

Goal 2: Develop a probabilistic reasoning big data technology using probabilistic 

programming to process historic and real-time big data at the same time in a cost-

effective and timely manner. 
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To achieve this aim, a list of objectives (OBJs) is outlined as follows: 

OBJ 1: Perform a review of literature to identify existing real-time probabilistic big 

data solutions developed using probabilistic programming. 

OBJ 2: Based on the result of objective 1, design a cost-effective probabilistic 

reasoning system that processes both historic and real-time big data using 

probabilistic programming. 

OBJ 3: Achieve real-time response when processing both historic and real-time big 

data through the effective combination of current open-source big data processing 

tools and technologies. 

 
It is crucial to understand each of the objectives outlined above as they contribute to 

the overall actualization of the research goals. 

 

1.6 Delineation and Assumption of the Study 

This research seeks to design a system for real-time big data processing and 

analysing using open-source big data technologies, machine learning algorithms and 

commodity hardware. Thus, attempting to provide decision makers with a probabilistic 

score or response that will assist in the process of decision-making especially in 

uncertain circumstances. Furthermore, due to the design characteristics of this 

research, this study will show a practical example on how DSR methodology is used 

in information technology research. 

 

This is a technical research with very little or no fieldwork, thus there are assumptions 

on deployment and implementation environment. This study also assumes the 

availability of basic big data hardware infrastructure. 

 

1.7 Research Methodology 

One of the principal goals of this research is to develop a scalable software library 

that will efficiently process big data and produce a probabilistic score in real-time. In 

order words, this research will produce an artefact. Thus, this study will use a 

pragmatic approach based on design research paradigm as supported by Simon 

(1997). 

 

The pragmatic approach gives researchers the flexibility to use any method or 

strategy corresponding to quantitative and/or qualitative research that best tackles the 

research problem. This provides a rich context to the study based on the 

complementary advantages of the pragmatic approach (Williams, 2007; Creswell, 

2007; Tashakkori & Teddlie, 2010; Creswell, 2013). 
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Design science is considered a set of procedures used for research in technical fields 

such as computer science, architecture, information technology and engineering 

(Weber, 2010). Design science research (DSR) is technology-oriented and ventures 

into invention of artefacts that benefits human purposes. Hevner, March, Park, & Ram 

(2004) defined design as a series of actions or processes that results in a novel 

artefact or product. There are four potential outputs namely constructs, models, 

methods and instantiation, and two processes: build and evaluate in design science 

(March & Smith, 1995; Peffers et al., 2007). 

 

Hevner et al. (2004) provided a framework for design science comprising environment 

(people, organisation and technology), knowledge base (theoretical foundations and 

methodology), and the specific research. These three elements are influenced by 

relevance and rigor. People, businesses and technologies form the problem space 

and present specific business needs that make the research applicable. 

 

Furthermore, A. Hevner & Chatterjee (2010) and A. R. Hevner et al. (2004) proposed 

seven guidelines in design science research as follows: 

1. Design as an artefact. 

2. Problem relevance. 

3. Design evaluation. 

4. Research contribution. 

5. Research rigor. 

6. Design as a search process. 

7. Communication of research. 

 

These seven principles describe the process of conducting and evaluating research 

process in design science. In addition to the guidelines, Peffers et al. (2007) 

proposed a methodology applicable to design science research. This study will use 

the methodology described by Peffers et al.,(2007). 

 

1.8 Organisation of the Thesis 

Work done during this research is arranged and reported in seven chapters as 

explained below. 

 

In the first chapter, a brief introduction expounding the context of the study is 

presented. The background to this study, the research problem, as well as the aims 

and objectives of this research are all contained in Chapter one. Furthermore, the 

research questions and scope of this study were also presented. 
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The second chapter presents background knowledge and theories associated with 

this research. It started with a brief introduction into the concept, history, definition 

and processing paradigms of big data. Chapter 2 also presents discussions around 

Lambda architecture, probabilistic reasoning, probabilistic reasoning systems and 

probabilistic programming. Chapter 2 ends with a systematic literature review 

highlighting the applicability of this research. 

 

Chapter 3 is a discussion on design science research as the chosen research 

methodology for this study. The chapter begins with a brief explanation of research, 

research methodology and techniques then highlight the relevant methodology 

suitable for this research with backing reasons. According to the nature of this 

research, the design science research methodology was selected as a research 

methodology for this research. 

 

In chapter 4, findings gathered from background knowledge, theories and the 

systematic literature review presented in chapter 2 were used to present the design 

concept of this research. The design concept was constructed in line with the design 

science research methodology discussed in chapter 3. The foremost contribution of 

the design concept is highlighted in chapter 4. 

 

The fifth chapter presents a demonstration and assessment of the design concept 

described in chapter 4. The usefulness of the design presented in chapter 4 was 

demonstrated through the selection of a problem domain, then the development of a 

case study. The tools and technologies used in the development were described. 

Finally, chapter 5 presents the evaluation of the developed artefact in a simulated 

environment using real data. 

 

Chapter 6 contains an evaluation of the research activities used in the advancement 

of the design concept presented in chapter 4. Each step of the research is measured 

against the documented authority to verify the validity of this research project as a 

design science research project. 

 

The last chapter, chapter 7 presents a summary of each chapter, then revisits the 

aims and objectives of the research to present research findings and answers to the 

research questions listed in chapter 1. A summary of the research work is presented 

in chapter 7. Chapter 7 ends with the shortcomings of this study and potential 

subsequent research directions. 
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CHAPTER TWO 

THEORY, BACKGROUND AND REVIEW 

 

This chapter presents and reviews subjects that form the background theory for this 

thesis. This helps readers that are not familiar with the topics around this research to 

have an idea of what is necessary to comprehend the work presented in the later 

chapters of this thesis. 

 

The first topic presented is discussions around big data in Section 2.1, and then 

Lambda architecture is explored in Section 2.2. Section 2.3 presents a brief 

description of probabilistic reasoning and systems that use the concepts as well as 

the emerging probabilistic programming idea. A systematic literature review focusing 

on probabilistic reasoning using probabilistic programming and big data is presented 

in Section 2.4. Finally, Section 2.5 summarizes this chapter. 

 

2.1 Big Data 

What is big data? First let us have a look at the definition of ‘big’. Merriam-Webster 

and the Cambridge online dictionaries define the adjective ‘big’ as large in size, 

number or amount (Merriam-Webster, 2016; Cambridge Dictionary, 2016). 

Consequently, the initial and sometimes greater part of what many think or assert as 

the exact meaning of big data is towards size (Gandomi & Haider, 2015). However, if 

we talk about the amount, number or size of data exclusively, this gives an opinion 

that data has always been small until recently. This clearly is a misrepresentation. 

Early mass storage systems have been around to handle large data sets. An example 

is the IBM 3850 MSS which was used by scientists to support the 1980 United States 

census databases – a ‘big’ data at that time (Jacobs, 2009). Databases have been 

used to collect and store relatively large data sets for over a century. A traditional 

database housing data of say 500GB in size would not be considered as significantly 

small today. Thus, how much of data can we refer to as big? Terabytes? Petabytes? 

Or perhaps Exabytes? How about Yottabytes? Again, do we have to consider the 

volume of data exclusively to understand or properly define big data? According to 

Mohanty et al. (2015), this question is yet to be answered, making the expression ‘big 

data’ a misrepresentation or inappropriate label of the concept and definition of big 

data (Boyd & Crawford, 2011). 

 

2.1.1 Concept of Big Data 

The notion of big data seems to be ambiguous with numerous research papers and 

articles on big data (Li et al., 2015). It has been publicized in a variation of ways such 
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as a contemporary variety of economic assets like gold, a marketing expression, a 

concise description of advancement in data technologies to better understand the 

world, and an insightful kit to tackle problems like crime and poverty (Lohr, 2012). 

These days, many people in different academic fields and professions talk about big 

data, even in boardrooms. 

 

Organizations are saturated with data from burgeoning sources like clickstream, video 

data, sensors, etc. These data are generated by people, about people, things and 

how they interact and according to Davenport, Barth, & Bean (2012), organizations 

that utilize big data will enjoy the new capabilities and value of big data. 

 

The epoch of big data is in progress. In sciences, big data refers to large data set that 

require super machines, even though there are many typical software running on 

desktop computers that can now process large data set. Danah Boyd & Crawford 

(2011) and Dannah Boyd & Crawford (2012) argued that even though the size of data 

generated today is quite large, volume is not the only fundamental feature of big data. 

As an example, data on a specific topic from social media such as Twitter is not 

nearly as large as prior data set not considered as big data. Again, Kitchin & Lauriault 

(2015) and MIKE 2.0 (2018) supported this fact, stating that not all voluminous data 

set are big data and some ‘small’ data set can be considered as big data.  

 

Ward & Barker (2013) mentioned data storage and analysis as the two fundamental 

concepts of big data. Dannah Boyd & Crawford (2012) further asserts the idea of big 

data as a powerful tool to curb community ills and provide novel perception in 

divergent areas such as medicine, environmental sciences and terrorism. 

 

2.1.2 Definition of Big Data 

Big data is now a predominant term used in many industries and academia to 

illustrate a broad range of ideas in data science. As noted by De Mauro, Greco, & 

Grimaldi (2015), there are multiple definitions of big data because of the constant use 

of the term in different context and its rapid, inconsistent evolution. These definitions 

of big data are in many instances, divergent thus creating ambiguity in discourse 

relating to big data – some define big data on what it is, others define big data based 

on what it does (Gandomi & Haider, 2015). 

 

One of the most common definitions of big data can be linked to a Meta (now 

Gartner) report by Laney (2001). Laney expressed an increase in the volume of data, 

variety of data and velocity at which data is acquired or generated. This postulation, 

popularly nicknamed 3Vs is associated with the concept of big data. Although Laney 
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made no direct reference to big data in the report, his assertion has been used as a 

key composition to the definition of big data (Ward & Barker, 2013; Gandomi & 

Haider, 2015). However, this model had been extended. An example is the addition of 

value as seen in the definition of big data by IDC in a paper titled Extracting Value 

from Chaos: “Big data technologies describes a new generation of technologies and 

architectures, designed to economically extract value from very large volume of a 

wide variety of data, by enabling high-velocity capture, discovery, and/or analysis.” 

(Gantz & Reinsel, 2011). More authors have added additional Vs such as veracity 

(Ularu et al., 2012; Demchenko et al., 2013; Assunção et al., 2015; Jin et al., 2015; 

Miloslavskaya & Tolstoy, 2016), variability (Fan & Bifet, 2013; Katal et al., 2013; Philip 

Chen & Zhang, 2014; Tyagi et al., 2015; Miloslavskaya & Tolstoy, 2016), and visibility 

(Miloslavskaya & Tolstoy, 2016). These definitions of big data outline the 

characteristics of big data. 

 

Khan et al (2014) explained big data as numerous data generated, captured and 

processed rapidly, and difficult to classify in the traditional relational databases. In the 

opinion of Snijder, Matzat, & Reips (2012, p. 1), big data defines huge and complex 

data set that “become awkward to work with using standard statistical software.”. 

Similarly, Philip Chen & Zhang (2014) defines big data as an accumulation of 

enormous and heterogeneous data set thus making it an arduous task for traditional 

databases to process. These definitions of big data fall under the category of 

definitions that compare software tools for big data. 

 

Data analytics is also relevant when defining big data. Dannah Boyd & Crawford 

(2012, p. 665) outlined “computational turn in thoughts and research” as well as tools 

and procedures used in the processing of big data. This class of definition highlights 

the influence of big data on society. The National Institute of Standards and 

Technology (NIST) defined big data, pointing out the architectural aspect of big data 

(NIST, 2018). Similarly, Oracle (Dijcks, 2012) defined big data with emphasis on 

infrastructure, thus presenting solutions to big data (Ward & Barker, 2013). 

 

Another category of big data definition highlights the importance of computing power 

(Microsoft, 2013). This definition also introduced the concept of machine learning and 

artificial intelligence as related set of technologies that form a significant part of big 

data. 

 

These existing definitions of big data show that the focus of big data is mainly on its 

characteristics (the Vs), specialised technologies and analytical methods used to 
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process big data. Thus, De Mauro et al. (2015, p. 103) proposed a consensual 

definition of big data: “Big Data represents the Information assets characterised by 

such High Volume, Velocity, and Variety to require specific Technology and Analytical 

Methods for its transformation into Value.” 

 

2.1.3 Brief History of Big Data 

Some believe big data is new and different from what has been. However, Barnes 

(2013) stated that big data did not start with Google or Apple but has been around. 

Big data is a combination of different elements, each with its own history, merging at 

our current moment. As mentioned in Section 2.2.1, data storage and analysis are 

two primary concepts linked with big data. These ideas are not new and predates the 

present trend. Investigations on the advancement of big data indicate that research 

into big data started in the 1970s (Ularu et al., 2012). However, Tyagi et al. (2015) 

claims that big data emerged for the first time in 1998 in a book titled Big Data and 

the NextWave of InfraStress by John Mashey and subsequently, the first academic 

paper on big data was in 2000 by Diebold. In 2012, the government of the United 

States of America publicized a national policy titled Big Data Research and 

Development Initiative to support education, collaboration and research into big data. 

 

The history of big data is generally connected with the evolution of efficient storage 

and data management systems with respect to data size. Han Hu, Yonggang Wen, 

Tat-Seng Chua, & Xuelong Li (2014) divided the history of big data into four stages 

with respect to data volume. The first stage is the Megabyte to Gigabyte stage. 

 

Megabyte to Gigabyte stage occurred between the late 1970s and early 1980s where 

the need to store data and perform analysis and reporting became apparent. This 

resulted in the database machine concept which involves specialized hardware and 

software integration to accumulate and examine data. Digital technology became 

more publicized in the late 1980s causing the volume of data to increase to terabytes. 

Database machines became insufficient to effectively store and manage data. This 

led to the Gigabyte to Terabyte stage where the “share-nothing” idea was suggested. 

 

The share-nothing framework is made up of a group of database systems running on 

a networked cluster (DeWitt & Gray, 1992), each with its separate memory, processor 

and disk. According to Borkar et al. (2012) and M. Chen et al. (2014), Teradata 

Corporation developed the first commercialised database system based on the share-

nothing architecture. Parallel database systems improved data storage and 

processing performance and thus the idea was welcomed. However, during the late 
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1990s, a boost in the use of Internet increased the size of data to petabytes and 

introduced unstructured or semi-structured data. Parallel databases could not 

effectively handle unstructured data even though they were suitable for structured 

data. Thus, internet companies like Yahoo and Google were faced with the challenge 

of indexing and querying the rapidly growing content of the web created by users. 

This was the Terabyte to Petabyte stage.  

 

To tackle this challenge, Google developed the Google File System (GFS) to collect 

large data set, and a programming model called MapReduce that handles the 

processing of large data set (Dean & Ghemawat, 2008). GFS is a reliable, fault-

tolerant and scalable distributed file system that runs on thousands of commodity 

hardware (Ghemawat et al., 2003). Yahoo and Facebook created the open-source 

version of MapReduce and GFS called Hadoop and Hadoop Distributed File System 

(HDFS) (Borkar et al., 2012). The multiplication of data sources such as sensors and 

mobile devices in the mid-2000s resulted in a deluge of data in different formats such 

as audio, video, files and images, mostly referred to as semi-structured and 

unstructured data. This required a new paradigm to effectively manage and process 

large-scale semi-structured and unstructured data. Thus, the NoSQL databases were 

revealed. Again, giant technology companies like Amazon and Google implemented 

their versions of NoSQL called Dynamo and Big Table respectively (Borkar et al., 

2012). 

 

The fourth stage in the history of big data is called the Petabyte to Exabyte stage. 

Data sources have continued to increase since year 2000. Han Hu et al. (2014) 

predicted that the volume of generated data will continue to multiply, stating that no 

technology has been developed to handle larger data set. However, current 

technologies can handle terabyte to petabyte of data. 

 

2.1.4 Big Data Processing 

Big data require techniques and tools to capture, organize and analyse it to derive 

meaningful value. According to Philip Chen & Zhang (2014), these tools and 

techniques are developed using a combination of knowledge from different specialties 

like Mathematics, Computer Science and Statistics. Labrinidis & Jagadish (2012) 

explained five steps involved in the process of mining value from big data. These 

steps are further categorized under two main processes – data management and 

analytics, as shown in Figure 2.1. 
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Figure 2.1: Big data processes 

(Gandomi & Haider, 2015: 141) 

 

Data management is concerned with the tools, processes and technology used to 

gather, store and prepare data for the analysis phase (Chen et al., 2013). In the 

analysis stage, analysis algorithms are used to examine the data. This process is 

referred to as big data analytics. According to Assunção et al. (2015) and Delen & 

Demirkan (2013), big data analytics tools are grouped as descriptive, predictive and 

prescriptive (see Figure 2.2). Descriptive analytical tools discover patterns from 

historical data by modelling past actions (Fitz-enz, 2009). Predictive analytics uses 

statistical models and machine learning algorithms on both past (historic) and current 

data to attempt to forecast future trends (Shmueli & Koppius, 2010; Siegel, 2013; 

Zakir et al., 2015). Prescriptive analysis calculates actions and their corresponding 

influence on business activities using optimization (Evans & Lindner, 2012; Song et 

al., 2013). 

 

Contemporary big data analytical tools mainly process big data in batch or stream 

(Barlow, 2013; Huang & Liu, 2014; Jambi & Anderson, 2017). Early solutions 

developed to process big data were based on batch processing. Batch processing is 

used to process very large volume of historic or static data, that is, data that has been 

collected and stored over time (Adhianto et al., 2010). Most batch processing tools 

were implemented using the MapReduce framework (Shahrivari, 2014). 

 

The MapReduce framework comprises three components namely a distributed file 

system, a distributed NoSQL database and a MapReduce engine. The MapReduce 

engine provides a simple and effective programming model that offers parallel and 

distributed processing of large data set on clusters of commodity hardware. This 

programming model is highly scalable and fault-tolerant. MapReduce provides two 

elementary functions – map and reduce, that allows users to implement computation 

on big data. The input to the MapReduce engine is a list of key-value pairs. The map 
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function performs computation on the input to produce a set of zero or more 

intermediate key-value pairs. Subsequently, all intermediate values corresponding to 

an intermediate key are grouped and passed to the reduce function. The reduce 

function iterates through each intermediate key and its associated list of values and 

performs computation on each to produce results. Each reduce iteration usually 

produces zero or one output (Dean & Ghemawat, 2008; Dean & Ghemawat, 2010; 

Lee et al., 2012; Shahrivari, 2014; Bhadani & Jothimani, 2016). Lämmel (2008, p. 1) 

summarized the map-reduce process in five basic notions as follows: “(i) iteration 

over the input; (ii) computation of key/value pairs from each piece of input; (iii) 

grouping of all intermediate values by key; (iv) iteration over the resulting groups; (v) 

reduction of each group”. 

 

 

Figure 2.2: Categories of analytics 

(Delen & Demirkan, 2013: 361) 

 

Apache foundation developed an open-source implementation of MapReduce 

framework, called Apache Hadoop, although Hadoop Started in Yahoo! (Bifet, 2013). 

Hadoop has two core components – HDFS and HBase (Fan et al., 2014). HDFS is a 

replacement of Google’s GFS while HBase is used instead of BigTable data store. 

There are other MapReduce implementation such as DISCO, however, according to 

Lee et al. (2012), Lin, Leu, & Chen (2015) and Xindong Wu et al. (2014) Hadoop is 

more popular. Hadoop has been extensively used and widely accepted as the 

standard for big data processing in academia and industry (S. Chen et al., 2014; Liu 

et al., 2014; Raghupathi & Raghupathi, 2014; Lin et al., 2017; Ramírez-Gallego et al., 
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2018). The MapReduce paradigm is considered the first generation big data 

processing framework (Adhianto et al., 2010; Nair et al., 2017), and according to 

Adhianto et al. (2010), Hadoop marked the end of the first generation big data 

processing framework as shown in Figure 2.3. 

 

Hadoop and MapReduce framework presents advantages such as scalability, ease of 

use, flexibility and fault-tolerance. Despite these advantages, MapReduce and 

Hadoop have some limitations (Khan et al., 2014; Bhadani & Jothimani, 2016). One 

of such is the high latency when processing data due to its batch processing nature 

(Taxidou & Fischer, 2013; Sagiroglu & Sinanc, 2013; Wu et al., 2015; Vakali et al., 

2016; Mohapatra et al., 2016; Yang et al., 2017). 

 

The long processing time associated with batch processing became unbearable to 

end-users. Users usually require response to queries to be in near real-time or real-

time. Few examples can be seen in the case of crisis management, surveillance and 

the stock market where decisions need to be taken as quickly as possible based on 

results from processing events (Perera & Suhothayan, 2015). Thus, stream 

processing on big data became inevitable and birthed the second generation of big 

data processing frameworks (Adhianto et al., 2010; Gebara et al., 2015; Bajaber et 

al., 2016; Nair et al., 2017). 

 

Stream (real-time) processing enables scalable computation on big data stream 

(Hirzel et al., 2017). This handles the velocity characteristics of big data and ensures 

low latency by processing small chunks of data (Adhianto et al., 2010; Perera & 

Suhothayan, 2015; Wang et al., 2016). According to Strohbach, Ziekow, Gazis, & 

Akiva (2015), data velocity means fast flowing data that must be processed in a 

negligible amount of time. Adhianto et al. (2010) explained that the concept of stream 

processing is closely related to that of batch processing. In stream processing, batch 

processing is done on small chunks of data stored in memory instead of a secondary 

data store. However, instead of one-time queries to stored data as in the case of 

batch processing, stream processing enables continuous evaluation of queries on 

new data to produce new responses (Margara et al., 2014). 

 

To tackle the high latency in batch processing of big data, many open-source stream 

processing platforms were developed. Some examples are Apache Storm (Apache 

Software Foundation, 2015), Apache Samza (ApacheSamza, 2016), SQLstream 

(SQLstream, 2017), Apache Spark (Zaharia et al., 2010; Zaharia et al., 2016), 

Apache S4 (Apache Software Foundation, 2010), Apache Flume (ApacheFlume, 
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2016) and Apache Kafka (ApacheKafka, 2017). These processing frameworks enable 

real-time analysis and fast response to facilitate real-time decision making (Xindong 

Wu et al., 2014). 

 

 

Figure 2.3: Data processing paradigm 

(Adhianto et al., 2010: 2081) 

 

Although stream processing provides low latency, a major pitfall or stream processing 

framework is that they do not output accurate responses as compared to batch 

processing platforms (Yang et al., 2017). Thus, using stream processing framework to 

replace batch processing would be insufficient in handling the problems of big data. 

 

A single tool or technique may not serve as a panacea for all big data problems. The 

combination of batch and stream processing in one big data platform could suffice. 

Again, decision makers often need to make decisions based on historic (batch) data 

and real-time data (Twardowski & Ryzko, 2014; Kiran et al., 2015). Some researchers 

such as Adhianto et al. (2010), Jambi & Anderson (2017) and Zhou, Simmhan, & 

Prasanna (2013) endorsed the need to support batch and stream processing in a big 
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data platform. This structural combination is regarded as the hybrid computation 

(Miloslavskaya & Tolstoy, 2016) or third generation of big data processing framework 

(Adhianto et al., 2010). See Figure 2.3. 

 

The need for a hybrid big data platform sparked research and resulted in models 

such as the Kappa architecture designed by (Kreps, 2014), the Liquid architecture 

developed by (Fernandez et al., 2015), and Lambda architecture introduced by (Marz 

& Warren, 2015). 

 

2.2 Lambda Architecture 

Marz & Warren (2015) proposed a new model called Lambda Architecture to handle 

large data set in real-time. This model supports the idea that neither batch nor stream 

processing alone could handle all big data problems. Thus, instead of a single 

technology, Lambda architecture explains the combination of different big data 

tools/technologies to provide a generic solution. According to Marz & Warren (2015), 

the architecture presents a common model to implement computation on arbitrary 

data set using arbitrary functions in real-time. Lambda architecture also describes a 

guideline that assists developers/designers in choosing the right technology to 

combine, and how to combine them (Twardowski & Ryzko, 2014). 

 

 

Figure 2.4: Lambda architecture layers 

(Adopted from Marz & Warren, 2015) 

 

Astakhov & Chayel (2015, p. 4) defined Lambda architecture as “a data-processing 

design pattern to handle massive quantities of data and integrate batch and real-time 

processing within a single framework”. Köhler, Kaniovskyi, & Benkner (2015) also 
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defined Lambda architecture as a general-purpose blueprint to develop scalable and 

fault-tolerant big data systems. In the words of Vögler, Schleicher, Inzinger, & 

Dustdar, (2017, p. 5), Lambda architecture is “a generic, scalable, and robust data 

processing system, specifically designed to serve massive workloads and a wide 

range of use cases”. Thus the architecture promises scalability, extensibility, 

generalization and fault-tolerance (Zheng et al., 2017). Ganchev, Ji, & O’Droma 

(2016), Jambi & Anderson (2017) and Twardowski & Ryzko (2014) claims that 

Lambda architecture is widely used in academia and industry. 

 

Lambda architecture proposes a three-layered big data system. As stated by Marz & 

Warren (2015), each layer handles a specific big data problem and is built on top of 

the functionality of the layer beneath it as shown in Figure 2.4. Data flows into the 

architecture and is concurrently added to and processed by the batch and speed 

layers. 

 

The batch layer represents the core of the Lambda architecture. This layer acts as an 

immutable append-only data repository of unprocessed data. Here, periodical 

computational jobs usually implemented using a batch processing framework, 

processes the raw data (also known as the master data set) and produces batch 

views which are sent to the serving layer for queries. New data are stored in the 

batch layer and included in the next batch computation cycle. Results from batch 

computations are comprehensive and more accurate than those from the speed layer 

(Harrison, 2014; Hasani et al., 2014; Villari et al., 2014; Astakhov & Chayel, 2015; 

Tseng et al., 2016; Yang et al., 2017). 

 

Real-time processing happens in the speed layer to balance the long-running batch 

job in the batch layer. Incoming data into the system is processed immediately in the 

speed layer. This enables real-time analysis using incremental model to produce up-

to-date real-time views. Results from the real-time processing are usually 

approximations. Thus the real-time views are repeatedly discarded as soon as 

computation is done on the same data in the batch layer (Hasani et al., 2014; Villari et 

al., 2014; Kiran et al., 2015; Astakhov & Chayel, 2015; Yang et al., 2017). 

 

The serving layer presents an integration of batch views and real-time views for 

queries (Yang et al., 2017; Jambi & Anderson, 2017). According to Astakhov & 

Chayel (2015), Hasani et al. (2014) and G. Liu, Zhu, Saunders, Gao, & Yu (2015), 

this layer is updated with batch views from the batch layer and enables fast and 

random access to the batch views when needed. 



 19 

 

The combination of the speed and serving layers ensures low latency results that 

include computations on both batch data and real-time data (Huang & Liu, 2014; Liu 

et al., 2014; VANHOVE et al., 2016). 

 

 

Figure 2.5: Lambda architecture 

(VANHOVE et al., 2016: 298) 

 

In summary, Lambda architecture can be mathematically expressed as follows: 

  batch view = function(all data) 

  real-time view = function(real-time view, new data) 

  query = function(batch view. real-time view) 

 

Figure 2.5 shows a conceptual overview of all the layers of Lambda architecture. 

 

2.3 Probabilistic Reasoning 

As a matter of fact, all humans are decision makers. According to Kutty, Kumar Shee, 

& Pathak (2007), decision-making is the process of identifying and selecting the best 

option from a range of alternatives. All our actions are because of some decision. 

Decision-making is usually based on gathered information, values, beliefs and 

preferences. 

 

In most cases, making decisions are usually straightforward. Some examples are 

deciding on a time to rest, or a specific food to eat or stopping your vehicle at a stop 

sign. On the other hand, some decision-making involves complex processes usually 

based on many sources of evidence (Yang & Shadlen, 2007). This is seen in the 

case of uncertainty where decisions are made based on the likelihood of unknown or 



 20 

pending events such as the outcome of a medical diagnosis. According to (Tversky & 

Kahneman, 1975), answers with respect to the likelihood of events are conveyed in 

statements that typically starts with phrases such as “Suppose that…”, “In 

anticipation…”, “It is likely…”, “Usually…”, etc. In other words, these responses are in 

the form of probabilities (Zadeh, 2003). 

 

The activity associated with decision-making that involves thinking and logical 

argument is known as reasoning (Merriam-Webster, 2018; Collins Dictionary, 2018). 

In certain situations, probability is used to express the degree to which an event is 

possible. Thus, probabilistic reasoning uses logic and probability to make decision-

making easier in times of uncertainty. 

 

Probabilistic reasoning also known as uncertain reasoning or probabilistic logic is the 

combination of probability theory and deductive logic to benefit from formal argument 

in uncertain situations (Szolovits & Pauker, 1978; Haenni, 2005; Luger & Chakrabarti, 

2008; Alon, 2013). In the same manner, Pfeffer, (2016) defined probabilistic 

reasoning as the union of information/understanding of a particular situation with the 

laws of probability to discover hidden details that could be important in decision-

making. 

 

According to Gonzalez (2012), probabilistic reasoning defines the background of 

modern statistics and machine learning and is used to model noisy data, interpret 

complicated situations and express uncertainty. 

 

Today, big data is gathered from different sources with disparate degree of 

consistency. This introduces errors and incomplete data that must be handled 

(Jagadish et al., 2014). Probabilistic reasoning or modelling is usually suitable for 

managing data uncertainty (Adar & Re, 2007; Chen et al., 2013; Wampler, 2013; 

Bendler et al., 2014; Ghahramani, 2015). 

 

2.3.1 Probabilistic Reasoning System 

Decision-making has become a mathematical science (Figueira et al., 2005). This has 

provided a formal thinking process expressed in mathematical terms to enable 

transparent and better decision-making (Saaty, 2008). This is also known as 

Probability Theory (Ghahramani, 2015). 

 

Decision-making processes in many fields such as fraud detection, computer vision, 

data mining and weather forecasting have been automated. According to Zadeh 
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(2003), these automated applications use probabilistic reasoning and are referred to 

as probabilistic reasoning systems. 

 

A probabilistic reasoning system comprises two main modules namely Probabilistic 

model and  Inference algorithm (Pfeffer, 2016). See Figure 2.6. The probabilistic 

model is an encoding of comprehensive knowledge and relevant factors about a 

specific field in quantitative, probability theories such as Bayesian networks also 

called belief networks (Liu et al., 2010), hidden Markov models (Rabiner, 1989; 

Durbin et al., 1998) and stochastic grammar (Manning & Raghavan, 2009; De Raedt 

& Kersting, 2003; Ábrahám & Havelund, 2016; Williams, 2018). 

 

 

Figure 2.6: Mechanism of a probabilistic reasoning system 

(Adopted from Pfeffer, 2016: 6) 

 

A specific information or fact about a situation in the domain is presented to the 

probabilistic reasoning system along with a property of the situation that needs to be 

determined. This fact is known as evidence. The inference algorithm uses the 

probabilistic model and the given evidence to provide response to queries as 

probabilistic score. This process is called probabilistic inference. The probabilistic 

model, evidence and responses to queries are all connected mathematically by the 

laws of probability (Pfeffer, 2016). 
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A probabilistic reasoning system can be used to predict future happenings, 

understand or deduce the cause of an event, learn from previous events to improve 

prediction and general knowledge of a domain. Just like any other machine learning 

system, a probabilistic reasoning system will produce accurate prediction based on 

the size of data (Ghahramani, 2015). Thus, prediction quality of a probabilistic 

reasoning system depends on how close the probabilistic model represents the real-

world situations and the amount of data provided. Some examples of a probabilistic 

reasoning system are BayesiaLab (Conrady & Jouffe, 2013; Bayesia, 2018) and 

Netica (Norsys, 2013). 

 

2.3.2 Probabilistic Programming 

Probabilistic models in all probabilistic reasoning systems are expressed using 

representation language. A representation language is used to encode general 

knowledge of a domain in a probabilistic model. Bayesian networks and hidden 

Markov models are some examples of representation languages. These 

representation languages determine or influence the type of probabilistic model a 

probabilistic reasoning system can manage. The capability of a representation 

language to encode diverse knowledge in its models is known as the expressive 

power of the representation language (Pfeffer, 2016). 

 

Designing a probabilistic model involves a combination of mathematical constructs, 

pseudo codes and natural language. This is usually an arduous task that requires 

extreme technical expertise (Luger & Chakrabarti, 2008; Dobre & Xhafa, 2014; Zhang 

et al., 2014). As a result, it is difficult to model many real-life circumstances, and thus 

expensive (Pfeffer, 2009; Sampson, 2015; Pfeffer, 2016; Roy, 2018). Furthermore, 

according to Goodman & Stuhlmüller (2014) probabilistic models are now more 

complicated thus they require new tools to develop and represent them. To fill this 

representational gap and develop new model representations, the machine learning 

and programming language communities started work on a research area called 

probabilistic programming (Hicks, 2014; Sampson, 2015). 

 

The underlying concept of probabilistic programming is centred around the adoption 

of powerful features of programming languages in probabilistic modelling and 

inference (Dries et al., 2015). According to Pfeffer (2009, 2016), probabilistic 

programming provides a much easier procedure to express complex probabilistic 

models using a programming language. Thus, instead of expressing models in 

declarative mathematical notations such as Bayesian networks, models are 
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represented using executable functions or procedures (Ghahramani, 2015). 

Probabilistic programming enables easier composition of probabilistic models and 

automatic inference computation on the models to handle uncertainty (Prékopa, 

2003; Acharya & Biswal, 2011; Goodman & Stuhlmüller, 2014; Hicks, 2014; Wood et 

al., 2014; Andrew D. Gordon et al., 2014; Dries et al., 2015; Narayanan et al., 2016; 

Gehr et al., 2016). 

 

Several probabilistic programming systems or languages has been developed since 

the conception of research in this area. Some implementations are based on 

functional programming languages such as Church (Goodman et al., 2008), Anglican 

(Wood et al., 2014; Tolpin et al., 2016), IBAL (Pfeffer, 2007), and Venture 

(Mansinghka et al., 2014). BLOG (Milch et al., 2007), PRISM (Sato, 2008), and 

Markov Logic (Domingos & Richardson, 2007) are examples of probabilistic 

programming systems based on logic programming. Figaro (Pfeffer, 2009; Pfeffer, 

2016) is based on object-oriented and functional programming. Other examples of 

probabilistic programming systems are BUGS (Lunn et al., 2009), Tabular (Andrew D 

Gordon et al., 2014), and Stan (Carpenter et al., 2016). According to Pfeffer (2016), 

these probabilistic programming systems are probabilistic reasoning systems that use 

programming languages as their representation language. 

 

2.4 Probabilistic Programming System and Big Data: A Systematic Review 

Probabilistic reasoning is very useful in uncertainty and represents an underlying 

principle of machine learning. Organizations such as Amazon, Google and Microsoft 

use probabilistic reasoning to make sense of data resulting in various applications 

used for predictions, detection, diagnosis and recommendation (Pfeffer, 2016). 

However, as mentioned in Section 2.3.1, most of the available probabilistic reasoning 

systems are limited in the set of knowledge they can express in their models. This 

motivated research into probabilistic programming systems that combines two 

powerful concepts (probabilistic modelling/reasoning and programming language) to 

achieve easier representation of complex probabilistic and real-life situations into 

models. 

 

The concept of probabilistic programming systems is quite new (Goodman & 

Stuhlmüller, 2014; Sampson, 2015; Pfeffer, 2016). However, researchers such as 

Lake, Ullman, Tenenbaum, & Gershman (2017), suggests that its potential in artificial 

intelligence systems is crucial. It is therefore necessary to find out if the concept of 

probabilistic programming has been used in big data processing. Thus, this section 

presents a systematic review of big data applications implemented using probabilistic 
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programming systems. The purpose of this review is to identify available big data 

solutions that used the concept of probabilistic programming systems in the big data 

space to handle big data problems. This review follows the guideline as proposed by 

(Kitchenham & Charters, 2007). 

 

2.4.1 Systematic Literature Review (SLR) Questions 

In systematic literature reviews, it is important to clearly specify review question(s) in 

order to provide the review scope. Kitchenham & Charters (2007) proposed the 

adoption of the Population, Intervention, Comparison, Outcome, Context (PICOC) 

criteria used in systematic literature reviews in the field of medicine to help in the 

formulation of review questions. 

 

Population is concerned with the specific group affected by the research. Kitchenham 

& Charters (2007) explained that in software engineering, the population could be 

either a distinct software engineering role, a class of software engineer, an 

application area or a category of industry. In this review, the population falls under an 

application area which is big data processing technologies published in literature. 

 

Intervention refers to the software tools that handles the issues in the population. 

Probabilistic programming system for processing big data is the intervention focus of 

this study. 

 

Comparison addresses the software procedure used to compare the intervention. 

Comparison is achieved in this study by comparing the various probabilistic 

programming systems in the intervention. In this study, the outcome is to discover big 

data processing platforms that use the advantages of probabilistic programming 

systems. 

 

Finally, the context describes the circumstances or conditions of the comparison. The 

context of this review is academia. 

 

The goal of this systematic review is to collect and investigate all possible and 

effective big data solutions that used probabilistic programming as a reasoning 

framework to process big data. Accordingly, with reference to the goal and PICOC 

criteria, the following review questions (SLRQs) were formulated: 

SLRQ1 What are the existing big data applications built on probabilistic 

programming systems to handle big data problems? 

SLRQ2 How do these solutions compare to one another? 
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SLRQ3 What is the strength of the evidence in support of the different 

solutions found in RQ1? 

SLRQ4 What implication(s) will findings from RQ1 to RQ3 have on this 

research? 

 

2.4.2 Review Protocol 

The purpose of the review protocol is to avoid or prevent a research’s bias that could 

negatively influence the goals and objectives of the systematic review process. 

Defining the review protocol is a significant step in the process of a systematic 

literature review (Kitchenham & Charters, 2007; Okoli & Schabram, 2010). This 

section specifies the methods used in this systematic review. The review protocol 

involves describing the search strategy, study selection criteria, quality assessment 

criteria, data collection, and data synthesis. 

 

2.4.2.1 Search Strategy 

The search strategy was formed by first listing all probable sources that may provide 

relevant literature to the systematic review. Table 2.1 shows the list of selected digital 

libraries used. After the selection of digital libraries, a decision on how best to search 

for relevant studies on the selected digital libraries was specified by identifying search 

terms or keywords. 

 

Table 2.1: Sources used in search strategy 

Source URL Researcher 

ACM Digital Library http://dl.acm.org Arinze 
IEEE Explore Digital Library https://ieeexplore.ieee.org/Xplore/home.jsp Kabaso 

ScienceDirect http://www.sciencedirect.com Arinze & Kabaso 

SpringerLink http://link.springer.com/ Arinze 

 

The second step of defining search string(s) was carried out by selecting the most 

relevant keywords based on the research questions and the research topic. 

Synonyms and different spellings of keywords were also used to formulate the search 

string. The selected keywords are as shown in Table 2.2. The search was performed 

on the digital libraries dating from January 2008 to April 2018. The digital libraries 

provide search functionalities where keywords or search strings can be entered. They 

also have the Advanced Search option that allows users to form search strings with 

conjunctions like AND and/or OR. This search took place between March and April 

2018 using the final search string: 

Final Search String (FSS): (Big data processing) AND (Application OR Framework 

OR Software OR Infrastructure OR Platform OR Solution) AND (Probabilistic 

http://dl.acm.org/
https://ieeexplore.ieee.org/Xplore/home.jsp
http://www.sciencedirect.com/
http://link.springer.com/
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programming OR Probabilistic programming system OR Probabilistic programming 

language). 

 

Table 2.2: Search terms 

 Category 1 Category 2 Category 3 

Phrase 1 Big data processing Application Probabilistic programming 

Phrase 2  Framework Probabilistic programming system 

Phrase 3  Software Probabilistic programming language 

Phrase 4  Infrastructure  

Phrase 5  Platform  

Phrase 6  Solution  

 

Paper titles, keywords and abstract formed the basis of this search. To arrive at the 

search string, three categories of search terms were used (see Table 2.2). Category 1 

contains synonyms of the same word with similar meaning within big data literature. 

Category 1 finds all literature on big data processing. Category 2 retrieves all studies 

on software systems while category 3 consist of synonyms of the same word with 

similar meaning within probabilistic programming literature and retrieves all research 

related to probabilistic programming. An intersection of the three categories yields the 

search string that helped to find relevant studies needed in this systematic review. 

 

Table 2.3: Modified search string according to specific library requirement 

Digital Library Modified Search String 

ACM Digital 
Library 

(+Big +data +processing application framework software infrastructure 
platform solution +probabilistic +programming system language) 

SpringerLink big AND data AND processing AND (Application OR Framework OR 
Software OR Infrastructure OR Platform OR Solution) AND 
“Probabilistic programming” OR “Probabilistic programming system” 
OR “Probabilistic programming language” 

 

However, each digital library implemented the Advance Search functionality 

differently, thus to retrieve all the relevant literature from each library, the final search 

string was adjusted for ACM Digital and SpringerLink as shown in Table 2.3 to allow 

for their specific requirement. The other 3 libraries used the FSS as is. A total of 293 

results were found. See Table 2.4. 

 

Table 2.4: Search string execution result 

Source Number of Studies 

ACM Digital Library 3 

IEEE Xplore Digital Library 4 

ScienceDirect 0 

SpringerLink 286 

Total 293 
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2.4.2.2 Study Selection 

The selection of relevant or primary studies is needed to filter out studies that are not 

related to the present research. First, studies not in the computer science and 

information technology domain were ignored, then duplicated studies and studies with 

titles that are clearly not relevant to the review were eliminated. Papers in any other 

language other than English were removed. Again, studies published before January 

01, 2008 and papers that are not conference proceedings and journal articles were 

disregarded. After this initial filtering, 3 studies were left. To further filter out irrelevant 

studies, a set of inclusion/exclusion and quality screening criteria were developed. 

The criteria were carried out in two phases: 

1. Abstract (and keyword) inclusion/exclusion evaluation. 

2. Full text inclusion/exclusion evaluation. 

 

 

Figure 2.7: The abstract inclusion/exclusion evaluation process 

 

In the abstract evaluation phase illustrated in Figure 2.7, the abstracts (and 

keywords) of the 3 papers from the search stage were read. The following 

inclusion/exclusion (IC) criteria were used to select primary studies: 

IC1 The main concern of the study is on big data processing using the probabilistic 

programming concept. Therefore, the terms “Big data” or “Big data 

processing” and “Probabilistic programming” or “Probabilistic programming 

system” or “Probabilistic programming language” must be mentioned in the 

title, keywords or abstract of the paper. 

IC2 The paper is a primary study and represents empirical results. 

 

The two researchers examined all 3 studies individually and carefully screened them 

based on IC1 and IC2 to make sure that possible relevant papers were not rejected. 
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All disagreements were discussed and reconciled. After the abstract filtering, all 3 

studies were rejected. 

 

 

Figure 2.8: The full text inclusion/exclusion evaluation process 

 

To ensure a thorough retrieval of relevant studies, the search was revisited. Another 

search was conducted on Google Scholar with the same final search string. However, 

similar results from the previous search were retrieved. Again, the same search string 

was used on Google. This also was unproductive. As a last step, a more generic 

search string: (Big data) AND (Probabilistic programming) was used on Google. After 

careful consideration of the results by the two researchers based on the initial filtering 

and abstract evaluation, one (1) paper was selected. 

 

The selected paper was passed onto the second evaluation phase – the full text 

inclusion evaluation phase (see Figure 2.8). In this phase, the selection process was 

done in the same way as the abstract evaluation phase. However, the content of the 

paper was read by both researchers to see if it was relevant to the study based on 

IC3 criteria. 

IC3 The study describes the technique used in the adoption of probabilistic 

programming in big data processing. 

 

As in the previous phase, all disagreements were carefully deliberated on and 

resolved. The same selected paper passed this evaluation phase and was given an 

identifier – S01. The selected study was moved to the quality assessment step. 

 
2.4.2.3 Quality Assessment 

This step helps to evaluate the quality of the selected papers, their relevance in 

answering the research questions, and provides a yardstick for further analysis of the 

selected studies. According to Kitchenham & Charters (2007), it is important to 
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analyse the quality of the selected primary studies based on the research area. This 

serves as an additional filtering mechanism to carefully choose more suitable studies 

from the primary studies that best answer the research questions. Five (5) quality 

assessment criteria (QAC) were considered to evaluate the quality of the selected 

primary study. The quality assessment criteria are centred around the following 

questions: 

QAC1 Does the research clearly state an understandable and straightforward 

statement of aim? 

QAC2 Is the study associated with other related research to be fully understood? 

QAC3 Does the study presents its data set characteristics (metrics)? 

QAC4 Does the research clearly describes its experimental method? 

QAC5 Does the study report its performance or validation assessment? 

 

Each researcher read and assessed the selected primary study independently 

against the QACs. For the selected primary study, if any of the above quality criteria 

is satisfied, a ‘Yes’ response is given against that question. In the same way, a ‘No’ 

response is given if the paper fails to satisfy a criterion. If the answer to any of the 

questions could be implicitly inferred, a ‘Partly’ response is given. Consequently, each 

response was given a numeric score between 0 and 1 as follows: Yes = 1, Partly = 

0.5 and No = 0. Again, all disagreements were resolved by discussing until a 

consensus was reached on a score. Finally, the sum of scores for each response to 

the QACs was calculated. If the sum is greater than or equal to 2.5, the paper is 

accepted and used in this systematic review. 

 

2.4.2.4 Data Collection 

The process of data collection ensures that data needed to answer the research 

questions (cf. Section 2.4.1) are extracted from the final primary study. A data 

extraction spreadsheet was created with the information below: 

• Paper title. 

• Name of authors. 

• Year of publication. 

• Source of article (journal or conference). 

• Number of pages (if available). 
 

One of the researchers was responsible for data extraction while the other scrutinized 

the extracted data. 

 

2.4.2.5 Data Synthesis 

In this step, a procedure was established to organize, analyse and summarize the 

result of the quality assessment and data extraction stages. Since only one paper 
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was selected as the primary study, both researchers carried out a discussion session 

in a face-to-face meeting to respond to the research questions. 

 

2.4.3 Results 

In this section, results of the systematic literature review are presented and 

summarized. 

 

2.4.3.1 Search Results 

The total number of initial studies returned after the search on the selected four 

databases was 293 as shown in Table 2.4. However, after the initial filtering and 

abstract evaluation, all 293 studies were rejected. Thus, the search phase was 

revisited with a more generic search string on Google which resulted in the 

identification of one paper shown in Table 2.5. 

 

Table 2.5: Selected primary study 

Identifier Name of Authors Publication 
Year 

Paper Title 

S01 Zhuoyue Shao, Jialing Pei, Eric Lo, 
Kenny Q. Zhu, and Chris Liu 

2017 InferSpark: Statistical 
Inference at Scale 

 

2.4.3.2 Quality Evaluation 

The selected study was assessed for quality using the formulated questions as 

presented in Section 2.4.2.3. 

 

Table 2.6: Quality evaluation of selected primary study 

Study QAC 1 QAC 2 QAC 3 QAC 4 QAC 5 Total 

S01 1 1 1 1 1 5 

 

Table 2.6 is a summary of the result of the quality assessment phase. This table 

clearly shows that the selected paper passed the quality assessment criteria with a 

total score of 5. Thus, the paper was used in this systematic review. 

 

2.4.3.3 Summary of Selected Study 

This section presents a summary of the selected primary study used in this review. 

 

Zhao, Pei, Lo, Zhu, & Liu (2017) (S01), presented a probabilistic programming 

framework on top of Apache Spark called InferSpark. According to the authors, this 

framework claims to aid in the implementation of statistical inference on big data 

using the distributed main processing power of Apache Spark. They recognized the 

potentials of probabilistic programming in the development of complex probabilistic 
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models using concise functions or procedures in a programming language. This takes 

away the responsibility and weight of developing statistical models from the user to 

the compiler and runtime systems. The authors also noted that although Spark has 

emerged as an effective solution for large-scale big data processing with its stack of 

libraries containing statistical models and inference algorithms, users still do not have 

the liberty to create custom models. InferSpark is an introduction of probabilistic 

programming on Spark to enable user-defined models and automatic generation of 

inference algorithms. Zhao et al. (2017) acknowledged the presence of probabilistic 

programming systems such as Infer.NET, Church and Figaro, but pointed out that the 

emphasis has been more on the efficiency and effectiveness of the inference 

algorithm and language. Thus, the scalability of these probabilistic programming 

frameworks has been ignored. 

 

InferSpark was implemented in two phases. The first was the extension of Scala 

programming language to support probabilistic programming. The authors chose 

Scala to benefit from its functional paradigm and because Spark is implemented in 

Scala. In the second phase, the authors built a compiler and runtime system that 

compiles InferSpark models into Scala classes using the code generation approach, 

typically, an input to InferSpark framework consist of a model definition and a normal 

Scala code. A Bayesian network template is extracted from the model definition and 

converted into a Scala program at runtime. This converted Scala program is then 

processed using code generation to produce a Spark program that is executed on 

Apache Spark. 

 

At the time of publication, InferSpark supports Bayesian network models and 

implements only variational message passing (VMP) inference algorithm. However, 

their future work indicated an intention to support other models like the Markov 

network. InferSpark claims to be the first attempt at introducing the concept of 

probabilistic programming into the big data domain. 

 

2.4.4 Analysis 

This section presents an analysis of the result from the systematic literature review 

based on the four research questions (cf. Section 2.4.1). 

 

2.4.4.1 SLRQ1: Existing Big Data Solutions using Probabilistic Programming 

Concept 

The review identified one (1) existing framework that contributed to the big data 

domain using probabilistic programming. As stated in the study selection phase of 
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this review, the identified solution was given an identifier – S01. The authors of S01 

named their framework InferSpark. 

 

2.4.4.2 SLRQ2: Comparison of Solutions 

There was only one identified solution in this review, thus an answer to the second 

research question was unnecessary. However, the authors of S01 did compare their 

solution with existing probabilistic programming frameworks, stating the advantages 

and limitations. According to the authors, the main limitation of available probabilistic 

programming systems is the inability to scale out on a distributed computing 

framework. Again, InferSpark claims to be the only platform that efficiently executes 

statistical inference on big data using probabilistic programming on Spark. Machine 

learning libraries like MLlib, Mahout and MADLib can also be used on Spark. 

However, these machine learning libraries does not support user defined models. 

 

2.4.4.3 SLRQ3: Strength of Evidence in Support of Solution 

The authors of S01 presented a performance evaluation of InferSpark. The 

performance evaluation was based on the construction and execution of statistical 

inference on three models namely Latent Dirichlet Allocation (LDA), Sentence-LDA 

(SLDA), and Dirichlet Compound Multinomial LDA (DCMLDA). LDA is a type of topic 

modelling that infers the topics from a collection of documents. SLDA is a model used 

to discover aspects in online reviews and DCMLDA is another type of topic model that 

considers sudden explosions of topics. The performance of InferSpark was compared 

to the performance of MLlib and Infer.NET using the same three models. 

 

The performance evaluation was categorised in three separate levels: Overall 

performance, Scaling-up, and Scaling-out. The running time of InferSpark in the 

overall performance level was negligible compared to MLlib and Infer.NET which did 

not complete the inference task within a week. The authors also demonstrated that 

InferSpark handles increase in data size and can achieve linear scale-out. 

 

2.4.4.4 SLRQ4: Implications of Findings to this Research 

The findings from answering the research questions show that the concept of 

probabilistic programming is useful to the big data domain. Based on the strength of 

evidence presented in Section 2.4.4.3, probabilistic programming could go a long way 

in the easier and efficient development of complex probabilistic models and inference 

algorithms in the big data domain. This shows relevance of this research. Again, the 

authors of S01 strongly believe that InferSpark is the first attempt to introduce 
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probabilistic programming concepts in the big data domain; which leaves room for 

more improvement. 

 

There are some identified limitations of InferSpark which forms the basis for future 

work. InferSpark only supports the Bayesian network models. Although InferSpark 

supports Bayesian networks models, at the time of publication, only the VMP 

inference algorithm was supported. 

 

The authors of S01 did not explicitly emphasize the real-time response from the 

statistical inference computation in InferSpark. Therefore, a major contribution of this 

research is a timely response using probabilistic programming and Lambda 

architecture framework on big data. 

 

2.4.5 Systematic Literature Review Summary 

An intensive search and study of probabilistic reasoning big data applications that 

used the concept of probabilistic programming was presented in this systematic 

literature review. 

 

This review identified one (1) available framework that combined the concept of 

probabilistic programming and Apache Spark. The framework called InferSpark was 

developed on the Scala programming language with the main aim of introducing 

probabilistic programming into the big data domain. InferSpark attempts to solve the 

scalability limitation of available probabilistic programming systems as well as the 

inability of users to design custom models on Spark. 

 

Although InferSpark performed well compared to other machine learning libraries on 

distributed computing frameworks and Infer.NET (an example of a probabilistic 

programming system), it only implemented a specific inference algorithm in the 

Bayesian network model called the Variational Messaging Passing (VMP). Again, the 

authors did not clearly emphasize the real-time aspect of big data. Thus, this 

research seeks to develop a probabilistic reasoning big data application using 

probabilistic programming and Lambda architecture to give real-time response to 

queries. 

 

2.4.6 Systematic Literature Review Limitations 

The field of software engineering lacks well established and generally accepted 

procedures and conduct for performing a systematic literature review unlike other 

disciplines such as medicine (Staples & Niazi, 2007). As supported and reported by 
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Brereton, Kitchenham, Budgen, Turner, & Khalil (2007) in their paper titled Lessons 

from applying the systematic literature review process within the software engineering 

domain, available software engineering online databases or search engines does not 

assist systematic reviews in contrast to medical sciences, and the standard of 

abstracts in software engineering papers are not always suitable to determine the 

importance of a study. Thus, this presents difficulty in carrying out a systematic 

review in software engineering. 

 

A major challenge in carrying out a systematic literature review is the selection of 

relevant primary studies (Kitchenham et al., 2010). In this case, four (4) online 

databases were used as the source for primary studies. It is possible that some 

papers may have been missed because of the search terms and their combination. 

An example is the “Big data processing” search category; it is possible that some 

papers that may be relevant did not include the search term in their abstract and 

conclusion. 

 

This review also excluded technical reports, graduate theses and newsletters. 

Another possible limitation in this review is that one researcher was responsible for 

extraction and the other was tasked with reviewing as recommended by Budgen & 

Brereton (2006), this may attract bias in both stages of extraction and review. 

 

2.5 Chapter Summary 

This chapter introduced the knowledge, theories and background related to this 

research. 

 

Firstly, a description of big data was presented, with its concept, definition, history 

and processing paradigms. Then an introduction to the concept of Lambda 

architecture as a unifying framework for both batch and stream processing. The next 

section presented a discussion of probabilistic reasoning, its application and 

relevance to big data especially in handling data uncertainty. Then the research area 

called probabilistic programming was presented in detail, with emphasis on how it 

enables easier development of probabilistic models and automatic generation of 

inference algorithm. Finally, a systematic review with the goal of identifying big data 

applications that leverage the idea of probabilistic programming was presented to 

highlight the relevance of this study. 
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CHAPTER THREE 

METHODOLOGY 

 

A brief description of the research methodology to be used in this study was 

introduced in Section 1.7 of the first chapter. This chapter presents a detailed 

narration of the research paradigm used in this thesis. 

 

The purpose of this chapter is not to elaborate on the foundations of research 

methodologies and philosophical rationale. However, this chapter discusses a 

suitable choice of research methodology for studies in the technical discipline. The 

choice of research paradigm and methodology is justified using the research pyramid 

presented by Jonker & Pennink (2009). 

 

3.1 Introduction 

The process associated with scholarly and rigorous discovery of beliefs, theories and 

opinions to improve, broaden or authenticate knowledge and understanding of the 

world around us is known as research (Ryan et al., 2002; Geerts, 2011). According to 

Cambridge English Dictionary (2011) and Oxford English Dictionaries (2018), 

research is a thorough exploration of a particular subject to uncover new information. 

 

Research should be conducted in a defined and suitable method to be relevant, 

important and contribute to the body of knowledge. A research method, sometimes 

called research strategy (Järvelin & Vakkary, 1990), research framework (White & 

Marsh, 2006), research methodology (Hildreth & Aytac, 2007), or research design 

(Luo & McKinney, 2015) is a well ordered, standardized way or strategy to carrying 

out research (Crotty, 1998). 

 

Looking at the primary aim of this research as outlined in Section 1.4 of Chapter one, 

this study seeks to develop a scalable tool that will efficiently process big data in real-

time and produce a probabilistic score. Simply put, this research will produce an 

artefact. Thus, the design science research will be used in this study as it is relevant 

to studies in technical fields such as architecture, computer science, information 

technology and engineering (Simon, 1997; Weber, 2010). 

 

3.2 Research Pyramid 

In a bid to help researchers structure the actions of their study based on their 

research questions, Jonker & Pennink (2009) introduced the research pyramid 
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(Figure 3.1). According to the authors, the pyramid serves as a direction on how 

researchers are to outline a suitable and justifiable research methodology. 

 

The research pyramid is divided into four stages namely Research Paradigm, 

Research Methodology, Research Methods and Research Techniques. The stages 

should be viewed as interconnected actions starting from an abstract (top) level to a 

more practical (bottom) action. 

 

 

Figure 3.1: Research Pyramid 

(Jonker & Pennink, 2009: 23) 

 

In each of these phases, the research must make a suitable choice based on the 

nature of the research question(s). A research methodology is chosen based on a 

selected paradigm that best handles the specific research. Furthermore, an 

appropriate method associated with the chosen methodology is selected and 

implemented using fitting research techniques. 

 

3.2.1 Research Paradigm 

Every researcher has a different opinion on the constituents of truth and knowledge. 

These different views direct different thinking, beliefs and assumptions about the 

world around us. A paradigm is referred to by social scientists as the way different 

professions view the world around them (Schwandt, 2001). Kuhn (1970) describe 

paradigm to represent a common set of beliefs and assumptions shared across a 

specific subject on how problems should be solved. Guba (1990) presented a more 

generic definition of paradigm: a set of firmly held opinions that steers actions and 

characterized by what reality is – ontology, how reality or knowledge is known – 

epistemology, and how knowledge is found – methodology (Crotty, 1998). 
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A number of research paradigms are described in literature such as positivism, 

constructivism, interpretivism, emancipatory, critical and pragmatism (Mackenzie & 

Knipe, 2006). The most common are positivism, constructivism and pragmatism. 

 

In positivism, studies are carried out using the scientific approach. This paradigm 

assumes that there is a single source of truth which is justifiable by scientific 

methods. Thus, quantitative methods are typically used to measure knowledge. On 

the other hand, constructivism is associated with the belief that knowledge needs to 

be interpreted using qualitative methods leading to multiple sources of truth. 

Pragmatism however, is not bound to a philosophy. Pragmatists view reality as 

continuously changing thus requiring the most suitable method that leads to 

knowledge (Guba, 1990; Healy & Perry, 2000; Schwandt, 2001; Walliman, 2001; 

Mackenzie & Knipe, 2006; Creswell, 2009; Patel, 2015). 

 

Choosing a research paradigm is usually the first step that sets the foundation for 

subsequent selection of methodology, methods and techniques. This research is 

action-based and follows the pragmatic research paradigm which is relevant in 

studies done in technical disciplines. 

 

3.2.2 Research Methodology 

The second level of the research pyramid is concerned with the specific way to 

conduct research based on the selected view of reality. As mentioned in Section 3.1, 

research methodology describes the global procedures associated with the research 

process without specifying individual actions. In this way, methodology acts like a 

main outline of the research approach (Jonker & Pennink, 2009). 

 

Table 3.1: Research paradigms with associated methodology and methods 

(Adopted from Creswell, 2009; Mackenzie & Knipe, 2006; Patel, 2015) 

Paradigm Methodology Methods 

Positivism Experimental research. Survey 
research. Deterministic. Normative 

Mostly quantitative such as 
measurement, sampling, 
interviews, focus groups, etc. 

Constructivism Ethnography. Discourse analysis. 
Naturalistic. 

Mostly qualitative and could 
include case study, narrative, etc. 

Pragmatism Design-based research. Action 
research. Participatory research. 
Mixed models. 

Mixture of qualitative and 
quantitative methods, etc. 

 

Methodologies associated with the pragmatic paradigm are usually design-based, 

action research (see Table 3.1). This research seeks to create an artefact. The 

Design Science Research Methodology (DSRM) is relevant in studies that are 
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inclined to the actualization of an artefact. Thus, this research uses the DSRM and 

follows the design process outlined by Peffers et al. (2007) (cf. Section 3.4). This 

study also adopts the guidelines as proposed by A. R. Hevner et al. (2004). 

 

3.2.3 Research Methods 

The research methodology is a generic specification on how to conduct a research 

(cf. Section 3.1 and 3.2.2). A more specific procedure, sequence of activities or 

technique in the research methodology is provided in the research methods (Crotty, 

1998; Mackenzie & Knipe, 2006; Jonker & Pennink, 2009). These specific steps are 

presented in an order describing how the research is carried out (see Table 3.1). 

 

A. R. Hevner et al. (2004) recommended appropriate research methods for DSRM. 

This research adopts the suggestions of A. R. Hevner et al. (2004) and is described 

in detail later in this chapter. 

 

3.2.4 Research Techniques 

Research techniques describes a more concrete and practical execution of the 

research methods. This is the fourth level of the research pyramid. Research 

techniques provides detailed instructions (including instruments and tools) used in the 

selected research method and “…can be understood as concrete instructions for 

acting that have an explicit, compelling and prescribing character.” (Jonker & 

Pennink, 2009: 34). 

 

The techniques used in this research is adopted from A. R. Hevner et al. (2004) and 

is further discussed in details in Chapter 5. 

 

3.3 Design Science Research 

Design Science Research (DSR) is used to solve real-world problems by developing 

novel solutions (Walls et al., 1992). According to Glass (1999) and Simon (1997), 

DSR originated from the engineering discipline and its relevance in information 

technology/systems research has been acknowledged. Benbasat & Zmud (1999) 

pointed out that the appropriateness of DSR in information systems research can be 

tied to its relevance in design. However, Gregor & Hevner (2013) and Peffers et al. 

(2007) stated that its adoption is relatively slow in information technology research. 

 

In information systems, DSR deals with the development of artefacts that involves 

people and technology (Gregor & Hevner, 2013). Similarly, Strode & Chard (2014) 

defined DSR as a research paradigm in information technology which is based on the 
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pragmatism approach and mostly used by software engineering researchers to 

contribute to the body of knowledge through exhaustive development and evaluation 

of an artefact. Comparing research in information technology and natural sciences, 

March & Smith (1995) indicated that design science is closely associated with 

research in technology-oriented fields and produces utilities that contribute to human 

purposes. According to Vaishnavi, Kuechler, & Petter (2004), DSR is acquiring or 

improving knowledge through the construction of an artefact. In other words, DSR 

involves research using the process of invention (design) as a research method 

(Myers & Venable, 2014). 

 

 

Figure 3.2: Information Systems DSR Framework 

(Hevner et al., 2004: 80) 

 

Walls et al. (1992) describes design as both a series of actions (process) and an 

invention. The design process leads to the actualization of a novel product which is 

evaluated. The assessment of the artefact enables improvement in the value of the 

artefact as well as the design process (Hevner et al., 2004). This build and evaluate 

procedure is listed as the two iterative design processes associated with DSR (March 

& Smith, 1995; Markus et al., 2002; Peffers et al., 2007). March & Smith (1995) also 

outlined four design outputs of DSR namely constructs (corresponding to techniques, 

representations and conceptual theories), models (representing abstractions), 
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methods (procedures, practices or routines), and instantiations (prototype or concrete 

implementations). Design science artefacts should demonstrate relevance by 

providing a solution to a problem either by introducing a novel solution or improving 

an existing solution (Weber, 2010; Geerts, 2011). 

 

Building upon the foundation of March & Smith (1995), A. R. Hevner et al. (2004), 

proposed a conceptual framework (see Figure 3.2) for research in information 

systems to assist in proper comprehension, implementation and evaluation of DSR. 

This framework has been adopted by most researchers (Choi et al., 2010; Rodríguez 

et al., 2014; Strode & Chard, 2014). The framework shows the influence of 

environment and knowledge on research in information systems as well as the 

relationship between them. The combination of environment and knowledge base 

provides relevance and rigor to studies in information systems. 

 

3.3.1 Business Needs 

The framework in Figure 3.2 clearly shows business needs as one of the influencing 

ingredients that contribute to research in information systems. The source of business 

needs is the specific environment as relates to the information systems research. The 

environment which consists usually of technology and people within an organisation 

makes up the problem space. As mentioned in Section 3.3, relevance is one of the 

defining characteristics of a design artefact. The problem space provides relevance 

for an information systems research (Hevner et al., 2004). 

 

A desired goal of this research is to aid in the process of decision-making by 

providing real-time response to big data analysis especially in uncertain 

circumstances (cf. Section 1.5). Decision-making is key in policy formulation and thus 

provides the specific problem space for this research. All three components of 

environment (people, organization and technology) influences and gives rise to the 

business needs of a real-time probabilistic reasoning system. 

 

3.3.2 Applicable Knowledge 

The other important component of research in information systems is the knowledge 

base. According to Hevner et al. (2004), foundations and methodology form the basis 

from and through which information systems studies are successfully achieved. Prior 

literature containing foundational theories and instantiations provide the raw material 

that helps in the build phase of DSR while methodologies provide the tools for the 

evaluation phase. Thus, the effective application of foundation and methodology in 
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information systems research ensures rigor. This satisfies the ‘rigor’ characteristics of 

a design artefact. 

 

In this research, theoretical foundations from available big data tools and 

technologies as well as literature on big data, big data analysis, probabilistic 

reasoning, probabilistic programming, machine learning, and lambda architecture 

were studied. Furthermore, appropriate methodology as proposed by Peffers et al. 

(2007) is used in this research and evaluation is done against the guidelines as 

outlined by A. R. Hevner et al. (2004). 

 

 

Figure 3.3: An adaptation of DSR framework 

(Hevner et al., 2004: 80) 

 

Figure 3.3 is an adaptation of the DSR framework illustrating the specific 

environment, knowledge base and research contributions. 

 

3.4 Design Science Research Methodology 

In recent times, researchers have successfully and explicitly shown the relevance of 

design science in information systems research (Nunamaker et al., 1990; Walls et al., 

1992; March & Smith, 1995). However, as Peffers et al. (2007) pointed out, these 

studies did not clearly describe a common methodology for design science research 

in information systems. 
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To effect a useful contribution to the body of knowledge, Jonker & Pennink (2009) 

included research methodology as one of the stages of a research (cf. Section 3.2). 

Peffers et al. (2007) argued that a common research methodology constitutes a 

mental template for the comprehension and evaluation of a research. Thus, building 

on past studies, Peffers et al. (2007) recommended a design science research 

methodology to help in the construction and arrangement of design science research 

in information systems. According to Peffers et al. (2007), a design science research 

methodology should include principles of design science, rules and a process model 

(see Figure 3.4). The proposed DSRM process claims to serve as a strategy and 

mental model for researchers using design science research. 

 

This research acknowledges there are other methodologies proposed in literature 

(Vaishnavi et al., 2004; Venable, 2006; Baskerville et al., 2009; Iivari & Venable, 

2009; Bilandzic & Venable, 2011; Sein et al., 2011). However, this research is based 

on the DSRM process model in Figure 3.4. This choice is justified later in this chapter 

against the guidelines presented by A. R. Hevner et al. (2004). 

 

 

Figure 3.4: DSRM Process Model 

(Peffers et al., 2007: 54) 

 

The DSRM process model is made up of six actions as illustrated in Figure 3.4. The 

process model was designed to be sequential, however, Peffers et al. (2007) 

emphasized four different entry points to the process model based on the actual 

research or study. The first entry point is the Problem-centred initiation resulting from 

an identified problem or recommended future study in research papers. Objective-

centred solution is the second point of entry tied to the second activity and could be 

because of an industry or research need. The third entry point is the Design & 

Development-centred initiation. The third entry point starts with activity 3 and could be 
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stimulated from a known but not implemented artefact. The Client/Context initiated 

entry point starts with the fourth activity and could be caused by a real project. 

 

The study described in this thesis lies in the Problem-centred initiation entry point and 

starts from activity 1. 

 

3.4.1 Activity 1 – Identify Problem and Motivate 

In this activity the specific problem that the research seeks to tackle should be clearly 

established along with the justification for a solution (Peffers et al., 2007). 

 

Decision-makers are often required to make rapid decisions based on current events 

and past experiences. Current events represent real-time data while past experiences 

denote static or historic data, both of which constitutes big data. Research in big data 

processing has led to the development of innovative technologies to process big real-

time data and static data. However, these technologies exist independently to solve 

specific big data (batch and streaming) problems (cf. Section 1.2, 1.3 and 2.1.4). 

 

This research focuses on real-time reasoning with big data. By the effective 

combination of the available open-source big data tools and technologies based on 

Lambda architecture as proposed by Marz & Warren (2015), the focus of this 

research is to provide a real-time probabilistic reasoning solution built using 

probabilistic programming that will aid in decision-making especially in terms of 

uncertainty. 

 

3.4.2 Activity 2 – Define Objectives of a Solution 

The second activity according to the DSRM process as proposed by Peffers et al. 

(2007) involves defining the objectives of a solution to the identified problem in 

activity 1. According to Peffers et al. (2007), the objectives of a solution denotes what 

is practical and attainable and can be either quantitative or qualitative. 

 

In chapter 1, a brief explanation of three objectives for this research was presented 

(cf. Section 1.5). These objectives were also substantiated against literature (cf. 

Section 1.3 and 2.1). Furthermore, detailed objectives about the design of the artefact 

are presented in chapter 4 (cf. Section 4.2). 

 

3.4.3 Activity 3 – Design & Development 

Activity 3 consists of the actual design and development of the artefact which can be 

in the form of constructs, models, methods, instantiations or a combination of any 
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(March & Smith, 1995; Hevner et al., 2004). Peffers et al. (2007) pointed out that 

knowledge of theory relevant to problem space is required to translate the defined 

objectives into actual features and functionalities, thus creating a design research 

artefact with embedded research contributions. 

 

Chapter 4 describes and documents the design and development stage of this design 

research artefact based on the identified objectives in activity 3. 

 

3.4.4 Activity 4 – Demonstration 

The efficacy of the artefact is required to be demonstrated in one or more 

occurrences of the problem domain or space. According to Peffers et al. (2007), 

demonstration could be a case study, proof, experimental or simulation. 

 

Details of the demonstration are presented in chapter 5. In this case, demonstration is 

presented as a case study. 

 

3.4.5 Activity 5 – Evaluation 

This activity involves monitoring and assessing how well the artefact tackles the 

problem in accordance to the identified objectives defined in activity 3. Peffers et al. 

(2007) stated that comprehension of applicable metrics and analysis procedures is 

required to carry out this activity. March & Smith (1995) and Hevner et al. (2004) 

acknowledged that evaluation is crucial as it shows the usefulness and benefits of the 

design artefact. 

 

Hevner et al. (2004) listed five categories of evaluation techniques namely 

observational, experimental, descriptive, testing and analytical. This research will use 

the experimental evaluation method (cf. Section 3.5.3) to assess the design artefact. 

Experimentation will be through simulation with real data. Details of the evaluation are 

described in chapter 5. 

 

3.4.6 Activity 6 – Communication 

Peffers et al. (2007) stated the importance of communicating the research problem, 

developed artefact and design rigor to other researchers and appropriate audiences. 

This point is also supported by A. R. Hevner et al. (2004). Gregor & Hevner (2013) 

and Strode & Chard (2014) proposed a structure for reporting research done using 

design science (see Table 3.2). 
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This thesis forms a major means of communicating this research and adopts the 

publication schema as presented by Gregor & Hevner (2013) and Strode & Chard 

(2014). 

 

Table 3.2: DSR Publication Structure 

(Adopted from Gregor & Hevner, 2013: A5; Strode & Chard, 2014: 244) 

Section Contents Thesis 
Chapter 

Introduction Problem definition, problem significance/motivation, 
introduction to key concepts, research questions/objectives, 
scope of study, overview of methods and finding, theoretical 
and practical significance, structure of remainder of paper. 

For DSR, the contents are similar, but the problem definition 
and research objectives should specify the goals that are 
required of the artefact to be developed. 

Chapter 1 

Literature 
Review 

Prior work that is relevant to the study, including theories, 
empirical research studies and findings/reports from practice. 

For DSR work, the prior literature surveyed should include any 
prior design theory/knowledge relating to the problem to be 
addressed, including artefacts that have already been 
developed to solve similar problems. 

Chapter 2 

Method The research approach that was employed. 

For DSR work, the specific DSR approach adopted should be 
explained, with reference to existing authorities. 

Chapter 3 

Artefact 
Description 

(Main 
section of 
report) 

A concise description of the artefact at the appropriate level of 
abstraction to make a new contribution to the knowledge 
base. 

This section (or sections) should occupy the major part of the 
paper. The format is likely to be variable but should at least 
contain the description of the designed artefact and, perhaps 
the design search process. 

Chapter 4 

Evaluation Evidence that the artefact is useful. 

The artefact is evaluated to demonstrate its worth with 
evidence addressing criteria such as validity, utility, quality 
and efficacy. 

Chapter 5 

Discussion Interpretation of the results: what the results mean and how 
they relate back to the objectives stated in the Introduction 
section. Can include: summary of what was learned, 
comparison with prior work, limitations, theoretical 
significance, practical significance, and areas requiring further 
work. 

Research contributions are highlighted and the broad 
implication of the paper’s result to research and practice are 
discussed. 

Chapter 7 

Conclusions Concluding paragraphs that restate the important findings of 
the work. 

Restates the main ideas in the contribution and why they are 
important. 

Chapter 7 

 

3.5 Design Science Research Guidelines 

A. R. Hevner et al. (2004) identified design science as a problem-solving technique 

where the knowledge of a design problem and its solution are obtained in the 
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development and use of an artefact. They suggested seven guidelines for conducting 

and evaluating research processes in design science. This section describes how this 

study intends to follow the rule for an effective design science research. 

 

3.5.1 Guideline 1 – Design as an Artefact 

The first guideline requires the output of a design science research to be an artefact. 

An IT artefact is defined to be one of a combination of construct, model, methods or 

instantiations (cf. Section 3.3). Artefacts developed in research using design science 

are usually not exhaustive and comprehensive information systems. However, design 

science artefacts show innovations that form the basis of knowledge through design 

(Hevner et al., 2004; Gregor & Hevner, 2013). 

 

The output of this research is an instantiation (artefact) – implementation of a real-

time probabilistic reasoning system using Lambda architecture. 

 

3.5.2 Guideline 2 – Problem Relevance 

The problem space or specific environment determines the relevance of a DSR 

endeavour. A research using design science must solve important problem(s) faced 

by people, organizations and technology. The problem relevance provides both the 

requirements and the evaluation standard for the research and research outputs 

respectively (Simon, 1997; Hevner et al., 2004; Hevner & Chatterjee, 2010). 

 

The background to this study and problem statement (cf. Section 1.2 and 1.3) as well 

as chapter 2 provides enough insight to the problem space and relevance of this 

research. 

 

3.5.3 Guideline 3 – Design Evaluation 

This is important to any DSR process (Simon, 1997). The artefact of a design science 

research should be measured against a well-established metrics based on 

established requirements using observational, analytical, experimental, testing and/or 

descriptive evaluation methods to ascertain if it works and how well it works. 

Evaluation provides feedback on the quality and efficacy of the product (Hevner et al., 

2004; Hevner & Chatterjee, 2010). 

 

In the case of this research, the artefact is measured against the research questions 

and research goals (cf. Section 1.5 and 1.4). This research will also use the 

experimental evaluation method to evaluate the design artefact. Experimental 

evaluation will be conducted using simulation with artificial data. 
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3.5.4 Guideline 4 – Research Contribution 

Research in design science must provide comprehensible contributions to knowledge 

base. This contributions may be in the form of a design artefact, foundation theories 

and/or methodologies (Hevner et al., 2004). 

 

This research contributes in the form of an artefact that applied prior knowledge in 

new and innovative ways to solve the research problems highlighted in Section 1.3. 

Details of contributions are described more in chapters 4 and 7. 

 

3.5.5 Guideline 5 – Research Rigor 

Rigor pertains to the soundness of the methods in the research process of building 

and evaluating of the design product. Design science research requires “…the 

application of rigorous methods in both the construction and evaluation of the 

designed artefact.” (Hevner et al., 2004: 87). 

 

Table 3.3: DSR Guidelines 

(Adopted from Hevner et al., 2004: 83; Hevner & Chatterjee, 2010: 12) 

Guideline Description Mapping to this research 

Design as an 
Artefact 

Design science research must 
produce a viable artefact in the 
form of a construct, a model, a 
method, or an instantiation. 

Real-time probabilistic 
reasoning system using 
Lambda architecture. 

Problem 
Relevance 

The objective of design science 
research is to develop technology-
based solutions to important and 
relevant business problems. 

Improve decision-making. 
Provide inexpensive automated 
big data solution. 

Design 
Evaluation 

The utility, quality, and efficacy of a 
design artefact must be rigorously 
demonstrated via well-executed 
evaluation methods. 

Experimental Evaluation 
consisting of simulation and 
testbed. 

Research 
Contribution 

Effective design science research 
must provide clear and verifiable 
contributions in the design artefact, 
design foundations, and/or design 
methodology. 

Artefact that uses Lambda 
architecture on inexpensive 
commodity hardware to 
enhance decision-making. 

Research Rigor Design science research relies 
upon the application of rigorous 
methods in both the construction 
and evaluation of the design 
artefact. 

Methodology based on prior 
authority. 

Design as a 
Search Process 

The search for an effective artefact 
requires utilizing available means to 
reach desired ends while satisfying 
laws in the problem environment. 

Literature review in the context 
of big data, big data 
processing, probabilistic 
reasoning, Lambda 
architecture. Open-source big 
data tools and technologies. 

Communication 
of Research 

Design science research must be 
presented effectively to both 
technology-oriented and 
management-oriented audiences. 

Thesis & publications. 
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This research will use foundational theories in big data, big data processing, machine 

learning, probabilistic programming, and current big data techniques and 

technologies as its foundation (cf. Chapter 2). The design and development of the 

artefact in this research is described in Chapter 4 and as mentioned in Section 3.5.3, 

the experimental evaluation method is used in the evaluation stage. 

 

3.5.6 Guideline 6 – Design as a Search Process 

Design is an iterative process in the context of a problem environment, to reach an 

effective solution (Hevner et al., 2004; Gregor & Hevner, 2013). 

 

In chapter 2, this study presented a rigorous examination of literature in the problem 

domain to present objectives to accomplish an effective solution. The search process 

continues in chapter 4, illustrating the design and development of the artefact based 

on literature. Chapter 5 provides evidence that the artefact is useful in the specified 

problem domain. 

 

3.5.7 Guideline 7 – Communication of Research 

Design science research must be effectively communicated to both technology and 

management-oriented audiences. This communication should include the description 

of the construction of the artefact, and details for organisation to buy, build and use 

the artefact (Hevner et al., 2004). 

 

This study satisfies this guideline with a written thesis as the main piece of 

communication targeted towards the academic audience. However, a few peer-

reviewed conference papers and learning materials are also used to communicate 

this research. 

 

Table 3.3 shows a summary of the mapping of this research to the guidelines 

discussed above. 

 

3.6 Chapter Summary 

This chapter presented a research methodology for this study using the research 

pyramid presented by Jonker & Pennink (2009) as a high level framework. 

 

This research chose the design science research which is based on the pragmatic 

research paradigm. Out of the methodologies in design science available in literature, 

this research used the methodology as proposed by Peffers et al. (2007). This 
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methodology is examined against the guidelines outlined by A. R. Hevner et al. 

(2004) to present a complete research methodology used to tackle the research 

questions. 
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CHAPTER FOUR 

DESIGN OF A REAL-TIME PROBABILISTIC REASONING SYSTEM USING 

LAMBDA ARCHITECTURE 

 

In chapter 1, an introduction to this research was presented with a brief description of 

the context of the problem and clearly defined aim and objectives. Chapter 2 provided 

the background knowledge relevant to this study as well as a systematic literature 

review of big data applications that used the probabilistic programming concept. 

Chapter 3 provided a detailed description of a suitable research methodology for this 

study.  

 

This chapter builds upon the findings from chapter 2 and the chosen research 

methodology discussed in Chapter 3 to present the design of an artefact with respect 

to the second goal of this research outlined in chapter 1. 

 

The first section of this chapter gives a short introduction to the background and aim 

for the real-time probabilistic reasoning system using Lambda architecture (RT-

PRLA). Section 4.2 provides a list of requirements for the design of the RT-PRLA 

system. In section 4.3, a generic system overview is presented, detailing the rationale 

behind the design decision. Section 4.3 also presents the various components of the 

system and how they are combined using Lambda architecture to form a real-time 

probabilistic reasoning system. Section 4.4 provides a descriptive detail of the design 

of the components discussed in Section 4.3. Section 4.5 summarizes the entire 

chapter. 

 

4.1 Introduction 

The rationale behind the development of a real-time probabilistic reasoning system 

was influenced by several factors as mentioned in chapter 1, however, the most 

striking reason is the need for a big data application that performs probabilistic 

inference on both real-time and batch data to output real-time response that will 

enable decision making in uncertain situations. This need was highlighted in section 

2.4 of chapter 2. Another motivation is to build upon existing big data infrastructure, 

tools and technologies described in chapter 2. 

 

This chapter restates the design objectives of the proposed artefact and describes 

the design process. This is in accordance to the second and third activities in the 

design science research methodology model as proposed by Peffers et al. (2007). 

Activity 2 is all about defining objectives for a solution while activity 3 is concerned 
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with the actual design and creation of the solution. According to Peffers et al. (2007), 

knowledge required to carry out activity 2 includes having an understanding about the 

current state and solutions. Activity 3 requires knowledge of relevant fields and 

technology. In this research, the relevant areas are big data processing, Lambda 

architecture and probabilistic programming. 

 

In summary, the goal of this chapter is to present the design of an artefact according 

to the aim of this research to satisfy the following: 

• Provide real-time response to big data processing. 

• Use the concept of Lambda architecture to effectively combine batch and 
stream processing. 

• Use probabilistic programming for easier development of probabilistic models 
and automated inference algorithms. 

 

4.2 Design Objectives/Requirements 

In the early phase of this thesis, the purpose of this research was presented. The 

purpose is to support decision-makers in the process of decision making especially in 

uncertain circumstances using automated, real-time probabilistic reasoning system. 

Thus, a list of requirements was identified (cf. Section 1.5). 

 

Probabilistic reasoning systems already exist to support decision-making. However, 

after conducting a background and systematic literature review, new concepts, trends 

and recommendations that may better handle contemporary demands were identified 

and the identified list of objectives was reviewed, re-established and formalized as 

DR1 to DR6. 

 

The list of objectives (DR1 to DR6) is motivated by technological innovation and 

represents high level requirements, thus they do not specify any techniques to use in 

their actualization. The specific methods used to achieve these objectives are 

explained in the design presented in Section 4.4. 

DR1 – Data Integration: The system must efficiently handle data streams from 

multiple sources as well as integrate both real-time and batch (historical) data. 

DR2 – Data Ingestion and Overflow: The system must adequately manage data 

ingestion and back pressure. 

DR3 – Real-time Computation: The system must perform computation and provide 

response in real-time in the form of a probabilistic score, considering limited 

computational resources. 

DR4 – Learning Capability: The system must provide learning features based on 

probabilistic reasoning.  
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DR5 – Data Value: The system should efficiently compress and filter out irrelevant 

data yet not affecting the potential value of data. 

DR6 – Generic Context: The system should be generic; used in different context. 

 

The requirements are grouped according to priority level. The high priority 

requirements must be fulfilled and the requirements that should be addressed are in 

the low priority level. 

 

4.3 System Overview 

This section describes a detailed design of the artefact in addition to the explanation 

of the design choices that lead to the proposed solution. 

 

A major distinct motivation for a probabilistic reasoning system is to support decision-

making in real-time especially in uncertain circumstances (Gonzalez, 2012; Pfeffer, 

2016). This is a vital definite feature and remains the comprehensive purpose of this 

research. The solution proposed in this thesis is to use Lambda architecture to 

improve low latency in big data processing and probabilistic programming to aid in 

easier development of complex models. 

 

Available big data solutions are combined as explained by Marz & Warren (2015) to 

achieve Lambda architecture. The principal purpose of the Lambda architecture is to 

build a three-layer generic big data solution, with each layer satisfying a property of 

big data (3Vs: Volume, Variety and Velocity). The three layers are Batch, Speed and 

Serving layers (cf. Section 2.2). 

 

The Batch layer is the base and core of the Lambda architecture and tackles the 

Volume property of big data. This layer houses all data and computation is done 

periodically on the data to produce a batch view. Thus, the batch view is indexed and 

saved so it can be retrieved quickly with random reads, without having to read all the 

data when a query is submitted. In summary, the batch layer must be able to store an 

immutable, constantly growing dataset, and produces precomputed views from the 

dataset. 

 

On top of the batch layer is the serving layer. The serving layer holds the 

precomputed batch views produced by the batch layer. This layer is made up of a 

distributed database that supports random reads and batch updates from the batch 

layer. It is important to note that the serving layer should not support random writes. 
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Both the serving and batch layer deals with the volume and variety property of big 

data. The only trade-off is that the precomputation done in the batch layer has high 

latency. Thus, new data captured while computation is on-going in the batch layer is 

not included in the batch view. This means that the serving layer is updated with 

batch views that do not contain data that came into the master dataset while 

precomputation was running. The speed layer compensates for this ‘lost’ data. 

 

In the speed layer, computation is performed on ‘new’ or recent data. This ensures 

that new data is represented when the value of a query is needed. The speed layer is 

like the batch layer as it also produces a view (real-time view) based on computation 

on recent data it receives. The real-time views are stored on a database that supports 

random writes and random reads.  

 

However, there are two major differences between the batch and speed layers. Batch 

layer performs computation on all data in the master dataset at once while the speed 

layer performs computation on recent data. Again, to achieve low latency, instead of 

the re-computation done in the batch layer, the speed layer uses incremental 

computation, this means that it performs computation as it receives recent data and 

updates the real-time views. Thus, the real-time views get updated very quickly after 

new data enters the system. The definition of ‘quickly’ is relative to the application, 

however it is usually between a few milliseconds to a few minutes (Marz & Warren, 

2015). A point to note is that once the recent data is captured and processed in the 

batch layer to produce batch views, the corresponding real-time views are discarded. 

 

Computations in the batch and speed layers are usually implemented using available 

big data technologies like Apache Hadoop for the batch layer and Apache Storm or 

Apache Spark for the speed layer. However, the distinct feature of this research is to 

employ the idea of probabilistic reasoning using probabilistic programming in the 

implementation of computations done in the batch and speed layers of the RT-PRLA 

system (see Section 4.4.3).  

 

Results from computations on the batch and speed layers are stored as batch and 

real-time views respectively and are used with inference algorithms to perform 

probabilistic reasoning in response to a query. 
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4.3.1 Components of Real-time Probabilistic Reasoning System using Lambda 

Architecture 

The real-time probabilistic reasoning system is divided into three components: the 

server, feeder and storage component. These components have the three layers of 

the Lambda architecture included in them. A brief description of these components is 

provided in this section. 

 

4.3.1.1 The Feeder Component 

The feeder component acts as the one-way input-only door keeper to the RT-PRLA 

system. Data flows into the RT-PRLA system through the feeder component. The 

feeder component is responsible for pre-processing the data to reduce redundancy 

and filter irrelevant data using a compression and filtering mechanism. This takes 

care of the design requirement DR5. The feeder component is also responsible for 

integrating data streams from multiple sources entering the RT-PRLA system. This 

takes care of the design requirement DR1. The feeder component also manages data 

inflow into the reasoning system to prevent data inflow from multiple sources from 

overwhelming the RT-PRLA system. This addresses the design requirement DR3. 

 

4.3.1.2 The Storage Component 

The role of the storage component is to house data needed by the reasoning system. 

In the RT-PRLA system, the storage component is made up of four (4) standalone 

databases, two of which are associated with the batch module of the server 

component and the other two are associated with the real-time module in the server 

component. For convenience, these four databases are named master database, 

batch-view database, pseudo-master database, and real-time-view database (see 

Figure 4.1). 

 

The master database holds the immutable, constantly growing master dataset and 

supports batch reads and random writes. The master database is part of the 

implementation of the batch layer of the Lambda architecture. Extreme care must be 

taken to prevent the master database from any kind of corruption because it acts as 

the only source of truth to the system (Marz & Warren, 2015).  

 

The other database associated with the batch module of the server component, 

called the batch-view database serves as part of the serving layer of the Lambda 

architecture. It holds the result of the pre-computation done in the batch module. It 

supports batch updates and random reads. 
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The other two storage (pseudo-master and real-time view) databases are used by the 

real-time module of the server component. They are used to support real-time 

computation on new data. The pseudo-master database is used to incrementally 

store new data as it arrives into the system. This supports random writes. The real-

time-view databases hold the result of the incremental computation on the recent 

data known as real-time views and supports random reads. Both the pseudo-master 

database and the real-time-view database form part of the speed layer of the Lambda 

architecture. 

 

4.3.1.3 The Server Component 

The server component is responsible for all computation on data. The server 

component is central to the design concept of the RT-PRLA system. It retrieves data 

from the immutable data store (master database) as well as from the pseudo-master 

database and performs computation to produce the batch views and real-time views 

respectively. Thus, the server component is divided into two modules, on one hand is 

the batch module, and on the other side is the real-time module. 

 

The Batch Module 

The batch module periodically retrieves the entire data from the master database, 

performs computation to produce the batch view and subsequently stores the batch 

view in the batch-view database which corresponds to the serving layer of the 

Lambda architecture. 

 

The batch module is also part of the batch layer of the Lambda architecture. 

According to Marz & Warren (2015), the batch layer of Lambda architecture should 

be able to store immutable master dataset, and perform computation on the dataset. 

Result from this computation should also be stored as views on the serving layer. 

However, in this design, the task of storing immutable dataset has been moved to the 

feeder component (cf. Section 4.3.1.1). This design choice was to remove the initial 

database write process from the write-read-write process of the batch layer. In other 

words, instead of having the batch module write to an immutable database, read from 

the same database to compute arbitrary function on that dataset, and then write the 

output to the serving layer, it only reads from the immutable dataset that has already 

been prepopulated by the feeder component. Thus, the batch module only has a 

read-write process. 
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The Real-Time Module 

The real-time module is responsible for performing incremental computation on real-

time data, that is data that came in while the precomputation on the batch module 

was running. The speed layer of the Lambda architecture is implemented in the real-

time module. The real-time module is different from the batch module in that it does 

not perform a re-computation of all new data; instead it performs incremental 

computation on recent data as they arrive. This is to ensure low latency updates. As 

soon as the batch module processes the recent data, the corresponding real-time 

views are discarded. 

 

4.3.2 Real-time Probabilistic Reasoning Process 

This section explains the way the RT-PRLA system works for a better understanding. 

The various components mentioned in the preceding section are put together to 

elucidate the general process in the real-time probabilistic reasoning process. 

 

 

Figure 4.1: Reasoning Framework 

 

Data flows into the RT-PRLA system through a single data pipeline. This data 

pipeline is used to aggregate data streams from different sources and filter the data to 

eliminate redundancy. The data pipeline now emits the pre-processed data into the 

system in two different branches. One branch goes to the master database for batch 

computation, and the other goes to the pseudo-master dataset for real-time 

processing. 
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The RT-PRLA system has a server component which is the core of the RT-PRLA 

system and is made up of the batch module and the real-time module, each 

responsible for performing computation on batch data and real-time (new) data 

respectively.  

 

The batch module and real-time module correspond to the batch layer and speed 

layer of the Lambda architecture. There are several big data application technologies 

used to develop these layers. A common big data technology for the batch layer is 

Hadoop, and a common technology for the speed layer is the Apache Spark. Newer 

technologies such as Apache Spark can also be used to implement both batch and 

speed layer of the Lambda architecture in a unified manner. 

 

This research however uses a different approach to both the batch module and real-

time module. It uses probabilistic programming to design probabilistic models used to 

perform reasoning on a specific application or problem domain. Probabilistic 

programming is one of the main concepts of this research, and this study uses the 

approach as explained by Pfeffer (2016).  

 

A probabilistic model is a generic knowledge about a domain, encoded in probabilistic 

terms (cf. Section 2.3.1). Two probabilistic models are developed as the major 

constituent of the server component. One for each module in the server component, 

let’s call them batch model and real-time model. These models are then used to 

perform computations on data to produce the views as relates to the Lambda 

architecture. The batch model is used to perform pre-computation on all dataset in 

the master database to produce batch views while the real-time model processes the 

new data to produce real-time views. More details are present in the next section. 

 

The views are subsequently stored in the databases. The batch views are stored in 

the batch-view database while the real-time views are stored in the real-time-view 

database. 

 

Subsequently these views and inference algorithms are used to effectively respond to 

queries. Results to queries are usually in the form of a probabilistic score. 
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4.4 Design 

In this section, a more descriptive explanation of the design of a real-time probabilistic 

reasoning system is presented. This explanation throws more light on the functionality 

of the server, the storage and the feeder. 

 

4.4.1 The Feeder 

The feeder is essential to the RT-PRLA system as it acts as the doorway that feeds 

data into the system. It is also responsible for aggregating data from multiple sources, 

compressing the data and filtering irrelevant and/or duplicate data entries. In a 

nutshell, the feeder is responsible for data pipelining into the system and 

backpressure management. 

 

There are several big data streaming applications to choose from when implementing 

the feeder. Some examples are Apache Kafka, Akka, Apache Flink, and Apache 

Spark. 

 

4.4.2 The Storage 

Storage is very essential to the system. In section 4.3.1.2, it was mentioned that this 

RT-PRLA system is made up of a storage component which comprises four 

databases. The four databases are evenly distributed to cater for the two modules of 

the server component. 

 

An essential quality of a big data system is its ability to answer as many queries as 

possible. To achieve this, data should be stored in its raw form, must be immutable 

and permanently true (Marz & Warren, 2015). Data immutability means that once a 

data entry is stored, it must never be updated or deleted. This enables data simplicity 

and prevents human errors. Each entry of data is therefore always true because of 

data immutability.  

 

The master database is used to store the immutable, raw and permanently true data, 

thus making it the only source of truth for the system. Thus, the master database 

must support random writes. 

 

The batch module of the server components also reads data from the master 

database for processing. These reads happen at a scheduled interval and all data in 

the master database are retrieved for processing. This means that the master 

databases must also support bulk reads. 
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After the batch computation on the batch module, the result of the computation known 

as the batch views is stored in the batch-view database. Thus, the batch-view 

database must support bulk updates/writes. The batch views stored in the batch-view 

database are used to respond to queries. Again, the batch-view database must 

support random reads. 

 

The pseudo-master and real-time-view databases are used by the real-time module 

to process recent data. The data storage responsibility of the real-time module is very 

challenging. The real-time module requires low latency random reads from the 

pseudo-master database and low latency random writes to the real-time-view 

database. Thus, both databases must support random reads and random writes with 

low latency to enable quick response to queries and quick update of real-time views. 

 

All four databases must also be scalable. This means that all four databases must 

efficiently scale with an increase in the data they store. Again, all four databases must 

be fault-tolerant. They must continue to function as normal if there is a hardware 

failure. 

 

There are open-sourced NoSQL databases that can be used to implement the 

storage component. Some examples are MongoDB and Cassandra. A choice 

between a combination of more than one NoSQL databases or just one NoSQL 

database can be made. 

 

4.4.3 The Server 

An introduction to the server component was presented in Section 4.3.1.3. The server 

component can be considered as the engine of the real-time probabilistic reasoning 

system. As stated earlier, the main functionality of the server component is to perform 

computation on both batch and real-time data to produce corresponding batch views 

and real-time views. Thus, there are two parts to the server component – the batch 

module which is responsible for batch computation, and the real-time module that 

performs incremental computation on new data. 

 

Computation on the batch module of the server component is done at intervals. The 

batch module retrieves and performs computation on the entire dataset in the master 

database. Depending on the size of the dataset in the master database, processing 

usually takes long to complete. 

 



 60 

The real-time module takes care of the high-latency associated with computation in 

the batch module. It performs computation on new data that was not included during 

the last pre-computation done in the batch module. Like the batch module, the 

fundamental objective of the real-time module is to produce views used to respond to 

queries. There are two approaches to the real-time module. One is to produce views 

by processing all the recent data yet to be processed in the batch module, the other is 

to perform incremental computation on new data as they arrive. This research uses 

the latter to ensure better resource management and low-latency computation. 

 

Section 4.3.2 indicated a major difference between this solution and the majority of 

big data solutions available. As the name of the solution, real-time probabilistic 

reasoning system using Lambda architecture implies, one of the distinct differences is 

the employment of probabilistic programming in the design of probabilistic models in 

the server component instead of using the conventional Hadoop, Spark, or Storm. 

Another important difference is the usage of Lambda architecture in the probabilistic 

reasoning system to improve low latency in data computation. 

 

A probabilistic reasoning system comprises two main pairs – probabilistic model and 

inference algorithm. Probabilistic model is derived from general relevant knowledge in 

a domain, encoded in quantitative, probabilistic terms. This probabilistic model is now 

used in combination with an inference algorithm to answer queries given evidence (cf. 

Section 2.3.1).  

 

Probabilistic models are created using a combination of representational languages 

such as Bayesian and Markov, and mathematical constructs. This usually requires a 

high level of technical expertise and can be a difficult task. Thus, the introduction of 

probabilistic programming which uses the powerful features of a programming 

language in the design of a probabilistic model (cf. Section 2.3.2) makes it easier to 

express probabilistic models and enables automatic inference computation on the 

models to respond to queries. 

 

Since the inception of research in probabilistic programming, several probabilistic 

programming systems have been developed (cf. Section 2.3.2). Therefore, the server 

component can be implemented using any of the probabilistic programming systems 

available. 
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4.5 Chapter Summary 

This chapter provided a detailed design of a real-time probabilistic reasoning system 

using Lambda architecture (RT-PRLA) and reiterated the need for a real-time 

probabilistic reasoning system as well as the objectives of this research. 

 

A general overview of the RT-PRLA system was presented, clearly stating the 

components and the reasoning process of the system. The RT-PRLA consists of 

three components namely feeder, storage and server components.  

 

The feeder component is solely responsible for data transformation and aggregation. 

It also acts a data pipeline into the RT-PRLA system. 

 

The storage component acts as the data store of the system. There are four different 

databases in the storage component – the master database, the pseudo-master 

database, the batch-view database and the real-time-view database. 

 

The server component is the engine of the RT-PRLA system. The server component 

is made up of two modules called the batch module and the real-time module. It is 

responsible for all batch and incremental computations on data. The batch module 

reads all the data in the master database and performs computation on it to produce 

batch views which are stored in the batch-view database. The real-time module 

incrementally reads data from the pseudo-master database which contains recent 

data not included in the batch computation and performs incremental computation to 

produce real-time views. Real-time views are subsequently stored in the real-time-

view database. 

 

Computations in the batch and real-time modules are implemented using the concept 

of probabilistic programming. Thus, batch and real-time views correspond to 

probabilistic models. 
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CHAPTER FIVE 

KOGNITOR, AN EXPOSITORY CASE STUDY 

 

In the previous chapter, the design concept of a real-time probabilistic reasoning 

system using Lambda architecture was presented. This design concept is based on 

the six (6) identified design objectives all directed at achieving the second aim of this 

research.  

 

Chapter 4 follows the design activity as proposed by Peffers et al. (2007), and 

corresponds to the third step (cf. Section 3.4.3). The next steps according to the 

research process are to demonstrate (cf. Section 3.4.4) and evaluate (cf. Section 

3.4.5) the proposed artefact. 

 

This chapter is dedicated to demonstrating and evaluating the RT-PRLA system. The 

first section of this chapter gives a short introduction to the context of the case study. 

Section 5.2 presents the problem domain of this demonstration and a description of 

the artefact called Kognitor. In Section 5.3, the tools and technologies used in the 

construction of Kognitor are described following the design concept presented in the 

previous chapter. This section also demonstrated the construction of a probabilistic 

model using probabilistic programming in the server component of the RT-PRLA 

system. The implementation of Lambda architecture in the three components of the 

RT-PRLA system is also described in Section 5.3. 

 

Section 5.4 presents an evaluation of the design artefact using the experimental 

evaluation method in a simulated environment. The results of this evaluation are also 

presented in tabular format in this section. Section 5.5 summarises this chapter. 

 

5.1 Introduction 

The usefulness of an artefact is made evident when it is applied to one or more 

instances of the problem in a relevant domain (Peffers et al., 2007). This 

demonstration can be actualized as a case study, proof, experimentation or 

simulation. In any of the methods of demonstration, A. R. Hevner et al. (2004) stated 

that the requirements must be clearly defined by the business context. 

 

In this case, the business context chosen for the demonstration is predicting the 

outcome of a football match between two teams in the English Premiership League 

(EPL). This context was selected because it allows the presentation of the different 

capabilities of the design concept presented in chapter 4. 
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The novelty of this research is basically in its design concept, and not necessarily in 

the implementation or construction of the artefact. Vaishnavi et al. (2004) supported 

that the implementation of an artefact does not need to involve creativity outside the 

state-of-practice; however, the originality should be in the design. Thus, the main 

purpose of this case study is to show the practicality and usefulness of the design 

concept of a RT-PRLA system. 

 

The central part of the design concept is the server component (cf. Section 4.4.3) that 

provides the novel capabilities of using probabilistic programming on big data in real-

time. A secondary design concept is the implementation of the RT-PRLA using 

Lambda architecture. 

 

5.2 Problem Domain 

The output of a design science research should solve or improve the solution to an 

applicable business problem. The design concept of the RT-PRLA system aims at 

simplifying the decision-making process, especially in uncertain circumstances by 

providing real-time probabilistic responses to queries on big data. 

 

The relevant problem domain in this case is prediction and inference or deduction. 

The use case in this chapter handles predicting a win between two football teams in 

the EPL contest. This case study called Kognitor, can also be used to infer the 

reason(s) of an outcome of a football match. 

 

5.3 Tools and Technologies 

This section describes the tools and technologies used in the implementation of 

Kognitor. One of the objectives of this design is to use already existing open-source 

big data tools and architectures in the design of an artefact for cost-effectiveness. 

Thus, all the tools and technologies used in the development of Kognitor are off the 

shelf systems. 

 

5.3.1 Feeder 

The feeder component of Kognitor is implemented using Akka. Akka is a powerful, 

flexible and resilient tool for building scalable, high-performance, concurrent and 

distributed real-time event processing and message-driven applications (Lightbend 

Inc, 2010; Akka, 2011).  
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Akka is based on the actor model of computation. The actor model  was introduced in 

1973 by (Hewitt et al., 1973). According to Hewitt (2011) and Hewitt (2012), 

computation in this model is distributed, as computational devices called actors 

transmit and receive messages asynchronously in no predefined order. One of the 

advantages of this model is the ease of creating concurrent and distributed systems. 

 

In Akka, actors are created in an actor system. Each actor has an address, a mailbox, 

a state and a behaviour. An actor can send messages to another actor through its 

unique address. These messages are stored in an actor’s mailbox for processing. 

Messages in an actor’s mailbox are processed one at a time (Akka, 2011; Mishra, 

2017). Akka is widely used in the development of a variety of distributed applications 

and frameworks (Rosà et al., 2016). 

 

Akka also provides a solution for stream processing called Akka Streams API.  The 

Akka Streams API is based on the Akka actor-model and provides the fundamental 

principles for developing back-pressured streaming applications (Mishra, 2017; 

Lightbend Inc., 2019). 

 

In the feeder component of Kognitor, a simulated data repository was used as the 

data source and an Akka actor (called the feeder-actor) was used to implement a 

pipeline between the repository and Kognitor. The feeder-actor retrieves data 

from the repository at a predetermined interval and sends it to another actor 

(persistData-actor) to store in the storage component of Kognitor. As soon as 

the persistData-actor is done, it sends a learn message to the learn-actor. 

The learn-actor is responsible for initiating the learning process on the speed 

layer of Kognitor. The feeder-actor is also responsible for initiating the learning 

process in the batch layer by calling a batchlearn-actor. 

 

For this thesis, data for only two teams were considered. Thus, learning on two teams 

was initiated sequentially using two actors, one per team. 

 

5.3.2 Storage 

Kognitor uses Apache Cassandra as its storage component. This means that all four 

databases were implemented using Cassandra. According to The Apache Software 

Foundation (2015), Cassandra has the best support for replication across multiple 

datacentres, and this provides low latency reads and writes. Apache Cassandra is 

also fault-tolerant and a right choice for scalability. 
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As mentioned in chapter 4, the storage component of Kognitor is made up of four (4) 

databases, two of which forms part of the batch layer of this Lambda architecture 

implementation. The other two also forms part of the speed layer (cf. Section 4.3.1.2). 

The two databases in the batch layer are called k_master (for the master database) 

and k_batchview (for the batch-view database). In the speed layer, the pseudo-

master database is called k_pseudomaster while the real-time-view database is 

called k_realtimeview. 

 

The k_master database is made up of four tables namely team, rating, form and 

fixture. These tables hold the immutable data as specified in the Lambda architecture. 

The team table holds generic information about a football team, the rating table stores 

the rating of a football team, the form table holds the last six (6) performances of a 

football team, and the fixture table stores data about a football match event. Data in 

the rating, form and fixture tables are timestamped. The k_pseudomaster database is 

like the k_master database and contains the same tables (see APPENDIX A: 

STORAGE). 

 

There are additional ‘feeder’ tables in the k_master database which are not part of the 

system’s source of truth but were used to implement the simulation of data flow into 

the system (cf. Section 5.3.2). 

 

 After computation on data in the k_master and k_pseudomaster databases, results 

are stored in the respective databases. The k_batchview database holds results of 

computation done on data in k_master database while the k_realtimeview database 

holds results of computation on data in the k_pseudomaster database. Both 

k_batchview and k_realtimeview databases have a similar table called 

teamprobability (see APPENDIX A: STORAGE). 

 

5.3.3 Server 

The server component is the core of Kognitor. It is responsible for performing 

computations on the data stored in the master and pseudo-master databases using 

probabilistic programming. As indicated in chapter 4, the server component is divided 

into two modules – the batch module and the real-time module.  

 

The batch module and real-time module are developed using Figaro. Figaro is a 

probabilistic programming language that enables easier creation of probabilistic 

models using the powerful features of the Scala programming language.  
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Probabilistic models are represented as Figaro models consisting of elements. 

Queries to a probabilistic reasoning system are directed at specific elements of 

interest. According to Pfeffer (2016), a Figaro model requires four main features: 

• The elements/variables in the model. 

• The relationships between elements in the model. 

• The functional forms of the relationships. 

• The numerical parameters of the functional forms. 

Each of these components is discussed in detail with respect to Kognitor. 

 

Elements in the Figaro Model. 

In choosing elements for our football model in Kognitor, the properties of a football 

team that indicates whether they win in a competition are considered. These 

properties are also known as variables. In Figaro, these variables have types/classes 

such as String, Double, Boolean, etc. Some of these properties include the following: 

• Team financial strength. 

• Team’s position in the English Premiership table. 

• Team’s rating. 

• Team’s form. 

• Team’s home ground advantage. 

• Individual performance of players in the team. 

• Team’s manager. 

To keep the application relatively simple, the following elements are selected for 

Kognitor: 

• hasGoodRating – An element whose value is true if a team has good rating. 

Teams rating is between 0.0 and 10.0. The type of this element is Boolean. 

• hasGoodForm – A element whose value is true if a team has won most of the 

last six (6) played games. This is a Boolean element. 

• hasHomeGroundAdvantage – A Boolean element whose value is true if a 

team has home-ground advantage. This means that the team has either won 
or at least drew most of the games played on their home-ground. 

• isWinner – A Boolean element whose value is true if the team won a game. 

 

The dependencies between the elements 

After choosing the elements in the model, the next step is to define the dependencies 

between these elements. Probabilistic reasoning is about using dependencies 

between elements. Dependency between two elements are established if knowledge 

of one element influences the other element (Pfeffer, 2016). 

 

There are two types of dependencies – the directed dependencies which usually go 

from one element to the other, and the undirected dependencies which models the 

instance where the direction of influence is unknown. Direct dependencies are 

encoded using Bayesian networks while the undirected dependencies are modelled 

using Markov networks. 
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For our football model, the dependencies between the chosen elements are based on 

the following simplifying decisions: 

• A team’s form, rating and home-ground advantage determines if they win or 

lose a game. 

The dependency model is depicted in Figure 5.1. 

 

 

Figure 5.1: Bayesian dependency model for Kognitor elements 

 

The elements are represented as nodes in the dependency diagram, and there is an 

edge between one node to another if the second node is influenced by the first node. 

This kind of network is known as a Naïve Bayes’ model. 

 

The functional forms of the dependencies 

In Figaro, functional forms are the element class constructors that are used to build 

the model. Functional forms express the dependencies between the elements in a 

model in probabilistic terms without numerical values. 

 

In our model, we have selected the elements and have established the dependencies 

between the elements. Now, let’s determine the functional forms these dependencies 

take. Let’s start with the elements that do not depend on any other variable. 

 

The hasGoodRating element has a Boolean type with true or false values. This 

value depends on the actual rating probability of a team which is derived from the 

range 0 to 10. In this range, 0 – 5.9 corresponds to bad, 6 – 6.9 corresponds to 

average, and 7 – 10 corresponds to good. In this case, the If construct in Figaro is 

used to specify the functional form for hasGoodRating. The If construct is one way 
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to specify a compound element in Figaro. If constitutes a test, a then clause 

(element) and an else element (Pfeffer, 2016). The functional form of the 

hasGoodRating element is as follows: 

val highRating = Flip(goodRatingProbability) 

val lowRating = Flip(badRatingProbability) 

val hasGoodRating = If(isWinner, highRating, lowRating) 

 

The hasGoodForm element is also a Boolean type with true or false values. This 

element depends on the probability that a team has won at least four (4) out of their 

last six (6) games. The If class is used to represent this functional form in Figaro: 

val highForm = Flip(goodFormProbability) 

val lowForm = Flip(badFormProbability) 

val hasGoodForm = If(isWinner, highForm, lowForm) 

 

The same goes for the hasHomeGroundAdvantage element, it is also represented 

using the If construct:  

val hasGoodHead2Head = Flip(goodHead2HeadProbability) 

val hasBadHead2Head = Flip(badHead2HeadProbability) 

val hasHomeGroundAdvantage = If(isWinner, 

hasGoodHead2Head, hasBadHead2Head) 

 

The last element isWinner is of a Boolean type and a deterministic variable. This 

means that it is fully dependent on the hasHomeGroundAdvantage, 

hasGoodRating and hasGoodForm elements. The Flip construct is used here to 

specify the functional form. Flip takes a Double argument between 0 and 1 

inclusive, which represents the probability that the element’s value is true (Pfeffer, 

2016). The functional form of isWinner is defined as follows: 

val isWinner = Flip(winProbability) 

This represents the probability that a team wins a match. 

 

Numerical parameters 

This is the final component in the design of a probabilistic model. The functional 

forms have parameters. These parameters are assigned numerical values. Care must 

be taken to assign valid values for the functional forms. 

 

In our case, initial numerical values are assigned to the parameters before any data is 

seen. The Beta distribution is used to derive the initial probabilities. The Beta 

distribution has two numerical parameters which represents the number of times two 

outcomes have been observed, plus 1. After data have been passed through the 

model through the feeder component, these numerical values are ‘learned’ or 

calculated from the data. 
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The elements highRating and lowRating are given initial values that represent 

the probability that a team’s rating is greater than or equal to 6.0 and less than 0.6 

respectively. Subsequently, after data is known, this numerical value for 

highRating, lowRating and hasGoodRating is learned from the data. 

 

The functional form of hasHomeGroundAdvantage is specified by the If construct. 

Again, initial parameters are given to the probabilities using the Beta distribution. In 

this case, we assume that a team has won as least four (4) games out of six (6) 

games in their home ground as the initial value for hasGoodHead2Head. The 

opposite assumption is made for the initial value of hasBadHead2Head. Thereafter, 

when data is known, this numerical parameter is calculated. 

 

The numerical parameter for hasGoodForm element is also derived using a Beta 

distribution. An assumption that a team has won 4 or more games in their last six (6) 

games is used to derive the initial parameter for highForm. The initial value of 

lowForm is derived based on the assumption that a team has lost at least 4 games 

out of their last six (6) games. Subsequently, when data is known, these parameters 

are calculated. 

 

Initial numerical parameter for isWinner is derived based on the assumption that a 

team has won as much games as they have lost. 

 

Putting the elements, the dependencies between the elements, the functional forms 

of the elements and their numerical parameters all together provides a Figaro 

(football) model for our case study. This football model is used for learning as well as 

reasoning on data. 

 

The learning process involves using the data in the master and pseudo-master 

databases as training data to produce football models used in the reasoning process. 

However, the learning process uses a prior football model which is made up of initial 

parameters (assumptions) as mentioned earlier. The learning process transforms the 

prior football model into reasoning football models using a learning algorithm and the 

training data. Figaro provides a learning algorithm called expectation maximization 

(EM) which is used as the learning algorithm in Kognitor. 

 

A point to remember is that learning happens in both the batch and real-time modules 

of the server component in Kognitor, and at different intervals. In the batch module, 
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learning happens at a scheduled interval and it uses all the data available in the 

master database as training data. Learning in the real-time module happens on new 

data as soon as it enters the system. 

 

The result of learning in the batch component is the football model used to perform 

batch reasoning while the football model produced from learning in the real-time 

module is used to perform real-time reasoning. The batch and real-time views are 

stored in the batch-view database and real-time-view database respectively. 

 

Just like the learning process, reasoning process is done in the batch and real-time 

modules to provide a probabilistic score to queries. However, instead of a learning 

algorithm, reasoning uses any inference algorithm. Figaro has a collection of built-in 

inference algorithms. In Kognitor, the variable elimination (VE) algorithm is used as 

the inference algorithm. 

 

Queries to Kognitor are targeted towards an element of interest. The default element 

of interest is the isWinner element. The inference algorithm uses the football 

models (batch view and real-time views) to respond to queries. 

  

5.4 Testing 

This section focuses on the testing of the Kognitor system to show the effectiveness 

of the design concept.  

 

5.4.1 Test System 

The evaluation method to demonstrate the usefulness of this research was selected 

to be experimental (cf. Section 3.4.5). This involves simulation in an appropriate 

environment for which Kognitor is designed for. Thus, a test environment consistent 

with the design science research methodology is designed.  

 

The test environment provides a common interface between the simulation and 

Kognitor (the system to be tested) as is obtainable in the real world. The simulation is 

developed using Cassandra database running on a Docker container. The simulation 

environment houses three data objects namely ratingfeeder, fixturefeeder and 

formfeeder (cf. Section 5.3.2). These feeder objects contain timed data about a team; 

the ratingfeeder contains ratings of a team at a given time, the fixturefeeder contains 

data about football matches between two teams and the formfeeder contains data on 

a team’s form at a given time. 
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Data is exposed to Kognitor from the database in the simulation through a RESTful 

webservice implemented using the Play framework. Kognitor consumes the data in 

the testbed through a data pipeline implemented by the Akka feeder-actor (cf. 

Section 5.3.1a.5.3.1). The system stores and performs learning computation on the 

data. As mentioned in Section 5.3.1a.5.3.3, learning happens in two places: the batch 

layer and the speed layer. The feeder-actor is scheduled to read data from the 

simulation in a 1-day interval for this test. Learning Process in the speed layer 

happens immediately data is read into Kognitor. The feeder-actor is also scheduled to 

initial batch learning computation every 7 days. Results of computation are also 

stored in the system ready for query. 

 

The various components of Kognitor are developed using off-the-shelf technologies. 

The server component of Kognitor is implemented using the Scala programming 

language, Figaro, Akka and the Play framework while the storage component is 

implemented using Cassandra database on a Docker container. Communication 

between the various components of Kognitor is enabled via RESTful web services. 

 

Kognitor also exposes RESTful web services that accepts queries and responds with 

probabilistic answers. 

 

5.4.2 Test Results 

As stated earlier, two teams from the EPL namely Manchester United and Chelsea 

were selected for this test. The test was done on the teams’ previous EPL games for 

last season (2017/18) and current season (2018/19); that is Manchester vs Chelsea 

and vice versa. Both teams had played three (3) games, two (2) of which were in the 

last season. 

 

5.4.1.1 Learning 

On the first run, the teams’ data for the first game were injected into Kognitor. 

Learning computation happened immediately on the speed layer. This learning was 

repeated at least five (5) times to get an approximate learning duration. It was 

discovered that learning on new data takes approximately 1 second (see Table 5.1). 

After the repeated test on speed layer, the batch learning process was initiated. 

Again, it was run five (5) times to get an estimate of its duration. The batch learning 

process and the real-time learning process took approximately the same amount of 

time as learning was on the same data size. 
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For the second game, real-time learning in the speed layer happened at 

approximately the same amount of time in the first run. This is because learning 

computation in the real-time module of Kognitor is incremental; it only learns on the 

new data and increments/updates the real-time view. In this test, this incremental 

update is implemented by taking an average of the new real-time view and the old 

real-time view. However, for the batch layer, the amount of data size has increased 

and learning computation in the batch module uses all the data in the master 

database. Thus, the learning process took longer compared to the first run; 

approximately 3 seconds (see Table 5.2). 

 

Table 5.1: First Run Learning Time in Seconds 

Manchester United Chelsea Total Time 

0.48 0.994 1.474 

0.416 0.537 0.993 

0.383 0.534 0.917 

0.503 0.878 1.381 

0.581 0.757 1.338 

Average Time 1.2126 

 

Table 5.2: Second Run Learning Time (on batch module) in Seconds 

Manchester United Chelsea Total Time 

1.353 1.204 2.557 

1.605 1.997 3.602 

1.784 1.615 3.399 

1.689 4.985 3.674 

1.889 1.483 3.372 

Average Time 3.3208 

 

Table 5.3: Third Run Learning Time (on batch module) in Seconds 

Manchester United Chelsea Total Time 

2.948 3.222 6.17 

3.152 3.22 6.372 

2.625 2.942 5.567 

2.577 2.687 5.264 

3.047 2.587 5.634 

Average Time 5.8014 

 

Learning on all three games in the batch module also took longer (See Table 5.3). A 

point to remember is that as soon as the result from the batch reasoning is complete, 

the corresponding real-time view is discarded and replaced with the batch view. This 

is following the guidelines of Lambda architecture. See APPENDIX B: TEST 

LEARNING RESULTS for learning results. 
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5.4.2.1 Reasoning 

Kognitor is designed such that there must be available views (batch and real-time) for 

a successful reasoning. Kognitor exposes a RESTful web service endpoint that 

accepts a reasoning request on a team. A reasoning request is directed at the 

isWinner element. There are three (3) reasoning options available in Kognitor which 

is enabled by the implementation of Lambda architecture. Thus, a reasoning request 

can be directed at the batch module, the real-time module or both batch and real-time 

modules. 

 

Table 5.4: Reasoning Time in Seconds 

 Real-time Module Batch Module Real-time & Batch Modules 

Time 1 0.038 0.032 0.053 

Time 2 0.043 0.031 0.06 

Time 3 0.04 0.041 0.061 

Time 4 0.029 0.030 0.063 

Time 5 0.054 0.022 0.058 

Average 0.0408 0.312 0.059 

 

Response time for the individual modules is depicted in Table 5.4. Reasoning with the 

three (3) options were carried out on one team repeatedly for five (5) times. The 

reasoning takes less time than the learning processes. This achieves low latency in 

big data processing. 

 

5.5 Chapter Summary 

This chapter focuses on the demonstration and evaluation of the artefact design 

described in Chapter 4. This is in fulfilment of the fourth (cf. Section 3.4.4) and fifth 

(cf. Section 3.4.5) activities of the DSRM process as outlined by Peffers et al. (2007). 

 

The result of a design science research should demonstrate its usefulness in the 

problem domain using an appropriate demonstration method and must be evaluated 

using a defined evaluation method to see how well it solves the problem in 

accordance to the specified objectives. 

 

This chapter started with an introduction that lead to the choice of a problem domain 

– prediction and inference. Then a case study called Kognitor was implemented to 

demonstrate the design concept described in Chapter 4. The various big data tools 

and technologies used in this demonstration were described in the context of the 

different components of the RT-PRLA system. The server component which forms the 

core of Kognitor was described with emphasis on the creation of probabilistic models 

using Figaro, a probabilistic programming system, and the effective combination of 
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big data tools to implement the Lambda architecture for real-time response to 

queries. 

 

Kognitor was evaluated using the experimental evaluation method and tested with 

simulated data. This evaluation was against the design objectives listed in Section 4.2 

of Chapter 4 and the second research question (R2) presented in Chapter 1 (cf. 

Section 1.4). 

 

Kognitor used Akka actors to manage data ingestion and back pressure. 

Computations in Kognitor are divided into two: learning computation and reasoning 

computation. The learning computation happens periodically in the batch module and 

real-time module respectively, and this is also initiated using Akka actors. The 

learning computation uses a prior probabilistic model on data and a learning 

algorithm to produce views used for the reasoning computation. This satisfies the 

design objective DR4 (cf. Section 4.2). 

 

Reasoning computation is like the learning computation with two differences: (1) 

Reasoning computation uses an inference algorithm on the result of the learning 

computation to respond to queries. Responses to queries are probabilistic scores. (2) 

There is a choice of reasoning option for the user; the user can reason on the batch 

layer, the real-time layer or both. 

 

Response time for both learning and reasoning were present in the testing section of 

this chapter. The response time for the reasoning computation is of more importance 

to this research. Thus, low latency was achieved using probabilistic programming and 

an artistic combination of big data tools to implement Lambda architecture. 
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CHAPTER SIX 

RESEARCH EVALUATION 

 

Chapter 1 presented the aim and objectives of this study which were reiterated in 

Chapter 4 as the design requirement for the RT-PRLA system. This chapter presents 

an assessment of the research process used in this study to achieve the design for 

the RT-PRLA in the context of the aim and objectives as stated in chapter 1. 

 

6.1 Introduction 

The output of a design science research is a design artefact which should be 

relevant, and the process of construction and evaluation of the artefact should involve 

rigorous methods (Hevner et al., 2004). This chapter measures the research activities 

and results against the guidelines by A. R. Hevner et al. (2004) to justify this research 

as a design science research. 

 

6.2 Hevner’s DSR Guidelines 

This section outlines the seven (7) guidelines proposed by A. R. Hevner et al. (2004), 

and how this research implemented or adhered to each guideline. 

 

6.2.1 Design as an Artefact 

The first guideline states that the result of a design science research should be an 

artefact developed to address a problem. This artefact can be in the form of either 

construct, model, methods, instantiations or a combination of those. The 

implementation and application of the artefact should be effectively described. 

 

This research resulted in an artefact in the form of an instantiation – a real-time 

reasoning system using Lambda architecture (RT-PRLA). Chapter 4 presented the 

design concept of the RT-PRLA system. The RT-PRLA system was designed to 

advance the implementation of big data solutions using probabilistic programming. 

 

Chapter 4 explained the three (3) components of the RT-PRLA system namely the 

feeder component, the storage component and the server component. The server 

component is the engine of the RT-PRLA system and includes the novel approach 

pertinent to this research.  

 

6.2.2 Problem Relevance 

The second guideline emphasizes the need for relevance. The design artefact should 

provide a solution to a relevant problem. “The objective of design-science research is 
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to develop technology-based solutions to important and relevant business problems.” 

(Hevner et al., 2004: 83).  

 

The problem space or specific environment determines the relevance of a DSR 

endeavour (cf. Chapter 3). In this research, the problem space is specific to decision-

makers. Decision making is part of, and central to the existence of every business. 

 

Section 1.2 and Section 1.3 of Chapter 1 provided the background and motivation to 

this research and stated the problem statement that addresses the relevance of this 

research. Chapter 2 also emphasized the importance of this research after a 

systematic literature review. The design concept of the RT-PRLA system is to aid 

decision-makers especially in uncertain situations by providing real-time probabilistic 

reasoning on big data. 

 

6.2.3 Design Evaluation 

Guideline 3 talks about the evaluation of the design artefact. This is an important step 

in the design science research process. “The utility, quality, and efficacy of a design 

artefact must be rigorously demonstrated via well-executed evaluation methods.” 

(Hevner et al., 2004: 83). Evaluation determines the usefulness of an artefact in the 

business environment. 

 

Chapter 5 presented the implementation of a case study called Kognitor. Kognitor 

was evaluated using simulation method. Simulation is one of the acceptable ways to 

evaluate a designed artefact as suggested by A. R. Hevner et al. (2004). In addition 

to the simulation process in chapter 5, there was continuous evaluation during the 

design process to achieve the design detail decision as supported by Vaishnavi et al. 

(2004). 

 

6.2.4 Contribution 

The fourth guideline addresses the need for a design science research to have a 

comprehensible and justifiable contribution to the body of knowledge. The 

contribution can be in the form of a design artefact, design foundations, and/or design 

methodologies. 

 

The primary contribution of this research is the design artefact, the RT-PRLA system. 

The RT-PRLA system is the result of the artistic combination of the probabilistic 

programming concept and big data technologies using Lambda architecture to 

improve decision-making tasks especially during uncertainty. 
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A secondary contribution of this research can be seen in the contribution towards the 

body of knowledge in the field of big data, real-time big data processing and Lambda 

architecture. The developed case study in chapter 5 demonstrated how the RT-PRLA 

system can be implemented using existing off-the-shelf big data tools and 

probabilistic programming languages on commodity hardware, thus making it cost-

effective. 

 

6.2.5 Research Rigor 

Guideline 5 describes the importance of rigor in design science research. A. R. 

Hevner et al. (2004) pointed out that rigorous methods should be used in the 

construction and evaluation of the design artefact. This rigor is achieved through the 

effective use of theoretical foundations in the domain and research methodologies. 

 

Chapter 2 presented the knowledge base relevant to this research. In chapter 3, the 

research paradigm, methodology, methods and techniques were chosen with reasons 

based on the research pyramid of Jonker & Pennink (2009). Chapter 3 also adopted 

the design science research process of Peffers et al. (2007). Each step in the design 

science research process was based on knowledge derived from the literature review 

in chapter 2. Also, the various methods and techniques used to design, implement 

and evaluate the design artefact were gathered from literature. Some examples are 

the Lambda architecture and probabilistic programming technique. 

 

6.2.6 Design as a Search Process 

A. R. Hevner et al. (2004) describes the design science research process as an 

iterative (search) process that seeks to solve relevant business problems using the 

appropriate knowledge base. 

 

The RT-PRLA system is the result of a search process. In chapter 2, current big data 

tools and techniques were identified and a systematic literature review was 

performed. Chapter 4 presented a list of design objectives established because of a 

search process. 

 

6.2.7 Communication of Research 

The final guideline is the effective communication of the research to the relevant 

audience. A. R. Hevner et al. (2004, p. 83), states that “Design-science research must 

be presented effectively both to technology-oriented as well as management-oriented 

audiences.” 
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This thesis is a major communication documentation of this research. Again, this 

research or part of it was presented at various occasions during the research 

process. During the early stages of this research, a proposal was presented to a 

mixed audience comprising senior academics, postgraduate students and industry 

officials at the Department of Information Technology and Faculty of Informatics and 

Design, CPUT. 

 

The section titled “Publications from this Research” outlines a list of all 

conferences/journals where papers from this research were presented.  

 

6.3 Chapter Summary 

The different steps and stages in this research were revisited and measured against 

Hevner's et al. (2004) design science research guidelines. This is to ensure that this 

research adequately complies with the design science research process. 

 

All the search and design process that resulted in the development of the RT-PRLA 

system were documented in this thesis. The RT-PRLA system was demonstrated and 

evaluated using the experimental method. 
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CHAPTER SEVEN 

DISCUSSION & CONCLUSION 

 

The main goal of this research was introduced in chapter 1 which is to develop a real-

time big data technology that uses probabilistic reasoning and Lambda architecture to 

output response in real-time.  

 

The first section of this chapter summarises this study and presents an introduction to 

this chapter. Section 7.2 presents the findings of this research with respect to the 

research aims. Section 7.3 contains a summary of this research and Section 7.4 

indicates the direction for further research. 

 

7.1 Introduction 

This research tackles the problem associated with real-time probabilistic processing 

of both real-time and historic big data. Probabilistic reasoning involves the 

development of a probabilistic model which is passed through an inference algorithm 

to produce probabilistic results. However, due to the identified hurdles associated 

with the development of probabilistic models using well established probability 

theories like Bayesian Network or Markov models, the programming and machine 

learning community proposed a novel concept called probabilistic programming. 

 

To determine the extent of influence probabilistic programming has in the processing 

of big data, this study included a systematic literature review of big data system 

implemented using probabilistic programming.  The garnered information indicated 

the possible effective influence of probabilistic programming in big data processing. 

Thus, this research’s aim and objectives were re-established to show the relevance of 

this study. An artefact was developed and evaluated using design science research 

methodology. The design process to achieve the artefact was also evaluated using 

documented procedures to demonstrate research rigor. 

 

This chapter wraps up this study and provides findings and answers to the research 

questions.  

 

7.2 Research Findings 

The general purpose of this research is to find out existing big data solutions that 

implemented probabilistic programming in processing data, and to improve decision 

making by developing a real-time probabilistic reasoning system. This aim resulted in 

two research questions for the research (cf. Section 1.4). 
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7.2.1 Answers to Research Questions 

This section provides answers to the research questions outlined in chapter 1. These 

answers are based on the fulfilment of the research objectives stated in chapter 1. 

 

RQ 1 What are the existing big data solutions implemented using probabilistic 

programming? 

To answer this question, a systematic literature review was conducted which is in line 

with the first objective of this research. However, before the systematic review, 

chapter 2 presented a literature review on the various knowledge bases relevant to 

this research. 

 

The result of the systematic literature review indicated one big data solution called 

InferSpark that uses probabilistic programming (cf. Section 2.4). InferSpark is a 

probabilistic programming framework built on Apache Spark. The developers of 

InferSpark claimed that at the time of publication, InferSpark was the only solution 

that implemented big data processing using probabilistic programming (Zhao et al., 

2017). 

 

RQ 2 How to achieve low latency in big data processing? 

During the systematic literature review process, the only solution that was found was 

also evaluated. The review identified a limitation in InferSpark: InferSpark could not 

scale out on a distributed framework. Again, InferSpark is built on Apache Spark 

which supports several machine learning algorithms, but they do not support user 

defined models. Other findings identified by the designer of InferSpark is the claim 

that InferSpark is the only big data solution that uses probabilistic programming. 

 

These key findings were utilized in the response to the second research question. 

They also emphasized the need and usefulness of a real-time probabilistic reasoning 

system (cf. Section 2.4.4.4). 

 

This research proposes the use of existing big data solutions, the concept of 

probabilistic programming and Lambda architecture to develop a tool to handle real-

time big data processing. Data computation is solely handled using probabilistic 

programming implemented using Figaro, and the real-time response is achieved 

using Akka actors and Lambda architecture developed by Marz & Warren (2015). 
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The design concept was demonstrated with a case study: Kognitor. The crux of the 

design concept is that the server component is implemented using Figaro that allows 

for easy creation of user-defined probabilistic models used along with inference 

algorithms provided by Figaro to respond to queries in real-time. 

 

The evaluation of Kognitor demonstrated low latency in the processing of data (cf. 

Section 5.4). 

 

7.3 Summary 

This thesis reports a research project regarding the design of a real-time probabilistic 

reasoning system using Lambda architecture. The inspiration behind this research is 

the need for an automated real-time system that enhances decision-making 

especially during uncertainty. This need was identified after a systematic literature 

review was conducted. 

 

Decision-makers are required to make crucial decisions, most times in the face of 

uncertainty. This decision-making process entails the use of experience and recent 

events to arrive at a decision. This means that reasoning over historic data and real-

time data to produce real-time response is imperative. 

 

To improve decision-making in times of uncertainty, this research proposed the real-

time probabilistic reasoning (RT-PRLA) system using Lambda architecture. The 

design concept of the RT-PRLA system is centred around probabilistic programming 

for data processing and Lambda architecture to achieve real-time computation on 

both historic and real-time data. 

 

The core of the RT-PRLA system is the server component which is made up of two 

modules: the batch module and the real-time module. A probabilistic model is 

implemented on the server component. Both modules of the server components are 

responsible for retrieving data from their corresponding data stores (master database 

and pseudo-master database) and creating corresponding post parameters (batch 

views and real-time views) which are like the serving layer and speed layer of the 

Lambda architecture. These views are used with the probabilistic model and 

inference algorithm to respond to queries in real-time. 

 

Another contribution of the RT-PRLA system is in the reuse of existing open-source 

big data technologies and commodity hardware to develop a cost-effective big data 

solution. 
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7.4 Future Work 

The scope of this research was tied to the research goals which were to find the 

number of existing big data technologies that use probabilistic programming to handle 

big data problems, and to design a real-time big data solution using probabilistic 

programming and Lambda architecture.  

 

Thus, the focus was mainly on the probabilistic reasoning on big data using 

probabilistic programming and Lambda architecture. Other human-related 

components such as the user interface that deals with users’ interaction with the 

system were designated as out of scope for this research. Therefore, a possible 

direction for future work could be in the design of the user interface to the RT-PRLA 

system. 

 

Two out of the highlighted design objectives: DR5 and DR6 (cf. Section 4.2) were not 

implemented in this study. DR5 proposes that the system should implement a fully 

automated compressing and filtering mechanism when ingesting data. In this study, 

an already clean simulated data was used. DR6 also suggests that the system should 

be generic: used in different problem domains. These are areas for further research. 

 

Furthermore, the experimental evaluation method was used to assess the RT-PRLA 

system. This evaluation was demonstrated using a test system and simulation with 

real data. This is a limitation factor. Simulation was selected as a suitable method for 

evaluating the system; however, other evaluation methods could present further 

findings to the design concept of the RT-PRLA system. Consequently, more testing 

using different evaluation methods is required. 
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APPENDICES 
APPENDIX A: STORAGE 
 

Database Schemas 

CREATE KEYSPACE k_master WITH replication = {'class': 

'SimpleStrategy', 'replication_factor': '1'}  AND 

durable_writes = true; 

 

CREATE KEYSPACE k_realtimeview WITH replication = {'class': 

'SimpleStrategy', 'replication_factor': '1'}  AND 

durable_writes = true; 

 

CREATE KEYSPACE k_pseudomaster WITH replication = {'class': 

'SimpleStrategy', 'replication_factor': '1'}  AND 

durable_writes = true; 

 

CREATE KEYSPACE k_batchview WITH replication = {'class': 

'SimpleStrategy', 'replication_factor': '1'}  AND 

durable_writes = true; 

 

Tables for k_master and k_pseudomaster Schemas 

CREATE TABLE <schema>.rating ( 

    teamid text, 

    datecreated date, 

    rating double, 

    PRIMARY KEY (teamid, datecreated) 

) WITH CLUSTERING ORDER BY (datecreated ASC) 

    AND bloom_filter_fp_chance = 0.01 

    AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'} 

    AND comment = '' 

    AND compaction = {'class': 

'org.apache.cassandra.db.compaction.SizeTieredCompactionStrateg

y', 'max_threshold': '32', 'min_threshold': '4'} 

    AND compression = {'chunk_length_in_kb': '64', 'class': 

'org.apache.cassandra.io.compress.LZ4Compressor'} 

    AND crc_check_chance = 1.0 

    AND dclocal_read_repair_chance = 0.1 

    AND default_time_to_live = 0 

    AND gc_grace_seconds = 864000 
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    AND max_index_interval = 2048 

    AND memtable_flush_period_in_ms = 0 

    AND min_index_interval = 128 

    AND read_repair_chance = 0.0 

    AND speculative_retry = '99PERCENTILE'; 

 

CREATE TABLE <schema>.form ( 

    teamid text, 

    datecreated date, 

    numberofdraws int, 

    numberofloses int, 

    numberofwins int, 

    PRIMARY KEY (teamid, datecreated) 

) WITH CLUSTERING ORDER BY (datecreated ASC) 

    AND bloom_filter_fp_chance = 0.01 

    AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'} 

    AND comment = '' 

    AND compaction = {'class': 

'org.apache.cassandra.db.compaction.SizeTieredCompactionStrateg

y', 'max_threshold': '32', 'min_threshold': '4'} 

    AND compression = {'chunk_length_in_kb': '64', 'class': 

'org.apache.cassandra.io.compress.LZ4Compressor'} 

    AND crc_check_chance = 1.0 

    AND dclocal_read_repair_chance = 0.1 

    AND default_time_to_live = 0 

    AND gc_grace_seconds = 864000 

    AND max_index_interval = 2048 

    AND memtable_flush_period_in_ms = 0 

    AND min_index_interval = 128 

    AND read_repair_chance = 0.0 

    AND speculative_retry = '99PERCENTILE'; 

 

CREATE TABLE <schema>.fixture ( 

    hometeamid text, 

    datecreated date, 

    awayteamgoals int, 

    awayteamid text, 

    hometeamgoals int, 

    PRIMARY KEY (hometeamid, datecreated) 
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) WITH CLUSTERING ORDER BY (datecreated ASC) 

    AND bloom_filter_fp_chance = 0.01 

    AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'} 

    AND comment = '' 

    AND compaction = {'class': 

'org.apache.cassandra.db.compaction.SizeTieredCompactionStrateg

y', 'max_threshold': '32', 'min_threshold': '4'} 

    AND compression = {'chunk_length_in_kb': '64', 'class': 

'org.apache.cassandra.io.compress.LZ4Compressor'} 

    AND crc_check_chance = 1.0 

    AND dclocal_read_repair_chance = 0.1 

    AND default_time_to_live = 0 

    AND gc_grace_seconds = 864000 

    AND max_index_interval = 2048 

    AND memtable_flush_period_in_ms = 0 

    AND min_index_interval = 128 

    AND read_repair_chance = 0.0 

    AND speculative_retry = '99PERCENTILE'; 

 

CREATE TABLE <schema>.team ( 

    teamid text PRIMARY KEY, 

    teamname text 

) WITH bloom_filter_fp_chance = 0.01 

    AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'} 

    AND comment = '' 

    AND compaction = {'class': 

'org.apache.cassandra.db.compaction.SizeTieredCompactionStrateg

y', 'max_threshold': '32', 'min_threshold': '4'} 

    AND compression = {'chunk_length_in_kb': '64', 'class': 

'org.apache.cassandra.io.compress.LZ4Compressor'} 

    AND crc_check_chance = 1.0 

    AND dclocal_read_repair_chance = 0.1 

    AND default_time_to_live = 0 

    AND gc_grace_seconds = 864000 

    AND max_index_interval = 2048 

    AND memtable_flush_period_in_ms = 0 

    AND min_index_interval = 128 

    AND read_repair_chance = 0.0 

    AND speculative_retry = '99PERCENTILE'; 
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Table for k_batchview and k_realtimeview Schemas 

CREATE TABLE <schema>.teamprobability ( 

    teamid text PRIMARY KEY, 

    badformprobability double, 

    badhead2headprobability double, 

    badratingprobability double, 

    goodformprobability double, 

    goodhead2headprobability double, 

    goodratingprobability double, 

    winprobability double 

) WITH bloom_filter_fp_chance = 0.01 

    AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'} 

    AND comment = '' 

    AND compaction = {'class': 

'org.apache.cassandra.db.compaction.SizeTieredCompactionStrateg

y', 'max_threshold': '32', 'min_threshold': '4'} 

    AND compression = {'chunk_length_in_kb': '64', 'class': 

'org.apache.cassandra.io.compress.LZ4Compressor'} 

    AND crc_check_chance = 1.0 

    AND dclocal_read_repair_chance = 0.1 

    AND default_time_to_live = 0 

    AND gc_grace_seconds = 864000 

    AND max_index_interval = 2048 

    AND memtable_flush_period_in_ms = 0 

    AND min_index_interval = 128 

    AND read_repair_chance = 0.0 

    AND speculative_retry = '99PERCENTILE'; 

 

Simulation schemas 

CREATE TABLE k_master.ratingfeeder ( 

    teamname text, 

    datecreated date, 

    rating double, 

    PRIMARY KEY (teamname, datecreated) 

) WITH CLUSTERING ORDER BY (datecreated ASC) 

    AND bloom_filter_fp_chance = 0.01 

    AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'} 

    AND comment = '' 
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    AND compaction = {'class': 

'org.apache.cassandra.db.compaction.SizeTieredCompactionStrateg

y', 'max_threshold': '32', 'min_threshold': '4'} 

    AND compression = {'chunk_length_in_kb': '64', 'class': 

'org.apache.cassandra.io.compress.LZ4Compressor'} 

    AND crc_check_chance = 1.0 

    AND dclocal_read_repair_chance = 0.1 

    AND default_time_to_live = 0 

    AND gc_grace_seconds = 864000 

    AND max_index_interval = 2048 

    AND memtable_flush_period_in_ms = 0 

    AND min_index_interval = 128 

    AND read_repair_chance = 0.0 

    AND speculative_retry = '99PERCENTILE'; 

 

CREATE TABLE k_master.formfeeder ( 

    teamname text, 

    datecreated date, 

    numberofdraws int, 

    numberofloses int, 

    numberofwins int, 

    PRIMARY KEY (teamname, datecreated) 

) WITH CLUSTERING ORDER BY (datecreated ASC) 

    AND bloom_filter_fp_chance = 0.01 

    AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'} 

    AND comment = '' 

    AND compaction = {'class': 

'org.apache.cassandra.db.compaction.SizeTieredCompactionStrateg

y', 'max_threshold': '32', 'min_threshold': '4'} 

    AND compression = {'chunk_length_in_kb': '64', 'class': 

'org.apache.cassandra.io.compress.LZ4Compressor'} 

    AND crc_check_chance = 1.0 

    AND dclocal_read_repair_chance = 0.1 

    AND default_time_to_live = 0 

    AND gc_grace_seconds = 864000 

    AND max_index_interval = 2048 

    AND memtable_flush_period_in_ms = 0 

    AND min_index_interval = 128 

    AND read_repair_chance = 0.0 
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    AND speculative_retry = '99PERCENTILE'; 

 

CREATE TABLE k_master.fixturefeeder ( 

    teamname text, 

    datecreated date, 

    awayteamgoals int, 

    awayteamname text, 

    hometeamgoals int, 

    PRIMARY KEY (teamname, datecreated) 

) WITH CLUSTERING ORDER BY (datecreated ASC) 

    AND bloom_filter_fp_chance = 0.01 

    AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'} 

    AND comment = '' 

    AND compaction = {'class': 

'org.apache.cassandra.db.compaction.SizeTieredCompactionStrateg

y', 'max_threshold': '32', 'min_threshold': '4'} 

    AND compression = {'chunk_length_in_kb': '64', 'class': 

'org.apache.cassandra.io.compress.LZ4Compressor'} 

    AND crc_check_chance = 1.0 

    AND dclocal_read_repair_chance = 0.1 

    AND default_time_to_live = 0 

    AND gc_grace_seconds = 864000 

    AND max_index_interval = 2048 

    AND memtable_flush_period_in_ms = 0 

    AND min_index_interval = 128 

    AND read_repair_chance = 0.0 

    AND speculative_retry = '99PERCENTILE'; 
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APPENDIX B: TEST LEARNING RESULTS 
 

First Run for First Match (both speed and batch layers). 

 

 

Second Run for Second Match (on speed layer) 

 

 

Second Run for Second Match (on batch layer) 
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Third Run for Third Match (on speed layer) 

 

 

Third Run for Third Match (on batch layer) 

 

 


