

REAL-TIME PROBABILISTIC REASONING SYSTEM USING LAMBDA
ARCHITECTURE

by

ARINZE ANIKWUE

Thesis submitted in fulfilment of the requirements for the degree

Master of Technology: Information Technology

in the Faculty of Informatics and Design

at the Cape Peninsula University of Technology

Supervisor: Dr. Boniface Kabaso

District Six
June 2019

CPUT copyright information
The dissertation/thesis may not be published either in part (in scholarly, scientific or technical
journals), or as a whole (as a monograph), unless permission has been obtained from the
University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CPUT Electronic Theses and Dissertations Repository

https://core.ac.uk/display/322968478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

DECLARATION

I, Arinze Anikwue, declare that the contents of this dissertation/thesis represent my
own unaided work, and that the thesis has not previously been submitted for
academic examination towards any qualification. Furthermore, it represents my own
opinions and not necessarily those of the Cape Peninsula University of Technology.

 March 19, 2020.

Signed Date

 iii

ABSTRACT

The proliferation of data from sources like social media, and sensor devices has

become overwhelming for traditional data storage and analysis technologies to

handle. This has prompted a radical improvement in data management techniques,

tools and technologies to meet the increasing demand for effective collection, storage

and curation of large data set. Most of the technologies are open-source.

Big data is usually described as very large dataset. However, a major feature of big

data is its velocity. Data flow in as continuous stream and require to be actioned in

real-time to enable meaningful, relevant value. Although there is an explosion of

technologies to handle big data, they are usually targeted at processing large dataset

(historic) and real-time big data independently. Thus, the need for a unified

framework to handle high volume dataset and real-time big data. This resulted in the

development of models such as the Lambda architecture.

Effective decision-making requires processing of historic data as well as real-time

data. Some decision-making involves complex processes, depending on the

likelihood of events. To handle uncertainty, probabilistic systems were designed.

Probabilistic systems use probabilistic models developed with probability theories

such as hidden Markov models with inference algorithms to process data and

produce probabilistic scores. However, development of these models requires

extensive knowledge of statistics and machine learning, making it an uphill task to

model real-life circumstances. A new research area called probabilistic programming

has been introduced to alleviate this bottleneck.

This research proposes the combination of modern open-source big data

technologies with probabilistic programming and Lambda architecture on easy-to-get

hardware to develop a highly fault-tolerant, and scalable processing tool to process

both historic and real-time big data in real-time; a common solution. This system will

empower decision makers with the capacity to make better informed resolutions

especially in the face of uncertainty.

The outcome of this research will be a technology product, built and assessed using

experimental evaluation methods. This research will utilize the Design Science

Research (DSR) methodology as it describes guidelines for the effective and rigorous

construction and evaluation of an artefact.

 iv

Probabilistic programming in the big data domain is still at its infancy, however, the

developed artefact demonstrated an important potential of probabilistic programming

combined with Lambda architecture in the processing of big data.

Keywords: Big Data, big data processing, probabilistic reasoning, probabilistic

programming, Lambda architecture.

 v

ACKNOWLEDGEMENTS

I wish to thank:

▪ Yahweh, the source of all.

▪ Mr. Isaac Anikwue, my dad & Mrs. Miriam Anikwue, my mum for everything.

▪ My siblings for their continuous help, encouragement and love.

▪ Dr. Boniface Kabaso for his guidance and support.

▪ Prof. Israel & Ada Jideani for their encouragement and help.

▪ Colleagues and friends for their insight and support.

▪ The department of Information Technology, Cape Peninsula University of

Technology for the platform and support.

 vi

DEDICATION

To my parents, Mr. Isaac and Mrs Miriam Anikwue, and to my siblings.

 vii

PUBLICATIONS FROM THIS RESEARCH

• Anikwue, A. & Kabaso, B. 2019. Probabilistic Programming and Big Data. In

2019 International Conference on Advances in Big Data, Computing and Data

Communication Systems (icABCD). IEEE.

• Anikwue, A. & Kabaso, B. 2018. A systematic review of Lambda Architecture

based big data solutions. In 2018 Conference on Information Communications

Technology and Society (ICTAS).

 viii

GLOSSARY

Terms/Acronyms/Abbreviations Definition/Explanation

DSR

DSRM

EPL

FSS

GFS

HDFS

IC

OBJ

QAC

RQ

SLR

SLRQ

VMP

Design Science Research

Design Science Research Methodology

English Premiership League

Final Search String

Google File System

Hadoop Distributed File System

Inclusion/exclusion Criteria

Objective

Quality Assessment Criteria

Research Question

Systematic Literature Review

Systematic Literature Review Question

Variational Message Research

 ix

TABLE OF CONTENTS

DECLARATION .. ii

ABSTRACT .. iii

ACKNOWLEDGEMENTS ... v

DEDICATION .. vi

PUBLICATIONS FROM THIS RESEARCH ... vii

GLOSSARY ... viii

TABLE OF CONTENTS .. ix

LIST OF FIGURES ... xiii

LIST OF TABLES ... xiv

CHAPTER ONE: INTRODUCTION .. 1

1.1 Introduction ... 1

1.2 Background and Motivation .. 1

1.3 Research Problem Statement ... 4

1.4 Research Questions ... 4

1.5 Research Aims & Objectives .. 4

1.6 Delineation and Assumption of the Study ... 5

1.7 Research Methodology ... 5

1.8 Organisation of the Thesis .. 6

CHAPTER TWO: THEORY, BACKGROUND AND REVIEW 8

2.1 Big Data .. 8

2.1.1 Concept of Big Data .. 8

2.1.2 Definition of Big Data .. 9

2.1.3 Brief History of Big Data .. 11

2.1.4 Big Data Processing ... 12

2.2 Lambda Architecture ... 17

2.3 Probabilistic Reasoning .. 19

2.3.1 Probabilistic Reasoning System .. 20

2.3.2 Probabilistic Programming .. 22

2.4 Probabilistic Programming System and Big Data: A Systematic Review 23

2.4.1 Systematic Literature Review (SLR) Questions .. 24

2.4.2 Review Protocol .. 25

2.4.3 Results ... 30

 x

2.4.4 Analysis .. 31

2.4.5 Systematic Literature Review Summary ... 33

2.4.6 Systematic Literature Review Limitations .. 33

2.5 Chapter Summary ... 34

CHAPTER THREE: METHODOLOGY ... 35

3.1 Introduction ... 35

3.2 Research Pyramid .. 35

3.2.1 Research Paradigm .. 36

3.2.2 Research Methodology ... 37

3.2.3 Research Methods .. 38

3.2.4 Research Techniques ... 38

3.3 Design Science Research ... 38

3.3.1 Business Needs .. 40

3.3.2 Applicable Knowledge .. 40

3.4 Design Science Research Methodology ... 41

3.4.1 Activity 1 – Identify Problem and Motivate .. 43

3.4.2 Activity 2 – Define Objectives of a Solution ... 43

3.4.3 Activity 3 – Design & Development ... 43

3.4.4 Activity 4 – Demonstration .. 44

3.4.5 Activity 5 – Evaluation ... 44

3.4.6 Activity 6 – Communication ... 44

3.5 Design Science Research Guidelines ... 45

3.5.1 Guideline 1 – Design as an Artefact .. 46

3.5.2 Guideline 2 – Problem Relevance ... 46

3.5.3 Guideline 3 – Design Evaluation ... 46

3.5.4 Guideline 4 – Research Contribution .. 47

3.5.5 Guideline 5 – Research Rigor ... 47

3.5.6 Guideline 6 – Design as a Search Process ... 48

3.5.7 Guideline 7 – Communication of Research ... 48

3.6 Chapter Summary ... 48

 xi

CHAPTER FOUR: DESIGN OF A REAL-TIME PROBABILISTIC REASONING

SYSTEM USING LAMBDA ARCHITECTURE .. 50

4.1 Introduction ... 50

4.2 Design Objectives/Requirements .. 51

4.3 System Overview .. 52

4.3.1 Components of Real-time Probabilistic Reasoning System using Lambda

Architecture .. 54

4.3.2 Real-time Probabilistic Reasoning Process... 56

4.4 Design .. 58

4.4.1 The Feeder ... 58

4.4.2 The Storage .. 58

4.4.3 The Server .. 59

4.5 Chapter Summary ... 61

CHAPTER FIVE: KOGNITOR, AN EXPOSITORY CASE STUDY 62

5.1 Introduction ... 62

5.2 Problem Domain ... 63

5.3 Tools and Technologies .. 63

5.3.1 Feeder .. 63

5.3.2 Storage ... 64

5.3.3 Server ... 65

5.4 Testing .. 70

5.4.1 Test System .. 70

5.4.2 Test Results .. 71

5.5 Chapter Summary ... 73

CHAPTER SIX: RESEARCH EVALUATION .. 75

6.1 Introduction ... 75

6.2 Hevner’s DSR Guidelines ... 75

6.2.1 Design as an Artefact ... 75

6.2.2 Problem Relevance .. 75

6.2.3 Design Evaluation ... 76

6.2.4 Contribution .. 76

6.2.5 Research Rigor ... 77

 xii

6.2.6 Design as a Search Process ... 77

6.2.7 Communication of Research ... 77

6.3 Chapter Summary ... 78

CHAPTER SEVEN: DISCUSSION & CONCLUSION ... 79

7.1 Introduction ... 79

7.2 Research Findings .. 79

7.2.1 Answers to Research Questions ... 80

7.3 Summary .. 81

7.4 Future Work .. 82

REFERENCES ... 83

APPENDICES .. 96

APPENDIX A: STORAGE .. 96

APPENDIX B: TEST LEARNING RESULTS .. 102

 xiii

LIST OF FIGURES

Figure 2.1: Big data processes ... 13

Figure 2.2: Categories of analytics ... 14

Figure 2.3: Data processing paradigm .. 16

Figure 2.4: Lambda architecture layers .. 17

Figure 2.5: Lambda architecture ... 19

Figure 2.6: Mechanism of a probabilistic reasoning system 21

Figure 2.7: The abstract inclusion/exclusion evaluation process............................... 27

Figure 2.8: The full text inclusion/exclusion evaluation process 28

Figure 3.1: Research Pyramid .. 36

Figure 3.2: Information Systems DSR Framework .. 39

Figure 3.3: An adaptation of DSR framework ... 41

Figure 3.4: DSRM Process Model .. 42

Figure 4.1: Reasoning Framework ... 56

Figure 5.1: Bayesian dependency model for Kognitor elements 67

 xiv

LIST OF TABLES

Table 2.1: Sources used in search strategy .. 25

Table 2.2: Search terms ... 26

Table 2.3: Modified search string according to specific library requirement 26

Table 2.4: Search string execution result .. 26

Table 2.5: Selected primary study .. 30

Table 2.6: Quality evaluation of selected primary study .. 30

Table 3.1: Research paradigms with associated methodology and methods 37

Table 3.2: DSR Publication Structure ... 45

Table 3.3: DSR Guidelines ... 47

Table 5.1: First Run Learning Time in Seconds .. 72

Table 5.2: Second Run Learning Time (on batch module) in Seconds 72

Table 5.3: Third Run Learning Time (on batch module) in Seconds 72

Table 5.4: Reasoning Time in Seconds .. 73

 1

CHAPTER ONE

INTRODUCTION

1.1 Introduction

This chapter starts with a description of the research background and motivation for

this study in Section 1.2, and then the research problem is listed in Section 1.3.

Section 1.5 presents the research questions. The aim and objectives of this research

are outlined in Section 1.5 and Section 1.6 discusses delineation and assumptions of

this study. The proposed methodology for this research is described in Section 1.7.

Section 1.8 ends this chapter with a descriptive structure of the thesis.

1.2 Background and Motivation

Data is a collection of facts or statistics in an unorganized form usually for calculation,

analysis and/or planning. Data is limitless and ubiquitous. As McAfee & Brynjolfsson

(2012) pointed out, individuals, businesses, institutions and organizations are

accumulating and producing massive amount of data than they know what to do with

as a by-product of business processes, website tracking, finance, accounting among

others. This increasing amount of data generated on a daily basis usually originates

from multiple sources like sensors and mobile devices, and in different formats.

Looking at data generated online, Fan & Bifet (2013, p. 1) wrote: “The web pages

indexed by Google were around one million in 1998, but quickly reached one billion in

2000 and have already exceeded one trillion in 2008.” This can be credited to social

media applications like YouTube, Twitter, Instagram, etc., that allow its users to

generate huge amount of data. Most of these data are continuously generated as

streams and are volatile. This flood of data is called Big Data and according to

Hansen (2013), it represents a significant innovation in data management. Big data

simple put is data that is excessively large, very fast and thus, tough for extant

traditional data management tools to process (Madden, 2012).

Laney (2001) indicated high volume, velocity and variety, popularly called the 3Vs, as

the three attributes that describe big data. This has formed the basis for most

interpretations of big data. The cynosure of big data both in academia and industry

has been on volume, albeit the significance of other Vs are recognised by many

(Mishne et al., 2013).

Volume refers to the increasing size of generated data. Velocity in big data is the

capacity to garner information or value in real-time from large volume of continuous

 2

data from different sources. This continuous high volume big data is also called Fast

Data and is defined by Baer (2013) as a subset of big data as it encapsulates the

velocity characteristics of big data. Variety denotes the dissimilar formats in which

data is generated. Data could be in raw, semi-structured and structured formats

(Baer, 2013; Katal et al., 2013; Kim et al., 2014; Tyagi et al., 2015; Hashem et al.,

2015; Landset et al., 2015).

The classic 3V definition of big data has been extended due to explosion of the social

media to include other Vs. An example is veracity. Veracity is concerned with

uncertainty in user generated data (Ularu et al., 2012; Jin et al., 2015).

The era of big data brought about the need for drastic revision and improvement in

data processing as traditional, relational data management technologies could not

fulfil the performance requirements of big data (Gandomi & Haider, 2015). The

limitation prompted research from academia, government and industry over the last

decade. As a result, technologies are being developed to practically improve big data

processing. Most of these technologies are open-sourced. An example is the

MapReduce.

MapReduce, initiated by Google, is a programming paradigm for concurrent and

distributed processing of big data across multiple servers called clusters or grid with

high fault tolerance (Lee et al., 2012). MapReduce fundamentally breaks down a big

task into smaller tasks and processes them in parallel. The open-source Apache

Hadoop supports the MapReduce paradigm. Hadoop is a highly scalable framework

used for processing big data across several machines (Apache Software Foundation,

2016). Apache Hadoop infrastructure comprises two main modules namely Hadoop

Distributed File System (HDFS) and MapReduce. The purpose of HDFS is to provide

fast and distributed access to data (Fan & Bifet, 2013). According to Ularu, Puican,

Apostu, & Velicanu (2012), Hadoop is now the effective standard framework for

processing big data.

A notable amount of data is generated as data stream and require immediate

processing to extract relevant value in real-time. The importance and benefits of

analysing continuous stream of data in real-time cannot be understated (Lorentz,

2013). Organizations need to gain insight from big data so that information such as

opportunities, threats and performances are quickly spotted (Russom, 2013).

However, the MapReduce paradigm implemented in the majority of big data

technologies was designed to handle high throughput with less attention to the

 3

velocity characteristics of big data (Hashem et al., 2015). Liu, Iftikhar, & Xie (2014)

also emphasized that Hadoop lacks adequate support for real-time data processing

and current algorithms are ineffectual in the analysis of big data. Thus, the need for

technologies to handle big data streams. This birthed Distributed Stream Processing

Engines – DSPEs (Gedik et al., 2008). DSPEs process continuous volatile high-

speed data as it arrives and provides approximate responses using probability. Some

examples are Apache Storm and S4 (S. Chen et al., 2014).

There are other technologies that coexist with the MapReduce and streaming model

to handle big data processing. It is worthwhile to mention Zookeeper (a server

enabling very reliable distributed harmonization), and NoSQL databases (for handling

scalability in data storage and distributed data management). These state-of-the-art

technologies form the software ecosystem for big data applications and have

drastically improved the capturing, storing and analysing of big data. However, these

technologies exist independently to solve specific big data problems. The streaming

model is unsuitable for static big data, and the MapReduce paradigm is ineffective

with fast big data stream.

It is important to note that in order to provide insight and make sense out of big data,

artificial intelligence and machine learning are used in the development of

applications that empower computers to learn and identify complex patterns and

knowledge hidden in data and automatically make intelligent predictions based on the

data (Brown et al., 2011; Kraska et al., 2013).

A fundamental research area in machine learning that addresses uncertainty in data

is called probabilistic reasoning. Probabilistic reasoning has proven useful in handling

the veracity characteristics of big data (Dobre & Xhafa, 2014; Ghahramani, 2015).

There are automated applications that use probabilistic reasoning to process data.

These applications are known as Probabilistic Reasoning Systems (Zadeh, 2003).

Probabilistic reasoning systems use a probabilistic model and inference algorithm to

perform computation on data. A probabilistic model is developed using Bayesian or

Markov networks. This is usually a difficult task and requires extensive knowledge in

these networks (Dobre & Xhafa, 2014). Again modelling real-life scenario as a

probabilistic model is complex as a result of the difficulty (Sampson, 2015; Roy,

2018). This led to the concept of Probabilistic Programming.

 4

Probabilistic programming makes it easier to develop complex probabilistic models

using the powerful features of a programming language in probabilistic modelling.

1.3 Research Problem Statement

The current software ecosystem of big data technologies is appropriate for

processing huge amount of both historic and real-time data independently, providing

distributed processing across several servers. On one hand, the parallel and

distributed batch computing is suitable for processing large volume of historic data.

On the other hand, distributed stream processing frameworks tackle processing of big

data streams. Again, data from diverse sources includes inconsistences and is often

incomplete, thus introducing data uncertainty. Nevertheless, decision makers most

often require analysis of real-time events (fast data stream) based on specific relevant

history or experience (static big data) using probabilistic reasoning to enhance apt

decision and meaningful action especially in times of uncertainty. Thus, a fully

automated real-time probabilistic reasoning system to process both static and fast big

data is imperative (Asrtikis et al., 2012; Fan & Bifet, 2013; Jagadish et al., 2014;

Twardowski & Ryzko, 2014; Tyagi et al., 2015; Bhadani & Jothimani, 2016; Qiu et al.,

2016).

1.4 Research Questions

Following the research problem statement, the principal research questions (RQs) are

stated as follows:

RQ 1: What are the existing real-time big data solutions developed using probabilistic

programming?

RQ 2: How can low latency be achieved when processing big data (both historic and

real-time) using current open-source big data processing technologies and

techniques in a cost-effective way?

1.5 Research Aims & Objectives

The sections on background and research problem presented above results in the

primary aim of this study. The research aim is in two-fold and is summarized as

follows:

Goal 1: Find existing real-time probabilistic reasoning systems implemented using

probabilistic programming that process both historic and real-time big data.

Goal 2: Develop a probabilistic reasoning big data technology using probabilistic

programming to process historic and real-time big data at the same time in a cost-

effective and timely manner.

 5

To achieve this aim, a list of objectives (OBJs) is outlined as follows:

OBJ 1: Perform a review of literature to identify existing real-time probabilistic big

data solutions developed using probabilistic programming.

OBJ 2: Based on the result of objective 1, design a cost-effective probabilistic

reasoning system that processes both historic and real-time big data using

probabilistic programming.

OBJ 3: Achieve real-time response when processing both historic and real-time big

data through the effective combination of current open-source big data processing

tools and technologies.

It is crucial to understand each of the objectives outlined above as they contribute to

the overall actualization of the research goals.

1.6 Delineation and Assumption of the Study

This research seeks to design a system for real-time big data processing and

analysing using open-source big data technologies, machine learning algorithms and

commodity hardware. Thus, attempting to provide decision makers with a probabilistic

score or response that will assist in the process of decision-making especially in

uncertain circumstances. Furthermore, due to the design characteristics of this

research, this study will show a practical example on how DSR methodology is used

in information technology research.

This is a technical research with very little or no fieldwork, thus there are assumptions

on deployment and implementation environment. This study also assumes the

availability of basic big data hardware infrastructure.

1.7 Research Methodology

One of the principal goals of this research is to develop a scalable software library

that will efficiently process big data and produce a probabilistic score in real-time. In

order words, this research will produce an artefact. Thus, this study will use a

pragmatic approach based on design research paradigm as supported by Simon

(1997).

The pragmatic approach gives researchers the flexibility to use any method or

strategy corresponding to quantitative and/or qualitative research that best tackles the

research problem. This provides a rich context to the study based on the

complementary advantages of the pragmatic approach (Williams, 2007; Creswell,

2007; Tashakkori & Teddlie, 2010; Creswell, 2013).

 6

Design science is considered a set of procedures used for research in technical fields

such as computer science, architecture, information technology and engineering

(Weber, 2010). Design science research (DSR) is technology-oriented and ventures

into invention of artefacts that benefits human purposes. Hevner, March, Park, & Ram

(2004) defined design as a series of actions or processes that results in a novel

artefact or product. There are four potential outputs namely constructs, models,

methods and instantiation, and two processes: build and evaluate in design science

(March & Smith, 1995; Peffers et al., 2007).

Hevner et al. (2004) provided a framework for design science comprising environment

(people, organisation and technology), knowledge base (theoretical foundations and

methodology), and the specific research. These three elements are influenced by

relevance and rigor. People, businesses and technologies form the problem space

and present specific business needs that make the research applicable.

Furthermore, A. Hevner & Chatterjee (2010) and A. R. Hevner et al. (2004) proposed

seven guidelines in design science research as follows:

1. Design as an artefact.

2. Problem relevance.

3. Design evaluation.

4. Research contribution.

5. Research rigor.

6. Design as a search process.

7. Communication of research.

These seven principles describe the process of conducting and evaluating research

process in design science. In addition to the guidelines, Peffers et al. (2007)

proposed a methodology applicable to design science research. This study will use

the methodology described by Peffers et al.,(2007).

1.8 Organisation of the Thesis

Work done during this research is arranged and reported in seven chapters as

explained below.

In the first chapter, a brief introduction expounding the context of the study is

presented. The background to this study, the research problem, as well as the aims

and objectives of this research are all contained in Chapter one. Furthermore, the

research questions and scope of this study were also presented.

 7

The second chapter presents background knowledge and theories associated with

this research. It started with a brief introduction into the concept, history, definition

and processing paradigms of big data. Chapter 2 also presents discussions around

Lambda architecture, probabilistic reasoning, probabilistic reasoning systems and

probabilistic programming. Chapter 2 ends with a systematic literature review

highlighting the applicability of this research.

Chapter 3 is a discussion on design science research as the chosen research

methodology for this study. The chapter begins with a brief explanation of research,

research methodology and techniques then highlight the relevant methodology

suitable for this research with backing reasons. According to the nature of this

research, the design science research methodology was selected as a research

methodology for this research.

In chapter 4, findings gathered from background knowledge, theories and the

systematic literature review presented in chapter 2 were used to present the design

concept of this research. The design concept was constructed in line with the design

science research methodology discussed in chapter 3. The foremost contribution of

the design concept is highlighted in chapter 4.

The fifth chapter presents a demonstration and assessment of the design concept

described in chapter 4. The usefulness of the design presented in chapter 4 was

demonstrated through the selection of a problem domain, then the development of a

case study. The tools and technologies used in the development were described.

Finally, chapter 5 presents the evaluation of the developed artefact in a simulated

environment using real data.

Chapter 6 contains an evaluation of the research activities used in the advancement

of the design concept presented in chapter 4. Each step of the research is measured

against the documented authority to verify the validity of this research project as a

design science research project.

The last chapter, chapter 7 presents a summary of each chapter, then revisits the

aims and objectives of the research to present research findings and answers to the

research questions listed in chapter 1. A summary of the research work is presented

in chapter 7. Chapter 7 ends with the shortcomings of this study and potential

subsequent research directions.

 8

CHAPTER TWO

THEORY, BACKGROUND AND REVIEW

This chapter presents and reviews subjects that form the background theory for this

thesis. This helps readers that are not familiar with the topics around this research to

have an idea of what is necessary to comprehend the work presented in the later

chapters of this thesis.

The first topic presented is discussions around big data in Section 2.1, and then

Lambda architecture is explored in Section 2.2. Section 2.3 presents a brief

description of probabilistic reasoning and systems that use the concepts as well as

the emerging probabilistic programming idea. A systematic literature review focusing

on probabilistic reasoning using probabilistic programming and big data is presented

in Section 2.4. Finally, Section 2.5 summarizes this chapter.

2.1 Big Data

What is big data? First let us have a look at the definition of ‘big’. Merriam-Webster

and the Cambridge online dictionaries define the adjective ‘big’ as large in size,

number or amount (Merriam-Webster, 2016; Cambridge Dictionary, 2016).

Consequently, the initial and sometimes greater part of what many think or assert as

the exact meaning of big data is towards size (Gandomi & Haider, 2015). However, if

we talk about the amount, number or size of data exclusively, this gives an opinion

that data has always been small until recently. This clearly is a misrepresentation.

Early mass storage systems have been around to handle large data sets. An example

is the IBM 3850 MSS which was used by scientists to support the 1980 United States

census databases – a ‘big’ data at that time (Jacobs, 2009). Databases have been

used to collect and store relatively large data sets for over a century. A traditional

database housing data of say 500GB in size would not be considered as significantly

small today. Thus, how much of data can we refer to as big? Terabytes? Petabytes?

Or perhaps Exabytes? How about Yottabytes? Again, do we have to consider the

volume of data exclusively to understand or properly define big data? According to

Mohanty et al. (2015), this question is yet to be answered, making the expression ‘big

data’ a misrepresentation or inappropriate label of the concept and definition of big

data (Boyd & Crawford, 2011).

2.1.1 Concept of Big Data

The notion of big data seems to be ambiguous with numerous research papers and

articles on big data (Li et al., 2015). It has been publicized in a variation of ways such

 9

as a contemporary variety of economic assets like gold, a marketing expression, a

concise description of advancement in data technologies to better understand the

world, and an insightful kit to tackle problems like crime and poverty (Lohr, 2012).

These days, many people in different academic fields and professions talk about big

data, even in boardrooms.

Organizations are saturated with data from burgeoning sources like clickstream, video

data, sensors, etc. These data are generated by people, about people, things and

how they interact and according to Davenport, Barth, & Bean (2012), organizations

that utilize big data will enjoy the new capabilities and value of big data.

The epoch of big data is in progress. In sciences, big data refers to large data set that

require super machines, even though there are many typical software running on

desktop computers that can now process large data set. Danah Boyd & Crawford

(2011) and Dannah Boyd & Crawford (2012) argued that even though the size of data

generated today is quite large, volume is not the only fundamental feature of big data.

As an example, data on a specific topic from social media such as Twitter is not

nearly as large as prior data set not considered as big data. Again, Kitchin & Lauriault

(2015) and MIKE 2.0 (2018) supported this fact, stating that not all voluminous data

set are big data and some ‘small’ data set can be considered as big data.

Ward & Barker (2013) mentioned data storage and analysis as the two fundamental

concepts of big data. Dannah Boyd & Crawford (2012) further asserts the idea of big

data as a powerful tool to curb community ills and provide novel perception in

divergent areas such as medicine, environmental sciences and terrorism.

2.1.2 Definition of Big Data

Big data is now a predominant term used in many industries and academia to

illustrate a broad range of ideas in data science. As noted by De Mauro, Greco, &

Grimaldi (2015), there are multiple definitions of big data because of the constant use

of the term in different context and its rapid, inconsistent evolution. These definitions

of big data are in many instances, divergent thus creating ambiguity in discourse

relating to big data – some define big data on what it is, others define big data based

on what it does (Gandomi & Haider, 2015).

One of the most common definitions of big data can be linked to a Meta (now

Gartner) report by Laney (2001). Laney expressed an increase in the volume of data,

variety of data and velocity at which data is acquired or generated. This postulation,

popularly nicknamed 3Vs is associated with the concept of big data. Although Laney

 10

made no direct reference to big data in the report, his assertion has been used as a

key composition to the definition of big data (Ward & Barker, 2013; Gandomi &

Haider, 2015). However, this model had been extended. An example is the addition of

value as seen in the definition of big data by IDC in a paper titled Extracting Value

from Chaos: “Big data technologies describes a new generation of technologies and

architectures, designed to economically extract value from very large volume of a

wide variety of data, by enabling high-velocity capture, discovery, and/or analysis.”

(Gantz & Reinsel, 2011). More authors have added additional Vs such as veracity

(Ularu et al., 2012; Demchenko et al., 2013; Assunção et al., 2015; Jin et al., 2015;

Miloslavskaya & Tolstoy, 2016), variability (Fan & Bifet, 2013; Katal et al., 2013; Philip

Chen & Zhang, 2014; Tyagi et al., 2015; Miloslavskaya & Tolstoy, 2016), and visibility

(Miloslavskaya & Tolstoy, 2016). These definitions of big data outline the

characteristics of big data.

Khan et al (2014) explained big data as numerous data generated, captured and

processed rapidly, and difficult to classify in the traditional relational databases. In the

opinion of Snijder, Matzat, & Reips (2012, p. 1), big data defines huge and complex

data set that “become awkward to work with using standard statistical software.”.

Similarly, Philip Chen & Zhang (2014) defines big data as an accumulation of

enormous and heterogeneous data set thus making it an arduous task for traditional

databases to process. These definitions of big data fall under the category of

definitions that compare software tools for big data.

Data analytics is also relevant when defining big data. Dannah Boyd & Crawford

(2012, p. 665) outlined “computational turn in thoughts and research” as well as tools

and procedures used in the processing of big data. This class of definition highlights

the influence of big data on society. The National Institute of Standards and

Technology (NIST) defined big data, pointing out the architectural aspect of big data

(NIST, 2018). Similarly, Oracle (Dijcks, 2012) defined big data with emphasis on

infrastructure, thus presenting solutions to big data (Ward & Barker, 2013).

Another category of big data definition highlights the importance of computing power

(Microsoft, 2013). This definition also introduced the concept of machine learning and

artificial intelligence as related set of technologies that form a significant part of big

data.

These existing definitions of big data show that the focus of big data is mainly on its

characteristics (the Vs), specialised technologies and analytical methods used to

 11

process big data. Thus, De Mauro et al. (2015, p. 103) proposed a consensual

definition of big data: “Big Data represents the Information assets characterised by

such High Volume, Velocity, and Variety to require specific Technology and Analytical

Methods for its transformation into Value.”

2.1.3 Brief History of Big Data

Some believe big data is new and different from what has been. However, Barnes

(2013) stated that big data did not start with Google or Apple but has been around.

Big data is a combination of different elements, each with its own history, merging at

our current moment. As mentioned in Section 2.2.1, data storage and analysis are

two primary concepts linked with big data. These ideas are not new and predates the

present trend. Investigations on the advancement of big data indicate that research

into big data started in the 1970s (Ularu et al., 2012). However, Tyagi et al. (2015)

claims that big data emerged for the first time in 1998 in a book titled Big Data and

the NextWave of InfraStress by John Mashey and subsequently, the first academic

paper on big data was in 2000 by Diebold. In 2012, the government of the United

States of America publicized a national policy titled Big Data Research and

Development Initiative to support education, collaboration and research into big data.

The history of big data is generally connected with the evolution of efficient storage

and data management systems with respect to data size. Han Hu, Yonggang Wen,

Tat-Seng Chua, & Xuelong Li (2014) divided the history of big data into four stages

with respect to data volume. The first stage is the Megabyte to Gigabyte stage.

Megabyte to Gigabyte stage occurred between the late 1970s and early 1980s where

the need to store data and perform analysis and reporting became apparent. This

resulted in the database machine concept which involves specialized hardware and

software integration to accumulate and examine data. Digital technology became

more publicized in the late 1980s causing the volume of data to increase to terabytes.

Database machines became insufficient to effectively store and manage data. This

led to the Gigabyte to Terabyte stage where the “share-nothing” idea was suggested.

The share-nothing framework is made up of a group of database systems running on

a networked cluster (DeWitt & Gray, 1992), each with its separate memory, processor

and disk. According to Borkar et al. (2012) and M. Chen et al. (2014), Teradata

Corporation developed the first commercialised database system based on the share-

nothing architecture. Parallel database systems improved data storage and

processing performance and thus the idea was welcomed. However, during the late

 12

1990s, a boost in the use of Internet increased the size of data to petabytes and

introduced unstructured or semi-structured data. Parallel databases could not

effectively handle unstructured data even though they were suitable for structured

data. Thus, internet companies like Yahoo and Google were faced with the challenge

of indexing and querying the rapidly growing content of the web created by users.

This was the Terabyte to Petabyte stage.

To tackle this challenge, Google developed the Google File System (GFS) to collect

large data set, and a programming model called MapReduce that handles the

processing of large data set (Dean & Ghemawat, 2008). GFS is a reliable, fault-

tolerant and scalable distributed file system that runs on thousands of commodity

hardware (Ghemawat et al., 2003). Yahoo and Facebook created the open-source

version of MapReduce and GFS called Hadoop and Hadoop Distributed File System

(HDFS) (Borkar et al., 2012). The multiplication of data sources such as sensors and

mobile devices in the mid-2000s resulted in a deluge of data in different formats such

as audio, video, files and images, mostly referred to as semi-structured and

unstructured data. This required a new paradigm to effectively manage and process

large-scale semi-structured and unstructured data. Thus, the NoSQL databases were

revealed. Again, giant technology companies like Amazon and Google implemented

their versions of NoSQL called Dynamo and Big Table respectively (Borkar et al.,

2012).

The fourth stage in the history of big data is called the Petabyte to Exabyte stage.

Data sources have continued to increase since year 2000. Han Hu et al. (2014)

predicted that the volume of generated data will continue to multiply, stating that no

technology has been developed to handle larger data set. However, current

technologies can handle terabyte to petabyte of data.

2.1.4 Big Data Processing

Big data require techniques and tools to capture, organize and analyse it to derive

meaningful value. According to Philip Chen & Zhang (2014), these tools and

techniques are developed using a combination of knowledge from different specialties

like Mathematics, Computer Science and Statistics. Labrinidis & Jagadish (2012)

explained five steps involved in the process of mining value from big data. These

steps are further categorized under two main processes – data management and

analytics, as shown in Figure 2.1.

 13

Figure 2.1: Big data processes

(Gandomi & Haider, 2015: 141)

Data management is concerned with the tools, processes and technology used to

gather, store and prepare data for the analysis phase (Chen et al., 2013). In the

analysis stage, analysis algorithms are used to examine the data. This process is

referred to as big data analytics. According to Assunção et al. (2015) and Delen &

Demirkan (2013), big data analytics tools are grouped as descriptive, predictive and

prescriptive (see Figure 2.2). Descriptive analytical tools discover patterns from

historical data by modelling past actions (Fitz-enz, 2009). Predictive analytics uses

statistical models and machine learning algorithms on both past (historic) and current

data to attempt to forecast future trends (Shmueli & Koppius, 2010; Siegel, 2013;

Zakir et al., 2015). Prescriptive analysis calculates actions and their corresponding

influence on business activities using optimization (Evans & Lindner, 2012; Song et

al., 2013).

Contemporary big data analytical tools mainly process big data in batch or stream

(Barlow, 2013; Huang & Liu, 2014; Jambi & Anderson, 2017). Early solutions

developed to process big data were based on batch processing. Batch processing is

used to process very large volume of historic or static data, that is, data that has been

collected and stored over time (Adhianto et al., 2010). Most batch processing tools

were implemented using the MapReduce framework (Shahrivari, 2014).

The MapReduce framework comprises three components namely a distributed file

system, a distributed NoSQL database and a MapReduce engine. The MapReduce

engine provides a simple and effective programming model that offers parallel and

distributed processing of large data set on clusters of commodity hardware. This

programming model is highly scalable and fault-tolerant. MapReduce provides two

elementary functions – map and reduce, that allows users to implement computation

on big data. The input to the MapReduce engine is a list of key-value pairs. The map

 14

function performs computation on the input to produce a set of zero or more

intermediate key-value pairs. Subsequently, all intermediate values corresponding to

an intermediate key are grouped and passed to the reduce function. The reduce

function iterates through each intermediate key and its associated list of values and

performs computation on each to produce results. Each reduce iteration usually

produces zero or one output (Dean & Ghemawat, 2008; Dean & Ghemawat, 2010;

Lee et al., 2012; Shahrivari, 2014; Bhadani & Jothimani, 2016). Lämmel (2008, p. 1)

summarized the map-reduce process in five basic notions as follows: “(i) iteration

over the input; (ii) computation of key/value pairs from each piece of input; (iii)

grouping of all intermediate values by key; (iv) iteration over the resulting groups; (v)

reduction of each group”.

Figure 2.2: Categories of analytics

(Delen & Demirkan, 2013: 361)

Apache foundation developed an open-source implementation of MapReduce

framework, called Apache Hadoop, although Hadoop Started in Yahoo! (Bifet, 2013).

Hadoop has two core components – HDFS and HBase (Fan et al., 2014). HDFS is a

replacement of Google’s GFS while HBase is used instead of BigTable data store.

There are other MapReduce implementation such as DISCO, however, according to

Lee et al. (2012), Lin, Leu, & Chen (2015) and Xindong Wu et al. (2014) Hadoop is

more popular. Hadoop has been extensively used and widely accepted as the

standard for big data processing in academia and industry (S. Chen et al., 2014; Liu

et al., 2014; Raghupathi & Raghupathi, 2014; Lin et al., 2017; Ramírez-Gallego et al.,

 15

2018). The MapReduce paradigm is considered the first generation big data

processing framework (Adhianto et al., 2010; Nair et al., 2017), and according to

Adhianto et al. (2010), Hadoop marked the end of the first generation big data

processing framework as shown in Figure 2.3.

Hadoop and MapReduce framework presents advantages such as scalability, ease of

use, flexibility and fault-tolerance. Despite these advantages, MapReduce and

Hadoop have some limitations (Khan et al., 2014; Bhadani & Jothimani, 2016). One

of such is the high latency when processing data due to its batch processing nature

(Taxidou & Fischer, 2013; Sagiroglu & Sinanc, 2013; Wu et al., 2015; Vakali et al.,

2016; Mohapatra et al., 2016; Yang et al., 2017).

The long processing time associated with batch processing became unbearable to

end-users. Users usually require response to queries to be in near real-time or real-

time. Few examples can be seen in the case of crisis management, surveillance and

the stock market where decisions need to be taken as quickly as possible based on

results from processing events (Perera & Suhothayan, 2015). Thus, stream

processing on big data became inevitable and birthed the second generation of big

data processing frameworks (Adhianto et al., 2010; Gebara et al., 2015; Bajaber et

al., 2016; Nair et al., 2017).

Stream (real-time) processing enables scalable computation on big data stream

(Hirzel et al., 2017). This handles the velocity characteristics of big data and ensures

low latency by processing small chunks of data (Adhianto et al., 2010; Perera &

Suhothayan, 2015; Wang et al., 2016). According to Strohbach, Ziekow, Gazis, &

Akiva (2015), data velocity means fast flowing data that must be processed in a

negligible amount of time. Adhianto et al. (2010) explained that the concept of stream

processing is closely related to that of batch processing. In stream processing, batch

processing is done on small chunks of data stored in memory instead of a secondary

data store. However, instead of one-time queries to stored data as in the case of

batch processing, stream processing enables continuous evaluation of queries on

new data to produce new responses (Margara et al., 2014).

To tackle the high latency in batch processing of big data, many open-source stream

processing platforms were developed. Some examples are Apache Storm (Apache

Software Foundation, 2015), Apache Samza (ApacheSamza, 2016), SQLstream

(SQLstream, 2017), Apache Spark (Zaharia et al., 2010; Zaharia et al., 2016),

Apache S4 (Apache Software Foundation, 2010), Apache Flume (ApacheFlume,

 16

2016) and Apache Kafka (ApacheKafka, 2017). These processing frameworks enable

real-time analysis and fast response to facilitate real-time decision making (Xindong

Wu et al., 2014).

Figure 2.3: Data processing paradigm

(Adhianto et al., 2010: 2081)

Although stream processing provides low latency, a major pitfall or stream processing

framework is that they do not output accurate responses as compared to batch

processing platforms (Yang et al., 2017). Thus, using stream processing framework to

replace batch processing would be insufficient in handling the problems of big data.

A single tool or technique may not serve as a panacea for all big data problems. The

combination of batch and stream processing in one big data platform could suffice.

Again, decision makers often need to make decisions based on historic (batch) data

and real-time data (Twardowski & Ryzko, 2014; Kiran et al., 2015). Some researchers

such as Adhianto et al. (2010), Jambi & Anderson (2017) and Zhou, Simmhan, &

Prasanna (2013) endorsed the need to support batch and stream processing in a big

 17

data platform. This structural combination is regarded as the hybrid computation

(Miloslavskaya & Tolstoy, 2016) or third generation of big data processing framework

(Adhianto et al., 2010). See Figure 2.3.

The need for a hybrid big data platform sparked research and resulted in models

such as the Kappa architecture designed by (Kreps, 2014), the Liquid architecture

developed by (Fernandez et al., 2015), and Lambda architecture introduced by (Marz

& Warren, 2015).

2.2 Lambda Architecture

Marz & Warren (2015) proposed a new model called Lambda Architecture to handle

large data set in real-time. This model supports the idea that neither batch nor stream

processing alone could handle all big data problems. Thus, instead of a single

technology, Lambda architecture explains the combination of different big data

tools/technologies to provide a generic solution. According to Marz & Warren (2015),

the architecture presents a common model to implement computation on arbitrary

data set using arbitrary functions in real-time. Lambda architecture also describes a

guideline that assists developers/designers in choosing the right technology to

combine, and how to combine them (Twardowski & Ryzko, 2014).

Figure 2.4: Lambda architecture layers

(Adopted from Marz & Warren, 2015)

Astakhov & Chayel (2015, p. 4) defined Lambda architecture as “a data-processing

design pattern to handle massive quantities of data and integrate batch and real-time

processing within a single framework”. Köhler, Kaniovskyi, & Benkner (2015) also

 18

defined Lambda architecture as a general-purpose blueprint to develop scalable and

fault-tolerant big data systems. In the words of Vögler, Schleicher, Inzinger, &

Dustdar, (2017, p. 5), Lambda architecture is “a generic, scalable, and robust data

processing system, specifically designed to serve massive workloads and a wide

range of use cases”. Thus the architecture promises scalability, extensibility,

generalization and fault-tolerance (Zheng et al., 2017). Ganchev, Ji, & O’Droma

(2016), Jambi & Anderson (2017) and Twardowski & Ryzko (2014) claims that

Lambda architecture is widely used in academia and industry.

Lambda architecture proposes a three-layered big data system. As stated by Marz &

Warren (2015), each layer handles a specific big data problem and is built on top of

the functionality of the layer beneath it as shown in Figure 2.4. Data flows into the

architecture and is concurrently added to and processed by the batch and speed

layers.

The batch layer represents the core of the Lambda architecture. This layer acts as an

immutable append-only data repository of unprocessed data. Here, periodical

computational jobs usually implemented using a batch processing framework,

processes the raw data (also known as the master data set) and produces batch

views which are sent to the serving layer for queries. New data are stored in the

batch layer and included in the next batch computation cycle. Results from batch

computations are comprehensive and more accurate than those from the speed layer

(Harrison, 2014; Hasani et al., 2014; Villari et al., 2014; Astakhov & Chayel, 2015;

Tseng et al., 2016; Yang et al., 2017).

Real-time processing happens in the speed layer to balance the long-running batch

job in the batch layer. Incoming data into the system is processed immediately in the

speed layer. This enables real-time analysis using incremental model to produce up-

to-date real-time views. Results from the real-time processing are usually

approximations. Thus the real-time views are repeatedly discarded as soon as

computation is done on the same data in the batch layer (Hasani et al., 2014; Villari et

al., 2014; Kiran et al., 2015; Astakhov & Chayel, 2015; Yang et al., 2017).

The serving layer presents an integration of batch views and real-time views for

queries (Yang et al., 2017; Jambi & Anderson, 2017). According to Astakhov &

Chayel (2015), Hasani et al. (2014) and G. Liu, Zhu, Saunders, Gao, & Yu (2015),

this layer is updated with batch views from the batch layer and enables fast and

random access to the batch views when needed.

 19

The combination of the speed and serving layers ensures low latency results that

include computations on both batch data and real-time data (Huang & Liu, 2014; Liu

et al., 2014; VANHOVE et al., 2016).

Figure 2.5: Lambda architecture

(VANHOVE et al., 2016: 298)

In summary, Lambda architecture can be mathematically expressed as follows:

 batch view = function(all data)

 real-time view = function(real-time view, new data)

 query = function(batch view. real-time view)

Figure 2.5 shows a conceptual overview of all the layers of Lambda architecture.

2.3 Probabilistic Reasoning

As a matter of fact, all humans are decision makers. According to Kutty, Kumar Shee,

& Pathak (2007), decision-making is the process of identifying and selecting the best

option from a range of alternatives. All our actions are because of some decision.

Decision-making is usually based on gathered information, values, beliefs and

preferences.

In most cases, making decisions are usually straightforward. Some examples are

deciding on a time to rest, or a specific food to eat or stopping your vehicle at a stop

sign. On the other hand, some decision-making involves complex processes usually

based on many sources of evidence (Yang & Shadlen, 2007). This is seen in the

case of uncertainty where decisions are made based on the likelihood of unknown or

 20

pending events such as the outcome of a medical diagnosis. According to (Tversky &

Kahneman, 1975), answers with respect to the likelihood of events are conveyed in

statements that typically starts with phrases such as “Suppose that…”, “In

anticipation…”, “It is likely…”, “Usually…”, etc. In other words, these responses are in

the form of probabilities (Zadeh, 2003).

The activity associated with decision-making that involves thinking and logical

argument is known as reasoning (Merriam-Webster, 2018; Collins Dictionary, 2018).

In certain situations, probability is used to express the degree to which an event is

possible. Thus, probabilistic reasoning uses logic and probability to make decision-

making easier in times of uncertainty.

Probabilistic reasoning also known as uncertain reasoning or probabilistic logic is the

combination of probability theory and deductive logic to benefit from formal argument

in uncertain situations (Szolovits & Pauker, 1978; Haenni, 2005; Luger & Chakrabarti,

2008; Alon, 2013). In the same manner, Pfeffer, (2016) defined probabilistic

reasoning as the union of information/understanding of a particular situation with the

laws of probability to discover hidden details that could be important in decision-

making.

According to Gonzalez (2012), probabilistic reasoning defines the background of

modern statistics and machine learning and is used to model noisy data, interpret

complicated situations and express uncertainty.

Today, big data is gathered from different sources with disparate degree of

consistency. This introduces errors and incomplete data that must be handled

(Jagadish et al., 2014). Probabilistic reasoning or modelling is usually suitable for

managing data uncertainty (Adar & Re, 2007; Chen et al., 2013; Wampler, 2013;

Bendler et al., 2014; Ghahramani, 2015).

2.3.1 Probabilistic Reasoning System

Decision-making has become a mathematical science (Figueira et al., 2005). This has

provided a formal thinking process expressed in mathematical terms to enable

transparent and better decision-making (Saaty, 2008). This is also known as

Probability Theory (Ghahramani, 2015).

Decision-making processes in many fields such as fraud detection, computer vision,

data mining and weather forecasting have been automated. According to Zadeh

 21

(2003), these automated applications use probabilistic reasoning and are referred to

as probabilistic reasoning systems.

A probabilistic reasoning system comprises two main modules namely Probabilistic

model and Inference algorithm (Pfeffer, 2016). See Figure 2.6. The probabilistic

model is an encoding of comprehensive knowledge and relevant factors about a

specific field in quantitative, probability theories such as Bayesian networks also

called belief networks (Liu et al., 2010), hidden Markov models (Rabiner, 1989;

Durbin et al., 1998) and stochastic grammar (Manning & Raghavan, 2009; De Raedt

& Kersting, 2003; Ábrahám & Havelund, 2016; Williams, 2018).

Figure 2.6: Mechanism of a probabilistic reasoning system

(Adopted from Pfeffer, 2016: 6)

A specific information or fact about a situation in the domain is presented to the

probabilistic reasoning system along with a property of the situation that needs to be

determined. This fact is known as evidence. The inference algorithm uses the

probabilistic model and the given evidence to provide response to queries as

probabilistic score. This process is called probabilistic inference. The probabilistic

model, evidence and responses to queries are all connected mathematically by the

laws of probability (Pfeffer, 2016).

 22

A probabilistic reasoning system can be used to predict future happenings,

understand or deduce the cause of an event, learn from previous events to improve

prediction and general knowledge of a domain. Just like any other machine learning

system, a probabilistic reasoning system will produce accurate prediction based on

the size of data (Ghahramani, 2015). Thus, prediction quality of a probabilistic

reasoning system depends on how close the probabilistic model represents the real-

world situations and the amount of data provided. Some examples of a probabilistic

reasoning system are BayesiaLab (Conrady & Jouffe, 2013; Bayesia, 2018) and

Netica (Norsys, 2013).

2.3.2 Probabilistic Programming

Probabilistic models in all probabilistic reasoning systems are expressed using

representation language. A representation language is used to encode general

knowledge of a domain in a probabilistic model. Bayesian networks and hidden

Markov models are some examples of representation languages. These

representation languages determine or influence the type of probabilistic model a

probabilistic reasoning system can manage. The capability of a representation

language to encode diverse knowledge in its models is known as the expressive

power of the representation language (Pfeffer, 2016).

Designing a probabilistic model involves a combination of mathematical constructs,

pseudo codes and natural language. This is usually an arduous task that requires

extreme technical expertise (Luger & Chakrabarti, 2008; Dobre & Xhafa, 2014; Zhang

et al., 2014). As a result, it is difficult to model many real-life circumstances, and thus

expensive (Pfeffer, 2009; Sampson, 2015; Pfeffer, 2016; Roy, 2018). Furthermore,

according to Goodman & Stuhlmüller (2014) probabilistic models are now more

complicated thus they require new tools to develop and represent them. To fill this

representational gap and develop new model representations, the machine learning

and programming language communities started work on a research area called

probabilistic programming (Hicks, 2014; Sampson, 2015).

The underlying concept of probabilistic programming is centred around the adoption

of powerful features of programming languages in probabilistic modelling and

inference (Dries et al., 2015). According to Pfeffer (2009, 2016), probabilistic

programming provides a much easier procedure to express complex probabilistic

models using a programming language. Thus, instead of expressing models in

declarative mathematical notations such as Bayesian networks, models are

 23

represented using executable functions or procedures (Ghahramani, 2015).

Probabilistic programming enables easier composition of probabilistic models and

automatic inference computation on the models to handle uncertainty (Prékopa,

2003; Acharya & Biswal, 2011; Goodman & Stuhlmüller, 2014; Hicks, 2014; Wood et

al., 2014; Andrew D. Gordon et al., 2014; Dries et al., 2015; Narayanan et al., 2016;

Gehr et al., 2016).

Several probabilistic programming systems or languages has been developed since

the conception of research in this area. Some implementations are based on

functional programming languages such as Church (Goodman et al., 2008), Anglican

(Wood et al., 2014; Tolpin et al., 2016), IBAL (Pfeffer, 2007), and Venture

(Mansinghka et al., 2014). BLOG (Milch et al., 2007), PRISM (Sato, 2008), and

Markov Logic (Domingos & Richardson, 2007) are examples of probabilistic

programming systems based on logic programming. Figaro (Pfeffer, 2009; Pfeffer,

2016) is based on object-oriented and functional programming. Other examples of

probabilistic programming systems are BUGS (Lunn et al., 2009), Tabular (Andrew D

Gordon et al., 2014), and Stan (Carpenter et al., 2016). According to Pfeffer (2016),

these probabilistic programming systems are probabilistic reasoning systems that use

programming languages as their representation language.

2.4 Probabilistic Programming System and Big Data: A Systematic Review

Probabilistic reasoning is very useful in uncertainty and represents an underlying

principle of machine learning. Organizations such as Amazon, Google and Microsoft

use probabilistic reasoning to make sense of data resulting in various applications

used for predictions, detection, diagnosis and recommendation (Pfeffer, 2016).

However, as mentioned in Section 2.3.1, most of the available probabilistic reasoning

systems are limited in the set of knowledge they can express in their models. This

motivated research into probabilistic programming systems that combines two

powerful concepts (probabilistic modelling/reasoning and programming language) to

achieve easier representation of complex probabilistic and real-life situations into

models.

The concept of probabilistic programming systems is quite new (Goodman &

Stuhlmüller, 2014; Sampson, 2015; Pfeffer, 2016). However, researchers such as

Lake, Ullman, Tenenbaum, & Gershman (2017), suggests that its potential in artificial

intelligence systems is crucial. It is therefore necessary to find out if the concept of

probabilistic programming has been used in big data processing. Thus, this section

presents a systematic review of big data applications implemented using probabilistic

 24

programming systems. The purpose of this review is to identify available big data

solutions that used the concept of probabilistic programming systems in the big data

space to handle big data problems. This review follows the guideline as proposed by

(Kitchenham & Charters, 2007).

2.4.1 Systematic Literature Review (SLR) Questions

In systematic literature reviews, it is important to clearly specify review question(s) in

order to provide the review scope. Kitchenham & Charters (2007) proposed the

adoption of the Population, Intervention, Comparison, Outcome, Context (PICOC)

criteria used in systematic literature reviews in the field of medicine to help in the

formulation of review questions.

Population is concerned with the specific group affected by the research. Kitchenham

& Charters (2007) explained that in software engineering, the population could be

either a distinct software engineering role, a class of software engineer, an

application area or a category of industry. In this review, the population falls under an

application area which is big data processing technologies published in literature.

Intervention refers to the software tools that handles the issues in the population.

Probabilistic programming system for processing big data is the intervention focus of

this study.

Comparison addresses the software procedure used to compare the intervention.

Comparison is achieved in this study by comparing the various probabilistic

programming systems in the intervention. In this study, the outcome is to discover big

data processing platforms that use the advantages of probabilistic programming

systems.

Finally, the context describes the circumstances or conditions of the comparison. The

context of this review is academia.

The goal of this systematic review is to collect and investigate all possible and

effective big data solutions that used probabilistic programming as a reasoning

framework to process big data. Accordingly, with reference to the goal and PICOC

criteria, the following review questions (SLRQs) were formulated:

SLRQ1 What are the existing big data applications built on probabilistic

programming systems to handle big data problems?

SLRQ2 How do these solutions compare to one another?

 25

SLRQ3 What is the strength of the evidence in support of the different

solutions found in RQ1?

SLRQ4 What implication(s) will findings from RQ1 to RQ3 have on this

research?

2.4.2 Review Protocol

The purpose of the review protocol is to avoid or prevent a research’s bias that could

negatively influence the goals and objectives of the systematic review process.

Defining the review protocol is a significant step in the process of a systematic

literature review (Kitchenham & Charters, 2007; Okoli & Schabram, 2010). This

section specifies the methods used in this systematic review. The review protocol

involves describing the search strategy, study selection criteria, quality assessment

criteria, data collection, and data synthesis.

2.4.2.1 Search Strategy

The search strategy was formed by first listing all probable sources that may provide

relevant literature to the systematic review. Table 2.1 shows the list of selected digital

libraries used. After the selection of digital libraries, a decision on how best to search

for relevant studies on the selected digital libraries was specified by identifying search

terms or keywords.

Table 2.1: Sources used in search strategy

Source URL Researcher

ACM Digital Library http://dl.acm.org Arinze
IEEE Explore Digital Library https://ieeexplore.ieee.org/Xplore/home.jsp Kabaso

ScienceDirect http://www.sciencedirect.com Arinze & Kabaso

SpringerLink http://link.springer.com/ Arinze

The second step of defining search string(s) was carried out by selecting the most

relevant keywords based on the research questions and the research topic.

Synonyms and different spellings of keywords were also used to formulate the search

string. The selected keywords are as shown in Table 2.2. The search was performed

on the digital libraries dating from January 2008 to April 2018. The digital libraries

provide search functionalities where keywords or search strings can be entered. They

also have the Advanced Search option that allows users to form search strings with

conjunctions like AND and/or OR. This search took place between March and April

2018 using the final search string:

Final Search String (FSS): (Big data processing) AND (Application OR Framework

OR Software OR Infrastructure OR Platform OR Solution) AND (Probabilistic

http://dl.acm.org/
https://ieeexplore.ieee.org/Xplore/home.jsp
http://www.sciencedirect.com/
http://link.springer.com/

 26

programming OR Probabilistic programming system OR Probabilistic programming

language).

Table 2.2: Search terms

 Category 1 Category 2 Category 3

Phrase 1 Big data processing Application Probabilistic programming

Phrase 2 Framework Probabilistic programming system

Phrase 3 Software Probabilistic programming language

Phrase 4 Infrastructure

Phrase 5 Platform

Phrase 6 Solution

Paper titles, keywords and abstract formed the basis of this search. To arrive at the

search string, three categories of search terms were used (see Table 2.2). Category 1

contains synonyms of the same word with similar meaning within big data literature.

Category 1 finds all literature on big data processing. Category 2 retrieves all studies

on software systems while category 3 consist of synonyms of the same word with

similar meaning within probabilistic programming literature and retrieves all research

related to probabilistic programming. An intersection of the three categories yields the

search string that helped to find relevant studies needed in this systematic review.

Table 2.3: Modified search string according to specific library requirement

Digital Library Modified Search String

ACM Digital
Library

(+Big +data +processing application framework software infrastructure
platform solution +probabilistic +programming system language)

SpringerLink big AND data AND processing AND (Application OR Framework OR
Software OR Infrastructure OR Platform OR Solution) AND
“Probabilistic programming” OR “Probabilistic programming system”
OR “Probabilistic programming language”

However, each digital library implemented the Advance Search functionality

differently, thus to retrieve all the relevant literature from each library, the final search

string was adjusted for ACM Digital and SpringerLink as shown in Table 2.3 to allow

for their specific requirement. The other 3 libraries used the FSS as is. A total of 293

results were found. See Table 2.4.

Table 2.4: Search string execution result

Source Number of Studies

ACM Digital Library 3

IEEE Xplore Digital Library 4

ScienceDirect 0

SpringerLink 286

Total 293

 27

2.4.2.2 Study Selection

The selection of relevant or primary studies is needed to filter out studies that are not

related to the present research. First, studies not in the computer science and

information technology domain were ignored, then duplicated studies and studies with

titles that are clearly not relevant to the review were eliminated. Papers in any other

language other than English were removed. Again, studies published before January

01, 2008 and papers that are not conference proceedings and journal articles were

disregarded. After this initial filtering, 3 studies were left. To further filter out irrelevant

studies, a set of inclusion/exclusion and quality screening criteria were developed.

The criteria were carried out in two phases:

1. Abstract (and keyword) inclusion/exclusion evaluation.

2. Full text inclusion/exclusion evaluation.

Figure 2.7: The abstract inclusion/exclusion evaluation process

In the abstract evaluation phase illustrated in Figure 2.7, the abstracts (and

keywords) of the 3 papers from the search stage were read. The following

inclusion/exclusion (IC) criteria were used to select primary studies:

IC1 The main concern of the study is on big data processing using the probabilistic

programming concept. Therefore, the terms “Big data” or “Big data

processing” and “Probabilistic programming” or “Probabilistic programming

system” or “Probabilistic programming language” must be mentioned in the

title, keywords or abstract of the paper.

IC2 The paper is a primary study and represents empirical results.

The two researchers examined all 3 studies individually and carefully screened them

based on IC1 and IC2 to make sure that possible relevant papers were not rejected.

 28

All disagreements were discussed and reconciled. After the abstract filtering, all 3

studies were rejected.

Figure 2.8: The full text inclusion/exclusion evaluation process

To ensure a thorough retrieval of relevant studies, the search was revisited. Another

search was conducted on Google Scholar with the same final search string. However,

similar results from the previous search were retrieved. Again, the same search string

was used on Google. This also was unproductive. As a last step, a more generic

search string: (Big data) AND (Probabilistic programming) was used on Google. After

careful consideration of the results by the two researchers based on the initial filtering

and abstract evaluation, one (1) paper was selected.

The selected paper was passed onto the second evaluation phase – the full text

inclusion evaluation phase (see Figure 2.8). In this phase, the selection process was

done in the same way as the abstract evaluation phase. However, the content of the

paper was read by both researchers to see if it was relevant to the study based on

IC3 criteria.

IC3 The study describes the technique used in the adoption of probabilistic

programming in big data processing.

As in the previous phase, all disagreements were carefully deliberated on and

resolved. The same selected paper passed this evaluation phase and was given an

identifier – S01. The selected study was moved to the quality assessment step.

2.4.2.3 Quality Assessment

This step helps to evaluate the quality of the selected papers, their relevance in

answering the research questions, and provides a yardstick for further analysis of the

selected studies. According to Kitchenham & Charters (2007), it is important to

 29

analyse the quality of the selected primary studies based on the research area. This

serves as an additional filtering mechanism to carefully choose more suitable studies

from the primary studies that best answer the research questions. Five (5) quality

assessment criteria (QAC) were considered to evaluate the quality of the selected

primary study. The quality assessment criteria are centred around the following

questions:

QAC1 Does the research clearly state an understandable and straightforward

statement of aim?

QAC2 Is the study associated with other related research to be fully understood?

QAC3 Does the study presents its data set characteristics (metrics)?

QAC4 Does the research clearly describes its experimental method?

QAC5 Does the study report its performance or validation assessment?

Each researcher read and assessed the selected primary study independently

against the QACs. For the selected primary study, if any of the above quality criteria

is satisfied, a ‘Yes’ response is given against that question. In the same way, a ‘No’

response is given if the paper fails to satisfy a criterion. If the answer to any of the

questions could be implicitly inferred, a ‘Partly’ response is given. Consequently, each

response was given a numeric score between 0 and 1 as follows: Yes = 1, Partly =

0.5 and No = 0. Again, all disagreements were resolved by discussing until a

consensus was reached on a score. Finally, the sum of scores for each response to

the QACs was calculated. If the sum is greater than or equal to 2.5, the paper is

accepted and used in this systematic review.

2.4.2.4 Data Collection

The process of data collection ensures that data needed to answer the research

questions (cf. Section 2.4.1) are extracted from the final primary study. A data

extraction spreadsheet was created with the information below:

• Paper title.

• Name of authors.

• Year of publication.

• Source of article (journal or conference).

• Number of pages (if available).

One of the researchers was responsible for data extraction while the other scrutinized

the extracted data.

2.4.2.5 Data Synthesis

In this step, a procedure was established to organize, analyse and summarize the

result of the quality assessment and data extraction stages. Since only one paper

 30

was selected as the primary study, both researchers carried out a discussion session

in a face-to-face meeting to respond to the research questions.

2.4.3 Results

In this section, results of the systematic literature review are presented and

summarized.

2.4.3.1 Search Results

The total number of initial studies returned after the search on the selected four

databases was 293 as shown in Table 2.4. However, after the initial filtering and

abstract evaluation, all 293 studies were rejected. Thus, the search phase was

revisited with a more generic search string on Google which resulted in the

identification of one paper shown in Table 2.5.

Table 2.5: Selected primary study

Identifier Name of Authors Publication
Year

Paper Title

S01 Zhuoyue Shao, Jialing Pei, Eric Lo,
Kenny Q. Zhu, and Chris Liu

2017 InferSpark: Statistical
Inference at Scale

2.4.3.2 Quality Evaluation

The selected study was assessed for quality using the formulated questions as

presented in Section 2.4.2.3.

Table 2.6: Quality evaluation of selected primary study

Study QAC 1 QAC 2 QAC 3 QAC 4 QAC 5 Total

S01 1 1 1 1 1 5

Table 2.6 is a summary of the result of the quality assessment phase. This table

clearly shows that the selected paper passed the quality assessment criteria with a

total score of 5. Thus, the paper was used in this systematic review.

2.4.3.3 Summary of Selected Study

This section presents a summary of the selected primary study used in this review.

Zhao, Pei, Lo, Zhu, & Liu (2017) (S01), presented a probabilistic programming

framework on top of Apache Spark called InferSpark. According to the authors, this

framework claims to aid in the implementation of statistical inference on big data

using the distributed main processing power of Apache Spark. They recognized the

potentials of probabilistic programming in the development of complex probabilistic

 31

models using concise functions or procedures in a programming language. This takes

away the responsibility and weight of developing statistical models from the user to

the compiler and runtime systems. The authors also noted that although Spark has

emerged as an effective solution for large-scale big data processing with its stack of

libraries containing statistical models and inference algorithms, users still do not have

the liberty to create custom models. InferSpark is an introduction of probabilistic

programming on Spark to enable user-defined models and automatic generation of

inference algorithms. Zhao et al. (2017) acknowledged the presence of probabilistic

programming systems such as Infer.NET, Church and Figaro, but pointed out that the

emphasis has been more on the efficiency and effectiveness of the inference

algorithm and language. Thus, the scalability of these probabilistic programming

frameworks has been ignored.

InferSpark was implemented in two phases. The first was the extension of Scala

programming language to support probabilistic programming. The authors chose

Scala to benefit from its functional paradigm and because Spark is implemented in

Scala. In the second phase, the authors built a compiler and runtime system that

compiles InferSpark models into Scala classes using the code generation approach,

typically, an input to InferSpark framework consist of a model definition and a normal

Scala code. A Bayesian network template is extracted from the model definition and

converted into a Scala program at runtime. This converted Scala program is then

processed using code generation to produce a Spark program that is executed on

Apache Spark.

At the time of publication, InferSpark supports Bayesian network models and

implements only variational message passing (VMP) inference algorithm. However,

their future work indicated an intention to support other models like the Markov

network. InferSpark claims to be the first attempt at introducing the concept of

probabilistic programming into the big data domain.

2.4.4 Analysis

This section presents an analysis of the result from the systematic literature review

based on the four research questions (cf. Section 2.4.1).

2.4.4.1 SLRQ1: Existing Big Data Solutions using Probabilistic Programming

Concept

The review identified one (1) existing framework that contributed to the big data

domain using probabilistic programming. As stated in the study selection phase of

 32

this review, the identified solution was given an identifier – S01. The authors of S01

named their framework InferSpark.

2.4.4.2 SLRQ2: Comparison of Solutions

There was only one identified solution in this review, thus an answer to the second

research question was unnecessary. However, the authors of S01 did compare their

solution with existing probabilistic programming frameworks, stating the advantages

and limitations. According to the authors, the main limitation of available probabilistic

programming systems is the inability to scale out on a distributed computing

framework. Again, InferSpark claims to be the only platform that efficiently executes

statistical inference on big data using probabilistic programming on Spark. Machine

learning libraries like MLlib, Mahout and MADLib can also be used on Spark.

However, these machine learning libraries does not support user defined models.

2.4.4.3 SLRQ3: Strength of Evidence in Support of Solution

The authors of S01 presented a performance evaluation of InferSpark. The

performance evaluation was based on the construction and execution of statistical

inference on three models namely Latent Dirichlet Allocation (LDA), Sentence-LDA

(SLDA), and Dirichlet Compound Multinomial LDA (DCMLDA). LDA is a type of topic

modelling that infers the topics from a collection of documents. SLDA is a model used

to discover aspects in online reviews and DCMLDA is another type of topic model that

considers sudden explosions of topics. The performance of InferSpark was compared

to the performance of MLlib and Infer.NET using the same three models.

The performance evaluation was categorised in three separate levels: Overall

performance, Scaling-up, and Scaling-out. The running time of InferSpark in the

overall performance level was negligible compared to MLlib and Infer.NET which did

not complete the inference task within a week. The authors also demonstrated that

InferSpark handles increase in data size and can achieve linear scale-out.

2.4.4.4 SLRQ4: Implications of Findings to this Research

The findings from answering the research questions show that the concept of

probabilistic programming is useful to the big data domain. Based on the strength of

evidence presented in Section 2.4.4.3, probabilistic programming could go a long way

in the easier and efficient development of complex probabilistic models and inference

algorithms in the big data domain. This shows relevance of this research. Again, the

authors of S01 strongly believe that InferSpark is the first attempt to introduce

 33

probabilistic programming concepts in the big data domain; which leaves room for

more improvement.

There are some identified limitations of InferSpark which forms the basis for future

work. InferSpark only supports the Bayesian network models. Although InferSpark

supports Bayesian networks models, at the time of publication, only the VMP

inference algorithm was supported.

The authors of S01 did not explicitly emphasize the real-time response from the

statistical inference computation in InferSpark. Therefore, a major contribution of this

research is a timely response using probabilistic programming and Lambda

architecture framework on big data.

2.4.5 Systematic Literature Review Summary

An intensive search and study of probabilistic reasoning big data applications that

used the concept of probabilistic programming was presented in this systematic

literature review.

This review identified one (1) available framework that combined the concept of

probabilistic programming and Apache Spark. The framework called InferSpark was

developed on the Scala programming language with the main aim of introducing

probabilistic programming into the big data domain. InferSpark attempts to solve the

scalability limitation of available probabilistic programming systems as well as the

inability of users to design custom models on Spark.

Although InferSpark performed well compared to other machine learning libraries on

distributed computing frameworks and Infer.NET (an example of a probabilistic

programming system), it only implemented a specific inference algorithm in the

Bayesian network model called the Variational Messaging Passing (VMP). Again, the

authors did not clearly emphasize the real-time aspect of big data. Thus, this

research seeks to develop a probabilistic reasoning big data application using

probabilistic programming and Lambda architecture to give real-time response to

queries.

2.4.6 Systematic Literature Review Limitations

The field of software engineering lacks well established and generally accepted

procedures and conduct for performing a systematic literature review unlike other

disciplines such as medicine (Staples & Niazi, 2007). As supported and reported by

 34

Brereton, Kitchenham, Budgen, Turner, & Khalil (2007) in their paper titled Lessons

from applying the systematic literature review process within the software engineering

domain, available software engineering online databases or search engines does not

assist systematic reviews in contrast to medical sciences, and the standard of

abstracts in software engineering papers are not always suitable to determine the

importance of a study. Thus, this presents difficulty in carrying out a systematic

review in software engineering.

A major challenge in carrying out a systematic literature review is the selection of

relevant primary studies (Kitchenham et al., 2010). In this case, four (4) online

databases were used as the source for primary studies. It is possible that some

papers may have been missed because of the search terms and their combination.

An example is the “Big data processing” search category; it is possible that some

papers that may be relevant did not include the search term in their abstract and

conclusion.

This review also excluded technical reports, graduate theses and newsletters.

Another possible limitation in this review is that one researcher was responsible for

extraction and the other was tasked with reviewing as recommended by Budgen &

Brereton (2006), this may attract bias in both stages of extraction and review.

2.5 Chapter Summary

This chapter introduced the knowledge, theories and background related to this

research.

Firstly, a description of big data was presented, with its concept, definition, history

and processing paradigms. Then an introduction to the concept of Lambda

architecture as a unifying framework for both batch and stream processing. The next

section presented a discussion of probabilistic reasoning, its application and

relevance to big data especially in handling data uncertainty. Then the research area

called probabilistic programming was presented in detail, with emphasis on how it

enables easier development of probabilistic models and automatic generation of

inference algorithm. Finally, a systematic review with the goal of identifying big data

applications that leverage the idea of probabilistic programming was presented to

highlight the relevance of this study.

 35

CHAPTER THREE

METHODOLOGY

A brief description of the research methodology to be used in this study was

introduced in Section 1.7 of the first chapter. This chapter presents a detailed

narration of the research paradigm used in this thesis.

The purpose of this chapter is not to elaborate on the foundations of research

methodologies and philosophical rationale. However, this chapter discusses a

suitable choice of research methodology for studies in the technical discipline. The

choice of research paradigm and methodology is justified using the research pyramid

presented by Jonker & Pennink (2009).

3.1 Introduction

The process associated with scholarly and rigorous discovery of beliefs, theories and

opinions to improve, broaden or authenticate knowledge and understanding of the

world around us is known as research (Ryan et al., 2002; Geerts, 2011). According to

Cambridge English Dictionary (2011) and Oxford English Dictionaries (2018),

research is a thorough exploration of a particular subject to uncover new information.

Research should be conducted in a defined and suitable method to be relevant,

important and contribute to the body of knowledge. A research method, sometimes

called research strategy (Järvelin & Vakkary, 1990), research framework (White &

Marsh, 2006), research methodology (Hildreth & Aytac, 2007), or research design

(Luo & McKinney, 2015) is a well ordered, standardized way or strategy to carrying

out research (Crotty, 1998).

Looking at the primary aim of this research as outlined in Section 1.4 of Chapter one,

this study seeks to develop a scalable tool that will efficiently process big data in real-

time and produce a probabilistic score. Simply put, this research will produce an

artefact. Thus, the design science research will be used in this study as it is relevant

to studies in technical fields such as architecture, computer science, information

technology and engineering (Simon, 1997; Weber, 2010).

3.2 Research Pyramid

In a bid to help researchers structure the actions of their study based on their

research questions, Jonker & Pennink (2009) introduced the research pyramid

 36

(Figure 3.1). According to the authors, the pyramid serves as a direction on how

researchers are to outline a suitable and justifiable research methodology.

The research pyramid is divided into four stages namely Research Paradigm,

Research Methodology, Research Methods and Research Techniques. The stages

should be viewed as interconnected actions starting from an abstract (top) level to a

more practical (bottom) action.

Figure 3.1: Research Pyramid

(Jonker & Pennink, 2009: 23)

In each of these phases, the research must make a suitable choice based on the

nature of the research question(s). A research methodology is chosen based on a

selected paradigm that best handles the specific research. Furthermore, an

appropriate method associated with the chosen methodology is selected and

implemented using fitting research techniques.

3.2.1 Research Paradigm

Every researcher has a different opinion on the constituents of truth and knowledge.

These different views direct different thinking, beliefs and assumptions about the

world around us. A paradigm is referred to by social scientists as the way different

professions view the world around them (Schwandt, 2001). Kuhn (1970) describe

paradigm to represent a common set of beliefs and assumptions shared across a

specific subject on how problems should be solved. Guba (1990) presented a more

generic definition of paradigm: a set of firmly held opinions that steers actions and

characterized by what reality is – ontology, how reality or knowledge is known –

epistemology, and how knowledge is found – methodology (Crotty, 1998).

 37

A number of research paradigms are described in literature such as positivism,

constructivism, interpretivism, emancipatory, critical and pragmatism (Mackenzie &

Knipe, 2006). The most common are positivism, constructivism and pragmatism.

In positivism, studies are carried out using the scientific approach. This paradigm

assumes that there is a single source of truth which is justifiable by scientific

methods. Thus, quantitative methods are typically used to measure knowledge. On

the other hand, constructivism is associated with the belief that knowledge needs to

be interpreted using qualitative methods leading to multiple sources of truth.

Pragmatism however, is not bound to a philosophy. Pragmatists view reality as

continuously changing thus requiring the most suitable method that leads to

knowledge (Guba, 1990; Healy & Perry, 2000; Schwandt, 2001; Walliman, 2001;

Mackenzie & Knipe, 2006; Creswell, 2009; Patel, 2015).

Choosing a research paradigm is usually the first step that sets the foundation for

subsequent selection of methodology, methods and techniques. This research is

action-based and follows the pragmatic research paradigm which is relevant in

studies done in technical disciplines.

3.2.2 Research Methodology

The second level of the research pyramid is concerned with the specific way to

conduct research based on the selected view of reality. As mentioned in Section 3.1,

research methodology describes the global procedures associated with the research

process without specifying individual actions. In this way, methodology acts like a

main outline of the research approach (Jonker & Pennink, 2009).

Table 3.1: Research paradigms with associated methodology and methods

(Adopted from Creswell, 2009; Mackenzie & Knipe, 2006; Patel, 2015)

Paradigm Methodology Methods

Positivism Experimental research. Survey
research. Deterministic. Normative

Mostly quantitative such as
measurement, sampling,
interviews, focus groups, etc.

Constructivism Ethnography. Discourse analysis.
Naturalistic.

Mostly qualitative and could
include case study, narrative, etc.

Pragmatism Design-based research. Action
research. Participatory research.
Mixed models.

Mixture of qualitative and
quantitative methods, etc.

Methodologies associated with the pragmatic paradigm are usually design-based,

action research (see Table 3.1). This research seeks to create an artefact. The

Design Science Research Methodology (DSRM) is relevant in studies that are

 38

inclined to the actualization of an artefact. Thus, this research uses the DSRM and

follows the design process outlined by Peffers et al. (2007) (cf. Section 3.4). This

study also adopts the guidelines as proposed by A. R. Hevner et al. (2004).

3.2.3 Research Methods

The research methodology is a generic specification on how to conduct a research

(cf. Section 3.1 and 3.2.2). A more specific procedure, sequence of activities or

technique in the research methodology is provided in the research methods (Crotty,

1998; Mackenzie & Knipe, 2006; Jonker & Pennink, 2009). These specific steps are

presented in an order describing how the research is carried out (see Table 3.1).

A. R. Hevner et al. (2004) recommended appropriate research methods for DSRM.

This research adopts the suggestions of A. R. Hevner et al. (2004) and is described

in detail later in this chapter.

3.2.4 Research Techniques

Research techniques describes a more concrete and practical execution of the

research methods. This is the fourth level of the research pyramid. Research

techniques provides detailed instructions (including instruments and tools) used in the

selected research method and “…can be understood as concrete instructions for

acting that have an explicit, compelling and prescribing character.” (Jonker &

Pennink, 2009: 34).

The techniques used in this research is adopted from A. R. Hevner et al. (2004) and

is further discussed in details in Chapter 5.

3.3 Design Science Research

Design Science Research (DSR) is used to solve real-world problems by developing

novel solutions (Walls et al., 1992). According to Glass (1999) and Simon (1997),

DSR originated from the engineering discipline and its relevance in information

technology/systems research has been acknowledged. Benbasat & Zmud (1999)

pointed out that the appropriateness of DSR in information systems research can be

tied to its relevance in design. However, Gregor & Hevner (2013) and Peffers et al.

(2007) stated that its adoption is relatively slow in information technology research.

In information systems, DSR deals with the development of artefacts that involves

people and technology (Gregor & Hevner, 2013). Similarly, Strode & Chard (2014)

defined DSR as a research paradigm in information technology which is based on the

 39

pragmatism approach and mostly used by software engineering researchers to

contribute to the body of knowledge through exhaustive development and evaluation

of an artefact. Comparing research in information technology and natural sciences,

March & Smith (1995) indicated that design science is closely associated with

research in technology-oriented fields and produces utilities that contribute to human

purposes. According to Vaishnavi, Kuechler, & Petter (2004), DSR is acquiring or

improving knowledge through the construction of an artefact. In other words, DSR

involves research using the process of invention (design) as a research method

(Myers & Venable, 2014).

Figure 3.2: Information Systems DSR Framework

(Hevner et al., 2004: 80)

Walls et al. (1992) describes design as both a series of actions (process) and an

invention. The design process leads to the actualization of a novel product which is

evaluated. The assessment of the artefact enables improvement in the value of the

artefact as well as the design process (Hevner et al., 2004). This build and evaluate

procedure is listed as the two iterative design processes associated with DSR (March

& Smith, 1995; Markus et al., 2002; Peffers et al., 2007). March & Smith (1995) also

outlined four design outputs of DSR namely constructs (corresponding to techniques,

representations and conceptual theories), models (representing abstractions),

 40

methods (procedures, practices or routines), and instantiations (prototype or concrete

implementations). Design science artefacts should demonstrate relevance by

providing a solution to a problem either by introducing a novel solution or improving

an existing solution (Weber, 2010; Geerts, 2011).

Building upon the foundation of March & Smith (1995), A. R. Hevner et al. (2004),

proposed a conceptual framework (see Figure 3.2) for research in information

systems to assist in proper comprehension, implementation and evaluation of DSR.

This framework has been adopted by most researchers (Choi et al., 2010; Rodríguez

et al., 2014; Strode & Chard, 2014). The framework shows the influence of

environment and knowledge on research in information systems as well as the

relationship between them. The combination of environment and knowledge base

provides relevance and rigor to studies in information systems.

3.3.1 Business Needs

The framework in Figure 3.2 clearly shows business needs as one of the influencing

ingredients that contribute to research in information systems. The source of business

needs is the specific environment as relates to the information systems research. The

environment which consists usually of technology and people within an organisation

makes up the problem space. As mentioned in Section 3.3, relevance is one of the

defining characteristics of a design artefact. The problem space provides relevance

for an information systems research (Hevner et al., 2004).

A desired goal of this research is to aid in the process of decision-making by

providing real-time response to big data analysis especially in uncertain

circumstances (cf. Section 1.5). Decision-making is key in policy formulation and thus

provides the specific problem space for this research. All three components of

environment (people, organization and technology) influences and gives rise to the

business needs of a real-time probabilistic reasoning system.

3.3.2 Applicable Knowledge

The other important component of research in information systems is the knowledge

base. According to Hevner et al. (2004), foundations and methodology form the basis

from and through which information systems studies are successfully achieved. Prior

literature containing foundational theories and instantiations provide the raw material

that helps in the build phase of DSR while methodologies provide the tools for the

evaluation phase. Thus, the effective application of foundation and methodology in

 41

information systems research ensures rigor. This satisfies the ‘rigor’ characteristics of

a design artefact.

In this research, theoretical foundations from available big data tools and

technologies as well as literature on big data, big data analysis, probabilistic

reasoning, probabilistic programming, machine learning, and lambda architecture

were studied. Furthermore, appropriate methodology as proposed by Peffers et al.

(2007) is used in this research and evaluation is done against the guidelines as

outlined by A. R. Hevner et al. (2004).

Figure 3.3: An adaptation of DSR framework

(Hevner et al., 2004: 80)

Figure 3.3 is an adaptation of the DSR framework illustrating the specific

environment, knowledge base and research contributions.

3.4 Design Science Research Methodology

In recent times, researchers have successfully and explicitly shown the relevance of

design science in information systems research (Nunamaker et al., 1990; Walls et al.,

1992; March & Smith, 1995). However, as Peffers et al. (2007) pointed out, these

studies did not clearly describe a common methodology for design science research

in information systems.

 42

To effect a useful contribution to the body of knowledge, Jonker & Pennink (2009)

included research methodology as one of the stages of a research (cf. Section 3.2).

Peffers et al. (2007) argued that a common research methodology constitutes a

mental template for the comprehension and evaluation of a research. Thus, building

on past studies, Peffers et al. (2007) recommended a design science research

methodology to help in the construction and arrangement of design science research

in information systems. According to Peffers et al. (2007), a design science research

methodology should include principles of design science, rules and a process model

(see Figure 3.4). The proposed DSRM process claims to serve as a strategy and

mental model for researchers using design science research.

This research acknowledges there are other methodologies proposed in literature

(Vaishnavi et al., 2004; Venable, 2006; Baskerville et al., 2009; Iivari & Venable,

2009; Bilandzic & Venable, 2011; Sein et al., 2011). However, this research is based

on the DSRM process model in Figure 3.4. This choice is justified later in this chapter

against the guidelines presented by A. R. Hevner et al. (2004).

Figure 3.4: DSRM Process Model

(Peffers et al., 2007: 54)

The DSRM process model is made up of six actions as illustrated in Figure 3.4. The

process model was designed to be sequential, however, Peffers et al. (2007)

emphasized four different entry points to the process model based on the actual

research or study. The first entry point is the Problem-centred initiation resulting from

an identified problem or recommended future study in research papers. Objective-

centred solution is the second point of entry tied to the second activity and could be

because of an industry or research need. The third entry point is the Design &

Development-centred initiation. The third entry point starts with activity 3 and could be

 43

stimulated from a known but not implemented artefact. The Client/Context initiated

entry point starts with the fourth activity and could be caused by a real project.

The study described in this thesis lies in the Problem-centred initiation entry point and

starts from activity 1.

3.4.1 Activity 1 – Identify Problem and Motivate

In this activity the specific problem that the research seeks to tackle should be clearly

established along with the justification for a solution (Peffers et al., 2007).

Decision-makers are often required to make rapid decisions based on current events

and past experiences. Current events represent real-time data while past experiences

denote static or historic data, both of which constitutes big data. Research in big data

processing has led to the development of innovative technologies to process big real-

time data and static data. However, these technologies exist independently to solve

specific big data (batch and streaming) problems (cf. Section 1.2, 1.3 and 2.1.4).

This research focuses on real-time reasoning with big data. By the effective

combination of the available open-source big data tools and technologies based on

Lambda architecture as proposed by Marz & Warren (2015), the focus of this

research is to provide a real-time probabilistic reasoning solution built using

probabilistic programming that will aid in decision-making especially in terms of

uncertainty.

3.4.2 Activity 2 – Define Objectives of a Solution

The second activity according to the DSRM process as proposed by Peffers et al.

(2007) involves defining the objectives of a solution to the identified problem in

activity 1. According to Peffers et al. (2007), the objectives of a solution denotes what

is practical and attainable and can be either quantitative or qualitative.

In chapter 1, a brief explanation of three objectives for this research was presented

(cf. Section 1.5). These objectives were also substantiated against literature (cf.

Section 1.3 and 2.1). Furthermore, detailed objectives about the design of the artefact

are presented in chapter 4 (cf. Section 4.2).

3.4.3 Activity 3 – Design & Development

Activity 3 consists of the actual design and development of the artefact which can be

in the form of constructs, models, methods, instantiations or a combination of any

 44

(March & Smith, 1995; Hevner et al., 2004). Peffers et al. (2007) pointed out that

knowledge of theory relevant to problem space is required to translate the defined

objectives into actual features and functionalities, thus creating a design research

artefact with embedded research contributions.

Chapter 4 describes and documents the design and development stage of this design

research artefact based on the identified objectives in activity 3.

3.4.4 Activity 4 – Demonstration

The efficacy of the artefact is required to be demonstrated in one or more

occurrences of the problem domain or space. According to Peffers et al. (2007),

demonstration could be a case study, proof, experimental or simulation.

Details of the demonstration are presented in chapter 5. In this case, demonstration is

presented as a case study.

3.4.5 Activity 5 – Evaluation

This activity involves monitoring and assessing how well the artefact tackles the

problem in accordance to the identified objectives defined in activity 3. Peffers et al.

(2007) stated that comprehension of applicable metrics and analysis procedures is

required to carry out this activity. March & Smith (1995) and Hevner et al. (2004)

acknowledged that evaluation is crucial as it shows the usefulness and benefits of the

design artefact.

Hevner et al. (2004) listed five categories of evaluation techniques namely

observational, experimental, descriptive, testing and analytical. This research will use

the experimental evaluation method (cf. Section 3.5.3) to assess the design artefact.

Experimentation will be through simulation with real data. Details of the evaluation are

described in chapter 5.

3.4.6 Activity 6 – Communication

Peffers et al. (2007) stated the importance of communicating the research problem,

developed artefact and design rigor to other researchers and appropriate audiences.

This point is also supported by A. R. Hevner et al. (2004). Gregor & Hevner (2013)

and Strode & Chard (2014) proposed a structure for reporting research done using

design science (see Table 3.2).

 45

This thesis forms a major means of communicating this research and adopts the

publication schema as presented by Gregor & Hevner (2013) and Strode & Chard

(2014).

Table 3.2: DSR Publication Structure

(Adopted from Gregor & Hevner, 2013: A5; Strode & Chard, 2014: 244)

Section Contents Thesis
Chapter

Introduction Problem definition, problem significance/motivation,
introduction to key concepts, research questions/objectives,
scope of study, overview of methods and finding, theoretical
and practical significance, structure of remainder of paper.

For DSR, the contents are similar, but the problem definition
and research objectives should specify the goals that are
required of the artefact to be developed.

Chapter 1

Literature
Review

Prior work that is relevant to the study, including theories,
empirical research studies and findings/reports from practice.

For DSR work, the prior literature surveyed should include any
prior design theory/knowledge relating to the problem to be
addressed, including artefacts that have already been
developed to solve similar problems.

Chapter 2

Method The research approach that was employed.

For DSR work, the specific DSR approach adopted should be
explained, with reference to existing authorities.

Chapter 3

Artefact
Description

(Main
section of
report)

A concise description of the artefact at the appropriate level of
abstraction to make a new contribution to the knowledge
base.

This section (or sections) should occupy the major part of the
paper. The format is likely to be variable but should at least
contain the description of the designed artefact and, perhaps
the design search process.

Chapter 4

Evaluation Evidence that the artefact is useful.

The artefact is evaluated to demonstrate its worth with
evidence addressing criteria such as validity, utility, quality
and efficacy.

Chapter 5

Discussion Interpretation of the results: what the results mean and how
they relate back to the objectives stated in the Introduction
section. Can include: summary of what was learned,
comparison with prior work, limitations, theoretical
significance, practical significance, and areas requiring further
work.

Research contributions are highlighted and the broad
implication of the paper’s result to research and practice are
discussed.

Chapter 7

Conclusions Concluding paragraphs that restate the important findings of
the work.

Restates the main ideas in the contribution and why they are
important.

Chapter 7

3.5 Design Science Research Guidelines

A. R. Hevner et al. (2004) identified design science as a problem-solving technique

where the knowledge of a design problem and its solution are obtained in the

 46

development and use of an artefact. They suggested seven guidelines for conducting

and evaluating research processes in design science. This section describes how this

study intends to follow the rule for an effective design science research.

3.5.1 Guideline 1 – Design as an Artefact

The first guideline requires the output of a design science research to be an artefact.

An IT artefact is defined to be one of a combination of construct, model, methods or

instantiations (cf. Section 3.3). Artefacts developed in research using design science

are usually not exhaustive and comprehensive information systems. However, design

science artefacts show innovations that form the basis of knowledge through design

(Hevner et al., 2004; Gregor & Hevner, 2013).

The output of this research is an instantiation (artefact) – implementation of a real-

time probabilistic reasoning system using Lambda architecture.

3.5.2 Guideline 2 – Problem Relevance

The problem space or specific environment determines the relevance of a DSR

endeavour. A research using design science must solve important problem(s) faced

by people, organizations and technology. The problem relevance provides both the

requirements and the evaluation standard for the research and research outputs

respectively (Simon, 1997; Hevner et al., 2004; Hevner & Chatterjee, 2010).

The background to this study and problem statement (cf. Section 1.2 and 1.3) as well

as chapter 2 provides enough insight to the problem space and relevance of this

research.

3.5.3 Guideline 3 – Design Evaluation

This is important to any DSR process (Simon, 1997). The artefact of a design science

research should be measured against a well-established metrics based on

established requirements using observational, analytical, experimental, testing and/or

descriptive evaluation methods to ascertain if it works and how well it works.

Evaluation provides feedback on the quality and efficacy of the product (Hevner et al.,

2004; Hevner & Chatterjee, 2010).

In the case of this research, the artefact is measured against the research questions

and research goals (cf. Section 1.5 and 1.4). This research will also use the

experimental evaluation method to evaluate the design artefact. Experimental

evaluation will be conducted using simulation with artificial data.

 47

3.5.4 Guideline 4 – Research Contribution

Research in design science must provide comprehensible contributions to knowledge

base. This contributions may be in the form of a design artefact, foundation theories

and/or methodologies (Hevner et al., 2004).

This research contributes in the form of an artefact that applied prior knowledge in

new and innovative ways to solve the research problems highlighted in Section 1.3.

Details of contributions are described more in chapters 4 and 7.

3.5.5 Guideline 5 – Research Rigor

Rigor pertains to the soundness of the methods in the research process of building

and evaluating of the design product. Design science research requires “…the

application of rigorous methods in both the construction and evaluation of the

designed artefact.” (Hevner et al., 2004: 87).

Table 3.3: DSR Guidelines

(Adopted from Hevner et al., 2004: 83; Hevner & Chatterjee, 2010: 12)

Guideline Description Mapping to this research

Design as an
Artefact

Design science research must
produce a viable artefact in the
form of a construct, a model, a
method, or an instantiation.

Real-time probabilistic
reasoning system using
Lambda architecture.

Problem
Relevance

The objective of design science
research is to develop technology-
based solutions to important and
relevant business problems.

Improve decision-making.
Provide inexpensive automated
big data solution.

Design
Evaluation

The utility, quality, and efficacy of a
design artefact must be rigorously
demonstrated via well-executed
evaluation methods.

Experimental Evaluation
consisting of simulation and
testbed.

Research
Contribution

Effective design science research
must provide clear and verifiable
contributions in the design artefact,
design foundations, and/or design
methodology.

Artefact that uses Lambda
architecture on inexpensive
commodity hardware to
enhance decision-making.

Research Rigor Design science research relies
upon the application of rigorous
methods in both the construction
and evaluation of the design
artefact.

Methodology based on prior
authority.

Design as a
Search Process

The search for an effective artefact
requires utilizing available means to
reach desired ends while satisfying
laws in the problem environment.

Literature review in the context
of big data, big data
processing, probabilistic
reasoning, Lambda
architecture. Open-source big
data tools and technologies.

Communication
of Research

Design science research must be
presented effectively to both
technology-oriented and
management-oriented audiences.

Thesis & publications.

 48

This research will use foundational theories in big data, big data processing, machine

learning, probabilistic programming, and current big data techniques and

technologies as its foundation (cf. Chapter 2). The design and development of the

artefact in this research is described in Chapter 4 and as mentioned in Section 3.5.3,

the experimental evaluation method is used in the evaluation stage.

3.5.6 Guideline 6 – Design as a Search Process

Design is an iterative process in the context of a problem environment, to reach an

effective solution (Hevner et al., 2004; Gregor & Hevner, 2013).

In chapter 2, this study presented a rigorous examination of literature in the problem

domain to present objectives to accomplish an effective solution. The search process

continues in chapter 4, illustrating the design and development of the artefact based

on literature. Chapter 5 provides evidence that the artefact is useful in the specified

problem domain.

3.5.7 Guideline 7 – Communication of Research

Design science research must be effectively communicated to both technology and

management-oriented audiences. This communication should include the description

of the construction of the artefact, and details for organisation to buy, build and use

the artefact (Hevner et al., 2004).

This study satisfies this guideline with a written thesis as the main piece of

communication targeted towards the academic audience. However, a few peer-

reviewed conference papers and learning materials are also used to communicate

this research.

Table 3.3 shows a summary of the mapping of this research to the guidelines

discussed above.

3.6 Chapter Summary

This chapter presented a research methodology for this study using the research

pyramid presented by Jonker & Pennink (2009) as a high level framework.

This research chose the design science research which is based on the pragmatic

research paradigm. Out of the methodologies in design science available in literature,

this research used the methodology as proposed by Peffers et al. (2007). This

 49

methodology is examined against the guidelines outlined by A. R. Hevner et al.

(2004) to present a complete research methodology used to tackle the research

questions.

 50

CHAPTER FOUR

DESIGN OF A REAL-TIME PROBABILISTIC REASONING SYSTEM USING

LAMBDA ARCHITECTURE

In chapter 1, an introduction to this research was presented with a brief description of

the context of the problem and clearly defined aim and objectives. Chapter 2 provided

the background knowledge relevant to this study as well as a systematic literature

review of big data applications that used the probabilistic programming concept.

Chapter 3 provided a detailed description of a suitable research methodology for this

study.

This chapter builds upon the findings from chapter 2 and the chosen research

methodology discussed in Chapter 3 to present the design of an artefact with respect

to the second goal of this research outlined in chapter 1.

The first section of this chapter gives a short introduction to the background and aim

for the real-time probabilistic reasoning system using Lambda architecture (RT-

PRLA). Section 4.2 provides a list of requirements for the design of the RT-PRLA

system. In section 4.3, a generic system overview is presented, detailing the rationale

behind the design decision. Section 4.3 also presents the various components of the

system and how they are combined using Lambda architecture to form a real-time

probabilistic reasoning system. Section 4.4 provides a descriptive detail of the design

of the components discussed in Section 4.3. Section 4.5 summarizes the entire

chapter.

4.1 Introduction

The rationale behind the development of a real-time probabilistic reasoning system

was influenced by several factors as mentioned in chapter 1, however, the most

striking reason is the need for a big data application that performs probabilistic

inference on both real-time and batch data to output real-time response that will

enable decision making in uncertain situations. This need was highlighted in section

2.4 of chapter 2. Another motivation is to build upon existing big data infrastructure,

tools and technologies described in chapter 2.

This chapter restates the design objectives of the proposed artefact and describes

the design process. This is in accordance to the second and third activities in the

design science research methodology model as proposed by Peffers et al. (2007).

Activity 2 is all about defining objectives for a solution while activity 3 is concerned

 51

with the actual design and creation of the solution. According to Peffers et al. (2007),

knowledge required to carry out activity 2 includes having an understanding about the

current state and solutions. Activity 3 requires knowledge of relevant fields and

technology. In this research, the relevant areas are big data processing, Lambda

architecture and probabilistic programming.

In summary, the goal of this chapter is to present the design of an artefact according

to the aim of this research to satisfy the following:

• Provide real-time response to big data processing.

• Use the concept of Lambda architecture to effectively combine batch and
stream processing.

• Use probabilistic programming for easier development of probabilistic models
and automated inference algorithms.

4.2 Design Objectives/Requirements

In the early phase of this thesis, the purpose of this research was presented. The

purpose is to support decision-makers in the process of decision making especially in

uncertain circumstances using automated, real-time probabilistic reasoning system.

Thus, a list of requirements was identified (cf. Section 1.5).

Probabilistic reasoning systems already exist to support decision-making. However,

after conducting a background and systematic literature review, new concepts, trends

and recommendations that may better handle contemporary demands were identified

and the identified list of objectives was reviewed, re-established and formalized as

DR1 to DR6.

The list of objectives (DR1 to DR6) is motivated by technological innovation and

represents high level requirements, thus they do not specify any techniques to use in

their actualization. The specific methods used to achieve these objectives are

explained in the design presented in Section 4.4.

DR1 – Data Integration: The system must efficiently handle data streams from

multiple sources as well as integrate both real-time and batch (historical) data.

DR2 – Data Ingestion and Overflow: The system must adequately manage data

ingestion and back pressure.

DR3 – Real-time Computation: The system must perform computation and provide

response in real-time in the form of a probabilistic score, considering limited

computational resources.

DR4 – Learning Capability: The system must provide learning features based on

probabilistic reasoning.

 52

DR5 – Data Value: The system should efficiently compress and filter out irrelevant

data yet not affecting the potential value of data.

DR6 – Generic Context: The system should be generic; used in different context.

The requirements are grouped according to priority level. The high priority

requirements must be fulfilled and the requirements that should be addressed are in

the low priority level.

4.3 System Overview

This section describes a detailed design of the artefact in addition to the explanation

of the design choices that lead to the proposed solution.

A major distinct motivation for a probabilistic reasoning system is to support decision-

making in real-time especially in uncertain circumstances (Gonzalez, 2012; Pfeffer,

2016). This is a vital definite feature and remains the comprehensive purpose of this

research. The solution proposed in this thesis is to use Lambda architecture to

improve low latency in big data processing and probabilistic programming to aid in

easier development of complex models.

Available big data solutions are combined as explained by Marz & Warren (2015) to

achieve Lambda architecture. The principal purpose of the Lambda architecture is to

build a three-layer generic big data solution, with each layer satisfying a property of

big data (3Vs: Volume, Variety and Velocity). The three layers are Batch, Speed and

Serving layers (cf. Section 2.2).

The Batch layer is the base and core of the Lambda architecture and tackles the

Volume property of big data. This layer houses all data and computation is done

periodically on the data to produce a batch view. Thus, the batch view is indexed and

saved so it can be retrieved quickly with random reads, without having to read all the

data when a query is submitted. In summary, the batch layer must be able to store an

immutable, constantly growing dataset, and produces precomputed views from the

dataset.

On top of the batch layer is the serving layer. The serving layer holds the

precomputed batch views produced by the batch layer. This layer is made up of a

distributed database that supports random reads and batch updates from the batch

layer. It is important to note that the serving layer should not support random writes.

 53

Both the serving and batch layer deals with the volume and variety property of big

data. The only trade-off is that the precomputation done in the batch layer has high

latency. Thus, new data captured while computation is on-going in the batch layer is

not included in the batch view. This means that the serving layer is updated with

batch views that do not contain data that came into the master dataset while

precomputation was running. The speed layer compensates for this ‘lost’ data.

In the speed layer, computation is performed on ‘new’ or recent data. This ensures

that new data is represented when the value of a query is needed. The speed layer is

like the batch layer as it also produces a view (real-time view) based on computation

on recent data it receives. The real-time views are stored on a database that supports

random writes and random reads.

However, there are two major differences between the batch and speed layers. Batch

layer performs computation on all data in the master dataset at once while the speed

layer performs computation on recent data. Again, to achieve low latency, instead of

the re-computation done in the batch layer, the speed layer uses incremental

computation, this means that it performs computation as it receives recent data and

updates the real-time views. Thus, the real-time views get updated very quickly after

new data enters the system. The definition of ‘quickly’ is relative to the application,

however it is usually between a few milliseconds to a few minutes (Marz & Warren,

2015). A point to note is that once the recent data is captured and processed in the

batch layer to produce batch views, the corresponding real-time views are discarded.

Computations in the batch and speed layers are usually implemented using available

big data technologies like Apache Hadoop for the batch layer and Apache Storm or

Apache Spark for the speed layer. However, the distinct feature of this research is to

employ the idea of probabilistic reasoning using probabilistic programming in the

implementation of computations done in the batch and speed layers of the RT-PRLA

system (see Section 4.4.3).

Results from computations on the batch and speed layers are stored as batch and

real-time views respectively and are used with inference algorithms to perform

probabilistic reasoning in response to a query.

 54

4.3.1 Components of Real-time Probabilistic Reasoning System using Lambda

Architecture

The real-time probabilistic reasoning system is divided into three components: the

server, feeder and storage component. These components have the three layers of

the Lambda architecture included in them. A brief description of these components is

provided in this section.

4.3.1.1 The Feeder Component

The feeder component acts as the one-way input-only door keeper to the RT-PRLA

system. Data flows into the RT-PRLA system through the feeder component. The

feeder component is responsible for pre-processing the data to reduce redundancy

and filter irrelevant data using a compression and filtering mechanism. This takes

care of the design requirement DR5. The feeder component is also responsible for

integrating data streams from multiple sources entering the RT-PRLA system. This

takes care of the design requirement DR1. The feeder component also manages data

inflow into the reasoning system to prevent data inflow from multiple sources from

overwhelming the RT-PRLA system. This addresses the design requirement DR3.

4.3.1.2 The Storage Component

The role of the storage component is to house data needed by the reasoning system.

In the RT-PRLA system, the storage component is made up of four (4) standalone

databases, two of which are associated with the batch module of the server

component and the other two are associated with the real-time module in the server

component. For convenience, these four databases are named master database,

batch-view database, pseudo-master database, and real-time-view database (see

Figure 4.1).

The master database holds the immutable, constantly growing master dataset and

supports batch reads and random writes. The master database is part of the

implementation of the batch layer of the Lambda architecture. Extreme care must be

taken to prevent the master database from any kind of corruption because it acts as

the only source of truth to the system (Marz & Warren, 2015).

The other database associated with the batch module of the server component,

called the batch-view database serves as part of the serving layer of the Lambda

architecture. It holds the result of the pre-computation done in the batch module. It

supports batch updates and random reads.

 55

The other two storage (pseudo-master and real-time view) databases are used by the

real-time module of the server component. They are used to support real-time

computation on new data. The pseudo-master database is used to incrementally

store new data as it arrives into the system. This supports random writes. The real-

time-view databases hold the result of the incremental computation on the recent

data known as real-time views and supports random reads. Both the pseudo-master

database and the real-time-view database form part of the speed layer of the Lambda

architecture.

4.3.1.3 The Server Component

The server component is responsible for all computation on data. The server

component is central to the design concept of the RT-PRLA system. It retrieves data

from the immutable data store (master database) as well as from the pseudo-master

database and performs computation to produce the batch views and real-time views

respectively. Thus, the server component is divided into two modules, on one hand is

the batch module, and on the other side is the real-time module.

The Batch Module

The batch module periodically retrieves the entire data from the master database,

performs computation to produce the batch view and subsequently stores the batch

view in the batch-view database which corresponds to the serving layer of the

Lambda architecture.

The batch module is also part of the batch layer of the Lambda architecture.

According to Marz & Warren (2015), the batch layer of Lambda architecture should

be able to store immutable master dataset, and perform computation on the dataset.

Result from this computation should also be stored as views on the serving layer.

However, in this design, the task of storing immutable dataset has been moved to the

feeder component (cf. Section 4.3.1.1). This design choice was to remove the initial

database write process from the write-read-write process of the batch layer. In other

words, instead of having the batch module write to an immutable database, read from

the same database to compute arbitrary function on that dataset, and then write the

output to the serving layer, it only reads from the immutable dataset that has already

been prepopulated by the feeder component. Thus, the batch module only has a

read-write process.

 56

The Real-Time Module

The real-time module is responsible for performing incremental computation on real-

time data, that is data that came in while the precomputation on the batch module

was running. The speed layer of the Lambda architecture is implemented in the real-

time module. The real-time module is different from the batch module in that it does

not perform a re-computation of all new data; instead it performs incremental

computation on recent data as they arrive. This is to ensure low latency updates. As

soon as the batch module processes the recent data, the corresponding real-time

views are discarded.

4.3.2 Real-time Probabilistic Reasoning Process

This section explains the way the RT-PRLA system works for a better understanding.

The various components mentioned in the preceding section are put together to

elucidate the general process in the real-time probabilistic reasoning process.

Figure 4.1: Reasoning Framework

Data flows into the RT-PRLA system through a single data pipeline. This data

pipeline is used to aggregate data streams from different sources and filter the data to

eliminate redundancy. The data pipeline now emits the pre-processed data into the

system in two different branches. One branch goes to the master database for batch

computation, and the other goes to the pseudo-master dataset for real-time

processing.

 57

The RT-PRLA system has a server component which is the core of the RT-PRLA

system and is made up of the batch module and the real-time module, each

responsible for performing computation on batch data and real-time (new) data

respectively.

The batch module and real-time module correspond to the batch layer and speed

layer of the Lambda architecture. There are several big data application technologies

used to develop these layers. A common big data technology for the batch layer is

Hadoop, and a common technology for the speed layer is the Apache Spark. Newer

technologies such as Apache Spark can also be used to implement both batch and

speed layer of the Lambda architecture in a unified manner.

This research however uses a different approach to both the batch module and real-

time module. It uses probabilistic programming to design probabilistic models used to

perform reasoning on a specific application or problem domain. Probabilistic

programming is one of the main concepts of this research, and this study uses the

approach as explained by Pfeffer (2016).

A probabilistic model is a generic knowledge about a domain, encoded in probabilistic

terms (cf. Section 2.3.1). Two probabilistic models are developed as the major

constituent of the server component. One for each module in the server component,

let’s call them batch model and real-time model. These models are then used to

perform computations on data to produce the views as relates to the Lambda

architecture. The batch model is used to perform pre-computation on all dataset in

the master database to produce batch views while the real-time model processes the

new data to produce real-time views. More details are present in the next section.

The views are subsequently stored in the databases. The batch views are stored in

the batch-view database while the real-time views are stored in the real-time-view

database.

Subsequently these views and inference algorithms are used to effectively respond to

queries. Results to queries are usually in the form of a probabilistic score.

 58

4.4 Design

In this section, a more descriptive explanation of the design of a real-time probabilistic

reasoning system is presented. This explanation throws more light on the functionality

of the server, the storage and the feeder.

4.4.1 The Feeder

The feeder is essential to the RT-PRLA system as it acts as the doorway that feeds

data into the system. It is also responsible for aggregating data from multiple sources,

compressing the data and filtering irrelevant and/or duplicate data entries. In a

nutshell, the feeder is responsible for data pipelining into the system and

backpressure management.

There are several big data streaming applications to choose from when implementing

the feeder. Some examples are Apache Kafka, Akka, Apache Flink, and Apache

Spark.

4.4.2 The Storage

Storage is very essential to the system. In section 4.3.1.2, it was mentioned that this

RT-PRLA system is made up of a storage component which comprises four

databases. The four databases are evenly distributed to cater for the two modules of

the server component.

An essential quality of a big data system is its ability to answer as many queries as

possible. To achieve this, data should be stored in its raw form, must be immutable

and permanently true (Marz & Warren, 2015). Data immutability means that once a

data entry is stored, it must never be updated or deleted. This enables data simplicity

and prevents human errors. Each entry of data is therefore always true because of

data immutability.

The master database is used to store the immutable, raw and permanently true data,

thus making it the only source of truth for the system. Thus, the master database

must support random writes.

The batch module of the server components also reads data from the master

database for processing. These reads happen at a scheduled interval and all data in

the master database are retrieved for processing. This means that the master

databases must also support bulk reads.

 59

After the batch computation on the batch module, the result of the computation known

as the batch views is stored in the batch-view database. Thus, the batch-view

database must support bulk updates/writes. The batch views stored in the batch-view

database are used to respond to queries. Again, the batch-view database must

support random reads.

The pseudo-master and real-time-view databases are used by the real-time module

to process recent data. The data storage responsibility of the real-time module is very

challenging. The real-time module requires low latency random reads from the

pseudo-master database and low latency random writes to the real-time-view

database. Thus, both databases must support random reads and random writes with

low latency to enable quick response to queries and quick update of real-time views.

All four databases must also be scalable. This means that all four databases must

efficiently scale with an increase in the data they store. Again, all four databases must

be fault-tolerant. They must continue to function as normal if there is a hardware

failure.

There are open-sourced NoSQL databases that can be used to implement the

storage component. Some examples are MongoDB and Cassandra. A choice

between a combination of more than one NoSQL databases or just one NoSQL

database can be made.

4.4.3 The Server

An introduction to the server component was presented in Section 4.3.1.3. The server

component can be considered as the engine of the real-time probabilistic reasoning

system. As stated earlier, the main functionality of the server component is to perform

computation on both batch and real-time data to produce corresponding batch views

and real-time views. Thus, there are two parts to the server component – the batch

module which is responsible for batch computation, and the real-time module that

performs incremental computation on new data.

Computation on the batch module of the server component is done at intervals. The

batch module retrieves and performs computation on the entire dataset in the master

database. Depending on the size of the dataset in the master database, processing

usually takes long to complete.

 60

The real-time module takes care of the high-latency associated with computation in

the batch module. It performs computation on new data that was not included during

the last pre-computation done in the batch module. Like the batch module, the

fundamental objective of the real-time module is to produce views used to respond to

queries. There are two approaches to the real-time module. One is to produce views

by processing all the recent data yet to be processed in the batch module, the other is

to perform incremental computation on new data as they arrive. This research uses

the latter to ensure better resource management and low-latency computation.

Section 4.3.2 indicated a major difference between this solution and the majority of

big data solutions available. As the name of the solution, real-time probabilistic

reasoning system using Lambda architecture implies, one of the distinct differences is

the employment of probabilistic programming in the design of probabilistic models in

the server component instead of using the conventional Hadoop, Spark, or Storm.

Another important difference is the usage of Lambda architecture in the probabilistic

reasoning system to improve low latency in data computation.

A probabilistic reasoning system comprises two main pairs – probabilistic model and

inference algorithm. Probabilistic model is derived from general relevant knowledge in

a domain, encoded in quantitative, probabilistic terms. This probabilistic model is now

used in combination with an inference algorithm to answer queries given evidence (cf.

Section 2.3.1).

Probabilistic models are created using a combination of representational languages

such as Bayesian and Markov, and mathematical constructs. This usually requires a

high level of technical expertise and can be a difficult task. Thus, the introduction of

probabilistic programming which uses the powerful features of a programming

language in the design of a probabilistic model (cf. Section 2.3.2) makes it easier to

express probabilistic models and enables automatic inference computation on the

models to respond to queries.

Since the inception of research in probabilistic programming, several probabilistic

programming systems have been developed (cf. Section 2.3.2). Therefore, the server

component can be implemented using any of the probabilistic programming systems

available.

 61

4.5 Chapter Summary

This chapter provided a detailed design of a real-time probabilistic reasoning system

using Lambda architecture (RT-PRLA) and reiterated the need for a real-time

probabilistic reasoning system as well as the objectives of this research.

A general overview of the RT-PRLA system was presented, clearly stating the

components and the reasoning process of the system. The RT-PRLA consists of

three components namely feeder, storage and server components.

The feeder component is solely responsible for data transformation and aggregation.

It also acts a data pipeline into the RT-PRLA system.

The storage component acts as the data store of the system. There are four different

databases in the storage component – the master database, the pseudo-master

database, the batch-view database and the real-time-view database.

The server component is the engine of the RT-PRLA system. The server component

is made up of two modules called the batch module and the real-time module. It is

responsible for all batch and incremental computations on data. The batch module

reads all the data in the master database and performs computation on it to produce

batch views which are stored in the batch-view database. The real-time module

incrementally reads data from the pseudo-master database which contains recent

data not included in the batch computation and performs incremental computation to

produce real-time views. Real-time views are subsequently stored in the real-time-

view database.

Computations in the batch and real-time modules are implemented using the concept

of probabilistic programming. Thus, batch and real-time views correspond to

probabilistic models.

 62

CHAPTER FIVE

KOGNITOR, AN EXPOSITORY CASE STUDY

In the previous chapter, the design concept of a real-time probabilistic reasoning

system using Lambda architecture was presented. This design concept is based on

the six (6) identified design objectives all directed at achieving the second aim of this

research.

Chapter 4 follows the design activity as proposed by Peffers et al. (2007), and

corresponds to the third step (cf. Section 3.4.3). The next steps according to the

research process are to demonstrate (cf. Section 3.4.4) and evaluate (cf. Section

3.4.5) the proposed artefact.

This chapter is dedicated to demonstrating and evaluating the RT-PRLA system. The

first section of this chapter gives a short introduction to the context of the case study.

Section 5.2 presents the problem domain of this demonstration and a description of

the artefact called Kognitor. In Section 5.3, the tools and technologies used in the

construction of Kognitor are described following the design concept presented in the

previous chapter. This section also demonstrated the construction of a probabilistic

model using probabilistic programming in the server component of the RT-PRLA

system. The implementation of Lambda architecture in the three components of the

RT-PRLA system is also described in Section 5.3.

Section 5.4 presents an evaluation of the design artefact using the experimental

evaluation method in a simulated environment. The results of this evaluation are also

presented in tabular format in this section. Section 5.5 summarises this chapter.

5.1 Introduction

The usefulness of an artefact is made evident when it is applied to one or more

instances of the problem in a relevant domain (Peffers et al., 2007). This

demonstration can be actualized as a case study, proof, experimentation or

simulation. In any of the methods of demonstration, A. R. Hevner et al. (2004) stated

that the requirements must be clearly defined by the business context.

In this case, the business context chosen for the demonstration is predicting the

outcome of a football match between two teams in the English Premiership League

(EPL). This context was selected because it allows the presentation of the different

capabilities of the design concept presented in chapter 4.

 63

The novelty of this research is basically in its design concept, and not necessarily in

the implementation or construction of the artefact. Vaishnavi et al. (2004) supported

that the implementation of an artefact does not need to involve creativity outside the

state-of-practice; however, the originality should be in the design. Thus, the main

purpose of this case study is to show the practicality and usefulness of the design

concept of a RT-PRLA system.

The central part of the design concept is the server component (cf. Section 4.4.3) that

provides the novel capabilities of using probabilistic programming on big data in real-

time. A secondary design concept is the implementation of the RT-PRLA using

Lambda architecture.

5.2 Problem Domain

The output of a design science research should solve or improve the solution to an

applicable business problem. The design concept of the RT-PRLA system aims at

simplifying the decision-making process, especially in uncertain circumstances by

providing real-time probabilistic responses to queries on big data.

The relevant problem domain in this case is prediction and inference or deduction.

The use case in this chapter handles predicting a win between two football teams in

the EPL contest. This case study called Kognitor, can also be used to infer the

reason(s) of an outcome of a football match.

5.3 Tools and Technologies

This section describes the tools and technologies used in the implementation of

Kognitor. One of the objectives of this design is to use already existing open-source

big data tools and architectures in the design of an artefact for cost-effectiveness.

Thus, all the tools and technologies used in the development of Kognitor are off the

shelf systems.

5.3.1 Feeder

The feeder component of Kognitor is implemented using Akka. Akka is a powerful,

flexible and resilient tool for building scalable, high-performance, concurrent and

distributed real-time event processing and message-driven applications (Lightbend

Inc, 2010; Akka, 2011).

 64

Akka is based on the actor model of computation. The actor model was introduced in

1973 by (Hewitt et al., 1973). According to Hewitt (2011) and Hewitt (2012),

computation in this model is distributed, as computational devices called actors

transmit and receive messages asynchronously in no predefined order. One of the

advantages of this model is the ease of creating concurrent and distributed systems.

In Akka, actors are created in an actor system. Each actor has an address, a mailbox,

a state and a behaviour. An actor can send messages to another actor through its

unique address. These messages are stored in an actor’s mailbox for processing.

Messages in an actor’s mailbox are processed one at a time (Akka, 2011; Mishra,

2017). Akka is widely used in the development of a variety of distributed applications

and frameworks (Rosà et al., 2016).

Akka also provides a solution for stream processing called Akka Streams API. The

Akka Streams API is based on the Akka actor-model and provides the fundamental

principles for developing back-pressured streaming applications (Mishra, 2017;

Lightbend Inc., 2019).

In the feeder component of Kognitor, a simulated data repository was used as the

data source and an Akka actor (called the feeder-actor) was used to implement a

pipeline between the repository and Kognitor. The feeder-actor retrieves data

from the repository at a predetermined interval and sends it to another actor

(persistData-actor) to store in the storage component of Kognitor. As soon as

the persistData-actor is done, it sends a learn message to the learn-actor.

The learn-actor is responsible for initiating the learning process on the speed

layer of Kognitor. The feeder-actor is also responsible for initiating the learning

process in the batch layer by calling a batchlearn-actor.

For this thesis, data for only two teams were considered. Thus, learning on two teams

was initiated sequentially using two actors, one per team.

5.3.2 Storage

Kognitor uses Apache Cassandra as its storage component. This means that all four

databases were implemented using Cassandra. According to The Apache Software

Foundation (2015), Cassandra has the best support for replication across multiple

datacentres, and this provides low latency reads and writes. Apache Cassandra is

also fault-tolerant and a right choice for scalability.

 65

As mentioned in chapter 4, the storage component of Kognitor is made up of four (4)

databases, two of which forms part of the batch layer of this Lambda architecture

implementation. The other two also forms part of the speed layer (cf. Section 4.3.1.2).

The two databases in the batch layer are called k_master (for the master database)

and k_batchview (for the batch-view database). In the speed layer, the pseudo-

master database is called k_pseudomaster while the real-time-view database is

called k_realtimeview.

The k_master database is made up of four tables namely team, rating, form and

fixture. These tables hold the immutable data as specified in the Lambda architecture.

The team table holds generic information about a football team, the rating table stores

the rating of a football team, the form table holds the last six (6) performances of a

football team, and the fixture table stores data about a football match event. Data in

the rating, form and fixture tables are timestamped. The k_pseudomaster database is

like the k_master database and contains the same tables (see APPENDIX A:

STORAGE).

There are additional ‘feeder’ tables in the k_master database which are not part of the

system’s source of truth but were used to implement the simulation of data flow into

the system (cf. Section 5.3.2).

 After computation on data in the k_master and k_pseudomaster databases, results

are stored in the respective databases. The k_batchview database holds results of

computation done on data in k_master database while the k_realtimeview database

holds results of computation on data in the k_pseudomaster database. Both

k_batchview and k_realtimeview databases have a similar table called

teamprobability (see APPENDIX A: STORAGE).

5.3.3 Server

The server component is the core of Kognitor. It is responsible for performing

computations on the data stored in the master and pseudo-master databases using

probabilistic programming. As indicated in chapter 4, the server component is divided

into two modules – the batch module and the real-time module.

The batch module and real-time module are developed using Figaro. Figaro is a

probabilistic programming language that enables easier creation of probabilistic

models using the powerful features of the Scala programming language.

 66

Probabilistic models are represented as Figaro models consisting of elements.

Queries to a probabilistic reasoning system are directed at specific elements of

interest. According to Pfeffer (2016), a Figaro model requires four main features:

• The elements/variables in the model.

• The relationships between elements in the model.

• The functional forms of the relationships.

• The numerical parameters of the functional forms.

Each of these components is discussed in detail with respect to Kognitor.

Elements in the Figaro Model.

In choosing elements for our football model in Kognitor, the properties of a football

team that indicates whether they win in a competition are considered. These

properties are also known as variables. In Figaro, these variables have types/classes

such as String, Double, Boolean, etc. Some of these properties include the following:

• Team financial strength.

• Team’s position in the English Premiership table.

• Team’s rating.

• Team’s form.

• Team’s home ground advantage.

• Individual performance of players in the team.

• Team’s manager.

To keep the application relatively simple, the following elements are selected for

Kognitor:

• hasGoodRating – An element whose value is true if a team has good rating.

Teams rating is between 0.0 and 10.0. The type of this element is Boolean.

• hasGoodForm – A element whose value is true if a team has won most of the

last six (6) played games. This is a Boolean element.

• hasHomeGroundAdvantage – A Boolean element whose value is true if a

team has home-ground advantage. This means that the team has either won
or at least drew most of the games played on their home-ground.

• isWinner – A Boolean element whose value is true if the team won a game.

The dependencies between the elements

After choosing the elements in the model, the next step is to define the dependencies

between these elements. Probabilistic reasoning is about using dependencies

between elements. Dependency between two elements are established if knowledge

of one element influences the other element (Pfeffer, 2016).

There are two types of dependencies – the directed dependencies which usually go

from one element to the other, and the undirected dependencies which models the

instance where the direction of influence is unknown. Direct dependencies are

encoded using Bayesian networks while the undirected dependencies are modelled

using Markov networks.

 67

For our football model, the dependencies between the chosen elements are based on

the following simplifying decisions:

• A team’s form, rating and home-ground advantage determines if they win or

lose a game.

The dependency model is depicted in Figure 5.1.

Figure 5.1: Bayesian dependency model for Kognitor elements

The elements are represented as nodes in the dependency diagram, and there is an

edge between one node to another if the second node is influenced by the first node.

This kind of network is known as a Naïve Bayes’ model.

The functional forms of the dependencies

In Figaro, functional forms are the element class constructors that are used to build

the model. Functional forms express the dependencies between the elements in a

model in probabilistic terms without numerical values.

In our model, we have selected the elements and have established the dependencies

between the elements. Now, let’s determine the functional forms these dependencies

take. Let’s start with the elements that do not depend on any other variable.

The hasGoodRating element has a Boolean type with true or false values. This

value depends on the actual rating probability of a team which is derived from the

range 0 to 10. In this range, 0 – 5.9 corresponds to bad, 6 – 6.9 corresponds to

average, and 7 – 10 corresponds to good. In this case, the If construct in Figaro is

used to specify the functional form for hasGoodRating. The If construct is one way

 68

to specify a compound element in Figaro. If constitutes a test, a then clause

(element) and an else element (Pfeffer, 2016). The functional form of the

hasGoodRating element is as follows:

val highRating = Flip(goodRatingProbability)

val lowRating = Flip(badRatingProbability)

val hasGoodRating = If(isWinner, highRating, lowRating)

The hasGoodForm element is also a Boolean type with true or false values. This

element depends on the probability that a team has won at least four (4) out of their

last six (6) games. The If class is used to represent this functional form in Figaro:

val highForm = Flip(goodFormProbability)

val lowForm = Flip(badFormProbability)

val hasGoodForm = If(isWinner, highForm, lowForm)

The same goes for the hasHomeGroundAdvantage element, it is also represented

using the If construct:

val hasGoodHead2Head = Flip(goodHead2HeadProbability)

val hasBadHead2Head = Flip(badHead2HeadProbability)

val hasHomeGroundAdvantage = If(isWinner,

hasGoodHead2Head, hasBadHead2Head)

The last element isWinner is of a Boolean type and a deterministic variable. This

means that it is fully dependent on the hasHomeGroundAdvantage,

hasGoodRating and hasGoodForm elements. The Flip construct is used here to

specify the functional form. Flip takes a Double argument between 0 and 1

inclusive, which represents the probability that the element’s value is true (Pfeffer,

2016). The functional form of isWinner is defined as follows:

val isWinner = Flip(winProbability)

This represents the probability that a team wins a match.

Numerical parameters

This is the final component in the design of a probabilistic model. The functional

forms have parameters. These parameters are assigned numerical values. Care must

be taken to assign valid values for the functional forms.

In our case, initial numerical values are assigned to the parameters before any data is

seen. The Beta distribution is used to derive the initial probabilities. The Beta

distribution has two numerical parameters which represents the number of times two

outcomes have been observed, plus 1. After data have been passed through the

model through the feeder component, these numerical values are ‘learned’ or

calculated from the data.

 69

The elements highRating and lowRating are given initial values that represent

the probability that a team’s rating is greater than or equal to 6.0 and less than 0.6

respectively. Subsequently, after data is known, this numerical value for

highRating, lowRating and hasGoodRating is learned from the data.

The functional form of hasHomeGroundAdvantage is specified by the If construct.

Again, initial parameters are given to the probabilities using the Beta distribution. In

this case, we assume that a team has won as least four (4) games out of six (6)

games in their home ground as the initial value for hasGoodHead2Head. The

opposite assumption is made for the initial value of hasBadHead2Head. Thereafter,

when data is known, this numerical parameter is calculated.

The numerical parameter for hasGoodForm element is also derived using a Beta

distribution. An assumption that a team has won 4 or more games in their last six (6)

games is used to derive the initial parameter for highForm. The initial value of

lowForm is derived based on the assumption that a team has lost at least 4 games

out of their last six (6) games. Subsequently, when data is known, these parameters

are calculated.

Initial numerical parameter for isWinner is derived based on the assumption that a

team has won as much games as they have lost.

Putting the elements, the dependencies between the elements, the functional forms

of the elements and their numerical parameters all together provides a Figaro

(football) model for our case study. This football model is used for learning as well as

reasoning on data.

The learning process involves using the data in the master and pseudo-master

databases as training data to produce football models used in the reasoning process.

However, the learning process uses a prior football model which is made up of initial

parameters (assumptions) as mentioned earlier. The learning process transforms the

prior football model into reasoning football models using a learning algorithm and the

training data. Figaro provides a learning algorithm called expectation maximization

(EM) which is used as the learning algorithm in Kognitor.

A point to remember is that learning happens in both the batch and real-time modules

of the server component in Kognitor, and at different intervals. In the batch module,

 70

learning happens at a scheduled interval and it uses all the data available in the

master database as training data. Learning in the real-time module happens on new

data as soon as it enters the system.

The result of learning in the batch component is the football model used to perform

batch reasoning while the football model produced from learning in the real-time

module is used to perform real-time reasoning. The batch and real-time views are

stored in the batch-view database and real-time-view database respectively.

Just like the learning process, reasoning process is done in the batch and real-time

modules to provide a probabilistic score to queries. However, instead of a learning

algorithm, reasoning uses any inference algorithm. Figaro has a collection of built-in

inference algorithms. In Kognitor, the variable elimination (VE) algorithm is used as

the inference algorithm.

Queries to Kognitor are targeted towards an element of interest. The default element

of interest is the isWinner element. The inference algorithm uses the football

models (batch view and real-time views) to respond to queries.

5.4 Testing

This section focuses on the testing of the Kognitor system to show the effectiveness

of the design concept.

5.4.1 Test System

The evaluation method to demonstrate the usefulness of this research was selected

to be experimental (cf. Section 3.4.5). This involves simulation in an appropriate

environment for which Kognitor is designed for. Thus, a test environment consistent

with the design science research methodology is designed.

The test environment provides a common interface between the simulation and

Kognitor (the system to be tested) as is obtainable in the real world. The simulation is

developed using Cassandra database running on a Docker container. The simulation

environment houses three data objects namely ratingfeeder, fixturefeeder and

formfeeder (cf. Section 5.3.2). These feeder objects contain timed data about a team;

the ratingfeeder contains ratings of a team at a given time, the fixturefeeder contains

data about football matches between two teams and the formfeeder contains data on

a team’s form at a given time.

 71

Data is exposed to Kognitor from the database in the simulation through a RESTful

webservice implemented using the Play framework. Kognitor consumes the data in

the testbed through a data pipeline implemented by the Akka feeder-actor (cf.

Section 5.3.1a.5.3.1). The system stores and performs learning computation on the

data. As mentioned in Section 5.3.1a.5.3.3, learning happens in two places: the batch

layer and the speed layer. The feeder-actor is scheduled to read data from the

simulation in a 1-day interval for this test. Learning Process in the speed layer

happens immediately data is read into Kognitor. The feeder-actor is also scheduled to

initial batch learning computation every 7 days. Results of computation are also

stored in the system ready for query.

The various components of Kognitor are developed using off-the-shelf technologies.

The server component of Kognitor is implemented using the Scala programming

language, Figaro, Akka and the Play framework while the storage component is

implemented using Cassandra database on a Docker container. Communication

between the various components of Kognitor is enabled via RESTful web services.

Kognitor also exposes RESTful web services that accepts queries and responds with

probabilistic answers.

5.4.2 Test Results

As stated earlier, two teams from the EPL namely Manchester United and Chelsea

were selected for this test. The test was done on the teams’ previous EPL games for

last season (2017/18) and current season (2018/19); that is Manchester vs Chelsea

and vice versa. Both teams had played three (3) games, two (2) of which were in the

last season.

5.4.1.1 Learning

On the first run, the teams’ data for the first game were injected into Kognitor.

Learning computation happened immediately on the speed layer. This learning was

repeated at least five (5) times to get an approximate learning duration. It was

discovered that learning on new data takes approximately 1 second (see Table 5.1).

After the repeated test on speed layer, the batch learning process was initiated.

Again, it was run five (5) times to get an estimate of its duration. The batch learning

process and the real-time learning process took approximately the same amount of

time as learning was on the same data size.

 72

For the second game, real-time learning in the speed layer happened at

approximately the same amount of time in the first run. This is because learning

computation in the real-time module of Kognitor is incremental; it only learns on the

new data and increments/updates the real-time view. In this test, this incremental

update is implemented by taking an average of the new real-time view and the old

real-time view. However, for the batch layer, the amount of data size has increased

and learning computation in the batch module uses all the data in the master

database. Thus, the learning process took longer compared to the first run;

approximately 3 seconds (see Table 5.2).

Table 5.1: First Run Learning Time in Seconds

Manchester United Chelsea Total Time

0.48 0.994 1.474

0.416 0.537 0.993

0.383 0.534 0.917

0.503 0.878 1.381

0.581 0.757 1.338

Average Time 1.2126

Table 5.2: Second Run Learning Time (on batch module) in Seconds

Manchester United Chelsea Total Time

1.353 1.204 2.557

1.605 1.997 3.602

1.784 1.615 3.399

1.689 4.985 3.674

1.889 1.483 3.372

Average Time 3.3208

Table 5.3: Third Run Learning Time (on batch module) in Seconds

Manchester United Chelsea Total Time

2.948 3.222 6.17

3.152 3.22 6.372

2.625 2.942 5.567

2.577 2.687 5.264

3.047 2.587 5.634

Average Time 5.8014

Learning on all three games in the batch module also took longer (See Table 5.3). A

point to remember is that as soon as the result from the batch reasoning is complete,

the corresponding real-time view is discarded and replaced with the batch view. This

is following the guidelines of Lambda architecture. See APPENDIX B: TEST

LEARNING RESULTS for learning results.

 73

5.4.2.1 Reasoning

Kognitor is designed such that there must be available views (batch and real-time) for

a successful reasoning. Kognitor exposes a RESTful web service endpoint that

accepts a reasoning request on a team. A reasoning request is directed at the

isWinner element. There are three (3) reasoning options available in Kognitor which

is enabled by the implementation of Lambda architecture. Thus, a reasoning request

can be directed at the batch module, the real-time module or both batch and real-time

modules.

Table 5.4: Reasoning Time in Seconds

 Real-time Module Batch Module Real-time & Batch Modules

Time 1 0.038 0.032 0.053

Time 2 0.043 0.031 0.06

Time 3 0.04 0.041 0.061

Time 4 0.029 0.030 0.063

Time 5 0.054 0.022 0.058

Average 0.0408 0.312 0.059

Response time for the individual modules is depicted in Table 5.4. Reasoning with the

three (3) options were carried out on one team repeatedly for five (5) times. The

reasoning takes less time than the learning processes. This achieves low latency in

big data processing.

5.5 Chapter Summary

This chapter focuses on the demonstration and evaluation of the artefact design

described in Chapter 4. This is in fulfilment of the fourth (cf. Section 3.4.4) and fifth

(cf. Section 3.4.5) activities of the DSRM process as outlined by Peffers et al. (2007).

The result of a design science research should demonstrate its usefulness in the

problem domain using an appropriate demonstration method and must be evaluated

using a defined evaluation method to see how well it solves the problem in

accordance to the specified objectives.

This chapter started with an introduction that lead to the choice of a problem domain

– prediction and inference. Then a case study called Kognitor was implemented to

demonstrate the design concept described in Chapter 4. The various big data tools

and technologies used in this demonstration were described in the context of the

different components of the RT-PRLA system. The server component which forms the

core of Kognitor was described with emphasis on the creation of probabilistic models

using Figaro, a probabilistic programming system, and the effective combination of

 74

big data tools to implement the Lambda architecture for real-time response to

queries.

Kognitor was evaluated using the experimental evaluation method and tested with

simulated data. This evaluation was against the design objectives listed in Section 4.2

of Chapter 4 and the second research question (R2) presented in Chapter 1 (cf.

Section 1.4).

Kognitor used Akka actors to manage data ingestion and back pressure.

Computations in Kognitor are divided into two: learning computation and reasoning

computation. The learning computation happens periodically in the batch module and

real-time module respectively, and this is also initiated using Akka actors. The

learning computation uses a prior probabilistic model on data and a learning

algorithm to produce views used for the reasoning computation. This satisfies the

design objective DR4 (cf. Section 4.2).

Reasoning computation is like the learning computation with two differences: (1)

Reasoning computation uses an inference algorithm on the result of the learning

computation to respond to queries. Responses to queries are probabilistic scores. (2)

There is a choice of reasoning option for the user; the user can reason on the batch

layer, the real-time layer or both.

Response time for both learning and reasoning were present in the testing section of

this chapter. The response time for the reasoning computation is of more importance

to this research. Thus, low latency was achieved using probabilistic programming and

an artistic combination of big data tools to implement Lambda architecture.

 75

CHAPTER SIX

RESEARCH EVALUATION

Chapter 1 presented the aim and objectives of this study which were reiterated in

Chapter 4 as the design requirement for the RT-PRLA system. This chapter presents

an assessment of the research process used in this study to achieve the design for

the RT-PRLA in the context of the aim and objectives as stated in chapter 1.

6.1 Introduction

The output of a design science research is a design artefact which should be

relevant, and the process of construction and evaluation of the artefact should involve

rigorous methods (Hevner et al., 2004). This chapter measures the research activities

and results against the guidelines by A. R. Hevner et al. (2004) to justify this research

as a design science research.

6.2 Hevner’s DSR Guidelines

This section outlines the seven (7) guidelines proposed by A. R. Hevner et al. (2004),

and how this research implemented or adhered to each guideline.

6.2.1 Design as an Artefact

The first guideline states that the result of a design science research should be an

artefact developed to address a problem. This artefact can be in the form of either

construct, model, methods, instantiations or a combination of those. The

implementation and application of the artefact should be effectively described.

This research resulted in an artefact in the form of an instantiation – a real-time

reasoning system using Lambda architecture (RT-PRLA). Chapter 4 presented the

design concept of the RT-PRLA system. The RT-PRLA system was designed to

advance the implementation of big data solutions using probabilistic programming.

Chapter 4 explained the three (3) components of the RT-PRLA system namely the

feeder component, the storage component and the server component. The server

component is the engine of the RT-PRLA system and includes the novel approach

pertinent to this research.

6.2.2 Problem Relevance

The second guideline emphasizes the need for relevance. The design artefact should

provide a solution to a relevant problem. “The objective of design-science research is

 76

to develop technology-based solutions to important and relevant business problems.”

(Hevner et al., 2004: 83).

The problem space or specific environment determines the relevance of a DSR

endeavour (cf. Chapter 3). In this research, the problem space is specific to decision-

makers. Decision making is part of, and central to the existence of every business.

Section 1.2 and Section 1.3 of Chapter 1 provided the background and motivation to

this research and stated the problem statement that addresses the relevance of this

research. Chapter 2 also emphasized the importance of this research after a

systematic literature review. The design concept of the RT-PRLA system is to aid

decision-makers especially in uncertain situations by providing real-time probabilistic

reasoning on big data.

6.2.3 Design Evaluation

Guideline 3 talks about the evaluation of the design artefact. This is an important step

in the design science research process. “The utility, quality, and efficacy of a design

artefact must be rigorously demonstrated via well-executed evaluation methods.”

(Hevner et al., 2004: 83). Evaluation determines the usefulness of an artefact in the

business environment.

Chapter 5 presented the implementation of a case study called Kognitor. Kognitor

was evaluated using simulation method. Simulation is one of the acceptable ways to

evaluate a designed artefact as suggested by A. R. Hevner et al. (2004). In addition

to the simulation process in chapter 5, there was continuous evaluation during the

design process to achieve the design detail decision as supported by Vaishnavi et al.

(2004).

6.2.4 Contribution

The fourth guideline addresses the need for a design science research to have a

comprehensible and justifiable contribution to the body of knowledge. The

contribution can be in the form of a design artefact, design foundations, and/or design

methodologies.

The primary contribution of this research is the design artefact, the RT-PRLA system.

The RT-PRLA system is the result of the artistic combination of the probabilistic

programming concept and big data technologies using Lambda architecture to

improve decision-making tasks especially during uncertainty.

 77

A secondary contribution of this research can be seen in the contribution towards the

body of knowledge in the field of big data, real-time big data processing and Lambda

architecture. The developed case study in chapter 5 demonstrated how the RT-PRLA

system can be implemented using existing off-the-shelf big data tools and

probabilistic programming languages on commodity hardware, thus making it cost-

effective.

6.2.5 Research Rigor

Guideline 5 describes the importance of rigor in design science research. A. R.

Hevner et al. (2004) pointed out that rigorous methods should be used in the

construction and evaluation of the design artefact. This rigor is achieved through the

effective use of theoretical foundations in the domain and research methodologies.

Chapter 2 presented the knowledge base relevant to this research. In chapter 3, the

research paradigm, methodology, methods and techniques were chosen with reasons

based on the research pyramid of Jonker & Pennink (2009). Chapter 3 also adopted

the design science research process of Peffers et al. (2007). Each step in the design

science research process was based on knowledge derived from the literature review

in chapter 2. Also, the various methods and techniques used to design, implement

and evaluate the design artefact were gathered from literature. Some examples are

the Lambda architecture and probabilistic programming technique.

6.2.6 Design as a Search Process

A. R. Hevner et al. (2004) describes the design science research process as an

iterative (search) process that seeks to solve relevant business problems using the

appropriate knowledge base.

The RT-PRLA system is the result of a search process. In chapter 2, current big data

tools and techniques were identified and a systematic literature review was

performed. Chapter 4 presented a list of design objectives established because of a

search process.

6.2.7 Communication of Research

The final guideline is the effective communication of the research to the relevant

audience. A. R. Hevner et al. (2004, p. 83), states that “Design-science research must

be presented effectively both to technology-oriented as well as management-oriented

audiences.”

 78

This thesis is a major communication documentation of this research. Again, this

research or part of it was presented at various occasions during the research

process. During the early stages of this research, a proposal was presented to a

mixed audience comprising senior academics, postgraduate students and industry

officials at the Department of Information Technology and Faculty of Informatics and

Design, CPUT.

The section titled “Publications from this Research” outlines a list of all

conferences/journals where papers from this research were presented.

6.3 Chapter Summary

The different steps and stages in this research were revisited and measured against

Hevner's et al. (2004) design science research guidelines. This is to ensure that this

research adequately complies with the design science research process.

All the search and design process that resulted in the development of the RT-PRLA

system were documented in this thesis. The RT-PRLA system was demonstrated and

evaluated using the experimental method.

 79

CHAPTER SEVEN

DISCUSSION & CONCLUSION

The main goal of this research was introduced in chapter 1 which is to develop a real-

time big data technology that uses probabilistic reasoning and Lambda architecture to

output response in real-time.

The first section of this chapter summarises this study and presents an introduction to

this chapter. Section 7.2 presents the findings of this research with respect to the

research aims. Section 7.3 contains a summary of this research and Section 7.4

indicates the direction for further research.

7.1 Introduction

This research tackles the problem associated with real-time probabilistic processing

of both real-time and historic big data. Probabilistic reasoning involves the

development of a probabilistic model which is passed through an inference algorithm

to produce probabilistic results. However, due to the identified hurdles associated

with the development of probabilistic models using well established probability

theories like Bayesian Network or Markov models, the programming and machine

learning community proposed a novel concept called probabilistic programming.

To determine the extent of influence probabilistic programming has in the processing

of big data, this study included a systematic literature review of big data system

implemented using probabilistic programming. The garnered information indicated

the possible effective influence of probabilistic programming in big data processing.

Thus, this research’s aim and objectives were re-established to show the relevance of

this study. An artefact was developed and evaluated using design science research

methodology. The design process to achieve the artefact was also evaluated using

documented procedures to demonstrate research rigor.

This chapter wraps up this study and provides findings and answers to the research

questions.

7.2 Research Findings

The general purpose of this research is to find out existing big data solutions that

implemented probabilistic programming in processing data, and to improve decision

making by developing a real-time probabilistic reasoning system. This aim resulted in

two research questions for the research (cf. Section 1.4).

 80

7.2.1 Answers to Research Questions

This section provides answers to the research questions outlined in chapter 1. These

answers are based on the fulfilment of the research objectives stated in chapter 1.

RQ 1 What are the existing big data solutions implemented using probabilistic

programming?

To answer this question, a systematic literature review was conducted which is in line

with the first objective of this research. However, before the systematic review,

chapter 2 presented a literature review on the various knowledge bases relevant to

this research.

The result of the systematic literature review indicated one big data solution called

InferSpark that uses probabilistic programming (cf. Section 2.4). InferSpark is a

probabilistic programming framework built on Apache Spark. The developers of

InferSpark claimed that at the time of publication, InferSpark was the only solution

that implemented big data processing using probabilistic programming (Zhao et al.,

2017).

RQ 2 How to achieve low latency in big data processing?

During the systematic literature review process, the only solution that was found was

also evaluated. The review identified a limitation in InferSpark: InferSpark could not

scale out on a distributed framework. Again, InferSpark is built on Apache Spark

which supports several machine learning algorithms, but they do not support user

defined models. Other findings identified by the designer of InferSpark is the claim

that InferSpark is the only big data solution that uses probabilistic programming.

These key findings were utilized in the response to the second research question.

They also emphasized the need and usefulness of a real-time probabilistic reasoning

system (cf. Section 2.4.4.4).

This research proposes the use of existing big data solutions, the concept of

probabilistic programming and Lambda architecture to develop a tool to handle real-

time big data processing. Data computation is solely handled using probabilistic

programming implemented using Figaro, and the real-time response is achieved

using Akka actors and Lambda architecture developed by Marz & Warren (2015).

 81

The design concept was demonstrated with a case study: Kognitor. The crux of the

design concept is that the server component is implemented using Figaro that allows

for easy creation of user-defined probabilistic models used along with inference

algorithms provided by Figaro to respond to queries in real-time.

The evaluation of Kognitor demonstrated low latency in the processing of data (cf.

Section 5.4).

7.3 Summary

This thesis reports a research project regarding the design of a real-time probabilistic

reasoning system using Lambda architecture. The inspiration behind this research is

the need for an automated real-time system that enhances decision-making

especially during uncertainty. This need was identified after a systematic literature

review was conducted.

Decision-makers are required to make crucial decisions, most times in the face of

uncertainty. This decision-making process entails the use of experience and recent

events to arrive at a decision. This means that reasoning over historic data and real-

time data to produce real-time response is imperative.

To improve decision-making in times of uncertainty, this research proposed the real-

time probabilistic reasoning (RT-PRLA) system using Lambda architecture. The

design concept of the RT-PRLA system is centred around probabilistic programming

for data processing and Lambda architecture to achieve real-time computation on

both historic and real-time data.

The core of the RT-PRLA system is the server component which is made up of two

modules: the batch module and the real-time module. A probabilistic model is

implemented on the server component. Both modules of the server components are

responsible for retrieving data from their corresponding data stores (master database

and pseudo-master database) and creating corresponding post parameters (batch

views and real-time views) which are like the serving layer and speed layer of the

Lambda architecture. These views are used with the probabilistic model and

inference algorithm to respond to queries in real-time.

Another contribution of the RT-PRLA system is in the reuse of existing open-source

big data technologies and commodity hardware to develop a cost-effective big data

solution.

 82

7.4 Future Work

The scope of this research was tied to the research goals which were to find the

number of existing big data technologies that use probabilistic programming to handle

big data problems, and to design a real-time big data solution using probabilistic

programming and Lambda architecture.

Thus, the focus was mainly on the probabilistic reasoning on big data using

probabilistic programming and Lambda architecture. Other human-related

components such as the user interface that deals with users’ interaction with the

system were designated as out of scope for this research. Therefore, a possible

direction for future work could be in the design of the user interface to the RT-PRLA

system.

Two out of the highlighted design objectives: DR5 and DR6 (cf. Section 4.2) were not

implemented in this study. DR5 proposes that the system should implement a fully

automated compressing and filtering mechanism when ingesting data. In this study,

an already clean simulated data was used. DR6 also suggests that the system should

be generic: used in different problem domains. These are areas for further research.

Furthermore, the experimental evaluation method was used to assess the RT-PRLA

system. This evaluation was demonstrated using a test system and simulation with

real data. This is a limitation factor. Simulation was selected as a suitable method for

evaluating the system; however, other evaluation methods could present further

findings to the design concept of the RT-PRLA system. Consequently, more testing

using different evaluation methods is required.

 83

REFERENCES

Ábrahám, E. & Havelund, K. 2016. Some recent advances in automated analysis.
International Journal on Software Tools for Technology Transfer, 18(2): 121–128.
http://link.springer.com/10.1007/s10009-015-0403-0.

Acharya, S. & Biswal, M.P. 2011. Solving probabilistic programming problems
involving multi-choice parameters. OPSEARCH, 48(3): 217–235.
http://link.springer.com/10.1007/s12597-011-0053-2.

Adar, E. & Re, C. 2007. Managing uncertainty in social networks. IEEE Data Eng.
Bull, 30(2): 15–22.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.397&rep=rep
1&type=pdf.

Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J. &
Tallent, N.R. 2010. HPCTOOLKIT: Tools for performance analysis of optimized
parallel programs. Concurrency Computation Practice and Experience, 22(6):
685–701.

Akka. 2011. Akka: Build powerful reactive, concurrent, and distributed applications
more easily. https://akka.io/ 10 November 2017.

Alon, N. 2013. Paul Erdős and probabilistic reasoning. In Bolyai Society Mathematical
Studies. 11–33.

Apache Software Foundation. 2015. Apache Storm. http://storm.apache.org/ 13
February 2018.

Apache Software Foundation. 2010. S4 Incubation Status - Apache Incubator.
http://incubator.apache.org/projects/s4.html 13 February 2018.

Apache Software Foundation. 2016. Welcome to ApacheTM Hadoop®!
http://hadoop.apache.org/ 14 May 2016.

ApacheFlume. 2016. Welcome to Apache Flume — Apache Flume.
https://flume.apache.org/ 4 November 2017.

ApacheKafka. 2017. Apache Kafka. https://kafka.apache.org/ 13 February 2018.
ApacheSamza. 2016. Samza. http://samza.apache.org/ 9 November 2017.
Artikis, A., Etzion, O., Feldman, Z. & Fournier, F. 2012. Event processing under

uncertainty. In Proceedings of the 6th ACM International Conference on
Distributed Event-Based Systems - DEBS ’12. New York, New York, USA: ACM
Press: 32–43. http://dl.acm.org/citation.cfm?doid=2335484.2335488.

Assunção, M.D., Calheiros, R.N., Bianchi, S., Netto, M.A.S. & Buyya, R. 2015. Big
Data computing and clouds: Trends and future directions. Journal of Parallel and
Distributed Computing, 79–80: 3–15.
http://www.sciencedirect.com/science/article/pii/S0743731514001452.

Astakhov, V. & Chayel, M. 2015. Lambda Architecture for Batch and Real- Time
Processing on AWS with Spark Streaming and Spark SQL. , (May): 1–12.
https://d0.awsstatic.com/whitepapers/lambda-architecure-on-for-batch-aws.pdf.

Baer, T. 2013. The Promise of Fast Data – An Inside Look at Oracle Technology.
Ovum.

Bajaber, F., Elshawi, R., Batarfi, O., Altalhi, A., Barnawi, A. & Sakr, S. 2016. Big Data
2.0 Processing Systems: Taxonomy and Open Challenges. Journal of Grid
Computing, 14(3): 379–405. http://dx.doi.org/10.1007/s10723-016-9371-1.

Barlow, M. 2013. Real-Time Big Data Analytics - Emerging Architecture. 1st ed.
Carlifornia: O’Reilly.

Barnes, T.J. 2013. Big data, little history. Dialogues in Human Geography, 3(3): 297–
302. http://dhg.sagepub.com/lookup/doi/10.1177/2043820613514323.

Baskerville, R., Pries-Heje, J. & Venable, J. 2009. Soft design science methodology.
In Proceedings of the 4th International Conference on Design Science Research
in Information Systems and Technology - DESRIST ’09. New York, New York,
USA: ACM Press: 11. http://portal.acm.org/citation.cfm?doid=1555619.1555631.

Bayesia. 2018. BayesiaLab Introduction. http://www.bayesia.com/introduction 27

 84

February 2018.
Benbasat, I. & Zmud, R. 1999. Empirical research in information systems: the practice

of relevance. MIS quarterly, 23(1): 3–16. http://www.jstor.org/stable/249403.
Bendler, J., Wagner, S., Brandt, T. & Neumann, D. 2014. Taming Uncertainty in Big

Data. Business & Information Systems Engineering, 6(5): 279–288.
http://link.springer.com/10.1007/s12599-014-0342-4.

Bhadani, A.K. & Jothimani, D. 2016. Big Data: Challenges, Opportunities and
Realities. In M. K. Singh & D. . Kumar, eds. Effective Big Data Management and
Opportunities for Implementation. Pennsylvania, USA: IGI Global: 1–24.
https://arxiv.org/ftp/arxiv/papers/1705/1705.04928.pdf.

Bifet, A. 2013. Mining big data in real time. Informatica (Slovenia), 37(1): 15–20.
Bilandzic, M. & Venable, J. 2011. Towards Participatory Action Design Research:

Adapting Action Research and Design Science Research Methods for Urban
Informatics. The journal of Informatics, 7(3): 1–16. http://ci-
journal.net/index.php/ciej/article/view/786/804.

Borkar, V.R., Carey, M.J. & Li, C. 2012. Big data platforms. XRDS: Crossroads, The
ACM Magazine for Students, 19(1): 44.
http://dl.acm.org/citation.cfm?doid=2331042.2331057.

Boyd, D. & Crawford, K. 2012. Critical Questions for Big Data. Information,
Communication & Society, 15(5): 37–41.

Boyd, D. & Crawford, K. 2011. Six Provocations for Big Data. SSRN Electronic
Journal: 1–17. http://www.ssrn.com/abstract=1926431.

Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M. & Khalil, M. 2007. Lessons
from applying the systematic literature review process within the software
engineering domain. Journal of Systems and Software, 80(4): 571–583.
http://dx.doi.org/10.1016/j.jss.2006.07.009.

Brown, B., Chui, M. & Manyika, J. 2011. Are you ready for the era of Big Data?
McKinsey & Company.

Budgen, D. & Brereton, P. 2006. Performing systematic literature reviews in software
engineering. Int. Conf. Soft. Engin.: 1051.
http://portal.acm.org/citation.cfm?doid=1134285.1134500.

Cambridge Dictionary. 2016. Big meaning in the Cambridge English dictionary.
Dictionary.cambridge.org. http://dictionary.cambridge.org/dictionary/english/big
13 November 2016.

Cambridge English Dictionary. 2011. research Meaning in the Cambridge English
Dictionary. Cambridge English Dictionary.
https://dictionary.cambridge.org/dictionary/english/research?q=Research 11
March 2018.

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M.A., Li, P. & Riddell, A. 2016. Stan : A Probabilistic Programming
Language. Journal of Statistical Software, 76(1): 1–32.

Chen, J., Chen, Y., Du, X., Li, C., Lu, J., Zhao, S. & Zhou, X. 2013. Big data
challenge: a data management perspective. Frontiers of Computer Science, 7(2):
157–164. http://www.scopus.com/inward/record.url?eid=2-s2.0-
84876005101&partnerID=40&md5=8bc0d2c00d407e15a6d37d1df34e5f42.

Chen, M., Mao, S. & Liu, Y. 2014. Big Data: A Survey. Mobile Networks and
Applications, 19(2): 171–209. http://link.springer.com/10.1007/s11036-013-0489-
0.

Chen, S., Li, W., Li, M., Zhang, X. & Min, Y. 2014. Latest Progress and Infrastructure
Innovations of Big Data Technology. In 2014 International Conference on Cloud
Computing and Big Data. IEEE: 8–15.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7062865.

Choi, J., Nazareth, D.L. & Jain, H.K. 2010. Implementing Service-Oriented
Architecture in Organizations. Journal of Management Information Systems,
26(4): 253–286.

Collins Dictionary. 2018. Practice definition and meaning | Collins English Dictionary.
https://www.collinsdictionary.com/dictionary/english/reasoning 22 February 2018.

 85

Conrady, S. & Jouffe, L. 2013. Knowledge Discovery in the Stock Market with
Bayesian Network. bayesia.us.

Creswell, J. 2009. Research design: Qualitative, quantitative, and mixed method
approaches. 2nd ed. Sage Publications.

Creswell, J.W. 2007. Qualitative Inquiry and Research Design: Choosing Among Five
Approaches. Second. Sage Publications.

Creswell, J.W. 2013. Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches. 4th ed. Sage Publications.

Crotty, M. 1998. The foundations of social research: Meaning and perspective in the
research process. London: Sage Publications.

Davenport, T.H., Barth, P. & Bean, R. 2012. How ‘ Big Data ’ Is Different. MIT Sloan
Management Review, 54(1): 43–46.

Dean, B.Y.J. & Ghemawat, S. 2010. MapReduce: a flexible data processing tool.
Communications of the ACM, 53(1): 72–77.
http://portal.acm.org/citation.cfm?doid=1629175.1629198%5Cnhttp://dl.acm.org/
citation.cfm?id=1629198.

Dean, J. & Ghemawat, S. 2008. MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1): 107.
http://dl.acm.org/citation.cfm?id=1327452.1327492%5Cnhttp://portal.acm.org/cit
ation.cfm?doid=1327452.1327492.

Delen, D. & Demirkan, H. 2013. Data, information and analytics as services. Decision
Support Systems, 55(1): 359–363. http://dx.doi.org/10.1016/j.dss.2012.05.044.

Demchenko, Y., Grosso, P., de Laat, C. & Membrey, P. 2013. Addressing big data
issues in Scientific Data Infrastructure. In 2013 International Conference on
Collaboration Technologies and Systems (CTS). IEEE: 48–55.
http://ieeexplore.ieee.org/document/6567203/.

DeWitt, D. & Gray, J. 1992. Parallel database systems: the future of high performance
database systems. Communications of the ACM, 35(6): 85–98.
http://portal.acm.org/citation.cfm?doid=129888.129894.

Dijcks, J. 2012. Oracle: Big data for the enterprise. Oracle White Paper, (June): 16.
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Oracle+:+Big+D
ata+for+the+Enterprise#0.

Dobre, C. & Xhafa, F. 2014. Parallel Programming Paradigms and Frameworks in Big
Data Era. International Journal of Parallel Programming, 42(5): 710–738.
http://link.springer.com/10.1007/s10766-013-0272-7.

Domingos, P. & Richardson, M. 2007. Markov Logic: A Unifying Framework for
Statistical Relational Learning. Introduction to Statistical Relational Learning:
339–367.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.62.8085&rep=rep1&typ
e=pdf%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.62.8085%5
Cnhttp://books.google.com/books?hl=en&lr=&id=lSkIewOw2WoC&oi=fnd&pg=P
A339&dq=Markov+Logic:+A+Unifying+Fr.

Dries, A., Kimmig, A., Meert, W., Renkens, J., Van den Broeck, G., Vlasselaer, J. &
De Raedt, L. 2015. ProbLog2: Probabilistic Logic Programming. In Joint
European Conference on Machine Learning and Knowledge in Databases ECML
PKDD 2015. Springer, Cham: 312–315. http://link.springer.com/10.1007/978-3-
319-23461-8_37.

Durbin, R., Eddy, S., Krogh, A. & Mitchison, G. 1998. Biological sequence analysis.
New York: Cambridge University Press.
http://eisc.univalle.edu.co/cursos/web/material/750068/1/6368030-Durbin-Et-Al-
Biological-Sequence-Analysis-CUP-2002-No-OCR.pdf.

Evans, J.R. & Lindner, C.H. 2012. Business Analytics: The Next Frontier for Decision
Sciences. http://www.cbpp.uaa.alaska.edu/afef/business_analytics.htm 10
February 2018.

Fan, J., Han, F. & Liu, H. 2014. Challenges of Big Data analysis. National Science
Review, 1(2): 293–314. http://nsr.oxfordjournals.org/cgi/doi/10.1093/nsr/nwt032.

Fan, W. & Bifet, A. 2013. Mining big data. ACM SIGKDD Explorations Newsletter,

 86

14(2): 1. http://dl.acm.org/citation.cfm?doid=2481244.2481246.
Fernandez, R.C., Pietzuch, P., Kreps, J., Narkhede, N., Rao, J., Koshy, J., Lin, D.,

Riccomini, C. & Wang, G. 2015. Liquid: Unifying Nearline and Offline Big Data
Integration. Conference on Innovative Data Systems Research.

Figueira, J., Greco, S. & Ehrogott, M. 2005. Multiple Criteria Decision Analysis: State
of the Art Surveys. New York, NY: Springer New York.
http://link.springer.com/10.1007/b100605.

Fitz-enz, J. 2009. Predicting people: From metrics to analytics. Employment Relations
Today, 36(3): 1–11. http://doi.wiley.com/10.1002/ert.20255.

Ganchev, I., Ji, Z. & O’Droma, M. 2016. A conceptual framework for building a mobile
services’ recommendation engine. In 2016 IEEE 8th International Conference on
Intelligent Systems (IS). IEEE: 285–289.
http://ieeexplore.ieee.org/document/7737435/.

Gandomi, A. & Haider, M. 2015. Beyond the hype: Big data concepts, methods, and
analytics. International Journal of Information Management, 35(2): 137–144.
http://dx.doi.org/10.1016/j.ijinfomgt.2014.10.007.

Gantz, B.J. & Reinsel, D. 2011. Extracting Value from Chaos State of the Universe :
An Executive Summary. IDC iView, (June): 1–12. http://idcdocserv.com/1142.

Gebara, F.H., Hofstee, H.P. & Nowka, K.J. 2015. Second-Generation Big Data
Systems. Computer, 48(1): 36–41.
http://ieeexplore.ieee.org/document/7030152/.

Gedik, B., Andrade, H., Wu, K.-L., Yu, P.S. & Doo, M. 2008. SPADE: The System S
Declarative Stream Processing Engine. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data - SIGMOD ’08. New
York, New York, USA: ACM Press: 1123.
https://access.korea.ac.kr/link.n2s?url=http://search.ebscohost.com/login.aspx?di
rect=true&db=edselc&AN=edselc.2-52.0-55649105542&lang=ko&site=eds-
live&scope=site.

Geerts, G.L. 2011. A design science research methodology and its application to
accounting information systems research. International Journal of Accounting
Information Systems, 12(2): 142–151.
http://dx.doi.org/10.1016/j.accinf.2011.02.004.

Gehr, T., Misailovic, S. & Vechev, M. 2016. PSI: Exact Symbolic Inference for
Probabilistic Programs. In S. Chaudhuri & A. Farzan, eds. International
Conference on Computer Aided Verification. Springer, Cham: 62–83.
http://psisolver.org/.

Ghahramani, Z. 2015. Probabilistic machine learning and artificial intelligence.
Nature, 521(7553): 452–459. http://www.nature.com/articles/nature14541.

Ghemawat, S., Gobioff, H. & Leung, S.-T. 2003. The Google file system. In
Proceedings of the nineteenth ACM symposium on Operating systems principles
- SOSP ’03. New York, New York, USA: ACM Press: 29.
http://portal.acm.org/citation.cfm?doid=945445.945450.

Glass, R.L. 1999. The Loyal Opposition - On Design. IEEE Software, 16(2): 104–103.
http://ieeexplore.ieee.org/document/754066/.

Gonzalez, J. 2012. Parallel and Distributed Systems for Probabilistic Reasoning.
Carnegie Mellon University.

Goodman, N.D., Mansinghka, V., Roy, D., Bonawitz, K. & Tenenbaum, J.B. 2008.
Church: a language for generative models. In Proceedings of 24th Conference
on Uncertainty in Artificial Intelligence. 220–229.
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=9536E59A560463C986
99658C9DAA50DC?doi=10.1.1.151.7160&rep=rep1&type=pdf%5Cnhttp://citese
erx.ist.psu.edu/viewdoc/summary?doi=10.1.1.151.7160%5Cnhttp://arxiv.org/abs/
1206.3255.

Goodman, N.D. & Stuhlmüller, A. 2014. The Design and Implementation of
Probabilistic Programming Languages. http://dippl.org 25 March 2018.

Gordon, A.D., Graepel, T., Rolland, N., Russo, C., Borgstrom, J. & Guiver, J. 2014.
Tabular: a schema-driven probabilistic programming language. Proceedings of

 87

the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages - POPL ’14, (1): 321–334.
http://dl.acm.org/citation.cfm?doid=2535838.2535850.

Gordon, A.D., Henzinger, T.A., Nori, A. V. & Rajamani, S.K. 2014. Probabilistic
programming. In Proceedings of the on Future of Software Engineering - FOSE
2014. New York, New York, USA: ACM Press: 167–181.
http://dl.acm.org/citation.cfm?doid=2593882.2593900.

Gregor, S. & Hevner, A.R. 2013. Positioning and Presenting Design Science Types of
Knowledge in Design Science Research. MIS Quarterly, 37(2): 337–355.

Guba, E.G. 1990. The paradigm dialog. Sage Publications.
http://www.jstor.org/stable/3340973.

Haenni, R. 2005. Towards a unifying theory of logical and probabilistic reasoning.
Isipta, 5(4): 1.

Han Hu, Yonggang Wen, Tat-Seng Chua & Xuelong Li. 2014. Toward Scalable
Systems for Big Data Analytics: A Technology Tutorial. IEEE Access, 2: 652–
687. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6842585.

Hansen, D. 2013. Introduction to Oracle Fast Data. California: Oracle.
Harrison, G. 2014. Real-Time Big Data With the Lambda Architecture. Database

Trends & Applications, 28(5): 31–31.
Hasani, Z., Kon-Popovska, M. & Velinov, G. 2014. Lambda Architecture for Real Time

Big Data Analytic. ICT Innovations: 133–143.
Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A. & Ullah Khan, S. 2015.

The rise of “big data” on cloud computing: Review and open research issues.
Information Systems, 47: 98–115. http://dx.doi.org/10.1016/j.is.2014.07.006.

Healy, M. & Perry, C. 2000. Comprehensive criteria to judge validity and reliability of
qualitative research within the realism paradigm. Qualitative Market Research:
An International Journal, 3(3): 118–126.
http://www.emeraldinsight.com/doi/10.1108/13522750010333861.

Hevner, A. & Chatterjee, S. 2010. Design Science Research in Information Systems.
In Design Research in information Systems. Integrated Series in Information
Systems. Boston, MA: Springer US: 9–22. http://desrist.org/design-research-in-
information-systems.

Hevner, A.R., March, S.T., Park, J. & Ram, S. 2004. Design Science in Information
Systems Research. MIS Quarterly, 28(1): 75–105. http://dblp.uni-
trier.de/rec/bibtex/journals/misq/HevnerMPR04.

Hewitt, C. 2011. Actor Model of Computation. Inconsistency Robustness 2011: 1–25.
http://arxiv.org/abs/1008.1459.

Hewitt, C. 2012. What is Computation? Actor Model versus Turing’s Model. In A
Computable Universe. WORLD SCIENTIFIC: 159–185.
http://www.worldscientific.com/doi/abs/10.1142/9789814374309_0009.

Hewitt, C., Bishop, P. & Steiger, R. 1973. A universal modular ACTOR formalism for
artificial intelligence. In IJCAI’73 Proceedings of the 3rd international joint
conference on Artificial intelligence. Morgan Kaufmann Publishers Inc. San
Francisco, CA, USA ©1973: 235–245.

Hicks, M. 2014. What is probabilistic programming? (The Programming Languages
Enthusiast). http://www.pl-enthusiast.net/2014/09/08/probabilistic-programming/
25 March 2018.

Hildreth, C.R. & Aytac, S. 2007. Recent library practitioner research: A
methodological analysis and critique. Journal of Education for Library and
Information Science, 48(3): 236–258.

Hirzel, M., Schneider, S. & Gedik, B. 2017. SPL: An Extensible Language for
Distributed Stream Processing. ACM Transactions on Programming Languages
and Systems, 39(1): 1–39. http://dx.doi.org/10.1145/3039207.

Huang, H.H. & Liu, H. 2014. Big data machine learning and graph analytics: Current
state and future challenges. In 2014 IEEE International Conference on Big Data
(Big Data). IEEE: 16–17. http://ieeexplore.ieee.org/document/7004471/.

Iivari, J. & Venable, J.R. 2009. Action Research and Design Science Research. In

 88

Proceedings of 17th European Conference on Information Systems. Verona,
Italy: 2711–2723.

Jacobs, A. 2009. The Pathologies of Big Data. Communications of the ACM, 52(8):
36–44.

Jagadish, H. V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J.M.,
Ramakrishnan, R. & Shahabi, C. 2014. Big data and its technical challenges.
Communications of the ACM, 57(7): 86–94.
http://libezproxy.open.ac.uk/login?url=http://search.ebscohost.com/login.aspx?dir
ect=true&db=bth&AN=96868411&site=eds-live&scope=site.

Jambi, S. & Anderson, K.M. 2017. Engineering Scalable Distributed Services for
Real-Time Big Data Analytics. In 2017 IEEE Third International Conference on
Big Data Computing Service and Applications (BigDataService). IEEE: 131–140.
http://ieeexplore.ieee.org/document/7944930/.

Järvelin, K. & Vakkary, P. 1990. Content analysis of research articles in library and
information science. Library and Information Science Research, 12(4): 395–421.

Jin, X., Wah, B.W., Cheng, X. & Wang, Y. 2015. Significance and Challenges of Big
Data Research. Big Data Research, 2(2): 59–64.
http://dx.doi.org/10.1016/j.bdr.2015.01.006.

Jonker, J. & Pennink, B. 2009. The Essence of Research Methodology. Berlin,
Heidelberg: Springer Berlin Heidelberg. http://link.springer.com/10.1007/978-3-
540-71659-4.

Katal, A., Wazid, M. & Goudar, R.H. 2013. Big data: Issues, challenges, tools and
Good practices. In 2013 Sixth International Conference on Contemporary
Computing (IC3). IEEE: 404–409.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6612229.

Khan, N., Yaqoob, I., Hashem, I.A.T., Inayat, Z., Mahmoud Ali, W.K., Alam, M.,
Shiraz, M. & Gani, A. 2014. Big Data: Survey, Technologies, Opportunities, and
Challenges. The Scientific World Journal, 2014: 1–18.
http://www.hindawi.com/journals/tswj/2014/712826/.

Kim, G.-H., Trimi, S. & Chung, J.-H. 2014. Big-data applications in the government
sector. Communications of the ACM, 57(3): 78–85.
http://search.proquest.com/docview/1516150205?accountid=34461.

Kiran, M., Murphy, P., Monga, I., Dugan, J. & Baveja, S.S. 2015. Lambda architecture
for cost-effective batch and speed big data processing. In 2015 IEEE
International Conference on Big Data (Big Data). IEEE: 2785–2792.
http://ieeexplore.ieee.org/document/7364082/.

Kitchenham, B. & Charters, S. 2007. Guidelines for performing Systematic Literature
Reviews in Software Engineering Version 2.3. Engineering, 45(4ve): 1051.

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O.P., Turner, M., Niazi, M. &
Linkman, S. 2010. Systematic literature reviews in software engineering-A
tertiary study. Information and Software Technology, 52(8): 792–805.
http://dx.doi.org/10.1016/j.infsof.2010.03.006.

Kitchin, R. & Lauriault, T.P. 2015. Small data in the era of big data. GeoJournal,
80(4): 463–475. http://dx.doi.org/10.1007/s10708-014-9601-7.

Köhler, M., Kaniovskyi, Y. & Benkner, S. 2015. Towards adaptive execution
strategies for large-scale and real-time data analytics. Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA): 447–454.

Kraska, T., Talwalkar, A., Duchi, J., Griffith, R., Franklin, M. & Jordan, M. 2013.
MLbase : A Distributed Machine-learning System. 6th Biennial Conference on
Innovative Data Systems Research (CIDR’13).

Kreps, J. 2014. Questioning the Lambda Architecture. O’Reilly: 1–10.
https://www.oreilly.com/ideas/questioning-the-lambda-architecture 18 October
2017.

Kuhn, T.S. 1970. The Structure of Scientific Revolutions. International Encyclopedia
of Unified Science, II(2): 210. http://www.jstor.org/stable/10.2307/2183664.

Kutty, A.D., Kumar Shee, H. & Pathak, R.. 2007. Decision-making. Monash Business

 89

Review, 3(3): 8–9.
http://publications.epress.monash.edu/doi/abs/10.2104/mbr07056.

Labrinidis, A. & Jagadish, H. V. 2012. Challenges and opportunities with big data.
Proceedings of the VLDB Endowment, 5(12): 2032–2033.
http://dl.acm.org/citation.cfm?doid=2367502.2367572.

Lake, B.M., Ullman, T.D., Tenenbaum, J.B. & Gershman, S.J. 2017. Building
machines that learn and think like people. Behavioral and Brain Sciences, 40: 72.
https://www.cambridge.org/core/product/identifier/S0140525X16001837/type/jour
nal_article.

Lämmel, R. 2008. Google’s MapReduce programming model — Revisited. Science of
Computer Programming, 70(1): 1–30.
http://linkinghub.elsevier.com/retrieve/pii/S0167642307001281.

Landset, S., Khoshgoftaar, T.M., Richter, A.N. & Hasanin, T. 2015. A survey of open
source tools for machine learning with big data in the Hadoop ecosystem.
Journal of Big Data, 2(1): 24. http://www.journalofbigdata.com/content/2/1/24.

Laney, D. 2001. 3D Data Managment: Controlling Data Volume, Velocity and Variety.
Meta Group.

Lee, K.-H., Lee, Y.-J., Choi, H., Chung, Y.D. & Moon, B. 2012. Parallel data
processing with MapReduce. ACM SIGMOD Record, 40(4): 11–20.
http://portal.acm.org/citation.cfm?id=2094118.

Li, J., Tao, F., Cheng, Y. & Zhao, L. 2015. Big Data in product lifecycle management.
International Journal of Advanced Manufacturing Technology, 81(1–4): 667–684.

Lightbend Inc. 2019. Introduction - Akka Documentation.
https://doc.akka.io/docs/akka/current/stream/stream-introduction.html 8 June
2019.

Lightbend Inc. 2010. Akka, Actor-based message-driven runtime | @lightbend.
https://www.lightbend.com/akka 10 November 2017.

Lin, J., Leu, F. & Chen, Y. 2015. ReHRS: A Hybrid Redundant System for Improving
MapReduce Reliability and Availability. In 187–209.
http://link.springer.com/10.1007/978-3-319-09177-8.

Lin, J., Milligan, I., Wiebe, J. & Zhou, A. 2017. Warcbase: Scalable analytics
infrastructure for exploring web archives. Journal on Computing and Cultural
Heritage, 10(4): 1–30. http://dl.acm.org/citation.cfm?doid=3129537.3097570.

Liu, G., Zhu, W., Saunders, C., Gao, F. & Yu, Y. 2015. Real-time Complex Event
Processing and Analytics for Smart Grid. Procedia Computer Science, 61: 113–
119. http://dx.doi.org/10.1016/j.procs.2015.09.169.

Liu, S., Duffy, A.H.B., Whitfield, R.I. & Boyle, I.M. 2010. Integration of decision
support systems to improve decision support performance. Knowledge and
Information Systems, 22(3): 261–286. http://link.springer.com/10.1007/s10115-
009-0192-4.

Liu, X., Iftikhar, N. & Xie, X. 2014. Survey of real-time processing systems for big
data. In Proceedings of the 18th International Database Engineering &
Applications Symposium on - IDEAS ’14. New York, New York, USA: ACM
Press: 356–361. http://dl.acm.org/citation.cfm?doid=2628194.2628251.

Lohr, S. 2012. The Age of Big Data. The New York Times: 1–5.
Lorentz, A. 2013. Big Data, Fast Data, Smart Data.

http://www.wired.com/insights/2013/04/big-data-fast-data-smart-data/ 12 May
2016.

Luger, G. & Chakrabarti, C. 2008. Knowledge-Based Probabilistic Reasoning from
Expert Systems to Graphical Models. Handbook of Probability: Theory and
Applications: 2–22. http://www.cs.unm.edu/~luger/23-Luger-Chakrabarti.pdf.

Lunn, D., Spiegelhalter, D., Thomas, A. & Best, N. 2009. The BUGS project:
Evolution, critique and future directions. Statistics in Medicine, 28(25): 3049–
3067. http://doi.wiley.com/10.1002/sim.3680.

Luo, L. & McKinney, M. 2015. JAL in the Past Decade: A Comprehensive Analysis of
Academic Library Research. The Journal of Academic Librarianship, 41(2): 123–
129. http://dx.doi.org/10.1016/j.acalib.2015.01.003.

 90

Mackenzie, N. & Knipe, S. 2006. IIER 16: Mackenzie and Knipe - research dilemmas:
Paradigms, methods and methodology. Issues In Educational Research.
http://www.iier.org.au/iier16/mackenzie.html 3 June 2016.

Madden, S. 2012. From Databases to Big Data. IEEE Internet Computing, 16(3): 4–6.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6188576.

Manning, C.D. & Raghavan, P. 2009. An Introduction to Information Retrieval. In
Online. 1. http://dspace.cusat.ac.in/dspace/handle/123456789/2538.

Mansinghka, V., Selsam, D. & Perov, Y. 2014. Venture: a higher-order probabilistic
programming platform with programmable inference. : 1–78.
http://arxiv.org/abs/1404.0099.

March, S.T. & Smith, G.F. 1995. Design and natural science research on information
technology. Decision Support Systems, 15(4): 251–266.
http://linkinghub.elsevier.com/retrieve/pii/0167923694000412.

Margara, A., Urbani, J., van Harmelen, F. & Bal, H. 2014. Streaming the Web:
Reasoning over dynamic data. Web Semantics: Science, Services and Agents
on the World Wide Web, 25: 24–44.
http://dx.doi.org/10.1016/j.websem.2014.02.001.

Markus, L.M., Majchrzak, A. & Gasser, L. 2002. A design theory for systems that
support emergent knowledge processes. MIS Quarterly, 26(3): 179–212.
http://www.jstor.org/stable/pdf/4132330.pdf?refreqid=excelsior%3Aebbf0c52e16
41656d48980f6912a8a89.

Marz, N. & Warren, J. 2015. Big Data: Principles and best practices of scalable real-
time data systems. New York: Manning. http://nathanmarz.com/about/.

De Mauro, A., Greco, M. & Grimaldi, M. 2015. What is big data? A consensual
definition and a review of key research topics. In AIP Conference Proceedings.
97–104. http://aip.scitation.org/doi/abs/10.1063/1.4907823.

McAfee, A. & Brynjolfsson, E. 2012. Big data: the management revolution. Harvard
business review, 90(10): 59–68.

Merriam-Webster. 2016. Definition of Big by Merriam-Webster. Merriam-
Webster.com. http://www.merriam-webster.com/dictionary/big 13 November
2016.

Merriam-Webster. 2018. Definition of Reasoning by Merriam-Webster.
https://www.merriam-webster.com/dictionary/reasoning 22 February 2018.

Microsoft. 2013. The Big Bang: How the Big Data Explosion Is Changing the World.
Microsoft News Center: 1–35. https://news.microsoft.com/2013/02/11/the-big-
bang-how-the-big-data-explosion-is-changing-the-world/ 28 March 2018.

MIKE 2.0. 2018. Information Asset Concept - MIKE2.0, the open source methodology
for Information Development. MIKE2.0.
http://mike2.openmethodology.org/wiki/Big_Data_Definition 27 January 2018.

Milch, B., Marthi, B., Russel, S., Sontag, D., Ong, D.L. & Kolobov, A. 2007.
Probabilistic models with unknown objects. Statistical Relational Learning: 352.

Miloslavskaya, N. & Tolstoy, A. 2016. Big Data, Fast Data and Data Lake Concepts.
Procedia Computer Science, 88: 300–305.
http://dx.doi.org/10.1016/j.procs.2016.07.439.

Mishne, G., Dalton, J., Li, Z., Sharma, A. & Lin, J. 2013. Fast data in the era of big
data: Twitter’s real-time related query suggestion architecture. Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data:
1147–1158.

Mishra, P. 2017. Streaming and the Actor Model – Akka Streams! | Packt Hub. Packt.
https://hub.packtpub.com/streaming-and-actor-model-akka-streams/ 8 June
2019.

Mohanty, H., Bhuyan, P. & Chenthati, D. 2015. Big Data. H. Mohanty, P. Bhuyan, &
D. Chenthati, eds. New Delhi: Springer India.
http://link.springer.com/10.1007/978-81-322-2494-5.

Mohapatra, S.K., Sahoo, P.K. & Wu, S.-L. 2016. Big data analytic architecture for
intruder detection in heterogeneous wireless sensor networks. Journal of
Network and Computer Applications, 66: 236–249.

 91

http://dx.doi.org/10.1016/j.jnca.2016.03.004.
Myers, M.D. & Venable, J.R. 2014. A set of ethical principles for design science

research in information systems. Information & Management, 51(6): 801–809.
http://dx.doi.org/10.1016/j.im.2014.01.002.

Nair, L.R., Shetty, S.D. & Deepak Shetty, S. 2017. Streaming Big Data Analysis for
Real-Time Sentiment based Targeted Advertising. International Journal of
Electrical and Computer Engineering (IJECE), 7(1): 402.
http://www.iaescore.com/journals/index.php/IJECE/article/view/6293.

Narayanan, P., Carette, J., Romano, W., Shan, C. & Zinkov, R. 2016. Probabilistic
Inference by Program Transformation in Hakaru (System Description). In 62–79.
http://link.springer.com/10.1007/978-3-319-29604-3_5.

NIST. 2018. CSRC Topics - big data | CSRC.
https://csrc.nist.gov/Topics/Technologies/big-data 3 February 2018.

Norsys. 2013. Norsys - Netica Application. http://www.norsys.com/netica.html 27
February 2018.

Nunamaker, J.F., Chen, M. & Purdin, T.D.M. 1990. Systems Development in
Information Systems Research. Journal of Management Information Systems,
7(3): 89–106.
http://www.tandfonline.com/doi/full/10.1080/07421222.1990.11517898.

Okoli, C. & Schabram, K. 2010. A Guide to Conducting a Systematic Literature
Review of Information Systems Research. SSRN Electronic Journal, 10(26): 1–
51. http://sprouts.aisnet.org/10-26.

Oxford English Dictionaries. 2018. research | Definition of research in English by
Oxford Dictionaries. Oxford English Dictionaries.
https://en.oxforddictionaries.com/definition/research 11 March 2018.

Patel, S. 2015. The Research Paradigm - Methodology, Epistomology and Ontology -
Explained in Simple Language. http://salmapatel.co.uk/academia/the-research-
paradigm-methodology-epistemology-and-ontology-explained-in-simple-
language 11 March 2018.

Peffers, K., Tuunanen, T., Rothenberger, M.A. & Chatterjee, S. 2007. A Design
Science Research Methodology for Information Systems Research. Journal of
Management Information Systems, 24(3): 45–77.
http://mesharpe.metapress.com/index/276818W6PN4T5483.pdf%5Cnhttp://mes
harpe.metapress.com/openurl.asp?genre=article&id=doi:10.2753/MIS0742-
1222240302.

Perera, S. & Suhothayan, S. 2015. Solution patterns for realtime streaming analytics.
In Proceedings of the 9th ACM International Conference on Distributed Event-
Based Systems - DEBS ’15. New York, New York, USA: ACM Press: 247–255.
http://dl.acm.org/citation.cfm?doid=2675743.2774214.

Pfeffer, A. 2009. Figaro: An object-oriented probabilistic programming language.
http://www.cs.tufts.edu/~nr/cs257/archive/avi-
pfeffer/figaro.pdf%5Cnpapers2://publication/uuid/0E83E526-451F-41EA-ACBE-
7150FF7584D4.

Pfeffer, A. 2016. Practical probabilistic programming. New York: Manning.
Pfeffer, A. 2007. The Design and Implementation of IBAL: A General-Purpose

Probabilistic Language. Introduction to statistical relational learning, (1993): 34.
Philip Chen, C.L. & Zhang, C.-Y. 2014. Data-intensive applications, challenges,

techniques and technologies: A survey on Big Data. Information Sciences, 275:
314–347. http://dx.doi.org/10.1016/j.ins.2014.01.015.

Prékopa, A. 2003. Probabilistic Programming. In Handbooks in Operations Research
and Management Science. 267–351.
http://www.cs.cornell.edu/courses/cs4110/2016fa/lectures/lecture33.html 25
March 2018.

Qiu, J., Wu, Q., Ding, G., Xu, Y. & Feng, S. 2016. A survey of machine learning for
big data processing. EURASIP Journal on Advances in Signal Processing,
2016(1): 67. http://dx.doi.org/10.1186/s13634-016-0355-x.

Rabiner, L.R. 1989. A tutorial on hidden Markov models and selected applications in

 92

speech recognition. Proceedings of the IEEE, 77(2): 257–286.
http://ieeexplore.ieee.org/ielx5/5/698/00018626.pdf?tp=&arnumber=18626&isnu
mber=698%5Cnhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=18626&tag
=1%0Ahttp://ieeexplore.ieee.org/document/18626/.

De Raedt, L. & Kersting, K. 2003. Probabilistic logic learning. ACM SIGKDD
Explorations Newsletter, 5(1): 31.
http://portal.acm.org/citation.cfm?doid=959242.959247.

Raghupathi, W. & Raghupathi, V. 2014. Big data analytics in healthcare: promise and
potential. Health Information Science and Systems, 2(1): 3.
http://link.springer.com/10.1186/2047-2501-2-3.

Ramírez-Gallego, S., Fernández, A., García, S., Chen, M. & Herrera, F. 2018. Big
Data: Tutorial and guidelines on information and process fusion for analytics
algorithms with MapReduce. Information Fusion, 42: 51–61.
http://linkinghub.elsevier.com/retrieve/pii/S1566253517305912.

Rodríguez, P., Kuvaja, P. & Oivo, M. 2014. Lessons learned on applying design
science for bridging the collaboration gap between industry and academia in
empirical software engineering. Proceedings of the 2nd International Workshop
on Conducting Empirical Studies in Industry - CESI 2014: 9–14.
http://dl.acm.org/citation.cfm?doid=2593690.2593694.

Rosà, A., Chen, L.Y. & Binder, W. 2016. Profiling actor utilization and communication
in Akka. : 24–32.

Roy, D. 2018. Probabilistic Programming. http://www.probabilistic-
programming.org/wiki/Home 25 March 2018.

Russom, P. 2013. Operational Intelligence: Real-Time Business Analytics from Big
Data.

Ryan, B., Scapens, R.W. & Theobold, M. 2002. Research Method and Methodology
in Finance and Accounting.

Saaty, T.L. 2008. Decision making with the analytic hierarchy process. International
Journal of Services Sciences, 1(1): 83.
http://www.inderscience.com/link.php?id=17590.

Sagiroglu, S. & Sinanc, D. 2013. Big data: A review. In 2013 International Conference
on Collaboration Technologies and Systems (CTS). IEEE: 42–47.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6567202.

Sampson, A. 2015. Probabilistic Programming. http://adriansampson.net/doc/ppl.html
25 March 2018.

Sato, T. 2008. A glimpse of symbolic-statistical modeling by PRISM. Journal of
Intelligent Information Systems, 31(2): 161–176.
http://link.springer.com/10.1007/s10844-008-0062-7.

Schwandt, T.A. 2001. Dictionary of qualitative inquiry. 2nd ed. Thousand Oaks: Sage
Publications.

Sein, M.K., Henfridsson, O., Purao, S., Rossi, M. & Lindgren, R. 2011. Action Design
Research. MIS Quarterly, 35(1): 37.
http://www.jstor.org/stable/10.2307/23043488.

Shahrivari, S. 2014. Beyond Batch Processing: Towards Real-Time and Streaming
Big Data. Computers, 3(4): 117–129. http://www.mdpi.com/2073-431X/3/4/117/.

Shmueli, G. & Koppius, O. 2010. Predictive Analytics in Information Systems
Research. SSRN Electronic Journal, 35(3): 553.
http://www.ssrn.com/abstract=1606674.

Siegel, E. 2013. Predictive analytics. Analytics-Magazine.Org: 38–42.
http://www.predictiveanalyticsworld.com/book/Predictive Analytics - The Power of
Big Data - Siegel in Analytics Magazine - July-August 2013.pdf.

Simon, H.A. 1997. The sciences of the artificial. 3rd ed. Cambridge: MIT Press.
Snijder, C., Matzat, U. & Reips, U.-D. 2012. “Big Data”: Big Gaps of Knowledge in the

Field of Internet Science. International Journal of Internet Science, 7(1): 1–5.
http://www.ijis.net/ijis7_1/ijis7_1_editorial.pdf.

Song, S.K., Kim, D.J., Hwang, M., Kim, J., Jeong, D.H., Lee, S., Jung, H. & Sung, W.
2013. Prescriptive analytics system for improving research power. Proceedings -

 93

16th IEEE International Conference on Computational Science and Engineering,
CSE 2013: 1144–1145.

SQLstream. 2017. SQLstream - A SQL-based Real-time Stream Analytics Platform -.
http://sqlstream.com/ 15 February 2018.

Staples, M. & Niazi, M. 2007. Experiences using systematic review guidelines.
Journal of Systems and Software, 80(9): 1425–1437.

Strode, D.E. & Chard, S.M. 2014. A Proposal for using Design Science in Small-Scale
Postgraduate Research Projects in Information Technology. In 2014 International
Conference of Teaching, Assessment and Learning (TALE). Wellington: IEEE:
242–245.

Strohbach, M., Ziekow, H., Gazis, V. & Akiva, N. 2015. Towards a Big Data Analytics
Framework for IoT and Smart City Applications. In 257–282.
http://link.springer.com/10.1007/978-3-319-09177-8.

Szolovits, P. & Pauker, S.G. 1978. Categorical and probabilistic reasoning in medical
diagnosis. Artificial Intelligence, 11(1–2): 115–144.
http://linkinghub.elsevier.com/retrieve/pii/0004370278900140.

Tashakkori, A. & Teddlie, C. 2010. Handbook of mixed methods in social &
behavioral research. Sage Publications.

Taxidou, I. & Fischer, P. 2013. Realtime analysis of information diffusion in social
media. Proceedings of the VLDB Endowment, 6(12): 1416–1421.
http://dl.acm.org/citation.cfm?doid=2536274.2536328.

The Apache Software Foundation. 2015. Apache Cassandra Database. Cassandra.
http://cassandra.apache.org/ 20 December 2018.

Tolpin, D., van de Meent, J.-W., Yang, H. & Wood, F. 2016. Design and
Implementation of Probabilistic Programming Language Anglican. In
Proceedings of the 28th Symposium on the Implementation and Application of
Functional Programming Languages - IFL 2016. New York, New York, USA:
ACM Press: 1–12. http://arxiv.org/abs/1608.05263.

Tseng, J.C.C., Gu, J., Wang, P.F., Chen, C., Li, C. & Tseng, V.S. 2016. A scalable
complex event analytical system with incremental episode mining over data
streams. In 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE:
648–655. http://ieeexplore.ieee.org/document/7743854/.

Tversky, A. & Kahneman, D. 1975. Judgment under Uncertainty: Heuristics and
Biases. In Utility, Probability, and Human Decision Making. Dordrecht: Springer
Netherlands: 141–162. http://www.springerlink.com/index/10.1007/978-94-010-
1834-0_8.

Twardowski, B. & Ryzko, D. 2014. Multi-agent Architecture for Real-Time Big Data
Processing. In 2014 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT). IEEE: 333–337.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6928203.

Tyagi, A.K., Priya, R. & Rajeswari, A. 2015. Mining Big Data to Predicting Future.
International Journal of Engineering Research and Applications, 5(32): 14–21.

Ularu, E.G., Puican, F.C., Apostu, A. & Velicanu, M. 2012. Perspectives on Big Data
and Big Data Analytics. Database Systems Journal, III(4): 3–14.
http://dbjournal.ro/archive/10/10.pdf.

Vaishnavi, V., Kuechler, W. & Petter, S. 2004. Design Science Research in
Information Systems. http://www.desrist.org/design-research-in-information-
systems/.

Vakali, A., Korosoglou, P. & Daoglou, P. 2016. A multi-layer software architecture
framework for adaptive real-time analytics. In 2016 IEEE International
Conference on Big Data (Big Data). IEEE: 2425–2430.
http://ieeexplore.ieee.org/document/7840878/.

VANHOVE, T., VAN SEGHBROECK, G., WAUTERS, T., VOLCKAERT, B. & DE
TURCK, F. 2016. Managing the Synchronization in the Lambda Architecture for
Optimized Big Data Analysis. IEICE Transactions on Communications, E99.B(2):
297–306.
https://www.jstage.jst.go.jp/article/transcom/E99.B/2/E99.B_2015ITI0001/_article

 94

.
Venable, J.R. 2006. A framework for Design Science research activities. In M.

Khosrow-Pour, ed. Proceedings of the 2006 Information Resources Management
Association International Conference. Washington, DC: Idea Group Publishing:
184–187.

Villari, M., Celesti, A., Fazio, M. & Puliafito, A. 2014. AllJoyn Lambda: An architecture
for the management of smart environments in IoT. In 2014 International
Conference on Smart Computing Workshops. IEEE: 9–14.
http://ieeexplore.ieee.org/document/7046676/.

Vögler, M., Schleicher, J.M., Inzinger, C. & Dustdar, S. 2017. Ahab: A cloud-based
distributed big data analytics framework for the Internet of Things. Software:
Practice and Experience, 47(3): 443–454. http://doi.wiley.com/10.1002/spe.2424.

Walliman, N. 2001. Your research project: a step-by-step guide for the first-time
researcher. Sage Publications.

Walls, J.G., Widmeyer, G.R. & El Sawy, O.A. 1992. Building an Information System
Design Theory for Vigilant EIS. Information Systems Research, 3(1): 36–59.

Wampler, D. 2013. Programming Trends to Watch: Logic and Probabilistic
Programming. https://www.thinkbiganalytics.com/2013/03/28/programming-
trends-to-watch-logic-and-probabilistic-programming/ 29 March 2018.

Wang, H., Xu, Z., Fujita, H. & Liu, S. 2016. Towards felicitous decision making: An
overview on challenges and trends of Big Data. Information Sciences, 367–368:
747–765. http://dx.doi.org/10.1016/j.ins.2016.07.007.

Ward, J.S. & Barker, A. 2013. Undefined By Data: A Survey of Big Data Definitions.
arXiv.org: 2.
http://arxiv.org/abs/1309.5821%5Cnpapers3://publication/uuid/63831F5F-B214-
46D5-8A86-671042BE993F.

Weber, S. 2010. Design Science Research : Paradigm or Approach? Proceedings of
the 16th Americas Conference on Information Systems: 1–8.

White, M.D. & Marsh, E.E. 2006. Content Analysis: A Flexible Methodology. Library
Trends, 55(1): 22–45.
http://muse.jhu.edu/content/crossref/journals/library_trends/v055/55.1white.html.

Williams, C. 2007. Research Methods. Journal of Business & Economic Research,
5(3): 65–72.

Williams, D. 2018. Predictive coding and thought. Synthese, (October 2017).
http://link.springer.com/10.1007/s11229-018-1768-x.

Wood, F., van de Meent, J.W. & Mansinghka, V. 2014. A New Approach to
Probabilistic Programming Inference. In 17th International Conference on
Artificial Intelligence and Statistics. Reykjavik, Iceland.
http://arxiv.org/abs/1507.00996.

Wu, Y., Zheng, L., Heilig, B. & Gao, G.R. 2015. Design and Evaluation of a Novel
Dataflow Based Bigdata Solution. Proceedings of the Sixth International
Workshop on Programming Models and Applications for Multicores and
Manycores: 40–48. http://doi.acm.org/10.1145/2712386.2712397.

Xindong Wu, Xingquan Zhu, Gong-Qing Wu & Wei Ding. 2014. Data mining with big
data. IEEE Transactions on Knowledge and Data Engineering, 26(1): 97–107.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6547630.

Yang, F., Merlino, G., Ray, N., Léauté, X., Gupta, H. & Tschetter, E. 2017. The
RADStack: Open Source Lambda Architecture for Interactive Analytics. In
Proceedings of the 50th Hawaii International Conference on System Sciences.
1703–1712. http://hdl.handle.net/10125/41359.

Yang, T. & Shadlen, M.N. 2007. Probabilistic reasoning by neurons. Nature,
447(7148): 1075–1080. http://www.nature.com/doifinder/10.1038/nature05852.

Zadeh, L.A. 2003. Toward a perception-based theory of probabilistic reasoning with
imprecise probabilities. In Intelligent Systems for Information Processing.
Elsevier: 3–34.
http://linkinghub.elsevier.com/retrieve/pii/B9780444513793500017.

Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S. & Stoica, I. 2010. Spark :

 95

Cluster Computing with Working Sets. HotCloud’10 Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing: 10.

Zaharia, M., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I., Xin, R.S.,
Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J. &
Venkataraman, S. 2016. Apache Spark: a unified engine for big data processing.
Communications of the ACM, 59(11): 56–65.

Zakir, J., Seymour, T. & Berg, K. 2015. Big Data Analytics. Issues in Information
Systems, 16(2): 81–90.

Zhang, Q., Dong, C., Cui, Y. & Yang, Z. 2014. Dynamic uncertain causality graph for
knowledge representation and probabilistic reasoning: Statistics base, matrix,
and application. IEEE Transactions on Neural Networks and Learning Systems,
25(4): 645–663.

Zhao, Z., Pei, J., Lo, E., Zhu, K.Q. & Liu, C. 2017. InferSpark: Statistical Inference at
Scale. http://arxiv.org/abs/1707.02047.

Zheng, X., Fu, M. & Chugh, M. 2017. Big data storage and management in SaaS
applications. Journal of Communications and Information Networks, 2(3): 18–29.
http://link.springer.com/10.1007/s41650-017-0031-9.

Zhou, Q., Simmhan, Y. & Prasanna, V. 2013. Towards hybrid online on-demand
querying of realtime data with stateful complex event processing. In 2013 IEEE
International Conference on Big Data. IEEE: 199–205.
http://ieeexplore.ieee.org/document/6691575/.

 96

APPENDICES
APPENDIX A: STORAGE

Database Schemas

CREATE KEYSPACE k_master WITH replication = {'class':

'SimpleStrategy', 'replication_factor': '1'} AND

durable_writes = true;

CREATE KEYSPACE k_realtimeview WITH replication = {'class':

'SimpleStrategy', 'replication_factor': '1'} AND

durable_writes = true;

CREATE KEYSPACE k_pseudomaster WITH replication = {'class':

'SimpleStrategy', 'replication_factor': '1'} AND

durable_writes = true;

CREATE KEYSPACE k_batchview WITH replication = {'class':

'SimpleStrategy', 'replication_factor': '1'} AND

durable_writes = true;

Tables for k_master and k_pseudomaster Schemas

CREATE TABLE <schema>.rating (

 teamid text,

 datecreated date,

 rating double,

 PRIMARY KEY (teamid, datecreated)

) WITH CLUSTERING ORDER BY (datecreated ASC)

 AND bloom_filter_fp_chance = 0.01

 AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}

 AND comment = ''

 AND compaction = {'class':

'org.apache.cassandra.db.compaction.SizeTieredCompactionStrateg

y', 'max_threshold': '32', 'min_threshold': '4'}

 AND compression = {'chunk_length_in_kb': '64', 'class':

'org.apache.cassandra.io.compress.LZ4Compressor'}

 AND crc_check_chance = 1.0

 AND dclocal_read_repair_chance = 0.1

 AND default_time_to_live = 0

 AND gc_grace_seconds = 864000

 97

 AND max_index_interval = 2048

 AND memtable_flush_period_in_ms = 0

 AND min_index_interval = 128

 AND read_repair_chance = 0.0

 AND speculative_retry = '99PERCENTILE';

CREATE TABLE <schema>.form (

 teamid text,

 datecreated date,

 numberofdraws int,

 numberofloses int,

 numberofwins int,

 PRIMARY KEY (teamid, datecreated)

) WITH CLUSTERING ORDER BY (datecreated ASC)

 AND bloom_filter_fp_chance = 0.01

 AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}

 AND comment = ''

 AND compaction = {'class':

'org.apache.cassandra.db.compaction.SizeTieredCompactionStrateg

y', 'max_threshold': '32', 'min_threshold': '4'}

 AND compression = {'chunk_length_in_kb': '64', 'class':

'org.apache.cassandra.io.compress.LZ4Compressor'}

 AND crc_check_chance = 1.0

 AND dclocal_read_repair_chance = 0.1

 AND default_time_to_live = 0

 AND gc_grace_seconds = 864000

 AND max_index_interval = 2048

 AND memtable_flush_period_in_ms = 0

 AND min_index_interval = 128

 AND read_repair_chance = 0.0

 AND speculative_retry = '99PERCENTILE';

CREATE TABLE <schema>.fixture (

 hometeamid text,

 datecreated date,

 awayteamgoals int,

 awayteamid text,

 hometeamgoals int,

 PRIMARY KEY (hometeamid, datecreated)

 98

) WITH CLUSTERING ORDER BY (datecreated ASC)

 AND bloom_filter_fp_chance = 0.01

 AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}

 AND comment = ''

 AND compaction = {'class':

'org.apache.cassandra.db.compaction.SizeTieredCompactionStrateg

y', 'max_threshold': '32', 'min_threshold': '4'}

 AND compression = {'chunk_length_in_kb': '64', 'class':

'org.apache.cassandra.io.compress.LZ4Compressor'}

 AND crc_check_chance = 1.0

 AND dclocal_read_repair_chance = 0.1

 AND default_time_to_live = 0

 AND gc_grace_seconds = 864000

 AND max_index_interval = 2048

 AND memtable_flush_period_in_ms = 0

 AND min_index_interval = 128

 AND read_repair_chance = 0.0

 AND speculative_retry = '99PERCENTILE';

CREATE TABLE <schema>.team (

 teamid text PRIMARY KEY,

 teamname text

) WITH bloom_filter_fp_chance = 0.01

 AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}

 AND comment = ''

 AND compaction = {'class':

'org.apache.cassandra.db.compaction.SizeTieredCompactionStrateg

y', 'max_threshold': '32', 'min_threshold': '4'}

 AND compression = {'chunk_length_in_kb': '64', 'class':

'org.apache.cassandra.io.compress.LZ4Compressor'}

 AND crc_check_chance = 1.0

 AND dclocal_read_repair_chance = 0.1

 AND default_time_to_live = 0

 AND gc_grace_seconds = 864000

 AND max_index_interval = 2048

 AND memtable_flush_period_in_ms = 0

 AND min_index_interval = 128

 AND read_repair_chance = 0.0

 AND speculative_retry = '99PERCENTILE';

 99

Table for k_batchview and k_realtimeview Schemas

CREATE TABLE <schema>.teamprobability (

 teamid text PRIMARY KEY,

 badformprobability double,

 badhead2headprobability double,

 badratingprobability double,

 goodformprobability double,

 goodhead2headprobability double,

 goodratingprobability double,

 winprobability double

) WITH bloom_filter_fp_chance = 0.01

 AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}

 AND comment = ''

 AND compaction = {'class':

'org.apache.cassandra.db.compaction.SizeTieredCompactionStrateg

y', 'max_threshold': '32', 'min_threshold': '4'}

 AND compression = {'chunk_length_in_kb': '64', 'class':

'org.apache.cassandra.io.compress.LZ4Compressor'}

 AND crc_check_chance = 1.0

 AND dclocal_read_repair_chance = 0.1

 AND default_time_to_live = 0

 AND gc_grace_seconds = 864000

 AND max_index_interval = 2048

 AND memtable_flush_period_in_ms = 0

 AND min_index_interval = 128

 AND read_repair_chance = 0.0

 AND speculative_retry = '99PERCENTILE';

Simulation schemas

CREATE TABLE k_master.ratingfeeder (

 teamname text,

 datecreated date,

 rating double,

 PRIMARY KEY (teamname, datecreated)

) WITH CLUSTERING ORDER BY (datecreated ASC)

 AND bloom_filter_fp_chance = 0.01

 AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}

 AND comment = ''

 100

 AND compaction = {'class':

'org.apache.cassandra.db.compaction.SizeTieredCompactionStrateg

y', 'max_threshold': '32', 'min_threshold': '4'}

 AND compression = {'chunk_length_in_kb': '64', 'class':

'org.apache.cassandra.io.compress.LZ4Compressor'}

 AND crc_check_chance = 1.0

 AND dclocal_read_repair_chance = 0.1

 AND default_time_to_live = 0

 AND gc_grace_seconds = 864000

 AND max_index_interval = 2048

 AND memtable_flush_period_in_ms = 0

 AND min_index_interval = 128

 AND read_repair_chance = 0.0

 AND speculative_retry = '99PERCENTILE';

CREATE TABLE k_master.formfeeder (

 teamname text,

 datecreated date,

 numberofdraws int,

 numberofloses int,

 numberofwins int,

 PRIMARY KEY (teamname, datecreated)

) WITH CLUSTERING ORDER BY (datecreated ASC)

 AND bloom_filter_fp_chance = 0.01

 AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}

 AND comment = ''

 AND compaction = {'class':

'org.apache.cassandra.db.compaction.SizeTieredCompactionStrateg

y', 'max_threshold': '32', 'min_threshold': '4'}

 AND compression = {'chunk_length_in_kb': '64', 'class':

'org.apache.cassandra.io.compress.LZ4Compressor'}

 AND crc_check_chance = 1.0

 AND dclocal_read_repair_chance = 0.1

 AND default_time_to_live = 0

 AND gc_grace_seconds = 864000

 AND max_index_interval = 2048

 AND memtable_flush_period_in_ms = 0

 AND min_index_interval = 128

 AND read_repair_chance = 0.0

 101

 AND speculative_retry = '99PERCENTILE';

CREATE TABLE k_master.fixturefeeder (

 teamname text,

 datecreated date,

 awayteamgoals int,

 awayteamname text,

 hometeamgoals int,

 PRIMARY KEY (teamname, datecreated)

) WITH CLUSTERING ORDER BY (datecreated ASC)

 AND bloom_filter_fp_chance = 0.01

 AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'}

 AND comment = ''

 AND compaction = {'class':

'org.apache.cassandra.db.compaction.SizeTieredCompactionStrateg

y', 'max_threshold': '32', 'min_threshold': '4'}

 AND compression = {'chunk_length_in_kb': '64', 'class':

'org.apache.cassandra.io.compress.LZ4Compressor'}

 AND crc_check_chance = 1.0

 AND dclocal_read_repair_chance = 0.1

 AND default_time_to_live = 0

 AND gc_grace_seconds = 864000

 AND max_index_interval = 2048

 AND memtable_flush_period_in_ms = 0

 AND min_index_interval = 128

 AND read_repair_chance = 0.0

 AND speculative_retry = '99PERCENTILE';

 102

APPENDIX B: TEST LEARNING RESULTS

First Run for First Match (both speed and batch layers).

Second Run for Second Match (on speed layer)

Second Run for Second Match (on batch layer)

 103

Third Run for Third Match (on speed layer)

Third Run for Third Match (on batch layer)

