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Abstract

This research is aimed at analysing the performance of a closed-loop feedback

system of an external cavity diode laser (ECDL) for a laser (Doppler) cooling and

atom trapping experiment.

External cavity diode lasers (ECDL) are commonly used in laser cooling exper-

iments involving rubidium atoms. The laser frequency is controlled by adjusting

the cavity length and the diode current. Using feedback control method, the

laser is locked to an appropriate rubidium transition using a saturation absorption

spectroscopy (SAS) setup together with a proportional-integral-derivative (PID)

controller.

At the CPUT Quantum Physics research group, we have a laser cooling and

atom trapping experimental setup. This setup is a combination of multiple optical,

electrical and mechanical components. We first analyse this system experimentally

using test signals. By passing in basic test input signals, we were able to measure

the system by identifying and extracting certain properties such as the resonant



frequency, the damping constant and transient response of the system. The re-

sults generated from the experimental analysis further enabled us to estimate the

transfer function of the external cavity diode laser (ECDL).

We then analyse the feedback setup numerically using known parameters from

the experiment, and estimated parameters from the experimental analysis. We

do this by first getting the mathematical model of the laser and then solving the

differential equation using Euler methods in Matlab. By numerically analysing this

feedback system, we are able to understand its transient behaviour. We were also

able to test the system for different test scenarios e.g. tests for various controller

constants, system response to different disturbance types and so on.

The similarities observed between the experimental and numerical analysis pro-

vide a reliable framework for future improvements when developing the feedback

system. Elements such as the integrator constants, disturbance magnitudes and

so on can be evaluated using the developed numerical closed-loop system.
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

Control systems are a vital component of our everyday life. We can think of a

control system as a system that can be used to control a certain variable (e.g.

temperature of water in an electric kettle) or even control a sequence of events

(e.g. a washing machine, where a sequence of events are triggered when a wash

mode is selected) (Bolton, 2018). Feedback control in particular form a crucial

part of the control engineering field (Goodwin et al., n.d.).

Consider an example of a feedback system that involves all of us - your body

temperature. Assuming you are not ill, your body temperature remains almost
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constant whether you find yourself in a hot or cold environment. This is because

the human body has a form of a ”temperature control system”. When the tem-

perature of the external environment increases, you sweat and when it decreases,

you shiver and thus your body temperature is restored. The control system in this

case aims to always keep the body temperature constant.

Another practical application of a feedback control system can be observed

in a centrally heated home, where to control the temperature, a human stands

close to the furnace’s power switch with a thermostat to measure the temperature

and then turn on/off, depending on the thermostat’s reading. This is a crude

form of feedback control as the human in this case acts as the controlling element

and the thermostat as the feedback element. In a more advanced system, there

is a controller that automatically switches the furnace on/off, depending on the

measured thermostat value.

Feedback control systems is used across various science and technology disci-

plines and one of such is quantum technology. Quantum technology is a relatively

new field of physics and engineering, utilising some properties of quantum me-

chanics (e.g. quantum entanglement, superposition and tunnelling) into practical

applications such as quantum computing, quantum cryptography, quantum simu-

lation, quantum imaging and so on (Love, 2017; Singh, 2008).

Quantum computing is a simple example of a practical application. Quantum

2



computing employs quantum bits, which are two states of an atomic system. They

are referred to as quantum bits. They are similar to classical bits except in the

quantum case, the system can be in a superposition of both 0 and 1.

Quantum systems however are still quite complicated. They are very sensitive

to environment and external influences, making the atoms/qubits lose their coher-

ence when they are in a superposition state and when this happens, there is loss

of information.

At the Cape Peninsula University of Technology, quantum system applications

such as quantum computing and quantum information processing are being in-

vestigated by a group physicists and engineers through the study of cold atoms1

(i.e. temperatures around 2730C). Cold atoms are created using a system of laser

beams interacting with atoms (rubidium atoms in our case) in a magneto-optical

trap (MOT). To successfully get cold atoms, a lot of precision measurement and

control is required. The laser frequency has to be precisely controlled for cooling,

and the data outputs recorded accurately. In this project, we focus on analysing

the control system for the laser used (an external cavity diode laser) and a data

acquisition system for the laser cooling and trapping experiments.

1Quantum Physics Research Group - CPUT: www.cput.ac.za/academic/faculties/
engineering/research/quantum_physics
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1.2 Background and literature review

This project requires a solid understanding of concepts in atomic physics and

control engineering. This section discusses briefly the concepts and techniques

required for the proposed research. More in-depth details will be provided in a

later chapter.

1.2.1 Laser cooling and locking

Laser cooling, also known as Doppler cooling is a technique used for the cooling

of samples of neutral atoms or ions (Salim et al., 2012; Preston, 1996). It involves

illuminating a cloud of atoms under low pressure to three pairs of laser beams

arranged orthogonally. In each pair, the laser beams are counter-propagating.

Figure 1.1 shows an example of one such pair.

Figure 1.1: Laser interaction with cloud of atoms (Yahya, 2012).

Cooling is achieved by absorption and emission of the laser photons, which

generates a velocity dependent force. Laser cooling involves the ability to cool a
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sample of gas down to kinetic temperatures (e.g. ∼ 2730C) and confine them in a

vacuum system over a period of time. For cooling to occur, the lasers have to be

tuned to a very precise frequency and this is accomplished by using external cavity

diode lasers and saturated absorption setup spectrometers (Salim et al., 2012).

Figure 1.2 shows a general overview of a laser locking control model.

Figure 1.2: Overall block diagram of the laser control system

The system consists of a laser, a feedback scheme in form of a saturated ab-

sorption spectroscopy (SAS) setup and a proportional-integral-derivative (PID)

controller (Weel et al., 2002). The aim is to keep the frequency of the laser locked

on to a certain energy transition of the atoms (Dong et al., 2007). We further

discuss below, the various blocks in figure 1.2.
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External cavity diode lasers (ECDL)

Figure 1.3 shows a basic geometry of an external cavity diode laser (ECDL). It

consists of a laser diode with a reflective coating on the rear surface and a reflection

diffraction grating2 mounted on a piezoelectric device.

Figure 1.3: External cavity diode laser (ECDL) geometry

The laser diodes are generally inexpensive and available off the shelf. The

output beam of the laser strikes the reflective diffraction grating, with one of the

reflection orders directed back into the diode to form a cavity of length L as shown

in figure 1.3. Another reflection order much weaker is reflected as the output beam.

The piezoelectric transducer (PZT) is ceramic actuator that converts electrical

energy to mechanical energy by motion of very high resolutions (e.g.nanometer

range deflection). By applying an input voltage signal to the piezo device, we can

control the cavity length. Also, by applying a varying voltage to the piezo, we can

2a reflection diffraction grating operates as follows: when a laser beam strikes it, there are
reflections at various angles, which we refer to as orders of reflection (Cunyun, 2004)
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frequency modulate the laser output.

The resonant frequency of the cavity is given by:

F = cn/L (1.1)

where c is the speed of light, n is an integer and L is the cavity length. Diode

lasers are primarily developed for applications in wavelength division multiplex-

ing (WDM) technology, coherent communication systems and sensing in precise

measurements (Harvey et al., 1991).

Gawlik et al. (2004) elaborated on how critical precise control of the laser fre-

quency is for laser cooling and trapping applications. The laser frequency however

is not perfectly stable due to internal or external influences such as mechanical

vibrations, air pressure, internal and external temperature variations etc. and

these influences must be avoided to achieve a stable frequency (Weel et al., 2002;

Cunyun, 2004; MacAdam et al., 1992).

Saturated absorption spectroscopy (SAS) setup (Feedback block)

The saturated absorption spectroscopy (SAS) block is used as the feedback ele-

ment. It is used as a reference to measure the frequency of the laser beam. The

input to this block (laser beam) is passed through a gas whose absorption spectra

we know while the output of this block is an electrical signal from the photode-

7



tector. Depending on the laser frequency, the output will depend on where the

laser frequency is on the absorption curve as seen in figure 1.4. The SAS setup is

described in more detail in chapter 3.

Figure 1.4: The known frequency response of the feedback block. The input to the
feedback element is the laser frequency and the output is a voltage proportional
to the input laser frequency

PID controller

PID control is the most commonly used control algorithm. The coefficients: Pro-

portional(P), Integral(I), and Derivative(D) are varied to get the optimal response

from a system. The difference between the setpoint value and the output of the sat-

urated absorption spectroscopy setup (the difference/error signal) is determined.

The error signal is amplified, integrated (and sometimes differentiated) before be-

ing fed to the piezoelectric device (Traptilisa, 2014; Nyamuda, 2006).
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1.2.2 Research aims and objectives

The aim of this research is to investigate the behaviour and dynamics of the closed-

loop control system used to lock the laser beam to a specific frequency. To success-

fully complete this research, the following objectives have been identified (these

essentially form the chapters in this thesis)

1. Make a detailed study of the existing laboratory setup for laser locking.

2. Undertake a theoretical study of the basic ideas involved in this project.

3. Determine via experiments, the dynamic behaviour of the existing closed-

loop system.

4. Conduct numerical simulation studies to obtain further insight into the be-

haviour of closed-loop ECDL control system.

1.2.3 Delineation of research

This research involves a number of people and is broken down into segments. The

focus will be analysis of the control system used for laser trapping and cooling.

It will not involve the setting up of the saturated absorption spectroscopy exper-

iment and setting up the laser and optics will not be part of the project. Some

experimental results however may be used for comparative analysis.

9



1.2.4 Thesis outline

Chapter 1 gives a broad overview of the concepts involved in this research with

literature review.

In chapter 2, we discuss the description of the physical setup in the laboratory

used to lock the laser frequency.

Chapter 3 discusses the basic ideas and theoretical concepts needed in more

detail. They include control theory (e.g. feedback systems, transfer functions, etc)

and the physics of laser atom interaction.

Chapter 4 discusses how we experimentally analysed the feedback control sys-

tem. It explains our experimental operation modes, performance analysis and the

results obtained (e.g. Transfer function of the closed-loop system).

In Chapter 5, we further analysed the closed-loop system numerically. We dis-

cuss how each component was modelled and simulated numerically in software. We

also show the results for various test scenarios e.g. step response, system perfor-

mance for various control constants and system response to different disturbance

types.

10



Chapter 2

Physical Arrangement

2.1 Introduction

In this chapter, we describe the physical apparatus used in the laboratory to lock

the laser frequency. We first show the overall feedback system block diagram

and then we proceed to discuss how each component works and how they are

interconnected.

2.2 System overview

Though we have given a simple illustration of a laser locking model in chapter 1,

figure 2.1 shows a detailed control system as implemented in the laboratory.
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Figure 2.1: Block diagram of the laser locking control system

It consists of an external cavity diode laser (ECDL), a feedback setup in the

form of a saturated absorption spectroscopy (SAS) experiment to measure the

laser frequency, a proportional-integral-derivative (PID) controller and a PC mon-

itoring/signal injection setup. The overall aim of this setup is to lock the laser

frequency to a specific value and to monitor the performance of the entire closed

loop system. A photograph of the entire apparatus is shown in figure 2.2.
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Figure 2.2: Experimental apparatus of our closed loop feedback system

Over the next few sections, we describe each of the components involved in the

experimental setup.

2.2.1 External cavity diode laser (ECDL)

Figure 2.3 shows a basic geometry of an external cavity diode laser (ECDL). It

consists of a laser diode with a reflective coating on the rear surface and a reflection

diffraction grating. A reflection diffraction grating operates in a similar way to a

mirror. The difference is how the light is reflected off the surface. When a laser

13



beam is strikes a reflection grating, the beam is reflected at multiple angles. The

reflected beams are referred to as order of reflection (Hecht, 2013).

Figure 2.3: External cavity diode laser (ECDL) geometry

The output beam of the laser strikes the reflective diffraction grating, with one

of the reflection orders directed back into the diode to form a cavity of length

L as shown in figure 2.3. Another reflection order much weaker is reflected as

the output beam. The diffraction grating is mounted on a piezoelectric transducer

(PZT) as shown in figure 2.3. The piezoelectric transducer is ceramic actuator that

converts electrical energy to mechanical energy by motion of very high resolutions

(e.g. nanometer range deflection). By applying an input voltage signal to the piezo

device, we can control the cavity length. The resonant frequency of the cavity is

given by:

F = cn/L (2.1)

14



where c is the speed of light, n is an integer and L is the cavity length.

By applying a varying voltage to the piezo, we can frequency modulate the

laser output. For our experiments, we used the Vortex II TLB-6900 laser model

which is a type of external cavity diode laser (ECDL). This is shown in figure 2.4.

Figure 2.4: Vortex II TLB-6900 External Cavity Diode Laser (Corporation, 2009)

The output frequency of the external cavity diode laser (ECDL), besides de-

pending on the cavity length, also depends on the laser current. So the external

cavity diode laser (ECDL) frequency can be controlled by both adjusting the cavity

length and the laser current. The laser current gives us a finer control compared

to the adjusting the cavity length.

2.2.2 Feedback block (SAS setup)

The purpose of this block is to determine the frequency of the laser beam. We do

this by passing the laser through a gas sample, whose absorption spectra is known.

By monitoring the intensity of the output beam from the gas sample, we can infer

15



where about on the absorption curve the beam is located. This is illustrated in

figure 2.5.

(a)

(b)

Figure 2.5: (a) Schematic of absorption measurement (b) frequency response of
the gas sample.

If the laser beam frequency is ω1, then the detector output will be v1 for the

situation shown in figure 2.5b.

The feedback block in the actual experiment essentially contains a setup similar

to this except we have to take into account the fact that the atoms have thermal

motion, which will cause broadening of the spectra. To counteract this broadening,

we use a more complicated setup shown in figure 2.6

16



Figure 2.6: Schematic of a saturated absorption spectroscopy setup to determine
the laser frequency

The detail explanation of how this setup works will be discussed in chapter 3.

Figure 2.7 shows a photograph of the experimental setup, together with an overlay

of the various beams.

Figure 2.7: Saturated absorption spectroscopy laboratory setup
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2.2.3 PI controller

The aim of this controller setup is to regulate and stabilize the frequency of the

external cavity diode laser (ECDL) to a desired response. It compares the setpoint

input signal with the feedback’s output signal from the detector shown in figure

2.6, to derive the error signal. This error signal is then amplified, integrated

(and sometimes differentiated) before being fed back to the piezoelectric device

(Traptilisa, 2014; Nyamuda, 2006). The setup is illustrated by the diagram in

figure 2.8.

Figure 2.8: PI controller schematic

By varying the coefficients: proportional and integral, we are able to derive

an optimal response of the laser frequency. Figure 2.9 shows the physical PID

controller as set up at the laboratory.

Figure 2.9: PID controller box

Note that this controller was developed in house by another student and the

18



circuit diagram can be found in appendix A. More theoretical detail of control

systems will be provided in chapter 3.

2.2.4 Data acquisition and setpoint control

The system to inject a setpoint signal and to measure the output laser frequency

is shown in figure 2.10.

Figure 2.10: Schematic diagram of our data acquisition & setpoint control mech-
anism

The data acquisition (dashed section) consists of a PC running LabVIEW that

is interfaced with a National Instruments data acquisition device (NI-6002 DAQ

1). The NI-6002 generates (via the software) the setpoint and acquires the system

output signal. We use various types of input signals. The signals used will be

discussed further in chapter 4, where we discuss the experimental analysis.

1See appendix B for technical information.
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2.3 Summary

We have described the laboratory setup of the laser locking feedback system. We

have also discussed each component used in the experiment along with images

where necessary. The control and atomic physics concepts used in the experiment

will be discussed in more detail in the next chapter.
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Chapter 3

Theory

3.1 Introduction

To successfully analyse the closed-loop feedback control of a atom trapping and

laser cooling system, it is important to have a well grounded understanding of the

two major concepts involved - control theory and atomic physics. In this chapter,

we discuss in more detail concepts in control theory such as feedback systems,

transfer functions and laser cooling concepts such as absorption, emission, etc.

3.2 Control theory

Control theory deals with the dynamic response of a system to commands and/or

disturbances (Grantham et al., 1993). The aim of studying a dynamic system is

21



generally to gain an understanding of the system, with a view to controlling certain

parameters.

To control a system, adjusting one or more inputs to the system is required.

By adjusting the input, the system exhibits a transient response, followed by a

steady-state behavior.

We take the heating of a room for example. The input in this case can be

the voltage input to a power source and the output as the temperature of the

room. However, there can also be heat flow from the environment that cannot be

controlled. We refer to this input as a disturbance (Schwarzenbach et al., 1992).

There are two broad classifications of control systems available - open-loop systems

and closed-loop control systems

3.2.1 Open-loop and closed-loop control systems

With open-loop systems, the desired output of open-loop systems are generated

based on prediction. This concept is illustrated in figure 3.1.

Figure 3.1: Open-loop control system

The inputs of an open-loop system does not depend explicitly on the output.

Instead, they are generated using knowledge and information from past experience

22



of that system (Grantham et al., 1993). Such systems include washing machine, a

boiler kettle etc.

The outputs of an open-loop system are sometimes undesirable as they can

deviate due to unexpected disturbances to the system. A washing machine for

example would only work perfectly as long as the water to soap to load weight

ratio is perfectly proportional. The results change the moment any of the variable

exceed a certain limit e.g. an increase in water pressure or load weight. This

challenge is addressed with closed-loop feedback systems.

Closed-loop systems depend on the present state of the output, hence the need

for a measuring device as shown in figure 3.2. The measurement from the output

is called the feedback signal (Grantham et al., 1993; Bolton, 2018).

Figure 3.2: General closed-loop control system

With a closed-loop system, the output is first measured, then compared with

the desired input (setpoint) and the system continually attempts to reduce the

error between the setpoint and the measured system output. Closed-loop systems

provide better performance and accuracy compared to open-loop systems as it

provides the ability to control the transient and steady-state performance.
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Using closed-loop control also has it’s challenges. A system can become very

unstable when delays for example occur in the loop. A slight delay in the flow

from block to block can lead to corrective action applied late, therefore causing

undercorrection or overcorrection. Thus we need to thoroughly analyse a system to

develop optimal and efficient techniques to control the system (Dorf et al., 2000).

Feedback system analysis is further discussed in the next sections.

3.2.2 Performance of feedback control systems

Early control systems such as James Watt’s speed governor, a device to control

the speed of steam engines, were developed with very little theoretical analysis

(Schwarzenbach et al., 1992). However, as systems become more complex, with

their performance requirements becoming more demanding, it has become neces-

sary to resort to a more analytical approach. By analysing a system thoroughly,

resources such as man power, time, money etc. are managed and allocated wisely.

Figure 3.3 shows an general overview of a feedback control system. It generally

consists of the process to be controlled, sensors to detect these changes, a con-

troller to compare the desired output with the measured output and implement

the desired change with an actuator to activate or trigger the desired change to

the plant.
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Figure 3.3: Feedback Control System (Phillips et al., 1995)

Feedback control systems are mainly used to reduce the effect of ”uncertainty”

in control systems (Phillips et al., 1995) . Uncertainty can be in the form of

a modeling error in the unknown system (plant) or in the form of an unknown

signal (disturbance).

Feedback control systems are inherently dynamic and as such, their perfor-

mance is usually analysed and specified in terms of its transient response and its

steady-state response.

The transient response is the response that occurs due to a change in input and

disappears after a certain period of time. The steady-state response on the other

hand is the response that remains after all transient responses have died down.

Figure 3.4 gives a simple illustration of these concepts using a vertically suspended

spring.
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Figure 3.4: An simple illustration of a mass spring system, with its transient and
steady-state response (b) (Bolton, 2018).

Assuming a force is suddenly applied to a mass-spring system which is in some

equilibrium position, the spring then immediately stretches. The spring and mass

oscillates at first and eventually settles down to a steady value. This steady value

represents the steady-state response while the oscillation that occurs before it

settles to a steady value is known as the transient response.

Analysing a control system helps in determining the details of the transient

response and the final settling value, thereby observing the quality of its perfor-

mance.

Test input signals

Using test input signals is an important part of analysing feedback control systems.

We know an input signal produces a transient response when applied to a control

system. The applied force from figure 3.4 on the mass-spring system is an example
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of such input. During normal operation however, the input signals at various

points in the system is dynamically varying, making it difficult to simulate them.

To circumvent this, test input signals are generally used in control engineering.

These test signals allows us to characterize the system for any types of input to

the system.(Dorf et al., 2000; Burghes et al., 1980).

Test input signals generally used in control systems analysis include step input,

ramp input & parabolic input as shown in figure 3.5. Using these test inputs, we are

able to predict the response due to any other input signal. The step reference input

for example is used in systems that may experience sudden changes (disturbances)

at a certain point in time. Ramp as a reference input can also be used to follow

gradually changing systems.

Figure 3.5: Test Input Signals (Dorf et al., 2000)

The ramp signal is the integral of the step input while the parabolic signal is

the integral of the ramp input. Table 3.1 shows the equations representing the

various test signals in the time and Laplace domain respectively.
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Table 3.1: Test Signal Inputs

Test Signal r(t) R(s)

Step
r(t) = A, t>0

= 0,t<0

R(s) = A/s

Ramp
r(t)=At, t>0

= 0, t<0

R(s) = A/s2

Parabolic
r(t)=Atˆ2, t>0

= 0, t<0

R(s) = 2A/s3

A unit impulse function is also sometimes used as a test signal. It is based on

the limiting form of a rectangular function:


limε→0

1

ε
,
−ε
2
≤ t ≤ 1ε

2

0 otherwise


Step input signal is the easiest to generate and evaluate and as such, primarily

chosen for performance tests (Dorf et al., 2000). Standard performance measures

are therefore generally analysed in terms of the step response of a system. Figure

3.6 shows an example when step test signals are applied to a practical system.

Using the mass spring system in figure 3.4 as a reference, we assume the mass

m of the object to be 1Kg and the spring constant k to be 1N/m. In reality,

we understand that the spring will not oscillate forever due to effects such as air
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resistance or energy lost1 in the spring. Instead, it will oscillate for a certain period,

with the amplitude diminishing to an eventual state of rest. For this illustration,

we assumed a frictional constant of 0.8Ns/m

Figure 3.6: Step response example for a mass spring system.

By applying a step input force F of 1N , a transient response was induced as

seen in figure 3.6. Note that the system is analysed in the X-Y plane as we assume

both the mass and spring are moving in the Y direction.

Transfer Functions

Transfer functions are used in control engineering to represent the relationship

between the input and output of a system. It describes the dynamic characteristics

1Due to the law of conservation of energy, energy is not necessarily ”lost”. Instead, it is
converted from mechanical energy to heat energy
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of the system. According to Schwarzenbach et al., 1992, the transfer function of a

linear system is defined as “the ratio of the Laplace transform of the output to the

Laplace transform of the input when all initial conditions are zero”. The transfer

function is therefore represented by the general form:

G(s) ,
Y (s)

X(s)
(3.1)

where Y (s) → system output and X(s) → system input. Y (s) and X(s) are

polynomials in s.

For a system to be physically realizable, it is important the order of the numer-

ator not exceed that of the denominator (Morari et al., 1989). When a transfer

function has a its zeroes greater than the number of poles, it creates pure differen-

tiators. Pure differentiators suggest that the transfer function represents a system

that is not casual i.e. it is not physically realizable.

From the transfer function, it is possible to assess the system behaviour. The

dynamic system, usually represented by a differential equation is analysed and

rewritten using Laplace transform notation. We consider a simple example in the

mass-spring-damper system as seen in figure 3.7. It has three elements: a mass m

measured in kg, a damping coefficient b and a spring constant k measured in N/m.

The mathematical model of this system is derived using Newton’s second law

of motion. It states that the sum of applied force us equal to the rate of change
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Figure 3.7: A simple mass-spring-damper system.

of momentum.

∑
F = f(t)− fs(t)− fd(t) = M

d2x

dt2
(3.2)

The force produced by the spring fs = kx(t) and the damping force fd = bd
2x
dt2

.

Rewriting Eq. 3.2, we have:

f(t) = m
d2x

dt2
+ b

dx

dt
+ k(x) (3.3)

For zero initial conditions, the Laplace transform of Eq. 3.3 becomes:

F (s) = Ms2X(s) +BsX(s) +KX(s) (3.4)

The transfer function is then summarized by Eq. 3.5

X(s)

F (s)
=

1

ms2 + bs+ k
(3.5)
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3.2.3 Performance measures for second-order feedback sys-

tems

We consider the transfer function of a second order feedback system, with input

r(t) and output y(t). The transfer function for this case has the general form:

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

; 0 < ζ < 1 (3.6)

where ζ is the dimensionless damping ratio and ωn is the natural frequency

(also sometimes referred to as the undamped frequency). Assuming a step input

r(t) is applied to this system, the solution for the output is the inverse Laplace

transform of:

Y (s) =
ω2
n

s2 + 2ζωns+ ω2
n

× 1

s

y(t) =
1− e−ζωnt√

1− ζ2
sin(ωdt+ Θ); t ≥ 0 (3.7)

where ωd = ωn
√

1− ζ2 & θ = cos−1(ζ).

Figure 3.8 shows the standard transient responses of a second order system to

a step input signal for typical ζ values.

For 0 < ζ < 1, the system is considered to be under-damped. It has an

oscillatory behaviour and the poles of the transfer function are complex. For
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Figure 3.8: Step Response for typical ζ values

ζ = 1, the system is considered to be critically damped and for ζ > 1, the system

is over-damped and has no oscillatory behaviour.

Figure 3.9 shows the typical form of the response of an under-damped second

order system to a step input. Parameters such as rise time, percentage over-

shoot, settling time and peak time are used in evaluating the performance of

an under-damped system with some of them represented in figure 3.9.

The overshoot is the maximum amount by which the response overshoots its

steady state value (Bolton, 2018). It is defined by the equation:

%OS = exp
−

 ζπ√
1− ζ2


×100 (3.8)
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Solving for ζ, we have:

ζ =
− ln(

%OS

100
)√

π2 + ln2(
%OS

100
)

(3.9)

where

%OS =
yp − yss
yss

× 100; (3.10)

The rise time, generally represented as Tr, is the time required for the response

to rise from 10% of the final value to 90% of the final value.

Settling time in simple terms is the time taken for the oscillations to die away.

Dorf et al., 2000 defines it as the time required for the system to settle within a

certain percentage (e.g. 2% or 5%) of the steady state value. 2% is generally the

optimal settling time used for second order systems. Settling time is represented

by Eq. 3.11.

Ts =
4

ζωn
; for ζ2 ≤ 1 (3.11)
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Figure 3.9: Performance characteristics of a second order system (Nise, 2011)

3.3 Laser-atom interaction and laser locking

Since we are analysing a control system to control the laser frequency for doppler

cooling, it is useful as background to have a basic understanding of physics concepts

such as absorption, emission and stimulated absorption. This section also gives a

background on how our laser is locked using feedback control method.

3.3.1 Absorption, emission and stimulated emission

Any electron in an atom has its stable orbits called stationary states. At this

point, the atom has its energy levels as illustrated by figure 3.10.

Atom radiates in terms of electromagnetic emission when an electron makes a

transition from one state to the other. Bohr’s principles suggests that the radia-
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Figure 3.10: Energy levels for an electron in an atom illustrating the ground state
and excited states. (Cunyun, 2004)

tion that occurs is related to the energies of the orbits and is represented by the

equation:

v =
Ef − Ei

h
(3.12)

where Ef and Ei are the energy levels of final and initial respective states of an

atom, h is Planck’s constant (6.625× 10−34Joul − sec). There are three different

types of electron transition that occur when an electron interacts with radiation.

They are resonant absorption, spontaneous emission and stimulated absorption.

Figure 3.11 illustrates these different transitions.
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Figure 3.11: Basic frequency stabilization scheme of semiconductor diode lasers
(Cunyun, 2004)

Assuming an atom is initially in a ground state Ei, the atom stays in the

ground state until light with a certain frequency v = v0 is applied, where v0 is the

transition between the two energy levels. In this case, there is a high probability

for the atom to make a transition from a lower energy level Ei to the higher level

Ef by absorption of a light quanta. This process is called the resonant absorption

process as shown in figure 3.11.
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After absorbing light with the atom at a higher level, this atom has a tendency

to decay to a lower stable energy level. When it decays, the corresponding energy

difference Ef −Ei is then released by spontaneously emitting a light quantum. A

photon is then emitted in a random direction with random phase. This process is

defined as spontaneous emission phenomenon (figure 3.11(b)).

Fig 3.11(c) shows the third type of transition. Assuming an electron is initially

in the upper state and light with frequency v = v0 (i.e. v = the transition frequency

between two energy levels), is incident in an atom, the incident light stimulates

the atom to undergo a transition from Ef → Ei in such a way that a new photon is

generated. This phenomenon is known as stimulated emission. The generated light

has the same phase and direction as that of the incident light and such stimulated

emitted light is also known as coherent light.

Saturated absorption spectroscopy (SAS)

Basic absorption spectroscopy involves passing a laser beam through a gas sam-

ple and measuring the intensity of the beam after it passes through to get the

absorption spectra of the gas of atoms. The basic arrangement for an absorp-

tion spectroscopy setup is shown in figure 3.12. By varying the frequency and

measuring the intensity, we get the absorption as a function of frequency.
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Figure 3.12: Standard absorption spectroscopy setup

However, because the atoms are in motion, they absorb the laser photons even

when the atoms are not exactly in resonance with the atoms. This is due to the

doppler effect. The net result is that the true spectra is now broadened due to the

motion of the atom. Figure 3.13 illustrates this effect.

Figure 3.13: Absorption spectra using the probe beam only.

To counteract this broadening, we use a saturated absorption spectroscopy

(SAS) setup, with an example of such shown in figure 3.14.
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Figure 3.14: Basic saturated absorption spectroscopy setup.

It consists of a probe beam passing through the sample which we monitor

using a photodetector, and a strong counter-propagating pump beam. The probe

and pump beams are swept in frequency simultaneously. Because they counter-

propagate, they interact with atoms of different velocities as the laser frequency is

swept.

However, when the frequency is exactly in resonance (or close to resonance)

with the atoms, both beams interact with the same zero-velocity atoms. The

strong pump beam saturates the sample (i.e. puts the atoms in an excited state),

thus leaving little atoms to interact with the probe beam, resulting in a reduction

in absorption and showing its true absorption profile. This is illustrated in figure
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3.15.

Figure 3.15: Spectra using a probe and a pump beam, showing the true absorption
spectra at the resonant frequency.

It is this true absorption spectra which has a Lorentzian profile that we measure

and lock on to.

3.3.2 Laser frequency locking

The overall block diagram of our feedback system to control the laser frequency is

shown on figure 3.16. It consists of an external cavity diode laser which is the plant

to be controlled and its power supply (laser controller), a proportional-integral-

derivative (PID) controller and a feedback path.
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Figure 3.16: Basic frequency stabilization scheme of semiconductor diode lasers

The external cavity diode laser has been discussed in previously in chapter 1

and 2. The output laser frequency depends on various factors such as the cavity

length and the diode current. The stability will depend on other factors such as

vibration, temperature etc. These stability factors are difficult for the controller

to predict. By using a feedback block as shown in 3.16, we can counteract the

effects of these on the laser frequency as follows: The laser frequency is measured

before by passing the laser beam through a setup that has frequency response we

know, and the absorption of the laser is noted. This then indicates where on the

absorption spectra the laser frequency is. We illustrate this concept again in figure

3.17
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Figure 3.17: The known frequency response of the feedback block. The laser
frequency is the input to the feedback element and the output is a voltage signal
that is proportional to the input laser frequency

The output of the feedback network is compared to a setpoint value to create an

error signal e(t). This error signal is then fed to a proportional-integral-derivative

(PID) controller. The P amplifies the error, then integrated and sometimes also

differentiated (Bolton, 2018). The output of the PID controller is then fed to the

laser. More detail on the proportional-integral-derivative (PID) controller is given

below.

Proportional-Integral-Derivative (PID) Controller

The proportional-integral-derivative (PID) Controller in general has the following

structure:

ep = KP e (3.13)
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Figure 3.18: A proportional integral derivative (PID) control system

where KP is a constant that can be adjusted.

eI = KI

∫
epdt; (3.14)

i.e. the signal is integrated, where KI is a constant that can be adjusted to set

the integrator time constant.

and

D = KD ·
deI
dt

(3.15)

where KD is also a constant that can be adjusted.

As discussed earlier, the P block amplifies the error signal, then followed by

an integrator and a differentiator. The integrator responds to slow changes in the

error, while the differentiator responds to rapid changes to the system error.

The dynamical characteristics of the feedback system will depend on the choice

of KP , KI and KD. The table 3.2 shows how various parameters are affected with

increasing values of KP , KI and KD.
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Table 3.2: Effect of each PID controller elements in a closed-loop control system
(Tehrani et al., 2012)

Parameter Rise Time Settling time Overshoot Steady-state error

KP Decrease Small change Increase Decrease

KI Decrease Increase Increase Significant decrease

KD Small decrease Small decrease Small decrease No effect (in theory)

In our actual PID controller however, the Derivative part is not used.

3.4 Summary

We have discussed the relevant theoretical concepts in context of this research. We

expanded on feedback control theory and basic atomic physics concepts. We then

went on to explain how a closed-loop system can be used to control the frequency

of a laser beam using a PID controller and a saturated absorption spectroscopy

(SAS) setup.
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Chapter 4

Experimental Analysis of the

Feedback Control of an External

Cavity Diode Laser (ECDL)

4.1 Introduction

In this chapter, we discuss how we experimentally analysed the feedback control

system used to lock the laser frequency. We describe how the existing system

works, the different operating modes and how we go about locking the laser to a

specific frequency.

We then discuss the results from our experiments. We first show the output
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before and after the laser was locked. We also show the results from applied

test input signals. The step response particularly was evaluated to observe the

transient response and to extract the control parameters such as ωn and ζ. These

parameters were then used to estimate the transfer function of the system.

4.2 Overview

For easier cross-referencing, we repeat the experimental block diagram from chap-

ter 2 in figure 4.1, but redrawn slightly differently.

Figure 4.1: Experimental setup of the laser locking control system

The external cavity diode laser (ECDL) is the plant to be controlled, its output

frequency more specifically. The signal which is applied to the external cavity diode
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laser (VECDL), is a voltage which drives the piezo device in the external cavity

diode laser to control the cavity length1. As discussed previously in chapter 2, by

controlling the cavity length, we can control the frequency of the laser.

The lockswitch SW1 is used to operate the system either in open-loop mode

(SW1 = open) or closed-loop mode (SW1 = closed). Open-loop operation involves

the ramp and PZT bias signals as the only input sources to the laser. The ramp

input is used to sweep the laser frequency over a band that is required. This

function is needed initially to locate the resonant frequencies of rubidium gas of

which we will lock on to. The rubidium gas mentioned is contained in a glass cell

which forms part of the measurement/feedback block in figure 4.1. This function

will be discussed more later on under the operation procedure. For the closed-loop

operation, the lock-switch is closed and the ramp input signal is set to zero. The

input signal to the laser then is solely from the PI controller’s output signal and

the PZT bias.

The input to the system (Vin) is a voltage signal set by the data acquisition

device (NI 6002) and specified in LabVIEW. This input signal is then compared

with the feedback signal to generate an error signal to drive the PI controller.

The signal from the feedback block (Vfb) is derived from a saturated absorption

spectroscopy setup. The output of the feedback block is related to the absorption

spectra of rubidium, since the laser is passed through a cell containing rubidium

1See chapter 2 for more information on external cavity diode lasers (ECDL)
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gas. In open-loop control, the output has a Lorentzian profile similar to figure 4.2

for one peak. More information on the experimental setup can be found in chapter

2.

Figure 4.2: Frequency response of the feedback block (SAS setup), where the
input to the system is equivalent to the output laser frequency

The feedback output is compared with the setpoint input to generate the error

signal. The PI controller then operates on the error to maintain the laser at the

desired setpoint frequency.

4.3 Operation modes

We experimentally perform our analysis on the control system in open-loop mode

and closed-loop mode. These operation modes are discussed further below.
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4.3.1 Open-loop mode

The relevant parts of figure 4.1 that are used here is shown in figure 4.3. This

mode simply involves the plant (ECDL), the saturated absorption spectroscopy

(SAS) setup to measure the laser frequency, the PZT bias and the ramp as the

input to the ECDL. It operates with the lockswitch open and the ramp on.

Figure 4.3: Block diagram for open loop control operation

For this mode, the SAS setup simply acts as a sensing element for the laser

output. The ramp is used to sweep the frequency across a frequency band2. By

adjusting the ramp and PZT bias input signals, we can observe the peaks of

absorption of the rubidium gas. This observation is monitored either through an

oscilloscope or LabVIEW3. The figure below shows a schematic plot of the ramp

and typical absorption peaks that one may see on the oscilloscope.

2Recall that the input to the ECDL controls the piezo voltage, which adjusts the cavity length,
which in turn varies the laser’s resonant frequency.

3Data capturing is discussed in later section
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Figure 4.4: System output illustration from open-loop control mode

4.3.2 Closed-loop mode

In closed-loop mode, SW1 is closed and we want the laser output to be a selected

frequency, corresponding to a value that resides towards either of the left or the

right side of a chosen peak.

Let’s say we want to lock the laser to a frequency ωl as shown in figure 4.4,

then the corresponding voltage Vin on the y-axis will be fed as an input to the

closed-loop system, corresponding to the setpoint (SP) in figure 4.1. If the laser

frequency drifts away from ωl, then the PI controller will adjust the error and

correct the system to achieve the desired setpoint frequency (Vin). The process of

choosing a peak to lock on to is discussed in a later section.
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While the system is locked to the side of a particular peak, we further apply

sudden changes to the SP signal to see how the system responds.

Signal Injection Method

The setup to create the setpoint signal consists of a data acquisition device (NI

6002) and a PC running LabVIEW. It is used to generate input signals to the

system (setpoint & test signals) and acquire data from the feedback system.

The test signals are used to carry out further performance tests on the feedback

system. For more on how test signals works, see chapter 3. For our experiments,

we generate step and pulse test signals. They are illustrated in figure 4.5

Figure 4.5: Test signals used to analyse our feedback control system. We generated
a step input (a), an pulse signal (b) and multiple pulses as illustrated in (c).
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4.4 Experimental procedure

In this section, we highlight the steps taken to lock the laser frequency to a specified

atomic transition and how the test signals were applied to the feedback system. We

start the experiment in open-loop mode. This is to observe the absorption peaks

of the rubidium gas through the feedback setup. We then proceed to lock the laser

frequency to a chosen frequency peak, using closed-loop operation. After the laser

is successfully locked, we then carry out performance tests on the feedback system

using test input signals. These tests are detailed in the next sections.

4.4.1 Open-loop control

The operation is as follows.

• The lock switch (SW1 in figure 4.1) is set to be open

• The SAS signal and ramp signal is observed on screen (either through the

oscilloscope or LabVIEW)

• A ramp amplitude range is chosen to observe peaks from the SAS experi-

ments. See figure 4.6

• The PZT bias is then adjusted to place the chosen rubidium peak at the

center of the oscilloscope screen.
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Figure 4.6 illustrates the output from the feedback system after the experimental

steps have been taken. It illustrates the ramp and SAS output signals observed

on screen.

Figure 4.6: System output illustration from open-loop control mode

4.4.2 Closed-loop control

The steps taken to lock the laser are highlighted as follows. Figure 4.7 will be used

as a cross-referencing tool to highlight the output from different locking stages.

• After observing the frequency output from open-loop control mode, we then

identify which peak we want to lock the laser frequency to. For our experi-

ments, we chose peak b.

• We adjust the setpoint voltage to the point where we want to lock the laser
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frequency (see figure 4.7(b))

• We then slowly reduce the ramp while simultaneously adjusting the PZT

bias to the locking point in the middle of the ramp. This process is repeated

continuously until the feedback signal is reduced to an almost flat line, where

the setpoint signal overlaps the feedback signal. (Figure 4.7(d)). The feed-

back signal becomes a flatline because the peak is magnified along the time

axis as the ramp is made smaller (see figue 4.7(c) and (d) )

• The lockswitch is then closed to lock the laser to the chosen setpoint.

Performance tests

After the system is observed to be locked, we apply test signals for performance

analysis. We perform this operation through the following steps.

• We first configure the test signals to be applied in the developed LabVIEW

program.

• We further configure the oscilloscope to capture data using a trigger. This

trigger is set up such that it captures data when a sudden change in observed

from the setpoint input.

• We then apply the test signal from the developed LabVIEW software.

55



Figure 4.7: Plots illustrating the steps taken to lock the laser in closed-loop mode
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4.5 Data capturing

Our data can be captured either through an oscilloscope or the data acquisition

(DAQ) device (NI 6002). For basic open-loop and closed-loop operation, the DAQ

is used. It is able to observe the relevant frequency band(s) from the feedback

system and the locked laser signal.

For performance tests however, we use the oscilloscope alone instead. Due to

the speed limits of the DAQ device, sudden changes to the system are not captured

quickly enough (e.g. changes that occur in millisecond range).

4.6 Results

In this section, we show and discuss the results derived from the experiments

performed as described in the previous section. These results are explained in

three subsections: open-loop results, closed-loop results and parametric estimates.

The results from our open-loop control tests show the absorption peaks of the

rubidium gas while the results from the closed-loop tests show the laser frequency

locked to a side of a chosen absorption peak4. We then go on to show how the

system responds to different test input signals.

The applied test input signals induced a transient response on the closed-loop

system. This enabled us to perform further performance tests on the closed-loop

4Note that this peak is identified and chosen from the open-loop tests
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results. In our case, we specifically analysed the step response for the performance

tests. From the step response, we were able to deduce the control parameters of

the system. We then estimate the transfer function of the closed-loop feedback

system using the data derived from the control parameters. We expand more on

these results in the next few subsections.

4.6.1 Open-loop results

Figure 4.8 shows the results observed from our open-loop tests. These tests involve

the lockswitch SW1 set as open, with the ramp and PZT Bias set as the only input

sources to the laser. By adjusting the PZT Bias5 and sweeping the ramp at a chosen

frequency band, we observed the absorption peaks for a particular transition of

rubidium (87Rb) gas.

5The PZT Bias was simply used as an offset voltage to place the peaks at the centre of the
oscilloscope screen

58



Figure 4.8: Open-loop results showing the ramp signal and the SAS signal (Hy-
perfine spectrum of 87RbD2(5

2S 1
2
)F = 2).

As discussed earlier, the SAS signal is simply used as a sensing element for

the laser output. The observed peaks acts as a reference for locking the laser,

further performed in the closed-loop tests. The results from the closed-loop tests

are discussed in the next section.

4.6.2 Closed-loop results

As discussed in an earlier section, the aim of the closed-loop mode is to lock the

laser output to a specific value on either the left or the right side of a chosen

absorption peak for performance analysis. This absorption peak is derived from

the open-loop tests performed earlier as observed in figure 4.8. Also note that the
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SAS signal from the open-loop results becomes the feedback signal in the closed-

loop mode. The changes to this feedback signal is what we observe to monitor the

laser frequency.

We first show the feedback system’s transient response to different applied test

signals after the lockswitch (SW1) was closed. We then proceed to analyse the

parameters of the transient response to deduce it’s control characteristics. From

the estimated parameters, we then show the estimated transfer function of the

feedback system.

System response to test signals

After we successfully locked the laser to a chosen frequency6, we apply the test

signals illustrated in figure 4.5 to the system (through Vin in figure 4.1). This was

done to observe how the system performs to different test input signals and to

induce a transient response7. The system response to the test input signals are

shown in figures 4.9a, 4.9b and 4.9c.

6After closing the lockswitch SW1
7Remember that the transient response is required to estimate the system parameters of the

feedback control system
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(a) The transient response of the feedback system from a step input signal

(b) The system response of the feedback system from a pulse input signal

(c) System response of the feedback system to multiple pulse input signals

Figure 4.9: Results from the Closed-loop locking operation
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We observe from figure 4.9 above that the system closely follows the input

signal for all test scenarios. For further analysis, we focus on the results derived

from the step input to analyse the feedback system. As discussed earlier, system

parameters such as the damping (ζ) and resonant frequency (ωn) can be deduced

from the step response. We discuss this procedure in more detail in the next

section.

4.6.3 Parameter estimatation of the closed-loop system

In this section, we estimate the transfer function of the closed-loop feedback sys-

tem using data derived from the system response in the previous section. We

specifically use the response derived from a step input (figure 4.9a). We first clean

out the signal in Matlab using the moving average filter method8, with the results

illustrated below. Note that Y-axis was scaled to perform our analysis.

8see Guiñón et al., 2007 for more on this technique.
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Figure 4.10: A processed step response output signal

We observe from the response in figure 4.10 that the system is slightly under-

damped. To determine the transfer function of this system, we start by deducing

the system parameters9 from the system response. The feedback signal in figure

4.10 is repeated in figure 4.11 to illustrate the equivalent performance parameters

discussed earlier in chapter 3. Table 4.1 shows a summary of the parameters with

their estimated values.

9Recall from chapter 3, that the parameters are used to evaluate the performance of an
under-damped system
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Figure 4.11: Transient response of the feedback signal to a step input, indicating
the equivalent parameters

Table 4.1: Performance parameters and their estimated values

Parameters Value

ypeak 0.82V

yss 0.795V

Peak Time Tp 0.0085s

Settling Time Ts 0.012s

Rise Time Tr 0.007s

Based on the values from table 4.1, we can estimate the damping constant ζ
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and the resonant frequency ωn of the feedback system. We perform this estimates

using the equations discussed in chapter 3.

For a standard second order feedback system, the damping constant ζ can be

estimated by the formula:

ζ =
− ln(

%OS

100
)√

π2 + ln2(
%OS

100
)

(4.1)

where %OS is the percentage overshoot. Solving for the overshoot, we have:

%OS =
ypeak − yss

yss
× 100 (4.2)

%OS =
0.82− 0.795

0.795
× 100 = 3.145 (4.3)

ζ =
− ln(

3.145

100
)√

π2 + ln2(
3.145

100
)

(4.4)

Solving eq. 4.4, the damping ratio ζ becomes 0.74.

We can also solve for ωn from eq. 4.5

ωn =
4

Tsζ
=

4

0.012× 0.74
= 450.27rad/s; (4.5)
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We know that for a standard second order feedback system, for 0 < ζ < 1, the

transfer function can be represented by:

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

; (4.6)

We can then represent the transfer function of our closed-loop feedback system

by:

G(s) =
450.272

s2 + 2× 0.74× 450.27s+ 450.272
; (4.7)

G(s) =
2.03× 105

s2 + 666.7s+ 2.03× 105
; (4.8)

The transfer function from eq. 4.8 was analysed in Matlab to see how it com-

pared with our experimental results, with the results shown in figure 4.12.
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Figure 4.12: Experimental vs estimated step response

We observe the approximate similarities between experimental and estimated

feedback system. They both have similar parameters such as the settling time,

rise time and the peak time, thus proving our transfer function estimation to be

correct.

This result will be further used later in our numerical analysis. This is discussed

in the next chapter (Chapter 5).

4.7 Summary

In this chapter, we have detailed how we experimentally analysed the closed-loop

system. We explained our laboratory setup and how the experiments were oper-
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ated. We further went on to show how test signals were applied to the feedback

system to induce a transient response.

The results obtained from the transient response was further analysed to ex-

tract the control parameters (ωn & ζ). These parameters were then used to esti-

mate the transfer function of the closed-loop system.

In the next chapter, we use the estimated parameters to perform a numerical

analysis of the closed-loop feedback system.
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Chapter 5

Numerical Analysis of the

Feedback Control of an External

Cavity Diode Laser (ECDL)

5.1 Introduction

In this chapter, we describe how we analysed our closed-loop feedback system nu-

merically. We first break down the system into components, analysing and mod-

elling them using mathematical laws and concepts. We then provide a flowchart

to show how the overall closed-loop system is implemented in software.

This chapter ends with results of the simulation where we tested the closed-loop
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dynamics for the following:

• determine the response for various Kp values

• effect of varying the integrator time constant

• response to a step change in setpoint

• response to an impulse change in setpoint

• response to disturbance on the cavity length

• response to disturbance applied to feedback signal

5.2 Feedback control system overview

For completeness and ease of reading, figure 5.1 shows the overview of the closed-

loop feedback control model of the external cavity diode laser (ECDL) again. The

closed-loop system consists of a Proportional-Integral (PI) controller, an external

cavity diode laser (ECDL) and a feedback block (Stubbs, 2010).
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Figure 5.1: Physical layout of the ECDL closed-loop control model

The external cavity diode laser (ECDL) is the plant to be controlled. As

mentioned previously, it has a piezoelectric device that behaves as a mass-spring-

damper system and its change in length (deflection) determines the change in

output frequency. The laser frequency is optimized by varying the proportional

(P) and integral (I) coefficients. The feedback block measures the frequency from

the plant (ECDL) and produces an output voltage which is proportional to the

frequency. This is then compared with the initial setpoint frequency/voltage to get

the error signal. This error signal is fed into the Proportional-Integral controller

(PI) unit. This unit amplifies the signal with a P coefficient and integrates it.

This forms a control signal that is then sent to the plant to adjust the response to

desired frequency.

Below we give a detailed description of the composition of each block and

equations used to implement the numerical simulation of each block.
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5.2.1 External cavity diode laser (ECDL) model

The detailed construction of the external cavity diode laser has been described in

a previous chapter (chapter 2). From that discussion, we know the external cavity

diode laser has a piezoelectric device that behaves as a mass-spring-damper system.

When a force u is applied to the piezoelectric crystal, its atoms are displaced

slightly from their initial positions, thus creating a change in the thickness of the

piezoelectric device, which in turn changes the cavity length (Bentley, 1995). The

frequency of the cavity resonance is given by the equation:

ω = 2π
cn

L0 + y
(5.1)

where L0 is a constant, y is the change in piezo thickness, c is the speed of light

and n is an integer.

The force in this case will be an input voltage VECDL, an output signal from

the PID controller1. The relationship between the displacement y and the input

force VECDL is represented by transfer function:

Y (s)

VECDL(s)
=

1

k
1

ω2
n

s2 +
2ζ

ωn
s+ 1

(5.2)

where ωn is the resonant frequency, k is the stiffness of the crystal, ζ is the damping

1This will be discussed in more detail later in this chapter.
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ratio (Bentley, 1995).

Rewriting this as a differential equation, we have:

ÿ(t) + 2ζωnẏ(t) + ω2
ny(t) =

ω2
n

k
VECDL(t) (5.3)

We can represent the above 2nd order equation as two first order differential

equations as follows:

Let y1 = y, then

y2 = ẏ1 = ẏ (5.4)

ẏ2 =
ω2
n

k
VECDL(t)− 2ζωny2 − ω2

ny1; (5.5)

To determine the value of y1 for various sampled time instances, we implement

the above equation numerically using the Euler method as follows:

y1(n) = ∆t ∗ y2(n− 1) + y1(n− 1); (5.6)

y2(n) = ∆t ∗ (
ω2
n

k
VECDL(n− 1)− 2ζωny2(n− 1)− ω2

ny1(n− 1)) + y2(n− 1);

(5.7)
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where ∆t is a chosen time length. We then solve for the laser frequency ω using

eq. 5.1. Equations (5.6), (5.7) and (5.1) are used in the numerical model of the

ECDL in the simulation.

5.2.2 Feedback block model

As discussed in chapter 2, we measure the laser frequency using saturated absorp-

tion spectroscopy (SAS). This involves passing the laser light through a reference

gas whose frequency response (absorption as a function of frequency) is known.

The reference gas used in our case is rubidium (85Rb and 87Rb). Figure 5.2 shows

the hyperfine spectra of 87Rb from a saturated absorption spectroscopy experi-

ment2, with the FWHM of each peak in the MHz range.

Figure 5.2: Hyperfine Spectrum of 87Rb, F = 2toF 1 = 1, 2, 3

2Experimental Study of the Weak Field Zeeman Spectra of 85Rb and 87Rb
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For simulation purposes however, we use an arbitrary frequency scale. The

absorption profile of the rubidium gas sample is defined by a series of Lorentzian

curves. The total frequency response of the SAS is then given by:

H(ω) =
∑
i

Γ2

(ω − ω0i)2 + Γ2
(5.8)

where Γ is parameter that specifies the width of each curve, ω0 is the resonant

atomic transition frequency of the ith peak and ω is the laser frequency. Figure 5.3

shows a matlab plot of the absorption profile where each peak has been modelled

using a Lorentzian profile with spectra values for Γ and ω0.

Figure 5.3: Simulated equivalent of the Hyperfine spectrum of 87Rb, F = 2toF 1 =
1, 2, 3
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Note that to derive the value of Γ, we plot the curve such that it overlapped the

experimental data and varied Γ so that the plots matched each other. We plot the

function with different values (through trial-by-error) until the simulated curves

matched the experiment. The output of the feedback block (Vfb) is then deter-

mined by substituting the value ω (calculated in eq. 5.1) for the laser frequency to

eq. 5.8. It is this value that is compared with the setpoint input (Vsp) to get the

error e(t) (Ve in figure 5.1), which is then fed into the proportional-integral (PI)

controller unit. Note that we are using an arbitrary frequency scale for simulation

purposes.

5.2.3 Proportional Integral (PI) Controller

The P block scales the error signal between setpoint and the measured laser fre-

quency (Ve = Kp(Vin − Vfb)). In terms of sampled signals,

Ve(n) = Kp(Vin(n)− Vfb(n)) (5.9)

The output of the P block is then fed into the integrator.

We model the integrator by approximating it using a model of the RC circuit.

Consider the following RC circuit in figure 5.4
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Figure 5.4: A RC circuit

Using Kirchhoffs voltage law,

Vin = VR + VC (5.10)

Vin = RC
dVc
dt

+ VC (5.11)

Discretizing the above differential using a sampling time ∆T gives:

Vin(n∆T ) = RC
VC(n∆T )− VC(n− 1)∆T

∆T
+ VC(n∆T ) (5.12)

which can be written as

Vin(n) =
RC

∆T
[VC(n)− VC(n− 1)] + VC(n)

∆T

RC
Vin(n) = VC(n) +

∆T

RC
Vc(n)− VC(n− 1)
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[
1 +

∆T

RC

]
VC(n) =

[
∆T

RC
Vin(n) + VC(n− 1)

]

where Vin(n) and VC(n) are samples of Vin(t) and VC(t).

VC(n) =

[
RC

RC + ∆T

] [
∆T

RC
Vin(n) + VC(n− 1)

]

VC(n) =

[
∆T

RC + ∆T

]
Vin(n) +

[
RC

RC + ∆T

]
VC(n− 1) (5.13)

VC(n) = aVin(n) + bVC(n− 1) (5.14)

where

a =
∆T

RC + ∆T
, b =

RC

RC + ∆T
(5.15)

and

a+ b = 1 (5.16)

Thus the difference equation used to implement the “integrator” in terms of

variables used in figure 5.5 is given by:

VECDL(n) = aVe(n) + bVECDL(n) (5.17)
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We choose a and b such that a+b = 1 and by varying a and b, we can control the

integration time constant. From eq. 5.15, the integration time constant (τ = RC)

is:

a =
∆T

τ + ∆T
(5.18)

∴ τ =
1− a
a

∆T (5.19)

5.3 Software Design

Figure 5.5 illustrates the closed-loop system for our numerical simulation. Each

block illustrates how each subsystem was modelled mathematically and how they

are interlinked with each other.

The feedback system was simulated in Matlab. The flow diagram of our simu-

lation is shown in figure 5.6.
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Figure 5.6: Software flow diagram
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5.4 Computational results and discussion

In this section, we discuss the results measured from various performance tests

applied to the numerical simulation using ωn and ζ values obtained from the pre-

vious chapter. It is important to note that a full Laplace domain analysis and

study of the closed-loop system is quite complicated and results in a 6th order

transfer function. However from the results in the actual experiments, the system

is dominated by a second order system function. To simplify matters further for

the present analysis, the ωn and ζ found previously will be used as the natural

frequency and damping constant of the laser.

We first show the system response of the feedback system to a step input. We

then show how the system performs to different controller constants (i.e. various

Kp & τ values). From the results observed, we proceed to optimize the controller

parameters such that the settling time is similar to that of the experiments per-

formed in the chapter 4.

We then discuss the results observed when the system is subjected to certain

disturbances at different points in the feedback loop. Note that the input to the

closed-loop system is in terms of voltages, which are proportional to the laser

frequency. This is the input-output relationship of the feedback block (saturated

absorption setup), and is in the form of a Lorentzian function.

For the tests conducted here on, we lock on the right side of the Lorentzian peak
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labelled a in figure 5.3. For simplicity, we use ’Arb’ as the unit of measurement

for the laser output frequency. It represents an arbitrary frequency unit.

5.4.1 System response to step input

Before running the simulations, we initially assume the gain (Kp) and integration

constant (τ) to be 0.5 and 0.0009 respectively. Also recall that the ωn and ζ used

in our simulations were derived from the experimental analysis and they are 450.27

rad/s and 0.74 respectively.

We assume the laser is running at an undisturbed frequency of 630 Arb, cor-

responding to a setpoint (Vin) of 0.007 V . The response to a step change in input

from Vin = 0.007 V to Vin = 0.005 V (corresponding to 632.6 Arb) is shown in

figure 5.7.

Figure 5.7: The system response to a step change Vin = 0.005 V to Vin = 0.007
V . The figure on the left shows the laser frequency vs time and (b) shows how the
ECDL frequency varies at the chosen peaks
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We observe an underdamped transient response as the system locks to the

specified setpoint. As seen in figure above, the system starts at the initial specified

frequency (630 Arb), and then oscillates about the new setpoint frequency with

an estimated overshoot of 0.06 %, before eventually settling down to the specified

setpoint frequency (632 Arb) after 0.03 s.

5.4.2 System response to various gain (Kp) values

We simulate the system for different proportional constants (Kp). This is to inves-

tigate how the proportional controller influences the feedback system. The system

was simulated for six different parameter variations i.e. Kp = 0.2, 0.4, 0.6, 0.8, 1

and 1.2. Using the same step change in input from Vin = 0.007 V to Vin = 0.005

V , we evaluated the response of the laser frequency to the step change.

The results are shown in figure 5.8 and summarised in table 5.1.
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Figure 5.8: System response (laser frequency vs time) for various Kp values, and
for a step change in input Vin = 0.007 V (630 Arb) to Vin = 0.005 V (632.6 Arb)

85



Table 5.1: Table showing performance characteristics of the closed-loop system for
different proportional constants (Kp)

Plot a b c d e f

Kp 0.2 0.4 0.6 0.8 1.0 1.2

Ts (ms) 66 37 46 78 0.14 -

Overshoot (%) 0 1.46 1.55 1.64 1.72 1.79

We observe from figure 5.8 that the lower the gain, the slower the system’s

settling time. This is seen in figure 5.8(a) where the gain was set to 0.1. As the

gain increases, we observe increased oscillations and overshoot in the system. As

Kp goes higher, the system becomes more and more unstable.

The system performed best when the gain constant was set to 0.4 (figure

5.8(b)). The overshoot was minimal compared to the other values of Kp and

the system settled the fastest at this value.

5.4.3 System response to different integrator time con-

stants (τ)

We also test the system to observe how the integrator performs for different time

constant values τ . We simulate for six cases which are summarised in table 5.2.

In this case, we simulate the system by varying a and b from eq. 5.17 such that:
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a+ b = 1;

The different responses observed are shown in figure ?? and the results sum-

marised in table 5.2.

Figure 5.9: System response (laser frequency vs time) for various τ values, and for
a step change in input Vin = 0.005 V (630 Arb) to Vin = 0.007 V (632.6 Arb)
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Table 5.2: Table showing performance characteristics of the closed-loop system for
different integration time constants (τ)

Plot
Ki

Time constant τ (s) Settling Time Ts (s) Overshoot (%)
a b

a 0.1 0.9 0.0081 0.18 -

b 0.2 0.8 0.0036 0.007 -

c 0.4 0.6 0.0014 0.04 -

d 0.6 0.4 0.0006 0.041 1.50

e 0.8 0.2 0.00023 0.05 1.56

f 0.9 0.1 0.0001 0.08 1.60

From the results, we observe how the changes to the integration constants influ-

ences the feedback system. We observe that as the integration time (τ) decreases,

the settling time also decreases. The overshoot however increases as τ decreases.

The best result was observed at plot d, where τ = 0.0006. At this point, the

settling time is 41 ms and the overshoot is 1.5 %.

5.4.4 System response to disturbance

After optimizing the system by choosing the bestKp and τ values, we then analysed

the system by applying different disturbance types to the closed-loop system. The

Kp and τ values used are 0.35 and 0.0009 respectively. The disturbance points are
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shown in figure 5.10. It shows the feedback system with three disturbance inputs

added at various points in the system.

Figure 5.10: Closed-loop system showing disturbance points

The first disturbance input (d1) is an input added to the feedback output, d2

is added the ECDL’s input and d3 added to the ECDL’s output. We simulate the

system to check for a impulse disturbance and an impulse disturbance at t = 0.3

s. The results observed are discussed in the next subsections.

System response to impulse disturbance

Figures 5.11, 5.12 and 5.13 show the results observed from applying an impulse

disturbance to the disturbance points mentioned above, for a positive and negative

magnitude of 0.1. Note that the plots on the left indicate the transient response

of the closed-loop system (laser frequency vs time) while the plots on the right

shows how the laser frequency moves along the chosen Lorentzian peak. Before

the application of the disturbance, the laser frequency is 632.6 Arb. The plots on

the left show the position of the applied disturbance (in black dashed line) relative
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to the system output. Note that the black trace is not drawn to scale and is simply

inserted to show time of application.

Figure 5.11: System response to impulse disturbance at d1. (a) shows the response
for a positive step value and (b) for a negative step value

From figure 5.11 above, we notice that the system locks to the specified setpoint

frequency (5.11(a)). We see a spike at t = 0.3 s, but the system eventually settles

to the chosen frequency. For a positive magnitude however, we observe that the

system locks on to the chosen setpoint but on the wrong peak (peak b from figure

5.3). Thus a disturbance magnitude of that size at point d1 ’shifts’ the frequency
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away from the chosen setpoint frequency to a different peak.

We apply the same impulse magnitude at point d2 and the results are shown

in figure 5.12.

Figure 5.12: System response to impulse disturbance at d2. (a) shows the response
for a positive step value and (b) for a negative step value

We observe from this figure that the system returns to the chosen setpoint

frequency for both positive and negative step magnitudes of disturbance. Though

the overshoot is larger for figure 5.12(a), they both have the same settling time

(0.03 s). These values are summarised in table 5.3.
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Table 5.3: System performance characteristics for impulse disturbance applied at
d2

Parameters Plot (a) Plot (b)

Settling time (s) 0.03 0.03

Overshoot (%) 0.031 0.52

We again applied an impulse disturbance to point d3 in the feedback system

and the results are shown in figure 5.13.

Figure 5.13: System response to impulse disturbance at d3

The results show that the disturbance has a very minimal effect of the feedback
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system. They both have the same overshoot (0.0095 %) and settling time (0.03 s).

System response to a pulse disturbance

We further proceed to apply a pulse disturbance to d1, d2, d3 using the same

magnitude (0.1). We set it such that the width of the pulse was 50 ms. Figure

5.14, 5.15 and 5.16 shows the results.

Figure 5.14: System response to a pulse disturbance at d1. (a) positive probe (b)
negative probe disturbance.

From the figure 5.14 above, we observe that the system goes completely out of
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lock. The magnitude of the pulse disturbance was simply too big for the feedback

system to control.

Figure 5.15 shows the response of the system for disturbance at d2. We observe

here that the system locks on to the wrong peak when a positive magnitude is

added and locks to the right side of the curve for a negative magnitude. The

overshoot is 1.32 % and has a settling time of 0.03 s

Figure 5.15: System response to a pulse disturbance at d2

Figure 5.16 shows that a pulse disturbance at d3 has the least effect on the
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feedback system, compared to results from d2 and d1. The system locks at the

appropriate transition for both disturbance scenarios (positive and negative mag-

nitude).

Figure 5.16: System response to a pulse disturbance at d3

From the numerical simulations, we can deduce that the system performs as

desired. It is most sensitive to disturbances at d1 and least sensitive at d3.
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5.5 Summary

In this chapter, we have described how we numerically analysed the closed-loop

feedback system for an external cavity diode laser (ECDL). We started by showing

the overall system and then analysing each block numerically. We discussed how

the ECDL was modelled mathematically, how we modelled the feedback setup

using a series of Lorentzian functions derived from experimental results and how

the PI controller was modelled using a gain and an integrator in form of a RC

circuit. We also discussed the flow diagram for the software design, indicating how

the program was developed in Matlab.

We further went on to discuss the results obtained from our simulations using

extracted parameters from the experimental analysis chapter (chapter 4). We

showed how the system responds to step changes, how the PI controller influenced

the system by varying the different controller constants (Kp and τ) and how the

system responds to different disturbance types.
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Chapter 6

Summary and conclusion

In this thesis, we presented an experimental and numerical study of a closed-loop

feedback control system for an external cavity diode laser (ECDL). This study

provided key insight into the experimental setup and a framework to optimize the

feedback system in the future.

We started by giving a detailed description of the feedback system’s experi-

mental setup was discussed. We showed the components currently being used in

the laboratory to control the frequency of the ECDL.

We provided the theoretical background required to carry out this research.

The concepts discussed includes control theory and basic physics concepts. The

control theory covered includes feedback control theory and a detailed study of

the performance and characterization of second order feedback control systems.

Understanding this concept was crucial to our experimental analysis. For the
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physics section, we covered the basics of laser-atom interactions and a gave de-

tailed description of saturated absorption spectroscopy (SAS). SAS was discussed

extensively because it is a core component of the laser locking setup. It acts as

the feedback element in the control loop.

We went on to discuss how we experimentally analysed the feedback system.

The operating modes and the steps taken to lock the ECDL frequency to a ru-

bidium transition was also discussed. We further explained how we tested the

system with test input signals to induce a transient response after locking the

laser frequency. We further analysed the transient response to estimate the sys-

tem parameters of the feedback system to obtain it’s resonant frequency ωn and

damping constant ζ. Using these parameters, we were able to derive the transfer

function of the system which was to be used in the numerical analysis.

We have also presented a numerical study of the feedback system. We showed

how we used some parameters derived from our experiments to make the results as

realistic as possible. We started by explaining how we modelled each component

of the feedback system numerically and how the overall system was modelled in

software. We further went on to discuss the results from our performance tests.

Some of the results from the tests include the step response of the system for a step

change in setpoint, the performance of the system to various controller constants

(Kp and τ) and the feedback systems response to disturbances.
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From the above, we conclude that we were able to meet the identified objectives

required to complete this research. From our experiments, we observed the system

was an underdamped system and behaved as a second order system.

The step response from our numerical simulation produced the desired result.

It behaved as an underdamped system with minimal overshoot (0.06 %) and a

short settling time (0.03 s). We also discovered the most disturbance-sensitive

part of the closed-loop system to be the output from the feedback setup and the

least sensitive part to be the input to the feedback curve.

Though the time scale and response time from both studies are similar, further

work and more experiments can be taken to verify the accuracy of the numerical

system. This can be considered for future work.

Another potential future work will be to perform a detailed analysis of the

feedback system in Laplace domain. This will provide a model for comparative

study and a possible avenue to verify the accuracy of our numerical model.
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Appendix A

Side Lock PID Controller
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Appendix B

NI DAQ 6002 Specifications

Figure B.1: NI-6002 Signal Description (USER GUIDE - NI USB-6001/6002/6003
2018)
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Guiñón, J. L., Emma Ortega, Jose Maria Garcia-Anton, and Valent́ın Pérez-
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