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Abstract 

 
The textile industry requires water for practically every step during its 

manufacturing process, and would benefit from water reuse systems. This is 

challenging, as the reactive dyes used in this industry often escape the conventional 

wastewater treatment methods used. The use of advanced oxidation processes 

combats these challenges, as it allows for the conversion of organic toxic waste to 

harmless H2O and CO2. Potassium peroxymonosulphate (Oxone®) has become 

popular in these treatment methods, as highly active sulphate radicals are activated 

once in contact with a transition metal. Such reactions are dependent on the catalyst 

used, and therefore require control of its morphology for enhanced capabilities. Cobalt 

oxide is deemed the best activator of peroxymonosulphate. The use of alcohols in its 

synthesis has been studied, but a systematic study increasing the alcohol chain 

lengths, in addition to the cobalt anion during hydro/solvothermal synthesis, has not 

been studied. Although the cobalt complex formed from cobalt chloride in water and 

alcohol has been studied, the use of these complexes as a precursor to cobalt oxide 

nanoparticles has not been studied. 

 
Cobalt hydroxide precursors were therefore synthesised in pure alcohol, pure water 

and alcohol/water solutions in the ratios 1:1 and 1:0. Five alcohols were selected, 

namely methanol, ethanol, propanol, butanol and octanol. and cobalt chloride 

hexahydrate and cobalt nitrate hexahydrate were used to study the effect of the anion. 

The effect of calcination temperature was also studied by varying it between 300°C and 

500°C. The resulting particles were characterised using TEM, SEM, XRD, BET, EDS, 

FT-IR and ELNEFS, and its catalytic ability was tested treating a methylene blue 

solution in an in-house developed continuous reactor. 

 

Both α- and β-cobalt hydroxide polymorphs were encountered as precursors from 

cobalt chloride. The β-phase was evident when the water was exhausted from the 

system, whereas the α-phase was evident when water was present in the system. Only 

α-cobalt hydroxide was formed from cobalt nitrate. This provided a relationship 

between the cobalt complex formed to the phase of cobalt hydroxide polymorph. A 

blue, tetrahedral orientated precursor complex, produced pink β-cobalt hydroxide 

particles, while a red, octahedral orientated precursor complex, produced α-cobalt 
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hydroxide. Cobalt oxide nanoparticles were formed from both α- and β-cobalt 

hydroxides. 

 

Anion morphology-dependent changes were observed in the presence of alcohol only. 

Rods were formed in the presence of the nitrate anion, while rhombic shapes 

dominated in the presence of chloride anions. Only rods were produced in water.  

 

An increase in the calcination temperature increased the crystallite size, which 

negatively affected the catalytic activity. It was also noted that a crystallite size between 

8 and 11 nm resulted in highly active cobalt oxide particles for both anions explored. 

The catalytic ability of the cobalt oxide resulting from the β-phase was better than that 

of the α-phase. The best catalytic activity was produced by the cobalt oxide 

synthesised from cobalt chloride hexahydrate precursor salt in 100% methanol for 

which the ELNEFS analysis revealed a Co3+/Co2+ ratio of ten times that of its 50% 

counterpart.  
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TERMS AND CONCEPTS 

100% alcohol: Only alcohol was used as a solvent in these solutions at its purity grade 

Advanced oxidation processes: Processes which apply oxidation to remove organic 

waste in water through reactions with radicals. 

Agglomeration: A mass or collection of particles which self-assemble. 

Amorphous: A solid without a clearly defined shape or form. 

Calcination: The thermal decomposition of solid materials as heat is applied in either a 

low-oxygen environment or in the absence of oxygen. 

Catalytic degradation: The increased mineralisation of a substance as a result of the 

use of a catalyst. 

Crystalline: Having the structure and form of a crystal - geometric in shape. 

Facets: Flat faces on geometric shapes of crystallites differing in surface energies. 

Hydro/solvothermal synthesis: The crystallisation of materials in a solution at 

elevated temperatures and pressure. Hydrothermal refers to a system specifically 

using water as a solvent, while solvothermal is a system using any other liquid as a 

solvent. 

Hydroxylation: The introduction of a hydroxyl group into a molecule, especially by the 

replacement of a hydrogen atom. 

Morphology: a form, shape, or structure of particles formed. 

Nanoparticles: particles which hold sizes between 1 and 100 nm. 

Oxidation: The combination of a substance with oxygen. 

Precursor: A substance from which another is formed. 

Radical: An atom, molecule or ion with an unpaired electron in its valence shell making 

it highly chemically reactive. 

Reaction rate: The speed at which reactants are converted into products. 

Solvent: A liquid able to dissolve other substances. 

Surface tension: The tension of the surface of a liquid caused by the attraction of the 

atoms/molecules in the surface layer by the atoms/molecules in the bulk of the liquid. 
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CHAPTER 1 INTRODUCTION 

1.1 Background and Motivation 

Every aspect of life is at some point impacted by water – including food, power and 

commerce. Although most of the planet is made up of water, only about 3% is fresh 

drinking water, with only 0.3% of it accessible as surface waters, making less than 1% 

of the earth’s waters usable by humans (National Geographic, 2019). It is therefore 

important for the utilisation of this resource to be carefully managed and for continuous 

education of its efficient usage to be encouraged. A method strongly being encouraged 

by researchers is the reuse of water, which allows for the demand on fresh drinking 

water to be diminished. One industry which could majorly benefit from this is the textile 

industry which is dependent on water for practically every step of textile manufacturing. 

However, several challenges exist in the water treatment processes within this 

industry. 

The removal of organic toxic waste within textile wastewater has proven to be time-

consuming, expensive and often a source of secondary pollution (Warang et al., 2013). 

Advanced Oxidation Processes (AOPs) have shown promising results as an 

alternative for conventional wastewater treatment methods (Saputra et al., 2013), with 

the conversion of harmful organic toxic waste to harmless H2O and CO2 (Warang et 

al., 2013). The effectiveness of treatment using AOPs depends on the type of AOP 

used, physical/chemical properties of the target pollutants, operational conditions, as 

well as the oxidative strength (Deng & Zhao, 2015). With that in mind sulphate radicals 

have attracted attention because of higher reduction potentials when compared with 

hydroxyl radicals. The use of transition metals has therefore become popular in 

AOPs due to their ability to generate sulphate radicals by the activation of 

peroxymonosulphate (Saputra et al., 2013; Chowdhury et al., 2015). 

 
Among various transition metals and their oxides, cobalt oxide (Co3O4) has become 

increasingly popular due to its widespread use in sensors, and energy storage 

devices (magnetic, electric, opto-electric), as well as its rapid catalytic activity 

(Athawale et al., 2010; Gamonchuang et al., 2016; Huang et al., 2014; Yang et al., 

2004). These attractive properties are a result of its particle size (Yang et al., 2004) 
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and morphology (Gamonchuang et al., 2016; Huang et al., 2014). Control of particle 

morphology has therefore been an important factor in Co3O4 synthesis 

(Gamonchuang et al., 2016), and has been found to be complicated as small 

changes drastically affect the particles formed. This, however, provides a means of 

control, as the morphologies may purposefully be manipulated by simple, impactful 

changes as is the case with the hydrothermal route explored by Kim and Huh (2011). 

1.2 Research problem 

The effect of varying precursor anions in alcohol/water solutions at 100% and 50% 

concentrations on cobalt oxide morphology during hydro/solvothermal synthesis, as 

well as their resulting catalytic ability, has not yet been studied. 

 

1.3 Research question 

What is the effect of changing the precursor anion in various alcohols at 100% and 

50% concentrations on the size and shape of cobalt oxide nanoparticles during 

hydro/solvothermal synthesis and the resulting effect it has on the particle’s catalytic 

ability? 

 

1.4 Aims and objectives 

The aim of this research was to investigate the effect of precursor anion in various 

alcohol solvents, as well as varying calcination temperature, on the size and/or shape 

of cobalt oxide nanoparticles during hydro/solvothermal synthesis, and their resulting 

catalytic ability. 

 

The objectives were as follows: 

• to produce cobalt oxide nanoparticles from hydro/solvothermally synthesized 

cobalt hydroxide, using cobalt chloride hexahydrate and cobalt nitrate 

hexahydrate in methanol, ethanol, propanol, butanol and octanol at 100% and 

50% concentrations; 

• to characterize the synthesized particles using TEM, SEM, EDS, XRD, FT-IR, 

BET and ELNEFS; 

• to evaluate the effect of precursor anion in water as well as alcohols at 100% 
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and 50% concentrations on the resulting cobalt hydroxide and cobalt oxide 

particles; and 

• to evaluate the catalytic performance of cobalt oxide nanoparticles during 

cobalt oxide/peroxymonosulphate advanced oxidation processes. 

 

1.5 Significance 

Catalytic applications are highly dependent on surface structure of the catalysts used. 

Although strong catalytic activity of Co3O4 is noted, control of particle size and 

morphology has recently been a focus of researchers, especially for application 

purposes. Much focus has already been placed on varying methods to provide a fixed 

particle size and morphology, but the methods provided do not offer much 

opportunity for upscale synthesis. The work presented provides insight into the effects 

of precursor anion in combination with alcohol/water solutions for this specific 

hydro/solvothermal synthesis of Co3O4 particles. The significance provided is Co3O4 

particles synthesised specifically from cobalt complexes, corresponding to the anion 

used in alcohol solutions at 100% and 50% concentrations, providing catalysts which 

could potentially be scaled up with ease. 

 

1.6 Delineation 

The research conducted does not include the synthesis of Co3O4 hybrids, containing 

other elements, for enhanced or varied results. Only 100% and 50% alcohol solutions 

were used during the synthesis in order to study the effect on cobalt complex formed. 

The effect of particle morphology and size on the quality of the produced particles 

were only tested catalytically in the colour degradation of the synthetic dye solutions 

prepared in the laboratory and not real textile wastewater. 

1.7 Organisation of research 

Chapter 2: Literature review 

An in-depth review on the use, production, and importance of cobalt oxide, its 

precursors and the various effects on its morphology and catalytic ability. This chapter 

also focuses on its application in advanced oxidation procedures. 
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Chapter 3: Methodology 

The hydro/solvothermal preparation methods of cobalt hydroxide precursors and 

its calcination to cobalt oxide is detailed. Further, the treatment methods of 

methylene blue using the in-house developed reactor are presented. In addition, 

the characterisation methods used are discussed. 

Chapter 4: The effect of Cl- and NO3
- anions in water on Co3O4 particles 

This chapter provides the discussion of the results obtained from using cobalt 

chloride hexahydrate and cobalt nitrate hexahydrate precursor salts in the 

hydrothermal synthesis of cobalt oxide.  

Chapter 5: The effect of Cl- and NO3
- anions in alcohols on Co3O4 particles 

This chapter provides results obtained from the use of various alcohols in 100% or 

50% concentrations on the cobalt oxide particles formed in hydro/solvothermal 

synthesis. 

Chapter 6: An evaluation of the Co3O4 particles synthesised in colour 

degradation 

The performance of the various catalysts synthesised was evaluated in the 

degradation of methylene blue as a model dye and is described in this chapter.  

Chapter 7: Conclusions 

Presents the conclusions of the work and recommendations for future work. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

An important function of engineering is the ability to control the output of a process. It 

is therefore an objective to produce size-controlled, monodispersed nanoparticles 

during nanomaterial synthesis (He et al., 2004). Filipponi and Sutherland (2012) stated 

that nanotechnology is the design, characterisation, production and application of 

structures and systems at nanometre scale. Increasing attention has been drawn to 

nanostructured materials, due to the unique properties they possess as a result of their 

size and morphology (Ni et al., 2001). These particles no longer follow Newtonian 

physics, but rather quantum mechanics (Filipponi & Sutherland, 2012). 

 
An important feature of nanomaterials, widely exploited throughout research and 

application, is their large surface-to-volume ratio. These large ratios are important in 

processes such as catalysis and detection, in which the reactions occur at the surface 

of the material (Filipponi & Sutherland, 2012). In these reactions, the use of 

nanomaterials is economically as well as environmentally beneficial as it results in a 

drastic reduction of the required reactive material and provides an increase in active 

reaction sites in devices (Filipponi & Sutherland, 2012). The use of transition metal 

nanomaterials has recently gained momentum in this regard, as their unique magnetic 

and catalytic properties have been realised (Ni et al., 2001). Among the transition 

metals, cobalt has become particularly popular in advanced oxidation processes 

(AOPs) for its ability to best activate sulphate radicals (•SO -) from Oxone 

(peroxymonosulphate) (Rivas et al., 2009; Anipsitakis & Dionysiou, 2003). 

 
Cobalt is a reactive transition metal that oxidises in air easily, especially at nanoscale 

(Ni et al., 2001). Nanosized Co3O4 has been one of various cobalt oxides gaining 

interest in electrical, magnetic and catalytic applications, in which exceptional activity 

has been exhibited in contrast to bulk Co3O4 (Warang et al., 2013). Co3O4 has also 

been reported to be useful in photocatalytic applications in the degradation of dyes 

under visible light and neutral pH (Warang et al., 2013).  

Moreover, its use in the activation of sulphate radicals (•SO4
-) from Oxone 

(peroxymonosulphate) has become popular in order to apply its high reduction 
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potential (2.5 – 3.1 V) (Neta et al., 1988). 

2.2 Nanoscale 

Particles of a size measured in nanometres (nm) are particles which are typically 

between 1 and 100 nm in size. A nanometre (nm) is defined as one billionth of a metre. 

The three main reasons that the use of particles at nanoscale has become so popular 

lies in the properties of nanoparticles, which differ so strongly from their bulk 

counterparts, the fact that they are producible, and finally their large surface-to-

volume ratio, which benefits processes that depend on surface reactions (Filipponi 

& Sutherland, 2012). The process of applying nanoscience to useful devices is termed 

nanotechnology. It entails the manufacturing and control of systems at nanoscale. All 

industrial sectors rely on materials made up of atoms and molecules and therefore, 

according to Filipponi and Sutherland (2012), may benefit from nanotechnologies. 

 

2.3 Cobalt oxide 

Cobalt in its bulk form has been in use for decades in glass, glazes and pottery. It has 

been used as a blue dye in pottery from as early as 1450 BC (Yildiz, 2017). At the 

beginning of this century, the synthesis of cobalt compounds became popular, and 

much research has been carried out on cobalt catalysed reactions, which today 

have many different applications in industry. The salts and complexes of cobalt are 

commonly used as catalysts for the selective oxidation and selective epoxidation of 

alkanes and alkenes respectively, and therefore have gained interest in the areas of 

degradation of organic waste. Cobalt oxide (Co3O4) has been researched for 

application in wastewater treatment, as it shows thermodynamic stability and 

desirable catalyst properties, such as high surface-to-volume ratio, morphology-

dependent properties and high concentration of active sites (Warang et al., 2013). It 

may be synthesised using various methods utilising a cobalt salt along with a source 

of hydroxyl ions. 

The use of ammonium hydroxide, also known as ammonia water, allows for the 

hydroxyl ions to be utilised. The following proceeds: 
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𝑁𝐻4𝑂𝐻 
         
→   𝑁𝐻4

+ + 𝑂𝐻−      2-1 

 

When using cobalt chloride solution: 

𝐶𝑜𝐶𝑙2
         
→   𝐶𝑜2+ + 2𝐶𝑙−     2-2 

 

When using cobalt nitrate solution:  

𝐶𝑜(𝑁𝑂3)2
         
→   𝐶𝑜2+ + (𝑁𝑂3)

−    2-3 

 

Resulting in: 

 𝐶𝑜2+ + 2𝑂𝐻−
          
→   𝐶𝑜(𝑂𝐻)2    2-4 

 

6𝐶𝑜(𝑂𝐻)2 + 𝑂2
          
→   2𝐶𝑜3𝑂4+ 6𝐻2𝑂    2-5 

 

 (Huang et al., 2014) 

 

2.4 Particle morphology 

Reactions which are structure-sensitive depend on the morphology of the substances 

involved (Henry 2007). This is especially true for nanomaterials, as enhanced 

performance lies in their morphology (Huang et al., 2014). Manipulating the size 

and morphology of nanoparticles is therefore important as they not only affect the 

properties of the materials themselves, but the performance of the devices they’re 

used in (Huang et al., 2014). 

 

2.4.1 Particle shape 

The development of nanoparticles is sensitive to many factors and may be 

manipulated by a simple change in production method. An example of this was 

shown in the work done by Kim and Huh (2011), demonstrated in Figure 2-1, in which 

three different morphologies of cobalt oxide were produced during hydrothermal 

synthesis by adjusting the amount of either hydrazine or H2O2 in the precursor solution. 



  LITERATURE REVIEW 

8 

 

 

Figure 2-1: Hydrothermal production of cobalt oxide using CoCl2 and KCN only, or with the addition of 

Hydrazine or H2O2 in the synthesis route (Kim & Huh, 2011) (Used with permission) 

In this work, three methods are depicted: the first utilising CoCl2 and KCN on its own, 

the second showing the effect of adding hydrazine and the third showing the effect of 

adding H2O2 to the hydrothermal system. This simple change ultimately resulted in 

three different morphologies, namely: hexagonal skeleton-like Co3O4, hexagonal plate-

like Co3O4 and octahedral Co3O4. This is important, as it shows the delicate state of 

systems producing nanoparticles, and that simple changes could have major effects on 

the particles’ shape and therefore the effectiveness of their use. 

 
The general concept that higher surface area produces higher catalytic ability in solid 

catalysts was tested in a study performed by Saputra et al. (2014), whereby three 

different morphologies of α-Mn2O3 catalysts, as shown in Figure 2-2, namely octahedral, 

truncated-octahedral and cube-shaped, were produced hydro/solvothermally. The first 

and second morphologies were obtained using ethanol and 2-butanol as solvents in 

similar production methods. The cubic morphology was obtained by adjusting the 

method to a two-step method by first producing MnCO3 using KMnO4 in a glucose 
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and water mixture and calcining to form Mn2O3. 

a) b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-2: SEM images of α-Mn2O3 catalysts a) truncated octahedra, b) octahedra, c) cubic (Saputra et al., 2014) (Used with 

permission) 

The surface area from Brunauer–Emmett–Teller (BET) characterisation was 4, 1.1 and 

24.2 m2/g for the truncated octahedra, octahedra and cubic samples respectively, with 

pore volumes of 0.011, 0.002 and 0.166, indicating that the high surface area exhibited 

by the cubic α-Mn2O3 catalyst is due to the abundance of micropores in its structure. 

 

Phenol mineralisation using these catalysts in combination with peroxymonosulphate 

revealed that the truncated octahedral particles provided the least phenol degradation, 

at 50% in 180 min; followed by the octahedral particles, which provided 100% phenol 

degradation in 180 min. The highest phenol degradation rate was exhibited by the 

cubic particles, which provided 100% degradation in 60 minutes. Overall, the catalytic 

ability followed the trend α-Mn2O3-cubic > α-Mn2O3-octahedral > α-Mn2O3-truncated 
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octahedral, which provided a BET surface area of 24.2, 1.1, and 4 m2/g respectively, 

and pore volumes of 0.166, 0.002, and 0.011 respectively. 

 

The general rule that higher surface area produces higher catalytic ability in solid 

catalysts was proven true in the case of α-Mn2O3-cubic particles. However, the 

remainder of the results indicated that surface area was not the only determining factor. 

Due to their non-porous structure, the α-Mn2O3-octahedral and α-Mn2O3-truncated 

octahedral particles presented far lower surface areas, and although the α- Mn2O3-

octahedral particles had a lower BET surface area than that of the α-Mn2O3-truncated 

octahedral particles, it presented better degradation of phenol. It was therefore 

necessary to investigate the shape effects of the samples on the catalytic degradation. 

Previous work from Li et al. (2011) showed that the formation of M2O3 evolves from 

nanocubes to cuboctahedra and then octahedra, due to the growth rates exhibited by 

(001) and (111) facets. These facets are displayed in Figure 2-3. Taking this into 

account it was concluded that the α-Mn2O3-cubic particles were more active, as a 

combinative effect of their higher surface area, phenol adsorption and active surface 

facets. 

 

 

 

Figure 2-3: Crystalline facets exhibited by various Mn2O3 shapes a) cubic, b) truncated octahedra and c) octahedra 

(Saputra et al., 2014) (Used with permission) 

Work done by Saputra et al. (2017) supports this work during the production of Co3O4 

of three different morphologies, shown in Figure 2-4, namely cubic, spherical and 

truncated cube, which were then used to mineralise phenol. From BET analysis, it was 

found that the surface area and pore volume of the produced particles decreased in order 
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of cube, truncated cube and sphere. However, in the degradation of phenol, the activity 

of the particles decreased in order of cube, sphere and finally truncated cube, once 

more indicating that catalytic activity is not dependent on surface area alone. The 

increased catalytic ability of cubic Co3O4 particles was attributed to the number of 

exposed (001) planes present, compared to that of the truncated cube (which had 

less) and the sphere (which had no specific facet). A test for cobalt leaching was done 

using an inductively coupled plasma-optical emission spectrometry (ICP-OES) 

spectrometer. Results revealed that the truncated cube Co3O4 presented the highest 

cobalt leaching while exhibiting the lowest catalytic ability, suggesting that exposed 

facets play a dominant role in peroxymonosulphate (PMS) activation. 
 

 

a) b) 

 
 
 

 
 
 
 
 
 
 

 

c) 

 
 

 
 
 
 
 
 
 
 
 
 
Figure 2-4: SEM images of Co3O4 catalysts a) cubic, b) spherical, c) truncated cube (Saputra et al., 2017) (Used with permission) 

2.4.2 Particle size 

Although not the only determining factor, the surface area of the nanomaterial is 

important for catalytic performance, as the electron-hole pairs are generated at the 

surface (Li et al., 2011). This is important, as the holes produced are responsible for the 

oxidative potential of the catalytic system. The electron holes may react either directly 
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with the organic waste or with the added oxidising agents, producing highly active 

radicals (Li et al., 2011). The reduction of particle size increases the active surface 

area in catalysts (Vinod, 2010). In order to gain the advantage of an increased surface 

area, Choi et al. (2016) explored the synthesis of mesoporous Co3O4. Previously, this 

was achieved using a hard template synthesis method. However, this gave rise to 

problems, mainly pertaining to cost. In order to eliminate this issue, two alternative 

methods were explored: a soft template synthesis method and a Santa Barbara 

Amorphous (SBA)-15 impregnation method. 

 
The prepared catalysts were then used to decompose N2O. Using the soft template 

method, it was noted that the surface area and porosity of the particles changed 

drastically as the particles lost their mesopores, therefore losing the purpose of the 

synthesis method. The SBA-15 impregnation method provided particles which 

maintained their structure and mesopores before and after N2O decomposition. An 

interesting outcome of the studies showed that as the reaction temperature increased 

from 550 to 850˚C, the N2O conversions were impacted negatively (Choi et al., 2016). 

This was attributed to the formation of Co2SiO4, which was consequently inert for N2O 

decomposition reactions. The reactions were then optimised to 550˚C in order to avoid 

Co2SiO4 formation. 

 
The fact that a reduced particle size increases the active surface area leads one to 

deduce that the smaller the particle, the more reactive. Li et al. (2011) demonstrate 

this in their production of urchin-like Co3O4 nanoparticles, as a larger specific surface 

area revealed a higher degradation efficiency in comparison to a lower specific area. 

However, nanocatalysts may be far more complex than this, as various other influences 

influence their reactivity. 

 
An example of this has been reported in the use of cobalt catalysts in the Fischer- 

Tropsch process – in which no significance was attributed to catalyst size in the range 

of 6 to 200 nm. However, at a particle size lower than 6 nm, inferior reactivity was 

exhibited (Vinod, 2010). The key purpose of the Fischer-Tropsch process is to convert 

syngas to liquid hydrocarbon using a surface polymerisation reaction. The use of 
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cobalt catalysts in these processes are well known and widely used. Work done by Lu 

et al. (2015) explored the use of mesoporous SBA-15 particles as a support for cobalt, 

to achieve a higher density of active sites. Such studies have been explored using 

various porous substrates. In their experiments, it was found that smaller crystallite 

sizes were more beneficial in terms of cobalt dispersion in the 20% loaded SBA-15 

samples in comparison to a SiO2 substrate. Interplanar spacing, as investigated by 

high resolution transmission electron microscopy (HRTEM) was found to be 0.287 (220) 

and 0.208 (400) nm, showing that the cobalt used was Co3O4. Further, diffraction 

peaks from X-ray Diffraction (XRD) analysis of 19.0 (111), 31.3 (220), 36.9 (311), 44.8 

(400), 59.4(511), and 65.2 (440) indicated that after calcination, the cobalt presented 

was in the form o f  Co3O4 spinel, according to t he  Joint Committee on Powder 

Diffraction Standards (JCPDS) card no. 42-1467. At Fischer-Tropsch conditions, CO 

conversion using the cobalt-loaded SBA-15 samples reached an optimum at 20% 

cobalt, and a minimum at 10%. The efficiency also dropped above 20% cobalt loading. 

Pore size of the SBA-15 substrate also played a major role in CO conversion, as the 

conversion increased with increases in pore volume in the range 4.9 to 9.7 nm. 

This was in agreement with work done by Xiong et al. (2008) as referenced by Lu et al. 

(2015), which indicated larger pores lead to larger cobalt cluster sizes, lower dispersion 

and higher reducibility. Overall, the smaller crystallite sizes of cobalt resulted in lower 

activity, as a result of lower reducibility from Co3O4 to CoO and finally to Co0. 

 

2.5 Co3O4 precursors and synthesis methods 

Cobalt hydroxide, a common precursor to Co3O4, exists as one of two polymorphs – 

alpha cobalt hydroxide - α-Co(OH)2 and beta cobalt hydroxide - β-Co(OH)2. The α- 

Co(OH)2 has a hydrotalcite-like structure, as shown in Figure 2-5, with positively 

charged layers separated by anions occupying the interlayer spacing, ensuring 

neutrality. Such solids are often termed Layered Double Hydroxides (LDH) or anionic 

clays, as they store anions along with water molecules between their positively charged 

layers (Cheng et al., 2014; Al-Ghoul et al., 2009; Mishra et al., 2018). Solids with this 

type of structure have been found to be useful as anion exchangers, catalysts, 

adsorbents, photo-functional materials and active electrode materials (Cheng et al., 
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2014; Meng et al., 2017). Also, α-Co(OH)2 has a much larger interlayer spacing (>0.7 

nm) versus β-Co(OH)2 (0.46 nm), due to the anions occupying the layers. It has also 

been reported that the interlayer spacing may be varied, having a great effect on the 

electrochemical activity of the particles, by controlling the anions between its layers. 

 

 

Figure 2-5: An illustration of the structure of layered double hydroxides (Mishra et al., 2018) (Used with permission) 

One of the major issues of α-Co(OH)2 is the fact that it is thermodynamically 

metastable (Cheng et al., 2014; Al-Ghoul et al., 2009), and may rapidly transform to β- 

Co(OH)2 during synthesis or in contact with a strong alkali. The XRD spectra of these 

polymorphs is found in Figure 2-6. This transformation was found to be the case in 

the transformation of α-Co(OH)2 to cobalt compounds including β-Co(OH)2, CoOOH 

and Co3O4 when exposed to an alkaline medium (KOH solution) for one to six days 

(Cheng et al., 2014). This transformation drastically decreased the specific 

capacitance of the original α-Co(OH)2. The α-Co(OH)2 particles also exhibit low 

crystallinity and a disordered structure (Al-Ghoul et al., 2009), as seen in Figure 2-7. 

Furthermore, the conversion of the α-form to the β-form is still unclear (Cheng et 

al., 2014). The blue/green colour of the α-phase has been attributed to tetrahedral 

orientation of hydroxyl and intercalated anions bonded to Co(II), as well as some 

octahedral coordinated Co(II). The pink colour exhibited by the β-phase has been 
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attributed to the octahedral symmetry of the particles (Al-Ghoul et al., 2009). 

 

Figure 2-6: XRD peaks for a) α-Co(OH)2 and b) β-Co(OH)2 (Al-Ghoul et al., 2009) (Used with permission) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2-7: SEM images of a) α-Co(OH)2 and b) β-Co(OH)2 (Al-Ghoul et al., 2009) (Used with permission) 

The major drawbacks of α-Co(OH)2 production showing some liquid crystalline 

properties lies in its thermodynamic instability, as well as its poor crystalline and 

disordered structure. El-Batlouni et al. (2008) presents a method in which the co-

synthesis of α- and β-Co(OH)2 can be studied, through a phenomenon known as 

Liesegang banding, as displayed in Figure 2-8. Liesegang banding may be defined as 

a periodic pattern which forms as two electrolytes interdiffuse, causing a precipitation 

reaction (Rajurkar & Ambekar, 2015). The resulting precipitates form bands parallel 

to the diffusion medium. In order to maintain these bands, the presence of a gel is 
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essential, for sedimentation prevention as well as to slow down nucleation and growth. 

By using a cobalt-doped gel, sodium hydroxide was used to diffuse hydroxide ions into 

the gel medium. The cobalt gel was made up of a cobalt chloride solution containing 

agar or gelatine. The experiment was monitored for a number of weeks in which an 

immediate reaction was noted, as well as the gradual formation of Liesegang bands. 

First, a blue precipitate was formed at the point of initial reaction. After a while, 

a pink precipitate formed above the blue precipitate. As time, progressed this pattern 

evolved down the tube, forming the Liesegang Bands. The pink precipitate above the 

initial blue precipitate did not, however, form Liesegang bands. This is of significance, 

as it displays the metastable nature of the α-form of the Co(OH)2 over that of the more 

stable β-Co(OH)2, and how easily the α-Co(OH)2 transforms to the β-phase, while the 

β-phase remains stable. 

 

 

Figure 2-8: Liesegang bands formed as hydroxide solution is added to the cobalt chloride solution at a) the initial interface 

as a blue α-Co(OH)2 band is formed, b) the formation of a pink β-Co(OH)2 above the blue band c) two weeks after 

initial interface, d) enlargement of c. (El-Batlouni et al., 2008) (Used with permission) 

The XRD results of the pink and blue precipitates are shown in Figure 2-9. They 

exposed a higher crystallinity for the former in comparison to the latter. The broadness 

of the peaks in the blue sample was also attributed to the disoriented nature of the 

particles. The pink precipitates indicated clear brucite-like β-cobalt hydroxide with a 

hexagonal cell. 
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Figure 2-9: XRD patterns exhibited by as prepared a) blue α-Co(OH)2 and b) pink β-Co(OH)2 (El-Batlouni et al., 2008) (Used 

with permission) 

Similar studies conducted by Rajurkar & Ambekar (2015) used a 1% agar medium, as 

well as cobalt chloride and ammonium hydroxide solutions. In order for well-separated 

Liesegang bands to from at such a low concentration of agar, the pH had to be altered. 

At the initial point of interface, the bands are closely packed together. They become 

more dispersed as they move downwards, which may be seen in Figure 2-10. When 

examining the depths reached by the Liesegang banding at different concentrations, it 

was found that a higher distance was covered by a higher concentration of ammonium 

hydroxide solution, proving that the driving force of the phenomenon is diffusion. 
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Figure 2-10: Liesegang bands formed in 1% agar gel using 0.05 M cobalt chloride solution and 2 M ammonia, varying the 

pH to a) 2, b) 2.5, c) 3.5, d) 4.5 (Rajurkar & Ambekar, 2015) (Used with permission) 

Al-Ghoul et al. (2009) studied the co-synthesis of α- and β-Co(OH)2 inspired by the 

phenomenon of Liesegang banding. Agar and gelatine was used to form the cobalt 

chloride gels studied. Sodium hydroxide solutions were added from the top (while the 

gel remained undisturbed) and, over time, Liesegang bands formed. XRD on the 

generated particles revealed that the pink compound had higher crystallinity. 

Furthermore, the crystallite sizes were determined using the Scherrer equation, as in 

Equation 2-6, and were found to be 8.4 nm and 13.2 nm for the α- and β-polymorphs 

respectively 

𝜏 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
     2-6 

 

 

where: 

• τ is the mean size of the crystallites 

• K is a dimensionless shape factor 

• λ is the X-ray wavelength; 

• β is the Full Width at Half Maximum (FWHM) 

• θ is the Bragg angle (in degrees). 

 

https://en.wikipedia.org/wiki/X-ray
https://en.wikipedia.org/wiki/X-ray
https://en.wikipedia.org/wiki/Bragg_diffraction
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The observed XRD patterns indicated hexagonal, brucite-like, structures for the β-

Co(OH)2, while α-Co(OH)2 exhibited hydrotalcite structure, with rhombohedral 

symmetry. The Fourier transform infrared radiation (FT-IR) spectroscopy revealed an 

intense peak at 3631 cm-1 for the β-phase, with a less intense peak for the α-phase, 

attributed to the excess free OH ions in the interspatial layers. UV-vis diffuse 

reflectance measurements were used to examine the absorbance of the cobalt 

hydroxide phases. The α-phase exhibited a close relation to peaks reported for 

tetrahedral Co(II) complexes, at which these wavelengths are responsible for its 

green/blue colour. 

 

Although metastable and structurally disordered, the use of α-Co(OH)2 is still widely 

researched, with much focus being placed on the intercalated ions they possess – one 

of the most prominent differences from its polymorph. A study conducted by Hu et al. 

(2009) focused on the production of α-Co(OH)2 with various intercalated anions, as 

well as their effect on morphology, basal plane spacing and capacitive property. 

The particles were prepared by chemical precipitation with cobalt salts of chloride, 

nitrate, sulphate and acetate anions. The XRD characterisation of these particles 

revealed a sawtooth-like peak in the case of the acetate sample, as a result of a sharp 

rise on the low angle side, and gradual reduction at the high angle side. This is an 

indication of layer stacking of the sample – a feature identified as the main difference 

between α- and β-Co(OH)2. β-Co(OH)2 forms perfectly stacked layers along the C-axis 

with an interlamellar distance of 4.6 A, without any intercalated ions. The α-phase 

Co(OH)2, however, is made up of randomly- orientated layers which are separated 

by intercalated water molecules bonded to the hydroxyl groups by hydrogen bonds. The 

basal plane spacing, which is dependent on the intercalated species, exhibited by 

the Cl- and NO3
- anions, was found to be 7.797 and 7.852 Å respectively during these 

studies. Furthermore, the intercalated Cl- anion sample produced sharp hkl reflection 

peaks, revealing a more crystalline nature than the other anions used. From field 

emission scanning electron microscopy (FESEM) images, displayed in Figure 2-11, it 

was noted that the intercalated Cl- samples exhibited binary morphology with sheets 

and clusters assembled by solid rods, whereas the intercalated nitrate samples 
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produced a cluster with a thin-walled cell configuration. 

 

 

 

 

Figure 2-11: FESEM images of α-Co(OH)2 with varied interspatial anions a) as prepared Co(OH)2 - chloride b) -nitrate c) 

- acetate, d) - sulphate (Hu et al., 2009) (Used with permission) 

The influence of anion exchange and phase transformation on the supercapacitive 

properties of α-Co(OH)2, synthesised via the precipitation method, was studied by 

Cheng et al. (2014). They were successful in producing α-Co(OH)2 with anion 

variances – chloride, nitrate, acetate, and sulphate. This was done adding the initially 

synthesised Co(OH)2-Cl particles into sodium salt solutions containing the various 

anions and purged with nitrogen gas for two hours. The XRD spectra revealed that 

similar peaks were observed for each anion, indicating that the crystal structure was 

not altered by change in anion. Differences between samples were identified by FT- IR 

in the region 800 to 1500 cm-1. Scanning Electron Microscopy (SEM) analysis was done 

in order to evaluate the effect of anion exchange on morphology. No obvious changes 

in morphology were observed, as the original hexagonal plates remained as shown in 

Figure 2-12. 
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Figure 2-12: SEM images of α-Co(OH)2 with varied interspatial anions a) as prepared Co(OH)-chloride b) -nitrate c) -

acetate and d) -sulphate (Cheng et al., 2014) (Used with permission) 

Although widely studied, the application of α-cobalt hydroxide is still a relatively new 

concept. Cao and Wang (2016) studied α-cobalt hydroxide as an alternative to 

graphite, which has a theoretical capacity of 372 mA h/g, as an anode material. The 

particles were prepared using cobalt chloride hexahydrate, sodium chloride and 

hexamethylenetetramine dissolved in an ethanol and water solution. The green 

precipitates were collected and dried and used in the electrode preparation. 

 

Figure 2-13: XRD patterns of as prepared α-Co(OH)2 (Cao & Wang, 2016) (Used with permission) 
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The XRD pattern, shown in Figure 2-13, revealed the five main peaks which indicate 

that α-cobalt hydroxide has been formed – (003), (006), (012), (015) and (018). From 

cyclic voltammograms, the electrochemical activity of the produced particles was 

measured. At a current density of 100 mA/g, they expressed an initial capacity of 1765 

mA h/g and, even after 50 cycles, maintained a higher capacity than that of graphite. 

 
Mahmoud and Al-Agel (2011) explored the solvothermal synthesis of cobalt hydroxide 

nanowires, as well as their decomposition to Co3O4. The cobalt phase explored was 

that of β-Co(OH)2, which was shown in the XRD results in Figure 2-14. 

 

a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2-14: XRD pattern exhibited by ultra-fine a) cobalt hydroxide nanowires and b) cobalt oxide nanowires (Mahmoud 

& Al-Agel, 2011) (Used with permission) 

Because the (001) peak was extremely sharp, it was noted that the oriented growth of 
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β-Co(OH)2 nanowires was favoured, and also that impurities and the α-phase was not 

present. FT-IR spectra were also observed in which definite peaks of 3630, and 496- 540 

cm-1 were assigned to the hydroxyl group and metal-oxygen and metal-hydroxyl 

bending vibrations respectively. According to the HRTEM images of the hydroxide 

phase, the lattice spacing was found to be 0.46 nm, in accordance with the (001) plane. 

After calcination, the HRTEM image of the oxide phase of the material revealed lattice 

spacing of 0.81 nm, in accordance with the (111) plane. 

 

2.6 Cobalt oxide production methods 

Nanoparticles are synthesised using two main methods: top-down or bottom-up. The 

first method describes the formation of nanomaterials from their bulk counterparts, 

which is obtained by the breakdown of these materials until nano size is achieved. The 

bottom-up method produces nanoparticles starting from atomic or molecular 

precursors, using various techniques to gradually build up nanomaterial (Filipponi & 

Sutherland, 2012). The bottom-up techniques are usually preferred, as they provide 

control of the nanoparticle synthesis as they begin with the atoms and molecules 

used in the desired product. 

 
Such is the case for cobalt oxide synthesis in which various methods have been 

employed in the production of Co3O4 in their various forms (Huang et al., 2014). 

Popular metal oxide synthesis routes include sol-gel, hydrothermal /solvothermal 

decomposition, thermal decomposition, and gamma irradiation. Many other synthesis 

routes exist, such as the co-precipitation method explored by Chani et al. (2015), 

which resulted in pristine cobalt oxide (Co3O4) nanopowder used for pressure testing. 

The XRD and FT-IR spectra of the resulting cobalt oxide is shown in Figure 2-15, with 

the XRD spectra showing excellent correspondence to the JCPDS card 42-1467. The 

FT-IR spectra reveals peaks at 660 cm-1 and 550 cm-1, which provides evidence of the 

existence of Co3O4, with the addition of a strong peak at 1339 cm-1, which is accredited 

to the presence of an NO3 group (Chani et al., 2015). 
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Figure 2-15: a) XRD and b) FT-IR spectra of the as-prepared cobalt oxide nanopowders (Chani et al., 2015) 

2.6.1 Sol-gel synthesis 

During sol-gel synthesis, cobalt salts and solvents are used to form cobalt solutions. 

The solution is then refluxed in order to obtain the sol (Guo et al., 2014). The sol is then 

further treated by an addition of a chelating agent (Thota et al., 2009) (no refluxing 

required) or refluxed and aged to form a thicker consistency gel (Thota et al., 2009; 

Guo et al., 2014). When the chelating agent is added, the resulting gel is dried and 

then calcined to form Co3O4 nanoparticles (Thota et al., 2009). When using the reflux 

method, the gel is aged and calcined to form Co3O4 nanoparticles (Guo et al., 2014). 

The main advantages of the sol-gel synthesis technique is that it’s a simple method, 

and particle size and morphology may be controlled by the systematic monitoring of 

the system’s parameters (Jamkhande et al., 2019). One of the main disadvantages of 

this method is that it requires an aging time, ranging from 24 hours to numerous days, 

to obtain the final products. 

 

2.6.2 Hydrothermal/solvothermal decomposition 

The primary principle of hydro/solvothermal synthesis is its use of solvents at their 

critical states (Cushing et al., 2004). This is done in an enclosed vessel, which allows 

for solvents to reach temperatures far beyond their boiling points with the increase in 

pressure (Cushing et al., 2004). Hydrothermal and solvothermal synthesis of Co3O4 

both make use of dissolving a cobalt salt in a solvent. The prefix
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used describes the solvent in which the process is carried out – hydro, for water-

based solutions, and solvo, for solvent-based solutions. Popular solvents used include 

ethylene glycol, pure alcohols and alcohol/water mixtures (Beach et al., 2008; Jamil et 

al., 2014; Jing et al., 2012). Once a solution of the cobalt salt has been made, a 

precipitating agent, as well as a surfactant (depending on the process) is added. The 

solution is then transferred to the enclosed pressure vessel, where it is heated to the 

required temperature for a specified time period. The resulting precipitates are 

collected and calcined to obtain the final Co3O4 nanoparticles. The advantages of the 

hydro/solvothermal synthesis route include the ability to synthesise the desired size 

and shape of nanoparticles, and that well-crystallized powders may be formed 

containing monodispersed particles with a high crystallinity. It also provides a narrow 

size distribution. An additional advantage is that much research has been done on the 

upscaling of this method to a continuous form. The disadvantages are that the 

processes are difficult to control, and a limitation of the reliability and reproducibility 

exists (Jamkhande et al., 2019). 

 

2.6.3 Thermal decomposition 

Thermal decomposition relies on the breakdown of chemical substances by heat. In 

the production of cobalt oxide, this is usually brought about by refluxing of a cobalt salt 

dissolved in solvent at temperatures exceeding 200˚C. It has been reported to be one 

of the easiest methods to synthesise monodispersed nanoparticles (Odularu, 2018). 

However, it entails the disadvantage that uneven heating of the processed material 

exists at the source of heat, and it has a limited scaling up potential. 

 

2.6.4 Gamma irradiation 

Gamma irradiation utilises microwaves for the breakdown of water molecules within 

nanomaterial applications. As there is no need for toxic materials in this synthesis, it 

has been reported to be a ‘green’ approach to nanomaterial synthesis. It provides 

control of the nucleation process, depending on the radiation dose rate. The limitations 

of this process exist in the low accessibility of the technology worldwide, in comparison 

to other synthesis techniques. It also has limitations in the capping and stabilising 

materials, depending on their sensitivity to the irradiation used (Freitas et al., 2018). 
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It has been reported that many electronegative metals, along with all noble metals 

may be reduced in water when exposed to gamma irradiation (Cushing et al., 2004) 

as the water is broken down to H2, H2O2, OH• and H• radicals (Cushing et al., 2004), 

etc., i.e. active particles in reducing cobalt ions in solution to cobalt, which then allows 

for these reactions to follow: 

𝐶𝑜2+ + 2𝑒𝑎𝑞
−  

           
→   𝐶𝑜  (Ni et al., 2001) 

2-7 

3𝐶𝑜 + 2𝑂2
           
→    𝐶𝑜3𝑂4  (Ni et al., 2001) 

2-8 

2.7 The effect of alcohol on nanoparticle synthesis 

The effect of alcohols in nanoparticle synthesis provides a means of control, as the 

properties of alcohols change with increasing alkyl chain lengths, as seen in Table 2-

1. Due to this change in properties, it provides noticeable differences in systems using 

alcohol/water mixtures. This was noted in a study by Petkova and Nedkov (2013) 

in which the optical properties of Co2+ cations were explored in aqueous and alcoholic 

solutions using CoCl2.6H2O at room temperature. In an aqueous or alcohol medium, 

metals from the 3d group form complexes. This was noted in these experiments, as 

the colour of the aqueous solution was pink, whereas the alcohol solution was blue 

(Petkova & Nedkov, 2013). The cobalt complexes formed were therefore octahedral 

and tetrahedral. It was concluded that the reason for a difference of colour lies in the 

spectral positioning of the 3d electrons, leading to a difference in optical properties 

(Petkova & Nedkov, 2013). 
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Table 2-1: Properties of pure water, pure alcohol and alcohol/water mixtures 

 Surface tension at 25˚C 

σ, mN/m 
(Vazques et al., 1995 and 

Demond & Lindner, 1993) 

Interfacial 

tension at 

25˚C (Demond 

and Lindner) 

1993) 

Solubility in 

water at 25˚C, 

g/L 

Boiling 

point, ˚C at 

101,3 kPa 

100% 50%    

Water 72.01  100 

Methanol 22.51 32.86 1000 64.7 

Ethanol 21.82 27.96 1000 78.37 

Propanol 23.28 24.8 1000 97 

Butanol 24.95  1.8 73 117.7 

Octanol 27.5 8.52 0.3 188 

 

Nanoparticle synthesis using metal alkoxides allows for the nucleation and growth of 

the particles to be controlled by adjusting the reaction conditions (He et al., 2004). This 

control results in monodispersed nanoparticles (He et al., 2004). However, the 

nucleation process of oxides often occurs too quickly, and the primary control is 

therefore set within the growth step (He et al., 2004). The growth step may occur in 

one of two methods: aggregation or coarsening. Coarsening may be defined as the 

growth of larger crystals over smaller crystals, whereas aggregation forms 

polycrystalline solids (He et al., 2004). 

 
He et al. (2004) present a method for the controlled aggregation of nanocrystals in 

solvents. In their study, long carbon chain alcohols were used to produce Co3O4 

nanoparticles by thermal decomposition and aggregated using small quantities of 

water to form monodispersed particles with a controlled size (He et al., 2004). From 

these studies it was found that the particle size increases with the increase in reaction 

temperature and reaction time, along with a larger size distribution. However, varying 

the water content only in a solvent system provides an increase in particle size due, to 

aggregation with a narrow size distribution (He et al., 2004). 

 
The hydro/solvothermal route for β-cobalt hydroxide was employed using cobalt nitrate 

and dimethylglyoxime in water/ethanol solutions, with the addition of sodium 

hydroxide. The ratios of water to ethanol were varied, and it was found that lower 
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concentrations of ethanol produced more crystalline particles, as noted in the (011) 

peak in the XRD patterns (Figure 2-16). Results from FT-IR analysis, shown in Figure 

2-16, also indicated that the particles formed from pure water contained fewer 

impurities than that of the water/ethanol mixtures, which provided aldehydes usually 

found in alcohols as impurities. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2-16: a)XRD patterns, and b)FT-IR spectra for the -Co(OH)2 formed using different water/ethanol ratios and 

varying hydrothermal times at 220C. a-d) hydrothermal time: 24 h, and water/ ethanol ratios of a) 1:0, b) 2:1, c) 1:2, and d) 

1:10. e-f) water/ ethanol ratio: 2:1, hydrothermal time for: e) 12 h, and f) 6 h (Wang et al., 2011) (Used with permission) 

The morphology was greatly affected by the change in water/ethanol ratio. Pure water 

produced hexagonal plates, while increasing ethanol produced broom-like, straw-like 

and grass-like cobalt hydroxide structures (Wang et al., 2011). It was found that the 

major contributing factors to the reaction, self-assembly and crystallisation of the 

particles was alkalinity and polarity, as the alkalinity as well as the polarity of the 

water/ethanol mixtures decreased as ethanol increased (Wang et al., 2011). 

 
The use of various alcohol media during cobalt oxide nanoparticle synthesis was 

explored by Athawale et al. (2010). The studies focused on the use of gamma-ray 

techniques. Although cobalt nitrate, cobalt chloride and cobalt acetate salts were used 

during this investigation, only cobalt nitrate proved effective in the conversion to cobalt 

oxide. The alcohols explored included methanol, ethanol, n-propanol, iso-propanol, n- 

-butanol and n-hexanol, with the addition of aniline and ammonium persulphate. The 

results obtained showed that shorter carbon chained alcohols produced spherical 

particles, while alcohols with longer carbon chains produced fibres, with the best 

alcohol for the purpose being isopropanol, owing to its stability and homogeneous fibre 
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synthesis (Athawale et al., 2010). 

 
Gamonchuang et al. (2016) studied the effect of alcohol type on the thickness of the 

silica shell when coating Co3O4 nanoparticles. A component of this study focused on 

the formation of Co3O4 nanoparticles using cobalt nitrate and octanol as the raw 

materials (Gamonchuang et al., 2016). Spherical Co3O4 nanoparticles were formed 

during thermal decomposition, with strong morphology which remained unchanged 

with the increase in reflux time (Gamonchuang et al., 2016). The increase in reflux 

time did, however, lead to a broader size distribution, owing to an increase in 

agglomeration time (Gamonchuang et al., 2016). 

 
A summary of the techniques used to synthesise cobalt oxide using alcohol in the 

synthesis method is displayed in Table 2-2. From these studies, it is noted that the 

most common cobalt precursor salts used are cobalt chloride and cobalt nitrate. 

Although different synthesis methods are shown, it is noted that they differ in the 

system conditions and components used. Most importantly, it is noted that the 

combination of variances provides completely different results. Such is the case for 

Athawale et al. (2010) and Gamonchuang et al. (2016) who used the same precursor 

salt, but two different methods. Athawale et al. (2010) used the Gamma-ray technique, 

in which shorter alcohol chain lengths produced spherical particles and longer carbon 

chain lengths provided longer fibre particles. This was significant, as Gamonchuang 

et al. (2016) used octanol (a longer carbon chained alcohol) and produced spherical 

particles, contrary to the aforementioned trend. From the table provided, it is noted 

that not much focus has been placed on comparing various alcohol chain lengths to 

the particles synthesised. Neither has the solvothermal synthesis of cobalt oxide in 

alcohols been a focus. 
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Table 2-2: Summary of various Co3O4 synthesis routes using alcohols 

Author  Synthesis 
method 

Alcohols used Precursor salt 
used 

Additional 
agents 

Reaction 
conditions 

Reaction 
time 

Summarised result 

Ni et al. 
(2001) 

Gamma 
irradiation 

Isopropanol Cobalt chloride Sodium 
acetate 

50 Gy/min 
precipitates were 
collected 

Precipitates 
were dried 
for 24 
hours 

Particles 
approximately 5 nm 
in size were 
synthesised  

He et al, 
(2004) 

Thermal 
decomposition 

1) n-hexanol 
2) n-octanol 
3) n-octanol 

1) Cobalt nitrate 
2) intermediate 
salt 
3) Initial cobalt 
oxide 

Water  1) Refluxed 
between 90°C 
and 100°C, 
depending on 
changing boiling 
point 
2) Refluxed again, 
increasing to 
150°C 
3) Refluxed at 
180°C  

1) 10 hours 
2) 3 hours 
3) 4 hours 

Monodispersed 
particles primarily 5 
nm in size were 
aggregated by the 
addition of water 
into the system in 
the final step  

Beach et al. 
(2007) 

Solvothermal Ethanol and 
water (ratio 
1:1) 

Cobalt nitrate Urea & sodium 
dodecyl 
sulphate  

Reaction at 110°C 
Calcination at 
250°C 

Reaction 
for 15 
hours 
Calcination 
for 2 hours 

Microspherical 
particles composed 
of platelets with 
bundles of 
nanofibers on some 
platelet corners 

Thota et al. 
(2009) 

Sol-gel Ethanol Cobalt acetate Oxalic acid 1) Sol is heated to 
35-40 
2) Gel is dried at 
80  
3) Calcination at 
various 
temperatures 
above 400 

Gel is dried 
for 24 
hours 
 

Matchstick-shaped 
particles 
synthesised. 
Calcination 
temperature played 
a huge part in 
particle morphology. 
Agglomeration was 
noted with 
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increasing 
temperature 

Athawale et 
al. (2010) 

Gamma-ray Methanol, 
ethanol, n-
propanol, 
isopropanol, 
n-butanol & n-
hexanol 
 

Cobalt nitrate Aniline 
and 
ammonium 
persulphate  

Irradiation at 5,1 
Gy.min-1 

0 – 72 
hours 

Shorter alcohols 
produced spherical 
particles, while 
longer particles 
produced fibres 

Guo et al. 
(2014) 

Sol-gel Ethanol Cobalt chloride Triblock 
copolymer 
F127 soft 
template 

1) Refluxed at 
100°C 
2) Sol is aged at 
40°C  
3) Gel is heated 
at 130°C 
4) Black product 
calcined at 400°C  

1) Refluxed 
for 8 hours 
2) Sol was 
aged for 2-
3 days 
3) Gel was 
heated for 
15 minutes 
4) Product 
calcined for 
3 hours 

Mesoporous 
octahedral particles 
were successfully 
prepared 

Gamonchuang 
et al. (2016) 

Thermal 
decomposition 

Octanol 
 

Cobalt nitrate - 1) Refluxed at 
170°C 
2) Dried at 80°C 
3) Calcined at 
400°C 

1) Refluxed 
for 1, 1.5, 2 
and 4 hours 
2) Dried for 
24 hours 
3) Calcined 
for 6 h 

Monodispersed 
spherical particles 
synthesised. 
Increasing reflux 
time resulted in 
increased particle 
sizes and wider size 
distributions 
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2.8 Effect of calcination temperature 

The mechanochemical synthesis of cobalt oxide, as studied by Yang et al. (2004) 

focused on the thermal treatment (calcining) of a milled precursor consisting of 

Co(NO3)2·6H2O and NH4HCO3 in order to obtain cobalt oxide nanoparticles (Yang et 

al., 2004). The production method provided monodispersed nanoparticles which, by 

varying the calcination temperature, were found to increase in size with increasing 

calcination temperature, obeying Scott’s equation, shown in Equation 2-9, of 

homogeneous nanocrystal growth (Yang et al., 2004). 

𝐷 = 𝐶𝑒𝑥𝑝 (−
𝐸

𝑅𝑇
)     2-9 

Jing et al. (2012) however, provided a solvothermal method for Co3O4 production by 
 

calcining a CoCO3 precursor. Their statistical findings contradicted the above, in that 

the average particle sizes decreased with increased calcination temperature (Jing et 

al., 2012). 

 

2.9 Effect of pH 

Yang et al. (2007) provided a method in which the effect of pH on shape-controlled 

nanocubic Co3O4 particles was monitored. During their investigation, various agents 

were used to maintain the pH either between 8 and 9 or between 11 and 12. Their 

findings exhibited that controlled nanocubes are formed when the pH is between 8 to 

9, but irregular shapes formed at an increased pH. This was attributed to the ease in 

condensation of the Co(OH)2 precursor at higher pH values, leading to 

agglomeration. The results obtained by Yang et al. (2007) were reiterated in an 

independent study by Allawdini et al. (2014), who studied the effect of pH on cobalt 

oxide produced during the co-precipitation method. 

 

2.10 Advanced Oxidation Processes (AOPs) 

One of the major drawbacks in the treatment of wastewater from industries such as 

the textile industry, tanneries, pharmaceutical industries, etc. is that the production 

processes vary, not only industrially, but between companies as well. This results in 

effluents of an unpredictable nature, which makes the treatment process complicated. 
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2.10.1 Hydroxyl radicals vs. sulphate radicals 

Deng and Zhao (2015) wrote a review paper comparing all the current methods 

using AOPs for wastewater treatment. They reported on hydroxyl radical-based as 

well as sulphate radical-based systems. According to Deng and Zhao (2015), hydroxyl 

radicals are the most reactive oxidising agents in water, with oxidation potentials 

ranging between 1.95 – 2.8 V (depending on pH). However, due to their short lifespan 

they are only produced in combination with oxidising agents, irradiation, and 

catalysts. They further state the oxidation potentials of both the peroxydisulphate 

anion as well as sulphate radicals, as 2.01 V and 2.6 V respectively. It should 

however, be noted that no pH was specified for these species, and according to 

Neta et al. (1988), the reduction potential of sulphate radicals may range between 

2.5- 3.1 V. 

 
Work done by Anipsitakis and Dionysiou (2003) studied the degradation of organic 

contaminants in water using sulphate radicals produced from peroxymonosulphate, 

activated by cobalt. The results obtained were compared to a similar test done, using 

the Fenton reagent (Fe(II)/H2O2)-hydroxyl radical based. During their investigations, 

transition metals, pH, as well as organic contaminants were varied. pH played a 

major role in the comparison between the two treatment methods. A limitation of the 

need for an acidic pH was highlighted for the Fenton reagent. The degradation of 2,4-

dichlorophenol was observed for both degradation methods, at a pH range of 3-8. At 

high pH values, the cobalt/peroxymonosulphate (Co/PMS) reagent maintained its 

degradation quality, while the Fenton reagent significantly decreased. Similar results 

were obtained for the degradation of atrazine, although the initial degradation using 

Co/PMS was slower than that of Fenton reagent. It was deduced that, given sufficient 

reaction time, the Co/PMS system provides better degradation, even at a pH which 

favours Fenton reagent reactions. It should be noted, however, that for the third 

contaminant tested (naphthalene) at a pH of 3, the Fenton reagent was favoured over 

the Co/PMS system. This shows that sulphate radicals are not universally more 

effective than hydroxyl radicals, and that the structure of the contaminant impacts the 

reactivity of the sulphate radical to a greater extent than the hydroxyl radicals.  
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Azo dyes discharged into municipal wastewater streams is undesirable, due to their 

toxic nature, as well as for aesthetic reasons. These dyes, as well as their aromatic 

amine intermediates, are not biodegradable under aerobic conditions. The Fenton 

oxidation (FO) process was exploited in the research by Meriç et al. (2004) in which 

the removal of colour, COD, and toxicity from wastewater containing Reactive Black 5 

was monitored. The Fenton oxidation process is dependent on the release of 

hydroxyl radicals, and therefore employs an acidic pH which favours hydroxyl radical 

release. The experiments were conducted at various temperatures typically 

encountered within the textile industry: 30, 40, 50 and 60˚C. In the experiments 

conducted, it was found that the optimum pH varies between 3.0 and 3.5 for colour 

and COD removal. The optimum temperature was found to be 40˚C. Temperatures 

above this caused an increase in ferrous ions, which scavenged OH radicals, 

therefore reducing the effectiveness of the Fenton reaction. 

 
Ozone (O3) is an oxidant which has been widely studied in the mineralisation of 

undesired organic compounds by exploiting its ability to reacts with electron-rich 

organic compounds. During the peroxone process, ozone reacts with H2O2 to form 

•OH for pollutant mineralisation. Much research has been done on the mineralisation 

of organic wastes by AOPs exploiting •OH, though the use of sulphate radicals (•SO-) has 

become increasingly popular due to their higher reduction potential (2.5-3.1 V). 

Sulphate radicals have since been preferred, as they are less influenced by competing 

factors, such as alkalinity and organic matter in water, than that of the hydroxyl 

radicals. 

 
Yang et al. (2015) studied the interactions in a system exploiting both hydroxide and 

sulphate radicals by using both ozone and PMS as oxidants in a system for 

contaminant degradation. Atrazine (ATZ) was the contaminant monitored in these 

studies. The results revealed that the O3/PMS system provided 81% degradation 

within 10 minutes, in comparison to 27% degradation achieved by O3 on its own, in a 

timeframe of 20 minutes. The reaction rate constant was improved by a factor of 2 

with the addition of PMS.  
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2.10.2 Factors influencing sulphate radical formation 

Rivas et al. (2009) studied the effects of variables on the decomposition of Oxone 

(potassium monopersulphate). They report that the monopersulphate molecule may be 

broken down by influences of transition metals, heterogeneous catalysis by oxides, and 

by the application of thermal or radiant energy. Deng and Zhao (2015) also report 

that the peroxydisulphate anion may be activated to form sulphate radicals with heat, 

transition metals, or an elevated pH (not specified). 

 
During the tests carried out by Rivas et al. (2009) both homogenous and 

heterogeneous catalysts were used, though heterogeneous catalysts were 

recommended for their ease in catalyst removal, as well as a wider range of working 

pH. They tested several transition metals, including Co(II), Fe(II), Mn(II) and Ti(II), 

but only Co(II) showed considerable reactivity with Oxone. Similar results were 

reported for a simple test by Anipsitakis and Dionysiou (2003) using cobalt, nickel 

and iron. 

 
Rivas et al. (2009) further studied the effect of catalyst concentration, monopersulphate 

concentration, initial pH, and temperature. When studying the effect of catalyst 

concentration, the temperature, pH, Oxone concentration and volume were kept 

constant. The results obtained showed that Oxone decomposed faster with an 

increase in catalyst load. The same study was done for the effect of Oxone 

concentration, in which the temperature, catalyst load were kept constant. The pH 

varied based on Oxone concentration. The results obtained revealed that pH is an 

important factor that may not be neglected, since proton concentration plays a key 

role in monopersulphate decomposition, and small changes may significantly alter 

the reaction rate. In a study focused on pH, it was found that in a range of 1.0-3.1, the 

rate of decomposition increased with increase in pH. The temperature study exhibited 

expected results, as an increase in temperature led to an increase in decomposition 

rate. It was, however, noted that although an increase in rate was observed, this does 

not imply that more sulphate radicals are available, since excessive heat may result in 

the formation of inactive sulphate and oxygen molecules. The same tests were done 

heterogeneously, with significant findings for the pH study. It was also noted that a high 



  LITERATURE REVIEW 

36 

 

pH is beneficial in terms of metal leaching. Thus, release of active metallic species 

from solid catalysts is normally associated with low pH values (Rivas et al., 2009). It 

is therefore beneficial to note that most contaminated natural waters exist in the pH 

range of 6-8 (Anipsitakis & Dionysiou, 2003). 

 

2.10.3 Chloride effects on PMS- based degradation 

Huang et al. (2017) investigated the effects of chloride on PMS-based pollutant 

degradation, specifically the intermediates formed and how the presence of chloride 

effects the complete mineralisation of the pollutants. Their investigation was based on 

phthalic acid (PA), a common and dominant dye degradation intermediate. Chloride 

ion is one of the major constituents within the dye industry’s wastewater, and has 

previously been deemed to have an inhibitory effect on AOP performance. However, 

recently a dual effect has been reported (inhibitory then accelerating effect) during dye 

decolouration AOPs. The initial inhibitory effect at low chloride concentrations (<5 mM) 

has been attributed to the consumption of sulphate radicals by chloride ions, resulting 

in the formation of less reactive chloride radicals. However, at higher concentrations 

(>50 mM), an increased bleaching effect was experienced in response to the 

generation of HOCl and Cl2 at high chloride ion concentrations. 

 
In addition, the concentrations of PMS, Co2+ and pH were varied in order to monitor the 

impact on PA degradation as shown in Figure 2-17. Increased degradation rates were 

experienced for the three variables. With an increase in PMS concentration, more free 

radicals were available for reaction. An increase in Co2+ concentration provided an 

enhanced radical production from the available PMS. A significant increase in 

degradation rate was also experienced when increasing the pH above 4. pH was 

highlighted as a *critical variable in dye degradation, due to pH-dependency of the 

concentration and speciation of free radicals. A significant increase in degradation 

rate was displayed as the pH was increased from 2 to 7. Ultimately, the pH controls 

the PMS system, as it controls the formation of radicals which drive it. 
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Figure 2-17: The effect of a) PMS concentration, b) cobalt ion concentration and c) pH on the rate pf phthalic acid 

degradation in the Co/PMS system (Huang et al., 2017) (Used with permission) 

Upon investigating the presence of chloride ions on the degradation efficiency of PA 

as indicated in Figure 2-18, it was found that a significant drop in degradation rate was 

experienced with the mere presence of chloride ions. The investigation was expanded 

to the degradation of Acid Orange 7 and Rhodamine B, in which a dual effect (first 

decrease then increase in degradation rate) was experienced. It was also noted 

that the degradation rate constants were far higher for that of the intermediate (PA) 

than that of the initial PA.
  

 

 

 

 

 

 

 

a) b) 

c) 
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Figure 2-18: a) The effects of chloride ion addition to the Co/PMS system on the decomposition rates of PA and dyes, b) 

the dual effect exhibited in the Co/PMS/Cl system with increasing chloride ion concentration (Huang et al., 2017) (Used 

with permission) 

The intermediates formed from degrading PA in the presence of chloride ions at varied 

concentrations were determined using LC/TOF-MS. It was found that at low 

concentrations of chloride, up to ten different intermediates were formed, while 

increased chloride concentration reduced the number of by-products formed. 

However, at 1 mM chloride, 41.4% PA degradation was achieved and at 100 mM 

chloride, only 14.5% PA degradation was achieved. 

 
A test for adsorbable organic halide (AOX) formation was performed, as AOX forms 

an important parameter in industrial wastewater treatment. The results obtained are 

displayed in Figure 2-19. It was found that AOX only formed when the system was 

introduced to a chloride addition. Findings indicated that the formation of AOX is not 

necessarily chloride concentration related, contradicting the conclusion of Yuan et 

al. (2011). An increase in AOX at low chloride concentrations was attributed to the 

large number of chlorinated by-products formed at low chloride levels. 

a) b) 
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Figure 2-19: Adsorbable organic halides (AOX) formation during PA degradation in the Co/PMS/Cl system when 

increasing chloride ion concentration (Huang et al., 2017) (Used with permission) 

From their investigations it was concluded that the inhibitory effect that chloride ions 

have on PA degradation may negatively affect the overall degradation of dye-

containing wastewater. 

2.11 Conclusion 

Cobalt oxide (Co3O4) has been proposed for use in wastewater treatment, in 

preference to other transition metals, for its ability to best activate sulphate radicals 

(•SO4) from Oxone (peroxymonosulphate).  

Kim and Huh (2011) demonstrate that minor changes within the hydrothermal synthesis 

of cobalt oxide may result in different morphologies with the simple adjustment of the 

amount of either hydrazine or H2O2 in the precursor solution. Since reactions which are 

structure-sensitive are dependent on morphology, these simple changes not only affect 

the particles synthesised but also the effectiveness of their use. 

 
Saputra et al. (2014) and Saputra et al. (2017) demonstrate that BET surface area is not 

the only factor affecting the catalytic activity of the particles, but that its activity lies in 

the combinative effect of high surface area and active surface facets, opposing the 

general concept that higher surface area produces higher catalytic ability. Additionally, 
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they report that no significance was attributed to cobalt oxide size in the range of 6 to 

200 nm in the Fischer-Tropsch process. However, at a particle size lower than 6 nm, 

inferior reactivity is exhibited (Vinod, 2010). 

Various precursors to the final product may vary the structure of the particles 

synthesised. Cobalt hydroxide,  as the precursor to cobalt oxide exists as either α-

cobalt hydroxide or β-cobalt hydroxide. The most obvious difference between these 

phases lies in their colour. The α-phase is blue/green in colour while the β-phase is pink 

in colour. The major issues reported for α-Co(OH)2 is its thermodynamic metastability, 

as well as poor crystalline and disordered structure, causing the rapid transformation 

to the β-phase, while the β-phase remains stable. The transformation to cobalt oxide 

usually occurs in literature concerning the β-phase. However, a comparison of the 

catalytic properties of cobalt oxide from both polymorphs has not been studied.  

 
Athawale et al. (2010) and Gamonchuang et al. (2016) used the same precursor salt in 

alcohols, using the gamma-ray technique and thermal decomposition respectively. The 

gamma-ray technique provided spherical particles in alcohols with shorter alcohol chain 

lengths and fibres in alcohols with longer carbon chain lengths, in which the longest 

chain length explored was hexanol. The thermal decomposition also provided spherical 

particles in octanol, an alcohol with a carbon chain longer than that of hexanol. 

However, the systematic study of the effect of alcohols at various alcohol chain lengths 

in hydro/solvothermal synthesis of cobalt oxide nanoparticles has not been undertaken. 

 
Studies on the effect of calcination temperature have contradicting outcomes, as Yang 

et al. (2004) found an increase in size with increase in calcination temperature for the 

cobalt oxide particles synthesised mechanochemically, while Jing et al. (2012) found 

the particle size decreased in their solvothermal synthesis of Co3O4 when calcining a 

CoCO3 precursor.  

 
This study therefore focuses on the evaluation of the effects of the precursor anion and 

alcohols on the cobalt hydroxide phase achieved, the effect of calcination temperature 

on the resulting cobalt oxide particles, and finally the effects on catalytic ability in colour 

degradation of synthetic textile dye solutions.   
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CHAPTER 3 RESEARCH METHODOLOGY 

 
In this chapter, the experimental methods used will be provided, highlighting the 

hydro/solvothermal synthesis route used in producing the particles. The equipment 

used will also be presented and explained, as well as the data extraction and analysis 

methods used in the characterisation methods used. 

 

3.1 Research design 

The experiments were arranged threefold: firstly, the hydro/solvothermal synthesis of 

cobalt hydroxide, secondly, the calcination at various temperatures, and lastly, the 

advanced oxidation processes. The first step involved the hydro/solvothermal 

synthesis of cobalt hydroxide, by varying the anion of the cobalt salt used, as well as 

the alcohol solvents used. Cobalt chloride hexahydrate and cobalt nitrate hexahydrate 

were selected as the base salts for these experiments. Methanol, ethanol, propanol, 

butanol and octanol were selected as the alcohols, and mixed in ratios 1:0 (referred 

to as 100% alcohol) and 1:1 (referred to as 50% alcohol) with water. The second part 

evaluated the conversion from the precursor powders α- and β-Co(OH)2 to Co3O4 via 

calcination, which occurred at 300, 400 and 500˚C. Lastly, the advanced oxidation 

processes were carried out by degrading a standard methylene blue solution, with a 

concentration of 10 mg/L, using the produced catalyst to activate Oxone® 

(peroxymonosulphate). The results obtained were compared with the characterisation 

results obtained. 

 

3.2 Experimental methods 

The following sections describe the methods used in the synthesis of cobalt oxide, as 

well as their application in advanced oxidation processes. Sections 3.3.1 and 3.3.3 

were completed in the nanotechnology laboratory and section 3.3.2 completed in the 

chemical engineering laboratory, both located at CPUT, District Six campus. Further, 

the methods used to characterise the resulting particles are briefly detailed. 
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3.2.1 Cobalt hydroxide synthesis 

All chemicals used were at analytical grade and used without further purification. They 

were sourced from the Associated Chemical Enterprises (98% purity grade) and Sigma- 

Aldrich for the salts and solutes respectively. For these experiments, two cobalt salts 

were used, namely, cobalt chloride hexahydrate and cobalt nitrate hexahydrate. 

These salts were dissolved in the solvent, which was either deionised water, methanol 

(99.9% purity grade), ethanol (96% purity grade), propanol (99.5% purity grade), 

butanol (99% purity grade) or octanol (99% purity grade), or in alcohol/deionised water 

solutions in the ratio 1:1. This was done in order to study the effects of alcohol 

surface tension. A molarity of 0.23 M was maintained for both salts. Once dissolved, the 

pH of the solution was adjusted to 8.10 by adding ammonium hydroxide solution 

dropwise. The resulting mixture was then inserted into the 0.99 L Teflon-lined pressure 

reactor fitted with a thermocouple and a self-regulating heating jacket, as shown in 

Figure 3-1. The reaction temperature was maintained at 105 ±5°C for 6 hours after a 

ramp up time of 1 hour. The pressure reactor was then allowed to cool down naturally 

overnight.  

         

Figure 3-1: Hydro/solvothermal reaction vessel with temperature controller 
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3.2.2 Cobalt hydroxide calcination 

The resulting cobalt hydroxide particles were centrifuged and rinsed several times 

with deionised water and finally with ethanol, and dried overnight in an oven at 

60°C. Porcelain crucibles were used to store the powders, which were then 

annealed in a LABOFURN furnace, as presented in Figure 3-2, at temperatures 

of 300, 400 and 500˚C. A standard ramp time of 1 hour was employed, and the 

set temperature was maintained for 3 hours. The samples were removed 

immediately and stored in airtight sample vials for further analysis and application 

in the AOP reactor. 

 
 

Figure 3-2: LABOFURN furnace used for calcination 

3.2.3 Advanced oxidation process 

The catalytic efficiency was evaluated in the sulphate radical-based advanced oxidation 

process using an in-house developed continuous reactor, shown in Figure 3-3. A stock 

solution of 10 mg/L methylene blue solution was prepared and kept for test work. 

Peroxymonosulphate (Oxone®) powder of 0.184 g was added to 500 mL methylene 

blue solution and stirred for five minutes. An initial sample of the dye solution,  along 

with 4 mL aliquots every 2 minutes at the exit of the reactor was then taken, and 

analysed using a handheld Lovibond® spectrocolorimeter. The spectrocolorimeter 

provides a numerical output (∆𝐸), quantifying the colour variance to a selected 

standard. In this case deionised water was selected as the standard as the objective 

was to get the water as clear as possible. The percentage degradation was calculated 

according to Equation 3-1 
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% 𝐷𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 = (1 −
∆𝐸(𝑠𝑎𝑚𝑝𝑙𝑒)

∆𝐸(𝑑𝑒𝑖𝑜𝑛𝑖𝑠𝑒𝑑 𝑤𝑎𝑡𝑒𝑟)
) × 100   3-1 

The solution was then pumped through filters embedded in the reactor with 0.3 g 

catalyst at a flowrate of 40 mL/min using a peristaltic pump. The preparation of these 

filters may not be disclosed as it is protected intellectual property. Further, samples 

were taken every two minutes from the initial point of reaction.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-3: In-house developed reactor used to evaluate the cobalt oxide particles in AOPs 

3.3 Characterisation methods 

Various characterisation techniques were employed to study the structure, 

morphology and purity of the cobalt hydroxide and cobalt oxide nanopowders synthesised, 

as described in the sections 3.3.1 to 3.3.7. All the generated nanoparticles were 

sampled after calcination and some before calcination for analysis. EDS along with 

TEM, SEM, SAED and electron energy-loss near-edge structure (ELNEFS) were 

performed at the Electron Microscopy Unit located at the University of the Western 

Cape. Particle size distributions (PSD) and interlayer spacing (or D-spacing) were 

determined from TEM using Image J software, as well as GATAN micrograph software 

respectively, in which 200 individual particles were measured to determine the PSD. 

The composition, phase and degree of crystallinity were further determined using XRD 

analysis performed at the Materials Research Department located at iThemba LABS. 

In addition, FT-IR was done on a selection of particles in the Chemistry Department of 
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CPUT (District 6 campus). BET analysis was performed either at the National Centre 

for Nanostructured Materials, located at the Council for Scientific and Industrial 

Research, or the department of Chemical Engineering at the University of Cape Town 

using the same method.  

3.3.1 Selected Area Electron Diffraction 

SAED may be used to identify the lattice structure and crystal make-up of a substance. 

Figure 3-4 represents a typical polycrystalline substance in which concentric rings are 

formed. This occurs as the grains of polycrystalline material are randomly orientated, 

providing diffraction at the same length from the centre, producing continuous rings 

(Egerton 2005). 

 

 

 

Figure 3-4: Ring diffraction pattern observed for many crystallites (Egerton 2005) 

3.3.2 Electron Diffraction Spectroscopy 

EDS provides an overview of the elemental make-up within a sample. The results 

obtained are plotted as intensity versus x-ray wavelength, showing the various 

elements within the sample. EDS has the limitation that it is not normally quantitative, 

but may be semi-quantitative. Trace elements are also not detected, as detection limits 

of 1% or higher exists. 
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3.3.3 Energy Loss Near-Edge Fine Structure 

ELNEFS studies the ratio of valence states within transitional metal samples, in which 

various valence states within a sample may exist. It allows for the more dominant 

species to be determined. This may provide insight into the activity in metal oxide 

catalysts, depending on the more active species. 

3.3.4 Fourier Transform Infrared Spectroscopy 

FT-IR analysis is used to identify various samples using infrared light to scan test the 

samples and observe their chemical properties. It may be used as a means of quality 

control within industry, and often serves as the initial analysis of synthesised materials, 

as changes and variances in the product are clearly seen. 

 

3.3.5 Scanning Electron Microscopy and Transmission Electron 

Microscopy 

SEM is a characterisation method which provides use of electrons for image 

development, therefore resulting in black and white images of the sample studied. 

Similarly, TEM is a microscopy technique in which a beam of electrons is used. Here 

it is transmitted through the specimen, therefore forming an image. 

The main exposed facets present within inorganic particles can be determined using 

TEM, by examining the d-spacing of the as-prepared particles, which may then be 

indexed using Equation 3-2 for face-centred cubic (FCC) unit cells (Egerton 2005). 

𝑑 = 𝑎/(ℎ2 + 𝑘2 + 𝑙2)
1
2⁄       3-2 

For this calculation, it is necessary to know the lattice parameter (a), which is a 

constant for the particles worked with, and either the d-spacing value (d) or the h, k, 

and l, known as Miller indices, values which represent the orientation of the planes of 

the particles. According to this equation, larger Miller indices correspond to smaller d- 

spacing (Egerton 2005). It is also to be noted that for FCC particle orientation, the h, 

k and l values must all be positive or negative. Using this rule, the first few rings 

of polycrystalline FCC metals may therefore be indexed to Equation 3-3 (Egerton 

2005). 
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(ℎ𝑘𝑙) = (111), (200), (220), (311), (222), ….    3-3 

3.3.6 X-Ray Diffraction 

XRD is a rapid analytical technique used for the identification of an unknown crystalline 

material. It provides results which are accurate and unambiguous in terms of phase 

identification. However, the standard reference files (JCPDS cards) are required for 

inorganic compounds. 

3.3.7 Brunauer-Emmett-Teller 

BET surface area measurements are used to determine the surface area of particles. It 

is especially important in catalysis, as it may be a direct indication of the catalytic 

efficiency displayed. The samples synthesised within this study were degassed at 150°C 

for two hours and analysed using a Micromeritics TRISTAR II 3020 system. 

 

3.4 Data 

3.4.1 Cobalt hydroxide powders 

During the synthesis process, various precursor powders were formed based on the 

type of alcohol used. The different powders were also characterised by X-ray 

diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) to confirm their 

phase and to compare them to the annealed cobalt oxide particles. Their 

undisputable differences were presented in their colours. The colour of precursor 

powder was therefore recorded in order to draw correlations between the resulting 

cobalt oxide particles and their catalytic ability, i.e. which ‘colour’ produced the better 

catalyst. 

 

3.4.2 Degradation vs. time 

The rapid rate of reaction presented by the peroxymonosulphate/ AOP, specifically for 

cobalt oxide, was the spark of interest in this metal oxide research. Determining the 

rate of reaction for this process, and drawing correlations to the particle sizes, as well 

as the differences in production, was therefore important. Produced cobalt oxide 

particles were used to degrade methylene blue solutions in order to monitor the 
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catalytic effectiveness. Degradation curves were plotted versus time to evaluate which 

of the produced particles provided the most rapid degradation. 

3.4.3 Particle size vs. surface tension 

The most important change occurring in this research is the change in alcohols and 

therefore the change in surface tension of the precursor solutions. The surface 

tensions of the alcohols at room temperature (25˚C) is known and has been measured 

in literature, as well as water/alcohol solvents, except for those experiencing an 

interface. One of the problems encountered is that this information is difficult to obtain 

at elevated temperatures and pressures, emulating the environment experienced 

inside of the pressure reactor. However, since input variables were available, it 

allows for control at the input to be monitored in order to draw correlations to the output. 

Transmission electron microscopy (TEM) was used to visually examine and measure 

the particle sizes. An average of 200 particles were measured in order to determine 

the particle size distribution curves. In addition, the crystallite sizes were also 

determined from XRD analysis. This information was plotted against the surface 

tension to determine the effect it had. 

 

3.4.4 Particle shape vs. degradative quality 

Just as particle size is important in catalyst-dependent reactions, so is the particle 

shape. Literature has revealed that particles with exposed facets have enhanced 

catalytic ability. Saputra et al. (2014) has specifically noted that exposed facets play a 

significant role in peroxymonosulphate activation. The shape of the particles was 

determined in scanning electron microscopy (SEM) analysis and compared to the 

degradative quality achieved. 

 

3.4.5 Calcination temperature vs. particle size 

Due to the contradicting findings by Yang et al. (2004) and Jing et al. (2012) regarding 

the calcination temperature effect on particle size, it was important to study its effect on 

the particles produced in this study. This provided even more insight, as the particles 

after hydro/solvothermal synthesis is cobalt hydroxide which requires calcination to form 

cobalt oxide for use as a catalyst. The particle and crystallite sizes as determined by 

TEM and XRD were therefore compared with increasing calcination temperature. 
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3.4.6 Calcination temperature vs. degradative efficiency 

In addition to the above, it was important to determine the effect the calcination 

temperature has on the degradative efficiency. Common knowledge about catalysts 

says that the larger the surface area, the more active it is due to the higher density 

of active sites. However, Vinod (2010) reported an instance contradicting this when using 

cobalt catalyst in the Fischer-Tropsch process. In addition, it was important to note 

changes in crystallinity, as well as morphology and the resulting effect on degradative 

efficiency. 

 

3.5 Conclusion 

The hydro/solvothermal method used for the cobalt hydroxide synthesis and the 

calcination method used to obtain cobalt oxide has been detailed, along with the 

catalytic degradation of methylene blue in an advanced oxidation process. The 

characterisation techniques (TEM, SEM, XRD, FT-IR, EDS, ELNEFS and BET) used 

to analyse the resulting particles were described, along with the motivation for using 

these.  
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CHAPTER 4 THE EFFECT OF Cl- AND NO3
- ANIONS IN 

WATER ON Co3O4 PARTICLES 

4.1 Introduction 

In this chapter, the effect of changing the precursor salt to either cobalt chloride 

hexahydrate or cobalt nitrate hexahydrate in the absence of alcohols during 

hydrothermal synthesis of Co3O4 was evaluated. The precursor solutions are 

discussed, as is the phase of resulting precursor powders, as well as the morphology 

and particle size distributions for the resulting particles. 

4.2 Hydroxide polymorphs obtained from hydrothermal synthesis in 

pure water 

In order to determine the effect of anion only, pure water solutions had to be made up 

using the cobalt chloride hexahydrate and cobalt nitrate hexahydrate. Both resulting 

solutions were red in colour, as shown in Figure 4-1. This was expected, as both salts 

used were in the hydrous form, as red coloured salts. The anhydrous forms of cobalt 

complexes are blue in colour and obtain a reddish colour from the presence of water 

molecules alone. At the point of solution, the cobalt salts follow the reaction Equations 

4-1 and 4-2, for cobalt chloride and cobalt nitrate respectively. 

𝐶𝑜𝐶𝑙2
         
→   𝐶𝑜2+ + 2𝐶𝑙−    4-1 

𝐶𝑜(𝑁𝑂3)
         
→   𝐶𝑜2+ + (𝑁𝑂3)

2−   4-2 

 

Figure 4-1: a) Cobalt chloride hexahydrate and b) cobalt nitrate hexahydrate in pure water 

The pH of the solution was then adjusted to approximately 8.10, using an ammonium 

hydroxide solution, for precipitation of the cobalt hydroxide particles, as shown in 

a b 
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reaction Equation 4-4. After the pH was adjusted, the solutions were hydrothermally 

treated to form the cobalt hydroxide particles. 

 

𝑁𝐻4𝑂𝐻 
         
→   𝑁𝐻4

+ + 𝑂𝐻−     4-3 

 𝐶𝑜2+ + 2𝑂𝐻−
          
→   𝐶𝑜(𝑂𝐻)2    4-4 

Cobalt hydroxide, the precursor to cobalt oxide, exists as polymorphs alpha (α) and 

beta (β) cobalt hydroxide (Co(OH)2) most obviously recognised by their colours 

green/blue and pink respectively (Al-Ghoul et al., 2010). As presented in literature, the 

two phases of cobalt hydroxide vary in their structure, which ultimately lends to the 

colour they exude. The α-Co(OH)2 phase has a layered double hydroxide structure, with 

positively charged layers separated by anions and water molecules (Cheng et al., 

2014; Al-Ghoul et al., 2009; Mishra et al., 2018; Hu et al., 2009). The tetrahedral 

structure, along with the intercalated anions and water molecules, provides a large 

interlaminar spacing of >0.7 nm and disordered structure, which cause the green/blue 

colour. Figure 4-2 displays the cobalt hydroxide powders obtained for the chloride and 

nitrate precursor anions respectively. The green colour indicated that the polymorph 

synthesised hydrothermally was the α-phased Co(OH)2, which was further validated 

through XRD, showing the characteristic peak (003), as given in Figure 4-3. Therefore, 

in water only, the role of the anion on the hydroxide polymorph is negligible. 

 

 
Figure 4-2: Cobalt hydroxide particles synthesised from a) cobalt chloride hexahydrate and b) cobalt nitrate hexahydrate 

in pure water 

 

 

a b 
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Figure 4-3: XRD spectra obtained for the green α-phased cobalt hydroxide 

4.3 Cobalt oxide identification and purity 

The cobalt oxide (Co3O4) nanopowders were produced by the calcination of the 

hydrothermally synthesised cobalt hydroxide particles at 300, 400 and 500°C, 

according to the reaction in Equation 4-5. They were identified and tested for purity by 

means of electron diffraction spectroscopy (EDS), Fourier-transform infrared 

spectroscopy (FT-IR) and X-ray diffraction (XRD). 

6𝐶𝑜(𝑂𝐻)2 + 𝑂2
          
→   2𝐶𝑜3𝑂4 + 6𝐻2𝑂 (Huang et al., 2014)   4-5 

Electron diffraction spectroscopy (EDS) was used to identify the elements which were 

present in the samples synthesised. The EDS spectra for the resulting cobalt oxide 

particles are therefore shown in Figure 4-4. The peaks exhibited show the presence of 

cobalt and oxygen; the constituents of the Co3O4 analysed. It also presented peaks for 

carbon, which will always be present in this analysis, and copper for the copper grid 

used in the analysis process. Besides these peaks, additional peaks at ±2260 eV were 

evident, showing evidence of the presence of chloride ions. This was expected for the 

cobalt chloride precursor, but not for the cobalt nitrate precursor, and was therefore 

attributed to the trace amounts of chloride ions present in the cobalt nitrate salt. The major 

limitations of EDS lie in its inability to differentiate between compounds of a similar 

chemical make-up, and the fact that it is normally not quantitative. It was therefore 
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necessary for further characterisation to be done. The FT-IR spectra, as seen in Figure 

4-5, for the same particles provided major peaks at 550 and 660 cm-1, provides additional 

evidence of Co3O4, according to Chani et al. (2015). 

 

 

Figure 4-4: EDS spectra for cobalt oxide particles produced with a cobalt chloride precursor salt in pure water calcined at 

300°C 

 

Figure 4-5: FT-IR spectra for cobalt oxide particles produced with a cobalt chloride precursor salt in pure water, calcined 

at 300°C  
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samples synthesised. The XRD patterns shown in Figure 4-6 reveal a high purity level, 

as the peaks represented are in accordance with the JCPDS card 42- 1467, which 

exhibits diffraction peaks at 19°, 31.3°, 36.9°, 38.6°, 44.8°, 55.7°, 59.4° and 65.2°, 

indexed to (111), (220), (311), (222), (400), (422), (511) and (440). The unreacted 

chloride ions as noted in Figure 4-3 would have revealed an additional peak at 16° 

in accordance to JCPDS cards 29- 0466, 25- 0242, and 73- 2134. However, no 

prominent peak exists, indicating insignificant volumes in the sample.  

 

Figure 4-6: XRD spectra for the cobalt oxide particles produced with cobalt chloride hexahydrate and cobalt nitrate 

hexahydrate in pure water, calcined at 300°C 

4.4 Particle morphology 

Metal oxides are of polycrystalline nature, and their lattice structure may therefore be 

identified using selected area electron diffraction (SAED) (Egerton, 2005), in which they 

may be identified by concentric rings. Non-crystalline particles may also easily be 

identified by their SAED images, as no bright spots will be evident. Polycrystalline 

particles were evident in the cobalt chloride precursor sample, as seen in the SAED 
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Figure 4-7: SAED images for the cobalt oxide particles synthesised from a) cobalt chloride hexahydrate and b) cobalt 

nitrate hexahydrate in pure water, calcined at 300°C 

r 

This was further reiterated by the transmission electron microscopy (TEM) images of 

the cobalt oxide samples, as shown in Figure 4-8. The cobalt chloride hexahydrate 

precursor salt resulted in rod-shaped particles, approximately 30 nm in size, while the 

cobalt nitrate hexahydrate salt provided particles which were hard to identify, 

therefore resembling an amorphous nature. However, upon further investigation using 

scanning electron microscopy (SEM), it was noted that the particles synthesised from 

the nitrate precursor salt showed a tendency to agglomerate, forming larger particles 

approximately 20 µm in size, as seen in Figure 4-9. 

 

    a                 b 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-8: Transmission electron microscopy images for the cobalt oxide particles produced from a) cobalt chloride 

hexahydrate and b) cobalt nitrate hexahydrate in pure water 

 

a b 
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Figure 4-9: Scanning electron microscopy images for the cobalt oxide particles synthesised from a) cobalt chloride 

hexahydrate and b) cobalt nitrate hexahydrate in pure water 

The size distribution curves were based on the particles as presented in the TEM 

images at various magnifications, which therefore were the initial/smaller particles 

before taking agglomeration into consideration. The particle size distribution (PSD) in 

Figure 4-9 is therefore only that of the cobalt oxide particles synthesised from the cobalt 

chloride precursor. Bin limits of 10 nm were used, which provided a smooth and narrow 

PSD for the remaining samples, as displayed in Appendix D. From the PSD in Figure 

4-10, an average particle size of 30 nm was noted for the sample studied. The 

cumulative frequency of the measured particles provided the d50 particle size within 

each batch. Since the d50 particle size provides that point at which half the particles 

are accounted for, it provides an overview of the majority of the particles represented 

in a batch. Using this principle, the d50 particle size of the cobalt oxide particles 

synthesised from cobalt oxide was found to be 28,69 nm, which was in close proximity 

to the particle size estimated from the PSD. 

 

a b 
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Figure 4-10: Particle size distribution curves for the cobalt oxide particles synthesised from cobalt chloride hexahydrate 

in water 

4.5 Effect of calcination temperature 

Contradicting findings in literature led to the investigation of the effect of the 

calcination temperature on the particle characteristics. Yang et al. (2004) used milled 

cobalt precursors and reported that an increase in size was attributed to an increase in 

calcination temperature, obeying Scott’s equation, which shows a direct relation 

between temperature and particle diameter. However, Jing et al. (2012) found the 

opposite in their solvothermal synthesis of Co3O4 when calcining a CoCO3 precursor. 

Appendix A provides all the analysed cobalt oxide particles synthesised, calcined at 

300, 400 and 500°C. It was noted that the sharpness of the peaks increased with 

increasing temperature. Since the full width at half maximum (FWHM) is derived from 

these peaks, it is noted that with increasing temperature, the FWHM decreases. The 

Scherrer equation relates crystallite size to the FWHM. It was therefore used to 

confirm that the crystallinity of the particles increases with increasing temperature. 

The FWHM was extracted from the major peak presented within the XRD spectra, at 

36.9°. Table 4-1 presents the crystallite sizes calculated from the Scherrer equation, 

as shown in Equation 4-6, relating them to the FWHM as well as the calcination 

temperature. The results show that with an increase in calcination temperature, there 

is a definite increase in crystallite size, in agreement with Yang et al. (2004). 
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𝜏 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
      4-6 

 

Where: 

  𝜏 is the average size of the ordered crystallite, which may be smaller/equal to the grain size. 

 K is the dimensionless shape factor, which varies around 0.9, depending on shape. 

 λ is the X-ray wavelength. 

  𝛽 is the Full Width at Half Maximum, in radians. 

  𝜃 is the Bragg angle. 

Table 4-1: Crystallite sizes for the synthesised cobalt oxide particles synthesised in pure water, calcined at 300, 400 and 

500°C 

 

Cobalt oxide sample Crystallite sizes, nm 

300°C 400°C 500°C 

Cobalt chloride precursor 7.09 28.87 34.89 

Cobalt nitrate precursor 17.08 19.47 27.91 
 

4.6 Conclusion 

Cobalt oxide nanoparticles, with a high level of purity, were produced hydrothermally, 

using cobalt chloride hexahydrate and cobalt nitrate hexahydrate precursor salts in 

pure water. Of the cobalt hydroxide polymorphs encountered in literature, only α-

cobalt hydroxide was encountered during synthesis, for both anions explored. The 

cobalt chloride precursor salt provided rod- shaped particles approximately 30 nm in 

length measured from the TEM images. This differed substantially from the cobalt 

nitrate precursor salt, which according to the SAED images, and confirmed from the 

TEM images, revealed an amorphous nature, as the particle size and shape were hard 

to identify. Upon further investigation it was noted that agglomeration had taken place, 

as the SEM images showed larger agglomerates approximately 20 µm in size. From 

these results, it is important to note that one change, such as altering the precursor 

salt, can completely alter the cobalt oxide nanoparticles obtained, even though the 

cobalt hydroxide phase remains unchanged. 

https://en.wikipedia.org/wiki/X-ray
https://en.wikipedia.org/wiki/Wavelength
https://en.wikipedia.org/wiki/Bragg_diffraction
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CHAPTER 5 THE EFFECT OF Cl- AND NO3
- ANIONS IN 

ALCOHOLS ON Co3O4 PARTICLES 

5.1 Introduction 

This chapter presents the effects various alcohols at 100% and 50% concentrations 

have on the Co3O4 particles formed from the precursor salts, cobalt chloride 

hexahydrate and cobalt nitrate hexahydrate, during hydro/solvothermal synthesis. It 

highlights the changes experienced in the precursor solutions, resulting hydroxide 

precursor powders, and the size and shape differences of the final cobalt oxide in 

comparison to the pure water batches. 

 

5.2 Hydroxide polymorphs obtained from hydro/solvothermal 

synthesis 

The hydrothermal synthesis explored in Chapter 4 was converted to hydro/solvothermal 

synthesis with the replacement of pure water with various alcohols at 100% and 50% 

concentrations. Table 5-1 shows the cobalt chloride hexahydrate and cobalt nitrate 

hexahydrate salts dissolved in 100% and 50% alcohol solutions. Anhydrous cobalt salts 

without the presence of water are blue in colour. Cobalt chloride hexahydrate and cobalt 

nitrate hexahydrate therefore naturally obtains its reddish colour from the presence 

of water molecules. It was therefore easy to monitor the exhaustion of water with the 

increase in alcohol, as the solution should become blue. However, this was found for 

the cobalt chloride precursor salts only, and not for the cobalt nitrate precursor salts, as 

displayed in Table 5-1.  

 

Table 5-1 also reveals that the water present within the sample was only exhausted for 

the cobalt chloride hexahydrate precursor salt solutions, as the addition of 100% 

alcohol resulted in a blue solution. The cobalt nitrate hexahydrate precursors 

presented for each alcohol were expected to perform the same as the chloride 

anion. However, a noticeable difference in the colour of the precursor solutions used 

occurred at both 100% alcohol solutions and 50% alcohol/water solutions, provided a 

reddish colour, indicating that the cobalt complex orientation remains unchanged. The 
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100% alcohol samples do, however, display a darker shade of red. It is worth noting that 

the molarity was kept the same for both anions used. 

Table 5-1: Cobalt chloride hexahydrate and cobalt nitrate hexahydrate in a) 100% and b) 50% alcohol/water solutions 

respectively 

 Cobalt chloride hexahydrate Cobalt nitrate hexahydrate 

Methanol 

  

Ethanol 

  

Propanol 

  

Butanol 

  

Octanol 

 

 

 
 

During the production of cobalt oxide using cobalt chloride hexahydrate in 100% 
 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

b 

b 
b 

b b 

b 

b 

b 

b b 
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octanol, the precipitation step occurred much more rapidly than the other alcohols. 

While correcting the pH, the particles (resembling β-Co(OH)2) began to cake at the 

bottom of the beaker, as shown in Figure 5-1. At the prescribed pH (8.10), the stirrer 

was stopped and the clear liquid immediately separated from the precipitates (without 

centrifuging), which formed a porridge-like layer at the bottom of the beaker. During 

the addition of the ammonia solution, water was added back to the system with the 

precipitating agent. The separation of the particles and consequent caking may 

therefore be attributed to the immiscibility of octanol in water. Similar, though less 

clear, findings occurred when using 100% butanol as the solvent, as butanol is only 

partly miscible with water, as seen in Table 5-1. 

 

 

Figure 5-1: 100% octanol precursor after pH correction 

A relationship may also be drawn between the presence of water and the cobalt 

hydroxide phase synthesised. As presented in literature, the two phases of cobalt 

hydroxide vary in their structure, which ultimately affects the colour they exude. The 

α-Co(OH)2 phase has a layered double hydroxide structure, with positively charged 

layers separated by anions and water molecules (Cheng et al., 2014; Al-Ghoul et al., 

2009; Mishra et al., 2018; Hu et al., 2009). The tetrahedral structure, along with the 

intercalated anions and water molecules, providing a large interlaminar spacing of 

>0.7 nm and disordered structure, are responsible for the green/blue colour. The 

octahedral symmetry and perfectly ordered stacking along the C-axis, with interlaminar 

spacing of 0.46 nm, exhibited by the β-phase is responsible for its pink colour (Al- 

Ghoul et al., 2009). This is in line with Petkova and Nedkov (2013) who concluded that 

the optical differences lie in spectral positioning of the 3d electrons present in the 

cobalt complexes formed: both octahedral and tetrahedral. 
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Some of the cobalt hydroxide polymorphs synthesised are provided in Figure 5-2. 

Interestingly, when using cobalt chloride hexahydrate as a precursor salt in 100% 

alcohols, pink β-Co(OH)2 powders were produced. The remainder of the cobalt 

chloride hexahydrate and cobalt nitrate hexahydrate salts mostly produced green α- 

Co(OH)2 powders, with the exception of cobalt chloride hexahydrate in 50% ethanol 

and 50% butanol, which produced brown powders. However, the formation of these 

phases, as well as the transformation between one another, are still not well 

understood in literature, and a lot of the focus has been placed on synthesising them 

in order to gain better understanding of the chemistry. It has also been reported that 

α-Co(OH)2 is thermodynamically metastable and may therefore rapidly transform to β-

Co(OH)2 during synthesis or in contact with a strong alkali (Cheng et al., 2014). From 

this, one may deduce that the 50% ethanol and 50% butanol samples shown in Figure 

5-2 contain both α-Co(OH)2 and transformed β-Co(OH)2 mixing their pink and green 

colours to form the brown powders, but this was not confirmed by XRD, which only 

indicated the presence of the β-phase.  
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Figure 5-2: Cobalt hydroxide precursors resulting from A) cobalt chloride hexahydrate in 100% alcohols (blue in colour), B) cobalt 

nitrate in 100% alcohol and 50% alcohol/water mixtures for both precursor salts, C) cobalt chloride hexahydrate in 50% ethanol and 

50% butanol respectively and D) cobalt nitrate hexahydrate in 100% methanol and 100% octanol respectively 

   

A 

B 

C D 
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5.3 Cobalt oxide identification and purity 

The identification and purity of the synthesised cobalt oxide particles was determined 

using EDS, FT-IR and XRD analysis. As in Chapter 4, EDS was used to identify the 

elements which were present in the samples synthesised. The results are found in 

Figures 5-3 to 5-6. Figures 5-3 and 5-4 represent the EDS spectra for the cobalt oxide 

particles resulting from cobalt chloride hexahydrate in 100% and 50% alcohol 

respectively, revealing similar results to that of the water batches. Again, the peaks 

exhibited provided evidence of cobalt and oxygen with the addition of carbon and 

copper, as well as unreacted chloride ions shown at ±2260 eV. Figures 5-5 and 5-6 

represent the EDS spectra for the cobalt oxide particles resulting from cobalt nitrate 

hexahydrate in 100% and 50% alcohol respectively. While Figure 5-5 presents no 

impurity formed, Figure 5-6 reveals an impurity between 2500 and 2700 eV, which was 

attributed to the presence of sulphur. 

 

Figure 5-3: EDS spectra for the cobalt oxide synthesised from cobalt chloride hexahydrate in 100% alcohol solvents, 

calcined at 300°C 
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Figure 5-4: EDS spectra for the cobalt oxide synthesised from cobalt chloride hexahydrate in 50% alcohol/water solvents, 

calcined at 300°C 

 

Figure 5-5: EDS spectra for the cobalt oxide synthesised from cobalt nitrate hexahydrate in 100% alcohol solvents, calcined 

at 300°C 
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Figure 5-6: EDS spectra for the cobalt oxide synthesised from cobalt nitrate hexahydrate in 50% alcohol solvents, calcined 

at 300°C 

The FT-IR spectra, shown in Figures 5-7 to 5-10, provided major peaks at 550 and 

660 cm-1 for all the synthesised particles, which provides additional evidence of Co3O4,  

according to Chani et al. (2015), with additional peaks at 1600 cm-1 and 3460 cm-1, 

attributed to the broad peak of OH stretching bonds in water, for the cobalt oxide 

particles synthesised from cobalt chloride hexahydrate in 100% and 50% alcohols 

respectively. Figures 5-9 and 5-10 present the FT-IR spectra for the cobalt oxide 

particles synthesised from cobalt nitrate hexahydrate in 100% and 50% alcohols 

respectively. An additional peak was noted for the 50% alcohol batches at 1100 cm-1, 

for the propanol, butanol and octanol, which was therefore attributed to the presence 

of sulphur, as noted in the EDS spectra. 
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Figure 5-7: FT-IR spectra for the cobalt oxide particles synthesised from cobalt chloride hexahydrate precursor salt in 100% 

alcohol solvents, calcined at 300°C 

 
Figure 5-8: FT-IR spectra for the cobalt oxide particles synthesised from cobalt chloride hexahydrate precursor salt in 50% 

alcohol solvents, calcined at 300°C 
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Figure 5-9: FT-IR spectra for the cobalt oxide particles synthesised from cobalt nitrate hexahydrate precursor salt in 

100% alcohol solvents, calcined at 300°C 

 
Figure 5-10: FT-IR spectra for the cobalt oxide particles synthesised from cobalt nitrate hexahydrate precursor salt in 50% 

alcohol solvents, calcined at 300°C 

Final identification and purity analysis was achieved by XRD analysis, as shown in 

Figures 5-11 to 5-14. The XRD spectra shown in Figures 5-11 and 5-12 show the cobalt 

oxide particles synthesised from cobalt chloride hexahydrate in 100% and 50% 
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alcohol solvents respectively. The chloride precursor samples in Figure 5-11, 

produced in 100% alcohol solvents, all provided pink β-Co(OH)2 precursors. Although 

optically and structurally different precursors were produced, both cases provided 

similar cobalt oxide results in terms of diffraction and purity, when comparing Figures 

5-11 and 5-12. 

 
As with Figure 4-11, the same major peaks are exhibited, showing clear evidence of 

developed Co3O4. However, besides a peak at 16°, additional peaks exist in the 100% 

butanol and 100% octanol samples. These peaks exist at 17.8, 18.3, 19.3 and 20.7, 

showing traces of unreacted chlorides in CoCl2•6H2O (the precursor salt used), 

CoCl2•2H2O and Co2(OH)3Cl, as indicated from the JCPDS cards 29- 0466, 25- 0242, 

and 73- 2134. 

 

The XRD spectra shown in Figures 5-13 and 5-14 represent the particles synthesised 

from cobalt nitrate hexahydrate in 100% and 50% alcohol solvents respectively. Most 

of the peaks represented are in accordance with the JCPDS card 42- 1467, with the 

addition of a peak at 59,5° for all the samples. From the graphs it is noted that with 

the increase in alkyl carbon chain length came a decrease in crystallinity of the 

particles synthesised. The 50% propanol to 50% octanol batches barely provided any 

peaks, showing the amorphous state of the samples.  
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Figure 5-11: XRD spectra for the cobalt oxide particles synthesised from cobalt chloride hexahydrate precursor salt in 

100% alcohol solvents, calcined at 300°C 

 

Figure 5-12: XRD spectra for the cobalt oxide particles synthesised from cobalt chloride hexahydrate precursor salt in 50% 

alcohol solvents, calcined at 300°C 
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Figure 5-13: XRD spectra for the cobalt oxide particles synthesised from cobalt nitrate hexahydrate precursor salt in 

100% alcohol solvents, calcined at 300°C

 

Figure 5-14: XRD spectra for the cobalt oxide particles synthesised from cobalt nitrate hexahydrate precursor salt in 

50% alcohol/water solutions, calcined at 300°C 
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5.4 Particle morphology 

The effect of varying alcohols in 100% and 50% concentrations on particle morphology 

was studied using transmission electron microscopy (TEM), scanning electron 

microscopy (SEM), selected area electron diffraction (SAED) and XRD (for crystallite 

sizes). According to He et al. (2004) the nucleation and growth of nanoparticles may 

be controlled using metal alkoxides in their synthesis by adjusting the reaction 

conditions, with the primary control occurring in the growth stage. This may occur by 

either aggregation, which leads to polycrystalline solids, or coarsening (He et al., 2004). 

As previously noted, metal oxides are of polycrystalline nature, a n d  may therefore 

be identified by concentric rings in SAED. 

 
Polycrystalline particles were evident in all the cobalt oxide samples synthesised in 

alcohols at either 100% or 50% concentrations, as seen in the SAED images presented 

in Appendix E. The SAED patterns provided continuous/more frequent bright spots 

when finer grains were present within the sample. Vague and undefined areas 

presented amorphous material, while bright spots show larger grains. From the 

images, it may be noted that the bright spots within the concentric rings are more 

frequent for the samples containing water molecules when synthesised with a cobalt 

chloride precursor, creating nearly complete circles, whereas the samples synthesised 

using 100% alcohol solvents show less frequent bright spots. This gives reference to 

the grain sizes within the sample studied, showing that finer particles were synthesised 

for the samples containing water. The SAED images showing cobalt oxide particles 

produced in methanol at 100% and 50% are presented in Table 5-2. Although this was 

evident in all the cobalt chloride samples, the trend was only shown for the cobalt 

nitrate precursor in methanol, while the rest of the alcohols revealed the opposite, as 

seen in Appendix E. Appendix E also further emphasised the amorphous state of the 

cobalt oxide particles synthesised from cobalt nitrate precursor in 50% propanol; 50% 

butanol and 50% octanol batches, as hazy areas were noted in their SAED images, 

with few bright spots showing larger developed crystals. The TEM image provided in 

Table 5-3 further supports this, as unclear particles were formed. 
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Table 5-2: SAED images for the cobalt oxide particles synthesised in methanol and ethanol at 50% and 100% alcohol/water 

ratios respectively, calcined at 300°C 
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Distinct morphology changes occurred for the change in cobalt precursor salt in 

alcohols. Using a cobalt chloride hexahydrate precursor salt in alcohols at 100% and 

50% provided a very distinct rhombic shape for most of the particles, apart from the 

hexagonal skeleton shapes, which were noted in the 50% methanol batch, which 

mainly contained rhombic-shaped particles orientated in hexagonal skeletons. These 

hexagonal skeletons were attached at the ends of longitudinal rhombic particles, as 

shown in Figure 5-15. Particles similar in shape were also reported Kim and Huh 

(2011). Cobalt nitrate hexahydrate precursor salt in the cobalt oxide synthesis 
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produced mostly nanorods shapes, except for the instances in which an amorphous 

state was observed. The particles synthesized by changing the anion to cobalt nitrate 

hexahydrate also showed a tendency to agglomerate forming larger particles 

approximately 40 µm in size with interesting shapes most obviously noticed at higher 

magnification of the TEM images as well as the SEM images provided in Table 5-3. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 5-15: Transmission electron microscopy images for the cobalt oxide particles produced from cobalt chloride 

hexahydrate precursor salt in a) 100% methanol, b) 50% methanol as well as the c) scanning electron microscopy image of 

hierarchical hexagonal skeleton of Co3O4 produced by Kim and Huh (2011) 
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Table 5-3: Transmission Electron Microscopy images at 50 nm and 0.2 m, and Scanning Electron Microscopy images for 

the selected cobalt oxide particles synthesised from cobalt nitrate hexahydrate, showing various particle morphologies 

Sample TEM magnification SEM 

50 nm 0.2 µm 

100% 

Ethanol 

  

 

50% 

Ethanol 

  

 

100% 

Butanol 
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50% 

Butanol 

  

 

 

The rhombic-shaped particles, as shown by the TEM images in Table 5-4, were all 

synthesised from cobalt chloride hexahydrate in an alcohol medium, at either 100% 

concentration or 50% concentration, while the cobalt nitrate particles were made up of 

nanorods, agglomerated into larger particles. The particle size distribution curves 

presented in Appendix D were developed from the data collected in the TEM images, 

at various magnifications, as 200 particles were individually measured using Image J 

software. These curves were based on the diagonal length of rhombic shapes and 

length of the rod shapes, as demonstrated in Table 5-4, before taking 

agglomeration into consideration. Originally, bin limits of 25 nm were used, which 

allowed for an average and smooth representation of the particle sizes presented in 

each sample. However, because most variances occurred in the range 25 to 60 nm, 

the graphs presented all assumed a peak at ±50 nm and therefore an inaccurate 

representation of the particles was presented. By reducing the bin limits to 10 nm a 

more accurate size distribution was obtained, but the smooth curve was lost in the 

process. From the general appearance of the size distribution curves, it is noticed that 

with increasing carbon chain on the alcohol chain, the wider the size distribution. The 

widest size distribution was for the particles synthesised from cobalt chloride 

hexahydrate in 50% octanol, with the narrowest size distribution occurring in the 

particles synthesised in propanol. These curves were not available for the cobalt 

nitrate precursor, due to their semi-amorphous nature. The PSD taken from the cobalt 

nitrate precursor salt shows that with increased water content, wider size 

distributions occur. However, no trend was noted for the increase in alkyl chain length. 

Generally, these particles were smaller than the average particles synthesised using 
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the chloride base salt, but not taking agglomerates into consideration. 

Table 5-4: Particle size distribution curves as deduced from transmission electron microscopy images for the cobalt oxide 

particles synthesised from cobalt chloride hexahydrate and cobalt nitrate hexahydrate in various alcohols at 100% or 50% 

concentrations 
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The cumulative frequency of the measured particles provided the d50 particle size 

within each batch. Since the d50 particle size provides that point at which half the 

particles are accounted for, it provides an overview of the majority of the particles 

represented in a batch. The d50 particle sizes are dependent on the particle size 

distribution curves, and therefore are not shown for particles of a semi-amorphous 

particle composition. The d50 particle sizes of the polycrystalline particles are 

presented in Table 5-5. 

 
Table 5-5: d50 particle sizes for the cobalt oxide particles, adapted from the particle size distribution curves 

 

 Solvent 100% alcohol 50% alcohol 
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Methanol 46.79 nm 41.76 nm 

Ethanol 56 nm 46.07 nm 

Propanol 66.5 nm 33.96 nm 

Butanol 67.14 nm 54.67 nm 

Octanol 62.27 nm 22 nm 
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Methanol 19.19 nm 22.67 nm 

Ethanol 24.18 nm 23.23 nm 

Propanol 34.61 nm 
Semi-amorphous 

Butanol 37.03 nm 

Octanol 28.65 nm 
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In comparing the crystallite sizes as well as the d50 particle sizes of the resulting 

particles, it may be noted that there is a decrease in both the crystallite size and d50 

particle size for each of the alcohols used, when decreasing the alcohol concentration. 

This is the general trend, with the exception of the particles synthesised with cobalt 

nitrate hexahydrate in methanol. This is a very interesting finding, as the surface 

tension increases with increasing water content, i.e. decreasing alcohol concentration. 

This is visually expressed in Figure 5-16 below. 

 
The effect of temperature on the crystallite sizes of the various particles were calculated 

using the Scherrer equation, which relates the crystallite size to the full width at half 

maximum (FWHM) within the diffraction pattern, and the results are displayed in 

Table 5-6. The results obtained mirror those of the pure water batches, as the crystallite 

size generally increased with increasing calcination temperature, with the exception of 

the cobalt oxide particles synthesised from cobalt nitrate hexahydrate* in 50% ethanol 

and 50% octanol, which revealed a decrease from 400 to 500°C. It may therefore be 

noted that small changes do affect the outcome in nanocrystal synthesis, and 

although variances existed in literature on the effect of calcination temperature on 

the size of nanoparticles, it may vary with regard to type as well as process. Using 

the synthesis method described within this study, however, provides an increase in 

crystallite size with the increase in calcination temperature. 

 

Figure 5-16: Crystallite size for the synthesised cobalt oxide particles calcined at 300°C versus alcohol/water solvent 

surface tension at 25°C 
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Table 5-6: Crystallite sizes for the synthesised cobalt oxide particles calcined at 300, 400 and 500°C 

 
Cobalt oxide sample 

Crystallite sizes from FWHM, nm 

300°C 400°C 500°C 
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50% Methanol 7.98 31.00 34.88 

50% Ethanol 8.55 27.91 32.2 

50% Propanol 8.38 22.03 31.01 

50% Butanol 8.05 27.01 32.20 

50% Octanol 10.74 27.01 33.49 

100% Methanol 8.72 31.01 36.40 

100% Ethanol 9.74 29.90 32.20 

100% Propanol 8.14 29.90 32.20 

100% Butanol 8.91 31.01 32.21 

100% Octanol 29.90 28.87 34.88 
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50% Methanol 22.03 31.01 34.88 

50% Ethanol 19.02 26.16 19.93 

50% Propanol 8.64 20.93 26.17 

50% Butanol 11.01 11.63 18.21 

50% Octanol 11.31 13.08 9.73 

100% Methanol 19.94 22.03 24.62 

100% Ethanol 17.81 18.20 27.00 

100% Propanol 19.03 23.26 27.00 

100% Butanol 18.60 20.42 26.16 

100% Octanol 19.94 25.37 32.20 
 

5.5 Conclusion 

This chapter focused on the effect of alcohols in 100% and 50% concentrations during 

hydro/solvothermal synthesis on cobalt oxide. The precursor solutions revealed 

that the choice of anion has an effect on the precursor complex solution. When using 

cobalt chloride hexahydrate in 100% alcohols, blue precursor solutions occurred. 

The remainder of the precursor solutions, i.e. cobalt chloride hexahydrate in 50% 

alcohol as well as cobalt nitrate hexahydrate in 100% and 50% alcohol, provided 

precursor solutions which were red in colour. The hydro/solvothermal treatment of 

these precursor solutions resulted in both α- and β- cobalt hydroxide powders which 

were recognised by their colours green/blue and pink respectively. A direct relationship 

between the precursor solution colour and cobalt hydroxide polymorph was therefore 

determined. The blue precursor solutions resulted in pink β-cobalt hydroxide, while 

the red precursor solutions provided green α- cobalt hydroxide. It was noted that the 
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α-phase is thermodynamically metastable, allowing it to rapidly transform to the β-

phase depending on its environment. This was found for the cobalt hydroxide formed 

from cobalt chloride hexahydrate in 50% ethanol and 50% butanol, which was initially 

the α-phase. 

 
Upon calcination, the cobalt oxide particles obtained were characterised using EDS, 

FT-IR and XRD for identification and purity. The results revealed that cobalt oxide was 

successfully synthesized with a common impurity for the cobalt chloride hexahydrate 

precursor samples. These included samples containing chloride ions for the partial 

conversion of the cobalt chloride salt. The cobalt nitrate hexahydrate revealed cobalt 

oxide was formed with an impurity of sulphur in the 50% propanol, butanol and octanol 

batches. Furthermore, the XRD spectra of these samples revealed no specific peaks, 

showing its lack of crystallinity and amorphous nature. This was further noted in the 

TEM and SAED images discussed.  

 

The morphology of the particles was generally affected by the change in anion rather 

than that of the change in alcohol. However, the change in alcohol concentration, i.e. 

the presence of water, played a role in the polymorph formation, and consequently 

the cobalt oxide particles formed. This, however, did not change the shape of the 

particles encountered, as rhombic shaped particles were produced from the cobalt 

chloride hexahydrate precursor in 100% as well as in 50% alcohols. Similarly, rod like 

particles were synthesized from cobalt nitrate hexahydrate in 100% and 50% alcohols. 

Three of the samples were semi-amorphous while the SEM images provided insight 

into the formation of larger agglomerates. Generally, it was found that the d50 particle 

size increases with carbon on the alkyl chain for the particles calcined at 300°C, 

and decreases with a decrease in alcohol concentration. The particle size distribution 

curves revealed that the cobalt nitrate hexahydrate precursor salt resulted in 

monodispersed particles, while the cobalt chloride precursor had wider size 

distributions. 
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CHAPTER 6 EVALUATION OF THE Co3O4 PARTICLES SYNTHESISED 

DURING COLOUR DEGRADATION 

 

The objective of this chapter was to evaluate the cobalt oxide particles synthesised in 

Chapters 4 and 5, specifically as catalysts in colour degradation. It entails the catalytic 

degradation of methylene blue, using the as-prepared cobalt oxide particles in 

combination with peroxymonosulphate. The catalytic efficiency of the cobalt oxide 

synthesised from cobalt chloride hexahydrate and cobalt nitrate hexahydrate 

precursors in pure water, as well as 100% and 50% alcohols, were shown, and the 

most active catalyst determined. The advanced oxidation process in place was then 

optimised for the most active catalyst. This included Co3+ to Co2+ ratio of the best 

performing catalyst. The optimisation studies revealed an aptitude for further 

enhancement, specifically for the application in actual textile wastewater treatment, as 

well as scrutiny of the current methods used. 

 

6.1 Colour degradation studies 

 
An inhouse developed reactor, was used to treat a 10 mg/L methylene blue dye in 

water for this study. The reactor makes use of an AOP, using cobalt oxide as its 

catalyst, and Oxone® (peroxymonosulphate) as its active ingredient. As the cobalt oxide 

nanoparticles are immobilised in its system, it provides a product with practically no 

cobalt, besides instances where leaching occurs. This approach is beneficial to the 

reuse of the treated water, as it eliminates difficulties associated with the removal of the 

catalyst from the treated effluent. 

 

The produced particles were inserted into the reactor for the purpose of testing their 

catalytic ability. They were used in conjunction with Oxone in order to generate 

sulphate radicals. The sulphate radicals were responsible for the mineralisation of 

the dye particles, resulting in colour removal of the wastewater. 

 
The particles synthesised and calcined at the various temperatures were tested in 

order to study the effect of calcination temperature on the particle’s catalytic ability. A 

blank test was also performed, without catalyst and Oxone, in order to accurately 
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study the effects the components had. 

 

Figure 6-1: Degradation curves for the methylene blue solutions degraded using the cobalt oxide catalysts synthesised from 

cobalt chloride hexahydrate in 100% alcohol solutions, calcined at 300°C 

 
Figure 6-2: Degradation curves for the methylene blue solutions degraded using the cobalt oxide catalysts synthesised 

from cobalt chloride hexahydrate in 50% alcohol/water solutions as well as 100% water, calcined at 300°C 

The degradation curves presented in Figures 6-1 and 6-2 show the treatment of a 500 

mL sample of methylene blue over a period of 10 minutes, using the cobalt oxide 

particles synthesised from cobalt chloride hexahydrate in 100% and 50% alcohols 

respectively, as well as pure water. An initial sample was taken, along with 4 mL 

aliquots every 2 minutes at the exit of the reactor for analysis. From the results, it may 
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be seen that the particles produced from 100% alcohols have a higher degradation rate 

than that of the particles synthesised in the 50% alcohol solutions. This was evident in 

all cases, as displayed in Appendix F, as the 100% batches provided instant 

degradation, with the exception of 100% propanol which became increasingly inactive 

after 4 minutes, while the 50% batches, along with the water batch, provided 

degradation initially, but rapidly became less active with time. This is evidently seen 

in the products they produce; i.e. while the 100% batches produced treated methylene 

blue solution with no visible colour, the 50% batches provided a product which 

remained blue at the 10-minute mark, as displayed in Figure 6-3. It should be noted 

that all the treated methylene samples became visibly clear within a standing time 

of 30 minutes, as shown in Figure 6-4. From the degradation curves, it is deduced 

that the most rapid degradation rate was found when using the cobalt oxide particles 

synthesised in 100% methanol, while the slowest degradation rate was found for the 

cobalt oxide particles synthesised in 50% ethanol. Interestingly, the water and 50% 

alcohol cobalt oxide particles resulted from α-Co(OH)2, while the 100% alcohol 

particles from β-Co(OH)2. From Figure 6-4, it is evident that all the particles 

produced from cobalt chloride hexahydrate are indeed active, though some of the 

catalysts require a residence time within a holding vessel to become fully transparent. 

 

   

Figure 6-3: Methylene blue samples a) before treatment, b) after treatment using the cobalt oxide catalysts synthesised 

in 100% alcohol solvents and c) after treatment using the cobalt oxide catalysts synthesised in 50% alcohol/water solutions, 

calcined at 300°C 
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Figure 6-4: Treated methylene blue samples after a 30-minute standing time 

As with the chloride precursor samples, the particles synthesised from cobalt nitrate 

hexahydrate in 100% and 50% alcohols, as well as pure water, were inserted into the 

in-house developed reactor for the purpose of testing their catalytic ability. They too 

were used in conjunction with Oxone® (peroxymonosulphate) to treat a methylene blue 

solution of the same concentration. Figures 6-5 and 6-6 present the degradation data 

received when testing the cobalt oxide synthesised in 100% and 50% alcohol 

respectively. It is noted that within 10 minutes of treating the methylene blue solutions, 

less than 10% degradation occurred for all the samples. The cobalt oxide particles 

that were synthesised in 50% alcohol performed at better degradation rates, with 

the lowest degradation being 4.2% for the pure water sample. The highest degradation 

was found to be 91.3% for the cobalt oxide particles synthesised in a 50% propanol 

sample. This was highly unexpected, taking the results obtained from the cobalt 

oxide particles synthesised from the cobalt chloride precursor into consideration, as 

the degradation results had been inverted. The cobalt chloride precursor provided 

particles which performed better when synthesised in 100% alcohol, while the cobalt 

nitrate precursor provided particles which performed better when synthesised in 50% 

alcohol. However, taking all factors into account, it is noted that the three catalysts 

formed from cobalt nitrate hexahydrate producing the highest degradation rates, 

namely 50% propanol, 50% butanol and 50% octanol batches, all had an impurity of 

sulphur, as noted in their EDS results. These were the only samples with this specific 

impurity, and this may therefore have altered the results in the formation of additional 

sulphate radicals, thus aiding the degradation process.  
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Figure 6-5: Degradation curves for the catalytic degradation of methylene blue using the cobalt oxide synthesised from 

cobalt nitrate hexahydrate in 100% alcohol solvents, calcined at 300°C 

 
Figure 6-6: Degradation curves for the catalytic degradation of methylene blue using the cobalt oxide synthesised from 

cobalt nitrate hexahydrate in 50% alcohol/water solutions and 100% water, calcined at 300°C 

As cobalt oxide is already commercially available in various quantities for laboratory 

work, it was necessary for the viability of the synthesised cobalt oxide particles as a 

catalyst to be tested. Commercially produced Sigma-Aldrich cobalt oxide samples; one 
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µm, were selected to comparatively assess the cobalt oxide particles synthesised. 

Using the same degradation method, methylene blue was treated, and the results 

displayed in Figure 6-7. The Sigma-Aldrich sample at 50 nm initially provided a 

more rapid degradation than the 10 µm sample, as expected due to the high exposed 

surface area. However, both the Sigma-Aldrich samples provided a degradation quality 

similar to the cobalt oxide synthesised from cobalt chloride precursor in 50% and cobalt 

nitrate precursor in 100% butanol. The aforementioned in-house synthesised particles 

provided the worst degradation of the synthesised cobalt oxide particles, while the 

cobalt chloride and cobalt nitrate precursors in 100% methanol and 50% propanol 

respectively, far exceeded the degradation quality of the commercially available cobalt 

oxide, providing up to 85% more degradation. 

 

 

 
Figure 6-7: Degradation curves for the methylene blue solutions degraded using commercially produced Sigma-Aldrich 

cobalt oxide samples, as well as the two synthesised cobalt oxide samples resembling the most rapid and slowest 

degradation rates 

Figure 6-8 provides the degradation quality at 2 minutes from the point of reaction 

within the in-house developed reactor, in order to monitor the effectiveness of each 

produced cobalt oxide type as a rapid catalyst. The figure confirms that the particles 

synthesised from cobalt chloride hexahydrate in 100% alcohol are more active than 

the particles synthesised in 50% alcohol within the first 2 minutes. Additionally, the 

degradation is plotted against the d50 particle size. From it, it may be noted that there is 
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a slight trend; as the particle size increases, the degradation rate increases. This is 

contrary to the notion that with an increase in surface area, an increase in activity occurs. 

Additionally, it is noted that the degradation quality for the cobalt oxide particles 

synthesised from cobalt nitrate hexahydrate barely changes for the particles 

represented (excluding semi-amorphous particles), showing degradation of 

approximately 20%. In the graph it may be noted that the Sigma-Aldrich particles 

previously discussed provided better degradation than the synthesised particles. It may 

also be noted that the particle sizes for both the cobalt oxide synthesised from cobalt 

chloride hexahydrate and from cobalt nitrate hexahydrate, fall within the range 20 to 

70 nm. 

 
When taking the crystallite sizes into account, as seen in Figure 6-9, it may be noted 

that the crystallite sizes for the particles synthesised from the cobalt chloride precursor 

are generally smaller than that of the particles synthesised from the cobalt nitrate 

precursor. The crystallite sizes vary from approximately 8 nm to 10 nm, taking the 

particles synthesised from the cobalt chloride precursor in alcohols into consideration, 

while the particles synthesised from the cobalt nitrate precursor provided crystallite size 

variance between approximately 9 and 23 nm. Additionally, it may be noted that for 

the cobalt chloride precursor, the degradation quality increased with increasing 

crystallite size, while for the cobalt nitrate precursor the degradation quality decreased 

with increasing crystallite size. It must, however, be noted that the crystallite ranges 

between approximately 8.5 and 11 nm provided the best degradation for both cases. 

 
The surface dependency of catalytic reactions places a demand on the active surface 

area exhibited within a sample. The contradictory findings when taking the particle 

sizes into account necessitated the study of the active surface area on the synthesised 

particles. BET analysis was done on selected cobalt oxide particles in order to gauge 

the effect on the degradation rate. The catalysts which provided the fastest and slowest 

degradation are indicated in Figure 6-10. From the cobalt chloride precursor results, it 

is noted that there is not much difference between the BET surface areas achieved, 

while the cobalt nitrate precursor results revealed that faster degradation rates were 

found for particles with lower BET surface areas, contrary to the notion that the 

increase in surface area leads to a concomitant increase in catalytic activity. 
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Figure 6-8: The degradation quality at 2 minutes vs. d50 particle size for the cobalt oxide particles synthesised from a) cobalt chloride hexahydrate and b) cobalt nitrate hexahydrate in 100% 

and 50% alcohols, calcined at 300°C, as well as the commercially available 50 nm cobalt oxide particles 

  

Figure 6-9: The degradation quality at 2 minutes vs. crystallite size for the cobalt oxide particles synthesised from a) cobalt chloride hexahydrate and b) cobalt nitrate hexahydrate in 100% 

and 50% alcohols, calcined at 300°C, as well as the commercially available 50 nm cobalt oxide particles 
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Figure 6-10: The degradation quality at 2 minutes vs. BET surface area for the cobalt oxide particles synthesised from A) cobalt chloride hexahydrate and B) cobalt nitrate hexahydrate in 

100% and 50% alcohols, calcined at 300°C, as well as the commercially available 50 nm cobalt oxide particles 
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The particles were further analysed by determining the interlamellar d-spacing. This 

was accurately achieved using the TEM images received and applying GATAN digital 

micrograph software. This allowed for the main exposed facets of the samples to be 

determined. The d-spacing for all the samples were determined in the same way and 

indexed using Equation 3-1. The majority of the particles synthesised from cobalt 

chloride hexahydrate exhibited that the main exposed facet of the particles is [111] of 

nature, with the exception of the particles synthesised in 100% octanol, which provided 

particles with the main exposed facet of [311], as shown in Table 6-1. In the rapid and 

large-scale synthesis of cobalt oxide particles studied by Chowdhury et al. (2015), 

octahedral particles enclosed by [111] facets were produced and tested in the 

degradation of methylene orange. One of the reasons for the rapid degradation was 

attributed to the [111] exposed facets, as water molecules were dissociated at its 

surface, forming Co-OH complexes which were responsible for peroxymonosulphate 

activation. The main exposed facets of the particles synthesised from cobalt nitrate 

hexahydrate are presented in Table 6-2. The variation of exposed facets found in the 

samples is because of the variation of particle shapes and sizes formed. It also 

provides insight into the lower degradation efficiency achieved in comparison to its 

cobalt chloride counterpart. 

 

Figure 6-11: Illustration of the interlamellar spacing measured for the cobalt oxide particles synthesised in 100% methanol 

0.4632 nm 
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Table 6-1: The resulting d-spacing and main exposed facets of the cobalt oxide particles synthesised from cobalt chloride 

hexahydrate in 100% and 50% alcohol/water solvents 

Solvent d-spacing Main exposed facet 

Water 0.468 111 

100% methanol 0.463 111 

100% ethanol 0.465 111 

100% propanol 0.472 111 

100% butanol 0.469 111 

100% octanol 0.246 311 

50% methanol 0.471 111 

50% ethanol 0.460 111 

50% propanol 0.467 111 

50% butanol 0.466 111 

50% octanol 0.462 111 
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Table 6-2: Measured d-spacing and corresponding exposed facet for the cobalt oxide particles synthesised from cobalt nitrate in 

100% and 50% alcohol solvents, calcined at 300°C 

Sample Measured d-spacing Main exposed facet 

50% methanol 0.286 220 

50% ethanol 0.243 311 

50% propanol 0.253 301 

50% butanol 0.280 220 

50% octanol 0.255 301 

Water 0.253 301 

100% methanol 0.247 311 

100% ethanol 0.246 311 

100% propanol 0.283 220 

100% butanol 0.243 311 

100% octanol 0.245 311 

 

 

The effect of calcination temperature on the catalytic performance of the cobalt oxide 

particles was also tested in the in-house developed reactor. As the particles 

synthesised from cobalt chloride hexahydrate in 100% alcohol provided better results 

initially, they are presented in Figures 6-12 and 6-13 as the temperature study, while 

the remaining results are found in Appendix F. The Co(OH)2 particles were initially 

calcined at 300°C, and therefore the calcination temperatures studied were at 400 

and 500°C respectively. The effect of calcination temperature on crystallite size was 

discussed in Chapters 4 and 5. It was found that with increasing temperature, the 

crystallite sizes increased. This was reflected in the catalytic degradation, as the 

particles became noticeably less active with the increase in calcination temperature. 

It is additionally noted in Appendix F, specifically for the cobalt oxide particles 

synthesised from cobalt nitrate hexahydrate in 50% octanol, when calcined at 500°C. 

This was one of the cases in which a crystallite size drop occurred, and it directly 

affected the catalytic ability, as shown in Appendix F. 
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Figure 6-12: Degradation curves for the methylene blue solution degraded using the cobalt oxide catalysts synthesised 

from cobalt chloride hexahydrate in 100% alcohol solvents, calcined at 400°C 

 
Figure 6-13: Degradation curves for the methylene blue solution degraded using the cobalt oxide catalysts synthesised 

from cobalt nitrate hexahydrate in 100% alcohol solvents, calcined at 500°C 

Increased calcination temperature had a negative effect on the degradative quality of the 

particles synthesised from the cobalt nitrate precursor, as was the case with the cobalt 

chloride precursor samples. However, whether degradation was shown within the first 

10 minutes or not, the colour was removed within a standing time. This is displayed in 

Table 6-3 and 6-4. As seen from the images, a standing time of an hour was required to 

remove the colour. Although the synthesised catalysts were active, the increased time 

required to remove the colour defeats the purpose of the use of a catalyst, which is to 

increase the reaction rate. 
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Table 6-3: Samples taken immediately after methylene blue colour degradation for the cobalt oxide catalysts synthesised 

from a cobalt nitrate hexahydrate precursor salt in 50% propanol, calcined at 300, 400 and 500°C 

Calcination temperature [°C] 

300 400 500 

 

 

 

 

Table 6-4: Clarity of samples after a standing time for the samples taken immediately after the colour degradation of methylene 

blue using the cobalt oxide catalysts synthesised from cobalt nitrate hexahydrate precursor salt 
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6.2 Comparative analysis 
 

Cobalt oxide nanoparticles were successfully hydro/solvothermally synthesised for 

both cobalt chloride hexahydrate and cobalt nitrate hexahydrate precursor salts. The 

alcohols used (methanol, ethanol, propanol, butanol and octanol) within the precursor 

solutions, along with their concentrations, were varied by mixing with water in the ratio 

1:1. Using a cobalt chloride precursor salt provided both α and β polymorphs of the 

cobalt hydroxide precursor used to generate cobalt oxide, while the cobalt nitrate 

precursor salt only provided the α-phase. Upon studying the colour and therefore the 

water content of the precursor solution and the resulting polymorph phase, a 

relationship between alcohol concentration and polymorph phase was noted – for 

100% alcohols resulting in a blue cobalt solution, β-cobalt hydroxide was formed, while 

for precursors containing water, a red cobalt solution occurred, resulting in α-cobalt 

hydroxide. Ultimately, a general trend between the catalytic activity for the degradation 

of methylene blue dye was tested and revealed that the cobalt oxide particles calcined 

from β-cobalt hydroxide provided better degradation in terms of reaction rates, while 

the cobalt oxide particles calcined from α-cobalt hydroxide had slower reaction rates. 

However, an exception to the trend was encountered for the particles synthesised from 

50% propanol, 50% butanol and 50% octanol for the nitrate batches. It was, however, 

noted that the sulphur impurity found in it could have aided the degradation process. 

Figures 6-14 and 6-15 display the best and worst degradation curves obtained for the 

cobalt precursor salts observed. It may be noted that the chloride precursor salt 

produced catalysts which resulted in faster degradation rates in both cases. However, 

the difference in results are miniscule. The chloride precursor salt results also 

provided a more reliable result, as only unreacted chloride ions were found in the 

sample, which should have hindered and not enhanced the reaction. The results 

revealed that the cobalt oxide which would be best suited as a catalyst in colour 

degradation within the textile industry would be that which was synthesised from cobalt 

chloride hexahydrate in 100% methanol, while the cobalt oxide which would be 

worst suited as a catalyst in colour degradation within the textile industry would be 

that which was synthesised from cobalt nitrate hexahydrate in 100% butanol. 
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Figure 6-14: Degradation curves for the treated methylene blue solution using the cobalt oxide catalysts which produced 

the fastest degradation rates 

 
Figure 6-15: Degradation curves for the treated methylene blue solution using the cobalt oxide catalysts which produced 

the slowest degradation rates 

Since the best suited catalyst for colour degradation was the cobalt oxide synthesised 

from cobalt chloride hexahydrate in 100% methanol, it was necessary to determine the 

ratio of cobalt valence states within its sample, along with its 50% alcohol counterpart. 

This analysis was done via Energy Loss Near-Edge Fine Structure (ELNEFS) analysis, 

as shown in Figures 6-16 and 6-17 below. Two peaks, L2 and L3, were noted, which 

represent the Co2+ and Co3+ valence states respectively. The ratio between the two 

states on the active area of the catalysts plays an important role in their activity, as 
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the Co3+ has been deemed the more active species. 

 

 

Figure 6-16: ELNEFS spectra revealing the L3 and L2 peaks for the cobalt oxide particles showing the best catalytic 

degradation properties i.e. produced from cobalt chloride hexahydrate in 100% methanol, calcined at 300°C 

 

 

 

Figure 6-17: ELNEFS spectra revealing the L3 and L2 peaks for the 50% counterpart of the 100% methanol cobalt chloride 

hexahydrate particles, calcined at 300°C 

 
The Lorentzian function is a singularly peaked function, defined by Equation 6-1, which 

may be used to calculate the L3/L2 ratio by integrating the Lorentzian functions 

represented by L2 and L3 respectively. The integration of the Lorentzian function is 

represented by Equation 6-2. The results of these equations reveal that the 100% 

methanol batch provided a L3/L2 ratio of 31.587, while the 50% batch a L3/L2 ratio of 
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3.209, approximately 10 times less that of the 100% batch. This method of determining 

the L3/L2 ratio displays an accuracy within the range ±0.3, an adequate range for the 

qualification of valence states, according to Chen et al., 2007. This additionally explains 

the reduced catalytic performance of the 50% methanol batch. 

𝑓(𝐸) =
ℎ1

𝜋
× [𝑎𝑟𝑐𝑡𝑎𝑛(𝜋 ∙ (𝐸 − 𝐸1)) +

𝜋

2
] +

ℎ2

𝜋
× [𝑎𝑟𝑐𝑡𝑎𝑛(𝜋 ∙ (𝐸 − 𝐸2)) +

𝜋

2
]  6-1 

𝐼(𝐿3)

𝐼(𝐿2)
=
∫ 𝐼(𝐸)𝑑𝐸
𝐿3+𝑤/2
𝐿3−𝑤/2

∫ 𝐼(𝐸)𝑑𝐸
𝐿2+𝑤/2
𝐿2−𝑤.2

     6-2 

6.3 Optimisation of degradation studies 

 
The sample showing the highest degradation rate was found to be the cobalt oxide 

particles synthesised from cobalt chloride precursor salt in 100% methanol, calcined 

at 300˚C. In order to see how effective these particles were, it was important to optimise 

the methylene blue degradation process using this catalyst. In that way, the best 

parameters were used to degrade various dyes as a simulation for actual textile 

wastewater. It should be noted that actual textile wastewater contains a lot more than 

just dye remnants, as many chemical additives are added for various processes, 

which commonly end up in one disposal sump. In addition, textile companies all have 

different recipes, including different chemicals. Treatment of actual textile wastewater 

therefore poses the risk that no generic treatment exists, as each case may be different. 

However, knowing how to treat various dyes at various colour spectra, is the first step 

to actively treating actual textile wastewater. 

 

6.3.1 Optimisation of catalyst load 

Keeping the degradation parameters constant, the catalyst load was varied in order to 

determine the best catalyst load for the volume of dye treated and amount of Oxone® 

used. The catalyst load was changed from 0.15 g to 0.4 g per filter. The filter making 

time was obviously altered, due to the increase/decrease in catalyst load. The time to 

make one 0.3 g filter varies from 30 minutes to 1 hour. The time almost doubled with a 

30% increase of catalyst, while the decreased loads of 0.15 g or 0.2 g took an average 

of 10 minutes. This is an important factor to take into account for commercial 

production. 
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Figure 6-18: Methylene blue degradation with catalyst load variance 

The filters were dried as per usual and used to degrade a standard methylene blue 

solution, as captured in Figure 6-18. The final samples taken at 10 minutes show the 

general trend of the degradation of the methylene blue solutions. The most rapid 

degradation rate was found when using a catalyst load of 0.3 g, shortly followed by 0.2 

g, then 0.15 g and finally 0.4 g catalyst load filter. It was found that a catalyst load of 

0.4 g on one filter was ineffective, mostly due to the catalyst not staying fixed to the 

filter. Upon treatment, the catalyst became dispersed, thus providing a denser 

reading for the handheld spectrometer. A catalyst load of 0.15 g proved to be less 

effective, as fewer active sites were provided to activate the peroxymonosulphate fed 

into the system. Narrowing down the catalyst load variance to between 0.2 g and 0.3 g 

shows a very slight difference in favour of a 0.3 g catalyst load. Although the 0.3 g 

catalyst load displays the highest degradation rate, it is also important to take cost into 

account. As the difference in degradation is very slight, it would be more economically 

viable to use filters containing 0.2 g over the 0.3 g. However, from a research 

perspective, it is important to determine the best overall conditions. 
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6.3.2 Optimisation of Oxone® concentration 

 

Using the most effective catalyst load and maintaining it, the Oxone concentration was 

varied. Concentrations were increased by 0.093 g per 500 ml of methylene blue 

treated. Using the most efficient catalyst load, it was important to find out the Oxone 

concentration which would best correlate with it. The catalyst concentration therefore 

was maintained at 0.3 g per filter, and the process carried out as per usual. 

 

 

Figure 6-19: Methylene blue degradation with Oxone variance 

From Figure 6-19 it can be seen that the Oxone concentration providing the lowest 

degradation in the allotted time was 0.093 g/500 mL. This was also the lowest 

concentration explored and half the amount previously explored. The highest 

degradation was provided by an Oxone concentration of 0.184 g. The concentration 

of 0.367 g provided the second highest degradation. This shows that a concentration of 

0.184 g Oxone is not only preferable for degradation rate, but also for cost analysis. 

 

6.3.3 System optimisation for dye degradation 

 

From the previous investigation, the optimal conditions for degradation of methylene 

blue using this system was found to be a catalyst load of 0.3 g and Oxone 

concentration of 0.184 g per 500 mL methylene blue treated. Using the best conditions, 

various concentrations of methylene blue dye were treated, in order to determine the 
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highest dye concentration which can be treated using this system. The standard for 

the previous tests used a concentration of 10 mg/L of methylene blue dye. To test the 

strength of the degradation system, the dye concentration was increased five-fold. 

 

Figure 6-20: Degradation of various concentrations of methylene blue at optimum conditions (0,3 g catalyst and 0,184 g Oxone) 

Figure 6-20 shows the degradation curves of the increased methylene blue dye 

concentrations. The highest degradation (97.26%) was achieved in the standard test 

using the best conditions (0.3 g catalyst and 0.184 g Oxone per 500 mL methylene 

blue). The concentration was then increased to 50 mg/L, which was degraded by 95.4% 

using the same conditions. The concentration was then increased to 75 mg/L, which 

displayed a major drop in degradation efficiency. A higher concentration of 100 mg/L 

was then tested, but remained virtually untreated. These concentrations were degraded 

by 35.5% and 11.82% respectively. Figure 6-21 provides visuals of the dye after 

treatment, which displays the degree of degradation. 

   

Figure 6-21: Treated methylene blue solutions at concentrations of a) 50 mg/L, b) 75 mg/L and c) 100 mg/L 
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The possibility that an increased catalyst surface area over a larger filter bed, made 

up of 3 individual filters stacked on one another, would increase the degradation of the 

higher concentrated dye was investigated. From the investigation, it was found that 

no substantial changes were made for the increased dye concentration of 75 mg/L to 

account for the increased cost of making more filters. Further studies were therefore 

maintained at the best conditions for the system: 0.3 g catalyst, 0.184 g Oxone and 50 

mg/L methylene blue dye. The concentration appeared to be increasing after the 4-

minute minimum obtained for the 75 mg/ L sample in both experiments as shown in 

Figure 6-20 and 6-22. This phenomenon should be further studied as it is not clear why 

this has happened.  

\ 

Figure 6-22: Degradation of methylene blue at various concentrations at optimum conditions and increased filter bed 

The best conditions were selected to treat various dyes in order to determine the 

effectiveness of the 100% methanol batch. Synozol Red and Synozol Yellow were 

selected for the primary colours to be complete, with the addition of Methylene Orange. 

As 50 mg/L of methylene blue was selected, it was important for the molarity to be 

maintained. This translated to a concentration of 0.071 g/L, 0.043 g/L and 0.0204 g/L 

for Synozol Red, Synozol Yellow and Methylene Orange respectively. 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9 10

C
/C

0

Time, min

0,3 g Catalyst; 0,184 g Oxone

3*0,1 g catalyst; 0,184 g Oxone

3*0,1 g catalyst; 0,184 g Oxone;
50 mg/L MB
3*0,1 g catalyst; 0,184 g Oxone;
75 mg/L MB



EVALUATION OF THE Co3O4 PARTICLES SYNTHESISED during COLOUR DEGRADATION 

106 

 

 
Figure 6-23: Degradation of various reactive dyes with the same molarity at the optimum conditions 

The dye broken down the easiest was methylene blue, followed by methylene orange, 

synozol yellow and finally synozol red. It is to be noted that the chemical make-up of 

these dyes varies, though they all are reactive dyes. The degradation of these dyes 

under the same conditions presents the issues which may be encountered during 

the degradation of actual textile wastewater. The waste sumps at textile industries 

are usually a combination of various processes and dyes used. Since there are 

variances in the degradation of each different dye, the process of treatment should 

vary to optimise the degradation of each dye. It should also be noted that various 

additives are introduced into actual textile wastewater, both in the dyeing processes 

and in the sump, as discharge treatment requirements. The treatment of actual 

textile wastewater may therefore prove to be complicated and different for every textile 

dyeing process. 
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6.4 Conclusion 

It was found that the degradation of methylene blue dye using the cobalt oxide 

particles calcined from β-cobalt hydroxide provided better degradation in terms of 

reaction rates, while those calcined from α-cobalt hydroxide had slower reaction 

rates. An exception to this trend was encountered for the cobalt oxide particles 

synthesised from cobalt nitrate precursor in 50% propanol, 50% butanol and 50% 

octanol. Upon investigation, it was noted that a sulphur impurity existed in these 

batches. The chloride precursor salt produced catalysts which provided faster 

degradation rates in comparison to the nitrate precursor. The catalytic activity of the 

produced catalysts at two minutes were plotted against the d50 particle sizes, the 

crystallite sizes and BET surface area of the most and least rapid catalyst activity 

achieved. From the d50 plot, it was found that with an increase in particle size, the 

degradation rate increases slightly, contrary to the notion that increased catalytic 

activity is dependent on increased surface area. However, degradation of only 20% 

occurred for the cobalt nitrate precursor samples. The particle sizes ranged between 20 

and 70 nm for both the cobalt oxide synthesised from cobalt chloride hexahydrate and 

from cobalt nitrate hexahydrate. The crystallite size plot revealed that a large variance 

in crystallite size exists between the two precursor salts. However, highly active cobalt 

oxide particles provided crystallite sizes between approximately 8,5 and 11 nm for 

both cases. This was reiterated in the effect of calcination temperature on catalytic 

performance, as the crystallite sizes generally increased with increasing temperature, 

negatively affecting the catalytic ability. The exception to this finding further reiterated 

the effect of crystallite size range on high activity of cobalt oxide, as the cobalt oxide 

synthesised from the nitrate precursor in 50% octanol experienced a crystallite 

decrease to 9.73 nm, consequently providing a faster degradation rate than those 

calcined at 300 and 400°C. 

 

Overall, the results revealed that the cobalt oxide synthesised which would be best 

suited as a catalyst in colour degradation within the textile industry would be that which 

was synthesised from cobalt chloride hexahydrate in 100% methanol, while the cobalt 

oxide which would be worst suited as a catalyst in colour degradation within the 

textile industry would be that which was synthesised from cobalt nitrate hexahydrate 
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in 100% butanol. The best catalyst was analysed using ELNEFS analysis in order to 

determine the L3/L2 ratios in comparison to its 50% alcohol counterpart. This was 

done in order to determine the ratio of Co3+ to Co2+ ions, as the Co3+ is the more active 

species. The results revealed a substantially higher Co3+ concentration than the Co2+ 

concentration, which was 10 times higher than its 50% counterpart. 

 
 

The AOP used to degrade the methylene blue solution was then optimised using the best 

catalyst in order to determine the optimal process conditions under which to operate. 

Various factors were varied within the in-house developed reactor used in this study - 

the catalyst load on filter, the Oxone concentration, and filter bed thickness. The best 

conditions were used to treat higher concentrated methylene blue solutions, as well as 

various reactive dyes. It was found that a catalyst load showing the fastest degradation 

rate was that of 0.3 g. The 0.2 g load, however, provided very similar results and 

would be more viable from a cost standpoint. The Oxone concentration showing the 

best results was 0.364 g/L, coincidentally the amount used in the initial studies. 

Increased concentrations at 50, 75 and 100 mg/L were treated using the best catalyst 

load and Oxone concentrations. The 50 mg/L concentrated methylene blue solution 

was degraded by 95.4% using the same conditions, and an increase to 75 mg/L and 

100 mg/L displayed a major drop in degradation. Synozol red and Synozol yellow 

reactive dyes, along with methylene orange, were tested at the optimal conditions at 

the same molarity of methylene blue. From it, it was found that the dye broken down 

the easiest was methylene blue, followed by methylene orange, Synozol yellow and 

finally Synozol red. 
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 

7.1 Introduction 

The most important commodity in the world is water. Research in various industries therefore 

has focused on the use, reduce and reuse of water for their processes. The textile industry 

has become a focus in the reuse of water, due to its use of large volumes of water in 

practically every step of its manufacturing process. Further, conventional textile wastewater 

contains dye particles which often escape the treatment put in place by wastewater treatment 

plants, and therefore poses toxic and eutrophication threats to the environment it is pumped 

to. 

 
An effective method of organic toxic waste removal, such as dye within water, has been found 

in Advanced Oxidation Processes (AOPs), as they convert harmful organic toxic waste to 

harmless H2O and CO2 The use of sulphate radicals, from peroxymonosulphate, has become 

popular in these processes for their high reduction potential and therefore ability to mineralise 

the organic toxic waste with ease. Cobalt oxide has been deemed the best-known activator 

of peroxymonosulphate for the formation of sulphate radicals, and therefore became the 

focus of this research. 

 

7.2 Conclusions 

Petkova and Nedkov (2013) demonstrated different spectral behavior of CoCl2 in water and 

ethanol. They found that in water, a pink/red solution was formed, while in the alcohol a blue 

solution was formed, attributed to the octahedral and tetrahedral complexes which form, 

respectively. This work confirmed this finding, with the addition that the Co(NO3) salt behaves 

differently. It was found that the nitrate anion produced only the red octahedral complex in 

both water and alcohol solutions. During the hydro/solvothermal synthesis, the cobalt chloride 

hexahydrate (CoCl2·6H2O) precursor salt produced both green/blue α-cobalt hydroxide and 

pink β-cobalt hydroxide polymorphs, while only α-cobalt hydroxide was encountered for the 

cobalt nitrate hexahydrate precursor Co(NO3)2·6H2O salt. This provided a relationship 

between the cobalt complex solution to the phase of cobalt hydroxide polymorph formed. A 

blue precursor solution (tetrahedral complex) produced pink β-cobalt hydroxide particles, 

while a red precursor solution (octahedral complex) produced α-cobalt hydroxide. Upon 

calcination, cobalt oxide nanoparticles were successfully formed from both cobalt hydroxide 
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polymorphs. 

 
Shape and size variances occurred for the change in anion used, while the use of various 

alcohols maintained the shape and approximate size of the particles. The chloride-based 

particles generally produced rhombic-shaped cobalt oxide nanoparticles approximately 50 

nm in size, with the exception of the water and 50% methanol batch, which produced 

nanorods. The nitrate-based particles were nanorod-like particles, approximately 30 nm in 

size, as measured from the TEM images provided. However, SEM images revealed the 

formation of larger particles approximately 20 µm in size for the water batch and 40 µm in 

size for the 50% ethanol batch. The shape and size variances shows how complex the 

synthesis of nanoparticles is as any change in process conditions may completely change 

the outcome of a synthesis process. The particle size distributions were dominated by the 

anion rather than the alcohol. Narrow size distributions were obtained in the presence of 

nitrate for all alcohol and alcohol/water solutions, in contrast to the wide particle size 

distributions obtained in the presence of chlorides.  

 

The TEM images were additionally used to calculate the d-spacing of the particles, which 

ultimately were used to determine their main exposed facets. The chloride- based samples 

provided facets of [111] for all the samples apart from the 100% octanol, which provided an 

exposed facet of [311]. For the nitrate samples, a variety of main exposed facets for the 

synthesized particles were encountered. The majority of the particles had a [311] exposed 

facet. The XRD analysis showed that with an increase in surface tension there was a 

decrease in crystallite size. It also revealed that with an increase in calcination temperature 

an increase in crystallite size occurs. 

 
The catalytic behaviour of the cobalt oxide particles was analysed by the degradation of 

methylene blue. The chloride-based samples performed better, but upon further investigation 

it was found that this was only true for the cobalt oxide particles synthesized from β-cobalt 

hydroxide, while the samples synthesized from α-cobalt hydroxide provided very little 

degradation. An exception to this was found to be the cobalt oxide particles synthesized from 

cobalt nitrate hexahydrate in 50% propanol, 50% butanol and 50% octanol. This was 

attributed to the niche range, in which high catalytic activity was found for crystallite sizes 

between 8.5 and 11 nm for both precursor salts. The effect of calcination temperature 
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negatively affected the degradation process. This was expected, as the crystallite sizes 

increased with increasing temperature, providing a lower active surface area. The crystallite 

niche area was confirmed by the cobalt oxide synthesized from the nitrate precursor in 50% 

octanol, as an unexpected decrease to 9.73 nm consequently provided a faster degradation 

rate than those calcined at 300°C and 400°C. It was additionally noted that although the 

degradation rate of methylene blue was decreased in some cases, the solutions eventually 

became visibly clear within a standing time. However, the standing time required for all the 

chloride-based samples was less than 30 minutes, while the nitrate-based samples required 

up to an hour of standing time to become clear. 

7.3 Contributions 

A comparison of the chloride and nitrate anions in the formation of cobalt complexes and its 

subsequent effect on the cobalt hydroxide polymorph formed has been indicated for the first 

time. Although it was shown in literature before that chloride results in red complex solutions 

in water and blue complex solutions in alcohols, it was never tested for nitrate. From this 

research it was found that only red octahedral cobalt complexes are formed from cobalt 

nitrate salts, whether in 100% alcohol solutions or in water or 50% alcohol/water solutions. 

A method to control the relationship between octahedral or tetrahedral cobalt complex and 

cobalt hydroxide polymorph has been established. Using this synthesis route, a red cobalt 

complex solution with an octahedral structure produces α-cobalt hydroxide, while a blue 

cobalt complex solution with a tetrahedral structure produces β-cobalt hydroxide. 

It was demonstrated for the first time that there is a strong relationship between the 

performance of the cobalt oxide catalyst and its preceding hydroxide polymorph. In colour 

degradation using peroxymonosulphate/AOP it was found that the β-phase is more effective 

than that of the α-phase.  

In comparison to similar methods utilising urea instead of ammonium hydroxide, the absence 

of an alcohol and the same mass of cobalt salt the yield was increased from 0.5 g to 

approximately 5 g. Therefore, this batch synthesis method shows promise for upscaling to a 

continuous method.  
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7.4 Recommendations for future research 

This study was based on 100% and 50% alcohol concentrations and may be refined 

and enhanced by varying the concentrations used. It may also benefit from the 

optimisation of the hydro/solvothermal synthesis method described in terms of the 

reactant quantities used, as well as temperature and reaction time. The effect of anion 

should further be investigated by using more cobalt salts with various anions, using this 

method. This study only tested the degradation of synthetic dye solutions prepared in 

the laboratory as a simulation for the treatment of textile wastewater. Since textile 

wastewater contains various additives, the catalyst prepared in this study should be 

evaluated using actual textile wastewater. Further, β-cobalt hydroxide particles 

produced cobalt oxide with a high catalytic ability in peroxymonosulphate activation, 

while the α-phase did not. A comparison of cobalt oxide synthesized from α- and β-

cobalt hydroxide in other applications such as sensors, magnetic, electric, opto-electric 

and energy storage devices, should be carried out in order to ascertain whether the β-

phase will always be more effective. 
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Appendices 

Appendix A. XRD Spectra for the synthesized particles 

       

Figure A.1:XRD spectra for cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in water, calcined at 300, 400 and 500°C 

  

Figure A.2:XRD spectra for cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% methanol, calcined at 300, 400 and 500°C 
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Figure A.3: XRD spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% ethanol, calcined at 300, 400 and 500°C 

      

Figure A.4: XRD spectra for cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% propanol, calcined at 300, 400 and 500°C 
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Figure A.5: XRD spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% butanol, calcined at 300, 400 and 500°C 

       

Figure A.6: XRD spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% octanol, calcined at 300, 400 and 500°C 
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Figure A.7: XRD spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% methanol, calcined at 300, 400 and 500°C 

        

Figure A.8: XRD spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% ethanol, calcined at 300, 400 and 500°C 
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Figure A.9: XRD spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% propanol, calcined at 300, 400 and 500°C 

        

Figure A.10: XRD spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% butanol, calcined at 300, 400 and 500°C 
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Figure A. 11: XRD spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% octanol, calcined at 300, 400 and 500°C 
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Appendix B. FTIR spectra for the synthesized particles 
 

               

Figure B.1: FT-IR spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate and b) cobalt nitrate hexahydrate in water, calcined at 300°C 

              

Figure B.2: FT-IR spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% methanol, calcined at 300, 400 and 500°C 
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Figure B.3: FT-IR spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% ethanol, calcined at 300, 400 and 500°C 

                 

Figure B.4: FT-IR spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% propanol, calcined at 300°C 
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Figure B.5: FT-IR spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% butanol, calcined at 300, 400 and 500°C 

                 

Figure B.6: FT-IR spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% octanol, calcined at 300°C 
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Figure B.7: FT-IR spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% methanol, calcined at 300, 400 and 
500°C 

                

Figure B.8: FT-IR spectra of the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% ethanol, calcined at 300, 400 500°C 
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Figure B 9: FT-IR spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% propanol, 300°C 

                 

Figure B.10: FT-IR spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% butanol, calcined at 300°C 
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Appendix C. EDS spectra for the synthesized particles 

         

Figure C.1: EDS spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% methanol, calcined at 300, 400 and 500°C 

        

Figure C.2: EDS spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% ethanol, calcined at 300, 400 and 500°C 
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Figure C.3: EDS spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% propanol, calcined at 300, 400 and 500°C 

       

Figure C.4: EDS spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% butanol, calcined at 300, 400 and 500°C 
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Figure C.5: EDS spectra for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% octanol, calcined at 300, 400 and 500°C 
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Appendix D. PSD curves for the synthesized particles 

     

Figure D-1: PSD curves for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt in 100% water, calcined at 300°C 

      

Figure D-2: PSD curves for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% methanol, calcined at 300°C 
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Figure D-3: PSD curves for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% ethanol, calcined at 300°C 

       

Figure D-4: PSD curves for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt in 50% propanol, calcined at 300°C 
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Figure D-5: PSD curves for the particles synthesized from a) cobalt chloride hexahydrate base salt in 50% butanol, calcined at 300°C 

         

Figure D-6: PSD curves for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt in 50% octanol, calcined at 300°C 
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Figure D-7: PSD curves for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% methanol, calcined at 300°C 

        

Figure D-8: PSD curves for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% ethanol, calcined at 300°C 
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Figure D-9: PSD curves for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% propanol, calcined at 300°C 

       

Figure D-10: PSD curves for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% butanol, calcined at 300°C 
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Figure D-11: PSD curves for the cobalt oxide particles synthesized from a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% octanol, calcined at 300°C 
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Appendix E. SAED images for the synthesized particles 
Table E-1: SAED images for the cobalt oxide particles synthesized in 100% water, calcined at 300°C 

100% water 

Cobalt chloride hexahydrate Cobalt nitrate hexahydrate 

  

 
Table E-2: SAED images for the cobalt oxide particles synthesized in methanol, calcined at 300°C 

Methanol 

50% 100% 50% 100% 

Cobalt chloride hexahydrate Cobalt nitrate hexahydrate 

 

  

 

 
Table E-3: SAED images for the cobalt oxide particles synthesized in ethanol, calcined at 300°C 

Ethanol 

50% 100% 50% 100% 

Cobalt chloride hexahydrate Cobalt nitrate hexahydrate 
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Table E-4: SAED images for the cobalt oxide particles synthesized in propanol, calcined at 300°C 

Propanol 

50% 100% 50%  100% 

Cobalt chloride hexahydrate Cobalt nitrate hexahydrate 

 
   

 
Table E-5: SAED images for the cobalt oxide particles synthesized in butanol, calcined at 300°C 

Butanol 

50% 100% 50% 100% 

Cobalt chloride hexahydrate Cobalt nitrate hexahydrate 

 

   

 
Table E- 6: SAED images for the cobalt oxide particles synthesized in octanol, calcined at 300°C 

Octanol 

50% 100% 50% 100% 

Cobalt chloride hexahydrate Cobalt nitrate hexahydrate 
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Appendix F. Degradation curves  

      

Figure F-1: Methylene blue degradation using the catalyst synthesized from a a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% methanol 

      

Figure F-2:Methylene blue degradation using the catalyst synthesized from a a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% ethanol 
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Figure F-3 Methylene blue degradation using the catalyst synthesized from a a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% propanol: 

      

Figure F-4: Methylene blue degradation using the catalyst synthesized from a a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% butanol 
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Figure F-5: Methylene blue degradation using the catalyst synthesized from a a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 50% octanol 

      

Figure F 6: Methylene blue degradation using the catalyst synthesized from a a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in water 
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Figure F-7: Methylene blue degradation using the catalyst synthesized from a a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% methanol 

       

Figure F-8: Methylene blue degradation using the catalyst synthesized from a a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% ethanol 
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Figure F-9: Methylene blue degradation using the catalyst synthesized from a a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% propanol 

       

Figure F-10: Methylene blue degradation using the catalyst synthesized from a a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% butanol 
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Figure F-11 Methylene blue degradation using the catalyst synthesized from a a) cobalt chloride hexahydrate base salt and b) cobalt nitrate hexahydrate base salt in 100% octanol 
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