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Abstract 

Feed efficiency (FE) is defined as a measure of efficiency in converting metabolizable energy 

acquired from macronutrients into muscle and/or adipose tissue. The overall aims of this 

thesis were to identify genomic regions associated with FE in a commercial line of Maxgro 

boars, to evaluate the molecular and phenotypic relationship between FE and meat quality in 

Maxgro x (German Landrace x Large White) pigs and to investigate the molecular 

mechanisms contributing to differences in FE, in liver, fat and skeletal muscle tissue. Firstly, 

952 boars having measures of FE traits were genotyped and used for a genome-wide 

association study (GWAS). Most of the quantitative trait loci (QTL) identified by this method 

were described for the first time, although some of them were located not far from previously 

associated genomic regions. Putative candidate genes located in the QTL regions derived for 

FE traits had functions related to lipogenesis, glucose homeostasis, olfactory reception and 

immunological status. Secondly, three metabolically important tissues, including muscle, 

adipose and liver were analysed. Significant differences in meat traits such as sensory profile, 

texture and cook loss suggest a minor impairment of meat quality from high-FE pigs. This 

group also exhibited leaner carcasses, greater muscle content and an improved fatty acid 

profile compared to low-FE pigs. Ontology analysis predicted a more efficient immune 

defence in the muscle of high-FE pigs, which may indicate that these animals are also more 

efficient in conserving resources for growth. Shifts in carbohydrate conversion into glucose 

in FE-divergent muscle may underpin the altered post-mortem muscle pH profiles between 

FE groups. Moreover, differences in amino acid metabolism may influence growth in        

FE-divergent muscle, whereas decreased degradation of fibroblasts could impact on collagen 

turnover and alter tenderness of meat. Metabolism of lipids was also predicted to be affected 

by FE suggesting an altered fat metabolism in FE-divergent muscle. Transcriptomic profiling 

of adipose tissue of FE-divergent pigs suggested the establishment of a dense extracellular 

matrix and inhibition of capillary formation might be underlying mechanisms to achieve 

suppressed adipogenesis and increased utilisation of fatty acids by other tissues. Lipid 

metabolism was also affected by FE whereby over-expression of cholesterol-related genes 

suggests more efficient cholesterol disposal from high-FE adipose tissue. Furthermore, gene 

expression patterns in the liver of high-FE pigs suggested improved hepatic absorption of 

carbohydrates and cholesterol, and enhanced reverse cholesterol transport. The liver of     

high-FE pigs may be characterised by higher protein turnover and increased epithelial cell 

differentiation, whilst enhanced quantity of invariant natural killer T-cells and viability of 
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natural killer cells could induce a faster and more effective hepatic response to inflammatory 

stimuli. Overall, this study showed that FE is a highly complex trait affected by a number of 

genomic regions. Transcriptomic profiling of muscle, adipose and liver tissue from            

FE-divergent pigs provided mechanistic insights on the biological events prevailing 

differences in FE, which impacts meat quality. The findings of this thesis will assist the meat 

animal industry in identifying strategies to improve FE without compromising meat quality.  
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Kurzbeschreibung 

Die Futterverwertung (FE) beschreibt die Effektivität von Nutztieren, die metabolisierbare 

Energie aus Makronährstoffen in Muskel- und/oder Fettgewebe umzuwandeln. Die 

übergeordneten Ziele dieser Arbeit waren a) genomische Regionen zu bestimmen, die mit der 

Ausprägung von FE-Merkmalen in einer kommerziellen Linie von Maxgro Ebern in 

Zusammenhang stehen, b) molekulare und phänotypische Beziehung zwischen FE und 

Fleischqualität in einer Maxgro x (German Landrace x Large White) Population aufzuzeigen, 

und c) zugrundeliegende molekulare Mechanismen in drei relevanten Geweben zu 

identifizieren. Im ersten Teil der Studie wurden 952 FE-getestete Eber genotypisiert und im 

Rahmen einer genomweiten Assoziationsstudie (GWAS) analysiert. Die meisten der mit 

dieser Methode identifizierten Quantitative Trait Loci (QTL) wurden erstmals beschrieben, 

obwohl einige von ihnen in der Nähe von zuvor assoziierten genomischen Regionen lagen. 

Die für die FE-Merkmale abgeleiteten Kandidatengene in den QTL-Regionen haben 

Funktionen in Bezug auf Lipogenese, Glukosehomöostase, olfaktorische Rezeption und den 

immunologischen Status. Der zweite Teil dieser Dissertation betrachtet Muskel-, Fett- und 

Lebergewebe. Signifikante Unterschiede in den Fleischmerkmalen, wie zum Beispiel von 

sensorischen Profilen, Fleischtextur und Kochverlust, deuten auf eine geringfügige 

Beeinträchtigung der Fleischqualität bei Schweinen mit hoher FE hin. Andererseits wies 

diese Gruppe magerere Schlachtkörper, einen höheren Muskelanteil und ein verbessertes 

Fettsäureprofil im Vergleich zu Schweinen mit niedriger FE auf. Die Analyse der 

Genontologie prognostizierte eine erhöhte Effizienz der Abwehr im Muskel von Schweinen 

mit hoher FE, was darauf hindeuten könnte, dass diese Tiere auch effizienter in ihrer 

Ressourcennutzung für Wachstum sind. Verschiebungen in der muskulären Umwandlung von 

Kohlenhydraten zu Glukose zwischen FE-divergenten Tieren wurden auch auf Ebene der 

post-mortalen pH-Profile zwischen den Gruppen abgebildet. Darüber hinaus könnten 

Unterschiede im Lipid- und Aminosäurestoffwechsel das Muskelwachstum beeinflussen, 

während ein verminderter Fibroblastenabbau den Kollagenumsatz und die Zartheit des 

Fleisches beeinflussen kann. Transkriptionelle Unterschiede im Fettgewebe FE-divergenter 

Schweine implizieren dass, die Bildung einer dichten extrazellulären Matrix und die 

Hemmung der Kapillarbildung grundlegende Mechanismen sein könnten, um die 

Adipogenese zu unterdrücken, und eine erhöhte Verfügbarkeit von Fettsäuren für andere 

Gewebe zu erreichen. Dementsprechend zeigte sich auch der Lipidstoffwechsel durch FE 

beeinflusst, wobei die Überexpression von cholesterinverwandten Genen auf einen 
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effizienteren Cholesterinexport aus dem Fettgewebe von Tieren mit hoher FE hindeutete. Die 

Analyse der hepatischen Genontologie deutete auf eine verbesserte Aufnahme von 

Kohlenhydraten und Cholesterin sowie einen verbesserten Rücktransport von Cholesterin in 

Schweinen mit hoher FE hin. Basierend auf transkriptionellen Expressionsprofilen, 

charakterisiert sich die Leber von Schweinen mit hoher FE durch einen höheren 

Proteinumsatz und eine erhöhte Differenzierung der Epithelzellen. Dabei liefert die 

Auslenkung von Genen, welche die Funktion natürlicher Killerzellen beeinflussen, Hinweise 

darauf, dass eine schnellere und effektivere hepatische Reaktion auf Entzündungsreize in 

Tieren mit höherer FE induzieren werden könnte. Insgesamt zeigte diese Studie, dass FE ein 

hochkomplexes Merkmal ist, das von einer Reihe genomischer Regionen beeinflusst wird. 

Transkriptionelle Profile aus Muskel-, Fett- und Lebergewebe von FE-divergenten 

Schweinen lieferten Erkenntnisse über biologische Mechanismen, welche für die 

Unterschiede in der FE fundamental sind. Die Ergebnisse dieser Arbeit werden die 

Tierhaltung und Züchtung dabei unterstützen, Strategien zur Verbesserung der FE zu 

identifizieren, ohne die Fleischqualität zu beeinträchtigen. 
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1. 1 Feed efficiency  

1.1.1 Feed efficiency definition and indexes 

Feed efficiency (FE) is an economically and ecologically significant trait in pig production 

and determines the ability of an animal to efficiently convert feed into muscle and adipose 

tissue (Wilkinson 2011). Feed conversion ratio (FCR) is an indicator of feed efficiency and 

defines a ratio of feed intake to weight gain. Feed efficiency can also be expressed as residual 

feed intake (RFI), which refers to a difference between actual feed intake and its expected 

nutritional requirements due to maintenance and growth (Saintilan et al. 2013). Both FCR 

and RFI indexes are included in the breeding program to achieve efficient pork production. 

Nevertheless RFI takes into consideration that a large proportion of feed efficiency is not 

explained by body growth and composition, and unlike FCR, is independent of phenotypic 

production traits and denotes an inherent variation in the maintenance energy requirements 

(Young and Dekkers 2012; Willems et al. 2013).    

 

 

 

 

 

Figure 1.1 Feed efficiency in pigs depicted as a ratio of the amount of feed to the amount of 

meat produced including energy conversion efficiency between the feed and meat. Adapted 

from http://farmfolly.com/2011/03/complete-costs-of-raising-pigs/. 

1.1.2 Physiological factors affecting feed efficiency 

Carbohydrates, fats and proteins are the main macronutrients present in feed providing 

energy in the form of calories (the amount of heat required to raise 1 gram of water by 1 

degree Celsius). Burned energy is used for maintenance and growth processes and is also 

released as heat. Approximately a third of dietary energy is designated towards maintenance 

processes, thus reducing unnecessary stress, maintaining appropriate environment 

http://farmfolly.com/2011/03/complete-costs-of-raising-pigs/
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temperature and ensuring good health of pigs would vastly contribute towards shifting the 

dietary energy towards more efficient growth (Patience et al. 2015). A study has shown that 

low-RFI (high-FE) pigs exhibit reduced maintenance requirements and heat production when 

compared to high-RFI (low-FE) line (Barea et al. 2010). Differences in feed digestibility have 

also been reported in pigs divergent for RFI (Harris et al. 2012).  

 

Carbohydrates such as starch are the main source of energy in feedstuff (Nafikov and Beitz 

2007; Bach-Knudsen et al. 2012). On the other hand, fibre, which is a type of carbohydrate, 

contributes to the energy production in a much smaller scale, if any, and may impede 

absorption of other nutrients (Zhang et al. 2013). When ingested, carbohydrates (excluding 

fibre) are broken down to glucose and either used up in energetically costly processes or 

stored in the form of glycogen in the liver and muscle for later usage (Granlund et al. 2010). 

Glucose can also be converted to fatty acids via de novo lipogenesis and transported to 

adipose tissue for storage as triacylglycerol (Hua et al. 2016). Fats are the highest energy 

source in feedstuff yielding more than double amount of energy when compared to 

carbohydrates and proteins (Park et al. 2012). Similarly to carbohydrates, fuel from fats can 

be expended to drive energy requiring processes. Alternatively, excess of fats can be exported 

to adipose tissue and deposited as triacylglycerol, or converted to glucose in the process 

known as gluconeogenesis (Kaleta et al. 2011; Kerr et al. 2015). The main destination of 

dietary proteins is to provide amino acids needed for synthesis of new proteins. However, if 

an organism experiences excess of amino acids, the subsequently ingested dietary proteins 

would be used to produce energy but not very efficiently as it is an energetically expensive 

process (Van Milgen and Noblet 2002). This diverse ways of macronutrients partitioning and 

energy utilization have a great impact on the efficiency of feed, which provides fuel for 

various maintenance processes and tissue growth. 

Figure 1.2 Energy partitioning and utilization derived from macronutrients ingestion. 

Adapted from Euken (2012). 
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Variation in feed intake and physical activity has been demonstrated to contribute to 

divergence in feed efficiency. Low-RFI pigs were shown to eat faster, less and not as 

frequently compared to high-RFI counterparts (Young et al. 2011). Moreover, low-RFI pigs 

exhibited lower physical activity (Meunier-Salaun et al. 2014). Body composition has also an 

influence in feed efficiency due to the fact that accretion of adipose tissue is more energy 

consuming than lean muscle growth (Gaines et al. 2012). Consistent with that, more efficient 

utilisation of energy by low-RFI pigs were shown to result in decreased deposition of fat in 

this line of pigs (Lefaucheur et al. 2011; Smith et al. 2011; Faure et al. 2013).  

1.1.3 Quantitative trait loci for feed efficiency 

Some phenotypic traits, e.g. feed efficiency, are termed as polygenic/quantitative traits, 

meaning that they are impacted by several genes/loci. Quantitative trait loci (QTLs) mapping 

serves as a powerful tool for detecting genomic regions associated with a particular trait.      

A number of QTLs for feed efficiency in pigs have been detected using various techniques 

(Figure 1.3).  

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Pie chart representing a total number of 191 quantitative trait loci (QTLs) across 

porcine genome for feed efficiency and a percentage of these QTLs mapped to a particular 

chromosome (SSC). Each segment denotes a chromosome. Data gathered from Pig QTLdb 

(http://animalgenome.org/cgi-bin/QTLdb). 

 

A genome-wide association study (GWAS) approach has been used in some studies to 

identify QTLs for feed efficiency in pigs. Specifically, a number of significant QTLs for FCR 

on porcine chromosomes (SSC) 4, 7, 8 and 14 were detected by GWAS in Duroc pigs 

http://animalgenome.org/cgi-bin/QTLdb
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(Sahana et al. 2013), however other GWAS study in the same breed identified only one QTL 

for FCR on SSC 4 (Jiao et al. 2014). Several QTLs influencing RFI on SSC 3, 8, 9, 10, 15 

and 17 (Do et al. 2014b), as well as 7 and 14 (Onteru et al. 2013) were reported in Yorkshire 

pigs also using GWAS. Additionally, QTLs on SSC 1, 8, 9, 13 and 18 were inferred from a 

GWAS in RFI divergent Duroc boars (Do et al. 2014a).  

1.2 Meat quality 

1.2.1 Key meat quality traits 

Meat quality is an economically important and complex trait that includes a number of 

objectively and subjectively evaluated parameters including technological and sensory 

attributes, as well as nutritional value (Erkens et al. 2010). Tenderness is one of the most 

important characteristics of meat influencing consumers’ acceptance (Huffman et al. 1996; 

Mubashera et al. 2013). Post-mortem degradation of cytoskeletal protein by calpain system is 

a key factor contributing to meat tenderness (Polidori et al. 2001). Meat tenderness is also 

affected by concentration of a total collagen, types of collagen and collagen matrix cross-

linkages. This influence of connective tissue on meat tenderness is known as ’background 

toughness’ (Purslow 2014). Moreover sarcomeres, which begin to shorten during rigor, also 

play a role in reducing tenderness of meat (Maher et al. 2005).  

 

Intramuscular fat (IMF), known as marbling, greatly contributes to the flavour of meat. 

Flavour is a mixture of taste and aroma (Spence 2015). During heating, fatty acids undergo 

oxidation, which leads to decomposition and development of aroma volatiles (Resconi et al. 

2013). Increased marbling was significantly correlated with reduced drip loss and cook loss, 

as well as improved sensory tenderness and juiciness (Cannata et al. 2010). IMF contains 

higher proportion of phospholipids comparing to subcutaneous adipose tissue and this is due 

to the fact that muscle tissue is richer in the amount of cell membranes (Wood et al. 2008).  

 

Water holding capacity (WHC) is the ability of meat to hold its water after cutting, heating, 

grinding or pressing (Zayas 1997). It is one of the most important meat quality traits 

contributing to the yield of the product (Cheng and Sun 2008). Various factors such as stress 

of animal before slaughter, methods of stunning, post-slaughter chilling and aging of meat 

contribute to WHC (Cheng and Sun 2008). WHC can be determined by measuring drip loss 
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of fresh meat, which is a high protein fluid lost from meat upon gravity (Torres-Filho et al. 

2017).  

Myoglobin is a major pigment found in meat that contributes to the red colour of meat. Meat 

that is not exposed to oxygen (deoxymyoglobin) is characterised by purplish-red or purplish-

pink colour, however upon exposure to oxygen (oxymyoglobin) meat changes colour to 

bright red. This colour change is known as bloom. Both deoxymyoglobin and oxymyoglobin 

can form metmyoglobin which is associated with oxidation of iron molecules resulting in 

brownish-red colour (Mubashera et al. 2013). The rate of colour change can be influenced by 

temperature, pH and post-mortem aging (Gasperlin et al. 2001; Andrés-Bello et al. 2013). 

1.2.2 Factors influencing conversion of muscle to meat and the quality of meat 

Muscle pH evolution influences the rate and extent of converting muscle into meat. In the 

first 24 hours after slaughter level of glycogen in muscle is low due to anaerobic glycolysis 

resulting in accumulation of lactic acid, which in turn causes the pH of muscle to drop from 

7.4 to 5.5 (Scheffler et al. 2013). Acute or short term stress before killing is the major cause 

of Pale Soft Exudative (PSE) meat. Rapid pH decline (< 6 at 45 minutes post-mortem) due to 

lactic acid accumulation in the muscle is observed while the temperature of meat is still high. 

Low pH and high temperature lead to a decreased water-holding capacity of meat as a 

consequence of muscle protein denaturation (Adzitey and Nurul 2011). On the other hand, 

chronic or long term stress results in Dark Firm Dry (DFD) meat, which is characterised by 

higher ultimate pH (≥ 6) in the muscle. The cause of very restricted pH decline is limited 

glycogen content at death which does not allow significant production of lactic acid (Adzitey 

and Nurul 2011). Due to the higher pH, little denaturation of protein is observed therefore the 

water-holding capacity of the meat is relatively high (Penny 1969; Adzitey and Nurul 2011).  

 

Conversion of muscle to meat begins immediately post-mortem through degradation of 

myofibril and cytoskeletal proteins known as proteolysis. There are four main proteolytic 

systems including calpains, caspases, cathepsins and proteasomes (Kemp et al. 2010). 

Calpains belong to intracellular cysteine proteases family requiring Ca2+ for activation and 

are expressed in skeletal muscle as three isoforms: µ-calpain (calpain 1), m-calpain (calpain 

2) and calpain 3. Calpain 1 and its inhibitor, calpastatin, play the most important role in post-

mortem proteolysis and meat tenderisation (Koohmaraie and Geesink 2006). Caspases are 

cysteine aspartate-specific proteases and can be divided into initiator caspases (caspase 8, 9, 
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10 and 12) and effector caspases (caspase 3, 6 and 7) (Kemp and Parr 2012). Calpain 

inhibition via up-regulation of calpastatin has been shown to increase caspase 3 activity and 

apoptosis (Kemp et al. 2010). Furthermore, calpastatin is proteolysed by caspase 1, 3 and 7 

(Wang et al. 1998). Thus activated caspases present in muscle post-mortem can contribute to 

meat quality through indirect up-regulation of calpains. Moreover, proteasomes together with 

cathepsins, which are located in the lysosomes and released in the cytosol upon apoptosis, 

also influence muscle proteolysis (Nowak 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 The impact of calpastatin and calcium on meat tenderness through 

inhibition/activation of µ-calpain (calpain 1). Adapted from http://beltiebeef.com. 

 

Moreover, post-mortem carcass temperatures also affect the rate and extent of converting 

muscle into meat, with temperatures below 10°C in early post-mortem muscle being 

associated with ‘cold shortening’, also referred to as ‘sarcomere shortening’ (James and 

James 2010). This phenomenon can be reduced by permitting the temperature of muscle to 

drop below 10°C until the pH of muscle had fallen below 6.2 (Bendall 1973). Meat 

tenderness can be enhanced by applying electrical stimulation to pre-rigor carcass causing 

muscle contraction, which leads to rapid depletion of muscle glycogen before chilling 

(Adeyemi and Sazili 2014), or through pre-rigor alteration in carcass position causing some 

muscle to stretch and other muscle to relax (Herring et al. 1965).    

http://beltiebeef.com/
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1.2.3 Genetic markers for pork meat quality traits 

Similarly to feed efficiency, meat quality is a complex trait influenced by animal’s genetic 

makeup. A number of molecular markers have been identified with the aim to improve meat 

quality traits through genetic selection. Single nucleotide polymorphisms (SNP) in halothane 

(HAL) and ryanodine receptor 1 (RYR1) genes involved in Ca2+ release (Pabelick et al. 2001; 

Lanner et al. 2010), were associated with lower ultimate pH, lighter meat colour and greater 

drip loss (Guardia et al. 2004; Škrlep et al. 2010; Silveira et al. 2011). A variation in the 

promoter region of the insulin-like growth factor 2 (IGF2) regulating cell proliferation, 

differentiation and apoptosis was associated with intramuscular fat content (Aslan et al. 

2012). Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) 

is another candidate gene for meat quality traits. It plays a part in energy and fat metabolism, 

adipogenesis and muscle fibre type formation (Erkens et al. 2010). Polymorphisms in this 

gene have been associated with fat related traits (Kunej et al. 2005) and tenderness (Erkens et 

al. 2010). A number of SNPs in calpain 1 (CAPN1), which is involved in proteolysis of 

myofibril proteins, demonstrated associations with pork tenderness (Yang et al. 2007). 

Moreover, variations in calpastatin (CAST), known for inhibiting calpain 1 activity, has also 

been associated with meat tenderness (Lindholm-Perry et al. 2009). Protein kinase AMP-

Activated non-catalytic subunit gamma 3 (PRKAG3; also known as rendement napole, RN) 

participates in muscle energy metabolism and a polymorphism within this gene has been 

associated with intramuscular fat deposition and drip loss (Škrlep et al. 2010; Ryan et al. 

2012; Salas and Mingala 2017).  

1.3 Impact of feed efficiency on meat traits and functional networks 

underpinning the relationship between meat quality and feed efficiency    

Processes related to muscle growth, e.g. skeletal muscle differentiation and proliferation were 

identified to be significantly enriched amongst up-regulated genes in low-RFI muscle (Jing et 

al. 2015). Surprisingly, Gondret et al. (2017) reported a suppression of skeletal muscle 

development in low-RFI line. Higher abundance of genes involved in protein synthesis 

(Vincent et al. 2015; Gondret et al. 2017) and degradation, more specifically 

‘ribonucleoprotein complex biogenesis’ and ‘ubiquitin-dependent catabolic process’ in      

low-RFI pigs (Gondret et al. 2017) were also identified. These biochemical processes 

occurring in RFI divergent muscle could explain phenotypically observed enhanced muscle 
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content (Lefaucheur et al. 2011), Moreover, processes related to lipid metabolism such as 

lipid localisation and transport, cellular lipid catabolic processes, and fatty acids metabolism 

and beta-oxidation were significantly enriched with differentially expressed genes in relation 

to RFI (Le Naou et al. 2012; Jing et al. 2015; Vincent et al. 2015; Gondret et al. 2017). 

Accordingly, reduced back-fat thickness (Lefaucheur et al. 2011; Faure et al. 2013) while 

increased leanness (Lefaucheur et al. 2011; Smith et al. 2011; Faure et al. 2013) and 

decreased intramuscular fat content (Lefaucheur et al. 2011; Smith et al. 2011), as well as 

reduced sensory scores for marbling (Faure et al. 2013) were reported. 

 

No significant association between RFI and tenderness, evaluated by sensory panel, was 

found in a study carried out by Faure et al. (2013). In contrast, another sensory analysis has 

shown a positive correlation between RFI and tenderness, whilst negative correlation between 

RFI and chewiness (Smith et al. 2011). The same author postulated that tenderness of meat 

produced by low-RFI pigs could be negatively affected by greater calpastatin activity 

resulting in decreased post-mortem protein degradation (Smith et al. 2011). Consistent with 

this, calpain 2 was found over-expressed in muscle from low-RFI pigs (Vincent et al. 2015).    

 

Observed reduced mitochondrial energy metabolism (Le Naou et al. 2012; Jing et al. 2015; 

Vincent et al. 2015; Fu et al. 2017) and greater glycolytic potential (Lefaucheur et al. 2011; 

Faure et al. 2013) in low-RFI could have resulted in decreased ultimate pH, greater drip loss 

(Lefaucheur et al. 2011; Faure et al. 2013) and increased values for lightness (Lefaucheur et 

al. 2011) in muscle from low-RFI pigs. Moreover, these changes in energy metabolism and 

glycolytic potential could be attributable to observed differences in fibre type and a switch 

away from oxidative metabolism in low-RFI muscle (Lefaucheur et al. 2011). However, no 

evidence for the switch from oxidative to glycolytic fibres was detected by other study (Smith 

et al. 2011).    

1.4 Research aims  

This study is part of the pan-European ECO-FCE project, of which overall findings will assist 

the meat animal industry in predicting the effect of management and feeding strategies on 

feed efficiency and meat quality, and identifying strategies to improve efficiency without 

compromising meat quality. There is some evidence that divergence in feed efficiency affect 

meat quality (Lefaucheur et al. 2011; Smith et al. 2011; Faure et al. 2013), nevertheless the 



Introduction 

10 
 

relationship between feed efficiency and meat quality is not fully elucidated and the 

biological processes associated with feed efficiency which impact meat quality are not well 

understood. The current study was conducted at both Teagasc Food Research Centre (Dublin, 

Ireland) and Leibniz Institute for Farm Animal Biology (FBN; Dummerstorf, Germany) and 

the aims were to:  

 

Aim 1: Identify candidate genes for feed efficiency in pigs using the genome-wide 

association (GWAS) study, and elucidate pathways and biological functions enriched with 

positional genes closest to significantly associated quantitative trait loci. 

 

Aim 2: Examine technological, sensory and nutritional quality of Longissimus thoracis et 

lumborum (LTL) muscle from pigs differing in feed efficiency, investigate the molecular 

mechanisms induced in that muscle contributing to differences in feed efficiency and the 

functional networks underpinning the relationship between meat quality and feed efficiency.  

 

Aim 3: Illuminate the biological processes in major metabolic and growth-related tissues, i.e. 

adipose and liver, that underpin the differences in feed efficiency.     

  

Additionally, through obtaining the Teagasc Overseas Training Award, the study programme 

was expanded from European to global scale through conducting research for a three-month 

period at U.S. Meat Animal Research Center (U.S. MARC; Nebraska, USA). The primary 

purpose of this visit was to validate candidate genes for feed efficiency, identified through the 

GWAS, in U.S. pig population. 
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2.1 Experimental design 

In the Aim 1 of this project blood samples from n = 952 Maxgro boars (Hermitage Genetics, 

Ireland), which is predominately Pietrain based terminal line, were used. Estimated breeding 

values (EBV) for feed conversion ratio (FCR) and its related trait, days to 110 kg (D110), 

were recorded by Hermitage Genetics following the method of Varley et al. (2011). In the 

Aim 2, Longissimus thoracis et lumborum (LTL) muscle from two batches of animals was 

utilised for phenotypic and transcriptomic evaluation. The first batch included n = 20 Maxgro 

(Hermitage Genetics) x (German Landrace x Large White) gilts from low-RFI (high-FE) and 

high-RFI (low-FE) groups, selected from a total of n = 80 RFI-divergent pigs. Phenotypic 

and transcriptomic analysis were carried out on all 20 animals. The second batch included     

n = 40 Maxgro (Hermitage Genetics) x (German Landrace x Large White) pigs from low-RFI 

(high-FE) and high-RFI (low-FE) groups, selected from a total of n = 138 RFI-divergent pigs. 

In this batch, n = 40 were used for phenotypic evaluation, whilst n = 16 (selected of the 40) 

were utilised for molecular examination. RFI tests and animal selection based on RFI values 

are described in details in the manuscripts (see Annex A2 and A3). In the Aim 3, blood 

parameters and liver weight of n = 40 Maxgro (Hermitage Genetics) x (German Landrace x 

Large White) pigs from the second batch of animals (Aim 2) were measured. For molecular 

experiments, adipose and liver tissue samples of n = 16 pigs, selected of the 40, were utilised.  

     

The experimental design, which is depicted in Figure 2.1, consisted of the following parts:     

a genome wide association study for feed efficiency in Maxgro boars using PorcineSNP60 

BeadChip; transcriptome analysis of the LTL muscle from the first batch of Maxgro x 

(German Landrace x Large White) pigs from low-RFI (high-FE) and high-RFI (low-FE) 

groups using Porcine Snowball Array; RNA sequencing of the LTL muscle, adipose and liver 

tissue from the second batch of Maxgro x (German Landrace x Large White) pigs from     

low-RFI (high-FE) and high-RFI (low-FE) groups using Illumina HiSeq2500; analysis of 

carcass and meat quality traits, as well as biochemical and haematological blood parameters 

of Maxgro x (German Landrace x Large White) pigs from low-RFI (high-FE) and high-RFI 

(low-FE); and elucidation of biological processes affecting feed efficiency and functional 

networks underpinning the relationship between meat quality and feed efficiency.   
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Figure 2.1 Pipeline depiction of the experimental design. LTL: Longissimus thoracis et lumborum; RFI: residual feed intake. 
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2.2 Sample collection   

Animal care, slaughter and tissue collection of the animals used in this study were performed 

in compliance with national regulations related to animal research and commercial 

slaughtering and were approved by the local committees for the care and use of animals of 

Teagasc and Leibniz Institute for Farm Animal Biology. In this project, samples for both 

molecular and phenotypic analysis were collected. Molecular sampling was conducted as 

follows - Aim 1: blood from Vena jugularis was collected from each boar and preserved by 

Hermitage Genetics; Aim 2: for the first batch of animals, samples of the LTL muscle were 

collected, cut up finely and preserved in RNALater® (Ambion Inc., Austin, USA) within 10 

minutes post-mortem and then stored overnight at 4°C followed by storage at -80°C; for the 

second batch of animals, samples of the LTL muscle were collected and snap frozen in liquid 

nitrogen within 10 minutes post-mortem and stored at -80°C. Aim 3: samples of the 

subcutaneous adipose tissues (above the LTL muscle) and the right liver lobe (Lobus spigelii) 

were collected and snap frozen in liquid nitrogen within 10 minutes post-mortem followed by 

storage at -80°C. The sample collection for phenotypic analysis was conducted as follows - 

Aim 2: carcass traits were measured on day 0 post-mortem, whilst for meat quality analysis 

the LTL muscle was excised 24 hours post-mortem. Aim 3: liver weights were recorded and 

blood samples were collected during slaughter. For biochemical analysis, upon allowing the 

blood to clot at room temperature, the samples were centrifuged and the serum was collected 

and stored at -80°C until analysed. For haematological analysis, blood was treated with 

EDTA to prevent clotting and analysed within 4 hours of sample collection. This chapter 

briefly summarises the main methods used for the molecular and phenotypic analysis.           

A detailed methodology is described in the publications (see Annex A1 - A5).    

2.3 Approaches for Aim 1 

2.3.1 SNP array genotyping, quality control and statistical analysis  

Genotyping with PorcineSNP60 BeadChip (Illumina Inc., San Diego, CA, USA) was 

performed in compliance with the SNP Infinium HD assay protocol (http://illumina.com). 

Subsequently, data was analysed using GenomeStudio (Version 2011.1, Illumina Inc.). 

Individuals with call rate ≤ 97% and SNPs with call frequency ≤ 95% and minor allele 

frequency (MAF) ≤ 0.03 were excluded. After quality control, remaining SNPs were tested 

for an association with EBVs FCR and days to 110 kg (D110). SNP-trait association analysis 
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was implemented with a mixed linear model using JMP Genomics 6 software (version 6, 

SAS INST., Inc., Cary, NC, 2002–2010). In order to correct for population structure, the 

relationship matrix tool implemented in JMP Genomics 6 was used to compute identity-by-

state (IBS) relations between individuals based on genotype data (Yu et al. 2006). After 

compression of K matrices, these relations were included as a random effect in the model. 

Threshold p-values for suggestive and Bonferroni-adjusted genome-wide significance were 

set to -log10[p-value] = 4.7 and -log10[p-value] = 6, respectively.  

2.3.2 Functional enrichment among mapped genes and validation of candidate genes 

A list of genes closest to the significant SNPs (-log10[p-value] ≥ 6) was created allowing a 

maximum distance of 1Mb between the marker and genes, using the Ensembl database 

(http://ensembl.org, release 78) and was uploaded into Ingenuity Pathways Analysis (IPA; 

Ingenuity® Systems, http://ingenuity.com) Benjamini-Hochberg corrected P-values (< 0.01) 

were used to map the genes to the most significant molecular, cellular and physiological 

systems development functions. Genotyping of selected SNPs, located in positional candidate 

genes that are not represented on the PorcineSNP60 BeadChip, was performed in a subset of 

Maxgro boars using TaqMan® SNP Genotyping Assays (Applied Biosystems, Foster City, 

CA, USA). Allele frequencies were computed and deviations from Hardy–Weinberg 

equilibrium (HWE) (P < 0.05) were tested using Haploview software (Barrett et al. 2005). 

Mixed linear model using JMP Genomics 6 software (version 6, SAS INST., Inc., Cary, NC, 

2002–2010) was used to evaluate associations between the SNPs with allele frequency as 

predicted and greater than 5% and EBVs for FCR and D110 in the Maxgro boars. 

Compressed IBS relations were included as a random effect in the model.     

2.4 Approaches for Aim 2  

2.4.1 Microarray hybridisation and differential expression analysis  

Double stranded cDNA was synthesised using total RNA. Antisense cRNA was then purified 

and sense-strand cDNA was synthesised by the reverse transcription of cRNA, using a 

GeneChip® WT Amplification Kit (Affymetrix, Santa Clara, CA, USA). Biotin-labeled 

cDNA was then fragmented with GeneChip® WT Terminal Labeling Kit (Affymetrix) and 

injected onto porcine snowball arrays (Affymetrix) containing 47,845 probe sets with a mean 

coverage of 22 probes per transcript (Freeman et al. 2012). The arrays were incubated for 16 
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hours at 45°C in Affymetrix GeneChip Hybridization Oven 640. After hybridisation, the 

arrays were washed and stained with streptavidin-phycoerythrin antibody solution 

(Affymetrix) on an Affymetrix GeneChip® Fluidic Station 450 station. The arrays were then 

scanned with Affymetrix GeneChip Scanner 3000 and microarray images were quantified 

using GCOS 1.1.1 (Affymetrix). Bioinformatic analysis, including pre-processing and 

normalisation, was implemented using R (version 3.1.1, http://R-project.org/). Robust multi-

array average normalisation (Log2) was performed and probe sets with a low standard 

deviation (std ≤ 0.23) were discarded. A further filtering step involved filtering by both 

control probe sets and means (means ≤ 2.5 were rejected). PROC MIXED including RFI 

groups and sow as fixed effects and birth weight as a covariate was implemented in JMP 

Genomics 6 software of SAS (version 6, SAS INST.) to determine relative changes in 

transcript abundances (fold change).  

2.4.2 RNA sequencing and differential expression analysis 

RNA library preparation was carried out using the TruSeq® Stranded mRNA protocol. 

Following RNA sequencing with Illumina HiSeq2500, paired-end reads were mapped to the 

reference Sscrofa10.2 (Ensembl release 84) using TopHat (2.1.0) (Kim et al. 2013). Read 

counts were assigned to the gene features using the HTSeq 0.6.1 program (Anders et al. 

2015). Differential gene expression analysis in relation to FE was performed using the Wald 

test implemented in DESeq2 package (3.4.0, http://R-project.org), including RFI groups and 

sow as fixed effects.    

2.4.3 Functional annotation of microarray and RNA sequencing data 

For microarray data, gene symbols for differentially expressed (DE) genes at a  P < 0.05 and 

related fold changes were subjected to ontology analysis (IPA; Ingenuity® Systems, 

http://ingenuity.com) and Benjamini-Hochberg (B-H) corrected P-values (< 0.05) were used 

to detect the most significant canonical pathways and biological functions. For RNA-seq 

data, a list of DE genes at a P < 0.01 and corresponding fold changes were submitted to IPA, 

whereby B-H corrected P-values (< 0.01) were used to extract significantly enriched         

bio-functions and canonical pathways. Functional annotations with a z-score greater than 2 

and lower than -2 were considered significantly activated and inhibited in low-RFI (high-FE) 

pigs, respectively. Information contained in the Ingenuity® Knowledge Base was used to 

create potential important networks of DE genes. Additionally for microarray data, a list of 

http://ingenuity.com/
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DE microRNAs (miRNAs; represented on the snowball array) along with DE transcripts and 

related fold changes (P ≤ 0.05) were submitted to Ingenuity miRNA Target Filter 

(http://www.ingenuity.com/) to predict target transcripts regulated by these miRNAs. 

Furthermore, potential networks of the DE transcripts that were predicted to be regulated by 

the DE miRNAs were generated. 

2.4.4 Phenotypic measurements 

Based on the difference in light reflectance of tissues, carcass was measured for fat thickness 

and muscle depth using Hennessy Grading Probe (Hennessy Grading Systems Ltd., 

Auckland, New Zealand). pH of LTL muscle was measured at several time points post-

mortem (45min, 3h and 24h for the first batch of animals, whilst 45min, 2h, 3h, 4h, 5h and 

24h for the second batch of animals), using a portable Hanna pH meter (Hanna Instruments, 

Woonsocket, RI, USA). Meat colour was measured with MiniScan XE Plus (Hunter 

Associates Laboratory Inc., Virginia, USA) using CIE L* (lightness), a* (redness) and b* 

(yellowness) colour scale. Drip loss was determined using the bag method of Honikel (1998), 

whereby pork chops measuring 2.5 cm in thickness and trimmed to a weight of 80.0 g ± 1.0 g 

were suspended by string inside an inflated and sealed plastic bag for 48h at 4°C, patted dry 

and reweighed and the percentage change recorded. For cook loss (CL) evaluation, muscle 

chops were placed in plastic bags and immersed in a water bath (Grant Instruments Ltd., 

England) at 77°C until they reached a core temperature of 75°C. Meat tenderness was 

measured using the Warner Bratzler shear force (WBSF) method, whereby six cores of      

1.25 cm diameter, obtained from the previously cooked samples, were cut in parallel to the 

longitudinal orientation of fibres and sheared perpendicularly to the muscle fibres long axis 

(Instron model 5543). Data was analysed using Blue Hill software (Instron Ltd., 

Buckinghamshire, UK). Protein content was measured with a Leco Nitrogen/Protein Analyser 

(FP-528, Leco Corp., MI, USA) using the Dumas method in accordance with AOAC method 

992.15, 1990. Intramuscular fat (IMF) content was measured with NMR Smart Trac and 

Smart 5 Rapid Fat Analyser (CEM Corporation, USA) using AOAC method 985.14. Fatty 

acid (FA) profile of IMF was analysed using Gas Chromatography - Flame Ionization 

Detector (GC - FID) in accordance with SAL Cam Nut003 method (Pearson's Chemical 

Analysis of Foods, 9th Edition, Longman Group UK Limited, 1991, 0-582-40910-1). For 

sensory assessment, chops aged at 4°C for 7 days were grilled (Velox grill, Silesia Velox UK 

Ltd., Oxfordshire, England) until the core temperature reached 70°C and cut into 2.5 cm x     

http://www.ingenuity.com/
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2 cm cubes. Randomised samples were evaluated by trained panellists rating the pork chops 

sensory attributes on a scale of 1 (very poorly detectable attribute) to 100 (extremely 

detectable attribute). To evaluate associations between FE and meat quality traits, PROC 

MIXED procedure in the SAS system was used. The model for the first batch of animals 

included RFI groups as a fixed effect, sow as a random effect and pre-slaughter live weight as 

a covariate, as well as the absolute values of RFI as a weight statement to account for 

differences in RFI values within the RFI groups. The model for the second batch of animals 

incorporated RFI groups, gender and slaughter day as fixed effects, sow as a random effect, 

live weight as a covariate and the absolute values of RFI as a weight statement. 

2.5 Approaches for Aim 3 

2.5.1 RNA sequencing and differential expression analysis 

Total RNA was used as input for the library preparation according to the TruSeq Stranded 

mRNA protocol (Illumina, San Diego, CA, USA). Subsequently, sequencing was performed 

on an Illumina HiSeq2500 generating paired-end reads. Reads were mapped to the reference 

(Ensembl release 84) using TopHat (2.1.0) (Kim et al. 2013) and read counts were assigned 

to the gene features employing HTSeq 0.6.1 (Anders et al. 2015). The assessment of the 

differentially expressed genes included RFI groups and sow as fixed effects for adipose 

tissue, whilst RFI groups and slaughter date as fixed effects for liver tissue, and was 

performed using the Wald test implemented in DESeq2 (3.4.0, www.R-project.org).  

2.5.2 Gene ontology analysis  

To integrate gene expression data, the list of DE genes (P < 0.01) and corresponding fold 

changes were passed to Ingenuity Pathway Analysis (IPA; Ingenuity® Systems, 

http://ingenuity.com), whereby Fisher’s exact test P-values (< 0.01) were used to extract 

significantly enriched bio-functions and canonical pathways. Potential important interaction 

networks enriched with DE genes were generated using the Ingenuity® Knowledge Base. 

Additionally for adipose tissue, IPA Upstream Regulator analysis was utilised to identify 

potential transcription factors, growth factors etc., that can elucidate the differences in gene 

expression. Functional annotations and upstream regulators with a z-score greater than 2 and 

lower than -2 were considered significantly activated and inhibited in low-RFI (high-FE) 

pigs, respectively. 

http://www.r-project.org/
http://ingenuity.com/


Materials and Methods 

19 
 

 2.5.3 Phenotypic measurements 

Biochemical serum parameters, such as creatinine, creatine kinase, total protein, blood urea 

nitrogen, triglycerides, glucose and cholesterol, were analysed with ABS Pentra 400 clinical 

chemistry analyser (Horiba, ABX, North Hampton, UK). For haematological analysis, white 

blood cells, lymphocytes, monocytes, granulocytes, red blood cells, red blood cell 

distribution width, haemoglobin, haematocrit, mean corpuscular volume, mean corpuscular 

haemoglobin, platelets and mean platelet volume were measured with a Beckman Coulter Ac 

T Diff analyser (Beckman Coulter Ltd., High Wycombe, UK). The PROC MIXED procedure 

in the SAS system was used to evaluate associations between FE and liver weight as well as 

biochemical and haematological parameters. The model included RFI group as a fixed effect, 

slaughter day as a random effect, and the absolute values of RFI as a weight statement. 

Additionally for liver weight, final live body weight was incorporated in the model as a 

covariate.  
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There is some evidence that selection for improved feed efficiency (FE) is associated with 

leaner carcasses and may alter meat quality (Lefaucheur et al. 2011; Smith et al. 2011; Faure 

et al. 2013). Nevertheless the relationship between FE and meat quality is not fully 

elucidated, therefore this thesis aimed to identify genomic regions associated with FE in a 

commercial pig population, evaluate the consequences of FE on meat quality and investigate 

the molecular mechanisms contributing to differences in FE as well as understand the 

functional networks relating FE to meat quality. In order to gain deeper insights of biological 

processes governing differences in FE and meat quality, three metabolically important 

tissues, including muscle, adipose and liver were analysed.  

3.1 Aim 1 

Genome-wide association analysis and functional annotation of positional candidate genes 

for feed conversion efficiency and growth rate in pigs 

In this study, a genome-wide association study (GWAS) was performed to elucidate the 

genetic architecture of feed conversion efficiency and growth rate in pigs. After quality 

control, 940 individuals and 48,440 SNPs, mapped to the Sscrofa 10.2 pig genome assembly, 

remained for the further analysis. In total 132 and 71 SNPs reached the threshold of 

suggestive significance (-log10[p-value] ≥ 4.7) for an association with EBVs FCR and D110, 

respectively. 25 SNPs mapping to 10 porcine autosomes and 12 SNPs mapping to 7 porcine 

autosomes crossed the Bonferroni-adjusted genome-wide significance threshold                        

(-log10[p-value] ≥ 6) for an association with EBVs FCR and D110, respectively. Most of the 

identified quantitative trait loci (QTLs) are novel, although some of them were located not far 

from previously reported QTLs. Specifically, a QTL located at 78.3 to 80.5 Mb on SSC 6 

coincided with a QTL for FCR in a European Wild Boar x Meishan cross mapped in the 

region of 127.3 cM (64.9 to 89 Mb, PigQTLdb) (Yue et al. 2003). Additionally this QTL 

overlapped with a QTL for body weight detected at 78.3 to 78.7 Mb in Iberian x Landrace 

and Iberian x Meishan crosses (Muñoz et al. 2009). This QTL has thus been independently 

discovered in different populations, which supports attributing it to biologically relevant 

common genetic variation (Becker et al. 2013). QTL located at 86.7 to 89.1 Mb on SSC 4 

found in this study was in a close proximity to QTL for FCR in a European Wild Boar x 

Pietrain cross (Cepica et al. 2003) at 75 cM (89.5 to 98.2 Mb, PigQTLdb). Another QTL on 

SSC 4 was detected at 20 cM (7.2 to 12.6 Mb, PigQTLdb) in a three-generation full-sib 

population, created by crossing Pietrain sires with Large White x Landrace x Leicoma dam 
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line (Duthie et al. 2008), which is very distant from the QTL identified in this study. These 

QTLs were detected by linkage analysis and therefore were mapped with very low resolution 

and cover large intervals. A GWAS in a Danish Duroc population identified QTL for FCR 

located on SSC 4 at 63.8 to 64 Mb (Sahana et al. 2013). Another GWAS revealed QTL for 

FCR on SSC 4 at 4 to 5 Mb in a Duroc terminal sire population (Jiao et al. 2014). The very 

small number of overlapping QTL regions is in accordance with Gregersen et al. (Gregersen 

et al. 2012) who reported limited overlap of QTL for a particular trait between breeds. This 

might suggest that different QTLs regulate feed efficiency traits in the Maxgro boars 

compared to other breeds (de Oliveira et al. 2014). 

 

A total of 86 and 16 genes mapped within 1Mb upstream and downstream of significant 

markers for EBV FCR and D110, respectively, were uploaded into Ingenuity Pathways 

Analysis. Functional annotation revealed ‘organismal development’ and ‘organ morphology’, 

‘lymphoid tissue and ‘haematological system development’ and ‘immune cell trafficking’ to 

be significantly enriched among the genes located in QTL regions for EBV FCR.  

Furthermore, statistically associated biological functions with the positional candidate genes 

for EBV D110 were ‘energy and lipid metabolism’, ‘endocrine system development’, and 

‘small molecule biochemistry’. Four SNPs located near the QTLs for EBV FCR (rs80900450, 

rs319738340, rs340456509 and a novel SNP) in protein kinase, DNA-activated, catalytic 

polypeptide (PRKDC), selectin L (SELL), nuclear receptor subfamily 2 group E member 1 

(NR2E1) and opioid receptor delta 1 (OPRD1) respectively and two SNPs mapped close to 

the QTL for EBV D110 (rs332368013 and rs81508945) in methyl-CpG binding domain 

protein 5 (MBD5) and aldo-keto reductase family 1 member C3 (AKR1C3) respectively were 

confirmed to be polymorphic in target populations by sequencing. Subsequently, these SNPs 

were genotyped in 436 Maxgro boars. OPRD1 was not tested for association with EBVs due 

to its minor allele frequency being less than 5 percent. SNP in MBD5 significantly departured 

from HWE (P < 0.05) and for this reason was also excluded from further analysis. SNP 

rs80900450 and rs319738340 in PRKDC and SELL respectively, were confirmed to be 

significantly associated with EBV for FCR. PRKDC is involved in the signalling pathway 

responsible for the formation of fat from carbohydrates in the liver and its deficiency has 

been shown to impair lipogenesis (Wong et al. 2009). SELL plays a role in lymphocyte 

trafficking to lymph nodes and Peyer’s patches, as well as targeting lymphocytes and 

neutrophils to an inflammation source (Raffler et al. 2005). Moreover, rs340456509 SNP in 

the NR1E2 was significantly associated with breeding values for FCR and D110. A previous 
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study showed a reduced volume of olfactory bulb in NR2E1 knockout mice (Raffler et al. 

2005). Olfactory bulb plays an important part in regulating feed intake as it is targeted by 

signals responsible for the regulation of energy balance (Aime et al. 2014).   

 

In this part of the study, a number of chromosomal regions significantly associated with feed 

conversion efficiency and growth rate were demonstrated in the examined terminal pig sire 

line. Also, by validation of putative candidate genes from GWAS mapping near the 

significant SNPs, a number of genes significantly associated with feed conversion efficiency 

were confirmed. Feed efficiency is a highly complex trait affected by a number of factors and 

this study suggests that the genetic predisposition to greater efficiency traits is associated 

with lipogenesis, olfactory reception, and also immunological status.    

3.2 Aim 2 

Analysis of meat quality traits and gene expression profiling of pigs divergent in residual 

feed intake   

Here, gene expression profiling of muscle from FE-divergent pigs using microarray 

technology was performed to elucidate mechanistic insights on the biological events 

governing differences in FE that have consequences for eating quality. First, various meat 

and carcass quality parameters were measured. High-FE pigs were associated with leaner 

carcasses (P < 0.05), greater muscle content (P < 0.05) with lower intramuscular fat (IMF;    

P < 0.05). The pH at 45min post-mortem had a tendency toward increased values in the   

high-FE group (P = 0.055), however pH at 3h and 24h post-mortem did not differ between 

the two groups. Moreover meat from high-FE pigs tended to have increased cook loss at day 

1 post-mortem (P = 0.053) but there was no difference detected at day 7 post-mortem. Muscle 

from high-FE pigs was significantly associated with increased Warner Bratzler shear force 

values (WBSF; less tender) at day 1 post-mortem (P < 0.01) and had a tendency towards 

increased WBSF scores at day 7 post-mortem (P = 0.057). Significant difference in 

tenderness between the FE groups was also detected by sensory panellists who scored the 

high-FE meat (day 7 post-mortem) as less tender (P < 0.05). Pork sensory assessment also 

revealed that meat produced from high-FE pigs had higher scores for stringy and chewy 

texture (P < 0.05). Additionally, meat from high-FE pigs was found less crumbly in texture 

(P < 0.05), less sweet (P < 0.001) and more sour (P < 0.05). From a nutritional point of view, 

meat from high-FE group contained significantly lower amounts of saturated fatty acids 
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(SFA) such as myristic, palmitic and stearic (P < 0.05) and monounsaturated fatty acids 

(MUFA) including palmitoleic, oleic (P < 0.05) and eicosenoic (P < 0.1). The IMF from 

high-FE group had significantly higher amounts of polyunsaturated fatty acid (PUFA) such as 

linoleic (P < 0.001) and alpha-linolenic (P < 0.05), and lower level of palmitic acid              

(P < 0.01) belonging to a SFA family.  

 

Gene expression profiling revealed a total of 30,992 probe-sets to remain after filtering and 

1,035 probes differentially expressed (P ≤ 0.05, q < 0.75) between high- and low-FE groups 

(645 probes were up-regulated and 390 were down-regulated in high-FE pigs). Of the 1,035 

probes, 875 were annotated and assigned to 800 genes (481 genes were up-regulated and 319 

genes were down-regulated in high- compared to low-FE pigs) and 33 miRNAs (27 miRNAs 

were up-regulated and 6 miRNAs were down-regulated in high- compared to low-FE pigs). 

Gene ontology analysis exposed twenty six molecular and cellular functions significantly 

associated with genes DE in relation to FE (P < 0.05). Twenty five over-represented gene 

networks were generated for differentially expressed genes in relation to FE. The most 

significant network was represented by functions related to ‘molecular transport’, ‘nucleic 

acid metabolism’ and ‘small molecule biochemistry’, and contained 32 DE tumor suppressor 

p53 (TP53)-associated molecules. In agreement with increased muscle depth and decreased 

IMF content in high-FE pigs, a number of biological processes related to growth. 

Specifically, ‘cell survival’ and ‘cell differentiation’ were significantly activated in high-FE 

pigs. Other significantly enriched functions related to growth were ‘protein synthesis and 

degradation’, suggesting greater muscle protein turnover in high-FE pigs. Our data supports 

the possibility that high-FE pigs reuse existing proteins and thus conserve energy, which 

otherwise would be utilised for protein synthesis, directing it towards more efficient muscle 

growth. Moreover, the interactions depicted in the TP53 rooted network supports the role of 

TP53 as a central hub in mediating the modulation of muscle cell growth and differentiation 

(Tamir and Bengal 1998; Porrello et al. 2000). The connection of these DE genes to TP53, 

which was over-expressed in high-FE pigs, suggests their importance in lean growth. 

Furthermore, a number of DE genes were significantly overrepresented in ‘adhesion of 

connective tissue’ function with a tendency towards activation in the high-FE pigs. During 

the process of muscle growth, connective tissue undergoes dynamic remodelling which 

involves its proteolytic degradation, and the establishment of expanded networks through 

synthesis of new connective tissue components (Purslow 2014). Accordingly, high-FE pigs 

which showed signs of increased muscle mass also over-expressed matrix metallopeptidase 2 
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(MMP2) belonging to a family of enzymes associated with connective tissue degradation and 

remodelling (Woessner 1991; Rodier et al. 1999). Although this pattern might be expected to 

be associated with more tender meat, increased toughness of high-FE muscle was observed in 

this study. Collagen type I alpha 1 chain (COL1A1), one of the predominant collagen types in 

the skeletal muscle (McCormick 1994), was up-regulated in high-FE pigs. Over-expression 

of COL1A1 was previously associated with increased drip loss (Ponsuksili et al. 2008; 

McBryan et al. 2010). In the present study, while drip loss did not differ significantly 

between FE groups, a tendency towards increased cook loss at day 1 post-mortem was 

observed in meat from high-FE pigs. Upon heating, collagen fibrils shrink which 

consequently leads to fluid loss (Weston et al. 2002). This finding may relate to the 

stringy/fibrous and chewy texture of meat produced by high-FE pigs. Moreover, 29 DE 

miRNAs were mapped and predicted to regulate 379 DE genes. Molecular connectivity of 

DE genes regulated by 11 miRNAs revealed networks related to connective tissue 

development and function. In accordance with the relation of FE to IMF content, a number of 

DE genes were significantly enriched in ‘adipogenesis pathway’ and lipid metabolism 

functions. Peroxisome proliferator activated receptor gamma (PPARG), which is a master 

regulator of adipogenesis in a variety of tissues (Norris et al. 2003), was over-expressed in 

muscle of high-FE pigs. A previous study reported that muscle-specific deletion of PPARG is 

associated with enhanced adiposity in mice (Norris et al. 2003), which could explain the 

muscle of high-FE pigs exhibiting reduced IMF content while enhanced PPARG expression. 

Previous studies reported reduced mitochondrial energy metabolism in the Longissimus 

muscle of high- versus low-FE pigs (Le Naou et al. 2012; Jing et al. 2015; Fu et al. 2017). In 

this study, functional annotation revealed ‘oxidation of fatty acids’ significantly over-

represented amongst DE genes with the direction towards inhibition in high-FE pigs, which 

suggests that the high-FE pigs might exhibit reduced mitochondrial energy metabolism. 

Similarly, enrichment of DE genes in lipid catabolic processes was previously reported in FE 

divergent pigs (Jing et al. 2015). Moreover, succinate dehydrogenase complex iron sulphur 

subunit B (SDHB), involved in complex II of the mitochondrial electron transport chain (Liu 

et al. 2015), and transcription factor A mitochondrial (TFAM), a key modulator of 

mitochondrial DNA replication and transcription (Zou et al. 2016), were  down-regulated in 

high-FE pigs.  

 

This part of the project identified a number of differentially expressed genes significantly 

over-represented with functions in muscle growth and development, lipid metabolism and 
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connective tissue metabolism. Up-regulation of genes involved in the synthesis and 

degradation of protein suggest a greater muscle protein turnover in low-RFI pigs, while the 

divergence in adhesion of connective tissue may contribute to differences in tenderness. 

Moreover, a tendency towards suppression of fatty acid oxidation and down-regulation of 

SDHB and TFAM could possibly contribute to reduced mitochondrial activity in low-RFI 

muscle. 

RNA-seq of muscle from pigs divergent in feed efficiency and product quality identifies 

differences in immune response, growth, and macronutrient and connective tissue 

metabolism  

This study utilised next-generation sequencing (NGS) technology to profile the transcriptomes 

of FE-divergent pigs to provide clues with regards to biological mechanisms driving FE and 

associated with the relationship between FE and observed alteration in product quality traits. 

First, various meat and carcass quality parameters were examined. IMF content significantly 

differed between the FE groups (P < 0.05), with the high-FE carcasses having leaner muscle 

(1.49% IMF) comparing to low-FE carcasses (1.89% IMF). Muscle depth and percent lean 

meat did not differ significantly between the FE groups however pH at 45min post-mortem  

showed a tendency toward decreased values in the high-FE pigs (P < 0.1) while pH measured 

at 2h, 3h, 4h, 5h and 24h post-mortem was significantly lower in the high-FE group (P < 0.05). 

Drip loss did not vary between the FE groups. Muscle from high-FE pigs had increased cook 

loss at day 1 post-mortem (P < 0.01) but there was no difference detected at day 7 post-mortem. 

Although meat produced by high-FE pigs was significantly associated with increased WBSF 

values (less tender) at day 1 post-mortem (P < 0.05) and had a tendency towards increased 

WBSF values at day 7 post-mortem (P < 0.1), this difference in tenderness between the FE 

groups was not detected by sensory panellists. However, pork sensory assessment revealed that 

meat produced from high-FE pigs had higher scores for salty taste (P < 0.05) and a tendency 

towards increased barny flavour (P < 0.1). SFA did not differ significantly in LTL muscle of 

FE-divergent pigs, however, a tendency towards decreased proportions for each of palmitic and 

stearic acids in high-FE muscle was observed (P < 0.1). Muscle from high-FE group contained 

significantly lower amounts of the MUFA, palmitoleic acid (P < 0.05) and had a tendency 

towards decreased proportions of eicosenoic and oleic acids (P < 0.1). While PUFA content of 

muscle did not differ, when comparing the IMF per se, high-FE muscle had significantly 

greater concentrations of linoleic and alpha-linolenic acids (P < 0.05).    
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RNA sequencing resulted in an average of 104.4 million high quality paired-end reads per 

sample mapped to the reference with a mean of 80.9% mapping efficiency. A total of 14,497 

genes were expressed in the muscle and of these 272 annotated genes were differentially 

expressed between high- and low-FE samples with a P < 0.01 corresponding to false discovery 

rate (q) ≤ 0.47. Of these annotated genes, 176 were up- and 96 were down-regulated in high- 

versus low-FE pigs. Enrichment analysis of the DE genes was utilised to investigate biological 

processes and pathways altered in response to differences in FE. Thirty nine biological 

functions and forty six canonical pathways were significantly (P < 0.01) enriched with DE 

genes. Analysis of molecule connectivity revealed nineteen networks enriched with DE genes. 

A number of biological processes related to immune response as being relevant to FE in 

porcine muscle and suggested more efficient conserving of resources by high-FE pigs through 

availing to a greater extent of adaptive rather than innate immunity, which may reduce feed 

requirements. pH evolution in the pre-rigor period was highly divergent in relation to FE status 

and this is consistent with previous studies demonstrating greater glycolytic potential in high-

FE pigs (Lefaucheur et al. 2011; Faure et al. 2013). Genes involved in glycolysis and energy 

metabolism were previously reported to be up-regulated in chickens exhibiting lower ultimate 

pH (Beauclercq et al. 2017). Here, pH evolution was significantly different in the FE-divergent 

muscle, and trehalase (TREH) that codes for an enzyme catalysing the conversion of trehalose 

to glucose (Sode et al. 2001) was the most up-regulated gene in high-FE pigs. This might 

indicate that this group of pigs could potentially exhibit more efficient energy conversion in 

growth, but with potential consequences for post-mortem energy metabolism and product 

quality. Indeed, ontology analysis highlighted ‘catabolism of oligosaccharides’ as being highly 

relevant to the gene expression changes in divergent FE muscle. These findings suggest that 

shifts in carbohydrate conversion into glucose in FE-divergent muscle may underpin the altered 

evolution of pH profile in meat from the divergent groups. Syndecan-4 (SDC4), which was the 

most down-regulated gene in high-FE muscle, encodes plasma membrane proteoglycans and 

has been previously shown to have an impact on muscle cell proliferation and differentiation 

(Velleman et al. 2007). Knock down of SDC4 has been associated with increased myogenic 

regulatory transcription factor (Shin et al. 2012) and myogenin expressions, as well as 

increased muscle differentiation (Ronning et al. 2015), which signify its importance to muscle 

growth. Integrating functional annotations of DE genes revealed a number of biological 

processes related to growth. Moreover, annotations related to amino acid and protein 

metabolism were significantly enriched amongst DE genes. Pathway analysis highlighted 

several functions related to connective tissue for example, ‘apoptosis of fibroblast cell lines’, 
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which was significantly inhibited in high-FE pigs. Fibroblasts are the key players in the 

synthesis of extracellular matrix components such as collagen (Russell et al. 1981; Scherzer et 

al. 2015). Amongst down-regulated transcripts in muscle of high-FE pigs were nuclear factor of 

activated T-cells 1 (NFATC1), nuclear factor of activated T-cells 2 (NFATC2) and transcription 

factor P64 (MYC) that have previously been shown to induce apoptosis in fibroblasts (Evan et 

al. 1992; Neal and Clipstone 2003; Robbs et al. 2008). Besides connective tissue, tenderness of 

meat is vastly influenced by greater calpastatin activity through decreased post-mortem protein 

degradation (Smith et al. 2011). In the present study, calpastatin (CAST) was down-regulated in 

high-FE pigs suggesting an enhancing effect on tenderness, which is in contrast to our 

observation that tenderness was impaired in high-FE pigs. Nevertheless, the altered tenderness 

of FE-divergent meat could be partially impacted by shifts in collagen turnover resulted from 

decreased degradation of fibroblasts. Biological functions important in metabolism of lipids 

were also affected by FE, specifically, ‘concentration of lipids, cholesterol and triacylglycerol’ 

and ‘fatty acid metabolism’. In addition, the second most significant network (network 2) 

contained several features related to ‘lipid metabolism’, ‘molecular transport‘ and ‘protein 

synthesis’. In this network, triacylglycerol lipase (LIPC) encoding an enzyme catalysing 

hydrolysis of phospholipids and triacylglycerols (Chatterjee and Sparks 2011) was              

over-expressed in high-FE muscle suggesting enhanced lipid degradation in this group of pigs. 

 

In this part of the study, a number of biological events related to immune response, growth, 

carbohydrate and lipid metabolism, and connective tissue were elucidated indicating that 

these might be important mechanisms governing differences in FE. Enhanced activity of 

adaptive immunity in high-FE pigs suggests more efficient conserving of resources. Shifts in 

carbohydrate conversion into glucose in FE-divergent muscle may underpin the divergent 

evolution of pH profile in meat from the FE-groups and altered amino acid metabolism may 

influence growth in FE-divergent muscle. Furthermore, decreased degradation of fibroblasts 

in FE-divergent muscle could impact on collagen turnover and alter tenderness of meat, 

whilst enhanced lipid degradation in high-FE pigs may potentially underlie a more efficient 

fat metabolism in these animals.    
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3.3 Aim 3 

RNA-seq of adipose from pigs divergent in feed efficiency reveals alteration in adipose 

growth, lipid metabolism, extracellular matrix and immune response  

Our prior study (Horodyska et al. in review) demonstrated that high-FE pigs exhibit reduced 

muscle adiposity, however muscle and subcutaneous fat tissue depth remained unaffected by 

FE. In this study the transcriptome of subcutaneous adipose tissue was examined, using NGS 

technology, to identify biological processes contributing to differences in FE and explore the 

functional networks driving the relationship between muscle adiposity and FE. Upon 

sequencing and data processing of the RNA libraries from subcutaneous adipose tissue of   

FE-divergent pigs, high quality reads were mapped with 87.5% efficiency to the reference 

yielding an average of 105.5 million paired-end reads per sample. Assigning of read counts to 

gene features revealed a total of 15,477 genes to be expressed in adipose tissue. Based on a 

significance threshold of P < 0.01 (corresponding to a false discovery rate of q ≤ 0.64), 209 

(111 up- and 98 down-regulated) annotated genes were found to be affected by FE. Gene 

ontology analysis revealed forty biological functions and nine canonical signalling pathways 

were significantly (P < 0.01) associated with DE genes in relation to FE. Sixteen networks 

were inferred by integration of genes affected by FE, whereby the most significant network 

(network 1) comprised twenty four DE genes involved in cell death and survival, and 

embryonic development. Of these annotations, several categories related to adipose tissue 

growth, whereby ‘quantity of connective tissue’ was significantly inhibited and ‘stimulation 

of connective tissue’ tended towards suppression in high-FE pigs. Furthermore, ‘movement 

of endothelial cells’ and ‘quantity of blood vessels’ categories were repressed in high-FE 

pigs. Growth of adipose tissue is angiogenesis dependent and inhibition of vascular growth 

has been previously shown to prevent adipose tissue expansion (Rupnick et al. 2002). Here, 

an important regulator of angiogenesis in adipose tissue (Ledoux et al. 2008), vascular 

endothelial growth factor A (VEGFA), was down-regulated in high-FE pigs. Prediction of 

potential upstream regulators identified CCAAT/enhancer binding protein alpha (CEBPA), 

nuclear factor, erythroid 2 like 2 (NFE2L2) and epidermal growth factor (EGF) to control 

expression of 11, 5 and 10 DE genes, respectively, in the direction consistent with the 

activation state of the particular regulator. CEBPA, together with peroxisome proliferators 

activated receptor gamma (PPARG), is a master regulator of adipogenesis (Prokesch et al. 

2009). NFE2L2 encodes a transcription factor which is activated during oxidative stress and 
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induces transcription of protective genes (von Otter et al. 2014), while EGF has previously 

been linked to proliferation and differentiation of adipose-derived stem cells (Hebert et al. 

2009) and obesity (Kurachi et al. 1993). In the present study this growth factor, along with 

CEBPA and NFE2L2, was predicted to be inhibited in adipose tissue of high-FE pigs. 

mRNAs coding for these transcription regulators were not significantly differentially 

expressed between the FE-divergent groups per se, albeit abundance of transcripts encoding 

these factors is not expected to affect their activity (Filtz et al. 2014). Analysis of molecule 

connectivity revealed a network 2 enriched with functions related to ‘connective tissue 

development and function’. The most up-regulated gene in high-FE pigs, collagen type XI 

alpha 2 chain (COL11A2) coding for extracellular minor fibrillar collagen (Fang et al. 2010) 

was represented in this network. Collagen is a predominant structural element of interstitial 

extracellular matrix (Frantz et al. 2010), which provides mechanical support to the cellular 

constituents (Neve et al. 2014). Extracellular matrix has also been proven to play a part in 

regulation of angiogenesis (Neve et al. 2014). Formation of a dense extracellular matrix may 

suppress adipogenesis through inhibiting capillary formation (Bouloumie et al. 2002). 

‘Synthesis of fatty acids and lipids’ were significantly enriched with DE genes tending 

towards inhibition in high-FE pigs. Differential expression of genes involved in cholesterol 

metabolism in the adipose tissue of high-FE animals suggest increased mobilisation of fat 

depots for hepatic metabolism and utilisation of fat resources (Reyer et al. 2017). ‘High 

mobility group box 1 (HMGB1) signalling’ and ‘p38 mitogen-activated protein kinase 

(p38MAPK) signalling’ were pathways significantly affected by FE. p38MAPK and HMGB1 

are involved in the immune response through synthesis of pro-inflammatory cytokines (Yang 

et al. 2005; Cuenda and Rousseau 2007; Lee et al. 2014). A previous study postulated that 

production of HMGB1 in adipose tissue is triggered by inflammatory signals associated with 

obesity (Gunasekaran et al. 2013). Accordingly ‘complement system’, which is a major 

constituent of the innate immunity (Rus et al. 2005), was inferred from ontology analysis. 

Furthermore ‘proliferation of immune cells’, ‘chemotaxis of phagocytes’ and ‘phagocytosis’ 

were significantly inhibited in high-FE adipose tissue, and ‘prostaglandin synthesis’ had a 

tendency towards suppression in high-FE pigs. Cytokines and prostaglandins are 

inflammatory molecules that are synthesized and secreted by macrophages upon tissue 

exposure to inflammatory stimuli (Arango-Duque and Descoteaux 2014). Studies carried out 

on obese mice and humans reported a strong positive correlation between adipocyte size and 

accumulation of pro-inflammatory macrophages in adipose tissue (Cinti et al. 2005; Ortega 
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Martinez de Victoria et al. 2009). In addition, cytokines communicate with skeletal muscle, 

liver and brain and regulate appetite and lipid and glucose metabolism (Guerre-Millo 2002).  

 

This part of the project identified a number of candidate biological functions and pathways 

affiliated with adipose tissue growth, extracellular matrix formation, lipid metabolism and 

immune response. Establishment of a dense extracellular matrix and inhibition of capillary 

formation may be one underlying mechanism to achieve suppressed adipogenesis. Moreover, 

mechanisms ensuring an efficient utilisation of lipids in high-FE pigs might be orchestrated 

by upstream regulators including CEBPA, NFE2L2 and EGF. Consequently, high-FE adipose 

tissue could exhibit more efficient cholesterol disposal, whilst inhibition of inflammatory and 

immune response in high-FE pigs may be an indicator of an optimally functioning adipose 

tissue.  

RNA-seq of liver from pigs divergent in feed efficiency highlights shifts in macronutrient 

metabolism, hepatic growth and immune response   

In this study the hepatic transcriptome of pigs divergent in FE was investigated to illuminate 

the physiology of FE, which corroborate with the recorded biochemical and haematological 

parameters. RNA sequencing resulted in mapping of 89.2% of sequences to the reference 

with an average of 105.6 million high quality paired-end reads per sample being assigned to 

14,910 genes expressed in liver. A total of 922 genes were differentially expressed with a     

P < 0.01 corresponding to false discovery rate (q) ≤ 0.16, and of these 818 (464 up- and 354 

down-regulated) were annotated. Forty-two biological functions were significantly enriched 

(P < 0.01) amongst the DE genes in relation to FE, as inferred from functional enrichment 

analysis. Twenty five networks were obtained upon integration of all DE genes. The most 

significant network (network 1) contained functions related to gastrointestinal and hepatic 

system disease and liver cirrhosis. Carbohydrate and lipid metabolism, and small molecule 

biochemistry were represented in network 12. Enrichment of DE genes in this network 

suggests increased reverse cholesterol transport in high-FE livers. Indeed, serum analysis 

pointed towards enhanced cholesterol level in high-FE pigs. A previous study has also shown 

reverse cholesterol transport to be over-expressed in the livers of high-FE pigs (Gondret et al. 

2017). ‘Fibroblast growth factor (FGF) signalling’, which is involved in bile acid metabolism 

(Ornitz and Itoh 2015), was predicted to be activated in high-FE livers. In this pathway, 

fibroblast growth factor receptor substrate 2 (FRS2) was up-regulated in high-FE pigs. FRS2α 
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deficiency led to increased bile acid synthesis in mouse liver (Wang et al. 2014) therefore it 

seems probable that high-FE pigs experience decreased bile acid production. Besides its well 

established functions, bile acids are also involved in lowering glucose levels (Staels and 

Fonseca 2009) and hindering gluconeogenesis (Chai et al. 2015). Differential expression of 

cholesterol-related genes in the livers divergent for FE points towards increased absorption of 

dietary cholesterol and reverse cholesterol transport in high-FE pigs, thus the inferred 

reduction in bile acid synthesis may be a measure to prevent drops in serum glucose level 

rather than explained by high density lipoprotein (HDL) cholesterol shortage. This 

presumption is in accordance with observed greater glucose in serum of high-FE pigs. 

Enhancement of serum in total protein level observed in high-FE pigs reflects a suggested 

activation of ‘protein catabolism and secretion’ in the high-FE livers inferred from the 

functional enrichment analysis. Over-expression of genes involved in protein synthesis and 

degradation has elsewhere been reported in livers of high-FE pigs (Gondret et al. 2017). In 

the prior report it was suggested that high-FE muscle exhibits increased protein turnover and 

potentially reuses existing proteins, while directing the conserved energy towards more 

efficient growth (Horodyska et al. 2018). This phenomenon could also be occurring in the 

livers of high-FE pigs. ‘Hepatocyte growth factor (HGF) signalling’, ‘epidermal growth 

factor (EGF) signalling’ and ‘FGF signalling’ were significantly activated pathways in high-

FE pigs. Previous studies revealed a role of growth factors, e.g. HGF, EGF and FGF, in 

stimulating proliferation and differentiation of hepatic oval cells (Hu et al. 1993; Jones et al. 

2009; Sanchez and Fabregat 2010) and also in liver regeneration (Jiang et al. 1993; Steiling et 

al. 2003; Zimmers et al. 2017). Accordingly, ‘differentiation of epithelial cells’ was activated 

whilst ‘senescence of cells’, characterised by cell cycle arrest leading to loss of its ability to 

divide (Hoare et al. 2010), was suppressed in high-FE pigs. In the present study liver weights 

did not significantly differ between the FE groups, although a prior report demonstrated 

significantly increased liver weights of high-FE pigs (Reyer et al. 2017). Cyclin T2 (CCNT2), 

coding for a protein regulating cell differentiation through activation of cyclin-dependent 

kinase 9 (CDK9) (Simone et al. 2002; Garriga et al. 2003), was the most down-regulated 

gene in high-FE pigs. CDK9 also functions in the inflammatory response (Han et al. 2014). 

Here, CDK9 was down-regulated in high-FE pigs at a P < 0.05. It is possible that suppression 

of CCNT2 could influence CDK9 function in differentiation of monocytes (De Falco et al. 

2005) rather than hepatic epithelial cells. Gene ontology analysis also suggested that livers of 

more efficient pigs may be characterised by more prompt and effective hepatic response to 

inflammatory stimuli. Specifically, ‘role of nuclear factor of activated T cells (NFAT) in 
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regulation of the immune response’ was significantly activated in high-FE pigs. NFAT 

proteins play a role in the first line of defence through regulating innate leukocytes response 

to inflammatory stimuli (Zanoni and Granucci 2012). Furthermore, ‘quantity of invariant 

natural killer T-cells’ and ‘cell viability of natural killer cells’ were also significantly 

activated in high-FE pigs. Consistent with this, haematological analysis demonstrated higher 

percentage of lymphocytes in the high-FE group. Several studies have reported a diverse 

hepatic inflammatory response in high- versus low-FE pigs (Gondret et al. 2017) and cattle 

(Alexandre et al. 2015; Paradis et al. 2015), supporting this connection. Moreover, it has been 

postulated that high-FE animals exhibit more efficient immune response to fight off 

inflammation, which in turn translates to more energy for growth and muscle deposition 

(Paradis et al. 2015; Horodyska et al. in review). 

 

In this part of the study a number of biological mechanisms governing differences in FE were 

identified. In particular, improved hepatic absorption of carbohydrates and cholesterol as well 

as enhanced reverse cholesterol transport were inferred in high-FE pigs. The suggested 

decrease in bile acid synthesis in high-FE pigs may contribute to the increased concentrations 

of serum glucose observed. Moreover, enhanced quantity of invariant natural killer T-cells 

and viability of natural killer cells could induce a faster and more effective hepatic response 

to inflammatory stimuli.  
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Synthesis and Implications  

In this project, a number of high-throughput platforms including SNP chip, microarray and 

next-generation sequencing were availed of with the aim to identify genomic regions 

associated with feed efficiency and detect genes of which expression is affected by 

divergence in feed efficiency. Validation of these platforms was performed through 

quantitative real-time PCR, which confirmed reliability of all three technologies. Although a 

high level of correlation between microarray and RNA-seq platforms have been reported 

(Nazarov et al. 2017), RNA-seq technology presents some advantages over microarrays, for 

example, it does not require transcript-specific probes and therefore RNA-seq does not 

encounter issues associated with cross hybridisation and non-specific hybridisation (Zhao et 

al. 2014). Nevertheless, shorter and less abundant transcripts have a higher possibility to be 

detected using microarray approach (Nazarov et al. 2017). Therefore in these cases and 

particularly in quantifying microRNA, microarray might outperform RNA sequencing (Git et 

al. 2010; Nazarov et al. 2017). On the other note, a number of genes / mRNA isoforms are 

not incorporated on microarrays (Bumgarner 2013).  

 

In summary this study identified a number of chromosomal regions significantly associated 

with feed efficiency. Ontology analysis of FE-divergent muscle predicted differences in fat 

metabolism and immune defence. Shifts in carbohydrate conversion into glucose in            

FE-divergent muscle may underpin observed changes in post-mortem muscle pH between FE 

groups, whilst differences in amino acid metabolism may influence growth in FE-divergent 

muscle. Moreover, decreased degradation of fibroblasts may alter tenderness of meat. 

Furthermore, establishment of a dense extracellular matrix and inhibition of capillary 

formation in high-FE adipose tissue may be underlying mechanisms to achieve suppressed 

adipogenesis and increased utilisation of fatty acids by other tissues. Over-expression of 

cholesterol-related genes suggests more efficient cholesterol disposal from high-FE adipose 

tissue. The liver of high-FE pigs may exhibit improved carbohydrate absorption, enhanced 

reverse cholesterol transport and higher protein turnover, as well as increased epithelial cell 

differentiation and a more effective inflammatory response.   

 

In the first muscle transcriptome analysis using a microarray platform, small differences in 

gene expression between FE groups were observed. These limited differences could be 

explained by a relatively low number of pigs from which a subset of pigs was selected for the 
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study. For this very reason, transcripts with a P ≤ 0.05 were considered significantly 

differentially expressed. Samples from the second batch of animals analysed through        

next-generation sequencing (NGS) were selected from a much larger group of FE-divergent 

pigs, which resulted in greater differences in gene expression at a more stringent P-value     

(< 0.01). In this section for the purpose to elucidate the overlapping differentially expressed 

(DE) genes and biological themes in FE-divergent muscle between microarray and NGS 

technology, a P < 0.05 was used for both datasets. Subsequently, the comparison analysis 

revealed 54 DE genes and a number of biological processes (Table 4.1) shared between the 

two platforms.   

 

Furthermore, common DE genes (P < 0.01) (Figure 4.1) and biological processes between 

muscle, adipose and liver of pigs divergent in FE (Table 4.2) were identified. PON3 was the 

only common DE gene between the three tissues. PON3 codes for an enzyme that associates 

with high density lipoproteins (Getz and Reardon 2004). Increased adipose deposition 

observed in PON3 knockout mice (Shih et al. 2015) is consistent with a potential role of 

PON3 in promoting lean growth and this is in keeping with decreased intramuscular fat 

content in the high-FE pigs shown in this thesis. Eight DE genes were identified to be shared 

between muscle and adipose tissue. Trehalase (TREH), coding for an enzyme catalysing the 

conversion of trehalose to glucose (Sode et al. 2001) was among these genes. Moreover, 

twenty eight DE gene overlapped between liver and adipose tissue. Amongst these genes was 

selectin L (SELL). SELL is involved in leukocyte adhesion to blood vessels during 

inflammatory and immunological response (Nelson et al. 1992). Interestingly, a single 

nucleotide polymorphism in the SELL gene was identified as a positional and functional 

candidate gene for FE through the genome-wide association study. Fourteen DE genes were 

common between muscle and liver, including pyruvate dehydrogenase kinase 4 (PDK4), 

which is an important regulator of lactate and energy production (Liu et al. 2017). A number 

of common biological processes between the three tissues were elucidated; for example 

protein and lipid metabolism, cellular growth and proliferation, tissue and cardiovascular 

system development, immune cell trafficking, lymphoid tissue structure, and organ 

morphology. Many of these processes were also inferred from the functional annotation of 

positional candidate genes in the GWAS study, with SELL being significantly enriched in a 

number of these themes. 
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Table 4.1 Common biological processes, significantly enriched with differentially expressed 

genes in muscle from pigs divergent in feed efficiency, identified through next-generation 

sequencing and microarray technology. 

Molecular and cellular function Physiological system development and function 

Cellular movement and development** Haematological system development and function** 

Carbohydrate metabolism** Immune cell trafficking*** 

Cellular growth and proliferation** Lymphoid tissue structure and development** 

Cell-to-cell signalling and interaction** Tissue morphology** 

Cell death and survival** Organismal development** 

Protein synthesis** Humoral immune response** 

Free radical scavenging*** Haematopoiesis*** 

Lipid metabolism** Tissue development** 

Small molecule biochemistry** Organ development** 

Cellular compromise** Skeletal and muscular system development and function** 

Molecular transport** Organ morphology** 

Post-translational modification** Connective tissue development and function** 

Cell morphology** Cardiovascular system development and function** 

Cellular assembly and organization** Cell-mediated immune response*** 

Cell cycle**   

Gene expression**   

**P < 0.01, ***P < 0.001; data was analysed in IPA, Ingenuity® Systems, http://ingenuity.com.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Venn diagram illustrating numbers of overlapping differentially expressed genes 

(P < 0.01), identified through next-generation sequencing, between three tissues from pigs 

divergent in feed efficiency. Diagram was constructed using VENNY tool, 

(http://bioinfogp.cnb.csic.es/tools/venny/).  

http://bioinfogp.cnb.csic.es/tools/venny/


Synthesis and Implications 

38 
 

Table 4.2 Biological processes significantly enriched with differentially expressed genes, 

identified through next-generation sequencing, overlapped between muscle, adipose and liver 

tissues from pigs divergent in feed efficiency.    

Molecular and cellular function Physiological system development and function 

Gene expression*** Cardiovascular system development and function** 

Cellular movement and development** Tissue development** 

Cellular growth and proliferation** Haematological system development and function** 

Cell cycle** Lymphoid tissue structure and development** 

Cell death and survival** Organ development** 

Molecular transport** Organ morphology** 

Small molecule biochemistry** Nervous system development and function** 

Cell morphology** Haematopoiesis** 

Cell-to-cell signalling and interaction** Immune cell trafficking** 

Protein synthesis***   

Cellular assembly and organization**   

Lipid metabolism**   

**P < 0.01, ***P < 0.001; data was analysed in IPA, Ingenuity® Systems, http://ingenuity.com.    

 

Previous studies utilised animals selected in divergent lines for multiple generations 

(Lefaucheur et al. 2011; Smith et al. 2011; Faure et al. 2013; Vincent et al. 2015; Gondret et 

al. 2017). The experimental model used in this project involved animals selected within the 

same family. As a result of using animals from the same family, the genetic variability, and 

transcriptomic response is unlikely to be driven by genetic divergence and drift. However, 

functional annotation of DE genes revealed commonalities in processes among over-

expressed genes with previous studies. In muscle, overlapping processes related to growth, 

such as protein synthesis and degradation (Vincent et al. 2015; Zhao et al. 2016; Gondret et 

al. 2017) and skeletal muscle differentiation and proliferation (Jing et al. 2015). Surprisingly, 

Gondret et al. (2017) also reported suppression of skeletal muscle development in high-FE 

pigs. Differential expression of genes involved in muscle lipid metabolism (Jing et al. 2015; 

Gondret et al. 2017) was a further commonality between the studies. Functional annotation of 

DE genes in FE-divergent muscle, such as that of Jing et al. (2015) and Vincent et al. (2015) 

revealed under-expression of genes involved in mitochondrial energy metabolism, which 

relates to greater proportion of glycolytic fibres. Lefaucheur et al. (2010) observed 

differences in fibre type and a switch away from oxidative metabolism in high-FE muscle. 

However here, and in the paper of Smith et al. (2011), which also selected for divergence in 

FE over a number of generations, some evidence for the switch from oxidative to glycolytic 

metabolism, such as inferred over-representation of DE genes in lipid oxidation and 

oligosaccharide catabolism processes, but no evidence for difference in fibre type between 
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FE conditions were detected. For this reason, it is likely that a variety of mechanisms can 

contribute to differing FE status depending on the experimental model. To gain deeper 

insights into biological processes that underpin observed differences in FE, other metabolic 

organs such as adipose and liver were analysed. Lipid and fatty acid metabolism, cellular 

homeostasis and immune response were the common processes altered in adipose tissue 

identified here and in previous studies (Lkhagvadorj et al. 2010; Gondret et al. 2017). 

Moreover, common biological processes observed to be differentially regulated in livers from 

FE-divergent pigs included cell proliferation, protein synthesis and catabolism, lipid and 

carbohydrate metabolism, reverse cholesterol transport, and immune response (Zhao et al. 

2016; Gondret et al. 2017; Reyer et al. 2017). It can be inferred that these processes are the 

main mechanisms contributing to differences in feed efficiency. 

      

Factors other than mRNA abundance, for instance levels of microRNAs regulating translation 

of mRNAs and thus influencing functions of resulting proteins (Rajewsky 2006), could be 

relevant to feed efficiency. Taking this matter into consideration, expression levels of 

microRNAs were measured in this study using microarray platform. Nevertheless this 

platform contained a limited number of microRNAs. Therefore, evaluating abundance of 

microRNAs with a specialised microRNA array would further elucidate the events regulating 

protein levels and functionality. Moreover, identification of proteins affected by feed 

efficiency through proteomic analysis would be of great benefit. This holistic approach would 

offer a wider understanding of biological processes illuminating the differences in feed 

efficiency.   

 

 



Summary 

40 
 

 

 

 

CHAPTER 5 

Summary  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Summary 

41 
 

Summary 

In the framework of this thesis a number of chromosomal regions significantly associated 

with feed efficiency (FE), were identified in a commercial pig line (Maxgro, Hermitage 

Genetics). Most of the significantly associated regions were described for the first time, 

although some of them were located not far from previously reported quantitative trait loci. 

Validation of candidate genes mapping near the significant SNPs, confirmed a number of 

genes significantly associated with FE suggesting that the genetic predisposition to increased 

FE is driven by lipogenesis, glucose homeostasis, olfactory reception and also immunological 

status.  

The next aim of this thesis was to evaluate the consequences of FE on pork quality and to 

investigate the molecular mechanisms contributing to differences in FE as well as to 

understand the functional networks relating FE to meat quality. Analysis of meat from FE-

divergent pigs revealed characteristics generally within the normal range for the production 

of acceptable quality pork. However, small but significant differences in traits such as 

sensory profile, texture, and technological aspects such as cook loss suggest there is a minor 

impairment of meat quality in high-FE pigs. High-FE pigs were also associated with leaner 

carcasses, greater muscle content and enhanced nutritional value in terms of fatty acid 

composition. Genome-wide transcriptomics of FE-divergent muscle revealed molecular     

bio-functions of adaptive immunity and phagocytosis to be enriched, indicating for a resource 

conservation strategy which enables high-FE pigs to allocate resources for other growth-

related biological processes. Shifts in carbohydrate conversion into glucose in FE-divergent 

muscle may underpin the altered evolution of pH profile in meat from the divergent groups. 

These transcriptomic findings indicate that altered amino acid metabolism may influence 

growth in FE-divergent muscle. Moreover, decreased degradation of fibroblasts, the key 

players in the synthesis of the extracellular matrix, could impact on collagen turnover and 

alter tenderness of meat. Biological functions important in metabolism of lipids were also 

affected by FE.  

In order to gain deeper insights on the biological processes governing differences in FE and 

meat quality, besides muscle, other metabolically important tissues, including adipose and 

liver were analysed. Adipose tissue is a master regulator of systemic lipid storage as well as 

an active endocrine organ influencing energy homeostasis. Hence this thesis also focused on 

identifying relevant biological processes in adipose that underpin observed differences in FE. 
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Adipose growth, extracellular matrix formation, lipid metabolism and inflammatory and 

immune response were significantly enriched biological processes among the DE genes. 

Conclusively, the establishment of a dense extracellular matrix and inhibition of capillary 

formation might suppress adipogenesis and increase the utilisation of fatty acids. 

Accordingly, lipid metabolism was also affected by FE whereby over-expression of 

cholesterol-related genes suggests more efficient cholesterol disposal from high-FE adipose 

tissue. The mechanisms ensuring an efficient utilisation of lipids in high-FE pigs might be 

orchestrated by upstream regulators including CEBPA, NFE2L2 and EGF. Moreover, 

inhibition of inflammatory and immune responses in high-FE pigs may be an indicator of an 

optimally functioning adipose tissue.  

Liver influences nutrient partitioning and it is hypothesised to modulate FE, therefore 

important biological processes that underpin the differences in liver phenotype were analysed 

between FE groups. Ontology analysis illuminated carbohydrate, lipid and protein 

metabolism significantly enriched with the differentially expressed genes, confirming the 

hepatic influence on divergent energy utilization in high- versus low-FE pigs. In particular, 

high-FE pigs exhibited gene expression patterns suggesting improved hepatic absorption of 

carbohydrates and cholesterol as well as enhanced reverse cholesterol transport. Furthermore, 

the inferred decrease in bile acid synthesis in high-FE pigs may contribute to the increased 

concentration of serum glucose observed. This increased glucose can be delivered to cells and 

utilised for increased growth. Gene ontology analysis also suggests that the liver of high-FE 

pigs may be characterised by higher protein turnover and increased epithelial cell 

differentiation, whilst bio-functions dedicated to natural killer T-cells argue for a faster and 

more effective hepatic response to inflammatory stimuli.  

Overall, the study showed that FE is a highly complex trait affected by a number of genomic 

regions. Transcriptomic profiling of muscle, adipose and liver tissue from FE-divergent pigs 

provided mechanistic insights on the biological events prevailing differences in FE, which 

impacts meat quality. The findings of this thesis will assist the meat industry in optimising 

the strategies to improving FE without compromising meat quality. These results are also 

relevant to the biomedical field including metabolic studies. 
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Zusammenfassung 

Im Rahmen dieser Arbeit wurden eine Reihe von chromosomalen Regionen, die signifikant 

mit der Futterverwertung (FE), assoziiert sind, in einer kommerziellen Schweinelinie 

(Maxgro, Hermitage Genetics) identifiziert. Die meisten der signifikant assoziierten 

Regionen wurden zum ersten Mal beschrieben, obwohl einige von ihnen nicht weit von 

bereits bekannten assoziierten genomischen Regionen entfernt lagen. Die Validierung von 

positionellen Kandidatengenen bestätigte eine Reihe von FE-assoziierten Genen. Die 

funktionelle Annotation dieser Gene deutet auf eine genetische Prädisposition zur erhöhten 

FE hin, die durch biologische Prozesse wie der Lipogenese, Glukosehomöostase, 

olfaktorische Rezeption und auch den immunologischen Status getrieben wird. 

Das nächste Ziel dieser Arbeit war es, die Auswirkungen von FE auf die 

Schweinefleischqualität zu bewerten und den molekularen Zusammenhang zwischen FE und 

Fleischqualität zu beleuchten. Die Analyse des Fleisches von FE-divergenten Schweinen 

ergab Eigenschaften, die im Allgemeinen im normalen Bereich für die Produktion von 

Schweinefleisch akzeptabler Qualität liegen. Kleine, aber signifikante Unterschiede wie z.B. 

im sensorischen Profil, der Textur und von technologischen Aspekten wie dem Kochverlust 

deuten jedoch darauf hin, dass die Fleischqualität bei Schweinen mit hoher FE geringfügig 

beeinträchtigt ist. Gute Futterverwerter zeigten zudem magerere Schlachtkörper, einem 

höheren Muskelanteil und eine vorteilhafte Fettsäurezusammensetzung. Die genomweiten 

Transkriptomanalysen von FE-divergenten Muskeln deuten darauf hin, dass molekulare 

Biofunktionen der adaptiven Immunität und Phagozytose ausgelenkt sind. Dies impliziert 

eine Strategie zur Ressourcenschonung, die es Schweinen mit hoher FE ermöglicht, 

Ressourcen für andere wichtige biologische Prozesse zu nutzen. Verschiebungen bei der 

Umwandlung von Kohlenhydraten in Glukose im Muskel FE-divergenter Tiere könnten die 

veränderte Entwicklung des pH-Profils im Fleisch begründen. Die Analysen zeigen weiter, 

dass ein veränderter Aminosäurenstoffwechsel das Wachstum des Muskels in Tieren mit 

guter Futterverwertung beeinflussen kann. Darüber hinaus könnte sich ein verminderter 

Abbau von Fibroblasten, den Hauptakteuren bei der Synthese der extrazellulären Matrix, auf 

den Kollagenumsatz auswirken und die Zartheit des Fleisches verändern. Biologische 

Funktionen, die für den Fettstoffwechsel wichtig sind, scheinen ebenfalls mit FE im 

Zusammenhang zu stehen. Um tiefere Einblicke in die biologischen Prozesse zu gewinnen, 
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welche die Unterschiede im FE und der Fleischqualität bestimmen, wurden neben dem 

Muskel auch andere metabolisch wichtige Gewebe wie Fett und Leber analysiert.  

Fettgewebe ist ein Hauptregulator der systemischen Lipidspeicherung sowie ein aktives 

endokrines Organ, das die Energiehomöostase beeinflusst. Daher konzentrierte sich diese 

Arbeit auch auf die Identifizierung relevanter biologischer Prozesse im Fettgewebe, die die 

beobachteten Unterschiede in der FE untermauern. Adipogenese, extrazelluläre 

Matrixbildung, Lipidstoffwechsel sowie Entzündungs- und Immunantwort wurden als 

signifikant angereicherte biologische Prozesse identifiziert. Die Etablierung einer dichten 

extrazellulären Matrix und die Hemmung der Kapillarbildung könnten die Adipogenese 

unterdrücken und die systemische Verfügbarkeit von Fettsäuren erhöhen. Dementsprechend 

zeigte sich auch der Lipidstoffwechsel durch divergente FE beeinflusst, wobei die 

Überexpression von cholesterinverwandten Genen auf einen effizienteren Cholesterinexport 

aus dem Fettgewebe bei Tieren mit hoher FE hindeutet. Die Mechanismen, die eine effiziente 

Nutzung von Lipiden bei Schweinen mit hoher FE gewährleisten, könnten von 

vorgeschalteten Regulatoren wie CEBPA, NFE2L2 und EGF koordiniert werden. Darüber 

hinaus kann die Hemmung von Entzündungs- und Immunreaktionen bei guten 

Futterverwertern ein Indikator für ein optimal funktionierendes Fettgewebe sein.  

Die Leber ist wesentlich an der Nährstoffbereitstellung beteilig. Daher wurden im Rahmen 

der Dissertation auch die biologischen Prozesse, welche die Unterschiede im Leberphänotyp 

untermauern, zwischen den FE Gruppen analysiert. Genontologie-Analysen identifizierten 

den Kohlenhydrat-, Lipid- und Proteinstoffwechsel als signifikant ausgelenkt, was den 

hepatischen Einfluss auf die divergierende Energieausnutzung bei Schweinen mit hoher und 

niedriger FE bestätigte. Insbesondere zeigten Schweine mit hoher FE Genexpressionsmuster, 

die auf eine verbesserte hepatische Absorption von Kohlenhydraten und Cholesterin sowie 

auf einen verbesserten Rücktransport von Cholesterin hindeuten. Die daraus abgeleitete 

Abnahme der Gallensäure-Synthese bei Schweinen mit hoher FE ist in Übereinstimmung mit 

einer erhöhten Konzentration an Serumglukose. Diese erhöhte Glukose kann an die Zellen 

abgegeben und für ein verstärktes Wachstum genutzt werden. Die Analyse der Genontologie 

deutet auch darauf hin, dass sich die Leber von Schweinen mit hoher FE durch einen höheren 

Proteinumsatz und eine erhöhte Differenzierung der Epithelzellen auszeichnet. Die 

Auslenkung von Genen, welche die Funktion natürlicher Killerzellen beeinflussen, liefert 

Hinweise darauf, dass eine schnellere und effektivere hepatische Reaktion auf 

Entzündungsreize induzieren werden könnte.  
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Insgesamt zeigte die Studie, dass FE ein hochkomplexes Merkmal ist, das von einer Reihe 

genomischer Regionen beeinflusst wird. Expressionsprofile von Muskel-, Fett- und 

Lebergewebe FE-divergenter Schweine lieferten mechanistische Erkenntnisse über die 

biologischen Zusammenhänge zwischen FE und Fleischqualität bzw. 

Schlachtkörpermerkmalen. Die Ergebnisse dieser Arbeit werden die Tierhaltung und 

Züchtung dabei unterstützen, Strategien zur Verbesserung der FE zu identifizieren, ohne die 

Fleischqualität zu beeinträchtigen. Diese Ergebnisse sind auch für den biomedizinischen 

Bereich einschließlich Stoffwechselstudien relevant. 
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Abstract 

Feed conversion efficiency is a measure of how well an animal converts feed into live weight 

and it is typically expressed as feed conversion ratio (FCR). FCR and related traits like 

growth rate (e.g. days to 110 kg – D110) are of high interest for animal breeders, farmers and 

society due to implications on animal performance, feeding costs and environmental 

sustainability. The objective of this study was to identify genomic regions associated with 

FCR and D110 in pigs. A total of 952 terminal line boars, showing an individual variation in 

FCR, were genotyped using 60K SNP-Chips. Markers were tested for associations with 

estimated breeding values (EBV) for FCR and D110. For FCR, the largest number of 

associated SNPs was located on chromosomes 4 (30 SNPs), 1 (25 SNPs), X (15 SNPs) and 6 

(12 SNPs). The most prominent genomic regions for D110 were identified on chromosomes 

15 (10 SNPs), 1 and 4 (both 9 SNPs). The most significantly associated SNPs for FCR and 

D110 mapped 129.8 Kb from METTL11B (chromosome 4) and 32Kb from MBD5 

(chromosome 15), respectively. A list of positional genes, closest to significantly associated 

SNPs, was used to identify enriched pathways and biological functions related to the QTL for 

http://journals.plos.org/plosone/article?id=10.1371/%20journal.pone.0173482
http://journals.plos.org/plosone/article?id=10.1371/%20journal.pone.0173482
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both traits. A number of candidate genes were significantly overrepresented in pathways of 

immune cell trafficking, lymphoid tissue structure, organ morphology, endocrine system 

function, lipid metabolism, and energy production. After resequencing the coding region of 

selected positional and functional candidate genes, six SNPs were genotyped in a subset of 

boars. SNPs in PRKDC, SELL and NR2E1 showed significant associations with EBVs for 

FCR/D110. The study revealed a number of chromosomal regions and candidate genes 

affecting FCR/D110 and pointed to corresponding biological pathways related to lipid 

metabolism, olfactory reception, and also immunological status.  

 

Background 

Improving feed conversion efficiency (FCE) in pigs is a major goal in pig breeding as feed 

accounts for a high proportion of the total production cost [1]. Selection for improved FCE is 

also a key factor in reducing the environmental footprint of the pig industry [2]. FCE can be 

defined as a measure of an animal’s efficiency in converting feed into live weight [3] and it is 

typically expressed as feed conversion ratio (FCR, ratio of feed intake to weight gain) [4]. As 

such, growth rate traits which determine the weight gain in different developmental stages are 

closely related to FCR thus having a direct impact on efficiency [5]. However, phenotypic 

and genetic correlations between FCR and its components (i.e. feed intake and body weight 

gain) have been reported to be higher for FCR and feed intake compared to FCR and body 

weight gain in different pig populations [5]. Apart from FCR, other indexes such as residual 

feed intake (RFI), which can be described as the difference between an individual’s actual 

feed intake and its predicted feed requirements for maintenance and growth, have been 

studied [2].   

 

A number of quantitative trait loci (QTLs) affecting feed efficiency in pigs have been 

detected (PigQTLdb, http://www.animalgenome.org/cgi-bin/QTLdb/SS/index). However, 

most of them were identified using a linkage mapping approach resulting in wide genomic 

QTL regions. Such linkage data is limited to within-family selection only [6]. A genome-

wide association study (GWAS) approach would offer the potential for improved accuracy 

and refinement in the identification of QTL locations at the population level [7]. To date, 

only a few studies have used the GWAS approach to identify QTLs for FCE traits in pigs. 

Sahana et al. [6] detected a number of significant QTLs for FCR on porcine chromosomes 
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(SSC) 4, 7, 8 and 14 in Duroc pigs. Another study identified only one QTL for FCR on SSC 

4 in Duroc boars [8]. A GWAS performed on Yorkshire boars revealed several QTLs 

influencing RFI on SSC 7 and 14 [9]. Do et al. [10] additionally reported QTLs on SSC 3, 8, 

9, 10, 15 and 17 for RFI in Yorkshire pigs. The same author also conducted a study on Duroc 

boars and identified significant regions for RFI on SSC 1, 8, 9, 13 and 18 [11]. While 

employing the GWAS approach, the objective of this study was to identify genomic regions 

associated with feed efficiency in an important commercial pig sire line (Maxgro, Hermitage 

Genetics).  

 

Materials and Methods 

Animals and phenotypes 

Animal care, slaughter and tissue collection of the animals used in this study were performed 

in compliance with national regulations related to animal research and commercial 

slaughtering and were approved by the local committees for the care and use of animals of 

the Teagasc Research Center Ashtown and the Leibniz Institute for Farm Animal Biology. A 

total of 952 Maxgro boars, which is predominately Pietrain based terminal line, were used in 

this study. These animals, born between year 2006 and 2012, were selected as replacement 

boars in the artificial insemination (AI) stud and were supplied by Hermitage Genetics 

(Ireland). The pigs were penned in groups of fourteen with a space allowance of 0.75 m
2
 per 

pig and were fed a pelleted finisher diet (National Research Council, 2012) consisting of 

177.8 g crude protein, 5.0 g tP, 6.0 g Ca and 13.9 MJ DE, and 8.8 g ileal digestible lysine per 

kilogram. They also had ad libitum access to water through nipple drinkers. Phenotypic data 

such as FCR and D110 comprising 46 and 91 percent of the total number of animals used in 

the study, respectively, were recorded by Hermitage Genetics following the method of Varley 

et al [12]. Breeding values (EBV) for FCR (range: -0.44 - 0.32, mean: -0.09, SD: 0.09) and 

D110 (range: -20.8 - 9.18, mean: -10.2, SD: 4.00) were estimated using Best Linear Unbiased 

Prediction (BLUP) system [13] from a dataset that included multiple breeds, two sexes and a 

number of farms and AI studs. The models for the routine estimation of direct genetic effects 

for both traits were multivariate and included fixed effects of contemporary group, pig breed 

and sex. The affiliation of a pig to a litter was fit as an uncorrelated random effect in the 

prediction. Moreover, the status of performance testing was also included as fixed effect. 
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Specifically, for performance tested pigs individual feeding records were obtained using a 

single-space computerised feeder (Mastleistungsprüfung MLP-RAP; Schauer Agrotronic AG, 

Sursee, Switzerland) [12]. The pigs (age at start of the test - mean: 102.3 days, SD: 6.4 days; 

age at end of the test – mean: 144.1 days, SD: 6.4 days) were weighted at the start (mean: 

60.9 kg, SD: 7.6 kg) and the end (mean: 109.3 kg, SD: 9.9 kg) of the test period for a 

minimum of 40 days (mean: 41.8 days, SD: 4.7 days). Based on these observations FCR was 

calculated. In order to obtain the number of days needed to gain a final body weight of 110 

kg, the pig’s date of birth and slaughter weight, which is slightly above or below 110 kg, was 

entered into the BLUP system and calculated. For the prediction of the EBVs FCR, both start 

weight and end weight were fit as a covariate in order to consider weight related differences 

in feed efficiency. Following the test period, boars were entered into the AI stud therefore no 

euthanasia of boars occurred. 

 

SNP array genotyping, quality control and statistical analysis  

Approximately 50 ml of blood from Vena jugularis was collected from each boar by 

Hermitage Genetics into a tube containing EDTA. Genomic DNA was extracted from the 

preserved blood using QIAamp DNA Blood Mini Kit (QIAGEN Ltd., West Sussex, UK) 

according to manufacturer’s instructions. Genotyping with PorcineSNP60 BeadChip 

(Illumina Inc., San Diego, CA, USA) was performed in compliance with the SNP Infinium 

HD assay protocol (http://www.illumina.com). Subsequently, data was analysed using 

GenomeStudio (Version 2011.1, Illumina Inc.). Individuals with call rate ≤ 97% and SNPs 

with call frequency ≤ 95% and minor allele frequency (MAF) ≤ 0.03 were excluded. The 

departure from Hardy-Weinberg equilibrium (HWE) was not considered as indicator for 

consistent genotyping errors as it has been reported to be underpowered for this purpose [14]. 

 

After quality control, remaining SNPs were tested for an association with EBVs FCR and 

D110. SNP-trait association analysis was implemented with a mixed linear model using JMP 

Genomics 6 software (version 6, SAS INST., Inc., Cary, NC, 2002–2010). In order to correct 

for population structure, the relationship matrix tool implemented in JMP Genomics 6 was 

used to compute identity-by-state (IBS) relations between individuals based on genotype data 

[15]. After compression of K matrices, these relations were included as a random effect in the 

model. Moreover, this factor accounting for relatedness was applied to counteract high false-
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positive rates and the misestimating of QTL effects assigned to the usage of EBVs for GWAS 

[16]. Threshold p-values for suggestive and Bonferroni-adjusted genome-wide significance 

were set to -log10[p-value] = 4.7 (1 divided by 48440 independent tests) and -log10[p-value] 

= 6 (0.05 divided by 48440 independent tests), respectively.  

A list of genes closest to the significant SNPs (-log10[p-value] ≥ 6) was created allowing a 

maximum distance of 1Mb between the marker and genes, using the Ensembl database 

(http://www.ensembl.org, release 78) and was uploaded into Ingenuity Pathways Analysis 

(IPA; Ingenuity
®

 Systems, http://www.ingenuity.com) in order to investigate relevant 

pathways and functional categories. Benjamini-Hochberg corrected P values were used to 

map the genes to the most significant molecular, cellular and physiological systems 

development functions (P < 0.01). To get insights into the most relevant metabolic and 

signalling pathways based on the designated list of genes, canonical pathways were displayed 

(Fisher’s exact test; P < 0.05), although they did not differ significantly after Benjamini-

Hochberg correction. Categories addressing human disease and disorder-associated pathways 

were excluded from the IPA analysis. 

 

Validation of candidate genes 

Twelve genes with functions relevant to feed efficiency according to IPA were selected from 

the  candidate gene list for validation and further analysis. A set of primers for each gene was 

designed based on published sequence data (Ensembl database) using Primer3 

(http://primer3.ut.ee/) (Table 1). Genomic DNA of low EBV FCR pigs (n=10, mean: -0.182, 

SD: 0.027) and high EBV FCR pigs (n=10, mean: 0.040, SD: 0.032), with a p-value of 

difference < 0.0001, was pooled (n=2) and used as template for PCR. All PCR reactions were 

carried out in a final volume of 50 µl and consisted of 10 µl PCR buffer (5x) (Promega, WI, 

USA), 3 µl MgCl2 (25mM) (Promega), 0.4 µl dNTP mix (10mM each), 0.4 µl of each primer 

(100 pmol, Eurofins MWG Operon, Germany), 0.4 µl Go Taq DNA Polymerase (100U, 

Promega), 30 ng of the DNA pool and filled with dH2O. The cycling conditions were as 

follows: initial denaturation at 95°C for 135 sec; 35 cycles of 95°C for 45 sec, annealing for 

45 sec (60°C for OPRD1, WDTC1, SMPD2 and 56°C for the remaining primers), and 72°C 

for 75 sec, subsequently final extension of 72°C for 10 min. PCR products were subjected to 

electrophoresis on 1.5% agarose gels and visualised. PCR products were purified using the 

http://www.ingenuity.com/
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QIAquick PCR Purification Kit (QIAGEN Ltd.) and sequenced commercially (Eurofins, 

MWG-Biotech). Chromatograms were analysed to identify segregating SNP. 

 

 Based on the PCR product sequencing of the twelve genes, six confirmed SNPs (located in 

MBD5, OPRD1, AKR1C3, NR2E1, PRKDC and SELL) were selected for genotyping in 436 

Maxgo boars as a representative subset of animals. The SNP genotyping was performed using 

TaqMan® SNP Genotyping Assays (Applied Biosystems, Foster City, CA, USA). Each 15 μl 

PCR reaction consisted of 7.5 μl of TaqMan® genotyping master mix (Applied Biosystems, 

Foster City, CA, USA), 0.375 μl 40 x genotyping assay mix (Applied Biosystems), 6.125 μl 

dH2O and 1 μl of genomic DNA (10 ng/μl). Thermal cycling was performed using ABI 

PRISM® 7500 Real Time PCR System (Applied Biosystems) and the cycling conditions 

were as follows: initial denaturation at 95°C for 10 min, followed by 40 cycles of 95°C for 15 

sec denaturation and 60°C for 1 min annealing/extension. Genotype calling was carried out 

using proprietary 7500 System SDS software (Applied Biosystems). 

 

Allele frequencies were computed and deviations from HWE (p-value < 0.05) were tested 

using Haploview software [17]. Mixed linear model using JMP Genomics 6 software (version 

6, SAS INST., Inc., Cary, NC, 2002–2010) was used to evaluate associations between the 

four SNPs with allele frequency as predicted and greater than 5% (rs340456509, rs80900450, 

rs319738340 and rs81508945) and EBVs for FCR and D110 in the Maxgro boars (n = 436). 

Compressed IBS relations were included as a random effect in the model. In order to 

determine additive and dominant effects for the particular SNP, indicator variables alpha 

(1=homozygote for the allele with higher least square means, -1=homozygote for the allele 

with lower least square means and 0=heterozygote), and delta (1=heterozygote and 

0=homozygote) were created. Regression models were performed, using EBV FCR and EBV 

D110 as the dependent variables and variable alpha and delta as the independent variables, to 

estimate the additive and dominant effects for each significant SNP (REG procedure of the 

SAS v9.3 software package). Based on the squared multiple correlation (R²) of the 

regression, the effect size was expressed as the phenotypic variance attributable to the genetic 

variance at the designated locus.  
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Results 

Genome-wide association study 

After quality control, 940 individuals and 48,440 SNPs, mapped to the Sscrofa 10.2 pig 

genome assembly, remained for the further analysis. In total 132 SNPs reached the threshold 

of suggestive significance for an association with EBV FCR (-log10[p-value] ≥ 4.7) (Fig 1; S1 

Table). The largest number of associated SNPs were located on SSC4 (30 SNPs) and SSC1 

(25 SNPs) followed by SSCX (15 SNPs) and SSC6 (12 SNPs). A total of 25 SNPs mapping 

to 10 porcine autosomes crossed the Bonferroni-adjusted genome-wide significance threshold 

(-log10[p-value] ≥ 6). Of the 25 SNPs, 5 were located within a 2.37 Mb segment on SSC4 and 

pointed to Methyltransferase like 11B (METTL11B) and Coagulation Factor V (F5) as 

positional candidate genes (Table 2). A search for genes in the window surrounding the 

significantly associated markers revealed Selectin L (SELL), Selectin P (SELP) and Protein 

kinase, DNA-activated, catalytic polypeptide (PRKDC) as putative candidate genes for FCE. 

On SSC15, Neuronal guanine nucleotide exchange factor (NGEF) and 5-hydroxytryptamine 

(serotonin) receptor 2B, G protein-coupled (HTR2B) genes were revealed as functional 

candidate genes, whereas DIS3 and ARL4C were identified as positional candidates. Two 

significant SNPs on SSC6 were located near Feline Gardner-Rasheed sarcoma viral oncogene 

homolog (FGR) and Protein tyrosine phosphatase, receptor type, U (PTPRU). A further 

search for genes with putative relevance for processes related to FCE in this region revealed 

Tetratricopeptide repeats 1 (WDTC1) and Opioid receptor, delta 1 (OPRD1). Furthermore, a 

significant SNP mapped to SSC1 was located in an uncharacterised gene and the nearest 

annotated gene was CD164 molecule, sialomucin (CD164). Nuclear receptor subfamily 2, 

group E, member 1 (NR2E1) and Sphingomyelin phosphodiesterase 2, neutral membrane 

(SMPD2) were identified as functional candidate genes in this region.  

 

In total 71 SNPs reached the threshold of suggestive significance for an association with EBV 

D110 (-log10[p-value] ≥ 4.7) (Fig 2; S1 Table). The largest number of associated SNPs was 

located on SSC15 (10 SNPs), SSC1 and SSC4 (9 SNPs), SSC3 (8 SNPs), followed by SSC10 

and 13 (5 SNPs). A total of 12 SNPs mapping to 7 porcine autosomes crossed the Bonferroni-

adjusted genome-wide significance threshold (-log10[p-value] ≥ 6). Of the 12 SNPs, 5 were 

located within a 682 Kb segment (between 2.64 and 3.32 Mb) on SSC15. Three of these 

markers were located within an intron of Kinesin family member 5C (KIF5C) gene (Table 2). 
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Two remaining markers mapped near Methyl-CpG binding domain protein 5 (MBD5) and 

LY6/PLAUR domain containing 6B (LYPD6B). A further search for genes revealed 

Methylmalonic aciduria cblD type, with homocystinuria (MMADHC) with functional 

relations to D110. On SSC10, Kruppel-like factor 6 (KLF6) and Aldo-keto reductase family 

1, member C3 (AKR1C3) were identified as positional candidate genes with a putative 

contribution to D110. 

 

Functional enrichment among mapped genes 

A total of 86 and 16 genes mapped within 1Mb upstream and downstream of significant 

markers for EBV FCR and D110, respectively, were uploaded into Ingenuity Pathways 

Analysis. Functional annotation of the positional candidate genes to biological processes and 

canonical pathways (top 5) is presented in Table 3 and 4. The top canonical pathways 

significantly overrepresented among the positional candidate genes for EBV of FCR were 

related to cell cycle control, estrogen receptor signaling, RXR and subfamily 1 nuclear 

receptors activation, granulocyte mediate inflammation, and sphingomyelin metabolism. 

Functional annotation revealed organismal development and organ morphology, lymphoid 

tissue and hematological system development, and immune cell trafficking to be significantly 

enriched among the genes located in QTL regions for EBV FCR. Moreover, bile acid and 

androgen biosynthesis, TR/RXR Activation, methylglyoxal detoxification, and retinoate 

biosynthesis pathways were the top pathways associated with the positional candidate genes 

for EBV D110. Furthermore, statistically associated biological functions with the positional 

candidate genes for EBV D110 were energy, lipid and drug metabolism, endocrine system 

development, and small molecule biochemistry. 

 

SNP array validation 

Four SNPs located near the QTLs for EBV FCR (rs80900450, rs319738340, rs340456509 

and a novel SNP) in PRKDC, SELL, NR2E1 and OPRD1 respectively, and two SNPs mapped 

close to the QTL for EBV D110 (rs332368013 and rs81508945) in MBD5 and AKR1C3 

respectively were confirmed to be polymorphic in target populations by sequencing. 

Subsequently, these six SNPs were genotyped in 436 Maxgro boars. Allelic frequencies and 

HWE are presented in Table 5. SNP in MBD5 significantly departured from HWE (P-value < 

0.05) indicating a slight deficiency of homozygotes in the studied population and SNP in 
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OPRD1 displayed minor allele frequency less than 5%. All SNPs, with the exception of the 

SNP in MBD5 and OPRD1 were tested for association with breeding values for FCR and 

D110 (Table 6). SNP rs80900450 and rs319738340 showed significant association with EBV 

FCR. Moreover, SNP rs340456509 was found significantly associated with both traits. The 

occurrence of the G allele was shown to be beneficial for both growth and feed efficiency. 

Significant additive effects of SNPs rs80900450, rs81508945 and rs340456509 were 

observed. In addition, SNP rs340456509 showed a dominant effect for EBV D110, however 

only one percent of the phenotypic variance was attributable to the dominant genetic 

variance. 

 

Discussion 

In this study, a genome-wide association analysis was performed to elucidate the genetic 

architecture of feed conversion efficiency and growth rate in pigs. A number of candidate 

genes neighbouring the identified QTL regions were selected for downstream analysis. A 

further validation confirmed significant associations between these genes and EBV FCR / 

D110. The most prominent regions for EBV FCR were identified on SSC 1, 4, 6 and 15. For 

EBV D110, the most promising QTLs were detected on porcine chromosome 10 and 15. 

None of the identified QTL regions overlap for both traits. Alignment of the genetic and 

physical maps on the Sscrofa 10.2 genome assembly (PigQTLdb) enabled the identified 

QTLs from the present study to be compared with previously described QTL regions. A QTL 

from this study located at 78.3 to 80.5 Mb on SSC 6 coincided with a QTL for FCR in a 

European Wild Boar x Meishan cross mapped in the region of 127.3 cM (64.9 to 89 Mb, 

PigQTLdb) [18]. Additionally this QTL overlapped with a QTL for body weight detected at 

78.3 to 78.7 Mb in Iberian x Landrace and Iberian x Meishan crosses [19]. This QTL has thus 

been independently discovered in different populations, which supports attributing it to 

biologically relevant common genetic variation [20]. QTL located at 86.7 to 89.1 Mb on SSC 

4 found in this study was in a close proximity to QTL for FCR in a European Wild Boar x 

Pietrain cross mapped by Cepica et al. [21] at 75 cM (89.5 to 98.2 Mb, PigQTLdb). Another 

QTL on SSC 4 was detected at 20 cM (7.2 to 12.6 Mb, PigQTLdb) in a three-generation full-

sib population, created by crossing Pietrain sires with Large White x Landrace x Leicoma 

dam line [22], which is very distant from the QTL identified in this study. These QTLs were 

detected by linkage analysis and therefore were mapped with very low resolution and cover 
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large intervals. A genome-wide association study in a Danish Duroc population identified 

QTL for FCR located on SSC 4 at 63.8 to 64 Mb [6]. Another GWAS revealed QTL for FCR 

on SSC 4 at 4 to 5 Mb in a Duroc terminal sire population [8]. The remaining QTL regions 

for EBV FCR / D110 identified in this study on SSC 1, 10 and 15 did not colocalize closely 

to regions affecting FCR and growth rate found in the literature. Furthermore, Jiao et al. [8] 

mapped a QTL for daily feed intake in Duroc boars at 73.1 to 73.9 Mb, which is ~700 Kb 

from the QTL for EBV D110 detected in the present study. The very small number of 

overlapping QTL regions is in accordance with Gregersen et al. [23] who reported limited 

overlap of QTL for a particular trait between breeds. This might suggest that different QTLs 

regulate feed efficiency traits in the Maxgro boars compared to other breeds [4].[4] 

Moreover, the EBVs, which were used as response variable in the current study, are known to 

behave differently compared to raw phenotypes. EBVs have been reported to be more 

independent from environmental factors compared to raw phenotypes [20]. However, a recent 

evaluation of the direct use of EBVs for GWAS revealed issues of power, type I error and 

QTL effect sizes related to the incorporation of familial information in the estimation of EBV 

[16]. To account for these weaknesses linked to EBVs, the familial relationship (i.e. as 

genomic relationship matrix) was included in the statistical model as previously applied in 

other association analyses using EBVs [24-26]. The comparison of results obtained from 

different GWAS methods revealed that the used methodologies provide a further source for 

variation of results between different studies [27]. 

 

Pathways and biological functions of genes mapped near the significant SNPs 

Functional annotation revealed a number of pathways and biological processes significantly 

overrepresented among the positional candidate genes for EBV FCR and D110. Nearby genes 

to the significant markers for EBV FCR (SELP, SELL, FGR, SELE, F5, FOXO3 and OPRD1) 

were identified to be involved in immune cell trafficking. Similarly, THEMIS2, SELP, SELL, 

SELE, F5 and PRKDC were clustered in lymphoid tissue structure and development category. 

It is well documented that the activity of the immune system is linked to feed intake and 

therefore provide a relevant aspect for feed efficiency [28]. When immune response is 

activated, the available energy resources are shifted away from skeletal muscle accretion and 

prioritised to production of antibodies in order to fight the infection. This in turn might result 

in reduced rates of weight gain and feed conversion [29]. In addition, functional annotation of 
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the positional candidate genes for EBV FCR to biological processes revealed a cluster of 

seventeen genes overrepresented in an organ morphology category (CEBPD, SELL, ECEL1, 

NR2E1, SELE, CHRNG, WASF1, GPR3, EIF4E2, HTR2B, CHRND, SELP, KIFAP3, SEC63, 

SYTL1, PRKDC and FOXO3). A study conducted by Njoku et al. [30] on Large White pigs 

revealed that visceral organ growth is stimulated by feed intake. Moreover, low RFI pigs 

have been associated with decreased visceral organ weight [31,32]. This is in agreement with 

Ferrell and Jenkins [33] postulating that a lower maintenance costs are associated with 

reduced visceral organ weight and decreased feed intake. A number of genes (AKR1C3, 

MBD5, ACVR2A, AKR1C1/AKR1C2 and AKR1C4) located within 1Mb of the significant 

markers for EBV D110 were clustered in an endocrine system function and development 

category. Previous study identified smaller thyroid glands in low residual feed intake pigs 

[34]. Moreover, Gabarrou et al. [35] reported a decreased thyroid function in low RFI 

cockerels. Additionally, these genes belonging to Aldo-Keto Reductase family were 

significantly overrepresented in lipid metabolism and energy production. Lipid metabolism 

pathway as well as energy pathway were statistically associated with residual feed intake in 

muscle and adipose tissue of pigs [36-38]. 

 

Candidate genes for feed conversion efficiency 

Positional and functional genes located within 1 Mb of the GWAS SNPs significantly 

associated with breeding values for FCR/D110 were selected and examined. On SSC 4, SNP 

rs80900450 and rs319738340 in PRKDC and SELL respectively, were significantly 

associated with breeding value for FCR. PRKDC is a gene encoding the catalytic subunit of 

the DNA-dependent protein kinase (DNA-PK), which plays a part in DNA double stranded 

break repair [39]. PRKDC is involved in the signalling pathway responsible for the formation 

of fat from carbohydrates in the liver [40]. Wong et al. [40] conducted a study, in which they 

postulated that during fasting, inactivation of Fatty Acid Synthase (FAS) promoter occurs. 

However upon feeding, the FAS promoter becomes activated by PRKDC gene. In PRKDC 

deficient scid (severe combined immunodeficient) mice, feeding-induced transcriptional 

activation of the FAS gene and lipogenesis were impaired. As a result, reduced triglyceride 

level and decreased adipose tissue in PRKDC deficient scid mice were observed [40]. L-

selectin (SELL) plays a role in lymphocyte trafficking to lymph nodes and Peyer’s patches, 

as well as targeting lymphocytes and neutrophils to an inflammation source [41]. The SELL 
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encoded protein is a member of selectins belonging to a family of transmembrane 

glycoproteins and its role is to support adhesion of blood leucocytes to the vessel wall upon 

inflammatory and immunological response [42]. Significant reduction of L-selectin, which 

could affect the neutrophil’s ability to activate and travel to a source of inflammation, was 

observed in morbidly obese patients [43]. Yang et al. [44] proposed that L-selectin is 

responsible for mediating leukocyte homing to islets which would suggest it might be 

associated with autoimmune disease such as diabetes mellitus. Moreover, T668C SNP in 

SELL was associated with insulin-dependent diabetes mellitus [45]. Additionally, allele L206 

of L-selectin gene was associated with inflammatory bowel disease [46].  

 

NR2E1 is a member of a ligand dependent transcriptional factors group, which controls a 

number of biological and disease related processes. NR2E1 is abundantly expressed in the 

brain where it is involved in neurogenesis [47]. Christie et al. [48] and Kumar et al. [49] 

reported reduced neurogenesis in adult mice with NR1E1 deletion. Moreover, the NR2E1 

knockout mice had reduced volume of olfactory bulb [49], a first central structure involved in 

processing of the olfactory information [50]. Interestingly, in the present study rs340456509 

SNP in the NR1E2 was significantly associated with breeding values for FCR and D110. 

Olfactory bulb plays an important part in regulating food intake as it is targeted by signals 

responsible for the regulation of energy balance [50], therefore it is hugely relevant for feed 

conversion efficiency. 

 

AKR1C3 belongs to a large aldo and keto reductase enzyme family and is expressed in a wide 

variety of tissues including liver and adipose tissue. The protein encoded by this gene plays a 

role in conversion of active androgens, oestrogens and prostaglandins to their non-active 

metabolites [51]. AKR1C3 has been associated with androgen inactivation induced adiposity, 

where large adipocytes had higher expression level compared to small adipocytes [52,53]. 

This finding was supported by a study conducted on obese patients having decreased 

AKR1C3 expression upon diet induced weight loss [52]. Svensson et al. [52] also postulated 

that there might be a link between the AKR1C3 gene and glucose intolerance. Moreover, 

White et al. [51] found an association between rs2211623 SNP and liver inflammation, which 

in turn might be related to insulin resistance. Nevertheless, in this study the selected SNP 

rs81508945 SNP in the AKR1C3 was not found significantly associated with the breeding 

values for FCR or D110. 
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MBD5 is a member of the methyl-CpG-binding domain (MBD) family of proteins. It is 

highly expressed in neurons [54] and is involved in mediating DNA methylation [55]. MBD5 

also plays an essential role in the regulation of postnatal growth and glucose homeostasis 

[56]. A study conducted on MBD5 knockout mice revealed severe growth retardation and 

persistent hypoglycemia, hypoinsulinemia, enhanced glucose intolerance and elevated insulin 

sensitivity. Moreover, mice lacking the MBD5 gene exhibited significantly smaller body size 

and reduction of subcutaneous and perigonadal fat [56]. Nevertheless, in this study the 

selected SNP rs332368013 in the MBD5 was out of HWE. The protein encoded by OPRD1, a 

member of the opioid family of G-protein-coupled receptor, is broadly distributed in a 

number of brain areas involved in the regulation of energy homeostasis [57]. In particular, 

OPRD1 is highly expressed in olfactory bulb and anterior olfactory nucleus [58]. OPRD1 

knockout mice fed with high energy diet were found to be resistant to weight gain and had 

lower fat mass. They also exhibited higher energy expenditure due to increased thermogenic 

activity in the brown adipose tissue [57]. Additionally, a number of SNPs within the OPRD1 

gene were significantly associated with anorexia nervosa [59,60]. Although it would be 

interesting to examine the role of OPRD1 for feed efficiency and growth, the minor allele 

frequency of the identified novel SNP within this gene was lower than 5 percent and thus it 

was excluded from the further analysis. 

 

Conclusions 

In summary, the present study demonstrated a number of chromosomal regions significantly 

associated with feed conversion efficiency and growth rate in the examined terminal pig sire 

line. Most of the regions were described for the first time, although some of them were 

located not far from previously reported QTLs. Validation of putative candidate genes from 

GWAS mapping near the significant SNPs confirmed a number of genes significantly 

associated with feed conversion efficiency and its related trait, days to 110 kg. Feed 

efficiency is a highly complex trait affected by a number of factors. This study suggests that 

the genetic predisposition of analysed traits is driven by lipogenesis, olfactory reception, and 

also immunological status. In depth characterisation of these genes to determine their 

molecular architecture and identify the causative mutations would be of benefit. Moreover, it 

would be useful to validate these SNPs in other commercial pig population regarding their 

effects on feed conversion efficiency and growth rate. 
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List of abbreviations 

FCE: feed conversion efficiency, FCR: feed conversion ratio, RFI: residual feed intake, 

D110: days to 110 kg, QTL: quantitative trait locus, GWAS: genome-wide association 

study, SSC: Sus scrofa chromosome, BLUP: best linear unbiased prediction, EBV: estimated 

breeding value, SNP: single nucleotide polymorphism, MAF: minor allele frequency. 
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Table 1 Forward and reverse primers for PCR amplification of the twelve selected positional candidate genes located within 1Mb of the genome-wide 

significant markers for EBVs FCR and D110. 

Gene Ensembl reference Size (bp) Forward Reverse 

CD164  ENSSSCG00000004414 713 TGTGTCTGTCCAGTTTCTTCGC TGAAGTCAGGCTGGGGATTACG 

NR2E1 ENSSSCG00000004384 706 TCTCCCTTCCCTCTCTTCACCT ACCTACGCTGCCCTCTGATTTC 

SMPD2  ENSSSCG00000004408 697 CCTCCTCTCTGACCCTCTCTCT TGGGGCTGTCTGTTTCTTCC 

PRKDC  ENSSSCG00000006274 735 AGGAAACACGCCTCAGTTGGTA ACGCAGGAGACAGAAGGAAAGC 

SELL  ENSSSCG00000006287 706 TCTCAAAACAAATGTCTGTGGCTGT GGTTATCTTCTGGGCAACTCACC 

SELP  ENSSSCG00000006288 350 ACCTGAATCCAACCTCTCTCCA TGCATCTGAAGTAGCAAGTCGT 

OPRD1  ENSSSCG00000027401 718 GCTCCCATCCACATCTTCGTCA CCCCTCAATTCCACCTTCCTCA 

WDTC1  ENSSSCG00000003570 567 CCAGGGACCAAGACAACCGA CACCATACCTCACAGCAACGC 

AKR1C3  ENSSSCG00000030447 792 GCTGACACTTAGCAGTTGAGGAATA GGTGGAGGAAAGAGGAGTTAAATACA 

KLF6  ENSSSCG00000028828 702 GACCAACAGCCTGAACTCGGA CCCTGAGTCTCACTTCCCCAAA 

MBD5  ENSSSCG00000015667 773 ACTTGGAAGCCCTGATGTTTTCAC ACCCTATCGTTGACCTTGGTGAC 

MMADHC  ENSSSCG00000028646 696 GGATTCTCCGTTGATGATCTTGGC CCTTATTCTTCTTTCCCGCACAAAC 
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Table 2 Genes located closest to the genome-wide significant SNPs. 

    
EBV

$
 SNP Neglog10 (p-value) SSC* Position (bp) Region Nearest gene*  Gene position (bp) 

FCR H3GA0002102 6.32 1 84,686,166 Intronic ENSSSCG00000004415 84,644,862 - 84,709,541 

FCR MARC0000845 6.26 4 86,747,415 Intergenic  ENSSSCG00000024309 86,796,081 - 86,804,148 

FCR ALGA0026204 6.47 4 87,021,547 Intergenic  MCM4 87,134,012 - 87,185,073 

FCR H3GA0013204 7.96 4 88,311,790 Intergenic  METTL11B 88,441,595 - 88,460,670 

FCR ALGA0026230 6.84 4 89,104,182 Intronic F5 89,027,936 - 89,109,573 

FCR ALGA0026233 6.91 4 89,118,147 Intergenic  F5 89,027,936 - 89,109,573 

FCR ASGA0028724 6.44 6 78,297,229 Intergenic  FGR 78,358,088 - 78,326,491 

FCR ALGA0035847 6.43 6 80,577,487 Intergenic  PTPRU 80,106,273 - 80,024,322 

FCR MARC0015113 7.40 15 146,404,317 Intronic DIS3L2 146,381,891 - 146,596,424 

FCR ALGA0119312 6.27 15 149,350,761 Intergenic ARL4C 149,122,784 - 149,123,362 

D110 ALGA0060013 6.32 10 72,375,760 Intergenic  AKR1C3  72,091,036 - 72,106,952 

D110 H3GA0030777 6.92 10 72,766,001 Intergenic  KLF6 72,992,245 - 73,001,823 

D110 MARC0036947 6.92 15 2,640,639 Intergenic  LYPD6B 2,443,675 - 2,456,793 

D110 ALGA0115976 6.89 15 2,798,633 Intronic  KIF5C 2,730,359 - 2,901,565 

D110 ALGA0113899 6.78 15 2,835,746 Intronic  KIF5C 2,730,359 - 2,901,565 

D110 MARC0072361 7.75 15 2,843,921 Intronic  KIF5C 2,730,359 - 2,901,565 

D110 ALGA0083417 8.15 15 3,322,649 Intergenic  MBD5  3,354,689 - 3,361,520 

$
Estimated breeding value; *Sscrofa 10.2 assembly. 

 

 

 

http://www.ensembl.org/Sus_scrofa/Gene/Summary?db=core;g=ENSSSCG00000004415
http://www.ensembl.org/Sus_scrofa/Gene/Summary?db=core;g=ENSSSCG00000004415
http://www.ensembl.org/Sus_scrofa/contigview?chr=1&vc_start=84644862&vc_end=84709541
http://www.ensembl.org/Sus_scrofa/Gene/Summary?db=core;g=ENSSSCG00000030447
http://www.ensembl.org/Sus_scrofa/Gene/Summary?db=core;g=ENSSSCG00000028828
http://www.ensembl.org/Sus_scrofa/Gene/Summary?db=core;g=ENSSSCG00000015677
http://www.ensembl.org/Sus_scrofa/Gene/Summary?db=core;g=ENSSSCG00000015667
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Table 3 Top molecular themes for the positional and functional candidate genes located within 1Mb of the genome-wide significant markers for 

EBV of FCR and D110. 

EBV Category B-H p-value* Genes 

FCR Hematological System Development 

and Function 

8.53E-05-9.68E-02 CEBPD, SRSF4, SELL, ATPIF1, FGR, SELE, F5, THEMIS2, EPB41, HTR2B, SELP, ZBTB24, 

WASF2, PRKDC, FOXO3, OPRD1 

FCR Immune Cell Trafficking 8.53E-05-9E-02 SELP, SELL, FGR, SELE, F5, FOXO3, OPRD1 

FCR Lymphoid Tissue Structure and 

Development 

2.89E-03-9E-02 THEMIS2, SELP, SELL, SELE, F5, PRKDC 

FCR Organ Morphology 2.89E-03-9.68E-02 CEBPD, SELL, ECEL1, NR2E1, SELE, CHRNG, WASF1, GPR3, EIF4E2, HTR2B, CHRND, 

SELP, KIFAP3, SEC63, SYTL1, PRKDC, FOXO3 

FCR Organismal Development 2.89E-03-9.14E-02 CEBPD, SELL, ATPIF1, NR2E1, FGR, SELE, F5, NPPC, WASF1, GPR3, THEMIS2, EIF4E2, 

HTR2B, SELP, KIFAP3, WASF2, PRKDC, FOXO3 

D110 Endocrine System Development and 

Function 

4.7E-06-8.62E-02 AKR1C3, MBD5, ACVR2A, AKR1C1/AKR1C2, AKR1C4 

D110 Small Molecule Biochemistry 4.7E-06-6.21E-02 PFKP, AKR1C3, MBD5, ACVR2A, AKR1C1/AKR1C2, AKR1C4 

D110 Energy Production 3.51E-05-2.45E-02 AKR1C3, AKR1C1/AKR1C2, AKR1C4 

D110 Lipid Metabolism 6.06E-05-5.44E-02 AKR1C3, AKR1C1/AKR1C2, AKR1C4 

D110 Drug Metabolism 3.68E-04-3.01E-02 AKR1C3, AKR1C1/AKR1C2, AKR1C4 

*Range of B-H multiple testing correction p-values of enriched biological functions within the category; candidate genes selected for 

downstream validation are highlighted in bold. 
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Table 4 Top canonical pathways for the positional and functional candidate genes located within 1Mb of the genome-wide 

significant markers for EBV of FCR and D110. 

EBV Ingenuity Canonical Pathways P-value Genes 

FCR Cell Cycle Control of Chromosomal Replication 4.66E-03 RPA2, MCM4 

FCR  Estrogen Receptor Signaling 1.27E-02 TAF12, MED18, PRKDC 

FCR PXR/RXR Activation 2.59E-02 UGT1A1, FOXO3 

FCR Granulocyte Adhesion and Diapedesis 2.62E-02 SELP, SELL, SELE 

FCR Sphingomyelin Metabolism 2.96E-02 SMPD2 

D110 Bile Acid Biosynthesis, Neutral Pathway 5.57E-08 AKR1C3, AKR1C1/AKR1C2, AKR1C4 

D110 TR/RXR Activation 1.87E-05 PFKP, AKR1C3, AKR1C1/AKR1C2 

D110 Androgen Biosynthesis 3.32E-05 AKR1C3, AKR1C4 

D110 Methylglyoxal Degradation III 4.38E-05 AKR1C3, AKR1C1/AKR1C2 

D110 Retinoate Biosynthesis I 1.91E-04 AKR1C3, AKR1C4 

Candidate genes selected for downstream validation are highlighted in bold. 
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Table 5 Observed and expected heterozygosity of the SNPs selected for validation. 

Gene SNP Location (SSC 10.2) Alleles Variant MAF 
Observed 

heterozygosity 

Expected 

heterozygosity 
HWE

£
 

MBD5  rs332368013 15:3,359,994 A/G missense 0.300 0.471 0.420 0.014* 

NR2E1 rs340456509 1:83,552,036 G/T intron 0.211 0.359 0.334 0.155 

PRKDC rs80900450 4:87,256,301 C/T missense 0.268 0.370 0.392 0.282 

SELL rs319738340 4:88,935,116 C/T splice region 0.166 0.276 0.276 1 

AKR1C3 rs81508945 10:72,102,793 G/C missense 0.120 0.213 0.212 1 

OPRD1 NOVEL 6:79,658,669 C/A downstream 0.022 0.044 0.043 1 

£
p-value for test for departure from Hardy-Weinberg Equilibrium (HWE); *Significant departure from HWE (p<0.05) 
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Table 6 Association of the five SNPs, located in selected functional genes mapped within 1Mb of the genome-wide significant markers, with 

breeding values for FCR and D110. Lower breeding values indicate higher feed efficiency. 

 

SNP (gene) Trait P-value Least squares means of EBVs per genotype Additive effect Dominant effect 

rs80900450     C/C n=36 C/T n=161 T/T n=238 P-value a
1
 (variance

2
) P-value d

1 
(variance

2
) 

(PRKDC) EBV D110 0.085 -8.771 ±5.80 -8.416 ±5.78 -9.214 ±5.78         

  EBV FCR <.0001 -0.036 ±0.15 -0.057 ±0.15 -0.084 ±0.15 <.0001 0.0377 (5%) 0.838 0.0026 

rs319738340     C/C n=303 C/T n=120 T/T n=12         

(SELL) EBV D110 0.366 -8.899 ±5.78 -8.389 ±5.78 -9.142 ±5.86         

  EBV FCR 0.026 -0.073 ±0.15 -0.049 ±0.15 -0.047 ±0.15 0.852 -0.0019 0.800 0.0048 

rs340456509     G/G n=265 T/G n=156 T/T n=14         

(NR2E1) EBV D110 0.033 -9.224 ±5.78 -8.327 ±5.78 -7.631 ±5.84 <.0001 -0.4849 (16%) 0.044 -0.2665 (1%) 

  EBV FCR <.0001 -0.085 ±0.15 -0.047 ±0.15 -0.021 ±0.15 0.015 -0.0230 (1%) 0.559 -0.0101 

rs81508945     C/C n=6 C/G n=93 G/G n=337         

(AKR1C3) EBV D110 0.195 -6.632 ±5.92 -8.561 ±5.79 -8.953 ±5.78 
    

  EBV FCR 0.468 -0.043 ±0.15 -0.058 ±0.15 -0.069 ±0.15         

Significant associations are in bold;
 1

Additive (a) and dominant (d) effect of an allelic substitution on a phenotype; 
2
 Phenotypic variance in 

percentage explained by SNP; Where delta was not significant, the alpha was reported from the first regression model. 
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Fig 1 Manhattan plot of the genome-wide association analysis of EBV FCR. The red line indicates the suggestive significance threshold             

(-log10[p-value] ≥ 4.7) and the blue line corresponds to Bonferroni-adjusted genome-wide significance threshold (-log10[p-value] ≥ 6) 
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Fig 2 Manhattan plot of the genome-wide association analysis of EBV D110. The red line indicates the suggestive significance threshold             

(-log10[p-value] ≥ 4.7) and the blue line corresponds to Bonferroni-adjusted genome-wide significance threshold (-log10[p-value] ≥ 6). 
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Supporting Information 

S1 Table. Chromosomal position and minor allele frequency (MAF) of markers significantly 

(-log10[p-value] ≥ 4.7) associated with breeding value of days to 110 kg (BV_D11) and 

breeding value of feed conversion ratio (BV_FCR) in a commercial pig population (n = 940).  

(PDF) 
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Abstract 

Residual feed intake (RFI), the difference between actual feed intake and predicted feed 

requirements, is suggested to impact various aspects of meat quality. The objective of this 

study was to investigate the molecular mechanisms underpinning the relationship between 

RFI and meat quality. Technological, sensory and nutritional analysis as well as 

transcriptome profiling were carried out in Longissimus thoracis et lumborum muscle of pigs 

divergent in RFI (n = 20). Significant differences in sensory profile and texture suggest a 

minor impairment of meat quality in more efficient pigs. Low RFI animals had leaner 

carcasses, greater muscle content and altered fatty acid profiles compared to high RFI 

animals. Accordingly, differentially expressed genes were enriched in muscle growth and 

lipid & connective tissue metabolism. Differences in protein synthesis and degradation 

suggest a greater turnover of low RFI muscle, while divergence in connective tissue adhesion 

https://doi.org/10.1016/j.meatsci.2017.11.021
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may impact tenderness. Fatty acid oxidation tending towards decrease could possibly 

contribute to reduced mitochondrial activity in low RFI muscle. 

 

Key words: Pork quality, Feed efficiency, FE, RFI, Transcriptomics, RNA  

 

1 Introduction 

Producing meat more feed efficiently has been a major goal in pig breeding. Improvement in 

pig production efficiency is being targeted through selection for enhanced feed efficiency 

(FE), which is an indicator of an animal’s efficiency in converting feed into live weight 

(Wilkinson, 2011). Residual feed intake (RFI), a measure of FE, refers to a difference 

between an individual’s actual feed intake and its expected nutritional requirements due to 

maintenance and growth (Saintilan, et al., 2013). A low RFI indicates a decreased energy 

requirement for maintenance (Hoque & Suzuki, 2009), therefore less feed is needed and 

production is more efficient. RFI is a moderately heritable trait with estimates ranging from 

0.15 to 0.40, which makes it a suitable trait for genetic improvement (Fan, et al., 2010). A 

gene expression profiling of skeletal muscle from RFI divergent Large White pigs, carried 

out using microarrays, revealed 1,000 differentially expressed (DE) probes. Genes 

significantly up-regulated in low RFI pigs were mainly associated with protein synthesis, 

while down-regulated genes were predominantly involved in mitochondrial energy 

metabolism (Vincent, et al., 2015). Moreover, RNA sequencing of skeletal muscle in RFI 

divergent Yorkshire boars identified 99 DE genes (Jing, et al., 2015). Similarly to the study 

carried out on Large White pigs described above, genes associated with skeletal muscle 

differentiation and proliferation were up-regulated and genes involved in mitochondrial 

energy metabolism were down-regulated in low RFI pigs. Although a high level of 

correlation between microarray and RNA sequencing platforms have been reported, shorter 

and less abundant transcripts have a higher possibility to be detected using microarray 

approach (Nazarov, et al., 2017). Therefore in these cases and particularly in quantifying 

microRNA, microarray might outperform RNA sequencing (Git, et al., 2010; Nazarov, et al., 

2017). Nevertheless, one of the downsides of using microarrays is that a number of genes / 

mRNA isoforms are not incorporated (Bumgarner, 2013).There is evidence that selection for 

reduced RFI pigs is associated with leaner carcasses (Lefaucheur, et al., 2011, Faure, et al., 

2013, Smith et al., 2014) with greater muscle content (Lefaucheur, et al., 2011) and reduced 
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back-fat thickness (Lefaucheur, et al., 2011, Faure, et al., 2013). Moreover, decreased 

intramuscular fat content (Lefaucheur, et al., 2011, Smith et al., 2014) and ultimate pH as 

well as greater drip loss (Lefaucheur, et al., 2011, Faure, et al., 2013) and lighter meat colour 

(Lefaucheur, et al., 2011) have been reported in meat produced from low RFI pigs (Faure, et 

al., 2013). Nevertheless, the relationship between RFI and meat quality is not fully elucidated 

and the biological processes associated with RFI which impact meat quality are not well 

understood. Therefore the objectives of this study were to investigate 1) the technological, 

sensory and nutritional quality of pork from pigs differing in RFI, 2) the molecular 

mechanisms induced in muscle tissue contributing to differences in RFI using microarray 

platform and 3) the functional networks underpinning the potential relationship between meat 

quality and RFI.  

 

2 Materials and methods 

2.1 Animals and experimental design 

Animal care, slaughter and tissue collection of the animals used in this study were performed 

in compliance with national regulations related to animal research and commercial 

slaughtering and were approved by the local committees for the care and use of animals of 

the Teagasc and the Leibniz Institute for Farm Animal Biology. This study involved 80 pigs 

(39 gilts and 41 boars) from the cross Maxgro (Hermitage Genetics) x (German Landrace x 

Large White), which represented the intact litters of 7 sows inseminated with semen from 4 

boars (Hermitage Genetics, Kilkenny, Ireland) having a high estimated breeding value for 

feed conversion efficiency. As previously described in Metzler-Zebell, et al. (2017), pigs 

were weaned at 28 days of age and sibling groups were group-housed. All pigs were provided 

with the same sequence of diets, with the same ingredient and chemical composition (starter, 

link, weaner and finisher), via Feed Intake Recording Equipment (FIRE) feeders (Schauer 

Agrotonic, Wels, Austria). Pigs had ad libitum access to feed and water. Pigs were placed on 

test between day 42 and 91 post-weaning, whereby intake was recorded daily, and pig weight 

and back-fat depth was recorded weekly. Average daily feed intake (ADFI) and average daily 

gain (ADG) from day 42 to day 91 post-weaning were calculated for each pig. RFI was 

calculated at the end of the test period as the residuals from a least squares regression model 

of ADFI on ADG, metabolic live weight, gender and also all relevant two-way interactions, 

and the effects of back-fat and muscle depth using the PROC REG procedure in SAS (version 
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9.4; SAS Inst. Inc., Cary, NC, USA). Pigs were categorised as the highest and lowest RFI 

within litter and gender. Out of the 80 pigs, a total of 20 divergent sib-pairs of gilts (10 low 

(L) and 10 high (H) RFI from lowest and highest quartile, respectively) with an average final 

body weight of 101kg (SD: 7.6kg) (average birth weight: 1.2kg, SD: 0.2kg) were selected for 

transcriptomic and meat quality evaluation. Growth performance parameters of the pigs 

selected for further evaluation are depicted in Table S1. Prior to slaughter, the animals were 

fasted for 18 hours. The pigs were electronically stunned followed by exsanguination. A 

sample of the Longissimus thoracis et lumborum (LTL) muscle was collected from each 

carcass, cut up finely and preserved in RNALater® (Ambion Inc., Austin, USA) within 10 

minutes post-slaughter. It was then stored overnight at 4°C followed by storage at -80°C until 

RNA isolation. For meat quality measurements, the LTL muscle was excised from each 

carcass 24 hours post-mortem (pm). Assignment of LTL muscle for transcriptome and meat 

quality analysis is depicted in Fig. 1.   

 

2.2 Meat and carcass quality measurements 

2.2.1 Carcass grading. Based on the difference in light reflectance of tissues, carcass was 

measured for fat thickness and muscle depth between 3rd and 4th rib on the day of slaughter 

using Hennessy Grading Probe (Hennessy Grading Systems Ltd., Auckland, New Zealand).  

 

2.2.2 pH. pH of LTL muscle was measured at 45 minutes (pH 45m), 3 hours (pH 3h) and 24 

hours (pH 24h) pm, using a portable Hanna pH meter (Hanna Instruments, Woonsocket, RI, 

USA). A previously calibrated pH probe was inserted in the LTL between the 12th and 13th 

rib.  

 

2.2.3 Colour. Meat colour of the fresh chops and after 1h of blooming was recorded at day 1 

pm. It was measured with MiniScan XE Plus (Hunter Associates Laboratory Inc., Virginia, 

USA) using CIE L* (lighteness), a* (redness) and b* (yellowness) colour scale. The 

measurements were taken at three locations on each chop and averaged.  

 

2.2.4 Drip loss (DL). Drip loss was measured using the bag method of Honikel (1998), 

whereby pork chops measuring 2.5cm in thickness were trimmed of the adipose tissue and 

epimysium at day 1 pm, to a weight of 80g±1g. Each pork chop was then suspended by string 

inside an inflated plastic bag, ensuring that the meat did not make direct contact with the bag. 
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The bag was then sealed and suspended for 48 h at 4 °C. Thereafter, the samples were dried 

with paper towel, weighed and drip loss was expressed as percentage of the original weight of 

the chop.  

 

2.2.5 Cook loss (CL). Samples frozen at -20°C on day 1 and day 7 pm were thawed in bags in 

a circulating water bath at 20°C. The muscle chops were then trimmed of external fat to a 

similar size, dried with a paper towel and weighed. They were placed in plastic bags and 

immersed in a water bath (Grant Instruments Ltd., England) at 77°C until they reached a core 

temperature of 75°C was measured with a temperature probe (Eirelec Ltd., Ireland). The 

samples were allowed to cool at room temperature. Weight of the chops was recorded 

followed by refrigerated storage. The cook loss was expressed as a percentage of the raw 

weight of the chop.  

 

2.2.6 Warner Bratzler shear force (WBSF). After cook loss was determined, the samples 

were used to measure WBSF according to AMSA guidelines, 1995. Briefly, six cores of 

1.25cm diameter were obtained from each sample. The cores were cut in parallel to the 

longitudinal orientation of fibres and were sheared perpendicularly to the muscle fibres long 

axis with a shear blade using 500N load cell at a crosshead spead of 50mm/min (Instron 

model 5543). Data was analysed using Blue Hill software (Instron Ltd., Buckinghamshire, 

UK).  

 

2.2.7 Protein, moisture and intramuscular fat (IMF) and mineral content. Samples frozen at -

20°C on day 1 pm were thawed in bags in a circulating water bath at 20°C. Muscle chops 

were then trimmed of external fat and homogenized using a Robot Coupe blender (R301 

Ultra, Robot coupe SA, France). Protein content was measured with a Leco Nitrogen/Protein 

Analyser (FP-528, Leco Corp., MI, USA) using the Dumas method in accordance with 

AOAC method 992.15, 1990. IMF and moisture were measured with NMR Smart Trac & 

Smart 5 Rapid Fat and Moisture Analyser (CEM Corporation, USA) using AOAC method 

985.14 and 985.26, 1990. Ash content was determined by calcination of the meat samples in 

a muffle furnace at 540°C (AOAC method 923.03). The analysis for each sample was carried 

out in duplicate and the mean recorded.  

 

2.2.8 Fatty acid (FA) profile. Frozen samples (day 1 pm) were transported to a commercial 

laboratory for FA profile analysis. Intramuscular fat was extracted from LTL muscle and 
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fatty acid methyl esters were prepared and analysed using Gas Chromatography - Flame 

Ionization Detector (GC - FID) in accordance with SAL Cam Nut003 method (Pearson's 

Chemical Analysis of Foods, 9th Edition, Longman Group UK Limited, 1991, 0-582-40910-

1). Results were expressed as mg fatty acid per 100g meat.  

 

2.2.9 Sensory assessment. Panellists received a total of 60 hours training in red meat texture, 

flavour and after-effects (AMSA, 2015). Prior to assessment of the actual samples, the trained 

panellists were familiarised with pork samples from the sample set. Accuracy and 

repeatability of the panellists were then examined using PanelCheck software (version 2, 

1991, Free Software Foundation, Inc., MA, USA). Vacuum packed chops were aged at 4°C 

for 7 days followed by freezing. A day before sensory assessment, the chops were thawed 

overnight in the fridge. The chops were then grilled (Velox grill, Silesia Velox UK Ltd., 

Oxfordshire, England) until the core temperature reached 70°C and cut into 2.5 cm x 2 cm 

cubes. The 20 samples were combined with an additional set of 40 samples from a separate 

trial. A total of 60 samples were assessed over 5 sessions. Each 3-hour session consisted of 

12 randomised samples and was evaluated by trained panellists (n=8) rating the pork chops 

sensory attributes on a scale of 1 (very poorly detectable attribute) to 100 (extremely 

detectable attribute).  

 

2.2.10 Statistical analysis. PROC MIXED procedure in the SAS system was used to evaluate 

associations between RFI and meat quality traits in the Maxgro x (Landrace x Large White) 

gilts (n = 20). The model included RFI groups as a fixed effect, sow as a random effect and 

pre-slaughter live weight as a covariate, as well as the absolute values of RFI as a weight 

statement to account for differences in RFI values within the RFI groups.   

 

2.3 RNA isolation and cDNA synthesis 

According to the manufacture’s protocol total RNA from preserved LTL muscle of 10 

biological replicates per RFI group was extracted using Tri-Reagent (Sigma-Alrich, 

Taufkirchen, Germany). It was then subjected to DNase treatment and a column-based 

purification using the Nucleospin RNA II kit (Macherey-Nagel, Düren, Germany). RNA 

samples were analysed for integrity and quantity using agarose gel electrophoresis and 

Nanodrop ND-1000 spectrophotometer (PEQLAB, Erlangen, Germany). RNA samples were 

also checked for DNA contamination by PCR of the porcine glyceraldehyde-3-phosphate 
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dehydrogenase (GAPDH) gene (Forward primer: AAGCAGGGATGATGTTCTGG; Reverse 

primer: ATGCCTCCTGTACCACCAAC). For cDNA synthesis, 1 µg of total RNA was 

utilised in presence of random primers (Promega, Mannheim, Germany), oligo (dT) primer 

and Superscript® III reverse transcriptase (Invitrogen Corp., San Diego, CA, USA).  

 

2.4. Microarray hybridisation  

Double stranded cDNA was synthesised using total RNA, which served as a template in the 

subsequent in vitro transcription reaction. Antisense cRNA was then purified and sense-

strand cDNA was synthesised by the reverse transcription of cRNA, using a GeneChip® WT 

Amplification Kit (Affymetrix, Santa Clara, CA, USA). Biotin-labeled cDNA was then 

fragmented with GeneChip® WT Terminal Labeling Kit (Affymetrix) and injected onto 

porcine snowball arrays (Affymetrix) containing 47,845 probe sets with a mean coverage of 

22 probes per transcript (Freeman, et al., 2012). The arrays were incubated for 16 hours at 

45°C in Affymetrix GeneChip Hybridization Oven 640. After hybridisation, the arrays were 

washed and stained with streptavidin-phycoerythrin antibody solution (Affymetrix) on an 

Affymetrix GeneChip Fluidic Station 450 station. The arrays were then scanned with 

Affymetrix GeneChip Scanner 3000.  Microarray images were quantified using GCOS 1.1.1 

(Affymetrix) and raw data was deposited in a MIAME-compliant database, the National 

Center for Biotechnology Information Gene Expression Omnibus 

(www.ncbi.nlm.nih.gov/geo) (accession number: GSE99653). 

 

2.5 Analysis of microarray data and functional annotation 

Bioinformatic analysis of the microarrays, including pre-processing and normalisation, was 

implemented using R packages (affy, arrayQualityMetrics, genefilter, affyPLM and vsn)  

(version 3.1.1, https://www.R-project.org/). Robust multi-array average (RMA) normalisation 

(Log2) was performed and probe sets with a low standard deviation (std ≤ 0.23) were 

discarded. A further filtering step involved filtering by both control probe sets and means 

(means ≤ 2.5 were rejected). PROC MIXED including RFI groups and sow as fixed effects 

and birth weight as a covariate was implemented in JMP Genomics 6 software of SAS 

(version 6, SAS INST.) to determine relative changes in transcript abundances (fold change). 

The corresponding false discovery rate (q-value) (Storey & Tibshirani, 2003) was calculated 

using the qvalue R package (version 3.1.1, https://www.R-project.org/). Relative changes in 

transcript abundance significant at the nominal 0.05 level were subjected to further ontology 
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analysis (Ingenuity Pathway Analysis; Ingenuity® Systems, http://www.ingenuity.com/). 

Benjamini-Hochberg corrected p-values were used to detect the most significant canonical 

pathways (P < 0.05) and to map the genes to the most significant molecular and cellular 

functions (P < 0.05) contained in the IPA library. Functional annotations with a z-score > 2 

were considered significantly activated in low RFI pigs. Information contained in the 

Ingenuity® Knowledge Base was used to create potential important networks of DE genes. A 

list of DE microRNAs (miRNAs; represented on the snowball array) along with DE 

transcripts and related fold changes (P ≤ 0.05) were submitted to Ingenuity miRNA Target 

Filter (http://www.ingenuity.com/) to predict target transcripts regulated by these miRNAs 

and to investigate miRNA–mRNA expression patterns. Additionally, potential networks of 

the DE transcripts that were predicted to be regulated by the DE miRNAs were generated.  

 

2.6 Microarray validation 

In order to validate the microarray results, six DE genes involved in lipid and energy 

metabolism (ACACA, ACSL1, BCL2, MMP2, SDHB and TFAM) were selected for 

quantitative real-time PCR (qPCR), whereby RPL10 and RPL32 were used as housekeeping 

genes. Primers for target genes were designed online with Primer3 software 

(http://bioinfo.ut.ee/primer3-0.4.0/) based on Sus scrofa nucleotide sequences. Specificity of 

primers was determined with the BLAST search tool in the NCBI database 

(http://www.ncbi.nlm.nih.gov/BLAST). Primer sets for selected reference and target genes 

are listed in Table S2. qPCR was carried out on 96-well plates using 7500 system (Applied 

Biosystems, Foster City, CA, USA). 2 μl of cDNA was amplified in a 21 μl reaction volume 

using 10 μl Power SYBR® Green Master Mix, 0.15 μl (10 μM) of each forward and reverse 

primer and 8.7 μl nuclease free water (QIAGEN Ltd., West Sussex, UK). All qPCR reactions 

were performed in triplicate for each cDNA sample. Cycling conditions for reference and DE 

genes of interest were as follows: 50 °C for 2 min, 95 °C for 10 min, and 40 cycles of 95 °C 

for 15 s and 60 °C for 1 min. In order to confirm a specificity of all individual amplification 

reactions, a dissociation curve analysis was included at the end of the amplification: 95 °C for 

15 s, 60 °C for 1 min, 95 °C for 15 s and 60 °C for 15 s. A standard curve using 5-fold serial 

dilutions of a cDNA pool was generated to which relative expression values were compared. 

A normalization factor obtained from the expression of the reference genes was utilised for 

normalization of the candidate DE genes’ expression values. Data was analysed using a 

general linear model procedure in the SAS system (version 9.3, SAS INST.) Spearman 



Annex A 

94 
 

correlations between the microarray expression values (log2) and qPCR normalised relative 

expression values (Ct) were carried out using R (version 3.1.1, https://www.R-project.org/).  

 

3 Results  

3.1 Meat quality  

The mean RFI (g/day) of the L (low RFI - LRFI) and H group (high RFI - HRFI) was -106.6 

(SD: 78.9) and 86.4 (SD: 84.7), respectively. Carcass and technological meat quality traits of 

LTL muscle in LRFI and HRFI pigs are shown in Table 1 and sensory attributes of LTL 

muscle in LRFI and HRFI pigs are presented in Fig. 2. Muscle depth and percent lean meat 

significantly differed between the RFI groups (P < 0.05), with the LRFI having greater lean 

meat percentage and increased muscle depth. LRFI pigs were also found to have significantly 

reduced IMF percentage (P < 0.05). The pH at 45m pm had a tendency towards increased 

values in the LRFI group (P = 0.055), however pH at 3h and 24h pm did not differ between 

the two groups. Moreover meat from LRFI pigs tended to have increased cook loss at day 1 

pm (P = 0.053) but there was no difference detected at day 7 pm. Muscle from LRFI pigs was 

significantly associated with increased WBSF (less tender) at day 1 pm (P < 0.01) and had a 

tendency towards increased WBSF scores at day 7 pm (P = 0.057). Significant difference in 

tenderness between the RFI groups was also detected by sensory panellists who scored the 

LRFI meat (day 7 pm) as less tender (P < 0.05). Furthermore, meat from LRFI pigs was 

found to have lower b* values (P < 0.05) compared to meat from HRFI pigs, however the 

difference in yellowness scores was not significant after 1h blooming (P > 0.1). Lightness 

and redness did not differ between the two groups. Pork sensory assessment also revealed 

that meat produced from LRFI pigs had higher scores for stringy/fibrous/sinewy and chewy 

texture (P < 0.05). Additionally, meat from LRFI pigs was found less crumbly in texture (P < 

0.05), less sweet (P < 0.001) and more sour (P < 0.05). Nutritional composition with regards 

to fatty acid (FA) content in LTL muscle (mg FA/100g meat), and percentage of FA in IMF 

of pigs divergent in RFI are presented in Table 2. From a nutritional point of view, meat from 

LRFI group contained significantly lower amounts of saturated fatty acids (SFA) such as 

myristic, palmitic and stearic (P < 0.05) and monounsaturated fatty acids (MUFA) including 

palmitoleic, oleic (P < 0.05) and eicosenoic (P < 0.1). Neither member of polyunsaturated 

fatty acid (PUFA) family differed significantly in LTL muscle of RFI divergent pigs. The 

IMF from LRFI group had significantly higher proportions of PUFA such as linoleic (P < 

https://www.r-project.org/
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0.001) and alpha-linolenic (P < 0.05), and lower level of palmitic acid (P < 0.01) belonging 

to a SFA family. MUFA did not differ significantly in IMF between the RFI groups however.  

  

3.2 Differential mRNA and miRNA expression profile 

A total of 30,992 probe-sets remained after filtering and 1,035 probes were differentially 

expressed between LRFI and HRFI groups (645 probes were up-regulated and 390 were 

down-regulated in LRFI pigs) (P ≤ 0.05, q < 0.75). Of the 1,035 probes, 875 were annotated 

and assigned to 800 genes (481 genes were up-regulated and 319 genes were down-regulated 

in LRFI compared to HRFI pigs) and 33 miRNAs (27 miRNAs were up-regulated and 6 

miRNAs were down-regulated in LRFI compared to HRFI pigs). 123 annotated genes and 10 

annotated miRNAs were found to be at least 1.5-fold differentially expressed. The most 

altered genes were AP2M1 (2.37; LRFI > HRFI) and NCOA2 (-3.32; LRFI < HRFI), and the 

most altered miRNAs were mir-675 (1.70 LRFI > HRFI) and mir-4311 (-1.90 LRFI < HRFI). 

Due to the relatively small differences in gene expression between the low and high RFI 

groups, transcripts and miRNAs with a P ≤ 0.05 were considered significantly differentially 

expressed. To further refine this data, a gene ontology approach was utilised to extract 

molecular themes and networks. 

 

3.3 Functional annotation, canonical pathway and network analysis 

Twenty six molecular and cellular functions were significantly associated with genes DE in 

relation to RFI (P < 0.05). The six most significant biological processes altered in RFI groups 

were ‘gene expression’ (150 DE genes), ‘lipid metabolism’ (82 DE genes), ‘molecular 

transport’ (156 DE genes), ‘small molecule biochemistry’ (113 DE genes), ‘cellular growth 

and proliferation’ (248 DE genes), and ‘cell death and survival’ (227 DE genes). Ten 

canonical signalling pathways (P < 0.05) were significantly over-represented among DE 

genes in relation to RFI. The six most significant signalling pathways were ‘TR/RXR 

activation’ (16 DE genes), ‘PEDF signalling’ (11 DE genes), ‘HIF α signalling’ (11 DE 

genes), ‘myc mediated apoptosis signalling’ (8 DE genes), ‘aryl hydrocarbon receptor 

signalling’ (13 DE genes) and ‘adipogenesis pathway’ (12 DE genes) (Table 3). Twenty five 

over-represented gene networks were generated for differentially expressed genes in relation 

to RFI. The most significant network (Fig. 3) was represented by functions related to 

‘molecular transport’, ‘nucleic acid metabolism’ and ‘small molecule biochemistry’, and 

contained 32 differentially expressed TP53-associated molecules.  
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3.4 miRNA-mRNA paired expression profiling and network analysis of target transcripts 

Since miRNAs repress gene translation through base pairing with their target mRNAs, 

identification of their target transcripts is vital for understanding their biological function 

(Rajewsky, 2006; Tang, et al., 2015). In this study, potential DE target genes regulated by the 

33 DE miRNAs were predicted. Of these, 29 miRNAs were mapped and predicted to regulate 

379 DE genes. miRNA–mRNA expression pairing was performed to investigate expression 

patterns of miRNAs and potential mRNA targets. Although some studies reported miRNAs 

capability to activate gene expression (Orang, Safaralizadeh & Kazemzadeh-Bavili, 2014), 

our aim was to focus on the miRNA repression of target genes, therefore miRNA-mRNA 

expression patterns exhibiting the same direction were removed. 168 DE genes targeted by 28 

DE miRNAs remained (Table S5), with mir3184, mir4313 and mir631 being the top three 

miRNAs predicted regulating 79, 44 and 44 DE target transcripts, respectively. In order to 

gain insights into biological functions of DE miRNAs, molecular connectivity of DE genes 

regulated by these miRNAs was performed. The most significant network (Fig. S1) was 

represented by functions related to ‘cellular development, growth & proliferation’ and 

‘respiratory system development and function’ and contained 24 DE molecules. Another 

interesting network (Fig. 4) included ‘embryonic development’, ‘connective tissue 

development & function’ and ‘organ morphology’ and was represented by 10 DE molecules.  

 

3.5 Microarray validation  

The qPCR confirmed significant differences in the expression of ACSL1, SDHB and TFAM 

transcripts between LRFI and HRFI groups. mRNA abundances of ACACA, BCL2 and 

MMP2 showed a numerical change in the same direction when compared to results obtained 

from the microarrays. Spearman correlations between microarray expression values and 

qPCR Ct values were significant (P < 0.05) for all transcripts and ranged from 0.56 to 0.84 

(Table 4).  

 

4 Discussion 

4.1 Meat quality 

The first objective of this study was to examine the effect of divergence in RFI on 

technological, sensory and nutritional quality of pork. Our findings indicate that low RFI pigs 
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exhibit increased muscle size, leanness and reduced IMF content, and this is consistent with 

previous studies (Faure, et al., 2013; Lefaucheur, et al., 2011; Smith, et al., 2011). The similar 

trend in adiposity and marbling is not surprising and can be explained by a positive genetic 

correlation between the two traits (Lefaucheur, et al., 2011). In agreement with the fact that 

lipid content can influence colour measurements (Schwab, Baas, Stalder & Mabry, 2006), 

meat from LRFI pigs was found to be less yellow. The results regarding pH are in contrast 

with previous studies reporting no effect on early pH and significantly reduced ultimate pH in 

LRFI pigs, compared to HRFI (Faure, et al., 2013; Lefaucheur, et al., 2011). Longissimus 

(LM) is a large fast-twitch glycolytic muscle composed of approximately 74 percent type 

IIBW (white) fibres (Lefaucheur, et al., 2011). In a previous study, LM from pigs divergent 

in RFI showed no difference in proportions of muscle fibre types (Smith, et al., 2011). On the 

contrary, another study reported higher proportions of IIBW fibres in meat from LRFI pigs 

compared to HRFI group (Lefaucheur, et al., 2011). Increase in IIBW fibres and 

consequently greater muscle glycogen content in LRFI pigs have been associated with 

impaired meat quality through reduced ultimate pH, greater lightness and drip loss (Gilbert, 

et al., 2007; Lefaucheur, et al., 2011). In the present study, these associations were not 

observed, which may indicate that muscle from the LRFI pigs does not contain higher 

proportions of IIBW fibres. Indeed, the array contained several myosin heavy chain isoforms 

but no significant differences in their expression were observed here between RFI groups. 

Previous studies, such as that of Lefaucheur et al. (2011) and Faure et al. (2013) utilised a 

different experimental model for RFI, with animals being selected in divergent lines for 

multiple generations. The animals in the present study were selected from within families and 

the mechanisms underpinning the differences in RFI which we observed are likely to differ 

from those in previous experiments. 

 

Shear force and sensory analysis showed that meat from LRFI pigs was tougher and more 

stringy compared to HRFI. No significant association with tenderness was found in a 

previous study carried out on low RFI pigs versus control pigs (Faure, et al., 2013). In 

contrast, another study (Smith, et al., 2011) did report a significant correlation between 

tenderness and RFI, and they postulated that tenderness of meat produced by LRFI pigs could 

be negatively affected by greater calpastatin activity resulting in decreased post-mortem 

protein degradation. They also suggested that the lower IMF in this group of pigs may 

contribute to decreased tenderness of resultant meat from LRFI pigs. While the relationship 

between IMF and tenderness is inconclusive (Smith, et al., 2011), many authors have 
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speculated on a link between IMF and tenderness, due to greater ease of tissue disruption in 

areas richer in fat cells. Furthermore, trained panellists scored meat from LRFI pigs as less 

sweet and more sour compared to meat from HRFI group. A previous study also reported that 

meat with elevated ultimate pH (pH = 6) was perceived as more sweet, tender and less acidic 

than meat with normal pH (Bryhni, et al., 2003). It is interesting that meat from HRFI pigs 

showed a similar trend in the sensory scores while having an ultimate pH within the normal 

range and although HRFI pigs had slightly higher values than meat from LRFI pigs the 

difference was not significant. This variation in sweet and sour taste could also be caused by 

a diverse proportion of particular amino acids. It has been well documented that variable 

concentrations of amino acids affect taste perception (Choudhuri, Delay & Delay, 2015). For 

example L-serine and D-serine amino acids are associated with sweet taste (Kawai, Sekine-

Hayakawa, Okiyama & Ninomiya, 2012), whereas glutamic and aspartic amino acids are 

associated with sour taste  (Birch & Kemp, 1989).     

 

Fat content and fatty acid composition play important roles in sensory attributes and 

nutritional value of meat (Nieto & Ros, 2012). Meat contains considerable concentrations of 

cell membrane phospholipids, which are rich in PUFA (Wood, et al., 2008). Nevertheless the 

most predominant class of fatty acids present in meat are MUFA followed by SFA, which are 

the major constituents of triacylglycerol (Kasprzyk, Tyra & Babicz, 2015; Wood, et al., 

2008). Reduced IMF content is frequently associated with higher proportion of PUFA and 

decreased levels of SFA and MUFA (Dominguez & Lorenzo, 2014; Dugan, et al., 2015; 

Wood, et al., 2008). Here, low RFI muscle was associated with reduced IMF content and, in 

keeping with previous studies, this was predominantly due to reduced SFA and MUFA 

content, with similar total meat PUFA content in LTL muscle of both groups. The health 

profile of muscle from LRFI pigs could be considered more beneficial, being 42 percent 

lower in SFA and with IMF 19 percent richer in PUFA.  

 

4.2 Gene expression profile 

Besides the carcass and meat quality analysis of the RFI divergent pigs, the other aim of this 

study was to attain insights on the biological events explaining differences in RFI and 

increase understanding of the biological processes linking RFI and meat quality traits such as 

sensory profile and technological performance. The magnitude of DE genes found in the 

current study is similar to a recently performed gene expression profiling of skeletal muscle 
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of Large White pigs selected for divergent RFI (Vincent, et al., 2015). It is important to note 

that the experimental model used in our study involved pairs of animals from the lowest and 

highest quartile chosen within the same family, i.e. divergent sib-pairs, and the work 

conducted by Vincent et al. (2015) utilised animals of divergently selected lines for RFI over 

several generations. As a result of using animals from the same family, the genetic 

variability, and transcriptomic response is likely due to different mendelian inheritance of 

parental alleles within the sib-pairs that largely contribute to the trait of interest, rather than 

long term selection effects and genetic drift. Hence it is of interest that very similar numbers 

of differentially expressed transcripts were observed in both experiments. Furthermore, 

downstream validation of the microarray results via qPCR of selected DE genes was 

successful thus confirming reliability of the expression profiles. Functional annotation 

revealed a number of biological processes related to growth, connective tissue and lipid 

metabolism suggesting that these might be important mechanisms contributing to differences 

in RFI.  

 

4.2.1 Growth  

Adaptor related protein complex 2 mu 1 subunit (AP2M1) was the most up-regulated gene 

(fold change = 2.37) in LRFI pigs. AP2M1 is a subunit of adaptor protein 2 (AP2) involved 

in clathrin-mediated endocytosis, which is the uptake of nutrients from the surface of the cell 

into the cell via clathrin-coated vesicles (Tian, Chang, Fan, Flajolet & Greengard, 2013). 

Accordingly, functional annotation revealed endocytosis significantly activated in LRFI pigs 

(z-score = 3.11). Nuclear receptor coactivator 2 (NCOA2) was the most down-regulated gene 

(fold change = -3.32) in LRFI pigs. NCOA2 belongs to the nuclear receptor coactivator 

family, which assists in the function of nuclear hormone receptors playing a vital role in cell 

growth, development and homeostasis via regulating expression of particular genes. In a 

previous study, porcine NCOA2 transcript was positively associated with IMF content in LM 

muscle (Wang, et al., 2008). This is in agreement with the LRFI pigs exhibiting suppressed 

NCOA2 expression and reduced IMF content. Two miRNAs, mir135a and mir3184, that were 

predicted to suppress NCOA2 expression were significantly over-expressed in LRFI pigs. 

Thus these miRNAs could play a mechanistic role in reducing IMF content through inhibiting 

NCOA2 activity in LRFI pigs.  
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In agreement with increased muscle depth and decreased IMF content in LRFI pigs, 

functional annotation revealed a number of biological processes related to growth. 

Specifically, ‘cell survival’ and ‘cell differentiation’ were significantly activated (z-score = 

2.3 and 2.4 respectively) in LRFI pigs. Among the up-regulated genes were insulin like 

growth factor 2 (IGF2). Protein encoded by IGF2 plays an essential role in skeletal muscle 

differentiation (Alzhanov, McInerney & Rotwein, 2010) and lean versus intramuscular fat 

content  (Aslan, et al., 2012; Van Laere, et al., 2003). Other significantly enriched functions 

related to growth were ‘protein synthesis and degradation’, with meltrin-alpha (ADAM12) 

being over-expressed in LRFI pigs. ADAM12 is an adhesion molecule that has previously 

been found to play a role in skeletal muscle development and regeneration (Kurisaki, et al., 

2003; Moghadaszadeh, et al., 2003; Przewozniak, et al., 2013). Up-regulation of ADAM12 

along with other genes involved in muscle protein synthesis, and also up-regulation of muscle 

protein degrading enzymes such as calpain 10 (CAPN10) and caspase 9 (CASP9) suggest 

greater muscle protein turnover in LRFI pigs. This can be supported by another study 

reporting up-regulation of genes involved in processes related to protein synthesis and 

degradation, more specifically ‘ribonucleoprotein complex biogenesis’ and ‘ubiquitin-

dependent catabolic process’ in LRFI pigs (Gondret, et al., 2017). Vincent el al. (2015) also 

identified greater muscle protein synthesis in LRFI pigs and also a calpain, in that case 

calpain 2 to be over-expressed in muscle from LRFI pigs. While probes corresponding to 

known players in pm muscle proteolysis such as calpain 1 and calpastatin, (Geesink, Taylor 

& Koohmaraie, 2005) were not incorporated in the array, CASP9 which is an initiator of pm 

proteolysis that has been suggested to influence meat tenderness thus the rate of proteolysis 

(Ouali, et al., 2006) was up-regulated in LRFI pigs. Other studies reported either no 

difference (Le Naou, Le Floc'h, Louveau, Gilbert & Gondret, 2012) or reduced protein 

degradation in LRFI pigs (Cruzen, et al., 2013; Smith, et al., 2011).  Lobley (2003) postulated 

that muscle growth driven by enhanced synthesis and decreased degradation of protein 

contributes to net gain in deposition. Nevertheless, protein synthesis is much more 

energetically costly in comparison to protein degradation (Lobley, 2003). Our data supports 

the possibility that LRFI pigs reuse existing proteins and thus conserve energy, which 

otherwise would be utilised for protein synthesis, directing it towards more efficient muscle 

growth. In addition, the interactions depicted in the tumor suppressor p53 (TP53) rooted 

network (Figure 3) support the role of TP53 as a central hub in mediating the modulation of 

muscle cell growth and differentiation (Porrello, et al., 2000; Tamir & Bengal, 1998). FXYD 

domain containing ion transport regulator 3 (FXYD3) and chloride intracellular channel 2 
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(CLIC2), coding for integral membrane proteins that regulate function of ion channels 

(Biasiotta, D'Arcangelo, Passarelli, Nicodemi & Facchiano, 2016; Littler, et al., 2010), were 

differentially expressed in this network. Ion channels are vital modulators of apoptosis 

through permitting release of potassium and chloride ions subsequently leading to cell 

shrinkage (Wanitchakool, et al., 2016). TP53 regulated inhibitor of apoptosis 1 (TRIAP1) and 

ADP ribosylation factor like GTPase interacting protein 1 (ARL6IP1) were another over-

represented genes in this network. Proteins encoded by these genes are involved in apoptosis 

via regulating CASP9 activity (Adams, et al., 2015; Lui, Chen, Wang & Naumovski, 2003). 

The connection of these DE genes to TP53, which was over-expressed in LRFI pigs, suggests 

their importance in lean growth due to its involvement in cell proliferation. Moreover, 

nineteen miRNAs were predicted to be associated with ‘cellular development, growth & 

proliferation’ through regulation of their target DE genes.  

 

4.2.2 Connective tissue   

A number of DE genes were significantly overrepresented in ‘adhesion of connective tissue’ 

function with a tendency towards activation in the high FE pigs (z-score = 1.99). During the 

process of muscle growth, connective tissue undergoes dynamic remodelling which involves 

its proteolytic degradation, and the establishment of expanded networks through synthesis of 

new connective tissue components (Purslow, 2014). Accordingly, LRFI pigs which showed 

signs of increased muscle mass also over-expressed matrix metallopeptidase 2 (MMP2) 

belonging to a family of enzymes associated with connective tissue degradation and 

remodelling (Rodier, El Moudni, Kauffmann-Lacroix, Daniault & Jacquemin, 1999; 

Woessner, 1991). This pattern might be expected to be associated with more tender meat, 

which is often associated with elevated turnover of muscle proteins (Olsson & Pickova, 2005) 

but this was not observed in the present study. Collagen type I alpha 1 chain (COL1A1), one 

of the predominant collagen types in the skeletal muscle (McCormick, 1994), was up-

regulated in LRFI pigs.. Over-expression of COL1A1 was previously associated with 

increased drip loss (McBryan, Hamill, Davey, Lawlor & Mullen, 2010; Ponsuksili, et al., 

2008). In the present study, while drip loss did not differ significantly between RFI groups, a 

tendency towards increased cook loss at day 1 pm was observed in meat from LRFI pigs. 

Upon heating, collagen fibrils shrink which consequently leads to fluid loss (Weston, Rogers 

& Althen, 2002). This finding may relate to the stringy/fibrous/sinewy and chewy texture of 

meat produced by LRFI pigs. Eleven miRNAs were predicted to regulate expression of genes 
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with functions related to ‘connective tissue development & function’. Down-regulation of 

mir584 and mir887 potentially resulted in the over-expression of collagen type I alpha 2 

chain (COL1A2) and connective tissue growth factor (CTGF), respectively.  

  

4.2.3 Lipid and energy metabolism 

In accordance with the relation of RFI to IMF content, a number of DE genes were 

significantly enriched in ‘adipogenesis pathway’ and lipid metabolism functions. Peroxisome 

proliferator activated receptor gamma (PPARG) is a master regulator of adipogenesis in a 

variety of tissues (Norris, et al., 2003).Overexpression of PPARG in adipocytes of LRFI pigs 

would suggest enhanced adipogenesis which disagrees with the observed shifts in muscle to 

fat ratio. However, considering that skeletal muscle is a highly heterogeneous tissue, the 

observed differences in PPARG expression could be attributable either to muscle cells or 

intramuscular adipocytes. A previous study reported that muscle-specific deletion of PPARG 

is associated with enhanced adiposity in mice (Norris, et al., 2003), which could explain the 

muscle of LRFI pigs exhibiting reduced IMF content while enhanced PPARG expression. 

Acyl-CoA synthetase long-chain family member 1 (ACSL1) expression was suppressed in 

LRFI pigs. The enzyme encoded by this gene is involved in lipid synthesis through 

conversion of fatty acids to triglycerides (Parkes, et al., 2006). Over-expression of ACSL1 

was previously associated with increased triglyceride level in mouse liver (Parkes, et al., 

2006). Insulin receptor (INSR), coding for transmembrane receptor stimulating triacylglycerol 

synthesis in muscle (Dimitriadis, Mitrou, Lambadiari, Maratou & Raptis, 2011) was another 

down-regulated gene in LRFI pigs. Repression of these two genes, ACSL1 and INSR, is in 

agreement with reduced IMF content in meat from LRFI pigs.  

 

Previous studies reported reduced mitochondrial energy metabolism in the Longissimus 

muscle of low vs high RFI pigs (Fu, et al., 2017; Jing, et al., 2015; Le Naou, et al., 2012). In 

this study, functional annotation revealed ‘oxidation of fatty acids’ significantly over-

represented among DE genes with the direction towards inhibition in LRFI pigs (z-score = -

1.12), which suggests that the LRFI pigs might exhibit reduced mitochondrial energy 

metabolism. Similarly, enrichment of DE genes in lipid catabolic processes was previously 

reported in RFI divergent pigs (Jing, et al., 2015). Moreover, succinate dehydrogenase 

complex iron sulfur subunit B (SDHB), involved in complex II of the mitochondrial electron 

transport chain (Liu, et al., 2015), and transcription factor A mitochondrial (TFAM), a key 
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modulator of mitochondrial DNA replication and transcription (Zou, et al., 2016), were  

down-regulated in low RFI pigs.  

 

5 Conclusions  

To conclude, improvement in feed efficiency revealed meat quality characteristics generally 

within the normal range for the production of acceptable quality pork. However significant 

differences in traits such as sensory profile, texture, and technological aspects such as cook 

loss suggest there is a minor impairment of meat quality in more feed efficient pigs, at least in 

the M. longissimus. High FE pigs were also associated with leaner carcasses, greater muscle 

content and enhanced nutritional value in terms of fatty acid composition. Gene expression 

profiling of muscle from RFI-divergent pigs provided mechanistic insights on the biological 

events governing differences in RFI that have consequences for eating quality. A number of 

differentially expressed genes were significantly over-represented with functions in muscle 

growth & development, lipid metabolism and connective tissue metabolism. Up-regulation of 

genes involved in the synthesis and degradation of protein suggest a greater muscle protein 

turnover in low RFI pigs, while the divergence in adhesion of connective tissue may 

contribute to differences in tenderness. Moreover, a tendency towards suppression of fatty 

acid oxidation and down-regulation of SDHB and TFAM could possibly contribute to reduced 

mitochondrial activity in low RFI muscle. 
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Table 1 Carcass and technological meat quality traits of Longissimus thoracis et 

lumborum muscle from pigs divergent in RFI. 

Trait Low RFI
1
 High RFI

1
 SE P-value 

Fat depth (mm) 11.9 13.3 0.71 0.086 

Muscle depth (mm) 53.4 50.9 1.10 0.045 
Lean (%) 58.0 56.5 0.64 0.042 
pH 45m 6.72 6.58 0.06 0.055 

pH 3h 6.71 6.60 0.11 0.296 

pH 24h 5.55 5.62 0.09 0.452 

L* 53.0 54.2 1.44 0.423 

a* 5.43 5.24 0.52 0.725 

b* 12.9 13.9 0.34 0.013 

1h L*  52.7 54.3 1.57 0.338 

1h a* 6.63 5.99 0.56 0.279 

1h b* 13.9 14.5 0.38 0.137 

DL (%) 2.36 2.31 0.41 0.905 

Protein (%) 23.8 23.7 0.30 0.615 

Ash (%) 1.31 1.34 0.07 0.704 

Moisture (%) 74.9 74.9 0.17 0.868 

IMF (%) 1.05 1.41 0.15 0.042 

WBSF day 1 (N) 59.1 39.7 4.14 0.001 

WBSF day 7 (N) 48.8 38.8 4.72 0.057 

CL day 1 (%)  32.9 31.2 0.97 0.053 

CL day 7 (%)  31.9 31.0 0.98 0.399 

1
Least square means for each trait.  
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Table 2 Fatty acid composition in Longissimus thoracis et lumborum muscle and percentage of fatty acid in intramuscular fat (IMF) of 

pigs divergent in RFI. 

 
Fatty Acid  

mg fatty acid / 100g meat % fatty acid in IMF 

 

Low RFI
1 

High RFI
1 

SE P-value Low RFI
1
 High RFI

1
 SE P-value 

S
F

A
 

Myristic C14:0  17.4 25.3 0.003 0.041 1.17 1.23 0.001 0.486 

Palmitic C16:0 314 475 0.057 0.016 22.9 24.1 0.003 0.002 

Stearic C18:0 157 247 0.032 0.017 11.9 12.7 0.005 0.144 

Total SFA 491 748 0.092 0.017 35.9 38.0 0.008 0.020 

M
U

F
A

 

Palmitoleic C16:1 40.5 59.0 0.007 0.031 3.06 2.99 0.002 0.740 

Eicosenoic C20:1 9.89 13.9 0.002 0.056 0.79 0.71 0.001 0.380 

Oleic C18:1 n9 555 799 0.094 0.025 40.7 40.9 0.006 0.721 

Total MUFA 605 872 0.102 0.024 44.7 44.7 0.007 0.992 

P
U

F
A

 Linoleic C18:2 n6 111 127 0.014 0.258 7.59 6.36 0.003 <0.001 

Alpha-linolenic C18:3 n3 10.3 11.1 0.001 0.539 0.79 0.57 0.001 0.023 

Total PUFA 121 139 0.015 0.265 8.36 6.94 0.003 0.001 

1
Least square means for each fatty acid; SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty 

acids. 
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Table 3 Canonical signalling pathways significantly differentially expressed in relation to RFI. 

Canonical Pathways -log (B-H p-value) Genes 

TR/RXR activation 4.90 PIK3C2B, UCP2, PIK3C2A, MDM2, BCL3, NCOA3, EP300, PIK3R3, RXRG, HP, NCOA2, PIK3CG, 

NCOA1, ACACA, TBL1XR1, THRB 

PEDF signalling 
2.35 PPARG, PIK3R3, TP53, PIK3C2B, GDNF, PIK3C2A, PIK3CG, RHOA, SRF, FAS, BCL2 

HIF1α signalling 
1.54 SLC2A5, PIK3R3, TP53, PIK3C2B, EGLN1, PIK3C2A, PIK3CG, NCOA1, MDM2, MMP2, EP300 

Myc mediated apoptosis signalling 
1.54 PIK3R3, TP53, PIK3C2B, CASP9, PIK3C2A, PIK3CG, FAS, BCL2 

Aryl hydrocarbon receptor signalling 

1.50 
TP53, TRIP11, TFF1, MDM2, NCOA3, FAS, EP300, RXRG, HSP90B1, NCOA2, TGFB1, GSTA1, 

ALDH6A1 

Adipogenesis pathway 
1.50 PPARG, TP53, HDAC9, CCNH, SMAD9, TGFB1, SAP30L, CLOCK, SMO, TBL1XR1, MNAT1, FZD7 

Integrin signalling 

1.42 
ITGAM, PIK3R3, PIK3C2A, PIK3C2B, PARVA, WIPF1, TLN2, CAPN10, WASL, PIK3CG, RHOA, 

RHOG, FYN, CAPN6, CRK, ITGA8 

Docosahexaenoic acid (DHA) signalling 
1.40 PIK3R3, PIK3C2A, BCL2, CASP9, PIK3C2B, PIK3CG 

Lymphotoxin β receptor signalling 

1.34 PIK3R3, PIK3C2A, LTA, EP300, CASP9, PIK3C2B, PIK3CG 

IL-12 signalling and production in macrophages 
1.34 

APOA4, PIK3R3, NCOA1, MYD88, TGFB1, PIK3C2A, APOD, STAT6, EP300, PIK3C2B, PPARG, 

PIK3CG 

Up-regulated genes in low RFI pigs are highlighted in bold and down-regulated genes in normal typeface. 
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Table 4 Comparison of the microarray and qPCR data of the differentially expressed genes 

selected for downstream validation. 

Gene        Microarray fold change qPCR fold change Spearman's rho 

ACACA 1.80*  1.40 0.80*** 

ACSL1 1.24*   1.25* 0.56* 

BCL2 1.98* 1.40 0.84*** 

MMP2 1.16* 1.10 0.74*** 

SDHB  1.29**  1.23* 0.66** 

TFAM   1.43***  1.56* 0.75*** 
 

*P < 0.05, **P < 0.01, ***P < 0.001; up-regulated genes in low RFI pigs are highlighted in bold and down-

regulated genes in normal typeface. ACACA - acetyl-CoA aarboxylase alpha; ACSL1 - acyl-CoA synthetase 

long-chain family member 1; BCL2 - BCL2 apoptosis regulator; MMP2 - matrix metallopeptidase 2; SDHB - 

succinate dehydrogenase complex iron sulfur subunit B; TFAM -  transcription factor A, mitochondrial. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Assignment of Longissimus thoracis et lumborum muscle for transcriptome and meat 

quality analysis. 1: RNA sampling & colour; 1-3: Warner Bratzler shear force day 1;                     

4-6: Warner Bratzler shear force day 7; 7-10: sensory analysis; 11: drip loss, 12: protein, 

moisture & intramuscular fat content; 13: fatty acid profile.   
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Fig. 2 Meat sensory attributes of Longissimus thoracis et lumborum muscle from low and 

high RFI pigs (least square means) scored from 0 (not detectable) to 100 (extremely 

detectable); **P < 0.01, *P < 0.05. 
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Fig. 3 Network #1 (mRNA genes): molecular transport, nucleic acid metabolism and small 

molecule biochemistry. Genes are denoted as nodes and the biological relationship between 

two nodes is denoted as an edge/line. Node colour represents up- (red) and down- (green) 

regulated genes in low RFI pigs. 
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Fig. 4 Network #9 (target genes of the miRNAs involved in the network): Embryonic 

development, connective tissue development and function, organ morphology. Genes are 

denoted as nodes and the biological relationship between two nodes is denoted as an 

edge/line. Node colour represents up- (red) and down- (green) regulated genes in low RFI 

pigs. 
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Supplementary data 

Table S1 Growth performance parameters of the pigs (10 low and 10 high RFI) selected for 

meat quality and transcriptomic analysis. 

Table S2 Forward and reverse primers for microarray validation through qPCR.  

Table S3 Differentially expressed probe sets (n=1,035) between LRFI and HRFI groups. 

Table S4 Molecular and cellular functions significantly over-represented among 

differentially expressed genes including list of molecules contained within each function. 

Table S5 Differentially expressed miRNAs in relation to RFI and the number of targeted 

differentially expressed transcripts. 

Figure S1 Network #1(miRNA target genes): cellular development, growth and proliferation, 

respiratory system development and function. 
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Abstract 

Background: Feed efficiency (FE) is an indicator of efficiency in converting energy and 

nutrients from feed into a tissue that is of major environmental and economic significance. The 

molecular mechanisms contributing to differences in FE are not fully elucidated, therefore the 

objective of this study was to profile the porcine Longissimus thoracis et lumborum (LTL) 

muscle transcriptome, examine the product quality from pigs divergent in FE and investigate 

the functional networks underpinning the potential relationship between product quality and 

FE.    

Results: RNA-Seq (n = 16) and product quality (n = 40) analysis were carried out in the LTL 

of pigs differing in FE status. A total of 272 annotated genes were differentially expressed 

with a P < 0.01. Functional annotation revealed a number of biological events related to 

immune response, growth, carbohydrate & lipid metabolism and connective tissue indicating 

that these might be the key mechanisms governing differences in FE. Five most significant 

bio-functions altered in FE groups were ‘haematological system development & function’, 

‘lymphoid tissue structure & development’, ‘tissue morphology’, ‘cellular movement’ and 
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‘immune cell trafficking’. Top significant canonical pathways represented among the 

differentially expressed genes included ‘IL-8 signalling’, ‘leukocyte extravasation signalling, 

‘sphingosine-1-phosphate signalling’, ‘PKCθ signalling in T lymphocytes’ and ‘fMLP 

signalling in neutrophils’. A minor impairment in the quality of meat, in relation to texture 

and water holding capacity, produced by high-FE pigs was observed. High-FE pigs were also 

associated with reduced intramuscular fat content and improved nutritional profile in terms of 

fatty acid composition. 

Conclusions: Ontology analysis revealed enhanced activity of adaptive immunity and 

phagocytes in high-FE pigs suggesting more efficient conserving of resources, which can be 

utilised for other important biological processes. Shifts in carbohydrate conversion into 

glucose in FE-divergent muscle may underpin the divergent evolution of pH profile in meat 

from the FE-groups. Moreover, altered amino acid metabolism and increased mobilisation & 

flux of calcium may influence growth in FE-divergent muscle. Furthermore, decreased 

degradation of fibroblasts in FE-divergent muscle could impact on collagen turnover and alter 

tenderness of meat, whilst enhanced lipid degradation in high-FE pigs may potentially 

underlie a more efficient fat metabolism in these animals.   

 

Key Words – FE, RFI, Residual feed intake, Gene expression, Transcriptomics, RNA 

 

Background  

Pork consumption accounts for over 36 percent of the world’s meat intake [1]. Porcine muscle 

is a significant source of high biological value proteins, vitamins and minerals, as well as 

dietary fats such as saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), 

polyunsaturated fatty acids (PUFA), cholesterol and triacylglycerol [2]. SFA and cholesterol 

content, have been linked to obesity, cardiovascular disease and type 2 diabetes mellitus [3, 4], 

therefore consumers perceive leaner pork, which is lower in these components as a more 

healthy option [5, 6].  

  

Feed efficiency (FE) is an indicator of efficiency in converting energy and nutrients from feed 

into a tissue that is of major nutritional and economic significance [7]. FE is a complex trait 

involving many organs and can be influenced by environmental and health related factors [8, 



Annex A 

 

119 
 

9]. Skeletal muscle, being the largest organ in the body and an important location of 

carbohydrate and lipid metabolism [10-12], plays a particularly important role in the utilisation 

and storage of a large proportion of the energy acquired from feed. Therefore enhancing our 

understanding of the biological processes occurring in muscle from FE-divergent pigs could 

optimise the strategies to improving FE and ease the production cost and ecological footprint 

from pork production. Furthermore, FE has been shown to be associated with product quality 

and nutritive profile in several studies, with evidence that the muscle of high-FE pigs exhibits 

reduced adiposity [13, 14], lower SFA and MUFA, and an enhanced proportion of PUFA [14], 

which is known for its protective properties against cardiovascular disease [15], and altered 

overall product quality [13, 14, 16, 17]. Thus divergence in FE is not only of importance to 

animal production, but it also impacts consumers’ preference with regards to quality, nutritive 

value and wholesomeness of meat.     

 

The molecular mechanisms contributing to differences in FE are not fully elucidated. To date, 

few studies have conducted transcriptome profiling of skeletal muscle in FE-divergent pigs e.g. 

[18-20]. Furthermore, these studies did not examine the consequences of divergence in FE on 

product quality. Here we investigate the impact of divergence in residual feed intake (RFI; the 

difference between actual feed intake and predicted feed requirements) on product quality of 

the porcine Longissimus thoracis et lumborum (LTL) muscle. Furthermore, we identify in that 

muscle important biological functions and pathways enriched with differentially expressed 

(DE) genes in relation to FE, and the functional networks underpinning the relationship 

between product quality and FE.    

 

Results  

Differential gene expression profile 

An average of 104.4 million high quality paired-end reads per sample were mapped to the 

reference with a mean of 80.9% mapping efficiency. A total of 14,497 genes were expressed 

in the muscle (Fig 1) and of these 306 (272 annotated) genes were differentially expressed 

between high- and low-FE samples with a P < 0.01 corresponding to false discovery rate (q) 

≤ 0.47.  Of these annotated genes, 176 were up- and 96 were down-regulated, whilst 140 

were found to be at least 1.5-fold differentially expressed in high- versus low-FE pigs 
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(Additional File: Table S1). The most altered genes were TREH (fold change = 4.49; high-FE 

> low-FE) and SDC4 (fold change = -2.35; high-FE < low-FE). Transcripts with a P < 0.01 

corresponding to a q ≤ 0.47 were considered significantly differentially expressed, which is 

not a highly stringent cut-off because the differences in mRNA abundances between the FE 

groups were relatively small. However to offset this lower statistical stringency for 

differential expression profiling, B-H corrected p-values were used to refine the data that was 

further utilised to extract bio-functions, pathways and networks. 

 

Gene ontology analysis 

Enrichment analysis of the DE genes was utilised to investigate biological processes and 

pathways altered in response to differences in FE. Thirty nine biological functions and thirty 

eight canonical pathways were significantly (P < 0.01) enriched with DE genes. Most 

affected biological functions were ‘haematological system development & function’, 

‘lymphoid tissue structure & development’, ‘tissue morphology’, ‘cellular movement’ and 

‘immune cell trafficking’ (Table 1). A list of sub-categories enclosed within each function is 

presented in Additional file 2: Table S2. A number of functions ranged from significantly 

repressed to significantly activated state, including ‘haematological system development and 

function’ (z-score range: -2.13 – 3.52), ‘tissue morphology’ (z-score range: -2.13 – 2.87) and 

‘cell death and survival’ (z-score range: -2.27 – 2.20). Functions containing a positive z-score 

range included ‘immune cell trafficking’ (z-score range: 0.58 – 3.52), cell-to-cell signalling 

and interaction’ (z-score range: 0.12 – 3.19), cell-mediated immune response’ (z-score range: 

0.58 – 2.94), ‘tissue development’ (z-score range: 0.78 – 2.30) and ‘vitamin and mineral 

metabolism’ (z-score range: 2.36 – 2.89). Furthermore, most affected pathways were ‘IL-8 

signalling’, ‘leukocyte extravasation signalling’, ‘sphingosine-1-phosphate signalling’, 

‘PKCθ signalling in T lymphocytes’ and ‘fMLP signalling in neutrophils’ (Table 2 and 

Additional File 3: Table S3). Analysis of molecule connectivity revealed nineteen networks 

enriched with DE genes, of which network #2 (Fig 2) contained 21 DE molecules related to 

macronutrients metabolism, specifically ‘protein synthesis’, ‘lipid metabolism’ and 

‘molecular transport’. 
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Validation of RNA-seq results 

Expression patterns of four randomly selected genes (FAM134B, FOXO1, SPP1 and 

TRIM63) were confirmed through qPCR using RPL32 as a reference gene to normalise 

expressions of these target transcripts. Significant differences in the mRNA abundances of 

FAM134B, FOXO1 and TRIM63 transcripts between the FE groups were verified and 

expression of SPP1 was altered in the same direction when compared to the RNA-seq. 

Spearman correlations between RNA-seq and qPCR data, ranging from 0.89 to 0.94, were 

significant at P < 0.001 for all four assessed mRNAs (Table 3). 

 

Product quality  

Carcass and product quality traits of FE-divergent pigs are depicted in Table 4, whereby 

sensory attributes of LTL muscle in FE-divergent pigs are illustrated in Fig 3. Intramuscular 

fat (IMF) content significantly differed between the FE groups (P < 0.05), with the high-FE 

carcasses having leaner muscle (1.49% IMF) comparing to low-FE carcasses (1.89% IMF). 

Muscle depth and percent lean meat did not differ significantly between the FE groups 

however pH at 45min post-mortem (pm) showed a tendency toward decreased values in the 

high-FE pigs (P < 0.1) while pH measured at 2h, 3h, 4h, 5h and 24h pm was significantly 

lower in the high-FE group (P < 0.05), and changes in pH evolution over time are depicted in 

Fig 4. Drip loss did not vary between the FE groups. Muscle from high-FE pigs had increased 

cook loss at day 1 pm (P < 0.01) but there was no difference detected at day 7 pm. Although 

meat produced by high-FE pigs was significantly associated with increased Warner Bratzler 

shear force values (WBSF, less tender) at day 1 pm (P < 0.05) and had a tendency towards 

increased WBSF values at day 7 pm (P < 0.1), this difference in tenderness between the FE 

groups was not detected by sensory panellists. However, pork sensory assessment revealed 

that meat produced from high-FE pigs had higher scores for salty taste (P < 0.05) and a 

tendency towards increased barny/earthy/animal stable flavour (P < 0.1). Nutritive profile in 

relation to fatty acid (FA) proportions in LTL muscle (mg FA/100g meat), and percentage of 

FA in IMF of FE-divergent pigs are shown in Fig 5. SFA did not differ significantly in LTL 

muscle of FE-divergent pigs, however, a tendency towards decreased proportions for each of 

palmitic and stearic acids in high-FE muscle was observed (P < 0.1). Muscle from high-FE 

group contained significantly lower amounts of the MUFA, palmitoleic acid (P < 0.05) and 

had a tendency towards decreased proportions of eicosenoic and oleic acids (P < 0.1). While 
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PUFA content of muscle did not differ, when comparing the IMF per se, high-FE muscle had 

significantly greater concentrations of linoleic and alpha-linolenic acids (P < 0.05). 

Furthermore, a number of significant correlations at a P < 0.05 were identified between 

product quality traits and genes differentially expressed in FE-divergent pigs (Table 5). The 

strongest positive linear relationships were observed between percentage lean and HK3 (r = 

0.679), cook loss at day 7 pm and PON3 (r = 0.621), and MUFA and FOXO1 (r = 0.618). The 

strongest negative linear relationships were observed between cook loss at day 1 pm and 

NFATC2 (r = -0.809), MUFA and HK3 (r = -0.741), and cook loss at day 1 pm and MYC (r = 

-0.724). 

 

Discussion 

Functional annotation of divergent genes revealed a number of biological events related to 

immune response, growth, carbohydrate & lipid metabolism and connective tissue indicating 

that these might be important mechanisms governing differences in FE. Alongside attaining 

insights of the biological processes contributing to differences in muscle of FE-divergent 

pigs, we also investigated the consequences of the divergence in FE on product quality and 

the functional networks within muscle that underpin the relationship between FE and product 

quality. Divergence in FE affected various aspects of product quality and nutritive value, 

such as pH, tenderness, cook loss, as well as IMF content and fatty acid proportions, and this 

study provided clues with regards to biological mechanisms driving the relationship between 

FE and the observed alteration in product quality traits of economic significance.   

  

Immune response  

Ontology analysis revealed a number of pathways and biological functions related to immune 

response as being relevant to FE in porcine muscle. Greater amounts of leucocytes [21] and 

higher cellular immune response [22], were previously observed in pigs selected for lean 

growth. In the present study ‘protein kinase C-theta (PKCθ) signalling in T lymphocytes’ and 

‘cluster of differentiation 28 (CD28) signalling in T helper cells’, which activate and promote 

differentiation of T cells, were significantly enriched cell-mediated immune responses. These 

features were also observed in pigs selected for lean growth that were subjected to an 

immunological challenge i.e. tetanus toxoid [22]. Furthermore, ‘tec-kinase signalling’, 
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involved in development and function of cellular immune response T-cells [23] was 

significantly activated (z-score = 2.12) in high-FE pigs exhibiting leaner growth. This 

pathway, alongside many other significantly over-represented pathways, was enriched with 

Phosphatidylinositol-4-Phosphate 3-Kinase Catalytic Subunit Type 2 Beta (PIK3C2B) 

belonging to a family of enzymes modulating immune cell development, differentiation and 

function [24]. PIK3C2B was specifically shown to play a key role in T-cell activation [25]. 

Functional annotation also exposed ‘Interleukin 8 (IL-8) signalling’, controlling trafficking of 

neutrophils and macrophages to the site of inflammation [26], to be significantly activated in 

high-FE pigs (z-score = 2.50). ‘Accumulation of phagocytes’ and ‘phagocytosis’, contained 

within the broader ‘immune cell trafficking and tissue development’ and ‘cellular function 

and maintenance’ categories, respectively, were also predicted to be significantly activated in 

high-FE pigs (z-score = 2.15 and 2.12, respectively). Additionally pathways playing a role in 

stimulating phagocytes activity [27] and muscle repair capabilities [28], ‘N-formyl-Met-Leu-

Phe (fMLP) signalling in neutrophils’ and ‘production of nitric oxide in macrophages’, 

tended towards activation in high-FE pigs. Fuelling immune response is an energetically 

expensive process, which would be suspected to lower animal’s feed efficiency due to 

prioritizing nutrients towards the immune-related processes [8]. Previous literature has 

reported decreased immune response in muscle from high-FE pigs [18]. On the contrary, a 

study conducted in cattle identified a number of immune-related processes, representing both 

innate and adaptive response, significantly activated in muscle of high-FE individuals i.e., 

‘immune response of antigen presenting cells and leukocytes’, ‘response of mononuclear 

leukocytes and myeloid cells’, and ‘immune response of phagocytes’ [29]. Here, our findings 

suggest that muscle from high-FE pigs exhibit activated immune response. Furthermore, 

more reliance on adaptive rather than innate immunity, which could reduce feed 

requirements, may stimulate faster growth of muscle [30] from high-FE pigs. 

 

Carbohydrate metabolism and glycolytic potential  

pH evolution in the pre-rigor period was highly divergent in relation to FE status. At the 

earliest time-point measured (45m pm), pH did not significantly differ. However, pH at all 

later stages in the early pm period- up to 5 hours- as well as ultimate pH monitored the next 

day significantly differed between the two groups, with the high-FE pigs showing decreased 

pH values in the muscle. This is consistent with previous studies demonstrating greater 
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glycolytic potential in high-FE pigs, wherein pH 30m pm did not differ but ultimate pH was 

significantly reduced in high-FE pigs [13, 16]. Low pH in meat can increase the perception of 

sour taste due to a higher concentration of free hydrogen ions [31, 32]. Nevertheless, the 

significant difference in ultimate pH was not detected as increased acidity by sensory 

panellists in this study, who perceived no difference in sour taste of meat from high- versus 

low-FE. However, the reduced ultimate pH may have contributed to significantly higher 

scores for ‘salty taste’ that were observed in high-FE meat. This is in agreement with Lipinski 

et al. [33] who previously found that meat with lower pH can be perceived by sensory 

panellists as more salty.  

 

Genes involved in glycolysis and energy metabolism were previously reported to be up-

regulated in chickens exhibiting lower ultimate pH [34]. Here, pH evolution was significantly 

different in the FE-divergent muscle, and trehalase (TREH) that codes for an enzyme 

catalysing the conversion of trehalose to glucose [35] was the most up-regulated gene (fold 

change = 4.49) in high-FE pigs. This might indicate that this group of pigs could potentially 

exhibit more efficient energy conversion in growth, but with potential consequences for post-

mortem energy metabolism and product quality. Indeed, ontology analysis highlighted the 

molecular function ‘catabolism of oligosaccharides’, which was enclosed within a broader 

‘carbohydrate metabolism’ category, as being highly relevant to the gene expression changes 

in divergent FE muscle. Moreover genes enriched in this sub-category, GM2 ganglioside 

activator (GM2A, fold change = 1.60; high-FE > low-FE) and neuraminidase 3 (NEU3, fold 

change = 1.29; high-FE > low-FE), were negatively correlated with ultimate pH and 

positively correlated with drip loss, respectively. These findings suggest that differences in 

carbohydrate conversion into glucose underpin the differential evolution of pH profile in FE-

divergent muscle. 

 

Carbohydrate metabolism has an important influence on water-holding capacity of meat [36].  

Water-holding capacity traits, alongside tenderness, are closely linked with pH and here 

unfavourable associations between FE, lower ultimate pH and increased cook loss at day 1 

with a reduced tenderness (6N increase in WBSF) were observed. However, sensory 

tenderness remained unchanged and, other than saltiness, no other sensory attributes were 

altered. It has been previously postulated that lower water holding capacity of meat with 
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decreased ultimate pH can result in tougher beef (increased WBSF) [37], which is consistent 

with our (WBSF) observations in the present study.  

 

Growth 

Syndecan-4 (SDC4) was the most down-regulated gene (fold change = -2.35) in high-FE 

muscle. SDC4 is a gene encoding plasma membrane proteoglycans and has been previously 

shown to have an impact on muscle cell proliferation and differentiation [38]. Knock down of 

SDC4 has been associated with increased myogenic regulatory transcription factor [39] and 

myogenin expressions, as well as increased muscle differentiation [40], which signify its 

importance to muscle growth. Integrating functional annotations of DE genes revealed a 

number of biological processes related to growth. ‘Tissue development’ and ‘cardiovascular 

system development & function’ were significantly enriched categories amongst the DE 

genes, with forkhead box O1 (FOXO1) being included (fold change = -1.49) in both 

categories. FOXO1 belongs to the FOXO forkhead type family of transcription factors and it 

plays a role in modulation of skeletal muscle angiogenesis and function [41]. Mice over-

expressing FOXO1 were found to weigh less and had a decreased skeletal muscle mass [42]. 

 

 ‘Mobilisation and flux of Ca
2+’

,
 
contained

 
within a ‘vitamin and mineral metabolism’ 

category, were significantly activated in high-FE pigs (z-score = 2.9 and 2.4, respectively). 

Calcium plays a key role in function and plasticity of skeletal muscle. It regulates skeletal 

muscle formation [43, 44], homeostasis and regeneration as well as being a crucial 

component triggering muscle contraction that enables movement [44] and furthermore plays 

an important role post-mortem in tenderness development [45]. Moreover ‘synthesis of alpha-

amino acids’ and ‘catabolism of L-tryptophan’, enclosed within an ‘amino acid metabolism’ 

category, as well as ‘production of protein’, contained within ‘protein metabolism’ category, 

were significantly enriched amongst DE genes. L-tryptophan is an alpha-amino acid that 

positively influences production of protein in skeletal muscle and growth performance [46]. 

L-tryptophan is also a precursor of a broad range of compounds regulating appetite therefore 

playing a role in FE [46]. Although muscle and adipose depth did not significantly differ 

between the FE groups, down-regulation of SDC4 & FOXO1, altered amino acid metabolism 

and increased mobilisation & flux of Ca2+ may impact, at least to some extent, growth in FE-

divergent pigs. 
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FE, connective tissue and tenderness 

Collagen type XI alpha 1 chain (COL11A1) and collagen type VI alpha 5 chain (COL6A5) 

were up-regulated (fold change = 1.52 and 1.77, respectively) in high-FE pigs. Over-

expression of COL11A1 has been associated with decreased tenderness in heifers [47]. Also, 

a single-nucleotide polymorphism in this gene was identified to have a consistent association 

with meat tenderness across three cattle breeds [48]. This study highlights that its relevance 

to tenderness development is also conserved in porcine muscle. Ontology analysis 

highlighted several functions also related to connective tissue, for example ‘apoptosis of 

fibroblast cell lines’, enclosed within ‘cell death and survival’ category, was significantly 

inhibited in high-FE pigs (z-score = -2.27). All of the DE genes represented in this category 

were also enriched in ‘cell death of connective tissue’ (z-score = -1.18), which also falls 

under the broader ‘cell death and survival’ function. Apoptosis and the stress response have 

been implicated as important factors in tenderisation. Specifically, apoptosis and cell death is 

considered the first step in promotion of tenderisation and factors which down-regulate 

apoptosis, such as heat shock protein expression can inhibit tenderisation [49-51]. In the 

present study, the more efficient pigs produced muscle that tenderised more slowly, with 

significantly tougher pork on day 1 pm compared with less efficient counterparts. Even by 

day 7 pm, while the differences in shear force were small, a tendency towards increased 

toughness remained. In this scenario the modulation of apoptosis as observed through our 

gene expression studies may have contributed to this differential ageing associated with FE 

and should be a matter of consideration in further driving improvements in FE. Fibroblasts 

are the key players in the synthesis of extracellular matrix components such as collagen [52, 

53]. Amongst down-regulated transcripts in muscle of high-FE pigs were nuclear factor of 

activated T-cells 1 (NFATC1), nuclear factor of activated T-cells 2 (NFATC2) and 

transcription factor P64 (MYC) (fold change = -1.30, -1.25 and -1.57, respectively) that have 

previously been shown to induce apoptosis in fibroblasts [54-56]. Correlation analysis 

between DE genes and product quality traits showed a negative correlation between NFATC2 

and cook loss at day 1 pm, whilst NTAFC1 had a tendency towards being negatively 

correlated with cook loss at day 1 pm (Table 5). Surprisingly, NFATC1 was also positively 

correlated with WBSF (higher values indicate decreased tenderness). Moreover, a negative 

correlation between MYC and cook loss at day 1 pm was noted and this is in support with a 

previous study which identified a SNP in MYC to be associated with pH and cook loss in 
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pork [57]. Besides connective tissue, tenderness of meat is vastly influenced by greater 

calpastatin activity through decreased pm protein degradation [17]. In the present study, 

calpastatin (CAST) had a tendency towards being down-regulated (P < 0.1, fold change = -

1.17) in high-FE pigs suggesting an enhancing effect on tenderness, which is in contrast to 

our observation that tenderness was impaired in high-FE pigs, furthermore tenderness 

development was slower in this group. Nevertheless, the altered tenderness of FE-divergent 

meat could be partially impacted by shifts in collagen turnover resulting from decreased 

degradation of fibroblasts. 

 

Lipid metabolism changes associated with FE 

Muscle depth and leanness did not differ between the FE groups, which contrast previous 

reports [13, 14, 16, 17]. However, here and in prior studies, selection for high-FE was 

associated with reduced IMF [14, 16, 17]. Over the past decades, consumers have become 

more conscious with regards to wholesome eating and seeking healthier options [6]. Meat 

from high-FE pigs exhibited tendencies towards decreased levels of SFA and MUFA, which 

are known to be the major constituents of triacylglycerol [58, 59] and are associated with 

increased risk of cardiovascular disease [60, 61]. Higher proportions of PUFA, whilst lower 

levels of SFA and MUFA, has been previously associated with reduced IMF content [59, 62, 

63]. Indeed, the IMF of meat from high-FE pigs was 12 percent richer in PUFA compared to 

IMF from low-FE group. PUFA has been shown to reduce low-density lipoprotein 

cholesterol levels and exhibit protective properties against cardiovascular disease [15], 

therefore suggesting that meat from high-FE pigs may have a healthier fatty acid profile. 

Underpinning these changes, functions and pathways important in metabolism of lipids were 

also affected by FE, as evident from the ontology analysis, specifically ‘concentration of 

lipids, cholesterol & triacylglycerol’ and ‘fatty acid metabolism’, enclosed within a broader 

‘lipid metabolism’ category. Correlation analysis between DE genes, enriched in ‘lipid 

metabolism’ category, and product quality traits revealed a number of significant 

correlations. FOXO1 (fold change = -1.49), which was previously shown to play a role in 

adipogenesis in cattle [64], was positively correlated with fat depth, SFA and MUFA, and 

also negatively correlated with lean percentage. Cytochrome B-245 beta chain (CYBB; fold 

change = 1.56) was positively correlated with percent lean and negatively correlated with 

IMF, SFA and MUFA. A previous study conducting expression profiling of porcine adipose 
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tissue suggested CYBB to play a role in fat metabolism and adipogenic differentiation [65]. 

Correlation analysis has also revealed Perilipin 1 (PLIN 1; fold change = -1.42) to be 

positively correlated with IMF, SFA, MUFA and PUFA and this is in keeping with a 

previous study reporting its higher abundance being associated with increased IMF in porcine 

muscle [66]. Moreover, C-X-C motif chemokine ligand 10 (CXCL10, fold change = 2.24), 

which was previously associated to marbling in cattle [67], was negatively correlated with 

IMF, SFA and MUFA.  

 

Furthermore, the second most significant network (network #2), identified through the 

functional annotation analysis, contained several features related to ‘lipid metabolism’, 

‘molecular transport‘ and ‘protein synthesis’. Paraoxonase 3 (PON3) and triacylglycerol 

lipase (LIPC) were the most up-regulated genes in this network (fold change = 4.40 and 3.51, 

respectively). PON3, an enzyme belonging to the PON family, associates with high density 

lipoproteins (HDL) [68], which are lipid particles that function to export excess cholesterol 

from muscle and adipose tissue to the liver [69]. PON3 knockout mice have previously been 

shown to exhibit increased body weight [70], which points towards a PON3 role in promoting 

a leaner muscle growth. The enzyme LIP catalyses hydrolysis of phospholipids and 

triacylglycerols [71]. Over-expression of LIPC in high-FE muscle suggests enhanced lipid 

degradation in this group of pigs and potentially underlies a more efficient fat metabolism in 

these animals.  

 

Conclusions 

Gene expression profiling of muscle from FE-divergent pigs provided mechanistic insights 

on the biological events prevailing differences in FE, which impact product quality. Small but 

significant changes in the quality of meat, in relation to texture and water holding capacity, 

from high-FE pigs, were observed. High-FE muscle was characterised by reduced 

intramuscular fat content and improved nutritional profile in terms of fatty acid composition. 

Ontology analysis revealed enhanced activity of adaptive immunity and phagocytes in high-

FE pigs, which may indicate that these animals are more efficient in conserving resources 

that can be utilised for other important biological processes. Shifts in carbohydrate 

conversion into glucose in FE-divergent muscle may underpin the altered evolution of pH 

profile in meat from the divergent groups. Although muscle depth did not significantly differ 
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between the FE groups, our transcriptomic findings indicate that altered amino acid 

metabolism and increased mobilisation & flux of calcium may influence, at least to some 

extent, growth in FE-divergent muscle. Moreover, decreased degradation of fibroblasts, the 

key players in the synthesis of the extracellular matrix, could impact on collagen turnover and 

alter tenderness of meat. Biological functions important in metabolism of lipids were also 

affected by FE. Specifically, enhanced lipid degradation in more efficient pigs may 

potentially underlie a more efficient fat metabolism in these animals.   

 

Materials and Methods 

Animals and experimental design  

Animal housing, diets and tests were previously described in details in Metzler-Zebeli and 

colleagues [72]. 138 pigs from the intact litters of 12 sows (Landrace x Large White; 

Hermitage Genetics, Kilkenny, Ireland) inseminated with semen from 6 boars (Maxgro; 

Hermitage Genetics; 2 litters per boar, each having a high estimated breeding value for FE), 

were utilised in this study. Pigs, weaned at 28 days of age and group-housed (entire sibling 

groups), were provided with ad libitum access to feed and water. Diets were provided in the 

same sequence with the same ingredient and chemical composition (starter, link, weaner and 

finisher) and were delivered to pigs via Feed Intake Recording Equipment (FIRE) feeders 

(Schauer Agrotonic, Wels, Austria). Pigs were tested from day 42 until 91 post-weaning. Feed 

intake was recorded daily, whereas pig weight, back-fat depth and muscle depth were recorded 

weekly between day 70 and day 120 of age. Average daily feed intake (ADFI) and average 

daily gain (ADG) were calculated for each pig weekly. Residual feed intake (RFI, a measure of 

FE defined as the difference between actual feed intake and predicted feed requirements) was 

calculated after day 120 of age as the residual from a least squares regression model of ADFI 

on ADG, metabolic live weight, gender and also all relevant two-way interactions, and the 

effects of back-fat and muscle depth using the PROC REG procedure in SAS (version 9.4; SAS 

Inst. Inc., Cary, NC, USA). Based on RFI values, pigs were categorised within litter and gender 

as low (L) RFI and high (H) RFI and of these a total of 40 (20 extremes from LRFI (high-FE) - 

10 males and 10 females, and 20 extremes from HRFI (low-FE) - 10 males and 10 females) 

were selected for gene expression profiling and meat quality analysis. The mean RFI (g/day) of 

the LRFI and HRFI pigs was -100.2 (SD: 97.9) and 150.7 (SD: 163.3) respectively, whereas 
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the mean of feed conversion ratio (FCR, ratio of feed intake and weigh gain) of the LRFI (high-

FE) and HRFI (low-FE) pigs was 1.98 (SD: 0.16) and 2.27 (SD: 0.25) respectively. The 

slaughter of animals, fasted for 18 hours with an average final body weight of 99 kg (SD: 

11.4kg), occurred on 2 slaughter days, a week apart, and was by electronic stunning followed 

by exsanguination. Samples of the LTL muscle were collected and snap frozen in liquid 

nitrogen within 10 minutes pm followed by storage at -80°C until RNA isolation. The LTL 

muscle was excised 24 hours pm from each carcass and utilised for meat quality analysis.   

 

RNA library preparation, differential expression analysis and functional annotation  

Sixteen muscle samples selected from the most FE-divergent siblings of the same gender (8 

from LRFI (high-FE) - 4 males and 4 females, and 8 from HRFI (low-FE) - 4 males and 4 

females), were snap frozen following which they were ground into fine powder in liquid 

nitrogen. Total RNA was isolated using Tri-Reagent (Sigma-Alrich, Taufkirchen, Germany), 

followed by DNase treatment and a column-based purification using the Nucleospin RNA II 

kit (Macherey-Nagel, Düren, Germany). RNA library preparation was carried out using the 

TruSeq Stranded mRNA protocol. Following RNA sequencing with Illumina HiSeq2500, 

paired-end reads were mapped to the reference Sscrofa10.2 (Ensembl release 84) [73] using 

TopHat (2.1.0). Read counts were assigned to the gene features using the HTSeq 0.6.1 

program [74]. Differential gene expression analysis in relation to FE was performed using 

DESeq2 package (3.4.0, www.R-project.org), including RFI groups and sow as fixed effects. 

Gene symbols for significantly altered genes (P < 0.01) and related fold changes were 

submitted to Ingenuity Pathway Analysis (IPA; Ingenuity® Systems, www.ingenuity.com), 

whereby Benjamini-Hochberg (B-H) corrected P-values were used to detect significantly 

enriched bio-functions and canonical pathways (P < 0.01). Functional annotations with a z-

score greater than 2 and lower than -2 were considered significantly activated and inhibited in 

high-FE pigs, respectively. Information enclosed in the Ingenuity® Knowledge Base was 

utilised to generate potential important interaction networks amongst the DE genes.  

 

Validation of RNA sequencing results 

For cDNA synthesis, 1 µg of total RNA was utilized in the presence of random primers 

(Promega, Mannheim, Germany), oligo (dT) primer and Superscript
® 

III reverse transcriptase 

(Invitrogen Corp., San Diego, CA, USA). Four DE genes were selected for validation through 

http://www.r-project.org/
http://www.ingenuity.com/
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quantitative real-time PCR (qPCR). Primers for target genes (Additional file 4: Table S4) 

were designed using Primer-BLAST software in the NCBI 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast) based on Sus scrofa nucleotide sequences 

and their specificity was determined with the BLAST search tool database 

(http://www.ncbi.nlm.nih.gov/BLAST). qPCR was carried out with LightCycler 96 system 

(Roche Mannheim, Germany). 2 μl of cDNA was amplified in a 10 μl reaction volume using 

6 μl SYBR Green I Master (Roche) and 0.6 μl (10 μM) of each forward and reverse primer. 

Cycling conditions for reference and DE genes consisted of initial denaturation at 95 °C for 5 

min and 45 cycles of amplification (95 °C for 10 sec, 60 °C for 15 sec and 72 °C for 25 sec). 

A melting curve analysis was included at the end of the amplification to confirm the 

specificity of all amplification reactions. Normalised qPCR data were analysed using 

ANOVA test in R, including RFI groups as a fixed effect and sow as a random effect. 

Correlation analysis between the RNA-seq and qPCR data were carried out with R package 

considering the results as significant at P < 0.05.      

 

Product quality   

Carcass grading along with technological and sensory meat quality traits as well as nutritional 

profiling of meat were measured using methods as described in detail by Horodyska and 

colleagues [14]. The carcass grading included fat depth, muscle depth, lean percent and IMF 

content, whilst the technological meat quality included pH (45m, 2h, 3h, 4h, 5h and 24h pm), 

drip loss, cook loss and tenderness (WBSF). Fatty acids were profiled to assess the nutritive 

value of meat. PROC MIXED procedure in the SAS system was used to evaluate associations 

between FE and meat quality traits in the Maxgro x (Landrace x Large White) pigs (n = 40). 

The model included RFI groups, gender & slaughter day as fixed effects, sow as a random 

effect, live weight as a covariate and the absolute values of RFI as a weight statement. 

Moreover, Spearman’s correlations (r) between product quality traits and normalised 

expression values of selected DE genes, out of a total number of identified DE genes in RFI-

divergent pigs (n =16), were determined using the PROC CORR procedure in the SAS 

system (version 9.4).   

 

 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=bookmark&INPUT_SEQUENCE=gi
http://www.ncbi.nlm.nih.gov/BLAST
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fatty acids; PUFA: polyunsaturated fatty acids. 
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Table 1 Molecular, cellular and physiological categories significantly over-represented among the 

differentially expressed genes.  

Category B-H p-value range* Z-score range
$
 

Haematological System Development & Function 1.72E-11-5.74E-03 -2.13 – 3.52£ 

Lymphoid Tissue Structure & Development 1.72E-11-5.00E-03 -0.65 – 2.94£ 

Tissue Morphology 1.72E-11-5.16E-03 -2.13 – 2.87£ 

Cellular Movement 1.72E-11-5.74E-03 -0.36 – 3.52£ 

Immune Cell Trafficking 6.54E-11-5.74E-03  0.58 – 3.52£ 

Cellular Function & Maintenance 6.54E-11-4.56E-03 -0.06 – 2.83£ 

Cellular Development 1.29E-10-5.00E-03 -0.65 – 1.64 

Cellular Growth & Proliferation 1.29E-10-5.00E-03 -0.65 – 1.73 

Cell-To-Cell Signalling & Interaction 2.21E-09-5.74E-03  0.12 – 3.19£ 

Protein Synthesis 6.50E-09-2.32E-03  0.24 – 1.18 

Humoral Immune Response 9.96E-09-3.58E-03 -0.57 – 1.89 

Cellular Compromise 1.14E-08-2.80E-03 -1.51 – 2.20£ 

Cell-mediated Immune Response 1.79E-07-5.74E-03  0.58 – 2.94£ 

Free Radical Scavenging 2.33E-07-8.89E-07 1.13 

Cell Death & Survival 2.42E-06-4.57E-03 -2.27 – 2.20£ 

Tissue Development 3.60E-06-4.56E-03  0.78 – 2.30£ 

Embryonic Development 5.77E-06-3.53E-03  0.54 – 1.50 

Haematopoiesis 5.77E-06-1.11E-03  0.78 – 1.77 

Organ Development 5.77E-06-3.94E-03 -0.66 – 1.50 

Organismal Development 5.77E-06-4.95E-03  0.72 – 1.64 

Cell Morphology 1.39E-05-4.95E-03 -0.08 – 2.09£ 

Lipid Metabolism 1.48E-05-1.19E-03 -1.23 – 0.60 

Small Molecule Biochemistry 1.48E-05-5.74E-03 -1.23 – 0.60 

Organ Morphology 1.70E-05-4.95E-03  1.06 – 1.77 

Molecular Transport 1.97E-05-1.81E-03 -0.01 – 2.89£ 

Cardiovascular System Development & Function 2.63E-05-4.95E-03 -0.95 – 2.12£ 

Digestive System Development & Function 6.90E-05-5.38E-03 -0.66 

Organismal Survival 8.09E-05-8.09E-05 -0.04 

Cell Signalling 1.05E-04-1.81E-03  0.12 – 3.19£ 

Vitamin & Mineral Metabolism 1.05E-04-1.81E-03  2.36 – 2.89£ 

Cell Cycle 5.91E-04-3.94E-03 -0.49 –  -1.98 

Gene Expression 5.91E-04-3.53E-03 -1.98 –  -0.49 

Cellular Assembly & Organization 7.30E-04-5.74E-03  0.33 – 1.89 

Renal & Urological System Development & Function 1.74E-03-3.94E-03 -0.15 – 0.76 

Carbohydrate Metabolism 2.09E-03-2.09E-03 NA 

Amino Acid Metabolism 2.74E-03-5.74E-03 NA 

Hepatic System Development & Function 3.20E-03-3.20E-03 -0.66 

Skeletal & Muscular System Development & Function 3.54E-03-3.54E-03 NA 

Nervous System Development & Function 4.63E-03-4.63E-03 NA 

*Range of B-H multiple testing correction p-values of enriched functions within the category; 
$
range of z-

scores for sub-categories contained within a particular category; 
£
annotations with a z-score > 2 and z-score 

< -2 were considered significantly activated and inhibited in high-FE pigs, respectively; NA: no activity 

pattern available.  
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Table 2 Most significant canonical pathways observed among differentially expressed genes in relation to 

feed efficiency (FE). 

Canonical Pathway 
-log 

(B-H p-value) 
Z-score Genes 

IL-8 signalling 4.13 2.50
£
 RND2, PIK3C2B, PLCB2, VCAM1, 

PTK2B, PIK3C2G, GNB5, MAPK8, RAC3, 

ROCK2, ITGB2, FGFR4, NCF2, CYBB 

Leukocyte extravasation signalling 3.38 1.73 PIK3C2B, VCAM1, PTK2B, CXCR4, 

PIK3C2G, MAPK8, RAPGEF3, ROCK2, 

ITGB2, FGFR4, NCF2, CYBB, VAV1 

Sphingosine-1-phosphate signalling 3.38 1.67 RND2, PIK3C2B, NAAA, PLCB2, PTK2B, 

FGFR4, ADCY4, PIK3C2G, SPHK1, CASP1 

PKCθ signalling in T lymphocytes 3.22 0.63 PIK3C2B, MAP3K14, FGFR4, PIK3C2G, 

MAPK8, CD86, NFATC2, VAV1, RAC3, 

NFATC1 

fMLP signalling in neutrophils 2.86 1.41 PIK3C2B, PLCB2, FGFR4, NCF2, 

PIK3C2G, CYBB, GNB5, NFATC2, 

NFATC1 

B cell receptor signalling 2.86 0.91 PIK3C2B, MAP3K14, FOXO1, PTK2B, 

FGFR4, PIK3C2G, MAPK8, NFATC2, 

VAV1, PIK3AP1, NFATC1 

Myc mediated apoptosis signalling 2.86 NA MYC, PIK3C2B, FGFR4, PIK3C2G, 

MAPK8, CYCS, SFN 

Chemokine signalling 2.86 1.13 ROCK2, PLCB2, PTK2B, CXCR4, 

PIK3C2G, MAPK8, CCL5 

Gαq signalling 2.86 1.00 RND2, ROCK2, PIK3C2B, PLCB2, PTK2B, 

FGFR4, PIK3C2G, GNB5, NFATC2, 

NFATC1 

CD28 signalling in T helper cells 2.86 0.33 PIK3C2B, FGFR4, PIK3C2G, MAPK8, 

CD86, NFATC2, VAV1, CTLA4, NFATC1 

£
Significantly activated (z-score > 2) pathways in high-FE pigs; NA:  no activity pattern available; up-regulated 

genes in high-FE pigs are highlighted in bold and down-regulated genes in normal typeface. 
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Table 3 Comparison of RNA-seq and qPCR data of selected genes affected by 

feed efficiency (FE). 

Gene qPCR fold change RNA-seq fold change Spearman’s rho 

FAM134B           2.2***               2.1**        0.938*** 

FOXO1           1.6**               1.5**        0.888*** 

SPP1           3.6               2.5*        0.944*** 

TRIM63           2.2**               2.0**        0.921*** 

*P < 0.05, **P < 0.01, ***P < 0.001; up-regulated genes in high-FE pigs are 

highlighted in bold and down-regulated genes in normal typeface. 

 

 

 

Table 4 Product quality traits of Longissimus thoracis et lumborum muscle 

divergent in feed efficiency (FE). 

Trait High-FE
1
 Low-FE

1
 SE P-value 

Fat depth (mm) 14.6 15.5 0.95 0.364 

Muscle depth (mm) 54.6 56.8 2.36 0.367 

Lean (%) 56.2 55.5 0.87 0.477 

IMF (%) 1.49 1.89 0.19 0.046 

Drip loss (%) 4.71 4.16 0.68 0.428 

Tenderness day 1 (N)  37.0 31.8 2.33 0.036 

Tenderness day 7 (N)  28.9 26.4 1.46 0.089
$
 

Cook loss day 1 (%)   36.4 34.0 0.67 0.001 

Cook loss day 7 (%)   37.8 37.2 0.58 0.250 

1
Least square means for each trait; 

$
P < 0.1. 
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Table 5 Correlations between product quality traits and selected differentially expressed genes, out of the 

272, in pigs divergent for feed efficiency. 

Gene  
pH   

45m 

pH    

24h 
DL 

Tend.  

D1 

Tend.  

D7 

CL   

D1 

CL  

D7 

Fat 

depth 

Muscle 

depth 
Lean IMF SFA MUFA PUFA 

CCR2 
0.00 -0.51 0.44 0.01 0.16 0.20 0.06 0.01 -0.08 0.01 -0.38 -0.26 -0.22 -0.37 

0.99 0.04 0.09 0.98 0.56 0.45 0.83 0.96 0.77 0.97 0.15 0.34 0.41 0.16 

COL11A1 
0.44 -0.45 -0.13 0.04 -0.46 0.25 0.24 -0.32 -0.42 0.14 -0.03 0.00 -0.02 0.14 

0.09 0.08 0.64 0.88 0.07 0.36 0.38 0.23 0.11 0.60 0.92 1.00 0.93 0.59 

COL6A5 
0.34 -0.46 0.27 0.24 0.31 0.42 0.21 -0.11 0.12 0.29 -0.22 -0.41 -0.43 -0.18 

0.20 0.07 0.31 0.37 0.24 0.11 0.44 0.69 0.67 0.28 0.42 0.12 0.10 0.51 

CXCL10 
0.31 -0.25 0.22 -0.07 -0.13 0.37 -0.29 -0.34 0.04 0.36 -0.63 -0.61 -0.65 -0.46 

0.24 0.35 0.41 0.80 0.64 0.16 0.27 0.19 0.88 0.16 0.01 0.01 0.01 0.07 

CYBB 
0.28 -0.40 0.30 -0.04 0.21 0.11 -0.04 -0.44 0.06 0.50 -0.59 -0.53 -0.54 -0.36 

0.29 0.13 0.26 0.89 0.44 0.70 0.89 0.09 0.82 0.04 0.02 0.04 0.03 0.16 

FOXO1 
-0.43 0.52 -0.20 0.02 0.08 -0.63 -0.35 0.54 0.16 -0.53 0.26 0.50 0.62 0.09 

0.10 0.04 0.46 0.93 0.77 0.01 0.19 0.03 0.55 0.04 0.32 0.04 0.01 0.74 

GM2A 
0.39 -0.57 0.28 -0.14 -0.09 0.40 0.33 -0.41 -0.28 0.39 -0.33 -0.37 -0.43 -0.10 

0.14 0.02 0.29 0.61 0.73 0.12 0.22 0.12 0.29 0.14 0.22 0.16 0.10 0.71 

HK3 
0.09 -0.35 0.08 -0.23 -0.05 0.35 -0.31 -0.70 0.07 0.68 -0.54 -0.63 -0.74 -0.37 

0.75 0.19 0.76 0.40 0.85 0.19 0.24 <0.01 0.81 <0.01 0.03 0.01 <0.01 0.16 

ITGB2 
0.36 -0.52 0.35 -0.09 0.10 0.41 0.06 -0.49 -0.14 0.53 -0.50 -0.54 -0.60 -0.37 

0.17 0.04 0.18 0.75 0.71 0.12 0.84 0.04 0.60 0.04 0.04 0.03 0.01 0.15 

LIPC 
-0.04 -0.08 0.24 0.00 0.27 0.15 -0.05 -0.06 0.41 0.17 -0.24 -0.36 -0.44 -0.28 

0.87 0.78 0.38 0.99 0.32 0.59 0.85 0.82 0.12 0.52 0.37 0.16 0.09 0.29 

MYC 
0.01 0.46 -0.21 -0.23 0.09 -0.72 -0.14 0.10 0.25 -0.03 0.24 0.28 0.26 0.20 

0.97 0.07 0.44 0.39 0.73 <0.01 0.60 0.70 0.36 0.92 0.38 0.29 0.32 0.47 

NEU3 
-0.24 -0.24 0.54 0.23 0.62 0.12 0.06 0.14 -0.11 -0.14 -0.06 -0.07 -0.06 -0.06 

0.38 0.38 0.03 0.39 0.01 0.65 0.84 0.62 0.69 0.61 0.84 0.80 0.81 0.82 

NFATC1 
-0.23 0.12 0.21 0.28 0.70 -0.49 -0.32 0.34 0.36 -0.24 0.14 0.21 0.25 -0.13 

0.39 0.65 0.42 0.29 <0.01 0.06 0.23 0.19 0.17 0.36 0.61 0.43 0.36 0.63 

NFATC2 
-0.29 0.38 0.07 -0.12 0.35 -0.81 -0.27 0.57 0.35 -0.44 0.28 0.38 0.46 -0.08 

0.28 0.15 0.80 0.66 0.18 <0.01 0.31 0.02 0.18 0.09 0.30 0.15 0.07 0.76 

PDK4 
-0.41 0.46 -0.59 0.14 -0.10 -0.27 -0.25 0.18 0.08 -0.25 0.33 0.48 0.51 0.26 

0.11 0.08 0.02 0.62 0.72 0.32 0.35 0.50 0.77 0.35 0.21 0.06 0.05 0.32 

PIK3C2B 
-0.02 -0.22 0.51 -0.09 0.16 0.13 0.27 0.22 -0.50 -0.40 0.06 0.19 0.21 0.18 

0.95 0.42 0.04 0.73 0.55 0.63 0.31 0.41 0.05 0.13 0.84 0.47 0.44 0.50 

PLIN1 
0.18 0.30 -0.49 -0.26 -0.32 -0.22 0.34 -0.02 -0.17 -0.11 0.51 0.61 0.61 0.59 

0.51 0.27 0.05 0.33 0.23 0.41 0.20 0.95 0.52 0.69 0.04 0.01 0.01 0.02 

PON3 
0.32 -0.30 -0.04 0.25 -0.14 0.56 0.62 -0.13 -0.31 0.07 -0.01 -0.06 -0.05 0.28 

0.23 0.26 0.88 0.34 0.62 0.02 0.01 0.63 0.24 0.80 0.98 0.82 0.86 0.30 

SDC4 
-0.32 0.54 -0.19 -0.04 0.21 -0.50 -0.58 0.14 0.41 0.00 -0.05 0.02 0.07 -0.22 

0.23 0.03 0.49 0.87 0.44 0.05 0.02 0.59 0.11 1.00 0.85 0.93 0.80 0.41 

SLC1A2 
0.09 -0.53 0.29 0.35 0.20 0.51 -0.24 -0.52 -0.23 0.44 -0.61 -0.47 -0.53 -0.29 

0.76 0.04 0.29 0.21 0.48 0.05 0.38 0.05 0.41 0.10 0.02 0.08 0.04 0.29 

TREH 
0.23 -0.27 0.45 -0.28 0.15 0.05 0.33 -0.06 -0.23 0.01 -0.16 -0.18 -0.19 0.02 

0.41 0.33 0.09 0.31 0.59 0.85 0.23 0.83 0.42 0.97 0.58 0.52 0.49 0.95 

Correlation coefficient is presented in the upper row and a P-value is shown in the bottom row. Significant 

correlations are highlighted in bold. DL: drip loss (%); Tend. D1: tenderness day 1 (N), Tend. D7: tenderness day 7 

(N), CL D1: cook loss day 1 (%), CL D7: cook loss day 7 (%), Fat depth (mm), Muscle depth (mm), Lean (%), IMF: 

intramuscular fat content (%), SFA: saturated fatty acid (mg), MUFA: monounsaturated fatty acid (mg), PUFA: 

polyunsaturated fatty acid (mg). 
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Fig 1 Volcano plot depicting a total of 14,497 genes expressed in muscle from pigs divergent 

in feed efficiency. The horizontal green and red lines indicate the suggestive significance 

thresholds of differentially expressed (DE) genes at P < 0.01 and 0.05, respectively. The 

vertical blue lines represent the threshold of log2 fold change ≥ |1| (fold change ≥ |2|) and the 

red dots depict significantly DE genes at P < 0.01 and log2 fold change ≥ |1| (fold change ≥ 

|2|). Positive and negative fold changes refer to up- and down-regulated genes in high-FE 

pigs, respectively. The most up- and down-regulated annotated genes are highlighted in a 

circle.    
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Fig 2 Network #2 containing functions related to ‘protein synthesis’, ‘lipid metabolism’, and 

‘molecular transport’. Genes are denoted as nodes and the biological relationship between 

two nodes is denoted as an edge/line. Node colour represents up- (red) and down- (green) 

regulated genes in high-FE pigs.  
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Fig 3 Radar chart illustrating meat sensory attributes of 

Longissimus thoracis et lumborum muscle from FE-divergent 

pigs. Panellists scored meat from 0 (not detectable) to 100 

(extremely detectable). 
$
P < 0.1, *P < 0.05.  

 

Fig 4 Timeplot depicting post-mortem pH evolution of 

Longissimus thoracis et lumborum muscle divergent in feed 

efficiency.  pH 45m: P < 0.1; pH 2h, 3h, 4h, 5h, 24h: P < 0. 05.  
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Fig 5 Bar chart illustration of fatty acids composition of pigs divergent in feed efficiency (FE). Bar chart a) displays fatty acid composition in 

Longissimus thoracis et lumborum muscle and b) shows percentage of fatty acid in intramuscular fat (IMF). SFA: saturated fatty acids, MUFA: 

monounsaturated fatty acids, PUFA: polyunsaturated fatty acids. 
$
P < 0.1, *P < 0.05. 
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Additional files 

Additional file 1: Table S1 Differentially expressed transcripts (n = 272) at a P < 0.01 

between high-FE and low-FE groups (XLSX 30 KB). 

Additional file 2: Table S2 Biological functions significantly enriched with differentially 

expressed genes, including a list of sub-categories contained within each function (XLSX 19 

KB). 

 

Additional file 3: Table S3 All canonical pathways significantly enriched with differentially 

expressed genes (XLSX 12 KB). 

 

Additional file 4: Table S4 Forward and reverse primers for RNA-seq validation through 

qPCR (DOCX 16 KB).  
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In review at Molecular Genetics and Genomics 

 

Abstract  

Adipose tissue is hypothesized to play a vital role in regulation of feed efficiency (FE; 

efficiency in converting energy and nutrients into tissue), of which improvement will 

simultaneously reduce environmental impact and feed cost per pig. The objective of the 

present study was to sequence the subcutaneous adipose tissue transcriptome in FE-divergent 

pigs (n = 16) and identify relevant biological processes underpinning observed differences in 

FE. We previously demonstrated that high-FE pigs were associated with lower fatness when 

compared to their counterparts. Here, ontology analysis of a total of 209 annotated genes that 

were differentially expressed at a P < 0.01 revealed establishment of a dense extracellular 

matrix and inhibition of capillary formation as one underlying mechanism to achieve 

suppressed adipogenesis. Moreover, mechanisms ensuring an efficient utilization of lipids in 

high-FE pigs might be orchestrated by upstream regulators including CEBPA and EGF. 

Consequently, high-FE adipose tissue could exhibit more efficient cholesterol disposal, whilst 

inhibition of inflammatory and immune response in high-FE pigs may be an indicator of an 

optimally functioning adipose tissue. Taken together, adipose tissue growth, extracellular 
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matrix formation, lipid metabolism and inflammatory & immune response are key biological 

events underpinning the differences in FE. Further investigations focusing on elucidating 

these processes would assist the animal production industry in optimizing strategies related to 

nutrient utilization and product quality. 

 

Key Words – FE, RFI, residual feed intake, gene expression, transcriptomics 

 

Introduction 

Adipose tissue is a specialized connective tissue that functions as the largest energy reservoir 

in the body (Konige et al. 2014). Besides being a master regulator of systemic lipid storage in 

the form of triacylglycerol (Konige et al. 2014), adipose tissue is also an active endocrine 

organ (Mohamed-Ali et al. 1998). It secretes a number of inflammatory cytokines, known as 

adipocytokines, including leptin and adiponectin to communicate with skeletal muscle, liver 

and brain and influence various processes such as appetite, lipid and glucose metabolism, 

energy homeostasis, vasculature formation and also inflammatory response (Guerre-Millo 

2002; Komolka et al. 2014; Trayhurn and Bing 2006). For these reasons, adipose tissue is 

suspected to play a vital part in feed efficiency (FE), which is a measure of efficiency in 

converting energy and nutrients from feed into body mass. Feed efficiency has been widely 

researched in livestock as its improvement will simultaneously reduce environmental impact 

and feed cost per pig (Wilkinson 2011). In terms of animal production, subcutaneous as well 

as intramuscular adipose tissues are economically important traits. Although both tissues 

have a unique metabolism (Hausman et al. 2009), there is a moderate positive genetic 

correlation between subcutaneous and intramuscular adipose (Newcom et al. 2005). 

Therefore the molecular mechanisms in subcutaneous adipose tissue may resemble those in 

the intramuscular fat.    

 

High-FE pigs were shown to deposit less subcutaneous and intramuscular adipose tissue 

(Faure et al. 2013; Horodyska et al. 2018a; Horodyska et al. 2018b; Lefaucheur et al. 2011) 

indicating that these animals do not allocate the same resources to the energetically expensive 

process of adipose tissue accretion (Gaines et al. 2012) compared to their low-FE 

counterparts. Nevertheless the understanding of underlying molecular mechanisms in the 

adipose tissue of FE-divergent pigs is limited. Few studies carried out on the adipose tissue, 
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using residual feed intake (RFI; difference between actual feed intake and its expected 

nutritional requirements) as the metric for FE, identified changes in a diverse suite of 

responses including phosphate, glucose & lipid metabolism, oxidative and antioxidant 

processes, cellular homeostasis, immune response and regulation of developmental processes 

(Gondret et al. 2017; Lkhagvadorj et al. 2010; Louveau et al. 2016). These studies were 

carried out using a microarray platform and to the best of our knowledge, and to date, no 

RNA sequencing approach was performed on adipose tissue from FE-divergent pigs. With 

the aim to gain deeper insights of biological processes governing differences in FE, other 

metabolically important organs e.g. skeletal muscle, liver and intestine have been investigated 

by researchers. In these studies, skeletal muscle was shown to exhibit shifts in mitochondrial 

energy and lipid metabolism, protein synthesis and degradation, skeletal muscle growth and 

connective tissue adhesion (Horodyska et al. 2018a; Jing et al. 2015; Vincent et al. 2015). 

Furthermore, liver displayed alterations in cell proliferation, vitamin A metabolism, protein 

synthesis and catabolism, lipid and carbohydrate metabolism, reverse cholesterol transport, 

integrin signaling, as well as oxidative stress and immune responses (Gondret et al. 2017; 

Ramayo-Caldas et al. 2018; Reyer et al. 2017a; Zhao et al. 2016).  Finally, studies carried out 

on the intestine reported energy, lipid and protein metabolism, ion transport, immune and 

oxidative stress responses, as well as gastrointestinal peristalsis to be differentially regulated 

in association with FE (Ramayo-Caldas et al. 2018; Tan et al. 2017). 

 

The pig also serves as an in vivo model for biomedical research, especially metabolic studies 

because of the resemblance of its digestive system anatomy and physiology, e.g. lipoprotein 

and cholesterol metabolism, to human (Bassols et al. 2014; Kobayashi et al. 2012; Nafikov 

and Beitz 2007; Swindle et al. 2012). Considering that within the past three decades 

worldwide obesity has increased two-fold, with 39 percent of adults now being overweight 

and 13 percent being obese (www.who.int/), a deeper understanding of metabolic changes 

associated with lipid metabolism would be of great benefit.     

 

In this study the transcriptome of subcutaneous adipose tissue of pigs divergent for FE was 

sequenced aiming to identify differentially expressed (DE) genes contributing to differences 

in FE, and to deduce affected molecular pathways via ontology analysis. This approach 

contributes to illuminate the biological processes underpinning the differences in FE, as well 

http://www.who.int/
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as to explore the functional networks driving the relationship between animal adiposity and 

FE.  

 

Materials and methods 

Animals, experimental design and phenotypes 

Animal housing, diets and FE tests of a total of 138 Maxgro (Hermitage Genetics) x (Landrace 

x Large White) pigs used in this study were as previously described (Horodyska et al. 2018a). 

Briefly, pigs were categorized within litter and gender as high (H) and low (L) RFI according 

to their RFI values, measured individually using transponders within pens. The minimum and 

maximum RFI values for the 138 pigs were -329 g/day and 494 g/day, respectively. At an 

average body weight of 99 kg, 40 pigs (20 extremes from LRFI (high-FE) - 10 males and 10 

females, and 20 extremes from HRFI (low-FE) - 10 males and 10 females) were selected based 

on RFI-divergent siblings from each litter. Subcutaneous adipose tissues samples, representing 

outer, middle and inner layers, were taken in an area above the Longissimus thoracis et 

lumborum muscle and snap frozen within ten minutes of stunning. Samples were then stored at 

-80°C until RNA isolation. Phenotypic measurements including subcutaneous adipose tissue 

depth and Longissimus thoracis et lumborum muscle adiposity were measured using probe-

based methods described in detail in Horodyska et al. (2018a).  

 

Gene expression profiling and functional enrichment 

Adipose tissue of four sets of full siblings was selected from the 40 RFI-divergent pigs. Each 

set consisted of 2 males - 1 LRFI (high-FE) and 1 HRFI (low-FE) and 2 females 1 LRFI 

(high-FE) and 1 HRFI (low-FE) so that 8 LRFI (high-FE) pigs - 4 males and 4 females and 8 

HRFI pigs (low-FE) - 4 males and 4 females were utilized for RNA analysis. Samples were 

ground into fine powder in liquid nitrogen followed by total RNA extraction (Tri-Reagent, 

Sigma-Alrich, Taufkirchen, Germany), which was carried out in two batches and according 

to the manufacturer's instructions with slight modifications i.e., 1.5 times the volume of TRI-

Reagent was used and an additional centrifugation step was performed to remove the fatty 

phase. RNA was treated with DNase and purified using the column-based Nucleospin RNA II 

kit (Macherey-Nagel, Düren, Germany). RNA samples were quantified using Nanodrop ND-

1000 spectrophotometer (PEQLAB, Erlangen, Germany) and quality assesses with Agilent 
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2100 Bioanalyzer (Agilent Technologies Inc., California, USA). The RIN number ranged 

from 6.4 - 7.7. RNA samples were also checked for DNA contamination by PCR of the 

porcine GAPDH gene (forward primer: AAGCAGGGATGATGTTCTGG, reverse primer: 

ATGCCTCCTGTACCACCAAC) and PACTB (forward primer: 

GAGAAGCTCTGCTACGTCGC, reverse primer: CCTGATGTCCACGTCGCACT). 

Ribosomal RNA (rRNA) was removed from total RNA using Ribo-Zero Gold kit (Illumina, 

San Diego, CA, USA). RNA libraries were prepared with 1 µg RNA template according to 

the TruSeq Stranded mRNA protocol (Illumina, San Diego, CA, USA). The libraries were 

quality validated using an Agilent DNA-1000 chip kit on an Agilent 2100 Bioanalyzer 

(Agilent Technologies Inc., California, USA) and normalized to 2 nM concentration each 

prior to multiplexing balanced for experimental groups and sequencing on 3 lanes of a high-

throughput flowcell of an Illumina HiSeq2500 at the Leibniz-Institute for Farm Animal 

Biology (FBN), Dummerstorf, Germany (more details are available through the ArrayExpress 

repository at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under accession number: E-MTAB-

6255). Paired-end reads were mapped to the reference (Ensembl release 84) using TopHat 

(2.1.0) (Kim et al. 2013). The number of aligned sequencing reads mapped to corresponding 

gene features was analyzed using the HTSeq 0.6.1 program (Anders et al. 2015). Entries 

which had more than or equal to 5 read counts in more than or equal to 6 of the samples were 

considered for further analysis. DESeq2 package (3.4.0, www.R-project.org) was utilized for 

differential gene expression analysis, whereby RFI groups and dams were included as fixed 

effects. Ingenuity Pathway Analysis (IPA; Ingenuity® Systems, www.ingenuity.com) was 

carried out upon submitting all gene symbols of significantly differentially expressed genes at 

a P < 0.01 along with their fold changes. Fisher’s exact test P-values were used to identify 

significantly over-represented biological functions and canonical pathways at a P < 0.01. 

Ingenuity® Knowledge Base was used to produce potential important interaction networks 

containing the DE genes. Additionally, functional annotations of the differentially expressed 

as well as all genes expressed in the adipose tissue were extracted using PANTHER 

Functional Classification Tool 13.1 (Mi et al. 2017). Themes represented amongst DE genes 

were compared to those represented amongst all expressed genes in order to identify 

functional shifts related to divergence in FE. Furthermore IPA Upstream Regulator analysis, 

based on a dataset gathered from the literature and contained in the Ingenuity® Knowledge 

Base, was utilized to identify potential transcriptional regulators, growth factors etc. and their 

expected effects on target genes in order to elucidate the differences in gene expression. P-

http://www.r-project.org/
http://www.ingenuity.com/
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values were calculated to evaluate the overlap between the DE genes and known genes 

controlled by a particular upstream regulator (overlap P-value) and were considered 

significant at P < 0.01. Activation states (z-score), examining whether the expression 

directions of target DE genes in the dataset are consistent with the activation state of a 

particular biological function/upstream regulator (Kramer et al. 2014), were also inferred. 

Functions and regulators were considered significantly activated and inhibited in LRFI (high-

FE) pigs with a z-score greater than 2 and lower than -2, respectively.   

 

Quantitative Real-Time PCR (qPCR) 

Real-time PCR analyses were performed for COL8A1, MMP16, and PLCE1 using gene-

specific primers (Table 1). The primers specificity was verified with the primer-BLAST tool 

(www.ncbi.nlm.nih.gov/BLAST). cDNA was synthesized with 1 µg of a previously extracted 

total RNA accompanied by random primers (Promega, Mannheim, Germany), oligo (dT) 

primer and Superscript
® 

III reverse transcriptase (Invitrogen Corp., San Diego, CA, USA). 

qPCR was performed using LightCycler 96 system (Roche Mannheim, Germany), wherein 

reactions consisting of 2 μl of cDNA, 6 μl SYBR Green I Master (Roche) and 0.6 μl (10 μM) 

of each forward and reverse primer were carried out in duplicates in 10 μl final volume. Upon 

initial denaturation at 95 °C for 5 min and 45 cycles of amplification (95 °C for 10 sec, 60 °C 

for 15 sec and 72 °C for 25 sec), specificity of the amplification reactions was examined by a 

melting curve analysis. Normalized gene expression was compared between RFI (FE) groups 

including dams as a random effect in a linear mixed-effects model using the lme4 R package. 

Correlation analysis between the RNA-seq and qPCR data were examined in R. 

 

Results   

Phenotypes 

The mean RFI, weight and feed conversion ratio (FCR, ratio of feed intake and weight gain), 

along with the highest and lowest values, of the high-FE (LRFI) and low-FE (HRFI) pigs are 

shown in Table 2. Thickness of subcutaneous adipose tissue did not differ significantly 

between the RFI groups (high-FE: 14.6 mm and low-FE: 15.5 mm). As described in details in 

Horodyska et al. (2018b), muscle adiposity was significantly altered between the FE groups 

http://www.ncbi.nlm.nih.gov/BLAST
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(P < 0.05). High-FE muscle contained 1.49% intramuscular fat content as opposed to their 

counterparts having 1.89% intramuscular fat content. 

 

Adipose transcripts differentially expressed between FE groups 

Upon sequencing and data processing of a total of 16 RNA libraries from subcutaneous 

adipose tissue of FE-divergent pigs, high quality reads were mapped with 87.5% efficiency to 

the reference yielding an average of 105.5 million paired-end reads per sample. Assigning of 

read counts to gene features revealed expressed transcripts assigned to in total 15,477 genes. 

Based on a significance threshold of P < 0.01 (corresponding to a false discovery rate of q ≤ 

0.64), 209 (111 up- and 98 down-regulated) annotated genes were found to be associated to 

high/low feed efficiency (Fig S1). List of most altered genes is presented in Table 3. A 

detailed list of all differentially expressed genes is shown in Table S1. Validation of RNA-

seq results was carried out through qPCR of three genes, selected based on their abundance 

and functionality related to feed efficiency, COL8A1 (collagen type VIII alpha 1), MMP16 

(matrix metallopeptidase 16) and PLCE1 (phospholipase C epsilon 1). Expressions of these 

transcripts were normalized against a reference gene (RPL32), which was observed to be 

stable amongst the samples from FE-divergent groups. Spearman correlation coefficients of 

the comparison of RNA-seq and qPCR fold changes were found to be significant for 

COL8A1, MMP16 and PLCE1 (rho = 0.989, 0.832, 0.911 respectively; P < 0.001). RNA-seq 

validation through qPCR confirmed three selected genes to be significantly up-regulated in 

high-FE pigs (Fig 1).  

 

Functional enrichment analysis  

The lower statistical stringency in differential expression profiling introduces a risk of Type I 

error. Therefore to further refine the data, the list of DE genes was integrated via gene 

ontology analysis to extract biological functions and pathways. Nineteen molecular and 

cellular functions (Fig 2A and Table S2), were significantly (P < 0.001) enriched with genes 

associated to FE. Most altered themes were ‘cellular movement’ (78 DE genes, 10% 

distribution of all DE genes entries), ‘cell death and survival’ (89 DE genes, 11% distribution 

of all DE genes entries), ‘cellular development’ (85 DE genes, 11% distribution of all DE 

genes entries), ‘cellular growth and proliferation’ (72 DE genes, 9% distribution of all DE 

genes entries), ‘cell morphology’ (73 DE genes, 9% distribution of all DE genes entries) and 
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‘lipid metabolism’ (28 DE genes, 4% distribution of all DE genes entries). Ontology analysis 

also revealed twenty-one physiological system development and function categories (Fig 2B 

and Table S3) significantly (P < 0.001) over-represented with genes associated to FE. Most 

significant biological themes affected by divergence in FE were ‘cardiovascular system 

development & function’ (54 DE genes, 6% distribution of all DE genes entries), ‘organismal 

development’ (91 DE genes, 11% distribution of all DE genes entries), ‘tissue morphology’ 

(78 DE genes, 9% distribution of all DE genes entries) and ‘haematological system 

development & function’ (61 DE genes, 7% distribution of all DE genes entries), ‘immune 

cell trafficking’(37 DE genes, 4% distribution of all DE genes entries), and ‘lymphoid tissue 

structure and development’(44 DE genes, 5% distribution of all DE genes entries). 

Furthermore, nine canonical signaling pathways (Fig 2C) were significantly (P < 0.01) 

enriched with DE genes in relation to FE, of which most altered were ‘axonal guidance 

signaling’ (14 DE genes, 29% distribution of all DE genes entries), ‘complement system’ (4 

DE genes, 8% distribution of all DE genes entries), ‘granulocyte adhesion and diapedesia’ (7 

DE genes, 15% distribution of all DE genes entries), ‘antiproliferative role of TOB in T cell 

signaling’ (3 DE genes, 6% distribution of all DE genes entries), ‘factors promoting 

cardiogenesis in vertebrates’ (5 DE genes, 10% distribution of all DE genes entries) and ‘p38 

MAPK signaling’ (5 DE genes, 10% distribution of all DE genes entries). Additionally, 

comparison of molecular and physiological themes represented amongst DE genes against 

those represented with all expressed genes in the adipose tissue (Fig 3A and 3B) revealed 

‘receptor and signal transducer activities’ and ‘growth and developmental processes’ to be 

over-represented in relation to FE. Specifically, ‘signal transducer activity’ and ‘growth and 

developmental processes’ were enriched with up-regulated genes whilst ‘receptor activity’ 

was enriched with down-regulated genes. Sixteen networks were inferred by integration of 

genes affected by FE (Table S4), whereby the most significant network (network#1) 

comprised twenty-four DE genes involved in cell death and survival, embryonic development 

and cancer. Another important network (network#2), was represented by eighteen DE genes 

including the most altered gene, COL11A2, and related to connective tissue development, 

function and disorders, as well as organismal injury and abnormalities (Fig 4).  

 

Analysis of potential upstream regulators predicted CCAAT/enhancer binding protein alpha 

(CEBPA; z-score = -2.41 and overlap P-value = 7.73E-05) and epidermal growth factor 

(EGF; z-score = -2.51 and overlap P-value = 4.03E-03) to be inhibited in adipose tissue of 
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high-FE pigs. CEBPA and EGF were predicted to control expression of 11 and 10 DE genes, 

respectively, in the direction consistent with the activation state of the particular regulator. 

Specifically, MMP8, LTF, CSF3R, SULT2A1, NFIL3, PLIN2, BTG, ITGAM, TGFB2, PLOD2 

and EPH2 were inferred to be inhibited by CEBPA, whilst LTF, ANPEP, VEGFA, BTG2, 

ETS2, GPER1, ITGAM, TGFB1, KRT19, and CYP1A1 were inferred to be inhibited by EGF. 

Predicted inhibition of these transcripts, except TGFB2, PLOD2, EPH2, KRT19 and 

CYP1A1, was consistent with their observed down-regulation in adipose tissue of high-FE 

pigs. In addition a number of EGF target genes down-regulated in our dataset, such as BTG2, 

ITGAM, LTF, ETS2 and TGFB1, were significantly enriched in ‘cell survival’ function, 

which was predicted to be suppressed (z-score = -2.18) in high-FE pigs. 

 

Discussion 

The aim of this study was to examine the transcriptome of subcutaneous adipose tissue and 

identify biological processes contributing to differences in FE and explore the functional 

networks driving the relationship between animal adiposity and FE. In our prior study 

(Horodyska et al. 2018b) we demonstrated that high-FE pigs exhibit reduced muscle 

adiposity, however muscle and subcutaneous fat tissue depth remained unaffected by FE 

despite previously reported links between FE (RFI indexes) and back-fat (Lefaucher et al. 

2008; Tizioto et al. 2015). Gene ontology analysis identified a number of candidate biological 

functions and pathways affiliated with adipose tissue growth, extracellular matrix formation, 

lipid metabolism and immune response suggesting that these may be some of the key 

mechanisms underpinning the tissue changes associated with FE. 

 

Growth 

Sulfiredoxin 1(SRXN1), which codes for an endogenous antioxidant protein (Zhou et al. 

2015), was the most down-regulated gene (fold change = -3.85) in high-FE pigs. Previous 

studies have reported over-expression of SRXN1 during oxidative stress in astrocytes (Zhou et 

al. 2015) and in lung tissue (Tahmasbpour Marzony et al. 2016). Increased oxidative stress 

has been observed in adipose tissue of obese mice (Furukawa et al. 2004). In this study high-

FE (LRFI) pigs exhibited suppression of SRXN1 in the subcutaneous adipose tissue, although 

no significant differences in depth of this tissue were detected between the FE groups. 
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Nevertheless muscle adiposity (intramuscular fat content), exhibiting a positive genetic 

correlation with subcutaneous adipose tissue (Newcom et al. 2005), was relatively lower 

(1.49% in high-FE pigs as opposed to 1.89% in low-FE pigs) in high-FE pigs and this is in 

keeping with the suppression of SRXN1. Gene ontology analysis revealed several significant 

biological functions related to adipose tissue growth, specifically ‘connective tissue 

development and function’ wherein ‘quantity of connective tissue’ was significantly inhibited 

(z-score = -2.44) and ‘stimulation of connective tissue cells’ tended towards suppression (z-

score = -1.41) in high-FE pigs. In these functions, expression of lactotransferrin (LTF) and 

oncostatin M (OSM) was down-regulated (fold change = -2.85 and -1.88, respectively). A 

study conducted on human pre-adipocytes demonstrated that induced expression of LTF led 

to increased differentiation of adipocytes (Moreno-Navarrete et al. 2014; Moreno-Navarrete 

et al. 2013), whilst elevated expression of OSM was observed in obese mice and humans 

(Elks et al. 2016). Furthermore, sub-categories enclosed within a broader ‘cardiovascular 

system development and function’ category, including ‘movement of endothelial cells’ and 

‘quantity of blood vessels’ were repressed (z-score = -2.05 and -1.94, respectively) in high-

FE pigs. Growth of adipose tissue is angiogenesis dependent and inhibition of vascular 

growth has been previously shown to prevent adipose tissue expansion (Rupnick et al. 2002). 

Here, an important regulator of angiogenesis in adipose tissue (Ledoux et al. 2008), vascular 

endothelial growth factor A (VEGFA), was down-regulated (fold change = -1.35) in high-FE 

pigs. Furthermore the most significantly enriched pathway with DE genes, ‘axonal guidance 

signaling’, has been implicated in angiogenesis (Larrivee et al. 2009). Interestingly, VEGFA 

was also represented in this pathway confirming its role in promoting axon guidance 

(Mackenzie and Ruhrberg 2012). Additionally, when comparing functional annotations of the 

DE genes against all genes expressed in the adipose tissue, VEGFA was also enriched in 

‘growth and developmental processes’. These findings are in keeping with a previous study 

reporting ‘regulation of developmental processes’ being enriched with down-regulated genes 

in the adipose tissue of high-FE pigs (Lkhagvadorj et al. 2010). 

 

Prediction of potential upstream regulators predicted inhibition of CEBPA and EGF to 

control expression of a total of 16 genes that were observed to be down-regulated in the 

adipose tissue of high-FE. CEBPA, together with peroxisome proliferators activated receptor 

gamma (PPARG), is a master regulator of adipogenesis (Prokesch et al. 2009). EGF has 

previously been linked to proliferation and differentiation of adipose-derived stem cells 
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(Hebert et al. 2009) and obesity (Kurachi et al. 1993). In the present study this growth factor, 

along with CEBPA, was predicted to be inhibited in adipose tissue of high-FE pigs. mRNAs 

coding for these transcription regulators were not significantly differentially expressed 

between the FE-divergent groups per se, albeit abundance of transcripts encoding these 

factors is not expected to affect their activity (Filtz et al. 2014).    

 

Extracellular matrix   

Analysis of molecule connectivity revealed network#2 enriched with functions related to 

‘connective tissue development & function’ and ‘connective tissue disorders’. The most up-

regulated gene (fold change = 25.7) in high-FE pigs, collagen type XI alpha 2 chain 

(COL11A2) coding for extracellular minor fibrillar collagen (Fang et al. 2010) was 

represented in this network. Matrix metallopeptidase 8 (MMP8) which degrades collagen 

type I and III (Van Doren 2015), was down-regulated (fold change = -3.23) in this network. 

While collagen type I and III per se were not differentially expressed between the FE-

divergent groups, a number of other collagen types, such as collagen type XI alpha 1 chain 

(COL11A1), collagen type XIV alpha 1 chain (COL14A1) and collagen type XXVIII alpha 1 

chain (COL28A1) were up-regulated (fold change = 4.80, 1.35 and 5.27, respectively) in the 

subcutaneous fat of high-FE pigs. When comparing themes represented amongst DE genes to 

those represented amongst all expressed genes, ‘growth and developmental processes’ were 

identified to be enriched with up-regulated genes in relation to FE such as COL11A1, 

COL11A2 and transforming growth factor beta-2 (TGFB2). TGFB2 modulates the synthesis 

of extracellular matrix components (Fuchshofer et al. 2005), whilst collagen is a predominant 

structural element of interstitial extracellular matrix (Frantz et al. 2010) providing mechanical 

support to the cellular constituents (Neve et al. 2014). These suggest that adipose tissue of 

high-FE animals may be characterized by a dense extracellular matrix. Indeed, a connection 

between extracellular matrix formation and body fat has been reported in a pig population 

selected for leanness (Reyer et al. 2017b). Furthermore, there is evidence that extracellular 

matrix regulates angiogenesis (Neve et al. 2014). Formation of a dense extracellular matrix 

may suppress adipogenesis through inhibiting capillary formation (Bouloumié et al. 2002). 
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Lipid metabolism  

Previous reports revealed that ‘fatty acid metabolism’ (Lkhagvadorj et al. 2010) was a 

functional category enriched with down-regulated genes in adipose tissue of high-FE pigs, 

whilst up-regulated genes were predominantly involved in ‘lipid catabolism’, ‘fatty acid beta-

oxidation’ (Gondret et al. 2017) and ‘mitochondrial oxidative metabolism’ (Louveau et al. 

2016). These findings are consistent with our gene ontology analysis wherein ‘synthesis of 

fatty acids and lipids’, enclosed within ‘lipid metabolism’ category, were significantly 

enriched with DE genes and tended towards inhibition (z-score = -1.77 and -1.25, 

respectively) in high-FE pigs. In these themes, ATP binding cassette subfamily A member 8 

(ABCA8), clusterin (CLU), paraoxonase 3 (PON3) and cytochrome p450 family 1 subfamily 

A member 1 (CYP1A1) were over-expressed (fold change = 1.27, 1.46, 2.10 and 3.87, 

respectively) in the high-FE group. ABCA8 is a membrane protein (Locher 2009) that has 

previously been shown to be involved in modulating cholesterol efflux and high density 

lipoprotein cholesterol level (Trigueros-Motos et al. 2017). Studies carried out in liver 

elucidated a role of CLU protein in transporting cholesterol from tissues to the liver (de Silva 

et al. 1990). PON3 is known for associating with high density lipoproteins (Getz and Reardon 

2004). In addition, PON3 knockout mice experienced increased body weight (Shih et al. 

2015). CYP1A1 belongs to a family of enzymes playing a crucial part in cholesterol 

biosynthesis (Sridhar et al. 2017). Accordingly, a number of polymorphisms in CYP1A1 have 

been associated with high and low density lipoprotein cholesterol as well as triglyceride 

levels (Almeida et al. 2005; Bailon-Soto et al. 2014). These alterations in cholesterol 

metabolism in the adipose tissue of high-FE animals suggest increased mobilization of fat 

depots towards hepatic metabolism and utilization of fat resources (Reyer et al. 2017a). Over-

expression of these lipid-associated transcripts was accompanied with suppression of 

adipogenesis-related mRNAs, i.e. LTF and VEGFA.  

 

Immune response  

‘High mobility group box 1 (HMGB1) signaling’ and ‘p38 mitogen-activated protein kinase 

(p38MAPK) signaling’ were pathways significantly affected by FE. p38MAPK and HMGB1 

are involved in the mounting of an immune response through synthesis of pro-inflammatory 

cytokines (Cuenda and Rousseau 2007; Lee et al. 2014; Yang et al. 2005). A previous study 

postulated that production of HMGB1 in adipose tissue is triggered by inflammatory signals 
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associated with obesity (Gunasekaran et al. 2013). Accordingly ‘complement system’, which 

is a major constituent of the innate immunity (Rus et al. 2005), was inferred from ontology 

analysis. Selectin L (SELL), involved in leukocyte adhesion to blood vessels during 

inflammatory and immunological response (Nelson et al. 1992), was found to be down-

regulated in high-FE pigs and significantly enriched in ‘granulocyte adhesion and diapedesis’ 

pathway. Interestingly, a single nucleotide polymorphism in SELL gene was identified as a 

positional and functional candidate gene for FE through a genome-wide association study 

(Horodyska et al. 2017). Furthermore ‘proliferation of immune cells’ contained within 

‘haematological system development and function’, ‘chemotaxis of phagocytes’ contained 

within ‘immune cell trafficking’ and ‘phagocytosis’ contained within ‘cellular function and 

maintenance’ were significantly inhibited (z-score = -2.36, -2.32 and -2.01, respectively) in 

high-FE adipose tissue, and ‘prostaglandin synthesis’ had a tendency towards suppression (z-

score = -1.33) in high-FE pigs. Cytokines and prostaglandins are inflammatory molecules 

that are synthesized and secreted by macrophages upon tissue exposure to inflammatory 

stimuli (Arango Duque and Descoteaux 2014). Studies carried out on obese mice and humans 

reported a strong positive correlation between adipocyte size and accumulation of pro-

inflammatory macrophages in adipose tissue (Cinti et al. 2005; Ortega Martinez de Victoria 

et al. 2009). In addition, cytokines communicate with skeletal muscle, liver and brain and 

regulate appetite and lipid and glucose metabolism (Guerre-Millo 2002). Supporting prior 

evidence reported by Gondret et al. (2017), our findings clearly indicate that high-FE adipose 

tissue display inhibition of immune and inflammatory responses, which otherwise would lead 

to expansion of this organ and dysregulation of systemic energy homeostasis.    

 

To conclude, a number of differentially expressed genes were significantly enriched in 

growth, extracellular matrix formation, lipid metabolism and inflammatory & immune 

response pathways, suggesting that these may be the main mechanisms governing the 

differences in adipose tissue from FE-divergent pigs. Specifically, establishment of a dense 

extracellular matrix and inhibition of capillary formation may be one underlying mechanism 

to achieve suppressed adipogenesis and increased utilization of fatty acids. Accordingly, lipid 

metabolism was also affected by FE whereby over-expression of cholesterol-related genes 

suggests more efficient cholesterol disposal from high-FE adipose tissue. The mechanisms 

ensuring an efficient utilization of lipids in high-FE pigs might be orchestrated by upstream 

regulators including CEBPA and EGF. Moreover, inhibition of inflammatory and immune 



Annex A 

 

160 
 

responses in high-FE pigs may be an indicator of an optimally functioning adipose tissue, 

which is a central organ involved in systemic lipid metabolism and energy homeostasis. 

Further studies dedicated to deciphering these processes will assist in optimizing strategies 

related to nutrient utilization and animal adiposity. 
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Table 1 Primer sequences for RNA-seq validation via qPCR. 

Gene NCBI accession no. Forward Reverse Product size  Efficiency 

COL8A1 XM_001926443.5 CCACACCTACCCCAGTATATGAAG CCTTGCTCCCCTCGTAAACTAG 116 bp 100 % 

MMP16 XM_001926617.5 GCTATTCTTCGCCGTGAGATG GGCAAGCCTCTCCAGAAGTAAG 116 bp 101 % 

PLCE1 XM_013990458.1 AGGGATATGTTGGCAGGATTG GGACAAAGAAACTCTCCTCCTCTG 117 bp 97 % 

RPL32 NM_001001636.1 AGCCCAAGATCGTCAAAAAG TGTTGCTCCCATAACCAATG 165 bp 93 % 

 

 

 

Table 2 Phenotypic data of pigs divergent in feed efficiency (FE). 

 

 

* Values represent means and standard deviations of phenotypic traits. Maximum and minimum values are shown in 

parenthesis.  

 

FE group Body weight (kg)* Residual feed intake (g/day)* Feed conversion ratio * 

n = 40 FE-divergent pigs utilised for phenotypic measurements 

High-FE (LRFI; n = 20) 97.53 ±12.8 (123.6; 74.6) -100.2 ±97.7 (-329.3; 53.81) 1.98 ±0.16 (2.23; 1.70) 

Low-FE (HRFI; n = 20) 100.4 ±9.93 (116.2; 83.8) 150.7 ±163 (494.1; -186.6) 2.27 ±0.25 (2.93; 1.86) 

n = 16 FE-divergent pigs (selected out of the 40) utilised for RNA-seq 

High-FE (LRFI; n = 8) 101.5 ±13.7 (123.6; 76.2) -73.06 ±39.5 (-17.92; -130.6) 1.99 ±0.15 (2.20; 1.80) 

Low-FE (HRFI; n = 8) 101.8 ±8.9 (116.2; 87.2) 193.8 ±89.8 (324.2; 100.2) 2.32 ±0.16 (2.54; 2.12) 
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Table 3 Most differentially expressed transcripts in relation to feed efficiency (FE). 

Gene* FC P-value q-value Top molecular and physiological function Top pathway Network$ 

COL11A2 +25.7 0.009 0.64 
Organismal dev, cellular development Intrinsic prothrombin activation 2 

PLEKHB1 +7.49 0.004 0.55 
- - 3 

DIRAS3 +7.37 0.009 0.61 
Cellular movement, organismal development HMGB1 signalling 8 

KCNMA1 +6.16 0.001 0.40 
Cellular movement, cardiovascular system d & f - 4 

COL28A1 +5.27 0.002 0.45 
- - 7 

GARNL3 +4.95 0.002 0.47 
- - 11 

COL11A1 +4.80 0.008 0.61 
Cellular movement, organismal development  - 7 

NFASC +4.25 0.001 0.45 
Cellular movement, tissue morphology - 5 

BMPR1B +4.16 <0.001 0.21 
Cellular movement, organismal development TGF-β signalling 3 

CYP1A1 +3.86 0.005 0.55 
Cellular movement, organismal development Oestrogen biosynthesis 8 

MRAP2 +3.63 0.004 0.55 
Cell morphology, connective tissue d & f - 5 

KRT18 +3.60 0.003 0.50 
Cell death and survival, organismal development  ILK signalling 1 

COLGALT2 +3.32 0.003 0.53 
- - 12 

ADIRF +3.21 0.006 0.56 
Cellular development, connective tissue d & f - 12 

SHISA2 +2.99 0.005 0.55 
Organismal development & survival - 8 

SRXN1 -3.85 <0.001 0.09 
Cell death, organismal survival - 6 

AKR1C4 -3.59 0.002 0.45 
Lipid metabolism Oestrogen biosynthesis 4, 9 

MMP8 -3.23 <0.001 0.13 
Cellular movement, cardiovascular system d & f Axonal guidance signalling 2 

FAT2 -2.93 0.009 0.63 
- - 10 

LTF -2.85 0.002 0.45 
Cellular movement, cardiovascular system d & f - 1 

TEX33 -2.72 0.001 0.40 
- - 5 

TREH -2.28 0.007 0.61 

- Trehalose degradation II 

(Trehalase) 

9 

TXK -2.25 0.008 0.61 
Cellular movement, organismal development Leukocyte Extravasation signalling 2 

NLRP12 -2.24 <0.001 0.22 
Cellular movement, organismal development TREM1 signalling 13 

OSM -1.88 0.005 0.55 
Cellular movement, cardiovascular system d & f HMGB1 signalling 3 

CSF3R -1.87 0.001 0.42 
Cellular movement, organismal development Granulocyte adhesion & diapedesis 1 

ADORA3 -1.73 <0.001 0.09 
Cellular movement, cardiovascular system d & f Gαi signalling 7 

CBFA2T3 -1.71 0.002 0.50 
Cellular and organismal development - 1 

RPH3A -1.70 0.001 0.38 
- - 12 

AHSA2 -1.68 0.005 0.55 
- - 5 

FC: fold change with positive and negative fold changes correspond to high-FE > low-FE and high-FE < low-FE, respectively; * A total of 

87 annotated genes were found to be at least 1.5-fold differentially expressed in FE-divergent pigs; $ Network IDs: d & f: development and 

function; 1. Cell death and survival, embryonic development, cancer; 2. Connective tissue development and function, connective tissue 

disorders, organismal injury and abnormalities; 3. Organ development, respiratory system development and function, cardiovascular system 

development and function; 4. Glomerular injury, organismal injury and abnormalities, renal fibrosis; 5. Cardiovascular disease, organismal 

injury and abnormalities, cancer; 6. Humoral immune response, protein synthesis, antimicrobial response; 7. Cell signalling, cellular function 

and maintenance, vitamin and mineral metabolism; 8. Cellular development, cellular growth and proliferation, dermatological diseases and 

conditions; 9.  Cell morphology, cellular function and maintenance, drug metabolism; 10. Cell-to-cell signalling and interaction, 

inflammatory response, cell cycle; 11. Amino acid metabolism, molecular transport, small molecule biochemistry; 12. Cell death and 

survival, developmental disorder, embryonic development; 13. Dermatological diseases and conditions, hereditary disorder, inflammatory 

disease; 14. Cardiovascular disease, cardiovascular system development and function, cell morphology; 15. DNA replication, recombination, 

and repair, dermatological diseases and conditions, developmental disorder; 16. Developmental disorder, hereditary disorder, metabolic 

disease. 
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Fig 1 Bar chart illustrating the RNA-seq and qPCR fold changes of three selected up-

regulated genes in high-FE pigs. Significance levels of differences affected by selection for 

feed efficiency: *P < 0.05, **P < 0.01, ***P < 0.001.  
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Fig 2 Pie charts illustrating distributions of all differentially expressed 

(DE) genes entries enriched within A: molecular and cellular functions 

(P < 0.001), B: physiological themes (P < 0.001) and C*: canonical 

pathways (P < 0.01). Values in parentheses represent number of DE 

genes over-represented in a particular function. 

A B 
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Fig 2 cont. *Axonal guidance signaling: [-log(p-value) = 3.88]; EPHA7, UNC5A, ARHGEF15, MET, VEGFA, PLCE1, FZD4, ADAMTS6, 

GLIS2, SEMA3D, MMP8, ROBO2, SEMA3B, SEMA3C. Complement system: [-log(p-value) = 3.36]; C5AR1, ITGAM, CFI, CFB. Granulocyte 

adhesion and diapedesis: [-log(p-value) = 2.76]; CSF3R, SELL, C5AR1, ITGAM, MMP16, MMP8, TNFRSF1B. Antiproliferative role of TOB in 

T cell signaling: [-log(p-value) = 2.70]; CCNE2, TGFB1, TGFB2. Factors promoting cardiogenesis in vertebrates: [-log(p-value) = 2.69]; 

CCNE2, FZD4, TGFB1, TGFB2, BMPR1B. p38 MAPK signaling: [-log(p-value) = 2.24];  PLA2G4A, TGFB1, TGFB2, TNFRSF1B, IRAK1. 

Oestrogen biosynthesis: [-log(p-value) = 2.20]; CYP1A1, AKR1C4, HSD17B14. Androgen biosynthesis: [-log(p-value) = 2.10]; AKR1C4, 

HSD17B14. HMGB1 signaling: [-log(p-value) = 2.02];  TGFB1, DIRAS3, TGFB2, OSM, TNFRSF1B. 
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Fig 3 Pie charts depicting A: molecular and B: physiological functions enriched with 

differentially expressed genes in adipose tissue of pigs divergent in feed efficiency (FE) when 

compared against all genes expressed in the adipose tissue. *Up- and down-regulated genes 

in high-FE. 

A 

B 
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Fig 4 Gene network (#2) containing functions related to ‘connective tissue development & 

function’, ‘connective tissue disorders’ and ‘organismal injury & abnormalities’. Genes are 

denoted as nodes and the biological relationship between two nodes is denoted as an 

edge/line. Node color represents up- (red) and down- (green) regulated genes in high-FE pigs. 
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Supplementary files 

Table S1 (PDF 259 KB) Differentially expressed transcripts (n = 209) at a P < 0.01 in        

FE-divergent pigs.  

Table S2 (PDF 29 KB) Molecular and cellular functions significantly enriched with 

differentially expressed genes including a list of sub-functions contained within each 

category.  

Table S3 (PDF 105 KB) Physiological system development and function categories 

significantly enriched with differentially expressed genes including a list of sub-categories 

contained within each function.   

Fig S1 (PDF 131 KB) Volcano plot representing log2 fold changes and –log10(p-values) of 

genes expressed in adipose tissue from high-FE pigs.  
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Abstract 

Liver is a metabolically complex organ that influences nutrient partitioning and potentially 

modulates the efficiency of converting energy acquired from macronutrients ingestion into a 

muscle and/or adipose tissue (referred to as feed efficiency, FE). The objective of this study 

was to sequence the hepatic tissue transcriptome of closely related but differently feed 

efficient pigs (n = 16) and identify relevant biological processes that underpin the differences 

in liver phenotype between FE groups. Liver weight did not significantly differ between the 

FE groups, however blood parameters showed that total protein, glucose, cholesterol and 

percentage of lymphocytes were significantly greater in high-FE pigs. Ontology analysis 

revealed carbohydrate, lipid and protein metabolism to be significantly enriched with 

differentially expressed genes. In particular, high-FE pigs exhibited gene expression patterns 

suggesting improved absorption of carbohydrates and cholesterol as well as enhanced reverse 

cholesterol transport. Furthermore, the inferred decrease in bile acid synthesis in high-FE pigs 

may contribute to the observed greater levels of serum glucose, which can be then delivered 

to cells and utilized for growth and maintenance. Gene ontology analysis also suggested that 

livers of more efficient pigs may be characterized by higher protein turnover and increased 

epithelial cell differentiation, whereby an enhanced quantity of invariant natural killer T-cells 
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and viability of natural killer cells could induce a quicker and more effective hepatic response 

to inflammatory stimuli. Our findings suggest that this prompt hepatic response to 

inflammation in high-FE group may contribute to the more efficient utilization of nutrients 

for growth in these animals. 

 

Key Words – FE, RFI, residual feed intake, gene expression, transcriptomics 

 

Introduction 

Liver is a central organ for systemic metabolism (Rui 2014; Shimizu et al., 2015) and plays 

an important role in modulating the efficiency of converting energy acquired from 

macronutrients into muscle and/or adipose tissue affecting feed efficiency (FE). Energy from 

ingested macronutrients can be stored by the liver in the form of glycogen, which during food 

deprivation is broken down into glucose and delivered to the bloodstream (Sherwin 1980; 

Zhang et al., 2014). Liver can also convert energy from a dietary source to triacylglycerol and 

export it by very low density lipoproteins (VLDL) either to muscle for use there or to adipose 

tissue for storage (Gruffat et al., 1996). Moreover liver is a key organ for synthesis of 

cholesterol, a vital constituent of cell membrane, and lipoproteins that function as cholesterol 

transporting particles (Charlton-Menys et al., 2008). Low density lipoproteins (LDL) deliver 

cholesterol to peripheral organs, whilst high density lipoproteins (HDL) transport excess 

cholesterol from these tissues back to the liver (Feingold et al., 2000), which is then utilized 

e.g. for synthesis of bile acids that enable intestinal absorption of dietary fats (Boyer 2013).  

 

Being continually subjected to antigens entering from the gut via blood supply, liver also 

exhibits immunological properties (Gao 2016; Peng et al., 2016). The lymphocyte population 

of the liver is primarily represented by macrophages, natural killer and natural killer T cells 

that are involved in innate immune defense and regulation of liver regeneration (Gao 2016; 

Racanelli et al., 2006). Fueling immune response is an energetically expensive process 

resulting in less nutrients available for growth (Patience et al., 2015). This alteration in 

prioritizing nutrients towards stimulating immune response would be suspected to negatively 

impact animal’s feed efficiency. Nevertheless, it has been postulated that high-FE animals 

have a more efficient immune response to fight off inflammation and therefore more energy 

available for growth and muscle deposition (Paradis et al., 2015). 
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Transcriptomic approach is a relevant tool in developing a deeper understanding of the 

physiological processes in liver which may be related to feed efficiency. To date only a few 

studies have analyzed the transcriptome of liver from FE-divergent pigs wherein shifts in 

biological processes that were observed to be differentially regulated in association with FE 

included cell proliferation, vitamin A metabolism, protein synthesis and catabolism, lipid and 

carbohydrate metabolism, reverse cholesterol transport, integrin signaling, as well as 

oxidative stress, inflammation and immune responses (Gondret et al., 2017; Ramayo-Caldas 

et al., 2018; Reyer et al., 2017; Zhao et al., 2016). Although these studies have offered 

insights on the regulation of feed efficiency via liver physiology, the biological processes 

governing the differences in FE are not fully elucidated and further research is needed. Hence 

the purpose of the present study was to characterize phenotypes relevant to liver physiology 

and to perform RNA sequencing of liver tissue in pigs divergent for FE to gain deeper 

insights into differences in hepatic transcriptome architecture and its relationship to liver 

function in more efficient pigs.    

 

Materials and methods 

Ethics statements 

The care, slaughter and sample collection of the animals fulfilled the national regulations of 

animal research and commercial slaughtering and were approved by the Teagasc Animal 

Ethics Committee for the care and use of animals. 

 

Animals and experimental design  

A total of 138 Maxgro (Hermitage Genetics) x (Landrace x Large White) pigs were used in 

this study. Housing, diets, and selection on FE were as previously described (Horodyska et 

al., in review). According to RFI (a measure of FE defined as the difference between actual 

feed intake and predicted feed requirements) values, pigs were assigned within litter and 

gender as high (H) and low (L) RFI. A total of 40 pigs (20 extremes from LRFI (high-FE) 

group - 10 males and 10 females, and 20 extremes from HRFI (low-FE) group - 10 males and 

10 females) were sampled considering the relatedness of pigs. 
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Phenotypic measurements   

For each animal (n = 40), liver weights were recorded and blood samples were collected in 

vacuette tubes (ROI: Labstock, Dublin, Ireland; AT: Sarstedt, Nürnbrecht, Germany) during 

slaughter. For biochemical analysis, upon allowing the blood to clot at room temperature, the 

samples were centrifuged at 1,500 × g for 10 min and the serum was collected and stored at -

80 °C until analyzed. Creatinine, creatine kinase, total protein, blood urea nitrogen, 

triglycerides, glucose and cholesterol were analyzed with a calibrated ABS Pentra 400 

clinical chemistry analyzer (Horiba, ABX, North Hampton, UK). In order to determine 

analyzer accuracy, every fifth sample was run in duplicate. For hematological analysis, blood 

was treated with EDTA to prevent clotting. It was then subjected to analysis, within 4 hours 

of sample collection, whereby white blood cells, lymphocytes, monocytes, granulocytes, red 

blood cells, red blood cell distribution width, hemoglobin, hematocrit, mean corpuscular 

volume, mean corpuscular hemoglobin, platelets and mean platelet volume were measured 

with a Beckman Coulter Ac T Diff analyzer (Beckman Coulter Ltd., High Wycombe, UK). 

The PROC MIXED procedure in the SAS was used to evaluate associations between FE and 

liver weight as well as biochemical and hematological parameters in the Maxgro x (Landrace 

x Large White) pigs (n = 40). The model included RFI group as a fixed effect, slaughter day 

as a random effect, and the absolute values of RFI as a weight statement. Additionally for 

liver weight, final live body weight was incorporated in the model as a covariate. Moreover, 

correlations between RFI and hematological and biochemical parameters were determined 

using the PROC CORR procedure in the SAS system (version 9.4; SAS Inst. Inc., Cary, NC, 

USA). 

  

RNA sequencing of liver samples, data processing and ontology analysis 

Samples of the right liver lobe (Lobus Spigelii) tissue were collected and snap frozen in liquid 

nitrogen within 10 minutes post-mortem followed by storage at -80°C until RNA isolation. 

Of these 40 liver tissues from RFI-divergent pigs, 16 samples from four sets of full siblings 

were selected and each set consisted of 2 males - 1 LRFI (high-FE) and 1 HRFI (low-FE) and 

2 females 1 LRFI (high-FE) and 1 HRFI (low-FE) so that 8 LRFI (high-FE) pigs - 4 males 

and 4 females and 8 HRFI pigs (low-FE) - 4 males and 4 females were analyzed. Total RNA 

of these liver samples was isolated with Tri-Reagent (Sigma-Alrich, Taufkirchen, Germany), 

and subjected to DNase treatment and a column-based purification (Nucleospin RNA II kit, 
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Macherey-Nagel, Düren, Germany). Total RNA was used as input for the library preparation 

according to the TruSeq Stranded mRNA protocol (Illumina, San Diego, CA, USA). 

Subsequently, sequencing was performed on an Illumina HiSeq2500 generating paired-end 

reads. Reads were mapped to the reference (Ensembl release 84) using TopHat (2.1.0) (Kim 

et al., 2013) and read counts were assigned to the gene features employing HTSeq 0.6.1 

(Anders et al., 2015). The assessment of the differentially expressed genes included RFI 

groups and slaughter dates as fixed effects and was performed using the Wald test 

implemented in DESeq2 (3.4.0, www.R-project.org). To integrate gene expression data, the 

list of DE genes (P < 0.01) and corresponding fold changes were passed to Ingenuity 

Pathway Analysis (IPA; Ingenuity® Systems, www.ingenuity.com) and  significantly 

enriched bio-functions and canonical pathways (P < 0.01) were extracted. They were 

considered significantly activated and inhibited at an absolute z-score greater than 2. In 

addition, potential important interaction networks enriched with DE genes were generated 

using the Ingenuity® Knowledge Base.  

 

Verification of RNA-seq through quantitative real-time PCR (qPCR) 

Following cDNA synthesis from 1 µg of total RNA and in presence of random primers 

(Promega, Mannheim, Germany), oligo (dT) primer and Superscript
® 

III reverse transcriptase 

(Invitrogen Corp., San Diego, CA, USA), qPCR were carried out on a LightCycler 96 system 

(Roche Mannheim, Germany). Gene-specific primers (Table 1) were designed using the 

Primer-BLAST software (https://www.ncbi.nlm.nih.gov/tools/primer-blast) and the BLAST 

search tool database (http://www.ncbi.nlm.nih.gov/BLAST). PCR reactions were carried out in 

a final volume of 12 µl consisting of 2 μl cDNA, 6 μl SYBR Green I Master (Roche), 0.6 μl 

(10 μM) of each forward and reverse primer, and 2.8 μl qPCR grade water (Roche). After an 

initial denaturation at 95 °C for 5 min, 45 cycles of amplification followed (95 °C for 10 sec, 

60 °C for 15 sec and 72 °C for 25 sec). Melting curve analysis was performed at the end of the 

amplification to verify the specificity of all amplification reactions. RPL32 expression values 

were used to normalize qPCR results. Subsequently, qPCR data was analyzed in a mixed model 

including RFI group as a fixed effect and slaughter date as a random effect (lme4; R). The 

correlation between RNA-seq and qPCR data were assessed in R considering a significance 

threshold of P < 0.05.   

 

http://www.r-project.org/
http://www.ingenuity.com/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=bookmark&INPUT_SEQUENCE=gi
http://www.ncbi.nlm.nih.gov/BLAST
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Results  

Phenotypic measurements  

Liver weight did not significantly differ between the FE groups (high-FE = 1.62 kg ±0.04 kg 

and low-FE = 1.67 kg ±0.04 kg). The effect of divergence in FE on biochemical and 

hematological parameters are shown in Table 2. Biochemical analysis of serum revealed that 

total protein, glucose and cholesterol were significantly (P < 0.05) higher in high-FE pigs 

compared to low-FE pigs. Creatinine, creatine kinase, blood urea nitrogen and triglycerides 

did not differ significantly between the groups. Hematological analysis exposed significantly 

(P < 0.05) reduced number of white blood cells but increased percentage of lymphocytes in 

high-FE pigs. The number of platelets and mean platelet volume was significantly (P < 0.001 

and P < 0.05, respectively) lower in high-FE pigs. Remaining hematological parameters were 

not significantly altered by FE group. Spearman correlations between phenotypic parameters 

of pigs divergent in FE are depicted in Table 3. A number of significant correlations at a P < 

0.001 were observed between phenotypes. The strongest linear relationships were noted 

between total protein and cholesterol (r = 0.781), glucose and cholesterol (r = 0.737), red 

blood cells and hemoglobin (r = 0.726), creatinine and cholesterol (r = 0.723), creatinine and 

total protein (r = 0.704), total protein and triglycerides (r = 0.629), total protein and glucose (r 

= 0.608), as well as creatinine and glucose (r = 0.601). This was followed by moderate linear 

relationships between triglycerides and creatinine (r = 0.566), cholesterol (r = 0.563) and 

blood urea nitrogen (r = 0.560).     

 

Differentially expressed genes and ontological interpretation  

89.2% of the revealed sequences were successfully mapped to the reference resulting in an 

average of 105.6 million high quality paired-end reads per sample assigned to 14,910 genes 

expressed in liver. A total of 922 genes were differentially expressed with a P < 0.01 (Figure 

1) corresponding to false discovery rate (q) ≤ 0.16, and of these 818 were annotated (Figure 2 

and Table S1). Twenty-one molecular & cellular functions and twenty-one physiological 

system development & function categories were significantly enriched (P < 0.01) amongst 

the DE genes in relation to FE, as inferred from functional enrichment analysis (Figure 3 and 

Table S3). The highest distribution of all DE genes entries were observed in ‘cell death and 

survival’ (12%), ‘cellular development’ (11%), ‘organismal development’ (11%) and 
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‘organismal survival’ (10%). Twenty canonical pathways were significantly associated with 

DE genes in relation to FE at P < 0.01 (Table 4 and Table S4), wherein the highest 

distribution of DE genes were observed in ‘protein ubiquitination pathway’ (8%) and ‘role of 

NFAT in regulation of the immune response’ (8%), followed by ‘EIF2 signaling’ (7%), ‘ILK 

signaling’(7%), ‘B cell receptor signaling’(7%), ‘aldosterone signaling in epithelial cells’ 

(7%) and ‘gap junction signaling’ (7%). Twenty-five networks were obtained upon 

integration of all DE genes. The most significant network (network 1) contained functions 

related to gastrointestinal and hepatic system disease and liver cirrhosis. Carbohydrate and 

lipid metabolism, and small molecule biochemistry were represented by 25 DE molecules in 

network 12 (Figure 4). 

 

Verification of RNA-seq results 

Three transcripts, KIT (KIT proto-oncogene receptor tyrosine kinase), PON3 (paraoxonase 3) 

and SAA3 (serum amyloid A3), selected based on their abundance and functionality related to 

feed efficiency were amplified through qPCR. Significant differences in the expression levels 

of all three measured transcripts between the FE groups were confirmed. Spearman 

correlations attained by comparing gene expression levels measured using RNA-seq and 

qPCR, were found to be significant for KIT (r = 0.604, P < 0.05), PON3 (r = 0.968, P < 

0.001), and SAA3 (r = 0.946, P < 0.001)  (Figure 5).   

 

Discussion 

In this study we investigated the hepatic transcriptome of pigs divergent in FE and identified 

a number of biological functions and pathways affiliated with lipid, protein and carbohydrate 

metabolism as well as hepatic growth and immune response.  These differences help explain 

the physiological differences associated with divergence in FE and the recorded biochemical 

and hematological parameters. 

 

Macronutrients metabolism  

Paraoxonase 3 (PON3) was the most up-regulated (fold change = 10.1) gene in high-FE pigs. 

PON3 codes for an enzyme that associates with HDL (Getz et al., 2004) and prevents 

oxidation of LDL (Reddy et al., 2001) which otherwise would result in endothelial 
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dysfunction (Leiva et al., 2015). Increased adipose deposition observed in PON3 knockout 

mice (Shih et al., 2015) is consistent with a potential role of PON3 in promoting lean growth 

and this is in keeping with decreased intramuscular fat content in the high-FE pigs found in 

our previous report (Horodyska et al., in review). Enrichment of DE genes in lipid 

metabolism networks was further portrayed by molecule connectivity analysis (Figure 4). 

Suppression of ATP binding cassette subfamily A member 1 (ABCA1) in mouse liver 

increased absorption of dietary cholesterol (Oram et al., 2001). In the present study, the 

network illustrates ABCA1 being down-regulated (fold change = -1.37) in high-FE pigs. 

Other members of the ABCA family, (ABCA5 and ABCA8) were over-expressed (fold change 

= 1.67 and 1.52, respectively) in high-FE pigs. In mice, abundance of ABCA5 expression was 

previously associated with increased macrophage cholesterol efflux to HDL (Ye et al., 2010), 

whilst hepatic abundance of ABCA8 led to significantly increased plasma HDL level and 

reverse cholesterol transport (Trigueros-Motos et al., 2017). Indeed, serum analysis pointed 

towards enhanced cholesterol level in high-FE pigs (Table 1). In addition, a positive 

correlation between serum cholesterol and total protein, which mainly constitutes of albumin, 

was observed. Interestingly, serum albumin mediates cholesterol efflux and may be a 

significant player in reverse cholesterol transport (Ha et al., 2003). Moreover, a previous 

study has also shown reverse cholesterol transport to be over-expressed in the livers of high-

FE pigs (Gondret et al., 2017).        

 

‘Fibroblast growth factor (FGF) signaling’, which is involved in bile acid metabolism (Ornitz 

et al., 2015), was predicted to be activated in high-FE livers (z-score = 3.00). In this pathway, 

fibroblast growth factor receptor substrate 2 (FRS2) was up-regulated (fold change = 1.31) in 

high-FE pigs. FRS2α deficiency led to increased bile acid synthesis in mouse liver (Wang et 

al., 2014) therefore it seems probable that high-FE pigs experience decreased bile acid 

production. In support of this, a previous study showed a lower abundance of genes involved 

in bile acid metabolism, nuclear receptor subfamily 1 group H member 4 (NR1H4) and 

squalene epoxidase (SQLE), in the liver of more feed efficient pigs (Reyer et al., 2017). 

Besides its well established functions, bile acids are also involved in lowering glucose levels 

(Staels et al., 2009) and hindering gluconeogenesis (Chai et al., 2015). Differential expression 

of cholesterol-related genes in the livers of pigs divergent for FE points towards increased 

absorption of dietary cholesterol and reverse cholesterol transport in high-FE pigs. Therefore, 

the inferred reduction in bile acid synthesis may be a measure to prevent drops in serum 
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glucose level rather than explained by HDL cholesterol shortage. This presumption is in 

accordance with the higher glucose and cholesterol concentrations found in the serum of 

high-FE pigs. Gene ontology analysis also revealed ‘uptake & conversion of carbohydrates’, 

enclosed within a broader ‘carbohydrate metabolism’ category, significantly enriched with 

DE genes and ‘aldosterone signaling in epithelial cells’ significantly activated (z-score = 

2.12) in high-FE pigs.  Alongside its role in the regulation of sodium absorption (Briet et al., 

2010), Aldosterone was shown to be involved in glucose transport through molecular 

regulation of SGLT1 (sodium-dependent glucose co-transporter) and GLUT2 (glucose 

transporter) in the chicken intestine (Garriga et al., 2001).  

 

The increased serum total protein concentration observed in high-FE pigs supports the 

suggested activation of ‘protein degradation and trafficking’ sub-categories such as ‘protein 

catabolism and secretion’ (z-score = 2.16 and 1.00, respectively) in the high-FE livers 

inferred from the functional enrichment analysis. Moreover, the greater serum protein 

concentration could have stimulated endogenous glucose synthesis (Promintzer et al., 2006), 

which is consistent with the positive correlation between total protein and glucose 

concentrations in the serum of FE-divergent pigs. Over-expression of genes involved in 

protein synthesis and degradation have been reported in livers of high-FE pigs (Gondret et al., 

2017). Lobley (2003) postulated that protein synthesis is much more energetically expensive 

in comparison to protein degradation. In our previous report (Horodyska et al., 2018), we 

have suggested that high-FE muscle exhibits increased protein turnover and potentially reuses 

existing proteins, while directing the conserved energy towards more efficient growth. This 

phenomenon could also be occurring in the liver of high-FE pigs. 

 

Hepatic growth 

‘Hepatocyte growth factor (HGF) signaling’, ‘epidermal growth factor (EGF) signaling’ and 

‘FGF signaling’ were significantly activated pathways (z-score = 2.33, 2.12 and 3.00, 

respectively) in high-FE pigs. Previous studies revealed a role for growth factors, e.g. HGF, 

EGF and FGF, in stimulating proliferation and differentiation of hepatic oval cells (Hu et al., 

1993; Jones et al., 2009; Sánchez et al., 2010) and also in liver regeneration (Jiang et al., 

1993; Steiling et al., 2003; Zimmers et al., 2017). Over-expression of growth factor receptor 

bound protein 2-associated protein 1 (GAB1) was a common feature shared between the three 
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pathways. A study in GAB1 knockout mice reported defects in liver regeneration (Bard-

Chapeau et al., 2006) and also reduced embryonic liver size (Sachs et al., 2000). AKT 

serine/threonine kinase 3 (AKT3) was another over-expressed gene enriched in these 

pathways. Akt3 is a member of AKT kinase family playing a role in modulation of cell 

survival and proliferation (Xu et al., 2012). Accordingly, ‘differentiation of epithelial cells’, 

enclosed within a ‘cellular development’ function, was activated (z-score = 2.13). Moreover a 

‘cell cycle’ sub-category, ‘senescence of cells’, which is characterized by cell cycle arrest 

leading to loss of its ability to divide (Hoare et al., 2010), was suppressed (z-score = -2.90) in 

high-FE pigs. In the present study liver weights did not significantly differ between the FE 

groups, although a previous report found significantly heavier liver weights in high-FE pigs 

(Reyer et al., 2017). Cyclin T2 (CCNT2), coding for a protein regulating cell differentiation 

through activation of cyclin-dependent kinase 9 (CDK9) (Garriga et al., 2003; Simone et al., 

2002), was the most down-regulated (fold change = -5.40) gene in high-FE pigs. CDK9 also 

functions in the inflammatory response (Han et al., 2014). Here, CDK9 was down-regulated 

(fold change = -1.22) in high-FE pigs at a P < 0.05. It is possible that suppression of CCNT2 

could influence CDK9 function in differentiation of monocytes (De Falco et al., 2005) rather 

than hepatic epithelial cells.  

 

Immune response 

The ‘role of nuclear factor of activated T cells (NFAT) in regulation of the immune response’ 

was significantly activated (z-score = 2.14) in high-FE pigs. NFAT proteins play a role in the 

first line of defense through regulating innate leukocyte response to inflammatory stimuli 

(Zanoni et al., 2012). Myocyte enhancer factor 2C (MEF2C), which orchestrates immune cell 

activation and differentiation (Schuler et al., 2008), was enriched in this pathway and up-

regulated in high-FE animals. Additionally, MEF2C belongs to a family of  transcriptional 

factors that acts in conjunction with NFAT (Mancini et al., 2009). ‘Quantity of invariant 

natural killer T-cells’ and ‘cell viability of natural killer cells’, falling under the broader 

‘hematological system development and function’ theme, were also significantly activated (z-

score = 2.10 and 2.20, respectively) in high-FE pigs. In these sub-categories, ETS proto-

oncogene 1 transcription factor (ETS1) and KIT proto-oncogene receptor tyrosine kinase 

(KIT) were up-regulated. KIT is crucial for survival and maturation of natural killer cells 

(Colucci et al., 2000), whereas ETS1 plays an essential role in the development and function 
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of natural killer T cells, a group of cells exhibiting properties of both natural killer cells and T 

cells (Choi et al., 2011). Consistent with the gene ontology, hematological analysis found an 

increased percentage of serum lymphocytes in the high-FE group. It is widely considered that 

during immune response dietary nutrients are shifted away from growth, which may lower 

animal’s feed efficiency, towards the immune-related processes (Patience et al., 2015). 

Nevertheless, a prompt response to hepatic pro-inflammatory stimuli may result in less 

energy consumed for combating systemic inflammation and hence more efficient utilization 

of nutrients for growth and protein accretion (Paradis et al., 2015).Several studies have 

reported a diverse hepatic inflammatory response in high- versus low-FE pigs (Gondret et al., 

2017) and cattle (Alexandre et al., 2015; Paradis et al., 2015), thereby supporting this 

connection.  

  

Conclusions 

Hepatic nutrient partitioning has a direct influence on the efficiency of energy utilization and 

potentially plays an important role in FE. In this study, carbohydrate, lipid and protein 

metabolism were significantly over-represented within the DE genes, confirming the hepatic 

influence on divergent energy utilization in high- versus low-FE pigs. In particular, high-FE 

pigs exhibited gene expression patterns suggesting improved hepatic absorption of 

carbohydrates and cholesterol as well as enhanced reverse cholesterol transport. Furthermore, 

the inferred decrease in bile acid synthesis in high-FE pigs may contribute to the increased 

concentrations of serum glucose observed. This increased glucose can be delivered to cells 

and utilized for increased growth. Gene ontology analysis also suggests that the liver of more 

feed efficient pigs may be characterized by higher protein turnover and increased epithelial 

cell differentiation, whilst enhanced quantity of invariant natural killer T-cells and viability of 

natural killer cells could induce a faster and more effective hepatic response to inflammatory 

stimuli.  

 

Declarations  

List of abbreviations 

FE: feed efficiency; RFI: residual feed intake; LRFI: low RFI; HRFI: high RFI; HDL: high 

density lipoprotein; LDL: low density lipoprotein. 



Annex A 

 

185 
 

Acknowledgements 

The ECO-FCE project was funded by the European Union Seventh Framework Programme 

(FP7 2007/2013) under grant agreement No. 311794. 

 

Conflict of interest statement 

The authors declare that the research was conducted in the absence of any commercial or 

financial relationships that could be construed as a potential conflict of interest.  

 

Author’s contributions 

JH collected samples, extracted RNA, prepared libraries, validated RNA-seq via qPCR, 

carried out data analysis and wrote the manuscript; RMH conceived the experiment and 

contributed to experimental design, collected samples and edited the manuscript; HR 

participated in statistical analysis and edited the manuscript; NT assisted in library 

preparation, performed the RNA-seq and data analysis, and edited the manuscript; PGL 

provided the animals screened on RFI, participated in data collection and analysis, and edited 

the manuscript; UMM determined serum and blood parameters, and edited the manuscript; 

KW contributed to experimental design, established lab protocols and edited the manuscript.  

 

Availability of data 

RNA-seq data generated during the current study are available on ArrayExpress at EMBL-

EBI (www.ebi.ac.uk/arrayexpress) (accession number: E-MTAB-6256).  

 

References 

Alexandre, P. A., Kogelman, L. J. A., Santana, M. H. A., Passarelli, D., Pulz, L. H., 

Fantinato-Neto, P., Silva, P. L., Leme, P. R., Strefezzi, R. F., Coutinho, L. L., Ferraz, 

J. B. S., Eler, J. P., Kadarmideen, H. N., Fukumasu, H. (2015). Liver transcriptomic 

networks reveal main biological processes associated with feed efficiency in beef 

cattle. BMC Genomics, 16(1), 1073. 

Anders, S., Pyl, P. T., Huber, W. (2015). HTSeq—a Python framework to work with high-

throughput sequencing data. Bioinformatics, 31(2), 166-169. 

Bard-Chapeau, E. A., Yuan, J., Droin, N., Long, S. N., Zhang, E. E., Nguyen, T. V., Feng, G. 

S. (2006). Concerted functions of Gab1 and Shp2 in liver regeneration and 

hepatoprotection. Mol Cell Biol, 26(12), 4664-4674. 



Annex A 

 

186 
 

Boyer, J. L. (2013). Bile Formation and Secretion. Compr Physiol, 3(3), 1035-1078. 

Briet, M., Schiffrin, E. L. (2010). Aldosterone: effects on the kidney and cardiovascular 

system. Nat Rev Nephrol, 6(5), 261-273. 

Chai, J., Zou, L., Li, X., Han, D., Wang, S., Hu, S., Guan, J. (2015). Mechanism of bile acid-

regulated glucose and lipid metabolism in duodenal-jejunal bypass. Int J Clin Exp 

Pathol, 8(12), 15778-15785.  

Charlton-Menys, V., Durrington, P. N. (2008). Human cholesterol metabolism and 

therapeutic molecules. Exp Physiol, 93(1), 27-42. 

Choi, H. J., Geng, Y., Cho, H., Li, S., Giri, P. K., Felio, K., Wang, C. R. (2011). Differential 

requirements for the Ets transcription factor Elf-1 in the development of NKT cells 

and NK cells. Blood, 117(6), 1880-1887. 

Colucci, F., Di Santo, J. P. (2000). The receptor tyrosine kinase c-kit provides a critical signal 

for survival, expansion, and maturation of mouse natural killer cells. Blood, 95(3), 

984-991. 

De Falco, G., Bellan, C., D'Amuri, A., Angeloni, G., Leucci, E., Giordano, A., Leoncini, L. 

(2005). Cdk9 regulates neural differentiation and its expression correlates with the 

differentiation grade of neuroblastoma and PNET tumors. Cancer Biol Ther, 4(3), 

277-281. 

Easton, R. M., Cho, H., Roovers, K., Shineman, D. W., Mizrahi, M., Forman, M. S., Lee, V. 

M. Y., Szabolcs, M., de Jong, R., Oltersdorf, T., Ludwig, T., Efstratiadis, A., 

Birnbaum, M. J. (2005). Role for Akt3/Protein kinase B gamma in attainment of 

normal brain size. Mol Cell Biol, 25(5), 1869-1878. 

Feingold, K. R., Grunfeld, C. (2000). Introduction to Lipids and Lipoproteins. In L. J. De 

Groot, G. Chrousos, K. Dungan, K. R. Feingold, A. Grossman, J. M. Hershman, C. 

Koch, M. Korbonits, R. McLachlan, M. New, J. Purnell, R. Rebar, F. Singer & A. 

Vinik (Eds.), Endotext). South Dartmouth (MA): MDText.com, Inc. 

Gao, B. (2016). Basic liver immunology. Cell Mol Immunol, 13(3), 265-266. 

Garriga, C., Planas, J. M., Moretó, M. (2001). Aldosterone mediates the changes in hexose 

transport induced by low sodium intake in chicken distal intestine. J Physiol, 535     

(Pt 1), 197-205. 

Garriga, J., Bhattacharya, S., Calbo, J., Marshall, R. M., Truongcao, M., Haines, D. S., 

Grana, X. (2003). CDK9 is constitutively expressed throughout the cell cycle, and its 

steady-state expression is independent of SKP2. Mol Cell Biol, 23(15), 5165-5173. 

Getz, G. S., Reardon, C. A. (2004). Paraoxonase, a cardioprotective enzyme: continuing 

issues. Curr Opin Lipidol, 15(3), 261-267. 

Gondret, F., Vincent, A., Houée-Bigot, M., Siegel, A., Lagarrigue, S., Causeur, D., Gilbert, 

H., Louveau, I. (2017). A transcriptome multi-tissue analysis identifies biological 

pathways and genes associated with variations in feed efficiency of growing pigs. 

BMC Genomics, 18, 244. 

Gruffat, D., Durand, D., Graulet, B., Bauchart, D. (1996). Regulation of VLDL synthesis and 

secretion in the liver. Reprod Nutr Dev, 36(4), 375-389. 

Ha, J. S., Ha, C. E., Chao, J. T., Petersen, C. E., Theriault, A., Bhagavan, N. V. (2003). 

Human serum albumin and its structural variants mediate cholesterol efflux from 

cultured endothelial cells. Biochim. Biophys. Acta, 1640(2), 119-128. 

Han, Y., Zhan, Y., Hou, G., Li, L. I. (2014). Cyclin-dependent kinase 9 may as a novel target 

in downregulating the atherosclerosis inflammation (Review). Biomed Rep, 2(6), 775-

779. 

Hoare, M., Das, T., Alexander, G. (2010). Ageing, telomeres, senescence, and liver injury.     

J Hepatol, 53(5), 950-961. 



Annex A 

 

187 
 

Horodyska, J., Oster, M., Reyer, H., Mullen, A. M., Lawlor, P. G., Wimmers, K., Hamill, R. 

M. (2018). Analysis of meat quality traits and gene expression profiling  of pigs 

divergent in residual feed intake. Meat Sci, 137, 265–274. 

Horodyska, J., Wimmers, K., Reyer, H., Trakooljul, N., Mullen, A. M., Lawlor, P. G., 

Hamill, R. M. (in review). RNA-seq of muscle from pigs divergent in feed efficiency 

and product quality identifies differences in immune response, growth, and 

macronutrient and connective tissue metabolism  

Hu, Z., Evarts, R. P., Fujio, K., Marsden, E. R., Thorgeirsson, S. S. (1993). Expression of 

hepatocyte growth factor and c-met genes during hepatic differentiation and liver 

development in the rat. Am J Pathol, 142(6), 1823-1830. 

Jiang, W. G., Hallett, M. B., Puntis, M. C. A. (1993). Hepatocyte growth factor/scatter factor, 

liver-regeneration and cancer metastasis. Br J Surg, 80(11), 1368-1373. 

Jones, C. N., Tuleuova, N., Lee, J. Y., Ramanculov, E., Reddi, A. H., Zern, M. A., Revzin, A. 

(2009). Cultivating liver cells on printed arrays of hepatocyte growth factor. 

Biomaterials, 30(22), 3733-3741. 

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., Salzberg, S. L. (2013). TopHat2: 

accurate alignment of transcriptomes in the presence of insertions, deletions and gene 

fusions. Genome Biol, 14(4), R36. 

Leiva, E., Wehinger, S., Guzmán, L., Orrego, R. (2015). Role of Oxidized LDL in 

Atherosclerosis. In S. A. Kumar (Ed.), Hypercholesterolemia,  (pp. Ch. 03). Rijeka: 

InTech. 

Lobley, G. E. (2003). Protein turnover—what does it mean for animal production? Canadian 

J Anim Sci, 83(3), 327-340. 

Mancini, M., Toker, A. (2009). NFAT Proteins: Emerging Roles in Cancer Progression.     

Nat Rev Cancer, 9(11), 810-820. 

Olsen, H. G., Skovgaard, K., Nielsen, O. L., Leifsson, P. S., Jensen, H. E., Iburg, T., 

Heegaard, P. M. (2013). Organization and biology of the porcine serum amyloid A 

(SAA) gene cluster: isoform specific responses to bacterial infection. PLoS One, 

8(10), e76695. 

Oram, J. F., Lawn, R. M. (2001). ABCA1. The gatekeeper for eliminating excess tissue 

cholesterol. J Lipid Res, 42(8), 1173-1179. 

Ornitz, D. M., Itoh, N. (2015). The Fibroblast Growth Factor signaling pathway. Wiley 

Interdiscip Rev Dev Biol, 4(3), 215-266. 

Paradis, F., Yue, S., Grant, J. R., Stothard, P., Basarab, J. A., Fitzsimmons, C. (2015). 

Transcriptomic analysis by RNA sequencing reveals that hepatic interferon-induced 

genes may be associated with feed efficiency in beef heifers. J Anim Sci, 93(7), 3331-

3341. 

Patience, J. F., Rossoni-Serão, M. C., Gutiérrez, N. A. (2015). A review of feed efficiency in 

swine: biology and application. J Anim Sci Biotechnol, 6(1), 33. 

Peng, H., Wisse, E., Tian, Z. (2016). Liver natural killer cells: subsets and roles in liver 

immunity. Cell Mol Immunol, 13(3), 328-336. 

Promintzer, M., Krebs, M. (2006). Effects of dietary protein on glucose homeostasis. Curr 

Opin Clin Nutr Metab Care, 9(4), 463-468. 

Racanelli, V., Rehermann, B. (2006). The liver as an immunological organ. Hepatology, 43(2 

Suppl 1), S54-62. 

Ramayo-Caldas, Y., Ballester, M., Sánchez, J. P., González-Rodríguez, O., Revilla, M., 

Reyer, H., Wimmers, K., Torrallardona, D., Quintanilla, R. (2018). Integrative 

approach using liver and duodenum RNA-Seq data identifies candidate genes and 

pathways associated with feed efficiency in pigs. Sci Rep, 8(1), 558. 



Annex A 

 

188 
 

Reddy, S. T., Wadleigh, D. J., Grijalva, V., Ng, C., Hama, S., Gangopadhyay, A., Shih, D. 

M., Lusis, A. J., Navab, M., Fogelman, A. M. (2001). Human paraoxonase-3 is an 

HDL-associated enzyme with biological activity similar to paraoxonase-1 protein but 

is not regulated by oxidized lipids. Arterioscler Thromb Vasc Biol, 21(4), 542-547. 

Reyer, H., Oster, M., Magowan, E., Dannenberger, D., Ponsuksili, S., Wimmers, K. (2017). 

Strategies towards Improved Feed Efficiency in Pigs Comprise Molecular Shifts in 

Hepatic Lipid and Carbohydrate Metabolism. Int J Mol Sci, 18(8). 

Rui, L. (2014). Energy Metabolism in the Liver. Compr Physiol, 4(1), 177-197. 

Sachs, M., Brohmann, H., Zechner, D., Müller, T., Hülsken, J., Walther, I., Schaeper, U., 

Birchmeier, C., Birchmeier, W. (2000). Essential Role of Gab1 for Signaling by the 

C-Met Receptor in Vivo. J Cell Biol, 150(6), 1375-1384. 

Sánchez, A., Fabregat, I. (2010). Growth factor- and cytokine-driven pathways governing 

liver stemness and differentiation. World J Gastroenterol, 16(41), 5148-5161. 

Schuler, A., Schwieger, M., Engelmann, A., Weber, K., Horn, S., Muller, U., Arnold, M. A., 

Olson, E. N., Stocking, C. (2008). The MADS transcription factor Mef2c is a pivotal 

modulator of myeloid cell fate. Blood, 111(9), 4532-4541. 

Sherwin, R. S. (1980). Role of Liver in Glucose Homeostasis. Diabetes Care, 3(2), 261-265. 

Shih, D. M., Yu, J. M., Vergnes, L., Dali-Youcef, N., Champion, M. D., Devarajan, A., 

Zhang, P., Castellani, L. W., Brindley, D. N., Jamey, C., Auwerx, J., Reddy, S. T., 

Ford, D. A., Reue, K., Lusis, A. J. (2015). PON3 knockout mice are susceptible to 

obesity, gallstone formation, and atherosclerosis. FASEB J, 29(4), 1185-1197. 

Shimizu, N., Maruyama, T., Yoshikawa, N., Matsumiya, R., Ma, Y., Ito, N., Tasaka, Y., 

Kuribara-Souta, A., Miyata, K., Oike, Y., Berger, S., Schutz, G., Takeda, S., Tanaka, 

H. (2015). A muscle-liver-fat signalling axis is essential for central control of adaptive 

adipose remodelling. Nat Commun, 6, 6693. 

Simone, C., Stiegler, P., Bagella, L., Pucci, B., Bellan, C., De Falco, G., De Luca, A., Guanti, 

G., Puri, P. L., Giordano, A. (2002). Activation of MyoD-dependent transcription by 

cdk9/cyclin T2. Oncogene, 21(26), 4137-4148. 

Staels, B., Fonseca, V. A. (2009). Bile Acids and Metabolic Regulation: Mechanisms and 

clinical responses to bile acid sequestration. Diabetes Care, 32(Suppl 2), S237-S245. 

Steiling, H., Wustefeld, T., Bugnon, P., Brauchle, M., Fassler, R., Teupser, D., Thiery, J., 

Gordon, J. I., Trautwein, C., Werner, S. (2003). Fibroblast growth factor receptor 

signalling is crucial for liver homeostasis and regeneration. Oncogene, 22(28), 4380-

4388. 

Trigueros-Motos, L., van Capelleveen, J. C., Torta, F., Castaño, D., Zhang, L.-H., Chai, C., 

Kang, M., Dimova, L. G., Schimmel, A. W. M., Tietjen, I., Radomski, C., Tan, L. J., 

Hwee, T. C., Narayanaswamy, P., Wu, D., Dorninger, F., Yakala, G. K., Barhdadi, A., 

Angeli, V., Dubé, M.-P., Berger, J., Dallinga-Thie, G. M., Tietge, U. J. F., Wenk, M. 

R., Hayden, M. R., Hovingh, G. K., Singaraja, R. R. (2017). ABCA8 Regulates 

Cholesterol Efflux and High-Density Lipoprotein Cholesterol Levels. Arterioscler 

Thromb Vasc Biol,  37(11):2147-2155. 

Wang, C., Yang, C., Chang, J. Y., You, P., Li, Y., Jin, C., Luo, Y., Li, X., McKeehan, W. L., 

Wang, F. (2014). Hepatocyte FRS2alpha is essential for the endocrine fibroblast 

growth factor to limit the amplitude of bile acid production induced by prandial 

activity. Curr Mol Med, 14(6), 703-711. 

Xu, N., Lao, Y., Zhang, Y., Gillespie, D. A. (2012). Akt: A Double-Edged Sword in Cell 

Proliferation and Genome Stability. J Oncol, 2012, 15. 

Ye, D., Meurs, I., Ohigashi, M., Calpe-Berdiel, L., Habets, K. L., Zhao, Y., Kubo, Y., 

Yamaguchi, A., Van Berkel, T. J., Nishi, T., Van Eck, M. (2010). Macrophage 



Annex A 

 

189 
 

ABCA5 deficiency influences cellular cholesterol efflux and increases susceptibility 

to atherosclerosis in female LDLr knockout mice. Biochem Biophys Res Commun, 

395(3), 387-394. 

Zanoni, I., Granucci, F. (2012). Regulation and dysregulation of innate immunity by NFAT 

signaling downstream of pattern recognition receptors (PRRs). Eur J Immunol, 42(8), 

1924-1931. 

Zhang, Y., Xu, D., Huang, H., Chen, S., Wang, L., Zhu, L., Jiang, X., Ruan, X., Luo, X., Cao, 

P., Liu, W., Pan, Y., Wang, Z., Chen, Y. (2014). Regulation of Glucose Homeostasis 

and Lipid Metabolism by PPP1R3G-mediated Hepatic Glycogenesis. Mol Endocrinol, 

28(1), 116-126. 

Zhao, Y., Hou, Y., Liu, F., Liu, A., Jing, L., Zhao, C., Luan, Y., Miao, Y., Zhao, S., Li, X. 

(2016). Transcriptome Analysis Reveals that Vitamin A Metabolism in the Liver 

Affects Feed Efficiency in Pigs. G3, 6(11), 3615-3624. 

Zimmers, T. A., Jin, X., Zhang, Z., Jiang, Y., Koniaris, L. G. (2017). Epidermal Growth 

Factor Receptor Restoration Rescues the Fatty Liver Regeneration in Mice.              

Am J Physiol Endocrinol Metab, 313(4):E440-E449. 



Annex A 

 

190 
 

Table 1 Forward and reverse primers and amplicon length used for qPCR analysis. 

Gene NCBI accession no. Forward Reverse Product size (bp) 

KIT NM_001044525.1 TTCTCGTGTCCAATGCTGATG TCGGTGCCTGGACAGAAATAC 166 

PON3 NM_001044604.1 CAATGGGATCACAGTCTCATCAG TGCCCAAATATCTCCCGTATC 178 

SAA3* NM_001044552.1 CTCAAGGAAGCTGGTCAAGG GGACATTCTCTCTGGCATCG 178 

RPL32 NM_001001636.1 AGCCCAAGATCGTCAAAAAG TGTTGCTCCCATAACCAATG 165 

 * Olsen et al., (2013). 
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Table 2 Effect of divergence in feed efficiency (FE) on biochemical and hematological 

parameters. 

 

Measurement High-FE
1
 Low-FE

1
 SE P-value 

B
io

ch
em

is
tr

y
 

Creatinine (µmol/L) 117.7 98.27 11.0 0.085 

Creatine kinase (µmol/L) 89.83 87.56 16.8 0.893 

Total protein (g/L) 61.03 48.21 6.26 0.048 

Blood urea nitrogen (mg/dL) 14.56 9.444 3.54 0.157 

Triglycerides (mmol/L) 0.620 0.549 0.07 0.351 

Glucose (mmol/L) 4.892 3.968 0.37 0.016 

Cholesterol (mmol/L)  2.329 1.811 0.25 0.045 

H
em

at
o
lo

g
y

 

White blood cells (x10
3
 cells/µl) 22.66 27.30 1.84 0.016 

Lymphocytes (%) 51.94 42.93 3.43 0.013 

Monocytes (%) 7.226 6.466 1.04 0.469 

Granulocytes (%) 42.06 38.77 5.60 0.561 

Lymphocyte number (x10
3
 cells/µl) 11.51 11.24 1.08 0.809 

Monocyte number (x10
3
 cells/µl) 1.430 1.648 0.24 0.371 

Granulocyte number (x10
3
 cells/µl) 9.990 10.30 1.73 0.859 

Red blood cells (x10
6
 cells/µl) 6.386 6.772 0.35 0.274 

Hemoglobin (g/dL) 11.20 11.74 0.62 0.388 

Hematocrit (%) 0.352 0.353 0.01 0.870 

Mean corpuscular volume (fL) 52.69 52.57 0.70 0.864 

Mean corpuscular hemoglobin (%) 17.37 17.31 0.26 0.809 

Mean corpuscular hemoglobin conc (pg) 32.35 32.52 0.45 0.705 

Red cell distribution width  (fL) 19.24 20.27 0.84 0.229 

Platelets (10
6
 cells/µl) 178.3 272.2 29.9 0.003 

Mean platelet volume (fL) 7.778 8.937 0.54 0.039 

 
1
 Least square means for each parameter. 
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Table 3 Correlations between hematological and biochemical parameters.  

  C CK TP BUN Tg Glu Chol WBC Lc Mc Gc LcN McN GcN RBC Hg Hc MCV MCH MCHC RCDW P 

CK -0.070                       
0.674                       

TP 0.704 -0.084      
 

               
<.001 0.613                      

BUN 0.380 0.058 0.418                     
0.017 0.727 0.008                     

Tg 0.566 0.032 0.629 0.560                    
<.001 0.846 <.001 <.001                    

Glu 0.601 -0.003 0.608 0.363 0.191                   
<.001 0.985 <.001 0.023 0.245             

 

     

Chol 0.723 -0.075 0.781 0.439 0.563 0.737            
 

     
<.001 0.651 <.001 0.005 <.001 <.001                  

WBC -0.083 -0.025 -0.173 -0.365 -0.237 -0.121 -0.048                 
0.614 0.881 0.292 0.023 0.147 0.463 0.774                 

Lc 0.188 -0.085 0.290 0.317 0.110 0.378 0.295 -0.476                
0.253 0.606 0.074 0.050 0.506 0.018 0.068 0.002                

Mc 0.292 0.009 0.440 0.235 0.410 0.173 0.264 -0.539 0.577               
0.071 0.959 0.005 0.150 0.010 0.292 0.105 <.001 <.001               

Gc -0.158 0.033 -0.062 -0.009 -0.061 -0.176 -0.257 0.085 -0.434 -0.421              
0.336 0.842 0.709 0.955 0.714 0.285 0.114 0.605 0.006 0.008              

LcN 0.131 -0.110 0.174 0.087 -0.063 0.377 0.307 0.214 0.690 0.180 -0.362             
0.428 0.503 0.290 0.598 0.703 0.018 0.057 0.192 <.001 0.274 0.024             

McN 0.247 -0.021 0.429 0.101 0.306 0.186 0.295 -0.264 0.476 0.902 -0.525 0.331            
0.129 0.897 0.006 0.542 0.059 0.258 0.068 0.104 0.002 <.001 0.001 0.040            

GcN -0.154 -0.030 -0.014 -0.088 -0.059 -0.174 -0.184 0.323 -0.406 -0.392 0.930 -0.129 -0.388           
0.350 0.856 0.932 0.596 0.722 0.290 0.261 0.045 0.010 0.014 <.001 0.432 0.015           

RBC 0.397 -0.054 0.461 0.079 0.213 0.287 0.466 0.134 0.105 -0.017 0.001 0.289 0.103 0.091          
0.013 0.746 0.003 0.632 0.193 0.077 0.003 0.415 0.527 0.918 0.994 0.075 0.532 0.580          

Hg 0.254 -0.016 0.220 -0.065 0.062 0.199 0.345 0.125 0.028 -0.148 0.011 0.214 -0.101 0.074 0.726         
0.119 0.921 0.177 0.692 0.708 0.225 0.032 0.447 0.863 0.367 0.946 0.191 0.540 0.656 <.001         

Hc 0.355 0.025 0.317 -0.010 0.161 0.274 0.445 0.240 0.015 -0.046 -0.028 0.250 0.014 0.062 0.656 0.742        
0.026 0.882 0.049 0.954 0.326 0.091 0.005 0.141 0.927 0.780 0.866 0.125 0.933 0.707 <.001 <.001        

MCV -0.173 0.201 -0.328 -0.259 -0.346 -0.030 -0.148 0.254 -0.316 -0.310 0.146 -0.137 -0.299 0.151 -0.304 0.140 0.320       
0.293 0.220 0.041 0.111 0.031 0.857 0.369 0.119 0.050 0.055 0.375 0.407 0.065 0.360 0.060 0.397 0.047       

MCH -0.146 0.323 -0.159 -0.229 -0.129 0.047 -0.012 0.220 -0.345 -0.290 0.178 -0.161 -0.250 0.170 -0.208 0.159 0.354 0.852      
0.375 0.045 0.333 0.161 0.434 0.774 0.944 0.179 0.032 0.073 0.279 0.328 0.125 0.301 0.203 0.333 0.027 <.001      

MCHC 0.146 0.163 0.309 -0.100 0.149 0.303 0.336 0.019 -0.147 -0.104 0.060 -0.082 -0.029 0.039 0.135 0.321 0.427 0.288 0.614     
0.376 0.320 0.056 0.546 0.364 0.061 0.037 0.908 0.373 0.529 0.719 0.621 0.862 0.815 0.413 0.046 0.007 0.076 <.001     

RCDW -0.144 -0.066 -0.155 0.101 0.007 -0.282 -0.187 0.267 -0.020 -0.097 -0.123 0.127 -0.025 -0.083 0.164 -0.025 -0.123 -0.525 -0.488 -0.371    
0.383 0.689 0.345 0.541 0.964 0.082 0.253 0.100 0.905 0.555 0.455 0.442 0.882 0.614 0.318 0.882 0.456 0.001 0.002 0.020    

P -0.175 0.080 -0.189 0.106 0.009 -0.067 -0.077 0.193 -0.188 -0.259 -0.117 -0.041 -0.176 -0.086 -0.036 -0.047 -0.041 0.105 0.113 -0.013 0.025   
0.287 0.628 0.249 0.521 0.957 0.687 0.641 0.240 0.253 0.112 0.479 0.803 0.283 0.601 0.827 0.776 0.803 0.524 0.492 0.937 0.878   

MPV -0.131 -0.042 -0.186 -0.210 -0.166 -0.010 0.066 0.375 -0.409 -0.468 0.024 -0.174 -0.461 0.023 0.036 0.304 0.343 0.487 0.418 0.172 -0.060 0.334 

0.425 0.798 0.256 0.200 0.313 0.953 0.688 0.019 0.010 0.003 0.884 0.291 0.003 0.892 0.829 0.060 0.033 0.002 0.008 0.295 0.715 0.038 

Correlation coefficient is presented in the upper row and a P-value is shown in the bottom row. 

Abbreviations: 

C: Creatinine (µmol/L), CK: Creatine kinase (µmol/L), TP: Total protein (g/L), BUN: Blood urea nitrogen (mg/dL), Tg: Triglycerides (mmol/L),           

Glu: Glucose (mmol/L), Chol: Cholesterol (mmol/L), WBC: White blood cells (x 103 cells/µl), Lc: Lymphocytes (%), LcN: Lymphocyte number (x 103 

cells/µl), Mc: Monocytes (%), McN: Monocyte number (x 103 cells/µl), Gc: Granulocytes (%), GcN: Granulocyte number (x 103 cells/µl), RBC: Red 

blood cells (106 cells/µL),  RCDW: Red cell distribution width (fL),  Hg: Hemoglobin (g/dL), Hc: Hematocrit (%),  MCV: Mean corpuscular volume (fL), 

MCH: Mean corpuscular hemoglobin (%), MCHC: Mean corpuscular hemoglobin concentration (pg), P: Platelets (106 cells /µL), MPV: Mean platelet 

volume (fL).  
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Table 4 Most significantly enriched canonical signaling pathways identified in liver samples of feed efficiency (FE)-divergent pigs.   

Canonical Pathways -log(p-value) Z-score Gene 

Role of NFAT in Regulation of Immune Response 4.07 2.14
£
 AKAP5, AKT3, BLNK, FRS2, GAB1, GNA11, GNAZ, GNG2, GSK3A, ITPR1, 

ITPR3, MEF2A, MEF2C, MS4A2, NFKBIB,  ORAI1, PLCB1, SOS1, SOS2 

HGF Signaling 3.36 2.33
£
 AKT3, CCND1, ELF1, ELF2, ELF3, ETS1, FRS2, GAB1, MAP3K1, MAPK9, 

MET, SOS1, SOS2     

Aldosterone Signaling in Epithelial Cells 3.21 2.12
£
 DNAJB4, DNAJB12, DNAJC6, DNAJC11, DNAJC13, DNAJC16, DNAJC17, 

DNAJC22, FRS2, GAB1, ITPR1, ITPR3, PIKFYVE, PLCB1, SOS1, SOS2 

Gap Junction Signaling 3.10 NA AKT3, CAV1, FRS2, GAB1, GUCY1B3, ITPR1, ITPR3, NPR1, PLCB1, 

PRKG1, SOS1, SOS2, TUBA1B, TUBB4B, TUBB, TUBG1 

Cell Cycle Regulation by BTG Family Proteins 2.73 NA CCND1, E2F1, E2F4, PPM1J , PRMT1, PPP2R5A 

B Cell Receptor Signaling 2.71 2.00 AKT3, BLNK, CARD10, ETS1, FRS2, GAB1, GSK3A, MAP2K6, MEF2C, 

MAP3K1, MAPK9, NFKBIB,  PAG1, PTEN, SOS1, SOS2 

tRNA Charging 2.48 NA AARS, EARS2, FARSA, HARS, MARS, YARS 

ILK Signaling 2.46 0.00 ACTN1, AKT3, BMP2, CCND1, FRS2, GAB1, GSK3A, KRT18, MAPK9, 

MAP2K6, MYH9, PPP1R14B, PPP2R5A, PTEN, PPM1J, RICTOR 

14-3-3-mediated Signaling 2.39 2.12
£
 AKT3, FRS2, GAB1, GSK3A, MAPK9, PLCB1, STK11, TUBA1B, TUBB4B, 

TUBG1, TUBB,  YWHAH 

EGF Signaling 2.38 2.12
£
 AKT3, FRS2, GAB1, ITPR1, ITPR3, MAP3K1, SOS1, SOS2 

£
Significantly activated (z-score > 2) pathways in high-FE pigs; up-regulated genes in high-FE pigs are highlighted in bold and down-regulated genes in normal 

typeface; NA: no activity pattern available.   
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Figure 1 Plot of –log10(p-values) versus log2 fold changes for genes expressed in liver from 

high-FE pigs. The green and red lines indicate P = 0.01 and 0.05, respectively. Blue lines 

represent the threshold of genes with a log2 fold change ≥ |1| (fold change ≥ |2|). Significantly 

differentially expressed genes (P < 0.01, log2 fold change ≥ |1| [fold change ≥ |2|]) are 

highlighted by red dots. Up-regulated genes in high-FE pigs are indicated by positive fold 

changes.  
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Figure 2 Pie chart depicting a total of 922 differentially expressed (DE) genes (P < 0.01) in 

liver of FE-divergent pigs and a percentage of annotated up- and down-regulated genes in 

high-FE pigs. The most up-regulated gene was PON3 (fold change = 10.08) and the most 

down-regulated gene was CCNT2 (fold change = -5.40) in high FE pigs. 
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Figure 3 Pie charts illustrating entry distributions of differentially expressed genes within (A) 

molecular and cellular functions, and (B) physiological system development and function 

categories significantly (P < 0.01). F&D: Function & Development; S&D: Structure & 

Development. 

(A) 

(B) 
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Figure 4 Connection of genes affecting functions related to ‘carbohydrate metabolism’, ‘lipid 

metabolism’ and ‘small molecule biochemistry’ represented in a gene network (network 12). 

Biological relationship between genes is depicted as an edge/line (solid lines and dashed lines 

show direct and indirect interactions, respectively). Colors represent up- (red) and down- 

(green) regulated genes in high-feed efficient pigs. 
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Figure 5 Bar chart portraying the RNA-seq and qPCR fold changes of three selected 

differentially expressed genes in high-FE pigs. Significance levels of differences affected by 

feed efficiency: *P < 0.05, **P < 0.01, ***P < 0.001. 
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identified through next-generation sequencing, overlapped between muscle, adipose and liver 

tissues from pigs divergent in feed efficiency.    

 

 

 



Annex C 

201 
 

 

 

 

ANNEX C 

Abbreviations 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 



Annex C 

202 
 

List of abbreviations 

AKR1C3 aldo-keto reductase family 1 member C3 

CAPN1 calpain 1 

CAST  calpastatin 

CCNT2 cyclin T2 

CDK9  cyclin dependent kinase 9 

cDNA  complementary DNA 

CEBPA CCAAT/enhancer binding protein alpha 

CL  cook loss 

COL11A2 collagen type XI alpha 2 chain 

COL1A1 collagen type I alpha 1 chain 

cRNA  complementary RNA 

D110  days to 110 kg 

DE  differentially expressed 

EBV  estimated breeding value 

EGF   epidermal growth factor 

FA  fatty acids 

FCR  feed conversion ratio 

FE  feed efficiency 

FGF  fibroblast growth factor   

FRS2  fibroblast growth factor receptor substrate 2 

GWAS  genome-wide association study 

HDL  high density lipoproteins 

HGF  hepatocyte growth factor 

HMGB1 high mobility group box 1 

HWE  Hardy–Weinberg equilibrium 

IBS  identity-by-state 

IGF2  insulin-like growth factor 2 

IMF  intramuscular fat  

L*, a*, b*  lightness, redness, yellowness 

LIPC  lipase 

LTL  Longissimus thoracis et lumborum 

MAF  minor allele frequency 
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MBD5  methyl-CpG binding domain protein 5 

miRNA microRNA  

MMP2  matrix metallopeptidase 2 

mRNA  messenger RNA 

MUFA  monounsaturated fatty acids 

MYC  transcription factor P64 

NFAT  nuclear factor of activated T cells 

NFATC1 nuclear factor of activated T-cells 1 

NFATC2 nuclear factor of activated T-cells 2 

NFE2L2  nuclear factor, erythroid 2 like 2 

NGS  next-generation sequencing 

NR2E1  nuclear receptor subfamily 2 group E member 1 

OPRD1  opioid receptor delta 1 

p38MAPK  p38 mitogen-activated protein kinase 

PPARG peroxisome proliferator activated receptor gamma 

PRKDC protein kinase, DNA-activated, catalytic polypeptide 

PUFA  polyunsaturated fatty acids 

QTL  quantitative trait locus 

RFI  residual feed intake 

RMA  robust multi-array average 

SDC4  syndecan-4 

SDHB  succinate dehydrogenase complex iron sulphur subunit B 

SELL  selectin L 

SFA  saturated fatty acids 

SNP  single nucleotide polymorphism 

SSC  pig (Sus scrofa) chromosome 

TFAM  transcription factor A mitochondrial 

TP53  tumor suppressor p53 

TREH  trehalase 

VEGFA vascular endothelial growth factor A 

WBSF  Warner Bratzler shear force 

WHC  water holding capacity    
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