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Abstract

In this thesis, we consider a novel unbalanced optimal transport model incorporating singular sources, we develop

a numerical computation scheme for an optimal transport distance on graphs, we propose a simultaneous elastic

shape optimization problem for bone tissue engineering, and we investigate optimal material distributions on thin

elastic objects.

The by now classical theory of optimal transport admits a metric between measures of the same total mass.

Various generalizations of this so-called Wasserstein distance have been recently studied in the literature. In par-

ticular, these have been motivated by imaging applications, where the mass-preserving condition is too restrictive.

Based on the Benamou–Brenier formulation we present a novel unbalanced optimal transport model by introduc-

ing a source term in the continuity equation, which is incorporated in the path energy by a squared L2-norm in

time of a functional with linear growth in space. As a key advantage of our model, this source term functional

allows singular sources in space. We demonstrate the existence of constant speed geodesics in the space of Radon

measures. Furthermore, for a numerical computation scheme, we apply a proximal splitting algorithm for a finite

element discretization.

On discrete spaces, Maas introduced a Benamou–Brenier formulation, where a kinetic energy is defined via

an appropriate (e.g., logarithmic) averaging of mass on nodes and momentum on edges. Concerning a numerical

optimization scheme, this, unfortunately, couples all these variables on the graph. We propose a conforming

finite element discretization in time and prove convergence of corresponding path energy minimizing curves. To

apply a proximal splitting algorithm, we introduce suitable auxiliary variables. Besides similar projections as for

the classical optimal transport distance and additional simple operations, this allows us to separate the nonlinearity

given by the averaging operator to projections onto three-dimensional convex sets, the associated (e.g., logarithmic)

cones.

In elastic shape optimization, we are usually concerned with finding a subdomain maximizing the mechanical

stability w.r.t. given forces acting onto a larger domain of interest. Motivated by a biomechanical application in

bone tissue engineering, where recently biologically degradable polymers have been explored as bone substitutes,

we propose a simultaneous elastic shape optimization problem to guarantee stiffness of the polymer implant and of

the complementary set where new bone tissue will grow first. Under the assumption that the microstructure of the

scaffold is periodic, we optimize a single microcell. We define a novel cost functional depending on specific entries

of the homogenized elasticity tensors of polymer and regrown bone. Additionally, the perimeter is penalized for

regularizing the interface of the scaffold. For a numerical optimization scheme, we choose a phase-field model,

which allows a diffuse approximation of the elastic objects and the perimeter by the Modica–Mortola functional.

We also incorporate further biomechanically relevant constraints like the diffusivity of the regrown bone.

Finally, we investigate shape optimization problems for thin elastic objects. For a numerical discretization,

we take into account the discrete Kirchhoff triangle (DKT) element for parametric surfaces and approximate the

material distribution by a phase-field. To describe equilibrium deformations for a given force, we study different

corresponding state equations. In particular, we consider nonlinear elasticity combining membrane and bending

models. Furthermore, a special focus is on pure bending isometries, which can be efficiently approximated by the

DKT element. We also analyze a one-dimensional model of nonlinear elastic planar beams, where our numerical

simulations confirm and extend a theoretical classification result of the optimal design.
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Chapter 1

Introduction

This thesis contains several contributions, which can be categorized into two mathematical research areas, namely

optimal transport and shape optimization of elastic objects. Later, the rigorous mathematical foundations, which

are in particular required for these specific projects, are discussed in detail in Chapter 3 and Chapter 6. Further-

more, we summarize in Chapter 2 commonly used definitions and well-known theorems, also intending to fix a

consistent notation. In the following, we briefly introduce into both fields to give short overviews, including recent

developments primarily related to the corresponding topics of this thesis.

1.1 Introduction to Optimal Transport

A Brief History of Optimal Transport. Roughly speaking, the theory of optimal transport is concerned with

seeking for the most cost-efficient distribution from a set of sinks to a set of sources. Monge [Mon81] formu-

lated such a problem by asking for the transport with minimal cost of a pile of sand into a hole of the same

volume. For a general mathematical formulation, sinks and sources are modeled by probability measures. A re-

laxed formulation proposed by Kantorovich [Kan42, Kan48] guarantees existence for a certain class of transport

cost functions and allows defining the so-called Wasserstein metric on the space of probability measures. Benamou

and Brenier [BB00] figured out a dynamical formulation, which can be interpreted as the geodesic equation on the

Wasserstein space and thus allows considering it as an infinite-dimensional Riemannian manifold. A groundbreak-

ing result linking the geometry of the Wasserstein space with a partial differential equation was established by

Jordan, Kinderlehrer, and Otto [JKO98, Ott01], who demonstrated that the heat equation can be understood as the

gradient flow of the entropy functional w.r.t. the Wasserstein distance. Further partial differential equations were

characterized via gradient flows of suitable energy functionals w.r.t. the Wasserstein distance, e.g., the Keller-Segel

equation [BCC08] or the crowd motion model [MRCS10]. For the incompressible Euler equation, considering a

relaxation of Arnold’s [Arn66] geodesic formulation in the space of measure-preserving diffeomorphisms, Bre-

nier [Bre89] showed that a midpoint of such a geodesic can be found by solving an optimal transport problem.

Furthermore, at first glance, unexpected connections of optimal transport to geometrical questions have emerged.

On a Riemannian manifold, the displacement convexity of an appropriate entropy functional along Wasserstein

geodesics is equivalent to a nonnegative Ricci curvature. Based on this observation, in the independent works of

Lott–Villani [LV09] and Sturm [Stu06a, Stu06b], a meaning of a lower Ricci curvature bound on metric measure

spaces was given. Besides numerous proofs, the classical isoperimetric inequality was verified by using tech-

niques from optimal transport [Kno57], which can be applied to prove generalized versions (see, e.g., Figalli and

coworkers [FMP10]). Moreover, the optimal transport problem admits a huge variety of applications in the field

of mathematical imaging. For image interpolation, it was considered, e.g., for brains and clouds [HZTA04] and

in oceanography [HMP15]. By taking into account an appropriate kernel density estimator, it was used for image

segmentation in [PFR12]. In [PPC11], the color transfer of images via optimal transport was studied. A decom-

position of an image into cartoon, texture, and noise part was investigated in [BL15]. Many problems arising in

economy can also be interpreted in the context of optimal transport, e.g., delivering newspapers or matching be-

tween job seekers and jobs [Gal16]. Further applications are related to the classification of texts [KSKW15] or an

urban planning model [BS05, BW16].

1



2 CHAPTER 1. INTRODUCTION

Numerical Methods for Optimal Transport. Computing optimal transport geodesics in its full generality is

a quite challenging task. Therefore it has been solved for numerous special cases. In particular, Wasserstein

geodesics between probability measures on the real line can be computed explicitly. For discrete measures, Kan-

torovich’s problem becomes a linear program, which can be efficiently solved by the Auction algorithm [BE88].

Benamou and Brenier [BB00] applied duality techniques from convex analysis to compute solutions to their refor-

mulated dynamic problem between density functions. For the so-called semi-discrete optimal transport between a

density and a discrete measure, methods from algorithmic geometry were investigated in [Mér11, Lév15]. Further

computational methods based on properties of Wasserstein geodesics have been proposed, e.g., in [HZTA04], the

polar factorization result by Brenier [Bre91] was used, and in [LR05, BFO10, BFO10], the Monge–Ampère equa-

tion was solved. In [Sch16a, Sch16b], a sparse multiscale algorithm was developed by incorporating the cyclical

monotonicity property. Recently, entropy regularization methods [BCC`15] to compute approximative solutions

have turned out to provide an enormous speedup. Overall, most of the equivalent reformulations of the optimal

transport problem can be converted into convex optimization problems. Thus, in this thesis, we intensively apply

proximal splitting algorithms based on methods from convex analysis.

Optimal Transport with Source Term. Naturally, the classical optimal transport distance is defined between

two measures of the same total mass, which is for example in the Benamou–Brenier formulation encoded via a

continuity equation. This mass preserving property is often too restrictive, e.g., in the context of image warping,

where images of different total mass have to be compared. Moreover, an extension of the optimal transport dis-

tance to arbitrary positive measures is an interesting question from a theoretical point of view, which has been

intensively studied in the literature during the last few years. In general, the resulting problems are often referred

to as unbalanced optimal transport. One possibility was studied in [CM10], where the marginal constraints in the

Kantorovich formulation were relaxed. For absolutely continuous masses a source term in the continuity equation

for the Benamou–Brenier formulation was included in [PR16, PR14]. In [CPSV15] and [LMS15], an interpolating

distance between the Wasserstein distance and the Fisher–Rao distance was proposed. Recently, in [CPSV18], an

equivalence between such generalized optimal transport models based on the Benamou–Brenier formulation and

the Kantorovich formulation was demonstrated for a large class of cost functions. In Chapter 4, we study a novel

unbalanced optimal transport model on the space of positive Radon measures. There, we adapt the Benamou–

Brenier formulation by a source term in the continuity equation, which is appropriately penalized in addition to

the kinetic energy, s.t. we can allow singular sources in space. An example of a transport between measures of

different total mass is depicted in Figure 1.1.

1
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Figure 1.1: Geodesic between densities of different total mass for an optimal transport model with source term.

The mass variable is color-coded in a blue-scale (left).

Optimal Transport on Discrete Spaces. The formulations of the optimal transport distance of Monge, Kan-

torovich, and Benamou–Brenier can be defined without any additional effort between Borel probability measures

on complete and separable metric spaces, so-called Polish spaces, and are equivalent under certain conditions. Fur-

thermore, Monge’s problem can be considered on more abstract spaces, as far as there is a notion of measures and

distance. On discrete spaces described by an irreducible and reversible Markov transition kernel, Maas [Maa11]

proposed a Benamou–Brenier formulation, which also allows understanding the heat equation on a finite Markov

chain as the gradient flow of a corresponding entropy functional. The associated discrete optimal transport metric

does not coincide with Monge’s formulation. In Chapter 5, we develop a numerical scheme to compute geodesics

and gradient flows for this optimal transport distance on finite Markov chains. For appropriate finite element

spaces, we prove convergence of minimizing paths for vanishing step size. In Figure 1.2, we depict an example of

such an optimal transport geodesic on a discrete space.
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Figure 1.2: Geodesic between discrete measures on a triangular mesh of a human hand (left) for an optimal

transport model on graphs. The mass variable, which is actually defined on nodal positions, is represented by blue

neighborhoods with an area of a proportional size.

Further Related Work. As we have already mentioned, the fluid flow reformulation by Benamou–Brenier can

be interpreted as the geodesic equation on the Wasserstein space. Rumpf and Wirth [RW15] introduced a powerful

framework for a time discrete geodesic calculus on Banach manifolds, which allows to approximate geodesics and

further differential geometric quantities, like the exponential map, parallel transport, and the Riemannian curvature

tensor. This approach was, e.g., applied to the space of viscous fluid objects [RW13], the space of images in the

context of the metamorphosis model [BER15], and the space of discrete shells [HRWW12]. In [MRSS15], the

general framework by Rumpf and Wirth was used to compute optimal transport geodesics for a viscous optimal

transport model with density modulation.

1.2 Introduction to Elastic Shape Optimization

An Overview of Elastic Shape Optimization Problems. Optimizing the mechanical stability of an object is a

desirable property in numerous engineering applications. In a general framework of mathematical shape optimiza-

tion, we ask for the optimal domain within an admissible set, which minimizes a suitable cost functional. Possible

applications range from heat diffusion [All02] to fluid dynamics [GHHK15]. Also, the isoperimetric problem can

be interpreted as a shape optimization problem, where the area functional has to be minimized over all domains

with a fixed volume. In this thesis, we focus on elastic shape optimization problems, where forces are acting

on the reference domain of an elastic object and deformations are described via partial differential equations, the

so-called state equations. Typical examples of cost functionals studied in the literature are the potential energy

[ABFJ97, AJT04], the least square error compared to a target displacement [AJT04], and shape eigenfrequencies

[Ped00]. For computational simplicity, in most cases, linear elasticity is taken into account, s.t. the stored elastic,

the potential and the free energy coincide for the equilibrium displacement. These three functionals were com-

pared in [PRW12] for nonlinear elasticity, where in particular global minimizers of the free energy do not have to

be unique. A worst-case scenario is given by choosing the most expensive of these equilibrium deformations. Usu-

ally, the volume of the elastic object is additionally penalized in the cost functional, or a constraint on the maximal

amount of volume is integrated into the optimization problem. Nevertheless, such shape optimization problems are

in general ill-posed because a minimizing sequence of characteristic functions does not necessarily converge to a

characteristic function, and thus the limiting object cannot be characterized as a set. A possible relaxation is based

on the theory of homogenization [ABFJ97], where a composite structure determined by its local volume fraction

and the effective elasticity tensor is taken into account. Alternatively, in [PRW12], the perimeter of the domain was

added to the cost functional. Such a regularization was originally proposed in [AB93] for a scalar-valued prob-

lem. A worst-case scenario concerning the uncertainty of a single force acting on the elastic object was studied

in [AD14]. For a scenario where multiple loads are acting on the elastic object, several stochastic interpretations

to define an associated average cost functional are considered. In the context of a two-stage stochastic program-

ming formulation, in [CHP`08], the expected value was used as compliance functional. Nonlinear risk measures

like the expected excess, or the excess probability were investigated in [CHP`11]. In [CRST18], the concept of

stochastic dominance was transferred to elastic shape optimization by asking for an object with minimal volume

s.t. compared to a given benchmark shape the stochastic dominance constraints given by nonlinear risk measures

are satisfied.
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Numerical Methods for Elastic Shape Optimization. For a numerical solution scheme to compute an optimal

shape, we have to choose a finite-dimensional representation of the elastic object and a corresponding optimization

algorithm. A discretization of the elastic object with a finite mesh was, e.g., implemented in [SSW15]. Unfortu-

nately, this requires a remeshing in each optimization step, which is algorithmically quite demanding, especially if

the topology of the mesh should change during the optimization process. Level-set functions [CHP`08, CHP`11]

to represent the domain by the zero-level set, or phase-field functions [PRW12], which are in particular advan-

tageous to approximate the perimeter functional, have turned out to be more practicable. If the optimal shape is

expected to be of a special structure, determining an appropriate set of parameters could simplify the optimization.

For example, in [JKZ98], a simple truss model was investigated. For the optimization algorithm, a naive solution

scheme is the so-called evolutionary structural optimization (ESO) method [XS93], where, starting on a fixed fi-

nite element mesh, those elements with the least contribution to the stiffness are successively removed. Besides,

the bi-directional ESO (BESO) [HX10] also allows inserting elements, which might be useful for a fixed volume

constraint. However, there is no guarantee that these schemes provide an optimal shape, and, in particular, the so-

lution is mesh-dependent. The homogenization method [ABFJ97] makes use of an explicit formula for an optimal

microstructure in linear elasticity, which is given by sequential laminates. Algorithmically, homogenization was

used to alternatingly optimize the microstructure and the density on the macroscale. Instead of using the optimal

laminate microstructure, the solid isotropic material with penalization (SIMP) method [Ben89] interpolates the

material value on each element depending on the density function. In this thesis, we make use of first-order meth-

ods, which require to compute the first derivative of the cost functional w.r.t. the elastic object, the so-called shape

derivative. This approach was, e.g., applied in [PRW12] for a phase-field model, which we also take into account

to discretize the corresponding elastic objects appearing in the specific applications. For a volume constraint, in

[AJT04], a Lagrange multiplier was used. A Cahn–Hillard gradient flow with a volume constraint was considered

in [ZW07] for a multiphase model. Additional inequality constraints were treated by interior-point methods, e.g.,

the thickness of trusses in [JKZ98].

Simultaneous Elastic Shape Optimization. The shape optimization problems described above aim to find an

optimal subdomain representing the elastic object within a larger domain of interest, which then automatically

defines a domain splitting, where the complementary set is considered as void material. In [THD02, TD04], a si-

multaneous shape optimization problem was investigated by considering the heat conductivity on a subset and the

electrical conductivity on the complementary set. More precisely, the optimal domain splitting was sought, s.t. the

sum of the traces of the associated homogenized tensors is optimized. For this scalar case, it was conjectured that

optimizers are given by domains bounded by periodic minimal surfaces, e.g., the Schwarz P surface. However, in

[Sil07] an upper bound for the sum of the traces of the homogenized tensors was derived, which was numerically

compared with the corresponding value for a Schwarz P surface and a significant difference to this upper bound

was experimentally obtained. In Chapter 7, we propose a similar simultaneous shape optimization problem by

taking into account a novel cost functional depending on specific entries of the homogenized elasticity tensors of

both subdomains. This formulation is motivated by an application in bone tissue engineering, where biologically

degradable polymer implants with a certain microstructure are used as bone substitutes. Incorporating the stiffness

of both subdomains in the optimization process guarantees mechanical stability of the polymer implant as well

as the regeneration of bone on the complementary set. Furthermore, we adapt the model by additional biologi-

cally relevant constraints. In particular, we enforce diffusion constraints on the regrown bone. We show possible

optimized periodic microstructures in Figure 1.3.

Figure 1.3: Optimized periodic microstructures for bone tissue engineering (here for different material parameters

of regrown bone).
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Shape Design of Thin Elastic Objects. Thin elastic objects are a special class of curved elastic bodies, which

are significantly smaller in one direction. Such thin structures frequently appear in aerodynamics [HZ14, KPRA18,

SS13], where in particular airfoils are optimized w.r.t. the aerodynamic drag. Further applications can be found

in electrostatics [BCO`15] and automotive engineering [Ble14]. From a theoretical point of view, the behavior

of these thin elastic objects has been well-understood via Γ-convergence results for vanishing thickness. Different

scalings lead to a membrane theory [LDR95, LDR96] describing tangential distortion on the surface and a bending

theory [FJM02, FJMM03] taking into account isometric deformations. In numerical simulations, the corresponding

elastic energies have often been combined. Numerous discretization methods have been proposed to approximate

thin elastic objects and their deformations, where the essential difficulty is due to curvature terms in the bending

energy functional involving second derivatives of the deformation. On quadrilateral meshes, nonuniform rational

B-splines (NURBS) [HCB05] allow arbitrary regularity. A fully conforming discretization on triangular meshes

is given by loop subdivision finite elements [COS00]. In practice, methods from discrete differential geometry

have turned out to be extremely efficient [GHDS03]. To simulate pure bending isometries on plates, in [Bar13] a

numerical approximation scheme was provided by making use of the discrete Kirchhoff triangle (DKT) element

[BBH80]. The optimal design of shells via composite material lamination was considered in [SL05]. The finite

mesh itself was optimized in [BC18] by taking into account loop subdivision surfaces and linear elasticity as in

[COS00]. In [VHWP12], NURBS were investigated to construct self-supporting surfaces. In Chapter 8, we study

shape optimization problems for thin elastic objects. To describe a material distribution, we use a phase-field

discretization. Then we investigate different elastic energies, in particular, nonlinear elasticity and an isometry

constraint. In Figure 1.4, we depict optimal designs.

Figure 1.4: Optimal material distributions on a thin plate under certain volume conditions (here for different

volume constraints). The hard material is colored in orange.
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Chapter 2

Mathematical Preliminaries

The following chapter is mainly considered to fix overall terminology and notation. In this thesis, we investigate

many different objects, e.g., images, graphs, rods, plates, shells, and solids. For mathematical modeling of these

objects, we take into account different function spaces, possibly also including a time component. Especially, we

make use of the space of Radon measures, which we introduce in Section 2.1. Further relevant function spaces are

defined in Section 2.2. Finally, we consider the concept of Γ-convergence in Section 2.3, which plays an important

role throughout this thesis. For a more detailed introduction, we refer the reader to the books [FL07], [EG15],

[AFP00], [Alt16] for functional analysis and [Bra06], [DM93] for Γ-convergence.

2.1 Radon Measures

In the following, we define the space of Radon measures and summarize some essential properties. We start to

recall basics from measure theory. In particular, we define measures on a generic set X with a σ-algebra E Ă PpXq.

Definition 2.1.1 (Measures and Total Variation). Let X be a nonempty set.

1. On a measure space pX,Eq a map µ : E Ñ r0,8s is a positive measure if µpHq “ 0 and µ is σ-additive on

E. If the same holds for a map ν : EÑ R, we call it a signed measure. Moreover, ν : EÑ Rm with m PN`

is a vectorial measure if each component is a signed measure.

2. Let ν : EÑ R be a signed measure. Then the total variation |ν|TV for E P E is given by

|ν|TVpEq :“ sup

#ÿ

nPN

|νpEnq| : E “
ď

nPN

En for En P E pairwise disjoint

+

and defines a positive and finite measure (see [AFP00, Theorem 1.6]). For a vectorial measure ν : E Ñ Rm

we define the total variation by |ν|TVpEq :“
řm

i“1 |νi|TVpEq.

We remark that there are different terminologies used in the literature, where a measure might denote either

a positive or a signed measure. Furthermore, some approaches are based on so-called outer measures, which are

defined on arbitrary subsets (e.g., in [EG15]).

Now, to define Radon measures, some topological information on the set X is required. Then, we denote by

BpXq the Borel σ-algebra, which is defined as the smallest σ-algebra on X containing all open sets. Due to our

applications, we restrict to the case that X “ D Ă Rd is a subset of Rd.

Definition 2.1.2 (Radon Measures). Consider the measure space pD,BpDqq for D P BpRdq.

1. A positive measure µ : BpDq Ñ r0,8s is a positive Radon measure if µpKq ă 8 for all K Ă D compact.

A signed measure ν : BpDq Ñ R is a signed Radon measure if |ν|TV is a positive Radon measure and

a vectorial measure ν : BpDq Ñ Rm is a vectorial Radon measure if each component is a signed Radon

measure.

7
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2. We denote by

(a) M `pDq the set of all positive Radon measures,

(b) M pDq the set of all signed Radon measures, and

(c) M pD,Rmq the set of all vectorial Radon measures.

In the following, we further restrict to a compact set D Ă Rd. Then a positive Radon measure is just a

finite Borel measure and thus a signed measure. An important characterization of Radon measures is given by the

following duality result, which allows us to identify the space of signed Radon measures M pDq as the topological

dual of the space of continuous functions CpDq endowed with the norm } f }CpDq :“ supxPD | f pxq|.

Theorem 2.1.3 (Duality of Radon Measures). Let D Ă Rd be a compact set. Then every bounded linear functional

L : CpDq Ñ R is represented by a unique signed Radon measure ν P M pDq in the sense that

Lp f q “
ż

D
f dν @ f P CpDq . (2.1)

Conversely, every functional L of type (2.1) for ν P M pDq is a bounded linear functional on CpDq.

Proof. See [FL07, Theorem 1.196]. �

Hence, a sequence of Radon measures pνnqnPN Ă M pDq converges weakly-˚ to ν P M pDq if

ż

D
f dνn Ñ

ż

D
f dν @ f P CpDq .

Furthermore, since CpDq is a separable space, every bounded sequence pνnqnPN Ă M pDq of signed Radon mea-

sures has a weakly-˚ converging subsequence (see [Alt16, Theorem 8.5]).

2.2 Function Spaces

Here, we summarize several properties of Sobolev functions and functions of bounded variation.

In the following, let D Ă Rd be a domain. First, for k-times continuously differentiable functions f , g P CkpDq
with k PN`, we define Dk f ¨ Dkg :“

ř
i1,...,ik“1,...,k Bk

i1,...,ik
f Bk

i1,...,ik
g and |Dk f | :“

`
Dk f ¨ Dk f

˘ 1
2 .

Lebesgue and Sobolev Functions For a measurable function f : D Ñ Rd, we recall the norms

} f }LppDq :“
ˆż

D
| f pxq|p dx

˙ 1
p

for p P r1,8q ,

} f }L8pDq :“ ess sup
xPD

| f pxq| “ inf tC ě 0 : | f pxq| ď C for a.e. x P Du ,

} f }Wm,ppDq :“
˜

mÿ

k“0

}Dk f }p

LppDq

¸ 1
p

for m PN , p P r1,8q ,

} f }Wm,8pDq :“ max
k“0,...,m

}Dk f }L8pDq for m PN ,

where the derivatives appearing in the definitions of the Sobolev norms } ¨ }Wm,ppDq for p P r1,8s have to be

understood in the distributional sense.

We say that D Ă Rd has Lipschitz boundary, if for all x P BD there exists a neighborhood U of x and a

Lipschitz function L : Rd´1 Ñ R s.t. D X U “ ty “ py1, . . . , ydq P U : yd ą Lpy1, . . . , yd´1qu. Then, we define

the space W
m,p

0
pDq as the closure of C8

c pDq w.r.t. the Wm,ppDq-norm.

Later, we make use of the following two theorems.
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Theorem 2.2.1 (Korn’s Inequality). Let D Ă Rd be a domain with Lipschitz boundary. Then there is a constant

c ą 0 s.t.

}Du}2
L2pDq ď c

´
}u}2

L2pDq ` }εpuq}2
L2pDq

¯
(2.2)

for all u P W1,2pD,Rnq. Here, εpuq :“ Du`DuT

2 denotes the symmetrized gradient.

Proof. See [Nit81]. �

Theorem 2.2.2 (Sobolev Embedding). Let D Ă Rd be a domain with Lipschitz boundary.

1. Let m1 ą m2 PN and p1, p2 P r1,8q with m1 ´ d
p1

ą m2 ´ d
p2

.

Then the embedding id : Wm1,p1 pDq Ñ Wm2,p2 pDq is continuous and compact.

2. Let m PN`, k PN, p P r1,8q, and α P r0, 1s s.t. m ´ d
p ą k ` α.

Then the embedding id : Wm,ppDq Ñ Ck,αpDq is continuous and compact.

Proof. See [Alt16, Theorem 10.9 and Theorem 10.13]. �

Functions of Bounded Variation Next, we introduce the space of functions of bounded variation.

Definition 2.2.3 (Functions of Bounded Variation). Let D Ă Rd be a domain.

1. The space of functions of bounded variation is defined by

BVpDq :“ tu P L1pDq : Du P M pD,Rdq for the distributional gradientu .

2. For u P BVpDq the norm is given by }u}BVpDq :“ }u}L1pDq ` |Du|TVpDq.

3. For a sequence uk P BVpDq and u P BVpDq we say that uk converges weak-˚ to u in BV if uk Ñ u strongly

in L1pDq and Duk
˚á Du in M pD,Rdq.

Then the following embedding theorem holds.

Theorem 2.2.4 (Embedding in BV). Let D Ă Rd be a domain with Lipschitz boundary and let 1 ď p ă d
d´1 .

Then the embedding id : BVpDq Ñ LppDq is continuous and compact.

Proof. See [AFP00, Theorem 3.47]. �

2.3 Γ-Convergence

Many problems appearing in this thesis result in minimizing an energy functional E : X Ñ R Y t8u on some

metric space X. Typically, to approximate a minimizer of E, we take into account a finite space Xh Ă X and a

suitable functional Eh : Xh Ñ R Y t8u, s.t. we can numerically compute a minimizer of Eh. Further functionals

considered in this thesis similarly arise as limits of functionals Eh : Xh Ñ R Y t8u for h Ñ 0. However, the

convergence of Eh Ñ E in a common topology of the functionals is a too strong requirement, but we are only

interested in the convergence of the minimizers of Eh to the minimizer of E. This can be established by using the

concept of Γ-convergence.

Definition 2.3.1 (Γ-Convergence). Let pX, dq be a metric space and Ek : X Ñ RY t8u for k PN. We say that the

sequence of functionals pEkqkPN Γ-converges to a functional E : X Ñ RY t8u if

1. the Γ-liminf condition holds, i.e., for all pxkqkPN Ă X with xk Ñ x P X we have

Epxq ď lim inf
kÑ8

Ekpxkq , (2.3)
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2. and the Γ-limsup condition holds, i.e., for all x P X there exists a sequence pxkqkPN Ă X with xk Ñ x s.t.

Epxq ě lim sup
kÑ8

Ekpxkq . (2.4)

Note that (2.3) implies that we actually have equality in (2.4). The sequence satisfying Epxq “ limkÑ8 Ekpxkq
is called a recovery sequence.

Definition 2.3.2 (Equicoercivity). Let pX, dq be a metric space and Ek : X Ñ R Y t8u for k P N. The sequence

of functionals pEkqkPN is equicoercive if for all r P R there is a compact set Kr Ă X s.t. tx P X : Ekpxq ď r @k P
Nu Ă Kr.

Thus, for a sequence pxkqkPN with uniformly bounded energy Ekpxkq ď r, the equicoercivity condition implies

convergence of a subsequence xkl
Ñ x P X. Together with the Γ-convergence, this guarantees that minimizers of

Ek converge to a minimizer of E.

Theorem 2.3.3 (Fundamental Theorem of Γ-Convergence). Let pX, dq be a metric space and Ek : X Ñ R Y t8u
for k PN. We assume that the sequence pEkqkPN is equicoercive and Γ-converges to E : X Ñ RY t8u. Then

min
xPX
Epxq “ lim

kÑ8
inf
xPX
Ekpxq .

Proof. See [Bra06, Theorem 2.10]. �

Consequently, if a sequence xk Ñ x˚ is asymptotically minimizing, i.e., it satisfies Ekpxkq “ infxPX Ekpxq `
op1q, then x˚ is a minimizer of E.

Later, we make use of the following lower semi-continuity result, which allows proving the Γ-liminf inequal-

ity (2.3) for a large class of functionals.

Theorem 2.3.4 (Ioffe). Let D Ă Rd be open and bounded. Furthermore, let f : D ˆ Rp`q Ñ r0,8s be a

measurable function, s.t. ps, zq ÞÑ f px, s, zq is lower semi-continuous for a.e. x P D and z ÞÑ f px, s, zq is convex

for any x P D and any s P Rp. Then, for sequences uh Ñ u strongly in L1pD,Rpq and vh Ñ v weakly in L1pD,Rqq,

we have

ż

D
f px,u, vq dx ď lim inf

hÑ0

ż

D
f px,uh, vhq dx .

Proof. See [AFP00, Theorem 5.8]. �
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Numerical Methods for Optimal Transport
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Chapter 3

Foundations in Optimal Transport

The first part of this thesis is concerned with two different types of optimal transport distances, where we primarily

focus on numerical methods to compute corresponding geodesic interpolation paths. In this chapter, we first

give an introduction to the basic theory of optimal transport and related mathematical foundations. In particular,

in Section 3.1, we define the L2-Wasserstein distance on the space of Borel probability measures. To compute

solutions for this classical optimal transport distance, various algorithms have been developed, which we partially

summarize in Section 3.2. Furthermore, since in Chapter 4 and Chapter 5 we intensively make use of so-called

proximal splitting methods, we collect the related concepts from convex analysis.

3.1 The Classical Optimal Transport Problem

In the following, we introduce three different formulations of the optimal transport problem, namely those of

Monge, Kantorovich, and Benamou–Brenier. For transport costs given by the Euclidean distance, this leads us to

the corresponding Wasserstein metric on the space of Borel probability measures. Moreover, we briefly discuss

gradient flows on the Wasserstein space and the fundamental connection to the heat equation. For a more general

overview of the theory of optimal transport, we refer the reader to the well-established books [AGS08, San15,

Vil03, Vil09].

3.1.1 Monge’s Formulation

A first version of the optimal transport problem was already formulated in 1781 by Monge [Mon81], who asked for

the minimal cost to transport a pile of sand into a hole of the same volume. For a mathematical model, source and

sink are described by Borel probability measures µA P PpXq and µB P PpYq, where we restrict to the case that

X,Y Ă Rd are compact sets. To define a transport of the mass represented by the measure µA, we take into account

a transport map T : X Ñ Y. Then, to guarantee that the mass is transported by T to a distribution corresponding to

the measure µB, a matching condition is required.

Definition 3.1.1 (Pushforward). Let µ P PpXq and T : X Ñ Y Borel measurable. We define the pushforward T#µ
of µ through T as

T#µpEq :“ µpT´1pEqq for all E P BpYq . (3.1)

We say that a transport map T matches µA to µB if T#µA “ µB. Moreover, a transport cost function c : XˆY Ñ
r0,8s describes the cost to move a particle from a position x P X to a position y P Y. Then Monge’s problem in

its general formulation is to find a transport map T having minimal transport cost, which is given by

inf

"ż

X
cpx,Tpxqq dµApxq : T : X Ñ Y Borel measurable ,T#µA “ µB

*
. (3.2)

We focus on the case that X “ Y “ D for a compact and convex domain D Ă Rd. Note that the set of all Borel

probability measures on D is defined as a subset of positive Radon measures

PpDq “ tµ P M
`pDq : µpDq “ 1u .

13
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By duality of Radon measures (see Theorem 2.1.3), the matching condition (3.1) is equivalent to

ż

D
f pTpxqq dµApxq “

ż

D
f pxq dµBpxq @ f P CpDq .

Furthermore, we restrict the transport cost function to the Euclidean distance cpx, yq “ |x ´ y|2. Because of the

convexity assumption on the domain D, the distance on D is induced from the distance on Rd.

Remark 3.1.2. For nonconvex domains, we could take into account the path length from x to y. More generally,

we could define Monge’s problem for underlying smooth manifolds or even on separable complete metric spaces,

so-called Polish spaces, by using the squared distance as transport cost. For noncompact domains, we have to

restrict the space of Borel probability measures to guarantee that the integral
ş

X cpx,Tpxqq dµApxq is finite. A

sufficient condition in the case of the cost function cpx, yq “ |x ´ y|2 is to require bounds on the second moment,

i.e., µA, µB P P2pXq :“ tµ P PpXq :
ş

X |x|2 dµpxq ă 8u.

Unfortunately, Monge’s problem (3.2), in general, does not admit existence nor uniqueness.

Example 3.1.3 (Nonexistence and Nonuniqueness for Monge’s Problem).

1. Let D “ r´1, 1s, µA “ δ0 and µB “ 1
2 pδ´1 ` δ1q, where δp denotes the Dirac measure at the point p P D.

Then there does not exist a transport map T between µA and µB, since otherwise

f pTp0qq “
ż

D
f pxq dT#µApxq “

ż

D
f pxq dµBpxq “ 1

2
p f p´1q ` f p1qq

for all f P CpDq. In other words, we cannot split a single point.

2. Let D “ r0, 1s2, µA “ 1
2 pδp0,0q ` δp1,1qq and µB “ 1

2 pδp1,0q ` δp0,1qq. Then an optimal transport map could

map p0, 0q to p0, 1q and p1, 1q to p1, 0q, but also the opposite way is optimal.

3.1.2 Kantorovich’s Relaxation

To cope with the existence problem, Kantorovich [Kan42, Kan48] proposed a relaxation of Monge’s formulation

by embedding the transport map T : D Ñ D between µA and µB into the product space D ˆ D by considering a

so-called transport plan π “ pid ˆ Tq#µA. Since T fulfills the pushforward matching condition (3.1), the transport

plan π satisfies the marginal constraints

pproj1q#π “ µA and pproj2q#π “ µB ,

where proji for i “ 1, 2 denotes the projection on the i-th component. More generally, we define the set of all

Borel probability measures on the product space with marginal constraints by

ΠpµA, µBq “
 
π P PpD ˆ Dq : pproj1q#π “ µA , pproj2q#π “ µB

(
.

Then Kantorovich’s problem is given by

inf

"ż

DˆD
cpx, yq dπpx, yq : π P ΠpµA, µBq

*
(3.3)

and the following existence result holds.

Theorem 3.1.4 (Existence of Solutions). Suppose that c : D ˆ D Ñ R Y t8u is lower semi-continuous and

bounded from below. Then Kantorovich’s problem (3.3) admits a solution.

Proof. See [San15, Theorem 1.5]. �

Under the condition that the initial measure µA is absolutely continuous w.r.t. the Lebesgue measure on D,

uniqueness of the optimal transport plan can be established by applying Brenier’s polar factorization result [Bre91],

which allows decomposing a density function into a gradient of a convex function up to a concatenation with a

measure-preserving map. In this case, the solution to Monge’s and Kantorovich’s problem coincide.
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Theorem 3.1.5 (Brenier’s Polar Factorization). We consider the specific transport cost function cpx, yq “ |x ´ y|2.

Let µA, µBPpDq with µA “ ρALD for a density function ρA. Then there exists a unique optimal transport map

T solving Monge’s problem, and T “ ∇ψ is the µA-a.e. unique gradient of a convex function ψ. Moreover, the

unique optimal transport plan solving Kantorovich’s problem is given by π “ pid ˆ ∇ψq#µA.

Proof. See [San15, Theorem 1.22]. �

In the case cpx, yq “ |x ´ y|2, the relaxed problem (3.3) defines a metric on the space of Borel probability

measures, the so-called L2-Wasserstein distance.

Definition 3.1.6 (Wasserstein Distance). Let µA, µB P PpDq be two Borel probability measures. We define the

L2-Wasserstein distanceW between µA and µB by

WpµA, µBq :“ inf

"ż

DˆD
|x ´ y|2 dπpx, yq : π P ΠpµA, µBq

* 1
2

. (3.4)

We refer the reader to [San15, Proposition 5.10] for a proof thatW is indeed a metric on PpDq. Moreover,

W metrizes weak-˚-convergence on PpDq (see [San15, Theorem 5.10]). Regarding a numerical optimization

scheme to compute an optimal transport plan solving Kantorovich’s problem (3.3), it is useful to consider the

corresponding dual formulation

sup

"ż

D
f pxq dµApxq `

ż

D
gpyq dµBpyq : p f , gq P CpDq ˆ CpDq , f pxq ` gpyq ď cpx, yq

*
.

3.1.3 Benamou–Brenier’s Fluid Flow Formulation

In [BB00], Benamou and Brenier transferred Monge’s problem into a continuum mechanics framework and derived

an equivalent representation of the Wasserstein distance (3.4) heuristically. This dynamical formulation takes into

account a curve of probability measures µ : r0, 1s Ñ PpDq connecting µp0q “ µA with µp1q “ µB and a

corresponding Eulerian velocity field v : r0, 1s ˆ D Ñ Rd. Here, we assume that µ is a curve of probability

densities ρ, i.e., µptq “ ρptqL for all t P r0, 1s. Then we can formally define the kinetic energy

Etranspρ, vq “
ż 1

0

ż

D
ρpt, xq|vpt, xq|2 dx dt .

Furthermore, a mass-preserving condition is given by the continuity equation Btρ` divpρvq “ 0, i.e., solutions to

this equation satisfy
ş

D ρpt, xq dx “
ş

D ρp0, xq dx for all t P r0, 1s. We denote by CEpρA, ρBq the set of all weak

solutions pρ, vq of the continuity equation with initial condition ρp0q “ ρA and final condition ρp1q “ ρB. It turns

out that Monge’s formulation (3.2) of the optimal transport problem can be rewritten by minimizing the kinetic

energy over all corresponding curves of mass and velocity, which solve the continuity equation, i.e.,

WpρAL , ρBL q “ inf tEtranspρ, vq : pρ, vq P CEpρA, ρBqu 1
2 . (3.5)

To rigorously formulate (3.5) on appropriate function spaces, the curve µ is required to be absolutely continuous

in time. Moreover, the continuity equation has to be defined in a weak sense. Then, one possibility (see, e.g.,

[AGS08, Chapter 8]) is to define the velocity at time t in a the function space depending on the measure µptq at

the specific time. Later, we apply a different approach by making use of a change of variables. Instead of the

pair mass and velocity pρ, vq, we consider the pair mass and momentum pρ,m “ ρvq. Then it can be shown that

the distance defined by the Benamou–Brenier formulation coincides with the Wasserstein distance (see [San15,

Theorem 5.28]). Furthermore, for an absolutely continuous initial measure µA “ ρALD and an optimal transport

plan π “ pid ˆ∇ψq#µA as in Theorem 3.1.5, the linear interpolation of the identity and the optimal transport map

∇ψ under the pushforward w.r.t. µA

µptq “ pp1 ´ tqid ` t∇ψq# µA “ pid ` tvq# µA

is the solution to Benamou–Brenier’s problem and satisfies the property of a constant speed geodesic

Wpµpsq, µptqq “ |t ´ s|WpµA, µBq @s, t P r0, 1s .
For now, we consider the definition ofW in (3.5) just formally and refer to Chapter 4 for a rigorous formulation

of a generalized optimal transport distance.
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3.1.4 Wasserstein Gradient Flows

In [JKO98], a fundamental connection between gradient flows w.r.t. the Wasserstein metric on Rd and the heat

equation was established. First, we recall that for a function F P C1,1pRd,Rq, the solution to the Cauchy problem

#
x1ptq “ ´∇Fpxptqq for t ą 0 ,

xp0q “ x0

can be approximated by an implicit Euler scheme

xτ0 “ x0 ,

xτk`1 P arg min
xPRd

Fpxq `
|x ´ xτ

k
|2

2τ
for k PN ,

(3.6)

where τ ą 0 is a fixed step size. Now, we define the entropy functionalH : L1pRd, r0,8sq Ñ RY t8u by

Hpρq “
ż

Rd

ρpxq logpρpxqq dx .

More generally, for a smooth potential V, we consider the functional F pρq “ Hpρq`
ş
Rd Vpxqρpxq dx. Motivated

by the finite-dimensional and smooth case in (3.6), the so-called minimizing movement scheme is defined by the

iteration

ρτ0 “ ρ0 ,

ρτk`1 P arg min
µPP2pRdq : µ“ρL

F pρq ` 1

2τ
Wpρ, ρτkq2 for k PN . (3.7)

It was shown in [JKO98, Proposition 4.1] that for an absolutely continuous initial condition, there is a unique dis-

crete solution trajectory pρτ
k
qkPN. Furthermore, in the limit τ Ñ 0, the following interpretation as the Wasserstein

gradient flow of F was given.

Theorem 3.1.7 (Gradient Flow of Entropy). Given µ0 P PpRdq with µ0 “ ρ0L
d and F pρ0q ă 8. Let pρτ

k
qkPN

be the discrete solution trajectory obtained by (3.7) and define ρτpt, xq “ ρτ
k
pxq for t P rkτ, pk`1qτq. Then ρτ á ρ

in L1pR` ˆ Rdq for τ Ñ 0, where ρ P C8pp0,8q ˆ Rdq is the unique solution to the Fokker-Planck equation

Btρ´ ∆ρ´ divpρ∇Vq “ 0 with ρptq Ñ ρ0 in L1 for t Ñ 0.

Proof. See [JKO98, Theorem 5.1]. �

Note that in the special case V “ 0 we recover the heat equation Btρ´∆ρ “ 0. For a more detailed introduction

to Wasserstein gradient flows, we refer the reader to [San15, Chapter 8], where, in particular, further examples of

partial differential equations and corresponding energy functionals are summarized.

3.2 Numerical Methods for the Classical Optimal Transport Problem

Numerous applications have led to plenty of computational methods to solve the optimal transport problem at least

for some special cases. Here, we first give a brief overview of numerical algorithms and collect the basic ideas

corresponding to the different formulations of the optimal transport distance. Later, we study optimal transport

distances based on the Benamou–Brenier formulation (3.5), which has already been used in [BB00] for the numer-

ical purpose by applying a suitable change of variables. Then, the optimal transport problem turns into a convex

optimization problem, which is solved via an augmented Lagrangian and duality techniques from convex analysis.

In [PPO14], it was shown that a proximal splitting algorithm leads in fact to the same optimization scheme, which

requires to solve a linear system corresponding to an elliptic problem on the time-space domain and pointwise

projections onto a convex set. Here, we introduce the basic concepts from convex analysis, which are necessary

for a proximal splitting algorithm.



3.2. NUMERICAL METHODS FOR THE CLASSICAL OPTIMAL TRANSPORT PROBLEM 17

3.2.1 Overview of Numerical Methods for Optimal Transport

1D Case. In the one-dimensional case, on an interval ra, bs Ă R, the optimal transport map between µA, µB P
Ppra, bsq can be computed explicitly. Given any µ P Ppra, bsq, the cumulative distribution function Cµpxq :“şx

a dµ is monotone, and thus, has a so-called pseudo-inverse C´1
µ pyq :“ min

 
x P ra, bs : y ď Cµpxq

(
. Then, an

optimal transport map for Monge’s problem is given by T “ C´1
µB

˝ CµA
. We refer the reader to [San15, Chapter 2]

for a detailed discussion.

Empirical Measures. Next, we consider the particular case that both measures µA, µB P PpRdq are finite

sums of weighted Dirac measures, i.e., there are finitely many points xi P Rd for i “ 1, . . . ,N and y j P Rd for

j “ 1, . . . ,M and corresponding weights α P RN
ě0

, β P RM
ě0

with
řN

i“1 αi “
řM

j“1 β j s.t.

µApxq “
Nÿ

i“1

αiδxi
, µBpxq “

Mÿ

j“1

β jδy j
.

For a cost function c, we can define an associated cost matrix C P RNˆM with entries Ci j “ cpxi, y jq. Then

solving the Kantorovich problem (3.3) turns into minimizing the Euclidean scalar product xP,Cy over all couplings

P P ΠpµA, µBq “
 

P P RNˆM
` : P 1M “ α , PT

1N “ β
(

, where we denote by 1N the vector inRN with all entries

equal 1. Thus, the optimal transport problem becomes a linear program in NM variables with N ` M constraints.

Note that in the case N “ M and αi “ β j for all i, j, this even simplifies to a simple sorting problem. In the general

case, the linear program in the dual formulation

max
 

x f , αy ` xg, βy : p f , gq P RN ˆRM with fi ` g j ď Ci j

(
. (3.8)

can, e.g., be solved by the Auction algorithm [BE88].

Cyclical Monotonicity. For empirical measures, Schmitzer [Sch16a, Sch16b] proposed a sparse multiscale al-

gorithm by making in addition to the linear program formulation (3.8) use of the cyclical monotonicity property,

which states that for an optimal transport plan γ, the support supppγq is c-cyclically monotone, i.e., for all k PN,

all permutations σ, and all pairs pxi, yiqi“1,...,k we have
řk

i“1 cpxi, yiq ď
řk

i“1 cpxi, yσpiqq.

Entropy Regularization. In [BCC`15], the entropy functional HpPq “ ´
řN

i“1

řM
j“1 Pi jplogpPi jq ´ 1q was

added as a regularizer to the Kantorovich formulation for discrete measures, i.e., for a regularization parameter

ε ą 0, the optimization problem

min txP,Cy ´ εHpPq : P P ΠpµA, µBqu (3.9)

was investigated. By considering the associated Gibbs kernel with entries Gi j “ e´
Cij
ε and defining the Kullback–

Leibler divergence as

KLpP|Gq “
Nÿ

i“1

Mÿ

j“1

Pi j

ˆ
log

ˆ
Pi j

Gi j

˙
´ 1

˙
,

the problem (3.9) can be written as

min tεKLpP|Gq : P P ΠpµA, µBqu .

Then optimizing the corresponding dual problem was solved by Sinkhorn’s algorithm, which only performs matrix-

vector-multiplications. Here, the sparsity of the matrix and thus, the speed of convergence depends on the regular-

ization parameter ε. For ε Ñ 0, it has been shown in [PC17, Proposition 4.1] that solutions to the regularized prob-

lem converge to the optimal transport plan with maximal entropy. An entropy regularization was also applied in

[Pey15] for the numerical computation of Wasserstein gradient flows and in [PCS16] for the Gromov–Wasserstein

distance between two metric spaces, which was introduced by Sturm [Stu06a] using a Kantorovich formulation.
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Semi-Discrete Optimal Transport. In the so-called semi-discrete case, we consider the optimal transport prob-

lem between a density µA “ ρAL and an empirical measure µB “
řN

i“1 βiδxi
. Based on Monge’s formulation,

Merigot [Mér11] used a geometric approach by optimizing weighted Voronoi cells. This approach was also applied

in [Lév15] for tetrahedral meshes in 3D.

Polar Factorization. In [HZTA04], the optimal transport map T was computed by making use of the polar

factorization result by Brenier [Bre91]. For simplicity, the domain was restricted to be the unit square, where an

explicit construction of an initialization T0 s.t. µA “ detpDT0qµB ˝T0 is computable. Then, provided that pT0q#µA

is absolutely continuous, the polar factorization admits a unique decomposition T0 “ p∇Ψ0q ˝ s0, where Ψ0 is a

convex function and s0 is a measure-preserving map. Finally, a gradient descent method was applied to remove the

measure-preserving part and consequently obtained an optimal transport map.

Monge–Ampère Equation. Solving the optimal transport problem numerically by solving the Monge–Ampère

equation was studied in [LR05, BFO10, BFO10]. Note that in general even for absolutely continuous densities

the optimal transport map T does not have to be a homeomorphism. However, under the assumption that T is an

orientation-preserving diffeomorphism, the matching condition in (3.1) for measures µA “ ρAL and µB “ ρBL

becomes ρA “ detpDTqρB ˝ T. Using the property of the optimal transport map being a gradient of a convex

function T “ ∇ψ, we arrive at the Monge–Ampère equation ρA “ detpD2ψqρB ˝ p∇ψq.

3.2.2 Convex Optimization

Now, we introduce the basic concepts of convex analysis, where we focus on proximal splitting algorithms. We

refer the reader to [BC17] and [ET99] for a more general introduction.

In the following, let H be a Hilbert space. First, we recall basic definitions.

Definition 3.2.1. We say that f : H Ñ RY t8u is

1. proper if domp f q :“ tx P H : f pxq ă 8u ,H,

2. convex if f ptx ` p1 ´ tqyq ď t f pxq ` p1 ´ tq f pyq for all x, y P H, t P r0, 1s, and

3. lower semi-continuous if f pxq ď lim infkÑ8 f pxkq for all xk Ñ x.

Furthermore, we denote by Γ0pHq the set of all proper, convex and lower semi-continuous functions on H.

Our main goal is to provide appropriate tools to find a solution to the minimization problem

minimize Jpxq “ F pxq `Gpxq over all x P H ,

where the algorithm essentially makes use of the splitting of a functional J into F P Γ0pHq and G P Γ0pHq.

Remark 3.2.2. More generally, we can develop the following concepts for a functional Jpxq “ F pKxq ` Gpxq
with a linear operator K : H Ñ H. Most of the here presented tools can also be extended to Banach spaces. Since

this is not necessary for our applications, we restrict to Hilbert spaces and the case K “ id.

We point out that J does not have to be differentiable, s.t. numerical methods involving a gradient like a

gradient descent cannot be applied. Instead, we introduce more general techniques, where it turns out that functions

in Γ0pHq are so-called subdifferentiable.

Definition 3.2.3 (Subdifferential). Let f : H Ñ R Y t8u be proper and convex. Then the subdifferential of f in

x P H is defined by

B f pxq “ tz P H : xy ´ x, zy ď f pyq ´ f pxq @y P Hu .

We call f subdifferentiable at x if B f pxq ,H.



3.2. NUMERICAL METHODS FOR THE CLASSICAL OPTIMAL TRANSPORT PROBLEM 19

It can be verified that a function f P Γ0pHq is subdifferentiable (see [BC17, Theorem 9.20]). Then Fermat’s

rule (see [BC17, Theorem 16.3]) generalizes the necessary condition D f pxq “ 0 for a minimizer x of a smooth

function. Indeed, x is a minimizer of f if and only if 0 P B f pxq. Since the subdifferential BJpxq might, in general,

be challenging to compute, we take into account the so-called proximal mapping.

Definition 3.2.4 (Proximal Mapping). For f P Γ0pHq, the proximal mapping is defined as

prox f pxq “ arg min
yPH

1

2
}x ´ y}2

H ` f pyq .

Then we have the following relation between the proximal mapping and the subdifferential.

Proposition 3.2.5 (Relation between Proximal Mapping and Subdifferential). Let f P Γ0pHq and let x, p P H.

Then

p “ prox f pxq ô x ´ p P B f ppq .

Proof. See [BC17, Proposition 16.44]. �

Now, similar to a gradient descent method, proximal point algorithms iteratively perform proximal operators

to obtain a sequence, which converges to a minimizer ofJ . In many applications, a closed-form expression of the

proximal operator ofJ is not available, butJ admits a splitting into functions F and G as above, s.t. the proximal

operators of F and G can be computed explicitly. Then, in the optimization scheme, these proximal operators of

F and G are applied alternatingly, where specific step sizes are given according to an appropriate fixed point map.

Here, we present two widespread proximal splitting algorithms, which we use for our applications in Chapter 4

and Chapter 5.

Theorem 3.2.6 (Douglas–Rachford Splitting Algorithm). Let a0 P H be an initial value, λ P p0, 2q, and γ ą 0.

The iteration of the Douglas–Rachford splitting algorithm is defined for n PN as

bn`1 “ proxγG panq ,

an`1 “ an ` λ
´

proxγF p2bn`1 ´ anq ´ bn`1

¯
.

(3.10)

Then both sequences panqnPN and pbnqnPN`
converge to a minimizer of J .

Proof. See [EB92]. �

Furthermore, the algorithm developed by Chambolle and Pock [CP11] makes use of the convex dual formula-

tion of the actual minimization problem. Therefore, we define the Fenchel conjugate.

Definition 3.2.7 (Fenchel Conjugate). For a function f P Γ0pHq we define its Fenchel conjugate f ˚ by

f ˚pyq “ sup
xPH

xy, xyH ´ f pxq .

Theorem 3.2.8 (Chambolle–Pock Algorithm). Let pa0, b0q P H ˆ H be two initial values and set c0 “ a0. Fur-

thermore, let λ P r0, 1s and τ, σ ą 0 s.t. τσ ă 1. The iteration of the Chambolle–Pock algorithm is defined for

n PN as

bn`1 “ proxσF˚ pbn ` σ cnq ,
an`1 “ proxτG pan ´ τ bn`1q ,
cn`1 “ an ` λ pan`1 ´ anq .

(3.11)

Then the sequences panqnPN and pcnqnPN converge to a minimizer of J .

Proof. See [CP11]. �

A priori, computing prox f ˚ might be easier to compute prox f or vice-versa, but the following theorem allows

computing one of these expressions if the other one is known.
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Theorem 3.2.9 (Moreau Decomposition). For f P Γ0pHq and α ą 0 we have the following identity

proxα f pxq ` prox 1
α f ˚

´ x

α

¯
“ x .

Proof. See [BC17, Theorem 14.3]. �

Now, we discuss the example of an indicator function of a convex set, which we frequently apply in the sequel.

Example 3.2.10 (Proximal Map of Indicator Function). Let K Ă H be a closed and convex set. Recall that the

indicator function is given by

IKpxq “
#

0 if x P K ,

8 if x < K .

Then

proxIK
pxq “ arg min

yPK

1

2
}x ´ y}2

H “ projKpxq ,

where projK denotes the orthogonal projection on K w.r.t. the norm } ¨ }H on H.

Moreover, we give a characterization of the projection onto a convex set by taking into account the so-called

normal cone.

Lemma 3.2.11 (Characterization of Projection by Normal Cone). Let K Ă H be a nonempty, closed, and convex

set. For p P H we define the normal cone by

NKppq :“
#

tx P H : xy ´ p, xy ď 0 @y P Ku if p P K ,

H otherwise .

Then the projection of p onto K is characterized by

ppr “ projKppq ô p ´ ppr P NKppprq .

Proof. See [BC17, Proposition 6.47]. �

3.2.3 Application of Proximal Splitting Methods to the Flow Formulation

Now, we demonstrate how a proximal splitting algorithm can be applied to solve the optimal transport problem

numerically. Here, we take into account the Benamou–Brenier formulation (3.5), which we first have to transform

into a convex optimization problem. Therefore, we make use of a change of variables by considering, instead of

the pair mass and velocity pρ, vq, the pair mass and momentum pρ,m “ ρvq. This change of variables was already

performed in (3.5) for the numerical purpose. Then the optimization problem (3.5) becomes

WpρAL , ρBL q2 “ inf

#ż 1

0

ż

D
Φpρ,mq dx dt : pρ,mq P CEpρA, ρBq

+
. (3.12)

Here, the integrand of the kinetic energy |v|2ρ transforms pointwise into

Φpρ,mq “

$
’’’&
’’’%

|m|2
ρ

if ρ ą 0 ,

0 if pρ,mq “ 0 ,

8 otherwise,

(3.13)
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with the advantage that Φ is lower semi-continuous, convex and 1-homogeneous. Furthermore, the continuity

equation Btρ`divpρvq “ 0 simplifies to a linear equation Btρ`divpmq “ 0. Thus, the optimization problem (3.12)

is convex. Moreover it can be written as minimizing a functional J “ F `G with a splitting into the functionals

F pρ,mq “ ICEpρA,ρBqpρ,mq ,

Gpρ,mq “
ż 1

0

ż

D
Φpρ,mq dx dt “ Etranspρ,mq .

Thus, provided that proxF and proxG can be computed explicitly, we can apply a proximal splitting algorithm.

For a fully numerical scheme, in [PPO14], a staggered grid discretization was proposed, whereas in Section 4.5,

we use a finite element discretization. Here, we do not describe a specific discretization of the functions ρ and

m, but rather mention that for the concrete implementation, it is essential that proxG can be performed pointwise.

We comment on that in the corresponding applications in Chapter 4 and Chapter 5. Furthermore, it turns out hat

proxF requires to solve an elliptic problem on the time-space domain.

Proximal Map of Kinetic Energy

First, we identify pointwise the Fenchel conjugate of the function Φ.

Proposition 3.2.12 (Fenchel Conjugate of Kinetic Energy). For the function Φ defined in (3.13) we have that

Φ˚ “ IB is an indicator function of the convex set

B “
"

pρ,mq P RˆRd : ρ` |m|2
4

ď 0

*
. (3.14)

Proof. See [BB00]. �

Then, using Moreau’s identity, prox
Φ

can be computed by projecting onto the convex set B, which we now

describe explicitly.

Lemma 3.2.13 (Projection onto B). The projection of a point pρ,mq P RˆRd onto the set B is given by

projBpρ,mq “ pρpr,mprq “

$
’&
’%

pρ,mq if pρ,mq P B ,
ˆ
ρ` 1 ´ 1

σ
, σm

˙
if pρ,mq < B ,

where σ P R is defined as the solution of the equation σ3|m|2 ` 2p1 ` ρqσ´ 2 “ 0.

Proof. In the case that pρ,mq < B, the projection lies on the boundary BB, which can be parametrized by a map

γ : Rd Ñ BB defined as γpbq “
´

´ |b|2

2 , b
¯

. Hence, the vector p1, bq P Rd`1 spans the normal space at a point

pa, bq P BB. Now, for pρ,mq P R ˆ Rd, we search for the orthogonal projected point pρpr,mprq P BB, which

satisfies the relation pρpr,mprq ` τp1,mprq “ pρ,mq for some τ P R. We set σ “ p1 ` τq´1, which leads to

pρpr,mprq “ pρ` 1 ´ 1
σ , σmq. Since pρpr,mprq P BB, we obtain σ3|m|2 ` 2p1 ` ρqσ´ 2 “ 0. �

Note that this polynomial equation of order three can be solved by a simple Newton method.

Projection onto Solutions to the Continuity Equation

Next, we show that the projection on the set of solutions to the continuity equation can be computed by solving a

Laplace equation on the time-space domain. Here, we do not specify function spaces, s.t. the following statement

has to be understood rather formally.
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Lemma 3.2.14 (Projection onto CEpρA, ρBq). For p “ pρ,mq : r0, 1s ˆ D Ñ RˆRd the (formal) projection onto

the set CEpρA, ρBq can be computed by

ppr “ p ` 1

2
∇pt,xqφ

pr “ pρ,mq ` 1

2
pBtφ

pr, Bxφ
prq ,

where φpr : r0, 1s ˆ D Ñ R solves the weak Laplace equation

ż 1

0

ż

D

1

2
∇pt,xqφ

pr∇pt,xq
pφ dx dt “

ż

D

pφp1qρB ´ pφp0qρA dx ´
ż 1

0

ż

D
p∇pt,xq

pφ dx dt

for all test functions pφ : r0, 1s ˆ D Ñ R.

Proof. The proof (for rigorous function spaces) can be obtained as a special case of Proposition 4.6.1. �



Chapter 4

Optimal Transport with Source Term

We have seen in Chapter 3 that the Wasserstein distance defines a metric on the space of Borel probability mea-

sures. Now, we are interested in extending this classical optimal transport distance to the space of positive Radon

measures and in particular, defining a metric between two measures of possibly different total mass. Such a gener-

alization is for example motivated by imaging applications, where the Wasserstein distance was used for nonrigid

image registration (see, e.g., [HZTA04]), but unfortunately input images to be compared are in general not of the

same mass given by the intensity of gray values. Thus, for the classical optimal transport distance, a contrast mod-

ulation on the input images is required before an optimal matching between the input images can be computed.

Even if the total mass of the input images coincides, a global mass redistribution between totally independent

image structures is unfavorable, and instead, we desire local intensity modulations to match similar structures.

In this chapter, we present a possible generalization of the Benamou–Brenier formulation [BB00] by introduc-

ing a source term in the continuity equation and penalizing the amount of source in addition to the kinetic energy.

We studied such a model in [MRSS15], where we proposed a penalization of the source in a squared L2-norm both

in time and space. There, the existence of geodesic paths is established, where the framework of Radon measures

is taken into account, and the corresponding measures for mass, momentum, and source term are decomposed

into absolutely continuous and singular parts w.r.t. the Lebesgue measure. To ensure that the definitions of the

energy functionals do not depend on the decomposition, by a lower semi-continuity result on integral functionals

in [BB90, BB92], it turns out that 1-homogeneity of the integrands for the singular measures is a suitable as-

sumption. But then a penalization of the source term in a squared L2-norm both in time and space does not allow

singular sources. Instead, we propose an L1-norm of the source term in space and an L2-norm in time to provide

an equiintegrability estimate, which guarantees compactness in the space of curves of Radon measures. This is, in

particular, desirable in the context of image warping, where, e.g., line segments correspond to singular sources.

This chapter is organized as follows. We formally derive our generalized optimal transport model with source

term in Section 4.1. During the last years, a lot of similar approaches have been proposed in the literature, which

we summarize and compare with our model in Section 4.2. In Section 4.4, we rigorously define the generalized

optimal transport on the space of Radon measures. Here, following [DNS09], we prove the existence of optimal

transport geodesics. As a preliminary step, we summarize important results on curves of Radon measures in

Section 4.3. In Section 4.5, we present a finite element discretization, and in Section 4.6, we show how the

corresponding discrete optimization problem can be solved via proximal splitting methods based on the approach

for classic optimal transport in [PPO14]. Finally, in Section 4.7, we present our numerically computed results for

selected academic examples to discuss the properties of our generalized model, as well as for real texture images.

Remark 4.0.1 (Collaborations and Publications). All results presented in this chapter are joint work with Jan Maas

and Martin Rumpf and have been published in [MRS17]. It is based on a joint work with Jan Maas, Martin Rumpf,

and Carola Schönlieb, which has been published in [MRSS15].

23
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4.1 A Benamou–Brenier Formula with Source Term

In this section, we formally derive a generalized optimal transport distance, which relaxes the mass-preserving

condition. In the following, let D Ă Rd be a compact and convex domain. We recall the Benamou–Brenier for-

mulation (3.5) that allows us to compute the L2-Wasserstein distanceWpρA, ρBq between two probability density

functions ρA and ρB by minimizing the path energy

Etranspρ, vq “
ż 1

0

ż

D
ρ|v|2 dx dt (4.1)

over all curves of density functions ρ : r0, 1s ˆ D Ñ Rě0 with temporal boundary constraints ρp0q “ ρA and

ρp1q “ ρB and corresponding velocity fields v : r0, 1s ˆ D Ñ Rd s.t. the continuity equation Btρ ` divpρvq “ 0
is satisfied.

Note that the continuity equation is a mass-preserving condition, which enforces ρptq to remain in the space of

Borel probability measures for every t P r0, 1s. To relax this condition, we introduce a source term z : r0, 1sˆD Ñ
R in the continuity equation:

Btρ` divpρvq “ z . (4.2)

Then, the source term is penalized in addition to the kinetic energy. Therefore, we introduce a source term cost

functional

Esourcepzq “
ż 1

0

ˆż

D
rpzq dx

˙2

dt . (4.3)

Here, we propose r : R Ñ R to be a nonnegative, convex function satisfying rp0q “ 0. Moreover, we assume a

linear growth condition, i.e., there exists a constant Cr P R s.t. rpsq ď Crp1 ` |s|q for all s P R. Possible choices

for r are given in the following example.

Example 4.1.1 (Functions for Source Term Energy).

1. The absolute value rpsq “ |s| corresponds to the L1-norm in space.

2. For some β ą 0, the Huber function

rpsq “

$
’’&
’’%

1

2β
s2 if s ď β ,

|s| ´
β

2
otherwise,

(4.4)

has linear growth for large s but is quadratic around zero. In our computations, we choose β “ 10´4.

Altogether, we define a generalized optimal transport path energy functional

Eδpρ, v, zq “ Etranspρ, vq ` 1

δ
Esourcepzq (4.5)

“
ż 1

0

ż

D
ρ|v|2 dx dt ` 1

δ

ż 1

0

ˆż

D
rpzq dx

˙2

dt ,

which has to be minimized over all solutions to the relaxed continuity equation (4.2) and the temporal boundary

constraints ρp0q “ ρA and ρp1q “ ρB, where ρA and ρB are no longer restricted to have equal total mass.

Later, we show that in a mathematically rigorous setup formulated on the space of Radon measures the linear

growth condition on r allows singular sources. Moreover, the penalty parameter δ ą 0 allows for regulating the

mass modulation rate. Note that for δ “ 0 a pure blending between ρA and ρB with zero velocity has minimal

energy, whereas for δ Ñ 8 transport becomes cheaper. In our computational results in Section 4.7, we verify

these effects of the parameter δ.
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4.2 Relation to Previous Work on Optimal Transport with Source Term

During the last years, there has been a lot of activity in extending optimal transport distances to spaces of densities

or measures with possibly different masses, which we briefly summarize and point out differences to our model.

Partial Optimal Transport. A so-called partial optimal transport model was proposed in [CM10] by relaxing the

marginal constraint in the Kantorovich formulation. More precisely, it was asked for transporting a fixed fraction

of some initial to a final density function by minimizing the L2-transport cost. This model was analyzed in [Fig10]

by studying the geometry of the subsets which are transported. However, there is no source term involved directly.

Unbalanced Semi-Discrete Optimal Transport. We have discussed in Section 3.2.1 that Wasserstein geodesics

between a density and a discrete measure can be computed by using methods from algorithmic geometry. Recently,

in [BSW18], this approach was extended to the unbalanced semi-discrete optimal transport problem.

Furthermore, there are some optimal transport distances which are based on minimizing a path energy subject

to a continuity equation with a source term and therefore, can be considered as generalized Benamou–Brenier

formulations. For an Lp-norm in time and an Lq norm in space, we introduce the notation

Esource,LppLqqpzq :“ }}zpt, ¨q}LqpDq}Lppr0,1sq “
˜ż 1

0

ˆż

D
|zpt, xq|q dx

˙ p

q

dt

¸ 2
p

(4.6)

and refer a formulation with such a source term as an LppLqq-model. In the same manner, for the Huber function

(4.4), the source term cost functional (4.3) is denoted by an L2pHq-model.

L1pL1q-Model. In [PR16, PR14], a source term was introduced and minimizers of the path energy

Etranspρ, vq ` Esource,L1pL1qpzq “
ż 1

0

ż

D
ρ|v|2 dx dt `

˜ż 1

0

ż

D
|z| dx dt

¸2

subject to equation (4.2) were considered. Then it was proven for absolutely continuous measures ρ and absolutely

continuous sources z that this geodesic formulation corresponds to solving the problem

inf t|ρ̃A ´ ρA|TV ` |ρ̃B ´ ρB|TV `Wpρ̃A, ρ̃Bq : ρ̃A, ρ̃B P M pDq , |ρ̃A|TV “ |ρ̃B|TVu ,

where the classical Wasserstein distanceWpρ̃A, ρ̃Bq is well-defined since ρ̃A and ρ̃B have the same mass.

L2pL2q-Model. Instead of the squared L1-norm for the source term functional in space, we chose in [MRSS15]

a penalization in the squared L2-norm, i.e., the source term was given by Esource,L2pL2q. Here, for the moment, we

neglect the penalty parameter δ.

Wasserstein–Fisher–Rao Distance. In the independent works [CPSV15] and [LMS15], an interpolating dis-

tance between the Wasserstein distance and the Fisher–Rao distance was proposed by minimizing the energy

EWFRpρ, v, zq “
ż 1

0

ż

D
ρp|v|2 ` αpzqq dx dt

subject to a continuity equation Btρ ` divpρvq “ ρz. Note that the source term in this model is integrated w.r.t.

the measure given by ρ. Furthermore, in [CPSV15], a static Kantorovich formulation was formulated and it was

shown that the distance in [PR16, PR14] arises as a special case.

In the following, we observe that the differences of these extended Benamou–Brenier formulations become

crucial by properly extending the energies to the space of Radon measures.
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4.3 Curves of Radon Measures

For a rigorous formulation of the energy functional (4.5), we investigate Radon measures on the time-space domain

r0, 1s ˆ D. We desire that these measures should still represent curves, i.e., at a given time step t P r0, 1s the

time-space measure is again a measure in space. This assumption leads us to the concept of the disintegration

of measures. Furthermore, we make use of a proper extension result of energy functionals to Radon measure

established in [BB90, BB92]. For a short introduction in basic measure theory, we refer the reader to Section 2.1

and the references therein. In the following, let pX,Eq be a complete measure space. Later, in our applications,

we consider X “ D being the space domain or X “ r0, 1s ˆ D being the time-space domain, where in both cases

X is endowed with the corresponding Lebesgue measure. First, we introduce an advantageous decomposition of

measures.

Definition 4.3.1 (Absolute Continuity and Singularity).

1. Let µ be a positive measure and ν be a vectorial measure on pX,Eq. Then ν is absolutely continuous w.r.t. µ
if for any A P E with µpAq “ 0 it follows that |ν|TVpAq “ 0. In this case we write ν ! µ.

2. Two positive measures µ, ν on pX,Eq are mutually singular if there exists E P E with µpEq “ 0 “ νpXzEq.

In this case we write µ K ν. We say that vectorial measures µ, ν are mutually singular, if |µ|TV K |ν|TV.

Theorem 4.3.2 (Lebesgue Decomposition). Let µ be a positive and σ-finite measure on pX,Eq, and let ν be a

vectorial measure on pX,Eq. Then, there are unique vectorial measures νa, νs s.t. νa ! µ, νs K µ, and ν “ νa ` νs.

Furthermore, there is a unique function f P L1pX, µqm called the density of ν w.r.t. µ s.t. νa “ fµ.

Proof. See [AFP00, Theorem 1.28]. �

Next, we recall the disintegration theorem, where we restrict to a disintegration in time of a time-space domain.

Theorem 4.3.3 (Disintegration in Time). Let µ P M `pr0, 1s ˆ Dq be a positive Radon measure. We consider the

projection projr0,1s : r0, 1s ˆ D Ñ r0, 1s on the time interval. If µ̃ :“
´

projr0,1s

¯
#
µ is a positive Radon measure,

i.e., µpK ˆ Dq ă 8 for all K Ă r0, 1s compact, then there exists a family pµtqtPr0,1s Ă M `pDq s.t.

1. t ÞÑ µt is µ̃-measurable,

2. µtpDq “ 1 µ̃-a.e.,

3. for all η P L1pr0, 1s ˆ D, µq, we have that ηpt, ¨q P L1pr0, 1s, µtq for µ̃-a.e. t P r0, 1s,

4. for all η P L1pr0, 1s ˆ D, µq, we have that t ÞÑ
ş

D ηpt, xq dµtpxq P L1pr0, 1s, µ̃q, and

5. for all η P L1pr0, 1s ˆ D, µq, we have that

ż

r0,1sˆD
ηpt, xq dµpt, xq “

ż 1

0

ż

D
ηpt, xq dµtpxq dµ̃ptq .

Proof. See [AFP00, Theorem 2.28]. �

We denote this disintegration by µ “ µ̃ b µt. In analogy, the disintegration result holds for vectorial Radon

measures by taking into account the total variation |µ|TV “ µ̃b |µt|TV. Note that we later omit the normalization

µtpDq “ 1. In the application, we are interested in verifying the disintegration of a weakly-˚ convergent sequence

of measures in the limit, which leads us to the definition of equiintegrability.

Definition 4.3.4 (Equiintegrability). Let µ be a positive measure on pX,Eq. A family F Ă L1pX, µq is equiinte-

grable if

1. for any ε ą 0 there exists A P E with µpAq ă 8 and
ş

XzA | f | dµ ă ε for all f P F, and

2. for any ε ą 0 there exists δ ą 0 s.t. for all E P E with µpEq ă δ we have
ş

E | f | dµ ă ε for all f P F.
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The second condition is called uniform integrability. Note that in the cases of interest, the first condition is al-

ways satisfied, since X is assumed to be compact. Now, there are several possibilities to verify the equiintegrability

condition. We use the following characterization.

Proposition 4.3.5 (Characterizations of Equiintegrability). A family F Ă L1pX, µq is equiintegrable if and only if

for any superlinear function S there exists a constant CS s.t. for all f P F we have

ż

X
Sp f pxqq dµpxq ď CS ă 8 .

Proof. See [San15, Chapter 8.3]. �

In particular, if for any p ą 1 a family F Ă L1pX, µq is uniformly bounded in Lp then F is equiintegrable.

However, this is no longer true for p “ 1. This observation is essential for our optimal transport model with source

term. Now, we state the connection between disintegration and equiintegrability.

Lemma 4.3.6 (Equiintegrability implies Existence of Disintegration). Let pµnqnPN Ă M `pr0, 1s ˆ Dq be a se-

quence of positive Radon measures. We assume that µn “ Lr0,1s b µn
t has disintegrations in time. More precisely,

pµn
t q P M `pDq, t ÞÑ µn

t is Borel measurable, and for all η P L1pr0, 1s ˆ Dq we have
ş

r0,1sˆD ηpt, xq dµnpt, xq “
ş1

0

ş
D ηpt, xq dµn

t pxq dt. Furthermore, we assume convergence µn ˚á µ. We define a sequence p f nqnPN Ă L1pr0, 1sq
by f nptq “ µn

t pDq. If p f nqnPN is equiintegrable, then the limit measure µ P M `pr0, 1s ˆ Dq has a disintegration

µ “ Lr0,1s b µt in time.

Proof. The statement is, e.g., applied in [DNS09, Lemma 4.5], where a similar result in probability theory to prove

the existence of conditional expectation is referred. Here, we briefly collect the arguments in our specific case.

By assumption, the sequence p f nqnPN is equiintegrable and is uniformly bounded in L1pr0, 1sq, since } f n}L1 “
µnpr0, 1s ˆ Dq and µn is convergent. By the Dunford–Pettis Theorem (see [AFP00, Corollary 1.33]) there is

a subsequence (again indexed by n) s.t. f n á f in L1pr0, 1sq. Then for every η̃ P Cpr0, 1sq we have thatş
r0,1sˆD η̃ptq dµpt, xq “

ş
r0,1s η̃ptq f ptq dt. Thus, by Theorem 4.3.3 we obtain a disintegration µ “ fLr0,1s b µ̂t in

time, which can be rewritten as µ “ Lr0,1s b f ptqµ̂t “: Lr0,1s b µt. �

Next, we consider functionals J : L1pX,Rdq Ñ R of type

Jpuq “
ż

X
f puq dL , (4.7)

where f : Rd Ñ R Y t8u is supposed to be a proper, convex, and lower semi-continuous function (see Defi-

nition 3.2.1). In [BB90, BB92], a proper extension of the functional J onto the space of Radon measures was

defined. For this purpose, we need the definition of the recession function.

Definition 4.3.7 (Recession Function). Let f : Rd Ñ R Y t8u be a proper, convex, and lower semi-continuous

function. The recession function f8 : Rd Ñ RY t8u is defined by

f8pxq “ lim
tÑ8

f px0 ` txq ´ f px0q
t

,

where x0 P Rd satisfies f px0q ă 8.

Proposition 4.3.8 (Properties of the Recession Function). Let f : Rd Ñ RY t8u be a proper, convex, and lower

semi-continuous function. Then the recession function satisfies the following properties.

1. The definition of f8 is independent of x0.

2. f8 is convex and lower semi-continuous.

3. f8 is 1-homogeneous.

Proof. See [AFP00, Chapter 2.6]. �
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Then, we can state the following extension result.

Theorem 4.3.9 (Lower Semi-Continuity of the Extended Functional). Let f : Rd Ñ r0,8s be a proper, convex,

and lower semi-continuous function. We consider an open or compact set X Ă Rd. Let µ P M `pXq be a positive

Radon measure and ν P M pX,Rdq be a vector-valued Radon measures. We define a functional

Gpν, µq :“
ż

X
f
´

dν
dµ pxq

¯
dµpxq `

ż

X
f8

´
dνs

d|νs|TV
pxq

¯
d|νs|TVpxq .

Then G is weak-˚ lower semi-continuous, i.e., for any sequence pµkqkPN of positive Radon measures on X with

µk
˚á µ and any sequence pνkqkPN of vector-valued Radon measures on X with νk

˚á ν we have

Gpν, µq ď lim inf
kÑ8

Gpνk, µkq .

Proof. See [AFP00, Theorem 2.34]. �

Consequently, J can be extended to a functional J : M pXq Ñ RY t8u by

Jpνq “
ż

X
f p dν

dL
q dL `

ż

X
f8p dνs

d|νs|TV
q d|νs|TV “

ż

X
f p dν

dL
q dL ` f8p1q|νs|TVpXq , (4.8)

where ν “ dν
dL

` νs is the Lebesgue decomposition of ν (see Theorem 4.3.2). Then J is weak-˚ lower semi-

continuous on M pXq. Moreover, in the case of an absolutely continuous measure ν “ uL , the functional Jpνq
in (4.8) coincides with the old definition of Jpuq in (4.7).

4.4 Existence of Geodesics for a Generalized Optimal Transport Distance

Now, we propose a measure-valued setup to rigorously define a set of weak solutions for the continuity equation

with source term (4.2) and the energy in (4.5) by taking into account the extension result in (4.8). Moreover, we

prove the existence of corresponding generalized optimal transport geodesics. We follow the lines of [DNS09] for

more general optimal transport distances and of [MRSS15] for a source term in the L2pL2q-norm.

4.4.1 Measure-Valued Formulation of the Path Energy Functional

As for the classical L2-optimal transport problem, we first apply the change of variables pρ, vq ÞÑ pρ,m “ ρvq,

where m denotes the momentum. We recall from (3.13) that the integrand of the kinetic energy transforms to

Φpρ,mq “

$
’’’&
’’’%

|m|2
ρ

if ρ ą 0 ,

0 if pρ,mq “ 0 ,

8 otherwise,

which is a lower semi-continuous, convex, and 1-homogeneous function.

Additionally to the assumption that D is a bounded, convex domain, we furthermore consider D to be closed,

s.t. by Theorem 2.1.3 duality of Radon measures on r0, 1s ˆ D is given by continuous functions on r0, 1s ˆ D.

Then we introduce Radon measures

µ P M
`pr0, 1s ˆ Dq for the mass,

ν P M pr0, 1s ˆ D,Rdq for the momentum, and

ζ P M pr0, 1s ˆ Dq for the source.

We start by formulating a generalized continuity equation with source term in terms of these measure-valued

quantities, which are a priori just measures on the time-space domain r0, 1s ˆ D, but we desire that these measures

represent curves of measures on the space domain D. Thus, we incorporate certain disintegration assumptions on

the measures.
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Definition 4.4.1 (Weak Continuity Equation with Source Term). Let µA, µB P M `pDq be given. A triple of

measures pµ, ν, ζq in the space M `pr0, 1s ˆ Dq ˆ M pr0, 1s ˆ D,Rdq ˆ M pr0, 1s ˆ Dq is said to be a weak

solution to the continuity equation with source term

Btµ` divpνq “ ζ , µ0 “ µA , µ1 “ µB ,

if the following conditions hold:

1. The measures µ, ν and ζ admit disintegrations w.r.t. the Lebesgue measure in time, i.e., there exist measure-

valued functions t ÞÑ µt weak-˚-continuous in M `pDq , t ÞÑ νt Borel measurable in M pD , Rdq withş1
0 |νt|pDq dt ă 8, and t ÞÑ ζt Borel measurable in M pDq with

ş1
0 |ζt|pDq dt ă 8, s.t.

ż

r0,1sˆD
ηpt, xq dµpt, xq “

ż 1

0

ż

D
ηpt, xq dµtpxq dt @η P L1pµq ,

ż

r0,1sˆD
ηpt, xq dνpt, xq “

ż 1

0

ż

D
ηpt, xq dνtpxq dt @η P L1pνq ,

ż

r0,1sˆD
ηpt, xq dζpt, xq “

ż 1

0

ż

D
ηpt, xq dζtpxq dt @η P L1pζq .

2. The continuity equation with source term Btµ ` divpνq “ ζ with boundary values µ0 “ µA and µ1 “ µB

holds in the sense of distributions, i.e., for all time-space test functions η P C1pr0, 1s ˆ Dq we have

0 “
ż 1

0

ˆż

D
Btηpt, xq dµtpxq `

ż

D
∇xηpt, xq dνtpxq `

ż

D
ηpt, xq dζtpxq

˙
dt

´
ż

D
ηp1, xq dµBpxq `

ż

D
ηp0, xq dµApxq .

(4.9)

Finally, we denote by CEpµA, µBq the set of all solutions to the weak continuity equation with source term and

temporal boundary data µA at time t “ 0 and µB at time t “ 1.

Note that (4.9) means that the continuity equation is implicitly taken with homogeneous Neumann boundary

conditions in space. Moreover, we mention that the source terms ζ in Definition 4.4.1 are signed Radon measures,

s.t. solutions µ to the weak continuity equation (4.9) a priori could become negative as well. However, since we

aim at computing geodesic between nonnegative measures µA, µB P M `pDq, we also define the measures µ to be

nonnegative.

Next, we define the energy (4.5) in terms of measures. To this end, by using the Lebesgue decomposition

(Theorem 4.3.2), we decompose for each t P r0, 1s, the triple pµt, νt, ζtq P M `pDq ˆ M pD , Rdq ˆ M pDq into

µt “ ρtL ` µK
t , νt “ mtL ` νK

t , ζt “ ztL ` ζK
t ,

s.t. the singular parts µK
t P M `pDq, νK

t P M pD , Rdq, and ζK
t P M pDq are singular with respect to the Lebesgue

measure L on D. Then we define L K
t :“ µK

t ` |νK
t |TV ` |ζK

t |TV P M `pDq, s.t. L K
t is orthogonal to L . By

construction, the singular parts admit a density with respect to L K
t :

µK
t “ ρK

t L
K

t , νK
t “ mK

t L
K

t , ζK
t “ zK

t L
K

t .

Furthermore, we make use of the proper extension of a functional to the space of Radon measures as described

in Section 4.3. Note that in our case, the function Φ is 1-homogeneous. By the convexity and linear growth

condition of r, the recession function r8 is well-defined with r8p1q “ Cr.

Now, with these decompositions of the measures at hand, we can define the rigorous version of the energy

functional (4.5) in the measure-valued setting. The path energy functional for transport is taken from the Benamou–

Brenier formulation of the L2-Wasserstein distance, i.e., for a fixed time t, the kinetic energy in space is given by

Dtranspµt, νtq :“
ż

D
Φpρt,mtq dL `

ż

D
ΦpρK

t ,m
K
t q dL

K
t .
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To describe the path energy functional involving the source term, we recall that r : R Ñ R is a nonnegative,

convex function with linear growth satisfying rp0q “ 0. Then, for a fixed time t, we define the source term energy

functional in space by

Dsourcepζtq :“
ˆż

D
rpztq dL `

ż

D
Cr|zK

t | dL
K

t

˙2

.

Note that we consider a 1-homogeneous integrand for the singular part of the source measure with the aim to

allow for singular sources with support of the source measure on a set of zero Lebesgue measure. Actually, L K
t

depends on µt, νt and ζt, but by the 1-homogeneity we have in fact |zK
t |TVL K

t “ |ζK
t |TV and ΦpρK

t ,m
K
t qL K

t “
ΦpρK

t ,m
K
t qpµK

t ` |νK
t |TVq. Therefore, Dtrans only depends on pµt, νtq and Dsource only depends on ζt. The total

energy functional in spaceDδ : M `pDq ˆ M pD , Rdq ˆ M pDq Ñ r0,8s is defined as

Dδpµt, νt, ζtq :“ Dtranspµt, νtq ` 1

δ
Dsourcepζtq .

Finally, corresponding to (4.5), we can rigorously define the total energy functional in time and space for measure-

valued quantities by Eδ : M `pr0, 1s ˆ Dq ˆ M pr0, 1s ˆ D,Rdq ˆ M pr0, 1s ˆ Dq Ñ RY t8u as

Eδpµ, ν, ζq “

$
’&
’%

ż 1

0
Dδpµt, νt, ζtq dt if pµ, ν, ζq P CEpµA, µBq ,

8 otherwise.

4.4.2 Compactness and Existence Result

Next, we state a compactness result for solutions to the weak continuity equation with source term.

Proposition 4.4.2 (Compactness of Solutions to the Continuity Equation with Source Term with Bounded Energy).

Suppose that a sequence pµn, νn, ζnqnPN in CEpµA, µBq with temporal boundary values µA and µB has bounded

energy, i.e., there exists a constant C ă 8 s.t.

sup
nPN

Eδpµn, νn, ζnq ď C . (4.10)

Then, there exists a subsequence (again indexed by n) and a triple pµ, ν, ζq P CEpµA, µBq s.t.

1. for all t P r0, 1s, µn
t

˚á µt in M `pDq for n Ñ 8,

2. νn ˚á ν in M pr0, 1s ˆ D,Rdq for n Ñ 8,

3. ζn ˚á ζ in M pr0, 1s ˆ Dq for n Ñ 8, and

4. the following lower semi-continuity estimate holds:

ż 1

0
Dδpµt, νt, ζtq dt ď lim inf

nÑ8

ż 1

0
Dδpµn

t , ν
n
t , ζ

n
t q dt . (4.11)

Proof. Note that the set CEpµA, µBq of solutions to the continuity equation with source term is closed under

weak-˚ convergence. Consequently, the limit measure pµ, ν, ζq is contained in CEpµA, µBq if the subsequence

pµn, νn, ζnqnPN of measures converges as stated above. The crucial part of the proof is to show that the limit

measure can be disintegrated and the subsequence converges in the appropriate sense. In the following, C denotes

a generic constant, which may change from line to line.

Step 1: Compactness of the Source Term. Since r is of linear growth, we have |z| ď Cp1 ` rpzqq, hence

|ζn
t pDq| “

ż

D
|zn

t | dL `
ż

D
|pzn

t qK| dpL n
t qK ď C

´
1 `

b
Dsourcepζn

t q
¯
.
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Because of the bounded energy assumption (4.10), the function

t ÞÑ C
´

1 `
b
Dsourcepζn

t q
¯

is bounded in L2pr0, 1sq, uniformly in n. Thus, we obtain a uniform bound for the source term:

sup
nPN

|ζnpr0, 1s ˆ Dq| “ sup
nPN

ż 1

0
|ζn

t pDq| dt ď sup
nPN

ż 1

0
C
´

1 `
b
Dsourcepζn

t q
¯

dt ď C .

From this estimate, we deduce that a subsequence of pζnqnPN converges weakly-˚ to a measure ζ. Crucial for the

compactness result is that we can disintegrate ζ with respect to the Lebesgue measure on r0, 1s into a family of

measures pζtqtPr0,1s P M pDq. Now, the sequence
`
t ÞÑ |ζn

t |TVpDq
˘

nPN
is uniformly bounded in L2pr0, 1sq. By

Proposition 4.3.5, this implies an equiintegrability estimate for pt ÞÑ ζn
t pDqqnPN, and as a consequence, we obtain

the requested disintegration pζtqtPr0,1s P M pDq of the limit measure ζ.

Step 2: Boundedness of the Mass. A standard approximation argument (see [DNS09, Lemma 4.1]) shows that

solutions to the continuity equation with source term satisfy, for all 0 ď t0 ď t1 ď 1,

ż

D
ηpt1, xqdµt1

pxq ´
ż

D
ηpt0, xqdµt0

pxq

“
ż t1

t0

ż

D
Btηpt, xq dµtpxq dt `

ż t1

t0

ż

D
∇xηpt, xq dνtpxq dt `

ż t1

t0

ż

D
ηpt, xq dζtpxq dt

(4.12)

for all time-space test functions η P C1pr0, 1s ˆ Dq. In particular, taking ηpt, xq ” 1, it follows that

µt1
pDq ´ µt0

pDq “
ż t1

t0

ζtpDq dt . (4.13)

This formula (4.13) for the change of mass yields a uniform bound

µn
t pDq ď µApDq `

ż t

0
|ζn

s |TVpDq ds ď C (4.14)

for all n PN and t P r0, 1s.
Step 3: Compactness of the Momentum. To prove the compactness of the momentum term, we first claim that

the maps
`
t ÞÑ |νn

t |TVpDq
˘

nPN
are uniformly bounded in L2pr0, 1sq, hence equiintegrable. To see this, we follow

[DNS09, Proposition 3.6] to obtain

|νn
t |TVpDq “

ż

D
|mn

t | dL `
ż

D
|pmn

t qK| dpL n
t qK

ď
ˆż

D
Φpρn

t ,m
n
t q dL

˙ 1
2
ˆż

D
ρn

t dL

˙ 1
2

`
ˆż

D
Φ
`
pρn

t qK, pmn
t qK

˘
dpL n

t qK

˙ 1
2
ˆż

D
pρn

t qK dpL n
t qK

˙ 1
2

ď
ˆż

D
Φpρn

t ,m
n
t q dL `

ż

D
Φ
`
pρn

t qK, pmn
t qK

˘
dpL n

t qK

˙ 1
2
ˆż

D
ρn

t dL `
ż

D
pρn

t qK dpL n
t qK

˙ 1
2

“ pDtranspµn
t , ν

n
t qq 1

2
`
µn

t pDq
˘ 1

2 ,

where we used the scalar inequality
?

ab `
?

cd ď
?

a ` c
?

b ` d which holds for a, b, c, d ě 0. Then, taking

into account (4.10) and (4.14), the uniform bound on
`
t ÞÑ |νn

t |TVpDq
˘

nPN
follows. Using the inequality

|νn|TVpr0, 1s ˆ Dq ď
˜ż 1

0
|νn

t |TVpDq2 dt

¸ 1
2

,

we infer that the sequence of vectorial Radon measures pνnqnPN Ă M pr0, 1s ˆ D,Rdq has uniformly bounded

total variation on r0, 1s ˆ D. Therefore, we can extract a subsequence that converges weakly-˚ to some measure
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ν P M pr0, 1s ˆ D,Rdq. Since the sequence
`
t ÞÑ |νn

t |TVpDq
˘

nPN
is equiintegrable, we obtain a disintegration

pνtqtPr0,1s P M pD , Rdq of ν “ Lr0,1s b νt in time.

Note that, without any modifications, the here presented compactness estimate of the momentum variable also

holds for a source term in the L2pL2q-norm (cf . [MRSS15]).

Step 4: Compactness of the Mass. We show that µn
t

˚á µt in M `pDq for n Ñ 8. Therefore, we fix τ P r0, 1s,
take η P C1pDq, and set ξpt, xq :“ ∇ηpxqχr0,τsptq. Even though ξ is discontinuous, it follows from general

approximation results (see [AGS08, Proposition 5.1.10]) that

ż τ

0

ż

D
∇η dνn

t dt “
ż

r0,1sˆD
ξ dνn Ñ

ż

r0,1sˆD
ξ dν “

ż τ

0

ż

D
∇η dνt dt . (4.15)

Setting ιpt, xq :“ ηpxqχr0,τsptq and arguing as above, we obtain

ż τ

0

ż

D
η dζn

t dt “
ż

r0,1sˆD
ι dζn Ñ

ż

r0,1sˆD
ι dζ “

ż τ

0

ż

D
η dζt dt . (4.16)

Now, we can obtain the convergence of a subsequence of pµn
t qnPN. By the weak continuity equation (4.12), for a

triple pµn, νn, ζnq, we have for all η P C1pDq and all t P r0, 1s that

ż

D
ηpxq dµn

t pxq “
ż

D
ηpxq dµApxq `

ż t

0

ż

D
∇ηpxq dνn

t pxq dt `
ż t

0

ż

D
ηpxq dζn

t pxq dt .

Using (4.15) and (4.16), we can pass to the limit

ż

D
ηpxq dµn

t pxq Ñ
ż

D
ηpxq dµApxq `

ż t

0

ż

D
∇ηpxq dνtpxq dt `

ż t

0

ż

D
ηpxq dζtpxq dt “: Ltpηq .

The right rand side defines a linear functional Lt : C1pDq Ñ R. Furthermore, we get from (4.14) the uniform

bound

ˇ̌
ˇ̌
ż

D
ηpxq dµn

t pxq
ˇ̌
ˇ̌ ď }η}8 sup

tPr0,1s

|µtpDq| ď C}η}8 (4.17)

for all η P C1pDq and all n PN. By density of C1pDq in CpDq, we can extend Lt to a linear and bounded functional

on CpDq. Hence, by duality of Radon measures (Theorem 2.1.3), this defines for every t P r0, 1s a measure µt s.t.

pµn
t qnPN converges weak-˚ for a subsequence to µt. Then, we can define µ P M `pr0, 1s ˆ Dq by

ż

r0,1sˆD
ηpt, xq dµpt, xq “

ż 1

0

ż

D
ηpt, xq dµtpxq dt @η P Cpr0, 1s ˆ Dq ,

and since the constant in (4.17) does not depend on t, we have that µn converges weakly-˚ to µ in M `pr0, 1sˆDq.

Step 5: Weak-˚ Continuity of the Disintegration of Mass. Finally, we have to check that the disintegration

t ÞÑ µt is weak-˚ continuous, i.e., for all η P Cpr0, 1s ˆ Dq and for all tk Ñ t we have

ż

D
ηptk, xq dµtk

pxq Ñ
ż

D
ηpt, xq dµtpxq . (4.18)

We use that the continuity equation (4.12) is solved for the minimizing sequence:

ż

D
ηptk, xq dµn

tk
pxq ´

ż

D
ηpt, xq dµn

t pxq

“
ż tk

t

ż

D
Btηps, xq dµn

s pxq ds `
ż tk

t

ż

D
∇xηps, xq dνn

s pxq ds `
ż tk

t

ż

D
ηps, xq dζn

s pxq ds .
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Since, up to subsequences, for every s, µn
s converges weak-˚ to µs for n Ñ 8, and pµn, νn, ζnq converges weak-˚

to pµ, ν, ζq, we obtain (4.18) for every η P C1pr0, 1sˆDq. Then for η P Cpr0, 1sˆDq, we choose an approximating

sequence ηl P C1pr0, 1s ˆ Dq s.t. }ηl ´ η}8 Ñ 0 for l Ñ 8. Using the triangle inequality, we get

ˇ̌
ˇ̌
ż

D
ηptk, xq dµtk

pxq ´
ż

D
ηpt, xq dµtpxq

ˇ̌
ˇ̌

ď
ˇ̌
ˇ̌
ż

D
ηptk, xq dµtk

pxq ´
ż

D
ηlptk, xq dµtk

pxq
ˇ̌
ˇ̌ `

ˇ̌
ˇ̌
ż

D
ηlptk, xq dµtk

pxq ´
ż

D
ηlpt, xq dµtpxq

ˇ̌
ˇ̌

`
ˇ̌
ˇ̌
ż

D
ηlpt, xq dµtpxq ´

ż

D
ηpt, xq dµtpxq

ˇ̌
ˇ̌

ď }ηl ´ η}8p|µtk
pDq| ` |µtpDq|q `

ˇ̌
ˇ̌
ż

D
ηlptk, xq dµtk

pxq ´
ż

D
ηlpt, xq dµtpxq

ˇ̌
ˇ̌ .

Because of equation (4.14), the masses |µtk
pDq| and |µtpDq| are uniformly bounded. Then, by choosing a diagonal

subsequence kplq, we obtain weak-˚ convergence of µtk
to µt.

Step 6: Lower Semi-Continuity Estimate. The lower semi-continuity of Dδ directly follows from the general

result for integral functionals on measures (see Theorem 4.3.9). More precisely, for weak-˚ convergent sequences

of measures

µn
t

˚á µt P M
`pDq , νn

t
˚á νt P M pD , Rdq , ζn

t
˚á ζt P M pDq .

we have that

Dδpµt, νt, ζtq ď lim inf
nÑ8

Dδpµn
t , ν

n
t , ζ

n
t q .

Then the lower semi-continuity estimate (4.11) follows from the last formula. �

Remark 4.4.3. At first glance, the penalty functional
ş1

0

`ş
D |z|dL `

ş
D |zK| dL K

˘
dt seems to be an appropriate

choice, which allows for singular sources due to the built-in 1-homogeneity of the integrand. However, there is no

equiintegrability estimate for a sequence of source terms
`
t ÞÑ ζn

t pDq
˘

nPN
. Indeed, a uniform bound in L1 does

not suffice to deduce uniform integrability. Thus, the disintegration of the limit measure ζ remains unclear. In

other words, there exists a subsequence of an energy minimizing sequence that converges weakly-˚ to a measure

on r0, 1s ˆ D, but the limit measure can not necessarily be represented in terms of a curve in M pDq.

Now, we can rigorously define a generalized optimal transport distanceWδpµA, µBq for µA, µB P M `pDq by

WδpµA, µBq :“ inf
pµ,ν,ζqPCEpµA,µBq

pEδpµ, ν, ζqq1{2
. (4.19)

The following result shows in particular thatWδpµA, µBq P r0,8q for all µA, µB P M `pDq.

Theorem 4.4.4 (Existence of Geodesics). Let δ P p0,8q and take µA, µB P M `pDq. Then, there exists a

minimizer pµt, νt, ζtqtPr0,1s that realizes the infimum in (4.19). Moreover,Wδ defines a metric on M `pDq, and the

associated curve pµtqtPr0,1s is a constant speed geodesic forWδ, i.e.,

Wδpµs, µtq “ |s ´ t|WδpµA, µBq

for all s, t P r0, 1s.
Proof. The linear interpolation pµt “ p1 ´ tqµA ` tµBqtPr0,1s together with ν “ 0 and ζ “ µB´µA is an admissible

triple for the set CEpµA, µBq with finite energy, since the assumptions on r imply that there exists a constant C ă 8
s.t.

Eδpµ, ν, ζq ď C p1 ` |µB ´ µA|pDqq2 ă 8 .

It follows thatWδpµA, µBq ă 8, and the existence of a minimizer is an immediate consequence of Proposition

4.4.2. The remaining statements follow in analogy to the arguments in [DNS09, Theorem 5.4]. �
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4.5 Finite Element Discretization

For the numerical discretization, we suppose for simplicity that the space domain D is polygonal, otherwise, it

could be approximated by a polygonal domain. We consider a triangular mesh Th of D with grid size h. Then, on

the time-space domain r0, 1s ˆ D, a tetrahedral mesh Sh is generated via subdivision of prisms pkh, pk ` 1qhq ˆ T
into three tetrahedrons, where T P Th is an element of the triangular mesh of the space domain D. On the resulting

tetrahedral, we define finite element spaces

V1pShq “ tφh : r0, 1s ˆ D Ñ R : φh continuous and piecewise linear on elements in Shu ,
V0pShq “ tρh : r0, 1s ˆ D Ñ R : ρh piecewise constant on elements in Shu .

Then, we take into account the following finite element functions to discretize the measures:

ρh P V0pShq for the mass,

mh P
`
V0pShq

˘d
for the momentum, and

zh P V1pShq for the source.

In analogy to Definition 4.4.1, the set of discrete solutions to a continuity equation is defined as follows.

Definition 4.5.1 (Discrete Weak Continuity Equation with Source Term). Let ρA, ρB P V0pShq be given. Then, the

set CEhpρA, ρBq of solutions to a weak continuity equation with source term and boundary values ρA, ρB is given

by all triples pρh,mh, zhq P V0
h
pSq ˆ V0

h
pSqd ˆ V1

h
pSq satisfying

ż 1

0

ż

D
ρhBtφh ` mh∇xφh ` zφh dx dt “

ż

D
pφhp1qρB ´ φhp0qρAq dx @φh P V1pShq .

Here, we use Neumann boundary condition in space, but the approach can easily be adapted to Dirichlet or

periodic boundary conditions.

Next, we introduce discrete versions of the transport cost (4.1) and source cost (4.3). According to our finite

element discretization, we need for the source term functional a suitable interpolation of rpzhq. Therefore, we set

Rhpzhqpt, xq as the piecewise affine interpolation of rpzhppk´1qh, ¨qq on the triangle T for pt, xq P pkh, pk`1qhqˆT
(one of the prisms underlying the tetrahedral grid). Since ρh and mh are constant on each tetrahedron S P Sh, we

can define

Etrans,hpρh,mhq :“
ż 1

0

ż

D
Φpρh,mhq dx dt ,

Esource,hpzhq :“
ż 1

0

ˆż

D
Rhpzhq dx

˙2

dt ,

Eδ,hpρh,mh, zhq :“ Etrans,hpρh,mhq ` 1

δ
Esource,hpzhq .

Then, a discrete version of the minimization problem (4.19) is given by

Wδ,hpρAL , ρBL q :“ inf
pρh,mh,zhqPCEhpρA,ρBq

Eδ,hpρh,mh, zhq 1
2 . (4.20)

Remark 4.5.2. Numerically, we are not able to treat singular measures as presented in Section 4.4. However, such

measures can be obtained in the limit for a mesh size h Ñ 0. For example, on a fixed mesh, a line source can be

approximated via sources with a support of thickness 2h.

Remark 4.5.3. In the implementation, we restrict D “ r0, 1s2 to be the unit square. Then, we use a tetrahedral

mesh of the time-space domain by subdividing cubes of side length h into six tetrahedrons.
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4.6 Proximal Splitting Algorithm

We recall from Section 3.2.3 that proximal splitting algorithms can be used to solve the classical L2-optimal

transport problem numerically, as it was, e.g., proposed in [PPO14]. Now, we intend to apply a proximal splitting

algorithm to solve the fully discrete optimization problem (4.20). Therefore, we define the two functionals

F pρh,mh, zhq :“ Eδ,hpρh,mh, zhq ,
Gpρh,mh, zhq :“ ICEhpρA,ρBqpρh,mh, zhq .

More precisely, by adding the indicator function of the set of solutions to the continuity equation CEpµA, µBq to

the kinetic energy functional, the constrained optimization problem (4.20) can be rewritten as an unconstrained

minimization problem. We recall from Definition 3.2.4 that the proximal mapping of a convex and lower semi-

continuous function f is given by prox f pxq “ arg minyPX f pyq ` 1
2 }x ´ y}2

H
, where H is a suitable Hilbert space.

Here, for a triple pρh,mh, zhq P V0
h
pShq ˆ V0

h
pShqd ˆ V1

h
pShq, we choose a weighted L2-norm

}pρh,mh, zhq} :“
˜ż 1

0

ż

D
|ρh|2 ` |mh|2 ` 1

δ
|zh|2 dx dt

¸ 1
2

,

which can be computed exactly by choosing a quadrature rule of at least second order.

In the following, we compute the proximal mappings of F and G. We show that the computation of proxG
requires to solve an elliptic problem on the time-space domain and that the computation of proxF is rather simple.

Finally, we use the Douglas–Rachford algorithm (3.10), which was also applied in [PPO14] for the classical L2-

optimal transport problem.

4.6.1 Projection onto the Set CEhpρA, ρBq

Since CEhpρA, ρBq is a convex set, we recall from Lemma 3.2.10 that the proximal mapping of the indica-

tor function of CEhpρA, ρBq can be computed by the orthogonal projection. More precisely, to project a point

pph “ pρh,mhq, zhq P V0pSqd`1 ˆ V1pSq onto CEhpρA, ρBq, this requires to solve

pppr

h
, zpr

h
q “ projCEhpρA,ρBqpρh,mhqpph, zhq “ arg min

pqh,whqPCEhpρA,ρBq

}pph, zhq ´ pqh,whq}2
. (4.21)

The solution to this constrained optimization problem is given in the following.

Proposition 4.6.1 (Projection onto Generalized Solutions to the Continuity Equation). The solution pppr

h
, zpr

h
q to

the projection problem (4.21) is given by

ppr

h
“ ph ` 1

2
∇pt,xqφ

pr

h
, zpr

h
“ zh ` δ

2
φpr

h
, (4.22)

where φpr

h
P V1

h
pSq is defined by solving

ż 1

0

ż

D

1

2
∇pt,xqφ

pr

h
∇pt,xqψh ` δ

2
φpr

h
ψh dx dt “

ż

D
ψhp1qρB ´ ψhp0qρA dx ´

ż 1

0

ż

D
zhψh ` ph∇pt,xqψh dx dt

for all ψh P V1
h
pSq.

Proof. The associated Lagrangian to the minimization problem (4.21) is given by

L pqh,wh, ψhq “ }pph, zhq ´ pqh,whq}2 ´
ż 1

0

ż

D
qh ¨ ∇pt,xqψh ` whψh dx dt `

ż

D
ψhp1qρB ´ ψhp0qρA dx ,

with a Lagrange multiplier ψh P V1pShq. In terms of the Lagrangian, the projection problem can be written as a

saddle point problem, where we ask for pppr

h
, zpr

h
, φ

pr

h
q P V0pSqd`1 ˆ V1pSq ˆ V1pSq s.t.

L
´

ppr

h
, zpr

h
, φ

pr

h

¯
“ min

pqh,whqPV0
h
pSqd`1ˆV1

h
pSq

max
ψhPV1

h
pSq
L pqh,wh, ψhq .
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The Euler–Lagrange equations corresponding to this saddle point problem are given by
ż 1

0

ż

D
ppr

h
¨ ∇pt,xqψh ` zpr

h
ψh dx dt “

ż

D
ψhp1qρB ´ ψhp0qρA dx @ψh P V1

hpSq , (4.23)

ż 1

0

ż

D
qh ¨ ∇pt,xqφ

pr

h
dx dt “

ż 1

0

ż

D
2pppr

h
´ phq qh dx dt @qh P V0

hpSqd`1 , (4.24)

ż 1

0

ż

D
φ

pr

h
wh dx dt “

ż 1

0

ż

D

2

δ
pzpr

h
´ zhq wh dx dt @wh P V1

hpSq . (4.25)

Testing (4.24) with qh “ ∇pt,xqψh and then using (4.23) gives

ż 1

0

ż

D

1

2
∇pt,xqφ

pr

h
¨ ∇pt,xqψh dx dt “

ż 1

0

ż

D
pppr

h
´ phq ¨ ∇pt,xqψh dx dt

“
ż

D
ψhp1qρB ´ ψhp0qρA dx ´

ż 1

0

ż

D
zpr

h
ψh ` ph ¨ ∇pt,xqψh dx dt .

Hence, by applying (4.25), which leads to zpr

h
“ zh ` δ

2φ
pr

h
, we obtain for all ψh P V1

h
pSq that

ż 1

0

ż

D

1

2
∇pt,xqφ

pr

h
∇pt,xqψh ` δ

2
φ

pr

h
ψh dx dt “

ż

D
ψhp1qρB ´ ψhp0qρA dx ´

ż 1

0

ż

D
zhψh ` ph∇pt,xqψh dx dt .

This system can be solved in φ
pr

h
. Finally, the solution to the projection problem is given by (4.22). �

4.6.2 Proximal Mappings of Transport and Source Term Cost

The functional Eδ,h is composed of the transport cost Etrans,h, which only depends on ρh and mh, and the source

term cost Esource,h, which only depends on zh. Thus, we can compute these proximal mappings separately.

Proximal Mapping of Transport Cost. We note that ρh and mh are constant on each tetrahedron of the simplicial

mesh Sh. Thus, as for the classical L2-optimal transport distance (cf . Proposition 3.2.12), the proximal map of the

kinetic energy Etrans,h can be computed by projecting for each tetrahedron the associated value onto a convex set B

as defined in (3.14).

Proximal Mapping of Source Term Cost. We discuss different choices for the source term cost functional.

First, we consider an L2-norm both in time and space, which was studied in [MRSS15]. In this case, for a step

size γ ą 0, we easily get a pointwise update

prox γ

δ |¨|2 pzqpt, xq “ arg min
wPR

1

δ
|w|2 ` 1

δ
|w ´ zpt, xq|2 “ 1

1 ` γ
zpt, xq .

For a source term in the L1-norm both in time and space, following computations in [Ess09], we also get a

pointwise update for the proximal operator of the L1pL1q-norm, which is given by

prox γ

δ |z|pzqpt, xq “

$
’&
’%

0 if |zpt, xq| ď γ

2
,

zpt, xq ´ γ

2
sgnpzpt, xqq otherwise.

Thus, a numerical scheme for a source term in L1pL1q would be as simple as for a source term in L2pL2q. However,

the existence of geodesics is not guaranteed (see Remark 4.4.3).

In the case of a linear growth function rp¨q, the minimization problem to compute the proximal map only

decouples in time but not in space. More precisely, for each discrete time step k, we have to solve

arg min
whpkh,¨qPV1pThq

γ

δ

ˆż

D
Rhpwhqpkh, xq dx

˙2

` 1

2δ

ż

D
|whpkh, xq ´ zhpkh, xq|2 dx . (4.26)

Then, we solve the minimization problem (4.26) via a gradient descent method, which requires that r is differen-

tiable. For example, this is not the case for a source term in the L2pL1q-norm, since rpzq “ |z| is not differentiable.

For our numerical computations, we restrict r to be the Huber function (4.4).
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4.7 Numerical Results for Generalized Optimal Transport Geodesics

We present our numerical results for geodesics w.r.t. the generalized optimal transport distanceWδ. The compu-

tational domain is always given by the unit square D “ r0, 1s2. For the finite element discretization, we choose

a grid size of h “ 2´7 on the time-space domain r0, 1s3, which implies a temporal discretization with 1
h “ 128

time steps, and we show extractions at time steps t “ 16i
128 for i “ 0, . . . , 8. We use piecewise linear RGB scales to

plot the mass variable (0 (white), 0.5 (light blue), 1 (blue)) and the source term (minimal value (green), 0 (white),

maximal value (purple)). From (4.6), we recall the notation L2pL2q for an L2-norm penalization of the source term

both in time and space and L2pHq for the L2-Huber cost functional with the function r as defined in (4.4), i.e.,

Esource,L2pL2qpzq “
ż 1

0

ż

D
|z|2 dx dt , Esource,L2pHqpzq “

ż 1

0

ˆż

D
rpzq dx

˙2

dt .

4.7.1 Comparison with the L2pL2q-Model

Here, we compare the L2pHq-model with the L2pL2q-source term functional. Therefore, we consider both singular

and absolutely continuous measures. For the penalty parameter for the source term functional, we choose δ “ 1.

Generation of Approximatively Singular Measures. The source term cost functional (4.3) for the L2pHq-model

has been chosen s.t. singular sources in space are allowed, which is not possible for an L2pL2q-model, where a

singular source always has infinite path energy. However, singular sources cannot be implemented directly with

our finite element discretization, but in Figure 4.1, we study the transport between measures supported on a thin

rectangular strip as an approximation of a singular measure. The densities ρA and ρB are constant on this rectangle

but have different intensity values. Our model with the L2pHq cost functional for the source term is able to generate

the thin rectangles directly, s.t. the corresponding geodesic is given by a blending of the two measure ρA and ρB.

Instead, for an L2pL2q source term, which was proposed in [MRSS15], the generation of mass takes place on a

thick superset of the rectangular strip and is then transported towards the strip. In particular, this is visible by

considering the geodesic interpolation at intermediate time steps t P p0, 1q, where the rectangle is blurred. This

effect is furthermore reflected by considering the corresponding source terms.
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Figure 4.1: Generalized optimal transport geodesic between characteristic functions of thin rectangles with differ-

ent intensities as approximation of singular measures. Here, the source term parameter is given by δ “ 100.
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Generation of Absolute Continuous Measures. As for the thin rectangle, we observe a similar effect for, now

substantially, absolutely continuous measures. In Figure 4.2, we compare the L2pHq and the L2pL2q source term

for a geodesic interpolation between differently scaled characteristic functions of a square. Again, the resulting

geodesic for the L2pHq-model is given by a blending of the two measure ρA and ρB, whereas in the L2pL2q-model

the additional mass is generated on a larger support. In Figure 4.3, we show a plot of the map t ÞÑ
ş

D |zpt, ¨q| dx
for both models, where it turns out that this L1-norm of the source term in space is constant for the L2pHq-model.

Indeed, the larger support is advantageous for the L2pL2q source term, since, compared to a pure blending, the

L2-norm in space is smaller. Thus, if transporting mass is comparably cheap, using a constant distribution of the

source term on the full domain D becomes more favorable. To balance the interaction between the kinetic energy

and the source term cost, we can choose the parameter δ appropriately.

L2(H)

ρ

z

L2(L2)

ρ

z

t

0

ρA

1

ρB

1
8

2
8

3
8

4
8

5
8

6
8

7
8

Figure 4.2: Generalized optimal transport geodesic and corresponding source terms between two characteristic

functions of squares with different intensities. Here, the source term parameter is given by δ “ 100.
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Figure 4.3: Distribution of the L1-norm of the source term in time for the example in Figure 4.2 of characteristic

functions of squares (dotted line: L2pL2q, continuous line: L2pHq).
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4.7.2 Effect of the Source Term Penalization Parameter δ

Next, we investigate the effect of the penalty parameter δ for the source term. Here, we restrict to the L2pHq-model,

but we remark that similar effects are obtained for the L2pL2q-model.

Transport versus Blending. In Figure 4.4, we choose as input data ρA at time t “ 0 a characteristic function of

a square and as input data ρB at time t “ 1 a sum of two characteristic functions of squares, where one square is the

same as for ρA, and the other square is translated. Now, there are two obvious transport paths connecting ρA and ρB,

namely the curve, which blends the second square and the curve, which transports a part of the second square and

blends the remaining measure. Indeed, we observe both scenarios as limit cases. For δ Ñ 8, transport becomes

expensive. In Figure 4.4, we observe a simple blending for large values of δ. In contrast, for δ Ñ 0 transport

becomes cheaper, which is reflected by the computational results for small δ in Figure 4.4. For intermediate values

of δ, we obtain transport paths, where only a small part of the second square is transported.
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Figure 4.4: Generalized optimal transport geodesic between a characteristic function on a square and a character-

istic functions of two squares. We choose (from top to bottom) δ “ 10´2, 10´1, 100, 101.

Positive and Negative Sources. In Figure 4.5, we show another example to study the effect of the penalty

parameter for the source term. Here, the input data ρA at time t “ 0 consists of three scaled characteristic

functions of balls, where one of these balls has a smaller density value than the other two. The input data ρB at

time t “ 1 is based on the identical geometric configuration, but with swapped densities, i.e., the other two balls

have a smaller density value. For the generalized optimal transport geodesic, we observe that mass is transported

from the two balls with higher density at time t “ 0 to the ball with higher density at time t “ 1. Note that

this amount of transported mass depends on the parameter δ. At the same time, a blending of the transported

masses as a compensation for the unbalanced total mass can be observed. This example demonstrates that for a

geodesic path, the source term variable can achieve both positive and negative values at the same time. Moreover,

in Figure 4.6, we show plots of the integrated source term. A striking observation in Figure 4.3 and Figure 4.6

is that t ÞÑ
ş

D |zpt, ¨q| dx is approximately constant in time for the L2pHq-model, which is in contrast to the

L2pL2q-model, as indicated in Figure 4.3.
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Figure 4.5: Generalized optimal transport geodesic with corresponding distribution of the source term in time

between three scaled characteristic functions of balls with different densities. Here, the source term parameters are

given (from top to bottom) by δ “ 100, 101, 102.
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Figure 4.6: Distribution of the L1-norm of the source term in time for the example in Figure 4.5. We depictş
D |zpt, ¨q| dx (black),

ş
D z`pt, ¨q dx (purple), and

ş
D z´pt, ¨q dx (green). The source term parameters are (from left

to right) δ “ 100, 101, 102.
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Periodic Boundary Conditions. In Figure 4.7, we investigate periodic boundary conditions in space for different

values of the source term parameter. Here, the input data ρA at time t “ 0 is given by a bump function in the center

p0.5, 0.5q of the periodic cell, i.e.,

ρApx1, x2q “

$
&
%

exp
´

1 ´
`
1 ´ σ´2px1 ´ 0.5q2 ´ σ´2px2 ´ 0.5q

˘´1
¯

if px1 ´ 0.5q2 ` px2 ´ 0.5q2 ă σ2 ,

0 otherwise ,

where σ “ 0.75. For the input data ρB at time t “ 1, we choose a bump function with the center at p0, 0q and

σ “ 0.5. A similar example was already considered in [BB00], where periodically extended Gaussian probability

measures were taken into account. For equal size, the classical optimal transport geodesic is given by splitting

the bump of ρA into four parts and transporting these parts to the four corners, which has effectively lower kinetic

energy as the translation. Also, for the generalized optimal transport distance, we obtain a splitting of the bump

function. Moreover, depending on the parameter δ, the unbalance of mass between ρA and ρB is blended during

the transport (for small values of δ) or on the support of ρA (for intermediate values of δ). As in Figure 4.4, for

even larger values of δ (which we do not show in Figure 4.7), we obtain a pure blending of both bumps.
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Figure 4.7: Generalized optimal transport geodesic connecting two translated bump functions. We compare two

different values of the source term penalty parameter. In both cases, we depict single periodic cells, which is our

computational domain. Furthermore, to pronounce the periodicity, we extended the periodic cells to 3 ˆ 3 blocks.
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4.7.3 Application to Textures

Finally, in Figure 4.8, we depict examples of generalized optimal transport geodesics between images of wood

textures and marble textures. We choose the L2pHq source term cost functional and δ “ 10´1. The grid size is

given by h “ 2´8. In both cases, the interpolated images on the geodesic paths could be interpreted as realistic

textures.
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Figure 4.8: Generalized optimal transport geodesics between textures of wood (top) and marble (bottom) with

corresponding source terms (positive values in purple and negative values in green) and momenta (color-code

given by the wheel on the lower left, which indicates both the direction and the magnitude).
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4.8 Conclusion and Outlook

We have developed a new generalized optimal transport model with source term, which is based on the Benamou–

Brenier formulation. To incorporate singular sources, we have chosen a functional with linear growth to penalize

the source term in space, whereas an L2-norm in time has allowed an equiintegrability estimate to prove the

existence of generalized optimal transport geodesics in the space of Radon measures. Selected numerical test

cases have shown strikingly different behavior compared to a source term penalized in an L2-norm both in time

and space.

Note that an extension of our computational method to weighted Riemannian barycenters w.r.t. the general-

ized optimal transport distance would be straightforward. For the classical L2-Wasserstein distance, also a discrete

geodesic extrapolation (i.e., the time-discrete exponential map) of an initial probability measure in a direction

given by another probability measure can be directly obtained from a geodesic interpolation because of the dis-

placement convexity formula. This property is unclear for our generalized model. Furthermore, an extension to

Riemannian splines, as for discrete shells [HRW17] based on the general time-discrete framework in [RW15] on

Banach manifolds, would be interesting even for the classical Wasserstein distance.

Finally, we want to point out that the range of applications for realistic images seems to be somewhat limited.

In particular, an interpolation between images of human faces usually looks quite blurry. Instead, amazing results

were obtained for the metamorphosis model [BER15]. Currently, the optimal transport distance has been explored

in the quickly developing field of machine learning. In [SHB`18], the reconstruction of images as barycenters of

dictionary atoms w.r.t. the entropy regularized Wasserstein distance was performed.
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Chapter 5

Optimal Transport on Graphs

In Chapter 3, we have introduced the L2-Wasserstein distance between probability measures on a convex domain

in the Euclidean space. There, we have seen that for absolutely continuous measures, the formulations of Monge,

Kantorovich, and Benamou–Brenier coincide and minimizing paths of the Benamou–Brenier functional are con-

stant speed geodesics. This differential geometric interpretation allows, e.g., transferring the concept of gradient

flows to the Wasserstein space [JKO98]. Furthermore, the definition of the L2-Wasserstein distance on more gen-

eral space domains is often straightforward, as far as there is a notation of measures and distance. However, on a

discrete space, the formulations of Monge and Kantorovich imply that constant speed geodesics must be constant

paths. Instead, Maas [Maa11] developed an L2-Wasserstein metric on the space of probability measures on dis-

crete spaces given by an irreducible and reversible Markov transition kernel by taking into account an appropriate

Benamou–Brenier formulation. Remarkably, as for the classical optimal transport distance, it was verified that the

gradient flow of the entropy can be identified with the heat equation on the Markov kernel.

In this chapter, the main focus lies on investigating a numerical scheme to approximate the Wasserstein distance

on discrete spaces. To compute minimizing paths of the classical Benamou–Brenier functional, proximal splitting

algorithms have turned out to be an efficient tool [BB00, PPO14], where a suitable discretization of the mass

and momentum variables allows decoupling the computation of the proximal operator of the kinetic energy into

pointwise projections. Now, for the optimal transport distance on discrete spaces as defined in [Maa11], the mass

variable is defined at nodes, and the momentum variable is considered on edges. Then, an averaging operator

from a pair of nodes to its common edge is required to define a corresponding kinetic energy, which unfortunately

couples all variables in space. In [SRGB16], a similar optimal transport distance on graphs was investigated, where

the special structure of the harmonic mean was used, s.t. the proximal operator of the kinetic energy functional can

be computed as for the classical optimal transport. Here, we present a fully discrete approximation for a generic

class of averaging operators. In particular, to recover the heat equation as a gradient flow, the logarithmic mean has

to be taken into account. To decouple the optimization problem, we introduce several auxiliary variables, s.t. the

core ingredient of our numerical algorithm is a projection onto a three-dimensional set defined by the respective

mean.

This chapter is organized as follows. In Section 5.1, we recall the Wasserstein distance on discrete spaces

introduced by Maas. We derive certain a priori bounds for corresponding geodesic paths in Section 5.2. For a fully

discrete approximation, we choose a finite element discretization in Section 5.3, for which we prove Γ-convergence

in Section 5.4. Then, we investigate a numerical computation scheme via a proximal splitting algorithm in Sec-

tion 5.5. In Section 5.6, we present our numerical results for geodesic paths. Finally, in Section 5.7, we consider

gradient flows w.r.t. the optimal transport distance on graphs. We show that a minimizing movement scheme to

compute a gradient step can be solved by a proximal splitting algorithm, and we compare our numerically com-

puted gradient flow trajectory with the solution to the heat equation.

Remark 5.0.1 (Collaborations and Publications). All results presented in this chapter are joint work with Matthias

Erbar, Martin Rumpf, and Bernhard Schmitzer and will be published in [ERSS17].
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5.1 A Benamou–Brenier Formula on Graphs

Here, we define the Benamou–Brenier formulation for the L2-Wasserstein metric on the space of probability mea-

sures on discrete spaces as introduced in [Maa11].

Irreducible and Reversible Markov Chains. We denote by X a finite set, which can be interpreted as the set

of nodes of a graph. Furthermore, let Q : X ˆ X Ñ r0,8q be the transition rate matrix of a Markov chain on X.

More precisely, the corresponding graph has a directed edge px, yq P XˆX if Qpx, yq is positive. Then, the set of

edges indicated by nonzero transition probability is given by

S “ tpx, yq P XˆX : Qpx, yq ą 0u .

Here, we make the assumption that Qpx, xq “ 0 for all x P X, since, for an optimal transport path, a loop would

not be taken into account. We suppose that Q is irreducible or equivalently that the corresponding graph is strongly

connected. The irreducibility condition implies that there exists a unique stationary distribution π : X Ñ p0, 1s of

the Markov chain with
ř

xPX πpxq “ 1. Furthermore, we assume that Q is reversible w.r.t. π, i.e., the detailed

balance condition πpxqQpx, yq “ πpyqQpy, xq holds for all x, y P X. The reversibility condition implies that a

directed edge px, yq P S has nonzero transition probability if and only if this is the case for the edge py, xq P S in

the opposite direction. Later, we make use of the following rates of the Markov kernel:

C˚ :“ max
xPX

ÿ

y

Qpx, yq , (5.1)

C˚ :“ min
x,yPX,Qpx,yqą0

Qpx, yqπpxq . (5.2)

Now, the set of probability densities on X w.r.t. π is given by

PpXq :“
#
ρ : XÑ Rě0 :

ÿ

xPX

πpxqρpxq “ 1

+
.

As for classical optimal transport, the condition
ř

xPX πpxqρpxq “ 1 can be replaced by
ř

xPX πpxqρpxq “ c for

any c P R`, but for simplicity we restrict to the case c “ 1.

Differential Operators on Graphs. Next, we consider functions φ : X Ñ R on nodes and Φ : X ˆ X Ñ R on

edges, which we also identify with vectors in RX and RXˆX, respectively. First, we define inner products on RX

and RXˆX by

xφ,ψyπ :“
ÿ

xPX

φpxqψpxqπpxq , xΦ,ΨyQ :“ 1

2

ÿ

x,yPX

Φpx, yqΨpx, yqQpx, yqπpxq

for φ, ψ P RX and Φ, Ψ P RXˆX, and denote the corresponding induced norms by } ¨ }π and } ¨ }Q. Then,

we introduce discrete differential operators. A discrete gradient ∇X : RX Ñ RXˆX and a discrete divergence

divX : RXˆX Ñ RX are given by

p∇Xψqpx, yq :“ ψpxq ´ ψpyq, pdivXΨqpxq :“ 1

2

ÿ

yPX

Qpx, yqpΨpy, xq ´Ψpx, yqq.

Note that the discrete integration by parts formula

xφ,divXΨyπ “ ´x∇Xφ,ΨyQ

can easily be verified s.t. duality between discrete gradient and divergence holds. The associated discrete Laplace-

operator ∆X : RX Ñ RX is given by

∆Xψpxq :“ divXp∇Xψqpxq “
ÿ

yPX

Qpx, yq rψpyq ´ ψpxqs “ pQ ´ Dqψpxq ,

where D “ diagp
ř

yPXQpx, yqqxPX.
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Optimal Transport Distance on Graphs. Having these differential operators at hand, we are able to formulate

a continuity equation for time-dependent probability densities ρ : r0, 1s ˆ RX Ñ R` and momenta m : r0, 1s ˆ
RXˆX Ñ R describing the flow of mass along the graph edges. In the following, we frequently identify these

functions ρ and m by functions ρ : r0, 1s Ñ RX and m : r0, 1s Ñ RXˆX.

Definition 5.1.1 (Continuity Equation on Graphs). The set CEpρA, ρBq of solutions to the continuity equation

for given boundary data ρA, ρB P PpXq is defined as the set of all pairs pρ,mq with ρ : r0, 1s ˆ RX Ñ R and

m : r0, 1s ˆRXˆX Ñ R measurable s.t.

ż 1

0
xBtϕpt, ¨q, ρpt, ¨qyπ ` x∇Xϕpt, ¨q,mpt, ¨qyQ dt “ xϕp1, ¨q, ρByπ ´ xϕp0, ¨q, ρAyπ (5.3)

for all ϕ P C1pr0, 1s,RXq.

To define the kinetic energy in terms of a mass density on nodes and a momentum on edges, we introduce an

appropriate averaging operator mapping the mass of two neighboring nodes to the common edge.

Definition 5.1.2 (Averaging Operator for Mass on Edges). For an averaging function θ : pRě0q2 Ñ Rě0 we

require that

1. θ is continuous, concave, 1-homogeneous, and symmetric,

2. θ P C8
`
pR`q2,Rě0

˘
and θps, tq ą 0 if ps, tq P R2

`,

3. θp0, sq “ θps, 0q “ 0 and θps, sq “ s for s P Rě0, and

4. s ÞÑ θpt, sq is monotone increasing on Rě0 for fixed t P Rě0.

Note that we can extend θ to a concave function θ : R2 Ñ RY t´8u by setting θps, tq “ ´8 for ps, tq < pRě0q2.

Example 5.1.3 (Possible Averaging Operators). Possible choices for θ are, e.g., the logarithmic mean θlog or the

geometric mean θgeo for s, t P Rě0:

θlogps, tq “

$
’’’&
’’’%

0, if s “ 0 or t “ 0 ,

s, if s “ t ,

t ´ s

logptq ´ logpsq otherwise,

and θgeops, tq “
?

st . (5.4)

However, the arithmetic mean is not admissible, since θarithps, 0q , 0 for s ą 0.

Based on this averaging function, we can define the discrete optimal transport distance on PpXq.

Definition 5.1.4 (Discrete Optimal Transport Distance). The kinetic energy functional for measurable functions

ρ : r0, 1s ˆRX Ñ R` and m : r0, 1s ˆRXˆX Ñ R is defined as

Etranspρ,mq “ 1

2

ż 1

0

ÿ

x,yPX

Φe

`
ρpt, xq, ρpt, yq,mpt, x, yq

˘
Qpx, yqπpxq dt

with Φe : R3 Ñ RY t8u given by

Φeps, t,mq “

$
’’’&
’’’%

m2

θps, tq if θps, tq ą 0 ,

0 if θps, tq “ 0 and m “ 0 ,

8 else .

The total path energy is then given by a sum of the kinetic energy and the indicator function of the set CEpρA, ρBq,

i.e.,

Epρ,mq “ Etranspρ,mq ` ICEpρA,ρBqpρ,mq , (5.5)
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and the induced discrete transport distance is obtained by

WGpρA, ρBq :“
ˆ

inf
pρ,mqPCEpρA,ρBq

Etranspρ,mq
˙ 1

2

“
ˆ

inf
pρ,mq : r0,1sÑRXˆRXˆX measurable

Epρ,mq
˙ 1

2

. (5.6)

Under the condition that

Cθ :“
ż 1

0

1a
θp1 ´ r, 1 ` rq

dr ă 8 ,

in [Maa11, Theorem 3.8], it was verified that WG defines a metric on PpXq. Due to our assumptions on θ in

Definition 5.1.2, we can always guarantee that Cθ ă 8. Indeed, since θps, sq “ s for s P Rě0 and s ÞÑ θps, tq
is increasing on Rě0 for fixed t P Rě0, it follows that θps, tq ě mints, tu for s, t P Rě0. Furthermore, in

[EM12, Theorem 3.2], it was shown that the infimum in (5.6) is attained by an optimal pair pρ,mq, and the curve

pρtqtPr0,1s is a constant speed geodesic for the distanceWG, i.e., it holdsWGpρt, ρsq “ |t ´ s|WGpρA, ρBq for

all s, t P r0, 1s. Finally, note that Φe is a convex and lower semi-continuous function and thus, finding an optimal

transport geodesic minimizing (5.6) is a convex optimization problem.

Related Questions to the Discrete Optimal Transport Distance. The discrete optimal transport distance has

been intensely investigated during the last few years, and certain properties have been proven. In [Maa11], it was

shown that the optimal transport geodesic for a graph with two nodes does not coincide with the linear interpolation

of the mass variable. Already for a graph with three nodes, the solution is unknown. We observe that the discrete

optimal transport distance behaves effectively diffuse. Indeed, it turns out that on a complete graph with three nodes

for an optimal transport geodesic between two nodes, the mass is not necessarily transported along the shortest

path connecting these nodes. Instead, a small amount of mass is transported via the third node (see Figure 5.1),

which is in sharp contrast to the displacement interpolation on continuous domains, where mass travels only along

geodesics. Furthermore, we obtain that the momentum variable does not necessarily have the same sign during the

transport, which also reflects the diffuse behavior of the discrete optimal transport distance (see Figure 5.1). We

also refer to Section 5.6.2 for more numerical results on simple graphs.

t

0

ρA

1

ρB

1
4

2
4

3
4

Figure 5.1: Two examples of optimal transport geodesic on graphs. Top: On a graph with three nodes, a small

amount of mass (in blue) is transported along the longer way. Bottom: On a graph with four nodes, the momentum

variable (depicted by red arrows) changes its sign during the transport.
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Considering a sequence of graphs with appropriate Markov kernels approximating a domain in the Euclidean

space, in [GM13, GKM18], it was shown that the distanceWG on a specific class of regular meshes converges in

the Gromov–Hausdorff metric to the classical L2-Wasserstein distance. We verify this convergence experimentally

in Section 5.6.4. Moreover, in [Maa11, EM14], certain solutions to partial differential equations on graphs were

identified as gradient flow trajectories w.r.t. suitable entropy functionals. In Section 5.7, we discuss solutions to

the heat and porous medium equation on graphs.

5.2 A priori Bounds for Mass and Momentum

Now, we derive a priori bounds on energy minimizing curves of measures, which are useful for the Γ-convergence

result in Section 5.4. Here, we essentially make use of the discrete structure in space. More precisely, the diver-

gence operator on the graph does not reduce the regularity of the momentum variable and thus allows a higher

regularity estimate on the mass variable, which does not hold for the classical optimal transport distance.

Lemma 5.2.1 (A priori Bounds for Mass and Momentum). Let pρ,mq : r0, 1s Ñ RX ˆ RXˆX be measurable

with bounded path energy, i.e., there is a constant Ē ă 8 s.t. Epρ,mq ď Ē. Then, m and ρ are bounded in

L2pp0, 1q,RXˆXq and W1,2pp0, 1q,RXq X C0, 1
2 pr0, 1s,RXq, respectively, with bounds solely depending onX and Ē.

Proof. Since Epρ,mq ă 8, we have that pρ,mq P CEpρA, ρBq, and thus, for a.e. t P p0, 1q the mass is preserved,

i.e.,
ÿ

xPX

ρpt, xqπpxq “
ÿ

xPX

ρApxqπpxq “ 1 .

In addition, ρpt, xq is nonnegative for all x P X and a.e. t P p0, 1q. By symmetry and concavity of θ and since

θps, sq “ s, we can estimate

θpρpt, xq, ρpt, yqq “ 1

2
θpρpt, xq, ρpt, yqq ` 1

2
θpρpt, yq, ρpt, xqq

ď θ

ˆ
ρpt, xq ` ρpt, yq

2
,
ρpt, xq ` ρpt, yq

2

˙
“
ρpt, xq ` ρpt, yq

2

and get

ÿ

x,yPX

θpρpt, xq, ρpt, yqqQpx, yqπpxq ď 1

2

ÿ

x,yPX

pρpt, xqQpx, yqπpxq ` ρpt, yqQpy, xqπpyqq

“ 1

2

ÿ

x,yPX

pρpt, xqQpy, xqπpyq ` ρpt, yqQpx, yqπpxqq ď C˚
ÿ

xPX

ρpt, xqπpxq “ C˚ .

Thus, using the Cauchy-Schwarz inequality, we obtain

ˆ ÿ

x,yPX

|mpt, x, yq|Qpx, yqπpxq
˙2

ď
ˆ ÿ

x,yPX

Φepρpt, xq, ρpt, yq,mpt, x, yqqQpx, yqπpxq
˙

¨
ˆ ÿ

x,yPX

θpρpt, xq, ρpt, yqqQpx, yqπpxq
˙
.

Integrating in time leads to

ż 1

0
}mpt, ¨, ¨q}2

Q dt “
ż 1

0

ÿ

x,yPX

mpt, x, yq2Qpx, yqπpxq dt ď C˚

C˚
Ē .

Finally, using the continuity equation (5.3) and from above that m P L2pp0, 1q,RXˆXq, we obtain that

ż 1

0
}Btρ}2

π dt ď
ż 1

0

ÿ

xPX

ˇ̌
ˇ̌ ÿ

yPX

mpt, x, yqQpx, yq
ˇ̌
ˇ̌
2

πpxq dt ď C˚

ż 1

0

ÿ

x,yPX

mpt, x, yq2Qpx, yqπpxq dt .

Hence, ρ P W1,2pp0, 1q,RXq and the Sobolev embedding (see Theorem 2.2.2) implies ρ P C0, 1
2 pp0, 1q,RXq. �
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Furthermore, we note that a priori for a fixed time t P r0, 1s and an edge px, yq P S, the momentum variable

mpt, x, yq is not related to the variable mpt, y, xq in the opposite direction, but for an optimizing path, we observe

the following antisymmetry.

Lemma 5.2.2 (Antisymmetry of Optimal Momentum). Let ρ : r0, 1s Ñ RX and m : r0, 1s Ñ RXˆX be an optimal

path for (5.6) with Epρ,mq ă 8. Then for a.e. t P r0, 1s and for all px, yq P S we have

mpt, x, yq “ ´mpt, y, xq .

Proof. We define a momentum variable

m̂pt, x, yq :“ ´mpt, y, xq .

Then, we can verify that divXm̂ “ divXm and thus pρ, m̂q P CEpρA, ρBq as well. Because of the detailed

balance condition Qpx, yqπpxq “ Qpy, xqπpyq and since Φeps, t,mq “ Φept, s,´mq, we find that Etranspρ, m̂q “
Etranspρ,mq. Now, we define a momentum variable

m̄pt, x, yq :“ 1

2
pmpt, x, yq ` m̂pt, x, yqq ,

which is antisymmetric in x and y. By convexity of CEpρA, ρBq we also have that pρ, m̄q P CEpρA, ρBq. Moreover,

by convexity of Etrans we get

Etranspρ, m̄q ď 1

2
pEtranspρ,mq ` Etranspρ, m̂qq “ Etranspρ,mq .

By definition, values of mpt, x, yq for px, yq < S have no impact on the kinetic energy Etrans. Assume that

θpρpt, xq, ρpt, yqq “ 0 for a.e. t P r0, 1s and px, yq P S. Since Etranspρ,mq ă 8 this would imply mpt, x, yq “ 0
for a.e. t P r0, 1s and px, yq P S. Now, the function z ÞÑ Φeps, t, zq for z P R is even strictly convex for fixed

ps, tq P pR`q2. Hence, we observe that Etranspρ, m̄q ă Etranspρ,mq unless m̄ already coincides with m for a.e.

t P r0, 1s and all px, yq P S. �

Remark 5.2.3 (Bounded Energy of Optimal Path). In Corollary 5.4.2, we verify that an optimal path pρ,mq for

(5.6) always fulfills Epρ,mq ă 8.

5.3 Finite Element Discretization

In the following, we provide a fully numerical discretization of the path energy (5.5). Because the domain X is

already discrete, we only need to define a discretization in time. Here, we choose a Galerkin discretization by

dividing the time interval r0, 1s into N subintervals Ii “ rti, ti`1q for i “ 0, . . . ,N ´ 1 with a uniform step size

h “ 1
N and ti “ i h. Then we define the finite element spaces

V1
n,h “ tψh P C0pr0, 1s,RXq : ψhp¨q|Ii

is affine @i “ 0, . . . ,N ´ 1u ,
V0

n,h “ tψh : r0, 1s Ñ RX : ψhp¨q|Ii
is constant @i “ 0, . . . ,N ´ 1u ,

V0
e,h “ tψh : r0, 1s Ñ RXˆX : ψhp¨q|Ii

is constant @i “ 0, . . . ,N ´ 1u .

Note that for a function ψh P V1
n,h

the time-derivative can be interpreted as a map

Bt : V1
n,h Ñ V0

n,h , pBtψhqptiq “ 1

h
pψhpti`1q ´ ψhptiqq for i “ 0, . . . ,N ´ 1 .

Since a function ψh P V0
n,h

or V0
e,h

is constant on time intervals Ii “ rti, ti`1q, we often write ψhptiq to refer to its

value on the interval.

Now, we choose the discretized mass variable ρh P V1
n,h

in the space of continuous and piecewise affine

functions and the momentum variable mh P V0
e,h

as piecewise constant. Then, discrete solutions to the continuity

equation are defined in analogy to Definition 5.1.1.
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Definition 5.3.1 (Time Discrete Continuity Equation). The set of solutions to the discretized continuity equation

for given boundary values ρA, ρB P RX is given by

CEhpρA, ρBq “
!

pρh,mhq P V1
n,h ˆ V0

e,h : h
N´1ÿ

i“0

xBtρhpti, ¨q ` divXmhpti, ¨q, ϕhpti, ¨qyπ “ 0 @ϕh P V0
n,h ,

ρhpt0, xq “ ρApxq , ρhptN, xq “ ρBpxq
)
.

Here, the choice of these different function spaces for ρh and mh is motivated by the two expressions Btρh

and divXmh appearing in the continuity equation, which then both lie in the space V0
n,h

. Thus, for pρh,mhq P
CEhpρA, ρBq, we have that Btρh ` divXmh “ 0 for a.e. t P r0, 1s. Consequently, the set of time discrete solutions

CEhpρA, ρBq “ CEpρA, ρBq X pV1
n,h

ˆ V0
e,h

q is a subset of all time continuous solutions to the continuity equation.

Furthermore, we define a fully discrete path energy functional in analogy to Definition 5.6 and a discrete

version of the transport metricWG.

Definition 5.3.2 (Time Discrete Optimal Transport Distance). The averaging operator avgh takes a vectorial Radon

measure ψ P M pr0, 1s,RXq to its average values on time intervals Ii, i.e., it is given by

avgh : M pr0, 1s,RXq Ñ V0
n,h , pavgh ψqptiq “ ψpIiq for i “ 0, . . . ,N ´ 1 .

Analogously, we declare the averaging operator avgh for RXˆX-valued measures. Note that for ψh P V1
n,h

we find

pavgh ψhqptiq “ 1
2 pψhptiq`ψhpti`1qq . For pρ,mq P M pr0, 1s,RXqˆM pr0, 1s,RXˆXq the discrete approximation

for the kinetic energy functional is given by

Etrans,hpρ,mq “ Etranspavgh ρ, avgh mq

“ h

2

N´1ÿ

i“0

ÿ

x,yPX

Φe

`
avgh ρpti, xq, avgh ρpti, yq, avgh mpti, x, yq

˘
Qpx, yqπpxq .

Finally, we obtain the time discrete energy functional by

Ehpρ,mq “ Etrans,hpρ,mq ` ICEhpρA,ρBqpρ,mq ,

and for the associated time discrete approximation of the optimal transport distance we define

WG,hpρA, ρBq :“
ˆ

inf
pρ,mqPCEhpρA,ρBq

Etrans,hpρ,mq
˙ 1

2

“
ˆ

inf
pρ,mq : r0,1sÑRXˆRXˆX measurable

Ehpρ,mq
˙ 1

2

. (5.7)

Finally, we remark that the degrees of freedom of the momentum variable mh P V0
e,h

are restricted to the edges

px, yq P S. Thus, in the implementation, if the Markov kernel Q is sparse, i.e., if S is only a small subset ofXˆX,

this implies a considerable reduction of computational complexity.

5.4 Γ-Convergence of Finite Element Discretization

Now, we show that the fully discrete distance WG,h in (5.7) is a suitable approximation of WG by proving a

Γ-convergence result. For a basic introduction to Γ-convergence, we refer the reader to Section 2.3. We observe

that the Γ-liminf inequality is a direct consequence of our conforming finite element discretization in the sense that

CEhpρA, ρBq Ă CEpρA, ρBq. However, the proof of the Γ-limsup inequality is more elaborated. Therefore, we first

sketch the main ideas:

1. Basically, the recovery sequence is constructed by averages on time intervals according to the Galerkin

discretization.

2. For positive mass ρpt, xq ą 0 for all t P r0, 1s and for all x P X, Jensen’s inequality would directly provide

the required Γ-limsup inequality, since Φe : R` ˆR` ˆRÑ R` is convex.
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3. However, in the case that θpρpt, xq, ρpt, yqq “ 0 and mpt, x, yq , 0, Jensen’s inequality cannot be applied,

since Φepρpt, xq, ρpt, yq,mpt, x, yqq “ 8.

4. We first show in Proposition 5.4.1 that we can construct a trajectory between an arbitrary probability distri-

bution on X and the uniform probability density 1 P PpXq given by 1pxq “ 1 for all x P X.

5. To deal with the case that ρpt, xq “ 0 for some pt, xq, we make use of this trajectory. More precisely, we

modify the trajectory to be recovered by letting a small amount of mass ε move on a small time interval δ to

the uniform distribution 1 (see Figure 5.2 for a sketch).

6. Finally, we have to choose ε, δ, and h in a suitable way.

ρA ρB

ρA ρB

1 1

ρ

ρscaled

ǫ

1´ǫ

0 1δ 1´δ

Figure 5.2: Sketch of the construction of the recovery sequence. A given ρ (dashed line) is regularized to a curve

consisting of a weighted sum of two curves (with weights ǫ and 1 ´ ǫ).

First, we explicitly construct a trajectory between ρA and 1 with uniformly bounded path energy. Fur-

thermore, the time interpolation of this trajectory admits the same upper bound for the corresponding discrete

path energy, where for the approximation of the mass variable, we define the Lagrange interpolation operator

Ih : C0pr0, 1s,RXq Ñ V1
n,h

by

pIhρq pti, xq :“ ρpti, xq @i “ 0, . . . ,N .

Proposition 5.4.1 (Trajectory to Uniform Distribution). There exists a constant CpXq ă 8 s.t. for any ρA P
PpXq there is a trajectory pρ,mq P CEpρA,1q with Etranspρ,mq ď CpXq and pIhρ, avgh mq P CEhpρA,1q with

Etrans,hpIhρ, avgh mqq ď CpXq for every h “ 1{N.

Proof. For x P X we define ρx
A

P PpXq to be the probability density on X with all mass concentrated on x, i.e.,

ρx
A

“ 1
πpxqδx, where δx denotes the Kronecker symbol with δxpyq “ 1 if x “ y and 0 else.

Step 1: Construction of elementary flows. For px, yq P XˆX, x , y, with Qpx, yq ą 0 we define Lpx, yq P RXˆX

as

Lpx, yqpa, bq “

$
’’’’’&
’’’’’%

1

Qpx, yqπpxq if pa, bq “ px, yq,

´1

Qpx, yqπpxq if pa, bq “ py, xq,

0 else.

Then Lpx, yq satisfies divXLpx, yq “ ρ
y

A
´ ρx

A
. Now, for any px, yq P X ˆ X, x , y, there exists a path px “

x0, x1, . . . , xK “ yq with K ă |X| and Qpxk, xk`1q ą 0 for k “ 0, . . . ,K ´ 1. We can add the corresponding

Lpxk, xk`1q along these edges to construct a flow Mpx, yq with divXMpx, yq “ ρ
y

A
´ ρx

A
. All entries of all Mpx, yq

are bounded by rCpXq :“ |X|
C˚

, where C˚ is defined in (5.2). For x “ y we can simply set Mpx, xq “ 0.

Now assume ρA “ ρx
A

for some x P X. Let m0 “
ř

yPXMpx, yqπpyq. We obtain

divXm0 “
ÿ

yPX

´
1

πpyqδy ´ 1
πpxqδx

¯
πpyq “ 1 ´ ρx

A .
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Again, every entry of m0 is bounded in absolute value by rCpXq. Now, let mptq “ 2 m0 t, and ρptq “ ρx
A

`
pdivXm0q t2 “ p1 ´ t2q ¨ ρx

A
` t2 ¨ 1. Then pρ,mq P CEpρx

A
,1q is bounded by |mpt, x, yq| ď t ¨ 2rCpXq and

ρpt, xq ě t2. By the monotonicity of Φe, we get for the kinetic energy

Etranspρ,mq ď 1

2

ż 1

0

ÿ

x,yPX

pt ¨ 2rCpXqq2

t2
Qpx, yqπpxq dt “ 2rCpXq2C˚ .

Step 2: Construction of discrete counterparts. For fixed h “ 1
N let ρh “ Ihρ and mh “ avgh m. By construction

pρh,mhq P CEhpρx
A
,1q. Then, we find mhpti, x, yq ď pi ` 1

2 q h 2rCpXq, ρhpti, xq ě i2 h2, pavgh ρhqpti, xq ě
pi2 ` i ` 1

2 q h2 , and thus

Etrans,hpρh,mhq “ Etranspavgh ρh,mhq ď 1

2

N´1ÿ

i“0

h
h2 4rCpXq2 pi ` 1

2 q2

h2pi2 ` i ` 1
2 q

ÿ

x,yPX

Qpx, yqπpxq ď 2rCpXq2C˚ .

Step 3: Extension to arbitrary initial data. For given x P X let pρx,mxq be the (continuous) trajectory between

ρx
A

and 1 as constructed above. Now, we can represent ρA as superposition of various ρx
A

by

ρA “
ÿ

xPX

ρApxq δx “
ÿ

xPX

ρApxqπpxqρx
A .

By linearity of the continuity equation, the trajectory pρ,mq “
ř

xPX ρApxqπpxq ¨ pρx,mxq then lies in CEpρA,1q.

Since Etrans is convex and 1-homogeneous, it is subadditive. Therefore, we can estimate the kinetic energy by

Etranspρ,mq ď
ÿ

xPX

ρApxqπpxqEtranspρx,mxq ď
ÿ

xPX

ρApxqπpxq 2 rCpXq2C˚ “ 2 rCpXq2C˚ .

In analogy, the same estimate holds for the discrete trajectory. Thus, the claim follows with CpXq “ 2 rCpXq2C˚.

�

Corollary 5.4.2 (Uniform Bound of Discrete Optimal Transport Distance). Let ρA, ρB P PpXq be fixed temporal

boundary conditions. ThenWG andWG,h are uniformly bounded.

Proof. Proposition 5.4.1 allows constructing trajectories between arbitrary ρA, ρB via 1 as intermediate state. �

Theorem 5.4.3 (Γ-Convergence of Time Discrete Energies). Let ρA, ρB P PpXq be fixed temporal boundary

conditions. Then, the sequence of functionals pEhqh Γ-converges for h Ñ 0 to the functional E with respect to the

weak-˚ topology in M pr0, 1s,RX ˆRXˆXq.

Proof. We have to prove the Γ-liminf inequality and Γ-limsup inequality (see Definition 2.3.1).

Part I: Γ-liminf inequality.

For the Γ-liminf property, we have to demonstrate that the inequality

Etranspρ,mq ` ICEpρA,ρBqpρ,mq ď lim inf
hÑ0

Etrans,hpρh,mhq ` ICEhpρA,ρBqpρh,mhq (5.8)

holds for all sequences pρh,mhq ˚á pρ,mq in M pr0, 1s,RX ˆ RXˆXq. The statement is trivial if there is no

subsequence with pρh,mhq P CEhpρA, ρBq. Thus, we may assume that pρh,mhq fulfills the discrete continuity

equation for all h, in particular, ρ is nonnegative for every h and Etrans,hpρh,mhq “ Etranspavgh ρh,mhq. Moreover,

sinceCEpρA, ρBq is weak-˚ closed andCEhpρA, ρBq Ă CEpρA, ρBq, we also have that pρ,mq fulfills the continuous

continuity equation. Now, the convergence ρh
˚á ρ for h Ñ 0 implies that avgh ρh

˚á ρ for h Ñ 0. Since Φe is

jointly convex and lower semi-continuous in ρ and m, the kinetic energy functional Etrans is weak-˚ lower semi-

continuous and the Γ-liminf inequality (5.8) holds.
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Part II: Γ-limsup inequality.

To verify the Γ-limsup property we need to show that for any pρ,mq P M pr0, 1s,RX ˆ RXˆXq there exists a

recovery sequence pρh,mhq ˚á pρ,mq with

lim sup
hÑ0

Etrans,hpρh,mhq ` ICEhpρA,ρBqpρh,mhq ď Etranspρ,mq ` ICEpρA,ρBqpρ,mq .

First, we can restrict to the case Etranspρ,mq ă 8 and pρ,mq P CEpρA, ρBq.

Step 1: Regularizing the Continuous Trajectory pρ,mq. Let pρA,1,mA,1q P CEpρA,1q be the trajectory from ρA

to 1 as constructed in Proposition 5.4.1. Analogously, let pρ1,B,m1,Bq P CEp1, ρBq be the corresponding trajectory

from 1 to ρB with pρ1,B,m1,Bqpt, ¨q :“ pρB,1,´mB,1qp1 ´ t, ¨q. Then, for δ P p0, 1
2 q and ǫ “ δ2, we define (as

sketched in Figure 5.2)

ρδptq “

$
’’’&
’’’%

p1 ´ ǫqρAptq ` ǫ ρA,1

`
t
δ

˘
for t P r0, δq ,

p1 ´ ǫqρ
´

t´δ
1´2δ

¯
` ǫ1 for t P rδ, 1 ´ δq ,

p1 ´ ǫqρBptq ` ǫ ρ1,B

´
t´p1´δq

δ

¯
for t P r1 ´ δ, 1s ,

and

mδptq “

$
’’’&
’’’%

ǫ
δ mA,1

`
t
δ

˘
for t P r0, δq ,

p1´ǫq
1´2δ m

´
t´δ

1´2δ

¯
for t P rδ, 1 ´ δq ,

ǫ
δ m1,B

´
t´p1´δq

δ

¯
for t P r1 ´ δ, 1s .

We observe that pρδ,mδq P CEpρA, ρBq. To evaluate the kinetic energy of pρδ,mδq, we define the kinetic energy in

spaceDtrans : RX ˆRXˆX Ñ RY t8u by

Dtranspρ,mq “ 1

2

ÿ

x,yPX

Φepρpxq, ρpyq,mpx, yqqQpx, yqπpxq .

Furthermore, we decompose the energy into the contributions on the time intervals Il “ r0, δs, Im “ rδ, 1 ´ δs and

Ir “ r1 ´ δ, 1s. More precisely, for χ P tl,m, ru, we define the time-space kinetic energy on the specific interval as

E
χ
trans “

ż

Iχ

Dtranspρδptq,mδptqq dt ,

s.t. Etranspρδ,mδq “ El
trans ` Em

trans ` Er
trans. Now, Dtrans is jointly convex and 1-homogeneous and therefore

subadditive. Moreover, it is 2-homogeneous in the second argument. Therefore, we obtain

Em
trans ď 1 ´ ǫ

p1 ´ 2δq2

ż

Im

Dtrans

ˆ
ρ

ˆ
t ´ δ

1 ´ 2δ

˙
,m

ˆ
t ´ δ

1 ´ 2δ

˙˙
dt

“ 1 ´ ǫ

p1 ´ 2δq

ż 1

0
Dtranspρptq,mptqq dt “ 1 ´ ǫ

p1 ´ 2δqEtranspρ,mq .

Furthermore, using Proposition 5.4.1, we obtain El
trans ` Er

trans ď 2 CpXq δ.

Step 2: Construction of Recovery Sequence by Local Averages of the Regularized Trajectory. Now, we

construct the recovery sequence by a discretization in time of the regularized continuous trajectory. As before,

we set ǫ “ δ2. First, for a fixed h, we have to choose δ appropriately. Since we can restrict to the case pρ,mq P
CEpρA, ρBq, the a priori bound in Lemma 5.2.1 implies that ρ P C0, 1

2 pr0, 1s,RXq. Thus, there is a function of type

gpsq :“ C s
1
2 for some constant C P R` s.t. |ρpt, xq ´ ρpt1, xq| ď gp|t ´ t1|q for all x P X. Now, we set ∆ :“ gp2hq

and define a regularization parameter

δ :“ min
!

ih : i PN, ih ě ∆ 1
4

)
.
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Then, in the limit h Ñ 0, we have convergence ∆Ñ 0. Hence, δ Ñ 0 and consequently ǫ “ δ2 Ñ 0. In particular,

for h sufficiently small 2 ě 1
1´2δ and thus ∆ “ gp2hq ě gp h

1´2δ q. Therefore, ∆ is a uniform upper bound for the

variation of ρδ on any interval of the size h. We now define the recovery sequence by

ρh :“ Ihρδ , mh :“ avgh mδ .

Obviously, it holds that pρh,mhq P CEhpρA, ρBq. By construction of the recovery sequence, we have in the limit

for h Ñ 0, convergence pρδ ´ ρh,mδ ´ mhq ˚á 0. Furthermore, since in the limit δ Ñ 0, we get convergence

pρδ,mδq ˚á pρ,mq, which implies that pρh,mhq ˚á pρ,mq for h Ñ 0.

Step 3: Energy Estimate for the Recovery Sequence. Note that δ is chosen to be an integer multiple of h.

Thus, the division of r0, 1s into the three intervals r0, δs, rδ, 1 ´ δs and r1 ´ δ, 1s in the construction of pρδ,mδq is

compatible with the grid discretization of step size h. Therefore, we can decompose the discrete kinetic energy as

above into the three contributions

Etrans,hpρh,mhq “ El
trans,h ` Em

trans,h ` Er
trans,h ,

which we can estimate in analogy by

El
trans,h ď ǫ

δ
Etrans,hpIhρA,1, avgh mA,1q, Er

trans,h ď ǫ

δ
Etrans,hpIhρ1,B, avgh m1,Bq ,

and consequently by using Proposition 5.4.1 we observe that

El
trans,h ` Er

trans,h ď 2 CpXq δ .

For the interior part we first define the set of corresponding intervals by Sm :“ t i P t0, . . . ,N ´ 1u : Ii Ă Imu,

s.t. we can write the kinetic energy Em
trans and its discrete counterpart Em

trans,h
as

Em
trans “ 1

2

ÿ

iPSm

ÿ

x,yPX

ż

Ii

Φe pρδpt, xq, ρδpt, yq,mδpt, x, yqq dt Qpx, yqπpxq ,

Em
trans,h “ 1

2

ÿ

iPSm

ÿ

x,yPX

hΦe

`
pavgh Ihρδqpti, xq, pavgh Ihρδqpti, yq, pavgh mδqpti, x, yq

˘
Qpx, yqπpxq .

Because the integrandΦe : R` ˆR` ˆRÑ R` is convex, for every interval Ii with i P Sm, we can apply Jensen’s

inequality, which gives

ż

Ii

Φe pρδpt, xq, ρδpt, yq,mpt, x, yqq dt ě hΦe

`
pavgh ρδqpti, xq, pavgh ρδqpti, yq, pavgh mδqpti, x, yq

˘
.

By construction of ρδ and by definition of ∆, we have for any i P Sm and z P X that

pavgh ρδqpti, zq ď pavgh Ihρδqpti, zq ` ∆ , and pavgh Ihρδqpti, zq ě ǫ .

Since the function s Ñ s
s`∆ is monotone, we obtain

pavgh Ihρδqpti, zq
pavgh ρδqpti, zq ě

pavgh Ihρδqpti, zq
pavgh Ihρδqpti, zq ` ∆ ě ǫ

ǫ` ∆ .

Now, by the joint 1-homogeneity of θ and the monotonicity of θ in each single component, we get for all x, y P X
that

θ
`
pavgh Ihρδqpti, xq, pavgh Ihρδqpti, yq

˘

θ
`
pavgh ρδqpti, xq, pavgh ρδqpti, yq

˘ ě ǫ

ǫ` ∆ “ 1

1 ` ∆

ǫ

.
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Hence,

Em
trans,h “ 1

2

ÿ

iPSm

ÿ

x,yPX

h
pavgh mδq2pti, x, yq

θppavgh Ihρδqpti, xq, pavgh Ihρδqpti, yqqQpx, yqπpxq

ď 1 ` ∆
2ǫ

ÿ

iPSm

ÿ

x,yPX

h
pavgh mδq2pti, x, yq

θppavgh ρδqpti, xq, pavgh ρδqpti, yqqQpx, yqπpxq “
`
1 ` ∆

ǫ

˘
Em

trans .

By definition, we have ǫ “ δ2 ě ∆ 1
2 , and thus, ∆ǫ ď ǫ. Altogether, we obtain for h sufficiently small

Etrans,hpρh,mhq “ El
trans,h ` Em

trans,h ` Er
trans,h ď 2 CpXq δ` p1 ` ǫq 1 ´ ǫ

1 ´ 2δ
Etranspρ,mq ,

which converges to Etranspρ,mq for h Ñ 0. �

Now, following Theorem 2.3.3, the Γ-convergence result provides convergence of discrete geodesics to contin-

uous geodesics. First, we show in analogy to Lemma 5.2.1 that also the discrete momenta are uniformly bounded

in L2.

Lemma 5.4.4 (L2-Bound for the Discrete Momentum). Let pρh,mhq P V1
n,h

ˆ V0
e,h

with finite discrete energy

Ehpρh,mhq ď Ē ă 8. Then, mh is bounded in L2pr0, 1s,RXˆXq with a bound only depending on pX,Q, πq.

Proof. The proof works in analogy to Lemma 5.2.1. First, we can estimate

ˆ ÿ

x,yPX

|mhpti, x, yq|Qpx, yqπpxq
˙2

ď
ˆ ÿ

x,yPX

Φepavgh ρhpti, xq, avgh ρhpti, yq,mhpti, x, yqqQpx, yqπpxq
˙

¨
ˆ ÿ

x,yPX

θpavgh ρhpti, xq, avgh ρhpti, yqqQpx, yqπpxq
˙
.

Furthermore, we have a bound

ÿ

x,yPX

θpavgh ρhpti, xq, avgh ρhpti, yqqQpx, yqπpxq ď C˚ ,

where C˚ is defined in (5.1). Here, we have used that pρh,mhq P CEpρA, ρBq, and thus, the mass is preserved, i.e.,ř
xPX avgh ρhpti, xqπpxq “

ř
xPX ρhpti ` h

2 , xqπpxq “
ř

xPX ρApxqπpxq “ 1 for all i “ 0, . . . ,N ´ 1. Moreover,

since Etrans,hpρh,mhq ă 8, we have that avgh ρh ě 0. Finally, using that X is finite and summing up in time, we

establish the bound. �

Theorem 5.4.5 (Convergence of Discrete Geodesics). Let ρA, ρB P PpXq be fixed temporal boundary conditions

and let pρh,mhq be a sequence of minimizers of the discrete energy functionals Eh. Then pρh,mhq is uniformly

bounded in C0, 1
2 pr0, 1s,RXq ˆ L2pp0, 1q,RXˆXq, and there exists a subsequence (here again indexed by h), s.t.

ρh Ñ ρ strongly in C0,αpr0, 1s,RXq for any α P r0, 1
2 q and mh Ñ m weakly in L2, where pρ,mq is a minimizer of

the energy functional E.

Proof. For a sequence of minimizers pρh,mhqh , the discrete energy Ehpρh,mhq is uniformly bounded by Corol-

lary 5.4.2. Since pρh,mhq P CEpρA, ρBq, the total variation of pρhqh is uniformly bounded. Furthermore, by

Lemma 5.4.4, the L2-norm of pmhqh is uniformly bounded. Hence, the sequence pρh,mhqh has a weakly-˚ con-

vergent subsequence, which, by Theorem 5.4.3 and the fundamental theorem of Γ-convergence 2.3.3, converges

weakly-˚ to a minimizer pρ,mq of E.

We can improve the convergence by taking into account the regularity for solutions to the continuity equation.

Indeed, since mh is uniformly bounded in L2pp0, 1q,RXˆXq, the continuity equation Btρh “ ´divXmh implies that

ρh is uniformly bounded in W1,2pp0, 1q,RXq. Thus, pρhqh is uniformly bounded in C0, 1
2 pp0, 1q,RXq and compact

in C0,αpp0, 1q,RXq for all α P r0, 1
2 q by the Sobolev embedding theorem 2.2.2. �
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5.5 Optimization with Proximal Splitting

For the numerical optimization scheme, to compute a minimizer of the fully discrete energy (5.7), we apply prox-

imal splitting methods as discussed in Section 3.2.3. We recall that for the classical L2-Wasserstein distance, the

splitting can be performed in a way s.t. the proximal mappings are obtained by solving a linear system coupled in

space and time and a pointwise projection onto a convex set. Now, for the discrete transport distance, it turns out

that the convex dual of the kinetic energy functional Etrans cannot be computed pointwise, since ρ and m are cou-

pled spatially over the whole graph according to the transition kernel Q. Furthermore, because of our finite element

discretization, there is a coupling in time via the averaging operator avgh. Thus, computing the proximal operator

of Etrans,h would require to solve a nonlinear minimization problem fully coupled in space and time. Therefore, to

simplify the numerical scheme, we propose the use of auxiliary variables to decouple the optimization problem.

This requires to solve a minimization problem on a higher-dimensional space by taking into account additional

proximal operators, but each turns out to be much simpler to compute.

5.5.1 Relaxation via Slack Variables

Here, we introduce several slack variables to decouple the fully discrete optimization problem (5.7). Since in the

following, we only investigate discrete spaces, we often neglect the time discretization parameter h to indicate

corresponding functions.

Edge-Based Kinetic Energy. First, for the classical L2-Wasserstein distance, we recall from (3.13) that the

integrand of the kinetic energy for a pair pϑ,mq P RˆR is given by

Φpϑ,mq “

$
’’’&
’’’%

m2

ϑ
if ϑ ą 0 ,

0 if pϑ,mq “ p0, 0q ,
8 else .

Now, for the discrete optimal transport distance, the integrand of kinetic energy in Definition 5.1.4 is given on

edges via Φeps, t,mq “ Φpθps, tq,mq, where θps, tq is a suitable average of the adjacent nodes satisfying the

assumptions in Definition 5.1.2. Thus, Φe couples the momentum variable m on this edge with the mass variable

ρ on the adjacent nodes x and y. Therefore, we introduce a variable ϑ representing the mass on the edges, s.t. the

kinetic energy functional can be decoupled on edge values. We show that the corresponding relaxation does not

change the minimizer.

Lemma 5.5.1 (Edge-Based Kinetic Energy). The set

Kpre :“
!

pρ̄, ϑq P V0
n,h ˆ V0

e,h : 0 ď ϑpti, x, yq ď θpρ̄pti, xq, ρ̄pti, yqq @i “ 0, . . . ,N ´ 1, @x, y P X
)
.

is convex.

We define the edge-based kinetic energy Etrans,e : V0
n,h

ˆ V0
e,h

Ñ RY t8u by

Etrans,epϑ,mq :“ 1

2

ż 1

0

ÿ

x,yPX

Φpϑpt, x, yq,mpt, x, yqqQpx, yqπpxq dt .

Then, for pρ,mq P V1
n,h

ˆ V0
e,h

we can compute the kinetic energy functional Etrans,h by

Etrans,hpρ,mq “ inf
!
Etrans,epϑ,mq ` IKpre

pavgh ρ, ϑq : ϑ P V0
e,h

)
.

Proof. The convexity ofKpre follows since θ is a concave function.

Now, for any ϑ P V0
e,h

with pρ̄, ϑq P Kpre, we have that ϑpti, x, yq ď θpρ̄pti, xq, ρ̄pti, yqq. By monotonicity of Φ

in its first argument, this implies

Φpϑpti, x, yq,mpti, x, yqq ě Φpθpρ̄pti, xq, ρ̄pti, yqq,mpti, x, yqq “ Φepρ̄pti, xq, ρ̄pti, yq,mpti, x, yqq .
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Since for pρ,mq P V1
n,h

ˆ V0
e,h

we have that ρ̄ :“ avgh ρ P V0
n,h

and avgh m “ m, this implies

Etranspρ̄,mq “ Etranspavgh ρ, avgh mq “ Etranspavgh ρ,mq

ď inf
!
Etrans,epϑ,mq ` IKpre

pρ̄, ϑq : ϑ P V0
e,h

)
.

To show equality, we observe that ϑpti, x, yq :“ θpρ̄pti, xq, ρ̄pti, yqq obviously satisfies pρ̄, ϑq P Kpre and has energy

Etrans,epϑ,mq “ Etranspρ̄,mq. �

Auxiliary Variables. Now, we explicitly introduce an auxiliary variable for the average value avgh ρ. So far, the

coupling according to the graph structure is transferred to the set Kpre, where avgh ρ is defined on nodes, and ρ̄ is

defined on edges. Therefore, we introduce auxiliary variables ρ´, ρ` P V0
e,h

to represent the mass on a directed

edge according to the adjacent node.

Lemma 5.5.2 (Decoupling in Time). For pρ, ϑq P V1
n,h

ˆ V0
e,h

we have that

IKpre
pavgh ρ, ϑq “ inf

!
IJavg

pρ, ρ̄q ` IJ“
pρ̄, qq ` IJ˘

pq, ρ´, ρ`q ` IK pρ´, ρ`, ϑq :

pρ̄, q, ρ´, ρ`q P pV0
n,hq2 ˆ pV0

e,hq2
)
,

where we define the following sets

Javg :“
!

pρ, ρ̄q P V1
n,h ˆ V0

n,h : ρ̄ “ avgh ρ
)
,

J“ :“
!

pρ̄, qq P pV0
n,hq2 : ρ̄ “ q

)
,

J˘ :“
!

pq, ρ´, ρ`q P V0
n,h ˆ pV0

e,hq2 : qpti, xq “ ρ´pti, x, yq, qpti, yq “ ρ`pti, x, yq
)
, (5.9)

K :“
!

pρ´, ρ`, ϑq P pV0
e,hq3 : pρ´pti, x, yq, ρ`pti, x, yq, ϑpti, x, yqq P K

)
, (5.10)

with

K :“
 

pρ´, ρ`, ϑq P R3 : 0 ď ϑ ď θpρ´, ρ`q
(
.

Proof. For fixed ρ P V1
n,h

there is precisely one tuple pρ̄, q, ρ´, ρ`q s.t.

pρ, ρ̄q P Javg, pρ̄, qq P J“, and pq, ρ´, ρ`q P J˘ ,

i.e., the tuple is given by ρ̄ “ avgh ρ, q “ ρ̄, ρ´pti, x, yq “ qpti, xq, and ρ`pti, x, yq “ qpti, yq. For this pρ´, ρ`q
we find pρ´, ρ`, ϑq P K if and only if pavgh ρ, ϑq P Kpre. �

Later, the additional set J“ simplifies the partition of the final optimization problem into a primal and a dual

component. Indeed, the sets Javg, J“, J˘ and K are products of simpler low-dimensional sets, implying more

straightforward computations of the relevant proximal mappings and projections.

Splitting of the Relaxed Energy Functional. Finally, we arrive at an equivalent formulation for the discrete

minimization problem (5.7):

WG,hpρA, ρBq2 “ inf
!

pF `Gqpρ,m, ϑ, ρ´, ρ`, ρ̄, qq :

pρ,m, ϑ, ρ´, ρ`, ρ̄, qq P V1
n,h ˆ pV0

e,hq4 ˆ pV0
n,hq2

) (5.11)

with functionals

F pρ,m, ϑ, ρ´, ρ`, ρ̄, qq :“ Etrans,epϑ,mq ` IJ˘
pq, ρ´, ρ`q ` IJavg

pρ, ρ̄q,
Gpρ,m, ϑ, ρ´, ρ`, ρ̄, qq :“ ICEhpρA,ρBqpρ,mq ` IK pρ´, ρ`, ϑq ` IJ“

pρ̄, qq.
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Here, the splitting into F and G already fits into the requirements for a proximal splitting algorithm as presented

in Section 3.2.3. For our numerical scheme, we use the Chambolle–Pock algorithm (3.11), where we consider the

Hilbert space H “ V1
n,h

ˆ pV0
e,h

q4 ˆ pV0
n,h

q2 with the scalar product

x
`
ρ1,m1, ϑ1, ρ

´
1
, ρ`

1
, ρ̄1, q1

˘
,
`
ρ2,m2, ϑ2, ρ

´
2
, ρ`

2
, ρ̄2, q2

˘
yH

:“ h
Nÿ

i“0

xρ1pti, ¨q, ρ2pti, ¨qyπ ` h
N´1ÿ

i“0

xρ̄1pti, ¨q, ρ̄2pti, ¨qyπ ` xq1pti, ¨q, q2pti, ¨qyπ

` h
N´1ÿ

i“0

xm1pti, ¨q,m2pti, ¨qyQ ` xϑ1pti, ¨q, ϑ2pti, ¨qyQ

` h
N´1ÿ

i“0

xρ´
1

pti, ¨q, ρ´
2

pti, ¨qyQ ` xρ`
1

pti, ¨q, ρ`
2

pti, ¨qyQ .

(5.12)

and the induced norm denoted by } ¨ }H, which is used for the proximal mappings. Note that by Moreau’s de-

composition (see Theorem 3.2.9), the proximal map of the Fenchel dual can be computed by the proximal map of

the primal and vice-versa. Furthermore, the choice of our slack variables allows to compute the proximal maps of

the involved six operators for F and G separately. In Figure 5.3, we summarize the proximal splitting algorithm,

including the following observations concerning the computational methods of the particular operators.

primal

dual

G “
ICEhpρA,ρBq

linear system
coupled in space and time

`
IK

fully decouples
for each time step and edge

`
IJ“

simple pointwise operation

ρ

mass at nodes

m
momentum

on edges

ϑ
mass on edges
according to θ

ρ´, ρ`

mass on
directed edges

ρ̄

mass averaged
in time

q

auxiliary mass
allows splitting

F “
Etrans,e

fully decouples
for each time step and edge

`
IJ˘

low-dimensional problems
for each time step and node

`
IJavg

decouples for each node
to a sparse linear system in time

Figure 5.3: Sketch of proximal splitting algorithm.

5.5.2 Projection onto CEhpρA, ρBq

In analogy to the classical optimal transport distance, we show that projecting onto CEhpρA, ρBq requires solving

an elliptic problem on the time-space domain (cf . Lemma 3.2.14).

Proposition 5.5.3 (Projection onto CEhpρA, ρBq). Given pρ,mq P V1
n,h

ˆ V0
e,h

, the solution pρpr,mprq to the pro-

jection problem

projCEhpρA,ρBqpρ,mq “ arg min
pρpr,mprqPCEhpρA,ρBq

h

2

Nÿ

i“0

}ρprpti, ¨q ´ ρpti, ¨q}2
π ` h

2

N´1ÿ

i“0

}mprpti, ¨q ´ mpti, ¨q}2
Q
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is given by

ρprpti, xq “ ρpti, xq ` ϕpti, xq ´ ϕpti´1, xq
h

@i “ 1, . . . ,N ´ 1 , (5.13a)

ρprpt0, xq “ ρApxq , ρprptN, xq “ ρBpxq , (5.13b)

mprpti, x, yq “ mpti, x, yq ` ∇Xϕpti, x, yq @i “ 0, . . . ,N ´ 1 , (5.13c)

where ϕ solves the elliptic equation on the time-space domain

πpxqϕpt1, xq ´ ϕpt0, xq
h2

` πpxq∆Xϕpt0, xq

“ ´πpxq
ˆ
ρpt1, xq ´ ρApxq

h
` divXmpt0, xq

˙
,

πpxq´ϕptN´1, xq ` ϕptN´2, xq
h2

` πpxq∆XϕptN´1, xq

“ ´πpxq
ˆ
ρBpxq ´ ρptN´1, xq

h
` divXmptN´1, xq

˙
,

πpxqϕpti`1, xq ´ 2ϕpti, xq ` ϕpti´1, xq
h2

` πpxq∆Xϕpti, xq

“ ´πpxq
ˆ
ρpti`1, xq ´ ρpti, xq

h
` divXmpti, xq

˙
,

(5.14)

for i “ 1, . . . ,N ´ 2 and x P X.

The factors πpxq in (5.14) could be canceled but they simplify further analysis.

Proof. We define the Lagrangian corresponding to the projection problem as

Lpρpr,mpr, ϕ, λA, λBq “h

2

Nÿ

i“0

}ρprpti, ¨q ´ ρpti, ¨q}2
π ` h

2

N´1ÿ

i“0

}mprpti, ¨q ´ mpti, ¨q}2
Q

` h
N´1ÿ

i“0

ÿ

xPX

ϕpti, xq
ˆ
ρprpti`1, xq ´ ρprpti, xq

h
` divXmprpti, xq

˙
πpxq

`
ÿ

xPX

pλBpxqpρprptN, xq ´ ρBpxqq ` λApxqpρprpt0, xq ´ ρApxqqqπpxq ,

where λA, λB are the Lagrange multipliers for the boundary conditions ρprpt0, ¨q “ ρA and ρprptN, ¨q “ ρB. The op-

timality conditions in ρpr and mpr imply (5.13a) and (5.13c). Furthermore, (5.13b) reflects the boundary conditions,

which are to be ensured in CEhpρA, ρBq. Inserting these relations into the continuity equation Btρ
pr ` divXmpr “ 0

leads to the system of equations (5.14). �

Now, the system (5.14) can be written as a linear system SZ “ F for a coordinate vector

Z “ pϕpti, xqqi“0,...N´1, xPX

representing a function ϕ P V0
n,h

in the canonical basis

pϕi,xqi“0,...,N´1, xPX , where pϕi,xqpt j, yq “ δi, j ¨ δx,y ,

and the standard Euclidean inner product with respect to this basis. Furthermore, F P RN|X| is a vector and

S P RpN|X|qˆpN|X|q is a matrix, which is symmetric since πpxqQpx, yq “ πpyqQpy, xq and sparse if Q is sparse.

However, the matrix S is not invertible. Thus, to solve the linear system, we first compute the kernel of S.

Lemma 5.5.4 (Kernel of System Matrix). The kernel of S is spanned by functions that are constant in space and

time.
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Proof. Assume that there is Z is in the kernel of S, which is not constant. We denote by φh the associated function

in V0
n,h

. Now, let I`pµq :“ tpi, xq P t0, . . . ,N ´ 1u ˆX : φhpi, xq ą µu for µ “ minφhpi, xq and define ϕ P V0
n,h

via ϕpti, xq “ 1 if pi, xq P I`pµq and ϕpti, xq “ 0 else. Let W be the associated nodal vector to ϕ. By assumption

on Z the set I`pµq is nonempty and thus it is easy to see that WJSZ ă 0 and thus Z cannot be in the kernel of S,

which proves the claim. �

Thus, we introduce another Lagrange multiplier λ to impose the constraint
řN´1

i“0

ř
xPX ϕpti, xq “ 0. Con-

sidering the vector w P RN|X| with entries wi,x “ 1 this constraint can be written as wJϕ “ 0. Then the linear

system

ˆ
S w

wT 0

˙ˆ
Z
λ

˙
“
ˆ

F
0

˙

is uniquely solvable, and the solution implies λ “ 0 if F K w (in the Euclidean sense), which is true because ρA

and ρB are assumed to be of equal mass. Note that any Z̃ “ Z ` W with W in the kernel of S would not change

the updates (5.13a) and (5.13c), since the contributions
Wpti,xq´Wpti´1,xq

h and ∇XWpti, x, yq are zero.

5.5.3 Proximal Mapping of Etrans,e

We recall from Section 3.2.3 that the computation of the proximal mapping of Etrans,e (see Proposition 3.2.12) is

also required for the numerical solution scheme for the classical optimal transport distance. Now, for the discrete

transport distance, it is crucial that we have decoupled the variables in such a way that the computation of Etrans,e

can be performed pointwise. This is satisfied, since for pϑ,mq P pV0
e,h

q2 we have

Etrans,epϑ,mq “ h

2

N´1ÿ

i“0

ÿ

x,yPX

Φpϑpti, x, yq,mpti, x, yqqQpx, yqπpxq ,

and thus, for pp, qq P pV0
e,h

q2, we obtain for the dual

E˚
trans,epp, qq “ sup

pϑ,mqPpV0
e,h

q2

h
N´1ÿ

i“0

”
xppti, ¨, ¨q, ϑpti, ¨, ¨qyQ ` xqpti, ¨, ¨q,mpti, ¨, ¨qyQ

´ 1

2

ÿ

px,yqPXˆX

Φpϑpti, x, yq,mpti, x, yqqQpx, yqπpxq
ı

“ h

2

N´1ÿ

i“0

ÿ

px,yqPXˆX

Φ
˚pppti, x, yq, qpti, x, yqqQpx, yqπpxq “

N´1ÿ

i“0

ÿ

px,yqPXˆX

IBpppti, x, yq, qpti, x, yqq ,

where Φ˚ “ IB with the convex set

B “
"

pp, qq P R2 : p ` q2

4
ď 0

*
.

Therefore, the proximal mapping separates into two-dimensional problems for each time interval and edge, and for

σ ą 0, pppr, qprq “ proxσE˚
trans,e

pp, qq, it is given by

ppprpti, x, yq, qprpti, x, yqq “ projBpppti, x, yq, qpti, x, yqq .

In Lemma 3.2.13, we have described the computational solution scheme of this projection problem with a Newton

method.
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5.5.4 Projection onto the Edge-Based SetK

In the following, we want to compute for given pρ´, ρ`, ϑq P pV0
e,h

q3 the projection

pρ´pr
, ρ`pr

, ϑprq “ projK pρ´, ρ`, ϑq

onto the setK , which is given by

arg min
pρ´pr,ρ`pr,ϑprqPK

h

2

N´1ÿ

i“0

´
}ρ´prpti, ¨, ¨q ´ ρ´pti, ¨, ¨q}2

Q ` }ρ`prpti, ¨, ¨q ´ ρ`pti, ¨, ¨q}2
Q ` }ϑprpti, ¨, ¨q ´ ϑpti, ¨, ¨q}2

Q

¯
.

Recall from (5.10) thatK is a product of the three-dimensional closed convex set K. Thus, the projection problem

decouples into the edgewise projection

pρ´prpti, x, yq, ρ`prpti, x, yq, ϑprpti, x, yqq “ projKpρ´pti, x, yq, ρ`pti, x, yq, ϑpti, x, yqq ,

for each time step ti and each edge px, yq P S. To compute the projection onto K, we make use of its special

structure given as the graph of a concave function θ. In analogy to the subdifferential for convex functions,

we denote the superdifferential of θ at a point ps, tq P R2 by B`θps, tq :“ ´Bp´θqps, tq, where Bp´θqps, tq is

the subdifferential of the convex function ´θ at ps, tq. Now, we recall from Lemma 3.2.11 that the projection

ppr “ projKppq of p P R3 is characterized by

p ´ ppr P NKppprq :“
 

z P R3 : xz, q ´ ppry ď 0 @ q P K
(
,

where NKppprq is the normal cone of K at ppr. First, we observe that the computation of NK can be distinguished

into several cases.

Lemma 5.5.5 (Characterization of the Normal Cone). Let θ : R2 Ñ R be an averaging function fulfilling the

assumptions listed as in Definition 5.1.2 and let K :“ tp P R3 : 0 ď p3 ď θpp1, p2qu. Then the normal cone

NKppprq at ppr P K can be characterized in the following way.

1. Interior Points. If ppr P tpp1, p2, p3q P R3 : 0 ă p3 ă θpp1, p2qu, then NKppprq “ tp0, 0, 0qu.

2. Bottom Facet. If ppr P R` ˆR` ˆ t0u, then NKppprq “ t0u ˆ t0u ˆRď0.

3. Coordinate Axis. If ppr “ pppr

1
, 0, 0q with ppr

1
P R`, then

NKppprq “ t0u ˆRď0 ˆRď0 Y
!

p0, q2, q3q P t0u ˆRď0 ˆR` :
´

0,´ q2

q3

¯
P B`θpppr

1
, 0q

)
.

Moreover, we have that

p0, qq P B`θpppr

1
, 0q ô q ě lim

zŒ0
B2θpppr

1
, zq ,

B`θpppr

1
, 0q “ H ô lim

zŒ0
B2θpppr

1
, zq “ 8 .

In analogy, a similar statement holds for ppr “ p0, ppr

2
, 0q with ppr

2
P R`.

4. Origin. If ppr “ p0, 0, 0q, then

NKppprq “ pRď0q3 Y
!

pq1, q2, q3q P Rď0 ˆRď0 ˆR` :
´

q1

q3
,

q2

q3

¯
P ´B`θp0q

)
.

5. Upper Surface. If ppr “
`
ppr

1
, ppr

2
, θpppr

1
, ppr

2
q
˘

for pppr

1
, ppr

2
q P R2

`, then

NKppprq “
 
λ p´B1θpppr

1
, ppr

2
q,´B2θpppr

1
, ppr

2
q, 1q : λ P R`

(
.
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Proof. We distinguish the particular cases.

Interior Points and Bottom Surface. These two cases trivially hold true.

Coordinate Axis. Let ppr “ pppr

1
, 0, 0q with ppr

1
ą 0. First, there exists ε ą 0 s.t. the points pppr

1
` ε, 0, 0q,

pppr

1
´ ε, 0, 0q, and pppr

1
, ε, 0q are in the set K, hence NKppprq Ă t0u ˆRď0 ˆR. Now, the planes Rˆ t0u ˆR and

RˆRˆ t0u contain the point ppr, but do not intersect the interior of K, thus t0u ˆRď0 ˆRď0 Ă NKppprq. Next,

we investigate the set t0u ˆ Rď0 ˆ Rď0. By definition of the set K, a point p0,´z2, 1q P NKppprq is determined

by the condition z “ p0, z2q P B`θpppr

1
, 0q. We define a function f : t ÞÑ θpppr

1
, tq s.t. z2 P B` f p0q. Conversely, if

z2 < B` f p0q then it follows that p0,´z2, 1q < NKppprq. Thus, the normal cone is given by

NKppprq “ t0u ˆRď0 ˆRď0 Y tp0,´λ ¨ z, λq : z P B` f p0q , λ P R`u .
Because the auxiliary function f is concave and by monotonicity of the superdifferential, we observe that

B` f p0q “ rlim
zŒ0

B2θpppr

1
, zq,8q .

Origin. Let ppr “ p0, 0, 0q. First, we observe that pRď0q3 Ă NKp0q Ă Rď0 ˆ Rď0 ˆ R. To investigate the set

Rď0 ˆ Rď0 ˆ R`, we consider the superdifferential of θ. Indeed, for every z “ pz1, z2q P B`θp0q, we have that

p´z1,´z2, 1q P NKp0q. Conversely, z “ pz1, z2q < B`θp0q implies p´z1,´z2, 1q < NKp0q.

Upper Surface. Let ppr “ pppr

1
, ppr

2
, θpppr

1
, ppr

2
qq with pppr

1
, ppr

2
q P R2

`. Then there exists a neighborhood of ppr s.t.

K is the subgraph of a concave and differentiable function. Hence, the normal cone is spanned by the single outer

normal vector p´B1θpppr

1
, ppr

2
q,´B2θpppr

1
, ppr

2
q, 1q. �

Now, from Lemma 5.5.5 we can extract the following algorithm.

Algorithm 5.1 Projection onto the cone K

function PROJECTK(p1,p2,p3)

if 0 ď p3 ď θpp1, p2q return pp1, p2, p3q
if p3 ď 0 return pmaxtp1, 0u,maxtp2, 0u, 0q
if pp1 ą 0q ^ pp2 ď 0q then

if ´p2{p3 ě limzŒ0 B2θpp1, zq return pp1, 0, 0q
end if

if pp1 ď 0q ^ pp2 ą 0q then

if ´p1{p3 ě limzŒ0 B1θpz, p2q return p0, p2, 0q
end if

if pp1 ď 0q ^ pp2 ď 0q then

if p´p1{p3,´p2{p3q P B`θp0q return p0, 0, 0q
end if

return PROJECTKTOP(p1,p2,p3)

end function

Thus, for a fully explicit solution scheme for a specific choice of θ, we still have to compute

1. the limits limzŒ0 B2θpp1, zq and limzŒ0 B1θpz, p2q,

2. the superdifferential B`θp0q at the origin, and

3. the function PROJECTKTOP(p1,p2,p3) for the projection onto the upper surface corresponding to the case 5

in Lemma 5.5.5.

Next, we describe a general procedure to reduce the projection problem onto the upper surface to a one-dimensional

optimization problem. Here, we essentially make use of the 1-homogeneity of θ. More precisely, it is sufficient to

consider a curve c : R` Ñ R2 of type

cpqq “ pq´1{2, q1{2q .
Then all points on the upper surface can be expressed in terms of θpcpqqq. A similar dimension reduction allows

characterizing the superdifferential of θ at the origin by taking into account the curve c.
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Lemma 5.5.6 (Projection onto the Upper Surface of K). Let p P R3 s.t. the projection onto K is given by ppr “
pppr

1
, ppr

2
, θpppr

1
, ppr

2
qq with pppr

1
, ppr

2
q P R2

`. Consider a parametrized curve wpqq “ pq1{2, q´1{2, θpq1{2, q´1{2qq
on the upper surface of K with corresponding normal npqq “ p´B1θpq1{2, q´1{2q,´B2θpq1{2, q´1{2q, 1q. Then

there exists a unique pq, τq P R2
` s.t. ppr “ τwpqq. More precisely, q is given as the unique root of the function

f pqq :“ xp,wpqq ˆ npqqy and τ “ xp,
wpqq

}wpqq}2 y.

Proof. Let ppr “ pppr

1
, ppr

2
, θpppr

1
, ppr

2
qq with pppr

1
, ppr

2
q P R2

`. By 1-homogeneity of θ, there exists a unique q P R`

and τ P R` s.t. ppr “ τ ¨ wpqq, where

q “
ppr

1

ppr

2

, and τ “
`
ppr

1
ppr

2

˘ 1
2 .

By definition, p lies in the plane spanned by wpqq and npqq, i.e., f pqq “ xp,wpqq ˆ npqqy “ 0. Since the projection

ppr is unique, q must be the unique root of f . Then τ is given as the unique solution to the one-dimensional

projection τ ÞÑ 1
2 }p ´ τ ¨ wpqq}2 onto the corresponding ray. �

Lemma 5.5.7 (Characterization of the Superdifferential of θ). The superdifferential of θ at the origin is given by

B`θp0q “ t∇θpq´1{2, q1{2q : q P R`u ` pRě0q2 .

Proof. We consider the curve cpqq “ pq´1{2, q1{2q. First, we have to verify that any r P t∇θpcpqqq : q P R`u is

contained in B`θp0q, i.e., for every p P R2
`, we have to show that xr, py ě θppq. Let q P R` s.t. r “ ∇θpcpqqq. By

concavity of θ, we get that x∇θpcpqqq, p ´ cpqqy ě θppq ´θpcpqqq. Then by 1-homogeneity of θ, for every λ ą 0,

we observe that ∇θpλcpqqq “ ∇θpcpqqq. Thus, we obtain that x∇θpcpqqq, p ´ λcpqqy ě θppq ´ θpλcpqqq. Passing

to the limit λ Ñ 0 and using the continuity of θ on R2
ě0

leads to xr, py ě θppq. Because B`θp0q is a closed set

(see, e.g., [BC17, Proposition 16.4]), we conclude that

t∇θpcpqqq : q P R`u ` pRě0q2 Ă B`θp0q .

In contrast, for every w P R2zpRě0q2 there exists p P R2
` s.t. θp0q ` xr ` w, py ă θppq, since xw, py can be chosen

arbitrarily small. �

Logarithmic Mean. Here, we consider the specific case of the logarithmic mean θ “ θlog (see (5.4)). Then

for s ą 0, we have that limtŒ0 B1θlogpt, sq “ limtŒ0 B2θlogps, tq “ 8. Therefore, we can explicitly describe the

normal cone at ps, 0, 0q by NKps, 0, 0q “ t0u ˆ Rď0 ˆ Rď0 In analogy, the normal cone at p0, s, 0q is given by

NKp0, s, 0q “ Rď0 ˆ t0u ˆRď0. Consequently, the Algorithm 5.1 simplifies as follows.

Algorithm 5.2 Projection onto the cone K for θlog

function PROJECTK(p1,p2,p3)

if 0 ď p3 ď θlogpp1, p2q return pp1, p2, p3q
if p3 ď 0 return pmaxtp1, 0u,maxtp2, 0u, 0q
if pp1 ď 0q ^ pp2 ď 0q ^ p´p1{p3,´p2{p3q P B`θlogp0q return p0, 0, 0q
return PROJECTKTOP(p1,p2,p3)

end function

Now, we characterize the superdifferential B`θlogp0q.

Lemma 5.5.8 (Superdifferential of θlog). Let z “ pz1, z2q P R2. If mintz1, z2u ď 0, then z < B`θlogp0q.

Otherwise, there is a unique q1 P R` s.t. B1θlogpq
´1{2

1
, q

1{2

1
q “ z1 and in this case z P B`θlogp0q if and only if

z2 ě B2θlogpq´1{2, q1{2q.

Proof. For the logarithmic mean, we have that B`θlogp0q Ă R2
`, and thus, z < B`θlogp0q if mintz1, z2q ď 0. We

observe that the partial derivative

B1θlogpq´1{2, q1{2q “
q ´ 1 ´ logpqq

log2pqq
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is monotone increasing in q with B1θlogpq´1{2, q1{2q Ñ 0 as q Ñ 0 and B1θlogpq´1{2, q1{2q Ñ 8 as q Ñ 8. Indeed,

for βpqq “ B1θlogpq´1{2, q1{2q with βp1q “ 1
2 , we obtain a continuous extension on R`. Furthermore, we consider

β1pqq “ 2p1´qq`logpqqp1`qq

q log3pqq
with continuous extension 1

6 for q “ 1. We verify that 2p1 ´ qq ` logpqqp1 ` qq is

negative for q ă 1 and positive for q ą 1. This implies that β1pqq ą 0. Furthermore, by symmetry, we obtain that

the partial derivative B2θlogpq´1{2, q1{2q is monotone decreasing in q with B2θlogpq´1{2, q1{2q Ñ 8 as q Ñ 0 and

B2θlogpq´1{2, q1{2q Ñ 0 as q Ñ 8. By the general characterization result in Lemma 5.5.7, we get that

B`θlogp0q “ t∇θlogpq´1{2, q1{2q : q P R`u ` pRě0q2 .

Thus, for every z P R2
`, there is a unique q1 P R` s.t. B1θlogpq

´1{2

1
, q

1{2

1
q “ z1 with the property that z1 ě

B1θlogpq´1{2, q1{2q if and only if q ď q1. Furthermore, there is a unique q2 P R` s.t. B2θlogpq
´1{2

2
, q

1{2

2
q “ z2 with

the property that z2 ě B2θlogpq´1{2, q1{2q if and only if q ě q2. Hence, z P B`θlogp0q if and only if q2 ď q1, which

is equivalent to z2 ě B2θlogpq
´1{2

1
, q

1{2

1
q. �

Remark 5.5.9 (Numerical Implementation). To determine q in Lemma 5.5.8, we can implement a one-dimensional

Newton iteration. Note that the function q ÞÑ B1θlogpq´1{2, q1{2q becomes increasingly steep as q Ñ 0, which

leads to increasingly unstable Newton iterations as z1 Ñ 0, whereas for q P r1,8q the function is rather flat and

easy to invert. To avoid the numerical instability for q Ñ 0, note that the roles of z1 and z2 in Lemma 5.5.8 can

be swapped using the transformation q Ø q´1. Moreover, for maxtz1, z2u ă 1
2 , we have z < B`θlogp0q. Thus,

by swapping the values of z1 and z2 if z1 ă z2 we can always remain in the regime q P r1,8q. Additionally, we

recommend to replace the function θlogps, tq and its derivatives by a local Taylor expansion near the diagonal.

Geometric Mean. Now, we consider the specific case of the geometric mean θ “ θgeo (see (5.4)). For s ą 0
we again find limtŒ0 B1θgeopt, sq “ limtŒ0 B2θgeops, tq “ 8 and consequently the same simplification of the

algorithm applies as in the case of the logarithmic mean. For the test of the inclusion z “ pz1, z2q P B`θgeop0q,

we argue as in the proof of Lemma 5.5.8. The functions B1θgeopq´1{2, q1{2q “ 1
2 q

1
2 and B2θgeopq´1{2, q1{2q “

1
2 q´ 1

2 have the same monotonicity properties as for the logarithmic mean. Therefore, if mintz1, z2u ď 0 then

z < B`θgeop0q. Otherwise, q1 “ 4 z2
1

and thus the condition B2θgeopq
´1{2

1
, q

1{2

1
q ď z2 is equivalent to z1z2 ě 1

4 . To

summarize, we have obtained

B`θgeop0q “
 

z P R2 : z1z2 ě 1
4 ^ mintz1, z2u ą 0

(
.

5.5.5 Proximal Mappings of Auxiliary Operators

Proximal Mapping of IJ˘
. Given a point pq, ρ´, ρ`q P V0

n,h
ˆ pV0

e,h
q2, the proximal map of IJ˘

is given by

the projection projJ˘
pq, ρ´, ρ`q. Thus, we have to find the minimizer pqpr, ρ´pr

, ρ`prq P J˘ of

N´1ÿ

i“0

}qprpti, ¨q ´ qpti, ¨q}2
π ` }ρ´prpti, ¨, ¨q ´ ρ´pti, ¨, ¨q}2

Q ` }ρ`prpti, ¨, ¨q ´ ρ`pti, ¨, ¨q}2
Q .

Recall that for any qpr P V0
n,h

there is precisely one pair pρ´pr
, ρ`prq P pV0

e,h
q2 s.t. pqpr, ρ´pr

, ρ`prq P J˘, see (5.9).

Therefore, we have to find qpr P V0
n,h

that minimizes

N´1ÿ

i“0

´ ÿ

xPX

|qprpti, xq ´ qpti, xq|2πpxq ` 1

2

ÿ

px,yqPX2

|qprpti, xq ´ ρ´pti, x, yq|2Qpx, yqπpxq

` 1

2

ÿ

px,yqPX2

|qprpti, yq ´ ρ`pti, x, yq|2Qpx, yqπpxq
¯
.
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Taking into account the detailed balance condition Qpx, yqπpxq “ Qpy, xqπpyq, the optimality condition in qpr for

i “ 0, . . . ,N ´ 1, x P X is given by

qprpti, xq “ 1

1 `
ř

yPXQpx, yq

¨
˝qpti, xq ` 1

2

ÿ

yPX

pρ´pti, x, yq ` ρ`pti, y, xqqQpx, yq

˛
‚ .

By definition of the set J˘ we obtain ρ´prpti, x, yq “ qprpti, xq and ρ`prpti, x, yq “ qprpti, yq for px, yq P XˆX.

Proximal Mapping of IJavg
. Note that the original problem (5.11) does not change if we add the constraint

ρpt0, ¨q “ ρA and ρptN, ¨q “ ρB to the set Javg. That is, we consider the projection onto the set

Ĵavg “
 

pρ, ρ̄q P Javg : ρpt0, ¨q “ ρA, ρptN, ¨q “ ρB

(
.

To compute the projection we have to solve

arg min
pρpr,ρ̄prqPĴavg

1

2

Nÿ

i“0

ÿ

xPX

|ρprpti, xq´ρpti, xq|2πpxq ` 1

2

N´1ÿ

i“0

ÿ

xPX

|ρ̄prpti, xq´ρ̄pti, xq|2πpxq .

Thus, we introduce a Lagrange multiplier λ P V0
n,h

and define the corresponding Lagrangian

Lpρpr, ρ̄pr, λq “ 1

2

Nÿ

i“0

ÿ

xPX

|ρprpt, xq´ρpt, xq|2πpxq ` 1

2

N´1ÿ

i“0

ÿ

xPX

|ρ̄prpt, xq´ρ̄pt, xq|2πpxq

´
N´1ÿ

i“0

ÿ

xPX

λpti, xq
`
avgh ρ

prpti, xq ´ ρ̄prpti, xq
˘
πpxq .

Because of the boundary constraints, we have for all x P X that ρprpt0, xq “ ρApxq and ρprptN, xq “ ρBpxq. The

optimality condition in ρpr reads for all x P X and for all interior time steps i “ 1, . . . ,N ´ 1 as

ρprpti, xq “ ρpti, xq ` 1
2 pλpti´1, xq ` λpti, xqq . (5.15)

Furthermore, the optimality condition in ρ̄pr implies that on each interval we have

ρ̄prpti, xq “ ρ̄pti, xq ´ λpti, xq . (5.16)

Combining both with the constraint avgh ρ
prpti, xq “ ρ̄prpti, xq, we obtain

ρ̄pti, xq ´ λpti, xq “ ρ̄prpti, xq “ avgh ρ
prpti, xq “ avgρpti, xq ` 1

4 pλpti´1, xq ` 2λpti, xq ` λpti`1, xqq

for all interior elements (i “ 1, . . . ,N ´ 2) and for all x P X. Analogously, using the boundary conditions, we get

ρ̄pt0, xq ´ λpt0, xq “ 1
2 pρApxq ` ρpt1, xqq ` 1

4 pλpt0, xq ` λpt1, xqq ,
ρ̄ptN´1, xq ´ λptN´1, xq “ 1

2 pρBpxq ` ρptN´1, xqq ` 1
4 pλptN´2, xq ` λptN´1, xqq .

Thus, for each x P X the Lagrange multiplier λ satisfies the linear system of equations

1
4 p5λpt0, xq ` λpt1, xqq “ ρ̄pt0, xq ´ 1

2 pρApxq ` ρpt1, xqq ,
1
4 pλpti´1, xq ` 6λpti, xq ` λpti`1, xqq “ ρ̄pti, xq ´ 1

2 pρpti`1, xq ` ρpti, xqq @i “ 1, . . . ,N ´ 2 ,
1
4 pλptN´2, xq ` 5λptN´1, xqq “ ρ̄ptN´1, xq ´ 1

2 pρBpxq ` ρptN´1, xqq .

This system is solvable, since the corresponding matrix with diagonal p5, 6, . . . , 6, 5q and off-diagonal 1 is strictly

diagonal dominant. Then, given the Lagrange multiplier λ, the solution to the projection problem is given by (5.15)

and (5.16). Thus, to compute the proximal mapping of IĴavg
we must solve a sparse system in time for each node

separately. Since the involved matrix is constant, it can be pre-factored.
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Proximal Mapping of IJ“
. Finally, the proximal map of IJ“

is simply given by the projection

projJ“
pρ̄, qq “ arg min

pρ̄pr,qprqPV0
n,h

ˆV0
n,h

: ρ̄pr“qpr

h

2

N´1ÿ

i“0

ÿ

xPX

`
|ρ̄´ ρ̄pr|2 ` |q ´ qpr|2

˘
πpxq “ 1

2
pρ̄` q, ρ̄` qq .

5.6 Numerical Results for Optimal Transport Geodesics on Graphs

In the following, we show our numerical results obtained by the optimization scheme in Section 5.5. First, we

consider in Section 5.6.1 a two-node graph where the exact solution is explicitly known by solving a first-order

ordinary differential equation. Computing the ODE with an Euler scheme, we can compare our numerically

computed discrete optimal transport geodesic with the exact one. Then we investigate simple graphs with a small

number of nodes in Section 5.6.2. Note that even in the case of a graph with three nodes, so far, there is no explicit

expression of the solution. Next, we verify in Section 5.6.4 the Gromov–Hausdorff convergence to the classical L2-

optimal transport distance. Finally, we apply in Section 5.6.5 our solution scheme to larger graphs. As the stopping

criteria for the iterative algorithm in (3.11), we consider the L2-error of the mass variable
ş1

0 }ρk`1 ´ ρk}2
π dt ă ε

with threshold ε “ 10´10, where k denotes the iteration step.

5.6.1 Comparison with the Exact Solution for the Two-Node Graph

We consider a graph X “ ta, bu with two nodes a, b, where for p, q P p0, 1s the Markov chain and stationary

distribution are given by

Q “
ˆ

0 p
q 0

˙
, π “

˜
q

p`q
p

p`q 1

¸
.

In [Maa11], an explicit solution trajectory for the optimal transport problem was constructed for temporal boundary

data

ρA “
ˆ

p ` q

q
, 0

˙
, and ρB “

ˆ
0 ,

p ` q

p

˙
.

Note that every probability measure on X can be described by a single parameter r P r´1, 1s via

ρprq “ pρaprq, ρbprqq :“
ˆ

p ` q

q

1 ´ r

2
,

p ` q

p

1 ` r

2

˙
.

In particular, we have ρA “ ρp´1q and ρB “ ρp1q. Using this representation, it was shown that for ´1 ď α ď
β ď 1 the optimal transport distance is given by

WGpρpαq, ρpβqq “ 1

2

d
1

p
` 1

q

ż β

α

1a
θpρaprq, ρbprqq

dr , (5.17)

and the optimal transport geodesic from ρpαq to ρpβq is given by ρpγptqq for t P r0, 1s, where γ satisfies the

differential equation

γ1ptq “ 2pβ´ αqWG pρpαq, ρpβqq
d

pq

p ` q
θpρapγptqq, ρbpγptqqq . (5.18)

In the special case, where θ is the logarithmic mean θlog and p “ q, we obtain that

θlogpρaprq, ρbprqq “ r

arctanhprq ,
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and consequently, the discrete transport distance is given by

WGpρpαq, ρpβqq “ 1a
2p

ż β

α

c
arctanhprq

r
dr .

Furthermore, the optimal transport geodesic between ρpαq and ρpβq is given by ρpγptqq for t P r0, 1s, where γ
satisfies the differential equation

γ1ptq “
a

2ppβ´ αqWGpρpαq, ρpβqq
d

γptq
arctanhpγptqq .

For this two-node graph, we numerically compute the optimal transport geodesic. This allows evaluating the

distanceWG directly, which we can compare with a numerical quadrature of (5.17). Using the approximation of

WG, we use an explicit Euler scheme to compute the solution ρODE
h

of the ODE (5.18). In Figure 5.4, for the case

p “ q “ 1, we compare our numerical solution to the approximation of the ODE with an implicit Euler scheme

for N “ 2000.
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0

0.5

1
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−0.02
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Figure 5.4: The mass distribution at b is plotted over the time interval r0, 1s. Left: Numerical solution for a 2-node

graph X “ ta, bu for the logarithmic (red) and geometric (green). The black line represents the diagonal, which is

the solution in the case of the (inadmissible) arithmetic averaging. Right: Difference of the numerical solution for

the logarithmic (red) and geometric (green) mean with the Euler scheme solution ρODE
h

for the logarithmic mean.

5.6.2 Exploring the Diffuse Behavior on Simple Graphs

In the following, we study the behavior of the discrete optimal transport distance on some simple graphs. Usually,

we set the stationary distribution and the Markov kernel to

πpxq “ dpxq
|E| , Qpx, yq “ 1

πpxq|E| , (5.19)

where for each node x we denote by dpxq the number of outgoing edges. Here, we choose a time step size of

h “ 1
100 and display the solution pρ,mq at intermediate time steps indicated on the arrow in the first row. The mass

variable ρpt, xq is represented by blue discs with an area proportional to ρpt, xqπpxq. For the momentum variable

mpt, x, yq, we use red arrows with a thickness proportional to |mpt, x, yq|Qpx, yqπpxq, where the direction of the

arrow indicates the direction of the flow, i.e., it points from x to y if mpy, xq “ ´mpx, yq ą 0 (cf . Lemma 5.2.2).

Circles with Three and Four Nodes. First, we consider in Figure 5.5 numerically computed geodesic paths on

circles with three and four nodes, where the initial mass ρA is supported on a single node x, and the mass ρB is

supported on a single neighboring node of x. We observe that in the case of three nodes, a small amount of mass is

also transport along the longer path, whereas for a circle with four nodes all mass is transported along the shortest

connecting path.
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Figure 5.5: Numerically computed geodesics on circles with three and four nodes and corresponding histograms

of the mass (blue) and the momentum (red) variable.
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Lattice. Next, we investigate in Figure 5.6 the diffuse behavior on a 3 ˆ 3-lattice by transporting mass from the

middle left to the middle right. Since the 3 ˆ 3-lattice consists of subgraphs given by circles with four nodes, we

would expect that also on the lattice mass is only transported along the shortest path. Indeed, in [EMW19], it was

established that a so-called retraction property on a subgraph is sufficient to guarantee that geodesics are supported

on this subgraph. For Q “ 1 and π “ 1, the retraction property can be verified for the middle horizontal line, and

thus, mass is only transported along this shortest path. However, for Q and π chosen as in (5.19) the retraction

property does not hold and our numerical results show that an essential amount of mass is not transported along

the middle horizontal line.
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Figure 5.6: Numerically computed geodesics on a 3 ˆ 3-lattice for different choices of Q and π. Top: Markov

kernel Q and stationary distribution π given as in (5.19). Bottom: Qpx, yq “ 1 for all edges px, yq and πpxq “ 1
for all nodes x.

Cube and Hypercube. In Figure 5.7, we consider the cube t0, 1u3 and the hypercube t0, 1u4. Note that the

computed solutions are symmetric in the sense that ρpt, xq “ ρp1 ´ t, xq and mpt, x, yq “ mp1 ´ t, x, yq for all

t P p0, 1q. Furthermore, the distribution of mass is constant on all nodes at time t “ 1
2 .
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Figure 5.7: Numerically computed geodesic on the cube (top) and the hypercube (bottom). We observe an equidis-

tribution of the mass at time t “ 1
2 .
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Convexity of the Entropy Functional. In Figure 5.8, for the cube, we verify that the entropy functional

Hpρq “
ÿ

xPX

ρpxq logpρpxqqπpxq

is convex along discrete optimal transport geodesics. This result was proven in [Maa11, Proposition 2.12].

time

e
n
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o
p
y

Figure 5.8: Entropy functional is convex along a discrete optimal transport geodesic.

Change of Sign for Momentum Variable. Finally, in Figure 5.9, we depict an example of a graph with four

nodes, which shows that the sign of the momentum variable on a fixed edge may change along a geodesic path.
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Figure 5.9: Numerically computed geodesic on a graph with four nodes. Note that the sign of the momentum

variable m for the edge with index 2 changes (cf . t “ 1
5 and t “ 4

5 ).
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5.6.3 Experimental Convergence Rate in Time

In Theorem 5.4.5, we have established the convergence of minimizing paths of our fully discrete approximation

for a time step size h Ñ 0. Here, we study this convergence numerically. We take into account a square lattice with

3 ˆ 3 nodes and compute an optimal transport path between the mass concentrated at the midpoint of the square

and uniform distribution, i.e.,

ρA “ δ´ 1
2 ,

1
2

¯ , and ρB “ 1 .

For the discretization in time we choose N “ 8, 16, 32, 64, 128, 256, 512, 1024. Since the exact solution for this

example is unknown, we consider our computational result pρapprox,mapproxq for the finest discretization N “ 1024
as an approximation. Then we compare the solutions pρh,mhq with this approximation in the corresponding norms

for which we have shown convergence, i.e., we consider

}ρapprox ´ ρh}W1,2pr0,1s,RXq , and }mapprox ´ mh}L2pr0,1s,RXq .

In Figure 5.10, we plot these errors in a log-log scale and experimentally obtain linear convergence in h.
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Figure 5.10: Numerical verification of the convergence in time on a square lattice with 3 ˆ 3 nodes for a time

discretization with N “ 8, 16, 32, 64, 128, 256, 512, 1024. Below we plot the errors }mapprox ´mh}L2pr0,1s,RXˆXq and

}ρapprox ´ ρh}W1,2pr0,1s,RXq in a log-log scale. The convergence order is linear in h (dotted lines).

5.6.4 Experimental Results Related to the Gromov–Hausdorff Convergence in Space

In [GM13], it was shown that for the d-dimensional torus T
d the discrete transport distanceWG on a discretized

torus T
d
M with uniform mesh size 1

M converges in the Gromov–Hausdorff metric to the classical L2-Wasserstein

distance on T
d. This result was extended in [GKM18] to a certain class of regular meshes via a finite volume

scheme, but also counterexamples have been found.
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Note that for the classical L2-Wasserstein distance, the optimal transport geodesic connecting two point masses

ρA “ δ0 and ρB “ δ1 is given by the transport of the Dirac measure with constant speed:

ρpt, xq “ δtpxq .

Gromov–Hausdorff Convergence on a Line. First, for d “ 1, we consider the unit interval I “ r0, 1s and a

sequence of space discretizations

XM “ tx0, . . . , xMu

with uniform mesh size 1
M for M PN`. The corresponding Markov kernel QM for XM is defined by

"
QMpxi, xi`1q “ QMpxi, xi´1q “ 1

2
for i “ 1, . . . , xM´1 ,QMpx0, x1q “ QMpxM, xM´1q “ 1 .

For this sequence of graphs, we compute discrete optimal transport geodesics between δ0 and δ1. In Figure 5.11,

we plot the density distribution of the discrete optimal transport geodesic at time t “ 1
2 for different grid sizes 1

M .

According to the Gromov–Hausdorff convergence result, we expect an increasing mass concentration at x “ 1
2 for

M Ñ 8, which we can indeed observe.
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Figure 5.11: Left: Linearly interpolated densities for theWG geodesic on a one-dimensional chain graph between

a Dirac mass at the beginning and the end, at t “ 0.5 with M “ 2 (yellow), 4 (turquoise), 8 (brown), 16 (green),

32 (violet), 64 (gray), 128 (blue), and 256 (red). Right: Convergence of the L2-Wasserstein distance to a Dirac

measure at x “ 1
2 for M Ñ 8.

To quantify the convergence rate experimentally, we compute the L2-Wasserstein distance of the approxima-

tively computed discrete geodesic at time t “ 1
2 to the Dirac measure δ 1

2
, which is explicitly given by

W

ˆ
ρM

`
1
2

˘
, δ 1

2

˙2

“
˜

Mÿ

m“0

ˇ̌
m
M ´ 1

2

ˇ̌2
ρM

`
1
2 ,

m
M

˘
¸
.

In Table 5.1, we compute the expected order of convergence. As an initialization of the variables in the proximal

splitting algorithm we use an adaptive scheme in time, i.e., we first compute a solution for N “ 32, then prolongate

this result to a finer discretization by doubling N and repeat until N “ 1024. Remember that we have linear

convergence of the mass and momentum variables in the appropriate norms for N Ñ 8. However, for M “ 256,

the error in time seems to be quite large for N “ 1024, s.t. the associated expected order of convergence is

inaccurate. Moreover, it turns out that transporting a Dirac measure with the discrete optimal transport distance is

quite singular, since we frequently have to deal with the unstable case in the projection of the logarithmic cone K
at 0. For all other results up to a space discretization with M “ 128, the difference of the discrete optimal transport

distance for N “ 1024 to N “ 512 is small, s.t. we expect from our numerical results a convergence order 1
2 .
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M WM :“W
ˆ
ρM

`
1
2

˘
, δ 1

2

˙
EOC =

logpWM{WM{2q

logp1{2q

2 0.3535819979

4 0.225432747 0.649347723

8 0.1518529497 0.5700221686

16 0.1036187107 0.5513903948

32 0.071299038 0.5393300146

64 0.0497631136 0.5188058612

128 0.0350786465 0.5044836728

256 0.0264826129 0.4055476142

Table 5.1: Expected order of convergence of the discrete geodesics from Figure 5.11 in the L2-Wasserstein distance.

Gromov–Hausdorff Convergence on a Square. Next, for d “ 2, we consider a square lattice of uniform grid

size 1
M with M P N and nodes XM “ tpi{M, j{Mq : i, j P p0, . . . ,Mqu, where the weights of the Markov kernel

Q are proportional to the number of adjacent edges. We compute optimal transport geodesic connecting the Dirac

masses δp0,0q and δp1,1q. An example for M “ 2 is depicted in Figure 5.12.
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Figure 5.12: Numerically computed geodesics on a 3 ˆ 3-lattice connecting ρA “ δp0,0q and ρB “ δp1,1q.

For increasing M, we expect an increasing mass concentration on the space diagonal. In Figure 5.13, for

decreasing mesh size 1
M , we plot the in time accumulated density values along the diagonal and the off-diagonals

of nodes. More precisely, we define the bands of nodes

Bk
M “

"
px1, x2q P XM ˆXM : x2 “ x1 ` k

M

*

for k “ ´M, . . . ,M, where B0
M

represents the diagonal. Then we compare the values
ş1

0

ř
xPBk

M
ρpt, xqπpxq dt.

M = 2 M = 4 M = 8 M = 16

Figure 5.13: Geodesics in the distanceWG on a two-dimensional grid graph between Dirac masses at diagonally

opposite ends. We show accumulated densities along the diagonal and the off-diagonals (see text for details). The

width of the bars is scaled with the number of lines.
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5.6.5 Discrete Geodesics on Triangular Meshes of a Human Hand

In Figure 5.14, we take into account a triangular mesh of a human hand and compute the discrete optimal transport

geodesic between a mass ρA supported on the fingers and a mass ρB supported on the wrist. This example is not

intended as a real application, but it demonstrates that our numerical algorithm can be performed on large and

complex graphs.
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Figure 5.14: Extraction of a discrete optimal transport geodesics for two different triangular meshes (shown on the

left) of a human hand. We depict all results from two different view positions. For each node, we represent the

mass by a blue neighborhood with an area of a proportional size. Top: The mesh has 1828 nodes and the geodesic

is computed for 257 time steps. We plot the result at the time steps t “ 0, 65, 129, 193, 257. Bottom: The mesh has

6094 nodes and the geodesic is computed for 33 time steps. We plot the result at the time steps t “ 0, 9, 17, 25, 33.
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5.7 Simulation of the Gradient Flow of the Entropy

For the L2-Wasserstein distance, in the seminal work [JKO98], it was shown that the heat equation can be inter-

preted as a gradient flow trajectory of the entropy functional (cf . Section 3.1.4). Now, for the discrete optimal

transport distance, in [Maa11], an analogous result was provided. Indeed, for the logarithmic mean θlog as an av-

eraging function, the heat flow is a gradient flow trajectory for the entropy w.r.t. the metricWG. Here, the entropy

functionalH : PpXq Ñ R is given by

Hpρq “
ÿ

xPX

ρpxq logpρpxqqπpxq ,

with the convention ‘0 log 0 “ 0’. Moreover, in [EM14], a similar result was shown for the Renyi entropy

Hspρq “ 1

s ´ 1

ÿ

xPX

ρpxqsπpxq .

By choosing, e.g., s “ 1
2 and taking into account the geometric mean θgeo as averaging function, the gradient flow

ofHs w.r.t. the metricWG is given by the porous medium equation Btρ “ ∆Xρs.

5.7.1 Adaption of the Numerical Scheme

In the following, we verify numerically that gradient flow trajectories coincide with solutions to the corresponding

partial differential equations. Therefore, we make use of the minimizing movement scheme (3.7). Given an initial

density ρ0 P PpXq and a time step size τ ą 0, an implicit time discrete gradient flow scheme forH is defined by

the iteration

ρk`1 “ arg min
ρBPPpXq

1

2
WG,hpρk, ρBq2 ` τHpρBq . (5.20)

Note that for our fully discrete optimal transport distanceWG,h, the time step size h appears as an inner discretiza-

tion parameter.

For a fully numerical scheme, to compute a solution of the minimizing movement step in (5.20), we essentially

have to make two modifications compared to our method for fully discrete geodesic paths. First, we define a

discrete continuity equation with a free endpoint. For initial value ρA P PpXq, let

CEhpρAq “
!

pρh,mh, ρBq P V1
n,h ˆ V0

e,h ˆRX : pρh,mhq P CEhpρA, ρBq
)
.

Furthermore, we take into account the entropy of this free endpoint, which additionally appears as a further vari-

able. Then, analogously to (5.11), the minimization problem (5.20) can be written as

min tF pρh,mh, ϑh, ρ
´
h
, ρ`

h
, ρ̄h, qh, ρBq `Gpρh,mh, ϑh, ρ

´
h
, ρ`

h
, ρ̄h, qh, ρBq :

pρh,mh, ϑh, ρ
´
h
, ρ`

h
, ρ̄h, qh, ρBq P V1

n,h ˆ pV0
e,hq4 ˆ pV0

n,hq2 ˆRXu

with

F pρh,mh, ϑh, ρ
´
h
, ρ`

h
, ρ̄h, qh, ρBq :“Etrans,epϑh,mhq ` IJ˘

pqh, ρ
´
h
, ρ`

h
q ` IJavg

pρh, ρ̄hq ` 2 τ ¨HpρBq ,
Gpρh,mh, ϑh, ρ

´
h
, ρ`

h
, ρ̄h, qh, ρBq :“ICEhpρkqpρh,mh, ρBq ` IK pρ´

h
, ρ`

h
, ϑhq ` IJ“

pρ̄h, qhq .

As for the geodesic interpolation problem, the splitting into F and G allows applying a proximal splitting al-

gorithm. We extend the space H by a factor RX, and adapt the scalar product in (5.12) by adding the term

h xρB,1p¨q, ρB,2p¨qyπ for the additional variable ρB. The proximal step of F ˚ then requires to compute an additional

proximal step of p2 τHq˚. In the proximal step of G, the projection onto CEhpρA, ρBq is replaced by a projection

onto CEhpρkq. Next, we describe these modifications in detail.
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We recall that the proximal mappings ofH˚ andH are linked by Moreau’s decomposition (see Theorem 3.2.9).

Moreover, the computation of the proximal mapping ofH can be performed on the spaceRX
ě0

, since the constraint

ρB P PpXq in the formulation ofH is enforced via the mass-preserving condition in the discrete continuity equa-

tion. Then the computation of the proximal mapping ofH decouples in space, and the resulting one-dimensional

problem can be solved via Newton’s method.

To project onto the set CEhpρAq of solutions to the continuity equation with free endpoint, in analogy to

Proposition 5.5.3, a discrete elliptic equation on the time-space domain has to be solved.

Proposition 5.7.1 (Projection onto CEhpρAq). The projection

projCEhpρAqpρ,m, ρBq “ arg min
pρpr,mpr,ρpr

B
qPCEhpρAq

h

2

Nÿ

i“0

}ρprpti, ¨q ´ ρhpti, ¨q}2
π

`h

2

N´1ÿ

i“0

}mprpti, ¨q ´ mhpti, ¨q}2
Q ` h

2
}ρpr

B
´ ρB}2

π

(5.21)

onto the set CEhpρAq of solutions to the discrete continuity equation with initial data ρA can be computed by

solving the following linear system in the Lagrange multiplier ϕh P V0
n,h

:

ϕhpt1, xq ´ ϕhpt0, xq
h2

` ∆Xϕhpt0, xq

“ ´
ˆ
ρhpt1, xq ´ ρApxq

h
` divXmhpt0, xq

˙
,

´ 3
2ϕhptN´1, xq ´ ϕhptN´2, xq

h2
` ∆XϕhptN´1, xq

“ ´
˜

1
2 pρBpxq ` ρhptN, xqq ´ ρhptN´1, xq

h
` divXmhptN´1, xq

¸
,

ϕhpti`1, xq ´ 2ϕhpti, xq ` ϕhpti´1, xq
h2

` ∆Xϕhpti, xq

“ ´
ˆ
ρhpti`1, xq ´ ρhpti, xq

h
` divXmhpti, xq

˙

(5.22)

with i “ 1, . . . ,N ´ 2 and x P X. Then the solution pρpr,mpr, ρpr

B
q to (5.21) is given by

ρpr

B
pxq “ 1

2

ˆ
ρhptN, xq ` ρBpxq ´ ϕhptN´1, xq

h

˙
,

ρprpti, xq “ ρhpti, xq ` ϕhpti, xq ´ ϕhpti´1, xq
h

,

ρprpt0, xq “ ρApxq , ρprptN, xq “ ρpr

B
pxq ,

mprpti, x, yq “ mhpti, x, yq ` ∇Xϕhpti, x, yq

for all i “ 1, . . . ,N ´ 2 and x, y P X.

Proof. In analogy to the proof of Proposition 5.5.3. �

Remark 5.7.2 (Comparison to the Projection onto CEhpρA, ρBq). Note that, in contrast to Lemma 5.5.4, the linear

system (5.22) is no longer degenerated due to the additional freedom of ρB, and thus, no additional Lagrange

multiplier is required.
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5.7.2 Numerical Results for Gradient Flows

For our numerical computations, we choose a line of five nodes with

stationary distribution π “ 1

8
p1, 2, 2, 2, 1q ,

Markov kernel Qpx, yq “ 1

8πpxq for x, y adjacent, and

initial mass ρ “ 1

2
p1, 1, 5, 1, 1q .

In Figure 5.15, we compare the solution to the heat equation with our numerical result of the gradient flow of the

entropy H and a logarithmic averaging operator. Furthermore, we compare the solution to the porous medium

equation with our numerical result of the gradient flow of the entropy H 1
2

and a geometric averaging operator.

Here, the solution to the heat equation and the porous medium equation are approximated by a simple explicit Euler

scheme. Note that the entropy functional H is minimized for equidistributed ρ P PpXq. Thus, in the example

above, we experimentally obtain that the iterates ρk in (5.20) converge to the uniform distribution 1 “ p1, 1, 1, 1, 1q
for k Ñ 8. In Figure 5.16, we plot for 3 ¨ 104 minimizing movement steps the entropy functionalHpρkq and the

difference to the uniform distribution }ρk ´ 1}2. We observe, in both cases, an exponential decay rate.
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Figure 5.15: Numerical solution to the heat flow (top) and the porous medium equation (bottom) based on an

explicit Euler scheme (blue) with time step size 10´3 and for the gradient flow of the associated entropy using the

logarithmic mean (red) and the geometric mean (green), respectively, with τ “ 10´3 and h “ 100. Panels on the

left show the mass distributions on the graph at different times, panels on the right show the values of the entropies

over time.
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Figure 5.16: Convergence of gradient flow of the entropy using the logarithmic mean. We use a time step size

τ “ 10´3, h “ 100 and 3 ¨ 104 minimizing movement steps. Left: Entropy functionalHpρkq. Right: Difference to

the uniform distribution }ρk ´ 1}2.

5.8 Conclusion and Outlook

We have arrived at a fully numerical scheme to approximate geodesics for discrete optimal transport introduced by

Maas [Maa11]. Our finite element discretization in time has been chosen s.t. a Γ-convergence result can be estab-

lished. Compared to the classical optimal transport distance, we have used a similar proximal splitting algorithm,

where auxiliary slack variables have been necessary to decouple the nonlinearity given by the averaging operator

in space and time, which then basically requires a projection onto a three-dimensional convex set. We have veri-

fied that our numerically computed solutions satisfy specific properties, which have been proven previously in the

literature.

Concerning the Γ-convergence result, it has been essential for the Γ-liminf inequality that the set of solutions to

the discretized continuity equation is contained in the set of solutions to the continuous continuity equation. This

conforming approximation property is no longer valid for a discretization with both piecewise constant mass and

momentum variables pρ,mq P V0
n,h

ˆ V0
e,h

. However, we have obtained similar results with such finite element

spaces. Moreover, the Γ-limsup estimate could be obtained directly by Jensen’s inequality for piecewise con-

stant mass, since no additional Lagrange interpolation operator is required. Therefore, we have also implemented

a discontinuous Galerkin discretization for piecewise constant mass and piecewise affine momentum variables

pρh,mhq P V0
n,h

ˆ V1,´1
e,h

to combine the advantages for the Γ-liminf and Γ-limsup inequality. In the numerical re-

sults for the discontinuous Galerkin discretization, we have obtained oscillations of the momentum variable, which

could be reduced by an additional L2-regularizer.

Our implementation has taken into account the sparsity of the Markov kernel Q since we have considered the

momentum variable mpx, yq only on edges where Qpx, yq ą 0. Moreover, in Lemma 5.2.2, we have proven that

for an optimal path pρ,mq, the momentum variable is antisymmetric in the sense that mpt, x, yq “ ´mpt, y, xq
for all t P r0, 1s. This additional information has not been incorporated in our discretization, but indeed, for

our computational results, we have observed the antisymmetry of m. An alternative discretization was taken into

account in [Sch18], where the degrees of freedom for the momentum variable were reduced by a factor two.

Furthermore, instead of the variables pρ,mq, the variables pρπ,mQπq were considered, which allows eliminating

the stationary distribution π in the energy functional.

Finally, we remark that Erbar [Erb16] constructed a similar discrete transport distance, which allows identifying

the spatially homogeneous Boltzmann equation as a gradient flow trajectory.
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Chapter 6

Foundations in Elasticity and Shape

Optimization

The second part of this thesis is concerned with several compliance shape optimization problems. In general, we

consider forces acting on a reference domain of an elastic object leading to a deformed domain crucially depending

on the material. Under certain mechanical assumptions, we derive partial differential equations to describe the

corresponding equilibrium deformations. We start in Section 6.1 to give a short introduction to the theory of

elastic bodies in R3. In Chapter 7, we consider a special class of elastic bodies, whose microstructure is given

by a periodic cell. To describe the macroscopic behavior of such objects, we recall the theory of homogenization

in Section 6.2. Later, in Chapter 8, we investigate a further class of elastic bodies, which can be described by a

two-dimensional surface with a small thickness. Finally, in Section 6.3, we give an introduction to elastic shape

optimization, where we ask for an optimal distribution of the material on the reference domain to obtain optimal

stability w.r.t. the given forces.

6.1 Elastic Bodies

Here, we give an overview of the theory of elastic bodies in R3 by mainly following the famous book by Ciar-

let [Cia88]. LetΩA Ă R3 be the reference domain of an elastic body. We assume thatΩA is a bounded, open, and

connected set. A map Φ : ΩA Ñ R3 is called deformation if it is injective on ΩA and orientation-preserving. We

denote the corresponding deformed domain by ΩB :“ ΦpΩAq and suppose Φ to be the identity on a fixed part of

the boundary ΓA Ă BΩA. Furthermore, let a body force FB : ΩB Ñ R3 and a surface force GB : ΓN
B

Ñ R3 act on

the deformed domain, where the free boundary is given by ΓN
B

“ BΩBzΓB “ BΩBzΓA. In Figure 6.1, we depict a

2D sketch of this configuration.

ΩA

ΓA “ Γ

xA

ΩB

ΓB “ Γ

xB “ ΦpxAq

FB GB

Φ

Figure 6.1: Sketch of a deformation of an elastic body in 2D.
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We aim to derive equilibrium equations for the deformation Φ corresponding to the acting forces. In the fol-

lowing, we assume that the boundary BΩA, the deformation Φ, and the forces FB,GB are sufficiently smooth, but

we do not discuss the specifically required regularity in detail, therefore the following derivations are rather for-

mally. We take into account the Cauchy–Euler stress principle. This fundamental axiom of continuum mechanics

postulates the existence of a vector field tB describing contact forces between two parts of the body.

Axiom 6.1.1 (Cauchy–Euler Stress Principle). There exists a vector field tB : ΩB ˆ S2 Ñ R3, which satisfies

1. tBpxB,nBq “ GBpxBq for all xB P ΓN
B

where the outer unit normal nB exists,

2. (force balance) for all Y Ă ΩB we have
ş

Y FBpxBq dxB `
ş

BY tBpxB, νYq dH 2pxBq “ 0, and

3. (momentum balance) for all Y Ă ΩB we have
ş

Y xB ˆ FBpxBq dxB `
ş

BY xB ˆ tBpxB, νYq dH 2pxBq “ 0.

Here, for a subset Y Ă ΩB, νY denotes the outer unit normal along BY.

Furthermore, under suitable regularity assumptions on tB, the existence of a so-called Cauchy stress tensor

TB : ΩB Ñ R3ˆ3
sym can be established, which relates tB to a partial differential equation on the deformed domain.

Theorem 6.1.2 (Cauchy’s Theorem). Assume that FB is continuous and tB is continuously differentiable in the first

and continuous in the second argument. Then there exists a continuously differentiable tensor field TB : ΩB Ñ
R

3ˆ3
sym s.t. tBpxB, νq “ TBpxBqν for all xB P ΩB, ν P S2 and

#
´divTBpxBq “ FBpxBq @xB P ΩB ,

TBpxBqnBpxBq “ GBpxBq @xB P ΓN
B .

(6.1)

Proof. See [Cia88, Theorem 2.3-1]. �

To transform the PDE (6.1) to the undeformed domain, we introduce the first Piola–Kirchhoff stress tensor TA,

which is defined by solving
ş
ΩB

divTBpxBqθpxBq dxB “
ş
ΩA

divTApxAqθpΦpxAqq dxA for all deformations θ, and

thus, is pointwise given by

TApxAq “ detpDΦpxAqqTBpΦpxAqqpDΦpxAqq´T .

Since TA is in general not symmetric, we usually consider the second Piola–Kirchhoff stress tensor

ΣApxAq “ DΦpxAq´1
TApxAq “ detpDΦpxAqqDΦpxAq´1

TBpΦpxAqqDΦpxAq´T ,

which is symmetric. Then the PDE (6.1) transforms to

#
´divpDΦpxAqΣApxAqq “ FApxAq :“ detpDΦpxAqqFBpΦpxAqq @xA P ΩA ,

DΦpxAqΣApxAqnApxAq “ GApxAq :“ detpDΦpxAqq|DΦpxAq´TnApxAq|GBpΦpxAqq @xA P ΓN
A .

(6.2)

In the following, we restrict to elastic materials, which are defined by the property that the Cauchy stress tensor

only depends on the gradient of the deformation.

Definition 6.1.3 (Elastic Material). A material is called elastic if there exists a mapping Tresp : ΩAˆR3ˆ3
` Ñ R3ˆ3

sym

called the response function for the Cauchy stress, s.t. for all deformations Φ we have the constitutive relation of

the material

TBpΦpxAqq “ T
resppxA,DΦpxAqq .

The response functions for the first and second Piola–Kirchhoff stress tensor are defined by

T
resp

A
pxA,Mq :“ detpMqTresppxA,Mq M´T and Σ

resp

A
pxA,Mq :“ detpMqM´1

T
resppxA,Mq M´T ,

s.t.

TApxAq “ T
resp

A
pxA,DΦpxAqq and ΣApxAq “ Σresp

A
pxA,DΦpxAqq .
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Furthermore, we assume invariance under change of the observer.

Axiom 6.1.4 (Material Frame-Indifference). Let Φ1,Φ2 be deformations of ΩA s.t. Φ2 “ QΦ1 with Q P SOp3q
and denote by t1, t2 the corresponding vector fields in the Cauchy–Euler stress principle in Axiom 6.1.1. Then we

have for all xA P ΩA and for all ν P S2 that t2pΦ2pxAq,Qνq “ Qt1pΦ1pxAq, νq.

As a direct consequence, we can express the response function of the second Piola–Kirchhoff stress tensor in

terms of the symmetrized deformation gradient

CpxAq :“ DΦpxAqTDΦpxAq , (6.3)

which we call the (right) Cauchy–Green strain tensor.

Theorem 6.1.5 (Characterization of Material Frame-Indifference). The response function Tresp for the Cauchy

stress satisfies the axiom of material frame-indifference if and only if for all xA P ΩA we have

T
resppxA,QMq “ QT

resppxA,MqQT @M P R3ˆ3
` ,Q P SOp3q .

Furthermore, this is equivalent to the existence of a mapping Σ
resp,sym

A
: ΩA ˆR3ˆ3

sym,` Ñ R3ˆ3
sym s.t. Σ

resp

A
pxA,Mq “

Σ
resp,sym

A
pxA,M

TMq for all M P R3ˆ3
` .

Proof. See [Cia88, Theorem 3.3-1]. �

Moreover, we consider a special class of so-called isotropic materials.

Definition 6.1.6 (Isotropic Elastic Material). An elastic material is isotropic at a point xA P ΩA if its response

function for the Cauchy stress satisfies

T
resppxA,MQq “ T

resppxA,Mq @M P R3ˆ3
` ,Q P SOp3q .

Now, isotropy implies that the response function for the Cauchy stress can be expressed in terms of the (left)

Cauchy–Green strain tensor DΦpxAqDΦpxAqT.

Theorem 6.1.7 (Characterization of Isotropy). An elastic material is isotropic at a point xA P ΩA if and only if

there exists a mapping T
resp,sym

A
pxA, ¨q : R3ˆ3

sym,` Ñ R3ˆ3
sym s.t.

T
resppxA,Mq “ T

resp,sym

A
pxA,MMTq @M P R3ˆ3

` .

Proof. See [Cia88, Theorem 3.4-1]. �

Then the Rivlin–Ericksen theorem allows a representation of the response function for the second Piola–

Kirchhoff stress tensor in terms of the principle invariants ιpCq “ ptrpCq, trpcofpCqq,detpCqq of the Cauchy–

Green strain tensor C as defined in (6.3), which can be computed w.r.t. the deformation by

ι1pCq “ }DΦ}2
F , ι2pCq “ }cofpDΦq}2

F , ι3pCq “ detpDΦq2 .

Theorem 6.1.8 (Rivlin–Ericksen Representation Theorem). LetΦ be a deformation ofΩA. For an elastic material

whose response function is frame-indifferent and isotropic at xA P ΩA, the Cauchy stress tensor is given by

TBpΦpxAqq “ T
resppxA,DΦpxAqq “ T

resp,sym

A
pxA,DΦpxAqDΦpxAqTq ,

where the response function is of the form T
resp,sym

A
pxA,Sq “

ř2
k“0 βkpxA, ιpSqqSk with real valued functions βk.

Furthermore, the second Piola–Kirchhoff stress tensor is given by

ΣApxAq “ Σresp

A
pxA,DΦpxAqq “ Σresp,sym

A
pxA,DΦpxAqTDΦpxAqq ,

where the response function is of the form Σ
resp,sym

A
pxA,Sq “

ř2
k“0 γkpxA, ιpSqqSk with real valued functions γk.

Proof. See [Cia88, Theorem 3.6-2]. �
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Next, we approximate the response function near the identity.

Theorem 6.1.9 (Response Function Near Identity). Let there be given an elastic material whose response function

is frame-indifferent and isotropic at xA P ΩA. Assume that the functions γk in Theorem 6.1.8 are differentiable for

S “ 13ˆ3. Then there exist πpxAq, λpxAq, µpxAq P R s.t. for all C P R3ˆ3
sym,` we have

Σ
resp,sym

A
pxA,Cq “ ´πpxAq ` λpxAq trpEq13ˆ3 ` 2µpxAqE ` opE; xAq ,

where E :“ 1
2 pC ´ 13ˆ3q. More precisely, we can specify ´πpxAq “ TresppxA,13ˆ3q.

Proof. [Cia88, Theorem 3.7-1]. �

In general, for a deformation Φ of ΩA, we define the Green–Saint-Venant strain tensor by

EpxAq :“ 1

2
pCpxAq ´ 13ˆ3q . (6.4)

Furthermore, we say that ΩA is a natural state if TresppxA,13ˆ3q “ 0 for all xA P ΩA. We call a material

homogeneous if its response function does not depend on the position. Under these two additional assumptions we

can write

Σ
resp,sym

A
pxA,Cq “ Σresp,sym

A
pCq “ λ trpEq13ˆ3 ` 2µE ` opEq . (6.5)

Here, the values λ, µ are called Lamé–Navier parameters. It is often convenient to consider instead Young’s

modulus E and the Poisson ratio ν, which are given by

E “
µp3λ` 2µq
λ` µ

, ν “ λ

2pλ` µq .

Then λ and µ are vice-versa determined by

λ “ Eν

p1 ` νqp1 ´ 2νq , µ “ E

2p1 ` νq . (6.6)

By neglecting the higher-order terms in (6.5), a possible response function is given in the following definition.

Definition 6.1.10 (Saint-Venant–Kirchhoff Material). An elastic material is a Saint-Venant–Kirchhoff material if

its response function is of the form

Σ
resp,sym

A
pxA,Cq “ Σresp,sym

A
pxA,13ˆ3 ` 2Eq “ λ trpEq13ˆ3 ` 2µE (6.7)

for all C “ 13ˆ3 ` 2E P R3ˆ3
sym,`.

6.1.1 Hyperelastic Materials

Next, we consider a special class of so-called hyperelastic materials, which allows solving the PDE (6.2) by

variational methods, i.e., finding a stationary point of an energy functional.

Definition 6.1.11 (Hyperelastic Material). An elastic material is hyperelastic if there exists a stored energy density

function W : ΩA ˆR3ˆ3
` Ñ R, s.t. the response function for the first Piola–Kirchhoff stress tensor is given by

T
resp

A
pxA,Mq “ BMWpxA,Mq @xA P ΩA @M P R3ˆ3

` .

As in Theorem 6.1.5, the Axiom 6.1.4 of material frame-indifference leads to the existence of a function Wsym

s.t. WpxA,Mq “ WsympxA,M
TMq, which can be determined by Σ

resp,sym

A
pxA,Cq “ 2BCWsympxA,Cq (see [Cia88,

Theorem 4.2-1, 4.2-2]). Together with the isotropy constraint 6.1.6, it can be verified (see [Cia88, Theorem 4.4-1])

that similar to the Rivlin–Ericksen representation Theorem 6.1.8 the hyperelastic energy density function Wsym
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can be expressed in terms of the principle invariants ιpCq. Looking at the approximative behavior near the identity

as in Theorem 6.1.9 for a homogeneous material in a natural state, we obtain (see [Cia88, Theorem 4.5-1])

W
sympxA,Cq “ W

sympCq “ λ

2
ptrEq2 ` µ trpE2q ` op}E}2q .

Especially, a Saint-Venant–Kirchhoff material is a hyperelastic material with

W
sympxA,Cq “ W

sympCq “ λ

2
ptrEq2 ` µ trpE2q .

A further example of a hyperelastic energy density function (see, e.g., [Cia88]), which we take into account later

in Chapter 8, is given by

WpMq “
µ

2
}M}2

F ` λ

4
detpMq2 ´

ˆ
µ` λ

2

˙
logpdetpMqq ´ d

µ

2
´ λ

4
(6.8)

for M P Rdˆd
` and in space dimension d “ 2, 3.

Now, we define the stored elastic, the potential, and the free energy functionals by

EstoredpΦq “
ż

ΩA

WpxA,DΦpxAqq dxA ,

EpotpΦq “
ż

ΩA

FA ¨Φ dxA `
ż

ΓN
A

GA ¨Φ dH
2pxAq ,

EfreepΦq “ EstoredpΦq ´ EpotpΦq .

(6.9)

Then we are interested in minimizing the free energy over an admissible set of deformations. By formally consid-

ering the Euler–Lagrange equations to this minimization problem, we recover the PDE (6.2). This reformulation

as a variational problem is essential for our numerical solution scheme, since it can be solved, e.g., by Newton’s

method.

Moreover, even for large strains, the variational problem allows proving the existence of deformations mini-

mizing the free energy. In [Bal77], such an existence result was established for deformations in the Sobolev space

W1,αpΩA,R
3q for α ě 2, provided that the stored energy function W is polyconvex, has certain growth conditions

in the principle invariants, and converges to infinity as detpMq tends to zero. Note that the density function of a

Saint-Venant–Kirchoff material is not polyconvex, s.t. for an existence result quasiconvexification is required.

6.1.2 Linear Elasticity

For a linearization, we introduce the displacement U “ Φ ´ id. Then the Green–Saint-Venant strain tensor E as

defined in (6.4) can be expressed in terms of the displacement

E “ 1

2
pC ´ 13ˆ3q “ 1

2
pDΦTDΦ´ 13ˆ3q “ DU ` DUT

2
` 1

2
DUTDU “ εpUq ` 1

2
DUTDU ,

where the symmetrized gradient εpUq “ 1
2 pDU ` DUTq is called the linearized strain tensor. Then, for the

Saint-Venant–Kirchhoff material (6.7) the PDE (6.2) is linearized to
#

´divpλ trpεpUqq13ˆ3 ` 2µεpUqq “ FA @xA P ΩA ,

pλ trpεpUqq13ˆ3 ` 2µεpUqq nA “ GA @xA P ΓN
B ,

which is a linear PDE of second-order in the displacement U. Corresponding to (6.9) we define the stored elastic,

the potential, and the free energy by

Elin
storedpUq “

ż

ΩA

λ

2
divpUq2 ` µεpUq : εpUq dxA ,

Elin
potpUq “

ż

ΩA

FA ¨ U dxA `
ż

ΓN
A

GA ¨ U dH
2pxAq ,

Elin
freepUq “ Elin

storedpUq ´ Elin
potpUq .

(6.10)
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Existence of minimizing displacements of the free energy Elin
free

in the space W1,2pΩA,R
3q is a simple consequence

of the direct method in the calculus of variations and Korn’s inequality (2.2). Note that for linear elasticity a

minimizing displacement U of the free energy satisfies

2Elin
storedpUq “ Elin

potpUq “ ´2Elin
freepUq ,

which does, in general, not hold for nonlinear elasticity.

More generally, we could consider anisotropic materials. Then by linearizing the response function Σ
resp,sym

A
in

the linearized strain εpUq, we can write

Σ
resp,sym

A
pxA,Cq “ CεpUq “

˜ ÿ

k,l“1,2,3

Ci jklεpUqkl

¸

i, j“1,2,3

, (6.11)

where C P R3ˆ3ˆ3ˆ3 is a fourth-order tensor and σ :“ CεpUq P R3ˆ3 is called the linear stress tensor. Since εpUq
and σ are symmetric, we can deduce that Ci jkl “ Ci jlk “ C jikl “ Ckli j for all i, j, k, l “ 1, 2, 3. Thus, the effective

degrees of freedom of C are reduced to 21. In this thesis, we essentially consider isotropic materials. However, a

composition of two different isotropic materials behaves anisotropic.

6.2 Homogenization

Now, we consider a rapidly oscillating material distribution, which determines a microstructure on the macroscopic

reference domain. In [Bab76], the aspect ratio of microcells to the macroscale was discussed. Then, in the limit

of vanishing aspect ratio, the theory of mathematical homogenization explains the macroscopic behavior of the

material. In [BLP78], periodic microstructures were investigated. General compactness theorems were established

in [Mur78, Tar79, MT97]. For a more detailed introduction into the field of mathematical homogenization, we

refer the reader to Allaire’s famous book [All02].

As above, we take into account a reference domain ΩA Ă R3 of an elastic body. Moreover, we assume that a

force FA acting on ΩA is given. For simplicity, we neglect boundary forces. Here, we restrict to linear elasticity

and denote by

M4
sym :“

 
C “ pCi jklqi, j,k,l“1,2,3 P R3ˆ3ˆ3ˆ3 : Ci jkl “ Ckli j “ C jikl “ Ci jlk

(

the set of fourth-order elasticity tensors (see (6.11)). Furthermore, for lower and upper bounds α, β ą 0, we

consider the space of admissible Hooke’s laws

Mα,β “
!

C P M4
sym : Cξ : ξ ě α|ξ|2 , C´1ξ : ξ ě β|ξ|2 @ξ P R3ˆ3

sym

)
.

Since C P Mα,β satisfies α|ξ|2 ď Cξ : ξ ď β´1|ξ|2, we suppose αβ ď 1.

Now, we define convergence of a sequence of material distributions on Mα,β in a sense s.t. for arbitrary forces

the corresponding equilibrium displacements converge.

Definition 6.2.1 (H-convergence). A sequence pChqh Ă L8pΩA,Mα,βq converges in the sense of homogeniza-

tion (simply H-converges) to C˚ P L8pΩA,Mα,βq if for all FA P
´

W1,2
0

pΩA,R
3q
¯1

the sequence pUhqh Ă
W1,2

0
pΩA,R

3q of weak solutions to the state equation

#
´divpChεpUhqq “ FA in ΩA ,

Uh “ 0 on BΩA
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satisfies Uh á U˚ in W1,2
0

pΩA,R
3q for h Ñ 0 and ChεpUhq á C˚εpU˚q in L2pΩAq for h Ñ 0, where U˚ P

W1,2
0

pΩA,R
3q is the weak solution to

#
´divpC˚εpU˚qq “ FA in ΩA ,

U˚ “ 0 on BΩA .

We call C˚ the homogenized or effective elasticity tensor.

In the following, we consider two cases, namely those of a periodic and a one-dimensional structure, where the

homogenized elasticity tensors can be computed explicitly.

Periodic Homogenization. First, we restrict to a specific sequence of a period material distribution with decreas-

ing cell size. Such a scenario is depicted in Figure 6.2.

Figure 6.2: Sketch of a periodic microcell in 2D, which generates a corresponding sequence pChqh“ 1
2 ,

1
4

1
8 ,

1
16 ,...

of

elasticity tensors on the domain ΩA.

For p P r1,8s and m PN`, we introduce spaces of periodic functions

L
p

#
pp0, 1q3q :“

 
f P Lppp0, 1q3q : f periodic on p0, 1q3

(
,

W
m,p

#
pp0, 1q3q :“

"
f P Wm,ppp0, 1q3q : f periodic on p0, 1q3 ,

ż

p0,1q3

f dx “ 0

*
.

Now, we obtain H-convergence, and the homogenized elasticity tensor can be computed explicitly.

Theorem 6.2.2 (Periodic Homogenization). Let C1 P L8
#

pp0, 1q3,Mα,βq and Chpxq :“ C1p x
h q for h P p0, 1q. Then

the sequence pChqh H-converges to C˚, which can be computed into directions ξi, ξ j P R3ˆ3
sym by

C˚ξi : ξ j “
ż

p0,1q3

C1pξi ` εpUiqq : pξ j ` εpU jqq dx ,

where for k P ti, ju the displacement Uk P W1,2
#

pp0, 1q3,R3q is the weak solution to

´divpC1pξk ` εpUkqqq “ 0 in p0, 1q3 .

Proof. See [All02, Chapter 1.1.4]. �

Homogenization in 1D. So far, we have considered domains in 3D, since this is our main case of interest, of

which we especially make use of in Chapter 7. However, the definition of H-convergence transfers analogously

to arbitrary dimensions. Next, we consider the one-dimensional case, where the homogenization limit can be

characterized in general.

Theorem 6.2.3 (Homogenization in 1D). Let I Ă R be a compact interval. We consider a sequence pChqh Ă L8pIq
and assume uniform bounds α ď Chptq ď β for a.e. t P I. Then there exists B˚ P L8pIq s.t. pChq´1 ˚á B˚ in L8

for h Ñ 0. and the sequence pChqh H-converges to C˚ :“ pB˚q´1.

Proof. See [All02, Chapter 1.2.3]. �
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Note that in this one-dimensional case the involved differential equations are just of type pChU1q1 “ FA. In the

case of a periodic material, e.g., on the interval r0, 1s generated from C1 “ αχp0,λq ` βχpλ,1q the weak-˚ limit is

known and thus the homogenized tensor is explicitly given by the harmonic mean

C˚ “
αβ

αp1 ´ λq ` βλ
.

Finally, we remark that also in the case of so-called laminated structures, where the sequence of elasticity

tensors is generated by oscillations into a single direction, an explicit formula for the homogenized elasticity

tensor can be derived.

6.3 Elastic Shape Optimization

Later, in Chapter 7 and Chapter 8, we study specific shape optimization problems. Roughly speaking, in elastic

shape optimization, we are concerned with finding a subdomain O Ă ΩA optimizing the mechanical stability

within a set O of admissible subdomains. Here, following [PRW12], we formally introduce a particular class of

shape optimization problems and present a corresponding phase-field relaxation.

State Equation. First, we consider a fixed subdomain O P O , which we identify with its characteristic function

χO : ΩA Ñ t0, 1u. We assume that forces FA,GA are acting on the reference domain ΩA. Then, we seek for a

deformation of O minimizing the free energy, which we then denote by ΦpχOq. Here, we do not discuss assump-

tions on the domain O to guarantee the existence of ΦpχOq. Instead, we make use of the so-called ersatz material

approach by substituting a soft material with a small factor τ ą 0 on the complementary set ΩAzO. This allows

considering the elastic problem on the full domain ΩA, where, according to (6.9), we define energy functionals

EτstoredpχO,Φq “
ż

O

WpxA,DΦpxAqq dxA `
ż

ΩAzO
τWpxA,DΦpxAqq dxA

“
ż

ΩA

pχO ` p1 ´ χOqτq WpxA,DΦpxAqq dxA ,

EpotpΦq “
ż

ΩA

FA ¨Φ dxA `
ż

ΓN
A

GA ¨Φ dH
2pxAq ,

EτfreepχO,Φq “ EτstoredpχO,Φq ´ EpotpΦq .

Then we ask for a deformation of the full domain ΩA solving the so-called state equation

ΦpχOq P arg min
ΦPA

EτfreepχO,Φq ,

whereA is a suitable space of deformations encoding boundary conditions and regularity assumptions. Neverthe-

less, in the case of nonlinear elasticity, the uniqueness of global minimizers of the relaxed free energy Eτ
free

is not

guaranteed, and a set of minimizers has to be considered. In particular, in the numerical implementation, we have

to cope with an even larger set of local minimizers.

Cost functional. Now, still using the ersatz material approach with factor τ ą 0, to measure the mechanical

stability of O, we take into account a cost functional Jτ
expl

: O ˆAÑ R explicitly depending on the domain and

the deformation. Then we define a total cost functional Jτ
tot : O Ñ R by

Jτ
totpχOq “ Jτ

explpχO,ΦpχOqq

and ask for the optimal subdomain O Ă O minimizing Jτ
tot. In the case of nonlinear elasticity, in [PRW12] the

three functionals

Jτ
storedpχO,Φq “ 2EτstoredpχO,Φq ,
Jτ

potpχO,Φq “ EpotpΦq ,
Jτ

freepχO,Φq “ ´2EτfreepχO,Φq



6.3. ELASTIC SHAPE OPTIMIZATION 91

have been compared as possible forJτ
expl

. For linear elasticity, the counterparts Elin
potpUpχOqq, 2Eτ,lin

stored
pχO,UpχOqq,

and ´2Eτ,lin
free

pχO,UpχOqq coincide for the unique minimizing displacement UpχOq. Without any restrictions on the

set O , the minimizer for any of these cost functionals is given by the full domain O “ ΩA. Typically, we impose a

volume constraint by defining the set of admissible subdomains by

O “ tO Ă ΩA : VpχOq ď Vu ,

where VpχOq “ L pOq denotes the Lebesgue measure of O and V P p0,L pΩAqq. Alternatively, the functional

λVpχOq can be added as a penalty to the cost Jτ
tot for some constant λ P R`, which can vice versa be interpreted

as a Lagrange multiplier.

6.3.1 Perimeter Regularization and Phase-Field Approximation

In general, shape optimization problems of the above type are ill-posed, even for the ersatz material approach.

Under the assumption that the subdomain O is measurable, the characteristic function χO belongs to the space

L8pΩA, t0, 1uq. Unfortunately, the limit χ˚ of a minimizing sequence χk
˚á χ˚ in L8 with χk P L8pΩA, t0, 1uq

does not necessarily take values in t0, 1u, but in the interval r0, 1s, and thus, χ˚ cannot be identified with a

subdomain O˚. A possible relaxation in [ABFJ97] takes into account the homogenization method, as described in

Section 6.2. Here, we consider another type of regularization by adding a perimeter term to the cost functional.

Definition 6.3.1 (Perimeter). For χ P BVpΩA, t0, 1uq we define the perimeter in ΩA as

PerΩA
pχq :“ |Dχ|TVpΩAq .

Note that for a smooth set O we have PerΩA
pχq “ H 2pBOq.

Then, for a regularization parameter η ą 0, we consider the total cost functional

J
η,τ
tot pχOq “ Jτ

explpχO,ΦpχOqq ` ηPerΩA
pχOq ,

which we aim to minimize over all χ in a suitable space O Ă BVpΩA, t0, 1uq. Such a regularized shape optimiza-

tion problem was, e.g., investigated in [AB93] for heat diffusion as state equation and in [PRW12] for nonlinear

elasticity.

For the numerical implementation, it is furthermore advantageous to approximate a characteristic function by

a phase-field function v P W1,2pΩA, r´1, 1sq, where the value v “ 1 represents the domain, the value v “ ´1
the complementary set, and values between ´1 and 1 are allowed to represent a diffuse interface. Then, for a

smooth approximation of the perimeter functional in terms of the phase-field variable, we consider the Modica–

Mortola [MM77] functionalAǫ : W1,2pΩAq Ñ R defined as

Aǫpvq “ 1

2

ż

ΩA

ǫ|∇v|2 ` 1

ǫ
Wpvq dxA , (6.12)

where we choose W as the double-well function

Wpvq “ 9

16
pv2 ´ 1q2 . (6.13)

Here, the parameter ǫ ą 0 is related to the interface width between two phases. In the limit ǫ Ñ 0, the following

convergence result was established.

Theorem 6.3.2 (Γ-Convergence of Modica–Mortola Functional). For the sequence of functionals pAǫqǫą0 as

defined in (6.12), we have Γ-convergence w.r.t. strong convergence in L1pΩAq to the functional

A0pvq :“
#

PerΩA

`
χtxAPΩA : vpxAq“1u

˘
if vpxAq P t´1, 1u for a.e. xA P ΩA ,

8 otherwise .

Proof. See [Bra06, Theorem 7.3]. �



92 CHAPTER 6. FOUNDATIONS IN ELASTICITY AND SHAPE OPTIMIZATION

Finally, to define the total cost functional J
η,τ
tot in terms of the phase-field variable v, the characteristic func-

tion χO has to be approximated in the integrands of the stored elastic energy Eτ
stored

and the volume VpOq “ş
ΩA
χO dxA. In [PRW12], for both functionals, a quadratic approximation with χpvq :“ 1

4 pv ` 1q2 was applied.

Because of the Γ-convergence result in Theorem 6.3.2, this choice does not matter in the limit ǫ Ñ 0. For exam-

ple, in [BGHR16], a sharp interface limit for a generic class of cost functionals was derived in the case of linear

elasticity, provided that the phase-field approximation admits uniform coercivity and continuity bounds. However,

for a concrete ǫ and intermediate values of v P p´1, 1q, which are always given in the implementation, it appears

more natural to define two different approximations of χO. For the volume functional, we use χpvq :“ 1
2 pv ` 1q,

which is weak-˚ continuous w.r.t. convergence in L8. In contrast, regarding the homogenization result for one-

dimensional material parameters as discussed in Theorem 6.2.3, a harmonic averaging for the stored elastic energy

is suitable. Since we, in particular, consider three-dimensional domains and for computational simplicity, we fre-

quently choose a second or a fourth-order polynomial to approximate the characteristic function for the stored

elastic energy.

6.3.2 Computing the Shape Derivative

Later, to numerically compute a minimizer of a cost functional Jtot, we apply a first-order method like a gradient

descent or Quasi-Newton scheme. This requires to compute the first variation of the cost functional, which is for

the above phase-field approximation given by the chain rule as

d

dv
J
η,τ
tot pvqppvq “ d

dv

´
J
η,τ

expl
pv,Φpvqq

¯
“ BvJ

η,τ

expl
pv,Φpvqqppvq ` BΦJη,τ

expl
pv,ΦpvqqpBvΦpvqppvqq .

Unfortunately, the shape sensitivity BvΦpvqppvq is numerically expensive to compute. Therefore, a well-established

approach (see, e.g., [HPUU08]) is to take into account a so-called adjoint problem. First, we fix a notation for

partial derivatives of second-order.

Remark 6.3.3 (Second-Order Partial Derivatives). For a functional F , we use the notation

B2
XiX j
F pX1, . . . ,XnqpxX jqp pXiq :“ BXi

´
BX j
F pX1, . . . ,XnqpxX jq

¯
p pXiq .

Now, the adjoint problem is given by

B2
Φ,ΦE

τ
freepv,ΦpvqqppΦqpAq “ ´BΦJη,τ

expl
pv,ΦpvqqppΦq @pΦ P A ,

which has to be solved in the variable A P A. Since the necessary condition for the state equation Φpvq P
arg min

ΦPA E
τ
free

pv,Φq is given by BΦEτfree
pv,Φpvqq “ 0, the inverse function theorem allows computing the

shape sensitivity by

BvΦpvq “ ´pB2
Φ,ΦE

τ
freepv,Φpvqqq´1B2

v,ΦE
τ
freepv,Φpvqq .

Then, together with the solution to the adjoint problem, we can compute the first variation of the cost functional by

d

dv
J
η,τ
tot pvqppvq “ BvJ

η,τ

expl
pv,Φpvqqppvq ` B2

v,ΦE
τ
freepv,ΦpvqqqpAqppvq . (6.14)

Similarly, the shape derivative can be determined for other shape representations, e.g., for a level-set approximation

[AJT04], where the differentiability of the signed distance function is used. In the case of nonlinear elasticity, as

it was considered in [PRW12], the nonuniqueness of solutions to the state equation has to be coped. Moreover, in

Chapter 8, we take into account bending isometries and thus, we have to consider a suitable Lagrangian to solve

the corresponding state equation, which requires adapting the expression (6.14) accordingly.



Chapter 7

Simultaneous Elastic Shape Optimization

This chapter is motivated by a biomechanical application in bone tissue engineering. Usually, a broken bone is

able to regenerate, where metal implants in the form of plates and screws are well-established to support the heal-

ing process. Here, we investigate the case of large scale bone loss, which is, e.g., a consequence of removing

osteosarcoma (a cancerous tumor in a bone). Recently, the construction and appropriateness of additional sub-

stitutes consisting of biologically degradable polymers are explored. The usage of such degradable materials in

medicine is already quite common, e.g., for threads to close incisions in the skin. An example of the application to

bone substitutes is studied in [PCW`16], where polycaprolactone is taken into account. Today, 3D printers allow

producing a huge variety of polymer scaffolds instantaneously. Since we are dealing with large scale bone loss,

such a polymer scaffold is required to be resistant against certain exterior forces. Furthermore, the substitute has

a specific microstructure, s.t. during the regeneration process, new bone tissue first grows into the void part of the

scaffold. Later, the polymer is degraded, and the bone will completely regenerate. For a more detailed overview

of the medical background, we refer the reader to [DPRS19, Section 2].

In the following, our goal is to optimize the microstructure of a polymer implant in the above situation. There-

fore, we formulate a suitable shape optimization problem. First, we assume that the microstructure of the scaffold

is periodic s.t. we are only concerned with optimizing a single periodic microcell. We consider affine loads act-

ing on the microcell corresponding to macroscopic bending and torsion forces, e.g., for a substitute of a section

of the tibia, a realistic loading scenario consists of unilateral compression and shear. Since deformations of the

considered object are expected to be small, we can restrict to linear elasticity. Then, we take into account both the

mechanical stability of the polymer scaffold and the complementary set, where new bone tissue will grow first.

Thus, we arrive at a simultaneous elastic shape optimization, since within a given domain (the periodic microcell)

an object, as well as its complementary set, has to be optimized w.r.t. mechanical stability.

In Section 7.1, we formally derive the corresponding shape optimization problem, where we start, based on

the theory of homogenization, with a formulation of state equations related to a multiple load scenario. Then we

define a suitable cost functional penalizing the less stiff object by taking into account the relevant entries of the

effective elasticity tensor. For a mathematically rigorous formulation, we propose in Section 7.2 a perimeter regu-

larization of the characteristic function variable representing the domain splitting. Furthermore, an ersatz material

approach assuming soft instead of void material on the complementary object is applied to guarantee the existence

of solutions to the state equation, since Korn’s inequality can be applied on the full domain. We are able to prove

the existence of minimizing characteristic functions for this relaxed formulation. The numerical scheme is imple-

mented via a phase-field approximation, which we describe in Section 7.3. Besides the real application, we study in

Section 7.4 different load scenarios and material properties of both objects. In Section 7.5, we propose extensions

of our model by additionally incorporating volume constraints and diffusion constraints on certain entries of the

homogenized diffusion tensor of the bone phase. The latter guarantees that bone can grow appropriately. Finally,

a conclusion is given in Section 7.6.

Remark 7.0.1. All results presented in this chapter are joint work with Patrick Dondl, Patrina Poh, and Martin

Rumpf and have been published in [DPRS19].
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7.1 Simultaneous Elastic Shape Optimization of a Periodic Microcell

As a reference domain representing the (scaled) microcell, we consider the unit cube Ω “ r0, 1sd (d ě 2), which

allows us to model periodic materials in Rd, where d “ 3 is the application relevant case. We consider a splitting

of the reference domain Ω of an elastic object into two disjoint subdomains O0 and O1, i.e.,

Ω “ O0 YO1 , O0 XO1 “ H .

In the application, O1 represents the polymer scaffold and O0 the complementary set, where bone will grow first.

A possible domain splitting is depicted in Figure 7.1. We denote by m P t0, 1u an index corresponding to the

subdomain Om, and represent the two disjoint objects by characteristic functions χm.

Figure 7.1: Example of a domain splitting of the unit cube r0, 1s3 into disjoint sets O0 and O1.

7.1.1 State Equations

In the following, we investigate affine displacements Uaff,m
l

: ΩÑ Rdˆd representing a multiple load scenario with

L PN` affine loads on the microcell, i.e.,

Uaff,m
l

pxq “ ξm
l x for l P t1, . . . ,Lu , (7.1)

where ξm
l

P Rdˆd
sym . Usually, we consider equal loads ξ0

l
“ ξ1

l
for both subdomains, where for the application we

have in mind combinations of compressions and shears of type

ξcompr “ βeT
i ei , ξshear “ βpeT

i e j ` eT
j eiq ,

for te1, . . . , edu being the canonical basis in Rd and some β P R. To measure stiffness of the objects Om in the

directions given by the affine displacements, we assume linear elasticity, because deformations are expected to be

small. We denote by Cm “ pCm
ijkl

qi, j,k,l“1,...,d the corresponding elasticity tensors and assume for simplicity that

both materials are isotropic, and thus, determined by the Lamé–Navier parameters µm ą 0 and λm ą 0, i.e., for a

displacement U : ΩÑ Rd we have

CmεpUq : εpUq “ 2µmεpUq : εpUq ` λmdivpUqdivpUq .

Based on the theory of periodic homogenization (see Section 6.2), we consider the elastic energies

Empχm,Utot,m
l

q “
ż

Ω

χm CmεpUtot,m
l

q : εpUtot,m
l

q dx “
ż

Om

CmεpUtot,m
l

q : εpUtot,m
l

q dx , (7.2)

for affine-periodic displacements Utot,m
l

: Om Ñ Rd with

Utot,m
l

“ Um
l ` Uaff,m

l
.
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Since the actual unknown variable is the periodic counterpart Um
l

, we consider the elastic energy (7.2) only in

dependence of the periodic part, and indicate the fixed affine part as an index

Em
l pχm,Um

l q “
ż

Ω

χm CmεpUtot,m
l

q : εpUtot,m
l

q dx

“
ż

Ω

χm CmεpUm
l ` Uaff,m

l
q : εpUm

l ` Uaff,m
l

q dx

“
ż

Ω

χm Cm
`
εpUm

l q ` ξm
l

˘
:
`
εpUm

l q ` ξm
l

˘
dx .

(7.3)

For the moment, we do not introduce function spaces and just assume that for a prescribed characteristic

function χm a unique minimizing periodic displacement of the elastic energy Em
l

pχm, ¨q in (7.3) exists, which we

denote by Um
l

pχmq. Note that the displacements here are restricted to the associated object Om, which is different

for a rigorous definition for a relaxed formulation in Section 7.2, where a hard-soft material approximation allows

to consider displacements of the full domain Ω. However, to prove such an existence result in this context, we

would have to specify precise regularity assumptions on Om s.t. Korn’s inequality can be applied. Instead, we take

the above definitions rather formally and recall (cf . Theorem 6.2.2) that for a given characteristic function χm the

entries of the homogenized elasticity tensor Cm,˚pχmq can be computed by

Cm,˚pχmqξ : ξ “ min
U : ΩÑRd periodic

ż

Om

χmCm pεpUq ` ξq : pεpUq ` ξq dx (7.4)

for all ξ P Rdˆd
sym . Thus, minimizing the elastic energy Em

l
pχm, ¨q over periodic displacements means computing the

entry

Cm,˚pχmqξm
l : ξm

l “ Em
l pχm,Um

l pχmqq .

Note that the object Om is stiff w.r.t. to the load Uaff,m
l

if the corresponding entry of the homogenized tensor is

large. Next, we propose a cost functional taking these values into account.

7.1.2 Cost Functional

To measure the overall stiffness of a domain Om, we take into account a continuous function gm : RL
` Ñ R, which

should weight the entries of the homogenized elasticity tensor and is therefore supposed to be monotone decreasing

in each argument. Thus, we define for both subdomains, respectively, the cost associated with the set of loading

conditions as

Gmpχmq :“ gm
`
Cm,˚pχmqξm

1 : ξm
1 , . . . ,C

m,˚pχmqξm
L : ξm

L

˘
. (7.5)

For simplicity, we consider an equal load scenario for both subdomains and use the same weighting function. In

our implementation, we choose an lp-norm of the inverse values

gmpE1, . . . ,ELq “ gpE1, . . . ,ELq “
˜ ÿ

l“1,...,L

E
´p

l

¸ 1
p

.

for some p P r1,8q. For p Ñ 8, the resulting cost converges to the maximal inverse total energy

max
l“1,...,L

E´1
l

“
ˆ

min
l“1,...,L

El

˙´1

,

and thus, represents a worst-case optimization problem, where solely the loading scenario with the smallest elastic

energy is taken into account.

Finally, we define a total cost functional in dependence of a characteristic function χ representing the domain

splitting via χ0 “ χ and χ1 “ 1 ´ χ. This functional should prefer both subdomains to be stiff and thus penalize
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large values w.r.t. to the weighting function g. For that purpose, we select the less stiffer object by choosing the

maximum value of Gmpχmq, i.e., our simultaneous elastic shape optimization problem is given by minimizing

Jtotpχq :“ max
`
G0pχq,G1p1 ´ χq

˘
(7.6)

over all periodic characteristic function χ : Ω Ñ t0, 1u. Compared to other shape optimization problems, where

only one subdomain is optimized, no volume constraint or penalty is needed, since there is a competition of both

subdomains in the sense that increasing the stiffness of one domain is only possible with a payoff in the cost of the

complementary subdomain.

7.2 Hard-Soft Approximation and Perimeter Regularization

Next, we derive a mathematically rigorous formulation for a relaxation of the cost functional (7.6). In particular, we

choose appropriate function spaces for the characteristic function and the periodic parts of the displacements. Then,

based on a similar result in [AB93] for a scalar-valued problem and in [PRW12] for the existence of minimizing

phase-fields in the case of nonlinear elastic shape optimization, we prove the existence of minimizing characteristic

functions.

We remember that the cost functional (7.6) is defined for a single characteristic function χ to model the domain

splitting. Now, we assume χ to be in the space of functions of bounded variation with periodic boundary conditions.

Furthermore, since any periodically extended translation has the same cost, we choose a fixed center of mass c P Ω,

i.e.,

χ P BV#,cpΩ, t0, 1uq :“
"
χ P BVpΩ, t0, 1uq : χ periodic on Ω ,

ż

Ω

χpxi ´ ciq dx “ 0 for i “ 1, . . . , d

*
.

For the elastic problem, as in (7.1) we take into account a set of affine displacements

´
Uaff,m

l

¯
l“1,...,L

and periodic

parts

Um
l P W1,2

#
pΩ,Rdq “

"
U P W1,2pΩ,Rdq : U periodic on Ω ,

ż

Ω

U dx “ 0

*
.

Next, we take into account an ersatz material approach by replacing the void phase on the complementary set

ΩzOm by a very soft phase, which allows to consider the elastic problems on the full domain Ω instead of on the

subdomains Om. More precisely, the characteristic function χm for each object Om is approximated by

χm ` τp1 ´ χmq

for some small constant τ ą 0. Then, for m P t0, 1u and l P t1, . . . ,Lu, corresponding to the minimization

problem (7.4), we define elastic energies Em,τ
l

: BV#,cpΩ, t0, 1uq ˆ W1,2
#

pΩ,Rdq Ñ R as

Em,τ
l

pχ,Um
l q “

ż

Ω

pχ` τp1 ´ χqq CmεpUm
l ` Uaff,m

l
q : εpUm

l ` Uaff,m
l

q dx . (7.7)

Now, in this function space setup, for a fixed characteristic function, we can guarantee the existence and uniqueness

of a minimizing displacement.

Lemma 7.2.1 (Existence of Unique Minimizing Displacements). Let χ P BV#,cpΩ, t0, 1uq.

1. There exists a unique minimizer Um
l

pχq P W1,2
#

pΩ,Rdq of Em,τ
l

pχ, ¨q.

2. Furthermore, for every sequence pχkqkPN Ă BV#,cpΩ, t0, 1uq with χk
˚á χ in BV, there exists a subsequence

pχkn
qnPN s.t. Em,τ

l
pχm

k
,Um

l
pχkn

qq Ñ Em,τ
l

pχm,Um
l

pχqq for n Ñ 8.

Proof.
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1. Since τ ą 0 and χ only takes values in t0, 1u, we have uniform bounds on the coefficients

0 ă α ă }pχ` τp1 ´ χqq Cm}8 ă β .

Existence of a unique minimizer is a direct consequence of the Lax–Milgramm theorem, where coercivity

of the corresponding bilinear form follows by Korn’s inequality (2.2) combined with Poincaré’s inequality.

2. For the second statement, we make use of Γ-convergence of Em,τ
l

pχk, ¨q to Em,τ
l

pχ, ¨q w.r.t. the weak W1,2-

topology for k Ñ 8. To see this, we recall that weak-˚ convergence in BV implies strong convergence

in L1 (see Theorem 2.2.4) and there is a subsequence (here again indexed by k) s.t. χk Ñ χ pointwise a.e.

Then the Γ-liminf inequality is a direct consequence of Theorem 2.3.4. For the Γ-limsup inequality we can

choose for any Um
l

P W1,2
#

the constant recovery sequence Um
l,k

“ Um
l

. Indeed, by the upper bound of

the coefficients, the integrands pχk ` τp1 ´ χkqq CmεpUm
l

` Uaff,m
l

q : εpUm
l

` Uaff,m
l

q are bounded by the

L1-function β|εpUm
l

` Uaff,m
l

q|2. Thus, because of the pointwise convergence of the subsequence, the Γ-

limsup inequality follows by Lebesgue’s dominated convergence theorem. Furthermore, the elastic energies

pEm,τ
l

pχk, ¨qqkPN are equi-coercive because of the upper bound on the coefficients. Then convergence of a

subsequence follows by the Fundamental Theorem of Γ-convergence (2.3.3).

�

Corresponding to (7.5), the cost Gm,τ : BV#,cpΩ, t0, 1uq Ñ R associated with the set of loading conditions for

a specific subdomain is given by

Gm,τpχmq :“ gm
`
Cm,˚pχmqξm

1 : ξm
1 , . . . ,C

m,˚pχmqξm
L : ξm

L

˘
.

Finally, we define the total cost functional J
η,τ
tot : BV#,cpΩ, t0, 1uq Ñ R as

J
η,τ
tot pχq “ max

`
G0,τpχq,G1,τp1 ´ χq

˘
` η|Dχ|TVpΩq . (7.8)

Here, to regularize the interface between the subdomains, we add the perimeter η|Dχ|TVpΩq for some constant

η ą 0. In the following theorem, we provide the existence of minimizing characteristic functions.

Theorem 7.2.2 (Existence of Optimal Subdomain Splitting). For η ą 0 and τ ą 0, there exists a minimizer

χ P BV#,cpΩ, t0, 1uq of the functional J
η,τ
tot .

Proof. First, we take a minimizing sequence pχkqkPN Ă BV#,cpΩ, t0, 1uq of the functional J
η,τ
tot . This sequence

is uniformly bounded in BVpΩ, t0, 1uq because of the perimeter term in the functional J
η,τ
tot . Thus, there exists

a subsequence for simplicity again denoted by pχkqkPN s.t. χk
˚á χ in BV#,cpΩ, t0, 1uq. By Lemma 7.2.1, we

obtain convergence Em,τ
l

pχm
k
,Um

l
pχkqq Ñ Em,τ

l
pχm,Um

l
pχqq for k Ñ 8. Since g and the maximum function are

continuous, we get in the limit J
η,τ
tot pχq “ limkÑ8J

η,τ
tot pχkq “ infBV#,cpΩ,t0,1uqJ

η,τ
tot . �

7.3 Phase-Field Approximation and Finite Element Discretization

We recall from Section 6.3 that a phase-field approach is quite common in the literature (see, e.g., [PRW12])

to compute a minimizer of an elastic shape optimization problem numerically. Here, we adopt this ansatz by

approximating the characteristic function χ P BV#,cpΩ, t0, 1uq by a phase-field function

v P W1,2
#,c

pΩ, r´1, 1sq :“
"

v P W1,2pΩ, r´1, 1sq : v periodic on Ω ,

ż

Ω

vpxi ´ ciq dx “ 0 for i “ 1, . . . , d

*
.

In the following, we define counterparts of the elastic energies (7.7) and the cost functional (7.8) in terms of the

phase-field variable v. Then the core ingredient of our numerical scheme consists in computing the first derivative

of the cost functional.

First, for the phase-field function v P W1,2
#,c

pΩ, r´1, 1sq, we define approximations of the characteristic func-

tions by

χ0pvq “ 1

16
p1 ` vq4 , χ1pvq “ χ0p´vq “ 1

16
p1 ´ vq4 .
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Then, for m P t0, 1u and l P t1, . . . ,Lu, the elastic energies are given by

Em,τ
l

pv,Um
l q “

ż

Ω

pχmpvq ` τp1 ´ χmpvqqq CmεpUm
l ` Uaff,m

l
q : εpUm

l ` Uaff,m
l

q dx .

Analogously to Lemma 7.2.1, there exist unique displacements Um
l

pχq P W1,2
#

pΩ,Rdq minimizing the energy

Em,τ
l

pv, ¨q and thus solving the linear equation

BUm
l
Em,τ

l
pv,Um

l pvqqpUm
l q “ 0 @Um

l P W1,2
#

pΩ,Rdq . (7.9)

We observe that the cost for a specific subdomain can be written in dependence of the equilibrium displacement

Um
l

pvq by

Gm,τpvq : “ gm
`
Cm,˚pχmqξm

1 : ξm
1 , . . . ,C

m,˚pχmqξm
L : ξm

L

˘

“ gm
`
Em,τ

1
pv,Um

1 pvqq, . . . ,Em,τ
L

pv,Um
L pvqq

˘
.

To approximate the perimeter functional in v, we recall the Modica–Mortola functional [MM77]

Aǫpvq :“ 1

2

ż

Ω

ǫ|∇v|2 ` 1

ǫ
Wpvq dx ,

where ǫ describes the width of the diffused interface between the two subdomains and we set Wpvq :“ 9
16 pv2 ´1q2.

Then we replace the perimeter |Dχ|TVpΩq by the phase-field energyAǫpvq. Furthermore, the maximum function

is approximated by a smooth function Maxα. In our computations, we choose

Maxαpx, yq :“ 1

2

ˆ
x ` y `

b
|x ´ y|2 ` α

˙
(7.10)

for a small α ą 0. Altogether, we define a cost functional in terms of v as

J
η,τ
tot pvq “ Maxα

`
G0,τpvq , G1,τpvq

˘
` ηAǫpvq

“ Jη,τ

expl

`
v,U0

1pvq, . . . ,U0
Lpvq,U1

1pvq, . . . ,U1
Lpvq

˘
,

where a cost functional J
η,τ

expl
explicitly depending on phase-fields and displacements is given by

J
η,τ

expl

`
v,U0

1, . . . ,U
0
L,U

1
1, . . . ,U

1
L

˘

“ Maxα

´
g0pE0,τ

1
pv,U0

1q, . . . ,E0,τ
L

pv,U0
Lqq , g1pE1,τ

1
pv,U1

1q, . . . ,E1,τ
L

pv,U1
Lqq

¯
` ηAǫpvq .

Now, our numerical algorithm to compute a (local) minimizer of the cost functional J
η,τ
tot requires to compute the

first derivative.

Lemma 7.3.1 (Computation of the Shape Derivative). The derivative of J
η,τ
tot along a direction pv P W1,2pΩq is

given by

d

dv
J
η,τ
tot pvqppvq “ BvJ

η,τ

expl

`
v,U0

1pvq, . . . ,U0
Lpvq,U1

1pvq, . . . ,U1
Lpvq

˘
ppvq .

Proof. First, we have that

d

dv
J
η,τ
tot pvqppvq “ BvJ

η,τ

expl

`
v,U0

1pvq, . . . ,U0
Lpvq,U1

1pvq, . . . ,U1
Lpvq

˘
ppvq

`
ÿ

m“0,1

Lÿ

l“1

BUm
l
J
η,τ

expl

`
v,U0

1pvq, . . . ,U0
Lpvq,U1

1pvq, . . . ,U1
Lpvq

˘ `
BvUm

l pvqppvq
˘
.
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Then we make use of the solutions Am
l

P W1,2
#

pΩ,Rdq to the adjoint problems

B2
Um

l
,Um

l
Em,τ

l

`
v,Um

l pvq
˘

p xUm
l

qpAm
l q “ ´BUm

l
J
η,τ

expl

`
v,U0

1pvq, . . . ,U0
Lpvq,U1

1pvq, . . . ,U1
Lpvq

˘
p xUm

l
q (7.11)

for all xUm
l

P W1,2
#

pΩ,Rdq, which allows to compute

d

dv
J
η,τ
tot pvqppvq “ BvJ

η,τ

expl
pv,U0

1pvq, . . . ,U0
Lpvq,U1

1pvq, . . . ,U1
Lpvqqppvq `

ÿ

m“0,1

Lÿ

l“1

B2
v,Um

l
Em,τ

l
pv,Um

l pvqqpAm
l qppvq .

Now, since BUm
l
Em,τ

l
pv,Um

l
pvqq “ 0, we observe for the right hand side of the adjoint equation (7.11) that

BUm
l
J
η,τ

expl

`
v,U0

1pvq, . . . ,U0
Lpvq,U1

1pvq, . . . ,U1
Lpvq

˘
p xUm

l
q

“BmMaxα

´
g0pE0,τ

1
pv,U0

1pvqq, . . . ,E0,τ
L

pv,U0
Lpvqqq , g1pE1,τ

1
pv,U1

1pvqq, . . . ,E1,τ
L

pv,U1
Lpvqq

¯

Dgm
`
Em,τ

1
pv,Um

1 pvqq, . . . ,Em,τ
L

pv,Um
L pvqq

˘
BUm

l
Em,τ

l
pv,Um

l pvqq
“0 .

Thus, we can conclude that Am
l

“ 0 for all adjoint solutions. Consequently, the derivative of the cost functional

simplifies to

d

dv
J
η,τ
tot pvqppvq “ BvJ

η,τ

expl
pv,U0

1pvq, . . . ,U0
Lpvq,U1

1pvq, . . . ,U1
Lpvqqppvq .

�

For the numerical discretization in 3D (d “ 3), we use a cuboid mesh, i.e., the unit cube Ω is uniformly

divided into pN ´1q3 cuboid elements with N3 nodes. On this mesh, we define the spaceVh of piecewise trilinear,

continuous functions. Then we consider discrete phase-fields vh P Vh and discrete displacement Um
l,h

P V3
h
.

In analogy to the continuous case, we restrict to the space of discrete, affine periodic functions. Furthermore,

the elastic energies are approximated by a tensor product Simpson quadrature. To implement the periodicity, we

identify the nodal values of the discrete phase-field and the discrete displacements on corresponding pairs of nodes.

Concerning the solver, the average value conditions on Um
l,h

are imposed via a Lagrange multiplier approach.

The corresponding linear systems for the elasticity problems (7.9) are solved using the conjugate gradient method

with diagonal preconditioning. Solving the adjoint equations (7.11) is not necessary, since we have already figured

out that all adjoint solutions are zero.

The actual shape optimization problem in the unknown phase-field vh is solved by using the IPOPT package

[WB06]. Therefore we provide an implementation of the cost functionalJtotpvhq and its first derivative. Moreover,

the IPOPT solver allows incorporating the pointwise constraints ´1 ď vhpxq ď 1 for all nodes x and the center of

mass condition
ş
Ω

vh`1
2 pxi ´ 1

2 q dx “ 0 for i “ 1, 2, 3.

7.4 Numerical Results for Optimal Periodic Microcells

In the following, we present our computational results for optimal microstructures in 3D. Especially, we study

different load scenarios and the influence of the material parameters.

First, we comment on the choice of the various parameters, which we have to determine for our numerical

scheme. We always initialize the phase-field with random values in the interval r´1, 1s on a mesh with 173

vertices. Then the solution on this coarse mesh is prolongated to a finer mesh, where it is used as an initialization.

Here, all results are computed on a mesh with 653 vertices. For a grid size h, we choose ǫ “ 2h for the phase-field

parameter in the Modica–Mortola functional, and the penalty parameter is set to η “ 2. For the ersatz material

approach, we choose on the complementary set a factor τ “ 10´4. The exponent in the weight function g is chosen

to be p “ 2. For the smooth approximation of the maximum function in (7.10), we choose α “ 10´5.
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We take into account several load scenarios by investigating different combinations of compression and shear

loads, where we choose for both subdomains the same loads. More precisely, the corresponding affine displace-

ments are given by Uaff,mpxq “ ξx for a symmetric matrix ξ P R3ˆ3
sym . We denote by te1, e2, e3u the canonical basis

in R3. Then, for some β P R, compression loads are given by ξ
ii

“ βeT
i
ei and shear loads by ξ

i j
“ βpeT

i
e j ` eT

j
eiq.

Here, we choose β “ ´0.25. Then, we compute the corresponding components of the homogenized elasticity ten-

sors by Cm,˚
iiii

“ β´2Cm,˚ξ
ii

: ξ
ii

(compressive stresses caused by compressive strains) and Cm,˚
i ji j

“ β´2Cm,˚ξ
i j

: ξ
i j

(shear strains induced shear stresses).

7.4.1 Different Load Scenarios for Equal Material Parameters

First, we consider equal material parameters pE0, ν0q “ p10, 0.25q “ pE1, ν1q. In Figure 7.2, three different load

scenarios are compared:

1. three compression modes (Cm,˚
1111

, Cm,˚
2222

, Cm,˚
3333

),

2. two compression modes combined with a single shear mode (Cm,˚
1111

, Cm,˚
2222

, Cm,˚
2323

),

3. and one compression mode combined with two shear modes (Cm,˚
1111

, Cm,˚
1212

, Cm,˚
1313

).

We observe significant differences in the components of the objective functional. Indeed, those entries of the

effective elasticity tensor present in the objective functional indicate a substantially stronger stiffness. Nevertheless,

in all cases, the interface between the two subdomains is of the same topology as the Schwarz P surface. Especially

in the case of three compression modes, the interface also seems geometrically very close to the Schwarz P surface.

For our numerical discretization, we compare an approximation of the Schwarz P surface given as the discrete

minimizer of the phase-field area functionalAǫ. We obtain values Cm,˚
iiii

“ 2.7811 (i “ 1, 2, 3) and Cm,˚
i ji j

“ 2.481

(i, j “ 1, 2, 3, i , j), which significantly differ compared to the optimizer for three compression modes and

a difference of approximately 3% for the phase-field area functional Aǫ. In the literature [TD04, Sil07], the

subdomain splitting associated with the Schwarz P surface as the interface has been investigated concerning its

optimality in the context of PDE constrained optimization for a scalar-valued problem.

3ˆ compr 2ˆ compr, 1ˆ shear 1ˆ compr, 2ˆ shear

single cell

33 cells

m=0 m=1 m=0 m=1 m=0 m=1

Cm,˚
1111

2.825 2.825 2.3657 2.3657 3.745 3.745
Cm,˚

2222
2.825 2.825 3.8584 3.8584 2.3035 2.3035

Cm,˚
3333

2.825 2.825 2.1651 2.1651 2.3035 2.3035
Cm,˚

1212
2.4851 2.4851 3.0126 3.0126 2.8256 2.8256

Cm,˚
1313

2.4851 2.4851 1.1134 1.1134 2.8256 2.8256
Cm,˚

2323
2.4851 2.4851 2.7998 2.7998 1.6268 1.6268

volume 0.5 0.5 0.5 0.5 0.5 0.5

Figure 7.2: Comparison of optimal microstructures and relevant induced components of the effective elasticity

tensors for different load scenarios indicated above. In the top row we depict the subdomains on the fundamental

cell of the microstructure and below a 3 ˆ 3 ˆ 3 composition pronouncing the periodicity. Those components of

the tensor which are part of the corresponding objective functional are highlighted in grey.
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7.4.2 Influence of the Perimeter Term

Next, in Figure 7.3, we show the effect of the perimeter functional by considering different values for the penalty

parameter η “ 2, 4, 10. Here, we investigate a load scenario with three shear loads (Cm,˚
1212

, Cm,˚
1313

, Cm,˚
2323

). For

small η, we obtain a laminate type optimal configuration, whereas, for larger η, the interface is again similar to

the Schwarz P surface. On the intermediate range of the parameter η, we obtain an optimal microstructure with

an interface similar to a gyroid minimal surface, which is also taken into account as a possible microstructure in

bone tissue engineering in [KHM`11]. We observe that this intermediate range is comparatively small for the load

scenario with three shear loads. For the other load scenarios studied in Figure 7.2, we also obtain an interface

similar to the Schwarz P surface for large η, but for smaller values η “ 0.1, the numerical optimization scheme

still converges to similar solutions. Depending on the initialization, for even smaller values η “ 0.001, the method

does not converge because of a lack of regularization, but laminate structures never appear. This indicates that for

the load scenario with three shear loads, the optimal solution is indeed a (nested) laminate structure.

Figure 7.3: Optimal microstructures for different values of the perimeter parameter η (from left to right: η “
2, 4, 10). In the top row we depict a single fundamental cell and below a 3 ˆ 3 ˆ 3 block.

7.4.3 Influence of Weighting Function

So far, for the weight function g, we have always chosen p “ 2. In Table 7.1, we show for the load scenario with

two compression loads and one shear load the relevant entries of the effective elasticity tensor. For increasing p,

we observe a successive balancing of the different components of the objective functional. In particular, the largest

component Cm,˚
2222

of the effective elasticity tensor is slightly decreasing, while the smallest component Cm,˚
1111

is

slightly increasing.

p 2 4 8 16
m=0 m=1 m=0 m=1 m=0 m=1 m=0 m=1

Cm,˚
1111

2.3657 2.3657 2.4438 2.4384 2.4847 2.4808 2.5053 2.5056
Cm,˚

2222
3.8584 3.8584 3.8408 3.8429 3.8286 3.8291 3.8286 3.828

Cm,˚
2323

2.7998 2.7998 2.6764 2.6857 2.6139 2.6206 2.5768 2.5766

Table 7.1: Stiffness moduli of the optimal subdomain splitting for different values of p.

7.4.4 Varying Young’s Modulus

Next, we study the influence of Young’s modulus by considering E0 “ 20, 40, 80, 160, 320, where we always

choose pE1, ν1q “ p10, 0.25q and ν0 “ 0.25. We observe that the structures become thinner for the subdomain

with increasing values of Young’s modulus, since the difference in stiffness of the materials has to be compensated

by a higher volume fraction of the other subdomain. In Figure 7.4, we show results obtained for different load

scenarios.
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m=0 m=1 m=0 m=1 m=0 m=1 m=0 m=1 m=0 m=1

Cm,˚
1111

3.6587 3.3904 4.7996 4.2686 6.413 5.9585 6.837 7.1062 8.8662 8.6567
Cm,˚

2222
4.9667 4.3946 7.0545 5.4043 7.6653 6.7548 7.2202 7.4892 9.3866 9.0007

Cm,˚
3333

3.5702 3.4632 5.0673 4.6461 2.3783 5.9513 3.9501 7.6961 2.562 8.4978
Cm,˚

1212
3.2681 4.0275 3.3935 5.4312 2.7089 8.1685 0.67487 9.0034 1.2522 10.1784

Cm,˚
1313

2.2299 3.1636 2.3708 4.6865 1.006 6.5492 1.1444 9.4359 0.46034 10.0924

Cm,˚
2323

3.5124 4.1468 4.283 5.8455 6.0737 8.1456 9.7432 10.0662 8.8804 10.1808
vol 0.41037 0.58963 0.32744 0.67256 0.22565 0.77435 0.15367 0.84633 0.10194 0.89806

m=0 m=1 m=0 m=1 m=0 m=1 m=0 m=1 m=0 m=1

Cm,˚
1111

6.3411 4.9912 9.6988 5.8266 10.39 6.7704 10.264 8.0092 10.773 9.1178
Cm,˚

2222
3.103 2.8423 4.3565 3.6762 3.2102 5.2916 2.4592 7.0516 2.6306 8.3817

Cm,˚
3333

3.1044 2.8416 4.4754 3.6902 3.2021 5.2907 2.4592 7.0516 2.6306 8.3817
Cm,˚

1212
3.9041 4.1364 4.8936 5.4934 6.4294 7.7477 8.0385 10.026 9.2991 11.802

Cm,˚
1313

3.9046 4.1362 4.8983 5.5215 6.4298 7.7457 8.0385 10.026 9.2991 11.802

Cm,˚
2323

1.2109 1.7901 1.2961 2.7966 1.0188 5.1458 0.5915 8.1734 0.36466 10.502
vol 0.41917 0.58083 0.3454 0.6546 0.25082 0.74918 0.16297 0.83703 0.10518 0.89482

Figure 7.4: Comparison of optimal microstructures for varying values of Young’s modulus (from left to right

E0 “ 20, 40, 80, 160, 320). We take into account load configurations with two compression loads and one shear

load (top) and one compression load and two shear loads (bottom). We depict the subdomainO0 on the fundamental

cell of the microstructure and a 3 ˆ 3 ˆ 3 composition. Those components of the tensor which are part of the

corresponding objective functional are again highlighted in gray.
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7.4.5 Realistic Material Parameters for Bone and Polymer

Now, for the actual application to optimize the polymer scaffold, we remark that real bone is substantially stiffer

than the bioresorbable polymer with a 15 times larger value of Young’s modulus, and realistic Poisson ratios are

νB “ 0.1 for bone and νP “ 0.3 for the polymer. In Figure 7.5, we show the optimal bone and polymer subdomains

for a load scenario with one compression load and two shear loads, which corresponds to possible movements of a

tibia. Furthermore, for each load, we plot the von Mises stresses on the boundary of the corresponding subdomains

in the fundamental cell, which are given by σvM
l

“
b

1
2

ř
1ďiă jď3pλi

l
´ λ

j

l
q2, where λ1

l
, λ2

l
, λ3

l
are the eigenvalues

of the linear stress tensor σl “ pχpvq ` τp1 ´ χpvqqqCεpU
l
q.

bone polymer
von Mises stresses bone

σvM
l

102

100

10´2

von Mises stresses polymer

σvM
l

102

100

10´2

Figure 7.5: Optimal bone and polymer microstructures for realistic material parameters and a load scenario with

one compression and two shear loads. Fore each load, we show the corresponding von Mises stresses color-coded

in an HSV model with a logarithmic scale.

7.4.6 The Two-Dimensional Case

We briefly comment on the 2D case (d “ 2). In Figure 7.6, we show the numerical result for a scenario with two

uniaxial compression loads. The optimal domain splitting is given by diamond-shaped regions. Due to the hard-soft

approximation, this is a mechanically admissible configuration. For a hard-void shape optimization model and two

uniaxial compression loads in the vertical and horizontal direction, no mechanically favorable splitting of the unit

square r0, 1s2 into two subdomains is possible. Indeed, a uniaxial load requires a truss with a nonvanishing interior

connecting the components of the boundary opposite in the loading direction. A truss configuration simultaneously

in the horizontal and vertical direction for both subdomains is thus topologically impossible.

σvM
l

102

100

10´2

Figure 7.6: For a 2D domain and a hard-soft approximation with τ “ 10´4, we depitct an optimal decomposition

for a load scenario with two loads corresponding to the compression modes (Cm,˚
1111

and Cm,˚
2222

). A block of 3 ˆ 3
cells is plotted with the two subdomains in white and black together with a color plot of the von Mises stresses.
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7.5 Extensions of the Model by Diffusion and Volume Constraints

So far, our proposed scaffold design in Figure 7.5 is optimized w.r.t. the mechanical stability of the scaffold

itself and the complementary set filled with bone. Nevertheless, the very low porosity would seriously impede

vascularization and therefore prevent the regeneration of the bone. Therefore we propose to extend our model

by additionally enforcing either a volume constraint or a diffusion constraint for the complementary set of the

scaffold.

Volume Constraint. More precisely, for a volume constraint, we minimize the objective functionalJ
η,τ
tot defined

in (7.8) over all χ P BV#,cpΩ, t0, 1uq with
ş
Ω
χ dx ě V0, meaning that V0 P p0, 1q is a lower bound for the volume

fraction of the corresponding domain O0.

Diffusion Constraint. For a diffusion constraint, we take into account linear diffusion with a scalar-valued dif-

fusion coefficient am P R. Then, similar to linear elasticity (7.4), it is well-known from the theory of periodic

homogenization [All02] that the homogenized diffusion tensor Am,˚ P Rdˆd of the resulting microstructure is

uniquely described by

Am,˚F ¨ F “ min
f mPW1,2

#
pΩq

ż

Ω

χmam pF ` ∇ f mq ¨ pF ` ∇ f mq dx

for all F P Rd. Then we impose that certain entries of A0,˚ are bounded from below, s.t. we can guarantee a transfer

in the corresponding direction.

Adaption of the Numerical Optimization Method. A description of both constraints in our phase-field model

is straightforward. Furthermore, the IPOPT package is capable to include these constraints if we can provideş
Ω

v dx, Am,˚, and the corresponding derivatives in the phase-field variable v.

For our numerical simulations, we take into account the load scenario and the material parameters as in Fig-

ure 7.5. In Figure 7.7, we study the effect for different volume constraints. For the diffusion constraints, we choose

am “ 1 for the corresponding coefficients. In Figure 7.8, we depict the results for a single diffusion constraint on

the entry A˚,0
11

of the homogenized diffusion tensor, and in Figure 7.9, we incorporate three diffusion constraints

on the entries A˚,0
ii

simultaneously. Indeed, both approaches lead to a larger porosity.

Figure 7.7: Optimal microstructures for increasing volume constraints
ş
Ω
χ dx ě V0 with V0 “ 0.2, 0.3, 0.4, 0.5.

We finally remark that our model does not contain a specific size for a single microcell, since the involved

theory of homogenization has to be understood as a limiting model with cell size converging to zero. Additional

thickness constraints on the domain were included via a level set approach in [AJM16]. Now, in our context, the

definition that O0 has a thickness larger than a constant c can be interpreted as O0 has pore size larger than c. Thus,

to fix a precise size for our microcell, we propose to compute on the reference object r0, 1sd the smallest value c
s.t. a certain thickness constraint is guaranteed. Then if a specific pore size on the microcell is required to allow

vascularization, we can scale the reference object accordingly.
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m=0 m=1 m=0 m=1 m=0 m=1 m=0 m=1

Cm,˚
1111

11.699 8.7464 28.639 7.9429 44.299 6.9517 59.643 5.9105
Cm,˚

2222
2.2194 7.379 1.0122 5.3709 1.652 4.5596 0.62499 3.46

Cm,˚
3333

2.2164 7.3773 1.0121 5.3041 1.9344 4.5951 0.62558 3.4585
Cm,˚

1212
9.2414 9.7276 7.4141 8.1408 5.9764 6.5545 5.1434 5.3435

Cm,˚
1313

9.2424 9.7271 7.4139 8.0834 6.2822 6.6355 5.1432 5.3429

Cm,˚
2323

0.407 7.681 3.9817 6.5508 0.51959 3.3189 2.3766 2.1144
vol 0.16782 0.83218 0.25479 0.74521 0.34192 0.65808 0.4379 0.5621

J{J0 1.344 1.528 1.773 2.159

Figure 7.8: Optimal microstructures for increasing diffusion constraints A˚,0
11

ě α with α “ 0.1, 0.2, 0.3, 0.4. In

the last row we compare the relative increase of the total cost functional J
η,τ
tot compared to the result in Figure 7.5

without any constraints.

m=0 m=1 m=0 m=1 m=0 m=1 m=0 m=1

Cm,˚
1111

7.6929 6.3258 27.732 6.4087 43.756 5.9029 59.169 3.7485
Cm,˚

2222
9.102 4.4464 13.841 4.0532 13.539 3.4021 12.942 1.9032

Cm,˚
3333

9.4654 4.9992 13.342 4.1119 13.129 3.6912 12.713 1.7949
Cm,˚

1212
12.392 7.2419 8.2786 6.457 14.148 5.3252 19.611 3.1959

Cm,˚
1313

12.143 7.3398 9.1809 6.3218 11.098 5.3953 15.817 2.904

Cm,˚
2323

7.0137 5.7203 2.4781 3.6596 3.9284 2.5161 5.9591 0.8262
vol 0.25404 0.74596 0.30301 0.69699 0.37452 0.62548 0.52089 0.47911

J{J0 1.843 1.910 2.109 3.377

Figure 7.9: Optimal microstructures for diffusion constraints A˚,0
11

ě α, A˚,0
22

ě 0.1, A˚,0
33

ě 0.1 with α “
0.1, 0.2, 0.3, 0.4. In the last row we compare the relative increase of the total cost functional J

η,τ
tot compared to the

result in Figure 7.5 without any constraints.
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7.6 Conclusion and Outlook

Motivated by a biomechanical application of designing optimal polymer scaffolds for bone regeneration, we have

proposed an elastic shape optimization problem by taking into account the homogenized elasticity tensors of the

domain with the polymer implant and the complementary set, where new bone tissue growths first. Compared to

[KHM`11], where minimal surfaces were proposed as possible scaffolds, we have obtained significantly different

structures, in particular, for a realistic load scenario with one compression and two shear loads. Furthermore,

we have investigated additional volume and diffusion constraints, where especially the latter one appears to be

biomechanically relevant.

We briefly discuss a possible extension of our model. So far, we have assumed that the microstructure of the

polymer scaffold is periodic and thus, we have optimized only a single microcell. More generally, we could con-

sider realistic patient-specific implant geometries on the macroscale, where the polymer implant has to be inserted,

and then we could ask for the optimal scaffold by allowing each microcell to vary. Compared to the numeri-

cal implementation of a two-scale model as it was considered in [CGRS14, GR16, CGLR17] and where on each

quadrature point of the macroscopic grid a microcell was adapted, in the application for bone tissue engineering,

the computed object must be printable by a 3D printer. First steps into that direction were established in [Sch19].

There, the microcells were considered on a (cuboid) element of the macroscopic grid, and the printability condition

was incorporated via Dirichlet boundary conditions on the microcells. Then the optimization scheme consisted of

an alternating update of the (homogenized) elasticity tensors on the macroscale and the optimal design on certain

blocks of microcells for the displacements on the macroscale. However, the concept of the homogenized elasticity

tensor was not precisely reflected in the discretization, since the microstructures were considered on a fixed scale

instead of quadrature points. Alternatively, the displacements on the macroscale could be computed by taking into

account the full grid containing all degrees of freedom. For practical applications, this would imply a huge grid

size, s.t. solving the corresponding linear systems requires, e.g., multigrid methods.

Finally, the regeneration of bone and degradation of the polymer implant is highly complex in reality. Here,

we have supposed that three phases can describe this dynamic process. More precisely, we have assumed that first,

the implant is inserted. Subsequently, new bone tissue grows into the void part while the implant is still present,

and afterwards, the polymer starts to degrade. Certainly, this is a substantial simplification. A first time-dependent

model was proposed for a one-dimensional space domain in [PVB`18], where the minimal value of the effective

mechanical stiffness over the regeneration time was maximized.



Chapter 8

Shape Design of Thin Elastic Objects

In Chapter 6, we have described deformations of elastic bodies as solutions to suitable partial differential equa-

tions. Here, we focus on a special class of so-called thin elastic objects, which can be characterized by a small

thickness and a regular and orientable two-dimensional midsurface. Considering the limit of vanishing thickness,

Γ-convergence results have been established to express the 3D deformation of the thin object only by a 2D defor-

mation of its midsurface. A membrane theory describes tangential distortion on the surface, and a bending theory

takes into account isometric deformations. Computing such deformations numerically has been intensively studied

in the literature, where numerous discretization approaches have been applied, in particular, for models combining

membrane and bending energy functionals. Pure bending isometries of plates have been numerically approximated

in [Bar13] by making use of the discrete Kirchhoff triangle (DKT) element. Furthermore, in Chapter 6, we have

discussed certain shape optimization problems to optimize the material distribution on the reference domain of an

elastic body to guarantee maximal mechanical stability w.r.t. an external force.

In this chapter, we study shape optimization problems to optimize the material distribution on a thin elastic

object, where we, for simplicity, restrict to parametric surfaces. We consider a load scenario only consisting of

a single force acting on the thin elastic object. To describe deformations, we take into account different types of

elastic energies, in particular, we deal with nonlinear elasticity. Then a numerical discretization scheme to compute

equilibrium deformations is based on the discrete Kirchhoff triangle element. A special focus is on pure bending

isometries, which we can efficiently approximate due to the degrees of freedom for derivatives at nodal positions

similar to the approach in [Bar13]. For a total cost functional depending on the material distribution, we consider

the potential energy and enforce a constraint on the amount of hard material. Moreover, we apply a phase-field

model and use the Modica–Mortola functional to penalize the width of the diffuse interface between the hard and

soft subdomains.

This chapter is organized as follows. First, in Section 8.1, we define thin elastic shells for parametric surfaces

and derive certain state equations. Moreover, we recall the discrete Kirchhoff triangle element. In Section 8.2,

we study shape optimization problems for both linear and nonlinear elasticity, where the stored elastic energy

consists of a membrane and a bending energy part. Furthermore, we investigate shape optimization problems for

pure bending isometries. In Section 8.3, we consider a one-dimensional model of elastic beams in 2D, s.t. an

isometric deformation can be expressed in terms of the phase, which simplifies the corresponding state equation to

an unconstrained ordinary differential equation. In [HRS19], we used this reformulation to compute the optimal

material distribution in a special setting explicitly. Here, we summarize this theoretical classification result, which

is confirmed and extended to more general scenarios by our numerical simulations. Finally, in Section 8.4, we

consider isometric deformations of two-dimensional objects and obtain different optimal designs even though we

apply a one-dimensional boundary condition.

Remark 8.0.1 (Collaborations and Publications). The results presented in Section 8.3 are joint work with Peter

Hornung and Martin Rumpf and have been published in [HRS19].
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8.1 Thin Elastic Shells

Here, we introduce thin elastic shells and refer to [Cia08, CM08] for a comprehensive overview. Roughly speaking,

a thin elastic shell is an elastic body inR3, which can be described by a 2D surface (the midsurface) and a thickness

δ ą 0. Thus, we first recall some basics from differential geometry, where we restrict to parametric surfaces.

Considering the limit δ Ñ 0, we are interested to understand the 3D deformation Φ of the elastic object just

by a 2D deformation of its midsurface. Then we discuss several discretization methods to compute equilibrium

deformations of the corresponding state equations. Finally, we recall the discrete Kirchhoff triangle element, which

we take into account for the shape optimization problems in this chapter.

8.1.1 Differential Geometry for Parametric Surfaces

In the following, we introduce basic differential geometric objects and especially focus on expressing these objects

on the chart domain. For a general introduction to Riemannian geometry, we refer the reader to [dC92]. Here, we

restrict to two-dimensional embedded surfaces in R3 and refer the reader to [Bär01].

We consider a manifoldM “ ψpωq that is given as the image of a single chart ψ : ω Ñ R3, where ω Ă R2

is an open and bounded domain with Lipschitz boundary. For the moment, we assume that ψ P C2pω,R3q, but

later we discuss the regularity assumptions on ψ more precisely. We denote by ξ P ω coordinates in the chart

domain and by p “ ψpξq P M coordinates on the manifold. Furthermore, ψ is assumed to be an injective

immersion, i.e., for all ξ P ω, the two vectors B1ψpξq and B2ψpξq are linearly independent and span the tangent

space TpM “ spanpB1ψpξq, B2ψpξqq at p “ ψpξq. Thus, the unit normal at p is given by

nppq “ npψpξqq “
B1ψpξq ˆ B2ψpξq

|B1ψpξq ˆ B2ψpξq| .

First Fundamental Form. In general, we say thatM is a Riemannian manifold, if for each p P M there is a

scalar product gppq : TpMˆ TpMÑ R, which is smooth in p PM. Since in our case,M is embedded in R3, we

can define the first fundamental form by the Euclidean scalar product gppqpV,Wq “ V ¨ W for V,W P TpM Ă R3.

To represent the first fundamental form on the chart domain, we first note that vector fields V,W : M Ñ TM “
tpp,Zq : p P M ,Z P TpMu can be expressed in the basis pB1ψpξq, B2ψpξqq as Vppq “ Dψpξqvpξq, Wppq “
Dψpξqwpξq. Then we define gpξqpv,wq “ gppqpDψpξqv,Dψpξqwq for v,w P R2 and obtain

gpξq “ pDψpξqqTDψpξq “ pgpξqikqi,k“1,2 “

¨
˝ ÿ

j“1,2

Biψ jpξqBkψ jpξq

˛
‚

i,k“1,2

.

Furthermore, gpξq P R2ˆ2 is invertible and we denote its inverse by gpξq´1 “
`

gpξqik
˘

i,k“1,2
. Note that the first

fundamental form admits the integral transformation rule
ż

M

f ppq dH
2ppq “

ż

ω

b
det gpξq f ˝ ψpξq dξ

for f P L1pMq and thus, especially allows measuring the area of the manifold. Next, we introduce certain differ-

ential operators onM. First, for a smooth function f : M Ñ Rd, the differential d f ppq : TpM Ñ Rd is given by

d f ppqpVq “ d
dt p f ˝γq|t“0, where γ : p´ε, εq ÑM is a smooth curve satisfying γp0q “ p and γ1p0q “ V and it can

be verified that this definition does not depend on γ. Analogously, the differential of a smooth function f : MÑ N
onto a manifoldN is defined, which is a mapping between the tangent spaces d f ppq : TpMÑ T f ppqN . For a scalar

valued function f : MÑ R, the gradient∇M f ppq P TpM is defined by the relation gppqp∇M f ppq,Vq “ d f ppqpVq
for all V P TpM, which leads to

∇M f ppq “ Dψpξqgpξq´1∇p f ˝ ψqpξq .
Defining the divergence divM as the adjoint operator acting on vector fields Vppq “ Dψpξqvpξq, we obtain

divMpDψpξqvpξqq “ 1a
det gpξq

div
´b

det gpξqvpξq
¯
.
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Then, the Laplace–Beltrami operator is defined by ∆M f ppq “ divM∇M f ppq. Moreover, we introduce the

Christoffel symbols of first and second kind by

Γi jk :“ B2
i jψ ¨ Bkψ “ 1

2

`
B jgki ` Bigkj ´ Bkgi j

˘
, Γm

ij :“
ÿ

k“1,2

gmk
Γi jk .

Second Fundamental Form. Note that the normal can be considered as a vector valued function n : MÑ S2 Ă
R3. Since TnppqS

2 “ pspanpnppqqqK “ TpM, the differential Sppq “ dnppq at a point p PM is thus a linear map

Sppq : TpMÑ TnppqS
2 “ TpM, which is called the shape operator or Weingarten map. It can be verified that Sppq

is self-adjoint w.r.t. the first fundamental form. Then the associated bilinear form hppq : TpMˆ TpMÑ R with

hppqpV,Wq :“ gppqpSppqpVq,Wq “ gppqpV,SppqpWqq
is called the second fundamental form and can be represented on the chart domain by a matrix hpξq P R2ˆ2 with

entries hi jpξq :“ hppqpBiψpξq, B jψpξqq, which leads to

hpξq “ Dpn ˝ ψqpξq ¨ Dψpξq “ ´D2ψpξq ¨ npψpξqq .

Also the shape operator has a matrix representation Spξq “ gpξq´1hpξq P R2ˆ2 on the chart domain, s.t.

SppqpB jψpξqq “
ř

i“1,2 Si jpξqBiψpξq. Then we call Kpξq “ detpSpξqq the Gauss curvature and Hpξq “ trpSpξqq
the mean curvature.

Isometric Chart Maps. Next, we consider a special class of chart maps given by isometries. In general, an

isometry ψ : ω Ñ R3 can be defined as a length-preserving map. Above, we have for simplicity assumed that

ψ : ω ÑM is a chart of a Riemannian manifold with C2 regularity. However, there might be a huge difference to

C1 isometries, which we want to point out.

Definition 8.1.1 (Isometry). A map ψ P C1pω,R3q is called isometry if gpξq “ 12ˆ2 for all ξ P ω.

Now, the famous Nash–Kuiper theorem states that any short immersion can be uniformly approximated by C1

isometries.

Theorem 8.1.2 (Nash–Kuiper). Let ω Ă R2 be open and bounded, and let u P C8pω,R3q with DuTDu ď 12ˆ2

and rankpDuq “ 2 everywhere. Then for every ε ą 0 there exists ψ P C1pω,R3q with DψTDψ “ 12ˆ2 and

}u ´ ψ}L8 ă ε.

Proof. See [Nas54], [Kui55]. �

In contrast, for C2 isometries we have the following properties.

Proposition 8.1.3 (Properties of C2 Isometries). Let ψ P C2pω,R3q be an isometry.

1. For the Christoffel symbols, we have Γi jk “ Bi jψ ¨ Bkψ “ 0 for all i, j, k “ 1, 2.

2. For the Gauss curvature, we have K “ 0.

3. We have equalities |D2ψ| “ |∆ψ| “ |h| “ |H|.

Proof. See [Bar15, Proposition 8.2]. �

Furthermore, the Hartman–Nirenberg theorem states that C2 isometries behave rigidly in the following sense.

Theorem 8.1.4 (Hartman–Nirenberg). Let ω Ă R2 be open and bounded. Furthermore, let ψ P C2pω,R3q s.t.

DψpξqTDψpξq “ 12ˆ2 for all ξ P ω. Then ψ is developable, i.e., for any ξ P ω, one of the following holds:

1. There exists U Ă ω open with ξ P U and ψ is affine on U.

2. There exist a, b P Bω with ξ P ra, bs and ψ is affine on the line segment ra, bs.
Proof. See [HN59]. �

A generalization was established by Hornung [Hor11], who proved that isometries ψ P W2,2
iso

pω,R3q :“ tu P
W2,2pω,R3q : DuTDu “ 12ˆ2 a.e.u are developable and can be approximated in the strong W2,2-topology by

functions in W2,2
iso

pω,R3q X C8pω,R3q.
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Deformations between Parametric Surfaces. Now, we consider two manifolds MA “ ψApωq and MB “
ψBpωq, which are parametrized over the same chart domain ω Ă R2. Then, a deformation between the two

manifolds is given by φ “ ψB ˝ ψ´1
A

: MA ÑMB. In Figure 8.1, we show a sketch of this configuration.

MA pA
MB

pB

ω

ξ
ψA ψB

φ = ψ−1
A
◦ ψB

Figure 8.1: Sketch of a deformation φ between parametric surfacesMA andMB, which are parametrized over the

same chart domain ω.

For the moment, we regard both manifolds MA and MB and the deformation φ as fixed. We define the

Cauchy–Green strain tensor Gpξq P R2ˆ2 at a point ξ P ω by the relation gBpξqpv,wq “ gApξqpGpξqv,wq for all

v,w P R2, s.t. we obtain Gpξq “ gApξq´1gBpξq. We recall that the matrix representation of the shape operator of

MA on the chart domain is given by SApξq “ gApξq´1hApξq. To compare SApξq with the corresponding shape

operator onMB, for pA PMA, we take into account the pull-back S˚
B

ppAq : TpA
MA Ñ TpA

MA given by

gAppAq
`
S˚

B ppAqpVq,W
˘

“ hBpφppAqq
`
dφppAqpVq, dφppAqpWq

˘
,

and we define the relative shape operator SrelppAq : TpA
MA Ñ TpA

MA by SrelppAq :“ SAppAq ´ S˚
B

ppAq. Then, a

matrix representation Srelpξq P R2ˆ2 of the relative shape operator on the chart domain is given by Srelpξqpv,wq “
gApξq´1 phApξqpv,wq ´ hBpξqpv,wqq. Finally, in analogy to Definition 8.1.1, we say that a deformation φ “
ψB ˝ ψ´1

A
: MA ÑMB is an isometry if for all V,W P TpA

MA

gBpφppAqq
`
dφppAqpVq, dφppAqpWq

˘
“ gAppAqpV,Wq , (8.1)

which can be transferred to the chart domain to the equivalent relation gApξq “ gBpξq. As above, an isometry

implies length-preservation. In the following, we considerMA as a reference domain always regarded to be fixed,

whereas the deformed domainMB is obtained as a solution of a specific equilibrium problem under certain load

conditions. Therefore, we indicate the operators G and Srel in dependence of the deformation φ or the chart map

ψB, i.e., we write Gφ, Srel
φ

or GψB
, Srel

ψB
.

Thin Elastic Shells. Finally, we give the definition of a thin elastic shell.

Definition 8.1.5 (Thin Elastic Shell). A thin elastic shell is an elastic body Sδ Ă R3 of the following type

Sδ “
"

x P R3 : x “ p ` τnppq with p PM , τ P
ˆ

´δ
2
,
δ

2

˙*
, (8.2)

where M “ ψpωq Ă R3 is a regular and orientable two-dimensional surface, which can be parametrized by a

single chart ψ : ω Ñ R3 for an open and bounded domain ω Ă R2 with Lipschitz boundary. Furthermore, we

assume that there is no self-intersection, i.e., for p, p̃ PM and τ, τ̃ P
`
´ δ

2 ,
δ
2

˘
, the relation p ` τnppq “ p̃ ` τ̃npp̃q

implies that pp, τq “ pp̃, τ̃q. Then we callM the midsurface and δ ą 0 the thickness of the shell.

Remark 8.1.6. More generally, we could considerM Ă R3 as an arbitrary regular and orientable two-dimensional

surface, but here we restrict to parametric surfaces. In this simplified case, the orientability constraint follows

directly.
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8.1.2 Two-Dimensional Models for Elastic Deformations of Thin Shells

In the following, we fix a thin elastic shell Sδ
A

“ ψApωq with midsurfaceMA as a reference domain. For a force

FA : Sδ
A

Ñ R3 acting on Sδ
A

, an equilibrium deformation Φ : Sδ
A

Ñ R3 is described by minimizing the free energy

EfreepΦq “
ż

Sδ
A

W3DpDΦq ´ FA ¨Φ dxA ,

where W3D : Sδ
A

ˆ R3ˆ3
` Ñ R is assumed to be a hyperelastic energy density function as we have introduced in

Section 6.1.1. Furthermore, we assume that Φ is clamped at a fixed part

Γ
δ
A “

"
xA P R3 : xA “ pA ` τAnAppAq with pA P ΓA , τA P

ˆ
´δ

2
,
δ

2

˙*
Ă SδA

for ΓA Ă BMA. Note that even if the deformed midsurfaceMB “ ΦpMAq is a Riemannian manifold, it is unclear

that the deformed object ΦpSδ
A

q is itself a thin elastic shell of type (8.2), since in general ΦppA ` τAnAppAqq ,
ΦppAq ` τBnBpΦppAqq. However, considering the limit δ Ñ 0, we are interested in understanding the 3D defor-

mation Φ just by a 2D deformation φ of the the midsurface MA, or alternatively by a chart map ψB “ φ ˝ ψA

parameterizing the deformed midsurfaceMB “ ψBpωq. In particular, we ask for an appropriate energy functional,

which characterizes the 2D deformations as corresponding (local) minimizer. In the following, we summarize two

approaches to obtain such a limit energy functional. First, the models of Koiter’s type make additional assumptions

on the 3D deformation, which directly allows a 2D description. Furthermore, a suitable framework to study the

limit of minimizing deformations of the free energy for δ Ñ 0, is established by Γ-convergence, which we have

introduced in Section 2.3.

Koiter Type Models. We start with the simple and commonly used Mindlin–Reissner model (see, e.g.,[Bra07])

in plate theory, i.e., we consider the flat caseMA “ ω Ă R2 and may assume that ψA “ id. For a point xA P Sδ
A

,

we use the notation xA “ pξ, zq with ξ P ω and z P
`
´ δ

2 ,
δ
2

˘
. The force FApξq “ p0, 0, fnpξqqT is supposed to

act only into the orthogonal direction. Now, in the Mindlin–Reissner model, it is assumed that the displacement

U : Sδ
A

Ñ R3 has the form

UpxAq “ Upξ, zq “
ˆ

´zθpξq
wpξq

˙
,

where θ : ω Ñ R2 represents the normal stretch and w : ω Ñ R the transversal bending displacement. Starting

from linear elasticity with the free energy defined in (6.10) and assuming that the normal stress σ33 “ 0 vanishes,

we can derive that

Elin
freepUq “ Elin,MR

free
pθ,wq

“ δ
E

2p1 ` νq

ż

ω
|∇w ´ θ|2 dξ` δ3 E

24p1 ` νq

ż

ω
εpθq : εpθq ` ν

1 ´ 2ν
divpθq2 dξ ´ δ

ż

ω
fnw dξ .

In addition, in the Kirchoff–Love plate model, it is assumed that deformed normals are orthogonal to the deformed

midsurface, which implies ∇w “ θ. Thus, the free energy can be expressed solely in terms of w as

Elin
freepUq “ Elin,KL

free
pwq “ δ3 E

24p1 ` νq

ż

ω
}D2w}2

F ` ν

1 ´ 2ν
p∆wq2 dξ ´ δ

ż

ω
fnw dξ .

Now, for the general case of a generic shell, a similar model was investigated by Koiter [Koi66]. Considering

the undeformed and deformed midsurfacesMA andMB parametrized over the same chart domain ω Ă R2, the

corresponding thin elastic objects Sδ
A

and Sδ
B

are obtained as images of extended chart maps from a thickened

chart domain ωˆ
`
´ δ

2 ,
δ
2

˘
Ă R3 given by

ψ3D
A pξ, zq “ ψApξq ` znApξq , ψ3D

B pξ, zq “ ψBpξq ` zvpξq .
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Now, the Kirchhoff–Love assumption transfers to v “ nB. Again starting from linear elasticity (6.10) and denoting

by u “ ψB ´ ψA : ω Ñ R3 the displacement of the midsurface w.r.t. the chart domain, the stored elastic energy in

terms of u can be expressed by

Elin
storedpUq “ Elin,Koi

stored
puq “δ

2

ż

ω

b
det gA HpgB ´ gAqlin : pgB ´ gAqlin dξ

` δ3

24

ż

ω

b
det gA HphB ´ hAqlin : phB ´ hAqlin dξ ,

(8.3)

where H P R3ˆ3ˆ3ˆ3 is a fourth order tensor with entries

H
i jkl “

4λµ

λ` 2µ
g

i j

A
gkl

A ` 2µpgik
Ag

jl

A
` gil

Ag
jk

A
q ,

and the linearizations of the first and second fundamental forms in the displacement u are explicitly given by

pgB ´ gAqlin “pDψAqTDu ` pDuqTDψA ,

phB ´ hAqlin
i j “ ´ Bi ju ¨ nA ` 1a

det gA

`
B1u ¨ pBi jψA ˆ B2ψAq ` B2u ¨ pB1ψA ˆ Bi jψAq

˘

`
Bi jψA ¨ nAa

det gA

pB1u ¨ pB2ψA ˆ nAq ` B2u ¨ pnA ˆ B1ψAqq .

As proposed in [Koi66], the energy functional (8.3) motivates the definition of a nonlinear Koiter shell model in

terms of the chart map ψB parameterizing the deformed domain with stored elastic energy given by

Enl,Koi

stored
pψBq “δ

2

ż

ω

b
det gA HpgB ´ gAq : pgB ´ gAq dξ

` δ3

24

ż

ω

b
det gA HphB ´ hAq : phB ´ hAq dξ .

We notice that the part involving the first fundamental forms, which is called membrane energy, is scaled with a

factor δ, whereas the part involving the second fundamental forms, which is referred as bending energy, is scaled

with a factor δ3.

More generally, we consider mixed models with a weighted sum of a membrane energy depending on the

Cauchy–Green strain tensor GψB
and a bending energy depending on the relative shape operator Srel

ψB
. Such a model

was, e.g., applied in [IBRS13]. Thus, for suitable density functions Wmem and Wben, we define a stored elastic

energy by

Enl,mix

stored
pψBq “ δ

2

ż

ω

b
det gA WmempGψB

q dξ` δ3

24

ż

ω

b
det gA WbenpSrel

ψB
q dξ .

Indeed, we immediately see that the limiting energy functionals rigorously observed by Γ-convergence are of a

similar structure and permit the same scaling in the thickness.

Γ-Convergence Results. In the following, we summarize certain Γ-convergence results leading to membrane

and bending energy functionals acting on deformations of the 2D midsurface. First, since we are now considering

the limit δ Ñ 0 we indicate for a fixed δ ą 0 the stored elastic energy by Eδ
stored

, which is defined on a space of

deformations φ : Sδ
A

Ñ R3. We note that the underlying domainSδ
A

and consequently an associated function space

for φ changes by varying δ. Thus, to generate a suitable setup for Γ-convergence, which in particular requires a

sequence of functionals defined on a common function space, a transformation to an object S1
A

with unit thickness

has to be applied. Then, in case of Γ-convergence the limiting functional is a priori also defined on deformations

of S1
A

, but in the subsequently presented results it turns out that these limits can be identified as energies on

deformations of the midsurfaceMA.
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For a membrane theory, in [LDR95, LDR96], the above mentioned rescaling for the sequence
`

1
δE

δ
stored

˘
δą0

of

energy functionals was taken into account. For a homogeneous material and under p-growth assumption on the

hyperelastic density function W3D with p P p1,8q, a Γ-convergence result was proven w.r.t. to the weak W1,p

topology of deformations from the thickened chart domain, where the limit functional is given by

EmempψBq “
ż

ω

b
det gA W

qc

2D
pξ,DψBpξqq dξ ,

where the corresponding 2D stored energy function W2D is given by

W2Dpξ,Fq :“ min
zPR3

W3D

`
pF|zq pB1ψApξq|B2ψApξq|nApξqq´1

˘

and W
qc

2D
is the quasi convex envelope of W2D. Note that especially the density function of a Saint-Venant–

Kirchhoff material is not polyconvex, but in this case W
qc

2D
can be computed explicitly.

For a bending theory, we consider a sequence
`

1
δ3E

δ
stored

˘
δą0

of appropriately scaled energy functionals. First,

because of the scaling of order three, note that a finite value of the limiting functional can only be expected on the

set of minimizers of the membrane energy Emem. Thus, according to the definition of a smooth isometry in (8.1),

for m PN`. we define the space of Wm,2-isometries by

Wm,2
iso

pMA,R
3q :“

 
φ P Wm,2pMA,R

3q : gAppAq “ gBpφppAqq for a.e. pA PMA

(
.

In [FJM02], a Γ-convergence result was derived in the plate case. There, a central inside is the rigidity result

min
QPSOp3q

ż

ω
|Dψ´ Q|2 dξ ď c

ż

ω
dist2pDψ,SOp3qq dξ (8.4)

for ψ P W1,2pω,R3q, which can be regarded as nonlinear version of Korn’s inequality (2.2). Then, provided that

W3DpMq ě c dist2pM,SOp3qq for some constant c ą 0, the estimate (8.4) can be applied to obtain a Γ-limit w.r.t.

to the strong W1,2-topology, which is given by

E
plate

ben
pψq “

$
’&
’%

1

24

ż

ω
min
zPR3

Q2

ˆ
hpξq

z
0

˙
dξ if ψ P W2,2

iso
pω,R3q ,

8 otherwise ,

(8.5)

where Q2 is the quadratic form Q2pMq :“ D2W3Dp13ˆ3qpMqpMq. For a Saint-Venant–Kirchhoff material,

the inner minimization problem can be computed explicitly, s.t. the integrand for W2,2-isometries is given by

2µ trph2
B
q ` λµ

µ` λ
2

trphBq2. In [FJMM03], the result was extended to general shells, where the limit energy func-

tional takes into account the relative shape operator and is given by

Ebenpφq “

$
&
%

1

24

ż

MA

min
zPR3

Q2pSrel
φ ppAq ` z b nAppAqq dH

2ppAq if φ P W2,2
iso

pMA,R
3q ,

8 otherwise .

(8.6)

Finally, we mention that the here presented Γ-convergence results only hold under certain additional regularity

assumptions on W3D, which we do not specify in detail and instead refer the reader to the literature mentioned

above.

8.1.3 Overview of Computational Methods for Thin Elastic Shells

In the literature, there are many possibilities to discretize thin elastic shells and the corresponding deformation

energies. Here, we give a brief overview of different approaches, where we restrict to two-dimensional models as

we have described above. The main numerical difficulty is that due to curvature terms appearing in the bending

energy at least an approximation of second derivatives is required.
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W2,2-Conforming Finite Elements. Classical finite elements, e.g., globally continuous functions on a triangular

mesh that are polynomials restricted to any element, unfortunately, do not belong to the space W2,2. Thus, for a

conforming finite-dimensional approximation of deformations more elaborated discretizations have to be investi-

gated. A globally C1-regular finite element is for example given by the Argyris finite element (see, e.g., [Bra07]),

which requires degrees of freedom for first and second derivatives at nodes and for normal derivatives at edges. Be-

sides a highly computational effort, an extension of the Argyris element to curved domains is not straightforward.

Instead, for triangular meshes, a suitable alternative is given by taking into account a larger support of nodalwise

basis functions. In [COS00], so-called loop subdivision elements were used to compute elastic deformations for

a linear Koiter type model. On quadrilateral meshes arbitrary regularity can be obtained by nonuniform rational

B-splines (NURBS) (see, e.g., [HCB05]).

Nonconforming Finite Elements. An alternative is given by nonconforming finite element functions, which do

not necessarily belong to the space W2,2, but solutions to the discretized elasticity problem admit similar error

estimates, s.t. convergence in the limit is guaranteed. Later, we make use of the discrete Kirchhoff triangle (DKT)

element [BBH80], which was originally proposed to solve the linear plate bending problem. We discuss the DKT

element in detail in Section 8.1.4.

Discrete Differential Geometry. The spirit of discrete differential geometry (DDG) is actually to understand

the discrete object, e.g., in form of a triangular mesh, itself as a discrete surface, by making sense of differential

geometric quantities like the Riemannian metric or the mean curvature. These objects are then defined only on

elements, edges, or at nodes and thus cannot be considered as functions on the whole domain. By comparing

dihedral angles of neighborhood triangles, a discrete bending energy was introduced in [GHDS03]. Combined

with a nonlinear membrane energy, this was extensively applied in works by Heeren and coworkers [HRS`14,

Hee16]. Computationally, methods from discrete differential geometry have turned out to be extremely efficient.

However, convergence, e.g., of the mean curvature for a sequence of triangular meshes, can only be established in

an integrated sense [War08].

The Engineering Point of View. In engineering applications, it is often convenient to combine a pure mem-

brane with a pure bending energy model. Then the corresponding stiffness matrices are just assembled elemen-

twise, where only the associated degrees of freedom are taken into account for the membrane and bending part,

respectively. For example, the DKT-CST element [BH81] combines the DKT element with the constant strain

triangle element. Alternatively, quadratic in-plane displacements for the membrane part lead to the DKTP el-

ement [DMM86]. A coupling of the two parts of the deformation energy is guaranteed by certain commonly

defined degrees of freedom, but other values are rather meaningless for either the membrane or the bending en-

ergy. Similar as in DDG, there is no corresponding overall function defined on the discrete mesh, but related to a

mixed method, the membrane and bending stress can be regarded separately as functions.

Bending Isometries. Minimizing the pure bending energy under an isometry constraint numerically has been

rather less studied. According to the discretization, the isometry constraint has to be formulated appropriately.

Using DDG, this corresponds to the condition that length and angles are preserved for all triangles. In [WBH`07],

the Willmore energy was approximated by a quadratic curvature energy, which is related to a nonconforming

Crouzeix–Raviart finite element discretization. Instead of describing the triangular mesh by nodal positions, in

[WDAH10], edge length and dihedral angles were used as degrees of freedom. Then the isometries can be approx-

imated by only allowing the dihedral angles to vary. This approach was studied in [Sas19]. Concerning the above

discussion about the regularity of isometries related to the Nash–Kuiper theorem 8.1.2 and the Hartman–Nirenberg

theorem 8.1.4, the deformations in DDG are even not of class C1. However, a notion of discrete developable

surfaces on quadrilateral meshes was established in [RHSH18]. In [Bar13], a numerical approximation scheme

for large bending isometries was provided by making use of the DKT element. There, the isometry constraint was

enforced only at nodal positions, which can easily be formulated due to the derivative degrees of freedom. Then the

regularity error estimates for the DKT element still allow to prove convergence of minimizers. For a computational

scheme, a discrete W2,2 gradient flow using a linearization of the isometry constraint was proposed.
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8.1.4 Discrete Kirchhoff Triangle Element

Here, we recall the DKT element on plates and refer the reader to [BBH80, Bar15, Bra07] for more detailed

introductions. For simplicity, we assume that ω Ă R2 is polygonal, s.t. we can directly consider a triangulation Th

of ω. Otherwise, ω could be approximated by a polygonal domain. We denote byNh the set of nodes in Th. For a

triangle T in Th, let PkpTq be the space of polynomials of order k P N. In analogy, we consider for an edge E the

space PkpEq. Furthermore, we define for a triangle T the space P3,redpTq of polynomials of order three reduced by

one degree of freedom by

P3,redpTq :“
#

w P P3pTq : wpzTq “ 1

3

ÿ

zPNhXT

wpzq ` ∇wpzqpzT ´ zq
+
,

where zT “ 1
3

ř
zPNhXT z denotes the center of mass. We denote by Γω Ă Bω the Dirichlet boundary. Then, we

define the following finite element spaces.

Definition 8.1.7 (DKT Finite Element Spaces).

1. Whpωq :“
!

wh P W1,2
Γω

pωq : wh|T P P3,redpTq @T P Th and ∇whpzq is continuous for all z P Nh

)
,

2. Θhpωq :“
"
θh P

´
W1,2
Γω

pωq
¯2

: θh|T P pP2pTqq2 @T P Th and θh ¨ n P P1pEq for every edge E in Th

*
.

Furthermore, we introduce a discrete gradient operator.

Definition 8.1.8 (DKT Gradient Operator). We define a discrete gradient operator

∇h : Whpωq Ñ Θhpωq , wh ÞÑ ∇hwh “ θhpwhq ,

where θhpwhq P Θhpωq is the uniquely defined function that satisfies for each triangle T P Th with nodes z0, z1, z2

1. θhpwhqpziq “ ∇whpziq for 0 ď i ď 2 and

2. θhpwhqpzi jq ¨ pz j ´ ziq “ ∇whpzi jq ¨ pz j ´ ziq for 0 ď i, j ď 2 with zi j “ z ji “ 1
2 pzi ` z jq.

Now, we call a function wh P Whpωq a DKT function. Then the approximative second derivative of wh is

given by ∇θhpwhq. Note that wh can be determined by the values whpzq and the derivatives ∇whpzq at nodes z, and

thus, has three degrees of freedom per node. In Figure 8.2, we depict the gradient operator on a single triangular

element. Finally, we define function spaces of displacements satisfying clamped boundary conditions on Γω by

z0 z1

z2

z0 z1

z2

z01

z02 z12

∇h

Figure 8.2: Sketch of the DKT gradient operator ∇h. For a single triangle, it maps a cubic function wh P P3,red

defined by the values whpziq and derivatives ∇whpziq at the three nodes z0, z1, z2 to a quadratic function.

W2,2
Γω

pωq :“
 

w P W2,2pωq : w|Γω “ 0 and ∇w|Γω “ 0
(
,

Wh,Γωpωq :“ twh PWh : whpzq “ 0 and ∇whpzq “ 0 @z P Nh X Γωu .

Various error estimates for the DKT element have been established. For instance, the linear plate bending

problem can be approximated under W3,2-regularity assumption on the solution displacement s.t. the error of the

approximative second derivative in the L2-norm is of order one (see [Bar15, Theorem 8.2]).
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8.2 Shape Design for Mixed Membrane-Bending Models

In the following, we study the optimal material distribution on thin elastic shells via a phase-field approxima-

tion. Moreover, deformations are described by models including a membrane and a bending energy part, and we

investigate both linear and nonlinear elasticity.

8.2.1 Shape Optimization Problem for a Phase-Field Approximation

To describe a material distribution on the chart domain ω and thus on the midsurfaceMA of the reference object,

we consider a characteristic function χ P BVpω, t0, 1uq. More precisely, on the subdomains

O1 “ tξ P ω : χpξq “ 1u , O0 “ tξ P ω : χpξq “ 0u ,

we assume that the elastic material is described by parameters Em for Young’s modulus and νm for the Poisson

ratio for m P t0, 1u. For simplicity, we restrict to the case ν1 “ ν0. Now, as in Section 6.3, we could formulate a

shape optimization problem in terms of the characteristic function. As we have described in Section 6.3.1, we use a

phase-field variable v P W1,2pω, r´1, 1sq to approximate the characteristic function χ. Here, we directly formulate

a shape optimization problem in terms of the phase-field variable, since our numerical computation scheme is

based on this approximation approach. Then, we define an interpolation Epvq of Young’s modulus depending on

the phase-field variable by Epvq “ χpvqE1 ` p1 ´ χpvqqE0, where we set χpvq “ 1
16 p1 ` vq4. We recall that the

corresponding Lamé–Navier parameters µm, λm are determined by (6.6). In analogy, we define interpolations µpvq
and λpvq depending on the phase-field variable.

State Equations. Here, we define stored elastic energy functionals both for linear an nonlinear elasticity. We re-

call that the chart map ψB “ ψA `u parameterizing the deformed midsurface can be recovered by the displacement

u. Thus, we formulate all energies in terms of the displacement.

First, for a nonlinear membrane energy, we take into account the hyperelastic energy density function (6.8) and

define

Wmempv,Sq “
µpvq

2
trpSq ` λpvq

4
detpSq ´

ˆ
µpvq

2
` λpvq

4

˙
logpdetpSqq ´ µpvq ´ λpvq

4

for S P R2ˆ2
sym,`. In [HRWW12], this density function was applied for thin elastic objects. Then, the nonlinear

membrane energy is given by

Enl
mempv,uq “

ż

ω

b
det gA Wmem

`
v, g´1

A
gB

˘
dξ .

For a nonlinear bending energy, we recall from (8.6) that the Γ-limit takes into account the relative shape operator,

which has a matrix representation g´1
A

phB ´ hAq on the chart domain. Here, we simply choose the Frobenius norm

Wbenpv,Sq “ Epvq
24

}S}2
F (8.7)

and define the nonlinear bending energy by

Enl
benpv,uq “

ż

ω

b
det gA Wben

`
v, g´1

A
phB ´ hAq

˘
dξ .

For a pure bending model, the limiting functional (8.6) is restricted to the set of W2,2-isometries, which minimize

the membrane energy Wmempv, ¨q. Now, for a mixed model with both a membrane and a bending part, the mem-

brane energy functional acts as a regularizer for the isometry constraint. Thus, without an isometry constraint, we

define a stored elastic energy Enl,mix

stored
: W1,2pω, r´1, 1sq ˆ W2,2pω,R3q Ñ RY t8u by

Enl,mix

stored
pv,uq “ δEnl

mempv,uq ` δ3 Enl
benpv,uq .
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In the case of linear elasticity, we use the linear Koiter type model as defined in (8.3), where we additionally

allow the material to vary, i.e., we define a linear membrane and a linear bending energy by

Elin
mempv,uq “1

2

ż

ω

b
det gA HpvqpgB ´ gAqlin : pgB ´ gAqlin dξ ,

Elin
benpv,uq “ 1

24

ż

ω

b
det gA HpvqphB ´ hAqlin : phB ´ hAqlin dξ ,

with

H
i jklpvq “

4λpvqµpvq
λpvq ` 2µpvq g

i j

A
gkl

A ` 2µpvq
´

gik
Ag

jl

A
` gil

Ag
jk

A

¯
,

and a linear stored elastic energy by

Elin,mix

stored
pv,uq “ δElin

mempv,uq ` δ3 Elin
benpv,uq .

For a force fA :MA Ñ R3 acting onMA, we set f “ fA ˝ ψA : ω Ñ R3 and define the potential energy by

Epotpuq “ δ

ż

ω

b
det gA f ¨ u dξ “ δ

ż

ω

b
det gA f ¨ pψB ´ ψAq dξ .

Finally, for a fixed material distribution described by v, the state equation is given by minimizing the free energy

Efreepv,uq “ Estoredpv,uq ´ Epotpuq

over all displacements u P W2,2
Γω

pω,R3q of the chart domain satisfying clamped boundary conditions on the Dirich-

let boundary Γω “ ψ´1
A

pΓAq.

Cost Functional. For the cost functional Jexpl explicitly depending on the phase-field variable v and the dis-

placement u, we take into account the potential energy Jexplpv,uq “ Epotpuq. To measure the area of the set

O1, we define Vpvq :“
ş
ω

a
det gA

v`1
2 dξ as the relaxation of the area functional in terms of the phase-field

variable. Moreover,Aǫ is the Modica–Mortola functional as defined in (6.13), which approximates the perimeter

functional for ǫ Ñ 0 (cf . Theorem 6.3.2). Then, we consider a shape optimization problem by minimizing a total

cost functional

J
η
totpvq “ Jη

expl
pv,upvqq “ Jexplpv,upvqq ` ηAǫpvq , (8.8)

over all phase-fields v P W1,2pω, r´1, 1sq s.t. an area constraint Vpvq “ V holds for some constant V P
p0,H 2pMAqq. Here, for a fixed phase-field v, we denote by upvq a minimizer of the free energy with stored

elastic energy either given by Elin,mix

stored
or Enl,mix

stored
. As discussed in Section 6.3, in the case of nonlinear elasticity, the

minimizer upvq is not necessarily unique and thus, a set of minimizers has to be considered.

8.2.2 Finite Element Discretization for Mixed Membrane-Bending Models

Now, we aim at computing minimizer of J
η
tot with a numerical optimization scheme, which requires to evaluate

the derivative

d

dv
J
η
totpvqppvq “ BvJ

η

expl
pv,upvqqppvq ` BuJ

η

expl
pv,upvqqpBvupvqppvqq .

To compute the shape sensitivity Bvupvqppvq we apply the same approach as described in Section 6.3.2 by solving a

suitable adjoint problem. This leads to

d

dv
J
η
totpvqppvq “ BvJ

η

expl
pv,upvqqppvq ` B2

v,uEstoredpv,upvqqpAqppvq ,
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where the adjoint variable A P W2,2
Γω

pω,R3q solves the linear problem

B2
u,uEstoredpv,upvqqppuqpAq “ ´BuJexplpv,upvqqppuq @pu P W2,2

Γω
pω,R3q . (8.9)

In the case of linear elasticity with stored elastic energy Elin,mix

stored
and a cost functional defined by the potential

energy, the solution to the linear system (8.9) for the adjoint variable is precisely given by A “ ´upvq.

For a numerical discretization to compute approximations of stationary points of the free energy Efree, we take

into account the DKT element. Since we restrict to parametric surfacesMA, we can consider a triangulation Th of

the chart domainω. Then, for the DKT finite element space as in Definition 8.1.7, we call a function ψh PWhpωq3

a DKT chart map. We fix such a DKT chart map ψA,h PWhpωq3 as an approximation of ψA. Then, we formulate

discrete energies in terms of a displacement uh P Wh,Γωpωq3 satisfying clamped boundary conditions on Γω and

define the DKT chart map discretizing the deformed domain by ψB,h :“ ψA,h `uh. In Figure 8.3, we show a sketch

of this discrete configuration. Note that the numerical approximationsMA,h :“ ψA,hpωq andMB,h :“ ψB,hpωq of

the midsurfacesMA andMB are images of vector-valued DKT functions. In particular, triangular elements on the

discretized midsurfaces are curved. The actual discrete deformation φh is a concatenation of a DKT chart map and

the inverse of a DKT chart map.

MA,h MB,h

ω

ψA,h ψB,h

φh = ψ
−1
A,h
◦ ψB,h

Figure 8.3: Sketch of the numerical approximation of a deformation by DKT chart maps.

Now, for first-order quantities, we simply evaluate the exact gradients of the DKT chart maps at quadrature

points q, i.e.,

gA,hpqq “ DψA,hpqqTDψA,hpqq , gB,hpqq “ DψB,hpqqTDψB,hpqq ,

nA,hpqq “
B1ψA,hpqq ˆ B2ψA,hpqq

|B1ψA,hpqq ˆ B2ψA,hpqq| , nB,hpqq “
B1ψB,hpqq ˆ B2ψB,hpqq

|B1ψB,hpqq ˆ B2ψB,hpqq| .

For second-order terms, we take into account the approximative second derivatives of the DKT chart maps. Note

that ∇∇hψA,hpqq and ∇∇hψB,hpqq are in general not symmetric. Thus, we define

hA,hpqq “
ˆ

p∇∇hψA,hpqqq11 ¨ nA,hpqq 1
2

pp∇∇hψA,hpqqq12 ` p∇∇hψA,hpqqq21q ¨ nA,hpqq
sym p∇∇hψA,hpqqq22 ¨ nA,hpqq

˙
,

hB,hpqq “
ˆ

p∇∇hψB,hpqqq11 ¨ nB,hpqq 1
2

pp∇∇hψB,hpqqq12 ` p∇∇hψB,hpqqq21q ¨ nB,hpqq
sym p∇∇hψB,hpqqq22 ¨ nB,hpqq

˙
.

Next, we discretize the phase-field variable by functions in the finite element space

V1
hpωq “

 
vh P C0pωq : vh|T is affine @T P Th

(
.
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Then, we apply a Gaussian quadrature of degree 6 with Q “ 12 quadrature points for each triangle element with

weights ω, which allows us to define the following discrete counterparts

Enl
mem,hpvh,uhq “

ÿ

TPTh

ÿ

q“1,...,Q

ωpqq
b

gA,hpqq Wmem

`
vhpqq, gA,hpqq´1gB,hpqq

˘
,

Enl
ben,hpvh,uhq “

ÿ

TPTh

ÿ

q“1,...,Q

ωpqq
b

gA,hpqq Wben

`
vhpqq, gA,hpqq´1phB,hpqq ´ hA,hpqqq

˘
.

Assuming that a force fh is explicitly given at quadrature points, we set

Epot,hpuhq “ δ
ÿ

TPTh

ÿ

q“1,...,Q

ωpqq
b

gA,hpqq fhpqq ¨ uhpqq ,

Enl
free,hpvh,uhq “ δEnl

mem,hpvh,uhq ` δ3 Enl
ben,hpvh,uhq ´ Epot,hpuhq .

Finally, to solve the state equation Buh
Enl

free,h
pvh,uhq “ 0 for a fixed vh, we apply Newton’s method. In the case of

linear elasticity, we use in analogy the symmetrized approximative second derivative to define a discrete version

of phB ´ hAqlin at quadrature points. Then the state equation Buh
Elin

free,h
pvh,uhq “ 0 results in a linear system.

Finally, the shape optimization problem to minimize the fully discrete cost functional J
η

tot,h
over all vh P

V1
h
pω, r´1, 1sq s.t.Vhpvhq “ V is solved by using the IPOPT package [WB06]. To this end, we have to provide

an implementation of Jtot,h and Vh, as well as the first derivatives of these operators. Then the IPOPT solver

allows to include a constraint on the amount of hard material and box constraints ´1 ď vhpzq ď 1 for all z P Nh

on the phase-field variable. To obtain a finer resolution of the diffuse interface, we use an adaptive refinement

scheme via longest edge bisection. More precisely, after computing the solution vh we mark those elements

T P Th with
>

T
}∇vh}2 dx ą 1

2 . Then, we iteratively compute a solution vh1 on the refined mesh Th1 . The

optimization method on the refined mesh Th1 is initialized with the linear prolongations of the solutions vh and

uhpvhq. For the parameter ǫ in the Modica–Mortola functional, we always choose ǫ “ 2 minTPTh
diampTq, which

is thus automatically adapted to the corresponding mesh size h. The longest edge bisection guarantees that the

family pThqh of refined triangular meshes is regular.

8.2.3 Numerical Results for Mixed Membrane-Bending Models

Now, we present our computational results, where the hard material is colored in orange. We always choose

material parameters E1 “ 100, E0 “ 1 for Young’s modulus, s.t. one material is substantially stiffer than the other.

Moreover, we set the Poisson ratios to ν1 “ ν0 “ 0. In the following, we take into account reference domains of

a flat square, a hemisphere, and a half cylinder. For the coarse initial meshes to discretize the chart maps, which

are in our examples either given by the unit square or the unit disc, we use |Nh| “ 289 nodes. Then, depending on

the specific example, we apply several adaptive refinement steps via longest edge bisection. In the case of the unit

disc, new boundary nodes generated by the adaptive refinement are projected onto the boundary of the unit disc.

Centered Load on a Plate

First, we investigate the flat case for ω “MA “ r0, 1s2 and ψA “ id. We consider a force f “
`
0, 0, βχr0.45,0.55s2

˘
,

which is acting into the normal direction and is supported on a square in the center ofMA. The displacement is

supposed to be clamped at the boundary BMA. As penalty parameter for the Modica–Mortola functional, we

choose η “ 10´3 s.t. the contribution of ηAǫ is small in the total cost functional J
η
tot. Moreover, we choose

different area constraints V “ k
8 for k “ 2, 3, 4, 5, 6. Then, depending on this area constraint, we set β “ ´250V

for the force to make the corresponding deformations comparable. For nonlinear elasticity, we consider δ “
10´2. Note that in the case of linear elasticity the associated linearized membrane energy is zero for the optimal

displacement. Then, for the optimal design, scaling δ is equivalent to scaling the force f and the penalty parameter

η for the Modica–Mortola functional. To obtain comparably large deformations as in the nonlinear case, we choose

δ “ 10´1. In Figure 8.4, we depict the results for linear elasticity after 9 adaptive refinement steps and for nonlinear

elasticity after 7 adaptive refinement steps. In all results, we observe a cross type structure for the hard material.
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MA
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Figure 8.4: Optimal material distributions on a plateMA “ r0, 1s2 for a centered load supported on p0.45, 0.55q2

and acting into normal direction. We compare the results for different area constraints V. Top: Linear elasticity.

Bottom: Nonlinear elasticity.

However, in the case of linear elasticity and for small amounts of hard material, the trusses become very thin

at certain points, whereas for nonlinear elasticity, we obtain pure cross structures. For a more detailed analysis

of these cross structures, we consider in Figure 8.5 the stresses and energy functionals for both types of crosses.

More precisely, under the above load scenario we compute for an area constraint V “ 0.25 the optimal design

for linear and nonlinear elasticity and compare the potential energy functional for both solutions. We denote the

corresponding phase-fields by vL (linear) and vNL (nonlinear). Then, we compute the minimizer of the free energy

functional for the other cross structure, i.e., we take into account vL for nonlinear elasticity and vNL for linear

elasticity. We observe that in the case of linear elasticity, vL has an approximately 25% lower potential energy

than vNL. Conversely, in the case of nonlinear elasticity, vNL is approximately 30% better than vL. Considering

the distribution of the membrane stress for vL, there is indeed a huge concentration at the four points, where

the structure of the hard material becomes very thin. However, the linearized membrane stress is zero for this

load scenario, since the force is acting into the normal direction and the linearizations of the first and second

fundamental forms are given by

pgB ´ gAqlin “
ˆ

2B1u1 B1u2 ` B2u1

B1u2 ` B2u1 2B2u2

˙
, phB ´ hAqlin “ D2u3 .

Now, both for vL and vNL, the linear bending stress is quite small around the four points. Thus, the thicker structure

of vNL in this region does not essentially improve the potential energy, but it is advantageous to use more hard

material in the center and at the boundary of the plate. Moreover, we notice that the nonlinear bending energy is

lower for vNL, since the nonlinear deformation behaves much more rigid and the bending stress is concentrated at

the center, where the force is acting. For these four computations, we have chosen a uniform triangular mesh with

16641 nodes. Besides, since we obtain the same optimal designs as in Figure 8.4, this indicates that our solution is

not mesh-dependent.
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Estored linear nonlinear

MA

MB

mem.

stress

100

10´2

10´4

linearized membrane stress

is zero,

since the force is acting into

normal direction to the plate

ben.

stress

100

10´2

10´4

δEmem 0 0 0.03290 0.02212

δ3 Eben 0.03186 0.04227 0.00266 0.00127

Epot 0.06372 0.08455 0.12701 0.08880

Figure 8.5: Comparison of two cross structures on a plate MA “ r0, 1s2 for a centered load supported on

p0.45, 0.55q2 and acting into normal direction. We depict the corresponding membrane and bending stresses as

averaged values over triangle elements using a color-code in logarithmic scaled HSV channel.

Constant Load on a Plate

Next, still for the flat case ω “ MA “ r0, 1s2, we consider a force f “ p0, 0, βq acting everywhere on the plate

into normal direction for some constant β. Again, we assume clamped boundary conditions of the displacement

on BMA. As above, we choose η “ 10´3 for the Modica–Mortola functional, δ “ 10´2 for the thickness in

the nonlinear case and δ “ 10´1 for the thickness in the linear case. Furthermore, we compare different area

constraints V “ k
8 for k “ 2, 3, 4, 5, 6 and set β “ ´20V for the force. In Figure 8.6, we compare the results for

linear elasticity after 9 adaptive refinement steps and nonlinear elasticity after 7 adaptive refinement steps. While

for the centered load it has been sufficient to stabilize the area in the region, where the force is concentrated, by

trusses connected to the boundary, for a constant load there is a need of microstructures to keep the deformation

as small as possible in terms of the potential energy. Moreover, we observe significantly different results for linear

and nonlinear elasticity.
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Figure 8.6: Optimal material distributions on a plateMA “ r0, 1s2 for a constant load acting in normal direction

and clamped boundary conditions on BMA. We compare the results for different area constraints V, where we take

into account both linear and nonlinear elasticity.

Constant Load on a Hemisphere

Now, we investigate optimal material distributions on the upper hemisphere

MA “
 

pA “ pp1, p2, p3q P R3 : p2
1 ` p2

2 ` p2
3 “ 1 , p3 ě 0

(

parametrized by the unit disc ω “ tξ P R2 : }ξ} ď 1u as chart domain and the inverse of the stereographic

projection ψApξ1, ξ2q “
´

2ξ1

ξ2
1
`ξ2

2
`1
, 2ξ2

ξ2
1
`ξ2

2
`1
,

1´ξ2
1
´ξ2

2

ξ2
1
`ξ2

2
`1

¯
as chart map. We assume clamped boundary conditions

on the left and right side, i.e., we set ΓA “ tpA “ pp1, p2, p3q P MA : p3 “ 0 , |p1| ě 0.9u. Here, we consider

a single area constraint V “ 0.5Vhp1q. A force fA “ p0, 0, βq with β “ 0.001 is acting on the reference domain.

For the thickness, we choose δ “ 10´2. Then, we apply 8 adaptive refinement steps for linear elasticity and 6
adaptive refinement steps for nonlinear elasticity. In Figure 8.7, we compare different values for the parameter η to

penalize the Modica–Mortola functional. For η Ñ 0, this should allow a larger perimeter for the optimal material

distribution. Indeed, microstructures are emerging for smaller values of η. As for a constant load on the plate,

we observe significantly different structures for linear and nonlinear elasticity, even though the force is relatively

small.
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Figure 8.7: Optimal material distributions on a hemisphere. A constant load fA “ p0, 0, 0.001q is applied, and an

area constraint V “ 0.5Vhp1q is enforced. We compare different values of the perimeter penalization term η. Top:

Linear elasticity. Bottom: Nonlinear elasticity. Here, the left and right boundary are clamped as depicted forMA,

where the clamped boundary condition is sketched for η “ 10´7.
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Constant Load on a Half Cylinder

Finally, we consider the half cylinder

MA “
#

pA “ pp1, p2, p3q P R3 : p2 P r0, 1s , p1 ą 0 ,

ˆ
p1 ´ 1

2π

˙2

` p2
3 “ 1

4π2

+
,

which we parametrize by ω “ r0, 1s2 as chart domain and ψApξ1, ξ2q “
`

1
2π p1 ´ cospπξ1qq, ξ2,

1
2π sinpπξ1q

˘
as

chart map. We assume clamped boundary conditions on the left and right sides w.r.t. the p2-direction, i.e., we set

ΓA “ tpA “ pp1, p2, p3q P MA : p2 P t0, 1uu. Here, we restrict to nonlinear elasticity and study the effect for

different thickness parameters δ. Then, we apply 6 adaptive refinement steps. We consider a single area constraint

V “ 0.5Vhp1q. A force fA “ p0, 0, βq with β “ ´10 is acting on the reference domain. In Figure 8.8, we

depict our numerically computed results. First, for a homogeneous material distribution with v “ 0, we observe

wrinkling effects for δ Ñ 0. However, for the optimal material distribution, there is at least for the fixed choice of

η, no increase of microstructure for δ Ñ 0.

δ 10´1 10´1.5 10´2 10´2.5

MB for

homogeneous

material v “ 0

ω

MA

MB

|Nh| 6161 6459 8476 5519

Figure 8.8: Optimal material distributions on a half cylinder, where the left and right sides are clamped. Here, a

constant load fA “ p0, 0,´10q is acting on the reference domain. Furthermore, an area constraint V “ 0.5Vhp1q
on the amount of hard material is enforced. All results are computed for nonlinear elasticity. We compare dif-

ferent thickness parameters δ. Furthermore, we show solutions of the state equation for a homogeneous material

distribution with vh “ 0.
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8.3 Shape Design for Nonlinear Elastic Beams in 2D

In the following, we consider pure bending isometries of one-dimensional objects, which are obtained by dimen-

sion reduction of two-dimensional plates. We present a numerical scheme for the corresponding state equation and

especially study local minimizer for a homogeneous material distribution. Then, as in Section 8.2, we investigate

a shape optimization problem by computing the optimal material distribution on the one-dimensional object.

8.3.1 State Equation for Nonlinear Elastic Beams in 2D

We recall that the bending energy (8.5) was derived in [FJM02] via Γ-convergence. By a further dimension re-

duction, a similar Γ-convergence result was established in [MM03]. More precisely, the limit of the sequence
1
δ2

ş
p0,1qˆδS WpDΦq dxA was studied, where S Ă R2 is an open set and the hyperelastic energy density function

is, e.g., given by WpFq “ dist2pF,SOp3qq. Instead, we briefly derive a one-dimensional model by taking into

account the bending energy (8.5) for a two-dimensional plateMA “ p0, 1qˆp´1, 1q, where a material distribution

χpξ1, ξ2q “ Epξ1q for a function E P L8pp0, 1q, rE0,E1sq with 0 ă E0 ă E1 ă 8 is given. Moreover, we restrict

the deformations to be of type φpξ1, ξ2q “ pγ1pξ1q, ξ2, γ2pξ1qq for some γ P W2,2pp0, 1q,R3q and assume clamped

boundary condition at t0u ˆ p´1, 1q. In this case, the isometry constraint ∇φT∇φ “ 1 simplifies to |γ1| “ 1. We

denote by κ the curvature of γ. Then, for a stored elastic energy as in (8.5), a fixed material distribution E, and

a force f “ β e3 “ p0, 0, βqT acting in normal direction, the variational problem for the state equation becomes

minimizing the free energy

Efreepγq “
ż 1

0

1

2
Eptqκptq2 ´ βγ2ptq dt

over all γ P W2,2pp0, 1q,R3q with γp0q “ 0 and |γ1| “ 1. Here, we neglect the thickness δ of the thin object,

since scaling the bending energy Ebenpγq “
ş1

0
1
2 Eptqκptq2 is equivalent to scaling the parameter β for the potential

energy. The minimization problem in γ is still a constrained optimization problem involving second derivatives of

the deformation. Now, in one dimension, we can make use of the phase

Kptq “
ż 1

0
κpsq ds ,

and by identifying R2 with the complex plane C, we can consider the arc length parametrization

γptq “
ż t

0
eipKpsq`K0q ds ,

where K0 P R is the slope of γ at t “ 0, i.e., γ1p0q “ eiK0 . Such an arc length parametrization automatically

satisfies the isometry constraint |γ1ptq| “ 1. Furthermore, the potential energy becomes

EpotpKq “
ż 1

0
βγ2ptq dt “

ż 1

0
β

ż t

0
sinpKpsq ` K0q ds dt

“
ż 1

0

ż 1

s
β sinpKpsq ` K0q dt ds “

ż 1

0
p1 ´ sqβ sinpKpsq ` K0q ds .

Thus, we can rewrite the above constrained minimization problem in terms of K by minimizing the free energy

EfreepKq “
ż 1

0

1

2
EptqpK1ptqq2 ´ βp1 ´ tq sinpKptq ` K0q dt

over all phases K in the space

XK :“
 

K P W1,2pr0, 1s, r´π, πqq : Kp0q “ 0
(
.

Then, we can state the following existence and partial uniqueness result.
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Proposition 8.3.1 (Existence and Uniqueness of Minimizer). Let E P L8pp0, 1q, rE0,E1sq and let β ă 0.

1. There exists a global minimizer of Efree within XK.

2. If in addition K0 P r´π, 0s, there exists a unique global minimizer of Efree within XK.

Proof. The existence of a minimizer follows by the direct method in the calculus of variations. The uniqueness

follows by convexity of the sine function on r´π, 0s and the fact that a minimizer K of Efree with K0 P r´π, 0s
satisfies Kptq ` K0 P r´π, 0s for all t P p0, 1s. The second statement follows by restricting to the case K0 P r´π

2 , 0s
(or in analogy to K0 P r´π,´π

2 s). Assuming that K is a minimizer with K ą 0 on a subinterval J Ă r0, 1s of

maximal length, we can define K̃ptq :“ χr0,1szJ K, which contradicts the minimality of K, since

0 ď EfreepK̃q ´ EfreepKq “
ż

J
´1

2
EptqpK1ptqq2 dt ´

ż

J
βp1 ´ tq sinpK0q ´ sinpKptq ` K0q dt ă 0 .

For details, we refer the reader to [HRS19, Proposition 3.5]. �

8.3.2 Shape Optimization for Nonlinear Elastic Beams in 2D

Now, we consider a characteristic function χ P L8pp0, 1q, t0, 1uq describing a material distribution by

Epχq “ E1χ` E0p1 ´ χq .

Then we define the free energy in terms of χ and K as

Efreepχ,Kq “
ż 1

0

1

2
EpχqptqpK1ptqq2 ´ βp1 ´ tq sinpKptq ` K0q dt .

We aim at minimizing a cost functional

Jα
totpχq “ Jα

explpχ,Kpχqq

over all characteristic functions χ P L8pp0, 1q, t0, 1uq, where Kpχq is a stationary point of Efree. The cost functional

Jα
expl

explicitly depending on χ and K is defined as

Jα
explpχ,Kq “ Epotpχ,Kq ` αVpχq

“
ż 1

0
´βp1 ´ tq sinpKptq ` K0q dt ` α

ż 1

0
χ dt .

Here, α ą 0 is a parameter penalizing the amount of hard material. Since weak-˚ limits of characteristic functions

in general only belong to the larger space L8pp0, 1q, r0, 1sq, relaxation is required. We apply relaxation by the

homogenization method, which is for a one-dimensional family of parameters simply given by the harmonic mean

(see Theorem 6.2.3). Thus, we define for χ P L8pp0, 1q, r0, 1sq the homogenized material coefficient

E˚pχq “
ˆ
χ

E1
` 1 ´ χ

E0

˙´1

.

This allows to extend Efree and thus Jα
expl

for χ P L8pp0, 1q, r0, 1sq.

For the simple scenario with initial slope K0 P r´π, 0s, where uniqueness of global minimizer of Efree is

guaranteed, the following classification result for optimal designs is established.

Theorem 8.3.2 (Classification of Optimal Designs). Let K0 P r´π, 0s. Then the optimal design is classical and

ordered. More precisely, if χ is a critical point of Jα
tot within L8pp0, 1q, r0, 1sq, then there exists t˚ P p0, 1q s.t.

χ “ 1 a.e. on p0, t˚q and χ “ 0 a.e. on pt˚, 1q.

Proof. See [HRS19, Theorem 5.8] �

Note that we here consider a penalization of the amount of hard material instead of a constraint on the length.

This amount exactly corresponds to the value t˚.
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8.3.3 Phase-Field Approximation and Finite Element Discretization

In the following, we present a numerical solution scheme to compute solutions to the state equation in the phase

variable K. Proposition 8.3.1 always guarantees the existence of a minimizer, but uniqueness is only provided if

K0 P r´π, 0s. Thus, we are especially interested in the case K0 ą 0.

Here, we apply a phase-field approach. More precisely, we take into account a phase-field function v P
W1,2pr0, 1s,Rq and approximate the material coefficient E in terms of v by the harmonic mean

Epvq “ 2

ˆ
1 ` v

E1
` 1 ´ v

E0

˙´1

.

Moreover, we approximate the length covered by hard material by

Vpvq “
ż 1

0

v ` 1

2
dt .

Note that the classification result in Theorem 8.3.2 is obtained for a cost functional without perimeter regulariza-

tion. However, for numerical purpose, we use the 1D version of the Modica–Mortola functionalAǫ as defined in

(6.12) as regularizer to ensure the phase-field function to be smooth and essentially to take values v P t´1, 1u.

Altogether, this allows defining the augmented compliance functional as

J
α,η

expl
pv,Kq “

ż 1

0
βp1 ´ tq sinpKptq ` K0q dt ` αVpvq ` ηAǫpvq ,

with coefficients α, η ą 0. Thus, the total cost functional in terms of a phase-field function is given by

J
α,η
tot pvq “ Jα,η

expl
pv,Kpvqq ,

where Kpvq is a solution to the state equation BKEfreepv,KqppKq “ 0 for all test functions pK P XK. To compute a

local minimizer of J
α,η
tot , we can apply the same approach as in Section 6.3.2 by solving a corresponding adjoint

problem

B2
K,KEfreepv,KpvqqppKqpAq “ ´BKJ

α,η

expl
pv,KpvqqppKq @pK P XK

in the adjoint variable A P XK. Then we obtain the derivative

d

dv
J
α,η
tot pvqppvq “ BvJ

α,η

expl
pv,Kpvqqppvq ` B2

v,KEfreepv,KpvqqpAqppvq .

For the state equation, we apply Newton’s method to find local minimizers of the free energy. This requires

to compute the first and second derivative DEfreepv,Kq and D2Efreepv,Kq of the stored energy. For the numerical

implementation, we use piecewise affine and continuous finite element functions. More precisely, we consider an

equidistant grid with N nodes tn “ n
N´1 for n “ 0, . . . ,N ´ 1 and associated N ´ 1 cells Cn “ ptn´1, tnq for

n “ 1, . . . ,N ´ 1. The corresponding grid width is given by h “ 1
N´1 . Then we approximate the phase K by a

finite element function Kh in the space

V1
hpr0, 1sq :“

!
Kh P C0pr0, 1sq : Kh

ˇ̌
Cn

is affine for all n “ 1, . . . ,N ´ 1
)
.

Moreover, we approximate the phase-field variable v by a finite element function vh P V1
h
pr0, 1sq. For the numerical

integration, we choose a Gaussian quadrature with Q “ 5 quadrature points per element. Applying this quadrature

to the free energy and its derivatives, we get a discrete free energy Efree,h on V1
h
pr0, 1sq ˆ V1

h
pr0, 1sq and associated

derivatives DEfree,h and D2Efree,h. Finally, for a fixed material distribution vh P V1
h
pr0, 1sq, we compute a solution

to BKh
Efree,h “ 0 with Newton’s method. To cope with the nonlinearity, we use a multilevel scheme, by first solving

the problem on a coarse grid, prolongate the obtained result onto a finer grid, and proceed iteratively. Here, we

take into account a dyadic sequence Nl “ 2l ` 1 with l “ Lc, . . . ,L f , where we use Lc “ 3 and L f “ 10.
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Furthermore, using the above discretization we obtain a discrete operator J
α,η

tot,h
to approximate the total cost

functional and the corresponding derivative, s.t. we can apply a Quasi-Newton method (BFGS) to compute mini-

mizers of J
α,η

tot,h
. We emphasize that we have to impose the Dirichlet boundary condition for the adjoint variable,

i.e., Ahp0q “ 0. Moreover, for a given phase-field function vh, we note that Khpvhq is an element of the set of

solutions to the state equation. Thus, starting with some initial phase, the Newton method converges to a state

Khpvhq, which depends upon this initialization.

8.3.4 Numerical Results for Nonlinear Elastic Beams in 2D

Now, we present our numerically computed results. First, we consider solutions to the state equation for a homoge-

neous material distribution. Then, we compute optimal material distributions, where we initialize our optimization

scheme with different solutions to the state equation.

Different Solutions to the State Equation

For a homogeneous material E “ 1, we experimentally observe essentially three types of stationary points (see

Figure 8.9). First, there is of course a simple configuration where the curve is just turning downwards. In fact, this

appears to be an approximation of the global minimizer of the energy functional Efree,h. Secondly, we get a twisted

curve. We observe that these two configurations are stable under a change of material, i.e., taking some simple

(resp. twisted) beam as initialization for a different material, the computed discrete solution in our experiments

always turned out to be a simple (resp. twisted) beam again. However, there is also a highly unstable configuration

in between, where the beam neither decides to fall towards the left side nor towards the right side.
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Figure 8.9: Different solutions to the state equation (top row) with corresponding phase variable K (bottom row).

From left to right: simple configurations with K0 “ 0 and K0 “ π
4 , a twisted beam with K0 “ π

4 , and an S-shaped

configuration with K0 “ π
4 . The clamped boundary conditions are indicated by dotted lines. Here, we have chosen

β “ ´100, E “ 1.
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Optimal Material Distributions for Different Scenarios

In Figure 8.10, we show our numerical results for optimal material distributions under different initial conditions.

First, the optimal design for an initial slope K0 reflects the classification result from Theorem 8.3.2. Furthermore,

the optimal material distributions for initial slopes K0 , 0 and different solutions to the state equation suggest that

the classification result can be extended to more general assumptions. In fact, in our numerical simulations for

clamped boundary conditions at t “ 0, the optimal design is always given by the hard material on the left, i.e., in

some interval r0, t˚s.
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Figure 8.10: Top: Starting from different initializations with v “ 0 (black), we obtain optimal designs (from left

to right) for a simple configuration with K0 “ 0 and with K0 “ π
4 , as well as a twisted configuration with K0 “ π

4 ,

and an S-configuration with K0 “ π
4 . The clamped boundary conditions are indicated by dotted lines. Bottom: We

see the corresponding plots of the phase K. Here, we have chosen E1 “ 1, E0 “ 0.5, β “ ´100, α “ 1, η “ 1,

N “ 513, and ǫ “ 1
N´1 . Both the curve and the phase are colored according to the phase-field variable v, where

red denotes hard material pv “ 1q and blue denotes soft material pv “ ´1q.

Shape Optimization with Pointwise Conditions

Finally, we implement additional constraints prescribing a set of beam positions on p0, 1s. In this case, we obtain

that the resulting optimal design is characterized by separated subintervals with hard material. Hence, also in this

more general setup, we do not observe microstructures, even for small values of η. In Figure 8.11, we show an

instance of these computational results with additional point constraints.
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Figure 8.11: Left: Optimal design for a beam under the constraint that two fixed beam positions p´0.3, 0q and

p´0.6, 0q are achieved for t “ 0.5, 1, respectively. Here, the initial slope is given by K0 “ 0 and we choose

parameters E1 “ 4.0, E0 “ 0.5, β “ ´100, α “ 1, η “ 1, N “ 513, and ǫ “ 1
N´1 . Right: The corresponding

phase K. Both the curve and the phase are colored according to the phase-field variable v, where red denotes hard

material pv “ 1q and blue denotes soft material pv “ ´1q.

8.4 Shape Design for Bending Isometries of Plates

Now, we consider pure bending isometries for two-dimensional plates. In analogy to Section 8.2 and Section 8.3,

we investigate the optimal material distribution.

8.4.1 Shape Optimization Problem for Bending Isometries

State Equation. We consider a two-dimensional plate ω “ MA Ă R2. Moreover, a material distribution on ω
is described by a phase-field v P W1,2pω, r´1, 1sq. Then, for a smooth isometry ψB and the density function Wben

as in (8.7), we recall from Proposition 8.1.3 that

Wbenpv, ψBq :“ Epvq
24

}g´1
A

phB ´ hAq}2
F “ Epvq

24
}hB}2

F “ Epvq
24

|D2ψB|2 “ Epvq
24

|D2u|2 .

Thus, we can define the stored elastic energy in terms of the displacement u “ ψB ´ ψA as

Ebiso
storedpv,uq “

#
Ebenpv,uq if u P W2,2

iso
pω,R3q ,

8 otherwise,
“

$
&
%

ż

ω

Epvq
24

|D2u|2 dξ if u P W2,2
iso

pω,R3q ,

8 otherwise.

Then, for a given force fA : ω Ñ R3 and a fixed phase-field v, we aim to minimize the free energy

Efreepv,uq “ Ebenpv,uq ´ Epotpuq (8.10)

over all displacements u in the space

W2,2
iso,Γω

pω,R3q :“
 

u P W2,2pω,R3q : g´1
A

gB “ 1 , u “ 0 on Γω , ∇u “ 0 on Γω
(
.

As for the elastic beams in Section 8.3, we neglect the thickness δ, since scaling the force fA would be equivalent.
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Cost Functional. In analogy to the shape optimization problem (8.8) for a mixed membrane-bending model, we

aim at minimizing a total cost functional

J
η
totpvq “ Jexplpv,upvqq ` ηAǫpvq ,

over all phase-fields v P W1,2pω, r´1, 1sq satisfying the area constraintVpvq “ V, where upvq is the displacement

of a pure bending isometry defined as a minimizer of the free energy in (8.10). For the cost functionalJexplpv,uq “
Epotpuq, we choose the potential energy.

8.4.2 Finite Element Discretization for Bending Isometries

As for the mixed models in Section 8.2, we choose discrete phase-fields vh P V1
h
pωq and take into account the

DKT element to discretize displacements uh P Wh,Γωpωq3 with clamped boundary conditions. Then, we apply a

Gaussian quadrature of degree 6 with Q “ 12 quadrature points for each triangle element with weights ω, and

obtain a discrete bending energy

Eben,hpvh,uhq “
ÿ

TPTh

ÿ

q“1,...,Q

ωpqqEpvhpqqq
24

}∇∇huhpqq}2 .

Consequently, a discrete free energy is given by Efree,hpvh,uhq “ Eben,hpvh,uhq ´ Epot,hpuhq. Note that in the

continuous setup the isometry constraint in terms of a displacement u is pointwise given by

0 “ gB ´ gA “ DuTDψA ` DψT
ADu ` DuTDu ,

which simplifies in the case ψA “ id to

0 “
˜

2B1u1 `
ř3

i“1pB1uiq2 B2u1 ` B1u2 `
ř3

i“1 B1uiB2ui

sym 2B2u2 `
ř3

i“1pB2uiq2

¸
. (8.11)

In our numerical method we enforce the isometry constraint nodalwise, which can be easily formulated due to

the degrees of freedom for derivative values of uh. This approach was already applied in [Bar13], where a lin-

earization of the isometry constraint was proposed. Instead, we implement a Newton method for a corresponding

Lagrangian. Therefore, we denote by N int
h

“ NhzΓω the set of interior nodes and consider for each z P N int
h

Lagrange multipliers λhpzq “
`
λ1

h
pzq, λ2

h
pzq, λ12

h
pzq

˘
for each of the three constraints in (8.11), i.e., we define

Iso1
hpuhqpzq “ 2B1uhpzq ¨ e1 `

3ÿ

i“1

pB1uhpzq ¨ eiq2 ,

Iso2
hpuhqpzq “ 2B2uhpzq ¨ e2 `

3ÿ

i“1

pB2uhpzq ¨ eiq2 ,

Iso12
h puhqpzq “ B2uhpzq ¨ e1 ` B1uhpzq ¨ e2 `

3ÿ

i“1

pB1uhpzq ¨ eiqpB2uhpzq ¨ eiq ,

Isohpuh, λhq “
ÿ

zPN int
h

λ1
hpzqIso1

hpuhqpzq ` λ2
hpzqIso2

hpuhqpzq ` λ12
h pzqIso12

h puhqpzq .

Note that all the values B juhpzqi for j “ 1, 2 and i “ 1, 2, 3 are explicit degrees of freedom. Finally, the Lagrangian

is given by

Lben,hpvh,uh, λhq “ Eben,hpvh,uhq ´ Epot,hpuhq ` Isohpuh, λhq .

Then, to compute for a fixed material distribution given by vh solutions to the state equation we apply Newton’s

method to solve

Bpuh,λhqLben,hpvh,uh, λhq “ 0 . (8.12)
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Now, the above finite element discretization allows to define a discrete cost functional J
η

tot,h
. Again, we aim at

computing minimizer of J
η

tot,h
with a first-order method, which requires to evaluate the derivative

d

dvh
J
η

tot,h
pvhqp pvhq “ Bvh

J
η

expl,h
pvh,uhpvhqqp pvhq ` Buh

J
η

expl,h
pvh,uhpvhqqpBvh

uhpvhqp pvhqq .

Therefore, we want to apply the same approach as described in Section 6.3.2 by solving a suitable adjoint prob-

lem. Differently, the state equation is now defined by stationary points of the Lagrangian Lben,h and we have to

incorporate the Lagrange multiplier λh in the computation. For fixed vh, we denote by puh, λhqpvhq a solution to

(8.12). Then, by the inverse function theorem we have

Bvh
Lben,h pvh, puh, λhqpvhqq “ ´

´
B2

puh,λhq,puh,λhq
Lben,h pvh, puh, λhqpvhqq

¯´1

B2
vh,puh,λhq

Lben,h pvh, puh, λhqpvhqq .

Thus, we introduce an adjoint problem for variables pAuh
,Aλh

q PWh,Γωpωq3 ˆR3|N int
h

| by solving the linear system

B2
puh,λhq,puh,λhq

Lben,hpvh, puh, λhqpvhqqp puh,xλhqpAuh
,Aλh

q “ ´Bpuh,λhqJ
η

expl,h
pvh, puh, λhqpvhqqp puh,xλhq

for all p puh,xλhq PWh,Γωpωq3 ˆR3|N int
h

|. This allows computing

d

dvh
J
η

tot,h
pvhqp pvhq “ Bvh

J
η

expl,h
pvh, puh, λhqpvhqqp pvhq ` Buh

J
η

expl,h
pvh, puh, λhqpvhqqpBvh

puh, λhqpvhqp pvhqq

“ Bvh
J
η

expl,h
pvh, puh, λhqpvhqqp pvhq ` B2

vh,puh,λhq
Lben,hpvh, puh, λhqpvhqqpAuh

,Aλh
qp pvhq .

Since B2
vh,puh,λhq

Lben,h is given by

B2
vh,puh,λhq

Lben,hpvh,uh, λhq “
ˆ

B2
vh,uh
Eben,hpvh,uhq 0

0 0

˙
,

the expression for the shape derivative simplifies to

d

dvh
J
η

tot,h
pvhqp pvhq “ Bvh

J
η

expl,h
pvh, puh, λhqpvhqqp pvhq ` B2

vh,uh
Eben,hpvh,uhpvhqqpAuh

qp pvhq .

Then, as for the mixed membrane-bending models in Section 8.2, we apply the IPOPT package [WB06] to

compute minimizer of the fully discrete cost functional J
η

tot,h
over all vh P V1

h
pω, r´1, 1sq with the area constraint

Vhpvhq “ V. In the adaptive refinement scheme, we additionally mark those elements T P Th, where the isometry

error
ş

T |gB ´ gA|2 dx is large. More precisely, we compute this error for all elements and select the largest 25%
for the longest edge bisection refinement.

8.4.3 Numerical Results for Bending Isometries

Now, we present our numerical results for the shape optimization problem for bending isometries of plates. In the

1D case of elastic beams, for a constant load scenario with a force f “ p0, 0, βq and clamped boundary on the

left side, we recall from Section 8.3 that the optimal material distribution on the interval r0, 1s ˆ t0u is given by

an ordered design with the hard phase on the interval p0,Vq at the clamped boundary (see Theorem 8.3.2). Here,

we consider the same scenario in 2D, i.e., given is a plate r0, 1s2 with clamped boundary at t0u ˆ r0, 1s and a

constant load f “ p0, 0, βq is acting in orthogonal direction. However, there are material distribution on r0, 1s2,

which cannot be represented in the 1D case, and thus, it is unclear whether the optimal material distribution for the

1D case is still optimal for the 2D case. In the following, we first compare three different classical designs w.r.t.

the potential energy. Afterwards, we compute optimal designs for small and large forces. As in Section 8.2, the

hard material is colored in orange.
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Comparison of Different Designs

We define three different material distributions, where, depending on the area V, the subdomain covered with hard

material is given by

(I) a layer r0,Vs ˆ r0, 1s at the clamped boundary, i.e., the solution to the 1D problem,

(II) a layer r0, 1s ˆ r0.5 ´ 0.5V, 0.5 ` 0.5Vs orthogonal to the clamped boundary, and

(III) a square r0,
?

Vs ˆ r0.5 ´ 0.5
?

V, 0.5 ` 0.5
?

Vs centered in the middle of the clamped boundary.

Here, we consider three area fractions V “ 0.25, 0.5, 0.75 for the amount of hard material. In Figure 8.12, we

compare the potential energy of these three designs in dependence of | f |. For all computations, we use a mesh of

|Nh| “ 16641 nodes. We observe that for a large area fraction V “ 0.75 of the hard material, the 1D optimizer (I)

is optimal w.r.t. the potential energy independent of | f |. For an area fraction V “ 0.5, and small forces, design (III)

is optimal. For an area fraction V “ 0.25, we even obtain that design (II) is optimal for small forces and design

(III) is better on an intermediate range. In any cases, it seems that for large forces design (I) is optimal.

V 0.25 0.5 0.75

Epot

100 101 102

10−2

10−1

100

101

102

II III I

| f |
100 101 102

10−3

10−2

10−1

100

101

102

III I

| f |
100 101 102

10−3

10−2

10−1

100

101

102

I

| f |

I

II

III

Figure 8.12: Comparison of the potential energy functional in dependence of | f | in a logarithmic scale for three

design types and different area fractions V “ 0.25, 0.5, 0.75 of the hard material. By dotted lines we separate the

ranges, where a specific design is optimal w.r.t. the potential energy.

Optimal Designs

Now, we compute the optimal material distribution for the above scenario. The comparison of the different designs

as in Figure 8.12 shows that in particular cases depending on the force and the amount of hard material, the optimal

solution is different to design (I). Here, we take into account the same area constraints V “ 0.25, 0.5, 0.75 as above.

For all computations, we start with a coarse mesh of |Nh| “ 289 nodes and use 8 adaptive refinement steps. In

Figure 8.13, we consider large forces with | f | “ 100V. We observe for a large amount of hard material with

V “ 0.75 that design (I) is optimal. However, for V “ 0.25, 0.5 we obtain optimal designs with significantly better

compliance compared to the above considered designs. Furthermore, in Figure 8.14, we investigate small forces

with | f | “ 10V. Here, for all constraints V, the optimal solutions are different to the above chosen designs, even

for an area V “ 0.75, where design (I) performs better than (II) and (III). However, in all of our computational

results, microstructures do not appear.
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V 0.25 0.5 0.75

MA

MB

|Nh| 8531 8401 10580

Epotpvoptq 5.32684 11.6839 21.0868

EpotpvIq 6.71972 11.7869 21.0853

EpotpvIIq 7.91447 15.7301 23.5953

EpotpvIIIq 5.89819 13.6732 22.4527

Figure 8.13: Optimal material distributions for bending isometries of a plate for large forces with | f | “ 100V.

V 0.25 0.5 0.75

MA

MB

|Nh| 11624 15295 12901

Epotpvoptq 0.106411 0.184621 0.340829

EpotpvIq 0.453524 0.422204 0.360064

EpotpvIIq 0.161784 0.303079 0.44151

EpotpvIIIq 0.16907 0.239765 0.387821

Figure 8.14: Optimal material distributions for bending isometries of a plate for small forces with | f | “ 10V.
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8.5 Conclusion and Outlook

We have investigated optimal material distributions on thin elastic objects w.r.t. the potential energy. For our nu-

merical discretization, we have made use of the DKT element on parametric surfaces. Depending on the particular

force acting on the surface, for mixed membrane-bending models, it has turned out that interesting microstructures

appear, where we have observed significant differences between linear and nonlinear elasticity. Furthermore, we

have studied the case of pure bending isometries. For a one-dimensional model of elastic beams, our numerical

results have confirmed and extended a classification result for the optimal design. In the two-dimensional model

for pure bending isometries, it seems that no microstructures appear. Indeed, in all our numerical tests, we have

obtained classical designs without microstructures, even for initializations of the phase-field with random values.

However, a possible classification result for the optimal design as in the one-dimensional model might require a

specific case study, since we have observed different optimal designs depending on the amount of hard material

and the force.

Although the DKT element only allows a nonconforming approximation of second derivatives, suitable con-

vergence estimates, e.g., for bending isometries in [Bar13], can be established. In contrast to [Bar13], where a

gradient flow with a linearized isometry constraint was proposed, we have implemented a Newton method for

a Lagrangian with an exact isometry constraint at nodal positions. Here, we have focused on the material opti-

mization problem. Moreover, we note that our numerical implementation of the DKT element is so far restricted

to parametric surfaces, i.e., the midsurfaces of the reference and the deformed shell are obtained as images of

vector-valued DKT functions on a common chart domain. An extension to arbitrary shells would be desirable, but

this requires an interpretation of the degrees of freedom for deformation gradients. Now, on parametric surfaces

having an approximation of the relative shape operator at hand, we could study further mechanical properties of

thin elastic objects. In [Bar17], the DKT element has been applied to approximate deformations of plates for a

Föppel–von Kármán model, which has been used to verify a break of symmetry on circular cones that has been

previously proven in [COT17]. Similar buckling effects on the sphere have been simulated in [VM08, NAL`13]

for a different finite element discretization.

Finally, a two-scale optimization of thin elastic objects would be a possible extension of our numerical scheme

to explore optimal microstructures. This might have a similar medical application in bone tissue engineering as we

have considered in Chapter 7. There, the biologically degradable polymer implants are, e.g., applicable to the tibia

bone. However, bone substitutes to fill holes in the skull are comparably thin and have to be curved according to

the patient-specific skull.
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[AJM16] G. Allaire, F. Jouve, and G. Michailidis. Thickness control in structural optimization via a level set method.

Struct. Multidiscip. Optim., 53(6):1349–1382, 2016.
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