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Abstract

In this thesis, we consider a novel unbalanced optimal transport model incorporating singular sources, we develop
a numerical computation scheme for an optimal transport distance on graphs, we propose a simultaneous elastic
shape optimization problem for bone tissue engineering, and we investigate optimal material distributions on thin
elastic objects.

The by now classical theory of optimal transport admits a metric between measures of the same total mass.
Various generalizations of this so-called Wasserstein distance have been recently studied in the literature. In par-
ticular, these have been motivated by imaging applications, where the mass-preserving condition is too restrictive.
Based on the Benamou—Brenier formulation we present a novel unbalanced optimal transport model by introduc-
ing a source term in the continuity equation, which is incorporated in the path energy by a squared L?-norm in
time of a functional with linear growth in space. As a key advantage of our model, this source term functional
allows singular sources in space. We demonstrate the existence of constant speed geodesics in the space of Radon
measures. Furthermore, for a numerical computation scheme, we apply a proximal splitting algorithm for a finite
element discretization.

On discrete spaces, Maas introduced a Benamou—Brenier formulation, where a kinetic energy is defined via
an appropriate (e.g., logarithmic) averaging of mass on nodes and momentum on edges. Concerning a numerical
optimization scheme, this, unfortunately, couples all these variables on the graph. We propose a conforming
finite element discretization in time and prove convergence of corresponding path energy minimizing curves. To
apply a proximal splitting algorithm, we introduce suitable auxiliary variables. Besides similar projections as for
the classical optimal transport distance and additional simple operations, this allows us to separate the nonlinearity
given by the averaging operator to projections onto three-dimensional convex sets, the associated (e.g., logarithmic)
cones.

In elastic shape optimization, we are usually concerned with finding a subdomain maximizing the mechanical
stability w.r.t. given forces acting onto a larger domain of interest. Motivated by a biomechanical application in
bone tissue engineering, where recently biologically degradable polymers have been explored as bone substitutes,
we propose a simultaneous elastic shape optimization problem to guarantee stiffness of the polymer implant and of
the complementary set where new bone tissue will grow first. Under the assumption that the microstructure of the
scaffold is periodic, we optimize a single microcell. We define a novel cost functional depending on specific entries
of the homogenized elasticity tensors of polymer and regrown bone. Additionally, the perimeter is penalized for
regularizing the interface of the scaffold. For a numerical optimization scheme, we choose a phase-field model,
which allows a diffuse approximation of the elastic objects and the perimeter by the Modica—Mortola functional.
We also incorporate further biomechanically relevant constraints like the diffusivity of the regrown bone.

Finally, we investigate shape optimization problems for thin elastic objects. For a numerical discretization,
we take into account the discrete Kirchhoff triangle (DKT) element for parametric surfaces and approximate the
material distribution by a phase-field. To describe equilibrium deformations for a given force, we study different
corresponding state equations. In particular, we consider nonlinear elasticity combining membrane and bending
models. Furthermore, a special focus is on pure bending isometries, which can be efficiently approximated by the
DKT element. We also analyze a one-dimensional model of nonlinear elastic planar beams, where our numerical
simulations confirm and extend a theoretical classification result of the optimal design.
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Chapter 1

Introduction

This thesis contains several contributions, which can be categorized into two mathematical research areas, namely
optimal transport and shape optimization of elastic objects. Later, the rigorous mathematical foundations, which
are in particular required for these specific projects, are discussed in detail in Chapter 3 and Chapter 6. Further-
more, we summarize in Chapter 2 commonly used definitions and well-known theorems, also intending to fix a
consistent notation. In the following, we briefly introduce into both fields to give short overviews, including recent
developments primarily related to the corresponding topics of this thesis.

1.1 Introduction to Optimal Transport

A Brief History of Optimal Transport. Roughly speaking, the theory of optimal transport is concerned with
seeking for the most cost-efficient distribution from a set of sinks to a set of sources. Monge [Mon81] formu-
lated such a problem by asking for the transport with minimal cost of a pile of sand into a hole of the same
volume. For a general mathematical formulation, sinks and sources are modeled by probability measures. A re-
laxed formulation proposed by Kantorovich [Kan42, Kan48] guarantees existence for a certain class of transport
cost functions and allows defining the so-called Wasserstein metric on the space of probability measures. Benamou
and Brenier [BB0O] figured out a dynamical formulation, which can be interpreted as the geodesic equation on the
Wasserstein space and thus allows considering it as an infinite-dimensional Riemannian manifold. A groundbreak-
ing result linking the geometry of the Wasserstein space with a partial differential equation was established by
Jordan, Kinderlehrer, and Otto [JKO98, Ott01], who demonstrated that the heat equation can be understood as the
gradient flow of the entropy functional w.r.t. the Wasserstein distance. Further partial differential equations were
characterized via gradient flows of suitable energy functionals w.r.t. the Wasserstein distance, e.g., the Keller-Segel
equation [BCCO8] or the crowd motion model [MRCS10]. For the incompressible Euler equation, considering a
relaxation of Arnold’s [Arn66] geodesic formulation in the space of measure-preserving diffeomorphisms, Bre-
nier [Bre89] showed that a midpoint of such a geodesic can be found by solving an optimal transport problem.
Furthermore, at first glance, unexpected connections of optimal transport to geometrical questions have emerged.
On a Riemannian manifold, the displacement convexity of an appropriate entropy functional along Wasserstein
geodesics is equivalent to a nonnegative Ricci curvature. Based on this observation, in the independent works of
Lott—Villani [LV09] and Sturm [Stu06a, Stu06b], a meaning of a lower Ricci curvature bound on metric measure
spaces was given. Besides numerous proofs, the classical isoperimetric inequality was verified by using tech-
niques from optimal transport [Kno57], which can be applied to prove generalized versions (see, e.g., Figalli and
coworkers [FMP10]). Moreover, the optimal transport problem admits a huge variety of applications in the field
of mathematical imaging. For image interpolation, it was considered, e.g., for brains and clouds [HZTA04] and
in oceanography [HMP15]. By taking into account an appropriate kernel density estimator, it was used for image
segmentation in [PFR12]. In [PPC11], the color transfer of images via optimal transport was studied. A decom-
position of an image into cartoon, texture, and noise part was investigated in [BL15]. Many problems arising in
economy can also be interpreted in the context of optimal transport, e.g., delivering newspapers or matching be-
tween job seekers and jobs [Gall6]. Further applications are related to the classification of texts [KSKW15] or an
urban planning model [BS05, BW16].



2 CHAPTER 1. INTRODUCTION

Numerical Methods for Optimal Transport. Computing optimal transport geodesics in its full generality is
a quite challenging task. Therefore it has been solved for numerous special cases. In particular, Wasserstein
geodesics between probability measures on the real line can be computed explicitly. For discrete measures, Kan-
torovich’s problem becomes a linear program, which can be efficiently solved by the Auction algorithm [BES8§].
Benamou and Brenier [BB0O] applied duality techniques from convex analysis to compute solutions to their refor-
mulated dynamic problem between density functions. For the so-called semi-discrete optimal transport between a
density and a discrete measure, methods from algorithmic geometry were investigated in [Mérl1, Lév15]. Further
computational methods based on properties of Wasserstein geodesics have been proposed, e.g., in [HZTA04], the
polar factorization result by Brenier [Bre91] was used, and in [LR0O5, BFO10, BFO10], the Monge—Ampere equa-
tion was solved. In [Schl6a, Sch16b], a sparse multiscale algorithm was developed by incorporating the cyclical
monotonicity property. Recently, entropy regularization methods [BCC™15] to compute approximative solutions
have turned out to provide an enormous speedup. Overall, most of the equivalent reformulations of the optimal
transport problem can be converted into convex optimization problems. Thus, in this thesis, we intensively apply
proximal splitting algorithms based on methods from convex analysis.

Optimal Transport with Source Term. Naturally, the classical optimal transport distance is defined between
two measures of the same total mass, which is for example in the Benamou—Brenier formulation encoded via a
continuity equation. This mass preserving property is often too restrictive, e.g., in the context of image warping,
where images of different total mass have to be compared. Moreover, an extension of the optimal transport dis-
tance to arbitrary positive measures is an interesting question from a theoretical point of view, which has been
intensively studied in the literature during the last few years. In general, the resulting problems are often referred
to as unbalanced optimal transport. One possibility was studied in [CM10], where the marginal constraints in the
Kantorovich formulation were relaxed. For absolutely continuous masses a source term in the continuity equation
for the Benamou—Brenier formulation was included in [PR16, PR14]. In [CPSV15] and [LMS15], an interpolating
distance between the Wasserstein distance and the Fisher—Rao distance was proposed. Recently, in [CPSV18], an
equivalence between such generalized optimal transport models based on the Benamou—Brenier formulation and
the Kantorovich formulation was demonstrated for a large class of cost functions. In Chapter 4, we study a novel
unbalanced optimal transport model on the space of positive Radon measures. There, we adapt the Benamou—
Brenier formulation by a source term in the continuity equation, which is appropriately penalized in addition to
the kinetic energy, s.t. we can allow singular sources in space. An example of a transport between measures of
different total mass is depicted in Figure 1.1.
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Figure 1.1: Geodesic between densities of different total mass for an optimal transport model with source term.
The mass variable is color-coded in a blue-scale (left).
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Optimal Transport on Discrete Spaces. The formulations of the optimal transport distance of Monge, Kan-
torovich, and Benamou—Brenier can be defined without any additional effort between Borel probability measures
on complete and separable metric spaces, so-called Polish spaces, and are equivalent under certain conditions. Fur-
thermore, Monge’s problem can be considered on more abstract spaces, as far as there is a notion of measures and
distance. On discrete spaces described by an irreducible and reversible Markov transition kernel, Maas [Maall]
proposed a Benamou—Brenier formulation, which also allows understanding the heat equation on a finite Markov
chain as the gradient flow of a corresponding entropy functional. The associated discrete optimal transport metric
does not coincide with Monge’s formulation. In Chapter 5, we develop a numerical scheme to compute geodesics
and gradient flows for this optimal transport distance on finite Markov chains. For appropriate finite element
spaces, we prove convergence of minimizing paths for vanishing step size. In Figure 1.2, we depict an example of
such an optimal transport geodesic on a discrete space.
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Figure 1.2: Geodesic between discrete measures on a triangular mesh of a human hand (left) for an optimal
transport model on graphs. The mass variable, which is actually defined on nodal positions, is represented by blue
neighborhoods with an area of a proportional size.

Further Related Work. As we have already mentioned, the fluid flow reformulation by Benamou—Brenier can
be interpreted as the geodesic equation on the Wasserstein space. Rumpf and Wirth [RW15] introduced a powerful
framework for a time discrete geodesic calculus on Banach manifolds, which allows to approximate geodesics and
further differential geometric quantities, like the exponential map, parallel transport, and the Riemannian curvature
tensor. This approach was, e.g., applied to the space of viscous fluid objects [RW13], the space of images in the
context of the metamorphosis model [BER15], and the space of discrete shells [HRWW12]. In [MRSS15], the
general framework by Rumpf and Wirth was used to compute optimal transport geodesics for a viscous optimal
transport model with density modulation.

1.2 Introduction to Elastic Shape Optimization

An Overview of Elastic Shape Optimization Problems. Optimizing the mechanical stability of an object is a
desirable property in numerous engineering applications. In a general framework of mathematical shape optimiza-
tion, we ask for the optimal domain within an admissible set, which minimizes a suitable cost functional. Possible
applications range from heat diffusion [Al102] to fluid dynamics [GHHK15]. Also, the isoperimetric problem can
be interpreted as a shape optimization problem, where the area functional has to be minimized over all domains
with a fixed volume. In this thesis, we focus on elastic shape optimization problems, where forces are acting
on the reference domain of an elastic object and deformations are described via partial differential equations, the
so-called state equations. Typical examples of cost functionals studied in the literature are the potential energy
[ABFJ97, AJT04], the least square error compared to a target displacement [AJT04], and shape eigenfrequencies
[Ped00]. For computational simplicity, in most cases, linear elasticity is taken into account, s.t. the stored elastic,
the potential and the free energy coincide for the equilibrium displacement. These three functionals were com-
pared in [PRW12] for nonlinear elasticity, where in particular global minimizers of the free energy do not have to
be unique. A worst-case scenario is given by choosing the most expensive of these equilibrium deformations. Usu-
ally, the volume of the elastic object is additionally penalized in the cost functional, or a constraint on the maximal
amount of volume is integrated into the optimization problem. Nevertheless, such shape optimization problems are
in general ill-posed because a minimizing sequence of characteristic functions does not necessarily converge to a
characteristic function, and thus the limiting object cannot be characterized as a set. A possible relaxation is based
on the theory of homogenization [ABFJ97], where a composite structure determined by its local volume fraction
and the effective elasticity tensor is taken into account. Alternatively, in [PRW12], the perimeter of the domain was
added to the cost functional. Such a regularization was originally proposed in [AB93] for a scalar-valued prob-
lem. A worst-case scenario concerning the uncertainty of a single force acting on the elastic object was studied
in [AD14]. For a scenario where multiple loads are acting on the elastic object, several stochastic interpretations
to define an associated average cost functional are considered. In the context of a two-stage stochastic program-
ming formulation, in [CHPT08], the expected value was used as compliance functional. Nonlinear risk measures
like the expected excess, or the excess probability were investigated in [CHP 11]. In [CRST18], the concept of
stochastic dominance was transferred to elastic shape optimization by asking for an object with minimal volume
s.t. compared to a given benchmark shape the stochastic dominance constraints given by nonlinear risk measures
are satisfied.
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Numerical Methods for Elastic Shape Optimization. For a numerical solution scheme to compute an optimal
shape, we have to choose a finite-dimensional representation of the elastic object and a corresponding optimization
algorithm. A discretization of the elastic object with a finite mesh was, e.g., implemented in [SSW15]. Unfortu-
nately, this requires a remeshing in each optimization step, which is algorithmically quite demanding, especially if
the topology of the mesh should change during the optimization process. Level-set functions [CHP*08, CHP* 11]
to represent the domain by the zero-level set, or phase-field functions [PRW12], which are in particular advan-
tageous to approximate the perimeter functional, have turned out to be more practicable. If the optimal shape is
expected to be of a special structure, determining an appropriate set of parameters could simplify the optimization.
For example, in [JKZ98], a simple truss model was investigated. For the optimization algorithm, a naive solution
scheme is the so-called evolutionary structural optimization (ESO) method [XS93], where, starting on a fixed fi-
nite element mesh, those elements with the least contribution to the stiffness are successively removed. Besides,
the bi-directional ESO (BESO) [HX10] also allows inserting elements, which might be useful for a fixed volume
constraint. However, there is no guarantee that these schemes provide an optimal shape, and, in particular, the so-
lution is mesh-dependent. The homogenization method [ABFJ97] makes use of an explicit formula for an optimal
microstructure in linear elasticity, which is given by sequential laminates. Algorithmically, homogenization was
used to alternatingly optimize the microstructure and the density on the macroscale. Instead of using the optimal
laminate microstructure, the solid isotropic material with penalization (SIMP) method [Ben89] interpolates the
material value on each element depending on the density function. In this thesis, we make use of first-order meth-
ods, which require to compute the first derivative of the cost functional w.r.t. the elastic object, the so-called shape
derivative. This approach was, e.g., applied in [PRW12] for a phase-field model, which we also take into account
to discretize the corresponding elastic objects appearing in the specific applications. For a volume constraint, in
[AJTO4], a Lagrange multiplier was used. A Cahn—Hillard gradient flow with a volume constraint was considered
in [ZW07] for a multiphase model. Additional inequality constraints were treated by interior-point methods, e.g.,
the thickness of trusses in [JKZ98].

Simultaneous Elastic Shape Optimization. The shape optimization problems described above aim to find an
optimal subdomain representing the elastic object within a larger domain of interest, which then automatically
defines a domain splitting, where the complementary set is considered as void material. In [THDO02, TD04], a si-
multaneous shape optimization problem was investigated by considering the heat conductivity on a subset and the
electrical conductivity on the complementary set. More precisely, the optimal domain splitting was sought, s.t. the
sum of the traces of the associated homogenized tensors is optimized. For this scalar case, it was conjectured that
optimizers are given by domains bounded by periodic minimal surfaces, e.g., the Schwarz P surface. However, in
[Sil07] an upper bound for the sum of the traces of the homogenized tensors was derived, which was numerically
compared with the corresponding value for a Schwarz P surface and a significant difference to this upper bound
was experimentally obtained. In Chapter 7, we propose a similar simultaneous shape optimization problem by
taking into account a novel cost functional depending on specific entries of the homogenized elasticity tensors of
both subdomains. This formulation is motivated by an application in bone tissue engineering, where biologically
degradable polymer implants with a certain microstructure are used as bone substitutes. Incorporating the stiffness
of both subdomains in the optimization process guarantees mechanical stability of the polymer implant as well
as the regeneration of bone on the complementary set. Furthermore, we adapt the model by additional biologi-
cally relevant constraints. In particular, we enforce diffusion constraints on the regrown bone. We show possible
optimized periodic microstructures in Figure 1.3.
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Figure 1.3: Optimized periodic microstructures for bone tissue engineering (here for different material parameters
of regrown bone).
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Shape Design of Thin Elastic Objects. Thin elastic objects are a special class of curved elastic bodies, which
are significantly smaller in one direction. Such thin structures frequently appear in aerodynamics [HZ14, KPRA18,
SS13], where in particular airfoils are optimized w.r.t. the aerodynamic drag. Further applications can be found
in electrostatics [BCO™15] and automotive engineering [Ble14]. From a theoretical point of view, the behavior
of these thin elastic objects has been well-understood via I'-convergence results for vanishing thickness. Different
scalings lead to a membrane theory [LDR95, LDR96] describing tangential distortion on the surface and a bending
theory [FIM02, FIMMO3] taking into account isometric deformations. In numerical simulations, the corresponding
elastic energies have often been combined. Numerous discretization methods have been proposed to approximate
thin elastic objects and their deformations, where the essential difficulty is due to curvature terms in the bending
energy functional involving second derivatives of the deformation. On quadrilateral meshes, nonuniform rational
B-splines (NURBS) [HCBO0S5] allow arbitrary regularity. A fully conforming discretization on triangular meshes
is given by loop subdivision finite elements [COS00]. In practice, methods from discrete differential geometry
have turned out to be extremely efficient [GHDSO03]. To simulate pure bending isometries on plates, in [Bar13] a
numerical approximation scheme was provided by making use of the discrete Kirchhoff triangle (DKT) element
[BBHS80]. The optimal design of shells via composite material lamination was considered in [SLO5]. The finite
mesh itself was optimized in [BC18] by taking into account loop subdivision surfaces and linear elasticity as in
[COSO00]. In [VHWP12], NURBS were investigated to construct self-supporting surfaces. In Chapter 8, we study
shape optimization problems for thin elastic objects. To describe a material distribution, we use a phase-field
discretization. Then we investigate different elastic energies, in particular, nonlinear elasticity and an isometry
constraint. In Figure 1.4, we depict optimal designs.

Figure 1.4: Optimal material distributions on a thin plate under certain volume conditions (here for different
volume constraints). The hard material is colored in orange.
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Chapter 2

Mathematical Preliminaries

The following chapter is mainly considered to fix overall terminology and notation. In this thesis, we investigate
many different objects, e.g., images, graphs, rods, plates, shells, and solids. For mathematical modeling of these
objects, we take into account different function spaces, possibly also including a time component. Especially, we
make use of the space of Radon measures, which we introduce in Section 2.1. Further relevant function spaces are
defined in Section 2.2. Finally, we consider the concept of I'-convergence in Section 2.3, which plays an important
role throughout this thesis. For a more detailed introduction, we refer the reader to the books [FL07], [EG15],
[AFPOO0], [Alt16] for functional analysis and [Bra06], [DM93] for I'-convergence.

2.1 Radon Measures

In the following, we define the space of Radon measures and summarize some essential properties. We start to
recall basics from measure theory. In particular, we define measures on a generic set X with a g-algebra &  P(X).

Definition 2.1.1 (Measures and Total Variation). Let X be a nonempty set.

1. On a measure space (X, &) amap u: & — [0, o0] is a positive measure if y() = 0 and p is o-additive on
&. If the same holds foramap v: & — R, we call it a signed measure. Moreover, v: & — R™ with m € IN
is a vectorial measure if each component is a signed measure.

2. Letv: & — R be a signed measure. Then the total variation |v|7y for E € & is given by

[v|rv(E) := sup { Z [v(Ey)| : E = U E, for E, € & pairwise disjoint}
nelN nelN

and defines a positive and finite measure (see [AFP00, Theorem 1.6]). For a vectorial measure v: & — R"
we define the total variation by |[v|rv(E) := > i1 |[viltv(E).

We remark that there are different terminologies used in the literature, where a measure might denote either
a positive or a signed measure. Furthermore, some approaches are based on so-called outer measures, which are
defined on arbitrary subsets (e.g., in [EG15]).

Now, to define Radon measures, some topological information on the set X is required. Then, we denote by
% (X) the Borel g-algebra, which is defined as the smallest g-algebra on X containing all open sets. Due to our
applications, we restrict to the case that X = D — R is a subset of IR?.

Definition 2.1.2 (Radon Measures). Consider the measure space (D, %(D)) for D € Z(R*).

1. A positive measure u: #(D) — [0, 0] is a positive Radon measure if p(K) < oo for all K < D compact.
A signed measure v: #(D) — R is a signed Radon measure if |v|7y is a positive Radon measure and
a vectorial measure v: #(D) — R™ is a vectorial Radon measure if each component is a signed Radon
measure.
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2. We denote by

(a) .4 (D) the set of all positive Radon measures,
(b) . (D) the set of all signed Radon measures, and
(c) #(D,R™) the set of all vectorial Radon measures.

In the following, we further restrict to a compact set D — RRY. Then a positive Radon measure is just a
finite Borel measure and thus a signed measure. An important characterization of Radon measures is given by the
following duality result, which allows us to identify the space of signed Radon measures .# (D) as the topological
dual of the space of continuous functions C(D) endowed with the norm | f|c(py := sup,p, | f(x)].

Theorem 2.1.3 (Duality of Radon Measures). Let D < R? be a compact set. Then every bounded linear functional
L: C(D) — R is represented by a unique signed Radon measure v € .# (D) in the sense that

L(f)=Lfdv Vfe C(D). @.1)

Conversely, every functional L of type (2.1) for v € .# (D) is a bounded linear functional on C(D).
Proof. See [FLO7, Theorem 1.196]. O

Hence, a sequence of Radon measures (vy,),en < # (D) converges weakly-* to v € .# (D) if

J fdvn—>j fdv VfeC(D).
D D
Furthermore, since C(D) is a separable space, every bounded sequence (v, )yen < # (D) of signed Radon mea-
sures has a weakly-* converging subsequence (see [Alt16, Theorem 8.5]).
2.2 Function Spaces
Here, we summarize several properties of Sobolev functions and functions of bounded variation.
In the following, let D — IR? be a domain. First, for k-times continuously differentiable functions f g€ ck (5)

.....

Lebesgue and Sobolev Functions For a measurable function f: D — RY, we recall the norms

1
4
Wivo = ( [ e ax) forp e [1,),
| fll Dy := esssup |f(x)| =inf{C >0 : |f(x)| < Cfora.e.xe D},
D
Xe )
m P
I Flwesoy 1= (Z ||Dkf|’;,(m) formeN, pe L),
k=0
[ flwmee py = max ID*fl= () forme N,
where the derivatives appearing in the definitions of the Sobolev norms | - |lwm=rp) for p € [1, 0] have to be

understood in the distributional sense.

We say that D — R has Lipschitz boundary, if for all x € dD there exists a neighborhood U of x and a
Lipschitz function L: R*! - Rst. DU = {y=Ww1,.-.,ya)eU : ya>L(y1,...,Y4-1)}. Then, we define
the space W, ¥ (D) as the closure of C°(D) w.r.t. the W™#(D)-norm.

Later, we make use of the following two theorems.
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Theorem 2.2.1 (Korn’s Inequality). Let D < RY be a domain with Lipschitz boundary. Then there is a constant
c>0s.t

DUl ) < ¢ (o) + ez o)) 22)

forallu e W'"*(D,R"). Here, ¢(u) := DHTD"T denotes the symmetrized gradient.
Proof. See [Nit81]. m]
Theorem 2.2.2 (Sobolev Embedding). Let D R be a domain with Lipschitz boundary.

1. Letmy > my € Nandpy,p2 € [1,0) withmy — £ > mp — £.
Then the embedding id: W™ (D) — W™F2(D) is continuous and compact.

2. LetmeINy, keN,pe[l,00), anda € [0,1] s.t. m — % >k+a
Then the embedding id: W™ (D) — C**(D) is continuous and compact.

Proof. See [Alt16, Theorem 10.9 and Theorem 10.13]. m|

Functions of Bounded Variation Next, we introduce the space of functions of bounded variation.
Definition 2.2.3 (Functions of Bounded Variation). Let D c IR be a domain.

1. The space of functions of bounded variation is defined by

BV(D) := {ue LY(D) : Due .#(D,R") for the distributional gradient} .

2. For u € BV(D) the norm is given by |[u| gy p) = [u[ . p) + [Dulrv(D).

3. For a sequence u; € BV(D) and u € BV (D) we say that 1y converges weak-* to # in BV if uy — u strongly
in L'(D) and Duy = Du in . (D, R%).

Then the following embedding theorem holds.

Theorem 2.2.4 (Embedding in BV). Let D — R? be a domain with Lipschitz boundary and let 1 < p < 75
Then the embedding id: BV (D) — LP(D) is continuous and compact.

Proof. See [AFP00, Theorem 3.47]. |

2.3 TI'-Convergence

Many problems appearing in this thesis result in minimizing an energy functional &: X — R U {c0} on some
metric space X. Typically, to approximate a minimizer of &, we take into account a finite space X; < X and a
suitable functional &;: X;, — R u {c0}, s.t. we can numerically compute a minimizer of &,. Further functionals
considered in this thesis similarly arise as limits of functionals &, : X, —» R u {00} for i — 0. However, the
convergence of &, — & in a common topology of the functionals is a too strong requirement, but we are only
interested in the convergence of the minimizers of &, to the minimizer of &. This can be established by using the
concept of I'-convergence.

Definition 2.3.1 (I'-Convergence). Let (X, d) be a metric space and E: X — R U {00} for k € IN. We say that the
sequence of functionals (Ex)ken I'-converges to a functional &: X — R U {00} if

1. the I'-liminf condition holds, i.e., for all (xy)ken < X with x; — x € X we have

E(x) < lign inf & (xx), (2.3)
—00
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2. and the I'-limsup condition holds, i.e., for all x € X there exists a sequence (X )ken < X With X — X s.t.

&E(x) = lim sup E(xx) . 2.4

k—o0

Note that (2.3) implies that we actually have equality in (2.4). The sequence satisfying E(x) = limy_, o Er(xk)
is called a recovery sequence.

Definition 2.3.2 (Equicoercivity). Let (X,d) be a metric space and E;: X — R u {0} for k € IN. The sequence
of functionals (Ex)ken is equicoercive if for all 7 € IR there is a compact set K, < X s.t. {x € X : E(x) <rVke
N} c K,.

Thus, for a sequence (Xx)ken With uniformly bounded energy Ex(x;) < 7, the equicoercivity condition implies
convergence of a subsequence x;, — x € X. Together with the I'-convergence, this guarantees that minimizers of
&y converge to a minimizer of &.

Theorem 2.3.3 (Fundamental Theorem of I'-Convergence). Let (X, d) be a metric space and E: X — R u {0}
Sor k € N. We assume that the sequence (E)keN is equicoercive and T-converges to &: X — R u {o0}. Then

min&(x) = lim inf E(x).

xeX k—o0 xeX
Proof. See [Bra06, Theorem 2.10]. m]

Consequently, if a sequence x; — x* is asymptotically minimizing, i.e., it satisfies Ex(x;) = infyex E(x) +
0(1), then x* is a minimizer of &.

Later, we make use of the following lower semi-continuity result, which allows proving the I'-liminf inequal-
ity (2.3) for a large class of functionals.

Theorem 2.3.4 (loffe). Let D = RY be open and bounded. Furthermore, let f: D x RPY1 — [0,00] be a
measurable function, s.t. (s,z) — f(x,s,z) is lower semi-continuous for a.e. x € D and z — f(x,s,z) is convex
forany x € D and any s € RP. Then, for sequences uy, — u strongly in L' (D, RP) and v, — v weakly in L' (D, RY),
we have

J flx,u,v) dx < liminff £, up, o) dx.
D D

h—0

Proof. See [AFP00, Theorem 5.8]. O
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Chapter 3

Foundations in Optimal Transport

The first part of this thesis is concerned with two different types of optimal transport distances, where we primarily
focus on numerical methods to compute corresponding geodesic interpolation paths. In this chapter, we first
give an introduction to the basic theory of optimal transport and related mathematical foundations. In particular,
in Section 3.1, we define the L2-Wasserstein distance on the space of Borel probability measures. To compute
solutions for this classical optimal transport distance, various algorithms have been developed, which we partially
summarize in Section 3.2. Furthermore, since in Chapter 4 and Chapter 5 we intensively make use of so-called
proximal splitting methods, we collect the related concepts from convex analysis.

3.1 The Classical Optimal Transport Problem

In the following, we introduce three different formulations of the optimal transport problem, namely those of
Monge, Kantorovich, and Benamou—Brenier. For transport costs given by the Euclidean distance, this leads us to
the corresponding Wasserstein metric on the space of Borel probability measures. Moreover, we briefly discuss
gradient flows on the Wasserstein space and the fundamental connection to the heat equation. For a more general
overview of the theory of optimal transport, we refer the reader to the well-established books [AGSO0S8, Sanl5,
Vil03, Vil09].

3.1.1 Monge’s Formulation

A first version of the optimal transport problem was already formulated in 1781 by Monge [Mon81], who asked for
the minimal cost to transport a pile of sand into a hole of the same volume. For a mathematical model, source and
sink are described by Borel probability measures 14 € Z?(X) and up € Z(Y), where we restrict to the case that
X,Y < R? are compact sets. To define a transport of the mass represented by the measure Ua, we take into account
a transport map T: X — Y. Then, to guarantee that the mass is transported by T to a distribution corresponding to
the measure pp, a matching condition is required.

Definition 3.1.1 (Pushforward). Let y € &(X) and T: X — Y Borel measurable. We define the pushforward Tyu
of u through T as

Tyu(E) := w(T~'(E)) forallEe B(Y). (3.1)

We say that a transport map T matches ua to up if Tyua = pp. Moreover, a transport cost functionc: X x Y —
[0, 0] describes the cost to move a particle from a position x € X to a position y € Y. Then Monge’s problem in
its general formulation is to find a transport map T having minimal transport cost, which is given by

inf {J c(x,T(x)) dpa(x) : T: X — Y Borel measurable, Typia = yg} . (3.2)
X

We focus on the case that X = Y = D for a compact and convex domain D — R¥. Note that the set of all Borel
probability measures on D is defined as a subset of positive Radon measures

(D) = {ue.4*(D) : w(D)=1}.

13



14 CHAPTER 3. FOUNDATIONS IN OPTIMAL TRANSPORT

By duality of Radon measures (see Theorem 2.1.3), the matching condition (3.1) is equivalent to

|, 716 duae) = | s dunt) v e o).

Furthermore, we restrict the transport cost function to the Euclidean distance c(x, y) = |x — y|*>. Because of the
convexity assumption on the domain D, the distance on D is induced from the distance on R?.

Remark 3.1.2. For nonconvex domains, we could take into account the path length from x to y. More generally,
we could define Monge’s problem for underlying smooth manifolds or even on separable complete metric spaces,
so-called Polish spaces, by using the squared distance as transport cost. For noncompact domains, we have to
restrict the space of Borel probability measures to guarantee that the integral §y c(x, T(x)) dpa(x) is finite. A
sufficient condition in the case of the cost function ¢(x, y) = |x — y|? is to require bounds on the second moment,

o i, pip € Po(X) = {pe P(X) : §y x du(x) < o).

Unfortunately, Monge’s problem (3.2), in general, does not admit existence nor uniqueness.
Example 3.1.3 (Nonexistence and Nonuniqueness for Monge’s Problem).

1. Let D = [-1,1], pa = 6o and up = —(5 1 + 01), where 6, denotes the Dirac measure at the point p € D.
Then there does not exist a transport map T between 14 and ug, since otherwise

0) = | £ dTapale) = || F) dun(x) = 3(7-1) + £(1)

for all f € C(D). In other words, we cannot split a single point.

2. LetD = [0,1]% ua =
map (0,0) to (0,1) and

00,0y + 0@1,1)) and up = (6 1,0) + O(0,1y)- Then an optimal transport map could

1
5(6
(1,1) to (1,0), but also the oppos1te way is optimal.

3.1.2 Kantorovich’s Relaxation

To cope with the existence problem, Kantorovich [Kan42, Kan48] proposed a relaxation of Monge’s formulation
by embedding the transport map T: D — D between u, and up into the product space D x D by considering a
so-called transport plan 77 = (id x T)gua. Since T fulfills the pushforward matching condition (3.1), the transport
plan 7t satisfies the marginal constraints

(proj, )47 = ua and  (proj,)sm = ug,

where proj; for i = 1,2 denotes the projection on the i-th component. More generally, we define the set of all
Borel probability measures on the product space with marginal constraints by

(ua, pp) = {1 e Z(D x D) : (proj, 47 = pa, (Proj,)sm = s} -

Then Kantorovich’s problem is given by

inf {L Dc(x, y)dn(x,y) : mell(ua, pB)} (3.3)

and the following existence result holds.

Theorem 3.1.4 (Existence of Solutions). Suppose that c: D x D — R u {0} is lower semi-continuous and
bounded from below. Then Kantorovich’s problem (3.3) admits a solution.

Proof. See [San15, Theorem 1.5]. m]

Under the condition that the initial measure p4 is absolutely continuous w.r.t. the Lebesgue measure on D,
uniqueness of the optimal transport plan can be established by applying Brenier’s polar factorization result [Bre91],
which allows decomposing a density function into a gradient of a convex function up to a concatenation with a
measure-preserving map. In this case, the solution to Monge’s and Kantorovich’s problem coincide.



3.1. THE CLASSICAL OPTIMAL TRANSPORT PROBLEM 15

Theorem 3.1.5 (Brenier’s Polar Factorization). We consider the specific transport cost function c(x,y) = |x — y|>.
Let pia, up P (D) with ua = pa<p for a density function pa. Then there exists a unique optimal transport map
T solving Monge’s problem, and T = V1 is the |is-a.e. unique gradient of a convex function 1. Moreover, the
unique optimal transport plan solving Kantorovich’s problem is given by m = (id x Vi)gpa.

Proof. See [San15, Theorem 1.22]. O

In the case c(x, y) = |x — y|*, the relaxed problem (3.3) defines a metric on the space of Borel probability
measures, the so-called L2-Wasserstein distance.

Definition 3.1.6 (Wasserstein Distance). Let ua, g € &(D) be two Borel probability measures. We define the
L*-Wasserstein distance ‘W between 4 and pp by

W(ua, up) = inf {L ; |x — y|2 dn(x,y) @ meIl(ua, pg)} . (3.4)

We refer the reader to [San15, Proposition 5.10] for a proof that ‘W is indeed a metric on (D). Moreover,
W metrizes weak-*-convergence on & (D) (see [Sanl5, Theorem 5.10]). Regarding a numerical optimization
scheme to compute an optimal transport plan solving Kantorovich’s problem (3.3), it is useful to consider the
corresponding dual formulation

sup { f f(x) dpa(x) + J g(y) dus(y) = (f,8) € C(D) x C(D), f(x)+g(y) <clx, y)} :
D D

3.1.3 Benamou-Brenier’s Fluid Flow Formulation

In [BB0O], Benamou and Brenier transferred Monge’s problem into a continuum mechanics framework and derived
an equivalent representation of the Wasserstein distance (3.4) heuristically. This dynamical formulation takes into
account a curve of probability measures u: [0,1] — Z?(D) connecting p(0) = pa with y(1) = up and a
corresponding Eulerian velocity field v: [0,1] x D — R?. Here, we assume that u is a curve of probability
densities p, i.e., u(t) = p(t).Z for all t € [0, 1]. Then we can formally define the kinetic energy

==

1
Strans(p/v) = J J p(t,x)|v(t,x)|2 dx df.
0 JD

Furthermore, a mass-preserving condition is given by the continuity equation ¢;p + div(pv) = 0, i.e., solutions to
this equation satisfy §, p(t,x) dx = §{,, p(0,x) dx for all t € [0, 1]. We denote by CE(pa, pp) the set of all weak
solutions (p, v) of the continuity equation with initial condition p(0) = p4 and final condition p(1) = pp. It turns
out that Monge’s formulation (3.2) of the optimal transport problem can be rewritten by minimizing the kinetic
energy over all corresponding curves of mass and velocity, which solve the continuity equation, i.e.,

W(paZ,ps2) = inf {Evans(0,9) : (p,) € CEpa, pi)}* - (3.5)

To rigorously formulate (3.5) on appropriate function spaces, the curve u is required to be absolutely continuous
in time. Moreover, the continuity equation has to be defined in a weak sense. Then, one possibility (see, e.g.,
[AGS08, Chapter 8]) is to define the velocity at time # in a the function space depending on the measure p(t) at
the specific time. Later, we apply a different approach by making use of a change of variables. Instead of the
pair mass and velocity (p,v), we consider the pair mass and momentum (p,m = pv). Then it can be shown that
the distance defined by the Benamou—Brenier formulation coincides with the Wasserstein distance (see [Sanl5,
Theorem 5.28]). Furthermore, for an absolutely continuous initial measure ji4 = pa-Zp and an optimal transport
plan = (id x Vip)gu4 as in Theorem 3.1.5, the linear interpolation of the identity and the optimal transport map
V1 under the pushforward w.r.t. ua

p(t) = (1 = t)id + tVip), pa = (id + tv), pa
is the solution to Benamou—Brenier’s problem and satisfies the property of a constant speed geodesic
Wus), u(t)) = [t —s| Wua, ps) Vs, te[0,1].

For now, we consider the definition of ‘W in (3.5) just formally and refer to Chapter 4 for a rigorous formulation
of a generalized optimal transport distance.
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3.1.4 Wasserstein Gradient Flows

In [JKO98], a fundamental connection between gradient flows w.r.t. the Wasserstein metric on R? and the heat
equation was established. First, we recall that for a function F € C!(IR?, R), the solution to the Cauchy problem

x'(t) = —VF(x(t)) fort>0,
x(0) = xg

can be approximated by an implicit Euler scheme

xo :xOI

v —x7? (3.6)

Xi,q € argmin F(x) + 7t forke N,

xeR4

where T > 0 is a fixed step size. Now, we define the entropy functional H : L' (IR%, [0, %0]) — R U {0} by

Hlp) = |, p(x)log(p(x)) dx.

More generally, for a smooth potential V, we consider the functional ¥ (p) = H(p) + §« V(x)p(x) dx. Motivated
by the finite-dimensional and smooth case in (3.6), the so-called minimizing movement scheme is defined by the
iteration

Po = pPo,

Pl e argmin  F(p)+ =W(p,pl)? forkeN. 3D

pe P (RY) : u=p.& 2t

It was shown in [JKO98, Proposition 4.1] that for an absolutely continuous initial condition, there is a unique dis-
crete solution trajectory (py )kew- Furthermore, in the limit T — 0, the following interpretation as the Wasserstein
gradient flow of F was given.

Theorem 3.1.7 (Gradient Flow of Entropy). Given g € 2(R?) with g = po£* and F (po) < 0. Let (p} )keN
be the discrete solution trajectory obtained by (3.7) and define p* (t, x) = p;(x) for t € [kt, (k+1)7). Then p* — p
in L"(Ry x RY) for t — 0, where p € C*((0,00) x RY) is the unique solution to the Fokker-Planck equation
op — Ap — div(pVV) = 0 with p(t) — po in L for t — 0.

Proof. See [JKO98, Theorem 5.1]. O

Note that in the special case V = 0 we recover the heat equation 6;p —Ap = 0. For a more detailed introduction
to Wasserstein gradient flows, we refer the reader to [San15, Chapter 8], where, in particular, further examples of
partial differential equations and corresponding energy functionals are summarized.

3.2 Numerical Methods for the Classical Optimal Transport Problem

Numerous applications have led to plenty of computational methods to solve the optimal transport problem at least
for some special cases. Here, we first give a brief overview of numerical algorithms and collect the basic ideas
corresponding to the different formulations of the optimal transport distance. Later, we study optimal transport
distances based on the Benamou—Brenier formulation (3.5), which has already been used in [BB0O] for the numer-
ical purpose by applying a suitable change of variables. Then, the optimal transport problem turns into a convex
optimization problem, which is solved via an augmented Lagrangian and duality techniques from convex analysis.
In [PPO14], it was shown that a proximal splitting algorithm leads in fact to the same optimization scheme, which
requires to solve a linear system corresponding to an elliptic problem on the time-space domain and pointwise
projections onto a convex set. Here, we introduce the basic concepts from convex analysis, which are necessary
for a proximal splitting algorithm.
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3.2.1 Overview of Numerical Methods for Optimal Transport

1D Case. In the one-dimensional case, on an interval [2,b] < IR, the optimal transport map between pi, tp €
Z([a,b]) can be computed explicitly. Given any u € Z?([a,b]), the cumulative distribution function C,(x) :=

* du is monotone, and thus, has a so-called pseudo-inverse c! :=mini{x € [a,b] : y<C,u(x)}. Then, an
o G w Y y H

optimal transport map for Monge’s problem is given by T = C;Bl o Cy,,. We refer the reader to [San15, Chapter 2]
for a detailed discussion.

Empirical Measures. Next, we consider the particular case that both measures L4, up € @(]Rd) are finite
sums of weighted Dirac measures, i.e., there are finitely many points x; € R? fori = 1,...,N and yj € R? for

j=1,...,M and corresponding weights « € IR>O, Be ]RI;/[O with YN oy = Z?il Bjs-t.

N M
Z aidy,  pp(x) = Zﬁjéw‘
i—1 i=1

For a cost function ¢, we can define an associated cost matrix C € RN*M with entries Cij = c(xi,y;). Then
solving the Kantorovich problem (3.3) turns into minimizing the Euclidean scalar product (P, C) over all couplings
P eTIl(pa, us) = {P € ]RIXXM : Ply=a, PT1y = ﬁ} where we denote by 1y the vector in RN with all entries
equal 1. Thus, the optimal transport problem becomes a linear program in NM variables with N + M constraints.
Note that in the case N = M and a; = f; for all 7, j, this even simplifies to a simple sorting problem. In the general
case, the linear program in the dual formulation

max {(f,a) + (g, ) : (f,g) € RN x RM with f; + ¢; < C;;} . (3.8)

can, e.g., be solved by the Auction algorithm [BE8S].

Cyclical Monotonicity. For empirical measures, Schmitzer [Sch16a, Sch16b] proposed a sparse multiscale al-
gorithm by making in addition to the linear program formulation (3.8) use of the cyclical monotonicity property,
which states that for an optimal transport plan Y. the support supp (y) is c-cyclically monotone, i.e., for all k € IN,

,,,,,

Entropy Regularization. In [BCC*15], the entropy functional H(P) = — >N, Z?L Pij(log(P;j) — 1) was
added as a regularizer to the Kantorovich formulation for discrete measures, i.e., for a regularization parameter
¢ > 0, the optimization problem

min {(P,C) — eH(P) : PeIl(ua,ug)} (3.9)

Cii
was investigated. By considering the associated Gibbs kernel with entries G;; = e~ = and defining the Kullback—

Leibler divergence as
M
S () )
— l ]

KL(P|G) =

Mz

—_

i=

_
—.

the problem (3.9) can be written as
min {eKL(P|G) : PeTIl(ua, us)} -

Then optimizing the corresponding dual problem was solved by Sinkhorn’s algorithm, which only performs matrix-
vector-multiplications. Here, the sparsity of the matrix and thus, the speed of convergence depends on the regular-
ization parameter ¢. For ¢ — 0, it has been shown in [PC17, Proposition 4.1] that solutions to the regularized prob-
lem converge to the optimal transport plan with maximal entropy. An entropy regularization was also applied in
[Pey15] for the numerical computation of Wasserstein gradient flows and in [PCS16] for the Gromov—Wasserstein
distance between two metric spaces, which was introduced by Sturm [Stu06a] using a Kantorovich formulation.
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Semi-Discrete Optimal Transport. In the so-called semi-discrete case, we consider the optimal transport prob-
lem between a density pia = pa-Z and an empirical measure yp = Zfil Bi0y,. Based on Monge’s formulation,
Merigot [Mér11] used a geometric approach by optimizing weighted Voronoi cells. This approach was also applied
in [Lév15] for tetrahedral meshes in 3D.

Polar Factorization. In [HZTAO04], the optimal transport map T was computed by making use of the polar
factorization result by Brenier [Bre91]. For simplicity, the domain was restricted to be the unit square, where an
explicit construction of an initialization Ty s.t. us = det(DTo)ug o Ty is computable. Then, provided that (To)#1a
is absolutely continuous, the polar factorization admits a unique decomposition Ty = (VW) o 59, where Wy is a
convex function and sy is a measure-preserving map. Finally, a gradient descent method was applied to remove the
measure-preserving part and consequently obtained an optimal transport map.

Monge-Ampere Equation. Solving the optimal transport problem numerically by solving the Monge—Ampére
equation was studied in [LROS, BFO10, BFO10]. Note that in general even for absolutely continuous densities
the optimal transport map T does not have to be a homeomorphism. However, under the assumption that T is an
orientation-preserving diffeomorphism, the matching condition in (3.1) for measures pisa = pa.£ and ug = ppZ
becomes pa = det(DT)pp o T. Using the property of the optimal transport map being a gradient of a convex
function T = V1, we arrive at the Monge—Ampére equation p4 = det(D*)pg o (Vi)).

3.2.2 Convex Optimization

Now, we introduce the basic concepts of convex analysis, where we focus on proximal splitting algorithms. We
refer the reader to [BC17] and [ET99] for a more general introduction.

In the following, let H be a Hilbert space. First, we recall basic definitions.
Definition 3.2.1. We say that f: H —» R u {0} is
1. proper if dom(f) := {xe H : f(x) < oo} # &,
2. convex if f(tx + (1 —t)y) <tf(x) + (1 —t)f(y) forall x,y € H, t € [0,1], and
3. lower semi-continuous if f(x) < liminfy_,q, f(x;) for all xx — x.
Furthermore, we denote by I'g(H) the set of all proper, convex and lower semi-continuous functions on H.

Our main goal is to provide appropriate tools to find a solution to the minimization problem
minimize J (x) = ¥ (x) + G(x) overallx e H,

where the algorithm essentially makes use of the splitting of a functional J into ¥ € I'y(H) and G € T'o(H).

Remark 3.2.2. More generally, we can develop the following concepts for a functional J(x) = F (Kx) + G(x)
with a linear operator K: H — H. Most of the here presented tools can also be extended to Banach spaces. Since
this is not necessary for our applications, we restrict to Hilbert spaces and the case K = id.

We point out that J does not have to be differentiable, s.t. numerical methods involving a gradient like a
gradient descent cannot be applied. Instead, we introduce more general techniques, where it turns out that functions
in T'g(H) are so-called subdifferentiable.

Definition 3.2.3 (Subdifferential). Let f: H — R U {co} be proper and convex. Then the subdifferential of f in
x € H is defined by

of(x) =z H : (y—x,2)< fly) - f(x) Yy e H} .

We call f subdifferentiable at x if df(x) # .
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It can be verified that a function f € T'o(H) is subdifferentiable (see [BC17, Theorem 9.20]). Then Fermat’s
rule (see [BC17, Theorem 16.3]) generalizes the necessary condition Df(x) = 0 for a minimizer x of a smooth
function. Indeed, x is a minimizer of f if and only if 0 € df(x). Since the subdifferential 0. (x) might, in general,
be challenging to compute, we take into account the so-called proximal mapping.

Definition 3.2.4 (Proximal Mapping). For f € I'i(H), the proximal mapping is defined as
1
prox,(x) = argmin 5 |x — y| + f(y)-
yeH 2

Then we have the following relation between the proximal mapping and the subdifferential.

Proposition 3.2.5 (Relation between Proximal Mapping and Subdifferential). Ler f € To(H) and let x,p € H.
Then

p= proxf(x) s x—pedf(p).
Proof. See [BC17, Proposition 16.44]. i

Now, similar to a gradient descent method, proximal point algorithms iteratively perform proximal operators
to obtain a sequence, which converges to a minimizer of J. In many applications, a closed-form expression of the
proximal operator of J is not available, but J admits a splitting into functions # and G as above, s.t. the proximal
operators of ¥ and G can be computed explicitly. Then, in the optimization scheme, these proximal operators of
F and G are applied alternatingly, where specific step sizes are given according to an appropriate fixed point map.
Here, we present two widespread proximal splitting algorithms, which we use for our applications in Chapter 4
and Chapter 5.

Theorem 3.2.6 (Douglas—Rachford Splitting Algorithm). Let ay € H be an initial value, A € (0,2), and y > 0.
The iteration of the Douglas—Rachford splitting algorithm is defined for n € IN as

b"+1 = proxyg (an) 7
(3.10)
Ap41 = Ap + A (PI‘OX),gr (Zbl’H—l - an) - bn+1) .

Then both sequences (ay) e and (bu),en, converge to a minimizer of J.
Proof. See [EB92]. m]

Furthermore, the algorithm developed by Chambolle and Pock [CP11] makes use of the convex dual formula-
tion of the actual minimization problem. Therefore, we define the Fenchel conjugate.

Definition 3.2.7 (Fenchel Conjugate). For a function f € I'o(H) we define its Fenchel conjugate f* by
fH(y) = sup{y,0m — f(x).

xeH

Theorem 3.2.8 (Chambolle-Pock Algorithm). Let (ag,by) € H x H be two initial values and set ¢co = ap. Fur-
thermore, let A € [0,1] and 1,0 > 0 s.t. to < 1. The iteration of the Chambolle—Pock algorithm is defined for
n €N as

buy1 = Prox, gy (by +0cy) ,
An1 = ProX g (@n — Thyt1) , (3.11)
Cos1 =y + Ay —ay) .

Then the sequences (ay),cn and (cn),en converge to a minimizer of J.

Proof. See [CP11]. O

A priori, computing prox = might be easier to compute prox ¢ or vice-versa, but the following theorem allows
computing one of these expressions if the other one is known.
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Theorem 3.2.9 (Moreau Decomposition). For f € I'o(H) and a > 0 we have the following identity

X
Prox,(x) + ProXi (a) =x.

Proof. See [BC17, Theorem 14.3]. O

Now, we discuss the example of an indicator function of a convex set, which we frequently apply in the sequel.

Example 3.2.10 (Proximal Map of Indicator Function). Let K — H be a closed and convex set. Recall that the
indicator function is given by

T _ 0 ifxek,
K= ek

Then

.1 .
prox;, (x) = argmin EHX — yH%{ = projg(x),
yek

where proj, denotes the orthogonal projection on K w.r.t. the norm || - ||y on H.

Moreover, we give a characterization of the projection onto a convex set by taking into account the so-called
normal cone.

Lemma 3.2.11 (Characterization of Projection by Normal Cone). Let K = H be a nonempty, closed, and convex
set. For p € H we define the normal cone by

{xeH : (y—px)<0VyeK} ifpek,

(%] otherwise .

Nk(p) == {

Then the projection of p onto K is characterized by

P" =projg(p) < p—p"eNc(p”).

Proof. See [BC17, Proposition 6.47]. O

3.2.3 Application of Proximal Splitting Methods to the Flow Formulation

Now, we demonstrate how a proximal splitting algorithm can be applied to solve the optimal transport problem
numerically. Here, we take into account the Benamou—Brenier formulation (3.5), which we first have to transform
into a convex optimization problem. Therefore, we make use of a change of variables by considering, instead of
the pair mass and velocity (p, v), the pair mass and momentum (p, m = pv). This change of variables was already
performed in (3.5) for the numerical purpose. Then the optimization problem (3.5) becomes

1
W(pal,ppL)? = inf{[ J O(p,m)dxdt : (p,m)e CE(pa, pg)} . (3.12)
0o Jp

Here, the integrand of the kinetic energy |v|?p transforms pointwise into
P =0
p

D(p,m) = (3.13)

0 if(p,m) =0,

0's) otherwise,
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with the advantage that @ is lower semi-continuous, convex and 1-homogeneous. Furthermore, the continuity
equation d;p+div(pv) = 0 simplifies to a linear equation J;p+div(m) = 0. Thus, the optimization problem (3.12)
is convex. Moreover it can be written as minimizing a functional J = ¥ + G with a splitting into the functionals

7:(()/ m) = ICS(;)A,[?B) (p/ m) 4

1
= J J D(p, m) dx dt = Eyans(p, m) .
0 Jp
Thus, provided that prox and proxg can be computed explicitly, we can apply a proximal splitting algorithm.

For a fully numerical scheme, in [PPO14], a staggered grid discretization was proposed, whereas in Section 4.5,
we use a finite element discretization. Here, we do not describe a specific discretization of the functions p and
m, but rather mention that for the concrete implementation, it is essential that prox, can be performed pointwise.
We comment on that in the corresponding applications in Chapter 4 and Chapter 5. Furthermore, it turns out hat
proxg requires to solve an elliptic problem on the time-space domain.

Proximal Map of Kinetic Energy

First, we identify pointwise the Fenchel conjugate of the function ®.

Proposition 3.2.12 (Fenchel Conjugate of Kinetic Energy). For the function © defined in (3.13) we have that
O* = I g is an indicator function of the convex set

2
B={(p,m)e]R><le : p+@ 0}. (3.14)

Proof. See [BBOO]. m|

Then, using Moreau’s identity, prox,, can be computed by projecting onto the convex set 8, which we now
describe explicitly.

Lemma 3.2.13 (Projection onto B). The projection of a point (p,m) € R x R? onto the set B is given by

(p,m) if (p,m) € B,

. _ pr Pr —
projg(p,m) = (p”,m"”) <p+1§,am> if (p,m) & B

where o € R is defined as the solution of the equation 6°|m|? + 2(1 + p)o — 2 = 0.

Proof. In the case that (p,m)
y: RY — 0B defined as y(b) = ( Ui b) Hence, the vector (1,b) € R**! spans the normal space at a point
m)

(a,b) € 08B. Now, for (p,m) € R x ]Rd we search for the orthogonal projected point (p™, mpr) € 08B, which
satisfies the relation (ppr mP) + t(1,mP) = (p,m) for some T € R. We set 0 = (1 + 7)~!, which leads to
(pP",m™) = (p+1—1,om). Since (p”, mP") € 0B, we obtain o°|m|* + 2(1 + p)o — 2 = 0. O

¢ B, the projection lies on the boundary 08, which can be parametrized by a map

Note that this polynomial equation of order three can be solved by a simple Newton method.

Projection onto Solutions to the Continuity Equation

Next, we show that the projection on the set of solutions to the continuity equation can be computed by solving a
Laplace equation on the time-space domain. Here, we do not specify function spaces, s.t. the following statement
has to be understood rather formally.
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Lemma 3.2.14 (Projection onto CE(pa, ps)). Forp = (p,m): [0,1] x D — R x R? the (formal) projection onto
the set CE(pa, ps) can be computed by

r 1 r 1 r r
PP =p+ V™ = (pm) + (097, 0:9™),
where ¢": [0,1] x D — R solves the weak Laplace equation
Tr1 ~ ~ ~ 1 ~
J f 5Vt @ Vi @ dx dt =J ¢(1)pp — ¢(0)pa dx — f f PV dx dt
0 Jp D 0 Jp

for all test functions gj;: [0,1] x D - R.

Proof. The proof (for rigorous function spaces) can be obtained as a special case of Proposition 4.6.1. O



Chapter 4

Optimal Transport with Source Term

We have seen in Chapter 3 that the Wasserstein distance defines a metric on the space of Borel probability mea-
sures. Now, we are interested in extending this classical optimal transport distance to the space of positive Radon
measures and in particular, defining a metric between two measures of possibly different total mass. Such a gener-
alization is for example motivated by imaging applications, where the Wasserstein distance was used for nonrigid
image registration (see, e.g., [HZTAO04]), but unfortunately input images to be compared are in general not of the
same mass given by the intensity of gray values. Thus, for the classical optimal transport distance, a contrast mod-
ulation on the input images is required before an optimal matching between the input images can be computed.
Even if the total mass of the input images coincides, a global mass redistribution between totally independent
image structures is unfavorable, and instead, we desire local intensity modulations to match similar structures.

In this chapter, we present a possible generalization of the Benamou—Brenier formulation [BB0OO] by introduc-
ing a source term in the continuity equation and penalizing the amount of source in addition to the kinetic energy.
We studied such a model in [MRSS15], where we proposed a penalization of the source in a squared L?-norm both
in time and space. There, the existence of geodesic paths is established, where the framework of Radon measures
is taken into account, and the corresponding measures for mass, momentum, and source term are decomposed
into absolutely continuous and singular parts w.r.t. the Lebesgue measure. To ensure that the definitions of the
energy functionals do not depend on the decomposition, by a lower semi-continuity result on integral functionals
in [BB90, BB92], it turns out that 1-homogeneity of the integrands for the singular measures is a suitable as-
sumption. But then a penalization of the source term in a squared L?-norm both in time and space does not allow
singular sources. Instead, we propose an L'-norm of the source term in space and an L2-norm in time to provide
an equiintegrability estimate, which guarantees compactness in the space of curves of Radon measures. This is, in
particular, desirable in the context of image warping, where, e.g., line segments correspond to singular sources.

This chapter is organized as follows. We formally derive our generalized optimal transport model with source
term in Section 4.1. During the last years, a lot of similar approaches have been proposed in the literature, which
we summarize and compare with our model in Section 4.2. In Section 4.4, we rigorously define the generalized
optimal transport on the space of Radon measures. Here, following [DNS09], we prove the existence of optimal
transport geodesics. As a preliminary step, we summarize important results on curves of Radon measures in
Section 4.3. In Section 4.5, we present a finite element discretization, and in Section 4.6, we show how the
corresponding discrete optimization problem can be solved via proximal splitting methods based on the approach
for classic optimal transport in [PPO14]. Finally, in Section 4.7, we present our numerically computed results for
selected academic examples to discuss the properties of our generalized model, as well as for real texture images.

Remark 4.0.1 (Collaborations and Publications). All results presented in this chapter are joint work with Jan Maas
and Martin Rumpf and have been published in [MRS17]. It is based on a joint work with Jan Maas, Martin Rumpf,
and Carola Schonlieb, which has been published in [MRSS15].

23
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4.1 A Benamou-Brenier Formula with Source Term

In this section, we formally derive a generalized optimal transport distance, which relaxes the mass-preserving
condition. In the following, let D — R be a compact and convex domain. We recall the Benamou—Brenier for-
mulation (3.5) that allows us to compute the L>-Wasserstein distance W pa, Pp) between two probability density
functions p4 and pp by minimizing the path energy

1
Strans(p/ U) = J J p|'0|2 dx dt 4.1)
0 JD

over all curves of density functions p: [0,1] x D — Ry, with temporal boundary constraints p(0) = p an
p(1) = pp and corresponding velocity fields v: [0,1] x D — R s.t. the continuity equation d;p + div(pv) =
is satisfied.

Note that the continuity equation is a mass-preserving condition, which enforces p(t) to remain in the space of
Borel probability measures for every t € [0, 1]. To relax this condition, we introduce a source term z: [0,1] x D —
R in the continuity equation:

Orp + div(pv) = z. 4.2)

Then, the source term is penalized in addition to the kinetic energy. Therefore, we introduce a source term cost

functional
1 2
Ssource(z> = f (J T’(Z) dX) dt. 4.3)
0 D

Here, we propose 7: R — R to be a nonnegative, convex function satisfying 7(0) = 0. Moreover, we assume a
linear growth condition, i.e., there exists a constant C, € R s.t. 7(s) < C,(1 + |s|) for all s € R. Possible choices
for r are given in the following example.

Example 4.1.1 (Functions for Source Term Energy).
1. The absolute value 7(s) = |s| corresponds to the L!-norm in space.
2. For some 3 > 0, the Huber function
1
—s*  ifs<B,
2p
r(s) = 4.4)

Is| — g otherwise,

has linear growth for large s but is quadratic around zero. In our computations, we choose g = 107%.

Altogether, we define a generalized optimal transport path energy functional

1
SO(P/ 0, Z) = ‘Slra.ns (P, U) + gasource(z) (45)

1 1 1 2
:f f p|v\2dxdt+—J (J r(z)dx) dt,
0 JD 0 0 D

which has to be minimized over all solutions to the relaxed continuity equation (4.2) and the temporal boundary
constraints p(0) = pa and p(1) = pg, where p and pp are no longer restricted to have equal total mass.

Later, we show that in a mathematically rigorous setup formulated on the space of Radon measures the linear
growth condition on r allows singular sources. Moreover, the penalty parameter 6 > 0 allows for regulating the
mass modulation rate. Note that for 6 = 0 a pure blending between p4 and pp with zero velocity has minimal
energy, whereas for 6 — o0 transport becomes cheaper. In our computational results in Section 4.7, we verify
these effects of the parameter 6.
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4.2 Relation to Previous Work on Optimal Transport with Source Term

During the last years, there has been a lot of activity in extending optimal transport distances to spaces of densities
or measures with possibly different masses, which we briefly summarize and point out differences to our model.

Partial Optimal Transport. A so-called partial optimal transport model was proposed in [CM 10] by relaxing the
marginal constraint in the Kantorovich formulation. More precisely, it was asked for transporting a fixed fraction
of some initial to a final density function by minimizing the L?-transport cost. This model was analyzed in [Fig10]
by studying the geometry of the subsets which are transported. However, there is no source term involved directly.

Unbalanced Semi-Discrete Optimal Transport. We have discussed in Section 3.2.1 that Wasserstein geodesics
between a density and a discrete measure can be computed by using methods from algorithmic geometry. Recently,
in [BSW18], this approach was extended to the unbalanced semi-discrete optimal transport problem.

Furthermore, there are some optimal transport distances which are based on minimizing a path energy subject
to a continuity equation with a source term and therefore, can be considered as generalized Benamou—-Brenier
formulations. For an L”-norm in time and an L7 norm in space, we introduce the notation

2
1 ;—’ »
ooy (19)(2) 1= ||z<t,->|m(w([o,1])=( L ( f i2(t, )7 dx) dt> “6)

and refer a formulation with such a source term as an L”(L7)-model. In the same manner, for the Huber function
(4.4), the source term cost functional (4.3) is denoted by an L2(H )-model.

L'(L')-Model. In[PR16, PR14], a source term was introduced and minimizers of the path energy

2
1 1
8trans(p/ 'U) + Ssource,Ll (Ll)(z) = f f P|U‘2 dx df + (f J |Z| dx dt)
0 JD 0 JD

subject to equation (4.2) were considered. Then it was proven for absolutely continuous measures p and absolutely
continuous sources z that this geodesic formulation corresponds to solving the problem

inf{|pa — palrv + |ps — pslrv + W(pa, ps) : pa,ps € 4 (D), |palrv = |psl1v},

where the classical Wasserstein distance "M/(ﬁA, ﬁB) is well-defined since §4 and g have the same mass.

L%(L?)-Model. Instead of the squared L!-norm for the source term functional in space, we chose in [MRSS15]
a penalization in the squared L?-norm, i.e., the source term was given by Esource,12(12)- Here, for the moment, we
neglect the penalty parameter 0.

Wasserstein—-Fisher—Rao Distance. In the independent works [CPSV15] and [LMS15], an interpolating dis-
tance between the Wasserstein distance and the Fisher—Rao distance was proposed by minimizing the energy

1
Ewrr(p,v,2) = L Lp(|v|2 + a(z)) dx dt

subject to a continuity equation 0;p + div(pv) = pz. Note that the source term in this model is integrated w.r.t.
the measure given by p. Furthermore, in [CPSV15], a static Kantorovich formulation was formulated and it was
shown that the distance in [PR16, PR14] arises as a special case.

In the following, we observe that the differences of these extended Benamou-Brenier formulations become
crucial by properly extending the energies to the space of Radon measures.
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4.3 Curves of Radon Measures

For a rigorous formulation of the energy functional (4.5), we investigate Radon measures on the time-space domain
[0,1] x D. We desire that these measures should still represent curves, i.e., at a given time step f € [0,1] the
time-space measure is again a measure in space. This assumption leads us to the concept of the disintegration
of measures. Furthermore, we make use of a proper extension result of energy functionals to Radon measure
established in [BB90, BB92]. For a short introduction in basic measure theory, we refer the reader to Section 2.1
and the references therein. In the following, let (X, E) be a complete measure space. Later, in our applications,
we consider X = D being the space domain or X = [0, 1] x D being the time-space domain, where in both cases
X is endowed with the corresponding Lebesgue measure. First, we introduce an advantageous decomposition of
measures.

Definition 4.3.1 (Absolute Continuity and Singularity).

1. Let u be a positive measure and v be a vectorial measure on (X, &). Then v is absolutely continuous w.r.t.
if for any A € & with u(A) = 0 it follows that |v|7y(A) = 0. In this case we write v < p.

2. Two positive measures (1, v on (X, &) are mutually singular if there exists E € & with p(E) = 0 = v(X\E).
In this case we write u L v. We say that vectorial measures y, v are mutually singular, if |u|rv L |[v|rv.

Theorem 4.3.2 (Lebesgue Decomposition). Let u be a positive and o-finite measure on (X, E), and let v be a
vectorial measure on (X, E). Then, there are unique vectorial measures v?,1° s.t. V! « wv Ly, andv =v*+v°
Furthermore, there is a unique function f € LY(X, u)™ called the density of v w.r.t. i s.t. v* = fyL.

Proof. See [AFP00, Theorem 1.28]. m|
Next, we recall the disintegration theorem, where we restrict to a disintegration in time of a time-space domain.

Theorem 4.3.3 (Disintegration in Time). Let u € .#*([0,1] x D) be a positive Radon measure. We consider the
projection projy 112 [0,1] x D — [0,1] on the time interval. If fi := (proj [0,1]># U is a positive Radon measure,
ie, u(K x D) < oo for all K < [0, 1] compact, then there exists a family ()iejo1] < 4" (D) s.t.

1. t— py is fi-measurable,

2. w(D) =1 fi-a.e.,

3. foralln e LY([0,1] x D, u), we have that n(t,-) € L'([0,1], u;) for fi-a.e. t € [0,1],
4. forallne L'([0,1] x D, u), we have that t — §,, n(t, x) du(x) € L'([0, 1], i), and
5. forall e L'([0,1] x D, ), we have that

1
J n(t,x) du(t,x) = J f n(t, x) due(x) dfi(t).
[01]xD 0o Jp

Proof. See [AFP00, Theorem 2.28]. m|

We denote this disintegration by y = [i ® p;. In analogy, the disintegration result holds for vectorial Radon
measures by taking into account the total variation |u|ry = [ ® |pt|rv. Note that we later omit the normalization
pi(D) = 1. In the application, we are interested in verifying the disintegration of a weakly-* convergent sequence
of measures in the limit, which leads us to the definition of equiintegrability.

Definition 4.3.4 (Equiintegrability). Let u be a positive measure on (X, &). A family F = L'(X, u) is equiinte-
grable if

1. for any € > 0 there exists A € & with u(A) < oo and SX\A |fl du < eforall f € F, and

2. for any ¢ > 0 there exists & > 0 s.t. for all E € & with u(E) < 6 we have §, |f| du < e forall f € F.
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The second condition is called uniform integrability. Note that in the cases of interest, the first condition is al-
ways satisfied, since X is assumed to be compact. Now, there are several possibilities to verify the equiintegrability
condition. We use the following characterization.

Proposition 4.3.5 (Characterizations of Equiintegrability). A family F = LY(X, ) is equiintegrable if and only if
Sfor any superlinear function S there exists a constant Cg s.t. for all f € F we have

LS(f(x)) du(x) < Cs < 0.

Proof. See [Sanl5, Chapter 8.3]. O

In particular, if for any p > 1 a family F < L}(X, u) is uniformly bounded in L then F is equiintegrable.
However, this is no longer true for p = 1. This observation is essential for our optimal transport model with source
term. Now, we state the connection between disintegration and equiintegrability.

Lemma 4.3.6 (Equiintegrability implies Existence of Disintegration). Let (" )sen < 4 *([0,1] x D) be a se-
quence of positive Radon measures. We assume that u" = Zjo1) ® yj has disintegrations in time. More precisely,
(u") € M+ (D), t — ul is Borel measurable, and for all ) € L'([0,1] x D) we have S[O,l]xD n(t,x) dp’(t,x) =
S(l] §pn(t x) du*(x) dt. Furthermore, we assume convergence u" ~ 1. We define a sequence (f")nen < L1([0,1])
by f"(t) = uf (D). If (f")nen is equiintegrable, then the limit measure u € .#*([0,1] x D) has a disintegration
u = .,E/ﬂ[orl] ® Ut in time.

Proof. The statement is, e.g., applied in [DNS09, Lemma 4.5], where a similar result in probability theory to prove
the existence of conditional expectation is referred. Here, we briefly collect the arguments in our specific case.

By assumption, the sequence (f")qen is equiintegrable and is uniformly bounded in L'([0,1]), since | "1 =
u"([0,1] x D) and u" is convergent. By the Dunford—Pettis Theorem (see [AFP00, Corollary 1.33]) there is
a subsequence (again indexed by n) s.t. f* — f in L}([0,1]). Then for every 7j € C([0,1]) we have that
Sj0.41xp (1) dpe(t, x) = §j1171(£) f(£) dt. Thus, by Theorem 4.3.3 we obtain a disintegration p = f.Zj,1) ® fi; in
time, which can be rewritten as y = Zjo1) ® f(t){ir =: Zjo1) ® . O

Next, we consider functionals J: L!(X, ]Rd) — R of type
T - | fwdz, @)

where f: R? — R U {0} is supposed to be a proper, convex, and lower semi-continuous function (see Defi-
nition 3.2.1). In [BB90, BB92], a proper extension of the functional J onto the space of Radon measures was
defined. For this purpose, we need the definition of the recession function.

Definition 4.3.7 (Recession Function). Let f: RY > Ru {00} be a proper, convex, and lower semi-continuous
function. The recession function f,,: R? — R U {00} is defined by

) — fim [0 B0~ )

t—o0 t

7

where xq € R? satisfies f(xp) < 0.

Proposition 4.3.8 (Properties of the Recession Function). Let f: R > Ru {00} be a proper, convex, and lower
semi-continuous function. Then the recession function satisfies the following properties.

1. The definition of fx, is independent of xj.
2. fo is convex and lower semi-continuous.
3. fw is 1-homogeneous.

Proof. See [AFP00, Chapter 2.6]. m]
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Then, we can state the following extension result.

Theorem 4.3.9 (Lower Semi-Continuity of the Extended Functional). Let f: RY — [0, 0] be a proper; convex,
and lower semi-continuous function. We consider an open or compact set X < R%. Let u € A" (X) be a positive
Radon measure and v € # (X, RY) be a vector-valued Radon measures. We define a functional

600 += | £ (800) dut)+ | fo (8500) dvirv().

Then G is weak-+ lower semi-continuous, i.e., for any sequence (| )ren of positive Radon measures on X with
* . *
Uk — W and any sequence (Vi)keN of vector-valued Radon measures on X with vi — v we have

G, ) < lim inf G(v, ).

Proof. See [AFP00, Theorem 2.34]. O

Consequently, J can be extended to a functional J: .#(X) — R u {0} by

ff dv d$+me d‘vg‘w d|V ‘TV_J

Wlrv(X), (4.8)

where v = * lower semi-
continuous on .# (X). Moreover, in the case of an absolutely continuous measure v = 1.%, the functional J (v)
in (4.8) coincides with the old definition of J (1) in (4.7).

4.4 Existence of Geodesics for a Generalized Optimal Transport Distance

Now, we propose a measure-valued setup to rigorously define a set of weak solutions for the continuity equation
with source term (4.2) and the energy in (4.5) by taking into account the extension result in (4.8). Moreover, we
prove the existence of corresponding generalized optimal transport geodesics. We follow the lines of [DNS09] for
more general optimal transport distances and of [MRSS15] for a source term in the L?(L2)-norm.

4.4.1 Measure-Valued Formulation of the Path Energy Functional

As for the classical L?-optimal transport problem, we first apply the change of variables (p,v) — (p,m = pv),
where m denotes the momentum. We recall from (3.13) that the integrand of the kinetic energy transforms to

|m‘2 ifp>0
el ,
o p

D(p,m) = .
M =30 it (o,m) —o,
0'e) otherwise,
which is a lower semi-continuous, convex, and 1-homogeneous function.
Additionally to the assumption that D is a bounded, convex domain, we furthermore consider D to be closed,

s.t. by Theorem 2.1.3 duality of Radon measures on [0, 1] x D is given by continuous functions on [0,1] x D.
Then we introduce Radon measures

pe.#*([0,1] x D) for the mass,
ve.#([0,1] x D,RY) for the momentum, and
Ce.#([0,1] x D) for the source.

We start by formulating a generalized continuity equation with source term in terms of these measure-valued
quantities, which are a priori just measures on the time-space domain [0, 1] x D, but we desire that these measures
represent curves of measures on the space domain D. Thus, we incorporate certain disintegration assumptions on
the measures.
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Definition 4.4.1 (Weak Continuity Equation with Source Term). Let pa, ug € .#*(D) be given. A triple of
measures (1, v, C) in the space .Z*([0,1] x D) x .#([0,1] x D,R%) x ///([O, 1] x D) is said to be a weak
solution to the continuity equation with source term

o+ div(v) = ¢, Ho = Ha, {1 = Up,
if the following conditions hold:

1. The measures p, v and C admit disintegrations w.r.t. the Lebesgue measure in time, i.e., there exist measure-
valued functions ¢ ~— y; weak-*-continuous in .#* (D), t — v; Borel measurable in .# (D, R?) with

S(l) |v¢|(D) dt < o0, and ¢ — {; Borel measurable in .# (D) with SO |G|(D) dt < o0, s.t.
1
J. n(t,x) du(t,x) = f J n(t,x) dus(x) dt  Vne L' (p),
[01]xD 0 Jp
1
f n(t,x) dv(t,x) = J j n(t,x) dvi(x) dt VneL'(v),
[01]xD 0 Jp
1
J n(t,x) dC(t,x) = J J n(t,x) dg(x) dt  Vne L'(Q).
[0,1]xD 0 Jp

2. The continuity equation with source term d;u + div(v) = C with boundary values pig = pa and p; = up
holds in the sense of distributions, i.e., for all time-space test functions 7 € C!([0,1] x D) we have

= r <f om(t,x) dpy(x) + JD Vin(t, x) dvi(x J 1t x) dCi(x ))

4.9)
fnlxdus Jn()xduA()

Finally, we denote by CE(pa, pp) the set of all solutions to the weak continuity equation with source term and
temporal boundary data 14 at time t = 0 and up at time £ = 1.

Note that (4.9) means that the continuity equation is implicitly taken with homogeneous Neumann boundary
conditions in space. Moreover, we mention that the source terms C in Definition 4.4.1 are signed Radon measures,
s.t. solutions u to the weak continuity equation (4.9) a priori could become negative as well. However, since we
aim at computing geodesic between nonnegative measures (4, (g € .4 * (D), we also define the measures y to be
nonnegative.

Next, we define the energy (4.5) in terms of measures. To this end, by using the Lebesgue decomposition
(Theorem 4.3.2), we decompose for each t € [0, 1], the triple (u, v¢, () € 4 (D) x # (D, RY) x .# (D) into

[Jt:Pt«iﬂ-FHtL, Vt:mt-iﬂ+1/tl, Ct:Zt«ip-i-Ctl,

s.t. the singular parts u;- € .#* (D), v} € .#(D, RY), and ( € . (D) are singular with respect to the Lebesgue
measure .% on D. Then we define .Z* := pt + v}t Llrv € 4T (D), s.t. Z* is orthogonal to .Z. By
construction, the singular parts admit a density with respect to ,,2”)}:

Hi= 0L v =mp Ly, G =z%".

Furthermore, we make use of the proper extension of a functional to the space of Radon measures as described
in Section 4.3. Note that in our case, the function @ is 1-homogeneous. By the convexity and linear growth
condition of , the recession function r, is well-defined with ro, (1) = C,.

Now, with these decompositions of the measures at hand, we can define the rigorous version of the energy
functional (4.5) in the measure-valued setting. The path energy functional for transport is taken from the Benamou—
Brenier formulation of the L2-Wasserstein distance, i.e., for a fixed time ¢, the kinetic energy in space is given by

-Z)trans([»ltzvt) = JD (D(pfrmt) dZ + J (pt sy ) dgl
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To describe the path energy functional involving the source term, we recall that r: R — IR is a nonnegative,
convex function with linear growth satisfying #(0) = 0. Then, for a fixed time ¢, we define the source term energy
functional in space by

2
Dsource(ct) = (JD T(Zt) d.Z + JD Cr|ZtL| d$L> .

Note that we consider a 1-homogeneous integrand for the singular part of the source measure with the aim to
allow for singular sources with support of the source measure on a set of zero Lebesgue measure. Actually, .,Sftl
depends on pi;, v+ and ;, but by the 1-homogeneity we have in fact |zf-|TVDZl = |Cf‘|TV and CD(ptl, mf-).i”f- =
qD(th-, mf-)(‘uf- + |th-|TV). Therefore, Dyans only depends on (g, v¢) and Diource Only depends on ;. The total
energy functional in space Dy: .#*+ (D) x .# (D, R?) x .# (D) — [0, 0] is defined as

1
Dé (Htr Vi, Ct) = Dtrans ([—ltr Vt) + SDsource(Ct) .

Finally, corresponding to (4.5), we can rigorously define the total energy functional in time and space for measure-
valued quantities by Es: .27 ([0,1] x D) x .4 ([0,1] x D,R?) x .#([0,1] x D) — R U {0} as

1
Es(11,1,C) = L Ds(ue,ve, C) dt - if (u,v,C) € CE(ua, Us),

0 otherwise.

4.4.2 Compactness and Existence Result

Next, we state a compactness result for solutions to the weak continuity equation with source term.

Proposition 4.4.2 (Compactness of Solutions to the Continuity Equation with Source Term with Bounded Energy).
Suppose that a sequence (U",v", (") nen in CE(Ua, up) with temporal boundary values [is and ug has bounded
energy, i.e., there exists a constant C < o0 s.t.

sup &s(u",v", ") < C. (4.10)
nelN

Then, there exists a subsequence (again indexed by n) and a triple (1, v, C) € CE(ua, ig) s.t.
1. forallte[0,1], u = pyin .4+ (D) for n — o,
2. v 2 vin.#([0,1] x D,IR?) for n — o,
3. 0" A Cin.#(]0,1] x D) forn — o, and

4. the following lower semi-continuity estimate holds:
1 1
J Ds(pe, ve, Cp) dt < lim inff Ds(ui, vy, ¢ dt. 4.11)
0 n—oo 0

Proof. Note that the set CE(ua, pg) of solutions to the continuity equation with source term is closed under
weak-* convergence. Consequently, the limit measure (u, v, C) is contained in CE(ua, pp) if the subsequence
(u",v", ") pew of measures converges as stated above. The crucial part of the proof is to show that the limit
measure can be disintegrated and the subsequence converges in the appropriate sense. In the following, C denotes
a generic constant, which may change from line to line.

Step 1: Compactness of the Source Term. Since 7 is of linear growth, we have |z| < C(1 + r(z)), hence

GO = | 1z [ 1EHA@) <0 (14 \/Dane(@)
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Because of the bounded energy assumption (4.10), the function

trs C (14 /Dol @)

is bounded in L%([0, 1]), uniformly in 7. Thus, we obtain a uniform bound for the source term:

1

sup |C"([0,1] x D)| = sup \ct( )ldi < sup | c(1 + 4/z)sm(cg)) dt<C.

nelN nelN nelN

From this estimate, we deduce that a subsequence of ({"),en converges weakly-* to a measure C. Crucial for the
compactness result is that we can disintegrate C with respect to the Lebesgue measure on [0, 1] into a family of
measures (C;)epo1] € 4 (D). Now, the sequence (t — |C!|rv(D)), . is uniformly bounded in L2([0,1]). By
Proposition 4.3.5, this implies an equiintegrability estimate for (t — C}'(D)),e, and as a consequence, we obtain
the requested disintegration (C;)sefo,1] € . (D) of the limit measure C.

Step 2: Boundedness of the Mass. A standard approximation argument (see [DNS09, Lemma 4.1]) shows that
solutions to the continuity equation with source term satisfy, for all 0 < fy < t; <1,

. e ) = | o, 0 (0

h " (4.12)
=f J om(t, x) due(x) dt + J J Vn(t, x) dve(x) dt + J j n(t, x) dC(x) dt
ty JD ty JD ty JD
for all time-space test functions 17 € C!([0,1] x D). In particular, taking 1(t, x) = 1, it follows that
t
i, (D) =y (D) = | G(D) dit. (4.13)
to
This formula (4.13) for the change of mass yields a uniform bound
ui (D) f |Clrv(D (4.14)

foralln e Nandf € [0,1].

Step 3: Compactness of the Momentum. To prove the compactness of the momentum term, we first claim that
the maps (t — [v/|1v(D)),  are uniformly bounded in L([0, 1]), hence equiintegrable. To see this, we follow
[DNS09, Proposition 3.6] to obtain

WD) = [ piriag + | o acg®

é(Lq)(ptn'mbd'g);(Lp ? d"gy*(L ((pi)" (m) ") A2 )(J <p?>Ld<.$t">l>%
<<JD®(p?'m?>d$+J ©((pi) ", (mi) ") d(£") ) (J P dz+f(pt) d(ft”)iy

= (@trans(‘u?,vf))% (#:’(D))% )

where we used the scalar inequality vab + v/cd < +/a + ¢ v/b + d which holds for a,b,c,d > 0. Then, taking

into account (4.10) and (4.14), the uniform bound on (t — v} |ty (D ))n o follows. Using the inequality

1

2

1
Ve ([0,1] x D) < (L |v?|Tv<D>2dt) ,

we infer that the sequence of vectorial Radon measures (v"),en < .#([0,1] x D,IR?) has uniformly bounded
total variation on [0, 1] x D. Therefore, we can extract a subsequence that converges weakly-* to some measure
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v e #([0,1] x D,IR?). Since the sequence (t — [v/|ry (D))
(Vt)te[O,l] € %(D, ]Rd) of v = Qs/ﬂ[(),l] (IR in time.

Note that, without any modifications, the here presented compactness estimate of the momentum variable also
holds for a source term in the L2(L?)-norm (cf. [MRSS15]).

4N 18 equiintegrable, we obtain a disintegration

Step 4: Compactness of the Mass. We show that u* = y; in .+ (D) for n — co. Therefore, we fix 7 € [0, 1],
take 7 € C'(D), and set &(t,x) := Vn(x)x[o(t). Even though & is discontinuous, it follows from general
approximation results (see [AGSO08, Proposition 5.1.10]) that

J JVndv?dt:J Edvnﬁj 5dv:f JVr]dvtdt. (4.15)
o Jo [01]xD [01]xD 0 Jp
Setting 1(t, x) := 1(x)X[0,:](t) and arguing as above, we obtain
JJUdC?dt:J LdC”—>J LdC:JJndCtdt. (4.16)
o Jo [01]xD [01]xD 0 Jp

Now, we can obtain the convergence of a subsequence of (H?)nen\]- By the weak continuity equation (4.12), for a
triple (u",v", C"), we have for all n € C1(D) and all t € [0, 1] that

Jn x) duj (x Jr] x) dua(x JJVT] ) dvi(x dt+JJn dgy(x

Using (4.15) and (4.16), we can pass to the limit

Jq x) duf(x —>f77 x) dpa(x JJVT} dvi(x dt+ffq dci(x Li(n) .

The right rand side defines a linear functional L;: C'(D) — IR. Furthermore, we get from (4.14) the uniform

bound
[ 1 awto

for all 7 € C!(D) and all n € N. By density of C' (D) in C(D), we can extend L; to a linear and bounded functional
on C(D). Hence, by duality of Radon measures (Theorem 2.1.3), this defines for every f € [0,1] a measure y; s.t.
(U} )nen converges weak-* for a subsequence to ;. Then, we can define € .#Z*([0,1] x D) by

< [nllee sup [ (D) < Clnfo (4.17)
te[0,1]

1
f n(t,x) du(t, x) = J J n(t,x) dp(x) dt Ve C([0,1] x D),
[01]xD o Jp

and since the constant in (4.17) does not depend on £, we have that " converges weakly-* to i in .Z* ([0, 1] x D).

Step 5: Weak-* Continuity of the Disintegration of Mass. Finally, we have to check that the disintegration
t — ; is weak-* continuous, i.e., for all 7 € C([0, 1] x D) and for all ty — ¢ we have

| 0 du ) — [ e dua. “.18)
D D

We use that the continuity equation (4.12) is solved for the minimizing sequence:

fﬂtk, ) dp (x) Jntx ) dpt (x)

= fk L om(s, x) duf (x) ds + fk JD Vier(s, x) dv{ (x) ds + ft ' JD 1(s,x) T (x) ds.
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Since, up to subsequences, for every s, ! converges weak-* to us for n — oo, and (u”,v", ") converges weak-*
to (4, v, C), we obtain (4.18) for every n € C([0, 1] x D). Then for i € C([0, 1] x D), we choose an approximating
sequence 1 € C1([0,1] x D) s.t. | — nss — 0 for I — oo. Using the triangle inequality, we get

U Ntk x) dpg (x f n(t, x) dp(x)
U Ntk x) dpg (x J 1 (te, x) dpg, (x
fnfxdut Jntxdut()

<t = kel @) + DD + | [ 00 a0~ [ 60 i)

Untk, ) d ) = [ 46,2 djato)

Because of equation (4.14), the masses |y, (D)| and |y(D)| are uniformly bounded. Then, by choosing a diagonal
subsequence k(I), we obtain weak-* convergence of iy, to .

Step 6: Lower Semi-Continuity Estimate. The lower semi-continuity of D5 directly follows from the general
result for integral functionals on measures (see Theorem 4.3.9). More precisely, for weak-* convergent sequences
of measures

yfiyte///+(D), v;’ivte///(D,]Rd), C?iéte//(D).
we have that
D (e, v, C) < liminf Dy (', v, ) -
Then the lower semi-continuity estimate (4.11) follows from the last formula. a

Remark 4.4.3. At first glance, the penalty functional S(l) (§p 1z/dZ + § |z d.£1) dt seems to be an appropriate
choice, which allows for singular sources due to the built-in 1-homogeneity of the integrand. However, there is no
equiintegrability estimate for a sequence of source terms (t — C;(D))n on- Indeed, a uniform bound in L' does
not suffice to deduce uniform integrability. Thus, the disintegration of the limit measure C remains unclear. In
other words, there exists a subsequence of an energy minimizing sequence that converges weakly-* to a measure
on [0,1] x D, but the limit measure can not necessarily be represented in terms of a curve in . (D).

Now, we can rigorously define a generalized optimal transport distance Wy (ua, ug) for pa, ug € 4+ (D) by

W (g, p) = inf Es(u,v, O . 4.19
5(la, liB) <u,v,c>e‘5‘s<m,m>( 51, v, C)) (4.19)

The following result shows in particular that ‘Ws(ua, up) € [0, 00) for all ua, up € 4+ (D).

Theorem 4.4.4 (Existence of Geodesics). Let 6 € (0,0) and take pa,ug € M+ (D). Then, there exists a
minimizer ({it, Vi, Ct)iefo,1] that realizes the infimum in (4.19). Moreover, W's defines a metric on M (D), and the
associated curve (li)se[0,1] i a constant speed geodesic for W, i.e.,

Wi (us, ) = Is — t|Ws(pa, us)
foralls,te[0,1].

Proof. The linear interpolation (yy = (1 — t)ua + tup) re[0,1] together with v = O and C = pp— 4 is an admissible
triple for the set CE (4, 1ip) with finite energy, since the assumptions on r imply that there exists a constant C < o0
S.t.

Es(1,7,0) < C(1+ | — pal (D)) < 0.

It follows that ‘W;s(ua, tig) < o0, and the existence of a minimizer is an immediate consequence of Proposition
4.4.2. The remaining statements follow in analogy to the arguments in [DNS09, Theorem 5.4]. O
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4.5 Finite Element Discretization

For the numerical discretization, we suppose for simplicity that the space domain D is polygonal, otherwise, it
could be approximated by a polygonal domain. We consider a triangular mesh T}, of D with grid size k. Then, on
the time-space domain [0, 1] x D, a tetrahedral mesh Sy, is generated via subdivision of prisms (kk, (k + 1)h) x T
into three tetrahedrons, where T € T}, is an element of the triangular mesh of the space domain D. On the resulting
tetrahedral, we define finite element spaces

V1(Sp) = {¢n: [0,1] x D - R : ¢, continuous and piecewise linear on elements in Sy},

VO(S) = {pn: [0,1] x D — R : pj, piecewise constant on elements in Sy} .

Then, we take into account the following finite element functions to discretize the measures:

On € VO(Sy) for the mass,
my € (VO(Sh))d for the momentum, and
z, € VI(Sy) for the source.

In analogy to Definition 4.4.1, the set of discrete solutions to a continuity equation is defined as follows.

Definition 4.5.1 (Discrete Weak Continuity Equation with Source Term). Let pa, pp € VO(Sh) be given. Then, the
set CE( PA, pB) of solutions to a weak continuity equation with source term and boundary values p4, pp is given
by all triples (pp,, my, z1,) € VS(S) X VS(S)"I x V(S) satisfying

1
J() JD p;lat¢h + mhvx¢h + Z¢h dx dt = JD(qb;l(l)pB — ¢h(O)PA) dx qu)h eVl (Sh) .

Here, we use Neumann boundary condition in space, but the approach can easily be adapted to Dirichlet or
periodic boundary conditions.

Next, we introduce discrete versions of the transport cost (4.1) and source cost (4.3). According to our finite
element discretization, we need for the source term functional a suitable interpolation of r(z;). Therefore, we set
Ri(zn)(t, x) as the piecewise affine interpolation of r(zj,((k—1)h, -)) on the triangle T for (¢, x) € (kh, (k+1)h) x T
(one of the prisms underlying the tetrahedral grid). Since py, and ny, are constant on each tetrahedron S € Sj, we
can define

1
8trans,h(ph/ mh) = J J q)(ph, mh) dx dt,
0 JD

1 2
8source,h (Zh) = J (‘[ Rh (Zh) dx) dt,
0 D

1
Sb,h(Ph/ my, Zh) = Slrans,h (Ph, mh) + Sasource,h (Zh) .

Then, a discrete version of the minimization problem (4.19) is given by

Wsn(pal,ppL) = inf Esn(pns mh,Zh)% . (4.20)
(pnmn,z1)€CEL(PA,PB)

Remark 4.5.2. Numerically, we are not able to treat singular measures as presented in Section 4.4. However, such
measures can be obtained in the limit for a mesh size 1 — 0. For example, on a fixed mesh, a line source can be
approximated via sources with a support of thickness 2h.

Remark 4.5.3. In the implementation, we restrict D = [0, 1]2 to be the unit square. Then, we use a tetrahedral
mesh of the time-space domain by subdividing cubes of side length % into six tetrahedrons.
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4.6 Proximal Splitting Algorithm

We recall from Section 3.2.3 that proximal splitting algorithms can be used to solve the classical L?-optimal
transport problem numerically, as it was, e.g., proposed in [PPO14]. Now, we intend to apply a proximal splitting
algorithm to solve the fully discrete optimization problem (4.20). Therefore, we define the two functionals

F (on, M, zi) := Esp(Pr, Mn, zn)

G(pn, i, z1) = L e, (ppps) (Phs M1, Z0) -

More precisely, by adding the indicator function of the set of solutions to the continuity equation CE(ia, pp) to
the kinetic energy functional, the constrained optimization problem (4.20) can be rewritten as an unconstrained
minimization problem. We recall from Definition 3.2.4 that the proximal mapping of a convex and lower semi-
continuous function f is given by prox(x) = argmin, . f(y) + 1|lx =y, where H is a suitable Hilbert space.

Here, for a triple (pj,, 1y, z) € VI(Sp) x V(Sy)? x V}(Sy), we choose a weighted L*-norm

1

1 1 2
ICon, mn, z0)| == (J J o + [my|* + 5|Zh|2 dx dt) ,
0 JD

which can be computed exactly by choosing a quadrature rule of at least second order.

In the following, we compute the proximal mappings of ¥ and G. We show that the computation of proxg
requires to solve an elliptic problem on the time-space domain and that the computation of prox is rather simple.
Finally, we use the Douglas—Rachford algorithm (3.10), which was also applied in [PPO14] for the classical L2-
optimal transport problem.

4.6.1 Projection onto the Set CE;,(pa, ps)

Since CEy(pa, pp) is a convex set, we recall from Lemma 3.2.10 that the proximal mapping of the indica-
tor function of CEy(pa, pg) can be computed by the orthogonal projection. More precisely, to project a point
(pn = (pn, ), zn) € VO(S)4+1 x V1(S) onto CEx(pa, pp), this requires to solve

T T . . 2
(B 2)) = PrOige, (pp o5 (Pho 1) (P 21) = argmin  [[(py,z) — (g wn)|” - (4.21)
(qnwn)€CEL(pa,pp)

The solution to this constrained optimization problem is given in the following.

Proposition 4.6.1 (Projection onto Generalized Solutions to the Continuity Equation). The solution (p)’,z,") to
the projection problem (4.21) is given by

r 1 r DT 6 r
A RN LA A (4.22)
where " € V}.(S) is defined by solving

f J 0P, VierUn + (Pp Yy, dx dt = J Un(1)pp — Yr(0)pa dx — J J Znn + puV (40 Pn dx dt
forall yy, € V}.(S).
Proof. The associated Lagrangian to the minimization problem (4.21) is given by

1
£, 1) = (o 20) — (@ 00)|2 f J G+ Ve n + iy dx d + f Pn(D)ps — Yu(0)pa dx,
0 JD D

with a Lagrange multiplier i, € V1(Sp). In terms of the Lagrangian, the projection problem can be written as a
saddle point problem, where we ask for (pI", 2", ¢;') € VO(S)T x V1(S) x V1(S) s.t.

pr pr
L (ph 72y P

hl

= min max L (g, wy,,
) (quaon) VY (S)YH1XVL(S) YueVi(S) (qh " l;bh)
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The Euler-Lagrange equations corresponding to this saddle point problem are given by

1

fo L P Vean + 2,y dr dt = fD (1) ps — Yu(0) pa dx  Vipy € Vi(S), (4.23)
1 1

f f - Vi @y, dxdi = J f 2(p)" — pn) qu dx dt Vg, € VO(S)TH, (4.24)
0 JD o JD
1 1

J J @erh dx dt = f J. z(zzr — zp) wy, dx dt Yy, € V;(S) . (4.25)
0 JD 0 JD 1

Testing (4.24) with g, = V ;)Y and then using (4.23) gives

1 1
1 " r
J J EV(t,x)CﬁZ - V(tx)n dx dt =J f () —pn) - Vg ¥ dx dt
0 JD 0 JD

1
- L Un(1)pg — Pr(0)pa dx — Jo JD 2y U+ pu- Vi Y dx dt

Hence, by applying (4.25), which leads to zzr =z + gcpgr, we obtain for all ¢y, € V; (S) that

1 i 5 1
Jo JD Ev(t,x)(Pg Vi Pn + 5<¢>§ Yy, dx dt = JD Yr(1)ps — Pr(0)pa dx — L JD zuPn + prV (0¥ dx dt.

This system can be solved in cpﬁr. Finally, the solution to the projection problem is given by (4.22). O

4.6.2 Proximal Mappings of Transport and Source Term Cost

The functional &), is composed of the transport cost gyansy, Which only depends on pj, and my,, and the source
term cost Egource,n» Which only depends on zj,. Thus, we can compute these proximal mappings separately.

Proximal Mapping of Transport Cost. We note that pj, and 11, are constant on each tetrahedron of the simplicial
mesh Sy,. Thus, as for the classical L2-optimal transport distance (cf. Proposition 3.2.12), the proximal map of the
kinetic energy Syans,n can be computed by projecting for each tetrahedron the associated value onto a convex set 8
as defined in (3.14).

Proximal Mapping of Source Term Cost. We discuss different choices for the source term cost functional.
First, we consider an L2-norm both in time and space, which was studied in [MRSS15]. In this case, for a step
size y > 0, we easily get a pointwise update

.1
proxﬂ‘z(z)(t, X) = arg min —

lw|? + 1|w —z(t,x)]* = ! z(t,x).
welR o 0

14y
For a source term in the L!-norm both in time and space, following computations in [Ess09], we also get a
pointwise update for the proximal operator of the L (L!)-norm, which is given by

. v
g N7
0 if |z(¢, x)| 5

prox%‘z‘(z)(t, x) = )4
‘ z(t, x) — Esgn(z(t, x)) otherwise.

Thus, a numerical scheme for a source term in L!(L!) would be as simple as for a source term in L?(L2). However,
the existence of geodesics is not guaranteed (see Remark 4.4.3).

In the case of a linear growth function r(-), the minimization problem to compute the proximal map only
decouples in time but not in space. More precisely, for each discrete time step k, we have to solve

2
1
arg min 14 (j R (wy,) (kh, x) dx) + = f |wy (kh, x) — zp,(kh, x) > dx . (4.26)

w (ko evi(ry) © \Jp 26 Jp
Then, we solve the minimization problem (4.26) via a gradient descent method, which requires that r is differen-
tiable. For example, this is not the case for a source term in the L?(L!)-norm, since 7(z) = |z| is not differentiable.
For our numerical computations, we restrict r to be the Huber function (4.4).
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4.7 Numerical Results for Generalized Optimal Transport Geodesics

We present our numerical results for geodesics w.r.t. the generalized optimal transport distance “Ws. The compu-
tational domain is always given by the unit square D = [0,1]2. For the finite element discretization, we choose
a grid size of i = 277 on the time-space domain [0, 1]3, which implies a temporal discretization with % = 128
time steps, and we show extractions at time steps ¢ = % fori =0,...,8. We use piecewise linear RGB scales to
plot the mass variable (0 (white), 0.5 (light blue), 1 (blue)) and the source term (minimal value (green), 0 (white),
maximal value (purple)). From (4.6), we recall the notation L?(L?) for an L?-norm penalization of the source term

both in time and space and L?(H) for the L2-Huber cost functional with the function r as defined in (4.4), i.e.,

1 1 2
Esource,12(12)(2) = j f |z dx dt, Esource,12(H) (2) = f (J 7(z) dx> dt.
o Jp 0o \Jp

4.7.1 Comparison with the L?(L?)-Model

Here, we compare the L2(H)-model with the L?(L?)-source term functional. Therefore, we consider both singular
and absolutely continuous measures. For the penalty parameter for the source term functional, we choose 6 = 1.

Generation of Approximatively Singular Measures. The source term cost functional (4.3) for the L2(H)-model
has been chosen s.t. singular sources in space are allowed, which is not possible for an L?(L?)-model, where a
singular source always has infinite path energy. However, singular sources cannot be implemented directly with
our finite element discretization, but in Figure 4.1, we study the transport between measures supported on a thin
rectangular strip as an approximation of a singular measure. The densities p4 and pp are constant on this rectangle
but have different intensity values. Our model with the L?(H) cost functional for the source term is able to generate
the thin rectangles directly, s.t. the corresponding geodesic is given by a blending of the two measure p4 and pg.
Instead, for an L?(L?) source term, which was proposed in [MRSS15], the generation of mass takes place on a
thick superset of the rectangular strip and is then transported towards the strip. In particular, this is visible by
considering the geodesic interpolation at intermediate time steps ¢ € (0, 1), where the rectangle is blurred. This
effect is furthermore reflected by considering the corresponding source terms.
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Figure 4.1: Generalized optimal transport geodesic between characteristic functions of thin rectangles with differ-
ent intensities as approximation of singular measures. Here, the source term parameter is given by 6 = 10°.
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Generation of Absolute Continuous Measures. As for the thin rectangle, we observe a similar effect for, now
substantially, absolutely continuous measures. In Figure 4.2, we compare the L?>(H) and the L?(L?) source term
for a geodesic interpolation between differently scaled characteristic functions of a square. Again, the resulting
geodesic for the L2(H)-model is given by a blending of the two measure p4 and pg, whereas in the L2(L?)-model
the additional mass is generated on a larger support. In Figure 4.3, we show a plot of the map t — §, [z(t,-)| dx
for both models, where it turns out that this L!-norm of the source term in space is constant for the L?(H)-model.
Indeed, the larger support is advantageous for the L?(L?) source term, since, compared to a pure blending, the
L2-norm in space is smaller. Thus, if transporting mass is comparably cheap, using a constant distribution of the
source term on the full domain D becomes more favorable. To balance the interaction between the kinetic energy
and the source term cost, we can choose the parameter 6 appropriately.
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Figure 4.2: Generalized optimal transport geodesic and corresponding source terms between two characteristic
functions of squares with different intensities. Here, the source term parameter is given by 6 = 10°.
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Figure 4.3: Distribution of the L'-norm of the source term in time for the example in Figure 4.2 of characteristic
functions of squares (dotted line: L?(L?), continuous line: L2(H)).
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4.7.2 Effect of the Source Term Penalization Parameter 6

Next, we investigate the effect of the penalty parameter 6 for the source term. Here, we restrict to the L2(H)-model,
but we remark that similar effects are obtained for the L?(L?)-model.

Transport versus Blending. In Figure 4.4, we choose as input data p4 at time ¢ = 0 a characteristic function of
a square and as input data pp at time £ = 1 a sum of two characteristic functions of squares, where one square is the
same as for p4, and the other square is translated. Now, there are two obvious transport paths connecting p4 and pg,
namely the curve, which blends the second square and the curve, which transports a part of the second square and
blends the remaining measure. Indeed, we observe both scenarios as limit cases. For 6 — o0, transport becomes
expensive. In Figure 4.4, we observe a simple blending for large values of 6. In contrast, for 6 — 0 transport
becomes cheaper, which is reflected by the computational results for small 6 in Figure 4.4. For intermediate values
of 6, we obtain transport paths, where only a small part of the second square is transported.

0 5 5 3 5 3 8 5 1
I 1 1 1 1 1 1 1 I \
I T T T T T T T I 7
t
5]
! m | |® (@ |® (@ |(®@ |®@ |m S
| o . » " . 10
! m |(m |® |[® | |® |[® |@ |m
1 . . . ® 10_1
i . |
fm |m |m @ |m @ (@ m @ | |
| - | =
fm |m |m |m |m |m |[m |[m |m .
| | m =

Figure 4.4: Generalized optimal transport geodesic between a characteristic function on a square and a character-
istic functions of two squares. We choose (from top to bottom) 6 = 102,107,109, 101,

Positive and Negative Sources. In Figure 4.5, we show another example to study the effect of the penalty
parameter for the source term. Here, the input data p4 at time t = 0 consists of three scaled characteristic
functions of balls, where one of these balls has a smaller density value than the other two. The input data pp at
time f = 1 is based on the identical geometric configuration, but with swapped densities, i.e., the other two balls
have a smaller density value. For the generalized optimal transport geodesic, we observe that mass is transported
from the two balls with higher density at time f = O to the ball with higher density at time t = 1. Note that
this amount of transported mass depends on the parameter 6. At the same time, a blending of the transported
masses as a compensation for the unbalanced total mass can be observed. This example demonstrates that for a
geodesic path, the source term variable can achieve both positive and negative values at the same time. Moreover,
in Figure 4.6, we show plots of the integrated source term. A striking observation in Figure 4.3 and Figure 4.6
is that t — §|z(t,-)| dx is approximately constant in time for the L*(H)-model, which is in contrast to the
L%(L?)-model, as indicated in Figure 4.3.
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Figure 4.5: Generalized optimal transport geodesic with corresponding distribution of the source term in time
between three scaled characteristic functions of balls with different densities. Here, the source term parameters are
given (from top to bottom) by 6 = 10°, 10", 102.
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Figure 4.6: Distribution of the L'-norm of the source term in time for the example in Figure 4.5. We depict
§p z(t, )| dx (black), §,, z* (t,-) dx (purple), and §,, z™ (f, ) dx (green). The source term parameters are (from left
o right) & = 10°, 10!, 102.
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Periodic Boundary Conditions. In Figure 4.7, we investigate periodic boundary conditions in space for different
values of the source term parameter. Here, the input data p at time ¢ = 0 is given by a bump function in the center
(0.5,0.5) of the periodic cell, i.e.,

exp (1 — (1= 072(x; — 0.5)2 — 0~ 2(x, — 0.5))’1) if (x1 — 0.5)% + (x2 — 0.5)?
,OA(xllxz) =
0 otherwise,

where ¢ = 0.75. For the input data pg at time f = 1, we choose a bump function with the center at (0,0) and
o = 0.5. A similar example was already considered in [BB0O], where periodically extended Gaussian probability
measures were taken into account. For equal size, the classical optimal transport geodesic is given by splitting
the bump of p4 into four parts and transporting these parts to the four corners, which has effectively lower kinetic
energy as the translation. Also, for the generalized optimal transport distance, we obtain a splitting of the bump
function. Moreover, depending on the parameter 6, the unbalance of mass between pa and pp is blended during
the transport (for small values of 6) or on the support of p,4 (for intermediate values of 6). As in Figure 4.4, for
even larger values of 6 (which we do not show in Figure 4.7), we obtain a pure blending of both bumps.
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Figure 4.7: Generalized optimal transport geodesic connecting two translated bump functions. We compare two
different values of the source term penalty parameter. In both cases, we depict single periodic cells, which is our
computational domain. Furthermore, to pronounce the periodicity, we extended the periodic cells to 3 x 3 blocks.
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4.7.3 Application to Textures

Finally, in Figure 4.8, we depict examples of generalized optimal transport geodesics between images of wood
textures and marble textures. We choose the L?(H) source term cost functional and 6 = 107!, The grid size is
given by i = 278, In both cases, the interpolated images on the geodesic paths could be interpreted as realistic
textures.

o

Figure 4.8: Generalized optimal transport geodesics between textures of wood (top) and marble (bottom) with
corresponding source terms (positive values in purple and negative values in green) and momenta (color-code
given by the wheel on the lower left, which indicates both the direction and the magnitude).
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4.8 Conclusion and Outlook

We have developed a new generalized optimal transport model with source term, which is based on the Benamou—
Brenier formulation. To incorporate singular sources, we have chosen a functional with linear growth to penalize
the source term in space, whereas an L?-norm in time has allowed an equiintegrability estimate to prove the
existence of generalized optimal transport geodesics in the space of Radon measures. Selected numerical test
cases have shown strikingly different behavior compared to a source term penalized in an L?-norm both in time
and space.

Note that an extension of our computational method to weighted Riemannian barycenters w.r.t. the general-
ized optimal transport distance would be straightforward. For the classical L2-Wasserstein distance, also a discrete
geodesic extrapolation (i.e., the time-discrete exponential map) of an initial probability measure in a direction
given by another probability measure can be directly obtained from a geodesic interpolation because of the dis-
placement convexity formula. This property is unclear for our generalized model. Furthermore, an extension to
Riemannian splines, as for discrete shells [HRW17] based on the general time-discrete framework in [RW15] on
Banach manifolds, would be interesting even for the classical Wasserstein distance.

Finally, we want to point out that the range of applications for realistic images seems to be somewhat limited.
In particular, an interpolation between images of human faces usually looks quite blurry. Instead, amazing results
were obtained for the metamorphosis model [BER15]. Currently, the optimal transport distance has been explored
in the quickly developing field of machine learning. In [SHB* 18], the reconstruction of images as barycenters of
dictionary atoms w.r.t. the entropy regularized Wasserstein distance was performed.
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Chapter 5

Optimal Transport on Graphs

In Chapter 3, we have introduced the L?-Wasserstein distance between probability measures on a convex domain
in the Euclidean space. There, we have seen that for absolutely continuous measures, the formulations of Monge,
Kantorovich, and Benamou—Brenier coincide and minimizing paths of the Benamou—Brenier functional are con-
stant speed geodesics. This differential geometric interpretation allows, e.g., transferring the concept of gradient
flows to the Wasserstein space [JKO98]. Furthermore, the definition of the L2-Wasserstein distance on more gen-
eral space domains is often straightforward, as far as there is a notation of measures and distance. However, on a
discrete space, the formulations of Monge and Kantorovich imply that constant speed geodesics must be constant
paths. Instead, Maas [Maall] developed an L?>-Wasserstein metric on the space of probability measures on dis-
crete spaces given by an irreducible and reversible Markov transition kernel by taking into account an appropriate
Benamou-Brenier formulation. Remarkably, as for the classical optimal transport distance, it was verified that the
gradient flow of the entropy can be identified with the heat equation on the Markov kernel.

In this chapter, the main focus lies on investigating a numerical scheme to approximate the Wasserstein distance
on discrete spaces. To compute minimizing paths of the classical Benamou—Brenier functional, proximal splitting
algorithms have turned out to be an efficient tool [BB0O, PPO14], where a suitable discretization of the mass
and momentum variables allows decoupling the computation of the proximal operator of the kinetic energy into
pointwise projections. Now, for the optimal transport distance on discrete spaces as defined in [Maall], the mass
variable is defined at nodes, and the momentum variable is considered on edges. Then, an averaging operator
from a pair of nodes to its common edge is required to define a corresponding kinetic energy, which unfortunately
couples all variables in space. In [SRGB16], a similar optimal transport distance on graphs was investigated, where
the special structure of the harmonic mean was used, s.t. the proximal operator of the kinetic energy functional can
be computed as for the classical optimal transport. Here, we present a fully discrete approximation for a generic
class of averaging operators. In particular, to recover the heat equation as a gradient flow, the logarithmic mean has
to be taken into account. To decouple the optimization problem, we introduce several auxiliary variables, s.t. the
core ingredient of our numerical algorithm is a projection onto a three-dimensional set defined by the respective
mean.

This chapter is organized as follows. In Section 5.1, we recall the Wasserstein distance on discrete spaces
introduced by Maas. We derive certain a priori bounds for corresponding geodesic paths in Section 5.2. For a fully
discrete approximation, we choose a finite element discretization in Section 5.3, for which we prove I'-convergence
in Section 5.4. Then, we investigate a numerical computation scheme via a proximal splitting algorithm in Sec-
tion 5.5. In Section 5.6, we present our numerical results for geodesic paths. Finally, in Section 5.7, we consider
gradient flows w.r.t. the optimal transport distance on graphs. We show that a minimizing movement scheme to
compute a gradient step can be solved by a proximal splitting algorithm, and we compare our numerically com-
puted gradient flow trajectory with the solution to the heat equation.

Remark 5.0.1 (Collaborations and Publications). All results presented in this chapter are joint work with Matthias
Erbar, Martin Rumpf, and Bernhard Schmitzer and will be published in [ERSS17].
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5.1 A Benamou-Brenier Formula on Graphs

Here, we define the Benamou—Brenier formulation for the 2-Wasserstein metric on the space of probability mea-
sures on discrete spaces as introduced in [Maall].

Irreducible and Reversible Markov Chains. We denote by X a finite set, which can be interpreted as the set
of nodes of a graph. Furthermore, let Q: X x X — [0, o) be the transition rate matrix of a Markov chain on X.
More precisely, the corresponding graph has a directed edge (x, y) € X x X if Q(x, y) is positive. Then, the set of
edges indicated by nonzero transition probability is given by

S={(xy)eXxX: Qx,y) >0}.

Here, we make the assumption that Q(x,x) = 0 for all x € X, since, for an optimal transport path, a loop would
not be taken into account. We suppose that Q is irreducible or equivalently that the corresponding graph is strongly
connected. The irreducibility condition implies that there exists a unique stationary distribution 7t: X — (0, 1] of
the Markov chain with >,y 7t(x) = 1. Furthermore, we assume that Q is reversible w.r.t. 7, i.e., the detailed
balance condition 7(x)Q(x,y) = 7(y)Q(y, x) holds for all x,y € X. The reversibility condition implies that a
directed edge (x, y) € S has nonzero transition probability if and only if this is the case for the edge (v, x) € Sin
the opposite direction. Later, we make use of the following rates of the Markov kernel:

k.
C*:= rileaXnyJQ(x,y), 5.1
= i . 2
Cs L Q(x, y)m(x) (5.2)

Now, the set of probability densities on X w.r.t. 7t is given by

P(X) = {p: X - Ry Z ni(x)p(x) = 1} .

xeX

As for classical optimal transport, the condition ).y 71(x)p(x) = 1 can be replaced by >} ..y 7(x)p(x) = c for
any c € R, but for simplicity we restrict to the case ¢ = 1.

Differential Operators on Graphs. Next, we consider functions ¢: X — R on nodes and ®: X x X — R on
edges, which we also identify with vectors in RY and RX*¥ respectively. First, we define inner products on R¥
and RX*X by

@)= Y GPI(), @ =3 3 Bx, ) 1) 1))

xeX x,yeX

for ¢, € RY and @, W € R¥*¥, and denote the corresponding induced norms by | - ||, and | - |g. Then,
we introduce discrete differential operators. A discrete gradient Vy: RX — RX*X and a discrete divergence
divy: R¥*X — R are given by

(Vxy)(x,y) == ¥(x) — P(y), (divy®)(x Z Qlx, y)(W(y, x) — W(x, 1))
yeX
Note that the discrete integration by parts formula
(P, divaWV)r = —(Vx¢, ¥)g

can easily be verified s.t. duality between discrete gradient and divergence holds. The associated discrete Laplace-
operator Ay : RY — R¥ is given by

Axtp(x) = divy(Vay)(x) = D Qx,y) [¥(y) — p(x)] = (Q — D)(x),

yeX

where D = diag(zyE x Q% ¥))xex-
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Optimal Transport Distance on Graphs. Having these differential operators at hand, we are able to formulate
a continuity equation for time-dependent probability densities p: [0, 1] x RY — R, and momenta m: [0,1] x
R¥*X . IR describing the flow of mass along the graph edges. In the following, we frequently identify these
functions p and m by functions p: [0,1] — R¥ and m: [0,1] — R¥*<,

Definition 5.1.1 (Continuity Equation on Graphs). The set CE(pa, pp) of solutions to the continuity equation
for given boundary data pa, pp € Z(X) is defined as the set of all pairs (p,m) with p: [0,1] x R¥ — R and
m: [0,1] x R¥*X — R measurable s.t.

[ <@t + Fxptt 1, D dt = 0L, ps2e (0, padn 63)

for all p € C1([0,1], RY).

To define the kinetic energy in terms of a mass density on nodes and a momentum on edges, we introduce an
appropriate averaging operator mapping the mass of two neighboring nodes to the common edge.

Definition 5.1.2 (Averaging Operator for Mass on Edges). For an averaging function 0: (Rs()> — Rs we
require that

1. 0 is continuous, concave, 1-homogeneous, and symmetric,
2. 6 € C® ((R4)% Rxg) and 6(s, t) > 0if (s, 1) € R,
3. 6(0,s) = 6(s,0) = 0 and 6(s,s) = s for s € R>g, and
4. s — 6(t,s) is monotone increasing on R for fixed t € R>.
Note that we can extend O to a concave function 0: R> — R U {—00} by setting O(s, t) = —oo for (s,t) ¢ (Rs0)%.

Example 5.1.3 (Possible Averaging Operators). Possible choices for 0 are, e.g., the logarithmic mean 0., or the
geometric mean Oy, for s, t € R>o:

0, ifs=0o0rt=0,
Oorlsit) =3, ifs =, and  BOgeols, t) = Vot (5.4)

log(t) — log(s)

However, the arithmetic mean is not admissible, since 6, (s,0) # 0 for s > 0.

otherwise,

Based on this averaging function, we can define the discrete optimal transport distance on £ (X).

Definition 5.1.4 (Discrete Optimal Transport Distance). The kinetic energy functional for measurable functions
p:[0,1] x RY — Ry and m: [0,1] x R¥*Y — Ris defined as

Enslpy 1 f S @e(p(t,x), plt, y), mt,x, 1) Qx, y)m(x) dt
x,yeX

with @, : R* — R U {0} given by

2

m .
o t m lfQ(S,t) >O,
(5 tm) =3 if O(s,t) = Oand m = 0,
0 else.

The total path energy is then given by a sum of the kinetic energy and the indicator function of the set CE(pa, ps).
ie.,

E(p,m) = Euans(p, M) + Lcg(pp,05) (0, M), (5.5
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and the induced discrete transport distance is obtained by

1 1

(WG(pA/ PB) = ( inf 8trans(p/m)) 2 = 8(p, m)> ’ . (56)

inf
(pm)eCE(pa,ps) ((p,m): [0,1]—>RX x RX*X measurable

Under the condition that

dr < oo,

! 1
C@::f y———————
0 A/0(1—r1+71)

in [Maall, Theorem 3.8], it was verified that ‘W defines a metric on ?(X). Due to our assumptions on 6 in
Definition 5.1.2, we can always guarantee that Cy < 0. Indeed, since 6(s,s) = s for s € Ry and s — 0(s, )
is increasing on R for fixed ¢ € IR, it follows that 6(s,t) > min{s,t} for s, t € Ryo. Furthermore, in
[EM12, Theorem 3.2], it was shown that the infimum in (5.6) is attained by an optimal pair (p, m), and the curve
(pt)iefo is a constant speed geodesic for the distance W, i.e., it holds W (pt, ps) = |t — s|Ws(pa, ps) for
all s, t € [0, 1]. Finally, note that @, is a convex and lower semi-continuous function and thus, finding an optimal
transport geodesic minimizing (5.6) is a convex optimization problem.

Related Questions to the Discrete Optimal Transport Distance. The discrete optimal transport distance has
been intensely investigated during the last few years, and certain properties have been proven. In [Maall], it was
shown that the optimal transport geodesic for a graph with two nodes does not coincide with the linear interpolation
of the mass variable. Already for a graph with three nodes, the solution is unknown. We observe that the discrete
optimal transport distance behaves effectively diffuse. Indeed, it turns out that on a complete graph with three nodes
for an optimal transport geodesic between two nodes, the mass is not necessarily transported along the shortest
path connecting these nodes. Instead, a small amount of mass is transported via the third node (see Figure 5.1),
which is in sharp contrast to the displacement interpolation on continuous domains, where mass travels only along
geodesics. Furthermore, we obtain that the momentum variable does not necessarily have the same sign during the
transport, which also reflects the diffuse behavior of the discrete optimal transport distance (see Figure 5.1). We
also refer to Section 5.6.2 for more numerical results on simple graphs.
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.»._,. @ m=m) @u==) @ ._,.».

Figure 5.1: Two examples of optimal transport geodesic on graphs. Top: On a graph with three nodes, a small
amount of mass (in blue) is transported along the longer way. Bottom: On a graph with four nodes, the momentum
variable (depicted by red arrows) changes its sign during the transport.
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Considering a sequence of graphs with appropriate Markov kernels approximating a domain in the Euclidean
space, in [GM13, GKM18], it was shown that the distance ‘W on a specific class of regular meshes converges in
the Gromov—Hausdorff metric to the classical L2-Wasserstein distance. We verify this convergence experimentally
in Section 5.6.4. Moreover, in [Maall, EM14], certain solutions to partial differential equations on graphs were
identified as gradient flow trajectories w.r.t. suitable entropy functionals. In Section 5.7, we discuss solutions to
the heat and porous medium equation on graphs.

5.2 A priori Bounds for Mass and Momentum

Now, we derive a priori bounds on energy minimizing curves of measures, which are useful for the I'-convergence
result in Section 5.4. Here, we essentially make use of the discrete structure in space. More precisely, the diver-
gence operator on the graph does not reduce the regularity of the momentum variable and thus allows a higher
regularity estimate on the mass variable, which does not hold for the classical optimal transport distance.

Lemma 5.2.1 (A priori Bounds for Mass and Momentum). Let (p,m): [0,1] — RY x R¥*X be measurable
with bounded path energy, i.e., there is a constant E < w st S(p, m) < E. Then, m and p are bounded in

L2((0,1), R**X) and W'2((0,1), R¥) n COz ([0, 1], RY), respectively, with bounds solely depending on X and E.
Proof. Since E(p,m) < oo, we have that (p,m) € CE(pa, pp), and thus, for a.e. t € (0,1) the mass is preserved,

Yot x)n(x) = . palx)m(x) =

xeX xeX

In addition, p(t,x) is nonnegative for all x € X and a.e. t € (0,1). By symmetry and concavity of 6 and since
6(s,s) = s, we can estimate

8(p(t,2),plt,y) = 20(p(6,%),plt, ) + 56(p(t,y), p(t,2))

0 <p(t,X) +plty) pltx) +p(t, y)) _ptx) +p(ty)

< ,
2 2 2

and get

. 0(p(t0), p(t, 1)Qlx, y)m(x) < % > (pEx)Qx, y)m(x) + p(t, y)Qy, 1)7(y))

ijX x,yeX
=5 Z y,)m(y) + pt, y)Qx, y)m(x) < C* 3 p(t,x)m(x) =
xye(\’ xeX

Thus, using the Cauchy-Schwarz inequality, we obtain

( 3 m(t,x, )| Q(x, y)m ) ( X (t y),m (t,x,y))Q(x,y)n(x))
vyeX x,yeX
' ( )y Q(P(tfx)fp(f/]/))Q(X,y)n(x)>.
x,yeX

Integrating in time leads to
C*
[ ar= [ % movpromprear< S,
*
xyeX
Finally, using the continuity equation (5.3) and from above that m € L2((0,1), RX*%), we obtain that

fl\étpl\zdt jz fZ m(t,x,y)?Q(x, y)m(x) dt

xeX xyeX

m(t,x, y)Q(x y)

yeX

Hence, p € W'2((0,1),IR%) and the Sobolev embedding (see Theorem 2.2.2) implies p € C%2((0,1), R¥). o
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Furthermore, we note that a priori for a fixed time ¢ € [0, 1] and an edge (¥, y) € S, the momentum variable
m(t, x, y) is not related to the variable m(t, y, x) in the opposite direction, but for an optimizing path, we observe
the following antisymmetry.

Lemma 5.2.2 (Antisymmetry of Optimal Momentum). Let p: [0,1] — R¥ and m: [0,1] — RY*¥X be an optimal
path for (5.6) with E(p, m) < co. Then for a.e. t € [0,1] and for all (x,y) € S we have

m(t,x,y) = —m(t, y,x).

Proof. We define a momentum variable

it x,y) :=—m(t, y,x).

Then, we can verify that divyft = divym and thus (p,71) € CE(pa, pp) as well. Because of the detailed
balance condition Q(x, y)m(x) = Q(y,x) t(y) and since Dc(s,t,m) = Dc(t, s, —m), we find that Eyans(p, 1) =
Erans (p, m). Now, we define a momentum variable

(e, y) = 3 (e, %y) + (63, )

which is antisymmetric in x and y. By convexity of CE(pa, pg) we also have that (p, 7i1) € CE(pa, pp). Moreover,
by convexity of Eans We get

1
8trans(p/ T}_’l) < E (Strans (P/ m) + Strans (P/ 777[)) = 8trans(pr Wl) .

By definition, values of m(t, x,y) for (x,y) ¢ S have no impact on the kinetic energy Eyans. Assume that
O(p(t,x),p(t,y)) = 0forae.te [0,1] and (x,y) € S. Since Eyans(p, m) < o this would imply m(t,x,y) = 0
forae. t € [0,1] and (x,y) € S. Now, the function z — D.(s,t,z) for z € R is even strictly convex for fixed
(s,t) € (Ry)?. Hence, we observe that Etrans (P, 1) < Euans(p, m) unless 1 already coincides with m for a.e.
te[0,1] and all (x,y) € S. m]

Remark 5.2.3 (Bounded Energy of Optimal Path). In Corollary 5.4.2, we verify that an optimal path (p,m) for
(5.6) always fulfills E(p, m) < oo.

5.3 Finite Element Discretization

In the following, we provide a fully numerical discretization of the path energy (5.5). Because the domain X is
already discrete, we only need to define a discretization in time. Here, we choose a Galerkin discretization by
dividing the time interval [0, 1] into N subintervals I; = [t;,t;1) fori = 0,...,N — 1 with a uniform step size
h = zl\r and t; = i h. Then we define the finite element spaces

V= {Une C°[0,1], RY) : ¢u(-)]y is affine ¥i = 0,...,N — 1},

Vo= {¥n: [0,1] = R ¢ ()] is constant Vi = 0,...,N — 1},

Vgh = {ty,: [0,1] — RN+ ¢y ()|, is constant Vi = 0,...,N — 1}.

Note that for a function 1, € Vrll , the time-derivative can be interpreted as a map

o Vo= Vo, () () = %(lph(tiﬂ) —p(t)) fori=0,...,N—1.

Since a function ¢y, € VS , Of Vgh is constant on time intervals I; = [t;, t;i+1), we often write Y, (¢;) to refer to its
value on the interval.

Now, we choose the discretized mass variable p; € V:lh in the space of continuous and piecewise affine

functions and the momentum variable m;, € VS , as piecewise constant. Then, discrete solutions to the continuity
equation are defined in analogy to Definition 5.1.1.
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Definition 5.3.1 (Time Discrete Continuity Equation). The set of solutions to the discretized continuity equation
for given boundary values pa, pp € R¥ is given by

N-1
C&u(pa, pp) = {(Ph/ my) eV, x VO i h 2 (Orpn(ti,-) + divam(ti, ), @u(ti,))n = 0 Yo € VY,
i=0

pulto, x) = pa(x), pu(tn, ) = pi(x)}

Here, the choice of these different function spaces for p;, and my, is motivated by the two expressions 0;py,
and divymy, appearing in the continuity equation, which then both lie in the space Vg ,- Thus, for (pn,my) €

CEn(pa, ps), we have that o;py, + divxmy, = 0 for a.e. € [0,1]. Consequently, the set of time discrete solutions
CEn(pa, pg) = CE(pa, pB) N (V}zh X Vgh) is a subset of all time continuous solutions to the continuity equation.

Furthermore, we define a fully discrete path energy functional in analogy to Definition 5.6 and a discrete
version of the transport metric “Wg.

Definition 5.3.2 (Time Discrete Optimal Transport Distance). The averaging operator avg, takes a vectorial Radon
measure ¢ € . ([0,1], RY) to its average values on time intervals I;, i.e., it is given by

avg,: #([0,1,RY) - V), (avg,¢)(t) = Y(L;) fori=0,...,N—1.

Analogously, we declare the averaging operator avg, for RX*X_valued measures. Note that for Py € V111 , we find

(avg, Yn)(t)) = 3(Yu(ti) +Yn(tic1)) . For (p,m) € 4 ([0,1], RY) x .# ([0, 1], R**¥) the discrete approximation
for the kinetic energy functional is given by

8trans,h(Pr m) = Slram (anh P, anh m)
= = Z 2 anh p(ti, x),avg, p(t, v),avg, m(t;, x, y)) Qlx, y)m(x).
i=0 x,yeX

Finally, we obtain the time discrete energy functional by

8h(p/ m) = 8trans,h (P/ ﬂ’l) + ICSh(pA,pB) (P/ ﬂ’l) ’

and for the associated time discrete approximation of the optimal transport distance we define

i i
Wen(pa, pp) i= ( inf &ms’h(p,m)) = (( - inf Sh(p,m)) . (5D
p.m

(p,m)eCE(pa,p) : [0,1]>RX x R¥ XX measurable

Finally, we remark that the degrees of freedom of the momentum variable my, € V0 are restricted to the edges

(x,y) € S. Thus, in the implementation, if the Markov kernel Q is sparse, i.e., if S is only a small subset of X x X,
this implies a considerable reduction of computational complexity.

5.4 TI'-Convergence of Finite Element Discretization

Now, we show that the fully discrete distance W, in (5.7) is a suitable approximation of ‘W¢ by proving a
I'-convergence result. For a basic introduction to I'-convergence, we refer the reader to Section 2.3. We observe
that the I'-liminf inequality is a direct consequence of our conforming finite element discretization in the sense that
C&En(pa, pg) < CE(pa, pr). However, the proof of the I'-limsup inequality is more elaborated. Therefore, we first
sketch the main ideas:

1. Basically, the recovery sequence is constructed by averages on time intervals according to the Galerkin
discretization.

2. For positive mass p(t,x) > 0 for all t € [0, 1] and for all x € X, Jensen’s inequality would directly provide
the required I'-limsup inequality, since @.: R; x R4 x R — IR is convex.
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3. However, in the case that O(p(t,x), p(t,y)) = 0 and m(t,x, y) # 0, Jensen’s inequality cannot be applied,
since D (p(t, x), p(t, y), m(t,x, y)) = 0.

4. We first show in Proposition 5.4.1 that we can construct a trajectory between an arbitrary probability distri-
bution on X and the uniform probability density 1 € &(X) given by 1(x) = 1 forall x € X.

5. To deal with the case that p(t,x) = O for some (¢, x), we make use of this trajectory. More precisely, we
modify the trajectory to be recovered by letting a small amount of mass & move on a small time interval 6 to
the uniform distribution 1 (see Figure 5.2 for a sketch).

6. Finally, we have to choose ¢, 0, and & in a suitable way.

PA: : OB

0 0 1-6 1

Figure 5.2: Sketch of the construction of the recovery sequence. A given p (dashed line) is regularized to a curve
consisting of a weighted sum of two curves (with weights € and 1 — €).

First, we explicitly construct a trajectory between ps and 1 with uniformly bounded path energy. Fur-
thermore, the time interpolation of this trajectory admits the same upper bound for the corresponding discrete
path energy, where for the approximation of the mass variable, we define the Lagrange interpolation operator
7;,: C°([0,1], RY) -V}, by

(Iup) (t,x) == p(ti,x) V¥i=0,...,N.

Proposition 5.4.1 (Trajectory to Uniform Distribution). There exists a constant C(X) < oo s.t. for any pa €
P (X) there is a trajectory (p,m) € CE(pa, 1) with Eyuns(p, m) < C(X) and (Iyp,avg, m) € CEy(pa, 1) with
Enransp(Lnp, avg, m)) < C(X) for every h = 1/N.

Proof. For x € X we define p, € &(X) to be the probability density on X with all mass concentrated on x, i.e.,

0 = ﬁéx, where 0, denotes the Kronecker symbol with 6,(y) = 1if x = y and O else.
Step 1: Construction of elementary flows. For (x, y) € Xx X, x # y, with Q(x, y) > 0 we define L(x, y) € RX*¥
as
@b = (o)
o 5 1 7 = &Y
Qx, y)m(x)
L(x,y)(a,b) = —1 if (

_— a,b) = (y,x),

Qx, y)m(x) g

0 else.

Then L(x, y) satisfies divxL(x,y) = p — p%. Now, for any (x,y) € X x X, x # y, there exists a path (x =
Xo,X1,...,xk = y) with K < |X| and Q(xx, xx41) > 0 for k = 0,...,K — 1. We can add the corresponding

L(xx, xx+1) along these edges to construct a flow M(x, y) with divyM(x, y) = pi — p3- All entries of all M(x, y)
are bounded by C(X) := %, where Cy is defined in (5.2). For x = y we can simply set M(x, x) = 0.
Now assume p4 = p; for some x € X. Let mo = >}, M(x,y) 7t(y). We obtain

divymg = Z (%y)éy - ﬁéx) n(y)=1-p}.
yeX
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Again, every entry of mjg is bounded in absolute value by 6()( ). Now, let m(t) = 2mqt, and p(t) = p}, +

(divymg) 2 = (1 — #2) - p% + t* - 1. Then (p,m) € CE(p’, 1) is bounded by |m(t,x,y)| < t-2C(X) and
p(t,x) = 2. By the monotonicity of ®@,, we get for the kinetic energy

Etrans(p, M) < = 2 Q(x, y)mt(x) dt = 2C(X)*C*.

1 (t-2C(X))? ~
3), X

0 x,yeX

Step 2: Construction of discrete counterparts. For fixed h = 1%1 let p, = I},p and my, = avg, m. By construction
(pn,my) € CEW(p,1). Then, we find my(t,x,y) < (i + %)hZé(r\’), pn(ti, x) = 2h%, (avg, pn)(t,x) =
(* +1i+ %) h*, and thus

1‘\721 W2 4C(X)? (i
2 ¢ h2(i2 +i+

i=0

l
8trams,h (Phr mh) = Strans(avgh Ph, mh) < )2 Z ZC(X)ZC* .
G

+1
2

Step 3: Extension to arbitrary initial data. For given x € X let (p*, m") be the (continuous) trajectory between
p; and 1 as constructed above. Now, we can represent p as superposition of various p% by

pa =Y. pa(x)dx =Y. palx)

xeX xeX

By linearity of the continuity equation, the trajectory (p,m) = >, cx pa(x) m(x) - (p*, m*) then lies in CE(pa, 1).
Since Eyns is convex and 1-homogeneous, it is subadditive. Therefore, we can estimate the kinetic energy by

Strans ( P, 2 pA 8lrans P m* 2 pA (X)zc* = 26(X)2C* .
xeX xeX

In analogy, the same estimate holds for the discrete trajectory. Thus, the claim follows with C(X) = 2 C(X)2C*.
mi

Corollary 5.4.2 (Uniform Bound of Discrete Optimal Transport Distance). Let pa, pp € P (X) be fixed temporal
boundary conditions. Then W and W), are uniformly bounded.

Proof. Proposition 5.4.1 allows constructing trajectories between arbitrary pa, pp via 1 as intermediate state. O

Theorem 5.4.3 (I'-Convergence of Time Discrete Energies). Letr pa, pp € F2(X) be fixed temporal boundary
conditions. Then, the sequence of functionals (Ey,), T-converges for h — 0 to the functional & with respect to the
weak-* topology in .4 ([0,1], RY x RX*X),

Proof. We have to prove the I'-liminf inequality and I'-limsup inequality (see Definition 2.3.1).

Part I: I'-liminf inequality.
For the T'-liminf property, we have to demonstrate that the inequality

atrans(pr m) + ICS(pA,pB) (p/ m) < hﬂlglf atrans,h(ph/ mh) + ICSh(pA,pB) (ph/ mh) (5.8)

holds for all sequences (py,, my,) ~~ (p,m) in .#([0,1],RY x R¥*X). The statement is trivial if there is no
subsequence with (pp, my) € CEy(pa, pp). Thus, we may assume that (pj, my,) fulfills the discrete continuity
equation for all f, in particular, p is nonnegative for every 1 and Eyans i (Ph, 1) = Ecans (Vg pn, my). Moreover,
since CE(pa, pp) is weak-* closed and CEy(pa, ps) < CE(pa, pp). we also have that (p, m) fulfills the continuous
continuity equation. Now, the convergence py, R p for h — 0 implies that avg, py, A p for h — 0. Since @, is
jointly convex and lower semi-continuous in p and m, the kinetic energy functional Eyans is weak-* lower semi-
continuous and the I'-liminf inequality (5.8) holds.
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Part II: I'-limsup inequality.
To verify the T-limsup property we need to show that for any (p,m) € .#([0,1], RY x RX¥*X) there exists a
recovery sequence (py, 1my,) — (p,m) with

lim sup Slrans,h (ph,mh) + ICSh(pA,pB) (ph, mh) < 8trans(,0/ m) + ICS(pA,pB) (P/ m) .
h—0

First, we can restrict to the case Eyans(p, 1) < 00 and (p, m) € CE(pa, pB)-

Step 1: Regularizing the Continuous Trajectory (p, m). Let (pa1,ma1) € CE(pa, 1) be the trajectory from ps
to 1 as constructed in Proposition 5.4.1. Analogously, let (p1 5, m1,8) € CE(L, pp) be the corresponding trajectory
from 1 to pg with (pu,s, m1,8)(t,") := (pp1, —mp1)(1 —t,-). Then, for 6 € (0,3) and e = &, we define (as
sketched in Figure 5.2)

(1_5) (t) +epax (%) fort e [0,0),
ps(t) = (1 25>+€]l forte [5,1— 0),
(1—€) pu(t) +eprp (ZG2) forte[1-51],
and
may (%) for t € [0,06),
S (5)  forte[s1-0),
t—

—~ M

S

TH5(t) =

I

6mﬂ3( - b)) forte [1—6,1].

We observe that (ps, ms) € CE(pa, p). To evaluate the kinetic energy of (ps, m15), we define the kinetic energy in
space Digans : RY x RY*X 5 R U {00} by

Duans (p, M. Z De( (), m(x, ¥))Q(x, y)7(x) -
xyeX

Furthermore, we decompose the energy into the contributions on the time intervals I; = [0, 6], I, = [6,1 — 6] and
I, = [1 —6,1]. More precisely, for x € {I, m, r}, we define the time-space kinetic energy on the specific interval as

tram f Dtrans pé( ) mé( )) df

s.t. Strans(p(‘)/ mb) 81 + &n + &

ns trans frans rans: NOW, Dypang is jointly convex and l-horpogeneous and therefore
subadditive. Moreover, it is 2-homogeneous in the second argument. Therefore, we obtain

m 1—e¢ t—0 t—6
Fuans < (1—252f Dians <p<1—25>’m(1—25)> d

1-e€ 1—e€
T m m(t t = ——=GCwans (0, .
(1-20) JD”‘ m(t)) dt = G5 Swns(prm)
Furthermore, using Proposition 5.4.1, we obtain &, . + & < 2C(X) 6.

Step 2: Construction of Recovery Sequence by Local Averages of the Regularized Trajectory. Now, we
construct the recovery sequence by a discretization in time of the regularized continuous trajectory. As before,
we set € = §%. First, for a fixed h, we have to choose & appropriately. Since we can restrict to the case (p,m) €
CE&(pa, ps). the a priori bound in Lemma 5.2.1 implies that p € C%2([0,1],IRY). Thus, there is a function of type
g(s) := Cs2 for some constant C € Ry s.t. |p(t,x) — p(t, x)| < g(|t — | for all x € X. Now, we set A := g(2h)
and define a regularization parameter

5:=min{ih CieN, ih= A

ST
——



5.4. GAMMA-CONVERGENCE OF FINITE ELEMENT DISCRETIZATION 55

Then, in the limit # — 0, we have convergence A — 0. Hence, & — 0 and consequently € = 5> — 0. In particular,
for h sufficiently small 2 > %= and thus A = g(2h) > g(Z5). Therefore, A is a uniform upper bound for the
variation of ps on any interval of the size 1. We now define the recovery sequence by

Ph = Ihpé, my = avg, ms .

Obviously, it holds that (py, my,) € CEL(pa, pp). By construction of the recovery sequence, we have in the limit
for h — O convergence (ps — Py, Ms — My) % 0. Furthermore, since in the limit &6 — 0, we get convergence
(ps,ms) = (p,m), which implies that (py, m,) = (p, m) for h — 0.

Step 3: Energy Estimate for the Recovery Sequence. Note that 6 is chosen to be an integer multiple of /.
Thus, the division of [0, 1] into the three intervals [0, 5], [6,1 — 8] and [1 — 0, 1] in the construction of (ps, 115) is

compatible with the grid discretization of step size /. Therefore, we can decompose the discrete kinetic energy as
above into the three contributions

Strans,h(Ph/ mh) = 8trans h + 8tr:'ians h + &,

trans,h /

which we can estimate in analogy by

[
8lrdn5 h < 8trans h (IhpA 1,avVg, Ma ]1) Strans n < 8trans h(Ihpl B,avg, 1My B)

and consequently by using Proposition 5.4.1 we observe that

8lrans h + &, <2 C(X) 0.

trans, h
For the interior part we first define the set of corresponding intervals by S, := {i€ {0,...,N—1} : [; < I},

s.t. we can write the kinetic energy & and its discrete counterpart & as

trans trans,h

Ete =5 2 Y jcb (pot,2), polt, ), mo(t, 1, ) dt Q(x, y)m(x),

1eSmxyeX
Ettaneh = Z >, 1@ ((avey, Zups) (b, %), (avey, Tups) (ti, y), (v, me) (£, %, ) Qlx, y)m(x).
zeSmxyGX

Because the integrand @, : R, x Ry x R — IR, is convex, for every interval I; with i € S,,,, we can apply Jensen’s
inequality, which gives

L_ De (ps (£, %), po(t, y), mlt,x,y)) dt = he ((avg, po) (ki x), (avey, ps) (b ), (avg, ms) (ti X, y)) -
By construction of ps and by definition of A, we have for any i € S, and z € X that

(avg, ps)(ti,z) < (avg, Iups)(ti,z) + A, and  (avg, Ihps)(ti,z) = €.

Since the function s — ﬂ is monotone, we obtain

(avgy, Lnps)(ti, z) - (avg, Tpps)(ti, z) __¢
(avgy, ps)(ti z) - (avg, Inps)(ti,z) + A T e+ A

Now, by the joint 1-homogeneity of 6 and the monotonicity of 6 in each single component, we get for all x, y € X
that

0 ((avgh‘z—hpé)(ti/x)r (anh Ihp{,)(ti,y)) - € _ 1
0 ((avg, po) (1, ), (avg, po)(tiy)) ~ €+A 1+

o>
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Hence,

(avgy, ms)*(t;, %, )
B = ,ezsm x%)( ((avgy, Lnps)(ti, x), (avg, Tnps)(ti, y)) Qx ()

1+A

(avg), ms)* (i, X, )
)(ti,x), (avg, ps)(ti, y))

Q(X, y)”(x) = ( )8:1:3m

€Sy X, yeX

By definition, we have € = 5 > A%, and thus, % < €. Altogether, we obtain for /1 sufficiently small

1-—
Ereans i (Pn, My) = Strans i T Sans T €4 2C(X)o+(1+ e) &mns(p, m),

trans, h

—26
which converges to Eyans (p, m) for b — 0. O

Now, following Theorem 2.3.3, the I'-convergence result provides convergence of discrete geodesics to contin-
uous geodesics. First, we show in analogy to Lemma 5.2.1 that also the discrete momenta are uniformly bounded
in L2.

Lemma 5.4.4 (L>-Bound for the Discrete Momentum). Let (py,my) € V!, x VO, with finite discrete energy
En(pn, my) < E < co. Then, my, is bounded in L*([0,1], RX*X) with a bound only depending on (X, Q, ).

Proof. The proof works in analogy to Lemma 5.2.1. First, we can estimate

2
( v |mh<t,-,x,y>|Q<x,y>n<x>) < ( S @, (avg, pult ), avg, ph<t,-,y>,mh<ti,x,y))Q(w)n(x))

x,yeX x,yeX

- ( S 6(avg, pu(ts x), avg, palt 1)) QL y)n(x)) .

x,yeX

Furthermore, we have a bound

> 0(avg, pu(ti, x),avg, pr(ti, )Q(x, y)m(x) < C*,
x,yeX

where C* is defined in (5.1). Here, we have used that (ph, my) € CS(pA, pB), and thus, the mass is preserved, i.e.,
Sexavg, pnt, X)m(x) = Yex puti + ,0)m(x) = Diex pa(x)m(x) = Lforalli = 0,...,N — 1. Moreover,
since Eirans i (Pn, My) < 00, we have that avg, p, > 0. Finally, using that X is finite and summing up in time, we
establish the bound. m|

Theorem 5.4.5 (Convergence of Discrete Geodesics). Let pa, pg € P (X) be fixed temporal boundary conditions
and let (py, my) be a sequence of minimizers of the discrete energy functionals &y. Then (py, my) is uniformly
bounded in C%> ([0, 1],IRX ) x L%((0, 1), RX*X), and there exists a subsequence (here again indexed by h), s.t.
pn — p strongly in C®*([0,1],R¥) for any a € [0, ) and my — m weakly in L?, where (p,m) is a minimizer of
the energy functional &.

Proof. For a sequence of minimizers (py, my)y , the discrete energy Ey,(pp, my,) is uniformly bounded by Corol-
lary 5.4.2. Since (pn, my) € CE(pa, ps), the total variation of (py), is uniformly bounded. Furthermore, by
Lemma 5.4.4, the L?-norm of (my,);, is uniformly bounded. Hence, the sequence (pn, my), has a weakly-* con-
vergent subsequence, which, by Theorem 5.4.3 and the fundamental theorem of I'-convergence 2.3.3, converges
weakly-* to a minimizer (p, m) of &.

We can improve the convergence by taking into account the regularity for solutions to the continuity equation.
Indeed, since 1y, is uniformly bounded in L?((0, 1), R¥*¥X), the continuity equation d;p;, = —divxmy, implies that
pn is uniformly bounded in W'2((0,1), RY). Thus, (py)y is uniformly bounded in C%2((0,1), R¥) and compact
in C%¢((0,1),IR¥) for all a € [0, §) by the Sobolev embedding theorem 2.2.2. O
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5.5 Optimization with Proximal Splitting

For the numerical optimization scheme, to compute a minimizer of the fully discrete energy (5.7), we apply prox-
imal splitting methods as discussed in Section 3.2.3. We recall that for the classical L2-Wasserstein distance, the
splitting can be performed in a way s.t. the proximal mappings are obtained by solving a linear system coupled in
space and time and a pointwise projection onto a convex set. Now, for the discrete transport distance, it turns out
that the convex dual of the kinetic energy functional Ey,ns cannot be computed pointwise, since p and m are cou-
pled spatially over the whole graph according to the transition kernel Q. Furthermore, because of our finite element
discretization, there is a coupling in time via the averaging operator avg;,. Thus, computing the proximal operator
of Eyrans,n Would require to solve a nonlinear minimization problem fully coupled in space and time. Therefore, to
simplify the numerical scheme, we propose the use of auxiliary variables to decouple the optimization problem.
This requires to solve a minimization problem on a higher-dimensional space by taking into account additional
proximal operators, but each turns out to be much simpler to compute.

5.5.1 Relaxation via Slack Variables

Here, we introduce several slack variables to decouple the fully discrete optimization problem (5.7). Since in the
following, we only investigate discrete spaces, we often neglect the time discretization parameter / to indicate
corresponding functions.

Edge-Based Kinetic Energy. First, for the classical L>-Wasserstein distance, we recall from (3.13) that the
integrand of the kinetic energy for a pair (9,m) € R x R is given by

2

% if9>0,
O(8,m) =10 it (8,m) = (0,0),
0 else.

Now, for the discrete optimal transport distance, the integrand of kinetic energy in Definition 5.1.4 is given on
edges via @.(s,t,m) = ®(O(s,t),m), where O(s,t) is a suitable average of the adjacent nodes satisfying the
assumptions in Definition 5.1.2. Thus, @, couples the momentum variable m on this edge with the mass variable
p on the adjacent nodes x and y. Therefore, we introduce a variable 9 representing the mass on the edges, s.t. the
kinetic energy functional can be decoupled on edge values. We show that the corresponding relaxation does not
change the minimizer.

Lemma 5.5.1 (Edge-Based Kinetic Energy). The set
Koo = {(p,&) e VO, x V0, 1 0<3(t,xy) < 0(p(t,x), plti,y) Vi =0,...,N 1, Vx,yex} :

is convex.
We define the edge-based kinetic energy Eiyaps,e : Vo x Vo

nh eh

— R u {oo} by
Errans,e(d,m) f Z S(t,x,y),m(t,x,y)Qx, y)m(x) dt.
x,yeX

Then, for (p,m) € Vi S Vgh we can compute the kinetic energy functional &y gpg )y by

Eransp(p, m) = inf {6,,(1,15,6(8, m) + I «Kw(avgh p,d) : de Vgh} .

Proof. The convexity of K. follows since 0 is a concave function.
Now, for any 9 € Vgh with (p, 9) € Kire, we have that 3(t;, x,y) < 0(p(t;, x), p(ti, v)). By monotonicity of ®
in its first argument, this implies

O(S(ti,x, y),m(ti, x, y)) = PO(p(ti, x), p(ti, y)), m(ti, X, y)) = Pe(p(ti,x), p(ti, y), m(ti X, y)) -
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Since for (p,m) € V1, x V9 we have that p := avg, p € V?, and avg, m = m, this implies

Strans(pr m) = 8tran5 (anh p' anh m) = 8tra"5(avgh p’ m)
< inf {Stranse(‘9 m) + IK (p"g) : Ve Vgh} :

pre
To show equality, we observe that 9(t;, x, y) := 0(p(t;, x), p(ti, y)) obviously satisfies (p, 9) € Ky and has energy
Strans,e (‘9/ m) = Strans (ﬁ, TH) . O

Auxiliary Variables. Now, we explicitly introduce an auxiliary variable for the average value avg, p. So far, the
coupling according to the graph structure is transferred to the set K., where avg, p is defined on nodes, and p is
defined on edges. Therefore, we introduce auxiliary variables p~, p™ € V?,h to represent the mass on a directed
edge according to the adjacent node.

Lemma 5.5.2 (Decoupling in Time). For (p,9) € V1 x V0 o We have that
T, (avg,p,8) = inf{ L5, (0,p) + L5 (p,) + T, (@.p™p") + Tuclp™,p%,9)
(Prap™ pt) e (V2 x (V9,2
where we define the following sets

Javg = {(p, p) e V1 X Vg,h . p=avg, p} ,

J- = { 1 p= q} ,
Tz = { @p 0" eVﬂh (Vo7 = qtx) = p~(t,x,y), q(t,y) = p (tux,y)}, (5.9)
XK = { (p~=,p",9) )3 s (p~ (b, ), pt (ki x,y), S(H, X, y)) EK} (5.10)

with
K:={(p~,p"9)eR :0<8<0(p,p")}.
Proof. For fixed p € V!, there is precisely one tuple (g,q,p~, p*) s.t.

(0,P) € Twg,  (p9) €=, and (q,p7,p") €T+,

i.e., the tuple is given by p = avg, p,q = p, p~(t;, x, y) = q(t;, x), and p™* (t;, x, y) = q(t;, y). For this (p~,p™)
we find (p~, p*,9) € K if and only if (avg), p, 9) € Kpre. o

Later, the additional set J— simplifies the partition of the final optimization problem into a primal and a dual
component. Indeed, the sets Jupg, J =, J+ and K are products of simpler low-dimensional sets, implying more
straightforward computations of the relevant proximal mappings and projections.

Splitting of the Relaxed Energy Functional. Finally, we arrive at an equivalent formulation for the discrete
minimization problem (5.7):

(WG,h(PA/ PB)Z = inf {(T + g)(prml ‘91 p_r P+/ P_/Q) : (5 11)
(P, 9,p7,p%,p,0) € Vh, x (V0,)* x (VO 2}

with functionals

T(P, m,9d, [ p+, ﬁrLI) = 8trans,e(‘91 m) + Iji (q/ P, P+) + Ijm)g(p’ p)/
Glp,m,8,07,0%,p,9) = Lce,pupn (P, m) + Lac(p™,p",8) + L7_(p,9).
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Here, the splitting into ¥ and G already fits into the requirements for a proximal splitting algorithm as presented
in Section 3.2.3. For our numerical scheme, we use the Chambolle—Pock algorithm (3.11), where we consider the
Hilbert space H = V!, x (V0 )* x (V?,)? with the scalar product

<(P1/ my, ‘91/ Pl_z prr ﬁl/ql) (ermZ/ 82/ p2_/ P;: P_erZ)>

N-1
—h2<p1 ) P2ty Vo 1Y Pt ), oty D+ < (b ), 0ot )
= i=0

N-1
(5.12)
+h Y (m (i), ma(ti, o + (St ), 92(t, g
i=0
N—1
+1 Y py (), py (B )a + oY (1), p3 (ti )
i=0
and the induced norm denoted by || - |y, which is used for the proximal mappings. Note that by Moreau’s de-

composition (see Theorem 3.2.9), the proximal map of the Fenchel dual can be computed by the proximal map of
the primal and vice-versa. Furthermore, the choice of our slack variables allows to compute the proximal maps of
the involved six operators for ¥ and G separately. In Figure 5.3, we summarize the proximal splitting algorithm,
including the following observations concerning the computational methods of the particular operators.

‘ IC&, (pa.ps) ‘ ‘ pe ‘ ‘ I\.'L ‘

linear system fully decouples -
coupled in space and time for each time step and edge

‘ simple pointwise operation ‘

ﬁ : 5o q :
momentum mass on edges ma SO auxiliary mass mass averaged
on edges according to 0 directed edges allows splitting in time

‘ Strans,e

fully decouples
for each time step and edge

L |

decouples for each node
to a sparse linear system in time

low-dimensional problems
for each time step and node

Figure 5.3: Sketch of proximal splitting algorithm.

5.5.2 Projection onto CE;(pa, p5)

In analogy to the classical optimal transport distance, we show that projecting onto CEy(pa, pp) requires solving
an elliptic problem on the time-space domain (c¢f. Lemma 3.2.14).

Proposition 5.5.3 (Projection onto C&;(pa, ps)). Given (p,m) € V!, x VO, the solution (p"",m") to the pro-

Jection problem

Projcg, () = argmin —anp’ 0 ) — plts IR + Z (6, ) — m(t )R
(prrmrr)eCEy (pa, PB)
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is given by
ti/ - t'— 7 .
P (1, x) = plti,x) + plti,x) h(P( i1.%) Vi=1,..,N-1, (5.13a)
P (to, x) = pa(x), " (tn, x) = pB(x), (5.13b)
mP (¢, x,y) = m(ti, x, y) + Vxp(ti, x, y) Vi=0,...,N—1, (5.13¢)

where @ solves the elliptic equation on the time-space domain

1t(x) Pt ) h_z Plto %) + 1t(x) Axp(to, x)

= —7(x)

(L R—"

(o) LD LOBD) | )5t )

= —n(x) (pg(x) _ Z(thlrx)

(5.14)

+ divxm(tN_l,x)> ,

n(x)(P(ti-‘rlrx) - Z(P;ltzl/x) + qo(ti—llx) + n(x) AX@(ti/x)

= —7(x) <p(ti+1,x)h— plti,x) + div,wn(t,-,x)) ,

fori=1,...,N—2and x € X.
The factors 7t(x) in (5.14) could be canceled but they simplify further analysis.

Proof. We define the Lagrangian corresponding to the projection problem as

L1, 9, Aa, ) = ZHP’” 2 = bt IR + Z (1) — mt, )
+h i X (i1, 2) = pP(Fi ) + divym® (4,
;g PITCR ( . i (1,3) ) (o)
+ 2 (A(x) (P (b, %) — pa(x)) + Aa (%) (P (to, X) — pa(¥))) (x) ,
xeX

where A4, Ap are the Lagrange multipliers for the boundary conditions p(ty, -) = pa and p?(tn, ) = pp. The op-
timality conditions in pP and m"" imply (5.13a) and (5.13c). Furthermore, (5.13b) reflects the boundary conditions,
which are to be ensured in CEy,(pa, pg). Inserting these relations into the continuity equation d;p™ + divymP" = 0
leads to the system of equations (5.14). O

Now, the system (5.14) can be written as a linear system SZ = F for a coordinate vector

Z = (@(ti,X))i=0,.N—1,xex

representing a function ¢ € Vg , in the canonical basis

(@")iz0..N-1,xex, where (¢")(tj,y) = i) Oxy,

and the standard Euclidean inner product with respect to this basis. Furthermore, F € RNl is a vector and
S € RWVIXDX(NIXD) s a matrix, which is symmetric since 7(x)Q(x, y) = 7(y)Q(y, x) and sparse if Q is sparse.
However, the matrix S is not invertible. Thus, to solve the linear system, we first compute the kernel of S.

Lemma 5.5.4 (Kernel of System Matrix). The kernel of S is spanned by functions that are constant in space and
time.
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Proof. Assume that there is Z is in the kernel of S, which is not constant. We denote by ¢, the associated function
in V), Now, let I (1) := {(i,x) € {0,...,N =1} x X : ¢y(i,x) > p} for u = min ¢y (i, x) and define p € V7 |
via @(t;,x) = 1if (i,x) € I (1) and @(t;, x) = 0 else. Let W be the associated nodal vector to ¢. By assumption
on Z the set I (i) is nonempty and thus it is easy to see that WTSZ < 0 and thus Z cannot be in the kernel of S,

which proves the claim. O

Thus, we introduce another Lagrange multiplier A to impose the constraint Zf\;l Dex @(ti, x) = 0. Con-
sidering the vector w € RNIXI with entries w** = 1 this constraint can be written as w'¢ = 0. Then the linear

(@ 5) ()~ )

is uniquely solvable, and the solution implies A = 0 if F L w (in the Euclidean sense), which is true because p4

and pg are assumed to be of equal mass. Note that any Z = Z + W with W in the kernel of S would not change

W(ti,x)—W(ti—1,x
h

the updates (5.13a) and (5.13c), since the contributions ) and VxW(t;, x,y) are zero.

5.5.3 Proximal Mapping of Serans.e

We recall from Section 3.2.3 that the computation of the proximal mapping of Eyanse (See Proposition 3.2.12) is
also required for the numerical solution scheme for the classical optimal transport distance. Now, for the discrete
transport distance, it is crucial that we have decoupled the variables in such a way that the computation of Eyrang e
can be performed pointwise. This is satisfied, since for (9, m) € (Vg,h)2 we have

N—-1
Euase(8,m) = 3 3, 3 @S(0%, ), (1%, 1)Qx, W),

i=0 xyeX

and thus, for (p, ) € (V?,)?, we obtain for the dual

N—1
Stﬂ;ans,e(pl Q) = sup h Z [<p(tir ' ')l S(tir ' )>Q + <q(tir ' ')/ m(ti/ r )>Q
2 i=0

33 (% ) mlt % )Q y)n()|

(xy)eXxX
I’l N-1 N-1
=5 Y O(pltixy), 4t % y)QMx y)m(x) = Is(p(ti, %, ), q(ti, %, y)),
i=0 (v, y)eXxX i=0 (x,y)eXxX

where ®@* = J g with the convex set

2
B—{(p,q)e]Rz : p+%<0}.

Therefore, the proximal mapping separates into two-dimensional problems for each time interval and edge, and for
o >0, (p™,q”) = prox g« (p,q), itis given by

ans,e

(™ (ti, x, y), 9™ (ti, x, y)) = projg(p(ti, x, y),49(ti, x, ) -

In Lemma 3.2.13, we have described the computational solution scheme of this projection problem with a Newton
method.



62 CHAPTER 5. OPTIMAL TRANSPORT ON GRAPHS

5.5.4 Projection onto the Edge-Based Set K

In the following, we want to compute for given (p—,p™,9) € (Vgh)3 the projection

(prr, p+Pr’ Spr) — PI'O].rK(P7/ p+,\9)
onto the set K, which is given by

N-1

. h —pr r T
arg min E Z (HP ’ (ti,-) — P “(ti )HQ + HPH) (ti,-) — p+(ti/'r')H2Q + ngp (i) — 3t /)Hé) :
(p=PptPom)ek < i=p

Recall from (5.10) that K is a product of the three-dimensional closed convex set K. Thus, the projection problem
decouples into the edgewise projection

(P~ (ti,x,y), p P (ti, %, y), O (ti, x,y)) = projg(p™ (t,x,¥), p™ (i, %, ), 9(ti, %, ),

for each time step #; and each edge (x,y) € S. To compute the projection onto K, we make use of its special
structure given as the graph of a concave function 6. In analogy to the subdifferential for convex functions,
we denote the superdifferential of O at a point (s,t) € R?> by 0+0(s,t) := —d(—0)(s,t), where d(—0)(s, t) is
the subdifferential of the convex function —6 at (s,t). Now, we recall from Lemma 3.2.11 that the projection
pP" = proj,(p) of p € R? is characterized by

p—p"eN(p™) = {ze R : (zq—p") <0VqeK},

where Nk (pP") is the normal cone of K at p*. First, we observe that the computation of N can be distinguished
into several cases.

Lemma 5.5.5 (Characterization of the Normal Cone). Let 0: R> — R be an averaging function fulfilling the
assumptions listed as in Definition 5.1.2 and let K := {p € R®> : 0 < p3 < O(p1,p2)}. Then the normal cone
Nk (pP") at p*" € K can be characterized in the following way.

1. Interior Points. If p*" € {(p1,p2,p3) € R®: 0 < p3 < O(p1,p2)}, then Nx(p”") = {(0,0,0)}.
2. Bottom Facet. If p" € Ry x Ry x {0}, then Nx(p"") = {0} x {0} x Reo.

3. Coordinate Axis. If p” = (p',0,0) with p}" € Ry, then
Nk(P') = {0} x Reo x Reo w {(0,42,45) € {0} x Reo x R, : (0,—%) e 2*0(,0)} .
Moreover, we have that
(0,9)€d*0(p,0) < q=1lma0o{p,z),
z\.0
0TO(",0) = < Lma0@p),z) = w.
z\0
In analogy, a similar statement holds for p*" = (0, p‘; ,0) with pp eR,.

4. Origin. Ifp”" = (0,0,0), then

Ne(p") = (Reo)® © {(a1,02.5) € Reo x Reo x R+ (2, 2) ¢ ~0*0(0) } .

5. Upper Surface. If p”" = (0,5, 00", p5")) for (P, p5") € R2, then
P = {A (0@, 1), —00 ), 1)+ AeR.} .
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Proof. We distinguish the particular cases.
Interior Points and Bottom Surface. These two cases trivially hold true.

Coordinate Axis. Let p™ = (p!",0,0) with p}" > 0. First, there exists ¢ > 0 s.t. the points (p]" + ¢,0,0),
(p]" —€,0,0), and (p', €,0) are in the set K, hence N (p™) < {0} x R<o x R. Now, the planes R x {0} x R and
R x R x {0} contain the point pP*, but do not intersect the interior of K, thus {0} x R¢p x R¢o < Ng(pP"). Next,
we investigate the set {0} x R<o x Rgp. By definition of the set K, a point (0, —z,1) € Ng(p®) is determined
by the condition z = (0,22) € 07 6(p}",0). We define a function f: t — O(p]',t) s.t. z € 0% f(0). Conversely, if
zp € 07 £(0) then it follows that (0, —zp, 1) & Ng(p™). Thus, the normal cone is given by

Nk(p™) = {0} x Rgo x Rgo u {(0,—A-2z,A) : ze 0T f(0), A e R} }.

Because the auxiliary function f is concave and by monotonicity of the superdifferential, we observe that

0" f(0) = [lim 626(py’, 2), ) .

Origin. Let p” = (0,0,0). First, we observe that (R<)®> = Nk(0) = R¢p x Rgp x R. To investigate the set
R¢o x Rgp x IRy, we consider the superdifferential of 6. Indeed, for every z = (z1,22) € d760(0), we have that
(—z1,—22,1) € Ng(0). Conversely, z = (z1,22) ¢ 07 60(0) implies (—z1, —z,1) € Nx(0).

Upper Surface. Let pP" = (p1", p5', 0(p)", p')) with (p]", p)') € IR? . Then there exists a neighborhood of p" s.t.
K is the subgraph of a concave and differentiable function. Hence, the normal cone is spanned by the single outer
normal vector (—010(p}', p5' ), —220(p}, p5'), 1). o

Now, from Lemma 5.5.5 we can extract the following algorithm.

Algorithm 5.1 Projection onto the cone K

function PROJIECTK(p1,p2,p3)
if 0 < ps < O(p1, p2) return (py, p, p3)
if p3 < 0 return (max{p;, 0}, max{p», 0},0)
if (p1 > 0) A (p2 < 0) then
if —po/p3 = lim\ o 020(p1, z) return (p1,0,0)
end if
if (p1 <0) A (p2 > 0) then
if —p1/ps = lim,~ o 010(z, p2) return (0, py, 0)
end if
if (71 < 0) A (p2 <0) then
if (—p1/p3, —p2/ps) € 07 6(0) return (0,0,0)
end if
return PROJECTKTOP(p1,p2,p3)
end function

Thus, for a fully explicit solution scheme for a specific choice of 6, we still have to compute
1. the limits limz\o 629(}71, Z) and limz\o 816(2, pz),
2. the superdifferential 0+ 6(0) at the origin, and

3. the function PROJECTKTOP(p1,p2,p3) for the projection onto the upper surface corresponding to the case 5
in Lemma 5.5.5.

Next, we describe a general procedure to reduce the projection problem onto the upper surface to a one-dimensional
optimization problem. Here, we essentially make use of the 1-homogeneity of 6. More precisely, it is sufficient to
consider a curve c: Ry — IR? of type

c(q) = (7% q"%).

Then all points on the upper surface can be expressed in terms of 6(c(g)). A similar dimension reduction allows
characterizing the superdifferential of 9 at the origin by taking into account the curve c.
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Lemma 5.5.6 (Projection onto the Upper Surface of K). Letp € R3 s.t. the projection onto K is given by P =
(p’;r,p’;r,e(p‘ir, p‘;r)) with (p’ljr,p‘;r) € ]Rﬁ_. Consider a parametrized curve w(q) = (q2,47V2,0(q"2,q47V/?))
on the upper surface of K with corresponding normal n(q) = (—:0(q"/2,q7?),—0,0(q"/?,q7V/?),1). Then
there exists a unique (q,7T) € ]Rz+ s.t. pP" = tw(q). More precisely, q is given as the unique root of the function

£@) = prlq) x nlg)) and T = (p, 70,

Proof. Letp™ = (p¥', pb', 0(p", p5')) with (p}', p5’) € R%.. By 1-homogeneity of 0, there exists a unique g € Ry
and T € Ry s.t. p" = 7 - w(q), where

pr
1 ¢ pry &
9=, and T=(p'py)*.
2
By definition, p lies in the plane spanned by w(q) and n(g), i.e., f(q) = {p,w(q) x n(q)) = 0. Since the projection
p™ is unique, g must be the unique root of f. Then 7 is given as the unique solution to the one-dimensional
projection T — 1[p — 7 - w(q)|* onto the corresponding ray. O

Lemma 5.5.7 (Characterization of the Superdifferential of 0). The superdifferential of O at the origin is given by

o+6(0) = (VO(g 2, 4'72) : geR.}+ (Rao).

Proof. We consider the curve c(q) = (g~'/?,4"/?). First, we have to verify that any 7 € {VO(c(q)) : g€ R }is
contained in 0+ 6(0), i.e., for every p € IR% , we have to show that (r,p) > 6(p). Letq € Ry s.t.7 = VO(c(q)). By
concavity of 8, we get that (VO(c(q)),p —c(q)) = 6(p) — 6(c(q)). Then by 1-homogeneity of 9, for every A > 0,
we observe that VO(Ac(q)) = VO(c(q)). Thus, we obtain that (VO(c(q)),p — Ac(g)) = O(p) — 6(Ac(q)). Passing
to the limit A — 0 and using the continuity of 6 on ]R220 leads to {r,p) = O(p). Because 07 0(0) is a closed set
(see, e.g., [BC17, Proposition 16.4]), we conclude that

{VO(c(@) : 7€ Ry} + (Rx0)* < 076(0).

In contrast, for every w € R?\(IR>)? there exists p € R? s.t. 6(0) + (r+w,p) < O(p), since (w, py can be chosen
arbitrarily small. |

Logarithmic Mean. Here, we consider the specific case of the logarithmic mean 6 = 0y, (see (5.4)). Then
for s > 0, we have that limy g 01010¢(t,5) = limp 0 02010¢(s,t) = c0. Therefore, we can explicitly describe the
normal cone at (s,0,0) by Nk(s,0,0) = {0} x Rg¢o x Rgo In analogy, the normal cone at (0,s,0) is given by
Nk(0,s,0) = Rgo x {0} x Rgg. Consequently, the Algorithm 5.1 simplifies as follows.

Algorithm 5.2 Projection onto the cone K for 0o

function PROJECTK(p1,p2.p3)
if 0 < p3 < Oiog(p1, p2) return (py, p2, p3)
if p3 < 0 return (max{py, 0}, max{p,,0},0)
if (p1 < 0) A (p2 < 0) A (=p1/p3, —p2/p3) € 07 010 (0) return (0,0,0)
return PROJECTKTOP(p1,p2.p3)
end function

Now, we characterize the superdifferential 0 0y, (0).

Lemma 5.5.8 (Superdifferential of Oy,). Let z = (z1,22) € R% Ifmin{zi,z2} < 0, then z & 0% 0.,4(0).
Otherwise, there is a unique q1 € R s.t. (7161,,8(17;1/2,111/2) = z1 and in this case z € 07 0,,4(0) if and only if
2y = 02010(972, ).

Proof. For the logarithmic mean, we have that 0" 6,4(0) < IR? , and thus, z € 07 614¢(0) if min{zy,2;) < 0. We
observe that the partial derivative

q—1-1og(g)

51010 (712, g1/2) =
0161g(q~ /%, 977) o2 (@)
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is monotone increasing in g with ;0104 (g2, 4"/?) — 0as g — 0 and 810105 (97Y/2,4"/?) — o0 as g — co. Indeed,
for B(q) = 010105(q~"/?,4"/%) with B(1) = %, we obtain a continuous extension on R . Furthermore, we consider
B(q) = 2(1—q)+10§(q)(1+q)
qlog”(q)
negative for ¢ < 1 and positive for g > 1. This implies that §'(g) > 0. Furthermore, by symmetry, we obtain that

the partial derivative 0,0105(9~1/2,4'/) is monotone decreasing in g with d,00e(q7Y/2,4"/?) — o0 as ¢ — 0 and
02010a(971/2,4"/?) — 0 as g — c0. By the general characterization result in Lemma 5.5.7, we get that

with continuous extension # for g = 1. We verify that 2(1 — q) + log(q)(1 + g) is

0" 0105(0) = {VOie(9%,4"%) : ge Ry} + (Rxo)*.

Thus, for every z € RZ, there is a unique g1 € Ry s.t. (9161%(171 ,qi/ 2) = z; with the property that z; >

01010 (972, 4"/2) if and only if g < g1. Furthermore, there is a unique g, € Ry s.t. 020105 (q, v z,q;/ %) = z; with

the property that z; > 0,0, (qfl/z, ql/z) if and only if g > g,. Hence, z € 0% 0104(0) if and only if g, < g1, which

is equivalent to zo = 02010g (’7;1/2' qi/z). )

Remark 5.5.9 (Numerical Implementation). To determine ¢ in Lemma 5.5.8, we can implement a one-dimensional
Newton iteration. Note that the function g +— 010i0g(9~"/2,4"/%) becomes increasingly steep as ¢ — 0, which
leads to increasingly unstable Newton iterations as z; — 0, whereas for g € [1,00) the function is rather flat and
easy to invert. To avoid the numerical instability for § — 0, note that the roles of z; and z; in Lemma 5.5.8 can
be swapped using the transformation g < q_l. Moreover, for max{zj, z;} < %, we have z ¢ 01 60,,,(0). Thus,
by swapping the values of z; and z; if z; < z we can always remain in the regime g € [1,0). Additionally, we
recommend to replace the function 0,44 (s, t) and its derivatives by a local Taylor expansion near the diagonal.

Geometric Mean. Now, we consider the specific case of the geometric mean 0 = Oy, (see (5.4)). Fors > 0
we again find limp o 0160,c0(t,5) = limp 0 0204e0(s,t) = 0 and consequently the same simplification of the
algorithm applies as in the case of the logarithmic mean. For the test of the inclusion z = (z1,22) € 07 Oge0(0),
we argue as in the proof of Lemma 5.5.8. The functions 01 0ge0(q~/2,"/?) = %q% and 020400 (47 Y2,4"?) =

%q*% have the same monotonicity properties as for the logarithmic mean. Therefore, if min{z;,z;} < 0 then

Z & 07 0geo(0). Otherwise, g1 = 4z and thus the condition d,0e0(q, 1/2, qiﬂ)

summarize, we have obtained

zp is equivalent to z1zp > %. To

0% 0ge0(0) = {z€ R? : z12p > 1 A min{zy, 22} > 0} .

5.5.5 Proximal Mappings of Auxiliary Operators

Proximal Mapping of 7 5,. Given a point (q,p~,p") € V0, x (V?,)2, the proximal map of 7, is given by
the projection proj; (q,p~, p*). Thus, we have to find the minimizer (47, p~", p*™) € I+ of

N—
anf” i) = a2+ 17 ) = p (i NS + I (k) — ot (k)

Recall that for any g*" € Vg , there is precisely one pair (p~™,pt™) € (Vgh)2 s.t. (g%, p~ ™, ptP) € T+, see (5.9).

Therefore, we have to find g* € Vg , that minimizes

N—-1
> (D170 x) — alt PG + 5 3 g x) — p (63 ) PO ()

i=0 xeX (x,y)eX?

2N W - PO )

(xy)eX?



66 CHAPTER 5. OPTIMAL TRANSPORT ON GRAPHS

Taking into account the detailed balance condition Q(x, y)7t(x) = Q(y, x)7t(y), the optimality condition in ¢ for
i=0,...,N—1,xe Xis given by

a7 (8, x) = ! At )+ = S (0 (b, ) + p (h,,1)Qx, )

1 +ZyEXQ(x/y) zyeg(
By definition of the set J+ we obtain p~ " (t;,x,y) = g (t;, x) and p™ (t;, x, y) = q*(t;, y) for (x,y) € X x X.

Proximal Mapping of 7 Juge Note that the original problem (5.11) does not change if we add the constraint
p(to,-) = pa and p(tn, -) = pa to the set Jue. That is, we consider the projection onto the set

ﬁavg = {(P,ﬁ) € jﬂvg : p(tOI ) = PA, P(tNr ) = pB} .
To compute the projection we have to solve

N-1

1
argmin — Z Z |pP (ti, x) —p(ti, x) )+ 5 |p™ (ti, x) t,,x)|2n(x).
(prr, pP')GJM i=0xeX i=0 xeX

Thus, we introduce a Lagrange multiplier A € VS , and define the corresponding Lagrangian

L) = 1 Y - %ZZWWX b))

i=0xeX i=0 xeX

- Z D At x) (avg, p™ (ki x) — PP (¢, %)) Te(x)

i=0 xeX

Because of the boundary constraints, we have for all x € X that pP(fo, x) = pa(x) and p*(tn, x) = pp(x). The
optimality condition in p?" reads for all x € X and for all interior time steps i = 1,...,N — 1 as

PP (t,x) = p(ti, x) + 2(A(tiz1, x) + A(t, X)) (5.15)
Furthermore, the optimality condition in g implies that on each interval we have
ﬁpr(i’,‘, x) = ﬁ(i’i, X) — /\(ti, x) . (5.16)

Combining both with the constraint avg, pP(t;, x) = pP(t;, x), we obtain
p(ti, x) — A(t;, x) = p™(t;, x) = avg, p™ (t;, x) = avg p(ti, x) + §(A(ti_1,x) + 2A(t;, x) + A(tiz1, X))
for all interior elements (i = 1,...,N — 2) and for all x € X. Analogously, using the boundary conditions, we get

plto, x) — Alto,x) = 5(pa(x) + p(t, %)) + ;(Ato, X) + A(t1, %)),
p(tn-1,%) = Altn-1,%) = 5(pB(%) + p(tn-1,%)) + ;(A(tn-2,%) + A(tn-1, X))

Thus, for each x € X the Lagrange multiplier A satisfies the linear system of equations

LBA(to,x) + A(t1,%)) = plto,x) — Hpa(®) + plty,x)),
i(A(ti_l,JC) + 6/\(ti, X) + A(tj+1,X)) = ﬁ(ti, x) — %(p(ti+1,X) + p(tj, X)) Vi=1,...,.N—2,
T(A(tN—2,%) + 5A(tn—1,%)) = p(tn—1,%) — 5(pB(x) + ptn-1,%)) .
This system is solvable, since the corresponding matrix with diagonal (5,6, ...,6,5) and off-diagonal 1 is strictly
diagonal dominant. Then, given the Lagrange multiplier A, the solution to the projection problem is given by (5.15)

and (5.16). Thus, to compute the proximal mapping of 1 g WE MUSE solve a sparse system in time for each node
separately. Since the involved matrix is constant, it can be pre-factored.
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Proximal Mapping of 7 4_. Finally, the proximal map of 7 4_ is simply given by the projection

Nlr‘

projs_ (p.q) = arg min

(ﬁp',qp')GVfI,sz,,; prr=qrr

N—

1
ZZ =" +lg—g"P) n(x) = 5(p+ .5+ 1)
i=0 xeX

5.6 Numerical Results for Optimal Transport Geodesics on Graphs

In the following, we show our numerical results obtained by the optimization scheme in Section 5.5. First, we
consider in Section 5.6.1 a two-node graph where the exact solution is explicitly known by solving a first-order
ordinary differential equation. Computing the ODE with an Euler scheme, we can compare our numerically
computed discrete optimal transport geodesic with the exact one. Then we investigate simple graphs with a small
number of nodes in Section 5.6.2. Note that even in the case of a graph with three nodes, so far, there is no explicit
expression of the solution. Next, we verify in Section 5.6.4 the Gromov—Hausdorff convergence to the classical L2-
optimal transport distance. Finally, we apply in Section 5.6.5 our solution scheme to larger graphs. As the stopping

criteria for the iterative algorithm in (3.11), we consider the L2-error of the mass variable § | p**1 — pk|2 df < &
with threshold ¢ = 1070, where k denotes the iteration step.

5.6.1 Comparison with the Exact Solution for the Two-Node Graph

We consider a graph X = {a,b} with two nodes a,b, where for p,q € (0,1] the Markov chain and stationary

distribution are given by
q
0
sz(a g)’ o (ﬁfﬁ)-
ptq

In [Maal 1], an explicit solution trajectory for the optimal transport problem was constructed for temporal boundary

data
p+q ) ( P+‘7>
=|——,0), and =10, —
pa (q pe 4

Note that every probability measure on X can be described by a single parameter r € [—1, 1] via

p+qgl—r p+q1+r>

pr) = (put o) = (AT AL

In particular, we have ps = p(—1) and pg = p(1). Using this representation, it was shown that for —1 < a <
B < 1 the optimal transport distance is given by

/ B
WG(P(a)rP<ﬁ)> = % + 3 L m dr, 5.17)

1

p a(7), P
and the optimal transport geodesic from p(a) to p(B) is given by p(y(t)) for t € [0, 1], where y satisfies the
differential equation

V') =2 -a)Ws(p \/me pa(y (1), pu(y (1)) - (5.18)

In the special case, where O is the logarithmic mean 0o, and p = g, we obtain that

Biog (pa(r), pu(r)) = W
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and consequently, the discrete transport distance is given by

B
Welp(w) ) = —o- | NEEEIG

Furthermore, the optimal transport geodesic between p(«) and p(B) is given by p(y(t)) for t € [0, 1], where y
satisfies the differential equation

y(t)

V() = V20~ Y We(p(@), BN | ooy

For this two-node graph, we numerically compute the optimal transport geodesic. This allows evaluating the
distance ‘W directly, which we can compare with a numerical quadrature of (5.17). Using the approximation of
‘W, we use an explicit Euler scheme to compute the solution p}?DE of the ODE (5.18). In Figure 5.4, for the case
p = g = 1, we compare our numerical solution to the approximation of the ODE with an implicit Euler scheme
for N = 2000.

2 0.04
L5 1 o002 i
1 B 0l |
05 4 —002) i
0 | | I I L L | | | |
0 0.2 04 0.6 08 1 0 02 04 06 08 1

Figure 5.4: The mass distribution at b is plotted over the time interval [0, 1]. Left: Numerical solution for a 2-node
graph X = {a, b} for the logarithmic (red) and geometric (green). The black line represents the diagonal, which is
the solution in the case of the (inadmissible) arithmetic averaging. Right: Difference of the numerical solution for
the logarithmic (red) and geometric (green) mean with the Euler scheme solution p,?DE for the logarithmic mean.

5.6.2 Exploring the Diffuse Behavior on Simple Graphs

In the following, we study the behavior of the discrete optimal transport distance on some simple graphs. Usually,
we set the stationary distribution and the Markov kernel to

mn=%§,Qmw:ném, (5.19)

where for each node x we denote by d(x) the number of outgoing edges. Here, we choose a time step size of
h = ﬁ and display the solution (p, m) at intermediate time steps indicated on the arrow in the first row. The mass
variable p(t, x) is represented by blue discs with an area proportional to p(t, x)7t(x). For the momentum variable
m(t,x,y), we use red arrows with a thickness proportional to |[m(t, x, y)|Q(x, y)7t(x), where the direction of the
arrow indicates the direction of the flow, i.e., it points from x to y if m(y, x) = —m(x,y) > 0 (¢f. Lemma 5.2.2).

Circles with Three and Four Nodes. First, we consider in Figure 5.5 numerically computed geodesic paths on
circles with three and four nodes, where the initial mass p4 is supported on a single node x, and the mass pp is
supported on a single neighboring node of x. We observe that in the case of three nodes, a small amount of mass is
also transport along the longer path, whereas for a circle with four nodes all mass is transported along the shortest
connecting path.
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Figure 5.5: Numerically computed geodesics on circles with three and four nodes and corresponding histograms
of the mass (blue) and the momentum (red) variable.
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Lattice. Next, we investigate in Figure 5.6 the diffuse behavior on a 3 x 3-lattice by transporting mass from the
middle left to the middle right. Since the 3 x 3-lattice consists of subgraphs given by circles with four nodes, we
would expect that also on the lattice mass is only transported along the shortest path. Indeed, in [EMW19], it was
established that a so-called retraction property on a subgraph is sufficient to guarantee that geodesics are supported
on this subgraph. For Q = 1 and 7t = 1, the retraction property can be verified for the middle horizontal line, and
thus, mass is only transported along this shortest path. However, for Q and 7 chosen as in (5.19) the retraction
property does not hold and our numerical results show that an essential amount of mass is not transported along
the middle horizontal line.

0 % % : % : !
i : : : : : i /
pA PB
[ ] @ =—p o © @ m— @ @ s @ > O ° @ e @ - ® m—p @ D
® @O>0— 020 —°020->0°:—0>0 —05>Q ®

Figure 5.6: Numerically computed geodesics on a 3 x 3-lattice for different choices of Q and 7. Top: Markov

kernel Q and stationary distribution 7 given as in (5.19). Bottom: Q(x, y) = 1 for all edges (x, y) and 7t(x) = 1
for all nodes x.

Cube and Hypercube. In Figure 5.7, we consider the cube {0,1}> and the hypercube {0,1}*. Note that the
computed solutions are symmetric in the sense that p(t,x) = p(1 —¢t,x) and m(t,x,y) = m(1 — t,x,y) for all
€ (0,1). Furthermore, the distribution of mass is constant on all nodes at time t = 3

N
i : : : : : | /
pPA PB

/ / Wi . /1 /

Figure 5.7: Numerically computed geodesic on the cube (top) and the hypercube (bottom). We observe an equidis-
tribution of the mass at time t = %
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In Figure 5.8, for the cube, we verify that the entropy functional

= > p(x)log(p(x))m(x)

xeX

Convexity of the Entropy Functional.

is convex along discrete optimal transport geodesics. This result was proven in [Maal 1, Proposition 2.12].

entropy

time

Figure 5.8: Entropy functional is convex along a discrete optimal transport geodesic.

Change of Sign for Momentum Variable. Finally, in Figure 5.9, we depict an example of a graph with four
nodes, which shows that the sign of the momentum variable on a fixed edge may change along a geodesic path.
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Figure 5.9: Numerically computed geodesic on a graph with four nodes. Note that the sign of the momentum
variable m for the edge with index 2 changes (cf.t = % andt = ‘é).




72 CHAPTER 5. OPTIMAL TRANSPORT ON GRAPHS

5.6.3 Experimental Convergence Rate in Time

In Theorem 5.4.5, we have established the convergence of minimizing paths of our fully discrete approximation
for a time step size i — 0. Here, we study this convergence numerically. We take into account a square lattice with
3 x 3 nodes and compute an optimal transport path between the mass concentrated at the midpoint of the square
and uniform distribution, i.e.,

pA:(S(%l>, and pp=1.
2

For the discretization in time we choose N = 8,16,32,64,128,256,512,1024. Since the exact solution for this
example is unknown, we consider our computational result (Dapprox, Mapprox) for the finest discretization N = 1024
as an approximation. Then we compare the solutions (pj, 71;) with this approximation in the corresponding norms
for which we have shown convergence, i.e., we consider

|Papprox — Prllwrzoryy,  and  [Mapprox — Mallr2(jo,.1,r%) -

In Figure 5.10, we plot these errors in a log-log scale and experimentally obtain linear convergence in /.
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Figure 5.10: Numerical verification of the convergence in time on a square lattice with 3 x 3 nodes for a time
discretization with N = 8,16, 32, 64, 128,256,512, 1024. Below we plot the errors | approx — 1| 12([0,1],RX>x) and
HpappmX — Pn le,Z([O,l]’]RX) in a log-log scale. The convergence order is linear in & (dotted lines).

5.6.4 Experimental Results Related to the Gromov—Hausdorff Convergence in Space

In [GM13], it was shown that for the d-dimensional torus T the discrete transport distance ‘W on a discretized
torus T;’lw with uniform mesh size ]\lA converges in the Gromov—Hausdorff metric to the classical L?-Wasserstein
distance on T%. This result was extended in [GKM18] to a certain class of regular meshes via a finite volume
scheme, but also counterexamples have been found.
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Note that for the classical L?-Wasserstein distance, the optimal transport geodesic connecting two point masses
pa = Op and pp = 01 is given by the transport of the Dirac measure with constant speed:

p(t,x) = 0¢(x).
Gromov-Hausdorff Convergence on a Line. First, for d = 1, we consider the unit interval I = [0,1] and a
sequence of space discretizations
XM = {XO,.. .,XM}

with uniform mesh size ]\lA for M € IN.. The corresponding Markov kernel Qus for X is defined by

1 )
{QM(xi/xiJrl) = Qm(xi, xi—1) = > fori =1,...,xm-1,Qum(x0,x1) = Qm(xm, xm—1) = 1.

For this sequence of graphs, we compute discrete optimal transport geodesics between 8y and 61. In Figure 5.11,
we plot the density distribution of the discrete optimal transport geodesic at time t = % for different grid sizes Al/l
According to the Gromov—-Hausdorff convergence result, we expect an increasing mass concentration at x = % for
M — o0, which we can indeed observe.

T T T T T
15+ - 1070.5 - u
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1071 | 1
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0 ; ~ = ; | T Lo \2
0 0.2 0.8 1 10 10

Figure 5.11: Left: Linearly interpolated densities for the ‘W geodesic on a one-dimensional chain graph between
a Dirac mass at the beginning and the end, at { = 0.5 with M = 2 (yellow), 4 (turquoise), 8 (brown), 16 (green),
32 (violet), 64 (gray), 128 (blue), and 256 (red). Right: Convergence of the L2-Wasserstein distance to a Dirac
measure at x = % for M — 0.

To quantify the convergence rate experimentally, we compute the L?-Wasserstein distance of the approxima-
tively computed discrete geodesic at time ¢ = % to the Dirac measure 61, which is explicitly given by
2

w(pn).y) = (Sl 1F et

In Table 5.1, we compute the expected order of convergence. As an initialization of the variables in the proximal
splitting algorithm we use an adaptive scheme in time, i.e., we first compute a solution for N = 32, then prolongate
this result to a finer discretization by doubling N and repeat until N = 1024. Remember that we have linear
convergence of the mass and momentum variables in the appropriate norms for N — oo. However, for M = 256,
the error in time seems to be quite large for N = 1024, s.t. the associated expected order of convergence is
inaccurate. Moreover, it turns out that transporting a Dirac measure with the discrete optimal transport distance is
quite singular, since we frequently have to deal with the unstable case in the projection of the logarithmic cone K
at 0. For all other results up to a space discretization with M = 128, the difference of the discrete optimal transport
distance for N = 1024 to N = 512 is small, s.t. we expect from our numerical results a convergence order %
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M | W= w (pu(1),0, ) | BOC= =)
2 0.3535819979

4 0.225432747 0.649347723

8 0.1518529497 0.5700221686
16 0.1036187107 0.55139039438
32 0.071299038 0.5393300146
64 0.0497631136 0.5188058612
128 0.0350786465 0.5044836728
256 0.0264826129 0.4055476142

Table 5.1: Expected order of convergence of the discrete geodesics from Figure 5.11 in the L2-Wasserstein distance.

Gromov—Hausdorff Convergence on a Square. Next, for d = 2, we consider a square lattice of uniform grid
size 3; L with M € IN and nodes Xy = {(i/M, j/M) : i,je (0,...,M)}, where the weights of the Markov kernel
Q are proportlonal to the number of adjacent edges. We compute optimal transport geodesic connecting the Dirac
masses 0(g,0) and 8(q,1). An example for M = 2 is depicted in Figure 5.12.
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Figure 5.12: Numerically computed geodesics on a 3 x 3-lattice connecting p4 = 00,0y and pp = O(1,1)-
For increasing M, We expect an increasing mass concentration on the space diagonal. In Figure 5.13, for

decreasing mesh size M, we plot the in time accumulated density values along the diagonal and the off-diagonals
of nodes. More precisely, we define the bands of nodes

k
BIXA = {(xl,xz) eEXy x Xy @ xp=x1 + M}

fork = —M, ..., M, where B}, represents the diagonal. Then we compare the values S(l) erB;ACA p(t, x)m(x) dt.

e A

Figure 5.13: Geodesics in the distance ‘W on a two-dimensional grid graph between Dirac masses at diagonally
opposite ends. We show accumulated densities along the diagonal and the off-diagonals (see text for details). The
width of the bars is scaled with the number of lines.
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5.6.5 Discrete Geodesics on Triangular Meshes of a Human Hand

In Figure 5.14, we take into account a triangular mesh of a human hand and compute the discrete optimal transport
geodesic between a mass ps supported on the fingers and a mass pg supported on the wrist. This example is not
intended as a real application, but it demonstrates that our numerical algorithm can be performed on large and
complex graphs.

W

N

)
Nl
4@5

Figure 5.14: Extraction of a discrete optimal transport geodesics for two different triangular meshes (shown on the
left) of a human hand. We depict all results from two different view positions. For each node, we represent the
mass by a blue neighborhood with an area of a proportional size. Top: The mesh has 1828 nodes and the geodesic
is computed for 257 time steps. We plot the result at the time steps t = 0, 65,129,193, 257. Bottom: The mesh has
6094 nodes and the geodesic is computed for 33 time steps. We plot the result at the time steps ¢ = 0,9, 17, 25, 33.
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5.7 Simulation of the Gradient Flow of the Entropy

For the L2-Wasserstein distance, in the seminal work [JKO98], it was shown that the heat equation can be inter-
preted as a gradient flow trajectory of the entropy functional (c¢f. Section 3.1.4). Now, for the discrete optimal
transport distance, in [Maall], an analogous result was provided. Indeed, for the logarithmic mean 0o, as an av-
eraging function, the heat flow is a gradient flow trajectory for the entropy w.r.t. the metric ‘Wg. Here, the entropy
functional H: &(X) — Ris given by

H(p) = . p(x)log(p(x))n(x),

xeX
with the convention ‘0log0 = 0’. Moreover, in [EM14], a similar result was shown for the Renyi entropy

Ho(p) = —= 3 p()'n(x).

xeX

By choosing, e.g., s = % and taking into account the geometric mean 0y, as averaging function, the gradient flow
of H w.r.t. the metric ‘W is given by the porous medium equation 0;p = Axp°.

5.7.1 Adaption of the Numerical Scheme

In the following, we verify numerically that gradient flow trajectories coincide with solutions to the corresponding
partial differential equations. Therefore, we make use of the minimizing movement scheme (3.7). Given an initial
density pp € Z?(X) and a time step size T > 0, an implicit time discrete gradient flow scheme for H is defined by
the iteration

1
pr+1 = argmin S We (i, pp)* + T H(pg). (5.20)
pr€ P (X)

Note that for our fully discrete optimal transport distance ‘W, the time step size h appears as an inner discretiza-
tion parameter.

For a fully numerical scheme, to compute a solution of the minimizing movement step in (5.20), we essentially
have to make two modifications compared to our method for fully discrete geodesic paths. First, we define a
discrete continuity equation with a free endpoint. For initial value ps € (X)), let

Cé&n(pa) = {(Ph/ my, pg) € V), x Vo, x RY = (o1, my) € CE(pa, PB)} :

Furthermore, we take into account the entropy of this free endpoint, which additionally appears as a further vari-
able. Then, analogously to (5.11), the minimization problem (5.20) can be written as

min {T(ph/ my, ‘9}1/ Ph_/ ,0;—/ ﬁh/ qhs PB) + Q(Phr my, ‘9]1/ ph_r P;/ ph/ qn, PB) :
(Pns 1, S Py, o0} Phr s pB) € Vi X (V) % (V)7 % RY}

with

F (s 10, S, 03,4 01+ Pr As PB) =Ercanse (S, 1) + Ly (n, 0y, 2 05) + L 7 (o1s p1) + 277 - H(ps),
G (P, S, 01, 0+ P Gis 8) =L (o) (P 10, 08) + Lac(py o o On) + L (Pns ) -

As for the geodesic interpolation problem, the splitting into ¥ and G allows applying a proximal splitting al-
gorithm. We extend the space H by a factor R, and adapt the scalar product in (5.12) by adding the term
h{pg1(-), pp2(-))x for the additional variable pg. The proximal step of ¥ * then requires to compute an additional
proximal step of (27 H)*. In the proximal step of G, the projection onto CEy,(pa, ps) is replaced by a projection
onto C&E(px). Next, we describe these modifications in detail.
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We recall that the proximal mappings of H* and H are linked by Moreau’s decomposition (see Theorem 3.2.9).
Moreover, the computation of the proximal mapping of  can be performed on the space ]R>O, since the constraint
pp € Z(X) in the formulation of H is enforced via the mass-preserving condition in the discrete continuity equa-
tion. Then the computation of the proximal mapping of 9 decouples in space, and the resulting one-dimensional
problem can be solved via Newton’s method.

To project onto the set CEy(pa) of solutions to the continuity equation with free endpoint, in analogy to
Proposition 5.5.3, a discrete elliptic equation on the time-space domain has to be solved.

Proposition 5.7.1 (Projection onto CE;(pa)). The projection

PrOjgg, (o) (0,1, p5) = argmin —ZHP” i) = pulti )2
(prrmrr,py )ECE, (pA)

N
S I (1) — it + 1 pl?
i=0

(5.21)

onto the set CE(pa) of solutions to the discrete continuity equation with initial data ps can be computed by
solving the following linear system in the Lagrange multiplier ¢y, € Vg n

t,x) — to,
Pu(t1, x) hz(Ph( 0,X) + Axqn(to, x)

~ [ Pult,x) — pa(x)

B h

—20.(tv_ x) — tN_o,

Z(Ph( N—1 x})lz (Ph( N—2 x) +AX(Ph(tN_1,x)

[ 3lps(x) + pultn, X)) — pultn-—1,%)
B h

On(tiz1,x) — 2@u(ti, x) + @u(ti—1,x)

2
(Ph(tiﬂ,x) — pu(ti, x)
h

+ divxmy(to, x)) ,

(5.22)

+ divymy, (tNl,x)> ,

+ Ax(ph(t,‘, x)

+ divxmy(t;, x)>
withi=1,...,N — 2 and x € X. Then the solution (p”",m"", pi") to (5.21) is given by

9= 1 (it + g - 201

7 (ti, x) = pu(ti, x) + Pn(ti, x) h(Ph( i—1,%) ,

PP (to, x) = pa(x), p” (tn,x) = pjy (x
m” (ti, x,y) = my(ti, x,y) + Vxon(ti, x, y)

foralli=1,...,N—2andx,y e X.

Proof. In analogy to the proof of Proposition 5.5.3. m|

Remark 5.77.2 (Comparison to the Projection onto C8h(pA, pB)). Note that, in contrast to Lemma 5.5.4, the linear
system (5.22) is no longer degenerated due to the additional freedom of pg, and thus, no additional Lagrange
multiplier is required.
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5.7.2 Numerical Results for Gradient Flows

For our numerical computations, we choose a line of five nodes with
. . 1
stationary distribution = §(1’ 2,2,2,1),

Markov kernel Qx,y) = for x, y adjacent, and

1

87(x)
1

initial mass p= E(l, 1,5,1,1).

In Figure 5.15, we compare the solution to the heat equation with our numerical result of the gradient flow of the

entropy H and a logarithmic averaging operator. Furthermore, we compare the solution to the porous medium

equation with our numerical result of the gradient flow of the entropy /{1 and a geometric averaging operator.
2

Here, the solution to the heat equation and the porous medium equation are approximated by a simple explicit Euler
scheme. Note that the entropy functional H is minimized for equidistributed p € Z?(X). Thus, in the example
above, we experimentally obtain that the iterates pj in (5.20) converge to the uniform distribution 1 = (1,1,1,1,1)
for k — oo. In Figure 5.16, we plot for 3 - 10* minimizing movement steps the entropy functional H (pr) and the
difference to the uniform distribution |px — 1|2. We observe, in both cases, an exponential decay rate.

0 2 4 6 8 _185
‘ Il Il Il Il
‘ T T T T
t
o @ o o000 00000000 o000
-1.9 N
o P © 9 0+ 000 o000 —1.95 N
-2 =
8 10

Figure 5.15: Numerical solution to the heat flow (top) and the porous medium equation (bottom) based on an
explicit Euler scheme (blue) with time step size 1073 and for the gradient flow of the associated entropy using the
logarithmic mean (red) and the geometric mean (green), respectively, with 7 = 1072 and # = 100. Panels on the
left show the mass distributions on the graph at different times, panels on the right show the values of the entropies
over time.



5.8. CONCLUSION AND OUTLOOK 79

1071 — - 1 100 — - f
1073 110t
B A

Figure 5.16: Convergence of gradient flow of the entropy using the logarithmic mean. We use a time step size
7 = 1073, = 100 and 3 - 10* minimizing movement steps. Left: Entropy functional #(py). Right: Difference to
the uniform distribution | px — 1|J2.

5.8 Conclusion and Outlook

We have arrived at a fully numerical scheme to approximate geodesics for discrete optimal transport introduced by
Maas [Maall]. Our finite element discretization in time has been chosen s.t. a I'-convergence result can be estab-
lished. Compared to the classical optimal transport distance, we have used a similar proximal splitting algorithm,
where auxiliary slack variables have been necessary to decouple the nonlinearity given by the averaging operator
in space and time, which then basically requires a projection onto a three-dimensional convex set. We have veri-
fied that our numerically computed solutions satisfy specific properties, which have been proven previously in the
literature.

Concerning the I'-convergence result, it has been essential for the I'-liminf inequality that the set of solutions to
the discretized continuity equation is contained in the set of solutions to the continuous continuity equation. This
conforming approximation property is no longer valid for a discretization with both piecewise constant mass and
momentum variables (p,m) € Vg,h X Vgh. However, we have obtained similar results with such finite element
spaces. Moreover, the I'-limsup estimate could be obtained directly by Jensen’s inequality for piecewise con-
stant mass, since no additional Lagrange interpolation operator is required. Therefore, we have also implemented
a discontinuous Galerkin discretization for piecewise constant mass and piecewise affine momentum variables
(pn, my) € VS,h X V;;l to combine the advantages for the I'-liminf and I'-limsup inequality. In the numerical re-
sults for the discontinuous Galerkin discretization, we have obtained oscillations of the momentum variable, which
could be reduced by an additional L?-regularizer.

Our implementation has taken into account the sparsity of the Markov kernel Q since we have considered the
momentum variable m(x, i) only on edges where Q(x, y) > 0. Moreover, in Lemma 5.2.2, we have proven that
for an optimal path (p,m), the momentum variable is antisymmetric in the sense that m(t,x,y) = —m(t, y,x)
for all t € [0,1]. This additional information has not been incorporated in our discretization, but indeed, for
our computational results, we have observed the antisymmetry of m. An alternative discretization was taken into
account in [Sch18], where the degrees of freedom for the momentum variable were reduced by a factor two.
Furthermore, instead of the variables (p,m), the variables (pwt, mQm) were considered, which allows eliminating
the stationary distribution 7t in the energy functional.

Finally, we remark that Erbar [Erb16] constructed a similar discrete transport distance, which allows identifying
the spatially homogeneous Boltzmann equation as a gradient flow trajectory.
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Chapter 6

Foundations in Elasticity and Shape
Optimization

The second part of this thesis is concerned with several compliance shape optimization problems. In general, we
consider forces acting on a reference domain of an elastic object leading to a deformed domain crucially depending
on the material. Under certain mechanical assumptions, we derive partial differential equations to describe the
corresponding equilibrium deformations. We start in Section 6.1 to give a short introduction to the theory of
elastic bodies in R3. In Chapter 7, we consider a special class of elastic bodies, whose microstructure is given
by a periodic cell. To describe the macroscopic behavior of such objects, we recall the theory of homogenization
in Section 6.2. Later, in Chapter 8, we investigate a further class of elastic bodies, which can be described by a
two-dimensional surface with a small thickness. Finally, in Section 6.3, we give an introduction to elastic shape
optimization, where we ask for an optimal distribution of the material on the reference domain to obtain optimal
stability w.r.t. the given forces.

6.1 Elastic Bodies

Here, we give an overview of the theory of elastic bodies in IR? by mainly following the famous book by Ciar-
let [Cia88]. Let Q4 < IR3 be the reference domain of an elastic body. We assume that Q4 is a bounded, open, and
connected set. A map : Q, — R3 s called deformation if it is injective on ()4 and orientation-preserving. We
denote the corresponding deformed domain by Qp := ®(€,4) and suppose P to be the identity on a fixed part of
the boundary T'y < 0Q,. Furthermore, let a body force Fz: Qp — R? and a surface force Gg: I'f — R® act on
the deformed domain, where the free boundary is given by l"g’ = 0Qp\I's = 0Qp\I'4. In Figure 6.1, we depict a
2D sketch of this configuration.

Ty=T %

Figure 6.1: Sketch of a deformation of an elastic body in 2D.

83
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We aim to derive equilibrium equations for the deformation @ corresponding to the acting forces. In the fol-
lowing, we assume that the boundary 0Q4, the deformation @, and the forces Fp, Gp are sufficiently smooth, but
we do not discuss the specifically required regularity in detail, therefore the following derivations are rather for-
mally. We take into account the Cauchy—Euler stress principle. This fundamental axiom of continuum mechanics
postulates the existence of a vector field fg describing contact forces between two parts of the body.

Axiom 6.1.1 (Cauchy-Euler Stress Principle). There exists a vector field fp: Q_B x 8% — R3, which satisfies
1. tg(xp,np) = Gp(xp) for all xz € Flg’ where the outer unit normal np exists,
2. (force balance) for all Y < Qg we have SY Fp(xp) dxp + Say tp(xp,vy) do#?(xg) = 0, and
3. (momentum balance) for all Y < Qp we have §, xg x Fg(xg) dxp + §,, xp x tg(xp, vy) d7#*(xp) = 0.
Here, for a subset Y < Qp, vy denotes the outer unit normal along 0Y.

Furthermore, under suitable regularity assumptions on tg, the existence of a so-called Cauchy stress tensor
Tg: Qp — ]Rfyxm3 can be established, which relates fp to a partial differential equation on the deformed domain.

Theorem 6.1.2 (Cauchy’s Theorem). Assume that Fg is continuous and tg is continuously differentiable in the first
and continuous in the second argument. Then there exists a continuously differentiable tensor field Tp: Qp —
]Rf\?;,? s.t. tg(xp,v) = Tg(xp)v forall xg € Qp, v € S? and

{—diVTB(xB) = Fp(xp)  Vxpe Qp, 6.1)

Tp(xp)np(xp) = Gp(xp) Vxpely.
Proof. See [Cia88, Theorem 2.3-1]. m|

To transform the PDE (6.1) to the undeformed domain, we introduce the first Piola—Kirchhoff stress tensor T 4,
which is defined by solving SQB divTp(xp)0(xp) dxg = SQA divTA(x4)0(P(x4)) dxa for all deformations 6, and
thus, is pointwise given by

Ta(xa) = det(DD(x4))Tp(P(x4))(DD(x4)) " .
Since T4 is in general not symmetric, we usually consider the second Piola—Kirchhoff stress tensor
Ta(xa) = DD(x4) ' Ta(xa) = det(DD(x4))DD(xa) ' Tp(DP(x4))DD(x4) T,
which is symmetric. Then the PDE (6.1) transforms to

{div(D(D(xA)ZA(xA)) = FA(.XA) = det(D(I)(xA))FB((I)(xA)) va € QA, (6 2)

Dq)(xA)ZA(xA)nA(xA) = GA(XA) = det(D(D(xA))|D(D(XA)_T71A(XA)‘GB(CD(XA)) Vxu € F[IX.

In the following, we restrict to elastic materials, which are defined by the property that the Cauchy stress tensor
only depends on the gradient of the deformation.

Definition 6.1.3 (Elastic Material). A material is called elastic if there exists a mapping TP Qu x ]R:iX3 — ]Rfyxm3
called the response function for the Cauchy stress, s.t. for all deformations ®@ we have the constitutive relation of
the material

TB(q)(XA)) = TrESp(xA, D(D(XA)) .
The response functions for the first and second Piola—Kirchhoff stress tensor are defined by
T3 (x4, M) = det(M) TP (x4, M)M™" and I3 (x4, M) := det(M)M ™' TP (x4, M\)M ™",

S.t.

TA(XA) = ’]I‘fSp(xA,D(D(xA)) and ZA(XA) = Z:SP(XA, Dq)(xA)) .
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Furthermore, we assume invariance under change of the observer.

Axiom 6.1.4 (Material Frame-Indifference). Let @1, @, be deformations of Qg4 s.t. @, = Q®; with Q € SO(3)
and denote by t1, t, the corresponding vector fields in the Cauchy—Euler stress principle in Axiom 6.1.1. Then we
have for all x4 € Q4 and for all v € S? that t,(D;(x4), Qv) = Qt1(DP1(x4), V).

As a direct consequence, we can express the response function of the second Piola—Kirchhoff stress tensor in
terms of the symmetrized deformation gradient

C(xa) := DO(x4) ' DD(x,), (6.3)
which we call the (right) Cauchy—Green strain tensor.

Theorem 6.1.5 (Characterization of Material Frame-Indifference). The response function T"" for the Cauchy
stress satisfies the axiom of material frame-indifference if and only if for all x4 € Q4 we have

T (x4, QM) = QT"™¥ (x4, M)Q" VM e R>*?,Q € SO(3).

Furthermore, this is equivalent to the existence of a mapping X" : Qu x ]Rf;f Lo R3:3 s.1. 07 (xa, M) =
TP (x, MTM) for all M € R,

Proof. See [Cia88, Theorem 3.3-1]. m|
Moreover, we consider a special class of so-called isotropic materials.

Definition 6.1.6 (Isotropic Elastic Material). An elastic material is isotropic at a point x4 € Qy if its response
function for the Cauchy stress satisfies

TP (x4, MQ) = T™P(x4, M) VYMeR>*?,Qe SO(3).

Now, isotropy implies that the response function for the Cauchy stress can be expressed in terms of the (left)
Cauchy—Green strain tensor D®(x4)D®(x4)".

Theorem 6.1.7 (Characterization of Isotropy). An elastic material is isotropic at a point x5 € Qa if and only if

there exists a mapping T',"""" (x4, -): ]Rf’vfn?’ L ]R;’;,f’ s.t.

TP (xa, M) = TP (x4, MM")  ¥M e RY.

Proof. See [Cia88, Theorem 3.4-1]. m|

Then the Rivlin—FEricksen theorem allows a representation of the response function for the second Piola—
Kirchhoff stress tensor in terms of the principle invariants ((C) = (tr(C), tr(cof(C)), det(C)) of the Cauchy—
Green strain tensor C as defined in (6.3), which can be computed w.r.t. the deformation by

1(C) = [DO[F, 12(C) = [cof(DP)[F, 13(C) = det(DP)*.

Theorem 6.1.8 (Rivlin—Ericksen Representation Theorem). Let @ be a deformation of Q4. For an elastic material
whose response function is frame-indifferent and isotropic at x4 € Q, the Cauchy stress tensor is given by

TB(CD(XA» = TresP(xA,D(D(XA)) = T:Sp’sym(x/;, DCD(JCA)D(D(XA)T) P

where the response function is of the form T',""*" (x4, S) = S o B(xa, 1(S))S* with real valued functions By.

Furthermore, the second Piola—Kirchhoff stress tensor is given by
Ta(xa) = T3P (x4, DD(x4)) = Z7" (x4, DD (x4) ' DD(x4)),

resp,sym

" (x4,5) = Zi:o Vi(x4,1(S))Sk with real valued functions yy.

where the response function is of the form X

Proof. See [Cia88, Theorem 3.6-2]. m]
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Next, we approximate the response function near the identity.

Theorem 6.1.9 (Response Function Near Identity). Let there be given an elastic material whose response function
is frame-indifferent and isotropic at x4 € Q4. Assume that the functions yy in Theorem 6.1.8 are differentiable for

S = 13x3. Then there exist (xa), A(xa), (xa) € Rs.t. forall C € ]R?y:ir we have

Z:Sp'sym(xA, C) = —R(XA) + /\(XA) tI‘(E)]l3><3 + Zy(xA)]E + o(]E;xA) ,

where It := %(C — 1343). More precisely, we can specify —1(xa) = TP (x4, L3x3).
Proof. [Cia88, Theorem 3.7-1]. O

In general, for a deformation @ of ()4, we define the Green—Saint-Venant strain tensor by
1
E(xa) := 5(Cxa) — Lax3) - (6.4)

Furthermore, we say that Q_A is a natural state if TP (x4, 13x3) = 0 for all x4 € Q_A. We call a material
homogeneous if its response function does not depend on the position. Under these two additional assumptions we
can write

TP (x4, C) = ZPYT(C) = A tr(IB) 13,3 + 2ulE + o(E) . (6.5)

Here, the values A,y are called Lamé—Navier parameters. It is often convenient to consider instead Young’s
modulus E and the Poisson ratio v, which are given by

pu(BA +2u) b A
A+p 7 20+

Then A and u are vice-versa determined by

Ev E
A= —m—, = ——0, 6.6
Arna—2y’ "~ 20+ ©6)
By neglecting the higher-order terms in (6.5), a possible response function is given in the following definition.

Definition 6.1.10 (Saint-Venant—Kirchhoff Material). An elastic material is a Saint-Venant—Kirchhoff material if
its response function is of the form

Zzsp,sym(x/‘, C) = Z:SP’Sym(XA, T343 + ZE) =A tr(E)]l3><3 + ZyE (6.7)

forall C = 13,3 +2E € JRfanf+.

6.1.1 Hyperelastic Materials

Next, we consider a special class of so-called hyperelastic materials, which allows solving the PDE (6.2) by
variational methods, i.e., finding a stationary point of an energy functional.

Definition 6.1.11 (Hyperelastic Material). An elastic material is hyperelastic if there exists a stored energy density
function W : Q4 x ]RiX3 — IR, s.t. the response function for the first Piola—Kirchhoff stress tensor is given by

T (x4, M) = oMW (x4, M) Vxa € Qq YM e R3S,

As in Theorem 6.1.5, the Axiom 6.1.4 of material frame-indifference leads to the existence of a function W*™
s.t. W(xa, M) = W™ (x4, MT M), which can be determined by LT (x4, C) = 20 W™ (x4, C) (see [Cia88,
Theorem 4.2-1, 4.2-2]). Together with the isotropy constraint 6.1.6, it can be verified (see [Cia88, Theorem 4.4-1])
that similar to the Rivlin—Ericksen representation Theorem 6.1.8 the hyperelastic energy density function W*™



6.1. ELASTIC BODIES 87

can be expressed in terms of the principle invariants ((C). Looking at the approximative behavior near the identity
as in Theorem 6.1.9 for a homogeneous material in a natural state, we obtain (see [Cia88, Theorem 4.5-1])

, ‘ A
W (x4, C) = WYT(C) = E(tr E)? + ptr(E?) + o(|E[?).
Especially, a Saint-Venant—Kirchhoff material is a hyperelastic material with
, , A
W (x4, C) = WYH(C) = E(tr E)? + ptr(E?).

A further example of a hyperelastic energy density function (see, e.g., [Cia88]), which we take into account later
in Chapter 8, is given by

A A A
WM) = EIM2 + 2 det(M)? — (4 + 2 ) log(det(M)) — d& — = 6.8)
2 4 2 2 4
forM e ]R’iXd and in space dimension d = 2,3.
Now, we define the stored elastic, the potential, and the free energy functionals by
8smred(q)) = W(xA, DCD(XA)) dXA ,
Qq
Epot(D) = f Fa-®dxs+ f G- @ dA(x4), (6.9)
Q4 I

Sfree(q)) = Sstored (CD) - Spot(q)) .
Then we are interested in minimizing the free energy over an admissible set of deformations. By formally consid-
ering the Euler—Lagrange equations to this minimization problem, we recover the PDE (6.2). This reformulation

as a variational problem is essential for our numerical solution scheme, since it can be solved, e.g., by Newton’s
method.

Moreover, even for large strains, the variational problem allows proving the existence of deformations mini-
mizing the free energy. In [Bal77], such an existence result was established for deformations in the Sobolev space
WL4(Q4, R3) for a > 2, provided that the stored energy function W is polyconvex, has certain growth conditions
in the principle invariants, and converges to infinity as det(M) tends to zero. Note that the density function of a
Saint-Venant—Kirchoff material is not polyconvex, s.t. for an existence result quasiconvexification is required.

6.1.2 Linear Elasticity

For a linearization, we introduce the displacement U = ® — id. Then the Green—Saint-Venant strain tensor It as
defined in (6.4) can be expressed in terms of the displacement

DU + DU?
2

where the symmetrized gradient e(U) = %(DU + DUT) is called the linearized strain tensor. Then, for the
Saint-Venant—Kirchhoff material (6.7) the PDE (6.2) is linearized to

—div(Atr(e(U))1zx3 + 2ue(U)) = Fa Yxa € Qa,
(Atr(e(U))Lsxs +2ue(U))ng = Ga Vxa € Fg,

1 1 1 1
E= E((D —13x3) = E(Dq)Tan —13x3) = + EDuTDu =&(U) + EDuTDu,

which is a linear PDE of second-order in the displacement U. Corresponding to (6.9) we define the stored elastic,
the potential, and the free energy by

: A
Bt (W) = [ G + (W) (W) d,
A
Enp(U) = f Fy-Udxs + f Ga - Uds?(xs), (6.10)
Qa oy
81&26(11) = E;lsitr(lyred(l’l) - 833!;(1“[) .
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iin_in the space W'?(Q,4,R?) is a simple consequence
of the direct method in the calculus of variations and Korn’s inequality (2.2). Note that for linear elasticity a
minimizing displacement U of the free energy satisfies

Existence of minimizing displacements of the free energy &I

2 81in

stored

(u) _ Slin

pot

() = —2&5,(U),
which does, in general, not hold for nonlinear elasticity.

resp,sym

More generally, we could consider anisotropic materials. Then by linearizing the response function ¥, in
the linearized strain e(U), we can write
PPN (xa, €) = Ce(U) = ( > cz-jkze(un,) , (6.11)
k,l:1,2,3 1',]‘:1,2/3

where C € R¥*3%3%3 5 a fourth-order tensor and ¢ := Ce(U) € R3>*3 is called the linear stress tensor. Since &(U)
and o are symmetric, we can deduce that C;jy = Cijx = Cjiw = Cyyj for all i, j, k,I = 1,2,3. Thus, the effective
degrees of freedom of C are reduced to 21. In this thesis, we essentially consider isotropic materials. However, a
composition of two different isotropic materials behaves anisotropic.

6.2 Homogenization

Now, we consider a rapidly oscillating material distribution, which determines a microstructure on the macroscopic
reference domain. In [Bab76], the aspect ratio of microcells to the macroscale was discussed. Then, in the limit
of vanishing aspect ratio, the theory of mathematical homogenization explains the macroscopic behavior of the
material. In [BLP78], periodic microstructures were investigated. General compactness theorems were established
in [Mur78, Tar79, MT97]. For a more detailed introduction into the field of mathematical homogenization, we
refer the reader to Allaire’s famous book [A1102].

As above, we take into account a reference domain Q4 — R? of an elastic body. Moreover, we assume that a
force F4 acting on Q4 is given. For simplicity, we neglect boundary forces. Here, we restrict to linear elasticity
and denote by

4. 3x3x3x3 .
Mg, = 1C = (Ciju)ijk =123 € R>**° + Cijy = Cuij = Cjin = Cijic
ikt )i j j i j j

sym

the set of fourth-order elasticity tensors (see (6.11)). Furthermore, for lower and upper bounds a,f > 0, we
consider the space of admissible Hooke’s laws

Mag = {CeMi, : CE:&=aleP, Cle e plefP ve e RYZ] .
Since C € Mg satisfies a|&[> < C& : & < B71[&[?, we suppose af < 1.

Now, we define convergence of a sequence of material distributions on M, g in a sense s.t. for arbitrary forces
the corresponding equilibrium displacements converge.

Definition 6.2.1 (H-convergence). A sequence (C");, < L*(Q4, M) converges in the sense of homogeniza-
/
tion (simply H-converges) to C* € L*(Q,M,y) if for all F4 € (Wé’z(QA,]R3)) the sequence (Uy), <

Wé’Z(QA, IR3) of weak solutions to the state equation

—div(Che(Uy)) = Fa inQyq,
u,=0 on 0Qx
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satisfies Uy — Uy in Wy (Qa, R%) for b — 0 and C"e(Uy) — C*e(Uy) in L2(Q4) for h — 0, where U, €
Wé’z(QA, IR3) is the weak solution to

—le(C*é(u*)) = FA in QA,
U, =20 on 0Qy .

We call C* the homogenized or effective elasticity tensor.
In the following, we consider two cases, namely those of a periodic and a one-dimensional structure, where the

homogenized elasticity tensors can be computed explicitly.

Periodic Homogenization. First, we restrict to a specific sequence of a period material distribution with decreas-
ing cell size. Such a scenario is depicted in Figure 6.2.

m Lol i,
o060 oiiiaisy
ale) Y

Figure 6.2: Sketch of a periodic microcell in 2D, which generates a corresponding sequence (Ch)h:
elasticity tensors on the domain (4.

For p € [1, 0] and m € IN, we introduce spaces of periodic functions
L5((0,1)%) := {f € L’((0,1)?) : f periodic on (0,1)°} ,

W;n'p((O,l)3) = {f € W’""’((O,l)3) : f periodic on (0,1)3, J(o,1)3fdx = 0} .

Now, we obtain H-convergence, and the homogenized elasticity tensor can be computed explicitly.

Theorem 6.2.2 (Periodic Homogenization). Let C' € L¥((0,1)%, My) and C"(x) := C'(%) for h € (0,1). Then
the sequence (C");, H-converges to C*, which can be computed into directions &;, & j€ ]Rfyf,? by

C*éi : éj = J; . Cl(éi + E(ui)) : (5] + E(U]')) dx,
01
where for k € {i, j} the displacement U} € W;’Z( (0,1)%,R3) is the weak solution to
—div(C' (& + e(Ur)) =0 in (0,1)°.

Proof. See [AlI02, Chapter 1.1.4]. O

Homogenization in 1D. So far, we have considered domains in 3D, since this is our main case of interest, of
which we especially make use of in Chapter 7. However, the definition of H-convergence transfers analogously
to arbitrary dimensions. Next, we consider the one-dimensional case, where the homogenization limit can be
characterized in general.

Theorem 6.2.3 (Homogenization in 1D). Let I = R be a compact interval. We consider a sequence (C");, = L (I)

and assume uniform bounds a < C'(t) < B for a.e. t € I. Then there exists B* € L*(I) s.t. (C")~1 * B* in L
for h — 0. and the sequence (C"), H-converges to C* := (B*)~..

Proof. See [AlI02, Chapter 1.2.3]. O
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Note that in this one-dimensional case the involved differential equations are just of type (C"U’)’ = F4. In the
case of a periodic material, e.g., on the interval [0, 1] generated from Cl = axon + X1 the weak-* limit is
known and thus the homogenized tensor is explicitly given by the harmonic mean

s _ ap
¢ Ca(l-A)+BAT

Finally, we remark that also in the case of so-called laminated structures, where the sequence of elasticity
tensors is generated by oscillations into a single direction, an explicit formula for the homogenized elasticity
tensor can be derived.

6.3 Elastic Shape Optimization

Later, in Chapter 7 and Chapter 8, we study specific shape optimization problems. Roughly speaking, in elastic
shape optimization, we are concerned with finding a subdomain O < Q4 optimizing the mechanical stability
within a set & of admissible subdomains. Here, following [PRW12], we formally introduce a particular class of
shape optimization problems and present a corresponding phase-field relaxation.

State Equation. First, we consider a fixed subdomain O € &, which we identify with its characteristic function
Xo: Qa — {0,1}. We assume that forces F4, G are acting on the reference domain Q4. Then, we seek for a
deformation of O minimizing the free energy, which we then denote by ®(xo). Here, we do not discuss assump-
tions on the domain O to guarantee the existence of @(xp). Instead, we make use of the so-called ersatz material
approach by substituting a soft material with a small factor T > 0 on the complementary set Q4\O. This allows
considering the elastic problem on the full domain (34, where, according to (6.9), we define energy functionals

Eored (X0, P) = L W (xa, DD(x4)) dxa + J o T W(xa, DP(x4)) dxa
Qu

_ fQ (Yo + (1— x0)7) W(xs, DD(x4)) dxa,

Epor (D) = f Fo-®dxa+ | Gu-@d(xy),
Qa y
8’[

free(XO’ CD) = S;Llored (XO’ CD) - apm(q)) :

Then we ask for a deformation of the full domain Q4 solving the so-called state equation

D(xo) € argmin &L (xo, P),

DeA

where A is a suitable space of deformations encoding boundary conditions and regularity assumptions. Neverthe-
less, in the case of nonlinear elasticity, the uniqueness of global minimizers of the relaxed free energy &f . is not
guaranteed, and a set of minimizers has to be considered. In particular, in the numerical implementation, we have

to cope with an even larger set of local minimizers.

Cost functional. Now, still using the ersatz material approach with factor T > 0, to measure the mechanical
stability of O, we take into account a cost functional J eTxpl: 0 x A — R explicitly depending on the domain and

the deformation. Then we define a total cost functional J[;: & — R by

Jo(x0) = T (X0, P(x0))

and ask for the optimal subdomain O < & minimizing J7,. In the case of nonlinear elasticity, in [PRW12] the
three functionals

jsriored (XO’ (I)) = 28:tored (XO/ (D) ’
jgot()(()/ CD) = 8pot(cD) ’
j&ee (XO/ CD) = _zaf-{ree (XO/ q))
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have been compared as possible for J{ . For linear elasticity, the counterparts En (U(xo)), 28 (xo, U(x0))

pot stored
and 728;’::( Xo, U(xo)) coincide for the unique minimizing displacement U(x ). Without any restrictions on the
set &, the minimizer for any of these cost functionals is given by the full domain O = Q4. Typically, we impose a

volume constraint by defining the set of admissible subdomains by
0 = {OC QA : (V(XO) < V}/

where V(xo) = -Z(0) denotes the Lebesgue measure of O and V € (0, Z(Q4)). Alternatively, the functional
AV (xo) can be added as a penalty to the cost J, for some constant A € Ry, which can vice versa be interpreted
as a Lagrange multiplier.

6.3.1 Perimeter Regularization and Phase-Field Approximation

In general, shape optimization problems of the above type are ill-posed, even for the ersatz material approach.
Under the assumption that the subdomain O is measurable, the characteristic function yo belongs to the space
L*(Q4, {0,1}). Unfortunately, the limit x* of a minimizing sequence xx — x* in L* with x;x € L*(Qy, {0,1})
does not necessarily take values in {0,1}, but in the interval [0,1], and thus, x* cannot be identified with a
subdomain O*. A possible relaxation in [ABFJ97] takes into account the homogenization method, as described in
Section 6.2. Here, we consider another type of regularization by adding a perimeter term to the cost functional.

Definition 6.3.1 (Perimeter). For y € BV(Qy, {0, 1}) we define the perimeter in Q4 as
Perq, (x) := [Dx|rv(Qa) -

Note that for a smooth set O we have Perg, () = 522(00).

Then, for a regularization parameter 1) > 0, we consider the total cost functional

wr (X0) = T 5 (X0, ®(x0)) + nPera, (xo) ,

which we aim to minimize over all x in a suitable space & < BV (Qy, {0, 1}). Such a regularized shape optimiza-
tion problem was, e.g., investigated in [AB93] for heat diffusion as state equation and in [PRW12] for nonlinear
elasticity.

For the numerical implementation, it is furthermore advantageous to approximate a characteristic function by
a phase-field function v € W'2(Qy,[~1,1]), where the value v = 1 represents the domain, the value v = —1
the complementary set, and values between —1 and 1 are allowed to represent a diffuse interface. Then, for a
smooth approximation of the perimeter functional in terms of the phase-field variable, we consider the Modica—
Mortola [MM77] functional A¢: W'?(Q,) — R defined as

1 1
A(v) = = f €|Vo|* + =W(v) dxa, (6.12)
2 Qu €
where we choose W as the double-well function
9
W) = —(v* —1)2. 6.13

Here, the parameter € > 0 is related to the interface width between two phases. In the limit € — 0, the following
convergence result was established.

Theorem 6.3.2 (I'-Convergence of Modica—Mortola Functional). For the sequence of functionals (A)c~q as
defined in (6.12), we have T-convergence w.r.t. strong convergence in L'(Q,) to the functional

A(o) = Pera, (X(xaequ v(a)=1}) ifo(xa) € {=1,1} fora.e. xa € Qa,
’ 0's) otherwise .

Proof. See [Bra06, Theorem 7.3]. m]
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Finally, to define the total cost functional

tion xo has to be approximated in the integrands of the stored elastic energy &

in terms of the phase-field variable v, the characteristic func-
4 and the volume V(0) =
SQA Xo dxa. In [PRW12], for both functionals, a quadratic approximation with x(v) := }I(v + 1) was applied.
Because of the I'-convergence result in Theorem 6.3.2, this choice does not matter in the limit € — 0. For exam-
ple, in [BGHR16], a sharp interface limit for a generic class of cost functionals was derived in the case of linear
elasticity, provided that the phase-field approximation admits uniform coercivity and continuity bounds. However,
for a concrete € and intermediate values of v € (—1,1), which are always given in the implementation, it appears
more natural to define two different approximations of x. For the volume functional, we use x(v) := %(ZJ +1),
which is weak-* continuous w.r.t. convergence in L*. In contrast, regarding the homogenization result for one-
dimensional material parameters as discussed in Theorem 6.2.3, a harmonic averaging for the stored elastic energy
is suitable. Since we, in particular, consider three-dimensional domains and for computational simplicity, we fre-
quently choose a second or a fourth-order polynomial to approximate the characteristic function for the stored
elastic energy.

6.3.2 Computing the Shape Derivative

Later, to numerically compute a minimizer of a cost functional ¥, we apply a first-order method like a gradient
descent or Quasi-Newton scheme. This requires to compute the first variation of the cost functional, which is for
the above phase-field approximation given by the chain rule as

TU©)E) = o (F77,(0,0(0))) = 3T (0,D(0))6) + 20T 75 (0, B(0) (00(0) D))

4
do dv xpl

Unfortunately, the shape sensitivity d,®(v)(?) is numerically expensive to compute. Therefore, a well-established
approach (see, e.g., [HPUUO8]) is to take into account a so-called adjoint problem. First, we fix a notation for

partial derivatives of second-order.

Remark 6.3.3 (Second-Order Partial Derivatives). For a functional , we use the notation
3 T (X1, Xa)()(R0) 1= 0x, (8, F (X, %) (X)) (Ri).
Now, the adjoint problem is given by

(0, D(v))(D)(A) = —00 T (0, P(0))(P) YD e A,

2 T
Orp,rpa expl

free
which has to be solved in the variable A € A. Since the necessary condition for the state equation ®(v) €
argming,_, & (v, @) is given by do&f (v, P(v)) = 0, the inverse function theorem allows computing the

shape sensitivity by

0 ®(v) = 7(8(21,’(1,87

free

(0,9(v)) " %085

free

(v, ®(v)) .
Then, together with the solution to the adjoint problem, we can compute the first variation of the cost functional by

d 1,7

T (©)(0) = 0uT (0, 2(0) (9) + 065 (0, P(2)))(A) (). (6.14)

U expl free

Similarly, the shape derivative can be determined for other shape representations, e.g., for a level-set approximation
[AJT04], where the differentiability of the signed distance function is used. In the case of nonlinear elasticity, as
it was considered in [PRW12], the nonuniqueness of solutions to the state equation has to be coped. Moreover, in
Chapter 8, we take into account bending isometries and thus, we have to consider a suitable Lagrangian to solve
the corresponding state equation, which requires adapting the expression (6.14) accordingly.



Chapter 7

Simultaneous Elastic Shape Optimization

This chapter is motivated by a biomechanical application in bone tissue engineering. Usually, a broken bone is
able to regenerate, where metal implants in the form of plates and screws are well-established to support the heal-
ing process. Here, we investigate the case of large scale bone loss, which is, e.g., a consequence of removing
osteosarcoma (a cancerous tumor in a bone). Recently, the construction and appropriateness of additional sub-
stitutes consisting of biologically degradable polymers are explored. The usage of such degradable materials in
medicine is already quite common, e.g., for threads to close incisions in the skin. An example of the application to
bone substitutes is studied in [PCW T 16], where polycaprolactone is taken into account. Today, 3D printers allow
producing a huge variety of polymer scaffolds instantaneously. Since we are dealing with large scale bone loss,
such a polymer scaffold is required to be resistant against certain exterior forces. Furthermore, the substitute has
a specific microstructure, s.t. during the regeneration process, new bone tissue first grows into the void part of the
scaffold. Later, the polymer is degraded, and the bone will completely regenerate. For a more detailed overview
of the medical background, we refer the reader to [DPRS19, Section 2].

In the following, our goal is to optimize the microstructure of a polymer implant in the above situation. There-
fore, we formulate a suitable shape optimization problem. First, we assume that the microstructure of the scaffold
is periodic s.t. we are only concerned with optimizing a single periodic microcell. We consider affine loads act-
ing on the microcell corresponding to macroscopic bending and torsion forces, e.g., for a substitute of a section
of the tibia, a realistic loading scenario consists of unilateral compression and shear. Since deformations of the
considered object are expected to be small, we can restrict to linear elasticity. Then, we take into account both the
mechanical stability of the polymer scaffold and the complementary set, where new bone tissue will grow first.
Thus, we arrive at a simultaneous elastic shape optimization, since within a given domain (the periodic microcell)
an object, as well as its complementary set, has to be optimized w.r.t. mechanical stability.

In Section 7.1, we formally derive the corresponding shape optimization problem, where we start, based on
the theory of homogenization, with a formulation of state equations related to a multiple load scenario. Then we
define a suitable cost functional penalizing the less stiff object by taking into account the relevant entries of the
effective elasticity tensor. For a mathematically rigorous formulation, we propose in Section 7.2 a perimeter regu-
larization of the characteristic function variable representing the domain splitting. Furthermore, an ersatz material
approach assuming soft instead of void material on the complementary object is applied to guarantee the existence
of solutions to the state equation, since Korn’s inequality can be applied on the full domain. We are able to prove
the existence of minimizing characteristic functions for this relaxed formulation. The numerical scheme is imple-
mented via a phase-field approximation, which we describe in Section 7.3. Besides the real application, we study in
Section 7.4 different load scenarios and material properties of both objects. In Section 7.5, we propose extensions
of our model by additionally incorporating volume constraints and diffusion constraints on certain entries of the
homogenized diffusion tensor of the bone phase. The latter guarantees that bone can grow appropriately. Finally,
a conclusion is given in Section 7.6.

Remark 7.0.1. All results presented in this chapter are joint work with Patrick Dondl, Patrina Poh, and Martin
Rumpf and have been published in [DPRS19].
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7.1 Simultaneous Elastic Shape Optimization of a Periodic Microcell
As a reference domain representing the (scaled) microcell, we consider the unit cube Q = [0, 1]d (d = 2), which

allows us to model periodic materials in IRY, where d = 3 is the application relevant case. We consider a splitting
of the reference domain (Q of an elastic object into two disjoint subdomains O° and O', i.e.,

Q=000", 0°n0'=gp.
In the application, O represents the polymer scaffold and O° the complementary set, where bone will grow first.

A possible domain splitting is depicted in Figure 7.1. We denote by m € {0,1} an index corresponding to the
subdomain O™, and represent the two disjoint objects by characteristic functions ™.

{

Figure 7.1: Example of a domain splitting of the unit cube [0, 1]? into disjoint sets O° and O'.

7.1.1 State Equations

In the following, we investigate affine displacements U?ff’m : Q — R** representing a multiple load scenario with
L € N affine loads on the microcell, i.e.,

U (x) = &'x forlefl,...,L}, (7.1)

where &' € Rff;;‘,i. Usually, we consider equal loads E? = 511 for both subdomains, where for the application we
have in mind combinations of compressions and shears of type

T T T
ECO“‘Pr = nBei €i, Eshear = ﬁ(ei €j + (3]- ei) ’

for {e1,...,e;} being the canonical basis in RY and some B € R. To measure stiffness of the objects O™ in the
directions given by the affine displacements, we assume linear elasticity, because deformations are expected to be
small. We denote by C" = (C:;-Zkl)i,j,k,lzl,__,,d the corresponding elasticity tensors and assume for simplicity that

both materials are isotropic, and thus, determined by the Lamé-Navier parameters p > 0 and A™ > 0, i.e., for a
displacement U: Q — IR¥ we have

C"e(U) - e(U) =2u"e(U) : e(U) + A"div(U)div(U).

Based on the theory of periodic homogenization (see Section 6.2), we consider the elastic energies

Em(x™, U;"t’m) = L X" C’”e(ll;m'm) : e(ll;""m) dx = N Cme(ll;‘”’m) : e(U;m’m) dx, 7.2)

for affine-periodic displacements U,*": O™ — R? with

u;ol,m _ Ulm + u;lff,m )
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Since the actual unknown variable is the periodic counterpart U, we consider the elastic energy (7.2) only in
dependence of the periodic part, and indicate the fixed affine part as an index

8;"()("1, U;ﬂ) — JQ Xm CmE(U;Ol’m) . E(U;Ol’m) dx
- f X" Cre(U + M) (Ut + LN d (7.3)
Q
_ L 2O (e(U) + &) ¢ (e(UM) + E) dx.

For the moment, we do not introduce function spaces and just assume that for a prescribed characteristic
function x™ a unique minimizing periodic displacement of the elastic energy & (x™, -) in (7.3) exists, which we
denote by ll;”( X™). Note that the displacements here are restricted to the associated object O™, which is different
for a rigorous definition for a relaxed formulation in Section 7.2, where a hard-soft material approximation allows
to consider displacements of the full domain (). However, to prove such an existence result in this context, we
would have to specify precise regularity assumptions on O™ s.t. Korn’s inequality can be applied. Instead, we take
the above definitions rather formally and recall (¢f. Theorem 6.2.2) that for a given characteristic function x” the
entries of the homogenized elasticity tensor C"*(x™) can be computed by

CUEGME L E =  min f PO (e(U) 4 ) ¢ (e(U) + &) dx 74)

U: Q—IR periodic

forall £ ]ngxnf’. Thus, minimizing the elastic energy 8;”( X™,-) over periodic displacements means computing the
entry

C™*(x™E & =& U (x™) -

Note that the object O™ is stiff w.r.t. to the load Ufff’m if the corresponding entry of the homogenized tensor is
large. Next, we propose a cost functional taking these values into account.

7.1.2 Cost Functional

To measure the overall stiffness of a domain O™, we take into account a continuous function g ]RL+ — IR, which
should weight the entries of the homogenized elasticity tensor and is therefore supposed to be monotone decreasing
in each argument. Thus, we define for both subdomains, respectively, the cost associated with the set of loading
conditions as

G (X") = g (CPH(ET & CIH(MER S &) (7.5)

For simplicity, we consider an equal load scenario for both subdomains and use the same weighting function. In
our implementation, we choose an [P-norm of the inverse values

¢"(Ey,..., EL) =g(E1,...,EL):< > E;”) .
I=1,...L

for some p € [1, o). For p — oo, the resulting cost converges to the maximal inverse total energy

-1
max Efl = | min E ,
I=1,..,L I=1,..L

and thus, represents a worst-case optimization problem, where solely the loading scenario with the smallest elastic
energy is taken into account.

Finally, we define a total cost functional in dependence of a characteristic function y representing the domain
splitting via x° = y and x! = 1 — x. This functional should prefer both subdomains to be stiff and thus penalize
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large values w.r.t. to the weighting function g. For that purpose, we select the less stiffer object by choosing the
maximum value of G" (x™), i.e., our simultaneous elastic shape optimization problem is given by minimizing

Jet(x) = max (G°(x),G' (1 — x)) (7.6)

over all periodic characteristic function x: Q — {0,1}. Compared to other shape optimization problems, where
only one subdomain is optimized, no volume constraint or penalty is needed, since there is a competition of both
subdomains in the sense that increasing the stiffness of one domain is only possible with a payoff in the cost of the
complementary subdomain.

7.2 Hard-Soft Approximation and Perimeter Regularization

Next, we derive a mathematically rigorous formulation for a relaxation of the cost functional (7.6). In particular, we
choose appropriate function spaces for the characteristic function and the periodic parts of the displacements. Then,
based on a similar result in [AB93] for a scalar-valued problem and in [PRW12] for the existence of minimizing
phase-fields in the case of nonlinear elastic shape optimization, we prove the existence of minimizing characteristic
functions.

We remember that the cost functional (7.6) is defined for a single characteristic function ) to model the domain
splitting. Now, we assume y to be in the space of functions of bounded variation with periodic boundary conditions.
Furthermore, since any periodically extended translation has the same cost, we choose a fixed center of mass ¢ € Q),
ie.,

X € BVy(Q,{0,1}) := {)( € BV(Q,{0,1}) : x periodic on Q, f X(xi—c;)dx=0fori = 1,...,d} .
o}

For the elastic problem, as in (7.1) we take into account a set of affine displacements (U?ff’m)l - and periodic

parts
ur e W,A(QRY) = {u e W' (Q,R%) : U periodic on Q, J U dx = 0} :
Q

Next, we take into account an ersatz material approach by replacing the void phase on the complementary set
Q\O™ by a very soft phase, which allows to consider the elastic problems on the full domain Q instead of on the
subdomains O™. More precisely, the characteristic function ™ for each object O™ is approximated by

X"+l =x")
for some small constant T > 0. Then, for m € {0,1} and I € {1,...,L}, corresponding to the minimization
problem (7.4), we define elastic energies &"": BVy(Q, {0,1}) x W;’Z(Q, R%) — R as

& (v, uy") = L(X + (1= X)) Che(U) + ™) s e(U" + U™™) dx. (1.7)

Now, in this function space setup, for a fixed characteristic function, we can guarantee the existence and uniqueness
of a minimizing displacement.
Lemma 7.2.1 (Existence of Unique Minimizing Displacements). Let x € BV4.(Q, {0,1}).

1. There exists a unique minimizer U}" (x) € W;’z(Q, RY) of &M (x,).

2. Furthermore, for every sequence (Xi)ken © BVio(Q, {0,1}) with xx =~ x in BV, there exists a subsequence
(Xk Jnen 52 & (X, U (xx,)) — & (x™, U} (X)) for n — oo.

Proof.
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1. Since T > 0 and yx only takes values in {0, 1}, we have uniform bounds on the coefficients
0<a<|(x+7(1-x)C", <.

Existence of a unique minimizer is a direct consequence of the Lax—Milgramm theorem, where coercivity
z9

of the corresponding bilinear form follows by Korn’s inequality (2.2) combined with Poincaré’s inequality.

2. For the second statement, we make use of I'-convergence of ™" (xx, ) to " (x,-) w.r.t. the weak W'
topology for k — oo. To see this, we recall that weak-* convergence in BV implies strong convergence
in L' (see Theorem 2.2.4) and there is a subsequence (here again indexed by k) s.t. xyy — x pointwise a.e.
Then the I'-liminf inequality is a direct consequence of Theorem 2.3.4. For the I'-limsup inequality we can
choose for any U}" € W;’2 the constant recovery sequence U;’}( = U]". Indeed, by the upper bound of

the coefficients, the integrands (xx + 7(1 — xx)) C"e(U}" + Ufff’m) se(U + U?ff’m) are bounded by the
L'-function Ble(U" + U;‘ff’m)|2. Thus, because of the pointwise convergence of the subsequence, the I'-
limsup inequality follows by Lebesgue’s dominated convergence theorem. Furthermore, the elastic energies

(8;"’7 (X, *))ken are equi-coercive because of the upper bound on the coefficients. Then convergence of a
subsequence follows by the Fundamental Theorem of I'-convergence (2.3.3).

O

Corresponding to (7.5), the cost G"™": BV .(Q, {0,1}) — R associated with the set of loading conditions for
a specific subdomain is given by

gm,T(XM) = gm (Cm,* (Xm)éilﬂ . ;n’ ., Cm,* (XM)gan . gan) .
Finally, we define the total cost functional 7"\ : BVy.(Q,{0,1}) — R as

JF(x) = max (G°(x), 6" (1 — x)) + n|Dx|rv(Q). (7.8)

Here, to regularize the interface between the subdomains, we add the perimeter n|Dx|rv(Q) for some constant
n > 0. In the following theorem, we provide the existence of minimizing characteristic functions.

Theorem 7.2.2 (Existence of Optimal Subdomain Splitting). For 1 > 0 and © > 0, there exists a minimizer
X € BV (Q,{0,1}) of the functional .

Proof. First, we take a minimizing sequence (Xi)ken < BV (Q,{0,1}) of the functional jgf . This sequence

is uniformly bounded in BV(Q, {0, 1}) because of the perimeter term in the functional 7,". Thus, there exists

a subsequence for simplicity again denoted by (xi)keN St Xk — X in BVyc(Q,{0,1}). By Lemma 7.2.1, we
obtain convergence & (x}", U}" (xx)) — & (x™, U}*(x)) for k — oo. Since g and the maximum function are

. . .. n,T . 1,7 . T
continuous, we get in the limit 7, (x) = limy_,o J1% (xk) = infgy, ({01} T O

7.3 Phase-Field Approximation and Finite Element Discretization

We recall from Section 6.3 that a phase-field approach is quite common in the literature (see, e.g., [PRW12])
to compute a minimizer of an elastic shape optimization problem numerically. Here, we adopt this ansatz by
approximating the characteristic function y € BVy(Q, {0,1}) by a phase-field function

ve W;’CZ(Q, [-1,1]) := {U e W'(Q,[~1,1]) : vperiodicon Q, | v(x; —¢;) dx = 0fori = 1,...,d} .

Q
In the following, we define counterparts of the elastic energies (7.7) and the cost functional (7.8) in terms of the
phase-field variable v. Then the core ingredient of our numerical scheme consists in computing the first derivative
of the cost functional.

First, for the phase-field function v € W;’S(Q, [—1,1]), we define approximations of the characteristic func-
tions by

K@) = (1 40), x1@) = 2%(-0) = (1~ 0"
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Then, form € {0,1} and ] € {1,..., L}, the elastic energies are given by
& (v, U)") = J (X" (0) + (1 = X"(0))) C"e(U)" + U™™) = e(U]" + UI™") dx.
Q

Analogously to Lemma 7.2.1, there exist unique displacements U"(x) € W;’Z(Q, R?) minimizing the energy
&/""(v,-) and thus solving the linear equation

dur & (v, U (0)(U)") = 0 VU € Wy (Q,RY). (7.9)

We observe that the cost for a specific subdomain can be written in dependence of the equilibrium displacement
Uy (o) by
!

G (0) = g" (C™*(X™)EN - &Y, O E(XMES &)
=¢" (& (v, U} (v)),...,E" (v, U}'(v)))

To approximate the perimeter functional in v, we recall the Modica—Mortola functional [MM77]

1 1
A (v) = 5 Le\Vzﬂz + EW(U) dx,

where e describes the width of the diffused interface between the two subdomains and we set W(v) := 1 (v* —1)2.

Then we replace the perimeter |Dy /|7y (Q) by the phase-field energy A€ (v). Furthermore, the maximum function
is approximated by a smooth function Max,. In our computations, we choose

Max, (x, ) := % <x+ y+a/lx—yP2+ a) (7.10)

for a small @ > 0. Altogether, we define a cost functional in terms of v as

w (0) = Max, (6" (v), 6" (v) ) + A (v)
=JY (0,U(v),..., U(v), Ui (v),..., U} (0)) ,

expl

where a cost functional J g’;;] explicitly depending on phase-fields and displacements is given by

Jr (o,ul,... u,uj,..., u)

expl

— Max, (go & (o, U)), ..., &8 (v, u)), §(& (o, L), ..., 8 (o, ui))) + nA(v).

Now, our numerical algorithm to compute a (local) minimizer of the cost functional j'gf requires to compute the
first derivative.

Lemma 7.3.1 (Computation of the Shape Derivative). The derivative of J,"" along a direction & € W'2(Q) is
given by

d T fon 1,T ~
%j,:’,’, (0)(9) = 2Ty, (0, U} (0), ..., U} (0), Uj (0), ..., U} (0)) (9).

Proof. First, we have that

%,ffg)’f (©) () = T (v, U?(v), o, U?(v), LI%(U), e, Ui(v)) (0)

expl

L
+ 3 DIl (0, W), .., Ud(0), Uk(0), ..., U (0)) (2" (0)(5)) -

m=0,11=1
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Then we make use of the solutions A" € W;’Z(Q, R?) to the adjoint problems

B &) (0, U7 (0)) (U])(A) = —0up T, (0, W), .., Ud(0), UL (0), ..., UL (0) (U}")  (7.11)

expl

for all l,/l?1 € W;'Z(Q, lR"’), which allows to compute

d oo , . - .

T (©)0) = 2T 0, U (), ..., U (0), U} (), ..., UL @) @) + 3, D818 (2, U (@) (A7) (D).
m=0,11=1

Now, since auf,agm(v, Ulm(v)) = 0, we observe for the right hand side of the adjoint equation (7.11) that

oup I (0,U(0), .., UL (o), UL (o), ..., UL (o) (")

—0,,Max, (go (&Y (0, U0(0)), ..., Y (0, U (0))), §"(E" (v, UL (0)), ..., EX (u, u{(v)))
Dg¢™ (8;”” (v, Uy (v)),..., & (v, U} (v))) our&"" (v, U (v))
0.

Thus, we can conclude that A}" = 0 for all adjoint solutions. Consequently, the derivative of the cost functional
simplifies to

d 1,T AN 1,T A
T (©)(0) = 0T (0, U (©), ., U (0), Uy (v), ..., Uj (0)(2).

O

For the numerical discretization in 3D (d = 3), we use a cuboid mesh, i.e., the unit cube Q is uniformly
divided into (N —1)2 cuboid elements with N3 nodes. On this mesh, we define the space V), of piecewise trilinear,
continuous functions. Then we consider discrete phase-fields v, € V), and discrete displacement UZZ € ‘VZ .
In analogy to the continuous case, we restrict to the space of discrete, affine periodic functions. Furthermore,
the elastic energies are approximated by a tensor product Simpson quadrature. To implement the periodicity, we
identify the nodal values of the discrete phase-field and the discrete displacements on corresponding pairs of nodes.

Concerning the solver, the average value conditions on Ul’fh are imposed via a Lagrange multiplier approach.
The corresponding linear systems for the elasticity problems (7.9) are solved using the conjugate gradient method
with diagonal preconditioning. Solving the adjoint equations (7.11) is not necessary, since we have already figured
out that all adjoint solutions are zero.

The actual shape optimization problem in the unknown phase-field vy, is solved by using the ITPOPT package
[WBO06]. Therefore we provide an implementation of the cost functional J1o(vy,) and its first derivative. Moreover,
the TPOPT solver allows incorporating the pointwise constraints —1 < v, (x) < 1 for all nodes x and the center of

mass condition §, ”";1 (xi —3) dx =0fori=1,2,3.

7.4 Numerical Results for Optimal Periodic Microcells

In the following, we present our computational results for optimal microstructures in 3D. Especially, we study
different load scenarios and the influence of the material parameters.

First, we comment on the choice of the various parameters, which we have to determine for our numerical
scheme. We always initialize the phase-field with random values in the interval [—1,1] on a mesh with 173
vertices. Then the solution on this coarse mesh is prolongated to a finer mesh, where it is used as an initialization.
Here, all results are computed on a mesh with 65° vertices. For a grid size 1, we choose € = 2/ for the phase-field
parameter in the Modica—Mortola functional, and the penalty parameter is set to 7 = 2. For the ersatz material
approach, we choose on the complementary set a factor T = 10~%. The exponent in the weight function g is chosen
to be p = 2. For the smooth approximation of the maximum function in (7.10), we choose & = 107°.
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We take into account several load scenarios by investigating different combinations of compression and shear
loads, where we choose for both subdomains the same loads. More precisely, the corresponding affine displace-
ments are given by U™ (x) = Ex for a symmetric matrix & € ]RSYXH?. We denote by {e1, e2,e3} the canonical basis
in IR®. Then, for some f € IR, compression loads are given by &, = e[ e; and shear loads by & = Blele; + ejTe,-).
Here, we choose f = —0.25. Then, we compute the corresponding components of the homogenized elasticity ten-
sors by C:ZZ* = ﬁ*ZC”"*éii : &;; (compressive stresses caused by compressive strains) and C?;U* = ﬁ*ZC”"*éij : cfl.].
(shear strains induced shear stresses).

7.4.1 Different Load Scenarios for Equal Material Parameters

First, we consider equal material parameters (E°,1°) = (10,0.25) = (E',v!). In Figure 7.2, three different load
scenarios are compared:

. m,% m,% m, %
1. three compression modes (Cj77;, Cy35,, Caiaa)s

. . . . m, % M, % m, %
2. two compression modes combined with a single shear mode (C{;7;, Cy0rs Cod55),

. . . m, % M, % m,*
3. and one compression mode combined with two shear modes (Cj7,;, Ci57,5, Ci375)-

We observe significant differences in the components of the objective functional. Indeed, those entries of the
effective elasticity tensor present in the objective functional indicate a substantially stronger stiffness. Nevertheless,
in all cases, the interface between the two subdomains is of the same topology as the Schwarz P surface. Especially
in the case of three compression modes, the interface also seems geometrically very close to the Schwarz P surface.
For our numerical discretization, we compare an approximation of the Schwarz P surface given as the discrete
minimizer of the phase-field area functional A°. We obtain values C}/* = 2.7811 (i = 1,2,3) and C?;l]* = 2481
i,j = 1,2,3, i # j), which significantly differ compared to the optimizer for three compression modes and
a difference of approximately 3% for the phase-field area functional A€. In the literature [TD04, Sil07], the
subdomain splitting associated with the Schwarz P surface as the interface has been investigated concerning its
optimality in the context of PDE constrained optimization for a scalar-valued problem.

3x compr 2x compr, 1x shear 1x compr, 2x shear

single cell

33 cells
CTI;"] 2.825 2.825 2.3657 2.3657 3.745 3.745
Cry, 2.825 2.825 3.8584 3.8584 2.3035 2.3035
Cg’g;’; 2.825 2.825 2.1651 2.1651 2.3035 2.3035
ce 2.4851 2.4851 3.0126 3.0126 2.8256 2.8256
CTs;ks 2.4851 2.4851 1.1134 1.1134 2.8256 2.8256
Crox. 2.4851 2.4851 2.7998 2.7998 1.6268 1.6268

volume 0.5 0.5 0.5 0.5 0.5 0.5

Figure 7.2: Comparison of optimal microstructures and relevant induced components of the effective elasticity
tensors for different load scenarios indicated above. In the top row we depict the subdomains on the fundamental
cell of the microstructure and below a 3 x 3 x 3 composition pronouncing the periodicity. Those components of
the tensor which are part of the corresponding objective functional are highlighted in grey.
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7.4.2 Influence of the Perimeter Term

Next, in Figure 7.3, we show the effect of the perimeter functional by considering different values for the penalty
parameter 1 = 2, 4, 10. Here, we investigate a load scenario with three shear loads (C’lﬂz’fz, C%’TS, Cgé’;;). For
small 77, we obtain a laminate type optimal configuration, whereas, for larger 1, the interface is again similar to
the Schwarz P surface. On the intermediate range of the parameter 7, we obtain an optimal microstructure with
an interface similar to a gyroid minimal surface, which is also taken into account as a possible microstructure in
bone tissue engineering in [KHM ™ 11]. We observe that this intermediate range is comparatively small for the load
scenario with three shear loads. For the other load scenarios studied in Figure 7.2, we also obtain an interface
similar to the Schwarz P surface for large n, but for smaller values 1 = 0.1, the numerical optimization scheme
still converges to similar solutions. Depending on the initialization, for even smaller values 17 = 0.001, the method
does not converge because of a lack of regularization, but laminate structures never appear. This indicates that for
the load scenario with three shear loads, the optimal solution is indeed a (nested) laminate structure.

A

Figure 7.3: Optimal microstructures for different values of the perimeter parameter 1 (from left to right: 1 =
2,4,10). In the top row we depict a single fundamental cell and below a 3 x 3 x 3 block.

7.4.3 Influence of Weighting Function

So far, for the weight function g, we have always chosen p = 2. In Table 7.1, we show for the load scenario with
two compression loads and one shear load the relevant entries of the effective elasticity tensor. For increasing p,
we observe a successive balancing of the different components of the objective functional. In particular, the largest
component C;"Z’;Z of the effective elasticity tensor is slightly decreasing, while the smallest component C;”l’fl is

slightly increasing.

p 2 4 8 16
m=0 m=1 m=0 m=1 m=0 m=1 m=0 m=1
C;”l’;"l 2.3657 2.3657 | 2.4438 2.4384 | 2.4847 2.4808 | 2.5053 2.5056
_C;"Z;Z 3.8584 3.8584 | 3.8408 3.8429 | 3.8286 3.8291 | 3.8286  3.828

C;'g’;; 27998 27998 | 2.6764 2.6857 | 2.6139 2.6206 | 2.5768 2.5766

Table 7.1: Stiffness moduli of the optimal subdomain splitting for different values of p.

7.4.4 Varying Young’s Modulus

Next, we study the influence of Young’s modulus by considering E = 20,40, 80, 160, 320, where we always
choose (E!,v!) = (10,0.25) and v* = 0.25. We observe that the structures become thinner for the subdomain
with increasing values of Young’s modulus, since the difference in stiffness of the materials has to be compensated
by a higher volume fraction of the other subdomain. In Figure 7.4, we show results obtained for different load
scenarios.
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m=0 m=1 m=0 m=1 m=0 m=1

4.7996 4.2686 6.413 5.9585 6.837 7.1062 8.8662 8.6567

7.0545 5.4043 7.6653 6.7548 7.2202 7.4892 9.3866 9.0007

5.0673 4.6461 2.3783 5.9513 3.9501 7.6961 2.562 8.4978
3.3935 5.4312 2.7089 8.1685 0.67487 9.0034 1.2522 10.1784
2.3708 4.6865 1.006 6.5492 1.1444 9.4359 0.46034 10.0924
b 4.283 5.8455 6.0737 8.1456 9.7432 10.0662 8.8804 10.1808
vol  0.41037 0.58963 0.32744 0.67256 0.22565 0.77435 0.15367 0.84633 0.10194 0.89806

m=1 m=0 m=1 m=0 m=1 =

C;"l’ll 6 3411 4.9912 9.6988 5.8266 10.39 6.7704 10.264 8.0092 10.773 9.1178
Cg’z’;z 3.103 2.8423 4.3565 3.6762 3.2102 5.2916 2.4592 7.0516 2.6306 8.3817
C;;;a 3.1044 2.8416 4.4754 3.6902 3.2021 5.2907 2.4592 7.0516 2.6306 8.3817
C'{;TZ 3.9041 4.1364 4.8936 5.4934 6.4294 7.7477 8.0385 10.026 9.2991 11.802
C;"é;’; 3.9046 4.1362 4.8983 5.5215 6.4298 7.7457 8.0385 10.026 9.2991 11.802
nga 1.2109 1.7901 1.2961 2.7966 1.0188 5.1458 0.5915 8.1734 0.36466 10.502

vol 041917 0.58083 0.3454 0.6546 0.25082 0.74918 0.16297 0.83703 0.10518 0.89482

Figure 7.4: Comparison of optimal microstructures for varying values of Young’s modulus (from left to right
EY = 20,40, 80,160, 320). We take into account load configurations with two compression loads and one shear
load (top) and one compression load and two shear loads (bottom). We depict the subdomain O° on the fundamental
cell of the microstructure and a 3 x 3 x 3 composition. Those components of the tensor which are part of the
corresponding objective functional are again highlighted in gray.
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7.4.5 Realistic Material Parameters for Bone and Polymer

Now, for the actual application to optimize the polymer scaffold, we remark that real bone is substantially stiffer
than the bioresorbable polymer with a 15 times larger value of Young’s modulus, and realistic Poisson ratios are
vB = 0.1 for bone and v* = 0.3 for the polymer. In Figure 7.5, we show the optimal bone and polymer subdomains
for a load scenario with one compression load and two shear loads, which corresponds to possible movements of a
tibia. Furthermore, for each load, we plot the von Mises stresses on the boundary of the corresponding subdomains

in the fundamental cell, which are given by ¢?™ = \/ 3 Dicicj<a(A — )\{ )2, where A}, A7, A? are the eigenvalues
of the linear stress tensor 0; = (x(v) + (1 — x(v)))Ce(U,).

von Mises stresses bone

l "

o™ 100

. 102
von Mises stresses polymer

l 10?

Ik

1

_
Figure 7.5: Optimal bone and polymer microstructures for realistic material parameters and a load scenario with
one compression and two shear loads. Fore each load, we show the corresponding von Mises stresses color-coded
in an HSV model with a logarithmic scale.

bone polymer

7.4.6 The Two-Dimensional Case

We briefly comment on the 2D case (d = 2). In Figure 7.6, we show the numerical result for a scenario with two
uniaxial compression loads. The optimal domain splitting is given by diamond-shaped regions. Due to the hard-soft
approximation, this is a mechanically admissible configuration. For a hard-void shape optimization model and two
uniaxial compression loads in the vertical and horizontal direction, no mechanically favorable splitting of the unit
square [0, 1]? into two subdomains is possible. Indeed, a uniaxial load requires a truss with a nonvanishing interior
connecting the components of the boundary opposite in the loading direction. A truss configuration simultaneously
in the horizontal and vertical direction for both subdomains is thus topologically impossible.

Figure 7.6: For a 2D domain and a hard-soft approximation with 7 = 10™#, we depitct an optimal decomposition

for a load scenario with two loads corresponding to the compression modes (C'lnl’;"1 and C;”Z’;‘Z). A block of 3 x 3

cells is plotted with the two subdomains in white and black together with a color plot of the von Mises stresses.
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7.5 Extensions of the Model by Diffusion and Volume Constraints

So far, our proposed scaffold design in Figure 7.5 is optimized w.r.t. the mechanical stability of the scaffold
itself and the complementary set filled with bone. Nevertheless, the very low porosity would seriously impede
vascularization and therefore prevent the regeneration of the bone. Therefore we propose to extend our model
by additionally enforcing either a volume constraint or a diffusion constraint for the complementary set of the
scaffold.

Volume Constraint. More precisely, for a volume constraint, we minimize the objective functional jt?)f defined
in (7.8) over all x € BVy.(Q, {0,1}) with §, x dx > V°, meaning that V° € (0, 1) is a lower bound for the volume
fraction of the corresponding domain O°.

Diffusion Constraint. For a diffusion constraint, we take into account linear diffusion with a scalar-valued dif-
fusion coefficient a™ € IR. Then, similar to linear elasticity (7.4), it is well-known from the theory of periodic
homogenization [Al102] that the homogenized diffusion tensor A”* € R?*? of the resulting microstructure is
uniquely described by

A™*F.F= min f x"a" (F+Vf™") - (F+Vf™) dx
frewy?(Q) Ja

forall F € IR?. Then we impose that certain entries of A% are bounded from below, s.t. we can guarantee a transfer
in the corresponding direction.

Adaption of the Numerical Optimization Method. A description of both constraints in our phase-field model
is straightforward. Furthermore, the TPOPT package is capable to include these constraints if we can provide
SQ v dx, A"™*, and the corresponding derivatives in the phase-field variable v.

For our numerical simulations, we take into account the load scenario and the material parameters as in Fig-
ure 7.5. In Figure 7.7, we study the effect for different volume constraints. For the diffusion constraints, we choose
a™ =1 for the corresponding coefficients. In Figure 7.8, we depict the results for a single diffusion constraint on
the entry A;’O of the homogenized diffusion tensor, and in Figure 7.9, we incorporate three diffusion constraints

on the entries A;’;’O simultaneously. Indeed, both approaches lead to a larger porosity.

4
%35 J;s. Pl e

&

&

Figure 7.7: Optimal microstructures for increasing volume constraints SQ x dx = V0 with V° = 0.2,0.3,0.4,0.5.

We finally remark that our model does not contain a specific size for a single microcell, since the involved
theory of homogenization has to be understood as a limiting model with cell size converging to zero. Additional
thickness constraints on the domain were included via a level set approach in [AJM16]. Now, in our context, the
definition that O° has a thickness larger than a constant ¢ can be interpreted as O° has pore size larger than c. Thus,
to fix a precise size for our microcell, we propose to compute on the reference object [0, 1] the smallest value ¢
s.t. a certain thickness constraint is guaranteed. Then if a specific pore size on the microcell is required to allow
vascularization, we can scale the reference object accordingly.
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m=0 m=1 m=0 m=1 m=0 m=1 m=0 m=1
ﬂ;‘l 11.699 8.7464 28.639 7.9429 44.299 6.9517 59.643 5.9105

ﬂ’z’;} 2.2194 7.379 1.0122 5.3709 1.652 4.5596 0.62499 3.46
4C;”é;‘3 2.2164 7.3773 1.0121 5.3041 1.9344 4.5951 0.62558 3.4585
ﬂz?z 9.2414 9.7276 7.4141 8.1408 5.9764 6.5545 5.1434 5.3435
géfs 9.2424 9.7271 7.4139 8.0834 6.2822 6.6355 5.1432 5.3429
C;’g;‘_,) 0.407 7.681 3.9817 6.5508 0.51959 3.3189 2.3766 2.1144
vol 0.16782 0.83218 0.25479 0.74521 0.34192 0.65808 0.4379 0.5621

J/To 1.344 1.528 1.773 2.159

Figure 7.8: Optimal microstructures for increasing diffusion constraints Afl'o > a witha = 0.1,0.2,0.3,04. In

the last row we compare the relative increase of the total cost functional (7, compared to the result in Figure 7.5

without any constraints.

m=0 m=1 m=0 m=1 m=0 m=1
ClF 76929 6.3258 27.732 6.4087 43.756 5.9029
G, 9102 44464 13.841 4.0532 13.539 3.4021
~Ciy 94654 49992 13.342 41119 13.129 3.6912
Chn 12392 7.2419 8.2786 6.457 14.148 5.3252
Clhy, 12143 7.3398 9.1809 6.3218 11.098 5.3953
e, 7.0137 5.7203 2.4781 3.6596 3.9284 2.5161
vol  0.25404 0.74596 0.30301 0.69699 0.37452 0.62548 0.52089 0.47911
I/ 1.843 1.910 2.109 3377

Figure 7.9: Optimal microstructures for diffusion constraints A;’O > a, A;‘Z’O > 0.1, A;"éo > 0.1 with a =
0.1,0.2,0.3,0.4. In the last row we compare the relative increase of the total cost functional 7, compared to the
result in Figure 7.5 without any constraints.
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7.6 Conclusion and Outlook

Motivated by a biomechanical application of designing optimal polymer scaffolds for bone regeneration, we have
proposed an elastic shape optimization problem by taking into account the homogenized elasticity tensors of the
domain with the polymer implant and the complementary set, where new bone tissue growths first. Compared to
[KHM*11], where minimal surfaces were proposed as possible scaffolds, we have obtained significantly different
structures, in particular, for a realistic load scenario with one compression and two shear loads. Furthermore,
we have investigated additional volume and diffusion constraints, where especially the latter one appears to be
biomechanically relevant.

We briefly discuss a possible extension of our model. So far, we have assumed that the microstructure of the
polymer scaffold is periodic and thus, we have optimized only a single microcell. More generally, we could con-
sider realistic patient-specific implant geometries on the macroscale, where the polymer implant has to be inserted,
and then we could ask for the optimal scaffold by allowing each microcell to vary. Compared to the numeri-
cal implementation of a two-scale model as it was considered in [CGRS14, GR16, CGLR17] and where on each
quadrature point of the macroscopic grid a microcell was adapted, in the application for bone tissue engineering,
the computed object must be printable by a 3D printer. First steps into that direction were established in [Sch19].
There, the microcells were considered on a (cuboid) element of the macroscopic grid, and the printability condition
was incorporated via Dirichlet boundary conditions on the microcells. Then the optimization scheme consisted of
an alternating update of the (homogenized) elasticity tensors on the macroscale and the optimal design on certain
blocks of microcells for the displacements on the macroscale. However, the concept of the homogenized elasticity
tensor was not precisely reflected in the discretization, since the microstructures were considered on a fixed scale
instead of quadrature points. Alternatively, the displacements on the macroscale could be computed by taking into
account the full grid containing all degrees of freedom. For practical applications, this would imply a huge grid
size, s.t. solving the corresponding linear systems requires, e.g., multigrid methods.

Finally, the regeneration of bone and degradation of the polymer implant is highly complex in reality. Here,
we have supposed that three phases can describe this dynamic process. More precisely, we have assumed that first,
the implant is inserted. Subsequently, new bone tissue grows into the void part while the implant is still present,
and afterwards, the polymer starts to degrade. Certainly, this is a substantial simplification. A first time-dependent
model was proposed for a one-dimensional space domain in [PVB ™ 18], where the minimal value of the effective
mechanical stiffness over the regeneration time was maximized.



Chapter 8

Shape Design of Thin Elastic Objects

In Chapter 6, we have described deformations of elastic bodies as solutions to suitable partial differential equa-
tions. Here, we focus on a special class of so-called thin elastic objects, which can be characterized by a small
thickness and a regular and orientable two-dimensional midsurface. Considering the limit of vanishing thickness,
I'-convergence results have been established to express the 3D deformation of the thin object only by a 2D defor-
mation of its midsurface. A membrane theory describes tangential distortion on the surface, and a bending theory
takes into account isometric deformations. Computing such deformations numerically has been intensively studied
in the literature, where numerous discretization approaches have been applied, in particular, for models combining
membrane and bending energy functionals. Pure bending isometries of plates have been numerically approximated
in [Barl3] by making use of the discrete Kirchhoff triangle (DKT) element. Furthermore, in Chapter 6, we have
discussed certain shape optimization problems to optimize the material distribution on the reference domain of an
elastic body to guarantee maximal mechanical stability w.r.t. an external force.

In this chapter, we study shape optimization problems to optimize the material distribution on a thin elastic
object, where we, for simplicity, restrict to parametric surfaces. We consider a load scenario only consisting of
a single force acting on the thin elastic object. To describe deformations, we take into account different types of
elastic energies, in particular, we deal with nonlinear elasticity. Then a numerical discretization scheme to compute
equilibrium deformations is based on the discrete Kirchhoff triangle element. A special focus is on pure bending
isometries, which we can efficiently approximate due to the degrees of freedom for derivatives at nodal positions
similar to the approach in [Bar13]. For a total cost functional depending on the material distribution, we consider
the potential energy and enforce a constraint on the amount of hard material. Moreover, we apply a phase-field
model and use the Modica—Mortola functional to penalize the width of the diffuse interface between the hard and
soft subdomains.

This chapter is organized as follows. First, in Section 8.1, we define thin elastic shells for parametric surfaces
and derive certain state equations. Moreover, we recall the discrete Kirchhoff triangle element. In Section 8.2,
we study shape optimization problems for both linear and nonlinear elasticity, where the stored elastic energy
consists of a membrane and a bending energy part. Furthermore, we investigate shape optimization problems for
pure bending isometries. In Section 8.3, we consider a one-dimensional model of elastic beams in 2D, s.t. an
isometric deformation can be expressed in terms of the phase, which simplifies the corresponding state equation to
an unconstrained ordinary differential equation. In [HRS19], we used this reformulation to compute the optimal
material distribution in a special setting explicitly. Here, we summarize this theoretical classification result, which
is confirmed and extended to more general scenarios by our numerical simulations. Finally, in Section 8.4, we
consider isometric deformations of two-dimensional objects and obtain different optimal designs even though we
apply a one-dimensional boundary condition.

Remark 8.0.1 (Collaborations and Publications). The results presented in Section 8.3 are joint work with Peter
Hornung and Martin Rumpf and have been published in [HRS19].
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8.1 Thin Elastic Shells

Here, we introduce thin elastic shells and refer to [Cia08, CMO08] for a comprehensive overview. Roughly speaking,
a thin elastic shell is an elastic body in R3, which can be described by a 2D surface (the midsurface) and a thickness
0 > 0. Thus, we first recall some basics from differential geometry, where we restrict to parametric surfaces.
Considering the limit 6 — 0, we are interested to understand the 3D deformation @ of the elastic object just
by a 2D deformation of its midsurface. Then we discuss several discretization methods to compute equilibrium
deformations of the corresponding state equations. Finally, we recall the discrete Kirchhoff triangle element, which
we take into account for the shape optimization problems in this chapter.

8.1.1 Differential Geometry for Parametric Surfaces

In the following, we introduce basic differential geometric objects and especially focus on expressing these objects
on the chart domain. For a general introduction to Riemannian geometry, we refer the reader to [dC92]. Here, we
restrict to two-dimensional embedded surfaces in R® and refer the reader to [Bir01].

We consider a manifold M = 1(w) that is given as the image of a single chart ¥: @ — R®, where ® = R?
is an open and bounded domain with Lipschitz boundary. For the moment, we assume that ¢ € C?(@, R®), but
later we discuss the regularity assumptions on 1 more precisely. We denote by £ € w coordinates in the chart
domain and by p = (&) € M coordinates on the manifold. Furthermore, ¢ is assumed to be an injective
immersion, i.e., for all £ € w, the two vectors ¢1¢(&) and d21(&) are linearly independent and span the tangent
space Ty M = span(d1y(&), 021(&)) at p = (&). Thus, the unit normal at p is given by

1Y(&) x (&)
n(p) = n(y(&)) = |1 (&) x Y (E)|

First Fundamental Form. In general, we say that M is a Riemannian manifold, if for each p € M there is a
scalar product g(p): Ty M x T, M — R, which is smooth in p € M. Since in our case, M is embedded in R3, we
can define the first fundamental form by the Euclidean scalar product g(p)(V, W) = V- W for V, W e T,M < R>.
To represent the first fundamental form on the chart domain, we first note that vector fields V, W: M — TM =
{(p.2) : pe M,Z e T, M} can be expressed in the basis (011(&), 2y (&)) as V(p) = DP(E)v(&), W(p) =
Dy(&)w(&). Then we define ¢(&)(v, w) = ¢(p)(DY(&)v, DY(&)w) for v,w € R? and obtain

(&) = (DY(E) DY(E) = (8()i)ipe1n = | D) i(E)dp;(&)

j=12 ik=12

Furthermore, g(&) € R?*? is invertible and we denote its inverse by g(&)~! = (g(&)*) Note that the first

fundamental form admits the integral transformation rule

|| sy @) = | yfaerg(o) Fouie as

for f € L'(M) and thus, especially allows measuring the area of the manifold. Next, we introduce certain differ-
ential operators on M. First, for a smooth function f: M — R, the differential df(p): T, M — R? is given by
df(p)(V) = 4(foy)|i—o, where y: (—¢, &) — Mis a smooth curve satisfying y(0) = p and y’(0) = V and it can
be verified that this definition does not depend on ). Analogously, the differential of a smooth function f: M — N
onto a manifold NV is defined, which is a mapping between the tangent spaces df(p): T, M — Tf(,) N For a scalar
valued function f: M — IR, the gradient V f (p) € T, M is defined by the relation g(p) (Vs f(p), V) = df (p)(V)
for all V € T, M, which leads to

ik=12"

Vmf(p) = DY(E)g() 7'V (f o 9)(&).

Defining the divergence div y( as the adjoint operator acting on vector fields V(p) = Dy(&)v(E), we obtain

divp(DY(E)0(E)) = vde%ig@ div (1/det g(€)o(2)) .
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Then, the Laplace—Beltrami operator is defined by Apf(p) = divmVmf(p). Moreover, we introduce the
Christoffel symbols of first and second kind by

1
l"i]-k = (912]#) SOk = 5 (ajgk,‘ + 6,‘gkj — 0kgij) , F?]? = Z g’”kl"ijk .
k=1,2

Second Fundamental Form. Note that the normal can be considered as a vector valued function n: M — S?
IR3. Since Ty(,)S* = (span(n(p)))*" = T, M, the differential S(p) = dn(p) at a point p € M is thus a linear map
S(p): TyM — T,)S* = Ty M, which is called the shape operator or Weingarten map. It can be verified that S(p)
is self-adjoint w.r.t. the first fundamental form. Then the associated bilinear form h(p): T, M x T, M — R with

h(p)(V, W) := g(p)(S(p)(V), W) = g(p)(V,S(p)(W))

is called the second fundamental form and can be represented on the chart domain by a matrix 1(&) € IR>*? with

entries h;j(&) := h(p) (0P (&), ;¢ (&)), which leads to
h(g) = D(noy)(&) - DY(&) = —D*P(&) - n(()).

Also the shape operator has a matrix representation S(&) = ¢(&)7'h(&) € R**2 on the chart domain, s.t.
S(p)(0Y(E)) = 2iz12 Sij(£)dip(E). Then we call K(&) = det(S(&)) the Gauss curvature and H(E) = tr(S(&))

the mean curvature.

Isometric Chart Maps. Next, we consider a special class of chart maps given by isometries. In general, an
isometry 1: @ — R® can be defined as a length-preserving map. Above, we have for simplicity assumed that
Y w — M is a chart of a Riemannian manifold with C? regularity. However, there might be a huge difference to
C! isometries, which we want to point out.

Definition 8.1.1 (Isometry). A map ¢ € C'(w,R3) is called isometry if g(&) = Lpxp forall € € w.

Now, the famous Nash—Kuiper theorem states that any short immersion can be uniformly approximated by C?
isometries.

Theorem 8.1.2 (Nash—Kuiper). Let @ < R? be open and bounded, and let u € C* (@, R%) with DuTDu < T4,
and rank(Du) = 2 everywhere. Then for every ¢ > 0 there exists € C'(@,R?) with DYTDY = 14, and
== < e
Proof. See [Nas54], [Kui55]. m|
In contrast, for C? isometries we have the following properties.
Proposition 8.1.3 (Properties of C? Isometries). Let ¢ € C*(w, R3) be an isometry.
1. For the Christoffel symbols, we have Uy = 0ij(p - 0xp = 0 for all i, j,k = 1,2.
2. For the Gauss curvature, we have K = 0.
3. We have equalities |D*\| = |Av| = |h| = |H|.
Proof. See [Barl5, Proposition 8.2]. m]

Furthermore, the Hartman—Nirenberg theorem states that C? isometries behave rigidly in the following sense.

Theorem 8.1.4 (Hartman-Nirenberg). Let @ = IR? be open and bounded. Furthermore, let Y € C*(w,R?) s.t.
Dy(&)TDY(&) = Laya for all & € w. Then 1 is developable, i.e., for any & € w, one of the following holds:

1. There exists U < w open with & € U and 1) is affine on U.

2. There exista,b € dw with & € [a,b] and ) is affine on the line segment [a, b].
Proof. See [HN59]. O

o . . . 22 .
A generalization was established by Hornung [Hor11], who proved that isometries ¢ € W, (w, R3) :={ue

W22(w,R3) : Du'Du = 1,4, a.e.} are developable and can be approximated in the strong W?2-topology by
functions in W2 (w, R®) n C* (@, R®).
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Deformations between Parametric Surfaces. Now, we consider two manifolds My = Y4(w) and Mp =
'2: (w), which are parametrized over the same chart domain w < RZ. Then, a deformation between the two

manifolds is given by ¢ = ¢ o 1/);1 : My — Mg. In Figure 8.1, we show a sketch of this configuration.

¢ =1, o g

My B

HbA & EDB

Figure 8.1: Sketch of a deformation ¢ between parametric surfaces My and Mp, which are parametrized over the
same chart domain w.

For the moment, we regard both manifolds M, and Mp and the deformation ¢ as fixed. We define the
Cauchy-Green strain tensor G(&) € IR?*2 at a point & € w by the relation gg(&)(v, w) = ga(&)(G(E)v, w) for all
v,w € R, s.t. we obtain G(&) = ¢a(&)1gp(&). We recall that the matrix representation of the shape operator of
My on the chart domain is given by S4(&) = ¢a (&) 1ha(&). To compare S (&) with the corresponding shape
operator on Mg, for p4 € Ma, we take into account the pull-back S3(pa): Tp, Ma — Ty, Ma given by

8a(pa) (S5 (pa)(V), W) = hg(Pp(pa)) (dp(pa)(V),dp(pa)(W)) ,

and we define the relative shape operator 5 (py4): Ty, Ma — T,, Ma by Sl (pa) := Sa (pa) — Si(pa). Then, a
matrix representation S™ (&) e IR?*2 of the relative shape operator on the chart domain is given by S* (&) (v, w) =
A (&)Y (ha(&)(v,w) — hp(&)(v,w)). Finally, in analogy to Definition 8.1.1, we say that a deformation ¢ =
Yp o 1,[1;1: Ma — Mg is an isometry if for all V, W e T, Ma

ga(P(pa)) (dp(pa)(V),dp(pa)(W)) = ga(pa)(V, W), 8.1)

which can be transferred to the chart domain to the equivalent relation g4(&) = gp(&). As above, an isometry
implies length-preservation. In the following, we consider M, as a reference domain always regarded to be fixed,
whereas the deformed domain Mg is obtained as a solution of a specific equilibrium problem under certain load
conditions. Therefore, we indicate the operators G and S™ in dependence of the deformation ¢ or the chart map
U, i.e., we write Gy, S‘qfl or Gy, S‘l/f}lg

Thin Elastic Shells. Finally, we give the definition of a thin elastic shell.
Definition 8.1.5 (Thin Elastic Shell). A thin elastic shell is an elastic body S° — R3 of the following type

06
Sb—{xelRS’ :x—p+m(p)withpeM,Te(—§,§>}, (8.2)
where M = ¢(w) = RR® is a regular and orientable two-dimensional surface, which can be parametrized by a
single chart 1): @ — R for an open and bounded domain @ = R? with Lipschitz boundary. Furthermore, we
assume that there is no self-intersection, i.e., forp,p € Mand 7,7 € (=%, %), the relation p + tn(p) = p + n(p)
implies that (p, T) = (p, 7). Then we call M the midsurface and 6 > 0 the thickness of the shell.

Remark 8.1.6. More generally, we could consider M — IR? as an arbitrary regular and orientable two-dimensional
surface, but here we restrict to parametric surfaces. In this simplified case, the orientability constraint follows
directly.
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8.1.2 Two-Dimensional Models for Elastic Deformations of Thin Shells

In the following, we fix a thin elastic shell Si = 1a(w) with midsurface My as a reference domain. For a force
Fa: 8 — R acting on 8%, an equilibrium deformation ®: S5 — R? is described by minimizing the free energy

Sfree(q)) = o W3D(DCD) — FA ) dxA,
A

where Wjp : qu X IRfLXB — R is assumed to be a hyperelastic energy density function as we have introduced in
Section 6.1.1. Furthermore, we assume that @ is clamped at a fixed part
s 3 . 00 5
FA = {XA eR’ : x4 = pa + TAnA(pA) WlthpA elq,Ta€ <—§, E)} c SA
forT'y < dM,. Note that even if the deformed midsurface Mp = ®(M,) is a Riemannian manifold, it is unclear
that the deformed object ®(S9) is itself a thin elastic shell of type (8.2), since in general ®(pa + Tana(pa)) #
D(pa) + tanp(P(pa)). However, considering the limit & — 0, we are interested in understanding the 3D defor-
mation @ just by a 2D deformation ¢ of the the midsurface My, or alternatively by a chart map g = ¢ o Pa
parameterizing the deformed midsurface Mp = p(w). In particular, we ask for an appropriate energy functional,
which characterizes the 2D deformations as corresponding (local) minimizer. In the following, we summarize two
approaches to obtain such a limit energy functional. First, the models of Koiter’s type make additional assumptions
on the 3D deformation, which directly allows a 2D description. Furthermore, a suitable framework to study the

limit of minimizing deformations of the free energy for 6 — 0, is established by I'-convergence, which we have
introduced in Section 2.3.

Koiter Type Models. We start with the simple and commonly used Mindlin—Reissner model (see, e.g.,[Bra07])

in plate theory, i.e., we consider the flat case My = w < R? and may assume that (/4 = id. For a point x4 € So .

we use the notation x4 = (&,z) with & € w and z € (fg, g) The force Fa(&) = (0,0, f,(&))T is supposed to

act only into the orthogonal direction. Now, in the Mindlin—Reissner model, it is assumed that the displacement
U: 8% — R has the form

Ute) = e,2) = (s )

where 0: @ — IR? represents the normal stretch and w: @ — R the transversal bending displacement. Starting
from linear elasticity with the free energy defined in (6.10) and assuming that the normal stress o33 = 0 vanishes,
we can derive that

Slin

free

(u) _ alin,MR(Gl w)

free

_s_E e 3 E J - v ) ) - j
=0T f Vo= 0F dé + 8 rams | €(0):¢(0) + T div(0)* de = 0 | frwde.

In addition, in the Kirchoff-Love plate model, it is assumed that deformed normals are orthogonal to the deformed
midsurface, which implies Vi = 6. Thus, the free energy can be expressed solely in terms of w as

in in E v
Em (U) = K (w) = 53mf |D*wlf + 7= (Aw)* dE — 5] fuw dE.

Now, for the general case of a generic shell, a similar model was investigated by Koiter [Koi66]. Considering
the undeformed and deformed midsurfaces MA and Mp parametrized over the same chart domain w ¢ R?, the
corresponding thin elastic objects SZ and Sg are obtained as images of extended chart maps from a thickened

89

chart domain w x (—5, 5) c IR3 given by

3 (8,2) = Yal&) +zna(8), 3 (&2) = ¥p(8) +z0(¢).
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Now, the Kirchhoff-Love assumption transfers to v = ng. Again starting from linear elasticity (6.10) and denoting
by u = 1 — ¥a: @ — R3 the displacement of the midsurface w.r.t. the chart domain, the stored elastic energy in
terms of u can be expressed by

i in,Koi 6 i i
Enorea () = E e (1) =3 f \/detga H(gs — ga)™ : (g5 — ga)™ d&
¢ (8.3)
+— detgA H(hg — hA)]m : (hB — l’lA)lin dé,
%),
where H € IR3*3%3x%3 {5 a fourth order tensor with entries

ii 4)\ i ik _jl il _jk
B = zyg/igfif +20(hgh + SAgh)

and the linearizations of the first and second fundamental forms in the displacement u are explicitly given by
(88— 84)™ =(D4)"Du + (Du) ' Dipa,

: 1
(hB — hA)};rn = — 0,']'11 cNnp + ﬁ ((3111 . ((3,]1#,4 X 021,[1A) + Ol - (011;),4 X (%ﬂ/}A))

Oia -
Y4 1A (Oru - (Oapa x na) + Oou - (na x O1Pa)) .

+—
«/detgA

As proposed in [Ko0i66], the energy functional (8.3) motivates the definition of a nonlinear Koiter shell model in
terms of the chart map g parameterizing the deformed domain with stored elastic energy given by

Enporen (W) = J \/detga H(gs — ga) : (g5 — ga) d&

detgA H(l’lB — hA) : (hB — hA) dé.
24 ©
We notice that the part involving the first fundamental forms, which is called membrane energy, is scaled with a
factor O, whereas the part involving the second fundamental forms, which is referred as bending energy, is scaled
with a factor 6°.

More generally, we consider mixed models with a weighted sum of a membrane energy depending on the
Cauchy—Green strain tensor Gy, and a bending energy depending on the relative shape operator Sf;’; Such a model

was, e.g., applied in [IBRS13]. Thus, for suitable density functions W,e, and Wy, we define a stored elastic

energy by
nl,mix 6 Vﬁ] 63
Sstlored B) = E J detgA mem(Gbe) dé + 24 f \/ detgA Mben(slpl) d

Indeed, we immediately see that the limiting energy functionals rigorously observed by I'-convergence are of a
similar structure and permit the same scaling in the thickness.

I'-Convergence Results. In the following, we summarize certain I'-convergence results leading to membrane
and bending energy functionals acting on deformations of the 2D midsurface. First, since we are now considering
the limit & — 0 we indicate for a fixed 6 > 0 the stored elastic energy by SStore +» Which is defined on a space of
deformations ¢: Si — IR®. We note that the underlying domain SZ and consequently an associated function space
for ¢ changes by varying 6. Thus, to generate a suitable setup for I'-convergence, which in particular requires a
sequence of functionals defined on a common function space, a transformation to an object S}q with unit thickness
has to be applied. Then, in case of I'-convergence the limiting functional is a priori also defined on deformations
of S}q, but in the subsequently presented results it turns out that these limits can be identified as energies on
deformations of the midsurface My.
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. . . 6
For a membrane theory, in [LDR95, LDR96], the above mentioned rescaling for the sequence ( 8Smre d) 520 of

energy functionals was taken into account. For a homogeneous material and under p-growth assumption on the
hyperelastic density function W3p with p € (1,0), a [-convergence result was proven w.r.t. to the weak W'#
topology of deformations from the thickened chart domain, where the limit functional is given by

Emenln) = | +/detgn Wih(&, Dyi(£)) de,
w
where the corresponding 2D stored energy function Wp is given by

Wan (&, F) = min Wap ( (Fz) (G1a(&)|29pa(&)Ina(€)) ")

and WZ; is the quasi convex envelope of W;,p. Note that especially the density function of a Saint-Venant—
Kirchhoff material is not polyconvex, but in this case WZCD can be computed explicitly.

For a bending theory, we consider a sequence (6%8‘;0re d) s=0 Of appropriately scaled energy functionals. First,

because of the scaling of order three, note that a finite value of the limiting functional can only be expected on the
set of minimizers of the membrane energy &pem. Thus, according to the definition of a smooth isometry in (8.1),
for m € IN ;.. we define the space of W"?-isometries by

W2 (Ma, R®) == {p € W™ (M4, IR®) : ga(pa) = g8(d(pa)) forae. pae Ma} .

180

n [FIMO02], a I'-convergence result was derived in the plate case. There, a central inside is the rigidity result

min | [Dy — Q]* d& < cf dist?(Dy, SO(3)) d& (8.4)
QeS03) Jo @

for i € W2 (w,R?), which can be regarded as nonlinear version of Korn’s inequality (2.2). Then, provided that

Wsp(M) = c dist?(M, SO(3)) for some constant ¢ > 0, the estimate (8.4) can be applied to obtain a T-limit w.r.t.

to the strong W'-topology, which is given by

1 h .
8p1me(¢) Y UI%%IQz < (05) z ) dé ifye Wi’j(a),]RS)/

ben (8.5)
0] otherwise ,

where Q is the quadratic form Qx(M) := D*Wjp(l3x3)(M)(M). For a Saint-Venant-Kirchhoff material,
the inner minimization problem can be computed explicitly, s.t. the integrand for W?2?-isometries is given by

2u tr(hé) M - tr(h3)2 In [FIMMO3], the result was extended to general shells, where the limit energy func-
tional takes 1nto account the relative shape operator and is given by
min Qy( SI~31 2) +z2@n4(pa)) d#2(pa)  if b € WMy, R%),
N k- fM min Qu(S5/(pa) + 2@ na(pa) 4H2pa) TG EWEMARY),
otherwise .

Finally, we mention that the here presented I'-convergence results only hold under certain additional regularity
assumptions on Wsp, which we do not specify in detail and instead refer the reader to the literature mentioned
above.

8.1.3 Overview of Computational Methods for Thin Elastic Shells

In the literature, there are many possibilities to discretize thin elastic shells and the corresponding deformation
energies. Here, we give a brief overview of different approaches, where we restrict to two-dimensional models as
we have described above. The main numerical difficulty is that due to curvature terms appearing in the bending
energy at least an approximation of second derivatives is required.
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W?22-Conforming Finite Elements. Classical finite elements, e.g., globally continuous functions on a triangular
mesh that are polynomials restricted to any element, unfortunately, do not belong to the space W??2. Thus, for a
conforming finite-dimensional approximation of deformations more elaborated discretizations have to be investi-
gated. A globally C!-regular finite element is for example given by the Argyris finite element (see, e.g., [Bra07]),
which requires degrees of freedom for first and second derivatives at nodes and for normal derivatives at edges. Be-
sides a highly computational effort, an extension of the Argyris element to curved domains is not straightforward.
Instead, for triangular meshes, a suitable alternative is given by taking into account a larger support of nodalwise
basis functions. In [COS00], so-called loop subdivision elements were used to compute elastic deformations for
a linear Koiter type model. On quadrilateral meshes arbitrary regularity can be obtained by nonuniform rational
B-splines (NURBS) (see, e.g., [HCBO05]).

Nonconforming Finite Elements. An alternative is given by nonconforming finite element functions, which do
not necessarily belong to the space W2, but solutions to the discretized elasticity problem admit similar error
estimates, s.t. convergence in the limit is guaranteed. Later, we make use of the discrete Kirchhoff triangle (DKT)
element [BBHS80], which was originally proposed to solve the linear plate bending problem. We discuss the DKT
element in detail in Section 8.1.4.

Discrete Differential Geometry. The spirit of discrete differential geometry (DDG) is actually to understand
the discrete object, e.g., in form of a triangular mesh, itself as a discrete surface, by making sense of differential
geometric quantities like the Riemannian metric or the mean curvature. These objects are then defined only on
elements, edges, or at nodes and thus cannot be considered as functions on the whole domain. By comparing
dihedral angles of neighborhood triangles, a discrete bending energy was introduced in [GHDSO03]. Combined
with a nonlinear membrane energy, this was extensively applied in works by Heeren and coworkers [HRS* 14,
Heel6]. Computationally, methods from discrete differential geometry have turned out to be extremely efficient.
However, convergence, e.g., of the mean curvature for a sequence of triangular meshes, can only be established in
an integrated sense [War08].

The Engineering Point of View. In engineering applications, it is often convenient to combine a pure mem-
brane with a pure bending energy model. Then the corresponding stiffness matrices are just assembled elemen-
twise, where only the associated degrees of freedom are taken into account for the membrane and bending part,
respectively. For example, the DKT-CST element [BH81] combines the DKT element with the constant strain
triangle element. Alternatively, quadratic in-plane displacements for the membrane part lead to the DKTP el-
ement [DMMS86]. A coupling of the two parts of the deformation energy is guaranteed by certain commonly
defined degrees of freedom, but other values are rather meaningless for either the membrane or the bending en-
ergy. Similar as in DDG, there is no corresponding overall function defined on the discrete mesh, but related to a
mixed method, the membrane and bending stress can be regarded separately as functions.

Bending Isometries. Minimizing the pure bending energy under an isometry constraint numerically has been
rather less studied. According to the discretization, the isometry constraint has to be formulated appropriately.
Using DDG, this corresponds to the condition that length and angles are preserved for all triangles. In [WBH™07],
the Willmore energy was approximated by a quadratic curvature energy, which is related to a nonconforming
Crouzeix—Raviart finite element discretization. Instead of describing the triangular mesh by nodal positions, in
[WDAH10], edge length and dihedral angles were used as degrees of freedom. Then the isometries can be approx-
imated by only allowing the dihedral angles to vary. This approach was studied in [Sas19]. Concerning the above
discussion about the regularity of isometries related to the Nash—Kuiper theorem 8.1.2 and the Hartman—Nirenberg
theorem 8.1.4, the deformations in DDG are even not of class C!. However, a notion of discrete developable
surfaces on quadrilateral meshes was established in [RHSH18]. In [Barl3], a numerical approximation scheme
for large bending isometries was provided by making use of the DKT element. There, the isometry constraint was
enforced only at nodal positions, which can easily be formulated due to the derivative degrees of freedom. Then the
regularity error estimates for the DKT element still allow to prove convergence of minimizers. For a computational
scheme, a discrete W>? gradient flow using a linearization of the isometry constraint was proposed.
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8.1.4 Discrete Kirchhoff Triangle Element

Here, we recall the DKT element on plates and refer the reader to [BBH80, Barl5, BraO7] for more detailed
introductions. For simplicity, we assume that @ — IR? is polygonal, s.t. we can directly consider a triangulation 77,
of w. Otherwise, w could be approximated by a polygonal domain. We denote by N, the set of nodes in 77,. For a
triangle T in 77, let Px(T) be the space of polynomials of order k € IN. In analogy, we consider for an edge E the
space Py(E). Furthermore, we define for a triangle T the space P3 eq(T) of polynomials of order three reduced by
one degree of freedom by

W=

Pjrea(T) := {w ePy(T) : wizr) == Y. w(z)+ Va(z)(zr — z)} ,

zeNnT

where zr = £ 3 n,~T Z denotes the center of mass. We denote by I', © dw the Dirichlet boundary. Then, we
define the following finite element spaces.

Definition 8.1.7 (DKT Finite Element Spaces).

1. Wy(w) = {wh € W}f(a)) : Wy|T € P3ea(T) VT € T}, and Vwy,(z) is continuous for all z € Nh},

2
2. Op(w) := {Qh € (W%f(w)) 2 Oplr e (Pz(T))2 VT € Ty and 6y, - n € P1(E) for every edge E in Th}

Furthermore, we introduce a discrete gradient operator.
Definition 8.1.8 (DKT Gradient Operator). We define a discrete gradient operator
Vii: Wi(w) — Op(w),  wy — Viwy, = Oy (wy),
where 6),(wy,) € Oy(w) is the uniquely defined function that satisfies for each triangle T € 77, with nodes z, 1, 22
1. 6,(wy)(z;) = Vwy(z;) for 0 < i < 2 and
2. Op(wp)(zif) - (zj — zi) = Vwy(zij) - (zj — zj) for 0 < i, j < 2 with z;j = zj; = 3(zi + zj).

Now, we call a function w;, € W), (w) a DKT function. Then the approximative second derivative of wy, is
given by VO (wy,). Note that wy, can be determined by the values wy,(z) and the derivatives Vwy,(z) at nodes z, and
thus, has three degrees of freedom per node. In Figure 8.2, we depict the gradient operator on a single triangular
element. Finally, we define function spaces of displacements satisfying clamped boundary conditions on I';, by

Z0 Z1 Z0 Z01 41

Figure 8.2: Sketch of the DKT gradient operator V;,. For a single triangle, it maps a cubic function wy, € P3req
defined by the values wy,(z;) and derivatives Vwy,(z;) at the three nodes zg, z1, 2, to a quadratic function.

W%f(a)) = {w e W2(w) : wlr, = 0and V|, = 0} ,
Wir, (@) 1= {wy € Wi : w,(2) = 0 and Va(z) = 0 Yz € Ny A L}

Various error estimates for the DKT element have been established. For instance, the linear plate bending
problem can be approximated under W?2-regularity assumption on the solution displacement s.t. the error of the
approximative second derivative in the L2-norm is of order one (see [Bar15, Theorem 8.2]).
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8.2 Shape Design for Mixed Membrane-Bending Models

In the following, we study the optimal material distribution on thin elastic shells via a phase-field approxima-
tion. Moreover, deformations are described by models including a membrane and a bending energy part, and we
investigate both linear and nonlinear elasticity.

8.2.1 Shape Optimization Problem for a Phase-Field Approximation

To describe a material distribution on the chart domain w and thus on the midsurface My, of the reference object,
we consider a characteristic function y € BV (w, {0,1}). More precisely, on the subdomains

O'={iecw: x(&) =1}, O ={cw : x(&) =0},

we assume that the elastic material is described by parameters E™ for Young’s modulus and v for the Poisson
ratio for m € {0,1}. For simplicity, we restrict to the case ! = 19, Now, as in Section 6.3, we could formulate a
shape optimization problem in terms of the characteristic function. As we have described in Section 6.3.1, we use a
phase-field variable v € W'2(w, [—1,1]) to approximate the characteristic function y. Here, we directly formulate
a shape optimization problem in terms of the phase-field variable, since our numerical computation scheme is
based on this approximation approach. Then, we define an interpolation E(v) of Young’s modulus depending on
the phase-field variable by E(v) = x(v)E' + (1 — x(v))E°, where we set x(v) = 1z(1 + v)*. We recall that the
corresponding Lamé-Navier parameters u”, A" are determined by (6.6). In analogy, we define interpolations 1(v)
and A(v) depending on the phase-field variable.

State Equations. Here, we define stored elastic energy functionals both for linear an nonlinear elasticity. We re-
call that the chart map \p = 4 +u parameterizing the deformed midsurface can be recovered by the displacement
u. Thus, we formulate all energies in terms of the displacement.

First, for a nonlinear membrane energy, we take into account the hyperelastic energy density function (6.8) and
define
w(v) A(v) A(v)

Wmem(v, S) = T tI'(S) + T det(S) — (@ + %) log(det(S)) — [,l('(]) — T

for S € ]Rfyxmz/ +- In [HRWW12], this density function was applied for thin elastic objects. Then, the nonlinear

membrane energy is given by

an L (vu) = J det g4 Wonem (0, g;lgB) dé.

For a nonlinear bending energy, we recall from (8.6) that the I'-limit takes into account the relative shape operator,
which has a matrix representation g;l (hg — h4) on the chart domain. Here, we simply choose the Frobenius norm

E(v)

Wben(v/ S) = T

IS ®.7)
and define the nonlinear bending energy by

&L (v,u) = f det g4 We, (0, g;l(hg —hy)) dE.

For a pure bending model, the limiting functional (8.6) is restricted to the set of W??-isometries, which minimize
the membrane energy Wem (9, -). Now, for a mixed model with both a membrane and a bending part, the mem-
brane energy functional acts as a regularizer for the isometry constraint. Thus, without an isometry constraint, we
define a stored elastic energy E™™: W12(w, [-1,1]) x W*?(w, R®) — R U {o0} by

stored *

EMMX (0, u) = 6 EN (v, 1) + 6° EN

stored ben(v’ M) :
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In the case of linear elasticity, we use the linear Koiter type model as defined in (8.3), where we additionally
allow the material to vary, i.e., we define a linear membrane and a linear bending energy by

1 A ‘

Sglnem( ) :_J detgA H(z})(gB —_ gA)lm . (gB o gA)lm dé,
Een (0,11) =74 J det g H(v)(hg — ha)™ : (hg — ha)™ dE,
with

y AA(v)u(v) l )

ijkl _ _GERY) ik P i

H (U) /\(U)+2H(U)gAgIA+2#(U) (gAgA+gAgA) ,

and a linear stored elastic energy by

glin. m”‘(v u) =06&M (v,u) +6°EMN

stored ben (U M)

For a force f4 : M — R3 acting on My, we set f = fa o 4 : @ — R® and define the potential energy by

8pm(u):6f detgAf~ud§:6J detga f- (Y —a)dE
Finally, for a fixed material distribution described by v, the state equation is given by minimizing the free energy
Sfree (?), M) = Sstored (?), u) - 8p0t(”)

over all displacements u € W?’Z (w, R3) of the chart domain satisfying clamped boundary conditions on the Dirich-
let boundary 'y, = lllgl(r/\).

Cost Functional. For the cost functional Jep explicitly depending on the phase-field variable v and the dis-

placement u, we take into account the potential energy Jexpi(v, ) = Epoi(). To measure the area of the set
O', we define V(v) := § \/W 2L d¢ as the relaxation of the area functional in terms of the phase-field

variable. Moreover, fﬂe is the Modlca—Mortola functional as defined in (6.13), which approximates the perimeter
functional for € — 0 (c¢f. Theorem 6.3.2). Then, we consider a shape optimization problem by minimizing a total
cost functional

Tx(©) = T (0,1(0)) = Texpi(v,4(0)) + nA(0), (8.8)

over all phase-fields v € W'?(w,[~1,1]) s.t. an area constraint V(v) = V holds for some constant V &
(0, #2(Ma)). Here, for a fixed phase-field v, we denote by 1(v) a minimizer of the free energy with stored
elastic energy either given by ™™ or §™™* ' Ag discussed in Section 6.3, in the case of nonlinear elasticity, the

stored stored *
minimizer 1#(?) is not necessarily unique and thus, a set of minimizers has to be considered.

8.2.2 Finite Element Discretization for Mixed Membrane-Bending Models

Now, we aim at computing minimizer of
the derivative

lot with a numerical optimization scheme, which requires to evaluate

«7101( 0)(9) = 00T 0 (0, 1(0)) (9) + 0T (0, u()) (Qou(0) (D)) -

To compute the shape sensitivity d,u(v)(0) we apply the same approach as described in Section 6.3.2 by solving a
suitable adjoint problem. This leads to

%i’&(ﬂ)( 9) = 00T 0 (0, 1(0))(0) + &5, Estorea (0, U(0) ) (A) (2),
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where the adjoint variable A € W?’z(w, IR?) solves the linear problem
07 uEstorea(0,1(0)) (W) (A) = =0T expi (v, u(0)) (i) Vil € Wi (w0, R?). (8.9)

In the case of linear elasticity with stored elastic energy 82‘;;:&" and a cost functional defined by the potential

energy, the solution to the linear system (8.9) for the adjoint variable is precisely given by A = —u(v).

For a numerical discretization to compute approximations of stationary points of the free energy Egree, we take
into account the DKT element. Since we restrict to parametric surfaces My, we can consider a triangulation 77, of
the chart domain w. Then, for the DKT finite element space as in Definition 8.1.7, we call a function ¢, € ‘W), (a))3
a DKT chart map. We fix such a DKT chart map 14, € Wj,(w)? as an approximation of 14. Then, we formulate
discrete energies in terms of a displacement 1, € W), (w)? satisfying clamped boundary conditions on T, and
define the DKT chart map discretizing the deformed domain by ¢}, := 14, +1;,. In Figure 8.3, we show a sketch
of this discrete configuration. Note that the numerical approximations Mg := ¥4 (w) and Mgy, := ¥pj(w) of
the midsurfaces M, and Mp are images of vector-valued DKT functions. In particular, triangular elements on the
discretized midsurfaces are curved. The actual discrete deformation ¢y, is a concatenation of a DKT chart map and
the inverse of a DKT chart map.

— 4,1
On =, oY

Vs

Figure 8.3: Sketch of the numerical approximation of a deformation by DKT chart maps.

Now, for first-order quantities, we simply evaluate the exact gradients of the DKT chart maps at quadrature
points ¢, i.e.,

8an(q) = DYan(q) DYan(q), 881(9) = DYgu(9)" Dpu(q),
A1 an(g) x 02pan(q) o1 n(q) x Aapu(q)
|01 an(q) x 2an(q)]’ |01 (q) x Oapa(q)]

For second-order terms, we take into account the approximative second derivatives of the DKT chart maps. Note
that VV,, 4 ,(g) and VV,,1pg,(g) are in general not symmetric. Thus, we define

nan(q) = npu(q) =

han(q) = <(VVh¢A,h(OI))11 ap(@) 3 (VVian(@)z + (VVaan(g)a) - nan(q )) /

sym (VVihan(q))22 - nan(q
_ (Vi@ nsi(q) 3 (VVasa(@)i2 + (VVis(q)21) - neu(g
hB,h(q) _ < h Bhsyrnll B,h 2 )/ BlgVVhiB,h( ))2;1 Zi;h(q)Zl B,h > )

Next, we discretize the phase-field variable by functions in the finite element space

Vi(w) = {vy € C'(w) : vylris affine VT € 77} .
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Then, we apply a Gaussian quadrature of degree 6 with Q = 12 quadrature points for each triangle element with
weights w, which allows us to define the following discrete counterparts

& (O tt) = ) Z 8ai(q) Winem (04(9), 84(9) "' g84(q))
TeT;, g=1,.

Epnyn (On, 1) Z Z 8 (@) Ween (04(9), 841(9) " (h(q) — han(q))) -
TeTy q=1,..

Assuming that a force f;, is explicitly given at quadrature points, we set

Spon (1) =06 Z Z 8an(q) fu(q) - un(q),

8?1'166 h(vh’ uh) =0 8Fnemh(vh’ uh) + 63 81t:len,h (vh’ uh) - 8p0l,h(uh) .

Finally, to solve the state equation 0, Sgee (O, up) = 0 for a fixed vy, we apply Newton’s method. In the case of
linear elasticity, we use in analogy the symmetrized approximative second derivative to define a discrete version

of (hg — ha)'™ at quadrature points. Then the state equation &,hSt‘r‘;e h(vh, uy,) = 0 results in a linear system.

Finally, the shape optimization problem to minimize the fully discrete cost functional T(’)t , overall o, €

Vi (w,[-1,1]) s.t. Vi (o) = V is solved by using the IPOPT package [WB06]. To this end, we have to provide
an implementation of J, and Vy, as well as the first derivatives of these operators. Then the IPOPT solver
allows to include a constraint on the amount of hard material and box constraints —1 < v;,(z) < 1forallz € N,
on the phase-field variable. To obtain a finer resolution of the diffuse interface, we use an adaptive refinement
scheme via longest edge bisection. More precisely, after computing the solution v, we mark those elements
T € T3 with JCT |Voy|? dx > 1. Then, we iteratively compute a solution vj, on the refined mesh 77,. The
optimization method on the refined mesh 77, is initialized with the linear prolongations of the solutions v, and
uy(vp). For the parameter € in the Modica-Mortola functional, we always choose € = 2 minyey, diam(T), which
is thus automatically adapted to the corresponding mesh size h. The longest edge bisection guarantees that the

family (77,),, of refined triangular meshes is regular.

8.2.3 Numerical Results for Mixed Membrane-Bending Models

Now, we present our computational results, where the hard material is colored in orange. We always choose
material parameters E' = 100, E® = 1 for Young’s modulus, s.t. one material is substantially stiffer than the other.
Moreover, we set the Poisson ratios to v1 = 10 = 0. In the following, we take into account reference domains of
a flat square, a hemisphere, and a half cylinder. For the coarse initial meshes to discretize the chart maps, which
are in our examples either given by the unit square or the unit disc, we use |Nj,| = 289 nodes. Then, depending on
the specific example, we apply several adaptive refinement steps via longest edge bisection. In the case of the unit
disc, new boundary nodes generated by the adaptive refinement are projected onto the boundary of the unit disc.

Centered Load on a Plate

First, we investigate the flat case for w = My = [0,1]? and 4 = id. We consider a force f = (0, 0, /3)([0,45,0.55]2),
which is acting into the normal direction and is supported on a square in the center of M,. The displacement is
supposed to be clamped at the boundary 0M,. As penalty parameter for the Modica—Mortola functional, we
choose 7 = 1072 s.t. the contribution of nA° is small in the total cost functional ,),. Moreover, we choose
different area constraints V = g for k = 2,3,4,5,6. Then, depending on this area constraint, we set § = —250V
for the force to make the corresponding deformations comparable. For nonlinear elasticity, we consider 6 =
1072. Note that in the case of linear elasticity the associated linearized membrane energy is zero for the optimal
displacement. Then, for the optimal design, scaling 0 is equivalent to scaling the force f and the penalty parameter
1 for the Modica—Mortola functional. To obtain comparably large deformations as in the nonlinear case, we choose
6 = 101, In Figure 8.4, we depict the results for linear elasticity after 9 adaptive refinement steps and for nonlinear
elasticity after 7 adaptive refinement steps. In all results, we observe a cross type structure for the hard material.
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Figure 8.4: Optimal material distributions on a plate M, = [0, 1]? for a centered load supported on (0.45, 0.55)?
and acting into normal direction. We compare the results for different area constraints V. Top: Linear elasticity.
Bottom: Nonlinear elasticity.

However, in the case of linear elasticity and for small amounts of hard material, the trusses become very thin
at certain points, whereas for nonlinear elasticity, we obtain pure cross structures. For a more detailed analysis
of these cross structures, we consider in Figure 8.5 the stresses and energy functionals for both types of crosses.
More precisely, under the above load scenario we compute for an area constraint V' = 0.25 the optimal design
for linear and nonlinear elasticity and compare the potential energy functional for both solutions. We denote the
corresponding phase-fields by v (linear) and vy (nonlinear). Then, we compute the minimizer of the free energy
functional for the other cross structure, i.e., we take into account vy for nonlinear elasticity and vy for linear
elasticity. We observe that in the case of linear elasticity, vy has an approximately 25% lower potential energy
than vnz. Conversely, in the case of nonlinear elasticity, vy, is approximately 30% better than v;. Considering
the distribution of the membrane stress for vy, there is indeed a huge concentration at the four points, where
the structure of the hard material becomes very thin. However, the linearized membrane stress is zero for this
load scenario, since the force is acting into the normal direction and the linearizations of the first and second
fundamental forms are given by

lin _ 2011 O1up + Oaly n 2
(85 — ga)™ = (61142 Vo 20, ) s —ha)" =Dlus.

Now, both for v; and vn, the linear bending stress is quite small around the four points. Thus, the thicker structure
of vy in this region does not essentially improve the potential energy, but it is advantageous to use more hard
material in the center and at the boundary of the plate. Moreover, we notice that the nonlinear bending energy is
lower for vy, since the nonlinear deformation behaves much more rigid and the bending stress is concentrated at
the center, where the force is acting. For these four computations, we have chosen a uniform triangular mesh with
16641 nodes. Besides, since we obtain the same optimal designs as in Figure 8.4, this indicates that our solution is
not mesh-dependent.
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Figure 8.5: Comparison of two cross structures on a plate My = [0,1]? for a centered load supported on

(0.45,0.55)2 and acting into normal direction. We depict the corresponding membrane and bending stresses as
averaged values over triangle elements using a color-code in logarithmic scaled HSV channel.

Constant Load on a Plate

Next, still for the flat case @ = My = [0, 1], we consider a force f = (0,0, ) acting everywhere on the plate
into normal direction for some constant §. Again, we assume clamped boundary conditions of the displacement
on OM,. As above, we choose 7 = 1073 for the Modica—Mortola functional, 6 = 1072 for the thickness in
the nonlinear case and 6 = 107! for the thickness in the linear case. Furthermore, we compare different area
constraints V = § fork = 2,3,4,5,6 and set f = —20V for the force. In Figure 8.6, we compare the results for
linear elasticity after 9 adaptive refinement steps and nonlinear elasticity after 7 adaptive refinement steps. While
for the centered load it has been sufficient to stabilize the area in the region, where the force is concentrated, by
trusses connected to the boundary, for a constant load there is a need of microstructures to keep the deformation
as small as possible in terms of the potential energy. Moreover, we observe significantly different results for linear
and nonlinear elasticity.
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Figure 8.6: Optimal material distributions on a plate M4 = [0, 1] for a constant load acting in normal direction
and clamped boundary conditions on M. We compare the results for different area constraints V, where we take
into account both linear and nonlinear elasticity.

Constant Load on a Hemisphere

Now, we investigate optimal material distributions on the upper hemisphere
Ma = {pa=(pLp2ps) eR : pl+py+p3=1, ps >0}

parametrized by the unit disc = {§ € R* : ||&| < 1} as chart domain and the inverse of the stereographic

L B 28 2,  1-§-8
projection Y4(&1, &) = (E%Jr%“, il Eian

on the left and right side, i.e., we set Ty = {pa = (p1,p2,p3) € Ma : p3 =0, |p1| = 0.9}. Here, we consider
a single area constraint V = 0.5V,(1). A force fo = (0,0, 8) with B = 0.001 is acting on the reference domain.
For the thickness, we choose & = 1072, Then, we apply 8 adaptive refinement steps for linear elasticity and 6
adaptive refinement steps for nonlinear elasticity. In Figure 8.7, we compare different values for the parameter 7 to
penalize the Modica—Mortola functional. For 17 — 0, this should allow a larger perimeter for the optimal material
distribution. Indeed, microstructures are emerging for smaller values of 7. As for a constant load on the plate,
we observe significantly different structures for linear and nonlinear elasticity, even though the force is relatively
small.

) as chart map. We assume clamped boundary conditions
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Figure 8.7: Optimal material distributions on a hemisphere. A constant load f4 = (0,0,0.001) is applied, and an
area constraint V = 0.57;,(1) is enforced. We compare different values of the perimeter penalization term 1. Top:
Linear elasticity. Bottom: Nonlinear elasticity. Here, the left and right boundary are clamped as depicted for My,
where the clamped boundary condition is sketched for = 1077,
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Constant Load on a Half Cylinder

Finally, we consider the half cylinder

1\* 1
My = {PA=(P1,P2,P3)€1R3 :p2el0,1], ;1 >0, (P1—5> +pi= 4—712} ,

which we parametrize by w = [0, 1] as chart domain and P4 (&1, &) = (%(1 — cos(mér)), &a, % sin(mfl)) as
chart map. We assume clamped boundary conditions on the left and right sides w.r.t. the p,-direction, i.e., we set
Ta ={pa = (p1,p2,p3) € Ma : p2 € {0,1}}. Here, we restrict to nonlinear elasticity and study the effect for
different thickness parameters 6. Then, we apply 6 adaptive refinement steps. We consider a single area constraint
V = 05V,(1). A force fa = (0,0,8) with B = —10 is acting on the reference domain. In Figure 8.8, we
depict our numerically computed results. First, for a homogeneous material distribution with v = 0, we observe
wrinkling effects for 6 — 0. However, for the optimal material distribution, there is at least for the fixed choice of
1, no increase of microstructure for 6 — 0.

0 1071 10719 1072 10723

Mg for
homogeneous
material v = 0

My

Mg

WS

| Nu 6161 6459 8476 5519

Figure 8.8: Optimal material distributions on a half cylinder, where the left and right sides are clamped. Here, a
constant load f4 = (0,0, —10) is acting on the reference domain. Furthermore, an area constraint V = 0.5V}(1)
on the amount of hard material is enforced. All results are computed for nonlinear elasticity. We compare dif-
ferent thickness parameters 6. Furthermore, we show solutions of the state equation for a homogeneous material
distribution with v, = 0.
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8.3 Shape Design for Nonlinear Elastic Beams in 2D

In the following, we consider pure bending isometries of one-dimensional objects, which are obtained by dimen-
sion reduction of two-dimensional plates. We present a numerical scheme for the corresponding state equation and
especially study local minimizer for a homogeneous material distribution. Then, as in Section 8.2, we investigate
a shape optimization problem by computing the optimal material distribution on the one-dimensional object.

8.3.1 State Equation for Nonlinear Elastic Beams in 2D

We recall that the bending energy (8.5) was derived in [FIM02] via I'-convergence. By a further dimension re-
duction, a similar I'-convergence result was established in [MMO3]. More precisely, the limit of the sequence
(% S(O,l)x ss W(D®) dxs was studied, where S < IR? is an open set and the hyperelastic energy density function
is, e.g., given by W(F) = dist*(F,SO(3)). Instead, we briefly derive a one-dimensional model by taking into
account the bending energy (8.5) for a two-dimensional plate My = (0,1) x (—1, 1), where a material distribution
x(&1,&2) = E(&) for a function E € L*((0,1), [E®, E']) with 0 < E® < E! < oo is given. Moreover, we restrict
the deformations to be of type (&1, &2) = (y1(&€1), &2, 72(&1)) for some y € W22((0,1), R%) and assume clamped
boundary condition at {0} x (—1,1). In this case, the isometry constraint V¢?V¢p = 1 simplifies to |y’| = 1. We
denote by x the curvature of y. Then, for a stored elastic energy as in (8.5), a fixed material distribution E, and
a force f = Bes = (0,0,B)T acting in normal direction, the variational problem for the state equation becomes
minimizing the free energy

1

Enee(y) = | SEOR(R — pra(t) c

0

over all y € W2((0,1),R®) with y(0 ) = 0 and |y | 1. Here, we neglect the thickness 0 of the thin object,

since scaling the bending energy Epen (Y Sl 1E(t 2 is equivalent to scaling the parameter f for the potential
energy. The minimization problem in y is still a constralned optimization problem involving second derivatives of
the deformation. Now, in one dimension, we can make use of the phase

and by identifying IR? with the complex plane C, we can consider the arc length parametrization

t
() = J (KK g
0

where Ky € R is the slope of ¥ at t = 0, i.e., ’(0) = ¢ 0. Such an arc length parametrization automatically

satisfies the isometry constraint |y’ (¢)| = 1. Furthermore, the potential energy becomes

Epot (K f By2(f) dt = f ‘Bf sin(K(s) + Kp) ds dt
1
J f Bsin(K(s) + Ko) dt ds = J (1 —s)Bsin(K(s) + Kp) ds.
0
Thus, we can rewrite the above constrained minimization problem in terms of K by minimizing the free energy
"1
Ene(K) = [ FEOK(0)2 — (1~ )sin(K(®) + Ko) d
0

over all phases K in the space
Xk := {Ke W"([0,1],[-m, m)) : K(0) = 0} .

Then, we can state the following existence and partial uniqueness result.
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Proposition 8.3.1 (Existence and Uniqueness of Minimizer). Let E € L*((0,1), [E°, E']) and let f < O.
1. There exists a global minimizer of Epe, within X.
2. Ifin addition Ky € [—m,0], there exists a unique global minimizer of Eg.. within Xx.

Proof. The existence of a minimizer follows by the direct method in the calculus of variations. The uniqueness
follows by convexity of the sine function on [—7t,0] and the fact that a minimizer K of Egee with Ky € [— n, 0]
satisfies K(t) + Ko € [, 0] for all t € (0, 1]. The second statement follows by restricting to the case Ko € [—7, 0]
(or in analogy to Ky € [—7, —5]). Assuming that K is a minimizer with K > 0 on a subinterval | < [0,1] of
maximal length, we can define K (t) := X[o,17y K, which contradicts the minimality of K, since

0 < Epree(K) — Efree (K) = L—lE( Y(K'(t)) 2dt — Jﬁ 1 —t)sin(Kp) — sin(K(¢) + Ko) df < 0.

For details, we refer the reader to [HRS19, Proposition 3.5]. m|

8.3.2 Shape Optimization for Nonlinear Elastic Beams in 2D
Now, we consider a characteristic function xy € L*((0,1), {0, 1}) describing a material distribution by
E(x) =E'x +E°1-x).

Then we define the free energy in terms of y and K as

1
Ene(,K) = | SEQOE O (1 - Dsin(K(®) + Ko) dt.

0

We aim at minimizing a cost functional

(X)) = T (0, K(x))

over all characteristic functions x € L*((0,1), {0, 1}), where K(x) is a stationary point of Ege. The cost functional
J o explicitly depending on x and K is defined as

g{pl(X'K) pot(X/ )+(X(V( )

1
f —B(1 — t)sin(K ()+K0)dt+af)(dt.
0

Here, « > 0 is a parameter penalizing the amount of hard material. Since weak-* limits of characteristic functions
in general only belong to the larger space L*((0,1), [0,1]), relaxation is required. We apply relaxation by the
homogenization method, which is for a one-dimensional family of parameters simply given by the harmonic mean
(see Theorem 6.2.3). Thus, we define for y € L*((0,1), [0, 1]) the homogenized material coefficient

1— o\ !
E*(x) = (é‘l + Ef) .
for x € L*((0,1),[0,1]).

This allows to extend Egee and thus expl

For the simple scenario with initial slope Ky € [—m, 0], where uniqueness of global minimizer of Egee is
guaranteed, the following classification result for optimal designs is established.

Theorem 8.3.2 (Classification of Optimal Designs). Let Ky € [—7,0]. Then the optimal design is classical and
ordered. More precisely, if x is a critical point of J, within L*((0,1),[0,1]), then there exists t* € (0,1) s.t.
X =1ae on(0,t*)and x = 0 a.e. on (t*,1).

Proof. See [HRS19, Theorem 5.8] m]

Note that we here consider a penalization of the amount of hard material instead of a constraint on the length.
This amount exactly corresponds to the value +*.
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8.3.3 Phase-Field Approximation and Finite Element Discretization

In the following, we present a numerical solution scheme to compute solutions to the state equation in the phase
variable K. Proposition 8.3.1 always guarantees the existence of a minimizer, but uniqueness is only provided if
Ky € [—m,0]. Thus, we are especially interested in the case Ky > 0.

Here, we apply a phase-field approach. More precisely, we take into account a phase-field function v €
W'2([0,1],R) and approximate the material coefficient E in terms of v by the harmonic mean

Moreover, we approximate the length covered by hard material by

1
1
V(v):f 2l
0

Note that the classification result in Theorem 8.3.2 is obtained for a cost functional without perimeter regulariza-
tion. However, for numerical purpose, we use the 1D version of the Modica—Mortola functional A€ as defined in
(6.12) as regularizer to ensure the phase-field function to be smooth and essentially to take values v € {—1,1}.
Altogether, this allows defining the augmented compliance functional as

T (v,K) = fﬁl—tsm (K(t) + Ko) dt + aV(v) + A (v),

expl
with coefficients a, 77 > 0. Thus, the total cost functional in terms of a phase-field function is given by
Tl (0) = T (0,K(0)),

where K(v) is a solution to the state equation OxEee (v, K) (12) = 0 for all test functions K € Xk. To compute a
local minimizer of j’t we can apply the same approach as in Section 6.3.2 by solving a corresponding adjoint
problem

ot

&2 Einee (0, K(0)) (K)(A) = — kTl (0, K(0))(K) VK € X
in the adjoint variable A € Xg. Then we obtain the derivative

& T ©)(0) = 2T 0,K@)6) + B0, K()) (4)(D).

For the state equation, we apply Newton’s method to find local minimizers of the free energy. This requires
to compute the first and second derivative D& (v, K) and D?Eiee (v, K) of the stored energy. For the numerical
implementation, we use piecewise affine and continuous finite element functions. More precisely, we consider an
equidistant grid with N nodes t, = %5 forn = 0,...,N — 1 and associated N —1cells C;, = (t;-1,t,) for
n=1,...,N—1. The correspondlng gnd width is given by h = . Then we approximate the phase K by a
finite element function K}, in the space

Vi([0,1]) := {Kh e C%([0,1]) : K| is affine forallm = 1,...,N — 1} :

.,
Moreover, we approximate the phase-field variable v by a finite element function vy, € V; ([0,1]). For the numerical
integration, we choose a Gaussian quadrature with Q = 5 quadrature points per element. Applying this quadrature
to the free energy and its derivatives, we get a discrete free energy Eee, ON V;lj ([0,1]) x V;([O, 1]) and associated
derivatives DEjee , and D*Eyyee . Finally, for a fixed material distribution vy, € Vli ([0,1]), we compute a solution
t0 Ok, Efree, s = 0 with Newton’s method. To cope with the nonlinearity, we use a multilevel scheme, by first solving
the problem on a coarse grid, prolongate the obtained result onto a finer grid, and proceed iteratively. Here, we
take into account a dyadic sequence N; = 2! +1withl=L,...,L r» where we use L, = 3 and Lf = 10.
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Furthermore, using the above discretization we obtain a discrete operator ﬁz;nh to approximate the total cost

functional and the corresponding derivative, s.t. we can apply a Quasi-Newton method (BFGS) to compute mini-
mizers of jgtr’h We emphasize that we have to impose the Dirichlet boundary condition for the adjoint variable,
i.e., Ay(0) = 0. Moreover, for a given phase-field function vj,, we note that Kj(vy,) is an element of the set of
solutions to the state equation. Thus, starting with some initial phase, the Newton method converges to a state

K}, (vy,), which depends upon this initialization.

8.3.4 Numerical Results for Nonlinear Elastic Beams in 2D

Now, we present our numerically computed results. First, we consider solutions to the state equation for a homoge-
neous material distribution. Then, we compute optimal material distributions, where we initialize our optimization
scheme with different solutions to the state equation.

Different Solutions to the State Equation

For a homogeneous material E = 1, we experimentally observe essentially three types of stationary points (see
Figure 8.9). First, there is of course a simple configuration where the curve is just turning downwards. In fact, this
appears to be an approximation of the global minimizer of the energy functional & . Secondly, we get a twisted
curve. We observe that these two configurations are stable under a change of material, i.e., taking some simple
(resp. twisted) beam as initialization for a different material, the computed discrete solution in our experiments
always turned out to be a simple (resp. twisted) beam again. However, there is also a highly unstable configuration
in between, where the beam neither decides to fall towards the left side nor towards the right side.

_1 | | | | | | | | | | | | | | | | | | | |
04 0 04 -04 O 04 -04 0 04 -04 0 04
J0 T T T T T T T T ] B — T T T T ]
Ohe N ] 11 -

| | | | | | | | | | | | | | | |

0 0.20.40.60.8 1 0 0.20.40.60.8 1 0 0.20.40.60.8 1 0 0.20.40.60.8 1

Figure 8.9: Different solutions to the state equation (top row) with corresponding phase variable K (bottom row).
From left to right: simple configurations with Ky = 0 and Ky = 7, a twisted beam with Ky = 7, and an S-shaped
configuration with Ko = 7. The clamped boundary conditions are indicated by dotted lines. Here, we have chosen
g =-100,E = 1.
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Optimal Material Distributions for Different Scenarios

In Figure 8.10, we show our numerical results for optimal material distributions under different initial conditions.
First, the optimal design for an initial slope Kj reflects the classification result from Theorem 8.3.2. Furthermore,
the optimal material distributions for initial slopes Ky # 0 and different solutions to the state equation suggest that
the classification result can be extended to more general assumptions. In fact, in our numerical simulations for
clamped boundary conditions at ¢ = 0, the optimal design is always given by the hard material on the left, i.e., in
some interval [0, £*].

2 |- - - - - —

0O 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 8.10: Top: Starting from different initializations with v = 0 (black), we obtain optimal designs (from left
to right) for a simple configuration with Ko = 0 and with Ky = 7, as well as a twisted configuration with Ko = 7,
and an S-configuration with Ko = 7. The clamped boundary conditions are indicated by dotted lines. Bottom: We
see the corresponding plots of the phase K. Here, we have chosen E! = 1, E* = 0.5, p=-100,a =1,7=1,
N =513,and € = I\ﬁ Both the curve and the phase are colored according to the phase-field variable v, where

red denotes hard material (v = 1) and blue denotes soft material (v = —1).

Shape Optimization with Pointwise Conditions

Finally, we implement additional constraints prescribing a set of beam positions on (0, 1]. In this case, we obtain
that the resulting optimal design is characterized by separated subintervals with hard material. Hence, also in this
more general setup, we do not observe microstructures, even for small values of 7. In Figure 8.11, we show an
instance of these computational results with additional point constraints.
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2 |- |
| | | |

0 0.2 0.4 0.6 0.8 1

—0.2 | | | |
—0.6 —-0.4 —0.2 0

Figure 8.11: Left: Optimal design for a beam under the constraint that two fixed beam positions (—0.3,0) and
(—0.6,0) are achieved for t = 0.5, 1, respectively. Here, the initial slope is given by Ky = 0 and we choose
parameters E!' =40, E° =05, p=-100,a=1,7=1, N =>513,and e = ﬁ Right: The corresponding
phase K. Both the curve and the phase are colored according to the phase-field variable v, where red denotes hard
material (v = 1) and blue denotes soft material (v = —1).

8.4 Shape Design for Bending Isometries of Plates

Now, we consider pure bending isometries for two-dimensional plates. In analogy to Section 8.2 and Section 8.3,
we investigate the optimal material distribution.

8.4.1 Shape Optimization Problem for Bending Isometries

State Equation. We consider a two-dimensional plate @ = M, < IR%. Moreover, a material distribution on @
is described by a phase-field v € W'?(w, [—1,1]). Then, for a smooth isometry 15 and the density function Wye,
as in (8.7), we recall from Proposition 8.1.3 that

E(®), E(v) E(v) E(v)
When == hg —hp)|> = =2 |hg|> = —=—=|D*yp|* = —=<|D?ul*.
ben(0,Y8) 1= — =8y (s — ha)lp = — sl = — 7 ID"Ysl” = — = D7ul
Thus, we can define the stored elastic energy in terms of the displacement . = Y¥p — 4 as

. E(v .
£ (01) = {Sben(v,u) if u e W2(w,IR%), L%D%{F d¢ ifue W2 (w,R?),

stored

o0 otherwise, o0 otherwise

Then, for a given force f4: @ — R® and a fixed phase-field v, we aim to minimize the free energy
Etree (U, 4) = Epen(v, 1) — Epor (1) (8.10)
over all displacements u in the space
wfs'irm(w,w) i={ue W?(w,R% : g;'¢g=1,u=00nT,, Vu=00nT,} .

As for the elastic beams in Section 8.3, we neglect the thickness 0, since scaling the force f4 would be equivalent.
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Cost Functional. In analogy to the shape optimization problem (8.8) for a mixed membrane-bending model, we
aim at minimizing a total cost functional

~7t1c])t(v) = jexpl(vr u(v)) + Uﬂe(v) ’

over all phase-fields v € W?(w, [—1, 1]) satisfying the area constraint V(v) = V, where u(v) is the displacement
of a pure bending isometry defined as a minimizer of the free energy in (8.10). For the cost functional Jexpi (v, 1) =
Epot (1), we choose the potential energy.

8.4.2 Finite Element Discretization for Bending Isometries

As for the mixed models in Section 8.2, we choose discrete phase-fields vy, € V,i(a)) and take into account the

DKT element to discretize displacements 1, € W), (w)® with clamped boundary conditions. Then, we apply a
Gaussian quadrature of degree 6 with Q = 12 quadrature points for each triangle element with weights w, and
obtain a discrete bending energy

SCHTED VW O 19,0 g

TeT) g=1,...,

Consequently, a discrete free energy is given by Egeen(Un, Un) = Epens(Vn, n) — Eporu(Un). Note that in the
continuous setup the isometry constraint in terms of a displacement u is pointwise given by

0=gp—ga = Du'Dy4 + DY Du + Du'Du,

which simplifies in the case Y4 = id to

0= ( 2017 + Z?:l (é\lui)Z Oty + O1up + Z?:l 01U;OxU; ) . @.11)

sym 20up + Z?:l (Oau;)?

In our numerical method we enforce the isometry constraint nodalwise, which can be easily formulated due to
the degrees of freedom for derivative values of 1. This approach was already applied in [Barl3], where a lin-
earization of the isometry constraint was proposed. Instead, we implement a Newton method for a corresponding
Lagrangian. Therefore, we denote by N;lm = Nj\I[', the set of interior nodes and consider for each z € N;Z“‘

Lagrange multipliers Aj(z) = ()\}1, (z),A%(2), /\,112(2)) for each of the three constraints in (8.11), i.e., we define

Isoy (1) (2) = 201uy(2) - €1 + Z O1up(2) - €)?,
i=1

3
Isop () (2) = 20014(2) - € + ) (Goun(2) - &),
i

3
Tsoy” () (2) = Qaun(2) - €1 + vun(z) - e2 + (G (2) - ) (2un(2) - 1),
i=1

Isoy, (up, Ap) = Z A} (2)Iso) (uy) (z) + A3 (2)Is07 (1) (z) + A2 (z)Is0,2 () (2) -

ZEN‘m

Note that all the values 0;uy(z); for j = 1,2 and i = 1,2, 3 are explicit degrees of freedom. Finally, the Lagrangian
is given by

Loen i (On, tn, An) = Epeni (O, ) — Epon (Un) + Isop (1, Ap) -

Then, to compute for a fixed material distribution given by v;, solutions to the state equation we apply Newton’s
method to solve

Oun, 1) Loenn (On, tn, Ap) = 0. (8.12)
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Now, the above finite element discretization allows to define a discrete cost functional j'tzt e Again, we aim at

computing minimizer of :fg)t , With a first-order method, which requires to evaluate the derivative

d

For T @) @) = 00T 81,0011 () + T {150 101 (00)) (Poy 1t (00) () -

xpl,h xpl,h

Therefore, we want to apply the same approach as described in Section 6.3.2 by solving a suitable adjoint prob-
lem. Differently, the state equation is now defined by stationary points of the Lagrangian Ly, and we have to
incorporate the Lagrange multiplier A, in the computation. For fixed vy, we denote by (uy, Aj,)(vy,) a solution to
(8.12). Then, by the inverse function theorem we have

-1
OuyLoenn (On, (n, An)(vn)) = — (a?llh,/\h)/(”h//\h)Lb&n,h (On, (14, Ah)@h))) aih,(uh,/\h)l:ben,h (On, (tn, An)(on)) -
Thus, we introduce an adjoint problem for variables (A,,, Ay,) € Wir, (@)3 x RNl by solving the linear system

8%”]1//\}1)r(”h:A}z)Lben’h (On, (ttn, An) (vh))(ﬁ\h’ An)(Au,, Ad,) = 76(1414,%)&7:;([,1,]1 (0n, (un, An) (Uh))(l’/[h/ An)

for all (MAh,@) € Wi, ()? x R¥M"I This allows computing

d

Ef/]zt,h(vh)(@) = 00, T oy (Onr (i, An) (1)) () + Quy Ty (Ons (i, An) (08)) (o, (11, An) (00) (G1))

xpl,h xpl,h

= ayhjf’l(pl,h (Dh/ (Mh, Ah) (Uh)) (6\;1) + aiy,,(u;,,/\h)Lben,h (Uh/ (uh/ Ah) (Uh))(Auh/ A}\};)(?};’l) .

. 2 . .
Since 80,“ (o, /\;,)Lben’h is given by

2 & op,uy) 0
a‘lzihr(lih,/\h)'[benlh(vh’ uh/ /\h) = ( Ot beBh( " h) O) 7

the expression for the shape derivative simplifies to

d _,

G Tous OB = 00Ty, O, (01, ) 1)) 51) + 3,1, Evens (000100 (A0 ) (6

explh

Then, as for the mixed membrane-bending models in Section 8.2, we apply the IPOPT package [WBO06] to
compute minimizer of the fully discrete cost functional *Z?n,h over all v, € V) (w,[—1,1]) with the area constraint
Vi(vy) = V. In the adaptive refinement scheme, we additionally mark those elements T € 77, where the isometry
error ST |g5 — ga|? dx is large. More precisely, we compute this error for all elements and select the largest 25%
for the longest edge bisection refinement.

8.4.3 Numerical Results for Bending Isometries

Now, we present our numerical results for the shape optimization problem for bending isometries of plates. In the
1D case of elastic beams, for a constant load scenario with a force f = (0,0, ﬁ) and clamped boundary on the
left side, we recall from Section 8.3 that the optimal material distribution on the interval [0,1] x {0} is given by
an ordered design with the hard phase on the interval (0, V) at the clamped boundary (see Theorem 8.3.2). Here,
we consider the same scenario in 2D, i.e., given is a plate [0,1]? with clamped boundary at {0} x [0,1] and a
constant load f = (0,0, B) is acting in orthogonal direction. However, there are material distribution on [0, 1]2,
which cannot be represented in the 1D case, and thus, it is unclear whether the optimal material distribution for the
1D case is still optimal for the 2D case. In the following, we first compare three different classical designs w.r.t.
the potential energy. Afterwards, we compute optimal designs for small and large forces. As in Section 8.2, the
hard material is colored in orange.



8.4. SHAPE DESIGN FOR BENDING ISOMETRIES OF PLATES 133

Comparison of Different Designs

We define three different material distributions, where, depending on the area V, the subdomain covered with hard
material is given by

(I) alayer [0, V] x [0,1] at the clamped boundary, i.e., the solution to the 1D problem,
(II) alayer [0,1] x [0.5 —0.5V,0.5 + 0.5V] orthogonal to the clamped boundary, and
(Il) a square [0, v/V] x [0.5 — 0.54/V,0.5 + 0.5+/V] centered in the middle of the clamped boundary.

Here, we consider three area fractions V = 0.25,0.5,0.75 for the amount of hard material. In Figure 8.12, we
compare the potential energy of these three designs in dependence of | f|. For all computations, we use a mesh of
|N;| = 16641 nodes. We observe that for a large area fraction V = 0.75 of the hard material, the 1D optimizer (I)
is optimal w.r.t. the potential energy independent of | f|. For an area fraction V = 0.5, and small forces, design (III)
is optimal. For an area fraction V' = (.25, we even obtain that design (I) is optimal for small forces and design
(II) is better on an intermediate range. In any cases, it seems that for large forces design (I) is optimal.

1% 0.25 0.5 0.75
| ; . Ll o
| ) ;i’?: - |
" fre 10 1 | \fl 12 100 1(‘)13 T | \fl iz 10 10 T2 :'f !
e v — g v
L 41100 ¢ 2o ¢-

/

bgd 3 i@ d 4 Tn@e ¢
pat Al A Bl N Hhah a2 _

Figure 8.12: Comparison of the potential energy functional in dependence of | f| in a logarithmic scale for three
design types and different area fractions V = 0.25,0.5,0.75 of the hard material. By dotted lines we separate the
ranges, where a specific design is optimal w.r.t. the potential energy.

Optimal Designs

Now, we compute the optimal material distribution for the above scenario. The comparison of the different designs
as in Figure 8.12 shows that in particular cases depending on the force and the amount of hard material, the optimal
solution is different to design (I). Here, we take into account the same area constraints V = 0.25, 0.5, 0.75 as above.
For all computations, we start with a coarse mesh of |N,| = 289 nodes and use 8 adaptive refinement steps. In
Figure 8.13, we consider large forces with |f| = 100V. We observe for a large amount of hard material with
V' = 0.75 that design (I) is optimal. However, for V = 0.25, 0.5 we obtain optimal designs with significantly better
compliance compared to the above considered designs. Furthermore, in Figure 8.14, we investigate small forces
with |f| = 10V. Here, for all constraints V, the optimal solutions are different to the above chosen designs, even
for an area V = (.75, where design (I) performs better than (II) and (III). However, in all of our computational
results, microstructures do not appear.
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vV

Ma

Mz

I NG|

Epot (Topt) 5.32684 11.6839 21.0868

Epot (V1) 6.71972
( 7.91447 15.7301 23.5953
( 13.6732 22.4527

Figure 8.13: Optimal material distributions for bending isometries of a plate for large forces with | f| = 100V

v 0.25 0.5 0.75
) .-.
INi| 11624 15295 12901
Epot (Vopt) 0.106411 0.184621 0.340829
( 0.453524 0.422204
( 0.303079 0.44151
( 0.16907 0.387821

Figure 8.14: Optimal material distributions for bending isometries of a plate for small forces with |f| = 10V.
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8.5 Conclusion and Outlook

We have investigated optimal material distributions on thin elastic objects w.r.t. the potential energy. For our nu-
merical discretization, we have made use of the DKT element on parametric surfaces. Depending on the particular
force acting on the surface, for mixed membrane-bending models, it has turned out that interesting microstructures
appear, where we have observed significant differences between linear and nonlinear elasticity. Furthermore, we
have studied the case of pure bending isometries. For a one-dimensional model of elastic beams, our numerical
results have confirmed and extended a classification result for the optimal design. In the two-dimensional model
for pure bending isometries, it seems that no microstructures appear. Indeed, in all our numerical tests, we have
obtained classical designs without microstructures, even for initializations of the phase-field with random values.
However, a possible classification result for the optimal design as in the one-dimensional model might require a
specific case study, since we have observed different optimal designs depending on the amount of hard material
and the force.

Although the DKT element only allows a nonconforming approximation of second derivatives, suitable con-
vergence estimates, e.g., for bending isometries in [Bar13], can be established. In contrast to [Bar13], where a
gradient flow with a linearized isometry constraint was proposed, we have implemented a Newton method for
a Lagrangian with an exact isometry constraint at nodal positions. Here, we have focused on the material opti-
mization problem. Moreover, we note that our numerical implementation of the DKT element is so far restricted
to parametric surfaces, i.e., the midsurfaces of the reference and the deformed shell are obtained as images of
vector-valued DKT functions on a common chart domain. An extension to arbitrary shells would be desirable, but
this requires an interpretation of the degrees of freedom for deformation gradients. Now, on parametric surfaces
having an approximation of the relative shape operator at hand, we could study further mechanical properties of
thin elastic objects. In [Barl7], the DKT element has been applied to approximate deformations of plates for a
Foppel-von Karman model, which has been used to verify a break of symmetry on circular cones that has been
previously proven in [COT17]. Similar buckling effects on the sphere have been simulated in [VM08, NAL ™ 13]
for a different finite element discretization.

Finally, a two-scale optimization of thin elastic objects would be a possible extension of our numerical scheme
to explore optimal microstructures. This might have a similar medical application in bone tissue engineering as we
have considered in Chapter 7. There, the biologically degradable polymer implants are, e.g., applicable to the tibia
bone. However, bone substitutes to fill holes in the skull are comparably thin and have to be curved according to
the patient-specific skull.
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