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Abstract 

 

Eggshell temperature is a critical factor, which can possibly influence immediate and/or 

long-term gene transcription and expression. Manipulation of temperature (low 36.8°C 

and high  38.8°C relative to control 37.8 °C) at two specific periods of  embryonic 

development day (ED7-10 or ED10-13) was carried out and microarray-based gene 

expression profiles were explored in hind-limb and breast muscles. The overall results 

show tissue-specific patterns of transcriptional changes depending on temperature, day of 

the treatment and indicate immediate and long-term responses to the aforementioned 

treatment factors. Interestingly, the high temperature modification at early ED7-10 

showed a profound immediate response based on the number of differentially expressed 

genes (DEGs), while the effect the low temperature was observed more at late ED10-13 

compared to early ED7-10. Moreover, the low temperature modification at ED10-13 

relative to ED7-10 and compared to other treatment conditions resulted in more DEGs at 

the day 35 post-hatch sampling stage regarded as long-term effects and implying an 

involvement of epigenetic mechanisms. microRNA (miRNA) expression analysis was 

performed to understand post-transcriptional regulation. In silico functional analysis of 

DEGs and differential miRNAs suggests that acute response to high temperature at ED7-

10 for both muscle tissue types elevated mRNA transcripts related to cell maintenance, 

organismal development, and survival ability such as FABP1 in hind-limb and SMAD3 in 

breast muscle. Down-regulation of miR-199a-5p, miR-1915, miR-638 in hind-limb 

muscle and up-regulation of miR-133 in breast muscle were treatment specific and 

positively influence size of body and myogenesis, respectively. Low temperature 

condition at ED 10-13 affected reduction on programmed cell death and possibly gained 

mass of skeletal muscle in hind-limb samples (e.g. NR1H3), while pathways of 

accelerated cardiovascular system, skeletal-muscular, and connective tissue development 

were over-represented via the RUNX2 gene in breast. Interestingly, down regulation of 

let-7, miR-93 and miR-130c in breast was associated with diminished size of bone in type 

II muscle. Thermal interventions during incubation initiate immediate and delayed 

transcriptional responses that are specific for timing and direction of treatment. For 

miRNAs the study shows substantial immediate alterations, whereas late miRNA 

response was small. The mechanisms mediating considerable phenotypic plasticity 

contribute to the biodiversity and broaden the basis for managing poultry populations. 
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Kurzzusammenfassung 

 

Die Eierschalentemperatur ist ein sehr sensibler Faktor, dessen Beeinflussung potentielle 

Auswirkungen auf die unmittelbare und/oder langfristige Genexpression in verschiedenen 

Geweben bewirken kann. Die vorliegende Arbeit befasst sich mit der Manipulation der 

Brutbedingungen beim Haushuhn durch die gezielte Erhöhung und Verringerung der 

Inkubationstemperatur (36,8°C und 38,8°C) relativ zur Kontrolle (37,8°C) in zwei 

Entwicklungsstadien („embryonal day“; ED7-10 oder ED10-13). Effekte auf Mikroarray-

basierte Expressionsprofile in Proben des Oberschenkel- und Brustmuskelgewebes 

wurden untersucht. Die Ergebnisse zeigten, dass in Abhängigkeit der 

Inkubationstemperatur und des embryonalen Zeitraums der Behandlung, Veränderungen 

in den gewebespezifischen Expressionsmustern sowohl auf Ebene der embryonalen 

Entwicklung als auch im adulten Stadium nachgewiesen werden konnten. Diese 

Veränderungen deuteten auf unmittelbare und langfristige Anpassungen an die Variation 

der Brutfaktoren hin. Die Erhöhung der Inkubationstemperatur im Zeitraum ED7-10 

zeigte anhand der Anzahl differenziell exprimierter Gene (DEGs) deutliche und 

unmittelbare Effekte. Die Auswirkungen der Temperaturverringerung waren vor allem 

zum Zeitpunkt ED10-13 zu beobachten. Zudem resultierte die Temperaturverringerung an 

ED10-13 in einer erhöhten Anzahl an DEGs zum 35. Lebenstag im Vergleich zu den 

anderen getesteten Brutbedingungen und impliziert die Manifestation von 

Langzeiteffekten unter Beteiligung epigenetischer Mechanismen. Um die zu Grunde 

liegende posttranskriptionale Regulation von Genen zu beleuchten, wurden holistische 

micro RNA (miRNA) Expressionsanalysen durchgeführt. Die Ergebnisse unterstrichen 

die wichtige Rolle der miRNAs an der Regulation der Genexpression in der unmittelbaren 

Antwort auf die Variation der Inkubationstemperatur. Im adulten Stadium, representiert 

durch den 35. Lebenstag, spielt die Dynamik der miRNA-Expression offensichtlich eine 

geringere Rolle in der Steuerung der transkriptionellen Antwort. Funktionelle in silico 

Analysen der DEGs und der differentiell ausgelenkten miRNAs deuteten darauf hin, dass 

akute Anpassungen auf erhöhte Inkubationstemperaturen während ED7-10 in beiden 

Muskelgeweben zur verstärkten Abundanz von mRNA-Transkripten (z.B. FABP1 im 

Oberschenkel und SMAD3 im Brustmuskel) mit Bezug zur Zellerhaltung, 

Organismusentwicklung und Überlebensfähigkeit führten. Zudem zeigten sich 

behandlungsspezifische Herabregulationen von miR-199a-5p, miR-1915, miR-638 im 
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Oberschenkel sowie die Heraufregulation von miR-133 im Brustmuskel mit positivem 

Einfluss auf Körpergröße bzw. Myogenese. Individuen die verringerten Temperaturen an 

ED10-13 ausgesetzt waren, lieferten auf transkriptioneller Ebene Anzeichen für 

verminderten programmierten Zelltod und reduzierte Gewichte des Oberschenkelmuskels 

(z.B. NR1H3), während Signalwege des kardiovaskulären Systems, der Skelettmuskulatur 

und der Bindegewebsentwicklung überrepräsentiert waren (z.B. RUNX2). Des Weiteren 

war die Herabregulation von let-7, miR-93 und miR-130c im Brustmuskel assoziiert mit 

quantitativen Parametern der Knochengröße und der Typ-II-Muskulatur. Die Variation 

der Bruttemperatur führt zu unmittelbaren und persistenten transkriptionellen Antworten, 

die für den Zeitpunkt und die Richtung der Temperaturvariation spezifisch sind. 

Hinsichtlich der miRNAs zeigt die Studie substantielle sofortige Auslenkungen durch die 

experimentellen Bedingungen, während die nachweisbaren Langzeiteffekte gering sind. 

Die Mechanismen, welche die deutliche phänotypische Plastizität ermöglichen, tragen zur 

Biodiversität bei und erweitern die Basis der Geflügelhaltung und - züchtung.  
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1 General introduction 

 

1.1 Broiler chicken and myogenesis 

 

 Production and consumption of poultry meat are growing at a global level 

considering the demand from many parts of the world. In EU-28 countries, the broiler 

market is expected to continuous grow because of increasing domestic demand (USDA, 

2014). Imported un-cooked broiler meats are necessary for meeting the demand in 

Europe. Brazil and Thailand remain the largest suppliers, especially Thai salted and 

frozen broiler cuts (USDA, 2014). The per capita consumption of poultry in Germany has 

exceeded beef meat since 1997 (LEL-LFL Bayern, 2013). Meat type poultry was 

developed from red jungle fowl (Gallus gallus) while were selected for meat purpose as a 

domestic subclass named broiler (Gallus gallus domesticus) (Ka-Shu Wong et al., 2004). 

Characteristic of broilers are white feathers, yellowish skin, high growth performance and 

food efficiency. The production time has been reduced a half time of traditional species to 

only five to seven weeks (McKee, 2003). The benefit of poultry to others species are 

nutritional properties, competitive prices production, and lack of cultural free obstacles. 

Concerning nutritional benefit broiler meat provides low-fat meat without intramuscular 

fat. White meat (i.e. breast muscle) and red meat (i.e. hind-limb muscle) contain 1.3 % 

and 7.3 % fat, respectively (Mountney, 1989). Moreover, the quantity of unsaturation 

fatty acids and low sodium and cholesterol levels even emphasize the advantage to 

consumer’s lifestyle like eating clean diet (Reno, 2007) to professional body builder 

(Kleiner et al., 1994).   

Selection of high growth rates, maximize feed efficiency and increase amount of 

muscling e.g. increasing fiber diameters are ultimate aims of broiler production (Werner 

and Wicke, 2007). Whereas focusing to improve muscle characteristic, an intensive 

hypertrophic growth could cause multiple problems to animals such as leg disorder, deep 

pectoral myopathies (green muscle disease), white striping and negative meat quality like 

reduce water holding capacity during processing and storage (PSE-like condition) 

(Petracci and Cavani 2011; Maltby et al. 2004). To lessen the chance of pathological 

process but still have positive influence on muscle yield, increasing the total muscle fiber 

number (MFN) is a promising condition (Werner and Wicke, 2007). The procedure can 

be done by selective breeding or optimizing environment during myogenesis. Because 
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MFN is determined during either myogenesis or early post-hatch process, manipulation of 

environment must be done along with embryogenesis (Halevy et al., 2006).  

 Mechanisms of myogenesis start with paraxial mesoderm which is pre- stem 

myogenic cells continuously segmented into somites. The split of somites caused new 

formations including dermatomes, myotomes, syndetomes and sclerotomes. The 

dermatomyotome (combination between dermato and myotome) is formed from 

premyoblastic cells. In maturing somites, premyoblastic cells differentiate into four 

myogenic cells including myotomal cells, embryonic myoblasts, fetal myoblasts and 

satellite cells.  Myotomal cells and embryonic myoblasts will proliferate and differentiate 

into primary muscle fibers and become myoblasts and then fuse to myotubes. The fetal 

myoblasts will fuse to scaffold myotubes as secondary muscle fibers. The adult myoblasts 

from satellite cells are critical for muscle regeneration and self-renewal (reviewed from 

Sobolewska et al., 2011). Balancing between proliferation and differentiation are essential 

to embryonic muscle growth (Werner and Wicke, 2007). Considering myogenesis in cell 

cycle, the process consists of four different periods; G1, S, G2, and M. During these 

stages, the critical period is in G1-S phase transition because myoblast could progress to 

S-phase or exit to G0-stage. In case of G1-S phase, it initiates next DNA replication 

processes that cause increasing of MFN by mitotic activity of myoblast. The G1-G0 phase 

leads to differentiation of myoblast to myotubes and mature myofibers (Heywood et al., 

2005).   

 Muscle in broiler can be characterized into five differences types; I, IIA, IIB, IIIA 

and IIIB (McKee, 2003). The first three “Twitch” muscle classification was done by 

differentiating of speed contraction, oxidative capacity and glycolytic metabolism (Peter 

et al., 1972). Type I fiber is visualized by its “red” color. The characteristic in slow-

contracting, high myoglobin, mitochondria, and capillaries supporting high oxidative 

metabolism (Lawrie, 2006). Localization of this muscle type is for example the soleus 

muscle which enables stable activity such as walking and standing (Hník et al., 1985). 

Moreover, due to higher fat and iron contains, type I fiber develop stronger flavor than 

type II fiber. Type II “white” fibers are a fast-contracting fibers with high glycogen 

content for glycolytic metabolism. Type II fibers are capable of short bursts activity in 

“Fight or Flight” situation (Petracci and Cavani, 2011). The “white” meats are the 

majority of muscle in broiler and can be divide into subtypes; IIA and IIB (Peter et al. 

1972). Type IIA fibers have mixed oxidative-glycolytic fibers which are suitable for fast-

moving and repetitive action with more endurance such as the sartorius (red) muscle. 
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Type IIB fibers contain higher levels of ATP and glycogen. These fast-contracting fibers 

are more easily exhausted. It was found in pectoral muscle (breast muscle), posterior 

latissimus dorsi and satorius (white). Type III are a slow-tonic "intermediate" fibers 

containing two subtypes (IIIA and IIIB). The position was found in plantaris and anterior 

latissimus dorsi which always stay in contracted position (Richardson and Mead, 1999). 

  

1.2 Incubation and hatchery 

 

 Even though broilers are selected breeds for meat production, the proper 

hatchering and husbandry are necessary for survival ability and high-quality chick. Now, 

a fertile commercial egg from provider should take 21 embryonic days (ED) for full 

hatching time. After receiving the fertile eggs from broiler breeder, the eggs will be 

transferred to hatcheries, which are controlled responsible for incubation and hatching. 

The incubation chamber or setter will provide temperature, humidity, air velocity which 

are adjustable for an appropriate development of the embryo. The setter also rotates the 

position of eggs to proper orientation to prevents the embryo from sticking to shell 

membranes and reducing embryo heat production (COBB, 2013b). After ED18
th

, eggs are 

transferred to the hatchery tray which provides an environment for the final stage of an 

embryo without an orientation. At ED21
st
, newly-hatched chicks are breaking or 

“pipping” their shell. Subsequently to hatching process, chicks will be transported to 

grow-out farms while controlling the environment for brooding around 14 days (COBB, 

2013a). The study of embryo development was demonstrated by Hamburger and 

Hamilton, 1951. The complete 46 HH stages show the progress from pre-streak to the 

newly born chick. Along the different phases of development, the characteristic is 

becoming noticeable especially on myogenesis process. In broilers, the muscle fibers are 

formed into two importance phases; primary and secondary muscle fiber. Between ED4
th

 

to ED7
th

 (HH-24 to HH-31), primary fibers which are core fibers are formed and then 

transformed to myotubes. Following the scaffold formation, smaller secondary muscle 

fibers are smaller and arranged around the primary muscle fiber until ED15
th

 (HH-41) 

(Miller and Stockdale, 1987). Significant abundance of fetal myoblasts was found 

between ED8
th

 to ED12
th

 (Stockdale, 1992). At finishing off the secondary phase, the 

adult myoblasts will convert to a primary source of myogenic precursors in the postnatal 

muscle formation depending on morphology and localization of myofibers (Hartley et al., 

1992; Mauro, 1961; Schultz and McCormick,  1994). During this research, the 
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developmental stages of late primary fiber formation (ED7
th

-ED10
th

) and early secondary 

fiber formation (ED10
th

-ED13
th

) are addressed (Figure 1.1). 

 

 

 

Figure 1.1 Development of chicken embryo from ED7 (A), ED10 (B) and ED13 (C) with 

additional hind muscle (below). Phenotype on ED7 (A) showed the development of web 

between 1
st
 and 2

nd
 digits, margin of wing and anterior tip of mandible beak. At ED10 (B), 

wing and leg are consistently much longer including 3
rd

 toe, beak, primordium of comb, 

labial groove and uropygial gland. From ED13 (C), nostrils, down feathers, egg tooth, comb, 

wattles and scales on legs are formed (Hamburger and Hamilton, 1951).  

 

1.3 Temperature manipulation 

 

 One of a well-established physical factors during incubation is temperature which 

induces embryo development, survival ability and long-term performance (Sobolewska et 

al., 2011;Lourens et al., 2005). During the incubation, chicken embryos use egg shell as 

protection, source of calcium for skeletal development, for gas and water exchange 

through egg shell pores. The developmental processes are stimulated by eggshell 

temperature. To manipulate eggshell temperature, a variation of temperature and 

incubation period could cause acute and long-term response by the animal. Previous 
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researchers have shown multiple responses in avian thermoregulation, mortality, 

hatchability and post-hatch characteristic (Table 1.1). For example, increasing the 

incubation temperature positively influences breast meat yield of featherless broilers 

(Hadad et al., 2014), enlarge muscle fiber in turkey (Maltby et al., 2004), but also has 

been associated with live weight reduction in the same animal (Krischek et al., 2013). 

lower incubation temperature significantly elevated female embryo mortality in 

Australian Brush-turkey (Eiby et al., 2008) and reduced growth rates of wood duck 

(Durant et al., 2010).  

 In broilers, the study of incubation temperature manipulation revealed possible 

influences on many characteristics. For instance, feather development which has essential 

roles in broiler thermoregulation and skin protection are affected by modulation of 

incubation temperature. The variation of feather follicle is various body regions (Dahlke 

et al., 2008). The follicle density in breast was decreased in early-low late-high (LH; 36.9 

°C - 39.7 °C) treatment when compare with standard high incubation temperature (Scott 

et al., 2015). Leksrisompong et al. (2007) have reported the effect of elevated incubation 

temperature during late development (ED14-20) which had effects in additional hatching 

time requirement, reduce weight of heart, body, gizzard, and small intestines on hatching 

day. Also, the chick has pale and whiter color when compared with control. This 

phenotypic change was a result from unwell developed nutrition absorption pathways are 

confirmed by Barri et al. (2011). The result showed deeper crypts in jejunum and 

relatively high expression of nutrient transporter mRNA (PepT1 and DOH6) in elevated 

incubation temperature treatment (Barri et al., 2011). The response to early low 

incubation temperature (ED0-ED10) showed decelerated development in-ovo then stunted 

post-hatch growth leading to reduced embryonic weight, hatchability, and early chick 

quality. The adverse effect remained and caused by reduced fillet, carcass and breast meat 

yields at adult stage (Joseph et al., 2006). Werner et al., 2008 showed that increased 

temperature between ED7 to ED10 positively influenced slaughter and breast muscle 

weights in broiler males, but did not affect meat quality.  
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Table 1.1 Literature of incubation temperature manipulation in various avian models 

Organism 
Temperature 

manipulation 
Response Reference 

Australian- 

brush turkey 

Increase Increased sex-specific mortality in males  Eiby et al., 2008 

Decrease Increased sex-specific mortality in 

females 

 

Broiler Increase Decreased follicle density in breast Scott et al., 2015 

  Decreased heart, BW, gizzard, and small 

intestines at hatching day 

Leksrisompong et al., 

2007 

  Increased hatching time 

  Chick has white color   

  Deeper crypts in the jejunum Barri et al., 2011 

  Increased nutrient transporter mRNA  

  Increased slaughter and breast weights Werner et al., 2008 

  Increased breast weight in both gender Piestun et al., 2013 

  Increased relative weight in pectoralis Collin et al., 2007 

 Decrease Decreased embryonic weight, 

hatchability  

Joseph et al., 2006 

  Decreased slaughter and breast weights  

Featherless 

broiler 

Increase Increased breast meat yield  Hadad et. al., 2014 

Malleefowl Decrease Increased incubation period  Booth, D.T. 1987 

  Increased total energy expenditure   

Turkey Increase Increased muscle fiber  Maltby et al., 2004 

  Decreased live weight Krischek et al., 2013 

Wood ducks  Decrease Increased incubation duration Hepp et al., 2006 

  Decreased ducklings wet and dry mass  

   Decreased growth rates Durant et al., 2010 

 

1.4 Molecular regulation  

 

 During chicken myogenesis, multiple genes and proteins are coordinated and 

expressed.  The process of determining mesodermal progenitor and differentiating 

myogenic cells result in hyperplasia and functional contractile muscle (Oksbjerg et al., 

2004). In early myogenesis, dermomyotome development (pre-segmented of dermatome 

and myotome) is facilitated by wnt and Sonic hedgehog (SHH) proteins. The expressions 

of Pax3 (Paired Box 3), Pax7 (Paired Box 7) and Lbx1 (Ladybird Homeobox 1) is 

localized in migrating cells in dermomyotomes and then initiates myogenic regulatory 
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factors (MRFs) expression which are stimulates “muscle and limb buds” formation 

(reviewed from Werner and Wicke, 2007). Myogenesis is mainly influenced by MRFs 

which is tissue specific (class II) transcription factors including MyoD1 (myogenic 

differentiation 1), Myf5 (myogenic factor 5), myogenin and MRF4 (myogenic regulatory 

factor 4) (figure 1.2). MRFs contain a basic helix-loop-helix (bHLH) domain and 

maintain conversion of the cells into myogenic lineage. The presence of Mef2 (myocyte 

enhancer factor) facilitates functional MRFs. While MyoD and Myf5 regulate skeletal 

muscle lineages determination, Myogenin and MRF4 are focused on muscle 

differentiation (Berkes and Tapscott, 2005; Chen and Goldhamer, 1999; Sławińska et al., 

2013). For example, myoblasts that exit the mitotic cell cycle (G1-G0 transition) show 

up-regulation of Myogenin and MRF4 but down-regulation of MyoD and Myf5 in turkey 

(Liu et al., 2005). The study on myogenic expression gene could help to understand the 

mechanism and regulation which might influence mitotic activity by environment 

manipulation.  

 

 

Figure 1.2 Myogenesis and transcriptomic response; presence of genes differ within the 

development as shown by the intensity of colors (modified from Hettmer and Wagers, 

2010).    

 

1.5 Expression profiling and gene regulation tools 

 

 Gene expression profiles are useful in the study of the effects of stress, pathogen 

interaction and other quantitative traits. For understanding expression patterns and 

regulation processes in broilers, multiple techniques are broadly used including mRNA 

microarrays and microRNA arrays which provide a vast amount of information about 

transcriptional production and regulation. In this the study, expression profiling is based 
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on the Affymetrix Chicken Gene 1.0 ST Array and the GeneChip® miRNA 3.0 Array. 

Both arrays have their benefits and disadvantages. 

 

1.5.1 Affymetrix Chicken Gene 1.0 ST Array 

 

 Up to 1.4 million different oligonucleotide probes are placed on each microarray. 

The design of 25 oligonucleotides is located in a specific area of the array which is called 

a probe cell. Multiple probe cells merge into new probe sets ready for evaluations at both 

transcripts (gene) and exon levels, which allow the study of transcript variants, alternative 

promoter usage, alternative splicing and alternative transcript termination. Chicken Gene 

1.0 ST Array is a high-density exon array designed based on “galGal3” build version. The 

array contained 439,582 probes within 18,214 gene-level probe sets. An advantage of the 

exon array is the high transcript coverage by covering the entire length of the gene, 

whole-transcriptome analysis with 3’-biased free expression designs and high data 

reproducibility (Affymetrix, 2016b). 

 

1.5.2 GeneChip miRNA 3.0 Array 

 

 In 1993, lin-4, the first MicroRNAs (miRNAs) has been reported as a small 

complementary RNA (Lee et al., 1993). Since then, the study of miRNAs has been an 

attractive topic for gene regulation. miRNAs are single-stranded, small non-coding RNAs 

(ncRNAs) with approximately 20-24 nucleotides (nt) length that regulate gene 

expression. Their functions are partially or perfect binding to complementary sequences 

at 3’untranslated regions (UTR), coding sequences and 5´UTR of target messenger RNAs 

(mRNAs) as a process of post-transcriptional regulation (Almeida et al., 2011). The 

estimation of miRNA activities reveals that more than 60% of human protein translation 

of coding genes is affected (Friedman et al., 2008). To study gene expression in the post-

transcriptionally process, the GeneChip miRNA 3.0 Array was selected. This miRNA 

array provides benefits from various perspectives like comprehensive coverage of all 

mature miRNA sequences in miRBase release 17 and snoRNAbase V.3, streamlined 

analysis for all species on one array, rich information and the low minimum requirement 

for total RNA (130 ng). The GeneChip miRNA 3.0 Array is capable of studying the role 

of small non-coding RNAs including protein translation inhibition, alternative splicing 

regulation, ribosomal RNA processing and mRNA degradation. In 153 organisms (19,724 
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probe sets) including 544 miRNA in chicken are well annotated (Affymetrix, 2016a). For 

further information, the specifications of two array chips are summarized in Table. 2. 

 Shifting the incubation temperature at specific periods of myogenetic 

development could contribute to the gene expression efficiency and thus affect broiler 

meat production without the costs of decreased meat quality. This thesis contains three 

parts of research; to analyze expression profiles of type I muscle (breast muscle), type IIB 

muscle (breast muscle) and gene regulation via microRNA profiling as shown in figure 

1.3. 

 

Table 2 Specifications of Chicken Gene 1.0 ST Array and GeneChip miRNA 3.0 Array 

 

Platform specification 
Chicken Gene 1.0 ST 

Array 

GeneChip miRNA 3.0 

Array 

Array type Exon array miRNA array 

Database build galGal3 miRBase v17 

Signal correlation coefficient >0.99 

 Reproducibility 

(inter- and intra-lot) >0.95 

Transcripts detected at 

1.3 amol in 130 ng 0.85 

Dynamic range ~3 logs >3 logs 

Total RNA input required 50–500 ng 130−1,000 ng 

Probe feature size 5 μm 11 μm 

Background probes Antigenomic set 

 Poly-A controls dap, lys, phe, thr 

 Hybridization controls     bioB, bioc, bioD, creX 

Probe length Up to 25-mer Up to 25-mer 
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1.6 Experimental design  

The general strategy taken in this study is shown in Figure 1.3.  

 

Figure 1.3 Pipeline overview of this study 

 

 

Treatment 

Affymetrix GeneChip 

Chicken 1.0 ST Array 

Differentially Expressed 

Genes 

Commercial Broiler Egg 

n = 48 

Annotations 

Supporting Data 

from Literature 

Temperature (38.8 °C, 37.8 °C, 36.8 °C) 

Expose Duration (ED7-ED10, ED10-ED13)  

Collecting Stages (Embryo, Adult)  

GeneChip miRNA 3.0 

Array 

Expression Profiling  MicroRNA Profiling  

Differentially Expressed 

miRNAs 

Muscle Target (Type I, Type IIB) 

Biological Function Pathway Relation 

Targets of Differentially 

Expressed Genes 
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1.7 Aims 

 

 There is experimental evidence that modification of the incubation temperature 

affects postnatal muscle growth in poultry. The molecular mechanisms of effects of 

modulated incubation temperatures on prenatal / in-ovo muscle development and 

postnatal growth are still unclear. 

 Against this background, the study aims to identify the molecular pathways of 

myogenesis which affect characteristics of muscle structure, muscle fiber number and 

types, as well as muscle growth and meat quality. Acute, transient and long-term changes 

in the expression profiles of muscle tissues caused by the modified incubation conditions 

are analysed and interpreted in view of phenotypic changes. Answering the questions of 

which genes and which functional networks are regulated due to the experimental 

conditions in the context of the observed phenotypic effects provides candidate genes for 

traits of muscle growth and therefore prospects for the development of DNA markers for 

these traits. Genes found to be differentially expressed due to variable incubation 

temperature that cause phenotypic alterations are involved in pathways relevant to the 

respective traits and are potential candidate genes. Therefore the modulation of gene 

expression by varying the incubation temperature in broilers during the in-ovo 

development was analysed. 

 

The following objectives have been identified:  

1. Perform transcriptome analysis of hind and breast muscle at an embryo and mature 

stages in broilers. 

2. Determine acute‐ and delayed transcriptome responses to increasing or decrease of 

incubation temperature and at early and late in‐ovo development. 

3. Identify biological pathways involved in and candidate genes associated with muscle 

traits 



 

 

 

 



Publication   

 

15 

 

 

 

 

 

Publication



 

 

 



Transcriptional response in hind muscle   

 

 

17 

 

 

 

CHAPTER II 

 

Immediate and long-term transcriptional response of hind 

muscle tissue to transient variation of incubation temperature  

in broilers 

 

 

Naraballobh, W.
1
, Trakooljul, N.

1
, Muráni, E.

1
, Brunner, R.

1
, Krischek, C.

2
, Janisch, S.

3
, 

Wicke, M.
3†

, Ponsuksili, S.
1
, Wimmers, K.

1
 

 

1. Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, 18196 

Dummerstorf, Germany. 

2. Institute of Food Quality and Food Safety, University of Veterinary Medicine 

Hannover, D-30173 Hannover, Germany. 

3. Department of Animal Science, Quality of Food of Animal Origin, Georg-August-

University Goettingen, D-37075 Goettingen, Germany. 

 

†
deceased in July, 2015

 

 

 

Published in: BMC genomics (2016) 17:323 

Article first Published online: 4
th

 May 2016 DOI: 10.1186/s12864-016-2671-9 

 

 

 

 



Transcriptional response in hind muscle   

 

 

18 

 

Abstract 

Background: In oviparous species accidental variation of incubation temperatures may 

occur under natural conditions and mechanisms may have evolved by natural selection 

that facilitate coping with these stressors. However, under controlled artificial incubation 

modification of egg incubation temperature has been shown to have a wide-ranging 

impact on post-hatch development in several poultry species. Because developmental 

changes initiated in-ovo can affect poultry production, understanding the molecular routes 

and epigenetic alterations induced by incubation temperature differences may allow 

targeted modification of phenotypes. 

Results: In order to identify molecular pathways responsive to variable incubation 

temperature, broiler eggs were incubated at a lower or higher temperature (36.8 °C, 38.8 

°C) relative to control (37.8 °C) over two developmental intervals, embryonic days (E) 7–

10 and 10–13. Global gene expression of M. gastrocnemius was assayed at E10, E13, and 

slaughter age [post-hatch day (D) 35] (6 groups; 3 time points; 8 animals each) by 

microarray analysis and treated samples were compared to controls within each time 

point. Transcript abundance differed for between 113 and 738 genes, depending on 

treatment group, compared to the respective control. In particular, higher incubation 

temperature during E7-10 immediately affected pathways involved in energy and lipid 

metabolism, cell signaling, and muscle development more so than did other conditions. 

But lower incubation temperature during E10-13 affected pathways related to cellular 

function and growth, and development of organ, tissue, and muscle as well as nutrient 

metabolism pathways at D35. 

Conclusion: Shifts in incubation temperature provoke specific immediate and long-term 

transcriptional responses. Further, the transcriptional response to lower incubation 

temperature, which did not affect the phenotypes, mediates compensatory effects 

reflecting adaptability. In contrast, higher incubation temperature triggers gene expression 

and has long-term effects on the phenotype, reflecting considerable phenotypic plasticity. 

Keywords: Gene expression, Pathway analysis, In-ovo development, Poultry, Microarray 
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Introduction 

 Chickens and other birds are homeotherms that require that their body 

temperatures are maintained within a limited range during pre and post-hatch processes 

[1]. Altering the temperature range during the critical developmental periods may cause 

only minor morphological differences, or could even produce lethal events. Since under 

natural conditions unpredictable periods may occur when incubation temperatures are 

unfavorable, natural selection could have promoted traits and mechanisms that provide 

resilience against such exogenous factors and that are reflected by immediate, acute or 

long-term, delayed responses (Du and Shine, 2015). Shifts in the incubation temperature 

of eggs under controlled experimental conditions have been shown to impact post-hatch 

development in several bird species. However, results of previous studies are inconsistent. 

For example, a higher incubation temperature was concluded to positively affect breast 

meat yield in featherless broilers [2] and muscle fiber size in turkey [3], but was 

associated with body weight loss in live chicken [4]. Similarly, lower incubation 

temperature was indicated to have a prolonged effect on female embryo mortality in 

Australian Brush-turkey [5], but reportedly reduced growth rates of wood duck [6]. Thus, 

the effects of incubation temperature changes on post-hatch development remain unclear. 

In particular, there is a lack of studies addressing the response to exogenous physical 

effects on the level of gene expression that will promote the understanding of the 

underlying compensatory, adaptive and regulatory process that might be associated with 

the treatment. 

 The in-ovo development of birds offers a valuable model in which to study 

environmental effects on myogenesis. Indeed, the identification of shifts in muscle and 

growth traits facilitates the detection of candidate genes for these traits. During avian 

myogenesis, the muscle fibers are formed in two phases. The primary muscle fiber, which 

is a core fiber, transforms to a myotube between the 4th and 7th embryonic days (E). 

Next, secondary muscle fibers, which are smaller and derive from myoblasts, arrange 

around the primary muscle fiber as a scaffold, proceeding until E15 [7]. Fetal myoblasts 

are most abundant between E8 and E12 [8]. After the secondary phase, depending on 

morphology and localization of the myofibers, the adult myoblasts will transform and 

become the primary source of myogenic precursors for postnatal muscle formation [9–

11]. During both critical stages, temperature manipulation may cause differential 

expression of genes to produce phenotypic changes. Previous studies showed that 
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elevated incubation temperature over E7-10 positively influenced carcass traits in broiler 

males, but did not affect meat quality [12]. Thus, shifting the incubation temperature 

during targeted periods of in-ovo development could contribute to the improvement of the 

efficiency of broiler meat production, without sacrificing meat quality. This study 

addresses the transcriptomic response of skeletal muscle tissue to transient reduction and 

elevation of incubation temperature at early (E7-10) and late (E10-13) secondary muscle 

fiber development. Microarray expression profiles of treated samples were compared to 

those of the respective controls immediate after the treatment periods (E7-10; E10-13) 

and also later at slaughter (Fig. 1). The results have implication for the molecular 

foundation of potential impact on meat production traits and also provide insight into the 

mechanisms involved in the resilience against low and the phenotypic plasticity against 

high incubation temperature. 

 

Materials and methods 

Animals and tissue collection 

 As outlined in Fig. 1, hatching eggs of a commercial broiler line (Cobb-Vantress 

Inc., Siloam Springs, USA) were randomly assigned to the following experimental 

groups: H10 and L10, which were subjected to higher (38.8 °C) or lower (36.8 °C) 

incubation temperature, respectively, between E7-10; and H13 and L13, which were 

subjected to the same temperature shifts, respectively, but between E10-13. During the 

rest of the incubation period, all eggs were incubated at 37.8 °C, like the control group 

(C10, C13). Samples were collected immediately at the end of the treatment periods at 

E10 and E13, respectively, and in addition at post-hatch at day 35. The hatchlings were 

reared in barn system and fed a standard diet ad libitum until day 35 (D35; slaughter). 

Samples of hind tissues (M. gastrocnemius) were collected and immediately stored in 

liquid nitrogen. Embryonic samples taken at ED10 and ED13 as well as samples of D35 

were sexed and for each experimental group (C10, H10, L10 and C13, H13, L13) at each 

time point (E10 or E13, respectively plus D35) samples, balanced for sex, were selected 

for gene expression analyses with 8 samples per treatment (Fig. 1). The recording of zoo-

technical and biochemical traits was performed at the end of the respective treatment 

periods [53]. Increased incubation temperature led to slight but significant differences in 

body weight and mitochondrial respiratory capacity, whereas decreased incubation 

temperature only had subtle effects on a few parameters (Additional file 6). The study 
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was approved by the institutional Animal Welfare Committees and was conducted 

according to the guidelines of the German Law of Animal Protection. 

RNA isolation 

 Total RNA of frozen individual tissue samples was isolated with Tri-Reagent-

extraction (Sigma-Aldrich, Taufkirchen, Germany) according to manufacturer’s 

protocol. DNase treatment and a column-based purification using the RNeasy Mini 

Kit (Qiagen, Hilden, Germany) were also performed according to manufacturers’ 

protocols. To check RNA integrity, samples were visualized on 1 % agarose gels 

containing ethidium bromide. RNA concentration was determined by spectrometry 

with a NanoDrop ND-1000 spectrophotometer (PEQLAB, Erlangen, Germany). The 

absence of DNA contamination was confirmed by using the RNA as a template in 

standard PCR to amplify fragments of the glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) gene. To prevent degradation, all RNAs were stored at −80 

°C until further use. 

Expression microarray 

 500 ng of total RNA was reverse-transcribed into cDNA with the Ambion 

WT Expression Kit (Life Technologies GmbH, Darmstadt, Germany). Biotin-labeled 

cRNA targets were made using the Affymetrix GeneChip WT Terminal Labeling Kit 

(Affymetrix, Santa Clara, CA, USA). Fragmented biotin-labeled cRNAs were 

hybridized onto Chicken Gene 1.0 ST Arrays (Affymetrix), which contains 18,214 

probe-sets. After staining and washing, the arrays were scanned and raw data were 

obtained with the Affymetrix GCOS 1.1.1 software. 

Normalization and statistical analysis 

 For expression data analysis raw data (cel-files) obtained by Affymetrix GCOS 

1.1.1 software of all arrays were used as input files for the Affymetrix Expression 

Console for subsequent normalization and estimation of expression levels. Quantitative 

expression levels of transcripts were estimated using PLIER algorithm (Probe 

Logarithmic Intensity Error) and using DABG (detection above background) to evaluate 

detection by combining probe-level p-values to generate probe cell intensity values at 

exon level. All data were deposited in a MIAME-compliant database, the National Center 

for Biotechnology Information Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo; 

accession number: GSE76670). All “present” values (default settings with detection p-

values of ≤ 0.04) were selected and integrated within gene-level annotation. To extract the 
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outlying and nonspecific results, criteria on standard deviation (SD ≥ 0.16) and means (m 

≥ 2.5) were applied using “genefilter” in R (www.r-project.org). Changes in transcript 

abundance were determined by analysis of variance (JMP Genomics, SAS-Institute) 

considering individual and combined effects of temperature, treatment period and gender 

and slaughter weight. Sex was excluded from the statistical model due to marginal 

effects. The final model included fixed effects of temperature, treatment period and 

interactions. Slaughter weight was included as covariate for the 35 days post-hatched time 

course. Comparisons of treated samples (L and H) to controls (C) within the respective 

time points (E10, E13, D35) were considered. Transcripts with significant differences of 

abundance at p-values ≤ 0.05 were selected and queried for pathways analysis. At pre-

hatch stages p ≤ 0.05 equals FDR adjusted p-values of q ≤ 0.18; at D35 p ≤ 0.05 

corresponding q-values ranged between 0.35 and 0.70. 

Real time quantitative RT-PCR (qPCR) 

 For validation of microarray data, the gene expression of three genes was 

determined by Real-time quantitative PCRs using the same D35 samples used for 

microarray analyses. The assays were done in duplicate in volumes of 10 μl using the 

LightCycler 480 SYBR Green I Master Kit (Roche), on a LightCycler 480 Real-Time 

PCR System (Roche Diagnostics GmbH, Germany). The temperature profiles comprised 

an initial denaturation step at 95 °C for 10” and 40 cycles consisting of denaturation at 95 

°C for 15”, annealing at 60 °C for 10” and extension at 72 °C for 15”. The amplified 

genes were GAPDH and ACTB as well as FGA, NR43A and AHSG (Additional file 7), 

where the first two were used as reference genes to account for variation of cDNA 

amounts after reverse transcription by calculating a normalization factor. Target genes 

were selected because of their redundant assignment to different but related biofunctions. 

For all the assays threshold cycles were converted to copy numbers using a standard 

curve generated by amplifying serial dilutions of an external PCR standard (10
7 

- 10
2
 

copies). After completion of amplification protocol all samples were subjected to melting 

curve analyses and gel electrophoresis. Primers were obtained from Sigma-Aldrich, 

Germany. 

Pathway analyses and major categories  

 Least-squares means of expression level and fold changes including “UP” and 

“DOWN” regulation among the tissues were estimated. Annotation data for Affymetrix 

Chicken Genome Arrays were obtained from the producer (Affymetrix Chicken Genome 
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Array annotations release 34). Ingenuity Pathway Analysis was used for functional 

annotation estimation of association between dataset and pathway. Differentially 

expressed genes (DEGs) were analyzed referring to Ingenuity Pathways Knowledge Base 

(IPKB). Biological and canonical pathways were identified from the IPKB library. 

Significance was considered based on Fisher’s exact test p-values adjusted for multiple 

testing using the Benjamini-Hochberg correction procedure. Cut-off criteria were set to 

corrected BH p-values ≤ 0.05 for canonical pathways and for biofunctions, respectively. 

The variation of pathways was assigned, and we focused on the top most affected 

biological functions related to tissue development and myogenesis. All pathways were 

grouped into new categories based on criteria concerning the major roles in 

comprehensive biological routes on organismal, organ, tissue, cell or molecular levels. 

All biological functions were categorized in eight major groups (gr. 1 – gr. 8) as follows: 

cell maintenance, proliferation, differentiation, and replacement (gr. 1); organismal organ 

and tissue development (gr. 2); nutrient metabolism (gr. 3); genetic information and 

nucleic acid processing (gr. 4); molecular transport (gr. 5); cell signaling and interaction 

(gr. 6); small molecule biochemistry (gr. 7); and response to stimuli (gr. 8). “Activated” 

and “deactivated” genes were assigned by positive and negative Z-scores, predicting the 

activation state of related transcription regulators. Significant pathways that were altered 

with in-ovo temperature modifications were clustered and visualized by heatmap. Genes 

assigned to major categories, as defined below, and with Z-scores were selected to derive 

IPA networks. Top network results were displayed covering related DEGs with 

annotation from NCBI reference sequence base [54]. 

 

Results 

 Global gene expression pattern of chicken hind muscle The chicken gene 1.0 ST 

array contains 165,815 probesets representing 20,828 transcripts encoding for 18,214 

genes. After quality filtering and normalization, probesets representing 8,909 transcripts 

were subjected to further analyses. Analysis of variance was used to identify differentially 

expressed genes (DEGs) by comparing gene expression levels of treatment group (in-ovo 

temperature modification) against the control. The number of DEGs for each comparison 

at embryonic stages and at D35 is shown in Table 1. At the embryonic stage, higher 

temperature during E7-10 versus control (H10ΔC, 38.8 °C) significantly altered the 

expression of 738 genes compared to other treatment conditions (Table 1). Lower 
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temperature during E10-13 versus control (L13ΔC, 36.8 ° C) affected more genes than 

did low temperature during E7-10 (389 vs 140). Long-term effects of the in-ovo 

temperature modification were investigated at D35. Lower temperature in the early and 

late treatment period (L10ΔC and L13ΔC) resulted in a high number of DEGs at D35 

(693 and 288, respectively), whereas higher temperature produced fewer DEGs at D35 

(167 and 247, respectively) (Table 1). In addition, the majority of DEGs were 

downregulated in embryonic stage, but were up-regulated at D35, as shown in Table 1. 

The direction of regulation of FGA, NR4A3 and AHSG, exemplarily chosen as to 

represent genes assignment to several pathways, as indicated by microarrays and qPCR 

were consistent. The correlation coefficients were highly significant and ranged between 

0.71 and 0.84. Taken together, the qPCR analyses indicated a reproducible analysis. 

Distinct response to temperature alteration by time and direction 

 A comparison of the DEGs between treatment conditions showed that most DEGs 

were unique for each condition, e.g., 685 and 366 DEGs for H10ΔC and L13ΔC in the 

embryonic stages (Fig. 2a), and 516 and 216 DEGs for L10ΔC and L13ΔC at D35 (Fig. 

2b), respectively. Some DEGs were shared between two conditions, including those 

common either to L10 and L13 (10 and 45 at embryonic stage and D35) or to H10 and 

H13 (17 and 9 at embryonic stage and D35), which were almost exclusively consistently 

regulated. There were only a few DEGs that were common across more than 2 conditions. 

Comparisons of DEGs from identical treatments in embryonic and D35 samples (Fig. 2c) 

revealed 55 common DEGs in total for the 4 treatments. Of these, 5 up and 14 down-

regulated transcript ids were regulated in the same direction in both embryonic stages and 

at D35. However, most of the common DEGs were regulated in opposite directions by 

stage, e.g., up-regulation in embryos and down-regulation at D35. A list of common 

DEGs with fold-change and p-value is available in Additional file 1. 

Pathway analysis 

 To understand the underlying biology and identify relevant pathways, DEGs were 

analyzed using the Ingenuity Pathway Analysis software tools (IPA, Ingenuity Systems 

Inc., Redwood City, USA). All DEGs lists were separated into up or down-regulated 

genes for each comparison (temperature modification vs control). All significant 

biological pathways associated with p-values and gene members are available in 

Additional files 2, 3, 4 and 5. The pathway analysis approach is effective for handling a 

list of DEGs, and generates a list of biological terms/ pathways. To encompass most 
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pathways affected by all treatment factors (temperature modification, embryonic stage, 

and growth stage), we grouped 52 and 49 significant pathways derived from embryos and 

D35 broiler, respectively, into eight major categories of interest: group (gr.) 1, cell 

maintenance, proliferation, differentiation and replacement; gr.2, organismal, organ, and 

tissue development; gr.3, nutrient metabolism; gr.4, genetic information and nucleic acid 

processing; gr.5, molecular transport; gr.6, cell signaling and interaction; gr.7, small 

molecule biochemistry; and gr.8, response to stimuli. Overall, biological pathways 

involved in cell growth (gr.1) and tissue development (gr.2) were affected by 

modification of incubation temperature both in embryos and at D35 based on the number 

of pathways, as shown in Fig. 3. Activation states of upstream regulators were further 

analyzed for the dataset based on the Z-score calculation from Ingenuity Pathway 

Analysis (IPA) (Additional files 2-5). 

 In particular, a higher temperature during E7-10 (H10ΔC; Fig. 3a, rows 1&2) 

altered pathways involved in lipid metabolism, cell signaling, energy metabolism, muscle 

development and function, and small molecule biochemistry, more so than did other 

conditions in embryos (Fig. 3a, rows 3–8). Z-scores indicate that H10ΔC condition tended 

to activate several pathways related to nutrient metabolism (gr.3) and small molecule 

biochemistry (gr.7) (Additional file 2). A lower temperature (L10ΔC and L13ΔC; Fig. 3a, 

rows 5–8) affected pathways related cell maintenance, proliferation, differentiation and 

replacement (gr.1) and organismal, organ, and tissue development (gr.2). L13ΔC tended 

to suppress cellar processes related to cell death, thus promoting maintenance in the major 

category cell maintenance, proliferation, differentiation and replacement (gr.1) and to 

activate developmental processes in mesoderm and muscle (gr.2, organismal, organ, and 

tissue development) (Additional file 3). 

 Using all DEGs obtained for H10ΔC in embryos, a network was generated 

covering 19 DEGs. FABP1 (fatty acid binding protein 1), PPARA (peroxisome 

proliferator activated receptor alpha), and PPARGC1A (peroxisome proliferator-activated 

receptor gamma, coactivator 1 alpha) are highly connected genes in the network and 

related to energy production, lipid metabolism and small molecule biochemistry (Fig. 4a). 

For L13ΔC, the generated network was related to suppressed cell death and survival but 

stimulated cell growth and digestive developmental processes, including genes GPI 

(glucose-6-phosphate isomerase), NR1H3 (nuclear receptor subfamily 1, group H, 

member 3), and SRF (serum response factor) (Fig. 4b). 
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 At D35, decreased incubation temperature during E10-13 (L13ΔC; Fig. 3b, rows 

7&8) strongly changed pathways related to cellular function and growth development of 

organs, tissue and muscle as well as nutrient metabolism pathways (Fig. 3b). For L10ΔC 

(Fig. 3b, rows 5&6) a considerable number of genes were affected that belong to 

Ingenuity biological functions related to organismal, organ, and tissue development 

(gr.2). Notably, according to Z-scores L10ΔC tended to exhibit inhibitory effect on 

genetic processing categories (gr.4; Genetic information and nucleic acids), whereas 

L13ΔC was more likely to activate most categories (Additional file 4). For H13ΔC (Fig. 

3b, rows 3&4) broadly the same molecular routes were shifted, however in opposite 

direction (Fig. 3b). For H10ΔC, no trends of activation or inhibition of pathways were 

obvious (Additional file 5). 

 The network established for L10ΔC contained genes of top pathways including 

gene expression, cellular function and maintenance, and organismal development (Fig. 

5a). Highly connected genes included HDAC4 (histone deacetylase 4), TBP (TATA Box 

Binding Protein), MYOD1 (myogenic differentiation 1), and SOX6 (sex determining 

region Y-box 6) that are related to inactivation of transcription and muscle cell 

differentiation. For L13ΔC, activation of pathways related to proliferation, differentiation, 

and development at the cell, tissue, and organ levels was predicted. Accordingly, the 

consistently increased transcript abundances revealed a network (Fig. 5b). The involved 

genes for nutrition metabolism included APOA1 (apolipoprotein A1), GFPT1 (glutamine 

fructose-6-phosphate transaminase 1) and proliferation of muscle development included 

APOD (apolipoprotein D), and DES (desmin). 

 

Discussion 

 This study demonstrates that transcriptomic and pathway regulation changes 

occur in broiler embryos and at D35 as a result of temperature manipulation during 

early (E7-10) and later (E10-13) development stage. Evidence was reported that early 

elevated incubation temperature positively influenced growth traits, but did not affect 

meat quality [12]. Indeed the chicken analyzed here showed slight but significant 

increase in body weight when transiently incubated at higher temperature, whereas 

decreased incubation temperature did not affect body weight. 

Immediate effects observed in-ovo 
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 Embryonic days 7–10 and 10–13 cover the final stage of primary muscle 

formation and start of secondary muscle fiber formation, respectively [7]. During 

myogenesis, multiple transcripts have major roles in regulating muscle development, 

such as BCK (B isoform of creatine kinase) [13], cTnT (chicken cardiac troponin T) 

[14], Mstn (myostatin), and MyoD (myogenic differentiation 1) [15]. Previous 

research showed many regulated genes expressed during myogenesis being sensitive 

to incubation temperature manipulation. 

Immediate response to early high temperature treatment (H10ΔC) 

 Due to our experiment, the major impacts on the transcriptome resulted from early 

high (H10ΔC) and late low (L13ΔC) temperature shifts, with the majority of DEGs being 

up regulated. The H10ΔC comparison indicated that pathways involved in lipid 

metabolism, energy production, oxidation and beta-oxidation of fatty acid were activated. 

In this network, 19 up-regulated DEGs were represented, including FABP1, PPARA, and 

PPARGC1A. FABP1 and PPARA act in fatty acid uptake, metabolism, and intracellular 

transportation of lipids metabolism, cell proliferation, cell differentiation and respiration 

as well as inflammation responses [16]. A previous study showed that L-FABP in chicken 

had higher expression in fat-type chicken at 3, 5, and 7 weeks old (p-value ≤ 0.05), and is 

linked to abdominal fat deposition and high lipogenesis rate [16]. Moreover, a previous 

study showed shifts of expression of AMPK-PPARA pathway genes due to thermal 

conductions [17]. PPARGC1, regulates energy metabolism, muscle fiber specialization 

and adaptive thermogenesis [18–20]. A previous study reported that single nucleotide 

polymorphisms (SNPs) in chicken PPARGC1A are significantly related to abdominal fat 

weight without growth trait effects [21]. Moreover, PPARGC1A (PGC-1α) which was 

influenced by cold stress (4 °C from D28 to D38) in chicken could influenced a change in 

fiber type distribution and phenotype [20]. Exemplarily, modulated expressions of these 

genes reflect shifts of biological functions related to growth and metabolism. 

 The results demonstrate immediate shifts of transcript abundance due to 

manipulation of incubation temperature. During E7-10, high temperature (38.8 °C) 

manipulation influenced mainly lipid (FABP1, PPARA) and energy production 

(PPARGC1) pathway. Accordingly, changes of body, liver, and heart weight were 

evident [22]. Moreover, activity of mitochondrial respiration (state-3-pyruvate/ma late 

and state-3-succinate/rotenone) and enzyme activities (glycogen phosphorylase, lactate 
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dehydrogenase, and cytochrome oxidase) were elevated [22]. Thus, H10 treatment could 

influence lipid production and metabolism and also promoted phenotypic change. 

Immediate response to late low temperature treatment (L13ΔC) 

 At later development (E10-13), low temperature had a greater impact on the 

transcriptome (L13ΔC). The biological functions affected were predicted to affect cellular 

processes balancing differentiation, proliferation and maintenance. In contrast, high 

temperature treatment down regulated the development of cytoplasm and vasculogenesis, 

but increased inflammation and cell death. The L13ΔC network related to cell death and 

survival and cellular growth and proliferation. Candidate DEGs included GPI, NR1H3, 

and SRF, involved in metabolic, proliferation, and differentiation pathways. In fact GPI 

encodes a member of the glucose phosphate isomerase protein family, involved in 

glucose metabolism [23]. In chicken, GPI is up-regulated in muscle development [24]. 

NR1H3 belongs to the NR1 subfamily of the nuclear receptor superfamily (synonym: 

liver X receptor alpha), which are key regulators of macrophage function, inflammation, 

and lipid homeostasis in differentiating chondrocytes [25, 26]. In chicken, NR1H3 is 

considered a key regulator of fatty acid homeostasis [27] and cholesterol homeostasis 

[25]. SRF encodes a ubiquitous nuclear protein that stimulates cell proliferation and 

differentiation. In chicken embryo, SRF expression is restricted primarily to striated 

muscle cell lineages, which increased mass of nuclear and activating alpha actin gene 

activity [28]. 

 Later in E10-13, lower temperature (36.8 °C) was associated with shifts of 

pathways towards balancing anabolic and catabolic pathways, which is in line with 

phenotypic change being slight and non-significant [22]. Enzyme activity (cytochrome 

oxidase) and mitochondrial respiration (state-3-pyruvate/malate) were lower than at 

normal condition. It was suggested that lower temperature at late treatment might 

decelerate embryonic activity. 

Long-term effects observed at D35 

 In-ovo shifts of thermal conditions had long term effects on the transcriptome 

observed at D35. Higher or lower incubation temperature has also been shown to impact 

postnatal development in avian species [3, 6, 29]. Because the egg shell temperature is 

sensitive to environmental change, it can directly impact developmental processes as well 

[30, 31]. Acute temperature modulation at the late embryonic stage was previously 

suggested to cause long-term transcriptomic changes, but few studies demonstrated an 
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ongoing effect. A recent report showed embryonic temperature manipulation affected 

thermoregulatory mechanisms [32]. Another study found that periodic incubation 

temperature change between 37.8 °C and 39.5 °C from E16-18 initiated acute (E17) and 

late term (D13 post-hatch) positive effects on diameter of myofibers and muscle cell 

proliferation in chicken [1]. These findings might have been resulted from modifications 

to the stress response and thermogenesis by the increased temperature from E7-16, 

resulting in reduced oxygen consumption, heart rate, and egg shell temperature. These 

changes directly affected broiler embryo growth and development [33]. Similarly, another 

study showed that temperature manipulation caused a high density of blood vessels in the 

chorioallantoic membrane during embryogenesis [34]. In our studies, long-term 

transcriptomic changes were due to low temperature treatments (L10ΔC and L13ΔC 

conditions) primarily leading to downregulation. IPA analysis indicated that increasing 

the incubation temperature to 38.7° may influence cell cycle and skin development at the 

early time point (E7-10). After that, high temperature E10-13 treatment tended to activate 

apoptosis in cell development but deactivated cardiovascular system and body trunk. 

Effects on metabolic process showed a reduction of carbohydrate metabolism, synthesis. 

Furthermore, a negative effect still remained for concentration of lipid and acyl glycerol. 

Long-term response to early low temperature treatment (L10ΔC) 

 The lower incubation temperature resulted in more DEGs in both early and late 

treatments. Early low temperature (L10ΔC) tended to activate pathways involved in 

organismal development and cell proliferation but strongly suppress transcriptional 

process. All significant pathways including gene expression, cellular function and 

maintenance, and organismal development formed a network. Candidate genes included 

HDAC4, MYOD1, and SOX6, which are related to inactivation of transcription and 

muscle cell differentiation. 

 Previous research showed HDAC4 was associated in modulating cell growth and 

differentiation by controlling histone deacetylase activity, which alters chromosome 

structure and affects transcription factor access to DNA [35, 36]. A negative effect of 

HDAC4 overexpression is down-regulation of cardiac muscle gene expression and leads 

to inhibition of cardio myogenesis [37]. Normally HDAC4 was found in neuromuscular 

junction especially in myonuclei of fast oxidative skeletal muscle fibers [38, 39]. Down 

regulated of this gene suggested multiple transcriptional abnormalities including cardiac 

hypertrophy [40] and influence to MYOD1 expression. MYOD1 encodes a protein that 
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belongs to a basic helix-loop-helix family of transcription factors and the myogenic 

factors subfamily. Generally, MYOD1 acts in muscle cell differentiation by inducing cell 

cycle arrest. During pre-gastrulating epiblast in chicken, MYOD1 can induce skeletal 

muscle lineage self-renewal and differentiation [41]. Moreover, MYOD1 also works with 

the downstream effector VGL-2 in skeletal myogenesis [42]. Another DEGs which 

suggested to downregulate in cardiac and skeletal muscle is SOX6, a member of the 

SOXD gene family, encodes functional domains including a DNA binding domain (the 

HMG box) and two coiled-coil domains [43]. The encoded protein is a transcriptional 

activator and critical role in cartilage development and mesenchymal differentiation [44]. 

Moreover, SOX6 is well known to function as a transcriptional suppressor of slow fiber-

specific genes [45, 46]. 

 Lowered incubation temperature had large effects on postnatal expression in terms 

of number of transcripts with shifted abundance. Manipulation of early treatment (E7-10) 

led to down regulation in transcriptional processes and muscle cell differentiation. 

Moreover, cardio (HDAC4) and skeletal (MYOD1 and SOX6) myogenesis were 

negatively affected. The phenotype of D35 chicken exposed to lower temperature showed 

a slight nonsignificant reduction of carcass and leg compared to the control group; higher 

incubation temperature led to increased weights (Additional file 6). 

Long-term response to late low temperature treatment (L13ΔC) 

 Late low temperature treatment (L13ΔC) was predicted to activate pathways 

in cellular and organismal development including cell survival, development of body 

trunk, contractility of cardiac muscle, and proliferation of mammary epithelial cells, but 

to have a negative effect on size of body and muscle cell pathways. In metabolism, 

elevated uptake and metabolism of lipid and carbohydrate, together with small 

molecule biochemistry like oxidation of fatty acid, tended to reduce concentration of 

lipid. Inflammatory response was also predicted to be suppressed. The IPA network 

highlighted the activation of tissue development, skeletal and muscular disorders, and 

cell-to-cell signaling. Selection of Fold change (FC) related in every major category 

revealed a set of candidate genes: APOD, APOA1, DES, and GFPT1. 

 APOD encodes a component of high-density lipoprotein (HDL) with a high 

degree of homology to plasma retinol binding protein and lipocalins. During late chicken 

embryogenesis, the expression of APOD is enriched among subsets of central nervous 

system (CNS) neurons then again in skin during developing of feather [47]. The 



Transcriptional response in hind muscle   

 

 

31 

 

molecular function involved lipoprotein metabolism, as shown by APOA1, HDL, and 

LDL in the network Fig. 5b. APOA1 is the major protein component of high-density 

lipoprotein in plasma. It promotes cholesterol efflux from tissues to the liver for 

excretion, and is a cofactor for lecithin cholesterol acyl transferase (LCAT), which is 

responsible for the formation of most plasma cholesteryl esters. APOA1 is negatively 

correlated with aging and influences muscle development in Thai indigenous chicken 

[48]. Desmin (DES) encodes a muscle-specific class III intermediate filament. 

Homopolymers of this protein form a stable intra-cytoplasmic filamentous network 

connecting myofibrils to each other and to the plasma membrane. It maintains the 

structural integrity of highly solicited skeletal muscle and is important to other biological 

processes including muscle contraction and development, especially in heart contraction 

[49–51]. GFPT1 controls the flux of glucose into the hexosamine biosynthetic pathway, 

providing building blocks for the glycosylation of proteins and lipids [52]. The product of 

this gene catalyzes the formation of glucosamine 6-phosphate, which participates in 

carbohydrate biosynthesis and apoptosis regulation. GFPT1 is expressed in many tissues 

including skeletal muscle and heart [52]. Network connection revealed discreet 

interaction between GFPT1 and APOA1. Low-incubation temperature at late treatment 

(L13) had an impact on multiple DEGs and pathways in both embryo stages and at D35. 

However, these transcriptomic changes were not associated with significant phenotypic 

changes compared to the control (Additional file 6). The transcriptional response to lower 

incubation temperature appears to mediate compensatory effects that indicate a 

considerable adaptability. In nature transient reduction of incubation temperature during 

natural brooding happens. Accordingly, regulatory mechanism evolved in birds that 

enable the emergence of normal phenotypes. In contrast, higher incubation temperature 

triggers gene expression and has long-term effects on the phenotype. Elevated 

temperature is not likely in natural brooding, consequently not compensatory mechanisms 

evolved. Phenotypic changes associated with increased incubation temperature display 

metabolic plasticity of chicken. 

 

Conclusions 

 Our experiment shows that manipulation of incubation temperature 

immediately effected transcriptomic changes and influenced the long-term expression. 

In parallel the results on growth, carcass, meat quality and mitochondrial respiratory 
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activities indicate effects of transient variation of incubation temperature as well [22, 

53]. The observations indicate the successful activation of compensatory mechanisms 

in adaptation to lowered temperature and phenotypic plasticity in response to elevated 

temperature. Further investigations of the mechanism behind these regulatory processes 

including epigenetic modifications provide the perspective to improve resistance to 

environmental changes without much effect on growth performance [32]. Moreover, 

numerous genes which play important roles in metabolic pathways and which showed 

changed expression due to shifted incubation temperature represent candidate genes for 

further genetic improvement in terms of resilience against temperature shifts or in 

terms of increased muscle growth without affecting meat quality. 
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Figure titles and Tables 

 

Figure 1 Experimental design; indicating the two periods of modulated incubation 

temperatures at E7-10 and E10-13 and the time points of samplings (circles; n=8 samples 

at a time).  

 

Figure 2 Venn diagrams; displaying numbers of differentially expressed genes for each 

treatment condition relative to control. Comparisons between treatment conditions at 

embryonic stages (A) at D 35 stage (B) and between embryonic and D 35 stage after the 

same treatments (C) (blue embryonic, red D 35 chicken). 
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Figure 3 Significant pathways altered by in-ovo thermal modifications; in A: embryonic stage and B: D 35 stage. DEGs 

associated with each comparison (treatment vs control) are separated into up-regulation (U) or down-regulation (D). Thermal 

modification treatments: increase (H) or decrease (L) incubation temperature during E7-10 (H10 and L10) or E10-13 (H13 and 

L13). Significant pathways (IPA defined) are grouped into eight major categories of interest; group (gr.)1 cell maintenance 

proliferation differentiation and replacement, gr.2 organismal organ and tissue development, gr.3 nutrient metabolism, gr.4 

genetic information and nucleic acid processing, gr.5 molecular transport, gr.6 cell signalling and interaction, gr.7 small molecule 

biochemistry, and gr.8 response to stimuli and associated. The –log (p-value) associated with significant pathways (Fisher’ exact 

test) are plotted in green (small) to red (large) 
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Figure 4 Functional networks derived from sets of DEG obtained for H10ΔC (a) and 

L13ΔC (b) at embryonic stage. Based on the Ingenuity KnowledgeBase a network of up 

regulated genes was derived for H10ΔC indicating activated energy production, lipid 

metabolism and small molecule biochemistry. For L13ΔC a network was found implying 

deactivated cell death and survival, but activated cellular growth and proliferation 

pathways. Red and green indicate up- and down-regulation; network shapes indicate 

various classes of network components; line and arrows indicate undirected and directed 

interactions 

 

Figure 5 Functional networks derived from sets of DEG obtained for L10ΔC (a) L13ΔC 

(b) at D35. Based on the Ingenuity KnowledgeBase a network of down regulated genes 

was derived for L10ΔC indicating deactivated gene expression, cellular function and 

organismal development networks. For L13ΔC a network was found implying deactivated 

tissue development, skeletal and muscular disorders and cell-to-cell signaling pathways. 
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Red and green indicate up- and down-regulation; network shapes indicate various classes 

of network components; line and arrows indicate undirected and directed interactions. 

 

Table 1 Differentially expressed genes (DEGs); between each in-ovo thermal 

modification condition relative to the control separated for embryonic or D 35 stages (p-

value ≤ 0.05). 

  
Treatment (ΔC) Probe sets DEGs 

Regulation 

  Up Down 

Embryo 

H10 - C10 812 738 662 76 

H13 - C13 176 113 88 25 

L10 - C10 169 140 34 106 

L13 - C13 503 389 258 131 

      

D 35 

H10 - C10 217 167 35 132 

H13 - C13 332 247 108 139 

L10 - C10 768 693 104 589 

L13 - C13 330 288 123 165 
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Additional file 1: Table S1. Common DEGs at embryonic stages and D35. Table S2. 

Common DEGs of H10 and H13 or L10 and L13 at embryonic stages. Table S3. 

Common DEGs of H10 and H13 or L10 and L13 at D35. (DOCX 41 kb) 

Additional file 2: Assignment of DEGs to major categories, and biological functions 

obtained at embryonic stage for early treatment; H10UΔC, H10DΔC, L10UΔC and 

L10DΔC. (DOCX 21 kb) 

Additional file 3: Assignment of DEGs to major categories, and biological functions 

obtained at embryonic stage for late treatment; H13UΔC, H13DΔC, L13UΔC and 

L13DΔC. (DOCX 23 kb) 

Additional file 4: Assignment of DEGs to major categories, and biological functions 

obtained at D35 for early treatment; H10UΔC, H10DΔC, L10UΔC and L10DΔC (DOCX 

22 kb) 

Additional file 5: Assignment of DEGs to major categories, and biological functions 

obtained at D35 for late treatment; H13UΔC, H13DΔC, L13UΔC and L13DΔC. (DOCX 

23 kb) 

Additional file 6: Body weight, carcass weight and weight of hind muscles of broilers of 

the experimental groups used for expression analyses. (DOCX 19 kb) 

Additional file 7: Primers used for quantitative real-time PCR (qPCR) (DOCX 15 kb) 

 

Abbreviations 

ΔC: ‘delta’ control, difference treatment versus control; D35: post-hatch days 35, 

slaughter date; DEGs: differentially expressed genes; E7, E10, E13: embryonic days 7th, 

10th and 13th respectively; gr.1: major category group 1 cell maintenance, proliferation, 

differentiation and replacement; gr.2: major category group 2 organismal, organ, and 

tissue development; gr.3: major category group 3 nutrient metabolism; gr.4: major 
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category group 4 genetic information and nucleic acid processing; gr.5: major category 

group 5 molecular transport; gr.6: major category group 6 cell signaling and interaction; 

gr.7: major category group 7 small molecule biochemistry; gr.8: major category group 8 

response to stimuli; H10: embryos were incubated at high temperature (38.8 °C) at 

embryonic days 7–10 and at control temperature (37.8 °C) at remaining time before and 

after; H13: embryos were incubated at high temperature (38.8 °C) at embryonic days 10–

13 and at control temperature (37.8 °C) at remaining time before and after; IPA: 

Ingenuity Pathway Analysis; L10: embryos were incubated at low temperature (36.8 °C) 

at embryonic days 7–10 and at control temperature (37.8 °C) at remaining time before 

and after; L13: embryos were incubated at low temperature (36.8 °C) at embryonic days 

10–13 and at control temperature (37.8 °C) at remaining time before and after. 
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CHAPTER III 

 

 

Transient shifts of incubation temperature reveal immediate and long-

term transcriptional response in chicken breast muscle underpinning 

resilience and phenotypic plasticity 
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Abstract 

Variations in egg incubation temperatures can have acute or long-term effects on 

gene transcription in avian species. Altered gene expression may, in turn, affect muscle 

traits in poultry and indirectly influence commercial production. To determine how 

changes in eggshell temperature affect gene expression, incubation temperatures were 

varied [36.8°C (low), 37.8°C (control), 38.8°C (high)] at specific time periods reflecting 

two stages of myogenesis [embryonic days (ED) 7–10 and 10–13]. Gene expression was 

compared between interventions and matching controls by microarrays in broiler breast 

muscle at ED10 or ED13 and post-hatch at day 35. Early (ED7-10) high incubation 

temperature (H10ΔC) resulted in 1370 differentially expressed genes (DEGs) in embryos. 

Ingenuity pathway analysis revealed temporary activation of cell maintenance, 

organismal development, and survival ability genes, but these effects were not maintained 

in adults. Late high incubation temperature (ED10-13) (H13ΔC) had slightly negative 

impacts on development of cellular components in embryos, but a cumulative effect was 

observed in adults, in which tissue development and nutrition metabolism were affected. 

Early low incubation temperature (L10ΔC) produced 368 DEGs, most of which were 

down-regulated and involved in differentiation and formation of muscle cells. In adults, 

this treatment down-regulated pathways of transcriptional processes, but up-regulated cell 

proliferation. Late low temperature incubation (L13ΔC) produced 795 DEGs in embryos, 

and activated organismal survival and post-transcriptional regulation pathways. In adults 

this treatment activated cellular and organ development, nutrition and small molecule 

activity, and survival rate, but deactivated size of body and muscle cells. Thermal 

interventions during incubation initiate immediate and delayed transcriptional responses 

that are specific for timing and direction of treatment. Interestingly, the transcriptional 

response to transiently decreased incubation temperature, which did not affect the 

phenotypes, prompts compensatory effects reflecting resilience. In contrast, higher 

incubation temperature triggers gene expression and has long-term effects on the 

phenotype. These mechanisms of considerable phenotypic plasticity contribute to the 

biodiversity and broaden the basis for managing poultry populations. 
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Introduction 

In homeotherms like birds, pre- and post-hatch development occurs only within a 

limited range of body temperature [1]. In-ovo, temperature is a critical factor affecting 

embryo development. Changes in eggshell temperature or inadequate timing of the proper 

temperature can result in morphological changes, through altered gene expression, that is 

fatal or produces long-term alterations in development. Under natural conditions and from 

the evolutionary point of view, one could argue that due to the likelihood of variation of 

brooding temperature under natural conditions mechanisms should have evolved to 

promote resilience against these unpredictable environmental factors. Indeed, in birds 

parent brooding causes more stable conditions than for many reptile species with shallow 

nests [2]. There are differences in nest temperatures varying from about 30°C to 40°C 

among avian species [3]. In unattended periods the nest temperature may drop 

considerably [4,5]. Therefore mechanisms to cope with transient lowered temperature 

likely exist. Such coping mechanisms may still exist in commercial broiler lines even 

after long-term artificial selection under highly controlled conditions. 

In fact, under controlled artificial conditions in poultry production, improvement 

of productivity and resilience, for example to hot climates, are major issues; accordingly 

most research has focused on increased incubation temperature. For instance, a slightly 

higher egg incubation temperature has been associated with positive effects on breast 

meat yield (% of BW) of featherless broiler chicken [6] and muscle fiber development in 

turkey [7]. However, higher incubation temperature can also produce lower body weight 

[8]. Divergent outcomes may be attributable to differences in the intensity and duration of 

incubation temperature changes. Nonetheless, understanding how these changes affect 

development is crucial for identifying any long-term consequences and potential 

application of variation of incubation temperature in poultry breeding. 

Also during in-utero development of mammalian species, including human, 

aberration of body temperature due to maternal fever may impact the post-natal life. For 

example, maternal fever significantly increases the risk of autism and developmental 

delay in humans [9]. In fact, embryonic and fetal development are periods of rapid growth 

and cell differentiation and pre-determination of later life. Adverse environmental 

conditions during embryonic and fetal development provoke an adaptive response, which 

may lead to both persistently biased responsiveness to extrinsic factors and permanent 

consequences for the organismal phenotype [10,11]. The in-ovo development of the 

poultry is an ideal model for studying the impact of exogenous (physical) effects and 
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analysing mechanisms of gene-environment interactions taking place during embryonic 

development and potentially affecting later life time development. 

Avian myogenesis occurs in two phases during embryo development. First, 

between embryonic days (ED) 4 and 7, primary muscle fibers are formed from myoblasts. 

Next, from ED7-15, secondary muscle fibers develop around the scaffold of primary 

muscle fibers [12]. Fetal myoblasts are most abundant between ED8 and 12 [13]. Primary 

fibers represent a heterogeneous population that are committed to becoming fast (white), 

mixed fast/slow, and mainly slow (red) fibers, whereas secondary fibers belong to the fast 

myogenic lineage, i.e. the two developmental phases of myogenesis give rise to different 

myofibers [14]. Breast muscle is a valuable meat product in chicken. Musculus pectoralis 

consists of type II, white muscle fibers, with fast-contracting properties and high 

glycogen content for glycolytic metabolism. Changes in incubation temperature occurring 

during the transition from primary to secondary muscle fiber formation may induce gene 

expression changes in the embryo that result in altered muscle phenotypes. Elevated 

incubation temperature between ED7 and 10 positively influences slaughter and breast 

muscle weights in broiler males. In contrast, there was no effect on hind muscle weight, 

with represents a red muscle mainly consisting of type I fibers. Moreover, there was no 

negative effect on meat quality [15]. 

Manipulation of incubation temperature at specific periods may offer a method by 

which to improve the efficiency of broiler meat production by altering gene expression 

during myogenesis. This study sought to identify immediate and late transcriptomic 

responses in a white muscle (Musculus pectoralis) breast muscle following changes in 

incubation temperature. The identification of differentially expressed genes and their 

functional annotation to pathways and networks offers insight into the physiological 

mechanism that has evolved to cope with lower and higher incubation temperatures 

including those relevant to improve muscularity and heat tolerance. 

 

Materials and Methods 

Sample Collection 

Animal care procedure followed the guidelines of the German Law of Animal 

Protection and the experimental protocol was approved by the Institutional Animal Care 

and Use Committee (IACUC) of the Department of Animal Sciences of the University of 

Goettingen, Germany and the Leibniz Institute for Farm Animal Biology. Commercial 

broiler line eggs (Cobb-Vantress Inc., Siloam Springs, Arkansas, USA) were randomly 
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selected and divided into 6 experimental groups (total number of eggs 1001) (Fig 1). 

Three groups had early intervention, and incubation conditions of these groups over ED7 

to 10 were as follows: 1) high temperature of 38.8°C and 65% relative humidity (RH) 

(group H10); 2) control temperature of 37.8°C and 55% RH (C10), which equals the 

conditions before and after the intervention; and 3) low temperature of 36.8°C and 55% 

RH (L10). The remaining 3 groups had late intervention, and incubation conditions of 

these groups over ED10 to 13 mimicked those of the early groups, with high (H13), 

control (C13), and low (L13) temperatures. At ED10 and ED13 subsets of each group 

were obtained and breast muscles were prepared and stored for subsequent analyses. In 

addition to the eggs for the collection of embryo samples at ED10 or ED13, respectively, 

a set of eggs was treated the same way in parallel. Except for the specific treatment 

periods at ED7-10 or ED 10–13 these eggs were incubated at 37.8°C, 55% RH until 3 

days before hatching, when RH was increased to 65% until hatch. After hatch chicks were 

fed a standard diet ad libitum until slaughter age at day 35 (D35). Broilers were 

slaughtered at the experimental poultry abattoir of the Department of Animal Sciences of 

the University of Goettingen, Germany, by electronarcosis (0.12 A, 5 to 10 sec) followed 

by exsanguination according to German animal welfare laws and regulations. Zoo-

technical and biochemical traits were recorded. Breast tissue samples (M. pectoralis) 

were collected in liquid nitrogen at slaughter (D35). Embryonic samples taken at ED10 

and ED13 as well as samples of D35 were sexed and for each experimental group (C10, 

H10, L10 and C13, H13, L13) at each time point (ED10 or ED13, respectively, plus D35) 

samples, balanced for sex, were selected for gene expression analyses with 8 samples per 

treatment (Fig 1). 

RNA Preparation 

Total RNA of individual tissue samples (n = 88) was isolated by Tri-Reagent 

extraction (Sigma-Aldrich, Taufkirchen, Germany). DNase treatment and column-based 

purification using the RNeasy Mini Kit (Qiagen, Hilden, Germany) were used to ensure 

purity. Quality of RNA was checked using 1% agarose gels containing ethidium bromide. 

Concentration of RNA was also detected by spectrometry with a NanoDrop ND-1000 

spectrophotometer (PEQLAB, Erlangen, Germany). Additionally, the absence of DNA 

contamination was verified by using the RNA as template in standard PCR amplifying 

fragments of the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene. All RNAs 

were stored at −80°C until further use. 
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Microarray Data Processing 

cDNA was generated by reverse-transcription of 500 ng of total RNA with the 

Ambion WT Expression Kit (Life Technologies GmbH, Darmstadt, Germany). Biotin-

labeled cRNA targets were identified with Affymetrix GeneChip WT Terminal Labeling 

Kit (Affymetrix, Santa Clara, CA, USA). Fragmented biotin-labeled cRNAs were 

hybridized on Chicken Gene 1.0 ST Arrays (Affymetrix) covering 439,582 probe-sets 

representing 18,214 gene level probe-sets. Following staining and washing protocols, the 

arrays were scanned by Affymetrix GCOS 1.1.1 software for raw results with official 

annotation (galgal3 build 34). 

Statistical Analysis 

Affymetrix Expression Console Software was used to normalize and quantify 

transcript expression by using the PLIER (Probe Logarithmic Intensity Error) algorithm 

together with DABG (detection above background), which joins probe-level p-values to 

create probe cell intensity values at the exon level. All data were deposited in an 

MIAME-compliant database, the National Center for Biotechnology Information Gene 

Expression Omnibus (www.ncbi.nlm.nih.gov/geo; accession number: GSE76670). 

Default thresholds were used to assign a “present” call (detection p-values < 0.04); 

present calls were synchronized with gene-level annotation. Filtering outlier and 

nonspecific results were done by using “genefilter” in R (www.r-project.org) considering 

standard deviations of normalized expression values at the gene-level. Analysis of 

variance was applied to detect transcriptional changes between treatment groups using the 

Mixed procedure in JMP Genomics (JMP Genomics 5, SAS Institute) considering 

individual and combined effects of temperature, treatment period and gender and 

slaughter weight. Sex was excluded from the statistical model due to marginal effects. 

The final model included fixed effects of temperature, treatment period and interactions. 

Slaughter weight was included as covariate for the 35 days post-hatch time course. 

Transcripts with significant differences of abundance at p-values 0.05 were selected and 

queried for pathways analysis. At pre-hatch stages p < 0.05 equals FDR adjusted p-values 

of q < 0.15; at D35 p < 0.05 corresponding q-values ranged between 0.2 and 0.7. 

Moreover, we have previously shown consistency of microarray expression data with real 

time qPCR data using hind muscle tissue of the same animals. In fact, we obtained 

significant correlation coefficients ranging between 0.71 and 0.84 [16]. Annotated genes 

with different transcript abundances are termed “differentially expressed genes (DEGs)”; 

higher (lower) abundance in treated group vs. control groups is termed up-regulated 

(down-regulated). 
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Pathway Mining 

Differentially expressed genes (DEGs) with p-values and fold changes were 

subjected to pathway analysis using the Ingenuity Pathway Analysis software (IPA, 

QIAGEN Redwood City, USA). Networks, biological pathways, and gene functions of 

the DEGs were extracted from the IPA Knowledge Base. Significant canonical pathways 

and biological functions (Fisher’s exact test, p-values < 0.05) were further adjusted for 

multiple testing (Benjamini-Hochberg) [17]. To simplify the interpretation of complexed 

biological networks, significant biological functions and pathways were aggregated into 

eight `major categories´ (sc. 1 – sc. 8): cell maintenance, proliferation, differentiation, and 

replacement (sc. 1); organism organ and tissue development (sc. 2); nutrient metabolism 

(sc. 3); genetic information and nucleic acid processing (sc. 4); molecular transport (sc. 

5); cell signaling and interaction (sc. 6); small molecule biochemistry (sc. 7); and 

response to stimuli (sc. 8). Furthermore, a state of pathway regulation was indicated by 

“activated” with a positive Z-score or “deactivated” with a negative Z-score (IPA). Genes 

used to generate biological networks were selected from pathways with a significant Z-

score. Legend of network shapes and relationships are available in S1 Fig. 

 

Results 

Effects on Breast-Muscle Transcriptome 

The chicken gene 1.0 ST array contains 165,815 probe-sets representing 20,828 

transcripts encoding for 18,214 genes. After data pre-processing and filtering, 8,317 

entries (gene level) passed to downstream analyses. In this study, we aimed to identify the 

effects of embryonic incubation temperature on transcriptional changes of the muscle 

tissue. We hypothesized that the effects may depend on time-windows of the embryonic 

development more specifically the development of muscle cells. We also speculated that 

the effects may have an influence on muscle development post-hatch. Therefore, 

transcriptional profiles of the breast muscle were compared between treatment conditions 

and control at the embryonic (in-ovo) and adult (post-hatch) stages using analysis of 

variance. Our results showed that high temperature (38.8°C) treatment during E7-10 

profoundly changed the transcriptional profile compared to the same thermal treatment 

during E10-13 in terms of the number of DEGs (1370 vs. 365) as shown in Table 1. On 

the other hand, low temperature (36.8°C) treatment showed smaller effects during the 

same embryonic stage (E7-10) as well as the later stage of E10-13. Long-term effects of 

changing embryonic incubation temperature were also shown in adult stage (35 days post-
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hatch) with pronounced effects observed in the low thermal treatment group during E10-

13 (Table 1). The further information on q-value is represented in S1 Table. 

Immediate and Long-Term Effects 

To identify immediate and long-term effects of the embryonic incubation 

temperature on changes of the breast muscle transcriptional profile, we extracted common 

and unique DEGs from different treatment conditions as well as from the two 

developmental stages. Firstly, DEGs from each treatment condition compared to control 

were mined separately for embryonic (Fig 2A) or adult (Fig 2B) samples. Overall results 

revealed that the number of unique DEGs for each treatment condition is greater than that 

of common DEGs, suggesting that changing of the incubation temperature at a particular 

time-window of embryonic development affects different gene-sets and pathways. Further 

extraction of common DEGs between embryonic and adult samples for each treatment 

condition are shown in Fig 2C–2F. About 3% of the DEGs were common between the 

embryonic and adult samples across treatment conditions, while a majority of DEGs were 

unique for each stage and thermal treatment combination. The present results suggest 

complex biological processes and gene regulation may involve long-term effects of 

changing incubation temperature as well as possible environmental interactions. 

To address the short- and long-term regulation of transcript expression following 

in-ovo temperature modification, DEG lists within the same treatment condition (H10, 

H13, L10, or L13) were compared between embryonic stages (ED10 or ED13) and D35 

(Fig 2C–2F). The number of common DEGs between the two stages ranged from 22 to 42 

(average 7%). Of 126 common transcripts in total (120 unique genes), 30 up and 36 

down-regulated genes showed the same direction of shifting between stages (S2 Table). 

For groups exposed to lower temperature at either ED7-10 or ED10-13 the majority (22 

out of 34 and 20 out of 28, respectively) of the DEGs found in embryonic and D35 

samples showed the identical direction of change of transcript abundances compared to 

the matched controls; for L10ΔC most DEGs are down-regulated whereas for L13ΔC 

they are up-regulated. Of the 42 common DEGs of the H10ΔC at embryonic stages and 

D35 30 showed higher abundance in the treated samples compared to controls at 

embryonic stage, but lower abundance in treated than in untreated samples of D35. For 

H13ΔC no trends are obvious. Lowered incubation temperature leads to a higher 

proportion of genes that are consistently modulated over the lifetime from embryonic 

stages to D35; higher incubation temperature, in particular at ED7-10 results in a 

considerable number of genes that are diametrically shifted in immediate and late 

response. 
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Pathway Mining 

To gain insight into molecular mechanisms underlying the thermal change effects, 

DEGs from each treatment (6 conditions) and stage (embryos and adults) were subjected 

to a knowledge base enrichment analysis for significant biological functions and 

pathways using IPA. Altogether, 92 and 115 biological functions were significantly 

enriched for DEGs derived from embryos and adult breast-muscle samples, respectively. 

To summarize and simplify the results, significant bio-functions were aggregated into 

eight major categories based on related ontology terms. The results are shown in Fig 3 

and detailed information is accessible in S3–S6 Tables. During early (ED7-10) muscle 

development, high embryonic incubation temperature affected biological processes 

including cell growth, tissue and organ development, nutrient metabolism, and cell 

signaling at higher degree (based on number of DEGs, bio-functions and statistically 

significant threshold) compared to the low temperature treatment. However, during late 

(ED10-13) muscle development, low temperature affected more of the aforementioned 

biological processes than did high temperature treatment (Fig 3). Prediction of pathway 

regulation as “activation” or “inactivation” based on Z-score (IPA) suggested that high 

incubation temperature at ED7-10 led to a shifting of cell maintenance, proliferation, 

differentiation, and replacement (sc. 1), and organism organ and tissue development (sc. 

2) towards increased formation of cells, tissues and organs and decreased apoptosis, 

necrosis and death (S3 Table). Interestingly, DEGs derived from the high temperature 

group during early muscle development (ED7-10) revealed gene networks related to 

skeletal muscle development and function of which SMAD3 (smad family member 3) 

functions as an down-regulated hub gene, highly connected with other genes in the 

network (Fig 4A). High incubation temperature during ED10-13 tended to hamper 

formation of filaments, cytoskeleton and cytoplasma (S4 Table). 

Long-term effects of thermal changes during embryonic development on 

biological processes were detected in adult samples, but less pronounced than observed in 

the embryos (immediate effects). Interestingly, low embryonic incubation temperature 

treatment seems to have long-term effects on cell growth and tissue development at later 

age. Low incubation temperature during ED10-13 affected most of genes related to 

organismal survival and post-translational modification. For L13ΔC a network related to 

skeletal-muscular and connective tissue development was derived (Fig 4B) with RUNX2 

(runt-related transcription factor 2) as the highly connected hub-gene. L10ΔC led to 

inactivation of pathways related to muscle cell formation and differentiation (S3 Table). 
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At D35, L10ΔC revealed most DEGs, however, L13ΔC affected more pathways 

than did early treatment (S5 and S6 Tables). Lower incubation temperature during ED10-

13 (L13UΔC) significantly influenced pathways related to five major categories including 

cell maintenance, organismal and tissue development, nutrient metabolism, molecular 

transport, and small molecule biochemistry (sc.1, 2, 3, 5, and 7). Z-scores show that 

L13UΔC condition led to activation of most pathways that are related to anabolic 

functions, whereas the biofunction organismal death is strongly inactivated (S6 Table). 

For L10ΔC, 19 transcripts formed a network for gene expression, cellular function, and 

cell signaling pathways (Fig 5A). MED24 (mediator complex subunit 24), TBP (TATA 

box binding protein), and TRRAP (transformation/transcription domain associated 

protein) were identified as top candidate genes in this network. For L13ΔC, the network 

included organ, embryonic, and skeletal-muscular system development and function (Fig 

5B). The 17 main transcripts included candidate genes of the myosin-myogenin group 

(MYH2, MYL3, and MYOG). 

The 22 durable down-regulated DEGs that are due to lower incubation 

temperature at ED7-10 (Fig 2D) and that are common in immediate and late response 

belong to gene expression pathways, and show negative Z-scores indicating deactivation. 

The functional network comprising these genes displays pathways of cell-to-cell signaling 

and interaction, cell death and survival, cell signaling, molecular transport, and vitamin 

and mineral metabolism (S2A Fig). For cold treatment at ED10-13 those 20 DEGs that 

were consistently up-regulated in short-term and long-term were related to proliferation 

and cell death, with Z-scores indicating deactivation of the first and activation of the 

second (Fig 2F). The functional network based on these DEGs is related to cell death and 

survival, cellular development, cellular growth and proliferation, protein synthesis, 

connective tissue disorders, as well as organismal injury and abnormalities (S2B Fig). For 

H10ΔC functional annotation analysis of 30 genes being immediately up-regulated at ED 

10 but down-regulated at D35 (Fig 2C) revealed opposing regulation of biofunctions 

related to amino acid metabolism and hyperplasia including formation of type II 

myofibers. 

 

Discussion 

The study aimed to identify genes and pathways that are immediately and lately 

shifted due to decreased and increased incubation temperature at two phases of 

myogenesis. Temperature adjustments at specific developmental time points could 

influence muscle development and potentially impact commercial meat production. In 
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fact, modulation of in-ovo development with impact on post-hatch growth has been 

demonstrated in a number of experiments, which differ in terms of direction and extent of 

temperature change and the time period. Hammond et al. (2007) [18] and Lourens et al. 

(2005) [19] showed that higher incubation temperatures during the first week of in-ovo 

development increases total embryo mass; however no effect on post-hatch was found 

[19]. We previously reported that the exact conditions used here, i.e. high temperature 

(38.8°C) between ED 7 to 10 or ED 10 to 13 results in higher body weights of 35 d old 

broilers compared to broilers from normal (37.8°C) or lower (36.8°C) temperature 

conditions within these periods [20]. Increment of body weight was attributable to 

increased size of breast muscle rather than hind muscle [15]. The treatment intervals 

coincide with secondary fiber development. Treatments may thus have stronger impact on 

the breast muscle than on the hind muscle with the former mainly consisting of type II 

fibers originated from secondary fibers and the later mainly consisting of type I fibers 

originated from earlier developing primary fibers. Moreover, ED10 and ED13 embryos of 

the low temperature group had slightly but significantly lower weights than the control 

group at the respective time points; higher incubation temperature slightly but non-

significantly increased the embryo weight (S3 Fig) [21]. Mitochondrial respiratory 

activity was lower in low temperature group at ED10 and ED13; higher incubation 

temperature led to higher mitochondrial respiratory rates at ED13. For metabolic enzymes 

only subtle mostly non-significant effects were found at the embryonic stages [21]. 

Accordingly, the D35 chickens analyzed here showed slight but significant increases in 

body or carcass weight when transiently incubated at higher temperature at ED7-10 or ED 

10–13, whereas decreased incubation temperature did not affect either body weight or 

carcass weight (S4 Fig). Breast muscle weight of the 35 days old broilers was highest in 

the H10 group and lowest in the L13 groups. While these two extremes differed 

significantly, there were no significant differences among the other groups and no 

deviation from the respective controls. 

The results suggest that transcriptional regulation taking place immediately in-ovo 

and in long-term after hatch displays mechanism that mediate resilient coping with low 

incubation temperature, whereas higher incubation temperature provokes phenotypic 

plasticity. We suspect that resilience to low temperature has been evolved by natural 

selection in bird species and still exists in commercial broiler lines. The phenotypic 

plasticity associated with higher incubation temperature offers perspectives for targeted 

modulation of traits relevant in poultry production by modulating incubation temperature.  
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Incubation Temperature Has Immediate Effects on Gene 

Transcription at Embryonic Stages 

Incubation temperature changes at both stages of myogenesis (ED7-10 and ED10-

13) result in immediate changes to breast muscle gene transcription. In particular, higher 

incubation temperature during early myogenesis and lower temperature during later 

myogenesis promote the up-regulation of many transcripts. The expression pattern of 

ED10 and ED13 were distinct, indicating the developmental stage has a larger effect than 

incubation temperature. 

Immediate Response to Early Modulation of Incubation Temperature 

For early treatment, high temperature (H10ΔC) activated pathways in cell 

maintenance and organismal development, and especially affected survivability pathways. 

In contrast, low temperature (L10ΔC) down-regulated the differentiation and formation of 

muscle cells. The latter may contribute to the slightly lower body weight of ED10 

embryos in the low temperature group. But since also liver and heart weight were 

significantly reduced in L10 compared to C10, low temperature seems to have a general 

quietening effect on development, not specific to myogenesis. Higher temperature did not 

provoke significant differences of weights (body, liver, and heart) compared to ED10 

control embryos. Moreover, activity of mitochondrial respiration (state-3-pyruvate/malate 

and state-3-succinate/rotenone) and enzyme activities (glycogen phosphorylase, lactate 

dehydrogenase, and cytochrome oxidase) was shifted by low and high temperature with 

inhibiting and activating effects on metabolic processes, respectively [21]. The high 

breast muscle weight of D35 broilers of the H10 group is in line with the increased 

expression of genes of proliferative pathways, particularly at the early hyperplastic phase 

of secondary fibers formation, that become white fibers, the major proportion of fibers in 

the M. pectoralis. The up-regulated transcripts following high temperature treatment 

formed a network in tissue development and connective tissue and skeletal muscle system 

development and function. SMAD3 is the hub gene in that network. SMAD3 is a 

transcription factor involved in the regulation of growth factor expression including 

transforming growth factor and connective tissue growth factors that are relevant to many 

developmental processes including myogenesis. The regulatory effect in myoblast was 

shown recently [22]. Moreover, SMAD 3 is involved in myostatin signaling during 

myogenesis. Analyzes of differential expression of wild and myostatin knockout mice 

revealed that many DEG exhibited an SMAD3 binding motif [23]. In our study SMAD3 

was down-regulated in muscle growth promoting hypertrophic conditions. 
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Immediate Response to Late Modulation of Incubation Temperature 

During later myogenesis (ED10-13), lower temperature produced more 

transcriptomic changes than did higher temperature. These conditions up-regulated 

pathways related to organismal survival and post-translational modification. Further 

prediction via Z-score revealed a potential prevention of organismal death and an increase 

in development of cardio-vascular system, size of body, and metabolism of carbohydrate 

but an inactivation of cellular proliferation and differentiation. In result L13ΔC treatment 

is associated with reduced in-ovo growth, but has no impact on adult body weight. Higher 

temperature late treatment affected a few pathways. The possibility of regulation along 

this process tended to inhibit cytoplasm development and formation of cytoskeleton and 

filaments. In the L13ΔC network, pathways affecting cardiovascular system, skeletal-

muscular, and connective tissue development are interconnected via RUNX2. RUNX2 

plays a central role in osteoblastic differentiation and skeletal morphogenesis [24]. In 

chicken embryos, overexpression of RUNX2 produces multiple phenotypes including 

joint fusions, expansion of carpal elements, and shortening of skeletal elements [24]. On 

the other hand, inactivation of RUNX2 results in a disruption in chondrocyte 

differentiation, vascular invasion, osteoclast differentiation, and periosteal bone formation 

as seen by severe shortening of the limbs [24]. Down-regulation of RUNX2 under low 

temperature conditions might suppress myogenesis process and embryo differentiation. 

This is in line with the reduced embryo body weight compared to control as well as 

enzyme activity (cytochrome oxidase) and mitochondrial respiration (state-3-

pyruvate/malate) in the L13 group [21]. 

Incubation Temperature Has Long-Term Effects on Gene 

Transcription at D35 

In-ovo temperature manipulation also produced long-term transcriptional changes, 

as demonstrated by differential gene expression in adult chickens. Our findings add 

support to previous research that demonstrated that increased and/or decreased incubation 

temperature affects post-hatch growth in avian species [1,25,26,27,28]. 

Long-Term Response to Early Modulation of Incubation Temperature 

In adults, the highest number of genes with different transcript abundance 

compared to control was induced following low-temperature incubations at ED7-10 

(L10ΔC). However, this did not lead to significant changes in either body weight or 

breast muscle weight of 35 day old broilers. Up- and down-regulated DEGs were related 

to cell cycle and nucleic acid processing with Z-scores indicating activation and 

deactivation, respectively. The DEG revealed a network related to gene expression, 
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cellular function, and cell signaling pathways and covering genes belonging to the RNA 

polymerase II apparatus like MED14, MED15, MED23, MED24, TBP, and TRRAP 

along with this treatment. Increased incubation temperature at ED7-10 did not lead to 

shifts of expression in broilers that reveal any prominent pathways in terms of 

significance and Z-scores. MED24, a mediator or transcriptional coactivator, interacts 

with RNA polymerase II and promotes formation of a transcriptional pre-initiation 

complex [29]. Further, several related genes, like MED10, MED14, MED15, and 

MED23, were represented in the network. Downregulation of MED24 may alter RNA 

polymerase II activity and lead to abnormal transcription/translation of genes. Similarly, 

TBP (TATA-binding protein) interacts with transcription factor IID (TFIID), which binds 

to the core promoter to position RNA polymerase II properly [30]). Two forms of TBP 

mRNA are expressed in chicken [31]. Disruption of TBP causes phenotypic abnormalities 

with delayed mitosis and induced apoptosis [32]. Finally, TRRAP is a phosphoinositide 

3-kinase-related kinase (PIKK) family member involved in transcription and DNA repair 

[29]. TRRAP is essential for early development, particularly for the mitotic checkpoint 

and regular cell cycle progression [33]. Thus, downregulation of genes following L10ΔC 

treatment may affect global gene transcription in-ovo. 

Long-Term Response to Late Modulation of Incubation Temperature 

High temperature treatment during ED10-13 tended to suppress tissue 

development pathways, especially body size. Furthermore, nutrition metabolism, 

quantity, and synthesis of carbohydrates and lipids were also suppressed. In contrast, low-

temperature treatment during ED10-13 tended to activate transcripts of trophic pathways 

and function while pathways related to cell death and apoptosis were reduced. In the 

nutrition group, metabolism of lipids was activated, but fat accumulation was deactivated, 

which may reduce concentrations of fatty acid components. In the network analysis, 

activation of organ, embryonic and skeletal-muscular system development were 

significant pathways with RAF1 and actin being hub genes. Actin represents an abundant 

protein with fundamental function in muscle tissue and the abundance of its transcript is 

linked with molecules that are not differentially expressed. Myosins are actin-based motor 

proteins that function in skeletal muscle contraction [34]. The proper function of both 

myosin heavy chain (MYH2) and myosin light chain (MYL3) are necessary to 

accompany actin filaments during eukaryotic motility processes [29]. Moreover, 

myogenin (MYOG), a muscle-specific transcription factor, is essential for developing 

functional skeletal muscle [35]. In chicken, MYOG affects muscle fiber trait specification 

[36]. Thus, upregulation of these genes could enhance muscle cell and contraction 
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processes. RAF1, which links also T-actin, is a MAP3K, i.e. a higher order kinase 

affecting the ERK-pathway via MEK1 and MEK2. The serine/threonine specific protein 

kinases, ERK1 and ERK2 are involved in control of gene expression and by this have 

effects on cell and tissue formation. Only recently it was shown in mice that the ERK1/2 

pathways is essential for the maintenance of adult muscle fibers and the link of the nerval 

and muscle system [37]. Also in chicken the ERK1/2 MAP is known to be involved in 

protein synthesis pathways particularly in myoblast cells [38]. Modulated incubation 

temperatures had significant effects on adult transcriptomes, and led to subtle but still 

significant phenotypic differences as long as increased temperature is concerned, i.e. 

increased body and breast muscle weight due to high incubation temperature. Lowered 

incubation temperature led to shifts of expression of an even higher number of genes but 

was not associated with significant phenotypic changes of day 35 broilers. 

 

Conclusion 

Increasing as well as decreasing of incubation temperature at two stages (ED7-10 

and ED10-13) affected the abundance of numerous transcript immediately and in the 

long-term. Functional annotation indicated that these genes are assigned to biofunctions 

related to cell formation and survival tending to be promoted, whereas metabolic 

pathways were less modulated. However, the sets of modulated genes were mostly 

specific to the different treatments. The fact that increased incubation temperature 

increased organismal growth but lowered temperature did not affect the phenotype at D35 

suggest that the shifts of expression associated with low temperature represent molecular 

routes promoting resilience to the treatment. In contrast, elevated incubation temperature 

conditions the organisms for increased growth. The altered expression displays the 

molecular pathways that mediate the phenotypic plasticity. The results have implications 

in terms of natural selection and the development of mechanisms to cope with advise 

conditions and in terms of deriving strategies to improve poultry breeding. Epigenetic 

temperature acclimatization might alter body growth and enrich poultry resistance to 

various environmental effects. It would be important to address the epigenetic changes at 

the molecular level in future studies. 
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Figure titles and Tables 

 

Fig 1. The experimental design shows the timeline and parameters for treatment. Each 

circle indicates the time point for sample collection (88 samples; n = 8 per treatment with 

adult controls n=8 in total). H, high temperature; L, low temperature; C, control; ED, 

embryonic day. 

 

Fig 2. Differentially expressed genes for each treatment condition relative to controls 

within embryonic (A) stages and at D35 (B) and between embryonic stages and D35 

within the same treatments (C-F) (blue embryonic, red adult). Intersection areas show 

numbers of common DEGs and their direction of regulation in each stage  
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Fig 3. Significant pathways affected by differential gene expression at embryonic stages and D35. Up (U) or Down (D) 

regulation of DEG associated with each comparison (versus control) are separated within each thermal modification: increase 

(H) or decrease (L) in incubation temperature during ED7-10 (H10 and L10) or ED10-13 (H13 and L13). Significant pathways 

are grouped into eight super-categories (sc.): sc.1 cell maintenance, proliferation, differentiation, and replacement; sc.2 

organismal organ and tissue development; sc.3 nutrient metabolism; sc.4 genetic information and nucleic acid processing; sc.5 

molecular transport; sc.6 cell signaling and interaction; sc.7 small molecule biochemistry; and sc.8 response to stimuli and 

associated. The –log (p values) related with significant pathways (Benjamini Hochberg corrected) are plotted in green (small) to 

red (large).  
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Fig 4. Major gene networks at ED10 and ED13. For H10ΔC a network related to tissue 

development and skeletal muscle development and function was derived (A). For L13ΔC 

a network related to skeletal-muscular and connective tissue development was derived 

(B). Red color, up-regulated; Green color, down-regulated.   

 

Fig 5. Major gene networks at D35. For L10ΔC a network related to gene expression, 

cell signaling and cellular function and maintenance pathways was derived (A). For 

L13ΔC a network related to organ, embryonic and skeletal-muscular system development 

and function was derived (B). Red color, up-regulated; Green color, down-regulated.   
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Table 1. Numbers of differentially expressed probes sets and respective genes 

(DEGs) revealed by comparisons between each in-ovo thermal modification condition 

and the time-matched control separated for embryonic stages or at D35 (p-value ≤ 0.05*). 

  
Treatment Probe-sets DEG 

Regulation 

  Up Down 

Embryo 

H10ΔC 1484 1370 1090 280 

H13ΔC 470 365 308      57   

L10ΔC 415 368 97 271 

L13ΔC 905 795 763 32 

D35 

H10ΔC 262 208 32 176 

H13ΔC 325 251 121 130 

L10ΔC 846 761 74 687 

L13ΔC 349 308 160 148 

*q<0.15 at embryonic stages; q= 0.2-0.7 at D35 

 

Supporting Information 

S1 Fig. IPA legend of network shapes and relationships.  

(source http://ingenuity.force.com/ipa/articles/Feature_Description/Legend). (TIF) 

S2 Fig. Major gene networks derived from genes consistently regulated at embryonic stages and 

D35. For L10ΔC a network related to cell-to-cell signaling and interaction, nervous system 

development, and cell survival pathway was derived (A). For L13ΔC a network related to cell 

death and survival, cellular development, and cellular growth and proliferation was derived 

(B). Red color, up-regulated; Green color, down-regulated. (TIF) 

S3 Fig. Body weight after exposure to H (High 38.8°C), C (Control 37.8°C), and L (Low 36.8°C) 

temperature at the end of intervention, ED10 and ED13, respectively (adapt from [17]). (DOCX) 

S4 Fig. Body, carcass and breast muscle weights at day 35 after in-ovo exposure to H (High 

38.8°C), C (Control 37.8°C), and L (Low 36.8°C) temperature at ED7-10 and ED10-13. (DOCX) 

S1 Table. Numbers of differentially expressed probes sets at p 0.05 and corresponding q-value for 

the variance components. The comparisons between each in-ovo thermal modification condition 

and the time-matched control separated for embryonic stages or post-hatch D35. (DOCX) 

S2 Table. DEGs common to both embryonic stages and D35. (DOCX) 

S3 Table. Assignment of DEGs to biological functions (major categories and Ingenuity-bio-

functions) (p 0.05) obtained at embryonic stage for early treatment; H10UΔC, H10DΔC, L10UΔC 

and L10DΔC. (DOCX) 

S4 Table. Assignment of DEGs to biological functions (major categories and Ingenuity-bio-

functions) (p 0.05) obtained at embryonic stage for late treatment; H13UΔC, H13DΔC, L13UΔC 

and L13DΔC. (DOCX) 

S5 Table. Assignment of DEGs to biological functions (major categories and Ingenuity-bio-

functions) (p 0.05) obtained at adult stage for early treatment; H10UΔC, H10DΔC, L10UΔC and 

L10DΔC. (DOCX) 
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S6 Table. Assignment of DEGs to biological functions (major categories and Ingenuity-bio-

functions) (p 0.05) obtained at adult stage for late treatment; H13UΔC, H13DΔC, L13UΔC and 

L13DΔC. (DOCX) 
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CHAPTER IV 

 

 

miRNAs regulate acute transcriptional changes in broiler embryos in 

response to modification of incubation temperature 
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Abstract 

 microRNAs are post-transcriptional regulators that play critical roles in diverse 

biological processes. We hypothesized that miRNAs may be involved in regulating 

transcriptome responses to changes in embryonic incubation temperature in chickens, a 

process that may have important implications for broiler meat production. Therefore, we 

conducted comparative transcriptome profiling of miRNAs to examine altered expression 

in breast and hind muscle of embryos and day 35 chickens experiencing high (38.8°C), 

control (37.8°C), or low (36.8°C) embryonic incubation temperature during embryonic 

day (ED) 7–10 or ED10–13. The results revealed differential expression of some 

miRNAs due to modification of embryonic incubation temperature in muscle type-

specific and developmental stage-specific manners. The immediate effects of thermal 

change observed in embryos were considerable compared to long-term effects in chickens 

at day 35 post-hatch, which were subtle. Upregulation of miR-133 in breast muscle and 

downregulation of miR-199a-5p, miR-1915, and miR-638 in hind muscle post-ED7–10 

high-temperature treatment were functionally associated with myogenesis and body size. 

The effects of ED10–13 low-temperature treatment were also observed in downregulation 

of let-7, miR-93, and miR-130c. Several differential miRNAs were functionally linked to 

nutrition metabolism, thermogenesis, and apoptosis. These results provide insight into the 

dynamics of miRNA expression at variable embryonic incubation temperatures and 

indicate a major regulatory role of miRNAs in acute responses to modified environmental 

conditions.  

Keywords: chicken; incubation temperature; microRNA; expression; microarray; muscle 
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Introduction  

Embryonic incubation temperature is a key factor for optimal physiological and 

developmental processes that may a have long-term influence on adult chickens. 

Incubation temperature profoundly influences physiological responses via alteration of 

biochemical reaction rates and protein structures as well as catalytic enzyme functions 

(Tattersall et al., 2012). Within a limited range, it is critical for broilers to optimize body 

temperature during pre- and post-hatch processes (Piestun et al., 2008).  

Manipulation of incubation temperature during specific stages of development can 

result in immediate transcriptomic changes in embryos, although changing temperature 

beyond critical thresholds can be lethal. Previous studies demonstrated that high 

temperatures during embryonic day (ED) 7–10 positively associate with improvement of 

slaughter and breast muscle weights in male broilers, but do not influence meat quality 

(Werner and Wicke, 2008). Our previous experiments showed acute and long-term 

transcriptomic changes with temperature manipulation during muscle fiber formation. 

Also, thermal incubation treatments influence several biological functions and pathways 

depending on stage of muscle fiber development (Naraballobh et al., 2016). Hence, 

manipulation of embryonic incubation temperature may have implications in broiler meat 

production.  

Several studies have indicated that temperature changes impact not only 

transcriptional changes, but also post-transcriptional regulation in diverse species. In 

aquatic ectotherms Atlantic cod (Gadus morhua), changing incubation temperature during 

the early somite stage can have significant long-term effects on microRNA (miRNA) 

activities in juvenile pituitary, gonad, and liver tissues (Bizuayehu et al., 2015). Another 

marine species, Senegalese sole (Solea senegalensis), induces dynamic expression of 

several miRNAs during early development at lower incubation temperatures (15°C) 

(Campos et al., 2014). After entering deep cold torpor, lined ground squirrels (Ictidomys 

tridecemlineatus) and little brown bats (Myotis lucifugus) have reduced miR-106b 

expression, which is associated with lower body temperature during hibernation and is 

involved in regulation of hypoxia inducible transcription factor-1α (HIF-1α) in animals’ 

skeletal muscle and liver (Maistrovski et al., 2012). Further, heat stress alters expression 

of several miRNAs in primary cultured human small airway epithelial cells (Potla et al., 

2015). Altogether, this evidence demonstrates that miRNAs have evolutionarily 

conserved roles in diverse biological processes, including temperature control.  
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 miRNAs are conserved, non-coding RNAs of approximately 17–22 nucleotides in 

length that are involved in RNA silencing (cleavage) and post-transcriptional regulation 

in most, if not all, eukaryotes (Bartel, 2004). Biogenesis of miRNAs involves 

transcription as long primary transcripts (pri-miRNAs), which are processed to pre-

miRNAs and then to mature miRNAs that are ultimately loaded selectively onto the 

RNA-inducing silencing complex (RISC) to become functional. miRNAs play important 

roles in numerous biological processes, such as developmental timing, cell death, and cell 

proliferation. Animal miRNAs partially or perfectly bind target sequences generally at the 

3’ untranslated regions (3'-UTR) of target genes (Kim et al., 2009). In general, an 

individual miRNA can regulate hundreds or thousands of target genes, and a single gene 

can be targeted by several miRNAs. These complex relationships pose a challenge to 

obtaining discrete results in miRNA studies.   

 We investigated potential miRNAs involved in regulation of transcriptome 

responses to modification of embryonic incubation temperature during early (ED7–10) or 

late (ED10–13) muscle fiber development of broiler-type chickens. In addition to 

traditional in silico target prediction, we complemented the assignment of miRNA–

mRNA relationships and determination of functionally relevant miRNAs derived from 

this study by using correlation analyses between expression of differentially expressed 

miRNAs and previous mRNA expression data from the same samples. Potential target 

genes were further analyzed for biological functions and pathways using enrichment 

analysis of Ingenuity. 

 

Materials and methods 

Design and sample collection 

 We used hatching eggs from a commercial broiler line (Cobb-Vantress Inc., 

Siloam Springs, USA) and equally randomly assigned 1,001 hatching eggs to 6 

experimental groups. All environmental conditions were comparable for all groups except 

experimental thermal profile. Incubation (machine) temperature was maintained at 37.8°C 

with 55% relative humidity (RH) until three days prior to hatch, at which time RH was 

adjusted to 65% until hatching. The experimental thermal profile was modified for groups 

1–3 during early development (ED7–10) and for groups 4–6 during late muscle 

development (ED10–13) by adjusting temperature to 38.8°C (high temperature), 37.8°C 

(control), or 36.8°C (low temperature). The following experimental groups were 
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established: 1) 38.8°C, 65% RH, ED7–10 (H10); 2) 37.8°C, 55% RH, ED7–10 (C10); 3) 

36.8°C, 55% RH, ED7–10 (L10); 4) 38.8°C, 65% RH, ED10–13 (H13); 5) 37.8°C, 55% 

RH, ED10–13 (C13); 6) 36.8°C, 55% RH, ED10–13 (L13). 

For each group, breast muscle (M. pectoralis) and hind muscle (M. 

gastrocnemius) tissue samples were collected at the respective embryonic stages (ED10 

or ED13) and at D35 post-hatch. Tissue samples were immediately dissected, snap frozen 

in liquid nitrogen, and stored at –80°C until use. Post-hatch chicks were fed a standard 

diet ad libitum until slaughter at D35. Zootechnical and biochemical traits were examined 

as previously described (Janisch et al., 2015). All animals were sexed, and 6–8 sex-

balanced animals per experimental group at ED10, ED13, or D35 were used for 

expression analyses. Study design and sample collection procedures were approved by the 

Institutional Animal Care and Use Committee (IACUC) of the Department of Animal 

Sciences of the University of Goettingen, Germany and the Leibniz Institute for Farm 

Animal Biology and conducted according to the guidelines of the German Law of Animal 

Protection and the “EU Directive 2010/63/EU for animal experiments”. 

Small RNA isolation 

 Total RNA was isolated from individual samples (6 samples x 6 treatment groups 

x 2 muscle tissues at ED10 or ED13; 8 samples x 6 treatment groups x 2 muscle tissues at 

D35) using Tri-Reagent (Sigma-Aldrich, Taufkirchen, Germany), and the small RNA 

fraction was retained using miReasy and RNeasy MinElute Cleanup kits (Qiagen, Hilden, 

Germany) with an on-column DNase treatment according to the manufacturer’s protocol. 

RNA integrity was assessed by an approximate 2:1 ratio of 28S and 18S rRNA bands on 

gel electrophoresis. Total RNA concentration was determined using a NanoDrop ND-

1000 spectrophotometer (PEQLAB, Erlangen, Germany). Additionally, absence of trace 

DNA contamination was verified by PCR amplification of glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) in RNA samples. All RNA samples were stored at −80°C until 

use. 

microRNA expression 

 Small RNA fractions (200 ng) were used for sample preparation using a FlashTag 

BioTin RNA labeling kit (Affymetrix, Santa Clara, CA, USA). Fragmented biotin-labeled 

cRNAs were further hybridized for 16 hours to an Affymetrix GeneChip miRNA 3.0 

Array containing 19,724 probe-sets designed from 153 species based on miRBase version 

17. After staining and washing on an Affymetrix Fluidics Station 450, arrays were 
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scanned on an Affymetrix G3000 Gene Array Scanner. Raw data were pre-processed 

using Affymetrix GCOS 1.1.1 software.  

Data processing and statistical analysis 

 Raw probe signal intensity was pre-processed and normalized using Perfect 

Matched and Detection Above Background features of Affymetrix Expression Consol 

software. Data were submitted to the MIAME-compliant database Gene Expression 

Omnibus (accession number: GSE83703-GSE83704) accessible via the National Center 

for Biotechnology Information (www.ncbi.nlm.nih.gov/geo). Differential expression of 

miRNAs was computed by analysis of variance (JMP Genomics, SAS-Institute, Cary, 

NC, USA). Independent calculation was performed for each tissue. Fixed effects of 

temperature, treatment period, and their interactions were modeled in statistical tests. For 

analysis in D35 samples, slaughter weight was used as covariance in the statistical model. 

Differentially expressed miRNAs were identified by comparing treatment groups and 

corresponding controls for ED7–10 or ED10–13. Significance threshold was set at p ≤ 

0.05, controlled for multi-hypothesis testing by False Discovery Rate (FDR) correction. 

Functional miRNAs and potential target genes 

 To identify functional miRNAs and potential target genes, we integrated miRNA 

expression data from the present study and mRNA expression data of samples from our 

previous publication using correlation analysis and target prediction (Figure 1). Firstly, 

correlation analyses between signal intensities of differentially expressed miRNAs and all 

mRNA probe-sets were calculated. All significant negative correlations between miRNA–

mRNA pairs were retained (p ≤ 0.05; 5% FDR). Secondly, all differentially expressed 

miRNAs were scanned for potential target genes against all available chicken mRNA 

sequences in the NCBI database using Target Scan software (Agarwal et al., 2015). 

Predicted targets were further filtered using RNA Hybrid software (Rehmsmeier, 2004) 

with an energy threshold cut-off of ≤–25 kcal/mole. A “functional” miRNA was defined 

as a differentially expressed miRNA that negatively correlated with mRNA transcriptional 

level and was predicted as a binding site on the respective target gene candidates.   

Pathway analysis  

 Differentially expressed miRNAs and their potential targets were mined for 

biological functions and gene regulatory networks using Ingenuity Pathway Analysis 

(Ingenuity Systems Inc., Redwood City, CA, USA). Statistical significance was 

determined based on Fisher’s exact test (p ≤ 0.05). Significant biological pathways for 
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each list of miRNAs and target genes were aggregated into new major categories based 

on shared GO subterms to simplify results, while maintaining a comprehensive view of 

biological processes.  

Eight major biological functional groups were defined: (1) cell maintenance, 

proliferation, differentiation, and replacement; (2) organismal, organ, and tissue 

development; (3) nutrient metabolism; (4) genetic information and nucleic acid 

processing; (5) molecular transport; (6) cell signaling and interaction; (7) small molecule 

biochemistry; and (8) response to stimuli. Significant pathways were further considered 

“activated” or “deactivated” based on positive or negative Ingenuity Z-scores, 

respectively. Selected genes were used to generate regulatory networks based on best Z-

score, p-value, and biological functions related to tissue development and myogenesis. 

 

Result 

Differentially expressed miRNAs 

 Although the Affymetrix GeneChip miRNA 3.0 array contains multiple mature 

miRNAs from diverse species that may resemble a chicken miRNA family, we treated 

each mature miRNA probe-set as an entity (feature) in statistical tests and then aggregated 

significant probe-sets into unique mature miRNAs. The number of differential probe-sets  

and mature miRNAs (unique miRNAs) for each tissue type, temperature treatment 

condition, and sampling stage are summarized in Table 1.  

Several differentially expressed mature miRNAs were detected in almost all 

comparisons at a statistical threshold of p < 0.05 and FDR-adjusted p < 0.18, except for 

D35 breast muscle (Table 1). To include all miRNAs that may be biologically meaningful, 

we relaxed the threshold for D35 breast muscle to consider all significant tests with p < 

0.05 and FDR-adjusted p < 0.71. Overall, hundreds of miRNAs were differentially 

expressed across comparisons of temperature treatments, tissue types, and sampling 

stages, with a comparable number of upregulated and downregulated miRNAs. These 

results suggest that dynamic miRNA changes may regulate transcriptional alterations due 

to modification of embryonic incubation temperature.  

Functional miRNAs and potential target genes 

 Integrating miRNA expression data with previous gene expression profiles of 

matched samples (www.ncbi.nlm.nih.gov/geo; accession number: GSE76670) using 

correlation analysis revealed “functional” miRNAs with negatively correlated miRNA–
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mRNA relationships. From our previous study, we found that increasing temperature 

from 37.8°C to 38.8°C during ED7–10 (H10) and decreasing temperature from 37.8°C to 

36.8°C during ED10–13 (L13) resulted in considerable immediate transcriptomic changes 

(based on the abundance of differentially expressed genes) in embryos, while decreasing 

temperature during ED7–10 (L10) as well as ED10–13 (L13) showed large long-term 

effects in D35 chickens (Naraballobh et al., 2016). Therefore, we focused on these 

treatment conditions.  

Numbers of miRNA–mRNA pairs, covering potential miRNA-targeted genes 

negatively correlated with miRNAs and also predicted as miRNA binding sites, and 

unique miRNAs are presented in Table 2. Overall, embryos had higher numbers of 

potential miRNA–mRNA relationships, ranging from 104 miRNA–mRNA pairs for L13 

in hind muscle to 941 pairs for H10 in breast muscle, compared to D35 chickens (2 pairs 

for L13 in hind muscle and 19 pairs for L10 in breast muscle).  

For H10, 421 unique genes were negatively correlated with 40 miRNAs and 200 

unique genes were predicted as target candidates for 38 miRNAs in breast and hind 

muscles. Number of miRNA–mRNA pairs in breast muscle was higher than in hind 

muscle during the embryonic stage. A considerable number of miRNAs and potential 

targets were also identified in L13 in both muscle types. Only up to 10 miRNA–mRNA 

pairs were found among treatment conditions and muscle types at D35 (Table 2).  

Differential miRNAs and potential target genes were further used to generate a 

hierarchical clustering based on expression level to demonstrate an overall negative 

correlation between miRNA and mRNA expression levels (Figure 2). Altogether, these 

results suggest that miRNAs may play an essential regulatory role on the immediate 

transcriptome response to modification of incubation temperature.  

Pathway analysis 

 To functionally link miRNAs to the physiological effects of modification of 

embryonic incubation temperature, differentially expressed miRNAs and potential target 

genes were analyzed using Ingenuity and its Knowledge Base software. To simplify and 

comprehend the resulting complex biological pathways and key genes, we aggregated 

significant terms and pathways into “major functional categories” based on shared terms 

and keywords of those pathways. In addition, we used the Z-scores generated by 

Ingenuity algorithms, which can predict tendency of “pathway activation” or “pathway 

deactivation” defined by positive or negative scores, respectively. Pathways in significant 
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functional categories for each treatment condition at embryonic stages are summarized in 

Table 3 and Supplementary Tables S1 and S2.  

In breast muscle of embryos, H10 showed activation of pathways related to cell 

maintenance and proliferation, organismal and tissue development, and nutrient 

metabolism, while L13 showed stimulated cell maintenance and proliferation, organismal 

and tissue development, genetic information and nucleic acid processing, cell signaling, 

and interaction and response to stimuli. Hind muscle of embryos showed deactivation of 

cell maintenance and proliferation, while L13 affected cell maintenance, proliferation, 

and differentiation pathways. Detailed information of pathway analyses can be found in 

Supplementary Tables S1 and S2. Functional miRNAs obtained from H10 and L13 that 

were highly associated with various target genes and that therefore were related to at least 

4 out of 8 major categories are provided in Tables 4 and 5.  

Regulatory networks predicting potential physiological effects   

 Representative miRNA–mRNA regulatory networks were modeled for H10 

(Figure 3) and L13 (Figure 4) treatment in breast and hind muscles. The networks 

integrate miRNAs, potential target genes, and Ingenuity biofunctions and display an 

enrichment of miRNA–mRNA pairs related to major functional categories of cell 

maintenance, proliferation, and differentiation as well as tissue and organ development 

(Supplementary Tables S1 and S2).  

Representative miRNA–mRNA regulatory networks demonstrate complex 

connectivity and relationships between the two molecular features. Sets of miRNAs target 

several genes that assemble into biological pathways and hence regulate these pathways. 

For example, miRNAs derived from H10 revealed activation of cytoskeletal organization 

and inhibition of cytoskeletal formation, demonstrating the overall fine tuning and 

balancing impact of miRNA post-transcriptional regulation (Figure 3A and 3C). We also 

observed activation of pathways involved in white blood cell quantity, vasculogenesis, 

and thermogenesis as well as stimulation of body size. Pathways involved in reduced 

organismal death and perinatal death are shown in Figure 3B and 3D. 

 Breast muscle that experienced reduced incubation temperature during ED10–13 

showed stimulation of pathways related to proliferation, activity, formation, 

differentiation, and homeostasis of white blood cells. Regulated pathways included 

reduced growth of neurity (Figure 4A). In hind muscle, we identified pathways involved 

in activation of apoptosis and cell survival (Figure 4C). In breast muscle, we identified 
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pathways related to white blood cell quality and development of body trunk. We also 

identified deactivation of organismal death and bone size (Figure 4B) and, in hind muscle, 

inhibition of growth of connective tissue (Figure 4D). Additional information for all 

pathways derived from miRNA–mRNA relationships indicated from integrated data 

analysis is available in Supplementary Figures S1–S4. 

 

Discussion  

 Accumulating evidence suggests that modification of embryonic incubation 

temperature can result in phenotype variations of D35 chickens, such as adaptation to 

environmental conditions like heat stress. We have previously reported that changing 

incubation temperature during embryonic myogenesis influences weight gain and meat 

quality of broilers (Janisch et al., 2015). Further, we have demonstrated that both 

increasing and decreasing incubation temperature (1°C from the control, 37.8°C) 

immediately affects transcriptome profiles of embryonic muscle and associates with 

transcriptional changes of muscle of D35 chickens, indicating potential long-term effects 

of embryonic incubation temperature (Naraballobh et al., 2016). This study now 

establishes posttranscriptional regulation by miRNAs in the above phenomenon.  

Indeed, we found many differentially expressed miRNAs after thermal incubation 

treatments at the embryonic stage, compared to only a few differential miRNAs in D35 

chickens. These results suggest that miRNAs play a major role in acute regulation of gene 

expression, especially in response to environmental circumstances during embryonic 

development, when thermoregulatory systems are not yet fully functional. It may also 

explain subtle changes of miRNAs and mRNAs in D35 chickens associated with 

embryonic thermal treatment. However, mechanisms other than miRNA regulatory 

networks seem to be more important for long-term transcriptional changes in response to 

in-ovo thermal treatment. 

 For functional analysis, we focused on two thermal treatment conditions: H10 

(high temperature during ED7–10) and L13 (low temperature during ED10–13), based on 

differentially expressed target mRNAs from previous reports (Naraballobh et al., 2016). 

Because studies of miRNAs have relied on target prediction, software tools based on 

different algorithms could have varied results. We therefore combined miRNA–mRNA 

correlation analysis and target prediction approaches to identify and simultaneously 

validate functional miRNAs and their potential target genes. We combined two 
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approaches to predict potential miRNA target genes, Target Scan and RNA Hybrid. This 

combined approach is not only based on conservation of miRNA seed match, but also 

minimum free energy hybridization of RNAs. Further, we analyzed in silico biological 

functions of the identified differential miRNAs in regulatory contexts with their potential 

target genes using Ingenuity analysis software and Knowledge Base and further linked 

them to gene ontology (GO)-based functional categories and physiological effects using 

the Ingenuity Z-score approach.      

H10: High temperature during ED7–10 

 Within each major category, networks linking target mRNAs, miRNAs, and 

biofunctions display the multi-connectivity of these elements (Figures 3 and 4 for major 

categories 1 and 2; Supplementary Figure S1–S4 for remaining major categories). While 

most knowledge about the functional role of miRNAs comes from studies of pathological 

conditions, in particular cancer, our results provide evidence for miRNAs’ role in 

ontogenetic proliferation and differentiation processes. In fact, H10 treatment consistently 

shifts expression of miRNAs related to these cellular developmental processes at in-ovo 

stages. Moreover, H10 treatment promotes pathways related to organismal survival and 

carbohydrate metabolism. In particular, thermogenesis, which is involved in 

thermoregulation, is important in breast muscle but not hind muscle.  

In breast muscle, two differential miRNAs, miR-138 and miR-3017a, targeted 

genes that were enriched for major category 2 and predicted for activating thermogenesis. 

Among those target genes was CSPG4, which is known to be involved in vasculogenesis. 

Interestingly, 12 miRNAs, including miR-133, miR-199, and miR-212, were associated 

with genes in major category 3 that are related to metabolism and synthesis of 

carbohydrates: upregulated ADRB2, CX3CL1, and PPP1R3B; and downregulated CHPF 

and CHST3. While PPP1R3B was found in liver and skeletal muscle tissues, it is also 

involved in regulating glycogen synthesis by forming a glycogen-targeting subunit for 

phosphatase PP1.  

 In hind muscle, differentially expressed miRNAs, including miR-199a-5p, miR-

1915, and miR-638, were related to 14 genes in major category 2, which is associated 

with accumulated body size and reduced perinatal death, including CUL4B, ITSN1, 

MLL5, and MYH11. MYH11 is a smooth muscle myosin belonging to the myosin heavy 

chain family that shares features of ATP hydrolysis, actin binding, and potential for 

kinetic energy transduction. Alternative splicing of MYH11 generates different isoforms 
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during muscle cell development that might indicate cancer (Sebestyen et al., 2015). 

MYH11 was upregulated and correlated with miR-971 in breast muscle as well as miR-

1915, miR-199a-5p, and miR-638 in hind muscle. Further, the results show that 

hydrolysis of carbohydrates mediated by genes such as MTM1, NT5E, PLCB1, and 

MGLL, which are related to nutrition metabolism in major category 3, are targeted by 

miRNAs shifted at H10 in hind muscle (miR-199a-5p, miR-212, and miR-222).  

 Interestingly, both tissues from the H10 group resulted in stimulation of major 

category 1, organization of cytoskeleton and cytoplasm, which is linked to several 

miRNA-targeted genes, including CDKN1B, MTUS1, PIK3R1, PLXNB2, and SYK. 

Especially PIK3R1, which is represented in multiple functional categories, was predicted 

to be a potential target of miR-739 in breast muscle and miR-2861, miR-3960, and miR-

4592 in hind muscle. In addition, several target genes were associated with improved 

survival in major category 2 by deactivating organismal death and perinatal death in both 

breast and hind muscle. Overall, H10 treatment effects tended to favor improvement of 

body weight and organs compared to low temperature treatment, which is in line with 

previous observations (Krischek et al., 2016).  

miR-133, known as a muscle-specific miRNA also called “myomiR,” was 

upregulated in breast muscle along with miR-199a-5p, miR-1915, and miR-638, which 

were further selected to model miRNA–mRNA regulatory networks. miR-133, together 

with miR-1 and miR-206, expressed in cardiac and skeletal muscle can impact muscle 

proliferation, myotube formation, and differentiation (Koning et al., 2012; Wang, 2013). 

However, Chen et al. (2006) showed that upregulation of miR-133 was associated with 

myoblast proliferation but reduced cell differentiation. Regulation of miR-133 itself is 

initiated at the level of pri-miRNA processing (Ge and Chen, 2011). In chickens, miR-

133a and miR-1a have been reported as stimulatory factors in late-stage development in 

response to myogenin (Wang et al., 2012). 

 miR-199a-5p is a member of the miR-199 family, which is involved in multiple 

roles, including stem cell differentiation, embryo development, and cardiomyocyte 

protection (Gu and Chan, 2012). Upregulation of miR-199a-5p is related to pathological 

processes of fibroblast proliferation (Lino Cardenas et al., 2013), whereas downregulation 

of miR-199a-5p involves control of angiogenic responses (Chan et al., 2012). Moreover, 

miR-199a-5p has a critical role in WNT2-mediated regulation of proliferation and 

differentiation processes in smooth muscle hypertrophy (Hashemi Gheinani et al., 2015). 
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 Human miR-1915 is expressed in regulated adult renal progenitor cells prior to 

stemness and repair (Sallustio et al., 2013). Increasing miR-1915 expression improves 

differentiation from tubular cells into adipocyte-like and epithelial-like cells, while 

downregulation of miR-1915 could cause CD133 overexpression, which is an important 

marker of renal progenitors (Sallustio et al., 2013). BCL2 is a miR-1915 target that shows 

a negative correlation and modulated multidrug resistance by increasing drug sensitivity 

in human colorectal carcinoma cells (Xu et al., 2013). Moreover, tumor suppressor p53, 

which is altered in numerous human cancers, induces expression of miR-1915 to target 

BCL2 translation in response to DNA damage and stimulated apoptosis (Nakazawa et al., 

2014), suggesting that downregulation of miR-1915 could reduce apoptotic cell death.  

 miR-638 regulates human vascular smooth muscle cell proliferation and migration 

to promote development of vascular pathologies. By targeting the NOR1/cyclin D 

pathway, miR-638 has been proposed as an alternative treatment for vascular proliferative 

diseases (Li et al., 2013). Recently, upregulated miR-638 has been associated with 

inhibited proliferation and promoted myeloid differentiation in acute myeloid leukemia 

cells by targeting cyclin-dependent kinase 2 (Lin et al., 2015).  

Overall, for H10, shifts of miRNA expression mainly affects pathways related to cell 

survival, angiogenesis and vascularization and also more specific pathways of 

myogenesis. 

L13: Low temperature during ED10–13 

 At the level of biofunctions, L13 treatment affects pathways related to cellular and 

organismal development via processes of proliferation, differentiation, and death. This is 

similar to H10 conditions; however, largely different miRNAs and target genes are 

shifted, indicating that alternative pathways are addressed to keep conditions close to 

homeostasis.   

Compared to H10 treatment, L13 had less differentially expressed genes. Low 

temperature treatment during ED10–13 (i.e., formation of secondary fibers during 

myogenesis to which structural myoblasts attach core muscle) activated several miRNAs 

that in turn regulated major categories 1 and 2. In breast muscle, major category 1 showed 

potential activation of 23 biological functions, such as cellular activity of formation and 

engulfment. Formation of cells was influenced by upregulation of RNF2 and TCF3 and 

downregulation of RUNX2. These genes were targeted by miR-130c, miR-263a-star, and 
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miR-312-5p. Moreover, other differentially expressed genes, including JAM3, PATZ1, 

PICK1, SOAT1, and SRF, were also associated with these miRNAs.  

It is interesting that differential miRNAs from L13 treatment related to predicted 

tendency of reduced bone size. Target genes NOTCH2, HIVEP3, AMER1, and RUNX2 

were regulated by downregulation of let-7, miR-93, and miR-130c.  

Furthermore in breast muscle at L13 eight differentially expressed genes and 16 

differential miRNAs, including let-7, miR-92, and miR-93, belonged to major category 3, 

with biofunctions of uptake of carbohydrate and D-glucose.  

For hind muscle, major category 1 relates to initiation of cell death and apoptosis 

via multiple differentially expressed genes, including downregulated ADAMTS20 and 

OSBP2 and upregulated PRPS1, RCAN2, and SRF. Multiple miRNAs, including miR-

132, miR-138, miR-222, miR-271, miR-383, miR-1245b-3p, miR-2137, and miR-3042, 

are well correlated with this functional category. IRS1, RAPGEF1, RUNX2, and SRF are 

targeted by miR-130c, miR-271, and miR-2137. Further, an activated biological function 

in major category 8 was cell movement of neutrophils, which relates to CTSG, PRKCQ, 

SRF, and TSC1. These target genes are targeted by miR-138, miR-222, miR-271, and 

miR-383. 

We have reported that L13 treatment is associated with low body weight of 

embryos compared to high temperature treatment (Krischek et al., 2016). Bone and 

muscle are highly associated during developmental stages (Daly et al., 2004), so reducing 

bone size could also correlate with low body weight.  

 Let-7 has been a major topic of discussion for functional roles of miRNAs. Let-7 

is among seven miRNAs that play major roles in reducing proliferation during 

differentiation (Wang, 2013). Let-7 family members are associated with aging in humans 

and downregulation of cell cycle control, such as cellular proliferation and differentiation 

pathways (Drummond et al., 2011). Moreover, during myogenesis, let-7 can suppress 

Dicer and HMGA2, which have roles in adipogenesis and mesenchymal differentiation 

(Dröge and Davey, 2008). Interestingly, long non-coding RNA H19, possessing multiple 

let-7 binding sites, is proposed to prohibit let-7 from binding to other targets (Shenoy and 

Blelloch, 2014). 

 miR-93 functions as a tumor suppressor in breast cancer cell lines by regulating 

proliferation and differentiation states (Liu et al., 2012). miR-93 can potentially 

downregulate AKT3, which reduces proliferation and facilitates differentiation of 
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myoblasts in skeletal muscle development (Wei et al., 2013). Moreover, upregulation of 

miR-93 can reduce hypoxia-induced apoptosis in both endothelial and skeletal muscle 

cells and then improve perfusion recovery from hind limb ischemia in vitro and in vivo 

(Hazarika et al., 2013).  

 miR-130c is related to thermal regulation in various species, especially in aquatic 

ectotherms. Previous studies showed that Atlantic cod (Gadus morhua) have less miR-

130c transcripts during early somite formation at 9.5°C incubation temperature 

(Bizuayehu et al., 2015). Another marine species, Senegalese sole (Solea senegalensis) 

vigorously expresses several miRNAs, including miR-130c, during early development 

(20-somite stage) at lower incubation temperature (15°C) (Campos et al., 2014). 

 

Conclusion 

 In the present study, we have demonstrated that modification of embryonic 

incubation temperature immediately affects miRNA expression profiles of breast and hind 

muscles of chicken embryos and is associated with altered expression of miRNAs in D35 

chickens. An integration analysis of miRNA data and previous matched-sample mRNA 

data revealed functional miRNAs and enabled assembly of miRNA–mRNA regulatory 

networks related to biological pathways and potential physiological effects.  

Differential miRNAs and targeted mRNAs showed treatment condition specificity 

depending on embryonic time (ED7–10 or ED10–13), tissue type, and stage of 

development. The large repertoire of miRNA–mRNA pairs that are shifted in various 

experimental groups but that finally fine-tune similar biofunctions reflect a large 

functional biodiversity and resilience.  

This study reveals substantial immediate alterations of miRNAs due to 

experimental environmental conditions, whereas long-term miRNA responses were 

minor. This indicates a major regulatory role of miRNAs in acute responses to modified 

environmental conditions. Other, likely epigenetic, effects that have more long-term 

relevance remain to be analyzed.   

 

 

 

 

 



miRNA regulation   

 

 

78 

 

Figure titles and Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1 microRNA functional analysis pipeline 
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Figure 2. Expression-based (least-squares means) hierarchical clustering of differential 

miRNAs and potential mRNA targets derived from embryonic breast and hind muscle 

after H10 (A) or L13 (B) treatment.  
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Figure 3. miRNA–mRNA regulatory networks. Representative gene regulatory networks 

derived from breast muscle (A and B) or hind muscle (C and D) of H10 group that are 

related to functional category group 1 (maintenance, proliferation, differentiation, and 

replacement of cells) (A and C) or group 2 (organ and tissue development) (B and D). 

Activated pathways are orange, while deactivated pathways are blue. 
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Figure 4. miRNA–mRNA regulatory networks. Representative gene regulatory networks 

derived from breast muscle (A and B) or hind muscle (C and D) of L13 group that are 

related to functional category group 1 (maintenance, proliferation, differentiation, and 

replacement of cells) (A and C) or group 2 (organ and tissue development) (B and D). 

Activated pathways are orange, while deactivated pathways are blue. 
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Table 1. Differentially expressed miRNAs (p < 0.05; FDR-adjusted p < 0.18) 
 

a
Relaxed statistical significance threshold using p <0.05 and FDR-adjusted p <0.71 for breast muscle at D35 

post-hatch. 
b
Number of probe-sets on the microarray (redundantly counting the same kind of miRNA from different 

species). 
c
Each kind of miRNA (unique sequences only counted once). 

 

Table 2. Functional miRNAs and potential target genes for selected treatment conditions 

Stage    Treatment Tissue miRNA-RNA pairs mRNA targets Unique miRNAs 

Embryo 

H10-C10 
Breast 941 421 40 

Hind 444 200 38 

L13-C13 
Breast 394 168 50 

Hind 104 49 25 

  
    

D 35 

L10-C10 
Breast 19 10 1 

Hind 10 8 7 

L13-C13 
Breast 7 6 5 

Hind 2 1 2 

 

Table 3. Major categories of biological functions and ratios of numbers of Ingenuity 

biofunctions within each category with positive/negative Z-scores 
 

Major categories BrEmH10 LegEmH10 BrEmL13 LegEmL13 

1—Cell maintenance, proliferation, differentiation, 

and replacement 

8 : 2 2 : 4 23 : 4 2 : 0 

2—Organismal, organ, and tissue development 5 : 1 1 : 1 11 : 4 1 : 0 

3—Nutrient metabolism 4 : 0 2 : 0 2 : 0  

4—Genetic information and nucleic acid processing 2 : 0 2 : 0 5 : 0  

5—Molecular transport   2 : 0  

6—Cell signaling and interaction 1 : 1  4 : 0  

7—Small molecule biochemistry     

8—Response to stimuli   2 : 0 1 : 0 

 

 

 

  Treatment 

(ΔC) 

Total
b
 

miRNAs 

(breast) 

Unique
c
 

miRNAs 

(breast) 

Regulation Total
b
 

miRNAs 

(hind) 

Unique
c
 

miRNAs  

(hind) 

Regulation 

  Up Down Up Down 

Embryo 

H10–C10 694 243 158 85 603 262 174 88 

H13–C13 380 160 71 88 362 211 123 88 

L10–C10 455 201 113 88 536 200 60 140 

L13–C13 733 316 204 112 401 224 90 134 

  
 

   
 

   

D35
a
 

H10–C10 148 107 74 33 98 88 31 57 

H13–C13 380 165 114 51 1328 419 176 243 

L10–C10 154 80 48 32 881 419 146 273 

L13–C13 165 85 69 16 1808 550 146 404 
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Table 4. Differential miRNAs targeting genes in significant pathways in embryonic 

breast and hind muscles affected by H10 treatment  

 

Target miRNA p-value FDR 

Fold change 

(ΔC) Regulation 

Breast 

miR-133 0.0484 0.169063 1.562238 Up 

miR-1825 0.0362 0.138553 1.836794 Down 

miR-199a-3p 0.0002 0.002251 1.466493 Down 

miR-212-star 0.0155 0.074994 2.272748 Up 

miR-222 0.0355 0.136636 1.410896 Up 

miR-289 0.0137 0.068449 1.634883 Up 

miR-4530 0.0476 0.167115 1.732465 Up 

miR-460-5p 0.0046 0.03024 1.845955 Down 

miR-5109 0.0364 0.138945 1.340839 Up 

Hind 

miR-1915 0.0262 0.122264 1.631923 Down 

miR-199a-5p 0.0368 0.153318 1.377803 Down 

miR-212 0.0138 0.078559 2.337939 Up 

miR-2861 0.0306 0.135907 1.682341 Down 

miR-3885-5p 0.0119 0.070698 1.723271 Down 

miR-3960 0.0133 0.076269 1.587999 Down 

miR-4454 0.0044 0.034992 1.609598 Down 

miR-4592 0.0003 0.004014 2.299092 Down 

miR-638 0.0054 0.040279 1.673629 Down 

 

Table 5. Differential miRNAs targeting genes in significant pathways in embryonic 

breast and hind muscles affected by L13 treatment 

 

Target miRNA P-value FDR 

Fold Change 

(ΔC) Regulation 

Breast 

let-7 0.013 0.06576 1.8467 Down 

miR-130c 0.00001 0.00119 1.53561 Up 

miR-1677 0.0004 0.00476 2.01333 Up 

miR-17-3p 0.0158 0.07607 1.55538 Up 

miR-1908 0.0217 0.09616 1.85711 Down 

miR-199b 0.0004 0.00439 1.86844 Down 

miR-222 0.0017 0.01387 1.72226 Up 

miR-312-5p 0.048 0.16801 1.75657 Up 

miR-460-5p 0.0267 0.11173 1.59116 Down 

miR-4651 0.0198 0.08992 1.7233 Down 

miR-4900a 0.0058 0.0361 2.30027 Down 

miR-5109 0.0044 0.02921 1.51323 Down 

miR-762 0.0329 0.12961 1.56617 Down 

miR-92a 0.0015 0.01269 2.95471 Up 

miR-92b 0.0463 0.1638 1.59139 Down 

miR-93 0.0176 0.08216 1.55025 Down 
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Target miRNA P-value FDR 

Fold Change 

(ΔC) Regulation 

Hind 

miR-138 0.048 0.18149 1.38977 Up 

miR-2137 0.0047 0.03628 1.99394 Down 

miR-222 0.0359 0.15105 1.44301 Up 

miR-271 0.0034 0.02838 2.74458 Down 

miR-383 0.001 0.01133 3.58192 Up 
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General discussion 

 

 Incubation temperature is considered as an important physical factor that initiates 

embryonic development in broilers. To maximize productivity and improve the quality of 

chicken, proper incubation temperature is controlled in a specific duration and intensity. 

Though myogenesis is well studied, the relation between developmental processes and 

transcriptomic changes are yet to be connected and this may partially explain phenotypic 

plasticity. Previous study showed that manipulated incubation temperature at 38.8 °C 

between ED7 to ED10 could influence breast muscle weight in male broilers (Werner and 

Wicke, 2008). However, several factors like muscle-type specific, ED time-point and 

variation of temperature might influence transcripts as well. To this end, we used 

functional genomics approaches such as microarray based gene expression profile and 

IPA knowledgebase to explore genes and pathways involved in the physiological 

responding to modification of embryonic incubation temperature in both immediate and 

long-term consequences. 

 

Immediate and long-term transcriptional response of hind muscle tissue to transient 

variation of incubation temperature in broilers      

  First, our studies covered broadly analysis of transcript regulation in type I muscle 

(hind-limb muscle). The characteristic of this muscle type is slow twitch oxidative fiber 

with high myoglobin and mitochondria. Responding to activities made them having high 

endurance to fatigue with slow contraction times. Our results showed that manipulation 

temperature between ED7-ED10-ED13 could have immediate and long-term influence 

the transcriptomic response (Naraballobh et al., 2016a). In details, the immediate 

response of DEGs occurred at higher temperature (38.8 °C) between ED7-ED10 (H10) 

and at lower temperature (36.8 °C) between ED10-ED13 (L13). H10 condition activated 

pathways concerned in lipid metabolism, energy production and also activated oxidation 

and beta-oxidation of fatty acid as well. During early stage of our experiment, the 

junction between ending of primary muscle fiber and starting of secondary muscle could 

be sensitive to elevated temperature. As a result, selected DEGs like FABP1, PPARA and 

PPARGC1A were up-regulated. FABP1 facilitated fatty acid uptake, metabolism and 

intracellular transportation of lipids (Zhang et al., 2013). PPARA increased quality and 

quantity of peroxisomes which is a subcellular organelle containing enzymes for lipid 
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metabolism and respiration. PPARGC1 influenced mitochondrial biogenesis and external 

physiological stimuli as well as muscle fiber specialization and adaptive thermogenesis 

(Lin et al., 2002; Shu et al., 2014; Ueda et al., 2005). Another immediate effect, L13 

condition suggested that lower temperature could cause increase cell survival and cellular 

proliferation. Up-regulation transcripts of L13 condition were related to glycolytic gene 

activities (GPI) (Rengaraj et al., 2012), fatty acid homeostasis (NR1H3) (Demeure et al., 

2009), and expression pattern of striated muscle cell lineages (SRF) (Croissant et al., 

1996).  

 In adult broiler, long-term response represented an impact on lowering 

temperature (36.8 °C) but not in higher temperature (38.8 °C) of hind-limb muscle. The 

chronic effect was hypothesized and confirmed either by transcript or phenotypic changes 

by several researcher including us  (Loyau et al., 2015; Piestun et al., 2008; Piestun et al., 

2009; Pinchuck et al., 2011). Early low temperature (L10) trends to activate the pathway 

concerned with organismal development and cell proliferation but strongly suppress 

transcriptional process which leads to the deactivation in gene expression. Moreover, 

down-regulation of HDAC4, MYOD1 and SOX6 are related to inactivation of 

transcription and muscle cell differentiation. HDAC4 with lower expression promoted 

myogenesis but only in cardiac muscle (Karamboulas et al., 2006). MYOD1 as a member 

of MRFs was necessary to skeletal muscle lineage, self-renewing and differentiating 

(Gerhart et al., 2007). SOX6 functions as a transcriptional suppressor of slow fiber 

specific genes, and play a major role in cartilage development and mesenchymal 

differentiation (Tagariello 2006; Hagiwara et al., 2007; von Hofsten et al., 2008). L13 has 

predicted activating effects on pathways in cellular and organismal development; 

including cell survival, development of body trunk, contractility of cardiac muscle and 

proliferation of mammary epithelial cells but inhibiting effect on pathways related to size 

of body and muscle cells pathways. The impact on nutrition metabolism, uptake and 

metabolism of lipids and carbohydrates together with small molecule biochemistry like 

oxidation of fatty acid tended to reduce body fat. Inflammatory response also decreased in 

multiple regions of body (Naraballobh et al., 2016a). Up-regulated of DEGs were 

presented by APOD, APOA1, DES and GFPT1. The APOD gene encodes a component 

of high-density lipoprotein and works together with APOA1 which promotes cholesterol 

efflux and is negatively correlated with aging and influences muscle development 

(Teltathum and Mekchay, 2009). DES encodes a muscle-specific class III intermediate 

filament and maintaines the structural integrity of highly solicited skeletal muscle like 
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contraction of muscle (Li, 1997; Paulin and Li, 2004; Otten et al., 2010). Moreover, 

desmin-positive and myosin-negative myoblasts were reported as proliferating cells 

(Yablonka-Reuveni and Nameroff, 1990). GFPT1 is involved in carbohydrate 

biosynthesis and apoptosis regulation. The results show that the specific pattern of gene 

regulation by temperature manipulation at ED7-10 and ED10-13 are distinguishable in 

stage of development. 

 

Transient shifts of incubation temperature reveal immediate and long-term 

transcriptional response in chicken breast muscle underpinning resilience and 

phenotypic plasticity 

 Second, we also performed transcriptomic change association in type IIb muscle. 

Breast muscle has primarily anaerobic metabolism for short bursts activities then fatigue. 

Fast twitch glycolytic fiber are characteristic by low myoglobin content and 

mitochondria. The type IIb muscle type usually displays in white meat. Our experiment 

showed that similar treatments in manipulation temperature and treatment period could 

intensively influence transcriptomic change as observed in hind muscle study 

(Naraballobh et al., 2016b). Even though similar pattern of transcripts appeared, quantity 

and quality of DEGs indicate less severe effects in breast muscle compared to hind 

muscle. Moreover, significant pathways and networks relations demonstrated both 

independent and some similar regulations compared with type I muscle. H10ΔC activated 

pathways in cell maintenance and organismal development especially on survivability. 

Network relation includes tissue development, connective tissue and skeletal muscle 

system development. These functions are activated according to the transcriptomic 

changes. For example SMAD3 is signal transducers and transcriptional modulators in 

deposition of intramuscular fat (IMF) and inhibiting adipogenesis in white adipose tissue 

(WAT) (Ye et al., 2014). Down-regulated of SMAD3 reduced neuroepithelial cell 

transforming and several DEGs including JPH1. JPH1 is important for construction of 

skeletal muscle triad junction and muscle contraction (Takeshima et al., 2000;Komazaki 

et al., 2002). Up-regulated in triad biogenesis maintained proper development of muscle 

contraction and prevented lethality shortly after birth (Al-Qusairi and Laporte, 2011). 

L13ΔC had several UP regulation pathways in organismal survival and post-translational 

modification. Due to the network, cardiovascular system, skeletal-muscular and 

connective tissue development were impacted. Our result showed that among DEGs only 

FGF6 and RUNX2 were down-regulated transcripts.  RUNX2 could directly stimulate 
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gene expression, post-translational modification and protein-protein interactions (T.-F. Li 

et al., 2004). Moreover, a prominent role of RUNX2 concerns joint fusions, osteoblastic 

differentiation, and skeletal morphogenesis in chicken embryos (Stricker et al., 2002). 

Down-regulated of RUNX2 could result in an interruption of chondrocyte differentiation, 

vascular invasion and severe shortening of the limbs (Stricker et al., 2002).  

 Adult breast muscle at full development stage showed only very subtle 

transcriptional change in elevated temperature groups. Higher temperature treatment on 

ED10-13, it tended to deactivate size of body pathway and downward nutrition 

metabolism. L10ΔC activated pathway of ion homeostasis but deactivated transcriptional 

processes and inflammation. DOWN regulated networks included gene expression, 

cellular function, and cell signaling. DEGs like MED24, TBP and TRRAP were found 

with negative effects in transcriptional process regulation. As transcriptional coactivator 

complex, down regulated of MED24 and other complex subunit members degraded RNA 

polymerase II activity and lead to abnormal on transcript/translation process. TBP helps 

positioning RNA polymerase II at TATA box and delays mitosis if downregulation 

occurred (Um et al., 2001). TRRAP has a vital role for early development exclusively for 

mitotic checkpoint and regular cell cycle progression (Herceg et al., 2001). Hence, 

downward incubation of TRRAP could cause glioblastoma multiforme (GBM) and other 

cancer cells  (Wurdak et al., 2010). Our experiment showed that L13ΔC treatment tended 

to activate transcripts in many categories including cellular and organ development, 

organismal development, nutrition metabolism and inflammatory response. Network 

connection concerned an activation of organ, embryonic and skeletal-muscular system 

development which were displayed by myosin-myogenin group (MYH2, MYL3, MYOG) 

and down-regulation of RAF1. Cholinergic receptor group in chicken showed that muscle 

receptor delta-subunit gene upstream of CHRND was activated during myotube formation 

(Wang et al., 1990) and CHRNG motif was localized then attached MyoD and myogenin 

fusion proteins (Jia et al., 1992). The myosin and myogenin complex, not only facilitated 

skeletal muscle contraction but the complex is also an important complement with actin 

filaments during eukaryotic motility processes (Cooper, 2000). MYOG was one of the 

molecular genetic markers to muscle fiber traits specification and mutation in chicken ( 

Wang et al., 2007). RAF1 is a MAP3K, a higher order kinase affecting the ERK-pathway 

via MEK1 and MEK2. The serine/threonine specific protein kinases, ERK1 and ERK2 

are involved in the control of gene expression and cellular formation. Latest study was 

found that the ERK1/2 pathways are essential for the maintenance adult muscle fibers and 
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protein synthesis pathways particularly in myoblast cells in mice and chicken respectively 

(Seaberg et al., 2015; Duchêne et al., 2008) 

 

MiRNAs regulates dynamic transcriptional changes of broiler embryos in response 

to modification of the incubation temperature 

 Third, post-transcriptional response via miRNA is our relevant topic when 

addressing response to variable incubation temperature. We hypothesized about 

transcriptional regulation which could apprehend multiple processes with distinction at 

various time-points. Our results show significant high expression of target genes in 

embryonic stage more than in adult stages (Naraballobh et al., 2016c). This evidence 

confirmed miRNA expression which could be dominant express to a fixed period (Kang 

et al., 2013; (Xu et al., 2006). Various target genes were found at early high temperature 

(H10) and late low temperature (L13) treatment in both tissues. While mRNA-miRNA 

pairs were less abundance in L13 condition, contrast signals were noticeable in type II 

muscle. This evidence could support muscle specific regulation via miRNAs. The 

assumptions regarding biological functions of miRNA regulation are related to target 

gene activities. During H10 treatment, the activation of major categories gr.2 and gr.3 

was an example of pathways specifically regulated in either muscle as thermogenesis and 

carbohydrate synthesis in breast muscle and size of body and hydrolysis of carbohydrate 

in hind muscle, respectively. Co-expression in both tissues was found for the activation of 

major category gr. 1 (organization of cytoskeleton and cytoplasm) and deactivation of 

major category gr.2 (organismal death and perinatal death). Accordingly, selection of 

related miRNA sets which regulated pathways like miR-133 (members of myomiRs), 

miR-199a-5p, miR-1915 and miR-638 were queried. Up-regulation of miR-133 was 

associated with myoblast proliferation but reduce cell differentiation (Chen et al., 2006; 

Koning et al., 2012). In chicken, miR-133a and miR-1a was regulated in late stages 

development and strongly response to myogenin (Wang et al., 2012). The biological 

function of miR-199a-5p showed multiple regulations on embryo development, cardiac 

myocytes and stem cell differentiation e.g. WNT2-mediated regulation of proliferative 

and differentiation processes in smooth muscle hypertrophy (Gu and Chan, 2012; 

Hashemi Gheinani et al., 2015). Down-regulation of miR-199a-5p controlled angiogenic 

responses (Chan et al., 2012). miR-1915 regulates adult renal progenitor cells prior to 

stemness and repair (Sallustio et al., 2013). Down-regulation of miR-1915 could be used 

as molecular markers of renal progenitors (Sallustio et al., 2013) and could be a factor for 
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reduction of apoptotic cell (Nakazawa et al., 2014). miR-638 was regulated in human 

vascular smooth muscle cells proliferation and migration which promoted vascular 

pathologies. The up-regulation of miR-638 could inhibit proliferation of myeloid 

differentiation in acute myeloid leukemia cells (Lin et al., 2015).  

 Another high impact treatment during embryonic stage was L13 condition. In 

breast muscle, activated major categories gr.1 (cellular activity of formation and 

engulfment), gr.2 (prevent apoptosis mechanism) and gr.3 (uptake of carbohydrate and D-

glucose) were evident but deactivation of size of bone. In hind muscle, initiation of cell 

death and apoptosis in major categories (gr.1), degradation in growth of connective tissue 

(gr. 2), and stimulation in cell movement of neutrophils (gr.8) were unique regulations. 

Consequently, downward of bone size could be reason for interfered myogenesis. miRNA 

sets like let-7, miR-93 and miR-130c were potentially associated. let-7 led to reproducible 

reduction in proliferation (Wang, 2013). Moreover, let-7 suppressed Dicer and HMGA2 

which have a role in adipogenesis and mesenchymal differentiation (Dröge and Davey, 

2008). miR-93 served as a tumor suppressor in breast cancer cell lines (Liu et al., 2012). 

Down-regulation of miR-93 potentially promoted multiple stem cell regulatory genes like 

AKT3 and stimulated aortic vascular smooth muscle and cell tumorigenesis (Liu et al., 

2012;Wei et al., 2013). miR-130c was related to thermal plasticity as shown in aquatic 

ectotherms (Campos et al., 2014; Bizuayehu et al., 2015). Up-regulation of miR-130c 

regulated MAPK and mTOR pathways which happened during early development at 

lower incubation temperature of Senegalese sole (Campos et al., 2014). The pathways are 

related to an inhibition of cell proliferation but stimulated differentiation process.   

 

Future perspective 

 Multiple pathway regulations demonstrated that external conditions had large 

effects on transcript regulation. Even though microarrays are designed for high 

throughput result with high reliability and accuracy, the validation process is still needed. 

We performed confirmation analyses by real-time polymerase chain reactions (qPCR) via 

LightCycler480 system (Roche, Mannheim, Germany). The amplification was done 

according to manufacturer’s instructions. The Pearson correlation between microarray 

and qPCR was calculated by 2
-ΔΔCt

 methods and normalization factors (Livak and 

Schmittgen, 2001). GAPDH and ACTB were used as common house-keeping genes for 

the data normalization. The validation process performed on randomly selected potential 

candidate gene. For example, FGA (Fibrinogen Alpha Chain), NR4A3 (Nuclear Receptor 
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Subfamily 4, Group A, Member 3), AHSG (Alpha-2-HS-glycoprotein) were selected as being 

involved in many pathways. Consistency of microarrays and qPCR was demonstrated. The 

Pearson correlation coefficients (r) were highly significant between 0.71 and 0.84. 

Generally, the qPCR analyses indicated a highly reproducible analysis. 

 To detech differentially expressed mRNA and miRNA, NGS (Next Generation 

Sequencing notably high-throughput sequencing) technology could serve as an alternative 

approval. NGS is a new DNA sequencing technology with robust and highest parallel 

sequencing. NGS introduced to whole-genomic solution and to coverage over common to 

rare read (Koboldt et al., 2013). NGS technology integrated to RNA-seq (RNA 

sequencing is also known as whole transcriptome shotgun sequencing (WTSS)) reveals 

the existence and the amounts of RNA and small RNA. Previous studies showed a high 

correlation between RNA-Seq and microarray technologies in transcriptome profiling 

(Kuhn et al., 2008). However, hybridization-based microarray might be problematic with 

cross-hybridization results, extremely expressed genes and genetic variants. RNA-Seq is a 

beneficial solution among these problems especially for miRNA validation (Kuhn et al., 

2008). An option to validate miRNA targets are pull-down assays for miRNA-processing 

proteins that are identifying mRNAs which bound to specific proteins (van Rooij, 2011). 

The knockdown method by forcing an over-expression of specific miRNA also applies 

for the validation process, but it needs attention on off-target effects. Vice versa, the 

complementary method seem more beneficial by inhibiting selected mature miRNA 

function by using antisense oligoribonucleotides (ASO) (Kuhn et al., 2008). Whereas 

multiple methods could be used for transcriptomic profiling and validation processes, 

Microarrays are still a convenient choice for the majority of research studies in liability 

and cost efficiency.  

 Altogether, our studies showed that several transcripts and its regulations occurred 

due to manipulation of incubation temperature. The transcriptomic change appeared 

immediately after treatment and with long-term effects (no evidence via miRNA in adult 

stage). Our experiment showed that multiple factors including muscle-type, intensity of 

temperature changes and period of treatment time affected myogenesis and related 

pathways specifically. The phenotypic result demonstrated that phenotypic plasticity 

occurred at embryonic and adult stage. Phenotypic measurement at embryo stage showed 

that for H10 treatment heart, liver and body weights were higher than for L10 but not 

significant different from control. At later treatment in L13 body weight was significantly 

lower than in C13 and in H13 while liver weight was lower in L13. Long-term effect 
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were obvious at D35 for carcass, breast and hind muscle weights. The result showed that 

at D35, carcass and hind weights from L10 and L13 treatment were significantly lower 

than at higher temperature (H10 and H13) but there is no difference from control (C10 

and C13). The breast muscle from L10 and L13 treatments were slightly lighter than H10 

and H13 without any significant. The evidence on phenotypic plasticity supported 

transcriptomic change with possibility of post-transcriptional regulation. While 

incubation eggs were manipulated, multiple gene expressions were adjusted to maintain 

survivability. The consequence of treatment showed affected on major categories gr.1, 2 

and 3. Our result demonstrated that during ED7-10 higher temperature treatment 

potentially influences multiple genes and pathways which regulated myogenesis. Both 

muscle types immediately response to stimulation but only type I muscle had phenotypic 

plasticity in adult. Activation of fatty acid uptake and metabolism associated with cell 

signaling and muscle development. Whereas lower temperature during ED10-13 

influence prolongation of programmed cell death pathway. Both treatments showed zero 

difference on hatching and mortality rate. miRNA regulation in both muscles was 

concerned with the major categories 1 and 2. Epigenetic regulation on myomiRs like 

miR-133 was presented and associated with myoblast proliferation. Even though adult 

transcript activities were considerable in L10 and L13 treatment, phenotypic changes 

showed merely downward and non-significant differences in muscle type I and II 

respectively. Biological pathways and DEGs revealed that L10 treatment interfered gene 

expression process. Treatment on L13 has positively influenced pathways in cellular and 

organismal development, contractility of cardiac muscle but negative effects on size of 

body and muscle cells pathways. The post-transcriptional regulation was not found 

interfering enough during mature stage. Our study presents potentially pathways and 

transcript regulations due to temperature manipulation at specific periods. It supports 

previous study from Werner and Wicke, 2008 which is an initial elevated incubation 

temperature positively influenced phenotypic change with an impact on abundance of 

transcript and gene regulations. The selection of DEGs needs to be verified and further 

investigated in combination with more detailed phenotypic like for example histological. 

The optimized temperature at 38.8 °C between ED7-10 could positively influence 

phenotype but not with lower temperature treatment. Together with other environmental 

parameters like proper diet, transcriptomic profiling, and epigenomic studies can improve 

broiler husbandry and achieve high-quality broilers to support the global demand. 
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6 Summary 

 

 The major aim of the study described in this thesis is to understand the molecular 

basis and to identify potential pathways and transcriptomic changes due to transient 

incubation temperature variation. Acute and long-term gene expressions were 

interrogated in both, muscle type I (hind-limb) and type II (breast). Based on 

transcriptomic changes, both types of muscles showed that at embryonic sampling stage, 

the modification of higher incubation temperature 38.8 °C at ED7-10 (H10) and lower 

incubation temperature 36.8 °C at ED10-13 (L13) are most effective conditions to cause 

immediate transcriptomic changes. For the adult sampling stage of D35-posthatch, lower 

temperature in both times points (36.8 °C at ED7-10 and ED10-13; L10 and L13) 

associated with most transcriptomic changes. The effects of thermal manipulation during 

embryonic development on miRNAs, a class of post-transcriptional regulators were also 

investigated. The expression profile of miRNAs was profoundly affected by the 

modification of incubation temperature at the embryonic sampling stage but only mild at 

the adult stage (D35 post-hatch) indicating immediate response of the miRNAs to 

environmental (temperature) changes of the embryos. In addition, the phenotypic record 

also showed that the high embryonic incubation temperature had an influence on higher 

body weight (embryo and D35 stage), carcass, and hind muscle weight (D35 stage) 

comparing to lower temperature (p<0.05) relative to control groups.  

 Pathway analysis showed an acute response of the H10 condition in both muscle 

tissue types in which elevated mRNA transcripts were enriched for functional categories 

of cell maintenance, organismal development, and survival ability (FABP1, PPARA, and 

PPARGC1A in hind muscle and SMAD3 in breast muscle). The results demonstrated an 

up-regulation of miR-133 in breast muscle and down-regulation of miR-199a-5p, miR-

1915 and miR-638 in hind muscle that positively influence myogenesis and size of body, 

respectively. Acute response from L13 condition was predicted for reduced programmed 

cell death and possibly gained mass of skeletal muscle (GPI, NR1H3, and SRF) in hind-

limb muscle while accelerated cardiovascular system, skeletal-muscular, and connective 

tissue development via RUNX2 in breast. Moreover, down-regulated expression of let-7, 

miR-93 and miR-130c was predicted to associate with diminished size of bone in type II 

muscle.  
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 Long-term effects of incubation temperature showed subtle transcriptomic 

changes. At D35 post-hatch stage, L10 condition influenced cellular functions, 

organismal development (HDAC4, MYOD1, and SOX6 in hind muscle), gene expression 

and cell signaling (RNA polymerase II apparatus like MED24, TBP, and TRRAP in 

breast muscle). Interestingly, the L13 treatment condition was functionally predicted to 

influence activated nutrition metabolism and improved survival chance (APOD, APOA1, 

DES, and GFPT1 in hind muscle). Besides, activation of organ, embryonic and skeletal-

muscular system development were significant pathways with RAF1 and actin being hub 

genes in breast muscle. 

  In summary, the studies described in this thesis used genomic approaches to 

identify sets of functional candidate genes, microRNAs and pathways that might 

influence myogenesis and animal development via the modification of embryonic 

incubation temperature. The results demonstrated several putative candidate genes, post-

transcriptional regulation, and pathways, which are involved in cellular, organismal, and 

nutrition development in both, embryonic and D35 stage. The transcriptomic response 

reflected animal adaptability and phenotypic plasticity in response to treatment 

conditions. The regulation mechanisms involved in the modification of incubation 

temperature suggests an epigenetic adaptation, which may work along with metabolic 

mechanisms in controlling metabolic homeostasis in the long-term and improve poultry 

resistance to environmental changes without much effect on growth performance. The 

present results of the modification of embryonic incubation temperature may have an 

impact on field application on adaptation, phenotypic plasticity, and animal husbandry to 

improve the broiler production.   

 

 

 

 

 

 

 

 

 

 



Summary   

101 

 

Zusammenfassung 

 

Das wesentliche Ziel dieser Arbeit war die Aufklärung der molekularen Grundlagen und 

die Identifizierung von transkriptionellen Änderungen und Signalwegen die zur 

Adaptation an die vorrübergehende Variation der Bruttemperatur beitragen. Dafür wurden 

kurz- und langfristige Veränderungen in Proben der Oberschenkel- und Brustmuskulatur 

als repräsentative Gewebe mit vorrangigem Auftreten von Typ I bzw. Typ II 

Muskelfasern untersucht. Zum embryonalen Probenzeitpunkt konnte für beide 

Muskeltypen konnte gezeigten werden, dass sowohl die Erhöhung der 

Inkubationstemperatur an ED7-10 (H10) auf 38,8°C als auch die Temperaturerniedrigung 

an ED10-13 (L13) auf 36,8°C unmittelbare Veränderungen auf Transkriptomebene 

induziert. Dagegen bewirkte die Verringerung der Temperatur (36,8°C an ED7-10 und 

ED10-13; L10 und L13) die deutlichsten transkriptionellen Auslenkungen zum adulten 

Probezeitpunkt (35. Lebenstag). Zusätzlich wurden die Auswirkungen der 

Temperaturveränderungen während der Embryonalentwicklung auf Ebene der Expression 

von miRNAs, als potentielle post-transkriptionale Regulatoren, untersucht. Zum 

embryonalen Probezeitpunkt zeigten sich deutliche Unterschiede in den miRNA-

Expressionsprofilen zwischen den Behandlungsgruppen. Dagegen waren im adulten 

Stadium (35. Lebenstag) nur geringfügige Unterschiede nachweisbar. Dies spricht für 

eine unmittelbare Initiation von Adaptationsprozessen auf Umweltreize (z.B. Temperatur) 

im Embryo. Zusätzlich zeigten die untersuchten phänotypischen Parameter, dass die 

Erhöhung der Bruttemperatur, im Vergleich zu den anderen getesteten Brutbedingungen, 

mit erhöhtem Gewicht (embryonal) einherging und sich auf die Masse von Oberschenkel- 

und Brustmuskel (embryonal und adult) auswirkte. Durch die Integration der Daten mit 

Hilfe von Signalweganalysen konnte gezeigt werden, dass in den H10 Individuen in 

beiden untersuchten Muskelgewebstypen funktionelle Kategorien mit Bezug zur 

Zellerhaltung, Organismusentwicklung und Überlebensfähigkeit angereichert waren 

(FABP1, PPARA und PPARGC1A im Oberschenkel und SMAD3 im Brustmuskel). 

Diese Signalwege repräsentieren molekulare Pfade mit potentiellen langfristigen Effekten 

auf den Phänotyp. Weiterhin zeigten die Ergebnisse eine Heraufregulation von miR-133 

im Brustmuskel und die Herabregulationen von miR-199a-5p, miR-1915, miR-638 im 

Oberschenkel mit positivem Einfluss auf funktionelle Signalwege der Myogenese bzw. 

des Körperbaus. Unmittelbare transkriptionelle Antworten, induziert durch L13 
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Bedingungen, zeigten Anzeichen für verminderten programmierten Zelltod und eine 

erhöhte Masse an Skelettmuskulatur (GPI, NR1H3 und SRF) im Oberschenkel, während 

molekulare Pfade des Blutflusses sowie der Skelettmuskel- und Bindegewebsentwicklung 

im Brustmuskel überrepräsentiert waren (z.B. RUNX2). Des Weiteren war die 

Herabregulation von let-7, miR-93 und miR-130c im Brustmuskel assoziiert mit 

quantitativen Parametern der Knochengröße und der Typ-II-Muskulatur.  

Hinsichtlich der langfristigen Auswirkungen der veränderten Inkubationstemperatur 

zeigten sich feine transkriptionelle Änderungen. Am 35. Lebenstag mündeten die Effekte 

der L10 Behandlung in der Beeinflussung zellulärer Funktionen, der 

Organismusentwicklung (HDAC4, MYOD1 und SOX6 im Oberschenkelmuskel) sowie 

der Genexpression und der zellulären Signaltransduktion (RNA-Polymerase II Komplex 

wie z.B. MED24, TBP, TRRAP im Brustmuskel). Funktionelle Vorhersagen, basierend 

auf den Expressionsdaten der L13 Behandlungsgruppe, deuteten auf einen beeinflussten 

Ernährungsstoffwechsel und verbesserte Muskelentwicklung hin (APOD, APOA1, DES 

und GFPT1 im Oberschenkelmuskel). Daneben zeigten sich auch signifikante Effekte auf 

die Entwicklung des Embryos und des Skelettmuskelsystems mit RAF1 und Aktin als 

zentrale Gene im Brustmuskel. 

Im Rahmen dieser Arbeit wurden genombiologische Ansätze verfolgt, um funktionale 

Kandidatengene, miRNAs und Signalwege mit potentiellen Effekten auf Myogenese und 

Tierentwicklung zu identifizieren, die durch Modifikation der embryonalen Umwelt 

induziert werden. Die identifizierten molekularen Features und post-transkriptionellen 

Regulatoren zeigten sich sowohl embryonal als auch im adulten Stadium an der 

zellulären, organismischen und nutritiven Entwicklung beteiligt. Zudem reflektierten die 

transkriptionellen Auslenkungen die Anpassungsfähigkeit und phänotypische Plastizität 

als Antwort auf die embryonale Veränderung der Haltungs-Umwelt. Die beteiligten 

Regulationsmechanismen implizieren epigenetische Modifikationen, die im 

Zusammenspiel mit metabolischen Mechanismen an der langfristigen Aufrechterhaltung 

des metabolischen Gleichgewichts beteiligt sind und die Resistenzen des Geflügels 

gegenüber Umweltveränderungen verbessern ohne das Wachstum wesentlich zu 

beeinflussen. Damit liefern die vorliegenden Ergebnisse wesentliche Erkenntnisse zur 

Anpassungsfähigkeit und phänotypischen Plastizität von Broilern und bieten 

Möglichkeiten zur Verbesserung von Produktivität und Robustheit. 
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List of abbreviations 

 

ACTB Actin, Beta 

AHSG  Alpha-2-HS-glycoprotein  

APOA1 Apolipoprotein A-I 

APOD Apolipoprotein D 

ASO  Antisense oligoribonucleotides 

cDNA Complementary DNA 

CHRND Cholinergic Receptor, Nicotinic, Delta 

CHRNG  Cholinergic Receptor, Nicotinic, Gamma 

DEGs Differential expression genes 

DES Desmin 

DNA Deoxyribonucleic acid 

ED Embryonical Day 

FABP1 Fatty acid-binding protein 1 

FC Fold change 

FDR False discovery rate 

FGF6 Fibroblast Growth Factor 6 

GAPDH Glyceroldehyde-3-phosphate dehydrogenase 

GFPT1 Glutamine--Fructose-6-Phosphate Transaminase 1 

GPI Glucose-6-Phosphate Isomerase 

Gr.1 Major categories group 1 Cell maintenance, proliferation 

differentiation and replacement 

Gr.2 Major categories group 2 Organismal, organ and tissue development 

Gr.3 Major categories group 3 Nutrient metabolism 

Gr.4 Major categories group 4 Genetic information and nucleic acid 

processing 

Gr.5 Major categories group 5 Molecular transport 

Gr.6 Major categories group 6 Cell signaling and interaction 

Gr.7 Major categories group 7 Small molecule biochemistry 

Gr.8 Major categories group 8 Response to stimuli 

H10(ΔC) Treatment by increase temperature to 38.7 °C at Embryonical Day 7-

10 (compare with control group) 
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H13(ΔC) Treatment by increase temperature to 38.7 °C at Embryonical Day 10-

13 (compare with control group) 

HDAC4 Histone Deacetylase 4 

HH Hamburger and Hamilton stages (chicken embryo development) 

IPA Ingenuity Pathways Analysis 

JPH1 Junctophilin 1 

L10(ΔC) Treatment by decrease temperature to 36.7 °C at Embryonical Day 7-

10 (compare with control group) 

L13(ΔC) Treatment by decrease temperature to 36.7 °C at Embryonical Day 10-

13 (compare with control group) 

Lbx1  Ladybird Homeobox 1 

Let-7  Let-7 microRNA precursor 

MED Mediator Complex Subunit 

MFN Muscle fiber number 

miRNAs  Micro RNAs (miR) 

MRFs Myogenic regulatory factors  

mRNAs messenger RNAs 

Myf5 Myogenic factor 5 

MYH2 Myosin, Heavy Chain 2 

MYL3 Myosin, Light Chain 3 

MYOD1 Myogenic differentiation 1 

MYOG Myogenin (Myogenic Factor 4) 

NGS Next Generation Sequencing notably high-throughput sequencing 

technology 

NR1H3 Nuclear Receptor Subfamily 1, Group H, Member 3 

nt Nucleotides 

Pax Paired Box gene 

PCR Polymerase chain reaction 

PPARA  Peroxisome proliferator-activated receptor 

PPARGC1A Peroxisome proliferator-activated receptor gamma coactivator 1-alpha 

qPCR Quantitative real time RT-PCR 

RNA Ribonucleic acid 
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RNA-seq  RNA sequencing notably whole transcriptome shotgun sequencing 

(WTSS)  

RUNX2 Runt-Related Transcription Factor 2 

r-value Correlation coefficients  

SHH Sonic hedgehog proteins 

SMAD3 SMAD Family Member 3 

SOX6  SRY (Sex Determining Region Y)-Box 6 

SRF Serum Response Factor 

TBP  TATA Box Binding Protein 

TRRAP Transformation/Transcription Domain-Associated Protein 

UTR Untranslated regions  

z-score (IPA) Predicted pathway by gene expression pattern  

ΔC Compare versus control group 
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