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Fig. 30: The mastication compasses for Woutersia butleri. In both scenarios, the lower 

teeth perform a transverse upward movement with a slight mesio-distal shift. 

The marker (line perpendicular to the arrow) depict the moment of the maximum 

mandibular closure. The length of the arrow is equated with the duration of the 

shearing stroke. A: Compass of the chewing cycle with roll (wr-cycle); B: Without 

roll (wor-cycle). .................................................................................................. 57 

Fig. 31: Change of total collision area over time in Woutersia butleri lower molars, during 

one chewing cycle. The total collision area is a percentage of the total collision 

area of the lower molar relative to the total area of the lower molars. The dark 

grey graph shows the course of the wr-cycle, the light grey double-line graph 

that of the wor-cycle. Whereas the wr-cycle maximum intercuspation is reached 

in the beginning of the shearing stroke, it coincides with the end of the wor-cycle 

shearing stroke (maximum mandibular closure). ................................................ 58 

Fig. 32: Important molar positions of Woutersia butleri during the shearing stroke. A: At 

the beginning of the shearing stroke. B: At the end of the shearing stroke. ........ 59 

Fig. 33: The resulting OFA collision areas of the shearing stroke of Woutersia butleri in 

summary. A: Collision areas of the chewing cycle with a roll. B: Collision areas 

of the chewing cycle without a roll. Basically both cycle produce the same areas, 

but there are some exceptions. First, the more extensive pr-db(2)/PA-ml(2), and 

pr-db(1)/[CG]-ml wr-cycle contact zones. Second, the presence of the CPX-ml 

contact area, and the more extensive pa-b/PA*ME contact facet of the wor-

cycle. Upper molars correspond to right ones, whereas lower molars correspond 

to left ones. ........................................................................................................ 59 

Fig. 34: The mastication compass of both Kuehneotherium praecursoris chewing cycle 

scenarios. Both cycles performing a transverse chewing motion with a mesio-

distal shift. The length of the arrow is equated with the duration of the shearing 

stroke. The marker perpendicular to the arrow, represents the maximum inter-

cuspation. A: The compass for the cycle with roll. B: The compass for the cycle 

without roll. ........................................................................................................ 60 

Fig. 35: Change of the total collision area over time of the Kuehneotherium praecursoris 

lower molars, during one chewing cycle. The total collision area is a percentage 

of the total collision area of the lower molars relative to the total area of the lower 

molars. The dark grey graph shows the course of the wr-cycle, the light grey 

double-line graph that of the wor-cycle. Whereas the wr-cycle maximum 

intercuspation is reached around 100 t-s before the shearing stroke ends, it 

almost coincides with the end of the wor-cycle shearing stroke (maximum 

mandibular closure). .......................................................................................... 61 
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Fig. 36: Important molar positions of Kuehneotherium praecursoris during the shearing 

stroke. A: At the beginning of the shearing stroke. B: Shortly before closing the 

interdental spaces. C: At the end of the shearing stroke. ....................................62 

Fig. 37: The resulting OFA collision areas of the shearing stroke of Kuehneotherium 

praecursoris in summary. A: The collision areas of the wr-cycle. B: The collision 

areas of the wor-cycle. The contact areas of both scenarios are very similar 

except that PA-dl is reaching [cgf]-mb in the wr-cycle. Upper molars correspond 

to right ones, whereas lower molars correspond to left ones. .............................62 

Fig. 38: The mastication compass of both Maotherium sinense chewing cycle scenarios. 

Both cycles perform a trans-verse chewing motion with a slight mesial shift. A: 

The compass for the cycle with roll. B: The compass for the cycle without roll. 

The length of the arrow is equated with the duration of the shearing stroke. The 

wr-cycle reaches the maximum intercuspation (line perpendicular to the arrow) 

almost in the middle of the shearing stroke, whereas the wor-cycle reaches it 

somewhat in the last third of the shearing stroke. ...............................................63 

Fig. 39: Change of the total collision area over time of the Maotherium sinense lower 

molars, during one chewing cycle. The total collision area is a percentage of the 

total collision area of the lower molars relative to the total area of the lower 

molars. The dark grey graph shows the course of the wr-cycle, the light grey 

double-line graph that of the wor-cycle. Both curves resemble each other, but 

the wor-cyle graph is somewhat protracted. .......................................................64 

Fig. 40: The molar positions of the power stroke of Maotherium sinense. A: The 

beginning of the power stroke. The first set of interdental spaces originate. B: 

The position, in which the second set of interdental spaces originate. C: The 

position, in which the second set of interdental spaces are closed. D: The end 

of the power stroke. 3D-models of YFGP 1724 (M2, m2, and m3)......................65 

Fig. 41: The resulting OFA collision areas of the power stroke of Maotherium sinense in 

summary. A: The collision areas of the wr-cycle. B: The collision areas of the 

wor-cycle. The contact areas of both scenarios are similar. Upper molars 

correspond to right ones, whereas lower molars correspond to left ones............65 

Fig. 42: The mastication compass of both Spalacolestes cretulablatta chewing cycle 

scenarios. The cycles perform a transverse chewing movement with a slight 

mesial shift. A: The compass for the cycle with roll. B: The compass for the cycle 

without roll. The marker (line perpendicular to the arrow) depicts the moment of 

the maximum mandibular closure. The length of the arrow is equated with the 

duration of the power stroke. ..............................................................................66 

Fig. 43: The diagram of the Spalacolestes cretulablatta lower molars total collision area 

in temporal relation, during one chewing cycle. The total collision area is a 

file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685053
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685053
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685053
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685054
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685054
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685054
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685054
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685054
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685055
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685055
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685055
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685055
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685055
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685055
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685055
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685056
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685056
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685056
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685056
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685056
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685056
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685057
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685057
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685057
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685057
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685057
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685058
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685058
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685058
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685058
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685059
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685059
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685059
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685059
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685059
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685059
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685060
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685060


VI 
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of the lower molars. The dark grey graph shows the course of the wr-cycle, the 

light grey double-line graph that of the wor-cycle. .............................................. 67 

Fig. 44: Key positions during the power stroke of Spalacolestes cretulablatta. A: The 

beginning of the power stroke. The interdental spaces originate. B: The position, 

in which PA comes into contact with the cingulids. The interdental spaces are 

almost closed. C: The end of the power stroke. ................................................. 68 

Fig. 45: The resulting OFA collision areas of the power stroke of Spalacolestes 

cretulablatta in summary. A: The collision areas of the wr-cycle. B: The collision 

areas of the wor-cycle. The contact areas of both scenarios are very similar. 

Upper molars correspond to right ones, whereas lower molars correspond to left 

ones................................................................................................................... 68 

Fig. 46: The wor-cycle mastication compass of Dryolestes leiriensis. The chewing cycle 

performs an upward transverse movement. At first with an inclination of 45° 

(right arrow), but when the paracone is led by the hypoflexid the inclination 

decreases to 35°(left arrow). The marker (line perpendicular to the arrow) 

depicts the moment of the maxi-mum mandibular closure, which is almost at the 

end of the power stroke. .................................................................................... 69 

Fig. 47: The diagram of the Spalacolestes cretulablatta lower molars total collision area 

in relation to time, during one chewing cycle. The total collision area is a 

percentage of the total collision area of the lower molars relative to the total area 

of the lower molars. The maximum intercuspation almost coincides with the end 

of the power stroke. ........................................................................................... 69 

Fig. 48: The important positions during the power stroke of Dryolestes leiriensis. A: The 

beginning of the power stroke. A mesial interdental space originates. B: The 

position, in which PA-m-a comes into contact with the hfd-bd. The inclination 

decreases from 45° to 35°. The interdental space is almost closed. C: The end 

of the power stroke. ........................................................................................... 70 

Fig. 49: The resulting OFA collision areas of the power stroke of Spalacolestes 

cretulablatta in summary. Upper molars correspond to right ones, whereas 

lower molars correspond to left ones. ................................................................ 70 

Fig. 50: A cusp encounters a material. By increasing the force, the material collapses, 

and cracks originate and extend. Thereby, a food particle gets pierced and 

crushed. A: A cusp encounters food (type I) B: A cusp slides into an embayment 

with food in-between (type II). (Modified from Lucas, 2004) ............................... 71 

Fig. 51: The material bends between the three cusps, by increasing the force. The result 

are cracks remote of the cusps. The Crushing-Tool can occur simultaneously. 

(Modified from Berthaume, 2016) ...................................................................... 71 

file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685060
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685060
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685060
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685061
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685061
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685061
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685061
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685062
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685062
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685062
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685062
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685062
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685063
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685063
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685063
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685063
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685063
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685063
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685064
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685064
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685064
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685064
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685064
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685065
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685065
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685065
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685065
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685065
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685066
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685066
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685066
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685067
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685067
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685067
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685067
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685068
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685068
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685068


  

 VII 
 
 

Fig. 52: The Crest-Crest-Tool. The food gets shear-cut or blunt-sheared in-between the 

crests edges. (Modified from Anderson and LaBarbera, 2008) ...........................71 

Fig. 53: Two versions of the Notch-Fang-Tool. In both versions food gets pierced, 

crushed, shear cut and/or ripped apart, depending of the crest, fang sharpness. 

In A, a fanged crest is involved, while in B it is a cusp. (Modified from Anderson 

and LaBarbera, 2008) ........................................................................................72 

Fig. 54: The Cusp-Groove-Tool. The cusp moves along a channel groove or crest, and 

food particles in-between these structures get squeezed and crushed. ..............72 

Fig. 55: In this tool the food particles get shear-cut, pinched-off or blunt-sheared by a 

triangular crest, which moves past a straight crest. (Modified from Anderson and 

LaBarbera, 2008) ...............................................................................................72 

Fig. 56: Both designs of the Notch-Notch-Tool. The triangle inflection (A), and the curved 

inflection (B). Both designs have the same procedure, they shear-cut, blunt-

shear or pinch-off food material. (Modified from Evans and Sanson, 2003) ........73 

Fig. 57: The Two-Surface-Tool. Food particles get sheared and crushed in-between two 

surfaces, which past each other. In version B compressional shearing can occur 

within a groove. (Modified from Thiery et al., 2017) ............................................73 

Fig. 58: Snapshots of the shearing stroke of Woutersia butleri (mesio-lingual view). The 

highlighted crests performed a blunt-shearing. A: At the beginning of the first 

stage. B: During the third stage. .........................................................................76 

Fig. 59: A summary of the chewing cycle of Woutersia butleri and the involved molar 

structures. The puncture-crushing mode preceded the shearing stroke (a). The 

shearing stroke can be divided into three stages (b-d). Blue arrow: predicted 

OFA trajectory path, yellow arrow: calculated OFA trajectory path, red line: 

recovery stroke...................................................................................................77 

Fig. 60: Two stages of the shearing stroke of Kuehneotherium praecursoris. A: Molar 

position at the beginning of the second stage. Highlighted crest executed a 

puncture-shearing (lingo-distal view). B: Molar position at the end of the third 

stage. The encircled area indicates the region, in which a compressional-

shearing took place (lingual view). .....................................................................78 

Fig. 61: A summary of the chewing cycle of Kuehneotherium praecursoris and the 

involved molar structures. The puncture-crushing mode preceded the shearing 

stroke (a). The shearing stroke can be divided into three stages (b-d). Blue 

arrow: theoretical chewing path, yellow arrow: path resulting from the OFA 

analysis, red line: recovery stroke. .....................................................................79 

Fig. 62: Two stages of the shearing stroke of Maotherium sinense (lingo-mesial view). 

The highlighted crests performed a blunt-shearing A: At the beginning of the 

first stage. B: At the beginning of the third stage. ...............................................80 

file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685069
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685069
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685070
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685070
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685070
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685070
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685071
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685071
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685072
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685072
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685072
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685073
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685073
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685073
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685074
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685074
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685074
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685075
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685075
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685075
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685076
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685076
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685076
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685076
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685076
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685077
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685077
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685077
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685077
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685077
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685078
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685078
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685078
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685078
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685078
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685079
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685079
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685079


VIII 
 
 

Fig. 63: A summary of the chewing cycle of Maotherium sinense and the involved molar 

structures. The puncture-crushing mode preceded the shearing stroke (a). The 

shearing stroke can be divided into three stages (b-d). Blue arrow: theoretical 

chewing path, yellow arrow: path resulting from the OFA analysis, red line: 

recovery stroke. ................................................................................................. 81 

Fig. 64: Two stages of the shearing stroke of Spalacolestes cretulablatta A: At the 

beginning of the first stage. Highlighted crests executed a shear-cutting (distal 

view). B: At the beginning of the second stage: Highlighted areas performed a 

compressional-shearing (bucco-lingual view). .................................................... 82 

Fig. 65: A summary of the chewing cycle of Spalacolestes cretulablatta and the involved 

molar structures. The puncture-crushing mode preceded the shearing stroke 

(a). The shearing stroke can be divided into two stages (b and c). Blue arrow: 

theoretical chewing path, yellow arrow: path resulting from the OFA analysis, 

red line: recovery stroke..................................................................................... 83 

Fig. 66: Two stages of the shearing stroke of Dryolestes leiriensis. A: At the beginning of 

the first stage. Highlighted crests executed a shear-cutting (mesio-occlusal 

view) B: At the beginning of the second stage. Highlighted areas per-formed a 

compressional shearing (buccal view). .............................................................. 84 

Fig. 67: A summary of the chewing cycle of Dryolestes leiriensis and the involved molar 

structures. The puncture-crushing mode preceded the shearing stroke (a). The 

shearing stroke can be divided into three stages (b-d). Blue arrow: theoretical 

chewing path, yellow arrow: path resulting from the OFA analysis, red line: 

recovery stroke. ................................................................................................. 85 

Fig. 68: The principle of the embrasure shearing. The advantage of the embrasure 

shearing is to pro-vide a constant contact of the collision areas. (Modified from 

Schultz and Martin, 2014) .................................................................................. 86 

Fig. 69: Zalambdodont dentition of Solenodon paradoxus (ZFMK 658, occlusal view). A: 

Left M3 B: Left m3. ............................................................................................ 91 

Fig. 70: The “protoconoid”, a theoretical ideal insectivorous molar and its functional 

parameters. (Modified from Evans, 2005) .......................................................... 93 

Fig. 71: Simplified illustration of the molar occlusion of the "triconodontans" and 

"symmetrodontans" in connection with the damage caused to food particles. 

The comminution rate increases with a higher triangulation. A: The cusp in line 

molar pattern only separated food particles into two parts, with an neglectable 

comminution in-between the upper and lower dentition. B: The obtuse molar 

pattern also separated a food particle into two parts, with a minor comminution 

in-between the upper and lower dentition. C: In the zhangheotheriid molar 

pattern a comminution in-between the molar cusps occurred next to the 

file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685080
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685080
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685080
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685080
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685080
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685081
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685081
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685081
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685081
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685082
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685082
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685082
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685082
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685082
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685083
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685083
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685083
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685083
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685084
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685084
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685084
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685084
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685084
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685085
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685085
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685085
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685086
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685086
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685087
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685087
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685088
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685088
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685088
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685088
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685088
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685088
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685088
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685088


  

 IX 
 
 

separation and comminution pattern of A and B. D: In the acute angle pattern 

the comminution in-between the molar cusps was higher as in C. ......................94 

Fig. 72: Morganucodon watsoni (A, B, lower left m2, UMZC Eo.cr.1) and 

Kuehneotherium praecursoris (C, D, lower left m3, PV M 19143) in size 

comparison. .......................................................................................................95 

Fig. 73: A distance gradient illustration of the studied “symmetrodontans” resulting from 

the OFA. The collision distance increases in relation to the increase of the molar 

cusps triangulation (not scaled). .........................................................................98 

Fig. 74: A Dryolestes molar and various “symmetrodontan” molars in comparison 

(occlusal and buccal views). ...............................................................................99 

file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685088
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685088
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685089
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685089
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685089
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685090
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685090
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685090
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685091
file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685091


X 
 
 

List of Tables 

 

Tab. 1: Summary of Zhangheotheriidae and Spalacotheriidae, and their temporal and 

geographic occurrence according to the fossil record. ......................................... 8 

Tab. 2: Summary of Kuehneotheriidae and Woutersiidae, and their temporal and 

geographic occurrence according to the fossil record. ......................................... 9 

Tab. 3: Summary of “Symmetrodonta” incertae sedis and Tinodontidae, and their 

temporal and geographic occurrence according to the fossil record. .................... 9 

Tab. 4: Cusp homology of the upper and lower main cusps of Woutersia sp. .................. 15 

Tab. 5: List of the studied “symmetrodontans”. ................................................................ 21 

Tab. 6: Sets of molars, which were used to reconstruct the chewing cycle. ..................... 56 

file:///d:/Users/tplogschties/Desktop/Doktor/DISSERTATION/Texte/Dissertation_Thorsten.docx%23_Toc21685096


 

 XI 
 
 

List of Abbreviations 

 

Institutional Abbreviations 

AMNH American Museum of National History (New York, USA) 
DORCM Dorset County Museum (Dorchester, UK) 
FMNH Field Museum of Natural History (Chicago, USA) 
IP FUB Freie Universität Berlin, Institute of Paleontology (Berlin, Germany) 
MNA Museum of Northern Arizona (Flagstaff, USA) 
NHM Natural History Museum (London, UK) 

OMNH Sam Noble Museum (Norman, USA) 
RAS Institut royal des Sciences naturelles de Belgique (Brussels, Belgium) 
SNP Muséum national d’Histoire naturelle (Paris, France) 
UM University of Montana (Missoula, USA) 

UMNH National History Museum of Utah (Salt Lake City, USA) 
UMZC Cambridge University Museum of Zoology (Cambridge, UK) 
USNM (Smithsonian) National Museum of Natural History (Washington D.C., USA) 
YPG Yizhou Fossil & Geology Park (Yizhou, China) 
YPM Peabody Museum of Natural History (Yale, USA) 
ZMFK Zoological Research Museum Alexander Koenig (Bonn, Germany) 

https://www.natureindex.com/institution-outputs/united-kingdom-uk/cambridge-university-museum-of-zoology-umzc/513906f534d6b65e6a0017e6


XII 
 
 

 
 
 
 

Modular tooth structure nomenclature  

(modified from Schultz et al., 2017b) 

cusps  

upper cusp XY CPXY 
lower cusp xy cpxy 

hypoflexid hfd 
metacone ME 
metaconid me 
metastyle MTS 
paracone PA 
paraconid pa 
parastyle PAS 
protocone PR 
protoconid pr 
stylocone ST 

cingulum/cingulid/crests 

cingulid [cgd] 
cingulum [CG] 

crista [C] 
cristid [c] 

links 

* between cusps surfaces 
~ between crests 
_ between cingula/ cingulids 

positions 

l lingual 
b buccal 
d distal 
m mesial 
a apical 

Other Abbreviations 

wr-cycle Chewing cycle with a roll of the lower dentition 
wor-cycle Chewing cycle without a roll of the lower dentition 

OFA Occlusal Fingerprint Analyser. A software to reconstruct the chewing 
cycle 

t-s time step 
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Abstract 

 

The “symmetrodontan” molar pattern is characterized by triangulation of the main cusps in 

combination with a reversed-triangle occlusion. In the fossil record, the “symmetrodontan” 

molar pattern occurred in various taxa of Mesozoic mammals with an insectivorous diet. 

These taxa were traditionally summarized in the paraphyletic group “Symmetrodonta”. 

In molar evolution, the “symmetrodontan” molar pattern is nested in-between the 

cusp-in-line type of “triconodontans” and the pretribosphenic molars of Cladotheria. Within 

the evolution of the „symmetrodontans“, their molar morphology evolved towards a more 

acute triangulation of the three main cusps and sharp shearing crests. On the base of this 

triangulation, the "symmetrodontans" can be differentiated into three groups. The early 

diverging Woutersiidae, Tinodontidae, and Kuehneotheriidae encompass the 

obtuse-angled “symmetrodontans”. Spalacotheriidae comprises the acute-angled 

“symmetrodontans”, and Zhangheotheriidae, formerly included into the acute-angled 

“symmetrodontans”, are herein classified as an intermediate-angled taxon. 

The functional molar occlusion analysis of representatives of each class revealed that all 

“symmetrodontans” performed a one-phased transverse upward movement of the lower 

jaw, with a slight mesial or distal shift. Another feature that all “symmetrodontans” had in 

common, was the embrasure shearing. All studied “symmetrodontans”, except for 

Kuehneotheriidae, performed an embrasure shearing, in which two upper molars embraced 

one lower molar. The embrasure shearing of kuehneotheriids, in contrast, was proceeded 

within the cusp level. 

Despite the similarity of the mandible movement, the respective groups have a unique 

mode of functional occlusion. Generally, Woutersia butleri (Woutersiidae) comminuted food 

by puncture-crushing, Kuehneotherium praecursoris (Kuehneotheriidae) by puncture-

shearing, Maotherium sinense (Zhangheotheriidae) by blunt-shearing, and Spalacolestes 

cretulablatta (Spalacotheriidae) by shear-cutting. Additionally, as a result of their higher 

width/length-ratio, the acute-angled “symmetrodontans” inflicted more damage to the prey, 

than the obtuse-angled ones.  

Similar to the majority of extant insectivorous mammals, “symmetrodontans” probably 

were opportunistic and generalistic feeders, due to their endothermic metabolic system, but 

with some limitations. The first limitation was the size of the prey, and the second was its 

composition ([in-]tractability), whereby the intractability increases with the size of the prey. 

Apart from the prey size Woutersiidae and Zhangheotheriidae could handle, their molars 

were better suited for comminuting more intractable prey (e.g. coleopterids), by virtue of the 

lower sharpness of the molar cusps, cusp tips, and crests. The kuehneotheriid molars, with 

a higher cusp and cusp tip sharpness, were more efficient in comminuting tractable 
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invertebrates (e.g. annelids), within the prey size they could handle. Similar to shrews, the 

range of the prey preference of the Spalacotheriidae was mainly limited by the size of their 

molars, and therefore by the size of the respective spalacotheriid species. Small 

spalacotheriid species preyed on smaller invertebrates, larger species consumed larger 

prey, whereby the composition of the prey was of minor importance. 

The morphology of spalacotheriid molars resembles the theoretical model of an ideal 

insectivore molar, which is called protoconoid. The main features of the protoconoid can 

also be seen in the extinct Dryolestida (Cladotheria), as well as in certain extant 

insectivorous mammals, that have reduced the tribosphenic molar pattern to a 

zalambdodont or dilambdodont pattern (e.g. Solenodontidae, Soricidae). Dryolestida, 

zalambdodont and dilambdodont mammals, and Spalacotheriidae first punctured and 

trapped their prey with their molar cusps, and then shear-cut the food items like a cigar 

cutter. The secondary simplification of the tribosphenic molars towards the protoconoid 

suggests that this molar pattern is the most successful adaptation and specialization for a 

highly insectivorous diet (“hyperinsectivory”). 
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1 Introduction 

 

1.1 The evolutionary development of the molars 

 

The masticatory system of mammals plays an important role in achieving their immense 

diversity. Due to evolutionary changes in modern mammals, the masticatory system is 

highly adapted to their preferred diet. Essential for an efficient diet comminution is the 

morphology and the interaction between the dentition, which leads to an increase in the 

digestive efficiency to gain maximum assimilation of nutrients (Prinz and Lucas, 1997; Prinz 

et al., 2003). Mammals depend on consuming high amounts of calories, due to their 

endothermic way of life (Clarke and Pörtner, 2010). During evolution, mammalian dentition 

adapted to different kinds of food and it is thus possible to distinguish the preferred diet of 

mammalian species by the morphology of their teeth (Ungar, 2010). While herbivore 

dentitions need to rip-off, grind, and crush plant components, carnivores use their teeth to 

catch prey and to tear the prey’s flesh apart. It is important to note, that the variety of modern 

mammal molar morphologies only has one evolutionary predecessor, the tribosphenic 

molar (Cope, 1883; Osborn, 1888; Hiiemäe, 1976; Thenius, 1989; Flynn et al., 1999; Luo 

et al., 2002; Woodburne et al., 2003; Luo, 2007; Davis, 2011; Conith et al., 2016). 

Simpson (1936) first used the term “tribosphenic molar”, and described the innovative 

features of this molar type in detail. The innovation of the tribosphenic molar, in contrast to 

the pretribosphenic molar, is a neomorphic lingual cusp (protocone) on the upper molar, 

which occluded in the distal basin (talonid) of the lower molar (Fig. 1). The talonid was 

formed by rearranging existing cusps, in 

combination with the development of 

neomorphic cusps (Simpson, 1936). The 

advantage for mammals, that have 

tribosphenic molars, is to puncture-crush, 

and shear their prey, like their ancestors, 

but also to squeeze, and grind food items. 

The squeezing and grinding function 

happened due to the interaction of the 

protocone and the talonid, comparable to 

a pistil and mortar action (Simpson, 

1936). The capability to squeeze and grind food was an important premise for the rise of 

the herbivores (Kielan-Jaworowska et al., 2004; Ungar, 2010; Evans and Pineda-Munoz, 

2018). Based on the fossil Juramaia sinensis Luo, Yuan, Meng & Ji, 2011 the divergence 

 
Fig. 1: The upper (white) and lower (grey) tribosphenic molars in 
occlusion. Only the important structure are labeled and the 
molars are simplified. The shear-cutting crests are marked in red, 
and the grinding areas in yellow. (Modified from Kielan-
Jaworowska et al., 2004) 
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of Eutheria and Metatheria lineages could be dated back to the Middle Jurassic (160 Ma), 

and also the minimum age of the tribosphenic molar origin. 

The development towards the tribosphenic molar is often referred to as the Cope-Osborn 

theory (Cope, 1883; Osborn, 1897; Gregory, 1934). In their studies, Cope and Osborn 

described the basic, principle evolutionary steps from a unicuspid (haplodont) tooth towards 

the tribosphenic molar in detail (Fig. 2). In the course of evolution, small cusps evolved 

mesially and distally to the primal cusp of the unicuspid tooth. This configuration of three 

main cusps in line is typical for the paraphyletic “Triconodonta”. Prominent representatives 

of this molar configuration are Morganucodon Kuehne, 1949 (Upper Triassic - Lower 

Jurassic) or Triconodon Owen, 1949 (Upper Jurassic). Further evolutionary steps involved 

a buccal shifting of the two accessory cusps next to the main cusps of the upper molars, 

and a lingual shifting of the two side cusps next to the lower main cusp (Crompton and 

Jenkins, 1968, 1973). The resulting reversed-triangle pattern is typical for the paraphyletic 

“Symmetrodonta”. While early-diverging “symmetrodontans” like Woutersia Sigogneau-

Russell, 1983 (Upper Triassic) are characterized by three blunt main cusps, the pointed 

molar cusps of Late Cretaceous taxa like Spalacolestes Cifelli & Madsen, 1999 are 

connected via sharp crests.  

During the following evolutionary steps, the reversed-triangle pattern was modified 

successively into the tribosphenic molar. For that matter, some cusps underwent further 

shifting, and new cusps were developed. An early representative of the Tribosphenida is 

Pappotherium pattersoni Slaughter, 1965 (Lower Cretaceous). 

 

 

It is important to mention that one principle of the Cope-Osborn theory has been revised by 

Patterson (1956). Cope (1883) and Osborn (1897) assumed that each primal unicuspid 

cusp of the mammalian ancestor is homologous to the upper and lower molar main cusp of 

the tribosphenic molar (protocone, protoconid). Patterson (1956) discovered that this 

inverse homology of the Cope-Osborn theory was an erroneous assumption and that the 

upper molar main cusp (protocone) of the tribosphenic molar evolved secondarily. 

 
Fig. 2: Important steps in the evolution of the tribosphenic molar. A: A unicuspid lower tooth of a non-mammalian amniote. B: A 
pre-triconodont tooth of Dromatherium (therapsid). C: A triconodont lower tooth of Microconodon (therapsid). D: A symmetrodont 
lower molar of Spalacotherium. E: A pretribosphenic lower molar of Amphitherium. F: Tribosphenic upper and lower molars of 
Pappotherium. (A-E: Modified from Osborn, 1897; F: Modified from Kielan-Jaworowska et al., 2004) 
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Nevertheless, the principles of Cope and Osborn’s tritubercular theory are still valid today. 

Another discovery, that needs to be addressed, is that the structural morphology of the 

tribosphenic molar evolved independently on Gondwana and Laurasia (Luo et al., 2001; 

Davis, 2011). Nevertheless, the Tribosphenida, as defined by McKenna (1976), are most 

likely monophyletic (Davis, 2011). 

 

1.2 “Symmetrodonta” 

 

“Symmetrodontans” are a poorly known, paraphyletic group of small Mesozoic mammals 

(sensu lato). They are characterized by a triangular arrangement of the molar main cusps, 

and lacking both, talonid cusps and a protocone. The upper and lower molars are arranged 

in a reversed-triangle pattern with one upper molar occluding between two lowers (two-to-

one occlusion) (Fig. 3). The simple reversed-triangular molar morphology represents a 

fundamental step in the mammalian evolution (Crompton and Sita-Lumsden, 1970; Kielan-

Jaworowska et al., 2004). Functionally 

and structurally, this morphology is 

intermediate between the “triconodont” 

cusp-in-line molar pattern and the more 

derived molars of the Tribosphenida 

(Patterson, 1956; Crompton and 

Jenkins, 1967). The “symmetrodontan” 

molar pattern evolved more than once 

among the mammalian evolution and 

cannot be seen as an apomorphy which 

is unique to “Symmetrodonta” (Rougier et al., 1996; Pascual et al., 2002; Kielan-

Jaworowska et al., 2004). Therefore, the term “symmetrodontan” should only be used in a 

descriptive sense, and not taxonomically. 

Within the “symmetrodontans” traditionally two groups are distinguished. The 

obtuse-angled Kuehneotheriidae and Tinodontidae, in which the three main cusps are 

arranged at an angle greater than 90°, and the acute-angled Spalacotheriidae, in which the 

angle between the main cusps is less than 90° (Li and Luo, 2006; Ji et al., 2009; but 

according to Averianov et al. (2013) the transition between obtuse-angled and acute-angled 

is at 80°). Another group of “symmetrodontans” is the intermediary Zhangheotheriidae. The 

zhangheotheriids comprise acute-angled as well as obtuse-angled taxa.  

The fossil record shows that “symmetrodontans” were almost worldwide distributed and 

they appeared in the Upper Triassic (Norian) and went extinct in the Upper Cretaceous 

(Maastrichtian) (c.f. Tab. 1 - Tab. 3). The fossil record of the “symmetrodontans” is sparse. 

Most of the “symmetrodontan” fossil findings are isolated teeth and teeth bearing jaw 

 
Fig. 3: The reversed-triangle and two-to-one occlusion pattern on 
the example of Maotherium sinense (YFGP 1724, right molars). 
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fragments. An extraordinary exception are the “symmetrodontan” fossils of the lower part of 

the Jehol Group, Yixian Formation (Barremian) in Northeastern China (Pan et al., 2013). 

Almost complete specimens and articulated skulls, including their dentition, were found in 

this Lagerstätte (Hu et al., 1997; Rougier et al., 2003; Luo and Ji, 2005; Li and Luo, 2006; 

Ji et al., 2009; Bi et al., 2016; Plogschties and Martin, 2019). These fossils are 

representatives of the zhangheotheriids and spalacotheriids.  

 

1.2.1 The diet of “symmetrodontans” 

Due to the small body size and the tooth morphology, it can be assumed that 

“symmetrodontans” preferred insectivorous (terrestrial invertebrates) diet (Kielan-

Jaworowska et al., 2004). The body size can be estimated on the basis of the well-preserved 

Jehol Group fossils and on calculations based on the dentition (Kay, 1975). This results in 

a body size for “symmetrodontans” ranging between that of the shrew Sorex trowbridgii and 

the marsupial Monodelphis domestica (Kielan-Jaworowska et al., 2004). 

The tooth morphology shows that the primary functions of “symmetrodont” molars were 

puncture-crushing and shearing. These two functions are also mainly used by extant 

insectivores (Crompton et al., 1998; Evans, 2005). Gill et al. (2014) demonstrated, based 

on finite element analysis of lower jaws and a microwear study, that it is possible to 

differentiate the preferred insectivorous diet between species, in this case, Morganucodon 

(“Triconodonta”), and Kuehneotherium Kermack, Kermack ,and Mussett, 1968 

(“Symmetrodonta”). They concluded that Kuehneotherium more likely preferred a “soft” 

insectivore diet, whereas Morganucodon preferred “hard” prey. This conclusion is supported 

by an experimental study of Conith et al. (2016), in which simplified models of the 

Kuehneotherium and Morganucodon dentition “chewed” different “food” items. Another 

approach to determine the preferred prey is to study the molar shape and morphology in 

detail (Lucas and Luke, 1984; Strait, 1993; Evans and Sanson, 1998; Evans, 2005; Evans 

and Sanson, 2006; Anderson and La Barbera, 2008) 

 

1.2.2 A systematic overview of “symmetrodontans” 

Due to the fact that most of the “symmetrodontan” fossils are only isolated teeth, the 

phylogenetic relationships between them,as well as the phylogenetic position of the 

“symmetrodontan” taxa, is still unsolved. Recent phylogenetic analysis support at least the 

monophyly of zhangheotheriids and spalacotheriids, and their affiliation to the Mammalia 

(Averianov et al., 2013; Bi et al., 2014; Krause et al., 2014; Luo et al., 2015; Huttenlocker 

et al., 2018). To avoid confusion, in this study the term Mammalia will be used sensu lato 

and includes the Mammaliaformes Rowe, 1988 and the mammalian crown group (Luo et 

al., 2002; Kielan-Jaworowska et al., 2004). In terms of the evolutionary development of the 

“symmetrodontan” molars, the zhangheotheriids have an intermediate molar morphology, 
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and the spalacotheriids the most derived ones. The Zhangheotheriidae and 

Spalacotheriidae are summarized in Table 1.  

The earliest diverging “symmetrodontans” are Woutersiidae and Kuehneotheriidae 

(Tab. 2). They have the most primitive “symmetrodontan” molar morphology and are 

classified as obtuse-angled “Symmetrodonta”. 

For completeness, Table 3 contains the remaining “Symmetrodonta” including 

Tinodontidae and Gobiotheriodon. These taxa are classified as obtuse-angled 

“symmetrodontans”. 

In this work, the following taxa are excluded from the “Symmetrodonta”:  

- The Thereuodontidae Sigogneau-Russell and Ensom, 1998, because Martin (2002) 

and Averianov (2002) argued that the Thereuodontidae teeth are milk teeth of stem 

zatherians. The same applies to Atlasodon monbaroni Sigogneau-Russell, 1991. 

- Bondesius ferox Bonaparte, 1990, because Averianov (2002) placed Bondesius 

within the Dryolestida.  

- “Amphidontidae” Simpson, 1925, are excluded based on results of recent studies, 

which included the type genus Amphidon superstes Simpson, 1925 into the 

“Amphilestidae” (Rougier et al., 2001; Rougier et al., 2007a; Gao et al., 2010). 

Furthermore, according to Kielan-Jaworowska et al. (2004) the other “amphidontid” 

taxa, e.g. Manchurodon simplicidens Yabe and Shikama, 1938, and Nakunodon 

paikasiensis Yadagiri, 1984 are not unequivocally diagnosable based on the 

available data.  
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Tab. 1: Summary of Zhangheotheriidae and Spalacotheriidae, and their temporal and geographic occurrence according to the 
fossil record. 

Taxon 
Temporal 

Occurrence 

Geographic 

Occurrence 

Zhangheotheriidae 

Anebodon luoi 

Bi, Zheng, Meng, Wang, Robinson, and Davis, 2016 Barremian China 

Kiyatherium cardiodens 

Maschenko, Lopatin, and Voronkevich, 2002 Barremian Russia 

Maotherium asiaticum 

Ji, Zhang, Yuan, Xu, 2009  Barremian China 

Maotherium sinense  

Rougier, Ji, and Novacek, 2003 Barremian China 

Zhangheotherium quinquecuspidens  

Hu, Luo Li, Wang, 1997  Barremian China 

Spalacotheriidae 

Akidolestes cifellii 

Li and Luo, 2006 Barremian China 

Aliaga molinensis 

Cuenca-Bescos, Canudo, Gasca, Morena- Azanza, and Cifelli, 2014 Barremian Spain 

Heishanlestes changi 

Hu, Fox, Wang, and Li, 2005 Aptian China 

Infernolestes rougieri 

Cifelli, Davis and Sames, 2014 Berriasian USA 

Lactodens sheni 

Han and Meng, 2016 Barremian China 

Shalbaatar bakht 

Nassov, 1997 Turonian Uzbekistan 

Spalacolestes cretulablatta 

Cifelli and Madsen, 1999 Albian USA 

Spalacolestes inconcinnus 

Cifelli and Madsen, 1999 Albian USA 

Spalacotheridium mckennai 

Cifelli, 1990 Turonian USA 

Spalacotheridium noblei 

Cifelli and Madsen, 1999 Albian USA 

Spalacotherium evansae 

Ensom and Sigogneau-Russell, 2000 Berriasian Great Britain 

Spalacotherium henkeli 

Krebs, 2000 Barremian Spain 

Spalacotherium hookeri 

Gill, 2004a Berriasian Great Britian 

Spalacotherium taylori 

Clemens and Lees, 1971  Valanginian Great Britain 

Spalacotherium tricuspidens 

Owen, 1854  Valanginian Great Britain 

Spalacotheroides bridwelli 

Patterson, 1955 Albian USA 

Symmetrodontoides canadensis 

Fox, 1976 Maastrichtian USA 

Symmetrodontoides foxi 

Cifelli and Madsen, 1986 Campanian USA 

Symmetrodontoides oligodontos 

Cifelli, 1990 Turonian USA 

Symmetrolestes parvus 

Tsubamoto, Rougier, Isaji, Manabe, and Forasiepi, 2004 
Hauterivian Japan 

Yaverlestes gassoni 

Sweetman, 2008 Barremian Great Britain 
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Tab. 2: Summary of Kuehneotheriidae and Woutersiidae, and their temporal and geographic occurrence according to the 
fossil record. 

Taxon Temporal Occurrence Geographic Occurrence 

Kuehneotheriidae 

Kuehneotherium praecursoris 

Kermack, Kermack, and Mussett, 1968 
Norian 

Rhaetian 
Great Britain, Greenland 

France, Luxemburg 
Kuehneotherium stanislavi 
Debuysschere, 2017 

Rhaetian France 

Fluctuodon necmergor, 
Debuysschere, 2017 

Rhaetian France 

Kotatherium haldanei 

Datta, 1981 Lower Jurassic India 

Kuehneon duchyense 

Kretzoi, 1960 nomen dubium Lower Jurassic Great Britain 

Woutersiidae 

Woutersia butleri 

Sigogneau-Russell and Hahn, 1995 Rhaetian France 

Woutersia mirabilis 

Sigogneau-Russell,1983 Rhaetian France 

 

 

 
Tab. 3: Summary of “Symmetrodonta” incertae sedis and Tinodontidae, and their temporal and geographic occurrence 
according to the fossil record. 

Taxon Temporal Occurrence Geographic Occurrence 

incertae sedis 

Gobiotheriodon infinitus  
Trofimav, 1980 Aptian or Albian Mongolia 

Tinodontidae 

Tinodon bellus 

Marsh, 1879 
 
Synonyms= 

Menacodon 

Marsh, 1887  
Eurylambda  

Simpson, 1929 
Amphidon aequicrurius  
Simpson, 1925 
Tinodon lepidus 

Marsh, 1879 

Kimmeridgian 
Berriasian 
Berriasian 

USA 
Great Britain 

Portugal 

Tinodon micron 

Ensom and Sigogneau-Russell, 2000 Berriasian Great Britain 
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1.3 Dryolestida, the closest relative to the acute-angled 

“symmetrodontans” 

 

Dryolestida are pretribosphenic Cladotherians, which are nested in-between the 

spalacotheriids (acute-angled “symmetrodontans”) and prototribosphenidans (e.g., 

Vincelestes), and therefore are on the stem lineage of the tribosphenidans (Martin, 1999; 

Luo, 2007; Chimento et al., 2012; Schultz and Martin, 2014). In the fossil record, this taxon 

appears in the Middle Jurassic and disappears in the early Paleocene. Fossil remains of 

Dryolestida were found in North America, South America, Europe, and Asia (Lillegraven 

and McKenna, 1986; Ensom and Sigogneau-Russell, 1998; Martin, 1999; Gelfo and 

Pascual, 2001; Martin and Averianov, 2010; Schultz and Martin, 2011; Chimento et al., 

2012). Like in “symmetrodontans”, the molars of the Dryolestida are arranged in a (acute) 

reversed-triangle pattern. Dryolestidans show an additional groove (hypoflexid) at the distal 

side of the lower molars, in which the paracone occluded and was guided along the 

mastication path. The hypoflexid separates the trigonid from the unicuspid talonid (Schultz 

and Martin, 2014). In the course of evolution, the hypoflexid got extended and became an 

important structure for shearing food. During the progressing evolution of the mammalian 

molars towards the tribosphenic type, the talonid basin, in which the neomorphic protocone 

occluded, became more important for food mastication. As a consequence, the hypoflexid 

was reduced, and the talonid basin became more prominent. However, a minor occlusion 

between the paracone and the hypoflexid occurs in the tribosphenic molars. 

 

1.4 Tooth-wear 

 

During the chewing process, teeth are exposed to mechanical stresses and strains. Due to 

these mechanical stresses and strains, teeth get worn down. This results in loss of tooth 

material (enamel and dentin) and leveling of the tooth surface, and sometimes whole 

chunks of the teeth can be chipped off. The cause of mechanical wear can be subdivided 

into two categories: attrition and abrasion (Grippo et al., 2004; Barbour and Rees, 2006).  

Abrasion, in terms of tooth wear, is the physical irreversible removal of enamel and 

dentine due to the contact of tooth-exogenous agent-tooth contact. In this process, the 

abrasive nature of the diet plays a major role in the form and intensity of the wear. While 

enamel undergoes a slow removal because of its hardness, the softer dentine will be 

removed more quickly. The difference in hardness is the result of the varying organic and 

chemical compositions of these two materials. Enamel consists of crystalline calcium 

phosphate (95%-97%; (Ca5OH[PO4]3), mucopolysaccharides (up to 4%) and water. 
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Dentine, on the contrary, contains phosphoric apatite crystallites (up to 70% 

Ca[Ca3(PO4)2]3(OH)2), collagen (20%) and water (10%) (Chun et al., 2014). 

For this reason, enamel ranks 5 on Mohs scale (Knoop hardness of 200-500) and dentine 

falls between 2 and 3 on Mohs scale (Knoop hardness of 40-70) (Meredith et al., 1996). In 

progressing abrasion the varying hardnesses cause discontinuities or steps between 

dentine and enamel (Greaves, 1973; Rensberger, 1973; Costa and Greaves, 1981). In the 

case of “symmetrodontans”, these steps are mainly visible on areas of apical wear. Apical 

wear in these taxa originated mainly by puncture-crushing the prey with almost no tooth-

tooth contact. Crompton and Hiiemäe (1970) observed that during puncture-crushing, the 

prey was pre-comminuted and prepared for the actual mastication. The puncture-crushing 

is one type of the power stroke (see chapter 1.5).  

Attrition, in terms of tooth wear, describes the physical process, in which enamel or 

dentine is removed by direct tooth-tooth contact, during chewing (Eccles, 1982; Grippo et 

al., 2004; Barbour and Rees, 2006). The results of attritional wear are polished, light-

reflecting, flattened areas called wear facets. Wear facets are developed at areas, where 

upper and lower teeth get in contact and slide past each other (Butler, 1972). This way, 

wear facets on the lower teeth have matching antagonistic facets on the opposing upper 

teeth. Microscopic particles, which are sitting between these counterparts, cause faint 

scratches on the polished wear facets. These faint scratches are called striations (Butler, 

1972). Sources of the microscopic particles are for example dust, fine sediments, and hard 

constituents of the food. The constituents of the latter are for instance phytoliths of plants 

or mineral inclusions of insect exoskeletons. (Walker et al., 1978; Evans and Sanson, 2005; 

Sanson et al., 2007; Hummel et al., 2011). The orientation of the striations and facets

are usable indicators to reconstruct the relative movement of the lower jaw during the 

chewing cycle (Butler, 1972; Kay and Hiiemäe, 1974; Schultz and Martin, 2014). In addition, 

the extent of attrition facets and their characteristics can be used to categorize specimens 

into dental age stages (Litonjua et al., 2003; Anders et al., 2011). 

A further cause of loss of tooth material is corrosion. Corrosion means the weakening, 

and destruction of the tooth surface by chemical or electrolytic processes (Grippo et al., 

2004).  

Attrition, abrasion, and corrosion, may occur simultaneously, sequentially or alternately 

during the dynamics of inter-occlusal activity (Grippo et al., 2004).  
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1.5 Mastication 

 

Chewing food is important for sufficient assimilation of nutrients. The smaller the food 

particles, the larger the attacking area for the digestive enzymes. It is important to note, that 

just puncturing the prey also assists in digestion (Prinz et al., 2003). The basic principle of 

chewing starts with an orthal movement of the lower jaw towards the upper jaw. 

Subsequently, food is trapped in-between the teeth and gets under pressure. The size and 

shape of the contact areas determine the type of deformation and division of food items, 

and the subsequent direction of movement of the lower jaw (Schultz, 2012). The different 

types of deformation and division are classified as shearing, (opposing) crushing, and 

grinding (Simpson, 1933; Kay and Hiiemäe, 1974; Ungar, 2015).  

Crompton and Hiiemäe (1969, 1970) subdivided the chewing cycle into three phases: 

The preparatory stroke, the power stroke, and the recovery stroke. The preparatory stroke 

is the phase, in which the lower jaw moves upwards and medially, ending with the first tooth-

exogenous agent-tooth or tooth-tooth contact (Crompton and Hiiemäe, 1969, 1970; Kay 

and Hiiemäe, 1974). The power stroke is subdivided into a crushing-puncture stroke and a 

shearing stroke. During the crushing-puncture stroke, food is divided and prepared in 

adequate pieces to get chewed (Crompton and Hiiemäe, 1970). While the food is being 

punctured-crushed, teeth normally are not getting in contact. The shearing stroke starts with 

the first tooth-tooth contact. Mills (1955) and Kay and Hiiemäe (1974) subdivided the 

shearing stroke further into two phases. The first phase is the buccal phase (Mills, 1955) or 

phase I (Kay and Hiiemäe, 1974), which involves an upward movement until maximum 

intercuspation (centric occlusion; see chapter 2.6) of the dentition is reached. The 

subsequent phase is the lingual phase (Mills, 1955) or phase II (Kay and Hiiemäe, 1974), 

which comprises the movements after the maximum intercuspation until the recovery stroke 

starts. It has always been assumed that phase II only occurs during mastication, in which

tribosphenic molars and their evolutional successors are involved. However, Schultz et al. 

(2017a) re-examined Docodon victor and found evidence, that Docodon victor and 

presumably, therefore, other pretribosphenic taxa also had a phase II. After the shearing 

stroke, when the facets lose contact and the downward movement of the lower jaw begins, 

the recovery stroke starts. The recovery stroke ends at the point where the maximum gap 

between the jaw apparatuses is reached during mastication, and the cycle starts again. It 

should be noted, that some researchers use the terms power stroke and shearing stroke 

synonymously. 

Most of the extant mammals perform a unilateral, and transverse chewing motion during 

one cycle, in which only one side of the jaw, the active side, is processing food, whereas 

the non-active side, the balancing side, is only in motion without any food processing 

involvement (Crompton and Hiiemäe, 1970; Kay and Hiiemäe, 1974). This can also be  
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presumed for the “symmetrodontans”. Due to the fact that most jaw findings of Mesozoic 

mammals are isolated hemimandibles (Cifelli and Madsen, 1999), it can be assumed that 

the symphysis was unfused in most taxa (Crompton and Hylander, 1986). This leads to the 

hypothesis, that the mastication in “symmetrodontans” and other Mesozoic mammals 

involved rotation of the active hemimandible around the longitudinal axis (Patterson, 1956; 

Oron and Crompton, 1985; Crompton and Hylander, 1986; Crompton, 1995; Lieberman and 

Crompton, 2000; Bhullar et al., 2019). 

 

2 Terminology and conventions 

 

A variety of terminologies and conventions has been established regarding tooth 

morphology. The following chapter is a summary of the cusp terminology and facet 

nomenclature, which is used in the present study. In addition, guidelines concerning the use 

of anatomical terms of location, mandible movements, and anatomical abbreviations are 

defined. 

 

2.1 Anatomical terms of location/directions 

 

To describe the location and 

orientation of tooth structures the 

anatomical directions are adapted 

from Lucas (2004) and Hillson (2005) 

(Fig. 4). In addition, “apical” is used 

to describe the direction towards the 

tip of a tooth cusp (apex), and “basal” 

as the direction towards the root 

(Smith and Dodson, 2003). Upper 

teeth are abbreviated with uppercase 

letters, lower teeth with lowercase 

letters. The number behind a letter refers to the tooth position (e.g., M3 = third upper molar). 

  

 
Fig. 4: The anatomical directions in occlusal view (A), and in lateral 
view (B). (A: Modified from Lucas, 2004; B: Modified from Smith and 
Dodson, 2003) 
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2.2 Terminology of the mandible movements during mastication 

 

The terminology of Grossnickle (2017) was adopted to determine the mandible movements 

during mastication: 

- Pitch means rotation around a medio-laterally oriented axis through both condylar 

processes. This rotation results in an up-/downward movement of the mandible.  

- Yaw describes a lateral movement of the mandible, in which the active site moves 

lingually. This is done by rotating the mandible around a dorsoventrally oriented axis. 

- Roll is the rotation around a longitudinal axis that connects the jaw joint and the 

mandibular symphysis of one hemimandible. This movement rotates the tooth row of 

the active hemimandible towards lingual. If the symphysis is unfused, like in 

Mesozoic mammals, the hemimandibles rotate independently. 

 

2.3 Cusp terminology and tooth structure conventions 

 

Osborn (1888) realized that the cusps of teeth of early mammals can be homologized with 

those of the tribosphenic molar. He developed a standardized designation for the molar 

cusps. Throughout history, this terminology was modified and adjusted to newly gained 

knowledge. For instance, Patterson (1956) later recognized that the main cusp of the upper 

pretribosphenic molar, which Osborn (1888) called protocone, is not homologous with the 

protocone of the tribosphenic molar. Consequently, Patterson proposed to call the 

pretribosphenic cusp paracone (eocone). Basically, The cusp terminology of 

Crompton (1971) is used in this study (with some exceptions), which is a combination of the 

terminologies established by van Valen (1966) and Szalay (1969). Terms that were defined 

by other authors and are not from Crompton’s terminology are herein summarized: 

The disto-labial cusp of the upper molars is called “C” according to Kielan-Jaworowska 

et al. (2004) instead of “c” as in Crompton (1971). 

Hu et al. (1997) argued that the upper molar mesio-labial cusp of the zhangheotheriid 

Zhangheotherium tricuspidens is too large and positioned too far lingually to be homologous 

to cusp B (stylocone). They termed this cusp B’ and regarded it either as homologous to a 

much smaller cusp in a comparable position in other “symmetrodontans” or a neomorphic 

cusp. Therefore, in the present study, the designation B’ for the mesio-labial cusp of the 

upper molars was adopted for Maotherium sinense, as well as the cusp terminology of 

Maotherium sinense from Rougier et al. (2003). 

The cusp situated distally to the metaconid is termed cusp d according to Davis (2011). 

Cusp d is either homologous to the hypoconulid (Butler, 1939; Rougier et al., 2007b) or to 

the hypoconid (Mills, 1964; Lopatin and Averianov, 2006). 
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The accessory molar cusps of woutersiids are difficult to homologize, therefore the 

cusp terminology of Butler (1997) was adopted (see also Luo and Martin, 2007). Due to 

their position and orientation, the molar main cusps were homologized with those of the 

other “symmetrodontans” (see Tab. 4). 

 
Tab. 4: Cusp homology of the upper and lower main cusps of Woutersia sp. 

upper molars 

cusp A paracone 

cusp B stylocone 

cusp C metacone 

lower molars 

cusp a protoconid 

cusp b paraconid 

cusp c metaconid 

 

The term cingulum refers to an enamel ridge along the base of an upper molar crown and 

cingulid to an enamel ridge along the base of a lower molar crown (Butler, 1978). 

Gregory (1922) distinguished between primary trigon in “Pre-Tribosphenida” and 

secondary trigon in Tribosphenida; the primary trigon is spanned between paracone, 

stylocone, and metacone, whereas the protocone, paracone, and metacone form the 

secondary trigon. In this study, the term trigon refers to the primary trigon. The basin 

surrounded by the protoconid, paraconid, and metaconid is called trigonid (Gregory, 1922). 

With a few exceptions, the cusp acronyms were taken from Schultz et al. (2017b), see 

list of abbreviations (page XI). 

 

2.4 Contact area, crest, and cingulum/cingulid nomenclature 

 

To describe virtual abrasion or attrition contact areas (collision areas) the modular wear 

facet nomenclature of Schultz et al. (2017b) was applied and modified. The modular contact 

area labeling system basically consists of two modules, the first module is the acronym for 

the cusp, and the second module is the acronym for the position (see abbreviation list, 

page XI). For example, PA-mb stands for a mesio-buccally positioned collision area on the 

paracone. The dominant direction of the collision area position is labeled first. This way, 

PA-mb means the collision area on the paracone is mainly lying mesially but has a (slight) 

buccal shift. In some cases a third module was needed to define a position more precisely, 

e.g. PA-mb-a means the contact area is mesio-buccally positioned at the paracone tip 

(apex). If a collision area extends over two or more cusps, the acronyms are composed like 

this: PA*ME*MTS-dl. This abbreviation stands for a disto-lingually oriented collision area 

below the paracone, metacone, and metastyle. 
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Two overlapping collision areas, which are formed sequentially by different antagonists, 

are numbered consecutively, for instance, pr-db (1), pr-db (2). 

Two occluding antagonistic collision areas are combined as pairs: pr-d/PA-m, which 

means that the distal area of the protoconid occludes with the mesial side of the paracone. 

The Modular Contact Area Labelling System was further extended to determine contact 

areas on crests, cingula, and cingulids. The acronym [C]PA-m stands for a mesial crest of 

a paracone. In order to name connected crests, the abbreviations of the crests were 

combined like [C]PA~MTS. This abbreviation depicts a crest, which is connecting the 

paracone and metastyle. If another cusp sits on the crest between the two cusps, like the 

metacone in Dryolestes leiriensis, the nomenclature can be extended: [C]PA~ME~MTS. An 

uppercase [C] refers to a crista, whereas a lowercase [c] refers to a cristid. Cingula [CG] 

and cingulids [cgd] are described likewise. For example, the complete upper lingual 

cingulum of Maotherium sinense is labeled as [CG]CPB’_PA_ME. To refer to only the lingo-

mesial part of the cingulum, then the acronym [CG]CPB’_PA is used. If the contact area is 

restricted to a small cingulum/cingulid area below a cusp, the abbrevation looks like 

[CG]PA-d, which in this case depicts the cingulum area below the distal area of the 

paracone.  

 

2.5 Definition of the food comminution types (masticatory operations), with 

remarks to fracture and loading geometry 

 

The purpose of mastication is to fracture food into small bits, till it can be swallowed and 

sufficiently digested. Two principles are often addressed as important factors for 

comminuting food, first the loading geometry, which includes strains and stresses, and 

second the fracture geometry (Lucas, 1979, 2004; Berthaume, 2016; Thiery et al., 2017). 

These principles are the basics of materials 

science. 

Three basic types of loading geometry 

exist: tension, compression, and shear 

(Fig. 5). These “pure” loadings could poten-

tially lead to fracture or fragmentation of 

solids. Tensile loading acts directly away 

from an object in a perpendicular direction 

to the surface. Compressive loading is the 

opposite of tensile loading and acts towards the object’s surface. Shear loading involves a 

force, which is directed parallel to the object’s surface. All loading regimes can occur solitary 

or in combination like in bending, in which tension and compression are involved. However, 

 
Fig. 5: The basic types of loads, tension (A), compression (B), 
and shear (C). De facto, this loads occurs in combination, like 
bending (D), which is a combination of tension and com-
pression. The arrows indicate the way in which the loads are 
applied. The solid lines represent the undeformed shape of 
an object and the hashed lines represent the object shape 
after deformation. (Modified from Berthaume, 2016) 
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in mastication, only compression is readily available for comminuting food. But during 

compression, all these loadings can lead to a combination of compressive, tensile, and 

shear strains because of internal stresses (Lucas, 2004). 

Fracture geometry is divided into three basic modes of stress (Wang, 1996) (Fig. 6). 

Each mode describes a possible direction in which a crack could grow through an inherent 

micro-crack, which compromises the strength of an object (Berthaume, 2016). 

- Mode I is the “crack opening” mode, in which tensile stresses are involved. The 

tensile stresses cause that the crack surfaces are pulled apart in front of the crack 

tip. An example of mode I fracture is cleaving wood. 

- Mode II (sliding mode) involves an in-plane shearing. Shear stresses force a crack 

to propagate in a plane like at a punch press or a shear metal shearing machine.  

- Mode III (tearing mode) entails out of plain stresses, in which a crack is propagating 

through an out of plane shear force like 

along scissor blades. 

According to Berthaume (2016) and Thiery et al. 

(2017), these three modes of fractures basically 

explain how teeth work. Lucas (2004) on the 

contrary argued, that none of these fracture modes 

explain how teeth comminute, for example, elastic 

food, under the influence of tensile (or 

compressional) stresses. In his opinion only the 

study of mechanisms of fracture prevention in 

foods matters for understanding tooth form and how the form influences the fracturing of 

food. Furthermore, he argues that terms like shearing, grinding, crushing, puncturing, 

squeezing, cutting, etc. are only simplifications of complex actions and that these terms 

have no analytic value. Nevertheless, these “break-down” synonyms help to describe 

specific patterns of tooth/food interactions, and in this study, the following terms of actions 

are used to describe how “symmetrodontan” dentitions break down food: 

- Crushing is executed by an orthal compressive load until the food surface structure 

gives in under the pressure and the crack(s) freely propagate(s) in any direction 

(Nutcracker). 

- Puncturing is executed by an orthal compressive load, and the crack(s) 

propagate(s) in front, or along the displacement, of the cusp(s) (Jackhammer). 

- Shear-cutting divides food via two sharp crests (scissors, cigar cutter). 

- Plane-shearing is food comminution between two plane surfaces, which moves past 

each other. 

 
Fig. 6: Modes of fracture. A: Mode I, the crack opening 
mode. The crack propagates mainly through tensile 
forces. B: Mode II, the crack mainly propagating through 
an in plane shear force. C: Mode III, the crack mainly 
propagate through an out of plane shear force. The white 
arrows indicate the direction of the applied load. The 
black arrows indicate the direction of the resulting force. 
(Modified from Berthaume, 2016) 
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- Blunt-shearing involves two blunt crests, which move past each other. The process 

is similar to shear-cutting, but blunt-shearing tears food items apart along the blunt 

crests rather than cutting it.  

- Compressional-shearing is an action in which food gets compressed between two 

tooth structures. 

All actions are performed by specialized tooth structures, comparable to tools and target 

specific, mechanical food properties (Thiery et al., 2017).  

 

2.6 Remarks on the terms “centric occlusion” and “maximum 

intercuspation” 

 

In chapter 1.5 “centric occlusion” and “maximum intercuspation” were addressed without 

further explanation, but clarification is needed for these terms. 

A dentition’s “centric occlusion” is defined as the position in which the lower jaw is more 

or less symmetrically placed in the sagittal midline. “Maximum intercuspation” is a state of 

a dentition, in which for example the protocones (or all cusps in general) are fully occluded 

into their associated talonid basins (or interdental spaces). In primates (including humans) 

“centric occlusion” coincides with the “maximum intercuspation” due to the immobile 

symphysis. Therefore in dentistry, the terms “centric occlusion” and “maximum 

intercuspation” are used synonymously (Davies and Gray, 2001). Crompton and Hiiemäe 

(1970) realized that this is not the case in taxa with a mobile symphysis, which perform a 

unilateral chewing movement. In mammals with a unilateral movement the state of 

“maximum intercuspation” is only given for the active side. They proposed to extend the 

term “centric occlusion” with the preposition “unilateral” for taxa with a mobile symphysis. In 

addition, they suggest to indicate the active side (“left”/”right”) if it is necessary. Kay and 

Hiiemäe (1974) argued that, due to the preposition, the synonymy of “centric occlusion” and 

“maximum intercuspation” is given again, as it refers only to one side of the dentition. For 

taxa with a tribosphenic dentition, the “maximum intercuspation” is the point, in which 

phase I ended and phase II started. For most pretribosphenic taxa the term “maximum 

intercuspation” is problematic due to the absence of phase II. Even if “maximum 

intercuspation” refers only to the maximum collision area of the upper and lower 

pretribosphenic dentition this term cannot be used in the sense of the end of the shearing 

stroke. The reason for that is that in mammals with pretribosphenic molars the dentition´s 

maximum collision area can occur before the end of the shearing stroke (e.g. Dryolestes 

leiriensis). 

Herein, the end of the shearing stroke for pretribosphenic taxa is defined as the “maximum 

mandibular closure”, and the point of “maximum intercuspation” is equivalent to the highest 
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value of the upper and lower molars total collision area, which can be determined by the 

OFA software (Kullmer et al., 2009).
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3 Material and methods 

 

3.1 Examined material 

 

“Symmetrodontan” fossils are quite rare, and it is often difficult to loan them for study from 

collections. Due to this fact, the material had to be examined on site in several natural 

history museums. The following museums were visited: Museum of Northern Arizona 

(Flagstaff, USA), National History Museum of Utah (Salt Lake City, USA), and Sam Noble 

Museum (Norman, Oklahoma, USA). During the visits, molds of the most informative tooth-

bearing jaw fragments and isolated teeth were taken. Several specimens were loaned from 

UMNH, OMNH, and YFGP. In addition, some “symmetrodontan” teeth and casts of teeth 

were available in the Institute of Geosciences, University of Bonn. Furthermore, Prof. 

Richard Cifelli of the OMNH provided µCT-data of some teeth. For more details see Table 

S1, Appendix. The teeth, which deemed informative for this study were selected according 

to three main criteria: 

- The first criterion is the extent of tooth wear and whether the wear provides 

information to reconstruct a chewing movement of the masticatory apparatus. 

- The second one is the completeness of the teeth. Damaged teeth are almost 

useless to evaluate the contact areas of the teeth during chewing. 

- The third criterion is the dental position of the teeth within a taxon. To reconstruct a 

proper chewing cycle with the OFA, one upper molar, which matches at least the 

position of one lower molar, is needed.  

All in all, it was possible to examine and collect material of five “symmetrodontan” families 

(Kuehneotheriidae, Spalacotheriidae, Zhangheotheriidae, Woutersiidae, Tinodontidae), 

and some “Symmetrodonta” indet. The provenance of these fossils is Belgium, Spain, 

France, Great Britain, China, and the USA. All studied specimens are listed in Table 5. 
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Tab. 5: List of the studied “symmetrodontans”. 

Taxon  Inventory number  Locality Description 

Kuehneotheriidae HLV 1R Belgium, Habay la Vieille Mx 
Kuehneotheriidae RAS 786 France, Rosieres aux Salines mx 
Kuehneotheriidae RAS 796 France, Rosieres aux Salines Mx 
Kuehneotheriidae RAS 813 France, Rosieres aux Salines px 
Kuehneotheriidae RAS 847 France, Rosieres aux Salines Px or px 
Kuehneotheriidae RAS 850 France, Rosieres aux Salines px 
Kuehneotherium praecursoris NHM PV M 19143 Great Britain, Pontalun Quarry 1 m3  
Kuehneotherium praecursoris NHM PV M 19168 ? / C 857 Great Britain, Pontalun Quarry 1 M 
Kuehneotherium praecursoris NHM PV M 19771 Great Britain, Pontalun Quarry M4 
Kuehneotherium stanislavi, SNP 75 L France, Saint Nicolas de Port Mx 

Maotherium sinense  YFGP 1724 China, Yixian Formation,  
Lujatun Member (Jehol Group) 

maxilla fragment with M2-M3;  
mandible fragment with 3p, m1-m5 

Peralestes longirostris 
(Spalacotherium tricuspidens) NHM PV OR 47740 Great Britain, Durdlestone 

[Durlston] Bay 
maxilla fragment with 1P and M1-
M6 

Spalacolestes cretulablatta OMNH VP 026688 Utah, Cedar Mountain Fm. M4 
Spalacolestes cretulablatta OMNH VP 026693 Utah, Cedar Mountain Fm. M4 
Spalacolestes cretulablatta OMNH VP 027421 Utah, Cedar Mountain Fm. mandible fragment with m4-m5 
Spalacolestes cretulablatta OMNH VP 029600 Utah, Cedar Mountain Fm. mandible fragment with m4-m7 
Spalacolestes cretulablatta OMNH VP 029611 Utah, Cedar Mountain Fm. M2 
Spalacolestes cretulablatta OMNH VP 030611 Utah, Cedar Mountain Fm. M4 
Spalacolestes cretulablatta OMNH VP 030627 Utah, Cedar Mountain Fm. m4 
Spalacolestes cretulablatta OMNH VP 033043 Utah, Cedar Mountain Fm. m5 
Spalacolestes cretulablatta OMNH VP 033060 Utah, Cedar Mountain Fm. M3 
Spalacolestes cretulablatta OMNH VP 033231 Utah, Cedar Mountain Fm. M4 
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Tab.5: List of the studied “symmetrodontans”, continued. 

Taxon  Inventory number  Locality Description 

Spalacolestes inconcinnus MNA V 6247, OMNH VP 69062 Utah, Cedar Mountain Fm. Px? 
Spalacolestes inconcinnus OMNH VP 033027 Utah, Cedar Mountain Fm. dp3? 
Spalacolestes inconcinnus OMNH VP 033034 Utah, Cedar Mountain Fm. M2 
Spalacolestes inconcinnus OMNH VP 033897 Utah, Cedar Mountain Fm. m3 
Spalacolestes inconcinnus OMNH VP 033911 Utah, Cedar Mountain Fm. maxilla fragment with M4 
Spalacotheridium mckennai? MNA V 6046, OMNH VP 025524 Utah, Straight Cliffs Fm. m3? 
Spalacotheridium noblei OMNH VP 025828 Utah, Cedar Mountain Fm. m4 
Spalacotheridium noblei OMNH VP 026692 Utah, Cedar Mountain Fm. M4 
Spalacotheridium noblei OMNH VP 027261 Utah, Cedar Mountain Fm. m3 
Spalacotheridium noblei OMNH VP 027461 Utah, Cedar Mountain Fm. M6 
Spalacotheridium noblei OMNH VP 030623 Utah, Cedar Mountain Fm. m2 
Spalacotheridium noblei OMNH VP 033041 Utah, Cedar Mountain Fm. m3 
Spalacotheridium noblei OMNH VP 033053 Utah, Cedar Mountain Fm. m5 
Spalacotheridium noblei OMNH VP 033061 Utah, Cedar Mountain Fm. M2 
Spalacotheridium noblei OMNH VP 033895 Utah, Cedar Mountain Fm. M3 
Spalacotheridium noblei OMNH VP 033900 Utah, Cedar Mountain Fm. m3 
Spalacotheriidae MNA V 6305, OMNH VP 025531 Utah, Straight Cliffs Fm. maxilla fragment with Px  
Spalacotheriidae OMNH VP 030610 Utah, Cedar Mountain Fm. Mx 
Spalacotheriidae OMNH VP 032953 Utah, Cedar Mountain Fm. Mx 
Spalacotheriidae OMNH VP 071070 Wyoming, Morrison Fm. mx 
Spalacotheriidae OMNH VP 071071 Wyoming, Morrison Fm. mx 
Spalacotheriidae OMNH VP 071072 Wyoming, Morrison Fm. Mx 
Spalacotheriidae OMNH VP 071073 Wyoming, Morrison Fm. Mx 
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  Tab.5: List of the studied “symmetrodontans”, continued. 

Taxon  Inventory number  Locality Description 

Spalacotherium evansae DORCM GS 0380 Great Britain, Isle of Purbeck mx 
Spalacotherium evansae DORCM GS 0684 Great Britain, Isle of Purbeck Mx 
Spalacotherium evansae DORCM GS 1075 Great Britain, Isle of Purbeck mx 
Spalacotherium evansae? DROCM GS 0689 Great Britain, Isle of Purbeck Mx 
Spalacotherium henkeli IP FUB TH 11 Spain, Galve m1 
Spalacotherium henkeli IP FUB TH 12 Spain, Galve m1 
Spalacotherium henkeli IP FUB TH 13 Spain, Galve M5 
Spalacotherium henkeli IP FUB TH 14 Spain, Galve M5 
Spalacotherium henkeli IP FUB TH 15 Spain, Galve Px 
Spalacotherium henkeli IP FUB TH 17 Spain, Galve Px 
Spalacotherium tricuspidens NHM PV M 5633 Great Britain, Isle of Purbeck mandible fragment with c and 2p 
Spalacotherium tricuspidens NHM PV OR 46019 Great Britain, Isle of Purbeck mandible fragment with 4m 
Spalacotherium tricuspidens NHM PV OR 47750 Great Britain, Isle of Purbeck mandible fragment with 5m 
Spalacotheroides bridwelli FMNH PM 0933 Texas, Greenwood Canyon  mandible fragment with mx 
Spalacotheroides bridwelli FMNH PM 1133 Texas, Greenwood Canyon  mx 
“Symmetrodonta” indet.  MNA V 4630, OMNH VP 023811 Utah, Wahweap Fm. Mx 
“Symmetrodonta” indet.  MNA V 6224, OMNH VP 69059 Utah, Dakota Fm. Mx 
“Symmetrodonta” indet.  MNA V 6342, OMNH VP 69067 Utah, Dakota Fm. mx 
“Symmetrodonta” indet.  MNA V 6364 Utah, Straight Cliffs Fm. px 
“Symmetrodonta” indet.  MNA V 6433, OMNH VP 69060 Utah, Dakota Fm. mx 
“Symmetrodonta” indet.  MNA V 6796, OMNH VP 69058 Utah, Dakota Fm. px 
“Symmetrodonta” indet.  SNP 16 France, Saint Nicolas de Port m 
“Symmetrodonta” indet. UMNH VP 12810 Utah, Loc. 99 mx 
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Tab.5: List of the studied “symmetrodontans”, continued. 

Taxon  Inventory number  Locality Description 

“Symmetrodonta” indet. UMNH VP 12860 Utah, Loc. 420 mx 

“Symmetrodonta” indet. UMNH VP 12861 Utah, Loc.420/MNA 1187 mx 

“Symmetrodonta” indet. UMNH VP 14147 Utah, Loc. 424 Mx 

“Symmetrodonta” indet. UMNH VP 14151 Utah, Loc. 424 mx 

“Symmetrodonta” indet. UMNH VP 17294 Utah, Loc. 424 mx 
Symmetrodontoides canadensis OMNH VP 066370 Montana, Eagle Fm. m1 
Symmetrodontoides canadensis OMNH VP 066371 Montana, Eagle Fm. m4 
Symmetrodontoides canadensis OMNH VP 066372 Montana, Eagle Fm. m6 or m7 
Symmetrodontoides canadensis OMNH VP 066373 Montana, Eagle Fm. posterior px 
Symmetrodontoides canadensis OMNH VP 066374 Montana, Eagle Fm. px 
Symmetrodontoides foxi MNA V 4522; OMNH VP 023800 Utah, Wahweap Fm. m7 
Symmetrodontoides foxi MNA V 4653, OMNH VP 023814 Utah, Wahweap Fm. Mx 
Symmetrodontoides foxi  MNA V 6461 Utah, Wahweap Fm. m7 
Symmetrodontoides foxi OMNH VP 020135 Utah, Wahweap Fm. m4 
Symmetrodontoides oligodontos MNA V 6047; OMNH VP 025525 Utah, Straight Cliffs Fm. mx? 
Symmetrodontoides oligodontos MNA V 6048; OMNH VP 025526 Utah, Straight Cliffs Fm. M1 or M2 
Symmetrodontoides oligodontos MNA V 6755; OMNH VP 025538 Utah, Straight Cliffs Fm. mx 
Symmetrodontoides oligodontos OMNH VP 029040 Utah, Straight Cliffs Fm. M2 
    
Thereuodon taraktes DORCM GS 419 Great Britain, Isle of Purbeck deciduous teeth 
Thereuodon taraktes DORCM GS 665 Great Britain, Isle of Purbeck deciduous teeth 
Thereuodon taraktes DORCM GS 679 Great Britain, Isle of Purbeck deciduous teeth 
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  Tab.5: List of the studied “symmetrodontans”, continued. 

Taxon  Inventory number  Locality Description 

Tinodon bellus YPM VP 011843 Wyoming, Albany County  mandible fragment with m1-4 

Tinodon bellus 
YPM VP 013644.A, OMNH VP 
056826 Wyoming, Morrison Fm. mandible fragment with 3p, m1-m4 

Tinodon lepidus AMNH 101145 Wyoming, Morrison Fm. mandible with 1p 

Tinodon lepidus USNM 2131; OMNH VP 056835 Wyoming, Morrison Fm. mandible fragment with c, 3p, m1-
3 

Tinodon lepidus YPM VP 011845 Wyoming, Albany County mandible fragment with m1, m3 
Tinodon lepidus? YPM VP 013645 Wyoming, Albany County mandible with fragment mx  
Tinodon micron? DORCM GS 1110 (GS 550) Great Britain, Isle of Purbeck px or Px 
Woutersia butleri SNP 082 W France, Saint Nicolas de Port Px 
Woutersia butleri SNP 088 W France, Saint Nicolas de Port Mx 
Woutersia butleri SNP 517 W France, Saint Nicolas de Port mx 
Woutersia butleri SNP 720 France, Saint Nicolas de Port Mx 
Woutersia mirabilis SNP 052 W France, Saint Nicolas de Port Mx 
Woutersia mirabilis  SNP 426 W France, Saint Nicolas de Port px? 
Woutersia mirabilis SNP RAS 706 France, Saint Nicolas de Port mx 
Woutersia mirabilis SNP RAS 884 France, Saint Nicolas de Port Mx 
Woutersia mirabilis SNP RAS 975 France, Saint Nicolas de Port mx 
Woutersia mirabilis? SNP 719 France, Saint Nicolas de Port Mx 
Woutersia mirabilis? SNP 9FW France, Saint Nicolas de Port mx 
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3.2 Molding and casting procedure 

 

The molds of the examined fossils were made by using the two-component silicone Provil 

novo lightTM (Heraeus Kulzer). Provil novo light is a product used by dentists and dental 

laboratories. With its high impression molding accuracy (≤ 0.1 mm), it is especially suitable 

for small tooth wear features such as striations. Provil novo light is coated onto the teeth 

with a dispensing gun and hardens within a few minutes into a flexible material. Afterward, 

each mold was encapsulated with Provil novo Putty Regular. This is another two-component 

silicone, which is firmer than Provil novo light, and serves as a supporting jacket. The two 

components of Provil novo Putty Regular were kneaded by hand.  

To manufacture casts of the molds a two-component epoxy resin was used. The resin 

(RenLamTM M-1; Huntsman Advanced Materials) and the curing agent (Ren HY 956; 

Huntsman Advanced Materials) were mixed, and the grey pigment Araldite DW 0137 

(Huntsman Advanced Material) was added. At first, the interior walls of the molds were 

wetted with the resin, and the molds were placed in a vacuum chamber to remove air 

inclusions. After the inclusions were removed, the complete molds were then poured out 

with the epoxy resin, and again exposed to a vacuum. The resin hardens within 24 hours. 

 

3.3 Scanning electron microscope study 

 

To study tooth wear, a scanning electron microscope (SEM) (CAMSCAN MV 2300, Electron 

Optic Services) was used. The advantage of an SEM over a reflected light microscope is 

the higher resolution and greater depth of field. For this reason, SEM is an appropriate 

choice to study really small objects. A disadvantage is that an object of interest has to be 

sputtered with a very thin layer of gold to improve conductivity. Due to the fact that the gold 

layer cannot be easily removed, it was not possible to study original fossil material. Thus, 

only casts were examined with the SEM. 

 

3.4 Reflected light microscopy 

 

The loaned fossils were studied with a reflected light microscope (Axio Zoom.V16; AxioCam 

HRc, Zeiss), as there was no permission to sputter coat them or to make casts. For imaging, 

z stack photos were taken and merged into one picture to achieve a better depth of field. 

The imaging was performed with the software ZEN Pro (Zeiss). 
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3.5 Virtual 3D-model generation procedure 

 

To create 3D-models of the molars, either the original material or molds were scanned with 

a high-resolution computed tomography (µCT) scanner (v|tome|x s 240; phoenix|x-ray 

General Electrics). Molds, instead of casts, were used to perform the µCT-scan because 

the silicone molding material has a higher density than the epoxy resin cast material. This 

results in better contrast and therefore in a higher quality of the µCT-data. With the µCT 

data, virtual 3D-models were created using the software datos|x (GE Electronics phoenix|x-

ray), VGSTUDIO MAX (Volume Graphics) and AVIZO (Visualization Sciences Group, 

VSG). For post-processing, measurements, and analyses, the software Polyworks 

(InnovMetric Software Inc.) was used. During the post-processing of the polygonal 3D-

models, some teeth were mirrored, displaced tooth fragments were repositioned as 

accurately as possible, and gaps were carefully closed (Fig. S1, Appendix). The file types 

STL and PLY were used for further processing of the 3D models. 

 

3.6 Orientation of virtual “symmetrodontan” molars in a virtual space 

 

To define a reference plane for measurements and analyses, all polygonal models had to 

be oriented in the same way in virtual space. One method to get this reference plane is to 

place a best-fit plane through the cervical line (Ulhaas, 2006; Engels, 2011; Anders, 2011). 

But this method is not feasible for “symmetrodontans”. They do not possess a distinct 

cervical line. Subsequently, Schultz (2012), and Schwermann (2015) developed other 

methods to define a reference plane, but these methods cannot be used for 

“symmetrodontans” either. In Schultz’s (2012) method, an important structure for producing 

the reference plane is a central root below the trigonid, and the method of Schwermann 

(2015) is based on the presence of the paraconid and the visibility of the crown root 

transition. These structures are absent in "symmetrodontans". Hence, a new orientation 

method for “Symmetrodonta” was developed in the current study. The aim was to develop 

a routine, which can be applied to almost all “symmetrodontan” molariforms regardless of 

their condition of conservation or morphology. The only requirement for producing a 

reference plane for “symmetrodontan” molars is the presence of an intact protoconid. This 

method was performed with Polyworks and was successfully tested with molars of 

spalacotheriids, zhangheotheriids, kuehneotheriids, and woutersiids. The 3D-models were 

oriented as follows: 
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Step one: 

Two cross sections were created, which have to be as parallel as possible to the occlusal 

view. The position of the first cross section is immediately below the protoconid apex at 

an unworn level. The second cross section is at the base of the protoconid directly above 

the higher indentation between protoconid and metaconid, or protoconid and paraconid 

(Fig. 7, A). 

Step two: 

Between 30 to 50 points were set in a regular distance onto the upper cross section 

outline. Then the points were hidden. This point setting procedure was performed three 

times, and an average point (POINT 1) of the three sets of points was created. This 

procedure was executed with the second cross section, too, which results in a second 

point (POINT 2). Next, a vector was created (vector um) connecting POINT 1 and POINT 

2. The Vector um points apically (Fig. 7, A). 

Step three: 

A point was set onto the most mesial position of the lower cross section and hidden. 

Next, a point onto the most distal position of the lower cross section was set and hidden, 

too. This was repeated nine times, and an average point (POINT 3) of these 20 points 

was created. POINT 3 was duplicated (POINT 3.1) and projected onto vector um. A 

vector connecting POINT 3 and POINT 3.1 (vector vm) was created. The Vector vm 

points buccally for left teeth, and lingually for right teeth (Fig. 7, B). 

Step four: 

Using vector um and vm, a plane (E1) was created. Then, a vector (wm) was set 

perpendicular to plane E1, with its origin in POINT 3.1. The vector wm points mesially. 

Step five: 

Plane E2 was generated by using vector um and vector wm.  

Step six: 

Plane E3 was generated by using vector vm and vector wm (Fig. 7, C). 

Step seven: 

This procedure was done for each lower molar of one set (see chapter 3.7 for the 

definition of a set) and an average of the vectors and planes was created. The average 

of each type of vector (average_um, average_vm, average_wm), or their 

corresponding planes (average_E1, average_E2, average_E3) can be used to 

produce the new coordinate system. 

The x-axis (+) points mesially, the y-axis (+) points buccally (left teeth), respectively 

lingually (right teeth), and the z-axis (+) points apically.  
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Fig. 7: Important steps in producing a reference plane for “symmetrodontan” molars using the example of Maotherium sinense 
(YFGP1724). A: POINT 1 and POINT 2 are average points of a series of points which were set onto each cross section 
outlines. The cross sections are depicted in darker grey. Using POINT 1 and POINT 2, vector um was created. B: POINT 3 
is the average point of 20 points, which were set onto the most mesial and distal point of the lower cross section (unlabeled 
circles). POINT 3.1 is a duplicate of POINT 3, which was projected onto vector um. Both points were used to create vector 
vm. C: The resulting vectors and planes in combination. E1 is created with vector um and vm. Vector wm is perpendicular to 
E1. E2 is the result of vector vm and wm, whereas E3 was created by um and wm. 
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3.7 Occlusal Fingerprint Analyser (OFA) 

 

The Occlusal Fingerprint Analyser (ZiFiLoX IT Ltd. & Co. KG) is a simulation software for 

virtually detecting tooth-to-tooth contact during mastication (Kullmer et al., 2009). To ensure 

that the results of each OFA project are comparable, the resolution of all 3D-models was 

standardized by reducing the number of polygon faces. This was done by setting the 

polygons’ average edge length to 0.01 mm. Then, each set of molars was oriented 

according to the procedure described in chapter 3.6 and roughly brought into maximum 

mandibular closure. The reduction of the resolution and orientation of the molar sets was 

performed with Polyworks. Every set comprises one upper and two lower molars of one 

taxon. After that, a set of 3D-models was imported into OFA and further adjustments, 

concerning the orientation, were made. With the aid of the SEM and reflective light 

microscope studies, in which the orientation of striations was determined (see chapter 3.3, 

and 3.4), a theoretical chewing path (collision path) was implemented. This chewing path 

was developed by setting several path points into virtual space. These path points represent 

key positions of the lower molars along important trajectory time steps. During the 

simulation, the lower molars moved along this theoretical path. When the lower molars 

encountered the upper one, a deflection occurred, and the lower molars were redirected. 

Due to the deflection, a new, adjusted, chewing path was created by OFA. The adjusted 

collision path is influenced by the topographic reliefs of the teeth. In addition to the 

calculation of the adjusted collision path, the OFA recorded and documented the resulting 

collision areas of the upper and lower molars for each time step. To perform the analyses, 

the settings and commands of Schultz and Martin (2014) were adopted (see Tab. S3, 

Appendix). The same setting was used for each set to ensure the comparability of the data.  

Due to the fact that OFA has been continuously developed, a new OFA version (Qt 

Version: 4.8.4), with an advanced collision path mode was released at the end of this 

project. The improvement in the advanced mode is the possibility to simulate the rotation of 

the (hemi) mandible. Instead of setting one point for each key position, there are now three 

points available for each position, which are at the corners of a triangle. In addition to the 

position, this triangle describes the orientation of the model in virtual space. With this option, 

a postulated roll (see chapter 2.2) of the hemimandible was simulated. Therefore, a triangle 

for each key position was produced by anchoring a point on the protoconid of the anterior 

lower molar and one on each two most posterior main cusps of the succeeding lower molar. 

If the inclination of the lower teeth changes from one key position to the next, OFA rotates 

the lower teeth around this inclination. For this purpose, the advanced mode was first used 

by Schultz et al. (2017a). [Remark: The OFA projects of this study are available either on 

the attached CD or in the appendix (online version); c.f. chapter 9] 
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3.8 Collision areas documented by the OFA 

 

As mentioned in chapter 3.7, the OFA records the collision areas separately for each time 

step. To get an idea about the extent of the collision areas during the entire chewing cycle, 

each total collision area had to be mapped by hand. This was done by summing up every 

single collision area in which the same antagonistic tooth structure was involved. The 

summing up was done in Polyworks by creating an element for each total collision area 

from the oriented polygonal model. Each element was assigned to a different color. As far 

as possible, the same color coding was used for comparable collision areas of the different 

taxa (see Tab. S2, Appendix). 

 

3.9 Mastication compass 

 

A mastication compass is a 2D visualization of the mandibular movement (mastication path, 

trajectory path), and combines three aspects of the power stroke (Koenigswald et al., 2013). 

The first aspect is the number of shearing stroke phases, the second one is the occlusal 

direction, and the last aspect is the inclination of each phase. This visualization allows the 

comparison of the mastication modes of different taxa. The direction of an arrow represents 

the direction of the mandibular closure, and the arrow length displays the inclination of the 

mandibular movement. If a taxon has a second shearing stroke phase including a change 

in direction and/or inclination, a second arrow follows the first one (for details see 

Koenigswald et al., 2013). Due to the fact that in “symmetrodontans”, maximum 

intercuspation does not coincide with maximum mandibular closure (end of the shearing 

stroke; see chapter 2.6), the mastication compass as proposed by Koenigswald et al. (2013) 

was modified for this study. The center of the compass in the present study represents the 

maximum mandibular closure, whereas in Koenigswald et al. (2013) the center of the 

diagram defines the centric occlusion. Another modification is the inclusion of a time 

component into the compass. For this, the duration of the power stroke was equated with 

the arrow length (inclination). This was done to pinpoint the moment in which the maximum 

intercuspation occurred. The maximum intercuspation is represented by a horizontal line, 

which crosses the arrow. In addition, the equator starting point is not always 0° as proposed 

by Koenigswald et al. (2013), instead, it was individually fitted. The mastication compasses 

used in this study were therefore created as follows (see also Fig. 8): 

  



 
Chapter 3 

32 
 
 

Step one: 

The OFA collision path was transferred into the Polyworks project, which contains the 

associated reference plane E2 (see chapter 3.6).  

Step two: 

The beginning and the end of the power stroke were marked on the collision path, and 

a vector (v-ps) was fitted to these points (elements). 

Step three: 

A duplicate of vector v-ps (v-ps(1)) was projected onto plane E2.  

Step four: 

The declination angle was measured between v-ps and wm. 

Step six: 

The inclination angle was measured between v-ps and v-ps(1).  

Step seven: 

The angles were converted into a polar coordinate by a Microsoft Excel template 

(Sheriff, 1998) and mapped onto a point plot (x/y diagram). 

Step eight: 

The point plot was transferred into Adobe Illustrator, and an arrow was drawn between 

the coordinate point and the center of the compass. The arrow points to the center. 

Step nine: 

A marker was set onto the arrow. This marker depicts the point of time when maximum 

intercuspation is reached. Its position was calculated as follows, and an example 

referring to the Spalacotherium cretulablatta OFA analysis with a roll is given in square 

brackets. First, the time step of the maximum intercuspation (tsmi) is needed. For this, 

the time step of the lower molars maximum collision area was pinpointed in OFA [time 

step 166]. From this time step, the time step when the power stroke began [time step 36] 

was subtracted [tsmi (S. cret.) = 166 - 36 = 130]. Then the time step of the maximum 

mandibular closure (tsmmc) was pinpointed [time step 222], and the shearing stroke's 

starting time step was subtracted from it [tsmmc (S. cret.) = 220-36= 186]. Next, the length of 

the arrow [larrow] was measured in Adobe Illustrator [larrow (S. cret.) = 16.21]. To calculate the 

point on the arrow (lmi) which coincides with the maximum intercuspation, the following 

equation was used: 

𝑙𝑚𝑖=
𝑙𝑎𝑟𝑟𝑜𝑤∗𝑡𝑠𝑚𝑖

𝑡𝑠𝑚𝑚𝑐
    [𝑙𝑚𝑖(𝑆𝑝. 𝑐𝑟𝑒𝑡. ) =

16.21∗130

186
=  11.33] 

Step ten: 

The point of the maximum intercuspation (lmi) was marked onto the arrow with a 

horizontal line. 
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Step eleven: 

The compass was improved for publication, including an adjustment of the equator's 

starting value. 

 

 

3.10 Overall collision area diagrams 

 

The overall collision area diagrams describe the total surface area of both lower molars in 

relation to the total collision area of both lower molars and were produced in Excel. 

Therefore, the results for the lower dentition were exported from OFA into Excel. The data 

contain, among other information, every single resulting collision area at each time step in 

mm². The data were processed to the extent that the sum of the total collision area for each 

time step was calculated and converted into percent. 

  

 
Fig. 8: The modified mastication compass employed in this study for the Maotherium sinense (YFGP 1724) power stroke 
without roll. A: The measurements of the inclination and declination. Vector v-ps was created by using the beginning and 
ending of the power stroke (dotted black line). Vector v- ps(1) is a duplicate of v-ps, and was projected onto plane E2. 
The inclination angle (black angle) is measured between v-ps and v-ps(1). The declination angle (red angle) is measured 
between v-ps(1) and wm. B: The resulting compass. The resulting compass depicts a one-phased shearing stroke with 
an inclination of 59° and a declination of 92°. The maximum intercuspation is reached in the last third of the power stroke 
(horizontal line, which crosses the arrow). 
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3.11 Dryolestes leiriensis 

 

To put the research on the “symmetrodontan” chewing cycles into a broader evolutionary 

context, the results of this study were compared with Dryolestes leiriensis as a representa-

tive of the Dryolestidae. For comparison, the results of Martin (1999), Schultz (2012), and 

Schultz and Martin (2011, 2014), were used. The Dryolestes specimens, which were used 

by Schultz (2012) and Schultz and Martin (2014) to reconstruct the chewing cycle, are: 

Dryolestes leiriensis GuiMam 1150 Mx 

Dryolestes leiriensis GuiMam 1155 mx 
 

The dentition, wear and chewing cycle of D. leiriensis was compared with those of the 

“symmetrodontans” to show the evolutionary development within the Mesozoic mammals. 

D. leiriensis branches off closely behind the spalacotheriids from the stem lineage of the 

tribosphenidans (Martin, 1999). D. leiriensis itself is a representative of a pretribosphenic 

cladotherian. Cladotherians acquired a neomorphic structure in their lower molars, the 

hypoflexid, which is not present in “symmetrodontans” (see chapter 1). 
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4 Results 

 

A number of molar morphologies of Mesozoic mammals were included into the paraphyletic 

group “Symmetrodonta”. These molars have all in common, that their main cusps are 

arranged in a triangle and a talonid is not developed in the lower molars. These triangles, 

again, are arranged in a reversed-triangle tooth pattern with a two-to-one occlusion. To 

check, if the different molar morphologies have more in common than the features 

mentioned above, and to evaluate the efficiency of each dentition, the following 

“symmetrodontans” were studied in detail: 

- Woutersia butleri (Woutersiidae) 

- Kuehneotherium praecursoris (Kuehneotheriidae) 

- Maotherium sinense (Zhangheotheriidae) 

- Spalacolestes cretulablatta (Spalacotheriidae) 

These taxa represent four major “symmetrodontan” molar morphologies from the Late 

Triassic to the Middle Cretaceous (Fig. 9). 

 

 

Additionally, a brief summary of the studies on the Dryolestes leiriensis dentition, which has 

been done by Martin (1999), Schultz and Martin (2011, 2014), and Schultz (2012), is 

presented. The reason for that is to discuss the evolutionary development from the 

“symmetrodontans” towards the pretribosphenic cladotherians.  

The descriptions of the molars (chapter 4.1), and the chewing cycle analysis 

(chapter 4.3) show that each taxon has a unique upper and lower molar morphology and 

mastication pattern.  

The early diverging W. butleri has very bulky and massive molars with blunt and conical 

cusps. Of particular note is cusp X (CPX), which is situated on the lingual cingulum, as well 

as the centro-lingual cusp g (cpg). These cusps do not exist on other “symmetrodontan” 

molars. All cusps and crests of the available Woutersia specimen are strongly worn 

(chapter 4.2).  

In general, the lower molars of K. praecursoris and M. sinense almost resemble each 

other. Both taxa have pointed, well separated, conical cusps, which are organized in the 

 
Fig. 9: A selection of “symmetrodontans” and their temporal occurrence in the fossil record. The highlighted taxa were studied in 
detail. They were chosen to cover a wide time span of the “symmetrodontan” fossil record. Another selection criterion was the 
availability of fossils. 
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same way. The centro-buccally situated protoconid (pr) is the largest cusp. Mesio-buccally 

to pr sits the paraconid (pa), and next to pa, at the base of the crown, is the small cuspule 

cpe. Disto-buccally to pr lies the metaconid (me), followed by the small cuspule cpd, which 

is located at the distal base of the crown. Nevertheless, there are some noticeable 

differences, like the acute trigonid, and the bulkier main cups of M. sinense. The cusps of 

the upper molars of K. praecursoris are similarly organized as the lower ones. The paracone 

(PA) is the largest cusp and is situated lingually in the middle of the crown. Next to the PA 

with a slight buccal shift are the stylocone (ST) and the metacone (ME). Distal to ME is the 

metastyle (MTS), whereas the parastyle (PAS) sits mesio-lingually to ST. Unlike the lower, 

the upper molars of M. sinense and K. praecursoris do not resemble each other. The upper 

molars of M. sinense are mesio-distal compressed, and there is an additional cusp B’. The 

wear of M. sinense and K. praecursoris is mainly restricted to the buccal flanks of the lower 

molars, and the lingual flanks of the upper ones (chapter 4.2).  

The upper and lower molars of the most derived “symmetrodontan” S. cretulablatta, 

resemble that of D. leiriensis, (chapter 4.2). Both taxa have continuous, almost lingo-

buccally oriented mesial and distal flanks (prevallum/id and postvallum/id surfaces) with 

prominent crests and a mesial protruding PAS. The PAS and MTS of both taxa are reduced 

to small cuspules and cpe is absent. Despite the similarities, there are important differences. 

The stylocone and metacone are absent in S. cretulablatta, while in D. leiriensis the 

stylocone is situated buccally in the middle of the crown, and the metacone is located distally 

between PA and MTS. The lower molar mesial, buccal, and distal part of the S. cretulablatta 

base is surrounded by a cingulid, which lacks in D. leiriensis. D. leiriensis, on the other 

hand, developed a hypoflexid, which separates cpd from the rest of the crown; cpd is absent 

in S. cretulablatta. In both taxa, striations occur mainly on the mesial and distal flanks 

(chapter 4.2). The striae of S. cretulablatta are almost parallel. The striations of D. leiriensis, 

in turn, are more inclined at the tip than at the base, but locally also parallel. 

The reconstruction of the chewing cycles (chapter 4.3), which was done with the OFA, 

revealed that the lower dentition of Woutersia, Kuehneotherium, Maotherium, 

Spalacolestes, and Dryolestes performed a one-phased, transverse movement (yaw) 

during the shearing stroke. In addition, the transverse movement of the “symmetrodontans” 

lower dentition is accompanied by a slight mesial or distal shift. 

Two different chewing cycles for each “symmetrodontan” were reconstructed. One with 

a roll (rotation) of the hemimandible (wr-cycle) and the other without a roll (wor-cycle). A 

comparison of these two cycles shows that they barely differ. The inclination and declination 

vary only to some degrees and the resulting collision areas are almost the same. 

Nevertheless, there are some minor differences. For example, Crompton and Jenkins 
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(1968), and Gill (2004b) identified a wear facet at the mesial base of the lower molar crown 

of Kuehneotherium. This area could only be reached by the chewing reconstruction with a 

roll.  

During the shearing stroke, different tooth structures were used for comminuting the food 

particles (chapter 4.4). These structures performed different tasks, like piercing puncture-

crushing, shear-cutting, and shearing. In each taxon, these tools are differently pronounced. 

 

4.1 Molar morphology  

 

The “symmetrodontans” and Dryolestes leiriensis molars, which were used to reconstruct 

the chewing cycle are briefly described in this chapter. The descriptions represent the 

principle molar morphology of each taxon. 

 

4.1.1 Woutersia butleri 

Two species are known for Woutersia, which are combined in the Woutersiidae. 

- Woutersia mirabilis Sigogneau-Russell, 1983 

- Woutersia butleri Sigogneau-Russell and Hahn, 1995 

The upper molar, as well as the lower molar morphology of both taxa, hardly differ, except 

for the size, which is smaller in W. butleri. The crowns are very bulky, sturdy, compact in 

shape, and the cusps are blunt. (Fig. 10). 

Averianov and Lopatin (2006) recognized Woutersiidae as early diverging Docodonta. 

However, the structural pattern of their molars is “symmetrodontan” with an obtuse trigonid 

angle.  

 

Upper molar, specimen SNP 720 

The exact position of SNP 720 within the upper molar series of W. butleri is unknown, but 

due to its morphology, it must be somewhere in the middle of the postcanine tooth row. 

Sigogneau-Russell and Hahn (1995) described SNP 720 in detail and compared this molar 

with other Woutersia molars. Whereas the anterior molars are almost symmetrical, in sense 

of the angulation and distance between paracone, stylocone, and metacone, the more 

posterior molars, such as SNP 720, are asymmetrical. The asymmetry results in a bucco-

mesial shift of the stylocone within the molar series. Therefore, the more anterior upper 

molars are mesio-distally broader than bucco-lingually wide, and the more distal ones are 

almost as broad as wide. The angle of the triangulation between paracone, stylocone, and 

metacone is obtuse, and the trigon is widely open. 
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The most prominent molar cusp is the blunt paracone, which is situated centrally (Fig. 10). 

Its buccal and lingual faces are convex and mesially as well as distally pinched. Due to that 

pinching, there is a mesial and distal dull crest at the contact zones of the faces. Immediately 

next to the distal flank of the paracone sits the metacone. The metacone is a relatively small 

blunt cusp and is separated from the paracone by a faint indentation. At the mesial flank of 

the metacone, there is a small crest, which leads to the distal crest of the paracone. Due to 

the intense wear of the distal portion of the metacone, the original appearance of this area 

cannot be described, but there is a faint crista which leads distally towards a cuspule, which 

in turn is disto-buccally connected with cusp D ([C]ME~CPD). Mesio-buccally to the 

paracone, and with some distance, the stylocone (ST) is present. The ST is a prominent, 

solitary, conical, blunt cusp, and half as high as the paracone. A blunt crest originates 

mesially from the paracone, curves mesio-buccally and leads to the lingual crest of ST. Both 

crests are distinguishable due to an indentation at the base of the stylocone. The well-

separated cusp X lies disto-lingually of the paracone on a cingulum ([CG]CPE_CPZ_ME). 

The blunt CPX is much smaller than PA and ST. At the mesial and distal portion of CPX are 

crests. The distal crest goes into the distal portion of the cingulum, which ends in turn 

somewhat below the metacone. The mesial crest of CPX converts into the distal portion of 

the cingulum, which extends lingo-mesially and ends at the lingual side of cusp E. CPE sits 

well separated at the base of the crown, but is only slightly elevated. Another small, blunt, 

conical cuspule (CPD) sits disto-buccally at the base of the crown. A cuspule connects ME 

and CPD. There is a short buccal cingulum mesially to CPD, which ends beneath the 

stylocone ([CG]CPD_ST). This cingulum is distally well separated from CPD by an 

indentation, whereas it is fading beneath ST.  

 
Fig. 10: An upper molar of Woutersia butleri (SNP 720, right M, mirrored) in occlusal (A), buccal (B), and lingual (C) views. 
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Lower molar, specimen SNP 517  

The exact position of SNP 517 within the tooth row is unknown. But due to the comparison 

with a molariform tooth (presumably premolar), done by Sigogneau-Russell and Hahn 

(1995), it can be concluded, that SNP 517 was situated somewhere in the middle of the 

molar series. 

The largest cusp of the lower molar is the bucco-central situated protoconid (Fig. 11). Its 

lingual and buccal flank is subequally convex and anterior as well as posteriorly pinched. 

This pinching results in mesial and distal crests. Closely to the protoconid are the paraconid 

and the metaconid. Both cusps are slightly shifted lingually. This shift results in an obtuse 

triangulation of pr, pa, and me. The paraconid and metaconid are approximately half as tall 

as the protoconid. Lingo-central, in the wide open trigonid basin, cpg is located. Mesial to 

cpg, also at the base of the crown, cpe is present. Protoconid, pa, me, cpg, and cpe are 

conical, bulky and blunt. Cusps e and cpg are well separated from the adjacent cusps by 

deep indentations. At the molars lingual side a faint cingulid is present, which is separated 

by cpg ([cg]cpe_cpg and [cg]cpg_cpd). [cg]cpg_cpd ends distally in a small cuspule (cpd).  

 

 
  

 
Fig. 11: A lower molar of Woutersia butleri (SNP 517, right m, mirrored) in occlusal (A), lingual (B), and buccal (C) views. 
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4.1.2 Kuehneotherium praecursoris  

Two species of Kuehneotherium have been formally described yet. 

- Kuehneotherium praecursoris Kermack, Kermack, and Mussett, 1968 

- Kuehneotherium stanislavi, Debuysschere, 2017  

Nevertheless, Gill (2004b) differentiated the fossil findings of Kuehneotherium in two further 

species, Kuehneotherium B and Kuehneotherium C. This differentiation is based on small 

morphological differences. Kuehneotheriids are obtuse-angled “symmetrodontans”. 

 

Upper molar, specimen PV M 19771 

This specimen has been classified as an M4 (Kermack, 1954b). A comparison with molars 

of the reconstructed upper Kuehneotherium tooth row (Gill, 2004b) validates this 

classification. 

The paracone is the largest cusp of the upper molar and is centro-lingually situated 

(Fig. 12). The buccal and lingual faces are convex. Both faces are mesially and distally 

pinched. This pinching results in the development of slender, but sharp mesial and distal 

cristae. According to Gill (2004b), there are often notches on these cristae. These notches 

are not present at PV M 19771. At the paracones lingual face, as well as at the buccal face, 

next to the cristae, are vertically oriented, elongated depressions. With the crests and the 

elongated depressions, the mesio-buccal, as well as the disto-buccal portions of the cusp, 

resemble a hollow ground blade. The habitus of the much smaller ME is comparable with 

that of the PA but without the hollow ground blade feature. The cristae of PA are almost 

mesio-distally oriented. The ME cristae are rather bucco-mesially and lingo-distally 

orientated. The MTS sits lingually, at the base of the crown, is smaller, and more conical 

than ME. The cristae of MTS are in line with the cristae of ME. The stylocone is antero-

posteriorly almost in line with the MTS, much more conical, and slightly larger than MTS. 

Whereas the [C]ST-d is bucco-distally oriented, [C]ST-m is bucco-mesially oriented. The 

parastyle is the smallest cusp, and disto-buccally and mesio-lingually connected with a 

cuspidated cingulum, which surrounds almost the entire base of the crown. The cingulum 

is only interrupted at the bucco-distal flank of the MTS. It can be categorized in 

[CG]PAS_MTS and [CG]MTS_ST_PAS. All cusps are well detached by deep indentations. 

The molar is asymmetrical due to the more lingual position of ST, in relation to ME, and the 

buccal position of PAS. Due to the obtuse angle of PA, ME, and ST, the trigon is buccally 

wide open. 
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Lower molar, specimen PV M 19143 

This specimen has been described as an m3 (Kermack, 1954a). This classification is 

confirmed due to the comparison of the molars of the lower Kuehneotherium tooth row, 

which was reconstructed by Gill (2004b). 

The protoconid, which is the largest cusp of the lower molars, is almost centrally located 

in sense of the molar base (Fig. 13). Whereas the pr buccal flank is convex, the lingual flank 

is almost planar, but with a faint lingo-posterior as well as lingo-anterior hollow ground blade 

feature. [c]pr-m and [c]pr-d originate at the contact zone between the buccal and lingual 

flank. While the orientation of the [c]pr-m is almost mesio-distal, the orientation of [c]pr-d is 

disto-lingual. The paraconid is conical, much smaller than pr, and its apex points slightly 

mesially. [c]pa-d is continuously prominent, whereas the [c]pa-m is faint at the tip, but 

becomes more prominent towards basal. The metaconid points slightly distally, is conical, 

and of the same size but lower situated as pa. The [c]me-m orientation is bucco-mesial, 

whereas the [c]me-d is disto-buccally oriented. The paraconid and me are more lingually 

situated than pr. Mesio-lingually to pa, and at the base of the crown is cpe. This cusp is 

much smaller than the three main cusps and has three faint crests. The [c]cpe-d starts 

apically at the buccal flank of cpe but curves and ends at the distal flank. [c]cpe-b and [c]cpe-

l bands into a cingulid. This cingulid extends lingually and mesio-buccally and is interrupted 

by cpe. It can be divided into the lingual section [cg]cpe_pa_pr_me_cpd and into the buccal 

section [cg]cpe_cpf_pa. At the mesio-buccal portion of the cingulid, a small cingular cuspule 

(cpf) is located. Cusp d is conical and located distally of the metaconid at the base of the 

crown. It is slightly larger than cpe, and has three faint crests, [c]cpe-m, [c]cpe-d, and [c]cpe-

b. All cusps are well separated by deep indentations, and the trigonid basin is lingually 

widely open, due to the obtuse triangulation of pr, pa, and me. 

 
Fig. 12: An upper molar of Kuehneotherium praecursoris (PV M 19771, right M4, mirrored) in occlusal (A), buccal (B), and 
lingual (C) views.  
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4.1.3 Maotherium sinense 

The taxon Maotherium includes two species: 

- Maotherium sinense Rougier, G.W., Q. Ji, and M.J. Novacek, 2003 

- Maotherium asiaticum Ji, Q., Z.-X. Luo, X. Zheng, C.-X. Yuan, and L. Xu, 2009 

The following description is based on the molars of specimen YFGP 1724 (Plogschties and 

Martin, 2019). Further molar descriptions of other Maotherium specimens were made by 

Rougier et al. (2003), and Ji et al. (2009). The main cusps triangulation of M. sinense is 

intermediate, and the molar morphology represents the general molar structure of the 

zhangheotheriids. 

 

Upper molar, specimen YFGP 1724 

Herein, the better preserved second upper molar is described. Its crown is almost as broad 

as wide (Fig. 14). The largest cusp is PA, which is situated lingo-centrally. The paracone 

lingual flank is convex, while the buccal flank is almost planar, but with a small, and faint, 

vertical centered elevation. This buccal elevation gives the bucco-anterior as well as the 

bucco-posterior portion a dull single hollowed blade feature. The tip of CPB’ is missing, 

nevertheless CPB’ had to be much smaller, and more conical than the paracone. The 

paracone, and CPB’ are connected via a small, blunt crest. The conical ME and PA are well 

separated by a deep indentation. CPB’ and ME should have had roughly the same size. 

The bucco-distal, as well as the bucco-mesial, portion of the crown is badly damaged, so 

that ST, PAS, and MTS are missing. The base of MTS protrudes distally. Buccally a deep 

u-shaped ectoflexus is present. Lingually, at the base of the crown, [CG]CPB’_PA_ME is 

 
Fig. 13: A lower molar of Kuehneotherium praecursoris (PV M 19143, left m3) in occlusal (A), mesial (B), and buccal (C) views. 
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situated which is centrally interrupted by an indentation. The triangulation of the PA, CPB’, 

and ME is obtuse. The trigon is wide open, with a broad basin at its bottom. 

 

 

Lower molar, specimen YFGP 1724 

Due to the fact that the habitus of m2 and m3 are almost the same, only the better-preserved 

m3 is described herein (Fig. 15). The large conical protoconid is situated centro-buccally. 

The protoconid buccal face is convex, whereas the lingual side is almost flat but with a 

horizontal elevation in the middle. This elevation causes a faint lingo-mesial as well as a 

lingo-distal hollow blade feature. The paraconid is around two thirds as high as pr and 

mesio-lingually tilted. The shape of the pa is conical, but bucco-distally/lingo-mesially 

compressed. The habitus of me resembles that of pa, but is somewhat smaller, bucco-

mesially/lingo-distally compressed and disto-lingually slightly tilted. The protoconid, pa, and 

me are well separated by deep indentations. The conical, but bucco-distally elongated cpe 

is located at the mesial base of the crown. Buccally, between cpe and the base of pa, is a 

channel-like depression. At the distal base of the crown, cpd is located. The conical cpd is 

smaller than cpe. Both cusps are well separated from their adjacent cusps by deep 

indentations. The triangulation between pr, pa, and me is acute. The acute triangulation 

induces, that the trigonid basin is much narrower than in Kuehneotherium, but also lingually 

open. 

 
Fig. 14: An upper molar of Maotherium sinense (YFGP 1724, right M2, mirrored) in occlusal (A), buccal (B), and lingual (C) 
views. 
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Fig. 15: A lower molar of Maotherium sinense (YFGP 1724, right m2, mirrored) in occlusal (A), lingual (B), and buccal (C) 
views. 
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4.1.4 Spalacolestes cretulablatta 

The taxon Spalacolestes includes two species: 

- Spalacolestes cretulablatta, Cifelli and Madsen 1999 

- Spalacolestes inconcinnus Cifelli and Madsen 1999 

The molars of both species resemble each other in most characteristics. The main 

difference is the larger size of S. inconcinnus. A detailed description of both taxa can be 

found in Cifelli and Madsen (1999). Spalacolestes is assigned to the spalacotheriids, which 

are acute-angled “symmetrodontans”. The molar morphology of S. cretulablatta is 

representative of the molars of the Spalacotheriidae.  

 

Upper molar, specimen OMNH VP 033231 

Cifelli and Madsen (1999) categorized this upper molar as M4. The crown of this molar has 

a triangular shape, in which PA, PAS, and MTS are developed at the edges as high points 

on the occlusal surface (Fig. 16). The paracone is the largest cusp and erects symmetrical. 

The ME protrudes slightly distally, while the PAS protrudes slightly mesially. Mesial to the 

MTS an elongated distal stylar cusp is located. PA and PAS are connected via a sharp 

preparacrista ([C]PA~PAS), while a sharp postparacrista ([C]MTS~PA) connects paracone 

and metastyle. Continuous pre- and postvallum surfaces (PA*PAS, MTS*PA) occupy the 

complete anterior and posterior flanks of the cusp. Due to a ridge, which is between the 

distal stylar cusp and PAS, the trigon is almost closed. 

  

  

 
Fig. 16: An upper molar of Spalacolestes cretulablatta (OMNH VP 033231, left M4) in occlusal (A), buccal (B), and mesial (c) 
views. 
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Lower molar, specimen OMNH VP 027421 (mandibular fragment)  

Specimen OMNH VP 027421 includes two successive molars. Cifelli and Madsen (1999) 

identified these molars as m4 and m5. Both teeth are very similar in shape; this description 

refers to m4 (Fig. 17). The crown has a triangular outline with a pr, pa, and me at the edges. 

All three cusps are pointed and marginally tilted towards lingual. Cusp e and cpd are 

reduced. The paraconid and me are each connected via a sharp crest with pr (paracristid = 

[c]pa~pr; protocristid = [c]pr~me). [c]pr~me is higher situated than [c]pa~pr, and me is taller 

than the more lingually situated pa. The pre- and postvallid surfaces (pa*pr; pr*me) are 

continuous and extend over the whole anterior and posterior face of the cusps. At the base 

of the crown, a prominent cingulid ([cg]pa_pr_me) is present, which surrounds the mesial, 

buccal, and distal flank. The rim of the [cg]pa_pr_me forms a sharp ridge. At the most mesial 

and distal points of [cg]pa_pr_me are small cuspules situated (mesial-, distal cingular cusp). 

Due to the acute trigonid angle, the trigonid is open but narrow.  

 

  

 
Fig. 17: A lower molar of Spalacolestes cretulablatta (OMNH VP 027421 ,left m4) in occlusal (A), lingual (B), and buccal 
(C) views. 
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4.1.5 Dryolestes leiriensis 

Two taxa of Dryolestes are listed in the fossil record: 

Dryolestes priscus Marsh, 1878 

Dryolestes leiriensis Martin, 1999 

A detailed description of the Dryolestes leiriensis dentition was provided by Martin (1999) 

and Schultz (2012). The Dryolestes molars of both taxa differ only in detail. 

 

Upper molar, specimen Gui Mam 1150 

The exact position of this upper molar is unknown. The largest cusp is the paracone, which 

is supported by the lingual root (Fig. 18). The lingual side of PA is convex, whereas the 

buccal side is almost flat, but a faint single hollow ground blade feature is mesio-buccally 

as well as disto-buccally present. The conical ST is almost as high as PA and is situated 

centro-buccally. [C]PA-m originates at the mesial flank of the paracone and continues in a 

buccal direction. At first [C]PA-m slopes down, but then ascends, and encounters two other 

crests. The first crest ([C]ST-bm) originates at the mesial side of ST, continuing inclined 

towards mesial, and crosses [C]PA-m. The second crista ([C]PAS-ld) arises at the distal 

side of PAS, ascends towards distal, and meets [C]PA-m and [C]ST-bm. The parastyle is 

situated at the base of the crown and protrudes mesially. At the mesial flank of PAS 

originates [C]PAS-lb, which slopes down towards lingual as well as towards buccal. At the 

distal side of the crown, the conical ME and MTS arise. They are situated lower than ST, 

but higher than PAS. Paracone, ME and MTS are connected via crests. The [C]PA~ME is 

convex, whereas [C]ME~MTS is sloping down from the metacone to the hardly elevated 

MTS. The trigon is almost closed due to the central located ST.  

 

 
Fig. 18: An upper molar of Dryolestes leiriensis (Gui Mam 1150, right M, mirrored) in occlusal (A), buccal (B), and lingual (C) 
views. 
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Lower molar, specimen Gui Mam 1155 

The position of this molar is unknown. The protoconid, pa, and me define the edges of an 

acute triangle. The protoconid and me are almost equal in height. The buccal side of pr is 

convex, whereas the lingual side is almost flat, but with a lingo-mesial as well as lingo-distal 

faint single hollow ground blade feature. The protoconid and the conical me are connected 

via [c]pr~me. [c]pr~me flexes cervical with its bottom half the way. The protoconid and pa 

are also connected by a curved crest ([c]pa~pr). The paraconid and me are separated by a 

deep indentation, so the trigon is lingually open. At the distal base of the crown, the 

hypoflexid protrudes, from which in turn cpd is situated disto-lingually. The hfd slopes 

towards buccal.  

 

 

  

 
Fig. 19: A lower molar of Dryolestes leiriensis (Gui Mam 1155, left m) in occlusal (A), buccal (B), and mesial (C) views. 
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4.2 Tooth Wear  

This is a summary of the tooth wear in “symmetrodontans” from personal observations as 

well as from the literature because only some of the accessible examined specimens 

showed wear. 

 

4.2.1 Woutersia butleri 

The wear of Woutersia butleri has been described in detail by Sigogneau-Russell (1983), 

Sigogneau-Russell and Hahn (1995), and Butler (1997). The following paragraph is a 

combination of personal observations and the descriptions mentioned above.  

 

Upper molars 

Most striking is the apical wear of PA, ST, ME, CPE, and CPX (Fig. 20). In some specimens 

wear has removed the complete tip of the cusps. The apical wear surface of the SNP 720 

cusps are oriented as follows: 

- paracone: mesially 

- stylocone: bucco-mesially 

- metacone: disto-lingually 

- cusp X: lingually 

- cusp E: mesio-lingually 

In most specimens [C]ST~PA, [C]PA~ME and [C]ST~CPE 

are heavily affected by wear. In some specimens 

[C]ST~CPE is completely scuffed and instead of a crest, 

only a facet is visible. Another crest area, which is affected 

by wear, is located distally to the metacone ([C]ME-d). 

Wear facets occur on the disto-lingual and mesio-lingual 

side of PA and ME, and on the distal flank of CPX. Another prominent facet protrudes mesial 

from the apical wear of CPE on the mesio-lingual flank of the cingulum. In some specimens, 

CPE is worn-off to its base.  

Striae on the facets have not been described in the literature but were found on some 

specimens that are present in the study (SNP 719, SNP 884). The striations occur on the 

mesio-lingual portion of the paracone and extend to the cingulum (Fig. 21). They are 

orientated bucco-lingually with a steep inclination. Interestingly, some striae are in a 

depression, which could not be reached by a lower molar structure, so they had to be 

caused by food-tooth contact. 

  

 
Fig. 20: A schematic summary of the 
wear facets, which was described and 
found on the upper molars of Woutersia 
butleri. The wear is sketched in dark grey 
onto SNP 720 (3D-model, right M). 
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Lower molars 

As for the upper molars, the most striking wear for the lower molars is the apical wear, which 

flattened the tips of pr, me, pa, cusp d, cpg, and cpe, as well as cuspules on the lingual 

cingulid (Fig. 22). The apical wear surfaces of the SNP 517 cusps are sloping as follows: 

- protoconid:   almost horizontally 

- metaconid:   disto-lingually 

- paraconid:   mesio-buccally 

- cusp d:   disto-buccally 

- cusp g:   lingually 

- cusp e:   mesio-lingually 

- mesial cingulid cuspule: lingo-mesially 

- distal cingulid cuspule: lingo-distally 

The [c]pr~pa and [c]me~pr are also affected by wear, 

whereby the mesial crest is more worn than the distal one. 

Wear facets occur on the mesio-buccal and disto-buccal 

flanks of pr and pa, as well as on the mesio-buccal portions of cpd and me. Sigogneau-

Russell (1983) described wear facets on the disto-buccal flanks of me and mesio-buccal 

side as the apex of cpd.  

  

 
Fig. 21: Right upper molar molds of Woutersia sp. Representative striae are traced in black (figures are mirrored). A: SNP 
719, striations are concentrated on the mesio-lingual side (occlusal view). B: SNP 884, upper molar, mesial view. 

 
Fig. 22: A schematic summary of the 
wear facets, which was described and 
found on the lower molars of Woutersia 
butleri. The wear is sketched in dark grey 
onto SNP 720 (3D-model, right m, 
mirrored). 
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4.2.2 Kuehneotherium praecursoris 

The herein described distribution of Kuehneotherium tooth wear is mostly a summary of the 

observations by Crompton and Jenkins (1968), Crompton (1971), Mills (1984), Godefroit 

and Sigogneau-Russell (1999), Gill (2004b), and Conith et al. (2016). The most remarkable 

difference compared to Woutersia is the much weaker apical wear in Kuehneotherium. Only 

molars in a very advanced stage of wear have worn-off tips. Striations could not be identified 

on the accessible specimens and are not documented in the literature.  

 

Upper molars  

Wear facets occur at the mesio-buccal and disto-buccal 

flanks of PA and ME (Fig. 23, A). Furthermore, at the lingo-

distal flank of ST, the lingo-mesial side of MTS, and the 

lingo-distal portion of PAS wear can be seen. The wear of 

PAS extends lingo-distally onto [CG]PAS_PA. In addition, 

wear has been described for a small disto-lingual area of 

[CG]ME_MTS. 

 

Lower molars  

The mesio-buccal and disto-buccal flanks of pr and pa are 

affected by wear (Fig. 23, B). In some specimens, these 

areas of wear extend almost to the molar base. Wear 

occurs also at the mesio-buccal flank of cpd, as well as the 

buccal side of me. Another area of wear has been described 

for the mesio-buccal portion of cpf, which extends to the 

buccal area below [cg]cpf-mb.  

  

 
Fig. 23: The distribution of wear facets 
of Kuehneotherium praecursoris, sche-
matically summarized. The wear is 
marked in dark grey. A: Upper molar 
(3D-model of PV M 19771, right M4); B: 
Lower molar (3D-model of PV M 19143, 
left m3). 
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4.2.3 Maotherium sinense 

On the studied Maotherium sinense specimen (YFGP1724) some striations, but no facets 

could be identified, and there is just little information on Maotherium tooth wear documented 

in the literature. Nevertheless, there is a character coding for some facets of Maotherium sp. 

in Ji et al. (2009) (c.f. Fig. 24):  

- “128. Topographic relationships of wear facets to 

the main cups: [...] (2) Lower cusps a, c support a 

single wear facet (facet 4) that contacts the upper 

primary cusp B. (this facet extends onto cusp A as 

wear continues, but 1 and 4 do not develop 

simultaneous in these taxa); [...].” 

- “130. Wear facet 1 (a single facet supported by 

cusp a and cusp c) and facet 2 (a single facet 

supported by cusp a and cusp b) [...] (1) Present.” 

- “131. Upper molars - development of facet 1 and 

the preprotocrista (applicable to molars with 

reversed triangulation): (0) Facet 1 (prevallum 

crest) short, not extending to the stylocone area; 

[…]”. 

Some striations are visible on the ultimate premolar and 

on m1 of specimen YFGP 1724. These striations have a steep inclination. Their orientation 

is not uniform, but the main direction extends from mesio-lingual to bucco-distal (Fig. 25). 

 

 
Fig. 25: SEM pictures of striations, which are on the right lower ultimate premolar and m1 of Maotherium sinense (YFGB 
1724). The striae are traced in black. The pictures are mirrored for the ease of comparison. A: Striae at the mesio-buccal side 
of the ultimate premolar apex. B: Striae next to the indentation between the metaconid and cusp d. C: Close up of striae next 
to the indentation between the m1 paraconid and cusp e. Background: 3D-models of the ultimate premolar and first molar. 

 
Fig. 24: The distribution of wear facets 
based on the description of Ji et al. (2009). 
The wear is sketched in dark grey onto 3D-
models of Maotherium sinense molars A: 
right M2 (YFGP 1724); B: right m2, 
mirrored (YFGP 1724). 
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4.2.4 Spalacolestes cretulablatta 

Cifelli and Madsen (1999) documented the wear of Spalacolestes cretulablatta in detail.  

 

Upper molars 

On the upper molars wear occurs mainly on [C]PAS~PA, [C]PA~MTS, and on the pre- and 

postvallum surfaces (PAS*PA, PA*MTS) (Fig. 26, A). In advanced stages of wear, the 

cristae are flattened, although the outer edges of the cristae remain sharp. With progress 

of wear, the apices got worn-off. 

Striae are present all over PAS*PA and PA*MTS surfaces. They have a steep inclination 

(about 45°) and proceed almost parallel in an oblique bucco-lingual direction. In advanced 

wear stages, there are steps between the dentine and enamel on the occlusal surface. 

 

Lower molars 

On the lower molars wear affect [c]pa~pr, [c]pr~me, the pre- and the postvallid surfaces 

(pa*pr, pr*me), as well as the cingulid (Fig. 26, B). The outer edges of the cristids stay sharp 

with the progress of wear, whereas the tips of the three main cusps became blunter. In 

addition, steps between dentine and enamel occur on the occlusal area, and a continuous, 

concave, triangular worn surface has been developed on the crown. This surface dips 

slightly mesially. The sharp ridges of [cg]pa_pr and [cg]pr_me were beveled off into flat, 

obliquely oriented facets in advanced wear stages. 

Parallel striae occur all over the pa*pr and pr*me (Fig. 27). They are obliquely, lingo-

buccally oriented with a steep inclination (about 45°). The inclination of striae reflects the 

slope of the [cg]pa_pr and [cg]pr_me.  

 

 
Fig. 27: Left lower m4 of Spalacolestes cretulablatta 
(OMNH VP 030627, SEM picture). The striae orienta-
tion is almost parallel to each other, and to the slope of 
[cg]pa_pr and [cg]pr_me.  

 
Fig. 26: The distribution of wear facets on Spalacolestes 
cretulablatta molars. The facets are sketched in dark grey onto 3D-
models. A: left M4, mirrored (OMNH VP 033231); B: left m4 (OMNH 
VP 027421). 
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4.2.5 Dryolestes leiriensis 

The wear of Dryolestes leiriensis has been described in detail by Schultz and Martin (2011) 

and Schultz (2012).  

Upper molars 

Most striking is the apical wear of the PA, ST, PAS, and MTS as 

well as the wear on the crests (Fig. 28, A). These areas of wear 

are oriented as follows: 

- paracone:  almost horizontally 

- stylocone:  mesio-buccally 

- metacone:  disto-lingually 

- metastyle:  disto-lingually 

- parastyle:  disto-buccally 

- [C]ME~MTS:   disto-lingually 

- [C]PAS~ST:  mesio-lingually 

In advanced stages of wear, there is a step between the enamel 

and the dentine of the cusps, and crests, due to the exposure of 

the softer dentine. These steps are typical for abrasion. 

Furthermore, there are attrition facets on PA*ME*MTS and 

PAS*PA as well as on the lingual portion of the PAS.  

Striations are common on the entire PA*ME*MTS and PAS*PA 

facets. They run parallel from bucco-apical towards lingo-cervical. 

The most apical located striae are slightly steeper than the more 

cervical ones, and less parallel aligned (Fig. 29, A). 

Lower molars 

The lower molars show extensive apical wear on the pr, pa, and me as well as on [c]pr~me, 

and [c]pa~pr (Fig. 28, B). The apical wear facets are oriented as follows: 

- protocone:  disto-lingually 

- metacone:  bucco-distally 

- paracone:  mesio-buccally 

The cusps and crests show the typical abrasion steps, in which the dentine is more deeply 

excavated than the adjacent enamel. In addition, there are attrition facets on pr*me, and 

pa*pr as well as on the hypoflexid. 

Striae occur on the lower pr*me and pa*pr facets. They run parallel from bucco-cervical 

to lingo-apical. The most apically situated striations are around 10° more steeply inclined 

than the more cervical ones, which are oriented parallel to the hypoflexid (Fig. 29, B). It is 

noticeable that the more apical striae are less parallel aligned than the more cervical ones. 

  

 
Fig. 28: Distribution of wear 
facets sketched onto 3D-models 
of Dryolestes leiriensis molars 
based on the description of 
Schultz and Martin (2011) and 
Schultz (2012). The wear facets 
are marked in dark grey. A: right 
M, (Gui Mam 1150); B: left m 
(Gui Mam 1155). 
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Fig. 29: A: High resolution 3D-model of a lower Dryolestes leiriensis molar (Gui Mam 1163). The more apical striae on pr*me 
are steeper inclined (around 10°) as the more cervical ones. The more cervical ones run parallel to the hypoflexid. The arrows 
represent the two striae directions. B: SEM image of an upper Dryolestes leiriensis molar (mesial). The white arrows show 
the two striae orientations. (Modified from Schultz and Martin, 2011) 
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4.3 Occlusal Fingerprint Analyser (OFA) 

 

The chewing cycles of Woutersia butleri, Kuehneotherium praecursoris, Maotherium 

sinense, and Spalacolestes cretulablatta were reconstructed with the OFA. As mentioned 

in chapter 3, these taxa were chosen, because they represent major “symmetrodont” molar 

pattern. For each taxon, one cycle without a roll (wor-cycle), and one cycle with a roll 

(wr-cycle) of the lower dentition were performed. All taxa have in common that their shearing 

strokes have a single phase (phase I), in which the lower molars slide into interdental 

spaces of the upper molars. During each shearing stroke, there is no change in direction. 

There are minor differences in the wr-cycle and wor-cycle. For all taxa, the highest overall 

contact area values between the upper and lower molars were slightly higher in the wor-

cycles. For some taxa, the wr-cycle reconstruction showed additional collision areas, which 

correspond to observed wear facets. These areas are lacking in the wor-cycle. 

The inclination and declination of the wr-cycle and wor-cycle differ only by a few degrees. 

Table 6 shows the specimens, which were used to reconstruct and analyze the chewing 

cycles. For easier comparison, all right teeth were mirrored for the OFA, so that each set of 

teeth corresponds to a left dentition.  

 
Tab. 6: Sets of molars, which were used to reconstruct the chewing cycle. 

Taxon Collection number Tooth position 

Woutersia butleri SNP 720 mirrored right Mx  
SNP 517 mirrored right mx 

SNP 517  mirrored right mx 
Kuehneotherium praecursoris PV M 19771 mirrored right M4 (left M3 substitute) 

PV M 19143 left m3 

PV M 19143 left m3 (m4 substitute)  
Maotherium sinense YFGP 1724 mirrored right M2 

YFGP 1724 mirrored right m2 

YFGP 1724 mirrored right m3 
Spalacolestes cretulablatta OMNH VP 033231 left M4 

OMNH VP 027421 left m4 

OMNH VP 027421 left m5 
Dryolestes leiriensis 

 
Gui Mam 1150 mirrored right Mx 

Gui Mam 1155 left mx 

Gui Mam 1155 left mx 
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4.3.1 The chewing cycle of Woutersia butleri 

Based on the results of the molar wear study and the illustration of a tentative occlusion, 

proposed by Sigogneau-Russell (1983), the chewing cycle was virtually reconstructed. For 

the reconstruction, one right upper and one right lower molar were used (SNP 720, SNP 

517). The morphology of both teeth indicates that they were situated somewhere in the 

middle of the upper and lower tooth row, but the exact molar positions are unknown. In 

order to have two consecutive lower molars, the lower molar SNP 517 was duplicated.  

The general movement of the lower dentition of the wr-cycle and of the wor-cycle is 

almost identical (Fig. 30). During the shearing stroke, 

the lower dentition performs an upward and transverse 

movement with a slight shift towards distal until the 

maximum mandibular closure is reached, and the 

recovery stroke begins. The inclination for the chewing 

cycle with a roll is 39° (wor-cycle = 52°), and the 

declination is 80° (wor-cycle = 79°). A rotation of 10° 

towards lingual was performed by the OFA simulation 

with a roll. 

The shearing stroke of the wr-cycle ends at time step 

(t-s) 98, whereas it is 25 time steps longer for the wor-

cycle. At first (t-s 0) the overall contact area of the wr-

cycle rises until t-s 29 is reached, whereas it rises up to 

t-s 36 in the wor-cycle. Afterward, the overall contact 

area of the wr-cycle decreases until about t-s 54 and 

stays at the same level until the maximum mandibular 

closure is reached (t-s 98). The wor-cycle decreases 

until t-s 80, and increases again until the maximum 

mandibular closure is reached (t-s 123). Whereas the 

maximum intercuspation of the wr-cycle is reached at t-

s 29, the maximum intercuspation of the wor-cycle 

coincides with the maximum mandibular closure (t-s 

123). The overall contact area of the maximum 

intercuspation, as well as the maximum mandibular 

closure (end of the shearing stroke), is higher for the 

wor-cycle (Fig. 31). 

 
Fig. 30: The mastication compasses for 
Woutersia butleri. In both scenarios, the 
lower teeth perform a transverse upward 
movement with a slight mesio-distal shift. The 
marker (line perpendicular to the arrow) 
depict the moment of the maximum 
mandibular closure. The length of the arrow 
is equated with the duration of the shearing 
stroke. A: Compass of the chewing cycle with 
roll (wr-cycle); B: Without roll (wor-cycle). 
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At the beginning of the shearing stroke pa-mb-a (pa-bm-a; wor cycle) contacts [C]PA~ME 

(Fig. 32, A; see also Fig. 33). In addition, pr-bm occludes with ME-ld. At the same time, 

me-d-a gets in contact with the most apical portion of [C]PA~ST. Furthermore, pr-bd-a 

occludes with a more buccal portion of [C]PA~ST. With the aforementioned occlusal contact 

areas, restricted interdental spaces originate. The first space is restricted by the 

[c]pr~me/[C]PA~ST, the second one is limited by [c]pr~pa/[C]PA~ME. While the lower 

molars slide past the upper molar, these spaces close, and the collision areas shift to the 

molar flanks. At this time the wr-cycle shows an extensive contact of me-db/PA-ml(1) as 

well as of pr-db(2)/PA*ST. These contacts are marginal in the wor-cycle (me-db/PAml; 

pr-d/PAml(2)). As the closure of the dentition progresses, a second set of interdental spaces 

originates between [c]pa~pr/[C]CPX-d as well as between [c]pr~me/[C]CPX-m. 

Concurrently pr-db(1) (pr-db; wor-cycle) slides past a small area of [CG]_ml. At the end of 

the shearing stroke, the second set of interdental spaces closes, and CPX occupies the 

interdental space between me and pa (Fig. 32, B). The remarkable difference between the 

wr-cycle and wor-cycle is the intense contact of me-db/CPX ml, pa-b*pa-mb/ PA*ME-ld, and 

pa-mb/CPX d in the wor-cycle, which is not developed to that extent in the wr-cycle (Fig. 33). 

On the other hand, there is a large contact area between pr-db(2)/PA-ml(2), as well as 

between me-db/PA-ml(1) in the wr-cycle, which is not developed to that extent in the wor-

cycle.  

The resulting collision areas of the lower dentition and their upper molar antagonists for 

both scenarios are summarized in Figure 33. 

 
Fig. 31: Change of total collision area over time in Woutersia butleri lower molars, during one chewing cycle. The total collision 
area is a percentage of the total collision area of the lower molar relative to the total area of the lower molars. The dark grey 
graph shows the course of the wr-cycle, the light grey double-line graph that of the wor-cycle. Whereas the wr-cycle maximum 
intercuspation is reached in the beginning of the shearing stroke, it coincides with the end of the wor-cycle shearing stroke 
(maximum mandibular closure).  

 maximum intercuspation 

 maximum mandibular closure 
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Fig. 32: Important molar positions of Woutersia butleri during the shearing stroke. A: At the beginning of the shearing stroke. 
B: At the end of the shearing stroke.  
3D-models of SNP 720 (upper molar) and SNP 517 (both lower molars). 

 
Fig. 33: The resulting OFA collision areas of the shearing stroke of Woutersia butleri in summary. A: Collision areas of the 
chewing cycle with a roll. B: Collision areas of the chewing cycle without a roll. Basically both cycle produce the same areas, 
but there are some exceptions. First, the more extensive pr-db(2)/PA-ml(2), and pr-db(1)/[CG]-ml wr-cycle contact zones. 
Second, the presence of the CPX-ml contact area, and the more extensive pa-b/PA*ME contact facet of the wor-cycle. Upper 
molars correspond to right ones, whereas lower molars correspond to left ones. 
3D-models of SNP 720 (upper molar) and SNP 517 (both lower molars). 



 
Chapter 4 

60 
 
 

4.3.2 The chewing cycle of Kuehneotherium praecursoris 

The chewing cycle of Kuehneotherium praecursoris was 

reconstructed with the wear facets analyses from 

Crompton (1971), Godefroit and Sigogneau-Russell 

(1999), and Gill (2004b). For the reconstruction 3D-

models were used, which were provided by Prof. Richard 

Cifelli. The original molars are a right M4 (PV M 19771) 

and a left m3 (PV M 19143), of which the M4 was mirrored 

and the m3 was duplicated in order to have two 

consecutive lower molars for the OFA reconstruction. 

Because no striations were observed on the available 

specimens or have been described in the literature, the 

OFA reconstruction was performed without a striation 

analysis. 

The general movement of the lower dentition of the wr-

cycle and wor-cycle are very similar (Fig. 34). The 

shearing stroke of both scenarios exerts an upward 

transverse movement with a distal shift. Whereas the 

inclination of the wr-cycle is 52°, it is 55° for the wor-cycle. 

The declination of both cycles is around 73°. The 

reconstruction with a rotation of the mandible results in a 

roll rate of six degrees towards lingual.  

The shearing stroke of the wr-cycle has a duration of 

134 time steps, whereas that of the wor-cycle is 13 time steps shorter (Fig. 35). The overall 

contact area of the wr-cycle increases until t-s 74, whereas that of the wor-cycle increases 

till t-s 95. Time step 95 of the wor-cycle coincides with the maximum intercuspation, and the 

value of the overall collision area stays almost the same until the end of the shearing stroke 

(maximum mandibular closure, t-s 121). On the contrary, the value of the overall wr-cycle 

contact area stays almost the same from t-s 74 to t-s 100 and then rises again until the 

maximum intercuspation is reached (t-s 126). Afterward, the wr-cycle contact area 

decreases slightly until the end of the shearing stroke (maximum mandibular closure, t-s 

134). The total overall contact area at maximum intercuspation is higher for the wor-cycle 

than for the wr-cycle, whereas at the end of the shearing stroke it is higher for the wr-cycle.  

  

 
Fig. 34: The mastication compass of both 
Kuehneotherium praecursoris chewing 
cycle scenarios. Both cycles performing a 
transverse chewing motion with a mesio-
distal shift. The length of the arrow is 
equated with the duration of the shearing 
stroke. The marker perpendicular to the 
arrow, represents the maximum inter-
cuspation. A: The compass for the cycle 
with roll. B: The compass for the cycle 
without roll.  
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At the beginning of the shearing stroke me-db occludes with PA-ml (Fig. 36, A; see also 

Fig. 37). With further closing, the buccal face of pr slides into the lingual intercuspal area of 

PA and ST, which results in a contact of pr-d/PA-m as well as pr-b/ST-l (pr-mb(1)/ST-dl; 

wor-cycle). Furthermore, the lingual portion of PA occludes with the buccal intercuspal area 

of me and cpd. Thereby me-db/PA-ml, as well as cpd-b/PA-l, come into contact. 

Concurrently the bucco-mesial portion of pr moves into the disto-lingual area between ME 

and MTS, and the mesio-buccal portion of pa slides into the lingual intercuspal area of PA 

and ME. The dents of the intercuspal areas lead the antagonistic cusps during the further 

upward movement of the lower dentition. Additionally, [c]pr-d slides towards [C]PA-m, and 

[c]pr-m (posterior m) moves towards [C]ME-d. While the cusps continue to interlock, 

restricted spaces between [c]pr~me/[C]ST~PA as well as between [c]pa~pr/[c]PA~ME 

originate, which are getting narrower over the time and finally close (Fig. 36, B). 

Shortly before the end of the shearing stroke pr-d occludes with the notched area 

between PAS-l and [CG]ST_PA (Fig. 36, C). At the same time pr-bm(2) (pr-mb(2); wor-

cycle) occludes with the distal portion of [CG]PA_ME. At the end of the wr-cycle, the tip of 

PA comes into contact with cpf, which is not the case in the wor-cycle.  

The resulting overall collision areas of the wr-cycle and the wor-cycle almost resemble 

each other, except for the additional [cg]-mb/PA-dl contact in the wr-cycle.  

The shearing stroke collision detections for both scenarios are summarized in Figure 37. 

  

 
Fig. 35: Change of the total collision area over time of the Kuehneotherium praecursoris lower molars, during one chewing 
cycle. The total collision area is a percentage of the total collision area of the lower molars relative to the total area of the 
lower molars. The dark grey graph shows the course of the wr-cycle, the light grey double-line graph that of the wor-cycle. 
Whereas the wr-cycle maximum intercuspation is reached around 100 t-s before the shearing stroke ends, it almost coincides 
with the end of the wor-cycle shearing stroke (maximum mandibular closure). 

 maximum intercuspation 

 maximum mandibular closure 
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Fig. 36: Important molar positions of Kuehneotherium praecursoris during the shearing stroke. A: At the beginning of the 
shearing stroke. B: Shortly before closing the interdental spaces. C: At the end of the shearing stroke.  
3D-models of NHM PV M 19771 (M4) and NHM PV M 19143 (m3). 

 
Fig. 37: The resulting OFA collision areas of the shearing stroke of Kuehneotherium praecursoris in summary. A: The collision 
areas of the wr-cycle. B: The collision areas of the wor-cycle. The contact areas of both scenarios are very similar except that 
PA-dl is reaching [cgf]-mb in the wr-cycle. Upper molars correspond to right ones, whereas lower molars correspond to left 
ones. 
3D-models of NHM PV M 19771 (M4) and NHM PV M 19143 (m3). 
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4.3.3 The chewing cycle of Maotherium sinense 

The chewing cycle of Maotherium sinense was 

reconstructed with two successive right lower molars (m2, 

m3) and with their antagonist (M2). The molars are from 

a partial skull including a mandible with complete dentition 

(except for incisors and canine), and the maxilla with two 

molars (YFGP 1724, Plogschties and Martin, 2019). The 

striations, which were observed on the lower ultimate 

premolar and m1 of YFGP 1724 were used for the 

reconstruction. 

The general movement of the wr-cycle as well as of 

the wor-cycle is a transverse movement with a slight shift 

towards mesial (Fig. 38). In both scenarios, the inclination 

is around 60° and the declination is around 92°. The lower 

dentition rolled with a resulting rotation of 8° towards 

lingual in the wr-cycle. 

The duration of the shearing stroke for the wr-cycle is 

150 t-s, while that of the wor-cycle is 25 time steps longer 

(Fig. 39). In both cycles, the overall collision area 

increases until the maximum intercuspation is reached 

(wr-cycle = t-s 75; wor-cycle = t-s 104) and decreases 

afterward until the end of the shearing stroke. The total 

overall contact area at the maximum intercuspation is 

slightly higher in the wr-cycle as in the wor-cycle, whereas 

it is vice versa at the end of the shearing stroke (maximum 

mandibular closure). The curves of both scenarios are 

similar, with the exception that the diagram of the wor-

cycle is somewhat protracted.  

  

 
Fig. 38: The mastication compass of both 
Maotherium sinense chewing cycle 
scenarios. Both cycles perform a trans-
verse chewing motion with a slight mesial 
shift. A: The compass for the cycle with roll. 
B: The compass for the cycle without roll. 
The length of the arrow is equated with the 
duration of the shearing stroke. The wr-
cycle reaches the maximum intercuspation 
(line perpendicular to the arrow) almost in 
the middle of the shearing stroke, whereas 
the wor-cycle reaches it somewhat in the 
last third of the shearing stroke. 
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At the beginning of the shearing stroke, the intercuspal area between me and pa moves 

towards PA (Fig. 40, A). At this time me-d/PA-m, as well as pa-m/PA-d, come into contact 

(Fig. 41). Concurrently, pr-mb/ME-dl, as well as pr-db/CPB’-ml get also in contact, and 

interdental spaces originate between the cusps. The mesial interdental space is restricted 

by [c]pr~pa/[C]PA~ME, and the distal interdental space is restricted by 

[c]pr~me/[C]PA~CPB’. With further progress of the shearing stroke, the interdental spaces 

close. Concurrently, the me/PA, pa/PA, pr/CPB’ as well as pr/ME contact regions become 

more extensive, and each area expands to the basal region of the respective cusp. 

In addition, the contact areas cpe-mb/PA-dl, as well as cpd-bd/PA-lm, arise in the 

wr-cycle. Soon afterward, me-db occludes with [CG]PA_CPB’, and pa-m comes into contact 

with [CG]PA_ME. By that, a second set of interdental spaces originates, which are restricted 

by [c]pr~me/[CG]PA_CPB’ as well as by [c]pa~pr/[CG]PA_ME (Fig. 40, B). These 

interdental spaces close at the end of the shearing stroke (Fig. 40, C), and the contact areas 

between pr*me/[CG]PA_CPB’, as well as pr*pa/[CG]PA_ME increase, whereas all other 

contact areas decrease (Fig. 40, D).  

The resulting collision areas for the wr-cycle as well as for the wor-cycle are summarized 

in Figure 41. The distribution of the collision areas for both scenarios is similar. 

  

 
Fig. 39: Change of the total collision area over time of the Maotherium sinense lower molars, during one chewing cycle. The 
total collision area is a percentage of the total collision area of the lower molars relative to the total area of the lower molars. 
The dark grey graph shows the course of the wr-cycle, the light grey double-line graph that of the wor-cycle. Both curves 
resemble each other, but the wor-cyle graph is somewhat protracted.  

 maximum intercuspation 

 maximum mandibular closure 
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Fig. 41: The resulting OFA collision areas of the power stroke of Maotherium sinense in summary. A: The collision areas of 
the wr-cycle. B: The collision areas of the wor-cycle. The contact areas of both scenarios are similar. Upper molars 
correspond to right ones, whereas lower molars correspond to left ones. 
3D-models of YFGP 1724 (M2, m2, and m3). 

 
Fig. 40: The molar positions of the power stroke of Maotherium sinense. A: The beginning of the power stroke. The first set 
of interdental spaces originate. B: The position, in which the second set of interdental spaces originate. C: The position, in 
which the second set of interdental spaces are closed. D: The end of the power stroke. 3D-models of YFGP 1724 (M2, m2, 
and m3). 
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4.3.4 The chewing cycle of Spalacolestes cretulablatta 

The chewing cycle of Spalacolestes cretulablatta was 

reconstructed based on the results of the SEM wear 

study. For the reconstruction of the cycle 3D-models of 

two left lower molars from one specimen (OMNH VP 

027421), and one left upper molar (OMNH VP 033231) 

from another specimen was used. The molars were 

classified as m4, m5, and M4 by Cifelli and Madsen 

(1999).  

The general movements of the wr-cycle and wor-cycle 

resemble each other (Fig. 42). The lower dentition 

performs a transverse movement with a slight shift 

towards distal. Whereas the declination for the wr-cycle 

is 88° and the inclination is 48°, the declination and 

inclination for the wor-cycle are 86° and 52°. For the wr-

cycle the rate of roll is around 7°. 

The duration of the wr-cycle is 186 time steps, while it 

is 17 time steps longer for the wor-cycle (Fig. 43). The wr-

shearing stroke reaches the maximum intercuspation at 

t-s 130, and the wor-cycle at t-s 142. During the shearing 

stroke, the total collision area of both scenarios increases 

until the maximum intercuspation and decreases 

afterward. The total overall contact area at the maximum 

intercuspation is slightly higher for the wor-cycle as for 

the wr-cycle, whereas it is vice versa at the end of the 

shearing stroke (maximum mandibular closure). 

  

 
Fig. 42: The mastication compass of both 
Spalacolestes cretulablatta chewing cycle 
scenarios. The cycles perform a transverse 
chewing movement with a slight mesial 
shift. A: The compass for the cycle with roll. 
B: The compass for the cycle without roll. 
The marker (line perpendicular to the 
arrow) depicts the moment of the maximum 
mandibular closure. The length of the arrow 
is equated with the duration of the power 
stroke. 
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At the beginning of the shearing stroke pr-bd (pr-b; wor-cycle) contacts PAS-lm (PAS-m; 

wor-cycle), and pr-bm occludes with MTS-ld (Fig. 44, A; see also Fig. 45). At the same time 

me-d/PA-m(1) as well as pa-m/PA-d(1) come into contact. In this way, mesial and distal 

elliptical interdental spaces originate. The mesial interdental space is restricted by 

[c]pr~me/[C]PAS~PA and [C]PA~MT/[c]pa~pr. With a further upward movement of the 

lower dentition, the interdental spaces close, and the collision areas expand to the 

prevallid/postvallum surfaces (pa*pr/PA*MTS) as well as to the postvallid/prevallum 

surfaces (pr*me/PAS*PA) (Fig. 44, B). In addition, the paracone occludes with the 

[cg]pr_me as well as with the [cg]pa_pr. From this point on, the cingulids guide the 

movement of the lower dentition via the PA contact, until the end of the shearing stroke, so 

that the pa*pr and pr*me surfaces pass along their antagonists (PA*MTS, PAS*PA) 

(Fig. 44, C).  

The distribution of the collision areas of the wr-cycle and wor-cycle equals each other. 

They are summarized in Figure 45. 

  

 
Fig. 43: The diagram of the Spalacolestes cretulablatta lower molars total collision area in temporal relation, during one 
chewing cycle. The total collision area is a percentage of the total collision area of the lower molars relative to the total area 
of the lower molars. The dark grey graph shows the course of the wr-cycle, the light grey double-line graph that of the wor-
cycle. 

 maximum intercuspation 
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Fig. 45: The resulting OFA collision areas of the power stroke of Spalacolestes cretulablatta in summary. A: The collision 
areas of the wr-cycle. B: The collision areas of the wor-cycle. The contact areas of both scenarios are very similar. Upper 
molars correspond to right ones, whereas lower molars correspond to left ones. 
3D-models of OMNH VP 033231 (M4) and OMNH VP 027421 (m4, m5). 

 
Fig. 44: Key positions during the power stroke of Spalacolestes cretulablatta. A: The beginning of the power stroke. The 
interdental spaces originate. B: The position, in which PA comes into contact with the cingulids. The interdental spaces are 
almost closed. C: The end of the power stroke.  
3D-models of OMNH VP 033231 (M4) and OMNH VP 027421 (m4, m5). 
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4.3.5 The chewing cycle of Dryolestes leiriensis 

The chewing cycle of Dryolestes leiriensis was studied in detail by Schultz (2012) and 

Schultz and Martin (2014). In this chapter, the results of these studies are summarized.  

The time step division of the Dryolestes leiriensis OFA 

project from Schultz and Martin (2014) has been adjusted 

to Lambda = 0.01, and the total collision area was 

converted into percent. These modifications were made in 

order to make the results comparable to the results of the 

present study. 

For the reconstruction of the chewing cycle, Schultz 

(2012) and Schultz and Martin (2014) used 3D-models of 

a right upper (Gui Mam 1150), and a left lower molar (Gui 

Mam 1155). To complete the set of teeth the left lower 

molar was duplicated, and the right upper was mirrored. 

The molars derive from the middle part of the tooth row, but 

their exact position is unknown. A chewing cycle with a roll 

has not been reconstructed. 

Generally, the lower dentition performs a transverse movement without a lateral shift 

(Fig. 46). Whereas at the beginning of the shearing stroke the inclination is 45°, it declines 

to around 35° at the time when the paracone is guided by the hypoflexid. 

The duration of the shearing stroke is 101 t-s (Fig. 47). The total collision area increases 

until the maximum intercuspation (t-s 95) and is almost at the same level until the end of 

the shearing stroke. The paracone gets in contact with the hypoflexid (hfd) at t-s 34. At this 

time, the inclination changes as mentioned above. 

 

 
Fig. 46: The wor-cycle mastication 
compass of Dryolestes leiriensis. The 
chewing cycle performs an upward 
transverse movement. At first with an 
inclination of 45° (right arrow), but when 
the paracone is led by the hypoflexid the 
inclination decreases to 35°(left arrow). 
The marker (line perpendicular to the 
arrow) depicts the moment of the maxi-
mum mandibular closure, which is almost 
at the end of the power stroke. 

 
Fig. 47: The diagram of the Spalacolestes cretulablatta lower molars total collision area in relation to time, during one chewing 
cycle. The total collision area is a percentage of the total collision area of the lower molars relative to the total area of the 
lower molars. The maximum intercuspation almost coincides with the end of the power stroke. 

 maximum intercuspation 
 maximum mandibular closure 
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At the beginning of the shearing stroke me-d comes in contact with Pa-m (Fig. 48, A; see 

also Fig. 49). With further closing, the distal portion of the pr comes in contact with the 

mesio-buccal part of PA*PAS. Due to the contact of me-d/PA-m as well as pr-d/PA*PAS, 

an interdental space originates. This space is restricted by [c]me~pr/[c]PA~PAS, gets 

narrower during the upward movement of the lower dentition, and finally closes. Almost at 

the time when the interdental space closes, the PA-m-a comes into contact with hfd-bd 

(Fig. 48, B). This contact results in the deflection of the lower dentition (see above). During 

PA is led by the hfd, pr*me slides past PA*PAS and pr*pa slides past PA*ME*MTS. The 

contact areas of pr*me/PA*PAS and pr*pa/PA*ME*MTS increase until the end of the 

shearing stroke (maximum mandibular closure) (Fig. 48, C).  

The resulting overall collision areas are summarized in Figure 49.  

 

 

 
Fig. 48: The important positions during the power stroke of Dryolestes leiriensis. A: The beginning of the power stroke. A 
mesial interdental space originates. B: The position, in which PA-m-a comes into contact with the hfd-bd. The inclination 
decreases from 45° to 35°. The interdental space is almost closed. C: The end of the power stroke. 
3D-models of Gui Mam 1150 (upper molar) and Gui Mam 1155 (both lower molars). 

 
Fig. 49: The resulting OFA collision areas of the power stroke of Spalacolestes cretulablatta in summary. Upper molars 
correspond to right ones, whereas lower molars correspond to left ones. 
3D-models of Gui Mam 1150 (upper molar) and Gui Mam 1155 (both lower molars). 
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4.4  Tooth structure types (“tools”) 

The OFA reconstructions of the chewing cycles show that various lower tooth structures, in 

combination with their upper antagonists, were involved in comminuting food. The 

interaction between the lower tooth structures and their antagonists can be abstracted into 

"tools". These “tools” are presented schematically in this chapter. 

 

The Crushing-Tool 

The Crushing-Tool performs 

actions like piercing and 

crushing (Fig. 50). There are two 

realizations of this tool. The first 

type is a cusp, which encounters 

a chunk of food, whereas the 

second type is a cusp, which 

slides into an embayment with food particle in-between. In both scenarios, the material 

collapses due to the force of the cusp, and cracks originate (Lucas, 2004). 

 

The Cracking-Tool 

During this process, chunks get trapped and 

bent between the three cusps (Fig. 51). The 

bending results in a failure of the food material 

and cracks originate remotely of the cusps 

(Berthaume, 2016). The Crushing-Tool can 

occur simultaneously. 

 
 
 

The Crest-Crest-Tool 

This tool includes two straight crests, which 

move past each other (Anderson and La 

Barbera, 2008) (Fig. 52). Depending on crest 

sharpness the food gets shear-cut or blunt-

sheared.  

  

 
Fig. 50: A cusp encounters a material. By increasing the force, the material 
collapses, and cracks originate and extend. Thereby, a food particle gets 
pierced and crushed. A: A cusp encounters food (type I) B: A cusp slides into 
an embayment with food in-between (type II). (Modified from Lucas, 2004) 

 
Fig. 51: The material bends between the three cusps, 
by increasing the force. The result are cracks remote of 
the cusps. The Crushing-Tool can occur simultane-
ously. (Modified from Berthaume, 2016) 

 
Fig. 52: The Crest-Crest-Tool. The food gets shear-cut 
or blunt-sheared in-between the crests edges. (Modified 
from Anderson and LaBarbera, 2008) 
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The Notch-Fang-Tool 

This type of tool consists of two different 

antagonists, whereas the first is a triangular 

indented edge, the other one is a fanged crest or 

a cusp (Fig. 53). Food comminuting through this 

configuration includes crushing, puncturing, 

shear-cutting, blunt-shearing and puncture-

shearing. The comminuting process depends on 

the sharpness of the crests or cusps. In addition, 

this tool includes a “Crushing-Tool” component 

(Anderson and La Barbera, 2008). 

 

The Cusp-Groove-Tool 

During this process, a cusp moves along a 

channel, groove or crest (Fig. 54). Food particles 

in-between the cusp and its antagonists get 

squeezed and crushed. The dentition movement 

is largely influenced by this tool. 

 

 

 

 

The Straight-Notch-Tool 

This tool includes one straight, and one 

triangular indented crest (Anderson and La 

Barbera, 2008) (Fig. 55). When the crests move 

past each other the restricted space closes and 

the food particles get trapped in-between. With 

further closing, the particles get shear-cut, or 

blunt-sheared, depending on the sharpness of 

the crests. 

 

 

 
Fig. 55: In this tool the food particles get shear-cut, 
pinched-off or blunt-sheared by a triangular crest, which 
moves past a straight crest. (Modified from Anderson 
and LaBarbera, 2008) 

 
Fig. 53: Two versions of the Notch-Fang-Tool. In both 
versions food gets pierced, crushed, shear cut and/or 
ripped apart, depending of the crest, fang sharpness. In 
A, a fanged crest is involved, while in B it is a cusp. 
(Modified from Anderson and LaBarbera, 2008) 

 
Fig. 54: The Cusp-Groove-Tool. The cusp moves along 
a channel groove or crest, and food particles in-between 
these structures get squeezed and crushed. 
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The Notch-Notch-Tool 

There are two general versions of this tool 

(Evans and Sanson, 2003; Schultz, 2012) 

(Fig. 56). The first version is two opposite edges, 

in which each edge has a triangular notch. The 

other version has two curved notches. The 

principle procedures of these two tools are the 

same. Food particles get trapped in-between the 

edges and, depending on the sharpness of the 

crests, get shear-cut or blunt-sheared. 

 

The Two-Surfaces-Tool 

This tool consists of two plane surfaces, which 

move past each other (Fig. 57, A). During this 

movement food particles get plane-sheared 

(Thiery et al., 2017). If there is a groove at one 

surface, compressional-shearing can occur 

additionally (Fig. 57, B).  

 

 
Fig. 56: Both designs of the Notch-Notch-Tool. The 
triangle inflection (A), and the curved inflection (B). Both 
designs have the same procedure, they shear-cut, 
blunt-shear or pinch-off food material. (Modified from 
Evans and Sanson, 2003) 

 
Fig. 57: The Two-Surface-Tool. Food particles get 
sheared and crushed in-between two surfaces, which 
past each other. In version B compressional shearing 
can occur within a groove. (Modified from Thiery et al., 
2017) 
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5 Discussion 

In the past, there have been several studies about “symmetrodontan” molars. Most of them 

were comprehensive descriptions of the occlusion on the base of wear facets of 

Kuehneotherium molars, sometimes with a wear facet homologization of other early 

diverging and more derived taxa (Crompton and Jenkins, 1967, 1968; Crompton, 1971; 

Crompton and Jenkins, 1973; Mills, 1984; Godefroit and Sigogneau-Russell, 1999; Gill, 

2004b). Other studies set the focus on the dietary specialization of Kuehneotherium. 

According to Gill et al. (2014), Kuehneotherium preferred a “soft” prey diet. Their study is 

based on a quantitative textural microwear analysis of the molars, and a finite element 

method, which was applied to the mandible. This result was corroborated by an 

experimental study by Conith et al. (2016), in which simplified models of the 

Kuehneotherium dentition “chewed” different “food” items. Another research approach is 

the reverse-engineering of an ideal insectivore molar. In these studies, theoretical teeth 

were generated after certain functional parameters. The shape of one of these theoretical 

teeth, called the protoconoid (Evans and Sanson, 2003, 2006), is comparable to the 

structure of “symmetrodontan” molars. Any of these studies gives an insight view into the 

comminuting process of “symmetrodontan” molars in detail. In the current study, for the first 

time, the mastication of four different “symmetrodontan” taxa was studied in detail based on 

the OFA analysis.  

Crompton and Hiiemäe (1969, 1970) recognized in a cineflourographic study of the 

Didelphis marsupials mastication two types of power strokes, the crushing-puncturing 

stroke and the shearing stroke. The crushing-puncturing stroke occurs immediately after 

ingestion. During that stroke, the ingested prey is fractured (puncture-crushed) without 

tooth-tooth contact. After the food is adequately comminuted the shearing stroke starts, in 

which tooth-tooth contact is involved. This observation can also be postulated for the 

mastication of “symmetrodontans”. The fragmentation process of the crushing-puncturing 

stroke is comparable to the Crushing-Tool and Cracking-Tool (see chapter 4.4). The 

crushing-puncturing mode may last some cycles before the shearing stroke starts (Hiiemäe, 

1976). 

 

5.1 The roll of a hemimandible in “symmetrodontans” 

 

That “symmetrodontans” and Mesozoic mammals in general rolled the active hemimandible 

during the shearing stroke has been postulated by various researchers (Crompton and 

Hylander, 1986; Crompton, 1995; Cifelli and Madsen, 1999; Grossnickle, 2017; Bhullar et 

al., 2019). Due to this assumption and the possibility to simulate the roll with the current 
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OFA version, a chewing cycle with roll-rotation was reconstructed for Woutersia butleri, 

Kuehneotherium praecursoris, Maotherium sinense, and Spalacolestes cretulablatta. The 

comparison of the wor-cycle (without roll cycle) result with the wr-cycle (with roll cycle) result 

of the respective taxon shows that there are only minor differences. Almost all wear facets, 

which were described for each taxon in the literature, could be reconstructed without a roll 

rotation. Clear evidence for a roll could not be found. However, there are two indications, 

which support a roll. The first hint is the collision areas me-db and pr-db(2) of the W. butleri 

chewing cycle. These areas are much more pronounced in the reconstruction of the wr-

cycle and correspond to the described facets of Sigogneau-Russell (1983) and Sigogneau-

Russell and Hahn (1995). The second exception is the extension of the K. praecursoris wr-

cycle collision area PA-m onto the lingo-mesial part of the cingulum. Crompton (1971), as 

well as Gill (2004), recognized wear at this cingulum area. Nevertheless, the resulting angle 

of the roll rate in all taxa is relatively modest and ranges between 10° to 6°, whereby a 

theoretical roll rate of 10° was assumed for all taxa. This range is comparable to the results 

of the roll rate of Docodon victor (~12°; Schultz et al., 2017a), a Late Jurassic docodontan, 

and the extant marsupial Monodelphis domestica (~7°; Bhullar et al., 2019). The OFA 

analysis showed that the degree of the roll is influenced by the morphology of the molars, 

and with this observation, it can be postulated, that the roll was passively triggered. 

Furthermore, the comparison of both cycles points out that the roll did not influence the type 

of comminution in “symmetrodontans”, because the “tools” remain the same. However, 

presumably, the roll had a positive effect on the efficiency of the chewing process at least 

for zhangheotheriids and spalacotheriids. For both taxa OFA calculated a lesser amount of 

time steps, in connection with a lesser percentage of the total collision area, for the shearing 

stroke with a roll rotation (wr-cycle), compared to the shearing stroke without a rotation (wor-

cycle) of the respective taxon (c.f. Fig. 39 and Fig. 43, and chapter 5.5).  

 

5.2 Interpretation of the OFA chewing cycles in relation to prey 

comminution 

 

The OFA chewing cycle reconstructions show that the dentition of the studied taxa 

(Woutersia butleri, Kuehneotherium praecursoris, Maotherium sinense, and 

Spalacotherium cretulablatta) differs in the function of the comminuting process, despite the 

fact that their chewing path is almost the same. In this chapter, the different chewing cycles 

will be interpreted, with regard to the comminuting process. Due to the fact, that the OFA 

only detects collision areas of the tooth-tooth contact, the chewing cycle can be equated 

with the shearing stroke. But it should be noted, however, that some cycles of the crushing-

puncturing mode must have been preceded, in which the Crushing-Tool and Cracking-Tool 



 
Chapter 5 

76 
 
 

came in use. The following interpretation of the mastication processes is a combination of 

the wor- and wr-cycle. 

  

5.2.1 Mastication of Woutersia butleri 

The chewing cycle (shearing stroke) of 

Woutersia butleri can be separated into 

three stages of food reduction. At the 

beginning of the first stage, a chunk of food 

got trapped between the notched crest 

[c]pr~me and [c]pa~pr and their straight 

antagonists [C]PA-mb and [C]PA~ME 

(Fig. 58, A). With further closing, the crests 

moved past each other, and the trapped 

food was blunt-sheared. The crest 

structures are comparable to the Straight-

Notch-Tool, with the specialty, that the 

straight crests are inclined. At the time when 

the crests passed each other the second 

stage was initiated. During this stage, 

particles, which were trapped in-between 

PA-m/pr*me and PA*ME/pa*pr got plane-

sheared and crushed. The fragmentation 

process of this stage is matching the Two-

Surfaces-Tool. At the same time, a puncture-crushing between the metaconid of the mesial 

molar, the paraconid of the distal molar, and CPX took place (Cracking-Tool). In the last 

stage, two different “tools” came in use. The first one was the Straight-Notch-Tool with a 

combination of cusps and crests ([CG]CPE_CPX/[c]pr~me; [CG]CPX-d/pa-b) (Fig. 58, B). 

The second “tool” was the Two-Surfaces-Tool but with the specialty, that there was a 

compressional-shearing, which took place between PA-ml/me-db and PA-dl/pa-mb. Food 

got plane-sheared at the lingual flank of the paracone, but then gets stuck at the lingual 

cingulum. With further closing of the mandible, more and more food particles got 

accumulated and compressed below the cingulum. Another plane-shearing with a Two-

Surfaces-Tool took place at PA-m/pr*me, CPX-d/pa-m, and ME-l/pa*pr. Interestingly, a roll 

of the mandible would have increased the compressional-shearing activity. The W. butleri 

shearing stroke stages are summarized in Figure 59. 

  

 
Fig. 58: Snapshots of the shearing stroke of Woutersia butleri 
(mesio-lingual view). The highlighted crests performed a 
blunt-shearing. A: At the beginning of the first stage. B: During 
the third stage. 
(Upper molar: SNP 720 W, lower molars: SNP 517 W) 
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Fig. 59: A summary of the chewing cycle of Woutersia butleri and the involved molar structures. The puncture-crushing mode 
preceded the shearing stroke (a). The shearing stroke can be divided into three stages (b-d). Blue arrow: predicted OFA trajectory 
path, yellow arrow: calculated OFA trajectory path, red line: recovery stroke.  
(Upper molar: SNP 720 W, lower molar: SNP 517 W)  
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5.2.2 Mastication of Kuehneotherium praecursoris  

Subsequently to the crushing-puncturing 

stroke, three shearing stroke stages were 

recognized for the chewing cycle of 

Kuehneotherium praecursoris. In the first 

stage, the functional units [C]ST~PA/pr and 

ME/[c]pa~pr trapped and puncture-sheared 

the prey, by moving the cusps past the 

notched crests (Notch-Fang-Tool). At the 

same time [C]PA-m/[c]pr~me, as well as 

[C]ME~MTS/[c]pr-m, moved past each other 

and performed a shear-cutting action. In each 

of these functional units, one straight crest 

and one notched crest was involved. 

Additionally, a plane-shearing started in-

between PA-ml/me-db. This plane-shearing 

took place until the end of the shearing 

stroke. During the second stage another 

puncture-shearing was performed, in which 

the paracone and the notched [c]me~cpd, as 

well as the paraconid and the notched 

[C]PA~ME moved past each other (Fig. 60, A). Concurrently, almost all lower buccal cusp 

flanks started a plane-shearing with their upper antagonists (Fig. 61). It is to point out, that 

the functional units PA-dl/[cgd]-mb only get into collision if a roll of the mandible is involved. 

In the course of the third stage, the plane-shearing was continued until the end of the 

shearing stroke. Shortly before the end of the shearing stroke, a compressional-shearing, 

additionally to a plane-shearing of ST-l/pr-b, took place, in which food particles got trapped 

and accumulated in a lingo-distal embayment next to the stylocone and below the cingulum 

(Fig. 60, B). With further progress, the paracone moved past the embayment, and the 

chewing cycle was completed. A roll of the mandible would simplify the moving past the 

cingulum without losing the contact of the flanks. Figure 61 summarizes the different stages 

of K. praecursoris. 

  

 
Fig. 60: Two stages of the shearing stroke of Kuehneotherium 
praecursoris. A: Molar position at the beginning of the second 
stage. Highlighted crest executed a puncture-shearing (lingo-
distal view). B: Molar position at the end of the third stage. 
The encircled area indicates the region, in which a 
compressional-shearing took place (lingual view). 
(Upper molar: PV M 19771, lower molars: PV M 19143) 
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Fig. 61: A summary of the chewing cycle of Kuehneotherium praecursoris and the involved molar structures. The puncture-
crushing mode preceded the shearing stroke (a). The shearing stroke can be divided into three stages (b-d). Blue arrow: 
theoretical chewing path, yellow arrow: path resulting from the OFA analysis, red line: recovery stroke. 
(Upper molar: PV M 19771, lower molar: PV M 19143) 
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5.2.3 Mastication of Maotherium sinense 

The shearing stroke of Maotherium sinense 

can be separated into three stages. The first 

stage started with a blunt-shearing, in which 

the functional units [C]CPB’-m/[c]pr-d and 

[C]PA-m/[c]me-d as well as [C]PA-d/[c]pa-m 

and [C]CPC-d[c]pr-m were involved 

(Fig. 62, A). This comminuting action is 

comparable to the Notch-Notch-Tool. With 

further closing, the collision zone shifted 

towards the cusp flanks and a plane-

shearing (Two-Surfaces-Tool) took over the 

blunt-shearing. The involved flanks, are 

CPB’-m/pr-db, PA-m/me-d, PA-d/pa-m, and 

CPC-dl/pr-mb. This plane-shearing process 

was continued in the second stage, and 

further flanks started a plane-shearing 

(PA-dl/cpe-mb, PA-ml/cpd-db). Another comminuting process of the second stage was a 

second blunt-shearing, in which [CG]PA_CPB’/[c]pr~me and [CG]PA_ME/[c]pa~pr were 

implicated (Fig. 62, B). These functional units have the appearance of the Straight-Notch-

Tool. Whereas the plane-shearing contacts of the first stage lost their contact in the third 

stage, the plane-shearing contacts of the second stage shifted towards basal. With further 

closing of the mandible a compressional shearing occurs below [CG]PA_CPB’ and 

[CG]PA_ME. Food particles got trapped below the cingulum and were accumulated. A 

summary of the important stages of the M. sinense chewing cycle is summarized in 

Figure 63. 

  

 
Fig. 62: Two stages of the shearing stroke of Maotherium 
sinense (lingo-mesial view). The highlighted crests performed 
a blunt-shearing A: At the beginning of the first stage. B: At 
the beginning of the third stage.  
(Upper and lower molars: YFGP 1724) 
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Fig. 63: A summary of the chewing cycle of Maotherium sinense and the involved molar structures. The puncture-crushing mode 
preceded the shearing stroke (a). The shearing stroke can be divided into three stages (b-d). Blue arrow: theoretical chewing 
path, yellow arrow: path resulting from the OFA analysis, red line: recovery stroke. 
(Upper and lower molars: YFGP 1724) 
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5.2.4 Mastication of Spalacotherium cretulablatta 

The shearing stroke of Spalacolestes 

cretulablatta can be divided into two principal 

stages. With the closing of the mandible, a 

shear-cutting process was performed by the 

functional units [C]PAS~PA/[c]pr~me and 

[C]PA~MTS/[c]pa~pr (Fig. 64, A). This 

cutting action is comparable to the 

Notch-Notch-Tool, but with two concave 

crests. With further closing of the mandible, 

trapped food between the sharp crest was 

cut similar to a cigar cutter. After the crest 

units moved past each other, a 

plane-shearing started, in which 

PAS*PA/pr*me and PA*MTS/pa*pr were 

involved. This plane-shearing continued until 

the end of the second stage. During the 

second stage, a compressional-shearing 

took place between PA-m and [cgd]pr_me as well as PA-d and [cgd]pa-pr (Fig. 64, B). 

These occlusal contacts guided the mandible during further closure. The different stages 

are summarized in Figure 65. 

 

  

 
Fig. 64: Two stages of the shearing stroke of Spalacolestes 
cretulablatta A: At the beginning of the first stage. 
Highlighted crests executed a shear-cutting (distal view). B: 
At the beginning of the second stage: Highlighted areas 
performed a compressional-shearing (bucco-lingual view). 
(Upper molar: OMNH VP 033231, lower molars: OMNH VP 
027421) 
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Fig. 65: A summary of the chewing cycle of Spalacolestes cretulablatta and the involved molar structures. The puncture-crushing 
mode preceded the shearing stroke (a). The shearing stroke can be divided into two stages (b and c). Blue arrow: theoretical 
chewing path, yellow arrow: path resulting from the OFA analysis, red line: recovery stroke. 
(Upper molar: OMNH VP 033231, lower molars: OMNH VP 027421) 
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5.2.5 Mastication of Dryolestes leiriensis 

There are three stages within the Dryolestes 

leiriensis shearing stroke. At the beginning 

of the first stage, food particles were shear-

cut between [C]PA~PAS and [c]me~pr 

(Fig. 66, A). This shear-cutting is 

comparable to the Notch-Notch-Tool, but 

with concave crests. At the same time, there 

was a plane-shearing process between 

PA*PAS and me*pr, as well as a 

compressional-shearing between PA-m-a 

and hfd-bd (Fig. 66, B). Both processes 

were continued until the end of the shearing 

stroke. With the contact of PA-m-a and hfd-

bd, a change of the inclination angle of 

about -10° occurred. Until the end of the 

shearing stroke, the contact between PA-

m/hfd-bd led the occlusal movement of the 

mandible. At the beginning of the second 

stage, the shear-cutting of the functional unit 

[C]PA~PAS/ [c]me~pr ended, and a shear-cutting of [C]PA-d/[c]pa-m started (Notch-Notch-

Tool). As mentioned above, the plane-shearing and compressional-shearing processes 

were continued but shifted slightly. At the end of the second stage, and with the beginning 

of the third stage, the [C]PA-d/[c]pa-m shear-cutting ended and a plane-shearing started 

below their flanks (PA-d/pa-m). Figure 67 is a summary of the three stages. 

  

 
Fig. 66: Two stages of the shearing stroke of Dryolestes 
leiriensis. A: At the beginning of the first stage. Highlighted 
crests executed a shear-cutting (mesio-occlusal view) B: At 
the beginning of the second stage. Highlighted areas per-
formed a compressional shearing (buccal view). 
(Upper Molar: Gui Mam 1150, lower molars: Gui Mam 1155) 
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Fig. 67: A summary of the chewing cycle of Dryolestes leiriensis and the involved molar structures. The puncture-crushing mode 
preceded the shearing stroke (a). The shearing stroke can be divided into three stages (b-d). Blue arrow: theoretical chewing 
path, yellow arrow: path resulting from the OFA analysis, red line: recovery stroke.  
(Gui Mam 1150, lower molars: Gui Mam 1155) 
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5.3 The molar occlusion of “symmetrodontans” in comparison  

The interpretation of the “symmetrodontans” food comminuting showed that the 

fragmentation process is different, despite the fact that the principle movement of each 

mandible (transversal upward with a slight mesial or distal shift) resembles each other. But 

there is one basic feature, which can be identified in all taxa, the embrasure shearing 

(Fig. 68). The embrasure shearing is characterized by an 

arrangement of tooth structures, which are like a three-sided 

pyramid wedge that moves upwards and transversely in an 

embayment. The embayment has the same form as the 

wedge, only negative. The advantage of this configuration is 

that the sides of the pyramids, which are embraced by the 

embayment, are in constant contact with its opposing 

embayment surfaces, during the whole time of the movement 

(Crompton et al., 1994).  

The food comminution of Woutersiidae was dominated by 

crushing and puncturing, in which the cusp tips were involved 

(Crushing-Tool, Cracking-Tool). This observation is 

supported by the abrasive origin of the heavily worn cusp tips 

(Sigogneau-Russell, 1983). In the course of this, the 

inclination of the occlusal wear surface is interesting. Most of 

the occlusal wear is a result of tooth-food or tooth-food-tooth 

interaction. Exceptions are the lingually inclined wear facets of cpg, cpe, and the lingual 

cingulid cusples. Due to the lingual orientation of these wear facets, they must have been 

originated by a tooth-food-tongue interaction. A shear-cutting component as proposed by 

Butler (1997) was not recognizable, although [C]pa-mb is very prominent, it lacks an 

adequate antagonist with a sharp crest. Hence, during the shearing stroke, [C]PA-mb/[c]pr-

me pinched-off (blunt-sheared) the food rather than cut it. Noteworthy is the second 

puncture-crushing component at the end of the cycle in which CPX, pa of the distal molar, 

and me of the mesial molar was involved. Butler (1997) described this puncture-crushing 

component as an early stage in the development of opposition, in which the buccal flanks 

of CPX occluded lingually of pa and me, and resulted in a rudimentary crushing action. This 

oppositional occluding function otherwise occurred for the first time among Jurassic 

“allotherians” and docodontans (Butler, 1997). This mode of occlusion could not be 

confirmed by the OFA. In the reconstructions, the upper molar moved buccally past the 

lower molars, but the resulting compressional-shearing had to lead to some sort of crushing 

action. It is conceivable, that CPX of another molar position showed this opposition because 

the CPX of other woutersiid specimens (e.g., SNP 719, Sigogneau-Russell and Hahn, 1995) 

is more detached from the paracone than the CPX of SNP 720. Concurrently to the 

 
Fig. 68: The principle of the 
embrasure shearing. The advantage 
of the embrasure shearing is to pro-
vide a constant contact of the colli-
sion areas. (Modified from Schultz 
and Martin, 2014) 
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puncture-crushing, blunt- and compressional-shearing, and extensive plane-shearing took 

place, in which almost the complete buccal area of the lower molars, and their upper 

antagonists, were involved. Due to the obtuse triangulation of the main cusps, high freedom 

in the occlusal movement was possible, which benefitted the plane-shearing. The 

embrasure shearing is rudimentary but recognizable. During the shearing stroke, pr*mr*cpd 

and cpe*pa*pr embraced the lingual part of the upper molar. It must be noted that a 

particular region of wear, which was documented in the literature, could not be reached with 

the Woutersia butleri chewing cycle reconstructions. The wear extends from the mesial side 

of the stylocone onto CPE and meets [C]PA-mb half the way (Sigogneau-Russell, 1983; 

Sigogneau-Russell and Hahn, 1995; Butler, 1997) (Fig. 20). The region could not be 

reached, because only isolated molars from different specimens were available for the 

reconstructions. For this reason, the accuracy of fit is not as precise as with associated 

molars, but it must be the bucco-distal area of the protoconid that occluded with ST*CPE. 

However, the herein presented masticatory cycles are a good first approximation, which 

shows the principle comminuting process of Woutersiidae. 

After the crushing-puncturing-stroke of Kuehneotherium praecursoris and with the 

beginning of the shearing stroke, the fractured food was mainly comminuted by the tips of 

the cusps and their notched crest antagonists (Fang-Notch-Tool). The puncture-shearing 

was performed temporally offset at four different loci (see Chapter 5.2.2). With further 

closing, an embrasure shearing function was implemented, in which each cusp was 

successively led by its opposite flanks. The embrasure shearing has been detected at the 

following positions: 

- protoconid  in-between  ST-dl and PA-ml 

- metacone  in-between  pa-db and pr-mb 

- paracone  in-between  me-db and cpd-mb 

- paraconid  in-between  PA-dl and ME-ml 

Crompton (1971) recognized the same occlusal pattern. Godefroit and Sigogneau-Russell 

(1999) also described the same embrasure shearing for the paraconid, but are of the 

opinion, that the protoconid occluded between the stylocone and metacone of the 

succeeding molar. In addition, they described an occlusion of the paracone onto cpd, 

instead in-between the metaconid and cpd. Another opinion was presented by Mills (1984). 

Although he recognized the same occlusal pattern for the protoconid and paracone as 

Crompton (1971), Mills described an occlusion of the paraconid against the metacone rather 

than an embrasure shearing of those cusps. Gill (2004b) proposed a similar occlusal 

pattern, which was described by Mills (1984). She recognized the same embrasure shearing 

pattern presented here but proposed another mincing process. Gill (2004b) considered, that 

the main comminuting function in Kuehneotherium was in-between ellipsoid spaces, formed 

by sharp, concave (notched) blades, that moved past each other and trapped and cut food. 
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This suggestion is not consistent with the OFA analysis. During the chewing movement, no 

ellipsoidal spaces were formed, but at two locations ([C]PA-m/[c]pr~me and 

[C]ME~MTS/[c]pr-m) a straight crest moved past a notched crest and shear-cut food 

particles (Straight-Notch-Tool). However, the dominant comminuting process was the 

above-mentioned puncture-shearing with a following embrasure shearing (plane-shearing 

process), as well as a minor shear-cutting, and not the proposed shear-cutting in-between 

ellipsoid spaces. It is possible, that the different occlusal interpretations are related to local 

species variations of Kuehneotherium (Godefroit and Sigogneau-Russell, 1999). Another 

reason for the different interpretations of the occlusion could be associated with the molar 

position or with the considerable freedom in the occlusal movement. 

Crompton (1971), as well as Mills (1984), suggested that an extensive remodeling of the 

Kuehneotherium crown by wear is needed to establish an effective occlusion. Gill (2004b) 

on the contrary, considers that the Kuehneotherium molars are well adapted for an effective 

occlusion at eruption. She supports her point of view with another interpretation of the molar 

orientation, and on shearing blade details. The OFA analysis confirms the assumption, the 

molars are well adapted for an effective occlusion at eruption. The almost unworn molars 

that were used for the OFA analysis fit flawless into each other, even though they are from 

different specimens. 

The shearing stroke in Zhangheotheriidae was dominated by blunt-shearing and plane-

shearing processes. The blunt-shearing process was executed in two stages. In the first 

stage, the blunt-shearing happened between the indentation of the upper and lower main 

cusps (Notch-Notch-Tool). The blunt-shearing of the second stage is comparable to the 

blunt-shearing at the end of the Woutersiidae shearing stroke. Both taxa accumulated food 

particles below the cingulum, which resulted in a compressional-shearing (crushing 

process). An embrasure shearing occurred between upper and lower molars, and not 

between cusps as in Kuehneotheriidae. Due to a more acute triangulation of the molar main 

cusps, the embrasure shearing was more intense than in Woutersiidae. Not only the lingual 

flank but also the mesial and distal areas of the upper molar were embraced by the mesio-

lingual and disto-lingual sides of the lower molars. As a result of the embrasure shearing, a 

plane-shearing occurred during the entire chewing cycle. The collision areas of the plane-

shearing are patchy and restricted to the mesial and distal molar surfaces. Striations on the 

Maotherium sinense premolars and molars with different inclinations indicate, that there 

was a certain freedom in the occlusal movement. However, due to the acute triangulation 

of the main cusps, the freedom of occlusal movement was more restricted in 

zhangheotheriids as in woutersiids. The M. sinense collision areas resulting from the OFA 

analysis are similar to the wear facets described for Anebodon luoi, another, early diverging, 

Zhangheotheriidae (Bi et al., 2016, supplementary information). Hence, the chewing cycle 
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of both Zhangheotheriidae, and therefore presumably of all Zhangheotheriidae, resembles 

each other, due to a similar molar morphology. 

Bi et al. (2016) proposed that only after considerable wear of zhangheotheriid molars a 

tight occlusal fit is given, and only then the stylocone and metastyle would participate in the 

comminuting process. The OFA analysis is showing another scenario. The molars had not 

to be remodeled by wear to efficiently comminute prey. The purpose of the morphology of 

the molars was not to shear-cut prey, and therefore sharp crests and a tight occlusion was 

not necessary. The molars' task was to puncture, crush and blunt-shear (pinch-off) the food 

particles. Even if ST*CPB’*PA/pr*me*cpd and PA*ME*MTS/cpe*pa*pr have been vastly 

worn-off, the stylocone and metastyle are too far buccally to get in full contact with the lower 

molar flanks. Therefore, both the stylocone and metastyle did not participate in a shearing 

process.  

The comminuting process of Spalacotheriidae, on the contrary, was dominated by a 

shear-cutting process. After an initial puncturing to fix the prey, it was shear-cut in-between 

sharp mesial and distal crests ([C]pas~/[c]pr~me, [C]pa~MTS/[c]pa~pr). However, the 

dentition worked similar to pinking shears (Fig. 71). Only a minor amount of really small 

food particles was then crushed between the flanks of the cusps (plane-shearing). This can 

be assumed due to the acute triangulation. The acute triangulation allowed only a little 

freedom of the occlusal movement and a vast embrasure shearing. These observations are 

mostly consistent with the assumptions of Cifelli and Madsen (1986). They mentioned, that 

a plane-shearing for Spalacotheriidae has been overemphasized and that the puncture-

crushing and shear-cutting were the important comminuting processes. They support their 

assumption with the occurrence of a heavy worn crest with a concurrent absence of polished 

mesial and distal wear facets. They also noted, that the cingulids apparently served as a 

crushing surface or as a “stop mechanism”. The OFA analysis shows that the 

compressional-shearing process, in which the paracone and the cingulids were involved, 

had not only the primary function of a “stop mechanism”, but also that of guiding the lower 

dentition. However, some food particles were crushed in this region. This can be concluded 

due to some abrasive wear within the v-shaped cingulid crests, and the flattening of the 

cingulids in occlusal plane in more advanced wear stages (Cifelli and Madsen, 1986). Cifelli 

and Madsen (1999) assumed a significant roll and lateral translation for spalacotheriids. 

This assumption is based on an unusual condition of the pterygoid crest and the lateral 

reflection of the postero-ventral margin of the dentary, which are presumably functionally 

related to the roll and lateral translation. Another hint is the obliquely oriented striae on the 

molar’s mesial and distal flanks (Cifelli and Madsen, 1999). The reconstructed shearing 

stroke supports the high value of lateral translation, but unambiguous evidence for a roll 

could not be provided. Hence, both chewing cycles are possible, but it is to mention, that a 

roll would have made the shear-cutting process more efficient.  
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5.4 Spalacolestes cretulablatta and Dryolestes leiriensis in comparison 

(with remarks on zalambdodont and dilambdodont tooth morphologies) 

 

Within “symmetrodontans” the shearing stroke of spalacotheriids resembles that of the 

dryolestidan Dryolestes leiriensis the most. The comminuting process of D. leiriensis is 

dominated by a shear-cutting function, in which the mesial and distal molar crests are 

involved ([C]ME~MTS/[c]me-pr, [C]PA-ME/[c]pa~pr). The acute-angled triangulation of the 

main cusps allowed a deep embrasure shearing, and therefore little freedom in occlusal 

movement. For this reason, the plane-shearing between those flanks had to be of minor 

importance for food comminution, because there was only little space between the flanks, 

in which food items could get crushed. Schultz and Martin (2011) recognized for 

D. leiriensis, that the inclination of the striations near the protoconid apex is steeper than 

the striations above the hypoflexid. The latter striations are parallel to the hypoflexid surface. 

The same pattern was also recognized for the upper molars. The inclination of the striae 

near the paracone apex is steeper than near the parastylar region. The inclination difference 

between the striations near the protoconid (paracone) apex and hypoflexid (parastyle) 

region is around 10°. This indicates, that the hypoflexid deflected the paracone and the 

direction of the movement was changed by around 10°. During the paracone/hypoflexid 

contact a compressional-shearing occurred, in which food particles were crushed. A similar 

process can be seen in the OFA analysis of Spalacolestes cretulablatta, but with some 

differences. A change in the directional movement could not be recognized. The striations 

at the protoconid (paracone) apex and at the base of the crown(s) are almost parallel. The 

paracone antagonists of spalacotheriids are cingulids instead of the hypoflexid. However, 

the result was the same, a compressional-shearing occurred as well as a guidance of the 

lower jaw movement. 

The last occurrence of “symmetrodontans” in the fossil record is in the Late Cretaceous, 

so it can be assumed that “symmetrodontans” got extinct before the Mesozoic-Cenozoic 

boundary. Almost at the same time the metatherians and eutherians underwent an 

explosive radiation (Luo, 2007), but within modern (tribosphenic) mammals a convergent 

development, similar to the acute-angled molar structure, took place. The convergently 

evolved structural molar topologies are called zalambdodont and dilambdodont. Most extant 

mammals with a zalambdodont or dilambdodont dentition are insectivores or omnivores 

(with a high content of invertebrates) (Hillson, 2005). Zalambdodont molars are found in 

extant eutherians like Solenodontidae (Fig. 69), Tenrecidae, Chrysochloridae, and the 

extant metatherian Notoryctes. Additionally, there are various extinct Eutheria (e.g. 

Oligoryctes, Koniaryctes, Parapternodus, Apternodus) and Metatherians (e.g. Necrolestes, 

Yalkaparidon) (Asher and Sánchez-Villagra, 2005). Dilambdodont molars are present in 
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extant placental mammals like Soricidae, 

Talpidae, Scandentia, and Vespertilionidae, 

and in extinct taxa like nyctitheriids, 

chalicotheres, brontotheres, and 

Pantolambdidae (Butler, 1996; Lopatin, 

2006). Zalambdodont molars generally 

have a large central molar cusp from which 

two ridges branch off mesio- and disto-

buccally, therefore the molars have a v-

shaped appearance in occlusal view 

(Fig. 69). Dilambdodont mammal molars 

have a w-shaped appearance in occlusal 

view, in which from each of two central 

cusps two ridges branch off towards mesio- 

and disto-buccally. Another similarity between zalambdodont and dilambdodont molars is a 

reduced talonid area (Asher and Sánchez-Villagra, 2005). Therefore, the main task of those 

molars is to shear-cut food, similar to acute-angled “symmetrodontans”.  

 

5.5 The efficiency of “symmetrodontan” mastication with indications of 

dietary preferences 

 

Mammals need a large amount of energy to maintain the homoeothermic endothermic 

metabolic system. For this reason, it was necessary to evolve an efficient masticatory 

system to break down food into small pieces. The smaller the food particles reach the 

digestive system, the better is their absorption and nutrient assimilation potential and thus 

the yield of energy (Lumsden and Osborn, 1977; Prinz and Lucas, 1997; Prinz et al., 2003; 

Clarke and Pörtner, 2010). Additionally, food comminution should be connected with 

minimal use of energy. Therefore, the adaptation of the tooth morphology to the preferred 

diet allows mammals to meet their energy requirements with a minimal effort of energy. This 

principle explains the highly diverse molar morphology within the Mammalia (Lucas and 

Peters, 2000). In connection with these considerations, it is of interest to determine the 

efficiency of the “symmetrodontans” comminuting process among one another and in 

relation to their evolutionary predecessors (“triconodontans”) and successors ((Pre-) 

tribosphenidans). This chapter shows some tendencies and considerations, despite the fact 

that for fossil taxa a direct quantification of the efficiency of the comminuting process on the 

basis of the tooth morphology and occlusal relationship is difficult to determine and to 

compare. The efficiency of the masticatory complex can be described as the ability to 

 
Fig. 69: Zalambdodont dentition of Solenodon paradoxus 
(ZFMK 658, occlusal view). A: Left M3 B: Left m3. 
(3D-model provided by Andreas Lang) 
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comminute the food into an optimal particle size, with a minimum of time and energy 

expenditure (Schultz, 2012). However, methods, which qualify this approach cannot be 

used for fossil taxa, because living test subjects would be needed for verification. Those 

methods evaluate the entire masticatory complex, which includes the dentition, jawbones, 

muscles, tongue, cheeks, saliva, palate, and sensory operations, but for most fossil taxa 

only hard tissue (dentition and jawbones) is available. 

Another method to determine the molar efficiency is to quantify the shearing crests and 

surfaces. In the literature, the area of available occlusal contacts is generally given as a 

measure for chewing efficiency (e.g. Moore and Sanson, 1995; Proff, 2010). In this context, 

a high occlusal contact is equated with a high chewing efficiency. This is an appropriate 

measurement for dentitions that are used for grinding and crushing (e.g. humans). In the 

case of dentitions with a primary shear-cut function (e.g. insectivores), the opposite is 

applicable. A shear-cutting dentition is more efficient the smaller the contact areas are, 

including a point-cutting action, like a cigar cutter or scissors. In order to increase the point-

cutting process notched or concave crests with relief are beneficial (see below). The 

advantage of point-cutting is a decrease in friction (Evans, 2003), which is therefore 

associated with lower energy consumption and higher efficiency. Another aspect is the 

nature of the preferred food to which the dentition is adapted. A carnivore dentition is highly 

efficient for cutting flesh, but poorly suited for grinding plant material.  

Evans and Sanson (2005) differentiated the prey of insectivores into intractable (e.g. 

Coleoptera, Orthoptera, Hemiptera) and tractable invertebrates (e.g. Oligochaeta, 

Lepidoptera, Araneae, and larvae). The categorization is mainly based on the cuticle 

thickness, wherein intractable describes the structural strength, stiffness, and toughness, 

which increases with the thickness of the cuticle. Furthermore, Evans and Sanson (2005) 

argued, that larger invertebrates are more likely to be intractable than smaller ones. 

Therefore, scale becomes an important feature of the biomechanical properties of the diet. 

Additionally, they concluded that the biomechanical properties of tractable and intractable 

invertebrates’ internal organs are relatively similar. The internal organs of both types are 

generally ductile and relatively tough. The complex structural nature of the cuticle in 

connection with ductile and tough internal organs requires multiple initiations of fracture to 

divide an invertebrate completely. At first, cusps are needed to initiate crack propagation, 

and then crests to force the propagations of the crack through an entire invertebrate (Evans, 

2005). A theoretical, efficient functional insectivorous tooth complex, which meets these 

requirements, is the protoconoid (Fig. 70). The protoconoid, with its specific arrangement 

of points, blades and a surrounding tooth surface, was introduced by Evans and Sanson 

(2003). The following fundamental functional parameters are realized in this theoretical 

tooth complex:  
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- Evans and Sanson (1998) demonstrated 

in an experimental study with metal 

punches that a high tip, cusp, and edge 

sharpness is advantageous for intracta-

ble as well as for tractable food. The 

lower the angle of a cusp tip (tip 

sharpness), the volume of a cusp at an 

increasing distance of the cusp (cusp 

sharpness), and the edge of a crest 

(edge sharpness), the less force and 

energy is needed to penetrate and drive 

through the prey.  

- A trigonal pyramidal shape of the cusp, which is analog to a needle of a surgeon that 

is piercing skin, is beneficial for penetrating tractable items (Freeman, 1979). 

- Notched crests reduce the energy costs and capture food particles during the 

comminution (Anderson, 2009); the same applies to concave curved crests. 

- Positive rake angles form a fragment clearance structure and allow food particles to 

flow away from the crests (Evans and Sanson, 2003). In this way, the working area 

remains clean. 

- An open trigonid is advantageous for fragment clearance, to ensure an undisturbed 

occlusion.  

- A relief behind the crests reduces the friction of the occluding crest (Evans and 

Sanson, 2003) as well as their associated flanks, and thus the energy consumption 

when chewing. Another advantage of relief is the reduction of wedging the crests 

away by food fragments (Lumsden and Osborn, 1977). 

- A triangulation of the molar main cusps inflicts more damage with one bite than a 

cusp in line pattern (Conith et al., 2016) (Fig. 71). In addition, an acute triangulation 

has a higher probability to hit a food item. 

 
Fig. 70: The “protoconoid”, a theoretical ideal 
insectivorous molar and its functional parameters. 
(Modified from Evans, 2005) 
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The evolutionary implementation of the protoconoid 

can be recognized in spalacotheriids and 

dryolestidans as well as in the zalambdodont tooth 

morphology of extant insectivorous mammals. The 

convergent development of the protoconoid in 

mammals confirms that it was and is an efficient 

tooth complex for comminuting invertebrates and 

that there is a functional relationship between tooth 

morphology and diet (e.g. Strait, 1993; Freeman, 

2000; Dumont, 1995; Evans and Sanson, 2005).  

Gill et al. (2014) concluded that Morganucodon 

watsoni (“Triconodonta”) presumably was capable of 

eating a more intractable prey than Kuehneotherium 

watsoni. Both taxa coexisted during the Late Triassic 

to Early Jurassic, whereby M. watsoni exemplifies a 

linear and K. praecursoris a triangular arrangement 

of the molar main cusps (Fig. 72). The conclusion is 

based on classical mechanics and finite element 

analysis of the mandible as well as on a quantitative 

textural analysis of the microwear. The analyses of 

the mandible showed, that M. watsoni produced 

larger bite forces with a more robust mandible than 

K. praecursoris. The results of the textural microwear 

analysis concluded that M. watsoni has a rougher 

microwear than K. praecursoris, which implies the 

consumption of more intractable prey. However, 

these results do not exclude, that K. praecursoris 

preyed intractable invertebrates, but indicate that the kuehneotheriids were somewhat 

limited due to their rather slender lower jaw. 

Evans (2005) argued, that a greater intractability of the diet means increased structural 

strength. To overcome the structural strength increased bite forces are needed but 

increased bite forces increase the risk of tooth fracture and wear. To counteract the 

increased risk of fracture and wear, greater robustness of the tooth is needed, which in turn 

reduces the functionality of the tooth and consequently the efficiency. 

 
Fig. 71: Simplified illustration of the molar 
occlusion of the "triconodontans" and 
"symmetrodontans" in connection with the 
damage caused to food particles. The 
comminution rate increases with a higher 
triangulation. A: The cusp in line molar pattern 
only separated food particles into two parts, with 
an neglectable comminution in-between the 
upper and lower dentition. B: The obtuse molar 
pattern also separated a food particle into two 
parts, with a minor comminution in-between the 
upper and lower dentition. C: In the 
zhangheotheriid molar pattern a comminution 
in-between the molar cusps occurred next to the 
separation and comminution pattern of A and B. 
D: In the acute angle pattern the comminution 
in-between the molar cusps was higher as in C.  
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Conith et al. (2016) compared the efficiency 

of idealized molar tooth rows of M. watsoni 

and K. praecursoris. The tooth rows 

occluded into an insect substitute and 

various measurements were performed. The 

results of the experimental research are, that 

K. praecursoris seems to have been more 

efficient in reducing tractable prey and that 

there is no difference between these two 

taxa in their ability to initiate fracture in 

tractable prey; on the other hand, M. watsoni 

was apparently more efficient in fracture, as 

well as to initiate fracture, in intractable prey. 

Moreover, Conith et al. (2016) concluded, 

that K. praecursoris caused substantially more damage to food particles than M. watsoni. 

These conclusions can be drawn from Conith et al. (2016) experimental setup with scaled 

idealized molars, but Evans and Sanson (1998) argued that tooth function is scale 

dependent. Even teeth of the same shape but with a different size will require different 

forces to penetrate the same size of a food item, due to their different cusps, and tip 

sharpness. They proved this perception in their metal punch experiments (see above). If 

M. watsoni and K. praecursoris molars (Fig. 72) are compared under these aspects and 

without scaling, then the following conclusion can be drawn. K. praecursoris molars may 

have been more efficient, in the comminution of tractable and to a certain extent intractable 

prey, as M. watsoni molars. This postulation is supported by the following considerations: 

-  K. praecursoris molars have a higher tip- and cusp sharpness. A higher tip and cusp 

sharpness reduces the required force and energy to fracture intractable and tractable 

prey (Evans and Sanson, 1998). For this reason, K. praecursoris does not need such 

high bite forces as M. watsoni to comminute the same type of prey. 

- The morphology of the protoconid (cusp a after Crompton and Jenkins, 1968) of 

M. watsoni is square pyramidal, whereas the protoconid of K. praecursoris is trigonal 

pyramidal to half conical. The trigonal shape is advantageous for piercing tractable 

prey (Freeman, 1979), and thus also for piercing inner organs of tractable and 

intractable prey. This reduces the needed bite force of K. praecursoris. 

- The triangulation of the molar main cusps of K. praecursoris causes more damage 

to food items (Fig. 71) than the cusp in-line configuration of M. watsoni molars (Conith 

et al., 2016). 

- The mandibles of M. watsoni and K. praecursoris are comparable in size, but 

K. praecursoris does have a higher molar count due to its smaller molars (Gill et al., 

 
Fig. 72: Morganucodon watsoni (A, B, lower left m2, UMZC 
Eo.cr.1) and Kuehneotherium praecursoris (C, D, lower left 
m3, PV M 19143) in size comparison.  
(A and B modified from Jäger et al., 2019) 
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2014, Fig. 1). Therefore, K. praecursoris could have inflicted more damage with one 

bite (Fig. 71). 

Under these considerations, it can be postulated, that, within the overlapping prey range, 

K. praecursoris was more efficient in comminuting prey than M. watsoni. However, 

according to Gill et al. (2014), K. praecursoris was more restricted in eating intractable prey 

than M. watsoni.  

If the arguments of Evans (2005) about the requirement of molars, which are adopted 

for intractable food, are followed, then Woutersiidae must be categorized as insectivorous 

taxon with an expanded adaptation towards intractable invertebrates (low crest and cusp 

sharpness, slightly elevated cusps, bulbous strong molar base, and strong occlusal wear). 

Due to the molar adaptation for intractable prey, the efficiency of the Woutersiidae had to 

be low, presumably even lower than that of M. watsoni. The main task of these molars was 

to crack the exoskeleton by puncture-crushing.  

An intermediate state towards the “symmetrodontan” protoconoid molar structure was 

realized in Maotherium sinense. The more acute triangulation of the molar main cusps of 

the zhangheotheriids resulted in wider molars. Hence, the accessory cusps of the 

protoconid and paracone are more lingual and buccal respectively, than the accessory 

cusps of K. praecursoris. This leads to the assumption, that M. sinense inflicted more 

damage during one bite, and that the chance of hitting a food particle must have been higher 

than in K. praecursoris (Fig. 71). Furthermore, the mode of occlusion changed due to the 

more acute triangulation. The embrasure shearing between the cusps of K. praecursoris 

was superseded in M. sinense by an embrasure shearing of the molars. As a result, the 

prey was mainly blunt-sheared by a Notch-Notch-Tool and Straight-Notch-Tool, instead of 

puncture-sheared as in K. praecursoris. With these tools, the notched crest functional 

parameter of the protoconoid has been realized in M. sinense. The notched crests, the 

embrasure shearing of the cusps, and the triangulation of the main cusps suggest that, 

during one chewing cycle, food particles were not only divided into two parts, as in 

“triconodontans” and kuehneotheriids, but were comminuted into several pieces (Fig. 71). 

That the prey was only blunt-sheared instead of shear-cut, is due to the low crest sharpness 

of the M. sinense molar cusps. Next to the lower crest sharpness, Zhangheotheriidae also 

has a lower tip and cusp sharpness, which is related to the higher angle of a cusp tip, and 

higher volume of a cusp at an increasing distance of the cusp, and the larger size compared 

to K. praecursoris molars (Fig. 74). Although M. sinense has larger molars, the mandibles 

of M. sinense and K. praecursoris have the same dimensions. (compare Gill et al., 2014, 

Fig. 1, with, Plogschties and Martin, 2019, Fig. 5). This leads to the assumption, that 

M. sinense might have had an expanded dietary spectrum towards prey with a higher 

intractability, but at the expense of a lesser efficiency of the dentition. This is supported by 

the argumentation of Evans (2005) regarding the necessary adaptations of the molars to 
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higher intractable prey. A possible explanation for an adaptation towards higher intractable 

prey might be the Jehol Entomofauna. Zhang et al. (2010) subdivided the Jehol 

Entomofauna into three phases. The middle phase includes the record of the insect fossils 

of the lower-middle Yixian Formation (underlying the Jingangshan Bed, 122.5-130 Ma), 

which includes the horizons in which the zhangheotheriid fossils were found. During this 

phase, the Jehol Entomofauna was dominated by coleopterans with a total composition of 

around 40%, and within the coleopterans, the highly intractable Scarabaeoidea were 

represented with around 30%.  

Another difference between K. praecursoris and M. sinense is the morphology of the 

paraconid and metaconid. In M. sinense, these two cusps are mesio-lingual/disto-buccal 

(paraconid) and mesio-buccal/disto-lingual (metaconid) compressed, and therefore change 

the orientation of the relief and rake surfaces. These changes lead to more pointed occlusal 

contact zones of the lower molars and their upper antagonists, and causes a lesser total 

collision area during chewing as for K. praecursoris (c.f. Diagrams chapter 4.3 and Fig. 73). 

A lesser total collision area causes lesser resistance during occlusion, which is associated 

with a lower force expenditure, and therefore lower energy consumption. Hence, the pointed 

contact zones increased the efficiency of chewing. Additionally, the buccal crests are 

pointing away from the protoconid crest, instead of pointing to the protoconid crests, as in 

K. praecursoris, and the lingual crests are pointing to each other. Therefore, cracks, which 

propagate towards lingual would have met each other, whereas cracks, which are 

propagating towards buccal, would have met the paracone during closing the mandible. 

Hence, the comminution rate of the prey during one chewing cycle was more enhanced 

than that of K. praecursoris (Fig. 71). 

The most advanced “symmetrodontan” molar pattern is that of the spalacotheriids. Within 

the “symmetrodontans”, the spalacotheriid molar morphology matches the functional 

parameters of the protoconoid the most (c.f. Fig. 70). As in zhangheotheriids, the 

spalacotheriid mode of occlusion is an embrasure shearing between cusps. The more acute 

triangulation in connection with the higher width/length ratio results in more precise 

occlusion and higher comminution rate during one chewing cycle, as in zhangheotheriids 

(Fig. 71). Due to the relief below [c]pr~me and [c]pa~pr as well as above [C]PAS~PA and 

[C]PA~MTS, the continuity and concavity of these crests, and the lateral movement, only a 

point cutting occurred between these crests. A point cutting decreases the friction between 

the crests (Evans, 2003), and therefore decreases the energy consumption. It is to mention, 

that this is contrary to the results of the total collision area detection during one shearing 

stroke (Fig. 47), which shows the highest value of the total collision area within the analyzed 

taxa. The reason for that is, that the OFA reconstructions of this study were done with the 

same value of collision distance (0.08). Due to the fact, that the large surfaces of 

pr*me/PAS*PA as well as pa*pr/PA*MTS passing each other below that value, the OFA 
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interpreted the passing as a collision. The OFA collision distance gradient mode is showing 

another picture (Fig. 73). The intensity, with which the occlusal surfaces pass each other 

decreases with the acuteness of the molar triangulation of the respective taxa. 

 

 

It is remarkable, that the molars of Spalacotheriidae is varying enormously in size, whereat 

Spalacotherium henkeli (IP FUB TH 11, m1) represents one of the largest specimen, which 

is around 2 mm in length, Spalacolestes cretulablatta (OMNH 027421, m4) is one of the 

smallest specimens with a length of around 0.8 mm (Fig. 74). In contrast, the molars of 

kuehneotheriids and zhangheotheriids are of almost equal size (between 1 and 1.5 mm).  

It must be assumed, that the “symmetrodontans” were terrestrial opportunistic, 

generalistic insectivorous mammals with a possible molar adaptation, either to extend the 

food provision towards more intractable prey (zhangheotheriids), or tractable prey 

(kuehneotheriids). However, due to the fact that larger invertebrates are more intractable 

than smaller ones (Evans and Sanson, 2005), prey preference might be more related to 

size, at least within spalacotheriids. Churchfield and Sheftel (1994) studied the prey 

preferences of Soricidae and concluded that body dimensions matter, large taxa took more 

large prey than small taxa, and small taxa took more small prey than large taxa. This was 

also concluded in a previous research of Dickman (1988), in which he studied the body size, 

prey size, and community structure of three two-species communities of insectivorous 

mammals. 

 
Fig. 73: A distance gradient illustration of the studied “symmetrodontans” resulting from the OFA. The collision distance increases 
in relation to the increase of the molar cusps triangulation (not scaled). 
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5.6 The efficiency of dryolestidan and tribosphenic molars 

A more efficient insectivore dentition, which follows the symmetrodontan tooth pattern, was 

realized in the Dryolestida. The higher efficiency was achieved by the neomorphic 

paracone/hypoflexid functional complex, which provided a Cusp-Channel-Tool, additional 

to the protoconoid tools. The advantage of this additional tool was a further (compressional) 

shearing of food particles between PA-m-/hfd-bd subsequent to the shear-cutting of 

[C]ME~MTS/[c]me~pr and [C]PA~ME/[c]pa~pr (Schultz and Martin, 2014). The additional 

shearing of food particles led to a finer comminution as in spalacotheriids, and therefore to 

a higher digestibility (see below). 

In the course of evolution towards the tribosphenidans, the hypoflexid lost its important 

role as a shearing structure, due to the development of the talonid basin. In tribosphenic 

molars, the hypoflexid is located buccally between the trigonid and the neomorphic talonid 

that is enclosed by cusp d (hypoconid), hypoconulid, and entoconid. With the development 

of the talonid and its antagonist, the protocone (mortar and pestle), the chewing cycle was 

extended to a second phase, in which the protocone sheared, ground, and crushed food 

particles. Schultz and Martin (2014) suggested that grinding and crushing invertebrate 

particles allowed a finer comminuting and more efficient extraction of nutritious soft tissue 

from the almost indigestible exoskeleton. This led to a higher gain of energy via the digestive 

system. Moore and Sanson (1995) demonstrated that efficient digestion of an insect’s 

viscera requires to be directly exposed to the digestive enzymes, and therefore 

comminuting the prey into smaller pieces is advantageous. Furthermore, the tribosphenic 

molar was the stepping stone towards an omnivorous to herbivorous diet, which was able 

to utilize energy-rich plant material. This expansion of the food resources was most likely 

one of the reasons for the evolutionary success of mammals.  

 

 
Fig. 74: A Dryolestes molar and various “symmetrodontan” molars in comparison (occlusal and buccal views). 
A: Spalacotherium henkeli (IP FUB TH 11, m1), B: Spalacolestes inconcinnus (OMNH VP 033897, m3) C: Dryolestes leiriensis 
(Gui Mam 1155, mx), D: Woutersia butleri (SNP 517 W, mx), E: Maotherium sinense (YFGB 1724, m3) F: Kuehneotherium 
praecursoris (NHM PV M 19143, m3) G: Spalacolestes cretulablatta (OMNH VP 027421, m4), H: Spalacotherium evansae 
(DORCM GS 1075, mx) I: Spalacotheridium noblei (OMNH VP 025828, m4). 
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6 Conclusion 

“Symmetrodontans” were terrestrial opportunistic, generalistic insectivores, due to their high 

needs of nutrients (energy) to maintain the homoeothermic endothermic metabolic system. 

To get the nutrients, “symmetrodontans” were probably not choosy. They took every 

opportunity to consume everything that crawled in front of their nose and was in their range 

of handling. The most important limitation in prey selection was the intractability of the prey. 

Another factor in prey selection was presumably the prey’s agility, but this topic was not 

considered in this study.  

The grade of intractability refers to the thickness of the cuticle, whereby larger prey is 

inherently more intractable. Therefore, the prey selection is mainly oriented towards which 

prey can be comminuted with as little energy expense as possible, but with the highest 

energy yield; extant insectivorous mammals prefer the largest possible prey they can 

handle. The comminution of the prey, in turn, is determined by the efficiency of the 

masticatory system. To determine the efficiency of the “symmetrodontans” only the dentition 

and bones of the masticatory system are documented in the fossil record. Nevertheless, 

some conclusions can be drawn about the efficiency of the food comminution on the basis 

of the teeth and bones.  

The fossil record shows that the morphology of the “symmetrodontan” molars steadily 

evolved towards a more acute triangulation of the three main cusps and sharp shearing 

crests. These molars are comparable to a theoretical ideal insectivore molar, the 

protoconoid (Evans and Sanson, 2003). Due to a higher triangulation, these molars have a 

higher width/length ratio. With a higher width/length ratio the acute-angled 

“symmetrodontans” inflicted more damage than the obtuse-angled ones (c.f. Fig. 71).  

Traditionally the “symmetrodontans” are classified into the obtuse-angled 

“symmetrodontans” (Kuehneotheriidae, Tinodontidae, and Woutersiidae) and acute-angled 

“symmetrodontans” (Zhangheotheriidae, Spalacotheriidae). However, due to a higher 

overall acuteness of the spalacotheriid molars and lacking shear-cutting crests in 

zhangheotheriids, the Zhangheotheriidae should be addressed as intermediate-angled 

“symmetrodontans”.  

The latest research assumes that the “symmetrodontans” rolled the mandible. Clear 

evidence could not be obtained from this study, but there is some evidence, which supports 

this assumption. The OFA chewing cycle reconstruction showed that for Kuehneotherium 

praecursoris and Woutersia butleri some regions of wear could only be reached by a roll of 

the mandible.  

The movement of the one-phased chewing cycle of the lower jaw of “symmetrodontans” 

was mainly transversely upward with a slight mesial or distal shift. An important feature of 

the “symmetrodontan” comminuting process was the embrasure shearing, in which two 
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molars embraced one molar. All studied “symmetrodontans” performed this kind of 

embrasure shearing, except for K. praecursoris. The embrasure shearing of K. praecursoris 

was proceeded within the cusp level. 

The comminuting process of the early diverging Woutersiidae was simple and 

rudimentary. The main task of the dentition was to puncture and crush prey. The low tip, as 

well as cusp and crest sharpness, suggest that Woutersiidae were able to prey on more 

intractable invertebrates, but with a low efficiency of comminuting. Important tools for fine 

comminution of food components are lacking, and woutersiids do not possess molar 

structures to shear-cut tractable particles efficiently.  

The kuehneotheriid molars and lower jaw indicate a preference towards a more tractable 

diet due to its more slender mandible and a high tip and cusp sharpness. The main task of 

these molars was to puncture-shear its prey. A minor shear-cutting was also performed. 

The obtuse triangulation of the main cusps inflicted more damage than the cusp-in-line 

pattern of “triconodontans”. 

Zhangheotheriidae mainly comminuted food particles via blunt-shearing. The low tip, as 

well as cusp and crest sharpness, suggest a diet selection towards a prey with a higher 

intractability. This may be in correlation with the high abundance of coleopteran taxa in the 

fossil record of the same deposits in which the zhangheotheriids were found. The adaptation 

to higher intractable prey was at the expense of the efficiency, but for the benefit of the 

sustainability of the molars. Due to the more acute-angle of the main cusp, a food fragment 

was not only divided into a buccal and lingual segment, as in kuehneotheriids and 

“triconodontans”, but was comminuted additionally in-between the cusps. Therefore the 

comminution rate was higher during one chewing cycle in Zhangheotheriidae, than in 

Kuehneotheriidae, which aided the efficiency. The triangular habitus of the paracone and 

protoconid, like the tip of a surgeon needle, was also beneficial for the efficiency.  

The “symmetrodontan” molars, which resemble that of the protoconoid the most are 

those of the spalacotheriids. The spalacotheriid molars first pierced, and then shear-cut 

food particles highly efficient. Due to the highest width/length ratio within the 

“symmetrodontans”, spalacotheriids inflected the most damage during one chewing cycle.  

In the course of evolution towards the tribosphenic molar, the “symmetrodontan” 

triangular pattern has been retained. In Dryolestidans, an additional shearing complex 

evolved, in which the paracone slid against the neomorphic hypoflexid. Food particles that 

were shear-cut by the mesial and distal crests skid down into the interdental space of the 

lower cusps, and were additionally sheared and crushed in-between PA-m-a/hfd-bd. This 

is the reason why the dryolestiid dentition is more efficient than an acute-angled 

“symmetrodontan” dentition. The dryolestiid molar structure was then evolutionarily 

surpassed by the tribosphenic molar. The tribosphenic tooth pattern, with the 

talonid/protocone complex (mortar and pestle), was the starting point for the diversity of all 
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subsequent mammalian molar evolution. The talonid/protocone complex had the function 

not only to shear but to crush, grind and squeeze food particles. This advanced function, 

extended the dietary spectrum, towards plant-based diet, which partly helped the mammals 

to survive the Cretaceous–Paleogene mass extinction. 

Interestingly, due to a specialization of several extant mammals towards insectivory, 

these taxa reduced the tribosphenic molar structure in the course of evolution. These 

insectivorous mammals, with a zalambdodont or dilambdodont molar pattern, redeveloped 

the main features of the shear-cutting function, which includes pointed main cups and 

shearing-crests. This indicates that the structural pattern of the protoconoid was and is 

highly efficient for consuming invertebrates. 
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Fig. S1: 3D-model post processing. Changes are marked in darker grey. Some fragments of M2 of specimen 
YFGP 1724 (Maotherium sinense) had to be rearranged (A, B). A: Initial position of the M2 fragments. B: 3D-
model after the fragments rearrangement. The distal cingulid of m4, as well as the mesial cingulid of m5 of 
specimen OMNH VP 027421 (Spalacolestes cretulablatta) is incomplete (C). For completion the mesial cingulid 
of m4 was modified and modeled into the damaged spots (D).  
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   Tab. S1: List of the studied specimen. All specimen are stored in Bonn. O= Original, C= Cast. 

Taxon  Inventory number  Description Studied 
CT-Scan 

from 
SEM study Stored as 

Kuehneotheriidae HLV 1R Mx O – – O 
Kuehneotheriidae RAS 786 mx O – X O 
Kuehneotheriidae RAS 796 Mx O – – O 

Kuehneotheriidae RAS 813 px O – – O 

Kuehneotheriidae RAS 847 Px or px O – – O 

Kuehneotheriidae RAS 850 px O – – O 
Kuehneotherium praecursoris NHM PV M 19143 m3  – O   
Kuehneotherium praecursoris NHM PV M 19168 ? / C 857 M C – X C 
Kuehneotherium praecursoris NHM PV M 19771 M4 – O   
Kuehneotherium stanislavi, SNP 75 L Mx C –  C 

Maotherium sinense  YFGP 1724 maxilla fragment with M2-M3; O O X C 
mandible fragment with 3p, m1-m5     

Peralestes longirostris 
(Spalacotherium tricuspidens) NHM PV OR 47740 maxilla fragment with 1P and M1-

M6 C C – C 

Spalacolestes cretulablatta OMNH VP 026688 M4 O C X C 
Spalacolestes cretulablatta OMNH VP 026693 M4 O C X C 
Spalacolestes cretulablatta OMNH VP 027421 mandible fragment with m4-m5 O C  C 
Spalacolestes cretulablatta OMNH VP 029600 mandible fragment with m4-m7 O C  C 
Spalacolestes cretulablatta OMNH VP 029611 M2 O  X C 
Spalacolestes cretulablatta OMNH VP 030611 M4 O C X C 
Spalacolestes cretulablatta OMNH VP 030627 m4 O C X C 
Spalacolestes cretulablatta OMNH VP 033043 m5 O C  C 
Spalacolestes cretulablatta OMNH VP 033060 M3 O C  C 
Spalacolestes cretulablatta OMNH VP 033231 M4 O – X C 
Spalacolestes inconcinnus MNA V 6247, OMNH VP 69062 Px? O – – C 

Spalacolestes inconcinnus OMNH VP 033027 dp3? O – – C 

Spalacolestes inconcinnus OMNH VP 033034 M2 O C – C 
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Tab. S1: List of the studied specimen. All specimen are stored in Bonn. O= Original, C= Cast, continued. 

Taxon  Inventory number  Description Studied 
CT-Scan 

from 
SEM study Stored as 

Spalacolestes inconcinnus OMNH VP 033897 m3 O C X C 
Spalacolestes inconcinnus OMNH VP 033911 maxilla fragment with M4 O C – C 
Spalacotheridium mckennai? MNA V 6046, OMNH VP 025524 m3? O C – C 
Spalacotheridium noblei 30627 m4 O C X C 
Spalacotheridium noblei OMNH VP 026692 M4 O C X C 
Spalacotheridium noblei OMNH VP 027261 m3 O – – C 
Spalacotheridium noblei OMNH VP 027461 M6 O C – C 
Spalacotheridium noblei OMNH VP 030623 m2 O C – C 
Spalacotheridium noblei OMNH VP 033041 m3 O – X C 
Spalacotheridium noblei OMNH VP 033053 m5 O – – C 
Spalacotheridium noblei OMNH VP 033061 M2 O C – C 
Spalacotheridium noblei OMNH VP 033895 M3 O – – C 
Spalacotheridium noblei OMNH VP 033900 m3 O C X C 
Spalacotheriidae MNA V 6305, OMNH VP 025531 maxilla fragment with Px  O –  C 
Spalacotheriidae OMNH VP 030610 Mx O – – C 
Spalacotheriidae OMNH VP 032953 Mx O – – C 
Spalacotheriidae OMNH VP 071070 mx O C – C 
Spalacotheriidae OMNH VP 071071 mx O C – C 
Spalacotheriidae OMNH VP 071072 Mx O C – C 
Spalacotheriidae OMNH VP 071073 Mx O C – C 
Spalacotherium evansae DORCM GS 0380 mx C – – C 
Spalacotherium evansae DORCM GS 0684 Mx C C – C 
Spalacotherium evansae DORCM GS 1075 mx C C – C 
Spalacotherium evansae? DROCM GS 0689 Mx C C – C 
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  Tab. S1: List of the studied specimen. All specimen are stored in Bonn. O= Original, C= Cast, continued. 

Taxon  Inventory number  Description Studied 
CT-Scan 

from 
SEM study Stored as 

“Symmetrodonta” indet. UMNH VP 17294 mx O O – C 
Symmetrodontoides 
canadensis 

OMNH VP 066370 m1 O C – C 

Symmetrodontoides 
canadensis 

OMNH VP 066371 m4 O C – C 

Symmetrodontoides 
canadensis 

OMNH VP 066372 m6 or m7 O C – C 

Symmetrodontoides 
canadensis 

OMNH VP 066373 posterior px O – – C 

Symmetrodontoides 
canadensis 

OMNH VP 066374 px O – – C 

Symmetrodontoides foxi MNA V 4522; OMNH VP 023800 m7 O C X C 
Symmetrodontoides foxi MNA V 4653, OMNH VP 023814 Mx O C X C 
Symmetrodontoides foxi  MNA V 6461 m7 O – X C 
Symmetrodontoides foxi OMNH VP 020135 m4 O – – C 
Symmetrodontoides 
oligodontos 

MNA V 6047; OMNH VP 025525 mx? O C – C 

Symmetrodontoides 
oligodontos 

MNA V 6048; OMNH VP 025526 M1 or M2 O C – C 

Symmetrodontoides 
oligodontos 

MNA V 6755; OMNH VP 025538 mx O C – C 

Symmetrodontoides 
oligodontos 

OMNH VP 029040 M2 O C – C 

Thereuodon taraktes DORCM GS 419 deciduous teeth C C – C 
Thereuodon taraktes DORCM GS 665 deciduous teeth C C – C 
Thereuodon taraktes DORCM GS 679 deciduous teeth C C – C 
Tinodon bellus YPM VP 011843 mandible fragment with m1-4 C C – C 

Tinodon bellus 
YPM VP 013644.A, OMNH VP 
056826 mandible fragment with 3p, m1-m4 C C – C 

Tinodon lepidus AMNH 101145 mandible with 1p C – – C 

Tinodon lepidus USNM 2131; OMNH VP 056835 mandible fragment with c, 3p, m1-
3 C C  C 
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Tab. S1: List of the studied specimen. All specimen are stored in Bonn. O= Original, C= Cast, continued. 

Taxon  Inventory number  Description Studied 
CT-Scan 

from 
SEM study Stored as 

Tinodon lepidus YPM VP 011845 mandible fragment with m1, m3 C C – C 
Tinodon lepidus? YPM VP 013645 mandible with fragment mx  C – – C 
Tinodon micron? DORCM GS 1110 (GS 550) px or Px C – – C 
Woutersia butleri SNP 082 W Px C C – C 
Woutersia butleri SNP 088 W Mx C C X C 
Woutersia butleri SNP 517 W mx C C  C 
Woutersia butleri SNP 720 Mx C C  C 
Woutersia mirabilis SNP 052 W Mx C C X C 
Woutersia mirabilis  SNP 426 W px? C C  C 
Woutersia mirabilis SNP RAS 706 mx C C  C 
Woutersia mirabilis SNP RAS 884 Mx C C  C 
Woutersia mirabilis SNP RAS 975 mx C C X C 
Woutersia mirabilis? SNP 719 Mx C C X C 
Woutersia mirabilis? SNP 9FW mx C C – C 
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Tab. S2: Color-coding of the OFA collision areas. 

Woutersia  
wor-cycle  

lower pr-d pr-bd-a pr-db me-db me-d-a       pr-bm     

upper PA-m   [CG]_ml CPX-ml/ 
PA-ml         ME-ld     

Woutersia 
wr-cycle 

lower pr-db(2) pr-bd-a pr-db(1) me-db me-d-a       pr-bm     
upper PA-ml(2)   [CG]_ml PA-ml(1)         ME-ld     

Kuehneotherium 
wor-cycle 

lower pr-d     me-db     cpd-b pr-bm pr-mb(2) pr-mb(1)   
upper PA-m     PA-ml     PA-l MTS-dl ME-dl  ST-dl   

Kuehneotherium 
wr-cycle 

lower pr-d     me-db     cpd-b pr-bm(1) pr-bm(2) pr-b   
upper PA-m      PA-ml     PA-l MTS-dl ME-ld ST-l   

Maotherium  
wor-cycle 

lower pr-db   pr-d me-bd   me-d     pr-mb   pr-m  
upper CP B' ml   [CG]PA_CPB‘-m [CG]PA_CPB‘-d   PA-m     ME-dl   [CG]PA_ME-d 

Maotherium 

wr-cycle 
lower pr-db   pr-db(1) me-bd   me-d cpd-bd   pr-mb   pr-m  
upper CPB'-ml   [CG]PA_CPB'-m [CG]PA_CPB‘-d   PA-m PA-lm   ME-dl   [CG]PA_ME-d 

Spalacotherium 
wor-cycle 

lower pr-b     me-d       pr-bm       
upper PAS-m     PA-m(1)       MTS-ld       

Spalacotherium 
wr-cycle 

lower pr-bd     me-d       pr-bm       
upper PAS-lm     PA-m(1)       MTS-ld       

Dryolestes 
wor-cycle 

lower       me-d               
upper       PA-m               

              
color-coding                         

  R 190 187 6 224 115 188 227 0 163 167 1 
  G 22 44 135 165 31 207 223 128 25 75 102 
  B 34 57 55 203 101 12 8 128 91 150 51 
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Tab. S2: Color-coding of the OFA collision areas, continued. 

Woutersia  
wor-cycle  

lower   pa-bm-a pa-b     pa-mb             
upper     PA*ME     CPX-d             

Woutersia 
wr-cycle 

lower   pa-mb-a pa-bm   pa-mb(1) pa-mb(2)              
upper     PA*ME     CPX-dl             

Kuehneotherium 

wor-cycle 
lower pa-d         pa-m             
upper ME-m         PA-d             

Kuehneotherium 
wr-cycle 

lower pa-bd         pa-mb     [cg]cpf-mb       
upper ME-lm         PA-dl     PA-dl       

Maotherium  
wor-cycle 

lower       pa-b   pa-m cpe-mb           
upper       [CG]PA_ME-m   PA-d PA-dl           

Maotherium 
wr-cycle 

lower       pa-bm   pa-m cpe-mb           
upper       [CG]PA_ME-m   PA-d PA-dl           

Spalacotherium 
wor-cycle 

lower           pa-m   pa*pr [cg]pr_me [cg]pa_pr-l [cg]pa_pr-b pr*me 
upper           PA-d (1)   PA*MTS PA-m(2) PA-d(2)   PAS*PA 

Spalacotherium 
wr-cycle 

lower           pa-m   pa*pr [cg]pr_me [cg]pa_pr-l [cg]pa_pr-b pr*me 
upper           PA-d(1)   PA*MTS PA-m(2) PA-d(2)   PAS*PA 

Dryolestes 
wor-cycle 

lower           pa-m   pr*pa hfd-bd     pr*me 
upper           PA-d   PA*ME*MTS PA-m-a     PA*ST 

              

color-coding                           
  R 242 203 252 59 157 42 177 214 49 55 102 132 
  G 145 123 194 187 200 75 127 125 153 186 129 49 
  B 4 17 14 237 34 155 73 39 102 207 192 137 
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Tab S3: OFA setup, which was used in this study 

 

 

OFA setting setup 

Collision: 
 Handler: octree kdtree threaded pool list global 

Set distance: 0.08 
Trajectory: 
 Approximation: yes, using e^-x = 5 

Deflection: yes, using angles allowed smaller than: 72, and 
use smallest angle if above defined angle 
 

Activate skipping of path points: no 
Activate break free: yes, using given degree steps for break free: 5, 

and maximum degree for break free: 350 
 

Show every x result triangles: 2 
Proper motion: check only against own group, and allow 

moving back 

OFA option setup 

Global: 
 Presets  
Project: 
 System: metric system 

Compression rate: 9 = high compression 
Scene: 
 Transformation and their 

corresponding speed rating: 
 

mouse wheel speed: middle; mouse left + right: 
low; mouse right: low; mouse middle button: low 

Background color: presets 
Selected points: 1 
Stereo option: stereo mode: none; disparity: 0.60 
Level of detail: level per mill: 1000 

Collison: 
 Collision groups: calculate predecessor; use face adjaceny 

Realtime collision test: activate realtime collision; % of points to use: 50 
Trajectory: 
 Automated collision reports: deactivated 

System beep on trajectory finish: 
 

 
enabled 

Grab: 
 Video: max. tempfile-size (MB): 50; fps: 25; bitrate: 

1200; use memory buffer: yes 
 

Indentation: 
 Presets  
Export: 
 Decimal delimiter: set the decimal delimiter: , 
Collisionpath: 
 Timestep 0.01 
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9.1 Supplementary DVD/Online contents 

 

 

 

File Description 

Dryolestes_wor.ofaproject OFA project of Dryolestes leiriensis without roll 

Kuehneotherium_wor.ofaproject OFA project of Kuehneotherium praecursoris without roll 

Kuehneotherium_wr.ofaproject OFA project of Kuehneotherium praecursoris with roll 

Maotherium_wor.ofaproject OFA project of Maotherium sinense without roll 

Maotherium_wr.ofaproject OFA project of Maotherium sinense with roll 

Spalacotherium_wor.ofaproject OFA project of Spalacotherium cretulablatta without roll 

Spalacotherium_wr.ofaproject OFA project of Spalacotherium cretulablatta with roll 

Woutersia_wor.ofaproject OFA project of Woutersia butleri without roll 

Woutersia_wr.ofaproject OFA project of Woutersia butleri with roll 
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