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Summary

Memory consolidation is a process by which memories initially dependent on the hip-
pocampus are transferred to cortical areas, thereby gradually becoming independent of
the hippocampus. Theories of memory consolidation posit that memory traces encoding
autobiographic episodes are rapidly formed in the hippocampus during waking, and re-
activated during subsequent slow-wave sleep to be transformed into a long-lasting form.
Concept neurons in the human medial temporal lobe (MTL) are neurons tuned to semantic
concepts in a selective, sparse, and invariant manner. These neurons respond to pictures
(or written/spoken words) representing their preferred concept (e.g., a person, an animal,
an object), regardless of physical stimulus properties. Concept neurons have been specu-
lated to be “building blocks™ for episodic memory.

We used whole-night recordings from concept neurons in the MTL of epilepsy patients
implanted with depth electrodes for presurgical monitoring to test the hypothesis that the
coordinated activity of concept neurons during sleep is a neurophysiological correlate of
memory consolidation in humans.

To conduct this study, we developed software methods for artifact removal and spike
sorting of long-term recordings from single neurons. In an evaluation on both simulated
model data and visual stimulus presentation experiments, our software outperformed pre-
vious methods.

Starting from the conceptual analogy between rodent place cells and human concept
neurons, we developed an episodic memory task in which patients learned a story elicit-
ing sequential activity in concept neurons. We found that concept neurons preserved their
semantic tuning across whole-night recordings. Hippocampal concept neurons were in-
hibited in rapid-eye-movement (REM) sleep, but not in slow-wave sleep. The activity of
concept neurons increased during ripples in the local field potential. Furthermore, concept
neurons whose preferred stimuli participated in the memorized story were conjointly reac-
tivated after learning, most pronouncedly during slow-wave sleep. Cross-correlations of
concept neurons were most asymmetric during slow-wave sleep. Cross-correlation peak
times were often in the range believed to be relevant for spike-timing-dependent plasticity.
However, time lags of peak cross-correlations did not correlate with the positional order
of stimuli in the memorized story.

Our findings support the hypothesis that concept neurons rapidly encode a memory
trace during learning, and that the reactivation of the same neurons during subsequent
slow-wave sleep and ripples contributes to the consolidation of the memory episode. How-
ever, the consolidation of the temporal order of events in humans appears to differ from
what rodent research suggests.



The content of Chapter 3 of this thesis has been published as

J. Niediek, J. Bostrom, C. E. Elger, and F. Mormann (2016). Reliable Analysis of Single-
Unit Recordings from the Human Brain under Noisy Conditions: Tracking Neurons over
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Chapter 1

Introduction

1.1 Memory and the medial temporal lobe

We are able to recall events we experienced, even after decades: the formation and re-
call of autobiographic memories are among the most important and astonishing cognitive
functions of our brains. The modern scientific study of memory arguably started with
Hermann Ebbinghaus (1850-1909), who memorized lists of nonsense words to measure
the speed of forgetting (Ebbinghaus 1885). Without today’s terminology and without any
reference to the brain, Ebbinghaus contemplated about the nature of voluntary memory
recall: “[...] konnen wir [...] die anscheinend verlorenen Zustinde [...] willkiirlich re-
producieren. [...] es muss [...] irgendwo und irgendwie noch vorhanden gewesen sein”
(“[-..] we can call back into consciousness [ ...] the seemingly lost states. [...] it must have

been present somehow or somewhere”’; Ebbinghaus 1885, pp. 1-2; translated 1913).

1.1.1 Classifying memory

Clearly, the unspecific term “memory” can refer to a number of different cognitive facul-
ties (Roediger, Zaromb, et al. 2008). Psychologists have established two dimensions of
classification for memory: The time span of memory decay, and the nature of the con-
tent being remembered. Three different time spans are commonly distinguished: sensory
memory decays within fractions of seconds, short-term memory within seconds or min-
utes, and long-term memory after much longer times, or never. Shiffrin and Atkinson
(1969) proposed a model outlining interactions between these different memory systems,
see Fig. 1.1. Short-term memory is sometimes used interchangeably with working mem-
ory. More specifically, working memory was proposed as a system not merely for the

short-term storage, but also for the modification and manipulation of memory contents

9
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Figure 1.1: Simple, abstract model of memory systems. Horizontal arrows denote the
flow of information (“copying” in the original presentation), vertical arrows denote pro-
cesses such as attention, volition, etc., that act on the memory systems, as proposed by
Shiffrin and Atkinson (1969). Drawing adapted from Roediger, Zaromb, et al. (2008).

(Baddeley and Hitch 1975; Baddeley 2001).

We will focus on long-term memory. When classifying long-term memory accord-
ing to the nature of the memory content, two major types are commonly distinguished:
declarative (or explicit) and nondeclarative (or implicit) memory (Ryle 1945; Graf and
Schacter 1985; Squire and Zola-Morgan 1988). Declarative memory is memory for ev-
erything that can be explicitly expressed in language, while nondeclarative memory is a
broad and heterogeneous category encompassing learned motor skills, habits, and other

types of memory.

Further subdividing declarative memory, Tulving (1972) coined the terms semantic
memory for facts we know (e.g., “Alexander Fleming discovered penicillin”), and episodic
memory for events we experienced (e.g., a trip to the Sahara). Tulving’s original defini-
tion of episodic memory reads: “Episodic memory receives and stores information about
temporally dated episodes or events, and temporal-spatial relations among these events”
(Tulving 1972, p. 385). This purely psychological definition does not involve the nervous
system, and neither does it mention recall from memory. Informed by the course of neu-
roscientific findings (some of which we will discuss below), Tulving published refined
definitions of episodic memory several times (Tulving 1985, 2002), mostly to promote
the by now well-accepted view that episodic memory constitutes not only an abstract psy-
chological concept, but a memory system of the (human) brain (Schacter and Tulving
1994; Nadel 1994). Following Tulving’s most recent definition Tulving (2002, p. 5), we

characterize episodic memory as
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Figure 1.2: “Tree of memory terms”. The top tier classifies memory according to the
relevant time scale, and the second and third tiers classify long-term memory according to
its content. The terms explicit and implicit were introduced by Graf and Schacter (1985),
and the term declarative was proposed by Cohen and Squire (1980). A tree as the one
presented here was first given by Squire and Zola-Morgan (1988). Reproduced from Gaz-
zaniga, Ivry, et al. (2013, p. 381).

“a recently evolved, late-developing, and early-deteriorating past-oriented
memory system, more vulnerable than other memory systems to neuronal
dysfunction, and probably unique to humans. It makes possible mental time
travel through subjective time, from the present to the past, thus allowing one
to re-experience, through autonoetic awareness, one’s own previous experi-

ences.”

The different forms of memory introduced here are often organized as a tree (see
Fig. 1.2). Although this “tree of memory terms” is meaningful even without reference
to the brain, its development was largely influenced by clinical and neuroscientific obser-
vations (Squire and Wixted 2011).

1.1.2 Neuroscientific approaches to the study of memory

Neuroscientific investigations of declarative memory started with the report by Scoville
and Milner (1957) on a case of complete anterograde amnesia after bilateral resection of
large parts of the medial temporal lobe (MTL; see Figs. 1.3 to 1.6 and 1.8 for an outline
of the relevant anatomy). Anterograde amnesia is an impairment of the ability to acquire

new declarative knowledge with otherwise normal intellectual capabilities. The patient de-
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Figure 1.3: Position of the hippocampal formation within the medial temporal lobe.
Following the terminology of Amaral and Lavenex (2007), we use the name hippocampal
formation for the hippocampus proper together with the dentate gyrus, subiculum, and
entorhinal cortex. The hippocampal formation is crucial for declarative memory. Virtually
all information going from cortical regions to the hippocampus (and vice-versa) passes
through the entorhinal cortex. Reproduced from Gazzaniga, Ivry, et al. (2013, p. 382).
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Figure 1.4: Photography of the human hippocampus in its position in the medial
temporal lobe. Hippocampus literally means sea horse, a name chosen because of its
outer appearance. The length of the white bar is 1 cm. Reproduced from Amaral and
Lavenex (2007, p. 41).
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Figure 1.5: Drawing of a coronal section through the temporal lobe. The relevant
structures are 6, dentate gyrus of the hippocampal formation; 7, parahippocampal gyrus.
Reproduced from Nieuwenhuys, Voogd, et al. (2007, p. 146).

Figure 1.6: Nissl stained section and drawing of the hippocampal formation. Left:
The systematic regional variation in density of neuronal cell bodies is visible. The length
of the bar is | mm. Reproduced from Amaral and Lavenex (2007, p. 40). Right: Intrinsic
connections of the hippocampal formation, see Fig. 1.8 for details. DG, dentate gyrus; EC,
entorhinal cortex; PrS, presubiculum; PaS, parasubiculum; Sub, subiculum. Reproduced
from Nieuwenhuys, Voogd, et al. (2007, p. 376).
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Figure 1.7: Temporal lobe lesions in patient H. M. These are T1-weighted MRI coronal
sections of H. M.’s brain at age 67 (left), and from a 66 year old healthy man who served
as a control subject (right). The sections show the rostral part of the intraventricular
portion of the hippocampus. The hippocampus and entorhinal cortex have been resected
from H. M.’s brain bilaterally. A, amygdala; cs, collateral sulcus; EC, entorhinal cortex;
H, hippocampus; MMN, medial mammillary nucleus; PR, perirhinal cortex; V, ventricle.
Figure reproduced from Corkin, Amaral, et al. (1997).

scribed by Scoville and Milner (1957) was Henry Gustav Molaison (1926-2008), widely
known as patient H. M., who had suffered from pharmacologically intractable epilepsy
since age 10. In 1953, H. M. underwent surgery in an experimental attempt to ameliorate
his severe epileptic seizures (see Chapter 2 for a brief introduction to epilepsy surgery).
The decision to resect large parts of the MTL bilaterally was based on the fact that it is
a frequent onset zone of epileptic seizures. Fig. 1.7 conveys an impression of the extent
of H.M.’s temporal lobe lesion, comprising the medial temporal polar cortex, most of
the amygdaloid complex, the entorhinal cortex bilaterally, and the anterior part (approxi-
mately 2 cm) of the dentate gyrus, hippocampus, and subicular complex (Corkin, Amaral,
et al. 1997). Initial studies on the memory impairment and remaining cognitive abilities
of patient H. M. yielded four major insights (Corkin 2002; Squire and Wixted 2011):

 General intelligence and perceptual function are independent of the MTL.

* Integrity of the MTL is necessary for the acquisition of new declarative memories,

but not for the recall of such memories from times long before the lesion.

* Despite the MTL’s role in long-term memory, it is not necessary for functioning

working memory.

* Brain structures outside the MTL are sufficient for motor skill learning.



1.1. Memory and the medial temporal lobe 15

S
Hippocampal

regions

|
Other direct Entorhinal

projections cortex

: I pathway

Perirhinal Parahippocampal
cortex cortex

! !

Unimodal and polymodal association areas
(Frontal, temporal, and parietal lobe)

Figure 1.8: The “MTL memory system”. The entorhinal cortex is the main gateway
between cortical areas and the hippocampus. Within the hippocampal formation, infor-
mation passes through the dentate gyrus (DG), and areas CA3 and CA1 to the subiculum
(S), from there back to the entorhinal cortex. Left: The perirhinal and parahippocampal
cortices are seen as further relay stations between other cortical areas and the hippocam-
pus. This general scheme was first proposed to be a “memory system” by Squire and
Zola-Morgan (1991). Graphics reproduced from Morris (2007, p. 594). Right: The per-
forant pathway, mossy fibers, and Schaffer collaterals are the most important projections
within the hippocampus. EC, entorhinal cortex; Para, parasubiculum; Pre, presubiculum;
Sub, subiculum; DG, dentate gyrus. Reproduced from Amaral and Lavenex (2007, p. 38).

Studies in other amnesic patients confirmed these findings. In patient R.B., post-
mortem neuropathological analysis of the brain revealed that a complete loss of cells in the
CA1 field of the hippocampus bilaterally (sparing CA3, subiculum, alveus, perforant path,
and dentate gyrus) sufficed to cause severe anterograde amnesia (Zola-Morgan, Squire, et
al. (1986); this study led to the hypothesis that CA1 could be necessary for the integrity
of information processing in the hippocampus, which would in turn underlie declarative
memory formation). Studies of three additional patients corroborated this notion, and ad-
ditionally showed that lesions to the hippocampal formation beyond CA1 lead to more
severe amnestic symptoms (Rempel-Clower, Zola-Morgan, et al. 1996). Finally, in pa-
tient E. P., both extent of the lesion and symptoms strongly resembled the case of H. M.
(Stefanacci, Buftalo, et al. 2000).

1.1.3 Declarative memory in animals

In patient studies, the precise location and extent of lesions is not controllable (or even
unknown), and the number of patients per type of lesion is low, rendering generalizations
across patients unreliable. To overcome these limitations, animal models of amnesia have

been developed. Since declarative memory performance is by definition based on lan-
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guage, non-language-based declarative memory tasks, such as the delayed non-matching
to sample task (DNMS task), had to be conceived. In the DNMS task, the subject is pre-
sented with an object. After a retention interval during which no object is shown, the
subject is presented with the same object again, together with a new one. To obtain a re-
ward, the subject has to indicate the new object (Mishkin 1978; Squire and Zola-Morgan
1991). The DNMS task seemed suitable for animal models of amnesia: severely amnesic
human patients performed significantly worse than alcoholics serving as controls, even
with a retention interval of merely five seconds (Squire, Zola-Morgan, et al. 1988).

In cynomolgus monkeys (Macaca fascicularis), lesions to the hippocampal forma-
tion (including dentate gyrus, subicular cortex, and entorhinal cortex) and portions of the
parahippocampal gyrus led to severe deficits in the DNMS task (Zola-Morgan and Squire
1986). Additional resection of the amygdala did not exacerbate the impairment (Zola-
Morgan, Squire, et al. 1989a), while additional removal of more anterior parts of the en-
torhinal cortex and the perirhinal cortex led to more severe impairment (Zola-Morgan,
Squire, et al. 1993). Lesions of the perirhinal cortex and parahippocampal gyrus (sparing
the hippocampus) also produced severe deficits in the DNMS task (Zola-Morgan, Squire,
et al. 1989b), while surgical lesions to the hippocampus alone led to only mild (but signif-
icant) impairments (Zola-Morgan, Squire, et al. 1994). Monkeys with cell loss in the CA1
and CAZ2 fields of the hippocampus were also impaired (Zola-Morgan, Squire, et al. 1992).
The effects of lesions on cognition described here modeled human amnesia not only with
regard to the memory deficits, but also in that motor learning and working memory were
unaffected (for review, see Squire and Zola-Morgan 1991).

Lesion studies were also conducted in rats. Clark, West, et al. (2001) succeeded to
transfer the DNMS task to rats with hippocampal lesions, showing that rats with damage
limited to the hippocampus bilaterally (CA fields and dentate gyrus) were still able to
perform the DNMS task at retention intervals of 4 s, but severely impaired at retention
intervals of 1 min and 2 min.

Taken together, the findings in amnesic patients, lesioned monkeys, and lesioned rats
consistently showed that the hippocampus has a critical role in the formation of declar-
ative long-term memories, and that the adjacent cortices (entorhinal, perirhinal, parahip-
pocampal cortex) contribute to this process, while the amygdala is less relevant (Squire
and Zola-Morgan 1991; Squire 1992).
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1.2 Systems memory consolidation

The most prominent symptom of severe amnesia is the profound inability to form new
declarative memories. At the same time, most amnesic patients also suffer from a tem-
porally graded retrograde amnesia, an impairment to recall events from their premorbid
life which is more pronounced for events that had happened close to the onset of the am-
nesia, and less pronounced for earlier events. For instance, patient H. M. could recall
childhood events, but had difficulties recalling events from the eleven years prior to his
surgery (Sagar, Cohen, et al. 1985). This observation implies that declarative memories
become independent of the MTL over time, that is, that the MTL cannot be the “ultimate
storage site for long-term memory” (Squire and Wixted 2011; the higher vulnerability of
recent versus remote memories to brain damage was described already by Ribot (1881)).

The neural process by which memories initially dependent on the hippocampus are
transformed into long-lasting memories, which are then independent of the hippocampus,
is called systems memory consolidation (Squire and Alvarez 1995; Squire, Genzel, et al.
2015); not to be confused with synaptic consolidation (Frankland and Bontempi 2005;
Kandel, Dudai, et al. 2014). Evidence showing that declarative memories gradually be-
come independent of the hippocampus comes from observations in amnesic patients and

from animal models.

1.2.1 Evidence from amnesic patients

Several patient studies described temporally graded amnesias. Kopelman, Wilson, et
al. (1989) analyzed temporally graded retrograde amnesias in 23 patients with different
pathologies, using the categories “childhood”, “early adult life”, and “recent”. Manns,
Hopkins, et al. (2003) found impairments of semantic memory for time spans up to ten
years before onset of amnesia in six patients with lesions limited to the hippocampus.
Bayley, Hopkins, et al. (2006) reported retrograde amnesia for autobiographical events
extending up to five years before the onset of amnesia in six patients with lesions limited
to the hippocampus, and extending up to fifty years before the onset of amnesia in two
patients with extended MTL damage. Childhood memories were spared in all patients.
Bright, Buckman, et al. (2006) described severe impairments in both semantic and auto-
biographic remote memories in seven patients with bilateral damage to the temporal lobe
including lateral parts, and impairment limited to recent memories in five patients with
damage restricted to the MTL. This study also reported a positive correlation between the

volume damaged and the severity of the retrograde amnesia.
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1.2.2 Memory consolidation in animals

In cynomolgus monkeys, a prospective study on retrograde amnesia was conducted in the
following way (Zola-Morgan and Squire 1990). Monkeys had to learn pairs of objects.
At different time points after learning (two to sixteen weeks), the hippocampal formation
(including dentate gyrus and subicular complex) as well as the entorhinal and parahip-
pocampal cortices were removed bilaterally. When tested on the learned pairs of objects,
the monkeys who had been given more time between learning and lesioning performed
better than those with shorter intervals between learning and surgery, despite the longer
total time between learning and testing. Non-lesioned controls performed worse on remote
than on recent material.

In rats, Kim and Fanselow (1992) used tone and contextual fear-conditioning with
subsequent lesioning of the hippocampus after different time intervals (one to 28 days).
Hippocampal lesioning one day after conditioning abolished fear responses to the context
but not to the tone, but lesioning after longer time intervals did not abolish fear responses,
neither to the context nor to the tone. In a study by Anagnostaras, Maren, et al. (1999),
each rat was fear conditioned to a context “A” fifty days before hippocampal lesioning,
and to a context “B” one day before surgery. Contextual fear for the recent, but not the
remote, context was abolished. Focusing on much shorter consolidation time spans, Tse,
Langston, et al. (2007) studied a flavor-place association task in rats. Rats lesioned 3 h
after learning performed significantly worse than controls, but rats lesioned 48 h after
learning did not differ from non-lesioned controls, showing that the time spans necessary
for complete consolidation can be quite short and can vary considerably between species
and experimental paradigms.

To summarize, hippocampal lesions can lead to better recall performance for remote
compared to recent pre-lesion memories in humans, monkeys, and rats. This is often
considered the vital evidence showing that systems memory consolidation exists (Zola-
Morgan and Squire 1990; Squire 1992; Frankland and Bontempi 2005; Squire, Genzel,
etal. 2015).

1.2.3 Models of systems memory consolidation

Several models of memory consolidation have been developed. Inspired by anatomical
studies, Marr (1970, 1971) proposed that memories rapidly encoded by the hippocampus
over the course of a day are reorganized and transferred to the neocortex during subsequent
sleep.

Squire (1992) proposed that during declarative learning, rapid synaptic changes in the
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Cortical modules

Hippocampus

Figure 1.9: Simple graphical representation of the standard view of systems mem-
ory consolidation. The hippocampus rapidly binds together neocortical representations
of an experience. Over time, repeated reactivation of memory traces (especially during
slow-wave sleep) leads to a gradual modification and creation of neocortical synapses,
which eventually results in a long-lasting memory trace independent of the hippocampus.
Adapted from Frankland and Bontempi (2005).

hippocampus (and possibly adjacent cortices) “bind together the areas in neocortex” that
are relevant for a specific memory episode, which in turn enables the hippocampus to sub-
sequently retrieve the entire memory from a partial cue. According to this view, a slow
reorganization of memory traces in neocortex would gradually enable memory retrieval
even without the hippocampus, with the neocortex functioning as the permanent storage
site for declarative memories. Alvarez and Squire (1994) added the idea that synaptic
modification in neocortex happens “when neural activity within the MTL [repeatedly]
coactivates separate regions of neocortex”. This idea was incorporated by McClelland,
McNaughton, et al. (1995) into a neural-network model of systems memory consolidation
that reproduced key experimental observations, such as a temporal gradient in retrograde
amnesia. Finally, Squire and Alvarez (1995) proposed that the reactivation of neocortical
memory traces by the MTL preferentially takes place during slow-wave, and not REM,
sleep. These considerations are together called the standard view of systems memory con-
solidation (Frankland and Bontempi 2005; see Fig. 1.9).

An alternative view (Nadel and Moscovitch 1997) posits that while semantic memories
are stored in the neocortex, the hippocampus is the storage site for episodic memories. In
this view, consolidation means the creation of “multiple traces” for each episodic memory
in the hippocampus by reactivation.

Both views share the idea that reactivation of memory traces in the hippocampus is a

key mechanism in systems memory consolidation.



20 1. Introduction

1.3 Neurobiological correlates of systems memory con-

solidation

Studies in amnesic patients and lesioned animals provided strong support for the existence
of systems memory consolidation, and abstract models have proposed possible mech-
anisms. In this section, we will outline the key neurobiological observations found to

correlate with systems memory consolidation, and how these findings were interpreted.

1.3.1 Memory consolidation and sleep in humans

In humans, several studies have found evidence for a role of sleep in memory consolida-
tion. Human sleep can be broadly subdivided into rapid-eye-movement sleep (REM sleep)
and non-REM sleep (NREM sleep; see Section 4.1 for the methodology of polysomno-
graphic recordings). A part of NREM sleep is slow-wave sleep (SWS; for details see, e.g.
Rama, Cho, et al. 2006; Diekelmann and Born 2010). Plihal and Born (1997) showed sig-
nificant improvements in declarative but not motor memory after early sleep (i.e., mostly
SWS). The opposite pattern emerged after late (i.e., mostly REM) sleep, hinting at the pos-
sible importance of SWS for declarative memory consolidation. In this study, declarative
memory performance was also enhanced for early sleep versus waking, but not for late
sleep versus waking. Using positron emission tomography to monitor hippocampal blood
flow, Peigneux, Laureys, et al. (2004) found increased hippocampal activity during SWS
after a spatial learning task, and a positive correlation between the amount of hippocampal
activity during SWS and memory performance. Marshall, Helgadottir, et al. (2006) used
transcranially applied currents to increase the amount of SWS, showing a performance
increase in a declarative memory task for stimulated versus non-stimulated subjects.

An important stride towards causality was made in a study by Rasch, Biichel, et al.
(2007), in which an odor was presented during learning, during subsequent SWS, or both.
Performance in an object—location task was enhanced only if the same odor was presented
during both learning and subsequent SWS. The presence of the odor during SWS was
interpreted to trigger hippocampal memory reactivation for the material studied earlier
in the presence of the same odor. This study showed no memory gain when odors where
presented during learning and subsequent waking or REM sleep, or when the task required
procedural instead of declarative memory. Using functional magnetic imaging, the study
also demonstrated hippocampal activation during odor exposition in SWS.

Rudoy, Voss, et al. (2009) used an object—location task in which each object was paired

with one of two sounds. Subsequently, only one of the two sounds was presented dur-
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ing SWS (“cueing”). The study reported improved spatial memory performance for cued
versus uncued objects, again interpreting the cues as triggers for hippocampal memory
reactivation during SWS. When the cues were presented during waking, performance for

cued versus uncued objects did not improve.

1.3.2 Spatial learning in rats

Important contributions to the study of systems memory consolidation came from the in-
vestigation of spatial learning in rats. Place cells are spatially tuned neurons in the hip-
pocampus, first described in rats by O’Keefe and Dostrovsky (1971): these neurons in-
crease their firing rate whenever an animal traverses a specific location in an environment,
and are almost completely silent in other locations. The preferred spatial location of a place
cell is called its place field. First evidence for a role of place cells in memory-related pro-
cesses during sleep was presented by Pavlides and Winson (1989), who showed that place
cells (in CA1) activated during behavior had elevated firing rates during subsequent sleep

(both SWS and REM), compared to place cells not activated during pre-sleep behavior.

1.3.3 Sharp-wave ripples

A hallmark in the electrophysiology of the hippocampus is the sharp-wave ripple complex
(SPW-R), reflected in recordings of the CA1 local field potential (LFP) as a transient large-
amplitude deflection (sharp wave), often coupled with a transient, fast, oscillatory pattern
(ripple). In rats, sharp waves typically last 40 ms to 100 ms, and ripples have a typical
central frequency of 110 Hz to 200 Hz (Buzsaki 1986; O’Keefe 1976; Buzsaki, Horvath,
et al. 1992; Buzsaki 2015). SPW-Rs are believed to be generated in CA3 and to propagate
from there to CAl. Inspired by electrophysiological observations in rats, and preced-
ing some of the models outlined in Section 1.2, Buzsaki (1989) developed a two-stage
model of memory consolidation that assigns a central role to SPW-Rs. To understand this
model, recall that information in the hippocampal formation is predominantly transferred
along the pathway entorhinal cortex — dentate gyrus - CA3 — CAl — subiculum —
entorhinal cortex (see Fig. 1.8). The two stages of the model are the following (adapted
from Buzsaki 1989, 2015):

1. During exploratory behavior (“learning”), some of the granule cells in the dentate
gyrus fire at elevated rates, which transiently raises the excitability of their target
pyramidal neurons in CA3. This set of target neurons is specific for the content of

the experience. During this phase, recurrent excitation in CA3 is suppressed. Those
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place cells in CA1 whose place fields the animal traverses fire, driven by projections
from CA3.

2. During SWS (and other quiet states), SPW-Rs “transfer the newly acquired hip-
pocampal information to the neocortex and the repeating SPW-Rs continue to po-
tentiate those same synapses which gave rise to the synaptic changes during the
learning process” (Buzsaki 2015, p. 1131). Specifically, during SPW-Rs, recurrent
excitation in CA3 leads to firing of exactly those pyramidal cells whose excitability
is elevated due to the process described in 1., which entails reactivation of the same
pyramidal cells in CA1 and their downstream targets that were activated during

learning.

To investigate whether sharp-wave ripples are indeed necessary for memory consolida-
tion, Girardeau, Benchenane, et al. (2009) selectively suppressed SPW-Rs by commisural
stimulation during rest and sleep after spatial learning. In a control group, stimulation was
delayed by 80 ms to 120 ms to spare SPW-Rs. Performance in spatial memory tests was
significantly lower in stimulated rats versus controls, establishing a causal role of SPW-
Rs in memory. Similarly, Ego-Stengel and Wilson (2010) used electrical stimulation in
rats’ CA1 during rest to suppress SPW-Rs. Along with the SPW-R rate, performance in a

spatial learning task diminished in comparison to a control task.

1.3.4 Reinstatement of neural activity after learning

One of the most striking features of place cells is that firing patterns occurring during
active behavior are reinstated during subsequent SWS. This was observed not only with
regard to pairwise correlations (two place cells with correlated activity during behavior
have correlated activity also during subsequent SWS), but also when considering sequen-
tial activity involving many place cells (firing sequences occurring during behavior are
“replayed” during subsequent SWS). As this neuronal replay is a potential mechanism of
spatial memory consolidation, many studies have been devoted to studying it in detail, the
most relevant of which we will now discuss.

Wilson and McNaughton (1994) used parallel recordings from up to 100 CA1 place
cells in rats to study the effect of behavior on place cell activity during subsequent sleep.
Place cells that were simultaneously active during behavior (because their place fields
overlapped) exhibited correlated activity also during subsequent SWS, whereas place cells
that were active but not simultaneously active during behavior did not show correlated

activity during subsequent SWS (see Fig. 1.10). Furthermore, correlations were higher
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Figure 1.10: Correlated place cell activity during SWS reflects earlier behavior. Rat
CAL place cells are shown as dots arranged in a circle. Lines reflect correlations (range,
0.05 to 0.2; cold colors, low values; warm colors, high values) during SWS before (PRE)
and after (POST) running (RUN). The structure of correlations during RUN arose as a
direct consequence of the arrangement of place fields on the track. The relevant finding
was that the structure of correlations was strongly preserved in POST. Reproduced from
Wilson and McNaughton (1994).

during SPW-Rs than outside of SPW-Rs.

Skaggs and McNaughton (1996) analyzed the temporal order of activity in pairs of
CAL place cells, reporting that this order was positively correlated between running and
subsequent, but not prior, sleep. This study was the first to show that the temporal struc-
ture of neuronal activity in the hippocampus during sleep reflects prior experiences. Qin,
McNaughton, et al. (1997) confirmed this finding, and reported the same effect for neo-
cortical, and for hippocampal-neocortical pairs of neurons.

Kudrimoti, Barnes, et al. (1999) compared correlations of CA1 place cell activity dur-
ing running and sleep in a more quantitative manner. The study found that 15% of the
variance in firing rate correlations during sleep (POST) could be explained (explained
variance, EV) by correlations during previous behavior (RUN), while correlations during
previous sleep (PRE) explained only 5% (0.4%) of the correlations during RUN in familiar
(novel) environments. Furthermore, place cell firing rates during ripples increased slightly
from PRE to POST, and EV during POST ripples was higher than outside of POST ripples.
When restricting the dataset to REM sleep, EV was not significantly different from zero,
but when restricting the dataset to the awake, motionless state (rich in ripples), EV was
12%, showing that sleep was not necessary for the reinstatement of correlational structure.

Lee and Wilson (2002) reported that the sequence of action potentials fired by CAl
place fields during population bursts in SWS strongly resembled the sequence of action
potentials fired during previous spatial learning (hence, it also reflected the arrangement
of place fields on the track), see Fig. 1.11. The time interval between action potentials

was compressed in time by a factor of twenty. This time-compressed neural replay was
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Figure 1.11: Sequentially ordered reactivation of place cells. A, CA1 place cell firing
during running on a linear track. B, During population bursts in SWS after running, the
neurons fire in the same order as during running. White bar, 50 ms. Adapted from Lee
and Wilson (2002).

interpreted as a candidate mechanism for spatial memory consolidation. The study also
reported a link between CA1 population bursts and SPW-Rs. Neural replay without time
compression and in REM sleep was reported by Louie and Wilson (2001).

Foster and Wilson (2006) observed neural replay also during ripples during rest, but
fifteen times more often in the reverse than in the forward direction, hinting at a potentially

different mechanisms for awake replay and SWS replay.

Extending the findings on SWS replay, Ji and Wilson (2007) observed that neuronal
firing sequences occurring during active behavior were replayed in a time-compressed
manner in primary visual cortex and in the hippocampus during subsequent SWS. Replay
of sequences corresponding to one behavioral episode concurrently occurred in the two
areas. Maingret, Girardeau, et al. (2016) used cortical stimulation at the time points of
SPW-Rs to enhance cortico-hippocampal coupling. The study reported a strong enhance-
ment of object—location memory for stimulated animals versus animals receiving delayed
stimulation, which was interpreted as evidence for the causal role of SPW-Rs in systems

memory consolidation.

Girardeau, Inema, et al. (2017) showed that neurons in the basolateral amygdala of
rats were activated during hippocampal SPW-Rs during NREM sleep after learning of
the location of an aversive stimulus. This was interpreted as a potential mechanism of

emotional memory consolidation.
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1.3.5 Memory at the synaptic level

The findings discussed so far mostly concern neuronal activity measured by extracellular
electrodes, that is, action potentials and local field potentials. However, studies at the level
of synapses, often using intracellular recordings and molecular tools, have contributed
enormously to the current understanding of long-term memory. Because this thesis is
only marginally concerned with synaptic mechanisms of memory, here we only give a
cursory introduction to the most important findings in this realm (for excellent reviews see
e.g., Bliss and Collingridge 1993; Dan and Poo 2006; Kandel, Dudai, et al. 2014). The
most influential early theory connecting synaptic modifications to learning was formulated
by Hebb (1949, p. 70), who famously noted that “the general idea is an old one, that
any two cells or systems of cells that are repeatedly active at the same time will tend
to become ‘associated,” so that activity in one facilitates activity in the other”. Among
the first experimental results supporting the idea that information can indeed be stored
through long-lasting synaptic changes was the discovery of long-term potentiation in the
hippocampus of rabbits (LTP; i.e., increases in synaptic efficacy, lasting for up to several

hours or more, after activity in exactly the same synapses; Bliss and Lemo 1973).

Scrutinizing the role of timing in long-term synaptic modifications, Levy and Steward
(1983) showed in rats that the efficacy of initially weak inputs from the entorhinal cortex
to the contralateral dentate gyrus increased when an (already effective) ipsilateral input
followed within 20 ms. When, on the other hand, the strong, ipsilateral input preceded the
weak, contralateral input, the weak input’s efficacy further decreased. The principle that
the relative timing of synaptic inputs (and postsynaptic action potentials) can determine the

direction of synaptic modifications is known as spike-timing-dependent plasticity (STDP).

A study by Wigstrom, Gustafsson, et al. (1986) corroborated these findings, showing
in intracellular recordings from hippocampal slices of the guinea pig that synaptic effi-
cacies increased only when excitatory postsynaptic potentials (EPSPs) were immediately
followed by postsynaptic depolarization sufficiently strong to elicited action potential fir-
ing. The same study also showed synapse specificity of LTP: the efficacy of synapses that
had not been active was not modified. The connection to behavior was made by Mor-
ris, Anderson, et al. (1986), who showed that blocking N-methyl-D-aspertate receptors
in the hippocampus of rats selectively impaired spatial learning and, at the same time,
abolished hippocampal long-term potentiation. In an important contribution to the under-
standing of STDP, Markram, Liibke, et al. (1997) demonstrated in neocortical slices of
rats that synaptic efficacies increased when postsynaptic action potentials followed 10 ms

after EPSPs, and decreased when postsynaptic action potentials preceded EPSPs by 10 ms.
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No change in synaptic efficacy was observed when the delay was 100 ms, for action po-
tentials following or preceding EPSPs. Bi and Poo (1999) found synapse modifications
along polysynaptic pathways by applying paired pulses to cultured rat hippocampal neu-
rons. The study observed large synapse modifications when using short inter-pulse inter-
vals (20 ms to 50 ms), while longer inter-pulse intervals (above 100 ms) did not induce
such changes.

Sharp-wave ripples (see Section 1.3.3) appear to constitute a possible link between
memory consolidation at the cellular and at the synaptic levels, as the highly synchronous
firing induced in CA1 pyramidal cells during sharp-wave ripples could potentially lead
to synapse modifications in target neurons (Buzsaki, Horvath, et al. 1992; Buzsaki 1996).
However, how precisely sharp-wave ripples might contribute to synapse modification in

vivo has as of yet mostly remained elusive (Buzsaki 2015).

1.4 Concept neurons in humans

As we have seen, studies of memory consolidation in rodents have led to detailed models
and experimentally testable, concrete hypotheses concerning mechanisms of memory con-
solidation. How do these findings and predictions relate to studies in humans? Most elec-
trophysiological studies on rodent memory consolidation have investigated place cells. It
might seem natural to search for place cells in humans; for some results in this direction,
see Section 1.4.3. However, human episodic memory is of course not only concerned
with space (the “where” component of episodic memory), but also with the “what” and
“when” of a memory episode. Recordings from single neurons in the MTLs of epilepsy
patients have yielded the insight that neurons in the human hippocampus represent the
“what” in a direct way: in this section, we will explain how single neurons in the human
MTL represent semantic content, and how these neurons potentially contribute to memory
consolidation.

Concept neurons (sometimes also named Jennifer Aniston neurons, semantic neurons,
or concept cells) are neurons in the human MTL that are tuned to the semantic content of
a stimulus. Concept neurons were discovered in recordings from the MTLs of epilepsy
patients undergoing presurgical monitoring (see Chapter 2 for the method of single-neuron
recordings from epilepsy patients). In brief, micro-electrodes with a diameter of 40 um can
be implanted into the MTL to record from individual neurons, along with depth electrodes
used as a diagnostic device.

Early studies on recordings of individual neurons from the human MTL reported se-

lective responses to individual words and faces (Heit, Smith, et al. 1988), and faces and



1.4. Concept neurons in humans 27

"‘-A
#1 *i Freundin
O N e T
pr T S RA TR oY

R AN \
piind, "t VLT T )
Y

|I""l'l AT
: (AR

Lois Griffin

l. a "::.r"'."I‘l -l-l"'.'
Ao T
e

Barney Gumble

a N - -

Howard Wolowitz
o l-. .."-._:._1."\‘..;;.... e

T -t

[ .- “' o
T TTR N
. \:u ./ FER

" .
W
ML S

0 1000

Figure 1.12: Responses of a concept neuron. Displayed are raster plots from a neuron
in the hippocampus, depicting responses to nine pictures and the corresponding written
names, each presented visually twenty times. The neuron responds to the picture and
written name of “Lois Griffin”. Recorded by J. Niediek.

objects (Fried, MacDonald, et al. 1997). Kreiman, Koch, et al. (2000), using nine stimulus
categories (e.g., food items, animals, cars), reported category-specific responses of human

MTL neurons.

However, the defining property of concept neurons — their invariance — was first re-
ported by Quian Quiroga, Reddy, et al. (2005): a concept neuron tuned to e.g., Jennifer
Aniston, increases its firing rate upon visual presentation of any picture of Jennifer Anis-
ton, independent of physical stimulus properties such as color, viewing angle, size, or po-
sition, but not upon presentation of a picture showing a different person. Concept neurons
have been found in the hippocampus, amygdala, entorhinal cortex, and parahippocam-
pal cortex. The preferred stimuli of concept neurons can be famous people, personal ac-
quaintances of the subject, animals, landmarks, objects, and others. In a study by Quian
Quiroga, Kraskov, et al. (2009), between 35% and 40% of the concept neurons in the
hippocampus and entorhinal cortex were reported to exhibit multi-modal invariance: they
responded to the written name of their preferred stimulus, and/or to a computer voice pro-
nouncing it. This invariance was observed in 14% (0%) of amygdalar (parahippocampal)

concept neurons. Fig. 1.12 shows sample responses of a concept neuron.
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1.4.1 Tuning properties of concept neurons

Several studies characterized stimulus—response relationships of human MTL neurons.
Waydo, Kraskov, et al. (2006) estimated the probability for a human MTL neuron to re-
spond to a random stimulus to be approximately 0.54%. Viskontas, Quian Quiroga, et al.
(2009) subdivided a set of stimulus pictures containing faces into four different categories
and reported significantly higher probabilities to elicit a response for pictures categorized
as “Self & Family” and “Experimenters” compared to pictures categorized as “Famous
people” or “Non-famous people”. Mormann, Dubois, et al. (2011) reported preferen-
tial responses of neurons in the right amygdala to animals (compared to persons, objects,
and landmarks). Rutishauser, Tudusciuc, et al. (2011) found a population of neurons in
the amygdala tuned to whole faces, but not parts of faces. Ison, Mormann, et al. (2011)
described a higher response selectivity in putative pyramidal cells compared to putative
interneurons in visually selective neurons in the amygdala, entorhinal cortex, hippocam-
pus, and parahippocampal cortex. Mormann, Niediek, et al. (2015) reported invariant
responses to the identity of persons, but not to their gaze direction, in the amygdala. Mor-
mann, Kornblith, et al. (2017) showed preferential tuning to scenes (compared to people,
animals, or objects) in neurons in the parahippocampal cortex. These neurons also re-
sponded less selectively than visually selective neurons in other brain regions. Reber,
Faber, et al. (2017) demonstrated that the activity of visually selective neurons often, but

not necessarily, coincided with conscious perception of the stimulus.

1.4.2 Concept neurons in memory tasks

The findings discussed so far seemingly suggest that concept neurons in the human MTL
contribute to invariant object recognition. At least two arguments demonstrate that this
is very unlikely. First, the response latencies of concept neurons are slower than object
recognition. Mormann, Kornblith, et al. (2008) reported average response latencies of
visually selective neurons to be in the 392 ms to 397 ms range in the amygdala, entorhinal
cortex, and hippocampus, and 271 ms in the parahippocampal cortex. However, in a study
by Kirchner and Thorpe (2006), humans were able to detect the presence of an animal in
a scene within 120 ms. Second, patients with extended MTL lesions do not usually show
deficits in object recognition (Squire and Wixted 2011).

As discussed in Sections 1.1 and 1.2, converging evidence shows that the hippocampus
contributes to declarative long-term memory formation and systems memory consolida-
tion. Accordingly, the idea that sharply and semantically tuned neurons in the MTL could

be part of a mechanism for declarative long-term memory was presented already by Heit,
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Smith, et al. (1988; for review see Quian Quiroga 2012). Several studies examined the role
of concept neurons in various memory tests. Focusing on memory recall, Gelbard-Sagiv,
Mukamel, et al. (2008) studied neurons in the hippocampus and entorhinal cortex that se-
lectively responded to the presentation of one out of several video clips. When subjects
were asked to freely recall which videos they had watched, a selective neuron’s firing rate
consistently increased (up to 3 s) before the subjects verbalized the recall of the preferred
video of that neuron.

Ison, Quian Quiroga, et al. (2015) asked subjects to memorize person—landscape as-
sociations (e.g., “Clint Eastwood” — “Hollywood sign”) while recording from visually
selective neurons preferentially tuned to one of the persons or one of the landscapes. The
study found an increased response to the visual presentation of initially non-preferred, but
associated, stimuli after learning, hinting at a potential mechanism of associative learning
in the MTL.

Two very recent studies examined the activity of concept neurons in working-memory
tasks. Kaminski, Sullivan, et al. (2017) reported that when subjects were instructed to
maintain in memory the content of one to three pictures over a period of 2.5s to 2.8 s,
visually selective neurons in the hippocampus and amygdala showed persistent activity
during maintenance. This persistent activity was larger in trials with correct subsequent
memory of picture identity than in incorrect trials. Kornblith, Quian Quiroga, et al. (2017)
presented eight to nine images and used a maintenance period of 2.4 s. The study found
that 8% of visually selective neurons were modulated by working-memory content (chance
level, 1%), and that these neurons’ activity was significantly higher in trials with correct

subsequent memory than in incorrect trials.

1.4.3 Other human MTL neurons in memory tasks

It is unlikely that all neurons in the human MTL are concept neurons. However, neurons
that are not concept neurons could still contribute to memory-related processes, as was
shown in a series of studies by Rutishauser and colleagues. Studying a task in which
subjects presented with 100 pictures had to judge if they had seen a picture before (“old”)
or not (“new”), Rutishauser, Mamelak, et al. (2006) reported on neurons in the amygdala
and hippocampus that signaled either familiarity (“old”) or novelty (“new”) of stimuli,
independent of the stimulus identity. Using population decoding from these neurons, the
study reported correct decoding of whether a “new” or “old” image was shown in up to
93% of the trials.

Rutishauser, Ross, et al. (2010) reported that 21% of the neurons in the amygdala and
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hippocampus were phase-locked to an oscillation in the 3 Hz to 8 Hz range, and that these
neurons were much more accurately locked to a particular phase during learning in trials
with correct subsequent memory versus subsequently incorrect trials.

Rutishauser, Ye, et al. (2015) showed that the population of familiarity/novelty selec-
tive neurons was independent of the population of visually selective neurons recorded in
the same areas. The same study showed that familiarity/novelty selective units exhibited
a stronger familiarity/novelty signal when the behavioral old/new decision was performed
with high confidence.

As outlined in Section 1.3, many relevant contributions to research on systems mem-
ory consolidation came from the investigation of place cells in rats. In humans, spatially
tuned neurons were described in the hippocampus (Ekstrom, Kahana, et al. 2003; Jacobs,
Kahana, etal. 2010). These spatially tuned neurons were described to be activated not only
during navigation, but also during memory recall thereof (Miller, Neufang, et al. 2013; for

commentary see Niediek and Bain 2014).

1.5 Aim of this thesis

We have discussed theories and possible mechanisms of memory consolidation in Sec-
tions 1.2.3 and 1.3, and we have seen in Section 1.4 how concept neurons provide a neu-
ronal representation of semantic content in the human MTL. Concept neurons have been
speculated to be “building blocks” for declarative memory (Quian Quiroga 2012). How-
ever, a concrete hypothesis on how exactly concept neurons might contribute to memory
consolidation has been lacking. Moreover, to our knowledge, no experiments regarding
a possible role of concept neurons in a mechanism of memory consolidation have been
reported.

The aim of this thesis is to propose and test the idea that the physiological substrate of
“memory traces” is provided by the coordinated activity of concept neurons in the medial
temporal lobe.

More precisely, we propose the following mechanism of memory consolidation:

1. During the experience of an episode, concept neurons in the MTL are activated.
Both the ensemble of activated neurons (which neurons are active) and the sequen-
tial order of activity among the activated neurons (when the neurons are active)
encode the specific content (the “what” component of episodic memory) and time-

course of the episode (the “when” component of episodic memory).

2. During subsequent waking and slow-wave sleep, the very same ensembles in the
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MTL that were active during the original experience are repeatedly reactivated in a
temporally coordinated manner, thereby creating a long-lasting memory represen-

tation.

The model inspires a number of concrete hypotheses (in part related to ideas of Buzsaki
2015, p. 1132):

1. The modality-invariant representation of semantic content by concept neurons is

stable over time.

2. Concept neurons in the MTL are active not only during episodic learning, but also
during subsequent waking and slow-wave sleep (but not necessarily during REM

sleep).
3. The activity of concept neurons increases during ripples.

4. Ensembles of concept neurons with correlated activity during episodic learning also

exhibit correlated activity during subsequent slow-wave sleep, and during ripples.

5. The sequential order of events in a memory episode is reflected in the sequential

order of neuronal activity during ripples.

This thesis is devoted to testing hypotheses 1.—5. (note that hypothesis 1. can be con-
sidered a prerequisite to the others). The thesis is structured as follows: In Chapter 2, we
will briefly outline the general method of single neuron recordings in epilepsy patients.
In Chapter 3, we will present the spike sorting and data-analysis software Combinato that
we developed to perform reliable multi-hour single-unit tracking. All results regarding
memory consolidation are presented along with specific methods in Chapter 4. Finally,

Chapter 5 interprets our results and discusses their relevance in a broader context.
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Chapter 2

Single neuron recordings in epilepsy

patients

In this chapter, we describe the method of single neuron recordings from the medial tempo-
ral lobe of epilepsy patients. More specific methods — in particular regarding experiment

design and data analysis — are presented in Chapters 3 and 4.

2.1 Background

An epileptic seizure is “a transient occurrence of signs and/or symptoms due to abnormal
excessive or synchronous neuronal activity in the brain” (Fisher, Acevedo, et al. 2014).
A modern definition of the disease epilepsy states that a patient has epilepsy if she or
he has had at least one epileptic seizure and “demonstrates a pathologic and enduring
tendency to have recurrent seizures” (Fisher, Acevedo, etal. 2014). Epilepsy is common: a
recent meta-analysis found an incidence of epilepsy of 50.4/100 000 persons/year (Ngugi,
Kariuki, et al. 2011). Prevalence reports of epilepsy display considerable variance. A
meta-analysis reported the prevalence of epilepsy in developed countries to be 5.8/1000
(5th—95th percentile range 2.7 to 12.4; Ngugi, Bottomley, et al. 2010).

Epileptic seizures are commonly classified as either focal onset or generalized onset
(Fisher, Cross, et al. 2017). Focal-onset seizures start in a small region of the brain (the
seizure focus or seizure onset zone), whereas in generalized-onset seizures no well-defined
seizure focus exists: seizures start in both hemispheres simultaneously. Seizure foci can
exist in many brain regions, of which the temporal lobe is the most common (temporal
lobe epilepsy; Téllez-Zenteno and Hernandez-Ronquillo 2012).

Temporal lobe epilepsy and other focal epilepsies can often be resolved by pharmaco-

33
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Figure 2.1: Clinical depth electrodes and microwires. Top, clinical depth electrode
(Behnke—Fried electrode; diameter 1.3 mm, seven contacts) for intracranial EEG record-
ings. Bottom, insulated (except for distal end) platinum—iridium microwires protrud-
ing from the tip of the clinical depth electrode. Diameter of each microwire is 40 um;
impedance 100kQ to 300 kQ (Staba, Fields, et al. 2014); ninth wire (uninsulated refer-
ence electrode) not displayed. Graphics adapted from Staba, Fields, et al. (2014).

logical treatment. Of those patients whose condition is not resolved pharmacologically,
many can undergo epilepsy surgery, the surgical resection of the tissue containing the
seizure focus from the brain. Epilepsy surgery can only ameliorate seizures when the
seizure focus is correctly identified in the brain. In most cases, non-invasive methods suf-
fice for this localization (Fried 2014). These methods include scalp electroencephalogra-
phy (EEG, often combined with concurrent video monitoring), magnetic resonance imag-
ing (MRI), and neuropsychological tests. However, when these methods fail to unequiv-
ocally localize the seizure focus, patients can undergo a procedure known as invasive
presurgical monitoring. Several approaches for invasive presurgical monitoring exist. A
common method is to surgically implant intracerebral depth electrodes into the brain to
record an intracranial electroencephalogram, which allows for a much more precise spa-
tial resolution of field potentials compared to scalp EEG. A clinical depth electrode with
seven recording contacts is displayed in Fig. 2.1 (top). After implantation of depth elec-
trodes, patients have to spend sufficient time in the hospital for epileptic seizures to be

registered, typically one to two weeks.

The possibility to record individual neuronal action potentials extracellularly from the
brains of patients undergoing presurgical monitoring arises because a bundle of microwires
can be inserted into the hollow lumen of clinical depth electrodes (Fried, Wilson, et al.
1999; see Fig. 2.1). The next section outlines this technique in more detail, as relevant to

this thesis.
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2.2 Surgery and recording procedures

In this section, we outline the procedures relevant for the studies reported in Chapters 3
and 4. Similar procedures have been described by their inventors (Fried, Wilson, et al.
1999).

Depth electrode implantations were performed at the Department of Neurosurgery of
the University of Bonn, Germany. Magnetic resonance (MR) images were obtained prior
to surgery. After placement of a stereotactic headframe, computer tomography images
were obtained and co-registered to the MR images. A target and trajectory for each depth
electrode were chosen, carefully avoiding blood vessels. These decisions were based ex-
clusively on clinical criteria. Under general anesthesia, each electrode and microwire
bundle were implanted in the following way. A drill hole was made using the stereotactic
frame, and a hollow Behnke—Fried depth electrode (Ad-Tech, Racine, WI; MR imaging
compatible; top of Fig. 2.1) was inserted using a stylet. A bundle of nine microwires
(Ad-Tech, Racine, WI; MR imaging compatible; bottom of Fig. 2.1) was cut to the cor-
rect length and inserted into the lumen of the depth electrode. These platinum—iridium
microwires had a diameter of 40 um and protruded from the tip of the depth electrode by
approximately 4 mm. Eight microwires in each bundle were insulated except for the cut
distal end, and one was not insulated to serve as a reference electrode. A typical implan-
tation scheme consisted of one to three depth electrodes in the hippocampus bilaterally,
and one depth electrode in each of the following subregions of the medial temporal lobe
bilaterally: amygdala, entorhinal cortex, and parahippocampal cortex.

One day after surgery, patients were transferred to the Department of Epileptology
of the University of Bonn for continuous monitoring. Post-operative MR images were
obtained to confirm correct electrode placement.

Signals from the microwires were pre-amplified by headstages (Neuralynx, Bozeman,
MT) in close proximity to the extracranial end of the depth electrodes within the head
dressing, and recorded on a Digital Lynx SX or ATLAS system (Neuralynx, Bozeman,
MT) at an effective recording bandwidth of 0.1 Hz to 9000 Hz. Recordings were digitized
at 32000 Hz or 32 768 Hz, and transferred to network-attached storage units for further
analysis. Fig. 2.2 shows sample data recorded from microwires implanted into the left
hippocampus of a patient, and Fig. 2.3 shows the general setup of the recording system.

For the studies described in Chapters 3 and 4, visual stimuli were displayed on a stan-
dard laptop computer (see Fig. 2.3). Experimental paradigms were implemented in the
Psychophysics Toolbox 3 (http://psychtoolbox.org; Kleiner, Brainard, et al. 2007),

running in GNU Octave (https://www.gnu.org/software/octave) under Linux.


http://psychtoolbox.org
https://www.gnu.org/software/octave
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Figure 2.2: Sample of data recorded with microwires. Displayed are data from the
left hippocampus. a, 3125 ms of unfiltered data. Action potentials (“spikes”) are clearly
visible. b, Same data as a, but bandpass-filtered for action potential detection (elliptic
filter, passband 300 Hz to 1000 Hz). ¢, 70 ms of unfiltered data. The segment displayed
here corresponds to the orange box in a. The shape of extracellularly recorded action
potentials is visible at this time scale. Data recorded by J. Niediek.

Event triggers were sent to the recording system through a USB-1208FS data acquisition
device (Measurement Computing, Norton, MA). Further details regarding data analysis

etc. are presented in Sections 3.2 and 4.1, respectively.



2.3. Ethics statement 37

""", Neuronal signals Depth 5 ™
> electrodes \ Headstage

-1 Event signatures g H{g;g{?pllﬁers

iy,

Data acquisition
system
with recording PC

Figure 2.3: Recording setup for cognitive studies. Neuronal signals recorded from
microwires are transferred to a Neuralynx data acquisition system via headstage pre-
amplifiers. Patients perform cognitive studies on a standard laptop computer. Event sig-
natures are transferred to the data acquisition system via a data acquisition (DAQ) device.
Graphics adapted from Knieling, Niediek, et al. (2017).

2.3 Ethics statement

All surgical procedures, data recording, and cognitive studies were approved by the
Medical Institutional Review Board of the University of Bonn Medical Center (approval
number 095/10, implantation of micro-electrodes; approval number 242/11, whole-night

recordings and data analysis). All patients gave informed written consent.



38

2. Single neuron recordings in epilepsy patients




Chapter 3

A framework for reliable multi-hour

single-unit tracking

The results presented in this chapter have been published as Niediek, Bostrom, et al.

(2016). The text and figures of this chapter correspond closely to the published version.

3.1 Background and overview

Tracking single- and multi-unit activity over hours, possibly during sleep, allows to ad-
dress important questions regarding neural mechanisms of learning and memory consoli-
dation. For example, a popular theory posits that declarative memory consolidation during
sleep depends on the reactivation of neuronal ensembles that were active during earlier be-
havior, as outlined in Section 1.3.

Over the last years, it has become possible to record from hundreds of channels simul-
taneously (Berényi, Somogyvari, et al. 2014; Misra, Burke, et al. 2014; Rossant, Kadir,
et al. 2016), and modern recording systems allow to record continuously for hours and
days, producing datasets that are typically hundreds of gigabytes in size.

Many spike sorting algorithms have been evaluated in the past (Quian Quiroga,
Nadasdy, et al. 2004; Rutishauser, Schuman, et al. 2006; Pedreira, Martinez, et al. 2012;
Kadir, Goodman, et al. 2014; Friedman, Keselman, et al. 2015; Knieling, Sridharan,
et al. 2015; Rossant, Kadir, et al. 2016). The datasets used in these studies were usually
simulations or recordings characterized by stationary (constant) noise levels, absence of
non-neural artifacts, and short duration.

Even though spike sorting algorithms perform well on small datasets, tracking the

activity of individual neurons over many hours has remained a major challenge: spike

39
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sorting algorithms have to be computationally efficient to deal with spike counts in the or-
der of hundreds of thousands per channel, must account for both slow and sudden changes
in spike waveform, and have to cope with periods of excessive signal contamination, as
inevitable in multi-hour recordings in clinical settings. Furthermore, current spike sorting
methods often require manual optimization, a time-consuming task in the case of multi-
hour recordings.

In this chapter, we present and evaluate Combinato: A software framework for un-
supervised spike sorting of noisy long-term recordings. The core of our framework is a
novel spike sorting algorithm based on block-wise iterative superparamagnetic clustering
(SPC; Blatt, Wiseman, et al. 1996). This core algorithm is accompanied by methods for
artifact rejection and tools for the visualization of results.

The importance of ground-truth data for the validation of spike sorting methods is be-
coming increasingly recognized (Einevoll, Franke, et al. 2012). In Section 3.3.1, we thus
present results from a validation of Combinato on a recently published dataset of simu-
lated neural activity (Rey, Pedreira, et al. 2015), showing that our method outperforms
state-of-the-art spike sorting methods. This holds true even when the result of our au-
tomated spike sorting is compared to the published result of manually optimized spike
sorting results on the same data (Pedreira, Martinez, et al. 2012). When tested on simu-
lated recordings lasting ten hours, our algorithms were capable of recovering on average
74.6% of the simulated neurons, despite drift and high noise levels in the simulations.

We also evaluated the performance of our method in a visual stimulus presentation
experiment (Section 3.3.2). The purpose of the experiment was to identify neurons that
respond selectively and invariantly to visually presented stimuli (Section 1.4; Quian
Quiroga, Reddy, et al. 2005). Without any manual intervention, Combinato identified
more neuronal responses than common spike sorting methods that require manual opti-
mization.

Lastly, as presented in Section 3.3.3, an evaluation on eight whole-night recordings
from the temporal lobes of epilepsy patients showed that our method tracks visually se-
lective single- and multi-units over more than 12 hours, laying the ground for our study

on the role of concept neurons in memory consolidation, presented in Chapter 4.

3.2 Design and implementation

Before describing our spike sorting framework in detail, we will provide a brief outline
of its structure; see Fig. 3.1 for an illustration of individual steps. The first two steps

are channel selection (Fig. 3.1 A) and spike extraction. These steps are conceptually in-
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dependent of any specific spike sorting algorithm. The next step is pre-sorting artifact
removal (Fig. 3.1 B), after which clean spikes are passed to block-wise iterative sorting
(Fig. 3.1 C). Remaining spikes are then assigned by template matching (Fig. 3.1 D), and
non-neural clusters are detected and removed (Fig. 3.1 E). The last step is to re-combine
all clusters from the different blocks (Fig. 3.1 F).

Channel selection and spike extraction

In a typical multi-channel setup, not all electrodes record meaningful signals. Reasons
for corrupted signals include: bad/broken wiring in the electrodes, inadequate electrode
impedance, excessive pick-up of 50/60 Hz power line noise and its higher harmonics.
Furthermore, in recordings from the human brain, a micro-electrode bundle sometimes
has its tip in white matter or cerebrospinal fluid, where recording of action potentials is
impossible.

To exclude unsuitable channels from subsequent analysis, our analysis framework con-
tains a viewer program. The program displays segments of each channel’s signal at dif-
ferent temporal resolutions (for a screenshot, see Fig. 3.2 A).

Viewing the data at different time scales allows to assess presence of action potentials,
contamination by electrical noise, and contamination by low-frequency artifacts. Exam-
ples of one selected and one discarded channel are shown in Fig. 3.1 A.

Spikes are detected and extracted from all selected channels by the following method,
similar to WaveClus (Quian Quiroga, Nadasdy, et al. 2004), but optimized both for
speed and large datasets. Raw neuronal recording data are bandpass filtered between
300Hz and 1000 Hz (second order elliptic filter), and a threshold is determined as
0 = ——_median (abs(x)), where x is the filtered signal. This threshold is then used

0.6745
to determine the timepoints of events for extraction. Spikes can occur as both positive and

negative voltage deflections. Because event extraction is computationally inexpensive
in comparison to data reading and filtering, by default both positive voltage deflections
above 6 and negative voltage deflections below —0 are extracted. These positive and
negative voltage deflections are stored as two different arrays for later sorting. For each
threshold-crossing event, 64 sampling points (corresponding to approximately 2 ms at
the sampling rates used here) are extracted from the signal after bandpass-filtering be-
tween 300 Hz and 3000 Hz (second order elliptic filter), and aligned to maximum after
upsampling using cubic spline interpolation.

The extraction algorithm was implemented in the following, computationally efficient,

way: instead of reading and processing data in an alternating manner, one process contin-



42 3. A framework for reliable multi-hour single-unit tracking

A Channel selection

Included channel
T T T

100 100 ‘Excluded‘ channe!
- T O S T RN 1 N Y 0 [ R 50
= 0 0
=% 5 10 15 20 25 30 % 5 10 15 20 25 30
S S

B Pre-sorting artifact removal

Clean spikes High firingl rate Concurr_ent Double detgction
500 31‘19751‘ sp|k‘es 200 1|4579|sp|kels 200 1‘458 ‘splke‘s 500 1‘1054|sp|kels
100 iid | 100 100 i b 100 |
= 0 0= 0
_100_.....; ....... ....... ..... 4 |-100 _100_...,.{ ....... ....... ..... 4 =100 --eieeeee ....... ..... i
—200 I I I —-200 i I i —200 I I I —200 1 1 1
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
ms ms ms ms
C Parallel sorting in blocks D Template matching
100 - — Detected cluster
20000 o : : : Matched spikes
spikes spikes w 103 L ST N A
g :
20000 @ 102N 4
spikes spikes O i
10 e €|
0.00 0.05 0.10 0.15 0.20
Temperature [a.u.]
E Post-sorting artifact removal F Grouping clusters

Across blocks Within blocks

Figure 3.1: Schematic of data processing. Data displayed in green boxes are passed
on to the subsequent stage. A Channels with no unit activity (i.e., broken or empty
channels) are discarded. Displayed are bandpass-filtered recordings of two channels in
the human MTL (passband 300 Hz to 1000 Hz). B After spike extraction, pre-sorting
artifact rejection is performed. Displayed are density plots of all spikes extracted from a
12-hour recording (same channel as left panel in A). Artifact rejection removes =~ 27 000
spikes, and = 350 000 remain. C Clean spikes from B are split into blocks of 20 000. In
this example, the 350 000 spikes are split into 18 blocks. All blocks are spike-sorted in
parallel. For each block, clusters from several “temperatures” are selected. Displayed is an
example for one block. Black dots in the temperature plot correspond to clusters that were
selected, red dots to clusters that were not selected because their spikes had already been
selected at lower temperatures, and the purple dot marks the highest temperature used.
Large clusters are again subjected to iterative spike sorting. D Template matching is used
to assign the remaining spikes to clusters. E Artifact clusters are removed. F Physiological
clusters are grouped, both within each block and across blocks.
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Figure 3.2: Graphical user interface. A Screenshot of the graphical user interface (GUI)
used for channel selection. Raw and filtered data traces of all channels in a recording ses-
sion are displayed along with spike sorting results from every channel for which sorting

has already been performed. B Screenshot of the GUI used
optimization of spike sorting results. The interface shows

for visualization and manual
several informative statistics

for one unit. The individual elements are explained in panels C through I. C Density plot

of all spike waveforms within a cluster group. D Same as C,

but using a logarithmic scale.

E Overlay plot of all mean spike waveforms in a group of merged clusters. F Histogram of

inter-spike intervals. G Cumulative spike counts over time (

700 minutes in this example).

Note that the unit in this example appears to become more active after the first 200 min-
utes of recording. Detailed inspection of the other cluster groups is necessary to decide
whether this is really the case or merely an effect of over-clustering and false re-grouping.
H Distribution of spike maxima. The three vertical pink lines indicate the minimum, me-

dian, and maximum of the detection thresholds over time. N
maxima are clearly separated from the detection threshold

ote that in this example, spike
. I Spike amplitude maxima

over time. The pink line is the extraction threshold. Note that the extraction threshold is

relatively stable, while the maxima show considerable drift.
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uously reads data segments from disk into memory, while simultaneously many processes
(typically, one per core of the computer) run in parallel to filter the signal and to extract
and store spikes. In this way, our implementation maximizes input bandwidth utilization,
thereby minimizing the time processors spend idle (Alted 2010).

The extracted spike waveforms are stored as an array, along with one time stamp per
spike. We use the standardized HDF5 data format, which allows for efficient processing

of very long recordings.

Pre-sorting artifact rejection

Long-term recordings, especially from human subjects in a clinical setting, inevitably con-
tain periods of excessive noise, e.g. due to subject movement or electrically interfering
medical equipment. During such periods, recordings are typically contaminated by events
of non-neural origin. We detect such artifacts both before and after spike sorting. Before
spike sorting, we use the following procedure, the parameters of which can be modified
according to specific demands:

(1) Removal of time periods exceeding reasonable neuronal firing rates. For each
recording channel, event counts are calculated in time-bins of 500 ms, with an overlap
of 250 ms. Time-bins containing more than 100 events (corresponding to a firing rate of
200 Hz) are excluded from further processing.

(2) Events exceeding a certain amplitude. All events exceeding a threshold of 1 mV
are excluded.

(3) Removal of overlapping detections. Because our spike detection algorithm does
not impose any artificial refractory period, two extracted spikes can overlap. This happens
when the interval between two subsequent threshold crossings is shorter than the extraction
window (typically around 2 ms); for example, when there is sinusoidal electrical noise in
the range of 2 kHz, or when two different neurons fire action potentials with a very short
lag. Depending on the respective scientific question, keeping both waveforms might be
desirable (e.g. when analyzing synaptic coupling). When two detections occur within
1.5ms, our default is to keep the waveform with the larger maximum, and discard the
other one.

(4) Events occurring concurrently on many channels. Movement artifacts and periods
of excessive electrical noise typically occur simultaneously on many channels, whereas
an action potential is typically recorded on one channel only. We thus partition the spike
times extracted from all channels into time-bins of 3 ms, with an overlap of 1.5 ms, and

count, for each bin, the recording channels with at least one event. A time-bin is excluded
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Name Description Default value
Npock  Number of spikes per sorting block 20000

Crax  Maximum number of clusters at one temperature 5

Smin  Minimum number of spikes in a cluster 15

R.;, Minimum cluster size for iterative clustering 2000

Ny, Number of clustering iterations 1

fi Radius for within-block template matching 0.75

f Radius for across-blocks template matching 3

Csop  Threshold at which merging of clusters stops 1.8

Table 3.1: Relevant parameters for the proposed spike sorting framework along with
their default values. Parameters and values are explained in the main text.

if it contains an event on 50% or more of the channels.
Note that criteria (/) to (3) are applied independently on individual channels, whereas

(4) takes into account all recording channels at the same time.

Segmentation and spike sorting in blocks

After the exclusion of artifact events, the remaining spikes are segmented into independent
blocks, such that each block consists of Ny, consecutive spikes (by default, Ny, =
20000; see Table 3.1 for complete parameter values). These blocks are then spike-sorted
independently using parallel processing to make efficient use of modern multi-core com-
puters. The algorithm that processes each block is based on superparamagnetic clustering
(SPC; Blatt, Wiseman, et al. 1996) of wavelet coefficients, as introduced to spike sort-
ing in WaveClus (Quian Quiroga, Nadasdy, et al. 2004). However, our procedure differs
from WaveClus in the following ways: clusters at several different “temperatures” of the
SPC algorithm are selected automatically; clusters are re-clustered in an iterative proce-
dure; similar clusters are merged automatically; template matching is performed at two
different stages; unassigned spikes are iteratively re-clustered. What follows is a detailed
description of our per-block algorithm.

Feature selection. Similar to WaveClus, a four-level wavelet decomposition is com-
puted for each spike using Haar wavelets. This yields an (n X k)-array of wavelet coeffi-
cients, where n is the number of spikes and k the number of sampling points. To reduce
feature dimensionality, we select, out of these k dimensions, the 10 dimensions in which
the distribution of wavelet coefficients differs most from normality, as quantified by the
Kolmogorov—Smirnov test statistic (Quian Quiroga, Nadasdy, et al. 2004).

Clustering. The 10 selected wavelet coefficients are passed on to superparamagnetic

clustering (SPC). SPC depends on a parameter T (called “temperature” due to its moti-
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vation from statistical physics). For each value of T, SPC partitions the input data in a
particular way. Our default is to use ny = 21 different values for T', equally spaced in
[0,0.2]. We use these independent n; data partionings in a combined way to select data
clusters.

The idea is to iterate through all temperatures from low to high: at each temperature
T; the clusters present at T; are sorted by size (i.e., number of spikes). Then, the i-th
largest cluster at 7} is selected for later processing if it is larger than the i-th largest cluster
at surrounding temperatures 7;_; and 7). During this iteration over the temperatures,
a unique cluster identification number is assigned to each selected cluster, and all spikes
belonging to a selected cluster are marked as its members. Importantly, all spikes already
marked at lower temperatures T < T; are not reassigned, but remain members of the
clusters selected earlier.

In other words, local maxima of “cluster size” as a function of “temperature” are se-
lected for later processing, and spikes are irreversibly assigned to clusters by moving from
low to high temperatures.

The following constraints apply: (1) A maximum number of C,,, clusters are selected
at any given temperature. (2) A cluster needs to contain at least S,;, spikes in order to be
selected, where S,,;, is defined either as an absolute number or as a fraction of the total
number of spikes. (3) The cluster assignment procedure begins at the second temperature
only, where local maxima are defined.

In this way, at each temperature up to C,,, clusters are read out from SPC, such that
each cluster contains at least S, ;, spikes. The cluster selection at different temperatures is
illustrated by Fig. 3.1 C (right panel). Note that typically a large fraction of spikes is not
assigned to any cluster at all, which makes a subsequent template matching step necessary.

Splitting of large clusters. Making use of all available temperatures considerably re-
duces the chances that a generated cluster contains spikes of two or more neurons (so-
called under-clustering). To further reduce the risk of under-clustering by splitting clus-
ters into sub-clusters, SPC clustering is run once again on every cluster that contains at
least R,,;, spikes (by default, R ;, = 2000).

First template matching. After clusters have been generated as outlined above, tem-

min min
plate matching is used to assign the yet unassigned spikes to existing clusters. For each
cluster, its mean spike waveform is calculated, along with a measure of its total variance,
s =1/ Zfi | var(x;), where var(x;) denotes the variance of the cluster at the i-th sampling
point. Then, the Euclidean distance between each spike and every cluster is calculated.
Each spike is assigned to the cluster closest to it, provided the distance is smaller than

f1-s. Here f is a factor that controls the radius around a mean waveform where template
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matching is possible, in units of the variability of that cluster. By default, we use the con-
servative value f; = 0.75 for this step, because another template matching step is applied
later, when pooling clusters from all blocks.

Re-iteration. After this first template matching step, the clustering procedure can be
re-iterated on all spikes that are still not assigned to any cluster. This iteration of clustering

and template-matching can be repeated N, times, but on our data, such iterations were

ep

unnecessary (hence by default N,., = 1; see also Section 3.3.2).

€p

Template matching across blocks

After all blocks of spikes from one channel have been independently spike-sorted, tem-
plate matching is applied across blocks to assign the remaining unclustered spikes, using
the same algorithm as for the within-block template matching. Here, we use f, = 3.

Spikes that are still not assigned to any cluster remain in a special “residual” cluster.

Post-sorting artifact rejection

Although our pre-sorting artifact detection algorithm removes large fractions of non-
neural events before spike sorting, it is still desirable to decide for each cluster whether
it corresponds to neuronal activity or to residual noise in the recording. Often, artifact
events appear in a stereotypical manner, e.g. in the case of sinusoidal electrical noise (see
right panel of Fig. 3.1 E for an example of such an artifact cluster).

Our algorithm designates a cluster as non-neural if it meets any of the three following
criteria based on its mean waveform. (/) The mean waveform has more than 5 local
maxima. (2) The ratio of the largest local maximum to the second largest local maximum
is less than 2, where only maxima separated by at least 0.3 ms are considered. (3) The
amplitude range covered in the second half of the mean waveform is greater than the
global maximum.

Furthermore, the standard error of the mean at each sampling point is calculated across
all spikes in the cluster. A cluster is designated as an artifact if the mean of these standard

errors across all sampling points is greater than 2 uV.

Merging of clusters from all blocks

At this stage of processing, each block of spikes has been spike-sorted independently,
remaining spikes have been assigned by template matching, and artifact clusters have been
identified.
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The next step is to create groups of clusters belonging to the same unit. The input to
this merging procedure is the pool of all non-artifact clusters from all blocks. The merging
procedure has two aims: First, after spike sorting, two or more clusters in one block often
correspond to the same unit (resulting from so-called over-clustering). Merging highly
similar clusters within one block reduces the amount of over-clustering. Second, the same
unit typically appears across many blocks (in sufficiently stable recordings, the same units
should appear in a// blocks). Merging highly similar clusters across blocks ensures that
units can be tracked over the entire duration of the recording. Guided by empirical test-
ing, we decided to perform both merging procedures — within and across blocks — in par-
allel. We use a simple hierarchical clustering method for cluster merging, based on the
Euclidean distance between mean spike waveforms of the cluster groups. After merging
the two clusters whose distance is minimal, the mean waveform is updated, and distances
are re-calculated. Merging stops once the minimal distance is greater than a predefined
threshold C,, (by default, C

stop = 1.8). Importantly, our algorithm saves the original

cluster identity of each spike, so that cluster grouping can later be undone if desired. It is
also possible to use this cluster identity as a feature for subsequent analyses. Examples of

cluster merging both within and across blocks are shown in Fig. 3.1 F.

Optional manual verification

Our spike sorting framework comes with a graphical user interface (GUI), which is used
to visualize sorting quality, to modify the grouping of clusters, and to mark additional
artifact clusters, if necessary. Fig. 3.2 B shows a screenshot of the GUI. Different cluster
visualization features are explained in Fig. 3.2 C through I. Some of these features are
inspired by a recent publication (Hill, Mehta, et al. 2011). The sparsely firing unit used
as an example in Fig. 3.2 C through I was tracked over the time course of 700 minutes.
The total number of spikes in this recording was approximately 330 000. More detailed

instructions on how to use the GUI are contained in Appendix A.2.

3.3 Results

Our method proved useful both for spike sorting of short recordings (up to one hour),
and for long-term tracking of unit activity over many hours. To demonstrate the broad
applicability of our framework, we evaluated it using four different datasets: (/) simulated
model data (simulated recording duration 10 minutes; Section 3.3.1), (2) simulated model

data with drift (simulated recording duration 10 hours; end of Section 3.3.1), (3) short
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recordings from a visual stimulus presentation experiment (Section 3.3.2), (4) whole-night

recordings from epilepsy patients (Section 3.3.3).

3.3.1 Validation on simulated model data

It is becoming increasingly recognized that in order to estimate the reliability of spike
sorting methods, using data with ground-truth is necessary (Einevoll, Franke, et al. 2012).
To evaluate our method in a setting where ground truth is available, we used a recent
dataset of simulated neural activity. Details regarding this dataset have been published
(Pedreira, Martinez, et al. 2012) and the data are available online (http://bioweb.me/
CPGJNM2012-dataset; Rey, Pedreira, et al. 2015). The dataset consists of 95 simulations,
each one representing 10 minutes of continuous recording, sampled at 24 kHz. Each sim-
ulation contains the activity of 2 to 20 neurons, superimposed on background noise and
multi-unit activity. There are 5 simulations for each number of neurons, resulting in a total
of 95 simulations. We chose this dataset because the performance of expert operators of
WaveClus on it has been evaluated (Pedreira, Martinez, et al. 2012). Using this dataset,
we analyzed our algorithm’s reliability by comparing its performance to ground truth, as
well as to expert operators’ results.

In a first step, spike detection was performed on the simulated dataset. Averaged over
the 95 simulations, only 79.2% (SD 8.3%) of all spikes were found, which is indicative of
the noise in the simulations (same numbers with WaveClus).

We then used our spike sorting method to spike-sort the extracted spikes. No post-
sorting artifact detection was performed because the simulations did not contain any ar-
tifacts. We spike-sorted the first of the 95 files several times with various settings to
empirically determine suitable parameters based on visual inspection of the spike sorting
results, and then used these parameters to evaluate our method on the remaining 94 simu-
lations. We used only one simulated channel for parameter optimization in order to avoid
overfitting of parameters. For a more complete evaluation of the various parameters, see
the following section.

We used the following parameter values: C,,,.

=75 Cop = 1.6; Npep = 25 Rypjpy =
1000; all other parameters were kept at their default values (see Table 3.1 for description

C and N,

stop> rep reflect the relatively

of parameters). The deviations from default in C,,,,,

large number of true clusters in the simulated data, and the change in R_;,, accounts for the

min
short overall duration of 10 minutes. We used our algorithm in its completely automatic
mode without any manual interaction to strictly avoid a bias of any sort. Fig. 3.3 A shows

samples of temperature plots with selected clusters marked.
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Figure 3.3: Performance of our algorithm on simulated data. A Cluster sizes at differ-
ent temperatures for one of 95 simulations (simulation_5). Each marked location corre-
sponds to an automatically selected cluster; up to C,,,, = 7 clusters are selected at each
temperature. Left panel, input to this clustering step were all spikes in one simulated chan-
nel. Right panel, input to this clustering step were all spikes not assigned to any cluster
during the first clustering step. B Performance of our algorithm on all simulated datasets.
Each simulated dataset contained action potentials from 2 to 20 neurons. For each simu-
lation, we calculated the number of 4its: a unit U generated by our spike sorting method
was considered a hit if at least 50% of the spikes in U belonged to one neuron and at least
50% of the spikes of that neuron were in U. Displayed is the number of hits as a function
of the number of neurons in the simulations (error bars denote s.e.m.). Note that our al-
gorithm is capable of detecting more than eight neurons, a typical maximum for manual
operation of WaveClus (Pedreira, Martinez, et al. 2012). C All automatically generated
clusters from simulation_5. Shown are spike counts and the percentage of spikes in the
detected unit that actually belonged to the corresponding neuron in the simulation. Eleven
clusters were hits, two clusters were no hits. Note that cluster C11 was perfectly detected
despite its low firing rate of 0.12 Hz. D Undoing an automatic merge in cluster C1 with
our graphical interface generated another hit.
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To quantify the success of spike sorting, we used the same score as in Pedreira, Mar-
tinez, etal. (2012): A givenunit U is considered a Ait if it fulfills the following two criteria:
(1) at least 50% of the spikes in U belong to one neuron; (2) at least 50% of the spikes
of that neuron are in U. See Fig. 3.3 C for an example where our algorithm automatically
generated 13 clusters, 11 which of were hits. We calculated the number of hits for each of
the 95 simulations in the test set. We then grouped the datasets by the number of neurons
present, and calculated the fraction of hits for each group (compare Table 1 in Pedreira,
Martinez, et al. 2012).

Our algorithm significantly outperformed manual expert operators. In its completely
automatic mode, it generated 71.5% (SD 13.8%) hits (percentage of simulated neurons),
while Pedreira, Martinez, et al. (2012) achieve 66.7% (SD 18.1%) on the same data with
experts manually operating WaveClus (T' = 31.5, p = 0.033; Wilcoxon signed-rank test).
Restricting analysis to the more difficult group of simulations with at least 8 neurons,
our algorithm generated 64.5% (SD 8.2%) hits, while Pedreira, Martinez, et al. (2012)
achieved 58.9% (SD 14.1%) hits (T = 12.0, p = 0.034; Wilcoxon signed-rank test).

We visualized the proportion of hits for each number of neurons present in the simu-
lations in Fig. 3.3 B (compare Fig. 4 in Pedreira, Martinez, et al. 2012). We also verified
that the number of hits can be further increased by manually optimizing sorting using our
graphical interface. Fig. 3.3 D shows an example where manually undoing an automatic

merge of two clusters produced an additional hit.

Evaluation at different parameter settings

Having evaluated the performance of our algorithm with one parameter setting, we sys-
tematically investigated the influence of the parameters on the sorting result. We analyzed
the same simulated dataset using a total of 48 different parameter settings. Specifically,
we tested all combinations of the following: C, .. € {5,7}, R, € {500, 1000,2000},
Nrep e {1,2}, CStop € {1.2,1.4,1.6,1.8}. For each of these settings, we quantified the
success of spike sorting by counting the number of hits in each simulation. The results
are displayed in Fig. 3.4. We used a Wilcoxon signed-rank test in order to compare the
number of hits at each parameter setting to the number of hits obtained by manual expert
operators in Pedreira, Martinez, et al. (2012). Our method outperformed manual operators
for 24 of the 48 different settings used, and in 13 settings, this difference was statistically
significant.

At the ranges tested here, Ry, Cyop» and Ny, monotonically influenced the number

of hits generated: Increasing C ., above 1.2 always led to a decrease in the number of hits

stop
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with all other parameters fixed (12 cases). The same was true when we increased R,;,

above 500 (16 cases), and when we changed N, from 2 to 1 (24 cases).

ep
The highest fraction of hits was obtained for the setting Cy,,x = 7, Rpyin = 500, N, =
2, and Cg,, = 1.2. At this setting, 83.6% (SD 8.0%) hits (percentage of simulated units)

were generated by our methods (manual operators in Pedreira, Martinez, et al. (2012):
66.7%, T = 3.0, p = 0.0003; Wilcoxon signed-rank test). The percentage of hits at the
best of the 48 parameter settings tested was higher than at the parameter setting we had
found by manually optimizing one simulated channel only (83.6% versus 71.5%). At the
best of the 48 parameter settings, when including only the more difficult group with at least
8 neurons, our algorithm generated 80.0% (SD 5.8%) hits (manual operators in Pedreira,
Martinez, et al. (2012): 58.9%, T = 0, p = 0.001; Wilcoxon signed-rank test).

Evaluation on multi-hour simulations

To test our algorithm’s capabilities at tracking neurons over many hours, we concatenated
the simulated data from Pedreira, Martinez, et al. (2012) after extracting spikes. For each
number of simulated neurons, ranging from 2 to 20, we chose the first simulation contain-
ing this specific number of neurons and concatenated it 60 times, resulting in a total of
19 simulations of 10 hours duration each. In order to make the spike sorting task more
difficult, we applied two modifications to each concatenated dataset: (/) We simulated
electrode drift by multiplying the extracted spikes with a factor that linearly increased
from 1 to 1.5 over the course of the 10 hours. (2) After this scaling, we added Gaus-
sian noise to each datapoint of the extracted spikes. The noise had a mean of zero and a
standard deviation of 20% of the maximum value attained in each simulation.

We then used our algorithm on the concatenated, modified simulations. We tested four
different parameter settings: Informed by the systematic parameter evaluation discussed
= 500, and N,., = 2. The parameter C

rep stop Was set to

above, we used C,,, = 7, R,
1.2, 1.4, 1.6, and 1.8, respectively. An example of a simulated unit that was successfully
tracked over 10 hours is shown in Fig. 3.5.

Fig. 3.6 shows the number of hits obtained at each setting and number of neurons. The

highest number of hits, obtained at C, = 1.4, was 74.6% (SD 17.1%).

stop

3.3.2 Validation on a picture presentation experiment

After validating our method’s performance on simulated data, we then turned to data
recorded from human subjects during a cognitive paradigm. Six epilepsy patients were im-

planted bilaterally with micro-electrodes in the medial temporal lobes (MTLs) as outlined
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Figure 3.4: Performance of our algorithm on simulated data at different parameter
settings. Results for a total of 48 different parameter settings are displayed. Each column
of panels corresponds to one value of R,;, (indicated above each column), and each row
of panels corresponds to one pair of values for N, and C,,, (indicated left of each row).
Colors correspond to four different values of C,,, as indicated by the legend in the lower
left. Each line plot shows the number of hits as a function of the number of neurons in
the simulation (error bars denote s.e.m.), compare Fig. 3.3 B. Each bar plot represents
the number of hits as a fraction of the number of neurons in the simulation (error bars
denote standard deviation). The presence of asterisks or ‘ns’ above each bar indicate that
the fraction of hits obtained at this particular choice of parameters is higher than the one
obtained by manual expert operators in Pedreira, Martinez, et al. (2012) (‘ns’ if p > .05;
*if p < .05; ** if p < .01; *** if p < .001). A Wilcoxon signed-rank test was used for
all comparisons. Bars without ‘ns’ or asterisks indicate parameters at which the fraction
of hits was lower than the one obtained by manual expert operators.
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Figure 3.5: Example of a simulated neuron successfully tracked over 10 hours. This
specific simulation was created by concatenating simulation_10 60 times, resulting in
a total of 820800 spikes. Drift was simulated by multiplying the extracted spikes by a
linearly increasing factor. Gaussian noise was added to the extracted spikes before sorting.
The tracked unit has 38411 spikes. Of these, 38 012 spikes belong to one unit in the
simulation (which consists of 40200 spikes), and 399 spikes belong to different units.
The unit was successfully tracked despite the drift. Each subpanel is labelled according
to its content. In the panel Amplitude over time, the tracked unit is displayed in blue, and
the same unit without drift and without added noise is displayed in orange for comparison.
Drift and added noise are clearly visible in the tracked unit.
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Figure 3.6: Performance of our algorithm on multi-hour simulated datasets. A Re-
sults for a total of 4 different parameter settings are displayed. The number of hits is shown
as a function of the number of neurons in the simulations. See B for color legend. B Each
bar represents the mean number of hits as a fraction of the number of neurons present in
the simulation. Error bars denote standard deviation. The colors of the bars correspond to
the lines in A.

in Chapter 2. We used a picture presentation paradigm to screen for neurons in the MTL
that responded selectively and possibly invariantly to a small number of visual stimuli. In
these “screening sessions”, the six patients were presented with 130 to 150 pictures (mean
138.3) of well-known persons, landscapes, animals, and other objects. Pictures were pre-
sented in a pseudorandomized order on a laptop screen. Each picture was presented six
times, for a duration of one second. Details of this paradigm have been described previ-
ously (Quian Quiroga, Reddy, et al. 2005; Mormann, Kornblith, et al. 2008; Mormann,
Dubois, et al. 2011).

We used our viewer program (see Fig. 3.2 A) to exclude recording channels that clearly
carried no unit activity. Starting from an initial total number of 536 channels, this left us
with 409 recording channels (range 36 to 87 per session, median 70) from the amygdala,

hippocampus, entorhinal cortex, and parahippocampal cortex.

We used our software in its completely automatic mode to extract spikes, remove
artifact spikes, sort spikes, and mark artifact clusters. The pre-sorting artifact rejection
removed different fractions of spikes on different channels: 6.3% of all spikes were re-
moved, but on some channels, up to 76.6% of the spikes were removed. See Table 3.2
for details and Fig. 3.7 for an example of a channel on which clean clusters and clear

neuronal responses were detected only after our pre-sorting artifact algorithm removed
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Artifact type % chan. aff. % spikes removed
mean max of all spikes
(all chan.) (aff. chan.)

Firing rate 6.4 13.1 67.2 23

Amplitude 30.1 0.5 3.7 0.1

Double detection 96.3 8.7 48.6 3.7

Concurrent 64.3 3.5 41.2 0.3

Any of the above 96.6 12.0 76.6 6.3

Table 3.2: Effect of pre-sorting artifact removal. These values show the variability of
artifacts across channels. For example, only 6.4% of all channels were affected by the
artifact criterion related to high firing rates, but on these affected channels, an average of
13.1% and a maximum of 67.2% of the spikes were removed. See main text for a detailed
description of different types of artifacts. chan., channels; aff., affected.

large amounts of noise. Fig. 3.7 D also shows examples of a correct post-sorting artifact
rejection, as well as an artifact cluster that the post-sorting artifact criterion missed (Clus-
ter 4 in Fig. 3.7 D). Table 3.2 and Fig. 3.7 also give an impression of both the amount and

characteristics of noise in the data used here.

To test the performance of our automated algorithm against an established standard, we
again chose WaveClus. We asked trained operators to analyze the same dataset: operators
sorted the data with WaveClus and optimized sorting results manually using its graphical
interface. These operators were uninformed about the analyses described here. Manual
operation of WaveClus typically resulted in fewer units per channel than application of our
automated method, see Fig. 3.8 D. We controlled for this difference in further evaluations

(see below and Section 3.4).

We tested to which extent the single- and multi-unit responses found by manual spike

sorting with WaveClus could be recovered by our automated method.

In the following, we use the term WaveClus sorting to refer to the clusters generated by
manual operation of WaveClus, and Combinato sorting to refer to the clusters generated
by our automated method.

To identify response-eliciting pictures and the corresponding single- or multi-units,
we used a simple response score algorithm (Mormann, Kornblith, et al. 2008; Mormann,
Dubois, et al. 2011; Mormann, Niediek, et al. 2015). Briefly, action potentials from all
six repetitions of a picture presentation (6 X 1000 ms) were binned into 19 overlap-
ping time-bins with a duration of 100 ms each and an overlap of 50 ms. The Mann—
Whitney U test was applied to each time-bin separately against a baseline distribution
consisting of all 500 ms intervals preceding all picture onsets. These 19 p-values were

subjected to the Benjamini-Hochberg procedure (Benjamini and Hochberg 1995), yield-
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Figure 3.7: Our algorithm applied to recordings from the human medial temporal lobe (MTL).
A 15 seconds of bandpass filtered data (passband 300 Hz to 1000 Hz) from a micro-electrode in the right
anterior hippocampus. Extraction threshold is marked in red. Several artifact events are clearly visible.
B This recording channel is extremely noisy: Our pre-sorting artifact detection removed ~ 77% of all
spikes from the recorded data. The pink lines depict the cumulative count of events over the course
of the recording (28 minutes). C Cluster sizes at different temperatures. Left panel, input to the first
clustering step were all non-artifact spikes. Right panel, input to the second clustering step were residual
spikes not assigned to any cluster in the first clustering step. Color code of marked dots as in Fig. 3.3.
D Output of our sorting algorithm. Post-sorting artifact detection correctly identified several artifact
clusters, but missed one (number 4). Six non-artifact clusters remain. E Result that expert operators
generated manually with WaveClus. Two clusters were identified, ~ 17 000 spikes were left unassigned.
F Results of the picture presentation experiment. Displayed are raster plots corresponding to Clusters 1
and 2 from D, and to Cluster 1 from E. Responses to four different pictures are shown. It is clearly
visible that Cluster D 2 responds sharply to pictures of four male celebrities, while the responses of
Cluster E 1 to the second, third and fourth picture are barely recognizable. No other cluster from D
responded to any stimulus. S, score of the response; R, rating given to the response by human raters
(see main text for details). Stimulus pictures displayed here have been replaced by similar pictures for
legal and privacy reasons.
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Figure 3.8: Evaluation of our algorithm on a visual stimulus presentation experiment. A Distribu-
tion of response scores. Some scores are extremely small, but the majority of scores lies in the interval
[107%, 10731 (1939 out of 2672; 72.6%) B Each response’s rating is defined as the sum of the binary votes
of five human raters. Of all 2672 ratings, 1596 (59.7%) were < 3, and 1076 (40.3%) were > 3. C Mean
score and standard deviation of responses at each rating. The relationship between mean scores and
ratings is strictly monotonic, but the variance of scores at each rating is large. D Histogram of the num-
bers of clusters that were generated, on the same recordings, by Combinato and WaveClus. On average,
Combinato generated more clusters. E Analysis of possible over-clustering. Displayed is the number of
stimuli for which a response was detected in more than one cluster of the same recording channel. F To-
tal numbers of detected responses. The numbers were corrected for possible over-clustering: only one
response was counted per stimulus and channel, even if the response was detected in multiple clusters.
Of all responses, 620 were detected both by Combinato and WaveClus. An additional 289 responses
were detected only by Combinato, and further 158 responses only by WaveClus. The opaque parts of
the bars correspond to responses that were rated 3 or better by expert raters. G Distribution of recording
channels and responses across regions. Opaque parts of the bars as in F.
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ing one single score. The combination of a neuronal cluster and a stimulus picture was
then called a response if the p-value obtained by this procedure was below 0.001, and if
action potentials were fired during at least four presentations of the picture.

We calculated response scores for all stimuli and all clusters from both sortings. For
every channel, we included its unsorted multi-unit activity as an additional cluster. The re-
sponse score algorithm yielded a total of 2672 numerically identified responses. Fig. 3.8 A
shows the distribution of all response scores.

Our aim was to compare how WaveClus and Combinato perform in finding responsive
neurons. Therefore, we could have compared how many numerically identified responses
both methods yielded (WaveClus, 1274; Combinato, 1398). However, this comparison
neglects two important aspects stemming from potential over-clustering: First, if Combi-
nato tended to over-cluster the data, would a simple response count not be inflated due
to responses from single neurons that would appear in multiple clusters because of over-
clustering? Second, would a higher number of clusters not increase the number of detected
responses simply because of false-positive detections? In light of these potential pitfalls,
we used the following approach to ensure a fair comparison between WaveClus and Com-
binato.

We asked five expert human raters to rate each of the 2672 identified responses. For
each response generated by the algorithm, raters were presented with a raster plot of the
neural activity during the six picture presentations, showing spikes from one second prior
to picture onset to one second after picture offset. Each rater was asked to assign a value
of either one or zero to each raster plot, indicating whether or not it contained the typical
pattern of a neuronal response. The total rating of the response was then defined as the
sum of all raters’ scores, resulting in a number between zero and five. The raters were
informed about the purpose of the procedure, but uninformed about the stimulus picture
and clustering method that had generated each raster plot. As a measure of inter-rater
agreement, we calculated Cohen’s k for each of the ten pairs of raters (Cohen 1960). The
median k¥ was 0.466 (range 0.258 to 0.525).

Fig. 3.8 B shows the distribution of ratings. The rating procedure confirmed the high
false-positive rate of the numeric response score: of all 2672 numerically detected re-
sponses, 1596 (59.7%) received a rating of less than 3, while 1076 (40.3%) were rated 3
or better. As expected, the mean numeric response score at a specific rating was a strictly
decreasing function of the rating, see Fig. 3.8 C. Spearman’s rank correlation coefficient
between the ranks and the scores was p = —0.399 (p = 10_102), and Kendall’s rank cor-
relation coefficient was 7, = —0.291 (p = 107112y,

We then used the ratings to control for possible over-clustering in the comparison of
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WaveClus and Combinato. First, if more than one cluster on a given channel responded
to the same stimulus, we kept only the response that had received the highest rating, and
dropped all others. This applied to 108 stimulus—channel combinations in the Combinato
sorting and 46 stimulus—channel combinations in the WaveClus sorting, see Fig. 3.8 E.
After removing all but one response for all of these stimulus—channel combinations, 778
responses remained in the WaveClus sorting, and 909 responses remained in the Combi-
nato sorting. By applying this control, we ensured that no stimulus—channel combination
could contribute more than once to these counts, which effectively ruled out response
count inflations due to over-clustering. Fig. 3.8 F depicts the distribution of these re-
sponses: 620 responses were detected in both the Combinato and the WaveClus sorting,
an additional 289 responses in the Combinato sorting only, and an additional 158 responses

in the WaveClus sorting only.

Second, to ensure that the higher response count in the Combinato sorting was not just
due to false-positive detections, we restricted our analyses to responses rated 3 or better.
Here, 265 responses were detected in both sortings, 73 in the Combinato sorting only, and

66 in the WaveClus sorting only.

Responses were detected in all regions we recorded from. Fig. 3.8 G shows the re-

gional distribution of responses as detected in the Combinato sorting.

A number of responses was detected by only one of the methods: 32% of the responses
detected by Combinato were not detected by WaveClus, and 20% of the responses detected
by WaveClus were not detected by Combinato. When including only responses rated 3 or
better, 22% of the responses detected by Combinato were not detected by WaveClus, and
20% of the responses detected by WaveClus were not detected by Combinato.

Fig. 3.9 shows five examples of responses that were detected by only one of the meth-
ods. These examples illustrate that several different factors can contribute to the differ-
ence in response detection. First, small differences in cluster composition can strongly
influence the numeric response score (Fig. 3.9 B, C, and E). In these cases, responses are
detected numerically by only one of the methods, despite relatively similar cluster com-
position. Second, better separation of clusters can render responses detectable that would
otherwise go unnoticed (Fig. 3.9 A). Third, the fact that we require at least one spike to be
fired during at least four picture presentations leads to the exclusion of some clusters that

would otherwise have a low numeric response score (Fig. 3.9 D).
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Figure 3.9: Responses detected by only one spike sorting algorithm. Displayed are five
different visual stimuli, and corresponding neuronal responses. Each row (A—E) shows
the visual stimulus presented and two raster plots. The raster plots on the left correspond
to a unit in the Combinato sorting, and the raster plots on the right correspond to a unit in
the WaveClus sorting, on the same channel. Differences in spike sorting become apparent.
A Combinato generated a sparse unit that enabled detection of the neuronal response. The
unit generated by manual operators of WaveClus was not detected as a response. B, C
Tiny differences in the units’ composition led to a large difference in the numeric response
score. D The unit generated by Combinato violates the requirement that one spike has to
be fired during at least four picture presentations. E Differences in unit composition led
to a large difference in the numeric response score. S, numeric score of the response; R,
rating given to the response by human raters. Stimulus pictures displayed here have been
replaced by similar pictures for legal and privacy reasons.
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3.3.3 Validation on whole-night recordings

Combinato was designed to work with long, possibly noisy, recordings. To test its per-
formance on such data, we used whole-night recordings from eight epilepsy patients, im-
planted with depth electrodes for presurgical monitoring and microwires as described in
Chapter 2. Recordings started between 18:00 and 21:00 and ended between 8:00 and 11:00

(see middle column in Fig. 3.10 for exact times).

We used selective neuronal responses to images and written names in order to assess
whether our method can track the activity of a single neuron over the course of an entire
night. For this purpose we conducted a “screening session” at the beginning and end
of each whole-night recording. These screening sessions differed only slightly from the
experiment described in the previous section: here, eight to eleven pictures were presented
to the patients. For each picture, a written representation of the picture’s content was also
presented (in seven out of the eight patients). Each picture and each written name was

presented ten to thirty times.

We used Combinato to extract and sort unit activity from all recordings. We then
analyzed the screening sessions at the beginning and end of each recording. To illus-
trate our findings in a qualitative way, we selected one representative channel from each
recording. Fig. 3.10 shows the unit activity recorded in these channels from eight different
patients. We chose channels carrying a selective neuronal response in both screening ses-
sions (evening and morning), see columns “Evening” and “Morning” in Fig. 3.10. These
responses allowed to analyze whether our method splits one neuron’s activity into several

different units in whole-night recordings.

The units displayed in Fig. 3.10 exhibit several phenomena: In three cases (Fig. 3.10 A,
B, and E), the response to the stimulus was contained in the same cluster both in the
evening and morning, and no other cluster showed any response to the same stimulus. In
Fig. 3.10 A and B, the response raster plots from evening and morning are highly similar,
whereas in Fig. 3.10 E, the response is much more pronounced in the evening than in the
morning.

In the five remaining cases (Fig. 3.10 C, D, F, G, H), more than one of the generated
clusters responded to the stimulus. In Fig. 3.10 C, a clear amplitude shift over the course
of the night is visible in the responsive clusters. The graphical user interface can be used
here to merge the two units into one continuous track. In Fig. 3.10D, G, and H, more
than one stable, responsive cluster exists throughout the recording. In each of these cases,
one of the tracked clusters creates the majority of the response, with small contributions

by the other clusters. All clusters were successfully and independently tracked. Careful
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Figure 3.10: Tracking of selectively responding neurons over an entire night. A—H show data from
eight patients. Continuous unit recordings started in the evening and ended the next morning. “Screen-
ing sessions” were performed at the beginning and in the end of each recording. Displayed are raster
plots for one stimulus image per screening session, along with inter-stimulus interval histograms. In all
patients but A, corresponding written names were presented. The middle column (“Night”) shows the
activity of units tracked automatically during the entire recording. Each small dot marks the time point
and maximal voltage of one action potential. Colors correspond to the raster plots from the screen-
ing sessions: units marked in gray do not respond to the images/written names. Units marked in blue,
red, or yellow respond to the images/written names as shown in the raster plots. Mean waveforms of
all responsive units are displayed for each hour recorded. A Stable waveform and response pattern.
B Amplitude variations are visible. As typical for parahippocampal units, unit does not respond to the
written name. C An amplitude shift in the responsive neuron (possibly caused by micro-movement
of the electrode) results in the detection of two different units, most likely belonging to one neuron.
D Two responsive clusters are generated. No response to the written name. E Stable waveform, but
very weak response in the morning. F Solid response in the evening and morning, but with separate
units. No definite conclusion about the success of tracking can be made. G The blue cluster generates
most of the response. The red cluster also contributes to the response. Both clusters are tracked with
a stable waveform. H Similar to G, with three responsive clusters. The red cluster generates most of
the response. The blue and yellow clusters contribute to the response. All three clusters have a stable
waveform. Hipp., hippocampus; Para., parahippocampal cortex; Amyg., amygdala. Stimulus pictures
displayed here have been replaced by similar pictures for legal and privacy reasons.
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inspection of waveforms and cross-correlograms using the graphical user interface is nec-
essary to decide whether over-clustering occurred. In the remaining case (Fig. 3.10 F), two
clusters are tracked throughout the night with a stable waveform, but one cluster responds
in the evening, and the other one in the morning. In this case, too, careful inspection of
waveforms and cross-correlograms is necessary.

In all eight cases in Fig. 3.10, there is a continuous background of spikes from clusters
showing no response to the selected stimulus. Note that in Fig. 3.10 B and D there was
no response to the written names of the pictures. These cells were either selective to a
different semantic content of the pictures or not semantically invariant at all.

For eight more examples of units tracked throughout an entire night, see Fig. 3.11.

3.4 Discussion of the new method

Spike sorting has been an important tool in electrophysiological research for decades. Ex-
isting algorithms are not optimized to be used with multi-hour datasets and do not handle
noisy recordings well. We here presented a complete framework for spike sorting of multi-
hour recordings under noisy conditions. Our evaluations showed that our tools outperform
current spike sorting methods both on simulated data, and in the analysis of a visual stimu-
lus presentation experiment. Furthermore, our method allows to reliably track single units

in the human MTL over the course of an entire night.

Presence of numerous, possibly sparse, neurons Pedreira and colleagues stated that
current spike sorting methods — even manually guided ones — can rarely detect more than
8—10 neurons (Pedreira, Martinez, et al. 2012). We have shown that our automated method
can reliably detect more than 10 neurons (Fig. 3.3 B and Fig. 3.4). Our algorithm copes
with the presence of many neurons by selecting many clusters at several temperatures,
and by applying SPC iteratively. Pedreira and colleagues also observe that sparsely firing
neurons are particularly hard to detect with current spike sorting methods (Pedreira, Mar-
tinez, et al. 2012). As our evaluation shows, our method is capable of correctly detecting
sparse neurons, e.g. units C10 and C11 in Fig. 3.3 C, consisting of 220 and 73 spikes,
respectively (2.21% and 0.73% of the 9942 spikes that were the input to clustering).

Large numbers of clusters per channel In many cases, our automated method gen-
erated more units than manual operators of WaveClus (Fig. 3.8 D). This could be due to
several reasons. First, our post-sorting artifact rejection sometimes missed artifact clus-

ters, e.g. unit D4 in Fig. 3.7 D. Such missed artifact clusters artificially increase the unit
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Figure 3.11: Tracking of selectively responding neurons over an entire night. A—H show contin-
uous unit recordings starting in the evening and ending the next morning. “Screening sessions” were
performed at the beginning and in the end of each recording. Displayed are raster plots for one stimu-
lus image per screening session. In all sessions, written names corresponding to the images were also
presented. Inter-stimulus interval histograms for the evening and morning are displayed. The middle
column (“Night”) shows the activity of units tracked automatically during the entire recording. Each
small dot marks the time point and maximal voltage of one action potential. Colors correspond to the
raster plots from the screening sessions: units marked in gray do not respond to the images/written
names. Units marked in blue, red, or yellow respond to the images/written names as shown in the
raster plots. Mean waveforms of all responsive units are displayed for each hour recorded. A, B, D,
E One responsive unit was continuously tracked throughout each recording. C, F, G, H Two, resp.
three responsive units were continuously tracked throughout each recording. However, contributions
to visual responses of each unit sometimes differ between evening and morning. As is often the case
in the parahippocampal cortex, units do not respond to written names. Hipp., hippocampus; Para.,
parahippocampal cortex; Amyg., amygdala.
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count. Since no ground truth is available for artifact clusters, the accuracy of our post-
sorting artifact rejection is difficult to estimate.

Second, there are cases where manual operators of WaveClus failed to separate two
or more true units. An example is provided in Fig. 3.7 D through F: the raster plots
(Fig. 3.7 F) show that our method correctly separated units D 1 and D 2, while operators
of WaveClus generated the under-clustered unit E 1.

Third, as Fig. 3.8 E indicates, over-clustering occurred more frequently in our method
than with manual operators of WaveClus. To avoid any bias introduced by over-clustering,
we counted no more than one responding cluster per stimulus and channel, so that over-
clustering could not artificially increase the number of responses. With and without
this correction, our method detected more neuronal responses than manual operators of
WaveClus. When the goal is to maximize the number of detected responses, a potentially
increased likelihood of over-clustering is justified. However, by modifying Combinato’s
parameters, researchers can systematically shift the balance between over- and under-
clustering according to the demands of the respective scientific question, an option (to
our knowledge) not available in other spike sorting methods.

As summarized by Pedreira, Martinez, et al. (2012), theoretical considerations predict
higher numbers of neurons per recording channel than typically observed with current
spike sorting techniques. Thus our result might represent unit counts more realistically

than other methods.

Properties of block-wise sorting We segmented spikes into blocks for spike sorting.
This has various advantages over spike sorting all spikes at once: First, periods of signal
contamination are often confined to short segments of the recording, and thereby affect
only a small number of blocks. The remaining, uncontaminated blocks are spike-sorted
independently, without the detrimental effects of large numbers of non-neural artifacts.

Second, especially in multi-hour sleep recordings, some units may be active only dur-
ing short parts of the recording. In a block-wise approach, these units have high chances
of being detected in the corresponding blocks, but might be overlooked if spikes from the
entire recording were sorted in one step.

Third, the computational time of spike sorting algorithms typically scales super-
linearly with the number of spikes sorted. A block-wise approach not only avoids these
super-linear computational costs, but also enables us to use a parallelized implementation
for the sorting of different blocks.

We used a fixed number of spikes per block (20 000 by default). Other ways of defin-

ing blocks are conceivable, e.g. a fixed amount of recording time for each block. There
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are two possible problems with a time-based definition of blocks: First, clinical record-
ings often suffer from short periods of signal contamination, during which a large number
of artifactual spikes is generated. In a time-based approach, short periods of signal con-
tamination thus pollute blocks of otherwise uncontaminated recording. In our approach,
if large numbers of artifactual spikes are generated, these are confined to blocks that cor-
respond to short amounts of recording time.

Second, in a time-based approach, researchers would necessarily have to adapt the
block length to the firing rates of the neurons recorded. Without such an adaptation, there
would be the risk of accumulating too few or too many spikes for successful spike sorting
in each block. However, even though this adaptation could be performed automatically, it
would introduce another algorithmic step without obvious benefits.

Several alternative approaches to the problem of sorting hundreds of thousands of
spikes are conceivable. One idea would be to generate clusters from a small random sub-
set of all spikes and use these clusters as templates in a template matching procedure. A
possible problem with this approach is that sparse units could be missed if no correspond-
ing template was generated. Furthermore, even short periods of signal contamination can
lead to the presence of large amounts of non-neural artifacts, which could in turn com-
promise the template matching procedure if no templates for the artifacts exist. Another
idea is implemented in spike sorting tools that use template matching as the main princi-
ple for clustering (Rutishauser, Schuman, et al. 2006; Knieling, Sridharan, et al. 2015).
While these methods have the advantage of working online, they continuously have to
solve the problem of when to open a new cluster, based on single spikes. This decision
problem might become harder in the presence of non-neural artifacts. Further studies are

necessary to determine how such methods perform in comparison to our framework.

Applicability to neuroscientific studies The four validation schemes used in this study
show that our framework is ready for use in a neuroscientific study. Fig. 3.7 D demon-
strates our method’s ability to spike-sort highly contaminated recordings.

Fig. 3.8 G shows response counts for each region we recorded from. Because each re-
sponse is defined as a pair of a stimulus and a neuronal unit, individual units can contribute
more than once to the counts. Several studies report the fraction of units that respond to
at least one stimulus (14% of all units in the MTL (Quian Quiroga, Reddy, et al. 2005);
11% of all units in the MTL (Quian Quiroga, Kraskov, et al. 2009); 9—-16% of all units in
individual MTL subregions (Mormann, Kornblith, et al. 2008)). These studies also report
responses by one neuron to more than one stimulus, either by example (Quian Quiroga,

Kraskov, et al. 2009) or as a summary statistic: in one study, the average percentage of



68 3. A framework for reliable multi-hour single-unit tracking

stimuli eliciting a response in a responsive neuron was 4.7% in the parahippocampal cor-
tex, 1.7% in the entorhinal cortex and hippocampus, and 2.4% in the amygdala (Mormann,
Kornblith, et al. 2008).

An exhaustive analysis of response counts is beyond the scope of the present work.
Nevertheless, we report here the response statistics for the Combinato sorting: 11.9-26.7%
of all units responded to at least one stimulus, depending on MTL subregions. The average
percentage of stimuli eliciting a response in a responsive neuron was 3.7% in the parahip-
pocampal cortex, 1.5% in the entorhinal cortex, 2.3% in the hippocampus, and 2.1% in
the amygdala.

The average percentages of response-eliciting stimuli per responsive neuron we ob-
served are in good agreement with the findings of Mormann, Kornblith, et al. (2008).
As discussed in Mormann, Kornblith, et al. (2008), a likely reason for the higher aver-
age number of response-eliciting stimuli in the parahippocampal cortex with respect to
the other regions is that parahippocampal units respond less selectively to the stimulus
material used here.

Our evaluation of whole-night recordings demonstrates the feasibility of tracking re-
sponsive units in the human MTL over the course of an entire night. In Chapter 4 we
use this capability to study a potential mechanism of memory consolidation during sleep
at the level of single neurons. Apart from mechanisms related to memory consolidation,
processes underlying the generation of epileptic seizures are a relevant topic of research
(Mormann, Andrzejak, et al. 2007). A question of particular interest would be how firing
patterns of single neurons change in the hours before an epileptic seizure (Gast, Niediek,
et al. 2016).

Micro-electrode recordings from the human brain are a novel and still developing tech-
nique. Our method can be used to evaluate the stability of multi-hour recordings in order
to optimize recording procedures and to identify potential problems and pitfalls. Suitable
methods to assess recording stability have been proposed by several authors (Schmitzer-
Torbert, Jackson, et al. 2005; Tolias, Ecker, et al. 2007). Another interesting question
concerns the activity of visually responsive neurons during sleep, also addressed in Chap-
ter 4. Bondar, Leopold, et al. (2009) addressed questions regarding the response stability
of such neurons in the infero-temporal cortex of rhesus monkeys, by comparing responses

across different recording sessions.

Future directions We concatenated existing simulated datasets to evaluate our algo-
rithms on multi-hour data where ground truth is available. Despite the fact that we in-

creased the difficulty of the spike sorting task by adding drift and noise, our algorithms
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correctly identified 74.6% of the simulated units. For further quantitative evaluations, sim-
ulation algorithms as in Martinez, Pedreira, et al. (2009) and Hagen, Ness, et al. (2015)
could be used to create multi-hour datasets with ground truth available.

Many spike sorting algorithms employ template matching at some point. Template
matching can be performed in many different ways. Our template matching algorithm is
based on the Euclidean distance in waveform space. Rutishauser and colleagues use dis-
tances based on the Euclidean distance, with the option to use pre-whitened waveforms
(Rutishauser, Schuman, et al. 2006). Friedman and colleagues use a more complex match-
ing method (“rebuilding from cores”). Integrating such template matching algorithms into
our tools could lead to further improvement (Friedman, Keselman, et al. 2015).

The trade-off between over- and under-clustering deserves further investigation. As
we have shown, our methods make it possible to automatically sample a wide range of
settings, which directly influence unit counts. Depending on the specific research question
at hand, different points along this parameter range will prove optimal.

In contrast to human recordings, animal electrophysiologists have long been using
stereotrodes, tetrodes, and multitrodes, which increase both clustering quality and unit
yield (Harris, Henze, et al. 2000; Schmitzer-Torbert, Jackson, et al. 2005). As of yet, our
software has been tested only with single-wire electrodes. An adaptation to multi-wire
electrodes would require only small changes in the code and would certainly broaden the

scope of our software.

Availability

We implemented Combinato in Python. The full source code is available as a GitHub
repository (https://github.com/jniediek/combinato) under the MIT license. In-
stallation instructions for Combinato are contained in Appendix A.1, and a comprehensive

user guide is contained in Appendix A.2.
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Chapter 4

Reactivation of concept cells during

sleep after episodic learning

The aim of this chapter is to test our hypothesis that the coordinated activity of concept
neurons is a physiological substrate of “memory traces” in humans, as outlined in Sec-
tion 1.5. This chapter presents the relevant methods (Section 4.1) and results (Section 4.2).

A discussion of the results is presented in Chapter 5.

4.1 Materials and methods

4.1.1 Subjects and Recordings

Twenty-three epilepsy patients (13 female; aged 20 to 62, median 41, years) suffering from
pharmacologically intractable epilepsy participated in the study. Subjects were implanted
with depth electrodes for intracerebral electroencephalographic monitoring to localize the
epileptic focus, as described in Section 2.2.

A total of 57 whole-night recordings (typically lasting from 19:00 to 08:00 of the next
day) were performed for this study.

4.1.2 Polysomnography and sleep staging

Polysomnography (PSG) was recorded in 54 of the whole-night recording sessions
(Schwarzer EEG system, 23 sessions; Neuralynx ATLAS system, 31 sessions). Elec-
troencephalographic (EEG) electrodes C3, C4, F3, F4, O1, O2, Cbl, Cb2 were recorded
along with the electrooculogram (EOG) and electromyogram (EMG) derived at the chin.

Sleep staging was performed in 43 recording sessions (in the remaining 11 sessions,

71
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PSG electrodes were not continuously maintained due to head dressing and other clinical
demands). Sleep scoring was performed according to Iber, Ancoli-Israel, et al. (2007) in
windows of 30 s, and EEG as well as EOG recording channels were digitally re-referenced
to Cb1l or Cb2, whichever gave the cleaner signal. Data were digitally filtered according
to Iber, Ancoli-Israel, et al. (2007). Sleep staging was performed with the software Poly-
man (22 sessions; http://www.edfplus.info/downloads/) or with our publicly acces-
sible signal viewer (21 sessions; https://github.com/jniediek/combinato/tree/

master/signalviewer).

4.1.3 Study design

Each experimental session spanned two days. In the morning of Day 1, a screening session
was conducted to identify visually responsive neurons and the corresponding response-
eliciting pictures (details below).

In the evening of Day 1, subjects performed an episodic memory task consisting of
a learning and a recall part (“Fotonovela”, see Fig. 4.1 a; details below). In the morning
of Day 2, subjects again performed the recall task. To assess if responsive neurons were
stably recorded, and to test for invariance of neuronal responses, subjects performed three
short screening sessions: before and after the episodic memory task in the evening of
Day 1, and after the recall task in the morning of Day 2. See Fig. 4.1 b for the exact time
course of one experimental session.

Note that during Day 1, between the screening session in the morning and the episodic
memory task in the evening, some subjects participated in other, unrelated experiments,

as is common in human single-unit research.

4.1.4 Identification of visually responsive neurons

Visually responsive neurons and response-eliciting pictures (Section 1.4; Quian Quiroga,
Reddy, et al. 2005; Quian Quiroga, Kraskov, et al. 2009) were identified as follows (see
also Section 3.3.2): 100 to 150 pictures of famous people, acquaintances of the subjects,
animals, landscapes, and objects were presented on a laptop computer (pseudorandom-
ized order, 1 s presentation time, jittered onset, 6 or 10 presentations per stimulus). After
automated spike extraction and sorting by either WaveClus (Quian Quiroga, Nadasdy, et
al. 2004) or Combinato (Chapter 3; Niediek, Bostrom, et al. 2016), visually responsive
neurons and the corresponding response-eliciting stimuli were identified according to a
published response criterion (Mormann, Kornblith, et al. 2008; Mormann, Dubois, et al.
2011; Mormann, Niediek, et al. 2015; Niediek, Bostrom, et al. 2016): spike times of each
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unit during the 6 or 10 repetitions of each picture presentation were binned into 19 over-
lapping bins (duration 100 ms, overlap 50 ms). A baseline distribution was generated from
the intervals preceding each picture onset (—500 ms to 0 ms relative to picture onset). A
Mann—Whitney U test against this baseline was applied to each of the bins separately.
The 19 resulting p-values were subjected to the Benjamini—Hochberg procedure (Ben-
jamini and Hochberg 1995), yielding a single response score. For each unit, all stimuli
were sorted by their response score. Up to 12 response-eliciting stimuli were selected for

the episodic memory task.

4.1.5 Episodic memory task: “Fotonovela”

To induce coordinated, sequential activity in a population of concept neurons, we cre-
ated an episodic memory task (“Fotonovela) involving pictures found to elicit neuronal
responses in the screening sessions in the morning.

The Fotonovela task was designed around a simple story to be memorized by the sub-
jects. For each recording session, this story was created from the response-eliciting pic-
tures identified in the morning (Section 4.1.4). The story was presented as a sequence of
slides on a laptop computer (see Fig. 4.1 a, “Learning”).

Each slide contained one response-eliciting picture in its center, the corresponding
written name as a title above the picture, and two to four written sentences beneath the
picture. The titles were chosen as follows: for pictures containing a person, e.g. an actress
or an acquaintance of the subject, the given name and family name of that person were
used. For pictures containing an object, e.g. a food item, the name of the object in German
language was used. For other cases, such as buildings or logos, a name was chosen that
unambiguously identified the picture for the subject, in some cases by asking the subject
to choose a name before the experiment.

The sentences beneath the pictures referred to the picture on the previous slide, the
picture on the currently displayed slide, and the picture on the subsequent slide, creating
an episodic link between the individual items of the story. Each story consisted of between
6 and 12 (median 9) such slides with pictures and sentences.

The memory task consisted of two parts: learning the story and recalling it (see
Fig. 4.1 a). In the learning part (“Learning” in Fig. 4.1 a), subjects were instructed to
memorize the story by viewing and reading the slides in a self-paced manner. Subjects
proceeded from one slide to the next by pressing a key. A fixation cross was displayed
for 15 s after the last slide. Subjects were instructed to repeat this learning part as often as

they felt necessary to memorize the story.
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When subjects indicated readiness to recall the entire story (“Recall” in Fig. 4.1 a),
they were asked to name the first item in the story. Thereafter, the picture of the correct
first response was displayed as an indication whether the subject’s response was correct.
This picture remained visible while the subject recalled the second item. Then the correct
second item appeared as feedback, and the first item disappeared. Recall proceeded in this
manner until the last picture.

The recall of an item was scored as correct if the correct item was named at the correct
position in the story, and as incorrect if the subject named an item at an incorrect position
within the story, or was unable to name the correct item. Subjects had to correctly recall
the entire story six times. The experimenter logged the time points of all responses by key
presses, which also triggered the progression of the feedback pictures. In the morning of
Day 2, subjects performed the recall part once, in exactly the same manner.

Details on the implementation of the experiment in software are given in Section 2.2.

4.1.6 Short screening sessions

The purpose of the short screening sessions (conducted in the evening of Day 1 and morn-
ing of Day 2, see Fig. 4.1 b) was twofold: to measure neuronal responses to pictures and
written names independently of the memory task, and to verify that neuronal responses
were present at the beginning and in the end of whole-night recordings. All pictures and
written names used in the episodic memory task were presented on a laptop computer
(pseudorandom order, pictures and written names randomly interspersed, 1 s presentation
time, jittered onset, 10 presentations per picture/written name). In four sessions, only

pictures but no written names were presented for technical reasons.

4.1.7 Processing of whole-night neuronal recordings

Neuronal activity was recorded from the evening of Day 1 through the morning of Day 2.
We used Combinato (Chapter 3; Niediek, Bostrom, et al. 2016) to exclude recording
channels carrying no neuronal signal, and to extract spikes from all remaining channels.

Python 2.7 was used for all data processing steps and all analyses, unless stated otherwise.

Exclusion of highly correlated channels

We sometimes observed nearly identical firing times (lag < 0.5 ms) on two (rarely three)
microwires of one bundle. This most likely originated from an imperfect spread/splay

of the microwires, with their tips ending in too close proximity. In each such case, we
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excluded all but one of the involved microwires from further analysis by the following
procedure. For each pair of microwires in one bundle, we computed cross-correlograms
of firing times (before spike sorting; lags —10 ms to 10 ms, bin size 0.5 ms) in windows of
20 min duration. We excluded one of the two microwires in a pair if 50% or more of the

spike-time lags fell into the range —0.5 ms to 0.5 ms in three or more 20 min windows.

Channel selection, recording stability

After automatic removal of non-neural artifacts by Combinato, we used Combinato to per-
form fully automated spike sorting of all remaining spikes. Default parameters were used,
except for setting Sy, = 25 (minimum number of spikes in a cluster) and Cy,, = 1.6

(threshold for automatic merging; see Table 3.1 for all default parameter settings).
Raster plots and peri-stimulus time-histograms were plotted and visually inspected
for all units and all visual stimuli. Recording channels on which no unit showed a visible
response to any stimulus were excluded from further analysis. The remaining channels
were processed in Combinato’s graphical user interface to manually remove remaining

artifacts and to merge highly similar units.

Some units can be recorded only for a part of the recording duration in multi-hour
recordings (as discussed in detail in Chapter 3; see also Niediek, Bostrom, et al. 2016).
We thus quantified the recording stability of a unit as the fraction of time-windows of
duration 5 min during which the unit’s firing rate was at least 5% of its average firing
rate across the night. All units with recording stability less than 90% were excluded from

further analysis.

Responsive neurons in whole-night recordings

Data from the short screening sessions (Section 4.1.6) were used to identify neuronal re-
sponses in an automated way. The following procedure was applied independently to the
data from the short screening sessions in the evening of Day 1, and from the short screen-
ing session in the morning of Day 2. For the evening data, the short screening sessions
before and after the episodic memory task were analyzed as a whole. Note that only the
pictures and written names used in the episodic memory task were used as stimuli in these

short screening sessions.

For each neuronal unit and each visually presented stimulus, we calculated the average

number of spikes fired during all stimulus presentations, denoted by Ny ; for stimulus i.
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We defined the selectivity index for stimulus i as the following variant of the z-score:

Nspk,i —mean;, (Nspk,j)
std;.; (N, SPk,j>

ST, :=

)

By definition, a high selectivity index corresponds to an elevated spike count for one
stimulus, compared to the other stimuli. However, the selectivity index alone does not
detect typical properties of a response (e.g., a well-defined onset latency). We thus com-
bined the selectivity index with the following response score (Mormann, Kornblith, et al.
2008; Mormann, Dubois, et al. 2011; Mormann, Niediek, et al. 2015; Niediek, Bostrom,
et al. 2016): for a stimulus that had been presented N times (N = 20 in the evening of
Day 1, N = 10 in the morning of Day 2), we subdivided the Nx 1000 ms onset-aligned

presentation time into 19 overlapping time-bins (duration 100 ms, overlap 50 ms).

We then used the Wilcoxon signed-rank test to compare the firing rate in each of these
bins to a baseline defined as the 500 ms interval before stimulus onset. This generated 19 p-
values (one for each bin), which we combined into a single response score by applying the
Benjamini—Hochberg procedure (Benjamini and Hochberg 1995). We denote the response

score for stimulus i by RS;.

We defined the following criteria for neuronal responses, based on the selectivity index

and the response score.

SI;>5 and RS; <1 (4.1
SI, >3 and RS, <.5 4.2)
SI;>1 and RS; <.001. (4.3)

A pair of a neuronal unit and a stimulus was defined as a response if it met at least one of
the criteria (4.1)—(4.3). We use the term responsive unit to refer to a unit that responded
to a stimulus picture either in the evening, or morning, or both. A neuronal response
was defined as invariant if the unit responded to exactly one stimulus picture and to the
corresponding written name, or if it responded to exactly one stimulus picture and had
a selectivity index of at least 3 for the corresponding written name. We use the term
invariant unit to refer to a unit that responded invariantly either in the evening, morning,

or both. In particular, invariant units are a subset of responsive units.
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Data included in main analyses

Only whole-night recordings with sleep staging and at least one responsive unit were in-

cluded for analysis, resulting in a total of 40 sessions (out of 57) from 17 patients.

4.1.8 Ripples in the local field potential

For the defining properties and relevance of ripples in the local field potential see Sec-
tion 1.3.3.

Downsampling and re-referencing to local references

For all analyses of the local field potential (LFP), we downsampled the data recorded
from microwires to 2000 Hz (19 sessions) or 2048 Hz (21 sessions). We used the script
ncs2h5.py from Combinato for downsampling (https://github.com/jniediek/
combinato/blob/master/signalviewer/ncs2h5. py).

Some microwire recording channels were initially referenced to a reference wire from
a different bundle of microwires. For each of these channels, we chose a new, local ref-
erence channel, and digitally re-referenced the recording to this new reference, in order
to ensure that all analyzed LFP signals originated from tissue in close proximity to the
contacts. We used the script parse_cheetah_logfile.py from Combinato to read out
the physical references of each channel (https://github.com/jniediek/combinato/
blob/master/tools/parse_cheetah_logfile.py).

Ripple detection and classification

For the detection of ripple events we followed the methodology of Nir, Staba, et al. (2011).
For all microwires in the hippocampus, the signal was filtered between 80 Hz and 200 Hz
(4th order Butterworth bandpass filter, applied forward and backwards to prevent phase
shifts). The Hilbert transform was used to extract the instantaneous amplitude of the sig-
nal. The resulting signal was normalized to z-scores (i.e., subtraction of mean and division
by standard deviation) in blocks of 5 min duration. A candidate ripple event was defined as
a period during which the signal exceeded a z-score of three for at least 10 ms and at most
150 ms. After the detection step, the maximum of the z-score transformed signal within
each candidate event was determined. A period of 1 s around the maximum was cut out
from the unfiltered, locally re-referenced, downsampled data for each event, and its mean

subtracted. Events whose absolute voltage exceeded 750 uV during the 1 s window were
discarded.


https://github.com/jniediek/combinato/blob/master/signalviewer/ncs2h5.py
https://github.com/jniediek/combinato/blob/master/signalviewer/ncs2h5.py
https://github.com/jniediek/combinato/blob/master/tools/parse_cheetah_logfile.py
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Following Burnos, Hilfiker, et al. (2014), we used the S transform (Stockwell trans-
form; Stockwell, Mansinha, et al. 1996) to estimate the central frequency of each candidate
ripple event. We used the function tfr_array_stockwell from MNE (Gramfort, Luessi,
etal. 2013, 2014; https://martinos.org/mne). The central frequency was defined as
the dominant frequency above 60 Hz when averaging the S-transformed event over its en-
tire duration. We discarded all events with central frequency above 150 Hz as potential

“fast ripples” and stored the remaining events for further analysis.

4.1.9 Main data analysis
Preprocessing of unit data

To ensure that correlational measures were not artificially inflated by spikes or artifacts
recorded on more than one channel, we iterated over all pairs of units in each session.
Whenever spikes from two units in a pair had a time difference of less than 0.3 ms, one of
the spikes was discarded.

The visual presentation of response-eliciting stimuli by definition leads to neuronal
responses (i.e., immediate elevations of firing rates). Since we were interested in memory
consolidation subsequent to the actual presentation of visual stimuli, all analyses were
restricted to the time after the last experiment subjects performed in the evening (i.e.,
the last short screening session) and before the first experiment subjects performed in the
morning (i.e., the recall task). In particular, all results refer to time periods during which

we did not present any of the visual stimuli to the subjects.

Firing rate comparisons

For each unit, we calculated firing rates in bins (bin duration 10 ).

As a measure of effect size for modulation of unit activity by sleep stages, we calcu-
lated, for each unit, Hedges’ g for the comparison of sleep stages Awake vs. SWS, and
Awake vs. REM. Hedges’ g is a measure of effect size defined as (Hedges 1981, p. 110)

mean; — mean,
\/(nl—l)var1+(n2—1)var2 ’

ny+ny,—2

g::

where in this case n; and n, are the counts of 10s bins in the two sleep stages to be
compared, and mean;/mean, (var;/var,) refer to the mean value (variance) of firing rates
calculated across bins, for each of the two sleep stages. We used a two-sided Wilcoxon

signed-rank test against zero to determine significant differences from zero in sleep-stage


https://martinos.org/mne

4.1. Materials and methods 79

modulation at the level of neuronal populations, and we used a two-sided Mann—Whitney
U test to test for differing sleep-stage modulation of neuronal populations (such as non-
responsive vs. responsive neurons).

As a complementary analytic approach, we computed numbers of sleep-stage modu-
lated units, again for comparisons of sleep stages Awake vs. SWS, and Awake vs. REM:
a unit was operationally defined as sleep-stage modulated if the p-value of a two-sided
Mann—Whitney U test of all 10s bins from the two sleep stages under comparison was
below a = 0.001. The direction of modulation was determined by comparing the mean
firing rates in the two sleep stages under comparison. We used a two-sided binomial test
(chance level 50%) to determine significance of count differences for all sleep-stage mod-
ulated units (e.g., to determine if significantly more units were inhibited in REM sleep

vs. waking than vice versa).

Analysis of LFP ripples

All hippocampal ripple events with a central frequency below 150 Hz were included in the
analysis. Ripple event rates in sleep stages Awake, REM, and SWS were calculated by
binning (bin duration 10 s, data from time during cognitive tasks excluded from analysis
as explained above).

To analyze the participation of neurons in LFP ripples, we computed, for each unit,
Hedges’ g for the time periods before ripple events versus during ripple events (before,
—375 ms to —125 ms relative to ripple center; during, —125 ms to 125 ms relative to ripple
center). We used a two-sided Wilcoxon signed-rank test against zero to assess significance
of unit modulation by ripples for neuronal populations, and a two-sided Mann—Whitney
U test to compare ripple modulation of different groups of units (e.g., non-responsive

VS. responsive units).

Spike-count correlations

For a unit U, and a time window T subdivided into N bins of equal duration, denote by
v; 7 the vector of counts of spikes fired by U; in each bin of T'. We defined the spike-count

correlation of units U, and U, during T as

rSC(Ul’ UZ’ T) = rPearson(Ul,T’ UZ,T)’

where rpg,son denotes the Pearson correlation coefficient (Cohen and Kohn 2011). To

compute spike-count correlations in a time-resolved manner, we divided the time after the
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Set Bin dur. [ms] Bin overlap [ms] Window dur. [s] Window overlap [s]

1 40 20 6 3
2 200 0 30 10
3 1000 0 300 100

Table 4.1: Parameter sets for spike-count correlations. dur., duration.

last evening experiment and before the first morning experiment into overlapping time
windows. To analyze the effect of the various analysis parameters involved, we used
three different parameter sets for bin duration, bin overlap, window duration, and window
overlap (see Table 4.1). For each experimental session, each pair of neurons recorded, and
each parameter set, we thus obtained a time series of spike-count correlations. To compare
spike-count correlations, we computed, for each pair of units and sleep stages Awake,
REM, and SWS, the mean spike-count correlation across all time windows within the said
sleep stages. We then used a two-sided Mann—Whitney U test to assess significance of
differences between sleep stages and between groups of pairs of neurons (e.g., pairs of
non-responsive units vs. pairs of responsive units).

The magnitude of spike-count correlations has been reported to depend, among other
factors, on the distance between the two neurons in the brain (Cohen and Kohn 2011). To
avoid confounding effects of distance, we report spike-count correlations only from pairs
of units recorded on the same bundle of microwires. Additionally, to avoid confounding
effects of spike sorting, we excluded pairs of units recorded on the same microwire.

To compute spike-count correlations during LFP ripples for pairs of units, we built
vectors of the counts of the units’ spikes during ripple events (—125 ms to 125 ms relative
to ripple center), and computed the Pearson correlation coefficient of these vectors of
counts (i.e., we used each ripple event as a time bin when generating the vector of counts).
For each pair, we used the recording channel with the higher ripple rate to define the
relevant time points. To minimize the effect of chance correlations, we excluded from this
analysis, for each sleep stage separately, channels with less than ten ripple events in that
sleep stage. Note that due to the varying numbers of ripple events across channels, the

lengths of the vectors of counts used in this analysis necessarily varied, too.

Cross-correlations

To identify stereotypically ordered firing among pairs of concept neurons (i.e., “leader—
follower” relations) and to analyze the precise timing of ordered firing, we calculated
cross-correlograms for each pair of responsive units (maximum lag 300 ms, bin width

3 ms), for each sleep stage separately. Only units responding to exactly one stimulus were
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included in this analysis. To avoid possible confounding effects of spike sorting, pairs of
units recorded on the same microwire were excluded from this analysis.

To estimate peak cross-correlation times, we smoothed each cross-correlogram by con-
volution with a Gaussian window (standard deviation 3 ms) and determined a lag at which
the smoothed cross-correlogram attained its maximum (denoted by 7, in the following).

We operationally defined the asymmetry of a cross-correlogram as

asym := sign (7, ) —Npos ~ Moeg
= eak ) ’ ’
P N, pos + N, neg

where N, and N, denote the numbers of positive and negative lags constituting the
cross-correlogram. In particular, this definition entails that cross-correlograms in which
peak time and the majority of lags have the same sign (“consistent” cross-correlograms)
have positive asymmetry, whereas cross-correlograms in which the signs of the peak time
and of the majority of lags differ (“inconsistent” cross-correlograms) have negative asym-
metry.

For a pair of two responsive units recorded in one session and each responding to
exactly one stimulus, we defined the relative (stimulus) position as the difference of the
position numbers of the two units’ preferred stimuli in the Fotonovela story. For example,
if unit A responded to “Lois Griffin” and unit B to “My brother”, and “My brother” im-
mediately followed “Lois Griffin” in the Fotonovela, the relative stimulus position of the
pair (unit A, unit B) was —1. We calculated the Pearson correlation coefficient between
relative positions and peak cross-correlation times after normalizing to non-negative rel-
ative positions (by swapping the sign of peak cross-correlation times for negative relative
positions). We computed a linear least-squares fit to the same data for display purposes
only.

To account for effects of stimulus order on firing order regardless of precise timing,
we defined, for each pair of responsive neurons, the firing order as the sign of the peak
cross-correlation time, and the stimulus order as the sign of the relative stimulus position.
A pair of responsive units was defined as a forward pair if the firing order and stimulus
order coincided, and as a reverse pair otherwise. We excluded pairs of responsive neurons
from this analysis if the absolute value of their peak cross-correlation time was below 3 ms,
because estimating the “true” firing order becomes unreliable at short lags. A two-sided
binomial test (chance level 50%) was used to assess significance of count differences of
forward vs. reverse pairs.

Estimating the firing order from a cross-correlogram also becomes unreliable when

Npos and Ny, are either very small or very close, i.e., when either the total number of
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lags in the cross-correlogram is low or when its asymmetry is close to zero. To system-
atically analyze the influence of the number of lags and asymmetry on the counts of for-
ward and reverse pairs, we sorted all cross-correlograms either by number of lags or by
asymmetry, and computed the number of forward minus reverse pairs at each step: for
k=1,..

cross-correlograms with most lags, and for the k cross-correlograms with highest asym-

- s Mgl pairs» W€ computed the number of forward versus reverse pairs for the k
metry. For each k, we computed, from a binomial distribution (chance level 50%), the
minimum differences “forward minus reverse pairs” that would be significant at « = 0.05
and « = 0.01, and compared the observed differences “forward minus reverse pairs” to

these hypothetical values.

4.2 Results

Subjects learned a simple story (“Fotonovela”; Fig. 4.1 a; Section 4.1.5) constructed from
pictures that had previously been identified as eliciting selective responses in neurons
of the hippocampus, amygdala, and parahippocampal cortex (“concept neurons”; Quian
Quiroga, Reddy, et al. 2005; Quian Quiroga, Kraskov, et al. 2009; Section 1.4). The
purpose of the Fotonovela was to create a well-defined memory episode with an observable
correlate (“memory trace”) at the level of single neurons: behaviorally, the Fotonovela
linked various semantic contents in a fixed sequential order, while neurophysiologically,

the activity of concept neurons represented these contents.

In this section, we test Hypotheses 1-5, outlined in Section 1.5, by examining the

activity of concept neurons during sleep after learning.

4.2.1 Behavioral results

The Fotonovela stories consisted of a sequence of 6 to 12 slides (median 9). Each slide
contained a picture that elicited the response of a concept neuron, a corresponding title, and
two to four sentences connecting the content of each slide to the previous and next one,
thus creating episodic links between the slides. Each experiment began in the evening.
Immediately after self-paced learning, subjects freely recalled the story six times. This
recall was repeated once more in the next morning. Subjects correctly recalled 98.7%
(SD 3.7%) of all items in the last evening repetition and 93.9% (SD 9.4%) in the morning,
see Fig. 4.1 d.
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Figure 4.1: Tracking concept neurons during sleep. a, Subjects learned a simple story involving up to
12 items (concepts) in a defined sequential order. Subjects first read (“Learning”), then told (“Recall”)
the story. b, Sample time course of an experimental session. Top: Hypnogram from one session along
with the times of three Screenings, Learning, and Recall. Bottom: A single unit tracked across the entire
night, with time axis corresponding to the hypnogram. Displayed are amplitudes of action potentials
over time. ¢, Responses of two invariant single units. Left half: Same unit as in b. The unit responds
to visual presentations of the picture and written name of “Professor Elger”. The raster plots show
responses from all 10 trials in each of the three Screenings. Inter-spike interval (IST) histograms for the
screenings in the evening and morning are also displayed. Note the similarity of raster plots and ISI
histograms despite the time gap of approx. 12 h. Waveform of action potentials is displayed as a density
plot. Right half: A unit from a different patient, responding to the picture and written name of “Lois
Griffin”. d, Performance in the recall task. Bar plots indicate the fraction (mean + S.D.) of correctly

recalled story items out of all items for the first and last of the six recall runs in the evening, and for the
morning run.
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Figure 4.2: Units analyzed. a, Counts of included recording channels, multi and single units, and
responsive units. A unit is counted as responsive if it responds to at least one stimulus in at least one
of the screening sessions in the evening or in the morning. The entorhinal cortex was excluded from
all further analyses because of the low number of responsive neurons. b, Displayed data corresponds
to Screenings 1 and 2 only (evening, see Fig. 1 b). Displayed are counts of units responding to one
picture but not its written name, and exactly one picture and its written name (“invariant neurons”).
The fraction of invariant neurons is significantly higher in Hipp. and Amyg. than in Parahipp. (both
p < 0.01; Fisher’s exact test). ¢, Numbers of responses that were detected in the evening only, in the
morning only, or both in the evening and morning. Amyg., amygdala; Parahipp., parahippocampal

cortex; Ent., entorhinal cortex; Hipp., hippocampus.

4.2.2 Recording of concept neurons across entire nights

We recorded neuronal activity from 1437 single- and multi-units in 40 sessions throughout
entire nights including sleep (regional distribution of units in Fig. 4.2 a; for methodology of
whole-night unit analysis see Chapter 3; Niediek, Bostrom, et al. 2016). Polysomnography

was recorded for sleep staging.

Fig. 4.1 b shows the activity of a concept neuron throughout a night, along with sleep
stages. Selective responses of this neuron to its preferred stimulus “Professor Elger”, pre-
sented as both a picture and written name, are displayed in Fig. 4.1 c along with another
example of a neuron responding selectively to a picture of “Lois Griffin” and the corre-
sponding written name. Short “screening sessions” were conducted at the beginning and
end of each whole-night recording session to formally assess responses to pictures and
names. A total of 350 single- and multi-units responded selectively to one or more of the

pictures in the evening or in the morning (called “responsive” units in the following, other
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units will be referred to as “non-responsive”). Of these responsive neurons, 97 responded
also to the corresponding written name (called “invariant” units in the following). The
proportion of invariant units was significantly higher in the amygdala and hippocampus
than in the parahippocampal cortex (Fig. 4.2 b). The fraction of neuronal responses that
were reliably detected both in the evening and next morning was 21.6% in the amygdala,
20.1% in the parahippocampal cortex, and 23.1% in the hippocampus (Fig. 4.2 c; see also
Chapter 5).

4.2.3 Motivation for subsequent analyses

As outlined in Section 1.2, memory consolidation is a process by which declarative mem-
ories initially dependent on the hippocampus are transferred to cortical areas, thereby
gradually becoming independent of the hippocampus. A possible mechanism of mem-
ory consolidation is the repeated reactivation of initially labile “memory traces” by the
hippocampus, mostly during slow-wave sleep. However, the physiological substrate of
these memory traces has remained elusive. Human hippocampal concept neurons have
been proposed as building blocks of memory (Section 1.4; Quian Quiroga 2012).

This thesis tests the idea that the neurophysiological correlate of memory traces is the
coordinated activity of concept neurons: as explained in Section 1.5, we suggest that dur-
ing the original experience of a memory episode, the coordinated activity of hippocampal
concept neurons rapidly encodes the memory episode in a labile form, and that the re-
activation of the same ensemble of concept neurons during subsequent slow-wave sleep

consolidates the memory.

4.2.4 Sleep-stage modulation of concept neurons

If memory traces are reactivated during slow-wave sleep and if concept neurons form
memory traces, then concept neurons necessarily have to be active during slow-wave
sleep. In fact, firing rates of concept neurons in the hippocampus during slow-wave sleep
did, on average, not differ significantly from waking (Fig. 4.3 a; sleep-stage modulation
quantified by Hedges’ g; times when subjects were actively participating in the experi-
ments were excluded from all analyses; see Section 4.1.9). Hedges’ g for non-responsive
(NR), responsive (R), and invariant (I) units were -0.08, 0.03, and 0.06, respectively (none
significantly different from zero; two-sided Wilcoxon signed-rank test). Theories of mem-
ory consolidation do not associate REM sleep with declarative memory consolidation.
In line with this view, concept neurons in the hippocampus were significantly inhibited

during REM sleep compared to waking (Fig. 4.3 b); Hedges’ g for NR, R, and I units
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Figure 4.3: Concept neurons are modulated by sleep stages. a, Awake vs. SWS. In
the amygdala and parahippocampal cortex, units were more active during waking than
during SWS, as quantified by Hedges’ g. This effect was larger for responsive and in-
variant neurons than for non-responsive neurons (the difference was significant only for
non-responsive versus responsive units in the amygdala). Hippocampal neurons did not
significantly differ between waking and SWS. b, Awake vs. REM. In the amygdala and
hippocampus, units were significantly more active during waking than REM. This ef-
fect was significantly larger for responsive and invariant units than for non-responsive
neurons. Parahippocampal units did not significantly differ between waking and REM.
Amyg., amygdala; Parahipp., parahippocampal cortex; Hipp., hippocampus.
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Figure 4.4: Counts of sleep-stage-modulated concept neurons. Displayed are counts of
modulated and non-modulated units (related to Fig. 4.3). a, Awake vs. SWS. In the amyg-
dala and parahippocampal cortex, more units exhibited increased activity during waking
vs. SWS than vice versa. In the hippocampus, counts of modulated units did not signif-
icantly differ between waking and SWS. Above each bar, the proportion of units with
“Awake > SWS”-modulation out of all modulated units is displayed. Asterisks/n.s. corre-
spond to a two-sided binomial test (chance level 50%) of the number of units with “Awake
> SWS” among all modulated units. b, Awake vs. REM. In the amygdala and hippocam-
pus, more units exhibited increased activity during waking vs. REM than vice versa. In
the parahippocampal cortex, counts of modulated units did not significantly differ between
waking and REM. Information above each bar as in a, but for “Awake > REM”-modulated
units. Amyg., amygdala; Parahipp., parahippocampal cortex; Hipp., hippocampus.
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were 0.03, 0.19, and 0.32, respectively (all p < 0.01; two-sided Wilcoxon signed-rank
test). This modulation was significantly stronger both for invariant and responsive neu-
rons than for non-responsive neurons (NR vs. R, p < 0.05; NR vs. I, p < 0.01; two-sided
Mann—Whitney U test). In the amygdala, neurons were less active both during slow-wave
sleep and REM sleep compared to waking, whereas neurons in the parahippocampal cortex
were less active during slow-wave sleep but not during REM sleep compared to waking
(Fig. 4.3 aand b). The same picture emerged when, instead of quantifying the strength of
modulation, we analyzed counts of units, categorized operationally as either sleep-stage
modulated or not (Fig. 4.4).

4.2.5 Sharp-wave ripples

Spatial memory consolidation in rodents is believed to take place mostly during sharp-
wave ripples in slow-wave sleep (Section 1.3.3; Buzsaki 1989, 2015). Although hip-
pocampal ripples have been described in humans (Bragin, Engel, et al. 1999; Nir, Staba,
et al. 2011; Staresina, Bergmann, et al. 2015), their relation to concept neurons (to our
knowledge) has never been explored. Fig. 4.5 a shows a sample ripple event in the hip-
pocampus with an action potential of a concept neuron fired concurrently (ripple detection
methods are described in Section 4.1.8). As expected, ripple rates were lower during REM
sleep than during waking and slow-wave sleep (Fig. 4.5 b). Fig. 4.5 ¢ shows action po-
tentials of the invariant units from Fig. 4.1 ¢ during ripples. Firing of NR, R, and I units
was strongly linked to ripples: we used Hedges’ g to quantify the increase of firing during
vs. before ripples (Fig. 4.5 d). NR, R, and I units had an average Hedges’ g of 0.23, 0.26,
and 0.32, respectively, for modulation by awake ripples, and 0.39, 0.44, and 0.47, respec-
tively, for modulation by ripples in slow-wave sleep (all p < 107%; two-sided Wilcoxon
signed-rank test). During waking, both R and I neurons were significantly more strongly
linked to ripples than NR neurons (both p < .05; two-sided Mann—Whitney U test). How-
ever, during slow-wave sleep, the modulation by ripples exhibited higher variance, and

the strength of modulation did not significantly differ for NR vs. R/I units.

4.2.6 Spike-count correlations

Next, we tested whether ensembles of concept neurons linked through a common mem-
ory episode (here, the Fotonovela) were concurrently reactivated during sleep after learn-
ing. We defined the spike-count correlation of a pair of concept neurons in a given time-
window as the Pearson correlation coefficient of vectors of spike-counts, obtained by

counting spikes in bins subdividing the time-window (Section 4.1.9; Cohen and Kohn
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Figure 4.5: Concept neurons are reactivated during ripples and reflect episodic memory. a, Sample
ripple event. Top, unfiltered data; center, filtered for display (bandpass, 80 Hz to 200 Hz); bottom, time-
frequency analysis by Stockwell transform. b, Ripple rates in the hippocampus during waking, REM
sleep, and SWS. ¢, Raster plots of two concept neurons (same as in Fig. 1 ¢) time-locked to ripples.
Firing rates were elevated during ripples. d, Firing rate increase of non-responsive, responsive, and
invariant units during awake ripples and SWS ripples. Hedges’ g was calculated for “during ripple”
(—125ms to 125 ms relative to ripple center) versus “before ripple” (=375 ms to —125 ms relative to
ripple center). All types of units showed significantly increased firing during ripples (all p < 107%; two-
sided Wilcoxon signed-rank test against 0). This increase was higher during SWS than during waking,
higher for responsive units and highest for invariant units (Mann—Whitney U test). e, Spike-count
correlations in the hippocampus from one experimental session. Displayed are the hypnogram along
with mean spike-count correlations for all three types of units (5 min windows of 1 s bins; Parameter
Set 3 in Table 4.1). f, Spike-count correlations during waking and SWS. Spike-count correlations were
higher for both responsive and invariant units than for non-responsive units (Mann—Whitney U test).
g, Spike-count correlations during ripples. Responsive and invariant units exhibited higher spike-count
correlations during ripples than non-responsive units, both during waking and SWS (Mann—Whitney U
test). In d and g, differences in unit counts for Awake ripples vs. SWS ripples arise because no SWS
ripples were detected on some channels.
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Figure 4.6: Spike-count correlations for different analysis parameters. a, Windows of 5 min dura-
tion consisting of non-overlapping 1 s bins. b, Windows of 30 s duration consisting of non-overlapping
200 ms bins. ¢, Windows of 6 s duration consisting of 40 ms bins with an overlap of 20ms. Amyg.,
amygdala; Parahipp., parahippocampal cortex; Hipp., hippocampus.
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2011; for a similar approach in rats see Wilson and McNaughton 1994). We computed
average spike-count correlations for all pairs of non-responsive, responsive, and invariant
neurons (separately for each region). A sample time course of spike-count correlations
(computed in 5 min windows) in the hippocampus of one subject is displayed in Fig. 4.5 ¢
along with sleep stages. Hippocampal spike-count correlations were significantly higher
for responsive and invariant units compared to non-responsive units both during waking
and slow-wave sleep (Fig. 4.5 f; average spike-count correlations for NR, R, and I units
during waking, 0.03, 0.05, and 0.08, respectively; during slow-wave sleep, 0.05, 0.07,
and 0.09 respectively; comparison NR vs. R and NR vs. I, all p < 0.01; two-sided Mann—
Whitney U test). Spike-count correlations were generally higher during slow-wave sleep
than during waking (NR units, p < 0.0001; R units, p < 0.05; I units, n.s.; two-sided
Mann—Whitney U test). We also analyzed spike-count correlations during ripples by tak-
ing each ripple event as a time bin (Fig. 4.5 g). Because of varying ripple event rates across
recordings, the lengths of the spike-count vectors also varied (lengths during waking, 233
to 9034 (median, 1109); during slow-wave sleep, 30 to 2407 (median, 664); see also Sec-
tion 4.1.9). The average spike-count correlations during ripples during waking for NR, R,
and I units were 0.06, 0.08, and 0.10, respectively, and during ripples during slow-wave
sleep, 0.03, 0.06, and 0.10, respectively (NR vs. R, all p < 0.01; NR vs. I, all p < 0.05.;
two-sided Mann—Whitney U test).

To understand at which temporal scale the reactivation of memory traces takes place,
we analyzed spike-count correlations in windows of lengths varying from 6 s (40 ms bins)
to Smin (1 s bins; see Fig. 4.6 for results and Table 4.1 for all parameter values). We
also performed the same analysis for pairs of neurons in the amygdala and in the parahip-
pocampal cortex. We observed three general trends: first, in all three regions, spike-count
correlations were generally smallest for bins of 40 ms duration, had intermediate values
for bins of 200 ms duration, and were highest for bins of 1 s duration. Second, in all three
regions, spike-count correlations were generally higher during slow-wave sleep than dur-
ing waking and REM sleep. Third, in all three regions, both pairs of R units and pairs of
I units generally had higher spike-count correlations than pairs of NR units.

In the following, we outline our results for each of the three regions; see also Fig. 4.6.
All p-values reported for the three regions resulted from a two-sided Mann—Whitney U
test.

In the amygdala, we observed higher spike-count correlations for pairs of R units com-
pared to pairs of NR units at all temporal scales and during all sleep stages (all p < 0.001).
Pairs of I units also had higher spike-count correlations than pairs of NR units at all tem-

poral scales and during all sleep stages, but this difference was significant only during
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waking (p < 0.05 at all temporal scales).

In the parahippocampal cortex, pairs of R units had significantly higher spike-count
correlations than pairs of NR units at all temporal scales during slow-wave sleep (all p <
0.001), but during waking and REM sleep, this difference was significant only for bins
of 1s duration (Parameter Set 3 in Table 4.1; both p < 0.05). Spike-count correlations
of pairs of I units were significantly higher compared to pairs of NR units only during
slow-wave sleep for bins of 1 s duration (Parameter Set 3 in Table 4.1).

In the hippocampus, pairs of R units had significantly higher spike-count correlations
than pairs of NR units at all temporal scales and during all sleep stages (all p < 0.01).
Pairs of I units had significantly higher spike-count correlations than pairs of NR units at
all temporal scales during waking and REM sleep (all p < 0.05). During slow-wave sleep,
spike-count correlations of pairs of I units were significantly higher compared to pairs of
NR units only for bins of 1 s duration (Parameter Set 3 in Table 4.1; p < 0.01).

To summarize, these results show that concept neurons related through a common
memory episode featuring their preferred stimuli were concurrently reactivated during
subsequent sleep, indicating consolidation of the “what” component of episodic memories

through reactivation of concept neurons.

4.2.7 Temporal order: cross-correlations

We next turned to the temporal order of events — the “when” component of episodic mem-
ory. In rats, the temporal order of neuronal firing during behavior is preserved during
subsequent rest and sleep (Section 1.3.4; this “neuronal replay” is considered a hallmark
of memory consolidation; Skaggs and McNaughton 1996; Lee and Wilson 2002). By the
analogy between rodent place cells and human concept neurons, we hypothesized that in
humans, the temporal order of concepts in a memory episode could be represented by the
temporal order of concept neuron firing during consolidation.

The Fotonovela defined a specific temporal order among concepts for which concept
neurons had been identified. To identify temporal order in concept neuron firing after
learning, we computed cross-correlograms between all pairs of responsive neurons (sepa-
rately for each region; Section 4.1.9). Asymmetries of cross-correlograms were elevated
during slow-wave sleep compared to waking, indicating the emergence of stereotypically
ordered firing among many pairs of concept neurons during slow-wave sleep (Fig. 4.7 a
shows an example; Fig. 4.7 b shows comparisons; awake vs. slow-wave sleep, p < 0.0001
in each region; two-sided Mann—Whitney U test; for the definition of asymmetry, see Sec-

tion 4.1.9). These asymmetries were most pronounced during ripples (Fig. 4.7 b; asym-
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Figure 4.7: Cross-correlation times of concept neurons do not reflect temporal order of stimuli.
a, Sample cross-correlograms for a pair of concept neurons in the hippocampus. The cross-correlation
was more asymmetric during SWS than during REM sleep and waking, and most asymmetric during
ripples (for methods, see Section 4.1.9). b, Asymmetries in different sleep stages. Absolute values
of asymmetry were significantly higher during SWS than during REM sleep and waking. Asymme-
tries were highly elevated during ripples. N, counts of cross-correlograms included in the analysis.
Small differences in N between sleep stages arise because asymmetry is not defined for empty cross-
correlograms. ¢, Peak cross-correlation times in different sleep stages. Many peak cross-correlation
times are on the order believed to be relevant for spike-timing-dependent plasticity. Vertical lines at
25ms. d, Cross-correlation times by stimulus distance. The stimulus distance was defined by the
Fotonovela learning experiment. Sign of peak times was normalized by relative stimulus position (see
Section 4.1.9). Contrary to what the analogy between rat place cells and human concept neurons would
suggest, stimulus distance and cross-correlation peak times were not systematically correlated. rho,
Pearson’s correlation coefficient; gray errorbars, standard deviation.
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Figure 4.8: Stimulus order and firing order, sorted by “number of lags” and “asymmetry”. A
pair of responsive units was defined as ‘forward’ (Fwd) if the order of the units’ preferred stimuli in
the Fotonovela and the firing order (defined by peak cross-correlation time) coincided, and as ‘reverse*
(Rev) otherwise. Top panels in a—c depict numbers of forward pairs (colored bars) and reverse pairs
(empty bars; significant deviation from chance determined by two-sided binomial test with chance level
50%). Numbers correspond to the points marked by vertical lines in the middle panels. Middle panels
depict the difference ‘Fwd minus Rev’ for subsets of the most populated (a) or most asymmetric (b, ¢)
cross-correlograms. Bottom panels depict the sorting criterion used in the corresponding middle panels.
a, Pairs of units sorted by number of lags in cross-correlogram. Vertical lines denote the last pair with
a cross-correlogram containing at least 100 lags. Reverse pairs prevailed in the hippocampus during
waking (p < 0.05). b, Pairs sorted by asymmetry of cross-correlogram. Vertical lines denote the last
pair with non-negative asymmetry: cross-correlograms to the right of the vertical line are inconsistent
(i.e., the signs of their peak time and prevailing constituent lags differ; see Section 4.1.9). ¢, Similar
to b, but only for cross-correlograms with at least 100 lags. Vertical lines denote the last pair with
non-negative asymmetry. Reverse pairs prevailed in the hippocampus during ripples during slow-wave
sleep (p < 0.05).
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metries in the hippocampus during all times vs. during ripples only, p < 0.0001 for both
waking and slow-wave sleep; two-sided Mann—Whitney U test), and more pronounced
during ripples in slow-wave sleep compared to ripples during waking (p < 0.0001; two-
sided Mann—Whitney U test).

Asymmetric cross-correlations with short peak times potentially hint at synapse mod-
ifications, as action potentials fired in sequence with a sufficiently short lag have been
shown to modify synaptic efficacy, a phenomenon known as Hebbian learning or spike-
timing-dependent plasticity (Section 1.3.5; Hebb 1949; Bliss and Lemo 1973; Levy and
Steward 1983; Markram, Liibke, et al. 1997). In turn, the formation of long-lasting mem-
ories is believed to be based on synapse modifications (Bliss and Collingridge 1993; Kan-
del, Dudai, et al. 2014). We computed the cross-correlation peak times for all pairs of
responsive neurons (Fig. 4.7 c¢). Peak times were shorter during slow-wave sleep and
waking compared to REM sleep (fraction of peak cross-correlation times below 25 ms for
waking/REM sleep/slow-wave sleep: amygdala, 59.4%/26.3%/66.7%; parahippocampal
cortex, 30.8%/15.0%/25.7%; hippocampus, 28.3%/18.7%/26.9%; for waking/slow-wave
sleep during hippocampal ripples, 53.2%/51.0%).

In rats, the activity of place cells during rest or sleep reproduces trajectories from ear-
lier running (Lee and Wilson 2002; Davidson, Kloosterman, et al. 2009). In the Fotonov-
ela, concepts appear in a fixed order. For each pair of responsive neurons, we computed
the Pearson correlation coefficient between the relative position numbers of the neurons’
preferred stimuli in the Fotonovela and their peak cross-correlation time, normalized by
the sign of the stimuli’s relative position. Surprisingly, this correlation was not significant
in any region or sleep stage (Fig. 4.7 d; methods in Section 4.1.9).

The exact values of peak cross-correlation times likely depend on numerous factors,
e.g., the number of synapses between indirectly connected neurons. To analyze the tem-
poral order of activity of responsive units regardless of the exact times of peak cross-
correlation, we classified each pair of responsive units as either a ‘forward pair’ if the sign
of their peak cross-correlation time and the order of their preferred stimuli coincided, or a
‘reverse pair’ otherwise (Section 4.1.9 and Fig. 4.8). Investigation across a range of analy-
sis parameters revealed a significant prevalence of reverse pairs compared to forward pairs
in the hippocampus during waking (Fig. 4.8 a; 43.9% forward pairs) and during ripples
in slow-wave sleep (Fig. 4.8 c; 40.9% forward pairs). However, since these effects were
very unstable across analysis parameters (as displayed in Fig. 4.8), we conclude that no
reliable, systematic effect of stimulus order on the temporal order of activity of concept

neurons could be observed in our data. All results are discussed more broadly in Chapter 5.
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Chapter 5
Discussion

We set out to identify a mechanism of human episodic memory consolidation during sleep
at the level of concept neurons. Epilepsy patients implanted with micro-electrodes in their
medial temporal lobes performed a story-learning task that defined a specific sequential
order among visual stimuli. We developed and evaluated a complete framework for the
analysis of whole-night single-unit recordings. We recorded from concept neurons tuned
to these stimuli during entire nights after learning.

These were our main findings:

1. Concept neurons provided a stable and invariant representation of semantic content

across entire nights including sleep.

2. In the hippocampus, the activity of concept neurons was systematically modulated
by sleep stages, with similar activity levels during waking and slow-wave sleep and

marked inhibition during REM sleep.
3. Concept neurons were more active during ripples than outside of ripples.

4. Conceptneurons activated during learning were more correlated than non-responsive
neurons. Correlations were highest during slow-wave sleep. Correlations were also

elevated during ripples.

5. Concept neurons had asymmetric cross-correlograms. These cross-correlograms
were most asymmetric during slow-wave sleep. Many peak cross-correlation times

were on the order believed to be relevant for synapse modification.

6. Asymmetric cross-correlations did not systematically correspond to the order of

stimuli in the episodic learning task.
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How do these results contribute to the understanding of memory consolidation? The
standard view of systems memory consolidation posits that during memory encoding,
memory traces are rapidly formed in the hippocampus, and that memory consolidation
takes place by the reactivation of these hippocampal memory traces during subsequent
slow-wave sleep (Frankland and Bontempi 2005).

We propose that the coordinated activity of concept neurons in the hippocampus is a
physiological correlate of the hippocampal memory trace.

Specifically, we argue that hippocampal concept neurons represent the content of
memory episodes in a compact manner, and that the coordinated reactivation of content-
specific ensembles of hippocampal concept neurons during slow-wave sleep (especially
during ripples) leads to the creation of a long-lasting association (i.e., episodic memory)
between the concepts represented by the individual concept neurons. We also suggest that
concept neurons in the amygdala and parahippocampal cortex play a similar albeit not
identical role.

In the following, we will outline how our data support our model proposition, relate
our data to our Hypotheses 1-5 outlined in Section 1.5, and discuss possible limitations

of our study.

Invariance and constancy of concept neurons

If concept neurons indeed represent content in memory consolidation, the representation
has to be semantically invariant (otherwise it could not represent content) and stable over
the time course of consolidation (otherwise consolidation could not take place by reac-
tivation of the same neurons). This is the content of our Hypothesis 1 in Section 1.5.
The results we presented in Section 3.3.3 and Fig. 4.2 b show that a substantial portion of
concept neurons indeed represents concepts invariantly and after an entire night of sleep.

More technical aspects of this point are discussed further below.

Sleep-stage modulation

Concept neurons in the hippocampus were as active during slow-wave sleep as during
waking (Section 4.2.4 and Figs. 4.3 and 4.4). Activity during slow-wave sleep is a neces-
sary requirement if the claim holds that hippocampal memory traces formed from concept
neurons are reactivated (Hypothesis 2 in Section 1.5). On the other hand, the marked in-
hibition of hippocampal units during REM sleep fits the view that declarative memory

consolidation does not take place during REM sleep.
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The significantly stronger relative inhibition of responsive and invariant neurons ver-
sus non-responsive neurons during REM sleep could result from an elevated activity of
responsive and invariant neurons during waking prior to sleep (e.g., as part of memory
consolidation or potential “rehearsal” already during waking; for the notion that consol-
idation by reactivation can begin already during rest after learning before the onset of
sleep see e.g., Davidson, Kloosterman, et al. 2009; Foster and Wilson 2006). Alterna-
tively, the observed effect could result from the presence of non-concept neurons in the
non-responsive population.

In rats, Mizuseki and Buzséki (2013) reported decreased activity in REM sleep versus
waking and only slightly increased activity in slow-wave sleep versus waking for principal
cells in CA1l, CA3, and in the dentate gyrus, a picture highly similar to our finding in
human concept neurons. It remains open how this picture relates to Pavlides and Winson
(1989), who reported significant increases in firing rates in both slow-wave and REM sleep
compared to waking for place cells in CA1 that were active during pre-sleep behavior, and
small increases for those that were inactive.

In the parahippocampal cortex, we found a strong inhibition of concept neurons during
slow-wave sleep versus waking, but no inhibition during REM sleep. This fits the notion
that the parahippocampal cortex is better described as a high-level sensory area than as
core part of the declarative memory system. Our observation that significantly fewer units
in the parahippocampal cortex were invariant than in the other two regions also points
towards a sensory function of the parahippocampal cortex.

In the amygdala, concept neurons were inhibited during both slow-wave and REM
sleep compared to waking. Several lesion studies concluded that the amygdala is not as
relevant as the hippocampus for declarative memory (Section 1.1.3; Zola-Morgan and
Squire 1993). Other studies have shown a role for the amygdala in emotional memory
consolidation (Girardeau, Inema, et al. 2017). The visual stimuli in our episodic memory
task were generally neutral and not controlled for emotional content, a gap to be filled by

future studies.

Ripples

In rodents, there is convincing evidence that the reactivation of hippocampal memory
traces is strongly linked to ripples, and that ripples are necessary for normal memory con-
solidation (Girardeau, Benchenane, et al. 2009; Ego-Stengel and Wilson 2010).

In line with the notion that reactivations of memory traces happen mostly during rip-

ples, our data showed an elevated activity of hippocampal concept neurons during ripples
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(Section 4.2.5; this is Hypothesis 3 in Section 1.5). This elevation was greater during slow-
wave sleep than during waking. The difference could result from an alternation between
two states during waking: the encoding state without ripples, where concept neurons are
active as part of memory trace formation, and the consolidation state with ripples, where
concept neurons are active as part of memory trace reactivation. During slow-wave sleep,
the encoding state does not exist, leading to a higher net difference in concept neuron
activity between epochs with ripples and without ripples.

During waking, the modulation of firing by ripples was significantly stronger for re-
sponsive and invariant neurons than for non-responsive neurons. A possible interpretation
is that the non-responsive neurons did not participate as much in consolidation because
the content potentially represented by them may not have been present in any recently

encoded memory episode.

Spike-count correlations

In rats, Wilson and McNaughton (1994) showed that — as predicted by models of memory
consolidation — pairs of neurons concurrently active during exploration were concurrently
reactivated during subsequent slow-wave sleep. Our data demonstrate the same mech-
anism in humans: responsive and invariant neurons (i.e., the neurons activated during
learning) had higher spike-count correlations than non-responsive neurons, during both
waking and slow-wave sleep (Section 4.2.6; Fig. 4.5 e, g and Fig. 4.6; this is Hypothe-
sis 4 in Section 1.5). This can be interpreted as concurrent reactivations of exactly those
neuronal ensembles that were concurrently activated already during learning, which is the
essence of our proposition that learning-related ensembles of concept neurons are a neuro-
physiological correlate of hippocampal memory traces. The same effect was also present
during ripples (Fig. 4.5 f). The smaller absolute values for spike-count correlations during
ripples versus all times can possibly be attributed to the different analysis parameters such
as the number of bins and the bin duration.

The following (as of yet hypothetical) situation could also explain the observed effects
regarding spike-count correlations: if concept neurons formed a network with moderate
to strong correlations among its members, while the non-responsive population also en-
compassed non-concept neurons whose activity only weakly correlated with any other
neurons, then concept neurons would exhibit elevated spike-count correlations compared
to non-responsive neurons, similar to our observations, without any meaning to content-
specific memory consolidation. While there is no concrete evidence for this scenario,

targeted experiments are required for a definite conclusion. Such experiments could, for
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example, include only some of a pool of identified responsive neurons in a learning task,

and compare reactivations of the included vs. non-included responsive neurons.

Cross-correlations

We found highly asymmetric cross-correlations of concept neurons during slow-wave
sleep, and less asymmetric cross-correlations during waking and REM sleep. Surpris-
ingly, neither cross-correlation peak times nor the direction of asymmetries were system-
atically related to the order of stimuli in the episodic memory task (Section 4.2.7; Figs. 4.7
and 4.8). Our Hypothesis 5 (Section 1.5) was not confirmed.

Skaggs and McNaughton (1996) showed in rats that asymmetric cross-correlations
during sleep reflect sequential neuronal activity during pre-sleep experience. Since then,
memory for sequences has been theorized to be encoded by the sequential activity of place
cells (strong supporting evidence was given by e.g., Lee and Wilson 2002; Davidson,
Kloosterman, et al. 2009). Our data suggest that human episodic memory is not as simple:
apparently human episodic learning cannot be modeled as a simple chain of sequentially
firing content-coding concept neurons, with sequential reactivation serving as a consoli-
dation mechanism.

What is the reason for this difference? Already during encoding, human concept neu-
rons and rodent place cells are not perfectly analogous: a spatial overlap of rodent place
fields leads to a temporal overlap of place cell firing, while human concept neurons were
reported to inhibit one another during sequential presentation of visual stimuli (Kornblith,
Quian Quiroga, et al. 2017). Similarly, while rodent place cells have been reported to be
phase-locked to an oscillation of the local field potential in the theta range during explo-
ration, no such phase-locking of concept neurons has been reported in humans (the study
by Rutishauser, Ross, et al. (2010) reported phase-locking of human hippocampal neu-
rons to an oscillation in the 3 Hz to 7 Hz range, but the study did not test if phase-locked
neurons were concept neurons — on the contrary, the population for which phase-locking
was reported was described in Rutishauser, Ye, et al. (2015) to be independent of another,
visually selective population). However, theta phase-locking during encoding might be a
prerequisite for sequential reactivation during consolidation.

A simpler reason for our failure to observe robust sequential reactivation might stem
from the fact that the concept neurons we observed were located in various parts of the
medial temporal lobe. Especially in the hippocampus, neurons in different subfields might
at the same time behave very similarly during visual stimulus presentation, and very dif-

ferently during memory consolidation.
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Another possible explanation for the absence of a robust prevalence of ‘forward pairs’
in our data is the simple behavioral observation that humans tend to form associations
between memory items in both directions, forward and reverse (Kahana 1996; Howard,
Fotedar, et al. 2005).

Finally, both forward and reverse “neuronal replay” have been reported in rodents
(Section 1.3.4; Foster and Wilson 2006; Diba and Buzsaki 2007; Ambrose, Pfeiffer, et al.
2016). It is thus conceivable that the absence of a clear preference of ‘forward pairs’ in
our data results from concurrently existing forward and reverse “neuronal replay”. To fur-
ther investigate this possibility, future studies will have to consider combinations of three
or more concept neurons simultaneously, possibly using decoding algorithms (Davidson,
Kloosterman, et al. 2009).

Nevertheless, it remains valid to interpret asymmetric cross-correlations (especially
with peaks below 25 ms) as evidence hinting at possible synapse modification, as outlined
in Section 1.3.5. We emphasize that cross-correlations with a short peak do not necessarily
indicate direct synaptic coupling of the observed neurons (instead, concurrent input with
slightly differing delays could underlie the observed cross-correlations). Regardless of
this caveat, almost synchronous firing of two or more neurons could potentially induce
synaptic changes in a common target neuron, which highlights the relevance of peaked

(compared to flat, uniform) cross-correlograms regardless of asymmetry.

Invariance and constancy of the representation: technical aspects

Only a subset of visually selective neurons in the hippocampus and amygdala responded
to both its preferred stimulus picture and the corresponding written name (Fig. 4.2 b). At
least three reasons could explain why not all neurons responded to the written name. First,
the part of a picture relevant to a responsive neuron could differ from what we chose as
written name (e.g., the neuron could respond to “hand bag” when we wrote “the Queen™).
Second, despite the prevalence of invariantly responding neurons, a subset of the visually
selective neurons in the hippocampus and amygdala could still be tuned to physical stim-
ulus parameters. Third, the response to the written name could simply be weaker than
the response to the picture, leading to a false-negative invariance classification. Support
for this idea comes from the fact that the response magnitude for the written name of the
preferred picture was significantly higher than to the other written names even in neurons
that were not invariant according to the operational definition used here (data not shown).

Two studies have described invariant responses in the parahippocampal cortex: Quian

Quiroga, Reddy, et al. (2005) reported that 11 out of 20 responsive units in the parahip-
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pocampal cortex responded to multiple pictures depicting the same semantic content, and
Quian Quiroga, Kraskov, et al. (2009) found that 10 out of 19 responsive units in the
parahippocampal cortex responded invariantly (using three different pictures depicting
the same semantic content), and that none of these units responded to a written name or
sound representing the same content. We found that out of the 96 parahippocampal units
that responded to exactly one picture (in the evening screening sessions), 11 responded
to the corresponding written name (Fig. 4.2 b). These neurons could either be truly se-
mantically invariant, or they could simply respond in a graded manner to many stimuli (as
described by Mormann, Kornblith, et al. 2017). Such a graded response could result in a
small percentage of the neurons responding to both a picture and its corresponding written
name by chance, without true semantic invariance.

Similarly, are those responses that were found only in the evening or only in the morn-
ing nonexistent at the other time point (see Fig. 4.2 c¢)? In principle, a neuron could be
lost from recording, or its visual tuning could undergo changes. Both reasons could lead
to a change in response magnitude between evening and morning and are difficult to dis-
entangle. However, the response magnitude for preferred stimuli from one time (evening
or morning) was significantly higher than for non-preferred stimuli even at time points
where no response was detected by the formal response criterion (data not shown). This
means that the proportion of preserved responses was higher than evident from the counts

of neurons that responded both in the evening and morning.

Concept neurons in anesthesia

Sleep and general anesthesia both entail periods of unconsciousness. We analyzed the
activity of single neurons in the human medial temporal lobe during general anesthesia
induced by propofol, one of the most common anesthetic agents (Niediek, Navratil, et
al. 2013). The activity of concept neurons during sleep differs from the activity during
anesthesia. Fig. 5.1 shows the activity of a neuron in the parahippocampal cortex dur-
ing anesthesia at varying concentrations of propofol. The activity ceased completely at
sufficiently high concentrations of propofol. We observed this pattern in all neurons in
the amygdala, entorhinal cortex, hippocampus, and parahippocampal cortex, (n = 506,
17 sessions; manuscript in preparation). Thus, the effect of high concentrations of propo-
fol on neuronal firing in the MTL was more extreme than the effect of any sleep stage:
while sleep exerted modulatory effects on concept neurons (Section 4.2.4), the changes in
firing during sleep never encompassed all neurons, and rarely included a complete cessa-

tion of firing.
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Figure 5.1: Sample time course of neuronal activity during propofol anesthesia. Dis-
played are data from a neuron in the left parahippocampal cortex. a, Mean action potential
wave form, and density plot of action potentials. b, Action potentials over time. Each
small dot corresponds to the time point and maximum amplitude of one action potential.
The complete cessation and re-onset of firing are visible. See ¢ for propofol concentra-
tions on the same time axis. ¢, Cumulative spike counts over time. Time axis is the same
as in b. Propofol concentrations are indicated below the plot. LOC, loss of consciousness;
BS, burst suppression; LM, larynx mask; OFF, propofol infusion stopped.

Investigating the effect of propofol on concept neurons is motivated by the fact that
already small (0.9 pg mL™") concentrations of propofol have been reported to induce pro-

found impairments of declarative memory (Veselis, Pryor, et al. 2008, 2009).

Future questions

A shortcoming of our study is that we can not directly report possible changes in neuronal
activity patterns as a result of learning, because we did not measure neuronal activity
before learning. Future single-neuron studies on human memory consolidation should
overcome this problem by using an appropriate experimental design.

In this study we have not investigated hippocampo—cortical or hippocampo—amygdalar
interactions. As reported in the literature, such interactions are likely to play a major role in
memory consolidation (Ji and Wilson 2007; Maingret, Girardeau, et al. 2016; Girardeau,

Inema, et al. 2017). Our data allow for a future investigation addressing these questions.
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Conclusion: a mechanism of memory consolidation

In conclusion, our data constitute converging support for reactivation of hippocampal
concept neuron ensembles during slow-wave sleep (especially ripples) as a fundamen-
tal mechanism of episodic memory consolidation: concept neurons invariantly represent
concepts across an entire night; activity is inhibited during REM but not slow-wave sleep;
concept neurons are strongly linked to ripples; spike-count correlations are higher for
learning-related neurons than for unrelated neurons; and these correlations are highest
during slow-wave sleep. Furthermore, asymmetric cross-correlations during slow-wave
sleep, especially during ripples, point at a temporal structure possibly enabling synapse
modifications among concept neurons (and their target structures) during slow-wave sleep.
Nevertheless, the observed temporal structure does not simply reflect stimulus sequences.
Because subjects recalled the sequential order of stimuli very well, the sequential order of

stimuli must be encoded in a different way than simple neuronal firing sequences.
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Appendix A

Installation instructions and user guide

for Combinato

This appendix contains brief instructions on how to install and use the spike sorting soft-
ware package Combinato. The installation instructions and the user guide are maintained
asa Wikiathttps://github.com/jniediek/combinato/wiki. A previous version of
this appendix has been published as “Supporting Text” in Niediek, Bostrom, et al. (2016).

A.1 Installation instructions for Combinato

A.1.1 Installation on a Linux computer
Getting the code

If you use git, clone the repository:
git clone https://github.com/jniediek/combinato.git
If you do not use git, download Combinato from

https://github.com/jniediek/combinato/archive/master.zip.

Installing dependencies

Combinato depends on scipy, pywt, matplotlib, pytables, and pyqt. Most modern
Linux distributions have these packages installed by default. If you miss any of these
packages, use your distribution’s package manager to install them. For example, in Ubuntu
and Debian

sudo apt-get install python-scipy python-matplotlib python-pywt
python-tables python-qt4 installs all dependencies.
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Setting up the environment

Choosing the right clustering backend Combinato uses a compiled executable file as
backend for clustering. To automatically select the correct file for your operating system,
navigate your shell to the Combinato repository and run

python setup_options.py.

Setting Paths Combinato is organized as a collection of executable scripts. These are
the files named css—* in the repository’s main folder. To be able to execute these scripts,
add the repository’s folder to your $PATH as shown below.

For some of the tools in the subdirectories signalviewer and tools, it is necessary
to add the repository’s folder to $PYTHONPATH as well.

For example, if the Combinato repository is in /home/username/combinato, add the

following to the shell’s configuration (e.g., /home/username/.bashrc):

PATH=$PATH: /home/username/combinato
PYTHONPATH=$PYTHONPATH: /home/username/combinato
export PATH PYTHONPATH

Testing the Installation
1. Open a new shell

2. Navigate to the Combinato repository

3. Enter python tools/test_installation.py
If everything worked, you will see the following output:

Found Combinato

Found SPC binary

Your version of pytables is 3.3.0

Combinato clustering setup: no problems detected.
Found display

Found 'montage', plotting continuous data possible.
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A.1.2 Installation on a Windows computer
General Remark

Combinato works on Windows, but it is primarily developed for Linux. Combinato is
organized as a set of command line tools, which is optimal for remote servers and shell
scripting, but might be cumbersome on Windows computers. So please consider using

Combinato on Linux (or OS X). If you decide to use Windows, here are the instructions.

Installing Python

Any Python distribution should work. We use Combinato with Anaconda for Windows
by Continuum. For now, please use the Python 2.7 version.
You can download Anaconda from https://www.continuum.io/downloads.

Anaconda contains all packages that Combinato depends on (scipy, matplotlib,

pytables, pywt, pyqt).

Getting the Combinato code

If you use git, clone the repository:
git clone https://github.com/jniediek/combinato.git.
If you do not use git, download Combinato from
https://github.com/jniediek/combinato/archive/master.zip.
Save the repository to a convenient place, for example

C:\Users\YourUsername\Anaconda\Lib\site-packages.

Setting Paths

Combinato uses an executable file as backend for clustering. To automatically select the
correct file for your operating system, navigate your shell to the Combinato repository and
run

python setup_options.py.

Testing the Installation

1. Open a new shell
2. Navigate to the Combinato repository

3. Enter python tools/test_installation.py
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If everything worked, you will see the following output:

Found Combinato

Found SPC binary

Your version of pytables is 3.3.0

Combinato clustering setup: no problems detected.
Found display

Found 'montage', plotting continuous data possible.

Ifyousee Plotting continuous data will not work, don’t worry. This feature

requires ImageMagick, but it is not crucial.

Using the Combinato scripts on Windows

On Windows, you cannot simply run the scripts named css—*, but you have to prepend
python to each command. For example, to run css-simple-clustering, enter
python css-simple-clustering, or, if the current directory of your command
prompt is different from the Combinato repository,
python C:\Path\To\Combinato\css-simple-clustering. This is cumbersome,
and this problem does not exist on Linux and OS X. See the FAQ (https://github.

com/jniediek/combinato/wiki/FAQ) to learn why Combinato is made this way.

A.1.3 Installation on an OS X computer
Installing Python

Any Python distribution should work. We use Combinato with Anaconda for OS X by
Continuum. For now, please use the Python 2.7 version.
You can download Anaconda from https://www.continuum.io/downloads.

Anaconda contains all packages that Combinato depends on (scipy, matplotlib,

pytables, pywt, pyqt).

Getting the Combinato code

If you use git, clone the repository:
git clone https://github.com/jniediek/combinato.git If you do not use
git, download Combinato from
https://github.com/jniediek/combinato/archive/master.zip. Save the
repository to a convenient place, for example

/Applications/anaconda/lib/python2.7/site-packages.
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Setting Paths

Combinato uses an executable file as backend for clustering. To automatically select the
correct file for your operating system, navigate your shell to the Combinato repository and
run

python setup_options.py.

Combinato is organized as a collection of executable scripts. These are the files named
css—* in the repository’s main folder. To be able to execute these scripts, add the reposi-
tory’s folder to your $PATH: The path is set in the file .bash_profile in your user direc-
tory. For example, this file should contain a line like

export PATH=$PATH:/Applications/anaconda/lib/python2.7/
site-packages/combinato.

For some of the tools in the subdirectories signalviewer and tools, it is necessary
to add the repository’s folder to $PYTHONPATH as well.

Testing the Installation
1. Open a new shell

2. Navigate to the Combinato repository

3. Enter python tools/test_installation.py
If everything worked, you will see the following output:

Found Combinato

Found SPC binary

Your version of pytables is 3.3.0

Combinato clustering setup: no problems detected.
Found display

Found 'montage', plotting continuous data possible.

Ifyousee Plotting continuous data will not work, don’t worry. This feature

requires ImageMagick, but it is not crucial.
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A.2  User guide for Combinato

This user tutorial introduces the individual steps of spike sorting with Combinato, pro-

gressing from synthetic to real data.

A.2.1 Working with synthetic data
Synthetic data

In this part of the tutorial, we will work with synthetic (simulated) data. We will work
with the file

http://bioweb.me/CPGJNM2012-dataset/simulation_5.mat.
The simulated data is described in Pedreira, Martinez, et al. (2012).

Extracting spikes

After downloading the simulated data, move the command prompt to the folder where you
stored it and enter

css—-extract --matfile simulation 5.mat.
There is now a folder simulation_5, containing one file data_simulation_ 5.h5.

If you would like to use your own Matlab file, store the data in a variable data and

the sampling rate in a variable sr.

Clustering spikes

Just enter
css-simple-clustering --datafile simulation_5/data_simulation_5.h5.

After a few seconds, the folder simulation_5 contains the sorted data.

Checking results

Now we would like to see the output of the clustering procedure. There are two main ways

for visualization: overview plots and the graphical user interface.

Using overview plots Enter
css-plot-sorted --label sort_pos_simple.

There is now a folder overview, containing just one plot (Fig. A.1).


http://bioweb.me/CPGJNM2012-dataset/simulation_5.mat
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Figure A.1: Clusters from Simulation 5. Each row corresponds to one cluster, displayed
as a density plot in the first column. The pink line shows the cumulative spike count over
the time course of the recording. Each cluster’s subclusters are displayed in the subsequent
columns as line plots. The red numbers 1. through 4. point at a few problems with the
clustering that will be solved in the next part of the tutorial (Appendix A.2.2).
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Figure A.2: Screenshot of Combinato’s GUI. Displayed is cluster 4 from simulation 5,
which is “under-clustered”. We will solve this problem in Appendix A.2.2.

Using the graphical user interface Enter css-gui and click on File, Open. You will
see a list containing just one file, our Simulation 5. Click on OK. You will see the screen
shown in Fig. A.2.

Go through the individual cluster groups by using the pull down menu. The plots
on the right hand side update automatically. In our screenshot you can see that the unit
displayed is “under-clustered”: it should be split apart further. We are going to solve this
problem in the next part of the tutorial (Appendix A.2.2).

Now, click on the “All Groups” tab. You will see the screen shown in Fig. A.3, an
overview of all cluster groups contained in Simulation 5. In some cases, clusters are

grouped together in the wrong way. To solve this problem:

* First create a new group by clicking Actions, New Group.

* Then click on one of the clusters you would like to move to the new group (red 1. in
Fig. A.3)

* The last step is to click into the new, empty group (red 2. in Fig. A.3).

You can save your modification by clicking File, Save.
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Figure A.3: Overview of groups in Simulation 5. The red 1. and 2. indicate where to
click to modify the clustering result manually.

A.2.2 Setting parameters and improving automatic results

In this part of the tutorial we will tune some parameters to optimize the automatic sorting

results.

What’s the problem?

We saw in Fig. A.1 that Combinato created an acceptable but not optimal clustering result.

The problems are (the numbers refer to the red numbers in Fig. A.1):

1. A cluster was wrongly designated an artifact.
2. Some spikes were not assigned to any cluster.
3. A multi-unit should be split apart further.

4. There are some spikes that do not really belong to the units they were assigned to.

Setting parameters to improve clustering results

Create afile called local_options.py in the same folder that contains the simulation_5

folder. The content of the file is the following:
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options = {'MaxClustersPerTemp': 7,
'RecursiveDepth': 2,
'MinInputSizeRecluster': 1000,
'MaxDistMatchGrouping': 1.6,
'MarkArtifactClasses': False,

'RecheckArtifacts': False}

Then re-run the clustering procedure. At this point, you should use a different /abel.
Labels are names under which the clustering results are stored. By using different labels,
you can save different clustering results from the same data and compare them later. Enter

css-simple-clustering --datafile simulation_5/data_simulation_5.h5
--label optimized.

When processing is completed, enter

css-plot-sorted --label sort_pos_optimized.

The prefix sort_pos_ is automatically prepended to the label. The improved sorting re-
sults are shown in Fig. A.4. We see that with the optimized options, Combinato generated
ten units.

There are still some problems with the clustering, which you can fix manually with

css-gui (the numbers refer to Fig. A.4):

1. Unit 1 consists of 8 subclusters. Probably the 5th and 7th subclusters should be

made a different unit.

2. Unit 3 consists of 2 subclusters. These are very different and should be split into

two units using css-gui.

3. Unit 7 consists of 2 subclusters. The first of these could be split further.

Manual optimization

As explained in Appendix A.2.1, use css-gui to further split apart under-clustered units.
You can also set units to Single Unit in css—-gui (all units are considered multi-units by
default), see Fig. A.S.

If you save your modifications and re-plot the results by css-plot-sorted --label

sort_pos_optimized, the result will be very similar to Fig. A.6.
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Figure A.4: Optimized clustering results from Simulation 5. Compared to the original
result (Fig. A.1), the number of clusters has increased. The ground truth, which is available
because this is simulated data, confirms that the new result is better, as visual inspection
suggests.
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Figure A.5: Setting units to single unit in the Combinato GUI. The red ellipse indicates
the button used to save a unit as Single Unit.
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Figure A.6: Manually optimized clustering results of Simulation 5. The problems in-
dicated in Fig. A.4 have been resolved.
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A.2.3 Working with real data

In this part of the tutorial we will finally work with real data recorded from the right

hippocampus.

Downloading the data

Download the file CSC67 .ncs from
https://uni-bonn.sciebo.de/index.php/s/KINLbTjVm01Hx19.

The password is combi_data.

Extracting spikes and masking artifacts

First make sure to delete the files local_options.py and local_options.pyc, should
they still be present from the previous parts of the tutorial.

Similar to before, run

css—extract --files CSC67.ncs.
to extract spikes. Then run

css-mask-artifacts --datafile CSC67/data_CSC67.h5

to mask artifacts before spike sorting.
Creating raw data graphics

* Run css-plot-rawsignal to create an overview plot of the raw signal (Fig. A.7).

* Run css-plot-extracted --datafile CSC67/data_CSC67.h5

to create an overview plot of the extracted spikes before sorting (Fig. A.8).

Both plots are saved in the overview folder. You can use the program css-overview-gui
to visualize summary statistics of all channels, and to quickly display the overview plots

(see Fig. A.9 for a screenshot).

Clustering the data

Just as before, run

css-simple-clustering --datafile CSC67/data_CSC67.h5.
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Figure A.7: Plot of raw signal. Each of the three columns shows the same data at a
different temporal resolution: window durations are 500 ms, 30 s, and 2 min, respectively.
Data in the middle column are bandpass filtered for display (elliptic filter, passband 300 Hz
to 1000 Hz). Individual action potentials are visible in the left and middle columns.
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Figure A.8: Plot of extracted spikes before spike sorting. Each box contains a density
plot of up to 5000 spikes. Pink lines indicate the cumulative spike count over the duration

indicated. Boxes marked “amplitude” or “double” show spikes marked as artifacts due to
the “high amplitude” or “double detection” artifact criteria (see Section 3.2 for details).

Combinato channel overview _ [

Actions
Initialize from current folder Ctri+l Initialize from h5-files
Toggle extract E
99e & kes Neg. spikes Sorted sessiol: Extraction act ¢ Sort positive & Sort negative : Sorted positiv: Sortec
OISR IR e 3K 0 done sort pos done done done
Toggle sort negative Shift+s
Next channel Space ! iy
Previous channel shift+Up v None v
Save actions to file W WA 200 ¥l r;\/
Toggle sorted positive M | | | -100 pv 4
i ' j Smin | —
Toggle sorted negative shift+M ! ERcticy A 5
[ / / ;

| 1 | | I P /5000 spk| /| | |

! Tmin 4 | ! ! ! I 7 min
e

; ; ; ‘ ‘ ; d

! 10 min |! ” '| | | ! I' " i Il 10 min

I I I L L I
W 14 min | ! j ] ! 14 min ]

i i j j j j ' -

T T T T T
S | L Y YW T T W |
<0 L ) <> <L J 1< >

RMH3 actions: sort pos

Figure A.9: Screenshot of the Combinato Overview GUI. This program displays the
information contained in Figs. A.7 and A.8 in a convenient way.
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Figure A.10: Plot of sorted spikes from CSC67. Units 3 and 8 are artifacts. Units 5 and
7 should be merged.
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Figure A.11: Marking artifacts. The key A denotes a cluster as artifact.

Checking the spike sorting results

Using overview plots Run css-plot-sorted --datafile CSC67/data_CSC67.h5
--label sort_pos_simple to create the overview plot shown in Fig. A.10. You can
display this overview plot within css-overview-gui, which is useful especially if you
work with job files (not part of the tutorial). Fig. A.10 reveals a few points that can be

optimized:
» Units 3 and 8 are artifacts,
* Units 5 and 7 look similar and should be merged.

We will use the css-gui to fix these problems.

Using the graphical user interface Open css-gui and load CSC67 (File, Open). Then
find the artifacts in the pull down menu. To move a cluster to the group Artifacts, just
click on it and press A (see Fig. A.11). To decide whether to merge units 5 and 7 or not,

use the Tab Correlations, as shown in Fig. A.12.
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Figure A.12: Cross-correlogram displayed in the Combinato GUI. Cross-correlograms
are very useful in deciding if two given clusters contain spikes from the same neuron.

Outlook

Combinato offers many possibilities not discussed in the tutorial. Among these are
* Splitting the clustering—merging procedure into individual steps for fine-tuning,
» Working with job files created in css-overview-gui,
+ Extracting or sorting only parts of data files, indicated by time ranges,

* Excluding time ranges from the sorting procedure (e.g., to avoid known periods of

signal contamination),
* And many more.

Also use —-help as an option to all css—* programs to obtain more detailed information.

Working with raster plots

One very handy feature of Combinato are its automatically updating raster plots in
css-gui. As you can see in Fig. A.13, unit 4 responded to the tie (both to the image

and the written name in German), and unit 5 responded to the strawberry (picture only).



A.2. User guide for Combinato

125

File  Actions

Datafile: data_CSC67.h5 Sorting: sort_pos_simple

Combinato Spike Sorter _,

4 v | ) Arifact | ) MU (::1 su One Group  All Groups Correlations | Rasters
I Update Paradigm e
X ) ) :
'! Kleiner Vogel a Litschi
i ' VUt T RS [
A [T [ IN b
: ' 1 oimw gl B w1 o |
. "y 1= bl 1 L. = ""3" P J“'| is 10
f A Vogel im Sturzflug 9 Donut
: T | |""| Wil ' [T
: BT ! i R | L (A
: ol [ [ " il 1 [ .
1 1 1 | W 'y | ¥ L I LA
& Hot Dog & Croissant
iy Yoo et
ot . | I Ji oo L
Ll [ ', | "|I I' = | Wty )
1 1 [ T Lt 1 L 1 1
: i Krawatte k Erdbeeren
: vk T T T Lo o
: o i;"ﬁ" v II'.I"HH e | T
. —1 AR | j [R] | o - i
".I‘-“' 1 ! I P R R Bl I
: 0 1000 0 1000
! ! ! Ll Nashorn
o :' [ : "
N s | F i’
A S X v
- Ty Ay p et
- 0 1000 0 1000

O

File  Actions

Datafile: data_CSC67.h5 Sorting: sort_pos_simple

Artifact o MU su

st st st

o5 v

One Group Al

Update Pa

Combinato Spike Sorter _,

| Groups

radigm | e

E

Correlations | Rasters

O

Klelner Vogel UtSChI
7 N e o T D
A\ ...-I‘ [ Doy e PR
Wi Th Rl b R
e e .
TR '.m. L

A Vogel im Sturzflug

R

T '|||||,||M
n

i "". FiTT .,’
! W
sy
Hot Dog
, R ,un.{ "i .; u'ﬁ.‘-l-l
{pe ". -l'n. ] L iy,
d i'..'."r'r n ; F e
P T T R S A
i Krawatte
‘ ‘ " ; -I.,I' I\._"'I:,,i :. I; ..,...I.I. ,"\ I Ih‘ I,I —
o R “'T-' O T e N
: ! I'"' R AR B A =0 |||| |l.'.|'||.I o ) .
. i |u'|u| (LRI AP i ||| |\|||| | K
E 0 1000 0 1000
| | | Nashorn
I,‘ ' 'I"I |f| ..
"f||1|l "I' k.
MR RN U
0 1000

Figure A.13: The Combinato GUI contains updating raster plots for visually pre-
sented stimuli. Top, unit 4 responded to the tie (picture and written name). Bottom, unit
5 responded to the strawberry (picture only).
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Appendix B

Contributions

Surgical procedures and handling of microwires

All surgical procedures (see Section 2.2) were performed by Prof. Dr. Jan Bostrom (De-
partment of Neurosurgery, University of Bonn), or Prof. Dr. Volker A. Coenen (Stereo-
taxy and MR based OR Techniques, Department of Neurosurgery, University of Bonn;
now Department of Neurosurgery, University of Freiburg).

All handling of microwires during surgeries was performed by Prof. Dr. Dr. Florian

Mormann (Department of Epileptology, University of Bonn).

Sleep staging

Sleep staging (see Section 4.1.2) was performed by the author, or, in some cases, by
Dr. Heidemarie Gast (Department of Epileptology, University of Bonn; now Department

of Neurology, Inselspital Bern, Switzerland).

Fotonovela experiments

The Fotonovela experiments (see Section 4.1.5) were performed by the author, or, in some
cases, by Dr. Thomas P. Reber (Department of Epileptology, University of Bonn), Dr. Hei-
demarie Gast (Department of Epileptology, University of Bonn; now Department of Neu-
rology, Inselspital Bern, Switzerland), and Prof. Dr. Dr. Florian Mormann (Department

of Epileptology, University of Bonn).
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128 B. Contributions
CRediT category Persons
Conceptualization IN FM
Data curation IN FM
Formal analysis IN
Funding acquisition FM CEE
Investigation JINFM JB
Methodology IN
Project administration FM
Resources CEE
Software IN
Supervision FM
Validation IN
Visualization IN FM

Writing — original draft IN
Writing — review & editing JN FM JB CEE

Table B.1: Contributions to Niediek, Bostrom, et al. (2016) according to CRediT. JB,
Jan Bostrom; CEE, Christian E. Elger; FM, Florian Mormann; JN, Johannes Niediek.

Contributions to Niediek, Bostrom, et al. (2016) according to CRediT

We reproduce in Table B.1 the contributions to Niediek, Bostrom, et al. (2016) according
to PLOS policy and the “contributer role taxonomy” (CRediT; Allen, Scott, et al. 2014;
Brand, Allen, et al. 2015).
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