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Summary

The Internet faces an ever increasing flood of malicious software (malware). Threat

actors distribute millions of new malware variants every year. They do so for a variety

of reasons such as financial gain or political power. The sophistication of malware as

well as their target platforms steadily increase. Since a couple of years malware has

often utilizes a platform-independent technique called Host-Based Code Injection Attack

(HBCIA). This attack denotes the local injection of code from an attacker entity into a

victim entity. Both entities are usually operating system processes. The malicious code

runs within the context of another process, which is contrary to the common belief that

each program possesses its own process space. HBCIAs allow the attacker the intercep-

tion of critical information, escalation of privileges, and covert operation. This trend of

conducting local code injections creates a challenge in detecting malware since it blends

into the behavior of benign processes. Therefore, this thesis addresses this challenge

and elaborates on new ways to detect code injections.

So far, no basic research on HBCIAs in the context of malware has been carried out.

There is a lack of understanding in terms of problem definition and problem size. There-

fore, we built a model and formally defined HBCIAs. Based on this model, we introduced

a taxonomy that allowed us to classify malware according to their algorithms. Then, we

showed that almost two thirds of malicious samples of our representative corpus lever-

aged HBCIAs. This finding implies that local code injections are a relevant problem for

security researchers since the detection of HBCIAs implies the detection of a huge share

of today’s malware. Especially due to the fact that leading operating systems, such as

Microsoft Windows, Linux, macOS and Android, are all prone to this attack.

After the problem formalization and problem size estimation, we present two approaches:

one static and one dynamic method to detect HBCIAs. Since HBCIAs are a behavior

exhibited during execution, it is important to detect its occurrence to prevent further

damages. Therefore, our first system Bee Master dynamically detects HBCIAs at run-

time. It transfers the honeypot paradigm to processes. Its main component the Queen

Bee observes several child processes called Worker Bees. Each Worker Bee mocks a pos-

sible victim process like Explorer.exe. The behavior of each Worker Bee is a priori known

so that new threads or new memory regions imply an HBCIA. Our approach differs from

related work due to its platform-independence, high abstraction level and focus on mal-

ware. We implemented and evaluated Bee Master for several Windows and Ubuntu Linux

versions. The evaluation with several prevalent representatives of HBCIA-employing



malware families as well as many benign programs shows that Bee Master reliably de-

tects HBCIAs without false positives.

One major source of information is the memory of victim machines. It reflects the ma-

chine’s state and in case of an attack it allows us to derive valuable insights about the

attacker as well as their hacking tools. However, it is difficult to pinpoint an attack in

memory. If malware conducts HBCIAs, it is well hidden in benign processes. Hence, our

second system Quincy addresses the challenge to statically detect HBCIAs in memory

dumps. Its detection heuristic is based on machine learning. We constructed 36 fea-

tures based on domain knowledge and selected the most appropriate ones. At its core,

the detection heuristic leverages a tree-based machine learning algorithm. We eval-

uated Quincy with seven algorithms of which Extremely Randomized Trees performed

best. Subsequently, we evaluated it on three Windows version with an high quality cor-

pus comprising more than a thousand benign and malicious programs. The results show

that Quincy improves upon the current state of the art by more than eight percent, when

comparing both systems using the ROC AUC score.
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Faber est quisque fortunae suae.

Appius Claudius Caecus

1
Introduction

1.1 Problem Statement

When the Internet became accessible to the public in the 1990s, only some daydreamers

imagined how the world would look just ten years later. Digitalization of society was

science fiction. Today, just a couple of years later, many aspects of our daily life are

digitalized. From our annual tax declaration to video communication with relatives re-

siding in countries far away, the Internet and enabling technologies such as laptops and

smartphones are essential to our society, which continues on its way to full digitaliza-

tion. Indeed, the Western world is on a digitalization highway. We are witnessing how

the first generation of real digital natives grow up. This new generation naturally in-

teracts with the enabling technologies such as tablet computers and smart phones. The

rapid development of the Internet of Things (IoT) results in further digitalized aspects of

our life. Ubiquitous objects such as refrigerators, coffee makers or watches start to com-

municate and interact with each other. Leading manufactures estimate that 50 billion

devices will be interconnected in 2020 [1]. This leads to many new opportunities. Not

only will entrepreneurs benefit from this trend, but also users will benefit, for example,

due to better life quality.
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It is utterly important that future devices will be developed with security in mind. Fifty

billion devices offer a huge attack surface. However, in the past we witnessed more than

once that security is treated as a second-class citizen. When enterprises rush products

to the market, just to have the first-mover advantage, security aspects are neglected. In

general, devices are only supported for a couple of months. The industry counts on a

consume-oriented society that replaces functional devices in short cycles. For instance,

Google counts with a 18 month lifetime of Android devices and provides patches only

within this period of time [2]. However, this led and still leads to the problem of billions

of vulnerable devices.

Such vulnerabilities are the gateway for adversaries. Once they exploited a vulnerability

and gained access to a system, they wish, for example, to extract information from the

hacked system. This is where malicious software – also known as malware – comes into

play. This kind of software executes unsolicited on a system and carries out malicious

activities such as banking fraud or identity theft. Society faces an ever increasing flood

of malware. According to PandaLabs, they detected 75 million novel malware samples

in 2014 [3] and 84 million in 2015 [4]. This has led to severe economical damages. The

antivirus company Intel Security estimated that cybercrime has an annual worldwide

cost of $400 billion [5]. Industrial countries are heavily affected. For example, Germany

has an estimated cost of cybercrime of 1.6% of its gross domestic product (GDP) [5].

Cyber criminals are not the only ones that utilize malware. Whereas cyber criminals

mostly tend to enrichment, secret services and armies utilize sophisticated malware for

complex operations in the field. This includes, for instance, gathering intelligence [6]

and attacking crucial infrastructures like nuclear power plants [7]. It is likely that the

problem of malware will not diminish in the near future but rather will receive another

boost with the increasing digitalization of our society.

Not only does the flood of malware, its caused financial damage, and its sophistication

continue to grow, but also the number of target operating systems increases. Microsoft

was the undisputed market leader for consumer-oriented operating systems just ten

years ago. As of November 2017, Microsoft is still the market leader [8]. However,

the tide has turned and old and new competitors are attacking the market position of

Microsoft. Other major desktop-oriented (macOS, Linux) or mobile-oriented (Android,

iOS) OSes have a significant market share [8]. This also motivates malware authors to

write malicious code for these operating systems [9–11].

Nonetheless, malware authors do not reinvent the wheel when writing malware for an-

other operating system. Instead, they rather quickly adapt to other platforms by porting

well-known techniques. One of these techniques is the Host-Based Code Injection Attack
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(HBCIA). In a nutshell, an HBCIA is a local attack from one local entity such as a pro-

cess or kernel module on another local process. The attacking entity injects code into

the victim process. Then, it triggers the code execution within the context of the victim.

We will give a precise definition of HBCIAs later (see Chapter 4). This kind of attack

comes with a lot of benefits from the attacker’s point of view. They include, amongst

others, covert operation within a benign process and interception of unencrypted, criti-

cal information. We estimate that almost two thirds (see Chapter 5) of malware samples

targeting Windows employ HBCIAs. A wide range of malware families such as banking

Trojans, ransomware, or computer worms uses them. Moreover, many malware families

that participate in sophisticated targeted attacks also employ HBCIAs (e.g. [6, 12, 13]).

We believe that a thorough investigation of this phenomenon and the proposal of de-

tection approaches leads to a higher detection rate of malware and increased Internet

security in general. Therefore, this thesis focuses on the topic of Host-Based Code Injec-

tion Attacks in the context of malware. It lays a solid foundation with its basic research

and analysis as well as proposes two approaches to – dynamically and statically – detect

HBCIAs on various operating systems.

1.2 Research Questions

We have touched on the problem of malware and Host-Based Code Injection Attacks in our

initial problem statement. Malware and closely related to it Host-Based Code Injection

Attacks are ubiquitous problems. Take for example the number of Internet users in

2015. More than 80% in the developed world and already millions of the undeveloped

world had daily access to the Internet and computing devices in general. Nevertheless,

there were still four billion people in developing countries that remained offline [14].

Therefore, many of us face or will face malware and HBCIAs, whether be it knowingly

or unknowingly.

During our work as malware analysts, we faced HBCIAs in a plethora of malware fami-

lies. Moreover, most malware analysis reports discuss the utilized code injection scheme,

be it an injection by the malware packer or by the unpacked malware. Our goal is to

investigate this phenomenon in depth and to develop detection mechanisms. In this sec-

tion, we pose the two main questions – analysis and detection of HBCIAs – that drove

our research throughout the last years. These two questions lead us to the main contri-

butions of this thesis (see Section 1.3).

How does modern malware employ Host-Based Code Injection Attacks, what

are the consequences, and what is the problem size?
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The first research question covers the basics of HBCIAs. While related research mostly

focused on code injection attacks in general, we are the first to discuss HBCIAs in the

context of malware in detail (see Chapter 3). In contrast to classical code injection

attacks, malware often employs techniques that the operating system provides. We pub-

lished a seminal paper on this research question [15] and we will address this topic with

great detail in the first part of our thesis (see Chapters 4 and 5).

How can we detect this malicious behavior using dynamic and static analysis

techniques?

The second research question focuses on the detection of this particular behavior. While

dynamic detection protects users at runtime, static detection is of great value to malware

and forensic analysts. We published two seminal papers on this research question ([16]

and [17]) and we will address this topic in detail in the second part of our thesis (see

Chapters 6 and 7).

1.3 Main Contributions

In this section, we summarize the main contributions of this thesis. First, we conducted

basic research on Host-Based Code Injection Attacks that defines and classifies this kind

of attack in the context of malware. Second, we proposed a system to detect HBCIAs

at runtime. Its main objective is live user protection. Third, we proposed a system that

statically detects HBCIAs in memory dumps utilizing machine learning techniques. Its

main goal is to improve upon current systems to aid forensic and malware analysts. We

will examine in detail these three main contributions in the following sections. The main

contributions of this thesis were published in several peer-reviewed seminal papers:

• Host-Based Code Injection Attacks: A popular technique used by malware [15]

• Bee Master: Detecting Host-Based Code Injection Attacks [16]

• Quincy: Detecting Host-Based Code Injection Attacks in Memory Dumps [17]

Please note that this thesis goes further than these individual publications. It contextual-

izes our work by discussing HBCIAs in the context of malware, the need to dynamically

and statically detect them, and their future implications. Furthermore, we improved

the proposed systems and evaluated them again to increase the insights on the topic of

HBCIAs.
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1.3.1 Basic Research on HBCIAs

Even though the malware analysis community faces HBCIAs every day, no basic research

on this phenomenon in the context of malware has been carried out so far. We are the

first to investigate this in detail.

Our basic research defined this kind of attack and allows further systematic research

on this topic. Since HBCIAs are based on a platform agnostic concept, cross-platform

detection of malware can be achieved by focusing on this technique rather than on the

individual operating system-dependent malware families. Furthermore, we showed in

several measurements with current malware that, for example, HBCIAs are very preva-

lent (almost two thirds of current malware employs this technique) or that these attacks

are a family feature, i.e. it can be found in all members of a malware family (vari-

ants and versions). These measurements emphasize the need to investigate HBCIAs in

particular.

1.3.2 Detection of HBCIAs at Runtime

There are approaches that focus on detecting HBCIAs at runtime. However, they are

impractical and slow (e.g. [18, 19]), they are too tightly coupled to operating system-

specific knowledge (e.g. [20–22]), or they require new hardware (e.g. [23, 24]). Also,

given the fact that HBCIAs are a platform- and operating system-agnostic problem, most

solutions focus on one platform and operating system.

We are the first to present a platform and operating system agnostic approach called

Bee Master that detects HBCIAs at runtime. Our approach is neither based on domain-

specific knowledge nor does it require additional hardware. Rather it employs the hon-

eypot paradigm to operating system processes and offers a set of victim processes to the

malware. We evaluated Bee Master with 38 malware families and several hundred be-

nign programs on Windows and Linux. The evaluation shows that it detected all HBCIAs

without having any false positive.

1.3.3 Detection of HBCIAs in Memory Dumps

The detection of HBCIAs in memory dumps is an everyday task of forensic and malware

analysts. Current approaches (e.g. [25–27]) come with high false positive rates and are

not scientifically grounded or have a too coarse detection granularity (e.g. [28]).

We present a scientifically based approach for statically detecting HBCIAs in memory

dumps. Our approach Quincy detects them by leveraging supervised machine learning
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techniques. We employ up to 36 unique features that are common to HBCIAs. The

result is a method working with modern Windows operating systems from Windows XP

to Windows 10, which we released as a Volatility plugin on github [29]. During our

investigation on HBCIAs in memory dumps, we gathered the most comprehensive data

set of representatives of HBCIA-employing malware families that is available today. We

created YARA signatures for each family to verify a successful infection and to ensure a

precise ground truth. We published this data set on github as well [30]. A comparison to

the current state of the art Malfind [25] showed that Quincy had more true positives (of

up to 27% on Windows 7) and less false positives (of up to 63% on Windows XP). This

statistically significant improvement yielded an increase of the area under the receiver

operating characteristic (ROC) curve of up to 8% (on Windows 7).

1.4 Roadmap

This thesis is divided into eight chapters that cover the topic Host-Based Code Injection

Attacks and their detection in-depth.

In Chapter 2, we present the preliminaries that are fundamental to understand this

thesis. Since this thesis focuses on HBCIAs in the context of malware, we provide an

overview of malicious software and its analysis. To understand our static and dynamic

detection approaches, the reader requires basic knowledge of honeypots and machine

learning, which we discuss also in this chapter.

Chapter 3 reviews related work and arranges our work in the scientific landscape. Major

fields that are related to our thesis are the prevention and the detection of code injection

attacks.

Chapter 4 discusses the fundamentals of HBCIAs in detail. At first, we present a model

that allows us to define them. This model assumes general concepts of the Von Neumann

architecture and general concepts of multi-tasking operating systems like Windows and

Linux. Then, we take a close look at the fundamentals of HBCIA algorithms that current

malware employs. This leads to a taxonomy that allows us to classify current malware

families according to their HBCIA algorithm. Finally, we discuss future implications of

HBCIAs.

Chapter 5 measures the impact of HBCIAs in practice. At first, we estimate the preva-

lence of HBCIAs in current malware and the preferred victim processes. Then, we show

that an HBCIA is a malware family feature that does not change either between differ-

ent versions or different variants of a malware family. Finally, we scrutinize the different

HBCIA algorithms that we have defined in the previous chapter.
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In Chapter 6, we present a system for detecting HBCIAs at runtime. The system called

Bee Master applies the honeypot paradigm to operating system processes. It relies only

on concepts that are common to all current multi-tasking operating systems such as

Windows and Linux. Bee Master detects HBCIAs platform-independently as proven in an

evaluation on several versions of Windows and Ubuntu Linux with prevalent malware

families, artificial samples and goodware.

Chapter 7 proposes a system to detect HBCIAs in memory dumps. Our approach Quincy

is based on similar concepts as Bee Master. It employs machine learning techniques in

order to detect HBCIAs in memory dumps. We evaluated Quincy on several versions

of Windows and compared it to the current state of the art Malfind [25] as well as

Hollowfind [27].

In Chapter 8, we discuss direct applications of our thesis, future work, and conclude

this thesis.
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If I have seen further, it is by standing

on the shoulders of giants.

Sir Isaac Newton

2
Basics

This chapter discusses the basics that are required to follow this thesis. At first, we

discuss malware in general and how its analysis is conducted. Since our thesis focuses

on malware, it is important to have a basic idea of malware and to understand how

malware is analyzed today. We then shift our focus in the next section and present hon-

eypots. A basic understanding of honeypots is required since our system Bee Master (see

Chapter 6) transfers the honeypot paradigm to operating system processes to dynami-

cally detect HBCIAs. Next, we present the fundamentals of machine learning that are

relevant to our thesis. Our second detection approach Quincy (see Chapter 7) utilizes

machine learning techniques. Finally, we recapitulate the main ideas of this chapter in

a concluding section.

2.1 Malware

The term malware is a blend of the two terms malicious and software. There are sev-

eral definitions, for example, the English dictionary Meriam-Webster defines malware as

“software designed to interfere with a computer’s normal functioning” [31]. A more for-

mal definition is given by Kramer et al.. They define malware as “A software system s is

malware by definition if and only if s damages non-damaging software systems (the civil
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population so to say) or software systems that damage malware (the anti-terror force so

to say).” [32]. The utilization schemes of malware are manifold. Cyber criminals may

utilize malware for confidential information theft [6], banking credential theft [33],

attacking third-parties [34], cyberwarfare [7], or resource theft [35].

Today, on one side there are criminal gangs that target the general public due to mone-

tary gains, e.g. with banking Trojans like Tinba [36], Rovnix [37] and Zeus [38]. Several

actors offer their services – commonly known as Malware as a Service (MaaS) – in order

to help others to commit cyber crimes [39]. Moore et al. estimated that these criminal

gangs cause damages worth several billions of dollars each year [40].

On the other side, there are secret services that supposedly target nations, dissidents,

or non-governmental organizations due to intelligence. Two prominent cases recently

gained media attention. First, the case of Regin, where the secret services NSA and

GCHQ allegedly employed this sophisticated espionage kit to spy on, amongst others, the

European Union [41, 42]. Second, the Syrian civil war, where the belligerents allegedly

spied on each other with mostly simple Trojans [43, 44].

2.2 Malware Analysis

Malware analysis denotes analyzing a malicious program with the objective to gain un-

derstanding of its internals. Classically, malware analysis is divided into dynamic anal-

ysis and static analysis. Whereas malware executes during dynamic analysis, this is not

the case during static analysis. Our first detection system Bee Master that we present

in Chapter 6 is a dynamic one. Lately, a special form of static analysis has emerged:

memory forensics. As a consequence of the rapid development of memory forensic

frameworks, malware analysts conduct more and more memory forensic analyses. Our

second detection system Quincy, which we introduce in Chapter 7 conducts memory

forensic in an automated fashion.

2.2.1 Dynamic Analysis

During dynamic analysis of malware, malware analysts execute the malware in a con-

trolled environment. This permits them to observe the malware’s behavior and its in-

teractions with the environment at runtime, yielding valuable information about the

malware and its internal states.

However, there are two major drawbacks of dynamic analysis. The first one is that

not every possible program path is executed [45]. There might be dormant behaviors
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that the malware only exhibits when certain conditions are met. An example for a

dormant behavior was the time-based update mechanism of Conficker.C [46]. For ana-

lyzing dormant behaviors, analysts have to statically analyze the malware to explore all

its program paths. Another drawback that becomes increasingly more severe is evasive

malware [47]. Malware authors utilize dynamic analysis evasion to complicate the anal-

ysis of their software. They employ several techniques to evade dynamic analysis: i.)

some of them (e.g. virtual machine detection [48]) target automatic analysis systems

like sandboxes, ii.) some of them (e.g. debugger detection [49]) target the manual

analysis carried out by human malware analysts.

Dynamic Analysis Techniques

The simplest form of dynamic analysis is called Black Boxing [50]. This technique de-

scribes the process of executing a malicious program and observing its interactions with

its environment without peeking into the program’s code or its internal states. Black

boxing can be applied at host-level, at network-level, or in a combination of both. For

instance, at host-level, a malware analyst may be interested in new processes or files that

the malware creates as well as the modifications of system configurations. At network-

level, a malware analyst may be interested in the hosts that the malware connects to

and the data that it exfiltrates.

Typically, Virtual Machines (VMs) are utilized when analyzing malware. VMs emulate

computer systems [51]. From a malware analyst’s point of view, they offer a broad range

of advantages like revertable system states.

There are also special systems for dynamic analysis automation called sandboxes [52].

They conduct behavioral analysis of malware samples in an automated fashion. A sand-

box executes a malware sample for a couple of minutes, observes the behavior of the

sample, and finally outputs a report. To the best of our knowledge, there is no evalu-

ation of the optimal runtime. In practice sandboxes grant malware typically between

two and five minutes to run. Most of these systems are based on VMs but there are also

systems based on bare-metal machines [53].

Developers utilizes debuggers to find and fix errors in their programs [54]. Debuggers

allow them, for instance, to step through the code instruction-wise, to execute the code

until it reaches a certain point or it fulfills a certain condition, as well as to inspect the

registers or the memory of a program. They are a valuable tool for malware analysts,

since they permit them to inspect the malicious code while it is interacting with its

environment.
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2.2.2 Static Analysis

During static analysis the malware does not execute. Although, no execution context

is available during static analysis, the whole program can be inspected including all

possible program paths [45].

However, there are two major drawbacks associated with static analysis. First, the ma-

jority of today’s malware samples is packed, i.e. the original code is compressed or

encrypted. It is then decompressed or decrypted at runtime [55]. This renders a sole

static analysis of malware impracticable. Malware analysts must unpack the malware

sample before they can conduct a proper static analysis. Second, the code of malicious

binaries is often obfuscated (e.g. [56–58]), which further impedes an analysis and often

demands the time-consuming implementation of custom deobfuscation scripts.

Static Analysis Techniques

Basic static analysis deals with a malware sample without taking its code into account.

For example, the inspection of a malware sample’s header is a static analysis technique.

Cryptographic hash functions such as MD5 or SHA256 are employed to fingerprint

malware samples [59]. If the hash value of the sample is known because it had al-

ready been analyzed, then no further analysis is required. Unfortunately, cryptographic

hash functions are prone to minimal modifications, which result in completely differ-

ent hash sums. Therefore, other static similarity measures were proposed including

Fuzzy Hashes [60], Pehash [61] and Import Hashing [62]. Further basic static anal-

ysis techniques determine if a malware sample is packed. Several publications focus

on executable packer detection (e.g. [55, 63]) and consequently on static unpacking

(e.g. [64]).

Disassembling

We assume in the following that the malware analyst has no access to the malware’s

source code and that the malware at hand comes in binary form. This is a reasonable

assumption for the great majority of malware samples since distributing malware in

binary form increases its analysis complexity. A primitive analysis approach would be

analyzing the malware’s machine code, for example, as hexadecimal dump in a hexedi-

tor. Listing 2.1 shows the machine code of a Rovnix function as hexadecimal dump.

55 8B EC 51 C7 45 FC 00

00 00 00 83 7D 0C 00 74

08 8B 45 0C 3B 45 10 76
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07 C7 45 FC 57 00 07 80

8B 45 FC 8B E5 5D C2 0C

LISTING 2.1: Hexadecimal representation of x86 machine code of Rovnix

(MD5: 284c8188657cabad50c3192200ea445a)

Only very skilled and experienced analysts understand such a hexadecimal representa-

tion. For instance, 0x55 is the encoding of the instruction push ebp and 0xEC8B (due

to the endianness of Intel x86) is the encoding of the instruction mov ebp, esp. Disas-

semblers decode the binary to assembly code. Machine code is the code that a micro

processor understands. A disassembler decodes – or more formally speaking disassem-

bles – the machine code of Listing 2.1 to the human-understandable assembly code in

Listing 2.2.

.text :760011 A0 sub_760011A0 proc near

.text :760011 A0 var_4= dword ptr -4

.text :760011 A0 arg_4= dword ptr 0Ch

.text :760011 A0 arg_8= dword ptr 10h

.text :760011 A0

.text :760011 A0 push ebp

.text :760011 A1 mov ebp , esp

.text :760011 A3 push ecx

.text :760011 A4 mov [ebp+var_4], 0

.text :760011 AB cmp [ebp+arg_4], 0

.text :760011 AF jz short loc_760011B9

.text :760011 B1 mov eax , [ebp+arg_4]

.text :760011 B4 cmp eax , [ebp+arg_8]

.text :760011 B7 jbe short loc_760011C0

.text :760011 B9

.text :760011 B9 loc_760011B9:

.text :760011 B9 mov [ebp+var_4], 80070057h

.text :760011 C0

.text :760011 C0 loc_760011C0:

.text :760011 C0 mov eax , [ebp+var_4]

.text :760011 C3 mov esp , ebp

.text :760011 C5 pop ebp

.text :760011 C6 retn 0Ch

.text :760011 C6 sub_760011A0 endp

LISTING 2.2: Disassembled function of Rovnix using IDA Pro [65]

The disassembled code exhibits increased readability compared to the hexadecimal code.

Typically, malware analysts analyze malicious code at this level of abstraction.

2.2.3 Memory Forensic Analysis

So far, we have discussed the two traditional branches of malware analysis. Now, we

shift our focus to a recent branch. Our second approach Quincy that we will present in
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Chapter 7 solves a problem that malware analysts but also forensic analysts face daily:

Detecting a malicious binary that has injected itself into another process space. Once

they have detected this binary, they can continue with its detailed analysis. To solve this

problem, we utilize memory forensic analysis, which has become popular in the context of

malware throughout the last years, owing to the rapid development of memory forensic

frameworks.

Memory forensic analysis is a subcategory of Computer Forensics, which is the science

of identifying, preserving, and examining evidence on computer systems, all done in a

forensic-sound fashion [66]. Computer forensics is a broad field that includes areas like

storage media forensics and memory forensics. However, memory forensic analysis in

the context of malware analysis gained its momentum only a couple of years ago. This

is a consequence of the easy and free access to frameworks such as Volatility [25] and

Rekall [67].

We consider memory forensic analysis in the context of malware as a combined approach

of dynamic and static analysis. The malware is not executed during the analysis (static

analysis) because the forensic analyst analyzes a memory dump that shows the state of

a system at point in time t. However, the malware was executed in the environment

at hand before the memory dump was taken. Therefore, its interactions are observable

(dynamic analysis). This definition may differ from the literature. Where the literature

is written from the point of view of forensic analysts, this thesis is written from the point

of view of malware analysts.

A memory dump is an image of a computer’s volatile main memory at point in time t.

It comprises a wealth of data. For example, it contains the list of running processes of

the operating system or private keys of hard disk encryption tools. A plain image of a

computer’s volatile main memory is just a huge binary string. In this form it is of no use

to analysts. First, they have to overcome the semantic gap to conduct an analysis of the

system’s state at point in time t [68]. The semantic gap denominates the fact that there

is a gap between how the lower layers interpret the memory dump data (low semantic

value) and how the operating system interprets it (high semantic value) [69]. Several

seminal papers have investigated this problem (e.g. [70, 71]). In practice, analysts have

access to mature frameworks like Volatility [25] to overcome the semantic gap.

They are popular, especially in the malware analysis community. Malware analysts ex-

ecute a sample in a VM and after a couple of minutes they create a memory dump of

this VM. The hypervisor usually offers the functionality to take a consistent memory

dump, e.g. with dumpvmcore in VirtualBox [72]. Then, they analyze the behavior of

the malware by analyzing the forensic artifacts with the help of such frameworks. The

advantage of this approach is that analysts are not restricted to neither kernel space nor

14



user space and that they have access to all information that was available at point in

time t. Executing a sample and observing the results of its interactions with the environ-

ment in a memory dump is similar to blackboxing, which is a dynamic analysis method

(see Section 2.2.1).

2.3 Honeypots

Spitzner defines a honeypot as ”a security resource whose value lies in being probed, at-

tacked or compromised” [73]. These resources allow the collection of data on attack

patterns, the detection of previously unknown attack vectors, or the employment to dis-

tract attackers. Possible application areas of honeypots in the security domain are man-

ifold. We therefore introduce honeypots only in the context of malware. Please note

that there are other applications such as detecting password cracking [74] or profiling

attacker behavior [75] that are not directly related to malware.

Depending on their application, honeypots can be either host-based (e.g. Ghost [76])

or network-based (e.g Nepenthes [59]). They can be either a client (e.g. Thug [77]),

i.e. searching to be attacked, or they can be a server (e.g. honeyd [78]), i.e. wait-

ing for an attack. Furthermore, the interaction level between the honeypot and the

attacker is an important success factor. Interaction levels stretch from low interaction to

high interaction. Whereas low interaction honeypots simulate attackable entities (e.g.

dionaea [79]), high interaction honeypots offer real entities (e.g. CaptureHPC [80]).

The higher the interaction, the more attack information can be extracted. However,

the higher the interaction, the higher the probability of misuse since services are not

simulated.

2.4 Machine Learning

Machine learning evolved from the field of artificial intelligence. In a nutshell, machine

learning is the science of learning from data and making predictions based on it [81].

In the following sections, we introduce the basics of machine learning relevant to this

thesis. At first, we define samples and features. Then, we introduce the classification

problem and supervised machine learning. Our system Quincy (see Chapter 7) solves a

problem of this class since it classifies memory artifacts as benign or malicious. It solves

it by utilizing supervised machine learning. Finally, we present the machine learning

algorithm of Quincy’s final model. We derive Extremely Randomized Trees from simple

Decision Trees and Ensemble Learning. Even though we evaluated our system with several
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algorithms in Section 7.3, we describe only the best performing algorithm Extremely

Randomized Trees in the following. The reader should consult introductory literature on

machine learning such as Russel et al. [81] or Flach [82] for explanations of the other

machine learning algorithms utilized in Section 7.3.

2.4.1 Samples and Features

We define a sample s as single entity of a specific class. For instance, samples of the

vehicle class are Freightliner M2 dump truck and BMW X3 G01. Features describe mea-

surable aspects of samples [82]. For instance, a vehicle has, amongst others, a top speed

and a tank capacity. A feature f assigns to each sample s a real number f(s). Given a

fixed set of features F = {f1, ..., fn}, n ∈ N, we can see a sample s as an n-dimensional

vector of features (f1(s), ..., fn(s)) ∈ Rn. This identifies samples with points in a vector

space, called feature space. The identification naturally defines a notion of distance and

similarity between samples. For instance, sports cars should be clustered closer to each

other than to trucks and golf cars because their top speed is much higher. Many classifi-

cation algorithms are based on geometric properties of samples in the feature space, e.g.

SVM [83] uses a hyperplane to split the feature space in two half-spaces and KNN [84]

uses distance in the feature space to assign samples to a cluster.

2.4.2 The Classification Problem and Supervised Learning

Given a set of predefined classes C0, C1, . . . , Cn, the problem of assigning a sample s

to one of the classes Ci is called classification problem [85]. The simplest classification

problem is binary classification. Either a sample belongs to class C0 or it belongs to class

C1. For instance, the detection of malware can be modeled by two classes Cgoodware and

Cmalware that need to be distinguished.

One approach to solve classification problems is Supervised Machine Learning. This term

describes learning with a teacher. More formally, it describes the problem of inferring

a function from a set of labeled training data [81]. The labeled training data is a set

of pairs, consisting of known samples together with their correct classification. A su-

pervised learning algorithm induces a function based on this data with the objective to

correctly classify unseen data.
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FIGURE 2.1: Decision tree for choosing the right football club. Brown nodes represent
tests and green leafs represent decisions.

2.4.3 Decision Trees

Quincy’s model selection showed that the algorithm Extremely Randomized Trees per-

forms best on our problem (see Section 7.3). In the following three sections, we derive

this algorithm using a bottom-up approach. First, we introduce Decision Trees in this

section. They are the smallest constituent unit of Extremely Randomized Trees. This al-

gorithm assembles many of these units to one greater structure by utilizing Ensemble

Learning, which we explain in the next section. Finally, we assemble the concepts of this

and the next section to Extremely Randomized Trees in the section after next.

Decision Tree is a supervised machine learning algorithm that partitions the feature space

into a set of rectangles [86]. It is based on a tree data structure to make decisions. A

sample traverses this tree starting at its root and a series of tests is performed. Each non-

leaf node represents a test and each leaf a decision to classify this sample. Figure 2.1

illustrates a Decision Tree for choosing the right football club. Each brown node tests a

feature, e.g. if the future fan is interested in European football. The green leaves suggest

a football club, e.g. the Argentinian club Boca Juniors.

The de-facto standard algorithm for Decision Tree generation is CART (Classification And

Regression Trees) proposed by Breiman et al. in 1984 [87]. CART is a greedy algorithm.

It chooses at each node of the tree how to split the current set of samples into subsets

based on their features.

Decision Trees tend to reflect anomalies and outliers of the training data [88]. A method

to address this shortcoming is Tree Pruning. Pruned trees lose a lot of their complexity.

In a nutshell, tree pruning algorithms reduce the impact of noise by removing the least

reliable branches of the tree and by combining leaves.
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FIGURE 2.2: Predicting a class using an ensemble classifier E with five weak classifiers
Ei, where i ∈ {1, .., 5}.

2.4.4 Ensemble Learning

The preceding section has stated that simple Decision Trees tend to reflect anomalies

and outliers of the training data. The bias-variance trade-off expresses this dilemma.

It denotes the problem of minimizing two main roots of errors in supervised machine

learning algorithms that prevent an algorithm from generalizing [82]. The bias de-

scribes the difference between the expected predictions and the true predictions. It is

responsible for underfitting. The variance describes the variability of predictions. It is

responsible for overfitting. One way to counter this problem in Decision Trees is to prune

them. Another way to tackle this problem is Ensemble Learning. Ensemble learning com-

bines multiple (weak) classifiers to one ensemble classifier. The predictive performance

of such an ensemble is often better than the performance of each weak classifier [85].

This is based on statistical intuition: Conducting several measurements and then aver-

aging them leads to more stable and reliable estimates [82]. However, the algorithmic

complexity and model complexity increase as well. Ensembles types are, for instance,

Bagging, Tree Forests, and Boosting [88].

Figure 2.2 illustrates how a learning ensemble E predicts a class for sample s. Each

weak classifier predicts Ei(s), where i ∈ {1, ..., n} and n ∈ N is the number of classifiers.

The prediction is given by averaging the weighted predictions of the weak classifiers.

Even though the following ensemble learning algorithms work with different types of

weak classifiers, they are typically utilized in conjunction with Decision Trees in prac-

tice [82, 88]. Therefore, we assume the weak classifiers to be standard (CART) Decision

Trees in the following.
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2.4.5 Forests of Randomized Trees

Forests of Randomized Trees is an ensemble method that consists of several random-

ized Decision Trees. The introduction of randomization to the ensemble learning pro-

cess yields a decrease of the model’s variance with a typical increase of the model’s

bias [82]. The two most popular members are Random Forest [89] and Extremely Ran-

domized Trees [90].

Extremely Randomized Trees proposed by Geurts et al. [90] heavily rely on randomiza-

tion. They are based on the idea of Bootstrap Aggregation, also known as Bagging. The

main idea of Bagging is drawing several subsamples of the original set and train one

weak classifier of the learning ensemble on each subsample [82]. The sampling method

is done by uniformly drawing samples with replacement from the original sample set.

Since samples are drawn with replacement, a bagged set may contain duplicates. Train-

ing the weak classifiers on different bootstrapped sets creates diversity, which in turn

increases the robustness of the ensemble.

Another technique called Subspace Sampling is utilized to further increase variation. It

induces each Decision Tree from a different random subset of the feature set, i.e. the split

that is chosen is not the best split among all features but rather the best split among a

random subset of them [82]. In case of Extremely Randomized Trees, a random cutpoint

for a feature f ∈ F is uniformly drawn to further increase randomization. At each

node, it creates K splits with K being a parameter of the algorithm (a typical default

choice K =
√
|F |). Therefore, it examines K features at each node. For each feature

fk, 0 6 k 6 K, it uniformly draws a cutpoint from [fmin, fmax], where fmin denotes the

minimal value of f regarding the current set and fmax denotes the maximal value of

f regarding the current set. Then, it takes the split that yields the highest score with

respect to a scoring metric, e.g. the precision, the recall, or the ROC AUC score.

2.5 Conclusion

This chapter has discussed the fundamentals of this thesis. Since this thesis focuses on

Host-Based Code Injection Attacks in the context of malware, we have given an intro-

duction to malware and its analysis first. Our two systems to detect HBCIAs employ

dynamic analysis (Bee Master in Chapter 6) and forensic analysis (Quincy in Chapter 7).

Bee Master incorporates the honeypot paradigm. Therefore, we have discussed honey-

pots including high-interaction and host-based systems. Quincy relies on machine learn-

ing techniques. We have presented supervised machine learning and in particular the
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algorithm Extremely Randomized Trees that achieved the best performance in Quincy’s

evaluation in Section 7.3.
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Plus ça change, plus c’est la même chose

Jean-Baptiste Alphonse Karr

3
Related Work

This chapter plants our research in the research landscape by discussing related work,

which covers three areas: The first area is the formalization and study of code injection

attacks in general. The second area is the prevention of Host-Based Code Injection At-

tacks (HBCIAs). There have been numerous publications in this area that mostly aimed

at the prevention of exploitation due to software bugs, e.g. stack-based buffer over-

flows. This topic was intensively researched in the early 2000s concomitant with the

massive outbreaks of computer worms. The third area is the detection of code injection

attacks. In this field, many publications have focused on the network-based detection of

code injection attacks. However, there have been few publications that have dealt with

the continuously increasing threat of HBCIAs. In addition to related scientific work,

we surveyed related software patents and products. Our field is a practical one and

the computer security industry significantly invests into the development of mitigation

techniques.

Since our thesis focuses on binary code injections carried out by malware, we did not

survey other forms of injection techniques like SQL injections [91] or cross-site scripting

(XSS) [92] in the following sections. These techniques are out of scope.
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3.1 Formalization and Study of Code Injection Attacks

The formalization and study of code injection attacks is a prerequisite for further studies

in this field. Younan et al. [93] surveyed common techniques for injecting code into

C and C++ programs. They distinguished between indirect attacks (indirect pointer

overwriting and exploiting of heap-based overflows, dangling pointer references, as well

as integer errors), exploiting data-based overflows, as well as attacks on format string

vulnerabilities. The origin of code injection attacks can be either host-based or network-

based. Ma et al. [94] as well as Polychronakis et al. [95] studied network-based code

injection attacks in detail.

Whereas the presented publications focused on code injections that only exploit pro-

grammatic errors (e.g. dangling pointers), we focus on HBCIAs in the context of mal-

ware, which also injects its code with the help of interfaces offered by the operating

system. Malware may also use programmatic errors for injection, e.g. the espionage

malware Stuxnet [7]. We are the first to introduce a formalization of HBCIAs in the

context of malware and to classify the various modus operandi. Since our formalization

is more abstract, it is agnostic to the underlying technical injection method. This allows

us to discuss HBCIAs on different operating systems (e.g. Windows, Linux, macOS) and

architectures (e.g. x86, x64, ARM).

3.2 Prevention of Code Injection Attacks

This section discusses related work concerning the prevention of code injection attacks.

Even though these approaches focus on the prevention, they may also allow the detec-

tion of code injection attacks – Be it explicit, like preventing the execution of a payload

at a certain address or be it implicit, like an access violation due to a process crash.

3.2.1 Complication and Prevention of Code Execution

From a defender’s point of view, the main objective is blocking the execution of injected

code to prevent it from doing any harm. If this is neither possible nor feasible then

the defender should at least raise the bar for attackers and complicate the execution of

injected code.

The beginning of the 2000s was the time of major computer worm outbreaks. These

worms spread mainly via buffer overflows. Back then, buffer overflows were consid-

ered as “the vulnerability of the decade” [96] and constituted a major topic in computer
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security research. A popular area of research focused on the prevention of buffer over-

flows (e.g. [97–101]). One notable defense was the introduction of the non-executable

stack [102]. Salamat et al. ([103, 104]) proposed multi-variant program execution to

detect and prevent buffer overflows. They executed several slightly different instances of

the same program in parallel, which performed equivalent computations. Their model

assumed that buffer overflows may occur and it detected them by deviations in one

or more instances. Another line of research focused on the prevention of unexpected

system calls (e.g. [105, 106]). Such system calls might emerge from injected code.

In order to thwart techniques like code-signing and non-executable memory, return-

oriented programming (ROP) was invented ([107–110]). ROP allows an attacker to hi-

jack the control flow of a program by only controlling its call stack. Several defenses

against ROP have been proposed (e.g. [111–114]).

HBCIAs carried out by malware are different. Whereas the discussed seminal papers

detect the execution of exploits, they may not detect HBCIAs. This is due to the fact

that HBCIAs are mostly carried out with the help of regular system calls. Our approach

Bee Master is independent of the techniques utilized. It detects, on the one hand, HB-

CIAs that employ regular system calls. On the other hand, it detects HBCIAs using the

above-mentioned attack methods. This is owed to the fact that after such an attack

the malware, for example, loads detectable modules, which diverges form the expected

behavior.

3.2.2 Randomization

Randomization of several computer system components have been the foundation of

many ideas such as Data Layout Randomization and System Call Randomization. Ran-

domization of several aspects of a computer system may lead to execution failures of

injected code. This is due to assumptions the injected code may take (e.g. the API call

VirtualAlloc resides at address 0x00767689) or the fact that it may not encounter what

it is looking for (e.g. the API call VirtualAlloc in general).

Whereas many different approaches were proposed for preventing code injection at-

tacks, only a few of them, like Address Space Layout Randomization (ASLR) [115], found

their way into major operating systems such as Microsoft Windows and Linux. The

reason for this may be the demand of major changes to the kernel. Therefore, many

vendors shunned promising approaches like Instruction Set Randomization (ISR) [116]

because of their impracticality.
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In the following sections, we survey proposals that randomize the data layout, the in-

structions, the system calls, or the operating system itself.

Data Layout

One successful class of countermeasures are Data Layout Randomizations. They were

introduced between the late 1990s and the early 2000s. For example, injected code

assumed back then that certain system libraries would always be mapped to certain

addresses. Randomization of data layouts, however, did not lead to the end of code

injections. It just raised the bar by reducing the reliability of exploits.

The PAX project [117] introduced several countermeasures against code injection at-

tacks. These included Non-Executable Pages, i.e. pages can be marked as non-executable

resulting in an exception if executed, and Address Space Layout Randomization (ASLR),

i.e. randomly relocating code and data pages. Many of the leading operating systems

like iOS and Microsoft Windows (DEP [118]) incorporated the NX-bit as an implementa-

tion of non-executable pages. Xu et al. [119] proposed a system for Transparent Runtime

Randomization. It randomly relocated the heap, the stack, and shared libraries at run-

time. Bhatkar et al. ([120, 121]) presented Address Obfuscation, which was based on

address randomization. They also added features like the permutation of the variable

order. This even further decreased the probability of a successful exploitation. Kil et

al. [122] presented Address Space Layout Permutation (ASLP). They criticized that ASLR

introduced insufficient randomization and that similar approaches (e.g. [120, 121]) re-

quired access to the application’s source code. ALSP was a binary rewriting system that

modified the locations of static code and data to a random location. In addition, it per-

formed fine-grained permutations of the functions and the data in the binary. Bhatkar

et al. [123] introduced Data Space Randomization. Their proposal randomized the rep-

resentation of data objects in programs. Thus, their approach protected against cor-

ruption of non-control flow data. However, it was limited to source code. Giuffrida

et al. [124] proposed Fine-Grained Address Space Randomization, which allowed ASLR

on a finer-grained level in user space as well as in kernel space. The key concept was

the re-randomization of code during runtime. Snow et al. ([125, 126]) stated that

fine-grained ASLR could be circumvented by finding possible ROP-gadgets at runtime.

Shioji et al. [127] presented code shredding, a technique to improve the randomization

granularity (when compared to ASLR) to one byte. However, code shredding resulted

in a tremendous overhead in both runtime and memory. Due to the cats and mouse

game that defenders and attackers are playing, several new attack techniques against

poorly implemented ASLR systems were presented throughout the last years: Brute-

Forcing [128], Partial Pointer Overwrites [129], and Return-Oriented Programming [125].

24



Chen et al. [130] presented CodeArmor to harden code diversification against advanced

ROP exploits. Their system improved on ASLR randomization and also introduced honey

gadgets, which triggered an alarm in the case they were utilized.

The presented systems are different from Bee Master. They only focus on the exploitation

stage. Modern malware does not need to exploit the system once it resides on it to

inject code (see Chapter 4). This is due to the fact that many operating systems offer

such capabilities via system calls or special APIs (e.g. Windows [54]). Therefore, Bee

Master monitors its child processes for modifications to detect HBCIAs independently of

the injection method and the underlying OS.

Instructions

Another branch of research focused on the randomization of the processor’s instruction

set. This branch of research has been actively followed at least since 2003. Even though

the results have been promising and the performance of the approaches has increased

throughout the years, the application to productive operating systems is still missing.

Cohen [131] argued that different obfuscated variants of a program raise the bar for new

attacks significantly. His idea focused on the obfuscation and also implied randomization

of the program code. He applied techniques like instruction reordering, random garbage

insertion, and exchanging equivalent instruction sequences.

Barrantes et al. [116, 132] presented a Randomized Instruction Set Emulator called RISE,

scrambling each byte of the legitimate program code. The foundation of this obfuscation

was a pseudo random number generator (PRNG) that was seeded with a random key.

When the key was known, the descrambling of the bytes was trivial. However, it was

infeasible to produce even a short sequence of code with a meaningful behavior without

knowledge of the correct key. Incorrectly scrambled code produced invalid instructions

that crashed the program on execution. Similar to Barrantes et al., Kc et al. [24] pro-

posed a system for thwarting code injection attacks by randomizing the instruction set of

each process. It required special support by the processor. Several publications followed

these two publications of Barrantes et al. and Kc et al. on instruction set randomization

(e.g. [23, 101, 133–135]). They focused on alternate implementations, enhancements,

or improvement of the performance.

Whereas all of the presented seminal papers prevent and potentially detect the execution

of injected code, they require profound modifications of current operating systems to

work. Such modifications are not realistic in the most popular closed source operating

systems in the short term. Bee Master is different from these publications. First, it
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does not rely on modifying current operating systems. It can be easily ported to other

platforms without any modification of them. Second, it does not focus on prevention

but rather on detection. The above mentioned papers focused mainly on prevention and

detection may only be a side effect.

System Calls

Programs receive inputs and output results. This is achieved via the interaction with the

OS kernel through system calls.

Chew et al. [136] presented the randomization of system call mappings. They changed

these mappings in the kernel and dynamically rewrote system calls in programs be-

fore loading the program. Injected code did not know the correct mappings and hence

crashed the victim process. Oyama et al. [137] proposed the encryption of system call

IDs and arguments. Hence, an attacker without knowledge of the encryption algorithm

and key was not able to use system calls. Building upon former approaches, Jiang et

al. [138] introduced RandSys, an approach that combined ASLR with a weakened form

of ISR (see previous section). They only randomized system calls. Similar to Jiang,

Nguyen et al. [139] implemented a native API randomization for Microsoft Windows.

The presented publications can protect against code injections, especially in the classical

case of remote exploits. However, they fail to protect against code injections carried out

by an attacker that already resides on the system and utilizes legitimate system calls for

foreign process space manipulation, e.g. due to access to the compiler tool chain. This

is often the case with today’s malware. Our approach Bee Master does not suffer from

this limitation. It is able to detect such HBCIAs that are carried out by legitimate system

calls, since they result in measurable changes in its child processes.

Operating System

Another set of proposals built diverse operating systems, which may increase the robust-

ness against replicated attacks.

Pu et al. [140] discussed ideas for countering malware and exploits, which relied on

implementation details of the OS. They counted on variation of the OS code. Even

though the authors might be the first to apply biological ideas (e.g. the human im-

mune system) to OSes to counteract malware and exploits, their publication contained

vague statements and suggestions for future work. Forrest et al. [141] were the first

to formally introduce the idea of building diverse operating systems. They argued that
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diversity implies robustness in biology. Current computer systems were not very diverse

and therefore very susceptible to mass exploitation attacks. They did not present a con-

crete solution to this problem but they proposed possible implementations like memory

layout randomization and code permutation. Please note that these ideas were subject

to research several times in the last two decades (see the previous sections). Chew et

al. [136] proposed OS randomization to mitigate buffer overflow attacks. Since their

proposal aimed at the mitigation of buffer overflow attacks, it randomized parts of the

OS that played an important role in buffer overflow attacks: system call mappings, li-

brary entry points and stack placements. We have already discussed these techniques in

the previous sections. Larsen et al. surveyed automated system diversity [142].

Our work is different from the presented publications. We aim for practical and applica-

ble solutions such as Bee Master and Quincy that can be employed with current operating

system implementations. Diverse operating systems pose many drawbacks. They may

be problematic for system administrators and programmers when bugs occur. Also, they

demand the reimplementation of current operating systems from the ground up.

3.2.3 Integrity

Next to randomization, integrity-based systems are popular in the literature. They en-

sure the integrity of the code and the code execution environment. First, we review

work that focuses on the integrity of control and data flows. Second, we discuss further

approaches that, for example, aimed at the integrity of the execution environment.

Control and Data Flows

Code injections violate the integrity of the control and data flows of the victim process.

For instance, the hijacking of a thread violates the control flow of the corresponding

victim process.

Kiriansky et al. [143] presented Program Shepherding, which verified every branch in-

struction and enforced certain security policies. For example, they detected code injec-

tions due to a code origin policy. Their system was based on the interpretation of binary

code. Suh et al. [144] introduced Dynamic Information Flow Tracking. Their approach

marked data coming from Input/Output (I/O) sources as spurious. Then, it tracked this

marked data and detected dangerous uses of it. Abadi et al. [145, 146] defined the

concept of Control Flow Integrity (CFI). Their idea ensured that the program execution

followed a path in the precomputed program’s control flow graph. Valid paths were

determined beforehand. Younan et al. [93] proposed separating pointer and control
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flow information of programs to mitigate a wide range of attacks including buffer over-

flows. They extended a C compiler to generate code with these characteristics. Castro et

al. [147] proposed Data Flow Integrity. They statically computed a data flow graph and

enforced valid data flows by instrumenting the program. Their system raised an excep-

tion when it detected an invalid data flow. Akritidis et al. [148] introduced a system that

statically computed the control flow graph and determined memory access locations for

each instruction. Then, code was generated that prevented the manipulation of objects

by instructions that were not allowed to write to these objects. Bletsch et al. [149]

presented Control Flow Locking. They lazily validated control flow changes after they

occurred. Therefore, they inserted code before each indirect control flow transfer such

as returns and indirect jumps. This code checked a memory value to verify if the current

control flow had already been transfered. They aborted the execution in this case. Zhang

et al. [150] improved CFI by introducing a springboard section, where they stored all

legal targets of indirect control flow instructions. The order of the targets was random-

ized and access was restricted. The authors claimed that this technique worked directly

on the binary code and significantly increased the performance of CFI. CFI continues to

be an open field for research (e.g. [151–154]). Even though CFI raised the bar for at-

tackers significantly, there are still ways to circumvent it, albeit certain conditions have

to be met (e.g. [155–160]).

In contrast to the presented publications, Bee Master focuses on the detection of malware

instead of exploit detection and prevention. We detect changes in the Worker Bees such

as new threads and new libraries that are a result of executing malicious code. We

assume that there are some attacks like simple ROP exploits that might be missed by

Bee Master but there are other cases in which it should perform better than a CFI-based

system. Therefore, a combination of it and CFI-based systems would be a way to boost

detection rates even further and also beyond malware.

Other Approaches

Feng et al. [161] utilized call stack analysis to detect several attacks. They extracted call

addresses from the call stack and tried to find a path with abstract execution between

two program points. If shellcode was executed then a valid path did not exist. Linn et

al. [162] ensured that only legitimate system calls were executed by adding information

about the allowed system calls of a binary to a special section of the binary. Further-

more, they obfuscated system call traps using exceptions. Ratanaworabhan et al. [163]

presented a system against Heap-Spraying Attacks that also targeted type-safe languages

like Java. They monitored the entire heap and detected large-scale modifications to

the heap’s objects that are required in such an attack. Salamat et al. [164] proposed

28



multi-variant execution. They executed multiple variants of a program and compared

their states at certain execution points. If there were discrepancies then an exception

was raised. Philippaerts et al. [165, 166] presented Code Pointer Masking. They masked

code pointers and therefore restricted the range of addresses that these pointers could

point to. This should have ensured that an attacker could not make a pointer point to

injected code. Baiardi et al. [18] introduced the separation of code execution and con-

trol flow in two virtual machines. With this clean separation, they were able to detect

injected code. Chen et al. [167] implemented Shreds that allowed in-process private

memory. They offered programmers a set of primitives that they had to include in their

program. A modified compiler compiled the source code and a kernel driver ensured

that only the owner of this in-process private memory accessed it. Their system coun-

tered data theft and manipulation by other threads of the process. Yun et al. [168]

proposed a system to sanitize the utilization of API calls. It analyzed the source code

with symbolic execution and determined semantically correct sequences of API calls. If

a program utilized a different sequence at runtime then they detected this behavior.

Bee Master is clearly different from the presented publications. It neither requires a

new OS or even a new computer architecture (e.g. [18, 163, 164]), nor is it tailored

only to one platform (e.g. [162]), nor does it rely on the availability of source code

(e.g. [165, 166, 168]).

3.3 Detection of Code Injection Attacks

In Section 3.2, we have already discussed the prevention of code injection attacks, which

can also be leveraged for the detection of them in some cases and to a certain degree.

This section discusses approaches that merely detect code injection attacks. First, we

discuss the detection of Host-Based Code Injection Attacks (HBCIAs), the most related

area to this thesis. Second, we survey Remote Code Injection Attacks.

3.3.1 Host-based Approaches

Even though there have been many publications on preventing code injection attacks

(e.g. [23, 24, 120, 138, 145]), the research community has not intensively focused on

detecting HBCIAs. This holds true especially in the case of malware. In the following, we

discuss dynamic and static approaches separately. This corresponds to the two systems

that we developed: Bee Master (dynamic) and Quincy (static).
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Dynamic Approaches

Hanel [169] published a tool to detect HBCIAs in Windows processes. He achieved

this by scanning each process for certain low-level characteristics. First, it checked if

a library had been automatically injected into a process via certain registry keys (Ap-

pInit DLLs and APPCERTDLLs). Second, the tool searched for private memory regions

that might have been mapped into the process during a code injection. Third, it dumped

all memory regions with RWX permissions. Furthermore, it could spawn an instance

of the browser Internet Explorer and scanned it for these aforementioned characteris-

tics. Hanel’s implementation suffered from relying on low-level details, non-portability

as well as not being extensible in order to detect a larger set of malware families. Bee

Master abstracts from these low-level features. Therefore, it can also detect memory re-

gions with other permissions like RX that have been injected into one of its Worker Bees.

Hanel’s tool focused more on forensic at runtime. Therefore, it is more comparable to

Quincy than to Bee Master. Quincy employs the two last of Hanel’s features. However,

it does not rely on them but rather on a more comprehensive set of up to 36 features.

On one side, Hanel’s approach suffers similarly to other approaches like Malfind from

false positives due to dumping all RWX memory regions. On the other side, it relies on

information directly provided by the compromised system, which Quincy does not.

Xu et al. [170] employed taint tracking to detect a wide range of common attacks such

as SQL injections, buffer overflows, and command injections. However, their idea was

only applicable to C programs and demanded direct transformations of the source code.

Sun et al. [20] proposed a system for detecting HBCIAs by hooking certain system calls

associated with this behavior. The hooking was performed in kernel mode in order to

ensure higher privileges than the malware. Since Sun et al. relied on certain system

calls, they depended on low-level OS details. Furthermore, Sun et al.’s system was not

capable of detecting unknown code injection attacks, because it only hooked system

calls known to be related to prior code injection attacks. Buescher et al. [22] proposed

a system that detected illegitimate manipulation of browser API, e.g. code hooks. It was

based on the assumption that malware employs HBCIAs to manipulate these APIs. Sri-

vastava et al. [21] detected HBCIAs by correlating host-based and network-based data.

Amongst others, they monitored selected low-level system calls, e.g. NtOpenProcess and

NtCreateThread. They utilized virtual machine introspection to gather behavioral data.

Snow et al. [19] presented a new hypervisor-based OS called ShellOS that was capable of

detecting Remote and Host-Based Code Injection Attacks. They achieved this by detecting

shellcode in network streams and process buffers. They executed network streams and

processed buffers at each offset. This was necessary since the offset to possible shellcode

was unknown. Their system employed various detection heuristics based on OS-specific
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structures like the Process Environment Block (PEB). Strackx et al. [171] proposed an

approach for hardening stock operating systems against kernel-level and process-level

malware. It consisted of a compiler and a runtime security architecture. The compiler

compiled programs in a way so as to they had a public and a secret section. Whereas

the public section was accessible by everyone on the system, the secret section was only

accessible by the module itself. Therefore, the impact of kernel-level and process-level

malware was significantly reduced. Korczynski et al. [172] presented Tartarus, a system

to detect code injections and code-reuse attacks. It utilized dynamic taint tracking over

the whole operating system to detect them. It did not rely on API call hooking. How-

ever, their system had a severe impact on the system performance and it was based on

a virtualization software. Hence, it does not directly apply to bare-metal. Furthermore,

they only evaluated their system on Windows XP SP3, which has a much smaller code

footprint than Windows 7, 8, and 10. Thus, their approach might be infeasible on these

newer platforms. Bee Master differs from the above publications: It neither relies on the

source code of the victim programs (Xu et al. [170]) nor on the hooking of low-level

system calls (Sun et al. [20], Buescher et al. [22], Srivastava et al. [21]) nor on funda-

mental changes to the operating system (Snow et al. [19], Strackx et al. [171]) nor on

special virtualization platforms (Korczynski et al. [172]).

The anomaly detection of process behavior is also closely related to Bee Master. Its

goal is to distinguish between normal and abnormal behavior of processes. Forrest et

al. [173] proposed a method to detect anomalies in Unix processes. They recorded

sequences of system calls and leveraged them to build process specific signatures be-

forehand. Then, they applied these signatures online to detect anomalies in the system.

Warrender et al. [174] presented further data models for anomaly detection based on

system calls. Sekar et al. [175] also based their work on Forrest et al. [173]. They pre-

sented a method to automatically and efficiently generate finite-state automatons to de-

tect anomalous sequences of system calls. Wagner et al. [176] proposed the detection of

anomalies in program behavior by applying static analysis to each program that runs on

a system. Thereby, they modeled a transition system that detected anomalies in system

call traces. Yap et al. [177] raised the bar for evasion attacks by introducing argument

abstraction of system calls. Mutz et al. [178] took the system call context into account.

This context comprised the return addresses placed on the call stack. Throughout the

years many publications have evaluated diverse models for system call-based anomaly

detection (e.g. Hidden Markov Model [179], AdaBoost [180], or Neural-Trees [181]) to

decrease false positives. Even though these works are more general than Bee Master,

they fail to detect an attack if the malware mimics the original application. Bee Master

is not vulnerable to mimicry attacks since it does not depend on system call tracing. In

addition, Bee Master leverages HBCIA-specific features including the number of threads
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and loaded libraries. Furthermore, Bee Master does not hook system calls, which is noisy

and easily detectable. Also, there is malware that actively tries to remove hooks (e.g.

the dropper/rootkit Andromeda).

Static Approaches

The Volatility plugin Malfind proposed by Hale Ligh [25] detected malware in memory

dumps similar to our method. Malfind implemented a combination of features designed

to decide whether a memory region is benign or malicious. At first, it marked entirely

empty memory regions as benign. Pages with RWX protections and unlinked libraries

(from the PEB) were marked as malicious. Furthermore, Malfind detected wiped PE

headers in RWX-protected memory regions. Unflagged regions were labeled as benign.

Lassalle proposed Malfinddeep [25], an improvement to Malfind that utilized whitelist-

ing of memory regions based on ssdeep hashes. We did not evaluate Malfinddeep since

there was no official whitelist of hashes available. Our work significantly improves upon

Malfind, which we showed in Quincy’s evaluation. It considers a superset of Malfind’s

features and adds many more to improve detection performance.

Pek et al. [28] presented Membrane, a system to detect HBCIAs in memory dumps.

Membrane reconstructed low-level memory paging information of Windows’s software

memory management unit (MMU) and leveraged this information to detect HBCIAs.

They identified circa 25 features based on domain knowledge and utilized the machine

learning algorithm Random Forest to detect HBCIAs on process-granularity. There are

overlaps between Quincy and Membrane such as the implementation as a Volatility plu-

gin and the utilization of one common feature (memorymapped). However, Quincy signif-

icantly differs from Membrane. First, Quincy’s detection has a finer granularity. Whereas

Membrane detects HBCIAs on a process-granularity, Quincy detects them on memory

region-granularity. Therefore, a direct comparison between Quincy and Membrane is

not possible. Second, the approach is very prone to noise. Their results were very good

on Windows XP but on Windows 7 they showed 25% less accuracy. We assume that on

Windows 10 this problem would be even worse since the noise level increases with every

Windows version (see Table 7.5). Third, they implemented their approach to analyze

two older Windows versions (XP and 7). Quincy also works on the latest version. Fourth,

Membrane was based on low-level features. The authors had to reverse engineer parts

of the Windows kernel to implement their system. Porting Membrane to a new Windows

version or even new OS would require many hours of tedious reverse engineering.
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Monnnappa proposed the Volatility plugin Hollowfind [27]. It detected a subset of all

HBCIAs: Process Hollowing (see Section 4.3). The detection heuristic of Hollowfind con-

sisted of two features that were engineered based on several Process Hollowing case

studies. First, Hollowfind scrutinized the parent child process relationship, e.g. the pro-

cess lssa.exe should not have been started by the process explorer.exe, which suggests

Process Hollowing. Second, it revealed discrepancies in two process internal data struc-

tures (VAD tree and PEB) that are a tell-tale sign of Process Hollowing.

White et al. [26] described a system to detect the provenance of malicious code in

memory dumps of Microsoft Windows. They achieved this by hashing memory pages

and comparing these hashes to a previously built hash database. Thereby, they could

reduce the amount of memory pages that have to be manually analyzed.

Quincy builds on and enhances current state-of-the-art approaches like White et al. [26],

Pek et al. [28], and Malfind [25]. First, it considers further features to detect HBCIAs

such as Thread Entry Points and High Entropy Areas. Second, we proved in Chapter 7 that

Quincy outperformed Malfind and Hollowfind. It showed up to 63% less false positives

and up to 27% more true positives when compared to Malfind. This general improve-

ment yielded an increase of the AUC score of up to almost 9% (see Chapter 7).

3.3.2 Network-based Approaches

A good overview of network-based code injection attacks was provided by Polychronakis

et al. [95] and, more recently by Fritz et al. [182]. Their studies discussed the basics

of network-based code injection attacks and pointed out current trends. Pure network-

based systems were restricted to payload detection in the network stream (e.g. [183–

187]).

The presented work is different from Bee Master and Quincy. It focused on the detection

of malware on the network layer. Whereas this may seem favorably at first, these works

have many drawbacks in the context of malware detection. First, tricking the victim

via social engineering into downloading the malware is one of the preferred ways to

spread malware [188]. If this is combined with reasonably good obfuscated network

traffic, then this renders a pure network-based detection unlikely. Second, there are

many more ways malware can infect a system, including USB drives and air gaps [189].

In the end the malicious payload is executed on the host, where we detect its actions.

We provided an overview of honeypots in Section 2.3. Honeypots detect illegal access

to computer systems by providing attackable resources similar to Bee Master. They have

been intensively studied in the literature during the last years. The majority of honeypot
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research focused on network attacks. This includes honeypots that are waiting to be

exploited (server honeypots [59, 79, 190]) and honeypots that are actively trying to be

exploited (client honeypots [191–193]). Bee Master does not apply to network-based at-

tacks but rather to attacks on local processes. Hence, current (network-based) honeypot

systems differ in their focus from our work.

3.4 Non-Scientific Work

Malware is a menace to society (see Sections 1 and 2). This means that there is a

high demand for protection, which in turn creates a huge market for computer security

products. For instance, Cybersecurity Ventures predicted that the global computer secu-

rity spending will be more than one trillion US dollars, just in the period from 2017

to 2021 [194]. Therefore, many private companies are investing in computer security

research with the objective of gaining high revenues.

Since the field of malware analysis is a very practical one and the computer security

industry also significantly invests into applied research, we survey patents and products

related to code injections in the following.

3.4.1 Patents Related to Code Injections

Several patents related to code injections have been filed throughout the last years. Even

though patents are not classical scientific work published in peer-reviewed proceedings

or journals, they can be related, because they may be based on scientific work and

results.

Krishnan et al. [195] hold a patent for injecting code into existing application code. At

first, they statically manipulated an existing application. They either manipulated the

import table or added a loader stub for loading another library. Once the application had

been executed, the library was loaded and the injected code executed. Ghizzoni [196]

holds a patent for injecting code into another process. Heasman et al. [197] filed a

patent for a system that stored instructions transformed, fetched and retransformed

them, and finally executed them, foiling code injection attacks. Their patent seems to be

similar to ISR-based approaches. Jin et al. [198] hold a patent to detect code injection

attacks based on memory page updates. Mensch et al. [199] filed a patent to inject

code at runtime to perform checks, e.g. to restrict the execution of an application to

a certain platform. Yun [200] has a patent to monitor code injections. His patent is

based on API call hooking, which is commonly associated with code injection attacks
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(e.g. WriteProcessMemory). Park’s patent [201] prevented code injections, similar to the

patent of Yun. But his idea was based on hooking system calls in the kernel.

All these patents differ from our work. Some of these patents merely describe code in-

jection attack techniques. Some also describe prevention techniques. These techniques

are either based on fragile hooking (e.g. [200, 201]) or demand new computing archi-

tectures (e.g. [197]). We have already discussed in the previous sections why these two

assumptions are not desirable.

3.4.2 Security Products Related to Code Injections

Recently, many endpoint security products include machine learning techniques such as

CrowdStrike Falcon [202], Cylance CylancePROTECT [203], and Barkly Endpoint Protec-

tion Platform [204]. Unfortunately, these companies just advertise the use of machine

learning but they are vague about the details, for instance, the features, the machine

learning algorithms, and if they detect code injections in particular.

Lately, Microsoft has added support for detection of HBCIAs to their commercial prod-

uct Windows Defender ATP [205]. In a series of blog posts, they outlined the internals

of their product [206–208]. It focuses only on the last Windows 10 and runs as an

operating system component, i.e. in kernel space. In a nutshell, it is a dynamic be-

havioral anomaly detection approach. It instruments API calls like VirtualAllocEx and

QueueUserAPC to detect abnormal behavior. It applies machine learning-based models

to detect anomalies due to code injection techniques including Process Hollowing and

Atom Bombing. Windows Defender ATP is in line with many similar approaches such as

Sun et al. [20], Warrender et al. [174], and Hu et al. [180]. However, Windows Defender

ATP is different from our proposals. First, it naturally differs from Quincy since it is not

a forensic approach. Second, it resembles aforementioned systems that exhibit proper-

ties like API call hooking/instrumentation and operating system dependency. We have

already discussed why these properties are undesirable.

In general, it is difficult to tell what these products exactly do without knowledge of their

internals. Since their source code is a trade secret, the only way would be to tediously

reverse engineer them. However, this would require on one hand many hours if not

days of hard work and on the other hand it may not be legal. Hence, there is no way to

achieve a fair comparison between these products and our approaches Bee Master and

Quincy.
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3.5 Conclusion

This chapter has surveyed work of several closely related fields. It has shown that cur-

rent approaches are different from our work. We are the first to formalize HBCIAs

in the context of malware. Furthermore, we propose two methods to detect this at-

tack dynamically as well as statically. Our first approach Bee Master dynamically de-

tects HBCIAs by employing fake processes as honeypots. We are the first to transfer

the honeypot paradigm to operating system processes to detect HBCIAs. Bee Master is

platform-agnostic as well as operating system-agnostic. It differs significantly from re-

lated work: It neither relies on fundamental changes to the OS or even the hardware

(e.g. [19, 23, 116]), nor on low-level API hooking (e.g. [21, 22]), nor on the availabil-

ity of the victim’s source code (e.g. [171]). Our second system Quincy statically detects

HBCIAs in memory dumps by employing machine learning techniques. It builds on the

state of the art Malfind, which it significantly enhances and hence it improves on its

performance. It differs from other related publications such as Pek et al. [28] due to a

finer detection granularity and White et al. [26] due to a more generic idea that does

not rely on whitelisting. We will come back to some of the surveyed publications later,

compare them to the requirements to detect HBCIAs, and show that current systems do

not fulfill these desirable requirements.
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Die Wissenschaft fängt eigentlich erst

da an, interessant zu werden, wo sie

aufhört.

Justus Freiherr von Liebig

4
Defining Host-Based Code Injection Attacks

We face a steadily increasing amount of malware samples today [3, 4, 209]. Cyber

criminals utilize malware for a multitude of activities, e.g. credit card fraud [33] or

supposedly use it for espionage [6] (see also Section 2.1). Due to the diversification of

operating systems, malware targets not only Windows but also, amongst others, macOS,

Linux, and Android (e.g. [10, 11, 210]).

We see an increase in malware and target operating systems. Similarly, malware au-

thors continuously develop new techniques to hide their malware. A popular technique

amongst malware is the Host-Based Code Injection Attack (HBCIA). HBCIAs enable mal-

ware to execute its code within the context of a benign process. This contradicts the

idea that only one program is accountable for the behavior of a process. Throughout the

last years, many reports have uncovered malware families that secret services allegedly

implemented and distributed. These families operated for a very long time before they

were discovered (e.g. Careto [13], Stuxnet [12], or Uroburos [211]). Although their

developers had different ideas in mind, they share a common feature. They all employ

local code injections into benign processes.

Covert operation is one reason to conduct HBCIAs. But local code injections are not

limited to targeted malware and covert operation is not the only reason to employ them.

For instance, crimeware families such as Citadel [212], Conficker [46], Dexter [213],
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and ZeroAccess [214] utilized them to access critical information, to covertly operate, to

escalate privileges, or to manipulate security products.

The malware families that we have referred to in the last paragraph focus on Win-

dows. Yet, HBCIAs are a platform-independent problem. Widespread operating systems

are all vulnerable to this attack. Malware such as Flashback (macOS) [11], Hanthie

(Linux) [10], and Oldboot (Android) [210] showed this on mobile and non-mobile sys-

tems.

This chapter defines the phenomenon of Host-Based Code Injection Attacks in the context

of malware. We build a solid foundation for future research on this topic by defining

them. This includes a clean separation from the far more known remote code injection

attacks that computer worms commonly employ. We discuss the advantages and dis-

advantages of this attack from a malware author’s point of view. This gives the reader

a first impression of why this attack is popular among current malware. To study HB-

CIAs in detail, we present the algorithms behind HBCIAs. In practice, we can observe

a variety of HBCIA models. After this chapter, the reader should have a general under-

standing of the theory. The next chapter will pick up this theory and show in several

measurements the situation of HBCIAs in the real world.

The remainder of this chapter is structured as follows: The next section defines code

injections in general and HBCIAs in particular. Then, we discuss motivations of malware

authors in utilizing them. Thereafter, we scrutinize HBCIA algorithms. In the course

of this section, we elaborate a formal model of these algorithms and a taxonomy to

classify them. Finally, we conclude this chapter with a discussion of possible future

developments regarding HBCIA-employing malware and a conclusion of this chapter.

Please note that partial results of the presented chapter were published in the semi-

nal paper “Host-Based Code Injection Attacks: A Popular Technique Used by Malware”

at the conference “Malicious and Unwanted Software: The Americas” (MALWARE) in

2014 [15]. The proceedings were published by Springer International Publishing.

4.1 Defining Code Injections

The first code-injecting malware was the Morris worm in 1988 [215]. It infected large

parts of the Internet via remote exploitation of a buffer overflow. Several code injecting

computer worms followed thereafter. All of them utilized Remote Code Injection Attacks

to spread. However, the consequent deployment off-the-shelf routers with restrictive

default firewall settings in the early 2000s ended the era of huge worm outbreaks [216].

Malware families like Zeus began to employ Host-Based Code Injection Attacks in the
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middle of the 2000s [33]. They enabled, for instance, the malware to intercept banking

information from within browsers.

In this section, we discuss Code Injections and more specifically Host-Based Code Injec-

tion Attacks as employed by malware. At first, we define the attacker model that we

adhere to during the rest of this thesis. Then, we define the term Code Injection and the

terms Host-Based and Remote Code Injections. Afterwards, we differentiate between Host-

Based/Remote Code Injections and Host-Based/Remote Code Injection Attacks. Whereas

Remote Code Injection Attacks have been intensively researched (e.g. [185, 217]), there

is less profound research on Host-Based Code Injection Attacks (see Chapter 3).

4.1.1 Attacker Model

This section introduces the attacker model that the rest of this thesis follows. Since

we deal with a local attack, there are not many strict assumption that we make. Most

importantly, we assume that the malware binary already resides on the target system.

Otherwise, we refer to a remote code injection. When launched, this malware targets

another process on the same system and tries to inject code into its process space. We do

not make an assumption about the way the malware binary was transfered to the system.

There are several ways to achieve this, including drive-by-downloads [39], a download

by the user due to social engineering [218], and infected removable mediums [76].

Likewise, we do not make any assumption about by whom and how the malware is

executed. This can be, for example, due to social engineering or automatic shellcode

execution. Furthermore, it does not matter what privilege level the malware has during

execution. However, the privilege level influences a successful HBCIA.

4.1.2 Code Injections

We begin by defining simple Code Injections (CI) in Definition 4.1 as we defined them

in [15].

Definition 4.1. “A Code Injection denominates copying of code from an injecting entity

εinject into a victim entity εvictim and executing this code within the scope of εvictim
without the victim’s knowledge.” [15]

εinject and εvictim may be, for instance, hardware devices that run firmware and can

manipulate the main memory or user space processes. Note that there are two things

crucial to a Code Injection. They are the (injected) code and the execution context of

this code. We show in Section 4.3 that code injection algorithms always reflect them.
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4.1.3 Host-Based and Remote Code Injections

Definition 4.1 does not specify where εinject and εvictim reside during a CI. We differen-

tiate between two cases: both reside on the same system (Host-Based Code Injection) or

both reside on different systems (Remote Code Injection). In the latter case, they have

to communicate via a communication channel, e.g. a computer network. We define a

Host-Based Code Injection (HBCI) in Definition 4.2 as we defined it in [15].

Definition 4.2. “A Host-Based Code Injection (HBCI) is a Code Injection where the two

entities εinject and εvictim reside on the same computer system.” [15]

εinject typically injects code into εvictim by querying the OS to do so via APIs/system

calls. Hence, εinject would be a user space process. However, it is also possible that

εinject resides in kernel space as a kernel module or in the firmware of a hardware

device. In these scenarios, the implementation of a HBCI would involve more work than

just calling a couple of APIs.

This thesis focuses on injections that occur on the same host system. For the sake of

completeness, we define Remote Code Injections as well. In contrast to HBCIs, εinject and

εvictim reside on two different systems during a Remote Code Injection (RCI). We define

RCIs as we defined them in [15].

Definition 4.3. “A Remote Code Injection (RCI) is a Code Injection where the two enti-

ties εinject and εvictim do not reside on the same system. They interact by means of a

communication channel.” [15]

A communication channel, amongst others, is a computer network. For instance, com-

puter worms utilize this channel to attack their victims [219]. They exploit a vulnerabil-

ity in a network service. εinject is a network client and εvictim a network service during

an RCI. εinject sends a malicious payload to εvictim. If εvictim is vulnerable, it executes

the contained exploit code. For example, the computer worm Conficker exploits a vul-

nerability in the SMB network service in order to hop from end point to end point [46].

4.1.4 HBCI/RCI vs. HBCIA/RCIA

CIs are not malicious per definition. We identify various legit use cases for CIs. These

include hot patching [220], software diagnostics [196], malware analysis [221], and de-

bugging [222]. Furthermore, Microsoft holds a patent regarding code injections titled

“Method for injecting code into another process” that states legit use cases: “[the] inven-

tion relates generally to computer software diagnostic tools” [196]. However, the afore-

mentioned use cases do not apply to normal applications like browsers, office suites,
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and encryption software. They do not require code injections to implement their func-

tionality. All legit use cases that we have stated above relate to application development

and malware analysis, which strengthens our suggestion. We can not differentiate be-

tween HBCIs/RCIs, if we do not take their purpose into account. We define a Host-Based

Code Injection Attack (HBCIA) and a Remote Code Injection Attack (RCIA) similar as we

defined them in [15]:

Definition 4.4. If a Host-based Code Injection or a Remote Code Injection serves a nefar-

ious purpose, then it is called a Host-Based Code Injection Attack Remote Code Injection

Attack, respectively [15].

Nefarious purposes are, amongst others, scraping of information, extraction of crypto-

graphic keys from the process space, or patching licensing algorithms in memory. We

assume throughout this thesis that due to the purpose of malware in general, all its code

injections are malicious. Hence, it is an attack. Definition 4.4 is subjective. A malware

author may assume the application of code injections to analyze their malware as an

attack.

In the following sections, we only focus on HBCIAs. Whereas RCIAs used to be very

widespread in malware at the beginning of the 2000s and consequently they were thor-

oughly investigated (e.g. [185, 217] but also see Chapter 3), HBCIAs became popular

around ten years ago (e.g. [20, 21, 24, 169]).

4.2 Advantages and Disadvantages of HBCIAs

We have defined HBCIAs in the last section. In particular, we have distinguished them

from remote code injections. So far, we have shunned their benefits. Or in other words:

Why are they so popular with modern malware? Malware families such as Citadel [212],

Flame [223], and Flashback [11] utilized HBCIAs to successfully operate on various

operating systems.

This section considers HBCIAs from a malware author’s perspective. In doing so, we

show their advantages such as privilege escalation and covert operation. This may ex-

plain their current popularity with malware authors (see our problem size estimation in

Section 5.1). But this comes with a price tag. Malware authors have to meet additional

challenges when implementing code-injecting malware. This includes, for instance, sys-

tem stability and increased architectural complexity.
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4.2.1 Advantages of Employing HBCIAs

Leveraging HBCIAs comes with many benefits for malware authors. They allow malware

to intercept critical information, to escalate privileges, to covertly operate, and to ma-

nipulate security products. We discuss each of these benefits in the following sections.

Interception of Critical Information

Computers process personal and critical information such as medical data, credit card

information, or even classified documents. This information is valuable. To some this

means money, to some this means an increase in (political) power. Therefore, cyber

criminals and other threat actors wish to access this information. Since this information

is usually transfered between computer systems in an encrypted form, they need to

access it on a host system. In many cases this data never touches the hard disk in an

unencrypted form. It just stays unencrypted in memory for a short period of time. As a

consequence, this information needs to be intercepted when it is processed in clear text

in memory. Hence, the corresponding process spaces are targeted by malware in order

to intercept this information.

After a successful injection into εvictim, the injected code can access all information that

εvictim handles. For instance, on Windows and Linux, there is no access restriction within

a virtual process space. Hence, the injected code may read and write code too much as

data as it wishes. As a consequence, malware may intercept critical information in clear

text just before it is encrypted and sent over the network, for example, in a browser.

To achieve this, the malware may hook cryptographic APIs of browsers. This is also

known as a Man-in-the-Browser attack and typically banking Trojans like Citadel [212]

operate this way. Another scenario is to scrape the process space to discover valuable

data like credit card numbers. This behavior exhibits Point-of-Sale (PoS) malware like

Dexter [213]. Note that there are academic approaches like Shreds [167] that implement

private memory within a process space. However, major operating systems like Windows

and Linux have not implemented such techniques so far.

HBCIAs are utterly important to banking Trojans since they enable them to intercept and

manipulate banking sessions in clear text. The only way for them to intercept this data

is in user space because the browsers utilize user space libraries to encrypt it [22]. Clear

text interception in kernel space is, for this reason, not possible. Additionally, current

cryptographic algorithms like RSA or AES are still not feasible to attack in practice (given

a reasonable key length).
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Example: The banking Trojan Citadel injects code to intercept critical information like

banking credentials [212]. It injects its code into all accessible processes that have not

been infected yet. If Citadel notices that it resides in a browser, it hooks the browser’s

encryption functions to intercept and manipulate unencrypted network traffic sent to

the victim’s banking institutions.

Privilege Escalation

On modern operating systems it is necessary to hold certain privileges in order to con-

duct certain actions. Typically, these privileges are granted to a user. For instance, on

Linux there are regular users that hold some higher privileges to work but lack some

privileges, e.g. to directly write to the hard disk’s boot sector. However, there is the

superuser who is privileged and who could conduct the aforementioned action.

Malware utilizes code injections to escalate privileges. The injected code is executed

with the same privileges as the target process. There may be a discrepancy between the

privileges of the attacker and the victim process. For example, sometimes processes are

allowed to inject code but are not allowed to communicate via the network or to access

protected files. A solution to this problem is to inject code into another process with

sufficient privileges and conduct the operation from there.

Example: The PoS malware Dexter attacks Internet Explorer with an HBCIA to circum-

vent local personal firewall policies [213]. A reason for this behavior is that Internet

Explorer is whitelisted by these firewalls. Therefore, Dexter can communicate through

this browser with its server without being blocked and without raising suspicion.

Covert Operation

The next reason to employ HBCIAs is covert operation. Malware strains like espionage

toolkits and banking Trojans may be required to operate for a longer period of time

because the information they are after is processed/accumulated over time. Therefore,

it is rather common that a malware operates for weeks, months, or even years (e.g.

[224]) on a target system rather than a couple of hours.

Malware that requires its own process space may be suspicious. It may utilize a fishy

name, it may duplicate a process name of a system process like explorer.exe. However,

the user may detect this fishy process and start its own investigation. A consequence

could be that they kill the process and stop the operation of the malware. Therefore,

malware uses HBCIAs to overcome this issue. Since its code runs in another process, it
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blends into the behavior of it. Hence, no own process is required and the malware may

continue its operation for a longer period of time. This may evade security products,

since the malware’s operation blends into the behavior of εvictim, e.g. determined by the

system call sequence.

Example: The cyber espionage malware Flame carries out HBCIAs to covertly oper-

ate [223]. It accomplishes this with the help of an unusually complex chain of injections

through several system processes on the target system. The infected processes exe-

cute different payloads and therefore they are responsible for distinct features of this

malware. This effectively increases the difficulty of detection because the malicious

behavior is split over distinct processes.

Manipulation of Security Products

In the previous section about covert operation, we have stated that many families aim to

operate for a longer period of time. They wish to do so without being disturbed. Security

products like antivirus software jeopardize this objective. Hence, the manipulation of

security products is a key to long term operation.

Security products like antivirus software are far from perfect. They contain bugs as any

other sofware system and therefore increase the attack surface [225]. Since a security

product’s goal is detection and removal of malware, malware may act in self-defense.

This means that it tries to provoke a denial of service of the security product or it tries to

completely remove it with the objective to continue its operation without interruption.

HBCIAs are a way to achieve this.

εinject may inject code into security products. After successful injection, there are a

plethora of manipulation options. The first option is to terminate εvictim from within.

Observing processes assume that this termination was intended by εvictim. A second op-

tion is code manipulation, e.g. hooking functions or overwriting essential code sections

with no operation instructions.

Example: The rootkit ZeroAccess [226] monitors the access to a mock-up executable

that poses as a honeypot to antivirus scanners. It terminates every process that accesses

this file by injecting shellcode into it.

4.2.2 Disadvantages of Employing HBCIAs

Section 4.2.1 has shown the advantages of HBCIAs from a malware author’s point of

view. But there are also disadvantages compared to malware that resides in its own
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isolated process space. These disadvantages include increased architectural complexity

and the risk of system instability.

Architectural Complexity

The first disadvantage of HBCIAs is the increased complexity of the malware. This im-

plies higher development costs owed to the fact that the malware authors are required to

implement a parasitic component for other processes instead of a self-contained, single

process malware.

Some malware families resemble complex distributed systems. We define the nodes of

such a distributed system as the infected processes that communicate with each others

to achieve a common goal. Hence, the malware author faces that same challenges that

developers of distributed systems face. These challenges include, for instance, timing,

failure tolerance, message passing, and synchronization [227]. In addition, testing and

debugging of distributed systems is more difficult than in the case of a single process.

Example: The banking Trojan Zeus injects its code into several processes. Not all pro-

cesses serve for equal tasks. Zeus abuses the Winlogon process as master process. The

other infected processes are daemons of this master process. Messages are passed via a

named pipe between the master process and its slaves [33]. Notably, the bot itself logs

debug messages to a debug server via a named pipe when in debug mode (see original

source code of Zeus [38]). The developer of Zeus added this feature to facilitate the

development.

System Instability

As every software, malware may contain bugs. Each bug is a risk and its occurrence

may terminate the malware. Therefore, injecting code into εvictim poses a risk since

the bugs of the malware also influence the victim process. If the victim process is a

critical system process then this may lead to system instability. As a consequence, the

user may start investigations and detect the malware, which would lead to the removal

of it. Therefore, it is important that malware authors consider stability, for example, a

test-driven development approach to increase stability and ensure a close to bug free

software could be a solution to this problem. The challenge that malware authors face

is that they do not only need to think about their own code but also to think about the

code of εvictim. Above all, they have to ensure that there are no interferences between

the two code bases like race conditions.
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FIGURE 4.1: Simplified HBCIA algorithm comprising three steps. First, the algorithm
selects a victim. Second, it copies the code into the victim. Third, it triggers the code

execution within the victim. Possible failure states are omitted.

Example: The espionage malware Careto poses a sophisticated structure with regards

to these issues [13]. For instance, Careto monitors the process termination of its host

process to free unused handles. This may be one of the reasons why this malware

operated almost seven years without attracting any attention.

4.3 HBCIA Algorithms

We have motivated why HBCIAs are a popular malware feature in the last section. But

we have also seen that there are additional challenges when using them. This section

examines HBCIA algorithms. They are the foundation of every HBCIA. In practice, we

can observe different models that malware employs. For instance, banking Trojans like

Zeus [33] inject their code into as many victim processes as possible in order to execute

its code in parallel to the victim’s code. This allows them to intercept and manipulate

information that the victim’s code processes. Understanding the HBCIA algorithm mod-

els presented in the following should allow readers to understand any HBCIA algorithm

found in the wild.

In the following sections, we assume that εvictim is a process, since today’s malware

usually targets user space processes. The attacker entity εinject may be a process (e.g.

[36, 38, 228]), a kernel module (e.g. [214]), or even a hardware device. Figure 4.1

outlines the basic idea of an HBCIA algorithm. ¬ At first, εinject selects a victim process

εvictim.  Then, εinject copies code into it. ® Finally, εinject executes the injected code

within εvictim. This algorithm may repeat to inject code into other processes. Note that

the steps can result in a failure state. However, we omit possible failure states in this

figure for the sake of clarity. The following sections examine each of these steps. The

last section closes with the proposal of an HBCIA algorithm taxonomy.

4.3.1 Victim Process Selection Strategy

Different processes process different data. Depending on the malware’s intention, it has

to carry out a selection of its victims. Hence, the attacker entity εinject selects a victim
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entity εvictim before the injection. There are two selection strategies: Shotgun Injections

and Targeted Injections. We explain these two terms below.

Basic Definitions

Before we define Shotgun and Targeted Injections, we present the set of all possible εvictim
entities and the set of all accessible εvictim entities from an attacker’s point of view. This

is necessary in order to precisely describe the set of victims in the models defined later.

We define A as the set of all running victim entities, whose formal definition is given in

Definition 4.5 similar to the one we defined in [15].

Definition 4.5. Let A = {εinject, εvictim1 , ..., εvictimn} be the set of all running victim

entities that an arbitrary εinject can see where n ∈ N>0.

Please note that A explicitly contains εinject since our model also assumes self-injection.

For instance, a packer could leverage self-injection due to obfuscation reasons or a pro-

gramming error in εinject may lead to self-injection. There may be many possible victim

entities running on a system. However, they are not all accessible to the attacker. For

instance, on Linux the command line tool ps also includes processes that the adminis-

trator has started. Yet, the malware may execute with lower privileges and hence it may

not access the administrator’s processes. As a consequence, we require a second set B.

This is the set of all victim entities accessible to εinject that it may inject code into. We

define in Definition 4.6 similar to the one we defined in [15].

Definition 4.6. Let B = {εinject, εvictim1 , ..., εvictimm} be the set of all entities that are

accessible to εinject and into which it can inject code where m ∈ N>0,m ≤ n,B ⊆ A.

B is a subset of A. In the special case where the user is the administrator both sets are

equal, i.e. A = B. Please note that B can not be empty since we assume that εinject can

at least carry out a self-injection.

Given the sets of victim entities, we can define two selection strategies that draw victims

from B. The first one is to exhaustively draw entities from B (Shotgun Injections). The

second one is to selectively draw victims from B (Targeted Injections).

Shotgun Injections

The first victim process selection strategy is called Shotgun Injections. It denotes the

act of blindly injecting code into all accessible victims. These victims may also include
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important system processes. Definition 4.7 defines a Shotgun Injection similar to the one

we defined in [15].

Definition 4.7. If εinject injects code into every εvictim of B\{εinject} then this is denoted

as Shotgun Injection. If it injects code into every member of B including itself then this

is denoted as Full Shotgun Injection.

Please note that the injecting entity εinject is not requiered to inject into every member

of B but only into every εvictim, i.e. B \ {εinject}. Recall that B consists of a union of the

set of all victim entities and εinject. However, there may be Shotgun Injections that inject

code into every member of B including a self-injection into εinject. They are denoted Full

Shotgun Injections. Though technically possible, we consider this a bug in the HBCIA

algorithm.

The Shotgun Injection is a greedy victim process selection strategy. Its objective is to

inject code into every running process on a system. As a consequence, this may lead to

complications because the malware author can not anticipate the running processes on

a particular system (see also system instability in Section 4.2.2). For instance, uninten-

tional targets could be antivirus processes, which would raise suspicion.

Examples: Banking Trojans like Zeus [38] commonly adopt Shotgun Injections. They

inject code into as many victim processes as possible to accomplish their goal of stealing

credentials.

Targeted Injections

In contrast to shotgun injecting malware, malware that conducts Targeted Injections care-

fully selects its victims. It attacks a subset of all possible victim entities. We define a

Targeted Injection in Definition 4.8.

Definition 4.8. Let C = {εvictim1 , ..., εvictimo}, where o ∈ N>0, o ≤ m. If εinject injects

code only into a subset C ⊂ B or C ∪ {εinject} ⊂ B then this is a Targeted Injection.

Malware that leverages Targeted Injections carries out a selection process. It detects

its victim processes through one or several features. The process name is a commonly

employed feature (e.g. Tinba [36]). For this purpose, the malware compares the process

name of each running process to an internal list. If a process name matches then the

malware attacks the corresponding process. There are more ways how malware can

detect its victim processes. These may include signatures, the parent process, or open

file handles.
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An advantage of Targeted Injections is that they are less suspicious compared to Shotgun

Injections. The malware can shun risky victims like system processes. Furthermore,

malware does not unnecessarily need to waste system resources since it does not infect

every accessible victim.

Example: Cyber espionage malware such as Flame [223] and Stuxnet [7] leverage Tar-

geted Injections. It is crucial for espionage malware to carefully select its victims in order

not to raise suspicion owed to, for instance, frequent system crashes or waste of system

resources.

4.3.2 Code Copying

After having chosen a εvictim, εinject copies its code into it. There are several ways how

this can be accomplished. Examples are debugging APIs provided by the OS [196],

direct memory access from kernel space [226], or a buffer overflow exploitation [7].

Example: Sometimes the copying of code is carried out in multiple stages. The com-

puter worm Conficker copies its code into εvictim in two stages [46]. First, Conficker

copies pure data into εvictim. This data is the path to Conficker’s shared library. Then

it creates a new thread in εvictim executing a function for dynamic loading of shared

libraries. The previously injected data poses as input to this function. Hence, Conficker’s

shared library is loaded into εvictim. An observer who is not involved may suppose that

εvictim has loaded the shared library by itself.

4.3.3 Code Execution Strategy

After having copied code into εvictim, εinject triggers the execution of this code. There

are several ways to accomplish this. For example, malware may achieve this with the

help of debugging APIs (e.g. CreateRemoteThread like Zeus) or asynchronous procedure

calls (e.g. QueueUserAPC like Conficker) on Windows. Although there are several ways

to trigger code execution, we differentiate only two code execution models: Concurrent

Execution and Thread Manipulation. Whereas the original code of εvictim continues to

execute in Concurrent Execution, it does only do so to a certain degree in Thread Manip-

ulation.

Basic Definitions

Before we formally define Concurrent Execution and Thread Manipulation, we present

three fundamental definitions. Since these two models are built, for instance, on top of
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threads and programs, we present them first. The program of εvictim as well as the set

of the threads that it theoretically can spawn is presented in Definition 4.9 similar to the

one we defined in [15].

Definition 4.9. Let programvictim be the program that is executed in the context of

εvictim. Let Tprogram = {tprogram1 , ..., tprogramk
} be the set of all threads that can be

spawned by programvictim where k ∈ N>0.

Please note that a pure single threaded program p1 has only one thread tp1 ∈ Tp1 ,

i.e. |Tp1 | = 1. Further note that in theory Tprogram may be infinite. The payload that

is injected into εvictim as well as the set of its possibly spawned threads is defined in

Definition 4.10 similar to the one we defined in [15].

Definition 4.10. Let payload be the code that εinject injects into εvictim. Let Tpayload =

{tpayload1 , ..., tpayloadm} be the set of all threads that payload can possibly spawn where

m ∈ N>0.

Note that payload is handled as data until its execution since code and data share the

same memory on the Von Neumann Architecture [229]. Finally, Definition 4.11 states the

set of currently running threads in the context of εvictim.

Definition 4.11. Let Tcurrent = {ti|(ti ∈ Tprogram ∨ ti ∈ Tpayload)∧ ti is running } be the

set of currently running threads of programvictim after the injection of payload where

i ∈ N>0.

Definition 4.11 states that after an injection, the threads of a victim process are a union

of the original program’s threads and the threads that the payload has spawned. We

differentiate between two execution strategies depending on the role of the program’s

threads.

Concurrent Execution

In Concurrent Execution, εinject first copies its payload into εvictim and then it concur-

rently executes payload to programvictim. This is properly defined in Definition 4.12.

Definition 4.12. If ∃a, b ∈ Tcurrent where a ∈ Tprogram and b ∈ Tpayload after εinject’s

injection of payload into εvictim then this is denoted as Concurrent Execution.

A running process requires at least one thread. After εinject has copied its payload into

εvictim and has concurrently executed this payload, the number of active threads in-

creases by at least one. Hence, there are now at least two threads that define the
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FIGURE 4.2: Concurrent Execution: A dropper injects (εinject) code into a victim pro-
cess that runs a benign program (εvictim). The dropper and the victim comprise at
first one thread (self-pointing arrow). After successful injection the dropper terminates
and the victim runs a malicious thread concurrently to its original thread. This thread

originated in the injected payload.

behavior of εvictim, which either belongs to Tprogram or Tpayload. This means that the

program continues to run while additional malicious code concurrently executes to it.

This stands in contrast to the common assumption that only one program is responsible

for the behavior of a process.

We outline Concurrent Execution in Figure 4.2. It illustrates the state of two processes

during an ongoing HBCIA ¬ and after an HBCIA . The left side shows the attacker

process εinject and the right side the victim process εvictim. In ¬, εinject runs a dropper

module that holds a pointer to payload. εvictim’s main program is the editor Notepad.

Additional modules are mapped into this process space that ensure the editor’s function-

ality. At first, there is only one thread in εvictim (depicted by the self-pointing arrow). ¬

shows the moment when εinject is about to inject its payload into εvictim. In , εinject is

terminated since it is not required anymore. εvictim has loaded further modules (payload

and the library crypt32). An additional thread executes payload. This thread concur-

rently runs to the original thread.

Example: Banking Trojans like Zeus utilize Concurrent Execution [38]. They inject code

into browsers to conduct a Man-in-the-Browser-Attack. Thereby, banking Trojans inter-

cept unencrypted banking credentials before they are encrypted by the browser and sent

over the network.

Thread Manipulation

Thread Manipulation is the second code execution strategy. It denotes the process of

copying payload from εinject into εvictim and subsequently executing it via manipulation
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FIGURE 4.3: Thread Manipulation: A dropper (εinject) hollows a program (εvictim).
The dropper and the victim comprise at first one thread (self-pointing arrow). After
successful injection the dropper terminates and the victim continues with one thread.

However, now it executes the payload instead of the original program.

of one or several threads of εvictim. Hence, one or several threads that executed code of

program now execute code of payload. Thread Manipulation can render programvictim

useless. Even though payload runs inside of εvictim, the majority of information about

the victim does not change, e.g. the process name of the load path of the original binary.

At first glance, an HBCIA might seem hard to detect. Contrary to Concurrent Execution,

programvictim does not fully reflect its original behavior. Often it just reflects payload’s

behavior, which is called Process Hollowing in the literature [50], a subclass of Thread

Manipulation. Definition 4.13 formally defines Thread Manipulation.

Definition 4.13. Let basep(x) be a function that returns the base address of a module

x regarding a process space p. Let startp(t) be a function that returns the start address

of an arbitrary thread t in process space p. If and only if the following two assumptions

hold

1. Tcurrent 6= ∅

2. ∃t ∈ Tpayload:
basep(programvictim) ≤ startp(t) ≤ basep(programvictim) + size(programvictim)

then this is denoted as Thread Manipulation.

The gist of Definition 4.13 is that there is at least one thread t ∈ Tpayload that originated

in programvictim, i.e. the start address of t lies in the boundaries of programvictim,

which now executes payload. This thread was hijacked. This implies that some part of

programvictim may not work as the author of this program intended.

We depict Thread Manipulation in Figure 4.3. It shows the state of two processes during

an ongoing HBCIA ¬ and after an HBCIA . Please refer to Figure 4.2 in Section 4.3.3
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for a detailed description of the setting. We alter the setting slightly: We assume that

εinject started εvictim. In , εinject terminated since its existence is not required anymore.

εinject replaced the original program Notepad with payload. It loaded an additional

module (crypt32) and the initial thread of Notepad now executes it.

A special case of Thread Manipulation is Return-Oriented Programming (ROP) [230].

ROP is a data-only exploitation technique [231]. In a nutshell, non-executable memory

and code signing prevent the direct injection of code. If an attacker controls the stack

and consequently the return addresses, then they can control the control flow of the

program. Since they can not directly inject code, they have to chain sequences of code

that are already present in the victim program. So far there is no malware family known

that implements its whole logic with the help of this technique (see Section 4.4 for

an outlook and a discussion on future HBCIA-employing malware families). Though,

there are families like Gapz that utilize ROP [232]. Another special case of Thread

Manipulation is Process Hollowing, where the malware creates the process of its victim

in halted mode and directly manipulates the initial thread before any logic of the victim

process can execute [50]. This technique allows the malware to hide within the context

of a known benign process.

Example: The cyber weapon Stuxnet implements Thread Manipulation to covertly oper-

ate [7]. It starts the trusted Windows process Local Security Authority Subsystem Service

(lsass.exe) in halted state, manipulates the initial thread, and utilizes this process space

for its operations. Hence, Stuxnet employs Process Hollowing, a form of Thread Manipu-

lation.

4.3.4 An HBCIA Algorithm Taxonomy

We identified three fundamental steps of HBCIA algorithms in the previous sections.

They are victim process selection, code copying, and code execution. We develop with

these fundamental steps a taxonomy to classify HBCIA algorithms.

There are two strategies to select victims: Targeted Injection (TI) and the Shotgun In-

jection (SI). Likewise, there are two strategies for code execution: Concurrent Execution

(CE) and Thread Manipulation (TM). If we combine the abbreviations of the four strate-

gies (TI, SI, CE, TM) then this yields four different HBCIA algorithm classes in total.

An example class is the HBCIA algorithm of the computer worm Conficker. It comprises

Targeted Injection (TI) and Concurrent Execution (CE). Therefore, the HBCIA algorithm

of Conficker belongs to the TICE class.
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HBCIA Algorithm Class Example Operating System

TICE Hanthie [10] Linux
TITM Stuxnet [12] Windows
SICE Flashback [11] Mac OS X
SITM - -

TABLE 4.1: Taxonomy of HBCIA algorithms: Three of the four classes can be found in
real world malware. Note that there may be SITM-employing malware in the future

that is fully ROP-based (see Discussion in Section 4.4.)

Table 4.1 lists the four classes of our taxonomy. There are examples for three of the

four classes. The Shotgun Injection and Thread Manipulation algorithm (SITM) lacks

an example. Up to now, we have not encountered any malware family with a SITM-

based algorithm. At the time of writing, manipulation of threads of as many processes

as possible seems to be a Denial-of-Service (DoS) attack. However, ROP-based malware

might exist in the future that utilizes this technique (see Section 4.4) to implement, for

instance, code-less banking Trojans.

4.4 The Future of HBCIA-employing Malware

We discuss possible future developments of HBCIA-employing malware in this section.

Given the insights of the previous sections, we believe that this aides in anticipating

future developments.

We think that the prevalence of HBCIA-employing malware will gradually increase in

the future due to the easy access to source code of code-injecting malware projects

(e.g. [36–38, 228]). We believe that the most important future development will be

completely ROP-based malware. ROP (Return-Oriented Programming) is a data-only ex-

ploitation technique [231]. Lu et al. [233] showed that malware already leverages ROP

in its exploits. In their publication “deRop: Removing Return-Oriented Programming

from Malware” they proposed a system for converting ROP sequences into regular shell-

code so that it could be handled by malware analysis tools including disassemblers and

debuggers. Vogl et al. [234, 235] proposed the idea of data-only malware in 2014. They

define data-only malware as “a malware-type that introduces specially crafted data into

the system with the intent of manipulating the control flow without changing or intro-

ducing new code” [235]. However, they just focused on data-only function hooks. One

problem, however, is the long term persistence of malware. They identified four prob-

lems of this kind of malware: finding a suitable memory location, protecting against

overwrites, resuming the original control flow, and activating the control infrastruc-

ture [235]. They addressed these problems in a Proof-of-Concept (PoC).
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Whereas at the moment the functionality of such malware does not even lie in the range

of being comparable to the functionality of today’s malware, we suggest that a solution

to this restriction could be outsourcing of functionality, for example, to remote servers.

This would soften the restriction and allow the accomplishment of complexer operations

with little code running on the victim machine. Also, this would complicate a detailed

binary analysis due to missing code.

Please note that we can classify future malware families that employ such an approach

with our classification taxonomy (see Section 4.3.4). Such malware families would be

classified as families that use Thread Manipulation, thus possible classes would be TITM

and SITM.

4.5 Conclusion

We have discussed Host-Based Code Injection Attacks (HBCIAs) in the context of mal-

ware in this chapter. In a nutshell, this attack allows the execution of code within other

process spaces. The advantages of HBCIAs explain their popularity: Interception of un-

encrypted critical information and covert operation, amongst others. However, HBCIAs

also come with inconveniences for the malware author such as additional architectural

complexity and increased risk of system instability. HBCIA algorithms typically consist

of three steps: victim process selection, code copying, and code execution. Based on the

definitions of HBCIA algorithms, we have derived a taxonomy for them. Overall, there

are four different HBCIA algorithm classes. We assume that the problem size of HBCIAs

will not decrease but rather increase in the years to come. ROP-based malware may be

just one example of the dormant potential of HBCIA malware.
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Quem tudo quer nada tem.

provérbio brasileiro

5
Measuring Host-Based Code Injection Attacks

The last chapter introduced HBCIAs from a theoretical point of view. This should have

clarified what an HBCIA is and what its possible consequences are. We have stated

that they are popular among todays malware without providing any numbers. We have

only provided a wide variety of examples of HBCIA-employing malware families such as

Rovnix, Stuxnet, and Zeus. In this chapter, we finally quantify the problem in practice.

One concern is to show that we do not deal with isolated cases but rather a common

trend in malware. Therefore, we measure the problem size and show that detecting this

behavior yields detection of a major share of today’s malware. Throughout this section,

we address several research questions such as How prevalent are HBCIAs among current

malware families? and What are preferred victim processes?. This section should provide

a profound understanding of the problem’s practical implications.

We structure the following sections analogously. At first, we formulate the question that

guided our research. Then, we present the data set on which and the methodology

with which we conducted our investigation. Finally, we discuss the results in detail. At

the end of this chapter, we conclude and discuss the results in general by showing the

relevance they pose in practice.

Please note that partial results of the presented chapter were published in the semi-

nal paper “Host-Based Code Injection Attacks: A Popular Technique Used by Malware”
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Data Set Year Publication Samples Families

cwsandbox 2007 [52] 6148 unknown
Android Malware Genome Project 2012 [238] 1260 49
Malicia 2013 [239] 11,688 55
Drebin 2014 [240] 5560 179
Microsoft Malware Classification Challenge 2015 [241] 21,741 8
Android Malware Dataset 2017 [242] 24,650 71

TABLE 5.1: Listing of considered publicly available malware research data sets

at the conference “Malicious and Unwanted Software: The Americas” (MALWARE) in

2014 [15] as well as in the seminal paper “Bee Master: Detecting Host-Based Code

Injection Attacks” at the conference “Detection of Intrusions and Malware, and Vulner-

ability Assessment” (DIMVA) in 2014 [16]. The proceedings were published by IEEE

Xplore and Springer International Publishing, respectively.

5.1 Prevalence of HBCIAs in Malware

Malware analysis reports usually follow a common pattern. For instance, they describe

the malware packer, a common obfuscation technique that most malware employs to

hinder static analysis. Martignoni et al. showcased how packing became a serious

problem in the mid-2000s [236]. Whereas in 2003 around one third of the malware

samples were packed, in 2008 around 80% of them were packed.

These reports also describe code injections. Take for example reports on Careto (2014) [13],

Ponmocup (2015) [237], and Turla (2016) [224]. Even though they usually describe

code injections, to the best of our knowledge, there has not been any measurement of

the prevalence of HBCIA-employing malware. Based on available data concerning the

prevalence of malware families, we could try to indirectly derive an estimation. Four of

the top five malware families in 2012 (according to Symantec [209]) employed HBCIAs.

They accounted for around one third of all new infection reports in 2012. However, this

estimation is not reliable due to the lack of data and may only serve as a first impression

of the problem scale.

Due to the fact that a huge share of malware analysis reports include code injections,

it is likely to be a widespread problem. Therefore, the first research question that we

address is How prevalent are HBCIAs among current malware?.

58



Data Set R1 R2 R3 R4

cwsandbox 3 7 7 3

Android Malware Genome Project 3 7 7 7

Malicia 3 7 7 3

Drebin 3 7 7 7

Microsoft Malware Classification Challenge 3 7 7 3

Android Malware Dataset 3 7 7 7

TABLE 5.2: Matching of publicly available data sets to our four requirements R1-R4
of Section 5.1. The symbol 3denotes that a data set fulfills a certain requirement, the

symbol 7denotes that a data set does not fulfill a certain requirement.

5.1.1 Data Set

To the best of our knowledge, there had not been any longitudinal study of the preva-

lence of HBCIA malware. Therefore, there were no requirements for a data set to con-

duct such a study. Consequently, we first defined our requirements for such a data set.

The quality of an investigation greatly depends on the underlying data set. We required

a representative share of malware spread over a long period of time to measure the

prevalence of HBCIA-employing malware. Compiling a malware data set is not trivial.

There is neither a common creation process nor an agreement on its content. At the

time of writing, compiling such a data set is an open problem, which also overlaps with

the malware labeling problem [243].

Requirements

Rossow et al. [244] discussed best practices to set up (dynamic) malware experiments.

However, they primarily focused on how experiments should be conducted rather than

the data itself. Nevertheless, they gave advice on how to build a data set. Their most

relevant advice was:

A1 There should be no goodware in the data set.

A2 The malware families should be balanced in the data set.

A3 The data set should contain only relevant malware families.

We adhered to A1. This was our requirement R1. However, we discarded A2 and

A3. It is natural that some families are more prevalent than others, e.g. since they

are spread more aggressively. Therefore, they should also be represented with their

actual weight in the data set (A2). Hence, we refrained from balancing the families to
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preserve these weights. Furthermore, A3 is subjective: How do we measure relevance of

a malware sample or a family in general? We could utilize its population estimation. But

then targeted malware would not be relevant anymore. It usually comprises very small

populations. Finding the right metric to prove relevance is not trivial. Consequently, we

refrained from explicitly measuring the relevance.

We required the data to be captured within a closed period of time in order to conduct

a longitudinal study. This period should be long enough to be able to reliably estimate

the HBCIA prevalence. It is certain that the longer the period, the better. But due to

problems such as data set size and limited computational resources, we are restricted as

individual researchers to a small part of all known malware. We are facing less than 25

years of malware development on Windows NT. If we insist that the period should be

longer than one year then this would still be more than 1
25 of this history. To the best

of our knowledge, the computer viruses of the 1990s did not utilize HBCIAs. So the

history of HBCIAs is even younger. The samples should also be evenly distributed over

this period so as to there is no bias due to a skewed distribution. For instance, a huge

cluster of samples on just a couple of dates and a tiny fraction spread over the rest of the

period would not allow us to make a reliable statement about the behavior within this

period. As a result, R2 required that the malware samples should have been captured

within a 1+ year long, closed period with samples distributed evenly over the period on

a per day basis.

To make a statement about malware in general, we required a significant number of

samples. There are millions of new samples each year (e.g. [4]). It would not be suffi-

cient to make a statement about a couple of hundred samples. Even though significant

number of samples is a vague statement, we wanted to surpass the number of samples

s of previous research data sets, i.e. s ≥ 25, 000. Therefore, requirement R3 required

a significant number of malware samples to be in the data set. Please note that we are

not making a statement about malware families at this point. The number of malware

families is by orders of magnitude smaller than the number of samples [245]. But for

this measurement, the concept of malware family was not relevant.

Microsoft Windows is the main target of malware when measured in absolute numbers

(see for instance [4]). It is also the market leader in desktop operating systems (as

of November 2017) [8]. Furthermore, there are only few HBCIA-employing malware

families for other operating systems known. Therefore, R4 required only Windows mal-

ware. We are considering further measurements for other platforms as future work (see

Section 8.2).

To summarize our requirements:
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FIGURE 5.1: Daily number of samples from 2013-03-21 until 2014-06-19 of the Virus-
Sign data set. VirusSign provided 500 samples daily. However, there were periods

where no samples were available, e.g. in March 2014.

R1 There should be no goodware in the data set.

R2 The malware should be captured within a 1+ year long, closed period with samples

distributed evenly over the period on a per day basis.

R3 There should be a significant number of samples s, (s ≥ 25, 000).

R4 There should only be Windows malware.

There were several publicly available research data sets, which we matched to our four

requirements. Table 5.1 summarizes them. They were published (in the most cases)

as results of a seminal papers at ranked computer security conferences. The number

of samples greatly varied in them. The Android Malware Genome Project contained the

least (1260) and the Android Malware Dataset contained the most samples (24,553). All

data sets targeted either Windows or Android.

We have matched the data sets to our four requirements in Table 5.2. None of them

matched all requirements. To the best of our knowledge, there was no publicly available

data set that matched our requirements. Therefore, we compiled our own.
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FIGURE 5.2: Top five families over time from 2013-03-21 until 2014-06-19 of the Virus-
Sign data set. This data set reflects, for instance, the takedown of the Sirefef botnet in

December 2013.

Data Set Compilation and Discussion

VirusSign offers a huge collection of malicious samples, amongst others, for research [246].

They confirm the maliciousness of their samples with automatically generated reports.

This company regularly offers (mostly daily) a free data set for malware research that

consists of around 500 malware samples. They randomly choose these samples from all

their daily samples. We aggregated their data sets over 15 months to create a data set

that models the malicious threat landscape. The resulting data set consisted of 162,850

malware samples. These samples were collected between 2013-03-21 and 2014-06-19.

Due to this rather long period, we assume that it adequately represents the threat land-

scape between 2013 and 2014. Figure 5.1 shows the sample distribution by publication

date. Unfortunately, the data set was not continuous. There are periods where no sam-

ples were available. These are [2013-09-05, 2013-09-21], [2013-11-06, 2013-11-14],

[2014-03-06, 2014-03-12], and [2014-03-25, 2014-04-21]. Please note that our data

set considered more malware samples than other popular data sets such as the Malicia

set [239] or the cwsandbox set [52].

We queried the antivirus scanning service VirusTotal [247] for each sample of the data

set. None of VirusTotal’s 57 scanner (as of October 2016) had a perfect detection rate.

Many of them detected more than 99% of the samples as malware. Please note that
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FIGURE 5.3: Top 25 families from 2013-03-21 until 2014-06-19 of our data set.

we queried VirusTotal in August 2016, this was two years after the malware emerged.

Since this malware data set had been distributed in the antivirus industry, the antivirus

companies had sufficient time to add signatures to their databases. The scanner with the

highest detection rate outputted many generic labels so that it was impossible to eval-

uate its results. The scanner Microsoft Security Essentials (MSE) outputted few generic

labels and it appears that this scanner tries to present the user an accurate classification.

Therefore, we chose the results of MSE as our ground truth. Please note that this is not

an exact ground truth due to the inaccurate detection of antivirus programs [248]. MSE

has a detection rate of 96.47%. This means that it detected 157,078 of the 162,815

samples as of October 2016.

Malware labeling schemes are complex. The labeling of MSE reflects the target OS, the

architecture, the family, the variant, and the malware class, e.g. TrojanSpy:Win32/Ursnif.HN.

We stripped everything, except the family name, from the labels. Given the example

above, this yields Ursnif. MSE detected 1733 distinct families. Figure 5.3 shows the top

25 malware families of the data set. The top family was the virus Sality, which had a

share of approximately 4% of the data set. It was followed by Vobfus (also known as

Ponmocup) and Zbot (also known as Zeus), which are credential stealers. In general, the

distribution of families seems to be in line with reports from the antivirus industry (e.g.

[237, 249]).
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FIGURE 5.4: Weekly percentage of HBCIA-employing malware from 2013-03-21 until
2014-06-19 as a scatter plot.

Figure 5.2 plots the daily number of samples of the top five families over time. Inter-

estingly, the data reflects the takedown of the Sirefef botnet (also known as ZeroAccess).

Microsoft, Europol, and the FBI took down the botnet in December 2013 [250]. Fig-

ure 5.2 shows a drop of Sirefef samples at the end of November 2013/beginning of

December 2013. We could not find any explanation why the share of the family Sality

significantly increased after October 2013. We suspect that Sality benefited from the

Sirefef takedown. Both Sirefef and Sality are peer-to-peer-based families. At the begin-

ning of the period, the family Zbot had the highest share of the five families. However,

it significantly decreased during the period. Maybe cyber criminals turned their backs

on Zbot and employed other banking Trojans instead, e.g. its successors such as Kins

and Citadel. Furthermore, we observe a continuous increase in the family Vobfus. This

gain is also in line with reports that state that this family was one of the most prevalent

families of its time [237].

We conclude that our data set matches all stated requirements and that it seems to

be a reasonable representation of the malware threat landscape of the years 2013 and

2014. It depicts notable events like the Sirefef takedown in December 2013 and it

comprises more samples than any other publicly available scientific data set. Therefore,

it is adequate to measure the distribution of HBCIA-employing malware in the wild.
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5.1.2 Methodology

A decision should be made for each malware sample of our data set whether or not it

employs an HBCIA in order to measure the prevalence of HBCIAs. However, it is un-

decidable whether a given program implements HBCIAs or not. This comes from Rice’s

theorem. In a nutshell, Rice’s theorem is a generalization of Turing’s Halting Problem. It

states that it is undecidable whether an algorithm computes a partial function that has

a non-trivial property [251]. In our case, the non-trivial property was an HBCIA. Hence,

we could only try to approximate this problem.

One way to do this is statically analyzing the code of the sample but the Unpacking

Problem complicates this [252]. Another way is executing the malware and logging its

behavior. Then, we can analyze these logs and detect the injection behavior, if it occurs.

The advantage of this approach is that we circumvent the Unpacking Problem. Environ-

ment sensitive malware, i.e. malware that refuses to run in analysis environments [253],

may render this approach infeasible. We can reduce the amount of malware that re-

fuses to run in the analysis environment, if we sufficiently harden the analysis environ-

ment [254]. Given the fact that most malware comes in a packed form [55], we opted

to utilize dynamic analysis and analyze the samples in a sandbox. Then, we processed

the sandbox reports to detect code injection behavior.

VirusSign operates a sandboxing system called VSAMAS [246]. They distribute a VSAMAS

log with each malware sample in their data sets. VSAMAS uses Windows XP SP3 32 bit

internally. Even though Windows XP is not a recent version, it is based on the Windows

NT-platform that is still the core of Windows. Newer versions of Windows are based on

this platform, i.e. programs written for Windows XP are also compatible to Windows

10. Furthermore, Windows XP still accounted for more than 6% of all active operating

systems in August 2017 [8]. It exhibited almost the same market share as Windows 8.1.

This still surpassed the accumulated market shares of macOS. Because of this, malware

continues to target this platform.

We parsed each sandbox report and searched for sequences of suspicious API calls that

suggested the occurrence of an HBCIA. An example is the API call sequence AllocateVir-

tualMemory, WriteMemory, and CreateRemoteThread. Please note that we surveyed the

occurrence of HBCIAs (e.g. TICE) regardless of the employed injection technique. Our

measurement is a lower bound of HBCIA-employing malware. As stated before, we may

have missed some code injections due to environment sensitive malware.
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5.1.3 Results

Nearly two thirds (63.94%, 104,139/162,850) employed HBCIAs. Figure 5.4 plots the

weekly prevalence of code-injecting malware. We interpolated the underlying curve us-

ing a B-spline of degree 5 (green curve). The majority of the weeks closely spreads

around the absolute mean of 63.94%. The data is bounded below by 48.43% and

bounded above by 78.5%. There is neither an ascending nor a descending tendency

in the slope. Therefore, we assume that code injections were a stable feature of the

samples in this period.

We consider the result as a lower bound. Evasive techniques like sandbox detection

are wide-spread [47, 253]. Therefore, we assume that some HBCIA-employing samples

were not successfully processed. As a consequence, we conclude that there were even

more samples that employ HBCIAs attacks. This result is also in line with the initial

indication given by the Symantec report [209] that showed that four of the five top fam-

ilies regarding infection count employed HBCIAs in 2012. Our measurement suggests

that HBCIAs are a relevant problem to security researchers due to their impact in sheer

numbers. This means that the detection of HBCIAs implies the detection of a great share

of today’s threat landscape.

5.2 Preferred Victim Processes

The previous section has shown the significant share of HBCIA-employing malware.

We assume that the victim processes are not evenly distributed since not all HBCIA-

employing malware families employ Shotgun Injections. Consider the Windows process

explorer.exe as an example. There is a clear tendency that many malware families inject

their code into this process (e.g. [36, 38, 228, 255]). One reason for this behavior is the

availability and the accessibility of this process [255]. Therefore, it would be interesting

to determine the distribution of the victim processes.

The insights provided by the distribution of the preferred victim processes is twofold:

First, malware analysts can prioritize the processes they investigate to speed up the

analysis process in general. Second, security tools can mock processes that are more

likely to be attacked to increase the probability of attacks (see Chapter 6).
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FIGURE 5.5: Relative distribution of victim processes on Windows XP. Most HBCIAs
targeted explorer.exe, which is a Windows system process that always runs.

5.2.1 Data Set & Methodology

The data set of this section was based on a subset of Section 5.1. In this section, we have

determined that nearly two thirds of the data set employed HBCIAs. In these 104,139

cases, VSAMAS logged the attacker process and the victim process with each detected

HBCIA. Hence, we could derive the distribution of the victim processes from this data.

This yielded a good overview of the victim processes in practice, given the fact that this

data set adequately represented the malware threat landscape of the years 2013 and

2014 as discussed in the previous section.

5.2.2 Results

Figure 5.5 depicts the distribution of the victim processes. The main target was ex-

plorer.exe as expected. Malware targeted it in 17.7% of all HBCIAs. Furthermore, 16

processes shared almost three quarters of all attacks. These processes were all system

processes (except vsamas.exe), which are found on every Windows XP installation.
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This shows that the attacks were not evenly distributed as assumed before the evalua-

tion. System processes were preferred over other processes that are not default Windows

programs. There are several explanations. One explanation for this behavior is that the

malware author can be sure that these processes are available (e.g. explorer.exe [255]).

Another explanation is that some of these processes are whitelisted by personal firewalls

(e.g browsers like iexplorer.exe) and malware utilizes them as communication gateway

(see Section 4.2.1). A third explanation is that many processes are more likely to be

targeted due to the data they handle (e.g. browsers in the case of banking Trojans).

We recommend detection systems to focus at first on the top five processes: explorer.exe,

svchost.exe, ctfmon.exe, iexplorer.exe and rundll32.exe. This should increase their chances

to encounter HBCIAs.

5.3 Family Feature HBCIAs

HBCIAs offer many advantages to malware authors (see Section 4.2). Yet, their utiliza-

tion is a design decision that is taken early on during the development, e.g. to conduct

Man-in-the-Browser attacks. Therefore, they form an integral part of the malware. This

decision significantly influences the malware’s code base, for instance, due to synchro-

nization of several infected processes.

Hence, we assumed that malware authors are unlikely to refrain from code injections.

They are unlikely to change the method or even completely remove it, since this design

decision is taken early on once the objectives of the malware are known. Furthermore,

this should also hold true in the case of derived malware that is based on a code leak,

e.g. the banking Trojan Kins [228], which derives its code base from Zeus [38].

Therefore, we assumed that HBCIAs are an inherent malware family feature. This means

that versions and variants of the same family but also derivatives that have large parts

of the code base in common neither remove this feature nor change the code injection

method over time. If this assumption were true then as a consequence it would be

sufficient to study one representative of a malware family to study the family’s HBCIA

behavior. In the following, we corroborated our assumption with a longitudinal study of

eight code injecting malware families.

5.3.1 Data Set

Unfortunately, the data set of Sections 5.1 and 5.2 was not adequate to conduct a longi-

tudinal study of the code injection behavior of several families. First, there was no exact
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Data Set R1 R2

cwsandbox 7 7

Android Malware Genome Project 7 7

Malicia 7 7

Drebin 7 7

Microsoft Malware Classification Challenge 3 7

Android Malware Dataset 7 7

TABLE 5.3: Matching of publicly available data sets to our two requirements of Section
5.3 to a corpus for corroborating the family feature hypothesis.

classification of the data set. We needed to be absolutely sure that we inspected variants

and versions of a certain family. Note that labels given by an antivirus software are not

exact [248]. Second, the history of a malware family may date back more than ten

years. For instance, the Zeus family is at least ten years old (as of November 2017) [33].

We could not model this with this data set since it comprised only 15 months of data.

To the best of our knowledge, there had been no prior longitudinal study of the injection

behavior of malware families. Therefore, there were no requirements to a data set to

study this behavior. Consequently, we defined two requirements in order to compile our

own data set in the following.

Requirements

The objective of this section is to measure the code injection behavior of several families

to show that neither different variants nor different versions of a malware family change

this behavior over time. Therefore, our first requirement R1 wass that the data set

comprised only malware families that employ HBCIAs.

To make a statement about the HBCIA behavior of a malware family, we needed to fol-

low its evolution. As every other software, malware is incrementally developed. There

may be significant differences between two versions that lay several months apart. Fur-

thermore, malware authors may change significant parts of a malware when its tasks

change. We required several versions spread over a longer period of time to reliably

make a statement about the family’s (HBCIA) evolution. Therefore, R2 stated that the

families of the data set were required be active at least one year and that they comprised

several versions so as to we could follow their development and possible behavioral

changes. Given the history of modern Windows malware, which started with the release

of Windows XP, one year poses a substantial share of this history.

To summarize our requirements:
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FIGURE 5.6: The temporal distribution of the eight HBCIA-employing malware families
of our data set ranging from 2007 to 2013.

R1 The data set contains only malware families that exhibit HBCIA behavior.

R2 The malware families should have been active at least for one year and comprise

several versions.

We matched the publicly available malware data sets that we have presented in Sec-

tion 5.1 to our two requirements. Table 5.3 presents the results. There was no publicly

available data set that matched our requirements. Especially, since they did not contain

meta information like the sample date. Therefore, we had to create our own.

Data Set Compilation and Discussion

Our data set consisted of eight distinct code injecting malware families (R1). Even

though we face a flood of malware samples today, the number of malware families is

actually by orders of magnitude smaller [245]. We gathered versions as well as variants

of each version throughout several years (2007-2013) (R2). The exact numbers are

given in Table 5.4.
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Tables 5.4 summarizes the data set. It contained 32,514 samples of eight malware

families in total. Citadel comprised the lion’s share of the data set. However, this did

not affect the results since we examined each family separately. We list the number of

samples, the number of versions, as well as the period that lies between the first and

the last version for each family. We determined this period with the help of VirusTotal

(first time seen) [247], except for Urlzone and Citadel. In these cases, we had in-house

unpackers extract the timestamp of the original PE (Portable Executable).

Even though packers may forge many values of their executables, this is typically not

the case with the original executable that they pack. The malware authors may forge

the meta data of the original executable, e.g. which is often the case with espionage

malware [256]. However, we have internal data that suggests that this was not the

case with both aforementioned families. Figure 5.6 plots the temporal distribution of

the samples. Citadel was the latest family. It comprised the most samples, which were

therefore closely scattered in 2012 and 2013. The other families like Zeus operated

longer, e.g. for more than five years.

5.3.2 Methodology

At first, we conducted a manual analysis of several family members to understand the

HBCIA algorithm. Based on this knowledge, we extracted a characteristic API call se-

quence that describes this algorithm. Next, we implemented a behavior analysis pro-

cessing module for the sandbox system Cuckoo [257] and automated the execution of

all samples. This module processed the captured API call sequences and matched them

to the known HBCIA algorithm sequences, e.g. OpenProcess, WriteProcessMemory, and

CreateRemoteThread. The arguments for choosing dynamic analysis were the same as in

Section 5.1.

We utilized the sandbox Cuckoo [257] to record the API call sequences. This sandbox

is the de facto standard because it is enhanceable and accessible owing to its open

source license. At its heart, Cuckoo employs VirtualBox [72] with Windows XP SP3 32

bit. The same arguments regarding the choice of this Windows version hold true as

in the preceding Section 5.1. The execution environment had no Internet connection.

This should not have influenced the results due to the assumption that HBCIAs take

place before the malware contacts its command and control server. Numerous source

code leaks of malware corroborate this behavior (e.g. [36–38, 228]). We hardened the

execution environment to cope with environment sensitive malware [253].
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Malware Family Samples Versions Date of First/Last Sample

Citadel 31713 18 2012-02-14/2013-10-10
Conficker 5 5 2008-11-22/2009-10-31
Cridex 12 4 2011-01-04/2012-11-07
Dorkbot 21 7 2009-04-01/2013-10-16
Sality 20 6 2006-10-27/2013-07-02
Spyeye 12 4 2009-06-06/2013-10-17
Urlzone 701 63 2007-10-21/2013-07-02
Zbot 30 10 2007-07-07/2013-06-09

Total 32514 117 2006-10-27/2013-10-17

TABLE 5.4: Summary of the data set for the family feature investigation of Section 5.3.

5.3.3 Results

The results corroborated our assumption. All families neither removed nor changed

their injection behavior. As a consequence, we consider HBCIAs as an integral part of

malware families that employ them. Especially, it is invariant over different versions and

variants of such families.

We corroborated that the HBCIA algorithms of Zeus [38] and its offspring Citadel are

identical via a binary comparison. This backs our hypothesis that malware authors prefer

to quickly build a new malware on a leaked source base. They refrain from fundamental

changes due to the lack of time or the lack of understanding.

5.4 Prevalence of HBCIA Algorithms

In Sections 5.1 and 5.2, we measured the prevalence of HBCIAs and scrutinized the

preferred victim processes. This showed that victims are not evenly distributed. Hence,

there have to be different selection strategies in practice.

We derived a taxonomy for HBCIA algorithms in Section 4.3.4 that comprises four

classes: TICE, TITM, SICE and SITM. However, so far there has been no measurement

of the distribution of malware families to these classes. The objective of this section is to

address the question What is the distribution of malware families to the different HBCIA

algorithm classes?
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5.4.1 Data Set

First of it all, the data sets of Sections 5.1 and 5.2 as well as Section 5.3 were not

suitable to be utilized in a qualitative evaluation that should comprise many different,

clearly identified malware families in order to study their HBCIA behavior. The first data

set of Sections 5.1 and 5.2 did not comprise an exact classification of the malware sam-

ples. Even though we approximated this with malware labels provided by an antivirus

software, this was not exact. The second data set of Section 5.3 only contained eight

families with many versions and variants. It was not suitable because we required more

family representatives to estimate the distribution to the HBCIA algorithm classes. There

had not been any previous work focusing on this question that defined any requirements

for a data set. Consequently, we first had to define our requirements for a data set.

Requirements

We had two requirements for a data set for measuring the distribution of malware fam-

ilies to HBCIA classes. There are many malware classes including but not limited to

computer worms, banking Trojans, and viruses that can be encountered in the wild. In or-

der to estimate the prevalence of the four different HBCIA algorithm classes, we needed

to scrutinize as many different HBCIA-employing malware families as possible. Please

note that an HBCIA is a malware family feature and hence it is sufficient to study one

representative of a malware family in order to study the family’s HBCIA behavior (see

Section 5.3). Furthermore, it is important that this behavior is confirmed for every mem-

ber of the data set because we explicitly studied this behavior. Therefore, our first re-

quirement R1 required the data set to contain many different, clearly identified malware

families of all kind of types that were confirmed to use HBCIAs. Our second requirement

R2 required the malware families to target Windows, since it is still the main malware

target, when measured in absolute numbers (see for example [4]).

Table 5.5 summarizes the matching of the two requirements to the set of publicly avail-

able research data sets (see Table 5.1). None of them matched our requirements. Hence,

we decided to create our own to answer our research question.

Data Set Compilation and Discussion

We collected representatives of HBCIA-employing malware families. We only needed

to examine one representative per malware family to determine the family’s HBCIA al-

gorithm, since HBCIAs are a family feature (see Section 5.3). The data set comprised
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Data Set R1 R2

cwsandbox 7 3

Android Malware Genome Project 7 7

Malicia 7 3

Drebin 7 7

Microsoft Malware Classification Challenge 7 3

Android Malware Dataset 7 7

TABLE 5.5: Matching of publicly available data sets to our two requirements R1 and
R2 of Section 5.4.

40 malware families, for instance, banking Trojans (Urlzone), cyber espionage malware

(Stuxnet), malware droppers (Matsnu), and click fraud malware (Sirefef). The consid-

ered malware families are listed in Appendix B.

5.4.2 Methodology

To determine the HBCIA class of a sample, we were required to scrutinize its behav-

ior. The sequence of API calls that a sample exhibits during its execution (partially)

describes its behavior. Given this sequence, we could derive the HBCIA class of a mal-

ware. For instance, the banking Trojan Tinba [36] utilizes the API sequence Create-

Toolhelp32Snapshot, Process32First, Process32Next, lstrcmpiA, OpenProcess, WriteProcess-

Memory, and CreateRemoteThread. First, it compares all running processes (CreateTool-

help32Snapshot, Process32First, Process32Next) to a process name it wishes to attack

(lstrcmpiA). Then, it copies its code into the victim process (OpenProcess, WriteProcess-

Memory) and concurrently executes it (CreateRemoteThread). Hence, it falls into the

class TICE (Targeted Injection/Concurrent Execution).

We analyzed each representative with Cuckoo sandbox [257] to determine its HBCIA

API call sequence (see last section). The sandbox monitored API calls and outputted the

sequence. From this data, we derived the class of the sample as shown in the example

above. In the case of environment sensitive malware, we manually analyzed samples to

extract the API call sequence. The arguments for choosing dynamic analysis were the

same as in Section 5.1.

5.4.3 Results

The majority of the samples employed a TICE algorithm (Targeted Injection/Concurrent

Execution). The rest fell into the two classes TITM (Targeted Injection/Thread Manip-

ulation) and SICE (Shotgun Injection/Concurrent Execution). No family employed a
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HBCIA Algorithm Class Malware Families Percentage

TICE (Targeted Injection/Concurrent Execution) 23 57.5%
TITM (Targeted Injection/Thread Manipulation) 8 20.0%
SICE (Shotgun Injection/Concurrent Execution) 9 22.5%
SITM (Shotgun Injection/Thread Manipulation) 0 0.0%

TABLE 5.6: The distribution of malware families to HBCIA algorithm classes in absolute
figures and percentage. All classes are populated except the SITM class.

SITM algorithm (Shotgun Injection/Thread Manipulation). Table 5.6 summarizes our

findings.

The result shows that Targeted Injections (TICE + TITM = 77.5%) were more popular

than Shotgun Injections. There are two reasons for this. First, this allows malware to

skip crucial system processes. Crashes in system processes may result in total system

failure, which could lead to detection of the malware by the user. Second, selection

of target processes yield less usage of system resources and less irrelevant data. For

instance, many banking Trojans just inject themselves into browsers, and Point-of-Sale

(PoS) malware just injects its code into processes of PoS programs. Furthermore, the

result shows that Concurrent Execution (TICE + SICE = 80%) was more popular than

Thread Manipulation. A reason for this might be that the injected code requires the

original code to be run to manipulate it, e.g. in the case of credential stealers.

5.5 Conclusion

Today’s malware widely utilizes HBCIAs. Almost two thirds of our data set showed this

behavior. An HBCIA is therefore a reliable Indicator of Compromise (IoC) for malware.

Malware analysts and security tools should prioritize the processes that they examine

based on our results. For instance, Explorer.exe exhibits a high attack probability. In ad-

dition, it is a behavior that is unlikely to change over variants and versions of a malware

family since it is an inherent family feature. We only encountered malware implement-

ing TICE, TITM, or SICE algorithms. The fourth class SITM was absent. In general,

malware authors seem to favor Targeted Injections to Shotgun Injections and Concurrent

Execution to Thread Manipulation. The victims were not evenly distributed, since not all

HBCIA-employing malware families implemented Shotgun Injections.

Based on the results of this chapter, it can be seen that HBCIAs are a fundamental part of

a much bigger problem called malware. As a consequence, HBCIA detection could lead

to detection of a significant share of current malware and therefore should be pursued

additionally to traditional antivirus techniques.
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Developers, developers, developers, developers.

Steve Ballmer

6
Bee Master: Detecting Host-Based Code

Injection Attacks at Runtime

The previous two chapters have investigated the phenomenon of Host-Based Code Injec-

tion Attacks (HBCIAs) in the context of malware. This has provided an overview of the

different theoretical models and the scale of the problem. Current solutions are not well

suited for malware and also do not focus on the OS-independent detection of HBCIAs

(see Chapter 3). Therefore, we developed two solutions for the (dynamic and static)

detection of HBCIAs. Whereas the dynamic solution focuses on end user protection, the

static one aids malware and forensic analysts.

In this chapter, we present the first of our two approaches called Bee Master, a system

to dynamically detect HBCIAs. In a nutshell, we apply the honeypot paradigm to OS

processes to detect HBCIAs. Bee Master creates regular operating system processes that

are vulnerable to these attacks. These processes mimic programs like browsers or chat

clients. It monitors them for changes associated with HBCIAs. These changes include

the number of threads and memory pages. Since the behavior of these processes is apri-

ori known, any deviation is suspicious. OSes utilize processes to manage concurrency.

Hence, the main idea applies to many operating systems including Windows and Linux.

As a consequence, our system neither requires modifications of the OS nor hardware as

previous systems require (e.g. [23, 162, 163]).
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Please note that partial results of the presented chapter were published in the seminal

paper “Bee Master: Detecting Host-Based Code Injection Attacks” at the conference “De-

tection of Intrusions and Malware, and Vulnerability Assessment” (DIMVA) in 2014 [16].

The proceedings were published by Springer International Publishing.

6.1 Methodology

This section presents our approach Bee Master to dynamically detect HBCIAs. It ap-

plies the honeypot paradigm to OS processes to detect code injections. Amongst other

advantages, this allows the detection of HBCIAs independently of the operating system.

Before we present Bee Master in detail, we elaborate the requirements for our approach.

Then, we provide a rough overview of it and its two components: the Queen Bee and the

Worker Bees. Subsequently, we detail these two components in the next two sections.

Next, we discuss the proof of concept implementation and the limitations of Bee Master.

Finally, we describe possible ways of evasion and countermeasures.

6.1.1 Requirements

We have shown in Chapter 3 that there are systems to dynamically detect HBCIAs. How-

ever, they have weak points, e.g. dependence on low-level APIs or the need of special

hardware. Their authors did not state any requirements when they presented their pro-

posals.

An HBCIA is a dynamic behavior that a malware exhibits during runtime. Even though

we might be able to statically detect this behavior given a malicious binary, this would be

limited. First, we would face the unpacking problem and therefore static analysis is not

feasible in our case. For a detailed discussion of this problem see Section 5.1. Second,

we can not decide whether a program conducts an HBCIA or not. As we have stated in

Section 5.1, this follows Rice’s theorem. In our case this is especially owing to the fact

that we may face dynamic code generation, which also is related to the first limitation.

Even though we can not decide this beforehand, we can still observe the program and

detect this behavior if it executes it. Consequently, we require our system to detect such

code injections at runtime (R1).

The diversification of operating systems is a severe problem for malware detection.

There is no single OS that all malware targets. This also holds true in the case of

HBCIA-employing malware. In Chapter 4, we have shown that operating systems like

Windows, Linux, macOS, and Android are all vulnerable to HBCIAs. A solution that
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depends on a specific OS would not be portable. This would imply that each OS would

need its own solution, which would be costly in means of time and money. Hence, an

HBCIA detection system should not rely on OS-specific details. As a consequence, R2

states that the approach should be OS agnostic to be easily portable.

Malware utilizes low-level APIs like NtOpenProcess and NtCreateRemoteThread to con-

duct HBCIAs. Such low-level APIs are often subject to change and may rapidly break

systems that rely on them. Take as examples antivirus real-time protection [258] and

also malware itself. Yet, many detection systems just instrument a limited set of low-

level APIs and/or special system calls (e.g. Sun et al. [20] and Hanel [169]) to detect

HBCIAs. However, there is more than one way to conduct HBCIAs and relying on a

limited set of low-level APIs is not a proper solution to catch them all. As a result, R3

requires that the system abstracts from low-level APIs as well as special system calls and

that it relies on high-level concepts instead, which properly describe HBCIAs.

Operating systems are complex buildings. A small architectural change may influence

great parts of the code base. This is the reason why many ideas require years to be

incorporated in an OS, because it takes significant time for OS vendors to develop, test,

and deploy new systems that introduce fundamental changes to the OS itself. Take for

example Control Flow Integrity (CFI). CFI was only recently introduced to Windows 10 as

Control Flow Guard [259]. It took more than ten years from the idea to the deployment.

However, the fight against malware is fought right now. Consequently, R4 states that

the approach should not modify the operating system’s internals.

We assume that we are dealing with malware that comes only in binary form (see also

Chapter 2). This is a reasonable assumption since the absence of source code increases

the complexity of the analysis. Even though there are several malware code bases pub-

licly available due to source code leaks, the vast majority of malware is only known in

its binary form. As a consequence, R5 assumes that the source code of the malware is

not available.

In the following, we summarize our five requirements R1 to R5:

R1 Detection of Host-Based Code Injection Attacks at runtime

R2 Operating system agnostic

R3 High abstraction level, independent of low level OS details

R4 No modification of the operating system is required

R5 Works in the absence of the malware’s source code
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Approach R1 R2 R3 R4 R5

Barrantes et al. [116] G#  # #  
Buescher et al. [22] G# # #   
DefenderATP [205]  # # #  
Forrest et al.[173]   #   
Hanel [169]  # #   
Korczynski et al. [172]  G#  #  
Mutz et al. [178]   #   
Snow et al. [19]  # # #  
Srivastava et al. [21]  # #   
Strackx et al. [171]   # #  
Sun et al.[20]  # #   
Wagner et al. [176]   #  #
Yap et al. [177]   #   

Barabosch et al. [16]      

TABLE 6.1: Matching of most related approaches with our five requirements to dynam-
ically detect HBCIAs. Each requirement can be either fulfilled ( ), partially fulfilled

(G#) or unfulfilled (#).

We matched selected related work (see Chapter 3) to our five requirements in Table 6.1.

This table shows that no candidate matched all five requirements. Therefore, we decided

to close the gap and implemented Bee Master.

6.1.2 Overview

Bee Master transfers the honeypot paradigm to OS processes in order to detect HBCIAs.

In a nutshell, it creates processes and observes them for signs of attacks. Since it knows

the state of these child processes apriori, any deviation is considered suspicious. Exam-

ples for such deviations are new memory pages, new threads, or significantly modified

memory pages within the processes. Therefore, we detect HBCIAs without the knowl-

edge of any special OS API (e.g. debugging APIs on Windows). Our idea only relies on

common concepts like processes, threads, and memory pages. For instance, Windows

and Linux implement these concepts.

Figure 6.1 outlines Bee Master’s architecture. It consists of two components. The Queen

Bee observes child processes for signs of HBCIAs. These processes are called Worker Bees

and the Queen Bee spawns them as child processes. This ensures that it can introspect

Worker Bees. Since every action within the Worker Bees is observable, the Queen Bee can

detect HBCIAs in them.

We described HBCIA algorithms in Section 4.3. The first step is the victim process se-

lection. The code-injecting malware selects its victim processes based on some features
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Queen Bee

Worker Bees

FIGURE 6.1: Overview of Bee Master’s architecture: the Queen Bee and its Worker Bees.

(Targeted Injection), e.g. the process name, or it just tries to inject code into every ac-

cessible process (Shotgun Injection). To detect a Shotgun Injection, we have to deploy

at least one process and observe it. To detect a Targeted Injection, the Worker Bees are

configurable in order to resemble processes such as browsers or mail clients. Therefore,

they trick malware into injecting code into them due to the fact that they exhibit the

feature the malware looks for. As we will see later, there are several features that mal-

ware may utilize to identify its victim processes. To the best of our knowledge, we are

not aware of any HBCIA-employing malware that checks the genuineness of a victim

process.

6.1.3 Queen Bee

The Queen Bee is the main component of Bee Master. Its objective is to manage the

Worker Bees and to monitor their internal states. Worker Bees mimic a εvictim in order to

lure HBCIA-employing malware to attack them. The Queen Bee continuously compares

their states to the expected states that are apriori known. This includes the threads,

the memory pages of the Worker Bee’s process including their content, and the loaded

modules. If it detects a deviation then it detects an HBCIA. As a consequence, it creates

a memory dump of the process and terminates it. The memory dump aids analysts in

their further analysis of the caught code-injecting malware. If Bee Master is employed

on a real system then the user should be warned and the system halted.

Figure 6.2 shows how the Queen Bee manages a Worker Bees. At first, it creates a Worker

Bee. It depends on the privilege level of the actual implementation as to how this is

achieved. A user space implementation relies on the APIs provided by the OS, a kernel

module implementation directly creates these processes from kernel space, and a virtual

machine introspection (VMI) component manipulates the OS from outside. We discuss

the different implementation possibilities in Section 6.1.3.1. For now, let us suppose
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FIGURE 6.2: Control flow of the Queen Bee′s Worker Bee handling algorithm.

that the Queen Bee is a user space process. Then it would call, for instance, the OS APIs

exec or CreateProcessA on Linux or Windows, respectively. After the Worker Bee creation,

the Queen Bee switches into a continuous monitor mode.

In this monitor mode, it first collects internal information about the Worker Bee. This

includes the number of running threads, the loaded modules, and the memory pages.

We stated in Section 4.3 that an HBCIA always needs memory to store the injection

code (memory pages/modules) and an execution context to execute this code (threads).

Hence, we collect fundamental information to detect HBCIAs. Again, there are several

ways to achieve this depending on the implementation. As we suppose that our example

runs in user space, this could be achieved via the API call CreateToolhelp32Snapshot on

Windows. Next, it compares this information to the expected state of the Worker Bee, e.g.

two expected threads versus three currently running threads. This is possible since these

parameters are known apriori. If there is a deviation then this means that it detects an

HBCIA. Hence, it breaks out of the monitor mode, creates a memory dump of the Worker

Bee for further analysis, and halts it.

6.1.3.1 Decision Heuristic

Algorithm 1 shows the decision heuristic of Bee Master as pseudo code. The algorithm

takes as input the set of currently running Worker Bees and outputs a set of HBCIA

attacked Worker Bees. Note that the output set may be empty if no attack has occurred.

The algorithm iterates over all Worker Bees and compares their apriori known state to

the current state. If there is a deviation then it assumes a Worker Bee wi to be attacked.

The state comparison comprises four individual comparisons. The first three (lines 2,4

and 6 in Algorithm 1) are just comparisons of the set cardinality of the threads, memory

pages, and modules of a Worker Bee wi.

The fourth comparison (line 8 in Algorithm 1) compares the states of the memory pages

of wi in depth. To this end, we require a similarity measure that is robust to small
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Input: W := {w1, ..., wn|wi is running} where n ∈ N>0, i ∈ N>0 ∧ 1 ≤ i ≤ n
Output: A := {wi|wi ∈W ∧ wi has been attacked}

1: for all wi ∈W do
2: if |wi.known memory pages| 6= |wi.current memory pages| then
3: A← A

⋃
{wi}

4: else if |wi.known modules| 6= |wi.current modules| then
5: A← A

⋃
{wi}

6: else if |wi.known threads| 6= |wi.current threads| then
7: A← A

⋃
{wi}

8: else if change(wi.known memory pages, wi.current memory pages) then
9: A← A

⋃
{wi}

10: end if
11: end for
12: return A

ALGORITHM 1: Pseudo code of the decision heuristic of Bee Master that the Queen Bee
implements.

Input: Sets of memory pages X := {x1, ..., xk} and Y := {y1, ..., yk} where k ∈ N>0

Output:

{
1, ∃SM(xi) 6= SM(yi)

0, otherwise
1: for i = 1 to k do
2: if SM(xi) 6= SM(yi) then
3: return 1
4: end if
5: end for
6: return 0

ALGORITHM 2: Pseudo code of the memory page comparison algorithm of Bee Master
that the Queen Bee implements.

changes in the memory pages. For now, we just assume that there is such a similarity

measure SM that exhibits this property. We will explain the choice of SM later on.

Note that if the algorithm reaches this point then there have not been any new pages

and the cardinality of the sets wi.known memory pages and wi.current memory pages

are equal. This fourth comparison is carried out by Algorithm 2. This algorithm takes as

input two sets X and Y of memory pages and outputs 1 if there is at least one memory

page that has significant changes or 0 otherwise. This algorithm iterates over all memory

pages and computes the similarity measure SM of each corresponding pair in X and Y

to compare them in order to detect significant changes that go beyond a couple of bytes.

An example would be, for instance, the replacement of the main program image, which

happens often in Thread Manipulation based HBCIA algorithms.

Choice of the Similarity Measure Algorithm 2 depends on a similarity measure SM .

We have stated that we require a measure SM to be robust to minimal changes in the

memory pages. Such changes may be caused by changes to variables in the data segment

of a binary.
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Strict hash sums of cryptographic hash algorithms like MD5 or SHA512 violate this prop-

erty per definition. Their hash sum changes when a bit is flipped. Hence, they are not

suitable for our SM . An alternative would be Context Triggered Piecewise Hash (CTPH)

as suggested by Kornblum [60]. It identifies ordered homologous sequences even if one

of the two compared inputs is a modified version of the other. Therefore, they allow

us to have a flexible notion of equality. For instance, let us assume a binary with a

data section comprising several variables that are adjusted during runtime. The source

code of this binary does not change. We can still identify this binary as the same binary

when using CTPH even though the data section has been modified. Therefore, CTPH is

a reasonable choice that fulfills the robustness property mentioned above.

Runtime To estimate the runtime of Bee Master’s decision heuristic, we first have to

estimate the runtime of Algorithm 2. Kornblum [60] stated that the cost to compute a

CTPH is O(b log b), where b is the input size in bytes. We are required to compute the

CTPH twice, once for each of the two memory pages that we compare. A comparison

of two CTPHs is a constant operation of c. Hence, this yields O(2 · (b log b) + c), which

can be simplified to O(b log b). Given k memory pages in the sets of memory pages X

and Y then this yields k · O(b log b) = O(k · b log b).

Given the runtime of Algorithm 2, we can estimate the runtime of Algorithm 1. We

assume that testing the inequality of the cardinality of two sets is a constant operation

of c. Therefore, the algorithm yields a runtime of O(n · ((k · b log b) + 3c)). This equals

to O(n · k · b log b), where n is the number of Worker Bees, k is the number of memory

pages to compare per Worker Bee, and b is the input size to compute a CTPH.

Privilege Level of the Queen Bee

In the previous section, we stated the implementation possibilities of the Queen Bee: a

user space program, a kernel module, or a VMI component. In this section, we compare

the different implementation possibilities of the Queen Bee and we discuss our imple-

mentation decision of the prototype.

The three different implementation possibilities user space, kernel space, or VMI com-

ponent imply three different privilege levels: unprivileged, privileged, and hypervisor.

Each privilege level comes with higher integrity since it is harder for malware to manip-

ulate the implementation and with lesser detectability since the implementation runs

with higher privileges than the malware. On the downside, the higher the privilege

level, the higher the implementation cost. This is twofold: First, implementations in

user space have access to a wealth of different API functions, which is not the case in

kernel space and VMI. Therefore, we have to implement this functionality on our own.
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Implementation Privilege Level Integrity Detectability Implementation Cost Bare-Metal

user space # #  # 3

kernel space G# G# G# G# 3

VMI   #  7

TABLE 6.2: Comparison of the three different privilege levels of the implementation.
Each category has three relative degrees: low (#), medium (G#), and high ( ). Fur-
thermore, the table lists whether (3) or not (7) an implementation allows bare-metal

deployment.

Second, implementations in user space can be debugged easier as they influence the sys-

tem stability less than kernel space and VMI implementations. Table 6.2 summarizes our

arguments for the three different privilege levels. The solution with the lowest privilege

level and lowest integrity – user space implementation – has the lowest implementa-

tion cost. On the contrary, the VMI implementation has the highest privilege level and

integrity but also the highest implementation cost.

We decided to implement a first proof of concept of Bee Master as user space program.

First of all, for us as scientists, it is important to show that the concept works: Does mal-

ware fall into our trap of fake processes? The privilege level of our system’s controller

is secondary for corroborating this. Thus, we shunned the higher complexity of imple-

menting the Queen Bee in kernel space or even as a VMI component in order to have

a higher level of integrity at the expense of the higher implementation costs. Further-

more, the VMI implementation does not allow the system to directly run on bare-metal

but rather it requires first a hypervisor. This would limit the portability idea of our

system.

Our evaluation (see Section 6.2) shows that the prototype is very effective. The on-

going arms race between the malware authors and malware analysts may require an

implementation at a higher privilege level. Therefore, we recommend implementing the

Queen Bee with a higher privilege level to ensure its integrity in future implementations.

6.1.4 Worker Bees

Worker Bees are the second component of Bee Master. A Worker Bee can be thought of as

a sensor that allows the detection of HBCIAs. They are regular OS processes that mimic

εvictim processes. The Queen Bee handles one or more of them simultaneously. This

increases the chances that an εinject attacks them. They behave passively, idling until

a compromise happens. The user can configure the Worker Bees to mimic important

aspects of real processes like a browser. For instance, since many malware families

identify their victims via the process name, this is an important aspect to them. Hence,

the user can configure, for example, the process name to match the needs of malware.
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Parameters of the Worker Bees

At the moment, there are six parameters. We chose these parameters based on our

domain knowledge in the field of malware analysis and our experience with HBCIA-

employing malware in particular. In the following, we present them and discuss our

choice.

(I) threads: Threads are an important building block to offer the user a multi-tasking

experience. Single-threaded applications may raise suspicion, hence the analyst

can adjust the number of threads.

(II) loaded libraries: System libraries offer a wide range of functionality to a program

including networking and cryptography. The loaded libraries expose information

about the purpose of a process, e.g. a browser requires libraries to encrypt network

traffic.

(III) memory mapped files: Memory mapped files are a concept that is present on

several operating systems including Microsoft Windows and Linux. A memory

mapped file correlates, for example, with a full or partial mapping of a file from

hard disk, a shared memory object between processes, or a hardware device [260].

This allows developers to manipulate file objects like regular memory. Malware

identifies processes based on their file mappings.

(IV) process name: Often malware identifies interesting processes via the process

name, e.g. banking Trojans like Zeus search for process names such as iexplore.exe

or chrome.exe [38].

(V) process window name: Another way to identify interesting programs is the pro-

cess window name, e.g. the malware Gapz searches for a window with the name

Shell TrayWnd, which belongs to explorer.exe [232].

(VI) command line string of the process: The command line string of a process

reveals a lot about the process’ purpose. Malware identifies interesting processes

via the command line string, e.g. a networking service like svchost on Windows

with the command line string svchost.exe -k netsvcs [46].

Please note that we intended Bee Master to be enhanceable and thus new parameters

can be added. A possible scenario would be that a malware family identifies its target

process via a file handle that it holds. Then, the Worker Bees could be enhanced to hold

file handles and hence trick the malware into attacking them.
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6.1.5 Implementation

We implemented Bee Master for Windows as well as Ubuntu Linux. The first proof of

concept was implemented as a user space program as discussed in Section 6.1.3.1. The

Windows implementation utilizes the Windows Debugging API [54]. While this allows

a clean implementation of the idea, malware may detect that another process debugs

it. However, this shortcoming does not apply to the concept of Bee Master. The Linux

implementation utilizes ProcFs [261] to gather information.

6.1.6 Limitations and Evasions

We discuss limitations and evasions of Bee Master in this section. At first, we elaborate

on the limitation of process hollowing detection and limited process coverage. Then, we

discuss possible ways to evade our system.

Limitation: Detection of Process Hollowing

Bee Master does not detect Process Hollowing, which is a variant of Thread Manipulation

(see Section 4.3), where the attacker requires full control over the victim process. There-

fore, εinject usually creates εvictim. Hence, Bee Master is not capable of detecting such

HBCIAs since the Queen Bee can not observe processes that it has not created. However,

we showed in Chapter 5.4 that Concurrent Execution is more common than Thread Ma-

nipulation of which Process Hollowing is a subset. Credential stealers still have to inject

code into, for instance, browsers that have not been started by them. Hence, Bee Master

should still cover a great share of code-injecting malware.

Limitation: Limited Process Coverage

The detection of HBCIAs depends on the process identification feature that the malware

employs. Such features are, for instance, the process name, the process window name,

and memory mapped files. It is impossible to provide all possible feature combinations.

As a consequence, our system may miss attacks because the malware may not identify

one of our Worker Bees as its victim process. However, two facts mitigate this problem.

First, if the malware utilizes Shutgun Injections then the aforementioned is irrelevant.

Second, we determined that there are several victim processes that malware prefers

(see Section 5.2). Our default configuration covers these prevalent victim processes and

hence increases the chance of an attack.
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Discussion of Evasion

As every detection system, Bee Master may be evaded provided that the attacker has

sufficient knowledge of its internals and is willing to deviate from standard techniques

that are established in malware programming. An attacker would have to identify that

a Worker Bee is not genuine. This would require an attacker to access the process of

the Worker Bee and compare its internals to the expected internals of a certain process,

e.g. loaded libraries or running threads. At the time of writing, we have not seen this

behavior in practice. If malware accesses a process, for instance, with OpenProcess,

then this is detectable. Furthermore, we designed our system to be enhanceable and

configurable to be successful in the ongoing arms race between attackers and defenders.

6.2 Evaluation

We evaluate the prototype implementation of Bee Master in this section. Since our ap-

proach is not limited to a certain operating system and the prototype implementation

runs on Windows and Linux, we evaluated it on both systems to show its platform-

independence. However, the main focus is on Windows owing to its prevalence as a

malware target, especially in the case of HBCIAs. Therefore, we were able to acquire

more malicious samples on Windows for the evaluation.

First, we describe the evaluation methodology. Next, we describe the configuration of

Bee Master that we employed throughout the evaluation and present the data sets for

Windows and Linux. Subsequently, we proceed to evaluate Bee Master’s ability to detect

HBCIAs on Windows and Linux. In this evaluation, we show that it handles a broad

variety of prevalent malware families as well as artificially but potentially novel code

injections on Linux.

6.2.1 Evaluation Methodology

Bee Master is a dynamic analysis system. Therefore, we had to execute the malware

samples in order to evaluate how well our system detects their HBCIAs.

We conducted this evaluation as shown in Figure 6.3. At first, we prepared a VM with

our implementation running and took a snapshot of this clean state. We configured Bee

Master as described in Section 6.2.2. Then, for each sample, we restored the snapshot

of the VM ¬ and executed it in this VM . After five minutes, we extracted the logs as

well as dumped files from the VM ® and reverted the VM to its original state ¯. Note
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that two to five minutes are common timeouts in sandboxing systems, which is based

on domain knowledge. To the best of our knowledge, there is no evaluation of this

parameter.

To show Bee Master’s platform agnosticism, we evaluated it on Windows and Linux.

We chose three Windows versions XP, 7, and 8. Windows XP was chosen because it is

the classical malware target on which many malware families work since the security

measures are limited. We chose Windows 7 because it is still the Windows version with

the greatest market share [8] (as of November 2017) and Windows 8 because it was

the latest Windows version at time of the evaluation. All Windows systems are x86

systems because in our experience the majority of malware families still focuses on this

architecture. In the case of Linux, we chose Ubuntu Linux 13.04 because it is the version

that the only HBCIA-employing malware in our corpus demands (see Section 6.2.3)

and Ubuntu 17.10 because it is the latest version. Both Linux systems are x64 systems

because this is the default in the Linux Desktop universe.

To summarize, we evaluated Bee Master on the following operating systems:

• Windows XP SP3 32 bit

• Windows 7 SP1 32 bit

• Windows 8 SP0 32 bit

• Ubuntu Linux 13.04 64 bit

• Ubuntu Linux 17.10 64 bit

The hypervisor was VirtualBox 4.2.10 [72]. We installed all VMs without additional

software and we hardened them against several VM detection methods to cope with

evasive malware [47]. None of the VMs was connected to the Internet (see Section 5.3).

Furthermore, we did not simulate user interaction.

6.2.2 Configuration of the Prototype

This section describes how we configured Bee Master for the evaluation. We utilized

the default configuration during the evaluation. The default configuration differs for

Windows and Linux. We created them based on our experience with HBCIA-employing

malware but we also included the top processes of the evaluation of the victim preva-

lence (see Section 5.2). Hence, the Windows configuration composed the following five

εvictim processes:
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Data Set R1 R2 R3 R4

cwsandbox 7 7 3 7

Android Malware Genome Project 7 7 7 7

Malicia 7 7 3 7

Drebin 7 7 7 7

Microsoft Malware Classification Challenge 3 7 3 7

Android Malware Dataset 7 3 7 7

TABLE 6.3: Matching of publicly available data sets to our requirements of Section
6.2.3.

• the Windows shell (explorer.exe)

• the default Microsoft Internet browser (iexplore.exe)

• an alternate browser (firefox.exe)

• a networking service (svchost.exe)

• a random process (pdtyzgxm.exe)

The processes explorer.exe, iexplore.exe, and svchost.exe are all preferred victims (see

Section 5.2). We chose firefox.exe because it is a popular browser that banking Trojans

target and a random process name to discover malware families that employ a Shotgun

Injection. The Linux configuration just comprised two εvictim processes:

• a popular browser (firefox)

• a random process (pdtyzgxm).

These two victims were chosen for the same reasons as in the Windows case.

6.2.3 Data Sets

The following two sections describe the data sets employed in the Windows and Linux

evaluation of Bee Master.

Data Set Windows

Our objective was to evaluate a dynamic HBCIA detection system that should run in

Windows environments with goodware and possibly malware. Unfortunately, related
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FIGURE 6.3: Methodology of the evaluation of Bee Master

publications did neither publish their evaluation data sets nor did they state require-

ments for an evaluation data set (see Chapter 3). Therefore, we formulated our own

requirements.

Since we wished to evaluate an HBCIA detection system, we required HBCIA-employing

malware families. In Section 6.1.6, we stated that one limitation of our system is the de-

tection of Process Hollowing. Therefore, we refrained from evaluating HBCIA-employing

malware that utilized this technique. As a result, we required the data set to include

HBCIA-employing families without families that employed Process Hollowing (R1).

There are millions of known malware samples [4]. However, many samples of them

are not longer relevant (e.g. DOS boot sector viruses). Hence, we required samples

that were still found in the wild. Furthermore, there are many utilization schemes

of malware (see Section 2.1). A data set with only banking trojans would be biased.

Therefore, a wide-variety of malware classes should be included to adequately represent

the threat landscape. As a consequence, R2 required a recent and a wide-variety of

malware families in the data set.

Even though in a time of operation system diversity, Microsoft Windows is still the mar-

ket leader in Desktop operating systems [8] (as of November 2017). Therefore, it is

the preferred target of malware authors. The probability that the information they are

looking for is handled by a Windows system is high. Malware detection systems should

primarily focus on Windows but without losing secondary focus from the other possible

malware targets. Consequently, the malware should be for the most prevalent malware

target Windows (R3).

Finally, it is not sufficient to measure the detection rate in terms of true positives/false

negatives. There should also be goodware programs run against our system in order to

measure false positives/true negatives. The goodware programs should be representa-

tive. Consequently, R4 stated that the data set had to contain representative goodware

programs.

To summarize, we had the following requirements for a data set for evaluating a dynamic

HBCIA detection system:

R1 HBCIA-employing malware families (excluding Process Hollowing)
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Operating System Malware Families Not Working Families

Windows XP 38 -
Windows 7 37 Poison
Windows 8 32 Bamital, Conficker, Gamker, Ice X, Poison, Sykipot

TABLE 6.4: The number of working malware families and the families that refuse to
work on the Windows versions.

R2 recent and a wide-variety of malware families to represent the threat landscape

R3 only malware for the most prevalent malware target Windows

R4 goodware programs to estimate false positives

Table 6.3 matches our four requirements to publicly available malware data sets (see

Section 5.1). This table shows that none of them satisfies our requirements. Therefore,

we opted to create our own data set.

We compiled the data set as follows: First, we added 38 representatives of known

HBCIA-employing malware families that we had gathered throughout the last years.

We only added one representative per family since HBCIAs are an inherent family fea-

ture (see Section 5.3) and hence one family member is sufficient. The code injecting

capabilities of the malware families were manually verified in all cases. We did not add

families that utilize Process Hollowing since Bee Master does not detect them (R1).

All samples ran on Windows XP but not all of them on Windows 7 and Windows 8.

Reasons for this are manifold. For instance, the malware is not compatible with newer

Windows versions. Two reasons are the incompatibility between the WinAPI versions

(especially when using low-level API calls) and the advancement in exploit mitigation

techniques introduced by the newer Windows 7 and 8. Table 6.4 lists the number of

working families and points out which families did not execute on Windows 7 and Win-

dows 8. All families are listed in Appendix A.

To fulfill requirement R4, we added goodware to estimate false positives. We col-

lected the goodware from Windows system tools and added popular portable apps like

browsers, instant messaging clients, and encryption software. Table 6.5 lists the data

per Windows version.

Data Set Linux

Code injections are prevalent on Windows (see Section 5.1). Even though they can be

encountered on other platforms such as Linux [10], macOS [11], and Android [210]
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Operating System Windows System Tools Portable Apps Total

Windows XP 321 13 334
Windows 7 440 13 453
Windows 8 470 13 483

TABLE 6.5: Summary of the Windows goodware per Windows version. The data set
comprises Windows system tools and popular portable apps.

as well, they are (not yet) prevalent on them. In addition to evaluating Bee Master on

Windows, we opted to evaluate it on Linux to show its platform-independence. We chose

Linux due to its openness, easy access, and good documentation of platform internals.

To the best of our knowledge, there was no publicly available data set that could have

been used to evaluate an HBCIA detection system on Linux. Also, we could not utilize

the data set that we built before since they do not comprise Linux software. Therefore,

we built another corpus to evaluate our system on Linux.

Whereas gathering benign programs on Linux was easier than on Windows due to the

package management systems of the various Linux distributions, gathering malicious

programs that utilized code injections was difficult. We gathered 1425 benign programs

by searching the filesystem tree of /usr/bin for ELF executables. The system was an

actively used developer system with office, networking, developer, and multimedia tools

installed. A list of the program hashes can be found at [262].

Unfortunately, we encountered only one Linux malware family that utilizes HBCIAs (the

banking Trojan Hanthie [10]). Linux is not a popular malware target like Windows.

There are many different Linux distributions that do not adhere 100% to standards.

Furthermore, the user base of them is much smaller and also more technical, maybe

resulting in a higher cyber security awareness. Nevertheless, Linux is prone to code

injections. There are proof of concept HBCIA implementations for Linux such as linux-

inject [263] and linux-injector [264].

To evaluate Bee Master on Linux, we decided to implement several proof of concepts

of HBCIA techniques. We called the resulting framework 1001-injects and released its

source code on github [265] to allow others to study HBCIAs on Linux. Some injections

are based on previous work like linux-inject [263] or linux-injector [264]. However,

some of them are new and to the best of our knowledge they have never been publicly

mentioned. Table 6.6 summarizes the injection methods of 1001-injects.

To conclude, we gathered 1431 samples in total. Whereas 1425 were benign programs,

six were HBCIA code injection techniques including the malware family Hanthie.
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Technique Previously Implemented

inject ELF library dlopen linux-inject [263]
inject shellcode hijack thread unknown
inject shellcode new thread unknown
inject shellcode new pthread unknown
inject ELF executable via /dev/mem unknown

TABLE 6.6: 1001-injects: summary of injection techniques for Linux. The proof of
concept implementation is hosted on github [265].

6.2.4 Results

We present the results of the Windows and Linux evaluation in the following two sec-

tions.

Results Windows

First of it all, Bee Master detected the code injections in all cases on all three Windows

versions. The malware attacked at least one Worker Bee. The Worker Bees mimicked

preferred victim processes, hence this came as no surprise. This means that our system

detected the malicious behavior in all cases on all three Windows versions. Furthermore,

our system did not falsely detect code injections during the execution of goodware. All

goodware samples that we executed with Bee Master on the three Windows versions did

not exhibit any sign of an HBCIA.

Table 6.7 lists the code injections per Worker Bee for the malicious samples on Windows

XP, Windows 7, and Windows 8. Most families injected code into explorer.exe. For

instance, on Windows XP 34 families targeted this process, which accounted for 89%.

This process was followed by iexplore.exe, also a default Windows program. We observed

the least injections into firefox.exe. The reason for this may be that mostly banking

Trojans target this browser, for example, to intercept credentials. Therefore, an injection

into this browser may indicate the presence of a banking Trojan or a malware that

utilizes Shotgun Injections. Furthermore, many families attacked the random process.

On all three Windows versions, they accounted for more than 50% of the data set.

However, not all of them utilized Shotgun Injections.

Table 6.8 lists how many families attacked which number of Worker Bees on Windows

XP. It shows that 42% of the families targeted all five of them including the one with the

random process name. This suggests that they utilized Shotgun Injections. However, it is

not decidable from Bee Master’s point of view whether or not a malware family utilizes

this kind of injection since it does not have a global view of all processes. Another
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Process Windows XP Windows 7 Windows 8

explorer.exe 34 27 24
iexplore.exe 28 29 22
svchost.exe 26 21 20
firefox.exe 24 21 23
pdtyzgxm.exe 28 23 20

TABLE 6.7: Summary of the observed injections into the Worker Bees employed on
Windows XP, 7, and 8.

21% targeted four Worker Bees. Families that attacked more than four processes include

banking Trojans and credential stealers such as Cridex, Hesperbot, and Zeus. They are not

interested in hiding but rather in intercepting information. Another insight is that many

families attacked the Worker Bee with the random process name but shunned another

process. This suggests that these families employed Targeted Injections via a black list to

exclude system processes that they did not want to attack.

The evaluation also shows that it may not be required to employ many Worker Bees

since all malicious samples of the data set attacked at least either the Windows shell

explorer.exe, which always runs or the browser iexplore.exe, which is a default Windows

program. As seen in Section 5.2, both are highly ranked victim processes.

In conclusion, this Windows evaluation showed that Bee Master detected a wide variety

of malware families at an early stage of their infection process and without misclassifying

any goodware. It also confirmed the finding of Section 5.2 that stated the absolute pref-

erence of the process explorer.exe. We saw that more than one-third attacked five Worker

Bees suggesting that they utilized Shotgun Injections. Note that this also included the

Worker Bee with the random process name that malware authors could not anticipate.

Hence, we assume that this victim was not specifically selected. The key observation is

that the whole data set could have been covered with only two Worker Bees: explorer.exe

and iexplore.exe.

Results Linux

The results of the Linux evaluation are in line with the Windows evaluation. Bee Master

detected all six injection types. One of them was a banking Trojan found in the wild and

five were artificial code injection techniques. There were no false positives due to the

execution of the 1425 benign samples.

Even though code injections are not as prevelant on Linux-based systems as on Windows

systems, Bee Master is already capable of detecting several distinctive code injection

95



Number of Attacked Worker Bees Number of Families Total Percentage

1 5 13.2%
2 4 10.5%
3 5 13.2%
4 8 21.1%
5 16 42.1%

TABLE 6.8: Distribution of families to the amount of attacked processes on Windows
XP.

techniques. Some of them are not even found in the wild. Furthermore, this evaluation

has shown that Bee Master is a promising step towards operating system agnostic HBCIA

detection, since we utilized it to detect these attacks on Linux-based platforms.

6.3 Conclusion

We have presented a dynamic HBCIA detection system. Bee Master applies the honey-

pot paradigm to OS processes to detect HBCIAs. It consists of two components: The

Queen Bee and its Worker Bees. The Queen Bee continuously checks all its Worker Bees.

The internal states of the Worker Bees are apriori known. This includes the number of

running threads and loaded libraries. Therefore, the Queen Bee detects suspicious devia-

tions within a Worker Bee since HBCIAs affect these parameters, e.g. injected code loads

additional libraries. Once it has detected an HBCIA, it creates a memory dump of it for

further analysis. After successful dumping of the memory, it terminates its Worker Bee.

Worker Bees are configurable to mimic potential victims like browsers.

There are several advantages of our approach when compared to related work. It runs on

commodity hardware and does not require special hardware. It can be implemented in

user space, kernel space, or as VMI module and it does not require any modifications of

its target system such as Windows and Linux. There are no special APIs that Bee Master

requires in order to detect HBCIAs. It just needs knowledge of threads, modules, and

memory pages in its child processes, which are common concepts in modern operating

systems. All these advantages yield a portable approach that is required by today’s

diverse operating systems.

We implemented a prototype of Bee Master that works on Windows and Ubuntu Linux.

In an evaluation on Windows and Ubuntu Linux, we have shown that it reliably detected

code injections and it did not exhibit false positives. On the one side, we showed that

malware does not verify if its εvictim is genuine. Current malware is indeed very vulner-

able to detection at this stage of its execution. On the other side, we expected that there
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would not be any false positives since it seems very unlikely that end user programs

need to access the process space of other processes or start further threads within them.
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7
Quincy: Detecting Host-Based Code Injection

Attacks in Memory Dumps

Our approach Bee Master that we have presented in the previous chapter dynamically

detects HBCIAs. It prevents greater damage by reporting these attacks to the user at

runtime. In this chapter, we focus on a different scenario: static detection of HBCIAs

in memory dumps. The memory dumps come from victim machines that were com-

promised and whose data had already been breached. The goal in this scenario is to

detect the malware that was responsible for the attack. It can then be analyzed to get

an impression of the possible damage, such as data theft, data manipulation, or data

encryption. Furthermore, it may be possible to attribute the attack to a certain threat

actor, though this is a difficult challenge [256].

Forensic and malware analysts encounter HBCIAs daily. Both employ forensic memory

analysis. There have been notable advances in forensic memory analysis due to open

source frameworks like Volatility [25]. This framework closes the semantic gap between

the binary data in memory and the meaning of this data to the operating system. In a

nutshell, it finds the relevant data structures, e.g. pointed to by special registers, and

gradually resolves further links to other data structures until the semantic gap is closed.

By doing that, it recovers the meaning of this data and allows the user, for instance, to

examine the running processes or loaded kernel modules.
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Forensic analysts analyze memory dumps of unknown systems without any knowledge

about the intrusion technique used. The detection of the injected code is a first step

towards the solution of a case. Also, malware analysts incorporate more forensic analysis

techniques in their work flow due to the advances in the field of memory forensics. In

contrast to forensic analysts, they execute the malware in a known environment. They

profit from the fact that memory forensics gives them a bird eye’s view into their analysis

environment. Since the analysis does not happen on the infected system, the malware

can not tamper with the results and forge, for example, the list of running processes

to hide rootkit components. Even though the initial situation of both analyst groups is

different, it is essential to both to quickly find the injected code in order to continue the

(malware) analysis.

Current memory based HBCIA detection systems like Malfind [25], Hollowfind [27], and

Membrane [28] suffer from severe drawbacks. The current state of the art Malfind ex-

hibits a high false positive rate since it relies only on two features to detect HBCIAs. The

Volatility plugin Hollowfind [27] detects only a fraction of all HBCIAs because it focuses

on Process Hollowing. Both fail to detect widespread malware families like Dridex that

inject a dynamic linked library (DLL). The academic approach Membrane is restricted to

a coarse grain detection. In contrast to the aforementioned systems, Membrane does not

detect injected memory regions but victim processes. This is not sufficient since victim

processes can contain hundreds of memory regions to search in. For example, the Win-

dows process Explorer has more than 550 memory regions that account for more than

400 MB of data on an idling Windows 10 system.

In this chapter, we present Quincy designed to overcome the drawbacks of current sys-

tems. At its heart, it employs a machine learning heuristic based on up to 36 features

associated with HBCIAs. These features include, for instance, the presence of shellcode,

the protection of a memory region, or the memory region compression ratio. It employs

a tree-based machine learning algorithm, which can handle non-linearity. We discard

less valuable features by means of a feature selection for each evaluated operating sys-

tem. Besides lowering the analysis speed, it improves also the detection performance

by disposing of suboptimal inter-feature relationships. Quincy’s detection heuristic is as

fine grained as Malfind’s and Hollowfind’s. Hence, it is finer than Membrane’s detection

heuristic. Furthermore, it raises the bar for an attacker to circumvent this approach due

to its up to 36 different features, which work in conjunction.

Our evaluation of Quincy shows that it improves upon the state of the art Malfind and

Hollowfind. We created a high quality data set with a sound ground truth for three Win-

dows version including the latest Windows 10. On the one side, our system significantly

lowers the false positive rate when compared to the other contenders. On the other
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side, Quincy improves upon their true positive rate, detecting more advanced HBCIAs

like injection of DLLs, which exhibit proper memory permissions.

The remainder of this chapter is structured as follows: First, we introduce Quincy by

discussing requirements for systems that forensically detect HBCIAs in memory dumps.

Next, we introduce our approach in detail. This is followed by the evaluation of Quincy

as well as two other detection systems. Finally, we conclude this chapter.

We pointed out in Chapter 4 that HBCIAs are a cross-platform problem. Furthermore,

we showed in Chapter 6 that generic HBCIA detection is possible. Unfortunately, there

are only few cases on non-Windows platforms. As a consequence, we created artificial

cases in the evaluation of Chapter 6. Though, we believe that there will be more cases

in the future. Therefore, we decided to implement Quincy only for Windows in a first

step, since the number of available samples, for instance, for Linux are not sufficient to

train and validate a machine learning model. Hence, we leave this to future work (see

Section 8.2.3). Nevertheless, our system should be easily portable due to the underlying

memory forensic abstractions introduced by the framework Volatility (see Implementa-

tion in Section 7.2.5).

Please note that partial results of the presented chapter were published in the semi-

nal paper “Quincy: Detecting Host-Based Code Injection Attacks in Memory Dumps”

at the conference “Detection of Intrusions and Malware, and Vulnerability Assessment”

(DIMVA) in 2017 [17]. The proceedings were published by Springer International Pub-

lishing.

7.1 Requirements

The Volatility plugin Malfind proposed by Hale Ligh [25] is the current state of the art

when it comes to detecting HBCIAs in memory dumps. Malfind implements a combi-

nation of features designed to decide whether a memory region is benign or malicious.

First, it marks entirely empty memory regions as benign. Pages with RWX protections

and unlinked libraries (from the PEB) are marked as malicious. Furthermore, Malfind

detects wiped PE headers in RWX-protected memory regions. Finally, all unflagged re-

gions are labeled as benign. Malfind has two drawbacks. First, it only detects the low-

hanging fruits, i.e. simple code injections that leave obvious traces like memory regions

allocated with RWX permissions. Second, it assumes too many benign memory regions

to be malicious and hence it has a high false positive rate. This increases the workload

of the analyst, who has to manually analyze these memory regions to confirm that they

are benign. Monappa proposed Hollowfind [27] that detects a subclass of all HBCIAs. It
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Approach R1 R2 R3 R4

Malfind [25]  # #  
Membrane[28]  G# G# #
Hollowfind [27] G# # #  
HashTest [26]  # G#  

Barabosch et al. [17]     

TABLE 7.1: Matching of related approaches to our four requirements to statically de-
tect HBCIAs. Each requirement can be either fulfilled ( ), partially fulfilled (G#), or

unfulfilled (#).

focuses on Process Hollowing, a technique to hijack benign processes (see Section 4.3.3).

Its detection heuristic is based on two features, which were engineered utilizing domain

knowledge (see Section 3.3.1). There are two more proposals by Pek et al. (Mem-

brane) [28] and White et al. (Hashtest) [26]. However, Hashtest utilizes a whitelisting

approach and hence does not work with previously unseen systems. Membrane is nei-

ther capable of detecting memory regions (it just detects infected processes) nor publicly

available.

As we have pointed out, available systems exhibit various drawbacks and we have iden-

tified several improvements. Unfortunately, related publications did not define any re-

quirements for a system that statically detects HBCIAs in memory dumps. Therefore, we

first define the requirements for such a system.

We wish to improve upon current HBCIA detection systems, which statically detect such

injections in memory dumps. Therefore, we require a system with this objective (R1).

As we have already stated above, current approaches (e.g. [25, 27]) exhibit insufficient

detection rates. They have many false positives, which cost analysts a lot of time to

discard and they tend to focus only on specific approaches (e.g. RWX memory pages in

Malfind or Process Hollowing in Hollowfind). As a consequence, the approach should im-

prove upon current approaches. It should be more general to detect more malware using

other injection techniques, but also it should lower the false positive rate to optimize the

time an analysts has to study the results of our approach (R2).

The malware industry and the computer security industry play a cats and mouse game.

Once a new detection system is published, the other side tries to bypass it. Current

systems can be easily bypassed (see Section 7.2.6). Therefore, we require the system to

significantly raise the bar for evasion (R3).

A Windows 10 runs dozens of processes with hundreds of memory regions within each

of them. For example, the Windows process Explorer has more than 550 memory regions

that account for more than 400 MB of data on an idling Windows 10 system. Hence, it is
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very helpful if the system directly points the analyst to the infected memory region. As a

consequence, R4 states that the system requires a fine detection granularity on memory

region basis.

To summarize, our requirements are:

R1 Detection of Host-Based Code Injection Attacks in memory dumps

R2 Improvement of the true positive rate/false positive rate, when compared to the

state of the art

R3 Harder circumvention, when compared to the state of the art

R4 Fine detection granularity on memory region basis

Table 7.1 matches our requirements to related work. None of them matched all require-

ments. As a consequence, we developed our solution to satisfy them all.

7.2 Methodology

This section presents Quincy, our method to forensically detect HBCIAs in memory

dumps. We provide an overview of the system and its phases: feature extraction, feature

selection, learning, and classification.

7.2.1 Overview

We begin by providing a superficial overview of our system before we dive into its details.

Figure 7.1 outlines the key points of Quincy.

First, it takes as input a memory dump and closes the semantic gap. The difference of

what an operating system stores in the raw memory, i.e. a binary string, and what it

interprets into this memory is denoted as semantic gap [70]. Internally, Quincy relies

on the memory forensic framework Volatility [25], which detects and recovers key data

structures in memory dumps to recover the original meaning (see also Section 2.2.3).

¬ Then, Quincy enumerates all memory regions of all processes of the memory dump

and extracts features from them, e.g. the memory region protection, the presence of

English strings, or the presence of code. In the following, we define a memory region as

a consecutive set of memory pages within the boundaries of an arbitrary virtual process

space. Whereas a memory page on a x86 system is typically four kilobytes [266], a
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FIGURE 7.1: Quincy receives memory dumps with labeled memory regions as input. ¬
Then, it extracts 36 HBCIA-related features from seven categories.  Subsequently, it
discards invaluable features and embeds the rest in a vector space. ® Next, it induces

a binary classifier. ¯ Finally, it classifies unseen memory areas.

memory region is a multiple of that and can easily be several megabytes. For example,

on Windows a memory region is equivalent to a Virtual Address Descriptor (VAD) [266].

Furthermore, regions may be shared between processes. For instance, Windows maps

system libraries with EXECUTE WRITECOPY permissions. This shares the data among

several processes to save memory space. Only when the process modifies the data, does

the OS create a local copy of the data in the process and this copy is then modified [266].

 Subsequently, we conduct a feature selection. While this improves the detection per-

formance due to the removal of weak features or linear dependencies, it also decreases

the runtime since it reduces the problem dimensionality. We employ a recursive feature

selection, which recursively reduces the set feature-wise until it encounters the optimal

feature set.

® Thereafter, Quincy trains machine learning models based on the reduced feature set.

It employs several algorithms and selects the best performing model as final model.

Internally, it utilizes the machine learning library scikit-learn [267].

¯ Finally, Quincy classifies previously unseen memory regions as either benign or mali-

cious, using the aforementioned optimized machine learning model. Extremely Random-

ized Trees work especially well as will be shown in the evaluation.

7.2.2 Feature Extraction

This section describes Quincy’s 36 features in detail. We have organized them in seven

categories. The majority of the features is binary. However, there are also continuous

features. Not all categories apply to every memory region. For instance, the category

binary only applies to memory regions containing binary executables. If this is not the

case then the features yield zero values.
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Overview of Quincy’s features
Category Feature Rank Description

¬ API

dynamic loading 25/23/17 presence of dynamic loading APIs

general api strings 10/10/20 common API call prefixes

hashing 01/04/06 code fragments related to API hashing

hbcia api strings 07/02/02 common HBCIA APIs

 binary

exports 26/30/24 exports API calls

has header 20/15/19 starts with a header

imports 29/27/11 imports API calls

is dynamic library 23/21/22 has been loaded dynamically

is module 12/07/16 registered module known to the OS

is pe or dll 16/12/21 a PE executable or shared library

wiped header 35/34/32 executable header has been wiped

® code
functions 18/14/10 common assembler function prologues

hooks 08/09/23 memory region contains code hooks

shellcode 03/11/13 shellcode patterns

¯ cryptography
cipher 32/28/27 constants of ciphers

encoding 21/18/09 constants of encoding schemes

hashing 27/16/15 constants of hashing algorithms

°
countermeasure
detection

debugger 24/26/31 strings and code patterns to detect debuggers

sandbox 19/31/14 strings and code patterns to detect sandboxes

vm 33/33/35 strings and code patterns to detect virtual machines

± memory

embedded exe 36/36/36 embedded executable after header

english strings 28/24/26 strings of Google’s top 1000 English search terms

high entropy areas 04/03/04 areas of high entropy

is heap 31/25/28 memory region is a heap

is sparse 05/01/03 ratio of zero bytes

mapped 06/35/33 corresponds to a memory mapped file

network strings 02/05/18 strings related to networking

persistence 22/19/05 strings related to persistence

private 13/08/08 tagged as private memory

protection 09/17/01 protection of memory region

tag 14/13/07 tagged by allocation functions

threads 15/06/12 threads originated in memory region

victim strings 11/29/25 names of typical HBCIA victims

² trojan
banking 34/22/30 strings related to online banking

cookies 30/32/34 strings related to cookie stealing

credentials 17/20/29 strings related to credential stealing

TABLE 7.2: Overview of Quincy’s 36 features in categorical and alphabetical order.
The features are ranked based on the Recursive Feature Selection (see Section 7.2.3).

Quincy’s final models may not utilize all features (see Appendix C).

Note that the initial version of Quincy utilized 38 features [17]. However, the features

codeindirect calls and codeindirect jumps turned out to be rather harmful, even though they

had high rankings in the feature selection. As a consequence, we have decided to man-

ually remove these features in order to improve performance. This shows again that

machine learning is still a ”black art” as stated by Domingos [268], which involves a lot

of manual tweaking.

¬ API Malware is required to communicate with its environment. Therefore, it asks

the OS to carry out actions like file access or network communication. Typically, the OS
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provides system calls for these tasks. However, Windows system libraries like kernel32 or

ntdll abstract from low-level system calls and provide a programmer-friendly interface,

known as the Windows Application Programming Interface (WinAPI or just API in the

following). Internally, such APIs carry out system calls if needed. This shows how

important API calls are to malware. Given the set of API calls of a malware, an analyst

can quickly analyze the malware. Sometimes by just analyzing the sequence of the API

calls in the malicious binary. There are several publications that rely on this method

(e.g. [52, 269, 270]).

The prefix of an API call gives its type of action away. For instance, consider the API

CreateFile. The prefix create tells us that this API call, which works on a file, actually

creates such an object. There are many common prefixes including create, get, open,

and set. Searching for them allows us to find general strings of API calls that programs

utilize to communicate with the OS. Therefore, the feature APIgeneral api strings scans

all memory regions for common API prefixes.

Since the presence of API calls aids the malware analysis process, malware authors seek

ways to obfuscate the API usage to complicate the analysis. Current OSes offer func-

tionality to load libraries at runtime. For instance, programmers can dynamically load

libraries on Windows with the two API calls LoadLibrary and GetProcAddress. The fea-

ture APIdynamic loading searches for strings of functions that dynamically load libraries

and APIs.

Advanced malware goes one step further and resolves pointers to API calls on its own.

For this sake, it enumerates all system libraries that the process space maps. For each of

them, it parses their exported API calls, hashes them, and compares them to an internal

list of hashes, which is also called API hashing [271]. This eliminates the need to provide

a list of API call strings. As a consequence, this significantly impedes the malware anal-

ysis. However, the malware still has to query this information by accessing, for instance,

process internal data structures like the PEB. In this case, the malware locates this data

structure via the fs register on x86, which is a suspicious pattern. The feature APIhashing
searches for regions that may employ API hashing by matching common access patterns

to internal data structures.

 binary Often memory regions comprise an executable file, e.g. a PE executable on

Windows or an ELF executable on Linux. Thus, we take features of this executable into

account. Please note that the following features yield zero values on memory regions

that do not contain executable files.

Programs require API calls to interact with their environment, which is why they import

API calls at program start. Malware prefers to resolve APIs at runtime and may not
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import APIs at program start. The feature binaryimports reflects whether a binary imports

APIs or not. Likewise, libraries export functions. In our experience, malware does export

significantly fewer functions than a standard system library. For example, the libraries

that the malware Dridex injects contain less than five exports. On the contrary, the

system library kernel32 exports a couple of hundred APIs. The feature binaryexports

counts the functions that a library exports.

Binaries comprise headers so as to the OS can load them properly. Hence, if a memory

region contains a header then we have found an executable program or library. The

feature binaryhas header codifies if a memory region contains a header by checking for

common magic numbers like the PE magic number 0x4D5A. Malware may delete its file

header to complicate its analysis, e.g. to find it in memory in the first place. It overwrites

the first hundred bytes with zero. However, this is detectable if a memory region starts

with zero bytes that are followed by code. Quincy’s feature binarywiped header checks this.

Binaries may be programs or libraries. The feature binaryis pe or dll reflects whether it

is an executable or a library like a PE or a DLL on Windows. The OS keeps track of all

modules in a process space, i.e. we define modules as a program or a library. Malware

may inject code that is not known as a module. The feature binaryis module encodes

whether a memory region comprises a known module or not. Libraries can be directly

loaded at program start or during runtime. The operating system keeps track of the

libraries that have been loaded before program start and at runtime. Malware typically

injects libraries at runtime via APIs like LoadLibrary. For example, the malware Conficker

injects its library in this way [46]. The feature binaryis dynamic library encodes the fact

that a library was loaded at runtime and may aid in detecting Conficker-like injections.

® code The main goal of an HBCIA is to inject code into a victim process. Thus, the code

properties of memory regions are worth scrutinizing.

To begin, we roughly classify regions into data and code regions. We assume that ev-

ery meaningful piece of assembly code is modularly structured and therefore split into

several low-level assembly functions. Such functions have a prologue and an epilogue,

where, for example, local stack frames are set up or cleaned up [272]. The feature

codefunctions scans memory regions for common assembly code patterns of function pro-

logues to detect regions with code.

Once malicious code has been injected into a victim process, it first conducts its initial-

ization. At first, it does not exactly know at which memory address it has been loaded.

This knowledge is crucial to properly address data and code. There are several ways

that malware can determine its address in memory. For instance, the assembly sequence

call +5; pop eax just calls the next instruction, which is pop eax. However, on x86 the
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call instruction pushes the eip register to the top of the stack. The instruction pop eax

pops the stack’s first element to eax. Thus, this code sequence yields the current address

in the register eax. Note that a x86 program can not directly read or write the program

counter eip [272]. Therefore, tricks like this are required. The feature codeshellcode looks

for common shellcode patterns in memory regions that determine the address of the

current instruction.

Banking trojans divert the control flow of certain networking APIs in order to manip-

ulate the communication between a user and its bank. For this sake, they employ

code hooks [273]. Other malware types also utilize code hooks, e.g. to hide its pres-

ence [274]. Unfortunately, detecting code hooks is computationally expensive because

it involves code detection, diassembling of code to find branch instructions, and heuristi-

cally taking the decision whether or not the branch between two memory regions poses a

code hook. For example, the Volatility plugin apihooks [25] exhibits a runtime of several

minutes when analyzing a one gigabyte memory dump on a modern CPU. Therefore, we

present a quick hook detection heuristic. There are functions that malware hooks, such

as InternetReadFile or PR Read [273, 275], to conduct man-in-the-browser attacks. The

feature codehooks scans memory regions for strings of hook target functions. While this

may lead to false positives, it significantly speeds up the total runtime of the approxima-

tion.

¯ cryptography Encryption and obfuscation of information are important to malware.

On the one hand, this allows it to covertly operate since there are no obvious signs

like strings. On the other hand, this increases its analysis time during which it can

operate unobserved in the wild. For this sake, malware employs encoding, encryption,

and hashing schemes. For example, it may encrypt its network communication with

RSA, encode its configuration with Base64, or hash its API names with MD5. To further

complicate the analysis, malware statically links such algorithms into its binary, instead

of calling the OS provided versions. As a consequence, the analyst does not find any

traces of relevant API calls. Therefore, this category’s features search for constants and

strings of encryption (cryptocipher, 0x9e3779b9 from TEA), encoding (cryptoencoding, the

Base64 alphabet), and hashing (cryptohashing, 0x67452301 from MD5) schemes.

° countermeasure detection As long as malware has not been analyzed, it can operate

undisturbed in the wild. The malware author wants to postpone the analysis as long

as possible for this reason. Therefore, malware is equipped with methods to passively

(e.g. code obfuscation [276]) or actively (e.g. DoS attacks against hypervisors) hinder

its analysis. The features of this category detect such behavior.

Today, sandboxes carry out an initial analysis of malware before human analysts to effec-

tively cope with the flood of malicious samples [52]. Only special cases are forwarded

108



to human analysts. For instance, unseen samples that do not fit in any previously known

cluster. Therefore, malware may detect that it runs in a sandbox and may show a dif-

ferent behavior [253]. The feature countersandbox scans memory regions for strings and

code patterns that aim at sandbox detection.

To dig deep into malicious code, malware analysts utilize debuggers. There is a plethora

of ways how a program can detect that it is being debugged [49]. The feature counterdebugger
searches for strings and code patterns that allow debugger detection. Typically malware

analysts employ disposable VMs as analysis environment so as not to infect their real sys-

tem. VMs are not common among typical PC users. Therefore, malware authors do not

want their piece of code to be run in a virtualized environment. The feature countervm
detects strings and code patterns that permit VM detection.

± memory To make a distinction between malicious and benign memory regions, the

features of such regions themselves become relevant. This category comprises more fea-

tures than any other category (13 features), which we grouped in three subcategories:

statistical features, memory region features, and strings.

statistical features Memory regions allocated for the first time may just contain a lot of

zeros. There are also functions like ZeroMemory that initialize a memory region before

initial use. Sometimes huge memory regions are requested just to store small objects,

leaving the rest untouched resulting in zero, e.g. a one megabyte heap of a new thread

with only two small objects. These areas do not contain much data and hence they are

not interesting. The feature memoryis sparse targets close to empty memory regions. It

computes the ratio of zero bytes to non-zero bytes.

In contrast to memoryis sparse, memoryhigh entropy areas detects compressed or encrypted

areas. Malware often, for example, contains encrypted configuration files or is com-

pressed. Therefore, this feature utilizes entropy analysis to detect encrypted/compressed

areas [63]. It splits a memory region into several smaller areas and computes for each

area the entropy. If an area exceeds a threshold, it is assumed to be a high entropy area

that most likely holds encrypted/compressed data. We chose the area size of four kilo-

bytes since this is the typical page size on the x86 architecture [272] and the threshold

of 6.5 as suggested by Lyda et al. [63]. The final result of this feature is the ratio of high

entropy areas to all areas of the memory region.

memory region features Another set of interesting features are the actual properties of

a memory region. These are, for example, OS assigned flags.

The protection of a memory region tells a lot about its purpose. It can be a combination

of read (R), write (W), and execute (X). For instance, the .text section of a binary exhibits

RX protection, i.e. it is just readable and executable, but not writable, which is sufficient
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for code to be executed. Many malware families like Andromeda, Goznym, and Urlzone

allocate RWX memory regions in their victim processes. There are many reasons for

this behavior. For example, to inject code it must be writable to be copied over and

readable, as well as executable, to properly execute. If the malware directly allocates

memory as RWX then it does not need any further changes to memory protection. This

behavior may suggest that malware authors are rather lazy. But also the architecture

of the malware may require this. One example is shellcode that mixes code and data

like the banking Trojan Goznym. memoryprotection encodes the memory protection of a

region. This is also the main feature of Malfind [66].

Memory mapped files allow programmers to handle files on disk as if they were mapped

to memory [266]. Hence, the programmer uses common memory operations and does

not have to directly access the file via fread and related functions. The operating sys-

tem abstracts the file access for the programmer. On Windows, files can be mapped

to a process with MapViewOfFile. Memory mapped files are utilized to copy code from

the attacker to the victim process. Since memory mapped files can be mapped to other

process spaces, malware families like Stuxnet employ this technique [12]. The feature

memorymapped encodes whether or not a memory region represents a memory mapped

file. Memory regions that should not be shared with other processes can be marked as

private [266]. Such regions are unlikely to be utilized in a code-injection technique em-

ploying memory-mapped files. The feature memoryprivate describes if a memory region

is private.

memoryis heap encodes if a memory region is a heap. This feature may help detecting

malware in combination with codefunctions, since there are unpackers that decompress

code to the heap [252]. On Microsoft Windows, the memory manager tags memory

regions according to their internal type [277]. The feature memorytag encodes the

different types.

Code-injecting malware requires an execution context for its injection payload. This can

be either a thread that is hijacked or a newly created thread (see Section 4.3.3). If a

thread originates in a memory region then this is a strong indicator that this memory

region contains code. The feature memorythread marks memory regions where a thread

originated. This feature is especially interesting in combination with other features, e.g.

threads that originate outside of non-module areas like the heap (memoryis heap).

strings Text strings help reverse engineers to quickly understand the behavior of a bi-

nary. There are typically hundreds of strings in a binary, including many false positives,

i.e. byte sequences terminating with a zero byte, which resemble C-style strings. Since

strings help malware analysts to quickly understand program behavior, they are often
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obfuscated, e.g. via encryption [278]. However, strings are usually decrypted during

the unpacking phase and lie unprotected in memory.

It is important for code-injecting malware to identify its victim processes. Even though

there are many ways to identify processes on Windows (see Section 6.1.4), our expe-

rience has shown that the most common way is comparing the running process names

to an internal list of victims. Therefore, the feature memoryvictim strings searches for

common names of victim processes like explorer.exe and firefox.exe in memory regions

(see Section 5.2).

Data exfiltration is a common theme in malware. Be it a banking Trojan that exfiltrates

credit card credentials or be it an espionage malware that exfiltrates construction plans.

Network communication is a popular way to exfiltrate data. Hence, strings related to

common network protocols like http suggest that a memory region may communicate via

the network. The feature memorynetwork strings scans memory regions for such strings

like GET and ftp.

Once a malware runs on a system, it needs to ensure persistence to continuously operate.

The malware ensures that it is automatically started at system start, e.g. as a service or

via an autostart key in the Windows registry [50]. The feature memorypersistence scans

memory regions for strings related to persistence, e.g.

HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\Run.

(Benign) programs include text descriptions, e.g. a help about the command line inter-

face or explanations about some feature the user should interact with.

memoryenglish strings finds common English strings within a memory region. This feature

should help to detect benign regions, e.g. program descriptions in a benign executable.

Due to this, we compiled a list of the 1000 most common English search terms on Google

that have three or more characters . The list is based on the list of the 10,000 most popu-

lar search terms on Google [279]. We opted for words that have three or more characters

in order to evade false positives from one and two character sequences. For instance,

the word ”a” matches 0x4100 that would also match the suffix of the word ”Tequila”.

The longer the word, the lower the probability of false positives.

² trojan We described in Chapter 4.2.1 that one advantage of HBCIAs is the ability

to intercept critical information from within the victim process. This is especially rele-

vant to (banking) Trojans such as Nymaim, Urlzone, or Zeus. The feature trojanbanking
searches memory regions for a list of financial terms and names of banks. Another class

of data that is frequently stolen are cookies. Hence, the feature trojancookies scans mem-

ory regions for strings related to cookies. To access user accounts, cyber criminals need

to know the corresponding credentials. Therefore, many Trojans implement key logging
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techniques to steal credentials. The feature trojancredentials looks for, e.g. names of

social media websites like Facebook, in memory regions.

7.2.3 Feature Selection

We have presented 36 different features from seven categories in the previous section.

Many features are binary, e.g. memoryis heap or binaryis dynamic library. But there are also

continuous features, such as memoryis sparse and memoryhigh entropy areas. Since some

machine learning algorithms like SVM require standardized features [82], we apply the

standard score to the features. It is given by f ′ = f−µ
σ , where µ is the mean and σ is the

standard deviation of feature f [86]. The mean of the standard score is always zero and

its deviation is one.

We could have directly applied machine learning algorithms to these 36 features, which

span a 36-dimensional feature space. However, there are several reasons why it is ad-

visable to reduce the feature set size and utilize less features. If we reduced the feature

set size and shrinked it to a set with only relevant features then this would be beneficial.

For instance, this would yield faster model training due to less dimensions and model

simplification due to removal of irrelevant or redundant features. Therefore, we chose

to employ feature selection.

We employed Recursive Feature Elimination (RFE) [280]. It recursively trains models

with smaller and smaller feature sets, where it cuts back on the least important feature

in each recursion step until it encounters the optimal set. RFE requires an external esti-

mator that is capable of ranking features due to their importance. Genuer et al. [281]

recommended Random Forests as external estimator. We followed their recommenda-

tion.

7.2.4 Training and Classification

This section describes the training and classification of our system, which is based on

machine learning. First, we discuss requirements for a machine learning algorithm.

Second, we argue the choice of the algorithms used to evaluate our system.

Requirements for the Machine Learning Algorithms

As we have already stated, the choice of a machine learning algorithm depends on many

aspects. Often data scientists have to go through several trial and error rounds to find
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a good candidate for their problem. Rohrer [282] discussed several considerations that

we address in the following as requirements R1 to R4.

R1 Training and Testing Complexity As with every other algorithm, the computational

complexity of a machine learning algorithm is a non-negligible factor when choos-

ing it, especially when dealing with huge data sets. When it comes to machine

learning algorithms, two computational complexities are of interest. First, the

training complexity, and second, the testing complexity of a new sample.

R2 Non-Linearity Linear algorithms assume that decision boundaries can be repre-

sented by a linear function (e.g. 3.5x + 100). However, the decision boundary

of many problems can not be adequately represented by a linear function. Linear

algorithms can be trained faster than non-linear algorithms. Our problem is a non-

linear one (see Section 7.3.1) and hence we require an algorithm that can handle

such problems.

R3 Number of Parameters The parameters of a machine learning algorithm have great

impact on its prediction efficiency. The more parameters an algorithm offers, the

better the algorithm can be tweaked to one’s needs. However, tweaking the param-

eters too much yields a higher risk of overfitting. Therefore, we prefer algorithms

with fewer parameters.

R4 Number of Features Some machine learning algorithms do not scale well with an

increasing number of features. This phenomenon is known as The Curse of Dimen-

sionality [85], since each new feature adds a new dimension to the feature space,

in which the algorithm works. This may dramatically slow down the computa-

tional performance of the algorithm.

Discussion of the Machine Learning Algorithm Choices

There is a plethora of machine learning algorithms from which we may choose. Not ev-

ery algorithm works well for every problem. We drew candidates from a widely cited ma-

chine learning survey by Caruana et al. [283] and also added candidates that the widely

utilized machine learning library scikit-learn implements [267]. Table 7.3 matches our

requirements to several supervised machine learning algorithm classes.

To begin, we discuss why we discarded some of the classes. The Linear Regression Anal-

ysis class does not work well on non-linear data. Since our data set was not linear-

separable (see Section 7.3.1), we discarded this class. The Naive Bayes class assumes

features to be independent [284], which was not the case with our feature set, e.g. the
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Machine Learning Algorithm Class Representatives R1 R2 R3 R4

Decision Trees CART   G#  
Randomized Tree Forests RandomForest, Extremely Randomized Trees G#  G#  
Tree-based Boosting AdaBoost, GradientBoostingMachine G#  G#  
Support Vector Machines RBF SVM G#   G#
Nearest Neighbors K-Nearest Neighbors G#   G#
Neural Networks Multi-layer Perceptron #  # #
Linear Regression Analysis Logistic Regression  # G#  
Naive Bayes Gaussian Naive Bayes  G#  #

TABLE 7.3: Matching of supervised machine learning algorithm classes to our require-
ments. We listed at least one representative per class. Three possible results: does not

match (#), partially matches (G#), and matches ( ).

features apigeneral api strings and apihbcias. Optimal Neural Networks are difficult to build.

Furthermore, they have problems with a larger number of features (Curse of Dimen-

sionality) [85] and their output is difficult to comprehend. We did not consider these

algorithm classes in the following. Please note that we discuss Neural Networks as a

possible research branch in future work (see Section 8.2.3).

We selected the following machine learning classes and some of their representatives

for our evaluation of Quincy. Nearest Neighbors is a simple but powerful class that ex-

ploits neighborhood relationships to classify samples. K-Nearest Neighbors [84], as one

of its implementations, works with non-linear data and it has only two parameters (the

number k of neighbors to consider and its distance metric). Additionally, it has a fast

training time of O(1) since it just stores all samples. The tree-based algorithm classes

CART Decision Trees, Randomized Tree Forests, and Tree-based Boosting closely match our

requirements. Therefore, we evaluated Quincy with several algorithms from these three

classes. We opted to evaluate CART-Decision Trees [87], Random Forests [89], Extremely

Randomized Trees [90], AdaBoost [285], and GradientBoosting [286]. Support Vector Ma-

chines are capable of dealing with non-linear data when employed with, for instance, a

RBF kernel [82]. They only have two hyperparameters (C and γ). However, they suffer

from the Curse of Dimensionality. Nevertheless, we included one of their implementa-

tions with RBF kernel since we employed a feature selection that reduced the size of the

feature set.

7.2.5 Implementation

We implemented a prototype of Quincy and published it on the code portal github [29].

We chose Python as implementation language since it enabled us to quickly prototype.

The prototype employs Volatility [25] to close the semantic gap and to extract the fea-

tures. This permits Quincy to analyze memory dumps of all Windows NT versions since
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Windows XP. Its machine learning heuristic is based on the library scikit-learn [267],

which implements common machine learning algorithms.

7.2.6 Discussion of Evasion

Every detection system is subject to evasion. Machine learning-based systems are not an

exception [287]. The goal is to raise the bar reasonably high to make evasion harder or

at best practically infeasible.

Current systems such as Malfind and Hollowfind can be evaded with ease. Malfind only

relies on memory region protection and obvious unlinking of modules from a process

internal data structure. Hence, it can be evaded by setting proper memory region pro-

tection and not unlinking modules, e.g. as in the case of the malware Ponmocup. Hol-

lowfind focuses on Process Hollowing, a subtype of HBCIAs. Therefore, not using Process

Hollowing evades it. The evaluation result in Membrane’s paper [28] shows that Mem-

brane is very prone to noise. A possible way to hide injected code would be to increase

the noise by creating many new memory regions with random content.

Quincy employs more features than previous systems and it also has a broader focus than

Hollowfind. Its models are based on up to 36 features. To evade our system, an attacker

has to adjust its malware to bypass all features. Bypassing one single feature may be

easy, e.g. bloating a memory area with many zeros to attack the feature memoryis sparse.

However, bypassing feature combinations is harder, especially opposing features such as

memoryis sparse and codefunctions. Therefore, our system raises the bar for an attacker

significantly when compared to previous systems.

7.3 Evaluation

We evaluate Quincy in this section. At first, we discuss the data set that we utilize in this

evaluation. Next, we describe how we conducted the evaluation. Finally, we discuss the

evaluation results.

7.3.1 Data Set

An evaluation is only as relevant as its corresponding data set. Unfortunately, there are

only a handful of scientific open source malware data sets, which were not useful to us.

In this section, we discuss how we compiled the evaluation data set and what kind of

data it contained. First, we present the requirements for a data set to evaluate a static
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HBCIA detection system on memory dumps. Subsequently, we present the malware and

goodware samples that we utilized to generate memory dumps. Then, we describe how

we ensured a proper ground truth. Lastly, we performed a first data analysis to have a

first impression of what kind of data we would face.

Requirements

Unfortunately, related work did not define any requirements regarding an evaluation

data set. Furthermore, the Windows corpus of Section 6 did not serve in this evaluation

because we intentionally left out HBCIA-employing malware that utilized Process Hol-

lowing. This was owing to the fact that Bee Master can not detect this technique. But

Quincy does not suffer from this limitation. Furthermore, we wanted to add even more

HBCIA representatives and goodware samples as well as evaluate Quincy on the latest

Windows version 10. Therefore, we could not utilize this data set here. Consequently,

we needed to build a new data set for this evaluation. We define requirements for a data

set in the following as in [17].

First of it all, the set has to comprise a considerable amount of HBCIA-employing mal-

ware families to ensure an evaluation of distinct code injection techniques (R1). We

wanted to ensure that the evaluation results applied to current malware. This means

that we considered recent malware families that were still found in the wild (R2). The

main target for malware is still Windows (e.g. [4]). Hence, we wanted malware that tar-

geted this operating system (R3). Lastly, an HBCIA detection system for memory dumps

encounters malware but also by orders of magnitude more goodware. Therefore, this

amount of goodware should be reflected in the data set. As a result, we needed it to

contain goodware (R4).

To summarize our requirements:

R1 a considerable amount of HBCIA-employing malware families

R2 recent malware families

R3 only Windows malware

R4 goodware programs to estimate false positives

Table 7.4 compares our requirements to six open source malware data sets. Whereas An-

droid Malware Genome Project, Drebin, and Android Malware Dataset only offer Android

malware and therefore violate R3, cwsandbox and malicia comprise obsolete families

and hence violate R2. The Malware Classification Challenge set is comprised of a great
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Data Set Year Publication R1 R2 R3 R4

cwsandbox 2007 [52] 7 7 3 7

Android Malware Genome Project 2012 [238] 7 7 7 7

Malicia 2013 [239] 7 7 3 7

Drebin 2014 [240] 7 7 7 7

Malware Classification Challenge 2015 [241] 7 3 3 7

Android Malware Dataset 2017 [242] 7 3 7 7

TABLE 7.4: Comparing open source malware data sets with our four requirements to
an evaluation data set.

amount of malware samples. Nonetheless, these samples just split up into eight fam-

ilies. Some of them do not employ HBCIAs. Unfortunately, none of the open source

malware data sets matched our four requirements. Therefore, we decided to compile

our own data set that satisfied our requirements. We published this set on the code

portal github [30] to foster open source research.

Goodware and Malware Samples

This sample set differed from the set in Section 6. First, it contained more families

including families that utilize Process Hollowing. Second, we added many new families

from 2016 and 2017. Third, we added more goodware samples. Our data set comprised

1794 goodware and 102 malware samples. The 102 malware samples belonged to

102 distinct malware families. We showed in Section 5.3 that it is sufficient to take

a representative of an HBCIA-employing malware family since it is a family-inherent

feature.

The goodware samples of our data set contained Windows system programs and other

widespread freeware programs. For this purpose, we gathered system programs from

Windows XP, 7, and 10. Further, we downloaded widespread freeware programs from an

archive of portable freeware applications [288]. These programs included, for example,

browsers (Firefox), mail clients (Thunderbird), chat clients (Pidgin), and cryptographic

software (Truecrypt). This added up to 1794 goodware binaries. Please note that the

total number of binaries per Windows version varied due to the fact that Windows sys-

tem programs are only compatible with one Windows version. We have provided a hash

list of all binaries on github [17] due to space constraints of this thesis.

The malware samples of our data set comprised 102 representatives of code-injecting

malware families. We showed in Chapter 5.3 that HBCIAs are an inherent malware

family feature. It suffices to pick one representative per family. The main idea behind

this was that we shunned overfitting since we did not train the algorithm to detect a
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certain family but rather the signs of code injections presented by many distinct families.

The set of HBCIA-employing malware representatives was created in the course of this

thesis. We collected the samples from various sources: antivirus companies, IT security

blogs, and an internal malware archive. In all cases, we verified the code-injecting

behavior of the malware family by manual analysis. Please note that some samples did

not execute on every Windows version. The reasons for this are manifold, e.g. the

malware was especially developed for a Windows version or security mechanisms on

newer versions prevent proper execution. As a consequence, the number of malware

families per Windows version varied in the evaluation. We have provided all malicious

binaries on github [17].

Memory Dump Generation

Quincy detects HBCIAs in memory dumps. More precisely, it detects malicious memory

regions in memory dumps. A memory dump contains thousands of memory regions,

distributed over several virtual process spaces. To obtain memory regions in order to

train and classify, we had to generate memory dumps for each sample. Since Quincy is

capable of analyzing various Windows versions, we generated a memory dump of each

sample for Windows XP SP3, Windows 7 SP1, and Windows 10.

We automated the generation of memory dumps. For this sake, we implemented a

program based on the virtualization framework VirtualBox [72]. The generation process

worked as follows: First, the program built an ISO disk image that comprised the sample.

Next, it started VirtualBox in a predefined state. This was followed by mounting the ISO

disk via the virtual DVD drive. We placed a shell script in the guest system that waited for

new virtual DVDs and executed the sample with administrator privileges. Subsequently,

the program waited for two minutes to allow the sample to initialize and conduct its

code injection. Note that two minutes is a common timeout in sandboxing systems.

This is based on domain knowledge. To the best of our knowledge, there has been no

evaluation of this parameter. Finally, the program asked VirtualBox to create a memory

dump and to save it to a file.

A problem may be environment sensitive malware [253], which tries to detect the anal-

ysis environment and refuses to work properly. We hardened the VMs to overcome the

problem of environment sensitive malware. This included, for instance, the removal of

hypervisor related strings from the Windows registry or the deinstallation of VM tools.

Hardening involved the tool Pafish [289], which implements several tests to detect hy-

pervisors. Furthermore, we did not grant the VMs access to the Internet since no contact
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OS Binaries Memory Regions
Goodware Malware Benign (All/Unique) Malicious

Windows XP 1205 71 2,729,563/15,919 398
Windows 7 1264 72 5,306,368/32,005 319
Windows 10 977 73 7,266,226/129,786 710

TABLE 7.5: Summary of the three data sets of Windows XP, 7, and 10. Benign mem-
ory regions may be duplicates, e.g. system libraries. The amount of memory regions

constantly increases from version to version.

to any command and control infrastructure was required in order to conduct a code

injection.

Ground Truth

A sound ground truth is crucial for the later evaluation. It is required to reliably compare

Quincy to its two contenders Malfind [25] and Hollowfind [27]. We constructed this

ground truth by the following rules. First, we assumed all memory regions of goodware

dumps as benign. Such an assumption could not be stated for malware dumps. Their

memory regions are either malicious or benign. As a solution to this problem, we utilized

YARA signatures [290] to detect the malicious memory regions of the malware dumps.

To create YARA signatures, we manually reverse engineered the malicious binaries and

extracted a signature based on the malware’s content in memory. Unfortunately, there

was only previous work on automatic signature generation of binaries [291]. However,

the malicious binary and the malicious memory regions may significantly differ. For

instance, due to executable packing [55]. Hence, this previous work was not applicable

to our problem and we had to tediously reverse engineer each malicious binary to ensure

a sound ground truth. All memory regions of a malicious dump that did not match a

signature were assumed to be benign. To the best of our knowledge, we were the

first to employ such an approach to label benign and malicious artifacts for a scientific

evaluation.

Data Analysis

We conducted an initial data analysis to provide a first impression of the data set. This

should help in understanding the choice of machine learning algorithms and the later

performance of the detection systems on the individual Windows data sets. Table 7.5

summarizes the data set of Windows XP, 7, and 10. First of it all, the distribution of

benign and malicious binaries was heavily skewed. The reason is that it is harder to

properly gather representatives of HBCIA-employing malware families than to gather
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(A) Windows XP (B) Windows 7

FIGURE 7.2: Isomaps of Windows XP (left) and Windows 7 (right). Green dots denote
benign samples, red crosses denote malicious samples. The samples scatter along two

main axes.

benign executables. When we compared resulting memory regions, we noted that the

distribution was even more skewed. There were millions of benign memory regions

compared to a couple of hundreds malicious ones. However, the benign memory regions

contained duplicate data, e.g. system libraries that were present in all dumps. We opted

to remove these duplicates to decrease the amount of data that the machine learning

algorithms had to handle. After removing duplicates, the relation between benign and

malicious memory regions was much closer. The benign memory regions were a multiple

of the malicious ones in the range from 40 (Windows XP) to 182 (Windows 10). Please

note that a duplicate pair may not have the same hash value, it just exhibits the same

numerical properties in the feature space.

Visualization of high dimensional data is difficult but it is possible through dimension-

ality reduction. There are several algorithms that transform high dimensional data to

low dimensional data [82]. They attempt to preserve the relationship between the in-

dividual samples. Examples are principal component analysis (PCA) [82], locally linear

embedding (LLE) [292], and isometric feature mapping (Isomap) [293]. We opted to

utilize Isomap because it is capable of preserving neighborhood relations between sam-

ples [293]. Isomap consists of three steps: First, it creates a weighted graph that rep-

resents the neighborhood relations between the samples in the original space. KNN is

utilized to determine these relations. Second, it creates a matrix of distances between

each sample. Third, classical multidimensional scaling (MDS) like PCA is applied to this

matrix to reduce the dimensionality.

Figure 7.2 shows the isomaps of the Windows XP and Windows 7 data sets. Malicious

samples are illustrated by red crosses and benign samples by green circles. The majority

of samples scatters on two main axes, which cross each other. Most malicious samples
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FIGURE 7.3: Isomap of Windows 10. Green dots denote benign samples, red crosses
denote malicious samples. The samples are broader scattered than on Windows XP and

Windows 7.

scatter at the end of one axis. However, there are malicious samples scattered along both

axes, leading us to conclude that there is no simple boundary between the malicious

and benign samples. Hence, there is no linear separation and linear machine learning

algorithms may not perform well on our problem. Figure 7.3 shows the isomap of

Windows 10. The samples are more broadly scattered than in the case of Windows

XP and 7. This holds true for malicious and benign samples. Hence, we assumed that

detection of malicious samples on Windows 10 was harder than on Windows XP and 7.

Additionally, we had to consider that the ratio between malicious and benign samples

was significantly lower than on Windows XP and Windows 7.

7.3.2 Methodology

Finding the best model to solve a problem at hand is not an easy task. A solution

is to consider several models and to select the most appropriate one for the problem.

One major obstacle to overcome is the optimization of the machine learning algorithm’s

parameters to achieve (near) optimal predictive performance. Yet the scientific machine

learning community acknowledges that a trial and error process is the most feasible

way [268].

Figure 7.4 shows the four steps of the evaluation. The evaluation was carried out for

each Windows version separately. We enclosed the evaluation in a 10-fold cross vali-

dation loop to cope with variance. Cross Validation splits the sample data into several
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complementary data sets. Multiple validation rounds on these data sets reduce the vari-

ance and increase the data analyst’s confidence in the model. A popular Cross Validation

approach is k-Fold Cross Validation. In k-Fold Cross Validation, the data set is split into

k equally sized data sets. Then in k rounds, (k-1) data sets are used for training and

one data set is used for validation. During the k rounds, each of the k data sets is used

exactly once for validation. Hence, the algorithm validates the model on all data. Even

though the parameter k can be freely chosen, a common choice for k is 10 [294].

¬ First off, we randomly created two data sets dtrain and dvalidate from the benign and

malicious data sets. dtrain was utilized to train and optimize our machine learning

models. It contained 60% of the malicious and 10% of the benign samples. dvalidate was

our validation data set. We evaluated the final performance of the optimized models

on this data set. It contained 40% of the malicious and 90% of the benign samples.

As we showed in Section 7.3.1, the distribution between malicious and benign memory

regions was heavily skewed. Therefore, we opted to treat the two data sets separately.

Since many machine learning algorithms tend to misclassify the minority class [295],

we mitigated this effect by putting fewer benign and more malicious samples in dtrain.

Having more benign samples in the validation data set also simulated the noise that

detection algorithms encounter in a real world setting. Actually, the seminal paper of

Membrane [28] showed how increased noise can drastically decrease the performance

of an HBCIA detection system.

Furthermore, we ensured that all memory regions of a malware family were either ex-

clusively in dtrain or exclusively in dvalidate. This ensured that we did not validate our

models on known malware families. We wanted to detect the code injections rather than

a certain malware family.

 After splitting the data sets, we selected the optimal set of features on dtrain. We

employed a Recursive Feature Selection (RFE) [280]. We described the exact process

in Section 7.2.3. The resulting optimal feature set was utilized in the cross-validation

iteration during training and validation.

® Machine learning algorithms may require several input parameters. They are called

hyperparameters. An example of a hyperparameter is the maximal number of classifiers

in a learning ensemble. Since these hyperparameters have a great impact on the fi-

nal performance of the induced model, their optimization is a crucial step towards the

optimal model.

The first step of such an optimization is to choose the hyperparameters of relevance for

the performance and a range of possible values. The space that the hyperparameters

of a machine learning algorithm span is called the hyperparameter space. This space
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¬ split data set
(dtrain and dvalidate)

 feature selection (RFE)

® training and optimiza-
tion of models with dtrain

¯ validation of mod-
els with dvalidate

FIGURE 7.4: Flow chart of one fold of the 10-fold cross validation loop.

can be infinite. Hence, we had to define a finite subspace to search for our optimal

hyperparameters. Please note that each hyperparameter the user wishes to optimize

adds a dimension to the hyperparameter space and consequently increases optimization

time.

Once the hyperparameters were chosen and their corresponding hyperparameter space

was defined, they could be optimized. The basic algorithm is called Grid Search. This al-

gorithm exhaustively searches through a manual defined subspace of the hyperparame-

ter space [296]. It determines the performance of a certain hyperparameter combination

with cross validation given a metric. This algorithm finds the optimum with respect to

the space it searches through. However, its main drawback is its computationally expen-

sive runtime since it suffers from the Curse of Dimensionality [296]. Another approach

is Randomized Grid Search [296]. Instead of exhaustively searching through the hyper-

parameter space as Grid Search does, Randomized Grid Search randomly chooses grid

points from this space and evaluates their performance. Bergstra et al. [296] showed

that if the same time is granted to Grid Search and Randomized Grid Search then Ran-

domized Grid Search is likely to perform as well as Grid Search – if not better – since it

can search through a larger hyperparameter space in the same time frame.

Bergstra et al. [296] suggested sampling 64 grid points [296]. We evaluated each grid

point with a 10-fold cross validation to cope with variance. The final hyperparameter

combination was the combination that evaluated using the highest ROC AUC score [82].

The x-axis plots the false positive rate given by false positives
false positives + true negatives and the y-axis

the true positive rate given by true positives
true positives + false negatives . Both axes are typically scaled

to the range of [0,1]. The diagonal from [0,0] to [1,1] represents random guessing. The

123



Algorithm Trees Learning Rate Max. Features Tree Depth

AdaBoost [285] [10,100] [0.1,1.0] - -
CART [87] 1 -

√
|f |, |f | [3,12] +∞

Extremely Randomized Trees [90] [10,100] -
√
|f |, |f | -

GradientBoosting [286] [10,100] [0.1,1.0] - [4,8]
Random Forest [89] [10,100] -

√
|f |, |f | -

Algorithm k Metric C γ

KNN [297] 2x, x ∈ {1, .., 6} [uniform, distance] - -
SVM [83] - - {2−5, 2−3, 215} [298] {2−15, 2−13, .., 23}[298]

TABLE 7.6: Summary of the algorithms’ hyperparameters that we chose to optimize.
The total number of features is denoted by f . ∞ denotes that there was no depth limit,

the algorithm determined the optimal depth.

perfect model tangents the top left corner ([0,1]). In general, the more a curve tends

towards the top left corner, the better the performance of the model. The area under the

curve (AUC) is called ROC AUC score.

Table 7.6 lists the hyperparameters that we evaluated. Since hyperparameter opti-

mization is computationally expensive, we only evaluated those parameters we thought

would have the highest impact on the overall result. The remaining parameters were

set to their default values with respect to the employed machine learning library scikit-

learn [267].

¯ Finally, we validated the optimized models on dvalidate and compared them with each

other as well as to Malfind and Hollowfind.

7.3.3 Results

This section discusses the results of our evaluation of Quincy, Malfind, and Hollowfind.

First, we discuss the results of the feature selection and point out which features were

more relevant to the detection of malware in memory. This is followed by the results of

the model selection and a discussion of the final algorithm choice. Then, we compare

our optimized model to Malfind and Hollowfind. We continue with a temporal evaluation

that examined the question of how the three systems performed on newer malware

when trained on older malware. Finally, we conclude this section with a discussion on

the final models that were published along with Quincy’s implementation [29].

Feature Selection

The feature selection had two objectives. First, duplicate or irrelevant features were

removed. Second, the reduced feature set also decreased the training time. This holds

especially true for algorithms like SVM that are susceptible to the Curse of Dimensional-

ity.
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We carried out the selection on dtrain during each cross validation iteration. Hence,

the features varied on the three different Windows versions. Figure 7.5 shows the top

15 features on average on Windows XP, 7, and 10. It shows the averaged feature im-

portance based on the internal ranking of the Random Forest classificator, which was

employed in the Recursive Feature Elimination (see Section 7.3.2). Note that this is not

the final selection of features, only the features during model training and testing. The

features of the final models are discussed in Section 7.3.3 and listed in Appendix C.

First of it all, the figure shows that there were four outstanding features on all three

versions. They reached well over 30% on average of the feature importance. In all

cases, they were from the categories api, code, and memory. Interestingly, one of the

best performing features was apihbcia api strings, which finds strings of common code in-

jection techniques like OpenProcess, WriteProcessMemory, and CreateRemoteThread. This

shows that most malware resides unprotected in memory. Even though the majority

of malware employs code packing [252], once unpacked in memory, for instance, do-

mains and configuration parameters can be found. On Windows 10, there were four

especially important features (memoryprotection, apihbcia api strings, memoryis sparse, and

memoryhigh entropy areas) with the other features having less than five percent of im-

portance on average. The features memoryprotection and memoryis sparse determine to-

gether if a memory region contains code. The features memoryhigh entropy areas and

apihbcia api strings target two characteristic traits of malware: compression/encryption

and code injections.

Another insight was that the main feature of Malfind memoryprotection was not that rel-

evant to the models on Windows XP and 7. However, its relevance drastically increased

on Windows 10. This is in line with the finding of Section 7.3.1, where we stated that

the number of RWX memory regions is constantly decreasing in newer versions of Win-

dows. This means that allocating a RWX memory region is suspicious on Windows 10.

Since there were less RWX memory regions in the Windows 10 data set, the Windows

10 model focused on this feature and it ranks first. However, this does not mean that it

is sufficient to look for memory regions with this feature, since there are families that

properly allocate memory regions or inject libraries. This includes, for example, Feodo,

Teerac, and Ponmocup.

The category trojan was the worst performing category. An explanation is that the data

set did not exclusively contain banking Trojans. These features are overspecific and the

machine learning algorithms prefer features that are more general to code injections

and malware.
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(A) Windows XP & 7

(B) Windows 10

FIGURE 7.5: Top 15 features on Windows XP (top left), Windows 7 (top right), and
Windows 10 (bottom), ranked by their relative feature importance. We estimated the

values during the recursive feature elimination with Random Forests.

Model Selection

The model selection process included training and optimization of Quincy with several

machine learning algorithms on dtrain on Windows XP, 7, and 10 and the final validation

on unseen data of dvalidation. We chose the model that performed the best as final model

for Quincy. Tables 7.8 and 7.9 list the results of Quincy with seven machine learning

algorithms. The algorithm ranking is very similar on the three Windows versions, being

consistent for the first two algorithms. Table 7.7 summarizes the algorithm ranking.

Simple Decision Trees yielded very few false positives but also did not recall as many

positive cases as the other algorithms. Hence, they were not a viable option for the final

model. The ensemble learning algorithm AdaBoost performed well on the training data

but only performed better than Decision Trees on the validation data. This may be due

to overfitting. SVM had problems with recalling positive cases. Thus, it yielded many

false negatives. Additionally, SVM exhibited the longest runtime during training. For
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Algorithm Windows XP Windows 7 Windows 10

Extremely Randomized Trees 1 1 1
Random Forest 2 2 2
Gradient Boosting 4 4 3
KNN 3 5 5
SVM 6 3 7
AdaBoost 7 6 4
Decision Trees 5 7 6

TABLE 7.7: Summary of the final machine learning algorithm ranking on Windows XP,
7 and 10. The ranking is based on the final evaluation on dvalidation.

these reasons, we discarded AdaBoost and SVM. KNN yielded many false positives on

Windows 10, where the malicious and benign cases were more mixed than on Windows

XP and Windows 7 (see Section 7.3.1) but it also had a considerable recall of positive

cases. Therefore, it ranked third on Windows XP.

Figures 7.6 and 7.8a plot the ROC curves of top five algorithms. The top three algo-

rithms were all tree-based ensemble learning algorithms. They combine several Decision

Trees to increase performance. They represent two classes: boosting (Gradient Boost-

ing) as well as bagging (Extremely Randomized Trees and Random Forest). The bagging

algorithms performed better on our data sets than the boosting algorithm. Gradient

Boosting reached high accuracy during training but it overfit. Therefore, we discarded

it. The bagging-based ensemble algorithms Extremely Randomized Trees and Random

Forest performed very well. Extremely Randomized Trees performed better than Random

Forest, which could be explained by the fact that Extremely Randomized Trees introduced

even more randomness during training and thus they could keep up to the variance en-

countered in dvalidation. Therefore, we opted for Extremely Randomized Trees as our final

algorithm. It ranked first on all three operating systems, being able to cope with variance

in data, without overfitting and it offered considerable improvement when compared to

the other approaches later.

Comparison to Malfind and Hollowfind

After selecting the optimal models based on Extremely Randomized Trees, we compared

them to the current state of the art Malfind and Hollowfind. A description of both systems

is provided in Section 7.1. The evaluation was carried out on dvalidation for Windows XP,

7, and 10.

Table 7.10 summarizes the results on Windows XP, 7, and 10. Figures 7.7 and 7.8 plot

the ROC curves of Quincy with Extremely Randomized Trees, Malfind, and Hollowfind on
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Windows AdaBoost Decision Tree Extremely Randomized Trees Gradient Boosting
AUC TP FP TN FN AUC TP FP TN FN AUC TP FP TN FN AUC TP FP TN FN

XP 84.80% 59.8 56.0 13913.0 25.7 85.84% 62.2 128.5 13840.5 23.3 89.50% 68.0 72.3 13896.7 17.5 86.05% 62.2 107.2 13861.8 23.3
7 76.65% 55.5 132.7 28385.3 49.7 76.04% 55.0 289.7 28228.3 50.2 82.65% 67.7 132.1 28385.9 37.5 78.68% 59.6 214.1 28303.9 45.6

10 74.57% 66.9 103.8 113701.2 72.2 71.80% 58.9 83.6 113721.4 80.2 78.70% 77.6 270.5 113534.5 61.5 74.92% 66.6 446.3 113358.7 72.5

TABLE 7.8: Final data of the evaluation of Quincy with AdaBoost, Decision Tree, Extremely Randomized Trees, and Gradient Boosting on dvalidation:
Area Under Curve (AUC), True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN).

Windows KNN Random Forest SVM
AUC TP FP TN FN AUC TP FP TN FN AUC TP FP TN FN

XP 87.15% 63.8 116.9 13852.1 21.7 87.44% 64.3 54.4 13914.6 21.2 85.29% 61.1 154.4 13814.6 24.4
7 77.67% 57.6 207.8 28310.2 47.6 80.90% 64.0 124.7 28393.3 41.2 78.83% 59.8 180.0 28338.0 45.4

10 74.21% 66.7 326.4 113478.6 72.4 78.53% 77.1 259.1 113545.9 62.0 69.68% 53.2 84.1 113720.9 85.9

TABLE 7.9: Final data of the evaluation of Quincy with KNN, Random Forest, and SVM on dvalidation: Area Under Curve (AUC), True Positives (TP),
False Positives (FP), True Negatives (TN), and False Negatives (FN).

Windows Quincy Malfind Hollowfind
AUC TP FP TN FN AUC TP FP TN FN AUC TP FP TN FN

XP 89.50% 68.0 72.3 13896.7 17.5 85.80% 62.2 199.4 13769.6 23.3 54.36% 7.7 66.2 13902.8 77.8
7 82.65% 67.7 132.1 28385.9 37.5 73.84% 49.2 141.4 28376.6 56.0 52.93% 8.5 667.0 27851.0 96.7

10 78.70% 77.6 270.5 113534.5 61.5 74.70% 67.1 273.9 113531.1 72.0 52.68% 6.9 91.5 113713.5 132.2

TABLE 7.10: Final data of the evaluation of Quincy with Extremely Randomized Trees, Malfind, and Hollowfind on dvalidation: Area Under Curve
(AUC), True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN).

Windows Quincy Malfind Hollowfind
AUC TP FP TN FN AUC TP FP TN FN AUC TP FP TN FN

XP 93.32% 68 74 13895 10 89.02% 62 200 13769 16 56.82% 11 64 13905 67
7 86.41% 58 169 28349 21 78.86% 46 142 28376 33 52.62% 6 667 27851 73

10 82.23% 44 263 24 113542 80.76% 42 264 113541 26 53.63% 5 92 113713 63

TABLE 7.11: Final data of the temporal evaluation of Quincy with Extremely Randomized Trees on dvalidation: Area Under Curve (AUC), True Positives
(TP), False Positives (FP), True Negatives (TN), and False Negatives (FN).
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(A) Windows XP (B) Windows 7

FIGURE 7.6: ROC curves of top five classifiers on Windows XP (left) and Windows 7
(right). Extremely Randomized Trees and Random Forest rank first on both Windows

versions.

the aforementioned operating systems. The listed results are the mean of the 10-fold

cross validation described in Section 7.3. Our system dominated the two others on all

three Windows versions. Malfind dominated Hollowfind in all cases. Since Hollowfind

focuses on Process Hollowing, a subclass of all HBCIAs, it only detected a fraction of the

samples. It did not exceed more than 54% accuracy. Hence, Hollowfind is no longer

discussed.

Quincy and Malfind achieved the best results on Windows XP, which is the operating

system with the least noise (see Section 7.3.1). Notably, our system decreased false

positives by 63.74%, when compared to Malfind. This saves a lot of analyst time since

they do not have to follow dead ends. Many families that run on Windows XP allocate

RWX regions, which allowed Malfind to keep up. However, once malware properly

adjusts the permissions (i.e. adhering to W ⊕X), only Quincy detected such injections.

On Windows 7, we encountered the greatest difference in terms of ROC AUC score

between Quincy and Malfind. It was almost nine percent. This is due to the fact that we

detected many more malicious samples than Malfind. The increase was more than 27%.

However, our system only decreased false positives by six percent. While there was a

great variety of malicious samples in the training set, there was not enough variety of

benign samples in it, which probably led to these false positives. On Windows 10, Quincy

still dominated Malfind. It increased true positives by more than 13% but reached almost

the same amount of false positives. This was caused by the highly skewed data set of

Windows 10 (see Section 7.3.1). We assume that a better ratio between the malicious

and benign samples will further increase the performance of our system (see also future

work in Section 8.2.3).
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(A) Windows XP (B) Windows 7

FIGURE 7.7: ROC curves of Quincy with Extremely Randomized Trees, Malfind, and
Hollowfind on Windows XP (left) and Windows 7 (right)

False positives included programs like Dropbox Portable that exhibits properties similar

to malicious programs: high entropy areas due to compressed data, shellcode usage

to determine the current position in memory, RWX memory region permissions, and

cryptographic constants. Dropbox Portable may utilize these techniques to protect its in-

tellectual property. There are two possible ways to deal with such false positives. First,

continuous investigation of new features that allow for a better separation between

goodware, malware, and goodware that is protected. Recently, Kim et al. [299] inves-

tigated this problem. Second, creating a whitelist of known goodware. This approach

would be similar to Hashtest [26].

False negatives included malware like Sakula and Rokku. Sakula is a China-based RAT

that is associated with zero-day exploits and good operational security [300]. It employs

basic cryptography based on one-byte XORs that does not need to embed additional

cryptographic constants. Rokku is a ransomware that employs DLL injections [301]. We

only ran it on Windows 10. It encrypts strings on the fly and hence nulls our features that

rely on strings. Even though there are other features that make it suspicious, the models

of Windows 10 seemed to focus too much on memory region permissions, leaving out

many DLL injections. As a consequence, future work should especially focus on DLL

injections.

This brings us to another important aspect of combating false negatives: They greatly

depend on the quality of the training data. Those splits that contained almost no DLL-

based injection examples in the training set, showed a lower detection of such injections

in the validation set. One reason for this is that the machine learning algorithms focus

too much on memory region permissions in such cases. Therefore, it is important to have
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(A) Windows 10 Top 5 (B) Windows 10 Comparison Malfind/Hol-
lowfind

FIGURE 7.8: ROC curves of top five classifiers on Windows 10 (left) and Quincy with
Extremely Randomized Trees, Malfind, and Hollowfind on Windows 10 (right)

a healthy mix of less sophisticated injections exhibiting poor memory region allocation

and sophisticated DLL injections that blend more into the benign regions around them.

In addition to a system’s detection capabilities of a family, it is important that the de-

tection is complete. Assume that a family has n artifacts in memory. Artifacts are, for

example, the main malware module and its plug-ins but also further code on the heap.

A system detects a family if it detects at least one of the n artifacts. If a system detects all

n artifacts then it completely detects a family. A complete detection is very valuable to

analysts since they have all pieces including the main module of the malware for further

analysis.

Table 7.12 summarizes the family detection and the detection completeness of the three

approaches. Our system detected on average more families than Malfind and Hollowfind.

Since Hollowfind focuses only on a subset of all HBCIAs, it only detected some families

and none of them completely. The difference between the detection of Quincy and

Malfind was only marginal on Windows 10. But often Malfind did not detect the main

module of a malware family, only a low-hanging fruit such as an uncarefully allocated

RWX memory region.

Our system is more likely to completely detect a family. This is especially true for the

most widespread system Windows 7 [8], where our system completely detected on av-

erage 18.1 families whereas Malfind only detected 11.9 families. Table 7.13 lists Split 2

of the Windows 7 evaluation as an illustration. The results are colored as follows: red

denotes an undetected family, yellow denotes a partially detected family, and green de-

notes a completely detected family. Most families had less than six artifacts. Hollowfind

only detected one family completely, six of them partially, and did not detect the rest.
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Windows Families Quincy Malfind Hollowfind
detection complete detection complete detection complete

XP 29 24.6 19.6 23.8 18.2 4.3 0
7 29 26.4 17.7 25 11.7 6.4 0

10 29 23.8 17.8 23.7 15.6 4 0

TABLE 7.12: Family detection and family completeness of Quincy with Extremely Ran-
domized Trees, Malfind, and Hollowfind on dvalidation.

Family Total Artifacts Quincy Malfind Hollowfind

Sinowal 2 1 2 1
Napolar 2 2 2 0
Backoff 3 2 2 1
Skynet 3 3 2 2
Sakula 2 0 0 0
Teerac 1 1 0 0
Feodo 5 5 0 0
Tempedreve 3 3 2 0
Phdet 4 2 0 0
Atrax 5 5 2 0
Symmi 3 2 1 0
Matsnu 1 1 1 0
Soraya 2 2 2 0
Citadel 36 6 4 0
Qakbot 7 7 7 0
Dorv 4 4 4 0
Tuscas 1 1 1 0
Tatanga 3 1 1 1
Vawtrack 5 4 4 0
Urausy 3 3 2 0
Tofsee 3 2 1 1
Rebhip 1 1 1 0
Spyeye 6 6 5 0
Kovter 5 4 3 2
Razorcrypt 1 1 1 1
Lethic 3 1 1 0
Gamker 5 5 4 0
Shiotob 1 1 1 0

TABLE 7.13: Example case of family detection and completeness: Split 2 of the Win-
dows 7 evaluation. The table lists the results of Quincy, Malfind, and Hollowfind. Fully
detected families are marked in green, partially detected in yellow, and undetected

families in red.

Quincy detected more families completely than Malfind in this iteration. The ones that

both systems partially detected had a higher coverage in our approach. Quincy missed

only the malware Sakula as did every other system.
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FIGURE 7.9: Averaged performance of Quincy (green), Malfind (orange), and Hol-
lowfind (red) in temporal evaluation on Windows XP, Windows 7, and Windows 10

as ROC curve.

Temporal Evaluation

A machine learning classifier is trained on known, old data to predict on new, previously

unseen data. We conducted a temporal evaluation to address this issue. The idea of

a temporal evaluation was that a chronological order of the data was first established.

Then, we trained on the older data and validated on the newer data. We queried the

malware database VirusTotal [247] to establish the chronological order. VirusTotal stores

the date of the first appearance of a sample. Then, we split the benign and malicious

data sets into dtrain and dvalidation. We chose the same ratio as in the main evaluation

in Section 7.3.2 (benign 1:9, malicious 6:4). Note that there was only one evaluation

run per operating system since there was only one chronological order of the malicious

samples.

The main result is that Quincy dominated Malfind and Hollowfind on all three operating

systems. Figure 7.9 shows the averaged ROC curves of the three detection systems on

Windows XP, 7, and 10. Table 7.11 summarizes the exact results. The results are in line

with the main evaluation.

Another insight is that there are not two sets of old and new HBCIAs techniques. The

same techniques can be found in both the older and newer samples, e.g. the classic

injection technique employing WriteProcessMemory and CreateRemoteThread.
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Windows Number of Features Number of Trees Maximal Features

XP 28 50
√
|f |

7 21 30
√
|f |

10 17 82
√
|f |

TABLE 7.14: Parameters of final Extremely Randomized Trees models. We created these
models on the whole data set of each operating system. During a randomized grid
search, two parameters were optimized (number of trees in ensemble and maximal

features).

Final Models

The evaluation showed that the models produced by the algorithm Extremely Random-

ized Trees worked well on our problem. They provided a good trade off between true

and false positives and they performed better than the other approaches. Therefore,

we recommend utilizing Extremely Randomized Trees with Quincy. Note that its proof of

concept implementation allows the user to create their own models and to freely choose

the algorithm. Table 7.14 summarizes the number of features and optimal parameters

of the final Extremely Randomized Trees models. They were created on the whole data

sets of Windows XP, 7, and 10.

7.4 Conclusion

A fast initial detection of injected code in memory dumps is crucial due to the spread of

HBCIAs. Not just forensic analysts but also malware analysts employ memory forensics

due to the recent advances in frameworks like Volatility. Current HBCIA detection tools

suffer many drawbacks such as high false positive rates that yield wasted time on the

analysts side.

In this chapter, we presented Quincy, our system to detect HBCIAs in memory dumps. At

its heart, it employs a machine learning heuristic utilizing up to 36 features. It discards

invaluable features to improve detection performance and trains tree-based models for

classification. The evaluation showed that Extremely Randomized Trees performed best

in the realm of HBCIA detection. Due to our system’s high amount of features, we

assume that an evasion is significantly harder than in current systems.

We carried out our evaluation on a high quality data set, built according to current

standards in malware experiments. Note that we published the data set on the code

portal github [30]. The evaluation results showed that Quincy outperformed Malfind and

Hollowfind on Windows XP, 7, and 10. While lowering the false positive rate, it increased
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the true positive rate, detecting many advanced malware families such as Dridex and

Teerac. It performed especially well on Windows 7, which is the most widely distributed

version at the time of writing [8]. We published Quincy on the code portal github [29].

Whereas the publication enables researchers to build on our findings, practitioners can

directly benefit from them and add our system to their work flow.

135





Wer schreibt, der bleibt.

8
Applications, Future Work, and Conclusion

In this final chapter, we conclude our thesis on the Formalization and Detection of Host-

Based Code Injection Attacks in the Context of Malware. Firstly, we discuss applications

of our work. Then, we continue to elaborate on future work that may lead to new and

interesting topics. Finally, we conclude this thesis by discussing how we addressed the

research questions that we posed in Chapter 1.

8.1 Applications

We expand on which areas our research and its results have a direct impact and how it

is applicable in these areas. These areas are Malware Detection, Malware Analysis, and

Forensic Analysis.

8.1.1 Malware Detection

First of all, our findings aid the detection of malware in general. According to our find-

ings, almost two thirds of current Windows malware employs HBCIAs (see Section 5.1).

However, HBCIAs are not restricted to Windows. Other operating systems like Linux,
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macOS, or Android are also vulnerable to this kind of attack and malware already em-

ploys HBCIAs on these platforms (see Chapter 4).

In this thesis, we have presented Bee Master, an approach to detect HBCIAs at runtime.

In contrast to traditional signature-based antivirus solutions, we detect malware based

on this popular technique, Host-Based Code Injection Attacks. Bee Master can be deployed

additionally to traditional solutions in order to improve the detection of malware.

8.1.2 Malware Analysis

Malware analysts face HBCIAs on a daily basis. Typically, they face the problem of find-

ing the payload that has been injected in order to proceed with further analysis steps.

This is very time consuming. Therefore, finding the payload right after injection saves

analysts a lot of time and lets them focus on the main functionalities of the malware fam-

ily. Both Bee Master and Quincy aid malware analysts during their daily work. Malware

analysts have different preferences on how they tackle malware analysis.

Those who prefer dynamic analysis employ Bee Master to catch malicious payloads. We

have shown (see Section 6.2) that already a small configuration with well-known victim

processes (see Section 5.2) has a high probability of success. Those who prefer forensic

analysis to receive a first overview of what happens on the system employ Quincy. It

extracts malicious payloads reliably with only a few false positives. In addition, we

published it on the code portal github [29] to promote open source research as well

as to provide the malware analysis community a tool to detect advanced HBCIAs. As

of February 2018, Quincy has 52 stars on github. Users star a project if they find it

interesting and useful [302].

8.1.3 Forensic Analysis

Another field that directly profits from our findings is forensic analysis. We presented

Quincy in Chapter 7. Quincy detects HBCIAs in memory dumps. It solves a daily task

of forensic analysts. As we have shown in our evaluation of Quincy (see Section 7.3), it

outperformed the current state of the art Volatility’s Malfind as well as Hollowfind.
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8.2 Future Work

Whereas this thesis gives an introduction to HBCIAs in the context of malware and

presents two approaches for – statically as well as dynamically – detecting HBCIAs,

there is still a lot more left to explore. We discuss future work in the following.

8.2.1 HBCIAs in General

We have measured the prevalence of HBCIA malware on Windows and have shown that

it is a frequent phenomenon. Motivated by that, we have formalized HBCIAs and have

derived a taxonomy of HBCIA algorithms. We are confident that based on our basic

research, fellow researchers can carry out future research on HBCIAs.

Longitudinal Studies on HBCIAs: We conducted a longitudinal study on HBCIA preva-

lence in Section 5.1. This allowed us to measure the problem size on Windows. On

the one hand, we would like to measure this on an even bigger data set like the ones

that antivirus companies own to confirm our measurement. For instance, Panda labs

collected 84 million unique malware samples just in 2015 [3]. These data sets would

allow us to further approximate the problem size. On the other hand, such longitudinal

studies should also be continuously carried out to judge the severeness of the problem

and to observe any increase or decrease of it. Furthermore, other operating systems

should also be taken into account, given their diversification.

Investigation of Future HBCIAs: We drew a comprehensive picture of today’s HBCIAs

in Chapter 4. We also provided an outlook of how future HBCIA-employing malware

could look in Section 4.4. Future work should monitor and investigate new techniques

for locally injecting code. There are continuously new HBCIA techniques like Atom

Bombing that are already utilized in the wild [303]. Consequently they should be clas-

sified by our HBCIA taxonomy. Even though we claim that our taxonomy allows the

classification of all current HBCIAs, future occurrences might demand adjustments to it.

8.2.2 Bee Master

We presented Bee Master to dynamically detect HBCIAs in Chapter 6. We have imple-

mented and have evaluated it with several current malware families as well as artificial

samples on several Linux and Windows versions.

Increase of Privilege Level: We have implemented a prototype of Bee Master in user

space. Bee Master’s user space implementation comprises some drawbacks, which we

139



discussed in Section 6.1.3.1. In the same section, we also discussed possible implemen-

tations of the Queen Bee in kernel space or as virtual machine introspection component.

Future work should focus on the reimplemention of the Queen Bee with higher privileges

so as to it increases its stealthiness and tamper resistance.

Dynamic Worker Bees: Bee Master could go one step further and offer processes on de-

mand. Malware often utilizes the same pattern for finding a certain process. It enumer-

ates all running processes and compares, for instance, the process names to an internal

list of names. If there is a match, it injects code into into the matched process. Bee Mas-

ter could hook string comparison library functions like strstr. This would allow it to find

the processes that the malware wishes to attack. These processes could be dynamically

created and offered to the malware. This would, on one side, increase the chance of a

successful attack on a Worker Bee. On the other side, this would increase performance

since fewer Worker Bees would have to run at the same time.

Increase in the Number of Target Operating Systems: We intended Bee Master to be

OS-agnostic, which we presented in its evaluation on Windows and Linux (see Chap-

ter 6.2). However, there are more OSes than Windows and Linux that are vulnerable to

HBCIAs. These include macOS and Android (see Section 4.1). Since the user bases of

these OSes are steadily increasing, they also become a target of (HBCIA-employing) mal-

ware more frequently. Therefore, future work should port Bee Master to other operating

systems like macOS and Android.

8.2.3 Quincy

We proposed our method Quincy to statically detect HBCIAs in memory dumps in Chap-

ter 7. We implemented it for Windows XP, 7, and 10. Its evaluation with seven machine

learning algorithms on a representative set of malware families and benign programs

has shown its superiority over the current-state-of-the-art Malfind.

Exploration of new Features: Our system is already based on up to 36 features. This

allows generic detection of many HBCIA-employing malware families and it also raises

the bar for our adversaries to circumvent our approach (see Section 7.2.6). Better fea-

tures would allow us to simplify the model and to improve its performance. Therefore,

future work should explore new features. We have engineered the current feature set

based on our domain knowledge, which is a common practice in machine learning [82].

This could be done semi-automatically. Possible information that the memory foren-

sic framework Volatility [25] extracts should be surveyed first. Information that seems

relevant could be added as a feature to Quincy, which extracts these features and only

selects the relevant ones. Another line of research was proposed by Zhu et al. [304].
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They extract features from other scientific publication by employing natural language

processing. This would not yield completely novel features but features that are new

to us. They may still be of great value to our system in combination with the current

features.

Evaluation of Deep Learning Algorithms: We had to make a choice regarding the ma-

chine learning algorithms that we evaluated Quincy with. These were five tree-based

algorithms, KNN, and SVM. We also mentioned that there is a plethora of other (super-

vised and unsupervised) machine learning algorithms.

Throughout the last decade, the term Deep Learning has received plenty of media atten-

tion. The idea behind Deep Learning is several decades old: Artificial Neural Networks

(ANNs) [305]. ANNs were inspired by biological neural networks found, for instance,

in brains of humans [305]. They consist of connected units (resembling biological neu-

rons) that transmit signals. These units are organized in different layers with at least

one input and one output layer. There may be several hidden layers. ANNs with several

hidden layers are also denoted as Deep Neural Networks (DNNs) [305].

However, the more hidden layer a DNN contains, the higher the training cost. Since

the mid 2010s, graphics processing units (GPUs) have been utilized to train DNNs,

which are well suited for massively parallel matrix computations required by DNN

algorithms [306]. Today, global players such as Baidu [307], Facebook [308], and

Google [309] invest millions of dollars in DNNs, for instance, producing state-of-the-art

artificial intelligence applications in the fields of computer vision and voice recognition.

DNNs were also applied to the domain of malware classification and detection, for

instance, Saxe et al. [310] (2015), Kolosnjaji et al. [311] (2016), and Kolosnjaji et

al. [312] (2017). The results of these papers showed astonishing results, for example,

the detection rate of Saxe et al. [310] reached 95% on malicious binaries. While the

aforementioned approaches utilized DNNs, they still comprised a feature engineering

phase, where expert domain knowledge was required to create the features. These pa-

pers have shown that DNNs are applicable to the domain of malware classification and

detection.

The advances of DNNs are also due to the fact that huge data sets are available to train

the data hungry DNNs [305]. This is also the case for static malware analysis, where one

only has to aggregate binaries [310]. However, our problem is different. The memory

image of a malware usually differs ignificantly from its image on hard disk. Therefore, a

first prerequisite to apply DNNs to our problem is even more training data. We pick up

this point later on in this section.
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Nevertheless, we believe that DNNs are a promising research branch in order to further

increase the detection performance of Quincy. Consequently, future work should eval-

uate Quincy with Deep Learning algorithms. There are still several open questions like

Can we apply automatic feature extraction to our domain in order to forego expert domain

knowledge?, that future work will address.

Evaluation of Stacking Algorithms: Another path to follow would be Stacking. This is

a form of ensemble learning and it trains a machine learning algorithm that combines

the prediction of several other machine learning algorithms [313]. A Stacking ensemble,

for instance, could utilize a Gaussian SVM, a Random Forest, and KNN as base classifiers

and could train Logistic Regression on the base classifier’s predictions. Stacking is often

employed in machine learning challenges, for example, the Netflix Prize competition was

won with a Stacking model [314].

Collection of more Training Data: The quality of a machine learning model greatly

depends on the quality of the training data. We have argued that while it is easy to col-

lect properly labeled benign data, it is tedious to collect properly labeled malicious data

(see Section 7.3.1). This was the reason why the class distribution between benign and

malicious samples was skewed. However, the more malicious data that is available, the

better the machine learning algorithms can build models that detect HBCIA-employing

malware with high accuracy. Future work focuses on the continuous extension of prop-

erly labeled malicious training data.

Recently, Plohmann started the Malpedia project [315] that aims at creating a com-

prehensive high quality malware collection. We contributed the data set presented in

Chapter 7 to this malware collection. The project is a community approach and allows

malware families to be tagged. If we could tag more families that employ code injections

then this would lead to more evaluation data to improve Quincy. Future work will focus

on that and continue to gather high quality data to train our system.

Increase in the Number of Target Operating Systems: Quincy utilizes features that

are not restricted to one operating system. The current implementation works on several

versions of Microsoft Windows. However, HBCIAs are an OS-independent problem and

they can be found on other OSes like Linux and macOS. Future work deals with porting

Quincy to other OSes. It employs the memory forensic framework Volatility to analyze

memory dumps. Volatility serves as an abstraction layer of the dump’s underlying op-

erating system. The framework implements support for Windows, Linux, Android, and

macOS [66]. Therefore, increasing Quincy’s number of target operating systems would

be a matter of implementation work.
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8.3 Conclusion

This thesis has focused on Host-Based Code Injection Attacks (HBCIAs) in the context of

malware. HBCIAs allow malware to execute its payload within another process space

without requiring it to provide its own. We posed two research questions in Chapter 1

that set our path for investigating HBCIAs. In the following, we discuss these two re-

search questions again and see how we have addressed them. The first question aimed

at HBCIAs in general.

How does modern malware employ Host-Based Code Injection Attacks, what

are the consequences, and what is the problem size?

There are many reasons why malware authors utilize HBCIAs including detection eva-

sion and interception of information (see Section 4.2). HBCIAs are popular among

current malware as we have shown, roughly two thirds of malware employs them so

that they are a relevant problem to security researchers (see Section 5.1). We have

built a foundation for future research on this problem by conducting basic research and

problem formalization. The detection of HBCIAs implies the detection of a plethora of

malware families. On one hand, this includes widespread cybercrime families such as

Andromeda, Nymaim, and Zeus. On the other hand, this includes advanced persistent

threats like Duqu, Flame, and Stuxnet. Furthermore, the detection of HBCIAs could pos-

sibly be utilized to detect unknown malware families. Therefore, we have focused on

the (dynamic and static) detection of HBCIAs in our thesis.

The second research question focused on the detection of HBCIAs in two different set-

tings.

How can we detect this malicious behavior using dynamic and static tech-

niques?

We have intensively researched this topic. The outcome is two approaches to detect

HBCIAs in the context of malware.

Our first method Bee Master detects HBCIAs dynamically and platform-independently.

We have achieved this by applying the honeypot paradigm to OS processes. We have

shown in our evaluation on Microsoft Windows and Ubuntu Linux that it is feasible

without having false positives. We believe that if Bee Master were deployed alongside

traditional antivirus software that this would significantly increase end user security.

Our second approach Quincy statically detects HBCIAs in memory dumps. It considers

up to 36 features to detect code-injecting malware. Internally it utilizes a tree-based
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machine learning decision heuristic. The machine learning algorithm is replaceable, we

have discovered that Extremely Randomized Trees worked well on our problem. We have

carried out an evaluation of more than a thousand benign and malicious memory dumps

of three Microsoft Windows versions from Windows XP to Windows 10. The results have

shown that Quincy is superior to the current state of the art Malfind. It increased the

true positive rate while significantly decreasing the false positive rate.
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A
Sample List of Class Prevalence Estimation

All malware families used in the prevalence estimation of the different HBCIA algorithms
(see Section 5.4) are listed in Table A.1. We use the labels provided by Microsoft Security
Essentials [316] in order to be consistent.
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Malware family MD5 hash

Afcore 09af9958262de0066faabfc844a42137
Alureon 32d6644c5ea66e390070d3dc3401e54b
Bebloh c08bae454dcedd26ab529de721ea4460
Caphaw dcc876357354acaf2b61ee3e839154ad
Carberp 02e693a4a66c104541dec55f417d29b9
Citadel 97e545aae517a5f816abcd960875ac05
Conficker ac4f94c0b774b9a7b85582724c48275f
Cridex 734aadd62d0662256a65510271d40048
Conhook b8ce960f658b03e9147fc3ed700dfbd3
Cutwail 0c699bf8815137404fc43f6e56761ac8
Dofoil ac576a1983f6c455bf6a5e4f587ebc3a
Dorkbot 393b4c117e15fbcfe56f560a8e6a3f0c
Duqu 9749d38ae9b9ddd81b50aad679ee87ec
Enfal fef64fa89841d276b0c8bf9417f398b6
Eyestye 34bd32ff879c86b48e8eaf4d0cfebc8c
Gamarue c2d7977da17a4e22b2c4a9d40f7ff51a
Gataka 576f95b855f69981cace04eb9ff22e11
Hesperbot 2323e06279e8b9f93a427bacfba3b953
Kuluoz f48a6740f2e0d70343f600be12220adc
Lethic 0460d89f0091d951184a8d77c6641340
Matsnu ffcf2bb69f23c7c234d2f2ee380cdaa4
Napolar 7d6fbfe63c5c126ed585880b54844edd
Neurevt d9b1b19d2df8f489e38297ea89059900
Nymaim bb4bf5036ee175ac09b16e0989c441fa
Poison 001b8f696b6576798517168cd0a0fb44
Quadars 8cee78fcd2d5f98914ce38d2035a3d02
Ramnit 49e486fcc7da44f12a4598258011b580
Redyms 0044d66e4abf7c4af6b5d207065320f7
Rombrast 06cdd36673a29822360907f8abec6a59
Rovnix 4244dba80a00da7e6c581b4d2ced3277
Sality 63c27ea5328f862ac1ff1674177a189c
Screud 089c5446291c9145ad8ac6c1cdfe4928
Seedna 5024ce13efab0e531c4e09b98def1287
Sirefef c6e73a75284507a41da8bef0db342400
Stuxnet ec591cf5f3b915813e14060d3057395b
Trxa 96fecadd17682ce64e68887f018e12e3
Ursnif 5622d3aab0ecf0f229b47005e306f49e
Virut 021f641bb2485cb25dcc6de2107e915c
Vundo aaa7a750adefcff4059a140fd69795bb
Zbot 3cfc97f88e7b24d3ceecd4ba7054e138

TABLE A.1: Malware families considered in HBCIA algorithm prevalence estimation
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B
Sample List of Bee Master Evaluation

This chapter contains information about the malware samples considered in the evalua-

tion of Bee Master (see Chapter 5). All malware families are listed in Table B.1. In case

we had to pick more than one representative due to compatibility reasons or we could

not execute any sample of the mentioned family we explicitly state which sample was

used on what platform. Otherwise the listed sample worked on all platforms. Further-

more, we utilized the labels provided by Microsoft Security Essentials [316] in order to

be consistent. Unfortunately, there were few families where we could not determine a

Microsoft specific label. These cases are explicitly marked.
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Malware family MD5 hash

Bamital Windows XP/7: b72eae1db843005fb303dc96c4e98593
Bebloh 79ba32519af63486facaa262d88ee4ea
Caphaw 9466be80af54640218fce4351cc19a41
Carberp 02e693a4a66c104541dec55f417d29b9
Citadel 699e84682acdf3304fc79014e30eb11f
Conficker Windows XP/7: 8c9367b7dc43dadaa3ec9da767c586cf
Cridex 3d919e36029cc92724a7b9915abd8075
Dorkbot 74c7725c2df337cf860990660d63520f
Eyestye Windows XP/7: 34bd32ff879c86b48e8eaf4d0cfebc8c

Windows 8: 02ea29c0b04725f9b9936129de127133
Feodo1 557597074df3d3ce0e1674285ef19732
Foidan 991327984cc14474ad4e863a2543bad9
Gamker Windows XP/7: c9197f34d616b46074509b4827c85675
Gapz 089c5446291c9145ad8ac6c1cdfe4928
Gataka 8d000237aeb45310951185ea895d85ed
Hanthie Linux: 761b6266c5254513bc1509d0a36becbd
Hesperbot 12bb85fafd5826fb988c2bee03175632
Ice IX Windows XP/7: e661ff3d8ae16ab40b8638b8a74fff2b
Lolyda Windows XP: 6f9fc55fc5323704d464794b25dc8a56

Windows 7/8: 235b650a98740db60fefe05a427eda74
Napolar 5418869ee4700f3893ba067109b3bd2e
Neurevt 48048cfbf579c73b9587333d8768c282
Nymaim 628ba5d2ed6ca6df41863057641047ae
Parite 3689dd289c6c00cc6586bb354f8f2530
Poison Windows XP: 1ab647cd1c08e542d0cf922b3c8432d0
Ramnit 72a792e3d044dbe3db66971501c268b1
Redyms 0044d66e4abf7c4af6b5d207065320f7
Rombrast Windows XP: dcc8d837dbb6cbfdb49270acf9274e3f

Windows 7/8: 33edb276c62afe4aba1f4f1907818135
Sality 5e4f1f1aa595c354413090e172e8fd91
Sazoora dce968bdae6f1a0ee29046e439b24cd6
Shiotob 01cc26be43086375ff6e6f95318b78b0
Sinowal 007799fc41bc1fb39ff8cff8cb3478b2
Skynet 191b26bafdf58397088c88a1b3bac5a6
Sykipot Windows XP/7: 4960dd192384469129f0a1bcd2b5ae83
Tinba 6244604b4fe75b652c05a217ac90eeac
Trxa 2a41db8710f165c98f5717818ff3d7be
Ursnif 01ab2ed9e551a9a40c426a826a5a0c9b
Vawtrak 7b05cc5f48c389a53a42ca1a8e4b2957
Virut ef15ddfb52c443dd2e4698115c4f1a69
Zbot Windows XP/7: ab0587cd3872e14e3dfbf2503a34e42c

Windows 8: 0c5df80b23b7712bc39655d79549b0b4
ZeusP2P 203f031a7d41fb247d0bd55bb8b1f382

TABLE B.1: Representatives of malware families
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C
Sample List of Quincy Evaluation

Evaluated Malware Families

The tables C.1, C.2, and C.3 lists all malware families that we evaluated Quincy with

(see Section 7.3) on the three considered operating systems Windows XP, Windows 7,

and Windows 10.

Selected Features of Final Models

Table C.4 lists the features that were selected for the final models of Quincy on Windows

XP, Windows 7, and Windows 10.
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Malware Family SHA256 Hash

atrax 0bc2db99f5277ddc89409a8c487298df5dbf34108146c58885ad0c804422c27f
betabot 0f79f1c07e299f32eb788b6f710926f072968923198b695eaa592191232d15c3
bugat 423f80b92bb6d9dc200d897e927085f06790582055df7a9059c6c33ea8968e7a
carberp a06cd8879a3e6f69b0f87d6aca0fd568de02f8ff39c9e2ee987f506bc76ec447
citadel 671a29ffd716e52ed3be9702de65c1be526b2dff30775e60c1a234753da44918
confickerB 16fb3685a888668982f98dc7c37db9ab32fd0cab5d9957ea9fa535d1cc1152fb
conhook bfbeaf964ec0a557b97aa5c3fceb179c328fa7f63ff0e8b28ce60f8a27f4122d
cryptolocker racketeer 5ace9d2d71d991ea6b74531f42e5bf58866be71cba203494788f9fe3ccfd4878
dalixi 464d963f698ee0a385a983c5b88b1c2ba3243ebb776e8f205def48d7aac348d7
darkcomet 8a18ea64a05e6c56024beebc832b65e83337be594dfd4337f42b057e2401f660
dofoil 9cc683c5f44c97f02e10a9df34296e9ba58f7446d954d122c22b02f3dc21a55e
dorkbot 952f756224303dcca8328a8c774d935246d28a901b554990eb2a521c407d6f8e
dorv 97501ced92451792dcb5bdc82fb775e44a272f93f24367ede7e3e421babd2c4e
enfal 370b53e30c026bcb05549791734755fc9de58072ce709724b74f2597518f43a2
feodo e544337e67b9a50824b2f124133abab3d213c3c3e15736f50c156d78638dfdf3
foidan 077dcc584462e400cb502c4507d301b27213851945ed0e494d9d55036b1f5a1e
gamker 2739511e2efc846c144118ebf524b16d2127dd8f2128d909c5095bfe5272560c
gapz 19d1aaef16cf892bd8e0ea37fff29feeb540fd122b288b7aae4a4212a2dbd93b
gataka 3eaaeea3e4e649492e5c98d48af6b925d52795eb64c081d0e62b9cc0df5c9f29
hamweq 1f526ff74d22aff9597d3ba341b0a90ae4df45616776ee1c7175ab3551557b25
isfb 0e61ecd0aad87a72d36bc10288303292859a800d2237ac9c32755d9e455e87e2
kins 464b5d92bdfee3eecf1af64618aa1783cde470462a301b21780bb92e2e0ded96
kovter c9444bf21cc0b709e8a1a434441ebc5be4037a63617585298f0137e820e64ddb
kuluoz f7ca17ceb289db28aae81106e2dde9571f0ea43249f78a38622b582397029109
lamechi 654dd74621ea41b4809d09c18bc3a9d8934eed9ccd20749171ba45f63d042961
lethic 15f4622d0ea4f6a5afbe5ef725bd5e289290116b2d5613f91e733d77f27a8c0a
liftoh 8a4a8ffad419e2a39a20b2c491f59d54b9ba014dcf7671552bd34fec90649300
matsnu2016 d21f6e2fc7bd528240b3f5215d2015a0e290cc0c828487193a1fa2d0a9197ccf
napolar 760c76455a6271b53afdb40678d2dca2e4339d4df6ac5ac24ec4e2403305baa9
necurs bc56597decc0815b11f47ef6882f07ab0e570764ebe77192841968cfc44c92ea
nymaim d9be07e6f40a8c77cd2c36d979e6079ce5756b7923f1040cad095744fc402031
parite 50f1fd9e191f99e7bbd77bfc1714036fd537a607bb6375315c06186c79e89adb
phase 1e628c36d22a9b8e493901bb6c5e17acb1bfcf0dea65f4012c39e6f9bc827a9c
phdet ca7a8180996a98e718f427837f9d52453b78d0a307e06e1866db4d4ce969d525
poisonivy ca4f35a7a6f98cbd9e065a171675f628c317f4365c01911f10160fd8bed87b1c
qakbot 057801414d1ca1785c3f87569878673bd97ffb3e189fc58a1155207110c9a17c
ramnit b2b56ff4227034bcb2d537c98c41df8be94b7ac58bcbd11f8bc7b46c3ebc5ca5
razorcrypt normal fa0b3b18d33d388c3d71392eb7a598f73e1ac4b38086a96f60170c7aac081506
razorcrypt notepad 97e0eb1145eb284ab5e0f3cea77a3e067f6ed4a7e5fce4967bf6d70df5cc92b0
rebhip d7ace08c2005104ae1d88a0a5b0752112c3488cc38431f50e8b937eef906f9ed
redyms b6d19c3e6e82bbde62984f50144ce4d98a18871374ec5d313489d5831317c480
remtasu 7f9ae2fb8e0a2ef18ab16afcb5053e425a42c0caa8080210707893dfdf328936
rombrast 1e87d2cbc136d9695b59e67f37035a45a9ad30f5fccc216387a03c0a62afa9d4
sality 4483287e984256e44e9c677080170758ae76bc2addc1d1de8f0ea468af485623
savnut ae836113c424ef36efcfdc6c8493f466a3bd31cfb4b75f6cf26b0d715a58d06b
schwarzesonne aa37ece103da4a5c94079b66d13d2112c908094fa3dfd70b89dc07b198f92985
sefnit 3b2e246d5460d214ad07d2b395b95b77e0679f46dc563e6eb2ff067c650fad8c
shiotob c8ed42a6791ef4dd207ac6f0a481edecb32caf59e6b5c058b59f5847c7f1bd0a
shylock 35ccf0e051fb0ff61e52ff4130eb38521f954f90ad9c97be59af1e7901974557
simda 9be21e762aa084c362ac630be9f5971e9655dc7016335c68f7e83defe11f7344
skynet 880ce96c128e416c30e9786f5b453030137ee2ef9ee9abf32267d3d6444c4119
sopinar f711606b253aa4faf3c1e0f9b8f6bbb9e246ce1a0320ab779833bbc166d63ac1
soraya c1a2a7bbd65d61a6ecd77fe9e921e39fad770a8cbcf15ea7ba0cb9066ce1656c
spyeye e807eedad5ad83238de5c6ee9ff3cbed0e9599ce94dc7e03581960ab7c665709
symmi 8f98246c03a8e6bf2c342cb5ebc9e82e0cb596c333e5cab0eaed2dc247378755
tatanga 224e3fa69a82f2b9ac5b53d1e0b5c6a339ef5add0b8b2bd5fc9d2ac706ecf2e4
teerac 447fe9c756081e328f5855b60f3f5c1af460c6d86df0bc671556c60515531fa1
tempedreve 77f24ca7bbbfdcd4d182d794e19243ada9e97e60e36ad091797c500e5c4de6af
tinba 09478bf4833505d3d7b66d4f30ccce6b9fde3ea51b9ccf6fdeadc008efba43d8
tinybanker df4aa8c80b7f2c091eee11952b30d5ed2638dd311c9120d4e742db41805a34de
tofsee a8c8849605a0eebaa06202dc763f47e10c668e46d53f8d96562d59ee52b6b801
trustezeb 1f8992bb765566cce72dfc77c9f54916480d87aa70b88994333578d23c06e1dc
tuscas 9ef9d58f869f6b737383fb3b659e48910a7593d720e9f6479d618d396b5ddc56
urausy e4f821e0c469ef6030f1b309a56a313f25a88e4f91a3ef28387785bb07ebcd8e
urlzone a639e0d31e44fbb6786733325da5938b8086877f893b6d1cdb78d40e50d32a4b
vawtrack2016 b6260c3f504ebab55a1c13bfdc88c04ea20265a661f3445a6c040c91556cbf4f
vawtrak 3547187819ee0ab9c72530dc5dbe79b81c84dbc4a57a274e0044ce997fb6982b
vundo 3563ce2be8aa67950875c8b0678ed79636bbe7e26215f8a25f32e316a70a6e25
xswkit 34f9e77c56549fa25b02ae97891054b963b4bc9e32971b65cc6f203e8a2792f1
zeroaccess be00ef4081af7d101b36e4552e6ca7ba2cd91f906cc5dff8751ef2078026a774
zeusp2p 4bbf0a795cf4d66af449723332c94c9c4ba0edd7ae23809259bab82375b7da81
zurgop d12526fc430fa213d77f8523a89c92c5f4e0d11deacbaf5c160a16f87ed5adc3

TABLE C.1: Malware families of Quincy’s Windows XP evaluation
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Malware Family SHA256 Hash

atrax 0bc2db99f5277ddc89409a8c487298df5dbf34108146c58885ad0c804422c27f
backoff bf693160f8a2857ba9f16ca028e6a63074c0a3038aa3dee7992f37e04c04469e
bamital 28da9324aa6b9e9537c51ac6a2b188c3a3c1d41eeaf6f7d15b6630794d8cd8cc
betabot 0f79f1c07e299f32eb788b6f710926f072968923198b695eaa592191232d15c3
carberp a06cd8879a3e6f69b0f87d6aca0fd568de02f8ff39c9e2ee987f506bc76ec447
citadel 671a29ffd716e52ed3be9702de65c1be526b2dff30775e60c1a234753da44918
corebot 161cdb6b51702ca0d065808e7f36590114134923ddb4d459f8f37b68bf284eff
cryptolocker racketeer 5ace9d2d71d991ea6b74531f42e5bf58866be71cba203494788f9fe3ccfd4878
cryptowall cc83b186700b21e5c4cae0f8236ae3e50ab47c2c21a3987ea00463056cbd1c26
darkcomet 8a18ea64a05e6c56024beebc832b65e83337be594dfd4337f42b057e2401f660
dofoil 9cc683c5f44c97f02e10a9df34296e9ba58f7446d954d122c22b02f3dc21a55e
dorkbot 952f756224303dcca8328a8c774d935246d28a901b554990eb2a521c407d6f8e
dorv 97501ced92451792dcb5bdc82fb775e44a272f93f24367ede7e3e421babd2c4e
enfal 370b53e30c026bcb05549791734755fc9de58072ce709724b74f2597518f43a2
feodo e544337e67b9a50824b2f124133abab3d213c3c3e15736f50c156d78638dfdf3
foidan 077dcc584462e400cb502c4507d301b27213851945ed0e494d9d55036b1f5a1e
gamker 2739511e2efc846c144118ebf524b16d2127dd8f2128d909c5095bfe5272560c
gapz 19d1aaef16cf892bd8e0ea37fff29feeb540fd122b288b7aae4a4212a2dbd93b
gataka 3eaaeea3e4e649492e5c98d48af6b925d52795eb64c081d0e62b9cc0df5c9f29
hamweq 1f526ff74d22aff9597d3ba341b0a90ae4df45616776ee1c7175ab3551557b25
isfb 0e61ecd0aad87a72d36bc10288303292859a800d2237ac9c32755d9e455e87e2
kins 464b5d92bdfee3eecf1af64618aa1783cde470462a301b21780bb92e2e0ded96
kovter c9444bf21cc0b709e8a1a434441ebc5be4037a63617585298f0137e820e64ddb
kuluoz f7ca17ceb289db28aae81106e2dde9571f0ea43249f78a38622b582397029109
lethic 15f4622d0ea4f6a5afbe5ef725bd5e289290116b2d5613f91e733d77f27a8c0a
liftoh 8a4a8ffad419e2a39a20b2c491f59d54b9ba014dcf7671552bd34fec90649300
matsnu2016 d21f6e2fc7bd528240b3f5215d2015a0e290cc0c828487193a1fa2d0a9197ccf
napolar 760c76455a6271b53afdb40678d2dca2e4339d4df6ac5ac24ec4e2403305baa9
nymaim d9be07e6f40a8c77cd2c36d979e6079ce5756b7923f1040cad095744fc402031
parite 50f1fd9e191f99e7bbd77bfc1714036fd537a607bb6375315c06186c79e89adb
phase 1e628c36d22a9b8e493901bb6c5e17acb1bfcf0dea65f4012c39e6f9bc827a9c
phdet ca7a8180996a98e718f427837f9d52453b78d0a307e06e1866db4d4ce969d525
qakbot 057801414d1ca1785c3f87569878673bd97ffb3e189fc58a1155207110c9a17c
ramnit b2b56ff4227034bcb2d537c98c41df8be94b7ac58bcbd11f8bc7b46c3ebc5ca5
razorcrypt normal fa0b3b18d33d388c3d71392eb7a598f73e1ac4b38086a96f60170c7aac081506
razorcrypt notepad 97e0eb1145eb284ab5e0f3cea77a3e067f6ed4a7e5fce4967bf6d70df5cc92b0
rebhip d7ace08c2005104ae1d88a0a5b0752112c3488cc38431f50e8b937eef906f9ed
redyms b6d19c3e6e82bbde62984f50144ce4d98a18871374ec5d313489d5831317c480
remtasu 7f9ae2fb8e0a2ef18ab16afcb5053e425a42c0caa8080210707893dfdf328936
rombrast 1e87d2cbc136d9695b59e67f37035a45a9ad30f5fccc216387a03c0a62afa9d4
sakula 22f5fa60c2286e22bee79bcde6e9c7ee80b42ef308c6bb7aed6d6163e5da0214
sality 4483287e984256e44e9c677080170758ae76bc2addc1d1de8f0ea468af485623
sality2016 1d441a7c0f32513163b7e287cfa4869d61b750acf212449bc98193a30ea47d23
savnut ae836113c424ef36efcfdc6c8493f466a3bd31cfb4b75f6cf26b0d715a58d06b
schwarzesonne aa37ece103da4a5c94079b66d13d2112c908094fa3dfd70b89dc07b198f92985
shiotob c8ed42a6791ef4dd207ac6f0a481edecb32caf59e6b5c058b59f5847c7f1bd0a
shylock 35ccf0e051fb0ff61e52ff4130eb38521f954f90ad9c97be59af1e7901974557
simda 9be21e762aa084c362ac630be9f5971e9655dc7016335c68f7e83defe11f7344
sinowal c7a65cea20c1a312c3619ed5923c2d1eee55afc26f21f1ce9e01179aec0db3ad
skynet 880ce96c128e416c30e9786f5b453030137ee2ef9ee9abf32267d3d6444c4119
sopinar f711606b253aa4faf3c1e0f9b8f6bbb9e246ce1a0320ab779833bbc166d63ac1
soraya c1a2a7bbd65d61a6ecd77fe9e921e39fad770a8cbcf15ea7ba0cb9066ce1656c
spyeye e807eedad5ad83238de5c6ee9ff3cbed0e9599ce94dc7e03581960ab7c665709
symmi 8f98246c03a8e6bf2c342cb5ebc9e82e0cb596c333e5cab0eaed2dc247378755
tatanga 224e3fa69a82f2b9ac5b53d1e0b5c6a339ef5add0b8b2bd5fc9d2ac706ecf2e4
teerac 447fe9c756081e328f5855b60f3f5c1af460c6d86df0bc671556c60515531fa1
tempedreve 77f24ca7bbbfdcd4d182d794e19243ada9e97e60e36ad091797c500e5c4de6af
tinba 09478bf4833505d3d7b66d4f30ccce6b9fde3ea51b9ccf6fdeadc008efba43d8
tinybanker df4aa8c80b7f2c091eee11952b30d5ed2638dd311c9120d4e742db41805a34de
tofsee a8c8849605a0eebaa06202dc763f47e10c668e46d53f8d96562d59ee52b6b801
trustezeb 1f8992bb765566cce72dfc77c9f54916480d87aa70b88994333578d23c06e1dc
tuscas 9ef9d58f869f6b737383fb3b659e48910a7593d720e9f6479d618d396b5ddc56
urausy e4f821e0c469ef6030f1b309a56a313f25a88e4f91a3ef28387785bb07ebcd8e
urlzone a639e0d31e44fbb6786733325da5938b8086877f893b6d1cdb78d40e50d32a4b
vawtrack2016 b6260c3f504ebab55a1c13bfdc88c04ea20265a661f3445a6c040c91556cbf4f
vawtrak 3547187819ee0ab9c72530dc5dbe79b81c84dbc4a57a274e0044ce997fb6982b
vundo 3563ce2be8aa67950875c8b0678ed79636bbe7e26215f8a25f32e316a70a6e25
xswkit 34f9e77c56549fa25b02ae97891054b963b4bc9e32971b65cc6f203e8a2792f1
zeroaccess be00ef4081af7d101b36e4552e6ca7ba2cd91f906cc5dff8751ef2078026a774
zeusp2p 4bbf0a795cf4d66af449723332c94c9c4ba0edd7ae23809259bab82375b7da81
zurgop d12526fc430fa213d77f8523a89c92c5f4e0d11deacbaf5c160a16f87ed5adc3

TABLE C.2: Malware families of Quincy’s Windows 7 evaluation
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Malware Family SHA256 Hash

afcore f76700cbfc4176e0976a20660dafbf4e5e6d560a08249e1ed1f187ae8e4f2a6b
aleksandr 171693ab13668c6004a1e08b83c9877a55f150aaa6d8a624c3f8ffc712b22f0b
andromeda 76c65d79ade16f9b461d38f7e2433ac66c0569b36988705383f4b9cb64635af3
atrax 0bc2db99f5277ddc89409a8c487298df5dbf34108146c58885ad0c804422c27f
backoff bf693160f8a2857ba9f16ca028e6a63074c0a3038aa3dee7992f37e04c04469e
bamital 28da9324aa6b9e9537c51ac6a2b188c3a3c1d41eeaf6f7d15b6630794d8cd8cc
citadel 671a29ffd716e52ed3be9702de65c1be526b2dff30775e60c1a234753da44918
confickerB 16fb3685a888668982f98dc7c37db9ab32fd0cab5d9957ea9fa535d1cc1152fb
corebot 161cdb6b51702ca0d065808e7f36590114134923ddb4d459f8f37b68bf284eff
cryptolocker racketeer 5ace9d2d71d991ea6b74531f42e5bf58866be71cba203494788f9fe3ccfd4878
cryptowall cc83b186700b21e5c4cae0f8236ae3e50ab47c2c21a3987ea00463056cbd1c26
cutwail d9a21f5a7c8560ce9a1368943509f791b568d18c2abd329cbb095662a7642ed6
darkcomet 8a18ea64a05e6c56024beebc832b65e83337be594dfd4337f42b057e2401f660
dofoil 9cc683c5f44c97f02e10a9df34296e9ba58f7446d954d122c22b02f3dc21a55e
dorkbot 952f756224303dcca8328a8c774d935246d28a901b554990eb2a521c407d6f8e
emotet 284f9e5fae27f0a1646da804a762b8ede8a01f46bda184eb30fee02c16a77473
enfal 370b53e30c026bcb05549791734755fc9de58072ce709724b74f2597518f43a2
finfisher f827c92fbe832db3f09f47fe0dcaafd89b40c7064ab90833a1f418f2d1e75e8e
fobber 5d0d798cf8ef16cc57ff57999f70f25d02c7c69a1dc67114dd5766c990771469
foidan 077dcc584462e400cb502c4507d301b27213851945ed0e494d9d55036b1f5a1e
gataka 3eaaeea3e4e649492e5c98d48af6b925d52795eb64c081d0e62b9cc0df5c9f29
gookit a6c1d77964664f85259727acc647c56113c6a71adef94c0460bc49ae5ee49188
gozi 5da54366629021851ae47876bdffcc501c809f503777cd082fbec7b2148c5354
goznym 792c968786d7b161232a683f1b38beb83e26807d4e9741638291c46478dac206
isfb 0e61ecd0aad87a72d36bc10288303292859a800d2237ac9c32755d9e455e87e2
kins 464b5d92bdfee3eecf1af64618aa1783cde470462a301b21780bb92e2e0ded96
kovter c9444bf21cc0b709e8a1a434441ebc5be4037a63617585298f0137e820e64ddb
kronos 792c968786d7b161232a683f1b38beb83e26807d4e9741638291c46478dac206
lethic 15f4622d0ea4f6a5afbe5ef725bd5e289290116b2d5613f91e733d77f27a8c0a
liftoh 8a4a8ffad419e2a39a20b2c491f59d54b9ba014dcf7671552bd34fec90649300
lusypos d7a08338bcb30cc688a827b611fe9b26c54f3ba35c02355fa1d468da8cbbd903
matsnu 472dcbd07ff6679ecfb11ac924cac3f70bb56c24ea1de30da5652ceaacae3b7c
matsnu2016 d21f6e2fc7bd528240b3f5215d2015a0e290cc0c828487193a1fa2d0a9197ccf
necurs bc56597decc0815b11f47ef6882f07ab0e570764ebe77192841968cfc44c92ea
pandabanker 1cccc844fcdb255f833a9ef36c2d3c690557b828ed5d0a45d068aeb2af1faac7
parite 50f1fd9e191f99e7bbd77bfc1714036fd537a607bb6375315c06186c79e89adb
phase 1e628c36d22a9b8e493901bb6c5e17acb1bfcf0dea65f4012c39e6f9bc827a9c
phdet ca7a8180996a98e718f427837f9d52453b78d0a307e06e1866db4d4ce969d525
qadars 04f0feb7ab6b68dabbebc3da2082afabacbe488bca3464f3da985a9b4d9c7c2c
qakbot 057801414d1ca1785c3f87569878673bd97ffb3e189fc58a1155207110c9a17c
ramnit e9cd4d4affcb97b298fafe52a1a7f8e054e0ea4ac9ce0f9dc0bc4a199a10e30f
ranbyus dc4f3340ca8e623a5a77eb95411696fc25a7e6f5ef657ac9fd76eb4bc11c16b4
rebhip d7ace08c2005104ae1d88a0a5b0752112c3488cc38431f50e8b937eef906f9ed
redyms b6d19c3e6e82bbde62984f50144ce4d98a18871374ec5d313489d5831317c480
remtasu 7f9ae2fb8e0a2ef18ab16afcb5053e425a42c0caa8080210707893dfdf328936
rokku 438888ef36bad1079af79daf152db443b4472c5715a7b3da0ba24cc757c53499
rombrast 1e87d2cbc136d9695b59e67f37035a45a9ad30f5fccc216387a03c0a62afa9d4
rovnix 5180155031a3939607452619ba53f76bf2e1cecb9abd0b745192af378fa5b7cc
sakula 22f5fa60c2286e22bee79bcde6e9c7ee80b42ef308c6bb7aed6d6163e5da0214
sality2016 1d441a7c0f32513163b7e287cfa4869d61b750acf212449bc98193a30ea47d23
schwarzesonne aa37ece103da4a5c94079b66d13d2112c908094fa3dfd70b89dc07b198f92985
sefnit 3b2e246d5460d214ad07d2b395b95b77e0679f46dc563e6eb2ff067c650fad8c
shifu 01c53e0d31c578393ba09add090fff2560c1f53a2a13fdbed8a66bd783a2ee70
shylock 35ccf0e051fb0ff61e52ff4130eb38521f954f90ad9c97be59af1e7901974557
sinowal c7a65cea20c1a312c3619ed5923c2d1eee55afc26f21f1ce9e01179aec0db3ad
skynet 880ce96c128e416c30e9786f5b453030137ee2ef9ee9abf32267d3d6444c4119
sopinar f711606b253aa4faf3c1e0f9b8f6bbb9e246ce1a0320ab779833bbc166d63ac1
soraya c1a2a7bbd65d61a6ecd77fe9e921e39fad770a8cbcf15ea7ba0cb9066ce1656c
sphinx 792c968786d7b161232a683f1b38beb83e26807d4e9741638291c46478dac206
symmi 8f98246c03a8e6bf2c342cb5ebc9e82e0cb596c333e5cab0eaed2dc247378755
teerac 447fe9c756081e328f5855b60f3f5c1af460c6d86df0bc671556c60515531fa1
tempedreve 77f24ca7bbbfdcd4d182d794e19243ada9e97e60e36ad091797c500e5c4de6af
tinba 09478bf4833505d3d7b66d4f30ccce6b9fde3ea51b9ccf6fdeadc008efba43d8
tinybanker 59ac093c3a08619fa16d1d8a06c23f7aa63ec01da1e1ecf979421a355d595e8e
trustezeb 1f8992bb765566cce72dfc77c9f54916480d87aa70b88994333578d23c06e1dc
tuscas 9ef9d58f869f6b737383fb3b659e48910a7593d720e9f6479d618d396b5ddc56
urausy e4f821e0c469ef6030f1b309a56a313f25a88e4f91a3ef28387785bb07ebcd8e
urlzone a639e0d31e44fbb6786733325da5938b8086877f893b6d1cdb78d40e50d32a4b
ursnif 30a13051c39c77bf1a5fa0bcd170185cfc763fc82a5a9a6153e3b3b9198c199b
vawtrack2016 b6260c3f504ebab55a1c13bfdc88c04ea20265a661f3445a6c040c91556cbf4f
vawtrak 3547187819ee0ab9c72530dc5dbe79b81c84dbc4a57a274e0044ce997fb6982b
vundo 3563ce2be8aa67950875c8b0678ed79636bbe7e26215f8a25f32e316a70a6e25
xswkit 34f9e77c56549fa25b02ae97891054b963b4bc9e32971b65cc6f203e8a2792f1
zeroaccess be00ef4081af7d101b36e4552e6ca7ba2cd91f906cc5dff8751ef2078026a774
zeusp2p 4bbf0a795cf4d66af449723332c94c9c4ba0edd7ae23809259bab82375b7da81
zurgop d12526fc430fa213d77f8523a89c92c5f4e0d11deacbaf5c160a16f87ed5adc3

TABLE C.3: Malware families of Quincy’s Windows 10 evaluation
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Feature Windows XP Windows 7 Windows 10

counterdebugger 3 7 7

countersandbox 3 7 3

countervm 7 7 7

apigeneral api strings 3 3 3

apihbcias 3 3 3

apidynamic loading 3 3 7

apihashing 3 3 3

binaryhas header 3 3 7

binarywiped header 7 7 7

binaryimports 7 7 7

binaryis pe or dll 3 3 3

binaryis module 3 3 7

binaryexports 7 7 7

binaryis dynamic library 7 7 3

codefunctions 3 3 7

codeshellcode 3 3 3

codeindirect calls 3 3 3

codeindirect jumps 3 3 3

codehooks 3 3 3

cryptocipher 7 7 7

cryptoencoding 3 7 7

cryptohashing 7 3 7

memoryis sparse 3 3 3

memoryhigh entropy areas 3 3 3

memoryis heap 3 7 7

memoryprotection 3 3 3

memorymapped 3 7 7

memorytag 3 3 7

memorythreads 3 3 3

memoryprivate 3 3 3

memoryembedded executable 7 7 7

memoryenglish strings 3 7 7

memorynetwork strings 3 3 3

memoryvictim strings 3 7 7

memorypersistence 3 7 3

trojanbanking 7 7 7

trojancookies 7 7 7

trojancredentials 3 3 7

Total 28 21 17

TABLE C.4: Features that were selected for the final models of Quincy on Windows XP,
Windows 7, and Windows 10
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Abbreviations

APC Asynchronous Procedure Call

APT Advanced Persistent Threat

API Application Programming Interface

ASLP Adress Space Layout Permutation

ASLR Address Space Layout Randomization

AUC Area Under Curve

CART Classification And Regression Trees

CFI Control Flow Integrity

CPU Central Processing Unit

DDoS Distributed Denial of Service

DEP Data Execution Prevention

DLL Dynamic-Link Library

DoS Denial of Service

FP False Positive

FPR False Positive Rate

FN False Negative

HBCIA Host-Based Code Injection Attack

I/O Input/Output

IoC Indicator of Compromise

IPS Intrusion Prevention System

ISR Istruction Set Randomization

MSE Microsoft Security Essentials

OS Operating System

PCA Principal Component Analysis

PE Portable Executable
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PEB Process Environment Block

PoC Proof of Concept

PoS Point of Sale

PRNG Pseudo Random Number Generator

RAT Remote Administration Tool

RCIA Remote Code Injection Attack

RFE Recursive Feature Elimination

ROC Receiver Operating Characteristic

ROP Return Oriented Programming

RWX Read Write Execute

SICE Shotgun Injection Concurrent Execution

SITM Shotgun Injection Thread Manipulation

SVM Support Vector Machine

TICE Targeted Injection Concurrent Execution

TITM Targeted Injection Thread Manipulation

TP True Positive

TPR True Positive Rate

TN True Negative

VM Virtual Machine

VMI Virtual Machine Introspection
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