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Abstract

We show the existence of a stable, smooth pseudoisotopyfunctor and
construct in the topological, piecewise linear, and smooth category
a zig-zag of natural weak equivalences between the stable pseudoiso-
topyfunctor and the corresponding functor of Whitehead spectra.
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Introduction

The automorphism spaces of manifolds have been of major interest to topologists
for at least eighty years. The study of automorphism spaces of high-dimensional
manifolds as its own field of research came into fruition a little later:

Following Stephen Smale’s proof of the h–cobordism theorem [42] in 1960,
topologists established a flurry of results on the classification of high-dimensional
manifolds. In particular, the notion of block bundle automorphisms was intro-
duced by Rourke and Sanderson [40] which gave the homotopy fibre sequence
of simplicial sets

Aut(M)→ Ãut(M)→ Ãut(M)/Aut(M)

where Aut(M) and Ãut(M) refers to automorphisms and block bundle auto-
morphisms, respectively.

The calculation of Ãut(M) via surgery theory proceeded in the following

decades. We focus our attention on the quotient Ãut(M)/Aut(M).
Let us explain the geometric problem encoded in this quotient: Given some

automorphism, we want to decide whether it is isotopic to the Identity. If we
follow a strategy similar to the one to figure out whether two given manifolds
are isomorphic, then the tools of surgery theory present us with a 1–parameter
family of h–cobordisms.

The key difference between the two questions is now, that the classification
of parametrised families of h–cobordisms is far more subtle than that of h–
cobordisms.

Parametrised families of h–cobordisms are just bundles of h–cobordisms with
nice clutching maps, hence the problem can be rephrased in understanding the
space of possible clutching maps. This is what pseudoisotopies are and how
pseudoisotopy spaces enter our story.

The study of pseudoisotopies began in earnest in 1970, when Jean Paul
Cerf showed his pseudoisotopy theorem [8] which raised the methods of Morse
theory, key in the proof of the h–cobordism theorem, to a parametrised setting.
In the following years, the study of pseudoisotopy spaces was advanced greatly
by, among others, Allen Hatcher, Dan Burghelea, Kyoshi Igusa, Richard Lashof
and Friedhelm Waldhausen.

In the 1970s, Hatcher [22] described an approach to reduce the geometric
questions about pseudoisotopies to a more combinatorial setting. Although his
arguments contained several flaws, the general direction of research in the next
decades followed along the lines of his ideas.

In particular, he claimed that the pseudoisotopy space, intrinsically linked
to the automorphism spaces of manifolds, could be connected to the stable

vii



viii INTRODUCTION

pseudoisotopy space which seemed much more accessible via homotopy theory
and thus provided a chance for actual computation.

Starting in the late 1970s, Waldhausen showed in a series of papers, begin-
ning with [49], that this hope was not ill-founded. He introduced A–theory, a
functor with good homotopy theoretic properties, and showed that computa-
tions about homotopy invariants of stable pseudoisotopy could essentially be
reduced to computations on A–theory.

In 1987, the same year Waldhausen finished his program (for the most part
- we come back to this in a moment), Michael Weiss and Bruce Williams [53]
answered precisely how the difference between automorphisms and block bundle
automorphisms relates to pseudoisotopies.

Let Cat = Top,PL or Diff and let M be a compact Cat–manifold, possibly
with boundary. Let Aut∂(M) ⊆ Aut(M) denote the subspace of automorphisms

which restrict to the Identity on the boundary, similarly for Ãut∂(M). Also, let
EZ/2 denote a contractible, free Z/2–CW–complex and P(M) the stable space
of Cat–pseudoisotopies relative boundary.

Theorem 0.0.0.1 ([53, Theorem A]). There exists a map

Φs : Ãut∂(M)/Aut∂(M)→ Ω∞(EZ/2+ ∧Z/2 Ω2P(M))

which is (k + 1)–connected if k is in the Cat–concordance stable range for M .

This was only the first article in their ongoing program on combining all of
the previous material into a single algebro-topological object to compute the
automorphism spaces.

Also in 1987, Thomas Farrell and Lowell Jones [15] showed that their meth-
ods to simplify h–cobordisms on hyperbolic manifolds via carefully applied
geodesic flows and controlled topology [14] could be transferred to pseudoiso-
topies. Roughly speaking, their result stated that (for a hyperbolic manifold)
each pseudoisotopy was determined by its behaviour on a set of representatives
of the isotopy classes of the geodesics. This marked the beginning of what is
now known as the Farrell-Jones conjecture for pseudoisotopies.

Igusa [30] connected the pseudoisotopy space, intrinsically linked to the au-
tomorphism spaces of manifolds, to the stable pseudoisotopy space which by
the work of Waldhausen now seemed less mysterious. It also empowered [53,
Theorem A]. We denote the unstable pseudoisotopy space by P (M).

Theorem 0.0.0.2. The suspension map

σ : PDiff(M)→ PDiff(M × [0, 1])

is k–connected, if dim(M) ≥ max(2k + 7, 3k + 4), i.e. the concordance stable
range of M is at least k.

By now, we also have result for the concordance stable range in the other
cases, see [31, Corollary 1.4.2].

As a brief tangent, we note that Goodwillie [18] introduced his calculus of
functors in 1990, providing a computation of the differential of pseudoisotopy
and thus another tool for actual calculations.

After almost two decades, Bjørn Jahren, John Rognes and Friedhelm Wald-
hausen [31] gave a proof for the stable parametrised h–cobordism theorem in
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2005, originally announced by Waldhausen but not published as a part of his
original series. In the following theorem, the functors are defined on codimension
zero embeddings.

Theorem 0.0.0.3 ([31, Theorem 0.1]). There is a natural homotopy equivalence

HCat(M) ' Ω WhCat(M)

between the stable h–cobordism space and the one fold loops of the Whitehead
space for each compact Cat–manifold M .

At this point, the results finally provide us with a clear connection between
the homotopy groups of the automorphism spaces of high-dimensional manifolds
in a certain range and the homotopy groups of A– and L–theory.

Starting with Hatcher, the notion of a pseudoisotopy functor has been part
of the discussion and played a rather curious role. Hatcher [23] sketched the
definition of a functor on homotopy categories, Burghelea and Lashof [6] pro-
vided some necessary details and Waldhausen [50] briefly mentioned it - but did
not, in contrast to later references, claim the existence of a strict pseudoisotopy
functor on all continuous maps.

In this work, we show that a smooth pseudoisotopy functor does indeed exist.
This is Theorem 1.4.2.4.

Theorem 0.0.0.4. Let Top and Spectra denote the category of compactly gen-
erated weak Hausdorff spaces and prespectra, respectively. There is a functor
PDiff : Top→ Spectra with the following properties:

1. It descends to a functor of homotopy categories

hoPDiff : ho(Top)→ ho(Spectra).

2. There is a natural weak equivalence

Ω∞PDiff, Spectra → PDiff, Spaces.

3. The subset inclusion PDiff ⊆ PTop extends to a natural transformation of
functors of quasicategories. The construction of PTop is given in [12].

As these properties do not uniquely determine the functor, the obvious next
step is to compare it with the well-established functor structure on the com-
putational side. It turns out that the functors are compatible. This is Corol-
lary 2.1.5.18, Theorem 2.2.3.13 and Theorem 2.2.4.2.

Theorem 0.0.0.5. Let Cat = Top,PL or Diff. There is a natural weak equiv-
alence of (∞, 1)–functors

Ψ: PCat ⇒ Ω2 WhCat,−∞

from the (∞, 1)–functor PCat : N h.c.
• Top∆ → N h.c.

• Spectra∆ of pseudoisotopies
to the twofold loops of the functor given by the Whitehead spectrum.

In particular, there is a zig-zag of natural weak equivalences between the
strict functors PCat : Top→ Spectra and Ω2 WhCat,−∞.

A similar statement holds for the space level versions PCat and Ω2 WhCat.
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One application of our results is a proof of the Farell-Jones conjecture for a
far larger class of groups than was previously established. This result has been
published by Nils-Edvin Enkelmann, Wolfgang Lück, Mark Ullmann, Christoph
Winges and the author [13]. By the time this thesis was submitted, the article
has been accepted for publication.

This result permits us to reduce a wide range of computations to a select
few special cases, for example the following holds:

Theorem 0.0.0.6 ([13, Theorem 1.3]). Let M be a smoothable aspherical closed
manifold of dimension ≥ 10, whose fundamental group π is hyperbolic.

Then there is a Z/2–action on WhTop(Bπ), the Whitehead space of the clas-
sifying space of π, such that we obtain isomorphisms

πn(Top(M)) ∼= πn+2

(
EZ/2+ ∧Z/2

(∨
C

WhTop(BC)
))

for 1 ≤ n ≤ min{(dimM − 7)/2, (dimM − 4)/3} and an exact sequence

1→ π2

(
EZ/2+ ∧Z/2

(∨
C

WhTop(BC)
))
→ π0(Top(M))→ Out(π)→ 1

where C ranges over the conjugacy classes of maximal infinite cyclic subgroups
of π, and Out(π) denotes the outer automorphisms.

Although the results of this thesis were used in the article they are not
truly necessary. The point-wise connection between the homotopy groups of
pseudoisotopies and the Whitehead spectrum is enough. Our results might
prove useful to find geometric representatives of non-trivial classes in the homo-
topy groups of automorphism spaces. So far, however, no such applications are
known.

The above theorem suggests that understanding the homotopy groups of the
Whitehead space is a possible approach to calculate homotopy groups of auto-
morphism spaces. Unfortunately, explicit calculations of the homotopy groups
of the Whitehead space are known only in very few cases due to Lars Hesselholt
[25], building upon his earlier work with Ib Madsen, and Joachim Grunewald,
John Klein and Tibor Macko [19].

Further, it has so far not been shown that the Z/2–action on P(M) used
in Theorem 0.0.0.3 (which actually induces the action on WhTop(BC) in Theo-
rem 0.0.0.6) is compatible with the homotopically well-behaved Z/2–action on
WhCat(M) induced by the action on A–theory given in [29].

These two obstacles have so far prevented a complete description of the
homotopy groups in terms of (geometric) representatives and relations in any
but the most elementary of cases.

The study of automorphism spaces in a stable range has recently garnered
new interest by methods of homological stability, as part of the program by Søren
Galatius and Oscar Randal-Williams started in [16], and some connections to
the classic approach have been established, e.g. a bound on the concordance
stable range by Randal-Williams [39] and finiteness results for certain cases due
to Alexander Kupers [32]. We hope that our results help to further the study
of the still mysterious objects that are automorphism spaces of manifolds.



xi

Acknowledgements

The author hereby expresses his deep gratitude towards Wolfgang Lück for the
opportunity to work on this project. Countless opportunities for discussion
arose from his support and the advance in trust still stupefies the author.

The results of countless hours of discussion with Nils-Edvin Enkelmann have
flown into this thesis. Without him patiently sifting through the author’s ideas,
this work would have hardly been possible.

I owe many thanks and an apology to Christoph Winges. The former for
fruitful collaborations and his interest in this thesis. The latter for not believing
him immediately when he pointed out a serious flaw in a previous version of the
second chapter.

This work was financially supported by the GRK 1150 “Homotopie und Ko-
homologie” and the ERC Advanced Grant “KL2MG-interactions” (no. 662400)
of Wolfgang Lück granted by the European Research Council.

Finally, my thanks to the numerous mathematicians (and physicists) who
shared some of their problems and ideas, were interested in my thesis, showed
me that this work might actually be of some value to their research, or were
simply great company for a multitude of other reasons.

Notation and Convention

Simplicial sets are functors from the category ∆ to sets. We denote the category
of simplicially enriched categories by Cat∆ and the full subcategory on small
categories by cat∆. Similarly, we denote the category of simplicial categories
by sCat and its small counterpart by scat. Finally, we obtain the category of
quasicategories Qcat and use qcat for the small ones.

We write S• : Top → sSet for the singular sets functor, right adjoint to
geometric realization X• 7→ |X•|. If spaces or simplicial sets appear as lower or
upper case, we write X instead of X• or |X•|.

Let Top∆ denote the simplicially enriched category of compactly generated
weak Hausdorff spaces with Top∆(X,Y ) = S•C0(X,Y ) where X and Y are
topological spaces in ob Top∆ and the space of continuous maps C0(X,Y ) carries
the compact-open topology. Note that every mapping space is actually a Kan-
complex.

We denote simplicially enriched categories by a lower case ∆ and, for cate-
gories enriched in compactly generated weak Hausdorff spaces, we abuse nota-
tion and denote them with a lower case ∆ as well.

This should not lead to confusion, since there is an equivalence between
simplicially and topologically enriched categories S∗ : CatTop → Cat∆ given by
applying the singular simplicial sets functor S : Top → sSet to the mapping
spaces, i.e. S∗(CTop)(c, d) = S•(CTop(c, d)), see Lurie [33, Chapter 1.1.4].

Every argument in this thesis which is carried out in topologically enriched
categories could just as well be formulated in terms of the simplicially enriched
categories obtained via S∗.

Manifolds are always submanifolds of R∞ to avoid smallness issues.
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Reader’s Guide

The two main chapters of this thesis can be mostly read separately, aside from
two exceptions:

First, the comparison of the smooth and topological pseudoisotopyfunctor
relies on the definition of both functors given in Chapter 1 and Section 2.1.3 for
the smooth and topological case, respectively.

Second, the strictification of homotopy coherent diagrams following the work
of Cordier and Porter explained in Section 1.2.1 is used in both chapters.

A detailed account of the content of the various sections and their interde-
pendencies is included in each chapter’s introduction.



Chapter 1

The Smooth Pseudoisotopy
Functor

In [23, Proposition 1.3], Hatcher defined a homotopy functor PPL which sends a
PL manifold to the space of “stable PL pseudoisotopies”. Later on, Burghelea
and Lashof [6] refined his work, showing the existence of homotopy functors
PDiff,BL : MfdDiff → Top and PDiff,BL : MfdDiff → Spectra and constructing the
space, respectively connective spectrum, of “stable smooth pseudoisotopies”.
We note that PDiff,BL and Ω∞PDiff,BL coincide up to natural weak equivalence.

The literature on pseudoisotopies at some points suggests that a strict func-
tor has already been established. To the author’s knowledge, the sources of
confusion are a remark due to Waldhausen [50, p. 152] and a construction due
to Quinn [38, Definition 5.3].

Unfortunately, in the first case no details are given, while in the second case
it was not shown that the resulting functor evaluates to the right homotopy
type on objects. Neither of the authors claimed otherwise. Moreover, it bears
mentioning that Waldhausen did suggest the use of homotopy limits.

In this chapter we establish a strict functor for smooth pseudoisotopies which
is compatible with the constructions of Hatcher, Burghelea and Lashof. The last
condition stated in each of the following theorems enables us to carry over the
main results of Chapter 2 from the topological to the smooth case. The theorems
are shown as Theorem 1.4.1.2 and Theorem 1.4.2.4, respectively.

Theorem 1.0.0.1. There is a functor PDiff : Top → Top with the following
properties:

1. It descends to a functor of homotopy categories

hoPDiff : ho(Top)→ ho(Top).

2. There is a natural isomorphism of functors

α : hoPDiff → hoPDiff,BL.

3. The subset inclusion PDiff ⊆ PTop extends to a natural transformation of
functors of quasicategories. The construction of PTop is given in [12].

1



2 CHAPTER 1. THE SMOOTH PSEUDOISOTOPY FUNCTOR

The non-connective pseudoistopy spectrum given in [23, Appendix II] is the
point-wise value of our functor to spectra, see Remark 1.4.2.2.

Theorem 1.0.0.2. There is a functor PDiff : Top→ Spectra with the following
properties:

1. It descends to a functor of homotopy categories

hoPDiff : ho(Top)→ ho(Spectra).

2. There is a natural weak equivalence

PDiff → Ω∞PDiff,Spectra.

3. The subset inclusion PDiff ⊆ PTop extends to a natural transformation of
functors of quasicategories. The construction of PTop is given in [12].

Here, Top and Spectra denote the usual 1–categories of compactly gener-
ated weak Hausdorff spaces and of (naive) spectra, respectively. The homotopy
categories are formed with respect to π∗–isomorphisms. Since every object in
the image of these functors is cofibrant and fibrant, this implies that weak
equivalences are sent to homotopy equivalences. The (∞, 1)–categories Top and
Spectra are the simplicial nerves obtained from the usual topological enrich-
ments of Top and Spectra, see Section 1.2.1.

Our definition coincides with the homotopy type of Igusa’s construction
[30]. This, and the natural weak equivalence to the Whitehead spectrum given
in Chapter 2, justify our claim that the functor defined here is indeed the ap-
propriate notion of a smooth pseudoisotopy functor.

Let us outline the proof. We are going to see that it is enough to construct a
homotopy coherent diagram due to a strictification result by Cordier and Porter
[10]. A homotopy coherent diagram is just a map between quasicategories. For
spaces, it is going to be a map P : N h.c.

• (Mfd, cts)∆ → N h.c.
• Top∆ starting in the

quasicategory of smooth, compact manifolds with corners and continuous maps
between them and ending in the quasicategory of topological spaces. Despite
this general framework, the theory of (∞, 1)–categories only plays a minor role,
as the main ideas are geometric in nature.

Roughly speaking, the unstable space of pseudoisotopies P (M) is a sub-
space of Diff(M × I) containing those diffeomorphisms which are given by the
Identity on M × {0} ∪ ∂M × I.

There are two constructions for maps between pseudoisotopy spaces. First,
let i : M → N be a codimension zero embedding. Then i∗ : P (M)→ P (N) ex-
tends some F ∈ P (M) to N×I by the Identity on (N− i(M))×I. Second, con-
sider a vectorbundle p : E →M . There is a transfer map p! : P (M)→ P (DE),
where DE denotes the disk bundle of E. Morally speaking, we send F to a map
which looks like F × IdDn in local coordinates, and bend a neighbourhood of
∂DE× I into DE×{0}, to make sure that we still end up with a map given by
the Identity on ∂DE × I. Unfortunately, bending around corners and smooth
maps do not mesh well, so let us be a little more honest.

Let Stm : Sm−{em+1} → Rm denote the stereographic projection with em+1

the m+ 1–th unit vector in Rm+1. It restricts to a map Stm : Sm− → Dm where
Sm− = Sm ∩ Rm × (−∞, 0] is the lower half of Sm. We identify it with Dm via
the canonical diffeomorphism.
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To describe the actual transfer in local coordinates, we need a parametrised
and slightly deformed version Stm : Dm × I → Dm × I. Fibre-wise, the map
p!(F ) can be understood as a diffeomorphism of Dm × I. On St−1

m (Dm × I) it
is given by St−1

m ◦F × IdDm ◦Stm. Up to isotopy of topological pseudoisotopies,
this means we are “bending around corners”.

The stabilised space of pseudoisotopies is P := hocolimk∈N P (M × (D1)k)
with the transfers of the trivial bundles M×(D1)k+j →M×(D1)k as structure
maps. This definition concludes Section 1.1.

Let us sketch how to pass from a continuous map f : M → N to a zig-zag of
a vectorbundle and a codimension zero embedding. For some k >> 0 we have a
homotopy incl ◦f ' ι : M → N×(D1)k to a smooth embedding ι. Let νι denote
a tubular neighbourhood of ι. We obtain M ← νι → N × (D1)k, where the
first map is a disk bundle and the second map is a codimension zero embedding.
Section 1.2 is devoted to passing, in a coherent fashion, from continuous maps
to such decompositions.

The last step is to pass from the zig-zags to induced maps between stable
pseudoisotopy spaces. We divide it into two parts. In Section 1.3 we introduce
most constructions and proof several technical results, while Section 1.4 contains
the construction of the homotopy coherent diagram.

The main task is to relate a composition of transfers pk! ◦ . . . ◦ p1!(F ) to the
transfer of the composed bundle (p1◦. . .◦pk)!(F ) for a sequence of vectorbundles
pi. Essentially, we compare the subsets of every fibre on which these maps boil
down to applying F (−, t).

We can understand these “level sets” as a tubular neighbourhood of a fixed
level set corresponding to, say t = 1/2. The level sets t = 1/2 for different
compositions of transfers turn out to be isotopic up to higher coherences and
all other data can be carried along the isotopy via parallel transport.

The generalisation to spectra is fairly easy, if one is a bit careful in the con-
struction of homotopy coherent diagrams for the various levels of the spectrum.

Reader’s guide

Section 1.2 only requires the basic notions of manifolds with corners, introduced
right at the beginning of Section 1.1.

Section 1.3 is devoted to the main geometric content of the proof. We use
most of Section 1.1. As this part’s purpose lies in the applications in Section 1.4,
the first-time reader might wish to skip ahead.

Section 1.4 uses most of the definitions and results from Section 1.1, some
definitions introduced at the beginning of Section 1.2, the detailed construc-
tion of homotopy coherent diagrams in Section 1.2.1 and the main results of
Section 1.3.

Throughout this chapter we are going to choose quite a few parameters
denoted as δ with various decorations. An overview with further references can
be found in Section 1.4.3.
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1.1 The Space of Stable Pseudoisotopies

Our objects of interest are certain diffeomorphisms of smooth, compact man-
ifolds with corners. Let 0 ≤ k ≤ n be natural numbers. Let Hk ⊆ Rk be
the subspace of Rk consisting of those vectors x = (x1, . . . , xk) ∈ Rk fulfilling
xi ≥ 0 for 1 ≤ i ≤ k. A smooth manifold with corners M is a paracompact
Hausdorff space with an atlas containing charts α : Hk × Rn−k → U (where k
may vary for a fixed manifold), such that we may extend each change of coor-
dinates β−1 ◦α : α−1(U ∩ V )→ β−1(U ∩ V ) to a diffeomorphism on some open
neighbourhoods of α−1(U ∩ V ) and β−1(U ∩ V ) in Rn. Here U and V denote
open subsets of M and β : Hl × Rn−l → V is another chart.

Given a chart α : Hk × Rn−k → U , the point α(0) is a corner of degree k.
Manifolds with boundary are the same as manifolds with corners of degree at
most 1. A higher corner is a corner of degree two or more.

The diffeomorphisms under consideration are going to restrict to the Identity
on an open neighbourhood of the boundary.

Before we turn to pseudoisotopies, we introduce some language for manifolds
with corners. Note that even the notion of a smooth map between manifolds
with corners is not uniform within the literature. For our purposes, the general
idea is to define all notions by requiring extensions from Hk × Rm−k to Rm,
where we may then use the usual definitions.

Definition 1.1.0.1. A smooth map between manifolds with corners is a con-
tinuous map f : M → N , such that for every point x ∈ M there are charts
α : Hk × Rm−k → Vx and β : Hl × Rn−l → Uf(x), such that

Hk × Rm−k α //

incl

��

Vx
f // Uf(x) Hl × Rn−l

βoo

incl

��
Rm

f̃ // Rn

commutes, where f̃ : Rm → Rn is a smooth map.

Definition 1.1.0.2. An embedding of a manifold with corners is a continuous
and injective map ι : M ↪→ N , such that for every point x ∈M there are charts
α : Hk × Rm−k → Vx and β : Hl × Rn−l → Uι(x), such that

Hk × Rm−k α //

incl

��

Vx
ι // Uι(x) Hl × Rn−l

βoo

incl

��
Rk × Rm−k ι̃ // Rl × Rn−l

commutes, where ι̃ : Rm ∼= Rm × {0} ⊆ Rn is the embedding in the first m
coordinates and we have 0 ≤ l ≤ k ≤ m ≤ n.

Definition 1.1.0.3. A submanifold with corners is the image of an embedding
of a manifold with corners. Naturally, the embedding is not part of the data.

Definition 1.1.0.4. The tangent space of an embedded manifold with corners
ι : M ↪→ Rn at a point x ∈M is given as follows.
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For every x ∈ M − ∂M it is simply ι∗(Tx(M − ∂M)). For x ∈ ∂M , choose
a path γ : [0, 1] → M with γ([0, 1)) ⊆ M − ∂M and γ(1) = x. Further, choose
a basis B of ι∗(Tγ(0)(M − ∂M)). Then TxM ⊆ Tι(x)Rn is the subvectorspace
spanned by the image of B under the parallel transport along γ with respect to
the standard Riemannian metric on Rn.

These assemble into a tangent bundle p̃ : TM →M , which is a subbundle of
TRn, since the transition functions restrict appropriately. Finally, a Riemannian
metric R ∈ Riem(M) on M is a smooth map R : TM ⊗ TM → R which admits
an extension to a Riemannian metric on an open neighbourhood of ι(M).

If not explicitly stated otherwise, “manifold” refers to a smooth, compact
submanifold of R∞ with corners.

Now, we begin the discussion of pseudoisotopies. Let I = [0, 1] denote the
standard interval. A pseudoisotopy of a manifold M relative boundary of M
is a diffeomorphism F : M × I → M × I, such that it restricts to the Identity
on M × {0} ∪ ∂M × I. The pseudoisotopies relative boundary form a subspace
P∂(M) of C∞(M × I,M × I) equipped with the Whitney C∞–topology. Igusa
[30, Proposition 1.3] has shown that the space of pseudoisotopies is weakly
homotopy equivalent to the following subspace of diffeomorphisms of M × I.

Definition 1.1.0.5. The unstable pseudoisotopy space P (M) is the subspace
of C∞(M × I,M × I) which contains the diffeomorphisms F : M × I →M × I
that satisfy:

1. There is an open neighbourhood U of M × {0} ∪ ∂M × I in M × I such
that F |U = IdU .

2. There is an open neighbourhood V of M ×{1} in M × I and a diffeomor-
phism g : M →M such that F |V = g × IdI .

We also need the simplicial set obtained by applying the singular simplicial sets
functor S to this space. We refer to it by S•P (M).

Our interest lies in the stable pseudoisotopy space. As stated in the intro-
duction, the stabilisation maps are special cases of the transfers. Thus we first
discuss the two basic types of induced maps between pseudoisotopy spaces. The
first one can be found, for example, in [23] but its origins are unclear.

Definition 1.1.0.6. Let i : M → N be a smooth embedding of codimension
zero. Then we obtain an induced continuous map

i∗ : P (M)→P (N)

f 7→i ◦ f ◦ i−1 ∪ Id : N × I = (i(M) ∪ (N − i(M)))× I → N × I.

Remark 1.1.0.7. We only have to assume our manifolds to be compact because
the above definition works for every codimension zero embedding with closed
image. Every other construction works without the compactness assumption.
This is important for the case of a spectrum valued functor.

Remark 1.1.0.8. This construction actually yields a continuous map

P (M)× Emb0(M,N)→ P (N)

(F, i) 7→ i∗(F )
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where all spaces carry the C∞–topology. Here Emb0(M,N) denotes the space
of smooth codimension zero embeddings.

The description of the transfer is due to Burghelea and Lashof [6]. It is a
little more involved, but still elementary.

Definition 1.1.0.9. Let M be a smooth manifold and F ∈ P (M) be a pseu-
doisotopy on M . The differential of F gives a section dF : M×I → T (M×I) by
(x, t) 7→ dF(x,t)(eI(t)), where eI is the canonical unit basis vectorfield I → TI.

Let p : E → M be a smooth vector bundle over M together with a Rie-
mannian metric on E. We restrict to the disk bundle p : DE → M and obtain
a subbundle ker(dp) ⊆ TDE. This bundle admits an orthogonal complement
ker(dp)⊥ with respect to the Riemannian metric. Since dp is surjective, it in-
duces an isomorphism ker(dp)⊥ ∼= p∗TM and a split TE ∼= p∗TM ⊕ ker(dp).

We have a map

E × I
dF◦(p×Id)

++

Id

��

&&
p∗(T (M × I)) //

��

T (M × I)

��
E × I

p×Id // M × I

which, via the split TE ∼= p∗TM ⊕ ker(dp), yields a vector field on E × I. We
restrict to the disk bundle DE in E. The transfer tr(F ) ∈ C∞(DE×I,DE×I)
of F along p is the unique solution of the differential equation determined by
the vector field and the initial values tr(F )|DE×{0} = Id.

Remark 1.1.0.10. The transfer tr : P (M)→ C∞(DE × I,DE × I) preserves
the Identity and, by the chain rule, compositions. Therefore, it descends to a
group homomorphism tr : P (M)→ Diff(DE × I).

In local coordinates, which respect TDE ∼= ker(dp)⊥⊕ker(dp), the map tr(F )
is given by F × IdDk where k is the dimension of the fibre of p.

We briefly explain the relation to the geometric transfer in the topologi-
cal category, constructed in [12], which also relies on [6]. This is going to be
important once we compare the topological and smooth pseudoisotopy functors.

Remark 1.1.0.11. Let ξ : E → M be a topological fibre bundle with compact
fibre. Then we have pullbacks

ξ∗pri
E //

��

E

ξ

��
M I

pri // M

for i = 0, 1. A parallel transport in the topological category is an isomorphism
of fibre bundles ν : ξ∗pr0

E → ξ∗pr1
E over M I with ν ◦ s0 = s1, where si is the

canonical section si : E → ξ∗pri
E.

In the special case of a smooth vector bundle with a Riemannian metric
on the total space, we obtain a parallel transport in the sense of Riemannian
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geometry. This is an isomorphism νsmooth : ξ∗pr0
Esmooth → ξ∗pr1

Esmooth, where

ξ∗pri
Esmooth ⊆ ξ∗pri

E is the subbundle over the subspace of smooth paths I →M .

Since the smooth paths are dense in the locally compact space M I , we obtain
a unique continuous extension of νsmooth to a parallel transport in the topological
category.

Now we finish the construction of the transfer in the topological category.
Let ν′ be a parallel transport as above and ν the parallel transport of the bundle
p× IdI given by (ω, (e, t)) 7→ (ω, ν′(prM ◦ω, e),prI ◦ω(1)). For (m, t) ∈ M × I,
let ω(m,t) : [0, 1] → M × I be given by s 7→ (m, ts). Let F be a pseudoisotopy
on M . The geometric transfer of F along p with respect to ν′ is given by the
formula Trν′(F )(e, t) = prE×I ◦ν(F ◦ ω(p(e),t), (e, 0)) for (e, t) ∈ E × I.

The same construction makes sense in the smooth category, if we use a
smooth pseudoisotopy F and it yields the same map tr(F ) we defined in Defi-
nition 1.1.0.9.

To sum up our discussion, given a smooth vector bundle p : E → M with a
Riemannian metric, there is a transfer map Trν′ : P

Top(M)→ PTop(E), which
restricts to the smooth transfer map tr : PDiff(M)→ PDiff(E).

It follows from Remark 1.1.0.10 above that tr(F ) fulfils the second condition
of an element of P (DE). However, it does not satisfy the first condition. The
Jacobian of tr(F ) is the Identity in a neighbourhood of p−1(∂M)×I∪DE×{0},
but the boundary of the disk bundle also contains the sphere subbundle of DE.
For later reference we introduce a space of pseudoisotopies as the target of these
transfer maps.

Definition 1.1.0.12. Let P †(M) ⊆ C∞(M × I,M × I) be the subspace of
diffeomorphisms F : M × I →M × I, which fulfil

1. There is an open neighbourhood U of M × {0} such that F |U = IdU .

2. There is an open neighbourhood V of M × {1} and a diffeomorphism
g : M →M such that F |V = g × IdI .

In order to obtain an element of P (DE), we are going to fibre-wise bend
our map tr(F ). We are going to give a lot of details, because the construction
of our homotopy coherent diagram very much depends on the precise notion of
transfer we introduce.

1.1.1 Stereographic projections

We define an embedding, reminiscent of the stereographic projection. Its inverse
is going to serve as the main tool to construct a coherent generalisation of the
classical constructions of a bending map to higher dimensions.

Definition 1.1.1.1. Let m ∈ N be a natural number, let 1/4 > δ̃ > δ > 0
and let λ : R → R be given by t 7→ t(δ − 3/4) + 3/4. Note that λ(0) = 3/4
and λ(1) = δ. Let em+1 be the (m + 1)–th unit vector. The inverse of the
parametrised stereographic projection in m coordinates is

St−1

m,δ,δ̃
: Rm × I → (Rm × R)− ({0} × R<1−δ̃)

(x, t) 7→ λ(t)

(
2x

‖x‖2 + 1
,
‖x‖2 − 1

‖x‖2 + 1

)
+ (1− δ̃)em+1.
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We set s′ := s−(1− δ̃) for s ∈ R. The stereographic projection is an appropriate
restriction of

Stm,δ,δ̃ : (Rm × R)− ({0} × R<1−δ̃)→ Rm × I

(y, s) 7→
(

y

‖(y, s′)‖ − s′
, λ−1(‖(y, s′)‖)

)
.

We usually suppress the δ–indices of the stereographic projection to improve
readability. We mostly work with the inverse and refer to it as the stereographic
inverse.

We are interested in the restriction of St−1
m to Dm × I which parametrises a

tubular neighbourhood of the lower half of the sphere. We give a sketch in the
context of our application in Picture 1.1.1.11.

Given a decomposition Rm =
∏k
i=1 Rmi we define a parametrised stereo-

graphic inverse which only applies to some of the coordinates

St−1
mj : Rm × I → Rm × R

(x<mj , xmj , x>mj , t) 7→ (x<mj ,prRmj ◦St−1
mj (xmj , t), x>mj ,prR ◦ St−1

mj (xmj , t)).

We are going to define various extensions of the parametrised stereographic
inverse, for each of which we implicitly assume a version which only refers to
some coordinates.

Remark 1.1.1.2. The choice of 1/4 and 3/4 is to ensure that compositions of
parametrised stereographic inverses make sense on certain subspaces (namely,
products of disks). There are, however, many other possibilities which would
work just as well.

Since the image of the stereographic inverse is contained in Rm×I, we often
refer to the last coordinate as I instead of R>0.

Remark 1.1.1.3. The choices of δ and δ̃ induce a continuous map

{(δ̃, δ) ∈ (0, 1/4))2|δ̃ > δ} →C∞(Rm × I, (Rm × R)− ({0} × R<1−δ̃))

(δ, δ̃) 7→St−1

m,δ,δ̃

with respect to the Whitney topology. The analogous statement holds for Stm,δ,δ̃.

If we restrict the parametrised stereographic inverse to the unit disks Dm×I
in Rm× I, the image is a family of lower hemispheres. We wish to extend them
smoothly by a cylinder in the I–direction. To fit the pieces together we adjust
the parametrised stereographic inverse near Sm × I.

Definition 1.1.1.4. Let

β : {(δ̄, δ†) ∈ (0, 1/4)2|2δ† > δ̄ > δ†} →C∞(R, [0, 1])

(δ̄, δ†) 7→βδ̄,δ†

be a continuous map, such that

βδ̄,δ† : R→ [0, 1]

satisfies the following properties for each pair δ̄, δ†.
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1. βδ̄,δ† is smooth and monotonously increasing.

2. βδ̄,δ†(t) = 0 for t ≤ 1− 2δ† − δ̄

3. βδ̄,δ†(t) = 1 for t ≥ 1− δ̄

4. limδ̄,δ†→0 supt∈R δ
†2‖ ddtβδ̄,δ†(t)‖ = 0

Lemma 1.1.1.5. There is a map β as defined above.

Proof. Let 1/4 > δ̄ > δ† > 0. We define the smooth map

φ : R→[0, 1]

x 7→

{
0 for ‖x‖ ≥ 1

exp(− 1
1−x2 ) for ‖x‖ < 1.

The map

βδ̄,δ† : R→[0, 1]

t 7→ 1∫∞
−∞ φ( x

δ†
)dx

∫ t−1+δ̄+δ†

−∞
φ(
x

δ†
)dx

has the desired properties. We only give an argument for the fourth one.
Let cδ† :=

∫∞
−∞ φ( x

δ†
)dx. We substitute via ρ : [−δ†, δ†] → [−1, 1], s 7→ s/δ†

and obtain

1

δ†
cδ† =

1

δ†

∫ ∞
−∞

φ(
x

δ†
)dx

=

∫ δ†

−δ†
exp(− 1

1− ( s
δ†

)2
)

1

δ†
ds =

∫ 1

−1

exp(− 1

1− x2
)dx = c1

Now we may calculate

sup
t
‖ d
dt
βδ̄,δ†(t)‖ = sup

t

1

cδ†
φ(

t

δ†
) =

1

cδ†
=

1

δ†
1

c1
.

and the result follows.

As with the stereographic projection St we abuse notation and suppress the
variables δ̄ and δ† when we refer to some βδ̄,δ† .

Definition 1.1.1.6. The extendable parametrised stereographic inverse is the
map

St−1
m : Rm × I →(Rm × R)− ({0} × R<1−δ̃)

(x, t) 7→
(
x

(
β(‖x‖) 1

‖x‖
+ (1− β(‖x‖)) 2

‖x‖2 + 1

)
,
‖x‖2 − 1

‖x‖2 + 1

)
λ(t)

+ (1− δ̃)em+1.

We show below that for every sufficiently small choice of δ̄ and δ† the restriction
to Dm × I is still a smooth embedding.

We abuse notation and set β(‖x‖)(1/‖x‖) = 0 for ‖x‖ = 0. Since this is the
unique continuous extension of the given formula to {0}× I, this should not be
a source of confusion.
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Remark 1.1.1.7. The map

{(δ̄, δ̃, δ, δ†) ∈ (0, 1/4)4|2δ† > δ̄ > δ̃ > δ > δ†} → C∞(Rm × I,Rm × R)

(δ̄, δ̃, δ, δ†) 7→ St−1

m,δ̄,δ̃,δ,δ†

is continuous.

Lemma 1.1.1.8. For sufficiently small choices of δ̄ and δ†, there is an open
neighbourhood U of Dm × I, such that the restriction of St−1

m to U is a smooth
embedding.

Proof. We first show that St−1
m is an immersion for sufficiently small choices of

δ̄ and δ†. Then we show that the local embeddings assemble into a global one.
There is a neighbourhood of the origin where St−1

m and St−1
m coincide. Away

from {0}× I we parametrise the source of our map Rm× I as R>0×Sm−1× I.
Then the stereographic inverses are maps of the form

(r, v1, . . . , vm, t) 7→ (λ(t)µ(r)r, v1, . . . , vm, ν(r)λ(t) + 1− δ̃)

with, in the case of St−1
m , smooth maps

µ̃(r) = βδ̄,δ†(r)
1

r
+ (1− βδ̄,δ†(r))

2

r2 + 1

and

ν(r) =
r2 − 1

r2 + 1
.

For St−1
m , we have

µ(r) =
2

r2 + 1

and the same formula for ν(r) as above.
From this description a straightforward computation shows that

|det(dSt−1
m,δ̄,δ†

)− det(dSt−1
m )| ≤ c · sup

r
(µ̃δ̄,δ†(r)− µ(r),

d

dr
µ̃δ̄,δ†(r)−

d

dr
µ(r))

for some constant c > 0 which is independent of r, v1, . . . , vm and t, as well as
δ̄, δ† and δ̃. It does depend on δ, though.

This estimate implies that

lim
δ̄,δ†→0

|det(dStm,δ̄−1,δ†)− det(dSt−1
m )| = 0

holds. We indicate the main step. Since (δ̄, δ†) → βδ̄,δ† is a C∞–continuous
map, it is enough to show that

d

dr
βδ̄,δ†(r)

∥∥∥∥ 2

r2 + 1
− 1

r

∥∥∥∥ = dβδ̄,δ†(r)
(r − 1)2

(r2 + 1)r
+ βδ̄,δ†(r)

(r2 − 1)2

(r2 + 1)2r

converges to zero for δ̄ and δ† going to zero. Note that Stm and Stm agree for
r ≤ 1 − 2δ† − δ̄. Thus, since βδ̄,δ† is bounded, the second summand converges
to zero.
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Further, as 2δ† > δ̄ they in particular agree for r ≤ 1 − 4δ†. For the first
summand we set ε = 1− r and obtain∥∥∥∥dβδ̄,δ†(r) (r − 1)2

(r2 + 1)r

∥∥∥∥ =

∥∥∥∥dβδ̄,δ†(r)ε2 1

2− 4ε+ 3ε2 − ε3

∥∥∥∥ ≤ c′|dβδ̄,δ†(r)ε2|
where c′ > 0 denotes some constant. The fourth property of βδ̄,δ† ensures that
this expression converges to zero, as desired.

We have learned that the differential of St−1
m is invertible in all points of

Dm × I for sufficiently small choices of δ̄ and δ†. Hence the map St−1
m is an

immersion by invariance of domain.
It is a straightforward calculation to check that our map is injective.

Now we are finally in position to properly describe the ’fibre-wise bending’.

Definition 1.1.1.9. Let p : E → M be an m–dimensional vector bundle to-
gether with a Riemannian metric on E. Then we define the fibre-wise extendable
parametrised stereographic inverse St−1

m : DE × I → DE × I by the formula

St−1
m (e, t) :=

(
e

(
β(‖e‖) 1

‖e‖
+ (1− β(‖e‖)) 2

‖e‖2 + 1

)
,
‖e‖2 − 1

‖e‖2 + 1

)
λ(t)

+ (1− δ̃)em+1

where ‖e‖ denotes the norm of e and em+1 is again the unit vector in the
I–coordinate. Similarly, we obtain the fibre-wise parametrised stereographic in-
verse St−1

m : DE × I → DE × I.

Corollary 1.1.1.10. The fibre-wise stereographic inverse is a smooth embedding
St−1

m : DE × I → DE × I and the map

{(δ̄, δ̃, δ, δ†) ∈ (0, 1/4)4|2δ† > δ̄ > δ̃ > δ > δ†} → C∞p (DE × I,DE × I)

(δ̄, δ̃, δ, δ†) 7→ St−1

m,δ̄,δ̃,δ,δ†

is continuous where C∞p (DE × I,DE × I) ⊆ C∞(DE × I,DE × I) denotes the
subspace of fibre preserving smooth maps.

Proof. It is enough to check this property on a covering {Ui}i∈I by local trivial-
isations since the restrictions to local neighbourhoods yield a continuous, open
and injective map C∞p (DE× I,DE× I)→

∏
i∈I C

∞
p (p−1(Ui)× I, p−1(Ui)× I).

There is a covering by local trivialisations φ : p−1(U)
∼=−→ U × F for p, such

that we obtain a commutative square

p−1(U)× I
St−1
m //

φ

��

p−1(U)× I

φ

��
U × F × I

Id×St−1
m // U × F × I

where St−1
m denotes the extendable parametrised stereographic inverse. The

result now follows from Lemma 1.1.1.8 and Remark 1.1.1.7.
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Next we describe the bending of a transferred pseudoisotopy. Each fibre Φ
of p : E →M is an inner product space. Hence so is Φ× I with the usual norm
on I. Let x = (xΦ, xI) ∈ Φ × I. We denote by Br(f) the closed ball of radius
r around f in Φ = Φ× {1} ⊆ Φ× I. Similarly B̊r(f) is the open ball. Further,
B−r (f, t) is the set of all x = (xΦ, xI) ∈ Φ× I with ‖(f, t)− x‖ ≤ r and xI ≤ t,
i.e. the lower half of the ball and we write B̊−r (f, t) for the lower half of the open
ball.

On each fibre, we obtain a decomposition

F × I =B−δ (0, 1− δ̃)
∪Bδ(0)× [1− δ̃, 1]

∪B−3/4(0, 1− δ̃)− B̊−δ (0, 1− δ̃)

∪ (B3/4(0)− B̊δ(0))× [1− δ̃, 1]

∪ Φ× I − (B−3/4(0, 1− δ̃) ∪B3/4(0)× [1− δ̃, 1])

into the lower half of the ball of radius δ around (0, 1− δ̃) ∈ Φ× I, the cylinder
above its boundary, the image of Stm(DΦ× I) = B−3/4(0, 1− δ̃)− B̊−δ (0, 1− δ̃),
its cylinder cyl(St−1

m (DF ×I)) and the complement of all these which we denote
by Φc.

Picture 1.1.1.11. We sketch the decomposition of a single fibre for m = 1 in
local coordinates:

D1

I

1− δ̃

1− δ̃ − δ

1

1
4

Since our inner product stems from a Riemannian metric, these fibre-wise
decompositions assemble into a decomposition of the whole bundle

E × I =E−δ (0, 1− δ̃)
∪ Eδ(0)× [1− δ̃, 1]

∪ E−3/4(0, 1− δ̃)− E̊−δ (0, 1− δ̃)

∪ (E3/4(0)− E̊δ(0))× [1− δ̃, 1]

∪ E × I − (E−3/4(0, 1− δ̃) ∪ E3/4(0)× [1− δ̃, 1])
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where a decorated E denotes the bundle which is fibre-wise given by ’B’ with
the same decorations. Also, we denote the last component, complement of the
other four, by Ec.

Given a pseudoisotopy F ∈ P (M), we now define a diffeomorphism on each of
these components separately. It follows from the definitions that they assemble
into a diffeomorphism on all of E × I.

Definition 1.1.1.12. Let F ∈ P (M) be a pseudoisotopy. We have a diffeo-
morphism

Eδ((0, 1− δ̃))→ Eδ((0, 1− δ̃))
(e, t) 7→ (prE ◦tr(F )(e, 1), t)

given by g × IdDm × IdI in local coordinates. Similarly, we obtain

Bδ(0)× [1− δ̃, 1]→ Bδ(0)× [1− δ̃, 1]

(e, t) 7→ (prE ◦tr(F )(e, 1), t).

Next is the most interesting part

St−1
m (DF × I)→ St−1

m (DF × I)

(e, t) 7→ St−1
m ◦ tr(F ) ◦ Stm(e, t)

where the full pseudoisotopy is employed. On the cylinder we have

cyl(St−1
m (DF × I))→ cyl(St−1

m (DF × I))

(e, t) 7→ (prE ◦St−1
m ◦ tr(F ) ◦ Stm(e, 1− δ̃), t)

which copies the behaviour on height 1− δ̃ to [1− δ̃, 1]. Finally we use

Id: Ec → Ec.

On each of these areas, the map is smooth. It is straightforward to check
that applying the same procedure to F−1 yields a set-theoretic inverse. So our
newly constructed map is a bijection. However, it is in general only smooth
away from (E3/4(0) − E̊δ(0)) × {1 − δ̃}. To remedy this issue we replace St−1

m

by St−1
m and use the analogous construction.

We denote by V = prE(im(St−1
m ) ∩ (E × {(1 − δ̃)})) the analogue of the

non-smooth area. The set

(F × I)− ((F × I) ∩ (im(St−1
m ) ∪ (V × [1− δ̃, 1])))

consists of two connected components, corresponding to the areas where g × Id
and Id were applied. Let us describe them in a little more detail.

Definition 1.1.1.13. Recall from Definition 1.1.1.1 that λ(1) = δ. Consider
the curve

γ : [0, 1]→ Dm+1 ⊆ D1 ×Dm−1 × I

s 7→
(

(1− β(s))
2s

‖s‖2 + 1
+ β(s)

s

‖s‖
, 0,
‖s‖2 − 1

‖s‖2 + 1

)
δ + (1− δ̃)em+1.
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It is the image of D1 × {0} × {1} ⊆ Dm × I under St−1
m . The orthogonal

group O(m) acts on Dm × I via A.(x, t) := (Ax, t). Let O(m) im(γ) denote the
orbit of im(γ) under this action. Since St−1

m is an O(m)–equivariant map, this
orbit is the image of Dm × {1} under St−1

m .
The space O(m) im(γ) ∪ ((Bδ(0)) × {1 − δ̃}) bounds a codimension zero

submanifold (with corners) of Dm × I: The submanifold consists of all points
which lie on a line from (0, 1 − δ̃) to a point on the boundary. We call this
submanifold T .

To see that T is indeed a submanifold, we first note that the smooth embed-
ding

Dm × (0, 1]→Dm+1

(x, r) 7→r(St−1
m (x, 1)− (1− δ̃)em+1) + (1− δ̃)em+1

yields local coordinates away from (0, 1 − δ̃) ∈ T . Since there is some ε > 0
with B−ε (0, 1 − δ̃) ∩ T = B−ε (0, 1 − δ̃) we also obtain local coordinates around
the single point left. We do not make use of the fact that T is a submanifold
before Section 1.3.

The connected component containing (0, 1) ∈ F × I is T .

Definition 1.1.1.14. Let 3/4 > δ > 0. We set

γ : [0, 1]× [0, 3/(3− 4δ)]→Dmj+1 = D1 ×Dmj−1 × I

(s, t) 7→
(

(1− β(s))
2s

‖s‖2 + 1
+ β(s)

s

‖s‖
, 0,
‖s‖1 − 1

‖s‖2 + 1

)
λ(t)

+ (1− δ̃)em+1.

The non-compact component of Rm × I − O(m)γ([0, 1] × {0}) is the other
connected component.

Definition 1.1.1.15. Let p : E → M be an m–dimensional vector bundle to-
gether with a Riemannian metric on E. Then the transfer map is

p! : P (M)→P (DE)

F 7→ p!(F ) =



(prE ◦tr(F ) ◦ (prE ×{1}))× IdI on T

St−1
m ◦ tr(F ) ◦ Stm on im(St−1

m )

(prE ◦St−1
m ◦ tr(F ) ◦ Stm ◦ (prE ×{1− δ̃}))× IdI

on V × [1− δ̃, 1]

Id on Dm × I −O(m)γ([0, 1]× [0, 3/(3− 4δ)]).

In local coordinates (prE ◦tr(F )◦(prE ×{1}))×IdI = g×IdDk × IdI holds. In
contrast to Definition 1.1.1.12 we describe the area where this map is employed
as a single space.

Remark 1.1.1.16. One can easily generalise this definition to the case where
we only bend with respect to the coordinates of a subbundle in each fibre, because
im(St−1

mj
)∪ (prE(im(St−1

m )∩ (E ×{(1− δ̃)}))× [1− δ̃, 1]) divides each fibre into
two connected components as well.
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We give a little more detail. Consider a vectorbundle E, a subvectorbundle
Ê ⊆ E and a Riemannian metric on E. Then we obtain a split Ê ⊕ Ê⊥ ∼= E.
Hence we may reduce the structure group of E to O(dim(Ê))×O(dim(Ê⊥)). The
map St−1

dim(Ê)
× Id is O(dim(Ê))×O(dim(Ê⊥))–equivariant and thus invariant

under a change of trivialisations. Thus we obtain a fibre-wise stereographic
inverse with respect to the coordinates of the subbundle, say Rmj ⊆ Rm in local
coordinates.

Now we proceed similar to the absolute case. The analogue of T is the sub-

manifold τ(Rm
+
j−1 × Tj × Rm−m

+
j ), where τ shuffles the I–coordinate to the

end, while the analogue of the other component is given via the decomposition

Rm × I − τ(Rm
+
j−1 ×O(m)γ([0, 1]× {0})× Rm−m

+
j ).

Remark 1.1.1.17. We define bending maps bd : P †(E) → P †(E) by replacing
tr(F ) with G ∈ P †(E) in the above definition.

Remark 1.1.1.18. Composition and Cartesian product with a smooth map
induce continuous maps with respect to the Whitney C∞–topology. Since tr is
in local coordinates given by taking the Cartesian product with the Identity on
the fibre, p! is thus a continuous map.

Moreover, we obtain a continuous map

{(δ̄, δ̃, δ, δ†) ∈ (0, 1/4)4|2δ† > δ̄ > δ̃ > δ > δ†} × Riem(E)× P (M)→ P (DE)

((δ̄, δ̃, δ, δ†), R, F ) 7→ (p!)δ̄,δ̃,δ,δ†,R(F )

where Riem(E) ⊆ Hom(TE⊗TE,R) is the space of Riemannian metrics on the
tangent space of E. In particular, such a metric induces one on E. It can be
checked in local coordinates that the map is indeed continuous.

For later use we briefly discuss the compatibility of the transfer and bending
operations. Here we need the Riemannian metric on TE.

Lemma 1.1.1.19. Let p1 : E1 → M and p2 : E2 → E1 be two disk bundles
and R1, R2 Riemannian metrics on E1 and E2, respectively. Then we obtain a
diagram

P (M)
tr // P †(E1)

tr //

bd1

��

P †(E2)

bd1

��
P †(E1)

tr // P †(E2)

bd2

��
P (E2)

of transfer and bending maps, where bd1 and bd2 refer to the bending operations
with respect to the boundary originating from the fibre coordinates of E1 and
E2, respectively. The square and hence the whole diagram commutes.

Proof. The structure group of the bundle p1 ◦ p2 : E2 →M is O(m1)×O(m2).
Let F ∈ P †(E1) be a pseudoisotopy of E1. We compare tr◦bd1(F ) and bd1◦tr(F )
in P †(E2).

In local coordinates both maps are given by F (−, 1) on the fibre-wise sub-
space Dm1×Dm2×I−τ(O(m1)γ([0, 1]× [0, 3/(3−4δ)])×Dm2) and the Identity
on τ(T1 ×Dm2).
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These are the two connected components which form the complement to
im(St−1

m1
) ∪ V × [1− δ̃, 1], the image of the parametrised stereographic inverse,

with respect to the fibre coordinates of E1, together with its cylinder. So we
restrict to the subspace im(St−1

1 ) of E1 on which bd1 is given by conjugation
with St−1

1 . Consequently, we henceforth consider p−1
2 (im(St−1

1 )) instead of E2.
Also, we write St−1

1 instead of St−1
m1

to ease up notation.
By definition tr◦bd1(F ) is the solution of a certain differential equation with

initial values and the latter are fulfilled by any pseudoisotopy of E2. Hence we
study the differentials of our maps.

The tangent space of E2 splits as TE2
∼= TE1 ⊕ ker(dp2). On our subspace

the differential of tr ◦ bd1(f) with respect to this split is, in local coordinates,(
d(St1 ◦ F ◦ (St1)−1) 0

0 Id

)
by definition of the transfer. The parametrised stereographic inverse with re-
spect to the fibre coordinates of E1 on E2 is in some local trivialisation given
by St1 × Id. So the differential of bd1 ◦ tr(F ) on the subspace p−1

2 (im(St1)) is(
d(St1) 0

0 Id

)
◦
(
dF 0
0 Id

)
◦
(
d(St1)−1 0

0 Id

)
and thus the differentials of the pseudoisotopies agree everywhere. As they also
have the same initial values they have to coincide and the diagram commutes.

With the transfer maps at hand, we are in position to define the spaces
of stable pseudoisotopy. It is easy to check that our transfer, applied to the
trivial 1–dimensional disk bundle, yields a map which represents the homotopy
class of the stabilisation map used by Igusa to define the space of stable smooth
pseudoisotopy [30, Conditions 1.3, p. 44].

Definition 1.1.1.20. The stable pseudoisotopy space of a smooth manifold M
is

P(M) := hocolimk∈N P (M × (D1)k)

with the transfer pr! : P (M × (D1)k) → P (M × (D1)k+1) with respect to the
trivial 1–dimensional disk bundle pr : M × (D1)k+1 → M × (D1)k as its k–th
structure map.



1.2. FROM CONTINUOUS MAPS TO SMOOTH EMBEDDINGS 17

1.2 From Continuous Maps to Smooth Embed-
dings

To define a homotopy coherent diagram we are going to give a parametrised
version of the following construction. Let f : M → N be a continuous map
between manifolds. We smoothly approximate f up to homotopy by some
f̃ : M → N . Then we compose with an embedding j : N ↪→ N × (D1)k for some
large k ∈ N. Now we find a smooth homotopy j ◦ f̃ ' ι to a smooth embedding
ι : M ↪→ N × (D1)k. We choose a tubular neighbourhood p : νι → ι(M) via a
Riemannian metric on N and obtain a zig-zag M ← νι ↪→ N × (D1)k of a disk
bundle, as the restriction of a vectorbundle, and a codimension zero embedding
i : νι ↪→ N × (D1)k. We define P (f) : P (M)→ P (N) as i∗ ◦ p!.

This chapter takes care of every step but the passage from disk bundles and
embeddings to transfers and induced maps We repeatedly employ the obstruc-
tion theory explained in Section 1.2.1. In particular, the results presented here
are independent of our intended application to pseudoisotopies. We need some
definitions to formulate the key result.

Definition 1.2.0.1. Let (Mfd, cts)∆ be the topologically enriched full subcat-
egory of Top∆ with smooth, compact manifolds with corners as objects.

The objects of the topologically enriched category (Mfd, smooth)∆ are com-
pact smooth manifolds with corners and its mapping spaces are smooth maps
equipped with the Whitney C∞–topology.

Let (Mfd, emb)∆ be the topologically enriched category which has smooth
manifolds with corners as objects and as mapping spaces the spaces of embed-
dings Emb(M,N) ⊆ C∞(M,N) equipped with the Whitney topology.

Definition 1.2.0.2. Let D∆ be the simplicially enriched category with mani-
folds with corners as objects and the following mapping spaces:

Let M,N ∈ D∆. An n–simplex in D∆(M,N) is a 3–tuple (ι, νι, p), where

• ι : |∆n| → Emb(M,N) is a C∞–continuous family of embeddings of man-
ifolds with corners.

• νι ⊆ N × |∆n| is a submanifold and p : νι→M × |∆n| is a smooth map,
such that (νι ∩ N × {t}, p : νι ∩ N × {t} → M) is an embedded tubular
neighbourhood of ι(t) for each t ∈ |∆n|.

The composition

(ι2 : M1 ↪→M2, νM1, p2) ◦ (ι1 : M0 ↪→M1, νM0, p1)

is given by

(ι2 ◦ ι1 : M0 ↪→M2, p
∗
2(νM0), p1 ◦ p2)

where p∗2(νM0) is the disk subbundle of dimension m1 + m2 of the composed
bundle p1 ◦ p2 : p−1

2 (νM0)→M0 with fibre Dm1 ×Dm2 .
There is a projection functor pr : D∆ → (Mfd, emb) ⊆ (Mfd, smooth), given

by (ι, νι, p) 7→ ι.

We define tubular neighbourhoods of manifolds with corners in Section 1.2.2
below.
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In order to make room for the stabilisation along M×(D1)k ↪→M×(D1)k+1

in our quasicategories we rely on Ind–completion. A detailed explanation of Ind–
objects in the framework of quasicategories is given in [33, Chapter 5.3.5]. We
state all the properties necessary for our applications:

Proposition 1.2.0.3. Let C be a small quasicategory. There is a small quasi-
category Ind(C) with the following properties:

1. There is a Yoneda map j : C ↪→ Ind(C), which is a fully faithful embedding,
see [33, Remark 5.3.5.2]. We often identify C with its image under j.

2. The quasicategory Ind(C) contains all countably filtered homotopy colimits,
see [33, Proposition 5.3.5.3].1

3. The objects in the image of j are compact in Ind(C), see [33, Proposi-
tion 5.3.5.5].

4. The Ind–construction extends to an endofunctor of the quasicategory of
small quasicategories Ind: qcat → qcat, see the argument following [33,
Proposition 5.3.5.12].

5. The map j∗ : Mapω(Ind(C),N h.c.
• Kan∆) → Map(C,N h.c.

• Kan∆) is an
equivalence, where the left hand side denotes the ∞–category of all count-
ably continuous functors from Ind(C) to N h.c.

• Kan∆, see [33, Proposi-
tion 5.3.5.10]. Here Kan∆ is the simplicially enriched category of Kan-
complexes.

Remark 1.2.0.4. A reader not too keen on ∞–categorical techniques may use
Ind–completions of simplicially enriched categories instead. Note that this leads
to differences in technical details.

Now we can state this section’s main result, a “parametrised version” of the
construction explained in the beginning of the chapter.

Theorem 1.2.0.5. There is a map Fch : N h.c.
• (Mfd, cts)∆ → Ind(N h.c.

• D∆) with
the following properties:

1. Let i : (Mfd, smooth)∆ ↪→ (Mfd, cts)∆ be the inclusion functor. There is a
natural transformation of (∞, 1)–functors α : j ⇒ Ind(N h.c.(i ◦ pr)) ◦Fch.

2. Let M ∈ (Mfd, cts)∆. Then Fch(M) = hocolimn∈NM × (D1)n with struc-
ture maps M×(D1)n×{0} ↪→M×(D1)n+1 (with some choice of a tubular
neighbourhood). In particular, α is a point-wise homotopy equivalence.

3. The two properties have the following consequence: Let f : M → N be a
continuous map and iM : M → Fch(M) the structure map of the homotopy
colimit.

We have Ind(N h.c.(i◦pr))(Fch(f))◦ iM ' iN ◦f in Ind(N h.c.
• (Mfd, cts)∆).

1Note that Lurie refers to the cones in quasicategories which correspond to homotopy
colimits in, for example, simplicially enriched categories, as colimits.
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1.2.1 Strictification of homotopy coherent diagrams

In order to improve the constructions explained so far to an actual functor
we rely on strictification results due to Cordier and Porter [10]. Their work
is a variation of Vogt’s [48] strictification of homotopy coherent diagrams of
topological spaces. To apply these results in our case we have to recall some
basic facts about quasicategories, which can be found in e.g. Lurie [33, Chap-
ter 1.1.4 and Chapter 1.1.5].

In principle, some smallness issues are going to occur in this part. But in
our applications we may consider the submanifolds of R∞ to ensure everything
stays in the realm of sets.

Let A be a small category. Let N : Cat→ sSet denote the nerve functor and
τ its left adjoint, the fundamental category functor. Let ι : Cat→ Cat∆ denote
the functor which sends a small categoryA to the small simplicially enriched cat-
egory with ob(ι(A)) = ob(A) and discrete mapping spaces ι(A)(a, b) = A(a, b).
Let S : sSet→ Cat∆ denote the rigidification functor from simplicial sets into
simplicially enriched categories and N h.c. denote its right adjoint, the simplicial
nerve. We write S(A) for S(N•A).

The simplicial nerve restricts to a functor from Kan-enriched categories to
quasicategories N h.c.

• : CatKan → Qcat. The simplicial nerve of a topologically
enriched category is obtained by applying N h.c.

• ◦ S∗. We typically suppress S∗
in this context.

There is a natural isomorphism τ(N h.c.
• A)→ A of categories. We obtain an

isomorphism N h.c.
• ι(A) → N•A via the τ − N–adjunction. Thus we obtain a

natural transformation ε : S(N•A)→ ι(A) by the composition

S(N•A)

ε

33S(N h.c.
• ι(A))

∼=oo ∼= // ι(A)

with the latter map the counit of the S−N h.c.–adjunction. We identify A with
ι(A) from here on out.

Before we proceed, let us recall the rigidification functor.

Definition 1.2.1.1. Let i ≤ j be natural numbers. The category Pi,j is the
partially ordered set which contains the subsets of [i, j]N = {i, i+1, . . . , j} which
contain i and j.

For i ≤ j ≤ k we obtain a “union” functor Pi,j × Pj,k → Pi,k given by
(U, V ) 7→ U ∪ V .

A non-decreasing morphism α : [i, j]N → [α(i), α(j)]N induces a “change of
sets” functor P (α) : Pi,j → Pα(i),α(j) given by U 7→ α(U).

Definition 1.2.1.2. The rigidification functor is given on the n–simplex ∆n as
follows:

• The objects of the simplicially enriched category S(∆n) are the objects
of the category [n].

• The morphism space S(∆n)(i, j) is N•Pi,j the nerve of the category Pi,j .

• The composition law S(∆n)(i, j)×S(∆n)(j, k)→ S(∆n)(i, k) is induced
by the union functor Pi,j × Pj,k → Pi,k.
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A simplicial map α : ∆m → ∆n between simplices is just an order-preserving
map of ordered sets. We obtain an induced map via the change of sets functors.

Since every simplicial set is the colimit over its simplices and the rigidification
functor preserves colimits (as it is a left adjoint), this is enough.

Let Kan∆ be the simplicially enriched category of Kan-complexes and Kan
its underlying category. Consider the homotopy category Ho(KanA), formed
by localisation at the natural transformations which are point-wise homotopy
equivalences. In the simplicially enriched category of simplicially enriched cat-
egories we obtain the mapping space Cat∆(S(A),Kan∆) and we denote its
homotopy category by Coh(A,Kan∆). The following result is due to Cordier
and Porter [10, Theorem 4.7]. As mentioned in their article’s introduction the
result applies to the simplicially enriched category Kan∆.

Theorem 1.2.1.3. The functor

γ := ε∗ : KanA →Coh(A,Kan∆)

(X : A → Kan) 7→(X ◦ ε : S(A)→ Kan)

(α : A× [1]→ Kan) 7→[α ◦ ε : S(A× [1])→ Kan]

preserves weak equivalences and thus induces a functor

γ∗ : ho(KanA)→ Coh(A,Kan∆)

by the universal property of the localisation. Moreover, the induced functor γ∗
is an equivalence of categories. The same holds if we replace Kan∆ with any
other simplicially enriched category which contains all homotopy limits.

Remark 1.2.1.4. It follows from the proof by Cordier and Porter that an in-
verse equivalence is given by sending X : A → Kan∆ to

γ−1
∗ (X)(a) := holima↓AX

for a functorial model of the homotopy limit.

By the theorem, we only have to construct a homotopy coherent pseudoiso-
topy functor to obtain an actual one. In order to construct an enriched functor
X : S(N•A)→ Kan∆ it is by adjunction enough to describe a map of simplicial
sets X : N•A → N h.c.

• Kan∆. Let us assume that A is itself the truncation of a
simplicially enriched category, i.e. there is A∆ ∈ ob(Cat∆) with obA∆ = obA
and for two objects a, b ∈ obA we have A∆(a, b)0 = A(a, b).

There is an inclusion map N•A ↪→ N h.c.
• A∆. Therefore, a morphism of sim-

plicial sets X : N h.c.
• A∆ → N h.c.

• Kan∆ induces a map X : N•A → N h.c.
• Kan∆

via restriction along the inclusion. Such a map always descends to an object in
Coh(A,Kan∆). Thus, in order to obtain a functor X : A → Kan∆, it suffices to
construct a morphism X : N h.c.

• A∆ → N h.c.
• Kan∆.

We reformulate the construction of a map X : N h.c.
• A∆ → N h.c.

• Kan∆ in
terms of an almost tautological obstruction theory. The argument follows easily
from [33, Chapter 1.1.5] and is similar to arguments given in [10] and [48], albeit
the latter worked in the topological realm.

Let us assume that X has already been defined on the n − 1–skeleton of
N h.c.
• A∆ for n ≥ 1. Let G : S(∆n) → A∆ be a simplicially enriched func-

tor, i.e. an n–simplex of N h.c.
• A∆. If G is non-degenerate, we need a functor
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X(G) : S(∆n)→ Kan∆ such that the diagram

S(∂∆k)
X(G◦S(i)) //

S(i)

��

Kan∆

S(∆k)

X(G)

66

commutes where i : ∂∆k ↪→ ∆k is the subspace inclusion.
By an induction argument, using the S−N h.c.–adjunction, the construction

of X(G) reduces to solving an extension problem

S(∂∆n)(0, n)
X(∂G)//

��

��

Kan(G(0), G(n))

S(∆n)(0, n)

66

which can be identified with

∂(∆1)n−1 //
��

��

Kan(G(0), G(n))

(∆1)n−1

66

via (S(∆n)(0, n),S(∂∆n)(0, n)) ∼= ((∆1)n−1, ∂(∆1)n−1)), an isomorphism of
pairs. Obviously, the lifting problem depends highly on the solutions chosen in
previous steps of the induction.

As explained in e.g. [10, pp. 70], maps from the rigidification of a simplex
admit an explicit description. This is, however, also an easy consequence of the
definition.

Definition 1.2.1.5. A simplicially enriched functor G : S(∆k)→ A∆ consists
of

• A map ob(G) : {0, . . . , k} → ob(A∆)

• for each n− 1–simplex σ = (σ0
f0−→ σ1

f1−→ . . .
fn−1−−−→ σn) ∈ ∆k a simplicial

map G(σ) : (∆1)n−1 → A∆(G(σ0), G(σn)), such that:

• Degeneracies are preserved:

– if f0 = Id, G(σ)(t1, . . . , tn−1) = G(d∗0σ)(t2, . . . , tn−1)

– for 0 < i < n− 1, if fi = Id,
G(σ)(t1, . . . , tn−1) = G(d∗i σ)(t1, . . . , ti, ti+2, . . . , tn−1)

– if fn−1 = Id, G(σ)(t1, . . . , tn−1) = G(d∗n−1σ)(t1, . . . , tn−2)

• Boundaries are preserved: for 1 ≤ i ≤ n− 2 we have

G(σ)(t1, . . . , ti−1, 0, ti+1, . . . , tn−1)

= G(d∗i (σ))(t1, . . . , ti−1, ti+1, . . . , tn−1)
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• Compositions of maps are preserved: for 1 ≤ i ≤ n− 2 we have

G(σ)(t1, . . . , ti−1, 1, ti+1, . . . , tn−1)

= G(σ≥i)(ti+1, . . . , tn−1)G(σ≤i)(t1, . . . , ti−1)

where σ≤i = ((σ0
f0−→ . . .

fi−1−−−→ σi)), similar for σ≥i.

Here, ti is a simplex of the i–th copy of ∆1 in the source of G(σ).

We return to our extension problem. It follows from the definition of the
rigidification S, that X(G) is determined on all objects and all mapping spaces
except for S(∆k)(0, k) by its restriction X(G ◦S(i)).

Also by definition, the restriction of X(G) to ∂((∆1)k−1) is given by various
compositions of elements contained in S(d∗i∆

k) for 0 ≤ i ≤ k. So one has to
solve an extension problem

∂((∆1)k−1) //
��

��

Kan∆(G(F (0)), G(F (k)))

(∆1)k−1

55

and this going to be the strategy throughout the argument.

Corollary 1.2.1.6. Let r ≥ 1. Let N≤rA∆ denote the r–skeleton of N•A∆.
Let B∆ be a Kan-enriched category.

A map of simplicial sets G : N h.c.
≤r A∆ → N h.c.

• B∆ extends to a homotopy
coherent diagram G ∈ Coh(A,B∆), if and only if certain obstructions in the
groups πn(B∆(G(A), G(B))) for A,B ∈ A and n ≥ r vanish.

The applications of this theory in the next section rely on Corollary 1.2.1.6.
We also use that the obstructions come about by gluing together compositions
of previous solutions.

Similar to the above argument we obtain a criterion for the existence of
coherently natural transformations. This is, for example, applied in the proof
of Proposition 1.2.3.1, leading up to the comparison of the smooth and topo-
logical pseudoisotopy functor, as well as the main results of the second chapter
Corollary 2.1.5.18, Theorem 2.2.3.13 and Theorem 2.2.4.2.

Corollary 1.2.1.7. Let r ∈ N. Let N≤rA∆ denote the r–skeleton of N•A∆.
Let B∆ be a Kan-enriched category.

A simplicial homotopy α : N h.c.
≤r A∆×∆1∪N h.c.

• A∆×∂∆1 → N h.c.
• B∆ extends

to a homotopy coherent diagram α ∈ Coh(A × [1],B∆), if and only if certain
obstructions in the groups πn+1(B∆(α(A), α(B))) for A,B ∈ A and n + 1 ≥ r
vanish.

1.2.2 Basic results on manifolds with corners

Before we turn to the main theorem, we have to establish a few facts about
manifolds with corners so that we can generalise standard results about ordinary
manifolds.
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Lemma 1.2.2.1. Every smooth compact manifold with corners embeds as a
smooth neighbourhood deformation retract into the interior of a smooth compact
manifold with boundary but without higher corners.

A smooth neighbourhood deformation retraction consists of a smooth inclu-
sion i and retraction map p which admit a continuous homotopy i ◦ p ' Id

Proof. We only sketch the proof. Let M be an n–dimensional manifold with
corners.

We fix a Riemannian metric on M and define for some small enough ε > 0,
the submanifold M ′ = M − {x ∈M |d(x, ∂M) < ε} ∼= M .

In suitable local coordinates for M it is given by Rk≥1×Rn−k ⊆ Hk ×Rn−k.
We obtain a diffeomorphism M ′ ∼= M of manifolds with corners.

Now, we may find a smooth manifold N with boundary - but without higher
corners - in M , which contains M ′ such that N − M̊ ′ is a collar of M ′ as a
topological manifold and with a smooth retraction map r′ : N →M ′.

This can be done via a partition of unity, since M −M ′ locally looks like
(Hk − Rk>1)× Rm−k. Similarly, we obtain a smooth retraction map.

Corollary 1.2.2.2. Every compact manifold with corners embeds into Rn for
some n ≥ 0.

Corollary 1.2.2.3. Every manifold with corners is a smooth euclidean neigh-
bourhood retract.

Definition 1.2.2.4. A tubular neighbourhood of a manifold with corners with
respect to an embedding ι : M ⊆ N is a submanifold with corners νι ⊆ N
together with a smooth disk bundle p : νι→M such that there is a codimension
zero embedding ι̃ : νι ↪→ N with ι̃(x, 0) = ι(x), for every point x ∈ M , and we
obtain, in the local coordinates of an embedding given in Definition 1.1.0.2, a
commutative diagram

Hk × Rm−k ×Dn−m β

∼=
//

incl

��

p−1(Ux)
p // Ux Hk × Rm−kα

∼=
oo

incl

��
Rn

pr // Rm

where pr : Rn → Rm denotes the standard projection on the first m coordinates.
Similarly, we define a collar of a manifold with corners.

Lemma 1.2.2.5. Let ι : M ↪→ N be an embedding with codimension m. Let R
be a Riemannian metric on TN . Let φ̃ : M × Sm−1 → R>0 be a smooth map
and φ : M → C∞(Sm−1,R>0) its adjoint.

Let BφTM denote the submanifold of the tangent bundle p̃ : TM →M which
is given by the ball of radius φ(x) around the origin in every fiber of TM .
Finally, exp denotes the exponential map.

The tuple (BφTM, exp : BφTM → N, p̃ : BφTM → M) is a tubular neigh-

bourhood of ι : M → N for some φ̃ : M → C∞(Sm−1,R>0).
Suppose that the above tuple is a tubular neighbourhood. Then, for every

smooth map ψ̃ : M × Sm−1 → R>0, which satisfies ψ̃(x, v) ≤ φ̃(x, v) for every
(x, v) ∈M ×Sm−1, the corresponding tuple determines a tubular neighbourhood
as well.
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For every tubular neighbourhood (νι, ι̃, p) there are a Riemannian metric R
and a smooth map φ̃, such that im(ι̃) = exp(BφTM) and the diffeomorphism
exp−1 ◦ ι̃ : νι→ BφTM is an isomorphism of smooth disk bundles over M .

Proof. The classical proof carries over.

Definition 1.2.2.6. Let ι : M ↪→ N be an embedding. An embedded tubular
neighbourhood of ι is a tubular neighbourhood (νι, ι̃, p), such that νι ⊆ N is
a codimension zero submanifold and ι̃ is the subspace inclusion. Note that ι̃
is redundant in this case. We denote the simplicial set of embedded tubular
neighbourhoods by Tub(ι).

1.2.3 Smooth approximation

In this part we describe a homotopy coherent version of replacing a continuous
map by a homotopic smooth map. The methods are close to arguments given in
[26]. The relevant statement for our functor Fch : (Mfd, cts)∆ → Ind(N h.c.

• D∆)
is the following proposition.

Proposition 1.2.3.1. Let i : (Mfd, smooth)∆ ↪→ (Mfd, cts)∆ denote the inclu-
sion functor given by the Identity on objects and C∞(M,N) ⊆ C0(M,N) on
mapping spaces.

There is a map τ1 : N h.c.
• (Mfd, cts)∆ → N h.c.

• (Mfd, smooth)∆, such that:

1. There is a natural transformation of (∞, 1)–functors, i.e. a simplicial ho-
motopy α1 : Id⇒ N h.c.(i) ◦ τ1.

2. The map N h.c.(i) is an equivalence of quasicategories and τ1 is an inverse.

3. The map τ1 is given by the Identity on objects.

4. For a continuous map f : M → N , i.e. a 1–simplex of N h.c.
• (Mfd, cts)∆,

we have N h.c.(i) ◦ τ1(f) ' f .

Later on, we wish to compare the smooth and topological pseudoisotopy
functors, see [12] for the latter. There we are going to use the second part of
the proposition.

Let N be a smooth manifold with corners. By standard arguments from
controlled topology it follows that there is a continuous (even smooth) map
ε : N → (0, 1] such that the ε–ball around a continuous map f : X → N for any
topological space X is contractible. We make this precise.

Definition 1.2.3.2. Let C0(X,N) be the space of all continuous maps from X
to N and f ∈ C0(X,N). The ε–ball C0(X,N, f ; ε) around f is the subspace of
all g ∈ C0(X,N) which fulfil the following property. For each x ∈ X there is a
y ∈ N such that f(x) and g(x) are contained in Bε(y)(y).

Lemma 1.2.3.3. Let N be a smooth manifold with corners. Then there is a
map ε : N → (0, 1], such that C0(X,N, f ; ε′) is contractible for every topological
space X, every ε′ ≤ ε and every f ∈ C0(X,N).

Proof. By Corollary 1.2.2.3 there is a smooth euclidean neighbourhood retract
Ñ ⊆ Rk of N for some k ∈ N with projection p and inclusion i. Choose
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ε : N → [0, 1], such that for each y ∈ N the ball Bε(y)(y) is contained in Ñ .
Then the map

C0(X,N, f ; ε)× I →C0(X,N, f ; ε)

(g, t) 7→p(t(i ◦ f) + (1− t)(i ◦ g))

is a homotopy between the Identity and the projection to f .

Now let X be a manifold M . Then we also obtain a contractible subset
C∞(M,N, f ; ε) := C0(M,N, f ; ε) ∩C∞(M,N). The homotopy simply restricts
to this subspace, because i and p are smooth.

Note that we do not need to assume that f is smooth to make sense of the
smooth ε–ball around f and, if it is not empty, it is still contractible for ε small
enough. We now show that a smooth ε–approximation exists.

Lemma 1.2.3.4. Let f ∈ C0(M,N) and ε : N → (0, 1]. Then C∞(M,N, f ; ε)
is not empty.

Proof. Let ε′ : N → (0, 1] be a continuous map, such that Bε′(y)(y) ⊆ Ñ and
p(Bε′(y)(y)) ⊆ Bε(y)(y) hold for each y ∈ N .

Let δ : N → (0, 1] be a continuous map with 2δ < ε′. Then {Bδ(y)(y)}y∈N
is a covering of an (open) subset of Ñ , such that for each y ∈ N the union
of all covering sets which contain y, i.e. the set

⋃
y′∈N,y∈Bδ(y′)(y′)

Bδ(y′)(y
′), is

contained in Bε′(y)(y).
Now we choose a covering {Vx}x∈M×|∆1|n of M × |∆1|n such that for each

x ∈ M × |∆1|n there is some y ∈ N with f(Vx) ⊆ Bδ(y)(y). Choose a locally
finite sub-cover {Vα}α∈I and an associated partition of unity {φα}α∈I consisting
of smooth maps. The map

f̃ : M → N

x 7→ p

(∑
α∈I

φα(x)f(xα)

)

is an appropriate approximation. In order to show that this is well-defined, i.e.∑
α∈I φα(x)f(xα) ∈ Ñ holds, and it is indeed an ε–approximation of f , we proof

that d(f(x),
∑
α∈I φα(x)f(xα)) < ε′(f(x)) for each x ∈M .

If for α ∈ I we have φα(x) 6= 0, then it follows that x ∈ Vα. This implies
f(x), f(xα) ∈ Bδ(yα)(yα) and all of the Bδ(yα)(yα) occurring for various α inter-
sect in f(x). Hence all of these Bδ(yα)(yα) are contained in Bε′(f(x))(f(x)). We
calculate

d(f(x),
∑
α∈I

φα(x)f(xα)) =‖
∑
α∈I

φα(x)(f(x)− f(xα))‖

≤
∑
α∈I

φα(x)‖f(x)− f(xα)‖

<ε′(f(x))
∑
α∈I

φα(x)

=ε′(f(x))

and obtain the estimate.
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Proof of Proposition 1.2.3.1. We apply Corollary 1.2.1.6 of the obstruction the-
ory explained in Section 1.2.1.

We fix for each N a small ε
(0)
N : N → (0, 1] in the sense of Lemma 1.2.3.3.

There is some ε
(1)
N ≤ ε

(0)
N , such that the composition map

C∞(N,P, g,
ε
(0)
P

2
)× C∞(M,N, f, ε

(1)
N )→ C∞(M,P )

factors as

C∞(N,P, g,
ε
(0)
P

2
)× C∞(M,N, f, ε

(1)
N )→ C∞(M,P, gf, ε

(0)
P ).

Further, the inclusion C∞(M,N, f, ε
(1)
N ) ⊆ C∞(M,N, f, ε

(0)
N ) is a strong defor-

mation retraction.
An induction argument now shows that we can choose all obstructions in

πk(C∞(M,N, f, ε
(k+1)
N )) for various smooth manifolds with corners M,N , con-

tinuous maps f and k ≥ 0. Since these groups are all trivial, we obtain a
functor.

All properties are either obvious or follow from the second one so we have
to show that τ1 is an equivalence. Since τ1 ◦ N h.c.i = Id by definition, we only
have to consider the other composition.

We apply Corollary 1.2.1.7. The approximation arguments used to define τ1
carry over since we also have contractible neighbourhoods in spaces of continuous
maps.

1.2.4 Stable embeddings

We construct the parametrised version of replacing a smooth map f : M → N by
a smooth embedding ι : M ↪→ N × (D1)k with prN ◦ι = f . The main technique
is transversality, see [26] for an introduction.

Proposition 1.2.4.1. There is a map

τ2 : N h.c.
• (Mfd, smooth)∆ → Ind(N h.c.

• (Mfd, emb)∆)

with the following properties:

1. Let i′ : (Mfd, emb)∆ → (Mfd, smooth)∆ denote the inclusion. There is a
natural transformation of (∞, 1)–functors α2 : j ⇒ N h.c.(i′) ◦ τ2.

2. Let M ∈ (Mfd, cts)∆. Then τ2(M) = hocolimn∈NM × (D1)n with struc-
ture maps M × (D1)n × {0} ↪→M × (D1)n+1.

3. Let f : M → N be a smooth map and iM : M → τ2(M) be the struc-
ture map of the homotopy colimit. Then iN ◦ f ' τ2(f) ◦ iM holds in
Ind(N h.c.

• (Mfd, smooth)∆).

Proof. Via Lemma 1.2.2.1, we fix, for every smooth and compact manifold with
corners M , a smooth neighbourhood retraction i : M ↪→ M̃ into a smooth,
compact manifold with boundary but without higher corners.

Let EmbM̃ (M, (D1)l) ⊆ Emb(M, (D1)l) denote the subspace of all smooth

embeddings which admit an extension to a smooth embedding of M̃ .
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There is a map

C∞(M,N)× EmbM̃ (M, (D1)l)→ Emb(M,N × (D1)l)

given by (f, ι) 7→ f × ι and a map

Emb(M,N × (D1)l)→ Emb(hocolimk∈NM × (D1)k,hocolimm∈NN × (D1)m)

induced by ι̃ 7→ (ι̃× Id(D1)k)k∈N.
By obstruction theory, see Corollary 1.2.1.6, we have to show that certain

elements in πn(Emb(hocolimk∈NM × (D1)k,hocoliml∈NN × (D1)l)) vanish.
Since πn(EmbM̃ (M, (D1)l)) is trivial for l = l(n) >> 0 by transversality,

we can extend to C∞(M,N) × EmbM̃ (M, (D1)l) where we make sure to send
f ∈ C∞(M,N) to some pair (f, ι). Then we use the above maps to obtain the
required families of embeddings.

1.2.5 Disk bundles and codimension zero embeddings

In this part we finish the proof of Theorem 1.2.0.5 with the next proposition.

Proposition 1.2.5.1. There is a map τ3 : N h.c.
• (Mfd, emb)∆ → D∆ with the

following properties:

1. The map τ3 is given by the Identity on objects.

2. The map pr: D∆ → N h.c.
• (Mfd, emb)∆, induced by (ι, νι, p) 7→ ι on map-

ping spaces, is a left-inverse, i.e. pr ◦τ3 ' Id.

3. The map pr is an equivalence of quasicategories and τ3 is an inverse.

Proof. We show that the functor pr : D∆ → (Mfd, emb)∆ is an acyclic fibration
in the model structure on simplicially enriched categories, see [3]. Since the
simplicial nerve N h.c. is a Quillen right adjoint (even a Quillen equivalence)
and every simplicial set is cofibrant in the Joyal model structure, this implies
that pr is an equivalence between fibrant and cofibrant objects in the Joyal
model structure. In particular, we obtain an inverse map τ3.

A simplicially enriched category is fibrant in this model structure, if it is
Kan-enriched, thus (Mfd, emb)∆ is fibrant.

A map between fibrant objects is an acyclic fibration, if

• The induced map on the homotopy categories is an equivalence of cate-
gories and surjective on objects.

• The induced map D∆(M,N) → S•(Mfd, emb)∆(M,N) is a trivial fibra-
tion for every pair of manifolds M,N .

The first condition follows easily once we have shown the latter, so we have
to solve a lifting problem

∂∆n

��

��

τ3(∂ι) // D∆(M,N)

pr

��
∆n ι //

τ3(ι)
66

S•(Mfd, emb)∆(M,N).

The characterisation of tubular neighbourhoods given in Lemma 1.2.2.5
shows that the space of embedded tubular neighbourhoods is contractible.
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Proof of Theorem 1.2.0.5. We set Fch := Ind(τ3) ◦ τ2 ◦ τ1. The desired trans-
formation is a straightforward consequence of the transformations α1 and α2

as well as the fact that τ3 is an equivalence. The remaining properties follow
easily.

Remark 1.2.5.2. For later use we note that the proof of Proposition 1.2.5.1 in
particular shows that D∆ is a fibrant object in the model structure on simplicially
enriched categories.

Remark 1.2.5.3. To compare the differentiable and the topological pseudoiso-
topy functor we have to connect the respective categories of choices. We recall
the topological case in Section 2.1.3.

There is a functor j : Ind(N h.c.
• D∆) → Ind(N h.c.

• Ch∆) which sends a tuple
(ι, νι, p) to (νι, p, ι, νp, Hp) where νp is a topological parallel transport in the
sense of Definition 2.1.3.5. It is induced by a parallel transport in the sense
of differential geometry (depending on the contractible choice of a Riemannian
metric) as explained in Remark 1.1.0.11. Further, Hp is a bending isotopy in
the sense of Definition 2.1.3.4 with respect to νp.

By [12, Theorem 5.21] the forgetful map Ind(Ch∆) → Ind(Mfd, cts)∆ is an
acyclic fibration over the objects of the form hocolimn∈NM × (D1)n for M in
(Mfd, cts)∆. We apply the tautological obstruction theory of Section 1.2.1 to
obtain the desired functor as a lift of Ind(N h.c.(i ◦ pr)).
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1.3 Unique Points of Intersection

In this part we take care of the main geometric constructions. However, with-
out the context provided by the construction in Definition 1.4.1.11 (and the
discussion leading up to it), the arguments might seem somewhat unmotivated.
Thus the reader might want to skip ahead to Section 1.4 first and return once
a result presented here is required. Regardless, we try to explain this chapter’s
role in the proof. We use some definitions introduced in Section 1.1.1 and Sec-
tion 1.2.2. Also, the reader might find Picture 1.4.3.1 helpful to understand the
various geometric arguments presented here.

Let m =
∑k
i=1mi be an additive partition. We set m+

j :=
∑j
i=1mi, too.

The main argument in Section 1.4.1 is the construction of a homotopy coherent
diagram in the sense of Section 1.2.1. After some preliminaries, we reduce the
problem to a geometric question asked in local trivialisations with structure
group

∏k
i=1O(mi). Hence we have to work equivariantly in this chapter, but

this turns out to be a mere formality.

The local problem we have to solve can be seen in the following example.

Given a sequence of trivial vector bundles M ×Rm →M ×Rm
+
k−1 → . . .→M ,

we are going to compare iterated transfer maps pk! ◦ . . . ◦ p1! with the transfer
map of the composition p! := (p1◦. . .◦pk)!. For some pseudo-isotopy F ∈ P (M)
we obtain a map

pk! ◦ . . . ◦ p1!(F ) : M ×
k∏
i=1

Dmi × I →M ×
k∏
i=1

Dmi × I

and i∗(p!(F )), where i is the embedding i : M ×Dm ⊆M ×
∏k
i=1D

mi . We have
to deform St−1

mk
◦ . . . ◦ St−1

m1
◦ tr(F ) ◦ Stm1

◦ . . . ◦ Stmk into St−1
m ◦ tr(F ) ◦ Stm.

At least in the M × I–coordinates this map is essentially given by applying
the original F , evaluated at certain points. First we describe the area in which
values of F with a fixed I–coordinate are used. It turns out that such an area
is up to isotopy (in some contractible space of diffeomorphisms) given by the
lower half of the sphere Sn− := Sn ∩ (Rn × (−∞, 0]).

We are going to force our different transfer maps to use values of the form
F (−, t) on the same (subspace isotopic to the) lower sphere. This type of subset
is going to be called a level set.

Throughout this chapter we sometimes drop the lower index of St−1
n if n is

clear from the context. Let us begin with some notation.

Let 1/4 > δ̃ > δ > 0. Let m =
∑k
i=1mi and m+

j :=
∑j
i=1mi. Let

Dn
− := Dn ∩ (Rn−1 × (−∞, 0]) and Sn− := Sn ∩ (Rn × (−∞, 0]).

Definition 1.3.0.1. Given X ⊆
(∏j

i=1D
mi
)
× I, we set

X〈1−δ̃〉 := pr
Rm

+
j

(
X ∩

((
j∏
i=1

Dmi

)
× {1− δ̃}

))
.

Definition 1.3.0.2. Let τ :
(∏j−1

i=1 D
mi
)
×I×Dmj →

(∏j
i=1D

mi
)
×I be the

canonical diffeomorphism.
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It is immediate from Definition 1.1.1.15 that the level sets of the iterated
transfer maps are given by the subsets Ak we define below. The collection of
these hypersurfaces is given by the manifold A. We are going to show in a
moment that these are indeed manifolds. The submanifold Tj was defined in
Definition 1.1.1.13.

Definition 1.3.0.3. We define subsets of
(∏j

i=1D
mi
)
× I for 0 ≤ j ≤ k. Let

A0 := I and B0 := ∅. For 1 ≤ j ≤ k we set

Aj :=Bj ∪Cj

Bj :=St−1
mj

(τ(Aj−1 ×Dmj )) ∪B
〈1−δ̃〉
j−1 × Tj

Cj :=B
〈1−δ̃〉
j × [1− δ̃, 1].

Definition 1.3.0.4. Fix t ∈ I. We define subsets of
(∏j

i=1D
mi
)
× I for

1 ≤ j ≤ k. Let A0 := {t} ⊆ I and B0 := ∅. For 1 ≤ j ≤ k we set

Aj :=Bj ∪ Cj

Bj :=St−1
mj

(τ(Aj−1 ×Dmj )) ∪B〈1−δ̃〉j−1 × Tj

Cj :=B
〈1−δ̃〉
j × [1− δ̃, 1].

The key idea to identify Aj with half a sphere is to see that there is a unique
point of intersection between Aj and every line through the origin. In order to
do this, we are going to approximate Aj by the orbit of Aj−1 under the standard

O(mj)–action on Rm
+
j +1.

In particular, this requires us to make precise how Aj−1 is contained in Aj .

Lemma 1.3.0.5. Let ι : Rm
+
j−1 ↪→ Rm

+
j be the inclusion given by v 7→ (v, 0).

Recall that λ(t) = t(δ− 3/4) + 3/4 and that em+1 denotes the unit vector in the
I–coordinate from Definition 1.1.1.1. We have an equality of sets:

Aj ∩

(
j−1∏
i=1

Dmi

)
× {0} × I =ι× (−λ)(Aj−1) + (1− δ̃)em+1

∪A〈1−δ̃〉j−1 × {0} × [1− δ̃ − δ, 1− δ̃]

∪A〈1−δ̃〉j−1 × {0} × [1− δ̃, 1]

Also, the restriction of St−1
mj
◦ τ to Aj−1 is given by ι× (−λ) + (1− δ̃)em+1.

Proof. We have Aj = St−1
mj

(τ(Aj−1 ×Dmj )) ∪B〈1−δ̃〉j−1 × Tj ∪B〈1−δ̃〉j × [1− δ̃, 1]
by definition. We treat these three sets separately.

First we study the intersection St−1
mj

(τ(Aj−1×Dmj ))∩
(∏j−1

i=1 D
mi
)
×{0}×I.

By definition of St−1
mj

, we have

St−1
mj (x, xj , t) =

(
x, λ(t)

(
(1− β(‖xj‖))

2xj
‖x‖2 + 1

+ β(‖xj‖)
xj
‖xj‖

)
,

λ(t)
‖xj‖2 − 1

‖xj‖2 + 1

)
+ (1− δ̃)em+1.
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Since

λ(t)

(
(1− β(‖xj‖))

2xj
‖x‖2 + 1

+ β(‖xj‖)
xj
‖xj‖

)
= 0

holds precisely if xj = 0, we restrict St−1
mj

to τ(Aj−1 × {0}). A straightforward
computation yields

St−1
mj

(x, 0, t) = (x, 0, 1− δ̃ − λ(t))

and we obtain

St−1
mj

(τ(Aj−1 ×Dmj )) ∩

(
j−1∏
i=1

Dmi

)
× {0} × I

=St−1
mj

(τ(Aj−1 × {0}))

=ι× (−λ)(Aj−1) + (1− δ̃)em+1.

For the second part, we first observe that

B
〈1−δ̃〉
j−1 × Tj ∩

(
j−1∏
i=1

Dmi

)
× {0} × I =B

〈1−δ̃〉
j−1 × {(x, t) ∈ Tj |x = 0}

=B
〈1−δ̃〉
j−1 × {0} × [1− δ̃ − δ, 1− δ̃]

holds by definition. We have A
〈1−δ̃〉
j−1 = B

〈1−δ̃〉
j−1 ∪ C〈1−δ̃〉j−1 = B

〈1−δ̃〉
j−1 by definition

of Cj−1, so we obtain

B
〈1−δ̃〉
j−1 × Tj ∩

(
j−1∏
i=1

Dmi

)
× {0} × I = A

〈1−δ̃〉
j−1 × {0} × [1− δ̃ − δ, 1− δ̃].

For the third part, we start with

B
〈1−δ̃〉
j × [1− δ̃, 1] ∩

(
j−1∏
i=1

Dmi

)
× {0} × I

= pr
Rm

+
j

({(x, xj , t) ∈ Bj |xj = 0, t = 1− δ̃})× [1− ˜δ, 1]

=

(
Bj ∩

(
j−1∏
i=1

Dmi

)
× {0} × I

)〈1−δ̃〉
× [1− δ̃, 1].

Now we obtain

Bj ∩

(
j−1∏
i=1

Dmi

)
× {0} × I =ι× (−λ)(Aj) + (1− δ̃)em+1

∪A〈1−δ̃〉j−1 × {0} × [1− δ̃ − δ, 1− δ̃]
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from the previous two steps. Since 1− δ̃ − λ(t) < 1− δ̃ for t ∈ I, we get(
Bj ∩

(
j−1∏
i=1

Dmi

)
× {0} × I

)〈1−δ̃〉
=(ι× (−λ)(Aj) + (1− δ̃)em+1 ∪A〈1−δ̃〉j−1 × {0} × [1− δ̃ − δ, 1− δ̃])〈1−δ̃〉

=(ι× (−λ)(Aj) + (1− δ̃)em+1)〈1−δ̃〉 ∪ (A
〈1−δ̃〉
j−1 × {0} × [1− δ̃ − δ, 1− δ̃])〈1−δ̃〉

=A
〈1−δ̃〉
j−1 × {0}

and thus obtain

B
〈1−δ̃〉
j × [1− δ̃, 1] ∩

(
j−1∏
i=1

Dmi

)
× {0} × I

=

(
Bj ∩

(
j−1∏
i=1

Dmi

)
× {0} × I

)〈1−δ̃〉
× [1− δ̃, 1]

=A
〈1−δ̃〉
j−1 × {0} × [1− δ̃, 1]

as desired.

In order to obtain a smooth isotopy from the level sets of an iterated transfer
to those of the transfer in all coordinates we have to show that these subsets
are indeed manifolds. Essentially, we observe that γ, see Definition 1.1.1.14,
parametrises a neighbourhood of the intersection of St−1(τ(Aj−1 ×Dmj )) and

B
〈1−δ̃〉
j−1 × Tj .

Lemma 1.3.0.6. For every 0 ≤ j ≤ k the set Aj is a smooth submanifold (with

boundary but no higher corners) of Rm
+
j × I. Moreover, ∂Aj = Aj ∩Rm

+
j ×{1}

Proof. We proceed by induction to show that Aj and Bj are manifolds for all
0 ≤ j ≤ k. The statement is clear for j = 0.

First we show that Bj is a smooth submanifold with boundary but without
corners.

By induction St−1
mj

(τ(Aj−1 × Dmj )) is a smooth submanifold with corners.

So is B
〈1−δ̃〉
j−1 × Tj = A

〈1−δ̃〉
j−1 × Tj , since A

〈1−δ̃〉
j−1 × [1− δ̃, 1] ⊆ Aj−1 and thus the

intersection Aj−1 ∩
∏j−1
i=1 D

mi × {1− δ̃} is transverse.
Since St−1

mj
(Dmj × {1}) = O(mj) im(γ) and λ is decreasing, we have

St−1
mj

(Dmj × I) ∩ Tj = O(mj) im(γ).

Therefore

St−1
mj (τ(Aj−1 ×Dmj )) ∩B〈1−δ̃〉j−1 × Tj

=St−1
mj

(
τ(Aj−1 ×Dmj ) ∩

j∏
i=1

Dmi × {1}

)
∩B〈1−δ̃〉j−1 × Tj

=St−1
mj

(A
〈1−δ̃〉
j−1 ×Dmj × {1}) ∩B〈1−δ̃〉j−1 × Tj

=B
〈1−δ̃〉
j−1 ×O(mj) im(γ)
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holds, where we used A
〈1−δ̃〉
j−1 = B

〈1−δ̃〉
j−1 in the last line again.

Moreover, the corners of St−1
mj

(τ(Aj−1 × Dmj )) and B
〈1−δ̃〉
j−1 × Tj coincide,

since the corners of the former are given by

St−1
mj

(τ(∂Aj−1 × Smj−1)) =St−1
mj

(A
〈1−δ̃〉
j−1 × Smj−1 × {1})

=B
〈1−δ̃〉
j−1 ×O(mj)γ(1)

which are exactly the corners of B
〈1−δ̃〉
j−1 × Tj .

The intersection has local neighbourhoods ∂Aj−1×O(mj)γ([0, 1]×(1− δ̄, 1])

in St−1
mj (τ(Aj−1×Dmj )) andB

〈1−δ̃〉
j−1 ×O(mj)γ([0, 1]×[1, 3/(3−4δ)) inB

〈1−δ̃〉
j−1 ×Tj .

Thus the map γ on [0, 1] × (1 − δ̃, 3/(3 − 4δ)) gives an embedding in a
neighbourhood of the intersection of the two smooth submanifolds with corners.
So Bj is a smooth submanifold with boundary. The parametrisation by γ shows
that all previous corners vanish. Hence Bj does not have any corners.

The above description of St−1
mj

(τ(Aj−1 × Dmj )) ∩ B〈1−δ̃〉j−1 × Tj also implies

that ∂Bj = St−1
mj

(τ(Aj−1 × ∂Dmj )) ∪B〈1−δ̃〉j−1 × δDmj × {1− δ̃} holds.
In order to see that Aj = Bj ∪ Cj is again a manifold, we show that ∂Bj

admits a neighbourhood of the form ∂B
〈1−δ̃〉
j × [1− δ̃ − ρ, 1− δ̃] in Bj for some

small enough ρ > 0.

We choose a collar of ∂Dmj given by c : ∂Dmj×[1− δ̄, 1]→ Rm
+
j , (v, t) 7→ tv.

Then we obtain

St−1(τ(Aj−1 × im(c)))

={(v, w) ∈ Rm
+
j−1 × Rmj |(v, λ−1(‖w‖)) ∈ Aj−1} × [1− δ̃ − δ̄, 1− δ̃].

Now we restrict γ to an interval [1 − ρ′, 1] with β(1 − ρ′) = 1 which yields
an image of the form γ([1− ρ′, 1]) = {s/‖s‖, 0}× [1− δ̃− ρ, 1− δ̃]. Since prI ◦γ
is strictly increasing this implies that Tj contains δDmj × [1− δ̃ − ρ, 1− δ̃].

Since A
〈1−δ̃〉
j−1 × Tj is contained in Bj we get

A
〈1−δ̃〉
j−1 × δDmj × [1− δ̃ − ρ, 1− δ̃] ⊆ Bj

for some δ̄ > ρ > 0 (e.g. ρ = δδ̄/3 works). Hence, ∂Bj × [1− δ̃− ρ] ⊆ Bj . Since

Cj = ∂Bj × [1 − δ̃, 1] holds by definition, Aj = Bj ∪ Cj is a smooth manifold

with boundary but without corners and ∂Aj = Aj ∩ Rm
+
j × {1}.

The following lemma is the key step to identify our level sets as desired. Its
length is mostly owed to the point-set topology involved, not the difficulty of
the argument.

Lemma 1.3.0.7. For sufficiently small δ, δ̃, δ∗ and δ̄ the set Aj intersects
Lζ = {rζ + em+1|r ∈ R≥0}, i.e. the ray from the origin in the direction of ζ, in

exactly one point for every 1 ≤ j ≤ k and for every ζ ∈ Sm
+
j

− .

Proof. We use induction. We assume inductively that for every v ∈ Sm
+
j−1−1

there is a smooth curve ξ : [0, 1]→ Rm
+
j−1×I which parametrises the intersection

Aj−1 ∩ (R≥0(v, 0)⊕ Rem+1) and satisfies:
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1. The map prI ◦ξ is strictly increasing.

2. There is a neighbourhood U of 1 in [0, 1], such that ξ(U) is parallel to
em+1.

3. We have ξ(1) = (µv, 1) for some µ ≥ 0.

4. The norm map t 7→ ‖ξ(t)‖ is increasing.

This has the following consequence. Let x ∈ Aj−1 ∩ (R(v, 0)⊕ Rem+1) and

denote by u ∈ TxRm
+
j +1 the unique tangent vector with the following properties:

1. It is contained in the 1–dimensional tangent space of the line through x

and (0, 1) ∈ Rm
+
j × R, the “origin of Aj”.

2. It is a unit vector, i.e. ‖u‖ = 1.

3. It is pointing outwards, i.e. (0, 1) /∈ x+ R≥0u.

The vector u is not contained in TxAj . Either it has negative slope in I and
thus cannot lie in the tangent space of our curve, or we are at height 1 where
Tγ(1) im(γ) = 〈em+1〉 holds.

The case A0 is clear. Throughout this proof we write St−1 instead of St−1
mj

.
For the induction step, we assume the assumption holds for j − 1.

We first show the statement for a vector (v, 0) ∈ Rm
+
j−1 × {0} ⊆ Rm

+
j . We

obtain a 2–dimensional subspace R〈(v, 0), em+1〉 ⊆ Rm
+
j × R.

By induction the intersection Aj−1 ∩ (R≥0v ⊕ Rem+1) is parametrised by a

smooth curve ξ : [0, 1]→ Rm
+
j−1×I such that prI ◦ξ is a strictly increasing map.

Since St−1 restricts to (ι×−λ + (1− δ̃)) by Lemma 1.3.0.5, the smooth curve
St−1 ◦ τ ◦ ξ also yields a strictly increasing map prI ◦St−1 ◦ τ ◦ ξ.

By induction we also know that there is an open neighbourhood U of 1
such that ξ(U) is parallel to em+1 and ξ(1) = (µv, 1). Since it is also strictly
increasing, this determines ξ on U uniquely, if we parametrise by arc length.
We also note that St−1 ◦ τ ◦ ξ(1) = (µ′v, 0, 1− δ̃ − δ) for µ′ ≥ 0.

From this we see that St−1 ◦ τ ◦ ξ can be smoothly extended to a smooth
curve ξ̄ which parametrises im(St−1 ◦ τ ◦ ξ) as well as {(µ′v, 0)} × [1− δ̃ − δ, 1].

Moreover we can choose ξ̄ such that prI ◦ξ̄ is again strictly increasing (e.g.
via parametrisation by arc length). Note that near 1 this curve is given by (up
to parametrisation) t ∈ [1− δ̃ − δ, 1] 7→ (µ′v, 0, t).

It is a straightforward computation using St−1 = (ι×−λ+ (1− δ̃)) that the
norm map yields an increasing map.

This shows the statement of the induction step for (v, 0).

Now consider (v, w) ∈ Rm
+
j−1×Rmj with ‖(v, w)‖ = 1. We are going to show

that

1. The set Aj ∩R〈(v, w, 0), em+1〉 is a 1–dimensional submanifold of Rm
+
j +1.

2. The projection prI : Aj∩(R≥0(v, w, 0)⊕Rem+1)→ I to the last coordinate
is injective.

3. The image im(prI) of this map is a closed interval.
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Once this is shown, the rest of the proof is not difficult. The classification
of compact 1–dimensional manifolds (compactness follows from the second and
third claim) shows that Aj ∩ (R(v, w, 0)⊕Rem+1) has to be a smooth curve (as
the second and third claim imply that it has only one connected component)
which we denote by ξ.

If we parametrise ξ by arc-length, it necessarily yields a strictly increasing
map prI ◦ξ by the second claim and the collar given by Cj ensures the desired
behaviour of the curve near 1.

For the last property, we show that if (av, bw, s) and (a′v, b′w, s′) are con-
tained in Aj ∩ (R≥0(v, w, 0)⊕Rem+1) and fulfil s′ > s, then ‖(a′, b′)‖ ≥ ‖(a, b)‖.
By induction we know a′ ≥ a. Since a′/b′ = a/b holds the map t 7→ ‖ξ(t)‖ is
increasing. We turn to the claims in order.

Claim 1: The first claim follows by transversality, once we have shown that

TxAj ⊕ TxR〈(v, w, 0), em+1〉 = TxRm
+
j +1.

We first consider x ∈ Bj . Let us replace St−1 by St−1
mj for the moment. In

this case we obtain B′j = St−1
mj (τ(Aj−1 ×Dmj )) ∪ δDmj + (1− δ̃)em+1.

We have a smooth action A : S
mj+1
− ×Rm

+
j +1 → Rm

+
j +1 given by the formula

A(w, v) = A(w)(v − (0, 1 − δ̃)) + (0, 1 − δ̃), where A : S
mj+1
− → O(mj + 1) is

the canonical section of A 7→ Aem+1. It restricts to B′j and A.u(x) = u(A.x)
holds by definition of the orthogonal group. Now, since every element x ∈ B′j is

contained in the S
mj+1
− –orbit of an element (v, 0, t) ∈ B′j ∩R

m+
j−1 ×{0}×R, we

get u /∈ TxB′j for all x ∈ B′j and thus TxB
′
j ⊕ TxR〈(v, w, 0), em+1〉 = TxRm

+
j +1.

There is a smooth S
mj+1
− –action on Bj given by w.(v, 0, t) 7→ St−1(v, w, t),

too. Unfortunately it is not compatible with u so the argument does not carry
over immediately.

Nevertheless, we can use it. First we note that there is an isotopy of em-

beddings from the embedding ι : Bj ⊆ Rm
+
j +1 to an embedding ι′ of B′j which

is induced by pre-composing the map β in the definition of St−1 with a smooth
homotopy φ : [0, 1]× [0, 1]→ [0, 1] with φ0 = const0 and φ1 = Id.

Now, since there is a vector (v, 0, t′) ∈ T(v,0,s′)Rm
+
j +1 which is orthogonal

to T(v,0,s′)B
′
j for every (v, 0, s′) ∈ B′j , we obtain a vector (v, w, t) orthogonal

to T(v,w,s)B
′
j for every ι′(x) = (v, w, s) ∈ B′j . The scalar product is continu-

ous, hence we can choose the parameter δ̄ of β sufficiently small to ensure that
(v, w, t) associated to ι′(x) understood as a vector (v, w, t) ∈ Tι(x), (i.e. trans-
ported with respect to the flat connection) is linearly independent of Tι(x)Bj .

The argument for Cj is now immediate by parallel transport to ∂Bj and the
first claim follows.

Claim 2: We fix v ∈ Rm
+
j−1 , w ∈ Rmj and t ∈ I with ‖v‖ = ‖w‖ = 1 and

study the set Aj ∩ ((R〈(v, 0), (0, w)〉 × {t}). As explained above we may under-

stand Bj as the orbit of Bj∩Rm
+
j−1×{0}×R under S

mj
− . Therefore (and by defi-

nition of the action) Bj∩R〈(v, 0, 0), (0, w, 0), em+1〉may be obtained as the orbit
of Bj ∩ R〈(v, 0, 0), em+1〉 under the action of D1w = S

mj
− ∩ R〈(0, w, 0), em+1〉.

By induction Bj ∩ (R≥0(v, 0, 0)⊕Rem+1) is a smooth curve which is strictly
increasing after projection to I. By definition of St−1 we also obtain a smooth
curve D1

≥0w.(av, 0, s), which is strictly increasing after projection to I, where
(av, 0, s) ∈ Bj ∩ (R≥0(v, 0, 0) ⊕ Rem+1). We claim that there is at most one
element (av, bw, t) contained in the intersection Bj ∩ R〈(v, 0), (0, w)〉 × {t} for
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every a/b ∈ [0,∞]. The other directions follow by using ±v and ±w.
Let us assume that (av, bw, t) is such an element. Then there is a unique

element (av, 0, s) in its orbit. Now let s′ > s. Then there is at most one
element (a′v, 0, s′) in the curve Bj ∩ (R≥0(v, 0, 0) ⊕ Rem+1). By induction it
has to satisfy a′ ≥ a. Let us assume that, if there was an element of the form
(a′v, b′w, t) in the orbit of (a′v, 0, s′), then it would satisfy b′ < b. But then
a/b < a′/b′ and thus there is at most one element (av, bw, t) in the intersection
Bj ∩ R〈(v, 0), (0, w)〉 × {t} for every a/b ∈ [0,∞].

We have to show that b′ < b does indeed hold in the above situation. There
are r, r′ ∈ [0, 1] with (av, bw, t) = rw.(av, 0, s) and (a′v, b′w, t) = r′w.(a′v, 0, s′).
By definition of St−1

mj
, they satisfy

λ(s)
r2 − 1

r2 + 1
= λ(s′)

r′2 − 1

r′2 + 1
.

Since λ is strictly decreasing, we have λ(s′) < λ(s), hence

r2 − 1

r2 + 1
>
r′2 − 1

r′2 + 1

which yields r > r′. Again by definition of St−1 we have

b = λ(s)β(r) + λ(s)(1− β(r))
2r

r2 + 1

and similarly for b′. Since r > r′ and s < s′ we obtain β(r) ≥ β(r′) and
λ(s) > λ(s′). A straightforward calculation now shows b > b′ as desired.

We have for 0 ≤ t ≤ 1− δ̃

Aj ∩ R〈(v, 0), (0, w)〉 × {t} = Bj ∩ R〈(v, 0), (0, w)〉 × {t})

and for 1− δ̃ ≤ t ≤ 1

Aj ∩ R〈(v, 0), (0, w)〉 × {t}) = (Bj ∩ R〈(v, 0), (0, w)〉 × {1− δ̃}))〈1−δ̃〉 × {t}

holds. Therefore, the map prI : Aj ∩ (R≥0(v, w, 0)⊕ Rem+1)→ I is injective.
Claim 3: We also have to show that if (av, bw, s) and (a′v, b′w, s′) are con-

tained in Aj∩(R≥0(v, w, 0)⊕Rem+1) and fulfil s < s′, then for every s < s′′ < s′

there is some (a′′v, b′′w, s′′) in Aj ∩ (R≥0(v, w, 0)⊕ Rem+1). This is enough to
show that im(prI) is an interval. It is closed because it is the image of a closed
set.

We know that (a′v, b′w, s′) = (rav, rbw, s′) for some r ∈ R≥0 and b′ ∈ [0, 1]
holds by definition of St−1. By induction there is some element (τav, 0, h) in
Aj−1 for every τ ∈ [1, r] as Aj−1 ∩ (R≥0v ⊕ Rem+1) is a curve. Now the orbit
D1
≥0w.(τav, 0, h) contains (τav, 0, h) and (τav, rbw, h′). Hence the intermediate

value theorem implies that it contains (τav, τbw, h′′) as well.

Since we have Aj = S
mj
− .Aj−1 and Sm

+
j = S

mj
− .Sm

+
j−1 it follows by in-

duction that, as a topological manifold, Aj is isotopic (via locally flat embed-

dings) to S
m+
j

− + em+1 relative boundary (i.e. the isotopy restricts to an isotopy
of the boundary) and relative to the point em+1. Therefore the complement

Rm
+
j × R≤1 −Aj consists of precisely two connected components, one of which

is compact and contains the vector em+1.
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If im(prI) was not an interval, it would be a disjoint union of closed subin-
tervals I1, . . . , It = im(prI), which we assume ascendingly ordered with respect
to their distance to 0 ∈ I, for some t ∈ N. If 1 /∈ It, the curve s 7→ se1 + em+1

for s ∈ R≥0 contradicts the decomposition into two connected components. So
suppose that 1 ∈ It = [1 − t′, 1]. Write It−1 = [1 − t′′, 1 − t′ − ε] for some
ε > 0 and t′, t′′ ∈ [0, 1]. Let σ1(s) = (1 − (t′ + ε/2)s)em+1 for s ∈ [0, 1] and
σ2(r) = re1 +(1− t′−ε/2)em+1. Then the concatenation σ1 ∗σ2 yields a contra-
diction, since Aj ∩ Rem+1 consists of a single point by induction, which is not
the maximum of prI on Aj by induction for the case w = 0, and by definition
of St−1 for the case w 6= 0.

Remark 1.3.0.8. Let Hm+
i

: Rm
+
i × I → Rm

+
i × I denote a diffeomorphism.

Note that the same proof would apply to every construction A′j similar to

that of Aj, in which we replace the map St−1
mi by St−1

mi ◦ Hm+
i

, as long as the

inductive assumptions on Ai ∩ (R≥0(v, 0) ⊕ Rem+1), specified at the beginning
of the proof, are satisfied if we replace Ai by Hm+

i
(A′i).

In particular, if H was a linear isotopy of diffeomorphisms such that H0 and
H1 preserved the properties, then the same holds for every Hs, s ∈ [0, 1].

Our discussion so far was concerned with the case of a fixed value t ∈ I. The
next lemma states that the different values do not interfere with each other.

Lemma 1.3.0.9. The subsets Ak are disjoint for different t ∈ I and the sub-
space inclusions Ak ⊆ Rm+1 assemble to a smooth embedding of a subspace
Ak ⊆ Rm+1.

Proof. Showing that the Ak are disjoint is a straightforward induction, employ-
ing that St−1

n is a smooth embedding. The second part follows by copying the
proof of Lemma 1.3.0.6 and replacing A, B and C by A, B and C through-
out.

Finally, we are in position to describe the desired isotopies which identify
the level sets of the different transfers.

Lemma 1.3.0.10. There is a smooth map χ : Rm+1 → R>0 such that the mul-
tiplication mχ : Rm+1 → Rm+1 given by x 7→ χ(x)x is a diffeomorphism which

maps A1(t) = St−1
m (Dm×{t})∪(St−1

m (∂Dm×{t})× [1− δ̃, 1]) to Ak(t) for every
t ∈ I. The linear homotopy Hχ between mχ and the Identity is an isotopy of
diffeomorphisms.

Moreover, the multiplication mχ is
∏k
i=1O(mi)–equivariant, hence so is Hχ.

Proof. This is just a change of coordinates. Since Sm×R ∼= Rm+1−{0} ⊆ Rm+1

is a smooth embedding and transverse to Ak, the implicit function theorem
and Lemma 1.3.0.7 yield the existence of χ. Now mχ is given by a family of
orientation-preserving diffeomorphisms of R parametrised over Sm. Hence we
obtain the desired isotopy. The maps are equivariant since A1(t) and Ak(t)
are.

Remark 1.3.0.11. The map

{(δ̄, δ̃, δ, δ†) ∈ (0, 1/4)|δ̄ > δ̃ > δ > δ†} × Riem(R)→ C∞(Rm+1 × [0, 1],Rm+1)

((δ, δ̃, δ∗, δ̄), R) 7→ Hχ,δ,δ̃,δ†,δ̄,R

is continuous.
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The only step left is to describe a contractible space of isotopies.

Definition 1.3.0.12. Let m =
∑k
i=1mi be a partition. By Lemma 1.3.0.10

we obtain a map χ associated to it. The space I1(m) is the convex hull of the
associated maps mχ for sufficiently small δ̄, δ̃, δ, δ† and all partitions.

Definition 1.3.0.13. There is a composition I1(m2)× I1(m1)→ Diff(Rm× I)

as follows: We send a pair of partitions m1 =
∑k1

i=1m
(1)
i and m2 =

∑k2

i=1m
(2)
i

to m1 +m2 =
∑k1+k2

i=1 m
(1+2)
i with m

(1+2)
i = m

(1)
i for 1 ≤ i ≤ k and, otherwise,

m
(1+2)
i = m

(2)
i−k1

.

Accordingly, we send the associated pair of maps m
(1)
χ ,m

(2)
χ to the map

associated to the above partition and extend linearly, i.e we define spaces A′j
where we use linear isotopies of diffeomorphisms (contained in the convex hull
of the maps mχ) to modify our construction. By Remark 1.3.0.8 we obtain a
map associated to the resulting space.

We define I2(m) as the convex hull of all maps in the image of some compo-
sition map with respect to the partition. We iterate the construction to obtain
In(m) for every n ∈ N.

Although we do not need it, we observe that if our partition has k summands,
then In(m) = Ik(m) for n ≥ k − 1.

Definition 1.3.0.14. We set I(m) =
⋃
n∈N I

n(m) = Ik−1(m) with respect to

a partition m =
∑k
i=1mi.

Remark 1.3.0.15. In Section 1.4, we could use a far larger class of embed-
dings, determined by the properties required for Lemma 1.3.0.7 and some minor
conditions to ensure that we obtain an induced pseudoisotopy, similar to the one
defined in Definition 1.1.1.15. However, since there is no apparent advantage
to this, we are going to work with a set determined by I(m).
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1.4 The Homotopy Coherent Diagram

The main proof is contained in Section 1.4.1. The case of spectra is taken care of
in Section 1.4.2. We give a brief summary of the parameters chosen throughout
this thesis for the variations of the stereographic inverse in Section 1.4.3.

1.4.1 Proof of the main theorem

In this section we pass from the quasicategory N h.c.
• D∆, see Definition 1.2.0.2,

to spaces of pseudoisotopies. First, we show that it is enough to construct
an unstable pseudoisotopyfunctor (in the sense of quasicategories) with source
N h.c.
• D∆.

The real work, however, is to construct the unstable coherent diagram. We
use the obstruction theory established in Section 1.2.1.

The main idea is as follows: Given a simplex of N h.c.
• D∆ we consider the iter-

ated pullback of the tubular neighbourhoods to obtain a bundle with a product
of disks as fibre. Outside of this subspace, the pseudoisotopy functor is given
by extending with the Identity.

To define the functor on the subspace we pass to local trivialisations and
give a fibre-wise definition which is invariant under change of trivialisations, i.e.
equivariant under the action of the structure group of the bundle. This requires
the local results explained in Section 1.3.

Since the geometric constructions we have established so far depend C∞–
continuously on certain contractible choices of parameters we can adjust all
choices as required (in particular we may assume all of the δ to be small enough).

Lemma 1.4.1.1. Let

P : N h.c.
• D∆ → N h.c.

• Kan∆

be a functor of quasicategories (i.e. a map of simplicial sets) such that

1. The space P (M) is the (singular simplicial set of the) unstable pseudoiso-
topy space of M , see Definition 1.1.0.5.

2. A 1–simplex (ι,M, Id) : M → N with ι a codimension zero embedding is
sent to the induced map ι∗ : P (M)→ P (N), see Definition 1.1.0.6.

3. A 1–simplex of the form (ι, νι, p) : M → νι is sent to the transfer map
p! : P (M)→ P (νι), see Definition 1.1.1.15.

4. Let G : S(∆k)→ D∆ be a k–simplex with G(0) = M and G(k) = N , and
σ an m–simplex in S(∆k)(0, k) with G(σ) = (ι, νι, p) in D∆(M,N). Let
iM : PDiff(M)→ PTop(M) denote the inclusion

There are a topological parallel transport νp induced by a geometric trans-
fer, see Definition 2.1.3.5, a bending isotopy Hp in the sense of Def-
inition 2.1.3.4 with respect to νp and an m–simplex (ι, νι, p, νp, Hp) in
Ch∆(M,N) such that PTop(ι, νι, p, νp, Hp) ◦ iM = iN ◦ PDiff(G)(σ) holds.

Then there is a functor

P : Ind(N h.c.
• D∆)→ N h.c.

• Kan∆

with
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1. The space P(M) is the (singular simplicial set of the) stable pseudoisotopy
space hocolimn∈N P (M × (D1)n) of M , see Definition 1.1.1.20.

2. A 1–simplex (ι×Id,M×(D1)n, Id)n∈N : (M×(D1)n)n∈N → (N×(D1)n)n∈N
with ι a codimension zero embedding is sent to

hocolimn∈N(ι× Id(D1)n)∗ : P(M)→ P(N),

see Definition 1.1.0.6.

3. A map (ι× Id, ν(ι× Id), p× Id)n∈N : (M × (D1)n)n∈N → (νι× (D1)n)n∈N
is sent to the transfer map

hocolimn∈N(p× Id(D1)n)! : P(M)→ P(νι),

see Definition 1.1.1.15.

4. We have PTop ◦ j ' PDiff with j : Ind(N h.c.
• D∆) → Ind(N h.c.

• ) Ch∆ as
defined in Remark 1.2.5.3.

Proof. We obtain a functor between Ind–quasicategories

Ind(P ) : Ind(N h.c.
• D∆)→ Ind(N h.c.

• Kan∆).

Given a quasicategory C with countably filtered homotopy colimits there is an
equivalence Ind(C) ' C. Since all homotopy colimits exist in N h.c.

• Kan∆, we
get a functor

P : Ind(N h.c.
• D∆)→ N h.c.

• Kan∆

and the first three properties are an immediate consequence of the conditions
on P . For the comparison with PTop it is unfortunately necessary to under-
stand its definition. We refer to Section 2.1.3, specifically statement 6 of Theo-
rem 2.1.3.21.

Theorem 1.4.1.2. Suppose that the assumptions of Lemma 1.4.1.1 hold. Then
there is a functor PDiff : Top→ Top with the following properties:

1. It descends to a functor of homotopy categories

hoPDiff : ho(Top)→ ho(Top).

2. There is a natural isomorphism of functors

α : hoPDiff → hoPDiff,BL.

3. The subset inclusion PDiff ⊆ PTop extends to a natural transformation of
functors of quasicategories. The construction of PTop is given in [12] and
recalled in Section 2.1.3.

Proof. Recall from Theorem 1.2.0.5 the map Fch : N h.c.
• (Mfd, cts)∆ → N h.c.

• D∆.
By Lemma 1.4.1.1 we obtain a map P ◦ Fch : N h.c.

• (Mfd, cts)∆ → N h.c.
• Kan∆

which, according to Theorem 1.2.1.3, admits a strictification to a simplicially
enriched functor PDiff : Mfd∆ → Kan∆ where Mfd∆ has smooth manifolds with
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corners as objects and the singular sets of the spaces of continuous maps as
mapping spaces.

This is not quite enough, since we originally set out to define a functor from
topological spaces to Kan-complexes. However, we obtain a diagram

Mfd∆
P //

� _

��

Kan∆

Top∆

::

of simplicially enriched categories. We extend P as a homotopy left Kan exten-
sion to P : Top∆ → Kan∆. Its value on a space X is P(X) = hocolimMfd↓X P.
Here Mfd ↓ X is the category whose objects are pairs (M,f), where M is a
smooth, compact manifold with corners and f : M → X is a continuous map,
and morphisms are continuous maps g : M →M ′ compatible with the reference
maps, i.e. f ′ ◦ g = f holds. We define the desired 1–functor as the restriction of
this simplicially enriched functor.

The first property is immediate, since our functor is the restriction of a
simplicially enriched functor. The stable pseudoisotopy functor on the homotopy
category defined by Burghelea and Lashof is constructed analogously to the 1–
skeleton of our pseudoisotopy functor, hence the second claim follows.

We show the last property as part of Theorem 2.1.3.21.

In contrast to the case of the topological pseudoisotopyfunctor given in [12]
we are not going to define a simplicially enriched pseudoisotopy functor on a
category of choices.

Let us assemble all choices relevant for the definition of our diagram which
are not concerned with the construction in local coordinates in a single fibre.

Definition 1.4.1.3. Let G : S(∆k)→ D∆ denote a simplicially enriched func-
tor.

Let DG∆ denote the simplicially enriched category with the same objects as
S(∆k) and the following morphism spaces: For j > i the space S(∆k)(i, j) is
empty. Otherwise, an n–simplex consists of

1. an ordered subsequence I = {i = i1, i2, . . . , it = j} of i, i+ 1, . . . , j.

2. an n–simplex (ιr, νιr, pr) in D∆(G(ir), G(ir+1)) for every 1 ≤ r ≤ t− 1.

3. a Riemannian metric on νιr, i.e. a smooth map Tνιr ⊗ Tνιr → R≥0,
which restricts to a Riemannian metric over each t ∈ |∆n|, such that the
tubular neighbourhood is a disk bundle with respect to the metric for
every 1 ≤ r ≤ t− 1.

We also obtain a partition

dim(G(j))− dim(G(i)) =

t−1∑
r=1

dim(G(ir+1))− dim(G(ir))

associated to the subsequence I.
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Now we introduce our local parameters. Essentially, they amount to a level
set in the sense of Section 1.3, a tubular neighbourhood of our level set, and a
choice of coordinates for our tubular neighbourhood.

Definition 1.4.1.4. Let m =
∑k
i=1mi be a partition. Recall from Defini-

tion 1.3.0.4 that St−1
m (Dm × {1/2}) = B1(1/2). There is an embedding emb1

defined analogously to St−1
m : Dm × {1/2} ↪→ Dm × I with image A1(1/2), ob-

tained by smoothly stretching the I–coordinate.
Let θ : (Dm, ∂Dm) ↪→

(∏k
i=1D

mi × I,
∏k
i=1D

mi ×{1}
)

be an embedding of
the form σ ◦ emb1 for σ ∈ I(m), see Definition 1.3.0.14.

It is a smooth and
∏k
i=1O(mi)–equivariant embedding such that

1. im(θ) intersects Lζ = {rζ + em+1|r ∈ R≥0}, i.e. the ray from the “origin”

in the direction of ζ, in exactly one point for every ζ ∈ Sm
+
j

− .

2. θ is parallel to em+1 on a neighbourhood of the boundary, i.e. there is
a neighbourhood U of ∂Dm in Dm such that θ(x) = (θ1(x/‖x‖), θ2(x))
holds for every x ∈ U .

We call im(θ) a good image and denote the space of good images by E(m).
An n–simplex in E(m) is a fibre preserving smooth family of good images over
|∆n|.

Definition 1.4.1.5. Let θ be an embedding with good image. We define
p̃ : νθ → im(θ) as a 1–dimensional

∏k
i=1O(mi)–equivariant embedded tubular

neighbourhood of θ such that

1. there is a neighbourhood U of ∂ im(θ) in im(θ) such that on U we have
p̃ = q̃ × IdI for a 1–dimensional embedded tubular neighbourhood q̃ of
∂ im(θ) in

∏k
i=1D

mi × {1}, i.e. the tubular neighbourhood is orthogonal
to em+1 on a neighbourhood of the boundary.

2. the intersection of νθ and the boundary of
∏k
i=1D

mi × I is p̃−1(∂ im(θ)).

Further, neither the boundary of
∏k
i=1D

mi ×{1} nor em+1 are contained
in the intersection.

We call p̃ a good tubular neighbourhood and denote the space of these by
Tub(im(θ)). An n–simplex in Tub(im(θ)) is a fibre preserving smooth family of
good tubular neighbourhoods over |∆n|.

Definition 1.4.1.6. The complement of νθ in
∏k
i=1D

mi × I consists of two
connected components.

Let φ : Dm× I → νθ denote an
∏k
i=1O(mi)–equivariant trivialisation of the

disk bundle such that φ(Dm × {1}) bounds the connected component which
contains em+1.

We call φ a good trivialisation and denote the space of these by Triv(νθ). An
n–simplex in Triv(νθ) is a fibre preserving smooth family of good trivialisations
over |∆n|.

The trivialisations are in bijection with the
∏k
i=1O(mi)–equivariant maps

φ′ : Dm → Diff0
+(I) such that the adjoint Dm× I → I is smooth. Here Diff0

+(I)
denotes the space of orientation preserving diffeomorphisms from I to itself
which preserve 1/2 (which corresponds to the zero section).
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Remark 1.4.1.7. The space of good images E(m) is contractible since I(m)
is convex by definition. The space of good tubular neighbourhoods Tub(im(θ))
is contractible via Lemma 1.2.2.5. The space of good trivialisations Triv(νθ) is
contractible by the characterisation in terms of Diff0(I).

Definition 1.4.1.8. We denote the space of compatible triples (im(θ), p̃, φ) by
G(m). We note that it depends on the choice of a partition of m.

Lemma 1.4.1.9. The space G(m) is contractible.

Proof. We fix some 0–simplex. Let (im(θ), p̃, φ) be an n–simplex of G(m).
We characterise p̃ as the image under the exponential map of the normal

vector field orthogonal to the tangent space and change φ to the exponential
map, see Lemma 1.2.2.5. Then an isotopy of θ induces isotopies of p̃ and φ.

Since im(θ) has unique points of intersection, we find an isotopy from im(θ)
to the first entry of our fixed 0–simplex.

These constructions are compatible with the simplicial structure maps, hence
G(m) is a contractible Kan-complex.

This concludes our choices. Before we define how our choices induce a map
between spaces of pseudoisotopies we have to set up appropriate coordinates.

Remark 1.4.1.10. Given an enriched functor G : S(∆k) → D∆, we obtain a
sequence G(0) ← νι0 ↪→ G(1) ← νι1 ↪→ . . . ← νιk−1 ↪→ G(k) of vectorbundles
pj : νιj → G(j) and codimension zero embeddings ιj : νιj−1 ↪→ G(j). Note that
we abuse notation and identify G(j) with its image ιj(G(j)). Let mi be the di-
mension of a fibre of pi : νιi−1 → G(i−1). We define the tubular neighbourhood
νι = (ι∗0 ◦ ι∗1 ◦ . . . ◦ ι∗k−1)(νιk−1) inductively via the pullbacks

ι∗n(νιn)
ιn //

pn

��

νιn

pn

��
νιn−1

ιn // G(n)

and

(ι∗j ◦ ι∗j+1 ◦ . . . ◦ ι∗n)(νιn)
ιj //

pn

��

(ι∗j+1 ◦ . . . ◦ ι∗n)(νιn)

pn

��
(ι∗j ◦ ι∗j+1 ◦ . . . ◦ ι∗n−1)(νιn−1)

ιj // (ι∗j+1 ◦ . . . ◦ ι∗n−1)(νιn−1).

We obtain an embedding ι : νι ↪→ G(k) given by ιk ◦ ιk−1 ◦ . . . ◦ ι0 and a bundle

p : νι → G(0) with fibre
∏k
i=1D

mi via p = p0 ◦ p1 ◦ . . . ◦ pk. The composed
tubular neighbourhood of the pi is the maximal disk subbundle of the bundle
p : νι→ G(0).

We get an analogue for every subsequence I = {i0 = i < i1 < . . . < ir = j}
of {0, 1, . . . , k}. We denote the composition (ιiq+1−1, piq+1−1)◦ . . .◦(ιiq , piq ) with

0 ≤ q ≤ r− 1 by (ιIq , p
I
q ). Then we obtain a

∏r−1
q=0 D

miq –bundle pI : νιI → G(i)

given by pI = pI0 ◦ pI1 ◦ . . . ◦ pIr−1 with pIq the appropriate pullback. There is also

a codimension zero embedding ιI : νιI ↪→ G(j).
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Finally, we can define the key to the construction of our homotopy coherent
diagrams. The idea is as follows: Outside of the bundle just introduced, all
compositions of transfers are given by the Identity.

In local coordinates, the complement of our tubular neighbourhood νθ of a
level set in each fibre consists of two pieces. We use Id and F (−, 1) on those,
similar to Definition 1.1.1.15. Finally, we use the trivialisation φ of our tubular
neighbourhood νθ to define our map as φ ◦ (F × Id) ◦ φ−1 on νθ.

Definition 1.4.1.11. Let G : S(∆n)→ D∆ be a simplicially enriched functor.
We define a map

Φ: DG∆(i, j)×I G(m+
j −m

+
i )→Kan∆(S•P (G(i)),S•P (G(j))

where DG∆(i, j) ×I G(m+
j − m+

i ) is the subspace of DG∆(i, j) × G(m+
j − m+

i )

consisting of elements (d,G) with G in the space G(m+
j −m

+
i ) with respect to

the partition associated to d.
By adjunction we obtain an n-simplex of Kan∆(S•P (G(i)),S•P (G(j)) by

constructing a map S•P (G(i))×∆n → S•P (G(j)).
We define the desired map via two maps S•P (G(i))×∆n → S•P (νιI) and

S•P (νιI)×∆n → S•P (G(j)) where the latter map is induced by the codimen-
sion zero embedding incl : νιI ⊆ G(j).

We now turn to the construction of the first map. We reduce the structure
group of our bundle pI : νιI → G(i) to

∏r−1
q=i O(miq ) ⊆ O(m+

j −m
+
i ). So there

is a cover {(Ux, φx)}x∈X of G(i) consisting of local trivialisations such that a

change of trivialisations is given by a map gxy : Ux ∩Uy →
∏r−1
q=i O(miq ). From

here on out, we are going to work with constructions which are equivariant with
respect to the

∏r−1
q=i O(miq )–action.

Let d be an element in D∆(i, j), G = (im(θ), p̃, φ) an element in G(m+
j −m

+
i ),

and let F ∈ Sn′P (G(i)) denote an n′–simplex of the pseudoisotopy space. We
write Fv′ ∈ P (G(i)) for the restriction of F to G(i)× I × {v′} for v′ ∈ |∆n′ |.

Let U, V be open sets in G(i) with F (U × I × |∆|n′) ⊆ V × I × |∆|n′ . Let
v ∈ |∆n|. The set νθv divides Rm × I into two connected components, say C1

and C2, out of which exactly one, say C1, is bounded. We apply our map Φ at
v to Fv′ .

The image Φ(d,G)v(Fv′) is in these local coordinates given by

Φ(d,G)v(Fv′) : U ×
r−1∏
q=0

Dmq × I → V ×
r−1∏
q=0

Dmq × I

(x, t) 7→


(Fv′(u, 1), x, t) for (u, x, t) ∈ U × C1

(Id×φ) ◦ (Fv′ × Id) ◦ (Id×φ−1)(u, x, t)

for (u, x, t) ∈ U × νθv
(u, x, t) for (u, x, t) ∈ U × C2.

The following observation is essential to compare the smooth and topological
pseudoisotopyfunctor.

Remark 1.4.1.12. A bending map is a homeomorphism from
∏r−1
q=0 D

mq ×I to

itself which identifies
∏r−1
q=0 D

mq×{0} with
∏r−1
q=0 D

mq×{0}∪∂(
∏r−1
q=0 D

mq )×I.
We note that the map Φ(d,G)v(Fv′) is in local coordinates given by conjugation
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of Fv′× Id with a bending map. This follows from the isotopy extension theorem
in the topological category.

Since the transfer relative boundary in the topological case is defined by con-
jugating the absolute transfer with a bending map, there is a topological transfer
relative boundary which restricts to the map Φ(d,G) on the subspace of smooth
pseudoisotopies. Here we use Remark 1.1.0.11.

We also have to relate our construction to the maps for pseudoisotopies
introduced in Section 1.1.

Remark 1.4.1.13. By an induction argument, using Definition 1.1.1.15 of the
transfer map, Definition 1.3.0.4 of Ar and Lemma 1.1.1.19 we see that the map
ι∗ ◦ (pj)! ◦ . . . ◦ (pi+1)! : P (G(i))→ P (G(j)) is contained in the image of Φ.

We proceed with the main argument. To link D∆(G(i), G(j) to Φ we define
a quotient of our choices DG∆(i, j)×G(m+

j −m
+
i ).

Definition 1.4.1.14. There is a composition map on DG∆(i, j) which sends an

element (I, d̃1, . . . , d̃t, R1, . . . , Rt) to the tuple ({i, j}, d̃t ◦ . . . ◦ d̃1, Rt ◦ . . . ◦R1)
where d̃t ◦ . . . ◦ d̃1 is the composition in D∆ and the composition of metrics R1

and R2 is defined as R1+2((x1, x2), (y1, y2)) =
√
R1(x1, y1)2 +R2(x2, y2)2.

We call two n–simplices (d,G) and (d′, G′) in DG∆(i, j)×G(m+
j −m

+
i ) equiv-

alent, if d′ and d have the same composition and G = G′. This is an equivalence
relation.

We denote the quotient by Q(DG∆(i, j)×G(m+
j −m

+
i )).

Remark 1.4.1.15. The map Φ is compatible with the equivalence relation and
we obtain Φ: Q(DG∆(i, j)×G(m+

j −m
+
i ))→ Kan∆(P (G(i), P (G(j)).

Lemma 1.4.1.16. The map Q(DG∆(i, j) × G(m+
j − m

+
i )) → D∆(G(i), G(j)),

induced by the composition map, is a trivial fibration.

Proof. By pulling back along some retraction |∆n| → |Λnk | we see that the map
is a Kan fibration.

Let (d,G) be in the fibre over some d′. Since G(m+
j −m

+
i ) is contractible,

every G admits an isotopy to a fixed O(m+
j −m

+
i )–equivariant G′. Together with

the fact that the space of Riemannian metrics is convex this yields a homotopy
to (d′, G′).

Since the obstructions to the construction of a homotopy coherent diagram
are obtained by gluing together compositions of previous extension problems,
we have to make sure that compositions of maps are in fact contained in the
desired subspace.

Lemma 1.4.1.17. Let G1 in (G(m(1)))n and G2 in G(m(2))n be good tuples.

Let M be a compact manifold and dj : M → M ×
∏k(i)

i=1 D
m

(j)
i the canonical

map in D∆ for j = 1, 2.
Let us assume that im(θ1) restricts on the boundary ∂∆n to a family of

submanifolds A′(t) constructed with respect to elements of I(m(1)). Moreover,
the tubular neighbourhood νθ1 is, over ∂∆n, given by subsets of the line through
the origin and x for every x ∈ im(θ), i.e. it is given by a union of A′(s) for
s ∈ [a, b] ⊆ [0, 1]. Finally, the trivialisation φ1 is given by a fixed parametrisation
of A′(t) for every s ∈ [a, b]. Similarly for G2.
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In particular, there is a good tuple ∂G = (∂θ, ν∂θ, ∂φ) ∈ G(m(1) + m(2))
over ∂∆n such that φ(d2, G2)(φ(d1, G1)(F )) = φ(d2 ◦ d1, ∂G)(F ) holds upon
restriction to ∂∆n for every pseudoisotopy F in P (M).

Then G1 and G2 are isotopic relative boundary to good tuples G′1 and G′2
which satisfy the above condition over the whole simplex.

In particular, there is a good tuple G′ = (θ, νθ, φ) ∈ G(m(1) +m(2))n, which
restricts to ∂G over ∂∆n, such that φ(d2, G

′
2)(φ(d1, G

′
1)(F )) = φ(d2 ◦d1, G

′)(F )
holds for every pseudoisotopy F in P (M).

Proof. The sets im(θ1) and im(θ2) are of the right form by definition. We
obtain the desired isotopy from the characterisation of tubular neighbourhoods
in Lemma 1.2.2.5. Adjusting the trivialisations is easy.

Corollary 1.4.1.18. Let G1 in (G(m(1)))n and G2 in G(m(2))n be good tuples
which satisfy the same assumptions as in the above lemma.

Let d1 in DG∆(i, j) and d2 in DG∆(j, l) be arbitrary with codimension m(1) and
m(2), respectively.

Then the analogue of the above lemma holds. In particular, there is a good
tuple G′ = (θ, νθ, φ) ∈ G(m(1) + m(2))n such that φ(d2, G

′
2)(φ(d1, G

′
1)(F )) =

φ(d2 ◦ d1, G
′)(F ) holds for every pseudoisotopy F in P (G(i)) and ∂G′ = ∂G.

Proof. Both maps are the identity outside an iterated tubular neighbourhood
of G(i). Via local coordinates the previous lemma shows the result.

The final step is to assemble all constructions in this chapter to construct a
functor of quasicategories from choices to Kan-complexes.

Proposition 1.4.1.19. A functor P : N h.c.
• D∆ → N h.c.

• Kan∆ with the proper-
ties specified in Lemma 1.4.1.1 exists.

Proof. The conditions stated in Lemma 1.4.1.1 on spaces (i.e. 0–simplices) and
1–simplices determine our functor S•P on the 1–skeleton of N h.c.

• D∆.
As explained in Section 1.2.1 we have to solve certain lifting problems to

obtain the desired functor. Let G : S(∆k) → D∆ be a k–simplex of N h.c.
• D∆

and S•P (G|∂∆k) : S(∂∆k)→ Kan∆ the image of its boundary under the pseu-
doisotopy functor S•P . We have to solve

S(∂∆k)
S•P (G|

∂∆k
)
//

��

��

Kan∆

S(∆k)

S•P (G)
66

to extend our functor S•P from the boundary G|∂∆k to G. For degenerate
simplices, we use the obvious extension. The non-degenerate case is more inter-
esting.

The lifting problem is equivalent to

S(∂∆k)(0, k)
S•P (G|

∂∆k
)
//

��

��

Kan∆(S•P (G(0)),S•P (G(k))

S(∆k)(0, k)

S•P (G)
33



1.4. THE HOMOTOPY COHERENT DIAGRAM 47

and we are going to show by induction that each of these lifting problems admits
a solution given by a lift

S(∂∆k)(0, k) //
��

��

Q(DG∆(0, k)×G(m))

��
S(∆k)(0, k) //

55

D∆(G(0), G(k)

composed with Φ: Q(DG∆(0, k)×G(m))→ Kan∆(S•P (G(0)),S•P (G(k))).

The composition of

φ1 : Q(DG∆(0, i)×G(m+
i ))→ Kan∆(S•P (G(0)),S•P (G(i)))

and

φ2 : Q(DG∆(i, k)×G(m−m+
i ))→ Kan∆(S•P (G(i)),S•P (G(k)))

admits, after a homotopy, a factorisation over

φ : Q(DG∆(0, k)×G(m))→ Kan∆(S•P (G(0)),S•P (G(k)))

by Corollary 1.4.1.18 for every 0 ≤ i ≤ k.

The map S•P (G|∂∆k) is given by gluing together compositions of this form,
hence we obtain a map S(∂∆k)(0, k)→ Q(DG∆(0, k)×G(m)).

Since the map Q(DG∆(0, k)×G(m))→ D∆(G(0), G(k)) is a trivial fibration
by Lemma 1.4.1.16, we obtain a lift S(∆k)(0, k)→ Q(DG∆(0, k)×G(m)) which
we compose with φ : Q(DG∆(0, k) × G(m)) → Kan∆(S•P (G(0)),S•P (G(k))) to
obtain the solution of our lifting problem.

1.4.2 Spectra

To improve our construction to a functor from topological spaces to spectra we
extend our previous constructions a little. We first recall the definition of the
pseudoisotopy spectrum.

Definition 1.4.2.1. Let k ∈ N be a natural number. Let M be a manifold.
Then P (M ;Rk) denotes the space of bounded pseudoisotopies. It is the sub-
space of P (M ×Rk) containing those pseudoisotopies which fulfil the following
property. Let F ∈ P (M ;Rk) be a pseudoisotopy. Then there is α > 0 such that
for each (x, v, t) ∈M ×Rk × I the inequality ‖v− (prRk ◦F )(x, v, t)‖ < α holds.
Similarly, we define P (M ;Rk × R≥0) and P (M ;Rk × R≤0).

One can check that we still obtain maps induced by codimension zero em-
beddings and transfer maps via the same definitions as before. In fact, for an
α–controlled pseudoisotopy F the maps tr(F ) and p!(F ) are still α–controlled.

The constructions in Section 1.3 and Section 1.4 are local in nature. Thus
the definition of Φ in Definition 1.4.1.11 carries over verbatim to the controlled
setting. We also have maps Φ+

k and Φ−k which correspond to P (M ;Rk × R≥0)
and P (M ;Rk × R≤0), respectively.
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To obtain an (∞, 1)–functor P : DG∆ → Spectra∆ which is level-wise given
by P (−;Rk) we have to define structure maps. Let us consider the square

P (M ;Rk) //

��

P (M ;Rk × R≥0)

��
P (M ;Rk × R≤0) // P (M ;Rk+1)

where (i0)∗◦pr! : P (M ;Rk)→ P (M ;Rk×R≥0) is the composition of the transfer
pr! : P (M ;Rk)→ P (M × [0, 1];Rk) associated to pr : M × [0, 1]×Rk →M ×Rk
and the map (i0)∗ : P (M × [0, 1];Rk) → P (M ;Rk × R≥0) which is induced by
the codimension zero embedding i0 : M × Rk × [0, 1] ⊆M × Rk × R≥0.

From the definition of Φk and Φ+
k one sees that pr! : Φk ⇒ Φk ◦ (−× [0, 1])

and (i0)∗ : Φk ◦ (−× [0, 1])⇒ Φ+
k determine natural transformations of (∞, 1)–

functors.
Moreover, the upper right and lower left corner are contractible by a natural

Eilenberg Swindle. This is enough to obtain the desired structure maps.

Remark 1.4.2.2. For an appropriate choice of the Eilenberg Swindle, the struc-
ture map from the k–th to the k + n–th level arises from a homotopy coherent
diagram which is given in degree 0 by

P (M ;Rk) ∧ (Rn ∪ {∞})→ P (M ;Rk+n)

(F, v) 7→ (iv)∗ ◦ pr!(F )

where pr is as above and iv : M×Rk×([−1, 1]n+v) ⊆M×Rk+n the codimension
zero embedding. This is the definition of the pseudoisotopy spectrum given by
Hatcher in [23, Appendix II].

Analogous to Lemma 1.4.1.1 we obtain

Lemma 1.4.2.3. There is a functor

P : Ind(N h.c.
• D∆)→ N h.c.

• Spectra∆

with

1. The spectrum P(M) is the stable pseudoisotopy spectrum of M which is
given by P(M ;Rk) = hocolimn∈N P (M × [0, 1]n;Rk) in level k and uses
the structure maps specified above.

2. A map (ι × Id,M × [0, 1]n, Id)n∈N : (M × [0, 1]n)n∈N → (N × [0, 1]n)n∈N
with ι a codimension zero embedding is sent to

hocolimn∈N(ι× Id[0,1]n)∗ : P(M ;Rk)→ P(N ;Rk)

in level k.

3. A map (ι× Id, ν(ι× Id), p× Id)n∈N : (M × [0, 1]n)n∈N → (νι× [0, 1]n)n∈N
is sent to the transfer

hocolimn∈N(p× Id[0,1]n)! : P(M ;Rk)→ P(νι;Rk)

in level k.
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4. We have PTop(−;Rk) ◦ j ' PDiff(−;Rk) where we use the Yoneda embed-
ding j : Ind(N h.c.

• D∆)→ Ind(N h.c.
• Ch∆) as defined in Remark 1.2.5.3.

Now we note that P(M) is level-wise Kan and an Ω–spectrum for every man-
ifold M , see [53, Proposition 1.10]. Therefore, it is a cofibrant and fibrant object
in the stable model structure on sequential prespectra, see [5, Theorem 2.3].

This is enough to ensure that the argument to deduce Theorem 1.4.1.2 from
Lemma 1.4.1.1 admits a direct analogue to show that Lemma 1.4.2.3 implies
our main theorem.

Theorem 1.4.2.4. There is a functor PDiff : Top→ Spectra with the following
properties:

1. It descends to a functor of homotopy categories

hoPDiff : ho(Top)→ ho(Spectra).

2. There is a natural weak equivalence

PDiff → Ω∞PDiff,Spectra.

3. The subset inclusion PDiff ⊆ PTop extends to a natural transformation of
functors of quasicategories. The construction of PTop is given in [12].

We show the third property later on as statement 6 of Theorem 2.2.1.16.
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1.4.3 All of the δ

We give an overview over the δ chosen throughout this chapter. For a given
pseudoisotopy F ∈ P (M) and a natural number m > 0 there are four smooth
maps from M to (0, 1/4), namely δ̄ > δ̃ > δ > δ†. They fulfil certain properties
stated below. But first, let us give an example.

Picture 1.4.3.1. We sketch the distorted extendable parametrised inverse for
m = 1. We start with a parametrised family of half-circles whose radius ranges
from δ to 3

4 , centred around (0, 1− δ̃). In the range 1− 2δ† − δ̄ ≤ ‖x‖ ≤ 1− δ̄
we use β to deform each circle into a straight line, parallel to the I–axis.

Now assume that m = 2 and m1 = m2 = 1. Let us consider the slice
{ 3

4} × D1 × I ⊆ Dm1 × Dm2 × I. There is some δ′ > 0, such that the set

St−1
m2
◦St−1

m1
([1−δ′, 1]×D1×{0}) contains all distorted half circles with sufficiently

small radius, but at least radius δ, in the slice { 3
4} × D1 × I. The distorted

half circles of radius less than δ are precisely the holes we fill with Bi(0) in
Section 1.3.

D1

I

1− δ̃

1− δ̃ − δ

‖x‖ = 1− δ̄
‖x‖ = 1− 2δ† − δ̄

1

The precise properties are as follows:

• δ > 0 to ensure that St−1
m is an embedding, see Definition 1.1.1.1.

• 1/4 > δ̃ to make sure that the composition St−1
mk
◦ . . .◦St−1

m1
is well-defined.

• 2δ† > δ̄ > δ† makes the definition of β sensible, see Definition 1.1.1.4.

• δ̄ and δ† are sufficiently small to ensure that St−1
n is an embedding for

each 1 ≤ n ≤ m, see Lemma 1.1.1.8. They are also small enough to make
sure that each level set can be deformed to the lower half of a sphere, see
Lemma 1.3.0.7.



Chapter 2

A natural h–cobordism
theorem

In this chapter we show that our notion of a pseudoisotopy functor is compatible
with the Whitehead spectrum functor.

Theorem 2.0.0.1. Let Cat = Top,PL or Diff. There is a natural weak equiv-
alence of (∞, 1)–functors

Ψ: PCat ⇒ Ω2 WhCat,−∞

from the (∞, 1)–functor PCat : N h.c.
• Top∆ → N h.c.

• Spectra∆ of pseudoisotopies
to the twofold loops of the (∞, 1)–functor given by the Whitehead spectrum.

In particular, there is a zig-zag of natural weak equivalences between the
strict functors PCat : Top→ Spectra and Ω2 WhCat,−∞.

A similar statement holds for the space level versions PCat and Ω2 WhCat.

The underlying idea of this result is - as in the first chapter - geometric in
nature, but fortunately not as subtle.

A pseudoisotopy on a PL manifold M is a PL automorphism of M×I which
is given by the Identity on M ×{0}. It is relative boundary, if it is also given by
the Identity on ∂M × I. The space of pseudoisotopies P (M) and the subspace
of those relative boundary P∂(M) are homotopy equivalent.

There is a model for Ω Wh(M× [0, 1]) which is given by the classifying space
of a simplicial category sẼh

• (M × I). Roughly speaking, an object in degree n
is a bundle of polyhedra over |∆n| and a morphism is a morphism of bundles
which is also a simple map (i.e. the preimage of each point is contractible). All
of this is relative to a trivial subbundle with fibre M × [0, 1].

We can understand S•P (M) as a discrete simplicial category. Let F in
SnP (M) be a piecewise linear pseudoisotopy on M × |∆n|. We send F to a
bundle c(F ) over |∆n| × S1 with fibre M × I and classifying map F . We also
choose a collar c̃ : M × [0, 1] → M × I with F |im(c̃) = Id. This yields a trivial
subbundle with fibre M × [0, 1].

We have to explain what both functors do on morphisms. There are two
interesting cases. A zero section i : M → τN (M) of a piecewise linear tubular
neighbourhood p : τN (M)→M and a piecewise linear embedding ι : M → N of
codimension zero.

51
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The map P (i) : P (M)→ P (τN (M)) sends F to its transfer p!(F ) which is of
the form F ×Id : M×|∆n|×I×Dk →M×|∆n|×I×Dk in local trivialisations.

On the subspace P∂(M) the second map ι∗ = P∂(ι) : P∂(M) → P∂(N)
extends F with the Identity on (N −M)× |∆n| × I.

The map Ω Wh(i) : Ω Wh(M × [0, 1]) → Ω Wh(N × [0, 1]) is just given by
pushout, so c(F ) is sent to c(F ) ∪M×[0,1]×S1 N × [0, 1]× S1, similarly for ι.

There is a bundle map c(p!(F ))→ Ω2 Wh(i)(c(F )) which is also a retraction
and a simple map. It is thus a morphism in the category associated to Ω2 Wh,
similarly for c(ι∗(F )) → Ω2 Wh(ι)(c(F )). We are going to construct a space
of “admissible retractions” which turns out to be contractible by an Alexander
trick.

The non-connective case is similar. The main issue is that we do not have
as good a model for Ω Wh. Instead, we have to work with a simplicial category
of retractive simplicial sets. Once we have constructed an appropriate model
we triangulate the solution used in the connective case to obtain the desired
natural transformation.

Reader’s guide

In Section 2.1.1 we recall results due to Jahren, Rognes and Waldhausen [31] and
Waldhausen [51]. Since we need an explicit map, we show that pseudoisotopies
classify bundles of h–cobordisms in Section 2.1.2. A detailed discussion of the
pseudoisotopy functor in the topological and piecewise linear category occupies
all of Section 2.1.3 and is crucial for the main argument. We use the Ind–
completion of (∞, 1)–categories recalled earlier in Proposition 1.2.0.3.

Afterwards we define an (∞, 1)–functor version of the Whitehead space in
Section 2.1.4 which relies on Section 2.1.1. In the final part of the first half of
the chapter, Section 2.1.5, we construct the natural transformation. We make
use of the (∞, 1)–functor models for pseudoisotopies and the Whitehead space
introduced in Section 2.1.3 and Section 2.1.4, respectively. We also need the
classifying map given in Section 2.1.2. In order to obtain a zig-zag of strict
natural transformations, the results of Section 1.2.1 are required.

We generalise the content of Section 2.1.2 and Section 2.1.3 in Section 2.2.1
to a controlled setting. Section 2.2.2 introduces the controlled analogue of sẼh

•
and we discuss its relation to the Whitehead spectrum. This section draws
heavily from Waldhausen’s work [51]. To show the existence of a coherent
natural transformation in Section 2.2.3 we rely on the constructions given in
Section 2.2.1 and use the controlled analogue of sẼh

• , defined in Section 2.2.2, in
the crucial step of the proof. Further, we rely on Section 1.2.1 for strictification.

The smooth case of our main result is shown in Section 2.2.4 by reduction
to the topological case. We also use the main statement of the first chapter,
given in Theorem 0.0.0.4, and some basic results on manifolds with corners from
Section 1.2.2.
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2.1 Connective Naturality

In this section we show that the stable parametrised h–cobordism theorem
shown by Jahren, Rognes and Waldhausen in [31] is compatible with the full
functoriality of pseudoisotopies and the common functor structure of A–theory.
Our main result is the following theorem:

Theorem 2.1.0.1. Let Cat = Top or PL. There is a zig-zag of natural weak
equivalences between the stable Cat–pseudoisotopy functor PCat

∂ : Top→ Top as
defined in [12] and the 2–fold loop space of the Cat–Whitehead space functor
Ω2 WhCat : Top→ Top.

We recall the pseudoisotopy functor in Section 2.1.3 below. Concerning the
Whitehead space, we are content to define its onefold loops.

Definition 2.1.0.2. Let Cat = Top or PL. The loop space of the Cat–
Whitehead space is defined as the homotopy fibre

Ω WhCat → Ω∞((−)+ ∧A(∗))→ A

of the assembly map Ω∞((−)+ ∧ A(∗)) → A of A–theory where A(∗) denotes
the connective A–theory spectrum of the point [51, p. 13].

Note that the A–theoretical assembly map Ω∞((−)+ ∧A(∗))→ A does not
depend on the category Cat. Hence Ω WhTop = Ω WhPL holds. See [54] for an
introduction of the assembly homology theory.

In Section 2.1.1 we recall the point-wise zig-zag along weak equivalences
between pseudoisotopies and the twofold loops of the Whitehead space as well
as the known degrees of naturality for each of the maps involved. It turns out
that we may restrict our attention to the construction in [31]. We end the section
with a brief reminder of the definitions and results relevant for our purposes.

In Section 2.1.2 and Section 2.1.3 we recall, respectively, the h–cobordism
space and the pseudoisotopy functor, their relation, and various properties re-
quired throughout the proof.

We finish our preparations in Section 2.1.4. Here, we extend a model for
the piecewise linear Whitehead space to a simplicially enriched functor. We
also lift the zig-zag of [31] to one of functors of simplicial sets and natural
transformations between them.

Finally, in Section 2.1.5, we construct an enriched natural transformation
of functors enriched in simplicial categories between bundles of polyhedra and
pseudoisotopy spaces. This is the key step of the proof and, once finished, the
desired zig-zag of natural weak equivalences becomes an easy consequence.

2.1.1 The stable parametrised h-cobordism theorem

We analyse the functoriality of the connection between pseudoisotopies and the
Whitehead space. The reader familiar with the work of Waldhausen [51] and
Jahren, Rognes and Waldhausen [31] can safely skip this section.

Waldhausen [51] gave a functorial model for the homotopy fibre of the as-
sembly map in terms of the K–theory of a Waldhausen category.
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Theorem 2.1.1.1 ([51, Theorem 3.3.1]). Let X• be a simplicial set. There is
a homotopy fibre sequence

K(Rhf (X•), s)→ K(Rf (X•), s)→ K(Rf (X•), h)

where K(Rf (X•), h) is a model for A(X•) and K(Rf (X•), s) is a model for the
assembly homology theory of A evaluated at X•.

Consequently, K(Rhf (X•), s) is a model for Ω Wh(X•), the one-fold loop
space of the Whitehead space of X•.

Further, he gave a zig-zag of weak equivalences to obtain a different model.
The functoriality for A–theory given in [51] allows obvious analogues for each of
the spaces in this zig-zag and one obtains a zig-zag of natural weak equivalences.

Theorem 2.1.1.2 ([51, Theorem 3.1.7]). Let X• be a simplicial set. There are
natural homotopy equivalences

sN•Chf (X•)→ sN•Chf (X∆•

• )← sN•R
h
f (X∆•

• )→ sS•R
h
f (X∆•

• ).

Proposition 2.1.1.3 ([51, Proposition 3.1.1]). There is a natural homotopy
equivalence

|sChf (X•)| ' Ω|sN•Chf (X•)|.

This new model sChf (X•) (of Wh(X•)) was, in turn, the final step in the

zig-zag of [31]. There it was denoted by sCh(X•).

Theorem 2.1.1.4. Let M be a compact PL manifold. Let (X•, t : |X•|
∼=−→ M)

be a triangulation of M . There is a zig-zag of weak equivalences

HPL
• (M)

u−→ sẼh
• (M)

ñr←− sDh(X•)
i−→ sCh(X•).

The diagram is explained in the introduction of [31]. We briefly recall these
constructions below.

So far, we obtained a connection between h–cobordisms and the Whitehead
space. As the last step we note that pseudoisotopies are the structure group of
bundles of h–cobordisms which yields a weak equivalence

c : PPL(M)
'−→ Ω|HPL

• (M)|.

We give a careful treatment of this result in Section 2.1.2.
In the zig-zag of Theorem 2.1.1.4 functoriality and naturality become more

subtle issues:
As before sCh(X•) yields a functor of simplicial sets, while sDh(X•) is a

functor only on non-singular simplicial sets and cofibrations, and for sẼh• (M)
we have to use polyhedra and piecewise linear embeddings.

There is a similarly restricted variation for HPL
• (M) which uses manifolds

and codimension zero piecewise linear embeddings but we do not need it.
The functor i : sDh(X•)→ sCh(X•) is natural in non-singular simplicial sets.
Our actual task is thus to
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1. improve the natural weak equivalences i and ñr of functors from non-
singular simplicial sets sSetnon-sing to Top to zig-zags of natural weak
equivalences between functors from Top to Top and

2. construct a zig-zag of natural weak equivalences between ΩsẼh• and P.

To proceed, we have to recall some definitions from the work of Jahren,
Rognes and Waldhausen [31].

Definition 2.1.1.5 ([31, Definition 1.1.1(a)]). Let M ⊆ R∞ be a compact
PL manifold, possibly with boundary. The h–cobordism space H•(M) is the
simplicial set with Hn(M) the set of all diagrams

M × |∆n| �
� ι //

pr

$$

W

p

��
|∆n|

where p : W → |∆n| is a PL subbundle of R∞ × |∆n| → |∆n|, i.e. there is an
open cover {Uα} of |∆n| and a PL isomorphism over Uα from p−1(Uα)→ Uα to
a product bundle for each α. Each local trivialisation restricts to the Identity
on the product subbundle specified by ι. Finally, the fibre Wx := p−1(x) is a
piecewise linear h–cobordism with M ∼= ι(M×{x}) as one boundary component
for every x ∈ |∆n|.

The simplicial structure maps are induced by pullback along the structure
maps of the cosimplicial space [n] 7→ |∆n|.

Definition 2.1.1.6 ([31, Definition 1.1.1(b)]). Let Hc
•(M) be the simplicial

set with Hc
n(M) containing the tuples which consist of an element of Hn(M)

and a collar c : M × |∆n| × [0, 1] → W which restricts to a fibre-wise collar
c : M × {x} × [0, 1]→Wx for each x ∈ |∆n|.

Remark 2.1.1.7 ([31, Definition 1.1.1(b)]). We obtain an acyclic fibration
Hc
•(M)→ H•(M) given by the forgetful map.

Definition 2.1.1.8 ([31, Definition 1.1.3]). There is a stabilisation map

σ : H•(M)→ H•(M × [0, 1])

given by

(W,p : W → |∆n|, ι : M × |∆n| ↪→W ) 7→ (W × [0, 1], p ◦ prW , ι× Id[0,1])

where we mildly abuse notation since the subbundle is M × [0, 1] × |∆n|, not
M × |∆n| × [0, 1].

In the decorated case, we send a collar c : M×|∆n|× [0, 1]→W to c×Id[0,1].

Definition 2.1.1.9 ([31, Definition 1.1.3]). The stable h–cobordism space is

H•(M) := colimk∈NH•(M × [0, 1]k)

and similar for Hc•(M). We denote the geometric realisation by H(M).
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Definition 2.1.1.10 ([31, Definition 1.1.5]). A PL map f : K → L of compact
polyhedra is called a simple map, if f−1(p) is contractible for every p ∈ L.

A map of finite simplicial sets f : X• → Y• is called a simple map if for its
geometric realisation the preimage |f |−1(p) is contractible for every p ∈ |Y•|.

Definition 2.1.1.11 ([31, Definition 1.1.6]). Let K be a compact polyhedron.
The simplicial category sẼh• (K) consists of fibrations of compact polyhedra con-
taining K as a deformation retract, and simple PL maps. Precisely:

In simplicial degree q the objects of sẼhq (K) are diagrams

K × |∆q| s //

pr

$$

E

π

��
|∆q|

where π is a PL Serre fibration (i.e. a PL map whose underlying map of spaces is
a Serre fibration) of compact polyhedra and s is a PL embedding and homotopy
equivalence. We only consider polyhedra in R∞ × |∆n| for smallness.

A morphism f : (π, s) → (π′, s′) is a simple PL map of relative fibrations
f : E → E′, i.e. we have π = f ◦ π′ and s′ = s ◦ f .

Given a PL embedding ι : K → K ′, the construction E 7→ E ∪K K ′ induces
a functor of simplicial categories ι∗ : sẼh• (K)→ sẼh• (K ′), and further a functor
sẼh• from compact polyhedra and PL embeddings to simplicial categories.

There is a stabilisation map sẼh
• (K) → sẼh

• (K × [0, 1]) which is an acyclic
cofibration.

Definition 2.1.1.12 ([31, Definition 1.1.7]). Let M be a compact PL manifold.
Let u : HPL

• (M)c → sẼh
• (M × [0, 1]) be given by sending the pair consisting of a

diagram

M × |∆n| �
� ι //

pr

$$

W

p

��
|∆n|

and a parametrised family of collars c : M × [0, 1]× |∆n| →W over |∆n| to

M × [0, 1]× |∆n| �
� c //

pr

''

W

p

��
|∆n|.

The map is compatible with stabilisation.

Theorem 2.1.1.13 ([31, Theorem 1.1.8]). The stabilised map

colimk∈NH
PL(M × [0, 1]k)c → colimk∈N sẼh

• (M × I × [0, 1]k)

induced by u is a homotopy equivalence.
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Definition 2.1.1.14 ([31, Definition 1.2.3]). Let X• be a finite simplicial set.
Let sCh(X•) denote the category with objects y : X• � Y• where y is an acyclic
cofibration and Y• is generated by X• and finitely many other simplices. A
morphism is a simple map of simplicial sets f : Y• → Y ′• with y′ = f ◦ y.

A map of simplicial sets f : X• → X ′• induces a functor sCh(X•)→ sCh(X ′•)
given by Y• 7→ Y• ∪X• X ′•. Furthermore, this makes sCh into a functor from
simplicial sets to categories.

Let sDh(X•) denote the full subcategory of sCh(X•) on those objects for
which Y• is non-singular. We obtain a functor from non-singular simplicial sets
and cofibrations to categories.

Let i : sDh(X•) ↪→ sCh(X•) denote the inclusion functor. It induces a natu-
ral transformation of functors from non-singular simplicial sets and cofibrations
to categories.

Let X• be an arbitrary simplicial set. We define sCh(X•) as the colimit of
sCh over the finite simplicial subsets of X•. Similarly for the other constructions.

Theorem 2.1.1.15 ([31, Theorem 1.2.5]). Let X• be a finite, non-singular
simplicial set. The inclusion functor i : sDh(X•) ↪→ sCh(X•) is a homotopy
equivalence.

Definition 2.1.1.16 ([31, Definition 1.2.4]). Let X• be a finite, non-singular
simplicial set. Its geometric realisation is canonically a polyhedron. The poly-
hedral structure is uniquely determined by requiring that the characteristic map
x̄ : |∆q| → |X•| is a PL map for each simplex of X•. Simplicial maps yield PL
maps with respect to these polyhedral structures.

We obtain a polyhedral realisation functor

r : sSetfin,non-sing → (Poly,pl)

and an induced natural transformation

r : sD̃h ⇒ sẼh0 ◦ r.

Let ñ : sẼh0 ⇒ sẼh• denote the natural transformation of simplicial categories
which includes the category of degree 0.

Theorem 2.1.1.17 ([31, Theorem 1.2.6]). Let X• be a finite, non-singular sim-
plicial set. The composed functor ñ ◦ r : sD̃h(X•)→ sẼh(r(X•)) is a homotopy
equivalence.

2.1.2 The H–cobordism map

In this part we explain how h–cobordism spaces classify bundles with pseu-
doisotopies as structure group. This yields a map c: P(M) → ΩHPL(M), see
Definition 2.1.2.3 and Lemma 2.1.2.10, and allows us to study the naturality of
u ◦ c : P(M) → colimk∈N sẼh

• (M × I × [0, 1]k) later on. Since most of our work
is carried out in the PL category, we typically drop the upper index “PL” from
our notation.

Let M ⊆ R∞ be a compact PL manifold, possibly with boundary. To
describe the map c, we first recall the stable pseudoisotopy space.
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Definition 2.1.2.1. Let M be a PL manifold. A piecewise linear pseudoisotopy
on M is a PL isomorphism F : M × I →M × I, such that F |M×{0} = Id.

The pseudoisotopy space P (M) is the simplicial set whose n–simplices are
the pseudoisotopies on M × |∆n| which are compatible with the projections to
|∆n|.

The stabilisation map P (M) → P (M × [0, 1]), F 7→ F × Id allows us to
define the stable space P(M) := colimk∈N P (M × [0, 1]k).

We abuse notation and do not distinguish between P (M) and its geometric
realisation.

Next, we explain how to “glue along a pseudoisotopy” to obtain an h–
cobordism bundle.

Definition 2.1.2.2. Let F : M × |∆n| × I → M × |∆n| × I be an n–simplex
of the space of piecewise linear (unstable) pseudoisotopies. Let eM : M ↪→ R∞
be the subspace inclusion and en : M × R × |∆n| ↪→ R∞ × |∆n| the standard
embedding given by (x, r, v) 7→ (r, eM (x), v).

We define the embedding

Fs : M × I × |∆n| ↪→M × R× |∆n|
(x, t, v) 7→F (x, t− s, v) + (0, s, 0); if t− s ≥ 0

(x, t, v); otherwise

for s ∈ [0, 1], where we use M ⊆ R∞ to define addition. We obtain an embedding

e(Fs) : M × I × |∆n ×∆1| ↪→ R∞ × |∆n ×∆1|
(x, t, v, s) 7→ (en ◦ Fs(x, t, v), s).

This, in turn, yields an n× 1–simplex in H•(M):

M × {0} × |∆n ×∆1|
pr

**

e(Fs)◦i0 // im(e(Fs))

pr ◦(e(Fs))−1

��
|∆n ×∆1|

where i0 : M ×{0}× |∆n×∆1| ↪→M × I × |∆n×∆1| is the subspace inclusion.
We obtain a loop φF : (∆1, ∂∆1)→ (H•(M), (pr : M × I → |∆0|)) since the

embeddings d∗0(e(Fs)) and d∗1(e(Fs)) have the same image.

The bundle e(Fs) is just a model for the S1–bundle classified by F . Now we
are in position to precisely state the connection between pseudoisotopies and
h–cobordisms as a weak equivalence induced by the classifying map.

Definition 2.1.2.3. We define a map of simplicial sets

c : P (M)→ ΩH•(M)

F 7→ φF .

With the definition in place, we show that the classifying map is a weak
equivalence and induces a weak equivalence after stabilisation.
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Definition 2.1.2.4. Let E0(M) be the simplicial set with n–simplices the piece-
wise linear embeddings M × I × |∆n| ↪→ R∞ × |∆n| which are compatible with
the projection to |∆n| and restrict to the standard embedding on M×{0}×|∆n|.

Lemma 2.1.2.5. The simplicial set E0(M) is contractible.

Proof. This is analogous to the usual proof that the space of collars is con-
tractible. Alternatively it follows from transversality, see [41, Chapter 5].

Lemma 2.1.2.6. We have a Kan fibration P (M) → E0(M) → E0(M)/P (M)
where we form the quotient under the group action P (M)× E0(M)→ E0(M),
(F, ι) 7→ ι ◦ F .

Proof. Since the action of P (M)n on E0(M)n is free for each n ∈ N this follows
directly from [17, Corollary 2.7].

Definition 2.1.2.7. Let H0
• (M) ⊆ H•(M) denote the connected component of

the cylinder.

Lemma 2.1.2.8. The map E0(M)/P (M)→ H0
• (M), which in degree n is given

by [ι] 7→ (pr ◦ι−1 : im(ι)→ |∆n|), is a trivial fibration.

Proof. Consider a lifting problem

∂∆n

��

��

[∂ιψ] // E0(M)/P (M)

��
∆n ψ //

[ι]
88

H0
• (M).

Then there is an embedding ι′ψ : M ×I×|∆n| → R∞×|∆n| in E0(M) which
lifts ψ.

Since the composition ∂ιψ ◦(∂ι′ψ)−1 is a pseudoisotopy, we have [∂ιψ] = [∂ι′ψ]
in E0(M)/P (M). So [ι′ψ] solves the lifting problem. This is enough.

Lemma 2.1.2.9. The map c is a weak equivalence.

Proof. Consider the map of fibrations

|P (M)|
|c| //

��

Ω|H•(M)|

��
|E0(M)|

p

��

H∗ // P |H•(M)|

��
|H0
• (M)| Id // |H0

• (M)|

where P |H•(M)| denotes the based path space of |H•(M)| and H∗ is the map
ι 7→ (t 7→ p ◦ H(ι, t)) with H an appropriately chosen contraction of |E0(M)|,
i.e. one which makes the upper square commute (the lower commutes for every
contraction).

We only have to explain how to obtain a homotopy H which is given on the
simplices of the form e ◦ F by the isotopy s 7→ e ◦ Fs. Given any contraction
this follows from the homotopy extension property.
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Lemma 2.1.2.10. The map c commutes with the stabilisation maps and thus
induces a weak equivalence

c : PPL(M)→ ΩHPL
• (M).

Proof. Since both objects are just models for the respective homotopy colimits,
the latter claim follows once we have shown that the stabilisations are compat-
ible. It is a computation from the definitions that φF×Id = φF × Id[0,1]k holds
for every k ∈ N.

2.1.3 The pseudoisotopy functor

We recall the topological and piecewise linear pseudoisotopy functors introduced
in [12]. Each of them is the composition of a homotopy coherent diagram
Fch : N•Top→ N h.c.

• Ch∆ and a simplicially enriched functor r : Ch∆ → Top∆.
To construct the natural weak equivalence in Section 2.1.5, we slightly ad-

just the category of contractible choices Ch∆, see Definition 2.1.3.8, to Chc,s,+∆

starting with Definition 2.1.3.11 and up to Lemma 2.1.3.17.
To avoid cumbersome notation, we introduce some abbreviations in Nota-

tion 2.1.3.20. The properties of our adjusted pseudoisotopy functor are summa-
rized in Theorem 2.1.3.21. We begin by repeating the definition of pseudoiso-
topies.

Definition 2.1.3.1. Let (MfdPL,pl) denote the category of PL manifolds with
PL maps as morphisms. Similarly, we define (MfdPL, cts) and (MfdTop, cts)
where MfdTop refers to topological manifolds and cts to continuous maps.

Definition 2.1.3.2. Let M be a PL manifold. A piecewise linear pseudoisotopy
on M is a PL isomorphism F : M × I →M × I, such that F |M×{0} = Id.

The pseudoisotopy space P (M) is the simplicial set whose n–simplices are
the pseudoisotopies on M × |∆n| commuting with the projections to |∆n|.

The stabilisation map P (M) → P (M × [0, 1]), F 7→ F × Id allows us to
define the stable space P(M) := colimk∈N P (M × [0, 1]k).

We abuse notation and do not distinguish between P (M) and its geometric
realisation.

We obtain the analogous notions for the topological case if we replace “PL
manifold” by “topological manifold” and “PL isomorphism” by “homeomor-
phism”.

We also need pseudoisotopies relative boundary.

Definition 2.1.3.3. Let M be a PL manifold. A piecewise linear pseudoisotopy
relative boundary on M is a PL isomorphism F : M × I → M × I such that
F |M×{0}∪∂M×I = Id.

Again, there is a topological analogue.

We need notation from [12], starting with some categories. Let MfdTop
∆

be the full simplicially enriched subcategory of Top∆ on the compact topo-
logical manifolds (possibly with boundary). Let Ch∆ be the simplicially en-
riched category of choices with compact submanifolds of R∞ as objects, see [12,
Proof of Theorem 6.3], and the unstable choice spaces as mapping spaces, see
[12, Definition 5.4] and [12, Definition 5.9]. Let us recall their construction.
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Definition 2.1.3.4. A continuous map over a space X is a morphism of fibre
bundles over X, see [12, Definition 2.1]. Let p : E → M be a fibre bundle
of manifolds over X and H : E × I × [0, 1] → E × I × [0, 1] an isotopy of
homeomorphisms over X such that:

• H starts with the Identity on E × I and

• the set E × {0} is contained in Ht(E × {0}) for every t ∈ [0, 1].

We call H a bending isotopy and h = H1 a partial bending map. If H also
satisfies the condition

• H is fibre preserving in the sense that Ht(p
−1(M)× I) = p−1(m)× I for

all m ∈M and t ∈ [0, 1]

we call H a fibre-wise bending isotopy and h a fibre-wise partial bending map.
If H is a fibre-wise bending isotopy and

• for each fibre F = p−1(m) the set F×{0}∪∂F×I is contained in h(F×{0})

then h is called a fibre-wise bending map.
Consider a disk bundle p : E →M with zero section s : M → E. A fibre-wise

bending isotopy H preserves the zero section if

• H : E × I × [0, 1] → E × I × [0, 1] restricts to the Identity on the zero
section H = Id: s(M)× I × [0, 1]→ s(M)× I × [0, 1].

Analogously, a PL–map over a polyhedron X is a morphism of fibre bundles
over X. For a fibre bundle p : E →M of PL manifolds over X and a piecewise
linear isotopy of PL isomorphisms H : E× I × [0, 1]→ E× I × [0, 1] over X, i.e.
a PL isomorphism over X × [0, 1], we obtain analogues of the other definitions.

Definition 2.1.3.5. Let ξ : E →M be a topological fibre bundle with compact
fibre. Then we have pullbacks

ξ∗pri
E //

��

E

ξ

��
M [0,1]

pri // M

for i = 0, 1. A parallel transport in the topological category is an isomorphism
of fibre bundles ν : ξ∗pr0

E → ξ∗pr1
E over M I with ν ◦ s0 = s1 where si is the

canonical section si : E → ξ∗pri
E.

Suppose that ξ : E → M is a disk bundle with zero section s : M → E.
A parallel transport preserves the zero section if ν(ω, s(ω(0))) = (ω, s(ω(1)))
holds.

In the special case of a PL bundle we obtain the pullback diagram

ξ∗pri
EPL

//

��

SPL
• E

ξ

��
M

[0,1]
PL

pri // SPL
• M
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where M
[0,1]
PL ⊆ S•M [0,1] is the simplicial subset, which contains simplices whose

adjoint φ : |∆n| × I →M is a piecewise linear map. Further, SPL
• (X) ⊆ S•(X)

denotes the simplicial subset of piecewise linear maps.

A parallel transport in the PL category ν : ξ∗pr0
EPL → ξ∗pr1

EPL is an isomor-

phism over M I
PL with ν ◦ s0 = s1 where si : S•E → ξ∗pri

EPL is the canonical
section. We obtain a similar notion of zero section preserving.

Now we introduce the transfer in the topological category. Let ν′ be a par-
allel transport as above and ν the parallel transport of the bundle p × IdI
given by (ω, (e, t)) 7→ (ω,prE ◦ν′(prM ◦ω, e),prI ◦ω(1)). For (m, t) ∈M × I, let
ω(m,t) : [0, 1]→M×I be given by s 7→ (m, ts). Let F be a pseudoisotopy on M .
The geometric transfer of F along p with respect to ν′ is given by the formula
Trν′(F )(e, t) = prE×I ◦ν(F ◦ ω(p(e),t), (e, 0)) for (e, t) ∈ E × I.

The same construction makes sense in the PL category, if we use a PL
pseudoisotopy F . Hence we obtain the transfer in the PL category.

Given a fibre-wise bending map h we define Trν,h : P (M)→ P (E), the trans-
fer with respect to ν and h, which sends a pseudoisotopy F to the pseudoisotopy
(h× Id|∆k|) ◦ Trν(F ) ◦ (h× Id|∆k|)

−1.

It restricts to Trν,h : P∂(M) → P∂(E), the transfer relative boundary with
respect to ν and h. As before, the construction has a topological and a piecewise
linear case.

In [12] the constructions did not have to preserve the zero sections. The
point of these additional conditions is the following lemma which enters the
construction of the coherent natural transformation between ΩsẼh• and PPL.

Lemma 2.1.3.6. Let p : E →M be a disk bundle with zero section s : M → E.
Let ν′ be a parallel transport and h a fibre-wise bending map, both of which
preserve the zero section. Then the square

M × I × |∆m|

s

��

F // M × I × |∆m|

s

��
E × I × |∆m|

Trν′,h(F )
// E × I × |∆m|

commutes for every F ∈ P (M).

Proof. This is a straightforward calculation.

In the proof of Lemma 2.1.5.10 we need the following description of the
transfer in local coordinates.

Lemma 2.1.3.7. Let p : E →M be a disk bundle with zero section s : M → E.
Let ν′ be a parallel transport preserving the zero section. We choose a metric to
reduce the structure group of the bundle to Aut(Sd−1).

Then there is a covering (Ui, ωi)i∈I of M by local trivialisations of p for
some indexing set I with respect to the reduced structure group.

Further, let (U, ω) and (U ′, ω′) be trivialisations of the covering and let F
be a pseudoisotopy on M . Then the geometric transfer without bending the
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boundary Trν(F ) fits into a commutative square

N × I × |∆k| × |∆m|
∼=

Trν(F )
// N × I × |∆k| × |∆m|

U ×Dd × I × |∆k| × |∆m| �
�

F×ρ
//

ω×Id

OO

U ′ ×Dd × I × |∆k| × |∆m|

ω′×Id

OO

where ρ : U×Dd×|∆k|×|∆m| → Dd is adjoint to a family of automorphisms of
the fibre ρ̃ : U×|∆k|×|∆m| → Aut(Dd) which, in turn, is induced by a transition
map for the reduced structure group ρ̃′ : U × |∆k| × |∆m| → Aut(Sd−1).

Proof. The first part is clear. The second part follows from a computation in
local coordinates.

We are in position to state the definition of the unstable choice space.

Definition 2.1.3.8. Let C̃h
Top

∆ denote the simplicially enriched category of
preliminary choices with compact topological manifolds as objects and contin-
uous choices as morphisms, see [12, Definition 5.4]. Precisely, an m–simplex in

C̃h
Top

∆ (M,N) consists of:

• a subset E ⊆ N×|∆m| which is a family of codimension zero submanifolds
over |∆m| of N ,

• a sequence of disk bundles

E = En
pn−→ En−1

pn−1−−−→ . . .
p1−→ E0 = M

where all Ei are families of manifolds over |∆m| (and the bundles are also
all over |∆m|),

• a zero section s : M → E of the composed bundle p1 ◦ . . . ◦ pn,

• a parallel transport νi and a fibre-wise bending isotopy H(i) over pi, for
each pi, such that H(i) is fibre-wise with respect to the bundle p1 ◦ . . . ◦ pi
and the composition Trνn,h(n) ◦ . . . ◦ Trν1,h(1) : P∂(M) → P (E) has image
in P∂(E).

The simplicially enriched category of choices ChTop
∆ , see [12, Definition 5.9],

has compact manifolds as objects and the morphism space ChTop
∆ (M,N) is the

quotient of C̃h
Top

∆ (M,N) by the equivalence relation generated by the following
relations:

• Let ch = (Em ⊆ N, pm, . . . , p1, s, νm, . . . , ν1, H
(m), . . . ,H(1)) be an n–

simplex with H(i) the constant isotopy with value the Identity on Ei × I
for some 1 ≤ i ≤ m. Then we identify ch with the tuple without Ei and
H(i),

(Em ⊆ N, pm, . . . , pi ◦ pi+1, . . . , p1, s,

νm, . . . , νi+1 · νi, . . . , ν1, H
(m), . . . ,H(1)).

The composition νi+1 · νi of parallel transports is [12, Definition 3.12]. Its
only property relevant to us is that it satisfies Trνi+1·νi = Trνi+1

◦Trνi by
[12, Proposition 3.13].
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• Let ch = (Em ⊆ N, pm, . . . , p1, s, νm, . . . , ν1, H
(m), . . . ,H(1)) be an n–

simplex with pi : Ei → Ei−1 a homeomorphism for some 1 < i ≤ n. Then
we identify ch with the tuple, which omits Ei−1 and uses the fibre-wise
bending isotopy H̄(i−1)(−, t) = (pi × IdI)

−1 ◦H(i−1)(−, t) ◦ (pi × IdI)(−)
for t ∈ [0, 1],

(Em ⊆ N, pm, . . . , pi ◦ pi−1, . . . , p1, s,

νm, . . . , νi+1 · νi, . . . , ν1, H
(m), . . . , H̄(i−1), . . . ,H(1)).

Note that, since pi is a homeomorphism, H(i) is a constant isotopy with
value the Identity on Ei × I and Trνi acts by conjugation with pi × IdI .

We also state the piecewise linear version:

Definition 2.1.3.9. Let ChPL
∆ denote the simplicially enriched category of

choices with compact piecewise linear manifolds as objects and piecewise linear
choices as morphisms. Precisely, an m–simplex in Ch∆(M,N) consists of:

• a subset E ⊆ N which is a family of codimension zero PL submanifolds
over |∆m| of N ,

• a composition of piecewise linear disk bundles

E = En
pn−→ En−1

pn−1−−−→ . . .
p1−→ E0 = M

where all Ei are families of PL manifolds over |∆m| (and the bundles are
also all over |∆m|),

• a zero section s : M → E of the composition bundle p1 ◦ . . . ◦ pn,

• a piecewise linear parallel transport νi and a fibre-wise bending isotopy
H(i) over pi, for each pi, such that H(i) is fibre-wise with respect to the
bundle p1 ◦ . . . ◦ pi and the map Trνn,h(n) ◦ . . . ◦Trν1,h(1) : P∂(M)→ P (E)
has image in P∂(E).

The equivalence relation is analogous, we just replace “pi : Ei → Ei−1 is a
homeomorphism” by “ . . . is a PL isomorphism”.

At this point, we have to note that the mapping spaces of Ch∆ are in gen-
eral not Kan-complexes. Thus its homotopy coherent nerve N h.c.

• Ch∆ is not a
quasicategory. Therefore, whenever a quasicategory is needed, we are going to
fibrantly replace it in the Joyal model structure without further comment. Note
that this is only necessary when we wish to form its Ind–completion. We recall
all properties of the Ind–completion of a quasicategory relevant to our purposes
in Proposition 1.2.0.3.

Finally, let Chst∆ denote the simplicially enriched category of stable choices
which was denoted by ChP in [12]. There is a faithful inclusion into the Ind–
completion ι : N h.c.

• Chst∆ ↪→ Ind(N h.c.
• Ch∆) with image the full subcategory on

the objects of the form hocolimk∈NM×(D1)k. To see this one observes that the
definition of Chst∆(M,N) is an explicit model for Ind(N h.c.

• Ch∆)(ι(M), ι(N)).

We turn to functors. There is a forgetful functor f : Ch∆ → MfdTop
∆ given

by f(ι : Em ⊆ N, s, ...) = ι ◦ s.
Let FTop

ch : N•MfdTop
∆ → N h.c.

• Chst∆ denote the functor of contractible choices

constructed in the proof of [12, Theorem 6.4]. It satisfies f ◦ FTop
ch ' Id with f

the induced forgetful functor.
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Definition 2.1.3.10 ([12, Definition 5.10]). Let r : Ch∆ → Top∆ denote the
realisation functor of simplicially enriched categories. On an m–simplex it is
given by the factorisation of

Trνn,h(n) ◦ . . . ◦ Trν1,h(1) : P∂(M)→ P (E)

over P∂(E) composed with the map P∂(E) → P∂(N) which extends by the
Identity.

The stable realisation functor rst : Chst∆ → Top∆, see [12, Definition 5.24],
is the restriction of the unstable one’s Ind–completion, i.e. the diagram

N h.c.
• Chst∆
��
ι

��

rst // N h.c.
• Top∆

Ind(N h.c.
• Ch∆)

Ind(r)

66

commutes.

The stable pseudoisotopy functor constructed in [12] is rst ◦Fch and we may
identify it as Ind(r) ◦ ι ◦ Fch. Analogously we define a stable pseudoisotopy
functor in the piecewise linear case. To obtain functors on Top one applies
homotopy left Kan extension along the inclusion MfdCat ⊆ Top.

We have to slightly adjust the simplicial category of unstable choices to suit
our purposes.

Definition 2.1.3.11. The enriched submonoid C̃h
c,m

∆ of C̃h∆ contains all ob-
jects and its mapping spaces contain those n–simplices ch = (Em ⊆ N, . . .) in

C̃h∆(M,N) which satisfy ∂(E
(t)
m ) ∩ ∂N (t) = ∅ for every t ∈ |∆n|, where E

(t)
m

denotes the fibre of Em → |∆n| over t, similarly for N (t). We make it into an

enriched subcategory C̃h
c

∆ by formally adjoining the Identity.

We note that every inclusion E
(t)
m ⊆ N (t) in our new category admits a collar,

i.e. there is a collar of ∂E
(t)
m in N (t) − E(t)

m .

We define Chc∆ as the quotient of C̃h
c

∆, analogously to Ch∆.

Lemma 2.1.3.12. The induced map i : Chc∆ → Ch∆ admits a section on sim-
plicial nerves N h.c.

• Ch∆ → N h.c.
• Chc∆.

Proof. By the obstruction theory of Section 1.2.1 it is enough to show that the
map i : Chc,m∆ (M,N) → Ch∆(M,N) is an acyclic cofibration for every pair of
compact manifolds M and N .

To see this, fix a collar c : ∂N × J → N of ∂N in N where J denotes
the interval. We obtain an embedding Φc : N × [0, 1] → N × [0, 1] over [0, 1]
given by Id on (N − im(c)) × [0, 1] and ρ : ∂N × J × [0, 1] → ∂N × J × [0, 1],
ρ(x, s, t) = (x, α(s, t), t) on the collar with α : J × [0, 1] → J some map with
α(−, 0) = Id and α(−, t) : J → [t/2, 1] ⊆ J a PL isomorphism onto [t/2, 1] for
every t ∈ [0, 1].

We define Φc(−, 1)∗ : Ch∆(M,N) → Chc∆(M,N) by composing En ⊆ N
with Φc(−, 1). The isotopy Φc induces a homotopy Φc(−, 1)∗ ◦ i ' Id as well as
i ◦ Φc(−, 1)∗ ' Id.
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Definition 2.1.3.13. Let C̃h
c,s

∆ denote the enriched subcategory of C̃h
c

∆ with

all objects and mapping spaces containing those n–simplices ch ∈ C̃h
c

∆(M,N)
for which the induced parallel transport νm · . . . · ν1 and the bending isotopy
H(i) preserve the zero sections s and pi+1 ◦ . . . ◦ pm ◦ s of the composed bundle
p1 ◦ . . . ◦ pi, respectively, for 1 ≤ i ≤ m.

We define Chc,s∆ as the quotient of C̃h
c,s

∆ , analogously to Ch∆.

Lemma 2.1.3.14. The induced map Chc,s∆ → Chc∆ is a categorical equivalence.

Proof. It is enough to show that the map i : Chc,s∆ (M,N) → Chc∆(M,N) is a
weak equivalence for every pair of compact manifolds M and N .

We consider the parallel transport first. Note that we can reduce the struc-
ture group of p1 ◦ . . . ◦ pm to Aut(Sd−1) for d the dimension of the fibre. The
result now follows by a fibre-wise Alexander trick.

For the space of fibre-wise bending isotopies, this is analogous to the proof
that the space of fibre-wise bending isotopies is contractible, see [12, Proposi-
tion 4.4].

To reduce technical complications later on, we include some contractible
choices in the definition of the pseudoisotopy functor.

Definition 2.1.3.15. Let M be a compact manifold. Let P+(M) denote the
simplicial set whose n–simplices are of the form (F, s), where F is an n–simplex
of P (M) and s is an S1–family of collars of M × {0} × |∆n| × S1 in c(F ), i.e.
(c(F ), s) is a lift of c(F ) to ΩHc

•(M).

In order to still obtain a functor we have to include a map of collars into our
contractible choice category.

Definition 2.1.3.16. Let Chc,s,+∆ (M,N) consist of pairs (ch, e) where ch is an
n–simplex of Chc,s∆ (M,N) and e(F, s) is a family of collars of N×{0}×|∆n|×S1

in c(r(ch)(F )) parametrised over S1 and restricting to s over M×{0}×|∆n|×S1.

Lemma 2.1.3.17. There is a simplicially enriched functor r+ : Chc,s,+∆ → Top
given by r+(M) = P+(M) on objects and r+(ch, e)(F, c) = (r(ch)(F ), e(c)) on
the mapping spaces.

We obtain an (∞, 1)–functor P+ : N h.c.
• Ch+

∆ → N h.c.
• Kan∆ and an equiva-

lence of (∞, 1)–functors r ◦ pr ' P+, where pr: N h.c.
• Chc,s,+∆ → N h.c.

• Ch∆ is
the forgetful functor.

Proof. Since the projection map P+(M)→ P (M) is a trivial fibration and the
space of collars extending a fixed collar over a submanifold is contractible, this
is an application of Corollary 1.2.1.7 and the functoriality of r.

Corollary 2.1.3.18. The map c+ : P+(M) → Hc
•(M) given by sending (F, s)

to (c(F ), s) makes the square

P+(M)
c+ //

��

Hc
•(M)

��
P (M)

c // H•(M)

commute. Since c as well as both vertical maps are weak equivalences, so is c+.
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Remark 2.1.3.19. There are choice functors F cch, F c,sch and F c,s,+ch compatible
with each other and Fch via the maps constructed above. In particular, we obtain
a choice functor F c,s,+ch : N•(MfdPL,pl)→ N h.c.

• Chc,s,+∆ .

Notation 2.1.3.20. We adjust some notation of [12] to be consistent within
this thesis. Starting with the next section we write PCat for the unstable real-
isation r+ where Cat = Top, PL. We drop that we work with pseudoisotopies
relative boundary from the notation. Further, we denote the unstable and stable
pseudoisotopy functor P+ and Ind(PCat) ◦ ι ◦ FCat

ch by P and PCat, respectively.
Also, we are going to refer to Chc,s,+∆ by Ch∆ and to c+ by c. Finally, we may
drop the collar extension map e from the notation for some morphism (ch, e) in
Chc,s,+∆ .

We conclude this section by collecting all properties of the pseudoisotopy
functor necessary throughout the proof in the following theorem.

Theorem 2.1.3.21. Let Cat = PL or Top.

1. The pseudoisotopy functor PCat : Top → Top is given by homotopy left
Kan extension of its restriction to MfdCat.

2. The functor Ind(N h.c.
• (r+))◦ι◦F c,s,+ch coincides - up to natural weak equiv-

alence of (∞, 1)–functors - with the stable pseudoisotopy functor defined
in [12].

3. Let i : (MfdPL, cts) ⊆ (MfdTop, cts) denote the inclusion. The point-wise

inclusion maps PPL
∂ (M) → PTop

∂ (i(M)) extend to a natural weak equiva-
lence of functors.

4. Let (i : E ⊆ N × |∆m|, (pi)ni=1, s, (νi)
n
i=1, (H

(i))ni=1, e) be a choice which
factors over φ0 = (E = E, (pi)

n
i=1, s, (νi)

n
i=1, (H

(i))ni=1, e0) for some collar
extension map e0. Then the square

M × I × |∆m|

s

��

F // M × I × |∆m|

s

��
E × I × |∆m|

P (φ0)(F )//

i

��

E × I × |∆m|

i

��
N × I × |∆m|

P (φ)(F )// N × I × |∆m|

commutes for every F ∈ P (M), i.e. the induced pseudoisotopy restricts to
the original pseudoisotopy on the zero section of the disk bundle.

We reduce the structure group of the bundle to Aut(Sd−1) by choosing a
metric. Then there is a covering (Ui, ωi)i∈I of M by local trivialisations
of p = pn ◦ · · · ◦ p1 for some indexing set I with respect to the reduced
structure group.

Further, let (U, ω) and (U ′, ω′) be trivialisations of the covering. Then
the geometric transfer without bending the boundary P (φ0)(F ) fits into a
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commutative square

N × I × |∆k| × |∆m|
∼=

P (φ0)(F )
// N × I × |∆k| × |∆m|

U ×Dd × I × |∆k| × |∆m| �
�

F×ρ
//

ω×Id

OO

U ′ ×Dd × I × |∆k| × |∆m|

ω′×Id

OO

where ρ : U × Dd × |∆k| × |∆m| → Dd is adjoint to a family of auto-
morphisms of the fibre ρ̃ : U × |∆k| × |∆m| → Aut(Dd) which, in turn, is
induced by the reduced structure group ρ̃′ : U × |∆k| × |∆m| → Aut(Sd−1).

5. Let p : E →M be a disk bundle, ν a transfer map and H a fibre-wise bend-
ing isotopy, everything parametrised over some compact manifold X. Let
F in P (M) be a pseudoisotopy. We obtain an isotopy of pseudoisotopies
Trν,h(F ) : E × I → E × I over X where h = H(−, 1) is the associated
bending map.

6. The point-wise inclusion maps PDiff
∂ (M) → PTop

∂ (M) extend to a natural

transformation of quasicategories PDiff
∂ ⇒ PTop

∂ between endofunctors on
N h.c.
• Top∆.

7. The inclusion PCat
∂ (M × [0, 1]k) ⊆ PCat(M × [0, 1]k) is a weak equivalence

for every k ∈ N and they induce a weak equivalence PCat
∂ (M)→ PCat(M).

Proof. The first statement is just the definition of P . The second property was
explained in the discussion preceding the theorem. The third claim follows from
the second property and [12, Remark 6.1].

The first part of the fourth statement follows via an induction argument and
Lemma 2.1.3.6 for the upper square. The lower one commutes by definition.
The second part is Lemma 2.1.3.7. The fifth part follows immediately from the
definitions.

To show the sixth part, we construct a homotopy commutative diagram

N•MfdDiff
∆

��

Fch // Ind(N•D∆)

j

��

PDiff
// N h.c.
• Top∆

N h.c.
• MfdTop

∆

Fch // Ind(N h.c.
• Ch∆)

PTop

77

which is enough by definition of the pseudoisotopy functors as homotopy left
Kan extensions.

We first recall the map j : N h.c.
• D∆ → N h.c.

• Ch∆ from Remark 1.2.5.3. On
objects it is given by forgetting the smooth structure. On simplices it is given
by sending a triple (ι, νι, p) to (νι, p, ι, νp, Hp) where νp is a topological parallel
transport in the sense of Definition 2.1.3.5. It is induced by a parallel transport
in the sense of differential geometry (depending on the contractible choice of a
Riemannian metric) as explained in Remark 1.1.0.11. Further, Hp is a fibre-wise
bending isotopy in the sense of Definition 2.1.3.4 with respect to p.

The commutativity of the square on the left hand side follows from three
observations.
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First, by Proposition 1.2.3.1 the triangle

N h.c.
• MfdDiff

∆
Id //

τ1

��

N h.c.
• MfdDiff

∆

N h.c.
• (MfdDiff , smooth)Diff

∆

incl

55

commutes up to homotopy.

Further, the square

N h.c.
• (MfdDiff , smooth)∆

f◦FDiff
ch //

��

Ind(N h.c.
• (MfdDiff , emb)∆)

��
N h.c.
• MfdTop

∆

f◦Fch // Ind(N h.c.
• (MfdTop, emb)∆)

commutes up to homotopy, since both compositions are up to homotopy given by
the identity. Here (MfdTop, emb)∆ is the simplicially enriched category of locally
flat embeddings, FDiff

ch denotes the restriction of the smooth choice functor, see
Theorem 1.2.0.5, and f is the forgetful functor.

Finally, the square

N h.c.
• D∆

f //

j

��

N h.c.
• (MfdDiff , emb)∆

��
N h.c.
• Ch∆

f // N h.c.
• (MfdTop, emb)∆

commutes strictly.

Plugging these results together, the homotopy commutativity of the square
on the left hand side follows since the forgetful functor f is an equivalence of
quasicategories in the differentiable case by Proposition 1.2.5.1 and similarly so
in the topological case after stabilisation [12, Theorem 5.22].

The triangle on the right hand side is the last part of Lemma 1.4.1.1 which
remained unproven till now. It is a direct consequence of the last property
stated in Lemma 1.4.1.1 of the unstable smooth pseudoisotopyfunctor and the
definition of the topological pseudoisotopyfunctor.

We turn our attention to the last property. The unstable inclusion maps
are weak equivalences by the existence of bending isotopies, see [12, Chapter 4].
Let Fch(incl) = (Id,pr: M × [0, 1]k+1 → M × [0, 1]k, s0, νpr, Hpr) be the choice
for the inclusion M × [0, 1]k ↪→M × [0, 1]k+1. Then the square

PCat
∂ (M × [0, 1]k) //

P (Fch(incl))

��

PCat(M × [0, 1]k)

−×Id

��
PCat
∂ (M × [0, 1]k+1) // PCat(M × [0, 1]k+1)

commutes up to a homotopy induced by Hpr.
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2.1.4 The Whitehead space (∞, 1)–functor

We wish to extend the 1–functoriality of | sẼh
• | to obtain a map of quasicategories

| sẼh
• | : N h.c.

• (MfdPL, emb)∆ → N h.c.
• Top∆

where (MfdPL, emb)∆ denotes the simplicially enriched category with compact
PL manifolds as objects and, as morphisms of degree n from M to N , piecewise
linear embeddings e : M × |∆n| → N × |∆n| over |∆n|.

To compare this functor to |sC̃h| we also need

| sẼh
• | : N h.c.

• (Poly, emb)∆ → N h.c.
• Top∆

where (Poly, emb)∆ denotes the simplicially enriched category with compact
polyhedra as objects and, as morphisms of degree n from M to N , piecewise
linear embeddings e : M × |∆n| → N × |∆n| over |∆n|.

The construction of the extended functor spans from Definition 2.1.4.1 to
Proposition 2.1.4.3. The analogue of the zig-zag, the “non-manifold part”, of
[31] is given in Proposition 2.1.4.5.

We first note that it makes sense to glue bundles along piecewise linear
families of embeddings.

Definition 2.1.4.1. Let e : X × |∆n| → Y × |∆n| denote a morphism in
(Poly, emb)∆(X,Y )n. We obtain a functor of bisimplicial categories

e∗ : sẼh
m(X)×∆n → sẼh

• (Y )

(W → |∆m|) 7→ (W × |∆n| ∪X×|∆m|×|∆n| Y × |∆m| × |∆n| → |∆m| × |∆n|)

where the additional structure is constructed in the obvious fashion and we glue
along the map e× Id|∆m|.

The simplicial category sẼh
• (Y ) is understood as the bisimplicial category

given by (p, q) 7→ Homscat(∆
p ×∆q, sẼh

• (Y )).

Lemma 2.1.4.2. Given a functor of bisimplicial categories φ : C• ×∆n → D•
we obtain a functor of degree n of simplicial categories enriched in simplicial
sets by the formula

φ̃ : C• ×∆n → D•

(c, α) 7→ diag∗ ◦(Id×α)∗ ◦ φ(c, Id)

(f, Idα) 7→ diag∗ ◦(Id×α)∗ ◦ φ(f, IdId)

where diag : ∆q → ∆q ×∆q is the diagonal map.

Proof. This is a straightforward calculation.

Proposition 2.1.4.3. We obtain a functor of simplicial categories enriched in
simplicial sets sẼh

• : (Poly, emb)∆ → scat∆ given by

K 7→ sẼh
• (K)

(e : K × |∆n| → L× |∆n|) 7→ ẽ∗ : sẼh
• (K)×∆n → sẼh

• (L).

We denote its restriction to compact PL manifolds by

| sẼh
• |′ : (MfdPL, emb)∆ → Top∆ .
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Proof. This is, yet again, a straightforward calculation.

Remark 2.1.4.4. A similar approach allow us to extend Wh itself to a functor
of quasicategories. This is going to be relevant for the non-connective case.

The zig-zag of weak equivalences explained in [31] between sẼh
• and sCh can

be extended to a zig-zag of natural weak equivalences between endofunctors of
Top by homotopy left Kan extensions. We could avoid this part completely via
the arguments used in the non-connective case. However, we obtain a shorter
proof in the connected setting without any real difficulties so it seems acceptable
to explain this alternative.

Let | sẼh
• |1 : (Poly, emb) → Top and | sẼh

• |′1 : (MfdPL, emb) → Top denote
the underlying functors of 1–categories.

By homotopy left Kan extension we may extend the functor | sẼh
• |′1 to a

functor | sẼh
• |′′1 with source category (Poly, emb)∆.

Since every compact polyhedron has the homotopy type of a compact PL
manifold and the natural transformation | sẼh

• |′(M) → | sẼh
• |′(M × [0, 1]) in-

duced by the inclusion is a weak equivalence [31, Lemma 4.1.12], it is not
hard to see that the natural transformation | sẼh

• |′′1 ⇒ | sẼh
• |1 of functors from

(Poly, emb) to Top is a weak equivalence.

Let r : (sSetfin,non-sing, cof) → (Poly, emb) denote the polyhedral realisation
functor, see Definition 2.1.1.16. We extend the functor | sẼh

• |1 ◦ r by homotopy
left Kan extension along r to a functor (| sẼh

• |1 ◦ r)′ : (Poly, emb)→ Top.

The natural transformation (| sẼh
• |1 ◦ r)′(K) → | sẼh

• |1(K) is a weak equiv-
alence. This follows from triangulation theory and, again, the fact that the
natural transformation | sẼh

• |′(M)→ | sẼh
• |′(M × [0, 1]) is a weak equivalence.

We have functors sCh : sSetfin → Top and sDh : (sSetfin,non-sing, cof)→ Top,
see Definition 2.1.1.14.

Further, the natural transformations of functors from (sSetfin,non-sing, cof)
to Top given by polyhedral realisation ñ ◦ r : sD̃h ⇒ sẼh• ◦ r and inclusion
ι : sD̃h ⇒ sC̃h induce natural weak equivalences.

Finally, we explain how to pass from sC̃h : (sSetfin,non-sing, cof) → Top to
the 1–functor sC̃h : sSet → Top which is related to A–theory by Waldhausen’s
zig-zag of weak equivalences. For this purpose, we denote the latter by (sC̃h)1.

By homotopy left Kan extension, sC̃h : (sSetfin,non-sing, cof) → Top yields a
functor hlKe(sC̃h) : sSetfin,non-sing → Top. By restriction along the inclusion
i : sSetfin,non-sing ⊆ sSet, we obtain (sC̃h)2 = (sC̃h)1 ◦ i : sSetfin,non-sing → Top.

The natural transformation hlKe(sC̃h) ⇒ (sC̃h)2 is a weak equivalence, be-
cause sC̃h is a restriction of (sC̃h)1.

The homotopy left Kan extension of (sC̃h)2 : sSetfin,non-sing → Top to sSet
coincides with the functor (sC̃h)1 : sSet → Top of [31] and [51] up to weak
homotopy equivalence. For this, we note first that every finite simplicial set has
the weak homotopy type of a non-singular simplicial set by [31, Theorem 2.5.2].
Since |sC̃h|1 commutes with directed colimits, it coincides with the homotopy
left Kan extension of its restriction to sSetfin.

In total, we obtain a zig-zag of natural weak equivalences of functors from
(Poly, emb) to Top

| sẼh
• |′′1 → | sẼh

• |1 ← (| sẼh
• | ◦ r)′,
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a zig-zag of natural weak equivalences of functors from (sSetnon-sing,fin, cof) to
Top

| sẼh
• | ◦ r ← |sD̃h| → |sC̃h|,

a natural weak equivalence of functors from sSetnon-sing,fin to Top

|hlKe(sC̃h)| → |sC̃h|(2)

and a natural weak equivalences of functors from sSet to Top

|hlKe(sC̃h)|2 → |sC̃h|1.

All of these may be extended by homotopy left Kan extensions to functors
from sSet to Top. One uses the functors specified in the various zig-zags and
the singular simplicial sets functor S, right adjoint to geometric realisation.

We sum up our results in the following proposition.

Proposition 2.1.4.5. There is a zig-zag of natural weak equivalences of func-
tors between

|sC̃h| : Top→ Top

defined in Definition 2.1.1.14 and the homotopy left Kan extension

hlKe(| sẼh
• |′1) : Top→ Top

of the 1–functor underlying | sẼh
• |′ : (MfdPL, emb)∆ → Top∆ which is given in

Proposition 2.1.4.3.

2.1.5 The natural transformation

The key to obtain our natural transformation is a natural weak equivalence
between P : Ch∆ → sSet and sẼh

• : (Mfd,pl)∆ → sCat as 2–functors (with
appropriate identifications of source and target). The main tool to get these
transformations is the fact that the simplicial functors sẼh

• (M)→ sẼh
• (N) form

the objects of a simplicial functor category. The morphisms of this category,
i.e. the simplicial natural transformations, induce the required homotopies to
obtain a 2–functorial transformation.

These simplicial natural transformations are formally introduced as “admis-
sible retractions” in Definition 2.1.5.6 and Definition 2.1.5.7. The geometric
idea stems from the explicit construction in the proof of Lemma 2.1.5.10 that
such transformations exist.

Since admissible retractions depend on certain choices we have to thicken
up our choice category Ch∆ to ChR∆ in Definition 2.1.5.11. Then, we have to
show that these further choices are indeed contractible which is the content of
Proposition 2.1.5.14. The desired 2–functor becomes an easy Corollary 2.1.5.17.

Aside from the abbreviations given in Notation 2.1.3.20 we introduce one
more in Notation 2.1.5.2.

We begin with a reduction to functors from the choice category. By state-
ment 1 of Theorem 2.1.3.21 the functor PPL : Top → Top is the homotopy
left Kan extension of its restriction to N h.c.

• (MfdPL,pl)∆. Upon restriction we
obtain PPL = Ind(N h.c.

• (r+)) ◦ ι ◦ F c,s,+ch by statement 2 in Theorem 2.1.3.21.
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Since hlKe(| sẼh
• |′1) : Top → Top is a homotopy left Kan extension by defi-

nition, it is enough to find a zig-zag between the restricted functors.
We want to compare the (∞, 1)–functors | sẼh

• |′ : (MfdPL,pl)∆ → Top∆ and
PCat
∂ = r+ : Chc,s,+∆ → Top∆. We first get rid of the Ind–completion.

As mentioned in Notation 2.1.3.20 we write Ch∆ instead of Chc,s,+∆ to refer
to the thickened up category of choices. All conventions of Notation 2.1.3.20
are in effect.

Lemma 2.1.5.1. Let Cat = Top or PL. Let st : MfdCat
∆ → Top∆ denote the

simplicially enriched functor given by M 7→ hocolimk∈NM × [0, 1]k. Further,
let f : Ch∆ → Top∆ be the forgetful functor given by the Identity on objects and
(i : E ⊆ N, s, . . . ) 7→ i ◦ s on mapping spaces.

The square

N h.c.
• MfdCat

∆

ι◦Fch //

st

((
Id
��

Ind(N h.c.
• Ch∆)

Ind(f)

��
N h.c.
• MfdCat

∆

j // N h.c.
• Top∆

commutes up to natural weak equivalence of (∞, 1)–functors, where j denotes
the Yoneda embedding into the Ind–completion, see Proposition 1.2.0.3.

Proof. This follows from the fact that f ◦ Fch ' Id holds.

The lemma implies that it is enough to find a zig-zag between the functors
Ω| sẼh

• | ◦ f and PPL.

Notation 2.1.5.2. Going forward, we do not need any other variations of
| sẼh
• |′ ◦ f : Ch∆ → Top∆. Hence we refer to it by | sẼh

• | : Ch∆ → Top∆ from
here on out.

As stated in the introduction we are going to use the morphisms of the sim-
plicial category sẼh

• to obtain homotopies which induce the desired naturality up
to coherent homotopy. Formally, we work in the category of simplicial categories
enriched in simplicial categories.

Definition 2.1.5.3. We understand the simplicial set ∆n as a discrete sim-
plicial category. Let C• and D• denote simplicial categories. We define the
simplicial mapping space category map(C•,D•) as follows: It is given in degree
n by scat(C• × ∆n,D•), i.e. the simplicial functors from C• × ∆n to D•. The
morphisms in degree n are scat(C• × [1] × ∆n,D•), i.e. the simplicial natural
transformations between simplicial functors.

Let C′• ⊆ C• and D′• ⊆ D• be pairs of simplicial categories. The rela-
tive simplicial mapping space category map((C•, C′•), (D•,D•)′) is the simplicial
subcategory of map(C•,D•) consisting of those objects and morphisms which
restrict to map(C′•,D′•).

There is an inclusion from the category of simplicial categories enriched in
simplicial sets scat∆ to the category of simplicial categories enriched in simplicial
categories scat∆cat . It is induced by the inclusion of simplicial sets into simplicial
categories as discrete simplicial categories.
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Definition 2.1.5.4. There is an inclusion i : scat∆ → scat∆cat which is given
by i(C•) = C• on objects and the Identity on morphisms.

Next, we introduce a certain class of simplicial natural transformations,
namely “admissible retractions”. They are going to form the 2–cells of our
desired coherent transformation.

Remark 2.1.5.5. Let ch = (Em ⊆ N, pm, . . . , p1, s, νm, . . . , ν1, H
(m), . . . ,H(1))

be an n–simplex in Ch∆(M,N).
By Definition 2.1.3.11 the embedding ι : Em ⊆ N admits a family of collars

c : ∂E0
m × |∆n| × [0, 1]→ N0 − E0

m × |∆n|. Here we use some trivialisations of
Em and N over |∆n| with fibres E0

m and N0.

Definition 2.1.5.6. Let ch be an n–simplex in Ch∆(M,N). It is of the form
ch = (Em ⊆ N, pm, . . . , p1, s, νm, . . . , ν1, H

(m), . . . ,H(1)).
Let M = M0,M1, . . . ,Mm = N be a sequence of manifolds over |∆n|. All

of the following constructions are over |∆n|. Let ιi : Mi → Mi+1 be an em-
bedding, p̃i : τMi+1

Mi → Mi a tubular neighbourhood with respect to ιi and
ci : ∂τMi+1Mi × [0, 1]→Mi+1 a collar for every 0 ≤ i ≤ m− 1.

Let incli : τMiMi−1 ⊆ Mi denote the embedding for every 0 ≤ i ≤ m − 1.
We call a tuple of sequences (Mi, ιi, p̃i, im(ci))0≤i≤m−1 admissible if it satisfies
pi+1 = incl∗1 ◦ incl∗2 ◦ . . . ◦ incl∗i (p̃i) for every 0 ≤ i ≤ m− 1.

An admissible retraction over ch with respect to (Mi, ιi, p̃i, im(ci))0≤i≤m−1

is a natural transformation α : u ◦ c ◦P (ch) ⇒ Ω sẼh
• (ch) ◦ u ◦ c along simple

retraction maps such that every map α : u ◦ c ◦P (ch)(F )→ Ω sẼh
• (ch) ◦ u ◦ c(F )

satisfies the following two properties:

1. The retraction α is given by the standard simple retraction map pr (i.e.
the projection) on (Mi+1− im(ci)− τMi+1

Mi)× I for every 0 ≤ i ≤ m−1.

2. Upon the choice of a parametrisation of im(ci) as a collar we obtain a
tubular neighbourhood p′ : im(ci) ∪ τMi+1

Mi → Mi of Mi in Mi+1 given

by p′ = p̃i ◦ pr∂τMi+1
Mi
◦c−1
i ∪ p̃i.

We set U = ci−1(∂τMi
Mi−1 × [0, 1)) ∪ τMi

Mi−1 for a choice of ci−1. Let
p′′ denote the pullback of p′ along the subspace inclusion U ⊆Mi. Let T ′′

denote the total space of this pulled back tubular neighbourhood.

The condition is as follows: There is a parametrisation of im(ci) such that
the map pr ◦(p′ × IdI) : (im(ci) ∪ τMi+1Mi − T ′′)× I → (Mi − U)× [0, 1]
and the restriction of (p′ × Id[0,1]) ◦ α to the same subspace coincide, i.e.
the restriction of the retraction map is fibre-preserving with respect to p′.

Here Ω sẼh
• is a simplicial diagram category map((∆1, ∂∆1), (sẼh

• (−), ∗(−))
for a certain contractible discrete simplicial subcategory. The homotopy type of
map((∆1, ∂∆1), (sẼh

• (−), ∗(−)) is independent of ∗. In Lemma 2.1.5.10 we are
going to specify an explicit choice of ∗ for all cases we care about.

In order to obtain a contractible space of further choices over each simplex
ch, we have to allow shorter sequences. We follow the same ideas as underlying
the choice space Ch∆(M,N).

Definition 2.1.5.7. Let ch be an n–simplex in Ch∆(M,N). As before, we have
ch = (Em ⊆ N, pm, . . . , p1, s, νm, . . . , ν1, H

(m), . . . ,H(1)). All constructions are
over |∆n|.
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Let 0 = i0, i1, . . . , ik = m be an ordered subset of 0, 1, . . . ,m. As above,
let M = M0,Mi1 , . . . ,Mm = N be a sequence of manifolds, ιit : Mit → Mit+1

an embedding, p̃it : τMit+1
Mit → Mit a tubular neighbourhood, and finally

cit : ∂τMit+1Mit × [0, 1]→Mit+1 a collar for every 0 ≤ t ≤ k − 1.

We obtain a sequence of bundles p′it : Eit → Eit−1
for 1 ≤ t ≤ k via compo-

sition.

A collection (Mit , ιit , p̃it , im(cit))0≤t≤k−1 is called admissible if it satisfies
pit+1 = incl∗1 ◦ incl∗2 ◦ . . . ◦ incl∗it(p̃it) for every 0 ≤ t ≤ k − 1.

Note that the notion of an admissible retraction over ch only depends on the
underlying sequence of bundles (Em ⊆ N, pm, . . . , p1, s) of ch. Hence we may de-
fine an admissible retraction over ch with respect to (Mit , ιit , p̃it , im(cit))0≤t≤k−1

to be an admissible retraction over (Em ⊆ N, p′m, p
′
ik−1

. . . , p′1, s) with respect
to (Mit , ιit , p̃it , im(cit))0≤t≤k−1.

Remark 2.1.5.8. We note that admissible retractions are closed under com-
position. More precisely, given admissible retractions α and α′ with respect to
collections A and A′ and composable choices ch and ch′, the composed map α′◦α
is an admissible retraction with respect to the concatenation of the collections
A′ ∗A and the choice ch ◦ ch′.

Now we make sure that admissible retractions actually exist. The construc-
tion given in the proof is the main geometric insight and motivates the notion
of admissible retractions as a small extension of these maps which grants us just
enough flexibility to obtain contractible choices.

Definition 2.1.5.9. Let i : X ↪→ Y be an inclusion. A simple retraction map
r : Y → X with respect to i is a retraction, i.e. r ◦ i = Id, and a simple map.

Lemma 2.1.5.10. Let ch = (f, e) be an n–simplex in Ch∆(M,N) with first
entry f = (Em ⊆ N, pm, . . . , p1, s, νm, . . . , ν1, H

(m), . . . ,H(1)).

Let si denote the zero section of pi (induced by choosing a metric). Then
Mi = Ei for 0 ≤ i ≤ m and Mm+1 = N , ιi = si for 0 ≤ i ≤ m and if : Em ⊆ N ,
p̃i+1 = pi for 0 ≤ i ≤ m−1 and some collar for if (Em) in N form an admissible
sequence associated to ch. We write sf instead of s.

There is an admissible retraction with respect to this sequence.

Proof. It follows from the definition that we have indeed described an admissible
sequence. We have to show the existence of an admissible retraction.

We are going to construct a natural transformation from u ◦ c ◦PPL(f, e) to
Ω sẼh

• (f, e) ◦ u ◦ c in map(PPL(M),map((∆1, ∂∆1), (sẼh
• (N × [0, 1]), ∗))) where

∗ denotes the smallest simplicial subcategory which contains

N × [0, 1]× |∆k| sN //

pr

((

N × I × |∆k|

pr

��
|∆k|

for k ∈ N and sN a family of collars of N×{0} in N×I parametrised over |∆k|.
Note that ∗ is a contractible Kan complex. We assume for now that ch factors
as ι ◦ (f0, e0) with ι = (Em ⊆ N, e′) in Ch∆(M,Em).
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Consider a k–simplex (F, sF ) of PPL(M) with F : M×I×|∆k| →M×I×|∆k|
and sF a collar in c(F ). We compute Ω sẼh

• (f, e) ◦ u ◦ c(F, sF ). The k–simplex
c(F, sF ) in ΩHPL

• (M) is given by the PL bundle

M × {0} × S1 × |∆k|
e(F )◦i0 //

pr
((

W

pr ◦(e(F ))−1

��
S1 × |∆k|

with S1 = [0, 1]/0 ∼ 1 for a certain W ∼= M × I × |∆k| × [0, 1]/ ∼ with
(m, t, v, 1) ∼ (F (m, t, v), 0), see Definition 2.1.2.2. Applying u yields a relative
bundle

M̃ = M × [0, 1]× S1 × |∆k| sW //

pr
))

W

pW

��
S1 × |∆k|

where the map sW = sF : M × [0, 1] × S1 × |∆k| → W is given by the choice
of the collar of M × {0} × S1 × |∆k|. We form the pushout along if ◦ sf which
yields

Ñ = N × [0, 1]× S1 × |∆k| × |∆n| //

pr
++

W × |∆n| ∪M×[0,1]×S1×|∆k|×|∆n| Ñ

(pW×pr∆n )∪pr

��
S1 × |∆k| × |∆n|

and the image of ((F, sF ), α : [k] → [n]) under Ω sẼh
• (f) ◦ u ◦ c is given by the

pullback along ((Id×α) ◦ diag)∗ : |∆k| → |∆k| × |∆n|.
We compute u ◦ c ◦P (f, e)(F, sF ) next. There is an induced pseudoisotopy

P (f)(F )′ : N × I × |∆k| × |∆n| → N × I × |∆k| × |∆n| which pulls back to
P (f)(F ) = (α ◦ diag)∗(P (f)(F )′) and via c we obtain a PL bundle

N × {0} × S1 × |∆k| × |∆n|
e(F )◦i0 //

pr
**

V

pV =pr ◦(e(F ))−1

��
S1 × |∆k| × |∆n|

with gluing map P (f)(F )′ for some V ∼= N × I × |∆k| × |∆n| × [0, 1]/ ∼ with
(m, t, v, w, 1) ∼ (P (f)(F )′(m, t, v, w), 0). Now u grants us a relative bundle

Ñ
sV //

pr &&

V

pV

��
S1 × |∆k| × |∆n|

as above.
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Next, we construct a natural subbundle inclusion of Ω sẼh
• (f, e)◦u ◦ c(F, sF )

into u ◦ c ◦P (f, e)(F, sF ). We define f0 in Ch∆(M,N) as the n–simplex which
is the Identity on Em in the first entry and coincides with f otherwise. The
pseudoisotopy

P (f0)(F ) : Em × I × |∆k| → Em × I × |∆k|

restricts to a pseudoisotopy on the zero sections which is given by F , see state-
ment 4 of Theorem 2.1.3.21.

Thus, pW × pr∆n : W × |∆n| → S1 × |∆k| × |∆n| may be thought of as a
subbundle of pV : V → S1× |∆k| × |∆n| and we write i : W × |∆n| ↪→ V for the
inclusion. It is induced by

(if ◦ sf )× Id : M × I × [0, 1]× |∆k| × |∆n| ↪→ N × I × [0, 1]× |∆k| × |∆n|.

By definition of (f, e) the collar used to construct sW is the restriction of
the collar used for sV to M × [0, 1]× S1 × |∆k| × |∆n| along i, i.e. the square

M̃ = M × [0, 1]× S1 × |∆k| × |∆n| sW //

if◦ιf
��

W

i

��
Ñ = N × [0, 1]× S1 × |∆k| × |∆n| sV // V

commutes. Hence we can define an injective bundle map

i ∪ sV : W ∪M×[0,1]×S1×|∆k|×|∆n| Ñ → V.

This concludes our preparations. Now, we construct a natural transforma-
tion from u ◦ c ◦P (f, e)(F, sF ) to Ω sẼh

• (f, e)◦u ◦ c(F, sF ) along simple retraction
maps where each retraction is relative to the inclusion i ∪ sV .

The natural transformation consists of maps VF → WF which satisfy the
following conditions:

1. They are compatible with sections and projections.

2. They are compatible with the simplicial structure maps.

Note that PPL(M) is a discrete simplicial category, hence naturality imposes
no condition.

We restrict our attention to the two special cases where f is either a transfer
or a codimension zero embedding, i.e.

• either the family of codimension zero submanifolds E ⊆ N × |∆m| is
N × |∆m| itself

• or the disk bundles pi are all given by the Identity, forcing the zero section
and the parallel transports to be given by Identity maps as well, and
further implies that the fibre-wise bending isotopies are given by constant
isotopies at the Identity.

Suppose that f is a codimension zero embedding. We have

W ∪M̃ Ñ = u ◦ c(F ) ∪∂M×[0,1]×S1×|∆k|×∆n (N −M)× [0, 1]× S1 × |∆k| × |∆n|
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and

V = u ◦ c(F ) ∪∂M×I×S1×|∆k|×∆n (N −M)× I × S1 × |∆k| × |∆n|.

Let a ∈ (0, 1). There is a simple retraction map

r : [0, 1]× I → {0} × I ∪{0}×[0,a] [0, 1]× [0, a].

which restricts to the standard projection r̃ : {1} × I → {1} × [0, a]. We abuse
notation and suppress the {1}–factor.

We define a simple map ρ : V → W ∪M̃ Ñ . To do so, let us choose a collar
c : ∂M ×J → N −M , where J = [0, 1] denotes the standard interval, and write
W ∪M̃ Ñ and V as

W ∪M̃ Ñ = u ◦ c(F )

∪∂M×{0}×[0,1]×S1×|∆k|×∆n

∂M × J × [0, 1]× S1 × |∆k| × |∆n|
∪∂M×{1}×[0,1r]×S1×|∆k|×|∆n|

N − im(c)−M × [0, 1]× S1 × |∆k| × |∆n|

and

V = u ◦ c(F )

∪∂M×{0}×I×S1×|∆k|×∆n

∂M × J × I × S1 × |∆k| × |∆n|
∪∂M×{1}×I×S1×|∆k|×|∆n|

N − im(c)−M × I × S1 × |∆k| × |∆n|

respectively.
The simple map ρ is given by Id on u ◦ c(F ),

Id∂M ×r × IdS1×|∆k|×|∆n|

on

∂M × J × I × S1 × |∆k| × |∆n|

��
∂M × (J × [0, 1] ∪ {0} × I)× S1 × |∆k| × |∆n|

and

Id
N−im(c)−M ×r̃ × IdS1×|∆k|×|∆n|

on

N − im(c)−M × I × S1 × |∆k| × |∆n|

��
N − im(c)−M × [0, 1]× S1 × |∆k| × |∆n|.
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We turn our attention to the second case. First, we denote our transfer map

by f = (N = N, s, (pfi , if , ν
f
i , H

(i)
f )1≤i≤m). Let d denote the dimension of the

disk bundle pf = pfm ◦ . . . ◦ p
f
1 . We reduce the structure group of the bundle pf

to Aut(Sd−1) by choosing a metric.

By the second part of statement 4 of Theorem 2.1.3.21 we obtain a covering
(Ui, ωi)i∈I of M by local trivialisations of pf for some indexing set I with respect
to the reduced structure group.

Further, let (U, ω) and (U ′, ω′) be trivialisations of the covering. Then the
geometric transfer without bending the boundary Tr(F ) = Trνm ◦ . . . ◦ Trν1(F )
fits into a commutative square

N × I × |∆k| × |∆m|
∼=

Tr(F )
// N × I × |∆k| × |∆m|

U ×Dd × I × |∆k| × |∆m| �
�

F×ρ
//

ω×Id

OO

U ′ ×Dd × I × |∆k| × |∆m|

ω′×Id

OO

where ρ : U ×Dd × |∆k| × |∆m| → Dd is adjoint to a family of automorphisms
of the fibre ρ̃ : U × |∆k| × |∆m| → Aut(Dd) which, in turn, is induced by the
reduced structure group ρ̃′ : U × |∆k| × |∆m| → Aut(Sd−1). We have bundles
V and W as above and a new bundle Ṽ = u ◦ c(Tr(F )).

The fibre-wise bending isotopies H
(i)
f induce an isotopy

Tr(F ) ' P (f)(F ) = Tr
νfm,h

(m)
f

◦ . . . ◦ Tr
νf1 ,h

(1)
f

(F )

which is constant on (M × I ∪ N × [0, 1]) × |∆k| × |∆n| and induces a PL

isomorphism H̃ : V → Ṽ . It is constant on the subspace since each of the H
(i)
f

preserves the zero section, see Definition 2.1.3.4.

Via the trivialisations above we can locally write Ṽ as

u ◦ c(F )×Dd

and W as

u ◦ c(F )× {0} ∪M×[0,1]×S1×|∆k|×|∆n|×{0}M × [0, 1]× S1 × |∆k| × |∆n| ×Dd.

Let r : Dd × I → Dd × [0, 1] ∪{0}×[0,1] {0} × I be an Aut(Sd−1)–equivariant

simple map. Here, Aut(Sd−1) acts on Dd only. Similarly to the previous case
we obtain a simple map ρ′ : Ṽ → W . We define the desired simple map ρ as
ρ = ρ′ ◦ H̃.

In contrast to the first case we do not have to choose an additional collar
because the space admits the structure of a disk bundle. The argument of the
previous case does not carry over because our map is given by F × ρ, not the
Identity, outside of the zero section.

For a general map (f, e) we define the associated simple map by composition
of the two constructions. If the collar extension map does not factor over the disk
bundle, an isotopy of collar induces the desired retraction map. The properties
of an admissible retraction are fulfilled by definition of the retraction maps.
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The last step is to thicken up our category of choices Ch∆ to a category ChR∆
which contains the required choices for an admissible retraction.

Recall that the choice space Ch∆(M,N) is the quotient of the “prelimi-
nary choice space” C̃h∆(M,N) along certain equivalence relations, see Defini-
tion 2.1.3.16 and Definition 2.1.3.9. While referring there, keep Notation 2.1.3.20
in mind.

Definition 2.1.5.11. Let C̃h∆(M,N)R denote the simplicial set whose n-
simplices are tuples (ch, α,A), where ch ∈ C̃h∆(M,N) and α is an admissible
retraction over ch with respect to the admissible collection A.

Let Ch∆(M,N)R be the quotient of C̃h∆(M,N)R under the equivalence
relation generated by the following relations:

Let A = (Mit , ιit , p̃it , im(cit))0≤t≤k−1 be an admissible collection over ch.
Then so is A′ = (M ′it , ι

′
it
, p̃′it , im(cit)

′)0≤t≤k−2 which is given by omitting Mit

for some 1 ≤ t ≤ k − 1. Let us explain:
We define A′ via the sequence

Mi0

ιi0−−→ . . .
ιit−1−−−→Mit

ιit+1
◦ιit−−−−−−→Mit+2 . . .

ιik−1−−−→Mik

of embeddings and use the appropriate tubular neighbourhoods and images of
collars for every embedding but ι′it = ιit+1

◦ ιit . We fix a parametrisation of the
collar space im(cit+1

). We abuse notation and call it cit+1
.

The new tubular neighbourhood is

p̃it ◦ ι∗it(p̃it+1
) : ι∗it(τMit+2

Mit+1
)→Mit

and the collar space is given by

p̃−1
it

(im(cit)) ∪ cit+1
(((p̃−1

it
(im(cit)) ∪ ι∗it(τMit+2

Mit+1
)) ∩ ∂τMit+1

Mit)× [0, 1]).

While the tubular neighbourhood is familiar from the composition of choices in
Ch∆, the collar space might seem less clear. The idea goes as follows: We start
with the collar of Mit in Mit+1 . Then we take its preimage under the bundle
p̃it to get a collar space in all directions orthogonal to the fibre direction of the
bundle. Finally, we extend this to a collar space in all directions via the collar
cit+1

of τMit+1
Mit in Mit+1

.

We note that the construction of A′ depends on t and the parametrisation
cit+1 .

Let α be an admissible retraction over ch with respect to A which is also an
admissible retraction over ch with respect to A′. Further, let α be given by the
standard projection map on (im(cit+1) ∪ τMit+2

Mit+1
− T ′′)× I instead of just

fibre preserving. The tuples (ch, α,A) and (ch, α,A′) are equivalent.
Let ch′ be an n–simplex in the preliminary choice space with [ch] = [ch′] in

Ch∆(M,N). Let α be an admissible retraction over ch with respect to A, which
is also an admissible retraction over ch′ with respect to A. The tuples (ch, α,A)
and (ch′, α,A) are equivalent.

Definition 2.1.5.12. The composition

Ch∆(N,N ′)R × Ch∆(M,N)R → Ch∆(M,N ′)R

is induced by sending ((ch2, α2, A2), (ch1, α1, A1)) to (ch2 ◦ ch1, α1 ◦α2, A1 ∗A2)
where A1 ∗A2 is the concatenation of A1 and A2.
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The appropriate choice category established, we show that the additional
choices are contractible, i.e. the forgetful map from ChR∆ to Ch∆ is a categorical
equivalence.

Proposition 2.1.5.13. The forgetful map Ch∆(M,N)R → Ch∆(M,N) is a
Kan fibration.

Proof. We are going to consider the special case it = t for 0 ≤ t ≤ m = k to
ease up notation. The general case is analogous.

We have to solve lifting problems

Λnk
//

��

Ch∆(M,N)R

��
∆n //

99

Ch∆(M,N).

We are going to construct a lift of a representative ch of the n–simplex [ch] in
Ch∆(M,N), relative to a lift (ch, α,A) over Λnk which represents [ch, α,A]. The
construction is going to be compatible with the equivalence relations.

Since |Λnk | ⊆ |∆n| is up to isomorphism |∆n−1 × {0}| ⊆ |∆n−1 × ∆1| we
may consider a sequence of bundles p′i × Id : E′i × |∆1| → E′i−1 × |∆1| with zero
section s′ × Id.

By the isotopy extension theorem (in the piecewise linear version) we may
assume without loss of generality that the subspace inclusion Em ⊆ N is of the
form ι× Id : E′m × |∆1| ⊆ N ′ × |∆1| with ι independent of the |∆1|–coordinate.

Accordingly, we may extend the embeddings ιi for 0 ≤ i ≤ m− 1 to ιi × Id
and similarly for p̃i and ci. We call this collection of admissible data A× Id.

To construct the lift we have to find an admissible retraction α′ over ch with
respect to A× Id which restricts to α over |∆n−1| × {0}.

By statement 5 of Theorem 2.1.3.21 the families of transfer maps (νi)1≤i≤m
and fibre-wise bending isotopies (H(i))1≤i≤m parametrised over |∆n−1| × |∆1|
induce, for every pseudoisotopy F in P (M), an isomorphism of pairs

u ◦ c ◦P (ch)(F ) ∼= u ◦ c ◦P (ch′)(F ))× |∆1|
u ◦ c ◦P (ch′)(F )) ∼= u ◦ c ◦P (ch′)(F )× {0}

where ch′ denotes the restriction of ch to |∆n−1| × {0}.
It is not hard to see that this isomorphism of pairs may be chosen compatibly

with the simplicial structure maps of P (M).
We extend the retraction to u ◦ c ◦P (ch′)(F ))×|∆1|× I by α× Id|∆1|. Upon

conjugation with the isomorphism of pairs, we obtain the desired retraction.

Proposition 2.1.5.14. The forgetful map F : Ch∆(M,N)R → Ch∆(M,N) is
a trivial fibration.

Proof. By Remark 2.1.5.8 the space of admissible retractions over some ch in
Ch∆(M,N) is not empty.

Let R(ch) denote the fibre over ch. Let R(ch)0 denote the simplicial sub-
set containing those equivalence classes of tuples which contain a representative
(ch, α,A) such that the subsequence 0 = i0, i1, . . . , ik = m of 0, 1, . . . ,m associ-
ated to A is of the form i0 = 0, i1 = m.

By Proposition 2.1.5.13, it is enough to show that
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1. the inclusion R(ch)0 ⊆ R(ch) is an acyclic cofibration and

2. the space R(ch)0 is contractible.

We show these results in the subsequent lemmata.

Lemma 2.1.5.15. The inclusion R(ch)0 ⊆ R(ch) is a weak equivalence.

Proof. Since R(ch) is a Kan complex, it is enough to show that the relative
simplicial homotopy groups πn(R(ch), R(ch)0) vanish for n ≥ 0.

Let (ch, α,A) be a representative of an n–simplex of R(ch), which restricts
to an element of R(ch′)0 on the boundary where ch′ is the restriction of ch. We
may assume without loss of generality that (ch, α,A) restricts to an element of
R(ch′′)0 over a neighbourhood of the boundary where ch′′ denotes the restriction
of ch to said neighbourhood.

Let 0 = i0, i1, . . . , ik = m denote the sequence associated to A. We are going
to construct a sequence of homotopies.

Let A≤t be given by omitting Mit+1 from A≤t+1 for every 0 ≤ t ≤ k− 2 and

A≤k−1 = A. We are going to define homotopies H(t) of simple retraction maps
such that

1. We have H
(k−1)
0 = α and H

(t)
0 = H

(t+1)
1 for 0 ≤ t ≤ k − 2.

2. The map H
(t)
s is an admissible retraction over ch with respect to A≤t for

every 0 ≤ s ≤ 1.

3. The map H
(t)
1 is admissible over ch with respect to A≤t−1 for 0 ≤ t ≤ k−1.

4. The homotopies are compatible with simplicial structure maps.

5. If H
(t)
0 is already admissible with respect to A≤t−1, then the homotopy is

constant.

Let us define the homotopies H(t). Recall that an admissible retraction has
to satisfy the following conditions:

1. The retraction α is given by the standard simple retraction map (i.e. the
projection) on (Mit+1

− im(cit)− τMit+1
Mit)× I for every 0 ≤ t ≤ k − 1.

2. Upon the choice of a parametrisation of im(cit) as a collar we obtain a
tubular neighbourhood p′ : im(cit) ∪ τMit+1

Mit → Mit of Mit in Mit+1

given by p′ = p̃it ◦ pr∂τMit+1
Mit
◦c−1
it
∪ p̃it .

We set U = cit−1
(∂τMit

Mit−1
× [0, 1)) ∪ τMit

Mit−1
for a choice of cit−1

.
Let p′′ denote the pullback of p′ along the subspace inclusion U ⊆ Mit .
Let T ′′ denote the total space of this pulled back tubular neighbourhood.

The map pr ◦(p′× IdI) : (im(cit)∪ τMit+1
Mit −T ′′)× I → (Mit −U)×{0}

and the restriction of (p′ × Id[0,1]) ◦ α to the same subspace coincide, i.e.
the restriction of the retraction map is fibre-preserving with respect to p′.
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Since A≤t mostly coincides with A≤t+1, an admissible retraction β with
respect to A≤t+1 is almost admissible with respect to A≤t as well. It can only
fail on the restriction of p′ : τMm

(Mit+1
) ∪ im(cit+1

)→Mit+1
to

Mit+1
− cit(∂τMit+1

(Mit)× [0, 1))− τMit+1
(Mit).

To ease up notation, we assume that it = t for every 0 ≤ t ≤ m = k and
consider the case A≤t+1 = A. The general case is analogous.

The admissible retraction H
(k−1)
1 has to be given by the standard simple

retraction map (i.e. the projection) on

Mm × I − (p′m)−1(τMm−1
(Mm−2 ∪ cm−2(∂τMm−1

(Mm−2 × [0, 1)))× I

with respect to some choice of collars cm−2 and cm−1 parametrising im(cm−2)
and im(cm−1), respectively.

We assume that α is given by the standard projection map on a neighbour-
hood of ∂(Mm − im(cm−1)− τMmMm−1)× I in Mm × I. We can achieve this,
for example, by slightly extending im(cm−1).

We are going to describe the desired homotopy H after decomposing Mm

into various subspaces. First, let us choose a parametrisation of im(cm−1) and
im(cm−2) each. We again abuse notation and call them cm−1 and cm−2.

Recall that (ch, α,A) restricts to an element of R(ch′′)0 over a neighbourhood
of the boundary. Hence there is a choice of cm−1, such that the following holds:
Over the boundary of the n–simplex, α is given by the standard projection
on the complement of (p′m)−1(τMm−1

Mm−2 ∪ im(cm−2)) × I. This is going to
guarantee that the homotopy H is constant over the boundary.

Let V be the complement of τMm−1Mm−2 ∪ cm−1(∂τMm−1Mm−2 × [0, 1]) in
Mm. Let ιV : V ⊆ Mm−1 and ιc : im(cm−2) ⊆ Mm−1 denote the subspace
inclusions. We obtain

Mm =Mm − im(cm−1)− τMm
Mm−1

∪ι∗m−2(τMm
Mm−1)

∪cm−1(∂ι∗m−2(τMm
Mm−1)× [0, 1])

∪ι∗c(τMm
Mm−1)

∪cm−1(∂ι∗c(τMm
Mm−1)× [0, 1])

∪ι∗V (τMm
Mm−1)

∪cm−1(∂ι∗V (τMm
Mm−1)× [0, 1]).

On (Mm− im(cm−1)− τMm
Mm−1)× I the homotopy is constantly the stan-

dard projection map. This takes care of the first condition of an admissible
retraction for the index i = m− 1 with respect to A.

On ι∗m−2(τMm
Mm−1) × I the homotopy is constant, too. This guarantees

both conditions for 0 ≤ i ≤ m− 3 with respect to A.
On cm−1(∂ι∗m−2(τMmMm−1)×[0, 1])×I the homotopy is constant once more.

Now we turn to the interesting part.
The remaining subspace carries the structure of a tubular neighbourhood T

of ι∗c(τMm
Mm−1)∪ι∗V (τMm

Mm−1). We are going to apply a fibre-wise Alexander
trick to take care of the remaining conditions.
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We note that there is a piecewise linear isotopy of piecewise linear automor-
phisms ρs : Mm × [0, 1)→Mm with the following properties:

1. We have ρ0 = Id.

2. On the subspacesMm−im(cm−1)−τMm
Mm−1, ι∗m−2(τMm

Mm−1) as well as
cm−1(∂ι∗m−2(τMm

Mm−1)× [0, 1]) the isotopy ρs is constant. In particular,
this is important to make sure that H is constant on the boundary.

3. The complement of these three carries the structure of a tubular neigh-
bourhood T of ι∗c(τMm

Mm−1) ∪ ι∗V (τMm
Mm−1). The isotopy ρ preserves

the fibres of this bundle.

4. The bundle given by the fibre-wise boundary of T has, by assumption, a
neighbourhood W on which α is given by the standard projection. The
isotopy ρs satisfies diam(ρs(T −W )) ≤ 1 − s with respect to some fixed
metric.

On ι∗V (τMmMm−1)× I ∪ cm−1(∂ι∗V (τMmMm−1)× [0, 1])× I the homotopy is
given by (α, s) 7→ ρs ◦ α ◦ (ρ−1

s × IdI) for s ∈ [0, 1) and the standard projection
for s = 1.

On ι∗c(τMm
Mm−1)× I ∪ cm−1(∂ι∗c(τMm

Mm−1)× [0, 1])× I we use local coor-
dinates. Let (x, r, v, w) be an element of ∂τMm−1

Mm−2 × [0, 1]×Dz × I where
z is the dimension of the fibre of the tubular neighbourhood.

The homotopy is (α, s)(x, r, v, w) = ρmax(r,s) ◦α ◦ (ρ−1
max(r,s)× IdI)(x, r, v, w)

in local coordinates for (r, s) ∈ [0, 1] × [0, 1] − {(1, 1)}. For (1, 1) we use the
standard projection map.

This construction preserves fibres and thus the second condition is satisfied
for i = m − 2 with respect to A. If α happens to be the projection map on a
fibre already, then the homotopy is constant. This ensures the first condition
for i = m− 1.

By definition, the collar cm−2 for A≤m−2 contains the space where H1 is
non-trivial, namely ι∗c(τMm

Mm−1) ∪ cm−1(∂ι∗c(τMm
Mm−1) × [0, 1]). It is then

straightforward that H1 satisfies the first condition for i = m − 2 with respect
to A≤m−2.

Lemma 2.1.5.16. Let (E ⊆ N, p, s, ν,H, α) be a 0–simplex in Ch∆(M,N).
The space R(E ⊆ N, p, s, ν,H)0 is contractible.

Proof. This is similar to the proof that R(ch)0 ⊆ R(ch) is a weak equivalence.
On the tubular neighbourhood E ∪ im(c), we fix a fibre-wise simple retraction
map E ∪ im(c)× I → E ∪ im(c)× [0, 1]∪M × I which is the standard projection
outside of E × I.

For an admissible retraction (α, (ι : M ↪→ N, p : E →M, c : ∂E×[0, 1]→ N))
we use the isotopy ρ to pass from α to the fixed retraction.

We obtain the desired 2–functor.

Corollary 2.1.5.17. There is a simplicial 2–functor Ψ: ChR∆×[1] → scat∆cat

given by:

• PPL : ChR∆×{0} → Ch∆ → scat∆

• ΩsẼh• ◦ (−× [0, 1]) : ChR∆×{1} → Ch∆ → scat∆
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• u ◦ c : ob ChR∆×{0 ≤ 1} → Ch∆ → scat∆

• Ψ: mor ChR∆×{0 ≤ 1} → scat∆cat which sends [(ch, α,A)] to α.

It induces an (∞, 1)–functor N h.c.
• ChR∆×[1] → N h.c.

• Top∆ upon geometric
realisation since Top∆ is an (∞, 1)–category.

The 2–functor makes the desired natural zig-zag between pseudoisotopies
and polyhedra a fairly straightforward consequence.

Corollary 2.1.5.18. There is a zig-zag of natural weak equivalences between
PPL
∂ : Top→ Top and ΩsẼh• : Top→ Top.

Proof. We consider the unstable pseudoisotopies first. As explained in the be-
ginning of this section both functors are defined by homotopy left Kan extensions
of their restrictions to (MfdPL,pl)∆.

A zig-zag between Ω| sẼh
• | ◦ f : Ch∆ → Top∆ and PPL : Ch∆ → Top∆ is

enough by Lemma 2.1.5.1.
By the tautological obstruction theory, see Corollary 1.2.1.7, the above corol-

lary yields a zig-zag of natural transformations between Ω| sẼh
• | ◦ f and PPL.

By Lemma 2.1.2.10 and statement 7 of Theorem 2.1.3.21 we obtain a zig-zag
of natural weak equivalences after stabilisation.
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2.2 Non-Connective Naturality

In this part, we construct a zig-zag of natural weak equivalences between the
pseudoisotopy spectrum and the Whitehead spectrum.

Definition 2.2.0.1. The topological Whitehead spectrum is the homotopy
cofiber of the assembly map in A–theory

(−)+ ∧A(∗)→ A→WhTop,−∞

whereA : Top→ Spectra is the non-connectiveA–theory functor. The piecewise
linear Whitehead spectrum is the same as the topological one.

The Whitehead spectrum in the smooth category is defined as the homotopy
cofiber of

(−)+ ∧ S→ A→WhDiff,−∞

where S is the sphere spectrum and the map is the composition of the unit map
(−)+ ∧ S→ (−)+ ∧A(∗) and assembly.

Let us restate our main objective.

Theorem 2.2.0.2. Let Cat = Top,PL or Diff. There is a natural weak equiv-
alence of (∞, 1)–functors

Ψ: PCat ⇒ Ω2 WhCat,−∞

from the (∞, 1)–functor PCat : N h.c.
• Top∆ → N h.c.

• Spectra∆ of pseudoisotopies
to the twofold loops of the (∞, 1)–functor given by the Whitehead spectrum.

In particular, there is a zig-zag of natural weak equivalences between the
strict functors PCat : Top→ Spectra and Ω2 WhCat,−∞.

The ideas are similar to the case of spaces. Unfortunately, there is no known
polyhedra model for the one fold loops of the Whitehead spectrum similar to
sẼh
• for the loops of the Whitehead space.

Since the standard models for the non-connective pseudoisotopy spectrum
as well as the non-connective A–theory spectrum utilize controlled categories, it
seems feasible that one could translate the zig-zags by Waldhausen and Jahren,
Rognes and Waldhausen recalled in Theorem 2.1.1.2 and Theorem 2.1.1.4 into
a controlled setting.

Indeed, all spaces and maps admit analogues (with quite a few variations).
However, the author is unable to show that any such zig-zag consists of weak
equivalences. The main problem is as follows: To show that polyhedral reali-
sation sD̃h

•(X•) → sẼh
• (|X•|) is a weak equivalence Jahren, Rognes and Wald-

hausen used triangulations of fibrations of polyhedra, i.e. for W → |∆n| a PL
Serre fibration we need a triangulation W• → B• where B• is a finite triangu-
lation of |∆n|.

In a controlled setting the polyhedron W is only locally compact over a typ-
ically non-compact control space, e.g. Rn. Indeed, there are polyhedra W such
that there is no triangulation of W which admits a compatible finite triangula-
tion of |∆n|. If one tries to relax the conditions on the triangulation of |∆n|,
the issues cascade into other parts of the zig-zag.
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Instead we define an analogue of the 2–functor Ψ: P ⇒ Ω sẼh
• (−× [0, 1]) in

the controlled setting and then construct a lift

Ω Wh?(−× [0, 1, B)

��
P (−;B)

Ψ//

ΨD
66

Ω| sEh
• (−× [0, 1], B)|

for a control space B and a space which very much looks as if it is a model
for “one fold loops of a controlled Whitehead space” (and close enough that
we obtain a natural transformation Ω Wh?(−, B) ⇒ Ω Wh(−, B)). This map
bypasses the zig-zags almost completely. Finding a lift then amounts to finding
“triangulations” of W → |∆n| of the form W• → S•(|∆n|).

In Section 2.2.1 we show that bounded pseudoisotopies classify bundles of
bounded h–cobordisms, similar to Section 2.1.2, and give a detailed description
of the non-connective pseudoisotopy functor, akin to Section 2.1.3. We also proof
that bounded h–cobordisms yield an Ω–spectrum and identify its non-positive
stable homotopy groups.

We construct the suspected model for the one fold loops of the controlled
Whitehead space in Section 2.2.2 and show that different deloopings via con-
trolled categories give equivalent spectra. In particular, our results apply in the
context of the non-connective A–theory functor of Ullmann and Winges [44].

Finally we translate the 2–functor Ψ to the non-connective setting, construct
the desired lift via triangulations, and show that we indeed obtain a zig-zag of
weak equivalences. This is the content of Section 2.2.3.

We take care of the smooth case in Section 2.2.4. The argument is an
adaption of the deduction of the smooth case of the stable parametrised h–
cobordism theorem in [31].

2.2.1 Non-connective pseudoisotopies and h–cobordisms

We know that the negative homotopy groups of P and Ω2 Wh are abstractly
isomorphic to negative K–groups. This is a consequence of [47] for Ω2 Wh,
while Anderson and Hsiang [1] showed this for P via comparison to bounded
h–cobordisms.

Unfortunately the construction in [1] is not easily seen to be compatible with
our eventual map H(M)→ Ω Wh(M) from the h–cobordism to the Whitehead
spectrum. Instead we rely on the bounded h–cobordism theorem by Pedersen
[37] to identify bounded h–cobordisms with negative K–groups.

We define the non-connective spectrum of bounded h–cobordisms, then we
discuss bounded pseudoisotopies, starting with Definition 2.2.1.11. To pass from
pseudoisotopies to h–cobordisms, we again use a classifying map for bundles,
see Definition 2.2.1.19 and Definition 2.2.1.20. We use [37] to identify the neg-
ative homotopy groups of the h–cobordisms, see Corollary 2.2.1.30. However,
since the h–cobordism theorem only applies to the connected components of the
spaces of bounded h–cobordisms, we also have to show that our spectrum is an
Ω–spectrum in Proposition 2.2.1.24.



88 CHAPTER 2. A NATURAL H–COBORDISM THEOREM

Bounded h–cobordisms

The following definitions are adapted from [37] to our situation.

Definition 2.2.1.1. A manifold W parametrised by Rk consists of a manifold
W together with a proper and surjective map q : W → Rk.

Definition 2.2.1.2. Let K ⊆W be a subset of a manifold (W,p) parametrised
over Rk. The size of K is S(K) = inf{r|∃y ∈ Rk : q(K) ⊆ B(y, r/2)} where
B(y, r/2) is the closed ball in Rk with radius r/2.

Definition 2.2.1.3. An h–cobordism (W,∂0W,∂1W ) parametrised by Rk is a
bounded h–cobordism (bounded by t) if it is an ordinary h–cobordism and there
are deformations Di : W×I →W from W to ∂iW , such that S(Di({w}×I)) < t
for each w ∈W .

Now we are in position to describe the spaces of bounded h–cobordisms.

Definition 2.2.1.4. Let M be a compact PL manifold, possibly with boundary.
We define the simplicial set H•(M ;Rk) of bounded h–cobordisms over M and
parametrised by Rk. An n–simplex is a map q : W → Rk and a diagram

M × |∆n| × Rk

pr
&&

� � ι // W

p

��
|∆n|

where p : W → |∆n| is a PL bundle, each local trivialisation restricts to the
identity on the product subbundle specified by ι, and each fibre Wx := p−1(x)
is a piecewise linear h–cobordism on M×Rk ∼= M×{x}×Rk for every x ∈ |∆n|.

Moreover, (W,M × |∆n| × Rk, ∂1W ) and q form a bounded h–cobordism
and there are deformations Di : W × I →W with S(Di({w} × I)) < t for each
w ∈W over |∆n|, i.e. p ◦Di = p ◦ prW holds.

The simplicial structure maps are induced by pullback along the structure
maps of the cosimplicial space [n] 7→ |∆n|.

Definition 2.2.1.5. Let Hc
•(M ;Rk) be the simplicial set with an n–simplex

consisting of an element of Hn(M ;Rk) and a collar c : M×|∆n|×Rk×[0, 1]→W
which restricts to a fibre-wise collar c : M × {x} × Rk × [0, 1] → Wx for each
x ∈ |∆n|. Moreover, we require c to be a bounded map, i.e. there is some R > 0
such that ||q(y)− q(c(y))|| < R holds for all y ∈M × |∆n| ×Rk × [0, 1]. We call
c a bounded collar.

An n–simplex of Hc,r
• (M ;Rk) is an element of Hc

n(M ;Rk) together with a
fibre-wise retraction r : W → M × |∆n| × [0, 1] onto the collar such that r is a
bounded map.

Lemma 2.2.1.6. The forgetful maps Hc,r
• (M ;Rk)→ Hc

•(M ;Rk)→ H•(M ;Rk)
are acyclic fibrations.

Proof. For the map Hc
•(M ;Rk)→ H•(M ;Rk) we use that the space of bounded

collars is contractible. For the map Hc,r
• (M ;Rk)→ Hc

•(M ;Rk) this follows from
the fact that the inclusion p−1(|∂∆n|) ∪M × [0, 1] × |∆n| × Rk ⊆ W has the
bounded homotopy extension property for every n ∈ N.
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Definition 2.2.1.7. There is a stabilisation map, see [31, Definition 1.1.3],
σ : H•(M ;Rk)→ H•(M × [0, 1];Rk) given by

(W,p, ι) 7→ (W × [0, 1], p ◦ prW , ι× Id[0,1])

where we mildly abuse notation, since the subbundle is M × [0, 1]× |∆n| ×Rk,
not M × |∆n| × Rk × [0, 1].

In the decorated cases we send a collar c : M × |∆n| × Rk × [0, 1] → W to
c× Id[0,1] and a retraction to r × Id[0,1], again abusing notation.

Definition 2.2.1.8. The stable h–cobordism space is

H•(M ;Rk) := colimn∈NH•(M × [0, 1]n;Rk)

similar for Hc•(M ;Rk) and Hc,r• (M ;Rk). We denote the geometric realisation
by H(M ;Rk).

To finish the definition of the h–cobordism spectrum we require structure
maps.

Definition 2.2.1.9. Let ι+ : [0, 1] ↪→ R≥0 and j+ : R≥0 ↪→ R denote the sub-
space inclusions, similar for ι− and j− with respect to R≤0. Let (W, q, p, ι, c) be
an n–simplex of Hc

•(M ;Rk). We obtain a pushout

M × |∆n| × Rk × [0, 1]× [0, 1]
Id×ι+ //

c×Id

��

M × |∆n| × Rk × [0, 1]× R≥0

��
W × [0, 1] // (ι+)∗(W )

and similar for ι−, j±. In total we obtain a square

Hc
•(M ;Rk)

(ι+)∗ //

(ι−)∗

��

Hc
•(M ;Rk × R≥0)

(j−)∗

��
Hc
•(M ;Rk × R≤0)

(j+)∗ // Hc
•(M ;Rk+1)

where the upper right and lower left corner are contractible by an Eilenberg
Swindle. Since these constructions are compatible with stabilisation, we get a
map σH : Hc•(M ;Rk)→ ΩHc•(M ;Rk+1). The universal property of the pushout
gives an extension for Hc,r• (M ;Rk).

Definition 2.2.1.10. The h–cobordism spectrum has Hc•(M ;Rk) as its k–th
level and structure maps σH : Hc•(M ;Rk)→ ΩHc•(M ;Rk+1).

Bounded pseudoisotopies

We introduce the non-connective pseudoisotopy spectrum.

Definition 2.2.1.11. Let M be a PL manifold. A bounded PL pseudoisotopy
on M over Rk is a PL–isomorphism F : M × Rk × I → M × Rk × I such that
F |M×{0}×Rk = Id and there is someR > 0 such that ‖prRk ◦F (x)−prRk(x)‖ < R
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for every x ∈M ×Rk × I. A bounded piecewise linear pseudoisotopy F relative
boundary additionally satisfies F |∂M×I×Rk = Id.

An n–simplex of the bounded pseudoisotopy space P (M ;Rk) is a bounded
pseudoisotopy on M × |∆n| over Rk which is compatible with the projections
to |∆n|. Similarly we define P∂(M ;Rk) for pseudoisotopies relative boundary.

The stabilisation map P (M ;Rk)→ P (M×[0, 1],Rk), F 7→ F×Id allows us to
define the stable pseudoisotopy space P(M ;Rk) := colimn∈N P (M × [0, 1]n;Rk).

We abuse notation and do not distinguish between P (M ;Rk) and its geo-
metric realisation.

Definition 2.2.1.12 ([12, Definition 7.6 and Remark 7.7]). Let M,N be fam-
ilies of manifolds over X and let B = Rk or B = Rk−1 × R≥0. We define a
map

−× IdK : Ch∆(M,N)→ Ch∆(M ×B,N ×B)

by taking the cross product component-wise, i.e. we cross each disk bundle, each
fibre-wise bending isotopy, and the zero section of some choice simplex ch with
IdK and we cross each parallel transport with the trivial parallel transport on
B.

We obtain

r(ch× IdK) : P(M ×B)→ P(N ×B)

which restricts to a map on bounded pseudoisotopies

r(ch× IdK) : P(M ;B)→ P(N ;B).

Definition 2.2.1.13. We define P+(M ;B) analogously to P+(M), but we

require a bounded collar. We define Chc,s,B∆ analogously to Chc,s,+∆ .

Definition 2.2.1.14. Let F c,s,Bch : N•(MfdPL,pl) → N h.c.
• Chc,s,B∆ denote the

associated choice functor.

Notation 2.2.1.15. We write PCat(−;B) for the realisation rB ◦ (− × IdB),

denote the stable pseudoisotopy functor by PCat(−;B), refer to Chc,s,B∆ by Ch∆

and to c+ by c. Finally, we may drop the collar extension map e from the
notation for some morphism (ch, e) in Chc,s,B∆ .

Theorem 2.2.1.16. Let Cat = PL or Top.

1. The pseudoisotopy functor PCat(−;B) : Top→ Top is given by homotopy
left Kan extension of its restriction to MfdCat.

2. The functor Ind(PCat(−;B)) ◦ ι ◦ F c,s,+ch coincides - up to natural weak
equivalence of (∞, 1)–functors - with the piecewise linear pseudoisotopy
functor defined in [12].

3. Let i : (MfdPL, cts) ⊆ (MfdTop, cts) denote the inclusion. The point-wise

inclusion maps PPL
∂ (M ;K) → PTop

∂ (i(M);K) extend to a natural weak
equivalence of functors.

4. Let (i : E ⊆ N × |∆m|, (pi)ni=1, s, (νi)
n
i=1, (H

(i))ni=1) be a choice which fac-
tors over φ0 = (E = E, (pi)

n
i=1, s, (νi)

n
i=1, (H

(i))ni=1, e0) for some collar
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extension map e0. Then the square

M × I × |∆m| ×B

s

��

F // M × I × |∆m| ×B

s

��
E × I × |∆m| ×B

P (φ0)(F )//

i

��

E × I × |∆m| ×B

i

��
N × I × |∆m| ×B

P (φ)(F )// N × I × |∆m| ×B

commutes for every F ∈ P (M ;B), i.e. the induced pseudoisotopy restricts
to the original pseudoisotopy on the zero section of the disk bundle.

We reduce the structure group of the bundle to Aut(Sd−1) by choosing a
metric. Then there is a covering (Ui, ωi)i∈I of M by local trivialisations
of p = pn ◦ · · · ◦ p1 for some indexing set I with respect to the reduced
structure group.

Now let (U, ω) and (U ′, ω′) be trivialisations of the covering. Then the
geometric transfer without bending the boundary P (φ0)(F ) fits into a com-
mutative square

N × I × |∆k| × |∆m| ×B
∼=

P (φ0)(F )
// N × I × |∆k| × |∆m| ×B

U ×Dd × I × |∆k| × |∆m| ×B �
�

F×ρ
//

ω×Id

OO

U ′ ×Dd × I × |∆k| × |∆m| ×B

ω′×Id

OO

where ρ : U × Dd × |∆k| × |∆m| × B → Dd is adjoint to a family of
automorphisms of the fibre ρ̃ : U × |∆k| × |∆m| × B → Aut(Dd), induced
by a map ρ̃′ : U ×|∆k|× |∆m|×B → Aut(Sd−1) into the reduced structure
group.

5. Let p : E → M be a disk bundle, ν a transfer map and H a fibre-wise
bending isotopy, everything parametrised over some compact manifold X.
Let F in P (M ;B) be a pseudoisotopy. We obtain an isotopy of pseudoiso-
topies Trν,h(F ) : E× I×B → E× I×B over X where h = H(−, 1) is the
associated bending map.

6. The point-wise inclusion maps PDiff
∂ (M ;B) → PTop

∂ (M ;B) extend to a

natural transformation of quasicategories PDiff
∂ ⇒ PTop

∂ between endofunc-
tors on N h.c.

• Top∆.

7. The inclusion PCat
∂ (M× [0, 1]k;B) ⊆ PCat(M× [0, 1]k;B) is a weak equiv-

alence for every k ∈ N and they induce a weak equivalence on stable pseu-
doisotopies PCat

∂ (M ;B)→ PCat(M ;B).

Proof. The proof of the connective case, Theorem 2.1.3.21, carries over. For the
third property we use [12, Remark 7.1] instead of [12, Remark 6.1], and for the
sixth one we use the analogue of Lemma 1.4.1.1 for bounded pseudoisotopies.
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Let i : M ↪→ M × [0, 1] denote the inclusion. We obtain an induced map
P (i;Rk) : P (M ;Rk) → P (M × [0, 1];Rk). By extending with the identity we
also get a pseudoisotopy on M × I × |∆n| × Rk × R≥0, namely

(x, t, v, w,w0) 7→P (i;Rk)(F )(x, t, v, w,w0) if w0 ∈ [0, 1]

(x, t, v, w,w0) otherwise.

Moreover, we have an extension map of bounded collars. This determines a
natural transformation of (∞, 1)–functors which makes the diagram

N h.c.
• Ch∆

P (−;Rk) //

��

N h.c.
• ChRk

∆

��
N h.c.
• Ch

Rk×R≥0

∆

P (−;Rk×R≥0) // N h.c.
• Top∆

commutative for a suitable choice of the section N h.c.
• Ch∆ → N h.c.

• Ch
Rk×R≥0

∆ .

Definition 2.2.1.17. The pseudoisotopy spectrum P is level wise given by
Pk(M) = P(M ;Rk). The k–th structure map of the pseudoisotopy spectrum is
induced by the homotopy Cartesian square, see [53, Proposition 1.10],

P (M ;Rk) //

��

P (M ;Rk × R≥0)

��
P (M ;Rk × R≤0) // P (M ;Rk+1)

where each map is a composition similar to the above construction.

Corollary 2.2.1.18. The level wise natural transformations PDiff
∂ ⇒ PTop

∂ as-
semble into a natural transformation PDiff ⇒ PTop of (∞, 1)–functors from
N h.c.
• Top∆ to N h.c.

• Spectra∆.

Proof. Since the structure maps for the smooth and topological pseudoisotopy
spectrum are constructed in the same way, the level wise natural transformations
are compatible.

The bounded classifying map

As in the connective case we have to define a classifying map c: P → ΩH.

Definition 2.2.1.19. Let F : M × |∆n| × Rk × I →M × |∆n| × Rk × I be an
n–simplex of the space of piecewise linear pseudoisotopies. Let eM : M ↪→ R∞
be the subspace inclusion and en : M × R× |∆n| × Rk ↪→ R∞ × |∆n| × Rk the
standard embedding given by (x, r, v, w) 7→ (r, eM (x), v, w).

We define the embedding

Fs : M × I × |∆n| × Rk ↪→M × R× |∆n| × Rk

(x, t, v, w) 7→F (x, t− s, v, w) + (0, s, 0, 0); if t− s ≥ 0

(x, t, v, w); otherwise



2.2. NON-CONNECTIVE NATURALITY 93

for s ∈ [0, 1], where we use M ⊆ R∞ to define addition. We obtain an embedding

e(Fs) : M × I × |∆n ×∆1| × Rk ↪→ R∞ × |∆n ×∆1| × Rk

(x, t, v, s, w) 7→ (en ◦ Fs(x, t, v), s, w).

This, in turn, yields an n× 1–simplex in H•(M ;Rk)

M × {0} × |∆n ×∆1| × Rk

pr

**

e(Fs)◦i0 // im(e(Fs))

pr ◦(e(Fs))−1

��
|∆n ×∆1|

where i0 : M ×{0}× |∆n×∆1|×Rk ↪→M × I×|∆n×∆1|×Rk is the subspace
inclusion. The proper and surjective map is given by projection to Rk. This is
well-defined because F is a bounded pseudoisotopy.

We obtain a loop φF : (∆1, ∂∆1)→ (H•(M ;Rk), (pr : M × I × Rk → |∆0|))
since the embeddings d∗0(e(Fs)) and d∗1(e(Fs)) have the same image.

As before the bundle e(Fs) is just a model for the S1–bundle classified by F
and we obtain a classifying map.

Definition 2.2.1.20. We define a map of simplicial sets

c : P (M ;Rk)→ ΩH•(M ;Rk)

F 7→ φF .

The arguments used in Section 2.1.2 carry over to the bounded case. We
omit most details and only define the space of bounded embeddings necessary
for the fibre sequences.

Definition 2.2.1.21. Let E0(M ;Rk) be the simplicial set with n–simplices the
bounded piecewise linear embeddings M ×I×|∆n|×Rk ↪→ R∞×|∆n| which are
compatible with the projection to |∆n| and restrict to the standard embedding
on M×{0}×|∆n|. An embedding ι is bounded if ‖ prRk ◦ι(x)−prRk(x)‖ admits
a common bound for all x.

Lemma 2.2.1.22. The map c is a weak equivalence and commutes with the
stabilisation maps. It thus induces a weak equivalence

c : PPL(M)→ ΩHPL
• (M).

Proof. This is analogous to the proof in Section 2.1.2.

Lemma 2.2.1.23. The map c commutes with the structure maps up to homo-
topy and thus induces a weak equivalence of spectra

c : PPL(M)→ ΩHPL
• (M).
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Proof. Using that spaces of collars as well as spaces of embeddings of a compact
manifold into R∞ are contractible, it is straightforward to show that the cube

P (M ;Rk)

��

//

c
ww

P (M ;Rk × R≥0)

��

c
ww

ΩH(M ;Rk)

��

// ΩH(M ;Rk × R≥0)

��

P (M ;Rk × R≤0) //

c
ww

P (M ;Rk+1)

c
ww

ΩH(M ;Rk × R≤0) // ΩH(M ;Rk+1)

is homotopy commutative up to higher coherences, i.e. it extends to a map
(∆1)3 → N h.c.

• Top∆. This implies that c is compatible with the structure maps
up to homotopy.

Now, a mapping telescope construction allows one to strictify this collection
into a map of spectra. Since the mapping telescope is a model for the homotopy
colimit, this is enough. Equivalently our spectra are cofibrant and fibrant objects
in the model category of prespectra [5, Theorem 2.3].

The negative homotopy groups of the h–cobordism spectrum

In the rest of this section we show that the parametrised torsion of Pedersen [37]
induces an isomorphism between the negative homotopy groups of the spectrum
of bounded h–cobordisms and negative K–groups. The key step is the following
proposition.

Proposition 2.2.1.24. The (non-connective) h–cobordism spectrum H(M) is
an Ω–spectrum.

Remark 2.2.1.25. The spectrum P(M) is an Ω–spectrum for every M by [53,
Proposition 1.10]. The proposition follows except for the statement about the
map π0(H(M ;Rk))→ π1(H(M ;Rk+1)) for every k ∈ N.

The following arguments are adapted from the case of pseudoisotopies ex-
plained in [53, Proposition 1.5], [53, Lemma 1.6] and their respective proofs, see
also [41, Chapter 5] for transversality in the PL category. Since we do not have
a strict composition law on h–cobordisms, some adjustments are necessary. Let
H0 be the connected component of the trivial h–cobordism.

Definition 2.2.1.26. Let E(k)(M) be the simplicial set given in degree n by
all pairs (p, q) where p, q are bundles over |∆n| of bounded h–cobordisms over
M×Rk+1 such that q restricted to a bundle of h–cobordisms over M×(−∞,−1)
is given by the cylinder M × (−∞,−1)× [0, 1] and p and q restricted to bundles
of cobordisms over M × [z,∞) coincide for some z ≥ 0.

Lemma 2.2.1.27. The diagram E
(k)
0 (M) → E(k)(M) → H0

• (M ;Rk+1) is a
fibration for every n ∈ N.
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We note that E
(k)
0 (M) and E0(M) are not inherently linked. This is just an

unfortunate clash of notation.

Proof. The map E(k)(M)→ H0
• (M ;Rk+1) is surjective on 0–simplices because

H0
• (M ;Rk+1) only contains h–cobordisms which are isotopic to the trivial one.

Essentially, one lifts an h–cobordism p to a bounded embedding ep into R∞,
chooses an isotopy to the trivial h–cobordism, and uses an intermediate level of
this isotopy to find an embedding eq which yields a lift (p, q) of p in E(k)(M).

For higher simplices we use a relative version of the same argument. Let p̃
be an h–cobordism bundle over |∆n| and (p, q) a lift of its restriction to |Λnm|.
Let eq be an embedding of q into R∞ × |Λnm| and iq an isotopy of embeddings
to an embedding ep of p.

We extend eq to an embedding e′q into R∞ × |∆n| along a piecewise linear
retraction |∆n| → |Λnm| and similarly extend iq to an isotopy i′q from e′q to the
extension along pullback e′p of ep. By general position we find an isotopy ip
from e′p to an embedding ep̃ of p̃ relative ep. Choosing appropriate intermediate
levels of the isotopy i′q ∗ ip yields an embedding q̃ which yields a lift (p̃, q̃) of
p̃.

Lemma 2.2.1.28. The space colimn∈NE
(k)(M × [0, 1]n) is contractible.

Proof. We first note that every E(k)(M × [0, 1]n) is a Kan-complex by pulling
back a pair of h–cobordism bundles along a retraction |∆m| ↪→ |Λmp |. Since the

structure maps are cofibrations, colimn∈NE
(k)(M × [0, 1]n) is Kan as well.

Let [(p, q)] be an element in πr(colimn∈NE
(k)(M× [0, 1]n)). It is represented

by an r–simplex of some E(k)(M × [0, 1]n)), relative boundary. Since p and
q are r–simplices of H0

• (M × [0, 1]n × Rk+1) we may lift them (e.g. via the
construction explained in the proof of Lemma 2.2.1.27) to bounded embeddings
relative boundary, i.e. r–simplices in E0(M × [0, 1]n;Rk+1), with the following
properties

1. On M × I × [0, 1]n × Rk × R≤0 the lift eq of q restricts to the standard
embedding.

2. The lift ep of p coincides with eq on M × I × [0, 1]k × Rk × R≥z for some
z ∈ R>0.

3. Both lifts are given by the standard embedding for each point on the
boundary of |∆r|.

By transversality (and possibly stabilising the target of our embeddings) we find
an isotopy of embeddings relative M × I × [0, 1]n × Rk × R≥z+1 from ep to an
embedding e′p (which restricts to the constant isotopy on the boundary), such
that e′p is a lift of q.

The image of the isotopy yields [(p, q)] = [(q, q)] in πr(E
(k)(M × [0, 1]n)).

But by an Eilenberg Swindle, every element of the form [(q, q)] is trivial. Hence
[(p, q)] = 0 and we are done.

Proof of Proposition 2.2.1.24. The fibre E
(k)
0 (M) ⊂ E(k)(M) is the subspace

consisting of pairs (p, q) with p the trivial h–cobordism. The inclusion map

(i0)∗ : H•(M ×D1;Rk)→ E
(k)
0 (M) is an acyclic cofibration.
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The result now follows from Lemma 2.2.1.27 and Lemma 2.2.1.28 since there
is a commutative diagram

H•(M ×D1;Rk) //

��

E
(k)
0 (M)

��
CH•(M ×D1;Rk) //

��

E(k)(M)

��
ΣH0
• (M ×D1;Rk)

σ // H•(M ;Rk+1)

where the middle horizontal map sends a simplex |∆|1 ×W to the pair (σ, h)
defined as follows:

We have an isotopy of embeddings ρ : R → Emb(M × D1,M × R) given
by z 7→ iz where iz is the canonical isometric embedding with iz(0) = z. We
obtain an induced map ρ∗ : H•(M×D1;Rk)→ ΩH•(M ;Rk+1) on the one point
compactification R ∪ ∞. This is a model for the structure map σ of the h–
cobordism spectrum.

Similarly, consider the isotopy of embeddings ρ′ : R→ Emb(M×D1,M×R)
given by i0 for z ∈ R≤0 and iz for z ∈ R≥0. The pair (ρ, ρ′) yields the map
(σ, h).

Since we have now shown that the h–cobordism spectrum is an Ω–spectrum,
we can use one of the main results of [37] to calculate its negative homotopy
groups.

Theorem 2.2.1.29 (Bounded h–cobordism theorem). Let (W,∂0W,∂1W ) be a
bounded h–cobordism of dimension at least 6, parametrized by Rk with bounded
fundamental group π. Then there is an obstruction in K̃−k+1(Zπ) which van-
ishes if and only if W admits a bounded product structure. All such invariants
are realized by bounded h-cobordisms.

The invariant under consideration is in fact the bounded Whitehead torsion
of the inclusion ∂0W ⊆W , see [37, Definition 3.2] and [36, Theorem 2.5]. Also,
for every compact manifold M , the fundamental group of M × Rk is bounded
for every k ∈ N, see [37, Definition 1.3].

Corollary 2.2.1.30. The map τ : π0(H(M ;Rk)) → K̃−k+1(Zπ1(M)), which
associates to a bounded h–cobordism its bounded Whitehead torsion, is a bijec-
tion.

Proof. There is a monoidal structure on π0(H(M ;Rk)) given as follows: Let
W,W ′ be two h–cobordisms over M and choose some collars c : [0, 1]→W and
c′ of M . Then the sum of their classes is represented by W×D1∪M×[0,1]W

′×D1

where we stabilise once with D1 and glue along the collars.

The result is a consequence of the theorem, the monoidal structure and the
sum formula for the bounded Whitehead torsion. The sum formula for the
bounded Whitehead torsion can be shown analogously to the classical case, see
[9, Theorem 23.1].
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2.2.2 A suspected model for the Whitehead spectrum

We show that the non-connective deloopings of A–theory due to Ullmann and
Winges [44] and Vogell [46] agree up to level equivalence of spectra, see Corol-
lary 2.2.2.19. Next, we introduce a simplicial variation of Vogell’s model which
allows for triangulations of bounded h–cobordisms as objects. The construction
is finished in Definition 2.2.2.29.

The simplicial variation for the one fold loops of the Whitehead spectrum
requires us to revisit quite a few arguments of Waldhausen [51] which originally
identified the homotopy fibre of the A–theory assembly map as the K–theory
of a Waldhausen category, see [54] for an introduction of assembly homology
theories.

We introduce simple maps in the controlled setting in Definition 2.2.2.35
and conclude this part with the suspected (point wise) model of Ω Wh in Defini-
tion 2.2.2.46. The problem with this candidate is explained in Remark 2.2.2.44.

Most of Waldhausen’s arguments allow straightforward adaptions to our set-
ting of K–theory of bounded retractive spaces. However, the degree to which the
functors under consideration preserve weak equivalences is always subtle. On a
technical level one finds similarities between these questions and the triangula-
tion problems which make the adaption of the connective zig-zags difficult.

The non-connective deloopings of A–theory

We begin by recalling the setting of Ullmann and Winges. The reader familiar
with [44] can safely skip ahead to Definition 2.2.2.9.

Definition 2.2.2.1 ([44, Definition 2.1]). Let a coarse structure denote a triple
Z = (Z,C,S) such that Z is a Hausdorff space, C is a collection of reflexive
and symmetric relations on Z which is closed under taking finite unions and
compositions, and S is a collection of subsets which is closed under taking finite
unions.

Definition 2.2.2.2 ([44, Definition 3.23]). A morphism of coarse structures
z : Z1 → Z2 is a map of sets z : Z1 → Z2 satisfying the following properties:

1. For every S1 ∈ S1, there is some S2 ∈ S2 such that z(S1) ⊆ S2 holds.

2. For every S1 ∈ S1 and C1 ∈ C1, there is some C2 ∈ C2 such that we have
(z × z)((S × S) ∩ C1) ⊆ C2.

3. For every S ∈ S1 and all subsets A ⊆ S which are locally finite in Z1, the
set z(A) is locally finite in Z2 and for all x ∈ z(A) the set z−1(x) ∩ A is
finite.

Example 2.2.2.3. Let (B, d) be a metric space. The bounded morphism control
condition is

Cbdd(B) = {P ⊆ B ×B|∃ R > 0 such that d(p1, p2) ≤ R for all (p1, p2) ∈ P}.

We obtain the bounded coarse structure B(B) = (B, {B},Cbdd(B)) on B.

Fix a coarse structure Z and a topological space W . For a CW-complex Y
relative W denote by �Y the (discrete) set of relative cells of Y and by �kY the
subset of all relative k–cells in Y .
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Definition 2.2.2.4 ([44, Definition 2.3]). A labelled CW-complex relative W is
a pair (Y, κ) where Y is a CW-complex relative W and κ : �Y → Z is a map of
sets.

Let e ∈ Y be a cell. We denote by 〈e〉 the smallest CW-subcomplex of Y
which contains e. A Z–controlled map f : (Y, κ) → (Y ′, κ′) is a cellular map
f : Y → Y ′ relative W such that for all k ∈ N there is some C ∈ C for which

(κ′ × κ)({(e′, e)|e ∈ �kY, e′ ∈ �Y ′, 〈f(e)〉 ∩ e′ 6= ∅}) ⊆ C}

holds.
A Z–controlled CW-complex relative W is a labelled CW-complex (Y, κ) rel-

ative W such that the Identity map on Y is a Z–controlled map and for all
k ∈ N there is some S ∈ S such that

κ(�kY ) ⊆ S

holds.

Definition 2.2.2.5 ([44, Definition 3.1]). A Z–controlled retractive CW-complex
relative W is a Z–controlled CW-complex (Y, κ) relative W together with a
retraction r : Y →W , i.e. a left inverse r to the structural inclusion s : W ↪→ Y .

The Z–controlled retractive spaces relative W form a category R(W,Z) in
which morphisms are Z–controlled maps compatible with the retractions.

Definition 2.2.2.6 ([44, Definition 2.5]). Let (Y, κ, r, s) and (Y ′, κ′, r′, s′) de-
note two Z–controlled retractive spaces relative W . A Z–controlled homo-
topy equivalence from (Y, κ, r, s) to (Y ′, κ′, r′, s′) is a morphism f : Y → Y ′

in R(W,Z) such that there is a Z–controlled map f̄ : Y ′ → Y together with
Z–controlled homotopies f ◦ f̄ ' Id and f̄ ◦ f ' Id.

Definition 2.2.2.7 ([44, Definition 3.1 and Definition 3.3]). A Z–controlled
retractive space (Y, κ, r, s) is called finite, if it is finite dimensional, the image
of Y −W under the retraction meets only finitely many connected components
of W , and for all z ∈ Z there is some open neighbourhood U of z such that
κ−1(U) is finite.

We denote the full subcategories of finite Z–controlled retractive spaces by
Rf (W,Z) ⊆ R(W,Z).

Lemma 2.2.2.8 ([44, Corollary 3.22]). The category Rf (W,Z) carries a Wald-
hausen structure with inclusions of subcomplexes up to isomorphism as cofibra-
tions and Z–controlled homotopy equivalences as weak equivalences.

There is a cylinder functor on Rf (W,Z) and the cylinder and saturation
axiom hold.

We summarise controlled retractive CW-complexes and bounded homotopy
equivalences in the sense of Vogell, see [46, pp. 164] for further details. No new
material is presented before the comparison, beginning with Definition 2.2.2.15.

Let B be a closed subset of Rk for some k ∈ N. Let W be a topological
space.

Definition 2.2.2.9. A controlled topological space is a space Y together with
a map q : Y → B.
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Definition 2.2.2.10. A bounded n–cell (of diameter c) is a pair (J × Dn, q)
where J is a discrete index set and q : J ×Dn →W ×B is a map satisfying the
following:

1. The set prB ◦q({j} ×D) has diameter at most c for each j ∈ J .

2. For K ⊆ B compact, the set {j ∈ J |prB ◦q({j} ×Dn) ∩K 6= ∅} is finite.

Definition 2.2.2.11. A boundedly finite CW-complex relative W is a bounded
CW-complex (Y, r, s) where Y is a retractive CW-complex relative W which is
built from W by attaching finitely many bounded cells in order of increasing
dimension, i.e. r : W → Y and s are a retraction and a section, respectively, and
r restricts to the control map q on each bounded n–cell.

The category Rf (W,B) of boundedly finite retractive CW-complexes has as
morphisms cellular maps which respect sections and retractions.

Definition 2.2.2.12. A bounded homotopy equivalence f : (Y, q) → (Y ′, q′)
between controlled spaces is a bounded map f : Y → Y ′ such that there is a
bounded map g : Y ′ → Y together with bounded homotopies H : g ◦ f ' Id and
G : f ◦ g ' Id, i.e. they satisfy supx∈W diam(H({x} × I)) ∈ R≥0, similar for G.

Definition 2.2.2.13. A boundedly homotopy finite space relative W is a con-
trolled space (Y, q) which is connected by a zig-zag of bounded homotopy equiv-
alences to a boundedly finite CW-complex relative W .

We obtain the category Rhf (W,B) of boundedly homotopy finite retractive
spaces with morphisms continuous, controlled maps which are compatible with
sections and retractions.

Lemma 2.2.2.14 ([46, Lemma 1.1]). The category Rf (W,B) carries a Wald-
hausen structure with maps which are inclusions of subcomplexes up to isomor-
phism as cofibrations and bounded homotopy equivalences as weak equivalences.

The category Rhf (W,B) carries a Waldhausen structure with maps which
satisfy the bounded homotopy extension property as cofibrations and bounded
homotopy equivalences as weak equivalences.

There is a cylinder functor on each of these categories and they satisfy the
saturation as well as the cylinder axiom.

Proof. Although not explicitly stated, Vogell uses the cylinder functor as well
as the saturation and cylinder axiom. It is not hard to check that the usual
construction of the cylinder functor works and to show the two axioms.

Since the applications to the Farrell-Jones conjecture in [13] use the model
by Ullmann and Winges, while our arguments are related to Vogell’s, we show
that they yield equivalent K–theory.

Definition 2.2.2.15. Let F : Rf (W ;B)→ Rf (W, ζ) denote the functor which
is given by (Y, r, s) 7→ (Y ∪W×BW, prW ◦(r ∪ Id), ιW ,prB ◦r ◦ bary) on objects,
where bary : � Y → Y sends every cell to its barycentre, and uses the obvious
functorial extensions for morphisms.

Definition 2.2.2.16. Let Z be the bounded coarse structure over a vector
space B with a Riemannian metric. Let (Y, r, s, κ) ∈ Rf (W,Z) be an object.
Let Y ′ :=

⋃
e∈�Y < e >⊆ Y be the subset of all cells. We inductively define the
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map rB : Y ′ → B as follows. On a 0–simplex e, we set rB(0, e) := κ(e). For the
general case, we have to find extensions

∂ < e >� _

��

rB // B

< e >

rB

::

and we set

v 7→|v|rB(
v

|v|
) + (1− |z|)κ(e) |v| 6= 0 ∈ Dm

κ(e) |v| = 0 ∈ Dm.

Proposition 2.2.2.17. The functor F : Rf (W ;B) → Rf (W,Z) induces an
equivalence on algebraic K–theory.

Proof. The functor F is exact. The statement follows from the approximation
theorem, see [51, Theorem 1.6.7]. All of the theorem’s prerequisites but the
second approximation property are easy to check.

We are given (Y, r, s), (Y ′, r′, s′, κ′) and a morphism f : Y ∪W×B W → Y ′.
We construct an object Ỹ in Rf (W ;B) whose image under F is weakly equiv-
alent to Y ′. For that, we choose attaching maps for Y ′. We define an object in
Rf (W ;B) inductively, thus we start out with W ×B. Let e be a cell in degree

m and αe : Sm−1 → (Y ′)(m−1) its gluing map. We attach a cell to Ỹ (m−1) along
the following map:

α̃e(v) := (αe(v), rB(v)) on α−1
e (W )

αe(v) on
⋃

e′∈�≤m−1Z

α−1
e (< e′ >).

We obtain (Ỹ , r×rB , ιW×B) in Rf (W ;B). Since morphisms in Rf (W, ζ) are
bounded and B is convex, there is a homotopy of retractions H : Y × [0, 1]→ B
from pB ◦ r to pB ◦ rB ◦ f .

Now we can define a reduced mapping cylinder with a slightly altered retrac-
tion M(f̃) := ((Y ×[0, 1]∪Y×{1} Ỹ )∪W×B×[0,1]W×B, ((pW ◦r)×H)∪rB , ιW×B)

where we glue along the map f̃ : Y → Ỹ which is obtained from f by induction
and satisfies F (f̃) = f .

Finally, the square

F (Y, r, s)

F (i0)

��

f // (Y, r, s, κ)

F (M(f̃))

p

88

shows that the second approximation property is satisfied. Here, p denotes the
mapping cylinder projection.

For Vogell’s definition of delooping, see [46, § 1] up to, but not including, [46,
Lemma 1.2], the Definition on p. 169 and the final two Remarks on p. 186 and
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p. 187. The structure map in degree k is induced by the homotopy Cartesian
square

AV (W ;Rk) //

��

AV (W ;Rk × R≥0)

��
AV (W ;Rk × R≤0) // AV (W ;Rk+1)

where the upper right and lower left terms are contractible.
The definition of the non-connective algebraic K–theory spectrum in the

sense of Ullmann and Winges is given at the beginning of [44, Chapter 5]. The
structure maps are again defined in terms of homotopy Cartesian diagrams and
it is immediate from the definitions that they are compatible.

Lemma 2.2.2.18. The functors F : Rf (W,Rk)→ Rf (W,Z(k)) for every k ∈ N
are compatible with the structure maps of the non-connective algebraic K–theory
spectrum in the sense of Vogell, respectively Ullmann and Winges.

Hence we obtain a natural transformation F : AV ⇒ AUW between the non-
connective algebraic K-theory functors.

Corollary 2.2.2.19. The natural transformation F : AV ⇒ AUW is a point
wise level equivalence.

Proof. This is immediate from Proposition 2.2.2.17.

From here on we only work with Vogell’s setting. Unfortunately, there is
no reasonable notion of “higher homotopy theory of simple maps” for CW-
complexes. Hence, in order to mix simple maps with Waldhausen categories,
we have to introduce a simplicial version of Vogell’s approach.

Definition 2.2.2.20. Let B be a closed subset of Rk for some k ∈ N. Let W
be a compact polyhedron.

Let T• denote a simplicial set and t : (|T•|,prB ◦t)→ (W×B, prB) a bounded
homotopy equivalence.

Example 2.2.2.21. Let T• denote a simplicial set and t : |T•| → W × B a
homeomorphism, i.e. (T•, t) is a triangulation of W ×B.

We fix a collection of B, W and (T•, t).

Definition 2.2.2.22. A bounded simplicial set is a simplicial set Y• together
with a map q : Y• → T• such that there is some constant c > 0 such that for
every simplex σ : ∆n → Y• the set prB ◦t ◦ |q| ◦ |σ|(|∆n|) has diameter at most
c.

Definition 2.2.2.23. We define the category of retractive simplicial sets. An
object is a triple (Y•, r, s) with Y• a simplicial set, r : Y• → T• a retraction,
and s : T• → Y• a section of simplicial sets, i.e. r ◦ s = Id holds. A morphism
f : (Y•, r, s) → (Y ′• , r

′, s′) is a map of simplicial sets f : Y• → Y ′• satisfying
r = r′ ◦ f and f ◦ s = s′.

The category of bounded retractive simplicial sets R(W,B, T•, t) is the full
subcategory of the category of retractive simplicial sets on those objects (Y•, r, s)
for which the tuple (Y•, r) is a bounded simplicial set.

For every c > 0 we obtain the full subcategory of c–bounded retractive sim-
plicial sets R(W,B, T•, t)c.



102 CHAPTER 2. A NATURAL H–COBORDISM THEOREM

Definition 2.2.2.24. A bounded n–simplex (of diameter c) is a pair (J×∆n, q),
where J is a discrete index set and q : J × ∆n → T• is a map satisfying the
following:

1. The set prB ◦t ◦ |q|({j} × |∆n|) has diameter at most c for each j ∈ J .

2. For K ⊆ B compact, the set {j ∈ J |prB ◦t ◦ |q|({j} × |∆n|) ∩K 6= ∅} is
finite.

Definition 2.2.2.25. A boundedly finite simplicial set relative W• is a bounded
simplicial set (Y•, q) where Y• is a simplicial set relative W• which is generated
by W• and finitely many bounded simplices.

We obtain the category Rf (W,B, T•, t) of boundedly finite retractive simpli-
cial sets as the full subcategory of R(W,B, T•, t).

Analogously we obtain Rf (W,B, T•, t)c for every c > 0.

Definition 2.2.2.26. A bounded weak equivalence f : (Y•, q)→ (Y ′• , q
′) between

bounded simplicial sets is a map of simplicial sets f : Y• → Y ′• such that |f | is a
bounded homotopy equivalence between controlled spaces.

Definition 2.2.2.27. A boundedly homotopy finite simplicial set relative W•
is a bounded simplicial set (Y•, q) which is connected by a zig-zag of bounded
weak equivalences to a boundedly finite simplicial set relative W•.

We obtain the category of boundedly homotopy finite retractive simplicial
sets Rhf (W,B, T•, t) as the full subcategory of R(W,B, T•, t).

We obtain Rhf (W,B, T•, t)c as the full subcategory of R(W,B, T•, t)c for
every c > 0 as well.

Lemma 2.2.2.28. The categories Rf (W,B, T•, t) and Rhf (W,B, T•, t) carry
Waldhausen structures with injective morphisms as cofibrations and bounded
weak equivalences as weak equivalences. They satisfy the saturation axiom.

There is a cylinder functor on each of these categories and they satisfy the
cylinder axiom.

The analogous statements hold for Rf (W,B, T•, t)c and Rhf (W,B, T•, t)c
for every c > 0.

Proof. The Waldhausen structures are a direct consequence of the analogous
statement for bounded retractive CW-complexes [46, Lemma 1.1]. The satura-
tion axiom and the cylinder axiom are easy to show.

Definition 2.2.2.29. We choose triangulations (T k• , t
k) of W × Rk for every

k ∈ N, such that (T k• , t
k) restricts to (T k−1

• , tk−1) on W ×Rk−1×{0} ⊆W ×Rk.
We define the simplicial version of the A–theory spectrum in the sense of

Vogell as the spectrum with

AV,sk (W ) = K(Rf (W,Rk, T k• , tk))

as its k–th degree and the structure maps induced by the squares

AV,s(W ;Rk) //

��

AV,s(W ;Rk × R≥0)

��
AV,s(W ;Rk × R≤0) // AV,s(W ;Rk+1).
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This concludes the definition of our simplicial model for A–theory. We are
going to see in a moment that simple maps form a Waldhausen category over
locally finite retractive simplicial sets. The same is unclear if we only require
local finiteness up to homotopy. On the other hand, we require the larger
category to show that the simplicial model gives the same K–theory as the
topological one. So we have to show that the two simplicial models agree on
K–theory.

Lemma 2.2.2.30 (compare [51, Proposition 2.1.1]). The inclusion functor
Rf (W,B, T•, t) → Rhf (W,B, T•, t) induces an equivalence on algebraic K–
theory.

Proof. We adapt Waldhausen’s original proof of the non-controlled statement
[51, Proposition 2.1.1].

The argument proceeds via the approximation theorem [51, Theorem 1.6.7].
All conditions but the second part of the approximation property are easy to
check. As in the classical case we may ignore retractions and it is enough to
show the following:

Let (Y•, r, s) be an object in Rf (W,B, T•, t) and f : (Y•, r, s)→ (Y ′, r′, s′) a
morphism in Rhf (W,B, T•, t). Then there are maps

(Y•, r, s)
i−→ (Y 1

• , r
1, s1)

f−→ (Y ′• , r
′, s′)

with i a cofibration and g a weak equivalence such that f = g ◦ i.
The corresponding statement in the controlled topological setting was shown

in the proof of [46, Proposition 1.4].
In the simplicial case, we know from the topological case that there is a

factorisation (|Y•|, |r|, |s|) → (|Y 1
• |, |r1|, |s1|) → (|Y ′• |, |r′|, |s′|) after geometric

realisation. We construct the desired factorisation by induction over the degree
of the cells of Y 1 not contained in Y . Again, we ignore retractions.

Let I denote an index set for the cells {σi}i∈I of degree n. For each i ∈ I
we use the construction given in [51, Proposition 2.1.1] which uses simplicial
subdivision to find simplicial maps approximating the topological solution up
to homotopy.

We introduce a mild generalisation of Vogell’s topological model. It is only
used to simplify the proof that the simplicial and topological model agree.

Definition 2.2.2.31. Let T be a space and t : (T, prB ◦t)→W ×B a bounded
homotopy equivalence. We define R(W,B, T, t) analogously to R(W,B, T•, t).

Lemma 2.2.2.32. The exact functor t∗ : R(W,B, T, t)→ R(W,B) induces an
equivalence on K–theory.

Proof. This is analogous to [46, Lemma 1.3]. Essentially, bounded homotopies
induce natural transformations.

The functor relating the simplicial and topological setting is induced by
geometric realisation.

Definition 2.2.2.33. There is a functor R(W,B, T•, t) → R(W,B, |T•|, |t|)
given by geometric realisation (Y•, r, s) 7→ (|Y•|, |r|, |s|).

It restricts to an exact functor of Waldhausen categories on Rf (W,B, T•, t)
and Rhf (W,B, T•, t).
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Proposition 2.2.2.34. Let T• be a Kan-complex. Then the geometric realisa-
tion functor Rhf (W,B, T•, t) → Rhf (W,B, |T•|, |t|) induces a weak equivalence
on K–theory.

The proof of this proposition proceeds similarly to (the corrected1 version
of) Waldhausen’s proof of the classical statement [51, Proposition 2.1.2].

Proof. Since T• is Kan, there is a retraction map r : S•(|T•|) → T•. For each
n ∈ N, the functor Fn is the Sn–construction without the choice of quotients,
see [51, Definition on page 7]. They satisfy |Fn| ' |Sn|.

Hence it is enough to show that the geometric realisation map

hFnRhf (W,B, T•, t)→ hFnRhf (W,B, |T•|, |t|)

admits a homotopy inverse. In the classical case the inverse map is given by
composition of S• : hFnRhf (W,B, |T•|, |t|) → hFnRhf (W,B,S•(|T•|), t ◦ |r|)
and r∗ : hFnRhf (W,B,S•(|T•|), t ◦ |r|)→ hFnRhf (W,B, T•, t).

The unit and counit of the adjunction between geometric realisation and
singular simplicial sets induce natural transformations between the compositions
of these functors and the identity functors on the respective categories.

For the controlled case, we cannot use the singular simplicial sets functor
directly, since there is no good control map on S•(Y ) such that we obtain
controlled homotopy equivalences |S•(Y )| ' Y for a controlled space Y .

We use an argument analogous to one we learned from Arthur Bartels and
Paul Bubenzer. Similar to [13, Proposition 7.2] we have natural weak equiv-
alences hocolimc∈NK(Rhf (W,B, T•, t))c → K(Rhf (W,B, T•, t)), analogous for
the topological case.

Let c > 0. The c–controlled singular simplicial set functor Sc• is given on Y
in degree n by those maps σ : |∆n| → Y which satisfy diam(σ) ≤ c.

The map hFnRhf (W,B, T•, t)c → hFnRhf (W,B, |T•|, |t|)c, given by geo-
metric realisation, admits a homotopy inverse for every c > 0. It is given by
r∗ ◦ Sc•.

The restrictions of the unit and counit of the adjunction as well as the usual
homotopies show that we obtain controlled homotopy equivalences between the
composed functors and the identity.

The A–theory fibre sequence for bounded simple maps

The next step is to translate Waldhausen’s model for the homotopy fibre se-
quence of the A–theory assembly map (whose homotopy fibre is the White-
head spectrum) to bounded simplicial sets. The arguments closely follow Wald-
hausen’s original train of thought and only at a few points we have to support
it with slightly varied arguments to account for the generalisation to bounded
simplicial sets.

First we introduce simple maps and show that they can be used as the weak
equivalences of a Waldhausen category.

Definition 2.2.2.35. A bounded map f : (X•, p) → (Y•, q) is simple, if the
preimage |f |−1(y) of every point y in Y• is contractible.

1Originally Waldhausen used the approximation theorem. But it is not clear that his
construction for the non-trivial part is compatible with retraction maps.
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Remark 2.2.2.36. Since every contractible preimage is necessarily controlled
contractible, there is no additional condition in the controlled setting.

Proposition 2.2.2.37 (compare [31, Proposition 2.1.8]). For a map of bound-
edly finite simplicial sets f : (X•, p)→ (Y•, q) the following are equivalent.

1. The map f is simple.

2. The preimage |f |−1(p) has the Čech homotopy type of a point for every
element p ∈ |Y•|.

3. The map |f | is cell-like.

4. The map |f | is a hereditary homotopy equivalence, i.e. the restricted map
|f |−1(U)→ U is a homotopy equivalence for each open subset U ⊆ |Y•|.

5. The map |f | is a hereditary weak homotopy equivalence.

Proof. Let p ∈ |Y•|. There is a finite simplicial subset Y•(p) in Y• with p
contained in the interior of |Y•(p)|.

By [31, Lemma 2.1.4] applied to the restricted map f : f−1(Y•(p))→ Y•(p),
each preimage |f |−1(p) is a finite CW-complex, hence a compact ENR. So by
[4, (8.6)], |f |−1(p) is contractible if and only if it has the Čech homotopy type
of a point. Thus (1.)⇔ (2.).

As explained following [31, Definition 2.1.5] every ENR is a finite dimen-
sional, separable metric space. Thus |f |−1(p) is a finite-dimensional, compact,
separable metric space. Thus (2.) ⇔ (3.) by the equivalence of (a) and (b) in
[31, Theorem 2.1.6].

The map |f | : |X•| → |Y•| is proper, since every compact subset K ⊆ |Y•|
is contained in the geometric realisation of a finite simplicial set B•(K) and
the restricted map |f−1(B•(K))| → |B•(K)| certainly is, as |f−1(B•(K))| is
compact and |B•(K)| is Hausdorff.

Let U ⊆ |Y•| be an open subset which is contained in the geometric re-
alisation of some finite simplicial subset Y ′• of Y•. Then the restricted map
f−1(U) → U is a homotopy equivalence (even a proper one) by [31, Theo-
rem 2.1.7].

Now, consider an arbitrary open subset U ⊆ |Y•|. We obtain a filtration
Ui = U ∩ q−1(B ∩ (−i, i)n) of U with i ∈ N. This yields a map

hocolimi∈N |f |i : hocolimi∈N |f |−1(Ui)→ hocolimi∈N Ui

which is a weak homotopy equivalence, because each of the maps |f |i is.
By [35, Theorem 1(a) and (d)], each of the spaces |f |−1(Ui) and Ui has

the homotopy type of a countable CW-complex. Hence the same holds for the
homotopy colimits. Thus (3.)⇒ (4.).

Clearly, (4.)⇒ (5.).
Finally, we show (5.) ⇒ (3.). So consider a hereditary weak homotopy

equivalence f : X• → Y• such that the preimage of every simplex of Y• is a
finite simplicial set.

Let p ∈ |Y•|. Let Up ⊆ B be an open neighbourhood of q(p) with q−1(Up)
contained in a finite CW-complex Y•(Up).

We shall demonstrate below that |f | is surjective and that for every p in
|Y•| the inclusion |f |−1(p) ⊆ Y•(Up) has the property UV∞. This is going
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to complete the proof, since Y•(Up) is an ENR, so by the equivalence of [31,
Theorem 2.1.6(a) and (c)] each point inverse |f |−1(p) is cell-like which implies
(3.).

The image L = |f |(|X•|) ⊆ |Y•| is closed, since |f | is closed, so U = |Y•| −L
is open. Its preimage |f |−1(U) is empty, so the restricted map |f |−1(U) → U
can only be a weak homotopy equivalence when U is empty, i.e. when |f | is
surjective.

It remains to verify the property UV∞. Let |f |−1(p) ⊆ U ⊆ Y•(Up) with U
open. The complement K = Y•(Up) − U is closed, so its image |f |(K) = |Y•|
is closed and does not contain p. Each point in a CW-complex has arbitrar-
ily small contractible open neighbourhoods [20, Proposition A.4], so p ∈ |Y•|
has a contractible open neighbourhood N that does not meet |f |(K). By as-
sumption, the restricted map |f |−1(N) → N is a weak homotopy equivalence,
so by defining V = |f |−1(N) we have obtained an open, weakly contractible
neighbourhood of A that is contained in U .

Now Y•(Up) is an ENR, and thus an ANR, so its subset V is also an ANR.
Thus V has the homotopy type of a CW-complex, by [35, Theorem 1(a) and (d)].
Hence the weakly contractible space V is in fact contractible, so the inclusion
V ⊆ U is in fact null-homotopic.

Lemma 2.2.2.38. The category Rf (W,B, T•, t) with injective maps as cofibra-
tions and simple maps as weak equivalences is a Waldhausen category.

Proof. The two non-trivial statements are that simple maps are closed under
composition and the gluing lemma. These can be shown analogously to [31,
Proposition 2.1.3 (a) and (d)], respectively. This argument uses the different
characterisations of simple maps given in Proposition 2.2.2.37.

Eventually, the functors sRf (W,B, T•, t) → hRf (W,B, T•, t) shall induce
homotopy fibre sequences, so we have to show exactness.

Lemma 2.2.2.39. Every simple map f : (X•, p) → (Y•, q) is a bounded weak
equivalence.

Proof. Let (Y•, q) be c–bounded. Let σ : ∆n → Y• be a simplex of Y•. Then the
image of |σ| is contained in q−1(U) for some open set U ⊆ B with diam(U) ≤ c.

Since f is a hereditary homotopy equivalence, we can use induction over the
simplicial degree to construct a homotopy inverse g of f such that g ◦ σ maps
to (q ◦ f)−1(U) which is c–bounded for every simplex σ.

Now everything is ready to define the desired homotopy fibre sequence. Due
to Waldhausen’s work this requires little effort from our part.

Lemma 2.2.2.40. There is a homotopy fibre sequence

sS•R
h
f (|W∆•

• |, B,W∆•

• ×B•, b× Id)

��
sS•Rf (|W∆•

• |, B,W∆•

• ×B•, b× Id)

��
hS•Rf (|W∆•

• |, B,W∆•

• ×B•, b× Id).
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Proof. The proof of [51, Theorem 3.3.1] carries over verbatim save for one tech-
nical point:

We denote the full subcategory of Rf (|W∆•

• |, B,W∆•

• × B•, b × Id) on the
objects (Y•, κ, r, s) with s : W∆•

• × B• → Y• a 1–connected map with an upper
index (2). We have to show that the the extension axiom holds for the weak

equivalences in R
(2)
f (|W∆•

• |, B,W∆•

• ×B•, b× Id).
This follows from the boundedly controlled Whitehead theorem of Ander-

son and Munkholm [2] and the long exact sequence of fragmented homology
[2, (1.8)]. Via their example of a “boundedness control structure” [2, Exam-
ple 1.1], “bounded homotopy equivalences” in the sense of Vogell correspond to
“boundedly controlled homotopy equivalences” in the sense of [2].

Next we explain how sS•Rf (|W∆•

• |, B,W∆•

• × B•, b × Id) is related to the
assembly homology theory. Again, most of the work has already been taken
care of.

Definition 2.2.2.41 ([51, Chapter 3.2]). Let F : sSet → Top be a functor. It
is called excisive, if it satisfies the following properties:

1. The functor F commutes with colimits.

2. If W 0
• → W 1

• is a cofibration and W 0
• → W 2

• any map, then we obtain a
homotopy Cartesian square

F (W 0
• ) //

��

F (W 1
• )

��
F (W 2

• ) // F (W 1
• ) ∪F (W 0

• ) F (W 2
• ).

An excisive functor is a homology theory, if it preserves weak equivalences.

Proposition 2.2.2.42 ([51, Proposition 3.2.4]). Let F : sSet → Top be an
excisive functor and suppose that F (W•) is connected for every W•. Then the
associated functor W• 7→ ([n] 7→ F (W∆n

• )) is a homology theory.

We fix a pair (B•, b : (|B•|, b)→ B) of a simplicial set and a bounded homo-
topy equivalence.

Lemma 2.2.2.43. The functor W• 7→ sS•Rf (|W•|, B,W• ×B•, Id×b) is exci-
sive.

Proof. This is analogous to [51, Proposition 3.2.3].

Remark 2.2.2.44. If we had a full analogy with Waldhausen’s work, then we
would now show that W• 7→ sS•Rf (|W•|, B,W∆•

• × B•, Id×b) is a model for
the assembly homology theory.

But the homotopy fibre sS•R
h
f (∆0, B, (∆0)∆•×B•, Id×b) of Lemma 2.2.2.40

for W• = ∆0 does not admit an obvious contraction. We strongly suspect that
its K–theory vanishes. This is the case if and only if our suspected model
Ω Wh?(−, B) is actually a model for Ω Wh(−, B).



108 CHAPTER 2. A NATURAL H–COBORDISM THEOREM

Remark 2.2.2.45. Let ε : | − | ◦ S• ⇒ Id denote the counit of the adjunction.
Since the functor W• 7→ sS•Rf (|W•|, B,S•|W•| × B•, ε × b) preserves weak

equivalences, the natural transformation which sends

W• 7→ sS•R
h
f (|W•|, B,S•|W•| ×B•, ε× b)

to the homology theory

W• 7→ sS•R
h
f (|W∆•

• |, B,S•|W∆•

• | ×B•, ε× b)

is a weak equivalence by [51, Lemma 3.1.2].

Borrowing from the map u : Hc
•(M) → sẼh

• (M × [0, 1]), we want to be able
to interpret bundles of h–cobordisms over |∆n| as objects of our category for
every n ∈ N. We introduce an additional simplicial direction to be able to send
an object in Hc

n(M ;Rk) to a retractive space over M × [0, 1]× |∆n| × Rk.

Definition 2.2.2.46. We have a simplicial object sS•R
h
f (W,B,S)• given by

[n] 7→ sS•R
h
f (W × |∆n|, B,S•(W × |∆n| ×B), ε).

We introduce the suspected model we are going to use to define our natural
transformation.

Definition 2.2.2.47. We set

Ω Wh?(W,B) = hocolim[n]∈∆K(Rh
f (W × |∆n|, B,S•(W × |∆n| ×B), ε)).

Lemma 2.2.2.48. By the universal property of the assembly homology theory
we obtain a map Ω Wh?(W,B) → Ω Wh(W,B). It is a weak equivalence for
B = ∗.

Proof. For B = ∗ we can use Waldhausen’s original result [51, Addendum 3.2.2].

2.2.3 The natural transformation

With the recipient of the natural transformation defined we finally turn to the
actual construction of the transformation. After generalising some results from
the connected case to the controlled situation, in particular the 2–functor Ψ in
Corollary 2.2.3.6, we can restate our task as a lifting problem. We show the
existence of a lift in Proposition 2.2.3.9.

In the connected case we worked with relative polyhedra. In contrast to that
we are now working with retractive simplicial sets. The spaces of retractions turn
out to be contractible and we use triangulations, provided by Lemma 2.2.3.11,
to construct the required lifts.

In order to see that we have constructed a natural transformation along weak
equivalences we compare with the connected case for non-negative homotopy
groups and otherwise observe that the isomorphisms to identify the negative
homotopy groups are induced by the bounded Whitehead torsion on both the
h–cobordism and the Whitehead spectrum. This is Lemma 2.2.3.12. Finally,
we obtain our main theorem as Theorem 2.2.3.13.

We remind the reader that we introduced several abbreviations in Nota-
tion 2.2.1.15 which we are going to use throughout this part of the thesis.
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We have an (∞, 1)–functor |sẼh• | : N h.c.
• (MfdPL, emb)∆ → N h.c.

• Top∆ by
Section 2.1.4. We define a controlled version sEh

• (M,B) similar to the classi-
cal case Definition 2.1.1.11, but only work with fibre bundles instead of Serre
fibrations because it makes control conditions easier to formulate.

Definition 2.2.3.1. Let (B, d) be a metric space. Let K be a compact polyhe-
dron. The simplicial category sEh

• (K,B) consists of fibre bundles of polyhedra
containing K as a bounded deformation retract and bounded simple PL maps.
Precisely:

In simplicial degree q the objects of sEhq (K,B) are diagrams

K × |∆q| ×B s //

pr

&&

E

π

��
|∆q|

together with a proper control map q̃ : E → B. Here π is a PL bounded fibre
bundle (i.e. a PL map whose underlying map of spaces is a fibre bundle such
that there is a bounded PL isomorphism to the trivial bundle) of polyhedra and
s is a PL embedding and a bounded homotopy equivalence.

A morphism f : (π, s) → (π′, s′) is a bounded simple PL map of relative
fibrations f : E → E′, i.e. we have π = f ◦ π′ and s′ = s ◦ f .

Let ι : K → K ′ be a bounded PL embedding. The construction E 7→ E∪KK ′
then induces a functor of simplicial categories ι∗ : sEh

• (K,B)→ sEh
• (K ′, B) and

further a functor sEh
• (−, B) from compact polyhedra and PL embeddings to

simplicial categories.
There is a stabilisation map sEh

• (K,B)→ sEh
• (K × [0, 1], B).

Definition 2.2.3.2. We define admissible tuples of sequences as in the connec-
tive case. An admissible retraction over a choice simplex ch ∈ Ch∆(M,N) with
respect to an admissible tuple (Mi, ιi, p̃i, im(ci))0≤i≤m−1 is a natural transfor-
mation α : u◦c ◦P (ch;B)⇒ Ω sEh

• (ch, B)◦u◦c along bounded simple retraction
maps such that every map α : u ◦ c ◦P (ch;B)(F )→ Ω sEh

• (ch, B) ◦ u ◦ c(F ) sat-
isfies the following two properties:

1. The retraction α is given by the standard simple retraction map pr (i.e. the
projection) on (Mi+1− im(ci)− τMi+1

Mi)× I×B for every 0 ≤ i ≤ m−1.

2. Upon the choice of a parametrisation of im(ci) as a collar we obtain a
tubular neighbourhood p′ : im(ci) ∪ τMi+1

Mi → Mi of Mi in Mi+1 given

by p′ = p̃i ◦ pr∂τMi+1
Mi
◦c−1
i ∪ p̃i.

We set U = ci−1(τMi
Mi−1× [0, 1))∪τMi

Mi−1. Let p′′ denote the pullback
of p′ along the subspace inclusion U ⊆Mi. Let T ′′ denote the total space
of this pulled back tubular neighbourhood.

The restriction of the retraction map is fibre-preserving with respect to p′,
i.e. pr ◦(p′× IdI) : (im(ci)∪τMi+1

Mi−T ′′)×I×B → (Mi−U)× [0, 1]×B
and the restriction of (p′ × Id[0,1]) ◦ α to the same subspace coincide.

Lemma 2.2.3.3. The map ChR∆(M,N) → Ch∆(M,N) is surjective for every
pair of PL manifolds M and N in Ch∆.



110 CHAPTER 2. A NATURAL H–COBORDISM THEOREM

Proof. The proof of Lemma 2.1.5.10 carries over.

Proposition 2.2.3.4. The forgetful map ChR∆(M,N)→ Ch∆(M,N) is a Kan
fibration.

Proof. This is analogous to Proposition 2.1.5.13.

Proposition 2.2.3.5. The forgetful map ChR∆(M,N)→ Ch∆(M,N) is a trivial
fibration.

Proof. The proof of Proposition 2.1.5.14 carries over verbatim.

Corollary 2.2.3.6. There is a simplicial 2–functor Ψ: ChR∆×[1] → scat∆cat ,
given by:

• P (−;B) : ChR∆×{0} → Ch∆ → scat∆

• Ω sEh
• (−, B) ◦ (−× [0, 1]) : ChR∆×{1} → Ch∆ → scat∆

• u ◦ c : ob ChR∆×{0 ≤ 1} → Ch∆ → scat∆

• Ψ: mor ChR∆×{0 ≤ 1} → scat∆cat which sends [(ch, α,A)] to α.

It induces an (∞, 1)–functor N h.c.
• ChR∆×[1] → N h.c.

• Top∆ upon geometric
realisation, since Top∆ is an (∞, 1)–category.

We observe that the suspected model for the Whitehead spectrum

Ω Wh?(W,B) = hocolim[n]∈∆K(Rh
f (M × |∆n|, B,S•(M × |∆n| ×B), ε))

yields a simplicially enriched functor Ω Wh?(−, B) : Ch∆ → scat∆, analogously
to sEh

• (−, B) : Ch∆ → scat∆. The last preparation we need is to define a
subspace of Wh?(K,B) which we can compare to sEh

• (K,B).

Definition 2.2.3.7. We denote by R̃h
f (M ×|∆n|, B,S•(M ×|∆n|×B), ε) a full

subcategory of Rh
f (M × |∆n|, B,S•(M × |∆n| × B), ε). An object (Y•, r, s) is

in the subcategory if its geometric realisation is an object of sEhn(|M×, B|), i.e.
(pr|∆n| ◦ε◦ |r| : |Y•|∪|S(M×|∆n|×B)|M ×|∆n|×B, |s|) is a relative bounded fibre
bundle with respect to the control map induced by ε ◦ prS(B) ◦|r| : |Y•| → B.

We write Ω|R(−, B)| = hocolim[n]∈∆ Ω|sR̃h
f (−×|∆n|, B,S•(−×|∆n|×B), ε)|

to ease up notation.

Definition 2.2.3.8. There is a natural transformation N (wC) → w•S1(C) of
functors from Waldhausen categories to simplicial sets. Together with the inclu-
sion w•S1(C)→ w•S•(C), we obtain a natural transformation of (∞, 1)–functors

Ω|R(−, B)|| ⇒ Ω Wh?(−, B)

and another one by geometric realisation

Ω|R(−, B)| ⇒ | sEh
• (−, B)|.

The next proposition yields the desired natural transformation.
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Proposition 2.2.3.9. The lifting problem in (∞, 1)–functors from N h.c.
• ChR∆

to N h.c.
• Top∆

Ω|R(−× [0, 1], B)|

��
P (−;B)

Ψ//

ΨD
66

Ω| sEh
• (−× [0, 1], B)|

admits a lift which factors, for every PL manifold M ∈ N h.c.
0 ChR∆, as a com-

position uD ◦ c+ : P (M ;B) → ΩHc(M ;Rk) → Ω|R(M × [0, 1], B)| over the
classifying map c+ : P (M ;B)→ ΩHc(M ;Rk).

Before we show this result we give a criterion for triangulations of locally
finite polyhedra. Essentially, we exhaust these polyhedra with compact sub-
spaces and use relative triangulation results for pairs of compact polyhedra to
construct a triangulation of the full space.

Definition 2.2.3.10. Let E•(W,B) ⊆ R(W,B, T•, t) denote the subcategory
with objects (Y, r, s), where Y ⊆ R∞ is a piecewise linearly retractive poly-
hedron over W × B, and piecewise linear maps compatible with sections and
retractions as morphisms.

Lemma 2.2.3.11. Let k ∈ N. Let E : [k] → E•(W,B) denote a functor and
W ′ ⊆W a sub-polyhedron.

Let E′ : [k]→ E•(W ′, B) denote a sub-functor of E, i.e. a functor, such that
E′(i) ⊆ E(i) for every 0 ≤ i ≤ k and every morphism in [k] is mapped to the
restriction of its image under E.

Let (T ′•, t
′) be a triangulation of W ′×B and (TE′ , tE′) a triangulation of E′

over T ′•, i.e. a functor TE′ : [k]→ R(W ′, B, T ′•, t
′) and a natural transformation

tE′ : | − | ◦ TE′ ⇒ E′ along isomorphisms.
Then there is a triangulation (T•, t) of W×B and a triangulation (TE , tE) of

E over T• such that (T•, t) restricts to a subdivision of (T ′•, t
′) over W ′×B and

(TE(i), tE(i)) restricts to a subdivision of (TE′(i), tE′(i)) for every 0 ≤ i ≤ k.
Moreover, if we have (E,E′) ∼= (E′ × |∆1| ∪E′×{1} E,E′ × {0}), a natural

isomorphism of pairs, then we may assume that (T•, t) and (TE(i), tE(i)) restrict
to (T ′•, t

′) and (TE′(i), tE′(i)), respectively.

Proof. If B is a compact polyhedron this follows from [27, Theorem 1.11], com-
pare [31, Lemma 3.4.8]. We note that our polyhedra inherit from R∞ a preferred
PL structure, see also [43].

For the general case we consider the sequence of polyhedra Bn for n ∈ N
with Bn = B ∩ [−n, n]∞. We have B =

⋃
n∈NBn. Let Kn denote the closure of

Bn+1 −Bn.
We show by induction that there is a triangulation of E|Bn+1

which leaves
the triangulation of E|Bn−1

unchanged and restricts to a triangulation of E|∂Bn
for every n ∈ N.

We use the given triangulation T (n) of E|Bn , which leaves E|Bn−2
un-

changed, on E|Bn−1
and choose a triangulation TK(n) of E|Kn via the com-

pact case such that it restricts to a triangulation of both E|∂Bn+1
and E|∂Bn .

Moreover the restriction of TK(n) to E|∂Bn subdivides the restriction of T (n).
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All that is left is to triangulate E|Kn−1
relative to the fixed triangulations

on Kn−1 ∩Bn−1 and Kn ∩Bn. We note that T (n) is compatible with the fixed
triangulation on Kn−1. The following argument is similar to the one after the
proof of [31, Lemma 3.4.8].

Let Ei(n) denote the polyhedron E|Kn−1
(i). Its retraction and section maps

are ri(n) and si(n), respectively.

Consider Ek(n) with the given triangulation T (n). Let Ek(n,K) ⊆ Ek(n)
denote the sub-polyhedron generated by the simplices which have non-empty in-
tersection with rk(n)−1(Kn) but are not fully contained in rk(n)−1(Kn). We use
induction over the simplicial degree of the simplices to find a subdivision of the
triangulation of each simplex which extends the triangulation on its boundary.

A triangulation of the desired form exists by starring each simplex, i.e. we
form the cone over the triangulation of its boundary with cone point some point
in the interior of the simplex, see [31, Definition 3.2.11]. The new cone vertex
is always numbered as the last vertex of each simplex.

Now we proceed by induction over the elements of [k], starting with k and
descending. Since every morphism is compatible with the retraction maps we
have Ei−1(n,K) = E|Bn(i − 1 ≤ i)−1(Ei(n,K)). We can choose each cone
point for the starring of a simplex in Ei−1(n,K) such that their image under
E|Bn(i− 1 ≤ i) is a cone point in (Ei(n,K)), because for every surjective map
|∆p| → |∆q| the interior of |∆p| maps onto the interior of |∆q|.

For the addendum we use the subdividing triangulation on E = E∪E′×{1}
and the given triangulation on E′ × {0}. One obtains the desired triangulation
of E′ × |∆1| by inductively starring simplices, analogously to the argument
following the proof of [31, Lemma 3.4.8] (and similar to the above argument).

Proof of Proposition 2.2.3.9. We use induction over the simplicial degree of
N h.c.
• ChR∆. Let G : S(∆k) → ChR∆ be a k–simplex. We are going to refer

to restrictions of Ψ and G by the same notation. To extend our functor to G
we have to solve lifting problems

S(∆k × ∂∆1 ∪ ∂∆k ×∆1)
ΨD(∂G) //

��

��

Top∆

Id

��
S(∆k ×∆1)

ΨD(G)

44

Ψ(G) // Top∆

where the lower triangle commutes up to natural transformation. By the usual
reduction argument this is equivalent to a lifting problem on the largest mapping
spaces

S(∂(∆k ×∆1))((0, 0), (k, 1)) //
��

��

Top∆(P (G(0);B),Ω|R(G(k)× [0, 1], B)|)

��
S(∆k ×∆1)((0, 0), (k, 1))

ΨD(G)
33

Ψ(G) // Top∆(P (G(0);B),Ω| sEh
• (G(k)× [0, 1], B)|)

with the upper horizontal map given by ΨD(G× {0, 1}) ∪ΨD(∂G×∆1).

We can reduce further by the mapping space adjunction and induction over
the simplicial degree of P•(G(0);B). Let F ∈ Pn(G(0);B) be an n–simplex.
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We denote |∆k ×∆1 ×∆n| by Q and its boundary

|∆k ×∆1 × ∂∆n ∪∆k × ∂∆1 ×∆n ∪ ∂∆k ×∆1 ×∆n|

by ∂Q. We also observe that they satisfy (Q, ∂Q) ∼= (Q∪∂Q×{1}∂Q×|∆1|, ∂Q×
{0}). Now we have to find a lift

∂Q //
��

��

ΩR(G(k)× [0, 1], B)

��
Q

ΨD(G)(F )

44

Ψ(G)(F )
// Ω| sEh

• (G(k)× [0, 1], B)|

with the upper horizontal map given by

ΨD(G× [1])(∂F ) ∪ΨD(G× {0, 1})(F ) ∪ΨD(∂G×∆1)(F ).

We first consider the case k = 0. We have to find a map

uD ◦ c : P (G(0), B)→ Ω|R(G(0)× [0, 1], B)|

which lifts u ◦ c : P (G(0), B)→ Ω| sEh
• (G(0)× [0, 1], B)|.

By definition of u ◦ c as the geometric realisation of a functor of simplicial
categories it is enough to find a triangulation of u ◦ c(F ), i.e. a triangulation of
the collar G(0) × [0, 1] × |∆n| × B → u ◦ c(F ), together with a retraction map
u ◦ c(F )→ S•(G(0)× [0, 1]× |∆n| ×B), both relative to the boundary.

By adjunction, the desired retraction is equivalent to a retraction map
|u ◦ c(F )| → G(0) × [0, 1] × |∆n| × B which restricts to a given retraction
|u ◦ c(∂F )| → G(0)× [0, 1]×|∂∆n|×B. The retraction exists by Lemma 2.2.1.6.

The retractive fibre bundle of h–cobordisms admits a triangulation relative
to the triangulation of the boundary by Lemma 2.2.3.11.

Now we construct the lift in the case k > 0. By definition of Ψ as a 2–functor
on simplicial categories enriched over simplicial categories it is enough to find
the following two diagrams: We set N(G,B) = G(k) × [0, 1] × |∆k ×∆n| × B.
First, we need a simple map

αD : uD ◦ c(P (G;B)(F ))→ ΩR(G,B)(uD ◦ c(F ))

relative to

uD ◦ c(P (∂G;B)(F ))→ ΩR(∂G,B)(uD ◦ c(F ))

and

uD ◦ c(P (G;B)(∂F ))→ ΩR(G,B)(uD ◦ c(∂F ))

such that its realisation

|uD ◦ c(P (G;B)(F ))| ∪|S(N(G,B))| N(G,B)

��
|Ω sEh

• (G,B)(uD ◦ c(F ))| ∪|S(N(G,B))| N(G,B)
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is the simple retraction map

Ψ(G× [1])(F ) : u ◦ c(P (G;B)(F ))→ Ω sEh
• (G,B)(u ◦ c(F )).

Here, the simplicial loop category ΩR(G,B) is defined analogously to the sim-
plicial diagram category Ω sẼh

• given right before Definition 2.1.5.7.
Second, we require a zig-zag

uD ◦ c(P (G;B)(F ))

��
(uD ◦ c(P (G;B)(F )))×∆1

uD ◦ c(P (G;B)(F ))

OO

where the upper line is equipped with a retraction map which makes αD into
a morphism of retractive simplicial sets over S•(G(k)× [0, 1]× |∆k ×∆n| ×B)
while the lower line carries the retraction map obtained from uD ◦ c.

To achieve this we have to take care of retractions and the simplicial struc-
ture. For the former we again apply the adjunction between singular simplicial
sets and geometric realisation and use Lemma 2.2.1.6 to obtain the desired
retractions.

For the existence of a map of simplicial sets, which lifts the given piecewise
linear admissible retraction map, we once again defer to the general result on
the existence of triangulations given in Lemma 2.2.3.11.

We also have to see that our construction is compatible with the structure
maps of the spectra. Recall that the k–th structure map of the pseudoisotopy
spectrum is induced by the homotopy Cartesian square

P (M ;Rk) //

��

P (M ;Rk × R≥0)

��
P (M ;Rk × R≤0) // P (M ;Rk+1)

where each map is a composition of the map P (M ;Rk)→ P (M× [0, 1];Rk) and
a map of the form i∗ : P (M × [0, 1];Rk)→ P (M ;Rk×R≥0) which extends with
the identity.

Similarly, the k–th structure map of the suspected loops of the Whitehead
spectrum is induced by the homotopy Cartesian square

Ω Wh?(M,Rk) //

��

Ω Wh?(M,Rk × R≥0)

��
Ω Wh?(M,Rk × R≤0) // Ω Wh?(M,Rk+1)

where each map is a composition of Ω Wh?(M,Rk) → Ω Wh?(M × [0, 1],Rk)
and a map of the form i∗ : Ω Wh?(M × [0, 1],Rk)→ Ω Wh?(M,Rk×R≥0) which
is induced by pushout along some inclusion [0, 1] ⊆ R≥0.
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Since the first map of each of these compositions is part of the functorial
structure of P (−;Rk) : N h.c.

• Ch∆ → Top∆, respectively Ω Wh?(−,Rk), they are
certainly compatible with our natural transformation.

For the latter, consider some F ∈ P (M × [0, 1];Rk). Then we can use ad-
missible retractions u ◦ c(i∗(F ))→ i∗(u ◦ c(F )) which are given by the canonical
retraction map on the trivial bundle over R≥0−[0, 1). We obtain a commutative
square

N h.c.
• Ch∆

Ψ(D,Rk)
//

��

N h.c.
• ChRk,R

∆

��
N h.c.
• Ch

Rk×R≥0,R
∆

Ψ
(D,Rk×R≥0)

// N h.c.
• Top∆

and with respect to these choices the level wise natural transformations of
(∞, 1)–functors commute.

By the universal property of the assembly homology theory we obtain a
commutative diagram of (∞, 1)–functors into N h.c.

• Spectra∆

Ω Wh?,−∞ //

��

Ω Wh−∞

��
h //

��

(−)+ ∧A(∗)

��
A // A

where we made every object into an (∞, 1)–functor analogously to sEh
• (−, B).

Also, h denotes the homology theory of Proposition 2.2.2.42 which makes the
left hand side into a homotopy fibre sequence. In particular, we obtain a natural
transformation µ : Ω Wh?,−∞ ⇒ Ω Wh−∞.

The last result we need is to show that the map µ◦uD ◦c+ is actually a weak
equivalence. Basically, this result is already contained within the literature and
we only have to assemble the pieces.

Lemma 2.2.3.12. The map µ ◦ uD ◦ c : P(M) → Ω Wh−∞(M) of spectra in-
duces an isomorphism on stable homotopy groups.

Proof. We only have to show that µ ◦ uD : H(M) → Ω Wh−∞(M) is a π∗–
isomorphism by Lemma 2.2.1.23. Furthermore, it is enough to consider uD for
non-negative homotopy groups, since µ is a weak equivalence in the connected
case by Lemma 2.2.2.48. We first note that both spectra are Ω–spectra by
Proposition 2.2.1.24 and [46, p. 168], respectively.

For non-negative homotopy groups we note that our triangulation lemma
yields a map t : H•(M)→ colimn∈N sD̃h

•(X•(n)) where X•(n) is a triangulation
of M × [0, 1]× (D1)n such that r ◦ t = u holds, so t is a weak equivalence.

The map H(M)→ hocolim[n]∈∆K(Rh
f (M×|∆n|, ∗,S•(M×|∆n|), ε)) factors

over hocolim[n]∈∆ Ω|N•(Rh
f (M×|∆n|, ∗,S•(M×|∆n|), ε))| which we abbreviate

to hocolim[n]∈∆ Ω|N•(Rh
f (M(n)))|. It is not hard to define analogues of the
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remainder of Waldhausen’s zig-zag recalled in Theorem 2.1.1.2 such that the
square

H(M) //

��

colimn∈N | sD̃h
•(X•(n))|

��
hocolim[n]∈∆ Ω|N•(Rh

f (M(n)))| // colimn∈N Ω|N•(Ch• (X•(n)))|

commutes. Due to the connected case this is enough.
For non-positive homotopy groups we note that there is a commutative di-

agram

π0(H(M ;Rk))
(µ◦uD)∗ //

τ

��

π0(Ω Wh(M × [0, 1],Rk))

λ
��

K̃−k+1(Zπ1(M))
∼= // K̃−k+1(Zπ1(M × I))

where the map λ : π0(WhPL(M × I,Rk)) → K̃−k+1(Zπ1(M)) is the induced
linearisation map. It is defined as follows. The linearisation defined by Vogell
[46] is a natural transformation λ : A → K ◦ Zπ1. By the universal property
of assembly, we obtain an induced linearisation on assembly and thus on the
homotopy fibre, i.e. on the loops of the Whitehead spectrum.

To see that the diagram commutes we note that sending a bounded retrac-
tive CW-complex to its relative cellular chain complex describes a functor on
Rf (M ;Rk). As was pointed out by John Klein [11, p. 43] this functor is not
exact, but close enough to obtain an induced map regardless if one works with
Thomason’s variation of the S•–construction defined at the end of [51, § 1.3].
Using this model of the linearisation map, checking commutativity is easy.

Since Vogell’s linearisation induces an isomorphism on negative homotopy
groups [46], the same holds for the induced linearisation. By Corollary 2.2.1.30,
the map τ is an isomorphism. Therefore, the induced map (uD ◦ c)∗ is an
isomorphism.

Theorem 2.2.3.13. Let Cat = Top,PL. There is a natural weak equivalence
of (∞, 1)–functors

Ψ: PCat ⇒ Ω2 WhCat,−∞

from the (∞, 1)–functor PCat : N h.c.
• Top∆ → N h.c.

• Spectra∆ of pseudoisotopies
to the twofold loops of the (∞, 1)–functor given by the Whitehead spectrum.

In particular, there is a zig-zag of natural weak equivalences between the
strict functors PCat : Top→ Spectra and Ω2 WhCat,−∞.

Proof. The argument is, for the most part, analogous to the connective case. We
use Proposition 2.2.3.9 and the natural transformations preceding it to obtain a
natural transformation Ψ−∞ : P ⇒ Ω Wh−∞ of (∞, 1)–functors from N h.c.

• Ch∆

to Spectra∆.
By Lemma 2.2.3.12 it is a natural transformation along weak equivalences.

The zig-zag of strict natural transformations follows from Theorem 1.2.1.3, since
all spectra involved are cofibrant and fibrant in the model structure on prespec-
tra, see [5, Theorem 2.3].
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2.2.4 The smooth case

We follow [31, Proof of the DIFF case of Theorem 0.1, and Theorem 0.3] in
which the stable parametrised h–cobordism theorem in the smooth category
is shown. We could have given a similar statement in the connective setting,
but doing so here avoids issues concerning π0. The connective case follows by
comparison with the non-connective case.

Remark 2.2.4.1. In the following arguments we use results formulated for
smooth manifolds with boundary as if they applied to manifolds with corners.
Whenever this is the case one can use Lemma 1.2.2.1 to generalise. The key
point is that π∗P sends homotopy equivalences of spaces to isomorphisms.

Theorem 2.2.4.2. Let i : PDiff → PTop be a natural transformation which ex-
tends the object-wise inclusion PDiff(X) → PTop(X), see Corollary 2.2.1.18,
and let WhDiff,−∞ →WhTop,−∞ be a natural transformation (unique up to con-
tractible homotopy) induced by the universal property of the assembly homology
theory X 7→ Σ∞X+ ∧A(∗).

There is a natural equivalence of (∞, 1)–functors PDiff → Ω2 WhDiff,−∞ such
that the square

PDiff

i
��

// Ω2 WhDiff,−∞

��
PTop µ◦ΨD // Ω2 WhTop,−∞

commutes up to homotopy.

Proof. We only consider the restrictions of PDiff and WhDiff to smooth man-
ifolds with corners since both functors coincide with the homotopy left Kan
extensions of their restrictions.

Via Goodwillie Calculus for quasicategories, see [34, Chapter 7], we obtain
a commutative diagram

hofib(i) //

'
��

PDiff i //

��

PTop

��
hofib(iS) // PS,Diff ' ∗ iS // PS,Top.

We have hofib(F (a))S ' hofib(FS(a)) for every natural transformation
a : F → G. Moreover, for any functor F there is a natural transformation
F → FS , which is an equivalence if F is homological.

In the connective case the fibre hofib(i) is homological with Top /O as coef-
ficients by [6, §5]. Further, the negative homotopy groups of PDiff and PTop co-
incide by [53, Corollary 5.3]. Since the negative homotopy groups of Top /O are
trivial, this is enough to show that hofib(i) is homological in the non-connective
case as well.

The functor PS,Diff is contractible by Morlet’s disjunction lemma [7, §1]
as explained in [23, Lemma 5.4]. The argument given there also implies that
PS,Diff is contractible as a non-connective spectrum. Hence, the homotopy fibre
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of PTop → PS,Top is given by PDiff . Using the topological case and yet again
Goodwillie Calculus we obtain a commutative diagram

Ω2 fib
' //

��

hofib //

��

∗

��
Ω2A //

��

PTop //

��

ΣΩ2h(−, A(∗))

��
Ω2AS // PS,Top // ΣΩ2h(−, A(∗))

where fib denotes the homotopy fibre of A 7→ AS . One last application of
Goodwillie Calculus yields the commutative diagram

∗ //

��

Ω2 fib //

��

Ω2 WhDiff,−∞

��
Ω2h(−,Σ∞S0) //

��

Ω2A //

��

Ω2 WhDiff,−∞

��
Ω2h(−,Σ∞S0) // Ω2AS // Ω2 WhS,Diff,−∞ .

The composition h(−,Σ∞S0)→ A→ AS is a weak equivalence, because it is an
isomorphism on non-negative homotopy groups by [52] and AS is a connective
homology theory, since A preserves n–connected maps [49, Proposition 2.3].
Hence WhS,Diff,−∞ is contractible.

Since the space of homotopy fibres is a contractible Kan-complex we obtain
the natural transformation via the obstruction theory of Section 1.2.1. This
gives the result in the case of a smooth manifold.



Conclusion and Outlook

The problems addressed throughout this thesis are formulated in the language
of algebraic topology while concerning objects which are geometric in nature.

We have constructed homotopy coherent diagrams in the language of qua-
sicategories to reduce these problems to purely geometric questions. Although
their solutions are often stated in fairly algebraic terms, the underlying key ar-
guments are anything but. In fact, the steps the author deems most important
are best described as part of point set topology. In every case, the difficulty
arises from the fact that we have to find a “parametrised” or “coherent” version
of an otherwise fairly simple task.

In the first chapter we constructed a functor of smooth pseudoisotopies by
first passing to a category of choices and onwards to spectra. The first part is
explained in Section 1.2.3, Section 1.2.4 and Section 1.2.5, all of which are of the
following form: First, we use the tautological obstruction theory of Section 1.2.1
to reduce to certain extension problems. Then we use a well-known geometric
fact to show that the desired choices can be made.

For the second part, we use a similar approach. However, the underly-
ing geometry is less common and thus requires a careful argument. In Sec-
tion 1.4 we again reduce to a geometric question while the geometry is taken
care of in Section 1.3. From the author’s perspective, the main geometric result
Lemma 1.3.0.10 and the definition of the map Φ in Definition 1.4.1.11 contain
the two crucial arguments of the proof: The composition of transfers always
results in “level sets”, which are in a coherent sense given by the lower half of
the sphere, and we can ignore the differences in coordinates for the level sets
by interpreting them as nicely trivialised tubular neighbourhoods which form a
contractible subspace.

Essentially, the maps Φ provide us with explicit homotopies which correct
the failure of strict functoriality. Given those, there are various ways to actually
obtain a functor, but finding conceptually different homotopies does not seem
easy.

In the second chapter we gave a zig-zag of natural weak equivalences be-
tween pseudoisotopies and the Whitehead spectrum. In the connective case
we again reduce to a geometric question, this time by 2– and (∞, 1)–functorial
methods. In the author’s opinion the key steps are the existence of admissible
retractions by Lemma 2.1.5.10 and the fact that they form a contractible space
by Lemma 2.1.5.15. The contraction relies only on an Alexander trick and is
thus far less elaborate than the construction of Φ in the first chapter.

In the case of spectra the argument becomes a little more complicated as it
is not known whether a category of bundles of bounded polyhedra is a model
for the one fold loops of the Whitehead spectrum. Our argument, then, has
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two steps. First we state that: “The construction given in the connected case
admits an obvious analogue.” which is, indeed, quite easy to check. We need
some preparations to precisely state our second step, but we really only want to
say that: “We can triangulate admissible retractions in a compatible fashion.”
The relevant tool to do so is Lemma 2.2.3.11. Since this is (almost) a stan-
dard result in piecewise linear topology, the actual construction of the natural
transformation is quite straightforward.

As we have explained in the introduction, the whole purpose of the endeavour
into pseudoisotopies is the eventual computation of the homotopy type of the
automorphism spaces. Hence it seems feasible to turn one’s attention to the
comparison between the different Z/2–actions.

A review of the literature reveals that a connection has already been estab-
lished - however only on the level of homotopy groups. We summarize it here
in some detail.

The Z/2–action to be studied is introduced in [53] as an action on the spec-
trum with Ω(Topb(M × Rn+1)/Topb(M × Rn)) in level n ∈ N. The level-wise
action is compared to a Z/2–action on the unstable pseudoisotopy space via a
weak equivalence [53, Remark 1.9]. We expect that the action on pseudoiso-
topies can be extended as a homotopy coherent Z/2–action to the stable space
of pseudoisotopies. However, this is a non-trivial issue, as can be seen from the
fact that Hatcher [23, p. 16] has shown that the stabilisation map anti-commutes
with the involution.

To pass from the geometric action on pseudoisotopies to an action on A–
theory, we note that this work has already been undertaken in [45], however only
on the level of homotopy groups. A geometric action on h–cobordism spaces is
introduced, which “turns the cylinder upside down”. It is then shown that this
action sends an h–cobordism, understood as a CW–complex, to its Whitehead
dual - the latter being unique only up to homotopy.

Now, an involution on a category of suitable retractive CW–complexes is
introduced which sends every CW–complex to its Whitehead dual and descends
to an involution on A–theory. To the author’s understanding, the main result
of [45] is stated in terms of homotopy groups, because the geometric Z/2–action
on h–cobordism spaces is only shown to be compatible with the involution on
A–theory up to homotopy.

However, studying the argument it seems plausible that a generalisation to
a homotopy coherent framework is possible, i.e. the Z/2–actions coincide up to
coherent homotopy, instead of “just” homotopy.

Finally, it was shown in [28] and [29] that the Z/2–action onA–theory defined
in [45] is indeed compatible with the Bass-Heller-Swan decomposition in the
best sense, i.e. it bijectively maps the positive and negative Nil-terms onto each
other and restricts to an involution on each of the other two summands of the
decomposition. This is enough for the computational application in [13], i.e.
were these results shown, we would obtain the following computation:

Conjecture. Let M be a smoothable aspherical closed manifold of dimension
≥ 10, whose fundamental group π is hyperbolic.

Then we obtain for 1 ≤ n ≤ min{(dimM − 7)/2, (dimM − 4)/3} isomor-
phisms

πn(Top(M)) ∼= πn+2

(∨
C

N+ WhTop(BC)
)
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and an exact sequence

1→
⊕
k∈N

Z/2Z→ π0(Top(M))→ Out(π)→ 1,

where C ranges over the conjugacy classes of maximal infinite cyclic subgroups
of π and Out(π) denotes the outer automorphisms.

Finally, N+ WhTop(BC) denotes one of the Nil-terms of the Bass-Heller-
Swan decomposition of WhTop(BC).

Conditional proof. If the Z/2–actions are compatible, this follows from [13, The-
orem 1.3], stated as Theorem 0.0.0.6 in the introduction, the computation of
homotopy groups of the Whitehead spectrum in low degrees by Hesselholt [25]
and the fact that all homotopy groups of WhTop(∗) vanish.

To a geometrically minded reader, this should seem unsatisfying: Although
we have described the group, it is not at all clear what the actual homeomor-
phisms look like. Since we understand the pseudoisotopy functor quite well, we
can easily reduce the question to the case of a single circle (note that for this
discussion we operate on the level of homotopy groups - hence the results of this
thesis are not really required).

In the case of the circle, Hatcher [23] provided an example, due to Farrell,
of a geometric representative of a non-trivial element. A slightly more detailed
account of the argument can be found on MathOverflow [21]. Also, the work
by Hatcher and Wagoner, starting with [24], might provide insights into explicit
geometric constructions.

Closely related to this question is the rich structure of topological cyclic ho-
mology. The calculations of Hesselholt [25] rely heavily on the various operations
available in topological cyclic homology, and while some admit a fairly straight-
forward counterpart in pseudoisotopies, not all of them are easily translated.
In the case of a circle, all non-trivial classes are generated by one “fundamen-
tal class” via application of restriction, Frobenius, Verschiebung and Connes’
operator.

With the program initiated by Weiss and Williams ongoing, the new avenues
established by Galatius and Randall-Williams, and the progress on the algebraic
side of the story, the prospects for further research on automorphism spaces look
promising. Moreover, the results established on the Farrell-Jones conjecture for
pseudoisotopies in conjunction with the explicit calculations on the circle make
it seem as if a complete understanding of isotopy classes of homeomorphisms
of hyperbolic high-dimensional manifolds might be attainable in the not too
distant future.
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[29] Thomas Hüttemann, John R. Klein, Wolrad Vogell, Friedhelm Waldhausen,
and Bruce Williams. The “fundamental theorem” for the algebraic K–
theory of spaces: II - the canonical involution. Journal of Pure and Applied
Algebra, 167:53–82, 2002.

[30] Kyoshi Igusa. The stability theorem for smooth pseudoisotopies. K-Theory,
2(1-2), 1988.

[31] Bjørn Jahren, John Rognes, and Friedhelm Waldhausen. Spaces of PL
Manifolds and Categories of Simple Maps, volume 186 of Annals of Math-
ematics Studies. Princeton University Press, Princeton, NJ, 2013.

[32] Alexander Kupers. Some finiteness results for groups of automorphisms of
manifolds. arXiv:1612.09475, December 2016.

[33] Jacob Lurie. Higher topos theory, volume 170 of Annals of Mathematics
Studies. Princeton University Press, Princeton, NJ, 2009.

[34] Jacob Lurie. Higher Algebra. http://www.math.harvard.edu/~lurie/

papers/HA.pdf, March 2016.

[35] John W. Milnor. On spaces having the homotopy type of a cw-complex.
Trans. Amer. Math. Soc., 90:272–280, 1959.

[36] Erik Pedersen. K−i–invariants of chain complexes. In Topology, Proceedings
Leningrad 1982, volume 1060 of Lecture Notes in Mathematics, pages 174–
186. Springer Verlag, 1984.

[37] Erik Pedersen. On the bounded and thin h–cobordism theorem parame-
terized by Rk. In Transformation Groups, Poznan 1985, volume 1217 of
Lecture Notes in Mathematics, pages 306–320. Springer Verlag, 1986.

[38] Frank Quinn. Ends of maps, II. Invent. Math., 68(3):353–424, October
1982.

[39] Oscar Randal-Williams. An upper bound for the pseudoisotopy stable
range. to appear in Mathematische Annalen, November 2015.

[40] Colin P. Rourke and Brian J. Sanderson. Block Bundles i. Ann. of Math.,
87:1–28, 1968.

[41] Colin P. Rourke and Brian J. Sanderson. Introduction to Piecewise-Linear
Topology, volume 69 of Springer Study Edition. Springer Berlinidelberg,
1982.

[42] Stephen Smale. On the structure of manifolds. Amer. J. Math., 84:387–399,
1962.

[43] John Stallings. The piecewise-linear structure of euclidean space. Mathe-
matical Proceedings of the Cambridge Philosophical Society, 58(3):481–488,
1962.

[44] Mark Ullmann and Christoph Winges. On the Farrell-Jones Conjecture for
algebraic K-theory of spaces: the Farrell-Hsiang method. https://arxiv.
org/abs/1509.07363, 2015.



126 BIBLIOGRAPHY

[45] Wolrad Vogell. The canonical involution on the algebraic K–theory of
spaces. Lecture Notes in Mathematics, 1051:156–172, 1984.

[46] Wolrad Vogell. Algebraic K–theory of spaces, with bounded control. Acta
Mathematica, 165(1):161–187, 1990.

[47] Wolrad Vogell. Boundedly controlled algebraic K–theory of spaces and
its linear counterparts. Journal of Pure and Applied Algebra, 76:193–224,
1991.

[48] Rainer M. Vogt. Homotopy limits and colimits. Mathematische Zeitschrift,
134(1):11–52, March 1973.

[49] Friedhelm Waldhausen. Algebraic K-theory of topological spaces. I. In
Richard James Milgram, editor, Algebraic and geometric topology: proceed-
ings of the Symposium in Pure Mathematics of the American Mathematical
Society, held at Stanford University, Stanford, California, August 2 - 21,
1976, volume 1, pages 35–60. American Mathematical Society, 1978.

[50] Friedhelm Waldhausen. Algebraic K-theory of spaces: a manifold approach.
In Richard M. Kane, Stanley M. Kochman, Paul Selick, and Victor P.
Snaith, editors, Current trends in algebraic topology, volume 1, pages 141–
184. American Mathematical Society, 1982.

[51] Friedhelm Waldhausen. Algebraic K-theory of spaces. In Andrew Ranicki,
Norman Levitt, and Frank Quinn, editors, Algebraic and geometric topol-
ogy: proceedings of a conference held at Rutgers Univ., New Brunswick,
USA, July 6 - 13, 1983, pages 318–419. Springer, 1985.

[52] Friedhelm Waldhausen. Algebraic K–theory of spaces, concordance, and
stable homotoy theory. In Algebraic Topology and algebraic K–theory, vol-
ume 113 of Ann. of Math. Stud., pages 392–417. Princeton Univ. Press,
1987.

[53] Michael Weiss and Bruce Williams. Automorphisms of manifolds and al-
gebraic K–theory: I. K–Theory, 1:575–626, 1988.

[54] Michael Weiss and Bruce Williams. Assembly. In Ferry-Ranicki-Rosenberg,
editor, Proceedings of 1993 Oberwolfach conf. on Novikov Conjectures, In-
dex Theorems and Rigidity, volume 2, pages 353–364. Cambridge University
Press, 1993.


