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Für Anne-Sophie,
Naïm und Maya

"Here comes the sun
Aren’t you glad to see it

I say, It’s all right"

Nina Simone, 1971





Abstract

The energy transition taking place in Germany encourages a large scale penetration of weather-
dependent energy sources into the power grid. The grid integration of intermittent sources increases
the need for balancing demand and supply in order to ensure the reliability and safety of the power
system. In this context, forecasts are essential for the cost-effective management of reserves and
trading activities. Solar and wind power forecasts with a time horizon of few hours up to several
days are usually based on outputs of numerical weather prediction systems routinely provided by
weather centres. At the German Weather Service, the high-resolution ensemble prediction system
COSMO-DE-EPS is called to support renewable energy applications which require dealing with the
intermittency and uncertainty in the energy production. In this study, ensemble forecast verification
and post-processing are addressed focusing on global radiation, which is the main weather variable
affecting solar power production.

First, the ensemble forecast performances are assessed from the user’s and developer’s perspectives.
New tools are proposed for the verification of quantile forecasts which are probabilistic products
appropriate for many renewable energy applications. Forecast discrimination ability and value are
assessed considering users with different aversions to under- and over-forecasting. Moreover, a new
measure is introduced in order to summarize the added value of the ensemble approach with respect
to a single run approach. The new skill score is conditioned on calibration, that is, statistical consis-
tency between the distributional forecasts and observations. Second, an enhanced framework for the
post-processing of ensemble forecasts is proposed. The aim is to provide the users with calibrated
consistent scenarios which are required for the optimization of complex decision-making processes.
Therefore, a two-step procedure is developed starting with the marginal calibration of the forecasts
based on quantile regression and the selection of appropriate predictors. Next, consistent scenarios
are generated using a dual ensemble copula coupling approach which combines information from
past error statistics and the dependence structure in the original ensemble forecast.
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1. Introduction

Renewable energies are the cornerstone of the energy transition taking place in Germany. Guided
by motivations rooted in ecology, geopolitics, and socio-economics, the Energiewende aims at more
sustainability in a broad sense. Evidence of anthropogenic climate changes has led to the develop-
ment of effective decarbonized energy supplies, while geopolitical instability concurrently encou-
rages measures to ensure energy security by reducing the dependency on energy imports. Taking
into consideration the risk associated with nuclear power and the societal anxiety generated by the
disaster of Fukushima, the energy transition is also seen as a chance to stimulate scientific and tech-
nical innovations.

During the last two decades, solar and wind capacities installed in Germany have increased expo-
nentially. In 2014, renewable energy as a whole reached ∼31% of the net electricity consumption.
In particular, photovoltaic (PV) generated power covered on average ∼7% of the needs1, while on
sunny weekends, PV power could at times cover up to half of the momentary electricity demand
(Wirth, 2015). The variability in electricity production and therefore the ability of renewable energy
supplies to meet the demand is directly related to their weather-dependent nature. Figure 1.1 illus-
trates the power production from conventional and renewable energy sources over two consecutive
days. Wind and solar productions exhibit a variability related to the concomitant weather conditions.
A fundamental characteristic of renewables is that this variability cannot be known with certainty be-
forehand.

With a large scale penetration of renewable energies, the electric power system has evolved in order
to account for intermittency and stochasticity in power generation (Boyle, 2008; Gross et al., 2008;
Morales et al., 2014; Troccoli et al., 2014). In the front line, transmission and distribution system ope-
rators, which are responsible for the safety and stability of the power grid, have to ensure that the
total capacity available on the grid always meets the demand. The continuous balancing of demand
and supply is facilitated by a greater flexibility of the system. Scheduling and dispatch of power units
are coordinated and balancing reserves help to deal with unexpected fluctuations. With regards to
the energy pricing, the electricity market is influenced by renewable outputs since power units from
renewable sources are usually scheduled before conventional ones. Technical innovations are also
expected to help face the challenge of variability with, for example, the introduction of storage ca-
pacities or the increase of the demand-side flexibility.

In any case, information about the expected power production is required for an optimal integra-
tion of intermittent energy sources. In terms of reserve management, forecasts help reduce the need
for expensive regulating reserves, thereby reducing costs related to balancing the system (Bird et al.,
2013). Forecasts of power ramps, that is abrupt changes in power production, are of particular rele-
vance for the dimensioning of backup energy sources. In terms of energy market operations, power
production is contractually committed on the day-ahead market and can be adjusted in the intraday

1 thanks to over 1.5 million power plants distributed over the country
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Figure 1.1: Conventional power production (dark grey), wind power production (blue) and solar
production (yellow) on July 9 and 10, 20152.

markets. Remaining imbalances are treated on the real-time market using balancing power, which
has much higher costs than regular trading.

Forecasts of power production at various temporal and spatial scales are therefore essential for an
efficient and cost-effective integration of intermittent sources in the power grid. Moreover, the li-
mited predictability of outputs from solar and wind sources favours a probabilistic approach targeted
at the optimisation of decision-making under uncertainty. Numerous methods have been developed
for the prediction of wind and solar power productions (Costa et al., 2008; Pelland et al., 2013). Wind
forecasting has a longer tradition than solar forecasting, which has gathered attention more recently,
but from the mathematical and modelling point of view, both share a high degree of similarity.

Focusing on solar forecasting, a common classification distinguishes between physical, statistical,
and hybrid methods depending on whether the forecast is based on a solar/PV model, historical
data, or the combination of both (Saint-Drenan et al., 2015). Typically, a physical PV model describes
solar power production based on the characteristics of the PV modules and prediction of solar irra-
diance at ground and ambient temperature. More generally, solar radiation is the essential compo-
nent in most PV power prediction systems and the type of auxiliary data used as primary source
of information characterize the range of applications (Lorenz et al., 2014). Intra-hour forecasts of so-
lar radiation can be generated by processing sky images at high frequency from ground-based total
sky imager or can rely on satellite images (Chow et al., 2011; Hammer et al., 2003; Perez et al., 2010).
Based on direct measurements of PV outputs, statistical techniques, such as time series modelling or
artificial neural networks, have demonstrated to be competitive for short term and very-short term
forecasts (Kalogirou, 2001; Mellit, 2008).

For longer time horizons, from few hours to several days, applications usually require Numerical
Weather Prediction (NWP) forecasts (Lorenz et al., 2011; Perez et al., 2013; Zamo et al., 2014a; Thorey
et al., 2015). NWP forecasts are computer simulations based on the primitive equations that describe
the physical laws of fluid dynamics and thermodynamics (Bjerknes, 1904). Forecasts are derived by
integrating numerically the partial differential equations, starting from the observed current weather
situation. The initial state of the atmosphere is estimated by data assimilation techniques that com-
bine first guess forecasts and meteorological observations. The resolution of the primitive equations
calls a discretisation in the three spatial dimensions and in time, and hence empirical parametrisa-

2 data source: Energy Exchange Leipzig EEX (www.eex-transparency.com).
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CHAPTER 1. INTRODUCTION

tions of the processes on the unresolved spatial and temporal scales.

NWP model outputs are routinely provided by weather centres. The German Weather Service (DWD)
operationally runs, among others, a high-resolution model centred over Germany called COSMO-DE
(Baldauf et al., 2011). With a spatial grid resolution of 2.8 km, the model explicitly represents small
scale processes such as deep convection. The increase in renewable energy applications has led to
enhanced attention to weather variables relevant for the energy sector. Since 2012, the improvement
of the NWP forecast skill focusing on typical weather variables such as wind and global radiation is
on the DWD’s agenda3 (Hagedorn et al., 2015).

Despite the continuous improvement of their performances, NWP models remain subject to errors
(Bauer et al., 2015). The discretisation of the equations, the parametrisation of the model and the
imperfect description of the initial conditions are sources of forecast errors. Beside the epistemic
uncertainty, aleatoric uncertainty related to atmospheric chaos limits the predictability skill of the
forecast, though the predictability itself is both variable and predictable (Lorenz, 1969; Slingo and
Palmer, 2011; Palmer et al., 2014).

Information about the uncertainty associated with a forecast is of high relevance for the users and
needs to be assessed. In NWP, running an Ensemble Prediction System (EPS) has become a standard
approach for providing a flow-dependent assessment of the forecast uncertainty. An EPS consists
in running a NWP model several times with variations that account for model error sources. At
DWD, COSMO-DE-EPS is the operational ensemble system based on COSMO-DE (Gebhardt et al.,
2011; Peralta et al., 2012). The 20-member ensemble arises from variations in the initial and boundary
conditions, and from model perturbations. Probabilistic forecasting requires the interpretation of the
ensemble forecast in probabilistic terms. The derived probabilistic products are targeted at users,
provided as a basis for their decision-making processes.

Probabilistic forecasts based on NWP forecasts can also be derived by a variety of other approaches.
Rooted in model output statistics (Glahn and Lowry, 1972), statistical methods have emerged as pow-
erful tools that draw probabilistic information based on historical data. Appropriate statistical tech-
niques have been successfully applied to wind and solar power forecasting (Bremnes, 2004; Zamo
et al., 2014a). Other approaches are pragmatic, like the neighbourhood method, which builds a forecast
sample from neighbouring forecasts (Theis et al., 2005), and the lagged average approach, which gath-
ers forecasts from different starting times but with overlapping verification periods (Hoffman and
Kalnay, 1983). Alternatively, analogue ensemble forecasts can be composed from past observations
whose related past forecasts share analogies with the forecast under focus (Hamill and Whitaker,
2006; Delle Monache et al., 2013).

The different approaches for providing probabilistic information based on NWP forecasts are com-
plementary in most cases, thus ensemble forecasting can be combined with other techniques. Com-
putationally inexpensive, the neighbourhood method and the lagged averaged forecasting allow
an increase of the ensemble size and have demonstrated that they bring noticeable improvement
in terms of forecast skill (Schwartz et al., 2010; Ben Bouallègue et al., 2013; Raynaud et al., 2015).
Analogue-based post-processing of ensemble forecasts has also been explored recently (Junk et al.,
2015). More generally, post-processing of ensemble forecasts based on historical dataset enables bias
correction and provides reliable probabilistic products. Therefore, post-processing is usually consid-
ered a necessary step in order to fully benefit from the ensemble approach (Gneiting et al., 2007).

In this study, the ability of an ensemble prediction system to support renewable energy applications
is addressed. More precisely, this work investigates global (direct + diffuse) radiation ensemble

3 the investigations presented in this study have been performed in the framework of the EWeLiNE project (http://projekt-
eweline.de)
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forecasts from the operational system COSMO-DE-EPS. Today, ensemble forecasting is the state-of-
the-art method for providing probabilistic weather forecasts, yet there is a need:

• to assess the value of probabilistic products relevant for the users,

• to assess the benefit of the ensemble approach compared to less expensive techniques.

In this context, probabilistic forecasts based on a single run are considered as a relevant benchmark.
Moreover, in order to fully benefit from the ensemble forecast, statistical inconsistencies have to
be corrected in order to provide the users with reliable probabilistic products. At the same time,
forecast scenarios, which are physically consistent over time, space and weather variables have to be
delivered in order to cover a full range of users’ applications. Therefore, there is a need:

• to calibrate the ensemble and provide reliable forecasts at each location and forecast horizon,

• to generate consistent scenarios based on the calibrated ensemble forecasts.

In this framework, a computationally effective two-step procedure is followed. Innovative approaches
are proposed and here applied to intra-day and day-ahead global radiation forecasts.

In Chapter 2, the concept and motivations leading to ensemble forecasting are recalled. The opera-
tional setup of the ensemble system COSMO-DE-EPS is described as well as the observation dataset
used in this study. The interpretation of the ensemble forecast in terms of probabilistic products is
discussed with an emphasis on quantile forecasts, which are key products for renewable energy ap-
plications.

In Chapter 3, fundamental concepts for the verification of probabilistic forecasts are introduced.
Proper scoring rules and their decomposition lead to the discussion on the ensemble performance
in terms of statistical consistency and information content. Focusing on the latter, quantile forecasts
used as decision variables are assessed in a decision making framework. Ensemble-derived forecasts
and deterministic forecasts are then compared in terms of forecast value. Taking a developer’s per-
spective, the benefit of using the ensemble approach rather than a single forecast is further depicted
with a summary measure.

In Chapter 4, statistical methods for the correction of systematic errors based on past data are dis-
cussed. Quantile regression is shown to be a well-suited method for the calibration of global ra-
diation ensemble forecasts. Moreover, a regularization of the regression scheme is used in order to
select adequate predictors from a pool of weather model outputs. The standard and weather-dependent
calibration approaches are compared when applied to ensemble and deterministic forecasts. In the
ensemble case, forecast dependence structures existing in the original ensemble can be preserved
after calibration. Generation of scenarios based on the original ensemble forecasts and the calibrated
marginals is discussed and a new method is proposed and implemented.

Finally, Chapter 5 presents the main findings of this work, while the appendices compile the related
original studies entitled:

A. Quantile forecast discrimination ability and value.

B. Assessment and added value estimation of an ensemble approach with a focus on global radi-
ation forecasts.

C. Statistical post-processing of global radiation ensemble forecasts with penalized quantile re-
gression.

D. Generation of scenarios from calibrated ensemble forecasts with a dual ensemble copula cou-
pling approach.
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2. Ensemble forecasting

Weather predictability strongly affects management activities in the energy sector. In NWP, pre-
dictability is shaped by the uncertainty intrinsically associated with a forecast. Approximations in
the description of the initial conditions, the model discretisation in time and space, and the clo-
sure of the equations are sources of errors. Moreover, the atmosphere is a chaotic system by nature:
small uncertainties in the initial conditions can grow rapidly at small scales and spread to upper
scales (Lorenz, 1969). Since no deterministic solution exists for such non-linear systems, a stochastic-
dynamic view on the forecasting problem is required: a weather variable is no longer regarded as a
deterministic variable but as a random variable with associated stochastic properties described by a
probability distribution (Epstein, 1969a). Hence, numerical weather forecasts are regarded as proba-
bilistic both in the production phase, by the model developers, and in the operation phase, with the
dissemination of probabilistic products.

The evolution of probability distributions in the phase space can theoretically be described by the Li-
ouville’s equation (the continuous equation for probabilities, which accounts for model non-lineari-
ties and imperfect initial state, e.g. Ehrendorfer, 1997). However, the dimensionality of a weather
prediction system prevents using this approach for the description of the atmospheric state in a
probabilistic framework. As an alternative, a Monte Carlo approach can provide a limited sample of
realisations that represents the predictive probability distribution. The forecast sample is obtained
running several times a numerical model accounting for uncertainty in the initial conditions and
physic parametrisations. In NWP, this approach is known as ensemble technique, and each single
run is called ensemble member (Epstein, 1969a; Leith, 1974). Thus, an ensemble system provides a
range of possible outcomes which aims at capturing the flow-dependent uncertainty of the forecast
(Palmer, 2000; Zhu, 2005).

Based on an ensemble forecast, each user can assess the level of confidence in the final forecast and
the related forecast uncertainty can be quantified. For example, the probability of occurrence of any
discrete event can be estimated. The quantification of the forecast uncertainty provides a probabilis-
tic guidance to the user. Thereby, a framework is proposed for decision-making where appropriate
action can be taken by the users according to their own level of risk and degree of vulnerability
(Slingo and Palmer, 2011).

2.1 Ensemble prediction systems

Benefiting from advances in computing sciences and technology, numerical Ensemble Prediction Sys-
tems (EPS) have become a state-of-the-art technique in numerical weather forecasting. Tracked back
to the 1950s, ensemble systems are operational since the 1990s and run nowadays at various spatial
and temporal scales (Lewis, 2005; Tracton and Kalnay, 1993; Houtekamer et al., 1996; Molteni et al.,
1996; Bowler et al., 2008; Montani et al., 2011; Lewis, 2014). An ensemble can arise as the combination
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Figure 2.1: Model domain of COSMO-DE and pyranometer stations used for verification and post-
processing purposes. The station Leipzig is highlighted with a grey circle.

of different NWP models (multi-model ensembles) or can be based on a single model with different
setups. Several techniques allow integrating uncertainty in the initial conditions and in the physic
parametrisations (Leutbecher and Palmer, 2008). In contrast to global ensemble systems, limited-
area ensemble systems have also to account for uncertainty in the boundary conditions.

At the German Weather Service (DWD), the high-resolution ensemble system COSMO-DE-EPS has
been running operationally since May 2012. The Consortium for Small-scale Modeling (COSMO1)
provides a non-hydrostatic, limited-area model whose flexibility allows for a wide range of appli-
cations. The ensemble system is based on the convection-permitting COSMO-DE model, which is
operationally run at DWD (Baldauf et al., 2011). The model has a model grid size of 2.8 km and the
radiation scheme follows Ritter and Geleyn (1992). The model domain covers Germany and part of
the neighbouring countries as shown in Figure 2.1.

Based on a multi-model and multi-parameter approach, COSMO-DE-EPS comprises 20 members
with variations of the boundary and initial conditions as well as model perturbations. A detailled
description of the ensemble setup can be found in Peralta et al. (2012). The combination of model
variations is summarised in Table 2.1. Variations of the boundary and initial conditions are obtained
from four different global models: the Integrated Forecasting System (IFS) of the European Centre
for Medium range Weather Forecast (ECMWF), the global model GME2 of DWD, the Global Forecast
System (GFS) of the National Centres for Environmental Prediction (NCEP), and the Global Spectral
Model (GSM) of the Japanese Meteorological Agency (JMA). Additionally, 5 different perturbations
are applied, each to forecasts driven by the different global models, and kept constant over the inte-
gration time.

In its operational version, COSMO-DE-EPS is run 8 times a day, at 00, 03,..., 18, and, 21 UTC, with
a forecast horizon of 27 hours. Targeted to renewable energy applications, the forecast range of the

1 http://www.cosmo-model.org
2 ICON since January 2015.
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CHAPTER 2. ENSEMBLE FORECASTING

physics variation\driving boundary model IFS GME GFS GSM

Entrainment rate for shallow convection 1 6 11 16
Critical value for normalized over-saturation 2 7 12 17
Scaling factor boundary layer for heat (<default) 3 8 13 18
Scaling factor boundary layer for heat (>default) 4 9 14 19
Asymptotic mixing length of turbulence 5 10 15 20

Table 2.1: Configuration of the COSMO-DE-EPS setup showing the combination of 4 global models
and 5 physic perturbed parameters leading to the 20 ensemble members.

03 UTC run has been extended up a horizon of 45 hours. Thus, day-ahead power forecasts based on
COSMO-DE-EPS can be available before the closing of the energy market at 12 UTC. In the remainder
of the manuscript, the weather variable under focus is global radiation at ground level, the forecasts
of which correspond to the sum of two model outputs: the direct and diffuse short-wave radiations.
The innovative techniques introduced in this study can however be applied to other weather vari-
ables, as for example wind forecasts (see Appendix D).

In order to assess the performance of the forecast and to apply post-processing techniques based on
historical data, high quality observations are required. Observations of solar radiation are provided
by quality controlled measurements from pyranometer stations distributed over Germany (Becker
and Behrens, 2012). Hourly averaged observations and forecasts are compared with a temporal reso-
lution of one hour. The test period used here for illustrative purposes corresponds to July and August
2015. During this period, 24 stations provided measurements on a regular basis (see Figure 2.1).

2.2 Probabilistic products

Probabilistic products are derived from the ensemble forecast in order to provide uncertainty infor-
mation along with the forecast. This step is usually referred to as ensemble interpretation and consists
in considering an ensemble forecast as drawn from a probability distribution (Bröcker and Smith,
2008). Properties of the predictive distribution are estimated and communicated to the users. For
example, at a given forecast horizon and location, the ensemble mean is an estimation of the most
likely outcome and the ensemble spread, an estimation of the associated uncertainty (Zhu, 2005;
Grimit and Mass, 2007; Hopson, 2014). Other functionals of the predictive distribution are estimated
focusing on particular events or targeted at users with a specific level of risk adversity. In that case, a
forecast takes the form of a threshold exceedance probability, and the form of a quantile, respectively.

For a formal definition of probabilistic products, the following notations are considered. First, the
quantity to be forecast is intended as a continuous random variable denoted Y = {(y, FY (y), y ∈ R)}.
The associated cumulative distribution FY (y) follows FY (y) = Pr(Y ≤ y) where Pr denotes the
probability. An observed event is defined by a threshold ψ ∈ R as E : Y ≥ ψ. Second, the forecast
for Y is assumed to take the form of a predictive cumulative distribution FX(x). The exceedance
probability forecast pψ is defined as:

pψ = 1− FX(ψ), (2.1)

while the quantile forecast at probability level τ with 0 ≤ τ ≤ 1 is defined as:

qτ = F−1
X (τ) = inf{x : FX(x) ≥ τ}. (2.2)

7



2.2. PROBABILISTIC PRODUCTS

Exceedance probability and τ -quantile correspond to two particular points of the predictive distri-
bution as illustrated in Figure A.1.

Probabilistic products are delivered to users so they can use them in their decision-making processes.
In this study, the focus is set on quantile forecasts that are optimal point forecasts for users with
an asymmetric loss functions (Koenker and Machado, 1999; Friederichs and Hense, 2007; Gneiting,
2011a). In particular, quantile forecasts are of high relevance for renewable energy applications (Pin-
son et al., 2007; Pinson, 2013; Morales et al., 2014). Asymmetric loss functions are indeed associated
with users with different sensitivity to under- and over-forecasting which is typically the case for ap-
plications related to reserve management and trading activities. Scheduling operating reserves has a
cost which implies that over-forecasting has to be avoided, but activating reserves short before term
is more expensive which means that under-forecasting has a higher cost. Similarly, market partici-
pants are penalized differently when committed power is under- or over-estimated. In all these cases,
the user’s optimal forecast corresponds to a specific quantile of the predictive distribution where the
probability level is defined by the user’s cost-loss ratio.

In the following applications, the COSMO-DE-EPS global radiation forecast is generally interpreted
in terms of quantiles following a non-parametric approach. Considering the ensemble forecasts
(x(1), x(2), ..., x(M)) with M the ensemble size, an ensemble member x(m) can be interpreted as a
quantile forecast considering its rank within the sample. Assuming that the sample is ordered, a
quantile forecast qτm can be estimated as:

qτm = x(m), (2.3)

where τm the probability level associated with the member of rank m ∈ 1, ...,M is here defined as:

τm =
m− 0.5

M
. (2.4)

This definition of τm as a function of the member rank m and the ensemble size M is consistent
with the ensemble interpretation applied for the computation of the continuous ranked probability
score, a common ensemble verification score (Bröcker, 2012, see Chapter 3). However, the definition
of τm in Eq. (2.4) is not consistent with a reliability test like for example the rank histogram, which
assumes that the probability masses between two consecutive ensemble members as well as below
x(1) and above x(M) are all equal. In this case, the probability level associated to a ranked mem-
ber x(m) follows τm = m

M+1 . More generally, quantiles at probability levels that are not comprised
in the set defined in Eqs (2.4) can be derived for example by interpolation (Hyndman and Fan, 1996).

Figure 2.2(a) shows an example of COSMO-DE-EPS global radiation forecasts and the correspond-
ing station measurements. This example covers 2 consecutive days and illustrates the typical diurnal
cycle associated with this weather variable. In Figure 2.2(b), the ensemble is interpreted in terms of
quantile forecasts as a function of the forecast horizon. Quantiles are provided at probability levels
ranging between 10% and 90% with a 10% interval. The verification of these probabilistic products is
discussed in the next chapter. A subjective assessment already suggests that the ensemble variability
is not able to fully capture the observation variability. Appropriate techniques can correct for this
type of ensemble drawback in order to provide calibrated quantile forecasts and to generate consistent
scenarios as shown in Figure 2.2(c) and (d), respectively. These post-processing techniques are dis-
cussed in Chapter 4.
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Figure 2.2: Example of ensemble forecasts, ensemble interpretation, and ensemble post-processing,
based on COSMO-DE-EPS global radiation forecasts of the 03UTC run on July 9, 2015, valid at sta-
tion Leipzig: (a) 5 of the 20 ensemble members, (b) the ensemble forecasts interpreted in terms of
quantile forecasts at probability levels 10%, 20%, ..., 80%, 90%, (c) quantile forecasts calibrated by pe-
nalized quantile regression (see Section 4.2) at the same probability levels, (d) 5 of the 20 calibrated
scenarios generated with a dual ensemble copula coupling approach (see Section 4.4) associated to
the 5 ensemble forecasts shown in (a). The forecasts are plotted as a function of the forecast horizon.
The corresponding pyranometer measurements are represented by a black dashed line.

9





3. Ensemble verification

Using the words of Atger (2004), the verification of ensemble-based probabilistic forecasts follows
two goals: the validation of the system and the evaluation of end-product performance. Here,
these two aspects are investigated for global radiation forecasts from COSMO-DE-EPS. The aim is to
demonstrate the benefit of the ensemble approach and to provide evidence of the ensemble forecast
deficiencies. In terms of products, the ensemble performance is examined with a focus on quantile
forecasts, which are relevant probabilistic products for renewable energy applications. A general
framework is first defined in order to describe appropriate tools and discuss their interpretation1.

Forecast verification is here intended as the process of analysing the joint probability distribution of
the forecast and the corresponding observation, where both observation and forecast are treated
as random variables (Murphy and Winkler, 1987; Murphy, 1993). Considering the observation
Y = {(y, FY (y), y ∈ R)} and the forecast X = {(x, FX(x), x ∈ R)}, the joint distribution is de-
noted FY X(y, x). The verification process consists in reducing the analysis of FY X(y, x) to a single
dimension. Scoring rules, and more generally verification measures, try to summarise in the form
of a single value some aspects of the forecast performance that necessarily implies to concurrently
discard information about the joint distribution (Wilks, 2006b).

Particular aspects of the forecast performance, often referred to as forecast attributes, can be drawn
from the investigation of the properties of the joint distribution (Murphy and Winkler, 1987). Follow-
ing the multiplicative law of probability, two manipulations of the joint distribution can be applied
for this purpose. The calibration-refinement factorisation,

FY X(y, x) = FY (y | X = x)FX(x), (3.1)

conditions the observation on the forecast, whereas the likelihood-base rate factorisation,

FY X(y, x) = FX(x | Y = y)FY (y), (3.2)

conditions the forecast on the observation. From these two factorisations, one can estimate attributes
of the forecast performance such as reliability, resolution, and discrimination.

Adequate scores and validation tools have been developed for the verification of probabilistic pro-
ducts in the form of a predictive probability distribution, a probability forecast or a quantile forecast.
The decomposition of scores based on the calibration refinement factorisation provides a framework
for a detailled interpretation of the results in terms of forecast statistical inconsistency and forecast
information content, which are the two fundamental aspects of the forecast performance. Based on
the likelihood-base rate factorisation, the information content can be further related to the forecast
value, which reflects the point of view of the user on the forecast performance (Chen et al., 1987;

1 the reader is invited to refer also to Wilks (2006b) and Jolliffe and Stephenson (2011)



3.1. PROPER SCORING RULES

Buizza, 2001). Finally, relationships between forecast value and scoring rules complete the verifica-
tion picture (Murphy, 1969; Richardson, 2011). Thereby, the forecast ability to capture and resolve
the observations can be assessed in a cascading process from the general to the specific forecast skill.

3.1 Proper scoring rules

Scoring rules are mathematical tools dedicated to the evaluation of probabilistic forecasts. A scoring
rule measures the accuracy of a probabilistic prediction assigning a numerical score as a function of
the predictive distribution and the event that materialised (Gneiting and Raftery, 2007). Historically,
the Brier score is the first scoring rule that has been proposed in the context of probabilistic verifica-
tion (Brier, 1950). Today, this verification measure is commonly used for the assessment of a forecast
expressed in terms of a probability for a discrete dichotomous event.

A fundamental characteristic of a score is its propriety (Bröcker and Smith, 2007). A scoring function
is called strictly proper when ’its expectation is optimal if and only if the forecast probability represents the
true distribution of the target’ (Bröcker, 2009). In other words, a forecaster optimises the expected score
by issuing his truth believes, avoiding therefore hedging (Murphy and Epstein, 1967). For example,
propriety is a characteristic of the Brier score (Murphy, 1973).

In order to provide a formal definition of a proper score, let’s note s a score of a probabilistic forecast
P ∈ P and the corresponding observation ω ∈ Ω. The score s is in the following considered as
negatively oriented (the smaller the better) and can therefore be intended as a cost function, which
is aimed to be minimized (Bentzien and Friederichs, 2014). Determined by the joint distribution
F (ω, P ), the expected overall score is:

S =

∫

P

∫

Ω

s(ω, P )F (ω, P )dωdP (3.3)

Applying the calibration-refinement factorisation following Eq. (3.1), the score is written as follows:

S =

∫

P

∫

Ω

s(ω, P )F (ω | P )F (P )dωdP (3.4)

Denoting Q(ω) = F (ω | P ) the expected distribution of ω for a fixed probabilistic forecast P , Eq. (3.4)
is developed as:

S =

∫

P

∫

Ω

s(ω, P )Q(ω)F (P )dωdP

=

∫

P
S(Q,P )F (P )dP

(3.5)

where
S(Q,P ) =

∫

Ω

s(ω, P )Q(ω)dω (3.6)

is the expected score given a forecast P . By definition (Gneiting and Raftery, 2007), the score function
S is proper if:

S(Q,Q) ≤ S(Q,P ) (3.7)

for all P . It is strictly proper if equality is given if and only if P = Q.

Proper scoring rules also include the Quantile Score (QS), the natural score for the assessment of
quantile forecasts (Koenker and Bassett, 1978; Friederichs and Hense, 2007; Bentzien and Friederichs,
2014). QS is based on an asymmetric piecewise linear function called check function and noted

12
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Figure 3.1: CRPS (full line), CRPS reliability (dashed line), and resolution components (dotted line)
as a function of the forecast horizon. The confidence intervals are estimated by block bootstrapping.
Results for the period July-August 2015.

ρ. Considering the pairs of quantile forecasts qτ,i at probability level τ and observations yi of the
verification sample with i ∈ 1, ..., N , QS is defined as:

QSτ =
1

N

N∑

i=1

ρτ (yi − qτ,i) (3.8)

with

ρτ (u) =

{
τu if u ≥ 0

(τ − 1)u if u < 0.
(3.9)

The asymmetry of the loss function is related to the probability level of the quantile forecast under
assessment. Both are defined by τ which makes the link between user and probabilistic product ex-
plicit.

Each ensemble member can be interpreted as a quantile considering its rank within the ensemble
sample (see Section 2.2). Therefore, the assessment of an ensemble forecast as a whole can consist in
applying QS to each quantile defined by the ensemble size. This approach leads to the estimation
of the continuous ranked probability score (CRPS), which is a common proper scoring rule for the
verification of predictive density functions (Matheson and Winkler, 1976; Bouttier, 1994; Hersbach,
2000; Gneiting and Raftery, 2007). In the ensemble case, the CRPS follows:

CRPS =
2

M

M∑

m=1

QSτm (3.10)

where M is the ensemble size and τm the probability level defined in Eq. (2.4) (Bröcker, 2012). In
the continuous case, the CRPS corresponds to the integral of QS over all probability levels or equi-
valently to the integral of the Brier score over all possible thresholds.

In Figure 3.1, the performance of COSMO-DE-EPS global radiation forecasts is estimated in terms of
CRPS. The verification results summarize the quality of the forecast considering all types of events
and users. Plotted as a function of the forecast horizon, the score is strongly influenced by the diurnal
cycle. However, it appears that the forecast exhibits a larger error in day 2 with respect to day 1. A
deeper insight in the forecast performance is provided with the help of a score decomposition based
on the calibration-refinement factorisation.

13



3.2. SCORE DECOMPOSITION

3.2 Score decomposition

The decomposition of a score in terms of reliability, resolution and uncertainty has been first pro-
posed for the Brier score (Murphy, 1973; Murphy and Winkler, 1987). This decomposition becomes
a standard tool for the interpretation of verification results based on this score. Moreover, a finer
analysis of the reliability component can be performed based on a related graphical tool: the reliabil-
ity diagram. The statistical consistency between forecast probability and observed binary outcomes
is represented plotting the relative frequency of observed binary events as a function of the forecast
probability class.

Not only can the score decomposition be applied to the Brier score, but also to any proper scoring
rule (De Groot and Fienberg, 1982; Bröcker, 2009). For a more detailled description of the decompo-
sition procedure, the terms of entropy and divergence are first defined (Gneiting and Raftery, 2007).
The entropy corresponds to the minimum achievable score considering the set of observations Ω.
Following Eq. (3.7), the entropy is noted as follows:

e(Q) = S(Q,Q). (3.11)

The divergence is defined as the difference between the expected score and the entropy:

d(P,Q) = S(P,Q)− S(Q,Q). (3.12)

The divergence of a negatively oriented proper score is by definition non negative (see again Eq. 3.7),
and is commonly referred to as the reliability term. Reliability measures the statistical consistency (or
more exactly here the statistical divergence) of the forecast P with respect to the distributionQ, which
is the expected distribution of the observation given P . The reliability term is negatively oriented (the
lower the better).

Introducing a climatological forecast Q̄, estimated as the marginal distribution of the observations,
the entropy can be further decomposed:

e(Q) = S(Q̄,Q)− d(Q̄,Q) (3.13)

where S(Q̄,Q) is the expected score of the climatological forecast, and d(Q̄,Q) is the divergence be-
tween the forecast and the climatological forecast. The first term is referred to as uncertainty and
is a function of the observation only. The second term, called resolution, is related to the discrimi-
nation ability of the distribution Q under different forecast P and thus is a measure of the forecast
information content (DelSole, 2004). The resolution term is positively oriented (the higher, the better).

A proper score S can be finally decomposed as follows:

S(P,Q) = d(P,Q)− d(Q̄,Q) + S(Q̄, Q̄) (3.14)

where the three terms on the right side of the equation are the reliability, resolution, and uncertainty
terms, respectively. Integrating over all possible forecasts P , the 3 components of the overall score
are estimated.

Recently, it has been proposed a decomposition of the quantile score which participates to the ef-
fort of providing equivalent tools for the verification of quantile forecasts as for the verification of
probability forecasts (Bentzien and Friederichs, 2014). Formally, the decomposition of QS is noted:

QSτ = QSreliability
τ −QSresolution

τ +QSuncertainty
τ (3.15)

where QSreliability
τ , QSresolution

τ , and QSuncertainty
τ are the reliability, resolution, and uncertainty terms of

the quantile score at probability level τ , respectively. Similarly as in the categorical case, a graph-
ical tool called quantile reliability diagram provides a representation of the forecast reliability per-
formance. Conditional quantiles of the observations are plotted as a function of quantile forecast
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classes. A deviation of the reliability curve from the diagonal is interpreted as a lack of reliability.

The decomposition of the CRPS can directly be derived from the decomposition of QS described in
Eq. (3.15). Based on the definition of the CRPS in terms of QS in Eq. (3.10), a natural decomposition
of CRPS in the ensemble case follows:

CRPS =
2

M

M∑

m=1

QSreliability
τm − 2

M

M∑

m=1

QSresolution
τm +

2

M

M∑

m=1

QSuncertainty
τm (3.16)

where the three terms on the right of the equation are the CRPS reliability, resolution, and uncer-
tainty terms, respectively. In the continuous case the weighted sum is replaced by the integral over
all probability levels. Similarly, the CRPS decomposition can be based on the integration of the Brier
score components over all thresholds (Candille and Talagrand, 2005). This approach is however dif-
ferent from the commonly used CRPS decomposition proposed by Hersbach (2000), which is based
on the average interval lengths between two successive ensemble values (Tödter and Ahrens, 2012).

In Figure 3.1, besides the CRPS are plotted the corresponding reliability and resolution components.
The uncertainty component is not shown since it is a property of the observations only. The decom-
position allows a deeper interpretation of the performance results. The decrease in forecast quality
from day 1 to day 2 is mainly explained by a decrease in forecast resolution. The information content
of the ensemble forecast tends to decline with the forecast horizon. The reliability term follows a di-
urnal pattern similar over the two days and significantly contributes to the CRPS estimation. Thus,
the ensemble suffers from statistical inconsistencies that significantly deteriorate the reliability of the
ensemble forecasts.

Based on QS and its decomposition, a deeper analysis of the forecast statistical properties with re-
spect to the observations is performed at the product level. The graphical representation of the QS
reliability component with the help of reliability diagrams evidences with more details the statistical
deficiencies of the forecast. In Figure 3.2, quantile reliability diagrams are shown for quantiles at
three probability levels: 10%, 50% and, 90%. Negative and positive biases affect low and high prob-
ability levels, respectively, while quantile forecasts at intermediate levels are well calibrated. This
configuration of quantile forecast biases is typically related to underdispersiveness in the ensemble.
Moreover, the asymmetry of the biases at low and high probability levels indicates an overall nega-
tive bias of the forecast. Now, a deeper analysis of the information content is discussed based on the
concept of forecast value.

3.3 Quantile forecast value

The value of a forecast is examined in a risk-based decision-making framework. The estimation
of whether appropriate decisions can be taken based on a forecast is directly related to the con-
cept of forecast discrimination. Indeed, forecast discrimination measures the ability of a forecast to
successfully discriminate between two different outcomes (Murphy, 1991). This forecast attribute is
estimated based on the second factorisation of the joint probability distribution, that is the likelihood-
refinement factorisation defined in Eq. (3.2). Discrimination ability is the convert of forecast resolu-
tion, both depending on the forecast information content (Wilks, 2006b; Bröcker, 2014).

Discrimination of probability forecasts for binary outcomes is commonly investigated with a tool
originating in signal detection theory: the Relative Operating Characteristic (ROC) curve (Mason,
1982). The ROC curve plots the relationship between two characteristics of a binary forecast, the Hit
Rate (HR) and the False Alarm Rate (FAR), as a decision criterion varies. HR and FAR are derived
from a contingency table that summarises the joint probability distribution of binary forecasts and
observations. Binary observations result from the definition of an event while binary forecasts are

15



3.3. QUANTILE FORECAST VALUE

 Quantile forecast [ W m
2 ]

C
o
n
d
. 
o
b
s
. 
q
u
a
n
t.
 [

 W
m

2
 ]

0 300 600 900

0
3
0
0

6
0
0

9
0
0

(a)

 Quantile forecast [ W m
2 ]

C
o
n
d
. 
o
b
s
. 
q
u
a
n
t.
 [

 W
m

2
 ]

0 300 600 900

0
3
0
0

6
0
0

9
0
0

(b)

 Quantile forecast [ W m
2 ]

C
o
n
d
. 
o
b
s
. 
q
u
a
n
t.
 [

 W
m

2
 ]

0 300 600 900

0
3
0
0

6
0
0

9
0
0

(c)

Figure 3.2: Reliability diagrams for quantile forecasts at probability levels 10% (a), 50% (b), and
90% (c). The confidence intervals are estimated by block bootstrapping. Results for the period July-
August 2015 and a forecast horizon of 9 hours.

here derived from continuous forecasts applying a decision criterion. The area under the ROC curve
has been popularised as a summary measure of the forecast discrimination ability when the focus in
on a specific event2.

In Appendix A, an equivalent tool is proposed for the estimation of the forecast discrimination abi-
lity focusing on a specific user. The so-called Relative User Characteristic (RUC) curve plots FAR
and HR as the event of interest varies and the decision criteria are adjusted according to the level
of risk accepted by the user (Section A.4). Indeed, the decision criteria applied to a forecast can be
adjusted as a function of the sensitivity of the user to over- and under-forecasting characterised by
an asymmetry level τ . Thus, the RUC framework allows scanning the ability of a specific user to take
opportune actions based on the forecast for a range of events.

The RUC framework is appropriate to the analysis of forecasts expressed in terms of a quantile since
the associated probability level defined exactly the user’s risk adversity. A RUC analysis can as well
be applied to a continuous deterministic forecast though this forecast is not targeted a priori at a spe-
cific user. A fair comparison between deterministic and ensemble-derived forecasts can take place in
this framework: the full information from continuous forecasts can be assessed in both cases. In the
following, the ensemble approach is compared to a single run approach, which consists in using as
decision variable a single forecast randomly chosen among the 20 ensemble members.

The value of a forecast in a dichotomous decision framework can be derived from the ROC or RUC
curve. For this purpose, a decision-making framework is depicted by a simple static cost-loss model
(Thompson, 1962; Katz and Murphy, 1997). This model describes a situation of dichotomous deci-
sions: a user has to decide whether or not to take protective action against potential occurrence of
an event. The user’s decision is based on a decision variable, i.e. a forecast. Taking action implies a
cost C while a loss L is encountered when the event occurs without preventive action. The cost-loss
ratio C/L, denoted α, fully characterised the users. This model generalized to the continuous case
considering an asymmetric loss function ρτ with τ = 1− α (see Eq. A.19).

The relative value (or economic value) V of a forecast is estimated based on this model (Richardson,
2000; Wilks, 2001; Zhu et al., 2002). V is expressed as the reduction of mean expense when using

2 It has been shown that the ROC area is a particular case of the generalised discrimination score (also known as two-
alternative forced choice test), which provides a general measure of the potential usefulness of a forecast (Mason and
Weigel, 2009).
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CHAPTER 3. ENSEMBLE VERIFICATION

a forecast instead of climatological information relative to the case of using a perfect deterministic
forecast:

V =
Ēclimate − Ēforecast

Ēclimate − Ēperfect
, (3.17)

where Ēforecast, Ēperfect , and Ēclimate, are the mean expenses when a user takes decisions based on a
forecast, on a perfect deterministic forecast, and on climatological information, respectively. Eq. (3.17)
can be developed (see Appendix A) and V noted as a function of the user’s cost-lost ratio α, the event
climatological frequency of occurrence π and the two forecast characteristics HR and FAR:

V =





(1− FAR)−
(

π

1− π

)(
1− α
α

)
(1−HR) if α < π

HR−
(

1− π
π

)(
α

1− α

)
FAR if α ≥ π.

(3.18)

Therefore, the value estimates the relative performance of a forecast focusing on a specific event,
characterised by a frequency of occurrence π, and simultaneously focusing on a specific user with a
risk aversion defined by a cost-loss ratio α.

In Eq. (3.18), FAR and HR can be computed considering that the decision criterion applied to the
forecast corresponds to the threshold applied to define the event of interest. In this case, the forecast
is said to be taken at face value. If the decision criterion is optimised for the considered event/user
situation, V is called potential value, that is, the maximum achievable value considering the forecast
at hand. Value and potential value are identical if the forecast is reliable, thus conditioned on cali-
bration (Richardson, 2011). In other words, reliability is a necessary condition for the optimisation of
forecast-based decision processes.

Two options have been proposed for the graphical representation of the forecast relative value, de-
pending on whether the focus is on a specific event or a specific risk level. The probability value plot
shows the relative value of a forecast for a given event of interest as a function of the user’s cost-loss
ratio. Alternatively, the quantile value plot shows the relative value of a forecast for a given cost-loss
ratio as a function of the event of interest. A third option, not explored yet, would consist in sum-
marising the potential value in a contour-plot with respect to the plane defined by the user’s cost-loss
ratio and the event of interest.

Figure 3.3 shows quantile value plots of COSMO-DE-EPS global radiation forecasts focusing on three
probability levels, 25%, 50%, and 75%, corresponding to users with cost-lost ratio 75%, 50%, and 25%,
respectively. More specifically, the plots represent the potential value, i.e. the value of the forecast
conditioned on calibration, for forecasts valid at 12 UTC. By definition, the potential value is posi-
tive and the curve reaches its maximum for events with a frequency of occurrence π corresponding
to 1 − τ . Here, the ensemble-derived forecasts are compared to deterministic forecasts. The results
show that the ensemble system outperforms the single forecast approach for the three quantile fore-
casts and the whole range of events of interest investigated. So, the ensemble provides additional
information with respect to deterministic forecasts and the ensemble-derived products appear to be
valuable for a wide range of applications.

3.4 Ensemble added value

Relative measure of forecast performance are traditionally estimated by means of skill scores (Wilks,
2006b). Based on negatively oriented scoring rules, skill scores have the form of a relative difference.
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Figure 3.3: Quantile value plots showing the potential value of COSMO-DE-EPS global radiation
quantile forecasts as a function of the event of interest expressed in terms of their climatological
frequency of occurrence (π). Potential value of the ensemble forecast (full lines) and of a deterministic
forecast (dashed lines) for users with cost-loss ratios of 75% (a), 50% (b), and 25% (c). Results for the
period July-August 2015 and a forecast horizon of 9 hours.

For example, the continuous ranked probability skill score (CRPSS) is defined as:

CRPSS =
CRPS− CRPS?

CRPS� − CRPS?
=

CRPS? − CRPS
CRPS?

= 1− CRPS
CRPS?

(3.19)

where CRPS, CRPS? and CRPS� are the scores of the forecast under assessment, of a reference forecast
and of a perfect deterministic forecast, respectively. The choice of the reference forecast corresponds
to the goal of the comparison. Climatological forecasts or persistence forecasts are chosen as refe-
rence in order to show the benefit of a forecasting system with respect to a cost-free approach. Skill
scores help also to demonstrate the improvement reached by a new numerical model with respect to
an older version or to compare two concurrent systems.

Here, the performance of the ensemble forecast is compared to a single forecast. The deterministic
forecast is used as benchmark in order to focus on the intrinsic benefit of the computationally expen-
sive ensemble system. A difficulty arises since the two forecasting approaches are by nature different:
the first one is probabilistic while the second one is deterministic. Since the CRPS reduces to the Mean
Absolute Error (MAE) in the single forecast case, a simple approach could consist in comparing the
CRPS of the ensemble forecast and the MAE of a single run. By doing so, the comparison confronts a
probabilistic interpretation of a probabilistic forecast on one side, and a deterministic interpretation
of a deterministic forecast on the other side. For a fair comparison, both types of forecasts should be
interpreted in a probabilistic framework.

For this purpose, consider stochastic optimisation based on a single or an ensemble forecast. In a
risk-based decision-making framework, the decision criterion applied to a forecast is adjusted as a
function of the user’s cost-loss ratio. This can be done independently of the nature of the forecast.
Therefore, the results of decisions based on an ensemble-derived forecast or a deterministic forecast
can be compared in a fair manner. This approach has been followed for the comparison of quantile
forecasts and single run forecasts in terms of potential value as shown in Figure 3.3. Furthermore,
the comparison can be extended to more than one single user and one single event using the relation-
ships between relative value and proper scoring rules. Indeed, integrating the forecast value over all
cost-loss ratios or over all events leads to the definition of the Brier skill score and quantile skill score,
respectively (Murphy, 1969, Section A.6).
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The potential value of a forecast is by definition estimated conditioned on calibration. Similarly, per-
formance measures can focus on the information content only. Practically, it consists in considering
the entropy of a scoring rule, the minimum achievable score for a given dataset. The integration
of the score entropy as defined in Eq. (3.11) over all forecasts leads to the concept of potential score.
The potential CRPS is defined as the difference between the uncertainty and resolution components,
thus:

CRPSpotential =
2

M

M∑

m=1

(QSuncertainty
τm −QSresolution

τm ) (3.20)

where QSuncertainty
τm and QSresolution

τm are the uncertainty and resolution components of the QS at proba-
bility level τm, respectively. Their difference corresponds to the potential QS, the potential value of a
forecast for a given user over all thresholds.

Introduced in Appendix B, the ensemble added value (EAV) is proposed as a new measure that sum-
marises the benefit of using an ensemble forecasting system rather than a single run. EAV focuses
exclusively on the information content: the forecast variability that allows taking adequate decisions
is rewarded while the reliability deficiencies are seen as a decision criteria adjustment problem. The
ensemble added value is expressed in the form of a skill score as:

EAV = 1− CRPSpotential

CRPS?potential
(3.21)

where CRPSpotential and CRPS?potential are the scores estimated applying Eq.(3.20) to the ensemble-
derived quantile forecasts and to the reference deterministic forecast, respectively.

In Figure 3.4, EAV of COSMO-DE-EPS global radiation forecasts is plotted as a function of the fore-
cast horizon. One forecast is chosen randomly among the 20 ensemble members for each verification
day and designated as reference deterministic forecast. The relative potential benefit of the ensemble
approach ranges between 5% and 15% and tends to increase with the forecast horizon. Indeed, the
benefit over day 2 appears to be higher than over day 1. Despite the decrease in resolution with
the forecast horizon noted in Figure 3.1, the resolution of the deterministic forecast tends to zero at
a faster rate than the resolution of the probabilistic forecast. In other words, the information content
in the ensemble increases with respect to the information content in the single run case, so the use of
ensemble forecasts is particularly valuable for long lead times.

The potential benefit of COSMO-DE-EPS global radiation forecasts shown in Figure 3.4 as well as the
economic value presented in Figure 3.3 are conditioned on calibration. However, the ensemble sys-
tem demonstrates not to provide reliable probabilistic forecasts in all cases. COSMO-DE-EPS global
radiation forecasts suffer from statistical inconsistencies, i.e. biases and ensemble underdispersive-
ness. The lack of reliability varies as a function of the forecast horizon (see Figure 3.1), of the risk level
associated with a probabilistic product (Figure 3.2), and also of the time of the year (see AppendixB).
Now, these deficiencies have to be corrected by adequate methods in order to fully benefit from the
ensemble approach.
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Figure 3.4: Ensemble added value of the global radiation forecasts derived from COSMO-DE-EPS
with respect to a single member approach as a function of the forecast horizon. The confidence
intervals are estimated by block bootstrapping. Results for the period July-August 2015.
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4. Ensemble Post-processing

Post-processing is a fundamental step in the whole process of providing the users with reliable pro-
babilistic forecasts based on ensemble simulations. Reliability is a necessary condition for the optimi-
sation of a decision-making process (see Chapter 3). However, ensemble global radiation forecasts,
and more generally ensemble forecasts of surface variables, suffer from biases and spread deficit that
affect the reliability of the derived probabilistic products. Adequate calibration techniques that cor-
rect for these drawbacks are therefore required.

Based on historical data, statistical post-processing consists in the application of learning algorithms
aiming at the correction of systematic forecast deficiencies. Historically, post-processing of ensemble
forecasts has first been tackled as a probability bias problem that can be solved with a reassignment of
the probability forecasts (Murphy, 1993; Atger, 2004). For example, considering that the frequency of
an observed event is, say 25%, for all cases where a system issues a probability forecast of, say 20%, a
non-parametric calibration technique consists in assigning the probability 25% when the probability
forecast is 20%. Using such an approach for all probability classes, the statistical discrepancy of the
probability forecast is corrected and the forecast is said to be reliable. Since the forecast information
content is not modified with this simple readjustment, forecast resolution and discrimination ability
are not affected by calibration in that case1.

Numerous ensemble calibration methods have been developed in recent years for a wide range of
applications (Gneiting et al., 2005; Wilks, 2006a; Wilks and Hamill, 2007). On the one hand, semi-
parametric approaches focus on derived probabilities or on derived quantiles, such as logistic regres-
sion (Hamill et al., 2004; 2007) or quantile regression (Bentzien and Friederichs, 2012), respectively.
On the other hand, fully parametric approaches are based on the definition of predictive distribu-
tions as a whole and require to apply distribution fit (Gneiting et al., 2005), kernel dressing (Bröcker
and Smith, 2008) or Bayesian model averaging (Raftery et al., 2005). The frontiers between the dif-
ferent approaches are however often porous. For example, logistic regression can be generalized to
a distributive approach by means of an extension of the regression equations, which provides a full
description of the predictive distribution (Wilks, 2009; Ben Bouallègue, 2013; Messner et al., 2014b).
Today, enhanced techniques are investigated that aim to benefit from the post-processing step in
order to increase the discrimination ability of the forecast by correcting biases as a function of the
forecast weather conditions (Wahl, 2015).

Calibration methods however usually focus only on a single or few aspects of the ensemble forecast,
such as solar radiation at a given location and forecast horizon. The dependence structures of the en-
semble forecast across time, space and variables are lost after the statistical adjustment performed for
each marginal predictive distribution separately, whereas the variability of the forecast, both its pre-
dictable and uncertainty components, is correlated in time, space and between variables. Moreover,

1 for this reason, it has often been argued that only the reliability (and not the resolution) of a forecast can be improved by
calibration (e.g. Toth et al., 2003).



4.1. MARGINAL CALIBRATION

the user’s requirements presumably cover a variety of spatial and temporal scales, or a combination
of parameters of interest. For example, applications based on global radiation forecasts may focus
on intraday variability or may deal with the daily mean of day-ahead forecasts, at local, regional or
national scale. Global radiation forecasts are also combined with forecasts of other weather variables
such as temperature at ground in order to feed a physical PV power model, or as wind in order to
manage intermittent renewable sources as a whole.

The calibration of the multivariate aspect of the forecast in a single step using parametric approaches
is computationally expensive and therefore not adapted to the full dimensionality of NWP forecasts
(Keune et al., 2014; Feldmann et al., 2015). Alternatively, the generation of marginal predictive distri-
butions and forecast dependencies can be treated sequentially applying the famous Sklar’s theorem,
which stipulates that a multivariate joint distribution can be described by its univariate marginals
plus copula (Sklar, 1959). In particular, dependencies can be modelled based on information in the
original ensemble forecast using empirical copula approaches that are computationally efficient.

In this framework, ensemble post-processing is approached as a two-step procedure. First, the
marginal calibration adjusts the predictive distributions at each forecast horizon and location. Se-
cond, scenarios are generated based on the dependence structures of the original ensemble forecasts.
As a result, at the end of the post-processing steps, calibrated scenarios with consistent dependence
structures can be delivered to the users.

4.1 Marginal calibration

Learning algorithms applied to ensemble forecasts have the primary goal of correcting predictive
distributions for their non conformity with statistical properties of the observations. This first post-
processing step, called here marginal calibration, aims to generate reliable predictive marginal dis-
tributions or functional of them focusing on probability forecasts or quantile forecasts at the station
level. The choice of the calibration method depends mainly on the weather parameter under focus
and the end-product of interest (Hagedorn et al., 2007; Hamill et al., 2007; Messner et al., 2014a). The
aim here is to provide probabilistic forecasts of global radiation in terms of quantiles in order to feed
an empirical copula model in a second post-processing step (see Sections 4.3 and 4.4).

Ensemble calibration has been investigated intensively for weather variables such as temperature,
precipitation, or wind, but only recently applied to global radiation forecasts (e.g. Wilks and Hamill,
2007; Junk et al., 2014; Zamo et al., 2014b). In Appendix C, quantile regression (QR) demonstrates to
be an appropriate technique for the calibration of ensemble global radiation forecasts. Conveniently,
quantile forecasts at nominal probability levels of interest are directly calibrated without assump-
tions about the form of the underlying probability distribution. Moreover, QR can be indifferently
applied to a probabilistic or a deterministic forecast. In the following, this characteristic of the cali-
bration method allows to develop the comparison of probabilistic products derived from ensemble
and single forecasts initiated in Chapter 3.

QR is a regression technique proposed by Koenker and Bassett (1978). Applied to the response vari-
able Y , QR estimates quantilesQτ of the variable distribution FY (y) conditional on a set of predictors
based on a linear model. Considering a sample of observations {y1, ..., yN ′} with N ′ the size of the
training sample and a probability level of interest τ , the optimisation process consists in minimising
asymmetrically weighted absolute residuals:

min
θ∈R

N ′∑

j=1

ρτ (yj − θ) (4.1)
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CHAPTER 4. ENSEMBLE POST-PROCESSING

where ρτ is the check function, the asymmetric loss function defined in Eq. (3.9). Replacing the scalar
θ by a parametric linear function, the minimisation problem is written as follows:

arg min
(β0
τ ,βτ )

N ′∑

j=1

ρτ (yj − β0
τ − βτvj) (4.2)

where β0
τ and βτ are the so-called regression coefficients and {v1, ...,vN ′} the vectors of predictors.

Quantile functions are estimated in the following for the probability levels τm defined by the ensem-
ble size following Eq. (2.4). Conditioned on the current forecast v0, the derived predictive quantile
function corresponds to:

Q̂τ (y | v0) = β̂0
τ + β̂τv0 (4.3)

where the regression coefficients are estimated separately for each forecast horizon and applied in-
discriminately to all locations or model grid points in this study.

The predictors that feed the regression model are usually the variables to be calibrated. For global
radiation, a standard predictor setup includes three components: the global radiation forecast itself (g),
a power transformation of the global radiation forecast (g2) in order to account for non-linearities,
and the radiation at the top of the atmosphere in order to capture the natural cycle associated with
the solar geometry. Applied to ensemble forecasts, the main predictor g is the first guess quantile
such as g = x(m) where x(m) is the ensemble member interpreted as a quantile forecast at probability
level τ = τm (Eq. 2.3). QR can also be applied to a deterministic forecast. In that case, the predictor g
corresponds to the single global radiation forecast for all examined probability levels.

Another important aspect of the first post-processing step is the definition of the historical dataset
on which the optimisation process is based. Today, a standard approach consists in using a rolling
window covering 4 to 10 weeks preceding the forecast to be calibrated (Gneiting et al., 2005). The
dataset is updated regularly in order to follow the seasonal pattern of the forecast-observation sta-
tistical characteristics. This approach has the advantage of being appropriate for operational suites
with frequent updates of the underlying model. The training dataset is here defined as a rolling win-
dow of 45 days updated on a daily basis.

With this setup, QR is applied to COSMO-DE-EPS global radiation forecasts and the impact of cali-
bration on the forecast performance is assessed over a 2 month period. Verification results are sum-
marised by means of the CRPSS. In Figure 4.1(a), calibrated ensemble forecasts are compared to raw
ensemble forecasts showing a significant increase of the forecast performance after calibration for
all daytime forecast horizons. Ranging between 15% and 40%, the improvement is more important
for sunrise/sunset hours but almost similar for day 1 and day 2. A deeper analysis is based on the
CRPS and QS decompositions (not shown). The decomposition of the CRPS applied to the calibrated
forecasts indicates that the reliability component becomes negligible and the resolution component
remains unaffected after the calibration step. Moreover, at the product level, the inspection of quan-
tile reliability diagrams demonstrates that the standard calibration approach is effective in providing
reliable probabilistic products.

In a second experiment, probabilistic forecasts are this time derived from deterministic forecasts us-
ing the same statistical method (QR) and a training sample of the same size (45 days). The derived
calibrated quantile forecasts, based on a single run approach, are used as reference forecasts for the
computation of the CRPSS in Figure 4.1(b). Calibrated forecasts appear to be significantly better
when derived from the ensemble forecasts rather than from single runs. The forecasts are reliable
in both cases as checked by reliability diagrams (not shown). The performance difference lies in the
higher information content in the ensemble case compared to the purely statistical approach. The re-
sult of this comparison was expected: CRPSS in Figure 4.1(b) and EAV in Figure 3.4 are the practical
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Figure 4.1: Verification results showing the impact of the calibration step in terms of CRPSS as a
function of the forecast horizon: (a) standard calibrated ensemble forecast (S. Ens.) against raw en-
semble forecast (Ens.), (b) standard calibrated ensemble forecast (S. Ens.) against standard calibrated
forecast from a single run (S. Det.), (c) weather-dependent calibration (W. Det.) against standard
calibration based on a single run, (d) weather-dependent calibration (W. Ens.) against standard cal-
ibration based on the ensemble forecast, and (e) weather-dependent calibrated ensemble forecast
against weather-dependent calibrated forecast from a single run. The box plots indicate confidence
intervals estimated by block bootstrapping. Results for the period July-August 2015.

and theoretical estimations of the ensemble benefit with respect to a single forecast, conditioned on
calibration, respectively.

4.2 Weather-dependent calibration

Weather-dependent calibration aims to go beyond a bias correction, which adjusts the forecast con-
ditioned only on its value and the slowly changing characteristics of the rolling training dataset.
Learning processes based on past data can exploit the historical dataset in order to relate weather si-
tuations with their influence on bias and spread deficits. In that case, the optimisation of the forecast
is not only expected to provide reliable forecasts but also to increase their discrimination ability.
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CHAPTER 4. ENSEMBLE POST-PROCESSING

Two different types of approaches have been proposed for this purpose. First, the training dataset
can be adapted as a function of the forecast to be calibrated. Post-processing of ensemble forecasts
based on the analogue technique follows this approach (Hamill and Whitaker, 2006; Junk et al., 2015).
The training dataset is restricted only to past forecasts (and the corresponding observations) sharing
a certain degree of similarity with the current one. Therefore, this approach requires a long record of
observations and forecasts with a frozen configuration of the numerical model and of the ensemble
setup. This is obviously a drawback for regularly updated operational systems.

The second type of approach, which is applied here, consists in enlarging the number of predictors
entering the optimisation process. This approach is appropriate for regression techniques such as
QR. The training dataset is increased by including forecasts of weather variables that potentially in-
form about forecast error characteristics. With this approach, training samples can still be defined as
rolling windows.

A selection of appropriate predictors is desired for each regression equation. The minimisation pro-
blem is solved independently for different forecast horizons and for a range of probability levels.
Meaningful predictors in one case could be uninformative in another one. In this context, the re-
gularization of the regression scheme offers an appealing approach for a rigorous and automated
predictor selection. Regularization consists in adding a penalty term in the regression equation that
constrains a given number of predictors to receive null weights, and consequently activates only the
remaining ones. With this technique, the predictor selection avoids problems related to overfitting
and colinearities between predictors (Siegert et al., 2011).

The regularization implemented here follows the Least Absolute Shrinkage and Selection Operator
(LASSO) approach (Tibshirani, 1996; Wahl, 2015). Formally, the penalty term corresponds to the
absolute size of the regression coefficients modulated by a regularization parameter noted λr. Ap-
plied to QR, the scheme is called penalized quantile regression (PQR), and the regression coefficients
(β0
τ ,βτ ) are estimated solving the following minimisation problem:

arg min
(β0
τ ,βτ ))

N ′∑

j=1

ρτ (yj − β0
τ − βτ ṽj) + λr‖βτ‖ (4.4)

where ‖ · ‖ refers to the L1-norm, and {ṽ′1, ..., ṽN ′} are normalized pre-selected predictors (with zero
mean and unit variance). The regularization parameter λr is optimised at each calibration step by a
leave-n-out score as measure of performance, where the natural score here is QS (Bröcker, 2010, see
Section C.5) .

The pre-selected predictors that enter the selection process are derived from direct model outputs. A
list of 13 weather variables is proposed in Appendix C (see Table C.1). The weather predictors include
forecasts of cloud cover, precipitation, temperature, and wind at different levels. Only predictor va-
lues at each station are considered in the following while a weather dependent calibration approach
could possibly also account for derived weather patterns using for example principal component
analysis (Friederichs and Hense, 2007). Considering ensemble forecasts at the station level, several
derived quantities are used as predictors, namely the ensemble mean, the ensemble spread, the mi-
nimum and the maximum of all members, for each weather variable, at each forecast horizon. The
pool of pre-selected predictors v′ includes finally the standard predictors (functions of global radia-
tion forecasts and radiation at the top of the atmosphere), the weather predictors, and multiplicative
terms combining the weather predictors and the global radiation forecasts (see Section C.3).

PQR based on rolling windows of 45 days is applied to COSMO-DE-EPS global radiation forecasts.
An example of the resulting calibrated forecasts is provided in Figure 2.2(c). A subjective assess-
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Figure 4.2: Reliability and resolution components of the QS for quantile forecasts at probability levels
10% (a), 50% (b), and 90% (c). Results are shown for the original ensemble (×), calibrated determin-
istic forecasts with QR (◦), calibrated ensemble forecasts with QR (•), calibrated deterministic fore-
casts with PQR (�), and calibrated ensemble forecasts with PQR (�). The confidence intervals are
estimated by block bootstrapping. Results for the period July-August 2015 and a forecast horizon of
9 hours.

ment of this case study suggests that the calibrated forecast with PQR is still relatively sharp but
better captures the observation variability than the uncalibrated forecast plotted in Figure 2.2(b). In a
parallel experiment, PQR is also applied to deterministic forecasts. First, the impact of the weather-
dependent calibration approach is analysed in the single and ensemble cases separately, and then the
comparison between single and ensemble cases is discussed at the end of this Section 4.2.

In Figure 4.1(c), the impact on the forecast performance of the weather-dependent calibration with re-
spect to the standard calibration is plotted in terms of CRPSS as a function of the forecast horizon for
the single run case. Based on deterministic forecasts, the weather-dependent approach increases si-
gnificantly the quality of the calibrated forecasts with an improvement of about 10%. Comparing the
CRPSS in Figure 4.1(c) and Figure 4.1(b) that share the same reference forecast, weather-dependent
calibrated forecasts based on a single forecast appears to be as performant as standard calibrated
forecasts based on an ensemble forecast.

In Figure 4.1(d), the impact of the weather-dependent approach is assessed in the ensemble case.
Also in that case, calibration based on adequate weather predictors significantly improves the cali-
brated forecasts. CRPSS is about 5% and the benefit of the weather-dependent calibration appears
to be more pronounced for day 1 than day 2. Using now the weather-dependent calibrated forecast
based on deterministic forecasts as reference, the CRPSS of the weather-dependent calibrated en-
semble is shown in Figure 4.1(e). Considering enhanced calibration techniques at hand, the benefit
of the ensemble approach is still significantly positive over day 1 and most hours of day 2 but not
exceeding 4%.

In Figure 4.2, the impact of calibration is analysed at the product level showing reliability and res-
olution components of the QS for quantile forecasts at three probability levels: 10%, 50%, and 90%.
The raw ensemble is compared to calibrated forecasts based on the ensemble or on single runs, using
a standard calibration approach or a weather-dependent technique. All calibrated quantile forecasts
exhibit good statistical consistency and similar reliability terms independently of the predictors and
of the approach implemented. The main difference between the calibrated forecasts becomes evi-
dent in their information content. Standard calibration of the ensemble forecast does not affect the
forecast resolution ability whereas weather-dependent calibration improves it, in particular for in-
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termediate probability levels. Using deterministic forecasts as predictor, the information content of
the calibrated forecasts is able to reach the level of the original ensemble when a weather-dependent
approach is applied.

The results in Figure 4.2 indicates that the generation of reliable probabilistic products can be achieved
using either QR or PQR, based on ensemble or deterministic forecasts. Weather-dependent forecast
uncertainty, in a univariate framework, can be assessed with an ensemble system or applying en-
hanced statistical methods to a single forecast with similar results. The combination of the ensemble
approach and complex statistical methods is nevertheless the best option in terms of forecast perfor-
mance.

Furthermore, the relevance of ensemble forecasts as a basis for post-processing is examined. A cha-
racteristic of the ensemble, which has not been explored yet, is that the forecasts provide not only
probabilistic information at a single location and forecast horizon but also a complete view of the
forecast uncertainty and its dependence structure across time, space and weather variables. The
multivariate aspect of the forecast and techniques that allow generating scenarios based on informa-
tion from the original ensemble are now discussed.

4.3 Generation of consistent scenarios

After the first post-processing step, calibrated quantile forecasts are provided at each forecast horizon
and location within the model domain separately. Consequently, information about the dependence
structure of the forecast is no more provided as illustrated in the example of Figure 2.2(c). Physically
consistent probabilistic forecasts across time and space are however required for complex decision-
making situations encountered in renewable energy applications (e.g. Pinson et al., 2009). The second
post-processing step aims therefore to reconstruct consistent scenarios based on the ensemble cali-
brated marginals. This step is performed using the mathematical concept of the copula (e.g. Mikosch,
2006; Schölzel and Friederichs, 2008).

The relationship between a multivariate distribution function and its univariate marginal distribu-
tions is stated by Sklar’s theorem (Sklar, 1959). A multivariate cumulative distribution function
F(y1, ..., yK) = Pr[Y1 ≤ y1, ..., YK ≤ yK ], with y1, ..., yK ∈ R, can be expressed as:

F(y1, ..., yK) = C(F1(y1), FK(yK)) (4.5)

where Fk(y) = Pr[Yk ≤ yk] with k ∈ {1, ..,K} are the univariate marginals, and C a copula function.
Quantiles of the predictive marginal distributions F1, ..., FK are provided by the first post-processing
step while the copula C, which models the dependencies, has to be specified. The use of copulas does
not modify the problem dimension, but allows to focus sequentially on the marginals and on the de-
pendencies.

The choice of the copula depends on the problem at hand, and in particular on its dimensionality
K. Parametric families of copulas based on well-known distributions are adequate for small dimen-
sion applications. For example, post-processing based on Gaussian copulas can be applied to the
simultaneous calibration of the two components of wind vector forecasts (Schuhen et al., 2012). For
high-dimensional problems, non-parametric methods based on empirical copulas appear to be well-
suited.

Formally, an empirical approach is based on a discrete reference dataset noted:

z =
{

(z1
1 , ..., z

Ns
1 ), ..., (z1

K , ..., z
Ns
K )
}
, (4.6)
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with Ns the number of scenarios of dimension K. The rank correlation structure of the reference
template z is used to generate the multivariate dependence structures of the forecast. The permuta-
tions uk(n) for each dimension k ∈ {1, ...,K} are derived from the univariate rank statistics of znk in{
z1
k, ..., z

Ns
k

}
:

uk(n) = rank(znk ) =

Ns∑

i=1

I[zik ≤ znk ] (4.7)

where I[.] is an indicator function taking the value 1 if the condition in brackets is true and zero other-
wise. Calibrated scenarios are generated applying the permutations uk(n) to the calibrated quantile
forecasts q =

{
(qτ11 , ..., q

τNs
1 ), ..., (qτ1K , ..., q

τNs
K )

}
with qτik = F−1

k (τi). The post-processed forecasts
noted x̃ finally result from the following rearrangements:

x̃1
k = q

τuk(1)

k , ..., x̃Nsk = q
τuk(Ns)

k (4.8)

in the dimensions k ∈ {1, ...,K}.

The Ensemble Copula Coupling (ECC) approach uses the original ensemble forecast as reference
template z. The rank structure of the ensemble is conserved after post-processing assuming that the
ensemble forecast correctly represents the spatio-temporal dependence structure of the weather vari-
able (Schefzik et al., 2013). This approach is computationally cheap and provides a post-processed
ensemble with the same number of members and of the same dimension as the original one. How-
ever, ECC can generate non-realistic scenarios when the first post-processing step indiscriminately
increases the ensemble spread to a large extent. In that case, non-representative or random rank
structures in the raw ensemble are magnified after post-processing and inconsistent forecasts with
unrealistically high variability are generated.

4.4 Dual ensemble copula coupling

A new method for the generation of scenarios from calibrated marginals and ensemble information is
proposed in Appendix D. Based on ECC, the new empirical method aims to alleviate the generation
of unrealistic variability in the scenarios using the assumption of error stationarity in the forecast
already adopted in parametric approaches (Pinson et al., 2009; Schölzel and Hense, 2011). The so-
called dual ensemble copula coupling (d-ECC) is a semi-parametric approach that combines a dual
source of information: the original ensemble forecasts and the autocorrelation of the forecast error
estimated from past data.

d-ECC is implemented here focusing on scenarios in the form of time series, so the dimension of the
multivariate forecast corresponds to the forecast horizon denoted T . The temporal correlation of the
forecast error is described by a correlation matrixRe defined as:

Re =




re1,e1 re1,e2 · · · re1,eT
re2,e1 re2,e2 · · · re2e,T

...
...

. . .
...

reT ,e1 reT ,e2 · · · reT ,eT


 (4.9)

where ret1 ,et2 is the correlation of the forecast error between the forecast horizons t1 and t2. The corre-
lation matrix is estimated based on the training sample used for the first post-processing step, which
is a rolling window of 45 days updated on a daily basis. Elements of the estimated correlation matrix
R̂e are represented in Figure 4.3. Focusing on horizons of 9, 16 and 27 hours, the autocorrelation of
the forecast error is plotted as a function of the time lag. In the three examples, the autocorrelation
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Figure 4.3: Examples of time-lagged correlation coefficients, which are the elements of the forecast
error correlation matrix R̂e. Error correlation associated with forecasts with a horizon of 9 hours (a),
16 hours (b), and 27 hours (c). The boxplots indicate the variability within the 2 month test period.

of the error is above 0.5 for time lags of ± 1 hour and can still be significant for a time lag up to 10
hours. Moreover, the fairly small boxplots show that the autocorrelation in time is stable over the
different training samples.

The d-ECC approach is a process which starts with the application of the ECC method: a post-
processed forecast x̃ =

{
x̃1, ..., x̃M

}
is generated using the original ensemble x =

{
x1, ...,xM

}
as

reference template. The difference between the original and the post-processed forecast is computed
for each scenario and adjusted using the correlation matrix R̂e assuming stationarity of the forecast
error autocorrelation. A new set of reference template z =

{
z1, ...,zM

}
is derived following:

zm = xm + R̂e
1
2 (x̃m − xm). (4.10)

with m ∈ {1, ...,M}. The second term in Eq. (4.10) corresponds to an adjustment of each member
correction that involves the square root of the error correlation matrix. This adjustment resembles a
colouring transformation, a signal processing technique that allows adapting the covariance of a mul-
tivariate random variable. The dependence structure of z and the marginal quantiles q are then used
to derive the d-ECC scenarios following Eqs (4.7) and (4.8).

Scenarios derived by d-ECC and ECC are compared when applied to calibrated COSMO-DE-EPS
global radiation forecasts. The two scenario-generation techniques are combined with two types of
calibration: the standard and the weather-dependent calibration approaches presented in Sections
4.1 and 4.2, respectively. Four sets of calibrated scenarios are thus generated computing the follow-
ing experiments: (1) standard calibration with QR and scenarios derived by ECC, (2) standard cali-
bration with QR and scenarios derived by d-ECC, (3) weather-dependent calibration with PQR and
scenarios derived by ECC, and (4) weather-dependent calibration with PQR and scenarios derived
by d-ECC. An example of calibrated scenarios derived by this last combination of post-processing
steps is shown in Figure 2.2(d).

The assessment of these multivariate forecasts requires adequate scores. The Energy Score (ES) and
the p-Variogram Score (p-VS) are complementary multivariate scores that have demonstrated to be
proper (Gneiting et al., 2008; Scheuerer and Hamill, 2015). ES is a generalisation of the CRPS to the
multivariate case whereas p-VS is based on the geostatistical concept of variogram. Considering an
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ensemble with M scenarios xm with m ∈ {1, ...,M} and an observed scenario y, ES is defined as:

ES =
1

M

M∑

m=1

‖y − xm‖ − 1

2M2

M∑

m=1

M∑

m′=1

‖xm − xm′‖ (4.11)

where ‖.‖ represents the Euclidean norm, and and p-VS is defined as:

p-VS =
∑

t1 6=t2
µt1t2

(
| yt1 − yt2 |p −

1

M

M∑

m=1

| xmt1 − xmt2 |p
)2

(4.12)

where p is the order of the variogram and µkl are appropriate weights, respectively. The computation
of p-VS is performed using the variogram order p = 1 and p = 2, and the weights µt1t2 are chosen
proportional to the inverse squared distance in time:

µt1t2 =
1

(t1 − t2)2
, t1 6= t2, (4.13)

where t1 and t2 denote the index of two forecast horizons. Energy skill score (ESS) and p-variogram
skill score (pVSS) are defined similarly as the CRPSS, replacing in Eq. (3.19) CRPS and CRPS? by
the corresponding multivariate scores applied to the forecast under assessment and to a reference
forecast, respectively.

Besides the multivariate scores, the statistical consistency of the multivariate forecasts is investigated
by diagnostic tools. The Averaged Rank Histogram (ARH) and the Band Depth Rank Histogram
(BDRH) are two variants of rank histograms applied to multi-dimensional fields (Thorarinsdottir
et al., 2014). A rank histogram, in the univariate case, assesses the rank of the observations within
the ensemble (Hamill, 2001). In the multivariate case, pre-ranks from multivariate forecasts have to
be computed. For this purpose, ARH considers the rank, which is averaged over the multivariate
aspect. The interpretation of the derived histograms is the following: forecasts leading to a flat rank
histogram are interpreted as statistical consistent while histograms with a ∪-shape or a ∩-shape are
interpreted as indications of underdispersiveness or overdispersiveness of the forecasts, respectively.
On the other side, BDRH assesses the centrality of the observation within the ensemble based on the
concept of functional band depth. In that case, a ∪-shape is associated with underestimated correla-
tion, a ∩-shape with overestimated correlation in the ensemble, a skewed rank histogram to bias or
dispersion errors and a flat rank histogram to calibrated forecasts.

Figure 4.4 shows the results of the four experiments in terms of the multivariate skill scores ESS and
pVSS using the original ensemble forecast as reference. First, the positive impact of post-processing
as a whole appears clearly for the different scores and is significant for all experiments. Second, the
marginal calibration step has a strong influence on the performance of the final calibrated scenarios.
Third, d-ECC clearly outperforms ECC when the first post-processing step is not weather-dependent
but the superiority is not statistically significant. The benefit of the dual approach is smaller when the
calibration step accounts for weather-dependent biases in the forecast. Weather-dependent calibra-
tion improves the resolution of the forecast and thus provides calibrated forecasts which are sharper.
In that case, ECC is able to generate more realistic scenarios because the spread is increased to a
smaller extent and not applied indiscriminately, as it is the case for a standard calibration.

Figure 4.5 shows the results of the four experiments in terms of the multivariate rank histograms
ARH and BDRH. First, Figures 4.5(a) and 4.5(f) confirm that the original ensemble suffers from un-
derdispersiveness and requires calibration. Second, the d-ECC scenarios are better calibrated than
the respective ECC scenarios which exhibit remaining biases and a lack of correlation. d-ECC com-
bined with a standard calibration or with a weather-dependent calibration technique provides rea-
sonably well-calibrated scenarios as shown in Figures 4.5(c) and 4.5(h), and Figures 4.5(e) and 4.5(j),
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Figure 4.4: Multivariate skill scores of COSMO-DE-EPS global radiation forecasts: energy skill score
(a), p-variogram skill score with p = 1 (b), and p-variogram skill score with p = 2 (c) applied to stan-
dard calibrated scenarios combined with ECC (S), standard calibrated scenarios combined with d-
ECC (S.d), weather-dependent calibrated scenarios combined with ECC (W), and weather-dependent
calibrated scenarios combined with d-ECC (W.d). The reference forecast in all cases is the raw ensem-
ble forecast. The confidence intervals are estimated by block bootstrapping. Results for the period
July-August 2015.
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Figure 4.5: Multivariate rank histograms of COSMO-DE-EPS global radiation forecasts: average rank
histograms (a,b,c,d,e) and band depth rank histograms (f,g,h,i,j) for time series scenarios. The scenar-
ios correspond to the raw ensemble forecast (a,f), standard calibrated scenarios combined with ECC
(b,g), standard calibrated scenarios combined with d-ECC (c,h) weather-dependent calibrated sce-
narios combined with ECC (d,i), and weather-dependent calibrated scenarios combined with d-ECC
(e,j). Results for the period July-August 2015.

respectively. Nevertheless, the combination of PQR and d-ECC provides the best results in terms of
multivariate reliability.
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5. Summary and conclusion

Power forecasts are essential for an efficient and cost-effective grid integration of renewable energies.
For a time horizon of few hours up to several days, renewable energy applications are commonly
based on the outputs of numerical weather prediction (NWP) systems. Solar and wind forecasting
cover various spatial and temporal scales and, moreover, reserve management and trading activities
have to account for users with different risk aversions. Therefore, reliable probabilistic information
that is physically consistent across time, space and variables is needed for the optimisation of the
users’ decision-making processes.

In NWP, ensemble forecasting is a standard method to provide flow-dependent uncertainty infor-
mation. Possible sources of error in the forecast can be accounted for in the ensemble setup by
means of variations in the initial conditions and perturbations of the model physics. At DWD, a
high-resolution ensemble system has been running operationally since 2012. COSMO-DE-EPS is a
20-member ensemble based on a multi-analysis and multi-physics setup. First developed focusing
on high impact weather events, the ensemble system today aims to be used for renewable applica-
tions in order to support the integration of weather-dependent energy sources in the national power
grid.

However, probabilistic products directly derived from the ensemble system are usually not fully
reliable which is a necessary condition for the optimisation of decision-making processes. The as-
sessment and the statistical post-processing of the ensemble forecast are fundamental in this context.
The potential and deficiencies of the ensemble system are evidenced through a verification process
while post-processing aims to correct for the statistical deficiencies in order to reveal the full poten-
tial of the ensemble forecast.

In this study, COSMO-DE-EPS performances are investigated focusing on global radiation, which
is the main weather variable affecting solar power production. The innovative methods proposed
and implemented in this manuscript are not specific to solar applications but are applicable to other
variables of interest, like wind for example. A two month period of summer 2015 is used as illustra-
tive dataset. Verification results are based on forecasts of the 03 UTC runs with a horizon recently
extended to 45 hours. Quality checked pyranometer measurements from 24 stations are used as ob-
servations.

Ensemble predictive performance

Quantile forecasts are appropriate probabilistic products for the optimisation of decision making
and risk management in many renewable energy applications. The quantile score (QS) is the natu-
ral scoring rule for the evaluation of the quantile forecast quality. The assessment of the ensemble
forecast as a whole can be performed based on the Continuous Ranked Probability Score (CRPS),



which is a common score for the assessment of predictive distributions. The CRPS can be expressed
as a weighted sum of QS applied to the sorted ensemble members. The decomposition of the proper
scores QS and CRPS allows an interpretation of the verification results in terms of statistical consis-
tency and information content. However, from the user’s point of view, adequate verification tools
are required for the assessment of the forecast value, which can substantially differ from the forecast
quality. From the point of view of the developer, the added value of the ensemble forecast with re-
spect to a single forecast has also been investigated.

In Appendix A, tools for the assessment of quantile forecast discrimination ability and value are pro-
posed. The performance of a forecast is analysed for a specific user in a decision-making framework.
The so-called relative user characteristic (RUC) curve and the quantile value plot extend existing
concepts for the verification of probability forecasts to their equivalent for the case of quantile fore-
casts. The relationship between the overall value of a quantile forecast and the respective quantile
skill score is also clarified.

In Appendix B, a new metric called ensemble added value (EAV) is proposed in order to assess the
potential benefit of the ensemble approach with regards to a single run approach. The comparison
relies on a probabilistic interpretation of the ensemble and deterministic forecasts where both fore-
casts can be optimised as a function of the user’s needs. So, the EAV takes the form of a skill score
with a focus on the forecast information content.

Based on standard and new tools, the investigation regarding the performance of COSMO-DE-EPS
global radiation forecasts can be summarised as follows:

• the ensemble forecast suffers from statistical inconsistencies, which affect the forecasts at all
horizons. The decomposition of the QS and the associated reliability diagrams show that nega-
tive and positive biases are associated with low and high probability levels, respectively, while
quantile forecasts at intermediate levels are well calibrated. Thus, underdispersiveness and
biases in the system affect the reliability of the derived probabilistic products.

• in terms of information content, COSMO-DE-EPS demonstrates to bring valuable input for
decision-making processes. Results are based on the innovative tools dedicated to the assess-
ment of probabilistic forecast in terms of quantiles from the user’s perspective. Conditioned on
calibration, the forecast value is higher in the ensemble-derived forecast case than in the case
of forecasts based on a single run, for all types of users and all investigated events of interest.

• from the developer’s perspective, the ensemble added value of COSMO-DE-EPS global ra-
diation forecasts is significantly positive for all forecast horizons and tends to increase with
the lead time. Thus, the ensemble-derived forecasts outperform purely statistical probabilistic
products based on a deterministic forecast.

Ensemble calibrated scenarios

Statistical post-processing is required in order to correct for statistical deficiencies, which typically
affect ensemble forecasts of surface variables. Learning from past errors, the forecasts are corrected
aiming at providing reliable probabilistic products. Statistical methods should also preserve the
advantage of the ensemble approach, which provides flow-dependent information with a fully con-
sistent view of the forecast uncertainty across time, space and weather variables.

In Appendix C, quantile regression (QR) is shown to be an appropriate method for the calibration of
ensemble global radiation forecasts. A standard setup of predictors includes the first guess quantile
forecasts and a variable describing the solar geometry. With an enhanced technique called penalized
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quantile regression (PQR), adequate meteorological predictors are selected among a pool of ensem-
ble model outputs. The enhanced approach leads to a weather-dependent calibration of the ensemble
forecasts which can improve the discrimination ability of the forecasts.

In Appendix D, a new method for the generation of consistent scenarios based on calibrated ensem-
ble forecasts is proposed. While the ensemble copula coupling (ECC) preserves the rank structure of
the original ensemble forecasts after post-processing, the new approach called dual ensemble copula
coupling (d-ECC) aims to combine information from the original ensemble forecast and from past er-
ror statistics. Thus accounting for the autocorrelation of the forecast error, d-ECC allows generating
realistic scenarios.

The results regarding the application of these post-processing techniques to COSMO-DE-EPS global
radiation can be summarised as follows:

• statistical inconsistencies of the ensemble forecasts can be corrected with QR or PQR. Thereby,
the performance of the ensemble forecasts is considerably improved. The CRPSS comparing
the forecast before and after calibration with QR is of about 30% and is significantly greater
than 10% over all forecast horizons.

• using as benchmark probabilistic products derived by QR applied to deterministic forecasts,
calibrated ensemble forecasts are about 10% better and the benefit of the ensemble approach
tends to increase with the forecast horizon. The CRPSS emerging from this comparison is the
practical equivalent of the theoretical EAV.

• meaningful predictors can be automatically selected by PQR. The weather-dependent calibra-
tion increases the information content of the calibrated forecasts and thereby the calibrated
forecast value.

• applying d-ECC, statistically consistent time-series scenarios can be generated. The d-ECC
approach outperforms ECC and is able to perform well independently of the choice of the
marginal calibration method. Thus, a two-step procedure which consists in applying consecu-
tively PQR and d-ECC provides an enhanced framework for the post-processing of ensemble
global radiation forecasts.
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Appendix A

Quantile forecast discrimination ability and value

The content of this appendix is the submitted author’s version of a manuscript published in 2015 in
the Quarterly Journal of the Royal Meteorological Society with reference:

Ben Bouallègue Z., P. Pinson and P. Friederichs, 2015 : Quantile forecast discrimination
ability and value. Q.J.R. Meteorol. Soc. 141: 3415–3424.

N.B.: mathematical symbols and notations of the original text have been freely adapted in order to
be consistent with the rest of the manuscript at hand.
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Abstract

While probabilistic forecast verification for categorical forecasts is well established, some of the
existing concepts and methods have not found their equivalent for the case of continuous vari-
ables. New tools dedicated to the assessment of forecast discrimination ability and forecast value
are introduced here, based on quantile forecasts being the base product for the continuous case.
The relative user characteristic (RUC) curve and the quantile value plot allow analysing the perfor-
mance of a forecast for a specific user in a decision-making framework. The RUC curve is designed
as a user-based discrimination tool and the quantile value plot translates forecast discrimination
ability in terms of economic value. The relationship between the overall value of a quantile forecast
and the respective quantile skill score is also discussed. The application of these new verification
approaches and tools is illustrated based on synthetic datasets, as well as for the case of global radi-
ation forecasts from the high resolution ensemble COSMO-DE-EPS of the German Weather Service.

A.1 Introduction

Verification of probabilistic weather forecasts is an area of intensive research and growing interest as
ensemble forecasting is becoming a standard approach in numerical weather prediction. Ensemble
prediction systems (EPS) issue a sample of possible future states of the atmosphere (Lewis, 2005;
Leutbecher and Palmer, 2008). The forecasts can be interpreted in the form of a predictive distri-
bution and probabilistic products can be derived in order to support and optimize forecast-based
decision-making (Krzysztofowicz, 1983). Appropriate tools for the assessment of probabilistic pro-
ducts from this perspective are therefore essential.

Such tools already exist for probabilistic products expressed in the form a probability forecast for a
defined event. The relative operating characteristic (ROC) curve is a common verification tool for
the assessment of probability forecasts (Mason, 1982). The ROC curve is related to decision-making
analysis and the corresponding fundamental property of the forecast is called discrimination. Forecast
discrimination assesses whether the forecast can be used to successfully discriminate between the ob-
servations (Murphy, 1991) or, said differently, whether appropriate decisions can be taken based on
a forecast. Discrimination is translated in terms of economic value using a simple cost-loss model that
allows the specificity of a user to be taken into account through the definition of a cost-loss ratio. The
derived quantitative measure is called value score or relative value and is usually represented in the
form of a probability value plot showing the forecast value as a function of the user’s cost-loss ratio
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(Richardson, 2000; Wilks, 2001; Zhu et al., 2002). The value of a forecast is defined as the benefit to
a user as a result of making decisions based on a forecast and has to be distinguished from forecast
quality, the overall agreement between forecast and observation (Murphy, 1993). In a verification
process, value and quality can be seen as being from the point of view of the forecast user and from
the point of view of the forecast provider, respectively. The distinction between the two types of good-
ness, value and quality, is crucial since a non-linear relationship between them can lead to situations
where a large improvement in the forecast quality does not imply an increase in the forecast value,
or conversely, a small improvement in forecast quality can bring a notable benefit in terms of forecast
value (Chen et al., 1987; Buizza, 2001; Pinson, 2013).

Probabilistic products can be expressed in terms of a probability when the focus is on a particular
event of interest, but also in terms of a quantile when the focus is on a particular probability level of
interest. While a probability forecast first requires the definition of an event, i.e. the categorization
of the original information, a quantile forecast is a ’single-valued’ forecast expressed in the unit of
the variable being forecast. Considering here probabilistic products derived from EPS simulations
for continuous variables, such as temperature, wind speed or global radiation, quantile forecasts
of the predictive distributions allow one to work with a continuous forecast as the original one by
defining a nominal probability level. The choice of a probability level is directly related to the user’s
loss function: a quantile forecast at a given probability level is the optimal forecast for users with a
specific asymmetry in their loss function (Koenker and Machado, 1999; Friederichs and Hense, 2007;
Gneiting, 2011a). Asymmetric loss functions find numerous real-world applications, in particular in
the renewable energy sector (Pinson et al., 2007; Pinson, 2013). For example, consider solar energy
producers who have to agree in advance about the amount of energy to be provided to their cus-
tomer. If too much energy is produced, they will sell the extra at a reduced price, while if they do
not produce enough energy they will be heavily penalised. The asymmetry in the producer’s loss
function is drawn from the different penalties associated to over- and under-forecasting.

Based on the relationship between user’s loss function and quantile forecast level, the quantile score
(QS) is the natural scoring rule for assessing the quality of quantile forecasts (Koenker and Machado,
1999; Friederichs and Hense, 2007; Gneiting, 2011a). More recently, the verification of quantile fore-
casts has benefited from the tradition and concepts stemming from the probability forecast verifica-
tion framework. It has been shown that QS is a proper scoring rule and a decomposition of the score
has been proposed (Bentzien and Friederichs, 2014). The QS decomposition provides information
about reliability and resolution, two other fundamental attributes of a probabilistic forecast (Toth et al.,
2003).

The aim of the paper at hand is to extend the range of verification methods dedicated to the as-
sessment of quantile forecasts. In particular, the assessment of quantile forecasts from the user’s
perspective, in a decision-making framework, is explored here. Based on a simple cost-loss model,
the concepts of forecast discrimination and forecast value are revisited focusing on a specific user
rather than on an specific event. First, a new tool is proposed for the analysis of user-based discrim-
ination. The so-called relative user characteristic (RUC) curve and the associated summary measure
are shown to be adequate for the assessment of quantile forecast discrimination ability. Secondly,
quantile forecast value is discussed as an application of the value score to quantile forecasts. The
quantile value plot, showing the economic value of a forecast as a function of a range of events of
interest, is proposed as a new tool for the visualization of quantile forecast performance. Finally, the
relationship between quantile forecast value and quantile skill score is discussed in the same vein
as the relationship between probability forecast value and Brier skill score (Murphy, 1969). The con-
cepts developed are first illustrated with the help of synthetic datasets and in a second step applied
to probabilistic forecasts derived from an EPS.

The manuscript is organized as follows: Section A.2 describes the datasets that are used to illustrate
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the discussion. Section A.3 introduces definitions and notations and describes the relationship be-
tween quantile forecast and forecast user within a cost-loss model framework. Section A.4 discusses
the concept of discrimination and Section A.5 the application of the economic value score to quantile
forecasts. Section A.6 presents the conclusions.

A.2 Data

Synthetic datasets

In order to illustrate the concepts discussed hereafter, we make use of synthetic and real datasets.
The synthetic data are derived from a toy-model based on normal distributions often used to illus-
trate verification discussions (e.g. Hamill, 2001; Weigel, 2011). The toy-model is kept simple in order
to facilitate the interpretation of the results.

We consider a signal h, normally distributed, written h ∼ N (0, 1). We assume that the observations
are randomly drawn from a distributionN (h, 1) and the associated predictive distribution described
byN (h+b, σ) where b is the unconditional bias parameter and σ the dispersion parameter. We define
the following test-cases:

A0 : b = 0, σ = 1 (a perfect probabilistic forecast) ,

A1 : b = −0.75, σ = 1 (a biased forecast),

A2 : b = 0, σ = 1/3 (an underdispersive forecast),

B : b = εB , σ = 1 (a forecast with white noise),

where εB is derived from a uniform distribution defined on [−5, 5]. The first three datasets A0, A1

and A2 differ only in terms of biases while the fourth dataset B corresponds to a forecast with a
dynamically disturbed signal. The simulation setup, the values associated to b, σ and εB , has been
chosen in order to make clear the reading of the Figures in Section A.4 and A.5 but does not affect
the general interpretation of the simulation results.

COSMO-DE-EPS

Real datasets are provided by COSMO-DE-EPS, a regional ensemble prediction system run opera-
tionally at Deutscher Wetterdienst, Offenbach, Germany. The ensemble system is based on a 2.8 km
grid resolution version of the COSMO model (Steppeler et al., 2003; Baldauf et al., 2011) with a model
domain that covers Germany and parts of the neighbouring countries. The ensemble comprises 20
members including variations in initial conditions, physics parameterisations and boundary condi-
tions (Gebhardt et al., 2011; Peralta et al., 2012).

COSMO-DE-EPS has been first developed focusing on high-impact weather events (Ben Bouallègue
et al., 2013; Ben Bouallègue and Theis, 2014) and is planned to be used for energy-applications. The
focus in this paper is on global radiation (the sum of direct and diffuse shortwave radiations) which
is the main weather variable affecting solar energy forecasts. Verification is applied to the 0300UTC
run with a forecast horizon ranging between 5 and 15 hours. Two periods of 3 months are compared:
winter (December, January, February) 2012/2013 and summer (June, July, August) 2013. The obser-
vation dataset consists of pyranometer measurements from 32 stations distributed over Germany
and quality controlled (Becker and Behrens, 2012).

Global radiation forecasts and observations are transformed into clearness index before verification.
The clearness index is defined as the ratio between global radiation at ground and global radiation
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Figure A.1: Example of a predictive cumulative distribution function FX(x). Probabilistic products
are derived either fixing a threshold ψ and deriving the associated probability forecast pψ , or fixing
a probability level τ and deriving the associated quantile forecast qτ .

at the top of the atmosphere (Badescu, 2008). This pre-processing of the data allows climatological
effects and misinterpretation of the verification results to be avoided (Hamill and Juras, 2006).

A.3 Definitions and framework

Quantile forecast, quantile score, and quantile skill score

We first consider the quantity to be forecast (or observation) Y ∈ < that we assume to be a continuous
random variable driven by a stochastic process. An observed event E is defined by a threshold ψ as
E : Y ≥ ψ. The base rate π of an event E (or climatological frequency) corresponds to:

π = Pr(Y ≥ ψ). (A.1)

Consider now a predictive cumulative distribution FX(x). The probability forecast pψ of event E is
defined as:

pψ = 1− FX(ψ). (A.2)

The quantile forecast qτ at probability level τ (0 ≤ τ ≤ 1) is defined as:

qτ := F−1
X (τ) = inf{x : FX(x) ≥ τ} (A.3)

such that the relationship between a probability forecast and a quantile forecast is expressed as:

pqτ = 1− τ. (A.4)

Figure A.1 shows an example of a cumulative distribution function FX(x). A threshold ψ and the
associated probability forecast 1−pψ as well as a probability level τ and the associated quantile fore-
cast qτ are shown on the plot.

The quantile score (QS) is the scoring rule applied in order to assess the quality of a quantile forecast.
QS is based on an asymmetric piecewise linear function ρτ called the check function. The check
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function was first defined in the context of quantile regression (Koenker and Bassett, 1978):

ρτ (u) = u[τ − I(u < 0)] =

{
τu if u ≥ 0

(τ − 1)u if u < 0
(A.5)

where I(.) is an indicator function having value 1 if the condition in parenthesis is true and zero
otherwise. QS results from the mean of the check function applied to the pairs i = 1, ..., N of obser-
vation yi and quantile forecast qτ,i following

QS =
1

N

N∑

i=1

ρτ (yi − qτ,i), (A.6)

where N is the size of the verification sample. Developing Eq. (A.6) we can write

QS =
1− τ
N

∑

i:yi<qτ,i

(qτ,i − yi) +
τ

N

∑

i:yi≥qτ,i
(yi − qτ,i) (A.7)

The scoring rule consists of penalties 1− τ and τ per unit of Y associated with under-forecasting and
over-forecasting, respectively.

Skill scores are computed in order to measure the relative benefit of using a forecast compared to
a reference forecast (Wilks, 2006b). The quantile skill score (QSS) measures the skill of a quantile
forecast compared to a reference quantile forecast. Considering the climatology as reference, QSS
corresponds to:

QSS =
QSforecast −QSclimate

QSperfect −QSclimate
= 1− QSforecast

QSclimate
(A.8)

whereQSforecast, QSperfect andQSclimate represent the quantile scores of the forecast under assessment,
of a perfect deterministic forecast and of a climatological τ -quantile forecast, respectively. QSperfect,
by definition, equals 0 and a climatological τ -quantile forecast, noted yτ , is here defined as the τ -
quantile of the observation distribution over the verification sample. Using the sample climatology
for the reference forecasts, one should be aware, interpreting the results, that it produces a disadvan-
tage for the forecasts, especially as the sample size is relatively small.

Cost-loss model and optimal decision-making

The framework used to discuss the concept of user and decision-making is based on a static cost-
loss model (Thompson, 1962; Katz and Murphy, 1997). The cost-loss model describes situations of
dichotomous decisions: a user has to decide whether or not to take protective action against potential
occurrence of an event E. The decision is made based on a decision variable (or forecast) Λ. A
decision criterion λ applied to the decision variable defines an action A : Λ ≥ λ. Taking action
implies a cost C. In the case of occurrence of the event E without preventive action, a loss L is
encountered. The cost-loss ratio is denoted α:

α =
C

L
. (A.9)

A user with cost-loss ratio α is called hereafter an α-user. Based on this simple model the optimal de-
cision strategy of an α-user can be discussed (e.g. Richardson, 2011). The problem consists of finding,
for a decision variable Λ, the critical decision criterion λα that minimizes the α-user mean expense if
actions are taken when Λ ≥ λα.

Consider first the case of a probability forecast pψ as a decision variable. Based on pψ , does the user
have to take action or not? In order to answer this question, the average expenses in the cases of
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positive and negative answers are compared. If the answer is yes, the user encounters a cost C on
every occasion, so the average expense Ēyes is simply

Ēyes = C. (A.10)

If the answer is no, the user has no cost but a loss L on each occasion where the event occurs, so on
average the user’s expense Ēno is

Ēno = LPr(Y ≥ ψ | pψ), (A.11)

where Pr(Y ≥ ψ | pψ) is the probability that the event occurs when the probability forecast pψ is
issued. So, users with a cost-loss ratio α < Pr(Y ≥ ψ | pψ) should take preventive action, while
users with a greater cost-loss ratio should not. The critical decision criterion p?ψ associated with the
decision variable pψ is thus defined as

p?ψ = {pψ |Pr(Y ≥ ψ | pψ) = α}. (A.12)

Thus, the action based on the probability forecast A : pψ ≥ p?ψ optimizes the user’s mean expense in
the long term.

If the forecast is reliable, we have by definition Pr(Y ≥ ψ | pψ) = pψ : the event actually happens with
an observed relative frequency consistent with the forecast probability (Bröcker, 2009). The optimal
decision is then to take action if

pψ ≥ α. (A.13)

When the probability forecast is compared to the cost-loss ratio in order to decide whether or not
to take action (without additional information about forecast reliability), we say that the probability
forecast is taken at face value. For example, consider users who have to decide whether or not to
take preventive action against precipitation occurrence. If the forecast probability of precipitation is
10%, users with cost-loss ratio lower than 10% take action. If the forecast is not reliable, the critical
decision criterion is no longer α but has to be adjusted following Eq. (A.12). Statistical adjustments
of the forecast based on past data is usually referred as forecast calibration (e.g. Gneiting et al., 2007).

Consider now a quantile forecast qτ as a decision variable. We apply the same reasoning as for a
probability forecast. The critical decision criterion q?τ associated with qτ is defined as

q?τ = {qτ | Pr(Y ≥ ψ | qτ ) = α} (A.14)

such that taking action when qτ ≥ q?τ minimizes the user mean expense. By definition, a quantile
forecast is reliable if it satisfies

Pr(Y ≥ ψ | qτ = ψ) = 1− τ, (A.15)

i.e. the observed relative frequency of the event defined by the quantile forecast is consistent with
the quantile forecast probability level. Eq. (A.14) has a straightforward solution

q?τ = ψ (A.16)

when the decision variable is the quantile forecast at probability level τ defined as

τ = 1− α. (A.17)

Taking action when qτ ≥ ψ with τ = 1 − α is equivalent to taking action when pψ ≥ α since the cu-
mulative probability distribution function FX(x) is by definition monotonically increasing (see e.g.
Figure A.1). Hence, a quantile forecast is taken at face value when the user’s decision is made based
on the comparison of the forecast with the event threshold ψ. In our example, if the 90%-quantile
forecast of precipitation is greater than zero, a user with cost-loss ratio α = 1 − 0.9 = 0.1 takes pre-
ventive action.
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Figure A.2: (a) Cost (dashed line) as a function of the level of protection x and loss (full line) as a
function of the observation Y . An observation yi is represented by a vertical line. (b) Expense as a
function of the difference between the observation yi and the level of protection x. The horizontal
line indicates the expense for a perfect level of protection.

In a general form, the critical decision criterion λα for an α-user is defined by

λα = {λ | Pr(Y ≥ ψ | λ) = α} (A.18)

where the decision variable could equally be the probability forecast pψ or the quantile forecast qτ
with τ = 1 − α. Provided that the forecasts are reliable, the critical decision criteria are known
and have a simple expression (Eqs (A.13,A.16)). In the following, we say that the decision variable is
taken at face value when the user applies the decision criterion valid for a reliable forecast, irrespective
of whether the forecast is actually reliable or not.

Quantile forecast user

The dichotomous decision problem is extended to a continuous decision problem considering the
cost C and the loss L as unitary cost and unitary loss, respectively (Epstein, 1969b; Roulston et al.,
2003). The cost of taking protection is a linear function of the level of protection x and the loss with-
out protection is a linear function of the observation Y , as illustrated in Figure A.2. The optimization
problem consists of finding the level of protection that minimizes the expected user expense.

Considering a variable defined on <+ (the generalization to variables defined on < is straightfor-
ward), the expense associated with a level of protection x corresponds to Cx. If the observation is y,
then protection is perfect if x = y. But if x > y, then there is an unnecessary expense due to a larger
level of protection than is actually needed. If the observation y is greater than the level of protection,
then a loss L(y − x) is encountered and a cost C(y − x) avoided. Formally, we can write the expense
function E as

E =

{
C(x− y) if y < x

(L− C)(y − x) if y ≥ x. (A.19)

The expense function is represented in Figure A.2. If divided by L, the expense function is an asym-
metric loss function equivalent to the check function defined in Eq. (A.5), where the asymmetry is
given by τ = L−C

L . Thus the optimal level of protection x? which minimizes the user’s mean expense
corresponds to the 1− α quantile of the true predictive distribution of Y .

This result is not new: quantile forecasts arise as an optimal solution for users with an asymmetric
linear loss function (Koenker and Bassett, 1978; Christoffersen and Diebold, 1997). More recently, it
has been shown that quantile forecasts are optimal forecasts in a stochastic optimization framework
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for a more general class of loss functions (Gneiting, 2011b).

Asymmetric loss functions find a number of applications, in particular for operational decision-
making problems related to the integration of renewable energies into the electricity grid. For ex-
ample, asymmetric loss functions can be associated with market participants who want to optimize
their bids or system operators who have to optimize their reserves. The different penalties associ-
ated to over- or under-forecasting draw the asymmetry in the user’s loss function. The user’s optimal
forecast corresponds then to a specific quantile of the predictive distribution where the probability is
defined by the user’s cost-loss ratio (Pinson et al., 2007; Pinson, 2013).

A.4 Discrimination

Based on the discussion developed in the previous Section, continuous decision making is seen in the
following as a continuum of dichotomous decisions. For each threshold ψ of the event spectrum, the
question is whether to take action for the next unit of the variable. The adequate decision for a user
in order to minimize the expected expense is a function of his (her) cost-loss ratio as defined in Eq.
(A.18). Moreover, the relationship between cost-loss ratio and quantile probability level, τ = 1 − α,
makes implicit the cost-loss ratio α of a user as soon as the level τ of the quantile forecast used as
decision variable is selected.

General verification framework

A general framework for forecast verification is based on the joint distribution of forecasts and ob-
servations (Murphy and Winkler, 1987). The overall agreement between forecasts and observations
is called quality and is measured by scoring rules, like QS for quantile forecasts. In order to access
more information about the forecast performance, two factorizations of the joint distribution, into
conditional and marginal distributions, can be applied: the calibration-refinement (CR) factorization
when conditioning on the forecasts and the likelihood-base rate (LBR) factorization when conditioning
on the observations. Summary measures based on these two factorizations are associated with at-
tributes, fundamental characteristics of the forecast. Reliability and resolution are derived from the
CR factorization while discrimination is derived from the LBR factorization (Murphy and Winkler,
1992).

Here the focus is on discrimination, the key forecast attribute for decision-making processes. A gen-
eral definition of discrimination is "the ability of a forecasting system to produce different forecasts
for those occasions having different realized outcomes" (Wilks, 2006b). Discrimination assumes cali-
bration of a forecast and so does not account for reliability discrepancies. Though biases can strongly
affect the skill of a forecast, this can be seen as an advantage since reliability, unlike discrimination,
can be improved by recalibration. Investigating discrimination of a forecast means therefore focusing
on the necessary condition for skill (Jolliffe and Stephenson, 2005).

Discrimination assessment is here discussed in terms of event and action within the dichotomous de-
cision framework. Regarding the LBR factorization, it is common practice to analyse discrimination
in terms of hit rate HR and false alarm rate FAR defined as

HR = Pr(Λ ≥ λ | Y ≥ ψ) (A.20)

and
FAR = Pr(Λ ≥ λ | Y < ψ), (A.21)

respectively. Actions A : Λ ≥ λ and events E : Y ≥ ψ are dichotomous, each presenting two
alternatives, so HR and FAR can be easily derived from the construction of a 2× 2 contingency table.
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Figure A.3: Discrimination curves for decision variables from the synthetic dataset A0. The diagonal
lines are the no discrimination lines. The points correspond to the (HR,FAR) pair for the event Y ≥ 0
and the action associated with the 50%-users. (a) ROC curve of the probability forecast p0 for the
event E : Y ≥ 0, with base rate π = 0.5, and equi-cost lines (in grey) of slope γ = 1. (b) RUC curve of
the quantile forecast q0.5 for the user with cost-loss ratio α = 0.5.

No discrimination corresponds to the case where:

HR = FAR (A.22)

for all λ ∈ Λ and ψ ∈ Y , meaning that actions and event occurrence are independent (Bröcker, 2014).

Event-based discrimination

We first focus on one particular event defined by a threshold ψ, with event-specific hit rate HRλ and
false alarm rate FARλ. A popular way to assess discrimination (Eq. A.22) is to plot the set of points
(FARλ,HRλ) for a range of actions with λ ∈ Λ. The resulting curve is known as the relative operating
characteristic (ROC) curve. When action and event occurrence are independent, the ROC curve is a
diagonal line. Concavity of the curve indicates a discrimination ability in the forecast and the area
under the curve (AUC) becomes a quantitative measure of forecast discrimination (Mason, 1982).
Figure A.3 (a) shows an example of a ROC curve for the synthetic dataset A0. The event of interest is
E : Y ≥ 0 with a base rate π = Pr(Y ≥ 0) of 0.5. The respective probability forecast p0 = 1− FX(0),
the probability that simulation A0 exceeds 0, is used as decision variable.

The interpretation of the ROC curve can be related to the dichotomous decision model described in
Section A.3 as discussed for example in Richardson (2011). In order to describe this relationship, we
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consider the slope of the ROC curve, defining first the gradient of a line joining two successive ROC
points (FARλ,HRλ) and (FARλ+∆λ,HRλ+∆λ):

HRλ −HRλ+∆λ

FARλ − FARλ+∆λ
=
Pr(Λ ≥ λ | Y ≥ ψ)− Pr(Λ ≥ λ+ ∆λ | Y ≥ ψ)

Pr(Λ ≥ λ | Y < ψ)− Pr(Λ ≥ λ+ ∆λ | Y < ψ)
. (A.23)

The slope of the curve γ is obtained when ∆λ tends to 0:

γ(λ, ψ) =
Pr(Λ = λ | Y ≥ ψ)

Pr(Λ = λ | Y < ψ)
(A.24)

where the ratio is also know as the likelihood ratio (Bröcker, 2011). Using the Bayes rule and the
definition of the critical decision criterion of an α-user in Eq. (A.18), we can write

γ(λα, ψ) =
1− π
π

α

1− α (A.25)

where π = Pr(Y ≥ ψ) is the base rate of an event E : Y ≥ ψ and λα the corresponding critical
decision criterion of an α-user.

The range of decision criterion λ used to derive the ROC curve (FARλ,HRλ) corresponds to a range
of critical decision criteria associated with users with different cost-loss ratios. Each point of the ROC
curve is associated with a specific α-user that is identified by the slope of the curve at that point. The
slope possibly ranges between 0 and +∞ at the right-top and the bottom-left corners of the ROC
plot respectively. Moving along the curve from the top to the bottom consists in varying the cost-loss
ratio α between 0 and 1.

For example, consider a user with a cost-loss ratio α = 50%. In Figure A.3, the point of the ROC curve
with slope γ = 1 is highlighted (α = 0.5, π = 0.5 in Eq. A.25). This point indicates the performance
of the forecast in terms of HR and FAR for this particular user. Conversely, the decision criterion
applied to obtain this point corresponds to the critical decision criterion for the 50%-user.

The ROC curve applied to a decision variable, then, corresponds to testing whether actions and
event occurrence are independent for one event and a range of users with different cost-loss ratios.
The ROC curve is an event specific but user unspecific discrimination tool and is therefore well-adapted
to probability forecast discrimination assessment.

User-based discrimination

We focus now on a user with cost-loss ratio α. The critical decision criterion λα defines the action
of this specific user with respect to an event. We define then the user-specific hit rate HRψ and false
alarm rate FARψ as in Eqs (A.20) and (A.21) for a fixed α. In order to test Eq. (A.22), the set of points
(FARψ,HRψ) are plotted for a range of events. We call the resulting curve a relative user characteristic
(RUC) curve because it is a comparison of two user characteristics (FARψ and HRψ) as the event def-
inition varies. As for the ROC curve, the no discrimination line corresponds to the diagonal line and
concavity of the curve indicates forecast discrimination ability.

Figure A.3 (b) shows an example of a RUC curve valid for a user with cost-loss ratio α = 50%. In this
example, the decision variable is the 50%-quantile forecast from the synthetic dataset A0. Moving
along the RUC curve from the bottom left corner to the top right corner involves varying the event
under focus, the event’s base rate varying from 0 to 1, respectively. The point with slope γ = 1 cor-
responds to the event E : Y ≥ 0 with base rate π = 0.5. This point is obviously the same as in Figure
A.3 (a).
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Figure A.4: (a) Reliability, (b) resolution and (c) discrimination as a function of the probability level
τ of the τ -quantile forecasts and (d) RUC curves for the 50%-quantile forecasts (τ = 0.5). The results
are shown for the simulation test cases A0 (full lines), A1 (dashed lines), A2 (dotted lines) and B (full
grey line).

In order to produce a RUC curve, critical decision criteria have to be known for a range of events.
They can be estimated resolving Eq. (A.14) numerically. In practice, critical decision criteria can also
be estimated by means of a reliability diagram. For example, a reliability diagram for quantile fore-
casts plots the conditional observed quantile as a function of quantile forecast categories (Bentzien
and Friederichs, 2014). With regard to Eq. (A.15), we can deduce that the mean forecast in each
forecast category (horizontal axis of the diagram) is an estimation of the critical decision criteria as-
sociated with the events defined by the corresponding conditional observed quantile (vertical axis of
the diagram).

The RUC curve is user specific (and event unspecific) and therefore well-adapted to quantile forecast
discrimination. A summary measure of quantile discrimination ability is obtained mimicking the
ROC framework: the area under the RUC curve, noted here AUC ′, is proposed as a quantitative
measure of discrimination for quantile forecasts. Considering nE events Ei : Y ≥ ψi, i = 1, ..., nE
with increasing base rate, AUC ′ is estimated by a trapezoidal approximation as

AUC ′ =

nE∑

i=0

0.5(HRψi+1
+ HRψi)(FARψi+1

− FARψi) (A.26)

with the trivial points HRψ0 = FARψ0 = 0 (for an event of base rate 0) and HRψnE+1 = FARψnE+1 = 1
(for an event of base rate 1). In order to reduce the biases introduced by the limited number of
RUC points, the RUC curve can be fitted under a bi-normal assumption. The procedure involves
considering FARψ and HRψ as both expressed as integrations of the standard normal distribution
(Mason, 1982). The bi-normal model has been shown to be valid in most cases when applied in the
ROC framework (Mason and Graham, 2002; Atger, 2004).

The properties of the RUC curve andAUC ′ are discussed with the help of illustrative examples based
on 4 simple simulation test cases (see Section A.2). In Figure A.4, the forecast attributes reliability,
resolution and discrimination are shown as a function of the probability level τ of the τ -quantile fore-
cast under assessment. RUC curves for the 50%-quantile forecasts are also shown. Quantile forecast
reliability and resolution are estimated using the decomposition of the quantile score (Bentzien and
Friederichs, 2014) while discrimination curves and summary measures are estimated based on the
bi-normal assumption.

Figures A.4 (a) shows the lack of reliability, which occurs by construction in the simulations A1,
A2 and B. In Figures A.4 (b) and A.4 (c), resolution and discrimination measures deliver a similar
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message comparing the different simulations which illustrates the idea that "resolution and discri-
mination are the two faces of the same coin" (Bröcker, 2014). Resolution and discrimination exhibit
however different behaviours as a function of the probability level reflecting the fact that the first
takes the forecaster’s perspective and the second the user’s perspective. Moreover, discrimination
ability is identical for the simulations A0, A1 and A2: they are unaffected by biases and dispersion
errors. Indeed, AUC ′ is by construction insensitive to conditional and unconditional biases. In con-
trast, the forecast derived from simulation B with a perturbed signal presents less discrimination
ability than forecasts from the other simulations, in particular for the 50%-quantile forecast. Focus-
ing on users with cost-loss ratio α = 0.5 (τ = 0.5) , RUC curves for the 50%-quantile forecasts of
simulations A0, A1, A2, and B are shown in Figure A.4 (d). The largest discrepancies between si-
mulations A and B are visible at the centre of the RUC curves, so for events with intermediate base
rates, while for events with small or large base rates the RUC curves tend to overlap.

A.5 Value of quantile forecasts

Economic value

The cost-loss model described in Section A.3 has been used to develop the concept of economic value
of a probabilistic forecast. The forecast value is assessed considering decision-making made by an
α-user about the occurrence of an event. The value of a forecast (also called value score or relative
value) is defined as

V =
Ēclimate − Ēforecast

Ēclimate − Ēperfect
, (A.27)

where the mean expense Ē of an α-user is estimated when decisions are based on a forecast (Ēforecast),
on a perfect deterministic forecast (Ēperfect), or on climatological information (Ēclimate) (Richardson,
2000; Wilks, 2001; Zhu et al., 2002). V is a measure of the economic gain (or reduction of mean ex-
pense) when using a forecast relative to the gain when using a perfect deterministic forecast.

Following e.g. Richardson (2011), the mean expense of a forecast user can be written as

Ēforecast = FAR(1− π)C −HRπ(L− C) + πL, (A.28)

where HR and FAR are the hit rate and false alarm rate as defined in Eqs (A.20) and (A.21), respec-
tively, and π the base rate of the event of interest. A user with a perfect deterministic forecast at hand
has to face costs only. The user mean expense corresponds in this case to:

Ēperfect = πC. (A.29)

For a user who bases his (her) decision on climatological information, the optimal mean expense is
expressed as

Ēclimate =

{
C if α < π
πL if α ≥ π, (A.30)

depending on the relationship between cost-loss ratio and base rate. Combining Eqs (A.28)-(A.30),
the value of a forecast can finally be written as:

V =





(1− FAR)−
(

π

1− π

)(
1− α
α

)
(1−HR) if α < π

HR−
(

1− π
π

)(
α

1− α

)
FAR if α ≥ π.

(A.31)

So, the economic value V is defined for an event with base rate π and a user with cost-loss ratio α. V
depends on the forecast performance in terms of HR and FAR.
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Figure A.5: (a) Potential value V of the probability forecast from simulation A0 for the event defined
as E : ψ ≥ 0 with base rate π = 0.5. The dashed lines represent the forecast value when the probabi-
lity levels 0.1, 0.2, ..., 0.9 are chosen as decision criterion. The full line represents the envelope of the
dashed lines. (b) Value V for users with cost-loss ratio α = 0.7 of the 30%-quantile forecasts taken at
face value from the 4 synthetic datasets: A0 (full black line), A1 (dashed line), A2 (dotted line) and B
(full grey line). The black point is the common point of the two plots: value of the simulation A0 for
the event with base rate π = 0.5 and a user with cost loss ratio α = 0.7.

Applied to a probability forecast, the event’s base rate is fixed and the value of a probability forecast
is generally represented in the form of a probability value plot showing V as a function of α. An
example is provided in Fig. A.5 (a), applied to simulation A0 considering the event E : Y ≥ 0. The
forecast value curves are plotted for a range of probabilities as decision criterion, then the optimal
values for each α-user (the upper envelope of the relative value curves) is selected to represent the
value of the probabilistic forecast system (e.g. Richardson, 2000; Wilks, 2001). The probability value
plot is related to the ROC framework since the pairs (FAR,HR) of Eq. (A.31) are the ones used to
draw the ROC curve. It has also been shown that the overall value of a probability forecast, con-
sidering all potential users, corresponds to the Brier skill score of the forecast if the distribution of
cost-loss ratio is uniform over all users (Murphy, 1969; Richardson, 2011).
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Quantile value plot

Applied to a quantile forecast, so focusing on a α-user, the value score is evaluated for a range of
events of interest defined for example by their base rate π. A new tool is therefore proposed for the
assessment of quantile forecast performance: the quantile value plot which represents how V varies
as a function of π. This is illustrated in Figure A.5 (b). The value of the 30%-quantile forecasts is plot-
ted when the quantile forecasts derived from simulations A0, A1, A2, and B are taken at face value.
Taking a quantile at face value means using it as it is, so for each event it implies considering the
event threshold as decision criterion (see Section A.3). An alternative is to apply the critical decision
criteria, i.e. to use the (FAR,HR) pairs from the RUC curve to estimate the value in Eq. (A.31). We
talk then about potential value since it corresponds to the maximum value of the forecast, i.e. the
maximum that could be potentially reached if an adequate calibration is applied to the forecast. In-
deed, value and potential value are by definition identical if the forecast is reliable.

A parallel between probability value plot and quantile value plot can be draw. In a probability value
plot, the decision variable is a probability forecast, the base rate π of the event under focus is fixed
and the forecast value V is then plotted for a range of cost-loss ratios. The role of α and π are inverted
in order to produce a quantile value plot rather than a probability value plot. The cost-loss ratio is
defined by the quantile probability level and a range of events of interest are scanned. It results that
the cost-loss ratio of the end-user does not appear explicitly in a quantile value plot while it corres-
ponds to the horizontal axis in a value plot for probability forecasts.

The fundamental properties of V are however the same when focusing on one event or on one user.
These properties (demonstrations can be found e.g. in Richardson, 2011) are recalled here. First,
the forecast value reaches its maximum when π = α (or noted differently when π = 1 − τ ). For
instance, a forecast user with a cost-loss ratio of α = 0.1 draws a maximum benefit from a forecast if
his (her) event of interest has a climatological probability of occurrence of 10%. Secondly, the value
of a reliable forecasts (full line in Figure A.5 (b)) is always greater than the value of the same forecast
with biases (dashed and dotted lines in Figure A.5 (b)). The value of the reliable forecast corresponds
to the potential value of the two other datasets. Finally, the potential value is by definition always
non-negative.

A real example

The tools introduced for the assessment of quantile forecast discrimination and value are here ap-
plied to a real dataset. Quantile forecasts of global radiation are derived from COSMO-DE-EPS and
assessed for two periods of the year 2013. Results for the winter period are shown in Figure A.6 and
results for the summer period in Figure A.7. Quantile discrimination is estimated with the area un-
der the RUC curve (AUC ′) for probability levels τ = 0.1, 0.2, ..., 0.9. A deeper analysis is performed
for the 10%-, 50%- and 90%-quantile forecasts with the help of quantile value plots.

The discrimination ability of the EPS quantile forecasts varies as a function of the probability level but
is greater than 0.80 which can be interpreted as good performance. For the winter season, discrimi-
nation is higher for high and low probability levels than intermediate ones whereas for the summer
season, discrimination is approximately constant over the probability levels with a tendency to de-
crease for high levels. Inspection of the quantile value plot allows a deeper insight into the forecast
potential performance. This could be relevant for quantile users with a specific interest in only one
part of the event spectrum. For example, consider a user with a non linear loss function, the loss
becoming zero if the outcome is below (above) a given threshold T . The user can then interpret the
quantile value plot focusing on the range of events below (above) T disregarding the rest of the plot.
The potential value and the actual value of the COSMO-DE-EPS quantile forecasts are plotted as a
function of event in terms of the clearness index in % to simplify the reading of the plots. An event
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Figure A.6: Verification results for COSMO-DE-EPS global radiation forecasts during winter
2012/2013: quantile discrimination ability (AUC ′) as a function of the probability level (a), poten-
tial value (full line) and actual value (dashed line) of the 10%-quantile forecast (b), 50%-quantile
forecast (c) and 90%-quantile forecast (d) as a function of the event of interest defined by thresholds
of the clearness index in %.
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Figure A.7: Same as Figure A.6 but for summer 2013.

has a different base rate for each season which complicates a direct comparison of the quantile value
plot in Figures A.6 and A.7. The comparison of the potential and actual values (full lines and dashed
lines) shows the impact of the reliability discrepancies on the forecast value.

Overall value and Quantile Skill Score

As a final step in drawing a parallel between probability forecast verification and quantile forecast
verification, the relationship between value and skill score with climatology as a reference is ex-
plored. It has been shown that the overall value of a probability forecast is equivalent to its Brier Skill
Score (BSS) when the users have a uniform distribution of cost-loss ratio (Murphy, 1969; Richardson,
2011). Similarly, we now investigate the relationship between the overall value of a quantile forecast
and its QSS.

For this purpose, we extend the cost-loss model to more than two observation categories assuming
that the cost C and the loss L of the cost-loss model are the unitary increment of cost and loss per
unit of variable, respectively, as discussed in Section A.3. Following Richardson (2011), the overall
value is defined as the ratio

Vall =
TC − TF
TC − TP

(A.32)
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where the total mean expense T of a user is estimated when decisions are based on a climatological
forecast (TC), on a perfect deterministic forecast (TP ) or on a given forecast (TF ) so that Eq. (A.32) is
the extension of Eq. (A.27) to all possible events.

The total expense for a perfect deterministic forecast corresponds to the sum of the costs C associated
with each observation. The total mean expense TP can then be expressed as

TP =
1

N

N∑

i=1

Cyi. (A.33)

For a climatological quantile forecast yτ , the total expense corresponds to the sum of the costs asso-
ciated with yτ and the losses encountered when the observations are greater than the climatological
forecast (yi ≥ yτ ). The total mean expense for a climatological forecast TC is written as

TC =
1

N

N∑

i=1

Cyτ +
1

N

∑

i:yi≥yτ
L(yi − yτ ). (A.34)

Considering now a sample of quantile forecasts qτ,i and the corresponding observations yi, the total
expense of a forecasts user corresponds in that case to the sum of the costs associated with each
forecast qτ,i and the losses encountered when yi ≥ qτ,i, given by

TF =
1

N

N∑

i=1

Cqτ,i +
1

N

∑

i:yi≥qτ,i
L(yi − qτ,i). (A.35)

Combining Eqs (A.33)-(A.35), it is shown in the Appendix that the overall value Vall corresponds
to QSS (Eq. A.8) with the climatology as a reference based on the assumption of constant cost-loss
ratio for all outcomes. In other words, extending the dichotomous event-action framework to a con-
tinuous framework allows one to turn back to the ‘classical‘ or ‘natural‘ measure of performance
for quantile forecast. Conversely, using the dichotomous framework provides the keys to making a
deeper analysis of the quantile performance at the event level.

A.6 Conclusion

Verification measures and tools related to users’ decision-making are provided here for quantile fore-
casts as decision variables. Drawing a parallel with the verification of probability forecasts, the new
verification tools allow the scuite of verification methods for quantile forecasts to be completed. In
particular, the concepts of forecast discrimination and forecast value are discussed based on a simple
cost-loss model.

First, the RUC curve is shown to be the counterpart of the ROC curve when the focus is on a given
user rather than on a given event. The areas under the RUC and ROC curves are summary measures
of discrimination adapted to quantile and probability forecasts, respectively. Both measures share
the same properties, such as non-sensitivity to calibration.

Second, the translation of discrimination ability into value is explored with the help of the value
score. The definition of the forecast value is directly adopted from the probability forecast verifica-
tion framework. Forecast value and forecast potential value are estimated when the decision variable
is a quantile forecast, so focusing on a user with a specific cost-loss ratio. The first is obtained when
the forecast is taken at face value and the second when critical decision criteria are applied. The value
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of a quantile forecast can then be plotted as a function of a range of events of interest, defined for
example in terms of base rates. The derived plot is called a quantile value plot and provides a valu-
able insight into the performance of a quantile forecast. As a real example, the discrimination ability
and value of global radiation forecasts from COSMO-DE-EPS are demonstrated over a summer and
a winter period.

Finally, it is shown that the overall value of a quantile forecast corresponds to the quantile skill score
with climatology as reference when a constant cost-loss ratio for all outcomes is assumed. In the
same spirit as the weighted version of the continuous ranked probability score proposed by Gneiting
and Ranjan (2011), a weighted version of the quantile skill score could be envisaged in order to take
into account specific use of quantile forecasts.
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Appendix

Overall value and Quantile Skill Score

From Eqs (A.33) and (A.34), the difference in expense between climatological and perfect determin-
istic forecasts can be written as

TC − TP =
1

N

N∑

i=1

C(yτ − yi) +
1

N

∑

i:yi≥yτ
L(yi − yτ ) (A.36)

Considering the relationship τ = 1 − C

L
and setting L equal to 1 in the following demonstration

without loss of generality, we obtain

TC − TP =
(1− τ)

N

N∑

i=1

(yτ − yi) +
1

N

∑

i:yi≥yτ
(yi − yτ ) (A.37)

and with some algebra

TC − TP =
(1− τ)

N

∑

i:yi≤yτ
(yτ − yi) +

τ

N

∑

i:yi≥yτ
(yi − yτ ) (A.38)

This mean expense difference, TC − TP , corresponds to the definition of the quantile score for a cli-
matological forecast (QSclimate).

In the same manner, from Eqs (A.35) and (A.34), the difference between climatological forecast ex-
pense and the quantile forecast expense is written as

TC − TF =
1

N

N∑

i=1

Cyτ +
1

N

∑

i:yi≥yτ
L(yi − yτ )

− 1

N

N∑

i=1

Cqτ,i −
1

N

∑

i:yi≥qτ,i
L(yi − qτ,i)

(A.39)
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which becomes after some algebra

TC − TF =
(1− τ)

N

∑

i:yi≤yτ
(yτ − yi) +

τ

N

∑

i:yi≥yτ
(yi − yτ )

−
(

(1− τ)

N

∑

i:yi≤qτ,i
(qτ,i − yi) +

τ

N

∑

i:yi≥qτ,i
(yi − qτ,i)

) (A.40)

where the first term corresponds to the definition of the quantile score for a climatological forecast
(QSclimate, Eq. A.38), and the second term to the quantile score (QSforecast, Eq. A.7). With regard to the
definition of the quantile skill score and of the overall value (Eqs (A.8) and (A.32), respectively), we
end up with:

Vall = QSS (A.41)
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Assessment and added value estimation of an ensemble approach
with a focus on global radiation forecasts

The content of this appendix is the author’s version of a manuscript published in 2015 in the Indian
Quarterly Journal of Meteorology, Hydrology & Geophysics (Mausam) with reference:

Ben Bouallègue Z., 2015: Assessment and added value estimation of an ensemble
approach with a focus on global radiation forecasts. Mausam, 66, 541–550.

This publication follows the participation to the 6th WMO International Verification Method Work-
shop in New Delhi and the invitation of Beth Ebert, co-chair of the WWRP/WGNE Joint Working
Group on Forecast Verification Research, to contribute to a Mausam special issue on verification
methods.



B.1. INTRODUCTION

ASSESSMENT AND ADDED VALUE ESTIMATION

OF AN ENSEMBLE APPROACH

WITH A FOCUS ON GLOBAL RADIATION FORECASTS

ZIED BEN BOUALLÈGUE

Deutscher Wetterdienst, Offenbach, Germany
Meteorological Institute, University of Bonn, Germany

Abstract

The assessment of the high-resolution ensemble weather prediction system
COSMO-DE-EPS is achieved with the perspective of using it for renewable energy applications. The
performance of the ensemble forecast is explored focusing on global radiation, the main weather
variable affecting solar power production, and on quantile forecasts, key probabilistic products
for the energy sector. First, the ability of the ensemble system to capture and resolve the obser-
vation variability is assessed. Secondly, the potential benefit of the ensemble forecasting strategy
compared to a single forecast approach is quantitatively estimated. A new metric called ensemble
added value is proposed aiming at a fair comparison of an ensemble forecast with a single forecast,
when optimized to the users’ needs. Hourly mean forecasts are verified against pyranometer mea-
surements over verification periods covering 2013. The results show in particular that the added
value of the ensemble approach is season-dependent and increases with the forecast lead time.

B.1 Introduction

The German electricity supply is currently being restructured aiming at increasing the integration
of sustainable energies (Bartels et al., 2006). Wind and solar energies are expected to play an impor-
tant role in the ongoing energy transition. However, the intermittency of the power production, due
to the weather dependent nature of these energy sources, poses a great challenge to the electricity
grid operators (e.g., Boyle, 2008). High quality power forecasts are thus required for management
strategies and operation activities in order to ensure the efficiency and safety of the grid as well as
for energy trading. In particular, the installed solar capacities in Germany are increasing rapidly and
the attention paid to solar forecasting is growing simultaneously.

The use of numerical weather prediction (NWP) models is a common approach for providing power
forecasts for a horizon of a few hours to a few days (Costa et al., 2008; Espinar et al., 2010). Weather
forecasts are used as input in transformation models that deliver optimized power forecasts to the
end users. Therefore, the quality of the power forecasts depends strongly on the quality of the un-
derlying weather forecasts. In this context, NWP models find new applications and efforts are being
undertaken in order to improve the forecast quality of weather variables relevant for the energy sec-
tor. Forecasting hourly photovoltaic power production based on NWP model outputs has recently
been explored by Lorenz et al. (2011) and Zamo et al. (2014a). The deterministic power forecasts
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assessed in these studies show variability in skill over different seasons, weather situations and fore-
cast lead times encouraging a probabilistic forecasting approach. Indeed, the limited predictability
of weather events implies a need for information about the predictive skill of the forecasts for an
optimal use of the prediction systems (Krzysztofowicz, 1983; Richardson, 2000)

Uncertainty about the future state of the atmosphere can be estimated with an ensemble prediction
system (EPS). An EPS provides a sample of possible future states of the atmosphere from multiple
forecasts (Leutbecher and Palmer, 2008). At Deutscher Wetterdienst (DWD), an operational cloud-
resolving EPS that covers Germany has been running operationally since May 2012 (Gebhardt et al.,
2011; Peralta et al., 2012). The so-called COSMO-DE-EPS was originally designed to improve the
quality of the forecast guidance in cases of high-impact weather events. Forecasts of convection-
related weather events such as strong wind gusts and heavy precipitations can today be interpreted
in a probabilistic way. The application range of the system is now planned to be extended in order
to support the integration of renewable energies into the German electricity grid. Therefore, the per-
formance of the ensemble system has to be assessed focusing on energy relevant weather variables
and relevant probabilistic products for the energy sector.

The manuscript at hand deals with forecast verification of global radiation, the main weather vari-
able affecting solar power production. In terms of probabilistic products, the focus is on quantile
forecasts, which are key products for many energy applications (Pinson et al., 2007; Morales et al.,
2014). Quantile forecasts are optimal point forecasts for users with an asymmetric loss function
(Gneiting, 2011b). In other words, users with different penalties associated with under- and over-
prediction can optimize their decisions by using quantile forecasts as decision variables.

The quality of the ensemble forecast and of the derived quantile products is estimated by means of
proper scoring rules, namely the continuous ranked probability score (CRPS, Hersbach, 2000) and
the quantile score (QS, Koenker and Machado, 1999). The decomposition of proper scores provides
an estimation of the penalty due to the lack of reliability and reward from resolution (Bröcker, 2009).
Reliability measures the ability of the predictive distribution to represent the unknown distribution
of the observation conditional on the forecast while resolution measures the forecast ability to distin-
guish between different subsets of observations (Wilks, 2006b; Bentzien and Friederichs, 2014). Since
reliability can be corrected by statistical techniques (Gneiting et al., 2007), resolution, which is related
to the forecast information content, is often considered as a more fundamental property that reflects
the ’intrinsic value’ of a forecasting system (Toth et al., 2003).

Besides the ’traditional’ assessment of the ensemble forecast in terms of its statistical attributes (re-
liability and resolution), the benefit of estimating the forecast uncertainty dynamically using an en-
semble system is also quantified. For this purpose, the ensemble forecast is compared to a single
(deterministic) forecast. Quantile forecast verification offers an appealing framework for a fair com-
parison of point forecasts in terms of potential performance. Assuming that statistical adjustments
can be applied similarly to any point forecast, the comparison focuses on the forecast information
content. The interpretation of the ensemble members in terms of quantiles allows the extension of
the comparison to the whole probability distribution described by the ensemble forecast. This ap-
proach enables the development of a new metric, which quantitatively estimates the added value of
the ensemble forecasting strategy compared to a single forecast approach.

Results are shown for hourly global radiation forecasts from COSMO-DE-EPS against measurements
from 32 pyranometer stations distributed over Germany. The results are discussed for verification
periods of 90 days in the year 2013. The ensemble added value is also shown and discussed as
a function of the forecast lead time for different periods of the year. The manuscript is organized
as follows: Section B.2 describes the ensemble and observation datasets, Section B.3 presents the
verification methodology, Section B.4 discusses the results and Section B.5 concludes.
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Figure B.1: Approximately the model domain with latitude/longitude axes. The dots indicate the
location of the 32 pyranometer stations used in this study.

B.2 Data

COSMO-DE EPS is a regional EPS run operationally at the German Weather Service (DWD). The
ensemble system is based on a 2.8 km grid resolution version of the COSMO model (Steppeler et al.,
2003; Baldauf et al., 2011) with a model domain that covers Germany and part of the neighbour-
ing countries. The ensemble comprises 20 members with variations in boundary conditions, model
physics and initial conditions (Gebhardt et al., 2011; Peralta et al., 2012). COSMO-DE-EPS has been
developed focusing on high-impact weather events. Previous studies have discussed the perfor-
mance of the system in this context (Ben Bouallègue et al., 2013; Ben Bouallègue and Theis, 2014).

Global radiation, the sum of the direct and diffuse radiations, is here the model output variable of
interest. Global radiation is defined as the total downward solar radiation (or irradiance) incident on
a horizontal surface (Badescu, 2008). The performance of hourly mean ensemble forecasts from the
03 UTC run is explored for the year 2013. During this year, the forecast lead time of the operational
ensemble system was 21 hours until March, and then extended to 27 hours. Forecasts associated
with solar zenith angles with cosine lower than 0.15 radians are considered as ’night’ hours and are
excluded from the verification process. Each forecast lead time is investigated separately. We mainly
focus on a forecast lead time of 9 hours (12 UTC validity time) corresponding approximately to the
daily peak of solar power production. This way, the strong diurnal cycle associated with solar vari-
ables does not affect the interpretation of the verification results (Hamill, 2001). The impact on the
interpretation of the results due to the natural annual cycle is alleviated by using verification win-
dows of 3 months.

Quality controlled pyranometer measurements are used for the verification process (Becker and
Behrens, 2012). Figure B.1 shows the geographical distribution over Germany of the 32 pyranome-
ter stations used in this study. For each observation point, the nearest model grid-point is selected.
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Figure B.2: Global radiation COSMO-DE-EPS ensemble derived forecasts valid on July 5 2013 at
Hamburg. The full grey lines correspond to the pyranometer measurements, the full black lines
indicates the ensemble median (50%-quantile) and the thin dashed lines indicate quantile forecasts
at probability levels 5%, 25%, 75% and 95% (from bottom to top).

If not explicitly specified differently, quantile forecasts are derived from the 20 ensemble members
using a linear interpolation of the ensemble empirical cumulative density function. An example of
global radiation quantile forecasts from COSMO-DE-EPS valid at Hamburg on July 5 2013 is shown
in Figure B.2. Quantile forecasts with probability levels 5%, 25%, 50%, 75% and 95% are plotted as
well as the corresponding observations.

B.3 Verification methodology

General framework

The aim is to predict global radiation at specific locations. The ability of COSMO-DE-EPS to achieve
this task is questioned: are the forecasts able to capture the observation variability? Are the forecasts
able to do it in a valuable way, distinguishing between different subsets of observations? From this
perspective, does the ensemble forecast provide additional information compared to a single mem-
ber approach? The assessment of the ensemble forecast and derived products is performed in order
to answer these questions. Starting from well-established scores and their properties, suitable mea-
sures are proposed for this purpose.

The verification process is applied to the ensemble forecast as a whole as well as to derived quantile
forecasts. A quantile forecast is defined by a nominal probability level: a quantile forecast qτ with
nominal probability level τ indicates that there is a probability τ that the observation will be less than
qτ .

The CRPS is a common tool for evaluating ensemble forecasts in the form of cumulative distribu-
tions. The sorted ensemble members are interpreted as quantile forecasts such that the ensemble
describes a piecewise constant cumulative distribution function with jumps at the ensemble mem-
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bers (Hersbach, 2000). Quantile forecasts at selected probability levels can be assessed separately.
The QS is the natural tool used to evaluate such probabilistic products (Koenker and Machado, 1999;
Gneiting, 2011a). QS is based on the so-called check function, an asymmetric loss function, which
can ponderate differently errors due to under- and over-prediction.

CRPS and QS are proper scoring rules (Gneiting and Raftery, 2007; Bentzien and Friederichs, 2014)
and can be decomposed (Hersbach, 2000; Bentzien and Friederichs, 2014). The decompositions pro-
vide reliability, resolution and uncertainty components of the scores. The decomposition of a proper
score S can be written as

S = Sreliability − Sresolution + Suncertainty. (B.1)

The reliability term reflects the forecast biases and the resolution term is related to the forecast infor-
mation content. The uncertainty term depends on the observations variability only and so it is not
influenced by the forecast (Wilks, 2006b).

The difference between the uncertainty and resolution score components is often denoted as the
potential score (e.g. Hersbach, 2000):

Spotential = Suncertainty − Sresolution (B.2)

Spotential measures the potential performance in the sense that the reliability deficiencies can be po-
tentially corrected. Indeed, deficiencies in terms of reliability can be alleviated using past data and
assuming stationarity of the forecast error. The statistical adjustment of forecasts based on past data
is usually called calibration (Gneiting et al., 2007). The calibration step aims at providing reliable fore-
casts by correcting systematic biases and spread biases. Since the reliability term in Equation B.1
estimates the statistical consistency between the predictive distributions and the associated observa-
tions, Spotential can be interpreted as the score that should be obtained after statistical adjustment of
the forecast.

In order to show the pertinence of using a given forecast rather than an other one, skill scores are
computed. A skill score measures the relative benefit of using a forecast compared to a reference one
(e.g. Wilks, 2006b). We propose also to compute potential skill scores in order to compare forecasts
and reference forecasts conditioned on calibration. In general terms, a skill score Sk is defined as:

Sk = 1− S

S?
, (B.3)

where S? is the score of the reference forecast. Applied to the CRPS and QS, Equation B.3 leads to
the definition of the continuous ranked probability skill score (CRPSS) and of the quantile skill score
(QSS), respectively. Similarly, we define a potential skill score Skpotential as:

Skpotential = 1− Spotential

S?potential
(B.4)

where S?potential is the potential score of the reference forecast. Skpotential measures the potential benefit
of using a forecast compared to a reference forecast conditioned on calibration. Since the reliability
terms of the forecast and of the reference forecast are not taken into account, the potential skill score
focuses on the forecast information contents only.

In this study, we consider two different reference strategies: a climatology based forecast and a single
forecast approach. The interpretation of the skill score and potential skill score according to the chosen
reference forecast is now discussed.
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Sample climatology as reference

As first reference forecast for the computation of skill scores, we consider the sample climatology.
For a given verification period, a cumulative probability distribution is derived based on all avail-
able observations. The sample distribution and the related quantiles are used as reference forecasts
over each verification period.

A climatological forecast, based on the observation sample, is by definition perfectly reliable (Hers-
bach, 2000). Moreover, a climatological forecast is a constant forecast and therefore has no resolution
(Mason, 2004). In that case, S? and S?potential are equivalent and correspond to the uncertainty com-
ponent of S:

S? = S?potential = Suncertainty. (B.5)

The difference between potential skill score and skill score illustrates the benefit one can expect from
calibration. Considering the sample climatology as reference, from Equations B.2, B.3, B.4 and B.5
this difference is given as a simple ratio:

Skpotential − Sk =
Sreliability

Suncertainty
. (B.6)

The difference between potential skill score and skill score emphasizes the reliability deficiency re-
lative to the observation variability. A difference close to zero indicates a forecast able to capture
perfectly the observation variability.

From Equations B.1, B.4 and B.5, we can deduce that the potential skill score with the sample clima-
tology as reference corresponds to:

Skpotential =
Sresolution

Suncertainty
. (B.7)

Skpotential can be interpreted as the proportion of observation variability that the forecast is able to
correctly resolve. A potential skill score close to 1 indicates perfect resolution of the forecast and a
potential skill close to zero indicates no resolution at all.

Using the sample climatology as reference, reliability deficiency and resolution performance of the
forecast are analyzed with respect to the variability of the observations. Two important and com-
plementary statistical aspects of the forecast quality, reliability and resolution, can be discussed over
different verification periods. The next step consists in evaluating how much of additional informa-
tion is provided by the ensemble system compared to a single forecast. This step is taken considering
a control forecast (or by default an arbitrarily selected member of the ensemble) as a reference fore-
cast.

Single forecast as reference

The CRPS reduces to the mean absolute error (MAE) when applied to a single (deterministic) fore-
cast which allows a direct comparison of ensemble and deterministic forecast performances (Gneit-
ing and Raftery, 2007). However, from the user’s perspective, this comparison is often not relevant
since two different types of forecasts are compared: a probability distribution and a point forecast. A
forecast in the form of a probability distribution is usually transformed into a probabilistic product
adapted to the user’s need: a probability forecast associated with an event or a quantile forecast for
a selected probability level. A comparison based on probability products is not suitable since a basic
interpretation of a deterministic forecast in terms of probability reduces its information content by
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transforming the forecast into a binary outcome.

On the other hand, a direct comparison of deterministic and ensemble derived forecasts based on
quantiles seems adequate for including the complete forecast information content. Both types of
forecasts, deterministic and quantile forecasts, are point forecasts expressed as continuous variables
when dealing for example with global radiation or wind speed. The step of interpreting a point
forecast as a quantile does not deteriorate the forecast information content since it only requires the
definition of a nominal probability level. This probability level accounts for the user’s sensitivity
to under- and over-prediction. Any point forecast can potentially be adjusted to the user needs by
calibration. A fair comparison of point forecast can then be performed focusing on the information
content of the forecasts.

The quantile score (QS) and its decomposition offer an adequate framework for this comparison. QS
can be applied similarly to any point forecast, derived from an ensemble or a deterministic forecast,
and the QS decomposition provides an estimate of the forecast resolution. A fair comparison of en-
semble derived quantiles and deterministic forecasts can be based on the potential quantile score,
which reflects the balance between observation variability (uncertainty) and forecast information
content (resolution). The reliability terms are disregarded based on the assumption that calibration
can be applied similarly to an ensemble derived forecast or to a deterministic forecast. Adequate sta-
tistical methods for such calibration exists as for example quantile regression (Koenker and Machado,
1999). However, the step of calibrating the forecasts, which requires sufficient past training data at
hand, is not applied here: the verification process relies on the decomposition of the quantile score.

QS is calculated for the derived ensemble forecasts and for the reference forecast assigning the deter-
ministic forecast to the relevant quantiles. The decomposition of the quantile score allows to extract
a measure of the usefulness of the forecast for the corresponding user. The components of the quan-
tile score are computed following Bentzien and Friederichs (2014). We denote PQSτ the potential
quantile score of the τ -quantile forecast derived from the ensemble forecast, and PQS?τ the potential
quantile score of the reference forecast for a probability level τ . Following Equation B.4, the potential
quantile skill score is computed as:

QSSpotential = 1− PQSτ
PQS?τ

(B.8)

Choosing a single forecast as reference, the potential QSS becomes a measure of the added value of
the ensemble system for a given probability level.

The added value of the ensemble forecast as a whole is derived based on the relationship between
CRPS and QS. It has been shown that the CRPS corresponds to a weighted sum of quantile scores
applied to the sorted ensemble members (Bröcker, 2012). As already noted, the ensemble members
are interpreted as quantile forecasts for the computation of the CRPS. More precisely, the probability
level τm associated to the sorted member of rank m is defined as:

τm =
m− 0.5

M
, m = 1, ...,M (B.9)

with M the ensemble size. Denoting QSτm the quantile score at probability level τm, the relationship
between QS and CRPS is written as:

CRPS =
2

M

M∑

m=1

QSτm . (B.10)
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Based on the potential quantile scores at probability levels τm with m ∈ {1, ...,M}, we define a
potential CRPS as:

CRPSpotential =
2

M

M∑

m=1

PQSτm . (B.11)

CRPSpotential reflects the potential performance of an ensemble forecast conditioned on the reliabil-
ity of each sorted member. This assumption is stronger than the one used for the computation of the
potential CRPS following Hersbach (2000) where the reliability of the ensemble as a whole is con-
sidered. In this latter case, the reliability term of the CRPS decomposition is directly related to the
rank histogram (Hersbach, 2000) and can therefore be subject to misinterpretation (Hamill, 2001).

Similarly, the potential quantile scores of the reference forecast are estimated for each probability
level defined by the ensemble. The associated potential CRPS is defined as:

CRPS?potential =
2

M

M∑

m=1

PQS?τm (B.12)

where PQS?τm is the potential quantile score at probability level τm when applied to the reference
forecast. This procedure consists consequently in bringing the reference deterministic forecast to the
degree of complexity of the ensemble forecast and not the opposite, as it is the case for example when
the ensemble mean is computed in order to be compared to a deterministic forecast.

Finally, we define a new metric called ensemble added value (EAV), which takes the form of a poten-
tial skill score:

EAV = 1− CRPSpotential

CRPS?potential
(B.13)

EAV is a summary measure of the potential benefit of using the ensemble forecast rather than a
single forecast, conditioned on calibration. EAV greater than 0 indicates that the ensemble forecast
outperforms the single forecast in terms of valuable information content.

B.4 Results

Verification process

COSMO-DE-EPS global radiation forecasts are assessed over the year 2013. Rolling verification win-
dows are used in order to evaluate the performance for different periods of the year. The size of the
verification windows is 90 days and the rolling step is set to 10 days. The results are first shown for
forecasts of the 03 UTC run valid at 12UTC, corresponding to a forecast lead time of 9 hours. After-
ward, verification results as a function of the forecast lead time are discussed for different seasons.

The statistical significance of the results is estimated by bootstrapping, which is a common resam-
pling technique proposed by Efron and Tibshirani (1986) and popularized in meteorology by Hamill
(1999). Confidence intervals of 5% and 95% are attributed to the scores based on 500-member block
bootstrap samples. Each day is considered as a separate block of fully independent data such that
the score distribution, from which the confidence intervals are drawn, represents the variability of
the scores over the verification period and not between locations.

Reliability and resolution

Skill scores of the ensemble forecast and of individual quantile forecasts are shown in Figures B.3 and
B.4. The CRPSS and potential CRPSS with the sample climatology as reference are plotted in Figure
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Figure B.3: CRPSS (full line) and potential CRPSS (dashed line) as a function of verification periods
of 90 days in the year 2013. The skill scores are computed with the sample climatology as reference.
The grey areas indicate the 5% and 95% confidence intervals derived by bootstrapping.
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Figure B.4: QSS (full lines) and potential QSS (dashed lines) for the 25%- (left), the 50%- (middle) and
the 75%-quantile forecasts (right) as a function of verification periods of 90 days in 2013. The skill
scores are computed using quantile climatological forecasts as reference. The grey areas represent
the 5%-95% confidence intervals derived by bootstrapping.

B.3. Similarly, QSS and potential QSS with the sample climatology quantile forecasts as references
are shown in Figure B.4. The probability levels investigated correspond to the median (50%), the
lower and the upper quartiles (25% and 75%).

The reliability of the ensemble forecast is deduced from the difference between potential skill scores
and skill scores: a smaller difference indicates more reliable forecasts. Reliability deficiencies occur
throughout the year but are stronger during winter. In particular, the need for calibration is more
pronounced when looking at the 25%-quantile forecasts. The deficit of reliability at this probability
level has a strong negative impact on the forecast skill. On the other hand, the median and upper
quartile forecasts show appropriate statistical properties. Their good performance in terms of relia-
bility is confirmed by means of the analysis of quantile reliability diagrams for different verification
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periods (not shown).

The ability of the forecasts to resolve the observed variability is described by the potential skill scores.
The potential CRPSS is not subject to large variations along the year, varying around 50%. Similar re-
sults are obtained for the 50%-quantile forecast. The potential QS for the two other probability levels
present opposite tendencies as a function of the verification period: in terms of resolution ability, the
25%-quantile forecasts have relatively higher skill in summer than in winter while the 75%-quantile
forecasts perform relatively better in winter than in summer, compared to their relative climatologi-
cal forecasts. This behavior can be explained by the fact that global radiation is a bounded variable:
in summer, when clear days dominate, the climatological distribution provides a better (worse) es-
timation of the upper (lower) quantiles than in winter, where cloudy days dominates, and vice-versa.

In summary, the ability of the ensemble system to capture the observed variability is season depen-
dent, while its ability to distinguish between subsets of events is relatively constant. At the quantile
forecast level, reliability deficiencies have a severe impact on the forecast skill for small probabi-
lity levels while the resolution ability at low and high probability levels exhibits a balancing effect
between summer and winter periods.

Ensemble added value

The benefit of the ensemble strategy is now illustrated and discussed. For each verification day, one
member from the 20 ensemble members is randomly selected and used as reference forecast. The
EAV estimated this way is shown in Figure B.5. Note that similar results are obtained when any
of the ensemble members is arbitrarily chosen as reference forecast for the whole verification pe-
riod. Figure B.6 shows the ensemble added value at specific probability levels. The probability levels
investigated here are the ones defined by the ensemble size (τ = 2.5%, 7.5%, ..., 92.5%, 97.5%, see
Equation B.9).

The added value of the ensemble approach is statistically significantly positive all along the year.
The potential benefit ranges from 4% in the winter up to 8% during the summer, showing a clear
seasonal signal. A similar seasonal cycle is drawn for intermediate probability levels in Figure B.6.
The seasonal signal is stronger for low probability levels and has an opposite behavior for high prob-
ability levels. The added value for the probability levels corresponding to the members of ranks 18
to 20 exhibit a maximum reached during the winter and a minimum reached during the summer.
The low predictability of the upper tail of the predictive distribution during the winter season and
of the lower tail during the summer season can explained the clear advantage of using an ensemble
system rather than a single forecast in such situations. So, the benefit of the ensemble approach for a
user can vary by a factor 10 depending on the season and his/her probability level of interest.

Finally, the analysis of the EAV is extended to all meaningful lead times (excluding the ’night’ hours,
see Section B.2). Figure B.7 shows EAV as a function of the forecast lead time for four different
verification periods of three months: January - February - March (JFM), April - May - June (AMJ),
July - August - September (JAS) and October - November - December (OND) of the year 2013. The
ensemble added value is statistically significantly greater than zero for all lead times except for ’edge’
hours. The first and last verification hours of each season, near sunset and sunrise hours, are affected
by the data scarcity that translates into large confidence intervals in the results. Otherwise, EAV
is higher during the spring/summer than in the autumn/winter for all forecast lead times. The
potential benefit of using the ensemble also shows a tendency to increase as a function of the lead
time for all seasons.
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Figure B.5: EAV, added value of the ensemble forecast strategy with respect to a single forecast ap-
proach, as a function of verification periods of 90 days in 2013. 5%-95% confidence intervals derived
by bootstrapping are represented by the grey area.
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Figure B.6: Potential QSS, with a single forecast as reference, as a function of verification periods
of 90 days in 2013. Results for probability levels 2.5%, 7.5%,..., 92.5%, 97.5% (corresponding to the
ensemble members of rank 1, 2, ..., 19, 20) are represented with different shades of grey.
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Figure B.7: EAV, added value of the ensemble forecast strategy compared to a single forecast ap-
proach, as a function of the forecast lead time. From left to right, the verification period is January
- February - March (JFM), April - May - June (AMJ), July - August - September (JAS) and October
- November - December (OND) of the year 2013. The grey areas represent the 5%-95% confidence
intervals estimated by bootstrapping.

B.5 Conclusion

In this study, global radiation forecasts from the high-resolution ensemble system
COSMO-DE-EPS are assessed against hourly measurements from 32 pyranometer stations. The ana-
lysis of skill scores and potential skill scores with the sample climatology as reference provides an
evaluation of the system performance over the year 2013. The comparison of skill scores and po-
tential skill scores highlights the deficiencies of the ensemble forecast and of the derived quantile
products in terms of reliability. The benefit one can expect from calibration is shown to be higher
during the winter and autumn seasons and when focusing on low probability levels. The potential
skill scores analysis indicates that the resolution ability of the ensemble system is relatively stable
along the year, performance at low and high probability levels being balanced for each season.

It is also shown that the ensemble forecasting approach is expected to provide more useful infor-
mation to weather forecast users than a single forecast approach. The estimation of the ensemble
potential benefit is measured by a new metric called ensemble added value (EAV), which aims at a
fair comparison between ensemble forecasts and single deterministic forecasts. The EAV computa-
tion is based on the decomposition of the quantile score and the ensemble interpretation related to
the computation of the continuous ranked probability score. EAV has the form of a skill score and
rewards the additional information content provided by the ensemble forecast. For local global radi-
ation forecasts, the benefit of the ensemble approach is statistically significant for all relevant forecast
hours and all seasons. The added value of the ensemble is greater during spring-summer periods
and increases with the lead time.
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C.1. INTRODUCTION

STATISTICAL POST-PROCESSING OF GLOBAL RADIATION ENSEMBLE FORECASTS

WITH PENALIZED QUANTILE REGRESSION

ZIED BEN BOUALLÈGUE

Deutscher Wetterdienst, Offenbach, Germany
Meteorological Institute, University of Bonn, Germany

Abstract

Nowadays, ensemble-based numerical weather forecasts provide probabilistic guidance to actors
in the renewable energy sector. Ensemble forecasts can however suffer from statistical inconsis-
tencies that affect the forecast reliability. Statistical post-processing techniques address this issue
using learning algorithms based on past data. In this study, it is shown that quantile regression
is a suitable method for the post-processing of ensemble global radiation forecasts. In a basic ap-
proach, conditional quantiles are estimated using the first guess quantile forecasts and a solar ge-
ometry variable as predictors. In a more complex approach, adequate meteorological predictors
are selected among a pool of ensemble model outputs by means of a regularization scheme. The
so-called penalized quantile regression and the basic quantile regression approaches, respectively,
are applied to hourly averaged global radiation forecasts of the high-resolution ensemble predic-
tion system COSMO-DE-EPS. Both calibration setups provide reliable probabilistic forecasts at all
investigated probability levels, which improves considerably the ensemble forecast skill. More-
over, verification results demonstrate that including rigorously selected predictors in the regres-
sion scheme increases the ensemble forecast sharpness and thereby the value of the probabilistic
guidance.

C.1 Introduction

At the German weather service (DWD), the numerical weather prediction (NWP) systems are called
to enlarge their range of applications in order to support the ongoing energy transition which is ta-
king place in Germany. For the electricity grid operators, the natural variability of solar and wind
productions is a challenge that can be addressed and mitigated by accurate weather forecasts (Boyle,
2008). For an optimal forecast’s use, information about forecast uncertainty is also essential: the
optimisation of management and operation strategies requires indeed probabilistic forecasts (Pinson
et al., 2007; Pinson, 2013). Providing reliable probabilistic weather forecasts to actors of the renewable
energy sector should therefore contribute to a more efficient integration of intermittent sources in the
electricity network (Morales et al., 2014).

Ensemble prediction systems (EPS) are nowadays a standard approach in NWPs that provide the
basis for a probabilistic interpretation of weather forecasts (Palmer, 2000; Leutbecher and Palmer,
2008). At DWD, the convection-resolving ensemble system COSMO-DE-EPS has been running ope-
rationally since May 2012. It consists of 20 deterministic forecasts based on the COSMO-DE model
with variations of the boundary conditions, initial conditions, and model physics (Gebhardt et al.,
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2011; Peralta et al., 2012). The ability of COSMO-DE-EPS to support the integration of solar energy
in the German grid has been investigated and the great potential of the ensemble approach has been
demonstrated (Ben Bouallègue, 2015). However, forecast assessment focusing on global radiation,
the main weather variable affecting photovoltaic power production, has also shown that the ensem-
ble forecast suffers from a lack of reliability. In order to fully benefit from the ensemble potential,
statistical inconsistencies have to be corrected (Ben Bouallègue et al., 2015).

The adjustment of the statistical properties of an ensemble forecast is often referred to as calibra-
tion. Following the paradigm of Gneiting et al. (2007), the forecast optimisation aims to maximise the
forecast sharpness (the concentration of the predictive distributions) subject to calibration (the sta-
tistical consistency between the distributional forecasts and observations). Rooting in model output
statistics (MOS) for deterministic forecasts (Glahn and Lowry, 1972), various statistical methods have
been developed for the calibration of ensemble forecasts (for an overview see Wilks, 2006a; Wilks and
Hamill, 2007). Besides variables such as temperature or precipitation, calibration of ensemble wind
forecasts, which is of particular interest for renewable energy applications, has been investigated in
recent years (see among others Sloughter et al. (2010); Pinson (2012); Schuhen et al. (2012); and for an
intercomparison of the state-of-the-art calibration techniques Junk et al. (2014)).

For global radiation forecasts, ensemble calibration is a new area of research and application for ex-
isting methods. In this study, we propose to develop approaches based on quantile regression (QR).
Initially introduced by Koenker and Bassett (1978), QR has already been successfully applied in order
to calibrate ensemble precipitation forecasts (Bentzien and Friederichs, 2012). QR estimates quantile
forecasts at a nominal probability level of interest τ where a τ -quantile forecast qτ indicates that there
is τ chance that the observation falls below the quantile qτ . This semi-parametric method does not
require assumptions about the form of the underlying probability distribution and directly provides
probabilistic forecasts in the form of quantiles. These quantile forecasts are key probabilistic products
in the energy sector (Pinson, 2013; Morales et al., 2014). Moreover, quantile forecasts serve as basic
inputs for the application of empirical copulas that allows the retrieval of scenarios from locally cali-
brated forecasts (Wilks, 2014). Scenarios are indeed also of high relevance for renewable applications
(Pinson et al., 2009).

In our approaches, particular attention is paid to the definition and selection of adequate predictors.
A basic approach of QR applied to global radiation consists in choosing the first guess quantile fore-
cast and a solar geometry variable as predictors. A more complex approach consists of an automated
selection of predictors among a pool of ensemble direct model outputs. In that case, the selection
is performed based on a penalized quantile regression (PQR) scheme: a penalty term is added in
the regression equation following the regularization approach of the least absolute shrinkage and
selection operator (lasso, Tibshirani, 1996; Wahl, 2015). The penalty term can be optimised and the
predictor selection exploited for forecast error diagnostics (Bröcker, 2010). The proposed statistical
post-processing approaches, QR and PQR, are tested on COSMO-DE-EPS forecasts in an operational-
like setup, with pyranometer measurements at 32 stations as observation dataset.

The paper is organised as follows: Section C.2 introduces the ensemble system, the observation
dataset and the probabilistic products under focus. Section C.3 describes the calibration process,
and Section C.4 the verification tools used for the forecast assessment. Section C.5 discusses the
calibration setup and the verification results. Section C.6 presents the conclusion.
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Figure C.1: Example of hourly averaged global radiation COSMO-DE-EPS quantile forecasts for
April 18, 2013 at Lindenberg. (a) Raw ensemble derived quantiles, (b) calibrated quantiles with
QRs, (c) calibrated quantile forecasts with PQRo. The grey lines from bottom to top correspond
to quantile forecasts at probability levels 0.1, 0.25, 0.5, 0.75, 0.9, respectively. The black dashed line
represents the corresponding observations.

C.2 Data

Ensemble and observations

COSMO-DE-EPS is the regional ensemble prediction system run operationally at DWD, Offenbach,
Germany. COSMO-DE-EPS is based on a 2.8 km horizontal grid resolution version of the COSMO
model (Baldauf et al., 2011). The model domain covers Germany and parts of the neighbouring coun-
tries, and the ensemble comprises 20 members with variations in the boundary conditions, model
physics, and initial conditions (Gebhardt et al., 2011; Peralta et al., 2012). Aiming at solar energy
applications, previous studies have explored the performance of the system focusing on global radi-
ation forecasts, the sum of direct and diffuse radiation (Ben Bouallègue, 2015; Ben Bouallègue et al.,
2015). In particular, it has been shown that global radiation forecasts suffer from a lack of reliability,
which makes the calibration of the ensemble forecast a necessary step.

The observation dataset corresponds to quality controlled pyranometer measurements from 32 sta-
tions distributed over Germany (Becker and Behrens, 2012; Ben Bouallègue, 2015). Hourly averaged
observations and forecasts are assessed with a temporal resolution of one hour. The chosen verifica-
tion period is spring (March, April, May) 2013. During this period, the operational ensemble has a
forecast horizon up to 21 hours. Based on the 03UTC runs, the forecast lead times of interest range
between 1 and 18 hours, excluding night hours. An example of global radiation COSMO-DE-EPS
forecasts and the corresponding observations is shown in Fig. C.1(a). The forecasts, valid at station
Lindenberg on April 18, 2013, are plotted in the form of quantiles at different probability levels.

Probabilistic products

An ensemble forecast consists of M deterministic forecasts, where M is called ensemble size. Each
member is a fully consistent weather scenario that describes the state of the atmosphere and its evo-
lution over a period of time. An ensemble allows capturing the forecast uncertainty at specific loca-
tions and time horizons as well as across time and space. Information about uncertainty dependence
structures are essential for complex decision processes, and therefore often required by users in the
renewable energy sector (e.g., Pinson et al., 2009).
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Focusing on a given point in space (model grid point) and a temporal window (or forecast horizon),
an ensemble forecast is usually interpreted and communicated in the form of a probabilistic product.
For energy applications, quantile forecasts are key products required by the end users (e.g., Morales
et al., 2014). In general terms, a quantile forecast at a nominal probability level τ is an optimal forecast
for a user with an asymmetric loss function whose asymmetry is defined by τ (Roulston et al., 2003;
Pinson et al., 2007; Gneiting, 2011a).

Formally, a quantile Qτ at probability level τ ( 0 ≤ τ ≤ 1) is defined as:

Qτ := F−1
Y (τ) = inf{y : FY (y) ≥ τ} (C.1)

where FY is the cumulative probability distribution of the random variable Y ∈ < such:

FY (y) = Pr(Y ≤ y). (C.2)

Based on the discrete sample drawn by the ensemble forecast, an ensemble member can be inter-
preted as a quantile forecast by considering its rank within the ensemble. The probability level τm
associated with the member of rank m is defined as:

τm =
m

M + 1
, m ∈ 1, ...,M (C.3)

with M the ensemble size.

The calibration process described hereafter aims to calibrate the M quantile forecasts at the probabil-
ity levels defined by the ensemble size following Eq.(C.3), for each grid point of the model domain
and each forecast horizon of interest. In order to redraw temporally and spatially consistent scenar-
ios from the calibrated quantile forecasts, the use of empirical copulas can be considered in a second
step (Wilks, 2014).

C.3 Calibration process

The statistical adjustment of the ensemble forecasts is based on past data. Pairs of past ensemble fore-
casts and observations are gathered from a training dataset. In a quasi-operational setup, the training
period is defined as a rolling window covering Nd days before the start of the forecast run, with Nd
the length of the training period. Calibration is applied to each forecast lead time separately and
the calibration coefficients are updated on a daily basis, moving the rolling window to the following
day. In our implementation, the estimated regression coefficients for each lead time are assumed to
be valid for all locations (grid points). In this Section, quantile regression (QR) is formally described,
the predictors are defined, and their combination, transformation as well as selection are discussed.

Quantile regression

Consider a response variable y (here hourly averaged global radiation) and a set of predictors vvv (de-
fined in Section C.3). QR focuses on quantiles of the conditional distribution FY (y | vvv). Originally
proposed by Koenker and Bassett (1978), QR has found several applications in meteorology. Exam-
ples resemble among others the calibration of wind power forecast (Bremnes, 2004), the downscaling
of precipitation forecasts (Friederichs and Hense, 2007), and the calibration of ensemble precipitation
forecasts (Bentzien and Friederichs, 2012).

The conditional quantile function for the probability level τ is noted Qτ (y | vvv). The estimate of the
quantile function is provided by the linear model:

Q̂τ (y | vvv) = β̂0 + β̂̂β̂βvvv (C.4)
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where the τth quantile coefficients (β̂0, β̂̂β̂β) are obtained solving the minimization problem:

arg min
(β0,βββ)

N ′∑

j=1

ρτ (yj − β0 − βββvvvj) (C.5)

with ρτ the loss function and N ′ the number of observations in the training dataset. ρτ is an asym-
metric piecewise linear function, usually referred to as check function, and defined as :

ρτ (u) = u[τ − I(u > 0)] =

{
τu if u ≥ 0

(τ − 1)u if u < 0.
(C.6)

where I(·) is an indicator function having value 1 if the condition in parenthesis is true and zero
otherwise. Eq.(C.5) is solved using a set of training data {(v1v1v1, y1), ..., (vnvnvn, yn)} where vjvjvj is the vector
of predictors verifying when yj is observed.

QR uses least absolute deviations in order to estimate the regression coefficients. The optimisation
function minimizes a weighted sum of absolute residuals that can be formulated as a linear pro-
gramming problem. The algorithm used to compute the fit is the modified version of the Barrodale
and Roberts algorithm described in detail in Koenker and d’Orey (1994). In the following, quantile
regression is performed using the R package ’quantreg’ (R Core Team, 2013).

Ensemble predictors

First, a basic setup of the QR calibration process is defined and later used as benchmark to evaluate
the benefit of a more complex approach. Only a limited number of a priori meaningful variables are
used as predictors. For each probability level τ of interest, the first guess quantile forecast (fgqτ ),
that is the unprocessed ensemble forecast after sorting (see Section C.2), is used as primary predictor
for the correction of the corresponding probabilistic forecast. Next to the primary predictor, a power
transformation of fgqτ is included in the regression model. Power transformations are often used
in calibration in order to model potential nonlinear connections between response variable and pre-
dictor (Hamill et al., 2007; Bröcker, 2010; Ben Bouallègue, 2013). We found that, for global radiation,
taking the squared value of fgqτ appears to be a suitable transformation. Additionally, the radiation
at the top of the atmosphere (rtoa) is added as predictor in order to account for seasonal and diurnal
cycles associated with global radiation without the use of normalized predictors such as the clearness
index or clear sky index. rtoa reflects the solar geometry and is computed offline as a function of the
day of the year, the hour of the day, the longitude, and the latitude of the observation (Badescu, 2008,
Chapter 6). For each τ regression equation, the set of predictors that is explicitly defined as:

vvv :=
{
fgqτ , fgq

2
τ , rtoa

}
(C.7)

is in the following referred to as basic predictors.

Additional predictors are added in the regression scheme aiming at a weather dependent calibration.
The pre-selected weather variables along with their acronym used in the text are listed in Table C.1.
They correspond to low, medium, high, and total cloud cover, total precipitation, maximum and min-
imum temperature at 2 meter height above ground within an interval of 6 hours as well as meridional
and zonal winds at the pressure levels 500, 850, and 1000 hPa. This pre-selection is suggested by pre-
vious studies based on other models (Marquez and Coimbra, 2011) and on heuristic results based
on COSMO-DE-EPS. Beside the variables indicated in Table C.1, other predictors have indeed been
tested in the regression scheme. Low, medium and high cloud cover have been replaced by rela-
tive humidity at different levels. Pressure, temperature and wind components at different model
levels have been added to the predictor list. These configurations have however not demonstrated to
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Acronym Model output variable

CLCL low cloud cover
CLCM medium cloud cover
CLCH high cloud cover
CLCT total cloud cover
PREC total precipitation
TMIN2M minimum temperature at 2 meter height
TMAX2M maximum temperature at 2 meter height
U500 zonal wind at 500 hPa
V500 meridional wind at 500 hPa
U850 zonal wind at 850 hPa
V850 meridional wind at 850 hPa
U1000 zonal wind at 1000 hPa
V1000 meridional wind at 1000 hPa

Table C.1: List of model outputs used to define the additional predictors and their acronym used
within the text.

provide any significant improvement of the PQR-based calibrated forecast performance (not shown).

In an ensemble forecast framework, different statistical products can be derived from the ensemble of
members. We propose to include the minimum (min) and the maximum (max) of all ensemble mem-
bers, the ensemble standard deviation (sd) as well as the ensemble mean in the list of predictors, for
each variable except total precipitation. For this latest variable, the associated predictor is defined as
the probability of precipitation (pop). The predictors, later designated as weather predictors, are noted{
v?1 , ..., v

?
N?p

}
with N?

p the number of additional predictors.

Moreover, we have noticed that the definition of new predictors as a combination of the weather
and basic predictors can be beneficial. Indeed, the model presented in Eq. C.4 is based on a linear
combination of predictors where each element contributes independently to the regression model.
We propose to extend this model including multiplicative terms defined as the combination of the
weather predictors with the first guess forecast. The multiplicative terms are usually referred to as
interaction terms (Friedrich, 1982). They are formally noted as:

v′v′v′ :=
{
fgqτ · v?1 , ..., fgqτ · v?N?p

}
. (C.8)

The additive model for the multilinear regression partially develops into a multiplicative one by
using the following set of predictors:

vvv :=
{
fgqτ , fgq

2
τ , rtoa, v

?
1 , ..., v

?
N?p
, v′1, ..., v

′
N?p

}
. (C.9)

In that case, the total number of predictors (Np) corresponds toNp = 3+2 ·N?
p . At this stage, sinceNp

can be relatively high (here Np = 101) , the application of an efficient predictor selection is essential.

Regularization

A regularization is applied to the regression problem defined in Eq. C.4 in order to operate a selection
of adequate predictors among the basic predictors, the weather predictors and the interaction terms.
We propose to follow the least absolute shrinkage and selection operator (lasso) approach proposed
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by Tibshirani (1996).

The regularization takes the form of a penalty for complexity which imposes a compromise between
fitting the training data and simultaneously keeping the coefficients small (Siegert et al., 2011). A
penalty term based on the absolute size of the regression coefficients is added to the learning algo-
rithm. Penalized quantile regression (PQR) estimates the regression coefficients (β̂o, β̂̂β̂β) by solving
the minimization problem:

arg min
(β0,βββ)

N ′∑

j=1

ρτ (yj − β0 − ṽ̃ṽvjβββ) + λr‖βββ‖ (C.10)

where ‖ · ‖ refers to the L1-norm and λr is called the regularization parameter. The predictors ṽ̃ṽvj
correspond to the normalized predictors vvvj with zero mean and unit variance.

Increasing the penalty, more and more coefficients are driven to zero. In that case, the impact of
the corresponding predictor on the regression is deactivated. Thereby, overfitting is prevented and
the forecast accuracy is improved (Gneiting et al., 2005). The strategy adopted for the optimisation
of the parameter λr is described in Section C.5. Moreover, the remaining non-zero coefficients are
manipulated in order to perform forecast error diagnostics as suggested in Bröcker (2010) and as
shown in Section C.5.

C.4 Verification process

The verification process focuses on forecasts in the form of quantiles at different probability levels. In
this Section, we recall common and innovative tools for the assessment of such probabilistic products:
the probability integral transform histogram, the quantile score and its decomposition, its general-
ization to the continuous ranked probability score, and the relative user characteristic curve. The
definition of skill scores and how confidence intervals are drawn is also introduced.

PIT histogram

The reliability of the ensemble of quantile forecasts is assessed by means of the probability integral
transform (PIT) histogram (Diebold and Tay, 1998; Gneiting et al., 2007). PIT histograms assess cali-
bration of cumulative predictive distributions checking whether the observations can be considered
as random samples of these distributions. A flat histogram is a necessary condition for reliability
while a U-shaped histogram is interpreted as an indication of underdispersiveness or conditional
biases in the forecast (Hamill, 2001).

Quantile score

The quantile score (QS) is the natural score for the assessment of quantile forecasts. QS is a proper
scoring rule based on the check function ρτ defined in Eq. C.6 (Bentzien and Friederichs, 2014). Ap-
plied to pairs of observations yi and quantile forecasts qτ,i with i ∈ {1, ..., N}, QS is computed as the
mean of the check function over the verification sample following:

QSτ =
1

N

N∑

i=1

ρτ (yi − qτ,i), (C.11)

where N is the size of the verification sample.
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QS is decomposed into reliability, resolution and uncertainty terms following Bentzien and Friederichs
(2014). In particular, the reliability attribute is assessed by means of the reliability diagram for quan-
tile forecasts. The reliability diagram plots the conditional observed quantile as a function of quantile
forecast categories. The deviation of the reliability curve from the diagonal is interpreted as a relia-
bility deficiency (Wilks, 2006b; Bentzien and Friederichs, 2014).

Continuous ranked probability score

The continuous ranked probability score (CRPS) is a popular score for the evaluation of ensemble
forecasts (Hersbach, 2000; Gneiting and Raftery, 2007). Considering an ensemble eee of M members,
the CRPS is defined as:

CRPS(xxx, y) =
1

N

N∑

i=1

( 1

M

M∑

m=1

| x(m)
i − yi |

− 1

2M2

M∑

m=1

M∑

m′=1

| x(m)
i − x(m′)

i |
) (C.12)

where x(m)
i and x(m′)

i indicate the ensemble memberm andm′ for the verification pair i, respectively.

Equivalently, the CRPS can be defined as a weighted sum of quantile scores applied to the sorted
ensemble members. We can note that the interpretation of the ensemble forecast in terms of equidis-
tant quantiles following Eq. (C.3) does not lead to the optimal ensemble interpretation for the mi-
nimization of the CRPS but provides flat PIT histograms conditioned on calibration (Bröcker, 2012).
Nevertheless, the CRPS can be interpreted as the overall quality of an ensemble of forecasts, while
the QS provides detailed information about the forecast quality at specific probability levels.

Quantile discrimination

In a probabilistic verification framework, forecast discrimination is a forecast attribute related to the
user decision making framework (Murphy, 1991). Quantile forecast discrimination can be assessed
by means of the relative user characteristic (RUC) curve (Ben Bouallègue et al., 2015). The RUC curve
plots two forecast characteristics (the false alarm rate and the hit rate) for a specific user as the event
definition varies. The area under the RUC curve, noted AUC, is used as summary measure of the
discrimination ability of a quantile forecast for a specific probability level. The RUC framework is
the equivalent of the relative operating characteristics (ROC) framework traditionally used for the
verification of probability forecasts, and the derived verification measures follow a similar interpre-
tation (Mason, 1982).

Discrimination is not sensitive to systematic inconsistencies and therefore does not reward efforts to
provide calibrated forecasts. However, discrimination is directly related to the information content
of a forecast and can therefore be interpreted as its "usefulness" in a decision making framework. The
direct relationship between the discrimination ability and the value of a forecast, makes the estimation
of the former an important verification measure from the user’s perspective (Richardson, 2000; Ben
Bouallègue et al., 2015).

Skill scores and bootstrapping

Skill scores are computed in order to estimate the relative benefit of using a forecast compared to a
reference one (e.g. Wilks, 2006b). A skill score Sk is computed as :

Sk = 1− S

S?
, (C.13)
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where S and S? are the scores of the forecast under assessment and of the reference forecast, respec-
tively. Quantile skill score (QSS) and continuous ranked probability skill score (CRPSS) are computed
following (C.13).

Since AUC ′ is positively oriented (the higher the better), the discrimination gain (or RUC skill score,
RUCSS) of a forecast with respect to a reference one is estimated as follows:

RUCSS =
AUC

AUC?
− 1 (C.14)

where AUC and AUC? are the area under the RUC curve of the forecast under assessment and of
the reference forecast, respectively.

In order to check whether the benefit of an approach is statistically significant, a block-bootstrapping
method is applied. Bootstrapping is a common resampling technique that allows one to estimate the
statistical consistency of the results and to draw confidence intervals (Efron and Tibshirani, 1986).
Its application to meteorological data has been popularized by Hamill (1999). In the following, we
apply a block-bootstrapping method where each block corresponds to a single day of the verification
period. Considering each day as a separate block, bootstrapping assesses the score variability over
the verification period and not between locations.

C.5 Results and discussion

Two configurations of the calibration process are tested using the COSMO-DE-EPS hourly averaged
global radiation forecasts. The first is QR with the basic predictors as defined in Eq.(C.7), hereafter
referred to as QRs. The second is PQR including basic predictors, weather predictors and their in-
teractions as defined in Eq.(C.9), hereafter referred to as PQRo in an optimised setup. An example
of QRs and PQRo calibrated quantile forecasts is shown in Fig. C.1(b) and C.1(c), respectively. Be-
fore assessing the performance of the derived calibrated forecasts, the optimisation of the penalized
regression setup and the interpretation of the predictor selection is discussed.

Regularization setup

The regularization parameter λr is the key parameter of the penalized regression scheme (Eq. C.10).
In the perspective of an operational implementation, an adequate value of λr is aimed to be found
for the different probability levels of interest and for each training dataset automatically. A standard
approach for the optimisation of λr consists in using a leave-n-out score as measure of performance
(Bröcker, 2010). In our case, the natural performance measure is QS, and the optimal λr is found
among a set of predefined values ({0., 0.5, 1, 5, 10, 20, 40, 80, 160}). 3/4 of the training dataset is used
for the coefficient estimation and 1/4 for the performance evaluation. The dataset subdivision is per-
formed randomly and the process is reiterated 100 times.

Another crucial calibration parameter, independently of the calibration method, is the length of the
training period. Based on the assumption of forecast error stationarity, the calibration process gene-
rally rewards small training periods as shown in previous studies (Bentzien and Friederichs, 2012;
Ben Bouallègue, 2013). In an operational setting, short training periods are also appreciated, in par-
ticular when facing regular model changes. On the other hand, using a large amount of past data
allows capturing a greater diversity in terms of weather situations and generally increases the ro-
bustness of the coefficient estimation. In the following, the choice of the training length is based on
results comparing 45 and 90 day training periods.

The impact of the penalty term and the influence of the training length on the calibrated forecast
performance is illustrated in Fig. C.2 and C.3. The results focus on forecasts valid at 12UTC (forecast
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Figure C.2: Impact of the regularization parameter λr on the calibrated forecast performance for
spring 2013, 03UTC runs, 12UTC validity time. (a) Quantile skill score (QSS) as a function of λr
when using a training length of 45 days for the probability levels corresponding to the ensemble
members of rank 1, 2, ..., 19, 20, represented with shades of grey, from light to dark grey, respectively.
(b) Continuous ranked probability skill score (CRPSS) as a function of λr when using training lengths
of 45 days (black line) and 90 days (grey line). The vertical bars indicate the 5% and 95% confidence
intervals estimated by block-bootstrapping. In all cases, the reference forecast is the corresponding
calibrated forecast without regularization (λr = 0).
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Figure C.3: Impact of the length of the training period, in term of QSS, as a function of the nominal
probability level τ . QSS is computed for 45 days training calibrated forecasts with 90 days training
calibrated forecasts as reference. The regularization parameter λr is optimized in both cases. The ver-
tical bars correspond to the 5%-95% confidence intervals estimated by block-bootstrapping. Results
for spring 2013, 03UTC runs, 12UTC validity time.
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horizon of 9 hours). QSS of the 20 ensemble quantile forecasts as a function of the regularization
parameter is plotted in Fig. C.2(a). In Fig. C.2(b), CRPSS as a function of λr is shown for training
lengths of 45 and 90 days. The skill scores in Fig. C.2 are computed with the calibrated forecasts
without penalization (λr = 0) and a training period of the same length (45 and 90 days, respectively)
as reference forecasts. Fig. C.3 shows QSS as a function of the probability level τ comparing perfor-
mance with training periods of 45 and 90 days.

Using penalized quantile regression, the number of predictors playing a role in the calibration is re-
duced as λr increases. In Fig. C.2, increasing λr up to 10 has a positive impact for all probability
levels and a significant positive impact in terms of CRPS: overfitting is avoided especially when the
training period is small (black line in Fig. C.2(b)). When λr becomes large (λr > 10), the number of
predictors with non-zero coefficients is further reduced such that the full information content of the
training dataset is no more captured. From Fig. C.2, it can be inferred that neither the training length
nor the probability level have a decisive influence on the optimal value of λr such that choosing
λr = 10 in all cases could be considered as an alternative to the computationally expensive parame-
ter optimisation process.

Increasing the training period, the benefit of the regularization is less important (grey line in Fig.
C.2(b)). In that case, overfitting is less of a critical issue. However, doubling the training length has
no significant impact on the verification results (Fig. C.3), though this statement could be erroneous
for extreme probability levels (not considered here) as suggested by the plot. Since similar results
have been found for the QRs approach (not shown), only results of calibration based on a 45 day
training period (Nd = 45) are shown in the following.

Selected predictors

The regularization of QR is applied in order to avoid overfitting by selecting adequate predictors and
deactivating the other ones. The estimated quantile coefficients β̂̂β̂β derived with PQRo are analysed
aiming at a diagnosis of the forecast error. For this purpose, the absolute value of the Np coefficients
associated with the Np predictors are normalized computing:

wp =
| β̂p |∑Np
k=1 | β̂k |

(C.15)

for p ∈ {1, ..., Np} such
∑Np
p=1 wp = 1. The normalized coefficient wj corresponds to the weight of the

predictor p in the regression model and is therefore interpreted as the predictor information contri-
bution for the derivation of the corresponding calibrated quantile forecast. The number of nonzero
coefficients actually corresponds to the number of degrees of freedom of the lasso (Zou et al., 2007)

The regression coefficients are estimated for each verification day based on the corresponding rolling
training period. An analysis of the weight distribution is used to determine which predictors are re-
levant as a function of the probability level of interest. In Fig. C.4, the 10 most influential predictors
for the calibration of the 5%, 50%, and 95%-quantile forecasts are shown, respectively. The median
weight is used to rank the predictors and the weight variability is assessed by means of the 5% and
95%-quantiles of the weight distributions.

Fig. C.4 shows that, for all probability levels, the most important predictor is the first guess quantile
forecast or its power transformation which is an indication of the good performance of the COSMO-
DE model. Low cloud cover and total cloud cover forecasts are relevant sources of information in
particular for low and intermediate probability levels (Fig. C.4(a) and (b)). These variables appear as
predictors often in the form of "extreme" probabilistic products (min, max) and as interaction terms
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Figure C.4: Most influential predictors for the calibration of quantile forecasts at probability levels
(a) 5%, (b) 50% and (c) 95%. The large bars indicate the median and the thin bars the 5%-95% of the
predictor weight distribution over spring 2013. Results for the 03UTC forecast runs, 12UTC validity
time.
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Figure C.5: Cumulative predictor weight as a function of the number of ranked predictors. The
bars indicate the 5%-95% variability interval over spring 2013. Results for the 03UTC forecast runs,
12UTC validity time.

(in combination with the first guess quantile). This suggests the importance of the definition of ade-
quate products from the ensemble forecasts on one hand, and of the use of interaction terms on the
other hand. For high probability levels, the basic predictors (fgq, fgq2 and rtoa) have the predomi-
nant role (Fig. C.4(c)). We can also note that the variability of the predictor weights encourages the
use of a short rolling window as training dataset in order to go along with seasonal forecast error
characteristics.

In the perspective of an operational use of PQRo, it is also analysed the number of predictors that
are actually relevant for the estimation of the conditional quantiles. For each set of coefficients β̂̂β̂β,
the predictors are ranked as a function of their weight and the derived cumulative weight is used to
relate the information content with the model complexity. Fig. C.5 presents statistics of this diagnos-
tic measure. It is shown that a single predictor captures between 60% and 80% of the information,
two predictors between 80% and 90% and the five most meaningful predictors at each calibration
step around 95%. We can infer that deriving calibrated fields based on only the most significant
predictors rather than the complete set should enable to have a computationally effective calibration
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Figure C.6: (a) Continuous ranked probability score (CRPS) of the raw ensemble forecasts (in grey)
and of the PQRo calibrated forecasts (in black) as a function of the forecast horizon. The vertical
bars indicate the 5%-95% confidence intervals estimated by block-bootstrapping. Results for spring
2013, 03UTC forecast runs. (b) Quantile skill score (QSS) of the PQRo calibrated forecasts with the
raw ensemble as reference plotted as a function of the probability level τ . The vertical bars indicate
the 5%-95% confidence intervals estimated by block-bootstrapping. Results for spring 2013, 03UTC
runs, 12UTC validity time.

scheme without significant loss of information content.

Verification results

The general impact of the calibration process is first shown in Fig. C.6(a). The CRPS of the PQRo ca-
librated forecasts is compared to the CRPS of the raw ensemble as a function of the forecast horizon.
Calibration has a positive impact on the quality of the ensemble for all day-hours with an improve-
ment in terms of CRPSS of about 22%. In the following are shown results focusing only on forecasts
valid at 12UTC (9 hour lead time), in order to avoid misinterpretation due to the strong influence of
the diurnal cycle of solar radiation on the results. In Fig. C.6(b), QSS is plotted as a function of the
probability level. Major improvements affect small and high probability levels and less intermediate
ones, but QSS is significantly positive in any case. A deeper insight into the forecast performance is
provided investigating now the forecast reliability and discrimination ability.

PIT histograms are shown in Fig. C.7. The histogram for the raw ensemble forecast in Fig. C.7(a)
exhibits a clear U-shape which indicates that the ensemble suffers from underdispersiveness. The
U-shape of the histogram is also partially interpreted as a combination of conditional biases. After
calibration, using either QRs or PQRo, the PIT histograms in Fig. C.7(b) and C.7(c), respectively,
are flat indicating that the calibrated ensemble forecasts fulfil the necessary condition of reliability.
The U-shaped line of the QSS as a function of τ in Fig. C.6(b) can be directly related to the impact
of calibration on the PIT histograms. The raw ensemble is strongly underdispersive, and thus the
lower/higher quantiles are generally overestimated/underestimated. The higher and lower quan-
tiles hence benefit more from post-processing than the central quantiles. An other way to check the
ensemble reliability is to plot a set of quantile reliability curves.

Reliability of the ensemble at the quantile level is explored by means of reliability diagrams as shown
in Fig. C.8 for the 5%, 50%, and 95%-quantile forecasts. While the 50%-quantile forecast of the raw
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Figure C.7: Probability integral transform (PIT) histograms of (a) the raw COSMO-DE-EPS quantile
forecasts, (b) the QRS calibrated quantile forecasts and (c) the PQRo calibrated quantile forecasts.
Results for spring 2013 , 03UTC forecast runs, 12UTC validity time.

Quantile forecast  [ W m
2 ]

C
o
n
d
. 
o
b
s
. 
q
u
a
n
ti
le

 [
 W

m
2
 ]

0 300 600 900

0
3
0
0

6
0
0

9
0
0 (a)

Quantile forecast  [ W m
2 ]

C
o
n
d
. 
o
b
s
. 
q
u
a
n
ti
le

 [
 W

m
2
 ]

0 300 600 900

0
3
0
0

6
0
0

9
0
0 (b)

Quantile forecast  [ W m
2 ]

C
o
n
d
. 
o
b
s
. 
q
u
a
n
ti
le

 [
 W

m
2
 ]

0 300 600 900

0
3
0
0

6
0
0

9
0
0 (c)

Figure C.8: Reliability diagram of the COSMO-DE-EPS quantile forecasts at probability levels (a)
5%, (b) 50%, and (c) 95%. Reliability curve of the first guess forecasts (light grey lines), of the QRs
calibrated forecasts (dark grey lines) and of the PQRo calibrated forecasts (black lines). The vertical
bars indicate the 5%-95% confidence intervals estimated by block-bootstrapping. Results for spring
2013, 03UTC forecast runs, 12UTC validity time.

ensemble shows reasonably good reliability, the 5% and 95%-quantile forecasts exhibit clear deficien-
cies as already discussed in a previous study (Ben Bouallègue, 2015). Calibration helps to correct for
systematic positive biases for low probability levels and negative biases for high probability levels.
Reliability curves after applying quantile regression, in the form of QRs or PQRo, include the dia-
gonal lines within their reliability confidence intervals. Those results demonstrate that calibration of
global radiation ensemble forecast based on quantile regression is effective and thus allows provi-
ding reliable probabilistic guidance to the users.

The benefit of the complex approach (PQRo) in comparison with the basic one (QRs) is now assessed.
Fig. C.9(a) depicts the QSS of the PQRo calibrated forecasts, using the QRs calibrated forecasts as
benchmark plotted as a function of the probability level. The use of additional predictors improves
the skill of the forecast significantly at nearly all probability levels. The gain is approx. 5% with a
peak at intermediate probability levels. In Fig. C.9(b), the focus lies on the discrimination ability of
the calibrated forecasts. The results in terms of RUCSS share similarities with the results in terms of
QSS: the discrimination ability is significantly improved at intermediate probability levels with the
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Figure C.9: (a) Quantile skill score (QSS) of the PQRo against QRs calibrated forecasts as a function
of the probability level τ . The vertical bars indicate the 5%-95% confidence intervals estimated by
block-bootstrapping. (b) Discrimination gain (RUCSS) comparing PQRo against QRs calibrated
forecasts as a function of the probability level. The vertical bars indicate the 5%-95% confidence
intervals estimated by block-bootstrapping. Results for spring 2013, 03UTC forecast runs, 12UTC
validity time.

use of adequate predictors. These results indicate that PQRo outperforms QRs thanks to an increase
of the forecast information content, and demonstrate that, with comparable reliability performance,
PQRo with respect to QRs calibrated forecasts have greater or equivalent value.

Finally, a subjective verification based on a case study is proposed. In the example of Fig. C.1,
calibrated forecasts are plotted in counterpoint to the raw COSMO-DE-EPS forecasts. Calibrated
forecasts with QRs and PQRo are shown in Fig. C.1(b) and C.1(c), respectively. We see that the
calibration step increases the spread of the ensemble which captures now the observation variability.
Moreover, the use of adequate weather predictors with PQRo improves the sharpness of the forecast:
the quantile forecasts are indeed more grouped in Fig. C.1(c) than in C.1(b). This analysis is in perfect
accordance with the previous objective verification results.

Discussion

The results presented here, based on a 3-month verification period covering spring 2013, demonstrate
that quantile regression performs well for the calibration of ensemble global radiation forecasts. An
implementation over a complete year could provide interesting information about the role of differ-
ent predictors over different seasons. Though the verification period is relatively small, some aspects
of the results and of the methodology can be generalized and discussed.

First, using selected predictors in the regression scheme, the improvement of the forecast perfor-
mance is on average of about 5% in terms of CRPS, and tends to decreases with the lead time (not
shown). Similar results which assess the benefit of a weather dependent calibration approach with
respect to a standard one has been found focusing on wind forecasts and performing the ensemble
calibration based on an analog technique Junk et al. (2015). Analog ensemble forecasts are drawn from
past observations whose related past forecasts share analogies with the forecast under calibration. In
that case, a weather dependent calibration consists in finding analogies based not only on the fore-
cast to be calibrated but also on correlated variables. However, we can emphasize that PQR uses a
rolling window of limited size as training dataset while the analog approach requires a long record
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of observations and forecasts with a frozen configuration of the numerical model.

Second, calibration improves drastically the performance of quantile forecasts at high and low pro-
bability levels correcting for strong biases. However, the use of additional selected predictors has
a limited impact on the forecasts at these probability levels. Indeed, the weather dependent cali-
bration approach mainly improves quantile forecasts at intermediate levels. This result reveals the
need of appropriate predictors targeted to the extreme quantile levels or more generally targeted to
specific weather phenomena. For example, information about the development of low stratus cloud
provided by a physically-based post-processing approach could be included as potential predictor
(Köhler et al., 2016).

Third, in our study, calibration is applied homogeneously over space: the coefficients are estimated
and applied considering indiscriminately all stations (model grid points) at a given forecast horizon.
At each station, calibration clearly improves the forecasts in terms of CRPS (not shown). This result
indicates that spatial homogeneous calibration performs appropriately on our dataset. Moreover, a
recent study focusing on total precipitation suggests that spatial homogeneous calibration based on
selected predictors via lasso might have similar performance as computationally expensive spatial
calibration techniques (Wahl, 2015).

Finally, we can note that calibrated quantile forecasts are provided at each lead time and location
separately. So, after calibration, the information about the forecast uncertainty across time, space and
variables is lost. Dependence structures in the ensemble forecast can be in a second step recovered
applying, for example, the ensemble copula coupling (ECC) approach. ECC consists in transferring
the rank structure of the original ensemble to the calibrated one expressed optimally in the form of
calibrated quantile forecasts (Schefzik et al., 2013). The paper at hand only focuses on the univariate
calibration step while another study in preparation will explore the generation of consistent scenarios
from calibrated ensemble forecasts based on empirical copulas.

C.6 Conclusion

Post-processing of global radiation ensemble forecasts from the convection permitting ensemble sys-
tem COSMO-DE-EPS is a necessary step in order to correct for systematic statistical inconsistencies.
Quantile regression is a suitable method for this purpose. Reliable quantile forecasts are derived with
a simple approach using as predictors the first guess quantile forecasts, their power transformation,
and a variable related to the solar geometry.

In order to improve the calibrated forecast sharpness, post-processing based on penalized quantile
regression with an optimisation of the regularization term is applied. Meaningful predictors are se-
lected from probabilistic products of ensemble direct model outputs and their interaction with the
first guess quantile forecasts. In particular, the analysis of the predictor coefficients indicates that
low cloud cover and total cloud cover forecasts play an important role for the optimisation of the
conditional quantiles.

The low degree of complexity and the computational efficiency of a post-processing based on pe-
nalized quantile regression should favour an operational implementation. The rigorous selection
of adequate predictors allows deriving reliable and sharp forecasts whose increased discrimination
ability should benefit users’ decision making processes.
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D.1. INTRODUCTION

GENERATION OF SCENARIOS FROM CALIBRATED ENSEMBLE FORECASTS

WITH A DUAL ENSEMBLE COPULA COUPLING APPROACH
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Abstract

Probabilistic forecasts in the form of ensemble of scenarios are required for complex decision-
making processes. Ensemble forecasting systems provide such products but the spatio-temporal
structures of the forecast uncertainty is lost when statistical calibration of the ensemble forecasts
is applied for each lead time and location independently. Non-parametric approaches allow the
reconstruction of spatio-temporal joint probability distributions at a low computational cost. For
example, the ensemble copula coupling (ECC) method rebuilds the multivariate aspect of the fore-
cast from the original ensemble forecasts. Based on the assumption of error stationarity, parametric
methods aim to fully describe the forecast dependence structures. In this study, the concept of ECC
is combined with past data statistics in order to account for the autocorrelation of the forecast error.
The new approach, called d-ECC, is applied to wind forecasts from the high resolution ensemble
system COSMO-DE-EPS run operationally at the German weather service. Scenarios generated by
ECC and d-ECC are compared and assessed in the form of time series by means of multivariate
verification tools and in a product oriented framework. Verification results over a 3 month period
show that the innovative method d-ECC outperforms or performs as well as ECC in all investigated
aspects.

D.1 Introduction

Uncertainty information is essential for an optimal use of a forecast (Krzysztofowicz, 1983). Such
information can be provided by an Ensemble Prediction System (EPS) which aims at describing the
flow-dependent forecast uncertainty (Leutbecher and Palmer, 2008). Several deterministic forecasts
are run simultaneously accounting for uncertainties in the description of the initial state, the model
parametrization and, for limited area models, the boundary conditions. Probabilistic products are
derived from an ensemble, tailored to specific user’s need. For example, wind forecasts in the form
of quantiles at selected probability levels are of particular interest for actors in the renewable energy
sector (Pinson, 2013).

However, probabilistic products generally suffer from a lack of reliability, the system showing bi-
ases and failing to fully represent the forecast uncertainty. Statistical techniques allow to adjust the
ensemble forecast correcting for systematic inconsistencies (Gneiting et al., 2007). This step known
as calibration is based on past data and usually focuses on a single or few aspects of the ensem-
ble forecast. For example, calibration of wind forecast can be performed by univariate approaches
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(Bremnes, 2004; Sloughter et al., 2010; Thorarinsdottir and Gneiting, 2010) or bivariate methods which
account for correlation structures of the wind components (Pinson, 2012; Schuhen et al., 2012). These
calibration procedures provide reliable predictive probability distribution of wind speed or wind
components for each forecast lead time and location independently. Decision making problems can
however require information about the spatial and/or temporal structure of the forecast uncertainty.
Examples of application in the renewable energy sector resemble the optimal operation of a wind-
storage system in a market environment, the unit commitment over a control zone or the optimal
maintenance planning (Pinson et al., 2009). In other words, scenarios that describe spatio-temporal
wind variability are relevant products for end-users of wind forecasts.

The generation of scenarios from calibrated ensemble forecasts is a step that can be performed with
the use of empirical copulas. The empirical copula approaches are non-parametric and, in compari-
son with parametric approaches (Keune et al., 2014; Feldmann et al., 2015), simple to implement and
computationally cheap. Empirical copulas can be based on climatological records (Schaake Shuffle
(ScSh); Clark et al., 2004) or on the original raw ensemble (ensemble copula coupling (ECC); Schefzik
et al., 2013). ECC, which consists in the conservation of the ensemble member rank structure from
the original ensemble to the calibrated one, has the advantage to be applicable to any location of
the model domain without restriction related to the availability of observations. However, unre-
alistic scenarios can be generated by the ECC approach when the post-processing indiscriminately
increases the ensemble spread to a large extent. Non-representative correlation structures in the raw
ensemble are magnified after calibration leading to unrealistic forecast variability. As a consequence,
ECC can deteriorate the ensemble information content when applied to ensembles with relatively
poor reliability as suggested, for example, by verification results in Flowerdew (2014).

In this paper, a new version of the ECC approach is proposed in order to overcome the generation
of unrealistic scenarios. Focusing on time series, a temporal component is introduced in the ECC
scheme accounting for the autocorrelation of the forecast error over consecutive forecast lead times.
The assumption of forecast error stationarity, already adopted for the development of fully parame-
tric approaches (Pinson et al., 2009; Schölzel and Hense, 2011), is exploited in combination with the
structure information of the original scenarios. The new approach based on these two sources of
information, past data and ensemble structure, is called dual ensemble copula coupling (d-ECC). Ob-
jective verification is performed in order to show the benefit of the proposed approach with regard
to the standard ECC.

The manuscript is organized as follows: Section D.2 describes the dataset used to illustrate the
manuscript as well as the calibration method applied to derive calibrated quantile forecasts from
the raw ensemble. Sections D.3 and D.4 introduce the empirical copula approaches for the genera-
tion of scenarios and discuss in particular the ECC and d-ECC methods. Section D.5 describes the
verification process for the scenario assessment. Section D.6 presents the results obtained by means
of multivariate scores and in a product oriented verification framework.

D.2 Data

Ensemble forecasts and observations

COSMO-DE-EPS is the high resolution ensemble prediction system run operationally at DWD. It
consists of 20 COSMO-DE forecasts with variations in the initial conditions, the boundary conditions
and the model physics (Gebhardt et al., 2011; Peralta et al., 2012). COSMO-DE-EPS follows the multi-
model ensemble approach, with 4 global models driving each 5 physically perturbed members. The
ensemble configuration implies a clustering of the ensemble members as a function of the driving
global model when large scale structures dominate the forecast uncertainty.
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Figure D.1: Map of Germany and neighboring areas (approximately the COSMO-DE domain) with
latitude/longitude axes. Location of the 7 wind stations used in this study. The station FINO1 is
highlighted with a grey mark.

The focus is here on wind forecasts at 100 meter height above ground. The post-processing methods
are applied to forecasts of the 00UTC run with an hourly output interval and a forecast horizon of
up to 21 hours. The observation dataset comprises quality controlled wind measurements from 7
stations: Risoe, FINO1, FINO2, FINO3, Karlsruhe, Hamburg and Lindenberg, as plotted in Figure
D.1. The verification period covers a 3 month period: March, April and May 2013.

Figure D.2(a) shows an example of a COSMO-DE-EPS wind forecast at hub-height. The forecast is
valid on day March 2, 2013, at station FINO1 (see Figure D.1). The ensemble members are drawn in
grey while the corresponding observations are drawn in black. In Figure D.2(b), the raw ensemble
forecast is interpreted in the form of quantiles.

Formally, a quantile Qτ at probability level τ (with 0 ≤ τ ≤ 1) is defined as:

Qτ := F−1
Y (τ) = inf{y : FY (y) ≥ τ} (D.1)

where FY is the cumulative probability distribution of the random variable Y ∈ <:

FY (y) = Pr(Y ≤ y). (D.2)

In practice, at each forecast lead time, the member of rank m can be interpreted as a quantile forecast
at probability level τm:

τm =
m

M + 1
(D.3)

where M is the number of ensemble members.

In the example of Figure D.2, the raw ensemble is not able to capture the observation variability.
Calibration aims to correct for this lack of reliability by adjusting the mean and enlarging the spread
of the ensemble forecast.
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Figure D.2: Wind speed at 100 meter height above ground, on March 2, 2013, at station FINO1:
(a) COSMO-DE-EPS forecast (grey lines), (b) raw ensemble forecast in the form of quantiles (sorted
members, see text), (c) calibrated quantile forecasts, and the corresponding observations (black lines).

Calibrated ensemble forecasts

Since COSMO-DE-EPS forecasts have shown to suffer from statistical inconsistencies (Ben Boual-
lègue, 2013; Ben Bouallègue, 2015), calibration has to be applied in order to provide reliable forecasts
to the users. The method applied in this study is the bivariate Non-homogeneous Gaussian Regres-
sion (EMOS, Schuhen et al., 2012). The mean and variance of each wind component as well as the
correlation between the two components characterize the predictive bivariate normal distribution.
Corrections applied to the raw ensemble mean and variance are optimized by minimizing the con-
tinuous ranked probability score (CRPS; Matheson and Winkler, 1976). The calibration coefficients
are estimated for each station and each lead time separately (local version of EMOS), based on a
training period being defined as a moving window of 45 days.

The final calibrated products considered here are M equidistant forecasts of wind speed estimated
for each location and each forecast lead time separately, where the M probability levels associated to
the forecast quantiles follow Eq. (D.3). Calibrated quantile forecasts are shown in Figure D.2(c). The
spread of the ensemble is increased with respect to Figure D.2(b) and thus the observation variability
is now captured by the forecast. From a statistical point of view the calibration method provides
reliable ensemble marginal distributions and reliable quantile forecasts as checked by means of rank
histograms and quantile reliability plots (not shown). The performance of the applied calibration
technique is similar to the one obtained by other methods such as quantile regression (Koenker and
Bassett, 1978; Bremnes, 2004).

Information about spatial and temporal dependence structures, which are crucial in many applica-
tions, are however not available any more after this calibration step (see Figure D.2(c)). The next
post-processing step consists then in the generation of consistent scenarios based on the calibrated
samples.

D.3 Generation of scenarios

The generation of scenarios with empirical copulas is here briefly described. For a deeper insight
into the methods, the reader is invited to refer to the original article of Schefzik et al. (2013), or to
Wilks (2014) and references within.
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First, consider the multivariate cumulative distribution function (cdf ) F defined as:

F(y1, ..., yK) = Pr[Y1 ≤ y1, ..., YK ≤ yK ] (D.4)

of a random vector (Y1, ..., YK) with y1, ..., yK ∈ R. As in Eq. (D.2), we define Fi the marginals as:

Fi(yi) = Pr[Yi ≤ yi]. (D.5)

The Sklar’s theorem (Sklar, 1959) states that F can be expressed as:

F(y1, ..., yK) = C(F1(y1), FK(yK)) (D.6)

where C is a copula that links an K-variate cumulative distribution function F to its univariate
marginal cdf s F1, ..., FK .

In Eq. (D.6), a joint distribution is represented as univariate margins plus copulas. The problem of es-
timating univariate distributions and the problem of estimating dependence can therefore be treated
separately. Univariate calibration marginal cdf s F1, ..., FK are provided by the calibration step de-
scribed in the previous section. The choice of the copula C depends on the application and on the
size K of the multivariate problem. We focus here on empirical copulas since they are suitable for
problems with high dimensionality.

We denote H the empirical copula. H is based on a multivariate dependence template, a specific
discrete dataset z defined in RK . The chosen dataset is described formally as:

z :=
{

(z1
1 , ..., z

Ns
1 ), ..., (z1

K , ..., z
Ns
K )
}

(D.7)

consisting of K tuples of size Ns with entries in R. In other words, K is the dimension of the
multivariate variable and Ns is the number of scenarios. The rank of znk for n ∈ {1, ..., Ns} and
k ∈ {1, ...,K} is defined as:

unk :=

Ns∑

i=1

I(zik ≤ znk ) (D.8)

where I(·) denotes the indicator function taking value 1 if the condition in parenthesis is true and
zero otherwise. The empirical copulaH induced by the dataset z is given by:

H(
j1
Ns

, ...,
jK
Ns

) :=
1

Ns

Ns∑

i=1

I(ui1 ≤ j1, ..., uiK ≤ jK) (D.9)

=
1

Ns

Ns∑

i=1

K∏

k=1

I(uik ≤ jk) (D.10)

for integers 0 ≤ j1, ..., jK ≤ Ns.

In practice, Ns equidistant quantiles of Fk with k ∈ {1, ...,K} are derived from the univariate cali-
bration step:

q :=
{

(q1
1 , ..., q

Ns
1 ), ..., (q1

K , ..., q
Ns
K )
}

(D.11)

with
qnk := F−1

k (τn) ; n ∈ {1, .., Ns} (D.12)

where τn is defined in Eq. (D.3). The sample q is rearranged following the dependence structure
of the reference template z. The permutations πk(n) := Rnk for n ∈ {1, .., Ns} are derived from the
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Figure D.3: Same example as in Figure D.2: (a) COSMO-DE-EPS scenarios, (b) ECC derived scenar-
ios, (c) d-ECC derived scenarios, and the corresponding observations (black lines).

univariate ranks u1
k, ..., u

Ns
k for k ∈ {1, ..,K} and applied to the univariate calibrated sample q. The

post-processed scenarios x̃1
k, ..., x̃

Ns
k for each margin k is expressed as:

x̃1
k := q

πk(1)
k , ..., x̃Nsk := q

πk(Ns)
k (D.13)

The multivariate correlation structures are generated based on the rank correlation structures of a
sample template z. The empirical copulas presented here only differ in the way z is defined. In the
following, let t ∈ {1, ..., T} be a lead time and let L := T . For simplicity, we consider here a single
weather variable.

Ensemble copula coupling

The rank structure of the ensemble is preserved after calibration when applying the standard ensem-
ble copula coupling approach (ECC). The raw ensemble forecast is denoted x:

x :=
{

(x1
1, ..., x

M
1 ), ..., (x1

K , ..., x
M
K )
}

(D.14)

where M is the ensemble size. ECC applies without restriction to any multivariate setting. The
number of scenarios generated with ECC is however the same as the size of the original ensemble
(Ns = M ). The transfer of the rank structure from the raw ensemble forecast to the calibrated one
consists then in taking x as the required template in Eq. (D.7).

Based on COSMO-DE-EPS forecasts of Figure D.3(a) (identical to Figure D.2(a)), an example of sce-
narios derived with ECC is provided in Figure D.3(b). The increase of spread after the calibration
step implies a larger step-to-step variability in the time trajectories. Figure D.4 focuses on a single
scenario highlighting the difference between the original and post-processed scenarios.

Dynamic ensemble copula coupling

ECC assumes that the ensemble prediction system correctly describes the spatio-temporal depen-
dence structures of the weather variable. This assumption is quite strong and cannot be valid in all
cases. On the other side, based on the assumption of error stationarity, parametric methods have
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been developed focusing on covariance structures of the forecast error (Pinson et al., 2009; Schölzel
and Hense, 2011). We propose a new version of the ECC approach which is an attempt to combine
both information: the structure of the original ensemble and the error autocorrelation estimated from
past data. Therefore, the new scheme is called dual ensemble copula coupling (d-ECC) as the copula
relies on a dual source of information.

For this purpose, we denote e the forecast error defined as the difference between ensemble mean
forecasts and observations:

e := {e1, ..., eT } (D.15)
= {y1 −m(x1), ..., yT −m(xT )} (D.16)

where m(xt) and yt are the ensemble mean and the corresponding observation at lead time t ∈
{1, ..., T}, respectively. The temporal correlation of the error is described by a correlation matrix Re
defined as:

Re =




re1,e1 re1,e2 · · · re1,eT
re2,e1 re2,e2 · · · re2,eT

...
...

. . .
...

reT ,e1 reT ,e2 · · · reT ,eT


 (D.17)

where ret1 ,et2 is the correlation coefficient of the forecast error at lead times t1 and t2. The empirical
correlation matrix R̂e is estimated based on the training samples used for the univariate calibration
step at the different lead times. In our setup, R̂e is regularly updated on a daily basis from the mo-
ving windows of 45 days defined as training datasets for the EMOS application.

Again here, we aim at constructing a template (Eq. (D.7)) in order to establish the correlation struc-
tures within the calibrated ensemble q :=

{
(q1

1 , ..., q
M
1 ), ..., (q1

T , ..., q
M
T )
}

. In the d-ECC approach, the
template is built performing the following steps:

1. Apply ECC with the original ensemble forecast x as reference sample template, in order to
derive a post-processed ensemble of scenarios x̃:

x̃ :=
{

(x̃1
1, ..., x̃

M
1 ), ..., (x̃1

T , ..., x̃
M
T )
}
, (D.18)

2. Derive the error correction ci imposed to each scenario i (i ∈ 1, ...,M ) of the original ensemble
by this post-processing step:

ci :=
{
ci1, ..., c

i
T

}
(D.19)

=
{
x̃i1 − xi1, ..., x̃iT − xiT

}
, (D.20)

3. Transformation step: Apply a transformation to the correction ci of each scenario based on the
estimate of the error autocorrelation R̂e and its eigendecomposition R̂e = UΛU−1 in order to
derive the adjusted corrections c̆i:

c̆i = R̂e
1
2 ci (D.21)

= UΛ
1
2U−1ci, (D.22)

4. Derive the so-called adjusted ensemble x̆ such:

x̆ :=
{

(x̆1
1, ..., x̆

M
1 ), ..., (x̆1

T , ..., x̆
M
T )
}

(D.23)

where a scenario x̆i =
{
x̆i1, ..., x̆

i
T )
}

of x̆ is defined as a combination of the original member
and the adjusted error correction:

x̆i = xi + c̆i, (D.24)
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Figure D.4: Illustration of the concept of d-ECC based on the example of Figure D.3 showing (a) one
among the 20 scenarios and (b) the correction applied to the original scenario after post-processing.
The raw ensemble forecast (here the member 13) is represented in grey, the ECC scenario in black, and
the d-ECC scenario in black with dots. The dashed line represents the scenario correction adjusted
by the transformation step (see text).

5. Take x̆ as reference template in Eq. (D.7) so that the new empirical copula is based on the
adjusted ensemble.

The d-ECC reference template x̆ combines the raw ensemble structure and the autocorrelation of
the forecast error reflected in the adjusted member corrections. The transformation of the scenario
corrections in Eq. (D.22) adjusts their correlation structure based on the error correlation matrix R̂e.
Taking the square root of the correlation matrix (Eq. D.22) resembles a signal processing technique
which is described as a coloring transformation of a vector of random variables (Kessy et al., 2015).

D.4 Illustration and discussion of d-ECC

Focusing on a single member, the d-ECC steps are illustrated in Figure D.4. First, the correction
associated to each ECC scenario with respect to the corresponding original ensemble member is
computed (black line in Figure D.4(b), Eq. D.20). This scenario correction is adjusted based on the
assumption of temporal autocorrelation of the error (dashed line in Figure D.4(b), Eq. D.22). This
adjusted scenario correction is then superimposed on the original ensemble forecast before to draw
again the correlation structure of the adjusted ensemble.

The new scheme reduces to the standard ECC in the case where rank(xit) = rank(x̆it) for all i ∈
{1, ...,M} and t ∈ {1, . . . , T}, which means that the additional terms c̆i do not have any impact on
the rank structure of the ensemble. This case occurs if:
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• R̂e = I where I is the identity matrix, which means that there is no temporal correlation of the
error in the original ensemble,

• c = 0 where 0 is the null vector, which means that the calibration step does not impact the
forecast, the forecast being already well calibrated.

• c = h · J where h is a constant and J an all-ones vector, which means that the calibration step
corrects only for bias errors and the system is spread bias free.

So the d-ECC typically takes effect if calibration corrects the spread and if this correction is correlated
in time at the member level.

Some more insight can be gained by looking at the following equations. Let the observation yt and
the post-processed ensemble members x̃it be realizations of random variables Y and X̃ . Consider the
covariance of the forecast error denoted κ and defined as:

κt1,t2 := E[(Yt1 −m(X̃t1))(Yt2 −m(X̃t2))] (D.25)

where t1 and t2 are two lead times and E[·] the expectation operator. It is assumed that the post-
processed ensemble mean m(x̃t) is fully bias-corrected so that E[Yt −m(X̃t)] = 0.

After post-processing, the forecast scenarios and observation time series are considered as drawn
from the same multivariate probability distribution, so the forecast error covariance can also be ex-
pressed as:

κt1,t2 = E[(X̃t1 −m(X̃t1))(X̃t2 −m(X̃t2))] (D.26)
= rx̃t1 ,x̃t2σx̃t1σx̃t2 (D.27)

where rx̃t1 ,x̃t2 refers to the correlation between x̃t1 and x̃t2 and σx̃t refers to the square root of the vari-
ances between the members of the calibrated ensemble (x̃1, ..., x̃M ) at lead time t. The corresponding
estimators are the following:

κ̂t1,t2 =
1

M − 1

M∑

i=1

[(x̃it1 −m(x̃t1))(x̃it2 −m(x̃t2))] (D.28)

and

σ̂x̃t =

√√√√ 1

M − 1

M∑

i=1

(x̃it −m(x̃t))2 (D.29)

and
r̂x̃t1 ,x̃t2 =

κ̂t1,t2
σ̂x̃t1 σ̂x̃t2

. (D.30)

From Eq. (D.20) recall that
x̃it = xit + cit (D.31)

so we can rewrite the expression in Eq. (D.27) as

rx̃t1 ,x̃t2σx̃t1σx̃t2 = rxt1 ,xt2σxt1σxt2 + rct1 ,ct2σct1σct2 + ε (D.32)

where rxt1 ,xt2 is the error autocorrelation in the original ensemble, rct1 ,ct2 the autocorrelation of the
corrections, σxt and σct the standard deviation of the original ensemble and the standard deviation
of the correction at lead time t, respectively. The term ε corresponds to the estimated covariances of
x and c, and is considered as negligible assuming that the original forecast and the corrections are
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Figure D.5: Temporal lagged correlation coefficients summarizing the error correlation matrix R̂e

used in the d-ECC approach. The boxplots indicate the variability within the 3 month calibration
period.

drawn from two independent random processes.

Furthermore, the stationarity assumption of d-ECC implies that the correlation rx̃t1 ,x̃t2 can also be
estimated from past error statistics:

rx̃t1 ,x̃t2 = E[r̂et1 ,et2 ] (D.33)

where the notation r̂et1 ,et2 refers to the elements of the estimated correlation matrix R̂e. The sta-
tionarity assumption takes effect in the transformation step of d-ECC (Eq. D.22) which modifies the
correlation of the scenario corrections rct1 ,ct2 and pushes it towards the estimated correlation r̂et1 ,et2 .
In other words, the transformation affects rct1 ,ct2σct1σct2 (second term in Eq. D.32). We expect d-ECC
to have a relevant impact if rct1 ,ct2σct1σct2 dominates the sum in Eq. (D.32). Typically, this is the case
when the spread σxt of the original ensemble is small compared to the spread σx̃t after calibration. In
a previous statement, we already noted that d-ECC takes effect if the calibration corrects the spread.
Regarding Eq. (D.32), we can refine the statement and argue that d-ECC especially takes effect if the
calibration increases the spread.

Another important aspect of d-ECC is the estimation of the correlation matrix R̂e. By means of this
matrix, the assumption of error autocorrelation is checked and adjusted. The matrix is estimated
from the training datasets used for calibration at the different lead times. Based on the dataset de-
scribed in Section D.2, Figure D.5 shows the lagged correlation of the forecast error derived from R̂e.
The correlation is decreasing as a function of the time lag, reaching near zero values for lags greater
than 10 hours. However, for short and very short time lags, the correlation is high and stable over
the rolling training datasets. In particular, focusing on a time lag of 1 hour, the correlation ranges
between 60% and 80%. The correlation variability shown in Figure D.5 is estimated over a 3 month
period. Similar results are obtained when checking the variability of the correlation within each
training dataset (not shown). The exhibited low variability indicates that the temporal correlation
of the forecast error is not flow dependent. As a consequence, d-ECC can be seen as a "universal"
approach that does not suffer restriction related to the forecasted weather situation.
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Considering again our case study, the scenarios generated with d-ECC based on the COSMO-DE-EPS
forecasts are shown in Figure D.3(c). The d-ECC derived scenarios are smoother and subjectively
more realistic than the ones derived with ECC in Figure D.3(b). In Figure D.4, focusing on a single
scenario, it is highlighted that the difference between the original and the d-ECC time trajectories
varies gradually from one time interval to the next one while abrupt transitions occur in the case of
the ECC scenario, as in this example between hours 15 and 17.

Note that d-ECC does not give the same result as a simple smoothing of the calibrated scenarios x̃.
Smoothing in time would modify the values q of the calibrated ensemble and possibly deteriorate
its reliability. Instead, d-ECC affects the time variability of the scenarios by constructing a template
(Eq. D.7) based on x̆ (Eq. D.24) while preserving the calibrated values q.

The discussion and illustration of d-ECC could certainly be extended by idealized studies and a
rigorous mathematical framework. This would be welcomed as further research and would add
further evidence to the expected behaviour of d-ECC.

D.5 Verification methods

Multivariate scores

Verification of scenarios is first performed assessing the multivariate aspect of the forecast by means
of adequate scores. The scores are applied focusing on scenarios in the form of time series. Consi-
dering an ensemble withM scenariosx(n) with n ∈ {1, ...,M} and an observed scenario y, the energy
score (ES; Gneiting et al., 2008) is defined as:

ES =
1

M

M∑

m=1

‖y − x(m)‖ − 1

2M2

M∑

m=1

M∑

p=1

‖x(m) − x(p)‖ (D.34)

where ‖.‖ represents the Euclidean norm. ES is a generalization of theCRPS to the multivariate case.

ES suffers from a lack of sensitivity to misrepresentation of correlation structures (Pinson and Tastu,
2013). We consider therefore additionally the p-variogram score (pV S; Scheuerer and Hamill, 2015),
which has better discriminative property in this respect. Based on the geostatistical concept of vari-
ogram, pV S is defined as:

pV S =
∑

i6=j
ωij

(
| yi − yj |p −

1

M

M∑

m=1

| x(m)
i − x(m)

j |p
)2

(D.35)

with p the order of the variogram and where ωij are weights and the indices i and j indicate the i-th
and the j-th components of the marked vectors, respectively. In order to focus on rapid changes in
wind speed, the weights ωij are chosen proportional to the inverse square distance in time such:

ωij =
1

(i− j)2
, i 6= j, (D.36)

since i and j are here forecast lead time indices.

Multivariate rank histograms

The multivariate aspect of the forecast is in a second step assessed by means of rank histograms ap-
plied to multi-dimensional fields (Thorarinsdottir et al., 2014). Two variants of the multivariate rank
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histogram are applied: the averaged rank histogram (ARH) and the band depth rank histogram
(BDRH). The difference of the two approaches lies in the way to defined pre-ranks from multivari-
ate forecasts. ARH considers the averaged rank over the multivariate aspect while BDRH assesses
the centrality of the observation within the ensemble based on the concept of functional band depth.

The interpretation ofARH is the same as the interpretation of a univariate rank histogram: ∪-shaped,
∩-shaped, and flat rank histograms are interpreted as underdispersiveness, overdispersiveness, and
calibration of the underlying ensemble forecasts, respectively. The interpretation of BDRH is dif-
ferent: a ∪-shape is associated to a lack of correlation, a ∩-shape to a too high correlation in the en-
semble, a skewed rank histogram to bias or dispersion errors and a flat rank histogram to calibrated
forecasts.

Product oriented verification

Besides multivariate verification of time series scenarios, the forecasts are assessed in a product ori-
ented framework. This type of scenario verification follows the spirit of the event oriented verifi-
cation framework proposed by Pinson and Girard (2012). Probabilistic forecasts that require time
trajectories are provided and assessed by means of well-established univariate probabilistic scores.

Two types of products derived from forecasted scenarios are here under focus. The first one is de-
fined as the mean wind speed over a day (here, a day is limited to the 21 hour forecast horizon).
The second product is defined as the maximal upward wind ramp over a day, a wind ramp being
defined as the difference between two consecutive forecast intervals. For both products, 20 forecasts
are derived from the 20 scenarios at each station and each verification day.

The performances of the ensemble forecasts for the two types of products are evaluated by means
of the CRPS. The CRPS is the generalization of the mean absolute error to predictive distributions
(Gneiting et al., 2008), and can be seen as the integral of the Brier score (BS; Brier, 1950) over all
thresholds or the integral of the quantile score (QS; Koenker and Bassett, 1978) over all probability
levels. Considering an ensemble forecast, the CRPS can be calculated as a weighted sum of QS
applied to the sorted ensemble members (Bröcker, 2012). For a deeper insight in the forecast per-
formance in terms of attributes, the CRPS is decomposed following the same approach (Ben Boual-
lègue, 2015): the CRPS reliability and resolution components are calculated as weighted sums of
the reliability and resolution components of the QS at the probability levels defined by the ensemble
size (see Eq. D.3), respectively. Formally, we write:

CRPSreliability =
2

M

M∑

m=1

QSreliability
τm (D.37)

CRPSresolution =
2

M

M∑

m=1

QSresolution
τm (D.38)

where QSreliability
τm and QSresolution

τm are the reliability and resolution components of the QS applied
to the quantile forecasts at probability level τn, respectively. The QS decomposition is performed
following Bentzien and Friederichs (2014). The CRPSreliability is negatively oriented (the lower the
better) while the CRPSresolution is positively oriented (the higher the better).

Bootstrapping

The statistical significance of the results are tested applying a block-bootstrap approach. Boots-
trapping is a resampling technique which provides an estimation of the statistical consistency and is
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Figure D.6: Spectral analysis of the scenarios from the raw ensemble (black lines), of the scenarios
derived with ECC (dashed grey lines) and with d-ECC (grey lines). Each line corresponds to one
scenario among the 20. The spectrum of the observed time series is represented by the dashed dotted
line.

commonly applied to meteorological datasets (Efron and Tibshirani, 1986).

A block-bootstrap approach is applied in the following which consists in defining a block as a sin-
gle day of the verification period (Hamill, 1999). Each day is considered as a separate block of fully
independent data. The verification process is repeated 500 times using each time a random sample
with replacement of the 92 verification days (March, April, May, 2013). The derived score distribu-
tions illustrate consequently the variability of the performance measures over the verification period
and not between locations. Boxplots are used to represent the distributions of the performance mea-
sures, where the quantile of the distributions at probability levels 5%, 25%, 50%, 75 % and 95% are
highlighted.

D.6 Results and discussion

Before applying the verification methods introduced in the previous section, we propose to explore
statistically the time series variability by means of a spectral analysis, an analysis of the time series
in the frequency domain. Such an analysis is useful in order to describe statistical properties of the
scenarios but has also direct implications for user’s applications (see below; Vincent et al., 2010). A
Fourier transformation is applied to each forecasted and observed scenario and the contributions of
the oscillations at various frequencies to the scenario variance examined (Wilks, 2006b). In Figure
D.6, the mean amplitude of the forecast and observation time series over all stations and verification
days is plotted as a function of their frequency components.

As already suggested by the case study, this analysis confirms that the ECC considerably increases
the variability of the time trajectories with respect to the original ensemble, in particular at high
frequencies. ECC scenario fluctuations are also much larger than the observed ones. Indeed, the
amplitude is on average about two times larger at high frequencies in ECC time series than in the
observed ones which explains the visual impression that ECC scenarios are unrealistic. Conversely,
scenarios derived with the new copula approach do not exhibit such features. While the original
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ensemble shows a deficit of variability with respect to the observations, the d-ECC approach allows
improving this aspect of the forecast. This first result, showing that d-ECC scenarios have a similar
mean spectrum as the observation one, is complemented with an objective assessment of the fore-
casted scenarios based on probabilistic verification measures.

Figure D.7 shows the performance of the forecasted time trajectories by means of multivariate scores.
The post-processed scenarios perform significantly better than the raw members in terms of ES (Fi-
gure D.7(a)). In terms of pV S, the d-ECC scenarios are better than the ECC ones and significantly
better than the raw ones when p = 0.5 (Figure D.7(b)). For higher orders of the variogram (here
p = 1, Figure D.7(c)), the forecast improvement after post-processing is still clear when using d-ECC
while the ECC results are slightly worse than the ones of the original forecasts.

Figure D.8 depicts the results in terms of multivariate rank histograms, ARH (upper panel) and
BDRH (lower panel). The raw ensemble shows clear reliability deficiencies (Figures D.8(a) and
D.8(d)) which motivated the use of post-processing techniques. Forecasts derived with ECC show
still underdispersiveness but also too little correlation (Figures D.8(b) and D.8(e)) while forecasts de-
rived with d-ECC are better calibrated according to the rank histograms in Figures D.8(c) and D.8(f).
Indeed, both plots indicate good reliability of the d-ECC derived scenarios.

Figure D.9 focuses on two products drawn from the time series forecasts: the daily mean wind speed
(upper panel) and the daily maximal upward ramp (lower panel). The performances are assessed in
terms of CRPS, CRPS reliability and CRPS resolution, from left to right, respectively. Looking at
the results in terms of CRPS, we note the high similarity of Figures D.9(a) and D.9(d) with Figures
D.7(a) and D.7(c), respectively. As for the ES, post-processing significantly improves the forecasts of
the daily mean product. As for pV S with p = 1, d-ECC improves the ramp product with respect to
the original one while ECC does not generate improved products. The CRPS decomposition allows
detailing the origin of these performances. We see in Figures D.9(b) and D.9(e) that the CRPS re-
sults are mainly explained by the impact of the post-processing on the CRPS reliability components.
However, focusing on the results in terms of CRPS resolution in Figures D.9(c) and D.9(f), we note
that the resolution of the original and d-ECC products are comparable while ECC deteriorates the
resolution of the ramp product with respect to the original one.

Those verification results are interpreted as follows. Calibration corrects for the mean of the ensem-
ble forecast and this is reflected, after the derivation of scenarios, by an improvement of the ES and
daily mean product skill. Calibration also corrects for spread deficiencies increasing the variability of
the ensemble forecasts. This increase of spread associated with a preservation of the rank structure
of the original ensemble, as it is the case in the ECC approach, enlarges indiscriminately the tempo-
ral variability of the forecasts and leads to a slight deterioration of the pV S and ramp product results.

The d-ECC approach provides scenarios with a temporal variability comparable to the one of the
observation. In that case, the benefit of the calibration step in terms of reliability (at single forecast
lead times) persists at the multivariate level (looking at time trajectories) after the reconstruction of
scenarios with d-ECC. The multivariate reliability, or the reliability of derived products, is signifi-
cantly improved after post-processing, though not perfect for specific derived products. Moreover,
d-ECC scenarios perform as well as the original ensemble forecast in terms of resolution. So, unlike
ECC, d-ECC is able to generate reliable scenarios with a level of resolution that is not deteriorated
with respect to the original ensemble forecasts.
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Figure D.7: Multivariate scores of time series: energy score (a) and p-variogram score for p = 0.5 (b)
and p = 1 (c) in the form of box plots drawn from the application of a 500-block bootstrapping.
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Figure D.8: Multivariate rank histograms: (a,b,c) average rank histograms and (d,e,f) band depth
rank histograms for time series from the raw ensemble (a,d) and derived with ECC (b,e) and d-ECC
(c,f).

D.7 Conclusion and outlook

A new empirical copula approach is proposed for the post-processing of calibrated ensemble fore-
casts. The so-called dual ensemble copula coupling approach is introduced with a focus on temporal
structures of wind forecasts. The new scheme includes a temporal component in the ECC approach
accounting for the error autocorrelation of the ensemble members. The estimation of the correlation
structure in the error based on past data allows adjusting the dependence structure in the original
ensemble.

Based on COSMO-DE-EPS forecasts, the scenarios derived by d-ECC prove to be qualitatively re-
alistic and quantitatively of superior quality. Post-processing of wind speed combining EMOS and
d-ECC improves the forecasts in many aspects. In comparison to ECC, d-ECC drastically improves
the quality of the derived scenarios. Applications that require temporal trajectories will fully benefit
of the new approach in that case. As for any post-processing technique, the benefit of the new copula
approach can be weakened by improving the representation of the forecast uncertainty with more ef-
ficient member generation techniques and/or by improving the calibration procedure correcting for
conditional biases. Meanwhile, at low additional complexity and computational costs, d-ECC can be
considered as a valuable alternative to the standard ECC for the generation of consistent scenarios.
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Figure D.9: Product oriented verification of scenarios: (a,b,c) daily means at station, (d,e,f) maximal
upward ramps within a day at station. Results are shown in terms of CRPS (a,d), CRPS reliability
component (b,e) and CRPS resolution component (c,f). The box plots indicate confidence intervals
estimated with block bootstrapping. The arrows in the right corners indicate whether the perfor-
mance measure is positively or negatively oriented.

Though only the temporal aspect has been investigated in this study, the dual ensemble copula ap-
proach could be generalized to any multivariate setting. Further research is however required for the
application of d-ECC at scales that are unresolved by the observations. For example, geostatistical
tools could be applied for the description of the autocorrelation error structure at the model grid
level. Moreover, the mathematical interpretation of the d-ECC scheme developed here would benefit
from further theoretical investigations based on idealized case studies.
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cost-loss ratio
regression coefficient
regularization parameter
base rate of an event
asymmetric loss function
standard deviation of a probability distribution
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cost of a preventive action against a potential event
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verification size
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exceedance probability forecast for threshold ψ
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