
 

Novel vaccination strategies  

for CD4+ T cell immunotherapy of melanoma 

                

 

                                     Dissertation 

zur 

Erlangung des Doktorgrades (Dr. rer. nat.) 

in 

Molekulare Biomedizin 

der 

Mathematisch-Naturwissenschaftlichen Fakultät 

der 

Rheinischen Friedrich-Wilhelms-Universität Bonn 

 

 

 

 

 

 

 

vorgelegt von  

Naveen Shridhar 

aus Honavar, Indien 

Bonn 

März 2019 



2 
 

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der 

Rheinischen Friedrich-Wilhelms-Universität Bonn 

 

 

 

1. Gutachter: Prof. Dr. med. Thomas Tüting 

 

2. Gutachter: Prof. Dr. rer. nat. Sven Burgdorf 

 

Tag der Promotion: 26.08.2019 

Erscheinungsjahr: 2019  



3 
 

Table of Contents 
1. Introduction .............................................................................................................. 5 

1.1 Melanoma: the most dangerous form of Skin Cancer. ......................................... 5 
1.1.1 History of melanoma..................................................................................... 5 
1.1.2 Incidence and mortality of melanoma ........................................................... 6 
1.1.3 Clinical classification of melanoma ............................................................... 6 
1.1.4 Melanoma pathogenesis .............................................................................. 7 
1.1.5 Role of the immune system .......................................................................... 9 
1.1.6 Melanoma therapy ........................................................................................ 9 
1.1.7 Novel Immunotherapeutic approaches ........................................................10 

1.2 Experimental mouse models and the role of anti-tumor CD4+ T cells ................11 
1.2.1 Early developments .....................................................................................11 
1.2.2 Anti-tumoral functions of CD4+ T cells .........................................................12 
1.2.3 Immunosuppressive functions of CD4+ T cells ............................................12 
1.2.4 Tumor immune escape mechanisms ...........................................................13 

1.3 Virus vectors for melanoma immunotherapy: Adenovirus and Modified Vaccinia 
Ankara Vectors ........................................................................................................13 

1.3.1 Structure of Adenovirus ...............................................................................13 
1.3.2 Adenovirus infection pathway ......................................................................14 
1.3.3 Adenovirus vectors for gene therapy ...........................................................16 
1.3.4 Adenovirus vectors as cancer vaccines .......................................................16 
1.3.5 Modified Vaccinia Ankara ............................................................................16 
1.3.6 Vaccinia Virus structure ...............................................................................17 
1.3.7 Vaccinia virus replication .............................................................................18 
1.3.8 Heterologous prime-boost vaccination .........................................................20 

2. Hypotheses and aims of the thesis work .................................................................21 
3. Material and methods ..............................................................................................22 

3.1 Materials ............................................................................................................22 
3.1.1 Reagents and Chemicals. ...........................................................................22 
3.1.2 PCR primer for next-generation sequencing (NGS) .....................................24 
3.1.3 NGS barcode primers ..................................................................................25 
3.1.4 Flow cytometry antibodies ...........................................................................26 
3.1.5 Western Blot and Immunofluorescence antibodies ......................................26 
3.1.6 ELISA ..........................................................................................................26 
3.1.7 Histology antibodies ....................................................................................26 

3.2 Methods .............................................................................................................27 
3.2.1 Mice ............................................................................................................27 
3.2.2 Molecular cloning ........................................................................................27 
3.2.3 Generation of Trp1 and Ciita sgRNA CRISPR-Cas9 plasmids .....................28 
3.2.4 Generation of HCmel12 Trp1 and Ciita-knockout cells ................................29 
3.2.5 Next generation sequencing ........................................................................30 
3.2.6 Insertion or deletion (indel) detection ...........................................................30 
3.2.7 Cell Culture .................................................................................................30 
3.2.8 Tumor transplantation experiments .............................................................31 
3.2.9 Viral vectors ................................................................................................31 
3.2.10 Adoptive T-cell immunotherapy .................................................................32 
3.2.11 Vitiligo scoring ...........................................................................................32 
3.2.12 Histology and immunohistology .................................................................32 
3.2.13 Enzyme-linked immunosorbent assay .......................................................32 
3.2.14 Flow cytometry ..........................................................................................33 
3.2.15 Recognition of HCmel12 and variants by Trp1 CD4+ T cells in vitro ..........33 
3.2.16 Cell culture immunofluorescence analysis .................................................34 
3.2.17 Western blot analysis ................................................................................34 
3.2.18 Amplification of adenovirus stocks .............................................................35 
3.2.19 Amplification of MVA stocks ......................................................................35 



4 
 

3.2.20 Titering of Adenovirus and MVA ................................................................35 
3.2.21 Generation of fluorescent HCmel12 melanoma cells .................................36 
3.2.22 Selection of statistical tests ........................................................................36 

4. Results ....................................................................................................................37 
4.1 Establishment of an ACT regimen with CD4+ T cells .............................................37 

4.1.1 Generation of an adenoviral vector expressing both a Trp1 CD4+ T cell 
epitope and a gp100 CD8+ T cell epitope ............................................................37 
4.1.2 Adenoviral vaccination expands adoptively transferred Trp1 CD4+ T cells 
less efficiently than Pmel-1 CD8+ T cells in vivo ..................................................40 
4.1.3 Trp1 CD4+ T cell ACT controls melanoma growth and causes extensive 
vitiligo in mice with regressing melanomas ...........................................................42 

4.2 Heterologous prime-boost strategies to enhance T cell ACT .................................45 
4.2.1 Generation of a Modified vaccina virus vector expressing both a Trp1 CD4+ 
T cell epitope and a gp100 CD8+ T cell epitope ...................................................45 
4.2.2 Ad5-GTY priming and MVA-PMTP boosting works for Pmel-1 CD8+ T cells 
but not for Trp1 CD4+ T cells in vivo ....................................................................51 
4.2.3 MVA booster vaccination does not improve the therapeutic efficacy of the 
adoptive T cell therapy .........................................................................................53 
4.2.4 Co-transfer of tumor antigen specific CD8+ and CD4+ T cells controls 
melanomas only marginally better than CD8+ or CD4+ T cells alone ...................55 
4.2.5 HCmel12 melanomas that relapse after T cell immunotherapy show down-
regulated expression of the melanocytic target antigens ......................................57 

4.3 Mechanisms of CD4+ T cell anti-tumor effector functions ......................................59 
4.3.1 Genetic ablation of the Trp1 gene in melanoma cells using CRISPR-Cas9 
genome editing .....................................................................................................59 
4.3.2 Trp1 CD4+ T cells do not recognize Trp1-/- HCmel12 melanoma cells in vitro
 .............................................................................................................................63 
4.3.3 Trp1 CD4+ T cell ACT is ineffective against HCmel12 Trp1-/- melanomas ...65 
4.3.4 Genetic ablation of the Ciita gene in melanoma cells using CRISPR-Cas9 
genome editing .....................................................................................................70 
4.3.5 Trp1 CD4+ T cell ACT can control the growth of HCmel12 Ciita-/- melanomas
 .............................................................................................................................75 

5. Discussion ...............................................................................................................77 
5.1 Adoptive transfer of Trp1 CD4+ T cells and adenoviral vaccination....................77 
5.2 Boost vaccination with recombinant MVA for CD4+ T cells ................................77 
5.3 Therapeutic efficacy of Trp1 CD4+ T cells against skin melanomas...................78 
5.4 Immune escape through dedifferentiation ..........................................................79 
5.5 Antigen-specific effector functions and bystander killing ....................................79 
5.6 The role of MHC class II restricted antigen presentation ....................................80 
5.7 Consequences for the mechanisms of CD4+ T cell anti-tumor immunity ............82 
5.8 The connection between anti-tumor immunity and autoimmune vitiligo ..............83 

6. Summary .................................................................................................................85 
7. References ..............................................................................................................87 
8. List of Figures ........................................................................................................ 100 
9. List of Abbreviation ................................................................................................ 103 
10. Acknowledgement ............................................................................................... 105 
11. Contributions to scientific meetings ..................................................................... 106 
12. Publication list ..................................................................................................... 107 
 

 

  



5 
 

1. Introduction 

1.1 Melanoma: the most dangerous form of Skin Cancer. 

1.1.1 History of melanoma 

“As to the remote and exciting causes of melanosis, we are quite in the dark, nor 

can more be said of the methodus medendi. We are hence forced to confess the 

incompetency of our knowledge of the disease under consideration, and to leave 

to future investigators the merit of revealing the laws which govern its origin and 

progress.... and pointing out the means by which its ravages may be prevented 

or repressed“ – Thomas Fawdington, The Manchester Royal Infirmary, 1826. 

With these words, Thomas Fawdington described a condition he called 

“melanosis”.  

The earliest evidence for melanomas comes from metastases found in the 

skeletons of Pre-Colombian mummies from Chancay and Chingas in Peru, which 

according to radiocarbon based analyses are approximately 2400 years old 

(Rebecca et al., 2012; Shain and Bastian, 2016; Urteaga B. and Pack, 1966). In 

the 5th century BC, melanoma was described in the writings of Hippocrates of 

Cos. In 1787, the Scottish surgeon John Hunter performed the first recorded 

surgical excision of melanoma from the jaw of a 35-year-old patient. Hunter 

described melanoma as a cancerous fungus excrescence. This case was 

described again by Everard Home in 1805 in his book Observations on Cancer. 

He described that melanoma was black in appearance and soft in consistency. 

The general practitioner Dr. William Norris gave first detailed reports on etiology 

and progression of melanosis. He followed a 59-year old patient with melanoma 

for over 3 years and performed an autopsy on the patient. He observed that 

melanoma was heterogeneous with reddish and whitish brown throughout and 

also described melanoma metastases. It was Dr. Norris who observed familial 

hereditary inheritance of melanoma as he reported that his patient’s father had 

succumbed to a similar disease (Norris, 1820). In 1806 Rene Laennec, a medical 

student who later invented the stethoscope, was the first to lecture on melanoma. 

He coined the term “melanoses” to describe the black lesions commonly found in 

the lungs while performing autopsies (Roguin, 2006). In 1838, Sir Robert 

Carswell, a pathologist, coined the word “melanoma”. 
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1.1.2 Incidence and mortality of melanoma 

Skin cancer is common among fair-skinned individuals. It can be divided into 

melanoma and non-melanoma skin cancers (Breitbart et al., 2006). Non-

melanoma skin cancer includes basal cell carcinoma and squamous cell 

carcinoma. Although non-melanoma skin cancer is more common, it is not as 

aggressive as melanoma. Annually around 132,000 new cases of melanoma are 

reported worldwide (WHO Skin Cancer). The incidence of melanoma is 16 times 

higher in Caucasians compared to Africans (Gloster and Neal, 2006). Although 

melanoma is not the most frequent form of skin cancer, it accounts for the highest 

number of skin cancer related deaths. For instance, in the USA melanoma 

represents only 3% of skin cancers but contributes to 75% of skin cancer-related 

deaths (American Academy of Dermatology). 

Based on a pilot study in the state Schleswig-Holstein, it was estimated that 

between the year 2003 and 2007 the incidence of malignant melanoma in 

Germany amounted to around 15 per 100.000 people. However, since nationwide 

screening for skin cancer was started in 2008 the incidence rate of melanoma 

increased by 28 percent (~18 cases per 100.000 people) (Katalinic et al., 2015).  

1.1.3 Clinical classification of melanoma 

Melanomas are classified by the WHO into 4 subtypes based on the clinical 

characteristics as superficial spreading melanoma, lentigo meligna melanoma, 

nodular melanoma and acral lentiginous melanoma (Schadendorf et al., 2013). 

The American Joint Committee on Cancer (AJCC) groups melanoma into four 

stages. Stage I and II cutaneous melanomas are restricted to the skin with no 

regional or distant metastasis. In stage I the vertical tumor thickness is less than 

2 mm, in stage II, the vertical tumor thickness is more than 2 mm. Stage III 

melanomas show evidence of locoregional disease including satellite, in-transit 

and regional lymph node metastasis. Stage IV melanomas show distant 

metastasis in skin, lymph nodes, lungs, liver and other visceral sites, the skeleton 

and the brain (Mohr et al., 2009). 
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1.1.4 Melanoma pathogenesis  

Melanomas originate from pigment-producing cells called melanocytes, which 

are derived from neural crest precursor cells during development. They are a 

minor, slowly proliferating cell population located in the basal epidermis, hair 

follicles, uveal tract of the eye and to a lesser extent in meninges and the 

anogenital tract (Costin and Hearing, 2007). Epidermal melanocytes are part of 

the skin defense system because the melanin pigment produced by them is 

passed to keratinocytes and protects against UV induced DNA damage (Kaidbey 

et al., 1979; Plonka et al., 2009). 

The benign precursors of melanomas are known as nevi. Acquired common nevi 

commonly effect the trunk and extremities exposed to sun, indicating that 

ultraviolet (UV) radiation is the most important cause for the formation of nevi. 

Based on histology, nevi are classified as junctional, dermal, and compound nevi. 

Junctional nevi are restricted to the epidermis, dermal nevi to dermis and 

compound nevi have both epidermal and dermal components (Bastian, 2014). 

Melanocytic nevi can already be present at birth, They are called congenital nevi 

and have an increased risk for malignant transformation. While acquired nevi are 

associated with BRAF mutations (Pollock et al., 2003), congenital nevi are 

associated with NRAS mutations (Carr and Mackie, 1994). It is thought that the 

proliferative activity of melanocytes during the development of a nevus is 

counteracted by oncogene-induced senescence (Collado et al., 2007; 

Michaloglou et al., 2005), a process involving upregulation of the p16INK4a tumor 

suppressor protein (Takata et al., 2010). Acquired melanocytic nevi arise during 

the second decade of life and tend to regress spontaneously after the sixth 

decade of life (Purdue et al., 2005).  

Progression of a nevus to a melanoma can be due to inactivation of p16INK4a 

(Shain and Bastian, 2016). In addition, the human telomerase reverse 

transcriptase (hTERT) is frequently activated. Subsequent invasive growth 

involves β-catenin activation, E-Cadherin loss and N-Cadherin overexpression 

resulting in invasive and migratory melanoma cells (Bennett, 2003; Miller and 

Mihm, 2006). This progression of nevi to melanoma is considered as a multistep 

process characterized by accumulating genomic alterations (Hussein, 2004).  
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UV radiation typically causes the mutations in melanoma through DNA damage 

and the formation of pyrimidine dimers resulting in C to T transition mutations 

(Narayanan et al., 2010). The number of UV-induced mutations correlates with 

the cumulative extent of skin sun damage. Accordingly, melanomas have been 

divided in those arising on chronically sun damaged (CSD) and those arising on 

non-chronically sun damaged melanomas (non-CSD) (Shain and Bastian, 2016). 

CSD melanomas are associated with inactivating NF1 mutations (Krauthammer 

et al., 2012), increased copy numbers of CCND1 (Curtin et al., 2005), activating 

mutations of KIT (Curtin et al., 2006) and increased p53 mutation frequencies 

(Krauthammer et al., 2012). Non-CSD melanomas are more common in younger 

patients and are associated with BRAFV600E mutations (Curtin et al., 2005; 

Maldonado et al., 2003). The distribution of CSD and non-CSD melanomas on 

the body is shown in figure 1.1.4.1 

 
Fig.1.1.4.1 Schematic representation of the distribution of CSD and non-CSD melanomas. 
The left panel depicts common mutation and age of incidence observed in these broad subtypes 
of melanoma and right panel depicts the distribution of CSD (violet color coded) and non-CSD 

(orange color coded) melanomas on the body (Shain and Bastian, 2016). 
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1.1.5 Role of the immune system  

Primary cutaneous melanomas are frequently infiltrated with immune cells. These 

include cytotoxic CD8 T cells (CTLs), natural killer cells (NK cells) as well as 

dendritic cells and macrophages, which are thought to control tumor growth 

(Chen and Mellman, 2017).  However, they also include T regulatory cells (Tregs) 

and immunosuppressive myeloid cells that antagonize cytotoxic immunity and 

promote progressive tumor growth. For example, a recent study by the Tüting 

laboratory showed that repetitive UV exposure of mice bearing spontaneous 

cutaneous melanomas promoted the recruitment of neutrophils as a result of UV 

induced damage of epidermal keratinocytes which enhanced metastatic spread 

(Bald et al., 2014a). The balance between anti-tumor immunity and pro-

tumorigenic inflammation co-determines the clinical outcome (Grivennikov et al., 

2010).  

1.1.6 Melanoma therapy 

William Norris, who described the first case of melanoma in 1820, suggested wide 

excision of skin and subcutaneous tissue as surgical management for melanoma 

(Lee et al., 2013; Norris, 1857). Another surgeon, Herbert Lumley Snow, provided 

a detailed rationale for regional lymphadenectomy in melanoma patients (Snow, 

1892). Surgery was the only option for management of melanoma between 1800 

and 1950 and continues to be first line of treatment of early stage melanomas 

with no metastasis even to the present day. A recent study involving multivariate 

analysis of melanoma patients with stage I to III disease showed that early 

surgical resection of stage I melanomas was associated with improved clinical 

outcome (Conic et al., 2018) 

Surgery is not an option for advanced melanomas with distant metastases. In the 

1970s large-scale clinical trials proved the efficacy of chemotherapeutic drugs 

like dacarbazine and nitrosoureas. Indeed, dacarbazine was approved by the 

United States Food and Drugs Administration (FDA) for the treatment of 

metastatic melanoma (Lee et al., 2013). Although nitrosoureas showed effect on 

melanoma progression it was not approved by FDA due to the aggressive side 

effects such as bone marrow suppression and thrombocytopenia. 

Chemotherapeutic drugs belonging to the group of vinca alkaloids, paclitaxel and 
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platinums such as cisplatin and carboplatin have also been used in the treatment 

of malignant melanoma with moderate efficacy (Luke and Schwartz, 2013). 

1.1.7 Novel Immunotherapeutic approaches 

The discovery of interferons (IFN) and their role in anti-viral and anti-tumoral 

immunity between 1950-1970 marked the dawn of tumor immunotherapy (Isaacs 

and Lindermann, 1957; Isaacs et al., 1957; Lee et al., 2013). In the 1980s, 

immunostimulatory cytokines became available as recombinant proteins and 

IFN-alpha became the first approved treatment. This was followed by the cytokine 

IL-2 in the 1990s, a growth factor for IL-2 (Morgan et al., 1976; Smith, 1988). 

Patients with advanced metastatic melanoma receiving high dose IL-2 showed 

tumor responses in about 16% of patients, with complete and durable regression 

in about 6% (Atkins et al., 2000). However, this treatment was associated with 

severe side effects frequently requiring monitoring in the hospital (Atkins et al., 

2000; Bhatia et al., 2009; Rosenberg, 2014).  

IL-2 was also able to expand tumor-infiltrating lymphocytes (TILs) in vitro. These 

lymphocytes contained T and NK cells and were used for adoptive cell transfer 

(ACT) therapies, an approach that was first shown to be effective by Rosenberg 

and colleagues (Rosenberg et al., 1988). ACT with tumor-specific T cells has 

subsequently provided proof of concept for the ability of the adaptive immune 

system to control cancer cell growth (Baruch et al., 2017; Yee et al., 2002). More 

recently, both CD8+ and CD4+ T cells have been used successfully in ACT 

therapies (Li et al., 2017; Muranski et al., 2008; Rosenberg et al., 2008). 

2011 and 2014 marked important milestones in cancer immunotherapy with the 

FDA approval of antibodies blocking the immune-checkpoint molecules CTLA-4 

or PD-1, which are upregulated on T cells upon prolonged T cell activation. T 

cells are generated in the thymus where they acquire specificity for large variety 

of non-self-antigens by rearrangement of T cell receptor (TCR) genes (Lucas et 

al., 2016; Takahama, 2006). T cells recognize antigens in the form of short 

peptides presented by major histocompatibility complex (MHC) on the cell 

surface. CD8+ T cells require the antigen to be presented on MHC-I and CD4+ T 

cells on MHC-II (Janeway et al., 2001). T cells having high affinity for self-

antigens undergo apoptosis in a process called negative selection (Klein et al., 
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2014). T cell activation in the periphery requires three signals. Signal 1 is provided 

by binding of T cell receptor (TCR) with cognate antigen bound to MHC molecules 

on professional antigen presenting cells (APCs) such as dendritic cells or 

macrophages. Interaction of co-receptor CD28 on T cells with CD80 and CD86 

ligands on APCs provide signal 2 followed by cytokines which constitute  signal 

3, and determine the effector phenotype of the T cells (Sckisel et al., 2015).  

CTLA-4 is upregulated on T cells following activation. It then binds to CD80 (B7.1) 

and CD86 (B7.2) on antigen presenting cells and prevents the interaction of the 

T cell co-receptor CD28 with CD80 and CD86. This terminates T cell activation. 

Upregulation of CTLA-4 is also observed on Tregs, which plays an important role 

in the prevention of effector T cell activation (Peggs et al., 2009; Redman et al., 

2016; Yao et al., 2013). PD-1 is also a member of the CD28 superfamily and is 

upregulated on activated T cells (Dong et al., 2002; Redman et al., 2016). It binds 

to its ligands PD-L1 and PD-L2 which are widely expressed in tissues and 

upregulated by IFNs during inflammatory responses. Together, CTLA-4 and PD-

1 likely protect against autoimmune responses during infections but inhibit 

cytotoxic immunity against cancer cells (Hanahan and Coussens, 2012; Pitt et 

al., 2016). Immune checkpoint therapies blocking CTLA-4 and PD1 act by 

unleashing the power of anti-tumor T cells. In 2018, the Nobel Prize was awarded 

to James P Allison and Tasuku Honjo for identifying CTLA-4 and PD-1, 

respectively. 

1.2 Experimental mouse models and the role of anti-tumor CD4+ T cells  

1.2.1 Early developments  

Mouse models have been crucial in the development of immunotherapeutic 

approaches to enhance T cell immunity against solid tumors. Already in the mid-

1960s it was reported that the transfer of immune cells from mice or rats bearing 

transplanted tumors can cause regression of the same tumors established in a 

second mouse or rat (Delforme and Alexander, 1964; Rosenberg et al., 2008; 

Urba, 2014). Combining chemotherapy (cyclophosphamide) with immune cell 

transfer enhanced their anti-tumor efficacy (Fefer, 1969; van der Most et al., 

2009; North, 1982). Transient lymphodepletion via radiotherapy also enhanced 

the efficacy of  ACT (Cheever et al., 1977; North, 1982; Urba, 2014). In 1986, it 

was first shown that tumor infiltrating lymphocytes (TILs) can be isolated from 
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mice bearing sarcomas or melanomas, expanded ex vivo with the help of IL-2 

and re-infused into mice to treat lung and liver tumors (Rosenberg et al., 1986, 

2008). Transfer of TILs in conjunction with cyclophosphamide and IL-2 was 

extremely efficient in causing melanoma regression (Rosenberg et al., 1986; 

Urba, 2014).  

1.2.2 Anti-tumoral functions of CD4+ T cells  

Traditionally, CD4+ T cells have been considered to provide help for cytotoxic 

CD8+ T cells which then carry out antitumor immunity (Borst et al., 2018). In 

general, CD4+ T cells help by licensing of dendritic cells through CD40-CD40 

ligand interactions (Bennett et al., 1998). However, in addition to supporting the 

activation of CD8+ T cells several studies have shown that CD4+ T cells can also 

have additional roles in the tumor microenvironment. Recent studies demonstrate 

that CD4+ T cells can recognize cancer specific neoantigens which are patient 

specific (Linnemann et al., 2014; Ott et al., 2017). CD4+ T cells isolated from 

tumors or draining lymph nodes could produce effector IFN-γ, TNF-α as well as 

granzyme-B indicating cytotoxic potential (Malandro et al., 2016; Quezada et al., 

2010; Xie et al., 2010). Cytotoxic CD4+ T cells capable of direct killing of tumor 

cells in vivo can be induced by engaging the exclusive costimulatory molecule 

OX40 (Hirschhorn-Cymerman et al., 2012). 

CD4+ T cells can also lead to indirect anti-tumor effects. For example, Th1-biased 

CD4+ T cells could induce senescence in tumor cells through secretion of IFN-γ 

and TNF-α and thereby indirectly control tumor growth (Braumüller et al., 2013). 

Another study demonstrated that CD4+ T cells can induce indirect bystander 

killing due to IFN-γ dependent antigen presentation by host cells (Mumberg et al., 

1999; Perez-Diez et al., 2007). The IFN-γ mediated anti-tumor effects of CD4+ T 

cells can also involve inhibition of angiogenesis (Qin and Blankenstein, 2000a). 

CD4+ T cells can also activate NK cells through IL-2 secretion and thereby 

enhance innate anti-tumor effects (Fehniger et al., 2003).  

1.2.3 Immunosuppressive functions of CD4+ T cells  

CD4+ T cells with a Th-2 phenotype secrete IL-4, IL-13 and IL-10 can render the 

tumor microenvironment immunosuppressive and induce M2, tumor promoting 

macrophages (DeNardo et al., 2009). CD4+ regulatory T cells (Tregs) show high 
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expression of CD25 and transcription factor FOXP3, secrete TGF-β and are 

responsible for protection against auto-immunity (Peck and Mellins, 2010). A 

hypoxic tumor microenvironment can shift CD4+ T cells towards the regulatory 

phenotype (Facciabene et al., 2011; Westendorf et al., 2017). Regulatory CD4+ 

T cells infiltrating melanomas, breast and lung carcinomas are associated with 

poor prognosis (Ward-Hartstonge and Kemp, 2017).  

1.2.4 Tumor immune escape mechanisms  

Tumor cells can become resistant to immunotherapeutic intervention (Beatty and 

Gladney, 2015; Sharma et al., 2017). They can down-regulate the expression of 

antigens and of MHC molecules, upregulate immunoregulatory ligands such as 

PD-L1 and PD-L2 and lose IFN-γ responsiveness. For example, reversible 

dedifferentiation in an inflammatory microenvironment is associated with down-

regulation of melanocytic differentiation antigens (Landsberg et al., 2012). 

Expression of PD-L1 on tumor cells is observed predominantly in areas with high 

T cell infiltration, a process termed adaptive resistance. Other immunoregulatory 

molecules such as TIM-3 and LAG-3 which are expressed on tumor infiltrating T 

cells and immunosuppressive cytokines such as IL-10 and TGF-β which are 

present in the microenvironment can further inhibit T cell effector functions 

(Beatty and Gladney, 2015; Inozume et al., 2010; Reinhard et al., 2012; Puccetti 

and Grohmann, 2007; Wiguna and Walden, 2015).  

1.3 Virus vectors for melanoma immunotherapy: Adenovirus and Modified 

Vaccinia Ankara Vectors 

1.3.1 Structure of Adenovirus 

Rowe and colleagues isolated a novel virus in 1953 from adenoid cell cultures 

and named it as “adenovirus” (Rowe et al., 1953). Human adenovirus belongs to 

the family of adenoviridae and can be divided into seven subgroups or species A 

to G and 57 distinct serotypes based on their agglutination properties (Hoeben 

and Uil, 2013; Majhen et al., 2014; Yamamoto et al.). Adenoviruses are non-

enveloped double-stranded DNA viruses with icosahedral capsid of 90 nm 

diameter (Nemerow et al., 2012).  They have a genome of 36 kb with inverted 

terminal repeats of approximately 100 bp in size. The 5’ end of the DNA is 

attached to a terminal protein. Adenoviral replication is a robust and efficient 

process. Once the cell is infected with an adenovirus, the infected cell will 
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produce about one million copies of viral DNA within 40 hours (Hoeben and Uil, 

2013). The adenoviral genome in combination with proteins V, VII and X is called 

the core of the adenovirus (Majhen et al., 2014). The core proteins, or DNA 

associated proteins play an important role in the interaction of the adenovirus with 

the host nucleus (Matthews, 2001), assembly of viral particles (Ugai et al., 2012), 

DNA binding, initiation of DNA replication, and protection of viral genome from 

damage response (Majhen et al., 2014; Xue et al., 2005) 

The icosahedral capsid is composed of the protein hexon, the most abundant 

structural protein. Penton bases are located at each of twelve vertices of the 

capsid and from these penton bases protrude twelve fiber homo-trimers. These 

fibers make knob-like structures protruding on the capsid. The interaction 

between the Cocksackievirus-and-adenovirus receptor (CAR) and the fiber knob 

results in internalization of adenovirus. Penton bases facilitated this process by 

binding integrins with RGD motif which is a peptide sequence that mediates cell 

attachment (Kanerva and Hemminki, 2004; Majhen et al., 2014; Rux and Burnett, 

2004).  

Apart from the hexon and penton base, the capsid is composed of proteins IIIa, 

VI, VII and IX (Russell, 2009). Phosphorylation of protein IIIa occurs early during 

infection at multiple sites of the protein (Tsuzuki and Luftig, 1983) and its 

considered to be important for initial stages of viral disassembly (Russell, 2009). 

Protein VI has a lytic function, which facilitates the virus to penetrate the 

membrane. Additionally, it also plays important role in transporting virus towards 

the nucleus (Burckhardt et al., 2011; Fejer et al., 2011; Wiethoff et al., 2005). 

Proteins VIII and IX are involved in capsid stability (Liu et al., 2010; Majhen et al., 

2014; de Vrij et al., 2011). 

1.3.2 Adenovirus infection pathway 

Adenoviral entry into non-immune cells is well characterized (Figure 1.3.2.1). First, 

the virus attaches to the cells. For human  adenoviruses serotypes 2 and 5, it has 

been shown that the high-affinity receptor Coxsackie Adenovirus receptor (CAR) 

is crucial for this attachment (Bergelson et al., 1997; Fejer et al., 2011; Waye and 

Sing, 2010). Next, the virus enters the cell, a process that is initiated by the 

interaction of the penton base arginine-glycine-aspartic acid (RGD) motif and 
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cellular αvβ integrins resulting in endocytosis of the virus. Then, viral disassembly 

occurs in the endosome and protein VI acidifies the endosomal membrane 

thereby facilitating the disruption and release of viral DNA into the cytosol. Viral 

DNA is then transported to the nucleus, a process which is mediated by protein 

VI and microtubules. Transcription of early viral genes occurs in the nucleus 

resulting in the production of regulatory proteins to prepare the host cell for viral 

DNA replication and to prevent anti-viral responses. The adenoviral genome can 

be divided into immediately early (E1A), early (E1B, E2, E3 and E4), intermediate 

(IX, Iva2) and late genes (a variety of structural proteins). Once the host cell is 

acclimatized and suitable for the viral gene replication the major late promoter 

(MLP) mediates transcription of the viral genome and late viral genes, encoding 

the viral structural proteins and proteins for maturation of viral particles. The 

assembly of the virus occurs in the nucleus and new viral particles are released 

by cell lysis (Kanerva and Hemminki, 2004; Waye and Sing, 2010).  

 

Figure 1.3.2.1 Adenovirus infection and replication pathway. 
Adenovirus is internalized by endocytosis once it binds to the receptor which is followed by the 
release of viral genome in cytoplasm. The genome is transported to nucleus where transcription 
of early viral genes and late viral genes occurs which is followed by replication of viral DNA. This 
is then packaged and released by cell lysis (Waye and Sing, 2010). 
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1.3.3 Adenovirus vectors for gene therapy 

Adenovirus can be an effective tool to express foreign DNA in target cells. 

Adenoviral vectors are well studied, can be produced in high titers, are stable, 

and can transduce both dividing and non-dividing cells. These properties make 

them ideal for gene therapy. About 400 therapy trials have been or are being 

conducted with human adenoviral vectors (Lee et al., 2017; Majhen et al., 2014; 

Wold and Toth, 2013). In replication-deficient adenovirus vectors, E1A and E1B 

(early transcribed region 1) are deleted and replaced with a transgene under a 

strong promoter like the CMV promoter, which drives the expression of the 

transgene. These vectors are propagated in cell lines that complement E1 

function such as human embryonic kidney (HEK 293) cells and human embryonal 

retinoblasts 911 cells.  

1.3.4 Adenovirus vectors as cancer vaccines 

Recombinant adenoviruses expressing tumor-associated antigens have been 

tested in melanoma and prostate cancer in pre-clinical models where they could 

augment antitumor immunity. Immunization of mice with adenovirus expressing 

prostate-specific antigen and prostate stem cell antigen induced a very strong 

anti-tumor CD8+ T cell response (Karan, 2017). Furthermore, vaccination with a 

replication-deficient Ad40 based adenovirus expressing mesothelin was shown 

to have prophylactic efficacy against metastatic lesions of pancreatic cancer 

(Yamasaki et al., 2013). Adenoviral transduced DC-based vaccines have been 

studied in pre-clinical models to treat melanoma, but have not so far shown 

promises in clinical trials (Steitz et al., 2001; Tuettenberg et al., 2003). 

1.3.5 Modified Vaccinia Ankara 

Vaccinia virus is a complex double-stranded, encapsulated DNA virus, which 

belongs to poxviridae family. The double-stranded DNA codes approximately for 

250 genes. Vaccinia viral vaccination for smallpox disease has resulted in 

eradication of smallpox in 1980 (Henderson et al., 1988; Sutter and Moss, 1992). 

Initially, smallpox infections were treated with variolation involving inoculation of 

live smallpox virus in the patients. Despite the inherent safety risks variolation 

was a widespread practice in Asian countries and it gathered some popularity in 

the UK (Brimnes, 2004). A major breakthrough in treatment of smallpox came, 
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when Edward Jenner first time used cowpox virus  as a prophylaxis against 

smallpox in a protocol he called “vaccination” (Riedel, 2005).  

Vaccinia virus is directly related to the Jenner’s cowpox virus and several features 

such as its large packaging capacity of recombinant DNA, absence of genomic 

integration risk, strong recombinant DNA expression mediated through the 

poxviral promoter, ease of production and high immunogenicity as vaccine makes 

it a useful tool for gene therapy and vaccination (Verheust et al., 2012). However, 

Vaccinia virus is a biosafety level 2 virus and it is known to infect individuals with 

a weak immune system, and dermatological abnormalities (Isaacs, 2004).  

Modified Vaccinia Ankara (MVA) is a highly attenuated strain of vaccinia virus 

with decreased health risks associated with the wild-type vaccinia virus. MVA is 

a biosafety level I virus which is derived from vaccinia virus strain Ankara, 

attenuated through more than 570 serial passages in chicken embryo fibroblasts 

(Mayr et al., 1975). This virus is replication deficient in mammalian cells but 

maintains the advantage of the vaccinia virus capacity to express high levels of 

transgene (Staib et al., 2004). MVA has been used as an alternative and safer 

vaccine for smallpox and proven to have an excellent safety profile.   

1.3.6 Vaccinia Virus structure 

Vaccinia virus exists in four different forms, the intracellular mature virus (IMV) or 

mature virus (MV), intracellular enveloped virus (IEV), cell-associated enveloped 

virus (CEV)  and extracellular enveloped virus (EEV or EV). IMV is the most 

abundant form and is responsible for transmitting infection between hosts. IEV is 

intermediate form between IMV and CEV/EEV, which is responsible for 

dissemination of virus to cell surface. CEV is important for cell-to-cell spread and 

EEV is important for long-range dissemination of virus in vitro or in vivo (Smith et 

al., 2002). Vaccinia virus has dumbbell-shaped core that contains double-

stranded viral DNA genome, enzymes including DNA dependent RNA 

polymerase and RNA processing enzymes (Harrison et al., 2004). 

The genome of the Copenhagen vaccinia virus strain has been sequenced 

completely. It has a 191-kbp of double-stranded DNA genome, from which the 

ends are connected by 101 nucleotides long single-stranded hairpin loops. The 

genome sequence reveals 185 putative protein-coding sequences. Similar to 
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other poxviruses, the genes encoding structural proteins and essential enzymes 

are clustered in the central 120 kb of the genome and genes encoding virulence 

proteins are at the ends (Harrison et al., 2004). 

1.3.7 Vaccinia virus replication 

Replication of pox-virus occurs in the cytoplasm and does not involve the host 

nucleus. These viruses form unique cytoplasmic mini-nuclei surrounded by 

membranes derived from host endoplasmic reticulum which support viral 

replication (Schramm and Locker, 2005; Tolonen et al., 2001). Replication of virus 

is summarized in figure 1.3.7.1. 

 

Figure 1.3.7.1 Vaccinia virus replication cycle. 
Vaccinia virus replication occurs in cytoplasm of the host cell. The virus is attaches to the cell 
surface and releases its core in to the cell by a not clearly known mechanism, which is followed 
by transcription of early viral mRNA followed by replication of viral genome and protein synthesis.  
Next the intermediate and late genes are expressed which facilitates packaging of virus particles 
are released by host cell lysis. Figure is adapted from (Volz and Sutter, 2017) 
 

The precise mechanism of entry of vaccinia virus into the host cell is unknown. 

While MV is the infective form of the vaccinia and responsible for the spread 

between the hosts, the EEV form of vaccinia virus is responsible for cell-to-cell 

spread within the host (Blasco and Moss, 1992; Moss, 2012; Roper et al., 1998). 

Entry of vaccinia virus into the host cell requires fusion of the viral membrane with 

the plasma membrane or the endosomal membrane of the host cell (White et al., 

2008). Electron microscopic studies revealed that the fusion occurs via the 

interaction of the virus with glycosaminoglycans at the cell surface at neutral pH 

(Law et al., 2006). Another study by Townsley and colleagues show that viral 
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entry is accelerated by a low pH resulting enhanced interactions of viral 

membrane with endosomes of host cells (Townsley et al., 2006). Once the virus 

is attached to the cell, the core is released into the cytoplasm, which is followed 

by synthesis of early mRNA and protein synthesis regulated by the early 

promoter. Next, DNA synthesis is started and can be detected within two hours 

post infection (Moss, 2013). The replicated DNA provides a template for synthesis 

of intermediate and late mRNA, which are responsible for virus assembly and 

maturation. Enzymes involved in DNA synthesis and packaging of vaccinia virus 

are summarized in Table 1.3.7.1. 

Table 1.3.7.1 Proteins and viral DNA synthesized during replication cycle of vaccinia virus 

Protein Expression Essential 

Precursor metabolism   

Thymidine Kinase Early No 

Thymidylate kinase Early No 
Ribonucleotide 

reductase 

Early No 

dUTPase Early No 

Replication   

DNA Polymerase Early Yes 

Helicase primase Early Yes 

Uracil DNA glycosylase Early Yes 

Processivity factor Early Yes 

 

MVA does not replicate in mammalian cells like vaccinia virus but can efficiently 

enter the cell and synthesis early, intermediate and late viral genes abundantly. 

Therefore, they are efficient in expressing foreign DNA but the assembly of viral 

DNA to form the virus particles does not occur thereby inhibiting its replication in 

mammalian cells (Volz and Sutter, 2017). MVA has been tested in clinical trials 

involving patients with various malignancies like colorectal cancer, prostate 

cancer and renal cancer (Amato et al., 2008; Harrop et al., 2011; Scurr et al., 

2017). The clinical trials have shown that it is safe and well tolerated in humans 

making an attractive tool as a cancer vaccine. 
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1.3.8 Heterologous prime-boost vaccination 

An effective vaccination requires administration of immunization more than once 

in the form of prime-boost. The same viral vaccine given more than once, 

homologous prime-boost can induce anti-virus antibodies which results in 

clearing the virus off the system leading to reduced efficacy of therapy. Prime-

boost with different vaccine vectors encoding the same antigen is known as 

heterologous prime-boost  and can be more immunogenic when compared to 

homologous prime-boost (Lu, 2009). Vaccinia virus is one of the most used 

recombinant vectors used in heterologous prime-boost therapy (Cottingham and 

Carroll, 2013). 

Prime-boost strategies were tested against malaria, HIV and cancer. A recent 

study by Chapman and colleagues showed that heterologous prime-boost 

vaccination with DNA and MVA vaccines expressing HIV-1 subtype C 

immunogen Gag induced strong CD8 and CD4 T cell responses in mice. 

furthermore the T cells had effector memory phenotype (Chapman et al., 2017). 

A study by Shukarev and colleagues in 2017 showed that prime boost vaccination 

with adenovirus and MVA expressing ebola virus glycoprotein induced a strong 

antibody and T cell responses against the antigen in healthy 18 to 50 year old 

volunteers (Shukarev et al., 2017).  Ability of prime-boost vaccine strategies to 

induce strong T cell and humoral responses is being studied in malignancies like 

prostate cancer, colon cancer and melanomas (Amato et al., 2008; Ilett et al., 

2017; Schweizer and Drake, 2014; Xiang et al., 2017)  
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2. Hypotheses and aims of the thesis work 

Tumor cells closely interact with the host’s immune system and immunotherapy 

is emerging as a part of standard cancer care. Cytotoxic CD8+ T cells have been 

in the main focus of cancer immunologists for many years. More recently, CD4+ 

T cells have gained increasing attention. Traditionally, CD4+ T cells have been 

thought to primarily provide help to cytotoxic CD8+ T cells.  In addition, CD4+ T 

cells can also have direct anti-tumoral effector functions. The mechanisms how 

CD4+ T cells recognize their cognate antigen in tumor tissues and how they exert 

their effector functions against tumor cells are incompletely understood. 

General hypothesis: 

In the current work it was hypothesized that melanocyte antigen-specific CD4+ T 

cells can control the growth of melanomas as efficiently as corresponding CD8+ 

T cells but differ in the way they recognize antigen and exert their effector 

functions against tumor cells in the tissue microenvironment. 

Specific aims: 

1) Develop an adoptive cell therapy (ACT)  protocol with CD4+ T cells targeting 

the melanocyte differentiation antigen Trp1 and compare its efficacy to the 

established ACT protocol with CD8+ T cells targeting the melanocytic antigen 

gp100 for the treatment of mice bearing progressively growing transplanted 

melanomas. 

2) Evaluate the ability of MVA-based virus vaccine vectors to boost CD4+ and 

CD8+ T cell responses.  

3) Confirm the antigen-specificity of CD4+ T cell ACT using melanoma cell 

variants that have lost antigen following CRISPR-Cas9 based genetic ablation 

of the Trp1 gene. 

4) Investigate the importance of direct antigen recognition on tumor cells for the 

anti-tumoral efficacy of CD4+ T cell ACT using melanoma cell variants that 

are deficient in direct MHC class II antigen presentation following CRISPR-

Cas9 based genetic ablation of the Class II transactivator (Ciita) gene. 
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3. Material and methods 

3.1 Materials 

3.1.1 Reagents and Chemicals. 

Reagent Manufacturer Order number 

β-Mercaptoethanol Sigma-Aldrich M7522 

4',6-Diamidino-2-phenylindol 

Dihydrochloride (DAPI)  

Roth 6335.1 

Acetone Merck 100299 

Agarose NEEO Roth 2267.4 

Ammonium chloride Roth 5470.1 

Antibody Diluent (Immune 

histology) 

DAKO S0809 

APS Roth 959,2 

FastDigest Bpil Thermo-scientific FD1014 

FastDigest BamHI Thermo-scientific FD0054 

FastDigest Sall Thermo-scientific FD0644 

FastDigest NotI Thermo-scientific FD0593 

FastDigest MfeI Thermo-scientific FD0753 

FastDigest BglII Thermo-scientific FD0083 

FastDigest XhoI Thermo-scientific FD0694 

Brefeldin Biolegend 420601 

Bovine serum albumin (BSA) Sigma-Aldrich A7030 

 
Butanol Roth 7171.2 

Calcium chloride dihydrate Roth 5239.1 

Collagenase D Roche 11088866001 

DNase Roche 10104159001 

dNTPs Fermentas 00030191 

Ethanol Merck 1.009.831.011 

Ethylenediaminetetraacetic acid 

(EDTA) 

Roth 8043.2 

E. coli: DH10β Prepared in lab ---------- 

Fast Digest Green buffer Thermo Scientific 00200201 

Flouromount-G Southern Biotech 0100-01 

Fugene HD transfection reagent Promega E2311 

Gene Ruler 100bp Plus DNA 

Ladder 

Fermentas SM0322 

Glycerin Roth 3783.1 

Glycin Roth 3790.3 

GoTaq G2 DNA Polymerase Promega M7848 

HD green DNA stain Intas  

Hydrogen peroxide (H2O2) 3% Merck 1.072.091.000 

Isopropanol (Propan-2-ol)  Fluka 59304-1l-F 

KOH Roth P747.2 

Laemmli Buffer (2x) Sigma-Aldrich 38733 

L-Lysine Sigma 5626-500G 

M-Per Mammalian Protein 

reagent 

Fermentas K0301 

Methanol Roth 4627.20 

Paraffin Labomedic 52709 

Paraformaldehyde (PFA) Roth 0335.1 

PBS Life Technologies 14190-094 

Phusion HF buffer Biolabs B0518S 
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Phusion HD polymerase New England 

Biolabs 

M0530S 

polyinosinic:polycytidylic acid 

(Poly(I:C)) 

Invivogen PC-32-19 

Protease inhibitors  Thermo 78438 

Proteinase K Macherey&Nagel P14104S 

Puromycin PanReac Applichem A2856.0010 

Saponin Sigma 47036-50G 

Sodium chloride Roth 9265.1 

Sodium Dodecyl Sulfate(SDS) VWR 444464T 

Streptavidin-HRP R&D 312275 

Tetramethylethyldiamin(TEMED) Sigma T9281 

Tris Roth 5429.2 

Tris-buffered Saline (TBS) DAKO S3001 

Tris-HCl Roth 5429.2 

Tween 20 Sigma-Aldrich P-1379 

T4 DNA Ligase Sigma-Aldrich 000000010481220001 
Zinc fixative (10x) BD 12296 

 

Buffer Ingredients 

Annealing buffer 100nM NaCL, 50mM Hepes; pH 7.4 

Blocking solution 

(ELISA) 

1% BSA in PBS 

Blocking solution 

(Histology) 

5% BSA in TBS 

Collagenase Solution  5mg Collagenase in 500ml PBS, 25ml FCS, 1ml 

DNAse (10mg/ml) 

Erythrocyte lysis buffer 0.1mM Disodium-EDTA pH 7.3, 155mM NH4Cl; 

10mM KHCO3 

FACS buffer 2 ml 50mM EDTA, 1% FCS in 500 ml of PBS 

Fast digest green buffer Thermo-scientific 

Reagent Diluent (ELISA) 1% BSA in PBS 

Saponin buffer 0.5% Saponin in FACS buffer 

Stripping buffer 200nM glycin; 0.1% SDS; 1% Tween, pH 2,2 

10x Transfer buffer 144.2 g Glycine, 30.3 g Tris base in 1000ml 

water 

1x Transfer buffer 100ml 10x transfer buffer, 200ml methanol and 

700ml water 
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Trypan blue solution Trypan blue basis solution (0.4%) 

Washing buffer (ELISA) 0.05 % Tween 20 in PBS 

Washing buffer 

(Histology) 

0.1% Tween 20 in PBS 

10x Western blot 

running buffer 

144.12 g Glycine, 10 g SDS, 30.28 g Tris base 

in 1000ml water. 

Western blot stacking 

gel 

4.52 ml water, 600 μl 30% acrylamide, 380 μl 2X 

stacking gel buffer, 30 μl 10% ammonium 

persulfate (APS) and 6 μl TEMED Western blot separating 

gel (10%) 

5.42 ml water, 6.67 ml 30% acrylamide, 2.5 ml 

2X separating gel buffer, 200 μl 10% ammonium 

persulfate (APS) and 16 μl TEMED 2X Stacking gel buffer 0.5 M Tris, pH 6.8 

2X Separating gel buffer 1.5 M Tris, pH 8.8 

 

Cell culture media and 

reagents 

Ingredients 

PBS Dulbecco's Phosphate-Buffered Saline, Gibco, 

14190136 

RPMI 1640 RPMI 1640, Gibco, 118350630,1mM HEPES, 

Gibco, 15630 

50 µM 2-mercaptoethanol, Sigma-Aldrich, M-

3148 

50,000units of Penicillin/Streptomycin, Gibco, 

15070063 

1mM Sodium-Pyruvate, Gibco, 11360039 

0,1mM non-essential amino acids,  

   Gibco, 11140-050 

10% (v/v) fetal calf serum (FCS),  

Biochrom AG, 0987S 

Trypsin-EDTA 0,25% Trypsin-EDTA Phenol Red, Gibco, 

25200056 

DMEM, high glucose DMEM, Gibco, 41965-0390,1mM HEPES, Gibco, 

15630 

50 µM 2-mercaptoethanol, Sigma-Aldrich, M-

3148 

50,000units of Penicillin/Streptomycin, Gibco, 

15070063 

1mM Sodium-Pyruvate, Gibco, 11360039 

0,1mM non-essential amino acids,  

   Gibco, 11140-050 

10% (v/v) fetal calf serum (FCS),  

Biochrom AG, 0987S 

 

3.1.2 PCR primer for next-generation sequencing (NGS) 

Gene Sequence: forward Sequence: reverse 

Trp1 

sgRNA 1 

ACACTCTTTCCCTACACGACG

CTCTTCCGATCTCACGAGAGT

GTGCCAATATTG 

TGACTGGAGTTCAGACGTGTGCT

CTTCCGATCTCACCTGTGAGAAT

TTTCTGGT 

Trp1 

sgRNA 2 

ACACTCTTTCCCTACACGACG

CTCTTCCGATCTGACCTGTGTT

CTGAACTCTTGCT 

TGACTGGAGTTCAGACGTGTGCT

CTTCCGATCTACCTCAGAGGCCA

GGCTTCTC 
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Trp1 

sgRNA 3 

and 4 

ACACTCTTTCCCTACACGACG

CTCTTCCGATCT 

GTGGCTGTGATTGCAGACTC 

TGACTGGAGTTCAGACGTGTGCT

CTTCCGATCT 

AGGATTTAAGGTGACTCCTGA 

CIITA 

sgRNA 1 

and 2 

ACACTCTTTCCCTACACGACG

CTCTTCCGATCT 

CAGACACTGCTCTCCAGCCA 

TGACTGGAGTTCAGACGTGTGCT

CTTCCGATCT 

GATGCCAGCTTACCTCCATGGT 

CIITA 

SgRNA 

3 and 4 

ACACTCTTTCCCTACACGACG

CTCTTCCGATCT 

TAATCCGATGACATATCTGAG 

TGACTGGAGTTCAGACGTGTGCT

CTTCCGATCT 

GAGACCGGCTCCAAATGAG 

CIITA 

sgRNA 5 

ACACTCTTTCCCTACACGACG

CTCTTCCGATCT 

AAGGTGTAGACAGAAAGTGAA

AG 

TGACTGGAGTTCAGACGTGTGCT

CTTCCGATCT 

CCTCTCAACCTCCTGCACAC 

 

Underlined base pairs in the table above is the region, which anneals with the 

region of interest. The sequences highlighted in red and blue are the adapter 

sequences in forward primer and reverse primer, which binds the barcoding 

primers. 

3.1.3 NGS barcode primers 

Forward primer with barcode sequence underlined 

Name Sequence 

D501_long AATGATACGGCGACCACCGAGATCTACACTATAGCCTACACTCTTTCCCTACACGACGCT 

D502_long AATGATACGGCGACCACCGAGATCTACACATAGAGGCACACTCTTTCCCTACACGACGCT 

D503_long AATGATACGGCGACCACCGAGATCTACACCCTATCCTACACTCTTTCCCTACACGACGCT 

D504_long AATGATACGGCGACCACCGAGATCTACACGGCTCTGAACACTCTTTCCCTACACGACGCT 

D505_long AATGATACGGCGACCACCGAGATCTACACAGGCGAAGACACTCTTTCCCTACACGACGCT 

D506_long AATGATACGGCGACCACCGAGATCTACACTAATCTTAACACTCTTTCCCTACACGACGCT 

D507_long AATGATACGGCGACCACCGAGATCTACACCAGGACGTACACTCTTTCCCTACACGACGCT 

D508_long AATGATACGGCGACCACCGAGATCTACACGTACTGACACACTCTTTCCCTACACGACGCT 

 
Reverse primer with barcode sequence underlined 

Name Sequence 

DS701_long CAAGCAGAAGACGGCATACGAGATCGAGTAATGTGACTGGAGTTCAGACGTGTGCT 

DS702_long CAAGCAGAAGACGGCATACGAGATTCTCCGGAGTGACTGGAGTTCAGACGTGTGCT 

DS703_long CAAGCAGAAGACGGCATACGAGATAATGAGCGGTGACTGGAGTTCAGACGTGTGCT 

DS704_long CAAGCAGAAGACGGCATACGAGATGGAATCTCGTGACTGGAGTTCAGACGTGTGCT 
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DS705_long CAAGCAGAAGACGGCATACGAGATTTCTGAATGTGACTGGAGTTCAGACGTGTGCT 

DS706_long CAAGCAGAAGACGGCATACGAGATACGAATTCGTGACTGGAGTTCAGACGTGTGCT 

DS707_long CAAGCAGAAGACGGCATACGAGATAGCTTCAGGTGACTGGAGTTCAGACGTGTGCT 

DS708_long CAAGCAGAAGACGGCATACGAGATGCGCATTAGTGACTGGAGTTCAGACGTGTGCT 

DS709_long CAAGCAGAAGACGGCATACGAGATCATAGCCGGTGACTGGAGTTCAGACGTGTGCT 

DS710_long CAAGCAGAAGACGGCATACGAGATTTCGCGGAGTGACTGGAGTTCAGACGTGTGCT 

DS711_long CAAGCAGAAGACGGCATACGAGATGCGCGAGAGTGACTGGAGTTCAGACGTGTGCT 

DS712_long CAAGCAGAAGACGGCATACGAGATCTATCGCTGTGACTGGAGTTCAGACGTGTGCT 

 

3.1.4 Flow cytometry antibodies 

Antigen Isotype Clone Company 

anti-mouse CD16/32 rat IgG2a,λ 93 BioLegend 

anti-mouse CD8 rat IgG2a,ϰ 53-6.7 BD 

anti-mouse CD90.1 mouse IgG1, 

kappa 

OX-7 Biolegend 

anti-mouse CD4 rat IgG2a,ϰ RM4-5 Biolegend 

anti-mouse CD3 Armenian 

hamster IgG 

145-

2C11 

 

Biolegend 

anti-mouse CD45.2 Mouse (SJL) 

IgG2a,ϰ 

104 Biolegend 

anti-mouse CD45.1 Mouse 

(A.SW), 

IgG2a,ϰ 

A20 Biolegend 

anti-mouse CD25 Rat IgG1,λ PC61 Biolegend 

anti-mouse CD69 Armenian 

hamster 

IgG1,λ3 

H1.2F3 BD 

biosciences  

3.1.5 Western Blot and Immunofluorescence antibodies 

Antigen Origin species Company 

Mouse Trp1 Rabbit 

polyclonal 

NBP-1 88370; Novus 

Mouse Trp1 (M-19) Goat polyclonal sc-10448, Santa Cruz 

Biotechnology ß-Actin (C4) mouse sc-47778; Santa Cruz 

Biotechnology Alexa488 anti-

rabbit IgG 

Donkey 705-545-003, Jackson 

ImmunoResearch  

3.1.6 ELISA 

Reagent Manufacturer Order number 
Mouse IFN-gamma 

Duo-Set 

R&D Systems DY008 

 

3.1.7 Histology antibodies 

Antigen Origin 

species 

Company 

anti-mouse gp100 Rabbit 

polyclonal 

NBP1-69571, 

Novus 

Biologicals 
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biotinylated anti-mouse NGFR Goat 

polyclonal 

BAF1157, R&D 

systems 

Biotin goat anti-rabbit goat 111-067-

003Dianova 

3.2 Methods 

3.2.1 Mice 

Mice on the C57BL/6 background were used in all experiments. Congenic 

CD45.1 C57BL/6 mice were bred in house. Trp1-specific CD4+ T cell TCR 

transgenic mice established by Muranski and colleagues were obtained from 

Jackson Laboratories. These CD4+ T cells recognize the MHC class II (H-2-IAB) 

binding peptide SGHNCGTCRPGWRGAACNQKILTVR. The mice were bred on 

the RAG1−/− background and lack expression of Trp1 (due to the “white based 

brown” radiation-induced mutation Tyrp1B-w). This allows for efficient 

development of Trp1-specific CD4+ TCR transgenic T cells (Muranski et al., 

2008). Splenocytes of  RAG1- BW TRP-1 TCR mice (Trp1 mice) were used for 

CD4+ T cell transfer experiments. Mice were screened by staining lymphocytes 

for Vβ14, CD4 and CD45.2. In addition, Pmel-1 CD8+ TCR transgenic T cells 

established by Overwijk and colleagues were obtained from the Jackson 

Laboratories. These CD8+ T cells recognize the MHC class I (H-2Db) binding 

human gp100 (amino acids 25-33) peptide KVPRNQDWL. They cross react with 

mouse gp100 (amino acids 25-33) EGSRNQDWL. Pmel-1 mice were Thy1.1 

(CD90.1), which was used as marker to track the cells in vivo. For CD8+ T cell 

transfer experiments, splenocytes were harvested from Pmel-1 TCR-transgenic 

mice for adoptive cell therapy. These mice were screened by staining 

lymphocytes with CD8, Vβ13 and CD90.1.   

All animal experiments were conducted according to the institutional and national 

guidelines for the care and use of laboratory animals with approval by the local 

government authorities (LANUV, NRW and SA, Germany and SA).  

3.2.2 Molecular cloning 

Amino-terminal of human PMEL transgene with MHC-I restricted CD8 epitope 

was amplified by PCR using the primers with SalI and BamHI overhangs and 

cloned into the plasmid pmCherry-N1. pADLOX-gp100 plasmid was used as a 
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template for the PCR. Mouse Trp1 transgene was obtained by PCR using primers 

flanking between 51-346 amino acids that consists of MHC-II restricted CD4+ 

epitope with BsrgI and NotI overhangs and cloned into the pmCherry-N1 plasmid. 

cDNA from the HCmel12 cell line was used as a template for PCR. Carboxy-

terminal of PMEL transgene was PCR amplified using the primers with MfeI and 

NotI overhangs and cloned into the pmCherry-N1 plasmid with PMEL and Trp1 

epitopes. The fusion transgene consisting of Pmel and Trp1 epitopes with 

fluorescent mCherry protein was then cloned into PLWK-NS, an MVA vector 

backbone. Plasmids were transformed into DH10ß chemo-competent bacteria. 

All the plasmids generated was amplified using Machery-Nagel Xtra midi kit. The 

sequences of primers used is mentioned in the table below. Details of the 

restriction enzymes and ligation enzyme used is mentioned in the table in section 

reagents and chemicals. 

Primer Name Primer sequence 

SalI Pmel 50 aa 

Fwd 

GTACGTCGACACCATGGATCTGGTGCTAAAAAGATGC 

BamhI Pmel 50 

aa Rev 

ATGCGGATCCAGTGGATACAGCTGCCTGTTCCA 

BsrgI Trp1 Fwd ATGATGTACAAGCCGGGGACTGACCCTTGTGG 

NotI Trp1 Rev ATCTGCGGCCGCAGGAGGTGTGTCAAATACACGGAC 

NotI Pmel 619-

668 aa Fwd 

ATGCGCGGCCGCAGCATCTCTGATATATAGGCGC 

MfeI Pmel 619-

668 aa Rev 

 

ATGCCAATTGTTAGACCTGCTGCCCACTGAGGAG 

3.2.3 Generation of Trp1 and Ciita sgRNA CRISPR-Cas9 plasmids 

To generate Trp1 and Ciita sgRNA-CRISPR-Cas9 plasmids the pX330-U6-

Chimeric_BB-CBh-hSpCas9 (further referred to as pX330) (Addgene plasmid 

#42230) containing a human codon-optimized SpCas9 (hSpCas9) and a chimeric 

single guide RNA plasmid was used. The plasmid was digested with Bpil 

restriction enzyme (Thermo Scientific) in Fast Digest Green Buffer (Thermo 

scientific) and gel purified using Machery-Nagel Nucleospin Gel and PCR 

cleanup kit. DNA oligonucleotides (Microsynth) representing the sgRNAs 
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targeting the murine Trp1 and Ciita locus were reconstituted as 100 µM stocks. 

One µl of top and bottom oligos from the stock was mixed with annealing buffer 

(100 mM NaCl and 50 mM Hepes pH 7.4) in 50 μl total volume and incubated for 

4 minutes at 90 °C, following 10 minutes at 70 °C. The annealed oligos were 

slowly cooled down to 10°C. 2 µl of the annealed oligos were ligated into a 50 ng 

linearized vector (pX330) and transformed into DH10ß chemo-competent 

bacteria. sgRNA was designed as per the rules mentioned in the website 

http://www.genome-engineering.org/. Sequences of sgRNA are mentioned in the 

table below.  sgRNAs were modified by adding overhangs for BpiI restriction site 

for upper strand was added from 5´-3´ CACC overhang and to the complementary 

lower stand was added from 5´-3´ AAAC overhang 

Name Sequence 
Guide sequence Trp1#1 GAGCCGCCATTATCCCCACGA 

Guide sequence Trp1#2 GTCAATATTGGCACACTCTCG 
Guide sequence Trp1#3 GACTGTGGGACTTGCCGTCCT 
Guide sequence Trp1#4 GAACTGTGGGACTTGCCGTCC 

Guide sequence Ciita#1 CAGGGAAATCTTCCGGGCCA 
Guide sequence Ciita#2 TCAGGGAAATCTTCCGGGCC 
Guide sequence Ciita#3 GGGGGTCGGCATCACTGTTA 

Guide sequence Ciita#4 CCAGGTCCATCTGGTCATAG 
Guide sequence Ciita#5 AGGCAGCACTCAGAAGCACG 

 

3.2.4 Generation of HCmel12 Trp1 and Ciita-knockout cells 

To generate HCmel12-Trp1 and Ciita loss variants HCmel12 melanoma cells 

were seeded into 12-wells at a density of 5x105 per well two hours prior to 

transfection. The cells were co-transfected with a 2 μg plasmids [mix of 1.6 μg 

pX330-sgRNA and 0,4 μg plasmid expressing green fluorescent protein (pRp-

GFP)] using Fugene HD transfection reagent (Promega) according to 

manufacturer’s instructions. (DNA: Fugene HD ratio of 1:3) GFP positive cells 

were sorted (BD FACSAria II Cell Sorter; BD Biosciences) after 48 hours and 

expanded for further analysis. To obtain the monoclonal population of cells, they 

were plated at single cell concentration (calculated as 0,7 cells per well in a  96-

well plate). Single cell clones and polyclones were further expanded. The 

frequency of specific out-of-frame mutations in Trp1 and Ciita genes was 

analyzed by next-generation sequencing (Illumina MiSeq platform). HCmel12 

http://www.genome-engineering.org/
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cells were mock transfected with pX330 plasmid without sgRNA and the 

polyclonal cell line was used as a CRISPR control in all performed experiments. 

3.2.5 Next generation sequencing 

Genomic DNA (gDNA) from cultured cells was extracted using the NucleoSpin 

Tissue kit (Macherey-Nagel) according to the manufacturer's recommendations. 

A two-step PCR protocol was performed to generate targeted PCR amplicons for 

next-generation sequencing (NGS). In the first PCR gene-specific primers for 

Trp1 or Ciita with additional adapter sequences complementary to the barcoding 

primers was used. The sequencing primers used for the NGS is mentioned in the 

table in section reagents and chemicals. The genomic region of interest was 

amplified with 18 cycles, using approximately 20-50 ng of gDNA as template and 

Phusion HD polymerase (New England Biolabs) in a 12.5 μl mixture according to 

manufacturer’s protocol. For the second PCR adapter-specific universal primers 

containing barcode sequences and the Illumina adapter sequences P5 and P7 were 

used (Illumina barcodes: D501-508 & D701-D712). Therefore, 2 µl of the first PCR 

product was amplified with 18 cycles in a 25 μl reaction mix with Phusion HD 

polymerase. Next-generation sequencing was performed with MiSeq Gene & Small 

Genome Sequencer (Illumina) according to manufacturer's standard protocols with 

a single-end read and 300 cycles (MiSeq Reagent Kit v2 300 cycle). 

3.2.6 Insertion or deletion (indel) detection 

For basic indel detection, the web-based program outknocker 

(http://www.outknocker.org/) was used as previously described (Schmid-Burgk et 

al., 2014). FASTQ files were imported and the sequence of the Trp1 and Ciita 

PCR amplicons was used as reference sequence for alignment.  

3.2.7 Cell Culture 

The melanoma cell line HCmel12 was established from a primary DMBA-induced 

melanoma in Hgf-Cdk4(R24C) mice as described previously (Bald et al., 2014a). 

All HCmel12 melanoma cells and the variants were routinely cultured in 

“complete RPMI medium”, i.e. RPMI 1640 medium (Life Technologies) 

supplemented with 10% FCS (Biochrome), 2mM L-glutamine, 10 mM non-

essential amino acids, 1 mM Hepes (all from Life Technologies), 20 µM 2-

mercaptoethanol (Sigma), 100 IU/ml penicillin and 100µg/ml streptomycin 

(Invitrogen). Chicken embryo fibroblasts (DF1), HEK 293T cells, and human 

http://www.outknocker.org/


31 
 

embryonal retinoblasts (911 cells) were cultured in DMEM medium supplemented 

with 10% FCS, 2 mM L-glutamine, 10 mM non-essential amino acids and 1mM 

Hepes. All cell lines used in this study were routinely tested for mycoplasma by 

PCR.  

3.2.8 Tumor transplantation experiments 

For tumor transplantation experiments cohorts of male CD45.1 mice were 

injected intracutaneously (i.c.) with 2x105 parental HCmel12 melanoma cells or 

HCmel12 Ciita knockout (HCmel12 Ciita-/-) or Trp1 knockout cells (HCmel12 

Trp1-/-) resuspended in 100 μl PBS into the right flank. Tumor growth was 

monitored by inspection and palpation and archived by digital photography. 

Tumor size was measured twice weekly with a vernier caliper and recorded as 

the mean diameter of two perpendicular measurements. Mice were sacrificed 

when tumors exceeded 20 mm diameter or when signs of illness were observed. 

All experiments were performed in groups of at least six mice. 

3.2.9 Viral vectors 

Adenovirus expressing gp100 and Trp1 epitopes (Ad5-GTY) was generated with 

the help of Dr. Di Yu and Prof. Magnus Essand, in the department of Immunology, 

Genetics and Pathology, University of Uppsala, Sweden.  

Modified vaccinia Ankara virus expressing human gp100 and Trp1 epitopes 

(MVA-PMTP) was generated in our laboratory. PLWK-NS plasmid expressing 

both the epitopes fused to the mCherry fluorescent protein (PLWK-NS with PMTP 

transgene) was used. MVA expressing yellow fluorescent protein was used as a 

wild type virus in order to generate the recombinant MVA expressing gp100 and 

Trp1 epitopes. Chicken embryo fibroblasts (DF1 cells) were first infected with 

wild-type MVA virus expressing eYFP fluorescence protein at MOI of 0.05 to 0.08. 

After incubating the cells for 2 hours at 37°C the cells were then transfected with 

a PLWK-NS plasmid with PMTP transgene using lipofectamine. The cells were 

incubated further at 37°C to allow the spontaneous recombination of the 

transfected plasmid with WT MVA genome. After three days the cells were 

monitored for the expression of the mCherry fluorescent protein. mCherry 

expressing cells were isolated by FACS sorting and used further to generate pure 

recombinant MVA expressing epitopes of interest. 
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MVA-OVA virus expressing full length of OVA protein was kindly provided by Prof. 

Wolfgang Kastenmüller, Institute for Systems Immunology, University of 

Würzburg. Adenovirus expressing full length of OVA protein (Ad5-OVA) was 

generated previously in our laboratory. 

3.2.10 Adoptive T-cell immunotherapy  

When transplanted melanomas reached a size of 2 mm in diameter mice were 

preconditioned for the ACT by a single i.p. injection of 2 mg Cyclophosphamide 

(Endoxan, Baxter). 24 hours later adoptive cell transfer of Pmel-1 CD8+ T cells 

or Trp1 CD4+ T cells or both were performed. 2x106 naïve gp100-specific TCR 

transgenic CD90.1+ CD8+ Pmel T-cells and/or 5x105 Trp1 CD4 T cells in 200 µl 

PBS were injected by intra-venous route and activated in vivo by a single injection 

of 5x107 plaque forming units (PFU) of recombinant adenoviral vector encoding 

human GP100 and mouse Trp1 (Ad5-GTY) epitopes. Mice received 50 µg of 

Cytosine-phosphatidyl-Guanosine (CpG) 1826 DNA (MWG Biotech) and 50 µg 

of polyinosinic:polycytidylic acid (poly I:C); Invivogen diluted in 100 µl water on 

days 3, 6 and 9 after adoptive transfer of T cells. 14 days post adoptive transfer 

and Ad5-GTY immunization, MVA-PMTP boost vaccine of 107 PFU was given. 

3.2.11 Vitiligo scoring 

The area of vitiligo-like fur depigmentation on the back of mice was scored on a 

scale of 0-100% by three independent investigators in a blinded fashion. 

3.2.12 Histology and immunohistology 

Tumor tissue samples were immersed in a zinc-based fixative (BD Pharmingen) 

overnight, dehydrated in increasing ethanol in water solution concentrations and 

xylol and embedded in paraffin. Tissue samples were cut into 4 µm slices using 

a microtome and rehydrated in decreasing ethanol in water solution 

concentrations. Hematoxylin and Eosin, gp100 and ngfr stainings were 

performed on the sections by the histology department of experimental 

dermatology, Magdeburg. Slides shown were scanned with Hamamatzu 

nanozoomer slide scanner. 

3.2.13 Enzyme-linked immunosorbent assay  

2x106 wild-type splenocytes were plated in 96-well plates and were transduced 

with MVA-PMTP MOI 1. WT splenocytes without virus and WT splenocytes with 

MVA-OVA (a non-specific virus) were used as negative controls. Splenocytes 
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pulsed with Trp1 or Pmel peptide were used as positive control. After overnight 

incubation with virus, the splenocytes were then co-cultured with 5x105 Pmel-1 

splenocytes or 1x105 Trp1 splenocytes for 24 hours. IFN-γ production by Pmel-1 

T-cells and Trp1 CD4+ T cells was determined in culture supernatants using an 

IFN-γ ELISA kit (R&D) according to the manufacturer's protocol. In brief, 96 well 

plates were coated overnight at 4°C with 50 µl capture antibody diluted in PBS 

and blocked with PBS containing 1% BSA (assay buffer) for 2 hours. samples 

were then added and incubated for 2 hours at room temperature. After washing, 

50µl of biotinylated detection antibody diluted in assay buffer was applied for 2 

hours at room temperature. Plates were washed again and 100µl streptavidin-

HRP was added to each well and incubated at room temperature for 20 minutes. 

The OptEIA system (BD, 555214) was used to visualize bound cytokines. The 

colorimetric reaction was stopped with 1M sulfuric acid and optical density was 

measured in a microplate reader set to 450nm (BIOTek). 

3.2.14 Flow cytometry 

To measure Pmel-1 CD8+ T cell and Trp1 CD4+ T cell expansion in vivo, blood 

samples were collected from the right facial vein of mice. Erythrocytes were lysed 

by RBC lysis buffer for 10 min at room temperature. After washing in FACS buffer 

cells were stained with fluorochrome-conjugated mAb specific for mouse CD8, 

CD90.1, CD4 and CD45.2 according to standard protocols. The details of 

antibodies are mentioned in the table in reagents and chemicals section. To 

measure fluorescently labelled melanoma cells, the melanoma tissue was 

incubated in collagenase for 15 min at 37°C.  Tissues were then processed 

through the cell strainer and washed with FACS buffer. IgG Fc receptors II and 

III of the cells were blocked using anti-CD16/32 and stained with CD45 in order 

to separate immune cells and tumor cells according to standard protocols. 

3.2.15 Recognition of HCmel12 and variants by Trp1 CD4+ T cells in vitro 

HCmel12 CRISPR ctrl (HCmel12 cells transfected with mock pX330 plasmid), 

HCmel12 Trp1-/-, and HCmel12 Ciita-/- were seeded in 96 well plates. After 

adherence, they were incubated with Trp1 transgenic CD4+ T cells. After 5 hours 

of co-cultures, CD4+ T cells were stained with fluorochrome-conjugated 

CD4,CD3,CD25 and CD69 (BD Biosciences, clone H1.2F3). Data were acquired 
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with an acoustic focusing Flowcytometer (Thermofischer Scientific) and analyzed 

with the FlowJo software (TreeStar, V10 for Windows).  

3.2.16 Cell culture immunofluorescence analysis 

Immunofluorescence analysis was performed to validate the HCmel12 Trp1-/- 

cells at protein level. HCmel12 CRISPR ctrl and Trp1-/- melanoma cells were 

seeded on cover slides in 6 well plates at a density of 1x105 per well. Cells were 

washed with PBS and fixed in 4% PFA solution for 10 minutes at 4°C. After 

washing cells were stained with a goat polyclonal Trp1 antibody in the dilution 

1:100 (sc-10448, Santa Cruz Biotechnology) for 1 hour at room temperature. Anti-

goat Alexa 488 antibodies (Jackson, Imunoresearch) were used as a secondary 

antibody at dilution 1:200 and were incubated for 1 hour at room temperature. 

Nuclei were counterstained with DAPI. Stained sections were examined with a 

Zeiss Axio Observer Z1 fluorescence microscope. Images were acquired with the 

Axiocam 506 digital camera and processed with Adobe Photoshop.  

3.2.17 Western blot analysis 

Melanoma cells were washed in PBS and lysed using the M-PER mammalian 

protein reagent (Fermentas) with protease inhibitors (Thermoscientific). The 

protein concentration was spectrophotometrically measured by a Bradford-based 

assay using Pierce BCA protein assay kit (Thermo Scientific) according to 

manufacturer’s protocol. Laemmli buffer was added and lysates were boiled at 

95°C for 5 minutes. 10 µg protein was loaded and separated according to size by 

SDS–PAGE gel electrophoresis on a 3% stacking and 10% polyacrylamide gel. 

Proteins were transferred to PVDF membranes with a 0,2 μm pore size (GE 

Healthcare) via wet blotting for 1 hour. Running buffer and blotting buffers used 

in immunoblots are mentioned in reagents and chemicals section. Unspecific 

binding was blocked with 5% skimmed milk in TBST for 1 hour. Blots were stained 

with a goat polyclonal Trp1 antibody (NBP1-88370, Novus biologicals) overnight 

at 4°C. Next, the blots were incubated with anti-goat IgG HRP (Santa Cruz) for 1 

hour at room temperature. Horseradish peroxidase conjugated β-actin was used 

as loading control.  Bound antibody was detected by SignalFire ECL reagent (Cell 

Signaling technology) and chemiluminescence was visualized using an Octoplus 

QPLEX imager (NH DyeAgnostics).  
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3.2.18 Amplification of adenovirus stocks 

Ad5-GTY virus was propagated utilizing human embryonal retinoblasts (911) cell 

lines. A confluent monolayer of the cells in T175 cell culture flasks was infected 

with Ad5-GTY at MOI 1. The cytopathic effects were observed at around 36 hours 

of incubation at 37°C. Then cells were scraped using a cell scraper and collected 

in PBS. Ten T175 flasks were used to make a batch of adenovirus. The cells 

were the freeze-thawed three times and the lysates were cleared by centrifuging 

at the speed of 7000 x g. The crude virus was then titered by TCID50 method as 

described in Hierholzer and Killington , Virology Methods Manual (Hierholzer and 

Killington, 1996). 

3.2.19 Amplification of MVA stocks 

The MVA was propagated utilizing chicken embryo fibroblasts (DF1) cell lines. 

Ten confluent T175 flasks of DF1 cells were infected with MVA at MOI 1 and 

incubated for 36 hours at 37°C. Next, the cells were scraped and pelleted by 

spinning down at 500 x g for ten minutes in 10 mM Tris. Cells were then freeze-

thawed four times and dounced to homogenise the material. The crude virus was 

then centrifuged at 1800 x g for ten minutes remove the cellular debris. The 

supernatant was then purified by sucrose cushion ultracentrifugation at 

30,000rpm for one hour at 4°C after which the purified virus was titered by TCID50 

method.  

3.2.20 Titering of Adenovirus and MVA 

1x104 911 cells or DF1 cells were plated in each well in a 96 well plate in 200 μl 

DMEM medium. Tenfold serial dilutions of the adenovirus or MVA was prepared 

and the dilutions ranging from 10-3 to 10-14 was added to the cells. Virus was 

added in 100 μl DMEM medium. The cells were incubated at 37 °C and 

expression of fluorescent proteins eYFP in Adenovirus infected 911 cells or 

mCherry in MVA infected DF1 cells was monitered every week for up to three 

weeks. TCID50 was calculated based on number of infected wells in each dilution. 

For example, if all eight wells are counted positive in dilution 10-7 then x=7. If, five 

wells were found positive in 10-8 and number of infected wells in highest dilution 

10-9 was 2, then TCID 50 is 7-1/2+(8/8+5/8+2/8)= 8.375. Therefore end point 

dilution which infects 50% of the wells would be 10-8.375 the reciprocal of which 

gives the titer of virus. since the virus is added in 100 μl of DMEM medium per 
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well then the titer would be 108.375 TCID 50/0.1ml or 109.275 TCID 50/ml (Staib et al., 

2004). 

3.2.21 Generation of fluorescent HCmel12 melanoma cells  

All melanoma cells in this study were transduced with retroviral vectors that were 

generated in HEK293T cells following standard protocols using the two retroviral 

packaging constructs pCMV-Gag-Pol and pMD.2G (expressing VSVg, vescicular 

stomatitis virus envelope) and the retroviral plasmids pRp-mCherry and pRp-

TagBFP (derived from pCLNX derivate, kindly provided by E. Latz, Bonn). 

Antibiotic selection with Puromycin (10 µg/ml) was started 48 hours after 

infection, for another 48-72 hours. These cells were maintained in culture with 

one µg/ml puromycin containing complete RPMI medium. 

3.2.22 Selection of statistical tests 

For statistical analysis, GraphPad Prism was used. Statistical tests are specified 

in corresponding legends of the figures. P-Value less than 0.05 was considered 

significant.  
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4. Results 

4.1 Establishment of an ACT regimen with CD4+ T cells 

4.1.1 Generation of an adenoviral vector expressing both a Trp1 CD4+ T cell 

epitope and a gp100 CD8+ T cell epitope  

It has been previously shown by the Tüting lab that an adenovirus vaccination 

can effectively promote the expansion of adoptively transferred Pmel-1 TCR 

transgenic CD8+ T cells and cause regression of established melanomas in mice. 

Pmel-1 TCR transgenic T cells recognize the peptide epitope KVPRNQDWL 

corresponding to aa25-33 of the human gp100 protein and cross-react with the 

peptide epitope EGSRNQDWL corresponding to aa25-33 of mouse gp100. In 

order to establish a comparable ACT regimen with CD4+ T cells, Trp1 TCR 

transgenic T cells were used, which specifically recognize the H-2-IAB restricted 

mouse Trp1 peptide SGHNCGTCRPGWRGAACNQKILTVR (aa106-130).  

The first aim of this study was to generate an adenoviral vaccine vector that would 

stimulate the expansion of both gp100-specific CD8+ T cells as well as Trp1-

specific CD4+ T cells. To this end, a fusion construct was generated consisting 

of the first 150 base pairs of the human PMEL cDNA (coding for aa1-50 of the 

human gp100 protein including the CD8+ T cell epitope KVPRNQDWL) and 1404 

base pairs of the mouse Trp1 cDNA (coding for aa51-518 including the CD4+ T 

cell epitope SGHNCGTCRPGWRGAACNQKILTVR) followed by sequences 

coding for a T2A viral self-cleaving peptide and the fluorescent marker protein 

eYFP. This vaccine construct was cloned into the pShuttle vector (termed 

pShuttle-GT-YFP, Figure 4.1.1.1 A). 

A recombinant adenovirus vector with this sequence was then generated by a 

recombineering technique in E. coli strain SW102 using bacmid pAdZ5-CV5-E3+. 

The E1 region of this bacmid is replaced by a selection/counterselection cassette 

called Ampicillin, LacZ, SacB (als cassette, Figure 4.1.1.1 B) (Yu et al., 2011). 

Next, E. coli with this bacmid were electroporated with the GT-YFP transgene 

with homology arms flanking the ALS cassette obtained by PCR amplification 

using pShuttle-GT-YFP as a template. Positive colonies were isolated after 

antibiotic selection on LB-sucrose plates. SacB enzyme toxin uses sucrose as a 

substrate for a toxin and thus sucrose inhibits the growth of negative colonies 
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with the intact ALS cassette. The recombinant adenovirus vector generated in 

this way was named Ad5-GTY for Gp100-Trp1-YFP. When the human embryonic 

retinoblast producer cell line 911 was infected with Ad5-GTY, a strong cytopathic 

effect in conjunction with eYFP fluorescence was observed (Figure 4.1.1.1 C) 

 
 
Figure 4.1.1.1 Adenovirus vector expressing PMEL and Trp1 epitopes (Ad5-GTY) display 
strong cytopathic effect upon 911-cell line infection. 
A Map of the plasmid used to generate the adenovirus vector expressing PMEL and Trp1 epitopes 
fused to yellow fluorescent protein (eYFP) with T2A peptide in-between. B Principle behind 
recombineering method used to generate new adenovirus vector showing recombination 
replacing ALS casette with PMEL-Trp1-eYFP transgene (Amp= ampicillin, LacZ=lac operon Z, 
SacB= levansucrase). C Human 911 cell line infected with the generated adenovirus expressing 
eYFP and showing strong cytopathic effect.  
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Next, it was tested if the newly generated Ad5-GTY could activate Pmel-1 CD8+ 

and Trp1 CD4+ T cells in vitro. To this end, the splenocytes from C57BL6 mice 

were transduced with Ad5-GTY and then co-cultured with splenocytes of Pmel-1 

TCR transgenic or Trp1 TCR transgenic mice (Figure 4.1.1.2 A). It was observed 

that only the Ad5-GTY virus induced IFN-γ production by both Pmel-1 CD8+ and 

Trp1 CD4+ T cells as measured by ELISA (Figure 4.1.1.2 B and C). 

 

Figure 4.1.1.2 Ad5-GTY activate both gp100 specific Pmel-1 CD8+ and Trp1 specific CD4+ 
T cells in vitro. 
A Experimental protocol for ELISA to measure IFN- γ secreted by activated Pmel-1 and Trp1 
splenocytes B Bar graph showing induction of IFN-γ cytokine synthesis upon co culturing pmel-1 
splenocytes with WT splenocytes transduced with Ad5-GTY. Negative control= WT spenocytes 
co-cultured with pmel-1 splenocytes in absence of Ad5-GTY. Positive control= Pmel-1 
splenocytes pulsed with pmel peptide. C Bar graph showing induction of IFN-γ cytokine synthesis 
upon co culturing Trp1 splenocytes with WT splenocytes transduced with Ad5-GTY but not with 
Ad5-GP100 expressing only gp100 epitope. Negative control= WT splenocytes co-cultured with 
Trp1 splenocytes only. Positive control= Trp1 splenocytes pulsed with Trp1 peptide. Data were 
pooled from two biological replicates of a single experiment. Statistics calculated by one-way 
ANOVA by comparing the level of IFN-γ production from the Pmel-1 CD8+ or Trp1 CD4+ T cells 
cultured with the virus transduced splenocytes against the non-transduced splenocytes, p-Value 
<0.001=***, p-Value 0.0001=****, error bar represents mean ± SEM. 
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4.1.2 Adenoviral vaccination expands adoptively transferred Trp1 CD4+ T 

cells less efficiently than Pmel-1 CD8+ T cells in vivo 

After generating the Ad5-GTY adenovirus expressing MHC-I restricted 

Pmel/Gp100 and MHC-II restricted Trp1 epitopes, it was tested if an adenoviral 

vaccination would be able to promote the expansion of adoptively transferred 

Trp1 CD4+ TCR-transgenic T cells and Pmel-1 CD8+ T cells in vivo. A therapy 

protocol similar to the Pmel CD8+ T cell ACT protocol previously optimized in the 

Tüting lab was used (Kohlmeyer et al., 2009) (Figure 4.1.2.1 A). On day 0, a 

lymphodepleting injection of cyclophosphamide was performed in wild-type naïve 

mice expressing the congenic markers CD45.1 and CD90.2. The next day, 

recipient congenic CD45.1+/CD90.2+ mice received intravenous injections of 5 x 

105 CD45.2+/CD90.2 Trp1 CD4+ T cells or of 2 x 106 CD45.2+/CD90.1+ Pmel 

CD8+ T cells and a vaccine consisting of 5 x 107 PFU  Ad5-GTY virus. On day 3 

and 6 mice were treated with subcutaneous injections of poly I:C and CpG. On 

day 7 mice were bled and PBMC probed for Trp1 CD4+ T cells or Pmel-1 CD8+ 

T cells by flow cytometry where the adoptively transferred T cells could be 

separated from endogenous T cells on the basis of their congenic markers CD45 

and CD90. Only mice receiving the Ad5-GTY vaccine showed expansion of Pmel 

CD8+ and Trp1 CD4+ T cells. However, Trp1 CD4+ T cells expanded less 

efficiently when compared to Pmel-1 CD8 + T cells (Figure 4.1.2.1 B-C).  
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Figure 4.1.2.1 Trp1 CD4+ T cells expand less efficiently than Pmel-1 CD8+ T cells. 
A Experimental protocol for adoptive cell transfer (ACT) is shown, C= cyclophosphamide, L= ACT, 
V=Adenovirus vaccine and I=Poly I:C+CpG. B Representative FACS plots showing no expansion 
of CD90.1+ Pmel -1 CD8+ T cells and CD45.2+ Trp1 CD4+ T cells in the absence (left panel) and 
expansion in the presence of the adenoviral (Ad5-GTY) vaccine right panel. C Bar graph showing 
significantly higher percentage adoptively transferred Pmel-1 CD8+ T cells (blue bar, n=10) when 
compared to Trp1 CD4+ T cells (red bar, n=10) in blood post priming Ad5 GTY vaccination 
(Statistics calculated by T test, p-Value= 0.0001, error bar represents mean ± SEM). 
 

Further experiments using adoptively transferred MHC class I restricted OVA 257-

264 specific OT-1 CD8+ T cells and MHC class II restricted OVA 323-339 specific 

OT-II CD4+ T cells also showed less efficient stimulation of CD4+ T cells by an 

adenoviral vaccine (Figure 4.1.2.2).  



42 
 

 

Figure 4.1.2.2 OT-II CD4 T cells expand less efficiently in blood when compared to OT-I 
CD8 T cells. 
A Experimental protocol for adoptive cell transfer (ACT) is shown, C= cyclophosphamide, L= ACT, 
V=Adenovirus vaccine and I=Poly I:C+CpG. B Representative FACS plots showing  expansion 
of venus+ OT-I CD8+ T cells (left) and CD45.2+ OT-II CD4+ T cells (right) in blood. C Bar graph 
showing significantly higher percentage adoptively transferred OT-I venus CD8+ T cells (blue bar, 
n=8) when compared to OT-II CD4+ T cells (red bar, n=8) in blood post priming Ad5 OVA 
vaccination (Statistics calculated by T test, p-Value= 0.0008, error bar represents mean ± SEM). 
 

4.1.3 Trp1 CD4+ T cell ACT controls melanoma growth and causes 

extensive vitiligo in mice with regressing melanomas 

Having shown that the Ad5-GTY vaccine could effectively expand both Trp1 

CD4+ and Pmel-1 CD8+ T cells in vivo, it was tested if the CD4+ T cell ACT 

protocol was able to effectively treat established melanomas. This was of 

particular interest because the expansion of CD4+ T cells following Ad5-GTY 

vaccination was rather poor when compared to Pmel-1 CD8+ T cells. Groups of 

CD45.1 congenic C57BL/6 mice were injected with HCmel12 melanoma cells 

intracutaneously into the flanks. When tumors reached a size of 2 to 3 mm, a 
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single dose of lymphodepleting cyclophosphamide was given intraperitoneally 

one day before adoptive transfer of Trp1 CD4+ T cells and vaccination with Ad5-

GTY as described above. Mice received 3 doses of poly I:C and CpG 

peritumorally on days 3, 6 and 9 post ACT (Figure 4.1.3.1 A). CD4+ T cell ACT 

was able to delay the growth of HCmel12 melanomas when compared to 

untreated cohorts leading to increased survival of mice (Figure 4.1.3.1 B, C). 

Furthermore, responder mice with regressing melanomas showed substantial 

vitiligo-like fur depigmentation suggesting an autoimmune effect resulting from 

targeting the melanocytic antigen Trp1 (Figure 4.1.3.1 D).  
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Figure 4.1.3.1 Trp1 CD4+ T cell ACT controls the growth of established melanomas and 
induces vitiligo-like fur depigmentation in responder mice with regressing melanomas. 
A Experimental protocol for the treatment of HCmel12 melanoma bearing mice with Trp1 CD4+ 
cell ACT as depicted. C= cyclophosphamide, L= ACT, V=Adenovirus vaccine and I=Poly I:C+CpG 
B Tumor growth kinetics in 2 different groups of mice,untreated (left, n=6) and Trp1 CD4+ T cell 
immunotherapy treated (right, n=10). C Kaplan-Meier graph showing the survival of mice 
(statistics calculated by Log-rank test, p-Value = 0.0001). D Vitiligo development observed in the 
treatment group in mice responding to therapy and regressing melanoma. 
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4.2 Heterologous prime-boost strategies to enhance T cell ACT  

4.2.1 Generation of a Modified vaccina virus vector expressing both a Trp1 

CD4+ T cell epitope and a gp100 CD8+ T cell epitope 

The experiments so far demonstrated that CD4+ T cells expanded less efficiently 

when compared to CD8+ T cells. Therefore, a heterologous prime boost vaccine 

strategy was considered in order to increase the efficacy of CD4+ T cell ACT. 

Based on the literature, prime-boost vaccination strategies using adenovirus and 

MVA-virus have been shown to induce sustained antigen specific CD8+T cell 

responses in experimental models for prostate cancer and for malaria infection 

(Cappuccini et al., 2016; Fonseca et al., 2017). Therefore, an MVA virus vector 

expressing a fusion protein containing the gp100 and Trp1 T cell epitopes 

described above was generated (Figure 4.2.1.1). 

 
Figure 4.2.1.1 Schematic representation of the generation of plasmids expressing PMEL 
(hGP100) epitope and Trp1 epitope fused to mCherry fluorescent protein. 
A Cloning of the N-terminal end (first 50 amino acids) of the human PMEL gene containing the 
signal sequence into the multiple cloning site of plasmid pmCherry-N1 between SalI and BamHI 
restriction sites. B Cloning the central domain (aa51-346) of mouse Trp1 containing the MHC-II 
restricted epitope recognized by TRP1 TCRtg T cells between BsrgI and NotI restriction sites. C 
Cloning of the C-terminal end (aa619-688) of PMEL between NotI and MfeI restriction sites 
(MCS= multiple cloning site).  



46 
 

 

This time mCherry was used as a fluorescent marker protein. The fusion 

construct contained only 888bp corresponding to aa51-346 of TRP1 in order to 

avoid transcription stop codons of MVA. The fusion construct was subcloned into 

the MVA recombination plasmid PLWK-NS containing the MH5 promoter (Figure 

4.2.1.2 A). In the resulting plasmid the vaccine construct was flanked by 

homologous recombination sites which are directed to the Del III area of the MVA 

genome (Figure 4.2.1.2 B). The final plasmid was checked by Sanger 

sequencing. It was then transfected into chicken embryo fibroblasts (DF1 cells) 

which were co-infected with WT-MVA expressing eYFP. The DF1 cells were daily 

monitored and checked for the appearance of mCherry expression resulting from 

the spontaneous recombination between the transfected plasmid and parental or 

WT-MVA. The protocol is shown in Figure 4.2.1.2 C. Expression of mCherry 

indicates the generation of virus with the Pmel and Trp1 epitopes fused to the 

fluorescent protein mCherry. The produced virus vector was named Modified 

Vaccinia Ankara MVA Pmel-mCherry-Trp1-Pmel (MVA-PMTP).  

Next, mCherry expressing DF1 cells were harvested utilizing a sorting flow 

cytometer. Only the cells with high mCherry expression were selected (Figure 

4.2.1.3 A). Sorted cells were subjected to three freeze-thaw cycles and the lysate 

was subsequently used to infect a fresh monolayer of DF1 cells.  As shown in 

Figure 4.2.1.3 B both the recombinant MVA with the Pmel-mCherry-Trp1 (MVA-

PMTP) fusion transgene as well as the parental MVA (MVA-eYFP) were detected 

in the first round of infection. Upon successive purification rounds by picking 

mCherry expressing MVA-PMTP plaques, the concentration of the MVA-eYFP 

decreased and finally 100% pure recombinant MVA-PMTP was obtained. 
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Figure 4.2.1.2 PLWK-NS plasmid facilitates the recombination of the inserted transgene 
with parental or wild type Modified vaccinia Ankara. 
A cloning of PMEL mCherry Trp1 fusion construct into PLWK-NS vector backbone between BglII 
and SalI restriction sites to generate a plasmid for MVA production. B Schematic representation 
showing the site in MVA viral genome where the recombination occurs to incorporate the fusion 
construct into recombinant MVA. C Experimental protocol depicting generation of recombinant 
MVA by spontaneous recombination between wild-type viral genome with the transgene of 
interest. (MVA= Modified vaccinia Ankara) 
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Figure 4.2.1.3 Recombinant MVA-PMTP was generated and and plaque purified. 
A Sorting of mCherry high expressing DF1 cells to generate recombinant MVA. B Microscopic 
images of DF1 producer cells infected with the freeze-thaw lysates from sorted cells. In the upper 
panel wild type virus expressing eYFP can be observed and few mCherry expressing cells 
indicating presence of recombinant MVA. Subsequent plaque purification of the virus resulting in 
decrease of eYFP expressing virus and increase of mCherry expressing virus plaques (middle 
panel). In the lower panel we can see the presence of only the recombinant MVA expressing 
mCherry. 
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Next, it was tested if the MVA-PMTP generated could activate Pmel-1 CD8+ and 

Trp1 CD4+ T cells in vitro. To this end, the splenocytes from C57BL6 mice were 

transduced with MVA-PMTP or with MVA-OVA as a control. Transduced 

splenocytes were then co-cultured with Pmel-1 CD8+ T cells (Figure 4.2.1.4 A). 

Only the MVA-PMTP virus induced IFN-γ production by Pmel-1 CD8+ T cells as 

measured by ELISA (Figure 4.2.1.4 B). 

 

Figure 4.2.1.4 MVA-PMTP activates gp100 specific Pmel-1 CD8+ T cells in vitro. 
A Experimental protocol for ELISA to measure IFN- γ secreted by activated Pmel-1 splenocytes 
B Bar graph showing induction of IFN-γ cytokine synthesis upon co culturing pmel-1 splenocytes 
with WT splenocytes transduced with MVA-PMTP. MVA-OVA was used as non specific virus. 
Negative control= WT spenocytes co-cultured with pmel-1 splenocytes in absence of MVA. 
Positive control= Pmel-1 splenoctes pulsed with pmel peptide. Data is pooled from two biological 
replicates from single experiment. Statistics calculated by one-way ANOVA by comparing the 
level of IFN-γ production from the Pmel-1 CD8+ T cells cultured with the virus transduced 
splenocytes against the non-transduced splenocytes, p-Value 0.0309 =*, p-Value 0.0001=****, 
error bar represents mean ± SEM. 
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To test if the MVA-PMTP could also activate Trp1 specific CD4+ T cell in vitro, 

splenocytes transduced with MVA-PMTP or MVA-OVA were co-cultured with 

MACS purified Trp1 CD4+ T cells (Figure 4.2.1.5 A). FACS analysis for 

intracellular IL-2 was performed. It was observed that only MVA-PMTP 

transduced splenocytes induced IL-2 synthesis in Trp1 specific CD4+ T cells 

(Figure 4.2.1.5 B). 

 

 
Figure 4.2.1.5 MVA PMTP expressing Pmel and Trp1 epitopes activate Trp1 CD4+ T cells 
in vitro. 
A Experimental protocol for FACS analysis to measure intracellular IL-2 in activated Trp1 CD4+ 
T cells B FACS dot plots showing induction of IL 2 cytokine synthesis in activated Trp1 CD4+ T 
cells co cultured with WT splenocytes transduced with MVA-PMTP. MVA OVA was used as non 
specific virus vector control. Negative control= WT spenocytes co-cultured with Trp1 CD4 T cells 
in absence of MVA. Positive control= Trp1 CD4 T cells activated with T cell activation cocktail 
containing PMA+ionomysin.  
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4.2.2 Ad5-GTY priming and MVA-PMTP boosting works for Pmel-1 CD8+ T 

cells but not for Trp1 CD4+ T cells in vivo  

Next, the ability of an MVA vaccine to boost Trp1 CD4+ T cell and Pmel-1 CD8+ 

responses was tested. On day 0, a lymphodepleting injection of 

cyclophosphamide was provided to wild-type C57BL/6 mice expressing the 

congenic markers CD45.1 and CD90.2. The next day, mice received 2 x 106 

CD90.1+ Pmel-1 CD8+ T cells and 5 x 105 CD45.2+ Trp1 CD4+ T cells and 5 x 

107 PFU  Ad5-GTY virus. Subsequently, mice received three intradermal 

injections of poly I:C/CpG on days 3,6 and 9 days post ACT. On day 14 mice 

MVA-PMTP or MVA-OVA control  vaccines were administered subcutaneously 

(Figure 4.2.2.1A). Blood was obtained 7 and 19 days post ACT and Pmel-1 CD8+ 

T cells and Trp1 CD4+ T cells expansion characterized by flow cytometry using 

the congenic marker CD90.1 in for CD8+ T cells and CD45.2 for CD4+ T cells, 

respectively (Figure 4.2.2.1 A). 

As shown above, a Pmel-1 CD8+ cells expanded much more effectively when 

compared Trp1 CD4+ T cells upon priming with Ad5-GTY (Figure 4.2.2.1 B-C). 

Following the MVA boost vaccine, a secondary expansion of Pmel-1 CD8+ T cells 

was observed in the mice receiving MVA-PMTP but not MVA OVA (Figure 4.4.1 

B top panel). However, MVA-PMTP vaccination failed to boost the Trp1 CD4+ T 

cells (Figure 4.2.2.1 B bottom panel). After Ad-MVA prime boost vaccination the 

mice that received MVA-PMTP virus had a higher percentage of Pmel-1 CD8+ T 

cells in the blood when compared to mice that received MVA-OVA (Figure 4.2.2.1 

C). Although MVA-PMTP failed to boost Trp1 CD4+ T cells, the cohorts showed 

better persistence of Trp1 CD4+ T cells when compared to the cohorts that 

received MVA-OVA (Figure 4.2.2.1.C). These results confirmed the specificity of 

the recombinant viruses generated here and demonstrated that CD8+ T cells 

show better expansion and boosting than CD4+ T cells following adenovirus and 

MVA vaccinations, respectively. 
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Figure 4.2.2.1 Heterologous prime-boost immunization with Ad5-GTY and MVA-
PMTP vectors expand and boost Pmel-1 CD8+ T cells but not Trp1 CD4+ T cells. 
A Experimental protocol for adoptive cell transfer and heterologous prime-boost vaccination with 
Ad5-GTY and MVA-PMTP virus vectors, C= cyclophosphamide, L= ACT, V=Adenovirus vaccine 
and I=Poly I:C+CpG. B Representative FACS dot plots showing expansion after Ad5-GTY priming 
and secondary expansion after MVA-PMTP boosting for Pmel-1 CD8+ T cells (top)  and Trp1 
CD4+ T cells (bottom). C Bar graphs showing the percentage of Pmel-1 CD8+ T cells and Trp1 
CD4+ T cells in the blood of cohorts receiving Ad5-GTY prime and MVA-PMTP boost vaccination 
(left panel) or Ad5-GTY prime and MVA-OVA boost vaccination (right panel) n=10 mice in each 
cohort. Student T test was used to compare the CD8+ and CD4+ T cell abundancy. P-Value <0.01 
**, <0.001***, <0.0001 ****, error bar represents mean ± SEM. 
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4.2.3 MVA booster vaccination does not improve the therapeutic efficacy of 

the adoptive T cell therapy  

The next experiments were aimed to test if the MVA-PMTP boost vaccine was 

able to specifically improve the therapeutic efficacy of CD8 and CD4 T cell 

combination ACT. Treated groups of tumor bearing mice were either boosted with 

MVA-PMTP or MVA-Ova locally in the tumor microenvironment (Figure 4.2.3.1 

A). Both treatment cohorts showed comparable tumor growth control without 

significant survival differences between mice receiving MVA-PMTP or MVA-OVA 

as a boost vaccine (Figure 4.2.3.1 B,C). Thus, MVA boost vaccination could not 

improve antigen-specific T cell immunity in this experimental setting. 

Longterm surviving mice in the MVA-PMTP treated groups showed a tendency 

to develop more vitiligo when compared to the MVA-OVA group but this did not 

reach significance (Figure 4.2.3.2).  
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Figure 4.2.3.1 MVA boost vaccination does not significantly increase the survival of T cell 
ACT treated mice. 
A Schematic representation of adoptive cell transfer in HCmel12 tumor-bearing mice using 
heterologous prime-boost with Ad5 and MVA respectively. C= cyclophosphamide, L= ACT, 
V=Adenovirus vaccine and I=Poly I:C+CpG B Tumor growth kinetics of untreated control group 
(n=5), MVA-PMTP boosted (n=10) and MVA-OVA boosted (n=8) cohorts C Kaplan meier graph 
showing survival of treated cohorts compared to untreated control (Log rank test, p-Value= < 
0.0001,**** and 0.0050, **) 
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Figure 4.2.3.2 Mice with regressing HCmel12 melanomas show vitiligo-like fur 
depigmentation. 
A Skin depigmentation observed in mice that regressed melanoma following immunotherapy. B 
Dot plot showing vitiligo score of the mice receiving MVA-PMTP and MVA-OVA. Error bars 
represents mean ± SEM. 
 

4.2.4 Co-transfer of tumor antigen specific CD8+ and CD4+ T cells controls 

melanomas only marginally better than CD8+ or CD4+ T cells alone 

Next, it was investigated whether the combination of CD4+ and CD8+ T cell ACT 

would result in increased anti-tumor efficacy when compared to ACT involving 

either CD4+ or CD8+ T cells only. To this end, mice were intracutanously injected 

with HCmel12 melanoma cells. When the tumors reached a diameter of 2-3 mm, 

mice were randomly assigned to three groups and treatment was started. Mice 

received Trp1 CD4+ T cell ACT, Pmel-1 CD8+ T cell ACT or combined Trp1 

CD4+ T and Pmel-1 CD8+ T cell ACT (Figure 4.2.4.1 A). All three treatment 

groups showed transient control of melanoma growth with some mice 

experiencing complete regression and some mice eventually escaping therapy 

(Figure 4.2.4.1 B). The Kaplan-Meier survival graph showed that there was no 

significant difference between the treatment groups (Figure 4.2.4.1 C) with the 

cohorts receiving combination therapy showing marginally better survival when 

compared to the cohorts receiving Pmel-1 CD8+ or Trp1 CD4+ T cell 

monotherapy (Figure 4.2.4.1 C). Taken together these results nevertheless 

demonstrated that CD4+ T cell ACT could be as effective as CD8+ T cell ACT.  
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Figure 4.2.4.1 Pmel-1 CD8+ T cell and Trp1 CD4+ T cell combination therapy was only 
marginally more effective in controlling the growth of melanoma when compared to Trp1 
CD4+ T cell or Pmel-1 CD8+ T cell monotherapy. 
A Experimental protocol for therapy of HCmel12 tumor bearing mice using heterologous prime-
boost vaccination with Ad5-GTY and MVA-PMTP, respectively and different T cell transfers as 
depicted. C= cyclophosphamide, L= ACT, V=Adenovirus vaccine and I=Poly I:C+CPG. B. Tumor 
growth kinetics in 3 different groups of mice always treated with double antigen heterologous 
prime-boost vaccination and either Trp1 CD4+ T cells (CD45.2+) alone (n=15), Pmel-1 CD8+ T 
cells (CD90.1+) alone (n=13) or the combination of PMEL CD8+ and Trp1 CD4+ T cells (n=15 ). 
C Kaplan-Meier graph showing the survival of mice (Gehan-Breslow-Wilcoxon test, p-Value= 
0.0062).  
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4.2.5 HCmel12 melanomas that relapse after T cell immunotherapy show 

down-regulated expression of the melanocytic target antigens 

HCmel12 melanomas that relapsed in mice after heterologous prime-boost 

vaccination with Trp1 CD4+ T cell ACT or with CD4+ and CD8+ T cell ACT 

macroscopically showed increased hypomelanotic areas when compared to 

untreated tumors, suggesting down-regulation of antigen expression as a 

mechanism of therapy resistance. It was hypothesized that melanoma cells 

acquired a dedifferentiated phenotype which is characterized by upregulation of 

markers such as Ngfr which are expressed in neural crest precursors as was 

previously shown by the Tüting laboratory upon Pmel-1 CD8+ T cell ACT 

(Landsberg et al., 2012). qPCR analysis indeed demonstrated that relapse 

melanomas down-regulated mRNA for the melanocytic target genes Trp1 and 

gp100. In addition, the master transcription factor of the melanocytic lineage, Mitf, 

was down-regulated and the neural crest marker Ngfr was up-regulated (Figure 

4.2.5.1) suggesting coordinate dedifferentiation. 

 

Figure 4.2.5.1 Tumors escape melanocyte lineage antigen targeted T cell therapy by de-
differentiation. 
A Graphical representation of the treatment groups and melanoma samples with the genes 
studied in qPCR. B Bar Graphs showing fold change in the melanoma differentiation genes (left 
panel) in Trp1 CD4+ACT (red bar) and treated Trp1CD4+ and Pmel-1 CD8+ combination ACT 
treated (green bar) groups and dedifferentiation genes (right panel) of the same treatment 
cohorts. Error bar represents mean ± SEM. Two-way ANOVA analysis was done and mean fold 
change of each gene was compared to the fold change of corresponding gene in untreated group 
p-Value <0.0001=****, <0.001=***, <0.01=**. 
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The results of the mRNA analyses were confirmed on the protein level by 

immunohistochemical analyses showing down-regulation of gp100 as well as 

upregulation of Ngfr in relapse tumor tissues (Figure 4.2.5.2).  

 
Figure 4.2.5.2 Immunohistochemical analyses of HCmel12 relapse melanomas.  
A Gross appearance of untreated HCmel12 melanoma showing pigmentation and 
immunohistochemical analyses for gp100 and ngfr expression. B Gross appearance of a Trp1 
CD4+ T cell treated HCmel12 melanomas showing depigmentation, loss of gp100 expression and 
increased ngfr expression. C. Similar appearance of a HCmel12 melanoma after pmel-1 CD8+ 
and Trp1 CD4+ T cell combination ACT.  
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4.3 Mechanisms of CD4+ T cell anti-tumor effector functions  

4.3.1 Genetic ablation of the Trp1 gene in melanoma cells using CRISPR-

Cas9 genome editing 

The experiments with Trp1 CD4+ T cell ACT so far demonstrated less efficient 

expansion following adenoviral vaccination when compared to Pmel-1 CD8+ T 

cell ACT. However, despite their lower numbers, CD4+ T cells were able to 

control the growth of established melanoma equally well. Importantly, immune 

escape by downregulation of melanocytic antigen expression was observed in 

TRP1 CD4+ T cell ACT treated mice. Together with reports in the literature this 

suggested direct anti-tumor effector functions of the adoptively transferred CD4+ 

T cells.  

Subsequent experiments were designed to address the mechanisms of CD4+ T 

cell effector functions. To investigate the role of principally reversible (phenotypic) 

vs. irreversible (genetic) antigen loss, HCmel12 melanoma cells lacking Trp1 

expression were generated by targeting the Trp1 gene using the CRISPR-Cas9 

gene editing technology. The mouse Trp1 gene consists of seven coding exons. 

Exon 2 contains the start codon of the gene as well as the MHC-II restricted 

epitope CRPGWRGAACNQKIL (Muranski et al., 2008). Therefore, four single 

guide RNAs (sgRNAs) were designed to target this exon. A schematic 

representation of the Trp1 gene target region as well as the guide sequences 

used are shown in figure 4.3.1.1.  
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Figure 4.3.1.1 Design of sgRNAs targeting the mouse Trp1 gene locus. 
Schematic outline of the generation of sgRNAs targeting a 20 bp site in the mouse Trp1 locus. 
Exon 1 of Trp1 gene is shown which was targeted by sgRNAs. Four sgRNAs complementary to 
the target region of Trp1 upstream and on the region encoding for the Class II-restricted epitope 
was designed. sgRNA sequences are shown along with the adjacent PAM sequence in blue color. 
 

HCmel12 cells were co-transfected with a GFP expression plasmid along with the 

px330-derived plasmid containing the U6 promoter driving transcription of the 

different sgRNAs and as well as the chicken beta-actin promotor driving 

transcription of the Cas9 enzyme (Cong et al., 2013). 72 hours later, GFP 

expressing cells were sorted and expanded to obtain a putative polyclonal 

population of Trp1 knockout HCmel12 cells. The polyclonal population was 

seeded as single cells in 96 well plates and pure monoclones raised. The 

overview of the procedure is shown in figure 4.3.1.2 A. The Trp1 gene of different 

monoclones was then analyzed using next generation sequencing technology 

(figure 4.3.1.2 B). Data analysis revealed that the monoclones 1-4 had an 

insertion of 1 nucleotide or a deletion of 65, 1 or 5 nucleotides at the CRISPR 

target site of the Trp1 gene, each causing a frame shift resulting in a genetic 

knockout (HCmel12 Trp1-/-). Figure 4.3.1.2 B shows pie charts representing the 

four different pure monoclones. Sequencing of the wild-type cell line transfected 

with pX330 plasmid without sgRNA revealed that this cell line retained an intact 
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Trp1 gene and were therefore expanded as “HCmel12 CRISPR ctrl”.  

 

Figure 4.3.1.2 CRISPR-Cas9 mediated editing of Trp1 gene in HCmel12 cells results in 
generation of clones with out-of-frame mutation of the gene. 
A Outline of CRISPR-Cas9 approach to generate HCmel12 Trp1 knockout monoclones. B Next-
generation sequencing data (NGS) analyzed by OutKnocker software showing HCmel12 Trp1-/- 
monoclones. Grey pie chart represents HCmel12 CRISPR ctrl cells which were transfected with 
pX330 plasmid without sgRNA. 
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Immunofluorescence staining as well as western blot analysis confirmed the loss 

of the Trp1 protein expression in the four HCmel12 Trp1-/- monoclones (figure 

4.3.1.3 A and B). HCmel12 CRISPR ctrl cells had intact Trp1 expression.  

 

Figure 4.3.1.3 Frame shift mutations caused by CRISPR-Cas9 mediated editing of Trp1 
gene result in loss of protein expression. 
A. Immunofluorescence staining showing Trp1 protein expression (green) and nucleus (blue) in 
HCmel12 CRISPR ctrl cells (left) and absence of proteins in knockout monoclones (right upper 
and lower panel). Nuclei is counterstained with DAPI (blue) B. Western blots showing loss of 
expression of the Trp1 protein in HCmel12 Trp1-/- monoclones. 
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4.3.2 Trp1 CD4+ T cells do not recognize Trp1-/- HCmel12 melanoma cells in 

vitro 

Next, the consequence of loss of Trp1 expression by tumor cells on recognition 

by Trp1 CD4+ T cells was studied in vitro. First, the HCmel12 CRISPR ctrl cells 

were treated with IFN-γ. This upregulated the expression of class II molecules on 

their cell surface (figure 4.3.2.1).  

 
Figure 4.3.2.1 HCmel12 CRISPR ctrl melanoma cell line upregulates MHC-II upon treatment 
with IFN-γ. 
A Experimental plan for the analysis of MHC-II expression on HCmel12 CRISPR ctrl cells. B. 
FACS histograms showing no upregulation of MHC-II on HCmel12 CRISPR ctrl cells without IFN-
γ and gradual upregulation with IFN-γ treatment. 
 

Next, melanoma cells were co-cultured for 5 hours with Trp1 CD4+ T cells after 

which the T cell activation status was analyzed by flow cytometry (Figure 

4.3.2.2A). The Trp1 CD4+ T cells recognized HCmel12 CRISPR ctrl cells (figure 

4.3.2.2 B upper panel) and upregulated the activation marker CD69. In contrast, 

Trp1-/- monoclones were not able to upregulate CD69 on T cells (figure 4.3.2.2 B. 

lower panel respectively).  
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Figure 4.3.2.2 HCmel12 Trp1-/- cells do not activate antigen specific Trp1 CD4+ T cells in 
vitro. 
A. Experimental plan for co-culturing HCmel12 Trp1-/- and CRISPR ctrl cells with Trp1 CD4+ T 
cells. B. Representative FACS plots showing CD69 on CD4+CD45.2+ cells upon co-culture with 
HCmel12 CRISPR ctrl (top panel) and HCmel12 Trp1-/- cells (bottom panel). Negative ctrl is Trp1 
CD4+ cells without tumor cell coculture and positive control is Trp1 CD4+ T cells stimulated with 
T cell activation cocktail (PMA+ionomysin). 
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4.3.3 Trp1 CD4+ T cell ACT is ineffective against HCmel12 Trp1-/- 

melanomas  

Having shown that Trp1 CD4+ T cells cannot recognize Trp1-/- HCmel12 cells in 

vitro, the ability of Trp1-/- HCmel12 cells to evade TRP1 CD4+ T cell responses 

in vivo was studied. To address this question HCmel12 CRISPR ctrl cells and 

mixtures of three Trp1-/- HCmel12 monoclones were transplanted 

intracutaneously into syngeneic WT mice. When the tumors reached a size of 2 

to 3 mm, they were randomly assigned for the TRP1 CD4+ T cell ACT regimen 

described above or for untreated control groups (figure 4.3.3.1 A).  

HCmel12 CRISPR ctrl and the mixture of Trp1-/- HCmel12 monoclones grew 

progressively in the untreated control groups with a similar growth rate. However, 

while HCmel12 CRISPR ctrl melanomas responded to TRP1 CD4+ T cell ACT 

(with 5/7 complete regressions), Trp1-/- HCmel12 melanomas largely did not (with 

only 1 responding mouse), as shown in figure 4.3.3.1 B. As a consequence, 

survival of treated mice bearing HCmel12 CRISPR ctrl melanomas was 

significantly prolonged when compared to mice bearing Trp1-/- HCmel12 

melanomas (figure 4.3.3.1 C).  
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Figure 4.3.3.1 HCmel12 Trp1-/- melanomas fail to respond to Trp1 CD4+ T cell ACT. 
A Schematic representation of adoptive cell transfer in mice bearing HCmel12 CRISPR ctrl 
(Group 1 and 2) and HCmel12 Trp1-/- (Group 3 and 4). C= cyclophosphamide, L= ACT, 
V=Adenovirus vaccine and I=Poly I:C+CPG. B Tumor growth in mice bearing HCmel12 CRISPR 
ctrl (upper panel, untreated n=7 and treated n=10) or HCmel12 Trp1-/- (lower panel, untreated 
n=4 and treated n=6). C Kaplan-Meier graph showing survival of mice in 4 different experimental 
groups (statistics calculated by log rank test, p-Value <0.0001 ****, 0.004 to 0.009 **).  
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In subsequent experiments, the Trp1-/- melanoma cells were admixed with 

HCmel12 CRISPR ctrl cells, inoculated in the skin of mice and a potential 

selection advantage under treatment with Trp1 CD4+ T cell ACT was 

investigated. To discriminate between HCmel12 Trp1-/- and CRISPR ctrl 

melanoma cells we performed stable retroviral transductions with TagBFP and 

mCherry as fluorescent marker genes. The three Trp1-/- mCherry or TagBFP 

labelled monoclones (1:1:1) were admixed with HCmel12 CRISPR ctrl cells 

labelled with mCherry or TagBFP, respectively, to achieve an overall Trp1-/- 

frequency of 25% as shown in the figure 4.3.3.2.  

 

Figure 4.3.3.2 Mixtures of fluorescently tagged Trp1-/- and wild-type HCmel12 melanoma 
cells in vitro. 
FACS plots showing the percentages of mCherry expressing HCmel12 Trp1-/- and TagBFP 
expressing HCmel12 CRISPR ctrl (left) and of mCherry expressing HCmel12 CRISPR ctrl and 
TagBFP expressing HCmel12 Trp1-/- (right) at the time of transplantation in two independent 
experiments. 
 

The melanoma cell mixtures were then inoculated into the skin of syngeneic 

wildtype mice. Once tumors reached a size of 2 to 3 mm they were randomly 

assigned to four groups and the treatment was started (Figure 4.3.3.3 A). Trp1 

CD4+ T cell ACT was performed as described above (with cyclophosphamide 

conditioning, Ad5-GTY vaccination and three peritumoral doses of poly I:C and 

CpG on days 3, 6 and 9 after T cell transfer). Tumor growth was monitored twice 

weekly. Seven out of fourteen mice bearing mixture of HCmel12 CRISPR ctrl and 

Trp1-/- melanoma escaped the therapy (figure 4.3.3.3 B). The survival of the 
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treatment cohort was significantly prolonged when compared to the untreated 

controls (figure 4.3.3.3 C). 

 

Figure 4.3.3.3 Trp1 CD4+ T cell ACT can cause regression of tumors containing 25% 
HCmel12 Trp1-/- melanoma cells suggesting effective bystander killing. 
A Schematic representation of adoptive cell therapy protocol. Groups of mice received mixtures 
of HCmel12 CRISPR ctrl and Trp1-/- cells transduced with with mCherry or TagBFP. C= 
cyclophosphamide, L= ACT, V=Adenovirus vaccine and I=Poly I:C + CpG. B Tumor growth 
kinetics of untreated (n=12) and treated (n=14) groups of HCmel12 CRISPR ctrl and Trp1-/- tumor 
bearing mice. C Kaplan-Meier graph showing survival of mice (Log rank test used to calculate 
significance, p-Value < 0.0001 ****). 
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Flowcytometric analysis of untreated tumors showed a growth disadvantage of 

fluorescently labelled HCmel12 Trp1-/- melanoma cells (Figure 4.3.3.4 left 

panels). This was observed with both TagBFP and mCherry labelled cells. 

Nevertheless, in tumors escaping Trp1 CD4+ T cell ACT only HCmel12 Trp1-/- 

melanoma cells were found, indicating strong genetic selection for genetically 

engineered antigen loss variants (Figure 4.3.3.4 right panels). 

 

Figure 4.3.3.4 Melanomas escaping CD4+ T cell ACT show strong selection for genetic 
Trp1 antigen loss variants 
A Representative FACS plots showing percentage of HCmel12 CRISPR ctrl TagBFP and 
HCmel12 Trp1-/- mCherry in untreated (Left) and Trp1 CD4+ T cell ACT treated samples (right). 
B Dot plots showing percentages of HCmel12 CRISPR ctrl TagBFP and HCmel12 Trp1-/- mCherry 
in untreated (Left, n=6) and Trp1 CD4+ T cell ACT treated samples (right, n=2). C. Representative 
FACS plots showing percentage of HCmel12 CRISPR ctrl mCherry and HCmel12 Trp1-/- TagBFP 
in untreated (Left) and Trp1 CD4+ T cell ACT treated samples (right).  D Dot plots showing 
percentages of HCmel12 CRISPR ctrl mCherry and HCmel12 Trp1-/- TagBFP in untreated (Left, 
n=5) and Trp1 CD4+ T cell ACT treated samples (right, n=4). Statistics calculated by student T 
test, p-Value <0.0001 ****, 0.001 to 0.0001 ***, error bar represents mean ± SEM. 
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4.3.4 Genetic ablation of the Ciita gene in melanoma cells using CRISPR-

Cas9 genome editing 

The experiments so far showed that adoptively transferred TRP1 CD4+ T cells 

control melanoma growth in an antigen specific manner but can also eradicate 

an admixed population of genetically engineered antigen loss variants through 

bystander killing. This raises the question whether direct MHC class II restricted 

antigen presentation by melanoma cells is required for the therapeutic efficacy of 

TRp1 CD4+ T cells. To address this question, the Ciita gene was disrupted in 

HCmel12 cells using the CRISPR-Cas9 genome editing technique. As Ciita is 

absolutely required to chaperone MHC class II molecules to the cell surface, this 

results in functional loss of MHC class II expression. The Ciita gene is located on 

chromosome 16 and has 17 coding exons as shown in figure 4.3.4.1. The exon 

1 (common to the isoforms 1, 3 and 4) and the exon 2 (common for all isoforms) 

were targeted using appropriate guide RNAs. 

 

Figure 4.3.4.1 Design of sgRNAs targeting the mouse Ciita gene locus. 
Schematic outline of the generation of sgRNAs targeting a 20 bp site in the mouse Ciita locus. 
Exon 1 and 2 of Ciita gene is shown which is targeted by sgRNAs. Exon 2 shown is common for 
all the isoforms but exon 1 is common between isoforms 1 and 4 but different for isoform 3.  Five 
sgRNAs complementary to the target region of Ciita and the sgRNA sequences are shown in the 
lower panel along with the adjacent PAM sequence in blue color.  
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CRISPR-Cas9 edited cells were generated and monoclones derived as 

described above. Sequencing analyses confirmed three different pure 

monoclones (HCmel12 Ciita-/-) with deletion of 2 nucleotides, 65 nucleotides and 

7 nucleotides respectively  at the Ciita gene target site causing frameshift 

mutations (Figure 4.3.4.2).  HCmel12 CRISPR ctrl cells transfected with pX330 

plasmid without sgRNA were used as controls.  

 

Figure 4.3.4.2 CRISPR-Cas9 mediated editing of the Ciita gene in HCmel12 cells results in 
generation of clones with frameshift mutations.  
Next-generation sequencing data (NGS) analyzed by Outknocker software showing HCmel12 
Ciita-/- monoclones with 2nt, 65nt and 7nt deletions, respectively. The grey pie chart represents 
the HCmel12 CRISPR ctrl cell line transfected with the empty pX330 plasmid. 

 

Next, the loss of MHC-II expression on HCmel12 melanoma cells was validated 

by flow cytometry (Figure 4.3.4.3). HCmel12 CRISPR ctrl and Ciita-/- monoclones 

were treated with recombinant mouse IFN-γ and expression of MHC-I and MHC-

II was analyzed 24h, 48h and 72h later. In the absence of IFN-γ, HCmel12 

CRISPR ctrl and Ciita-/- cells showed no expression of MHC-I and -II (Figure 

4.3.4.3 B). Upon treatment with IFN-γ, HCmel12 CRISPR ctrl cells upregulated 

MHC-II gradually and the levels of expression reached maximum levels by 72 

hours. In contrast, Ciita-/- HCmel12 cells failed to upregulate MHC-II as shown in 

figure 4.3.4.3 C, upper panel. Both the HCmel12 CRISPR ctrl and the Ciita-/- cells 

upregulated MHC-I by 24 hours of incubation with IFN-γ as shown in the figure 

4.3.4.3 C, lower panel.  
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Figure 4.3.4.3  Targeting Ciita by CRISPR-Cas9 technique results in loss of expression of 
MHC-II on the melanoma cells. 
A Experimental plan for the analysis of HCmel12 Ciita-/- cells generated. B. Histograms showing 
no expression of MHC-I or MHC-II by HCmel12 CRISPR ctrl and Ciita-/- cells in absence of IFN-γ. 
C Gradual expression of MHC-II by HCmel12 CRISPR ctrl cells but no expression of MHC-II by 
Ciita-/- cells upon incubation with IFN-γ (upper panel), and upregulation of MHC-I by both 
HCmel12 CRISPR ctrl and Ciita-/- cells upon incubation with IFN-γ (lower panel). 
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Next, the consequence of MHC-II loss by tumor cells for the recognition by Trp1 

CD4+ T cells was studied in vitro. HCmel12 CRISPR ctrl and HCmel12 Ciita-/- 

were treated with IFN-γ, then co-cultured for 5 hours with Trp1 CD4+ T cells and 

T cell activation analyzed by flow cytometry (Figure 4.3.4.4). Upregulation of the 

activation marker CD69 was observed with HCmel12 CRISPR ctrl cells but not 

with Ciita-/- monoclones.  

 

Figure 4.3.4.4 HCmel12 Ciita-/- cells do not activate antigen specific Trp1 CD4+ T cells in 
vitro. 
A. Experimental plan for the co-culture of HCmel12 Ciita-/- and CRISPR ctrl cells with Trp1 CD4+ 
T cells. B. Representative FACS plots showing CD69 on CD4+CD45.2+ cells upon co-culture of 
HCmel12 CRISPR ctrl (top panel) and HCmel12 Ciita-/- cells (Lower panel). Negative ctrl is Trp1 
CD4+ cells without tumor cell coculture and positive control is Trp1 CD4+ T cells stimulated with 
T cell activation cocktail (PMA+ionomysin). 
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Next, it was tested if these HCmel12 Ciita-/- cells could still be indirectly 

recognized by Trp1 CD4+ T cells in vitro. To this end, Trp1 splenocytes were 

pulsed with cell lysates prepared from freeze-thawed HCmel12 CRISPR ctrl, 

Trp1-/- and Ciita-/- cells and T cell activation assessed after 24 hours incubation 

(Figure 4.3.4.5). Trp1 CD4+ T cells upregulated the activation markers CD69 and 

CD25 in response to HCmel12 CRISPR ctrl and Ciita-/- tumor cell lysates but not 

to HCmel12 Trp1-/- tumor cell lysates, indicating intact cross-presentation of 

antigen by professional APC.   

 

Figure 4.3.4.5 Antigen specific activation of Trp1 CD4+ T cells following incubation with 
tumor cell lysates. 
A Experimental plan for culturing Trp1 splenocytes with HCmel12 CRISPR ctrl, Ciita-/- and Trp1-/- 
cell lysates. B, C Representative FACS contour plots showing upregulation of  CD69  and CD25 
on CD4+CD3+ T cells following co-culture with the indicated tumor cell lysates. Controls included 
splenocytes without tumor cell lysate and stimulation with PMA+ionomysin.  
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4.3.5 Trp1 CD4+ T cell ACT can control the growth of HCmel12 Ciita-/- 

melanomas 

Having shown that Trp1 CD4+ T cells can only recognize HCmel12 Ciita-/- cells 

indirectly but not directly in vitro, it was investigated whether this was sufficient 

for the therapeutic efficacy of Trp1 CD4+ T cell ACT in vivo. To this end, 

syngeneic wildtype mice were intracutaneously injected with HCmel12 CRISPR 

ctrl and mixtures of HCmel12 Ciita-/- monoclones. When the tumors reached a 

size of 2 to 3mm they were randomly assigned to untreated control and Trp1 

CD4+ T cell ACT treatment groups. Additionally, in two treatment cohorts with 

HCmel12 CRISPR ctrl and HCmel12 ciita-/- melanomas endogenous CD8+ T 

cells were depleted to investigate their potential contribution to the anti-tumor 

efficacy of Trp1 CD4+ T cell ACT. CD8+ T cell depletion was monitored once 

weekly by flowcytometry (Figure 4.3.5.1 A).  

HCmel12 CRISPR ctrl cells and the mixtures of Ciita-/- monoclones grew 

progressively when left untreated. Both HCmel12 CRISPR ctrl melanomas with 

intact MHC-II and Trp1 antigen expression and HCmel12 Ciita-/- melanomas 

regressed when treated with Trp1 CD4+ T cell ACT. This resulted in significantly 

prolonged survival of mice. The depletion of endogenous CD8+ T cells did not 

significantly impair the treatment efficacy (Figure 4.3.5.1).  
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Figure 4.3.5.1 Depletion of endogenous CD8+ T cells does not affect the therapeutic 
efficacy of CD4+ T cells 
A Schematic representation of adoptive Trp1 CD4+ T cell transfer in HCmel12 CRISPR ctrl and 
HCmel12 Ciita-/- tumor-bearing mice. C= cyclophosphamide, L= ACT, V=Adenovirus vaccine and 
I=Poly I:C+CPG. Representative flowcytometry dot plots confirming depletion of CD8+ T cells in 
cohorts receiving α-CD8 antibody. B Tumor growth kinetics of HCmel12 CRISPR ctrl untreated 

cohort (left), treatment cohort without CD8+ depletion (middle) and treatment cohort with CD8+ 
depletion (right). C Tumor growth kinetics of HCmel12 Ciita-/- untreated cohort (left), treatment 
cohort without CD8+ depletion (middle) and treatment cohort with CD8+ depletion (right). D 
Kaplan-Meier graph showing the survival of mice (statistics calculated by Log rank test, p-Value 
between 0.0001 and 0.001 **). 
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5. Discussion 

5.1 Adoptive transfer of Trp1 CD4+ T cells and adenoviral vaccination 

The first aim of this work was to develop an adoptive cell therapy (ACT) protocol 

with CD4+ T cells targeting the melanocyte differentiation antigen Trp1 for the 

treatment of mice bearing progressively growing transplanted melanomas. The 

efficacy of Trp1 CD4+ T cell ACT  was to be compared with that of the established 

ACT protocol with CD8+ T cells targeting the melanocytic antigen gp100. To this 

end, the replication deficient adenoviral vector Ad5-GTY was generated in initial 

work, Ad5-GTY contains an artificially generated fusion protein between the 

melanocytic antigens gp100 and Trp1 and expresses the two peptide epitopes 

recognized by Pmel-1 CD8+ T cells and the Trp1 CD4+ T cells, respectively 

(Figure 4.1.1.1). The ability of this virus to activate TCRtg T cells was then 

confirmed using adenovirus infected splenocytes in vitro (Figure 4.1.1.2). This 

demonstrated that both peptides were effectively presented for MHC-I restricted 

Pmel-1 and MHC-II restricted Trp1 T cells. This multi-epitope adenoviral vector 

then allowed for a direct side by side comparison of the expansion of adoptively 

transferred T cells in vivo. Interestingly, it was observed that melanocyte-specific 

CD4+ T cells expanded much less efficiently when compared to CD8+ T cells 

(Figure 4.1.2.1). This was not dependent on the number of T cells transferred 

since the transfer of higher number of OT-II CD4+ T cells (500,000 cells) and 

lower number of OT-I CD8+ T cells (100,000 cells ) also resulted in more efficient 

expansion of the CD8+ T cells (Figure 4.1.2.2).  

5.2 Boost vaccination with recombinant MVA for CD4+ T cells  

In subsequent work, a recombinant MVA vaccine vector was generated that also 

contains both peptide epitopes. This vector was then tested both in vitro and in 

vivo. Adoptively transferred Pmel-1 CD8+ T cells could successfully be re-

expanded following administration of MVA. However, re-expansion of CD4+ T 

cells failed (Figure 4.2.2.1). Thus, the MVA vaccine was not effective in boosting 

Trp1 CD4+ T cells. These results are in keeping with a previous study, where 

effector and memory CD4+ T cells were shown to proliferate less efficiently than 

CD8+ T cells (Homann et al., 2001). This was found to be due to lower expression 

of Bcl-2 in CD4+ T cells and thus increased apoptosis. Furthermore, the memory 
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CD4+ T cells that were restimulated with a booster vaccine secreted more IFN-γ 

and less IL-2 than CD8+ T cells that could explain reduced proliferation (MacLeod 

et al., 2010; Malandro et al., 2016; Ravkov and Williams, 2009). CD8+ T cells are 

also known to divide and differentiate efficiently even after a single exposure to 

the antigen and interestingly daughter cells do not need the antigen presence for 

their continued differentiation and proliferation, whereas CD4+ T cells require 

repeated exposure to the antigen for efficient expansion (Bajenoff et al., 2002; 

Kaech and Ahmed, 2001). Unlike CD8+ T cells,  CD4+ T cells can arrest in 

various stages of proliferation and differentiation forming a heterogeneous 

population, which could also explain their limited expansion in the current study 

(Foulds and Shen, 2006). 

5.3 Therapeutic efficacy of Trp1 CD4+ T cells against skin melanomas  

Interestingly, although CD4+ T cells expanded less efficiently than Pmel-1 

specific CD8+ T cells they could still control the growth of HCmel12 melanomas 

and significantly prolong the survival of tumor bearing mice (Figure 4.1.3.1 B, C). 

Furthermore, the mice which showed complete regression of their melanomas 

also developed strong vitiligo-like depigmentation of their fur indicating an 

effective autoimmune response against the melanocytic differentiation antigen 

Trp1 (Figure 4.1.3.1 D).  

In several experiments, the therapeutic anti-tumor efficacy of adoptively 

transferred CD4+ T cells and of Pmel-1 CD8+ T cells each alone were compared 

with the combination of both CD4+ and CD8+ T cells. It was envisioned that CD4+ 

T cells could provide linked help to CD8+ T cells because the two epitopes were 

expressed by one protein which results in antigen presentation by the same 

dendritic cell as a prerequisite for an optimal immune response (Borst et al., 2018; 

Mitchison and O’Malley, 1987). Furthermore, CD4+ T cell help is considered to 

be critically important for the generation of functionally efficient memory CD8+ T 

cells (Khanolkar et al., 2004; Laidlaw et al., 2016; Shedlock and Shen, 2003). 

However, the combination therapy was not significantly more effective than either 

monotherapy alone (Figure 4.2.4.1).   
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5.4 Immune escape through dedifferentiation  

A major reason for the inability of the adoptive cell therapy approach to mediate 

complete and durable tumor regression was the escape of melanomas from T 

cell control through inflammation-induced dedifferentiation. This is associated 

with down-regulation of the melanocytic target antigens and upregulation of the 

neural crest precursor cell markers ngfr and CD73 (Figure 4.2.5.1 and 4.2.5.2) 

(Landsberg et al., 2012; Le Poole et al., 2002; Reinhardt et al., 2017; Restivo et 

al., 2017; Verfaillie et al., 2015). In this way, the adoptively transferred CD4+ and 

CD8+ T cells loose their target on tumor cells. Melanoma escape by 

dedifferentiation has already previously been described by the Tüting laboratory 

for CD8+ T cell therapy (Landsberg et al., 2012). While the exact spatio-temporal 

dynamics of the dedifferentiation response remain to be shown, a rapid and 

powerful T cell attack could presumably outrun the epigenetic rewiring required 

for melanoma cell dedifferentiation.  

In addition to the inflammation-induced dedifferentiation, other factors may have 

contributed to therapy resistance. While speculative, it is possible that T cell 

exhaustion played a role in the resistance. Indeed, induction of type I or type II 

interferon signaling in human and mouse melanoma cells is known to upregulate 

the expression of PDL-1 and PDL-2 (Bald et al., 2014b; Robert et al., 2014). 

Therefore, the treatment protocol used in this study consisting of both peritumoral 

injections of nucleotide analogs and MVA viral vectors might have caused 

upregulation of these checkpoint molecules. Finally, the Tüting and Hölzel 

laboratory has recently shown that CD8+ T cell ACT can induce reactive 

neutrophil infiltration to tumor and other T cell inflamed tissues, which contributes 

to an immunosuppressive tumor microenvironment (Glodde et al., 2017). While 

less is known about the regulation of CD4+ T cells, it seems plausible that 

immunosuppressive neutrophils also limit their function. 

5.5 Antigen-specific effector functions and bystander killing 

In order to confirm the antigen-specific anti-tumor effects of CD4+ T cells and to 

dissect effector mechanisms, HCmel12 Trp1-/- cell lines that lack the target 

antigen were created with CRISPR-Cas9 technology (Figures 4.3.1.1). The 

knockout success was validated both at the genomic level (Figures 4.3.1.2) as 
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well as at the protein level (Figures 4.3.1.3). The Trp1-/- cells were not recognized 

by CD4+ T cells in vitro (Figure 4.3.2.2) confirming the knockout success at the 

functional level. As expected, HCmel12 Trp1-/- melanomas did not respond to 

CD4+ T cell ACT, indicating that they act in an antigen specific manner (Figure 

4.3.3.1).  

Further in vivo experiments with mixtures of HCmel12 CRISPR ctrl and Trp1-/- 

melanoma cells revealed that the anti-tumoral CD4+ T cells had strong bystander 

killing capacity. Half of the melanomas composed of HCmel12 CRISPR ctrl and 

significant numbers of HCmel12 Trp1-/- cells regressed completely following the 

Trp1 CD4+ T cell ACT (Figure 4.3.3.3). This is in contrast to our experiments 

involving MHC class I restricted CD8+ T cells (unpublished observations). The 

mice where melanomas generated with HCmel12 CRISPR ctrl and Trp1-/- cells 

escaped CD4+ T cell immunotherapy showed complete genetic selection for 

Trp1-/- cells (Figure 4.3.3.4). These results indicated that genetic and irreversible 

antigen loss is dominant over phenotypic and principally reversible antigen loss 

as a mechanism of melanoma immune escape. The data also suggest that local 

activation of adoptively transferred CD4+ T cells caused bystander killing of 

HCmel12 Trp1-/- cells.   

5.6 The role of MHC class II restricted antigen presentation 

MHC class I molecules are expressed ubiquitously on most cells. In contrast, 

MHC-II molecule are expressed in a more restriction fashion, predominantly by 

professional antigen presenting cells such as dendritic cells, B cells and 

macrophages. Epithelial cells and melanocytes can also upregulate MHC class 

II in response to IFN-γ. Some human cancers like breast cancer, colon cancer 

and melanoma have been shown to express MHC class II (Johnson et al., 2016; 

Park et al., 2017; Sconocchia et al., 2014). A recent bioinformatical analysis by 

Johnson and colleagues showed that all the 60 human melanoma cell lines listed 

in cancer cell line encyclopedia ubiquitously expressed high levels of MHC-I 

(HLA-A prototype) whereas MHC-II (HLA-DRA) was absent in around 50 percent 

of cell lines and remaining cells had intermediate to high expression.  

The HCmel12 mouse melanoma cells used in this work were also shown to 

upregulate MHC class II in response to IFN-γ and could then be recognized in 
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vitro by CD4+ T cells as evidenced by upregulation of CD69. In order to 

investigate whether Trp1 CD4+ T cells require direct antigen presentation by 

melanoma cells, HCmel12 Ciita-/- cell lines were created with CRISPR-Cas9 

technology (Figure 4.3.4.1). The knockout success was again first validated at 

the genomic level (Figure 4.3.4.2). The Ciita-/- monoclones failed to upregulate 

MHC-II in the presence of IFN-γ confirming the knockout success at the protein 

level (Figure 4.3.4.3). As a consequence Ciita-/- monoclones were also not 

recognized by Trp1 CD4+ T cells directly (Figure 4.3.4.4), confirming the 

functional consequence of Ciita loss. However, lysates prepared from HCmel12 

Ciita-/- cells and pulsed onto splenocytes containing professional APCs could 

activate Trp1 CD4+ T cells in vitro indicating that the CD4+ T cells can indirectly 

recognize the HCmel12 derived Trp1 antigen (Figure 4.3.4.5). Taken together, 

these findings suggest that Trp1 CD4+ T cells can principally recognize 

melanoma cells directly in an MHC class II restricted manner as well as indirectly 

through MHC class II expressing cells in the microenvironment.  

Subsequent experiments showed that Trp1 CD4+ T cell ACT could nevertheless 

efficiently control the growth of HCmel12 Ciita-/- cells in vivo (Figure 4.3.5.1). 

Additional experiments with depleting anti-CD8 monoclonal antibodies indicated 

that the therapeutic efficacy of CD4+ T cell ACT was independent of the presence 

of potentially tumor-reactive endogenous CD8+ T cells. Together with the 

experimental results involving HCmel12 Trp1-/- cells, this indicated that Trp1 

CD4+ T cells do not necessarily need direct MHC class II restricted antigen 

recognition on melanoma cells for their anti-tumoral effector functions. These 

results do not support the observations reported by Quezada and colleagues who 

claimed that MHC class II expression was required on melanoma cells for efficient 

tumor rejection by Trp1 CD4+ T cells (Quezada et al., 2010). Alternatively, CD4+ 

T cells could be activated by professional APC in the tumor microenvironment 

that have taken up antigen from dead tumor cells for processing and presentation. 

This was shown by Shklovskaya and colleagues who used Hen Egg Lysozyme-

moth Cytochrome C (HELMCC) as a model antigen for specific CD4+ T cells 

recognizing antigen-transduced B16 F10 melanomas. They reported that MHC-

IIhigh CD11clow migrators dendritic cells in tumor draining lymph nodes caused 
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activation of transgenic CD4+ T cells by presenting tumor derived antigen 

(Shklovskaya et al., 2016). 

5.7 Consequences for the mechanisms of CD4+ T cell anti-tumor immunity 

The findings raise the question how Trp1 CD4+ T cells exert their anti-tumoral 

effects. Muranski and colleagues reported antigen dependent direct recognition 

and killing of melanoma cells by CD4+ T cells. The authors showed that adoptive 

transfer of the Trp1 CD4+ T cells could regress large established B16 melanomas 

even in RAG-/- mice confirming that the CD4+ T cells can induce direct anti-tumor 

effects in the absence of CD8+ T cells. Furthermore, they showed that the Trp1 

CD4+ T cells in RAG-/- mice express perforin, granzyme B and LAMP-1 (a 

degranulation marker CD107a) suggesting that the anti-tumor effect observed in 

this model are due to the direct effect of CD4+ T cells (Xie et al., 2010).  

A recent study showed that Th-1 CD4+ T cells such as IL-2, IFN-γ, TNF-α, 

perforin and granzyme-B strongly delayed the growth of tumor cells both in vitro 

and in vivo while simultaneously activating tumor specifc cytotoxic CD8+ effector 

T cells (Matsuzaki et al., 2015). It is worth speculating, whether the TLR3 agonist 

poly I:C skewed endogenous CD8+ T cells towards effector phenotypes as 

shown previously (Ngoi et al., 2008). Moreover, induction of type 1 IFNs by poly 

I:C can enhance clonal expansion of antigen specific CD8+ T cells (Kolumam et 

al., 2005) and boost innate immune responses (Alexopoulou et al., 2001). 

Similarly, the TLR9 agonist CpG was shown to activated T cells by inducing IL-2 

dependent proliferation (Bendigs et al., 1999). However, CD8+ T cell depletion 

did not diminish the CD4+ T cell ACT anti-tumoral efficacy in the melanoma model 

used here suggesting that CD4+ ACT did not work predominantly by providing 

help to endogenous CD8+ T cells. 

The anti-tumor effects of CD4+ T cells could be due to the activity of the effector 

cytokines IFN-γ and TNF-α. Two different studies demonstrated that Trp1 CD4+ 

T cells can differentiate into Th1 phenotypes in vivo (Hirschhorn-Cymerman et 

al., 2012; Quezada et al., 2010). Quezada and colleagues also showed that 

transfer of small numbers of naive Trp1 CD4+ T cells (5x105 cells) in combination 

with the anti-CTLA4 antibody lead to complete regression of large established 

B16 melanomas and this effect was mediated by IFN-γ and granzyme-B but not 



83 
 

Fas-ligand. While it remains to be shown in the future, it is possible that direct 

and indirect bystander anti-tumor effects could have been mediated by the Th1 

effector cytokine IFN-γ that has been shown to inhibit angiogenesis in the Mc51.9 

model. This cell line is derived from methylcholanthrene-induced sarcoma cells 

in IFN-γ receptor knockout mice (Qin and Blankenstein, 2000b). IFN-γ and TNF-

α have also been shown to promote senescence and growth arrest of tumor cells 

in a mouse model where the Simian virus 40 large T antigen (Tag) is expressed 

as an oncogene under the control of the rat insulin promoter. These mice develop 

insulinomas due to lack of p53, and Rb mediated cell cycle control in pancreatic 

islets (Braumüller et al., 2013). T cell derived TNF-α and the chemotherapeutic 

drug cyclophosphamide used in the treatment protocol could also potentially 

synergistically induce oxidative stress in tumor cells through NADPH oxidases 

resulting in death of the cells due to accumulation of reactive oxygen species 

(Habtetsion et al., 2018).  

Finally, a contribution of direct MHC class II restricted antigen presentation by 

tumor cells for the anti-tumor efficacy cannot be ruled out in the present work. A 

study by Kitano and colleagues showed that NY-ESO-1 cancer testis antigen 

specific CD4+ T cells isolated from melanoma patients receiving ipilimumab 

treatment showed IFN-γ, perforin and granzyme B expression. They further 

showed that these CD4+ T cells recognized and lysed the human melanoma cell 

line SK-MEL-381 expressing NY-ESO-1 and the same MHC class II molecule in 

vitro. Furthermore, it was shown that MHC class II blocking antibodies abrogated 

this cytotoxic effect of CD4+ T cells (Kitano et al., 2013).  

5.8 The connection between anti-tumor immunity and autoimmune vitiligo 

Vitiligo is a common cutaneous toxicity observed in melanoma patients 

undergoing immunotherapy and it has been considered an indicator for therapy 

response (Byrne and Turk, 2011; Hua et al., 2016). Indeed, HCmel12 tumor 

eradication after CD4+ T cell transfer was often accompanied by vitiligo-like fur 

depigmentation. To study CD4+ T cell mediated vitiligo, Lambe and colleagues 

generated mice expressing hen egg lysozyme as a melanocyte specific antigen. 

These mice were then crossed with CD4+ TCR transgenic mice recognizing hen 

egg lysozyme (HEL1 and HEL2 antigens). The resulting mice developed patchy 
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vitiligo during their lifespan which depended on Fas-ligand mediated destruction 

of melanocytes (Lambe et al., 2006). It is unclear whether Fas-Fas-ligand 

interactions played a role in the destruction of melanocytic cells in the 

experiments presented here and whether tumor immunity and autoimmunity 

share effector mechanisms.  
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6. Summary 

Immunotherapy has emerged as a standard treatment modality in melanoma and 

many other cancers. While a lot is known about the anti-tumoral effector functions 

of CD8+ T cells, CD4+ T cells remain less well understood in cancer 

immunotherapy. In the current work it was hypothesized that melanocyte antigen-

specific CD4+ T cells can control the growth of melanomas as efficiently as 

corresponding CD8+ T cells but differ in the way they recognize antigen and exert 

their effector functions against tumor cells in the tissue microenvironment. It has 

been previously shown by the Tüting lab that a single administration of an 

adenovirus vector expressing the melanocytic antigen gp100 can promote 

effective expansion of adoptively transferred gp100-specific Pmel-1 TCR 

transgenic CD8+ T cells and cause regression of established melanomas in 

syngeneic mice. Here, a similar therapy protocol was established for Trp1-

specific TCR transgenic CD4+ T cells. For this the adenoviral vaccine vector Ad-

GTY expressing both gp100 and Trp1 epitopes was first generated. Ad-GTY 

could expand adoptively transferred Trp1 CD4+ T cells in vivo, albeit less 

efficiently when compared to Pmel-1 CD8+ T cells. Nevertheless, a Trp1 CD4+ T 

cell ACT protocol with Ad-GTY showed significant anti-tumor efficacy and could 

control the growth of HCmel12 melanomas. The recombinant MVA virus vector 

MVA-PMTP that also expressed both the gp100 and Trp1 epitopes was 

generated to evaluate prime-boost vaccine strategies. However, MVA-PMTP was 

only able to re-expand CD8+ T cells but not CD4+ T cells. Moreover, the Ad-MVA 

prime boost vaccination strategy did not significantly increase the therapeutic 

efficacy of the ACT protocols. Following Trp1 CD4+ ACT escaping melanoma 

cells frequently down-regulated melanocytic antigen expression and acquired a 

dedifferentiated phenotype presumably due to therapy-induced inflammation. As 

shown previously with CD8+ T cells, this also represented a major limitation of 

targeting melanocytic antigens with antigen-specific CD4+ T cells.  

Experiments using HCmel12 Trp1 antigen loss variants generated with CRISPR-

Cas9 genome editing techniques revealed that the control of tumor growth by 

Trp1 CD4+ T cells is antigen-specific. Experiments with mixtures of HCmel12 

control and Trp1 knockout cells demonstrated that Trp1 CD4+ cells can exert 

significant bystander killing and that immunoselection for irreversible genetic 
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antigen loss is dominant over reversible phenotypic antigen loss for immune 

escape of melanoma cells. HCmel12 Ciita loss variants were also generated with 

CRISPR-Cas9 genome editing techniques. Unlike unmodified HCmel12 cells 

they fail to upregulate MHC class II and therefore cannot be directly recognized 

by Trp1 CD4+ T cells. Experiments revealed that direct MHC class II restricted 

recognition of melanoma cells by Trp1 CD4+ T cells was not required for tumor 

growth control in vivo. This suggested an important role for indirect stimulation of 

Trp1 CD4+ T cells by APC in the tumor microenvironment. Likely, Trp1 CD4+ T 

cells indirectly control melanoma growth in the tumor microenvironment through 

Th1 associated cytokines such as IFN-γ and TNF-α.  

Future studies will have to address the spatial location of Trp1 CD4+ T cells in 

the tumor microenvironment, their interaction with other immune cells and the 

role of Th1-associated cytokines for their anti-tumor efficacy. Combining T cell 

therapies with signal transduction inhibitors or checkpoint inhibitors to counteract 

mechanisms of therapy resistance and immune escape in mouse models will help 

to delineate strategies for more effective treatment of melanoma patients that 

should be tested in the clinic. 
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