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1 Summary

Most proteins do not exist as monomers. Instead, proteins assemble into 

oligomeric structures, which range from small dimers to intermediately sized 

clusters to large polymers. Oligomerization is driven by protein–protein 

interactions between charged residues, (induced) dipoles, aromatic residues and 

hydrophobic patches. 

Ionic protein–protein interactions, and thus the oligomeric state of a protein, 

can be inf luenced by metal ions. There are several theories that strive to explain 

interactions between metal ions and charged proteins. Continuum electrostatic 

theories assume a decaying electrostatic potential from a charged protein surface 

which attracts oppositely charged ions to the point of charge neutralization, 

while the water solvent is treated as passive medium characterized only by its 

permittivity. More recent concepts, however, recognize the importance of water 

coordination. The hydration enthalpy of metal ions and ionic protein groups is 

envisaged as the driving force for ion pairing. 

Research and theory have so far focussed on single protein species in 

simple aqueous solutions. This work comparatively analyses Ca2+-induced 

oligomerization of the negatively charged SNAP25 protein in solution and in 

the crowded multi-component environment of the plasma membrane. It proves 

ion-induced protein oligomerization to be a fundamental chemico-physical 

principle that is conserved in both environments. The restricted protein 

movement and the manifold interactions with other proteins and lipids in the 

membrane appear to mainly inf luence the number of monomers comprised in an 

oligomer, but not the phenomenon of oligomerization itself. 

Comparison of Ca2+ to other positively charged metal ions indicates that 

ions need to convey a certain charge density and to possess a certain water affinity 

to induce membrane protein clustering. The results suggest a direct interaction 



 2   Summary 

between calcium ions and negatively charged protein residues. It appears that 

the stoichiometry of calcium–carboxylate group interactions determines the 

degree of oligomerization. At low calcium concentrations which induce protein 

clustering, the ions function as bridges between the carboxylate groups, and 

attenuate the negative protein charge and thus repulsive protein–protein 

interactions. At high calcium concentrations, binding of one or more calcium 

ions to a single negatively charged residue is frequently encountered. The calcium 

ions thus no longer function as bridges between several carboxylate groups. In 

addition, the local overcharging entails repulsive forces between proteins which 

again favour protein dispersion. The study provides a conceptual framework for 

the inf luence of ions on electrostatically driven protein–protein interactions and 

protein aggregation with implications for biological and industrial settings. 
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2 Introduction 

2.1 Molecules of Life

Living matter is made up of a few basic components. In essence, there are four 

classes of biological macromolecules – polysaccharides, lipids, proteins and 

nucleic acids – which are immersed in salty water (Table 1)1. 

The structure and function of biomolecules depend on three important 

water properties: its ability to form an elaborate hydrogen bond network (with 

four bonds formed on average per water molecule), to solvate biomolecules, and 

its weak tendency to dissociate into H+ and OH- ions2. Besides the large organic 

molecules, there are a few types of inorganic ions immersed in the cytosol and 

the extracellular f luids, which regulate the cells’ osmotic pressure, i.e. lastly the 

movement of water.

Each of the biological macromolecules fulfils a certain function. Lipids are 

hydrocarbon derivatives which serve as energy stores and as building elements 

of membranes – hydrophobic barriers that allow living organisms to build 

structural and functional compartments. The elementary compartment is the 

cell, the smallest unit of life which can independently reproduce itself. Organisms 

may consist of merely one cell, such as bacteria, or several trillion cells which 

then serve specialized functions, such as in mammals3. 

Polysaccharides also serve as an energy storage system for cells. These 

sugar polymers additionally function as ligands for proteins. 

Nucleic acids, of which there are two basic types, are linear polymers 

composed of nucleotides (nitrogen-containing ring compounds linked to a ribose 

sugar). Deoxyribonucleic acid (DNA) serves as storage for genetic information, 

i.e. the building plans for the organism’s proteins. Ribonucleic acids (RNAs) 

are transcribed from DNA templates, and are crucial for protein synthesis and 

perform regulatory functions, mainly on DNA or other RNAs.
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The largest (weight) fraction1,4 of biologic macromolecules are proteins, polymeric 

molecules composed of amino acids. All amino acids comprise a carboxylic acid 

and an amine group attached to a central carbon atom. Formation of peptide 

bonds (-CO–NH-) between these groups (concomitantly releasing water) links 

amino acids to each other during protein synthesis. Proteins are the class of 

biomolecules which are at the heart of any cellular function. 

Table 1 Molecules of Life

molecule
total number 

per cell
% of total 

weight
number of 

different kinds
average MW

H2O 4×1010 75 1 18

Inorganic Ions (Na+, K+, Mg2+, 
Ca2+, Fe3+, Cl-, PO4

3-, SO4
2-, etc.) 2.5×108 1 20 40

Carbohydrates and precursors 108 3 300 150

Lipids and precursors 4×107 2 200 500

Amino acids and precursors 3×107 0.4 150 120

other small molecules 1.5×107 0.2 200 150

Nucleotides and precursors 1.2×107 0.4 200 300

Proteins 3×106 12 1,000-3,000 40,000

RNA 6×104 5 1,000-2,000 750

DNA 1 1 1 2×109

The table lists the different chemical molecules present in an E. coli cell, and gives their 
approximate total number, percent of cell weight, number of different molecular sub-
species, and average molecular weight (MW). The table is adapted from ref. 1.  

2.2 Proteins

2.2.1 Proteins as “nature’s robots” 

Almost every task in living organisms is carried out by proteins. Proteins located 

in the cell membrane work as transporters and channels which actively or passively 

transfer molecules or ions in- and outside of the cell. They govern movement of 

single cells or of large muscle fibres. Proteins work as enzymes – biological catalysts 
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for chemical reactions – which for example metabolize dietary polysaccharides and 

lipids. Proteins function as receptors for external stimuli of cells, e.g. during visual 

perception and olfaction. The “weapons” of the immune system are composed of 

proteins, which opsonize and destroy microbes. Proteins are also used as a mean of 

cell–cell communication by immune cells and many other cell types.

In short, proteins can be regarded as the main workforce of cells, or 

“nature’s robots”, automatons that perform the functions of the genetic program5. 

Function is of course intimately connected to protein structure. The individual 

properties of a protein, its fold and interaction with other biomolecules, are 

conveyed by the chemical nature of the amino acid side chains; each protein 

being unique in its amino acid composition and sequence. 

Protein properties are typically assayed in a test tube and therefore in a 

diluted form and isolated from other biomolecules. In biological systems however, 

whether in the cytosol, in membranes or extracellular f luids, a protein encounters 

crowded environments – densely populated by lipids, polysaccharides, ions and 

also by other proteins. In this environment, further protein packing is observed. 

In the plasma membrane, an electron microscopy analysis indicated that proteins 

are not randomly scattered, but rather assemble into large supramolecular 

structures, designated as protein islands by the authors6 (see Fig. 1)7. This finding 

indicates that proteins, rather than residing as isolated molecules, interact with 

one another to substantial degrees. 

2.2.2 Protein Oligomerization

2.2.2.1 Protein oligomerization, aggregation and precipitation 

A survey of E. coli proteins suggests that merely ~20 % of the proteins annotated 

in the SWISS-PROT protein sequence databank are monomeric8. The majority of 

proteins, whether soluble or membrane bound, instead assemble into higher-
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order structures which are composed of several individual polypeptide chains. 

In polymer science, a process in which dispersed molecules or particles assemble 

rather than remain isolated is generally referred to as aggregation9,10. 

The term “aggregate” is here applied to proteins, and thus used to define any 

structure which contains more than one polypeptide chain. The aggregate may 

be classified as an oligomer or polymer, depending on the number of its building 

blocks (individual polypeptides). Homo-oligomers are composed of several 

200 nm

b

a

Fig. 1 Membrane proteins are assembled in protein islands. (a) Sketch of a eukaryotic 
cell (adapted from ref. 7) (b) Plasma membrane of a resting T cell imaged with transmission 
electron microscopy. Electron-dense membrane regions appear grey in unprocessed images 
(left) and were pseudocoloured in green (right). Proteins were non-specifically biotinylated 
at SH-groups, and detected with streptavidin-conjugated gold beads (small electron-dense, 
black dots). Any other specific and non-specific protein-labelling procedure invariably 
showed that proteins are located in the electron-dense (green) regions, which were thus 
designated as protein islands (micrographs adapted from ref. 6).
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identical polypeptide chains, while hetero-oligomers contain at least one copy of 

a different polypeptide chain11. Since proteins are diverse in their structure, one 

encounters a variety of interactions and accordingly different types of aggregation 

phenomena. Protein aggregates differ in their number of monomers, variety of 

conformational arrangements, reversibility of their association, and bond type 

between the monomers12. While there is no canonical oligomer classification, 

they are often divided based on their symmetry and shape into globular and 

fibrous oligomers11.

Depending on their size, concentration, hydrophilicity and charge, protein 

aggregates may precipitate from solution13-15. Precipitation or phase separation 

may involve misfolding, such as in amyloid fibrils, but can also occur with 

natively folded proteins e.g. during protein crystallization (which is in fact 

the most widely used technique to elucidate protein structure16). Precipitation 

means that the molecule or aggregate is no longer fully solvated, i.e. enclosed 

by hydrating water molecules, and therefore separates from the water phase13. 

Through centrifugation or mere gravitation the aggregate can be sedimented17. 

The nature of this phase separation can be liquid–solid (e.g. in the case of protein 

crystals), liquid–gel, or liquid–liquid in protein rich and poor phase13. In short, 

aggregation refers to the molecular associative state, while precipitation indicates 

the physical phase separation due to insolubility. Different protein aggregates, 

the functional consequences of aggregation and aggregation mechanisms will be 

explored in the following sections.

2.2.2.2 Implications of protein aggregation in different contexts 

Protein aggregates can be found in every protein environment: in extracellular 

spaces, in the cytosol and in membranes. These aggregation phenomena are 

important in (patho)physiological and industrial contexts. 
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Functional protein aggregates

Prominent examples of extracellular oligomeric proteins are bacterial toxins, such 

as α-hemolysin. Staphylococcus aureus secrets the water-soluble hemolysin 

monomers. These monomers bind to cell membranes, and then self-assemble into 

globular heptamers forming a transmembrane pore18 (see Fig. 2 a). These pores 

entail leakage of ions and low molecular weight molecules, and ultimately cell lysis. 

Thus, membrane-dependent α-hemolysin oligomerization is crucial for its function.

Higher-order protein oligomers, or polymers, are found in the extracellular 

matrix. Collagen, one of the most abundant proteins in animals, is composed of 

a homo- or hetero-trimeric helix, so-called tropocollagen, which assembles into 
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Fig. 2 Different kinds of protein aggregates. (a) Crystal structure of the heptameric 
α-hemolysin (the individual subunits are represented by different colours). The stem 
domain forms the transmembrane channel (figure adapted from ref. 18, PDB-ID: 7AHL). 
(b) Cryoelectron microscopy-derived structure of an actin filament consisting of helically 
arranged actin monomers (depicted in different shades of blue with a central yellow 
square) (adapted from ref. 19). (c) In silico reconstruction of a syntaxin cluster in the 
plasma membrane oligomerized via the proteins' SNARE domains (adapted from ref. 25).
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large collagen fibrils or networks. The resulting insoluble polymer endows tensile 

strength to tissues such as tendons and ligaments. Large intracellular fibrous 

polymers are cytoskeleton components such as actin19 (Fig. 2 b), microtubules and 

intermediate filaments. Dynamic polymerization and de-polymerization of these 

components both maintains cell shape and drives cell movement. When considering 

polymeric protein structures, three major advantages of protein aggregates over 

synthesis of a large single-chain protein become particularly obvious: the economy 

with respect to genetic material, the reduced likelihood of transcription errors in 

short sequences8,20, and the great structural plasticity that follows from individually 

assembling monomers into constructs with diverse sizes and shapes. 

Intracellular higher-order oligomers also include molecular scaffolds such 

as gephyrin lattices which stabilize and organize the neuronal GABA and glycine 

receptors at the postsynaptic membrane21. These receptors and ion channels are 

composed of several subunits and are thus of oligomeric nature themselves. Most 

plasma membrane proteins, and also protein complexes like ion channels or 

receptors22-24, further associate into so-called protein clusters. Syntaxin, a member 

of the SNARE protein family involved in neuronal exocytosis, is known to self-

assemble into oligomers (or clusters) comprising on average 75 individual syntaxin 

molecules (Fig. 2 c). The nature of this association is comparably loose; the clustered 

proteins are in a dynamic equilibrium with “freely diffusing”, non-clustered 

proteins25. Several functional consequences of membrane protein clustering have 

been discussed. On the one hand, it may increase receptor signalling efficiency 

in order to generally accelerate reaction kinetics26 or to a exceed a conceivable 

threshold27. On the other hand, clustering could serve the exact opposite function, 

i.e. storage and biochemical inactivation of e.g. SNARE proteins thus controlling 

the number of reactive (non-clustered) molecules28,29. Finally, oligomerization is 

considered advantageous because the reduction in surface area provides stability 

against denaturation and degradation8,20.
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Protein aggregates in pathophysiology

Several diseases are characterized by extra- or intracellular deposition of 

amyloid fibrils – insoluble filamentous protein aggregates of several nanometres 

in diameter and microns in length11 – which are also called amyloid plaques. 

A prominent example is the aggregation of Aβ and tau proteins in Alzheimer’s 

disease30. Interestingly, not the amyloid plaques but the lower-order aggregates 

like the protofilaments are believed to drive disease pathology. These smaller 

aggregates have a higher surface-to-volume ratio than mature fibrils, and can 

therefore engage in more pathological interactions with cellular components30. 

Protein aggregates in industrial settings

Unwanted aggregation during recombinant protein production can arise from 

freeze-thaw cycles, shaking, drying, and heterologous expression14. Aggregation 

may entail phase separation, and the turbid solution decreases the aesthetic 

appeal and possibly patient compliance31. It may also indicate that the protein 

lost its native structure and on that account shows reduced biological activity31. 

Therefore, the intentional induction of solvated protein nanoclusters via 

crowding agents in pharmaceutical protein formulations can stabilize protein 

conformation in highly concentrated solutions32. 

In the food industry, heat-induced aggregation and gelation of milk whey 

proteins such as β-lactoglobulin and albumins are used for texture control, for 

example in reduced fat yoghurts and ice creams33. 

2.2.2.3 The nature of protein aggregation

Proteins typically assemble into homo-oligomers giving rise to symmetrical 

structures, most frequently with cyclic, dihedral or cubic anatomy, because this 

provides more stability and fine control of assembly 8,20. Aggregates differ in their 
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number of monomers, protein conformation, reversibility of their association, 

and bond type linking the monomers to each other. These differences indicate 

that there are multiple aggregation mechanisms34. 

Thermodynamics of protein–protein interactions

The aggregation process is driven by the chemical properties of the protein 

building blocks, the amino acids. There are twenty canonical amino acids, whose 

side chains can be classified as hydrophobic, aromatic, polar, and negatively 

or positively charged. Accordingly, proteins can engage in hydrophobic 

interactions35, in aromatic-aromatic and cation–π interactions36-41, in van-

der-Waals interactions between permanent or induced dipoles, in hydrogen 

bonding involving a donor hydrogen atom of a polar or charged group and 

an electronegative acceptor atom of a polar or charged group42,43, electrostatic 

repulsion or attraction between charged residues42, and less often covalent bonds 

such as disulphide bridges between cysteine residues44 (see Table 2).

The individual enthalpic contributions of all involved interaction types 

determine the total strength of a protein–protein interaction. In this regard, the 

magnitude of the enthalpic contributions depends on the distance between the 

interaction partners (cf. Table 2), and thus ultimately on shape complementarity 

between proteins or protein domains45. Intramolecular protein–protein 

interactions lead to protein folding into its secondary structure, which comprises 

α-helices and β-sheets mainly stabilized by hydrogen bonds of the protein 

backbone4, and further folding into the protein’s three-dimensional tertiary 

structure which typically encompasses a hydrophobic core4 that is stabilized 

by all the aforementioned forces. Intermolecular protein–protein interactions 

drive protein aggregation. Both intra- and intermolecular protein–protein 

interactions are accompanied by an entropic penalty. In case of protein folding, 

there is a loss of configurational entropy, while protein aggregation entails a loss 
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of translational/rotational entropy, and entropy loss at the interfacial side chains46. 

On the other hand, both processes increase the entropy of solvent molecules 

such as water (or lipids) so that the net entropy of the entire system may actually 

increase42,4,47. In summary, enthalpic and entropic contributions of both protein 

and solvent determine the total free energy of folding and complex formation.

Table 2 Protein–Protein Interactions

type of 
interaction

interacting partners
typical 

potential 
energy [kJ/mol]

distance (r) 
dependence of 

potential energy
ref.

covalent 
bonds

two cysteines forming a disulfide 
bridge 290* none /

bond length ~2 Å 44

ion-ion between charged amino acids 250 1/r 42

hydrogen 
bond (X-H...Y)

X/Y = N/O atoms of charged or 
polar side chains or the backbone 20 none /

bond length ~2 Å 42, 43

ion-dipole between ions and polar molecules 15 1/r2 42

cation-pi aromatic and positively charged 
amino acids 13 ~ 1/r 38, 

39, 41

hydrophobic hydrophobic amino acids and 
hydrophobic protein core 13** 35

aromatic- 
aromatic (π-π) two aromatic residues 6 1/r6 36, 40

dipole-dipole between stationary polar 
molecules 2 1/r3 42

dispersion all types of molecules 2 1/r6 42

dipole-dipole between rotating polar molecules 0.6 1/r6 42

The table lists different types of protein–protein interactions, as well as their typical energy 
and distance dependence. * The exact binding energy of disulfide bridges depends on the 
orientation and also on the presence of reducing agents. ** Hydrophobic interactions, unlike 
all the other interactions types listed here, do not rely on intrinsic attraction between two 
non-polar amino acids. Instead, they are the results of minimizing the number of ordered 
water molecules which cannot bond with the hydrophobic amino acid rests. As a model for 
hydrophobic interaction energies, the average free energy of transferring an apolar amino 
acid from water into cyclohexane (which resembles the hydrophobic protein core) is used.
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Common types of interaction patterns in protein aggregates

Many fibrillar aggregates, including amyloid depositions30 and heat-induced 

protein gels in foods48 are rich in β-sheets running perpendicular to the fibril 

longitudinal axis which are stabilized by hydrophobic and polar interactions30. 

Beta-sheet formation often precedes amyloid formation, but can also occur 

as a secondary process49. Hydrogen bonding leading to an increase in β-sheet 

content is a frequent type of interaction in non-physiological settings. However, 

hydrogen bonds in other fibrous proteins such as collagens are likewise crucial 

for assembly, but are not accompanied by β-sheet formation.

Hydrophobic interactions are found in large aggregates that arise 

after protein denaturation and thus exposure of usually buried hydrophobic 

groups48,50, but also in physiological contexts such as elastin assembly51. In 

addition, coiled-coil oligomers – such as the neuronal SNARE complex which is 

formed of twisted α-helices of syntaxin (Fig. 2 c), SNAP25 and synaptobrevin – 

are mainly stabilized by hydrophobic interactions52. In coiled-coils but also in 

other types of aggregates, polar and electrostatic residues are believed to mediate 

not the strength but the specificity of an interaction52,46. In fact, the net effect of 

electrostatic interactions is actually destabilizing46.

The accounts on frequent interaction types given above are ref lective of a 

study by Chiti53, which found aggregation proceeds faster when proteins are more 

hydrophobic and have a higher propensity to form β-sheets, but slower when 

the net charge of the protein is increased. These parameters (hydrophobicity, 

propensity to form β-sheets, and net charge) can be used to accurately predict 

aggregation-prone protein regions or peptides53,54,55. 
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Interaction dynamics

Aggregates and the underlying protein–protein interactions differ in their 

temporal stability. To account for protein–protein interactions that are transient 

or optional in nature, the term protein quinary structure was coined56. This fifth 

organisational level includes e.g. interactions between ribosomes and initiation, 

elongation and termination factors, or interactions between enzymes and their 

protein substrates56. This level is different from the quaternary structure, which 

refers to an obligatory polypeptide assembly, e.g. in the case of ion channels4. 

Quinary interactions are often overlooked since protein stability and function 

are usually assessed in dilute solutions of a single protein species. In these 

systems, quinary interactions may either not occur, or become apparent in 

the form of  "oligomeric bands" which do often not receive further attention. 

However, in crowded environments such as the cytoplasm, quinary interactions 

may play a crucial role for protein stability and function57. Quinary interactions 

are assumed to rely mainly on charged residues, which can explain why charged 

protein residues or the isoelectric point of proteins in general are evolutionary 

conserved56. 

The concept of quinary and quaternary structure is also helpful for the 

classification of oligomers according to their temporal stability. Aggregation, and 

even subsequent precipitation, may be reversible and monomer functionality can 

be restored58,59. Weakly associating homo-oligomers can be envisaged as a variant 

of a quinary protein structure. In accordance with this view, transient oligomers 

rely on polar interaction surfaces, which is reminiscent of the electrostatically 

driven quinary interactions. Conversely, stable obligatory complexes, which can 

be classified as protein quaternary structure, have intertwined, larger and more 

hydrophobic interfaces60,61.
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2.3 Ion–protein interactions

As outlined above, protein aggregation and quinary interactions rely – amongst 

other forces – on electrostatic attraction and repulsions. It is interesting to note 

that charged amino acids can engage in particularly strong interactions (with 

an interaction energy in the range of 250 kJ/mol42, cf. Table 2). In biological 

systems, electrostatic interactions also involve another, very different class of 

biomolecules, namely inorganic ions. These actually present the most abundant 

charged particles in cells (cf. Table 1).

2.3.1 Ions control fundamental physiological processes 

Most biologically relevant ions belong to the third and fourth period. Prominent 

members include Na+, K+, Cl-, Mg2+, Ca2+, and several transition metal ions (e.g. 

Mn2+, Fe2+/3+, Ni2+, Cu+/2+, Zn2+ Mo2+). Besides defining the osmotic pressure and 

the cell potential62, ions engage in specific, electrostatically driven interactions 

with biological macromolecules. Interactions with the cell’s protein machineries 

trigger fundamental physiological events. 

In the presynaptic nerve terminal, for example, inf lowing calcium ions bind 

to the vesicular protein synaptotagmin and ultimately trigger SNARE protein 

zippering and synaptic vesicle fusion, and thus signal propagation to a second 

neuron or a muscle cell63. The calcium ions are thought to trigger an electrostatic 

switch64: they neutralize the negative charge at synaptotagmin's calcium 

binding pocket, and thus allow for an interaction between synaptotagmin and 

the negatively charged plasma membrane, which is supposed to pull the vesicle 

towards the presynaptic membrane64. 

Calcium also plays a crucial role as a second messenger in cell signalling 

pathways, for example via activation of enzymes such as protein kinase C or 

calmodulin, and in apoptosis, during which it targets multiple proteins65. 
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Finally, ions are important as protein co-factors. Superoxide dismutases for 

example, which are proteins that protect cells from oxidative stress, bind to 

several transition metal ions (copper, zinc, manganese, iron, nickel) which 

actively participate in the catalytic process66. 

2.3.2 Ions influence protein aggregation 

Considering the accounts given above, it seems inevitable that metal ions likewise 

affect the process of protein aggregation. In fact, metal ions are involved in all 

kinds of protein aggregates, ranging from small oligomers to large aggregates 

or precipitates, in aggregates formed by intracellular, membrane or extracellular 

proteins, and in aggregates which occur in physiological, pathological or 

technical settings. Metal ions can promote protein aggregation via three 

mechanisms: protein bridging, reducing protein net charge, and via inducing 

an aggregation-prone conformation67. Conversely, ions may also reduce protein 

aggregation by increasing protein net charge and preventing an aggregation-

prone conformation.

2.3.2.1 Ions and physiological protein aggregates

An example of a small, intracellular protein oligomer whose assembly is driven 

by ions is the E. coli RNA polymerase. One polypeptide subunit of this enzyme 

requires binding of a Zn2+ ion via a zinc-finger motif to secure a conformation 

that allows subunit assembly into a functional enzyme68. There are in fact several 

accounts of protein–protein interactions that rely on zinc-finger domains69. 

Electrostatically driven protein aggregation is observed for several 

negatively charged rod-like biopolymers, including actin filaments, microtubules 
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and the filamentous viruses, in the presence of oppositely charged metal ions 

(such as Co2+, Mn2+, Ca2+ and Mg2+)70. This process is reversible upon addition 

of either co-ions (i.e. like-charged ions) which compete with the proteins for 

counterion binding, or upon addition of monovalent salts which increase the 

ionic strength of the solution and thus the electrostatic screening length.

At the plasma membrane of neuroendocrine cells, calcium ions lead 

to increased clustering of SNARE proteins such as SNAP25, SNAP23 and 

syntaxin29. The extent of calcium-induced clustering correlates with the net 

percentage of negatively charged amino acid residues of the protein, likewise 

arguing for an electrostatic mechanism. Calcium was also described to induce 

aggregation of spectrin and other proteins in erythrocyte membranes71. In case 

of SNARE protein clustering, calcium removal restored the initial (lower) degree 

of clustering. In case of spectrin, the aggregates were irreversible and could 

neither be dissolved via calcium chelation nor by treatment with sodium dodecyl 

sulfate buffer. Calcium appeared to merely trigger spectrin aggregation, but was 

apparently not an integral part of the aggregate structure. For SNARE protein 

clustering, in contrast, calcium proved to be crucial for aggregate stabilization 

and maintenance.

2.3.2.2 Ions and aggregation in pathophysiological and industrial contexts

Metal ions are also comprised in large, extracellular protein aggregates, such as 

amyloidogenic fibrils (Table 3)72-78. Transition metal ions, which are implicated 

in the aggregation of almost all amyloidogenic proteins, typically interact with 

the side chains of histidine and cysteine or the N-terminal amine group67. 



 18   Introduction  

Table 3 Metal ions implicated in the aggregation of amyloidogenic proteins

disease aggregating protein
metals involved in 

aggregation
references

Alzheimer‘s disease
Aβ                   

tau 

Al3+, Cu2+, Fe3+, Zn2+          

Al3+, Fe3+, Ca2+, Mg2+, Hg2+, Zn2+

72

72

Parkinson‘s disease α-synuclein Al3+, Ca2+, Mg2+, Cu2+, Fe3+, Pb2+, 
Hg2+, Zn2+ 72, 163, 164

Spongiform 
encephalopathies Prion Protein Cu2+, Zn2+, Mn2+ 72

Amyotrophic lateral 
sclerosis (ALS)

superoxide dismutase 
(SOD) 1 Ca2+, Cu2+, Zn2+ 73, 74 

Huntington‘s disease Huntingtin Cu2+  72

Cataract crystallins Cu2+, Zn2+ 75

Type II diabetes
amylin

insulin

Cu2+,  Zn2+

Zn2+

76, 77

78

The table lists the most prominent diseases characterized by amyloidogenic protein 
aggregates, and the metal ions that were found to affect protein aggregation. Metals 
highlighted in green appear to have protective effects. 

In some amyloidogenic peptides this promotes aggregation because binding 

of e.g. Zn2+ and Cu2+ favours β-sheet conversion79. In the case of Aβ peptides, 

aggregation is facilitated because Zn2+ and Al3+ lead to surface exposure of 

hydrophobic patches80. 

In laboratory settings, metal ions are deliberately employed to induce protein 

aggregation. Ammonium ions are used to precipitate proteins (for subsequent 

change of buffer type or volume) in laboratory routines81. Ions are likewise 

crucial to initiate protein crystallization75,84. Finally, protein self-assembly is also 
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beginning to be used for the synthesis of novel synthetic materials. In the field of 

bionanomaterials, the assembly process and the functional properties of protein-

based nanomaterials can be controlled via addition of ions85,86. 

2.3.2.3 Concentration-dependent biphasic oligomerization

Perhaps the most intriguing phenomenon is ion-induced biphasic protein 

oligomerization. Addition of counterions to charged proteins initially induces 

protein aggregation and in some cases even phase separation. However, further 

increasing the ion concentration leads to a reversal in the aggregation trend, and 

promotes protein dispersal. Biphasic oligomerization and re-entrant phase 

transitions were described for a variety of (bio)polymers, first and foremost in 

the context of DNA87,88. Only within the last decade the phenomenon has been 

investigated for proteins, which in comparison to DNA have a more complex 

charge pattern and an irregular surface geometry. Albumins such as bovine 

serum albumin (BSA) and ovalbumin were found to experience biphasic (or re-

entrant) phase separation in response to La3+ and Y3+ ions89 (see Fig. 3 a,b). This 

phase behaviour is governed by the balance of long-range repulsions and short-

range attractions. Albumins are negatively charged and therefore repulse each 

other electrostatically. Monte Carlo simulations suggest that addition of Y3+ 

gradually attenuates the negative protein surface charge (see Fig. 3 c). Around 

the point of neutralization, short-range attractive interactions originating from 

hydrophobic interactions and dispersion forces predominate, leading to 

aggregation and finally phase transition. If the Y3+ concentration is further 

increased, the protein surface charge is inverted. The albumin–ion complexes 

now carry a positive net charge (i.e. the opposite net charge than the albumins 

alone). This causes again electrostatic repulsions between the proteins which 

exceed their short-range attractions and therefore impede protein aggregation89. 
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This counter-intuitive phenomenon of BSA charge inversion or overcharging 

with Y3+ was experimentally confirmed with electrophoretic mobility 

measurements90,91. Biphasic BSA aggregation can also be induced with Al3+ and 

Fe3+, but the regime of phase separation is much narrower, probably because of 

metal ion hydrolysis leading to a shift in the pH value of the (unbuffered) 

solution and thus a change in the amino acid side chain protonation state91. 

Similar to BSA, electrophoretic mobility measurements proved charge inversion 

of polyaspartate peptides incubated with La3+ 92. Atomistic MD simulations 

show that multivalent ions associate with the peptide and also suggested charge 
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Fig. 3 Biphasic aggregation of BSA in response to Y3+ ions.(a) Photograph of samples 
with 50 mg/ml BSA incubated with increasing concentrations of YCl3. (b) The extent of 
aggregation (phase separation) was evaluated with optical transmission measurement. 
(c) Monte Carlo simulations suggest that the surface charge of the BSA proteins becomes 
constantly more positive with increasing Y3+ concentration. Note that aggregation occurs 
around the point of surface charge neutralization. This figure is adapted from ref. 89. 
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inversion with Ca2+ and Mg2+ 92. Monovalent ions, on the other hand, are not 

capable of inducing biphasic aggregation, neither in the case of BSA90 nor 

polyaspartate92. Conversely to biphasic aggregation of negatively charged proteins 

with multivalent cations, the positively charged protein lysozyme experiences 

biphasic aggregation in the presence of anions such as I-, Br-, SCN-, and ClO4
- 93. 

There are also accounts of weakening protein–protein interactions at high 

counterion concentrations which are not accompanied by overcharging. The 

filamentous bacteriophage fd (which can be conceived as a rod-shaped, negatively 

charged capsid protein polymer) undergoes biphasic oligomerization into virus 

bundles upon continuous addition of Mg2+ 94. However, both electrophoretic 

mobility measurements as well as Monte Carlo simulations unveiled that the 

Mg2+ ions do not inverse the proteins’ charge, but merely attenuate it. The 

authors speculate that virus bundle re-dispersion at high Mg2+ concentrations is 

rather the result of the increased ionic strength, leading to a greater screening of 

the counterion-induced attractive forces than the electrostatic repulsive forces 

between the virus particles94.

2.4 Concepts for understanding ion–protein interactions 

2.4.1 Continuum electrostatics theories

There are several theories that consider the interface between a charged object 

– such as a protein – and ions. The classical Poisson-Boltzmann theory treats 

ions as point charges which are electrostatically attracted to and associate with a 

macroion, thus screening its charge. The electrical potential and the counterion 

concentration decay exponentially with increasing distance from the interface, 

the slope depending in the macroion’s surface charge density and the medium’s 

electric permittivity95. 

Later theories accommodate for spatial extension of ions and the existence of 

quantum mechanical forces. The DLVO (Derjaguin-Landau-Verwey-Overbeek) 
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theory states that like-charged macroions in solution (e.g. two identical proteins) 

experience a screened long-range electrostatic repulsion, and a short-range van-

der-Waals attraction96–98. The balance of these forces at each distance determines 

whether two particles are separated (at large distances) or aggregate (at shorter 

distances). This balance can be tuned by changing the ionic strength, since the 

Coulomb force becomes increasingly screened at high ionic strength, whereas 

the van-der-Waals attraction is hardly affected98. Particles are thus more likely to 

aggregate if the ionic strength is increased or the repulsive barrier can be overcome 

otherwise, e.g. via activation of thermal motion99. Balancing weakly screened 

electrostatic repulsion and short-range attraction was indeed reported to result in 

equilibrium cluster formation of the positively charged protein lysozyme100,101. 

While these classical theories have been successful in describing the 

relationships between charged particles in solution in many cases, they all rely 

on a similar simplification. The solvent, in biological systems water, is treated as 

a passive continuum with a certain permittivity for the Coulomb force between 

ions and charged proteins. In addition, the theories neglect the discreteness of 

charges both in proteins (picturing them instead as particles with a uniform or 

smeared charge), as well as for ions (thus ignoring ion-ion correlations)102,95. As 

we shall see below, there are several cases for which these classical theories of 

colloid and physical chemistry are therefore not applicable. 

2.4.2 Water ordering and the law of matching water affinities 

As early as in 1888, Hofmeister103 described that ions differ in their capacity to 

precipitate – in this context also referred to as salt out – egg white proteins from 

solution. Since then many cases of ion-mediated protein–protein interactions 

which resemble the so-called Hofmeister or lyotropic series102,104,105 of ions (Fig. 4) 

have been described. Examples include aggregation of pharmaceutical antibody 

preparations106, amyloid formation of the prion protein107, but also ion channel 

permeability108 and enzyme activity109. 



Introduction            23

These observations suggest a common underlying molecular mechanism, which 

is still not completely understood. Hofmeister effects cannot be explained simply 

by the amount of ion charge and thus continuum electrostatic theories. It has 

become evident that the solvent – the water network that is necessary to hydrate 

proteins thus keeping them in solution – cannot be treated as an electrostatic 

continuum, but must be accounted for as individual water molecules which 

specifically interact with the ions. 

It was indeed proposed that long-range electrostatic interactions between charged 

particles are insignificant compared to the effects on interfacial water molecules110. 

To explain protein precipitation and stabilization in the light of solvent 

granularity, i.e. individually interacting water molecules, the concept of 

SO4
2- > HPO4

2- > CH3COO- > Cl- > Br- > NO3
- > I- > ClO4

- > SCN- 

 (CH3)4N+ > Rb+ > K+ > Li+ > Mg2+ > Ca2+ 

salt out /
destabilize

salt in /
stabilize

a

b

Fig. 4 Anionic and cationic Hofmeister series. (a) Ions are ordered according to their 
efficiency to salt proteins out of solution (based on the concentration that is necessary 
to achieve protein precipitation) (adapted from ref. 102). Ions on the left hand side thus 
destabilize proteins in solution, while ions on the right hand side stabilize proteins in 
solution (also referred to as salting in). (b) Depending on protein surface charge and 
polarity, the Hofmeister series can be (partially) inversed. Panel b is adapted from ref. 104.
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chaotropic and kosmotropic ions was put forward. Initially it was assumed that 

kosmotropes induce a long-ranged order in the hydrogen-bonded water network, 

while chaotropes were conceived as water structure breakers. Several well-known 

macroscopic observations such as ion-induced alterations of the water viscosity 

appeared to support this hypothesis. However, modern technologies finally 

proved that ions do not induce a long-range enhancement or breakdown of 

water’s hydrogen bond system111. In fact, the orientation of water molecules is 

only affected in the first hydration layer (Fig. 5). Nonetheless, the strength of 

ion–water interactions appears to be one key parameter for 

understanding ion–protein interactions, but interactions between ions, proteins 

and water molecules are dominated by short-range interfacial effects110. 
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Fig. 5 Hydration of ions and proteins. (a) Anion in aqueous solution. The hydration shell 
of the anion is printed in bold. While the hydrating water molecules also interact with the 
bulk layer, there is no long-range water ordering. (b) Hydrated protein surface in aqueous 
solution. There are three layers of interfacial water near the negatively charged protein 
surface: the solvation layer (1), which is the only highly ordered water layer, the transition 
layer (2), and the bulk layer (3). The circles present kosmotropic ions (K, dark) which 
interact more strongly with water molecules (indicated by the arrow) than chaotropic ions 
(C, white). Panel b is adapted from ref. 105.



Introduction            25

In this regard, an interesting observation that was proposed as a phenomenological 

rule is the so-called law of matching water affinities. Oppositely charged particles 

– e.g. ions or charged ion-like atom groups of protein residues – preferentially 

associate with each other when they have similar water affinities112 (see Fig. 6 a). 

According to this concept, chaotropes are reckoned to weakly bind their hydration 

shell, while kosmotropes are strongly hydrated ions. The terms weak and strong 

refer to a comparison between the strength of ion–water  interactions and water–

water interactions. Water molecules thus interact with chaotropes weaker and 

with kosmotropes stronger than they interact with each other. Hence, oppositely 

charged kosmotropes bind to each other because of electrostatic attraction. 

In contrast, the interaction between two chaotropes is not driven by the ions 

themselves, but rather by the hydrating water molecules which are released upon 

ion pairing. These water molecules then interact with water molecules from the 

bulk solution, which is energetically more favourable than interacting with the 

chaotropic ions. Water affinity is inherently related to ion size, so that small, 

charge dense ions are typically kosmotropes, and large ions of low charge density 

are chaotropes (see Fig. 6 b)112,110.

While the law of matching water affinities readily accounts for a wide 

range of Hofmeister phenomena, such as ion-induced (de)stabilization of enzyme 

dimers113, or the extent of solubility of different salts (e.g. the low solubility of 

CaCO3), it does not explicitly take into account quantum mechanical effects 

such as dispersion interactions. Dispersion interactions, however, drive ionic 

adsorption to uncharged or even like-charged surfaces, and are also involved in 

several Hofmeister phenomena for which the sequence of ions is not predicted 

correctly by the law of matching water affinities102. Lastly, the interplay of 

electrostatic and dispersion forces at surfaces with discretely charged sites 

probably provides a (yet to be established) theoretical framework for the law of 

matching water affinities and will refine the correct prediction of ion sequences 

in protein aggregation and related phenomena102. 
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2.4.3 Explanations for counterion association beyond charge neutralization 

There are different hypotheses regarding the driving force for further counterion 

binding after protein charge neutralization. One explanation is Wigner 

crystal-like ion correlations: a multivalent ion approaching an already neutralized 

macroion (charged protein) surface repels other multivalent ions to a certain 

degree. This is supposed to create a negative correlation hole (or image charge) 
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Fig. 6 Ions with similar water affinities preferentially interact with each other. (a) 
Volcano plot of the relationship between the measured heat of solution upon salt solvation 
(ΔHsol) and the difference in absolute hydration enthalpy of the corresponding gaseous 
anion and cation of each salt (ΔHhyd A- – ΔHhyd C+). Note that dissolution of ion pairs with 
similar water affinities (ΔHhyd A- – ΔHhyd C+ ~ 0) takes up heat (ΔHsol > 0) indicating the 
breaking of strong bonds. These endothermic reactions are observed for salts composed 
of two chaotropic ions or two kosmotropic ions. In contrast, the dissociation of ion 
pairs composed of a kosmotrope and a chaotrope is an exothermic process, because the 
kosmotropic ion now experiences stronger interactions with water molecules than with 
its former chaotropic crystal partner. (b) Interaction strengths between kosmotropes, 
chaotropes and water molecules (depicted as spheres with a point charge in the centre). 
Kosmotropic ions (here Li+ and F-) have comparably small, and chaotropic ions (here Cs+ 
and I-) have comparably large sizes. Water molecules are depicted as dipoles. Ion pairing 
between a kosmotrope and an oppositely charged chaotrope does not occur spontaneously.  
The figure is modified from ref. 112.
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on the protein surface which then attracts the approaching ion114. Theoretical 

consideration show that correlations between counterions may even result in a 

giant charge reversal, i.e. the net charge of the complex (macroion + counterions) 

after counterion association is greater than without ion association (only charged 

macroion)115.

Another hypothesis states that association of additional counterions 

beyond charge neutrality is entropy-driven, because it minimizes the excluded 

volume for the solvent (water) molecules116,117. Continuum model simulations 

(without explicit water molecules) predict that the counterion concentration 

decays exponentially from the polyelectrolyte surface and the polyelectrolyte 

charge is merely attenuated. Explicitly modelling water molecules instead reveals 

oscillating density profiles of both counterions and water molecules at the 

polyelectrolyte surface. This shows that the presence of small water molecules 

pushes ions to the macromolecule surface because of water excluded volume 

effects117.

Finally, dispersion interactions can lead to non-specific ion adsorption 

to neutralized surfaces. The positively charged lysozyme protein experiences 

biphasic ion-induced oligomerization, i.e. clustering at low and dispersion at 

high anion concentrations. At high ion concentrations, highly polarizable anions 

are more effective at inducing oligomer dissolution than anions with a lower 

polarizability93. The authors speculate that the proceeding ion association is 

due to dispersion forces and reduces the surface tension at the protein–water  

interface which in turn inhibits aggregation.

In summary, several theories have been proposed to explain ionic interactions 

between metal ions and proteins and the resulting protein aggregation 

phenomena. So far, however, research on this topic has been mostly focused on 

soluble proteins.
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3 Aims of the study 

This study was set out to investigate the inf luence of metal cations on the 

aggregation behaviour of a negatively charged plasma membrane protein. The 

experimental set-up comprises the SNARE protein SNAP25 as a biological anion 

chain, and calcium ions as a biologically relevant cation species. The study 

specifically addresses the following two points:

3.1 Comparison of ion-induced oligomerization in solution and in the cell 

membrane

The calcium-induced aggregation behaviour of recombinant, soluble SNAP25 

is compared to the behaviour of the endogenous, membrane-anchored protein. 

It is particularly investigated whether the phenomenon of biphasic ion-induced 

aggregation, which has been described in simple (bio)polymer solutions, also 

applies to a cellular multi-component environment. 

3.2 Determination of the physico-chemical properties of the ion required to 

induce membrane protein oligomerization

Hofmeister phenomena have been described for the aggregation propensities of 

a wide variety of soluble proteins. Here, I comparatively studied the effect of 

mono-, di- and trivalent ions on the clustering propensity of SNAP25 anchored to 

the native plasma membrane. The effect strength of the different ions is related to 

the physico-chemical ion properties to shed light on the underlying mechanism 

of protein clustering. The results of these experiments are compared to atomistic 

molecular dynamics simulations of a collaborator to unravel the atomistic details 

of ion–protein interaction patterns. 



Materials and Methods           29

4 Materials and Methods

4.1 Materials

4.1.1 Hardware

4.1.1.1 Microscopes

Table 4 Microscopes and equipment details.

Equipment specifications manufacturer/source

Axio Observer D1  Epifluorescence microscope Zeiss, Jena, Germany

objective Plan-Apochromat 100x/NA 1.4 oil immersion Zeiss 

lamp N XBO 75 (75 Watt Xenon arc lamp) Zeiss

filter sets
 
 
 

UV filter set F11-000
EGFP HC filter set F36-525 
TRITC HC filter set F36-525
Cy5 HC filter set F36-523

all from AHF 
Analysetechnik, Tübingen, 
Germany

detector cooled digital CCD camera “Seniscam QE”, 12 bit 
1376 × 1040 pixels, 6.45 μm × 6.45 μm pixel size PCO, Kelheim, Germany

software CamWare version 3.01 PCO

easy3D stimulated emission depletion (STED) microscope Abberior Instruments, 
Göttingen, Germany

objective UPlanSApo 100x/NA 1.4 oil immersion Olympus, Hamburg, 
Germany

lasers
 
 

pulsed 488 nm excitation laser
pulsed 640 nm excitation laser
pulsed 775 nm STED laser

Abberior Instruments
Abberior Instruments
MPBC, Montreal, Canada

filter sets
 

500–520 nm filter set
650–720 nm filter set

Abberior Instruments
Abberior Instruments

detector single photon counting modules Excelitas, Waltham, MA

software Imspector version 0.10 Abberior Instruments

Confocor 1 fluorescence correlation spectroscopy (FCS) microscope Zeiss

objective C-Apochromat 63x/NA 1.2 water immersion Zeiss

laser argon ion laser Lasos, Jena, Germany

filter sets
 
 

excitation: 515 FS 10-25
dichroic mirror: FT 510
emission: BP515-565

Zeiss
Zeiss
Zeiss

detector single photon counting module PerkinElmer, Waltham, MA

software FCS access version 1.2.1.1 Zeiss
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4.1.1.2 Appliances

Table 5 List of appliances 

equipment / purpose instrument name manufacturer

gel imager Odyssey® CLx Imaging System LI-COR, Lincoln, USA

medium pressure liquid 
chromatography BioLogic DuoFlow BioRad, Hercules, CA, USA

UV-Vis detector for 
chromatography

BioLogic QuadTec, deuterium 
lamp BioRad

microplate reader Infinite® 200 PRO Tecan, Maennedorf, 
Switzerland

dynamic light scattering DynaPro NanoStar Wyatt, Santa Barbara, CA 

MST (label-free) NT.LabelFree Nanotemper, Munich, 
Germany

MST (with dye-coupled proteins) Monolith NT.115 Nanotemper, Munich, 
Germany

Sonicator Sonopuls HD 2070 Bandelin, Berlin, Germany

4.1.1.3 Size exclusion chromatography columns

Table 6 Size exclusion chromatography columns used for dye removal and buffer exchange

name matrix
fractionation 

range
format supplier

HR 10/30 Superdex 75 3–70 kDa high 
performance

GE Healthcare, 
Little Chalfont, UK

illustra NAP-5 Sephadex G-25 1–5 kDa gravity flow GE Healthcare

Zeba desalting proprietary 7 kDa cut-off spin ThermoFisher
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4.1.1.4 Glass and plastic ware

Table 7 List of glass and plastic ware

item specifications manufacturer

Amicon Ultra-15 centrifuge filter 10 kDa cut-off Merck Millipore, 
Darmstadt, Germany

384-well plate flat bottom, non-binding, clear, 
polystyrol

Greiner Bio-One, 
Frickenhausen, Germany

6-well plate for culturing adherent cells, 
polystyrol

Sarstedt, Nürnbrecht, 
Germany

75 cm2 flask for culturing adherent cells, 
polystyrol Sarstedt

multiwell plate sealer EASYseal, transparent, standard 
adhesive foil Greiner Bio-One

cuvettes for DLS 4 µL, cyclic olefin copolymer 
(disposable) Wyatt

chambered coverglass borosilicate Nunc/ThermoFisher, 
Waltham, MA

glass capillaries for MST
NT.115 standard treated 

NT.LabelFree Zero Background 
standard treated

Nanotemper

coverslips for epifluorescence 25 mm in diameter, No. 1 Marienfeld, Lauda-
Königshofen, Germany

coverslips for STED 22x22 mm, No. 1.5 Marienfeld

Neubauer counting chamber improved Marienfeld

freezing container Nalgene "Mr. Frosty" Thermo Scientific, 
Rockford, USA

4.1.2 Chemicals 

Table 8 List of chemicals

chemical distributor

2-mercaptoethanol Sigma, St. Louis, MO
acrylamide/bisacrylamide Carl Roth, Karslruhe, Germany
Al2(SO4)3 Carl Roth
BaCl2 Carl Roth
bromophenol blue Carl Roth
CaCl2 Carl Roth
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chemical distributor

carbenicillin Carl Roth
chloramphenicol Carl Roth
cOmplete (protease inhibitor cocktail) Roche, Basel, Switzerland
Coomassie Brilliant Blue G-250 ThermoScientific , Waltham, MA
cyanine5-NHS (N-succinimidylester) Lumiprobe, Hannover, Germany
DMSO (dimethyl sulfoxide) Carl Roth
DTT (dithiothreitol) Sigma
EDTA (ethylenediaminetetraacetic acid) Carl Roth
EGTA (Ethylene-bis(oxyethylenenitrilo)tetraacetic acid) Carl Roth
ethanol Schmittmann, Düsseldorf, Germany
fast DiO (3,3'-dilinoleyloxacarbocyanine perchlorate) Thermo Fisher Scientific
glycerol Carl Roth
Hepes Carl Roth
IPTG (isopropyl-β-D-thiogalactoside ) Fisher Scientific

kanamycin Carl Roth

KCl Carl Roth
KH2PO4 Carl Roth
LaCl3 Sigma
MgCl2 Carl Roth
Na2HPO4 Carl Roth
NaCl Carl Roth
NaHCO3 Carl Roth
nail polish (transparent) p2 cosmetics, Vienna, Austria
NH4Cl Carl Roth
NP-40 (nonylphenylpolyethylene glycol) Sigma
ortho-phosphoric acid Carl Roth
PFA (paraformaldehyde) Carl Roth
pluronic-F127 Sigma
PMSF (phenylmethylsulfonyl fluoride) Carl Roth
poly-L-lysine (PLL) Sigma
ProLong Gold Antifade Mountant Thermo Fisher Scientific
SDS (sodium dodecyl sulfate) Carl Roth
TAMRA-NHS (5-carboxy-tetramethylrhodamine 
N-succinimidylester) Sigma

TMA-DPH (1-(4-tri-methyl-ammonium-phenyl)-6-phenyl-
1,3,5-hexatriene-p-toluenesulfonate) ThermoFisher

trehalose Carl Roth
Tris-HCl Carl Roth
YCl3 Sigma
ZnCl2 Sigma
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4.1.3 Buffers and solutions

Table 9 Composition of buffers and solutions

buffer/solution composition pH

PBS (phosphate buffered saline)

137 mM NaCl
2.7 mM KCl
10 mM Na2HPO4

1.76 mM KH2PO4

7.4

TBS (Tris buffered saline) 50 mM Tris-HCl
150 mM NaCl 7.4

Hepes/KCl 140 mM KCl
20 mM Hepes-KOH 7.2

Hepes/KCl/EGTA Hepes/KCl + 10 mM EGTA 7.2

cleavage buffer

50 mM Tris-HCl
150 mM NaCl
1 mM EDTA
1 mM DTT

7.4

binding buffer

50 mM Tris-HCl
150 mM NaCl
1 mM EDTA
1x cOmplete 
1 mM PMSF
1 mM DTT

7.4

bicarbonate buffer 100 mM NaHCO3 8.4

4x Laemmli

8 % SDS
10% 2-mercaptoethanol
40% glycerol
0.0008 % bromphenol blue
250 mM Tris-HCl

6.8

Coomassie solution

5 % Al2(SO4)3

10% ethanol
2 % phosphoric acid
0.02 % Coomassie

–

PLL stock solution 2 mg/ml in ddH2O –

metal ion solution CaCl2, SrCl2, BaCl2, MgCl2, NaCl, ZnCl2, YCl3, or LaCl3  
in Hepes/KCl 7.2

The presumably unimportant anion of the background salt was shown to play 

a crucial role in the activity of a restriction enzyme by inducing cavitation in a 

hydrophobic pocket of the enzyme118. In order to exclude hydrophobic or other 

effects originating from different anion background salts, all cations including 

buffer cations were used in the form of chloride salts in the Hepes/KCl buffer 
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and the metal ion solution. The metal ions used in this study are all available as 

chloride salts, but not all can be commercially obtained as acetate or glutamate 

salts. The Hepes/KCl/EGTA buffer used for sheeting cells in this study is therefore 

different from the standard buffer for this procedure119, in that the glutamate and 

acetate anions were replaced by chloride. This was done in in order to keep the 

number of anions during incubation with the metal ion solution down to one 

species (chloride).  

4.1.4 Biological materials

4.1.4.1 Antibodies

Table 10 Primary and secondary antibodies

antigen clone
host

species
fluorophore dilution

catalog 
no.

manufacturer

SNAP25 71.1 mouse  –
1/200 (Epi)
1/100 (STED)

111 011
Synaptic Systems, 
Göttingen, 
Germany

SNAP25 polyclonal rabbit – 1/200 111 002 Synaptic Systems

Syntaxin-1 HPC-1 mouse – 1/200 S0664 Sigma

mouse IgG polyclonal donkey Alexa Fluor 594 1/200 A-21203 ThermoFisher

mouse IgG polyclonal goat Star 635p 1/500 2-0002-
007-5 Abberior

rabbit IgG polyclonal goat Alexa Fluor 488 1/500 A-11034 ThermoFisher

mouse IgG polyclonal goat Alexa Fluor 647 1/500 A-21235 ThermoFisher



Materials and Methods           35

4.1.4.2 Enzymes

Table 11 List of enzymes 

enzyme catalog no. manufacturer

DNAse I M0303 NEB, Ipswich, MA

GoTaq M0480S NEB, Ipswich, MA

lysozyme 8259.1 Carl Roth

trypsin/EDTA for cell culture P10-0231SP PAN Biotech, Aidenbach, Germany

trypsin for partial proteolysis T4799 Sigma

PreScission Protease 27-0843-01 GE Healthcare

4.1.4.3 Plasmids

Table 12 Plasmids used for cloning and SNAP25 expression

plasmid antibiotic resistance source

pEGFP-C1 kanamycin Clontech

pGEX-6P1 ampicillin GE Healthcare

pGEM-T easy ampicillin Promega, Mannheim, Germany

4.1.4.4 Organisms

Table 13 List of organisms

organism source

E. coli XL-10 Gold® Ultracompetent Cells Stratagene, La Jolla, CA

E. coli Rosetta(DE3)pLysS Merck

rat PC12 cell line kind gift from Rolf Heumann, Bochum University
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4.1.4.5 Culture media

Table 14 Culture media and supplements

culture medium composition supplier

LB medium
2 % [w/v] LB powder according to 
Lennox in ddH2O 
in case of plates: + 2 % [w/v] agar-agar

AppliChem, Darmstadt, 
Germany
Carl Roth

PC12 growth 
medium

DMEM with 4.5 g/l glucose and L-glutamine
10% [v/v] horse serum
5% [v/v] fetal calf serum
1% [v/v] penicillin/streptomycin

PAN biotech
Biochrom AG, Berlin, Germany
Biochrom AG
PAN biotech

Table 15 Other biological materials

material catalog no. supplier

Bovine serum albumin (BSA) 8076.4 Carl Roth

Glutathione sepharose beads 17075601 GE Healthcare

FITC-labelled lactadherin BLAC-FITC HaemTech, Essex Junction, VT

4.1.5 Software

Table 16 Software used for data analysis

software version supplier use

ApE 2.0.45 by M.W. Davis (open source) sequence alignment
development of cloning strategies

ImageJ 1.50c W. Rasband, National Institute of 
Health, USA (open source) image analysis

MS Excel 2010 Microsoft Corporation, Redmond, WA calculations and data organization

OriginPro 8.0951 OriginLab Corporation, Northampton, 
MA curve fitting

Sigma Plot 11.0 Systat Software, San Jose, CA plotting data

Appliances listed in Table 5 were operated with the accompanying equipment 

software of the manufacturer. 
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4.2 Methods

If not specified otherwise, experiments were carried out at room temperature (RT). 

4.2.1 Cloning

For recombinant production of soluble SNAP25, its DNA sequence was subcloned 

into a bacterial expression vector as follows. Rat SNAP25b DNA was amplified 

from a previously generated pEGFP-C1-SNAP25 construct120. This amplification 

was done via polymerase chain reaction (PCR) using primers which contained 

restriction sites for BamHI (forward primer) and EcoRI (reverse primer) at their 

5’ ends. Subsequently, an adenine was added to the PCR product using GoTaq 

polymerase, and it was ligated into the pGEM-T easy vector. Using the inserted 

BamHI and EcoRI restriction sites, the sequence was then subcloned into the 

bacterial expression vector pGEX-6P1. SNAP25 is thus N-terminally fused to 

a glutathione S-transferase (GST) tag, under the control of an IPTG-sensitive 

promotor. Plasmids were transformed into E. coli XL-10 Gold for construct 

amplification. Bacteria were grown in LB medium containing either 50 µg/ml 

carbenicillin (which is a less toxic and more stable analogue of ampicillin) or 

50 µg/ml kanamycin, depending on the plasmid antibiotic resistance. Successful 

cloning was verified by sequencing and comparison to the rat SNAP25b 

sequence (AB003992). 

4.2.2 SNAP25 purification

The GST-SNAP25 construct was transformed into E. coli Rosetta(DE3)pLysS. This 

strain is optimized for eukaryotic protein expression since it contains an extra 

plasmid which encodes rare codon tRNAs (and a chloramphenicol resistance for 

selection). A small volume of LB medium containing 50 µg/ml carbenicillin and 

34 µg/ml chloramphenicol was inoculated overnight. This pre-culture was used 
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to inoculate several litres of LB medium not containing antibiotics (to maximize 

protein production). Bacteria were grown until they reached the exponential 

growth phase, and then protein expression was induced with 1 mM IPTG at 18 °C 

overnight. Bacteria were then harvested by centrifugation, washed once with 

PBS, and then frozen at -80 °C. The pellet was thawed in a water bath at 37 °C, 

and carefully resuspended in ice-cold binding buffer additionally containing 

100 μg/ml lysozyme and 2 units/ml DNAse I. The bacteria were mildly sonicated 

and then centrifuged at 4 °C. The supernatant was incubated with glutathione 

sepharose beads pre-equilibrated with binding buffer rolling in a gravity f low 

column overnight at 4 °C.

The column was washed several times with ice-cold cleavage buffer, and the 

GST tag was cleaved with PreScission protease (incubated rolling slowly for 5 h 

at 4 °C). The purified non-tagged protein was then eluted from the column. The 

protein was concentrated and the buffer was exchanged to TBS containing 1 mM 

DTT using Amicon centrifuge filters. The protein concentration was determined 

photometrically, and adjusted to 400–600 µM. The sample was supplemented 

with 10 % [v/v] glycerol, aliquoted, snap-frozen in liquid nitrogen and stored at 

-80 °C. Samples from all steps of the purification procedure were analysed with 

sodium dodecyl sulfate polyacrylamid gel electrophoresis (SDS-PAGE).

4.2.3 SDS-PAGE

Protein samples were mixed with Laemmli buffer, boiled for 10 min at 95 °C, and 

loaded onto SDS-PA gels. The separation gel contained 15 % acrylamide/0.32 % 

bisacrylamide and the stacking gel 4 % acrylamide/0.11 % bisacrylamide. Gels 

were run for 1.5 h at 100 V and stained with Coomassie solution. The f luorescence 

was recorded with an Odyssey Clx imaging system at 700 nm.
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4.2.4 SNAP25 labelling 

SNAP25 was dialyzed against bicarbonate buffer, and then incubated with the 

amine-reactive cyanine5- or TAMRA-NHS esters for 2 h at RT. The reaction was 

stopped by addition of TBS (neutralizing the pH), and non-bound dye was removed 

via gel filtration in a TBS-equilibrated column. In case of cyanine5, a gravity flow 

Sephadex G-25 column was used, the separation was monitored by eye and the 

labelled protein was collected manually. Non-bound TAMRA was removed with 

a Superdex column coupled to a medium pressure liquid chromatography system. 

Elution of the dye and labelled protein was monitored with the attached UV-Vis 

detector and fractions containing SNAP25-TAMRA were automatically collected 

with a fractionator. Fractions were pooled, and stored at a concentration of 10–25 

µM in TBS containing 10 % [v/v] glycerol at -80 °C.

4.2.5 Partial proteolysis

SNAP25 at a concentration of 200 µM was incubated in TBS containing 1 mM 

DTT and 250 mg/ml trehalose with 0, 1, 10, 100 or 1000 mM calcium, and 

partially digested with varying concentrations of trypsin at 37 °C. The digest 

was monitored by taking a sample from each reaction vessel after 5, 10, 15, 20, 

and 30 min, and comparing it to a sample before addition of trypsin (-1 min). 

The samples were mixed with PMSF (1 mM final concentration) to inhibit the 

protease, and then calcium ions were removed using desalting spin columns to 

avoid precipitation of calcium dodecyl sulfate during subsequent mixing with 

Laemmli buffer. The products were analysed via SDS-PAGE.

4.2.6 Optical density (OD) measurements

SNAP25 at a concentration of 70 µM was incubated in TBS with calcium 

concentrations between 0 and 1000 mM in a 384-well plate. The plate was 

sealed with a transparent plate sealer to avoid evaporation. The OD for 595 nm 
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light was measured every 5 minutes at a 180° angle with a Tecan microplate 

reader. One min before each measurement, the plate was brief ly shaken to 

avoid sedimentation of potentially forming precipitates. All measurements were 

performed at least as duplicates, and the OD was corrected for control solutions 

which did not contain SNAP25, but the respective calcium concentration. To 

check for potential degradation, the solutions were recovered from the microtiter 

plate, the calcium ions were removed via a short gel filtration and subjected to 

SDS-PAGE as described above.

4.2.7 Dynamic light scattering (DLS)

SNAP25 was incubated for 8–10 minutes with calcium in TBS in the cuvette 

before starting the measurements at 37 °C. Scattered light was detected at a 90° 

angle; laser wavelength was 663 nm, and laser intensity was auto-attenuated by 

the software to keep the intensity of the scattered light within the linear detection 

limit. All solutions were sterile-filtered and all plastic ware was rinsed three times 

with ddH2O to avoid dust particles in the measurement. Data were recorded and 

analysed using Wyatt’s Dynamics software (version 7.1). The autocorrelation 

curves were fitted using the DYNALS algorithm. According to Wyatt, DYNALS 

is more suitable than the standard CONTIN algorithm to determine semi-

quantitative distributions for broadly (i.e. over several orders of magnitude) 

polydisperse samples. This was verified for the measurements presented here by 

comparing the fit quality of both algorithms. The autocorrelation curves were 

used to calculate the mass-weighted particle size distributions. 

4.2.8 Fluorescence correlation spectroscopy (FCS)

TAMRA-labelled SNAP25 at a concentration of 500 nM in TBS was incubated 

with 0–1000 mM calcium for 10 min at RT in a chambered coverglass before 

imaging each sample with a ConfoCor 1 microscope. SNAP25-TAMRA was 
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excited with an argon ion laser. Ten 60 s f luorescence intensity f luctuation 

time courses were recorded and the signal was time correlated with the built-in 

hardware correlator to generate autocorrelation curves. 

4.2.9 Microscale thermophoresis (MST)

MST measurements were performed in TBS with two-fold serial dilutions of 

calcium or magnesium chloride at fixed protein concentrations. The Nanotemper 

Analysis software (version 1.5.41) was used for data acquisition and analysis. 

Recordings involved a 5 s f luorescent baseline scan, followed by 30 s of infrared 

(IR) laser illumination, and 5 s of recording after turning off the IR laser. The 

normalized protein f luorescence (Fnorm) was calculated by normalizing the 

f luorescence time trace to the initial f luorescence (before turning on the IR 

laser), and expressing the f luorescence after thermophoresis and temperature 

jump (during the last second before turning off the IR laser) in per mille.

Experiments with cyanine5-labelled SNAP25 were conducted with 

the Monolith NT.115 instrument. Cyanine5-labelled SNAP25 was used at a 

concentration of 500 nM, and 750 nM unlabelled SNAP25 was added to increase 

the amount of available interaction partners. Control measurements involved no 

protein, but only 500 nM cyanine5 dye. The TBS buffer contained 0.05 % NP-40 to 

minimize sticking to the standard glass capillaries used for measurements. The IR 

laser power was set to 10 %, the power of the LED used for exciting the cyanine5 

fluorescence was adjusted to the sample brightness. Brightness varied considerably 

between runs, probably because cyanine5 is very sticky and adsorbs to the reaction 

vessel of the protein stock solution. Therefore, the lowest Fnorm value was set to zero, 

and the highest to 100 % in each run, before averaging the runs. 

Label-free MST was performed with 10 µM unlabelled SNAP25 in 

the NT.LabelFree instrument using Zero Background capillaries. Control 
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measurements contained only calcium and buffer (TBS supplemented with 

0.1 % Pluronic). Tryptophan f luorescence was excited using 30 % LED power, 

and thermophoresis was induced with 40 % IR laser power. 

 

4.2.10 Cell culture

All cell culture work was carried out under a sterile hood. Cells were maintained 

at 37 °C / 5 % CO2 in 75 cm2 f lasks or six-well plates. 

4.2.10.1 Cleaning and coating of coverslips

For cleaning, coverslips were incubated for 1 h with 1 M HCl, rinsed with ddH2O, 

incubated for 1 h with 1 M NaOH, rinsed again with ddH2O, and then incubated 

overnight in 100 % ethanol. The ethanol was discarded, and the glassware was 

sterilized in the oven at 180 °C. 

A PLL stock solution was diluted to a concentration of 0.1 mg/ml with 

ddH2O. Coverslips were placed into six-well cell culture dishes, and incubated 

with 500 µl PLL each for 30 min. The liquid was then removed, coverslips were 

dried for at least one hour, and sterilized by a 20 min exposure to UV light. 

Coated coverslips were stored at 4 °C. 

4.2.10.2 Passaging and seeding of cells

Cells were detached from their culturing f lasks by a brief wash with pre-warmed 

PBS, followed by a 5 min incubation with trypsin/EDTA at 37 °C. Enzymatic 

activity was stopped by adding pre-warmed growth medium, and cells were 

centrifuged. For passaging, cells were resuspended in a small volume of growth 

medium and part of the cell suspension was transferred into a new f lask. 

For seeding, cells were resuspended in PBS, and counted in a Neubauer chamber. 

An appropriate number of cells was pelleted and resuspended in growth medium 
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to seed 6×105 cells per coverslip. Cells were left to attach and grow for 24 h before 

use in experiments. 

4.2.10.3 Freezing and thawing of cells

Cells were detached and resuspended at a concentration of 107 cells/ml in growth 

medium lacking penicillin/streptomycin but supplemented with 10 % [v/v] 

DMSO. The cell suspension was transferred to cryovials. Vials were placed in a 

freezing container containing isopropanol, and frozen at -80 °C. After 24 h, vials 

were transferred to nitrogen vapour phase for long-term storage. 

4.2.10.4 Membrane sheet preparation and incubation with ions 

Cells were brief ly washed with PBS, and placed into a petri dish filled with 

ice-cold Hepes/KCl/EGTA. The coverslip with the cells facing up was placed 

at a distance of 5 mm from the sonicator tip, and the apical membrane was 

removed with a 0.1 s ultrasound pulse (see also Fig. 7). This leaves behind the 

native basal membrane with the inner leaf let (to which SNAP25 is attached) now 

being accessible for treatment and staining. This two-dimensional membrane 

sheet preparation is also ideal for epif luorescence microscopy, since there is no 

out-of-focus light in the z-plane. 

After sheeting, the coverslips were washed once in Hepes/KCl, and then 

incubated with 100 µl of a metal ion solution, face-down on parafilm for 10 min 

at 37 °C. Afterwards, membrane proteins were fixed for 45 min in 4 % PFA.

4.2.10.5 Staining of membrane sheets

The fixative was quenched with NH4Cl (50 mM in PBS) for 15 min, and coverslips 

were rinsed with PBS three times for 5 min. Non-specific binding sites were blocked 

with BSA (3 % [w/v] in PBS) for 1 h. Sheets were then incubated with the primary
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glass coverslip glass coverslip

100 ms ultrasound pulse

10 µm

a

b

coverslip with sheets and cells coverslip with sheets only

whole cell basal plasma membrane sheet

4 µm

30’ wash with hypoosmolar buffer

Fig. 7 Preparation of plasma membrane sheets. (a) A 100 ms ultrasound pulse is applied 
to cells adhered on glass coverslips (left). This shearing force removes the apical cell 
membrane and cytosol, while the intact basal plasma membrane is left behind with the 
inner membrane leaflet exposed to the buffer solution (right). The epifluorescence images 
illustrate the z-resolution of the plasma membranes (stained with TMA-DPH) before (left) 
and after sheeting (right). (b) The procedure described above generates plasma membrane 
sheets predominately in close proximity to the ultrasonic device, while more distant cells 
remain intact (left). If a pure membrane sheet preparation is desired, a subsequent 30 min 
washing step in hypoosmolar buffer can be performed (right). The epifluorescence images 
display TMA-DPH stained HeLa plasma membrane sheets before and after the washing 
step.
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antibody(ies) in blocking solution overnight at 4 °C in a humid chamber. The 

next day, coverslips were rinsed with PBS, and incubated with the secondary 

antibody(ies) for 1 h at RT in a humid chamber. Coverslips were rinsed again 

with PBS. For SNAP25 single stainings, clone 71.1 was used in combination 

with an Alexa 594-coupled secondary antibody for epif luorescence, and a 

Star 635p-coupled secondary antibody for STED microscopy. In case of double 

stainings with syntaxin which was visualized with an Alexa 647-coupled 

secondary, the polyclonal SNAP25 antibody was used in combination with an 

Alexa 488-coupled secondary antibody (cf. Table 10 for details on antibody 

specifications and dilutions). Phosphatidylserine was stained with lactadherin-

FITC (diluted 1/20 in PBS) for 15 min at RT. For epif luorescence microscopy, the 

membrane was counterstained with TMA-DPH (diluted 1/10 from a saturated  

solution in PBS) and coverslips were immediately used for imaging. For STED 

microscopy, the membrane was counterstained with fast DiO (0.5 µg/ml in PBS) 

for 10 min, followed by a PBS rinse. For mounting, excess liquid was blotted onto 

a paper towel, and a 20 µl drop of mounting medium was added to the coverslip, 

which was then mounted onto a cover slide. Samples were air-dried overnight, 

and then sealed with nail polish. 

4.2.11 Microscopy

4.2.11.1 Epifluorescence microscopy

Coverslips were placed in a microscopy chamber filled with PBS containing 

10 % TMA-DPH solution, and imaged first in the TMA-DPH channel to ensure 

blind selection of intact membranes. Subsequently, a picture was taken in the 

immunostaining channel(s). FITC and Alexa 488 f luorescence were imaged with 

the EGFP filter set, Alexa 594 f luorescence was imaged with the TRITC filter 

set, and Alexa 647 f luorescence was imaged with the Cy5 filter set. The exposure 

time was kept constant for each staining throughout all experiments.
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4.2.11.2 STED microscopy

Membrane sheets were again selected blindly, based on membrane integrity. The 

fast DiO membrane stain was excited with a pulsed 488 nm laser set to 20 % and 

detected with a 500–520 nm filter. SNAP25 immunofluorescence was excited 

using a 640 nm laser set to 30 %, depleted with a 775 nm STED laser set to 

800 mW, and recorded with 1.25 ns gate through a 650–720 nm filter. Images 

were acquired with a pixel size of 20 nm × 20 nm, and 20 µs dwell time.

4.2.12 Image analysis

All analyses were performed in regions of interest (ROIs) within the images. 

ROIs were placed in the membrane channel to ensure blind selection of intact 

membrane stretches. For the quantification of f luorescence in epif luorescence 

images, each sheet ROI was accompanied by a background ROI placed next to the 

sheet. The ROI sets were subsequently transferred to the immunofluorescence 

channel(s). ROI size was 50 px × 50 px for epif luorescence, and 150 px × 150 px 

for STED images. 

For the analyses described in the following subsections, the data for all 

sheets per condition and day were averaged (corresponding to n = 1). These 

averaged values were then used to calculate the mean value and the s.e.m. using 

the averaged data of other days.

 

4.2.12.1 Average fluorescence intensity

The average f luorescence intensity of a sheet was calculated by subtracting the 

average f luorescence intensity of the background ROI pixels from the average 

f luorescence intensity of the sheet ROI pixels. 
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4.2.12.2 Relative standard deviation (rel. SD)

The rel. SD of the f luorescence intensity of a sheet was calculated by dividing the 

SD of the sheet ROI’s grey values by its background corrected mean f luorescence 

intensity (cf. 4.2.12.1)

4.2.12.3 Segmentation of the immunofluorescence into uniform and punctuate 

signal areas

This segmentation seeks to differentiate between clustered and non-clustered 

proteins. ROIs were segmented using the following algorithm (kindly provided by 

Dr. Jan-Gero Schloetel). First, a Gaussian blur filter was applied. Then, punctuate 

areas were defined according to a variable local threshold: The threshold was 

exceeded if the central pixel intensity was higher than the sum of the average 

intensity of the surrounding 5 px × 5 px area + 4 % of the average ROI intensity. 

A mask of the punctuate areas was created, and enlarged by one pixel to include 

signal f lanks. The mask was then transferred to the original, non-processed 

image. Immunofluorescence within the mask was designated as punctuate signal 

pool, while f luorescence outside of the mask was designated as uniform signal 

pool. The average f luorescence intensity was then measured separately in each of 

these two segments.

The integrated intensity, i.e. the amount of f luorescence, originating from 

uniform signal pool was calculated by multiplying the total ROI area with the 

average uniform f luorescence intensity.

integrated uniform signal = total area × average uniform signal intensity 
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The integrated intensity originating from the punctuate signal pool was 

calculated by multiplying the punctuate signal area by the difference between the 

average punctuate intensity and the average uniform intensity. 

Integrated punctuate signal 

= punctuate area × (average punctuate intensity – average uniform intensity)

4.2.12.4 Cluster diameter

The cluster diameter was analysed in STED images by shifting a ROI pixel-wise 

to the right, and calculating the Pearson correlation coefficient (PCC) between 

the original image and each shifted image. The thus generated autocorrelation 

curves were then averaged for all ROIs from a certain condition and day. Curves 

were fitted using a polynomial function. The function was used to calculate the 

distance at which the PCC dropped to 50 % of its original value. This distance 

corresponds to the average radius of objects in the image.

4.2.12.5 Number of clusters per area

Clusters were identified in STED images using ImageJ’s “find maxima” tool with 

a similar noise level for all ROIs. The number of thus identified clusters was then 

expressed per area (µm2).

4.2.12.6 Colocalization

The images of the two immunostaining channels were aligned. Then, the 

degree of colocalization was determined based on a pixel-wise PCC between the 

f luorescent intensities in the aligned images. 
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5 Results

5.1 SNAP25 oligomerization in solution 

The first aim of this study is the comparison of ion-induced protein oligomerization 

between soluble and membrane-bound SNAP25. Oligomerization was first 

evaluated in solution, to determine whether SNAP25 behaves similarly to other 

charged proteins (like BSA and lysozyme) in response to oppositely charged 

ions. Here, primarily calcium ions were used, because these are both highly 

charged and biologically relevant. Based on the considerations on aggregation 

mechanisms and ion–protein interactions discussed in the introduction, it 

is hypothesized that calcium ions inf luence SNAP25 clustering through an 

electrostatic mechanism, i.e. through interactions with its negatively charged 

amino acid residues. A previous study on SNAP25 indeed already pointed in this 

direction29. To exclude that protein charge is not only modulated directly by ion 

binding, but also indirectly by metal ion hydrolysis and a subsequent change in 

pH91, all experiments were performed in buffered solutions at physiological pH. 

5.1.1 SNAP25 expression and purification

Analysing oligomerization of soluble SNAP25 required a pure protein 

preparation, preferably without a tag that might interfere with oligomerization. 

To this end, the sequence of rat SNAP25b was subcloned into the bacterial 

expression vector pGEX-6P1. SNAP25 is fused with its N terminus to a GST 

tag which contains a cleavage site for the PreScission protease. The vector was 

transformed into E. coli and SNAP25-GST was expressed overnight at 18°C.
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Fig. 8 Purification and labelling of recombinant SNAP25. (a) Structure of the expressed 
protein which consists of the N-terminal GST-tag with a C-terminal PreScission cleavage 
site, followed by the SNAP25 protein comprising two SNARE motifs connected by a linker. 
(b) Coomassie stained SDS-PA gel loaded with samples from each step of the SNAP25 
purification process: SNAP25-GST (~50 kDa) was expressed and purified from E. coli. 
Bacterial pellets were taken up in lysis buffer, sonicated, and insoluble components were 
removed by centrifugation. The supernatant was bound to a glutathione column, and after 
several washing steps the GST-tag was cut off using the PreScission protease which then 
allows for the elution of untagged SNAP25 (~25 kDa). (c) In the cell, SNAP25 is attached 
to the intracellular plasma membrane leaflet at its linker region via palmitoyl anchors. Note 
that recombinant expression of SNAP25 in E. coli leads to a non-palmitoylated protein. 
(d) Elution profile of TAMRA-labelled SNAP25. Recombinant SNAP25 was labelled 
with TAMRA and then subjected to gel filtration to remove non-bound dye from the 
labelled protein. Protein and dye were monitored via their absorbance at 280 nm (which is 
dominated by the dye absorbance). The blue shaded area depicts the elution fractions that 
were collected and pooled for further experiments. 
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Bacteria were harvested and lysed, and the protein supernatant was bound to a 

glutathione sepharose column. Non-binding protein was removed via several 

washing steps. The GST tag was cleaved using the PreScission protease, which 

released the non-tagged, fairly pure SNAP25 protein from the column (see 

Fig. 8 a, b). While in mammalian cells SNAP25 is palmitoylated and thus attached 

to the inner plasma membrane (Fig. 8 c), expression in E. coli yields a soluble, non-

palmitoylated protein because this host lacks the necessary palmitoyl transferases. 

Several methods were tested to find a suitable approach to probe SNAP25 

oligomerization in solution, in some cases requiring  labelling with f luorophores  

such as TAMRA, Alexa 532, or cyanine5. To this end, the NHS-ester-activated 

f luorophores were coupled to primary amine groups of the protein yielding stable 

amide bonds. Non-bound f luorophores were removed from the labelled protein 

preparation via gel filtration (see Fig. 8 d). 

5.1.2 Analysing SNAP25 oligomerization with partial proteolysis

In a first attempt to analyse ion-induced oligomerization of SNAP25, the protein 

was partially digested with low concentrations of protease in the presence of 

variable calcium concentrations, and its resistance to digestion was evaluated with 

SDS-PAGE. Partial Proteolysis is a standard biochemical method for determining 

the structural accessibility of a protein: Proteases preferentially cut those parts 

which are most exposed to the solvent (and thus the enzyme). Hence, oligomerized 

and tightly packed SNAP25 should be less efficiently digested than single protein 

strands. Here, trypsin was chosen as a protease since SNAP25 has many (29) 

trypsin cleavage sites distributed throughout its entire sequence, and trypsin is 

active at physiological pH. (Major changes in the pH would affect the protonation 

state of the protein residues and thus protein charge.) The digestion is stopped after 

various time points, and the products are separated on an SDS-PA gel.
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While partial proteolysis is usually regarded as a simple and straightforward 

method, several difficulties had to be circumnavigated in this case. First, the 

activity of trypsin (and of many other proteases) varies with ion concentration. 

The catalytic activity of trypsin increases with calcium concentration and 

reaches a plateau at 1 mM calcium121. Therefore, SNAP25 samples incubated 

with concentrations lower than 1 mM calcium were excluded from the analysis. 

Second, the protein concentration needs to be sufficiently high to detect a band 

with Coomassie staining, which is why 200 µM SNAP25 were used in this assay. 

However, it was observed that SNAP25 at high concentrations precipitates 

with calcium ions. To prevent precipitation, 250 mg/ml trehalose was added 

to the solution as a stabilizing agent. Trehalose creates a depletion attraction 

between proteins, which stabilizes protein conformation32. Addition of trehalose 

successfully prevented precipitation, but dramatically increased solution viscosity. 

Third, calcium ions form insoluble calcium dodecyl sulfate upon mixing with 

Laemmli buffer. For this reason, the proteolysis was first blocked with PMSF, 

and calcium ions were subsequently removed via gel filtration of the samples. 

Only afterwards samples were mixed with Laemmli buffer and subjected to SDS-

PAGE. These many experimental steps complicate loading equal amounts of 

protein to the SDS-PA gel.

Several partial proteolysis experiments were carried out, with varying 

trypsin-to-SNAP25 ratios (1/5,000 – 1/25,000). The sample incubated with the 

lowest calcium concentration was generally most efficiently digested, arguing for 

the lowest degree of oligomerization (see also Fig. 9, right). However, there was no 

clear trend in SNAP25 digestion efficiency at increasing calcium concentrations. 

In the experiment shown in Fig. 9 (right) the extent of the proteolysis was 

comparable at higher calcium concentrations. In other experiments, calcium 

concentrations between 10 and 100 mM seemed to have the most protective 

effect (arguing for the highest degree of oligomerization). 
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Fig. 9 Partial proteolysis is not suitable for detecting changes in the oligomeric state 
of SNAP25 because of the high assay variability. The figure shows the SDS-PA gels (a) 
and corresponding analyses (b) of one experiment without (left) and with trypsin (right) 
out of a series of partial proteolysis experiments. (a) 200 µM SNAP25 were incubated with 
the indicated calcium concentrations and partially digested with 0.01 µM trypsin (right) 
or not incubated with proteases for control purposes (left). The digestion was blocked 
with PMSF before the addition of protease (0 min) or after 5, 10, 15, 20 or 30 min after 
protease addition. (b) The efficacy of the proteolysis was analysed by quantifying the 
amount of remaining full-length SNAP25 at each time point after digestion compared to 
the initial amount of full-length SNAP25 (0 min time point). The quantification of the 0 
mM calcium sample is not shown because trypsin activity is reduced in the absence of 
calcium. The differences in digestion efficiencies observed in the experiment shown on the 
right could not be reproduced in other experiments. A considerable degree of variability 
is also observed in the control experiment, which did not contain trypsin (left). Note the 
fluctuation in the recorded amount of SNAP25 fluorescence within the samples over time, 
and the loss of protein after 30 min even without proteolytic digest in all the samples. 
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A control experiment which was performed in the absence of trypsin (Fig. 9, left) 

underlines the great variability in this assay: there is an approx. 20 % f luctuation 

in the recorded amount of SNAP25 f luorescence within the samples over time, 

and about 25 % of the protein is lost after 30 minutes, regardless of the calcium 

concentration. It appears that the many steps that are involved in the experimental 

set-up (see above and cf. Methods for details) produce a high experimental 

variability which in turn masks the (comparably subtle) ion-induced differences 

in oligomerization. 

While detailed information on the calcium dependence of protein 

accessibility could thus not be obtained, the experiments point to an increase in 

oligomerization induced with 10–100 mM calcium. 

5.1.3 Optical density (OD) measurements

In a next step, oligomerization of SNAP25 was analysed in optical density 

measurements. The optical density (or turbidity) of a solution depends on the capacity 

of particles to scatter and absorb light, which is influenced by the presence of non-

dissolved (or precipitated) particles, particle concentration, and particle size12. The 

optical density presents a somewhat indirect or crude readout for oligomerization 

since it is dominated by precipitates which form as a consequence of preceding 

oligomerization. SNAP25 was incubated with increasing amounts of calcium ions 

in a 384-well plate at 37°C, and the OD of the solution was monitored for several 

hours (Fig. 10 a-c). The multi-well plate was shaken for a few seconds one minute 

before each measurement to resuspend possibly unevenly sedimented precipitates. 

(Sedimentation was not directly observed between the measurements or after 

completion of the experiment, but it may have become obvious after a centrifugation 

step). An increased turbidity indicating multimerization is visible in all conditions. 

In the absence of calcium, this is probably the result of spontaneous protein 

precipitation. Initially, the OD increases with increasing calcium concentration..
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Fig. 10 Optical density measurements 
suggest biphasic oligomerization of 
soluble SNAP25 in response to calcium 
ions. SNAP25 (70 μM) was incubated 
with the indicated Ca2+ concentrations 
in TBS in a multi-well plate at 37 °C for 
several hours. The optical density of 
the solution at a 180° angle with light of 
595 nm wavelength was determined every 
5 min after briefly shaking the plate. The 
measurements were blank corrected for 
the OD of a buffer solution containing 
the respective Ca2+ concentration (but no 
protein). (a) At 1000 and 500 mM Ca2+, the 
initial precipitation phase is apparently 
reversible, while protein precipitation at 
100 mM Ca2+ increases over time (mean ± 
s.d., n = 4–5 technical replicates prepared 
in parallel). (b) In other experiments, the 
same trend with a somewhat different 
kinetic pattern during the first few hours 
was observed (n = 3 technical replicates). 
A similar behaviour was also observed in 
a third set of measurements (not shown). 
Because of these kinetic differences 
the experiments were not averaged but 
are shown individually. (c) SDS-PAGE 
of SNAP25 samples recovered after 
the experiment shown in b to analyse 
potential protein degradation during the 
long-term incubation. Samples were run 
on two SDS-PA gels (separated by the 
dashed line) and stained with Coomassie. 
There are no degradation products visible 
in any of the samples. Panel a of this figure 
was previously published in ref. 122. 

After the first approx. two hours, however, the degree of turbidity declines again at 

high calcium concentrations (500 and 1000 mM), which argues for a reduction in 

multimer size or re-dissolution of precipitates. Conversely, the turbidity at 100 mM 

calcium increases further, indicating on-going oligomerization, while at lower 

calcium concentrations oligomerization apparently stagnates. 



 56   Results 

In summary, this indirect read-out for oligomerization argues for a biphasic 

oligomerization behaviour of SNAP25 in response to Ca2+ ions122. At intermediate 

calcium concentrations of 100 mM, oligomerization increases – either steadily 

(Fig. 10 a) or intermittently (Fig. 10 b) – until the end of the experiment. 

To exclude that the changes in turbidity after long incubation times at 

37 °C are associated with protein degradation, the protein was recovered after 

the experiment and subjected to SDS-PAGE (Fig. 10 d). There were no bands 

visible that would argue for SNAP25 degradation. 

5.1.4 Dynamic light scattering (DLS) measurements 

To gain more detailed information on the distribution of oligomer sizes, the 

calcium effect on SNAP25 was analysed with DLS. In DLS, the hydrodynamic 

radius of an object is calculated from the temporal correlations of light that is 

scattered by diffusing objects. Unlike the relatively crude OD measurements, 

DLS measurements can detect very small particles (down to ~0.2 nm in case 

of the instrument used here), and can also resolve mixed populations with 

particles of different radii. Two sets of DLS measurements each comprising three 

experiments were conducted. Even in the absence of calcium ions, SNAP25 shows 

a polydisperse (i.e. broad) size distribution (Fig. 11 a–c, upper row) which argues 

for the co-existence of monomers and lower order oligomers. With increasing 

calcium concentration (e.g. at 100 mM), oligomer size increases in all experiments 

(Fig. 11 a–c). The oligomerization behaviour at higher calcium concentration varies 

between experiments: While at 500 mM in some experiments the small and large 

oligomers coexist (Fig. 11 b), only small (Fig. 11 a) or large (Fig. 11 c) oligomers are 

present in other. Sometimes, co-existing populations of large and a few decades 

smaller particles are detected at high calcium concentrations (see Fig. 11 c). This 

argues for a randomly occurring biphasic oligomerization response.
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Fig. 11 Reversibility of SNAP25 oligomerization analysed with dynamic light scattering 
(DLS). SNAP25 at a concentration of 6.4 mg/ml (274.5 µM) (a), 1.0 mg/ml (43 µM) (b), and 
3.2 mg/ml (137 µM) (c) was incubated for 8–10 minutes with the indicated Ca2+ concentrations 
in TBS at 37 °C, and 663 nm light scattered at a 90° angle was measured on a DynaPro Nanostar 
instrument. The temporal correlations of the scattered light intensities were used to calculate the 
mass-weighted particle size distributions. While a population of small particles appears at 500 mM 
calcium in a, large precipitates form at 1000 mM calcium both in run a and b. In run c, small and 
large particles co-exist at 1000 mM calcium. The differences in the oligomerization behaviour are 
not due to protein concentration but to the random nature of the oligomerization/precipitation 
process; a second set of three experiments all performed with 3.2 mg/ml SNAP25 protein yielded 
essentially the same results. Note that the calculated hydrodynamic radii assume Brownian motion 
of spherical particles. Since this does not apply to charged proteins, the hydrodynamic radii shown 
here cannot be directly translated into actual radii of the protein oligomers. I would like to thank 
Catherine Tardin and Laurence Salomé (IPBS Toulouse) for help with DLS measurements. 
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An exact analysis of the oligomer sizes is hampered for two reasons. The calculated 

hydrodynamic radii assume Brownian motion of spherical, neutral particles. In 

this measurement, we used proteins which are charged and additionally probably 

not spherically shaped. Second, the intensity of the scattered light increases with 

the sixth power of particle radius. If a solution contains a mixture of oligomers that 

differ in their sizes by a few decades, the autocorrelation curve is dominated by 

signal contributions of large particles. The size estimation of the small particles is 

therefore less certain, and very sensitive to minor changes in the fitting parameters 

of the autocorrelation curve. Despite these drawbacks, the trend that is observed in 

the size distributions shows that biphasic oligomerization in response to calcium 

ions can principally take place. Nevertheless, quantification and reproducibility of 

the behaviour is difficult due to the variable degrees of calcium-induced SNAP25 

precipitation. We therefore turned to approaches allowing measurements with 

more diluted SNAP25 samples. 

5.1.5 Fluorescence correlation spectroscopy (FCS) 

SNAP25 oligomerization was next assayed with FCS. This technique is similar to 

DLS in that temporal correlations of signals from diffusing objects are used to 

analyse object size. In the case of FCS, the recorded signal is the fluorescence of a 

dye attached to the molecule of interest. FCS measurements were conducted with 

TAMRA-labelled SNAP25 after 10 min of incubation with calcium concentrations 

between 1 and 1000 mM or in the absence of calcium. Multimers were visible in 

the recorded fluorescence time courses as soon as calcium was present (Fig. 12 a). 

These multimers occurred sporadically and in various sizes, which resulted in 

autocorrelation curves derived from the time courses that were too diverse to 

reliably calculate the diffusion time of SNAP25 (Fig. 12 b). Therefore, information 

about the size cannot be accurately extracted from these FCS measurements. 

However, judging from the peak intensities in the time courses (Fig. 12 a) and the 

points of inflection in the autocorrelation curves (Fig. 12 b) it appears that the 
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brightest and slowest multimers are found at 500 mM calcium. Consistently, the 

number of SNAP25 particles drops at 500 mM calcium, and increases again at 

1000 mM calcium, apparently following a similar biphasic trend (see Fig. 12). This 

could be due to the individual SNAP25-TAMRA proteins forming fewer (and thus 

larger and brighter) multimers at 500 mM than at 1000 mM calcium. It should be 

noted, though, that high calcium concentrations led to an increased noise level in 

FCS measurements, which may artificially increase particle number.
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Fig. 12 Reversibility of SNAP25 oligomerization analysed with fluorescence 
correlation spectroscopy (FCS). TAMRA-labelled SNAP25 at a concentration of 
500 nM was incubated with the indicated calcium concentrations for 10 min at RT, 
and then 60 s fluorescent time courses were recorded. (a) Example time courses of 
the SNAP25-TAMRA fluorescence and (b) autocorrelation functions (G(t)) of the 
fluorescence intensity fluctuation for all ten time courses (represented by different 
colours). Already at 1mM calcium, large SNAP25-TAMRA aggregates are randomly 
detected in the focal volume (see peaks in a). Because of these aggregates, the variation 
between the individual autocorrelation functions is too great to reliably calculate the 
diffusion time of the calcium samples. However, the number of SNAP25 particles 
apparently follows a biphasic trend with increasing calcium concentration: The reciprocal 
of the y-intercept of the autocorrelation function is equivalent to the number of particles 
in the focal volume, which drops at 500 mM calcium, and increases again at 1000 mM 
calcium. The data correspond to one FCS measurement. A similar observation was made 
in an FCS measurement with AlexaFluor532-labelled SNAP25. I would like to thank Dr. 
Thomas Sorkalla (IBMB, Bonn) for supervision and help with FCS measurements and 
interpretation.
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The FCS measurements were f lawed with additional technical issues, such as an 

increased viscosity that resulted in doubled diffusion times at 1000 mM calcium 

in control measurements. In addition, the f luorescence intensity decreased 

with increasing calcium concentration. This could be due to SNAP25-TAMRA 

depletion from the solution; z-scans showed an increased stickiness to the bottom 

of the experimental vessel. Alternatively, this could be an effect of molecular 

crowding leading to TAMRA self-quenching. 

In summary, the increase in oligomerization at low to intermediate calcium 

concentrations is clearly observed despite all technical f laws. In contrast, while 

there are several hints that the degree of oligomerization declines at 1000 mM 

calcium, the FCS measurements do not unequivocally proof it.

5.1.6 Microscale thermophoresis (MST) 

To collect further evidence for SNAP25 dispersal at high calcium concentrations 

and thus corroborate the results from the OD, DLS, and FCS measurements, 

SNAP25 oligomerization was analysed with MST. Thermophoresis (or 

thermodiffusion) is a mass-dependent movement of particles in an induced 

temperature gradient, and is monitored via recording the local concentration of 

f luorescence originating from the particles of interest. Initially, cyanine5-labelled 

SNAP25 was used for MST experiments, because labelling proteins with a 

f luorophore in the visible range provides a better signal-to-noise ratio than the 

intrinsic protein f luorescence. SNAP25 thermodiffusion was studied at two-fold 

serial dilutions of calcium. Thermodiffusion of SNAP25-cyanine5 slowed down 

with increasing calcium concentrations up to ~63 mM, and gradually sped up 

again at higher concentrations (see Fig. 13 a, b). The cyanine5 dye on its own also 

showed a Ca2+-dependent change in its thermophoretic mobility – albeit in the 
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opposite direction, i.e. it became slower at high calcium (Fig. 13 c, d). These dye 

dynamics may lead to an underestimation of the increase in SNAP25 

thermodiffusion at high calcium concentrations in this approach.
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Fig. 13 Microscale thermophoresis (MST) with cyanine5-labelled SNAP25 suggests 
biphasic SNAP25 oligomerization in response to Ca2+ ions. MST measurements with 
1.25 µM SNAP25 (from which 500 nM were cyanine5-labelled and 750 nM unlabelled 
SNAP25) were performed with serial dilutions of CaCl2 in TBS containing 0.05 % NP-40 at 
37 °C. (a) Normalized fluorescence traces of SNAP25-cyanine5, illustrating its temperature-
jump and thermophoresis at different calcium concentrations in one experiment. Traces 
with the minimum (62.5 mM CaCl2) and maximum (0.12 mM CaCl2) thermophoretic 
mobility are coloured in purple and orange, respectively. (b) Normalized SNAP25-cyanine5 
fluorescence after thermophoresis and temperature jump (Fnorm, expressed in % of the 
maximum), averaged and plotted versus the calcium concentration. The increase in Fnorm at 
intermediate calcium concentrations indicates slower thermodiffusion and therefore a higher 
degree of oligomerization. The values are given as mean ± s.d. (n = 3). Essentially the same 
results were obtained in another set of measurements (n = 4) which were performed without 
addition of unlabelled SNAP25 and at room temperature. (c) Control experiment showing 
the normalized fluorescence traces of 500 nM unconjugated cyanine5 (without protein). 
(d) Normalized cyanine5 fluorescence after thermophoresis and temperature jump (Fnorm, 
expressed in % of the maximum) plotted versus the calcium concentration (mean ± s.d., 
n = 3). While the unconjugated dye shows virtually no difference in its thermophoretic 
mobility at low calcium concentrations, Fnorm steadily increases at concentrations above 
62.5 mM calcium. This behaviour is contrary to the SNAP25-conjugated dye, which shows 
steadily decreasing Fnorm values above 62.5 mM calcium (b). 
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Fig. 14 Biphasic SNAP25 oligomerization in response to Ca2+ and Mg2+ is verified using 
label-free thermophoresis. (a–c) MST measurements with serial dilutions of CaCl2 or 
MgCl2 at a fixed concentration of 10 µM unlabelled SNAP25 were performed at 37 °C. 
(a) Normalized SNAP25 tryptophan fluorescence time traces from one MST experiment. 
Traces yielding the minimum (31.25 mM CaCl2) and maximum (500 mM CaCl2) 
thermophoretic mobility are shown in purple and orange, respectively. (b) Normalized 
tryptophan fluorescence ratios after thermophoresis and temperature jump (Fnorm, 
expressed in per mille) at different divalent ion concentrations (black, Ca2+; green, 
Mg2+). The development of Fnorm suggests the presence of low oligomers in the absence 
of divalent ions, the formation of larger oligomers at intermediate concentrations and 
dispersal to possibly monomeric SNAP25 at maximal Ca2+. The drop in Fnorm observed at 
highest ion concentrations may be underestimated because of the high solution viscosity. 
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In order to eliminate any dye artefacts (especially stickiness and the calcium 

dependent thermophoretic mobility of cyanine5), MST measurements were 

repeated with unlabelled SNAP25. In this case, thermodiffusion was monitored via 

the protein’s intrinsic tryptophan f luorescence (SNAP25 contains one tryptophan 

residue). The labelfree MST measurements confirmed the biphasic response to 

calcium ions (Fig. 14 a, b). Biphasic oligomerization was also observed in response 

to Mg2+ ions, albeit to a lesser extent. Interestingly, SNAP25 thermodiffusion 

at 500 mM calcium was even faster than without calcium (cf. Fig. 14 b). This 

suggests that the oligomeric state of SNAP25 at 500 mM calcium is lower than 

without calcium. In other words, the protein is not monomeric in the absence of 

calcium. This is in line with the broad size distribution observed in calcium-free 

SNAP25 samples in the DLS measurements. 

In the labelfree MST experiments, the buffer did not show calcium 

dependent changes in its thermophoretic mobility, but only random fluctuations 

(Fig. 14 d, e). SNAP25 precipitation (visible through deformed MST traces which 

were removed from the analyses) was hardly observed in MST measurements, 

probably for two reasons. First, the measurements required only low (1.25–10 µM) 

protein concentrations and a low reaction volume of approx. 5 µl. In addition, 

low amounts of detergent in the buffer further minimized the risk of protein 

precipitation (and sticking to the reaction vessel).

(c) Absolute tryptophan fluorescence intensity (blank corrected, see below) measured 
before thermophoresis and T-jump (t = 0). The dynamic ranges of signal change for Ca2+ 
and Mg2+ are indicated by brackets. Values are given as mean ± s.d. (n = 5–9). (d) Control 
experiment showing the normalized background fluorescence traces of the buffer solution 
(0.1 % Pluronic in TBS, no protein) at increasing Ca2+ concentrations. (e) Normalized 
background fluorescence ratios after thermophoresis and temperature jump (Fnorm) show 
random variations in the thermophoretic mobility of the buffer solution. (f) Absolute 
background fluorescence intensities which originate from the buffer and the glass capillary 
containing the fluid measured before thermophoresis and temperature jump (t = 0). Values 
are given as mean ± s.d. (n = 4). The respective averaged intensities were subtracted as 
blank values from the averaged SNAP25 tryptophan fluorescence intensities shown in 
panel c. Note that the buffer solution and the glass capillary substantially contribute to the 
fluorescence signal, but show no ion-concentration dependent changes. Panel a and b of 
this figure were previously published in ref. 122.
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The biphasic response of both unlabelled and cynaine5-labelled SNAP25 to 

calcium ions implies biphasic protein oligomerization. However, it should be 

noted that thermodiffusion is not only dependent on molecule size, but also 

on charge and solvation entropy of the molecule. Changes in charge and the 

hydration shell of the protein may thus contribute to the observed effect. 

In labelfree MST experiments, the biphasic behaviour of SNAP25 is corroborated 

by a second, thermodiffusion-independent observation: The initial tryptophan 

f luorescence (i.e. the f luorescence that is recorded prior to creating a temperature 

gradient and inducing thermodiffusion) shows a mild decrease at intermediate 

calcium concentrations (Fig. 14 c). From 100 mM calcium onwards, the initial 

tryptophan f luorescence increases again. This effect is again more subtle in the 

case of magnesium ions. A reduction in the tryptophan f luorescence argues for 

f luorescence self-quenching due to close spatial proximity of the tryptophan 

residues. Since SNAP25 contains only one tryptophan residue, several proteins 

need to come into close contact to induce quenching. 

5.2 SNAP25 oligomerization in the plasma membrane

To investigate whether ion-induced protein oligomerization can be retraced in 

the protein’s native environment, oligomerization of membrane-bound SNAP25 

was analysed. These studies were performed with endogenous SNAP25 which 

was visualized with antibody stainings to exclude potential artefacts arising 

from overexpression or f luorescent tags – a GFP molecule, for example, has a size 

similar to SNAP25 and should inf luence SNAP25 clustering accordingly. 
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As a member of the neuronal SNARE protein family that is involved in synaptic 

vesicle fusion, SNAP25 is predominantly expressed in neuronal tissues123. 

Therefore, neuroendocrine PC12 cells were used as a model neuronal environment 

for SNAP25 clustering.

5.2.1 Establishment of a membrane sheet based assay to evaluate SNAP25 

clustering in its physiological environment

SNAP25 is anchored to the cytosolic leaf let of the plasma membrane (cf. Fig. 8 c). 

In order to target SNAP25 with ions or antibodies, access to the inner membrane 

leaf let needs to be provided. This is typically achieved with detergents which 

create small holes in membranes. The drawback of this approach is that the 

architecture of the entire membrane is destroyed, and protein clustering is 

severely altered. In this study, so-called membrane sheets were created instead. 

Application of a short ultrasonic pulse removes the apical cell membrane and 

washes away cytosolic components. The intact basal plasma membrane with 

the inner membrane leaf let facing up is left behind (see Methods and Fig. 7 a 

for details). Protein diffusion dynamics and the assembly of SNARE complexes 

remain intact in these preparations25,124,125. 

In a first set of experiments, thus generated membrane sheets were incubated 

for ten minutes in 140 mM KCl at pH 7.2 supplemented with logarithmically 

increasing calcium concentrations. Control sheets were incubated with 10 mM 

EGTA, which chelates trace divalent (and trivalent) ions. Afterwards, proteins 

were fixed and immunostained using two different antibodies targetting 

SNAP25: either a monoclonal antibody directed against the N-terminus, or 

a polyclonal antibody directed against the C-terminus of the protein. The 

membrane was counterstained with the lipophilic dye TMA-DPH to evaluate 

membrane integrity, and the samples were then imaged with an epif luorescence 

microscope. Sheets were selected in the TMA-DPH channel on the basis of intact 

membrane appearance.
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Fig. 15 Biphasic oligomerization of SNAP25 in response to calcium ions in its native 
plasma membrane environment. PC12 plasma membrane sheets were incubated with 
0–1000 mM calcium chloride in Hepes/KCl buffer for 10 min at 37 °C. Sheets were 
fixed, immunostained for SNAP25, counterstained with TMA-DPH, and analysed with 
epifluorescence microscopy. (a) Images of the membrane dye TMA-DPH (documenting 
membrane integrity) and the corresponding immunostaining using either a monoclonal 
mouse antibody directed against the N-terminus of SNAP25 (left) or a polyclonal rabbit 
antibody directed against the SNAP25 C-terminus (right) in membrane sheets incubated 
with 0, 10, or 1000 mM CaCl2. Overview images (from one antibody staining) are shown 
at the same scaling while magnified insets are arbitrarily scaled. (b) Average SNAP25 
fluorescence intensity, relative to the control condition which contained no calcium ions, 
in sheets stained with the N-terminal antibody. The decrease in fluorescence intensity at 
intermediate calcium concentrations indicates epitope masking due to a higher SNAP25 
packing density and/or a conformational change, as previously described29. (c) Relative 
standard deviation (rel. SD) of the immunostaining pattern in sheets stained with the 
antibody targetting the N-terminus. (d) Normalized SNAP25 fluorescence intensity and (e) 
rel SD. in sheets stained with the antibody directed against the SNAP25 C-terminus. Values 
are given as mean ± s.e.m. (n = 2–4). Panel b and c of this figure are modified from ref. 122.
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In the control condition, membrane sheets showed a bright and dispersed SNAP25 

distribution (Fig. 15 a, upper row). In the presence of 10 mM calcium, the pattern 

became more punctuate (and dimmer), indicating SNAP25 clustering. This trend 

then reversed at higher calcium concentrations, at which the appearance of sheets 

was comparable to the control condition. This argues for biphasic clustering in 

response to increasing calcium concentrations not only of soluble but also of 

membrane bound SNAP25. 

Based on this observation, it was evaluated how to best quantify the effect 

to further explore the mechanisms underlying clustering, also testing inf luences 

of pH, ionic strength, or depletion forces. 

Segmentation-free analyses for clustering

In a first step, the degree of SNAP25 clustering was quantified using two 

parameters, (1) the average f luorescence and (2) the standard deviation of the 

f luorescence in a region of interest (ROI). 

(1) The average SNAP25 f luorescence intensity was used to address changes 

in SNAP25 accessibility. A decrease in staining intensity likely ref lects epitope 

masking due to molecular crowding: The more tightly the proteins are packed, 

the harder it is for the antibodies to access their epitope which in turn produces 

a darker staining29. Crowding may be inter- or intra-molecular; either a SNAP25 

cluster comprising several SNAP25 molecules becomes more tightly packed, or 

individual molecules experience a conformational change.

(2) The standard deviation of the f luorescence intensity was used to evaluate 

changes in SNAP25 distribution. If the f luorescent particles are accumulated 

in clusters, the standard deviation from the mean ROI f luorescence increases. 

Conversely, more equally dispersed f luorescent particles produce a low standard 

deviation of the mean f luorescence in a ROI.  
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Both analyses revealed a clearly biphasic development for SNAP25 distribution 

and accessibility (Fig. 15 b–e). Since this effect is observed with both the 

N-terminal and the C-terminal antibody, clustering apparently affects wide 

parts of the protein and is not limited to one of its SNARE domains. However, 

the increase in the relative standard deviation is more pronounced in sheets 

stained with the antibody targeting the N-terminus (Fig. 15 c–e). It seems 

unlikely that this is due to different clustering effects in the SNAP25 N- and 

C-terminus, since the changes in staining intensities are similar in both of the 

termini. Instead, already in the control condition, the staining pattern with the 

polyclonal antibody appears to be more punctuate than with the monoclonal 

antibody (Fig. 15 a, upper row). It appears that the latter generally recognizes 

more SNAP25 proteins and therefore offers a greater dynamic range than the 

polyclonal antibody. Because of its greater sensitivity, the monoclonal antibody 

was used in subsequent experiments. 

Segmentation-based analyses for SNAP25 clustering

The standard deviation of the f luorescence intensity is an appealing analysis 

since it does not require any form of image segmentation. However, it cannot 

discriminate between underlying clustering scenarios such as changes in cluster 

size, density or sorting of more non-clustered molecules into clusters. To address 

these issues and to complement the rel. SD, an additional analysis was performed 

for which the f luorescence signal was segmented into clustered and uniformly 

distributed pools (Fig. 16) (see methods for details). The average signal intensity 

of both fractions decreases at intermediate calcium concentrations, and then 

increases again at high calcium. This shows that molecular crowding occurs in 

both signal pools (Fig. 16 d). When looking at the amount of f luorescence (the 

integral of the intensity), a peak is observed for the punctuate signal, while the 
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amount of f luorescence from the uniform signal pool drops at intermediate 

calcium concentrations (Fig. 16 e). This may indicate recruitment of molecules 

from the uniform pool into clusters at intermediate calcium concentrations. 
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Fig. 16 Immunofluorescence intensity originating from both clustered and non-
clustered SNAP25 in the membrane biphasically varies with the calcium concentration. 
Detailed illustration of the immunofluorescence intensity distribution in the control 
condition (a) and at 10 mM calcium (b) with an arbitrarily scaled “fire” lookup table 
(increasingly brighter pixels are displayed from blue, to red to yellow to white). (c) 
Fluorescence intensity measured with the line scans indicated in white in a and b. The 
dotted line marks the edges of the membrane sheets. (d) The SNAP25 staining pattern was 
segmented into punctuate areas (squares) and uniform areas next to them (triangles) as 
described in the methods section. The fluorescence intensities are given as mean ± s.e.m. 
(n = 3–4), normalized to total average fluorescence in the control condition (shown in 
Fig. 15 b). (e) Amount of fluorescence originating from uniformly distributed and clustered 
signal pools expressed as a percentage of the total integrated membrane fluorescence  
(integrated uniform signal = total area × average uniform signal intensity;  
integrated punctuate signal = punctuate area × (average punctuate intensity - average 
uniform intensity)). Note that the fraction of the clustered signal most likely underestimates 
the fraction of clustered molecules (see text). This figure is modified from ref. 122. 
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It was speculated that there is an early stage of SNAP25 clustering, at which 

the potential recruitment of additional molecules into clusters does not yet lead 

to tighter cluster packing and epitope masking. If clusters were populated by a 

higher number of molecules and still loosely packed, the average f luorescence 

of the clustered pool should become brighter. To investigate a mild clustering 

response, membrane sheets were incubated with 10- and 100-fold lower calcium 

concentrations than in the previous experiment (Fig. 17 a). This resulted only 

in a slight increase in the f luorescence intensity of the punctuate signal pool 

(Fig. 17 c). A transition state with brighter, loosely packed clusters does either not 

exist or is only short-lived. If clusters accumulate molecules, they apparently do 

so by increasing molecule packing density instead of growing larger in diameter. 

The quantitative figures on the amounts of f luorescence from uniformly 

and clustered signal pools (Fig. 16 e, 17 c, d) should be treated with caution. 

The amount of recorded signal that the analysis algorithm categorizes as 

“clustered” may severely underestimate the actual amount of clustered molecules 

for the following reasons. First, epif luorescence is diffraction limited and 

cannot differentiate between an unresolved cluster and random non-clustered 

molecules. The imaging technique creates a Gaussian intensity distribution (or 

blur) around each molecule, and accordingly also around the crowded molecules 

in a cluster. If clusters are dense, the blurred signals from several clusters may 

overlap and be mistaken for uniform, non-clustered molecules. Finally, the non-

clustered molecules may be preferentially recognized by the antibodies, since 

there is less steric hindrance than with clustered molecules. For these reasons, 

clustering in subsequent epif luorescence experiments was evaluated using the 

segmentation-free rel. SD analysis.
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Fig. 17 SNAP25 immunofluorescence intensities at low calcium concentrations. PC12 
plasma membrane sheets were incubated with 10 µM, 100 µM or without calcium for 10 
min at 37 °C. (a) Epifluorescence images of the membrane counterstain (upper row), and the 
corresponding SNAP25 immunostaining (lower row, overviews are similarly and magnified 
views arbitrarily scaled). (b) Average immunofluorescence intensity of the total SNAP25 signal 
plotted against the calcium concentration and normalized to the control condition (without 
calcium). (c and d) The staining pattern was segmented into uniform and punctuate signal 
areas as described in the methods section. (c) To estimate the average immunofluorescence 
signal originating from SNAP25 clusters, the average fluorescence intensity in uniform 
areas was subtracted from the average fluorescence intensity in punctuate areas. These 
values were normalized to the control (0 mM calcium) in b. (d) Amount of fluorescence 
originating from uniformly distributed and clustered signal expressed as a percentage of the 
total integrated membrane fluorescence (integrated uniform signal = total area × average 
uniform signal intensity; integrated punctuate signal = punctuate area × (average punctuate 
intensity - average uniform intensity)). Values are given as mean ± s.e.m. (n = 3). 
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5.2.2 SNAP25 clustering is insensitive to changes in the pH, ionic strength, 

osmolarity, and additional depletion forces

Having developed an assay and analysis methods for exploring clustering of 

membrane-anchored SNAP25, it was then analysed whether biphasic clustering 

is a specific response to calcium, or whether clustering may also be induced 

by other forces. To this end, SNAP25 clustering was first analysed at different 

pH values (pH 6, 7 and 8) and compared to the control buffer used throughout 

the other experiments (pH 7.2) (Fig. 18). The analysis revealed virtually no 

difference in SNAP25 clustering between pH 6 and pH 8. 

Assuming that electrostatics are involved in clustering, this was to be expected, 

since the protein should retain its net negative charge in all these conditions. The 

differences in pH hardly affect the protonation states of glutamate, aspartate, 

arginine and lysine, since their pKa values are either much lower (~4 in the case of 

glutamate and aspartate) or much higher (~10–12 in the case of arginine and lysine) 

than pH 6–8. However, increasing the pH to 8 results in deprotonation of histidine 

residues (pKa ~6), and a half of the cysteine residues should convert to thiol anions. 

Taking into account the size and the structure of the protein, these deprotonation 

events have only minor effects, though, since SNAP25 contains only one histidine 

residue (0.5 % of all residues), and of the four cysteine residues at least one (if not 

all four, this is a subject of research126) are palmitoylated and in close proximity to 

the plasma membrane. Additionally, the thiol anion is very reactive, and therefore 

does not substantially contribute to protein charge.

The buffer solution used throughout all experiments so far contained 140 mM KCl 

to yield an osmolarity and ionic strength close to physiological conditions. In the 

next experiment, KCl was omitted from the solution to investigate whether the 

ionic strength in general and K+ and Cl- ions in particular contribute to SNAP25 

clustering. 
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Fig. 18 SNAP25 clustering is hardly affected by changes in the pH. Membrane sheets 
were incubated with Hepes/KCl buffer solutions at pH 6–8, or a buffer solution at pH 
7.2 which additionally contained EGTA for 10 min at 37 °C. (a) Images of membranes 
counterstained with TMA-DPH and the corresponding SNAP25 immunostaining of 
sheets incubated at pH 6, 7 or 8. Overview images are shown at the same scaling while 
magnified insets are arbitrarily scaled. SNAP25 clustering was evaluated using (b) the 
relative standard deviation or (c) the relative intensity of the immunofluorescence signal 
(both normalized to the control solution). Values are given as mean ± s.e.m. (n = 3).
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This is especially important in the case of chloride, since in all previous 

experiments calcium was applied in form of a chloride salt, albeit an increase of 

the chloride concentration by 14 % (from 140 to 160 mM) when applying 10 mM 

CaCl2 is unlikely to have a major effect. The ionic strength determines the 

electrostatic screening length, and thus the distance at which negatively charged 

SNAP25 molecules experience electrostatic repulsions. Following the hypothesis 

that surface charge repulsion diminishes clustering, a reduction in the ionic 
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Fig. 19 SNAP25 clustering is not affected by changes in the ionic strength and osmolarity. 
Membrane sheets were incubated with buffer solutions containing 20 mM Hepes (pH 7.2), 
10 mM EGTA (to chelate trace divalent ions) and either 140 mM KCl (yielding a solution 
with a physiological osmolarity) or no KCl (yielding a hypoosmolar solution) for 10 min 
at 37 °C. (a) Epifluorescence images of the membrane counterstain TMA-DPH (left) and 
the corresponding SNAP25 immunostaining (right). Overview images are shown at the 
same, magnified insets at arbitrary scaling. SNAP25 clustering was evaluated using (b) the 
relative standard deviation and (c) the relative intensity of the immunofluorescence signal. 
Values are given as mean ± s.e.m. (n = 3).
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strength could possibly lead to a higher degree of protein dispersion, because 

electrostatic repulsions prevail over larger distances. Membrane sheets incubated 

in buffer solutions with or without 140 mM KCl showed no difference in SNAP25 

clustering (Fig. 19). This confirms that the effects observed in previous 

experiments with CaCl2 are governed by the Ca2+ ions, not the Cl- ions. 

Additionally, this experiment proves that the ionic strength of the solution does 

not inf luence SNAP25 clustering in membrane sheets. This was verified in 

experiments in which sheets were incubated with exceedingly high ionic 

strengths produced by 1 M NaCl or KCl solutions (data not shown). 

Next, the effect of trehalose in the buffer solution was analysed. The 

disaccharide trehalose is a non-reducing sugar which can be used to prevent 

precipitation of highly concentrated protein solutions (such as therapeutic 

antibody formulations). Trehalose acts as an extrinsic crowder that induces a 

depletion attraction between proteins thus stabilizing their compact folded states32. 

According to the Asakura-Oosawa model127 depletion attraction is entropically 

driven: close association of the proteins maximizes the volume accessible to the 

small crowders (see Fig. 20 a). High crowder concentrations are necessary to 

create a significantly strong depletion attraction. In this experiment, membrane 

sheets were therefore incubated with 250 mg/ml (731 mM) trehalose (Fig 20 b). 

This had no effect on SNAP25 clustering in membrane sheets (Fig. 20 c, d). 

There are several explanations for the absence of a noticeable depletion 

attraction in this case. First, the depletion attraction between SNAP25 molecules 

may be overruled by electrostatic effects. Second, since SNAP25 is confined to 

the membrane plane and already clustered, the entropic gain due to crowding  in 

larger clusters is low (compared to crowding of spaced proteins in a 3D system). 

Third, on the level of the 2D plane, the plasma membrane is an environment 

which is already crowded with a multitude of small particles as lipid headgroups 

with a comparable size to the trehalose crowder.
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Fig. 20 High concentrations of trehalose cause no noticeable depletion attraction of 
SNAP25 in membrane sheets. (a) Schematic for the depletion attraction between two 
protein particles (adapted from ref. 32). The volume in the immediate vicinity of the 
proteins (indicated by the dashed line) cannot be accessed by the centres of crowding 
molecules. If these individual excluded volumes of the macromolecules overlap (pink), 
the total excluded volume is reduced. This increases the entropy of the small crowder 
molecules. (b) Epifluorescence images of membrane sheets incubated in Hepes/KCl 
with or without 250 mg/ml (731 mM) trehalose for 10 min at 37 °C, immunostained 
for SNAP25 (right) and counterstained with TMA-DPH (left, documenting membrane 
integrity). SNAP25 overview images are shown at the same, magnified insets at arbitrary 
scaling. SNAP25 clustering was evaluated using (c) the relative standard deviation and (d) 
the relative intensity of the immunofluorescence signal. Values are given as mean ± s.e.m. 
(n = 3).
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In fact, depletion attraction exerted by membrane lipids was suggested to be one 

factor promoting the general organization of membrane proteins in clusters128. 

Thus, addition of a second crowding agent may not induce any further depletion 

attraction. Apart from showing the minor importance of additional depletion 

forces in this system, this experiment underlines that an increase in osmolarity 

(which is in case of 731 mM trehalose higher than at 100 mM CaCl2) does not 

affect SNAP25 clustering. 

5.2.3 STED superresolution microscopy indicates tighter cluster packing

To further characterize the process of SNAP25 clustering, calcium-induced 

changes in cluster size and cluster number density were analysed. Membrane 

protein cluster sizes are typically between 50–200 nm. These size scales cannot 

be analysed with conventional f luorescence microscopy since these are limited 

by diffraction to a resolution of ~250 nm. For this reason, STED microscopy 

was employed to analyse cluster size. The STED set-up consists of a confocal 

microscope which uses an additional circular STED beam to selectively de-excite 

f luorophores at the periphery of the excitation spot and thus decrease the spot 

size from which f luorescence is collected. With the set-up used in this study, in 

theory a resolution in the range of 30 nm can be achieved. STED images were 

acquired from membrane sheets incubated with 0, 10 or 1000 mM calcium and 

immunostained for SNAP25 (Fig. 21). 

The analysis of the STED images revealed that clusters do neither grow 

larger nor become smaller as a result of increased clustering (Fig. 21 b). Instead, 

the number of clusters per µm2 is reduced to approx. 50 % at 10 mM calcium. At 

1000 mM calcium, the number of clusters increases again to almost its original 

value. These observations suggest an at least twofold tighter packing of SNAP25 

clusters at 10 mM Ca2+, because the SNAP25 molecules are now confined to half 

as many but equally sized clusters. Taking into account that these fewer clusters 

may additionally recruit previously uniformly distributed SNAP25 molecules 
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(the amount of the clustered signal is 2.5-fold increased, see Fig. 16 e), the packing 

density may even be increased by a factor of five. A uniformly distributed signal 

pool was, however, under no conditions observed in STED images. This is 

possibly due to a lower sensitivity of this technique, or because a uniform pool is 

hardly existent (see section 5.2.1 and 6.2 for details and discussion).
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Fig. 21 SNAP25 cluster density varies with calcium concentration while cluster size 
remains stable. Plasma membrane sheets were incubated with 0, 10 or 1000 mM calcium 
for 10 min at 37 °C. (a) Overview (left) and magnified (right) STED micrographs of SNAP25 
immunofluorescence to which the “red hot” look up table was applied (displaying increasingly 
brighter pixel intensities using a colour code from black to red to yellow to white). (b) SNAP25 
cluster sizes and (c) cluster density per µm2 (means ± s.e.m., n = 4) (modified from ref. 122).

5.3 Delineating ion properties that determine protein clustering 

The previous experiments indicated that the pathway of SNAP25 clustering 

involves tighter cluster packing, and possibly the recruitment of previously 

uniformly distributed molecules into clusters. 
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Fig. 22 SNAP25 in plasma membrane sheets shows biphasic clustering in response to several 
earth alkaline ions. PC12 plasma membrane sheets were incubated with the indicated concentrations 
of calcium, strontium, barium or magnesium chloride for 10 min at 37 °C. (a) Epifluorescence 
recordings of the SNAP25 immunostaining in membrane sheets incubated with 0, 10, or 1000 mM 
CaCl2 (overviews are shown at the same, magnified insets at arbitrary scaling). SNAP25 clustering 
was quantified by calculating (b) the relative standard deviation (rel. SD) of the immunostaining 
pattern and (c) the relative fluorescence intensity, both normalized to the baseline condition which 
contained no divalent cations. Values are means ± s.e.m. (n = 3–4). (Figure modified from ref. 122).
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5.3 Delineating ion properties that determine protein clustering 

The previous experiments indicated that the pathway of SNAP25 clustering 

involves tighter cluster packing, and possibly the recruitment of previously 

uniformly distributed molecules into clusters. 
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Fig. 22 SNAP25 in plasma membrane sheets shows biphasic clustering in response to several 
earth alkaline ions. PC12 plasma membrane sheets were incubated with the indicated concentrations 
of calcium, strontium, barium or magnesium chloride for 10 min at 37 °C. (a) Epifluorescence 
recordings of the SNAP25 immunostaining in membrane sheets incubated with 0, 10, or 1000 mM 
CaCl2 (overviews are shown at the same, magnified insets at arbitrary scaling). SNAP25 clustering 
was quantified by calculating (b) the relative standard deviation (rel. SD) of the immunostaining 
pattern and (c) the relative fluorescence intensity, both normalized to the baseline condition which 
contained no divalent cations. Values are means ± s.e.m. (n = 3–4). (Figure modified from ref. 122).
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To shed light on the underlying molecular interactions of this process, the 

effect of calcium ions was compared to other earth alkaline ions. Membrane 

sheets were hence incubated with logarithmically increasing concentrations of 

magnesium, calcium, strontium and barium chloride and compared to control 

sheets incubated with a chelator for divalent ions (Fig. 22 a). Increased SNAP25 

clustering at intermediate and re-dispersion at high ion concentrations was 

observed not only in response to calcium, but also for barium and to an even 

greater extent for strontium, and in a subtle fashion for magnesium (Fig. 22 b, c). 

To understand why some ions provoke more clustering than others, the 

effects of different cations were comparatively studied and linked to their 

physico-chemical properties. SNAP25 clustering was evaluated in sheets 

incubated in buffer solutions containing 1 mM chloride salts of sodium, 

magnesium, calcium, zinc, strontium, yttrium, barium and lanthanum (Fig. 23 

a). These ions were selected in order to cover a wide range of ion properties (see 

Table 17 and 18). The degree of clustering – based on the rel. SD of SNAP25 

f luorescence – which is induced by these ions decreases from: 

S r 2 + >  B a 2 + >  C a 2 + >  Na + >  M g 2 + >  Z n 2 + >  L a 3 + ~  Y 3 +

In this sequence, Mg2+ and Na+ mark a turning point: ions to their left increase the 

degree of SNAP25 clustering, while ions to their right reduce SNAP25 clustering; 

Mg2+ and Na+ themselves show hardly any effect (Fig. 23 b). 

Plotting the chemical properties of the ions as a function of their clustering 

efficacy does not reveal any simple linear correlation. Instead, the graphs for the 

charge-to-radius ratio (Fig. 23 c), the water viscosity, as well as the Gibb’s free 

energy of hydration per coordinating water molecule (Fig. 24) resemble volcano 

plots in which Sr2+ marks the maximum. There was no dependency of clustering 

efficacy on ion charge, radius, volume, polarizability or softness (Fig. 24).
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Fig. 23 The efficacy of mono-, di- and trivalent ions on SNAP25 clustering in the 
cell membrane depends on the ion charge-to-radius ratio. (a) Membrane sheets were 
incubated with 1 mM chloride salts of Na+, Mg2+, Ca2+, Zn2+, Sr2+, Y3+, Ba2+ and La3+ (sorted 
by atomic number) for 10 min at 37 °C. Overviews are shown at the same, magnified views 
at arbitrary intensity scaling. (b) The degree of SNAP25 clustering was quantified using 
the rel. SD of the immunostaining intensity normalized to the control condition. Ions are 
shown in decreasing order of their clustering efficacy. (c) Plotting clustering effectiveness 
(in terms of the rel. SD) versus the ion charge-to-radius ratio yields a distribution 
resembling a volcano plot (grey lines). Values are means ± s.e.m. (n = 3–7). This figure was 
previously published in ref. 122.
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The influence of 1 mM K+ was not evaluated in this experiment, since the buffer 

solution used here already contains 140 mM potassium. Regarding the ion 

properties identified crucial for clustering (charge-to-radius ratio, water viscosity, 

hydration energy per coordinating water molecule) potassium ions resemble 
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Fig. 24 Ion properties in relation to their effectiveness to cluster SNAP25 in native cell 
membrane sheets. The relative standard deviation (rel. SD) of the immunofluorescence 
intensity (normalized to the control condition, indicated by the dashed line; values are 
taken from Fig. 23 b) is plotted in relation to the following ion properties: charge, crystal 
radius154, ionic volume (according to the calculated standard partial molar volumes167), the 
Jones–Dole viscosity B coefficient154, Gibbs free energy of hydration168 per coordinating 
water molecule (for references on the coordination numbers (CN) see ref. 169 (for Mg2+, 
Ca2+, Sr2+, Ba2+), ref. 170 (for Na+ and Zn2+), ref. 171 (for La3+) and ref. 172 (for Y3+)), ion 
polarizability154 and softness154. This figure was previously published in ref. 122. 
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sodium ions (cf. Table 17 and 18). It can thus be speculated that potassium ions 

have – similarly to sodium ions – no inf luence on SNAP25 clustering. This was 

indeed confirmed in previous control experiments (Fig. 19). 

Table 17 Ion properties I

ion charge radius [pm]
volume

[cm³/mol]
charge/radius 

[q/nm]
polarizability 

[Å³]
softness

Na+ 1 102 -7.4 9.8 0.26 -0.60
K+ 1 138 1.3 7.25 1.07 -0.58
Mg2+ 2 71 -28.4 28.17 -0.28 -0.41
Ca2+ 2 100 -30.8 20.00 0.63 -0.66
Sr2+ 2 113 -28.1 17.7 1.05 -0.64
Ba2+ 2 136 -20.3 14.71 2.05 -0.66
Zn2+ 2 75 -29.4 26.67 0.55 0.35

Y3+ 3 90 -58 33.33 0.95 -0.69

La3+ 3 105 -57.8 28.57 1.09 -0.75

The table presents the charge, radius154, standard partial molar volume167, charge-to-radius 
ratio, polarizability154 and softness154 of the metal ions used in this study.

Table 18 Ion properties II 

ion
water viscosity 

[cm³/mol]
coordination 
number (CN)

ΔGhyd

[kJ/mol]
ΔGhyd/CN 
[kJ/mol]

Na+ 0.09 6 365 61
K+ -0.01 6 295 49
Mg2+ 0.39 6 1945 324
Ca2+ 0.30 6 1505 251
Sr2+ 0.27 6.5 1380 212
Ba2+ 0.23 8.5 1250 147
Zn2+ 0.36 6 2070 345

Y3+ n/a 8 3590 449

La3+ 0.58 9 3145 349

The table presents the Jones–Dole viscosity B coefficient154, the coordination number 
(see ref. 169 for Mg2+, Ca2+, Sr2+, Ba2+; ref. 170 for Na+ and Zn2+; ref. 171 for La3+; and 
ref. 172 for Y3+), Gibb’s free energy of hydration168, and Gibb’s free energy of hydration per 
coordinating water molecule of the metal ions used in this study. 
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It is a curious observation that with Y3+, La3+ and Zn2+, SNAP25 clustering is even 

reduced compared to the control condition – especially since comparable Y3+ 

concentrations were reported to induce biphasic clustering of BSA in solution89. 
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Fig. 25 Biphasic SNAP25 clustering is not observed over a wide range of lanthanum 
concentrations. The figure presents two single experiments in which membrane sheets were 
incubated with 0.1–10 nM lanthanum (left column), and 10 µM–100 mM lanthanum (right 
column), out of a series of experiments in which sheets were incubated with logarithmically 
increasing lanthanum concentrations between 1 pM (10-12 M) and 1 M (100 M). The images 
illustrate the SNAP25 immunostaining pattern; insets show the corresponding TMA-DPH 
membrane counterstaining. SNAP25 clustering was evaluated using the relative standard 
deviation of the immunofluorescence. Values are given as mean ± s.d., normalized to the 
respective control. A biphasic response to varying lanthanum ion concentration was not 
observed in any experiment.
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It is conceivable that for SNAP25 clustering in membrane sheets, a concentration 

of 1 mM Y3+ or La3+ may be either too low or too high and thus outside of 

the clustering regime (as, e.g. 1000 mM calcium). To test this hypothesis, 

membrane sheets were incubated with a wide range of logarithmically increasing 

lanthanum concentrations, ranging from 1 pM (10–12 M) to 1 M (100 M). Low 

La3+ concentrations (≤ 10-8 µM) had no effect on clustering, while higher 

concentrations yielded an increasingly dispersed SNAP25 staining pattern (see 

Fig. 25 for a range from 10-10–10-1 M La3+). La3+ may be generally unsuitable to 

induce clustering of SNAP25 in membrane sheets because it lacks the necessary 

chemical properties (see Fig. 24). Alternatively, the logarithmic steps at which the 

lanthanum concentration was increased were too big to find a potentially narrow 

clustering regime. 

5.4 Co-clustering of SNAP25 with other charged molecules in the plasma 

membrane at increased calcium levels

The previous experiments both in solution and in the plasma membrane assume 

homo-oligomerization of SNAP25. In the plasma membrane, though, there is a 

multitude of other charged proteins and, especially in the intracellular membrane 

leaflet, also charged lipids. It is conceivable that calcium ions not only promote 

homo- but also hetero-oligomerization with other charged species. To test this 

hypothesis, colocalization of SNAP25 and syntaxin was analysed at different 

calcium concentrations. Syntaxin-1, like SNAP25, is a plasmalemmal neuronal 

SNARE protein, and its cytoplasmic domain carries a net amount of twelve 

negatively charged amino acids (= 4.5 %; for comparison, SNAP25 has a net amount 

of fourteen negatively charged amino acids which amounts to 6.8 %). Syntaxin and 

SNAP25 are known binding partners. During neuronal exocytosis, they interact 

via their SNARE domains and form an acceptor complex for the vesicular SNARE 

protein synaptobrevin, which ultimately results in membrane fusion129.
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Fig. 26 The colocalization between the two negatively charged proteins SNAP25 and syntaxin 
does not increase with the degree of SNAP25 clustering. (Legend continued on next page) 
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Membrane sheets were incubated with increasing calcium concentrations and 

double stained for SNAP25 and syntaxin-1. While syntaxin – like SNAP25 – 

clusters at intermediate calcium concentrations, re-dispersion at high calcium 

is less pronounced (see Fig. 26 a, b). The degree of colocalization between the 

two proteins was quantified using a pixel-wise Pearson correlation coefficient 

(Fig. 26 a, c). Without calcium ions, the colocalization between the two proteins 

is low; the clusters appear to be rather neighbouring than overlapping. At 

concentrations of 1–10 mM calcium, i.e. in the SNAP25 clustering regime, the 

colocalization even slightly decreases. An increase in the colocalization between 

SNAP25 and syntaxin is observed at 1000 mM calcium, at which SNAP25 is again 

fully dispersed. Thus, while both proteins experience self-clustering at 10 mM 

calcium, their colocalization does not increase. On the contrary, there is even 

a weak negative correlation (Spearman’s rho = -0.25 ± 0.08, n = 3) between the 

extent of SNAP25 clustering and the degree of SNAP25–syntaxin colocalization 

(Fig. 26 d). At least in this case, ion-induced clustering is apparently restricted to 

protein homo-oligomerization.

In a second experiment, the colocalization between SNAP25 and 

phosphatidylserine was investigated. Phosphatidylserine is the most abundant 

PC12 membrane sheets were incubated with logarithmically increasing calcium 
concentrations in Hepes/KCl for 10 min at 37 °C, and immunostained for SNAP25 
and syntaxin-1. (a) Representative images illustrating the SNAP25 and syntaxin 
immunostaining pattern separately and as an overlay (green, SNAP25; red, syntaxin-1) 
at 0, 10 and 1000 mM calcium. The circles indicate the localization of protein clusters, 
which overlap in cases indicated by the arrows. (b) Relative standard deviation (rel. SD) 
of the syntaxin immunofluorescence intensity (normalized to the control condition) as a 
function of calcium concentration (mean ± s.e.m., n = 2–3). (c) The Pearson correlation 
coefficient (PCC) between the two channels was calculated for each pixel and plotted 
against the calcium concentration (mean ± s.e.m., n = 2–3). (d) PCC plotted against the 
relative standard deviation of the SNAP25 immunofluorescence at 0 mM (cirlces), 10 mM 
(triangles) and 1000 mM (squares) calcium. There is a weak negative correlation (indicated 
by the black line) between the degree of SNAP25-syntaxin colocalization and the degree of 
SNAP25 clustering (Spearman’s rho = -0.24, p < 0.0001; the data points correspond to the 
individual sheets collected from n = 3 experiments).
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negatively charged membrane lipid, and is especially enriched in the inner leaf let 

of the plasma membrane130. It carries a net amount of one negative charge, which 

is important for ionic interactions with target proteins that lead to their 

membrane sequestration and activation130. An interaction with SNAP25, however, 

has not been described so far. Phosphatidylserine can also electrostatically bind 

calcium ions and may be involved in calcium sensing during vesicle fusion131. 
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Fig. 27 The colocalization between SNAP25 and the negatively charged membrane 
lipid phosphatidylserine is not affected by calcium. Membrane sheets were incubated 
with or without 1 mM calcium in Hepes/KCl for 10 min at 37 °C and immunostained 
for phosphatidylserine and SNAP25. (a) Representative images illustrating the 
phosphatidylserine and SNAP25 immunostaining pattern separately and as an overlay 
(green, phosphatidylserine; red, SNAP25). The circles indicate the localization of 
phosphatidylserine and SNAP25 clusters; overlapping clusters are indicated by the 
arrows. The degree of phosphatidylserine clustering was evaluated using (b) the relative 
standard deviation and (c) the average immunofluorescence intensity. (d) The degree of 
colocalization between phosphatidylserine and SNAP25 was quantified using the pixel-
wise Pearson correlation coefficient (PCC) between the two stainings. Values are given as 
mean ± s.e.m. (n = 3).
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Since calcium was found to induce clustering of PIP2 
132, another calcium-

binding negatively charged membrane lipid, it was analysed whether calcium 

likewise inf luences the membrane distribution of phosphatidylserine, besides 

analysing SNAP25–phosphatidylserine co-clustering. Staining lipids is generally 

challenging, since antibodies are often less specific to lipid than to protein targets. 

Here, FITC-labelled lactadherin was used to stain phosphatidylserine with high 

specificity and affinityI. Binding is mediated via lactadherin’s C2 domain in a 

calcium-independent manner134. 

Membrane sheets were incubated with or without 1 mM calcium, fixed, 

and stained with lactadherin and an anti-SNAP25 antibody (Fig. 27 a). Calcium 

appeared to have no inf luence on phosphatidylserine clustering (Fig. 27 b, c), 

different from what was published for PIP2. This could be due to the lower 

charge density of phosphatidylserine compared to PIP2 (the latter carries one 

more negative charge), and an accordingly weaker binding of the ion. The 

colocalization between phosphatidylserine and SNAP25 was low in control 

sheets, and increased only slightly with 1 mM calcium (see Fig. 27 d). There was 

no consistent correlation between the extent of SNAP25 clustering and the degree 

of SNAP25–phosphatidylserine colocalization (data not shown). Thus, calcium 

hardly promotes co-clustering between SNAP25 and phosphatidylserine. 

I  Annexin V, a commonly used probe for phosphatidylserine, has the disadvantage of binding also 
to other negatively charged lipids133.
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6 Discussion

This study analysed whether the oligomeric state of the negatively charged 

protein SNAP25 can be modulated by the use of oppositely charged metal ions. 

Counterion concentration dependent biphasic clustering, i.e. an increase in 

oligomerization followed by re-dispersion with increasing ion concentrations, 

was reported for several charged soluble proteins. In this work, it is demonstrated 

that biphasic ion-induced clustering can not only be recapitulated for soluble 

SNAP25, but can also be induced in SNAP25 anchored to the native cell 

membrane. This effect proved to be independent from changes in ionic strength, 

osmolarity, or pH. Instead, the effect depends on the ion type. By systematically 

studying ions with different chemical properties, three properties were found 

to be decisive for the effectiveness of ion-induced clustering: the ion’s charge-

to-size ratio, the hydration energy per coordinating water molecule, and the 

water viscosity coefficient of the ion. These observations allow for a prediction 

regarding the chemical nature of the ion–protein interactions and the binding 

patterns that govern the biphasic oligomerization behaviour. 

6.1 Biphasic oligomerization of soluble SNAP25

As a starting point for this study, the ion-induced oligomerization behaviour of 

SNAP25 was characterized in solution, to see whether this protein experiences a 

biphasic oligomerization behaviour similar to what was published for BSA and 

lysozyme. Finding a technique that reliably reports the oligomeric state of the 

protein was challenging because high calcium ion concentrations interfered with 

some experimental procedures, e.g. in partial proteolysis experiments causing 

precipitation when mixing with Laemmli buffer, or in FCS measurements 



Discussion           91

producing a high noise level. Also, attached f luorophores gave rise to artefacts 

in case of FCS (by increasing protein stickiness) and MST (altering the protein 

diffusion behaviour). Finally, it appeared that SNAP25 (at least at higher 

concentrations) did not only form relatively small oligomers, but randomly also 

large or insoluble aggregates that interfered with the experimental set-up of the 

partial proteolysis experiments and FCS analysis. Nonetheless, collectively the data 

from the different approaches suggest biphasic oligomerization of soluble SNAP25. 

In this regard, the most insightful approaches proved to be OD, DLS and 

label-free MST measurements, since these were devoid of dye artefacts, and 

involved a straight forward assay design with a minimum number of experimental 

steps. DLS and label-free MST measurements indicated that already in the absence 

of divalent ions SNAP25 oligomers are present. This is different from typically 

used model proteins like BSA and lysozyme, which are monomeric in solution. 

SNAP25 obviously has a higher propensity for self-interaction, which has indeed 

been observed before135. (These self-interactions might be driven by SNARE motif 

zippering, which is actually the key mechanism in heterologous SNARE domain 

interactions during vesicle fusion.) 

Despite the pre-oligomerized state of the protein, further SNAP25 

oligomerization by calcium ions was detected in all assay systems. In addition, 

the OD, DLS and MST data strongly argue in favour of a biphasic oligomerization 

response which depends on the ion concentration: an increase in oligomerization 

at intermediate calcium concentrations, and a lower degree of oligomerization at 

high concentrations. The DLS experiments revealed that the exact oligomer size in 

both the low and high calcium condition differed within an experimental run and 

condition as well as between runs. This suggests an oligomerization process which 

is affected by random precipitation.
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6.1.1 Precipitation as a consequence of aggregation 

Protein aggregation that entails precipitation was not reported for lysozyme and 

BSA. It can be speculated that there are stronger protein–protein interactions 

between SNAP25 proteins than between lysozyme or BSA proteins. This view 

is supported by the observation of SNAP25 oligomers even in the absence of 

ions. Tighter protein–protein interactions, probably SNARE domain-mediated, 

ultimately lead to the formation of larger oligomers, which are more likely to 

undergo phase separation. Still, the occurrence of SNAP25 precipitation differed 

between the experimental approaches. Solid phase separation of SNAP25 

aggregates was clearly observed in partial proteolysis experiments (which is why 

trehalose was added as a stabilizing agent). The extent of precipitation in optical 

density measurements remains somewhat elusive. Depending on the calcium 

concentration, the solutions appeared turbid, suggesting precipitation. While 

sedimentation was not directly observed, it may have become apparent after a 

centrifugation step. In the thermophoresis experiments, in contrast, precipitation 

occurred only rarely. This may be due to the small amounts of detergent in the 

buffer, which destabilizes hydrophobic interactions. However, precipitation is 

probably also an issue of SNAP25 concentration and the amount of available 

monomers. While the proteolysis experiments were conducted with 200 µM 

SNAP25, only 70 µM were used for OD measurements, and merely 10 µM in MST. 

6.1.2 Reversibility of aggregation

Can pre-formed SNAP25 oligomers be re-dissolved? OD measurements, which 

are probably dominated by protein precipitation as a follow-up reaction to 

oligomerization, suggest at least partial reversibility: While large aggregates still 

form at high calcium concentrations, they partially dissociate again after several 

hours (Fig. 10). Since re-dissolution occurred without applying high temperature 

or pressure59, it can be speculated that the proteins within these aggregates 



Discussion           93

were probably not completely denatured and associated to each other via strong 

hydrophobic forces, or connected via stable β-sheet fibrils. The reversibility rather 

argues for a relatively loose association. However, the conformation of SNAP25 

within the oligomers remains speculative and would need to be elucidated e.g. 

with circular dichroism (CD) spectroscopy. If a structural alteration does occur 

during oligomerization, its reversibility into the native conformation after 

oligomer re-dissolution could be investigated with CD spectroscopy and by 

testing the protein’s biological functionality.

Part of the aggregates was not re-dissolved during the time course of the OD 

experiments. This may be interpreted either in terms of irreversible aggregation 

of this fraction, or in terms of insufficient time for re-dissolution. The latter 

view is supported by the lack of a plateau in turbidity and thus stagnation of re-

dissolution with 500 and 100 mM calcium. The maximum extent of reversibility 

could be investigated by removing calcium from the solution, e.g. by dialysis. In 

MST measurements, aggregates that form are probably smaller and only rarely 

undergo phase separation. Along these lines, it should be noted that calcium-

induced clustering of membrane-bound SNAP25 was reported to be fully 

reversible within 3–6 hours after calcium removal29 (albeit it is unclear whether a 

similar type of aggregate forms in membrane sheets).

In summary, homophilic SNAP25 interactions lead to a substantially oligomerized 

protein structure already in the absence of ions. Addition of intermediate calcium 

concentrations increases the degree of oligomerization, leading to the formation 

of large multimers. Depending on protein concentration, these structures may 

precipitate from solution, and the precipitated SNAP25 will be more difficult to 

redisperse than large soluble aggregates. Addition of high amounts of calcium 

results again in smaller entities or re-dissolution of precipitates. In conclusion, 

soluble SNAP25 reveals biphasic oligomerization behaviour in response to calcium 

ions (see Fig. 28).
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6.2 Extending the principle of ion-induced biphasic oligomerization from 

solution to the cell membrane 

Oligomerization of the membrane-anchored protein was investigated with 

endogenous SNAP25 in plasma membrane sheets – a plain yet physiological platform 

for analysing membrane architecture. SNAP25 is substantially (pre)clustered in the 

membrane even in the absence of ions (cf. e.g. Fig. 19), which is typical of membrane 

proteins136,128. It is interesting to note that this creates a similar pre-oligomerized 

starting point for both membrane-bound and soluble SNAP25. 

Like in solution, addition of increasing concentrations of calcium ions 

produced a biphasic oligomerization response of membrane-anchored SNAP25. 

Analysing the relative SD of f luorescence in a ROI shows that at intermediate 

calcium concentrations, proteins are reorganized from a relatively homogenous 

distribution to a more clustered one. Judging from the analysis of STED images, 

this reorganization involves disintegration of approx. 50 % of the clusters and 

translocation of their molecules to other clusters, or alternatively merging 

of whole clusters. Whether reorganization also involves incorporation of 

homophilic
attraction

monomer lower-order oligomer higher-order oligomer
insoluble

precipitate

calcium ions high S25 
concentration

Fig. 28 Biphasic SNAP25 oligomerization in solution. In physiological salt solution, 
SNAP25 assembles into lower-order oligomeric structures. Addition of calcium ions 
either favours the formation of higher-order oligomers at low to intermediate calcium 
concentrations, or the (at least partial) continuance of lower-order oligomers at high 
calcium concentrations. At high protein concentrations, the aggregates can form 
insoluble precipitates. 
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previously non-clustered molecules remains unresolved. While this pathway 

was suggested by a segmentation-based analysis approach of the epif luorescence 

images (see Fig. 16), a uniformly (i.e.) non-clustered population was not visible 

in STED images. The segmentation-based analysis most likely overestimates the 

proportion of uniformly distributed molecules (see page 70 for details), while 

STED microscopy may be too insensitive to detect it at the high depletion laser 

powers used here. It can be speculated that if this uniform population does exist, 

it is rather small.

In addition to molecule redistribution, both epif luorescence and STED 

images suggest tighter protein crowding as an additional aspect of clustering. The 

relative f luorescence intensity is reduced at intermediate calcium concentrations, 

pointing to a reduced accessibility for the antibody to both the N- and the 

C-terminus of the protein. In addition, the STED images indicate that the same 

number of molecules is confined in half as many, but equally sized clusters. 

In summary, biphasic oligomerization can be induced in both soluble and 

membrane-bound SNAP25, arguing for a similar underlying physico-chemical 

mechanism. The following subsections will discuss differences and parallels 

between these fundamentally different configurations and explore their 

implications for protein oligomerization. 

Both in solution and in the membrane, oligomerization appears to be 

driven by charge attenuation. In both environments, an increasing amount of 

monomers is recruited into SNAP25 clusters. However, the reaction that leads to 

monomer recruitment and incorporation differs between the two systems. In 

solution, this recruitment leads to massive cluster growth (cf. Fig. 28). The DLS 

data of soluble SNAP25 provide evidence for a 100–1,000 fold increase in SNAP25 

oligomer size upon calcium addition, towards oligomers which are up to 1000 nm 

in size (this is even more notable on the level of the number of molecules per 
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oligomer, which – assuming spherical clusters – increases with the third power 

of oligomer radius). The size of membrane bound SNAP25 clusters, in contrast, 

was found to be limited to approx. 100 nm irrespective of the calcium concentration. 

Clusters appeared to increase the amount of their constituents merely by a factor of 

five in the clustering regime, via tighter cluster packing (see Fig. 29). These different 

pathways are probably due to four major differences arising from the protein 

environment. First, the number of available protein monomers is lower, and second, 

protein movement is restricted in the membrane environment. Third, the 

membrane contains a multitude of other protein and lipid species, and finally, 

plasma membrane specific short-range attractive and long-range repulsive forces 

provide a major contribution to membrane protein clustering.

6.2.1 The number of possibly associating monomers is greater in solution than 

in membrane sheets

This is a very basic, yet important consideration. Typical PC12 membrane sheets 

in this study were about 100 µm2 in size. The PC12 membrane was published to 

contain 7,500 SNAP25 molecules per µm2 137. Multiplying these numbers, it can 

be estimated that there are 7.5×105 SNAP25 molecules per sheet, and thus the 

loosely packed

+ high Ca2++ low Ca2+

loosely packed densely packed
100 nm 100 nm 100 nm

Fig. 29 Biphasic SNAP25 oligomerization in the plasma membrane. In the presence 
of low calcium concentrations (left), the packing density and the number of molecules 
in the clusters increase but cluster diameter is unchanged. This is compensated for by a 
reduced number of clusters per membrane area (not shown; for clarity the figure focusses 
on a single cluster). In the presence of high calcium concentrations (right), both packing 
density and cluster diameter resemble the condition without divalent ions (centre). 
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maximum amount of monomers that could potentially be recruited into a cluster. 

In the experiments performed with soluble SNAP25, the number of available 

monomers is several magnitudes higher: The label-free MST experiments for 

example were conducted with 10 µM SNAP25 in a volume of ~5 µl. This provides 

~3×1013 SNAP25 molecules per capillaryII. In the optical density measurements, 

the monomer number is even higher and amounts to ~4×1015 SNAP25 molecules 

per wellIII. These calculations indicate that already the available amount of 

SNAP25 monomers limits cluster growth in the membrane environment. 

6.2.2 Protein movement is restricted in the plasma membrane

Degrees of freedom

Endogenous SNAP25 is permanently anchored to the membrane bilayer so that it 

can merely translate along the two-dimensional membrane plane, and it can only 

rotate around the axis orthogonal to the membrane surface. Therefore, while a 

soluble protein experiences six degrees of freedom (three translational and three 

rotational), a membrane protein experiences only three.

Caged diffusion

The Singer and Nicholson model138 pictured relatively few proteins to be freely 

diffusing in a sea of inert lipids. Based on this model, one should expect no 

further restrictions in protein movement apart from the fewer degrees of freedom. 

However, several aspects of the f luid mosaic model have been challenged by 

later experimental evidence. Protein diffusion is about a factor twenty slower 

in plasma membranes compared to artificial membranes or liposomes139, 

pointing to constraints arising from membrane structure and composition. 

II  10 µmol/l × 5 µl × 6.022×1023/mol = 3.011×1013

III  70 µmol/l × 100 µl × 6.022×1023/mol = 4.215×1015
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Single particle tracking experiments revealed that proteins undergo anomalous 

diffusion140 characterized by diffusion within a certain compartment, followed 

by a hop-movement to an adjacent compartment to which the protein is again 

temporally confined. The origin of this compartmentalization is the cytoskeleton 

cortex, which forms sub-plasmalemmal cytoskeleton fences that can only be 

overcome during their re-assembly or if they happen to be located far enough 

from the membrane. 

During the preparation of membrane sheets, the actin cytoskeleton 

remains in principle attached to the inner membrane leaf let6. The actin cortex 

then depolarizes within ten minutes141, i.e. within the time that was spend in this 

study to incubate the membrane sheets with ions. Thus, at least initially SNAP25 

should undergo anomalous diffusion in the membrane sheet experiments. The 

temporary confinement to the compartments of the cytoskeleton meshwork is 

even greater for oligomers than for monomers. This appears to be both the result 

of the increased size and thus greater difficulty to undergo hop diffusion, as 

well as the higher avidity for binding cytoskeleton fences142. This indicates that 

the more SNAP25 monomers are recruited into a cluster, the less likely it is for 

two SNAP25 clusters to encounter each other and fuse. The impact of the actin 

cortex on SNAP25 clustering could be more thoroughly evaluated by analysing 

sheets of cells incubated with jasplakinolide, a (cell-permeant) inducer of actin 

polymerization143.

Apart from passively limiting diffusion, the cytoskeleton specifically 

tethers some proteins and thus hinders their movement. An active interaction 

between SNAP25 and the cytoskeleton is not known, and therefore does probably 

not play a role in this case. 
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Consequences of movement restriction

Unrestricted mobility is apparently no key issue for ion-induced biphasic 

clustering. However, the experimental data demonstrate that oligomer growth 

of membrane-bound SNAP25 is limited, and that formation of giant clusters 

(or a single giant cluster) – as observed with soluble SNAP25 – is prevented. This 

can probably be attributed to a combination of passive diffusion restrictions and 

active interactions with other membrane constituents (see also paragraph 6.2.3 

below). It could be speculated that in solution a few very large oligomers are 

formed, while in the membrane (even though the number of available monomers 

is lower) many small-to-medium sized oligomers are assembled upon calcium 

addition.

6.2.3 The plasma membrane contains a multitude of potential interaction 

partners

Biphasic oligomerization experiments with soluble proteins are typically 

performed in simple aqueous solutions. Here, the solution contained – besides 

SNAP25 and CaCl2 – a buffer substance to maintain physiological pH, as 

well as sodium and chloride ions to mimic physiological osmolarity and salt 

concentration. These are only few (less than ten) different components. The 

cell membrane, in contrast, is populated by several thousand different protein 

species144,145 and several different classes of lipids146, which create a complex multi-

component environment. The protein of interest likely interacts with several of 

these other components in addition to interacting with itself. 

Influence of membrane components on electrostatics 

Interactions between proteins and other proteins or lipids can arise between 

charged chemical groups or (induced) dipoles, as well as between hydrophobic 

sections (cf. 2.2.2.3). The number of potential electrostatic interactions is 
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evidently of major importance in ion-induced protein clustering. In solution, the 

polybasic region of SNAP25 is free to interact with the overall negatively charged 

SNARE motifs, leading to partial neutralization of the molecule’s negative 

charge. In case of membrane-bound SNAP25, the polybasic region of the protein 

is located next to the protein’s palmitoyl anchors, and therefore in the immediate 

vicinity of the inner, negatively charged membrane leaf let. Here, the polybasic 

region likely interacts with PIP2 molecules (personal communication from 

P. Weber and T. Lang, see also147, 157), thus precluding intramolecular interactions 

with negatively charged protein regions. This lipid-mediated neutralization of 

the polybasic linker increases the net negative charge of the protein and as a 

consequence intermolecular like-charge repulsions. 

On the other hand, charge compensation of negatively charged protein 

residues by membrane lipids is less likely to occur: there are only few positively 

charged lipids in general148 and in the inner plasma membrane leaf let 

specifically149. In fact, the net negative surface charge of the inner membrane 

leaf let may impart a higher negative charge density to the immediate vicinity of 

SNAP25 molecules, and thus diminish the capacity of calcium ions to neutralize 

electrostatic repulsions between the molecules. 

Hydrophobic interactions

Hydrophobic interactions likely also play a role in the SNAP25 clustering process, 

since they are often involved in protein oligomerization in general (see 2.2.2.3), and 

the formation of coiled coils (such as the SNARE complex) specifically52. In solution, 

hydrophobic patches of SNAP25 presumably show a great degree of interaction 

due to the lack of other hydrophobic components, and thus favour oligomerization 

independent from electrostatic mechanisms. In the case of membrane-bound 

SNAP25, though, the protein’s hydrophobic patches can alternatively interact with 

lipids or hydrophobic patches of other membrane proteins.
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Heterologous interactions

This multitude of interaction partners in the membrane creates a different starting 

point for oligomerization. In addition, the interaction partners or the extent and 

mode of interaction may change upon addition of ions. This entails a plethora of 

possible interaction patterns during protein oligomerization which are not available 

in simple solutions. If the protein of interest interacts with other proteins or lipids, 

there are fewer functional groups that can engage in homophilic interactions with 

other SNAP25 molecules. It can be speculated that this leads to a reduced size and 

to a lower purity of SNAP25 oligomers in the plasma membrane. The differences 

in oligomer size between soluble and membrane bound SNAP25 have already been 

discussed in sections 6.2 and 6.2.2. With the exception of examining the SNAP25 

interaction partner syntaxin-1, oligomer purity was not experimentally assessed in 

this study. Therefore, the extent of SNAP25 mixing with other proteins within the 

membrane SNAP25 cluster remains speculative.

Heterologous interactions with membrane components can also affect protein 

aggregation by altering the protein secondary structure150. From studies with soluble 

variants of SNAP25 and syntaxin135,151, we know that the usually unstructured 

SNAP25 adopts an α-helical conformation upon syntaxin binding. The membrane 

environment, in which SNAP25 and syntaxin are known to interact123, thus very 

likely affects SNAP25 conformation. 

However, unlike amyloidogenic proteins, SNAP25 apparently oligomerizes 

rather randomly, independent from sequential structural changes. It was previously 

shown with CD spectroscopy that a soluble SNAP25 peptide adopts an α-helical 

conformation when incubated with calcium ions135. The degree of α-helicity was 

positively (not biphasically) correlated with calcium concentration, and it was 

even more pronounced for magnesium ions135 – which were found less potent at 

inducing clustering in this study. For these reasons, it appears unlikely that the 
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degree of α-helicity is directly related to the degree of SNAP25 clustering, or 

that clustering is accompanied by strict sequential changes in the secondary 

structure. The structural changes imposed by the membrane environment are 

therefore probably of minor importance in this case.

6.2.4 Network of interactions acting on proteins in solution and in the 

plasma membrane 

Ion–protein vs. protein–protein interactions 

What is the difference between ion–protein and protein–protein interactions 

(cf. also Table 2) in governing protein oligomerization? Both types of interactions 

are similar in that they involve electrostatic and van-der-Waals forces. Therefore, 

clustering mechanisms that rely on these forces will predominantly be inf luenced 

by the presence of ions. Still, there are several differences between electrostatic 

fields originating from metal ions compared to proteins. Multivalent ions like Ca2+ 

convey a larger amount of charge than the monovalent amino and carboxylate 

groups in proteins. This charge is more concentrated (restricted to a single atom) 

and less polarizable than in the case of amino and carboxylate groups. In addition, 

ions are smaller and freely moving, unlike the spatially confined charges of a 

large biomolecule. Ions have thus access to crowded or shielded parts of proteins. 

Inside a living cell, Ca2+ concentrations are subject to large f luctuations making 

ion–protein interaction shorter lived than protein–protein interactions. Hence, 

ions exert a strong, dynamic, and locally limited electrostatic force, which may 

even act at remote protein domains. 

The cluster phase model

In the plasma membrane, however, there are additional, lipid-mediated 

mechanisms that favour protein clustering. These effects are different from the 

heterologous interactions discussed in 6.2.3, since they are more passive, less 

direct and less specific. 
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According to the protein cluster phase model152,128 lipid-mediated forces in 

the order of a few kBT (the thermal energy) are sufficient to induce largely 

homogenous protein clusters in the membrane, with only few molecules of 

each protein species remaining in the non-clustered phase. The forces can be 

categorized in short range (< 1 nm) attractive and long range (> 10 nm) repulsive 

forces, and will be considered in greater detail in the following two paragraphs. 

First, lipids cause a depletion attraction between proteins (cf. Fig. 20 a for a 

description of this effect). In addition, the hydrophobic mismatch of proteins (i.e. 

the hydrophobic core being larger or smaller than the membrane diameter) entails 

alterations in membrane thickness. The energy consumption for these alterations 

is minimized by clustering of proteins with similar hydrophobic cores. While 

these two forces may explain clustering of many (trans)membrane proteins128, 152, 

they may only partially account for the large extent of "pre"clustering of the 

palmitoyl-anchored SNAP25.

Repulsive forces are elastic membrane deformations imposed by non-

cylindrical (e.g. conical) protein shapes. These deformations are screened in 

cells beyond distances of a few tens of nanometres because of membrane tension, 

and membrane coupling to the rigid cytoskeleton152,128. In membrane sheets, 

this screening is probably less efficient due to lower membrane tension and a 

depolymerizing actin cortex (see 6.2.2). Therefore, these elastic deformations 

probably contribute to the limitation in cluster growth, in addition to the 

restricted movement and the limited amount of self-interactions discussed in 

6.2.2 and 6.2.3. 

Effects of ions on cluster phases

Both in solution and in the membrane, protein clustering is thus driven by 

electrostatic forces between charged protein residues. In both systems, the 

densely charged calcium ions likely lead to a charge attenuation of the carboxylate 
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groups provided by aspartate and glutamate residues at low to intermediate 

calcium concentrations, and to protein overcharging at high ion concentrations. 

In solution, electrostatic and van-der-Waals forces are the main determinants 

of protein clustering. This explains why calcium ions have a major impact on 

oligomerization of soluble SNAP25 and lead to massive cluster growth. In the 

membrane environment, protein assembly is governed by various forces. The 

SNAP25 proteins are already highly pre-clustered, and addition of calcium ions 

does not increase cluster size but packing density. The effect of calcium ions is 

thus less pronounced in the membrane, and rather adds an additional level of 

complexity to the multifactorial membrane protein clustering mechanism.

This is also illustrated by the results on SNAP25–syntaxin co-clustering. 

In solution, the two SNARE proteins are known to form complexes135. Yet, 

their colocalization was low in the plasma membrane sheets, and was not 

directly related to the extent of calcium-induced clustering (cf. Fig. 26). As 

discussed above, the distribution of proteins in the membrane is governed by 

several factors. Based on the results from this study, the individual protein 

species within this system such as SNAP25 or syntaxin constitute apparently 

autonomous sub-groups with little contact between each other. Ion-mediated 

protein clustering apparently cannot overrule the specific protein–protein and 

protein–lipid interactions leading to protein homo-clustering discussed above.

6.3 The chemical basis of biphasic ion-induced clustering

Having considered the molecular differences and similarities between protein 

oligomerization in the membrane and in solution, this section will explore the 

mutual chemical basis of ion-induced clustering and re-dispersion in these 

systems.
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6.3.1 Calcium ions directly interact with protein carboxylate groups 

The membrane sheet experiments revealed that the ability of an ion to induce 

protein clustering does not depend on its bare charge, but on its charge-to-

radius ratio. This indicates that a certain charge density is necessary to attenuate 

the electrostatic repulsions between two negatively charged protein residues. 

However, considering only charge density as the driving force for clustering 

cannot explain why there is an optimum of the charge-to-radius, or in other 

words, why ions with very high charge densities were incapable of inducing 

clustering in membrane sheets. 

Two other parameters were found to be linked to the extent an ion promotes 

protein clustering: the ion’s water viscosity coefficient and its hydration enthalpy 

per coordinating water molecule. Both these parameters suggest that water 

binding energies are important in the clustering process. In aqueous solution, 

ions are surrounded by a shell of hydrating water molecules. Both the water 

viscosity coefficient and the hydration enthalpy are parameters which describe 

the strength of the ion–water interactions. The data thus suggest that in order 

for the ion to interact with the protein surface, it releases one or several of its 

hydrating water molecules. Since a former study29 showed that proteins with 

a higher content of negatively charged residues experience greater calcium-

induced clustering, it appears very likely that the ions engage in a coordinative 

binding with protein carboxylate groups in exchange for water molecules. This 

ligand exchange, however, is only energetically favourable if the binding enthalpy 

between the ion and the carboxylate group is greater than the binding enthalpy 

between the ion and the water molecule. 

Taken together, ion water affinity and charge density can thus account 

for the observations in this study. Magnesium and the lanthanide ions have 

energetically unfavourable (or insuperable) hydration energies. This is also 
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ref lected by the water exchange rate, which is about 3,000-fold lower for 

magnesium than for calcium ions153. Therefore, these ions hardly exchange their 

water molecules for carboxylate groups and do not induce protein clustering. 

Sodium ions, on the other hand, are easily dehydrated and could readily bind 

to carboxylate groups. Yet, their charge density may be too low to attenuate the 

proteins’ negative charges, a prerequisite for tighter clustering.

The observation that there is an optimum range for the parameters 

water viscosity coefficient and hydration enthalpy in which the ions are 

effective at inducing protein clustering is also consistent with the law of 

matching water affinities. This law predicts that oppositely charged ions 

preferentially form contact pairs if they have similar water affinities. Indeed, 

the water viscosity coefficient154 of the acetate anion (0.246 cm3/mol) is similar 

to that of Sr2+ (0.272 cm3/mol), whereas the water viscosity coefficients for 

Na+ (0.085 cm3/mol) and La3+ (0.576 cm3/mol) are substantially lower and higher, 

respectively. According to this concept, it could be speculated that lanthanum 

is most efficient at clustering highly phosphorylated proteins, since it resembles 

phosphate’s water affinity (0.495 cm3/mol).

Despite these considerable agreements in the water viscosity coefficients observed 

in this study, it has been shown that so-called Hofmeister (or “ion-specific”) 

effects strongly depend on surface polarity104, besides polarity and charge of the 

protein chain155 and salt concentration93. In fact, it has been suggested that there 

is no universal Hofmeister ranking, but rather a “diverse spectrum of direct, 

partially altered, and reversed (indirect) series”155. Indeed, the series of ions 

which this study found to be effective at membrane protein clustering is not 

identical to the Hofmeister series of ions which precipitate proteins in solution. 

Also lanthanum, while unable to induce SNAP25 clustering in membrane sheets, 
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was previously shown to inf luence oligomerization of BSA in solution89. There 

may also be a different effect of magnesium ions on soluble and membrane-

bound SNAP25 in this studyIV. 

Therefore, the crucial realms of the ion properties (charge-to-size ratio, 

water viscosity coefficient and hydration energy per coordinating water 

molecule) identified in this study are most likely not universal, but rather 

specifically apply to negatively charged proteins anchored to cell membranes. 

(Even the net amount of the negative charge and the hydrophobicity of the 

protein of interest could be important). In addition, it could be speculated that 

the hydrophobic membrane differently affects the distribution of calcium and 

magnesium ions: Larger cations (in this case calcium) have a higher affinity for 

hydrophobic surfaces155. This is the result of both a larger polarizability and the 

lower water affinity of these ions156. In section 6.2 it was extensively shown that 

the membrane environment additionally inf luences protein clustering per se. 

These considerations may explain why the effect of ions depends on the protein 

properties and on its environment.

Irrespective of the exact realms of water affinities and the charge-to-radius ratio, 

the data suggest that in case of both membrane-bound and soluble SNAP25, calcium 

ions directly interact with the protein carboxylate groups. Support for such a direct 

interaction is also provided by molecular dynamics (MD) simulations (performed 

by Dr. Thomas H. Schmidt, LIMES Institute, Bonn). All-atom MD simulations were 

computed with SNAP25 peptidesV, water molecules, sodium and chloride ions,

IV  Although the readouts cannot be directly compared, magnesium ions appeared to induce 
approx. 50 % of the calcium clustering effect in solution (compare the dynamic ranges in Fig. 14), 
while their impact on membrane-bound SNAP25 is much more subtle (see Fig. 22).
V  The peptides correspond to Leu 35–Met 64 located in the N-terminal SNARE domain. The 
structure of this peptide was extracted from the crystal structure of the assembled SNARE complex 
(PDB-ID: 1SFC, chain C).
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as well as varying calcium concentrations122. 

Similar to soluble and membrane-anchored 

SNAP25 analysed in the wet lab experiments, 

the SNAP25 peptides experienced biphasic 

oligomerization in silico (cf. Fig. 30). 

Analogous to quantifying the proteins’ 

antibody accessibility in the membrane sheet 

experiments, the solvent accessible protein 

surface area was quantified for the simulation 

data. This clearly documents the biphasic trend 

in clustering (Fig. 30 c). Since the clustering 

trends in silico are remarkably similar to the 

wet lab experiments, the data were further 

explored to gain insight into the molecular 

mechanism on an atomistic level. As already 

implied by the sheet experiments, it could be 

shown that calcium ions directly interact with SNAP25 carboxylate groups of 

glutamate and aspartate side chains and the protein C-terminus. The ions are 
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Fig. 30 Biphasic clustering behaviour in response 
to Ca2+ ions is observed for SNAP25 peptides in 
molecular dynamics (MD) simulations. (a) MD 
initial configuration of 27 SNAP25 peptides solvated 
in an aqueous environment (for clarity only the 
peptides are shown, which are coloured according to 
their position in the simulation box). (b) MD system 
configurations after 100 ns unbiased simulation, 
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is assessed by the peptides’ solvent accessible surface 
area (SASA) (mean ± s.e.m., n = 4). This figure is 
modified from ref. 122.
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located merely ~0.35 nm away from the carboxylate carbon atom. This distance 

ref lects a coordinative oxygen atom binding mode, which requires the calcium 

ion to release at least one water molecule from its hydration shell. 

6.3.2 The stoichiometry of calcium–carboxylate interactions defines the degree 

of oligomerization 

The in silico data suggest that clustering is not merely driven by charge attenuation. 

At concentrations for which the greatest degree of clustering is observed, most 

bound calcium ions interact with more than one carboxylate group (Fig. 31 a). 

This means that calcium ions function as bridges or linkers between protein 

carboxylate groups. 

What is the mechanism of protein dispersion at high ion concentrations? 

One hypothesis states that counterion association beyond charge neutrality is 

an entropy driven process, since the excluded volume of the solvent molecules 

is minimized117,116. The experiments with membrane sheets incubated with the 

crowding agent trehalose did not show an effect on SNAP25 clustering (see Fig. 20). 

This supports the notion that external/additional depletion forces have a rather 

weak effect on membrane proteins, either because the excluded volume for water 

(and lipid) molecules in the anyhow crowded membrane is already minimized, 

or because the depletion forces are overruled by e.g. electrostatic effects. 

Alternatively, ion adsorption to the protein surface may be mediated by 

dispersion forces at high ion concentrations93. As a consequence, the surface 

tension at the protein–water interface would be reduced, which then drives 

cluster dissolution93. In contrast to this concept, I did not find high concentrations 

of ions with greater polarizability, such as Ba2+, to be more effective at preventing 

clustering than less polarizable ions such as Ca2+. This would be expected (and 

was indeed observed by Zhang and Cremer93), if non-specific ion-adsorption was 
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the driving factor for preventing clustering since more polarizable ions adsorb to 

a surface more easily. This difference may arise from the choice of ions. This 

study used small monatomic cations which are substantially less polarizable than 

the polyatomic anions used in the other study93.

Non-specific calcium adsorption to SNAP25 is not supported by the MD 

simulations either (although it should be noted that this simulation method 

does not consider electrons explicitly). Still, SNAP25 dispersal at high calcium 

concentrations is observed in the simulations which do not include dispersion 

interactions, indicating that non-specific ion adsorption is at least not crucial 

to this phenomenon. In the MD simulations, calcium ions continue to bind to 
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carboxylate groups at high ion concentrations122. However, the number of calcium-

mediated bridges between three or more carboxylate groups is reduced at high 

calcium. The majority of calcium ions interact with only one carboxylate group 

(Fig. 31 a). The ions thus no longer link the SNAP25 molecules to each other.

A concept that considers only interfacial bridges still appears insufficient 

to explain biphasic protein aggregation. If the number of ion bridges between 

carboxylate groups were the main (or even sole) factor that determines whether 

proteins remain separated (few bridges) or aggregate (many bridges), proteins 

with the highest absolute number or highest percentage of negatively charged 

residues – and thus maximal number of potential bridges – would be expected 

to respond strongest. Conversely, a previous study29 showed that proteins with 

the highest net charge (i.e. the percentage of negatively minus positively charged 

residues) are clustered most efficiently by calcium ions. This implies that the 

global protein charge is also important in the clustering process. Carrying a net 

amount of fourteen negative charges, the SNAP25 molecule can be considered as 

heavily charged. Long range electrostatic repulsion have already been suggested 

by Stradner and colleagues100 to limit clustering. In addition, short range (< 1 nm) 

electrostatic repulsion or attraction between charged protein groups certainly 

contributes to the clustering processes.  

Is cluster dissolution at high ion concentrations also inf luenced by charges? 

The MD simulations show (at least local) overcharging of SNAP25. With 

increasing calcium concentration, several COO- groups simultaneously interact 

with two or even three Ca2+ ions (Fig. 31 b). Since the carboxylate group carries a 

single negative charge while the calcium ion carries two positive charges, already 

a 1:1 binding implies a local overcharging with positive charge. The driving 

force for this association beyond charge neutrality remains unresolved. Ion-ion 

correlations114 could be one explanation; dispersion forces or depletion attraction 
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seem unlikely (see above). The carboxylate groups which are overcharged with 

positive ions are expected to electrostatically repulse each other, similar to 

carboxylate groups in the absence of positive ions.

In summary, the stoichiometry of calcium–carboxylate interactions 

determines whether the proteins aggregate or separate: aggregation is driven by 

charge attenuation and ion bridging, while separation is characterized by a high 

(negative or positive) net charge and the absence of ion bridges. 

Is biphasic ion-induced aggregation a specific property of SNAP25 or is this 

inherent to all membrane proteins? Biphasic calcium-induced clustering was also 

observed for syntaxin in membrane sheets (Fig. 26). Yet, the clustering response 

at intermediate calcium concentrations is not as strong as for SNAP25, and 

syntaxin dispersion at high calcium concentrations was not as pronounced. Both 

these differences are likely due to the overall less negative charge of syntaxin 

(which has net 4 % negatively charged residues, while SNAP25 has 6.8 %). 

Hence, biphasic ion-induced clustering of negatively charged proteins 

appears to be a general effect. Yet, its characteristics depend on the negative 

charge of the respective protein, and likely also on the strength of the protein's 

interactions with other proteins and lipids. 

6.4 Biological and technological significance of the study

The intracellular calcium concentration in resting cells is kept to roughly 

100 nM. However, during synaptic transmission for example, the local 

calcium concentrations in the proximity of calcium channels can increase to 

100–200 µM158,159. The MD simulations unequivocally proved that already a few 

calcium ions forming ion bridges are sufficient to induce SNAP25 clustering. In 

line with this observation, depolarization-induced calcium influx is sufficient to 
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induce SNAP25 clustering in bovine chromaffin cells29. Other negatively charged 

proteins in the channel vicinity are likely to be similarly affected. This membrane 

reorganization could be an additional way by which calcium ions inf luence 

synaptic plasticity (besides the plethora of signalling pathways calcium affects 

as a second messenger during this process160). Interestingly, binding studies 

with soluble synaptobrevin suggest that calcium-induced clustering appears to 

be a mechanism that reduces SNARE protein activity29, and thus possibly also 

synaptic activity. 

In the extracellular milieu the calcium concentration is about 10,000-fold 

higher than inside the cell, and amounts to about 1.5 mM161. This is sufficient 

to induce salt bridges between membrane proteins on the extracellular leaf let, 

or between soluble proteins in extracellular f luids such as the blood, lymph or 

interstitial f luids. In contrast, calcium concentrations that would favour protein 

cluster dissolution are unlikely to occur in vivo. 

The apparently conserved physico-chemical principles explored in this 

study are also interesting in terms of metal ion involvement in amyloidoses. Like 

many amyloidogenic proteins, SNAP25 is charged and intrinsically disordered. 

In favour of the applicability of insights from SNAP25, α-synuclein aggregation, 

a hallmark of Parkinson’s disease, was shown to be stimulated by calcium ions162. 

Calcium promoted membrane association of the protein, possibly by bridging the 

acidic C-terminal tail to the negatively charged plasma membrane components163. 

Binding stabilized the partially folded amyloidogenic conformation, which likely 

facilitates α-synuclein aggregation in the membrane and seeds aggregation in 

the cytosolic α-synuclein fraction164. Alpha-synuclein carries a similar net 

percentage of negatively charged residues compared to SNAP25 (6.5 % vs. 6.8 %), 

is also intrinsically disordered, and may be localized both at the membrane and 

in the cytosol. 
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Calcium ions interact with negatively charged residues of both SNAP25 and 

α-synuclein, but neither one of the proteins presents a canonical calcium binding 

motif such as the EF hand or the C2 domain165. Rather, both proteins feature 

clusters of negatively charged residues. It is interesting to contemplate that 

calcium binding does not require a consistent binding motif, but that randomly 

scattered negatively charged residues are sufficient. It could be speculated that 

calcium binding to these less well defined sites occurs in a more random, and 

possibly more loose or transient way compared to classical calcium binding sites. 

A deeper understanding of this matter would help to more accurately predict 

calcium binding to proteins. 

Finally, a more precise conception of ion-induced protein oligomerization 

is important for ex vivo use of proteins. For pharmaceutical applications it is 

desirable to create highly concentrated solutions of biologically active proteins. 

Protein formulations with a certain aggregation state are also important in food 

technology. These aggregation states could be regulated via addition of ions. In 

the field of bionanomaterials, aggregation of genetically designed peptides is 

investigated for diverse applications such as hydrogels, nanotubes and -wires, as 

inks for microprinting, and as scaffolds to organize metal nanocrystals for use 

in the electronic industry166. For these applications, ions could be one option to 

control the character of the synthetic protein material.
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6.5 Conclusion

Ion concentration dependent protein aggregation is a phenomenon originally 

described in polymer physics and solution chemistry. Despite the many 

differences between simple aqueous systems and the crowded multicomponent, 

two-dimensional environment of the plasma membrane, ion-induced protein 

clustering and dispersion is observed in both systems, arguing for a fundamental, 

conserved principle. 

The insights of this study provide a conceptual framework at the interface 

of physics, chemistry and biology for ion–protein interactions that favour or 

prevent protein aggregation phenomena with implications for biological and 

industrial processes.

In the case of a cluster – the organizational unit of membrane proteins136 – the 

protein monomers are in a dynamic equilibrium with freely diffusing proteins 

and also with other clusters. In this picture ions can be conceived as modulators 

of quinary protein structures, since the underlying protein–protein interactions 

are based on weak surface charges. Ions can link proteins to each other at defined 

interaction sites, thus creating a protein super structure with a different anatomy 

and different properties. Ion–protein interactions may thus be an important 

factor for the creation of cellular supramolecular assemblies. 
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