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Abstract

The research presented in this thesis revolves around compactifications of type II superstring theories
from both the worldsheet and target space point of view. We employ techniques from the fields of
supersymmetric gauge theory and geometry to analyze the moduli structure of such compactifications,
with particular emphasis on their close interconnectedness.

The thesis begins with a non-technical introduction to the wider research field and explains the
context in which the considered research questions arise. We then give a more detailed review of
the physical and mathematical concepts that form the basis for the subsequents parts of the thesis,
including type II superstring theories, the gauged linear sigma model and Picard–Fuchs operators.

Thereafter, we turn to a study of certain correlation functions in the gauged linear sigma model and
their geometric significance. We demonstrate that these correlation functions are subject to non-trivial
and universal linear dependencies, which in a Hilbert space interpretation correspond to differential
operators that annihilate the moduli dependent gauge theory ground state. For conformal theories
these are identified as the Picard–Fuchs operators on the quantum Kähler moduli space and we present
an algorithm to determine them from the defining gauge theory spectrum directly. For several classes
of Calabi–Yau geometries we moreover derive universal formulas that express their Picard–Fuchs
operators in terms of the gauge theory correlators.
While these findings are also applicable to gauged linear sigma models with non-Abelian gauge

groups, the involved calculations quickly get out of hand. In order to circumvent these computational
difficulties, we in the next chapter build on the Givental I-function to propose explicit formulas for
the holomorphic solutions to the Picard–Fuchs operators of models with general non-Abelian gauge
groups and a large class of matter spectra. These formulas are ready-to-use and thereby provide a
computationally efficient way of determining the operators. We also briefly comment on the idea of
reconstructing gauged linear sigma models from given Picard–Fuchs operators.

As an application of the various concepts and techniques introduced at this point, we then consider
Calabi–Yau fourfolds that arise as target spaces of non-Abelian gauged linear sigma models. The
quantum cohomology ring of such geometries is not necessarily generated by products of the marginal
Kähler deformations alone, rather certain irrelevant operators need to be additionally included. This
translates into the existence of non-zero quantum periods that vanish in the classical large volume limit.
We explain why and under which conditions this phenomenon arises and in an example discuss the
construction of integral quantum periods. These are used to obtain new types of flux superpotentials
and to determine geometric invariants such as genus zero worldsheet instanton numbers.
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CHAPTER 1

Introduction

This thesis presents research in the context of superstring theory whose shared objective is to improve
our understanding of the so-called process of compactification. As we will explain below, the latter is
an essential step in the endeavor of building phenomenologically realistic models within superstring
theory and requires the use of a particular type of conformal field theories. However, their construction
is difficult and only few examples are known explicitly. A certain gauge theory that allows to circumvent
this difficulty will therefore figure prominently. This gauge theory provides tools with which various
examples of the desired conformal field theories can at least be constructed indirectly and thereby
opens the possibility of systematically analyzing their properties. As usual, the gauge theory depends
on a set of coupling constants. These can be interpreted as parameters that continuously deform the
theory and the physical implication of varying them is of particular interest. We will thus study the
space of deformations and to this end employ several techniques from the mathematical discipline of
geometry. Special emphasis is laid on the close interconnection between the methods derived from
gauge theory on the one hand and those from geometry on the other hand.

In the next parts of this chapter we will give a largely non-technical introduction to the main physical
concepts that underly and motivate the research presented here. If not cited otherwise, the below
exposition of particle physics, quantum field theory and string theory is based on references [1–4]. We
then briefly comment on the approach and key findings of our research and conclude with a detailed
outline of the following chapters.

Motivation

It is the aim of physics is to mathematically describe and understand the various phenomena that occur
in nature. In doing so it takes a reductive point of view and tries to unify seemingly different effects
by attributing them to the same underlying principle. In this sense theories fall into an order, where
theories referred to as less fundamental are required to be consistent with those that are believed to
be more fundamental. A natural scale for such an order is provided by the length or, equivalently,
the energy at which a theory is applicable. Namely, phenomena that predominantly occur and are
well described at a given energy scale should nevertheless obey the principles that govern nature
at higher energies. We stress, however, that more fundamental theories do not have an intrinsically
higher scientific value. While less fundamental theories are required to be consistent with the more
fundamental principles, it is often infeasible to explain a certain phenomenon by only employing
the underlying laws of more fundamental theories. A good example for this is statistical mechanics,
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Chapter 1 Introduction

which introduces new technologies for describing large ensembles of particles that go beyond the
microscopic dynamics.

The standard model of particle physics is a shining example of a theory that has successfully unified
a variety of phenomena. It accurately describes the behavior of subatomic particles in the framework
of relativistic quantum field theory, i.e., the synthesis of quantum mechanics and special relativity. Its
predictions have been verified in various experiments, a prominent example of which is the anomalous
magnetic momentum of the electron. Matter particles such as the electron and quarks are described
as fermions with spin 1/2 that interact via their coupling to several particles of spin 1. Since these
force mediating particles fall into three classes, it is natural to classify physical phenomena by which
class of force mediator is involved. This leads to the notion of the strong, weak and electromagnetic
interaction. Finally, there is a spin 0 particle known as the Higgs boson. It plays a pivotal role in the
standard model by giving mass to the matter particles and mediators of the weak force.
In addition to several problems such as the instability of the electro-weak scale against quantum

corrections and the fact that it does not account for the experimentally verified non-zero neutrino
masses, the standard model is certainly an incomplete description of nature: it does not describe the
effects of gravity. At this point it is natural to wonder whether the standard model can be augmented
to include the gravitational interaction within the framework of relativistic quantum field theory.
The answer to this question is positive: it can be achieved by adding a massless field of spin 2, the
so-called graviton, which corresponds to fluctuations in the metric and upon quantization requires the
theory to exhibit general covariance. Since Newton’s constant GN is of negative mass dimension, the
interactions of a massless spin 2 field are not perturbatively renormalizable. While this means that the
theory cannot be extrapolated to higher energy scales, it is perfectly consistent from an effective point
of view. However, gravity is so weak that the quantum predictions of this effective theory are not
measurable by current experiments.
These considerations clearly demonstrate the need for a more fundamental theory of both particle

physics and gravity. This theory should remain valid at the Planck scale MP =
√

1/GN = 1019 GeV,
where the true quantum nature of gravity is extrapolated to be relevant.

String Theory

A promising candidate for such a theory of quantum gravity is string theory. Its key postulate is the
existence of one-dimensional objects, so-called strings. These can be open or closed (forming a loop)
and they propagate in a predefined space-time M , which for nowwe take to be d-dimensionalMinkowski
spaceMd. In complete analogy to (zero-dimensional) particles tracing out a one-dimensional worldline
in space-time, these one-dimensional strings trace out a two-dimensional surface that is referred to
as the worldsheet. Unlike particles, however, strings have vibrations as internal degrees of freedom.
Consider this from a space-time point of view: when an observer measures at energies much lower
than the string length scale ls, they will not be able to resolve the spatial extension of the string and
thus perceive it as point-like, i.e., as a particle. In this way string theory yields a theory of particles.
This intuition is formalized in the worldsheet formulation of string theory, where the string is

described by maps X from the worldsheet into space-time that are treated as two-dimensional quantum
fields whose excitations correspond to the vibrations mentioned above. For d = 26 the theory
exhibits space-time Poincaré invariance and the excitations arrange themselves in representations
of the 26-dimensional Poincaré group, such that they can indeed be interpreted as particles. This
dimensional dependence results from requiring the worldsheet quantum field theory to be conformally
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invariant, with the line of reasoning being as follows: the string dynamics are postulated to obey
the so-called Polyakov action, which couples the quantum field X to the metric h on the worldsheet.
For future reference, we note that the coupling constant of this theory is denoted as α′ and is related
to the string length scale by ls = 2π

√
α′. A key property of the Polyakov action is its invariance

under two-dimensional diffeomorphisms as well as Weyl transformations, the latter of which are local
rescalings of the metric h. These symmetries can be used to gauge-fix the action into a form that is
invariant under two-dimensional conformal transformations. This gauge-fixed action describes the
theory of d free bosons XN , where N is a space-time index, plus a set of Faddeev–Popov ghost fields
introduced by gauge-fixing. The latter constitute an independent conformal field theory with central
charge c = −26. Since conformal symmetry arose as a part of the gauge symmetry, it is necessary to
cancel the conformal anomaly, i.e., the total central charge ctot needs to vanish. This can be achieved
by noting that each XN adds c = 1, such that we get the desired result ctot = −26 + d · 1 = 0 in d = 26
space-time dimensions.

We now specialize to d = 26 — referred to as the critical dimension of string theory — and analyze
the spectrum of closed string excitations. Most importantly, it exhibits a collection of excitations
that transform as a symmetric massless rank-two tensor in space-time. These are precisely the
properties of a graviton, which hints at string theory’s capacity to incorporate gravity. It further gives
a massless antisymmetric tensor as well as a massless scalar, the latter of which is referred to as
dilaton. In addition, there is a whole tower of massive excitations with various tensor structures and
masses proportional to the string mass scale Ms =

√
1/α′. These states are only relevant at energies

comparable to the inverse string length scale ls and therefore typically not considered in a low energy
approximation. The entirely unexcited string corresponds to a state of negative squared mass, i.e., it is
a so-called tachyon and signals an instability of the theory. Moreover, all excitations are space-time
bosons. The here outlined bosonic string theory can thus not be a complete description of nature.

String Perturbation Theory

Before further addressing these problems, let us recapitulate in what string theory differs from
the more familiar framework of four-dimensional relativistic quantum field theory. Certainly, the
notion of particles arises in a different way. In string theory they do not appear as excitations of a
four-dimensional quantum field on space-time, but rather as excitations of the string. The latter is
described as a two-dimensional quantum field on the worldsheet, and we have so far introduced string
theory as the quantum theory of this field and its excitations. The string itself is an object that moves
within space-time and as such is treated on similar footing as particles in first quantization.

From a more formal point of view, one might argue that string theory appears to be ‘just’ a
particular two-dimensional quantum field theory. This is not true, a conceptual difference arises
in the prescription with which scattering amplitudes are calculated. In quantum field theory in-
and out-going particles are represented by asymptotic in- and out-states, and transition amplitudes
between these are typically calculated perturbatively by summing over all allowed Feynman diagrams.
These depict processes of interaction between particles, including their creation and annihilation.
Perturbation theory corresponds to an expansion in a set of coupling constants and its order is given
by the number of interaction vertices in the diagram or, equivalently, the number of loops. This
prescription can be derived for example from path integral quantization and relies on the framework’s
ability to describe the creation and destruction of particles. The path integral specifies transition
amplitudes even non-perturbatively.
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Chapter 1 Introduction

The construction of a similar non-perturbative formalism for the interaction of strings that
includes their creation and annihilation — referred to as string field theory, see for instance the
review [5] — remains an open research question. While for some particular backgrounds the AdS/CFT
correspondence [6] might be argued to provide a non-perturbative definition of string theory, in the
general case the rules for calculating scattering amplitudes are imposed by hand. In- and out-going
strings are, similar to the quantum field theory setup, represented by asymptotic in- and out-states.
These states additionally carry the information about the vibrational degrees of freedom, thereby
specifying which particles are scattered from a space-time point of view. Transition amplitudes
are calculated perturbatively by summing over all worldsheet topologies in the sense depicted in
Figure 1.1 for the scattering of four closed strings. These diagrams can be interpreted to represent

...

Figure 1.1: This picture illustrates the perturbation series for calculating the scattering amplitude between four
closed strings.

the joining and splitting of strings and differ in the number of their ‘holes’, mathematically known as
the genus g of the surface. On each such surface ‘lives’ a worldsheet quantum field theory and the
corresponding diagram is calculated by a path integral, which involves integration over all string maps
X and worldsheet metrics h that are compatible with the topology of the respective surface. This
perturbation series corresponds to an expansion in the string coupling constant gs and the order of
perturbation theory is counted by the Euler characteristic χ = 2g − 2 of the surface. However, gs can
be shown to be the space-time background value of the dilaton and is thus not a free dimensionless
parameter. It is precisely this prescription of summing over worldsheet genera that elevates string
theory to be more than the two-dimensional quantum field theory of the string excitations. Note that
this definition of string theory is intrinsically perturbative in the coupling constant gs, as opposed to
the non-perturbative definition of quantum field theories.

Superstring Theory

As we saw above, bosonic string theory exhibits a state of negative squared mass and does not describe
space-time fermions. Both problems are solved in superstring theory. It is obtained by extending the
bosonic theory to exhibit supersymmetry on the worldsheet, thereby introducing additional fermionic
fields with excitations that behave as space-time fermions. The possible structure of these theories is
severely constrained and in flat space-time there are exactly five consistent superstring theories: type I,
type IIA and IIB, heterotic SO(32) and heterotic E8 × E8.
In this thesis the type II theories figure prominently and will in the next chapter be explained

in greater detail. We here content ourselves with stating a few key facts: After gauge-fixing local
symmetries, their closed string sector is described by a N = (2, 2) superconformal field theory on the
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worldsheet. In the present setup this is the theory of d free bosons and their d fermionic superpartners,
plus a ghost field sector which contributes c = −15 to the central charge. Since a free fermion adds
c = 1/2, the total central is ctot = −15 + d · (1 + 1/2) and vanishes in d = 10 space-time dimensions.
This also implies space-time Poincaré invariance. For later reference we note that the type II spectra
contain several massless antisymmetric tensor fields that are known as p-form gauge fields. If not
made explicit otherwise, when speaking of ‘string theory’ without attribute we refer to the superstring
theories of type II.

D-Branes

In the introduction of open strings we have so far ignored an important detail: to fully determine their
behavior, one needs to specify boundary conditions at their endpoints. The simplest possibilities are of
two types. First, there are Dirichlet conditions that fix the space-time position of the endpoints. Second,
Neumann conditions set the momentum flowing of the string’s ends to zero. While the time direction
is (typically) chosen to obey Neumann conditions, the conditions for the spatial directions can be
chosen independently. Let us consider an open string with (p + 1) von Neumann and (9 − p) Dirichlet
directions, where 0 ≤ p ≤ 9. This choice confines the string’s endpoints to a (p + 1)-dimensional
subspace of space-time. Further, translational symmetry is broken along the (9− p)Dirichlet directions
and hence the corresponding momenta are not conserved. In order to ensure this symmetry breaking to
be spontaneous, the (p + 1)-dimensional subspace itself needs to be interpreted as a dynamical object
that absorbs the outflowing momentum. These entities are referred to as Dp-branes, they are extended
along p space directions and in space-time sweep out a (p + 1)-dimensional so-called world-volume.
In the type II theories they are essential for obtaining vector fields with non-Abelian gauge symmetry.
The tension of Dp-branes can be calculated to scale with 1/gs, such that they are non-perturbative
from the string perturbation theory point of view. It is also possible to impose Dirichlet conditions in
the time directions, which leads to the notion of D-instantons that only exist at a given point in time.

Effective Space-Time Description

String perturbation theory allows the calculation of scattering amplitudes between the various string
excitations and, in particular, can be used to derive the low energy interactions among all massless
particles in the string spectrum. In order to obtain a better space-time interpretation one determines a
ten-dimensional quantum field theory onM10 that reproduces these low energy results. The latter is
referred to as the (low energy) effective space-time theory, which for type IIA and IIB string theory
are the supergravity theories of type IIA and IIB. Note that the full string theory corrects this leading
order result in two ways. First, there are corrections in the string coupling gs due to summing over
worldsheets with genera g ≥ 1. Higher order terms correspond to processes with virtual string loops.
The leading order, g = 0, is similar to a tree level approximation in quantum field theory and in
this sense sometimes referred to as classical limit. Additionally, there are non-perturbative effects
that scale with inverse powers of gs, for example the Dp-branes discussed above. Second, there are
corrections in the worldsheet coupling constant α′. Since α′ is related to the string length scale by
ls = 2π

√
α′, terms of higher order in α′ are due to the string having a finite spatial extension. The

leading order thus corresponds to sending the string length to zero and is referred to as the field theory
limit. Corrections can be both perturbative and non-perturbative.
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Chapter 1 Introduction

Compactification

Having learned about the closed string excitations, we can reinterpret the choice of space-time as
choosing a background value for the graviton field. In the above discussion we chose d-dimensional
Minkowski space-time M = Md, which for superstring theories led to the remarkable conclusion that
d = 10. This is, however, in conflict with our experience of living in four and not in ten macroscopic
space-time dimensions. Clearly, a different choice is necessary.
The so-called ansatz of compactification amounts to writing space-time as the product of four-

dimensional Minkowski space and a six-dimensional compact manifold Mc referred to as the internal
space, i.e., to the choice M = M4

× Mc. Provided the internal space is small enough, current
experiments will not be able to resolve its spatial extension. This is analogous to a two-dimensional
sheet of paper appearing as one-dimensional when being curled up tightly and observed from a
distant point of view. We can thus very well think to live in four dimensions, while the strings still
propagate in the full ten-dimensional space-time. Although the internal space might not be directly
detectable, its shape nevertheless has significant observable consequences: the four-dimensional low
energy effective theory that governs physics inM4 is obtained by the dimensional reduction of the
ten-dimensional effective space-time theory on the manifold Mc. Different choices of Mc result in
different four-dimensional effective theories and it is a well posed physical problem to search for an
internal space that yields a phenomenologically viable scenario.
To gain some intuition, let us recall the perhaps historically first example of compactification.

This is the so-called Kaluza–Klein theory, which considers five-dimensional general relativity on
the product space M4

× S1. By dimensional reduction along the circle, the internal space of this
example, the four-dimensional physics can be demonstrated to be gravity coupled to electrodynamics
(a massless vector field) plus an additional scalar. The appearance of massless scalars is also a generic
feature of string compactifications, these fields are referred to as moduli and are in conflict with the
non-observation of any massless scalars in nature. There are approaches that try to avoid the existence
of moduli, for example so-called flux-compactifications in which one turns on non-zero background
fluxes for the p-form gauge fields [7], see also the reviews [8–10].

We do not consider these approaches and turn off such background fluxes. String theory at leading
order in α′ then predicts the vacuum Einstein equations in space-time. This is tantamount to conformal
symmetry on the worldsheet and requires the internal space to be Ricci-flat. On top of that, not
much can be said about Mc in general. A generic choice will break space-time supersymmetry
entirely, which is actually the phenomenologically favored situation. However, calculational control is
largely lost and the effective four-dimensional theory on Minkowski spaceM4 cannot be derived. It is
therefore common to consider cases that retain one quarter, i.e., eight supercharges. This requires
the internal space Mc to have (exactly) one covariantly constant spinor, which identifies Mc as a
so-called Calabi–Yau manifold. The effective four-dimensional theory then exhibitsN = 2 space-time
supersymmetry that is assumed to be dynamically broken at some lower energy scale independent of
the compactification.
Let us now focus on the case of eight unbroken supercharges and employ a worldsheet point of

view. Recall that, when ignoring the fixed ghost sector, the closed string sector of type II superstring
theory is described by a two-dimensional N = (2, 2) superconformal field theory with central charge
c = 15. Corresponding to the initial choice of ten-dimensional Minkowski space-time, this above was
the theory of ten free bosons and their superpartners. The choice a different space-time translates
into the choice a different N = (2, 2) superconformal field theory with appropriate central charge. In
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particular, compactifications to four-dimensional theories with eight supercharges can be realized by
decomposing the worldsheet theory into two separate factors. First, corresponding to the well-known
four-dimensional Minkowski spaceM4, the theory of four free bosons plus their superpartners. Second,
some internal two-dimensional N = (2, 2) superconformal theory with c = 9. Contact with the
space-time picture is made by the observation that these superconformal theories may (but also may
not) admit a geometric interpretation as a non-linear sigma model on some manifold. This manifold is
referred to as the target space of the superconformal theory and is identified with the internal space
Mc. Such a geometric interpretation is, however, not necessary for the formalism. Moduli are also
generically present in this worldsheet approach to compactification and here correspond to so-called
marginal couplings. These are terms that continuously deform the theory, such that we actually deal
with an entire family of superconformal theories. We note that a potential target space interpretation
is in any case strictly valid at certain boundary components of the deformation space only, where
quantum corrections in α′ are strongly suppressed. After all, the condition of Ricci-flatness is a
leading order result that is corrected at the four-loop level and by worldsheet instantons [11–13].
Superconformal field theories can vary significantly with their moduli and the study of this dependence
is a central topic of this thesis.

Gauged Linear Sigma Model

This discussion demonstrates the central role that two-dimensional N = (2, 2) superconformal field
theories play in compactifications of type II superstring theories. Explicitly known examples that are
suitable for type II string theories are free theories, orbifolds and Gepner models [14, 15].

In the important work [16] Witten introduced a powerful method to indirectly construct a variety of
further examples of the desired type. He proposes to employ a certain gauge theory, known as the
gauged linear sigma model, that is chosen to closely resemble the properties of the superconformal
theories: it is two-dimensional, exhibits the correct amount of supersymmetry, features two classical
U(1) symmetries and depends on a set of coupling constants. His key insight was that, as long as the
gauge theory spectrum is chosen appropriately, these coupling constants are renormalized by a finite
amount only and thus can be interpreted as free parameters that continuously deform theory. The
same choice guarantees the U(1) symmetries to be non-anomalous and as a result the renormalization
group drives the theory to a family of non-trivial N = (2, 2) superconformal field theories in the
infrared (IR). While the renormalization is in general not traceable, certain quantities are largely
protected by supersymmetry. The strategy therefore is to calculate such protected quantities within the
ultraviolet (UV) gauge theory and to determine what they correspond to in the IR superconformal
field theory. This opens the possibility for an indirect study of the latter. The free parameters of
the UV gauge theory correspond to the moduli of the superconformal theory, such that the gauged
linear sigma model can be used to extrapolate between different points in the moduli space of the
superconformal theory. In addition, the IR central charge can be immediately read off from the
defining UV gauge spectrum. This allows us to deliberately engineer exactly those superconformal
theories that correspond to compactifications with four-dimensional N = (2, 2) effective theories. A
potential target space interpretation arises naturally within the formalism.
We stress that the gauged linear sigma model can be employed in a wider context. First, the IR

superconformal theory can have central charges c , 9. This corresponds to compactifications with
other than four macroscopic space-time dimensions. Second, it can also be used to study target space
geometries that do not give rise to families of superconformal field theories.
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Chapter 1 Introduction

Picard–Fuchs Operators

As a second powerful tool for analyzing the moduli structure of superconformal field theories we
will frequently employ so-called Picard–Fuchs operators. These differential operators capture the
dependence of the manifolds of our interest on their moduli, in particular, on the choice of complex
structure and Kähler class. To understand the connection to the previous discussions, consider a
superconformal field theory with geometric target space interpretation. The complex structure moduli
of this target space exactly agree with several moduli of the superconformal theory. In case of the
Kähler moduli such an identification is — due to the above mentioned worldsheet corrections —
valid at leading order in α′ only, which can be interpreted as a deformation of the geometric Kähler
moduli space by quantum effects. While Picard–Fuchs operators arise naturally from a target space
picture, their validity extends beyond regions with a geometric interpretation and they capture global
properties of the moduli space. As we will demonstrate, structures similar to Picard–Fuchs operators
arise within the gauged linear sigma model even without any reference to a target space.

On the Research Presented in This Thesis

This thesis combines the work of different research projects, all of which are related to compactifications
of type II superstring theories and have the common objective to improve our understanding of the
superconformal worldsheet theories arising in this context. Our aim is not an immediate construction
of a phenomenologically viable model, but rather to enhance our conceptual understanding and to
draw general lessons through a careful study of toy models. As main tools we will frequently employ
gauged linear sigma model techniques as well as Picard–Fuchs operators.

The thesis presents new ways in which these tools encode the moduli structure of the superconformal
field theories. Moreover, we establish direct connections between the two approaches that seem to
diminish the role of knowing about a potential target space geometry. A more detailed overview now
follows.

Outline of the Thesis

The following list briefly summarizes the remaining parts of the thesis. For benefit of an expert reader
we here refer to concepts beyond those introduced above.

• Chapter two elaborates on the above concepts and reviews the techniques that underly the
original research presented in the later chapters. We first discuss superstring theories of type IIA
and IIB in more detail, with a focus on their compactification to four macroscopic space-time
dimensions. This motivates the introduction of the gauged linear sigma model, where we put
particular emphasis on demonstrating that its properties are chosen to closely resemble the
N = (2, 2) superconformal field theories that appear in type II compactifications. We also
discuss the low energy dynamics of the model and explain how the notion of a target space
arises. Lastly, we introduce Picard–Fuchs operators as a central tool for studying the moduli
dependence of the superconformal field theories of our interest.

• The third chapter is based on the author’s publication [17]. It is devoted to a detailed study
of certain correlation functions in the gauged linear sigma model. Our results demonstrate
that this set of field theory observables encodes the moduli structure of the IR superconformal
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field theory to a large extent. Remarkably enough, this does not require an explicit geometric
construction of a potential target space and, for the most part, not even knowledge thereof. We
begin by showing that correlation functions with different powers of field insertions are not
mutually independent but rather subject to strong linear relations. Our proof is constructive
and yields an algorithm for deriving these dependencies in concrete examples. This is a pure
gauge theory result and does not require the existence of an IR family of superconformal field
theories. In that special case, however, there is a deep connection to the moduli structure of
the superconformal theory. In particular, we show that the set of linear dependencies between
correlation functions corresponds to the ideal of Picard–Fuchs operators governing the target
space quantum geometry. By combining these two results we obtain an elementary algorithm to
determine the Picard–Fuchs operator of a given model, which as input only requires the defining
gauge theory data, i.e., the choice of gauge group and matter spectrum. Neither does it require
the potentially involved calculation of field theory observables nor any knowledge about an
associated geometry. For fixed classes of target space geometries, specified by their dimension
and number of Kähler moduli, we lastly derive formulas that express the Picard–Fuchs operators
in terms of correlation functions.

• In chapter four we continue to study the connection between gauged linear sigma models and
Picard–Fuchs operators, with the aim of finding a practical method to determine the operators
associated to non-Abelian models in a computationally efficient and straightforward way. As
central result we propose a formula that gives a closed form expression for the fundamental
period — i.e., the holomorphic solution to the differential equation defined by the Picard–Fuchs
operator — of gauged linear sigma models with arbitrary non-Abelian gauge groups and large
classes of chiral matter spectra. Given a concrete model, the Picard–Fuchs operator is easily
found by requiring it to annihilate the holomorphic solution as determined by this formula. The
derivation heavily relies on the so-called Givental I-function [18], which is a concept that we
will introduce in chapter two and also briefly employ in the third chapter. We further comment
on the idea of reconstructing gauged linear sigma models from given Picard–Fuchs operators.

• In the fifth chapter we apply the concepts introduced in the earlier parts of the thesis to study
quantum periods of Calabi–Yau fourfolds that arise as target spaces of non-Abelian gauged
linear sigma models. Contrary to a widely spread belief, their quantum cohomology need not be
fully generated by marginal deformations in the chiral–anti-chiral ring of the two-dimensional
superconformal worldsheet theory. Our focus is on models with a single Kähler parameter, in
case of which this phenomenon results in a non-factorizable Picard–Fuchs operator of order six
or higher. We explain why and when this effect arises, and demonstrate how so-called integral
quantum periods — a special choice of solution to the Picard–Fuchs differential equation — can
be determined for such operators of non-minimal order. This enables us to construct interesting
new types of flux-induced superpotentials that can, for example, be purely instanton generated.
Lastly, we explain how the integral periods determine geometrical invariants such as instanton
numbers. The chapter is based on the author’s publication [19].

• Chapter six provides a short summary of the thesis. We also comment on open questions and
propose directions for future research.
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CHAPTER 2

Basics of Type II Superstrings and Their
Compactification

In this chapter we review several physical and mathematical concepts that form the basis for the
research presented in the later chapters of the thesis. The first part begins with a short introduction
to superstring theories of type IIA and IIB, including their ten-dimensional massless spectrum. We
then introduce the concepts of compactification and dimensional reduction in a geometric setting and
explain how the choice of internal space influences the effective low energy theory. Our focus is on
N = 2 supersymmetric effective theories in four space-time dimensions, which leads us to consider
complex three-dimensional Calabi–Yau manifolds. The second part of this chapter defines the gauged
linear sigma model, with an emphasize on how it properties closely resembles those of the string
worldsheet theories. We discuss its low energy behavior and demonstrate how a potential target space
interpretation arises. The third part is devoted to an introduction of Picard–Fuchs operators.
The intention of this chapter is pedagogical and to not require prior research knowledge. That

being said, we may use some concepts that not every reader is familiar with. For an accessible
introduction to various notions from differential geometry and topology we recommend ref. [20] and
for detailed expositions of string and conformal field theory refer to the textbooks [4, 21–25] and [26,
27]. References [28, 29] are further valuable resources.

2.1 Type II Superstring Theories

We here give a short introduction to superstring theories of type II, which form the physical foundation
for the research presented in the later parts of this thesis. Our review follows the textbooks cited in the
previous paragraph.

2.1.1 Worldsheet Description

Let us begin with recalling some basic notions from the previous chapter. The fundamental string is a
one-dimensional object that moves in space-time M, which for now we assume to be M = Md, i.e.,
d-dimensional Minkowski space. It sweeps out the two-dimensional worldsheet Σ and is described by
maps X : Σ→ M whose individual space-time components are XN . Their dynamics is governed by
the Polyakov action that for d = 26 exhibits Poincaré invariance, in case of which the excitations of
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XN can be interpreted as particles. However, this only yields bosonic particles and there is a state
with negative squared mass. Both problems are solved in superstring theory, of which there are five
consistent types in flat space-time. These are known as type I, type IIA and type IIB, as well as
heterotic E8 × E8 and heterotic SO(32).

In this thesis we consider the type II theories only, both of which do not contain open strings. Their
worldsheet description is obtained by supersymmetrizing the Polyakov action to exhibit N = (2, 2)
worldsheet supersymmetry, which means there are two left as well as two right moving supercharges
— for a more precise discussion of this notion see subsection 2.2.1, although this is not necessary
to follow the below discussion. This action is invariant under various local worldsheet symmetries,
including diffeomorphisms and Weyl transformations. These can be used to bring the action into the
form

S = −
1

8π

∫
Σ

d2x ηMN

[
2
α′

(
∂αXM

) (
∂αXN

)
+ 2iψ

M
ρα∂αψ

N

]
, (2.1)

referred to as superconformal gauge. Here α is a worldsheet index, ρα are the Gamma matrices
in two dimensions, α′ is the worldsheet coupling constant and ηMN is the space-time Minkowski
metric. The ψN are superpartners of XN , they are Weyl fermions on the worldsheet and space-time
vectors. Equation (2.1) constitutes a conformal field theory with central charge c = d · (1 + 1/2),
where each XN and ψN respectively contributes c = 1 and c = 1/2. The Faddeev–Popov ghosts
that are introduced by gauge fixing add c = −15, such that the total conformal anomaly vanishes for
d = 10. This is necessary since conformal symmetry arose as part of gauge symmetries, and moreover
implies space-time Poincaré invariance.

2.1.2 Massless Spectrum in Ten Dimensions

We now specialize to type II theories on ten-dimensional Minkowski space and briefly explain their
massless space-time spectra. The equations of motions for XN and ψN deduced from eq. (2.1) are
solved by a Fourier expansion whose coefficients are turned into operators by canonical quantization.
These act on an oscillator ground state and thereby create a tower of excited states. The local
symmetries translate into a set of constraints that define a subspace of physical states with positive
norm and the boundary conditions of the closed string require an equal number of excitations in the left
and right moving sector. Since ψN are worldsheet fermions, they may obey periodic or anti-periodic
boundary conditions along the spatial extension of the closed string. Whereas space-time Poincaré
invariance requires that the boundary condition are the same for all space-time directions N , the choice
can be made independently for the two spinor components ψN

+ and ψN
− . The states thus fall into four

sectors, abbreviate as (R,R), (NS,NS), (R,NS) and (NS,R). Here, ‘R’ is for ‘Ramond’ and amounts to
periodic conditions, whereas ‘NS‘ stands for ‘Neveu-Schwarz’ and denotes anti-periodic conditions.
States in the first two sectors behave as space-time bosons, the third and forth sector are fermionic.
The space-time spectrum obtained in this way still features a tachyon and is non-supersymmetric.

These problems are cured by the GSO projection, which uses the fact that the states carry a Z2 × Z2
quantum number and amounts to only retaining states of particular charges with respect to this
symmetry. There are two inequivalent choices of such a projection and these respectively define type
IIA and type IIB superstring theory. They agree in the (NS,NS) sector and differ in the others. The
truncation is consistent: no states that were projected out are created through scattering of those states
that were retained.
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2.1 Type II Superstring Theories

Type IIA

The massless excitations of type IIA superstring theory are listed in Table 2.1, including their number
of on-shell degrees of freedom (d.o.f.). This spectrum agrees with that of ten-dimensional type IIA
supergravity, which is the low energy effective space-time description. As signaled by the presence of
two gravitini and an equal number of bosonic and fermionic degrees of freedom, the spectrum exhibits
N = 2 space-time supersymmetry corresponding to a total of 32 supercharges. Since the gravitini are
of opposite chirality, the theory is non-chiral.

Sector Type On-shell d.o.f Name
(NS, NS) graviton 35 g

2-form field 28 B
dilaton 1 φ

(R, R) 3-form field 56 C(3)

1-form field 8 C(1)

(NS, R) gravitino of chirality + 56 λ+
dilatino of chirality − 8 η−

(R, NS) gravitino of chirality − 56 λ−
dilatino of chirality + 8 η+

Table 2.1: The massless spectrum of type IIA superstring theory and type IIA supergravity in ten-dimensional
Minkowski space.

A p-form gauge field ω is a higher-dimensional generalization of the familiar vector field. Its p
indices are fully antisymmetric and its field strength dω is a (p + 1)-form. In this language vector
fields are 1-form fields and scalars can be regarded as 0-form fields. We note that the Hodge dual
field strength ∗dω in ten dimensions is a (9 − p)-form, which can be reinterpreted as the field strength
of a (8 − p)-form. A p-form field is thus dual to a (8 − d)-form field and they respectively represent
electric and magnetic degrees of freedom.

Type IIB

The massless spectrum of the type IIB theory is summarized in Table 2.2. It exhibits N = 2
supersymmetry in space-time and, due to both gravitini having the same chirality, is chiral. The
4-form gauge field C(4) obeys the self duality constraint ∗dC(4) = dC(4) and the low-energy effective
space-time theory is ten-dimensional type IIB supergravity.

D-Branes

Recall from the introduction that in addition to the fundamental string there are the Dp-branes, which
are non-perturbative in the string coupling gs. While type IIA string theory features Dp-branes with p
even, the branes in type IIB have p odd. Since the world-volume of a Dp-brane is (p + 1)-dimensional,
the brane naturally couples to (p + 1)-form gauge fields from the (R,R) sector (as well as their duals).
This is analogous to point-particle electrodynamics, where the 1-form vector field couples to the
one-dimensional worldlines of particles. We also note that the 2-form field B from the (NS,NS) sector
always couples to the fundamental string.
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Sector Type On-shell d.o.f Name
(NS, NS) graviton 35 g

2-form field 28 B
dilaton 1 φ

(R, R) self dual 4-form field 35 C(4)

2-form field 28 C(2)

0-form field 1 C(0)

(NS, R) gravitino of chirality + 56 λ1
dilatino of chirality − 8 η1

(R, NS) gravitino of chirality + 56 λ2
dilatino of chirality − 8 η2

Table 2.2: The massless spectrum of type IIB superstring theory and type IIB supergravity in ten-dimensional
Minkowski space.

2.1.3 Compactification

In subsection 2.1.1 we saw that superstring theory on flat d-dimensional Minkowski space requires
d = 10. This is in conflict with our experience of living in four and not ten space-time dimensions,
such that a more general space-time ansatz needs to be made. The ansatz of compactification amounts
to choosing

M = M4
× Mc , (2.2)

which decomposes space-time into the product of four-dimensional Minkowski space with a real
six-dimensional manifold Mc. The latter is referred to as the internal space and can, intuitively, not
be observed if its spatial extension is below the currently accessible length scales. While there are
approaches to obtain large extra dimensions from string theory [30–32], we follow the intuition and
assume Mc to be small and compact. From the space-time point of view the ansatz (2.2) amounts
to the non-trivial vacuum expectation value 〈g〉 = gM for the graviton, where gM is the metric on
M . From the worldsheet point of view it requires a generalization of the action (2.1) to the so-called
non-linear sigma model, in which the space-time Minkowski metric η is replaced by gM . We do not
consider compactifications in which other fields than the metric have non-trivial background fluxes.

This is a good place to introduce some notation. Indices of the full space-time M are denoted with
capital latin letters, for the internal space Mc we use lower case latin letters and Greek letters for
four-dimensional Minkowski space.

Conformal Invariance at Leading Order in α′

String theory requires conformal invariance. In the non-linear sigma model with a general metric g
this symmetry is broken by a non-zero beta function β(g) for the metric. It is therefore necessary to
impose the constraint β(gM ) = 0 on gM and in extension on the internal space Mc , which is sometimes
referred to as the string or supergravity equation of motion. A perturbative calculation [33] shows that
the one-loop beta function is proportional to the Ricci tensor Ric(gM ), such that at leading order in α′

string theory requires that Mc is a Ricci flat manifold.
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Worldsheet Supersymmetry

An essential ingredient of ten-dimensional type II theories is N = (2, 2) supersymmetry on the
worldsheet. In absence of any other background fluxes this symmetry requires M and hence Mc to be
a complex Kähler manifold [34]. This means that the metric on Mc can be put into a Hermitian form
and the associated Kähler form ω is closed.

Space-time Supersymmetry

A general internal space will break all of the 32 space-time supercharges, in case of which there is little
computational control. Demanding some amount of unbroken space-time supersymmetry requires
Mc to have a covariantly constant spinor, which in turn implies Mc to be a complex Kähler manifold
and restricts its holonomy group from SO(6) to SU(3). If the holonomy is exactly SU(3), i.e., no
proper subgroup thereof, there is exactly one covariantly constant spinor. This keeps one quarter of
the space-time supersymmetry, i.e., eight supercharges and thus results in N = 2 supersymmetry of
the effective four-dimensional theory. If the holonomy drops further, more space-time supersymmetry
is retained: exact SU(2) holonomy keeps 16 supercharges and trivial holonomy keeps all 32 of them,
which respectively correspond to N = 4 and N = 8 theories in four dimensions. By turning on
background values for the field strengths of the p-form gauge fields it is also possible to obtain type II
compactification with N = 1 supersymmetry in four dimensions [7].

Complex n-dimensional Kähler manifolds with exact SU(n) holonomy are known as n-dimensional
Calabi–Yau manifolds, in short Calabi–Yau n-folds. In case the holonomy may be SU(n) or a proper
subgroup thereof, we speak of a generalized Calabi–Yau manifold. As an important fact, generalized
Calabi–Yau manifolds are Ricci flat. Provided the compactification has a geometric interpretation as
non-linear sigma model on a manifold — which we assume — the requirement of some unbroken
space-time supersymmetry thus implies worldsheet supersymmetry and leading order conformal
invariance. The reverse is also true: a Ricci flat complex Kähler manifold is a Calabi–Yau manifold,
such that leading order conformal invariance and worldsheet supersymmetry imply some amount of
unbroken space-time supersymmetry. If the compactification has no geometric interpretation, the
situation is more subtle. Worldsheet supersymmetry and leading order conformal invariance are then
not enough to ensure space-time supersymmetry, but need to be supplemented by a condition on
the charges in the theory such that the spectral flow operator is well defined [35–37], see also the
review [28].

Corrections of Higher Order in α′

We now specialize to the case in which Mc is a Calabi–Yau threefold and explain the effects of
higher-loop corrections to the beta function β(gM ) as established by the works [11–13, 38–41]. Since
the two- and three-loop contributions can be written as covariant derivatives of the Ricci tensor,
they automatically vanish on Ricci flat manifolds and in this sense do not modify the leading order
conclusion. However, at four-loop order there is a new contribution to the beta function that does not
vanish on Ricci flat manifolds. This modifies the condition for conformal invariance, β(gM ) = 0, and
string theory requires Mc to deviate from the Calabi–Yau geometry. There are also non-perturbative
corrections by worldsheet instantons [13, 42–45]. All these corrections are strongly suppressed when
the size of Mc tends to infinity, such that Mc in this limit remains to be a Calabi–Yau manifold. We
note that the preceding perturbative discussion and a geometric interpretation altogether are valid
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only in the ‘vicinity’ of such large volume boundary limits. The precise meaning of ‘vicinity’ will be
clarified later.

Despite all these corrections to gM , its Kähler class [ω] is largely protected by supersymmetry. It is
effected at one-loop order only with a correction proportional to the first Chern class c1(Mc) of Mc.
The latter is the trace of the curvature class and vanishes on Ricci flat manifolds, in case of which
[ω] is not corrected at all. This is particularly useful due to Yau’s theorem [46], which states that a
complex Kähler manifold with Kähler form ω and vanishing first Chern class can always be equipped
with a unique Ricci flat metric whose Kähler class is [ω]. It is believed that there similarly exists a
unique metric g∗ which fulfills the string equation of motion β(g∗) = 0 and whose Kähler class is [ω],
at least in the vicinity of a large volume boundary limit.

Dimensional Reduction

The purpose of the compactification ansatz (2.2) is to conform to our experience of living in four
space-time dimensions. Although the internal space is chosen small enough in order to not be directly
observable, it strongly influences the four-dimensional effective low energy theory. Namely, the latter
is obtained by dimensionally reducing the ten-dimensional theory on Mc and we now demonstrate
that even the spectrum of the four-dimensional theory depends on the choice of internal space. Since
we are interested in an effective low energy theory (and do not consider cases in which the string mass
scale is significantly smaller than the Planck scale), we can restrict our attention to fields that are
massless in ten dimensions.

Let us first consider a scalar field φ10(x, y). It depends on coordinates x onM4 as well as coordinates
y on the compact manifold Mc and obeys the ten-dimensional equation of motion ∆10 φ10 = 0. With
the product ansatz in eq. (2.2) this decomposes as

0 = ∆10 φ10(x, y) = ∆4 φ10(x, y) + ∆6 φ10(x, y) , (2.3)

where the Laplace operators ∆4 ofM
4 and ∆6 of Mc respectively only act on x and y. This equation is

solved by expanding φ10 in a basis of eigenfunctions αn of the six-dimensional Laplace operator,

0 = ∆10

[
∞∑

n= 0
φ4,n(x)αn(y)

]
=

∞∑
n= 0

αn(y)
[
∆4 + λn

]
φ4,n(x) , (2.4)

where λn is the eigenvalue of αn. These are non-negative, discrete and have finite multiplicity — see
for instance the textbook [47] for mathematical background. Independence of the eigenfunctions
requires every term on the right hand side to vanish separately, such that the single ten-dimensional
field φ10 gives rise to an entire tower of four-dimensional fields φ4,n with masses proportional to√
λn. Since the positive eigenvalues grow with the inverse of the typical length scale of Mc, the

massive fields of this so-called Kalazu–Klein tower decouple and only the massless φ4,n remain in
the low energy theory. There is one such field per linearly independent solution to the equation
∆6 αn = 0, which states that αn is a harmonic function on Mc. Since on compact manifolds only
constant functions are harmonic and since Mc is connected, φ10 gives rise to exactly one massless
scalar in the four-dimensional theory.

Second, let us generalize to a ten-dimensional massless p-form gauge field A(p)(x, y). This field still
obeys the equation of motion ∆10 A(p)(x, y) = 0 but now additionally carries p totally antisymmetric
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2.1 Type II Superstring Theories

space-time indices. We employ the decomposition

A(p)(x, y) =
∞∑

n= 0

min(p, 2)∑
q =max(0, p−6)

A(q)4,n(x) ∧ α
(p−q)
n (y) , (2.5)

where the α(k)n are k-eigenforms of ∆6 and the A(q)4,n are q-form gauge fields in four dimensions. The
summation over q is constrained because real n-dimensional manifolds do not support forms of
degree (n + 1) or higher. Moreover, 3- and 4-form fields are non-dynamical in four dimensions and
therefore excluded from the decomposition. The single ten-dimensional A(p)(x, y) thus gives rises
to bp−q four-dimensional q-form fields, where bp−q is the number of linearly independent harmonic
(p − q)-forms on Mc . Since harmonic forms are defined through the Laplace operator, they depend on
the metric and are difficult to determine. At this point it beneficial to employ the Hodge theorem,
which states that the space of harmonic k-forms on Mc is isomorphic to the k-th de Rahm cohomology
group Hk

dR(Mc) of Mc. This identifies bk as the k-th Betti number, i.e., the dimension of Hk
dR(Mc).

The cohomology groups are topological and do not depend on the details of the metric. In light of the
higher order α′ corrections it is anyway more natural to work with such quantities.
These considerations explain the dimensional reduction of all bosonic degrees of freedom except

for the graviton. In order to understand this and to determine the Betti numbers, we now discuss some
topological and geometric properties of Calabi–Yau threefolds.

2.1.4 Basic Properties of Calabi–Yau Threefolds

The previous subsection has demonstrated that, although they are not exact solutions to the string
equation of motion, Calabi–Yau threefolds are a good starting point for studying type II string
compactifications with N = 2 space-time supersymmetry in four dimensions. We here briefly
summarize their relevant topological and geometric properties, which we base on the more exhaustive
and still accessible review [28].

Cohomology

We saw that the Betti numbers bp of Mc , i.e., the real dimensions of the de Rahm cohomology groups
Hp
dR(Mc) of the internal space Mc determine the number and type of massless fields in four dimensions.

Since Mc is a Kähler manifold, its de Rahm cohomology groups split into the direct sum

Hp
dR(Mc) =

⊕
r+s = p

Hr,s
(Mc) (2.6)

of the Dolbeault cohomology groups Hr,s
(Mc). These are the cohomology groups with respect to the

anti-holomorphic part ∂ of the differential and the integers r and s respectively count the number of
holomorphic and anti-holomorphic form indices. The real dimensions hr,s of Hr,s

(Mc) are referred
to as Hodge numbers, and due to the above equation bp is the sum of all hr,s with r + s = p. It will
turn out to be useful to study this finer structure.

To this end, we first recall that the Hodge star operator defines an isomorphism between Hr,s
(Mc)

and Hn−r,n−s
(Mc). Here n is the complex dimension of Mc and we conclude hr,s = hn−r,n−s. Complex

conjugation and the Kähler property further ensure the symmetry hr,s = hs,r , and b0
= h0,0

= 1 is a
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Chapter 2 Basics of Type II Superstrings and Their Compactification

result of Mc being connected. Finally, Calabi–Yau n-folds — which we defined to have exact SU(n)
holonomy and no subgroup thereof — obey hr,0 = 0 for 1 ≤ r < n and hn,0

= 1. For Calabi–Yau
threefolds (n = 3) these conditions determine all hr,s except for h1,1 and h2,1, which is conveniently
visualized by the so-called Hodge diamond:

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

=

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

(2.7)

The Betti numbers are easily obtained by summing across horizontal lines of the Hodge diamond and
hence seen to be

b0
= b6

= 1 , b1
= b5

= 0 , b2
= b4

= h1,1 , b3
= 2h2,1

+ 2 . (2.8)

While this completes our original motivation for studying the cohomology, let us introduce some
further concepts for later use.

Since h3,0
= 1 holds for all Calabi–Yau threefolds, there is an up to scaling unique element in their

cohomology group H3,0
(Mc). This object is commonly referred to as the holomorphic (3, 0)-form Ω

and vanishes at no point of Mc. The combinations

Hvert(Mc) =

n⊕
k = 0

Hk,k
(Mc) , Hhor(Mc) =

n⊕
k = 0

Hn−k,k
(Mc) (2.9)

are respectively known as the vertical (or even) cohomology and the horizontal cohomology. The
former carries a ring structure with the wedge product defining multiplication.

Moduli

We recall that a manifold is of the Calabi–Yau type if and only if it is Kähler and has a Ricci-flat metric.
It is natural to wonder whether a given Kähler manifold can be equipped with different Ricci-flat
metrics, thereby defining different Calabi–Yau manifolds. In other words, the question is whether a
given Ricci-flat metric can be deformed by small perturbations such that the manifold remains Ricci
flat and of the Kähler type. In the complex three-dimensional case this question is for example studied
in ref. [48] and we here briefly summarize their results. A general perturbation reads

δg =
(
δgi j dzi dz j + c.c.

)
+

(
δgi j dzi dz j + c.c

)
(2.10)

with (anti-)holomorphic coordinates zi (z j) and where the terms in the two brackets are locally
independent. The first term is a perturbation with mixed type indices that keeps the metric in a
Hermitian form. It deforms the Kähler class of g by δω = gi j dzi ∧ dz j , where the real (1, 1)-form
δω is required to be harmonic and, by the Hodge theorem, therefore uniquely corresponds to an
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2.1 Type II Superstring Theories

element of H1,1
(Mc). The second term is a pure type perturbation and leads to a deformed metric

that is no longer hermitian. With the holomorphic (3, 0)-form Ω it defines the complex (2, 1)-form
Ωi jkg

iigi jdz j ∧ dzk ∧ z j , which is also required to be harmonic and therefore uniquely corresponds to
an element of H2,1. There is a non-holomorphic coordinate transformation that puts the metric back
into a hermitian form, such that pure type perturbations are deformations of the complex structure.
The parameter spaceM of these deformations is known as the moduli space of the Calabi–Yau

threefold. Due to the local independence of the two perturbation types it locally takes the product form

M(Mc) =MK(Mc) ×MCS(Mc) , (2.11)

where points in the factorsMK andMCS respectively correspond to choices of the Kähler class and
complex structure. This shows that Calabi–Yau threefolds are typically part of continuously connected
families of manifolds and we respectively identify h1,1 and 2h2,1 as the real dimensions ofMK and
MCS. To further understand the importance of moduli, we now study dimensional reduction on
Calabi–Yau threefolds.

2.1.5 Dimensional Reduction on Calabi–Yau Threefolds

In subsection 2.1.3 we discussed the dimensional reduction of ten-dimensional scalars and p-form
gauge fields. Through knowledge of the Betti numbers, see eq. (2.8), we now exactly know which
and how many four-dimensional massless fields these give rise to. We here explain the full massless
spectrum for type IIA and type IIB string compactifications on Calabi–Yau threefolds.

Reduction of the Graviton

The dimensional reduction of the graviton amounts to decomposing the ten-dimensional Ricci scalar
into the sum of four-dimensional Ricci scalar plus additional terms. This calculation is quite involved,
for an explicit discussion we for instance refer to ref. [49]. As the result, the ten-dimensional graviton
gives rise to the four-dimensional graviton as well as h1,1 real and h2,1 complex scalars. We denote
the former as ta for a = 1, . . . , h1,1 and the latter as ξα for α = 1, . . . , h2,1. These scalars intuitively
correspond to the moduli of the internal space.

Four-DimensionalN = 2 Multiplets

Since the effective four-dimensional theory is guaranteed to exhibitN = 2 space-time supersymmetry,
its massless fields need to assemble themselves into N = 2 multiplets. It is therefore not necessary to
explicitly discuss the reduction of fermions, the multiplet structure is already uniquely determined by
the bosons. Let us briefly recall the three relevant multiplets and their bosonic degrees of freedom, see
e.g. [50]. First, there is the gravity multiplet with one symmetric rank two tensor (the graviton) and
one vector (the graviphoton). Second, the vector multiplet with one vector and one complex scalar.
Third, the hyper multiplet with four real scalars.

Type IIA

The massless bosonic fields of type IIA string compactifications on Calabi–Yau threefolds are
summarized in Table 2.3. We note that the scalar b∗ is the dualized version of an anti-symmetric tensor
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Type Symbol Multiplicity 10-dim. field
Graviton gµν 1 g

Vector C(1)µ 1 C(1)

C(3),aµ h1,1 C(3)

Complex scalar ξα h2,1 g

Real scalar ta h1,1 g

ba h1,1 B
b∗ 1 B
φ4 1 φ

C(3),β 2h2,1
+ 2 C(3)

Table 2.3: Massless bosonic fields in type IIA string compactifications with N = 2 space-time supersymmetry
in four dimensions. Greek letters are four-dimensional space-time indices, a = 1, . . . , h1,1, α = 1, . . . , h2,1 and
β = 1, . . . , 2h2,1

+ 2.

bµν arising from the the (NS,NS) 2-form field B, whereas type and number of the other fields follow
from preceding discussions. The spectrum indeed assembles itself into N = 2 multiplets, namely

1 gravity multiplet:
(
gµν, C(1)µ , . . .

)
h1,1 vector multiplets:

(
C(3),aµ , ta + iba, . . .

)
1 hyper multiplet:

(
b∗, φ4, 2 × C(3),β , . . .

)
h2,1 hyper multiplets:

(
ξα, 2 × C(3),β , . . .

)
where . . . stands for fermions. The real Kähler moduli ta combine with the scalars ba into complex
degrees of freedom and belong to vector multiplets. Two of the scalars C(3),β — those corresponding
to the harmonic (3, 0)- and (0, 3)-forms — combine with b∗ and the four-dimensional dilaton φ4 into
the so-called universal hyper multiplet. The other C(3),β as well as the complex structure moduli ξα

constitute additional hyper multiplets.

Type IIB

Table 2.4 lists the massless bosonic fields of type IIB string compactification on Calabi–Yau threefolds.
The scalar C(2)∗ is the dualized version of a 2-form field C(2)µν , and the self-duality constraint on C(4)

is taken into account by retaining only h2,1
+ 1 (as opposed to twice as much) vectors C(4),βµ and by

not including the h1,1 scalar duals of 2-forms C(4),aµν . These fields assemble themselves into N = 2
multiplets according to

1 gravity multiplet:
(
gµν, C(4),βµ , . . .

)
h2,1 vector multiplets:

(
C(4),βµ , ξα, . . .

)
1 hyper multiplet:

(
b∗, φ4, C(0)4 , C(2)∗ , . . .

)
h1,1 hyper multiplets:

(
ta + iba, C(2),a, C(4),a, . . .

)
.

One of the h2,1
+ 1 vectors C(4),βµ falls into the gravity multiplet, the other belong to the h2,1 vector

multiplets. While the complexified Kähler moduli are part of hyper multiplets, the complex structure
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Type Symbol Multiplicity 10-dim. field
Graviton gµν 1 g

Vector C(4),βµ h2,1
+ 1 C(4)

Complex scalar ξα h2,1 g

Real scalar ta h1,1 g

ba h1,1 B
b∗ 1 B
φ4 1 φ

C(4),a h1,1 C(4)

C(2),a h1,1 C(2)

C(2)∗ 1 C(2)

C(0)4 1 C(0)

Table 2.4: Massless bosonic fields in type IIB string compactifications with N = 2 space-time supersymmetry
in four dimensions. Greek letters are four-dimensional space-time indices, a = 1, . . . , h1,1, α = 1, . . . , h2,1 and
β = 1, . . . , h2,1

+ 1.

moduli reside in vector multiplets. The four-dimensional dilaton φ4 is again part of the so-called
universal hyper multiplet.

Summary

As the important point to take away from this discussion, we note that the moduli of the Calabi–Yau
threefold Mc strongly influence the low energy dynamics of the compactification. They correspond to
massless scalars ta and ξα and their number determines the supersymmetric multiplet structure. For
both type II theories the moduli either belong to vector or hyper multiplets, which is why we write the
moduli space of the compactification as

M
IIA / IIB

(Mc) =M
IIA / IIB
vector (Mc) ×M

IIA / IIB
hyper (Mc). (2.12)

In both cases the Kähler moduli ta are complexified by the scalars ba that arise from the (NS,NS)
B-field. The connection to the geometric moduli space of the Calabi–Yau threefold Mc , see eq. (2.11),
will be explained further below.

Mirror Symmetry

It should not go unnoticed that the two types of moduli exchange their roles between type IIA and IIB.
This is a manifestation of mirror-symmetry — see the textbooks [29, 51] for an exhaustive discussion
of this subject — which states that type IIA compactified on a Calabi–Yau threefold X is equivalent to
type IIB compactified on the mirror manifold Y of X with the identification

M
IIA
vector(X) =M

IIB
vector(Y ) and M

IIA
hyper(Y ) =M

IIB
hyper(X) . (2.13)

An immediate consequence of this are the identities h1,1
(X) = h2,1

(Y ) and h1,1
(Y ) = h2,1

(X). While
mirror symmetry is not the focus of this thesis, we will come back to it at several points below.
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2.1.6 Compactification from the Worldsheet Point of View

In order to explain corrections to the above observations and to obtain a more general formulation
of type II string compactifications on Calabi–Yau threefolds, we now return to the worldsheet
description. Recall that for M = M10 space-time the worldsheet theory (2.1) is a two-dimensional free
N = (2, 2) superconformal field theory with central charge (excluding ghosts) c = 15. In this language
the compactification ansatz in eq. (2.2) amounts to decomposing the worldsheet theory into two
independent factors. First, the four-dimensional version of the theory in eq. (2.1), whichcorresponds to
theM4 factor and contributes c = 6 to the central charge. Second, the non-linear sigma model on the
Calabi–Yau threefold Mc. As we saw in subsection 2.1.3, this second theory still exhibits N = (2, 2)
supersymmetry on the worldsheet, is conformal at leading order in α′ and adds c = 9.

Superconformal Moduli

The theories of the second type typically possess truly marginal couplings. These are terms that can
be added to the theory without breaking conformal invariance or supersymmetry, thereby defining
a slightly perturbed version of the original theory. Put differently, N = (2, 2) superconformal field
theories typically have a moduli spaceMscft that corresponds to different choices for the parameters
multiplying the truly marginal couplings. In this thesis we are predominantly interested in the moduli
of the (NS,NS) sector, whose moduli space for both type II theories locally takes the product form

M
(NS,NS)
scft (Mc) =M(a,c)(Mc) ×M(c,c)(Mc) , (2.14)

where the two factors respectively corresponds to truly marginal couplings in the (a, c) (chiral–anti-
chiral) and (c, c) (chiral–chiral) ring of the superconformal theory [44, 52], see also the review [28].
This is reminiscent of the factorization of the geometric and compactification moduli spaces in
eqs. (2.11) and (2.12). We now relate these various notions of moduli spaces, for the purpose of which
we also discuss corrections in gs and α

′.

Corrections in gs

While we consider the superconformal theory at fixed worldsheet genus g = 0, the moduli spaces (2.12)
of string compactifications are potentially subject to higher order gs corrections through worldsheets
with higher genera as well as non-perturbative effects such as D-instantons [53, 54]. However, we
recall that the four-dimensional dilaton always belongs to the universal hyper multiplet and that gs
is the background value of the dilaton. Since in addition vector and hyper multiplets do not mix as
a result of N = 2 space-time supersymmetry, the vector multiplets can be described exactly with
worldsheet techniques, at least up to the second derivative order.

Corrections in α′

We therefore restrict our attention to the vector multiplet sector. The worldsheet description as
superconformal field theory is by definition exact in α′ and we have

M
IIA
vector(Mc) =M

IIA, gs→ 0
vector (Mc) =M

IIA
(a,c)(Mc) ,

M
IIB
vector(Mc) =M

IIB, gs→ 0
vector (Mc) =M

IIB
(c,c)(Mc) ,

(2.15)
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where the respective identifications with the (a, c) and (c, c) ring follow from a more detailed analysis
of the superconformal theories, see for instance the review [28]. Now recall from subsection 2.1.5 that
in type IIA the complexified Kähler moduli of Mc belong to the vector multiplet sector, whereas in
type IIB the complex structure moduli do. The correct identifications are

M
IIA, α′→ 0
vector (Mc) =MK(Mc)

∗ and M
IIB
vector(Mc) =MCS(Mc) , (2.16)

where ∗ denotes complexification. As a result of the higher-loop and non-perturbative α′ corrections
to the metric, see the discussion in subsection 2.1.3, for type IIA theory the identification is valid
only at leading order in α′. The deviation for finite α′ gives rise to the notion of the quantum Kähler
moduli space, which we define as

M
IIA
QK(Mc) =M

IIA
vector(Mc) =M

IIA
(a,c)(Mc) . (2.17)

The interpretation of the superconformal theory as a non-linear sigma model on the Calabi–Yau
threefold Mc is therefore strictly valid only at certain boundary components ofMIIA

QK(Mc), where the
volume of Mc tends to infinity such that α′ corrections are strongly suppressed. Away from these
boundary components the internal space is of finite size and the string equation of motion requires
its metric to be not Ricci flat. Moreover, this deformed geometric interpretation is possible only in
the vicinity of such boundary components and entirely lost at a generic point inMIIA

QK(Mc). There
may even be other large volume limits with an interpretation as non-linear sigma model on a different
Calabi–Yau threefold, a prominent example of which is discussed in ref.[55]. In a different example
this effect has also been observed in the author’s publication [56]. This shows that the description of
N = 2 compactifications as two-dimensional N = (2, 2) superconformal field theories is more general
than the geometric non-linear sigma model.

How to Proceed

In this thesis we are interested in the vector multiplet sector of type IIA string compactifications,
which as stated in eq. (2.16) is subject to α′ corrections. A classical way to deal with this difficulty is
the mirror symmetry relation

M
IIA
QK(X) =M

IIA
vector(X) =M

IIB
vector(Y ) =MCS(Y ) , (2.18)

which reduces the problem to the study of the geometric complex structure moduli space of the mirror
manifold Y of X . The approach of this thesis is different, we will analyzeMIIA

QK(X) directly in type
IIA theory and not rely on knowledge of the mirror manifold. Our study employs two central tools, the
gauged linear sigma model and Picard–Fuchs operators. We will explain these in the next two sections
of this chapter.

2.2 Gauged Linear Sigma Models

The gauged linear sigma model was introduced by Witten in ref. [16] and thereafter employed in
various works, see e.g. ref. [57] for a careful application to the analysis of worldsheet instantons and
refs. [16, 55, 56, 58–68] for the generalization to non-Abelian gauge groups. It is a gauge theory
in two dimensions that — if its spectrum is chosen appropriately — realizes a family of non-trivial

23



Chapter 2 Basics of Type II Superstrings and Their Compactification

N = (2, 2) superconformal field theories at its infrared renormalization group fixed point. Its use in
the context of string compactifications is therefore twofold. First, it provides an easy way to indirectly
construct the appropriate worldsheet theories and to smoothly interpolate across the entire quantum
Kähler moduli space. Second, it allows to probe the complicated dynamics of the superconformal
theory through certain largely unrenormalized observables. The research presented in chapter 3 is an
example of such an analysis.
Unless cited otherwise, our review of the gauged linear sigma model follows refs. [16, 29, 57].

We put particular emphasis on how its properties are chosen to closely resemble those of type II
worldsheet theories.

2.2.1 Two-Dimensional N = (2, 2) Gauge Theories

The worldsheet theories of supersymmetric type II compactifications exhibit N = (2, 2) supersymmetry.
Since we cannot expect this symmetry to be installed by the renormalization group flow to the infrared,
we will define the gauged linear sigma model as an N = (2, 2) gauge theory in two dimensions.

N = (2, 2) Superspace

A particularly elegant method for constructing supersymmetric gauge theories is the superspace
formalism. For a general introduction to this formalism we e.g. refer to the textbook [69], our
conventions follow ref. [29]. Let us denote the temporal and spatial worldsheet coordinates respectively
as x0 and x1. We combine these into x± = x0

± x1 and further define the four fermionic coordinates

θ ± and θ
±
=

(
θ ±

)∗
, (2.19)

which in combination with the bosonic x± constitute two-dimensional N = (2, 2) superspace. The
fermionic coordinates mutually anti-commute and therefore square to zero. Supersymmetry is
generated by the four supercharges

Q± = +
∂

∂θ ±
+ iθ

±
∂± , Q± = −

∂

∂θ
±
− iθ ±∂± , (2.20)

where ∂± are partial derivatives with respect to the coordinates x±. Since the only non-trivial
anti-commutators are {

Q±,Q±
}
= −2i∂± , (2.21)

their algebra splits into two independent sectors with two supercharges each. The first involves ‘+’
indices and is referred to as left-moving or anti-holomorphic, the ‘−’ sector is said to be right-moving
or holomorphic. These indices moreover display the opposite chirality under two-dimensional Lorentz
transformations, with the convention that downstairs ‘±’ indices transform as upstairs indices ‘∓’.

Superfields

Superfields are functions defined on superspace. Their expansion in the fermionic coordinates contains
at most 24

= 16 terms, and hence they are expressed in terms of 16 coefficient functions that depend
on x± only. Since a general superfields does not correspond to an irreducible representations of the
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supersymmetry algebra, we define special types of superfields with fewer degrees of freedom. This is
done with the differential operators

D± = +
∂

∂θ ±
− iθ

±
∂± , D± = −

∂

∂θ
±
+ iθ ±∂± , (2.22)

which anti-commute with the supercharges (2.20) and can therefore be used to impose constraints that
are invariant under supersymmetry transformations. This leads to the following definitions:

• A chiral superfield Φ is subject to D±Φ = 0. Its bosonic degrees of freedom are complex scalars
φ and F, the latter of which is a non-dynamical auxiliary field.

• A twisted chiral superfield Σ is defined by D+Σ = D−Σ = 0. Its bosonic coefficient functions
are the complex scalars σ and E , where E is non-dynamical.

• A vector superfield is subject to the reality condition V = V†. We will elaborate on this type of
superfield when discussing gauge symmetries below.

In addition, the hermitian conjugate of a (twisted) chiral superfield is a (twisted) anti-chiral superfield
and vice versa. All of these superfields transform as Lorentz scalars.

Supersymmetric Actions

Let F denote the collection of all superfields in the theory, and similarly Fc and Ftc be the collection
of all chiral and twisted chiral superfields. A supersymmetric action then takes the general form

S =
∫

d2x d4θ K(F ) +
∫

d2x
[
d2θW(Fc)

��
θ
±
= 0 + h.c.

]
+

∫
d2x

[
d2θ̃ W̃(Ftc)

��
θ −= θ

+
= 0 + h.c.

]
,

(2.23)

where d4θ = dθ +dθ −dθ
−

dθ
+
, d2θ = dθ +dθ −, d2θ̃ = dθ +dθ

−
and ‘h.c’ abbreviates ‘hermitian

conjugate’. The function K is referred to as the Kähler potential, whereas W and W̃ are respectively
known as superpotential and twisted superpotential. Reality of the action requires K(F ) = K(F )† and
supersymmetry demands that W and W̃ are holomorphic. Lorentz invariance is automatic.

Pure Supersymmetric Gauge Theory

To incorporate gauge symmetry into the superspace formalism, let G denote a in general non-Abelian
compact Lie-group and g be its Lie algebra. Gauging of G requires the introduction of a vector
superfield V with values in g, which is the superspace generalization of an ordinary gauge field. Gauge
transformations act as

exp (V) 7−→ exp
(
−iΛ†

)
exp (V) exp (iΛ) , (2.24)

whereΛ is a chiral superfield with values in g that generalizes the gauge parameter. This transformation
is consistent with the reality condition V = V† and reduces the number of independent component
fields in V . Its bosonic degrees of freedom are a complex scalar σ, the ordinary two-component gauge
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field v and a non-dynamical auxiliary field D. The field strength is generalized by the twisted chiral
superfield

Σ =
1
2

{
eV D+e−V, e−V D−eV

}
, (2.25)

to which we refer as the super field strength. Pure supersymmetric gauge theory is obtained by
choosing

Kgauge = tradj
(
Σ
†
Σ

)
(2.26)

as the Kähler potential in eq. (2.23), where the trace is taken in the adjoint representation. Both the
superpotential and twisted superpotential are required to be a gauge invariant.

Charged Chiral Matter

The gauged linear sigma model is not a pure gauge theory but additionally comprises chiral superfields.
These are charged under the gauge group and transforms as

Φ 7→ exp
[
−iΛ(ρΦ)

]
Φ , (2.27)

where Λ here is in the representation of ρΦ of Φ. The transformation is consistent with the chirality
constraint on Φ and the basic bilinear gauge invariant combination reads

Kmatter = Φ
† exp

[
V(ρΦ)

]
Φ = Φ̃

†
Φ̃ . (2.28)

This term is added to the Kähler potential in eq. (2.26) and includes both matter kinetic terms as well
as matter-gauge interactions. The last equality defines Φ̃, a covariant chiral superfield [16].

2.2.2 The N = 2 Superconformal Algebra and R-Symmetries

As our next guideline in constructing the gauged linear sigma model we recall that it is supposed to
flow to a non-trivial N = (2, 2) superconformal field theory in the infrared. Therefore, we now discuss
the algebra of conserved currents in such superconformal theories.

N = 2 Superconformal Algebra

The full algebra splits into a holomorphic and an anti-holomorphic sector, and it is sufficient to only
discuss the holomorphic one. Conformal symmetry gives rise to the energy momentum tensor T(z),
which in the non-supersymmetric case constitutes the Virasoro algebra with central charge c. The two
right-moving supersymmetries extend this by the two supercurrents G(±)(z), whose operator product
further requires the inclusion of an additional U(1) current J(z). These four currents constitute the
N = 2 superconformal algebra [70–72] and their scaling dimensions as well as U(1) charges are
summarized in the following diagram:

U(1) charge 1 0 −1 scaling dim.
T(z) 2

G(+)(z) G(−)(z) 3/2
J(z) 1

(2.29)
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2.2 Gauged Linear Sigma Models

It is important to note that the superscripts ‘(±)’ in G(±)(z) refer to the U(1) charge with respect to J(z)
and not to the chirality under two-dimensional Lorentz transformations. The supercurrents G(+)(z)
and G(−)(z) respectively correspond to the supercharges Q− and Q−.

R-Symmetries

This shows that together with the anti-holomorphic sector there are two U(1) currents in the desired
type of infrared fixed point theory. Therefore, we choose to equip the gauged linear sigma model with
two associated U(1) R-symmetries that are referred to as U(1)L (left moving, anti-holomorphic) and
U(1)R (right moving, holomorphic). They assign non-zero charges to the fermionic coordinates in the
corresponding sector, namely

U(1)L : qR
(
θ +

)
= −qR

(
θ
+)
= 1 ,

U(1)R : qL
(
θ −

)
= −qL

(
θ
−)
= 1 .

(2.30)

Invariance under these symmetries puts additional constraints on the supersymmetric action func-
tional (2.23) and allowed charge assignments:

1. Since the gauge symmetry must commute with the R-symmetries, the vector superfield V is
required to have charge zero under both U(1)L and U(1)R. The definition (2.25) of the super
field strength then implies qL(Σ) = −qR(Σ) = 1.

2. The Kähler potential K needs to be uncharged under both U(1)L and U(1)R. For K as in
eqs. (2.26) and (2.28) this is fulfilled automatically.

3. The superpotential W is required to have qL(W) = qR(W) = 1.

4. The twisted superpotential W̃ needs to have qL(W̃) = −qR(W̃) = 1.

It is sometimes more convenient to instead work with the vector and axial R-symmetries U(1)V and
U(1)A, which are defined by their charges qV = qL + qR and qA = qL − qR. We will move back and
forth between these two bases.

2.2.3 Definition of the Gauged Linear Sigma Model

Having discussed several important symmetries, we are now ready to complete our definition of the
gauged linear sigma model.

Specification of a Particular Model

Contrary to what the name might suggest, the gauged linear sigma model is not one specific model but
rather a framework that subsumes a variety of models. The definition of a particular gauged linear
sigma model requires the specification of its gauge theory spectrum. This is a triple

(
G, Irrep(G), QV

)
that consists of a compact Lie group G together with a set Irrep(G) of irreducible G-representations
and a set QV of integers, both of which have finite cardinality N . In physics terminology G is the
gauge group of the model and it takes the general form

G =
U(1)` × G1 × . . . × Gm

Γ
. (2.31)
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Chapter 2 Basics of Type II Superstrings and Their Compactification

Here the Gk with k = 1, . . . , m are compact simple Lie groups and Γ is a discrete normal subgroup
of the product U(1)` × G1 × . . . × Gm. The U(1) factors will be indexed with l = 1, . . . , `. Each
element ρi of Irrep(G), where i = 1, . . . , N , corresponds to a chiral multiplet Φi and defines its gauge
representation ρi = ρ(Φi). The set QV specifies the vector R-charges qi = qV (Φi), whereas we choose
zero axial R-charge for all Φi . The R-charges may always be redefined by adding integer multiplets of
the gauge charges.

Twisted Superpotential

Let us now understand the implications of these definitions for the twisted superpotential. Associated
to the gauge symmetry there are the vector field V and its twisted chiral super field strength Σ, both
of which take values in g. These decompose as V =

∑
Vl +

∑
Vk and Σ =

∑
Σl +

∑
Σk , where the

individual terms correspond to the ` Abelian and the m non-Abelian factors in G. Since there are
no additional twisted chiral superfields, the twisted superpotential is a function of Σ alone. Gauge
symmetry together with the first and fourth constraint by R-symmetry — see the list in the previous
subsection — thus imply

W̃(Σ) =
1
2

`+m∑
q = 1

τq tradj Σq =
1
2

∑̀
l = 1

τl Σl . (2.32)

Here τl for l = 1, . . . , ` are complex numbers known as complexified Fayet–Iliopoulos (FI) parameters
and the overall constant of proportionality was chosen for convenience. The second equality follows
since the generators of simple Lie groups are traceless, which is why there is precisely one τl for
each U(1) factor in G. After fermionic integration as specified by eq. (2.23) this twisted linear
superpotential gives rise to the real action,

SW̃ =
∑̀
l = 1

[
−

∫
d2x rl Dl +

θl
2π

∫
dvl

]
with τl = rl − i

θl
2π

. (2.33)

The first term inside the sum is the standard FI term that involves the auxiliary D-field of Vl , and in the
second term θl is the two-dimensional theta angle that multiplies the field strength dvl of the ordinary
U(1) gauge field vl . Both terms do not exist for simple gauge group factors. We denote the collection
of τl as vector ®τ, and similarly for other parameter types.

The Action

In order to complete our definition of the gauged linear sigma model, we explicitly state its classical
action

Sglsm =
∫

d2x d4θ

[
N∑

i = 1
Φ̃
†

i Φ̃i −
∑̀
l = 1

1
e2
l

Σ
†

l
Σl −

m∑
k = 1

ck
g2
k

tr
(
Σ
†

k
Σk

)]
+

∫
d2x

[
d2θW({Φi})

��
θ
±
= 0 + h.c.

]
+

∫
d2x

[
d2θ̃ W̃(Σ)

��
θ −= θ

+
= 0 + h.c.

]
.

(2.34)

Here el and gk are gauge coupling constants, the number ck depends on the non-Abelian gauge group
factor Gk and the twisted superpotential W̃ is as in eq. (2.32). The superpotential W is defined as the
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2.2 Gauged Linear Sigma Models

most general holomorphic polynomial of the chiral fields that is consistent with the symmetries — in
other words: the most general holomorphic polynomial that is gauge invariant and has vector R-charge
qV (W) = 2. Its precise form depends on the gauge theory spectrum and typically is the sum of several
terms. We schematically write

W =
nα∑
α= 1

yα Mα({Φi}) , (2.35)

where the Mα are linearly independent monomials and yα are complex constants whose interpretation
we clarify below. The individual parameters yα are summarized into the vector ®y.

Twisted Masses

There is an additional ingredient to the gauged linear sigma model that will play an important role
in the next chapter. To understand this, let us consider a flavor symmetry group F that acts in some
representation RF on the chiral multiplets. It is then possible to turn on an a background vector
superfield VF with values in the corresponding representation rf of the Lie algebra f of F. As a
common supersymmetry preserving choice, we take its bosonic component σF to be constant and set
all other component fields of VF to zero [73].

We distinguish two cases. First, in absence of a superpotential there is always the Abelian subgroup
F ′ = U(1)N ⊂ F — where N is the number of chiral multiplets — that acts by phase rotations on the
individual multiplets. While the full flavor symmetry F may be bigger and in particular non-Abelian,
we choose to only turn on a vector superfield for F ′. Second, in presence of a superpotential with
generic parameters ®y the flavor symmetry is typically smaller than U(1)N . In the next chapter we
will then nevertheless turn on VF′ for F ′ = U(1)N , which physically requires a non-generic choice of
superpotential parameters. While this does change the theory, the observables we will be concerned
with are independent of the ®y such that this method is admissible.

To summarize, in both cases we turn on a background vector superfield for the flavor symmetry
group F ′ = U(1)N . Its Lie algebra f′ is RN and the components σF′(ρi) = mi are real valued constants
that we refer to as twisted masses. A full specification of a particular model requires us to additionally
specify these constants. We may certainly choose all twisted masses mi to be zero, which unless
specified otherwise is understood to be the case.

2.2.4 Anomaly of the R-Symmetries

In the previous subsection we have deliberately constructed the gauged linear sigma model to be
classically invariant under the R-symmetries U(1)L and U(1)R. On the quantum level these symmetries
potentially suffer from anomalies ∆L and ∆R of the form [16, 57]

∆L = −∆R =
i

2π

∑̀
l = 1

Sl

∫
dvl with Sl =

∑
ρi ∈ Irrep(G)

dim ρi Ql(ρi) . (2.36)

Here Ql(ρi) is the charge of the chiral multiplet Φi under l-th U(1) gauge group factor, dim ρi is the
dimension of its representation ρi and dvl is the ordinary field strength two-form. Since the sum
of the two anomalies ∆V = ∆L + ∆R = 0 vanishes, the vector R-symmetry U(1)V is automatically
non-anomalous
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Conformal Models

The axial R-symmetry U(1)A can and in general will be anomalous. Its anomaly cancels if and only if
the condition

Sl =
∑

ρi ∈ Irrep(G)

dim ρi Ql(ρi) = 0 (2.37)

is fulfilled for all l, in case of which the gauged linear sigma model is said to be conformal. The low
energy limit then is a non-trivial N = (2, 2) superconformal field theory with central charge

c = −3 dim g + 3
∑

ρi ∈ Irrep(G)

(
1 − qi

)
· dim ρi . (2.38)

By an appropriate choice of the gauge theory spectrum we can thus deliberately cancel the anomaly
and choose the desired central charge. A potential spontaneous breakdown of the R-symmetries does
not pose a problem since the N = 2 superconformal algebra is a statement about operators and not
about states. Conformal gauged linear sigma models figure prominently in this thesis.

2.2.5 Renormalization

We are eventually interested in the low energy behavior of the gauged linear sigma model. To obtain a
better understanding thereof, we here shortly discuss effects of renormalization.

Superpotential

The superpotential is strongly protected by N = (2, 2) supersymmetry. Arguments of holomorphy
constrain quantum corrections to one-loop order in perturbation theory and to non-perturbative effects
[74], see also the review [75]. In the gauged linear sigma model these are absent [16, 57], such that
the superpotential is entirely unrenormalized. The coupling constants ®y can therefore be chosen freely
and are true moduli of the infrared fixed point theory.

Twisted Superpotential

The arguments of holomorphy remain applicable to the twisted superpotential, i.e., quantum corrections
can only appear at one-loop order or through non-perturbative effects. There indeed is a one-loop
divergence that results in the real FI parameter ®r running according to [16, 29, 57]

®r(µ) = ®S log
( µ
Λ

)
+ ®r(Λ) . (2.39)

Here Λ is the dynamically generated renormalization group invariant scale, µ is the floating energy
scale and ®S is the vector of Sl defined as in eq. (2.36). The effect of taking the infrared limit µ→ 0+

heavily depends on the spectrum dependent numbers ®S, namely

lim
µ→ 0+

rl(µ) =


−∞ if Sl > 0
rl(Λ) = rl(ΛUV) if Sl = 0
+∞ if Sl < 0

, (2.40)
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2.2 Gauged Linear Sigma Models

where ΛUV is the ultraviolet cutoff energy. In the first and third case the infrared value rl(0
+
) is

unambiguously fixed by the renormalization group flow, and hence rl does not correspond to a modulus
of the infrared theory. This is unlike the second case, where we can freely choose rl(0

+
) = rl(ΛUV) in

terms of the bare value rl(ΛUV). A similar discussion applies to the theta angles [16, 57], such that for
conformal gauged linear sigma models the complexified FI parameters ®τ are moduli of the infrared
fixed point theory.

Kähler Potential

The Kähler potential K is not holomorphic and therefore significantly less protected by supersymmetry.
It will not remain in the canonical diagonal form as chosen in eq. (2.34) but rather be more general at
energy scales µ < ΛUV. To obtain some qualitative insight into its renormalization, we now proceed
with a discussion of vacuum states.

2.2.6 Low Energy Limit

In this section we more concretely study the low energy behavior of gauged linear sigma models.
Our aim is to find the vacuum states of the theory, i.e., field configurations that minimize the scalar
potential. These are typically not unique but rather define an entire space of vacuum configurations
known as the low energy target space. Until specified otherwise, we consider conformal gauged linear
sigma models.

Classical Scalar Potential

Since we cannot follow the renormalization of the Kähler potential explicitly, we cannot determine the
fully quantum corrected scalar potential. As a starting point we therefore analyze the classical scalar
potential U, which directly follows from expanding the action (2.34) and takes the form [16, 55]

U =
∑̀
l = 1

1
2e2

l

D2
l +

m∑
k = 1

dim gk∑
a = 1

1
2g2

k

(
Da
k

)2
+

N∑
i = 1

F†i Fi

+
1
2

N∑
i = 1

φ†i

{
σ(ρi), σ(ρi)

†
}
φi +

m∑
k = 1

ck
2g2

k

tradj
[
σk, σk†

]
.

(2.41)

Here φi is the complex scalar of Φi, σ(ρi) the complex scalar of the vector multiplet V in the
representation of Φi and σk the component of σ that is associated to the non-Abelian gauge group
factor Gk . The auxiliary F- and D-fields are integrated out and read

Dl = −e2
l

N∑
i = 1

[
Ql(ρi) φ

†

i φi − rl
]
, Da

k = −g
2
k

N∑
i = 1

φ†i Ta
k (ρi) φi , Fi =

(
∂W
∂φi

)†
(2.42)

where Ta
k are the generators of the non-Abelian group Gk . As a consequence of supersymmetry U

cannot be negative, which is confirmed by the fact that all five terms in eq. (2.41) are positive definite.
The second and fifth term vanish in case of an Abelian gauge group.
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Chapter 2 Basics of Type II Superstrings and Their Compactification

Classical Ground States

The space of classical ground states is the set of gauge inequivalent field configurations that minimize
the classical scalar potential U. It strongly depends on the choice of real FI parameters ®r , which enter
through the Abelian D-fields in eq. (2.42). While there might be choices of ®r for which the minimal
value of U is strictly positive such that supersymmetry seems to be spontaneously broken, this do not
occur upon including quantum corrections [16, 57]. We therefore define

X®r =
U−1
(0)�G (2.43)

and consider choices of ®r for which this space of classical ground states is non-empty. Since the
individual terms of U are non-negative, all of them separately vanish at a minimum.

Branches and Phases

Consider setting the Abelian D-terms to zero. This will introduce vacuum expectation values for the
chiral scalars φi whose precise form depend on the choice of ®r. That region in ®r-space for which G
is broken to a discrete subgroup is referred to as the Higgs branch [57]. Through the second line
in eq. (2.41) the components of σ then get massive and thus have vanishing vacuum expectation
value. As a result, X®r is parameterized by the φi only and is given by the common zeros of all D- and
F-terms. The Higgs branch further decomposes into several regions with different vacuum spaces X®r ,
referred to as the different phases of the gauged linear sigma model.
Those values of ®r that leave at least one generator of G unbroken constitute the so called mixed

Coulomb-Higgs branch, and those for which G is completely unbroken the Coulomb branch [16, 55,
57]. At the classical levelX®r is then non-compact since the components ofσ associated to the unbroken
generators are unconstrained. This results in a singular low energy theory. The Coulomb-Higgs
branch is typically of real codimension one in ®r-space and separates the different Higgs branch phases
from each other. In the space of complexified FI parameters ®τ it typically is of complex codimension
one, such that different phases actually are smoothly connected to each other by variations of ®τ.

Higgs Branch

We now consider the Higgs branch in more detail. It turns out to be useful to reinterpret the D-terms
in a more mathematical way, for which we define the vector space V = span(φi) = C

N spanned by
the chiral scalars φi. This space is equipped with the canonical Kähler form ωV =

∑
dφi ∧ dφ i that

corresponds to the diagonal Kähler potential chosen in eq. (2.34). In this formulation the D-terms in
eq. (2.42) are components of the moment map µ : V → g

∗ of the G-action on V with respect to the
Kähler form ωV and the real FI parameters ®r appear as constants of integration for the Abelian factors
of G [16, 57]. The superpotential W is a gauge invariant function on V and the F-terms (2.42) are
components of its differential dW . The target space (2.43) therefore is

X®r = Y®r ∩ dW−1
(0) with Y®r =

µ−1
(®r)�G . (2.44)

While X®r and Y®r in general do not have a geometric interpretation as manifolds, in the following
discussion we assume they do. For conformal models the first Chern class of X®r vanishes [16].
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Gauge Theory Parameters and Geometric Moduli

This formulation is advantageous because it clarifies the role of the FI and superpotential parameters ®τ
and ®y. Assuming a geometric interpretation, the Marsden-Weinstein-Meyer theorem guarantees Y®r to
be a Kähler manifold and the cohomology class of its Kähler form ωY depends linearly on ®r [76, 77],
see also the review [78] for mathematical background. The Kähler form ωX on X®r descents from
ωY , such that also the Kähler class of ωX depends on ®r . Consequently, the FI parameters correspond
to Kähler moduli of X®r and these are complexified by the theta angles ®θ. We also conclude that the
number ` of U(1) factors in G equals the number of Kähler moduli. The complex structure moduli
of X®r are induced by the intersection of the ambient space Y®r with dW−1

(0) and correspond to the
superpotential parameters ®y. Since the choice of ®y determines the form of the defining equations
dW−1

(0), this is intuitively plausible.

Quantum Corrections and Superconformal Moduli

A careful analysis [16, 57] of the vacuum states demonstrates that the above classical discussion
becomes a good approximation at certain boundary components in ®τ-space. In these limits the volume
of the target space X®r tends to infinity and the infrared N = (2, 2) superconformal field theory reduces
to a non-linear sigma model on X®r . The Kähler potential will then be renormalized precisely such
that the Kähler manifold X®r is equipped with a Ricci-flat metric, i.e., X®r becomes a generalized
Calabi–Yau manifold. Moreover, both the complexified FI parameters ®τ and superpotential parameters
®y are guaranteed to be true moduli of the superconformal theory. It is thus natural to employ a type
IIA interpretation in which ®τ and ®y are identified with the moduli in the (a, c) and (c, c) ring of the
superconformal theory. The FI parameters ®τ are quantum Kähler moduli and allow us to extrapolate
around the entire quantum Kähler moduli spaceMIIA

QK(X®r ). In particular, when ®τ is not at but only in
vicinity of large volume the low energy theory has an interpretation as non-linear sigma model on a
deformed (not Ricci-flat) version of X®r . For a generic choice of ®τ the geometric picture of the low
energy theory is lost entirely and there may be other boundary components where a different geometric
target space arises. While we cannot follow the renormalization group flow exactly, we know that the
Kähler potential will be renormalized precisely such that it agrees with this structure [16].
We note that this line of reasoning will typically fail if a non-Abelian gauge symmetry remains

unbroken. The gauge theory may then be strongly coupled, such that even at large volume points the
quantum physics significantly deviates from the classical discussion. One approach to such cases is
the use of strong-weak coupling dualities [55, 61, 79], with which the theory may be rewritten in a
dual weakly coupled form.

Coulomb Branch Singularities

As we recall, the classical analysis predicts special choices of the FI parameters ®r for which some
components of σ become unconstrained. These values constitute the Coulomb and Coulomb-Higgs
branches, where the space of classical ground states becomes non-compact and the low energy theory
is singular. For Abelian gauge groups these singularities are on the quantum level carefully analyzed
in refs. [16, 29, 57]. The result of this analysis is that — due to a finite quantum correction to the
twisted superpotential — the singular choices cannot be read off from the classical potential. Rather,
they are computed as follows: let H ⊂ G be any continuous subgroup of the gauge group G = U(1)`
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and I be an index set that enumerates all chiral multiplet Φi with non-zero charge under H. Those
values of ®τ for which the equations

∏
i ∈ I

[∑̀
a = 1

Qa(ρi) xa

]Ql (ρi )

= e−2π τl with l = 1, . . . , ` (2.45)

can be simultaneously solved by some value of the auxiliary variables xa constitute the Coulomb-Higgs
branch (if H , G) and the Coulomb branch (if H = G). When speaking of the Coulomb branch, we
henceforth mean this to also include the Coulomb-Higgs branch. As we will explain further below, for
a different reason the low energy theory is also singular at large volume boundary components of the
moduli space.

Discussions of singularities in several examples of non-Abelian gauged linear sigma models can for
instance be found in refs. [55, 61]. It is also possible to employ the following heuristic, yet general
approach: consider the non-Abelian gauge group being broken to its maximal Abelian subgroup
U(1)dim g and turn on auxiliary FI parameters for the additional U(1) factors. In this modified theory
we can employ eq. (2.45) in order to determine the singular locus. By then turning off the auxiliary
parameters we go back to the original non-Abelian theory and correspondingly restrict the singular
locus. While this restriction subsumes the singularities of the non-Abelian theory, it may still be too
big. For a definite check of whether a given choice of ®τ is singular we may employ the Picard–Fuchs
operators that will be introduced in the next section or the correlation functions that feature in the next
chapter.

Example

In order to illustrate these concepts, we now discuss a concrete example that goes back to Witten’s
original work [16]. Consider a gauged linear sigma model with gauge group G = U(1) and chiral
matter spectrum as listed in Table 2.5. The condition for anomaly cancellation (2.37) is fulfilled and

Chiral multiplets G = U(1) charge Vector R-charge qi
Φi, i = 1, . . . , 5 +1 0

P −5 2

Table 2.5: Matter spectrum of the gauged linear sigma model of the quintic Calabi–Yau threefold P4
[5].

eq. (2.38) shows that the infrared central charge is c = 9. As a result, the model flows to an N = (2, 2)
superconformal field theory that is a valid internal theory for a supersymmetric compactification to
four dimensions. Gauge and U(1)V invariance constrain the superpotential to take the form

W = P · H(Φ1, . . . ,Φ5) , (2.46)

where H is a polynomial of homogeneous degree five in the five variables Φi . It generically contains
126 (= 9 choose 5) complex parameters yα, only 101 = 126 − 25 of which are independent due to a
GL(5,C) equivalence of the Si. The classical scalar potential (2.41) reads

U =
e2

2
(
|φ|2 − 5|p|2 − r

)2
+ |H |2 + |p|2

��∇φ H
��2 + |σ |2 (25|p|2 + |φ|2

)
, (2.47)
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where p is the scalar in P and φ the vector of scalars in the Φi . We now determine the classical vacua
for different choices of r .
We begin with r � 0. Setting the first term in eq. (2.47) to zero then requires φ , 0. This breaks

the gauge group completely and the fourth term can be zero for σ = 0 only. For generic choices of
superpotential parameters ®y the differential dH will be of full rank, such that the third term requires
p = 0. The D-term then shows the ambient space to be

Yr�0 =

{
φ ∈ C5

��� |φ|2 = r , 0
}
�U(1) = P

4 . (2.48)

Since H is homogeneous polynomial (a result of gauge symmetry), it is well defined on P4 and we
arrive at

Xr�0 =
{
φ ∈ P4

| H(φ) = 0
}
= P4
[5]. (2.49)

This space has vanishing first Chern class and therefore can be equipped with a Ricci-flat metric. The
limit r → ∞ is a large volume point, at which the low energy fixed point theory is the non-linear
sigma model on P4

[5] and the Kähler potential is renormalized such that its metric becomes Ricci-flat.
We refer to P4

[5] with Ricci-flat metric as the quintic Calabi–Yau threefold.
Now consider the phase r � 0. Vanishing of the D-field here implies that p cannot be zero and with

dH having full rank the third term in eq. (2.47) then requires φ = 0. Given this, H is zero automatically
and σ = 0 follows from the fourth term. The modulus of p is fixed to be

√
−r/5 by the first term

and division by the gauge group U(1) further fixes its phase. Consequently, the space of classical
vacua Xr�0 is a single point. The expectation value for p breaks G to a discrete Z5 subgroup, which
acts by multiplication with a 5-th root of unity on the φi and trivially on p. For r → −∞ the gauged
linear sigma model thus flows to a Landau-Ginzburg orbifold [16], which is smoothly connected to
the r →∞ region with its completely different nature. While this fact is naturally understood in the
gauged linear sigma model, it is rather miraculous from a pure geometric non-linear sigma model
point of view.
Lastly, eq. (2.45) with H = G shows that a Coulomb branch arises for 2πτ = 5 ln(5) + iπ. This

point in moduli space is known as the conifold point.

Non-Conformal Models

In this subsection we have so far specialized to conformal gauged linear sigma models. The low
energy limit µ→ 0+ is indeed very different in the non-conformal case. As an example, in case of
G = U(1) the true vacuum states of the theory are the isolated points [16, 29]

σ = Λ · exp
(
2πi n

S

)
with n = 0, . . . |S | − 1 , (2.50)

where S = S1 , 0 is the sum of chiral charges as defined in eq. (2.36). All other fields have vanishing
vacuum expectation value.

For energies µ that are close to the ultraviolet cutoff ΛUV and thereby far above the dynamical scale
Λ, the classical target space (2.44) is — unless a continuous non-Abelian subgroup of G remains
unbroken — nevertheless a good approximation to the low energy states of the theory [29]. The
real FI parameters rl can no longer be chosen freely but are required to be close to their bare values
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rl(ΛUV) = sign(Sl) · ∞ as determined by eq. (2.39). We will see examples of non-conformal gauged
linear sigma models in the next chapter.

Summary

This concludes our introduction of the gauged linear sigma model. There are two key messages to take
away. First, with an appropriate choice of gauge theory spectrum the low energy fixed point theory is
guaranteed to be a family of N = (2, 2) superconformal field theory with the desired central charge.
Second, the FI parameters allow us to extrapolate around the entire quantum Kähler moduli space of
this superconformal theory.

2.3 Picard–Fuchs Operators

In this section we continue our discussion of quantum Kähler moduli spaces in N = (2, 2) supercon-
formal field theories. This naturally leads us to the introduction of Picard–Fuchs operators, which
figure prominently in the later chapters of this thesis. We also briefly explain the mirror symmetry
interpretation. Our review is short and practical, with the focus on introducing the techniques that will
be employed in the subsequent chapters.

2.3.1 Quantum Kähler Moduli Space

Let X be a Calabi–Yau threefold. We here explain how the quantum Kähler moduli spaceMIIA
QK(X)

can in certain regions be interpreted as a deformation of the complexified geometric Kähler moduli
space.

Correlation Functions and Quantum Product

Let Hi with i = 1, . . . , h1,1
(X) be a basis of H2

dR(X,Z) and H̃i be the dual basis of H4
dR(X,Z), such

that
∫
X

H̃i
∧ Hj = δij . These Hi correspond to operators φi in the (a, c) ring of the associated

superconformal field theory, whose triple correlation function reads [80, 81]

〈φi φ j φk〉 = κi jk +
∑

®d ∈H2(X,Z)

N ®d di dj dk
®q
®d

1 − ®q ®d
with ®q

®d
=

∏h1,1

i = 1 qdi
i . (2.51)

Here κi jk is the classical contribution, whereas the sum arises to due instanton interactions that are
characterized by the vector ®d and counted by the integers N ®d. The instanton action is

∏
qdi
i and a

multi-covering formula gives the presented form. These various quantities also a have a geometric
interpretation. Namely, the classical contribution κi jk is the intersection number

∫
X

Hi ∧ Hj ∧ Hk and
the sum runs over holomorphic curves in X . Further, di is the integral of Hi over these curves and the
qi are a distinguished set of coordinates onM

IIA
QK(X) that we will further explain below. Finally, the

integers N ®d are known as the genus zero integral Gromov–Witten invariants and count genus zero
holomorphic curves of a fixed degree, see for instance the textbook [82].
The quantum product ∗ is a deformation of the wedge product ∧ between forms in the vertical

cohomology Hvert(X) introduced in eq. (2.9), see the review [81]. It is defined by the two requirements
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that A ∗ B = A ∧ B if A ∧ B is a form of top degree and that the correlation function (2.51) agrees
with integral over the triple quantum product Hi ∗ Hj ∗ Hk . This implies

Hi ∗ Hj = Hi ∧ Hj +
∑

®d ∈H2(X,Z)

N ®d di dj dk
®q
®d

1 − ®q ®d
H̃k , (2.52)

where summation over k is implicit. The vertical cohomology Hvert(X) as vector space equipped with
the quantum product defines the quantum cohomology ring QHvert(X) [81].

Givental I -Function

The Givental I-function, introduced in [18] for complete intersections X in compact weak Fano toric
varieties, is a mathematical entity that encodes the structure of the quantum cohomology ring. While
it can be formulated entirely in terms of geometric quantities, we here choose to describe it with
gauged linear sigma model language so as to facilitate our discussions in the subsequent chapters.

Since the geometries covered in [18] arise as target spaces of Abelian models, we specialize to the
gauge group G = U(1)` where ` equals the number of Kähler moduli. We assume the FI parameters
to be in the vicinity of a geometric large volume boundary component at ®τ → ∞, such that in this
limit the low energy dynamics reduces to the non-linear sigma model on the target space (2.44). It is
useful to employ the coordinates

Ql = e−2πτl for l = 1, . . . , ` , (2.53)

which are in vicinity of the large volume boundary component at ®Q→ 0. We collect the gauge charges
of the chiral multiplets Φi into the vectors ®ρi and their vector R-charges qi are constrained to be either
zero or two. The I-function of the target space (2.44) then reads

I( ®Q,mi, ε) =
∑
®k ∈γ+m

N∏
i = i

∏∞
s = 1+®k · ®ρi

[
®H · ®ρi +mi + ε

(
s − qi

2

)]
∏∞

s = 1

[
®H · ®ρi +mi + ε

(
s − qi

2

)] ®Q
®k+
®H
ε , (2.54)

where ®H = (H1, . . . ,H`) is the same basis of H2
dR(X,Z) as above and γ+m = Z

`
≥0 a subset of the

magnetic charge lattice γm = Z
` . To obtain a compact target space, we often assume that those Φi

with qi = 0 are such that ®k · ®ρi ≥ 0 for all ®k ∈ γ+m whereas ®k · ®ρi ≥ 0 for those Φi with qi = 2. Through
the parameter ε the I-function also captures Gromov–Witten invariants with insertions of ψk at their
marked points [18, 83], where ψ is the first Chern class of the universal cotangent line bundle over
the moduli space of stable maps and k is a positive integer. The twisted masses mi correspond to
equivariant parameters of C∗ symmetries of X and the I-function is understood to take values in the
equivariant vertical cohomology ring of X . Note that the infinite products are employed for notational
convenience only, almost all terms cancel between numerator and denominator. For the remainder of
this section we set mi = 0 for all i and write I( ®Q, ε) = I( ®Q, 0, ε).

A mathematical generalization of the I-function to geometries beyond toric varieties, which typically
arise as target spaces of gauged linear sigma models with non-Abelian gauge groups, can be found in
ref. [84]. In the later chapters, most prominently in chapter 5, we will deal with such cases by means
of the associated Abelian Cartan theories.
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Chapter 2 Basics of Type II Superstrings and Their Compactification

Quantum Periods and Flat Coordinates

Settingmi = 0 in eq. (2.54), the cohomology elements ®H follow the classical ring structure of Hvert(X)
given by the wedge product. An expansion of the I-function in these variables gives rise to finitely
many terms, whose coefficients are known as the quantum periods — in short ‘periods’ — of X [83].
The coefficients of at most linear terms,

Π0( ®Q) = I( ®Q, ε) �� ®H = 0
,

Πl(
®Q) = ε

∂

∂Hl

I( ®Q, ε) �� ®H = 0
= Π0( ®Q) log Ql + πl( ®Q) ,

(2.55)

are of particular interest. Here we have suppressed a potential ε dependence, which for conformal
gauged linear sigma models with mi = 0 indeed cancels out. We respectively refer to Π0( ®Q) and
πl( ®Q) as the fundamental and singly logarithmic periods. The other quantum periods are found as
appropriate linear combinations of higher derivatives and they involve higher powers of logarithms.
The functions Π0( ®Q) and πl( ®Q) are power series with a finite radius of convergence in ®Q-space. This
more precisely defines the notion of being in the vicinity of large volume. The strict large volume
limit ®Q→ 0 is due to the presence of logarithms not well defined, which signals a singularity of the
superconformal theory at this point. In a string theory context this is a result of having neglected
higher Kalazu–Klein modes, although in a large volume case these too become massless.

Note from eq. (2.54) that Π0( ®Q) does not vanish in the large volume limit ®Q→ 0. The coordinates
®q employed in eq. (2.52) are determined by

log ql( ®Q) = bl +
Πl(
®Q)

Π0( ®Q)
= bl + log Ql +

πl( ®Q)

Π0( ®Q)
, (2.56)

where the constants bl are fixed by requiring the Gromov–Witten invariants to be non-negative and
the logarithms of ®q are known as flat coordinates [48, 85–89]. This equation connects ®τ, which are
parameters of the ultraviolet gauge theory and in the conformal case coordinates onMIIA

QK(X), to a
different set ®q of coordinates onMIIA

QK(X) that are more natural from the low energy target space point
of view. We refer to eq. (2.56) as the UV-IR map, and note that for a reason explained below it is
alternatively known as the mirror map. According to this definition ®q vanishes in the large volume
limit, such that in its vicinity the quantum product (2.52) really is a deformation of the wedge product.

Introduction of Picard–Fuchs Operators

Observe that a derivative of the I-function with respect to Ql brings down a power of Hl and that since
Hvert(X) is finite-dimensional there are only finitely many distinct monomials in the Hl . Consequently,
there will be differential operators

L( ®Q) =
M∑

m= 1
cm( ®Q)Dm[∂Q] (2.57)

that annihilate the I-function in cohomology. Here M is a finite integer and theDm[∂Q] are monomials
of the partial derivatives with respect to the Ql. Such operators L( ®Q) are known as Picard–Fuchs
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operators and their set forms an ideal. Namely, any linear combination of Picard–Fuchs operators as
well as the multiplication of an arbitrary operator to the left of a Picard–Fuchs operator still annihilates
the I-function. This ideal is finitely generated [90] and we denote a choice of generators as Lk(

®Q)
with k = 1, . . . ,K . We sometimes refer to these Lk(

®Q) as the Picard–Fuchs operators.
Every Picard–Fuchs operator annihilates all quantum periods of X , which motivates us to define the

set of equations
Lk(
®Q)Π( ®Q) = 0 for k = 1, . . . ,K . (2.58)

A function Π( ®Q) that obeys these so-called Picard–Fuchs differential equations is annihilated by
all operators in the ideal and necessarily is a linear combination of the quantum periods defined
by the expansion of the I-function [83]. Conversely, the quantum periods can be written as linear
combinations of a basis of solutions to the Picard–Fuchs differential equations (2.58). Such functions
Π( ®Q) are therefore also referred to as quantum periods.
The Picard–Fuchs operators are for instance practically determined by making an ansatz and

requiring it to annihilate the quantum periods. Finding a set of generators Lk(
®Q) is, however, in

general a difficult question. For cases with only few moduli other arguments determine the order of
the generating differential operators, which significantly simplifies the problem.

Yukawa Coupling

We now explain how these methodologies allow us to determine the Gromov–Witten invariants. For
this we specialize to a single Kähler modulus, h1,1

(X) = ` = 1, which is the case of our main interest.
We define

W0,3
(Q) =

(
Q
q
∂q
∂Q

)3 ∫
X

H ∗ H ∗ H , (2.59)

where H is the single generator of H2
dR(X,Z). This quantity has two interpretations. The first, which

we will explain below, involves mirror symmetry and identifies W0,3 as the B-model Yukawa coupling
[13]. It can be shown to obey a differential equation governed by the Picard–Fuchs operator, by which
it is determined exactly. While the derivation of this method involves mirror symmetry, the calculation
can proceed without knowledge of the mirror manifold Y as long as the Picard–Fuchs operator is
known. In the second interpretation W0,3 is a certain correlation function of the gauged linear sigma
model, which by modern localization techniques [91, 92] can also be calculated exactly [73, 93]. This
approach does not make reference to mirror symmetry at all and will be covered in the next chapter.
Regardless of the interpretation, the Gromov–Witten invariants Nd are determined by expanding both
sides of eq. (2.59) in terms of q and comparing coefficients.

Example

To clarify the above definitions and discussions, let us come back to the gauged linear sigma model
discussed at the end of subsection 2.2.6. For r � 0 the low energy target space was found to be the
quintic Calabi–Yau threefold threefold P4

[5], whose Givental I-function according eq. (2.54) is

I
P4
[5](Q, ε) =

∞∑
k = 0
(−1)k

∏5k
s = 1 (5H + ε · s)∏k
s = 1 (H + ε · s)

5 Qk+ H
ε . (2.60)
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The quantum periods Π0 and Π1 defined in eq. (2.55) follow from an expansion of I
P4
[5] up to linear

order in H, they read

Π0(Q) =
∞∑

k = 0
(−Q)k

(5k)!
k!5 , Π1(Q) =

∞∑
k = 0
(−Q)k

(5k)!
k!5 ·

[
log Q + 5

(
h5k − hk

) ]
(2.61)

where hk denotes the k-th harmonic number. By inverting the exponential of eq. (2.56) we find Q as a
function of q,

Q =
q
b′
+ 770

( q
b′

)2
+ 171 525

( q
b′

)3
+ O

(
q4

)
, (2.62)

with b′ the exponential of b1. The quantum periods are annihilated by the fourth-order Picard–Fuchs
operator

L
P4
[5](Q) =

4∑
k = 0

ck(Q)Θ
k
= Θ

4
+ 5Q

4∏
l = 1
(5Θ + l) with Θ = Q ∂Q . (2.63)

The fact that the coefficients ck(Q) are polynomial in Q is not obvious from how we introduced
Picard–Fuchs operators in general and is a consequence of P4

[5] being a compact geometry. As we
will show below, W0,3

(Q) obeys the differential equation[
2c4(Q)Θ + c3(Q)

]
W0,3
(Q) = 0 , (2.64)

where ck(Q) is the coefficient of Θk in L
P4
[5](Q). This differential equations is readily solved and

gives
W0,3
(Q) =

a

1 + 55Q
(2.65)

with some constant a. Finally, the triple intersection number is
∫
X

H ∧ H ∧ H = 5. Equations (2.59)
and (2.52) then give the famous numbers [13, 94, 95]

N1 = 2 875 , N2 = 609 250 , . . . (2.66)

as well as a = 5 and b′ = −1. It is important to note that W0,3
(Q) is singular for Q = −55, at which

we also observe c4(Q) to vanish. This is not a coincidence, it precisely is the location of the Coulomb
branch as predicted by eq. (2.45). The periods in eq. (2.61) converge for |Q | < 55.

Why Picard–Fuchs Operators are Useful

Let us now summarize why we are interested in Picard–Fuchs operators and not just content ourselves
with the I-function. As the first and most important reason, they allow us to continue the quantum
periods across the entire quantum Kähler moduli space. To do this, we rewrite the operators in terms
of coordinates centered around a different point and then solve the new Picard–Fuchs differential
equations. The solutions obtained this way are analytic continuations of the periods defined by the
I-function in vicinity of large volume. We will use this technique in chapter 5. While this method
works for all points and boundary limits of moduli space, in special cases the analytic continuation
can without reference to a Picard–Fuchs operator also be done by means of a Mellin–Barnes integral
representation, see for instance ref. [13].
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For discussion further reasons we specialize to compact Calabi–Yau threefolds with a single Kähler
modulus. In this case the generating operator immediately determines the B-model Yukawa coupling
W0,3 through eq. (2.64) and moreover encodes the locations at which the superconformal theory
becomes singular. For this we rescale the operator such that the coefficients ck(Q) in eq. (2.63) are
polynomials with no common factor. The superconformal theory can then only be singular at the
origin, at infinity, or at points where c4(Q) = 0. On the contrary, not all points at which c4(Q) = 0 are
necessarily singular.

Calabi–Yau Manifolds of Different Dimension

The above discussions on the I-function, periods and Picard–Fuchs operators equally apply to Calabi–
Yau n-folds of different complex dimensions than n = 3. While its precise form changes, the quantum
product can also be generalized, see ref. [81].

Non-Conformal Models

The notion of the Givental I-function extends to manifolds that are not of the Calabi–Yau type. These
arise as target spaces of non-conformal gauged linear sigma models and eq. (2.54) is physically
understood to be at an energy scale µ close to the ultraviolet cutoff ΛUV. While the I-function is still
annihilated by differential operators, these are not referred to as Picard–Fuchs operators. Similarly,
the solutions to the differential equations defined by the operators are still of interest but not referred
to as periods.

2.3.2 Complex Structure Moduli Space

There are also Picard–Fuchs operators on the complex structure moduli spacesMCS. To be precise, we
considerMIIB

vector(Y ) =MCS(Y ) where Y is the mirror manifold of X . The operators are then literally
the same as those studied in the previous subsection and we are able to explain some of the assertions
made there.

Introduction of Picard–Fuchs Operators

The holomorphic (3, 0)-form Ω on Y is the (up to scaling) unique element in H3,0
(Y ) and depends

on the choice of complex structure on Y . We hence write Ω = Ω( ®ξ ), where the components ξα of ®ξ
with α = 1, . . . , h2,1

(Y ) = h1,1
(X) are coordinates onMCS(Y ). Derivatives of Ω( ®ξ) with respect to

ξα are still closed differential forms of total form degree three, i.e., are elements of the horizontal
cohomology Hhor(Y ) defined in eq. (2.9). Since this space is finite-dimensional, there necessarily will
be linear dependencies between Ω( ®ξ ) and its derivatives. These translate into differential operators
L(®ξ ) that annihilate Ω( ®ξ ) in cohomology,

L(®ξ )Ω( ®ξ ) = [0] with L(®ξ ) =

M∑
m=1

cm( ®ξ ) Dm[∂ξ ] . (2.67)

Here M is a finite integer and the Dm[∂ξ ] are monomials in the partial derivatives with respect to the
complex structure coordinates. These L(®ξ ) are the Picard–Fuchs operators.
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Griffith Transversality and B-Model Correlation Functions

A tighter connection to the structure of Hhor(Y ) = QHvert(X) is drawn by so-called Griffith transversality
[96]. To explain this, let us restrict to cases with h2,1

(Y ) = h1,1
(X) = 1 and generalize to arbitrary

complex dimensions n. The statement is in terms of the holomorphic bundles

F
n−m
=

m⊕
k = 0

Hn−k,k
(Y ) for 0 ≤ m ≤ n , (2.68)

which define a filtration Fn
⊂ . . . ⊂ F0

= Hn
dR(Y,C) of the n-th de Rahm cohomology group.

Derivatives of the holomorphic (n, 0)-form obey

∂mξ Ω(ξ )

{
∈ F

n−m and < F n−(m−1)

∈ F
0

for n ≥ m ≥ 1
for m ≥ n + 1 . (2.69)

Let us now restrict to Calabi–Yau threefolds, i.e., we take n = 3. The above equation then implies that
there cannot be a Picard–Fuchs operator of order three or lower, but there necessarily is one of order
four as confirmed by eq. (2.63) — for a more detailed exposition of this argument see subsection 5.2.1.
Lastly, we consider the quantities

Wa,b
(ξ) =

∫
Y

Θ
a
ξ Ω(ξ) ∧ Θ

b
ξ Ω(ξ) with Θξ = ξ ∂ξ . (2.70)

This generalizes the B-model Yukawa coupling in eq. (2.59), which agrees with W0,3
(ξ) when Q and ξ

identified. From Griffith transversality we find W0,b
= 0 for b ≤ 2 and an elementary calculation gives

0 = Θ2
ξ W0,2

(ξ) − 2Θξ W0,3
(ξ) +W0,4

(ξ) = −2Θξ W0,3
(ξ) +W0,4

(ξ) . (2.71)

In order to derive the differential equation (2.64) that allowed us to solve for W0,3, we make the
additional observation

0 =
∫
X

Ω(ξ) ∧ L(ξ)Ω(ξ) = c4(ξ)W
0,4
(ξ) + c3(ξ)W

0,3
(ξ) . (2.72)

In combination with eq. (2.71) this gives the desired result. We note that this derivation does not
require detailed knowledge about the mirror geometry Y and can be used as long as Y exists.

Periods

For completeness, we briefly introduce quantum periods in this context. These are integrals of the
holomorphic (3, 0)-form over ω ∈ H3(X,C),

Πω(
®ξ ) =

∫
ω
Ω( ®ξ ) . (2.73)

They are annihilated by the entire ideal of Picard–Fuchs operators and for appropriate choices of ω
agree with the quantum periods defined by the I-function of X . If ω is an element of H3(X,Z), the
above integral is a so-called integral quantum period. This concept will play a role in chapter 5.
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CHAPTER 3

The Geometry of Gauged Linear Sigma Model
Correlation Functions

The previous chapter has introduced the gauged linear sigma model and Picard–Fuchs operators as
two complementary tools for studying the moduli structure of superconformal worldsheet theories
that arise in supersymmetric type II string compactifications. This chapter demonstrates that these
two tools are, in fact, closely connected to each other. In particular, we show that the Picard–Fuchs
operators arise — and can be determined — from a certain set of observables in the gauged linear
sigma model. A similar result applies to non-conformal models.

This chapter is based on the author’s publication [17].

3.1 Introduction and Results

The central player of this chapter are correlation functions of the complex scalar σ in the vector
superfield of gauged linear sigma models, to which we refer as ‘correlators’. We systematically
analyze these observables from a gauge theory point of view and study their target space interpretation.
Our analysis is based on a localization computation [73] by Closset, Cremonesi and Park which
opens the possibility to calculate the correlators quantum exactly — including all perturbative and
non-perturbative effects — for any value of the complexified Fayet–Iliopoulos (FI) parameters. This
computation generalizes the methods of ref. [57] by means of modern localization techniques [91,
92], in which curved space supersymmetry is realized by a suitable off-shell supergravity background.
Since the particular background chosen in ref. [73] relates to A-twisted gauged linear sigma models in
the context of mirror symmetry [97], the correlators are expected to contain information about the
quantum cohomology of the target space. This manifests itself in the results of refs. [98, 99], whose
authors conjecture and for a certain class of target spaces prove the correlators to arise from a bilinear
pairing of the Givental I-function [18]. Correlators of gauged linear sigma models are also calculated
in ref. [93]. Our central results are the following:

• Starting from the localization formula of ref. [73], we demonstrate that there are universal and
non-trivial linear dependencies among the set of correlators. Our prove is constructive and
yields a combinatorial algorithm that determines these relations from the defining gauge theory
spectrum directly, without the need to explicitly calculate any correlator.
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• By employing a Hilbert space interpretation we map these universal correlator relations to
differential operators that annihilate the gauge theory ground state. In case of a geometric
target space we use the connection of correlators and Givental I-function to argue that these
differential operators generate the GKZ system of differential equations governing the target
space quantum cohomology.

• We find that for conformal gauged linear sigma models these differential operators are the
Picard–Fuchs operators on the quantum Kähler moduli space of the low energy N = (2, 2)
superconformal field theory.

• For several classes of Calabi–Yau manifolds — specified by a fixed complex dimension
and number of Kähler moduli — we derive formulas that universally express the generating
Picard–Fuchs operators in terms of the gauge theory correlator. These formulas automatically
obey certain non-trivial constraints, for example N = 2 special geometry [88] in the case of
Calabi–Yau threefolds.

Focusing on the physically important case of conformal models, these findings provide us with two
methods to determine the Picard–Fuchs operators on the quantum Kähler moduli space of N = (2, 2)
superconformal field theories from the correlators of the corresponding gauged linear sigma model.
The correlators thereby encode the quantum cohomology the target space — including for example
the genus zero integral Gromov–Witten invariants encountered in eq. (2.51) — and more generally
speaking the moduli structure of the superconformal theories. Traditionally, the Picard–Fuchs operators
are often indirectly determined via mirror symmetry [13]. This is particularly powerful for complete
intersection Calabi–Yau manifolds in toric varieties, since these admit a systematic mirror construction
[100, 101]. Our methods are complementary and determine the Picard–Fuchs operators without
the need to construct a mirror geometry, which for Calabi–Yau compactifications beyond complete
intersection in toric varieties is not always known. Moreover, there is no need to factor a higher order
differential operator as is common in other approaches, see e.g. ref. [102].
We note that in addition to the correlator based approach presented here, there are other gauged

linear sigma model observables that encode infrared gauge theory quantities without employing mirror
symmetry. In particular, the sphere partition function computes the quantum-exact Kähler metric on
the quantum Kähler moduli space [103–105] and the hemisphere partition functions directly yields
exact expressions for the quantum periods [106–108].

3.2 Abelian A-Twisted Correlators

This section introduces A-twisted correlators of N = (2, 2) two-dimensional gauge theories. These are
the central object of study in this chapter. To simplify the discussion and to not obscure the main
ideas with technical details, we here specialize to Abelian gauged linear sigma models and refer to
section 3.5 for the generalization to non-Abelian gauge groups.

3.2.1 General Properties

Our notation follows that of previous chapter. The Abelian gauge group reads G = U(1)` and there
are N chiral multiplets Φi whose gauge and vector R-charges respectively are ®ρi ∈ Z

` and qi. We
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turn on generic twisted masses mi , which are an important technical ingredient in our calculations as
will be discussed further below.

The complex scalar σ in the vector superfield V decomposes as σ =
∑
σl, where the components

σl with l = 1, . . . , ` correspond to the individual U(1) factors in G. We collect them into the vector
®σ = (σ1, . . . , σ`). The authors of ref. [73] calculate A-twisted correlators of monomials of these σl ,
for the purpose of which they put the gauge theory on a two-sphere with a suitable off-shell supergravity
background that realizes a topological A-twist. Field insertions are then only BRST invariant at the
sphere’s north pole (subscript ‘N’) and south pole (subscript ‘S’), such that the correlators take the
general form 〈

®σ ®nN ®σ
®m

S

〉
= κ®n, ®m( ®Q,mi, ε) with ®n, ®m ∈ Z`≥0 . (3.1)

We here use the short-hand notation σ ®n = σn1
1 · · ·σ

n`
`
, the variables ®Q = (Q1, . . . ,Q`) are defined in

terms of the complexified FI parameters ®τ as in eq. (2.53), the entries of ®n and ®m are non-negative
integers and ε is a parameter of the supergravity background. We view the correlators as functions
of ®Q, the twisted masses mi and ε — and not as functions of the locations of field insertions, on
which they depend only through ®n and ®m. The A-twist moreover guarantees that the correlators are
independent of the parameters ®y in the superpotential.
Since the metric dependence of the correlators is encoded in ε , their value at ε = 0 is topological

and insensitive to the location of the field insertion [73]. This implies the symmetry

κ®n, ®m( ®Q,mi, 0) = κ®n′, ®m′( ®Q,mi, 0) for all ®n + ®m = ®n′ + ®m′ ∈ Z`≥0 . (3.2)

Let us now think of κ®n, ®m( ®Q,mi, ε) being expanded as a power series of its argument. The axial
R-symmetry (even in the anomalous case) gives a selection rule due to which only those terms that are
in accord with the equation

d + #(ε) + #(mi) +
∑̀
l = 1

Sl · #(Ql) = | ®n|1 + | ®m|1 (3.3)

can be non-zero [57, 73]. Here #( · ) denotes the exponent of its argument, we write | ®n|1 ≡
∑

k |nk |
and Sl is the sum of gauge charges as defined in eq. (2.36). The integer d is 1/3 times the right hand
side of eq. (2.38), which in case of a geometric target space agrees with its complex dimension and for
conformal models equals 1/3 times the central charge of the low energy superconformal theory. We
now distinguish three special cases.

1. In case of conformal gauged linear sigma models we have Sl = 0 for all l, such that the selection
rule (3.3) does not constrain the ®Q dependence of κ®n, ®m. Assuming a model with compact target
space, the correlators are guaranteed to be finite except at those values of ®Q where a Coulomb
branch arises, see eq. (2.45). Their correlators are rational functions of ®Q with poles at these
singularities only and remain finite in the limits ε → 0 and mi → 0. The selection rule (3.3)
then implies κ®n, ®m = 0 for | ®n|1 + | ®m|1 < d. In case of a non-compact target space some κ®n, ®m are
expected to diverge in the limit m→ 0 of vanishing twisted masses.

2. Gauged linear sigma models with Sl > 0 for all l are said to possess the Fano property. The real
FI parameters ®r are then physically required to be close to their bare values rl(ΛUV) → +∞

for all l, in case of which the classical target space becomes a good approximation to the low
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Chapter 3 The Geometry of Gauged Linear Sigma Model Correlation Functions

energy states of the theory. The correlators are finite for ®Q→ 0 and according to the selection
rule (3.3) are polynomial in ®Q as long as the limits ε → 0 and mi → 0 exist.

3. Gauged linear sigma models with Sl < 0 for all l are referred to have the ample canonical
bundle property. Since the real FI parameters are required to be close to their bare values
rl(ΛUV) → −∞ for all l, we should then rather work with 1/Ql instead of Ql . In terms of these
inverted variables the discussion parallels the previous case.

We stress that a general gauged linear sigma model does not belong to any of these three classes. In
such cases we can a priori say less about the structure of the correlators.

3.2.2 Localization Formula

As starting point for our analysis in the next section, we will employ the localization formula of
ref. [73] according to which

κ®n, ®m( ®Q,mi, ε) =
∑
®k ∈γm

®Q
®k Res®r

®σ, ®k

[(
®σ −

ε

2
®k
) ®n (
®σ +

ε

2
®k
) ®m

Z®k(®σ,mi, ε)

]
. (3.4)

Here ®Q ®k = Qk1
1 · · ·Q

k`
`

is the classical action in the topological sector labeled by ®k and the sum is
over the co-character lattice γm ' Z

` of the gauge group G = U(1)` , which physically is the magnetic
charge lattice. The one loop determinant Z®k(®σ,mi, ε) of the chiral multiplets reads

Z®k(®σ,mi, ε) =

N∏
i = 1

Z (i)
®k
(®σ,mi, ε) , Z (i)

®k
(®σ,mi, ε) = ε

qi−®ρi ·
®k−1

Γ

(
®ρi · ®σ+mi

ε +
qi−®ρi ·

®k

2

)
Γ

(
®ρi · ®σ+mi

ε −
qi−®ρi ·

®k

2 + 1
) , (3.5)

where each individual factor corresponds to a single multiplet. Note that the ratio of gamma functions
always reduces to a rational function.

This localization formula is quantum exact, it includes all perturbative and non-perturbative effects.
For conformal gauged linear sigma models the FI parameters ®τ can be freely chosen and eq. (3.4) is
applicable irrespective of this choice. In particular, it is not restricted to regions of the moduli space
in which the low energy superconformal field theory enjoys a geometric interpretation.

Residue Symbol

Let us now explain the precise meaning of the residue operation in eq. (3.4) To this end we first
consider a set of ` chiral multiplets Φi1

, . . . , Φi`
with linearly independent charge vectors ®ρi1, . . . , ®ρi` .

These vectors span an `-dimensional cone σ(i1, . . . , i`) in the electric charge lattice γe ' Z
` of G.

We define Σ as the set of all such cones and Σ(®r) as the subset of cones that contain the vector ®r of
real FI parameters. Second, we let Π(®k | i1, . . . , i`) be the countable set of poles in the variables of
integration ®σ ∈ C` that arise from the fields Φi1

, . . . , Φi`
in the topological sector ®k. In other words,

this set is given by the intersection of the equations Z (ia )
®k
(®σ,mia

, ε)−1
= 0 for a = 1, . . . , `. In terms
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of these objects the residue symbol used in eq. (3.4) is defined by

Res®r
®σ, ®k

(
. . .

)
=

∑
σ(i1, ..., i` ) ∈ Σ(®r)

∑
®x ∈Π(®k | i1, ..., i` )

Res ®σ=®x
(
. . .

)
. (3.6)

Here Res ®σ=®x denotes the conventional higher-dimensional residue, a rigorous definition of which can
for instance be found in the textbook [109].

Phase Independence

The residue operation defined by eq. (3.6) clearly depends on the gauge theory phase as specified
by the real FI parameters ®r. As we recall, for gauged linear sigma models with the Fano or ample
canonical bundle property the rl are required to be close to their bare value rl(ΛUV) = ±∞ for all l.
For conformal models, however, we can freely choose ®r and with this the phase to calculate in, the
result will be the same rational function. This is particularly useful for non-Abelian models — see
section 3.5 for an explanation of how the calculation of their correlators can be reduced to eq. (3.4) —
as these may have both weakly and strongly coupled phases. We can then apply eq. (3.4) in the weakly
coupled phase and thereby obtain a result that is equally valid in the strong coupling regime.

Generic vs. Non-Generic Twisted Masses

We stress that the localization formula (3.4) together with the residue operation (3.6) assumes
generically chosen twisted masses mi . To be precise, we require that the pole sets Π(®k | i1, . . . , i`) for
different i1, . . . , i` but same ®k are mutually disjoint. Correlators for non-generic twisted masses m0

i

are defined by taking the limit mi → m
0
i after the residue operation, as long as this limit exists.

For non-generic twisted masses there are points at which the singular divisors arising from strictly
more than ` chiral multiplets intersect. At these point the conventional residue Res ®σ=®x is not always
well defined and, even if it is, will not necessarily give the correct contribution to κ®n, ®m. One method
of dealing with such degenerate points is to temporarily introduce auxiliary parameters that pull the
intersecting poles apart, then employ eq. (3.6) and finally take the auxiliary parameters back to zero —
see the Appendix of ref. [56] for a related discussion in the context of sphere partition functions. This
is effectively equivalent to working with generic twisted masses and then taking the limit mi → m

0
i .

Practical Comments

In practice we cannot calculate all terms of the infinite sum in eq. (3.4). This is where the algebraic
structure of the correlators as discussed in subsection 3.2.1 becomes important. For gauged linear
sigma model with the Fano property — and equivalently for those of the ample canonical bundle type
when Ql is replaced by 1/Ql — we expect that only finitely many terms are non-zero. Given fixed
values for ®n and ®m, the order of ®Q above which there will be no contributions can be inferred from the
structure of the one loop determinant. For conformal gauged linear sigma models the correlators are
rational functions, such that the sum will never truncate. We therefore calculate up to a given order of
®Q, rewrite the results to this order as a rational function, for example by using a Padé approximant, and
increase the cutoff order until the result stabilizes. The rational function obtained this way has to be
finite except at the singularities predicted by eq. (2.45). As we will see below, there are symmetries and
other identities between correlators for different ®n and ®m that furnish additional consistency checks.
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Chapter 3 The Geometry of Gauged Linear Sigma Model Correlation Functions

When we are only interested in the correlators at certain non-generic twisted masses m0
i , it is often

not necessary to begin with a different generic value mi for every single field. For example, those
subsets of fields that become equivalent in the non-generic limit — i.e., have the same gauge charges,
vector R-charges and m0

i — can safely be assigned the same value mi. This speeds up calculations
significantly. In general, it is important to avoid an overlap of poles associated to cones in Σ(®r) with
those associated to cones in Σ \ Σ(®r). For a related discussion see ref. [110].

3.2.3 Connection to the Givental I -Function

For gauged linear sigma models with a compact geometric target space X at ®Q → 0 the A-twisted
correlators follow from the Givental I-function (2.54) of X with the formula [99]

κ®n, ®m( ®Q,mi, ε) =

∫
X

(−ε ®Θ)®n IX( ®Q,mi,−ε) ∪ (ε ®Θ)
®m IX( ®Q,mi, ε) . (3.7)

Here Θl is the logarithmic derivative with respect to Ql and ®Θ
®n
= Θ

n1
1 . . .Θ

n`
`
. In addition to complete

intersections in toric varieties — corresponding to Abelian gauged linear sigma models — the above
equation is also proven for Grassmannian target spaces [99]. This builds on the generalization of the
I-function to more general geometries [84] and corresponds to models with non-Abelian gauge groups.
Equation (3.7) allows us to interpret the correlators geometrically in the context of Gromov–Witten
theory [18, 83].
We also note the formal similarity to eq. (2.70). Upon setting the twisted masses to zero, the

quantities Wa,b of the mirror of X and the correlators of X agree up to minus signs and powers of ε .
We will explicitly observe this in the example of subsection 3.7.2.

3.3 Correlator Relations in Abelian Models

In this sectionwe define and derive one of the central findings of this chapter, namely the aforementioned
correlator relations. Until specified otherwise, the twisted masses are generic.

3.3.1 Definition

Recall that the Givental I-function maps to the finite-dimensional equivariant vertical cohomology ring
of the target space. Therefore, it seems plausible that the integrals on the right hand side of eq. (3.7)
do not give rise to infinitely many independent quantities. We rather except linear dependencies
between different κ®n, ®m and try to capture these in the below definition of correlator relations. We
stress, however, that the discussion does not make reference to the I-function or a geometric target
space at all and is valid independently of these concepts.
Our objective is to find linear dependencies between correlators κ®n, ®m, where we keep ®n fixed

but arbitrary and sum over different ®m with coefficients that are polynomial in the variables Ql. In
formulas, we set out determine relations of the form

0 = RS =

®M∑
®m= 0

c ®m( ®Q,mi, ε) κ®n, ®m( ®Q,mi, ε) =

®M∑
®m= 0

®s∑
®p = 0

c ®m, ®p (mi, ε) ®Q
®p κ®n, ®m( ®Q,mi, ε) . (3.8)
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Here we abbreviate ®Q ®p = Qp1
1 · · ·Q

p`
`
, the vectors ®M and ®s are arbitrary elements of Z`≥0 and we write

®a ≤ ®b if ai ≤ bi for all i. This definition is non-trivial because it is required to hold for all powers
®n ∈ Z`≥0 of the north pole insertion ®σN . Consequently, RS is referred to as a universal south pole
correlator relation.

We may analogously define universal north pole correlator relations RN , which are required to hold
for any power ®m of the south pole insertion ®σS . However, the localization formula (3.4) together with
the one loop determinant (3.5) implies the symmetry property

κ®n, ®m( ®Q,mi, ε) = (−1)d+ | ®n |1+ | ®m |1κ ®m, ®n((−1) ®S ®Q,−mi, ε) (3.9)

where (−1) ®S ®Q = ((−1)S1Q1, . . . , (−1)S`Q`). This shows that north and south pole relations are in a
one-to-one correspondence through the involution c ®m( ®Q,mi, ε) → (−1) | ®m |1 c ®m((−1) ®S ®Q,−mi, ε), such
that we would not obtain new information by additionally studying north pole relations. To abbreviate,
we henceforth refer to universal south pole correlator relations simply as correlator relations.

3.3.2 Derivation

The factors ®Q ®p on the right hand side of eq. (3.8) will combine with factors ®Q ®k that come from
summation over ®k ∈ γm within the localization formula (3.4). It would be convenient to define
®k ′ = ®p + ®k and to rewrite the sum over ®k ∈ γm as a sum over ®k ′ ∈ γm. However, since the residue
operation in (3.4) depends on ®k, this would result in a ®p dependent residue operation and we would
then not be able to pull the summation over ®p inside the residue.

Modified Residue Symbol

In order to remedy this technical difficulty we introduce a modified residue operation. For this purpose
we let P(i1, . . . , i`) ⊂ C

` be the smallest lattice that contains the pole sets Π(®k | i1, . . . , i`) associated
to a given cone σ(i1, . . . , i`) ∈ Σ for all ®k ∈ γm. Due to our assumption of generic twisted masses,
these lattices P(i1, . . . , i`) are still mutually disjoint. Therefore, we can define

R̃es
®r

®σ

(
. . .

)
=

∑
σ(i1, ..., i` ) ∈ Σ(®r)

∑
®x ∈ P(i1, ..., i` )

Res ®σ=®x
(
. . .

)
(3.10)

andwithout changing the correlators use thismodified residue operation in the localization formula (3.4).
As compared to the prescription given in eq. (3.6), we essentially add a lot of zeros.

Constraint Equation

The actual derivation starts with the assumption that eq. (3.8) holds for some choice of coefficients
c ®m = c ®m( ®Q,mi, ε) that are yet to be determined. We then insert the localization formula (3.4) together
with the modified residue prescription (3.10) and employ the replacement ®k = ®k ′ − ®p. This results in
summation over ®k ′ ∈ γm, where the individual terms come with the powers ®Q ®k

′

. Any two different
values of ®k ′ thus have a different ®Q dependence and every term in the sum needs to vanish separately.
This gives a ®k ′ dependent residue expression — the function inside the residue depends on ®k ′, not the
residue symbol itself — that is required to vanish for all ®k ′. After some further rearrangements the
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Chapter 3 The Geometry of Gauged Linear Sigma Model Correlation Functions

function inside the residue factors into a ®k ′ and ®n dependent but c ®m independent first part, as well as a
®k ′ and ®n independent but c ®m dependent second part. Since the residue is required to vanish for all
®k ′ and ®n, we conclude that the seccond factor needs to be zero by itself. This is a constraint on the
coefficients c ®m, which is conveniently written as

0 =
®s∑
®p = 0

α ®p ( ®w,mi, ε) · g ®p ( ®w,mi, ε) . (3.11)

Here the α ®p are polynomials in the variables ®w that are determined by the choice of c ®m and the g ®p are
rational functions of ®w that only depend on the choice of gauge theory spectrum, namely

α ®p ( ®w,mi, ε) =

®M∑
®m= 0

c ®m, ®p (mi, ε) ( ®w − ε ®p)
®m ,

g ®p ( ®w,mi, ε) =

N∏
i = 1

∞∏
s = 1

(
®w · ®ρi +mi + ε (1 −

qi
2 − s)

)
∞∏

s = 1+ ®ρi · ®p

(
®w · ®ρi +mi + ε (1 −

qi
2 − s)

) .
(3.12)

We stress that this derivation is valid for all Abelian gauged linear sigma models, independent of
the spectrum and target space interpretation. For a few more intermediate steps in the derivation we
refer to ref. [17].

Module of Relations

The rational functions g ®p are fixed by the gauge theory spectrum alone and known as soon as a
particular gauged linear sigma model has been specified. As an essential observation, note that
the constraint equation (3.11) is entirely independent of the power ®n of north pole insertions ®σN .
Consequently, any set of polynomials α ®p that satisfies the constraint equation (3.11) defines a universal
south pole correlator relation as

0 = RS =

®s∑
®p = 0

®Q ®p
〈
®σ ®nN α ®p (®σS + ε ®p,mi, ε)

〉
, (3.13)

where for convenience we have employed the notation of eq. (3.1). Finding correlator relations of
a given gauge theory thus reduces to a well-studied problem in commutative algebra. Namely, the
set MS of polynomial solutions α ®p to eq. (3.11) forms the syzygy module over the polynomial ring
C(mi)[ ®w, ε] of the rational function g ®p —where C(mi) denotes the field of complex rational functions
in the twisted masses mi . While the powers ®m of south pole insertions ®σS that appear in an expansion
of eq. (3.13) are automatically determined by the choice of α ®p, the maximal power ®s of ®Q remains as
an input to the constraint equation. In order to find a set of generators for MS , we need to iterate over
increasing choices of ®s until the results stabilizes. In examples we typically observe that small choices
are sufficient.
We note that every gauged linear sigma model is subject to infinitely many correlator relations.

To see this, let us choose α0 and α ®p0
respectively as the numerator and minus the denominator of
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g ®p0
for some 0 , ®p0 ∈ Z` and put all other α ®p to zero. This is in accord with eq. (3.11) and

defines a correlator relation. Similarly, for any choice of three or more indices ®pi we can find a
solution where only the α ®pi with these indices do not vanish. For this we first multiply eq. (3.11) with
appropriate factors to make it a polynomial equation, then choose the α ®p to bring every term to the
least common multiple of all terms and finally multiply the α ®p with factors β ®pi that sum to zero. The
non-trivial question is, whether there are more clever choices for the α ®pi that are of smaller degree in
®w. There are specialized programming languages, for example ‘Singular’, which are well suited for
such calculations.
Finally, let us observe that the constraint equation (3.11) does not depend on the FI parameters ®τ.

For conformal gauged linear sigma models the correlator relations (3.13) are therefore valid in all the
different gauge theory phases. Since the correlators are rational functions on moduli space, this is
in fact expected. (Side remark: This phase independence formally even extends to non-conformal
gauged linear sigma models, although the other phases may not be of physical significance.)

3.3.3 Non-Generic Twisted Masses

An important ingredient in the above derivation of correlator relations was the assumption of generic
twisted masses mi. We now consider non-generic choices m0

i at which the correlators remain finite.

Limiting Syzygy Module

Recall that κ®n, ®m( ®Q,m
0
i , ε) is defined by taking the limit mi → m

0
i on κ®n, ®m( ®Q,mi, ε). We can certainly

take the same limit on the level of the syzygy module and define M lim
S = lim

mi→m
0
i

MS . Every
element Rlim

S of M lim
S is the limit of a relation RS ∈ MS and, since the correlators are continuous in

the twisted masses, a valid relation for the non-generic choice m0
i .

Non-Generic Module

It is tempting to instead take the limit mi → m
0
i on the level of rational functions g ®p defined in

eq. (3.12). These non-generic rational functions g0
®p( ®w,m

0
i , ε) = g ®p( ®w,m

0
i , ε) define the non-generic

syzygy module M0
S , whose elements we denote as R0

S .
Since there may be cancellations between factors that originate from different chiral multiplets,

the numerator and denominator of g0
®p( ®w,m

0
i , ε) may be of lesser degree in ®w than their counterparts

in g ®p( ®w,m, ε). In this case we expect additional elements R0
S ∈ M0

S that are not part of the limiting
syzygy module M lim

S . Conversely, any limiting relation Rlim
S is an element of M0

S — just think of
reinstalling the factors that cancelled by multiplying with one. In summary, we find the inclusion of
modules M0

S ⊃ M lim
S .

Condition for Validity of Non-Generic Relations

This raises the question whether elements in M0
S \M lim

S are valid correlator relations. Since form = m0
i

the pole lattices P(i1, . . . , i`) that are used to define the modified residue operation (3.10) may no
longer be disjoint, this is not guaranteed by our derivation in the previous subsection.
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As a sufficient criterion for validity of all elements in M0
S we find the following: shift variables to

®v = ®σ − ε
2
®k and consider the union of all pole sets (not pole lattices) associated to cones in Σ and

similar the union of all pole sets associated to cones in Σ(®r) \ Σ, namely

Θ(®r,mi) =
⋃

σ(i1, ..., i` ) ∈ Σ(®r)

{
®v ∈ Cr

���� Z (ia )
®k

(
®v + ε

2
®k,mia

, ε
)−1
= 0 ∀ 1 ≤ a ≤ `

}
,

Ω(®r,mi) =
⋃

σ(i1, ..., i` ) ∈ Σ\Σ(®r)

{
®v ∈ Cr

���� Z (ia )
®k

(
®v + ε

2
®k,mia

, ε
)−1
= 0 ∀ 1 ≤ a ≤ `

}
.

(3.14)

Since the gamma functions in the numerator of the one loop determinant (3.5) are independent
of ®k when written in terms of ®v, these sets are independent of ®k. For generic twisted masses mi

the intersection Θ(®r,mi) ∩ Ω(®r,mi) is empty by construction. If the intersection is still empty for
non-generic values m0

i , the elements of M0
S are guaranteed to be valid relations for the choice m0

i ,
symbolically:

Θ(®r,m0
i ) ∩ Ω(®r,m

0
i ) = ∅ =⇒ all R0

S ∈ M0
S are valid correlator relations. (3.15)

This condition intuitively ensures that there is no overlap between those poles that for given ®r contribute
to the correlators and those poles that do not. We will come back to this subtle issue in the discussion
of examples in section 3.7.

3.4 Differential Operators from Correlator Relations in Abelian Models

We now explain why and how the correlator relations turn into differential operators that annihilate
the gauge theory ground state. For models with a compact geometric target we show these operators
to also annihilate the Givental I-function, which for conformal gauged linear sigma model identifies
them as Picard–Fuchs operators on the quantum Kähler moduli space.

3.4.1 Ideal of Differential Operators

As discussed in refs. [93, 111], the localization formula (3.4) decomposes into a quadratic form of
suitable holomorphic blocks. Due to this factorization the correlators can be interpreted as matrix
elements in a Hilbert space of states [112]. The field insertions ®σN and ®σS then correspond to
operators ®σN and ®σS , and the correlators read〈

®σ ®nN ®σ
®m

S

〉
=

〈
Ω(®τ)

�� ®σ ®nN ®σ ®mS ��Ω(®τ)〉 (3.16)

in terms of the FI parameter dependent gauge theory ground state |Ω(®τ)〉. As we will see below,
it becomes necessary to promote ®Q to an operator ®Q as well. By inserting eq. (3.16) into the
definition (3.8) and by assuming that ®Q and ®σN commute we find

0 =
〈
Ω(®τ)

�� ®σ ®nN RS

��Ω(®τ)〉 = 〈
Ω(®τ)

�� ®σ ®nN ®s∑
®p = 0

®Q
®p
α ®p( ®σS + ε ®p,mi, ε)

��Ω(®τ)〉 , (3.17)
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where the second equality defines the operator RS = RS(
®Q, ®σS,mi, ε) associated to the correlator

relation RS . Since the matrix element in the middle of this equation is zero for all powers ®n of ®σ ®nN , we
conclude

RS ,
��Ω(®τ)〉 = 0 . (3.18)

Conversely, any operator of this type — meaning it is independent of ®σN and all ®σS are to the right of
®Q — that annihilates the gauge theory ground state defines a corresponding correlator relation.
Let us now consider the operator R′S = ®σ

®m
S RS . It clearly annihilates the ground state as well and

therefore defines an associated relation R′S . In order for this to be consistent, we impose the non-trivial
commutation relation [

σS,l, Qk

]
= δlk ε Qk . (3.19)

An explicit calculation then shows that R′S corresponds to a relation R′S whose defining polynomials
α′®p are related to the α ®p of RS by multiplication with ®w ®m. We similarly need to require that when RS

is multiplied with any polynomial of the Ql from the left, the resulting operator R′′S still annihilates
the ground state and defines yet another relation R′′S . This is fulfilled automatically, for details see
ref. [17]. As the result of these considerations, the set of operators RS is seen to define a left ideal IS
in the non-commutative ring C(mi)〈

®Q, ®σS, ε〉 that is characterized by eq. (3.19). Finally, observe that
this commutation relation can be represented by

Ql = Ql , σS,l = εQl∂Ql
= εΘl . (3.20)

This can be interpreted as representation with respect to the eigenstates of the monopole operators Q`
and turns RS into the differential operator

RS(
®Q, ε ®Θ,mi, ε) =

®s∑
®p = 0

®Q ®pα ®p(ε ®Θ + ε ®p,mi, ε) =

®M∑
®m= 0

c ®m( ®Q,mi, ε)(ε ®Θ)
®m . (3.21)

For this reason we refer to IS as the differential ideal and from here on understand RS to be in this
representation.

3.4.2 Connection to the Givental I -Function

Let us now consider models with a compact geometric target space, such that the correlators are
determined from the Givental I-function with eq. (3.7). By inserting this correspondence into the
definition of correlator relations in eq. (3.8) we find

0 = RS = (−1) |n |1
∫
X

(ε ®Θ)®n IX( ®Q,mi,−ε) ∪

[∑
®m

c ®m( ®Q,mi, ε)(ε ®Θ)
®m IX( ®Q,mi, ε)

]
. (3.22)

Since this is true for all ®n ∈ Z`≥0, the expression in square brackets needs to vanish by itself (in
cohomology). This gives

0 = RS(
®Q, ε ®Θ,mi, ε) IX( ®Q,mi, ε) , (3.23)

where RS is the differential operator associated to RS as defined by eq. (3.21). For conformal models
this identifies RS as a Picard–Fuchs operator on the quantum Kähler moduli space of X.
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3.4.3 Non-Generic Twisted Masses

Lastly, we turn to non-generic choices m0
i of twisted masses for which all correlators are well defined

and M0
S becomes strictly larger than M lim

S . These modules similarly define the non-generic differential
ideal I0

S as well as the limiting differential ideal Ilim
S . They are related by the proper inclusion

Ilim
S ⊂ I

0
S , which is due to the fact that for the non-generic choice of twisted masses some generically

irreducible operators RS factor according to Rlim
S = C R0

S . The condition on the left hand side of
eq. (3.15) then ensures that the factor R0

S ∈ I
0
S annihilates the ground stand already by itself, and —

in case it applies — the I-function.
This is of particular importance for models with compact Calabi–Yau target spaces in the case

of vanishing twisted masses. As we will explicitly observe in an example further below, the proper
inclusion of Ilim

S into I0
S then amounts to the proper inclusion of the system of GKZ operators into the

full system of Picard–Fuchs operators.

3.5 Non-Abelian Gauge Groups

This section gives an outlook on how the previous findings are generalized to models with non-Abelian
gauge groups. We keep the exposition short, with a focus on new features and conceptual differences
as compared to the Abelian case. For details we refer to ref. [17].

3.5.1 A-Twisted Correlators

We consider gauged linear sigma models with a non-Abelian compact gauge group of the general form
given in eq. (2.31). Its rank is written as r = rank G and we note that r > ` where ` is the number of
U(1) factors in G. There are N chiral multiplets Φi that transform in the G-representations ρi, their
vector R-charges are qi and they have generic twisted masses mi.

The vector superfield V and its complex scalar σ take values in g and transform in the adjoint
representation — we use the underscore to clearly distinguish the adjoint valued field σ from
its components. Since correlation functions correspond to physical measurements, they must be
independent of gauge choices. This restricts our attention to correlators of the form〈

f (σN, σS)
〉
= κ f ( ®Q,mi, ε) , (3.24)

where f (σN, σS) is a gauge invariant polynomial of the non-Abelian field insertions σN and σS at
the north and south pole. Since G is compact, any such polynomial can be expressed in terms of a
finite generating set of gauge invariant expressions [113]. As an example, for G = U(2) all gauge
invariant polynomials f (σN, σS) can be expressed in terms of the five basic gauge invariants tr(σN/S),
tr(σ2

N/S) and tr(σNσS). A special subclass of correlators are those based on factored polynomials
f (σN, σS) = fN (σN ) · fS(σS),〈

fN (σN ) fS(σS)
〉
= κ fN , fS (

®Q,mi, ε) , (3.25)

where fN (σN ) and fS(σS) are gauge invariant independently. In the G = U(2) example this subclass
excludes the mixed combination tr(σNσS).
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non-Abelian theory Cartan theory U(1)V twisted

multiplet G-rep. multiplet T-rep. R-charge mass

vector mult. adj(G) chiral mult. W1 ®α1 2 0

V
...

...
...

...

chiral mult. Wdim g−r ®αdim g−r 2 0

chiral mult. ρi chiral mult. Λi,β1
®λi,β1

qi mi

Φi

...
...

...
...

i = 1, . . . , N chiral mult. Λi,βdim ρi

®λi,βdim ρi

qi mi

Table 3.1: Decomposition of the non-Abelian gauge theory spectrum into the spectrum of its associated Cartan
theory with Abelian gauge group T = U(1)r/ Γ.

The axial R-symmetry still imposes a selection rule and the non-Abelian correlators follow similar
algebraic properties as those discussed in subsection 3.2.1.

3.5.2 Cartan Theory and Localization

The calculation of correlators in a non-Abelian model can be reduced to the Abelian case with its
powerful localization formula (3.4) by means of the associated Cartan theory.

Cartan Theory

The latter — sometimes also referred to as Coulomb branch theory or Abelianization — is obtained by
spontaneously breaking the non-Abelian gauge group G to its maximal Abelian subgroupT = U(1)r/ Γ
with a generic expectation value for the adjoint-valued field σ. A chiral multiplet Φi then decomposes
into a set of chiral multiplets Λi,βi

with βi = 1, . . . , dim ρi , whose charge vectors ®λi,βi with respect to
the unbroken group T are the weights of the representation ρi. Their vector R-charges and twisted
masses remain unaltered, i.e., qi,βi = qi andmi,βi

= mi . In addition, σ decomposes into several neutral
and charged components. The former are its U(1) components σ1, . . . , σ` as well as the Z-bosons
σ`+1, . . . , σr of the spontaneous symmetry breaking. We collect these into the r-dimensional vector
®σ = (σ1, . . . , σ`, σ`+1, . . . , σr ). Its charged components are the W-bosons, which we label by
β = 1, . . . , dim g − r . These correspond [73] to chiral multiplets Wβ with vector R-charge qβ = 2 and
twisted mass mβ = 0, whose charge vectors ®αβ with respect to the Cartan gauge group T are given
by the non-zero roots of G. The spectrum of the Cartan theory and that of the original non-Abelian
theory are summarized in Table 3.1.
A few remarks are in order. First, it is possible to rewrite the Cartan gauge group T = U(1)r/ Γ

as T ' T ′ = U(1)r by redefining the U(1) generators. We will not do this and keep working in the
basis of T , because this allows for more universal formulas. Second, there are r > ` complexified FI
parameters ®τ = (®τna, 0, . . . , 0) and equivalently r > ` parameters ®Q = ( ®Qna, 1, . . . , 1) in the Cartan
theory. Here ®τna and ®Qna correspond to the ` complexified FI parameters of the original U(1) factors
in G, which respectively are supplemented by r − ` zeros and ones. Since the Cartan theory is Abelian,
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we can formally turn on additional variables Q`+1, . . . , Qr that replace the ones in ®Q. While this may
be helpful at intermediate steps in calculations, we must eventually set them back to one — otherwise
we would not be dealing with a theory that arose from a spontaneous breakdown of a non-Abelian
model. Unless stated otherwise, we work with ®Q = ( ®Qna, 1, . . . , 1).

Correlators of the Cartan Theory

Correlators of the Cartan theory are not conceptually different from those of any other Abelian model.
They are defined as in eq. (3.1) and denoted〈

®σ ®nN ®σ
®m

S

〉
= κCartan

®n, ®m ( ®Q,mi, ε) with ®n, ®m ∈ Zr≥0 , (3.26)

where we keep in mind that ®σ = (σ1, . . . , σ`, σ`+1, . . . , σr ) in addition to the components of the
original U(1) factors also subsumes the Z-bosons of the spontaneous symmetry breaking. The
localization formula (3.4) is applicable and the chiral multiplets Wβ corresponding to the W-bosons
contribute to the one loop determinant (3.5) in the same was as any other chiral multiplet. Their
combined contribution takes the form

ZG
®k
(®σ, ε) =

∏
®αβ>0

(−1) ®αβ · ®k+1

(
®αβ · ®σ −

®αβ ·
®k

2
ε

) (
®αβ · ®σ +

®αβ ·
®k

2
ε

)
. (3.27)

Here the product taken over positive roots ®αβ, we used that non-zero roots come in pairs (®αβ,−®αβ)
and employed Euler’s reflection identity for the gamma function. This shows that the W-bosons do not
introduce new poles. By comparing with eq. (3.4), the above product can also be reinterpreted as a
polynomial in the operator insertions ®σS and ®σN .

Correlators of the Non-Abelian Theory

The central point of the entire construction is that the non-Abelian gauge invariants f (σN, σS) can be
expressed as polynomials in the components of ®σN and ®σS . As a result, the non-Abelian correlators
κ f are found as certain linear combinations of the Cartan correlators. To clarify this, let us consider
G = U(2) = U(1) × SU(2)/Z2. We then have ®σ = (σ1, σ2), where σ1 corresponds to the original
U(1) factor in G and σ2 to a Z-boson and for example find

tr(σ) = σ1 =⇒ κtr(σN )
= κCartan(1,0),(0,0) ,

tr(σ2
) =

σ2
1 + σ

2
2

2
=⇒ κtr(σ2

S )
=

1
2
[
κCartan(0,0),(2,0) + κ

Cartan
(0,0),(0,2)

]
,

(3.28)

Here we are working in the basis of T = U(1)2/Z2. We note, however, that not every Cartan correlator
can conversely be expressed in terms of the non-Abelian correlators. The gauge group G still acts by
its Weyl groupWG on ®σ and only correlators of polynomials that are invariant under this action can
be expressed as correlators of the non-Abelian theory. For G = U(2) the Weyl group is Z2 and acts by
®σ = (σ1, σ2) 7→ (σ1, −σ2). We note that the combinations in eq. (3.28) are indeed invariant under
this action.
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3.5.3 Correlator Relations in Non-Abelian Models

The definition of universal south pole correlator relations RS of non-Abelian models parallels the
Abelian case in eq. (3.8). We require

0 = RG
S =

∑
fS

cfS (
®Q,mi, ε) κ fN , fS (

®Q,mi, ε) , (3.29)

where the sum is over a finite collection of gauge invariant polynomials fS(σS) and the cfS are
polynomial in the variables Ql . The equation is non-trivial because we require it to hold for all gauge
invariant polynomials fN (σN ). We note that this approach is only based on the special subclass of
correlator introduced in eq. (3.25) and does not involve mixed type gauge invariants.
We determine such relations in two steps. First, we use the methods of section 3.3 to determine a

correlator relation RCartan
S of the Abelian Cartan theory. Second, we need to express the involved Cartan

correlators in terms of the correlators of the original non-Abelian theory. Since some of the correlators
may not be G-invariant, this is not always possible. For this reason we project out the G-variant
parts by summing the relation RCartan

S over its Weyl group orbit. According to the Luna–Richardson
theorem [114] this sum can be unambiguously expressed in terms of the non-Abelian correlators and
we arrive at a non-Abelian relation RG

S .
However, this method is more restrictive than the definition (3.29) requires. Namely, the Abelian

correlator relation RCartan
S holds for all values of ®Q ′, even those involving general unphysical parameters

Q`+1, . . . , Qr . They are certainly valid for the physical choice ®Q = ( ®Qna, 1, . . . , 1) too, but we may
have missed relations that exist for this physical choice only. Moreover, relations of the Cartan theory
hold for all powers ®n of the north pole insertion ®σN . This not only guarantees that RG

S is valid for all
gauge invariant polynomials fN (σN ), but actually requires it to hold for all — not necessarily gauge
invariant — polynomials. Therefore, it is not clear whether all non-Abelian correlator relations of the
type (3.29) can be found by this method.

3.5.4 Differential Operators from Non-Abelian Correlator Relations

Lastly, let us understand whether the non-Abelian correlator relations defined in eq. (3.29) also
correspond to differential operators. To this end, consider the Abelian Cartan theory with all
unphysical parameters Q`+1, . . . , Qr turned on. The discussion of section 3.4 then fully applies and
every relation RCartan

S corresponds to a differential operator that is obtained by the identifications

Ql = Ql , σS,l = εQl∂Ql
for all l = 1, . . . , ` ,

and Ql′ = Ql′ , σS,l′ = εQl′∂Ql′
for all l ′ = ` + 1, . . . , r .

(3.30)

Going back to the non-Abelian theory, the variables Ql′ in the second line of this equation do not exist
anymore. This is easily accounted for by simply setting them to one, which we in fact automatically
do this when deriving non-Abelian relations as explained in the previous subsection. The problem is
that we also must not use the derivatives ∂Ql′

anymore, although we cannot simply set them to zero or
another fixed value. (Remark: This is an elementary statement about partial differential equations.
Say the equation is in two real variables x and y, and we are only interested in y = 1. While we may
set y = 1, we cannot simply ignore derivatives with respect to y. These involve a comparison of
quantities for different y and prevent a simple restriction.)
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This shows that we can only turn those non-Abelian relations RG
S into operators, that do not

implicitly depend on the insertions σS,l′ with l ′ = ` + 1, . . . , r. For example, in case of G = U(2)
the relation RG

S must not involve tr(σ2
S) = (σ

2
S,1 + σ

2
S,2)/2 but only tr(σS) = σS,1. This is true in

general: while the linear gauge invariants of σS are in one-to-one correspondence with the U(1)
factors of G and can be represented as differential operators, this is not the case for non-linear gauge
invariants. These depend on the insertions σ`+1, . . . , σr associated to the Z-bosons of the simple
gauge group factors, which cannot be represented as differential operators. In order to find special
RG
S that only involve the linear gauge invariants, we have to find polynomial solutions α ®p( ®w,mi, ε) to

the constraint equation (3.11) of the Cartan theory that only depend on the first ` components of the
vector ®w = (w1, . . . , w`, w`+1, . . . , wr ). To be precise, it is enough for this to be true after summing
the Abelian relation over its Weyl group orbit.

While being a well-posed mathematical problem, this is a computationally quite expensive task and
it would be beneficial to have a different method of determining the differential operators that govern
the quantum cohomology of non-Abelian models. This is the topic of the next section, as well as the
entire next chapter.

3.6 Universal Formulas for Picard–Fuchs Operators

The above findings allow us to determine universal linear dependencies among A-twisted correlators
directly from the gauge theory spectrum, without the need to calculate any correlator. In Abelian
models these relations turn into differential operators, which in the case of a geometric target space
annihilate the Givental I-funcion and for conformal models are Picard–Fuchs operators on the quantum
Kähler moduli space of the low energy superconformal field theory. For non-Abelian gauge groups
the correspondence between relations and operators is more complicated. This section presents an
alternative way of deriving the operators from the A-twisted correlators, which does not make a
distinction between Abelian and non-Abelian models. It comes with the price of having to calculate
some, though only few correlators explicitly.

3.6.1 Methodology

We start with the assumption that some independent argument guarantees the existence of a correlator
relation

0 = RS =
∑
®m ∈ I ®m

c ®m( ®Q,mi, ε) κ®n, ®m( ®Q,mi, ε) , (3.31)

where I ®m ⊂ Z
`
≥0 is some fixed and finite index set. There is no distinction between Abelian and

non-Abelian gauge groups. In case of the latter the correlators are understood as

κ®n, ®m( ®Q,mi, ε) = 〈σ
n1
N,1 · · ·σ

n`
N,`

σ
m1
S,1 · · ·σ

m`

S,`
〉 , (3.32)

where σl with l = 1, . . . , ` are those components of the adjoint valued σ that are associated to the U(1)
factors in G. (Side remark: The connection to the Cartan correlators in eq. (3.26) is κ®n, ®m = κ

Cartan
®n′, ®m′

,
where ®n′ = (®n, 0, . . . , 0) and ®m′ = ( ®m, 0, . . . , 0) with r − ` zeros.) Without any reference to an
explicit gauge theory realization, we regard eq. (3.31) as an infinite family of homogeneous linear
equations and by using these for sufficiently many values of ®n ∈ Z` try to solve for the coefficients c ®m
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in terms of the correlators κ®n, ®m. In case of geometric target space eqs. (3.20) and (3.21) immediately
turn these coefficients c ®m into a differential operator that annihilates its I-function. This equally
applies to models with non-Abelian gauge groups, since the relation in eq. (3.31) by definition only
involves powers of the linear gauge invariants. We now distinguish two cases.
First, we may pick a particular model and explicitly calculate the required correlators. Since the

relation (3.31) exists by assumption, the equations it specifies will — once the correlators are inserted
— for any number and choices of ®n always yield a solution for the coefficients c ®m. For two reasons the
solution may, however, not be unique. First, there may be other valid correlator relations R′S whose
index set I ′®m is a (not necessarily proper) subset of I ®m. Second, there may also be solutions that do not
correspond to valid correlator relations. If present, these will eventually disappear upon including the
equations corresponding to more choices of ®n. Since we in practice have to restrict to finitely many ®n,
we may not always be able to distinguish between these two situations. In order for this approach to be
useful, we therefore need to know how many independent correlator relations there are for a given
index set I ®m. If we find exactly as many solutions for the c ®m with the given index set I ®m, all of them
are guaranteed to be valid relations.
Second, we may try to solve the equations for yet unspecified values of κ®n, ®m. Even given the

existence of a relation, the equations it imposes may not automatically have a kernel but only become
solvable when using certain identities between different κ®n, ®m. Assume we know howmany independent
relations exist for a given index set I ®m and that we have solved the corresponding equations for a given
set of vectors ®n. If we find more solutions than there are relations, we will in general not be able to
identify the valid relations among them. If we find exactly as many or less solutions, we still need
to check whether we may impose identities between different κ®n, ®m that would result in an increased
number of solutions. If the number of solutions agrees with the number of relations and if it is not
possible to obtain even more solution by imposing additional identities on the correlators, all solutions
are guaranteed to be valid relations. It is this approach that we follow below.

3.6.2 Calabi–Yau Target Spaces

We now turn off all twisted masses and specialize to conformal gauged linear sigma models whose
target spaces X are compact Calabi–Yau manifolds. As discussed in subsection 3.4.3, the non-generic
differential ideal I0

S then captures the full ideal of Picard–Fuchs operators on the quantum Kähler
moduli space of X. Apart from being physically interesting, there are two technical reasons for this
restriction. First, for some complex dimensions d = dimCX and numbers ` of Kähler parameters
of X, the number and order of the generating Picard–Fuchs operators are uniquely fixed by Griffith
transversality, see eq. (2.69). This tells us how I0

S is generated, such that we know howmany correlator
relations there are for a given index set I ®m. Second, the correlators κ®n, ®m = κ®n, ®m( ®Q,mi, ε) are subject
to the three restrictive identities

κ®n, ®m = for | ®n|1 + | ®m|1 < d , (3.33)

κ®n, ®m = (−1)d+ | ®n |1+ | ®m |1κ ®m, ®n , (3.34)
εQl∂Ql

κ®n, ®m = εΘl κ®n, ®m = κ®n, ®m+®el − κ®n+®el, ®m . (3.35)

The first of these is the selection rule (3.3) under the assumption of a finite limit ε → 0 and the second
follows from the (anti-)symmetry (3.9) together with mi = 0 and ®S = 0. The third identity, where ®el
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denotes the l-th unit vector, directly follows from the localization formula (3.4) and is valid for all
gauged linear sigma models — independent of the spectrum and target space interpretation.

For some choices of d and ` the combination of these properties allows us to solve for the coefficients
c ®m of the generating operators without using explicit values for the correlators, such that we obtain
universally applicable formulas for the Picard–Fuchs operators of several classes of Calabi–Yau
manifolds. Let us discuss a few examples.

3.6.3 Elliptic Curves

We start with elliptic curves, i.e., complex one-dimensional Calabi–Yau manifolds as our simplest
example. These are always parameterized by a single Kähler modulus, such that we have d = 1 and
` = 1. The selection rule (3.33) does here not carry additional information since κ0,0 = 0 is already
guaranteed by eq. (3.34).
The Hodge numbers h0,0

= h1,1
= 1 together with Griffith transversality of the mirror manifold

imply that I0
S is generated by a single Picard–Fuchs operator

L(Q, ε) =
∑

m ∈ Im

cm(Q, ε) (εΘ)
m (3.36)

of order two. This specifies the index set, see eq. (3.31), as Im = {0, 1, 2} and we try to solve for
the coefficients cm of the Picard–Fuchs operator by using eq. (3.31) for three values of n. Choosing
0 ≤ n ≤ 2 we get

0 = M · ®c = ©«
0 κ0,1 κ0,2
−κ0,1 0 −κ1,2
−κ0,2 κ1,2 0

ª®¬ · ©«
c0
c1
c2

ª®¬ , (3.37)

where the matrix M is defined by Mnm = (−1)nκnm with 0 ≤ n,m ≤ 2. Its explicit form on the right
hand side follows from the correlator properties eqs. (3.33) and (3.34), and the conventional factor of
(−1)n was inserted to make M anti-symmetric. Since M is also odd-dimensional, it necessarily has a
kernel. We find this to be

c0 = −κ1,2 , c1 = −κ0,2 = −εΘ κ0,1 , c2 = +κ0,1 , (3.38)

which gives a candidate solution for the coefficients of the generating Picard–Fuchs operator. Here
we used the elementary derivative property (3.35) in order to reduce the number of independent
correlators that enter the formulas.

We still have to check whether the dimension of the kernel may be increased by imposing additional
identities on the κn,m. From the 2 × 2 matrix in the upper left corner of M this is seen to require
κ0,1 = 0. Since κ0,1 is the one-dimensional analog of the Yukawa coupling in eq. (2.59), this can at
most happen at special points in moduli space. The formula

L(Q, ε) = κ0,1 (εΘ)
2
− κ0,2 (εΘ) − κ1,2 = κ0,1 (εΘ)

2
−

(
εΘ κ0,1

)
(εΘ) − κ1,2 (3.39)

corresponding to the solution (3.38) therefore universally expresses the Picard–Fuchs operator of
elliptic curves in terms of two (or three) A-twisted gauged linear sigma model correlators. This is
equally true for models with non-Abelian gauge groups.
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3.6.4 One-Parameter Calabi–Yau Threefolds

As second example we turn to the physically important case of Calabi–Yau threefolds, which in the
context of type II string compactifications (with no non-trivial background fluxes for the p-form gauge
fields) give rise to N = 2 supersymmetric four-dimensional theories. We have d = 3 and further
choose ` = h1,1

= 1. Large parts of the discussion parallel that of the previous subsection.
The Hodge numbers h0,0

= h1,1
= h2,2

= h3,3
= 1 and Griffith transversality imply that I0

S is
generated by a single Picard–Fuchs operator of order four. The index set is Im = {0, 1, 2, 3, 4}
and we consider eq. (3.31) for n = 0, . . . , 4. These equations are summarized into the matrix
equation 0 = M · ®c, where ®c = (c0, . . . , c4) and the matrix M is defined by Mnm = (−1)nκn,m with
0 ≤ n,m ≤ 4. Due to eq. (3.34) this odd-dimensional matrix is anti-symmetric and automatically
has a one-dimensional kernel. With eq. (3.33) we deduce that its kernel can only increase if κ0,3
vanishes, which due to the identification of κ0,3 with the Yukawa coupling in eq. (2.59) can happen at
non-generic points in moduli space only. The generic kernel therefore captures the generating operator,
which we find to be

L(Q, ε) = κ2
0,3(εΘ)

4
− κ0,3κ0,4(εΘ)

3
+

(
κ0,4κ1,3 − κ0,3κ1,4

)
(εΘ)2

+
(
κ0,4κ2,3 − κ0,3κ2,4

)
(εΘ) +

(
κ1,4κ2,3 − κ1,3κ2,4 − κ0,3κ3,4

)
.

(3.40)

With the derivative rule (3.35) we can reduce the number of correlators that enter this formula down
to three and rewrite it as

L(Q, ε) = + κ2
0,3(εΘ)

4
− 2κ0,3

(
εΘ κ0,3

)
(εΘ)3 +

[
2
(
εΘ κ0,3

)2
− κ0,3

(
ε2
Θ

2 κ0,3 + κ2,3

)]
(εΘ2
)

+
[
2κ2,3

(
εΘ κ0,3

)
− κ0,3

(
εΘ κ2,3

) ]
(εΘ)

+
[
κ2

2,3 − κ0,3κ3,4 −
(
εΘ κ0,3

) (
εΘ κ2,3

)
+ κ2,3

(
ε2
Θ

2 κ0,3

)]
.

(3.41)
Both formulas are valid for all Calabi–Yau threefolds with a single Kähler modulus and express their
generating Picard–Fuchs operator in terms A-twisted gauged linear sigma model correlators.
We now make an interesting observation. The generating Picard–Fuchs operator is constituted by

its five coefficients cm with m = 1, . . . , 4. Since these may be freely rescaled by a common factor, the
invariant information is encoded in four independent ratios of the cm. However, eq. (3.41) expresses
the operator entirely in terms of the three correlators κ0,3, κ2,3, κ3,4. This means there needs to be one
differential-algebraic relation between the five cm. We find this to be

8c1c2
4 = − 8c3

(
εΘc4

)2
+ 8c4

(
εΘc3

) (
εΘc4

)
+ 4c3c4

(
ε2
Θ

2 c4

)
− 4c2

4

(
ε2
Θ

2 c3

)
+ 6c2

3
(
εΘ c4

)
− 6c3c4

(
εΘ c3

)
+ 8c2

4
(
εΘ c2

)
− 8c2c4

(
εΘ c4

)
− c3

3 + 4c2c4c3 ,
(3.42)

which can be traced back to the single independent non-trivial selection rule κ0,1 = 0. The equation is
invariant under a common rescaling of all cm and unambiguously fixes c1 in terms of the cm with
2 ≤ m ≤ 5. The coefficient c0 does not appear because it is the only place where κ3,4 enters. As
proven in [115, 116], this equality is a consequence of the underlying N = 2 special geometry of
Calabi–Yau threefolds [88] and plays an important role in the classification of Picard–Fuchs operators
for Calabi–Yau threefolds with a single Kähler modulus [117]. It is remarkable that this constraint is
naturally recovered from our gauge theory considerations.
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3.6.5 One-Parameter Polarized K3 Surfaces

As third and last example we consider polarized K3 surfaces with a single Kähler parameter. These
are complex two-dimensional Calabi–Yau manifolds, such that d = 2 in eq. (3.34). By interpolating
between the cases of d = 1 and d = 3 discussed above, we expect that the generating Picard–Fuchs
operator is of order three. The index set reads Im = {1, 2, 3, 4} and we collect eq. (3.31) for 0 ≤ n ≤ 3
into the matrix equation

0 = M · ®c =
©«

0 0 κ0,2 κ0,3
0 −κ1,1 −κ1,2 −κ1,3
κ0,2 −κ1,2 κ2,2 κ2,3
κ0,3 −κ1,3 κ2,3 −κ3,3

ª®®®¬ ·
©«

c0
c1
c2
c3

ª®®®¬ , (3.43)

where the matrix M is defined as usual, i.e., Mnm = (−1)nκn,m with 0 ≤ n,m ≤ 3. Since d = 2 is
even, M is now symmetric rather than anti-symmetric and without imposing additional identities
beyond those given by eqs. (3.33) through (3.35) does not have a kernel. Requiring its determinant to
vanish is equivalent to the condition

κ3,3 =
(
16 κ3

0,2

)−1 {
9
(
εΘ κ0,2

)4
− 12κ0,2

(
εΘ κ0,2

)2
(
ε2
Θ

2 κ0,2 − κ2,2

)
4κ2

0,2

[
4κ2

2,2 +
(
ε2
Θ

2 κ0,2

)2
+ 4κ2,2

(
ε2
Θ

2 κ0,2

)
− 6

(
εΘ κ0,2

) (
εΘ κ2,2

) ] } (3.44)

and results in a one-dimensional kernel. A higher dimensional kernel requires κ0,2 = 0, which again
is only possible at special points in moduli space and therefore not of relevance. We arrive at the
Picard–Fuchs operator

L(Q, ε) = + 8κ3
0,2 (εΘ)

3
− 12κ2

0,2
(
εΘκ0,2

)
(εΘ)2

+
[
6κ0,2

(
εΘκ0,2

)2
− 4κ2

0,2

(
2κ2,2 + Θ

2ε2κ0,2

)]
(εΘ)

+ 3
(
εΘκ0,2

)3
− 4κ2

0,2
(
εΘκ2,2

)
− 2κ0,2

(
εΘκ0,2

) (
Θ

2ε2κ0,2 − 4κ2,2

)
,

(3.45)

which only involves the two correlator κ0,2 and κ2,2. Similar to the case of d = 3, there is one
differential-algebraic relation between the four ck , see ref. [17] for details.
If condition (3.44) were not fulfilled, the generating Picard–Fuchs operator would need to be of

order four or higher. This would require additional elements of H1,1 that participate in the quantum
product, which is not possible for gauged linear sigma models with a single U(1) factor in their gauge
group. For Calabi–Yau fourfolds, however, a similar but slightly different complication can indeed
happen. This is the topic of chapter 5.

3.6.6 Generalizations

Let us now generalize to one-parameter Calabi–Yau manifolds of general odd complex dimension
d ≥ 5. As before, we define a (d + 2) × (d + 2)-dimensional matrix M by Mnm = (−1)nκn,m with
0 ≤ n,m ≤ d + 1. This matrix is antisymmetric by eq. (3.34) and, since κ0,d can at most vanish
at special points in moduli spaces, generically has a one-dimensional kernel. This corresponds to
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a unique differential operator of order d + 1, which is a plausible candidate for the Picard–Fuchs
operator that generates the non-generic ideal I0

S . While Griffith transversality implies the order of
the generating operator to be at least d + 1, the author is not aware of a reason why it cannot be of
order d + 2 or higher. In such cases the candidate solution would need to run into a contradiction with
eq. (3.31) for some n ≥ d + 2, which without a detailed analysis can indeed not be excluded. It would
be interesting to consider this question further.

We can also generalizes to one-parameter Calabi–Yau manifolds of even complex dimensions d ≥ 4.
Defining the matrix M as usual, it is symmetric and without imposing further identities has full rank.
By a condition similar to that in eq. (3.44) can impose its determinant to vanish, whereas a kernel of
dimension two or higher is only possible at non-generic points in moduli space. Griffith transversality
guarantees that the order of the generating Picard–Fuchs operator is at least d + 1, but it may be d + 2
or higher. For the case of Calabi–Yau fourfolds, which is d = 4, there are examples with a generating
operator of order six, see refs. [19, 56, 118]. In fact, the entire fifth chapter of this thesis is devoted to
a study of this phenomenon. The correlator formulas for the generating Picard–Fuchs operators of
one-parameter Calabi–Yau fourfolds can, both for the order five and six case, be found in ref. [17].

Formulas for the two generating Picard–Fuchs operators of Calabi–Yau threefolds with two Kähler
moduli are presented in ref. [17]. For higher complex dimensions or yet more Kähler parameters we
do not except to find universal formulas, at least they would become rather unwieldy.

3.7 Examples

In this section we apply the above findings to several concrete gauged linear sigma models. We
specialize to the gauge group G = U(1), for non-Abelian and multi-parameter examples see ref. [17].
In order to keep formulas compact, we suppress writing any functional dependencies except those on
twisted masses.

3.7.1 Projective Space PN−1

We start with a gauged linear sigma model with gauge group G = U(1) and charged matter spectrum
as listed in Table 3.2. Due to the positive sum of gauge charges, S = N , the bare value of the real FI

Chiral multiplets G = U(1) charge Vector R-charge qi Twisted masses
Φi, i = 1, . . . , N +1 0 mi

Table 3.2: Matter spectrum of the gauged linear sigma model of the projective space PN−1.

parameter is r(ΛUV) = ∞ and we need to consider r � 0. Since all chiral multiplets have zero vector
R-charge, there is no superpotential. The classical target space, see eq. (2.44), is the complex projective
space PN−1. In order to determine correlator relations, we first spell out the rational functions gp
defined in eq. (3.12),

gp(mi) =

p∏
s = 1

N∏
i = 1

[
w +mi + ε (1 − s)

]
. (3.46)
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The simplest solution to the constraint eq. (3.11) is α0 = g1 and α1 = −1 together with αp = 0 for
p ≥ 2, which determines the relation

0 = RS(mi) =
〈
σn
N (σS +mi) · · · (σS +mN )

〉
−Q

〈
σn
N

〉
(3.47)

that is guaranteed to hold for all non-negative integers n. For N = 2 an explicit calculation of the
localization formula (3.4) gives the correlators

κ0,0 = 0 , κ0,1 = 1 , κ0,2 = −(m1 +m2) ,

κ1,0 = 1 , κ1,1 = −(m1 +m2) , κ1,2 = (m1 +m2)
2
−m1m2 +Q .

(3.48)

These are indeed polynomial in Q as discussed in subsection 3.2.1 and demonstrate validity of the
relation (3.47) for n = 0 and n = 1. (Side remark: For this model all poles of the one loop determinant
contribute to the residue. Their combined contribution can be rewritten as the residue at infinity,
which speeds up calculations significantly.) According to eq. (3.21) the relation defines the differential
operator

RS(mi) = (εΘ +m1) · · · (εΘ +mN ) −Q , (3.49)

where Θ = Q∂Q is the logarithmic derivative with respect to Q. The equivariant Givental I-
function (2.54), of the target space PN−1 reads

I
PN−1(mi) =

∞∑
k = 0

1∏k
s = 1(H +m1 + sε) · · · (H +mN + sε)

Q
H
ε +k , (3.50)

with H the generator of H1,1
(PN,Z). This series is indeed annihilated by RS , where the k = 0 term

vanishes due to the identification (H + m1) · · · (H + mN ) ∼ 0 in the equivariant cohomology ring
C[H,mi]

/
(H +m1) · · · (H +mN ). Since there cannot be any cancellations in the gp, see eq. (3.46),

there is no special choice of twisted masses for which an enhanced non-generic module M0
S and

differential ideal I0
S arise. Correspondingly, RS generates the entire ideal of operators and never

factorizes.

3.7.2 Quintic Calabi–Yau Threefold P4[5]

As second example we reconsider the model discussed at the end of section 2.2, with the difference of
now turning on generic twisted masses as specified in Table 3.3. This model is conformal and its
r � 0 target space (2.49) is the quintic Calabi–Yau threefold P4

[5]. The first two rational functions
read

g0(mi,mP) = 1 , g1(mi,mP) = −
(w +m1) · · · (w +m5)

(5w −mP) · · · (5w −mP − 4ε)
, (3.51)

which are now — since P has negative charge — except for g0 not polynomial anymore. We readily
determine a relation RS = RS(mi,mP),

0 = RS =
〈
σn
N (σS +m1) · · · (σS +m5)

〉
+Q

〈
σn
N (5σS −mP + ε) · · · (5σS −mP + 5ε)

〉
,

RS = (εΘ +m1) · · · (εΘ +m5) +Q(5εΘ −mp + ε) · · · (5εΘ −mp + 5ε) ,
(3.52)
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Chiral multiplets G = U(1) charge Vector R-charge qi Twisted masses
Φi, i = 1, . . . , 5 +1 0 mi

P −5 2 mP

Table 3.3: Matter spectrum of the gauged linear sigma model of the quintic Calabi–Yau threefold P4
[5] with

generic twisted masses.

together with its associated differential operator RS = RS(mi,mP). This operator indeed annihilates
the equivariant Givental I-function

I
P4
[5](mi,mP) =

∞∑
k = 0
(−1)k

∏5k
s = 1

(
5H −mP + sε

)∏k
s = 1

(
H +m1 + sε

)
· · ·

(
H +m5 + sε

) Q
H
ε +k , (3.53)

where the k = 0 term vanishes due to the identification (H +mi1
) · · · (H +mi5

) ∼ 0 in the equivariant
cohomology ring of the target space P4

[5].
We observe that the non-generic choice of twisted masses given by the equality mP = −5mi results

in a cancellation of the i-th factor in the numerator of g1 with the first factor in its denominator. For
definiteness, let us consider mP = −5m5. This gives a non-generic correlator relation R0

S(mi), whose
associated differential operator reads

R0
S(mi) = (εΘ +m1) · · · (εΘ +m4) + 5 Q (5εΘ + 5m5 + ε) · · · (5εΘ + 5m5 + 4ε) . (3.54)

We now have to check condition (3.15) and for this purpose determine the sets defined in eq. (3.14).
These read

Θ(r > 0) =
⋃5

i=1
{
εZ≤0 −mi

}
, Ω(r > 0) =

{ 1
5εZ>0 +

1
5mP

}
, (3.55)

and for mP = −5m5 their intersection is still empty. Consequently, R0
S is a valid operator and we

can check that it indeed annihilates the non-generic I-function I
P4
[5](mi,mP = −5mi). With the

commutator [Θ,Q] = Q we also find the factorization

Rlim
S (mi) = RS(mi,mP = −5m5) =

(
εΘ +m5

)
R0
S(mi) . (3.56)

While R0
S generates the entire ideal of operators for the non-generic choice mP = −5m5, the limiting

operator Rlim
S only generates a proper subideal. Let us now additionally put mi = 0, which we are free

to do without checks since there are no additional cancellations in g1. The operator then reduces to

R0
S(mi = 0) = ε4

[
Θ

4
+ 5Q (5Θ + 1) · · · (5Θ + 4)

]
. (3.57)

Up to an inconsequential overall factor of ε4 this precisely is the generating Picard–Fuchs operator of
the quintic Calabi–Yau threefold, see eq. (2.63).

The methods of section 3.6 provide an alternative way of deriving this operator. To this end, we use
the localization formula (3.4) to calculate the three correlators

κ0,3 =
5

1 + 55Q
, κ2,3 =

−6 250Q

(1 + 55Q)2
ε2 , κ3,4 =

100Q(−6 + 59 375Q)

(1 + 55Q)3
ε4 (3.58)
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for vanishing twisted masses. From the universal formula (3.41) for Picard–Fuchs operators of
one-parameter Calabi–Yau threefold we then get

L =
52ε4

(1 + 55Q)3

[
Θ

4
+ 5Q (5Θ + 1) · · · (5Θ + 4)

]
, (3.59)

which up to an overall factor agrees with R0
S(mi = 0). As long as it is feasible to calculate correlators

quickly, this method is rather simple.
We see that the correlators in eq. (3.58) are, in accord with the discussion of subsection 3.2.1,

rational functions of Q with a pole at the point Q = −5−5 of the Coulomb branch as predicted
by eq. (2.45). Moreover, the correlator κ0,3 agrees with the B-model Yukawa coupling (2.65) that
we derived from the differential equation (2.64). We can even re-derive this differential equation
from our gauge theory approach. For this we take the non-generic relation R0

S(mi = 0) and employ
properties (3.33) and (3.35) to get

0 = R0
S(mi = 0) = c4 κ0,4 + c3 κ0,3 =

[
2c4 εΘ + c3

]
κ0,3 . (3.60)

Here ck = ck(Q, ε) are the coefficients of σk
S in R0

S(mi = 0) and, equivalently, the coefficients of
(εΘ)k in the Picard–Fuchs operator R0

S(mi = 0). This argument equally applies to all one-parameter
Calabi–Yau threefolds.

As we have seen, the Picard–Fuchs operator follows straightforwardly from the gauged linear sigma
model. This means that we can easily find the genus zero integral Gromov–Witten invariants — which
appear in the quantum product (2.52) and thereby determine the triple correlation function (2.51) —
without using mirror symmetry.

3.7.3 Local Calabi–Yau Threefold O(−1) ⊕ O(−1) → P1

As third and last example we consider the G = U(1) gauged linear sigma model with matter spectrum
as listed in Table 3.4. While the chosen twisted masses are not entirely generic, they are generic

Chiral multiplets G = U(1) charge Vector R-charge qi Twisted masses
Φi, i = 1, 2 +1 0 0
Ψi, i = 1, 2 −1 0 m

i
ψ

Table 3.4: Matter spectrum of the gauged linear sigma model of the non-compact conifold Calabi–Yau threefold
O(−1) ⊕ O(−1) → P1.

enough to ensure applicability of the modified residue symbol (3.10) and guarantee that all correlator
relations are valid. The model is conformal and in the phase r � 0 has the Calabi–Yau target space

X =

{
(φ, ψ) ∈ C4

��� |φ|2 = r + |ψ |2 > 0
}
�U(1) = O(−1) ⊕ O(−1) → P1 , (3.61)

which is non-compact due to the unconstrained directions ψi. In the phase r � 0 the target space is
actually the same.the multiplets φi and ψi simply swap their roles. We work with r � 0 and analyze
a basic correlator relation both for mi

ψ generic, as well as for the non-generic choice given by the
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condition m2
ψ = −ε . From eq. (3.12) we find the rational functions

g0(m
i
ψ) = 1 , g1(m

i
ψ) =

w2

(w −m1
ψ − ε)(w −m

2
ψ − ε)

, (3.62)

and the cancellation in g1(m
1
ψ,m

2
ψ = −ε) signals an enhanced syzygy module M0

S . With eqs. (3.11)
and (3.13) we get

0 = RS(m
i
ψ) =

〈
σn
N σ

2
S

〉
−Q

〈
σn
N (σS −m

1
ψ)(σS −m

2
ψ)

〉
,

0 ?
= R0

S(m
1
ψ) =

〈
σn
N σS

〉
−Q

〈
σn
N (σS −m

1
ψ)

〉
,

(3.63)

where R0
S is unlike RS not guaranteed to be a valid correlator relations. For this we need to check the

condition (3.15) and determine the pole sets defined in (3.14), which here read

Θ(r > 0) = εZ≤0 , Ω(r > 0,mi
ψ) =

⋃2
i = 1

{
εZ≥0 +m

i
ψ

}
. (3.64)

Since the intersection Θ(r > 0) ∩Ω(r > 0,m1
ψ,m

2
ψ = −ε) = {−ε, 0} is non-empty for the non-generic

choice of twisted masses, such that we do not expect R0
S to be a valid relation. The correlators

κ0,0 =
m

1
ψ +m

2
ψ(

m
1
ψm

2
ψ

)2 , κ0,1 =
1

m
1
ψm

2
ψ

, κ0,2 = 0 ,

κ1,0 =
1

m
1
ψm

2
ψ

, κ1,1 = 0 , κ1,2 =
Q

1 −Q

(3.65)

confirm these considerations explicitly for n = 0 and n = 1. A similar discussion applies to the
Givental I-function, which hear reads

IX(m
i
ψ) =

∞∑
k = 0

∏k−1
s = 0(H −m

1
ψ + sε)(H −m2

ψ + sε)∏k
s = 1(H + sε)2

Q
H
ε +k . (3.66)

It is annihilated by the operator RS(m
i
ψ) associated to RS(m

i
ψ), where the k = 0 term vanishes thanks

to the identification H2
∼ 0 in the equivariant cohomology ring of X for mi

φ = 0. This suggests that
eq. (3.23) is also valid for non-compact target spaces. The limiting operator factors,

Rlim
S (m

1
ψ) = RS(m

1
ψ,m

2
ψ − ε) = εΘ

[
εΘ −Q(εΘ −m1

ψ)

]
= εΘ R0

S(m
1
ψ) , (3.67)

where R0
S is the operator obtained from R0

S . This operator does, however, not annihilate the non-generic
I-function IX(m

1
ψ,m

2
ψ = −ε). Interestingly, this only fails at the classical order k = 0.

Since the target space X is non-compact, we cannot take the limit of vanishing twisted masses
in all of the correlators presented in eq. (3.65). However, those correlators that remain finite in this
limit behave similar to correlators of models with a compact Calabi–Yau target space of the same
dimension. In particular, κ1,2 is rational in Q with a pole at the position of the Coulomb branch.
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CHAPTER 4

Fundamental Periods of Non-Abelian Gauged
Linear Sigma Models

In this chapter we continue on the study of the connection between gauged linear sigma models
and Picard–Fuchs operators. We present yet another method to determine the latter from the gauge
theory spectrum, which is particularly useful for non-Abelian models and clearly outperforms the
methods of the previous chapter in terms of computational efficiency. The discussion also applies to
non-conformal models and the operators describing their target space quantum cohomology.

This chapter presents new, unpublished work by the author. Useful discussions with Dr. Hans Jockers
and Christoph Nega are acknowledged.

4.1 Introduction

The previous chapter demonstrated tight connections between gauged linear sigma models on the one
hand and differential operators governing the target space quantum cohomology on the other hand. In
particular, we presented two methods that determine the operators from the gauge theory without the
use of mirror symmetry. Let us here briefly recall them. First, in section 3.3 we derived universal
linear dependencies between gauged linear sigma model correlation functions that, as in explained in
section 3.4, turn into differential operators annihilating the moduli dependent gauge theory ground
state. For Abelian models with a geometric target space we have further shown these to annihilate
the Givental I-function [18, 83], which for conformal models identifies them as the Picard–Fuchs
operators on the quantum Kähler moduli space of the low energy superconformal field theory. Second,
for several classes of Calabi–Yau manifolds — specified by their complex dimension and number of
Kähler parameters — we in section 3.6 presented formulas that universally express their Picard–Fuchs
operators in terms of the gauge theory correlators.
As an alternative practical approach, we may also make use of quantities that are known to be

annihilated by the differential operators. The latter can then be found by making an ansatz and
requiring it to annihilate these expressions. Examples of such quantities are the Givental I-function
and, for conformal models, the quantum periods it defines. We here want to apply this simple idea to
non-Abelian gauged linear sigma models. For this purpose we aim to find explicit formulas for their
fundamental periods — or, more generally speaking and also applicable to non-conformal models,
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the holomorphic solutions to the differential operators — in terms of the defining gauge theory
spectrum. Our approach starts with the I-function of the associated Abelian Cartan theory and we
make a proposal for how the fundamental period (holomorphic solution) of the original non-Abelian
model is recovered in a certain non-trivial limit. We derive a simple sufficient condition that in
combination with some restrictions on the chiral matter spectrum guarantees the limit to exist and in
the same time determines its finite value. For a few low-rank non-Abelian gauge groups we check
this condition explicitly and spell out general formulas for the corresponding fundamental periods
(holomorphic solutions). We apply these to several examples of non-Abelian gauged linear sigma
models and find agreement with the literature. Moreover, we briefly comment on how the method
may be generalized to also yield the other quantum periods, i.e, the other solutions of the differential
operator. The formulas for the fundamental periods provide a particularly efficient way to determine
the Picard–Fuchs operator of a given non-Abelian model and — since they are applicable to a large
class of matter spectra — an automated scan over models with the aim of finding, for example, phases
with Calabi–Yau threefold target spaces presents itself as a promising application. Lastly, we discuss
the idea of reconstructing gauged linear sigma models from given differential operators. As we will
explain, the formulas for the fundamental period may play a central role for such a program.
The hemisphere partition function of gauged linear sigma models is also known to be annihilated

by the Picard–Fuchs operators and, in fact, computes the quantum periods [106–108]. While this
quantity is general in the sense that it applies without restriction on the matter spectrum, it still needs
to be evaluated for a given model. The formulas presented here have the advantage that they are ready
to use and can essentially be typed into the computer directly, without the need to do a calculation
before. It would be interesting to re-derive the formulas from the hemisphere partition function. A
related quantity is the two-sphere partition function [65, 66], which computes the quantum-exact
Kähler metric on the quantum Kähler moduli space and too is annihilate by the Picard–Fuchs operators
[103–105]. Moreover, it would be interesting to understand how the findings of this chapter connect to
the related mathematical literature, such as for example ref. [84].

The below discussions equally apply to conformal and non-conformal gauged linear sigma models,
as well as for generic and non-generic choices of twisted masses. In order to simplify notation and
reading, we will from here on not distinguish between these cases unless explicitly stated. When
speaking of (fundamental) periods, we implicitly also refer to the (holomorphic) solutions of the
differential operators that govern the quantum cohomology of non-conformal models, as well as cases
with generically chosen twisted masses.

4.2 Formulas for Fundamental Periods of Non-Abelian Models

In this section we propose general formulas for the fundamental periods of gauged linear sigma models
with non-Abelian gauge groups and large classes of chiral matter spectra. As valuable resource for the
structure of simple Lie algebras we employ section 13 of the textbook [26].

4.2.1 Problem Specification and Cartan Theory I -Function

We consider gauged linear sigma models with non-Abelian gauge groups of the general form specified
by eq. (2.31). Without loss of generality, we assume that the ` complexified Fayet–Iliopoulos (FI)
parameters ®τ are in the phase ®r = Re(®τ) � 0. This can always be achieved by reversing signs
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of the U(1) generators if needed. For non-conformal models the physical consistency condition
rl(ΛUV) = +∞ is understood to hold for all l.
Our aim is to derive general formulas for the fundamental periods of such non-Abelian models.

We propose to approach this by means of the Givental I-function [18, 83] of the associated Cartan
theories introduced in subsection 3.5.2, in which the non-Abelian gauge groups are spontaneously
broken to their maximal Abelian subgroups T according to

G =
U(1)` × G1 × . . . × Gm

Γ
−→ T =

U(1)` × U(1)r−`

Γ
. (4.1)

Here we write r = rank G ≥ ` + 1 and each factor of the discrete quotient group Γ acts non-trivially on
at least one of the non-Abelian groups G1, . . . , Gm — else we redefine the generators of U(1)` to get
rid of this factor. The chiral spectrum of the Cartan theory is summarized in Table 3.1. We now want
to employ eq. (2.54) for the Givental I-function, which in this form is only valid for genuine Abelian
gauge groups U(1)r and here requires some modifications. Let us explain the individual ingredients of
the formula one after another:

• The set γ+m is a subset of the magnetic charge lattice γm of T , which for a non-trivial quotient
group Γ is not equal to Zr . Even for a trivial quotient, γ+m is in the present setup not necessarily
equal to Zr≥0. We will specify γ+m below.

• The vector ®Q reads ®Q = ( ®Qna, 1, . . . , 1), where the variables ®Qna = (Q1, . . . , Q`) are specified
by the FI parameters ®τ of the non-Abelian theory as in eq. (2.53). There are r − ` additional
ones, which means we do not turn on auxiliary FI parameters.

• We take ®H = ( ®Hna, ®Haux), where ®Hna = (H1, . . . , H`) generate the cohomology ring of the
non-Abelian model’s target space. Unlike for the FI parameters, we do turn on auxiliary
variables ®Haux = (H`+1, . . . , Hr ).

• The chiral spectrum of the Cartan theory includes the W-bosons of the spontaneous symmetry
breaking, whose combined contribution for ®k ∈ γ+m fixed reads

IW ( ®Haux,
®k) = (−1)

®k ·
∑
®αβ > 0 ®αβ

∏
®αβ>0

[
1 + ε

®αβ ·
®k

®αβ · ®H

]
. (4.2)

Here the product is over positive roots ®αβ > 0 and we used that non-zero roots come in pairs
(®αβ,−®αβ). The first ` entries of ®αβ correspond to the ` Abelian U(1) factors and are zero, such
that ®αβ · ®H does not involve ®Hna but only depends on the auxiliary variables ®Haux. These are
thus required to define the I-function of the Cartan theory in the first place and setting them
back to zero is a non-trivial problem. The overall power of (−1) can be simplified by using that
the sum of positive roots equals (0, . . . , 2, . . . , 2). Since roots are (independent of the quotient
Γ) always elements of the electric charge lattice, this in particular implies 2k`+1 + . . . + 2kr ∈ Z.

• Further, there are the chiral multiplets Λi,βi
that result from the decomposition of the original

non-Abelian matter spectrum. As for the genuine Abelian case in eq. (2.54), we restrict their
vector R-charges to be either zero or two. All fields of the former type are collected into a first
class whose charge vectors and R-charges we relabel as ®λ+a and q+a = 0 with a = 1, . . . , N+. The
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others form a second class and we similarly write ®λ−b and q−b = 2 with b = 1, . . . , N−. Their
combined contribution for ®k ∈ γ+m fixed reads

IM ( ®H, ®k) =
1

ε
®k · ®S+
(−ε)

®k · ®S−

N+∏
a = 1

Γ

[
1 + m

+
a+
®λ+a · ®H
ε

]
Γ

[
1 + m

+
a+
®λ+a ·( ®H+ε

®k)

ε

] N−∏
b = 1

Γ

[
1 − m

−
b+
®λ−b ·( ®H+ε

®k)

ε

]
Γ

[
1 − m

−
b+
®λ−b · ®H

ε

] , (4.3)

wherem+a andm
−
b are twistedmasses. We further use the quantities ®S+ =

∑
a
®λ+a and ®S

−
=

∑
b
®λ−b ,

which for conformal models are subject to ®S+ + ®S− = 0.

• The set γ+m is defined as the collection of all ®k ∈ γm for which ®k · ®λ+a ≥ 0 holds for all a.

• Finally, we impose further restrictions on the non-Abelian matter fields. First, with the unit
vectors ®ei we require ®ei · ®λ

+
a > 0 for all a and i = 1, . . . , `. In other words, all non-Abelian

chiral matter multiplets with zero vector R-charge are positively charged under all U(1) factors
in G. Second, we require ®k · ®λ−b ≤ 0 for all b and ®k ∈ γ+m.

With these definitions and restrictions the Givental I-function (2.54) of the Cartan theory assumes the
form

ICartan( ®H, ®Qna) =
∑
®k ∈γ+m

Q
k1+

H1
ε

1 · · · Q
k`+

H`
ε

`
· IW ( ®Haux,

®k) · IM ( ®H, ®k) . (4.4)

For brevity we suppress writing functional dependencies on ε and the twisted masses, whereas we
make explicit that no auxiliary FI parameters are turned on.

4.2.2 Proposal for Fundamental Periods of Non-Abelian Models

As we recall from eq. (2.55), the fundamental periods of Abelian theories are recovered from the
Givental I-function by setting ®H = 0. In direct generalization of this we propose the limit

Π0( ®Qna) = lim
®H→ 0

ICartan( ®H, ®Qna) = lim
®Haux→ 0

ICartan( ®Hna = 0, ®Haux, ®Qna) (4.5)

as the fundamental period of the original non-Abelian theory, where the second equalities used that
the Cartan theory I-function ICartan is regular at ®Hna = 0. This proposal comes in two parts.
First, the W-boson contribution IW specified in eq. (4.2) is clearly singular in the limit ®Haux → 0

and it is not immediately clear whether the above expression is well-defined in the first place. We
conjecture that — since the Cartan theory is invariant under the Weyl groupWG of G — all singular
terms cancel in the sum over magnetic charges γ+m and the limit exists. We will prove this for several
low-rank non-Abelian groups and derive explicit formulas for the finite values of the corresponding
limits. In short, we find that IW is replaced by a differential operator involving derivatives with respect
to the auxiliary variables ®Haux that act on the matter contribution IM . The methods of this proof
generalize and we state a simple condition with which the existence of the limit as well as its finite
value can be established for fixed but arbitrary non-Abelian gauge groups.

Second, we propose that Π0 is the actual fundamental period that correctly captures the non-Abelian
model’s quantum cohomology. In order for this notion to make sense, we in addition to the technical
restrictions of the previous subsection assume the model to have a geometric target space in the phase
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®r � 0 under consideration. For several applicable examples of non-Abelian gauged linear sigma
models we compare Π0 as given by eq. (4.5) to the known expressions from the literature and find
agreement in all cases. The associated differential operators are easily found by making an ansatz and
requiring it to annihilate the expansion of Π0. For conformal models with vanishing twisted masses
these are the Picard–Fuchs operators on the quantum Kähler moduli space and the present approach
provides a computationally efficient way of determining them for non-Abelian gauged linear sigma
models. As a caveat, in all examples that we consider the non-Abelian gauge group is spontaneously
broken to an Abelian subgroup. This might be an additional requirement for identifying the above
limit of the Cartan theory I-function with the fundamental period of the non-Abelian model.

4.2.3 Comments on the Definition of γ+m and the Restrictions on the Non-Abelian
Matter Spectrum

Our definition of γ+m and the restrictions on the non-Abelian matter spectrum imply several desirable
properties. First, the components k1, . . . , k` — associated to the original U(1) factors in G — of all
magnetic charges ®k ∈ γ+m are non-negative. This implies that ICartan is holomorphic in the variables
Q1, . . . , Q` that correspond to the FI parameters ®τ of the non-Abelian theory. Second, even for
m
+
a = m

−
b = 0 the matter contribution (4.3) remains well behaved in the sense that none of the gamma

functions become zero or singular at ®Haux = 0. This will help us to prove that the limit of sending
®Haux → 0 involved in eq. (4.5) is indeed well defined.
To the author’s knowledge, the assumptions are fulfilled for all gauged linear sigma model phases

that realize a compact geometric target space which spontaneously breaks non-Abelian gauge group to
an Abelian subgroup. In these cases we find agreement with the literature. The assumptions do not
hold for several strongly coupled gauged linear sigma model phases in which a non-Abelian subgroup
is left unbroken and that nevertheless realize a compact geometric target space. Examples of this type
are the r � 0 phase of the model in section five of ref. [55] and those in ref. [56] — recall: while we
here consider r � 0 only, the sign of r can be reversed by redefining the U(1) generator. We do not
claim that eq. (4.5) gives the correct I-function for these cases.

Finally, the above definition of γ+m implicitly depends on the non-Abelian matter spectrum. While
this does give the correct answer in all examples we consider, it also conceivable that γ+m is universally
fixed by the choice of gauge group. To follow this idea we define γ̃+m as the set of all ®k ∈ γm whose
first ` components are non-negative. At least for the examples discussed below, this bigger set is
automatically truncated back to γ+m by poles of gamma functions in the denominator of eq. (4.3),
which outweigh potential poles in its numerator. As candidate for an alternative definition, we might
replace γ+m by γ̃+m and restrict the non-Abelian matter spectrum such that IM with m+a = m

−
b = 0

remains non-singular in the limit ®Haux → 0 for all ®k ∈ γ̃+m. It would be interesting to obtain a better
understanding of these aspects.

4.2.4 Single Non-Abelian Factor SU(2)

For models with a single non-Abelian gauge group factor G1 = SU(2) we now prove that the limit in
eq. (4.5) exists. To be precise, we consider gauge groups of the form

G =
U(1)` × SU(2)

Γ
. (4.6)
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While the discrete quotient Γ does affect the magnetic charge lattice γm and in extension the summation
set γ+m, it does not influence the argument for the existence of the limit. Intuitively, the W-boson
contribution IW only depends on the Lie algebra g of G and on the group’s global structure only
implicitly via the allowed magnetic charges. Therefore, we are able to derive a universal result.
To begin, we spell out the Cartan theory I-function (4.4). Together with eq. (4.2) and using that

there is a single positive root ®αβ = (0, . . . , 0, 2) we get

ICartan( ®H, ®Qna) =
∑
®k ∈γ+m

Q
k1+

H1
ε

1 · · · Q
k`+

H`
ε

`
(−1)2k2

(
1 + ε

kr
Hr

)
IM ( ®H, ®k) . (4.7)

Our claim is that the singular term with the power H−1
r cancels in the sum over kr , which we recall

to be the last component of ®k = (k1, . . . , k`, kr ) ∈ γ
+
m. To show this, let us consider an irreducible

representation ρ ofG. It is labelled by an `-dimensional integer vector ®ρq that specifies the various U(1)
charges and the Dynkin label ρhw of the highest SU(2) weight in the representation. For non-trivial Γ
there is an additional constraint on the integers ®ρq and ρhw , whose precise form depends on how the
quotient acts. Independent of the quotient, a non-Abelian multiplet in the representation ρ gives rise
to ρhw + 1 chiral matter fields in the Cartan theory. Their charge vectors are ®λn = ( ®ρq, ρhw − 2n)
with n = 0, 1, . . . , ρw and they all share the same vector R-charge and twisted mass. This means that,
including the W-bosons, for each chiral field of the Cartan theory with charge vector ®λ = (ρq, ρw , 0)
there is another field with ®λ ′ = (ρq, −ρw) that is equivalent in all other respects. Put differently, the
weights of a SU(2)-representation — and in extension those of a G-representation — are permuted by
the action of the Weyl groupWSU(2) = Z2 on the weight lattice of su(2), whose non-trivial element
acts by ω1 → −ω1 on the fundamental weight and hence by sign reversal of the Dynkin labels ρhw .
This has two important implications.

• First, the set γ+m is mapped to itself under the transformation kr → −kr that implements theWeyl
group action on the magnetic charges ®k. To see this, let us denote the action of w ∈ WSU(2) on
weights ®λ as we[

®λ]. We note that ®λ can be a root, which is why the argument equally applies to
the W-bosons. Since all fields descending from the same G-representation have the same vector
R-charge, we observe that {®k · ®λ+a ≥ 0} = {®k ·we[

®λ+a] ≥ 0} and {®k · ®λ−b ≤ 0} = {®k ·we[
®λ−b] ≤ 0}

— where the respective sets are obtained by joining over all a or b. Lastly, the action of w
on magnetic charges ®k is dual to its action on weights, i.e., it is defined by the requirement
wm[
®k] · ®λ = ®k · we[

®λ] for all ®k and ®λ. Given the above equalities of sets, this proves the claim
that γ+m is invariant under application of wm[·].

• Second, IW · IM is invariant under application of wm[·] when it acts on both ®k and ®H. We write
this as IW · IM = wm(

®k) ◦ wm(
®H)[IW · IM ] = wm(

®k) ◦ wm(
®H)[IW · IM ], where ◦ denotes the

composition of maps. The two individual transformations only act on the arguments given in
round brackets and therefore clearly commute. We stress that IW · IM is not invariant under the
individual transformations. Moreover, all of this also applies independently to factors IW and
IM . The powers of ®Qna are anyway invariant under all these transformations, which is why we
do not consider them here.

These two observation are central to the following discussion and will be used frequently. The first
implies that the Cartan theory I-function given in eq. (4.7) remains unchanged when IW · IM is
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replaced with its average over the Weyl group action wm(
®k) defined by

avg
wm(
®k)

[
IW · IM

]
=

1
|WSU(2) |

∑
w ∈WSU(2)

wm(
®k)

[
IW · IM

]
=

IW · IM + IW · IM |kr →−kr

2
. (4.8)

Here the Weyl group acts only on ®k, and neither on ®H nor on the charge vectors. The validity of this
replacement amounts to an appropriate relabeling of the summation set γ+m for the second term of the
sum (the one that is non-trivially acted upon). We claim that this averaged expression is manifestly
finite in the limit ®Haux = (Hr ) → 0, without the need to first sum over kr .

In order to understand this, we recall that — due to the restrictions put on the non-Abelian matter
spectrum — the term IM is regular at Hr = 0. We can therefore expand it in the variable Hr and get

IM ( ®Hna, Hr,
®k) = IM ( ®Hna, 0, ®k) + Hr · ∂Hr

IM ( ®Hna, 0, ®k) + O(H2
r ) . (4.9)

Since IM is invariant under the combined application of wm(
®k) ◦wm(

®H) and since terms with different
Hr powers do not mix, we find that IM ( ®Hna, 0, ®k) and ∂Hr

IM ( ®Hna, 0, ®k) respectively are even and
odd under application of w(1)m (®k), where w(1) is the non-identity element ofWSU(2). By using the
explicit form of IW and that 2kr is an integer — which is guaranteed independent of the quotient Γ,
see the fourth bullet point in subsection 4.2.1 — eq. (4.8) simplifies to

avg
wm(
®k)

[
IW · IM

]
= (−1)2kr

(
1 + kr ∂Hr

)
IM ( ®H, ®k)��Hr = 0

+ O(Hr ) . (4.10)

Here the singular term with power H−1
r has cancelled since it is odd under w(1)m (®k) and the O(Hr )

terms will automatically vanish in the limit of interest. In effect, IW is replaced by the differential
operator Dsu(2) = (−1)2kr

(
1 + kr ∂Hr

)
involving a derivative with respect to the auxiliary variable Hr

that acts on the matter contribution in IM . We arrive at

Π0( ®Qna) =
∑
®k ∈γ+m

Qk1
1 · · · Qk`

`
Dsu(2)

[
IM ( ®H, ®k)

] �� ®H = 0
(4.11)

as the finite result of the limit and propose this to be fundamental period of models with gauge group
as given by eq. (4.6) and matter spectra in accord with the assumptions of subsection 4.2.1. An explicit
evaluation of the derivative yields

Dsu(2)

[
IM ( ®H, ®k)

] �� ®H= 0
= IM ( ®H, ®k)�� ®H = 0

·

[
1 − kr

N+∑
a=1

(
®er · ®λ

+
a

)
ψ(0)

(
1 + m

+
a

ε +
®λ+a ·
®k
)

− kr

N−∑
b=1

(
®er · ®λ

−
b

)
ψ(0)

(
1 − m

−
b

ε −
®λ−b ·
®k
) ]
· (−1)2kr ,

(4.12)

where ψ(0) is the digamma function and ®er the unit vector in the r-th direction. The operator Dsu(2)
commutes with putting ®Hna = 0 and with all those gamma functions that correspond to Abelian fields.
Upon setting ®Haux = (Hr ) = 0 after application of the derivatives, it moreover commutes with the
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collection of all ®k-independent gamma functions — this is even independently true for the collection
of all ®k-independent gamma functions that correspond to a single non-Abelian multiplet.
An important special case are conformal models with vanishing twisted masses. For later use we

here spell out that their fundamental periods take the form

Π0( ®Qna) =
∑
®k ∈γ+m

(−1)2kr+®k · ®S
−

Qk1
1 · · · Qk`

`

∏N−
b=1 Γ

(
1 − ®λ−b · ®k

)
∏N+

a=1 Γ
(
1 + ®λ+a · ®k

) · [
1 − kr

N+∑
a=1

(
®er · ®λ

+
a

)
h ®λ+a · ®k − kr

N−∑
b=1

(
®er · ®λ

−
b

)
h
−®λ−b ·

®k

]
,

(4.13)

where hn denotes the n-th harmonic number — we deviate from the standard notation Hn to avoid
confusion with the variables ®H — and the gamma functions may also be written as factorials. For a
given model, we can straightforwardly determine the Picard–Fuchs operators by requiring them to
annihilate the expansion of this expression.

4.2.5 Single Non-Abelian Factor SU(3)
Let us now generalize these arguments to gauge groups with a single non-Abelian factor G1 = SU(3).
These are of the general form

G =
U(1)` × SU(3)

Γ
, (4.14)

where the precise form of the quotient Γ will again not effect the existence of the limit in eq. (4.5).
There are three positive roots — ®αβ1

= (. . . , 2, −1), ®αβ2
= (. . . , 1, 1) and ®αβ3

= (. . . , −1, 2) where
the dots stand for ` zeros — and the W-boson contribution (4.2) reads

IW ( ®Haux,
®k) = (−1)2kr−1+2kr

(
1 +

2kr−1 − kr
2Hr−1 − Hr

) (
1 +

kr−1 + kr
Hr−1 + Hr

) (
1 +
−kr−1 + 2kr
−Hr−1 + 2Hr

)
. (4.15)

The weights of a SU(3)-representation— and in extension those of a G-representation— are permuted
by the action of the Weyl groupWSU(3) on the weight lattice of su(3), which is constituted by the six
elements {1, w(1), w(2), w(1)w(2), w(2)w(1), w(1)w(2)w(1)}. Its generators w1 and w2 act by

w(1)m [
®k ] = (. . . , kr − kr−1, kr ) , w(2)m [

®k ] = (. . . , kr−1, kr−1 − kr ) (4.16)

on magnetic charges ®k ∈ γ+m, where . . . stands for the unaffected Abelian components k1, . . . , k` . For
the same reason as in the SU(2) case, these transformations map γ+m to itself. Therefore, the Cartan
theory I-function (4.4) remains unchanged upon replacing the product IW · IM with the average over
its Weyl group orbit,

IW · IM 7→ avg
wm(
®k)

[
IW · IM

]
=

1
|WSU(3) |

∑
w ∈WSU(3)

wm(
®k)

[
IW · IM

]
, (4.17)

where as before the Weyl group acts only on ®k. This amounts to an appropriate relabelling of the
summation set γ+m for all those (five) terms that are non-trivially acted upon. For the same reason
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as in the SU(2) case, the product IW · IM is for every v ∈ WSU(3) invariant under application of
vm(
®k) ◦ vm( ®H). Since the Weyl group is Abelian, the same is true for avg

wm(
®k)

[
IW · IM

]
and we find

the first step in the sequence of equalities

avg
wm(
®k)

[
IW · IM

]
= avg

vm( ®H) ◦ vm(
®k)
◦ avg

wm(
®k)

[
IW · IM

]
= avg

vm( ®H)
◦ avg

wm(
®k)

[
IW · IM

]
= avg

wm(
®k)
◦ avg

vm( ®H)

[
IW · IM

]
= avg

wm(
®k) ◦wm(

®H)
◦ avg

vm( ®H)

[
IW · IM

]
= avg

vm( ®H)

[
IW · IM

]
.

(4.18)

The second step uses that expressions which have already been averaged over the Weyl group action
on ®k are invariant under vm(®k) and the third that transformations on ®k and ®H commute. Steps four and
five then go backwards with the roles of ®k and ®H exchanged. In summary, we have so far shown that
the replacement

IW · IM 7→ avg
vm( ®H)

[
IW · IM

]
(4.19)

does not affect the Cartan theory I-function in eq. (4.4). This is an important intermediate result
which we will now use to prove that ICartan remains finite in the limit ®Haux → 0.

To this end, let us multiply out the products in eq. (4.15) and for brevity reintroduce the symbols
®αβi for the three positive roots. We get

IW ( ®Haux,
®k) = η + η

3∑
a=1

∑
1 ≤ β1 < ... < βa ≤ 3

(®αβ1
· ®k) · · · (®αβa ·

®k)

(®αβ1
· ®H) · · · (®αβa ·

®H)
, (4.20)

where we abbreviate η = (−1)2kr−1+2kr . Expanding the matter contribution IM in its variables Hr and
Hr−1, the right hand side of eq. (4.20) will be multiplied by monomials of the form Hp

r−1 Hq
r times

a coefficient that is Hr−1- and Hr -independent. In the limit of interest, ®Haux → 0, we only need to
consider monomials with p + q ≤ 3. An explicit evaluation of the average over the Weyl group action
on ®H — as on the right hand side of eq. (4.19) — for a fixed term in the above sum gives

1
|WSU(3) |

∑
v ∈WSU(3)

vm( ®H)

[∑a
p = 0

∑a−p
q = 0 bp,q Hp

r−1 Hq
r

(®αβ1
· ®H) · · · (®αβa ·

®H)

]
=

a∑
p = 0

c(p,a−p)β1, ..., βa
bp,a−p . (4.21)

This equally applies for all 1 ≤ β1 < . . . < βa ≤ 3 and a = 1, 2, 3. The c(p,a−p)β1, ..., βa
are numerical

constants that are determined by the equation and bp,q abbreviates

bp,q =
1

p!q!
∂
p
Hr−1

∂
q
Hr

IM �� ®Haux = (Hr , Hr−1)= 0
(4.22)

Since on the right hand side of eq. (4.21) all dependence on the two auxiliary variables Hr−1 and Hr

has canceled, the limit ®Haux → 0 can now safely be taken. The equation intuitively states that there
are no Weyl group invariant functions of ®Haux — the original variables ®Hna are invariant anyway —
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that are singular for ®Haux = 0 and at the same time consistent with the form of IW . In the present
example of G1 = SU(3) we find

c(1,0)1 = 1
2 , c(2,0)1,3 =

1
2 c(1,1)1,3 = c(0,2)1,3 =

1
6 ,

c(1,0)2 = c(0,1)2 = 1
2 , c(2,0)2,3 = −c(1,1)2,3 = −

1
2 c(0,2)2,3 = −

1
6 ,

c(0,1)3 = 1
2 , c(1,2)1,2,3 = c(2,1)1,2,3 =

1
6 ,

c(2,0)1,2 = +2c(1,1)1,2 = −2c(0,2)1,2 =
1
3 ,

(4.23)

whereas all other c(p,a−p)β1, ..., βa
are zero. The purpose of these numbers is to define the differential operator

Dsu(3) by

η−1
Dsu(3) = + 1 +

3∑
a = 1

∑
1 ≤ β1 < ... < βa ≤ 3

a∑
p = 0
(®αβ1
· ®k) · · · (®αβa ·

®k) c(p,a−p)β1, ..., βa

∂
p
Hr−1

∂
q
Hr

p!q!

= + 1 + 3
2 kr−1 ∂Hr−1

+ 3
2 kr ∂Hr

+ 1
4

(
k2
r−1 + 2kr−1kr − 2k2

r

)
∂2
Hr−1

+ 1
2

(
−k2

r−1 + 4kr−1kr − k2
r

)
∂Hr−1

∂Hr
+ 1

4

(
−2k2

r−1 + 2kr−1kr + k2
r

)
∂2
Hr

− 1
12

(
kr−1 − 2kr

) (
2kr−1 − kr

) (
kr−1 + kr

)
∂Hr−1

∂Hr

(
∂Hr−1

+ ∂Hr

)
,

(4.24)

which involves derivatives with respect to the auxiliary variables Hr−1 and Hr . The finite result of the
limit in eq. (4.5) is obtained by replacing IW with DSU(3) that acts on the matter contribution IM ,

Π0( ®Qna) =
∑
®k ∈γ+m

Qk1
1 · · · Qk`

`
Dsu(3)

[
IM ( ®H, ®k)

] �� ®H=0
, (4.25)

and we propose this as the fundamental periods for models with non-Abelian gauge groups of the
type given in eq. (4.14). This result is independent of the quotient group Γ and valid as long as
the restrictions on the non-Abelian matter spectrum explained in subsection 4.2.1 are fulfilled. The
operatorDsu(3) commutes with setting ®Hna = 0, with all gamma functions in IM associated to Abelian
fields and with the collection of all ®k-independent gamma functions when evaluated at Hr−1 = Hr = 0.
Since the formula would become rather lengthy, we refrain from explicitly executing the derivatives.

4.2.6 General Non-Abelian Gauge Groups

The methods of this proof and derivation immediately carry over to general gauge groups with simple
non-Abelian factors G1, . . . , Gm as in eq. (2.31).
LetWG and nGα respectively denote the Weyl group of G and the number of positive roots in the

Lie algebra g of G. A sufficient condition for the existence of the limit ®Haux → 0 in eq. (4.5) is that for
all 1 ≤ β1 < . . . < βa ≤ nGα with 1 ≤ a ≤ nGα there are numbers c( ®p )β1, ..., βa

for which the equation

1
|WG |

∑
v ∈WG

vm( ®H)

[∑
®p ∈ Ia

b ®p Hp1
`+1 · · ·H

pr−`
r

(®αβ1
· ®H) · · · (®αβa ·

®H)

]
=

∑
®p ∈ Ja

c( ®p )β1, ..., βa
b ®p (4.26)
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holds. Here Ja is the set of all (r−`)-dimensional integer vectors ®p = (p1, . . . , pr−`)with non-negative
components whose sum equals a, the set Ia is the union of all Jb with 0 ≤ b ≤ a and b ®p are arbitrary
placeholders that later are identified with

b ®p =
1

p1! · · · pr−`!
∂
p1
H`+1
· · · ∂

pr−`
Hr

IM �� ®Haux = (H`+1, ..., Hr )= 0
(4.27)

The Weyl group acts on ®H as if they were magnetic charges, which is the action dual to its action on
weights and leaves b ®p unaffected. We note that eq. (4.26) is a statement about the Lie algebra g and
therefore independent of a potential discrete quotient Γ. For a given gauge group G — or rather its Lie
algebra g— it can be checked by an explicit calculation, which in the same time also determines the
g-dependent numbers c( ®p )β1, ..., βa

. We conjecture that the equation holds for all gauge groups of the type
given in eq. (2.31), independent of the precise non-Abelian factors G1, . . . , Gm and their number m.
It would be interesting to find a formal proof and to see whether the numbers c( ®p )β1, ..., βa

enjoy a more
direct interpretation in terms of the structure of g than the one given by their definition in eq. (4.26). In
cases with multiple non-Abelian factors, the equation decomposes into the m corresponding equations
for the individual factors G1 to Gm. This can also be understood from the observation that — provided
they exist — the limits of sending to zero the various subparts of ®Haux associated to the individual
factors commute. Therefore, it is enough to prove eq. (4.26) for a single but general non-Abelian
factor.

Assuming the equation is found to hold, the numbers c( ®p )β1, ..., βa
determine a differential operator Dg

that involves derivatives with respect to the auxiliary variables H`+1, . . . , Hr by

η−1
Dg = 1 +

nG
α∑

a = 1

∑
1 ≤ β1 < ... < βa ≤ n

G
α

∑
®p ∈ Ja

(®αβ1
· ®k) · · · (®αβa ·

®k) c( ®p )β1, ..., βa

∂
p1
H`+1
· · · ∂

pr−`
Hr

p1! · · · pr−`!
, (4.28)

where we abbreviate η = (−1)2k`+1+...+2kr . In case of multiple non-Abelian factors, the operator
correspondingly factorizes intoDg = Dg1 · · · Dgm where gi is the Lie algebra of the factor Gi andDgi
its associated operator. The finite result of the limit in eq. (4.5) reads

Π0( ®Qna) =
∑
®k ∈γ+m

Qk1
1 · · · Qk`

`
Dg

[
IM ( ®H, ®k)

] �� ®H = 0
, (4.29)

and we propose this as the fundamental period of general non-Abelian models that are consistent with
the assumptions made in subsections 4.2.1. The above equation does not change if we let Dg only act
on those gamma functions that are ®k-dependent and associated to a non-Abelian field. Moreover, we
can put ®Hna = 0 before application of the operator.

4.2.7 Other Rank Two Non-Abelian Factors

To provide further evidence for our conjecture that eq. (4.26) is always fulfilled — which itself is a
sufficient condition for the existence of the limit in eq. (4.5) — we briefly consider the remaining
semi-simple Lie algebras of rank two, i.e., su(2)2 = su(2)×su(2), sp(4) and G2. An explicit calculation
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confirms eq. (4.26) and the associated differential operators read

η−1
D
su(2)2 = + (1 + kr−1∂Hr−1

)(1 + kr∂Hr
)
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(4.30)

where η = (−1)2kr−1+2kr . The complexity of Dg clearly scales more with the number of positive roots
than with the rank of g.
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4.3 Generalization to Other Quantum Periods

At this point it is natural to wonder whether the other quantum periods — i.e., the other solutions of
the Picard–Fuchs operator that annihilates the fundamental period — can also be determined from
the Cartan theory I-function. The answer to this question seems to be positive, although the result is
model dependent and not what one might intuitively expect.

As we recall from subsection 2.3.1, for Abelian models quantum periods other than the fundamental
period are obtained as appropriate derivatives of the Givental I-function with respect to the variables
®H. Since in our present setup ®Haux are auxiliary variables of the Cartan theory that do not exist in the
original non-Abelian model, an intuitive guess is that the quantity

I lim( ®Hna, ®Qna) = lim
®Haux→ 0

ICartan( ®H, ®Qna) (4.31)

generalizes the notion of the Givental I-function to non-Abelian gauged linear sigma models. This
limit exists for the very same reason as why the limit in eq. (4.5) exists — of course subject to the
same assumptions — and is calculated from the right hand side of eq. (4.29) with the difference of not
putting ®Hna = 0. The fundamental period is then clearly recovered as Π0( ®Qna) = I lim( ®Hna = 0, ®Qna),
which leads to the expectation that appropriate derivatives of I lim with respect to the variables ®Hna
yield the other quantum periods of the Picard–Fuchs operator. As we observe in examples, this
expectation is true for first derivatives — which give the single logarithmic quantum periods, see
eq. (2.55), and in extension the flat coordinates (2.56) — but in general wrong for second or higher
derivatives. These are not necessarily annihilated by the operator.

As the examples demonstrate, we also need to consider derivatives of the Cartan theory I-function
with respect to the auxiliary variables ®Haux and only thereafter take the limit ®Haux → 0. We can find
linear combinations of derivatives with respect to elements of both ®Hna and ®Haux that, when evaluated
at ®H = 0, are indeed annihilated by the operator and therefore are quantum periods. In order to
calculate derivatives with respect to the auxiliary variables ®Haux, we need to generalize the right hand
side of eq. (4.29) to include higher powers of ®Haux. With the technologies developed by now, this is
not difficult. The restriction to powers constant in ®Haux — or rather at most constant in ®Haux, where
the singular terms were found to cancel for several examples of gauge groups and conjectured to be
absent in general — amounts to on the left hand side of eq. (4.26) only summing over monomials
Hp1
`+1 · · ·H

pr−`
r of combined degree at most a. Assume we are interested in calculating ICartan to

combined order n in the auxiliary variables ®Haux. The appropriate generalization of eq. (4.26) then
reads

1
|WG |

∑
v ∈WG

vm( ®H)

[∑
®p ∈ Ia+n

b ®p Hp1
`+1 · · ·H

pr−`
r

(®αβ1
· ®H) · · · (®αβa ·

®H)

]
=

n∑
i = 0

minv
i∑

j = 1

∑
®p ∈ Ja+i

c( ®p ) (i, j)β1, ..., βa
b ®p f invi, j (

®Haux) (4.32)

where on the left hand side ®p is summed over all (r −`)-dimensional integer vectors ®p = (p1, . . . , pr−`)
with non-negative components whose sum is a most a + n. The f invi, j (

®Haux) are Weyl invariant
polynomials — i.e., they invariant under application of vm( ®H) for all v ∈ WG — that are of
homogeneous degree i in the variables ®Haux, and minv

i counts their number up to linear dependence.
Lastly, the numbers c( ®p ) (i, j)β1, ..., βa

are defined by the equation and dependent on the Lie algebra g (as
well as the normalization of invariants). By setting n = 0 we recover eq. (4.26), in case of which
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there is the single invariant f inv0,1 (
®Haux) = 1 and we have the identification c( ®p ) (0, 1)β1, ..., βa

= c( ®p )β1, ..., βa
. The

generalization of the operator Dg defined in eq. (4.28) reads

D
(n)
g (
®Haux) = η + η

nG
α∑

a = 1

∑
1 ≤ β1 < ... < βa ≤ n

G
α

∑
®p ∈ Ja+i

(®αβ1
· ®k) · · · (®αβa ·

®k)

·

n∑
i = 0

minv
i∑

j = 1
c( ®p ) (i, j)β1, ..., βa

f invi, j (
®Haux)

∂
p1
H`+1
· · · ∂

pr−`
Hr

p1! · · · pr−`!
,

(4.33)

where η = (−1)2k`+1+...+2kr . For n = 0 we recover the original operator Dg, namely D(0)g ( ®Haux) = Dg.
The expansion of the Cartan theory I-function up to combined order n in its variables ®Haux is then
given by

ICartan( ®H, ®Qna) =
∑
®k ∈γ+m

Q
k1+

H1
ε

1 · · · Q
k`+

H`
ε

`
D
(n)
g (
®Haux)

[
IM ( ®H, ®k)

] �� ®Haux = 0
+ O( ®Hn+1

aux ) , (4.34)

where after evaluating the derivatives specified by D(n)g ( ®Haux) we set ®Haux = 0 inside the gamma
functions and its derivatives — but not inside the factors f invi, j (

®Haux) within D
(n)
g (
®Haux).

Since there are no Weyl group invariants f invi, j (
®Haux) of homogenous order i = 1, eq. (4.34) does not

involve terms linear in H`+1, . . . , Hr . This explains our earlier statement that the singly-logarithmic
periods are given as partial derivatives of ICartan with respect to the variables H1, . . . , H` . In contrast,
the precise linear combinations of second or higher derivatives that yield the other quantum periods
are model dependent and not universal. For a given example they can be established by means of
the Picard–Fuchs operator found from the fundamental period or — as we suspect — by classical
intersection theory on the model’s target space. If one is just interested in finding the expansion of
quantum periods other than the fundamental and singly-logarithmic ones, it therefore makes more
sense to simply determine them by solving the Picard–Fuchs differential equation. However, the
combination of the Picard–Fuchs operator with the methods presented here allows us to find closed
form expressions also for these periods.
To conclude this section, let us consider the non-Abelian factor g = su(2) as an example. The

associated operator reads

D
(n)

su(2)(Hr ) = (−1)2kr
bn/2c∑
m=0

H2m
r

∂2m
Hr

(2m)!

(
1 +

kr
2m + 1

∂Hr

)
, (4.35)

where only even powers of Hr appear since the non-identity element of the Weyl group acts on ®H by
sending Hr → −Hr . In particular, there is no term linear in Hr .

4.4 Application to Concrete Non-Abelian Models

As the central result of section 4.2, we proposed that formula (4.29) gives the fundamental periods of
gauged linear sigma models with non-Abelian gauge groups and large classes of chiral matter spectra.
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We here test this proposal by applying the formula to several models for which the fundamental period
and the annihilating differential operator are known from different considerations. In all cases we find
agreement with the literature. For most of the examples we moreover concretize the considerations of
the previous section by writing the other quantum periods as appropriate derivatives of the Cartan
theory I-function. Let us further recall that formula (4.29) is equally applicable to non-conformal
gauged linear sigma models, in case of which it gives the holomorphic solution to the differential
operator that governs the target space quantum cohomology. We also consider one example of this
type. For simplicity we set all twisted masses to zero and consider one-parameter cases only.

4.4.1 Gauge Group U(2)

We begin by considering three gauged linear sigma models with gauge group G = U(2). Since
U(2) = U(1) × SU(2)/Z2 involves the single non-Abelian factor G1 = SU(2), the relevant discussion
is that of subsection 4.2.4.

Rødland Calabi–Yau Threefold

Our first example is one of the models studied in [55], which has gauge group G = U(2) and is
specified by the chiral matter spectrum given in Table 4.1. This conformal model is conceptually

Matter multiplet G = U(2) representation Vector R-charge T charges

Φi, i = 1, . . . , 7 (1, 1) 0 (1,+1)

(1,−1)

Pj , j = 1, . . . , 7 (−2, 0) 2 (−2, 0)

Table 4.1: This table shows the chiral matter spectrum of a gauged linear sigma model studied in ref. [55].
Representations of G = U(2) are specified by a pair of integers as explained in the main text. The table moreover
lists vector R-charges and the decomposition of the fields in the Cartan theory with gauge group T = U(1)2/Z2.

very interesting, since in both phases the target space is a compact Calabi–Yau threefold [55]. These
manifolds were first constructed in [119] and the fact that they appear in the same quantum Kähler
moduli space means they are derived-equivalent [120, 121]. We focus on the r � 0 phase, where as
shown in [55] the target space is the intersection of seven generic hyperplanes X17 in the Grassmannian
ambient space Gr(2, 7).
Representations of U(2) are specified by a pair of integers (ρq, ρhw), where ρq is the U(1) charge

and ρhw the Dynkin label of the highest SU(2)weight. The Γ = Z2 quotient is such that ρq+ρhw ∈ 2Z
is required, which is in accord with the spectrum and specifies the electric charge lattice. The magnetic
charge lattice γm — the dual lattice — hence reads

γm =
{
(k1, k2) ∈ (Z/2) × (Z/2)

�� k1 + k2 ∈ Z
}
. (4.36)

From its definition in subsection 4.2.1 and the matter spectrum in Table 4.1 the set of summation γ+m
is found to be

γ+m =
{
(k1, k2) ∈ γm

�� 0 ≤ k1 ,−k1 ≤ k2 ≤ k1
}
, (4.37)
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which is indeed mapped to itself under the Weyl group action k2 → −k2. All assumptions of
subsection 4.2.1 are fulfilled, in particular we check that ®λPj

· ®k = −2k1 ≤ 0 for all ®k ∈ γ+m. This
shows that formula (4.13) for the fundamental period is applicable and we find

Π0(Q) =
∑

0 ≤ k1 ∈ Z/2

k1∑
k2 =−k1

Qk1

(
2k1

k1 + k2

)7 [
1 + 7k2

(
hk1−k2

− hk1+k2

) ]
= 1 − 5

√
Q + 109Q − 3 317

√
Q

3
+ 121 501Q2

− 4 954 505
√

Q
5
+ . . . ,

(4.38)

where we have used that (−1)2k2−14k1 = 1 for all (k1, k2) ∈ γ
+
m. The appearance of half integral powers

of Q is not a mistake and can be understood as follows: the periodicity of the theta angle θ results from
the fact that if too much energy is stored in the Abelian background electric field, the vacuum energy
can be reduced by electron-positron pair creation [16]. Due to the Z2 quotient in U(2), the electron
and positron of a U(2) gauge theory respectively have Abelian charge ±2. This results in a 4π-periodic
rather than 2π-periodic theta angle. The definitions in eqs. (2.33) and (2.53) then demonstrate that the
variable Q̃ =

√
Q does not suffer from a branch cut.

The fundamental period is easily expanded to higher orders, from which we determine the
annihilating Picard–Fuchs operator to be

L(Q̃) = (3 + Q̃)2(1 + 57Q̃ − 289Q̃2
− Q̃3
)Θ̃

4
+ 4Q̃(3 + Q̃)(85 − 867Q̃ − 149Q̃2

− Q̃3
)Θ̃

3

+ 2Q̃(408 − 7 597Q̃ − 2 353Q̃2
− 239Q̃3

− 3Q̃4
)Θ̃

2

+ 2Q̃(153 − 4 773Q̃ − 675Q̃2
− 87Q̃3

− 2Q̃4
)Θ̃ + Q̃(45 − 2 166Q̃ − 12Q̃2

− 26Q̃3
− Q̃4
)

(4.39)
in terms of the new variable Q̃ and with the logarithmic derivative Θ̃ = Q̃∂Q̃. This operator as well as
the expansion of the fundamental period are in agreement with the literature [119], where the analytic
expression of the period interestingly takes a completely different form. This demonstrated that, at
least for this example, eq. (4.13) is valid. We find that this method of determining the Picard–Fuchs
operator is computationally far more efficient than the methods presented in chapter 3, see ref. [17] for
a use of formula (3.41) in terms of gauge theory correlators.
Having determined the Picard–Fuchs operator from the fundamental period, the other quantum

periods are straightforwardly found as its three other, logarithmic solutions. With the methods of
section 4.3 these can alternatively be expressed as certain derivatives of the Cartan theory I-function.
Equations (4.34) and (4.35) determine the latter as

ICartan( ®H,Q) =
∑

0 ≤ k1 ∈ Z/2

k1∑
k2 =−k1

Q̃ 2k1+2
H1
ε (−1)2k2

[
1 + k2∂H2
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H2

2
2
∂2
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(
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k2
3
∂H2

)]
Γ
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1 + 2k1 + 2H1

ε

)7
Γ
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1 + H1+H2

ε

)7
Γ
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1 + H1−H2

ε

)7

Γ

(
1 + 2H1

ε

)7
Γ

(
1 + k1 + k2 +

H1+H2
ε

)7
Γ

(
1 + k1 − k2 +

H1−H2
ε

)7
��H2 = 0

+ O(H4
2 )

(4.40)

where after executing the derivatives specified by the term in square brackets we set H2 = 0 inside
the gamma functions and its derivatives — but we keep the H2

2 factor inside the square bracket itself.
The expressions is exact up to and including third powers of the auxiliary variable ®Haux = (H2), such
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that we can safely differentiate three times with respect to H2. With the Picard–Fuchs operator in
eq. (4.39) we find that

Πk(Q) =
(
ε

2
∂H1
± i

ε

2
√

3
∂H2

)k
ICartan( ®H,Q) �� ®H = 0

with k = 0, . . . , 3 (4.41)

are four linearly independent solutions. Since ICartan only involves even powers of H2, terms with odd
powers of ∂H2

are zero automatically. This explains the sign ambiguity, shows that no square roots
remain and that Π1 does not receive contributions from derivatives with respect to H2. For the higher
logarithmic periods Π2 and Π3 those terms cannot be neglected. We suspect that the precise linear
combination of ∂H1

and ∂H2
is linked to classical intersection theory on the target space.

The fundamental period of the second Calabi–Yau target space in the phase r � 0 is not captured
by eq. (4.13). To see this, we swap the phases by reversing the sign of the U(1) generator. The field Pj

has then positive gauge charge and non-zero vector R-charge, which is in conflict with the assumptions
ofsubsection 4.2.1. We note that this phase leaves the non-Abelian gauge group factor SU(2) unbroken.

Skew Symplectic Sigma Model SSSM1,12,6

Our second example is the skew symplectic sigma model SSSM1,12,6 introduced in ref. [56], which
has gauge group G = U(2) and the chiral matter spectrum given in Table 4.2. As demonstrated

Matter multiplet G = U(2) representation Vector R-charge T charges

Φa, i = 1, . . . , 12 (+2, 0) 0 (+2, 0)

P[i j], 1 ≤ i < j ≤ 6 (−2, 0) 2 (−2, 0)

Xi, i = 1, . . . , 6 (+1, 1) 0 (+1,+1)

(+1,−1)

R (−3, 1) 2 (−3,+1)

(−3,−1)

Table 4.2: The non-Abelian chiral matter spectrum of the G = U(2) gauged linear sigma model SSSM1,12,6
studied in ref. [56] and its decomposition under the Cartan gauge group.

in ref. [56], this model also exhibits two geometric phases with distinct Calabi–Yau target spaces.
Focusing on r � 0, the set of γ+m is found to be the same as in eq. (4.37) — a consequence of the fact
that both models have a field in the representation (ρq, ρhw) = (1, 1)— and all assumptions made in
subsection 4.2.1 are fulfilled. Application of eq. (4.13) gives the fundamental period

Π0(Q) =
∑

0 ≤ k1 ∈ Z/2

k1∑
k2 =−k1

Qk1 (−1)2k2
(2k1)!

3
(3k1 + k2)!(3k1 − k2)!

(k1 + k2)!
6
(k1 − k2)!

6

·

[
1 + k2

(
h3k1+k2

− h3k1−k2
− 6hk1+k2

+ 6hk1−k2

) ]
= 1 + 7

√
Q + 199Q + 8 359

√
Q

3
+ 423 751Q2

+ 23 973 757
√

Q
5
+ . . . .

(4.42)
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This is in agreement with ref. [122], where the manifold realized as the target space of this gauged
linear sigma model was first constructed, as well as ref. [56], where the same expression was found
from a calculation of the two-sphere partition function. The expansion straightforwardly determines
the fourth-order Picard–Fuchs operator, whereas the methods of chapter 3 are computationally quite
involved for this example.

Given the operator, we check that four linearly independent solutions to the Picard–Fuchs differential
equation are determined from the Cartan theory I-function as

Πk(Q) =

(
ε

2
∂H1
± i

ε

2

√
5
11

∂H2

)k
ICartan( ®H,Q) �� ®H = 0

with k = 0, . . . , 3 . (4.43)

Not surprisingly, the precise linear combination of ∂H1
and ∂H2

whose powers generate the four
solutions has changed in comparison to the previous example.
The r � 0 phase, which we can map to r � 0 by reversing the U(1) generator, leaves the

non-Abelian factor SU(2) unbroken and is strongly coupled [56]. We find that the assumptions of
subsection 4.2.1 are not fulfilled.

Grassmannian Gr(2,4)

Let us now demonstrate that eq. (4.13) is also valid for non-conformal models, in case of which it
gives the holomorphic solution to the differential operator that governs the target space quantum
cohomology. For this purpose, our third example is the G = U(2) gauged linear sigma model with
matter spectrum as specified by Table 4.3. Since the sum of U(1) charges is positive, the bare coupling

Matter multiplet G = U(2) representation Vector R-charge T charges

Φi, i = 1, . . . , 4 (1, 1) 0 (1,+1)

(1,−1)

Table 4.3: The chiral matter spectrum of a G = U(2) gauged linear sigma model with r � 0 target space Gr(2, 4)
and its decomposition under the Cartan gauge group.

is r(ΛUV) = ∞ and we can consistently consider the r � 0 phase. Its target space is the complex
Grassmannian Gr(2, 4) and all assumptions of subsection 4.2.1 are fulfilled. The set γ+m is as in
eq. (4.37) and the holomorphic solution (4.13) here reads

Π0(Q) =
∑

0 ≤ k1 ∈ Z/2

k1∑
k2 =−k1

Qk1 ε−8k1 (−1)2k2
1 + 4k2

(
hk1−k2

− hk1+k2

)
(k1 + k2)!

4
(k1 − k2)!

4

= 1 + 2
√

Qε−4
+ 3

8Qε−8
+ 5

324

√
Q

3
ε−12
+ . . . .

(4.44)

In terms of the variable Q̃ and with the logarithmic derivative Θ̃ = Q̃∂Q̃ this expansion is annihilated
by the differential operator

L = (εΘ̃)5 − 2Q̃ (εΘ̃ + ε) . (4.45)
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If we were given this operator without reference to the non-Abelian model and asked to determine its
holomorphic solution, we would probably arrive at the simpler representation

Π0(Q̃) =
∞∑

n= 0
Q̃n ε−4n (2n)!

n!6 = 1 + 2Q̃ε−4
+ 3

8Q̃2ε−8
+ 5

324Q̃3ε−12
+ . . . . (4.46)

By inspection of formula (2.54) for the Givental I-function of Abelian theories and comparison with
the model discussed in section 2.3, this is seen to be the expansion obtained for the model with target
space P5

[2]— see subsection 4.5.1 for a more detailed explanation of such type of reasoning. We
thus correctly recover the isomorphism Gr(2, 4) ' P5

[2] given by the Plücker embedding and confirm
eq. (4.13) for the present example.

Moreover, also the discussion of section 4.3 is applicable to this non-conformal example. We here
find that

Πk(Q) =
( ε
2
∂H1
± i

ε

2
∂H2

)k
ICartan( ®H,Q) �� ®H = 0

with k = 0, . . . , 3 ,

Π4(Q) =

[( ε
2
∂H1
± i

ε

2
∂H2

)4
+
ε4

4
∂4
H2

]
ICartan( ®H,Q) �� ®H = 0

(4.47)

are five linearly independent solutions to differential equation defined by the operator (4.45). As
opposed to the previous two examples, the full set of solutions is not generated by powers of a single
linear combination of ∂H1

and ∂H2
applied to the Cartan theory I-function. This fails at the fourth

derivative level. We note that, although this term is in principle allowed by the Weyl symmetry, the
second derivative of ICartan with respect to H2 is zero in the sum over k2. The derivative ∂H2

is thus
only relevant for k = 3 and k = 4.

4.4.2 Gauge Group U(3)

Motivated by the of above examples, let us now increase the rank of the non-Abelian factor and
move on to the gauge group G = U(3) = U(1) × SU(3)/Z3. The relevant discussion is that of
subsection 4.2.5. As concrete example we consider the model specified by Table 4.4, which is similar

Matter multiplet G = U(3) representation Vector R-charge T charges

Φi, i = 1, . . . , 6 (1, 1, 0) 0 (1, 1, 0)

(1,−1, 1)

(1, 0,−1)

Pj , j = 1, . . . , 6 (−3, 0, 0) 2 (−3, 0, 0)

Table 4.4: The chiral matter spectrum of a G = U(3) gauged linear sigma model with r � 0 target space
X16 ⊂ Gr(3, 6) together with its decomposition under the Cartan gauge group T = U(1)3/Z3. Representations
of U(3) are specified as explained in the main text.

to the first example of the previous subsection and in analogy realizes the intersection X16 of six
hyperplanes in the ambient Grassmannian Gr(3, 6) as its r � 0 target space [55].
Representations of U(3) are specified by the triple (ρq, ρ

(1)
hw
, ρ
(2)
hw
), where ρq is the integer U(1)
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charge and (ρ(1)
hw
, ρ
(2)
hw
) the pair of Dynkin labels (both integers) of the highest SU(3) weight of the

representations. The Γ = Z3 gives the condition ρq + 2ρ(1)
hw
+ ρ
(2)
hw
∈ 3Z, which is in accord with the

spectrum. As a result, the magnetic charge lattice γm and the set of summation γ+m are

γm =
{
(k1, k2, k3) ∈ (Z/3)

3
��� k1 + k2 ∈ Z, k1 − k3 ∈ Z

}
,

γ+m =
{
(k1, k2, , k3) ∈ γm

�� 0 ≤ k1, −2k1 ≤ k3 ≤ k1, −k1 ≤ k2 ≤ k1 + k3
}
.

(4.48)

This form of γ+m applies as soon as there is a non-Abelian multiplet in the representation (1, 1, 0),
which is the fundamental of SU(3) with U(1) charge one. The Weyl group action (4.16) is confirmed
to map both γm and γ+m to itself and we further check that all assumptions of subsection 4.2.1 are
fulfilled. Formula (4.25) for the fundamental period here reads

Π0(Q) =
∑
®k ∈γ+m

Qk1+
H1
ε (3k1)!

6
Dsu(3)

[
Γ

(
1 + k1 + k2 +

H2
ε

)
· Γ

(
1 + k1 − k2 + k3 +

−H2+H3
ε

)
Γ

(
1 + k1 − k3 −

H3
ε

) ]−6��H2 =H3 = 0
,

(4.49)

where the differential operator Dsu(3) is given by eq. (4.24) and we have already put H1 = 0. The
expansion of this expression reads

Π0(Q̃) = 1 + 6 Q̃ + 126 Q̃2
+ 3 948 Q̃3

+ 149 310 Q̃4
+ 6 300 756 Q̃5

+ . . . (4.50)

in terms of the variable Q̃ = 3√Q that does not suffer from branch cuts. These fractional powers of
Q appear due to the Z3 quotient in G, which results in a 6π-periodic theta angle. The fundamental
period is easily expanded to higher orders, from which we find the annihilating Picard–Fuchs operator

L = Θ̃
4
− Q̃ (6 + 40Θ̃ + 105Θ̃2

+ 130Θ̃3
+ Θ̃

4
) + 4Q̃2

(4Θ̃ + 5)(4Θ̃ + 3)(Θ̃ + 1)2 . (4.51)

Here Θ̃ = Q̃∂Q̃ is the logarithmic derivative with respect Q̃. This is in agreement with the result of
ref. [123] and validates eq. (4.25) for this non-Abelian model.

With the methods of section 4.3 we can also determine the three other, logarithmic solutions of this
Picard–Fuchs operator from the Cartan theory I-function. For this we use eqs. (4.34) and eq. (4.33) to
expand ICartan up to combined order n = 3 in the auxiliary variables H2 and H3. An explicit calculation
then demonstrates that

Πk(Q) =

[
ε

3
∂H1
± i

2
√

2ε
3
√

7

(
∂H2
+ ∂H3

)]k
ICartan( ®H,Q)�� ®H = 0

with k = 0, . . . , 3 (4.52)

are four linearly independent solutions to the Picard–Fuchs differential equation. While there is the
order i = 2 invariant f inv2,1 (

®Haux) = H2
2 − H2H3 + H2

3 , the corresponding second derivatives ∂2
H2
, ∂2

H3
and ∂H2

∂H3
of the Cartan theory I-function vanish in the sum over k2 and k3. At the third derivative

level the order two invariant contributes in combination with one derivative with respect to H1, whereas
the order i = 3 invariant f inv3,1 (

®Haux) = H2H3(H2 −H3) is annihilated by (∂H2
+ ∂H3

)
3. This shows that

no terms with square roots survive. There are other linear combinations of the three partial derivatives
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that yield the same result, we here chose the (up to scaling) unique one among those that is invariant
under the exchange of ∂H2

and ∂H3
.

4.4.3 Gauge Group U(1) × USp(4)/Z2

Our last example is the skew symplectic sigma model SSSM2,9,6 that was introduced and studied in
ref. [56]. Its gauge group is G = U(1)×USp(4)/Z2 and the chiral matter spectrum is listed in Table 4.5.
The single non-Abelian factor G1 = USp(4) is the compact Lie group USp(4) = U(4) ∩ Sp(4,C) with
Lie algebra sp(4). Representations of G are specified by the triple (ρq, ρ

(1)
hw
, ρ
(2)
hw
), where ρq is the

Matter multiplet G = U(2) representation Vector R-charge T charges

Φa, i = 1, . . . , 9 (+2, 0, 0) 0 (+2, 0, 0)

P[i j], 1 ≤ i < j ≤ 6 (−2, 0, 0) 2 (−2, 0, 0)

Xi, i = 1, . . . , 6 (1, 1, 0) 0 (1,+1, 0)

(1,−1,+1)

(1,+1,−1)

(1,−1, 0)

R (−3, 1, 0) 2 (−3,+1, 0)

(−3,−1,+1)

(−3,+1,−1)

(−3,−1, 0)

Table 4.5: The chiral matter spectrum of the G = U(1) × USp(4)/Z2 gauged linear sigma model SSSM2,9,6
studied in ref. [56] and its decomposition under the Cartan gauge group T = U(1)2/Z2. Representations of G
are specified as explained in the main text.

integer U(1) charge and (ρ(1)
hw
, ρ
(2)
hw
) the pair of Dynkin labels (both integers) of the highest USp(4)

weight of the representations. Due to the Γ = Z2 quotient there is the constraint ρq + ρ
(1)
hw
∈ 2Z, which

is in accord with the spectrum. As a result, the magnetic charge lattice γm and the set of summation
γ+m are found to be

γm =
{
(k1, k2, k3) ∈ (Z/2)

2
× Z

��� k1 + k2 ∈ Z
}
,

γ+m =
{
(k1, k2, , k3) ∈ γm

�� 0 ≤ k1, −k1 ≤ k2 ≤ k1, k2 − k1 ≤ k3 ≤ k2 + k1
}
.

(4.53)

All assumptions of subsection 4.2.1 are fulfilled, in particular we see that ®k · ®λ−b ≤ 0 for all ®k ∈ γ+m
and T-charge vectors ®λ−b of fields whose vector R-charge equals 2. The two generators of the Weyl
group act on magnetic charges ®k as

w1[
®k ] = (k1, k3 − k2, k3) , w2[

®k ] = (k1, k2, 2k2 − k3) , (4.54)
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which can be checked to map both γm and γ+m to itself. The fundamental period is determined from
eq. (4.29) with the operator Dsp(4) given in eq. (4.30). Its expansion is found to be

Π0(Q) = 1 − 11
√

Q + 559Q − 42 923
√

Q
3
+ 3 996 751Q2

− 416 148 761
√

Q
5
+ . . . , (4.55)

which is in agreement with refs. [56, 122] and confirms eq. (4.29) for this non-Abelian model. We
may also use the above expansion to efficiently determine the Picard–Fuchs operator of this model.

4.5 Reconstructing Gauged Linear Sigma Models from Differential
Operators

At this point of the thesis we have discussed various ways in which we can associate differential
operators to a given gauged linear sigma model. Having seen these tight connections, it is natural
to wonder whether we can turn the arguments around and reconstruct a gauged linear sigma model
from a given differential operator. From a physics point of view this would be particularly exciting for
conformal models, since it would allow us to specify N = (2, 2) two-dimensional superconformal field
theories — relevant for example as internal worldsheet theories of type II string compactifications —
in terms of appropriate differential operators. Moreover, there are efforts to classify [117] so-called
Calabi–Yau operators [115, 116, 124] that are defined through some key properties shared by the
Picard–Fuchs operators of compact Calabi–Yau threefolds with a single Kähler modulus. The currently
known operators of this type also includes examples for which one is not aware of geometries that
realize them as their Picard–Fuchs operators. If we were able to write down a gauged linear sigma
model for these cases, we could likely close this gap by determining its target space. In addition,
this would allow us to approach the question whether there necessarily needs to be an associated
Calabi–Yau threefold geometry — or whether Calabi–Yau operators and hence the superconformal
field theories of our interest are also consistent without a geometric large volume limit.

The below discussion is meant to advertise this idea of reconstructing a gauged linear sigma model
from a given differential operator. We begin with a clarifying Abelian example and then make a
high-level proposal of how such a program might be implemented in general, for which formula (4.29)
for the fundamental periods of non-Abelian models plays a central role. Lastly, we consider a concrete
non-Abelian model in order to highlight the difficulty arising. While we here focus on one-parameter
conformal models with central charge c = 9 — having in mind the classification program mentioned
above — the concepts are also applicable for different central charges and non-conformal models.

4.5.1 An Abelian Example

Let us furthermotivate and clarify these considerationswith an example. We start with the Picard–Fuchs
operator

L(Q̃) = Θ̃
4
− 12Q̃ (3Θ̃ + 1)(2Θ̃ + 1)2(3Θ̃ + 2) with Θ̃ = Q̃ ∂Q̃ , (4.56)

which is listed as number 5 in appendix A of ref. [117]. Our goal is to reconstruct a conformal gauged
linear sigma model that realizes this as the Picard–Fuchs operator on the quantum Kähler moduli
space of its low energy superconformal field theory. We approach this step by step.

First, we determine the fundamental period Π0(Q̃) as the holomorphic solution to the Picard–Fuchs
differential equation. With the power series ansatzΠ0(Q̃) =

∑∞
k=0 akQ̃k the conditionL(Q̃)Π0(Q̃) = 0
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Chiral multiplets G = U(1) charge Vector R-charge
Φi, i = 1, . . . , 7 +1 0

P(1)i , i = 1, 2 −2 2
P(2) −3 2

Table 4.6: Matter spectrum of the gauged linear sigma model corresponding to the Picard–Fuchs operator in
eq. (4.56). Its r � 0 target space is the Calabi–Yau threefold P6

[2, 2, 3].

becomes equivalent to the recurrence relation

0 = (k + 1)4ak+1 − 12(3k + 1)(2k + 1)2(3k + 2)ak for k = 0, 1, . . . , (4.57)

which we complement with the boundary condition a0 = 1. The same ansatz works for all operators
that are listed in ref. [117].

Second, we use eq. (2.55) according to which the fundamental period is obtained by setting ®H = 0
in the Givental I-function. Under the assumption — or rather with the ansatz — of a G = U(1) gauge
group, the latter is given by eq. (2.54) and we obtain the condition

Π0(Q̃)
!
= I(Q = αQ̃, ε) =

∞∑
k = 0

bk Q̃k
=

∞∑
k =0
(−1)k ·

∑N1
i=1 ·λi

∏N1
i = 1 Γ(1 − k · λi)∏N2
i = 1 Γ(1 + k · ρi)

αkQ̃k . (4.58)

Here we assumed a chiral matter spectrum of N1 multiplets with vector R-charge qi = 2 and negative
gauge charges λi < 0, as well as N2 multiplets with qi = 0 and positive gauge charges ρi > 0.
Moreover, we assume that 0 =

∑N1
i=1 λi +

∑N2
i=1 ρi in order to cancel the axial anomaly and set all twisted

masses to zero. Lastly, we have included a constant multiple α to match the variable Q defined by the
gauge theory with the variable Q̃ in terms of which the Picard–Fuchs operator (4.56) is expressed.
Third, we set out to determine a recurrence relation for the coefficients bk in the above equation

and then choose the matter spectrum to obtain agreement with the recurrence (4.57) specified by the
operator. Given that a0 = b0 = 1 holds per construction, the equality ak = bk is then guaranteed for
all k and we will have found a gauged linear sigma model realization. From the right hand side of
eq. (4.58) we find

bk+1 ·

N2∏
i = 1

ρi−1∏
s = 0
(1 + k · ρi + s) − bk · α · (−1)

∑N1
i = 1 λi

N1∏
i = 1

−λi−1∏
s = 0
(1 − k · λi + s) = 0 (4.59)

with k ∈ Z≥0. In comparing this with eq. (4.57) we begin with those irreducible factors (c · k + d)
that have maximal c. These are the terms (3k + 2) and (3k + 1), and since they multiply ak we include
a single field with λi = −3 and qi = 2. We then proceed with those factors of next to maximal c and
so on. The next term is (2k + 1)2, and since it multiplies ak we add two fields with λi = −2 and qi = 2.
When inserting this in the products multiplying bk in eq. (4.59), these three fields additionally give
rise to the factor (3k + 3)(2k + 2)2 = 12(k + 1)3 such that we need to multiply eq. (4.57) with (k + 1)3

to match this. Hence, there effectively is a factor (k + 1)7 in front of ak+1 and we include seven fields
with ρi = 1 and qi = 0. The recurrence relations fully match for α = −1 and we summarize the
spectrum of the deduced gauged linear sigma model in Table 4.6.
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The condition for anomaly free axial R-invariance in eq. (2.37) is fulfilled and eq. (2.38) gives c = 9
as the central charge of the low energy superconformal field theory. From eq. (2.44) the r � 0 target
space is seen to be the Calabi–Yau threefold P6

[2, 2, 3], i.e., the intersection of one generic cubic and
two generic quadratics in projective space P6. As an ultimate check on our calculation, we can write
down the rational functions gp that are defined in eq. (3.12) and solve for polynomial solutions αp of
eq. (3.11). From this we indeed recover the operator we started with up to an inconsequential overall
power of ε4.

4.5.2 Abstraction to a General Approach

Having discussed this example, let us package the central steps into a general procedure. As the main
complication, the gauged linear sigma model description of a given operator is — assuming it exists
in the first place — not guaranteed to have gauge group U(1). We rather need to iterate over different
choices of gauge groups, for which we propose the following high-level algorithm:

1. Take a Calabi–Yau operator from ref. [117] and derive the recurrence relation for the coefficients
of its fundamental period.

2. Pick a gauge group G and use the I-function to write down the fundamental period for a general
chiral matter spectrum.

3. Derive a recurrence relation for this general expression and match it with the result of item 1 by
an appropriate choice of spectrum.

4. If no match can be found, go back to item 2 and pick a different gauge group. If there is a match,
we have successfully found a gauged linear sigma model realization. We may still decide to go
back to item 2 in order to search for a different realization.

It is perfectly conceivable that by this procedure we obtain different gauged linear sigma models for
the same Calabi–Yau operator. This is not a flaw but rather a feature, since such a situation would be
strong evidence for a duality between the different models. The first of these steps follows directly
from making a power series ansatz, and for the second we can rely on formula (2.54) for the Givental
I-function of Abelian gauged linear sigma models as well as our proposal (4.29) for the fundamental
period of models with non-Abelian gauge groups. As we will see in the next subsection, the third step
appears to be highly non-trivial.

We also note that, in a slight modification of the above algorithm, we may attempt to directly solve
the recurrence relation of the given operator to obtain a closed form expression for the coefficients
of its holomorphic solution. This is essentially equivalent and it is not obvious whether one of the
approaches has a clear advantage over the other.

4.5.3 A Non-Abelian Example

To demonstrate the difficulty of the third step in the above algorithm, we here reconsider the first
example discussed in subsection 4.4.1. For this model we know both the Picard–Fuchs operator and
the analytic expression

Π0(Q) =
∞∑

n= 0
bn Q̃n with bn =

n/2∑
k2 =−n/2

(
n

n
2 + k2

)7 [
1 + 7k2

(
hn/2− k2

− hn/2+ k2

)]
(4.60)
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of its fundamental period. This is obtained from eq. (4.38) by using Q̃ =
√

Q and 2n = k1. The
concrete form of the operator, given eq. (4.39), implies the recurrence relation

0 = + 9n4 bn + 3(18 − 114n + 290n2
− 352n3

+ 173n4
) bn−1

− 2(−267 − 1 359n + 4 501n2
− 4 000n3

+ 1 129n4
) bn−2

− 2(16 485 − 33 531n + 24 223n2
− 7 488n3

+ 843n4
) bn−3

+ (−43 586 + 49 986n − 21 502n2
+ 4 112n3

− 295n4
) bn−4 − (−4 + n)4 bn−5

(4.61)

where n ∈ Z≥0 and with the understanding that bq = 0 for q < 0. For arbitrary but fixed values of n
this equation can be checked to be in agreement with values of bn obtained from the above closed
form expression. The author is, however, not aware of an analytic proof of this, which would require
to keep n arbitrary.

We stress that this problem is still a lot easier than what we actually need to do. Namely, to derive a
recurrence for the fundamental period (4.13) with a yet undetermined matter spectrum. Even this
would only cover models with gauge groups G = U(1) × SU(2)/ Γ and the generalization to higher
rank non-Abelian groups with their fundamental periods given by eq. (4.29) would only be more
complicated. The alternative approach to obtain the closed form expression for the periods by directly
solving recurrence relations such as eq. (4.61) does not appear to be a trivial problem either. A
practical implementation of the proposed reconstruction program therefore remains for future work.
Since eq. (4.29) allows us to efficiently determine the Picard–Fuchs operators associated to concrete
models, it seems worthwhile to alternatively use it for an automated scan over various gauge groups
and matter spectra with the aim of finding models with geometric Calabi–Yau target spaces.
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CHAPTER 5

Non-Minimal Period Geometry of Calabi–Yau
Fourfolds

In this chapter we apply the concepts introduced in the earlier parts of the thesis to study an interesting
property of one-parameter Calabi–Yau fourfolds that arise as target spaces of non-Abelian gauged
linear sigma models. As we will explain, the order of their generating Picard–Fuchs operator is not
guaranteed to be five but may be higher in general.

This chapter is based on the author’s publication [19].

5.1 Introduction

From the physics point of view we have so far mostly focused on Calabi–Yau threefolds, which arise
in type II string compactifications to N = 2 space-time supersymmetric four-dimensional theories.
Both the gauged linear sigma model and Picard–Fuchs operators have in chapter 2 been motivated as
tools for studying the internal worldsheet theories of such compactifications. In the later chapters we
then demonstrated that both concepts are applicable in a wider context. Namely, the gauged linear
sigma model can be equally used to study compactifications to — and Calabi–Yau manifolds of —
different dimensions and it even allows us to analyze the quantum cohomology of non Ricci-flat
target spaces. Picard–Fuchs operators are also not limited to complex three-dimensional Calabi–Yau
spaces, and there is a similar notion in the non Ricci-flat case. In this chapter we apply the concepts
introduced in the earlier parts of this thesis to the study of Calabi–Yau fourfolds. The compactification
of type II superstring theories on these geometries results in two-dimensional effective theories with
N = (2, 2) space-time supersymmetry [125–127], which is the same number of supercharges as in
minimal supersymmetry in four dimensions and therefore of particular interest. In case they exhibit an
elliptic fibration, Calabi–Yau fourfolds can moreover be used for the compactification of F-theory to
N = 1 space-time supersymmetric theories in four space-time dimensions [128–131].
As we will explain, Calabi–Yau fourfolds that arise as target spaces of non-Abelian gauged

linear sigma models may exhibit the interesting feature that their quantum cohomology ring is
not fully generated by products of the marginal Kähler, i.e., chiral–anti-chiral deformations of the
two-dimensional worldsheet theory alone. Rather, certain irrelevant chiral–anti-chiral operators need
to be additionally included to obtain a set of generators. This is unlike the case of Calabi–Yau
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threefolds, where due to N = 2 special geometry [88, 132, 133] the number of generators of the
quantum cohomology ring is essentially determined by the dimension of the Kähler moduli space.
The necessity to include these irrelevant operators results in the existence of additional quantum
periods, which describe even-dimensional cycles of the Calabi–Yau fourfold whose quantum volume
is non-zero although their classical Kähler volume vanishes. Our focus is on geometries with a single
Kähler modulus, where this phenomenon leads to a non-factorizable generating Picard–Fuchs operator
of order six or higher. The large volume boundary component of the Kähler moduli space does
then not have maximally unipotent monodromy with respect to the Picard–Fuchs operator — see for
instance ref. [81] for a mathematical review of this notion — and there are additional solutions to
the Picard–Fuchs differential equation that vanish in this limit. These complicate the determination
of integral quantum periods, because the integration constants are not entirely determined by the
perturbative asymptotic behavior as for instance computed by the Gamma class of the Calabi–Yau
fourfold [108, 134–138]. We will demonstrate that the knowledge of the monodromy at an additional
regular singular point in combination with numerical analytic continuation techniques is sufficient
to fix the integral quantum periods unambiguously. In addition, there is more than one tower of
genus zero worldsheet instanton corrections to the operator product of marginal Kähler deformations.
Finding their numbers (after employing a suitable multi-covering formula) to be integral, provides a
strong consistency check on the integral periods. Lastly, the additional quantum periods also have an
interesting phenomenological implication: in Calabi–Yau fourfold compactifications of the type IIA
superstring to two dimensions they allow for flux-induced superpotentials that are entirely instanton
generated — plus, if one chooses to put them, a constant or a term linear in the flat coordinate. If the
mirror Calabi–Yau fourfold has a suitable elliptic fibration, these superpotentials can in the context of
F-theory be reinterpreted in four space-time dimensions.

In the next section we give an intuitive explanation for why and when the phenomenon of additional
quantum cohomology elements can appear. We then demonstrate this effect and its implications
explicitly in a concrete example.

5.2 On the Order of the Picard–Fuchs Operator

We here explain the central observation that the generating Picard–Fuchs operator of Calabi–Yau
fourfolds with a single Kähler modulus can be of order six or higher.

5.2.1 Calabi–Yau Threefolds

To build up some intuition, let us first discuss the simpler case Calabi–Yau threefolds X with a single
Kähler modulus. As we will see, and in fact have already stated at several points above, their generating
Picard–Fuchs operator is always of order four. This is most easily explained on the mirror side, where
we consider the holomorphic (3, 0)-form Ω = Ω(ξ) on the mirror manifold Y of X in dependence on
the single complex structure modulus ξ of Y . Equations (2.69) and (2.68) then state that

Ω ∈ F
3
= H3,0 ,

∂Ω ∈ F 2
= H3,0

⊕ H2,1 and ∂Ω < F 3 ,

∂2
Ω ∈ F

1
= H3,0

⊕ H2,1
⊕ H1,2 and ∂2

Ω < F 2 ,

∂3
Ω ∈ F

0
= H3,0

⊕ H2,1
⊕ H1,2

⊕ H0,3 and ∂3
Ω < F 1 ,

(5.1)
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where ∂ denotes the derivative with respect to the modulus ξ and all cohomology groups are those
of Y . This shows that Ω and its first three derivatives live in different vector spaces, and hence they
are linearly independent. Recalling that h3,0

= h0,3
= 1 holds for all Calabi–Yau threefolds and that

h2,1
= h1,2

= 1 by the assumption of a single modulus, these four elements are seen to form a basis of
the horizontal cohomology Hhor(Y ) = F

0. The forth derivative ∂4
Ω— which as all derivatives of Ω

is an element of F 0 — therefore necessarily is a linear combination of Ω and its lower derivatives.
This immediately translates into a fourth order differential operator that annihilates Ω. By mirror
symmetry this is the generating Picard–Fuchs operator on the quantum Kähler moduli space of X and
we have demonstrated our claim.

5.2.2 Calabi–Yau Fourfolds

We now turn to Calabi–Yau fourfolds X with a single Kähler modulus as the case of our actual interest.
Again employing the mirror interpretation, eqs. (2.69) and (2.68) now give

Ω ∈ F
4
= H4,0 ,

∂Ω ∈ F 3
= H4,0

⊕ H3,1 and ∂Ω < F 4

∂2
Ω ∈ F

2
= H4,0

⊕ H3,1
⊕ H2,2 and ∂2

Ω < F 3

∂3
Ω ∈ F

1
= H4,0

⊕ H3,1
⊕ H2,2

⊕ H1,3 and ∂3
Ω < F 2

∂4
Ω ∈ F

0
= H4,0

⊕ H3,1
⊕ H2,2

⊕ H1,3
⊕ H0,4 and ∂4

Ω < F 1 ,

(5.2)

where the cohomology groups are those of Y (the mirror of X). Some of the observations made
in the previous subsection generalize. First, since they live in different vector spaces, Ω and its
four lowest derivatives are linearly independent. Hence, there cannot be a Picard–Fuchs operator of
order four or lower. Second, Calabi–Yau geometry gives h4,0

= h0,4
= 1 and we have h3,1

= h1,3

by assumption of a single modulus. As the central complication, the dimension h2,2 of the middle
cohomology group can be bigger than one. The above five elements do in general not form a basis of
the horizontal cohomology, which means they do not necessarily express the fifth derivative ∂5

Ω as a
linear combination. We can thus not conclude that the generating Picard–Fuchs operator is always
of order five. As an example, it may happen that the third derivative generates an element of H2,2

that has not previously been generated by the second derivative. Intuitively, this additional element
requires two more derivatives to reach H0,4 and yet another one to become linearly dependent. The
Picard–Fuchs operator would then be of order six. In general, the order of the operator equals four
plus the number of linearly independent elements of H2,2 that are generated by the derivatives.
To concretize this, let us return to the original Calabi–Yau fourfold X . A standard technique for

studying its quantum cohomology ring QHvert(X) uses a quantum version of the Lefschetz hyperplane
theorem [83, 139, 140], which infers information about QHvert(X) from the quantum cohomology of
some ambient space. For Calabi–Yau fourfolds embedded in toric ambient spaces XΣ of complete
fans Σ, one therefore typically studies the quantum cohomology ring of those elements that are
induced via pullback from the cohomology ring Hvert(XΣ) of XΣ. The Jurkiewicz–Danilov theorem
for complete compact toric varieties XΣ guarantees the entire cohomology ring of XΣ to be generated
by the elements in H1,1

(XΣ). As a result, the part of the quantum cohomology ring QHvert(X) of X
that is induced from the embedding of X into XΣ is also generated by the elements in H1,1

(X). In
other words, for compact smooth Calabi–Yau fourfolds embedded as complete intersections in toric
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varieties the part of the quantum cohomology that is induced from the toric ambient space is always
generated by marginal operators in the chiral–anti-chiral ring of the associated superconformal field
theory. Hence, their Picard–Fuchs operator is of order five. Such geometries arise as target spaces of
Abelian gauged linear sigma models.

The situation is different for Calabi–Yau fourfolds that are embedded in ambient spaces Z whose
vertical cohomology ring is not just generated by H1,1

(Z). This for instance happens for non-toric
GIT quotients, examples of which are complex Grassmannians. To be concrete, for Z = Gr(k, n) with
k > 2 the middle cohomology group H2,2

(Z) is two-dimensional and therefore not fully generated by
products of the single marginal Kähler deformation. If both these elements participate in the quantum
product, the Picard–Fuchs operator will be of order six. Similarly, if H2,2

(Z) is generated by more
than two elements and if these participate in the quantum product, the Picard–Fuchs operator of X
will be of order even higher than six. We say that generating Picard–Fuchs operators with order higher
than five have non-minimal order. From a physics point of view such geometries arise as target spaces
of non-Abelian gauged linear sigma models [16, 55, 56, 58–64, 141] and refs. [56, 118] have indeed
observed examples in which the generating operators are of non-minimal order six.

5.3 Discussion of an Example

Having obtained an understanding of why and for which geometries the Picard–Fuchs operator can
be of non-minimal order, we here demonstrate this phenomenon and its implications in a concrete
example [19, 118].

5.3.1 Gauged Linear Sigma Model Realization

The example arises from the gauged linear sigma model with non-Abelian gauge group G = U(2) and
matter spectrum as listed in Table 5.1. This model is quite similar to the first example discussed in
subsection 4.2.4. The condition for non-anomalous axial R-invariance in eq. (2.37) is fulfilled and

Matter multiplet G = U(2) representation Vector R-charge T charges

Φi, i = 1, . . . , 5 (1, 1) 0 (1,+1)

(1,−1)

P(1) (−2, 0) 2 (−2, 0)

P(2) (−8, 0) 2 (−8, 0)

Table 5.1: The chiral matter spectrum of G = U(2) gauged linear sigma model with r � 0 target space
X1,4 ⊂ Gr(2, 5) together with its decomposition under the Cartan gauge group T = U(1)2/Z2. For an
explanation of the notation we refer to subsection 4.2.4

with eq. (2.38) the central charge of the low energy superconformal field theory is seen to be c = 12.
This is required for a Calabi–Yau fourfold target space. Concretely, for r � 0 the target space is
X1,4 ⊂ Gr(2, 5), i.e., the intersection of one generic hyperplane with one generic quartic in the ambient
Grassmannian Gr(2, 5) [55, 118].
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5.3.2 Picard–Fuchs Operator

We begin by finding the generating Picard–Fuchs operator on the quantum Kähler moduli space of
this model. We use two of the methods introduced in the earlier parts of this thesis.

Picard–Fuchs Operator from Fundamental Period

Our first choice is the method of chapter 4, which is based on explicit formulas for the Givental
I-function of non-Abelian gauged linear sigma models. The present model is in accord with all
assumptions of subsection 4.2.1 and from eq. (4.11) we find its fundamental period as

Π0(Q) =
∑

0 ≤ k1 ∈ Z/2

k1∑
k2 =−k1

Qk1
(2k1)!(8k1)!

[
1 + 5k2

(
hk1−k2

− hk1+k2

) ]
(k1 + k2)!

5
(k1 − k2)!

5

= 1 − 72
√

Q + 47 880Q − 54 331 200
√

Q
3
+ 78 891 813 000Q2

+ . . . .

(5.3)

The expansion can easily be extended to higher order, from which we in accord with ref. [118]
determine the Picard–Fuchs operator

L(Q̃, Θ̃) = (Θ̃ − 1)Θ̃5
+ 8Q̃ Θ̃(2Θ̃ + 1)(4Θ̃ + 1)(4Θ̃ + 3)(11Θ̃2

+ 11Θ̃ + 3)

− 64Q̃2
(2Θ̃ + 1)(2Θ̃ + 3)(4Θ̃ + 1)(4Θ̃ + 3)(4Θ̃ + 5)(4Θ̃ + 7) .

(5.4)

Here we introduced the variable Q̃ =
√

Q —which does not suffer from a branch, see subsection 4.4.1
for an explanation — and Θ̃ = Q̃∂Q̃ is the logarithmic derivative. This operator is indeed of order six
and therefore of non-minimal order.
We note that this approach requires us to make an ansatz for the operator and therein specify the

highest power with which the variable Q̃ appears. One might thus object that we could simply have
missed an order five operator with powers of Q̃ higher than allowed by the ansatz. If this was true, the
above operator would factor into an order one and order five operator, the second of which would
need to involve high powers of Q̃. Since we included powers up to fifty and since the above order
six operator involves Q̃ at most quadratically, we are confident that this is not the case. Nevertheless,
we see this as additional motivation for finding technologies to derive recurrence relations for the
closed form expressions of periods that arise from non-Abelian models, see also the discussions in
subsections 4.5.2 and 4.5.3.

Picard–Fuchs Operator from Gauged Linear Sigma Model Correlators

An alternative approach is the generalization of the methods of section 3.6 to one-parameter Calabi–Yau
fourfolds. We here briefly summarize the key facts and refer to ref. [17] for details. Among the cases
discussed in section 3.6, one-parameter Calabi–Yau fourfolds are in terms of gauge theory correlators
most similar to one-parameter polarized K3 surfaces, see subsection 3.6.5. We there observed that
the existence of an order three Picard–Fuchs operator imposed the non-trivial restriction (3.44) on
the correlators. For Calabi–Yau fourfolds the existence of an order five operator imposes a similar
non-trivial equality, which by an explicit calculation of the involved correlators is seen to be violated in
the present model. Given this, there is a yet different restriction on the correlators that is necessary for
an order six operator. This condition is fulfilled and application of the universal correlator formula for
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order six operators of one-parameter Calabi–Yau fourfolds derived in ref. [17] confirms the operator
given in eq. (5.4).

Also this argument has potential pitfalls. First, the universal correlator formula does not guarantee
but rather assume the existence of an order six operator. Second, as explained at the end of
subsection 3.2.2, in the practical determination of correlators we have to truncate the calculation at
some power of Q after which the rational functions appear to have stabilized. While it seems quite
far fetched, it is conceptually possible that the rational functions are stable only for a finite range of
powers and thereafter begin to change again.

5.3.3 Picard–Fuchs Differential Equation

The agreement of these two independent methods is by itself strong evidence for correctness of the
Picard–Fuchs operator in eq. (5.4). Conceptually, the absence of an order five operator is consistent
with the fact that there are two elements in the middle cohomology group H2,2 of the ambient
Grassmannian Gr(2,5) in which the target space X1,4 is embedded. In order to provide further evidence,
we now study the quantum periods of the operator. As reference for ordinary differential equations
and their solution in terms of power series we refer for instance to the textbook [142]

Solutions Around Large Volume

We begin by solving the Picard–Fuchs differential equation in vicinity of the large volume limit at
Q̃→ 0. To obtain an idea about the structure of the solutions, we first consider the indicial equation

Q̃−α · L(Q̃, Θ̃) Q̃α
= α5

(α − 1) + O(Q̃) !
= O(Q̃) (5.5)

for the characteristic exponents α. The two distinct solutions to this equation are α1 = 0 and α2 = 1,
which is why we expect two holomorphic solutions of the type

Π
(1)
0 (Q̃) = Q̃α1 + O(Q̃α1+1

) = 1 + O(Q̃) ,

Π
(2)
0 (Q̃) = Q̃α2 + O(Q̃α2+1

) = Q̃ + O(Q̃2
) .

(5.6)

While the existence of Π(1)0 (Q̃) is guaranteed, the second solution Π
(2)
0 (Q̃) may run into a contradiction

at higher orders in Q̃ since α2 = 1 differs by an integer from the smaller solution α1 = 0. In the
present example this does not happen and we find that Π(2)0 (Q̃) consistently extends to higher orders.
Without further information Π(1)0 (Q̃) is thus only defined up to adding multiples of Π(2)0 (Q̃), which
itself is unambiguously fixed by setting the coefficient of Q̃ to one. The form of the remaining four
solutions is inferred from the fact that α1 = 0 solves eq. (5.5) with multiplicity five. Hence, there are
four logarithmic solutions associated to Π(1)0 (Q̃) and we make the ansatz

Π
(1)
1 (Q̃) = Π

(1)
0 (Q̃) log Q̃ + p1(Q̃) ,

Π
(2)
1 (Q̃) = Π

(1)
0 (Q̃) log2 Q̃ + 2p1(Q̃) log Q̃ + p2(Q̃) ,

Π
(3)
1 (Q̃) = Π

(1)
0 (Q̃) log3 Q̃ + 3p1(Q̃) log2 Q̃ + 3p2(Q̃) log Q̃ + p3(Q̃) ,

Π
(4)
1 (Q̃) = Π

(1)
0 (Q̃) log4 Q̃ + 4p1(Q̃) log3 Q̃ + 6p2(Q̃) log2 Q̃ + 4p3(̃Q) log Q̃ + p4(Q̃) .

(5.7)
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The functions pk(Q̃) are holomorphic in Q̃ and by using the freedom to add multiples of Π(1)a to Π(1)
b

with b > a we set their constant terms to zero. For p4(Q̃) we have the additional freedom to add
multiples of Π(2)0 , which we fix by choosing the leading power of p4(Q̃) to be Q̃2. The differential
equation is then solved by

Π
(1)
0 (Q̃) = +1 − 72Q̃ + 47 880Q̃2

+ . . . , Π
(2)
0 (Q̃) = Q̃ − 2 625

4 Q̃2
+ . . .

p1(Q̃) = −432Q̃ + 327 744Q̃2
+ . . . p2(Q̃) = −944Q̃ + 1 101 004Q̃2

+ . . . ,

p3(Q̃) = +2 832Q̃ − 526 770Q̃2
+ . . . , p4(Q̃) = −7 574 016Q̃2

+ . . . .

(5.8)

As important observation, the ansatz has uniquely fixed Π(1)0 (Q̃) = Π0(Q̃) and it agrees with the
fundamental period given in eq. (5.3).
Due to the logarithms, the quantum periods are subject to a monodromy when circumventing the

large volume boundary component. This amounts to sending Q̃ to e2πiQ̃ and is captured by the
monodromy matrix M0 defined through

®Π
(
e2πiQ̃

)
= MT

0 · ®Π
(
Q̃

)
with ®Π

T
=

(
Π
(1)
0 , 1

(2πi)Π
(1)
1 , . . . , 1

(2πi)4
Π
(1)
4 , Π

(2)
0

)T
, (5.9)

where we have chosen the period vector ®Π for our convenience. From the structure of the logarithmic
solutions, as specified by eq. (5.7), we immediately find

M0 =

©«

1 1 1 1 1 0
0 1 2 3 4 0
0 0 1 3 6 0
0 0 0 1 4 0
0 0 0 0 1 0
0 0 0 0 0 1

ª®®®®®®®¬
. (5.10)

The five periods Π(1)
k

with 0 ≤ k ≤ 4 transform into linear combinations of each other and behave in
the same was as the solutions of an order five operator at a point of maximally unipotent monodromy
would, whereas Π(2)0 appears to be entirely decoupled. This re-raises the earlier concern that the
operator (5.4) might factor into an order one times an order five operator, where the order five operator
would describe the logarithmic block associated to Π(1)0 and be the true Picard–Fuchs operator.

Global Solution Structure

This concern is disproven by the global structure of the quantum periods. In addition to the large
volume point Q̃ = 0 there are other points in the quantum Kähler moduli space around which the
periods are subject to a monodromy transformation. These are Q̃ = ∞ as well as the zero loci
Q̃1 ' 0.043 and Q̃2 ' −3.5 · 10−4 of the discriminant factor ∆(Q̃),

∆(Q̃) = 1 + 2 816Q̃ − 65 536Q̃2 , (5.11)

which is defined as the coefficient of the highest power of Θ̃ in the operator. To find the solutions
at these points, we rewrite the Picard–Fuchs operator in terms of local variables centered there and
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solve the corresponding differential equations in terms of the new variables. The solution structure is
conveniently summarized by the Riemann P-symbol, which for the present example reads

0 ∞ Q1 Q2
0 1

4 0 0
0 1

2 1 1
0 3

4 2 2
0 5

4 3 3
0 3

2 4 4
1 7

4
3
2

3
2


. (5.12)

The first row lists the regular singular points of the differential equation, i.e, points around which there
is a monodromy and the respective columns list the characteristic exponents defined by the indicial
equations at these points. At other points in moduli space all four solutions are holomorphic.

The solutions around any of the regular singular points are only guaranteed to converge in a circular
region whose radius equals the distance to the closest other regular singular point. In the intersection
of two such discs both expansion are valid and the two sets of local solutions can be matched to
each other by a general linear transformation. This opens the possibility for a numerical analytic
continuation of the periods around the entire quantum Kähler moduli space, see for instance ref. [19]
for a more detailed technical explanation thereof. This technique shows that the monodromy around
the regular singular point Q̃2 transforms the large volume period vector ®Π according to

MT
Q̃1
· ®Π(Q̃) =

©«

137
144

55iζ (3)
π3 −37

12 0 −5
6 − 1

π2

0 1 0 0 0 0
− 259

8 640
407iζ (3)

12π3 − 649
720 0 − 37

72 − 37
60π2

−
77iζ (3)
96π3 −

1815ζ (3)2

2π6 −
407iζ (3)

8π3 1 −
55iζ (3)

4π3 −
33iζ (3)

2π5

− 49
17 280

77iζ (3)
24π3 − 259

1 440 0 137
144 − 7

120π2

− 7π2

103 680
11iζ (3)
144π − 37π2

8 640 0 − π2

864
719
720

ª®®®®®®®®®®®¬
· ®Π(Q̃) . (5.13)

The periods Π(1)
k

with k , 1 transform into linear combinations that involve a non-zero contribution of
the second holomorphic solution, which demonstrates that the latter does not globally decouple from
the other five solutions. These can therefore not be consistently described by an order five operator.
This excludes the possibility of a factorization and we have confirmed eq. (5.4) to give the correct
Picard–Fuchs operator.

Since the derivation of eq. (5.13) involves numerical analytic continuation, we do not literally find
the exact coefficients that are specified in the above matrix. However, the numerical precision is high
enough in order to identify the numerical values with the numbers stated.

Integral Periods

A distinguished set of solutions to the Picard–Fuchs differential equation are the so-called integral
quantum periods. These are associated to topological B-branes on the Calabi–Yau fourfold and enjoy
the interpretation of moduli dependent central charges, whose magnitudes are the BPS masses of the
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branes — for a review of branes in string theory we for instance refer to refs. [143, 144]. As explained
and employed in ref. [19], there are techniques that determine the asymptotic behavior of the integral
quantum periods in the large volume limit. For the present example these methods yield

®Π
asy
(t) =

(
1, t, 10t2

+ 20t + 107
6 , 4t2

− 4t + 7
2,

− 10
3 t3
− 5t2

− 19
2 t − 47

12 +
55iζ (3)
π3 , 5

6 t4
+ 37

12 t2
−

55iζ (3)
π3 t + 7

144

)T
,

(5.14)

where each entry specifies the value of an integral period in the limit Q̃→ 0 and t is the flat coordinate
given by

t(Q̃) =
1

2πi
·
Π
(1)
1 (Q̃)

Π
(1)
0 (Q̃)

=
log Q̃
2πi

+ O(Q̃) . (5.15)

From this and eq. (5.7) we see that the k-fold logarithmic period Π(1)
k

and tk , where 0 ≤ k ≤ 4, share
the same non-zero asymptotic value. This motivates the introduction of the modified period vector

®Π ®β = CT
®β
· ®Π =

©«

1 0 0 0 0 β0
π2

0 1 0 0 0 β1
π2

107
6 20 10 0 0 β2

π2

7
2 −4 4 0 0 β3

π2

− 47
12 +

55iζ (3)
π3 −19

2 −5 − 10
3 0 β4

π2

7
144 −

55iζ (3)
π3

37
12 0 5

6
β5
π2

ª®®®®®®®®®®®¬
· ®Π , (5.16)

which has the same asymptotics as ®Πasy. Since the second holomorphic solution Π(2)0 limits to zero
for Q̃→ 0, the numbers βk with 0 ≤ k ≤ 5 that measure its respective contributions are not fixed by
the large volume asymptotics and need to be determined by different means. This complication does
not occur for large volume points with maximially unipotent monodromy, as they for example occur
for Calabi–Yau threefolds and Calabi–Yau fourfolds with an order five operator.

Because the second holomorphic solution relates to the existence of B-branes on the two non-trivial
algebraic cycles corresponding to the described cohomology classes in H4

(X1,4,Z), there are no
such ambiguities for the quantum periods Π(1)0 and Π(1)1 that are associated to B-branes in higher
codimension. From this we conclude β0 = β1 = 0. In order to determine the other coefficients,
we employ the Strominger–Yau–Zaslow picture of mirror symmetry for Calabi–Yau fourfolds that
conjectures the existence of a singular point Q̃∗ in quantum Kähler moduli space where the 8-brane —
corresponding to the last entry of ®Πasy and ®Π ®β — becomes massless [145]. As explained in ref. [19],
this fixes the monodromy matrix MQ̃∗ which for the present model takes the form

MQ̃∗ =

©«

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
−1 0 −24 −6 7 −1

ª®®®®®®®¬
(5.17)
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when expressed in the basis specified by ®Π ®β . Using numerical analytical continuation to determine all
four monodromy matrices, this form of the monodromy is seen to only be possible at the point Q̃2.
This gives

MQ̃∗ = C−1
®β
· MQ̃2

· C ®β (5.18)

as condition on the basis change from ®Π to ®Π ®β , which is uniquely solved by choosing the coefficients
βk as

β0 = β1 = β2 = β4 = 0 , β3 = 24 , β5 = 1 . (5.19)

The vector ®Πint of integral quantum periods is given by ®Π ®β with these values of βk . Since β3 and
β5 are non-zero, the second holomorphic solution is necessary to define a basis of integral quantum
periods. This gives a physical explanation for why the operator (5.4) cannot factor. In terms of the
basis specified by ®Πint all monodromy matrices are integer valued, see ref. [19] for further details.

All Solutions from Cartan Theory I -Function

As a brief detour, we mention that also for this example all six solutions of the Picard–Fuchs differential
equation are found as appropriate derivatives of the Cartan theory I-function. Equations (4.34) and
(4.35) give

ICartan( ®H,Q) =
∑
®k ∈γ+m

Q̃ 2k1+2
H1
ε (−1)2k2

[
1 + k2∂H2

+
H2

2
2 ∂

2
H2

(
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3 ∂H2

)
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H4
2

24 ∂
4
H2

(
1 + k2

5 ∂H2

)]
·

Γ

(
1 + 2k1 + 2H1

ε

)
Γ

(
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ε

)
Γ

(
1 + H1+H2

ε

)5
Γ

(
1 + H1−H2

ε

)5

Γ

(
1 + 2H1

ε

)
Γ

(
1 + 8H1

ε

)
Γ

(
1 + k1 + k2 +

H1+H2
ε

)5
Γ

(
1 + k1 − k2 +

H1−H2
ε

)5
��H2 = 0

+ O(H6
2 )

(5.20)
where after executing the derivatives we set H2 = 0 inside the gamma functions and its derivative, but
we keep the factors H2

2 and H4
2 inside the square brackets in the first line. Summation over ®k = (k1, k2)

is as exactly as in eq. (5.3), which arises from the set γ+m given in eq. (4.37). The expression is exact
up to and including third powers of the auxiliary variable ®Haux = (H2) and an explicit calculation
demonstrates that

Π
(1)
k
=

(
ε
2 ∂H1

± i ε2

√
3
5 ∂H2

)k
ICartan( ®H,Q) �� ®H = 0

with k = 0, . . . , 3 ,

Π
(1)
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[(
ε
2 ∂H1

± i ε2

√
3
5 ∂H2

)4
+ ε4

25∂
4
H2

]
ICartan( ®H,Q) �� ®H = 0

,

Π
(2)
0 = − ε

240∂
2
H2

ICartan( ®H,Q) �� ®H = 0

(5.21)

are six linearly independent solutions to the Picard–Fuchs differential equation. Similar to the third
example discussed in subsection 4.4.1, the five solutions Π(1)

k
are not generated by powers of a fixed

linear combination of ∂H1
and ∂H2

applied to the Cartan theory I-function. This again fails at the fourth
derivative level. However, unlike that previous example, the second derivative with respect to ∂H2
does here not sum to zero but rather give the second holomorphic solution. Consequently, all (both)
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second derivatives that are not automatically zero by Weyl symmetry are solutions to the Picard–Fuchs
differential equation. This suggests that for models with gauge group G = U(1) × SU(2)/ Γ and
Calabi–Yau fourfold target space the order of the generating Picard–Fuchs operator is always either
five or six, but not higher. For general non-Abelian gauge groups with a single U(1) factor we similarly
expect that the order of the operator is at most five plus the number minv

2 of Weyl group invariants of
homogenous order i = 2.

5.3.4 Implications

Having fully established that the generating Picard–Fuchs operator has the non-minimal order six, we
here comment on two interesting implications thereof.

New Types of Flux-Induced Superpotentials

As seen from eqs (5.16) and (5.19), the existence of the second holomorphic solution Π(2)0 to the
order six Picard–Fuchs differential equation implies the existence of two doubly-logarithmic integral
quantum periods, namely

Π2 = 10 ·
Π
(1)
2

(2πi)2
+ 20 ·

Π
(1)
1

2πi
+

107
6
· Π
(1)
0 ,

Π3 = 4 ·
Π
(1)
2

(2πi)2
− 4 ·

Π
(1)
1

2πi
+

7
2
· Π
(1)
0 +

24
π2 · Π

(2)
0 .

(5.22)

Here and below we denote the k-th entry of the integral period vector ®Πint as Πk . In the context of
Calabi–Yau fourfold compactifications of type IIA superstring theory to two dimensions, non-trivial
background fluxes for the field strength of the (R,R) 3-form field can be used to generate a superpotential
of the form

Wflux =
1
Π0

5∑
k=0

nk · Πk with nk ∈ Z , (5.23)

where the nk enjoy the interpretation of flux quantum numbers. As a side remark, for manifolds with
odd second Chern class the nk would rather be required to be half-integral [146]. Further, the quotient
by the fundamental period amounts to a field redefinition in which the worldsheet instanton corrections
become apparent when expressed in terms of the flat coordinate t given by eq. (5.15). In the present
example there are choices for nk that yield the three superpotentials

W (1)flux =
1
Π0

(
109Π0 + 360Π1 − 12Π2 + 30Π3

)
=

2 880
4π2 e2πit

+ O(e4πit
) ,

W (2)flux =
1
Π0

(
60Π1 − 2Π2 + 5Π3

)
= −

109
6
+

480
4π2 e2πit

+ O(e4πit
) ,

W (3)flux =
1
Π0

(
109Π0 − 12Π2 + 30Π3

)
= −360 t +

2 880
4π2 e2πit

+ O(e4πit
) .

(5.24)

As wee see, these are given by a non-zero tower of instanton corrections plus an at most linear
term in t. Without two doubly-logarithmic integral quantum periods it is impossible to obtain such
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types of superpotentials, because the presence of non-zero instanton corrections requires a non-zero
contribution from a doubly-logarithmic (or higher logarithmic) period and without a second one the t2

term can then not be cancelled. All three cases indeed include both doubly-logarithmic periods Π2
and Π3, the latter of which involves the second holomorphic solution whose presence itself originates
in the Picard–Fuchs operator of non-minimal order.

Two Towers of Gromov–Witten Invariants

The fact that two independent elements φ(1)2 and φ(2)2 of H(2,2) participate in the quantum product
results in two independent towers of worldsheet instanton corrections, each counted by genus zero
Gromov–Witten invariants. Denoting the single generator of H1,1 as φ1, the general structure of the
quantum product yields

φ1 ∗ φ1 = φ
(1)
2

[
c(1) +

∞∑
d = 1

n(1)0,d
d2qd

1 − qd

]
+ φ
(2)
2

[
c(2) +

∞∑
d = 1

n(2)0,d
d2qd

1 − qd

]
. (5.25)

Here the numbers c(1) and c(2) are defined by the classical cup product φ1 ∪ φ1 =
∑

a c(a)φ(a)2 , the
variable q = e2πit is the exponential of the flat coordinate (5.15), and n(a)0,d are the integral genus zero
Gromov–Witten invariants where the superscript refers to a single marked point that is constrained to
lie on the algebraic cycle class φ(a)2 . This equation should be regarded as the adaption of eq. (2.52),
which defines the quantum product for Calabi–Yau threefolds, to the present case of one-parameter
Calabi–Yau fourfolds with a Picard–Fuchs operator of non-minimal order six.

As explained in detail in ref. [19], the two towers of Gromov–Witten invariants can be found from
the integral quantum periods that we determined in the previous subsection. Intuitively speaking,
eq. (5.25) needs to be multiplied by some element of H(2,2) in order to yield a differential form of top
degree that can then be integrated over the target space X1,4. Two such integrals are obtained from the
doubly-logarithmic integral periods Π2 and Π3 together with the fundamental period Π0 as

∂2

∂t2
Πk(Q̃(t))

Π0(Q̃(t))
=

∫
X1,4

(
φ1 ∗ φ1

)
∪ ch

(
Πk

)
with k = 2, 3 . (5.26)

Here the original variable Q̃ is expressed in terms of the flat coordinate—which we achieve by inverting
the exponential of eq. (5.15), see subsection 2.3.1 for a similar calculation for the quintic Calabi–Yau
threefold — and ch(Πk) with k = 2, 3 denote the Chern characters of the 4-branes associated to Π2
and Π3. These take values in H(2,2) ⊕ H(3,3) ⊕ H(4,4), such that the product of φ1 ∗ φ1 with ch(Πk)

indeed yields a form of top degree. This gives the equality (φ1 ∗ φ1) ∗ ch(Πk) = (φ1 ∗ φ1) ∪ ch(Πk), as
already used in writing eq. (5.26), and qualifies the equations for a straightforward determination of
the Gromov–Witten invariants. The right hand side of the equation is evaluated by a calculation in the
classical cohomology ring, which for the present example of X1,4 ⊂ Gr(2, 5) yields

∂2
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Π2
Π0
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d2 qd
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d2 qd
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4n(1)0,d + 4n(2)0,d

)
.

(5.27)
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d n(1)0,d n(2)0,d
1 400 520
2 208 240 226 480
3 175 466 480 191 464 760
4 196 084 534 160 213 155 450 240
5 255 402 582 828 400 277 092 686 601 400
6 367 048 595 782 193 680 397 700 706 634 553 680
7 564 810 585 071 858 496 880 611 416 342 763 726 567 800
8 913 929 133 261 543 393 001 760 988 670 017 271 687 389 572 480
9 1 536 929 129 164 031 410 293 358 720 1 661 748 145 541 449 358 296 013 440

10 2 664 576 223 763 330 924 317 069 072 400 2 879 777 881 450 393 936 532 565 976 400

Table 5.2: Genus zero integral Gromov–Witten invariants n(1)0,d and n(2)0,d of the Calabi–Yau fourfold X1,4 ⊂ Gr(2, 5)
associated to φ(1)2 = σ1,1 and φ

(2)
2 = σ2 up to degree d = 10.

Here we have chose φ(1)2 = σ1,1 and φ
(2)
2 = σ2 in terms of the two Schubert classes σ1,1 and σ2 that

generate the cohomology group H4
(Gr(2,5),Z) of the ambient space in which X1,4 is embedded —

see for instanace the textbook [109] for mathematical background. By expanding these equations in
the variables q, we obtain two independent equations for each degree d that determine the unknowns
n(1)0,d and n(2)0,d. In Table 5.2 they are listed up to degree d = 10 and their integrality confirms our choice
of integral quantum periods. The integral periods moreover determine the topological limit F top

1 of
the generalized topological index of the N = (2, 2) superconformal worldsheet theory associated to
the Calabi–Yau fourfold under consideration [133, 147–149]. Together with the symmetric Klemm–
Pandharipande meeting invariants defined in [149], which themselves are found recursively from the
genus zero worldsheet instanton numbers, this quantity encodes the integral genus one invariants of
the Calabi–Yau fourfold. As demonstrated in [19], these numbers are also found to be integral and
thereby additionally confirm our choice of integral quantum periods.
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CHAPTER 6

Conclusion and Outlook

In this thesis we have presented various results that connect gauged linear sigma models and Picard–
Fuchs operators, both of which are powerful tools for studying the moduli structure of superconformal
worldsheet theories that arise in compactifications of type II superstring theories. As application we
moreover considered an interesting aspect of Calabi–Yau fourfold geometry that previously has mostly
been overlooked.

The first chapter gave a non-technical introduction to — and motivation for — the bigger research
field in which this work is set. In the second chapter we then reviewed several physical andmathematical
concepts that are central to the presented research.

In the third chapter we used the result of a modern localization computation [73] for a detailed study
of certain correlation functions in the gauged linear sigma model and connected these to Picard–Fuchs
operators. To this end we first derived universal and non-trivial linear dependencies amongst the family
of these correlators, which in a Hilbert space interpretation were shown to define differential operators
that annihilate the moduli dependent ground state. Using the connection between the correlators and
a quadratic pairing of the Givental I-function [99], we demonstrated that these operators in case of
geometric target space also annihilate the I-function. For conformal models this identified them as
Picard–Fuchs operators on the quantum Kähler moduli space. The combination of these findings
provided an elementary combinatorial algorithm that allows to determine the Picard–Fuchs operators
from the defining gauge theory spectrum directly, without the need to calculate the correlators. Since
this algorithm does not use mirror symmetry, it is equally applicable to cases without a known mirror
geometry. For several classes of Calabi–Yau manifolds, specified by a fixed complex dimension and
number of Kähler parameters, we moreover derived universal formulas that express the generating
Picard–Fuchs operator in terms of the gauge theory correlators. These formulas are automatically in
accord with non-trivial constraints, such as N = 2 special geometry for Calabi–Yau threefolds [88].

By means of the Abelian Cartan theories we also derived universal linear dependencies of correlators
in non-Abelian gauged linear sigma models. However, as discussed in subsection 3.5.3, it is not clear
whether this approach captures the full structure of the non-Abelian theory. It would be interesting
to answer this question and to carry out the derivation directly in the non-Abelian model. This is
expected to greatly aid the practical determination of Picard–Fuchs operators.

For non-Abelian gauge groups and complicated matter spectra the required calculations can become
computationally challenging. In the fourth chapter we therefore presented an alternative method for
deriving the operators associated to non-Abelian models, which in practice is computationally more

109



Chapter 6 Conclusion and Outlook

efficient than those of chapter three. For this we employed the Givental I-functions of the Abelian
Cartan theories and proposed that these encode the holomorphic solution — for conformal models
known as the fundamental period — of the non-Abelian model’s operator in a certain non-trivial
limit. We demonstrated that the existence of this limit is, under certain assumptions on the matter
spectrum, equivalent to a statement about the algebra of the semi-simple gauge group factors. For
several low-rank non-Abelian groups we checked this condition explicitly and conjectured it to hold
in general. We also presented a formula for the finite result of the limit, which is ready-to-use and
allows to efficiently determine the Picard–Fuchs operator of a given model by requiring it to annihilate
the expansion of this expression. In addition, we found that the other solutions of the operator — for
conformal models these are the other quantum periods — are given by appropriate, model dependent
linear combinations of derivatives applied to the Cartan theory I-function. We concluded the chapter
by discussing the idea of reconstructing gauged linear sigma models from given differential operators.

There are various directions for future research in this context. First, the formulas for the holomorphic
solutions are applicable to a large class of non-Abelian matter spectra and allow to efficiently determine
the associated differential operators. They thus open the possibility to scan over various gauge theory
spectra with the aim of finding models of a given desired type, for example models with a compact
Calabi–Yau threefold target space. Second, the hemisphere partition function of the gauged linear
sigma model is known to calculate the quantum periods [106–108] and it would be interesting to use it
for a re-derivation of the formulas that we presented. Third, although it is less clear how feasible this
is, a generalization of the formulas to strongly coupled phases in which a non-Abelian gauge group
factor is left unbroken would be very useful for the study of strong-weak coupling dualities between
different gauged linear sigma models. As a first step towards this, one might attempt an analytic
continuation to other phases. Lastly, it would be very interesting to find a practical implementation
of the proposed program for reconstructing gauged linear sigma models from differential operators.
This would essentially put gauged linear sigma models and Picard–Fuchs operators in a one-to-one
correspondence and thereby entirely bypass the need to understand or even know the target space
geometry. Since there are efforts to classify Picard–Fuchs operators by their analytical and algebraic
properties [115, 116, 124], it would moreover offer a roadmap towards a classification of gauged linear
sigma models and, in extension, string vacua.
In the fourth chapter we employed the various techniques introduced at this point of the thesis to

study Calabi–Yau fourfolds that arise as target spaces of non-Abelian gauged linear sigma models. As
opposed to Calabi–Yau threefolds and target spaces of Abelian theories, the quantum cohomology
of these geometries is not guaranteed to be generated by products of marginal Kähler deformations.
Examples of this type have previously been observed in refs. [56, 118]. As we explained, this
phenomenon is due to additional elements of the middle cohomology group H2,2 that participate in the
quantum product. For cases with a single Kähler modulus this was shown to result in a non-factorizable
Picard–Fuchs operator of degree six or higher. We demonstrated the effect explicitly in an example
and discussed its implication of additional quantum periods that vanish in the large volume limit
but are non-zero in general. While the integral quantum periods of the model are thus not entirely
determined by the large volume asymptotics, we have shown that they could still be found by using the
global monodromy structure. Lastly, we demonstrated that the integral periods allow for new types of
flux superpotentials that are entirely instanton generated and calculated the genus zero worldsheet
instanton numbers.
It would be interesting to find and analyze multi-parameter examples of this type, as well as

one-parameter examples in which the generating Picard–Fuchs operator is of yet higher order than
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six. For the latter purpose, we suspect models with gauge groups G = U(1) × SU(2)2/ Γ to be the
simplest choice. The effect of additional quantum cohomology elements is expected to also occur
for Calabi–Yau manifolds of complex dimension higher than four. However, as briefly mentioned in
subsection 3.6.6, from the correlator point of view there is some indication that it might not happen in
the complex odd-dimensional case. It would be interesting answer this question.
As a recurring theme throughout the thesis, general non-Abelian theories are not yet particularly

well understood. It would be a big step to obtain a better control over them, which goes beyond using
the Abelian Cartan theories and then taking back an appropriate limit. This is, however, not likely to
be an easy problem.
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