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Abstract 

Global mRNA and miRNA transcriptome profiling of peripheral blood mononuclear 

cells to investigate the host immunogenetic response to PRRSV vaccination in pigs 

 

This dissertation aims to identify the candidate genes of the functional network of host immune 

response to porcine reproductive and respiratory syndrome virus (PRRSV) vaccine in pigs; to 

explore the breed differences on vaccine induced transcriptional response between German 

Landrace (DL) and Pietrain (Pi) pigs; and to elucidate the post transcriptional regulatory 

mechanism of vaccine induced gene expression in the peripheral blood mononuclear cells 

(PBMCs). The Affymetrix gene chip microarray technique was employed for global expression 

profiling of messenger RNA (mRNA) and microRNA (miRNA) in PBMCs collected in a time 

series manner following PRRSV vaccination in purebred DL and Pi pigs. Additionally, 

microarray expression results were validated by qRT-PCR and the PRRSV-specific plasma 

antibody titre was monitored by ELISA. The PRRSV-specific plasma antibody titre indicated the 

piglets free from maternal antibody at the time of primary vaccination and rose above the 

threshold following two weeks of the primary vaccination that subsequently reached a plateau at 

four weeks post vaccination. The global mRNA profiling of PBMCs from PRRSV vaccinated and 

age-matched unvaccinated Landrace pigs at immediately before (0 h), and at 6, 24 and 72 h after 

PRRSV vaccination revealed a distinct host innate immune transcriptional response. A total of 

14,231 transcripts were found to be expressed in PBMCs of vaccinated and unvaccinated pigs. 

Differential expression analysis (FDR < 0.01 and FC > ±1.5) identified 542, 2,263 and 357 

differentially expressed genes at 6, 24 and 72 h post vaccination. APP, TRAF6, PIN1, FOS, 

CDKN1A and TNFAIP3 identified to be potential candidate genes for early stage PRRSV vaccine 

response in Landrace pigs. In Pietrain pigs, 295 and 116 transcripts were found to be differentially 

expressed in PBMCs at 1 and 28 days post vaccination, respectively. This study suggested that the 

innate immune transcriptional network is likely to be regulated by LCK, STAT3, ATP5B, UBB 

and RSP17; while TGFβ1, IL7R, RAD21, SP1 and GZMB were found to be predictive for the 

adaptive immune transcriptional response to PRRSV vaccine in PBMCs of Pi pigs. The global 

microRNA profiles of PBMCs identified 12, 259 and 14 differentially expressed (DE) miRNAs in 

DL; and 0, 222 and 13 DE miRNAs in Pietrain at 6, 24 and 72 h post vaccination, respectively. 

There were remarkable differences on expression dynamics of both mRNAs and miRNAs 

between DL and Pi pigs. Integrated mRNA-miRNA network revealed the inverse correlation 

between vaccine induced altered mRNAs and miRNAs in PBMCs. Results of this 

immunogenomics study advances our understanding on the genetic control of PRRS.  

  



 

 

Abstract (German) 

Erstellung von globalen mRNA und miRNA Transkriptomprofilen in mononukleäre 

Zellen des peripheren Blutes zur Untersuchung der Wirts immunogenetischen Reaktion 

auf eine PRRSV Impfung bei Schweinen 

 

Die vorliegende Arbeit zielt darauf ab, Kandidatengene des funktionellen Netzwerks der 

wirtsspezifischen Immunantwort auf den PRRS-Virus (PRRSV) Impfstoff bei Schweinen zu 

identifizieren; um transkriptionale Unterschiede durch den induzierten Impfstoff in den zwei 

Schweinerassen Deutschen Landrasse (DL) und Piétrain (Pi) zu erkunden; und die Aufklärung 

von Post-transkriptionellen Mechanismen bedingt durch den Impfstoff in den mononukleären 

Zellen des peripheren Blutes (PBMCs). Zur Erstellung der Transkriptomprofile der Boten-RNA 

(mRNA) sowie der microRNA (miRNA) in reinrassigen DL und Pi Schweinen zu 

unterschiedlichen Zeitpunkten nach der PRRSV Impfung wurde die Affymetrix Gen-Chip-

Microarray-Technik eingesetzt. Zusätzlich wurden die Microarray Ergebnisse mittels qRT-PCR 

validiert und die PRRSV-spezifischen Plasma Antikörpertiter durch ELISA bestimmt. Durch den 

PRRSV-spezifischen Plasma Antikörpertiter zeigte sich, dass die Ferkel frei von mütterlichen 

Antikörpern zum Zeitpunkt der Erstimpfung waren. Nach der ersten Impfung stieg der Titer in 

den folgenden zwei Wochen über dem Grenzwert, und erreichte sein Plateau vier Wochen nach 

der Impfung. Die Betrachtung der globalen mRNA Profile von PBMCs von PRRSV geimpft und 

ungeimpften DL Schweinen unmittelbar vor 0  und mit 6, 24 und 72 h nach der Impfung ergab 

eine deutlich angeborene transkriptionelle Wirts Immunreaktion. Insgesamt waren 14.231 

Transkripte in PBMCs von geimpften und nicht geimpften Schweine exprimiert. Die 

Expressionsanalyse (FDR <0,01 und FC> ± 1,5) identifiziert 542, 2263 und 357 differentiell 

exprimierte Gene 6, 24 und 72 h nach der Impfung. Als potenzielle Kandidatengene für das frühe 

Stadium der Impfreaktion konnten APP, TRAF6, PIN1, FOS, CDKN1A und TNFAIP3 

identifiziert werden. In Piétrain Schweinen waren 295 und 116 Transkripte in PBMCs an Tag 1 

und 28  nach der Impfung unterschiedlich exprimiert. Diese Ergebnisse zeigen, dass das 

angeborene Immunnetzwerk wahrscheinlich durch LCK, STAT3, ATP5B, UBB und RSP17 

geregelt wird; während sich TGFβ1, IL7R, Rad21, SP1 und GZMB für die adaptive 

Immunreaktion auf den PRRSV-Impfstoff in PBMCs von Pi-Schweinen als prädiktiv erwiesen. 

Die microRNA-Profile von PBMCs identifiziert 12, 259 und 14 unterschiedlich exprimiert 

miRNAs in DL; und 0, 222 und 13 miRNAs in Pi, 6, 24 und 72 h nach der Impfung. Es gab 

deutliche Unterschiede bei der Expressionsdynamik sowohl bei der mRNAs als auch miRNAs 

zwischen DL und Pi Schweine. Integrierte mRNA-miRNA-Netzwerke zeigen eine inverse 

Korrelation zwischen der durch den Impfstoff induzierten veränderten mRNAs und miRNAs 

Expression in PBMCs. Die Ergebnisse dieser immunogenomischen Studie erweitert unser 

Verständnis über die genetische Kontrolle von PRRS. 
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1.1 Introduction 

The porcine reproductive and respiratory syndrome (PRRS), an emerging viral infectious 

disease, results tremendous economic loss in the swine industry worldwide through 

reproductive failure in breeding sows and respiratory disorders in young and growing pigs. 

The PRRS has been continued to be of high concern for swine health, production and welfare 

issues in commercial farms. Despite much emphasis has been placed on development of 

preventative measures, sustainable PRRS control has not been established yet. However, there 

are possibilities for genetic control of PRRS through improvement of the host genetics by 

marker assisted selection breeding. There have been major breakthroughs in understanding 

the biology and ecology of PRRS virus (PRRSV), but the complexities of virus-host 

interaction in terms of genetic and epigenetic resistance mechanism are yet to be elucidated 

(Lunney et al. 2016). There are serious deficits in our knowledge of the key immunological 

targets for both B- and T-cell-directed protection, and the genetic bases of the immunological 

events occur at the transcriptome level in peripheral blood following early stage of PRRSV 

vaccination. To uncover the immunogenetic insights of virus-host interaction, this dissertation 

project conducted the global expression profiling of mRNA and microRNAs in the peripheral 

blood mononuclear cells (PBMCs) of PRRSV vaccinated German Landrace and Pietrain pigs. 

This study aimed to identify the potential candidate genes, biological pathways, and 

transcriptional networks involved with host immune response to PRRSV vaccination. The aim 

was seconded with estimating the breed differences on host transcriptional response to 

PRRSV vaccination as well as to explore the post transcriptional epigenetic regulatory 

mechanisms for vaccine induced differential gene expression in PBMCs. Herein below, 

general introduction to the dissertation topic with relevant literatures are presented briefly. 

 

1.1.1 Porcine reproductive and respiratory syndrome  (PRRS) 

The PRRS is the most economically important infectious diseases of pigs caused by PRRS 

virus (PRRSV). PRRS causes huge economic loss in commercial farms through increasing 

morbidity and mortality of infected pigs. PRRS affects swine health by increasing 

susceptibility to secondary infection and is of major concern as animal welfare issue in 

consumers and business perspective (Lunney et al. 2011, Xiao et al. 2010). The impact of 

PRRS is substantial through all the stages of commercial pig production. The weaned and 

finishing pigs suffer from respiratory disorders due to secondary infection, which are 

worsened by the immuno-modulatory properties of the PRRSV. The post-weaning pneumonic 

phase can become chronic, reducing daily gain by 85% and increasing mortality to 10%–25% 
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(Dee 2014). In breeding herds, the losses are dramatic but, in general, only lasting for a few 

months until the breeding herd reaches stability. However, the reproductive problems may 

reoccur if the breeding herd becomes destabilized due to recycling of PRRSV from the 

finishing herd or excreting gilts. The impact of breeding stock includes reproductive 

impairment along with respiratory disorders. PRRS can cause up to 25 %–35 % stillbirths and 

mummies, and more than 10 % abortions in the infected breeding sows (Dee 2014). The 

PRRS associated cost usually include the producers’ costs for vaccination against PRRS virus, 

treatments, diagnostics performed, or costs associated with the increased levels of biosecurity 

implemented to minimize the spread of the virus. The PRRS is currently endemic in majority 

of the pork producing countries through out the world (Shi et al. 2010). The average 

prevalence of PRRSV infection was estimated in eight European countries as 75 % of sows 

and in 67 % of nursery or growing pigs having no clinical signs. While the prevalence of 

PRRS clinical cases were estimated to occur in 10 % of sows and in 14 % of weaned or 

growing pigs (De Paz et al. 2015). The annual impact of PRRS in Europe in 2013 was 

estimated to be around 1.5 billion € being the impact on the growing-finishing pigs higher (54 

%) than in breeding herds (46 %); (De Paz 2015). The prevalence and impact of PRRS is not 

uniform across all Europe, however, in most of the countries it costs between 5 € and 10 € per 

marketed pig or between 100 € and 200 € per inventoried sow annually (De Paz 2015). The 

estimated annual costs for PRRS in the USA alone were around $664 million (Holtkamp et al. 

2013). 

 

Before the etiological agent causing the PRRS disease was known, the syndrome was given 

various names such as ‘pig plague 89’, ‘swine reproductive and respiratory syndrome’, ‘swine 

infertility and respiratory syndrome’, ‘porcine epidemic abortion and respiratory syndrome’, 

‘blue ear disease’, ‘porcine reproductive and respiratory syndrome’ (Goyal 1993). However, 

at the first international symposium on SIRS/PRRS held at St. Paul, Minnesota, USA, in 

1992, where it was decided to name the syndrome as ‘porcine reproductive and respiratory 

syndrome’ and it’s causal virus as ‘porcine reproductive and respiratory syndrome virus 

(PRRSV)’. The PRRS was first described in 1987 in North America (Collins 1991), and 

during the winter of 1990-91 the disease appeared in Germany and in the Netherlands 

(Wensvoort et al. 1991). The first isolate of the causal agent of PRRS was named Lelystad 

Virus (LV) after the Dutch city where it was isolated, later referred as EU-strain or Type-1 

PRRSV (Wensvoort et al. 1991). Shortly after the isolation of LV, a virus showing 
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resembling clinical field signs of PRRS was isolated in USA and referred as type-2 or VR-

2332 or type-2 PRRSV (Collins et al. 1992).   

 

The clinical manifestations of PRRS are of two major forms: reproductive and respiratory 

form (Wensvoort et al. 1991). The reproductive impairment caused by PRRSV infection 

depends on the age of the pig infected and on the pregnancy status and trimester of gestation 

of the infected sow/gilt (Rossow 1998). Studies found that pigs experimentally infected with 

nine different isolates of Type 2 PRRSV had major differences in clinical disease, rectal 

temperatures, and gross and histological lung lesion (Halbur et al. 1995a, Halbur et al. 1995b). 

Pigs infected with mildly virulent isolates or the LV had transient pyrexia, dyspnea and 

tachypnea, whereas infection with highly virulent isolates induced labored breathing, pyrexia, 

lethargy, and anorexia. Furthermore, studies have reported that the impact on reproductive 

performance may be isolate dependent (Halbur et al. 1995a, Halbur et al. 1995b, Mengeling et 

al. 1996). The clinical signs in sows are characterized by inappetence, anorexia, and 

reproductive disorders such as abortion, premature birth, birth of dead or weak piglets, and 

foetal death with or without mummification. A less frequently observed sign is transient blue 

discoloration of the ears, abdomen, or vulva (Terpstra et al. 1991). PRRSV infection in 

weaned pigs is characterized by fever, pneumonia, lethargy, and failure to thrive (Rossow 

1998). Gross lesions observed following PRRSV infection vary widely and may be dependent 

on the virus isolate, genetics of the infected pig, and stress factors (environment and health 

status of the pig herd). The pulmonary lesions vary from none to diffuse consolidation and are 

commonly complicated by lesions resulting from concurrent bacterial infections which can 

localize separate or intermixed (Rossow 1998). 

 

Once the PRRSV infection establishes, it can be divided into at least three distinct stages: 

acute infection, persistence, and extinction, which are each unique in terms of immunology, 

virology, and clinical disease (Lunney et al. 2016). The first stage is represented by acute 

infection, during which the lung serves as a preferential site of infection. The acute post 

infection phase is characterized by high viremia within 6–12 h post infection and high viral 

load in tissues which may last up to 28 days post infection despite the presence of circulating 

antibodies (Halbur et al. 1995a, Halbur et al. 1995b). Followed by the acute post infection 

stage, a persistent phase of infection continues with lymphoid tissues including tonsil and 

lymph nodes but not spleen (Allende et al. 2000, Rowland et al. 2003) as the primary site of 

virus replication. During this stage of persistent infection, virus replication subsides to the 
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point where virus is no longer detected in blood and lungs and pigs no longer exhibit overt 

signs of clinical disease. Continuous virus replication in regional lymph nodes accounts for 

the efficient transmission of virus to naıve pigs via oral-nasal secretions and semen 

(Christopher-Hennings et al. 2008). Subsequently, virus replication gradually decays until the 

virus becomes extinct in the host. The eventual disappearance of virus represents the final 

stage of infection. It is not known exactly when virus disappears, but replication can be 

maintained for as long as 250 days after infection (Wills et al. 2003). Therefore, PRRSV 

replication does not establish steady-state equilibrium but gradually declines over time, with 

the lymphoid organs as the site of the last vestige of virus replication before viral extinction 

(Allende et al. 2000). However, it should be noted that in the context of the typical 

commercial pork production setting, during which pigs are maintained for 250 days, PRRSV 

establishes a “life-long” infection for the majority of pigs if once infected (Chand et al. 2012). 

 

1.1.2 PRRS virus (PRRSV) 

The PRRSV is a member of the Arteriviridae family, along with along with equine arteritis 

virus (EAV), lactate dehydrogenase elevating virus (LDV) of mice, and simian hemorrhagic 

fever virus (SHFV); (Terpstra et al. 1991). Based on the similarities in the genomic 

orientation and replication mechanism, the Arteriviridae family together with the 

Coronaviridae, Roniviridae, and Mesoniviridae families is placed in the order Nidovirales 

(Cavanagh 1997). The common properties of arterivirus in terms of host-virus interactions 

include cytopathic replication in macrophages, the capacity to establish a persistent infection, 

and ability to produce severe disease (Snijder and Spaan 2007). 

 

The PRRSV possesses pleomorphic morphology varying the shape from spherical to oval 

with a size about 50 to 65 nm and a layered nucleocapsid core of around 40 nm diameter 

(Spilman et al. 2009); (Fig 1). The nucleocapsid core is surrounded by a lipid membrane, the 

envelope where the structural proteins are embedded. The major protein components of the 

lipid envelope are GP5 and M, which together encompass at least half the amount of the viral 

proteins. The GP5 and M forms a disulfide-linked heterodimer through conserved cysteine 

residues in both proteins (Verheije et al. 2002). The minor structural proteins GP2, GP3, and 

GP4 forms a multimeric complex incorporated in the lipid envelope and for at least the Type 

1 PRRS viruses E is also a part of this complex (Wissink et al. 2005, Music and Gagnon 

2010, Das et al. 2010). The recently discovered ORF5a protein is believed to be the eighth 
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structural protein of PRRSV, but its orientation in the virion particle and its interaction with 

the other structural proteins still needs to be clarified (Firth et al. 2011).  

 

Figure 1. Schematic representation of the PRRSV virion structure. The orientation of the structural proteins of 
GP2, E, GP3, GP4, GP5, M, and N protein are shown. GP5/M forms a heterodimer and the minor glycoproteins 
and E forms a multimeric complex. The N protein homodimers are shown surrounding the PRRSV RNA genome 
(Music and Gagnon 2010 Kvisgaard et al. 2013).  

 

The genome of PRRSV is a single-stranded RNA molecule with a positive-sense orientation. 

The genome is about 15-15.5 kb long with a 5’-end methylated cap structure and a 3’-end 

polyadenylated tail (Fig. 2) the untranslated regions (UTR) are present at both termini 

(Allende et al. 1999, Meulenberg et al. 1993). The genome encodes at least 10 open reading 

frames (ORFs), including the recently discovered ORF5a (Firth et al. 2011). The ORF1a and 

ORF1b constitute about 75 % of the genome, and encodes two long non-structural 

polyproteins, pp1a and pp1ab, with the synthesis of the latter depending on a ribosomal 

frameshift near the 3’-end of ORF1a (Meulenberg et al. 1993a, Snijder 1998). The ORF2-5 

encodes the membrane glycoproteins (GP), GP2-GP5, and ORF6 and ORF7 encodes a non-

glycosylated membrane protein (M) and the nucleocapsid (N) protein, respectively. Two 

small genes, ORF2b and ORF5a, are fully embedded in ORF2. Depending on the genotype 

partially or fully embedded in ORF5, encodes the non-glycosylated proteins E and ORF5a 

protein, respectively (Firth et al. 2011). 
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Figure 2. Schematic representation of PRRSV genome orientation. Each ORF encoded by the PRRSV genome is 
represented as a rectangle marked with the respective name of the gene. The 5’ methylated cap structure is 
shown as a black sphere and the ribosomal frameshift is marked with a red sphere. The black lines at both 
termini represent the UTRs. The green box at the 5’-UTR represents the common leader sequence and the 
orange boxes located 5’ to the ORF of the structural proteins represent the mRNA bodies. sg mRNA2-7 is 
shown to the right of the figure and the polyproteins pp1a and pp1ab are shown to the left (Kvisgaard et al. 
2013).  

 

Whole genome sequence analysis revealed that there is a marked genetic and antigenic 

variation between two PRRSV genotypes. The type 1 and type 2 strains are about 70% 

identical at the nucleotide level; and nucleotide sequence diversity within each genotypic 

group can be as much as 10% (Rowland et al. 2012). Initially it was believed that Type 2 

PRRS viruses were more genetically diverse, while Type 1 PRRS viruses exhibited a lower 

degree of variations (Meng et al. 1995, Kapur et al. 1996). This perception has been changed 

following extensive sampling of Type 1 viruses which revealed an even greater diversity 

among European isolates than North American isolates (Stadejek et al. 2002, Stadejek et al. 

2008). The country-specific clusters of PRRSV isolates have also been reported in Great 

Britain, Italy, and Denmark (Forsberg et al. 2002, Frossard et al. 2013). Based on host 

responses (e.g. cytokine responses), PRRSV can be divided into three immunotype such as 

attenuated, suppressive and inflammatory type (Amadori and Razzuoli 2014). Moreover, 

PRRSV of both genotypes show spontaneous genetic mutation and recombination producing 

new antigenic strains, which confronts the success of vaccination.  

 

The PRRSV of both genotypes is highly infectious, about 10 or fewer particles are capable of 

establishing an infection when exposed by the intranasal route. The other routes (oral, vaginal, 

or eye) require higher doses, usually of the order of 10
3
 to particles. The virus is spread by 

nasal secretions, saliva, feces and urine and field studies suggest it can be airborne up to 3 km. 

The breeding aged females can be infected with both undiluted and extended semen carrying 

the virus (Gradil et al. 1996). 
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1.1.3 Host-PRRSV interaction 

The domestic pig (Sus scrofa domesticus) is the only natural host for PRRSV infection. Being 

an obligate intracellular organism, the PRRSV needs to enter into host cells for its survival 

and replication. In addition to host species specificity, PRRSV has very restricted tissue/cell 

specificity. PRRSV primarily enters into the alveolar macrophages through receptor-mediated 

endocytosis (Duan et al. 1998). Initial binding of PRRSV to its host cell occurs through 

interactions with heparan sulphate glycosaminoglycans (Delputte et al. 2005). After entry into 

the host cell, PRRSV enters the early endosome where it co-localizes with the scavenger 

receptor cluster differentiation 163 (CD163); (Van Gorp et al. 2009). The receptor CD163 

together with at drop in pH is believed to be involved in the uncoating of the virus and release 

of its genome into the cytosol (Van Gorp et al. 2008, Van Gorp et al. 2009). The ATPase H+ 

Transporting V1 Subunit B2 (ATP6V1B2) gene encodes a component of vacuolar ATPase 

(V-ATPase) that mediates acidification of endosomal organelles (Hinton et al. 2009), 

facilitates the uncoating of the virus. Viral nucleic acids could be sensed by Toll-like 

receptors (TLRs) pathway or RIG-I pathway both of which lead to type-I IFN induction by 

activating IRF3 and IRF7, and to inflammatory cytokines expression by activating the MAPK 

signaling pathway. The molecular events of interaction between porcine alveolar macrophage 

and highly pathogenic PRRSV at the transcriptome level are presented in Fig 3, as described 

by Zhou et al. (2011). 

 

The replication of the PRRSV genome takes place in the cytoplasm of the host cell. The 

proteins involved in replication are encoded in the two major ORFs, ORF1a and ORF1b. 

Before the replication of the viral genome can take place, the viral proteins involved in this 

process have to be synthesized. The ORF1a is translated directly from the genomic RNA to 

the polyprotein 1a (pp1a) where ORF1b is translated through A-1 ribosomal frameshift just 

upstream of the ORF1a termination codon resulting in the synthesis of polyprotein 1ab 

(pp1ab) from ORF1ab (Snijder and Meulenberg 1998). After the protein synthesis, the 

polyproteins are cleaved into 14 functional nonstructural proteins (nsps). The key enzymes for 

the RNA replication are the RNA-dependent RNA polymerase (RdRp) and the RNA helicase 

both encoded in ORF1b (nsp9 and nsp10); (van Dinten et al. 1996). The structural proteins are 

not translated from the genomic RNA, as the 3’ proximal third of the genome is not accessible 

for ribosomes involved in genome translation, but instead the structural proteins are translated 

from a nested set of sub-genomic mRNA’s (sg mRNA2-7); (Pasternak et al. 2006); (Fig. 2).  
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Figure 3. Transcriptome alterations induced by PRRSV infection in the pulmonary alveolar macrophages of pig. 
Red background in the gene box indicates upregulation of the gene expression, green indicates 
downregulation, and white indicates no change of the gene expression in pulmonary alveolar macrophage 
after in vivo infection with highly pathogenic PRRSV (Zhou et al. 2011).  

 

1.1.4 Vaccination for PRRS control   

Generally, the control strategy for infectious disease is directed into two dimensions: either to 

eliminate the causal agent or to improve the host defense. The vaccination is aimed to train 

the host immune system for preventing subsequent infection of highly pathogenic PRRSV. 

The goal of control strategies in production herd is to minimize economic losses through 

reducing clinical manifestation and mortality; while the control strategies in breeding herds 

aim to produce PRRS-negative piglets at weaning, minimize the PRRSV shedding and 

consequent horizontal transmission in growing pigs (Corzo et al. 2010). Overall, the PRRS 

control strategies include proper gilt acclimatization, partial depopulation, temporal herd 

closure, management practices to minimize PRRSV horizontal transmission, and routine 

vaccination to the pigs.  

 

Vaccination has been considered to be the primary and most economic method to achieve 

immunity and protecting herds from losses associated with infections by highly virulent 

strains of PRRSV (Corzo et al. 2010). The immunization method consists of inoculating 

antigens derived either from killed adjuvant or live attenuated virus in pigs with an attempt to 
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build herd immunity against the subsequent virus infection. At least 20 PRRS vaccines are 

commercially available, worldwide including both attenuated live vaccines (e.g. Porcilis
®
 

PRRS and Ingelvac
®
 PRRS MLV) and inactivated vaccines (e.g. Progressis

®
 and 

PRRomiSe
®
) are commercially available for immunization of pigs against PRRSV (Murtaugh 

and Genzow 2011). The attenuated live virus vaccines and/or killed virus vaccines and 

resident live virus can be used as immunogens (Fano et al. 2005). In general, inactivated virus 

vaccines are not effective as it does not elicit protective immunity in piglets when used as sole 

immunization method (Zuckermann et al. 2007). A recent study to evaluate the effect of killed 

autogenous vaccines on PRRSV infection dynamics concluded that “the experimental 

heterologous inactivated vaccines and the commercial inactivated vaccine had no or only a 

limited influence on viremia” (Geldhof et al. 2012). However, the modified live virus (MLV) 

vaccines are effective in protecting the pig from challenge with a genetically similar or 

“homologous” virus, but provide little protection against heterologous (genetically diverse) 

PRRSV isolates (Murtaugh and Genzow 2011).  

 

1.1.5 Host immune response to PRRSV 

The immune system of pig is composed of three components such as passive immunity, innate 

immunity and adaptive immunity. All three components of the immune system take part in 

developing immune response to PRRSV infection or vaccination.  

 

Innate immunity is the inherent property of immune system which provides the initial 

protection against the invading pathogen or toxins through inflammatory response. Once the 

virus antigen come in contact to the host immune cells, pattern recognition receptors (PRRs), 

such as Toll-like receptors (TLR) and RIG-I-like receptors (RLR), recognize pathogen-

associated molecular patterns (PAMPs); (Luo et al. 2008). Following PAMP binding, TLRs 

and RLRs communicate through specific adaptor proteins that activate transcription factors 

interferon (IFN) regulatory factor 3 (IRF3), IRF7, and NF-κB, which in turn induces Type 1 

IFNs and proinflammatory cytokines. Interferons attach to IFN receptors located on 

neighboring cells, which induces the JAK-STAT pathway, and signals IFN stimulated genes 

(Sun et al. 2012). These genes encode the proteins that ultimately block virus transcription, 

translation, or replication. One characteristic feature of PRRSV infection that probably 

contributes to the retarded development of a specific cell-mediated immune response is the 

apparent lack of an adequate IFN−α response to the viral infection. Pigs infected with PRRSV 

fail to generate any significant inflammatory cytokine expression in the lungs, including the 

type I interferons (IFN-α/β), interleukin-1 (IL-1), and TNF-α (Thanawongnuwech et al. 2001). 



General overview                                                                                                                      11 

 

 

The expression of type I interferon is important for the activation of innate immune response 

(Kimman et al. 2009). The downregulation of INF-α can be a crucial step in PRRSV 

pathogenesis as INF-α has been shown to inhibit PRRSV replication (Albina et al. 1998), 

hence the weak initial innate immune response may lead to longer survival of the virus in the 

infected animal (Kimman et al. 2009). 

 

The bridging between innate and adaptive immunity in viral infections occurs through the 

interaction of dendritic cells with type I interferon and the dendritic-cell mediated polarization 

of T-cell function (Loving et al. 2015). The production of IFN−α by plasmacytoid dendritic 

cells (pDCs) has an autocrine effect that promotes their functional and phenotypic activation 

events necessary for their optimal expression of co-stimulatory molecules and subsequent 

ability to cause naïve T cells to differentiate into IFN−γ secreting cells (Levy et al. 2003). 

There are two alternative routes (IL-12- or type I IFN-dependent) that can lead to an adaptive 

Th 1 cell-mediated immune response with potent antiviral effects (Loving et al. 2015). 

According to a scenario involving the presence of less than a requisite amount of IFN−α, IL-

12 could provide the necessary impetus for the development of an anti-viral IFN−γ response. 

In this regard, IL-12 mRNA has been detected in porcine macrophages infected with PRRSV 

(Thanawongnuwech et al. 2001), and transiently in the lungs of PRRSV-infected pigs (Chung 

and Chae 2003). However, this pathogen is also apparently a poor stimulator of IL-12 

production, since a negligible quantity of IL-12 mRNA or protein was produced by porcine 

PBMCs exposed in vitro to PRRSV (Royaee et al. 2004, Calzada-Nova et al. 2011).  

 

The pig’s adaptive immune response against PRRSV is characterized by being delayed and 

defective mainly because of suboptimal induction of innate immune response, specially the 

induction of type 1 IFNs (Beura et al. 2010). Following a natural infection, it takes at least 3 

months to reach immunity at peak levels and it does not appear to be solid enough to prevent 

reinfection, especially if the reinfection is caused by antigenically heterologous PRRSV 

strains (Zuckermann et al. 2007). Following vaccination, the earliest and strongest antibody 

response is directed against the N protein which is measureable 5-9 days post infection (PI); 

(Kimman et al. 2009). Antibodies against the two non-structural proteins nsp1 and nsp2 are 

evident at 14 days PI, and reach peak levels at 28-35 days PI (Oleksiewicz et al. 2001, De 

Lima et al. 2006, Johnson et al. 2007). All these early produced antibodies are non-

neutralizing whereas the neutralizing antibodies first appear 4 weeks PI or even later (Lopez 

and Osorio 2004). The neutralizing antibody response against the GP5 neutralizing epitope is 
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weak and delayed, and some animals fail to make a detectable antibody response against GP5 

(Chand et al. 2012).  

 

In addition to innate and adaptive immunity, the passive immunity also provides short term 

protection for the piglets against PRRSV infection. The passive immunity is acquired by the 

newborns from mother through intra-colostrum transmission of immunoglobulins. If sows are 

immunized through previous PRRSV infection or vaccination, piglets are likely to be 

immunized at least for certain periods after birth. The passively acquired host immunity 

provides a short-term protection to PRRS disease in young piglets. The maternally derived 

antibody (MDA), however, can adversely affect on vaccination success by interfering with 

vaccine induced antibody response, and can increase disease severity through antibody 

dependent enhancement process (Yoon et al. 1996). Therefore, relatively lower level of MDA 

is appreciated at the time of primary vaccination with modified live virus vaccine against 

PRRS.  

 

1.1.6 Breed differences on host response to PRRSV  

Breed has been considered one of the most potential host determinants influencing the 

susceptibility to PRRSV infection in pigs (Lunney and Chen 2010). The breed differences on 

the host resistance or susceptibility to PRRSV infection among swine breeds has been 

reported in several studies (Halbur et al. 1998, Christopher-Hennings et al. 2001, Petry et al. 

2005, Vincent et al. 2005, Reiner et al. 2010, Ait-Ali et al. 2011, Xing et al. 2014). The 

difference on relative resistance to PRRSV infection has been observed between Chinese 

Meishan and European pig breeds (Halbur et al. 1998). The variation in host innate immunity 

to European type PRRSV infection has been reported between Landrace and Pietrain pigs 

through global gene expression profiling of in vitro PRRSV infected pulmonary alveolar 

macrophage (Ait-Ali et al. 2011). Halbur et al (1998) infected Duroc, Hampshire, and 

Meishan pigs with PRRS virus (VR-2385) at 22 to 38 days of age and compared the 

cytopathic lesions 10 days post infection. Hampshire pigs had significantly more severe lung 

lesions than Duroc or Meishan pigs. The Meishan pigs had significantly less PRRS virus 

detected in the lungs, but significantly more heart and brain lesions. The Duroc pigs had 

significantly lower serum antibody titers against PRRS virus. The investigators concluded that 

the differences observed could, in part, be influenced by breed genetics (Halbur et al. 1998). 

The non-lean pigs show a reduced susceptibility to PRRSV (Petry et al. 2005), as also shown 

by the comparative evaluation of PRRSV infection of a local German breed and of 

commercial Pietrain pigs (Reiner et al. 2010). The breed comparisons on degree of 
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susceptibility to PRRSV has been summarized from higher order to lower as 

Hampshire > Large White > Duroc > Landrace (reviewed by Lewis et al. 2007). One of the 

recent studies of our group revealed the differences between Duroc and Pietrain pigs in terms 

of transcriptome profiles of lung dendritic cells after in vitro PRRSV infection (Pröll et al. 

2016, unpublished data). In the current study, we therefore tested whether any differences on 

PRRSV vaccine induced transcriptional responses between German Landrace (DL) and 

Pietrain (Pi) pigs.  

 

Landrace and Pietrain are two leading breeds for commercial pig production worldwide. The 

breeding of the German Landrace pig was commenced in the northwestern parts of Germany 

and particularly in the Lower Saxony State in about the year 1900 with local pigs being used 

as the seed stock. Between 1948 and 1958, importations of Danish and Dutch Landrace 

enhanced the improvement of the DL breed in Germany. The DL is one of the leading pig 

breeds in Germany, with white body coat and heavy drooping ears similar to that of the 

Landrace strains in other countries of the world. The DL pig breed has been chosen for 

meatiness and are not as great in length and size as a few of the Landrace strains of other 

countries. Selection attempts have been particularly directed toward outstanding fertility, 

intense milking and good mothering traits. There has been special concentration, after 

weaning, to effectiveness in feed change and to elevated cut-out values. The DL tends to be 

slightly shorter and smaller than rather extreme size seen in the Landrace of some other 

nations. The DL pigs have small lungs compared to their body size and they do not sweat a lot 

and serve as reservoir for many infectious pathogens. On the other hand, the Pietrain breed 

originated from Belgium in the 1950’s and later exported to other countries. The breed is of 

medium size with erected ears and white body coat with black spots (Brings, 1983). Around 

the black spots there are characteristic rings of light pigmentation that carries white hair. The 

breed is commonly referred to as being of piebald markings and well known for having 

extremely high lean to the fat ratios. 

 

1.1.7 Genetic control for PRRS  

Genetic control through improving the host resistance has been considered another promising 

strategy to combat the PRRSV infection. To implement the genetic control, it is necessary to 

identify genomic regions and DNA markers useful for selecting pigs with improved PRRS 

resistance while retaining desired production traits. Several research groups have probed for 

genes and genetic variants and identified quantitative trait locus (QTL) involved in swine 

health, immune response, and disease resistance traits (reviewed by Lunney and Chen 2010). 
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With the full length swine genome sequence completed and immunome annotated (Groenen 

et al. 2012, Dawson et al. 2013, Tuggle et al. 2016), studies have accelerated. Genome-wide 

association study revealed a major QTL on Sus scrofa chromosome 4 (SSC4) associated with 

host resistance to in-vivo PRRSV infection (Boddicker et al. 2012). The association of this 

region on SSC4 with PRRS resistance was further validated by the presence of single 

nucleotide polymorphism (SNP) marker, WUR10000125 (WUR) in the same region 

(Boddicker et al. 2014a, Boddicker et al. 2014b). Gene expression study in PRRSV infected 

pulmonary alveolar macrophages over 24 h post infection period suggested that myxovirus 

resistance 1 (MX1) and ubiquitin specific protease (USP) genes may play important role in 

clinical disease during PRRSV infection (Zhang et al. 1999). It has been reported that the 

overexpression of the porcine USP18 resulted a limited replication of PRRSV (Ait-Ali et al. 

2009) and a subsequent study suggested that the SNP G-1533A polymorphism in the 

promoter region of porcine USP18 gene is a potential DNA marker for the resistance to 

PRRSV (Li et al. 2014). Recently, a single nucleotide polymorphism (SNP) WUR10000125 

(WUR) at the interferon-inducible guanylate-binding protein 1 gene (GBP1) has been found 

to be associated with European PRRS resistance and growth performance in pig (Abella et al. 

2016).   

 

The advent of PRRS research suggests that the robust and sustainable PRRS control could be 

achieved by improving the host genetics through selective breeding for PRRS resistance 

(Lunney et al. 2011, Rowland et al. 2012, Lunney et al. 2016). However, research on genetic 

resistance to PRRS is multifactorial as reviewed by Lunney et al. (2016); it is aimed at 

identifying and understanding the host allelic variation associated with virus replication, 

which is dependent on the isolate, its virulence, tissue tropism, persistence, and route of 

infection, as well as on the host immune response and the speed and regulation of innate and 

adaptive antiviral immunity. The genetic variations in PRRS resistance/susceptibility are 

polygenic and are likely influenced by the pig’s health status and its microbiome, concomitant 

infections, and nutritional plane. Taken together, it is imperative to understand well the 

immunological events resulted from host-vaccine interactions at the transcriptional level for 

stepping forward to genetic control of PRRS through improving the host resistance.  

 

1.1.8 Alteration of mRNA transcriptome profile in response to PRRSV  

Transcriptome refers to the complete set of RNA transcripts produced by the genome at a time 

point. The transcriptome is dynamic and changes under different circumstances due to 
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different patterns of gene expression. The global mRNA transcriptome profiling enables to 

generate a comprehensive, genome-wide picture of what genes are active in PBMCs in 

response to PRRSV vaccination in pigs. The transcriptome data provide a good place to start 

for exploring potential candidate genes responsible for the host immunity, and thereby 

susceptibility or resistance to PRRSV in pigs. The availability of high-throughput omics 

technology including microarray, facilitates the detection of transcriptome alterations to 

understand molecular genetics behind the complex interaction of vaccine-host immune cells 

in pigs (Tuggle et al. 2007, Tuggle et al. 2010, Schroyen and Tuggle, 2015). The microarray-

based transcriptome profiles have been investigated to characterize the host immune response 

to PRRSV by several authors (Genini et al. 2008, Ait-Ali et al. 2011, Zhou et al. 2011, 

Wysocki et al. 2012). Badaoui et al (2013) recently illustrated how the information of 

multiple PRRS studies could be used simultaneously to gain insight on host response to 

PRRSV challenges. They have collected all publicly available microarray data covering 

multiple porcine immunology studies and including many different breeds, tissues, pathogens, 

and array platforms. The data of 779 general immune response arrays were assembled, and 

separate meta-analyses for differential expression were performed using these 779 arrays as 

well as a subset of 279 arrays specifically from PRRS experiments (Badaoui et al. 2013). 

However, transcriptome data on peripheral blood in response to in vivo PRRSV vaccination 

in pig is rare.   

 

1.1.9 Alteration of microRNA transcriptome profile in response to PRRSV  

Expression dynamics of global microRNAs in host cells in response to PRRSV has recently 

been a subject of intensive research. MicroRNAs are endogenous, small non-protein-coding 

single stranded RNAs and are known to be involved in post transcriptional epigenetic 

regulation of gene expression (Bartel 2004). Several attempts have been made to determine 

the effects of PRRSV infection on the expression changes of miRNAs of the host cells. 

Analyses of miRNA profiles of PRRSV infected alveolar macrophages have identified a total 

of forty cellular miRNAs whose expression was significantly altered within the first 48 hours 

of infection (Julie et al. 2013). These findings suggest that miRNAs are likely important 

mediators of PRRSV replication and host defense to infection. Li et al (2015) identified 

microRNAs related to PRRSV replication and host immune responses using eight lung 

microRNA transcriptomes from pigs infected with a highly pathogenic PRRSV. They also 

identified the microRNAs that could bind to the PRRSV genome and candidate editing sites 

on microRNA sequences (Li et al. 2015). The functional role of some candidate microRNAs 
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on replication of PRRSV and host immune pathways upon PRRSV infection has also been 

studied by several authors. Accumulated reports indicated that miR-181 and miR-23a 

inhibited PRRSV replication through binding to PRRSV genome (Guo et al. 2013, Zhang et 

al. 2014), while miR-181, miR-125b and miR-506 suppressed PRRSV replication through 

regulating host antiviral pathways (Gao et al. 2013, Wang et al. 2013, Wu et al. 2014). To this 

end, it would be interesting to investigate the consequences of PRRSV vaccination on 

expression dynamics of global miRNAs and thereby exploring the integrated miRNA-miRNA 

network of vaccine induced immune response. Most of the previous PRRSV transcriptome 

studies were based on lung tissue, particularly the alveolar macrophage, may be since lungs 

provide primary site of viral replication during natural infection. However, expression profiles 

of global microRNAs as well as mRNAs in peripheral blood cells following PRRSV 

vaccination in pigs has not yet been systematically analyzed. 

 

1.1.10  PBMCs transcriptome model for evaluating the PRRSV vaccine immunity    

The present dissertation work implemented the peripheral blood mononuclear cells (PBMCs)-

transcriptome model to characterize the host-PRRSV vaccine interaction in terms of immune 

responses. The PBMCs are subset of white blood cells that include lymphocytes (T cells, B 

cells and NK cells), monocytes and dendritic cells. The proportion of lymphocytes are 

typically in the range of 70–90% of PBMCs, monocytes range from 10–30% of PBMCs, 

while dendritic cells are rare, being only 1–2% of PBMCs. The PBMCs are readily accessible 

from anticoagulated whole blood samples through density gradient centrifugation. In addition, 

the PBMCs model has several advantages over respiratory tissue/cells including quick and 

convenient sampling; minimum stress to the study animals, and possibility of time course 

investigation through repeated sampling from the same individual.  

 

Transcriptome profiling of PBMCs throughout the course of immune responses has been 

widely used to identify the extent and kinetics of differential gene expression (Ojha and 

Kostrzynska 2008, Gao et al. 2010, Huang et al. 2011, Wilkinson et al. 2012, Adler et al. 

2013a). The global transcriptome studies have shown that porcine PBMCs can display gene 

expression patterns which are characteristic for certain pathogenic infection, for example, 

classical swine fever (Li et al. 2010) and tetanus toxoid (Adler et al. 2013b). Moreover, the 

PBMCs transcriptome represents not only the primary immune function of leukocytes, but 

also displays transcriptomic shifts of other tissues and organs due to physiological and 

environmental alterations (Liew et al. 2006, Kohane and Valtchinov 2012). Therefore, 
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PBMCs transcriptome model was used for evaluation of host transcriptional response to 

PRRSV vaccination in pigs. 

 

1.2 Aim and objectives of the dissertation  

The overall intention of the dissertation was to elucidate the immunogenetic insights of host-

virus interaction for better understanding the genetic control of PRRS. To make the 

dissertation aim achievable, the following specific objectives were settled: 

1. Investigation of the global mRNA profiles of PBMCs to: 

- characterize the innate immune transcriptional response to PRRSV vaccination in   

German Landrace and Pietrain pigs 

- identify potential candidate genes and functional network of PRRSV vaccine altered  

transcriptomes associated with innate and adaptive immunity to PRRSV vaccine in 

Pietrain pigs 

- estimate the breed difference on vaccine induced mRNA alteration between German 

Landrace and Pietrain pigs    

2. Investigation of the global microRNA profiles of PBMCs to: 

- characterize microRNAome expression dynamics in PBMCs associated with innate 

immune response to PRRSV vaccination 

- explore breed variation on PRRSV vaccine induced microRNAome alteration between 

German Landrace and Pietrain pigs 

3. Integrated analysis of miRNA-mRNA expression profiles of the same PBMCs to 

understand the cellular regulatory network of gene expression associated with host 

immune response to PRRSV vaccine.     
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1.3 Materials and methods  

To achieve the dissertation goal, several materials and methods were used. The particular 

materials and methods are described elaborately in the respective chapters of this dissertation. 

The importance of key methods and their technical procedure are briefly pointed out here. 

 

1.3.1 Experimental setup and ethics statements 

Two in vivo vaccination studies were designed to investigate the host immunogenetic 

response to PRRSV vaccine in pigs of two breeds. The first experiment was conducted on 

purebred German Landrace pigs followed by the second one on purebred Pietrain pigs. Piglets 

those were clinically healthy, and had no history of respiratory diseases and birth defects were 

included in the experiments. Animals of both experiments were housed in the pig research 

station at Frankenforst, University of Bonn, Germany. The in-vivo experiments were 

performed according to the institutional guidelines and animal husbandry regulations of 

Germany (ZDS 2003). The research proposal has been approved by the Veterinary and Food 

Inspection Office, Siegburg, Germany (ref. 39600305-547/15). The blood sampling protocol 

was also approved by the State Agency for Nature, Environment and Consumer Protection, 

North Rhine-Westphalia, Germany (permission nr. 84-02.05.04.14.027).    

 

1.3.2 Vaccination and blood sampling  

For the first experiment, 12 female piglets from two sows farrowed at the same day were 

allocated into two separate pens having at least three from each sow in either vaccinated (n=6) 

or unvaccinated (n=6) group (Fig 4A). The piglets of vaccinated group were treated with 

intramuscular vaccination with primary dose at day 28 and booster dose at day 56 of age 

using the modified live PRRSV vaccine of European strain (Porcilis
®
 PRRS, MSD Animal 

Health, Germany) according to the routine farm vaccination program. The piglets of control 

group were kept unvaccinated as health control and managed with the same husbandry 

protocol. About 8 ml whole blood samples with 1.5 mL anticoagulant (0.5 M EDTA) were 

collected longitudinally from all pigs immediately before (0 h) and several time points after 

1
st
 and 2

nd
 vaccination (Fig 4A). For the second experiment, only one group of six Pietrain 

piglets was vaccinated and the blood sampling was performed immediately before and several 

time points after vaccination (Fig 4B).    

  



General overview                                                                                                                      19 

 

 

A. Blood sampling from German Landrace pigs:  
 

 
 
 
 
 
 
 
 
                                   
 
 
                                                

 

B. Blood sampling from Pietrain pigs:  
 

 
 
 
 
 
 
 
                                   
 
 
                                                  
C. Sample processing: 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 4. Schematic overview of the experimental design. Vertical red lines indicate the blood collection time 
points, vertical red arrow indicated the vaccination time points, red hollow circle indicated the time points 
used for mRNA expression profiling and green triangle indicate the time points used for miRNA expression 
profiling 
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1.3.3 Isolation of PBMCs and plasma  

Isolation of peripheral blood mononuclear cells (PBMCs) was performed by density gradient 

centrifugation with Histopaque
®

-1077 (Sigma-Aldrich, Munich, Germany). In brief, whole 

blood were diluted 1:1 with phosphate buffered saline (PBS, pH=7.4); and carefully layered 

over 8 mL of Histopaque
®
-1077 solution kept in a 50 ml conical tube and centrifuged at 1500 

rpm for 30 min at room temperature. After centrifugation, PBMC preparation was carefully 

aspirate and treated with RBC lysis buffer (Invitrogen, Darmstadt, Germany) to make free of 

erythrocytes. Finally PBMCs were washed twice with PBS and harvested as pellet. The 

PBMC was stored at -80 °C until RNA isolation.  

 

1.3.4 Measurement of plasma antibody level  

To monitor the PRRSV-specific antibody titre, the plasma samples were screened by ELISA 

(PRRSV-AK screening, Synlab Vet GmbH, Augsburg, Germany) according to 

manufacturer’s protocol. The optical density (OD) of each well was measured at 650 nm 

using the Bio-Rad 680 microplate reader. The presence or absence of PRRSV antibody was 

determined by calculating the sample to positive (S/P) ratio.  The S/P ratio was calculated 

according to the following equation: S/P ratio (%) = 100 × [(OD of test sample – Mean OD of 

negative controls) / (Mean OD of positive controls – Mean OD of negative controls)]. The 

samples were considered to be positive for PRRSV antibody if the S/P ratio was more than 

0.4 as described by Kittawornrat et al (2012). 

 

1.3.5 Extraction and quality control of total RNA  

Total RNA was extracted from PBMCs by using the miRNeasy mini kit (P/N 217004, 

Qiagen, Co.) according to the manufacturer’s instruction along with on-column DNase 

treatment (P/N 79254, Qiagen, Co). RNA concentration and purity were measured by 

NanoDrop® spectrophotometry (ND-8000; NanoDrop Technologies). Extracted RNA was 

determined to be of high purity, as indicated by the absorbance ratio (A260:A280) being very 

close to 2.00 (1.80 – 2.20). RNA integrity was checked by visualization on 2 % agarose gel 

containing ethidium bromide followed by micro capillary electrophoresis on an Agilent 2100 

Bioanalyzer with RNA 6000 Nanochip Kit (Agilent Technologies, Waghäusel - Wiesental, 

Germany). 

  



General overview                                                                                                                      21 

 

 

1.3.6 Microarray-based global mRNA expression profiling of PBMCs 

The microarray technology enables a snapshot of the entire cellular transcriptome (either 

messenger RNA or microRNA) on a single microarray chip, furnishing investigation with a 

global perspective of the complex interactions among thousands of genes simultaneously 

(Schena 1996). In fact, the RNA profile obtained from microarrays is a static representation of 

the biological state of the sample and yields the highest information and throughput of any 

classification assay (Ebert and Golub 2004). In the present study, the Affymetrix 

oligonucleotide microarray platform has been employed for global expression profiling of both 

mRNA and miRNA in the same PBMCs samples to determine the consequences of PRRSV 

vaccination on cellular regulatory networks of gene expression. 

  

For mRNA expression profiling, the GeneChip
®

 WT PLUS Reagent kit (Affymetrix, Santa 

Clara, CA, USA) was used to synthesize the microarray target probes. The cDNA-based 

microarray target preparation protocol based on WT PLUS kit was considered for the 

following reasons: 1). This kit enables priming of entire length of each transcripts in the 

sample including both polyadenylated (poly-A) and non-poly-A mRNA while many 

traditional 3´ based expression arrays do only for poly-A containing end. 2). This kit enables 

synthesis of biotinylated sense strand DNA target which produce a DNA-DNA duplex upon 

hybridization instead of biotinylated antisense RNA (cRNA) resulting RNA-DNA duplex on 

hybridization using standard protocol for 3´ based expression arrays (Eklund et al. 2006). 

Therefore this protocol provides more specific, unbiased and maximum coverage of the 

transcriptomes expressed in the sample. A set of poly-A RNA controls was used as exogenous 

positive controls to monitor the whole process of target preparation. 

 

The first-strand cDNA was synthesized from 100 ng of total RNA. Then it was converted to 

the second-strand cDNA by DNA polymerase in the presence of RNase H (Fig 5). The 

double-strand cDNA was subjected to in-vitro transcription for the synthesis of the antisense 

RNA (cRNA). After bead purification, the cRNA was converted into the sense-strand cDNA 

(ss-cDNA). The purified ss-cDNA was fragmented followed by labeling with biotin. Then the 

biotinylated microarray target probes were hybridized using the hybridization, washing and 

staining steps, the GeneChip
®
 Hybridization, Wash and Stain Kit (Affymetrix, Inc.). About 

130 μL of the fragmented and labeled ss-cDNA preparation in a cocktail was loaded on the 

whole transcript microarrays (GeneChip
®
 Porcine Gene 1.0 ST Array of 81/4 format) and 

hybridized for 16 h at 45 °C and 60 rpm. The hybridization and scanning was performed in  
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Figure 5. Workflow for the preparation and labeling of microarray target probes for mRNA expression. It was 
based on the Gene chip WT PLUS kit (Affymetrix Santa Clara, USA) 

 

the Affymetrix array processing unit at Life and Brain center, Institute of Human Genetics, 

University of Bonn, Germany. The array images were then processed with the Affymetrix 

GeneChip Command Console™ (AGCC) software to align spots, to integrate ID data files 

and to export reports of spot intensity data.  
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1.3.7 Microarray-based global microRNA expression profiling of PBMCs 

For global microRNA expression profiling, the FlashTag
TM

 Biotin HSR RNA Labelling kit 

(P/N 901910; Affymetrix, Santa Clara, CA, USA) was used for synthesizing the labelled 

microarray target probes (Fig 6). The ELOSA assay was performed to evaluate the labelling 

efficiency of the kit. The biotinylated total RNA was then hybridized for 16 h using the 

Affymetrix GeneChip miRNA Array v.4.0 (Affymetrix, Santa Clara, CA, U.S.). Then 

hybridized array chips were washed and stained using the Affymetrix GeneChip 

Hybridization Wash and Stain Kit and were then scanned with the Affymetrix GeneChip 

Scanner 3000 7G (Affymetrix, Santa Clara, CA, U.S.).  

 

 

Figure 6. Workflow for the preparation and labeling microarray target probes for miRNAs expression. It was 
based on the FlashTagTM Biotin HSR RNA Labelling kit (P/N 901910; Affymetrix, Santa Clara, CA, USA) 
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1.3.8 The qRT-PCR validation of microarray expression results 

The quantitative real-time PCR (qRT-PCR) has been considered one of the sensitive methods 

for technical validation of expression changes observed in multiple gene sets in microarray 

(Chuaqui et al. 2002). Therefore, the current microarray results for both mRNA and miRNAs 

expression were validated by qRT-PCR through measuring selected mRNA and miRNAs in 

the same RNA samples as used for microarray hybridization.  

 

For validation of mRNA expression, the total RNA was transcribed into cDNA using the First 

Strand cDNA Synthesis Kit (P/N K1612, Thermo Scientific, Co.). The qRT-PCR reaction was 

set up taking 1.0 μl of cDNA template, 8.0 μl of deionized RNase free water, 0.5 μl of 

upstream and downstream primers, and 10 μl iTaq™ Universal SYBR
®
 Green Supermix 

(Bio-Rad laboratories GmbH, Germany) in a total reaction volume of 20 μl and were 

amplified by the StepOnePlus™ Real-Time PCR System (Applied Biosystems
®
, Darmstadt, 

Germany). The thermal cycling conditions were 95 °C for 3 min, 95 °C for 15 sec, 6 °C for 45 

sec (40 cycles); 95 °C for 15 sec, 62 °C for 1 min, 95 °C for 15 sec. All reactions were run in 

duplicate and the average value was used as expression value. Gene-specific expression was 

measured as relative to the geometric mean of the expression of two housekeeping genes 

(GAPDH and ACTB). The comparative cycle threshold (∆Ct) [∆Ct = Cttarget - Cthousekeeping 

genes] values were calculated as the difference between target gene and reference genes and 

expression was calculated as 2
(-∆Ct)

 (Pfaffl 2001). The correlation between microarray and 

qRT-PCR results was analyzed by Spearman’s Rho test. The significance level was set as p< 

0.05. 

 

For validation of microRNA expression, gene specific primers were designed based on an 

open source primer designing software Primer3web version 4.0 (Rozen and Skaletsky 2000). 

The cDNA was synthesized from 80 ng of miRNA-enriched total RNA, using a miRCURY 

LAN Universal cDNA synthesis kit (Exiqon) according to the manufacturer’s instructions. 

The resulting cDNA was diluted into 40 times and used for qPCR analysis of candidate 

miRNAs by using ExiLENT SYBR Green Master Mix (Exiqon). Thermal cycling conditions 

were preheated at 95 °C for 10 min, followed by 40 cycles of amplification at 95 °C for 10 sec 

and 60 °C for 1 min. The specificity of miRNA amplification was evaluated by melting curve 

analysis. The geometric mean of the expression of U6 small noncoding small nuclear RNA 

(snRNA) and 5S ribosomal RNA was used to normalize the expression values of candidate 
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miRNAs. The qPCR data were analyzed using the comparative cycle threshold (Ct) method 

(Livak and Schmittgen 2001).  

 

1.3.9 Statistical analyses of microarray data 

The normalization and statistical analyses of both mRNA and miRNA expression data were 

performed using packages of Bioconductor-platform implemented in R-project software 

(v3.1.2); (Gentleman et al. 2004). 

 

1.3.9.1 Normalization, background correction, filtering and summarization 

The RMA (Robust Multi-array Average) based quantile normalization of both mRNA and 

miRNA array data was performed using ‘oligo’ package (Carvalho and Irizarry 2010). For the 

quality control, some diagnostic plots of the raw intensity data were checked before and after 

the normalization. Followed by the normalization, different internal control probes of the chip 

were filtered out. In addition, the interquartile range (IQR) based filtering (variance cutoff 

value 0.25) was applied to reduce the heterogeneity of expression across the samples. Probe to 

gene transcript annotation was performed with recent Affymetrix annotation file for assigned 

array (Liu et al. 2003).  

 

1.3.9.2 Differential gene expression analysis  

The principal aim of analyzing the global gene expression data is to identify genes whose 

patterns of expression differ according to phenotype or experimental condition. The statistical 

approach to discover these quantitative changes in gene expression levels between 

experimental groups are known as differential expression analysis. The differential gene 

expression analysis was performed using the linear analysis of microarray technique from the 

‘limma’ package (Smyth 2005) with empirical Bayes adjustment to the variance, followed by 

Benjamini and Hochberg (BH) correction for multiple testing (Benjamini and Hochberg 

1995). The thresholds of false discovery rate (FDR) and log2 fold-change were fixed based on 

dataset and contrast pairs for determining the number of differentially expressed genes. The 

number of differentially expressed genes in each contrast pair and their interaction were 

exported in intersecting Venn diagram. 

 

1.3.9.3 Alternative splicing analysis  

The microarray chip we used for mRNA expression can provide the exon level information, 

we took this advantage and determined the alternative splicing events using the ‘limma’ 

package (Smyth 2005). For this purpose, we used the probe level RMA normalized data for 



26                                                                                                                                   Chapter 1 

 

 

downstream analysis instead of transcript level data as used for differential expression 

analysis.   

 

1.3.10 Bioinformatics analyses of microarray data 

Followed by statistical analyses, the list of interested transcriptomes (differentially expressed 

mRNA and miRNAs) were subjected to in-silico functional analyses using several open 

source online tools for synthesizing the meaningful biological interpretations.  

 

1.3.10.1 Gene set enrichment analysis 

The gene set enrichment analysis (GSEA) is a computational method that determines whether 

an a priori defined set of genes shows statistically significant, concordant difference between 

two biological states (e.g. phenotypes). The current study generated global mRNA profiles of 

PBMCs from vaccinated German Landrace pigs along with age-matched unvaccinated pigs 

(Chapter 2, Fig 9). The GSEA algorithm was employed for characterization of phenotypic 

groups (i.e. vaccinated and unvaccinated) through genome-wide comparison of PBMC 

transcriptome profiles. The GSEA first ranks all genes expressed based on the correlation 

(positive or negative) of their expression values with one of two phenotypes tested, then seeks 

the significance of over-representation of pre-defined gene sets (pathways) with the ranked 

gene list (Subramanian et al. 2005). By this way, GSEA focused on identifying the pathways 

not the individual genes differentially expressed between two contrast phenotypic groups. The 

GSEA used here took the advantage of its ability to utilize biological information about well-

characterized biological pathways from literature to guide analysis (Cantu et al. 2013). It also 

used maximum information on dataset by taking into account the effect of co-expressed genes 

and genes having low expression differences between contrast groups (Abatangelo et al. 

2009). For this analysis, the normalized and filtered expression values of all expressed genes 

of PBMCs were used to differentiate the transcriptome response between vaccinated and 

unvaccinated phenotype. The details of application are available in chapter 2.  

 

1.3.10.2 Gene ontology and pathway analyses  

For comprehensive biological interpretation, the significantly over-represented gene ontology 

terms and biological pathways were explored with the InnateDB pathway analysis tool 

(Breuer et al. 2013). The InnateDB is a publicly available database of the genes, proteins, 

experimentally-verified interactions and signaling pathways involved in the innate immune 

response of humans, mice and bovines to microbial infection. For this analysis, the identifiers 
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of DEGs from microarray data were converted to their human ensembl orthologues using the 

BioDBnet tool (http://biodbnet.abcc.ncifcrf.gov/). The list of ensembl gene identifiers was 

then uploaded in InnateDB web and performed the over-representation analysis with 

implementation of the hypergeometric algorithm and the Benjamini-Hochberg (BH) multiple 

test correction method. The gene ontology (GO) and pathways were considered significantly 

over-represented if they had a FDR<0.05.  

 

1.3.10.3 Transcription factor binding site analysis  

Transcription factors (TFs) are potential regulators of gene expression. In mammalian 

genome, genes are usually in a default ‘off’ state and TFs serve mainly to turn gene 

expression ‘on’. Transcription factors bind to a DNA promoter sequence near to the 

transcription start site and facilitate the formation of transcription initiation complex. 

Therefore, it is important to know if there is any transcription factor binding sites (TFBSs) in 

the genes of interest. For this purpose, the significantly over-represented TFBSs in the 

differentially expressed genes were explored with the InnateDB tool (Breuer et al. 2013). The 

TFBSs were considered significantly over-represented with the cutoff for FDR < 0.05. 

 

1.3.10.4 Cell-type enrichment analysis  

The cellular sub-populations of PBMCs are likely having individual roles on development of 

vaccine mediated immunity. Therefore, the ability to distinguish the effects of variation in 

cellular demographics from the global gene expression would improve our understanding on 

which subtypes of PBMCs contribute in vaccine induced differential gene expression. For this 

purpose, the differentially expressed genes were analyzed using the CTen web-portal. The 

CTen (cell type enrichment) is an online bioinformatics tool for identifying enriched cell 

types in heterogeneous microarray data (Shoemaker et al. 2012). This tool implements a 

highly expressed, cell specific (HECS) gene database comprises of 10,058 genes of human 

and mouse origin. For this analysis, human orthologus symbol of differentially expressed 

genes were uploaded and compared with human HECS database. The significance of 

enrichment was determined using the one-tailed Fisher exact test and P values were adjusted 

with Benjamini-Hochberg (BH) method across all cell types. The enrichment score estimated 

as -log10 of the BH-adjusted P value and created the color-coated output figures indicating 

this enrichment score. 

  

http://biodbnet.abcc.ncifcrf.gov/
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1.3.10.5 Sub-network enrichment analysis  

Gene expression is a well coordinated system where expression measurement of particular 

gene is not fully independent in an in vivo setting. Like other quantitative traits, immune 

response is regulated by multiple genes which interact with each other through an 

interconnecting network. The potential regulatory genes of the network promote or inhibit the 

expression of other connecting genes to maintain the biological functions (Macneil and 

Walhout 2011). Therefore, network based approaches are believed to be more sensible over 

the pathway/gene based linear modeling to find the regulatory molecules for transcriptome 

alterations. To visualize the PRRSV vaccine induced transcriptional network as well as to 

identify the regulatory genes, the sub-network analysis was performed using NetworkAnlayst 

online tool (Xia et al. 2014). This tool uses the InnateDB (downloaded June 20, 2014) 

protein-protein interaction (PPI) datasets comprised of 14,755 proteins and 145,955 

experimentally validated interactions for human. NetworkAnlayst implements the R package 

‘igraph’ for network analysis and ‘Gephi Toolkit’ for finalizing the network layout. Human 

orthologous ensembl gene identifiers of the DEGs were uploaded into the NetworkAnlayst to 

construct the interacting network. A default network was assembled based on the Walktrap 

algorithm taking only direct interaction of seed genes flowed by adjustment of the network 

size for high-performance visualization. Two topological measures such as degree and 

betweenness centrality were taken into account for detecting highly interconnected hubs of 

the network. Finally, weighted network based module detection was performed to cluster the 

genes of similar biological functions. The p value of a given network module was calculated 

using a Wilcoxon rank-sum test of the "internal" and "external" degrees. The functional 

enrichment of modules was performed with REACTOME.db pathway database incorporated 

in this tool.  

 

1.3.10.6 Differential expression analysis for miRNAs 

To identify the differentially expressed miRNAs, the normalized probes were analyzed using 

the linear analysis of microarray technique from the ‘limma’ package (Smyth 2005) with 

empirical Bayes adjustment to the variance, followed by Benjamini and Hochberg (BH) 

correction for multiple testing (Benjamini and Hochberg 1995). The thresholds of false 

discovery rate (FDR) and log2 fold-change were fixed based on dataset and contrast pairs for 

determining the number of differentially expressed microRNAs. The number of differentially 

expressed miRNAs in each contrast pair and their interaction were exported in intersecting 

Venn diagram. 
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1.3.10.7 In-silico prediction for target genes of differentially expressed miRNAs 

Investigating the alteration of miRNA profiles is crucial to understanding genetics of 

immunological processes. However, microRNAs are not directly involved in phenotypic 

changes but regulate the gene expression at post-transcriptional level. MicroRNAs work 

through recognition of complementary sequence target elements followed by either inhibiting 

messenger RNA (mRNA) translation or inducing mRNA degradation (Bartel 2004). 

Therefore, the predicted mRNA targets of interested microRNA are required for biological 

interpretation. For this purpose, the in-silico miRNA target prediction studies were performed 

using the both TargetScan v.7.1 (Bartel 2009) and miRDB v5.0 (Nathan and Wang 2015) 

were used to predict the target gene candidates based on complementarity of the miRNA seed 

sequence (position 2-8 of the miRNA 5′-end) and target binding site on the 5′ UTR, 3′ UTR 

and protein coding region of the porcine mRNA sequences (Sus scrofa 10.2); (Lewis et al. 

2005). The miRDB server utilizes the miRNAs source from miRBase v21 and implements the 

MirTarget prediction algorithm. The combined list of predicted mRNA targets obtained from 

both tools was processed further. 

 

1.3.10.8 Integrated mRNA-miRNA network analysis 

The miRNA-mRNA interactome networks were constructed for the PRRSV vaccine response 

in PBMCs as previously described with minor modifications (Coll et al. 2015). First, we 

refined the list of predicted targets scanned for potential target genes of DE miRNAs. For 

accomplishing this, we used the differentially expressed genes (DEGs) list obtained from our 

previous microarray-based mRNA expression data to integrate with the differentially 

expressed miRNAs. The overlapped results from predicted mRNA targets and DEGs in 

PBMCs were extracted as true differentially expressed target genes (TDETGs) of the DE 

miRNAs. In a second phase of the integration procedure we identified those miRNA-target 

pairs showing negative correlation between miRNA and mRNAs. To accomplish this, Pearson 

correlation of the expressions of all possible combinations of deregulated mRNAs vs 

deregulated miRNAs were computed. Multiple testing correction was performed in order to 

reduce the number of false positive correlations and a final cut-off was set to FDR (false 

discovery rate) < 0.05. Finally, the miRNA-mRNA pairs with significant negative correlation 

(FDR < 0.05 and Pearson coefficient < 0) were used for functional co-regulatory network of 

miRNA-mRNA. The miRNA-mRNA network was visualized using the Cytoscape v3.2.1 

(Cline et al. 2007).  
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1.4 Results 

Detailed results are presented with figures and tables in different chapters of this thesis. Only 

the major findings are highlighted here.  

  

1.4.1 The PRRSV-specific antibody response 

In order to exclude the maternally derived antibody (MDA) of PRRSV as well as to evaluate 

the vaccine induced antibody response, plasma samples from all pigs at day 7, 28, 42, 56 and 

70 of age were screened by ELISA. The plasma antibody level confirmed that experimental 

pigs were negative for MDA of PRRSV considering the sample to positive (S/P) ratio of 0.4 

(40%) as threshold. On the other hand, there was an increasing trend of plasma antibody titre 

in pigs following vaccination. The antibody titre got above the threshold after two weeks, and 

subsequently reached a plateau after four weeks of the primary vaccination.   

 

1.4.2 Expression dynamics of PBMCs transcriptome after PRRSV vaccination 

To investigate the transcriptional responses to PRRSV vaccine over the first three days of 

vaccination in German Landrace pigs, we performed the global mRNA expression profiling of 

PBMCs from vaccinated and age-matched unvaccinated pigs at right before (0 h), and at 6, 24 

and 72 h after PRRSV vaccination. A total of 14,231 transcripts were found to be expressed in 

PBMCs of vaccinated and unvaccinated pigs. The genome-wide comparison of PBMCs 

transcriptome profiles between vaccinated and unvaccinated pigs revealed a distinct host 

innate immune transcriptional response to PRRSV vaccine. There was a significant temporal 

variation in transcriptional responses of PRRSV vaccine in PBMCs accounting 542, 2263 and 

357 differentially expressed genes (DEGs) at 6, 24 and 72 h post vaccination, respectively 

compared to the time point before vaccination. Gene ontology analysis revealed the 

involvement of these DEGs in various biological process including innate immune response, 

signal transduction, positive regulation of MAP kinase activity, TRIF-dependent toll-like 

receptor signaling pathway, T cell differentiation and apoptosis. Immune response specific 

pathways such as cytokine-cytokine receptor interaction, chemokine signaling pathway, signal 

transduction, JAK-STAT pathway and regulation, TRAF6 mediated induction of NF-kB and 

MAPK, the NLRP3 inflammasome, endocytosis and interferon signaling were under 

regulation during the early stage of PRRSV vaccination. Network enrichment analysis 

revealed APP, TRAF6, PIN1, FOS, CTNNB1, TNFAIP3, TIP1, CDKN1, SIRT1, ESR1 and 

HDAC5 as the highly interconnected hubs of the functional network of PRRSV vaccine 

induced transcriptome changes in PBMCs (detailed results are available in chapter 2).  
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1.4.3 Transcriptome signatures for innate and adaptive immunity to PRRSV vaccination  

To characterize the regulatory genes and networks associated with PRRSV vaccine induced 

innate and adaptive immunity, we performed the global mRNA expression profiling of 

PBMCs from vaccinated Pietrain pigs collected at immediately before (D0), at one (D1) and 

28 days (D28) post PRRSV vaccination with three biological replications. With FDR <0.05 

and log2 fold change ± 1.5 as cutoff criteria, 295 and 116 transcripts were found to be 

differentially expressed in PBMCs during the stage of innate and adaptive response, 

respectively. The microarray expression results were technically validated by qRT-PCR. The 

gene ontology terms such as viral life cycle, regulation of lymphocyte activation, cytokine 

activity and inflammatory response were enriched during the innate immunity; and cytolysis, 

T cell mediated cytotoxicity, immunoglobulin production were enriched during adaptive 

immunity to PRRSV vaccination. Significant enrichment of cytokine-cytokine receptor 

interaction, signaling by interleukins, signaling by the B cell receptor (BCR), viral mRNA 

translation, IFN-gamma pathway and AP-1 transcription factor network pathways were 

indicating the involvement of altered genes in the antiviral defense. Network analysis revealed 

that four network modules were functionally involved with the transcriptional network of 

innate immunity, and five modules were linked to adaptive immunity in PBMCs. The innate 

immune transcriptional network was found to be regulated by LCK, STAT3, ATP5B, UBB 

and RSP17. The TGFß1, IL7R, RAD21, SP1 and GZMB are likely predictive for the adaptive 

immune transcriptional response to PRRSV vaccine in PBMCs (detail results are available in 

chapter 3). 

 

1.4.4 Breed-specific transcriptome signature after PRRSV vaccination  

To explore the breed difference in innate immune response to PRRSV vaccination between 

purebred German Landrace (DL) and Pietrain (Pi) pigs, we analyzed 12 microarray-based 

transcriptome profiles of PBMCs collected before (0h) and 24h after PRRSV vaccination 

from DL and Pi breed with three biological replicates. With FDR < 0.01 and log2 fold change 

±1.5 as cutoff criteria, 4269 transcripts were found to be differentially expressed in PBMCs 

among four contrast pairs (i.e. DL-24h vs. DL-0h, Pi-24h vs Pi-0h, DL-0h vs. Pi-0h and DL-

24h vs. Pi-24h) tested. The number of vaccine induced differentially expressed genes (DEGs) 

was much higher (2459) in Landrace pigs than that of Pietrain pigs (291). After 24 h of 

PRRSV vaccination, 1046 genes were differentially expressed PMBCs of Landrace pig 

compared to that of Pietrain (DL-24h vs. Pi-24h) which indicated the breed differences in 

vaccine responsiveness as well. Before vaccination, 3255 genes showed differential 
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expression between DL and Pi (DL-0h vs. Pi-0h) which indicated the genetic variation 

between two breeds. The top ten biological pathways significantly affected by genes 

differentially expressed in four contrast pairs tested includes Cytokine signaling in immune 

system, Pathway in cancer, GPCR signaling, JAK STAT signaling, Interferon signaling, 

Autoimmune thyroid disease, Natural killer cell mediated cytotoxicity, Hepatitis C, Toll-like 

receptor signaling pathway and RIG-like receptor signaling pathway. Majority of the 

pathways are linked to immune response functions. This study revealed that German Landrace 

pigs showed greater transcriptional responses indicating more immunity developed from 

PRRSV vaccination compared to that of Pietrain pigs (detailed results are available in chapter 

4). 

   

1.4.5 The microRNA expression profiles of PBMCs after PRRSV vaccination  

MicroRNAs, small non coding RNAs, posttranscriptional regulator of gene expression, have 

been emerged as potential tools for evaluating host immune response to infection or 

vaccination. We showed that peripheral mononuclear cells are able to mount immune 

response PRRSV vaccination in pigs through global mRNA profiling. We extended our aim 

to investigate the expression dynamics of global miRNAs in the same PBMCs samples as 

used for global mRNA profiling. The GeneChip® miRNA 4.0 arrays contain 30,424 total 

mature miRNA probe sets including 2.578 mature human miRNAs and miRNAs of 202 other 

organisms. The differential expression analysis (Fold change > ±1.0, FDR < 0.05) identified 

12, 259 and 14 differentially expressed (DE) miRNAs in PBMCs of DL; and 0, 222 and 13 

DE miRNAs in PBMCs of Pietrain at 6, 24 and 72 h post vaccination, respectively.  

 

1.4.6 The integrated miRNA-mRNA regulated host response to PRRSV vaccination  

We extended our aim herein to integrate the mRNA profiles with the miRNA profiles to 

uncover the miRNA-mRNA regulated host immune response to PRRSV vaccines in PBMCs. 

This study generated 12 miRNA profiles of PBMCs collected at right before (0 h), and 6, 24 

and 72 h post PRRSV vaccination in three German Landrace pigs, from the same sample pool 

with same parameter, 12 mRNA profiles have been generated and reported in our recent 

publication. We integrated these two miRNA and mRNA dataset for better understanding of 

host-vaccine interaction. The miRNA and gene co-regulatory network revealed that miR-

181a-5p, miR-4454, miR-6267, miR-23a and miR-125a-5p are the putative regulators of the 

immune response developed in PBMCs after PRRSV vaccination in pigs.  
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2.1  Abstract   

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically 

important viral diseases affecting swine industry worldwide. Despite routine farm 

vaccination, effective control strategies for PRRS remained elusive which underscores the 

need for in-depth studies to gain insight into the host immune response to vaccines. This study 

aimed to investigate transcriptional responses to PRRS Virus (PRRSV) vaccine in the 

peripheral blood mononuclear cells (PBMCs) within 3 days following vaccination in German 

Landrace pigs. Transcriptome profiling of PBMCs from PRRSV vaccinated and age-matched 

unvaccinated pigs at right before (0 h), and at 6, 24 and 72 h after PRRSV vaccination was 

performed using the Affymetrix gene chip porcine gene 1.0 ST array. Comparison of PBMCs 

transcriptome profiles between vaccinated and unvaccinated pigs revealed a distinct host 

innate immune transcriptional response to PRRSV vaccine. There was a significant temporal 

variation in transcriptional responses of PRRSV vaccine in PBMCs accounting 542, 2263 and 

357 differentially expressed genes (DEGs) at 6, 24 and 72 h post vaccination, respectively 

compared to the time point before vaccination (controls). Gene ontology analysis revealed the 

involvement of these DEGs in various biological process including innate immune response, 

signal transduction, positive regulation of MAP kinase activity, TRIF-dependent toll-like 

receptor signaling pathway, T cell differentiation and apoptosis. Immune response specific 

pathways such as cytokine-cytokine receptor interaction, chemokine signaling pathway, signal 

transduction, JAK-STAT pathway and regulation, TRAF6 mediated induction of NF-kB and 

MAPK, the NLRP3 inflammasome, endocytosis and interferon signaling were under 

regulation during the early stage of PRRSV vaccination. Network enrichment analysis 

revealed APP, TRAF6, PIN1, FOS, CTNNB1, TNFAIP3, TIP1, CDKN1, SIRT1, ESR1 and 

HDAC5 as the highly interconnected hubs of the functional network of PRRSV vaccine 

induced transcriptome changes in PBMCs. This study showed a distinct transcriptional 

response to PRRSV vaccine in PBMCs. Within first 3 days of vaccine exposure, the highest 

transcripts abundance was observed at 24 h after vaccination compared to before vaccination. 

This study suggested that APP, TRAF6, PIN1, FOS, CDKN1A and TNFAIP3 could be 

considered as potential candidate genes for PRRSV vaccine responsiveness in pigs.  
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2.2 Introduction   

Porcine reproductive and respiratory syndrome (PRRS) is an emerging viral infectious disease 

characterized by reproductive failures in breeding sows and respiratory disorders in growing 

pigs (Lunney et al. 2011). PRRS causes huge economic loss, and is of major concern as 

animal welfare issue in swine industry worldwide (Lunney et al. , Xiao et al. 2010b). The 

disease is caused by an enveloped, positive-sense, single-stranded RNA virus called porcine 

reproductive and respiratory syndrome virus (PRRSV). The PRRSV, a member of arterivirus 

group under the family arteriviridae, and is divided into two distinct genotypes namely 

European and North American (Sun et al. 2012). The PRRSV genome is approximately 15 kb 

containing 10 open reading frames (ORF) encoded with seven structural and 14 nonstructural 

proteins (Fang and Snijder 2010, Johnson et al. 2011). The virulent PRRSV primarily infects 

pulmonary alveolar macrophages, and destroy infected cells through cytopathic replication. 

The host-virus interaction results in a deficient host’s innate immune response indicated by a 

poor induction of type I interferon (IFN α/β), the potent antiviral immune responsive 

cytokines (Ait-Ali et al. 2011, Albina et al. 1998). Some of the non-structural proteins (Nsp1, 

Nsp2 and Nsp11) and a structural protein (N protein) of PRRSV are known to be associated 

with IFN suppression in the infected cells (Sun et al. 2012). The RIG-I/ MDA5 and JAK-

STAT pathways are two major signaling pathways for IFN production which are found to be 

impaired by PRRSV during acute infection (Sun et al. 2012). Overall, the timing and the 

potency of the host cellular and immunological events that occur following infection are 

likely potential determinants governing the pathogenesis (Pollock and Neill 2002).  

 

Vaccination with modified live virus has been widely practiced in the commercial swine herd 

as one of the cost-effective control approaches for PRRS. The live attenuated PRRSV vaccine 

provides sufficient protection against homologous virus but limited protection against 

reinfection of genetically variant strains (Martelli et al. 2009). Live viral vaccines can 

efficiently trigger the activation of the host immune system through evolutionarily conserved 

pathogen associated molecular patterns (PAMPs) allowing their recognition by pattern 

recognition receptors (PPRs) of immune cells (Hoebe et al. 2004). Following administration, 

vaccine antigen produces a ‘danger signals’ which activate the monocytes and dendritic cells 

in such a way to secrete proinflammatory cytokines and chemokines (Iwasaki and Medzhitov 

2004). These cytokines and chemokines lead the extravasation and attraction of monocytes, 

granulocytes and natural killer cells, and generate an inflammatory microenvironment, in 

which monocytes differentiate into macrophages, and immature dendritic cells become mature 
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(Pashine et al. 2005). Through changing the surface receptors, macrophages and mature 

dendritic cells migrate towards the draining lymph nodes and induce the activation of T and B 

lymphocytes. The generation and maintenance of both B and CD8+ T cell responses is 

supported by growth factors and signals provided by CD4+ T helper lymphocytes 1 and 2 

(Th1 and Th2). Th1 and Th2 are controlled by regulatory T cells (Treg) involved in 

maintaining the immune tolerance (Bacchetta et al. 2005). The peripheral blood mononuclear 

cells (PBMCs) are the population of immune cells which includes lymphocytes (T cell, B cell 

and NK cells), monocytes and dendritic cells. Altogether, they play a central role in immune 

system against virus infection. Therefore, deciphering the PRRSV vaccine induced global 

transcriptome changes in PBMCs might lead to identify the molecules and signaling pathways 

associated with host immune response. 

 

The innate immunity against viruses like PRRSV is critical as such virus is continuously 

changing their antigenic epitopes (Beutler 2004). Innate immunity is the first line defense 

mechanism of host cells against foreign antigen which typically occurs within hours in a non-

specific manner and may persists up to 3-5 days (Beutler 2004). The innate immune system 

recruits effector cells upon antigen exposure which secret cytokines, chemokines and proteins 

and subsequently activate the adaptive immune system (Janeway et al. 2001). By that means, 

the innate immune response acts as precursor to initiate the adaptive immunity against a 

specific pathogen (Pancer and Cooper 2006). Innate immune traits have been considered as 

potential selection goals for disease resistance in pig breeding as innate immunity is likely to 

provide a common protection mechanism against multiple pathogens (Rowland et al. 2012a). 

Genome-wide association study revealed a major quantitative trait locus (QTL) on 

chromosome 4 (SSC4) associated with host resistance to in-vivo PRRSV challenge 

(Boddicker et al. 2012). The association of this region on SSC4 with PRRS resistance was 

further validated by the presence of single nucleotide polymorphism (SNP) marker, 

WUR10000125 (WUR) in the same region (Boddicker et al. 2014a, Boddicker et al. 2014b). 

Candidate genes in this locus on SSC4 include the interferon induced guanylate-binding 

protein gene family which is functionally linked to the innate immunity (Vestal and 

Jeyaratnam). Therefore, genes and molecular pathways associated with improved innate 

immune response to PRRSV vaccine could possibly be implemented in breeding program for 

PRRS resistant pigs (Rowland et al. 2012). To this end, key molecules regulating the 

transcriptional network of PRRSV vaccine induced innate immune response in peripheral 

blood are highly sought.   
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PBMCs are the primary immune cells in blood (Fairbairn et al. 2011) and have suitably been 

used for the evaluation of vaccine induced global gene expression changes for several 

diseases in human and non-human primates (reviewed by Wang et al. 2012). The porcine 

PBMCs have also been used for microarray analysis of immune response genes following in-

vitro lipopolysaccharide stimulation (Gao et al. 2010), in-vivo mycoplasma vaccination 

(Mach et al. 2013) and tetanus toxoid vaccination (Adler et al. 2013). Transcriptional 

responses to natural as well as experimental infection of PRRSV have been studied through 

global gene expression profiling of pulmonary alveolar macrophages in pig (Dwivedi et al. 

2012, Badaoui et al. 2014). However, little is known about the global transcriptome 

alterations in peripheral blood after PRRSV vaccination in pigs. Therefore, the aim of this 

study was firstly to investigate the transcriptional response to PRRSV vaccine in PBMCs of 

vaccinated pigs compared to unvaccinated pigs. Secondly to characterize the temporal 

patterns of global gene expression changes in PBMCs over three days following PRRSV 

vaccination.    

 

2.3 Materials and methods 

2.3.1 Study design and blood sampling  

A total of 12 German Landrace female piglets were housed in the pig research farm at 

Frankenforst, University of Bonn, Germany. Piglets were selected from two sows farrowed at 

the same day; all piglets were clinically healthy with no history of respiratory diseases and 

birth defects. After weaning, experimental piglets were divided into two groups: 6 in 

vaccinated and 6 in unvaccinated group. The piglets of vaccinated group were vaccinated with 

a modified live PRRSV vaccine of European strain (Porcilis
®
 PRRS, MSD Animal Health, 

Germany) with primary dose at day 28 and booster dose at day 56 of their age according to 

the routine farm vaccination program. The unvaccinated group was maintained for health 

control without vaccine treatment. About 8 mL whole blood samples with 1.5 mL 

anticoagulant (0.5 M EDTA) were collected at different time points before and after 

vaccination from pigs of both groups (Fig 9: Additional file 1).  The blood samples collected 

at day 7 of age from all piglets were used for screening the PRRSV-specific maternally 

derived antibody response. The blood samples collected at four time points (0, 6, 24 and 72 

hpv) following primary vaccination from both groups (except 0 h in unvaccinated group) were 

used for microarray hybridization. Three individual biological replicates from both groups 

were selected based on their RNA quality for the microarray experiment In addition, the blood 
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samples from all piglets collected just before, and two weeks post primary vaccination as well 

as just before, and two weeks post booster vaccination were used for monitoring the vaccine 

induced antibody response by ELISA.   

 

 

Figure 1(Additional file 1). Experimental design in Landrace pigs. The figure depicts experimental design and 
blood sampling schedule from PRRSV vaccinated and unvaccinated German Landrace pigs used for this study. 
Vertical lines indicated the blood sampling time points over the age of pigs (days). Primary and booster 
vaccination were performed at day 28 and 56 of age, and blood was collected immediately before vaccine 
injection in those days. Blood samples collected at 0, 6, 24 and 72 h after primary vaccination from both group 
except 0 h in unvaccinated group used for whole transcriptome microarray study. Three biological replicates 
from both groups were used for microarray hybridization. The same RNA samples used for microarray were 
quantified by qRT-PCR for technical validation of microarray data. Blood samples collected from all pigs at day 
7, 28, 42, 56 and day 70 of their age were used for ELISA based monitoring of PRRSV specific antibody 
response. 

 

 

2.3.2 Isolation of PBMCs and plasma 

PBMCs and plasma were separated from the whole blood sample through density gradient 

centrifugation (1500 rpm for 25 min) with Histopaque
®
-1077 (Sigma-Aldrich, Munich, 

Germany) according to the protocol described by Uddin et al. (Uddin et al. 2012). The 

PBMCs were washed three times (pelleted at 1000 rpm for 5 min) using phosphate-buffered 

saline with purity of ˃99% determined by Wright-Giemsa staining.  
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2.3.3 Measurement of plasma antibody level 

To monitor the PRRSV-specific antibody titre, the plasma samples from all study animals 

collected at day 7, 28, 42, 56 and 70 of their age (Additional file 1) were screened by ELISA 

(PRRSV-AK screening, Synlab Vet GmbH, Augsburg, Germany) according to 

manufacturer’s protocol. The optical density (OD) of each well was measured at 650 nm 

using the Bio-Rad 680 microplate reader. The presence or absence of PRRSV antibody was 

determined by calculating the sample to positive (S/P) ratio.  The S/P ratio was calculated 

according to the following equation: S/P ratio (%) = 100 × [(OD of test sample – Mean OD of 

negative controls) / (Mean OD of positive controls – Mean OD of negative controls)]. The 

samples were considered to be positive for PRRSV antibody if the S/P ratio was more than 

0.4 as decribed by Kittawornrat et al (2012) . 

 

2.3.4 Isolation and quality control of total RNA  

The total RNA was extracted from PBMCs using the miRNeasy mini kit (P/N 217004, 

Qiagen, Hilden, Germany) according to the manufacturer’s protocol along with DNase 

treatment (P/N 79254, Qiagen, Hilden, Germany). RNA concentration and purity were 

measured by NanoDrop® spectrophotometry (ND-8000; NanoDrop Technologies). RNA 

integrity was checked by micro capillary electrophoresis on an Agilent 2100 Bioanalyser with 

RNA 6000 Nanochip kit (Agilent Technologies, Waghäusel - Wiesental, Germany). 

 

2.3.5 Microarray target preparation and hybridization  

To prepare the target probes of 21 microarray, about 100 ng of total RNA samples from each 

of seven selected time points were processed with the GeneChip
®
 WT PLUS Reagent kit (P/N 

902281; Affymetrix Inc., Santa Clara, CA, USA) according to the manufacturer’s protocol. In 

brief, the total RNA was subjected to synthesize the first-strand cDNA containing a T7 

promoter sequence at the 5´ end followed by synthesis of the second-strand cDNA by DNA 

polymerase in the presence of RNase H. This double-strand cDNA was subjected to in-vitro 

transcription with T7 RNA polymerase for synthesis of the antisense RNA (complementary 

RNA, cRNA). The cRNA preparation was then purified using purification beads to improve 

its stability. From 15 μg of purified cRNA, the sense-strand cDNA (ss-cDNA) was 

synthesized by reverse transcription using random primers. The ss-cDNA contained dUTP at 

a fixed ratio relative to dTTP and the remaining cRNA was degraded by RNase H. After 

purification and quantification, 5.5 μg of ss-cDNA in a 31.2 μL volume was fragmented by 

uracil-DNA glycosylase (UDG) and apyrimidinic endonuclease 1 (APE 1) at the unnatural 
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dUTP residues and breaks the DNA strand. The fragmented ss-cDNA was then labeled by 

terminal deoxynucleotidyl transferase (TdT) using the Affymetrix proprietary labeling reagent 

that is covalently linked to biotin. The hybridization of microarray probes followed by 

washing and staining was performed with the GeneChip
®
 Hybridization, Wash and Stain kit 

(P/N 900720, Affymetrix Inc., Santa Clara, CA). For hybridization, about 130 μL of 

biotinylated ss-cDNA probes was injected into the GeneChip
®
 Porcine Gene 1.0 ST array 

strip of 81/4 format (P/N 901976, Affymetrix Inc., Santa Clara, CA, USA) and incubated for 

16 h in a hybridization oven (GeneChip
®
 Hybridization oven 640; Affymetrix Inc.) at 45 °C 

with 60 rpm. The hybridized chips were stained and washed in a fluid station (GeneChip
®

 

Fluidics Station 450; Affymetrix Inc.) and scanned by Affymetrix GeneChip
®
 scanner 3000 

7G. The Affymetrix GeneChip
® 

Command Console™ (AGCC) software was used to evaluate 

the array images and to export the reports of spot intensity data in .CEL file format.  

 

2.3.6 Microarray data processing  

Pre-processing, normalization and statistical analyses of microarray dataset were performed 

using packages of Bioconductor-platform implemented in R-project software (v3.1.2) 

(Gentleman et al. 2004). The ‘oligo’ package was implemented for the RMA (Robust Multi-

array Average) based quantile normalization of microarray data at transcript level (Carvalho 

and Irizarry 2010). For quality control, some diagnostic plots of the raw intensity data were 

checked before and after the normalization. After excluding two arrays at 72 h post 

unvaccinated sample which did not pass the quality control, 19 arrays were used for further 

analysis. After normalization, the main probes (19,218) of the array were extracted. Then 

interquartile range (IQR) based filtering (variance cutoff value 0.25) was applied which 

further excluded about 4,978 low expressed probes. Finally the expression dataset comprising 

14,231 transcript probes were subjected for downstream analysis. Probe to gene transcript 

annotation was performed with recent Affymetrix annotation file for assigned array (Liu et al. 

2003). Gene annotations were extended by their orthologous human gene symbol as well as 

ensembl gene identifiers. Until otherwise mentioned, downstream functional analyses of this 

dataset were performed based on human genome database.  

 

2.3.7 Characterization of phenotypic groups 

To characterize the differences of transcriptional responses between pigs of vaccinated and 

unvaccinated group, the annotated gene expression profiles of PBMCs were subjected to an 

exploratory functional analysis through gene set enrichment analysis (GSEA) algorithm 
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implemented in GSEA-P tool (Subramanian et al. 2007). Two pairs of vaccination-time point 

group (6 hp vaccinated vs. 6 hp unvaccinated and 24 hp vaccinated vs. 24 hp unvaccinated) 

were considered as input phenotype for this analysis. The normalized expression dataset of 12 

arrays containing human orthologous symbols of gene transcripts with their corresponding 

expression values (Additional file 2) were uploaded into the GSEA-P to generate the list of 

ranked order gene markers. The ‘immunologic signature’ catalog of gene set from Molecular 

Signatures Database (C7: MSigDB v5.0, Broad Institute, Cambridge, MA) was screened 

against the ranked gene list. The normalized enrichment score (NES) of each gene set was 

estimated by the number of over-representation of members of gene set towards the top or 

bottom of the ranked gene list through applying a weighted Kolmogrov-Smirnov statistics 

(Subramanian et al. 2005). Then the enrichment score p-values were estimated using a 

phenotype based permutation test procedure. The statistical significance was defined by the 

cutoff value of false discovery rate (FDR) <0.15 and the NES p <0.05.  

 

2.3.8 Differential gene expression analysis  

To explore the temporal variation of transcriptional response to vaccination, differential gene 

expression analysis was performed using the linear analysis of microarray technique from the 

‘limma’ package (Smyth 2005) with empirical Bayes adjustment to the variance, followed by 

Benjamini and Hochberg (BH) correction for multiple testing (Benjamini and Hochberg 

1995). To check whether there was temporal variation among the pigs of unvaccinated control 

group, two contrast pairs (i.e. 0h_vac vs. 6h_unvac and 0h_vac vs. 24h_unvac) were tested. 

Then within the vaccinated group, three pairwise comparisons (6 hpv vs. control; 24 hpv vs. 

control and 72 hpv vs. control) were taken in to account for the differential expression 

analysis. Gene transcripts were considered as differentially expressed when passing the 

thresholds of false discovery rate (FDR) of <0.01 and log2 fold-change either >1.5 or <-1.5. 

The number of differentially expressed genes in each contrast pair and their interaction were 

exported in intersecting Venn diagram.  

 

2.3.9 Gene ontology and pathway analysis  

For biological interpretation of the transcriptome dataset, the significantly over-represented 

gene ontology terms and biological pathways were explored with the InnateDB pathway 

analysis tool (Breuer et al. 2013). First, the identifiers of DEGs from microarray data were 

converted to their human ensembl orthologues using the BioDBnet tool 

(http://biodbnet.abcc.ncifcrf.gov/). The list of ensembl gene identifiers was then uploaded in 

http://biodbnet.abcc.ncifcrf.gov/
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InnateDB web and performed the over-representation analysis with implementation of the 

hypergeometric algorithm and the Benjamini-Hochberg (BH) multiple test correction method. 

The gene ontology (GO) and pathways were considered significantly over-represented if they 

had a FDR<0.05.  

 

2.3.10 Sub-network enrichment analysis  

To visualize the PRRSV vaccine induced transcriptional network as well as to identify the 

regulatory genes, the sub-network analysis was performed using NetworkAnlayst online tool 

(Xia et al. 2014). This tool uses the InnateDB (downloaded June 20, 2014) protein-protein 

interaction (PPI) datasets comprised of 14,755 proteins and 145,955 experimentally validated 

interactions for human. NetworkAnlayst implements the R package ‘igraph’ for network 

analysis and ‘Gephi Toolkit’ for finalizing the network layout. Human orthologous ensembl 

gene identifiers of the DEGs were uploaded into the NetworkAnlayst to construct the 

interacting network. First, a default network was assembled based on the Walktrap algorithm 

taking only direct interaction of seed genes (first-order interactors). The network size was 

then adjusted for <500 seeds and 200~2000 nodes using the ‘reduce’ panel for high-

performance visualization. Two topological measures such as degree (number of connections 

to other nodes) and betweenness centrality (number of shortest paths going through the node) 

were taken in to account for detecting highly interconnected hubs of the network. Centrality 

measures of hub nodes were evaluated serially with degree followed by betweenness. Nodes 

having higher degree and betweenness values were considered as potentially important 

network hubs in cellular signal trafficking. Finally, weighted network based module detection 

was perform to cluster the genes of similar biological functions. The p-value of a given 

network module was calculated using a Wilcoxon rank-sum test of the "internal" (edges 

within in a module) and "external" (edges connecting the nodes of other modules) degrees. 

The p values were calculated based on their connectivity assuming null hypothesis that there 

is no difference between the number of "internal" and "external" connections to a particular 

node in the module. Module having more internal than external edges was like to be 

statistically significant. The functional enrichment of modules was performed with 

REACTOME.db pathway database incorporated in this tool for comprehensive biological 

illustration of the network.  

 

 

 



58                                                                                                                                   Chapter 2 

 

 

2.3.11 Quantitative real-time PCR (qRT-PCR) 

For technical validation of microarray results, five selected DEGs (Table 1) known to be 

involved in immune response function were quantified by qRT-PCR in the same RNA 

samples as used for microarray expression. Primers were designed based on an open source 

primer designing software Primer3 (Rozen and Skaletsky 2000). First Strand cDNA Synthesis 

Kit (P/N K1612, Thermo Scientific, Co.) was used for reverse transcription with oligo (dT) 

primer. The qRT-PCR reaction was set up taking 1.0 μl of cDNA template, 8.0 μl of 

deionized RNase free water, 0.5 μM of upstream and downstream primers, and 10 μl iTaq™ 

Universal SYBR
®
 Green Supermix (Bio-Rad laboratories GmbH, Germany) in a total reaction 

volume of 20 μl and were amplified by the StepOnePlus™ Real-Time PCR System (Applied 

Biosystems
®
, Darmstadt, Germany). The thermal cycling conditions were 95

o
C for 3 min, 

95
o
C for 15 sec, 6

o
C for 45 sec (40 cycles); 95

o
C for 15 sec, 62

o
C for 1 min, 95

o
C for 15 sec. 

All reactions were run in duplicate and the average value was used as expression value. Gene-

specific expression was measured as relative to the geometric mean of the expression of two 

housekeeping genes (GAPDH and ACTB) (Table 1). The delta delta Ct (∆∆Ct) [∆Ct = Cttarget 

- Cthousekeeping genes] values were calculated as the difference between target gene and reference 

genes and expression was calculated as 2
(-∆∆Ct)

 (Pfaffl 2001). The correlation between 

microarray and qRT-PCR results was analyzed by Spearman’s Rho test. The significance 

level was set as p< 0.05. 

 

2.4 Results 

2.4.1 PRRSV-specific antibody responses   

In order to exclude the maternally derived antibody (MDA) of PRRSV as well as to evaluate 

the vaccine induced antibody response, plasma samples from all pigs at day 7, 28, 42, 56 and 

70 of age were screened by ELISA. The plasma antibody level confirmed that experimental 

pigs were negative for MDA of PRRSV considering the sample to positive (s/p) ratio of 0.4 

(40%) as threshold (Fig 2). The optical density (OD) values indicated relative higher MDA 

titre in suckling piglets which felt down and remained stable towards the base line along with 

increased age of unvaccinated pigs. On the other hand, there was an increasing trend of 

plasma antibody titre in pigs following vaccination. The antibody titre got above the threshold 

after two weeks, and subsequently reached a plateau after four weeks of the primary 

vaccination (Fig 2).   
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Table 1. The list of primers and their sequences of selected candidate genes used for qRT-

PCR validation of microarray data.  

GenBank 
Accession  
number 

Gene name Primer sequence (5`-3´) 

 

NM_213770.1 IRF3: Interferon regulatory 

factor 3  

F: CCAGTGGTGCCTACACTCCT 

R: AGAGGTGTCTGGCTCAGGAA 

NM_001044580 STAT3 : Signal transducer and 

activator of transcription 

3 (acute-phase response 

factor)  

F: TGCTGGAGGAGAGAATCGT 

R: GGGAATTTGACCAGCAATC 

NM_214087 CD80: Cluster of differentialtion-

80 

F: TCAGACACCCAGGTACACCA 

R: GACACATGGCTTCTGCTTGA 

NM_001105286

.1 

TRAF6: Tumor necrosis factor 

receptor-associated factor  

F:GGGAACGATACGCCTTACAA 

R:CTCTGTCTTAGGGCGTCCAG 

NM_213779 CCL4 : Chemokine (C-C motif) 

ligand 4 

F: CTCTCCTCCAGCAAGACCAT  

R: CAGAGGCTGCTGGTCTCATA 

HQ013301 GAPDH : Glyceraldehyde-3- 

phosphate dehydrogenase* 

F: GCTGGTGCTGAGTATGTCGT 

R: AAGCAGTTGGTGGTACAGG 

XM_003124280.

3 

ACTB: Actin, Beta*  F: AAGGACCTCTACGCCAACAC 

R: CTGGCTGATCCACATCTGCT 

* are the house keeping genes used for normalization 
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Figure 2. PRRSV-specific antibody responses in Landrace pigs. The figure depicts the reactivity of maternally 
derived antibody and vaccine derived antibody to PRRSV in plasma detected by PRRSV-AK Enzyme 
Immunoassay. Values in the Y-axis represent the sample to positive (s/p) ratio, and the s/p values of 0.4 was 
considered as threshold to classify the individuals either positive or negative. Values in X-axis represents the 
piglet ages at which blood samples were evaluated. Primary and booster vaccination were performed at day 
28 and 56 of age, respectively in pigs of vaccinated group. In vaccinated group, the optical density (OD) values 
of samples at day 7 and 28 of age represent for maternally derived antibody (MDA), and samples at day 42, 56 
and 70 for vaccine induced antibody response. While samples from the control group were used for only 
monitoring the way of declining the MDA over the age of animals in absence of further PRRSV exposure. 

 

2.4.2 Transcriptome profiles of PBMCs following PRRSV vaccination   

To uncover the transcriptional modification underlying the innate immune response to a live 

attenuated PRRSV vaccine, we performed the global transcriptome profiling of PBMCs from 

pigs of vaccinated group at before (control) and 6, 24 and 72 h after vaccination; and from 

unvaccinated group at 6, 24 and 72 h post vaccination time points using the Affymetrix 

GeneChip Porcine Gene 1.0 ST Array. This array was encoded with 394,580 probe (20-22 

probes per gene) representing a total of 19,212 genes. After normalization the current study 

identified a total of 27,558 probes having higher signal intensity than the background. After 

filtering, 14,231 transcripts were found to be expressed in PBMCs, 10,217 of which could be 

annotated and were implemented in the downstream analyses.    

 

2.4.3 Variation of PBMCs transcriptome profiles between vaccinated and unvaccinated pigs  

The gene set enrichment analysis (GSEA)-based comparison of genome-wide expression 

distinguished the vaccine induced transcriptome changes between the vaccinated pigs and the 

age-matched unvaccinated control pigs. GSEA algorithm revealed that a total of 42 and 36 

gene sets (pathways) were significantly upregulated at 6 and 24 hpv in vaccinated group, 

respectively compared to their unvaccinated counterparts. Of these, the chemokine signaling, 
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JAK-STAT signaling and cytoskeleton activation are the most significantly enriched gene sets 

which indicated the potential of vaccine to switch on the transcriptional machinery in PBMCs. 

The normalized enrichment scores of top 15 up regulated gene sets in vaccinated group 

ranged from 2.04 to 2.52 (Table 2). The enrichment score of most of the upregulated gene sets 

in the vaccinated group was increased at 24 hpv from that of 6 hpv indicating the number of 

core genes of particular gene set increased over the time of immunization. 

 

2.4.4 Differential gene expression in PBMCs after PRRSV vaccination 

To get a comprehensive overview of transcriptional modifications associated with innate 

immune response, we performed the differential gene expression analysis over three time 

points (6, 24 and 72 hpv) after vaccination compared to the control (before vaccination). The 

normalized expression values for only main probes of the chip were included for differential 

analysis and filtered by the thresholds of FDR <0.01 and log2 fold-change >1.5 or < -1.5. 

Using this criterion, 2,453 transcripts were found to be differentially expressed in PBMCs 

after PRRSV vaccination. Among them, 1,087 (44.31%) gene transcripts could be annotated. 

A complete list of the differentially expressed genes (DEGs) in PBMCs at three time points 

following PRRSV vaccination is provided in Additional file 2, 3 and 4. 

 

The number DEGs and their direction of expression in three pairwise comparisons are plotted 

in Fig 3. A total of 542 DEGs including 423 up regulated and 119 down regulated genes were 

detected at 6 hpv. The highest number (2263) of DEGs was identified at 24 h post 

vaccination. The number of upregulated genes (2060) was also much higher than the down 

regulated ones (203) at 24 hpv. A total of 357 genes showed differential expression at 72 hpv 

in which 188 and 169 were up and down regulated genes, respectively. The fold change (FC) 

of differential expression ranged from -3.76 to 3.94; from -3.7 to 4.45 and from -4.15 to 3.11 

at 6 hpv, 24 hpv and 72 hpv, respectively. A higher proportion of upregulated genes at each 

comparison indicated that vaccination induces active gene expression processes which may be 

associated with development of innate immune response.  
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Table 2. Significantly enriched gene sets obtained from gene set enrichment analysis 

Gene sets 

 

6hpv_vacc 
vs 

6hpv_unvacc 

24hpv_vacc 
vs 

24hpv_unvacc 

NES FDR NES FDR 

Regulation of actin cytoskeleton 2.51 0.001 2.75 0.001 

Chemokine signaling pathway 2.48 0.001 2.56 0.001 

JAK-STAT signaling pathway 2.39 0.001 2.55 0.001 

Integrin cell surface interactions 2.46 0.001 2.5 0.001 

Cell adhesion molecules  2.31 0.001 2.38 0.001 

Integrin signaling pathway 2.28 0.001 2.37 0.001 

Cell surface interactions at the vascular wall 2.27 0.001 2.33 0.001 

Signal transduction by L1 2.24 0.007 2.27 0.007 

Cytokine cytokine receptor interaction  2.20 0.008 2.25 0.007 

Apoptosis by serum deprivation up 2.17 0.008 2.23 0.007 

Immortalized by HPV31 DN 2.16 0.008 2.23 0.008 

Signaling by FGFR1 mutants 2.14 0.011 2.21 0.010 

TNF signaling up 2.12 0.014 2.19 0.013 

ECM receptor interaction 2.10 0.025 2.13 0.021 

TRAF trafficking pathway 2.08 0.013 2.12 0.011 

Leukocyte transendothelial migration 2.04 0.008 2.14 0.007 
 

NES, Normalized enrichment score; FDR, False discovery rate 

 

 

The intersecting Venn diagram (Fig 4) revealed that 44, 1733 and 128 genes showing 

differential expression exclusively at 6, 24 and 72 hpv, respectively. Among the time point 

specific DEGs, 32, 1404 and 88 were up regulated and 12, 329 and 30 were down regulated at 

6, 24 and 72 hpv, respectively. On the other hand, 161 genes showed differential expression 

constantly over the three days of post vaccination. Differential expression of 480 genes shared 

between the time points of 6 hpv and 24 hpv; 211 genes between 24 hpv and 72 hpv, and 179 

genes shared between 6 hpv and 72 hpv time points.  
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Figure 3 : 
 

Number of differentially expressed genes after PRRSV vaccination. The figure 
depicts the number and direction of DEGs identified at three time points (6, 24 
and 72 hpv) of PRRSV vaccination compared to the control (before vaccination). 

 

Hierarchical clustering of DEGs in PBMCs following vaccination has also provided a clear 

image of genes that were regulated in the same or opposite direction in response to 

vaccination (Fig 5). There was distinction among time points of vaccine exposure in terms of 

up or down regulation of DEGs as well. A quite remarkable difference was observed at 24 h 

post vaccination compared to that of control. The hierarchical cluster analysis (HCA) 

indicates a good cluster of replicate piglets within the group which is suggestive for the 

homogeneity of the experimental blocks.  
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Figure 4. Intersecting Venn diagram showing the abundance of DEGs. The number of genes differentially 
expressed at three different time points (6, 24 and 72 hpv) of PRRSV vaccination compared to the control 
(before vaccination). The numbers in overlapping area (s) represent the differential expression of genes 
shared among the time points. 

 

 

2.4.5 GO and pathways enriched by PRRSV vaccine induced DEGs  

A GO classification of biological processes involved with all differentially expressed genes in 

PBMCs after PRRSV vaccination is provided in Table 3. The GO categories with a direct 

relation to immune response function includes innate immune response, signal transduction, 

viral process, T cell differentiation, chemotaxis, response to light stimulus, cytokine-mediated 

signaling pathway, complement activation, cell death, cell proliferation and immune system 

process. Highest representation of genes involved with particular GO terms was observed at 

24 hpv compared to 6 hpv and 72 hpv. The pathway analysis paints a similar picture to the 

GO terms. The statistically significant biological pathways involved with PRRSV induced 

DEGs are presented in Fig 6. Among the top pathways, cytokine-cytokine receptor 

interaction, chemokine signaling pathway, signal transduction, JAK-STAT pathway and 

regulation, TRAF6 mediated induction of NF-kB and MAPK, the NLRP3 inflammasome, 

endocytosis and interferon signaling were activated.  
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Figure 5. Hierarchical heat map showing differential gene expression over time. The normalized log2 
transformed values as determined by Affymetrix GeneChip® porcine gene 1.0 ST array in PBMCs of German 
Landrace pigs at 6, 24 and 72 h post PRRSV vaccination. The cutoff value of log2 fold change as either ˃1.5 or 
˂-1.5 and FDR <0.05 was considered for statistical significance. Each column represents one array from each of 
replicate piglets.  
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Table 3. Gene ontology terms enriched by the DEGs. 
 

Time 
points 

GO ID GO term Nr. of 
genes  

Adjusted 
p-value 

6 hpv 

 

GO:0045087 Innate immune response   18 0.01 

GO:0042493 Response to drug 9 0.05 

GO:0034097 Response to cytokine 5 0.02 

GO:0016567 Protein ubiquitination 8 0.01 

GO:0043687 Post-translational protein modification 7 0.01 

GO:0044281 Small molecules metabolic process 30 0.01 

GO:0015031 Protein transport 10 0.03 

GO:0006355 Regulation of transcription, DNA-template 28 0.03 

GO:0007186 G-protein coupled receptor signaling pathway 15 0.03 

GO:0044267 Cellular protein metabolic process 14 0.03 

24 hpv 

 GO:0045087 Innate immune response  90 0.01 

GO:0007165 Signal transduction 82 0.01 

GO:0008284 Positive regulation of cell proliferation 45 0.02 

GO:0016032 Viral process 37 0.01 

GO:0051607 Defense response to virus 14 0.02 

GO:0043406 Positive regulation of MAPK kinase activity 9 0.05 

GO:0006874 cellular calcium ion homeostasis 11 0.08 

GO:0007265 Ras protein signal transduction 8 0.02 

GO:0030217 T cell differentiation  5 0.05 

GO:0035666 TRIF-dependent toll-like receptor signaling  8 0.05 

72 hpv 

 

GO:0043408 Regulation of MAPK cascade 7 0.04 

GO:0007067 Mitotic nuclear division 6 0.04 

GO:0019221 Cytokine-mediated signaling pathway 5 0.03 

GO:0006935 Chemotaxis  4 0.04 

GO:0007155 Cell adhesion  7 0.05 

GO:0051726 Regulation of cell cycle 9 0.05 

GO:0055085 Transmembrane transport 14 0.03 

GO:0010467 Gene expression 6 0.05 

GO:0006915 Apoptotic process 8 0.04 

GO:0009615 Response to virus 5 0.14 
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2.4.6 Transcriptional network of PRRSV vaccine induced innate immune response in PBMCs 

The network analysis retrieved one giant subnetwork herein called the global network and 12 

other smaller networks. The global network comprised of 432 seed genes or nodes and 850 

edges or connections. The diameter of each node corresponds to the values of two centrality 

measures (degree and betweenness) and thereby a larger diameter indicates higher potential of 

particular node to be the hub of the network (Fig 7). The values of degree and betweenness 

centrality of all seed genes are presented in Additional file. 6. Based on these two centrality 

measures, APP (Amyloid beta (A4) precursor protein) was determined to be the top most 

potential hub gene of the global network having highest values of degree (118) and 

betweenness centrality (6468). Other potential hubs includes TRAF6 (TNF receptor-

associated factor 6), PIN1 (Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1), FOS 

(FBJ murine osteosarcoma viral oncogene homolog), CTNNB1 (Catenin (cadherin-associated 

protein) beta 1), CDKN1A (Cyclin-dependent kinase inhibitor 1A (P21, Cip1)-A), TNFAIP3 

(Tumor necrosis factor, alpha-induced protein 3), SIRT1 (Sirtuin 1), ESR1 (Estrogen receptor 

1) and HDAC5 (Histone deacetylase 5). 

 

The NetworkAnalyst tool has detected five significant (p <0.01) network modules within the 

global network which are indicated by different colors (Fig 7). Each module was led by one or 

more of the above mentioned hubs connected to many other genes of similar biological 

function. Functional enrichment of the modules revealed that PRRSV vaccine induced 

transcriptional modification involves five major groups of biological functions such as innate 

immune response;  development and differentiation of blood cell;  cell death, cell cycle and 

survival; ubiquitination and glycosylation; and protein metabolism and regulation of gene 

expression. In particular, the functional involvement of the APP led network module (red 

module) includes membrane trafficking (RAB5C, ARRB1, SEC24C, TBC1D1), chemokine 

receptor binding (CXCR2, CXCL16), interferon signaling (IFNA8, IFNW1), post-

translational protein modification (PIGO, GALNT12, MPI, SEC24C) and asparagine N-

linkage glycosylation (MPI, SEC24C). 
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Figure 6. Biological pathways involved with the DEGs following PRRSV vaccination. The figure depicts the top 
10 biological pathways regulated by the DEGs in each of three pairwise comparisons. Values in X-axis 
represents the number of over-expressed genes (red portion of bar) and under-expressed genes (green 
portion of bar) involved in corresponding pathways. Pathways included here only having the over-
representation p<0.05 obtained from InnateDB. The upper part of graph (6 hpv) represents the top 10 
pathways regulated by DEGs found at 6 h, the middle (24 hpv) for that of 24 h and the bottom one (72 hpv) for 
that of 72 h of post vaccination time points compared to the control (before vaccination).   
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Figure 7. Global transcriptional network of PRRSV vaccine response in PBMCs. The picture depicts the 
interconnected network of PRRSV vaccine induced differentially expressed genes in PBMCs at 24 hpv. Each 
circle indicates the node or member genes of the network. The diameter of the circle corresponds to the 
values of two centrality measures that is degree and betweenness of particular gene. The larger diameter 
indicates the higher potential of the nodes to be the hub genes of the network. The network modules with 
corresponding genes are indicated by different colors. 

 

To test whether these hub genes can coordinate the global transcriptional network, we 

constructed the second network (herein called the core network) taking the top thirteen hubs 

of global network as seed genes. The higher-order interactions of the core network assembled 

about 3764 nodes and 5145 connections which reflect the global network. The simplified 

interconnection among the hub genes is presented in the core network (Fig 8). Among the hub 

nodes, six (APP, TRAF6, PIN1, FOS, CDKN1A and TNFAIP3) were found to be directly 

involved with innate immune system and were upregulated in immunized PBMCs. APP, 

TRAF6, PIN1, FOS and TNFAIP3 have direct connection with six, five, five, four and three 
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other hubs, respectively. TRAF, APP, CTNNB1, ESR1 and HDAC5 together are responsible 

signal transduction process. TRAF6 along with FOS participate in toll-like receptor cascades, 

MAPK signaling, MyD88 dependent & independent cascades and proinflammatory response. 

TRAF6 and PIN are involved in RIG-1/MDA5 mediated induction of alpha-beta interferon. 

 

 

Figure 8. Core transcriptional network of PRRSV vaccine response in PBMCs. The picture depicts the 
connection among the regulatory genes of the global transcriptional network of PRRSV vaccine response in 
PBMCs. Only the direct connections among seed genes are presented. The diameter of the circle corresponds 
to the values of two centrality measures that is degree and betweenness of particular gene. Among the hubs, 
nodes of blue colors were known to be strongly involved in innate immune response function. 
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2.4.7 Validation of microarray data  

Microarray data was validated through measuring the relative expression level of five 

differentially expressed genes (STAT3, IRF3, CD80, CCL4 and TRAF6) in PBMCs using 

qRT-PCR. The expression data (Additional file 7) obtained from microarray and qRT-PCR 

for the selected genes are plotted in Fig. 9. The qRT-PCR expression values of all five genes 

confirmed statistically significant (p<0.01) differential expression in the same direction as the 

microarray data with a correlation values of r = 0.949.    

 

Figure 9. The qRT-PCR validation of the microarray data. The picture depicts the correlation between 
microarray (X-axis) and qRT-PCR (Y-axis) expression data (Log2 fold-change) for five selected genes at three 
different time points (6, 24, 24 hpv) both in vaccinated and unvaccinated pigs. Correlation between microarray 
and qRT-PCR data was analyzed by Spearman’s Rho test. The correlation coefficient was = 0.949, with a 
statistical significance of p< 0.01. 

 

2.5 Discussion 

Protective immunity to PRRS virus is a complex and unresolved issue. To date, the live 

attenuated virus vaccine has been considered to be the most economic method to achieve 

immunity and protecting herds from losses associated with infections by highly virulent 

strains of PRRSV (Zuckermann et al. 2007). In this study, the antibody response appeared to 

start at 2 weeks of primary vaccination and reached a steady state at 4 weeks after primary 

vaccination in pigs (Fig 2). This reflects the previous reports stating that PRRSV specific 

antibodies begin to appear in the infected pigs as early as 7-10 days post infection with a low 

viral titer (Loemba et al. 1996) followed by delayed production of neutralizing antibody 

(NAb) between 2-4 weeks post infection (Loemba et al. 1996). Besides NAb, components of 
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innate and cell mediated immune responses have major contribution to the viral clearance in 

immunized animals. Moreover, the character of the innate immune response to virus is 

thought to dictate the quality of subsequent adaptive immune response (Miller et al. 2010).  

 

In order to get insight into host’s innate immune transcriptional response to modified live 

virus vaccine, this study has provided  for the first time the whole transcriptome profiles of 

PBMCs from PRRSV (EU strain) vaccinated and unvaccinated German Landrace pigs. The 

porcine PBMCs have been studied to evaluate the immune response to PRRSV by some 

authors (Feng et al. 2003, Zhuge et al. 2012), however, these were focused on to the in-vitro 

model with expression profiling of candidate genes. The PBMCs include lymphocytes (T 

Cells, B cells, and NK cells), monocytes, and dendritic cells in varying frequencies across 

individuals (Fairbairn et al. 2013). The vaccine induced cellular activation and differentiation 

may changes the proportion of sub types of PBMCs, which are likely contribute to gene 

expression changes (Palmer et al. 2006). Thus, the current analyses have limitation in 

evaluating the cell type specific contribution on vaccine responses. In fact, the reports on, and 

option for, specific cell subset of PBMCs limited in swine and mostly due to the relative lack 

of immune-tagged reagents critical for such detail phenotyping (reviewed by Schroyen and 

Tuggle 2015).  However, specific cell type contribution could be partially addressed by 

bioinformatics approach of gene expression deconvolution. In deed, the unfractionated 

PBMCs model was used in this microarray study as a rapid and convenient model to evaluate 

host transcriptional response to PRRSV vaccination.  

 

With the global PBMCs transcriptome profiles, we performed an exploratory functional 

analysis to characterize the phenotypic groups using gene set enrichment analysis (GSEA) 

algorithm. The GSEA-based analysis revealed significant enrichment of gene sets (pathways), 

such as chemokine signaling, JAK-STAT signaling and cytoskeleton activation (Fig 10: 

Additional file 2) in vaccinated group compared to unvaccinated group indicated the PRRSV 

vaccine potential to enhance the host’s innate immunity. This was consistence with the 

findings of Badaoui et al (2013) who reported that the host-specific response to PRRSV 

challenge to be associated with the activation of canonical pathways like TREM1, toll-like 

receptor and hyper-cytokinemia/hyper-chemokinemia signaling. Moreover, the hybridization  
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Figure 10 (Additional file 2). Characterization of phenotypic groups by GSEA. The figure depicts the 
comprehensive results of gene set enrichment analysis of our gene expression dataset against the curated 
gene set catalogue of “C7: immunological signature (Molecular signature database, v5.0, Cambridge, MA)”. 
Enrichment plots for the 3 gene set (pathways) upregulated both at 6 hpv and 24 hpv in vaccinated cohort 
compared to their unvaccinated counterparts are shown on the left side with the relative gene positions 
indicated by the straight lines (line plot) under each graph. Lines clustered to the left represent higher ranked 
genes in the ranked list. Expression profiles for a subset of genes (shaded in yellow in the line plots) 
contributing to core enrichment for each pathway are shown to the right as a heatmap. The heatmap 
compares subject-level gene expression in both vaccinated and control subjects. Gene expression is 
normalized for each row. Lower levels of expression are represented in shades of blue and higher expression 
in red. 
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values of selected cell surface marker genes including CD4, CD14, CD19, CD33 and CD86  

 (Fig 11: Additional file 8) indicated the changes of the proportion of PBMC-subpopulation 

following vaccination. These differences justified the application of GSEA to distinguish the 

transcriptional response between vaccinated and unvaccinated pigs.   

 

Followed by the gene set enrichment analysis, we performed the differential gene expression 

analyses in a time-series contrast which revealed that  transcriptome alteration started at 6 hpv 

and peaked at 24 hpv followed by a decreased abundance at 72 hpv (Fig 4). The differential 

expressions of five selective genes were confirmed by qRT-PCR (Fig 9). It was noteworthy 

that the comparison between 6h and 24 h time points in unvaccinated group with that of 0 h in 

vaccinated group yielded about ~20 differentially expressed genes (data not shown) which 

were almost identical in both contrast pairs and did not lead to enrichment of any known 

immunological pathways. That indicated there was no significant temporal variation of 

immune response among the pigs having no vaccine exposure. Therefore, before vaccination 

(0 h) time point were used as control to compare with post vaccination time points. This was 

also supported by a similar study (Adler et al. 2013), where the pre vaccination sample has 

also been used as reference to investigate the temporal pattern of transcriptomic response in 

porcine PBMCs to Tetanus toxoid vaccine. The proportion of up regulated genes was much 

higher than the down regulated genes at all three time points indicated the potential of PRRSV 

vaccine to induce gene expression in PBMCs. The differential gene expression analysis of in 

the present study showed massive changes in the transcript abundance of known immune 

response genes and of genes that have been implicated in PRRSV infection by several authors 

(Xiao et al. 2010a, Xiao et al. 2010b, Zhou et al. 2011). Xiao et al (2010b) reported that 4,520 

genes were differentially expressed in porcine lungs at 96 h and 168 h after in-vivo infection 

with highly pathogenic PRRSV strain, and those altered genes were functionally linked to 

host innate immune responses mediated by proinflammatory cytokines and chemokines. 

 

The InnateDB pathway analyses of DEGs revealed that transcriptome modification caused by 

vaccination are involved with activation of pathway such as toll like receptor 7/8 cascade, 

endocytosis, cytokine signaling, chemokine signaling, signal transduction, MAPK activation 

in TLR cascade and JAK/STAT signaling pathway. These pathways are known to be involved 

in the process of host cell sensing of the viral antigen and subsequent induction of innate 

immune response. Innate immunity against viral antigen is initiated once after the recognition 

of viral PAMPs by the specific host cell cytoplasmic PRRs such as TLR3, TLR7, TLR8 The 
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recognition of viral PAMPs (ss RNA for PRRSV) by the host cell TLR results in a cascade of 

intracellular signaling through various adapter molecules (e.g. MyD88, MDA5, TRAF6) 

followed by activation of the MAP kinase family, which in turn switch on transcription 

factors such as interferon regulatory factors (IRFs) and NF-kB. Among the IRF family 

 

Figure 11 (Additional file 8). Microarray-based expression profiles of selected cell surface markers, (cluster of 
differentiation (CD)) in PBMCs of vaccinated (A), and unvaccinated pigs (B). 

 

members, IRF2, IRF2BPL, IRF5 and IRF7 were up regulated but IRF3 was down regulated in 

PBMCs after vaccination. It is known that the members of IRF family such as IRF3, ISGF3, 

ISG15, IKKα, STAT1/STAT2 are involved in immunosuppressive effects of PRRSV infected 

cells (Patel et al. 2010, Yoo et al. 2010). The NF-kB induces several downstream signaling 

leading to the up regulation of proinflammatory cytokines, chemokines and type-I interferon 

which in turn facilitate the inflammatory process, apoptosis and phagocytosis (Hansen et al. 

2011).  
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Finally we performed the network analysis to extract the regulatory molecules for vaccine 

responses. the network analysis revealed that genes including APP, TRAF6, PIN1, FOS, 

CDKN1A, CTNNB1, TNFAIP3 SIRT1, ESR1 and HDAC5 are the most highly 

interconnected hubs of the functional network of vaccine induced DEGs (Fig 7). The common 

feature of these master switch genes is that they regulate the induction of several pathways of 

the innate immune responses including TLR signaling, MAPK kinase cascades, interferon 

signaling and advanced glycosylation endpoint receptor signaling. This is in line with the 

recent report on detection of network module containing numerous immune response genes 

through weighted gene co-expression network analysis of whole blood transcriptome profiles 

of PRRSV infected pigs (Schroyen et al. 2015). Amyloid beta (A4) precursor protein (APP), 

the top hub gene, is a protein coding gene which induces the secretion of a number of 

peptides; two of the peptides were shown to have antibacterial and antifungal activities 

(Papareddy et al. 2012). The APP has been reported to be over expressed in porcine alveolar 

macrophages 24 h after in-vitro stimulation with PRRSV (Jiang et al. 2013). The network 

module led by APP has functional involvement with asparagine N-linked glycosylation of 

surface glycoprotein 3 (GP3) of PRRSV which regulates the neutralizing antibody response 

(Ansari et al. 2006). Therefore, the APP led gene network module might contribute to PRRSV 

vaccine induced transcriptional responses in PBMCs.   

 

The TNF receptor-associated factor 6 (TRAF6) was found to be another prominent hub gene 

for transcriptional network induced by PRRSV vaccination in PBMCs. The TRAF6 is an 

adapter molecules required for TLR (TLR7/8) induced signal transduction leading to 

expression of IFNs (Seth et al. 2006). The peptidyl-prolyl cis-trans isomerase-1 (PIN1) is a 

nucleus protein which has an essential role in toll-like receptor signaling and type-1 interferon 

mediated innate immunity. TLR7 and TLR9 activate the isomerase PIN1 which subsequently 

activates the IRAK1, IRAK2 and IRF7 and induces type I interferons (Tun-Kyi et al. 2011). It 

appeared that among the top network hubs, APP, TRAF6 and PIN1 are known to be involved 

in the interferon response, the most potential antiviral innate immunity. Both TRAF6 and 

PIN1 are located in Sus scrofa chromosome 2 (SCC2), where the QTL for interferon-gamma 

level has already been identified (Uddin et al. 2011). However, no known QTL for immune 

response capacity found yet on the SSC13 where APP is located. Another hub gene, FOS, is a 

nuclear phosphoprotein involved in signal transduction, cell proliferation and differentiation, 

has been reported to regulate the replication of hepatitis-c virus (Kang et al. 2011). The 

cyclin-dependent kinase inhibitor 1A (CDKN1A) is a protein coding gene known to be 
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involved in antiviral immune response in human (Zahoor et al. 2014). Both FOS and 

CDKN1A are located on chromosome 7 (SSC7) where at least two QTLs for PRRS resistance 

as well as QTL for other innate immune response trait have been reported (Uddin et al. 2011). 

 

Table 4: Additional file 7. Microarray and qRT- PCR expression values obtained for the five 

selected genes for the validation of microarray results  

Genes Treatment 
group 

Time points Fold change 

Microarray  qRT-PCR 

STAT3 

Unvaccinated 
control  

6h 0.71 0.90 

24h 0.96 1.22 

72h 0.27 0.41 

Vaccinated 6h 3.21 4.41 

24h 3.72 3.90 

72h 3.04 3.82 

IRF3 

Unvaccinated 
control  

6h -0.04 -0.12 

24h -0.84 -0.81 

72h -1.42 -1.53 

Vaccinated  6h -3.21 -3.81 

24h -3.93 -4.73 

72h -5.88 -6.40 

CD80 

Unvaccinated 
control  

6h 0.05 0.09 

24h 0.22 1.27 

72h 0.19 0.14 

Vaccinated  6h 1.88 2.9 

24h 2.17 2.10 

72h 1.92 2.21 

CCL4 

Unvaccinated 
control  

6h 0.19 1.15 

24h 0.34 0.41 

72h 0.05 0.88 

Vaccinated  6h 3.12 3.62 

24h 3.21 3.15 

72h 1.88 2.71 

TRAF6 

Unvaccinated 
control  

6h 0.04 0.51 

24h 0.14 0.72 

72h 0.06 0.11 

Vaccinated 6h 1.88 2.21 

24h 1.91 2.73 

72h 1.65 1.92 
Two house keeping genes (GAPDH and ACTB) were used for normalization of the expression values 
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Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) is also found as hub of the 

transcriptional network of PRRSV vaccine response in PBMCs. The TNFAIP3 is a ubiquitin 

editing enzyme, known to be involved in immune, and inflammatory responses signaled by 

cytokines, such as TNF-alpha and IL-1 beta, or pathogen sensing  via toll-like receptors 

(TLRs) through terminating NF-kappa-B activity (Feng et al. 2003). TNFAIP3 is located on 

chromosome1 (SSC1) where at least three QTLs for PRRS susceptibility has been reported 

(Boddicker et al. 2012, Boddicker et al. 2014a, Serao et al. 2014). There were two close 

enzymatic products SIR1 and HDAC5 also found as hubs of the transcriptional network. 

SIRT1 deacetylates a wide range of substrates, including p53, NF-κB, FOXO transcription 

factors, and PGC-1α, with roles in cellular processes ranging from energy metabolism to cell 

survival (Cho et al. 2015). However, HDAC5 had strong connection only with ESR1 in the 

core network. The ESR1 was also found to be in the list of top ten hub genes of the network 

which was over expressed in vaccinated PBMCs. ESR1 along with PRLR, FSHB, EPOR and 

RBP4 were reported to have significant association with swine reproductive traits (Onteru et 

al. 2009). Though reproductive failure is one of the major clinical outcomes of PRRSV 

infection in breeding sows, ESR1 does not currently have known roles in innate immunity to 

PRRSV and warrants further investigation. On the whole, the hub genes including APP, 

TRAF6, PIN1, FOS, CDKN1A and TNFAIP3 (Fig 8), among others, were found to be highly 

interconnected to maintain the innate immune response function. Therefore, these six hub 

genes would coordinately be able to control the transcriptional network of PRRSV vaccine 

induced innate immune responses in PBMCs. 

 

2.6 Conclusions 

Herein, we performed a microarray-based transcriptome profiling to investigate genes, 

pathways and networks that may be involved in innate immune response of PBMCs to 

PRRSV vaccination in German Landrace pigs. This study identified APP, TRAF6, PIN1, 

FOS, CDKN1A and TNFAIP3 as potential hub genes which could contribute to the functional 

network of PRRSV vaccine induced transcriptome changes in PBMCs. Improvement of host 

genetic resistance has recently been considered as a promising way for sustainable PRRS 

control. As direct measurement of disease resistance is very difficult, an indirect approach 

through identification of genomic marker associated with innate immune response to PRRSV 

vaccine is recommendable. Therefore, it would imply that hub genes of the functional 

network identified in this transcriptome analysis might be considered for future research to 

investigate their potential role in PRRS resistance in pigs. However, the genetic diversity 
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among the pig breeds might contribute to the variation of PRRSV vaccine responsiveness. 

The correlation between early stage gene expression pattern and the antibody response of 

PRRSV vaccination could also be tested in larger pig population. 
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3.1  Abstract 

The porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease 

affecting swine production, health and welfare throughout the world. A synergistic action of 

the innate and the adaptive immune system of the host is essential for mounting a durable 

protective immunity through vaccination. Therefore, the current study aimed to investigate the 

transcriptome profiles of peripheral blood mononuclear cells (PBMCs) to characterize the 

innate and the adaptive immune response to PRRS Virus (PRRSV) vaccination in Pietrain 

pigs. The Affymetrix gene chip porcine gene 1.0 ST array were used for the transcriptome 

profiling of PBMCs collected at immediately before (D0), at one (D1) and 28 days (D28) post 

PRRSV vaccination with three biological replications. With FDR <0.05 and log2 fold change 

±1.5 as cutoff criteria, 295  and 116 transcripts were found to be differentially expressed in 

PBMCs during the stage of innate and adaptive response, respectively. The microarray 

expression results were technically validated by qRT-PCR. The gene ontology terms such as 

viral life cycle, regulation of lymphocyte activation, cytokine activity and inflammatory 

response were enriched during the innate immunity; cytolysis, T cell mediated cytotoxicity, 

immunoglobulin production were enriched during adaptive immunity to PRRSV vaccination. 

Significant enrichment of cytokine-cytokine receptor interaction, signaling by interleukins, 

signaling by the B cell receptor (BCR), viral mRNA translation, IFN-gamma pathway and 

AP-1 transcription factor network pathways were indicating the involvement of altered genes 

in the antiviral defense. Network analysis revealed that four network modules were 

functionally involved with the transcriptional network of innate immunity, and five modules 

were linked to adaptive immunity in PBMCs. The innate immune transcriptional network was 

found to be regulated by LCK, STAT3, ATP5B, UBB and RSP17. While TGFß1, IL7R, 

RAD21, SP1 and GZMB are likely predictive for the adaptive immune transcriptional 

response to PRRSV vaccine in PBMCs. Results of the current immunogenomics study 

advances our understanding of PRRS in term of host-vaccine interaction, and thereby 

contributes to design a rationale for disease control strategy.  

 

3.2  Introduction 

Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of an 

economically important swine disease, which is clinically characterized by reproductive 

failure in pregnant sows and respiratory disorder in young pigs (Collins et al. 1992). The 

PRRSV is a positive-sense, single-stranded RNA virus having two distinct genotypes namely 

European and North American. In swine, the common symptoms of PRRSV infection has 
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been characterized by prolonged viremia, a deficient induction of innate immunity along with 

weak and delayed development of neutralizing antibodies (Lopez and Osorio 2004, Meier et 

al. 2003) which are the major hurdle for control of porcine reproductive and respiratory 

syndrome (PRRS). Therefore, elucidating the main genomic factors involved in developing 

protective immune response to PRRSV vaccination is of utmost importance. 

 

The modified live virus (MLV) based vaccination has commonly been practiced as one of the 

primary and economic tools for swine herd immunization against PRRS (Kimman et al. 

2009). The MLV-PRRS vaccination can provide protection at least against reinfection with 

homologous PRRSV isolates and reduces the clinical outbreaks (Martelli et al. 2009). 

However, the molecular pathways and functional networks involved during the acquisition of 

immunity to PRRSV vaccination have not yet been entirely elucidated. It is conceivable that 

the mode of host response to vaccine antigen may differ in some extend from that of virulent 

infectious virus. The PRRSV infection has a predilection for the cells of mononuclear 

phagocyte lineages, like pulmonary alveolar macrophage and blood monocytes (Van Breedam 

et al. 2010). The virulent PRRSV infection causes depletion of immune cells through 

cytopathic replication preferably within the alveolar macrophage. While the attenuated virus 

strain used as vaccine is likely unable to cause cytopathic effects, it is able to sensitize the 

blood macrophage in the same way as virulent virus and induces immune response afterwards 

(Weesendorp et al. 2013, Zhuge et al. 2012). Moreover, the quality of immunity derived from 

natural PRRSV infection seemed not ideal for the implementation in the vaccine development 

programs (Kapur et al. 1996) that provoked the molecular characterization of host-vaccine 

interaction. 

 

The host immune response to vaccination is comprised of a complex interplay between 

components of the innate and the adaptive immune system (Loving et al. 2015). Innate 

immunity is the initial body defense against invading pathogen, typically occurs within hours 

to few days of exposure through recognition of conserved epitopes followed by triggering a 

proinflammatory response (Beutler 2004). While the adaptive immunity represents the 

neutralizing antibody response usually developed at 2-4 weeks following antigenic 

stimulation in a pathogen-specific manner through generating the immunological memory 

(Pancer and Cooper 2006). Antibodies are essential vaccine induced immune effectors 

produced by B lymphocytes, and are capable of binding specifically to a pathogen or antigen. 

Other potential effectors are cytotoxic CD8+ T lymphocytes (CTLs) that may limit the spread 
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of infectious agents by recognizing and killing infected cells or secreting specific antiviral 

cytokines. The development and maintenance of both B and CD8+ T cell responses are 

supported by growth factors and signals produced by CD4+ T helper cells, which are 

commonly subdivided into T helper 1 (Th1) and T helper 2 (Th2). The live attenuated viral 

vaccine elicits the recruitment of antigen specific CD4+ Th cells in the circulation which lead 

to induce both higher affinity antibody and immune memory, known as T dependent antibody 

responses (Lockhart 2003). The balanced host immunocompetence with cell-mediated (Th1) 

and humoral (Th2) immune responses is a proposed selection goal for general disease 

resistance (Wilkie and Mallard 1999). Thus, identification of transcriptome signatures for the 

innate and the adaptive response to PRRSV vaccination might contribute to design a rationale 

husbandry and breeding scheme for sustainable PRRS control. 

 

The host immune response to PRRSV has been studied through global transcriptome profiling 

mainly of lung tissue (Wysocki et al. 2012, Xiao et al. 2010a, Xiao et al. 2010b) and 

pulmonary alveolar macrophage (Ait-Ali et al. 2011, Genini et al. 2008, Zhou et al. 2011) 

with either in-vitro or in-vivo PRRSV infection, whereas reports on blood-based 

transcriptional response to vaccination are sparse. Considering the sampling convenience, 

time entailed, and animal welfare issues, the peripheral blood samples are much preferred to 

respiratory tissues/cells for evaluating the host immune responses to PRRSV vaccination. 

Moreover, unlike the sampling of pulmonary alveolar macrophage, repeated blood sampling 

is possible from the same individual during the course of immune responses, which is 

especially useful in controlling the baseline variation (Schroyen and Tuggle 2015). 

Furthermore, blood based genomic biomarkers can significantly advance the herd health 

management for PRRS by, for example, allowing the rapid and early prediction of host 

immunocompetence developed from vaccination (Rowland et al. 2012). Among the fractions 

of whole blood, the white blood cells transcriptome profile assume to reflect the 

transcriptomes of other porcine immune cells, likely what has been demonstrated in case of 

human (Kohane and Valtchinov 2012). 

 

Peripheral blood mononuclear cells (PBMCs), a subset of while blood cells have been proved 

to be a suitable model for characterizing the host immune response to vaccines in human 

(reviewed by Wang et al. 2012). The porcine PBMCs have also been studied by some authors 

for the evaluation of immune response to PRRSV in pigs (Aasted et al. 2002, Martelli et al. 

2007, Zhuge et al. 2012). However, those studies were mostly focused on expression profiling 
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of selected candidate genes using the in-vitro model. The current study employed an in-vivo 

PBMCs model to characterize the innate as well as the adaptive immune response to PRRSV 

vaccine through a global transcriptome approach. In a recent study, we observed that the 

highest transcriptional response of PRRSV vaccine during first three days occurred at 24 h 

after vaccination; we also observed a plateaued plasma antibody response to PRRSV vaccine 

at 28 days after primary vaccination (Islam et al. 2016). Therefore, we extended our aim 

herein to investigate the PBMCs transcriptome profiles at day 1, and day 28 post PRRSV 

vaccination to characterize functional networks associated with the innate and the adaptive 

immune response to PRRSV in Pietrain pig, respectively. 

 

3.3  Materials and methods  

3.3.1 Ethics statements  

The research proposal was approved by the Veterinary and Food Inspection Office, Siegburg, 

Germany (ref. 39600305-547/15). The whole in-vivo experiment was conducted according to 

the institutional guidelines and animal husbandry regulations of Germany (ZDS 2003). The 

blood sampling protocol was approved by the State Agency for Nature, Environment and 

Consumer Protection, North Rhine-Westphalia, Germany (permission nr. 84-

02.05.04.14.027). 

 

3.3.2 Vaccination and blood sampling  

Littermate piglets of two Pietrain sows were housed in the teaching and research station at 

Frankenforst, University of Bonn, Germany. Six clinically healthy female piglets from two 

sows, free from history respiratory diseases were included in this study. Piglets were 

immunized with the commercially available modified live PRRSV vaccine of European strain 

(Porcilis® PRRS, MSD Animal Health, Germany) through intramuscular injection of primary 

dose at day 28, and booster dose at day 56 of their age. About 7 mL anti-coagulated venous 

blood samples were collected from all pigs repeatedly at day 7, 28, 29, 42, 56 and day 70 of 

their age. All the blood samples were screened by ELISA for monitoring the PRRSV-specific 

antibody responses. However, for microarray study, the blood samples collected at just before 

(D0), and one day (D1) and 28 days (D28) relative to the primary vaccination were used with 

three biological replications. 
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3.3.3 Isolation of PBMCs and plasma  

The PBMCs were isolated from the whole blood by the density gradient centrifugation with 

Ficoll-Paque (Histopaque®-1077; Sigma-Aldrich, Munich, Germany) according to the 

protocol described by Uddin et al. (2012). In brief, whole blood were diluted at the ratio of 

1:1 with phosphate buffered saline (PBS) and carefully layered over 8 mL of Histopaque 

solution previously kept in a 50 mL conical tube. Then the tubes were centrifuged at 1250 ×g 

for 30 min at room temperature. After centrifugation, plasma was aspirated from the upper 

most layers and kept at -20 °C until used. PBMCs preparation was carefully aspirated and 

treated with RBC lysis buffer (Invitrogen, Darmstadt, Germany) to eliminate erythrocytes. 

Finally, PBMCs were washed twice with PBS and harvested as pellet. 

 

3.3.4 Monitoring of plasma antibody response  

To monitor the PRRSV-specific antibody titre, the plasma samples from all animals collected 

at day 7, 28, 42, 56 and 70 of age were screened by ELISA (PRRSV-AK screening, Synlab 

Vet GmbH, Augsburg, Germany) according to manufacturer's protocol. The optical density 

(OD) of each well was measured at 650 nm using the Bio-Rad 680 microplate reader. The 

presence or absence of PRRSV antibody was determined by calculating the sample to positive 

(S/P) ratio. The S/P ratio was calculated according to the equation described in our previous 

study (Islam et al. 2016). The samples were considered to be positive for PRRSV antibody if 

the S/P ratio was more than 0.4. 

 

3.3.5 RNA extraction and microarray hybridization  

Total RNA was extracted from PBMCs using the miRNeasy mini kit (P/N 217004, Qiagen, 

Hilden, Germany) according to the manufacturer's protocol along with on column DNase 

treatment (P/N 79254, Qiagen, Hilden, Germany). The RNA integrity was checked by micro 

capillary electrophoresis on an Agilent 2100 Bioanalyser with RNA 6000 Nanochip kit 

(Agilent Technologies, Waghausel-Wiesental, Germany). The total RNA from three 

individual piglets collected at D0, D1 and D28 time points were used for preparing the target 

probes for nine microarrays. About 100 ng of total RNA were processed to synthesize the 

biotin-labeled sense strand cDNA (ss-cDNA) probes using the GeneChip WT PLUS Reagent 

kit (P/N 902281; Affymetrix Inc., Santa Clara, CA, USA) according to the manufacturer's 

protocol. About 130 µL of biotinylated ss-cDNA probes were injected into the GeneChip 

Porcine Gene 1.0 ST array of 81/4 format (P/N 901976, Affymetrix) and incubated for 16 

hours in a hybridization oven (GeneChip Hybridization oven 640; Affymetrix) at 45 °C with 
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60 rpm for hybridization. The hybridized chips were stained and washed in a fluidics station 

(GeneChip Fluidics Station 450; Affymetrix) and scanned by Affymetrix GeneChip scanner 

3000 7G. The image data were evaluated using Affymetrix Genechip command consol 

(AGCC) software and the intensity data were exported into .CEL file format. The MIAME 

(minimum information about microarray experiment) complaint raw data have been submitted 

into the gene expression omnibus (GEO) database with the accession code GSE84516. 

 

3.3.6 Microarray data processing and statistical analysis  

The normalization and background correction of microarray dataset were performed using the 

`oligo' Bioconductor package (Gentleman et al. 2004) implemented in R project software 

(v3.1.2). The RMA (Robust Multi-array Average) based quantile normalization (log2) of 

microarray data was performed at the transcript level (Carvalho and Irizarry 2010). Probe to 

gene transcript annotation was performed with recent Affymetrix annotation file (Liu et al. 

2003). Gene annotations were extended by their orthologous human gene symbol as well as 

ensembl identifiers using the BioDBnet.org tool (http://biodbnet.abcc.ncifcrf.gov/). To 

explore the transcriptional modifications in response to vaccination, differential gene 

expression analysis was performed using the linear analysis of microarray technique from the 

`limma' package (Smyth 2005) with empirical Bayes adjustment to the variance, followed by 

Benjamini and Hochberg (BH) correction for multiple testing (Benjamini and Hochberg 

1995). Two pairwise contrasts such as D1 vs. D0 and D28 vs. D0 were considered for 

differential gene expression associated with the innate and the adaptive immune response, 

respectively. The false discovery rate (FDR) of <0.05 and log2 fold-change either >1.5 or <-

1.5 were considered as threshold for differential expression of genes. 

 

3.3.7 Functional analysis of differentially expressed genes  

For biological interpretation of the transcriptome dataset, the significantly over-represented 

gene ontology (GO) terms, biological pathways, and transcription factor binding sites (TFBS) 

were explored with the InnateDB pathway analysis tool (Breuer et al. 2013). InnateDB 

platform implements the hypergeometric algorithm with the Benjamini-Hochberg (BH) 

multiple test correction method for overrepresentation analysis. For this analysis, the list of 

ensembl gene identifiers was uploaded in InnateDB web and performed the over-

representation analysis. GO, pathways and TFBS were considered significantly over-

represented with an FDR <0.05. 
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3.3.8 Cell-type enrichment analysis of differentially expressed genes  

To get an overview on which subtypes of PBMCs contribute in vaccine induced differential 

gene expression, DEGs were analyzed using the CTen web-portal. The CTen (cell type 

enrichment) is an online bioinformatics tool for identifying enriched cell types in 

heterogeneous microarray data (Shoemaker et al. 2012). This tool implements a highly 

expressed, cell specific (HECS) gene database comprises of 10,058 genes of human and 

mouse origin. For this analysis, human orthologs symbol of differentially expressed genes 

were uploaded and compared with human HECS database. The significance of enrichment 

was determined using the one-tailed Fisher exact test and P values were adjusted with 

Benjamini-Hochberg (BH) method across all cell types. The enrichment score estimated as -

log10 of the BH-adjusted P value and created the color-coated output figures indicating this 

enrichment score. 

 

3.3.9 Network analysis of differentially expressed genes  

The ensembl orthologous identifiers of the differentially expressed genes were uploaded into 

the NetworkAnalayst tool (Xia et al. 2014) to construct the weighted network based on 

Walktrap algorithm by taking the first order interacts (direct interaction of seed genes). For 

high-performance visualization, the network size was adjusted for maximum of 500 nodes and 

1200 edges using the `trim' function of the tool. Two topological measures such as degree 

(number of connections it has to other nodes) and betweeness centrality (number of shortest 

paths going through the node) were taken into account for detecting highly interconnected hub 

of the network. Nodes having higher degree and betweenness values are the potential network 

hubs regulating cellular signal trafficking. The weighted network based module detection was 

performed to stratify the interconnected genes of similar biological function. For statistical 

significance, p value of a given network module was calculated using a Wilcoxon rank-sum 

test of the "internal" (edges within in a module) and "external" (edges connecting the nodes of 

other modules) degrees. Modules having more internal than external edges were like to be 

significant. Finally, the in-situ functional enrichment of the modules was performed based on  

REACTOME.db pathway database. 

 

3.3.10 qRT-PCR validation  

The RNA samples as prepared for microarray analysis were also used for qPCR validation. 

Four selected differentially expressed genes known to be involved in immune response were 

quantified by qRT-PCR (Table 1). Primers were designed based on an open source primer 
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designing software Primer3 (Rozen and Skaletsky 2000). The reverse transcription was 

performed using First Strand cDNA Synthesis Kit (P/N K1612, Thermo Scientific, Co.). The 

qRT-PCR reaction was set up taking 1.0 µl of cDNA template, 8.0 µl of deionized RNase free 

water, 0.5 µl of upstream and downstream primers, and 10 µl iTaq. Universal SYBR® Green 

Supermix (Bio-Rad laboratories GmbH, Germany) in a total volume of 20 µl. All reactions 

were amplified in duplicate by the StepOnePlus. Real-Time PCR System (Applied 

Biosystems®, Darmstadt, Germany) with thermal cycling conditions of 95 °C for 3 min, 95 

°C for 15 sec, 60 °C for 45 sec (40 cycles); 95 °C for 15 sec, 62 °C for 1 min, 95 °C for 15 

sec. The delta delta Ct (∆∆Ct) [∆Ct = Cttarget - Cthousekeeping genes] values were calculated as the 

difference between target gene and reference genes and expression was calculated as 2
(-∆∆Ct) 

(Pfaffl 2001). The correlations between qRT-PCR and microarray results were estimated with 

Pearson correlation test. 

 

Table 1. Sequences of the primers used for qRT-PCR validation of microarray results. 

Accession Symbol Sequence (5´ - 3´) Ann. Temp. 

(°C) 

Size 

(bp) 

BNM 

213948:1 

IFNG F : AGCTCCCAGAAACTGAACGA 

R : AGGGTTCAAAGCATGAATGG 

60 225 

NM 214015 TGFβ1 F : ACTACTACGCCAAGGAGGTCA 

R : TCTGCCCGAGAGAGCAATAC 

60 157 

NM 

213997:1 

IL8 F : TAGGACCAGAGCCAGGAAGA 

R : CAGTGGGGTCCACTCTCAAT 

60 174 

NM 

214041:1 

IL10 F : GTGGAGGAGGTGAAGAGTGCC 

R : GAGGTACAGCAGGGTTTCCCA 

60 266 

HQ013301 GAPDH* F : GCTGGTGCTGAGTATGTCGT 

R : AAGCAGTTGGTGGTACAGG 

56 124 

XM 

003124280:

3 

ACTB* F : AAGGACCTCTACGCCAACAC 

R : CTGGCTGATCCACATCTGCT 

57 110 

* reference gene; Ann. Temp.: Annealing temperature; bp: base pair; F: Forward; R: Reverse. 
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3.4  Results  

3.4.1 Antibody response to PRRSV vaccine  

The PRRSV-specific antibody titre in the blood plasma at day 7, 28, 42, 56 and day 70 of age 

was measured by ELISA to evaluate the antibody response derived from maternal origin and/ 

or from vaccination. It revealed that piglets had a negligible (P <0.01) level of maternally 

derived antibody at the time of primary vaccination considering an optical density (OD) value 

of 0.4 as threshold (Fig 1). The variation of antibody titres among the piglets at before vaccine 

priming was also significantly (P <0.05) low. The vaccine-specific antibody response found 

to be appeared (P = 0.0516) at 14 days (day 42 of age) post priming followed by a sharp 

increased titre at 28 days (day 56 of age) post priming. A significantly (P <0.05) high level of 

antibody response was observed over the period of four to six weeks of primary vaccination. 

 

 

 

 

Figure 1. PRRSV specific antibody response in Pietrain pigs. The figure illustrates the reactivity of maternally 
derived antibody and vaccine derived antibody to PRRSV in plasma detected by ELISA. The optical density (OD) 
values in the Y-axis represents sample to positive (S/P) ratio, and a S/P value of 0.4 was considered as 
threshold for positivity of antibody response. Values in X-axis represents the piglet ages at which blood 
samples were evaluated. Blood sampling at day 28 and day 56 were performed right before the primary and 
the booster vaccination, respectively indicated by asterisk. 

 

3.4.2 Transcriptome profiling of PBMCs following PRRSV vaccination  

In order to investigate the host transcriptional response to PRRSV vaccine, we employed the 

Affymetrix GeneChip Porcine Gene 1.0 ST Array for the whole transcriptome profiling of 

PBMCs collected immediately before (D0), and at one (D1) and 28 days (D28) post 
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vaccination in Pietrain pigs with three biological replicates. First, the normalized gene probe 

sets were filtered to eliminate those with very low expression summary values and low 

variability across the samples. After filtering, the normalized expression data yielded a total of 

14,212 gene transcripts to be expressed in PBMCs following vaccination. While the array 

chip used in this study were embedded with probe sets of 19,218 known genes in total. 

 

3.4.3 PBMCs transcriptome alteration associated with innate and adaptive immunity to 

PRRSV vaccine  

Transcripts were considered to be differentially expressed having the log fold change of >1.5 

or <1.5 and false discovery rate (FDR) of <0.05. Imposing this cutoff, a total of 295 

transcripts were found to be differentially expressed in PBMCs at day one post vaccination 

compared to control. The expression level of 65 genes including STAT3, LCK, UBB, VAV1, 

RSP17, SLC2A2, PTGES2 and MESP1 were upregulated and 230 genes including TGFβ1, 

RTF1, BIN2, TPST2, SNRK and PRKCQ were downregulated (Table 2). The range of log 

fold change of differentially expressed genes was between -4.461 and 3.46. The extend of fold 

change of most significantly altered genes (FDR sorted top ten up- and –down regulated) 

associated with innate immunity are presented in volcanoplot (Fig 2) and a complete list of 

differentially expressed genes is provided in S1 Table. 

 

Table 2. Number of differentially expressed genes in PBMCs following PRRSV vaccination 

Types Number of genes 

Innate immunity (D1 vs. D0) Adaptive immunity (D28 vs. D0) 

Up regulated  65 37 

Down regulated 230 79 

Total 295 116 

 

At day 28 post vaccination, a total of 116 genes were identified as differentially expressed, 

with 37 being upregulated and 79 being down regulated under the same threshold as above 

(Table 2). The volcano plot (Fig 3) demonstrating the FDR sorted top ten altered genes 

indicated that CXCR2,IFNG, SMAD3, VNN1, F2R and GZMB genes were most significantly 

upregulated and IL10, MYL9, TPM2, GSTA4, CLU and TGFβ1 were down regulated in 

PBMCs following PRRSV vaccination, among the list of differentially expressed genes 

(DEGs). The range of log fold change of DEGs was between -2.51 and 4.50. A complete list 
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of the differentially expressed genes in PBMCs after 28 days of PRRSV vaccination is 

provided in S2 Table. 

 

 

Figure 2. Volcano plot showing the most significantly altered genes at day one post vaccination. The picture 
demonstrates the range of fold changes of significantly altered transcripts in connection to innate immune 
response in PBMCs. 
 
 

 

Figure 3. Volcano plot showing the most significantly altered genes at day 28 post vaccination. The picture 
demonstrates the range of fold changes of significantly altered transcripts in connection to adaptive immune 
response in PBMCs. 
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The hierchialcal heatmap demonstrated the visual summary of the dynamic changes in the 

transcriptional response to PRRSV vaccine at two time points reflecting a gradual 

upregulation of differentially expressed transcripts with two major clusters (Fig 4). Samples 

clustering revealed two superior clusters, one for pre vaccinated and another for post 

vaccinated samples. The replicates of each sampling time points are clustered together 

indicated a low individual variation on vaccine induced gene expression. 

 

 
 

Figure 4. Hierarchical heat map showing the expression dynamics of DEGs. Normalized log2 transformed 
values as determined by Affymetrix GeneChip® porcine gene 1.0 ST array in PBMCs of Pietrain pigs collected at 
D0, D1 and D28 of PRRSV vaccination. Each column represents one pig, three replicates at each time point, 
each horizontal line refers to one gene. The cutoff value of log fold change as >1.5 or <-1.5 and false discovery 
rate <0.01 was considered. 
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3.4.4 GO terms and pathways enriched by differentially expressed genes (DEGs)  

The Gene Ontology analysis revealed that vaccine induced differentially expressed genes are 

involved in the process of active cellular process (Table 3), including T cell response (eg, 

GO:0050852, GO:0051249,GO:00190058), cellular protein metabolism (eg, GO:0044267, 

GO:0030162, GO:0001948, GO:0005840), gene expression (eg, GO:0010467, GO:0006412, 

GO:0050852) and regulation of apoptosis (eg, GO:0043065) during the early stage of vaccine 

exposure. On the other hand, DEGs observed at 28 days post vaccination are involved with 

enrichment of GO terms including B cell proliferation (eg, GO:0042100) inflammatory 

response (eg, GO: 0006954), MHC class II biosynthesis (eg, GO:0045348), gene expression 

(eg, GO: 0010628), antigen processing and presentation (eg, GO:0019882). Overall, there 

were significantly altered transcripts participating in cellular activation and differentiation, 

protein metabolism, and gene expression (Table 3). 

  

Pathways enrichment analysis revealed the involvement of several immune response 

pathways with PRRSV vaccine induced gene expression in PBMCs including signaling by B 

cell receptor, CD28 dependent VAV1 signaling, signaling by interleukins, influenza infection 

and TGFβ signaling pathways at one day after vaccination (Fig 5A). Signaling by NOTCH2, 

peptide-ligand binding receptor, Granzyme mediated apoptosis pathway, AP-1 transcription 

factor network and TGFβ signaling pathways were significantly enriched at 28 day post 

vaccination (Fig 5B). 

 

3.4.5 Transcription factor binding sites of DEGs  

We explored the involvement of transcription factors in the differential gene expression in 

vaccinated PBMCs using the InnateDB database. The transcription factor binding site (TFBS) 

analysis revealed that 120-kDa CRA-binding protein, E4F10, NF1, Tel-2a, HEB and NRF-2 

genes have the transcription factor binding sites which are likely contributing to PBMCs 

transcriptome alteration at early stage of PRRSV vaccination (Fig 6A). The TFBS analysis 

also revealed that ONECUT1, SMAD1 and MYC have the transcription factor binding sites 

regulating transcriptional machinery for inducing adaptive immune response in PBMCs (Fig 

6B). The PRRSV vaccine induced differentially expressed genes that are predicted to be 

regulated by the transcription factors are presented in Table 4.  
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Table 3. Significantly enriched gene ontology (GO) terms involved with DEGs 

Contrasts ID Description 

 

Catego

-ry 

Genesa Adj. P 

D1 vs. D0 

GO:0019058 Viral life cycle BP 6 0.0067 

GO:0006412 Translation BP 7 0.0154 

GO:0051249 Regulation of lymphocyte activation BP 6 0.0259 

GO:0010467 Gene expression BP 19 0.0269 

GO:0070062 Extracellular vesicular exosome CC 8 0.0273 

GO:0006200 ATP catabolic process BP 11 0.0299 

GO:0050852 T cell receptor signaling pathway BP 6 0.0301 

GO:0030162 Regulation of proteolysis BP 13 0.0310 

GO:0005840 Ribosome CC 17 0.0323 

GO:0022857 Transmembrane transporter activity MF 12 0.0327 

GO:0045747 Positive regulation of Notch signaling pathway BP 9 0.0336 

GO:0043065 Positive regulation of apoptotic process BP 6 0.0339 

GO:0044267 Cellular protein metabolic process BP 16 0.0343 

GO:0001948 Glycoprotein binding MF 15 0.0343 

D28 vs. 

D0 

GO:0005515 Protein binding MF 19 0.0332 

GO:0005886 Plasma membrane CC 7 0.0317 

GO:0005576 Extracellular region CC 8 0.0242 

GO:0006954 Inflammatory response BP 6 0.0043 

GO:0008284 Positive regulation of cell proliferation BP 7 0.0143 

GO:0010628 Positive regulation of gene expression BP 14 0.0198 

GO:0006915 Apoptotic process BP 6 0.0341 

GO:0042100 B cell proliferation BP 5 0.0053 

GO:0009615 Response to virus BP 5 0.0191 

GO:0005125 Cytokine activity MF 6 0.0224 

GO:0043123 Positive regulation of NFkB signaling BP 6 0.0240 

GO:0007166 Cell surface receptor signaling pathway BP 9 0.0299 

GO:0045348 Positive regulation of MHC class II biosynthesis BP 5 0.0068 

GO:0009611 Response to wounding BP 6 0.0256 

GO:0019882 Antigen processing and presentation BP 6 0.0261 

a: Number of genes involved in corresponding GO terms, one gene may appear in multiple terms, BP: Biological 

process, CC: Cellular component, MF: Molecular function, Adj.P: P values adjusted for multiple test correction 

method 
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Figure 5. Significantly enriched pathways by DEGs. Significantly enriched pathways in PBMCs at 1 (A), and 28 
(B) days post PRRSV vaccination in pig 

 

3.4.6 Cell-type specific pattern of gene expression  

To predict the specific cell-type contribution on vaccine induced differential genes expression 

in PBMCs, we tested the list of DEGs using an enrichment algorithm implemented in CTen 

web-portal. It revealed that differential expression of transcriptomes at early vaccine exposure 

was found to be significantly contributed by innate immune cell types including CD56+ NK 

cells, BDCA4+ dendritic cells, CD4+ T cells and CD8+ T cells (Fig 7A). While differentially 

expressed genes at 28 days post vaccination were of multiple cell-type origin including 

CD14+ monocytes, BDCA4+ dendritic cells, thymus, CD8+ T cells, CD4+ T cells, 

lymphnodes and whole blood (Fig 7B). Some cell types were mutually contributing to 

differential gene expression in both time points. NK cells were the enriched cell type 

associated with innate immunity but not with adaptive immunity in PBMCs. On the other 

hand, thymus, CD14+ and whole blood sample cell types were enriched in connection to 

adaptive immune response, but not during the stage of innate immunity to PRRSV 

vaccination in pig.  
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Figure 6. Transcription factors binding sites of DEGs. The figure depicts the TFBS of the genes showing 
differential expression in PBMCs at one day after vaccination (A), and 28 days after vaccination (B). Blue 
dotted lines indicate the threshold (-log10 P value of 1.3) for statistical significance. 
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Table 4. The known target genes bound by transcription factors identified in PBMCs after 

PRRSV vaccination in pigs   

Transcription factors Potential target genes P-value 

120-kDa CRE-binding 
protein 

DDX39B, RAP2A, RPS11, SERPINC1, STAT3 and 
TRPC4AP 

0.00928 

E4F1 DUSP1,  RAP2A, RPS11, STAT3 and UBL5 0.03250  

NF-1 DAPL1, DDX39B, EN2, LCK, RAP2A, SERPINC1, STAT3, 
TRPC4AP, UBB and UQCRH 

0.03421  

Tel-2a LCK, RPS11, TRPC4AP and UBL5 0.03611  

HEB DAPL1 and TRPC4AP 0.03872  

NRF-2 LCK, RPS13, TRPC4AP and UBL5 0.04773  

ONECUT1 ANGPT2, DGKA, F2R, GZMB and TGFB1 0.01281 

SMAD1 GZMB, IL7R, RSAD2, SMAD3, SCL37A1 and VNN1 0.02389 

MYC ANGPT2, IFNG, PLAC8 and TGFB1 0.03546 
 

 

Figure 7. Circular plot showing the cell-type enrichment of DEGs. The figure depicts the cell-type specific 
enrichment of differentially expressed genes in PBMCs at one day after vaccination (A), and 28 days after 
vaccination (B). Red bold lines intersecting the cell types indicate the enrichment score (-log 10 adj. P-value) 
intersecting the cell type. The enrichment score cutoff of 2 or more was considered for statistical significance. 

 

3.4.7 Functional network of innate immune transcripts  

The simplified network of PRRSV vaccine induced innate immune transcripts in PBMCs is 

presented in (Fig 8). The network topology analysis showed that UBD, LCK, STAT3, 

ATP5B, RPS11, RPS13, RPS17 and EEF1G are the highly interconnected hubs of the 

network. The majority of the core genes of the network were overexpressed in PBMCs 

following PRRSV vaccination indicated the upregulation of their underlying function. The 

network module analysis revealed that differentially expressed genes were clustered in four 

modules (IM0, IM1, IM2 and IM3) indicated by four different colors (Fig 8).  
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The purple module (IM0) contains the genes (LCK, SKAP1, MyD88, MAPK14, VAV1, 

JAK2, SRC, CD79A, PTPRC, AMBP, DOCK8, PTK2B, SMAD3, CSNK2B, UBE3A, 

KHDRBS1) and is functionally linked to various innate immune response functions such as 

signaling by interleukins, cytokine signaling in immune system, CD28 co-stimulation, antigen 

activates B cell receptor leading to generation of second messengers, signaling by SCF-KIT, 

Fc gamma receptor (FCGR) dependent phagocytosis, interleukin-1 signaling, integrin cell 

surface interactions, innate immune system, signal transduction, TRAF6 mediated induction 

 

Figure 8. Network of PRRSV vaccine induced innate immune transcriptomes in PBMCs. The figure 
demonstrates the interconnected network of PRRSV vaccine induced differentially expressed genes in PBMCs 
at one day after PRRSV vaccination compared to before vaccination in Pietrain pigs. Each circle indicates the 
node or member genes of the network. The diameter of the circle corresponds to the values of two centrality 
measures (degree and betweenness). The larger diameter indicates the higher potential of the nodes to be the 
hub genes of the network. The network modules with corresponding genes are indicated by different colors 
(purple: IM0, blue: IM1, pink: IM2 and green: IM3). 

 

of NFkB and MAP kinases upon TLR7/8 or 9 activation. The blue module (IM1) containing 

genes such as STAT3, TGFβ1, APP, DUSP1, ELAVL1DDX39B, MYL12A, EP300, IKBKB, 

IKBKG, RBM8A, SP1, EGFR, TRPC4A and CEBPB, involved in biological functions like 

MyD88: Mal cascade initiated on plasma membrane, toll-like receptors cascades, signaling by 
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interleukins, NFkB activation by phosphorylation and activation of IKKs complex, cytokine 

signaling in immune system, signaling by the B cell receptor (BCR) and activation of NFkB 

in B cells. The pink module (IM2) containing genes such ATP5B, RSP11, RSP13, RSP17, 

UTP14A, EEF1G, EEF1A1, SUMO2, ITGA4, TRAF6, FN1, RPN2, RPL4, RPL10L, COPS5, 

HNRNPU, HNRNPA3, UBL4A, UBD, UBL5, RTF1, ILF3 and NKKB2, was functionally 

involved in the process of translation, metabolism of proteins, intrinsic pathway for apoptosis, 

viral mRNA translation, membrane trafficking, cell cycle and apoptosis. The green module 

(IM3) containing genes like UBC, CHD3, HTT; RAD21 and PTGES2, was engaged in 

biological function like activation of matrix metalloproteinases, meiosis, chromosome 

maintenance and extracellular matrix organization.  

 

3.4.8 Functional network of adaptive immune transcripts  

The sub-network enrichment analysis of PRRSV vaccine induced adaptive immune 

transcripts in PBMCs (Fig 9) identified TGFβ1, IL7R, RAD21 and GZMB as highly 

interconnected genes, and are likely to be the potential hubs of the functional network. The 

purple module (AM0) containing genes ILR7, TGFβ1, SP1, IL-10, EP300, IFNG, EGR1, 

STAT3, TPM2, LEF1, IRF1 and are biologically linked to cytokine signaling in immune 

system, signaling by TGF-beta receptor complex, influenza virus induced apoptosis and 

signaling to STAT3. The blue module (AM1)containing the gene GZMA, GZMB, 

HIST2H2BE, XRCC6, XRCC6 and JUN, was linked to biological function of HIV infection, 

disease, DNA repair, integration of provirus and nucleosome assembly. The pink module 

(AM2) containing genes such RAD21, RPS11, ESR1, CLU and HNRNPU, was involved with 

biological process like cohesin loading onto chromatin, M phase and mitotic prometaphase. 

The green module (AM3) containing genes like UBC, CTSH, DGKA, STEAP4 and AMIGO, 

was engaged in biological function like glutathione conjugation, MHC class II antigen 

presentation and adaptive immune system. Yellow module (AM4) containing genes 

GPRASP1, UBA52, ARRB1, CXCR2 and YWHAG, was functionally involved with NF-kB 

activating and signal survival, assembly of HIV virion, STING mediated induction of type 1 

IFN, signaling by NOTCH and apoptosis.  
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Figure 9. Network of PRRSV vaccine induced adaptive immune transcriptome in PBMCs. The picture depicts 
the interconnected network of PRRSV vaccine induced differentially expressed genes in PBMCs at 28 days 
after PRRSV vaccination compared to before vaccination in Pietrain pigs. Each circle indicates the node or 
member genes of the network. The diameter of the circle corresponds to the values of two centrality 
measures that is degree and betweenness of particular node. The larger diameter indicates the higher 
potential of the nodes to be the hub genes of the network. The network modules with corresponding genes 
are indicated by different colors (purple: AM0, blue: AM1, pink: AM2, green: AM3 and yellow: AM4). 

 

3.4.9 The qRT-PCR validation  

To validate the expression level of genes estimated by microarray, four differentially 

expressed genes such as IFNG, TGFβ1, IL-8 and IL-10 were selected for real time qPCR 

analysis. The expressions of all selected genes obtained from microarray and the qPCR are 

presented in Fig 10. The qPCR expression values of all genes were aligned with the 

microarray data with a high correlation (Pearson correlation coefficient, r = 0.929; P = 

00154). 
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Figure 10. The qRT-PCR validation of the microarray data. The Y-axis of the bars indicates the log2 fold changes 
of each gene in PBMCs collected at one day after vaccination compared to control determined by qRT-PCR and 
microarray. Asterisk mark indicate the level of statistical significance (* <0.05; ** <0.01). 

 

3.5  Discussion  

Transcriptome profiling of PBMCs is receiving more interest in evaluating host immune 

response to infectious diseases, since PBMCs play central role in immune system. PBMCs are 

a heterogeneous population of blood cells that include monocytes, lymphocytes (T cells, B 

cells and NK cells) and dendritic cells. These blood cells patrol through entire body systems 

and immediately respond to both internal and external stimuli. Researches have shown that 

porcine PBMCs can display gene expression patterns which are characteristics for certain 

pathogenic infection, for instance, classical swine fever (Li et al. 2010a) and tetanus toxoid 

(Adler et al. 2013). In the current study, whole transcriptome profiling of PBMCs was 

performed in three individual piglets to characterize the gene expression changes associated 

with the innate as well as the adaptive immune response to PRRSV vaccine in Pietrain pigs. 

Though increasing the number of replicates in microarray experiment would leads more 

robust results, several groups like us have implemented three biological replications in global 

gene expression studies to characterize the host-PRRSV interaction (Xiao et al. 2010b, Zhou 

et al. 2011, Genini et al. 2008, Ait-Ali et al. 2011, Badaoui et al. 2013). We compared the 

global transcriptome profiles of PBMCs collected at day one (D1) and day 28 (D28) post 

PRRSV vaccination with that of collected before vaccination (D0) from the same pigs. The 

repeated sampling from the same individual allowed us to reduce the baseline individual 
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variation (P <0.01) indicated by antibody responses. In a similar design, transcriptome 

profiles of pre infected (0h) whole blood samples were compared with that of repeatedly 

collected post infected samples from the same individuals to characterize the immune 

response to PRRSV (Rowland et al. 2012).  

 

The current study yielded a transcriptome dataset comprised of 411 differentially expressed 

genes in PBMCs after PRRSV vaccination. The robustness of this dataset was confirmed 

through measuring the expression levels of four selected differentially expressed genes in the 

same sample by qRT-PCR (Fig 10). Differential gene expression analysis showed that 

significant changes in PBMCs transcriptome profiles occurred at day one post PRRSV 

vaccination in Pietrain pig. The proportion of down regulated genes was higher than the 

upregulated one for both contrast pairs. The exact mechanism of this global down regulation 

is yet to be clarified; however, we speculated that this may be attributed by the host genetics. 

Because, host factors like age (Aasted et al. 2002) and breed (Ait-Ali et al. 2011) in particular, 

have strong influence on the development of immunity against PRRSV. An aberrant host 

immune response characterized by the consistent down regulated genes was reported in the 

PRRSV infected alveolar macrophages of pigs (Genini et al. 2008). In the same line, our 

recent RNA-seq analysis also revealed the global down regulation of altered transcripts in the 

PRRSV infected lung dendritic cells obtained from Pietrain pigs (Proll et al. 2016, 

unpublished). Surprisingly, the gene ontology and pathway analysis revealed a central role in 

the early vaccine response for genes those are involved in pro-inflammatory responses via 

cytokine-cytokine receptor signaling pathway, CD28 dependent VAV1 pathway and signaling 

by interleukins. Over expression of IL8 and CCR7 indicated that PRRSV vaccine is able to 

induce a proinflammatory response in PBMCs. The development of anti-viral innate 

immunity launches through sensing the viral protein or nucleic acid by the so-called specific 

receptor, the pathogen recognition receptors (PRRs), expressed constitutively in the host 

immune cells (Akira et al. 2006), which in turn induce the proinflammatory response 

(Thompson et al. 2011). After intramuscular vaccination, vaccine antigen can reach the blood 

circulation through bypassing the pulmonary alveolar macrophages, where the cytopathic 

replication takes place. Our results are in line with findings of a recent meta-analysis 

performed to characterize PRRSV specific immunity from published transcriptome studies 

(Badaoui et al. 2013). The meta-analysis showed that the differential expression of a cell 

surface receptor involved in cytokine regulation, TREM1, along with inflammatory responses 

toll-like receptor genes TLR2, TLR4, cytokines including IL-1b, IL6 and IL18 and chemokine 

including CCL2 and CCL3 were involved with PRRSV specific host responses (Akira et al. 
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2006). RNA-seq analyses of transcriptome profiles of PRRSV infected porcine 

tracheobronchial lymphnodes (Miller et al. 2012) and lung tissue (Xiao et al. 2010a) also 

revealed that PRRSV induces proinflammatory response. 

 

The interferon response is a well-known innate immune reaction developed upon virus 

infection or vaccination. We observed an overexpression of IFNG at 28 days post vaccination 

but not at 1 day post vaccination, which signals a delayed induction of innate anti-viral 

immunity to PRRSV in PBMCs. This finding is in line with previous studies, where several 

microarray experiments reported a dampened expression of type I IFN response during 

PRRSV infection indicating an inadequate stimulation of the innate anti-viral immune 

response (Xiao et al. 2010a, Ait-Ali et al. 2011, Garcia-Nicolas et al. 2014). Similarly, a 

gradual development of the interferon-gamma response of swine to PRRS virus infection or 

vaccination has been reported by Meier et al (2003). In contrast, Genini et al (2008) observed 

a strong elevation of IFNα at 9 h post infection but a slightly elevated expression of IFNα in 

alveolar macrophage infected with PRRSV. However, Zhang and colleagues stated that 

PRRSV does not fail to induce IFNα or IFNβ mRNA expression in monocyte derived 

dendritic cells, but protein seems to be blocked post-transcriptionally (Zhang et al. 2012) 

which demands the investigation of potential role of post transcriptional regulators like 

miRNAs in PRRSV induced IFN responses. 

 

Transcription factors (TFs) are regulators of gene expression. In mammalian genome, genes 

are usually in a default ‘off’ state and TFs serve mainly to turn gene expression ‘on’ through 

recognizing specific cis-regulatory DNA sequences at the promoter regions of target genes 

(Niu et al. 2011). The current analysis revealed the involvement of transcription factors 

including 120-kDa CRA-binding protein, E4F1, NF1, Tel-2a, HEB and NRF-2 with PRRSV 

vaccine mediated innate immunity; and ONECTU1, SMAD1 and MYC with adaptive 

immunity in PBMCs (Fig 6). A total of 27 differentially expressed genes were under 

regulation of these seven transcription factors identified in PBMCs of PRRSV vaccinated pigs 

(Table 4), many of altered genes have already been linked to host-PRRSV interaction (Xiao et 

al. 2010b, Zhou et al. 2011, Genini et al. 2008). Among the TFs identified in this study, MYC 

has been previously reported to be involved with the swine host response to PRRSV infection 

(Badaoui et al. 2013). We identified ANGPT2, IFNG, PLAC8 and TGFB1 as potential target 

genes of MYC transcription factor. The MYC regulates the expression of two immune 

checkpoint proteins on the tumor cell surface, the innate immune regulator, CD47 (Cluster of 
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Differentiation 47) and the adaptive immune checkpoint, PD-L1 (programmed death-ligand 

1); (Casey et al. 2016), thereby initiates and maintains the tumorigenesis. The involvement of 

some other transcription factors like interferon regulatory factors (IRF1, IRF3, IRF5 and 

IRF8), HMGB1, NFkB, EGR1, BCL3, PYCARD MYCN and NFE2L2 in the transcriptional 

mechanism of immune response to PRRSV in pig has been identified through a meta-analysis 

(Badaoui et al. 2013). The actions of transcription factors regulate the unique expression of 

each gene in the different cell types during development process. 

 

The cellular sub-population of PBMCs may have individual roles on development of vaccine 

immunity. The cell type enrichment analysis revealed that differentially expressed genes 

specifically expressed in CD4+ T cells, CD8+ T cells, CD14+ and CD33+ monocytes during 

early stage; and lymphnode, thymus, BDCA4+ dendritic cells, CD4+ T cells and CD8+ T 

cells in later stage of vaccine immunity (Fig 7). This could indicate that the expression 

patterns of the genes were not solely due to transcriptional changes but possibly also due to a 

difference in demographics of PBMCs subsets recruited into the blood. Shimizu et al. 

observed a remarkable decrease in CD4+ T cells after 3 days PRRSV infection in pigs 

(Shimizu et al. 1996); this study also reported slight decreases in CD8+ T cells at 3 dpi, 

followed by substantially increased levels (Shimizu et al. 1996), while at the same time, the 

ratios of CD4+/CD8+ T cells were significantly lower between day 3 and 28 post-inoculation 

compared with that of day 0 (Shimizu et al. 1996). However, the proportion of CD4+ and 

CD8+ T cells were found to be significantly decreased for a few days shortly after PRRSV 

infection, but returned to pre-infection levels on 8-10 days post infection (Nielsen and Botner 

1997). Renukaradhya et al (2010) performed a comprehensive analysis of innate and adaptive 

immune responses in dual-virus infected pigs and reported that reduced innate NK-cells 

population along with increased frequencies of CD4+ T cell, CD8+ T cells and myeloid cells 

resulted from PRRSV infection in pigs. The PRRSV infection is reported to causes an 

increase in CD14+ expression throughout the early stage of infection, due to a rise in CD14+ 

monocytes that differentiate to macrophages and migrate to bronchoalveolar spaces (Van 

Gucht et al. 2004). Silva-Campa et al (2012) observed that PRRSV infection increases the 

frequency of T cell regulatory cells (Tregs) with the phenotype CD4+, CD8+, CD25+ and 

Foxp3high. Therefore, this information on cell-type specific contribution to vaccine immunity 

could be an important add-on for PRRS research. 
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Innate immune response traits like other quantitative traits are not regulated by 

straightforward linear pathways but rather by networks of complex molecular interactions 

(Gardy et al. 2009). Thereby network analyses based on larger immune-specific gene database 

(Shoemaker et al. 2012) proved to be a more effective strategy for the identification of genes 

that regulate the immune response to PRRSV vaccine in PBMCs. Among the hub genes of the 

network, the lymphocyte-specific protein tyrosine kinase (LCK) gene was found to be one of 

the potential hubs of functional network (Fig 8). LCK encodes p56 (LCK), a non receptor 

protein-tyrosine kinase of the SRC oncogene family that is involved in transduction of T-cell 

receptor (TCR)-mediated activation of T-cell. The signal transduction cascades are activated 

following antigen binding to the TCR, and in concert with engagement of other co-receptors 

and their associated ligands (such as CD4 and major histocompatibility complex (MHC) class 

II, CD28, B7, CD8, and MHC I); (Goldman et al. 1998). Functional enrichment of the 

network module revealed that the innate immune transcripts are clustered in four modules 

participating in four major groups of biological functions. The ubiquitination was found to be 

a key cellular processes significantly upregulated with the transcriptome alteration in PBMCs 

at early after PRRSV vaccination. We observed the over expression of ubiquitin gene family 

such as UBC, UBB, UBD, UBL5, UBL4A, and UBE3A in PBMCs after vaccination. 

Moreover, UBC was found to be a potential hub of the functional network of PRRSV vaccine 

induced innate immune transcriptomes in PBMCs. The ubiquitination is a post-translational 

modification process that has been implicated in the regulation of a wide variety of cellular 

process. The genetic and biochemical evidence suggest that protein ubiquitination and 

deubiquitination are of fundamental importance in the regulation of the innate and adaptive 

immune system (Sun 2008). The over-expression of porcine ubiquitin specific protease 18 

(USP18) is reported to reduce the in-vitro PRRSV replication by altering the cellular 

distribution of two subunits of NFkB heterodimers (p56 and p50); (Xu et al. 2012) which 

indicates the role of USP18 as a host restriction factor during innate immune response to 

PRRSV. In a subsequent study, the SNP G-1533A polymorphism in the promoter region of 

the porcine USP18 gene has been suggested as a potential DNA marker for the resistance to 

PRRSV (Li et al. 2014b). Therefore, the ubiquitination process might influence the 

transcriptional network of PRRSV vaccine induced innate immune response in PBMCs. 

 

The adaptive immunity is specific to the pathogen and the components of the adaptive 

immune system are also likely contributing to PRRS resistance in pigs. The sub-network 

analysis of the current microarray study showed the evidence of adaptive B and T cell 

immunity to PRRSV vaccine in PBMCs. Though adaptive immunity is likely to be 
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predominated by B cell function, however, T lypmhocytes in parallel also have significant 

contribution in adaptive immunity (Voskoboinik et al. 2006). The conjugation of viral antigen 

to a protein carrier (adjuvant) provides foreign peptide antigens that are presented to the 

immune system and thus recruit antigen-specific CD4+ Th cells which are referred to as T 

dependent antibody responses (Lockhart 2003). A hallmark of T-dependent responses of live 

attenuated viral vaccines is to induce both higher-affinity antibodies and immune memory 

along with generation of CD8+ cytotoxic T cells. Down regulation of immunosuppresive 

cytokine TGFβ1, and upregulation of interferon IFNG and chemokine CXCR2, VAV1, 

SMAD3, GYMA, GYM5 and transcription factor STAT1 were found to be among regulators 

of the transcriptional network of vaccine induced adaptive immunity. This is consistent with 

the hypothesis that there are possibilities for association of PRRS resistance genes with the 

cells of adaptive immunity, namely the T and B cells (Glass 2012). Major biological pathways 

involved were TGF-beta receptor signaling pathways, AP-1 transcription factor network, 

granzyme mediated apoptosis, NOTCH2 signaling and IL-12 mediated signaling. The 

perforin-mediated apoptosis is principally regulated by IL-10 secreted from cytotoxic T 

lymphocytes (CTLs); (Voskoboinik et al. 2006). Type 1 PRRSV strains have been reported to 

induce IL-10 production in infected dendritic cells (Silva-Campa et al. 2010). 

 

Induction of neutralizing antibody (NAb) response is a potential indicator for the vaccine-

based adaptive immunity. However, the specificity as well as the level of NAb titre may vary 

and are likely attributed to establishment of protective immunity. Previous studies suggested 

that a higher level of PRRSV-specific NAb titre (1:8 to 1:32) in blood is required to prevent 

the subsequent infection (Trus et al. 2014). In this study, PRRSV vaccine induced neutralizing 

antibody titre (S/P ratio) rose around 1:12 at 28 days post vaccination and remain elevated 

over 42 days post vaccination (Fig 1). This was supported by the findings of Meier et al. 2003 

and Yoon et al. 1996, who reported that serum antibodies with PRRSV-neutralizing activity 

appear only at periods equal or higher than 28 days post infection. The timing of peak 

response may vary with type of antibodies, for instance the PRRSV-specific IgM could be 

detected at 7 days post infection (PI), with titre peaking between 14 and 21 day PI and 

decreasing to undetectable levels around 40 days PI (Loemba et al. 1996). The earliest 

antibodies detected that are directed against the 15kDa N protein which seems to be unable to 

provide sufficient protection (Yoon et al. 1996). However, there is a positive correlation 

between the level of vaccine-induced serum NAb titre and the level of protection against 

PRRSV infection (Li et al. 2014a). Overall, the anamnestic induction of plasma antibody 
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response at day 28 post vaccination was suggestive for the development of adaptive immunity 

to PRRSV vaccine in the studied piglets. Therefore, it would imply that the gene expression 

changes in PBMCs at 28 days post vaccination may reflect the transcriptional activity 

associated with adaptive immune response to PRRSV vaccination in Pietrain pigs. 

 

3.6  Conclusions  

This study support a model in which PBMCs transcriptome alterations are involved in 

upregulation of CD28 dependent VAV1 pathway, signaling by interleukins and ubiquitination 

pathway at the initial 24 hours after vaccination; and upregulation of IL12-mediated signaling 

events, AP-1 transcription factor network and TGF-beta receptor signaling pathways at 28 

days after PRRSV vaccination in pigs. Network analysis sorted out the potential regulatory 

genes involved with induction of innate immune response and subsequently contributes to the 

development of adaptive immune response in PBMCs to PRRSV vaccination. Among the 

vaccine induced genes, LCK, STAT3, ATP5B, UBB and RSP17 were found to be the 

potential candidates for innate immune responses to PRRSV vaccine in peripheral blood. 

Further work is required to determine whether polymorphisms linked to genes identified in 

this study affect the innate immune response trait in pig populations immunized with PRRSV 

vaccine.  

 

At 28 days post PRRSV vaccination, a plateaued antibody response was observed in plasma, 

at the same time, significant transcripts abundance was identified by microarray analysis in 

PBMCs. Among the differentially expressed genes, TGFβ1, IL7R, RAD21, SP1 and GZMB 

were highly interconnected hub genes of functional network, thereby likely to be the potential 

candidates to predict the PRRSV vaccine induced adaptive immune response in blood. The 

degree of association between the antibody response and the transcriptome alteration induced 

by PRRSV vaccine could further be tested through expression of these adaptive response 

candidates in the PBMCs of pigs with extreme antibody response phenotype in a larger 

population. 
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4.1  Abstract 

The porcine reproductive and respiratory syndrome (PRRS) is a devastating viral disease 

affecting swine industry worldwide. The breed is one of the potential determinants 

influencing the host immune response to PRRS virus (PRRSV) infection in pigs. Elucidating 

the role of host genetics in the variation of PRRSV vaccine responsiveness may lead to 

characterize the host specific immunocompetence, and thereby resistance to PRRS. Therefore, 

the current study aimed to investigate the breed difference in innate immune response to 

PRRSV vaccination between purebred German Landrace (DL) and Pietrain (Pi) pigs. We 

analyzed microarray-based transcriptome profiles of peripheral blood mononuclear cells 

(PBMCs) collected before (0h) and 24h after PRRSV vaccination from DL and Pi breed with 

three biological replicates. With FDR <0.05 and log2 fold change 1.5 as cutoff criteria, 4,269 

transcripts were found to be differentially expressed in PBMCs in at least any of four contrast 

pairs (i.e. DL-24h vs. DL-0h, Pi-24h vs. Pi-0h, DL-0h vs. Pi-0h and DL-24h vs. Pi-24h) tested. 

The number of vaccine induced differentially expressed genes (DEGs) was much higher 

(2,459) in DL pigs than that of Pietrain pigs (291). After 24 h of PRRSV vaccination, 1,046 

genes were differentially expressed PMBCs of DL pig compared to that of Pietrain (DL-24h 

vs. Pi-24h), indicating the breed differences in vaccine responsiveness. Before vaccination, 

3,255 genes showed differential expression between DL and Pi (DL-0h vs. Pi-0h) which 

indicated the genetic variation between two breeds. The top biological pathways significantly 

affected by genes differentially expressed in PBMCs of both breeds are linked to immune 

response functions. The network enrichment analysis identified STAT1, MMS19, RPA2, 

BAD, UCHL5 and APC as potential regulatory genes for the functional network of PRRSV 

vaccine response specific for DL. While FOXO3, IRF2, ADRBK1, FHL3, PPP2CB, MTOR, 

EIF3I, RPL8, FLNC, NCOA6, DICER1 were found to be the most potential hubs of the 

Pietrain-specific transcriptome network. In conclusion, German Landrace pigs differ greatly 

from Pietrain in terms of PBMCs transcriptome profiles after PRRSV vaccination. The 

current transcriptome analysis enhances our knowledge on genetic control of the susceptibility 

to PRRS.  

  

4.2  Introduction 

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically 

important viral diseases of swine industry worldwide. The PRRS is caused by a positive sense 

single stranded RNA virus PRRS virus (PRRSV) having two genetically diverse strains 

namely Type 1 (European) and Type 2 (North American) (Nelsen et al. 1999). The clinical 
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outcome of PRRSV infection varies widely from mild asymptomatic illness to severe clinical 

disease depending on virulence of the virus and immune status of the host (Lunney et al. 

2011). The PRRSV of either genotype seems to inherently stimulate an imbalanced immune 

response characterized by an aberrant interferon (IFN) response (Murtaugh et al. 2002). 

Variability of host immunity is likely responsible for the inconsistency of the clinical 

outcomes seen upon PRRSV challenge either to naïve or previously immunized pigs 

(Labarque et al. 2003). Thereby, the severity of PRRSV infection is determined by the ability 

of the host to overcome the inherent propensity of PRRSV in preventing the timely 

development of host innate immunity.  

 

The innate immunity, as the first line of host defense mechanism is typically occurs within 

hours of antigen exposure in a non-specific manner and may persist up to few days (Beutler 

2004). Adequate activation of innate immune system is essential for mounting a durable 

protective immunity (Glass 2012). Genes regulating the innate immune response to 

pathogenic infection are likely to be the strong candidates for disease resistance trait (Loving 

et al. 2015). Innate immune related genes, in particular, the members of guanylate-binding 

protein gene family have been found to be associated with host resistance to PRRSV 

(Boddicker et al. 2012). The guanylate-binding protein gene family are located on Sus scrofa 

chromosome 4 (SSC4) where the quantitative trait locus (QTL) associated with host 

resistance to PRSSV infection has been identified (Boddicker et al. 2012). A single nucleotide 

polymorphism (SNP) WUR10000125 (WUR) at the interferon-inducible guanylate-binding 

protein 1 gene (GBP1) has recently been found to be associated with European PRRS 

resistance and growth performance in pig (Abella et al. 2016). Gene expression study in 

PRRSV infected pulmonary alveolar macrophages over 24 h post infection period suggested 

that myxovirus resistance 1 (MX1) and ubiquitin specific protease (USP) genes may play 

important role in clinical disease during PRRSV infection (Zhang et al. 1999). It has also been 

reported that the overexpression of the porcine USP18 resulted a limited replication of 

PRRSV (Ait-Ali et al. 2009) through altering the nuclear translocation of NF-κB p65 and 

p50 (Xu et al. 2012). A subsequent study suggested that the SNP G-1533A polymorphism in 

the promoter region of porcine USP18 gene is a potential DNA marker for the resistance to 

PRRSV (Li et al. 2014). Therefore, genes and molecular pathways associated with innate 

immunity to PRRSV are crucial for genetic improvement of the host through selective 

breeding. 
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The breed is one of the potential host determinants affecting the immune response to variety 

of pathogens or stressors in pig. The existence of variation in the host resistance or 

susceptibility to PRRSV infection among swine breeds has been reported in several studies 

(Halbur et al. 1998, Christopher-Hennings et al. 2001, Petry et al. 2005, Vincent et al. 2005, 

Lewis et al. 2007, Reiner et al. 2010, Ait-Ali et al. 2011, Xing et al. 2014). Difference on 

relative resistance to PRRSV infection has been observed between Chinese Meishan and 

European pig breeds (Halbur et al. 1998). Variation in host innate immunity to European type 

PRRSV infection has been reported between Landrace and Pietrain pigs through global gene 

expression profiling of in-vitro PRRSV infected pulmonary alveolar macrophages (Ait-Ali et 

al. 2011). Christopher-Hennings and his colleagues (2001) compared the presence of virus in 

serum, semen, or peripheral blood mononuclear cells (PBMCs) over time in adult Hampshire 

(n =3), Yorkshire (n = 3), and Landrace (n = 2) boars inoculated with a PRRSV field isolate 

(SD-23983). The variation in immune response within such a small population precluded the 

possibility of detecting statistically significant differences among breeds (Christopher-

Hennings et al. 2001). The non-lean type pigs showed a reduced susceptibility to PRRSV 

(Petry et al. 2005), as also shown by the comparative evaluation of PRRSV infection in 

German miniature and Pietrain pigs (Reiner et al. 2010). In a recent study, we also observed 

the differences between Duroc and Pietrain pigs in terms of transcriptome profiles of lung 

dendritic cells after in vitro PRRSV infection (Pröll et al. 2016, unpublished data). All these 

above mentioned works have raised the evidence for genetic variation in host transcriptional 

response to PRRSV among porcine breeds. Therefore, exploring the breed-specific 

transcriptome signature for PRRSV vaccine response in German Landrace and Pietrain pigs 

might be an important add-on for the understanding on genetic control of the susceptibility to 

PRRS.    

 

A handful of studies have conducted to evaluate host transcriptional response to in vitro or in 

vivo PRRSV infection were based on respiratory tissues/cells, as they provide the primary site 

of virus replication (Ait-Ali et al. 2011, Xing et al. 2014). In fact, the live attenuated PRRSV 

vaccine antigens given that administered through intramuscular injection usually bypass the 

lung tissue and reach faster into the blood circulation and sensitize the blood macrophages to 

initiate the immune response (Siegrist 2012). Therefore, blood-based investigation of 

molecular mechanisms of host-vaccine interaction is worthwhile. Moreover, the blood 

transcriptomics could provide quick insight into the complex biological processes linking 

between host genotype and vaccine response (Chaussabel 2015). Furthermore, genetic 
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variation in PRRSV vaccine response at blood transcriptome level among porcine breeds has 

not yet been entirely explored. Our previous study revealed that temporal variation of innate 

immune transcriptional responses to PRRSV vaccination in PBMCs with a peak response 

occurred at 24 hours post vaccination in German Landrace pigs (Islam et al. 2016). Therefore, 

the time point 24 h post vaccination was selected for the detection of transcriptome signature 

of innate immune response to PRRSV vaccine. To explore the evidence of genetic variations 

of PRRSV vaccine induced innate immunity, we compared herein the global gene expression 

profiles of PBMCs collected immediately before and 24 h post PRRSV vaccination in 

purebred German Landrace and Pietrain pigs.  

 

4.3  Materials and methods 

4.3.1 Ethics statements  

The research proposal was approved by the Veterinary and Food Inspection Office, Siegburg, 

Germany (ref. 39600305-547/15). The whole in-vivo experiment was conducted according to 

the institutional guidelines and animal husbandry regulations of Germany [28]. The blood 

sampling protocol was approved by the State Agency for Nature, Environment and Consumer 

Protection, North Rhine-Westphalia, Germany (permission nr. 84-02.05.04.14.027). 

 

4.3.2 Study animals and vaccination  

This study was conducted on purebred German Landrace (DL) and Pietrain (Pi) pigs. Three 

female piglets from both DL and Pi breed, clinically healthy with no history of respiratory 

diseases, were housed in the Teaching and Research Station at Frankenfrost, University of 

Bonn, Germany. All piglets were immunized with the live attenuated PRRSV vaccine of EU 

strain (Porcillis
®
 PRRS Vaccine, DE) with primary dose at day 28 of age. The anticoagulated 

venous blood samples were collected at immediately before (0h) and 24 h post vaccination.  

 

4.3.3 Sample preparation and microarray hybridization 

The details of sample processing and microarray hybridization are available in our previous 

publication (Islam et al. 2016). In brief, the PBMCs were isolated from the whole blood 

through density gradient centrifugation using Histopague
®
. The total RNA was extracted from 

PBMCs using the miRNeasy mini kit (P/N 217004, Qiagen, Hilden, Germany) according to 

the manufacturer’s protocol along with on column DNase treatment (P/N 79254, Qiagen, 

Hilden, Germany). After quality control, about 100 ng of total RNA was processed to 

synthesize the biotin-labeled sense strand cDNA probes using the GeneChip
®
 WT PLUS 
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Reagent kit (P/N 902281; Affymetrix Inc., Santa Clara, CA, USA) according to the 

manufacturer’s protocol. The microarray target probes were hybridized into the GeneChip
®
 

Porcine Gene 1.0 ST array strip of 81/4 format (P/N 901976, Affymetrix Inc., Santa Clara, 

CA, USA) followed by staining, washing and scanning using the Affymetrix GeneChip array 

processing facility at Life and Brain Centre, Uni-bonn, Germany. The microarray expressions 

of both dataset were technically validated through measuring of qRT-PCR expression of five 

selected differentially expressed genes in the same RNA sample as used for microarray 

hybridization. The raw microarray data for DL pigs and Pietrain pigs are available in NCBI-

GEO database with the accession code GSE76254 and GSE84516, respectively.       

 

4.3.4 Statistical analysis of microarray data 

The raw intensity microarray data was processed for background correction and normalization 

in R/Bioconductor software (v 3.1.2). The RMA (Robust Multi-array Average) based quantile 

normalization of microarray data were performed using the ‘oligo’ package (Carvalho and 

Irizarry 2010). Then for differential expression analysis, normalized microarray dataset was 

prepared four contrast pairs: DL-24h vs. DL-0h, Pi-24h vs. Pi-0h, DL-0h vs. Pi-0h and DL-

24h vs. Pi-24h. Differentially expressed genes were determined using the linear analysis of 

microarray technique from the ‘limma’ package (Smyth 2005) with empirical Bayes 

adjustment to the variance, followed by Benjamini and Hochberg (BH) correction for multiple 

testing (Benjamini and Hochberg 1995, Smyth 2005). Threshold criteria for genes to be 

considered differentially expressed were set as of FDR < 0.05 and log2 fold-change >1.5 or <-

1.5. The hierarchical clustered heat map was generated using the heatmap.2 function of 

‘ggplots’ package.    

 

4.3.5 Functional annotation of differentially expressed genes   

For biological interpretation of the altered PBMC-transcriptomes between the two breeds, the 

significantly over-represented gene ontology (GO) terms and biological pathways were 

explored using the InnateDB pathway analysis tool (Breuer et al. 2013). The InnateDB 

platform implements the hypergeometric algorithm with the Benjamini-Hochberg (BH) 

multiple test correction method for overrepresentation analysis. First, the differentially 

expressed genes from microarray data were converted to their human ensembl orthologues 

using the biological DataBase network (bioDBnet) tool (Mudunuri et al. 2009). Then the list 

of ensembl gene identifiers was uploaded in InnateDB web and the over-representation 

analysis performed. The GO and pathways were considered significantly over-represented 

with an FDR <0.05.  
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4.3.6 Network analysis for differentially expressed genes  

To identify the potential regulatory genes of vaccine mediated immunity in breed specific 

manner, we performed the network analysis with the DEGs more abundant in vaccinated 

PBMCs of DL compared to that of Pietrain pigs and vice versa using the NetworkAnalyst 

online tool (Xia et al. 2014). The human orthologous gene ensambl of the DEGs were 

imported as seed genes and a default network was constructed based on the Walktrap 

algorithm taking only direct interaction of seed genes (first-order interactors). The network 

size was then adjusted for <500 seeds and 200~2000 nodes using the ‘reduce’ panel for high-

performance visualization. Two topological measures such as degree (number of connections 

to other nodes) and betweenness centrality (number of shortest paths going through the node) 

were taken in to account for detecting highly interconnected hubs of the network that could 

regulate the entire network. In addition, weighted network based module detection was 

perform to cluster the genes of similar biological functions. The p value of a given network 

module was calculated using a Wilcoxon rank-sum test of the "internal" (edges within in a 

module) and "external" (edges connecting the nodes of other modules) degrees. 

 

4.4  Results 

In order to get a comprehensive insight of vaccine induced transcriptome differences between 

piglets of German Landrace and Pietrain breed, we conducted a whole transcripts microarray 

in PBMCs collected immediately before (0h) and at 24 hours after primary PRRSV 

vaccination. The transcriptome profiling was performed with three biological replications for 

each sampling time points in both breed groups using Affymetrix GeneChip Porcine Gene 1.0 

ST array containing 394,580 probesets representing a total of 19,212 known genes.  

 

4.4.1 Abundance of differentially expressed genes in PBMCs following PRRSV vaccination   

Gene transcripts were considered differentially expressed with thresholds set as FDR <0.05 

and log2 fold-change >1.5 or <-1.5. Four contrast pairs such as German Landrace PBMCs 

between pre and 24h post vaccination (DL-24h vs. DL-0h), Pietrain PBMCs between pre and 

24h post vaccination (Pi-24h vs. Pi-0h), unvaccinated PBMCs between German Landrace and 

Pietrain pigs (DL-0h vs. Pi-0h) and vaccinated PBMCs between German Landrace and 

Pietrain pigs (DL-24h vs. Pi-24h) were taken into consideration for differentially expressed 

genes (DEGs). Following statistical analysis, 4,269 transcripts were found to be differentially 

expressed in at least one of the four contrast pairs, while 2,459, 291, 3255 and 1,046 DEGs 
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were identified in the pairwise comparison of DL-24h vs. DL-0h, Pi-24h vs. Pi-0h, DL-0h vs. 

Pi-0h and DL-24h vs. Pi-24h, respectively (Fig 1A). Notably, 59 genes were differentially 

expressed in all four contrast pairs irrespective of vaccine responses and breed differences.  

  

In the contrast between vaccinated (24h) and unvaccinated (0h) pigs, 2350 DEGs were more 

abundant in vaccinated DL pigs and 182 were more abundant in vaccinated Pi pigs (Fig 1A). 

Among the vaccine induced DEGs, 255 were uniquely expressed in PBMCs of DL and 34 

were uniquely expressed in PBMCs Pi pigs while the differential expression of a total of 109 

genes shared in vaccinated PBMCs of both breeds. There were 27 vaccine induced DEGs 

observed in PBMCs of both breeds at 24 h post vaccination, but degree of alteration was more 

abundant in DL than Pi pigs (Fig 1A). In the contrast between DL and Pi breed accounted 

3,255 DEGs in unvaccinated PBMCs, and 1,046 in vaccinated PBMCs, respectively; and 325 

DEGs were stable between vaccinated and unvaccinated pairs (Fig 1A). About 721 DEGs 

were more abundant in vaccinated PBMCs of DL pigs compared to that of Pietrain pigs, 

which were likely responsible for breed specific host immune response phenotype. Moreover, 

2,930 DEGs were more abundant in PBMCs of healthy DL pigs compared to that of Pi pigs 

regardless of vaccine effect, which indicated the existence of breed variation in phenotypes 

even other than immune response. Among the breed dependent DEGs, expression of 405 

genes were found to be modified by vaccination and alteration of 1,089 genes were caused by 

factors other than immunization (Fig 1A). 

 

4.4.2 Global expression patterns of DEGs between DL and Pietrain pigs  

In PBMCs of DL pigs, a large number of DEGs (2186) were upregulated compared to the 

down regulated one (273) (Fig 1B). On the other hand, a majority of the altered genes (260) in 

vaccinated PBMCs of Pietrain pigs were down regulated and only 31 genes were upregulated 

(Fig 1B). In unvaccinated PBMCs, 2,472 genes were upregulated in DL and 783 were 

upregulated in Pi pigs. A higher number (933) of upregulated genes were observed in 

vaccinated PBMCs of DL compared to vaccinated PBMCs of Pietrain pigs (133); (Fig. 1B). 

The range of log fold changes of the DEGs in four contrasts includes -3.87 to 5.12; -4.71 to 

3.63; -5.87 to 6.41 and -3.89 to 6.72 in the contrasts of DL-24h vs. DL-0h; Pi-24h vs. Pi-0h; 

DL-0h vs. Pi-0h and DL-24h vs. Pi-24h, respectively (Fig 2). The hierarchical heatmap (Fig. 

3) demonstrated the expression patterns of genes differentially expressed in vaccinated 

PBMCs of DL pigs compared to that of Pietrain. Replicates were clustered together within the 
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particular treatment block. The DEGs were clustered in five major group based on the 

similarities of biological functions. 

 

Figure 1. Number of differentially expressed genes after PRRSV vaccination. The intersecting venn diagram 
demonstrates the number of DEGs identified at four contrast pairs such as German Landrace PBMCs between 
pre and 24h post vaccination (DL-24h vs. DL-0h); Pietrain PBMCs between pre and 24h post vaccination (Pi-24h 
vs. Pi-0h); unvaccinated PBMCs between German Landrace and Pietrain pigs (DL-0h vs. Pi-0h), and vaccinated 
PBMCs between German Landrace and Pietrain pigs (DL-24h vs. Pi-24h); (A). The bar graphs depicts the 
proportion of DEGs showed their expression either upregulated (red bars) or down regulated (green bars) 
direction at four contrast pairs tested (B).  

 

4.4.3 Expression regulation of shared DEGs between DL and Pietrain pigs 

To identify the potential regulatory genes among the shared DEGs between breeds, we 

performed the network enrichment analysis. The seed genes of the network were ranked based 

on their degree and betweenness centrality values to detect the most potential hub genes. The   
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Figure 2. Volcano plots showing the range of fold changes of DEGs observed at four contrast pairs tested for 
differential gene expression. The picture illustrates the range of fold change for German Landrace PBMCs 
between pre and 24h post vaccination (DL-24h vs. DL-0h); (indicated on top of each figure panels), Pietrain 
PBMCs between pre and 24h post vaccination (Pi-24h vs. Pi-0h); unvaccinated PBMCs between Landrace and 
Pietrain pigs (DL-0h vs. Pi-0h) and vaccinated PBMCs between Landrace and Pietrain pigs (DL-24h vs. Pi-24h) 

 

network of shared DEGs in PBMCs of both DL and Pietrain pigs is presented in Fig 4. Based 

on two centrality measures, the most highly interconnected hubs of the functional network of 

shared DEGs includes EIF3I (Eukaryotic translation initiation factor 3, subunit I), RRS1 

(Ribosome biogenesis regulator homolog (S. cerevisiae)), ARPC1B (Actin related protein 2/3 

complex, subunit 1B, 41kDa), BAG3 (BCL2-associated athanogene 3), ATP5J2 (ATP 

synthase, H+ transporting, mitochondrial Fo complex, subunit F2), CSN2 (Casein beta), 

ASAP2 (ArfGAP with SH3 domain, ankyrin repeat and PH domain 2),  BUD31 (BUD31 

homolog (S. cerevisiae)), DCTN3 (Dynactin 3 (p22)), NACC1 (Nucleus accumbens 

associated 1, BEN and BTB (POZ) domain containing) and SLC9A2 (Solute carrier family 9, 

subfamily A (NHE2, cation proton antiporter 2), member 2). The relative expression values   
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Figure 3. Hierarchical heat map showing differential gene expression over the contrast pairs. The figure only 
includes the genes differentially expressed between vaccinated PBMCs of German Landrace pigs compared to 
that of Pietrain pigs. The normalized log2 transformed values determined by Affymetrix GeneChip® porcine 
gene 1.0 ST array in PBMCs collected at 0 and 24 h post PRRSV vaccination both in German Landrace and 
Pietrain pigs. The cutoff value of log2 fold change as either ˃1.5 or ˂-1.5 and FDR <0.05 was considered for 
statistical significance. Column represents one array from each replicates.  

 

and centrality estimates of the hub genes of shared transcriptome network are presented in the 

table 1. Surprisingly, all the hub genes except one showed opposite direction of their 

expression regulation. The relative expression of SLC9A2, ASAP2, BAG3, NACC1, RRS1, 

DCTN3, BUD31, ARPC1B and ATP5J2 were up regulated after vaccination in DL pigs but 

down regulated in Pietrain pigs after vaccination. In contrary, EIF3I was under expressed in 

PBMCs of vaccinated DL pigs but over expressed in that of Pietrain pigs. Only the expression 

of CSN2 was down regulated in both breeds after vaccination.   
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Table 1. Network centrality estimates and relative expression values of major hub genes 

regulating the network of common DEGs between PBMCs of vaccinated DL and Pi pigs 

 

Gene name Centrality 
estimates   

Relative 
expression (FC)  

Degree Between
-ness 

DL  Pietrain 

Eukaryotic translation initiation factor 3, 
subunit I (EIF3I) 

79 25387 -1.743 1.771 

RRS1 ribosome biogenesis regulator homolog 
(S. cerevisiae); (RRS1) 

50 15702 2.005 -1.619 

Actin related protein 2/3 complex, subunit 1B, 
41kDa (ARPC1B) 

42 13702 1.769 -1.764 

BCL2-associated athanogene 3 (BAG3)  39 12700 2.594 -1.664 

ATP synthase, H+ transporting, mitochondrial 
Fo complex, subunit F2 (ATP5J2) 

25 7719 2.468 -1.931 

Casein beta (CSN2) 22 9427 -3.041 -1.534 

ArfGAP with SH3 domain, ankyrin repeat and 
PH domain 2 (ASAP2) 

21 6625 2.435 -2.470 

BUD31 homolog (S. cerevisiae); (BUD31)  21 6495 2.202 -1.733 

Dynactin 3 (p22); (DCTN3) 16 4970 1.780 -1.523 

Nucleus accumbens associated 1, BEN and BTB 
(POZ) domain containing (NACC1) 

16 4539 2.216 -1.607 

Solute carrier family 9, subfamily A (NHE2, 
cation proton antiporter 2), member 2 
(SLC9A2) 

11 3279 2.340 -2.126 

  

 FC, Fold Change; DL, German Landrace, Pi, Pietrain 

 

 

4.4.4 GO and pathways enriched by breed-specific DEGs  

For better understanding the biological mechanisms of breed-specific host transcriptional 

response to PRRSV vaccination, we performed gene ontology (GO) and pathway enrichment 

analyses for genes showing unique differential expression in vaccinated PBMCs in two 

breeds. Among the breed dependent DEGs, 913 were more abundant in PBMCs of German 

Landrace and 133 were more abundant in PBMCs of Pietrain pigs. The top most GO terms 

enriched in vaccinated PBMCs of DL pigs compared to that of Pietrain pigs include cell 

surface receptor signaling pathways, small molecules metabolic process, cell death, apoptotic 

process, positive regulation of cell proliferation, extracellular matrix organization, transport, 

canonical Wnt signaling pathway, positive regulation of epithelial cell proliferation and 

response to drug (Fig 5A). The GO for DEGs upregulated in vaccinated PBMCs of Pietrain    
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Figure 4. Network of commonly altered genes after PRRSV vaccination both in DL and Pi pigs. The 
interconnecting network showing the potential hub genes of the functional network of differentially expressed 
genes commonly observed in PBMCs of both DL and Pi pig at 24h after PRRSV vaccination. Each circle of the 
network indicates node (seed gene) and the diameter of node accounted for its centrality estimates. Lines 
between nodes indicate the connectivity. 

 

pigs compared to that of DL includes positive chemotaxis, cell proliferation, inflammatory 

responses, epidermal growth receptor signaling pathway, positive regulation of endothelial 

cell proliferation, positive regulation of smooth muscle cell migration, positive regulation of  

transcription from RNA polymerase II promoter, fibroblast growth factor receptor signaling 

pathway and innate immune response (Fig 5B). Biological pathways significantly affected by 

genes differentially expressed in vaccinated PBMCs of Landrace pigs compared to that of 

Pietrain pigs includes signal transduction, metabolism, extracellular matrix organization, 

cytokine signaling in immune system, Wnt signaling pathway, apoptosis, Glycolysis/ 
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gluconeogenesis, interferon alpha/beta signaling and TNF receptor signaling pathway (Table 

2). The pathways significantly altered by DEGs upregulated in vaccinated PBMCs of Pietrain 

pigs compared to that of Landrace includes innate immune system, signaling by FGFR in 

disease, TGF beta receptor, JAK STAT pathway and regulation, chemokine signaling 

pathway, IL2 signaling events mediated by PI3K, validated targets of C-MYC transcriptional 

repression, cell-cell communication, glucose metabolism and platelet homeostasis (Table 2). 

 

4.4.5 Breed-specific transcriptome signature for PRRSV vaccine responses   

To identify the breed-specific transcriptome signature for PRRSV vaccine mediated immunity 

in PBMCs, we performed the network analysis for the breed-specific DEGs of DL and Pi pigs 

using the NetworkAnalyst tool (Xia et al. 2014). The breed-specific transcriptome network 

labelled with potential hub genes are presented in Fig 6. The degree and betweenness 

centrality estimates of seed genes are provided in Additional file 5: Table S8 & S9. The hub 

genes of the DL-specific transcriptome network includes STAT1 (Signal transducer and 

activator of transcription 1), MMS19 (MMS19 Homolog, cytosolic iron-sulfur assembly 

component), RPA2 (Replication protein A2), BAD (BCL2 associated agonist of cell death), 

UCHL5 (Ubiquitin C-terminal hydrolase L5) and APC (Adenomatous polyposis coli). While 

FOXO3 (Fork head box O3), IRF2 (Interferon regulatory factor 2), ADRBK1 (Adrenergic 

beta receptor kinase 1), FHL3 (Four and a half LIM domains 3), PPP2CB (Protein 

phosphatase 2 catalytic subunit beta), MTOR (Mechanistic target of rapamycin), EIF3I 

(Eukaryotic translation initiation factor 3 subunit), RPL8 (Ribosomal protein L8), DICER1 

(Dicer 1, ribonuclease III), FLNC (Filamin C) and NCOA6 (Nuclear receptor coactivator 6) 

were found to be the most potential hubs of the Pietrain-specific transcriptome network.   

 

4.4.6 Variation of PBMCs transcriptomes between healthy DL and Pietrain pigs  

The PBMCs transcriptome profiles of healthy control DL and Pietrain pigs showed massive 

difference in transcript abundances. The top most GO terms including ribosome, protein 

metabolism, catabolic process, cellular response to lipid, vasodilatation, phospholipid efflux, 

and cartilage homeostasis were enriched at unvaccinated PBMCs compared to unvaccinated 

PBMCs of Pietrain pigs (data not shown). The top most pathways including metal chelating 

activity, response to acetate, lactose biosynthetic process, tryptophan transport and visual 

behavior were enriched at unvaccinated PBMCs of Landrace compared to that of Pietrain pigs 

(data not shown). 
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Table 2. Biological pathways enriched by breed specific differentially expressed genes in 

PBMCs following PRRSV vaccination in German Landrace (DL) and Pietrain (Pi) pigs 
 

Breed Pathway name  p-value  Genes involved*  

DL 

Signal Transduction 0.001 ADAM17, APC, APOE, B4GALT1, BAD, 
CNGA1, CRHR1, DNAL4, DRD2, DRD3, 
FLT4, FZD3, GFAP, GHRHR, GLP1R, GPR68, 
GREM2, LGR6, OR10H3, OR2AE1, 
OR4C46, OR4K13, OR4N2, OR6J1, OR7C2, 
OR9K2, PSME3, PTPRU, RDH8, RHOBTB2, 
SDC3, SDC4, SFRP1, SMO, STAT1, TERT, 
UCHL5, VIPR2 and YWHAB 

Metabolism 0.05 ACSL6, ALDH2, APOE, ATP5J2, B4GALT1, 
CA12, CERS3, CYP17A1, DBT, DGUOK, 
DIO2, FBP1, GLP1R, GPAT2, HK3, IP6K1, 
KCNJ11, LRPPRC, LYPLA1, MED27, 
MMS19, MTMR7, NDUFS2, NDUFS3, 
NME2, PSME3, SDC3, SDC4 and SQLE 

Extracellular matrix 
organization 

0.008 ADAM17, BMP1, SDC3, SDC4, TGFB2, TLL1 
and TLL2 

Cytokine Signaling in Immune 
system 

0.08 ADAM17, HLA-C, IFNA6, MX1, STAT1, 
TNIP2 and YWHAB 

Wnt signaling pathway 0.002 APC, FZD3, SDC3, SDC4, SFRP1 and 
YWHAB 

Apoptosis 0.007 ADAM17, APC, BAD, PSME3, YWHAB 

Glycolysis / Gluconeogenesis 0.02 ALDH2, ALDH3A1, FBP1 and HK3 

Interferon alpha/beta 
signaling 

0.05 HLA-C, IFNA6 and MX1 

Antigen processing and 
presentation 

0.08 HLA-C, HLA-DMB and PSME3 

TNF receptor signaling 
pathway 

0.09 ADAM17 and STAT1 

Pi 

Innate Immune System 0.001 ADRBK1, FOXO3, IRF2, MTOR and PPP2CB 

Signaling by FGFR in disease 0.001 ADRBK1, FOXO3, MTOR and PPP2CB 

TGF_beta_Receptor 0.02 EIF3I, FOXO3 and MTOR 

JAK STAT pathway and 
regulation 

0.03 ADRBK1, IL1A and MTOR 

Chemokine signaling pathway 0.07 ADRBK1 and FOXO3 

IL2 signaling events mediated 
by PI3K 

0.003 FOXO3 and MTOR 

Validated targets of C-MYC 
transcriptional repression 

0.01 DKK1 and FOXO3 

Cell-Cell communication 0.004 CDH13, FLNC and KIRREL2 

Glucose metabolism 0.01 GYS1 and PPP2CB 

Platelet homeostasis 0.02 P2RX1 and PPP2CB 
*bold symbols indicate the upregulated genes involved with corresponding pathways 
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Figure  5. GO terms enriched by breed-specific DEGs. Bar graphs showing the enriched GO’s in the vaccinated 
PBMCs of DL compared to that of Pi (a); and GO’s in the vaccinated PBMCs of Pi compared to that of DL (b). 
The p value of <0.05 was considered for statistically significant enrichment.  

  

4.5 Discussion 

Innate host resistance to PRRS is becoming an area of great interest over the recent years 

because of the possibility for disease-resistant pig breeding. There is a consensus for genetic 

control of PRRS through improvement of host genetics by selective breeding for PRRS 

resistance (Lunney and Chen 2010). However, data on innate host resistance to PRRS virus, 

as measured by replication of virus within the pig is very limited to date. To contribute in this 

scheme, one promising way to go is the identification of host genotypes associated with 

improved innate immune response following PRRSV vaccination (Rowland et al. 2012). In 

spite of having considerably high heritability of disease resistance phenotypes, only a little 

has been addressed by breeding program as these are difficult to measure (Flori et al. 2011). 

Hence, an alternative approach of estimating the disease resistance through measuring host 

immunocompetence developed from vaccination is recommendable (Rowland et al. 2012). 

Identification of breed specific transcriptome signature associated with host innate 

immunocompetence following vaccination might increase our understanding not only for 

PRRS resistance but for other pathogens. To scrutinize the breed-specific transcripts for 
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vaccine mediated immunity, we compared the global gene expression profiles of PBMCs 

from DL and Pietrain pigs. 

 

 

Figure 6. Networks of breed-specific altered transcriptome visualized by NetworkAnalyst. The DL-specific DEGs 
(upper one) and the Pietrain specific transcriptome network presented in lower part of the figure. 

 

The Landrace pigs used in this study had a massive transcriptional response to PRRSV 

vaccination, as evidenced by differential expression of more than double the number of genes 
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as compared with the Pietrain pigs (Fig 1A). The higher number of vaccine induced DEGs in 

PBMCs of DL compared to that of Pietrain indicated that PRRSV vaccine is able to mount an 

effective immunity in DL pigs than Pietrain. These findings are closely comparable with a 

previous report of Ait-Ali et al (2011), who compared the microarray-based gene expression 

profiling of lung tissue after PRRSV infection in between Landrace and Pietrain pigs. The DL 

pigs showed a higher number of DEGs within 12h post infection compared to that of Pietrain 

pigs (Ait-Ali et al. 2011). Another independent study has also reported the difference on host 

susceptibility between DL and Pietrain in response to porcine circovirus infection (Opriessnig 

et al. 2009). The variation of susceptibility to PRRSV infection has been reported in some 

other breed comparisons in pigs as well. For example, macrophage of Large White pigs 

showed more reactive to in-vitro PRRSV infection than Duroc-Pietrain synthetic line (Vincent 

et al. 2005). The Hampshire-Duroc cross pigs found to be more susceptible to in-vivo PRRSV 

infection than NE Index Lines pigs (Petry et al. 2005). Halbur et al (1998) infected Duroc, 

Hampshire, and Meishan pigs with PRRS virus (VR-2385) at 22 to 38 days of age and 

compared the cytopathic lesions 10 days post infection. Hampshire pigs had significantly 

more severe lung lesions than Duroc or Meishan pigs. Meishan pigs had significantly less 

PRRS virus detected in the lungs, but significantly more heart and brain lesions. Duroc pigs 

had significantly lower serum antibody titers against PRRS virus (Halbur et al. 1998). 

Generally, the genetic configuration of each breed can display their specific pattern of coping 

strategy against stressors which in turn leads the variation of host susceptibility (Lewis et al. 

2007). Therefore, we postulate that the variation of transcriptome profiles observed between 

DL and Pi pigs could, at least in part, be influenced by breed genetics.  

 

A global upregulation of altered transcripts were observed in vaccinated PBMCs of DL pigs 

indicated that PRRSV vaccine can activate the immune system of German Landrace pigs and 

may lead to develop better immunocompetence (Fig 1B). On the other hand, PRRSV 

vaccination resulted in a global down regulation of PBMCs transcriptomes in Pietrain pigs 

indicating the suppression of immune system functions. This difference may be due to breed-

specific host immune response to PRRSV vaccination as indicated by enrichment of different 

set of biological pathways by breed-specific DEGs in PBMCs (Table 2). The host 

transcriptional response to PRRSV challenge has been reported to be associated with the 

activation of well defined canonical pathways like TREM1, toll-like receptor and hyper-

cytokinemia/hyper-chemokinemia signaling (Badaoui et al. 2013). There was over expression 

of member genes (IFN6 and MX1) of interferon alpha/beta pathways in vaccinated PBMCs of 



142                                                                                                                                 Chapter 4 

  

 

DL pigs compared to that of Pietrain pigs. It was an indication for PRRSV vaccine potential 

for developing interferon response at least in some extends in PBMCs of DL pigs. The 

vaccine pulsed immune cells secrete the type I IFN which interacts with a subset of naïve T 

cells to promote their conversion into virus-specific IFNγ secreting cell, thereby induce the 

cell mediated interferon response, a strong anti-viral defense (Levy et al. 2003). The early 

induction of a type I interferon (IFN) response in vitro may be responsible for the reduced 

susceptibility of Landrace pig macrophages to PRRSV replication (Ait-Ali et al. 2011). 

Therefore we speculate that, unlike in Pietrain pigs, the early stage development of vaccine 

mediated immunocompetence in DL pigs might lead to a reduced susceptibility and/or higher 

tolerance to PRRSV infection.  

 

The immune response traits are likely to be regulated by multiple genes which interact with 

each other through an interconnecting network (Gardy et al. 2009). Here we performed the 

network analysis to scrutinize the regulatory genes from the list of vaccine induced DEGs 

which were common in PBMCs of both breeds (Fig 4), DEGs which were more abundant in 

DL (Fig 6A) and DEGs which were more abundant in Pietrain pigs (Fig 6B). There are many 

genes which were differentially expressed in PBMCs after PRRSV vaccination in both breeds 

but their regulation of expression were mostly in the opposite direction (Table1). The 

difference in the relative expressions of genes commonly altered in both breeds may be 

caused by variation of functional regulation individual genes. We therefore checked which 

genes are more potential regulators of the functional network of shared DEGs. Network 

analysis detected SLC9A2, NACC1, DCTN3, RRS1, BAG3, BUD31, ATP5J2, ARPC1B, 

ASAP2, EIF3I and CSN2 as the potential hubs of the functional network of shared DEGs (Fig 

4). The predicted hub genes of the network are likely to promote or inhibit the expression of 

other connecting genes to maintain the biological function (Macneil and Walhout 2011).  

 

Among the hub genes of common network, SLC9A2 is one of the potential hub genes, 

involved with intracellular pH regulation, and colonic sodium absorption. The SLC9A2 has 

reported to be predictive for distinguishing between colon adenomatous polyp and carcinoma 

(Drew et al. 2014). While another hub gene, NACC1 has been reported to be involved with 

argininemia, an inherited metabolic disease resulted from L-arginine deficiency in human 

(Wong et al. 2014). The mutations in the SLC7A7 gene cause the lysinuric protein 

intolerance, an autosomal recessive defect of dibasic amino acid transport, leading to the 

argininemia (Kamada et al. 2001), which indicates the functional interaction of NACC and 
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SLC protein family. The RRS1, another hub gene, reported to be involved with disease 

resistance in plant (Narusaka et al. 2009), and the RRS1-mouse homolog showed altered 

expression in mouse model for Huntington's disease (Horigome et al. 2011). The DCTN3 is a 

protein coding gene, involved with diverse array of cellular functions, including cell division 

and cytokinesis (Karki et al. 1998). The BAG3 is a protein coding gene which is reported to 

be involved with heat stress and apoptosis pathway. The mutations of BAG3 gene have been 

implicated as a novel cause of dilated cardiomyopathy in human (Franaszczyk et al. 2014). 

The ARPC1B is known to be involved with bacterial invasion of epithelial cells and has been 

reported as prediction marker gene for sensitivity of choroidal malignant melanoma to 

radiotherapy (Kumagai et al. 2006). The ASAP2, another hub gene, is known to be involved 

with enrichment of Fc gamma R-mediated phagocytosis pathway (Uchida et al. 2001). The 

eIF3I is a protein coding gene, and its overexpression involve with the integration of growth 

signals by mTOR into the mRNA translation process, promoting protein synthesis and tumor 

growth (Ahlemann et al. 2006). Overall, the hub genes seem to be involved with cellular 

immune response to disease process but have not been linked well to the PRRSV vaccine 

mediated immunity in pig before. Therefore, hubs of the shared transcriptome network could 

be used as candidate genes for expression studies in other porcine breed lines following 

PRRSV vaccination.   

 

The network analysis also revealed a number of genes which are likely to have control over 

the PRRSV vaccine induced transcriptome network specific for both DL and Pi pigs (Fig 6A, 

B). This is comparable with the report of Xing et al (Xing et al. 2014), who identified breed 

specific gene signatures through comparing the microarray-based global gene expression 

profiles of lung tissue samples from Dapulian pigs (DPL, a Chinese indigenous breed) and 

Duroc×Landrace×Yorkshire (DLY) pigs after infection with PRRSV and postulate that 

USP18 might play important role in the resistance of DPL pigs to PRRSV infection (Xing et 

al. 2014). Network analysis of breed-specific differentially expressed transcripts indicated that 

STAT1, MMS19, RPA2, BAD, UCHL5 and APC as potential regulatory genes for the 

transcriptional activity in the DL pigs after PRRSV vaccination (Fig 6A). Among the hub 

genes of Landrace-specific network, STAT1 is a highly interconnected one, which is a protein 

coding gene of the signal transducer and transcription activator (STAT) protein family. The 

STATs mediate cellular responses to interferons (IFNs), cytokines and other growth factors 

involved in antiviral innate immunity (Koyama et al. 2008). Network analysis also revealed 

that FOXO3, IRF2, ADRBK1, FHL3, PPP2CB, MTOR, RPL8, DICER1, FLNC and NCOA6 
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as potential regulatory genes for PRRSV induced transcriptional activity in Pietrain pigs (Fig 

6B). All of these genes were upregulated in vaccinated PBMCs of Pietrain pigs compared to 

that of DL, suggesting the Pietrain breed specific transcript signature for PRRSV vaccine 

response in PBMCs. Among the hubs, FOXO3 is the highly interconnected gene, which 

belongs to the fork head family of transcription factors. FOXO3 functions as a trigger for 

apoptosis through expression of genes necessary for cell death and participates in post-

transcriptional regulation of MYC transcription factor which has been reported to be 

associated with host response to PRRSV (Badaoui et al. 2013).   

 

Healthy pigs of two breeds were also differed greatly in their transcriptome profiles before 

vaccination. It suggests that differential gene expression levels may be also caused by the 

genetic differences between DL and Pi pigs regardless of vaccine stimulation. Several 

researchers have reported genetic variation in immune traits in healthy pigs (Edfors-Lilja et al. 

1994, Flori et al. 2011). Differences in gene expression between phenotypic groups 

irrespective of infection could be due to the different genetic background of different breeds 

of pigs (Lunney and Chen 2010). The variation in number and function of neutrophils, 

monocytes and lymphocyte subsets in blood has been reported between healthy Meishan and 

Large white pigs (Clapperton et al. 2005). Therefore, even irrespective of external 

stimulation, the PBMC transcriptome profiles of two porcine breeds are different from each 

other.     

 

4.6 Conclusions 

This study provided with the evidence of host genetic variation in PRRSV vaccine induced 

gene expression in between German Landrace and Pietrain pigs. A much higher number of 

gene transcripts were differentially expressed in PMBCs after PRRSV vaccination in 

Landrace pigs compared to that of Pietrain pigs. The breed-specific differentially expressed 

genes were biologically linked to innate immune response. The PBMCs transcriptome profiles 

were also differed between healthy Landrace and Pietrain pigs. Results of this study support 

the prospects of selective breeding of PRRS resistant pig to establish a sustainable PRRS 

control regime. The expression patterns of potential hub genes of the shared transcriptome 

network between Landrace and Pietrain pigs could be tested further in other pig breeds 

following PRRSV vaccination. The breed-specific gene transcripts identified in this study 

could be of potential candidate for further functional to explore the polymorphism linked to 

PRRSV vaccine responses. 
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5.1 Abstract 

The porcine reproductive and respiratory syndrome (PRRS) is the most costly disease of 

swine industry through out the world. MicroRNAs, small non coding RNAs, 

posttranscriptional regulator of gene expression, have been emerged as potential tools for 

evaluating host immune response to infection or vaccination. In a previous study, we showed 

that peripheral mononuclear cells (PBMCs) are able to alter the global mRNA expression 

profiles during the course of innate immune response following PRRS virus (PRRSV) 

vaccination in pigs. We extended our aim herein to integrate the miRNA profiles with the 

mRNA profiles to uncover the miRNA-mRNA regulated host immune response to PRRSV 

vaccines in PBMCs. The current study generated miRNA profiles of PBMCs collected at 

before (0 h), and 6, 24 and 72 h post PRRSV vaccination both in German Landrace (DL) and 

Pietrain (Pi) pigs with three biological replicates. The global miRNA profiles of PBMCs 

identified 12, 259 and 14 differentially expressed (DE) miRNAs in DL; and 0, 222 and 13 DE 

miRNAs in Pietrain at 6, 24 and 72 h post vaccination, respectively. The validated target 

genes of DE miRNAs are involved with regulation of biological process like response to drug, 

signal transduction, innate immune response regulation of MAPK kinase activity and 

apoptosis process. We integrated the miRNA expression dataset obtained from the DL pigs 

with that of mRNA expression profiles generated from the same sample pool. The miRNA 

and gene co-regulatory network revealed that miR-6762, miR-23a-5p, miR-181b-5p, miR-

4454 and miR-125-5p are the putative regulators of PRRSV vaccine induced gene expression 

changes in PBMCs.  

 

5.2 Introduction  

The porcine reproductive and respiratory syndrome (PRRS) is the most costly swine disease 

worldwide. The PRRS results reproductive failure in pregnant sows and respiratory distress 

with high mortality in young pigs (Albina 1997, Neumann et al. 2005). The PRRS associated 

annual economic losses estimated to be around € 1.5 billion in Europe (De Paz 2015) and 

around $664 million in USA (Holtkamp et al. 2013). The disease caused by the PRRS virus 

(PRRSV), which is an enveloped, single-stranded positive-sense RNA virus of the 

Arteriviridae family (Meulenberg et al. 1993). Like other arteriviruses, PRRSV primarily 

infect the pulmonary alveolar macrophage (PAMs) of pig following natural infection (Van 

Breeam et al. 2010) and is reported to modulate the host immune system (Genini et al. 2008). 

Despite the incomplete success, vaccination remains the cornerstone of PRRS control 

strategy. Following intramuscular vaccination, the peripheral blood mononuclear cells 
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(PBMCs), a subset of white blood cells (WBC), come first in contact to vaccine antigen and 

initiate the immune reaction (Siegrist 2012). Therefore blood-based investigation on the 

molecular genetics of host immune response to in vivo PRRSV vaccination would be 

worthwhile.  

 

Vaccines increase the host resistance to disease by priming the immune system for responding 

to the causal virus. Following administration, the virus vaccine antigens are initially 

recognized by the innate immune cells through specific molecules of pathogens via a limited 

number of germline-encoded pattern recognition receptors (PRRs); (Akira et al. 2006). The 

engagement of PRRs by the invading PAMPs leads to transcriptional changes associated with 

induction of type I interferon as well as proinflammatory responses (Akira et al. 2006). As the 

fist line body defense, innate immunity occurs within hours of exposure to the pathogen. 

MicroRNAs (miRNAs) have recently emerged as key gene-regulators and have been shown 

to play an important role in innate immune response to infections (O'Connell et al. 2010, 

O'Neill et al. 2011).  

 

miRNAs are endogenous, non-protein-coding single stranded RNAs ranging from 19 to 24 

nucleotides in length (Bartel 2004). Emerging evidence suggest that miRNAs are tightly 

involved in process of virus-host interaction including virus replication (Guo et al. 2013, Li et 

al. 2010, Trobaugh et al. 2014) and host antiviral immune responses (Chen et al. 2013, 

Hussain and Asgari 2010). Moreover, miRNAs are likely to be biomarkers for 

immunocompetence developed from PRRSV vaccination. Previous analysis of miRNA 

expression profiles obtained from PRRSV infected alveolar macrophages have identified 

differential expression of forty cellular miRNAs within the first 48 hours of infection (Julie et 

al. 2013). This was suggestive that miRNAs are likely important mediators of PRRSV 

replication and host antiviral defense. Functional studies based on pulmonary alveolar 

macrophages stimulated with in-vitro PRRSV indicated that miR-181 and miR-23a inhibited 

PRRSV replication through binding to PRRSV genome (Guo et al. 2013, Zhang et al. 2014), 

while miR-181, miR-125b and miR-506 suppressed PRRSV replication through regulating 

host antiviral pathways (Gao et al. 2013, Wang et al. 2013, Wu et al. 2014). However, little is 

known about the expression dynamics and regulation of microRNAs in PBMCs following 

PRRSV vaccination in pig. The PBMCs are the primary immune cells of blood, and have 

been used as a preferred model for evaluating the host transcriptional response to vaccination 
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in pig (Adler et al. 2013). Therefore, global miRNA expression profiles of PBMCs could 

provide better insights of mRNA mediated host immune response to PRRSV vaccination in pig.  

 

As with messenger RNA (mRNA) expressions profiles, variability in the miRNA expression 

profiles is likely to be influenced by host genotype. Breed differences on the PRRSV induced 

global mRNA expression profiles have been reported by several groups (Reiner et al. 2010, 

Ait-Ali et al. 2011, Xing et al. 2014), like ours [Proll et al. 2016 (unpublished); Chapter 4 of 

this thesis]. In addition, the tissue-specific expression and regulation of miRNAome has also 

been studied in pig (Martini et al. 2014). The miRNA signatures for different porcine tissues 

such as skeletal muscle (McDaneld et al. 2012), adipose tissue (Li et al. 2012), intestinal tracts 

(Sharbati et al. 2010), kidney (Timoneda et al. 2013) and brain tissue (Podolska et al. 2011) 

have been identified. The breed comparison on global miRNA expression profiles obtained 

from skeletal muscle (Tang et al. 2015), kidney (Timoneda et al. 2013), testis (Li et al. 2016) 

and placenta (Li et al. 2015a) were led to the identification of breed-specific miRNAs, which 

could be potentially associated to specific phenotypes. The breed-specific miRNA signatures 

for host immune response to PRRSV infection in the lungs between Tongcheng pigs and 

Landrace pigs have recently been reported (Li et al. 2015b). We therefore, hypothesized that 

variation on PRRSV vaccine induced miRNA profiles between DL and Pi pigs may exist.      

 

The interaction of miRNA-mRNA can result the downregulation of protein expression due to 

translational repression, mRNA cleavage, or promotion of mRNA decay (Kim 2005). 

miRNAs have extensive regulatory capacity given that a single miRNA can simultaneously 

target multiple genes, and multiple miRNAs can co-operatively function while targeting a 

single gene (Krek et al. 2005, Miranda et al. 2006). However, a clear correlation is known to 

exist between the expression patterns of miRNAs and their mRNA targets (Farh et al. 2005, 

Selbach et al. 2008), therefore, miRNA-target relationship analysis has been increasingly used 

to identify potential interactions between miRNA and mRNA based on paired expression 

profiles (Ruike et al. 2008, Tian et al. 2008, Gennarino et al. 2009, Siengdee et al. 2013, Jing 

et al. 2015). With the approach of miRNA and mRNA interaction network, significant 

molecular insights have been reported on skeletal muscle development (Siengdee et al. 2013) 

and differential residual feed intake (Jing et al. 2015) in pig. Furthermore, the integrated 

miRNA-mRNA network for strain-specific (Cong et al. 2014) and breed-specific (Li et al. 

2015b) host immune response to PRRSV infection have been studied based on comparative 

global expression of miRNA and mRNA profiled in the lung tissue. In our previous studies, 
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we observed a massive gene expression changes in PBMCs at early stage after PRRSV 

vaccination in DL (Islam et al. 2016a) and Pi (Islam et al. 2016b) pigs. Herein, we conducted 

the microarray-based global miRNA expression profiling in the same total RNA samples as 

used for global mRNA profiling, to investigate the breed-specific miRNAome alterations as 

well as to explore the miRNA-mRNA co-regulatory network for PRRSV vaccine responses in 

PBMCs.   

 

5.3 Materials and methods 

5.3.1 Ethics statements 

The research proposal was approved by the Veterinary and Food Inspection Office, Siegburg, 

Germany (ref. 39600305-547/15). The in-vivo experiment was conducted according to the 

institutional guidelines and animal husbandry regulations of Germany (ZDS 2003). The blood 

sampling protocol was approved by the State Agency for Nature, Environment and Consumer 

Protection, North Rhine-Westphalia, Germany (permission nr. 84-02.05.04.14.027). 

 

5.3.1 Experimental settings and RNA sample preparation 

The study pigs were housed in the Teaching and Research Station at Frankenfrost, University 

of Bonn, Germany. Three female piglets both from DL and Pi pigs were vaccinated with a 

modified live PRRSV vaccine of European strain (Porcilis
®
 PRRS, MSD Animal Health, 

Germany) at four weeks of age. The whole blood sampling was performed at before (0), 6, 24 

and 72 h post vaccination. The PBMCs were isolated from the whole blood samples by 

density gradient centrifugation at 1250× g for 25 minutes using Histpaque
®
-1077

 
(Sigma-

Aldrich Co. WGK, Germany). The PBMCs were then subjected to extract the total RNA 

enriched with miRNAs using miRNeasy mini kit (Qiagen, Co.) along with on column DNase 

treatment. The RNA was quantified using ND 8000 NanoDrop® spectrophotometry (Thermo 

Scientific, Wilmington, USA) followed by quality assessment on an Agilent 2100 Bioanalyzer 

using the RNA 6000 Nano kit (Agilent Technologies, Waghäusel - Wiesental, Germany). 

 

5.3.2 Microarray hybridization for microRNA expression profiling  

A total of 24 miRNA profiles of PBMCs were generated from PRRSV vaccinated pigs of two 

breed at four longitudinal time points. About 250 ng of total RNA were used to synthesize 

microarray probes using a 4DNA array detection FlashTagTM Biotin HSR RNA Labelling kit 

(Affymetrix, Santa Clara, CA, USA) following the manufacturer’s instructions. Initially, poly-

A tailing of total RNA was performed followed by labeling with biotin. The ELOSA assay 
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was performed to evaluate the biotin labeling performance. The hybridization of microarray 

probes followed by washing and staining was performed using the GeneChip
®
 Hybridization, 

Wash and Stain kit (Affymetrix Inc., Santa Clara, CA). For the hybridization,  a cocktail 

containing the biotinylated total RNA probes was injected into the GeneChip
®
 miRNA 4.0 

array (Affymetrix Inc., Santa Clara, CA, USA) and incubated for 16 h in a hybridization oven 

(GeneChip
®

 Hybridization oven 640; Affymetrix Inc.) at 45 °C with 60 rpm. The hybridized 

chips were stained and washed within a fluidics station (GeneChip
®
 Fluidics Station 450; 

Affymetrix Inc.) and scanned by Affymetrix GeneChip
®
 scanner 3000 7G. The Affymetrix 

GeneChip
® 

Command Console™ (AGCC) software was used to evaluate the array images 

and to export the reports of spot intensity data.  

 

5.3.2 Statistical analysis for identification of differentially expressed miRNAs 

After quality control the microarray data was normalized using the RMA based approach 

using the “oligo” package implemented in R/Bioconductor platform (Gentleman et al. 2004). 

To identify the differentially expressed miRNAs, the normalized probes were analyzed using 

the linear analysis of microarray technique from the “limma” package with empirical Bayes 

adjustment to the variance (Smyth 2005). To make the analysis more robust and control more 

strictly for the false discovery rate (FDR), the p-values were corrected for multiple testing 

with Benjamini and Hochberg (BH) method (Benjamini and Hochberg 1995). Threshold 

criteria for the miRNA to be considered differentially expressed were set as of FDR < 0.05 

and log2 fold-change >1.0 or <-1.0. The number of differentially expressed miRNAs in each 

contrast pair and their overlapping were exported in an intersecting Venn diagram. The 

heatmap.2 function from “ggplots” package was used to generate images. 

 

5.3.3 In-silico target prediction for DE miRNAs  

Both TargetScan v.7.1 (Bartel 2009) and miRDB v5.0 (Nathan and Wang 2015) were used to 

predict the target gene candidates based on complementarity of the miRNA seed sequence 

(position 2-8 of the miRNA 5′-end) and target binding site on the 5′ UTR, 3′ UTR and protein 

coding region of the porcine mRNA sequences (Sus scrofa 10.2); (Lewis et al. 2005). The 

miRDB server utilizes the miRNAs source from miRBase v21 and implements the MirTarget 

prediction algorithm (Xiaowei 2016). The combined list of predicted mRNA targets obtained 

from both tools was processed further. 
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5.3.4 The integrated miRNA-mRNA network analysis   

The miRNA-mRNA interactome networks were constructed for PRRSV vaccine response in 

PBMCs as previously described with minor modifications (Coll et al. 2015). First, we refined 

the list of predicted targets scanned for potential target genes of DE miRNAs. For 

accomplishing this, we used the differentially expressed genes (DEGs) list obtained from our 

previous microarray-based mRNA expression data (GEO accession number GSE76254, 

(Islam et al. 2016)) to integrate with the differentially expressed miRNAs. The overlapped 

results from predicted mRNA targets and DEGs in PBMCs were extracted as true 

differentially expressed target genes (TDETGs) of the DE miRNAs. In a second phase of the 

integration procedure we identified those miRNA-target pairs showing negative correlation 

between miRNA and mRNAs. To accomplish this, Pearson correlation of the expressions of 

all possible combinations of deregulated mRNAs vs deregulated miRNAs were computed. 

Multiple testing correction was performed in order to reduce the number of false positive 

correlations and a cut-off was set to FDR < 0.05. Finally, the miRNA-mRNA interaction pairs 

with significant negative correlation (Pearson coefficient < 0 and FDR < 0.05) were used to 

construct the regulatory network. The miRNA-mRNA network was visualized using the 

Cytoscape v3.2.1 (Cline et al. 2007).  

 

5.3.5 GO and pathway analysis 

The list of inversely correlated true differentially expressed target genes (TDETGs) obtained 

from miRNA-mRNA interaction network were subjected to GO and pathway enrichment 

analysis using the InnateDB pathway analysis tool (Breuer et al. 2013). The hypergeometric 

test was used to calculate a p-value followed by B-H multiple test correction method 

(Benjamini and Hochberg 1995). An adjusted p-value of <0.05 was considered for statistical 

significance.  

 

5.4 Results 

To understand the role of porcine cellular miRNAs in PRRSV vaccine immunity, we 

performed global expression profiling of miRNAs in the PBMCs obtained from German 

Landrace and Pietrain pigs vaccinated with modified live attenuated PRRSV of EU strain at 

before (0 h), and 6, 24 and 72 h post vaccination. The GeneChip® miRNA v. 4.0 arrays used 

for this study encoded 30,424 total mature miRNA probe sets, including 2,578 mature human 

miRNAs and miRNAs of 202 other organisms (miRBase v.20).   
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5.4.1 Temporal expression dynamics of miRNAs after PRRSV vaccination 

The time-course distributions of differentially expressed miRNAs in the immunized PBMCs 

are presented in Fig 1. Imposing the threshold as FDR <0.05 and log fold change more than ± 

1.0, a total of 12, 259 and 14 differentially expressed (DE) mRNAs were detected at the 6, 24 

and 72 h post vaccination time points, respectively in PBMCs of DL pigs (Fig 1A). While the 

number of differentially expressed microRNAs identified in PBMCs after PRRSV vaccination 

was 0, 222 and 13 at 6, 24 and 72 h post vaccination, respectively in Pi pigs (Fig 1B).  

 

 

 

 

 

 

A. B. 

 

Figure 1. Venn diagram showing the differentially expressed miRNAs in PBMCs of PRRSV vaccinated German 

Landrace (A) and Pietrain (B) pigs. The picture shows the number of DE miRNAs at three time points (6, 24 and 

72 hpv) compared to the control (0 hpv) in PBMCs.  The FDR of <0.05 and FC more than ± 1.0 were considered 

as threshold criteria. 

 

 

The most significantly deregulated miRNAs which are conserved among species are 

presented in the heatmap (Fig. 2). The log2 fold changes of DE miRNAs in PBMCs at three 

time points compared to the control are presented in Table 1.      
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Figure 2. Differential miRNA expression profiles of PBMCs derived from DL pigs after PRRSV vaccination.  

The log2 fold change of corresponding De miRNAs at 6, 24 and 72 h post vaccination as compared to the control 

were used to plot the heatmap. 

 

 

 

5.4.2 Breed-specific miRNA expression between DL and Pi pigs  

The temporal expression dynamics of PBMCs miRNAs revealed that the alterations miRNAs 

were more pronounced at 24 h post PRRSV vaccination as compared with control in both 

breeds. Therefore, the 24 h post vaccination time point was used for breed comparison.  

Considering a FDR < 0.05 and log2 fold change > 1.0 to < -1.0 as threshold, a total 512 DE 

miRNAs showed more pronounced deferential expression in DL pigs and 79 were in Pi pigs. 

A total of 177 deregulated miRNAs shared in PBMCs both breeds after PRRSV vaccination 

(Table 2). The hierarchical clustering also revealed that array samples were clustered in two 

distinct groups as originated from DL and Pi pigs (Fig. 3).  
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Table 1. Significantly deregulated microRNAs in PBMCs after PRRSV vaccination in DL pigs 
 

miRNA family DE miRNAs FC at 6 hpv  FC at 24 hpv FC at 72 hpv Adj. p-value 

miR-99-100-5p miR-99b-5p 0.323 1.877 -2.414 0.025603 

miR-92a-1-5p 

 
miR-92c-3p 0.536 1.0620 -0.901 0.047613 

miR-92a-1-5p 1.267 2.386 -0.366 0.047512 

miR-92a 0.310 0.912 -1.643 0.0452 

miR-8078 
miR-8078 -0.987 -2.149 -1.038 0.030413 

miR-7975 
miR-7975 -2.174 -2.033 -0.350 0.041625 

miR-770-5p 
miR-770-5p 2.952 0.857 0.992 0.047512 

miR-6762 
miR-6762-5p -3.071 -3.263 -1.878 0.001859 

miR-6501 
miR-6501-3p -1.744 -1.724 -1.176 0.026445 

miR-5816 miR-5816 2.294 0.1419 1.117 0.037284 

miR-5617/6845-5p 
miR-5617-5p -3.564 -3.714 -2.016 0.013784 

miR-551b-5p 
miR-551b-5p -1.817 -1.257 -2.165 0.04174 

miR-505 
miR-505-3p 0.3188 0.660 -1.001 0.0452 

miR-4454 
miR-4454 -1.978 -1.778 0.015 0.001859 

miR-3925-5p 
miR-3925-5p 0.406 2.894 -0.032 0.007915 

miR-3651 
miR-3651 1.012 -0.156 2.054 0.003625 

mir-3607 
miR-3607-5p 3.764 3.730 2.139 0.001859 

mir-3607 1.617 1.231 0.611 0.047512 

miR-342-5p 
miR-342-5p 0.731 1.083 -0.878 0.018467 

miR-339-5p 
miR-339-5p 0.855 1.523 -0.218 0.0452 

miR-326 
miR-326 0.282 0.635 -2.946 0.001859 

miR-326-3p 0.650 1.140 -1.146 0.039885 

miR-3128 
miR-3128 2.266 -0.284 0.018 0.034879 

miR-23-5p 
miR-23a-5p -1.939 -5.071 -1.421 0.015001 

miR-2332 
miR-2332 0.394 0.4054 2.603 0.026445 

miR-193-5p 
miR-193a-5p 0.919 1.982 -1.712 0.054896 

miR-181-5p 
miR-181b-5p 0.449 0.585 -1.127 0.0452 

miR-181-5p 

 
miR-181a-5p 1.927 2.485 -0.783 0.0452 

miR-181a-2-3p 0.073 1.755 -1.231 0.039851 

miR-181a 1.247 1.766 -0.091 0.026445 

miR-1546-5p 
miR-1546-5p -1.298 -1.263 -0.939 0.0452 

miR-1386 
miR-1386 -2.122 -2.595 -1.670 0.004003 

miR-125-5p 
miR-125a-5p 2.037 3.120 -1.537 0.001859 

miR-125a-3p -2.372 -3.452 -1.224 0.025603 

miR-125a 2.544 3.465 -0.763 0.007306 

FC, Fold change; hpv, hours post vaccination; Adj. p-value, adjusted p-value after multiple test correction 
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Table 2. Breed comparison of PRRSV vaccine induced DE miRNAs profiles in PBMCs   

Fold change Number of DE miRNAs  

More abundant in 

DL 

More abundant in 

Pi  

Shared in both breed 

More than ± 1.0 to < 2.0  259 41  76 

More than ± 2.0 to < 3.0 158  21 49 

More than ± 3.0 to < 4.0 70 10  39 

More than ± 4.0 25  7  12 

Total  

512 

(Up: 376, Down: 

136) 

79 

(Up: 51, Down: 28) 

177 

(Up: 102, Down: 75) 

The number generated from two pairwise comparisons (24h.DL vs 0h. DL and 24h.Pi vs 0h.Pi) and their 

overlapping. The FDR value of <0.05 was considered for statistical significance for all pairwise comparisons.  

 

 

 

 
 

Figure 3. Breed-specific differential expression of miRNAs in PBMCs of DL and Pi pigs after PRRSV 

vaccination. 

 

 

5.4.3 Prediction of mRNA targets for the DE miRNAs in PRRSV vaccinated PBMCs  

The target genes for deregulated DE miRNAs were predicted with the TargetScan and 

miRDB tool. Our search yielded a total of 2909 mRNAs which are predicted to be targeted by 
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20 deregulated miRNAs in PBMCs after PRRSV vaccination. Then, to identify the true target 

genes of DE miRNAs, we overlaid the predicted target gene list onto the vaccine induced 

differentially expressed gene (DEGs) list comprised of 2,453 mRNAs (Islam et al. 2016a). 

After overlapping two lists, a total of 1397 matched mRNAs were found which were 

considered to be the potential true target genes of DE miRNAs in PBMCs after PRRSV 

vaccination. The true differentially expressed target genes (TDETGs) obtained from the 

overlapped results is summarized in Table 3.  

 

Table 3. Top ten significantly down regulated microRNAs and their true differentially expressed target genes 

(TDETGs) in PBMCs after PRRSV vaccination in DL pigs  

 

DE miRNAs TDETGs 

miR-6762-5p MAF1, CYP17A1, PRSS8, KCNC1, AGER, TSPAN4, GPR123, 

ADAMTS14, SOHLH1, PHACTR1, IGLON5, TGFB1, CDCA3, KDR, 

ARRB1, CSPG4, FGR, CHAC1, XYLB, RAB17, KLHL25, RASSF7, 

RNF121, CDKN1A, FAM73B, AGPAT1, ZBTB47, TGFB3 & ITGA3  

miR-551b-5p DCTN3, SRC, DIS3L, PPARD, UNC119B, RNF208, WNT7A, MYL3, 

MRPL38, DIO3, LMO2, SLC25A45, P2RX6, UBAP1, WSCD2, TFEB, 

SBK1, KLHL31, GLYR1, NFIB, GRK1, BCKDHB, EFHD1, SEC24C, 

RAB3A, LMF2, PKM & NCS1 

miR-125a-5p ABCG8, PGF, EMP2, RASGRF1, EMILIN3, DIAPH1, PLA2G2D, 

EPS15L1, ASCC2, ESRRA, RAX2, NOVA2, PIANP, GTPBP2, NAIF1, 

PRRG4, ROR1, ASB13, SLCO3A1, CSNK1G2, CRLF1, CCDC113, 

EPN3, TMEM55B, ZNF335 & KAT8 

miR-23a-5p TMEM110, GJA9, COL4A2, EDC3, OXNAD1, TSGA13, SLC35B3, 

MICAL3, HDAC5, FBXW8, DNAJB13, GMPPB, PPP1R16B, UBL7, 

MED12L, SETX, PTPN21, BLCAP, SEMA5A, MEA1 & ACADSB 

miR-181b TSTD2, NTRK2, CLYBL, PHLDA1, ARMC8, TBCD, OTUB2, 

BTBD9, SF3A1, CHSY1, CEP78, KIF1B, MRPL13, NAP1L1, 

THUMPD3, MALT1, POLR3G, FOXRED2, MINPP1, ACAD11, 

ATP2B2, PIGN, MAPK14 & FAS 

miR-4454 ZNF394, EBPL, RMND5B, CALCOCO2, SEL1L, TROAP, NECAP2, 

RPS23, RBP4, PIN1, SLC29A3, PDK1, CPE, NLRP6, ALG10, RAD51, 

ENPP5, JAKMIP2, NKX2-8, TRIM44, ICA1L, TIFA & TREM2 

miR-8078 MYLK4, CEP250, SEMA4F, SOX9, POMT1, POLR3D, ATXN1, 

TRIM25, PIKFYVE, BAZ1B, MUC20, HEYL, RBM8A, MEGF9, 

GAS2L2, SMAD5, TRIM62, DNMBP, EPHA4 & ACACA 

miR-7975 RNF150, PIGO, SLC9A2, SLC44A2, SFRP1, C2CD2, SYNGAP1, 

CD248, PPAPDC3, SLC35E1, PCGF5, EPAS1, PRKAB1, SHPK, 

TRPC4, LRIG2, POU2F1, CLSTN2, DPP8, CCDC93, SIN3B, TSHZ2, 

MAP3K9, STX17, RIPK4, N4BP3, ITPK1, ABHD2 & FBXL19 

miR-5617-5p TMTC4, KIF24, URGCP, DLX2, KRT5, SGCG, IVD, VPS39, CD8B, 

CERS3, FUZ, PML, SLC30A8, CDH23, NACC1, CUX1, PRR5, 

DNAJC11, TRPV6, GEMIN4, GAL3ST3, PPP3CB, S1PR2, TSPAN9, 

OTUB1, TBC1D10C & PLB1 

miR-99b-5p HS3ST2, LRRC8B & PI15 
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5.4.5 Integrated miRNA-mRNA network for PRRSV vaccine responses in PBMCs  

The co-regulatory network was constructed based on down regulated miRNA and their up 

regulated true mRNA targets profiled in the PBMCs after PRRSV vaccination in DL pigs (Fig 

4). The initial miRNA-mRNA interaction was generated between expression profiles of 1397 

mRNA and 8 miRNAs. After correlation analysis with this interaction list, we found 289 

interaction showing inverse correlation on the expression values of miRNA and mRNAs, and 

were passed the threshold criteria (Pearson correlation < 0 and FDR <0.05). Finally, those 289 

functional integrations were subjected for network visualization. The combined miRNA-

mRNA network revealed that that miR-6762, miR-23a-5p, miR-181b-5p, miR-4454, and 

miR-125-5p are highly interconnected hubs of the network. The closest neighboring nodes of 

miRNA hubs include SIRT1, FOS, ARNTL, PKM, CD9, WNT1, CDKN1A, ABCG2, 

VEGFA and TNFAIP3. The hub miRNAs are considered to be the putative regulators of at 

least in part of PRRSV vaccine induced gene expression changes in PBMCs.  

 

 

Figure 4. Integrated network for down regulated miRNA and their up regulated mRNA targets profiled in 

PBMCs following PRRSV vaccination in DL pigs. Red encircled nodes are for miRNAs and rest all green 

hexagonal nodes for mRNA targets. 
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5.4.6 Functional annotation of the miRNA-mRNA network   

The list of 289 up regulated mRNAs engaged in the combined network was subjected for 

functional annotation with GO and pathway enrichment analysis using the InnateDB pathway 

analysis tool (Breuer et al. 2013). The significantly GO and pathways include protein kinase 

binding, response to toxic substances and regulation of MAPK kinase activity, TGF-beta 

signalling, signal transduction, Ap1 transcription factor network and toll-like receptor 

pathway (Fig. 5). This was an indication for involvement of miRNA-mRNA pairs in the 

development of immune response in PBMCs following PRRSV vaccination in pigs.  

 

Figure 5. Significantly enriched pathway and gene ontology (GO) terms and enriched by true target genes of DE 

miRNAs in PBMCs after PRRSV vaccination in DL pigs.  

 

5.5 Discussion 

To investigate in parallel the expression dynamics of miRNAs and mRNAs following PRRSV 

vaccination in pigs, we employed Affymetrix microarray platform for the global miRNA and 

mRNA transcriptome profiling of PBMCs collected longitudinally at four time points (0, 6, 

24 and 72 hpv) relative to the primary vaccination. We observed major changes in miRNA 

expression profiles after PRRSV vaccination. The temporal changes in miRNAs expression 

profiles of PBMCs (Fig 1) within the first three days indicated the PRRSV vaccine potential 

for influencing transcriptional mechanism of innate immune response following vaccination. 

Moreover, the integrative analysis of paired miRNAs and mRNA expression profiled in the 

identical samples allowed us to explore more robust miRNA-mRNA co-regulatory networks 

potentially to be involved with the immune response to PRRSV vaccine in PBMCs. In 

comparison, similar studies have reported that porcine miRNA can intricately engage itself in 

host-PRRSV interaction networks in PAMs (Cong et al. 2014, Li et al. 2015b). 

 

The miRNA profiles of PBMCs differed between DL and Pi pigs (Fig.1, Table 2, Fig 3). It 

was expected as the mRNA expression profiles of matched PBMCs to this miRNAs profiles 
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also differed greatly between DL and Pi pigs (Chapter 4 of this thesis). Through overlapping 

the predicted target genes of deregulated miRNAs with that of vaccine induced DEGs profiled 

in PBMCs, we have identified a set true differentially expressed target genes (TDETGs) of 

deregulated miRNAs. This research showed 289 differentially expression mRNA targets 

whose expression was inversely correlated with the expression of their corresponding top ten 

deregulated miRNAs in PBMCs of DL pigs (Table 3). The correlation between expression 

levels of miRNAs and their predicted target genes were relatively high and inverse in pattern, 

which suggested that the prediction algorithms used were reliable (Endale Ahanda et al. 

2012). Functional analysis revealed the TDETGs found to be associated with the biological 

process like include protein kinase binding, response to toxic substances and regulation of 

MAPK kinase activity, TGF-beta signalling, signal transduction, Ap1 transcription factor 

network and toll-like receptor pathway (Fig. 5), which are known to be involved with 

development of immune response.  

 

The miRNA-mRNA co-regulatory network revealed that miR-6762, miR-23a-5p, miR-181b-

5p, miR-4454, and miR-125-5p are like the putative miRNA regulators of the PRRSV vaccine 

induced differential gene expression in PBMCs (Fig 4). In comparison, the miRNA-mRNA 

interactive network profiled in the PAMs infected with the H- and N-PRRSV identified 

differential expression of some cellular miRNAs including ssc-miR-10a, 10b, 125a, 99b, 

4332, 320, 1285, 210, 503 (Cong et al. 2014). The tissue-specific expression and regulatory 

networks of pig microRNAome identified different miRNA families in the WBC including 

miR-15, miR-17, miR-181, miR-23, mir-27 and miR-29 families (Martini et al. 2014). Among 

them, the miR-17 family comprised of miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and 

miR-92-1; and miR-29 family comprised of miR-29a, miR-29b and miR-29c showed the most 

pronounced expression in WBC of pigs (Martini et al. 2014).  

 

Among the functional miRNA-mRNA pairs, miR-23a-5p showed the most significantly down 

regulated in PBMCs at all three time points after PRRSV vaccination (Table 2). miR-23 is a 

conserved miRNA family implicated in antiviral innate immunity, restricting the PRRSV 

replication in PAMs (Zhang et al. 2014). Another member (miR-23b) of miR-23 family was 

also reported to produces by IL-17, TNFα and IL-1β mediated proinflammatory response 

through triggering TAB2, TAB3 and IKKα (Zhu et al. 2012). Our result underscores the 

relevance of miR-23 family in immune response to PRRSV vaccine in PBMCs. Concordantly, 

the member of miR-23 family was previously reported as a host cellular miRNA that inhibits 
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PRRSV replication by directly targeting PRRSV RNA and possibly by upregulating type I 

interferon (Zhang et al. 2014). The overexpression of miR-23 rendered the cells more 

competent in IFN-α and IFN-β expression during PRRSV infection but did not mediate the 

activation of IFNs in the absence of PRRSV infection (Zhang et al. 2014), suggesting that the 

activation of IFNs by miR-23 requires other signaling activated by PRRSV. The IRF3/IRF7 

signaling was eventually confirmed to be critical for miR-23-mediated induction of IFNs 

response during PRRSV infection (Zhang et al. 2014). Therefore, PBMCs could have have 

the potential for developing interferon response at least partly, following in vivo PRRSV 

vaccination in DL pigs.  

  

At least four members of the miR-181-5p miRNA family were deregulated in PRRSV 

vaccinated PBMCs (Table 2) and found to be one of the potential hubs of the integrated 

miRNA-mRNA network (Fig 4). Research have shown that host miRNAs can inhibit viral 

replication by directly targeting viral genomic RNA, which has been regarded as a new 

mechanism of host antiviral defense (Lecellier et al. 2005, Li and Ding 2005, Otsuka et al. 

2007, Pedersen et al. 2007, Song et al. 2010) or a new way to change the viral life cycle (Chen 

et al. 2011, Gottwein and Cullen 2008, Huang et al. 2007). The miR-181 was expressed at a 

much higher level in peripheral blood monocytes and peritoneal macrophages than in PAMs 

(about 10- and 42-fold higher than that in PAMs, respectively), and the total cumulative 

expression of miRNAs which could potentially target PRRSV in peripheral blood monocytes 

and peritoneal macrophages was also higher than that in PAMs (Guo et al. 2013). The miR-

181 has been confirmed to regulate CD163 mRNA in blood monocytes to suppress PRRSV 

infection (Gao et al. 2013), suggesting that miR-181 may further influence PRRSV tropism 

also by direct targeting of CD163 mRNA. Therefore, it is likely that members of the miR-181 

family contribute to immune response in PBMCs following vaccine exposure.  

 

The PRRSV infection has been reported to regulate the expression of the miR-125 family 

member miR-125b, which reduced PRRSV replication in both Marc-145 cell line and PAMs 

(Wang et al. 2013). The miR-125b has also implicated in innate immunity to HIV infection 

(Huang et al. 2007). Our research showed that three members of miR-125 family including 

miR-125a-5p, 125a-3p and 125a were differentially expressed in PBMCs after vaccination 

(Table 2). This reduction in viral replication was attributed to the modulation of NF-kB 

expression by miR-125b. MiR-125b targets kB-RAS2 which serves as a negative regulator of 

NF-kB. Thus it was speculated that PRRSV infections induce the downregulation of miR-
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125b, which subsequently results in increased kB-RAS2 expression and ultimately reduced 

NF-kB expression. This may serve as part of the immune evasion strategy of PRRSV by 

limiting the NF-kB signaling response to infection. Taken together, these data support the 

importance of these miRNAs for the function of the immune system. 

 

5.6 Conclusions 

This study characterized the microRNA expression profiles of PBMCs following PRRSV 

vaccination in DL and Pi pigs. Results of the present study suggest that 20 down regulated 

miRNAs and their 289 inversely correlated true target genes were involved in the process of 

post transcriptional protein modification, apoptosis, protein transport, small molecule 

metabolic process and innate immune response. The miRNA and gene co-regulatory network 

revealed that miR-6762, miR-23a-5p, miR-181b-5p, miR-4454, and miR-125-5p are putative 

regulators of the PRRSV vaccine induced differential gene expression in PBMCs. The 

inversely correlated mRNA targets of down regulated miRNA are involved with cell 

proliferation, MAPK signaling and apoptosis pathway. Taken together, these results indicated 

that differential expression of these miRNAs may contribute in the immune response 

developed from PRRSV vaccination in PBMCs by regulating the expression of mRNA targets 

involving critical cellular functions. Further functional studies of these miRNAs could be a 

good basis for the identification and analysis of potential immuno-modulatory effectors in 

PRRS.  
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Genetic control of PRRS through improvement of host resistance by marker assisted selection 

breeding has been a debate for last couple of years. The disease resistance traits are likely to 

be polygenic and influenced by multiple factors. Moreover, in most of the large-scale 

intensive settings of pig production, disease resistance phenotype is difficult to estimate; 

hence an indirect approach through measuring the vaccine mediated host immunocompetence 

is recommendable (Rowland et al. 2012). To this end, we have implemented a PBMCs 

transcriptome model to characterize the molecular genetics of host immune response to 

PRRSV vaccination in clinically healthy pigs. Numerous studies have investigated the 

transcriptome profiles of pulmonary alveolar macrophages (PAMs) after in vivo or in vitro 

PRRSV infection (Badaoui et al. 2013). However, given that intramuscular vaccination, 

PRRSV vaccine antigen can reach faster the blood circulation through bypassing the lungs 

(Siegrist 2012). Vaccine antigen initiates the T and B cell (major components of PBMCs) 

directed immune response soon after getting into the bloodstream. Therefore, PBMCs-based 

investigation of host transcriptional response would provide deeper insights into the complex 

molecular events of host-vaccine interaction in a relatively rapid and efficient manner. 

Moreover, from a genetic selection standpoint, it would be desirable to select on a trait in 

uninfected pigs (i.e. before PRRSV infection) that is correlated with a response after infection 

(Lunney et al. 2016).  

 

Transcriptome is referred the full range of RNAs (including mRNA and miRNAs) expressed 

in specific tissue or cell at a given time point. Different omics approaches such as microarray, 

RNA-seq, differential display (DD), suppression subtractive hybridization (SSH), and serial 

analysis of gene expression (SAGE) have been used to identify differentially expressed RNA 

transcripts during the course of immune responses in pigs (Tuggle et al. 2007, Tuggle et al. 

2010, Lunney and Chen 2010, Schroyen and Tuggle 2015). The present dissertation project 

performed the microarray-based global expression profiling of mRNA and miRNA 

transcriptome in PBMCs collected from Landrace and Pietrain pigs. The microarray platform 

used in this study, has ensured maximum coverage of transcriptome through amplifying both 

poly-A and non-poly A tailed end of the transcripts derived from a gene during hybridization 

(Eklund et al. 2006). Moreover, three individual biological replications provided the statistical 

power of the transcriptome datasets. Therefore, functional networks of PRRSV vaccine 

response and their key regulatory genes identified as well as breed differences regulating the 

vaccine response, could provide better insights of host immunocompetence mechanism and 

thereby help to understand the genetic control of PRRS.  
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6.1 Expression dynamics of mRNAs profiles in PBMCs after PRRSV vaccination  

The current study showed that massive gene expression changes occurred in PBMCs 

following PRRSV vaccination in pigs. These findings are suggestive for the potential of 

PBMCs to induce immune response to PRRSV vaccine in vivo. Previous studies revealed that 

porcine PBMCs are likely to be involved with the expression changes of immune response 

candidate genes after in vitro PRRSV infection (Feng et al. 2003, Zhuge et al. 2012). 

Whereas, little information on transcriptome modification of PBMCs after in vivo PRRSV 

infection or vaccination are available. However, porcine PBMC-transcriptome profiles have 

been shown to be altered by tetanus toxoid vaccine antigen indicated by differential 

expression of more than 5000 genes within three days following in vivo vaccination (Adler et 

al. 2013). The first experiment of this thesis performed a global mRNA expression profiling 

of PBMCs from PRRSV vaccinated and age-matched unvaccinated German Landrace pigs at 

right before (0 h), and at 6, 24 and 72 h post vaccination using the Affymetrix GeneChip 

Porcine Gene 1.0 ST array.  

 

The genome-wide comparison of PBMCs transcriptome profiles between vaccinated and 

unvaccinated pigs revealed a distinct host innate immune transcriptional response to PRRSV 

vaccine. There was a significant temporal variation in transcriptional responses of PRRSV 

vaccine in PBMCs accounting 542, 2,263 and 357 DEGs at 6, 24 and 72 h post vaccination, 

respectively compared to the time point before vaccination (Chapter 2, Fig 4). The global 

picture of gene expression changes in lung tissues following PRRSV infection revealed the 

temporal variation (Genini et al. 2008, Xiao et al. 2010). For instances, a total of 1409 

differentially expressed transcripts were identified by analysis of variance in the microarray 

data, of which 2, 5, 25, 16 and 100 differed from controls by a minimum of 1.5-fold at 1, 3, 6, 

9 and 12 h post PRRSV infection to pulmonary alveolar macrophages, respectively (Genini et 

al. 2008). The transcriptome profiles of porcine lung tissue showed 4,520 genes differentially 

expressed at 96 h and 168 h after in vivo infection with highly pathogenic PRRSV (Xiao et al. 

2010). Zhou et al (2011) have employed Affymetrix microarrays to investigate the gene 

expression patterns of porcine alveolar macrophages (PAMs) isolated from Tongcheng piglets 

(a Chinese indigenous breed) after infection with HP-PRRSV. A total of 12,775 transcripts 

(53% of all probesets) were expressed in the infected and non-infected PAMs. After quantile 

normalization, 321 genes were identified as differentially expressed (DE) genes, with 219 

being upregulated and 102 being downregulated, under the threshold of fold change (FC) of 

1.5 or greater and a false discovery rate (FDR) of approximately 5% (Zhou et al. 2011). 
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Therefore, the current study with the snap shot of global mRNA expression pattern in PBMCs 

may provide understanding on the mRNA transcriptome alterations in response to PRRSV 

vaccination.  

 

6.2 Transcripts signature for innate and adaptive immunity to PRRSV vaccine 

The immune system is a complex network of cells and organs which is typically divided into 

two categories: innate and adaptive immunity; although these distinctions are not mutually 

exclusive. Following any viral infection, adequate activation of the host innate immune 

system is critical to prevent viral replication and invasion into mucosal tissues and, 

importantly, in initiation of the strong adaptive immune response to fight against intracellular 

pathogens (Koyama et al. 2008). Thus, synergistic efforts of the innate and the adaptive 

immunity are the key for developing strong, durable immunity from PRRSV vaccination. The 

innate immune system as the first line of host defense against viral infections occurs within 

hours of exposure and may persist up to few days (Beutler 2004). To understand the innate 

immune transcriptional activity in PBMCs, the global gene expression profiles of PBMCs 

were analyzed within first three days of PRRSV vaccination. It revealed that the highest 

mRNA transcriptome alterations occur at 24 h post vaccination, and altered transcripts are 

involved with activation of basic innate immune response pathways including interferon 

signaling, cytokine signaling and proinflammatory reaction; which indicated the occurrence of 

innate immune response (Chapter 2, Table 2). The innate immune related pathways such as 

TREM1, Toll-like receptor and hypercytokinemia signaling were also reported to be involved 

with PRRSV induced host immune response (Badaoui et al. 2013). 

 

The current study suggested that APP, TRAF6, PIN1, FOS, CDKN1A and TNFAIP3 could be 

considered as potential candidate genes for PRRSV vaccine responses at early stage post 

vaccination (Chapter 2, Fig 8). The type I interferons (IFNα, β) are the most important 

cytokines responsible for antiviral innate immunity. The PRRSV infection is a poor inducer of 

IFNα, and its level remains low throughout the course of infection thereby activation of 

adaptive immunity is delayed and dampened (reviewed by Loving et al. 2015). The 

modulation of cytokines in vaccinated pigs appeared to be more dependent on vaccination or 

infection condition than on stimulation by different isolates; changes in production of IL-10 

appear to be more relevant than those of TNFα at gene and protein levels (reviewed by 

Lunney et al. 2016). Sun et al (2012) reviewed data that affirmed that nsp1, nsp2, and nsp11 

are early proteins, and N protein, a late protein, are involved in controlling gene expression 

pathways for IFNα suppression and NF-kB regulation of adaptive immunity. Recent efforts 
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have compared immunity to type 1 PRRSV isolates varying in virulence. Infection with 

virulent type 1 (Lena) PRRSV resulted in a more severe disease than with other type 1 

(Belgium A or Lelystad = LV) strains (Weesendorp et al. 2013). Lena caused more severe 

pathology, with increased IL-1α production in the lungs and lymph nodes and a leukocyte 

influx (neutrophils, monocytes) into the bronchoalveolar lavage (BAL) fluid. By five weeks 

post infection, BAL from all infected pigs had a higher percentage of CD8+ T cells and 

higher levels of IFNγ-producing cells compared with controls. Infection with Lena PRRSV 

resulted in increased levels of IL-1β, IFNα, IL-10, IL-12, TNFα, and IFNγ mRNA during the 

first week of infection (Weesendorp et al. 2014).  

 

We found that, TGFβ1, IL7R, RAD21, SP1 and GZMB genes are likely to be predictive for 

the adaptive immune transcriptional response to PRRSV vaccine in PBMCs at 4 weeks post 

primary vaccination. Viruses evade host immunity by promoting the secretion of 

immunosuppressive cytokines IL-10 and transforming growth factor-β (TGF-β), which 

antagonize induction of strong cell mediated immune response. PRRSV infection induced a 

strong immunosuppressive response, resulting in delayed onset of a Th1 immune response 

(Johnsen et al. 2002, Suradhat et al. 2003, Renukaradhya et al. 2010). Immunomodulatory 

properties of PRRSV N protein resulted in upregulation of the frequency of Foxp3+ T-

regulatory cells (Tregs) and IL-10 production (Wongyanin et al. 2012). Both live and 

inactivated PRRSV significantly increased IL-10 gene expression (Suradhat et al. 2003); an 

increased concentration of IL-10 was found in pig lungs even after clearance of viremia 

(Johnson et al. 2002, Renukaradhya et al. 2010). A coordinated immunosuppressive function 

of PRRSV was shown to likely be mediated by the cytokines IL-10 and TGF-β and Tregs 

(Johnsen et al. 2002, Suradhat et al. 2003, Renukaradhya et al. 2010). All these studies 

pointed out the contribution of dysregulated expression of immune molecules following 

PRRSV infection, resulting in weakened adaptive immunity. Induced Tregs could suppress 

antiviral immunity and thus facilitate establishment of PRRSV infection, although the data are 

inconsistent.  

 

6.3 Cell type specific gene expression after PRRSV vaccination 

The PBMCs are heterogeneous population of immune cells in the blood that include 

lymphocytes (T, B and NK cells), monocytes and dendritic cells. The proportion of 

lymphocytes are typically in the range of 70-90 % of PBMCs, monocytes ranges from 10-30 

% of PBMCs, while dendritic cells are rare, being only 1-2 % of PBMCs. Among the PBMC-
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subsets, lymphocytes are accounted the height proportion. The frequencies of cell types 

within the lymphocyte population include 70–85% CD3+ T cells (45 – 70% of PBMCs), 5–

20% B cells (up to 15% of PBMCs), and 5–20% NK cells (up to 15% of PBMCs). 

 

The frequencies of sub cellular populations of PBMCs may vary across individuals (Fairbairn 

et al. 2013). The vaccine induced cellular activation and differentiation of cells resulted 

changes in the proportion of each sub types of PBMCs which likely might contribute to gene 

expression changes (Palmer et al. 2006). Therefore, the current dataset has the limitation in 

evaluating the cell type specific contribution on vaccine responses. There are two possible 

option to address this cellularity issue, one is to fluorescent activated cell sorting of PBMCs 

samples followed by expression profiling (Christopher et al. 2015), another is bioinformatics 

approach of gene expression deconvolution (Steuerman and Gat-Viks 2016). In fact, the 

reports on, and option for, specific cell subset of PBMCs are limited in swine and mostly due 

to the relative lack of immune-tagged reagents critical for such detail phenotyping (reviewed 

by Shroyen ad Tuggle 2015). In the current study, the unfractionated PBMCs model was used 

in this microarray study as a rapid and convenient model to evaluate host transcriptional 

response to PRRSV vaccination. To cope up with the limitation of cellularity issue, we 

performed the cell type enrichment analysis using an online bioinformatics tool called CTen 

(cell type enrichment); (Shoemaker et al. 2012). The CTen platform implements a highly 

expressed, cell specific (HECS) gene database comprises of 10,058 genes of human and 

mouse origin.  

 

The cell type enrichment analysis revealed that PRRSV vaccine induced mRNA transcripts 

specifically expressed in CD4+ T cells, CD8+ T cells, CD14+ and CD33+ monocytes during 

early stage; and lymphnode, thymus, BDCA4+ dendritic cells, CD4+ T cells and CD8+ T 

cells in later stage of vaccine immunity (Chapter 3, Fig 7). This could indicate that the 

variation in expression patterns of the genes were not solely due to vaccine mediated 

transcriptional events but possibly also due to a difference in demographics of PBMCs subsets 

recruited into the blood circulation. Shimizu et al. observed a remarkable decrease in CD4+ T 

cells after 3 days PRRSV infection in pigs (Shimizu et al. 1996); and this study also reported 

slight decreases in CD8+ T cells at 3 dpi, followed by substantially increased levels (Shimizu 

et al. 1996), while at the same time, the ratios of CD4+/CD8+ T cells were significantly lower 

between day 3 and 28 post-inoculation compared with that of day 0 (Shimizu et al. 1996). 

However, the proportion of CD4+ and CD8+ T cells were found to be significantly decreased 
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for a few days shortly after PRRSV infection, but returned to pre-infection levels on 8-10 

days post infection (Nielsen and Botner 1997). Renukaradhya et al (2010) performed a 

comprehensive analysis of innate and adaptive immune responses in dual-virus infected pigs 

and found that reduced innate NK-cells population along with increased frequencies of CD4+ 

T cell, CD8+ T cells and myeloid cells resulted from PRRSV infection in pigs. The PRRSV 

infection were reported to cause an increase in CD14+ expression throughout the early stage 

of infection, due to a rise in CD14+ monocytes that differentiate to macrophages and migrate 

to bronchoalveolar spaces (Van Gucht et al. 2004). Silva-Campa et al (2012) observed that 

PRRSV infection increases the frequency of T cell regulatory cells (Tregs) with the phenotype 

CD4+, CD8+, CD25+ and Foxp3+ high. Therefore, this information on cell-type specific 

contribution to vaccine immunity could be an important add-on for PRRS research. 

 

The T lymphocytes (CD3+ T cells) are composed of CD4+ (25–60% of PBMC) and CD8+ T 

cells (5–30% of PBMCs), in a roughly 2:1 ratio. Both CD4+ and CD8+ T cells are further 

subdivided into naïve, and the antigen-experienced central memory, effector memory, and 

effector subtypes that exist in resting or activated states. T lymphocytes play the central rote 

in cell mediated adaptive immunity through cytotoxic apoptosis. Cross-reactivity against 

divergent PRRSV can show a different intensity and be differently associated with cytotoxic 

CD8+ IFNγ as well as CD8− IFNγ+ cells (Lunney et al. 2016). Especially after infection, a 

different immune reactivity was evident upon stimulation with various virus isolates in terms 

of frequency and CD8 phenotype of PRRSV specific IFNγ-producing cells. Using IFNγ 

ELISPOT assays, Xiao et al (2004) demonstrated that PRRSV-specific T cells were observed 

as early as 2 weeks pi, with no significant difference in these T cells in lymphoid tissues 

during or post PRRSV infection. Viral loads were shown to be decreased by 3–4 logs in 

persistent infection primarily in tonsils and sternal and inguinal lymph nodes. However, there 

was no apparent correlation of tissue viral levels and PRRSV-specific T-cell frequencies 

(Xiao et al. 2004). When the IFNγ-secreting CD8+ T-cell response was evaluated, a late and 

low virus-specific response was observed (Ferrari et al. 2013). Overall, the effect of PRRSV 

infection on specific CD8+ T-cell frequencies in lymphoid tissues has not been established. 

There are limited indications of effective CD8+ cytotoxic T cells (CTLs) controlling primary 

PRRSV infection, as only after clearance of viremia, the anti-PRRSV-targeted CTLs were 

detected (Costers et al. 2009). FoxP3+ T cells may also be involved (Wongyanin et al. 2010, 

Silva-Campa et al. 2012). Apoptosis in B- and T-cell areas may also be a factor, but must be 

affirmed (Gomez-Laguna et al. 2013); with HP PRRS, apoptosis may be an even greater 
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factor (Wang et al. 2014). However, more basic immune reagents (pig-specific monoclonal 

antibodies, major histocompatibility complex antigen tetramers, and well-characterized cell 

lines) are required to elucidate these complex immune regulatory issues (Loving et al. 2015). 

  

The natural killer (NK) cell is another innate lymphocyte subset of PBMCs that helps in 

nonspecific clearance of any virus-infected cell from the body. In younger pigs, the NK cell is 

small to medium sized and lacks adequate intracellular granules (Gerner et al. 2009). Thus, in 

spite of having higher frequency of NK cells, nursery pigs have reduced NK cell cytotoxic 

activity as compared with young pigs. Nursery pigs suffer from PRRSV infection more than 

adult animals (Klinge et al. 2009), owing to their poorly developed innate immune system as 

well as limited response to counter viral immune evasion strategies. Stimulation of IFNα has 

been shown in vitro to be down regulated mainly by viral nonstructural proteins (nsp1, 2, 4, 

11); (Chen et al. 2010). Genetic studies indicate that all PRRSV-infected pigs have detectable 

IFNα in serum by 4 dpi. In vitro stimulation of porcine monocytes and macrophages with low 

levels of IFNα stimulates the expression of sialoadhesin (Sn/CD169), a putative PRRSV 

receptor in macrophages. Interestingly, such a subtle stimulation of macrophages during the 

first 2 dpi is sufficient to enhance the efficiency of PRRSV infection by nearly 20-fold 

(Delputte et al. 2007). The gene knockout technology has affirmed that intact sialoadhesin 

(Sn/SIGLEC1/CD169) is not required for attachment/internalization of PRRSV (Prather et al. 

2013). Similar studies using gene knockout and editing (e.g., CRISPR, Talen) techniques are 

under way to assess the role of CD163 in PRRS infections (Carlson et al. 2013). In a study 

involving 50 PRRSV-infected pigs maintained under field conditions, secretion of low levels 

of IFNα early pi coincided with detection of viremia from day 2 pi in most pigs (Dwivedi et 

al. 2012). Thus, to establish clinical disease in pigs, PRRSV modulates the host innate 

immunity through dysregulation of NK cell function and IFNα production.  

 

Overall, the information on cell-type specific contribution to PRRSV vaccine induced gene 

expression divergence obtained from the current study could be an important add-on for 

PRRS research. However, there is a major need to evaluate the different roles of effector 

versus memory T-cell populations in anti-PRRSV responses, and in turn to stimulate 

protective versus pathologic responses. As more cell specific markers and immune reagents 

become available, more detailed research will be possible to address these important 

cellularity issues. 
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6.4 Antibody mediated adaptive immunity to PRRSV vaccine  

Antibodies are the principal effector of vaccine-mediated adaptive immunity, produced by B 

lymphocytes, and are capable of binding specifically to a toxin or pathogen (Cooper and 

Nemerow 1984). Among the antibodies, neutralizing antibody (NAb) is one of the important 

determinants for vaccine derived adaptive immunity. Production of protective levels of NAbs 

usually requires multiple vaccinations since a high titre is necessary for durable protection. 

NAbs are usually specific for the vaccine strain (homologous), with lower/no titers of cross-

neutralizing (heterologous) antibodies (Vu et al. 2011, Zhou et al. 2012). In the current study, 

the antibody response appeared to start at 2 weeks of primary vaccination and reached a 

steady state over 4-6 weeks following primary vaccination (Fig 1, Chapter 2; Fig 9, Chapter 

3). This finding reflects the previous reports stating that PRRSV specific antibodies begin to 

appear in the infected pigs as early as 7-10 days post infection with a low viral titer followed 

by delayed production of neutralizing antibody (NAb) between 2-4 weeks post infection 

(Loemba et al. 1996). The early appearance of antibody response even after 2 weeks post 

vaccination does not guarantee for protection of reinfection (Lopez et al. 2007). Time of onset 

and raising at peak titre may vary with type of antibodies, for instance the PRRSV-specific 

IgM could be detected at 7 days post infection (PI), with titre peaking between 14 and 21 day 

post infection and decreasing to undetectable levels around 40 days PI (Loemba et al. 1996). 

It has been reported that anti-nsp antibodies are found early after infection (De Lima et al. 

2006). Conversely, the anti-PRRSV IgG peaks at day 21 to 28 days PI and the level remain 

elevated through the persistent phase of infection (Nelson et al. 1997). The earliest antibodies 

detected are directed against the 15kDa N protein (Loemba et al. 1996) which seems unable to 

provide sufficient protection (Yoon et al. 1994). On the other hand, serum neutralizing 

antibodies (NAbs) appeared typically more than 28 dpi (Yoon et al. 1994), have a positive 

correlation with the level of protection against PRRSV infection (Li et al. 2014). There may 

be several reasons behind this unwanted long delay in PRRSV-specific antibody response in 

systemic circulation. As reviewed by Lunney et al., 2016; the potential mechanisms 

responsible for delayed NAbs include (i) glycan shielding effects of N-linked glycosylation in 

GPs (Ansari et al. 2006, Chand et al. 2012); (ii) presence of an immunodominant decoy 

epitope in GP5 upstream of the neutralizing epitope (Ostrowski et al. 2002); (iii) antibody-

dependent enhancement of viral entry into target cells (Cancel-Tirado et al. 2004); (iv ) 

suppression of innate immune responses (Sang et al. 2011); and (v) prevention of normal B 

cell repertoire development (Butler et al. 2014).  
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In commercial settings, breeding sows are vaccinated against PRRS before pregnancy 

occurred. The IgG antibodies are actively transferred through the placenta, via the FcRn 

receptor, from the maternal to the fetal circulation (Simister 2003). The passively acquired 

immunity through maternally derived antibody (MDA) provides a short-term protection to 

PRRS disease in young piglets during the suckling period. We observed a decreasing plasma 

level PRRSV-specific antibody of maternal origin which reached near to zero at the time of 

primary vaccination, and postulated that it would not interfere with the vaccine induced 

antibody titre (Chapter 2, Fig 2; Chapter 3, Fig 1). The influences of MDA on vaccine 

mediated antibody response are two dimensional. On the one hand, the MDA may allow a 

certain degree of priming for induction of memory B cells and enhancement of the T cell 

responses upon vaccine priming (Gans et al. 1999, Rowe et al. 2004). On the other hand, 

MDA may adversely affect the vaccination success by interfering with vaccine induced 

antibody response, and increasing disease severity through antibody dependent enhancement 

process (Yoon et al. 1996). Following primary vaccination of young piglets, the maternal 

antibodies bind to their specific epitopes at the vaccine antigen surface, competing with infant 

B cells and thus limiting B cell activation, proliferation and differentiation (Albrecht et al. 

1977). This inhibition is epitope-specific, such that infant responses to non-immunodominant 

maternal epitopes may still be elicited (Jelonek et al. 1996). The inhibitory influence of 

maternal antibodies is antibody titre dependent, or rather reflects the ratio of maternal 

antibodies to vaccine antigen (Siegrist et al. 2004). It has been reported that antibody 

responses were only elicited when maternal antibodies reached a threshold of 300-400 

mIU/mL in human infant (Dagan et al. 2000). Therefore the primary vaccination is 

recommended at the time when low serum antibody titre of maternal origin is present. 

However, the maternal antibody titer at which the vaccine mediated antibody responses may 

be elicited can only be defined experimentally by comparing antibody responses in piglets 

stratified according to maternal antibody titre at the time of primary vaccination.  

 

6.5 Breed-specific transcriptome signature for PRRSV vaccine responses 

The variation of clinical outcomes following PRRSV infection is influenced by a complex set 

of interactions between the virus and the pig host. Breed differences clearly play an important 

role in determining resistance/susceptibility to PRRS; various studies have affirmed that lines 

or breeds with improved reproductive traits, e.g., Meishan or Large White, are more resistant 

to the effects of PRRS (Lunney and Chen 2010). Identification of potential innate immune 

candidate genes will likely assist in improving our understanding not just of resistance to 

PRRS but also of protective immune mechanisms and thus vaccine development (reviewed by 



186                                                                                                                                 Chapter 6 

 

 

Loving et al. 2015). In the present study, genome-wide comparisons of the microarray gene 

expression profiles revealed the breed specific transcriptome signatures for PRRSV vaccine 

response in PBMCs of DL and Pi pigs. These results are particularly comparable with the 

findings of Ait-Ali et al. (2011), who observed the transcriptional differences in infected 

pulmonary alveolar macrophages (PAMs) between Landrace and Pietrain pigs. They found a 

higher number of PRRSV-regulated transcripts in PAMs of Landrace pigs than in those of 

Pietrain pigs, which was an indication for Landrace PAMs having a reduced susceptibility to 

PRRSV infection compared to that of Pietrain pigs (Ait-Ali et al. 2011). Some other previous 

studies also support this breed differences as they have shown that detrimental impact of 

PRRSV infection on growth varies between and within lines and breeds (Greiner et al. 2000, 

Petry et al. 2005, Doeschl-Wilson et al. 2009).  

 

The current study identified a set of potential breed specific transcriptome signature which 

might be predictive for the PRRSV vaccine response in Landrace and Pietrain pigs. Among 

the vaccine induced DEGs in PBMCs of both breeds, many of them had relatively high 

expression values in vaccinated Landrace pigs as compared with that of Pietrain which would 

imply that Landrace pigs are more susceptible to PRRSV than Pietrain pigs. The breed 

specific transcriptome signature for host response to PRRSV infection has also been identified 

in Dapulian pigs (a Chinese indigenous breed) and Duroc×Landrace×Yorkshire pigs recently 

(Xiao et al. 2015). The PRRS Host Genetics Consortium (PHGC) in USA conducted detailed 

studies of genetic resistance to PRRSV infection using a nursery-pig model and commercial 

crossbred pigs (Lunney et al. 2011, Rowland et al. 2012). It has been reported that inheritance 

of specific alleles within the swine major histocompatibility or swine leukocyte antigen (SLA) 

complex (SLA on SSC7) positively influences disease and vaccine responses (Lunney et al. 

2009). 

 

In addition to breed differences, there might have individual variation in host response to 

PRRSV (Arceo et al. 2012, Schroyen et al. 2015). In this case, the PRRSV induced immune 

responses are likely to be influenced by the immune status of individual pigs (reviewed by 

Loving et al. 2015). Given that stimulated with the same dose of virus load, innate immune 

responses to PRRSV could even be variable within a swine population (Xiao et al. 2004) 

since the disparity of individual host genetics of the same species may even attribute to 

variation in their resistance to infections (Ardia et al. 2011). Furthermore, the age of 

individual animals is another potential determinant influencing the immune response to 
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pathogen. The age of around four weeks, shortly after weaning, has been proved to be suitable 

for investigating the role of pig genome in response to PRRSV through a ‘nursery pig model’ 

(Boddicker et al. 2012).  

 

6.6 Expression dynamics of miRNAs in PBMCs following PRRSV vaccination  

MicroRNAs regulate the gene expression at post-transcriptional level through recognition of 

complementary sequence target elements followed by either inhibiting mRNA translation or 

inducing mRNA degradation (Bartel 2004). Emerging evidence suggest that miRNAs are 

tightly involved in many pathophysiological process of virus-host interaction including virus 

replication (Li et al. 2010, Guo et al. 2013, Trobaugh et al. 2014) and host immune responses 

(Hussain and Asgari 2010, Chen et al. 2013). MicroRNAs affect the replication of various 

viruses either through binding to the genome of the viruses or regulating host antiviral 

pathways (Li et al. 2010, Trobaugh et al. 2014). The current study performed the global 

miRNA expression profiling within the same PBMCs sample as used for mRNA expression 

profiling.   

 

The global microRNA profiles of PBMCs identified 5, 134 and 11 differentially expressed 

(DE) mRNAs in DL; and 13, 222 and 37 DE miRNAs in Pietrain at 6, 24 and 72 h post 

vaccination, respectively. Several studies have pointed out the complex roles of microRNAs: 

miR-181 downregulates CD163 expression, miR-23 induces type I interferon expression 

through IRF3/IRF7 activation, miR-125b regulates the NF-κB pathway, and miR-24-3p 

suppresses hemeoxygenase-1 expression (Gao et al. 2013, Wang et al. 2013, Zhang et al. 

2014, Xiao et al. 2015). Others suggested that miRNAs contribute to the pathogenesis of 

PRRSV infection (Cong et al. 2014). Numerous studies are under way, using samples 

generated in vivo and in vitro and RNA-seq analyses, to pinpoint novel pathways and genes 

involved in regulating PRRSV infection processes and subsequent effects on PRRS control, 

pathology, and persistence (Wysocki et al. 2012, Schroyen et al. 2015). Therefore, 

information generated from this study on the molecular bases for miRNA regulated gene 

expression in PRRSV vaccinated PBMCs will help to select the potential gene candidate for 

exploring single nucleotide polymorphisms and DNA marker associated with PRRS 

resistance.  

 

6.7 Conclusions and future perspectives   

We established a PBMCs transcriptome model for the evaluation of host immunogenomic 

response to PRRSV vaccination in pigs. As PBMCs are one of the readily accessible 
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biological samples, this model could be implemented for biomarker discovery involving 

larger pig populations. This study identified some potential candidate genes which are likely 

to be predictive for the PRRSV vaccine responses in peripheral blood, however, further 

validation is needed to affirm their association with host immune response to PRRSV vaccine. 

The current study could have substantial impact on the pig breeding. Germany is the third 

largest pork producers globally, where PRRS is of high concern for poor growth performance, 

reproductive impairment and animal welfare issues. The Landrace and Pietrain are two 

leading breeds for commercial pig production through out the world including Germany. 

Therefore, the results of the present study could be an add-on for the pig breeding strategy 

through genetic control of PRRS. However, for enhanced genetic resistance to disease to be 

useful for marker-assisted selection or genome-wide selection, more careful planning is 

required as Mellencamp et al (2008) pointed out. The stage is now set for deeper probing of 

the role of alleles and haplotypes involved in controlling specific antiviral responses, and for 

determining specific genes and their SNPs that are associated with antiviral innate immunity 

and vaccine responses. Moreover, selection using genomic markers that can be measured in 

uninfected pigs is advantageous. The present PBMCs transcriptome model has opened 

opportunities to expand genetic selection to a larger number of traits, simultaneously 

monitoring numerous phenotypes and integrating health information with growth traits.  

 

Future studies should aim to verify whether marker-assisted selection for improved viral 

resistance will be effective in commercial pig production. In continuation of the current 

research as well as to resolve the questions yet to be answered, several experiments could be 

followed:  

 Functional validation of the candidate genes identified in this transcriptome analysis in 

an independent and larger pig population 

 Investigating whether the polymorphisms involved with the candidate genes identified 

in PBMCs are linked to PRRSV vaccine responses   

 Investigate the immune potential of PBMCs in fighting off the concurrent secondary 

bacterial infection 

 Investigating the correlation between the early stage gene expression patterns in 

PBMCs and vaccine mediated plasma antibody responses 

 Integrated network of miRNA-mRNA for exploring the regulatory mechanism of gene 

expression during PRRSV vaccine mediated immunity in PBMCs 
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 Identifying genes associated with viral persistence and host tolerance could be of two 

additional targets for future work using PBMCs model 
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