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Kurzfassung 

Die computerbasierte Modellierung zur quantitativen Analyse der Agrarpolitik in der EU 

konzentriert sich zunehmend auf die einzelbetriebliche Ebene. Dies folgt der Entwicklung der 

Politikinstrumente, die direkt auf einzelbetrieblicher Ebene ansetzen und deren Wirkungen 

von Betriebscharakteristika abhängen. Gleichzeitig unterstützen methodische Entwicklungen 

wie die Positive Mathematische Programmierung (PMP) die Akzeptanz solcher Modelle in 

der Politikanalyse. PMP führt nichtlineare Terme in die Zielfunktionen ein und sorgt dadurch 

für eine elegante Kalibrierung und ein kontinuierliches Simulationsverhalten. Diese Arbeit 

beschäftigt sich mit der fehlenden ökonomischen Rationalisierung von PMP und der 

ökonometrischen Schätzung von alternativen Modellformulierungen. 

Diese Dissertation analysiert zunächst in wieweit das am häufigsten verwendeten 

quadratischen PMP Modells aus ökonomischer Sicht rationalisiert werden kann. In der 

Literatur werden nichtlineare Kapazitätsbeschränkung (KB), die ein Aggregat von Arbeit und 

Kapital darstellt, als theoretische Motivation nichtlineare Terme in der Zielfunktion genannt. 

Die Ergebnisse dieser Arbeit zeigen, dass sich die Äquivalenz zwischen einer quadratischen 

KB und einem quadratischen PMP Modell lediglich auf die Kalibrierung des 

Programmierungsmodells beschränkt. In Bezug auf das Simulationsverhalten bzw. die 

Modellschätzung unterscheiden sich die beiden Modelle. Somit kann eine quadratische KB 

ein quadratisches PMP-Modell nicht vollständig rationalisieren. Nichtsdestotrotz könnte es 

dazu beitragen, Angebotsmodelle und Marktmodelle in Verbindung zu bringen, um 

Informationen über den Primärfaktor auszutauschen. Die Arbeit überprüft weiterhin die 

Konsistenz der Ökonometrischen Mathematischen Programmierungsmodelle (ÖMP). Diese 

ermöglichen die Parameterschätzung von nichtlinearen Technologien mithilfe mehrfacher 

Beobachtungen und Optimalitätskriterien erster Ordnung als Schätzungsgleichungen. Das 

ÖMP für diese Arbeit ist ein einzelbetriebliches Optimierungsmodell mit konstanten 

Substitutionselastizitäten in den Produktionsfunktionen. Die Konsistenz des Schätzverfahrens 

wird durch ein Monte Carlo Verfahren mit unterschiedlichen Fehlerstrukturen ausgewertet. 

Die Ergebnisse zeigen, dass sich die geschätzten Parameter an die wahren Werte mit 

zunehmendem Stichprobenumfang annähern. Abschließend, wird ein Verfahren zur 

statistischen Inferenz für ÖMP eingeführt und damit eine Lücke in der Literatur geschlossen. 

Die Arbeit verwendet Bootstrapping um-Konfidenzintervalle abzuleiten und evaluiert diese, 

ebenfalls mit Hilfe eines Monte Carlo Verfahrens, hinsichtlich der Genauigkeit der 

Überdeckungswahrscheinlichkeiten. Im Allgemeinen gelingt es den simulierten 

Konfidenzintervallen sich mit ausreichender Genauigkeit den korrekten 

Überdeckungswahrscheinlichkeiten anzunähern. Die Ergebnisse unterscheiden sich jedoch je 

nach Auswahl des Stichprobenverfahrens und der Berechnungsmethode des 

Konfidenzintervalls. 

Schlüsselwörter: positive mathematische Programmierung, Kapazitätsbeschränkung, 

ökonometrisches mathematisches Programmierungsmodell, Fehler in der Optimierung, 

Bootstrap-Konfidenzintervalle 

  



 

 

  



Abstract 

Computational modelling for quantitative agricultural policy assessment in the EU employs 

more farm level oriented approaches in recent years. This follows policy instruments that 

increasingly target the farm level and have effects varying with farm characteristics. At the 

same time, methodological advances such as Positive Mathematical Programming (PMP) 

increased the acceptance of farm level modelling for policy analysis. By introducing non-

linear terms into the objective function of programming models, PMP offers an elegant 

calibration property and smooth simulation response. This thesis addresses the lack of 

economic rationalisation of PMP and the econometric estimation of alternative model 

formulation. 

First, this dissertation analyses the economic rationality of the most often used quadratic PMP 

model. One potential rationalisation of non-linear terms in the objective function discussed in 

the literature is a non-linear capacity constraint (CC) representing some aggregate of labour 

and capital stock. Results show that the equivalence between a quadratic CC formulation and 

PMP model is limited to the calibration property of the programming model. In terms of 

simulation behaviour and estimation, the two models differ. Therefore, a quadratic capacity 

constraint cannot fully rationalise a quadratic PMP model. Nevertheless, it could effectively 

connect supply models to market models in order to exchange information on primary factor. 

Second, the thesis examines the consistency of Econometric Mathematical Programming 

(EMP) models. They allow estimating parameters of non-linear technologies using multiple 

observations and first-order conditions as estimating equations. The chosen EMP model is a 

single farm optimisation model with Constant Elasticity of Substitution production functions. 

A Monte Carlo setup evaluates the consistency of the estimation procedure under different 

error structures. Results show that the estimated parameters converge to the true values with 

increasing sample sizes. Finally, the dissertation addresses the lack of statistical inference 

procedures for EMP models in the literature. Bootstrapped confidence intervals are suggested 

here and evaluated with respect to the accuracy of the coverage probabilities, again using a 

Monte Carlo approach. The simulated confidence intervals generally succeed in 

approximating correct coverage probabilities with sufficient accuracy but results differ 

somewhat by sampling approach and choice of confidence interval calculation. 

Keywords: positive mathematical programming, capacity constraint, econometric 

mathematical programming model, errors in optimisation, bootstrapped confidence intervals. 
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Chapter 1  
Introduction 

1.1 Background and motivation 

Computational modelling has been employed to assess European 

agricultural policy over decades. Mathematical programming models are 

an important and widely used tools applied for economic analysis in 

agriculture. They can address the multivariate and highly interlinked nature 

of the agricultural sector while integrating and utilising detailed micro-

level data (Hazell and Norton 1986). The theoretical and methodological 

base of mathematical programming models has advanced greatly in the last 

decades, such that factors of increasing policy-relevance like individual 

farm characteristic and interaction between agriculture and the 

environment may receive an improved treatment in this modelling 

approach. These developments have been partly triggered by the fact that 

the focus of agricultural policies has changed considerably. Generally, 

policy instruments are designed to be more farm level oriented, which is 

one of the pronounced drivers for significant progress in farm-level 

modelling. This dissertation is committed to the theoretical and 

methodological development of farm-level economic modelling. The 

following section describes the history and development of the European 

Union (EU) agricultural policies and the modelling in agriculture 

economics. It highlights the most significant of them and motivates how 

the research conducted in this dissertation further improves upon this field 

of quantitative research. 

The Common Agricultural Policy (CAP) was introduced in 1962. For the 

first three decades of the CAP, the priority was to support farm income. 
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Intervention and border protection measures were applied to raise farm and 

market prices. Until the late 1980s, model-based quantitative policy 

analysis did not play a role in the EU (Hendrichsmeyer and Wolf 1992). 

The fundamental change of agricultural policy in the EU was signified by 

the MacSharry reform of the CAP in 1992. The focus was shifted from 

market and trade policies to policy instruments at farm level. This 

transformation has been pursued in a stepwise approach through the 

reduction of support prices and the introduction of direct payments
1
. The 

second pillar of the CAP introduced new measures and policy instruments 

at farm level. Also, food safety concerns and animal welfare issues 

surfaced frequently and gained more public attention. These issues have 

led to the discussion or implementation of regulation and standard (e.g. 

food safety and animal welfare) in the most recent CAP reform (ENRD, 

2015). 

The computational modelling continuously evolved to provide better 

policy analysis, while the process of policy-making became more and more 

evidence-oriented. Over decades, agricultural policies were designed to be 

more market oriented and less distorted, even though the support given to 

the agriculture sector is still large nowadays. Approximately 38% of the 

EU budget (equivalent to 0.4% of the Union’s gross domestic product) has 

been spent on agriculture and rural development in 2015 (European 

Commission 2015). 

Changes in agricultural policy instruments, changes in relevance and 

understanding of policy impact indicators and the non-linear nature of key 

biophysical or economics processes, all these issues were responsible for a 

boosting demand for results from policy-relevant farm-level modelling. 

This was accompanied by the improvement from the supply side of 

                                                                 

1 Direct payments were introduced in the 1992 MacSharry CAP reform, which started the shift from 

product support to producer support. Direct payments are decoupled in the 2003 CAP reform with 

the introduction of a single payment scheme. (European Commission 2017) 
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modelling approaches, which was made possible by the progress in data 

availability and information technology as well as the methodological and 

theoretical developments in agricultural economics. (Heckelei 2016)  

Much political attention has been directed at the market level instead of the 

farm level despite the objective of the income support policy at the early 

stage of CAP. Market-level models were the power horse for the policy 

assessment. Among several reasons for this choice are a) the non-existent 

data on representative farm households, b) decision makers’ disinterest in 

confirming the inefficiency of the income support policy and c) the logical 

choice to originally assess the policies solely on market level given the 

dominant product-based income support (Heckelei 2016). As a result, 

supply and demand analysis and equilibrium estimation were the primary 

tools for policy assessment and were widely used to simulate the impact of 

policies on prices on regional, sector or country scale. Individual reactions 

at farm level were only modelled implicitly in an aggregated fashion. 

Linking market- and farm-level models appeared to be too difficult in the 

infancy stage of quantitative agricultural policy assessment. 

The share of policy instruments directly targeted at individual farm 

management was slowly rising (European Commission 2013). This was a 

result of increasing environmental problems related to the agriculture 

sector, which largely depend on farm, local and regional characteristics. 

Sectoral models are too aggregated to include the details that form the core 

of the agri-enviromental measures and farm-level models present an 

alternative (Röhm and Dabert 2003).  

The MacSharry reform shifts support in the direction of farm-level policy 

instruments away from market price support. The agreement on the 

partially decoupled, compensatory payments created a research need for 

empirical models to quantify the degree of decoupling and payment 

impacts. The main classes of mathematical models applied for policy 

assessment include econometric models, mathematical programming as 

well as partial and computable general equilibrium models and mainly 

mathematical programming models and econometric models were used for 

this purpose by modelling the producers’ choice (Salvatici et al. 2000). 

Econometric models usually focused on the supply side and were largely 
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used to measure the impact of specific agricultural policy instruments on 

farmers’ production decisions concerning certain commodities. Their size 

and structure allow the estimation of supply elasticities, which is not the 

case for many mathematical programming models and equilibrium models 

(Salvatici et al. 2000). And, these supply elasticity estimates are considered 

to be their most important outcome for their applications in this context 

and are often provided as input for other simulation models. 

However, econometric models have difficulties in sorting the relationships 

into sets of constant incentives and behaviour (the constant economic 

structure necessary for estimation) and changed policy or technology (the 

impacts of the policy or technology necessary for evaluation of the 

change). On the other hand, mathematical programming models are 

capable to incorporate the changing policy or technology to the existing 

framework. Furthermore, the mathematical programming approach enables 

much greater regional and commodity disaggregation and provides detailed 

analysis of the effects of the changes across commodities, regions, types of 

farms etc. (Preckel et al. 2002) 

The development of mathematical programming models during the last 

decades is strongly connected with the development of agricultural policy 

and has become more than a pure farm management instrument. They have 

been extensively used to analyse the impact of agricultural policies on 

supply and on the socio-economic and environmental systems linked to the 

farming sector (Salvatici et al. 2000). Calculation of meaningful 

biophysical or economic indicators requires modelling at disaggregated 

level, because the linear aggregation of single biophysical or economic 

processes would lead to incorrect total environmental externalities or 

require very restrictive and inflexible restrictions. Even at the aggregate 

level, farm-level modelling is often necessary to reach the desired degree 

of detail for policy assessment (Heckelei 2016). 

Also, the progress in data availability and information technology renders 

farm-level modelling more inviting. Two categories of mathematical 

programming models exist: those deriving from the ‘classical’ 

mathematical programming and those that have adopted the more recent 

approach of Positive Mathematical Programming (PMP) (Howitt 1995). 
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PMP type models thrived in the late 1990s and after 2000, because they 

allow the combination of a more robust and empirically based behavioural 

specification with the technology–rich formulation of mathematical 

programming models. This rendered the technique especially suitable for 

the assessment of policy measures linked to biophysical indicators at the 

farm level (Heckelei and Britz 2005; Heckelei et al. 2012). PMP is 

considered as one of the most important innovations in the field of 

mathematical programming applied to the agricultural sector. 

In mathematical programming models, producers are assumed to behave 

rationally and optimise the production activities under resource constraints. 

Mathematical programming models in the early stage, for example linear 

programming (LP) models, had difficulties to closely reproduce historical 

results. Howitt’s PMP procedure addresses the question of calibrating 

mathematical programming models. The general idea is to introduce 

artificial constraints which force the model to reproduce historical 

observations. The shadow values of the constraints are then used to 

construct additional non-linear cost terms for the objective function, so that 

the calibrated model reproduces historical observations without the original 

artificial constraints. PMP models also produce more realistic, less ‘jumpy’ 

simulation responses compared to LP models. While one strand of PMP 

literatures focuses on calibrating the ‘PMP’ term with various techniques, 

the other evolve towards econometric estimation with calibration being 

used for verification (Heckelei et al. 2012; Mérel and Howitt 2014). 

Heckelei and Wolff (2003) proposed an alternative to PMP, which this 

dissertation is centred around. In this approach the optimality conditions of 

the specific PMP model are directly used as parameterisation constraints 

for the econometric estimation. The parameters and shadow prices of 

calibration constraints are estimated simultaneously. Thus, it skips the 

determination of shadow prices using artificial constraints and avoids the 

fundamental inconsistencies of the PMP approach. Furthermore, multiple 

observations could be utilised and the parameter estimates contain more 

empirical content compared to the traditional PMP approach relying on one 

single observation. Both strands have contributed to combine econometrics 

and PMP with their own methodological innovations. 
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Despite these enormous efforts, the issue concerning the missing economic 

and technological rationale behind the non-linearity in PMP-type models 

has not been sufficiently addressed. The lack of rationale causes 

inconsistency and thus calls the proper use of such models into question. 

This motivates the research in chapter 2 and raises the research question on 

how to rationalise the non-linear terms in the objective functions of PMP 

models. Following the other strand, which is the estimation of PMP 

models, chapter 3 exploits the general approach of combining econometric 

models and mathematical programming models. This chapter is devoted to 

evaluating the consistency of the estimation approach. The computational 

intensity of such estimation procedure greatly restricts the application of 

statistical inference. As a result, the empirical reliability of the estimation 

results cannot be verified. Chapter 4 aims to identify an adequate method 

which might close this research gap. 

The next section is dedicated to a general description of this dissertation. 

Finally, a concluding section discusses the limitations and the potential for 

future research. 

1.2 Research contribution 

This section summarizes the dissertation including the specific literature 

background and reports research gaps, objective, methodological approach 

and the main findings for each chapter. 

1.2.1 Rationalising non-linear agricultural programming models with a 

capacity constraint  

Heckelei et al. (2012) assess the progress with respect to the empirical 

foundation of PMP approaches and picks up an issue raised by Heckelei 

(2002) and Heckelei and Wolff (2003): the economic or technological 

rationale behind non-linearity in typical PMP models is unclear. A (typical 

quadratic) cost function in the objective function represents the missing 

explicit formulation of some economic phenomena due to data or 

analytical insufficiency. This lack of rationale potentially creates an 

inconsistency between the model structure and the true underlying 
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technology and behaviour. It also renders the interpretation of model 

responses caused by the PMP terms difficult to interpret. Risk behaviour, 

land heterogeneity and unknown resource/technology constraints are often 

not explicitly modelled and are candidates to rationalise the PMP 

formulation. If one assumes that non-linearity in PMP models originates 

from non-linear technologies in a typical profit maximisation behavioural 

model, it could be captured by an explicit non-linear capacity constraint 

(Heckelei 2002, p. 30). If the resulting model is equivalent to a PMP 

model, the non-linearity in PMP models could be rationalised. 

Alternatively, the mean-variance risk model under gross margin 

uncertainty offers another possibility for rationalisation (Heckelei 2002; 

Cortignani and Severini 2009; Severini and Cortignani 2011; Petsakos and 

Rozakis 2011; Jansson et al. 2014). 

Chapter 2 focuses on the potential rationalisation of PMP terms by a non-

linear capacity constraint. One could stick to the explicit constraint 

formulation like in Doole et al. (2011), where non-linear terms in the 

objective function of a typical PMP are removed and replaced by a 

quadratic constraint. A non-linear constraint as such could represent a 

“non-linear level technology” which defines the feasible relationship 

between activity levels and a fixed, non-allocable operating capacity
2
. In 

the meantime, it is still possible to preserve the desired technology 

assumption (such as Leontief technology) for the allocation of variable 

inputs. The capacity could relate to the primary factors (labour and capital), 

which are frequently omitted in programming models for agricultural 

policy analysis due to a lack of data or desire for simplification. Including 

this capacity constraint not only allows explicit analyses of the impact of 

changes in labour and capital on production, but also enables the linkage to 

                                                                 

2 For example, data on capital stocks are often not available or need to be derived from investment 

data through complicated and fallible procedures (Witzke 1996). Also, it is not easy to assume how 

capital stocks are allocated to different productions. 
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market models through transmitting information on primary factor market 

signals. Examining and comparing the first-order conditions derived from 

the Lagrangian function of Capacity Constraint (CC) and the PMP model 

show that both models could be calibrated to identical historical 

observations under the same calibration criterion. However, the different 

model structures hint at different behaviours for simulation and estimation: 

the marginal effect of the gross margin on variable input in the CC model 

is analytically different compared to the one from the PMP model. A fully 

equivalent form of the CC model with a non-linear objective function 

instead of the nonlinear CC is presented by analytically solving the 

Lagrangian multiplier of the CC. The functional form of this model, 

however, is different from a typical PMP model as the non-linear terms in 

the objective function are not quadratic. The resulting CC model 

demonstrates equivalence to the PMP model only in terms of calibration. 

Once moving away from the calibrated point, these two models will 

behave differently. Thus, a quadratic CC representing an aggregate and 

fixed labour and capital stock could not rationalise the use of the quadratic 

PMP cost function. Nevertheless, a non-linear cost function as part of the 

objective function can be rationalised by the CC. 

Despite not being able to fully rationalise the typical PMP formulation, the 

CC model is potentially useful to connect agricultural programming 

models to models that endogenously simulate factor markets, as 

information on primary factors needs to be passed between supply and 

market models. The specification of the CC allows to explicitly reflect the 

changes in the primary factor markets signals. Market models, like 

Computable General Equilibrium (CGE) models, commonly assume 

constant returns to scale, while the CC model does not. A general 

alternative formulation for the CC is introduced, which allows us to 

explicitly specify returns to scale. 

The empirical content offered is still limited, as the calibration approach 

typically relies only on a single observation. Thus, the future research in 

this dissertation should consider the estimation of mathematical 

programming models based on multiple observations on farm-level data. 
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1.2.2 Consistency of estimating constrained optimisation models 

Leaving the realm of calibration, chapter 3 focuses on combining 

econometric estimation and mathematical programming models. Paris and 

Howitt (1998) make the first attempt to econometrically estimate 

mathematical programming models, where the Generalised Maximum 

Entropy (GME) method is used to specify PMP models. Only single 

observations on two farms are used in their approach and the curvature of 

the cost function has to be enforced through parameterisation. Apart from 

these limitations, the lack of rationale discussed in chapter 2 certainly also 

applies to all estimation practices based on PMP type models
3
. 

Heckelei and Wolff (2003) introduce an alternative approach for the 

specification of mathematical programming models and show its 

theoretical advantages over PMP-based approaches. The optimality 

conditions of mathematical programming models are directly employed for 

the estimation. Thus, it bypasses the fundamental inconsistency in typical 

PMP approaches caused by the first phase of using a linear programming 

model to identify non-linear parameters of the resulting 

calibrated/estimated model
4
. Also, it allows for the specification of more 

complex models and at the same time a more flexible choice of the 

functional form. 

Buysse et al. (2007b) name this type of mathematical programming models 

Econometric Estimation Programming (EMP) model. Extensive 

applications of this approach exist in the literature despite its relative early 

development stage. Buysse et al. (2007a) apply an EMP model to analyse 

the reform of the common market organisation in the sugar sector of the 

European Union. A very extensive estimation utilising the same basic 

approach is demonstrated by Jansson and Heckelei (2011) where they 

                                                                 

3 On estimating PMP type model see, for example, Arfini et al. (2008) and Paris (2010), p. 397-400.  

4 See Heckelei and Wolff (2003) for a detailed illustration on the methodological inconsistency. 
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estimate the behavioural parameters of regional constrained mathematical 

programming models in the EU using time-series data. Both studies 

incorporate non-linear cost function in the objective function of the 

resulting optimisation models. 

The research objective for this study is to evaluate the consistency of EMP 

models based on the approach advocated by Heckelei and Wolff (2003). 

Their approach offers flexible choice concerning the functional form and in 

this exercise we employ the Constant Elasticity of Substitution (CES) 

production function. The options and motivations for functional forms 

specifying mathematical programming models are discussed in Mérel and 

Howitt (2014). According to their review, assuming global concavity in the 

objective function and global convexity in the constraint set is the most 

common choice among numerous ways to ensure a unique optimum in 

mathematical programming models. Global concavity is generally 

addressed by either a quadratic cost function assuming increasing marginal 

cost like in Buysse et al. (2007a) and Jansson and Heckelei (2011), or by a 

CES crop-specific production function assuming decreasing marginal 

yield. They conclude that both choices are motivated rather by pragmatic 

consideration from a modelling perspective than strong empirical and 

theoretical justification. The EMP model used in chapter 3 is based on a 

single farm optimisation model with CES production functions and 

variable input allocation. Using CES production functions to specify 

production technology in the context of mathematical programming 

models can be traced back to Howitt (1995). The same approach and 

variations of it are frequently employed in recent and notable studies 

(Mérel et al. 2011; Frisvold and Konyar 2012; Howitt et al. 2012; 

Medellín-Azuara et al. 2012; Garnache 2013, pp. 39-76; Graveline and 

Mérel 2014; Mérel et al. 2014).  

Monte Carlo simulation is employed to validate the consistency of the 

estimation procedure. Statistical errors are introduced to the synthetic data 

generation process with known model parameters. For each generated data 

set, the model parameters are estimated by Ordinary Least Squares (OLS) 

directly using the first-order optimality conditions as data constraints. The 

whole simulation procedure is carried out repeatedly for increasing sample 
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sizes and convergence to the true parameter values is checked. One single 

error structure is used in Heckelei and Wolff (2003) to account for the 

aggregate effect of multiple factors causing deviations of endogenous 

model outcomes from observations. Here, two types of errors are explicitly 

distinguished to allow for a more explicit interpretation in the application. 

Measurement errors are added to endogenous quantities to represent 

deviations from true values that occur when observing or recording the 

variables. In a second set of simulations, optimisation errors are added to 

the first-order optimality conditions to capture mistakes made in the 

optimisation process. The results show that parameters under measurement 

errors can be consistently recovered, while additional information on the 

land shadow prices is required to render the estimation with optimisation 

errors consistent. Given the evidence for the consistency of EMP models, 

the subsequent and final chapter 4 of the thesis focuses on developing and 

validating a procedure to perform statistical inference when estimating 

programming models, as such tools are still missing. 

1.2.3 Statistical inference for econometric mathematical programming 

models 

All applications of estimating mathematical programming models so far 

have the primary interest to utilise all available information to provide the 

‘best’ estimated parameters with higher empirical content compared to 

previous calibration approaches (e.g. Buysse et al. 2007a, Jansson and 

Heckelei 2011). However, a systematic implementation of statistical 

inference for the estimated parameters is still missing, thus the empirical 

reliability of the estimation results cannot be evaluated. Chapter 4 aims to 

provide an approach to fill this research gap. The study explores the 

possibility of bootstrapping sampling distributions for hypothesis testing 

and confidence interval estimation of econometrically estimated 

parameters of mathematical programming models. 

The bootstrap method measures the accuracy of parameter estimates by 

estimating the sampling distribution using a random sampling approach. 

Many variations of the bootstrap are developed since it was first proposed 

by Efron (1979). Its basic principle is very straightforward: bootstrap 
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samples are created by repeatedly resampling the data with replacement, 

and statistical inference on the bootstrap data employs this representation 

of the parameter sampling distribution by calculating statistics of interest. 

One of the research objectives is thus to construct confidence intervals for 

the parameter estimates, as a combination of point estimates and interval 

estimates would give the best guess for the ‘true’ parameter values. The 

EMP model from chapter 3 is chosen and it consists of a Data-Generating 

Process (DGP) with a statistical model and an Econometric Estimation 

Model (EEM) for the parameter estimation. The same two types of error 

specifications are considered. The bootstrap algorithm to obtain confidence 

intervals is described as follows: 

1. Generate sample data with DGP and obtain point estimates with 

EEM using randomly generated synthetic data and ‘true’ parameter 

data 

2. Create bootstrap sample data by resampling sample data with 

replacement 

3. Obtain bootstrap estimates of parameters with EEM  

4. Repeat step 2 and 3 for 1, ,b B  times to obtain the sampling 

distribution of the bootstrap estimates and calculate the 

bootstrapped confidence intervals 

The quality of the algorithm needs to be examined, before it could be 

applied for empirical application. Hence, another objective is the 

evaluation of the bootstrapped confidence intervals. Sufficient replications 

of this bootstrap algorithm in a Monte Carlo simulation setup allow us to 

calculate the actual coverage probability. This reflects how often the ‘true’ 

parameters are covered by the bootstrapped confidence intervals. 

According to the “goodness” criterion (Efron and Tibshirani 1994) the 

coverage probability should be a proper approximation of the chosen 

confidence level in all situations. The Monte Carlo evaluation procedure 

could be summarised as follow: 

1. Carry out 1, ,s S  Monte Carlo simulations with the EMP 

model with one set of ‘true’ parameters, where the error term is 
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randomly simulated with known distribution. This yields S  sets of 

point estimates. 

2. Use the bootstrap algorithm to construct an inner bootstrap 

procedure for each Monte Carlo point estimate to obtain a 

bootstrapped confidence interval. 

3. Calculate the empirical coverage as a frequency measure (in 

percentage) for how often the ‘true’ parameters fall in the 

confidence interval. 

Based on insight from the literature on promising implementations, two 

resampling approaches and two variations of interval calculations are 

selected. Residual resampling and case resampling are two common 

approaches based on different assumptions. The residual resampling 

approach relies on the functional relationships of the model being correct, 

while the case resampling approach does not assume a correct model 

structure. Basic bootstrap confidence intervals and percentile confidence 

intervals are selected as they represent two standard methods among a 

range of more advanced bootstrap interval methods
5
. Different resampling 

approaches and confidence interval methods are included to increase the 

representativeness of this study. At the same time, the choice is also 

limited by the computational capacity: the superior methods often require a 

second layer of bootstrap replications and the Monte Carlo simulations 

with the chosen methods are already computationally challenging. 

The Monte Carlo results show that accuracy of the confidence intervals can 

be observed in most of the cases. Thus, the bootstrapping procedure is 

proven to be valid and can be applied to empirical application with EMP 

models. The confidence intervals obtained by different resampling 

approaches and confidence interval calculation methods are compared with 

                                                                 

5 See, for example, bootstrap-t (Efron 1981), variance stabilised bootstrap-t (Tibshirani 1988), bias-

corrected and accelerated (BCa) method (Efron 1987), approximate bootstrap confidence (ABC) 

interval (DiCiccio and Efron 1992) and double bootstrap (Beran 1987). 
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each other in terms of coverage probability. Our findings generally agree 

with those of other studies, although careful interpretation is necessary, as 

the comparisons are conducted in different contexts and setups. Some 

limitations of this study need to be addressed as well. The functional 

choice of EMP models is flexible. Thus, with more complex model setups 

the computational challenge might become quite big. Also there is an 

uncertainty whether the estimation results hold for different model setups. 

Furthermore, there exists the possibility that other estimation approaches 

might offer better results.  

1.3 Conclusion and outlook 

Over the last decades, computational modelling for quantitative 

agricultural policy assessment has developed towards more farm level 

oriented approaches. This development is fuelled by multiple factors such 

as changes in policy instruments, changes in relevance and understanding 

of policy impact indicators, aggregation issues regarding key biophysical 

and economic processes and the simultaneous development of databases 

and information technology. This dissertation is committed to the 

theoretical and methodological development of farm-level economic 

modelling. It contributes to the rationalisation of PMP-type models, 

evaluates estimator consistency for econometric programming models with 

more complex error specifications and is the first attempt of developing 

transparent and plausible algorithms for statistical inference procedure in 

this context. It gives further insights into the application of estimating EMP 

model and the reliability of the estimated EMP mode parameters and offers 

a better understanding of applying agricultural optimisation models, 

especially econometric programming models. 

Given the theoretical/experimental nature of the studies, one important 

missing aspect is the realistic implementation of the approaches advocated 

in this dissertation. Future research should test the applicability of the 

theoretical work in real world scenarios based on observed data. 
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Chapter 2  
Rationalising non-linear 

agricultural programming models 

with a capacity constraint
1
 

Abstract. Doole et al. (2011) employ a variation of Positive Mathematical 

Programming (PMP) models using a quadratic constraint. The objective of 

this chapter is to conceptually analyse their approach. First, the 

equivalence to PMP models is investigated and the result shows that it 

indeed holds for calibrating to base year activity levels. However, the 

equivalence does not extend to simulation, because the dual value of the 

constraint changes endogenously. Second, this quadratic constraint is 

interpreted as a capacity constraint (CC) i.e. representing a level 

technology where activities require resources from an aggregate and fixed 

labour and capital stock. A more general formulation which allows for an 

explicit representation of returns to scale is presented. This feature 

facilitates linking to market models.  

Keywords: calibration, farm programming models, capacity constraint 

                                                                 

1 An early version of this study was presented at the 133rd EAAE seminar as: Zhang, Y. and 

Heckelei, T. (2013). Rationalising Non-linear Agricultural Programming Models with a Capacity 

Constraint, selected paper at 133rd EAAE seminar, June 15-16, Chania, Crete (Greece). 
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2.1 Introduction 

Positive Mathematical Programming (PMP), which is firstly advocated by 

Howitt (1995), is a calibration approach introducing non-linear terms in the 

objective function of (agricultural) programming models. This serves to let 

optimality conditions being fulfilled at observed levels of activities such 

that the model solution reproduces those. 

Despite its wide use, only limited attention has been paid to the economic 

or technological rationale behind the non-linear terms in the objective 

function of the simulation model. Heckelei (2002) raises this question and 

concludes that under the assumption of a Leontief technology, risk 

behaviour, land heterogeneity, aggregation errors and other missing 

unknown resource constraints could be the rationale behind the non-

linearity. 

Heckelei et al. (2012) review and discuss the more recent literature and 

application of PMP regarding a) the development of calibration method, b) 

the estimation of programming models with multiple observations and c) 

rationalisation of PMP-type models. Regarding the latter, the authors 

basically find two different possibilities for explicit rationalisation in the 

literature: first, leaving the profit maximisation behaviour allows to 

interpret the quadratic objective functions by a mean-variance framework 

under gross margin uncertainty (Heckelei 2002; Cortignani and Severini 

2009; Severini and Cortignani 2011; Petsakos and Rozakis 2011). Second, 

Doole et al. (2011) apply a programming model with a linear objective 

function subject to a quadratic constraint calibrating the total milk 

production on farm as a quadratic function of herd size. Doole et al. were 

apparently under the impression that this modification was equivalent to 

the standard PMP approach. If it was, and if one could successfully 

interpret such a constraint as “capacity constraint (CC)”, then one could 

fully rationalise the use of quadratic objective functions employed in most 

PMP type agricultural programming models for policy analysis of recent 

years. 

The objective of this chapter is to conceptually analyse the approach used 

by Doole et al. (2011). Specifically, this quadratic constraint is interpreted 
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as a CC, which assumes a “level technology” where production activities 

use some aggregate of labour and capital stock. We investigate its 

relationship to standard PMP formulations thereby showing equivalence in 

calibration and difference in simulation. Finally, we suggest an alternative 

functional form allowing to explicitly specify returns to scale which might 

become relevant when agricultural programming models are linked to 

factor markets. This chapter is organised as follows. In section 2.2 it is 

briefly explained what the current lack of rationale of a typical PMP model 

means. Then the approach by Doole et al. (2011) is presented with our 

interpretation. In section 2.3 the equivalence of the quadratic CC model to 

a typical PMP model regarding calibration and its deviation in the context 

of simulation are demonstrated analytically. Subsequently an alternative 

functional specification is introduced. Finally, section 2.5 concludes and 

discusses the possibilities for further studies. 

2.2 A capacity constrained agricultural programming 

model 

A very important argument for the wide application of PMP type 

agricultural programming models instead of econometric models is that 

one can explicitly simulate farm management in detail (use of fertiliser, 

plan protection, tillage irrigation, etc.) which considerably facilitates the 

analysis of agri-enviromental interactions. Under the assumption of a 

Leontief technology, input use increases linearly with increasing activity 

level. If the non-linearity of the PMP-term relates to non-linearity in the 

true relationship between output and variable input, then PMP simply 

corrects for wrong production activity specification not able to reflect 

differences between average and marginal input application rates (Heckelei 

et al. 2012, pp. 114). In this case, marginal cost and marginal physical 

input use as represented in PMP models are inconsistent. 

How could one interpret the non-linearity and at the same time preserve the 

desirable Leontief technology assumption for the definition of the single 

production activities? Non-linear PMP terms in the objective function may 

represent economically relevant but empirically missing resource 

constraints. Moving to a more explicit formulation of such an 
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interpretation, Doole et al. (2011) extract the non-linear part from the 

objective function of a typical PMP model and use a quadratic constraint 

instead. This quadratic constraint is used to calibrate total milk production 

on farm as a quadratic function of herd size. However, the model is 

incorrectly interpreted as analogous to a standard PMP model (Doole et al. 

2011, pp. 865). Heckelei (2002, pp. 29) already shows that such 

modification does not render the resulting model equivalent to a typical 

PMP model. Thus, a quadratic constraint cannot fully rationalise PMP 

models. Nevertheless, an appropriately chosen quadratic constraint could 

be a better interpretable alternative to non-linear objective functions while 

still allowing for the same useful calibration and simulation properties that 

characterise PMP models. 

This study takes the idea from Doole et al. (2011) and consider the non-

linear constraint as representing a “level technology” defining the feasible 

relationship between production activity levels and a (for now) fixed, non-

allocable operating capacity while keeping in place the Leontief 

technology for the allocation of variable inputs. This “level technology” is 

generally (and likely) non-linear by nature. 

Apart from the interpretation of their constraint as a CC, we would like to 

go one step further beyond Doole et al. (2011) and explicitly link the 

capacity to the available stocks of labour and capital (or subcategories 

thereof). In many (aggregate) agricultural programming models used for 

policy analysis, primary factors are not represented at all. Including it in 

such a way allows to explicitly reflect and analyse the impact of labour and 

capital on the production without being forced to represent the 

heterogeneity of these factors (even at farm level) with a complex set of 

linear restrictions as is often done in more normative modelling exercises 

at farm level (Heckelei 2002, pp. 1). 

The reflection of labour and capital points to another motivation behind the 

formulation of a CC model apart from rationalising PMP models: to allow 

for an explicit and consistent link to factor market models, for example in 

the form of a Computable General Equilibrium (CGE) model. The linkage 

requires that information about primary factor use and prices has to pass 
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between CGE and agricultural supply models (often PMP-type). The 

explicit inclusion of the labour and capital in the detailed sectoral supply 

model allows us to directly and appropriately modify the CC to reflect 

changes in the primary factor market signals from CGE model. In a 

sequential calibration approach, as demonstrated in Britz (2008), capital 

and labour quantities may be adjusted and the return to those factors could 

be appropriately represented by the dual value of the CC. 

For the now more formal discussion on the CC model based on the idea 

from Doole et al. (2011), lower case bold-faced letters are used to represent 

vectors, upper case bold-faced letters to represent matrices and italic letters 

to represent scalars. In a typical PMP agricultural programming model, the 

representative farmer maximises total revenue z by producing with N 

different production activities subject to M resource constraints. 

  (1) 

where 

  is a scalar representing total profit. 

  is a  vector of gross margin 

  is a  vector of endogenous production activity levels 

 is a  vector of parameters associated with the linear PMP term 

 is a  positive semi-definite matrix of parameters associated 

 with the quadratic PMP term 

  is a  matrix of input coefficients 

  is a  vector of resource endowments 

 is a  vector of dual values associated with the resource 

constraints. 

pmp pmp

pmp

Max ' ' 0.5 '

subject to

0

z   

   



x
gm x d x x Q x

Ax b λ

x

z

gm 1N 

x 1N 

pmpd 1N 

pmpQ N N

A M N

b 1M 

pmpλ 1M 



2.2 A capacity constrained agricultural programming model  25

 

  

The gross margin  is calculated using a  vector of output prices p

, a  matrix of output coefficients , the resource use coefficients 

 and a  vector of input costs  as  

 . (2) 

In the following,  is not expanded for simplicity. 

Doole et al. (2011) remove the quadratic term  in the 

objective function of (1) and introduce instead a quadratic constraint 

. The new model can be written as 

  (3) 

where 

 is a scalar of parameter associated with the constant term of the CC 

 is a  vector of parameters associated with the linear terms of the 

CC 

 is a  positive semi-definite matrix of parameters associated with 

 the quadratic term of the CC 

 is a  vector of duals associated with the resource constraints 

 is a scalar of the dual associated with the CC. 

The parameter  in  could be seen as the fixed operating capacity 

implicitly depending on the availability of labour  and capital . For 

estimating or simulating changes in capacity caused by adjustments of 

and , this relationship would have to be made explicit as . It 

should be noted here that in order to interpret the non-linear constraint in 

(3) as a CC where production activities require resources from a non-linear 

aggregation of fixed labour and capital stocks, two conditions need to be 

met: 1) the linear objective function covers only the difference between 
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revenue and variable costs; 2) the linear resource constraints do not include 

labour and capital. 

Apart from a different notation and a specific application context, the 

model (3) is identical to the model in Doole et al. (2011) and we will refer 

to it from now on as such. In the next section it is investigated how this 

model is related to the PMP model (1) in the context of calibration and 

simulation. It could only be seen as a complete rationalisation of the PMP 

model if it was fully equivalent in these respects. 

Before turning to this, however, it is worth noting that Heckelei et al. 

(2012) define the condition under which the PMP model (1) may be 

rationalised by the CC model (3): for this, the PMP related part in the 

objective function of model (1) must be functionally related to the CC in 

model (3). To make this explicit, let us define  as an equivalent 

formulation for the quadratic constraint  in model (3) replacing the 

PMP terms in model (1). The model can be rewritten as 

  (4) 

For this model to be fully equivalent to (3), first-order conditions of both 

models need to be the same. This is only the case if 

 

 for all i. (5) 

It is already clear now, that merely transforming the non-linear objective 

function of a PMP model to a non-linear constraint with the same quadratic 

functional form as done above when moving from (1) to (3) will not satisfy 

condition (5). Consequently, the model in Doole et al. (2011) with our 

interpretation of a CC may not rationalise the often applied PMP models 

with quadratic objective functions. 

 f x

 g x
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2.3 Calibration and simulation in comparison with PMP 

This section analytically compares the PMP and the CC model regarding 

calibration and simulation. First the equivalency of the model by Doole et 

al. to the PMP regarding calibration is shown and then the differences in 

simulation are illustrated. 

Heckelei (2002) presents a programming model with a quadratic constraint 

to approximate the convex combination constraints advocated by McCarl 

(1982) and Önal and McCarl (1989 and 1991). Heckelei (2002) compares 

the first-order conditions of this model with a PMP model and shows that 

the equivalency to PMP only holds for calibration but not for simulation 

and estimation. The line of argument is presented here in more detail to 

compare the CC model by Doole et al. (2011) with the PMP model: 

For simplicity of notation, assuming positive optimal quantities for all 

elements of , the Lagrangian formulation of the CC model (3) is given by 

  (6) 

which implies the first-order necessary conditions as 

  (7) 

  (8) 

 . (9) 

The first-order necessary conditions could serve as the calibration 

conditions. For calibrating to a base year observation, the Lagrange 

multiplier  needs to be set to an arbitrary value, because it is not 

identified and only scales parameters ,  and . Assuming it equals to 

one, equation (7) can be rewritten as 

 . (10) 

x

   ' ' 0.5 'a     L gm x d x x Qx λ b Ax
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The corresponding Lagrangian formulation of the PMP model (1), again 

assuming positive optimal quantities for all elements of x, is given by 

  (11) 

and implies the first-order necessary conditions to obtain 

  (12) 

 . (13) 

Comparing equation (12) with the equation (10) shows the equivalence. 

Any value, as long as d  equals to 
pmpd  and Q  to 

pmpQ , will calibrate the 

two models to the point observation using the same calibration criterion, 

the same exogenous ,  and prior information on the shadow price of 

the resource constraint  and . Note that additionally, equation (8) of 

the CC model still needs to be fulfilled at  by appropriately choosing the 

value for parameter  for the given  and . 

The equivalence shown is limited, however, as it does not extend to the 

simulation case. The implied responses of product supply or activity level 

to changing prices differs between CC and PMP model. Equation (8) of the 

CC model forces the term 0.5 'dx x QX  equal to the parameter a under all 

economic conditions. This, however, does not apply for the PMP model. 

The difference in the model structure will result in different simulation 

behaviours despite having the same values for  and . Expressed 

differently, when moving away from base year observation in simulations 

with the specified CC model, the shadow price of the constraint will not 

stay fixed at calibration value, but change endogenously. 

To see this difference, assuming that only the  changes for both models 

and ceteris paribus. Then the simulation behaviour can be described in 

terms of the marginal effect of the  on  and these can be compared 

between two models. 

The behavioural function for the production activities of the PMP model 

can be derived by solving (12) for x  as 

 pmp pmp pmp' ' '    L gm x d x x Q x λ b Ax

pmp pmp pmp' 0
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 . (14) 

Substituting (14) into (13), pmp can be solved as as 

 . (15) 

Substituting (15) back into (14) gives the supply function of x as a function 

of exogenous parameters for the PMP model: 

 .(16) 

The marginal effect of gm on x of the PMP model could thus be expressed 

as 

 . (17) 

The marginal effect for the CC model is derived in a similar fashion. For 

the sake of simplicity, only the most important steps are shown here 

instead of presenting the full derivation. The extended full procedure is 

provided in the appendix. Rearranging equation (7) gives 

 . (18) 

Substituting equation (18) into equation (9),  can be solved as 

 . (19) 

Substituting equation (19) into equation (18) allows to solve for  as 

 . (20) 

Substituting (20) into (8) allows to solve for  as 
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 . (21) 

Finally substituting (21) back into (20), the behavioural function 

determining production activity levels based only on the exogenous 

variables and parameters is specified as 

 . (22) 

The marginal effect of  on  is then given by 

 . (23) 

The marginal change in production activity levels with respect to gross 

margins for the PMP model (17) and for the CC model (23) are clearly 

different from each other. Consequently, a different response behaviour is 

implied for the values of  and  that calibrated both models to the same 

observation point  as shown above. 

Finally, the CC model (3) is presented in a fully equivalent form with a 

non-linear objective function instead of the non-linear constraint. Based on 

the derivations above in equation (5), the function  has the form  

 . (24) 

Consequently, a programming model with a non-linear objective function 

fully rationalised by the CC is given as 
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Obviously, the functional specification of this model is far from a typical 

PMP model with a quadratic objective function as in (1). We could not 

come up with any functional form of the capacity constraint replacing the 

quadratic formulation in (3) such that we would end up with a quadratic 

objective function in a consistent formulation of the objective function. 

Even though no proof can be provided at this point, we doubt that the 

typical PMP with a quadratic objective function can be rationalised with a 

capacity constraint specification. 

2.4 A capacity constrained model with explicit returns to 

scale 

A recent implementation of a quadratic CC in the Common Agricultural 

Policy Regionalised Impact Modelling System (CAPRI) (Britz 2008) 

revealed a problem which is ignored so far. 

The implementation assumed that the CC represents a capacity defined by 

an aggregate of the available labour and capital. These primary inputs are 

not explicitly represented in the CAPRI supply model. For analysing 

scenarios, where factor market feedbacks were potentially relevant, 

information on primary factor use and prices was passed between the CGE 

model and the (partial equilibrium) CAPRI model in an iterative market 

solution algorithm. Consequently, the dual value of the capacity constraint, 

 , was supposed to capture the change in labour and capital from the 

CGE models. However, passing the simulated changes in labour and 

capital from the CGE model to the supply model (equivalently shifting the 

constant term  in our CC model) resulted in non-controllable and non-

converging behaviour between the CGE and CAPRI. 



a
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This drew our attention to the fact that the CGE model assumes constant 

returns to scale, while the quadratic CC model does not. Consequently, it is 

desirable to look for an alternative functional form allowing to define 

specific returns to scale.  

A CC model which allows for the explicit representation of labour and 

capital defining “capacity” and a measure of returns to scale of the level 

technology in the programming model may be defined by the following 

more general form of the CC representing an implicit multi-output-multi-

input production function (or transformation function): 

  (26) 

The function h(l,k) defines the capacity depending on labour and capital 

stocks which is “consumed” by the function of activity levels v(x). If both 

functions are homogeneous of degree 1, then the difference between both 

functions is homogeneous of degree 1, implying that the level technology 

exhibits constant returns to scale. A multiplication of labour and capital on 

the one side and all production activities on the other with the same factor 

will leave the feasibility of the constraint unchanged. 

2.5 Conclusion and outlook 

This chapter is embedded in the literature on PMP as a technique to 

calibrate agricultural optimisation models with non-linear terms in the 

objective function. The most often applied approach employs a quadratic 

cost function in activity levels. We addressed the question if a formulation 

with a non-linear constraint as suggested by Doole et al. (2011) and its 

interpretation as a constraint on activity levels by operating capacity (level 

technology) may economically rationalise the use of the non-linear 

objective function. 

It is shown that employing a quadratic constraint instead of a quadratic 

function to the objective function is fully equivalent in terms of calibrating 

the programming model to a base year observation on activity levels, 

because the optimality conditions are the same with respect to the 

identified parameters. This means that the same parameter values will 

     , , , 0F l k h l k v  x x
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calibrate the PMP and the CC model. This equivalence breaks down, 

however, if one simulates with both models the effect of changing 

economic conditions. This is due to the fact that the dual value of the CC 

changes endogenously which is not reflected in the typical PMP 

formulation. One can derive an optimisation model with just a non-linear 

objective function and linear constraints that is fully equivalent to the CC 

model by observing integrability conditions, but it differs from the PMP 

formulation. The advantage of the latter is clearly its economic 

interpretability. The question whether it performs better in empirical 

applications was not within the scope of the analysis. 

Another problem arises regarding the usefulness of simple quadratic level 

technology if one would like to link agricultural programming models to 

models endogenously simulating factor markets, like CGE models: returns 

to scale depend on activity levels and are therefore difficult to determine in 

sequential calibration approaches. A more general formulation of a CC is 

therefore recommended which allows specifying/estimating explicitly 

returns to scale in the level technology. 

Elaborating on empirical approaches – calibration and estimation – to 

specify a concrete CC which allows to explicitly represent labour and 

capital and the returns to scale may improve upon the possibilities to 

consistently link agricultural sector models with CGEs or other factor 

market models for policy analysis where such feedbacks are relevant. The 

subsequent chapters aim at moving into estimation approaches using 

multiple observations on farm level data. 
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2.7 Appendix: complete steps of deriving marginal effect of 

gm on x 

The Lagrange formulation of the CC model is given by 

  (1) 

implying the first-order conditions 

  (2) 

 . (3) 

Rearranging equation (2) gives 

 . (4) 

The λ can be defined as below by substituting equation (4) into equation 

(3): 

 . (5) 

Further substituting equation (5) into equation (4) and then rearranging, x 

can be solved as 
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 (6) 

Denoting  and due 

to simplicity, the x could be rewritten as . 

Directly substituting equation (6) into equation (3) allows to solve for  as 

a function of gm, a, d, Q, A and b. First, rearranging the equation (3) gives 

 . (7) 

The transposed x could be written as in the equation (8). Note that the 

transpose of a symmetric matrix is the matrix itself. In the CC model Q is 

symmetric, therefore Q
-1

, H and (AQ
-1

A)
 -1 

are symmetric as well. 

  (8) 

Substituting equations (6) and (8) into equation (7) results in a quadratic 

function specified as below 
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 (9) 

Given a normal quadratic function (10) where ω and θ are coefficients and 

x is the decision variable: 

 . (10) 

And the corresponding expanded parameters from equation (9) can be 

written as 
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Substituting H and  back into equation (11) and by using the associative 

property yields 
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and 
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The transpose of the vector in equation (14) implies 

 . (15) 

Rewriting the equation (11) with the simplified terms gives 
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For the equation of coefficient θ in the equation (16), (gmHd) is the 

transpose of (dHgm) and they are identical scalars.  

Solving for -1
 according to equation (10) gives 
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 (17) 

Note that for the above and the following derivation, it is only possible, if 

ω is great than 0, while ϑ is smaller than 0: ω is greater than 0 due to the 

positive and definiteness of Q, ϑ needs to be smaller than 0 to guarantee 

the division under the square root is greater than 0; furthermore, later 

derivation steps require to slip the nominator and the denominator in 

equation 18. This has been taken into consideration in the programming 

process. 

Now substituting equation (17) into equation (8) x can be rewritten as 

 . (18) 

Letting  again due to simplicity and the 

marginal effect of gm to x could be written as 

 
0.5 ' 0.5 ' '

0.5 '
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Hgm
x d Hd η Qη d η Hd η

gm Hgm

0.5 ' 0.5 ' 'a     d Hd η Qη d η
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By definition, the point elasticity could be written as 
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Chapter 3  
Consistency of estimating 

constrained optimisation models 

Abstract. In this chapter we examine the estimation of a mathematical 

programming model with an explicit production function for its activities. 

The approach allows a flexible choice in terms of functional form. Monte 

Carlo simulations with a least-squares estimator are applied to evaluate the 

consistency of the estimation procedure choosing a CES production 

function. Two types of error structures are introduced to address different 

potential data structures. 

Keywords: agricultural supply analysis, estimation of mathematical 

programming model, CES function, Monte Carlo simulation, errors in 

optimisation. 

3.1 Introduction 

The typical Positive Mathematical Programming (PMP) approach relies 

solely on calibration in contrast to the estimation approach of production 

functions that is based on dual systems of supply and input equations 

(Heckelei et al. 2012). Over the last two decades these two approaches 

have converged to each other to a certain degree. For instance, Heckelei 

and Wolff (2003) argue that the PMP-type model is not suitable for 

estimation due to its fundamental inconsistency problem. They suggest an 

alternative approach which allows the direct estimation of programming 

models with multiple observations.  
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In a more recent review article, Heckelei et al. (2012) discuss 

methodological advances of estimating constrained optimisation models 

during the previous one and a half decades. There are only a few studies 

applying that method, and they originate from only a few non-associated 

research groups. Most of the estimation applications adopt the 

conventional PMP-type quadratic cost function. The lack of rationale 

behind this formulation (see Heckelei 2002 and Heckelei and Wolff 2003) 

is still not resolved, as it is not based on an explicit behavioural or 

technological assumption. The current methods to rationalise PMP models 

can be broadly divided into two types: (1) models replacing the non-linear 

PMP term in the objective function with a non-linear capacity constraint 

(CC) representing an activity level technology like in Doole et al. (2011) 

and (2) interpreting the quadratic objective function in the context of mean-

variance risk analysis (Cortignani and Severini 2009; Severini and 

Cortignani 2011; Petsakos and Rozakis 2011). 

The latest development in estimating programming models not covered in 

the review by Heckelei et al. (2012) is proposed by Jansson et al. (2014) 

and several other papers, for example Donati et al. (2013) and Arata et al. 

(2017), which focus on the estimation and the rationalisation of ‘PMP 

costs’. The model applied by Jansson et al. (2014) is a farm-level 

agricultural supply model. The typical PMP cost function is applied and 

partially rationalised using a mean-variance utility type function. A large 

panel data set from the Farm Accountancy Data Network is used for the 

estimation. Their transparent Bayesian methodology is proven to be 

feasible, but a significant amount of effort has been devoted to separate the 

covariance matrix from the quadratic PMP terms, and to solve the technical 

and numerical difficulties working with a large unbalanced data set. 

Chapter 2 targets the rationalisation of the PMP model by examining the 

CC model from Doole et al. (2011). And it concludes that 1) the CC model 

is equivalent to the PMP model only in terms of calibration, while 2) in 

simulation or estimation the equivalence does not hold anymore, and 3) 

that a quadratic CC cannot rationalise PMP models. In this study, we focus 

on the estimation of such mathematical programming models. The general 

approach advocated by Heckelei and Wolff (2003) allows a more flexible 
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choice of functional form than the typical PMP parameterisation. A model 

with crop-specific, constant elasticity of substitution (CES) production 

functions is applied. The application of CES-type functions in the context 

of agricultural programming models is not new. The CES-quadratic model, 

where land input is used as the quadratic term in the nonlinear cost 

function, is first introduced by Howitt (1995). Mérel and Bucaram (2010) 

derive the necessary and sufficient conditions for exact calibration based 

on this precise model specification. Mérel et al. (2011) propose a modified 

version of the previous model and term it ‘generalised
1
’ CES model, which 

demonstrates more flexibility in terms of calibration against exogenous 

supply elasticities than the quadratic version. The concavity of the 

objective function is accounted for by a CES production function with 

decreasing returns to scale. Mérel and Howitt (2014) provide the latest 

review on theoretical and empirical developments of PMP models. They 

state that despite the numerous possibilities to define a non-linear model, 

the most common choice in agricultural programming models is the 

globally convex model, namely the combination of a concave objective 

function and a convex set of constraints. Typically, the concavity of the 

objective function is implemented by decreasing gross margins in variable 

activity levels. This can be achieved either with a non-linear cost function 

assuming increasing marginal costs, or with crop-specific production 

functions assuming decreasing marginal yields. The latter assumption is 

adopted in many notable studies (Heckelei and Wolff 2003; Mérel et al. 

2011; Frisvold and Konyar 2012; Howitt et al. 2012; Medellín-Azuara et 

al. 2012; Garnache 2013, pp. 39-76; Graveline and Mérel 2014; Mérel et 

al. 2014). Mérel and Howitt (2014) conclude that neither of the two 
                                                                 

1 “Generalised CES production function” usually refers to a CES production function where the 

elasticities of substitution among pairs of inputs can vary (Lu and Fletcher 1968). The CES function 

in the model of Mérel et al. (2011) has in fact a constant elasticity of substitution for all pairs of 

inputs. They only term it ‘generalised’ CES model to differentiate it from the quadratic CES model 

in Howitt (1995). 



3.2 Model description  43

 

  

approaches have solid empirical and theoretical justification, and claim that 

both are rather motivated by pragmatic considerations.  

This chapter aims at examining the statistical consistency of estimating a 

constrained optimisation model with a CES function. Heckelei and Wolff 

(2003) conduct a similar study with the same model. The approach 

presented in this chapter is different from the former in two respects: (1) 

additional to the measurement error structure, an optimisation error 

structure is also considered to allow for more explicit interpretation; (2) an 

Ordinary Least Squares (OLS) estimator is applied instead of Generalised 

Maximum Entropy (GME). In this ‘well-posed’ scenario with more 

observations than parameters to be estimated, the OLS estimator is 

sufficient. It also avoids the arbitrariness in choosing the number of 

support points when using GME. 

The remainder of the chapter is organised as follows: section 3.2 presents 

the detailed specification of the economic model. Followed by that, the 

statistical model and the estimation model which comprise the estimation 

approach are illustrated in detail in section 3.3. Also, the setup for the 

evaluation approach with Monte Carlo simulation is presented. The 

evaluation results are shown and discussed in section 3.4. Finally, section 

3.4 concludes by addressing the limitations of the proposed approach and 

giving a direction for future research. 

3.2 Model description 

The model analysed in this study is a single farm optimisation model with 

crop-specific, CES production functions: 

  2 2
0, 0

1

max
ij i

I

i i i i
l q

i

p q w l
 



   (1) 

subject to 
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i i
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q l i I




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  11
λ

I

ii
l L


  (3) 

 0 γij ijl      (4) 

where 

i  is an index for output and 1, ,i I  

j   is an index for input and 1, ,  j J  ,  where 1j   and 2j   stand for 

the fixed input land and for the variable input fertiliser, respectively. 

ip  are the output prices 

ijw  are the input prices 

ijl   are the endogenous resource allocations 

L  is the total land endowment 

λ   is the shadow price of the land constraint (3)  

γ ij
 are the shadow prices of the non-negativity constraint (4)  

  is the profit  

iq  are the CES output production functions 

θi  are the efficiency parameters indicating the state of technology and 

organisational aspects of production and θ 0i   for all 1,i I  

β ij
 are the distribution parameters (or land/fertiliser intensity factor 

coefficients) expressing relative factor shares in total output and 

β 0ij  , 
1
β 1

J

ijj
 for all 1,i I  and for all 1,j J  

ρi  are the substitution parameters which determines the elasticity of 

substitution and ρ 0i   for all 1,i I  

νi  are the economies of scale parameters and 0 ν 1i   for all 1,i I  

The objective function (1) maximises profit defined as total revenue minus 

total cost and is subject to the land resource constraint (3). The CES 

production functions (2) are linearly homogeneous and quasi-concave, 

which renders the objective function concave. Decreasing returns to scale 
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is assumed to allow a positive output level for all outputs i . Hence, νi  

should take a value between 0 and 1. The substitution elasticities i  should 

satisfy 0 1i   and are calculated as  1/ 1 ρi i   . Therefore ρi  must 

be greater than 0. Together, 0 ν 1i   and ρ 0i   render the CES function 

strictly concave. 

The first-order conditions of the economic model are explicitly formulated 

below to construct the statistical model for the data-generating process as 

well as the econometric model for parameter estimation illustrated in the 

next section. First, one needs to define the Lagrange function of the 

economic model: 

  
ν /ρ

-ρ

2 2 11
1 1 1

θ β λ γ
i i

i
I I J

J

i i ij ij i i i ij ijj
i i j

p l w l L l l



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              
    . (5) 

Taking the derivatives of the Lagrange function w.r.t the endogenous 

variables to obtain the corresponding first-order conditions yields the 

marginal value product conditions for land (6), the marginal value product 

conditions for fertiliser (7), the land shadow price equations (8), and the 

Kuhn-Tucker condition for positive land allocation (9). 
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3.3 Model estimation and Monte Carlo assessment 

This section describes the estimation approach of the economic model and 

the Monte Carlo simulations which are employed to evaluate the 

consistency of the estimation approach. First, the data-generating process 

employing a statistical model with random errors is introduced. Second, 

the econometric model and its estimation are explained. Third, the set-up 

of Monte Carlo simulations is described. These three steps are presented 

for both two error specifications, namely measurement error and 

optimisation error. 

Heckelei and Wolff (2003) introduce the error terms around the 

endogenous variable input and output and interpret the errors as “…a 

measurement error of the variable or an optimisation error by the farmer, 

or stem from specific circumstances relevant to the optimal allocation of 

the respective economic unit unknown to the econometrician, or some 

combination of these factors…” Measurement and optimisation errors are 

considered separately in this study. This differentiation allows a more 

sophisticated error structure specification and the separation of the errors 

effects. 

3.3.1 Measurement error 

The measurement error is defined as an error term related to the input of 

the single farm optimisation model. It is interpreted as counting or 

observing error made by the farmer after the optimisation process. An 

example would be that after harvest the farmer reported the amount of 

fertiliser used for agricultural production and he over- or underestimated 

the amount of fertiliser. Introducing measurement errors to the first-order 

conditions of the economic model, the statistical model can be formulated 

as follows: 
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 
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where 

t  is an index for observations and 1,...,t T  

m

ijt   are the measurement errors 

*  is a superscript indicating that the current symbol is data. 

Given the exogenous ‘true’ CES parameters  * * * *θ , β , ν ,ρi ij i i  and prices 

 * *,it ijtp w , the profit maximisation model reaches its optimum at a certain 

unobserved resource allocation for each observation. This optimum is 

represented by the optimal land and fertiliser allocations 
**

ijtl  obtained from 

the data-generating process without statistical errors. The difference 

between the actual observed resource allocations and the optimal 
**

ijtl  is 

randomly distributed across all observations. The generated data on the 

actual observed resource allocations are obtained by subtracting stochastic 

measurement errors from the optimal resource allocations as 
* ** *m

ijt ijt ijtl l   . 

Note that the shadow prices for land λ t  are implicit functions of 
ijtl  and 

Lagrange multiplier γ ijt
. The latter terms are always equal to zero as long 

as the optimal solution regarding the input use is found. 

Adding an objective function to the statistical model, the econometric 

estimation model is formulated as 
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The objective function employs an OLS estimator, which is sufficient for 

this ‘well-posed’ estimation problem, and minimises the sum of squared 

errors. Boundary conditions for the CES parameters, i.e. θ >0it , 0 β <1ijt , 

0 ν <1it  and ρ 0it  , need to be satisfied in addition. The exogenous and 

endogenous variables in the statistical model (10) become parameters and 

data in the econometric model (11), respectively: the parameters to be 

estimated are now θi , β ij
, νi , ρi , 

m

ijt , λ t  and γ ijt
, while *

itp , 
*

ijtw  and 
*

ijtl  

are data. 

The estimation approach of the economic model is completed by 

combining the statistical model and the econometric estimation model. 

This estimation approach allows a consistent and simultaneous estimation 

of CES parameters and shadow prices of land. Due to the distortion created 

by measurement errors, parameter estimates are bound to deviate from the 

true values used in the data-generating process. This deviation can be used 

to measure the consistency of the estimated model. 

The data-generating process and the econometric estimation approach are 

carried out repeatedly in Monte Carlo simulations with random sampling 

for different sample sizes. The measures Root Mean Squared Deviation 

(RMSD) between estimates and true values (of both CES parameters and 

shadow prices of land) are calculated during each iteration. To summarise 

the results, RMSD are summed across all observations and iterations to 

obtain the Average Root Mean Squared Deviation (ARMSD). The 

measures for CES parameters are summed over all CES parameters in 

addition. The quality of the estimation approach can be evaluated by 

statistical assessment of the measures ARMSD: a decreasing ARMSD with 

increasing sample sizes indicates consistency of the estimator. 
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Indices for output and input are defined as 10I  and 2J  . Six different 

sample sizes,  10, 20, 30, 50,100, 200T  , are considered. Two different 

sizes of standard deviations, 10%   and 50%  , are defined for 

measurement errors to increase the representativeness of Monte Carlo 

simulations. 10 per cent and 50 per cent are labelled as ‘low’ and ‘high’ 

standard deviations, respectively. Each standard deviation size is mapped 

with all six sample sizes, and it results in total of twelve categories of 

Monte Carlo simulations with measurement errors. The number of 

iterations of the Monte Carlo simulation is chosen to be 1000K  . 

Random measurement errors for the data-generating process are defined as 

 
2

* 0,m m

ijt ijN  
  

. The standard deviations 
m

ij  are made proportional to 

the standard deviations of optimum resource allocations 
l

ij  which is 

defined as 

   
2

1
/ 1

Tl

ij ijt ijt
l l t



   
    

where 

  
1

/ 1
T

ij ijtt
l l t


  . (12) 

The proportion is defined as a weight  /ijt ijl l , where the term  /ijt ijl l  

relativises the value of 
l

ij  for all observations. Multiplying 
l

ij  by the 

weight to obtain 
m

ij , the measurement errors for the Monte Carlo 

simulations are defined as   
2

* 0, /m l

ijt ijt ij ijN l l   
  

. To guarantee that 

the land constraint in model (10) and (11) holds, the measurement errors of 

the last crop is calculated as the residual equal to 
1 *

1
0

I m

ijti





 . 

Randomly generated synthetic data are applied for the Monte Carlo 

simulations. The output prices *

itp  and input prices 
*

ijtw  are normally 

distributed, whereas the ‘true’ CES parameters  * * * *θ , β , ν ,ρi ij i i  have an 

uniform distribution. Land endowment   is set to 10. Except for 
*m

ijt , 
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which are regenerated for each Monte Carlo iteration, all other data are 

generated only once for all iterations. 

3.3.2 Optimisation error 

Pope and Just (2002) interpret optimisation errors as “…weather and other 

vicissitudes of nature that occur after input decisions are made…” 

However, it does not necessarily mean ‘weather’, as assumed behaviour in 

such models is always reflecting “expected” yields or prices, so that a 

certain weather or market situation cannot make the optimisation wrong. It 

could be interpreted, however, as faulty formation of expectations of the 

first-order conditions. This distortion could then be represented by 

introducing random statistical errors directly into the equations (6) and (7), 

i.e. the first-order conditions of the marginal value product conditions for 

land and fertiliser. The resulting statistical model with the optimisation 

error structure is formulated as  

  
 

 
* *

* *
-ν /ρ 1

-ρ -ρ 1* * * * *

1 1 1 11
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i i
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1
γ 0

J

ijt ijtj
l


 , (13) 

where optimisation errors are denoted by 
o

ijt . The data-generating process 

with the above statistical model generates 
*

ijtl , the actual resource 

allocations of land and fertiliser under the impact of optimisation errors. 

The econometric estimation model with optimisation errors is specified as 

   
2 2

θ ,β ,ν ,ρ
1 1 1

min
it ijt it it

I J T
o

ijt t t

i j t

  
  

  
     
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The same boundary conditions as in the case with measurement errors 

apply for the CES parameters. The land constraint  and the positive 

constraint are omitted from the estimation model, as the optimisation errors 

are not added to the resource allocation. The OLS estimator is also chosen 

for the econometric model with optimisation errors. The objective function, 

however, minimises not only the sum of squared errors, but also the sum of 

squared deviations between the estimated land shadow prices and the 

expectation of the true values. The average per-hectare profit, defined as
* * */t t L  , is chosen to approximate the expectation of true land shadow 

prices. The profit *

t  is calculated as in equation (1) where the optimal 

resource allocations are obtained by solving the statistical model (13) 

without optimisation errors. 

The reason for introducing additional information on land shadow prices is 

as follows: applying the unmodified objective function to the model (14), 

i.e. only minimising the sum of squared optimisation errors, would result in 

identification problems for the parameter estimates. This means that the 

parameters estimates would be over- or underestimated. This inefficiency 

of estimation might be compensated by choosing a sufficiently large 

sample size. However, the current setting and the computation capacity do 

not allow sample sizes beyond T>200. Thus, one cannot clearly observe 

that the estimates converge to true values with increasing data information. 

However, since the land shadow prices in the estimation model (14) can 

also be expressed as implicit functions of the CES parameters, utilising 

reasonable information on the true land shadow prices could achieve a 

precise and simultaneous estimation of both land shadow prices and CES 

parameters. Furthermore, in a real world application it is more likely to 

find approximations of true value for land shadow prices (e.g. land tenure 

prices) than for CES parameters. 
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Apart from the standard deviations for optimisation errors, the same 

settings for Monte Carlo simulations with measurement errors in terms of 

output and input dimension, sample size, standard deviation size and 

number of Monte Carlo iterations are applied here as well. Also, ARMSD 

is used to evaluate the consistency of the estimation approach. 

The normally distributed random optimisation errors are defined as 

 
2

* 0,o o

ijt ijN  
  

 with mean 0 and standard deviations 
o

ij . The standard 

deviations are defined proportionally to the standard deviations of the 

marginal revenue of land and fertiliser 
g

ij  which is defined as 
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  
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
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The true optimum resource allocations      in equation (15) are obtained by 

solving the statistical model (13) without optimisation errors. Finally, 
o

ijt  

can be specified as  
2

* 0,o o

ijt ijN   
  

 where the multiplier   

proportionates the size of optimisation errors. 

3.4 Discussion of results  

Monte Carlo simulations are performed for the two estimation approaches 

with measurement and optimisation errors, respectively. For each error 

structure, two sizes of standard deviations are considered. The indicator 

ARMSD is calculated for the estimates of both CES parameters and land 

shadow prices at each sample size. The values of the indicator are 

presented and discussed in this section. 



3.4 Discussion of results  53

 

  

 
Figure 1. ARMSD of the estimated CES parameters with measurement 

errors 

 
Figure 2. ARMSD of the estimated land shadow prices with measurement 

errors 
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Figure 1 and Figure 2 present the evaluation results for the estimation 

approach with measurement error structure. ARMSD of both CES 

parameters (Figure 1) and land shadow prices (Figure 2) decrease with 

increasing sample size, indicating consistency of the estimator. ARMSD in 

both figures reach negligible values at a sample size of 200 except for the 

CES parameters with errors with high standard deviation (denoted by the 

dashed line in Figure 1). It is difficult to judge based on Figure 1 whether it 

would eventually converge to zero. Evidence from larger sample sizes are 

missing, as Monte Carlo simulations with 1000K   iterations and 

200T   observations requires computing capacity beyond the possibilities 

of this study. Nevertheless, the results from errors with low standard 

deviations in both figures indicate the consistency of the estimator. 

Therefore, it is assumed with confidence that the consistency of the 

estimator is also ensured for the case with high standard deviations. Errors 

with higher standard deviations should create larger sampling variance in 

the estimation. This phenomenon can be well observed in Figure 1 with 

10T   but not so clearly in Figure 2 (with 50T  ). 

 
Figure 3. ARMSD of the estimated CES parameters with optimisation 

errors 
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Figure 4. ARMSD of the estimated land shadow prices with optimisation 

errors 

Evaluation results for the estimation approach with optimisation errors are 

illustrated in Figure 3 and Figure 4. The consistency of the estimator is 

indicated by the decreasing ARMSD with increasing sample size in both 

figures. The low magnitude of ARMSD in Figure 4 suggests a very precise 

estimation of shadow prices of land. This could be explained as the effect 

of applying additional information on land shadow prices in the estimation 

approach. Bounded by the limitations in terms of computational capacity 

as mentioned above, Figure 3 offers no evidence whether ARMSD will 

eventually converge to zero. However, given the precise estimation of land 

shadow prices, this is assumed to be the case with sufficiently larger 

sample size. 

Removing the prior information on land shadow prices from the estimation 

approach will result in identification problems for both CES parameters 

and land shadow prices. Results with this ‘incorrect’ estimation approach 

are presented and discussed below. 
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Figure 5. ARMSD of the estimated land shadow prices with identification 

problem categorised by optimisation errors with high and low standard 

deviations 

The magnitude of ARMSD for the estimates of land shadow prices with 

identification problem, (0.0E+00, 1.0E-02) as shown in Figure 5, is 10,000 

times larger than those obtained from the ‘correct’ estimates, (0.0E+00, 

1.0E-07) as shown in Figure 4. This indicates a much less precise 

estimation without additional information on land shadow prices, and 

reflects the mentioned identification problem for the estimated CES 

parameters. 

For the estimated land shadow prices, 410,000 estimates are obtained in 

total from Monte Carlo simulations with 1000K   iterations for each 

sample size  10, 20, 30, 50,100, 200T  . An indicator ts  is calculated for 

each estimate to measure the accuracy of estimation as 

 * */ 100t t t ts      
 

. It is defined as the distance between estimates 

and true values divided by the true values in percentage. A positive ts  

suggests overestimation and a negative one means underestimation. The 

greater its absolute value is, the more severe the identification problem is. 

We assume [-10%, 10%] to be the tolerance range for a precise or ‘correct’ 

estimation.  
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Figure 6. Over- and underestimation of the land shadow prices 

(optimisation errors with low standard deviations) 

 
Figure 7. Over- and underestimation of the land shadow prices 

(optimisation errors with high standard deviations) 
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The frequency of over- and underestimation are indicated by the 

histograms in Figure 6 and Figure 7. The horizontal axes specify the range, 

whereas the vertical axes indicate the percentage
2
 of ts  falling into the 

corresponding range. The highlighted bars in both figures give the 

percentage of the ‘correct’ estimation. For errors with low standard 

deviations it is roughly 39% as shown in Figure 6, which means that about 

61% of the land shadow prices are over- or underestimated. Increasing the 

standard deviation of the errors reduces the portion of ‘correct’ estimations 

from 39% to 15% as shown in Figure 7. In other words, 85% of the 

estimated land shadow prices cannot be ‘correctly’ identified. The 

systematic identification problem is thus strongly present among estimates 

of land shadow prices.  

 
Figure 8. Comparing ARMSD of the estimated CES parameters obtained 

by estimating with optimisation errors including and excluding additional 

information on land shadow prices 
                                                                 

2 Normally, frequency is the indicator in a histogram. Here it is converted into a percentage for a 

simple and clear view. It is calculated as the frequency for the current range divided by the total 

number of estimates. 
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The same identification problem can also be observed with the estimated 

CES parameters. Figure 8 shows that ARMSD are notably higher with the 

‘incorrect’ estimation approach (denoted by black lines with triangle 

markers) than with the consistent approach (same as in Figure 3 and 

denoted by grey lines with round markers). 

3.5 Conclusion and outlook 

In this study, a mathematical programming model with crop-specific CES 

production functions is econometrically estimated using its first-order 

conditions directly as estimating equations and applying a least squares 

procedure. Monte Carlo simulations with measurement and optimisation 

errors are carried out to evaluate the consistency of the estimation 

procedure. The two error types are distinguished by interpretation and 

specification. The Monte Carlo simulation results show the consistency of 

the estimation procedure with measurement errors. In the case of 

optimisation errors, modification of the estimator by introducing additional 

information on land shadow prices is necessary, as it would otherwise 

result in under- or overestimation problems. 

We acknowledge the following limitations of our study. First, we were 

only concerned with consistency. Yet our estimation approach cannot 

claim to be ‘efficient’ in the statistical sense. For this, iterative procedures 

with inverse covariance weighting are likely to be required. Both 

theoretical and further stochastic simulation efforts may provide advances 

in this respect. Second, a statistical inference procedure for the estimated 

parameters is missing. This is an important issue for empirical application, 

as no measure for estimator accuracy is offered. Third, this study does not 

provide a real world application. Chapter 4 further elaborates on the second 

of the mentioned limitations by developing and evaluating a statistical 

inference procedure within the estimation context considered here. 
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Chapter 4  
Statistical inference for 

econometric mathematical 

programming models
1
 

Abstract: Over the last two decades, the agricultural economics literature 

introduced and implemented the estimation of constrained optimisation 

models connecting mathematical programming models and econometrics. 

Statistical inference on parameter estimates, however, was not considered 

yet, as the estimation itself was already computationally demanding. Here, 

we explore this possibility developing and testing bootstrap algorithms for 

optimisation models with different error structures. This allows to calculate 

confidence intervals for estimated parameters. Monte Carlo simulation is 

used to evaluate bootstrap procedure showing promising results regarding 

the accuracy of the generated confidence intervals. 

Keywords: econometric mathematical programming, errors in variables, 

bootstrap, statistical inference 

                                                                 

1  An early version of this study was presented at the XV EAAE congress as: Zhang, Y. and 

Heckelei, T. (2017). Statistical inference for Econometric Mathematical Programming Models, 

selected paper at XV EAAE congress, August 28 – September 1st, Parma, Italy. 
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4.1 Introduction 

Heckelei and Wolff (2003) suggest Econometric Mathematical 

Programming (EMP) as a general alternative to Positive Mathematical 

Programming (PMP) model. The term EMP originates from Buysse et al. 

(2007b). The approach econometrically estimates parameters of a 

mathematical programming model using the model’s optimality conditions 

as estimating equations. Using this approach, Jansson and Heckelei (2011) 

estimate behavioural parameters of a primal model of regional crop supply 

in the European Union using the time-series data in the CAPRI (Britz and 

Witzke 2014) database. Even though their primary goal is to provide an 

empirical parameterisation rather than to test the functional relationships of 

the CAPRI model, they point at the desirability of confidence region for 

the estimated parameters. Buysse et al. (2007a) also argue that EMP 

mostly focuses on the estimation or calibration of unknown parameters 

using all available information. However, the empirical reliability of the 

results is questionable due to the lack of statistical inference. Heckelei et 

al. (2012) suggest the conceptual possibility of bootstrapping GME 

models. They also state that the major difficulty of such exercise is the 

highly demanding nature of computation required. 

The bootstrap is originally proposed by Efron (1979). It is a resampling 

method which assigns measures of accuracy to parameter estimates based 

on the simulated sampling distribution of the statistic of interest. The 

objective of this study is to develop a bootstrap procedure for drawing 

statistical inference from EMP model parameters to assess the performance 

of the approach. We provide a) the algorithm for bootstrapping confidence 

intervals and b) the coverage probability of such confidence interval 

through Monte Carlo simulation. The EMP model introduced in chapter 3 

is implemented here. The consistency of the estimation approach with the 

EMP model has been shown in chapter 3. 

Section 4.2 first briefly illustrates the fundamental concept of bootstrap. 

Then it revisits some basics on different bootstrap sampling procedures and 

bootstrapping confidence intervals applied in this chapter. Section 4.3 

presents the detailed layout of EMP models with two different error 
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structures. In section 4.4, the bootstrap approaches are applied to the EMP 

models. The detailed procedure to obtain the bootstrapped confidence 

intervals for the parameter estimates and its algorithm are presented, 

followed by the algorithm for evaluating the confidence interval 

calculation using Monte Carlo simulation. Both algorithms are designed 

for all four scenarios by combining two different sampling approaches with 

two error types. Section 4.5 shows the findings on the coverage probability 

of the bootstrapped confidence interval before concluding. 

4.2 Bootstrap 

4.2.1 Concept 

The bootstrap is advocated first by Efron (1979) and it is inspired by 

earlier work on the jackknife by Quenouille (1949, 1956) and Tukey 

(1958). It creates a new tool for statistical analysis based on simulation. 

The bootstrap is very intuitive and thus appealed to practitioners. Despite 

the substantial development since its first appearance, the basic concept of 

bootstrap remains the same. Sample data is treated as ‘population’ and one 

creates a bootstrap sample by resampling the sample data. The inference on 

the resampled data gives an approximation of the inference on the 

population. Thus, one could gain some insight into population by utilising 

only its sample data. Like the name “bootstrapping” adequately suggests: 

one lifts himself up by pulling his bootstrap. It is a finite sample alternative 

to calculate the asymptotic distribution of an estimator statistic. 

Following notation is applied throughout this chapter: lowercase bold 

letters are used to denote vectors. Parameters are denoted by Greek letters. 

A hat on a letter indicates an estimate, while a tilde indicates a 

bootstrapped sample or bootstrapped estimate. The capital letters F  and G  

stand for populations. Suppose one observes a vector of random sample 

 1 2, , , nx x xx  from an unknown probability distribution F . The goal 

is to estimate a parameter of interest  t F   based on the observed data 

x  which can be calculated as a point estimate  ˆ g  x . The discrete 

distribution which assigns probability 1/ n  on each , 1,2, ,ix i n  is 
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defined to be the empirical distribution function F̂ . A bootstrap sample 

 1 2, , , nx x xx  is defined to be a random sample of size n  drawn from 

F̂ as 

  1 2
ˆ , , , nF x x x . (1) 

The bootstrap data points of  1 2, , , nx x xx are obtained by random 

sampling with replacement from the ‘population’  1 2, , , nx x xx . By 

applying the same function  g   to x , the bootstrap replicate of  ˆ s  x  

is defined as 

  ˆ g  x . (2) 

By drawing 1, ,b B  independent bootstrap samples 

 1 2, , ,b Bx x x x  one can correspondingly obtain B  bootstrapped 

estimates  1 2
ˆ ˆ ˆ ˆ, , ,b B    . 

4.2.2 Resampling approach 

Bootstrap has many variations regarding the resampling approach, for 

example parametric versus non-parametric bootstrapping. What 

differentiates them is where the resampled or ‘surrogate’ data comes from: 

parametric bootstrapping relies on the parametric model to generate 

samples, whereas the non-parametric variation directly resamples the data.  

While parametric bootstrapping requires an assumption on the distribution 

from which the surrogate data is resampled, no assumption is needed for 

non-parametric bootstrapping. Non-parametric approach treats the sample 

data as the least prejudiced estimate of the underlying distribution, since 

anything else might impose biases and thus could be misleading. Thus, 

surrogate data is generated through random sampling of observations with 

replacement. It is a matter of how much one trusts the parametric model, 

and whether additional assumptions are desirable. For our study, we 

assume that there is no knowledge about the distribution and we 

exclusively elaborate the non-parametric approach. There are also many 
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variations regarding the non-parametric approach. They yield confidence 

intervals with different numerical accuracy. Two resampling approaches 

are considered: 1) residual resampling and 2) case resampling. Suppose a 

linear regression model is defined as follows, 

  y x ε  (3) 

with  1 2, , , ny y yy being the dependent variables,  1 2, , , nx x xx  

the independent variables,   the parameters and  1 2, , , n  ε  the 

unobserved residuals. The detailed steps for these two variations are listed 

below: 

Residual Resampling 

1. Estimate model (3) with Ordinary Least Square (OLS) estimator 

and obtain the residual as ˆˆ  ε y x . 

2. Draw B  independent bootstrap samples bε by randomly resampling 

ε̂  with replacement based on index k
2
.  

3. Calculate bootstrap samples by  as ˆ
b b y x ε . 

4. Estimate model (3) with  ,b by x to obtain B  bootstrapped 

estimates ˆ
b  

Case Resampling 

1. Draw B  independent bootstrap samples  ,b by x  by random 

resampling  ,y x  with replacement (with the same index k  from 

above for both y  and x ). 

                                                                 

2  The random index k is a string of N real numbers generated by random sampling with 

replacement the string of numbers  1,2, ,N . Each number of k  stands for the nth element from 

the original sample. The index   varies for each bootstrap replication. 
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2. Estimate model (3) with bootstrap samples  ,b by x  to obtain B  

bootstrapped estimates ˆ
b . 

Residual resampling trusts that the model has the correct shape of 

regression function, while case resampling does not. If one compares these 

two variations based on the same data for the same statistic and assume 

that the regression model is true, then resampling residuals yields generally 

better numerical accuracy for the same bootstrap sample size (Horowitz 

2001). 

4.2.3 Bootstrapped confidence intervals 

The bootstrap provides the possibility to estimate standard error of the 

statistic of interest and confidence intervals. The standard error of the 

bootstrapped estimate ˆ
b  from above can be estimated by the sample 

standard deviation of the   replications as 

  
2

1

ˆ ˆse / 1
B

b

b

B 


 
   

 
  

 
1

ˆ ˆwhere /
B

bb
B 


 . (4) 

The percentile bootstrap confidence interval and the basic bootstrap 

confidence interval, two textbook standard methods, are chosen for this 

study. They are referred from now on as percentile and basic method for 

the sake of simplicity. Due to already significant computational challenges 

and little relevance for the evaluation of the general approach, bootstrap 

confidence interval methods requiring more than one layer of bootstrap 

iteration are not considered for calculation or evaluation. Alternative 

methods are discussed in the conclusion. 

Consider the following standard normal symmetric confidence interval 

 
(1 ) ( )ˆ ˆse, sez z      

 
 (5) 
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with confidence level being  100 1 2a   in percentage. The term z  

denotes the 100 a
th

 percentile point of a  0,1N  distribution of a standard 

normal table. The lower and upper limit of this interval could be 

interpreted as the 100 a
th

 and  100 1 a  th
 percentile of some random 

variable ̂  drawn from the distribution  
2

ˆ,seN  , i.e. the lower limit ˆ
lo  

and upper limit ˆ
up  could be defined as 

 
 * *ˆ ˆ ˆ100 percentile of 's distributionth

lo


        

    * 1 *ˆ ˆ ˆ100 1 percentile of 's distribution
th

up


   


    . (6) 

This approximation of ̂  can be applied analogously to bootstrapped 

estimate ̂ . Given the bootstrap data set x , one can obtain the 

bootstrapped estimate ˆ
b . The cumulative distribution function of ̂  is 

denoted by Ĥ . The  1 2  percentile interval could be formulated as 

    1 1

%, %,
ˆ ˆ ˆ ˆ, , 1lo up H H        

   . (7) 

And by definition    1 ˆĤ


    where 
 ˆ 

  is the 100 a
th

 percentile of 

the distribution of ̂ . Equation (7) could be rewritten as 

 
   1

%, %,
ˆ ˆ ˆ ˆ, ,lo up

 
   

   
    

. (8) 

Note that equations (7) and (8) represent the ideal case with infinite 

bootstrap replications. When applying finite number of B  replications, one 

obtains B  replicates of bootstrapped estimate ˆ
b  using B  independent 

bootstrap samples bx . Defining  ˆ
B


  with subscript capital letter B  as the 

B a
th 

value in the ordered list of the B  bootstrapped estimate ̂ . It is also 

the 100 a
th

 empirical percentile of the ˆ
b . Similarly,  1ˆ

B





 is the 
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 100 1   th
 empirical percentile. The approximate  1 2  percentile 

interval is defined as 

 
   1

%, %,
ˆ ˆ ˆ ˆ, ,lo up B B

 
   

   
    

 (9) 

and it is referred as percentile confidence interval. Even though the 

percentile interval is only approximation, the central limit theorem implies 

that the percentile interval would close to the standard normal intervals as 

B  . Efron and Tibshirani (1994) demonstrate that the percentile 

interval is generally preferable to the standard normal interval. The 

percentile method is also range-preserving. It means that it produces lower 

and upper limits which are inside the theoretical boundary for the 

parameter. 

The basic bootstrap confidence interval is constructed in the following 

way. Consider the following equation: 

  *1 2 Pr C      (10) 

where C  denotes confidence interval. The theoretical probability that C  

contains the ‘true’ value 
*  is  1 2 . Manipulating and rearranging the 

following equation for the lower limit ˆ
lo : 

 

 

 

 

*

*

*

ˆPr

ˆ ˆ ˆPr

ˆ ˆ ˆPr .

lo

lo

lo

  

   

   

 

   

   

 (11) 

Similarly for the upper limit:  

 

 

 

*

*

*

ˆPr

ˆ ˆ ˆPr

ˆ ˆ ˆPr .

up

up

up

  

   

   

 

   

   

 (12) 
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Adopting the bootstrap principle, the bootstrap estimate ̂  could 

approximate the point estimate ̂ , whereas the point estimate ̂  could 

represent the ‘true’ value 
* . Thus, the distribution of  ˆ ˆ   can then be 

used to estimate the distribution of  *̂  . With knowledge on the 

distribution of  ˆ ˆ   and the point estimate ̂ , (11) and (12) can be 

further rearranged as 

 

 
  
  
  

*

1

1

1

ˆ ˆ ˆPr

ˆ ˆ ˆ ˆPr

ˆ ˆ ˆPr 2

ˆ ˆ ˆPr 2

lo

lo

lo

lo







    

   

  

  







   

   

  

  

 (13) 

and 

 

 
  
  
  

*ˆ ˆ ˆPr

ˆ ˆ ˆ ˆPr

ˆ ˆ ˆPr 2

ˆ ˆ ˆPr 2 .

up

up

up

up







    

   

  

  

   

   

  

  

 (14) 

And ultimately the basic confidence interval is defined as 

    1ˆ ˆ ˆ ˆ2 , 2
 

   
  

  
. (15) 

Unlike the percentile method, basic method is not range-preserving. The 

quantity  *̂   is not pivotal, so the interval (15) is not very accurate 

(Efron and Tibshirani 1994; Canty et al. 1996). More accurate method, like 
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the variance stabilised bootstrap-t by Tibshirani (1988), replies on 

 *ˆ / se  instead of  *̂  . 

The confidence interval methods could be evaluated by the so-called 

“goodness” criteria by Efron and Tibshirani (1994) defined as “…the 

bootstrap intervals should closely match exact confidence intervals in 

those special situations where statistical theory yields an exact answer, 

and should give dependably accurate coverage probabilities in all 

situations...” On the one hand, the basic and percentile methods do not 

deliver ideal performance in terms of these “goodness” criteria. There exist 

refinements of these methods providing better confidence intervals. To be 

more specific, they have the advantage of being second-order accurate
3
, 

while the basic and percentile methods are only first-order accurate (Efron 

and Tibshirani 1994). Although a second layer of bootstrap replication is 

often required by these superior methods, whereas one layer is sufficient 

with the chosen simple methods for this study. Therefore, there is a trade-

off between the quality of the interval in terms of the “goodness” criteria 

and the required computational time. 

The seasons for choosing the simpler methods are twofold: 1) for the 

objectives of this study, the advantage of obtaining better bootstrapped 

confidence interval does not offer any more general insights; 2) one 

objective of this study is to evaluate the bootstrapped confidence interval 

by applying Monte Carlo simulation. Using the superior methods required 

a second layer of bootstrap would results in computational demand beyond 

our capacity. This could be shown in the example below: 

Taking bootstrap-t as an example, it is first introduced by Efron (1981). 

Singh (1981) applies Edgeworth theory to the bootstrap-t interval. This is 

                                                                 

3 Second-order accurate means the errors in matching the true probably coverage decrease to zero at 

rate 1 / n  with n  being the sample size. If the errors in matching is 1/ n  , which is an order of 

magnitude larger, it is called first-order accurate. 
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the first bootstrap confidence interval developed with second-order 

accuracy and it requires calculation of standard error of each bootstrap 

estimate and of all bootstrap estimates. This implies a second layer of 

2 21, ,b B  replications for each of the 1 11, ,b B  replications from the 

first layer. If 2 25B   were enough to obtain the standard error and 

assuming 1 1000B  , the number of total replications would be 

1 1 2 26,000B B B   , which is feasible for empirical applications. 

However, applying the bootstrap-t method to Monte Carlo simulation 

would result in totally  1 1 2 26,001,000S S B B B      replications 

assuming 1000S  . 

Thus, only after establishing the principle validity of bootstrapping 

confidence intervals, one can build upon this and apply refined methods in 

empirical applications where the objective is to obtain better intervals and 

no Monte Carlo simulation is required. Many efforts have been made to 

reduce the computational demand. This leads to method like Bias-

Corrected and accelerated (BCa) method (Efron 1987). Interestingly, 

despite having second-order accuracy, methods like bootstrap-t and BCa 

are not often used. In fact, standard interval is the most preferred choice in 

practice even by experienced statisticians (Efron 2003). 

4.3 EMP Model 

This section revisits the EMP model from chapter 3 which comprises the 

statistical model for the Data-Generating Process (DGP) and the 

Econometric Estimation Model (EEM). First, considering the following 

single farm economic model: 

  2 2
0, 0

1

max
ij i

I

i i i i
l q

i

p q w l
 



   (16) 

subject to 

  
ν /ρ

-ρ

1
θ β 1, ,

i i
iJ

i i ij ijj
q l i I





   
    (17) 
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  11
λ

I

ii
l L


  (18) 

 0 γij ijl     . (19) 

The same notation from chapter 3 is applied here as well: output is denoted 

by i , input (land and fertiliser) by j , profit by  , output prices by ip , 

input fertiliser prices by 2iw  (land is indicated by 1j  and fertiliser by 

2j  ), CES production functions by iq , resource allocations 
ijl , total 

resource endowment L , CES parameters  , , ,i ij i i      and 

Lagrangian multipliers   and ij . The farmer behaves rationally and 

maximises his profit by optimising resource allocations under resource 

constraints. Profit is defined as revenue minus variable fertiliser cost as 

shown in (16). The production technology is specified by the CES 

production function (17). Land is the only binding resource constraint, 

which renders land price endogenous as shown in (18). Resource 

allocations must be positive as in (19). 

The Lagrange function and the First-Order Conditions (FOC) of the 

economic model function as optimisation conditions or econometric 

criteria for the statistical model and EEM in the following subsections. 

They are specified as follow:  

  
ν /ρ

-ρ

2 2 11
1 1 1

θ β λ γ
i i

i
I I J

J

i i ij ij i i i ij ijj
i i j

p l w l L l l



  

              
     (20) 

  
 

 
-ν /ρ 1

-ρ -ρ 1

1 1 11
1

θ ν β β λ γ 0
i i

i iJ

i i i ij ij i i ij
i

p l l
l






     
  
  (21) 

  
 

 
-ν /ρ 1

-ρ -ρ 1

2 2 2 21
2

θ ν β β γ 0
i i

i iJ

i i i ij ij i i i ij
i

p l l w
l






     
  
  (22) 

 11λ

I

ii
l L




 


  (23) 
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1

0 γ 0
γ

Ji
ij ij ijj

ij

L
l l




   


 . (24) 

Measurement and optimisation error structures, as their interpretations and 

specifications already explained in chapter 3, are considered in the DGP 

and in the estimation model. Combining with the two resampling 

approaches introduced above results in totally four scenarios: a) 

Optimisation Error with Residual Resampling (OE-RR), b) Optimisation 

Error with Case Resampling (OE-CR), c) Measurement Error with 

Residual Resampling (ME-RR) and d) Measurement Error with Case 

Resampling (ME-RR).  

4.3.1 EMP model with optimisation errors 

Optimisation errors occur in the optimisation process and thus are directly 

inserted into the FOCs of the economic model. Introducing the 

optimisation errors 
o

ijt  into the FOCs as optimisation conditions and 

adding the dimension for observations represented by the index t  for 

sample size to all equations, the statistical model is formulated as follow 

  
 

 
* *

* *
-ν /ρ 1

-ρ -ρ 1* * * * *

1 1 1 11
θ ν β β λ γ 0

i i
i iJ o

it i i ij ijt i i t t i t i tj
p l l 






     
  
  (25) 

  
 

 
* *

* *
-ν /ρ 1

-ρ -ρ 1* * * * * *

2 2 2 2 21
θ ν β β γ 0

i i
i iJ o

it i i ij ijt i i t i t i t i tj
p l l w 






     
  
  (26) 

 
*

11

I

i ti
l L


  (27) 

 
1
γ 0

J

ijt ijtj
l


 . (28) 

The exogenous variables are the *

itp , *

2i tw , 
*L  and  * * * * *, , ,i ij i i     , 

while the endogenous variables are 
ijtl , λ t  and γ ijt

. The superscript * 

indicates that the current item is exogenous or data. The DGP is done by 

drawing random optimisation errors from the statistical model. This step is 
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referred as Data Generation Process with Optimisation Error (DGP-OE) 

and it yields the actual resource allocations 
*

ijtl . 

An econometric, least squares objective function (29), FOCs (30) and (31) 

as econometric criteria, the theoretical parameter boundaries (32) together 

formulate the econometric estimation model: 

    
2 2

θ ,β ,ν ,ρ
1 1 1

min
it ijt it it

I J T
o

ijt t t

i j t

  
  

  
    (29) 

subject to 

  
 

 
-ν /ρ 1

-ρ -ρ 1
* * *

1 1 1 11
θ ν β β λ γ 0

i i
i iJ o

it i i ij ijt i i t t i t i tj
p l l 






     
    (30) 

  
 

 
-ν /ρ 1

-ρ -ρ 1
* * * *

2 2 2 2 21
θ ν β β γ 0

i i
i iJ o

it i i ij ijt i i t i t i t i tj
p l l w 






     
    (31) 

 θ >0; 0 β <1; 0 ν <1; ρ 0it ijt it it   . (32) 

The land constraint is not necessary and thus excluded. The actual land 

allocations are obtained from the DGP-OE under the land constraint. They 

are handled as data in the estimation where no error terms are added to 

them. Thus, the land constraint is redundant.  

Given the data *

itp , *

2i tw , 
*

ijtl  
*L , and 

t , the parameters to be estimated are 

 , , ,i ij i i     , 
o

ijt  and t . This step is referred as Econometric 

Estimation Model with Optimisation Error (EEM-OE). Prior information 

t  for the parameter 
t  are introduced in (29) to solve the systematic 

identification problem elaborated in chapter 3. 

4.3.2 EMP model with measurement errors 

Measurement errors are assumed to be related to the input resource 

allocations. The statistical model is defined as follow by adding the 
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dimension for observations and measurement errors 
m

ijt  to the economic 

model: 

  
 

 
* *

* *-ν /ρ 1
-ρ -ρ 1

* * * * * * *

1 1 1 11
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i iJ m m

it i i ij ijt ijt i i t i t t i tj
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



 
    

  
 (34) 

  * *

1 11

I m

i t i ti
l L


   (35) 

  *

1
γ 0

J m

ijt ijt ijtj
l 


  . (36) 

The *

itp , *

2i tw , *L  and  * * * * *, , ,i ij i i      are exogenous, while 
ijtl , λ t  and 

γ ijt
 are endogenous. The four equations above with random measurement 

errors serve as optimisation conditions. 

The statistical model yields the optimal resource allocation 
**

ijtl . By 

subtracting randomly generated errors 
*m

ijt  from 
**

ijtl , one can obtain the 

actual resource allocation 
*

ijtl  as 
* ** *m

ijt ijt ijtl l   .This step is referred as the 

Data Generation Process with Measurement Error (DGP-ME). 

The EEM with measurement errors is defined as follow  

  (37) 

subject to 

 (38) 

  (39) 

  (40) 
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  (41) 

 . (42) 

The objective function (37) minimises the sum of the squared errors. This 

is subjected to the FOCs (38) and (39), the resource constraint (40), 

positive constraint (41) and theoretical boundary on parameters (42). The 

FOCs function as econometric criteria. Parameters  , , ,i ij i i     , 
m

ijt  

and t  are estimated given the data *

itp , *

2i tw , 
*

ijtl  and *L . This step is 

termed as Econometric Estimation Model with Measurement Error 

(EEM-ME). 

4.4 Bootstrapping confidence intervals and evaluation 

This section comprehensively illustrates the procedure of boostrapping the 

EMP models and introduces algorithms for 1) constructing bootstrapped 

confidence interval with EMP model and for 2) evaluating bootstrapped 

confidence interval. Both algorithms are listed in a step-by-step fashion for 

all four scenarios (OE-RR, OE-CR, ME-RR and ME-CR). 

4.4.1 Constructing bootstrapped confidence intervals 

In order to construct the confidence region of the point estimates of the 

CES parameters  ˆ ˆˆ ˆ ˆ, , ,i ij i i     , the sampling distribution of ̂  is 

required. This is done by adopting the bootstrap principle to the EMP 

models. 

For the case resampling approach, 
*

ijtl  can be obtained by carrying out 

DGP-OE and DGP-ME given the data  * * *

2, ,it i tp w L  and the ‘true’ CES 

parameters 
* . The observations  * * *

2, ,it i t ijtp w l  are now seen as the 

‘population’. Given that the ‘population’ is known, the true error in a 

sample statistic against its population value can be acknowledged and 

measured. Bootstrapped sample data  2, ,it i t ijtp w l  are created by 

resampling the observations  * * *

2, ,it i t ijtp w l  with replacement. Estimation 

 *

1
γ ε 0

I m

jit jit jiii
l


 

θ >0; 0 β <1; 0 ν <1; ρ 0jt jit jt jt  
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with EEM-OE and EEM-ME based on  2, ,it i t ijtp w l  yields the bootstrap 

estimates of the CES parameters  ˆ ˆˆ ˆ ˆ, , ,i ij i i     . With sufficiently 

large bootstrap sample size, i.e. replicating this whole procedure for 

sufficient times, one could get a good approximation of the sampling 

distribution of ˆ
B . Ultimately, the bootstrapped percentile and basic 

confidence intervals can be calculated given the sampling distribution. 

For the residual resampling approach, “residuals” are the point estimates of 

measurement and optimisation errors  ˆ ˆ,o m

ijt ijt   obtained by applying the 

combination of (DGP-OE, EEM-OE) and (DGP-ME, EEM-ME). These 

point estimates are treated now as the ‘population’. Through sampling with 

replacement one could get the resampled residuals  ˆ ˆ,o m

ijt ijt  . And these 

resampled residuals are used in DGP-OE and DGP-ME to produce *

ijtl , 

which are treated as data for the estimation in EEM-OE and EEM-ME. 

Subsequently, the bootstrap estimates  ˆ ˆˆ ˆ ˆ, , ,i ij i i      are estimated 

with EEM-OE and EEM-ME using the data on  * *

2, ,it i t ijtp w l . With 

sufficient replications of this procedure, one can obtain the sampling 

distribution of ̂  and ultimately the bootstrapped confidence intervals. 

The general procedure to construct bootstrapped confidence intervals with 

EMP model can be summarised as below. The detailed algorithm is 

presented in Table 1 and Table 2: 

1. Generate sample data with DGP and obtain point estimates with 

EEM using randomly generated synthetic data and ‘true’ 

parameters data 

2. Create bootstrap sample data by resampling sample data with 

replacement 

3. Obtain bootstrap estimates of parameters with EEM  

4. Repeat step 2 and 3 for 1, ,b B  times to obtain the sampling 

distribution of the bootstrap estimates and calculate the 

bootstrapped confidence intervals 
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For the bootstrap procedure the indices are defined as follow: 2.5%   

for  1 2 95%   confidence level, 10I  , 2J  , 50T  and 1000B  . 

As   approaches ∞ ensures that bootstrap distribution is close to the true 

distribution. Also, it decreases the error in bootstrap estimates (Efron and 

Tibshirani 1994) and they recommend that   should be ≥ 500 or 1000 to 

make the error in percentile estimation relatively low. The same randomly 

generated synthetic data  * * *

2, ,it i tp w L  and ‘true’ data for *  from chapter 

3 are applied for EMP model with both error types. Both optimisation and 

measurement errors  ,o m

ijt ijt   are normally distributed with mean zero, and 

low error standard deviation defined in chapter 3 are chosen.  
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OM-RR OM-CR 

 

1. Generate sample data 

 Obtain endogenous *

ijtl  with 

DGP-OE using simulated 

random errors o

ijt , exogenous 

synthetic  * * *

2, ,it i tp w L  and 

exogenous ‘true’ value *  

 Obtain point estimates ̂  and 

ˆo

ijt  with EEM-OE using data 

 * * * *

2, , ,it i t ijtp w l L  

2. Generate bootstrap sample 

 Obtain bootstrap samples ˆo

ijt  

by sampling ˆo

ijt  with 

replacement 

 Obtain bootstrap samples 
*

ijtl  

with DGP-OE using exogenous 

 * * *

2, ,it i tp w L  and bootstrap 

samples ˆo

ijt  

3. Bootstrap estimation 

 Obtain bootstrap estimates ̂  

with EEM-OE using data 

 * * * *

2, , ,it i t ijtp w l L  

4. Bootstrap replication 

 Repeat step 2 and 3 for 

1, ,b B  times to obtain the 

sampling distribution of ˆ
b  

and calculate the bootstrapped 

confidence intervals 

 

1. Generate sample data 

 Obtain endogenous *

ijtl  with 

DGP-OE using simulated 

random error o

ijt , exogenous 

synthetic  * * *

2, ,it i tp w L  and 

exogenous ‘true’ value *  

 Obtain point estimates ̂  and 

ˆo

ijt  with EEM-OE using data 

 * * * *

2, , ,it i t ijtp w l L  

2. Generate bootstrap sample 

 Obtain bootstrap samples 

 2, ,it i t ijtp w l  by resampling 

 * * *

2, ,it i t ijtp w l  with replacement 

3. Bootstrap estimation 

 Obtain bootstrap estimates ̂  

with EEM-OE using data 

 *

2, , ,it i t ijtp w l L  

4. Bootstrap replication 

 Repeat step 2 and 3 for 

1, ,b B  times to obtain the 

sampling distribution of ˆ
b  

and calculate the bootstrapped 

confidence intervals 

Table 1 Algorithms for constructing bootstrapped confidence intervals with 

optimisation errors  
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ME-RR ME-CR 

 

1. Generate sample data 

 Obtain endogenous **

ijtl  with 

DGP-ME using exogenous 

synthetic  * * *

2, ,it i tp w L  and 

exogenous ‘true’ value *  

 Obtain *

ijtl  by subtracting 

simulated random error m

ijt  

from **

ijtl  

 Obtain point estimates ̂  and 

ˆm

ijt  with EEM-ME using data 

 * * * *

2, , ,it i t ijtp w l L  

2. Generate bootstrap sample 

 Obtain bootstrap samples ˆm

ijt  

by sampling ˆm

ijt  with 

replacement 

 Obtain bootstrap sample ijtl  by 

subtracting ˆm

ijt  from the fitted 

value  * ˆm

ijt ijtl   

3. Bootstrap estimation 

 Obtain bootstrap estimates ̂  

with EEM-ME using data 

 * * * *

2, , ,it i t ijtp w l L  

4. Bootstrap replication 

 Repeat step 2 and 3 for 

1, ,b B  times to obtain the 

sampling distribution of ˆ
b  

and calculate the bootstrapped 

confidence intervals 

 

1. Generate sample data  

 Obtain endogenous **

ijtl  with 

DGP-ME using exogenous 

synthetic  * * *

2, ,it i tp w L  and 

exogenous ‘true’ value *  

 Obtain *

ijtl  by subtracting 

simulated random error m

ijt  

from **

ijtl  

 Obtain point estimates ̂  and 

ˆm

ijt  with EEM-ME using data 

 * * * *

2, , ,it i t ijtp w l L  

2. Generate bootstrap sample 

 Obtain  2, ,it i t ijtp w l by 

sampling 
*

itp , 
*

2i tw  and 

 * ˆm

ijt ijtl  with replacement 

3. Bootstrap estimation 

 Obtain bootstrap estimates ̂  

with EEM-ME using data 

 *

2, , ,it i t ijtp w l L  

4. Bootstrap replication 

 Repeat step 2 and 3 for 

1, ,b B  times to obtain the 

sampling distribution of ˆ
b  

and calculate the bootstrapped 

confidence intervals 

Table 2 Algorithms for constructing bootstrapped confidence intervals with 

measurement errors  
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4.4.2 Evaluating the bootstrapped confidence intervals 

The confidence interval level is the ideal probability that the true value 

falls within the interval in infinite repeated sampling. Following this idea, 

Monte Carlo experiments are conducted with above bootstrap algorithms 

to test whether the empirical coverage confirms the confidence level. This 

evaluation is done for all four scenarios from Table 1 and Table 2 and the 

general steps are listed as follows: 

1. Carry out 1, ,s S  Monte Carlo simulations with the EMP 

models with one set of ‘true’ CES parameters * , where the error 

term is randomly simulated with known distribution. This yields S  

sets of point estimates ˆ
s . 

2. Use the algorithms from Table 1 and Table 2 to construct an inner 

bootstrap procedure for each Monte Carlo point estimate ˆ
s to 

obtain a bootstrapped confidence interval. Two types of confidence 

interval are calculated, the basic interval and percentile interval. 

3. Obtain the empirical coverage as a frequency measure (in 

percentage) for how often *  fall in the confidence intervals. 

The evaluation procedure is in principal a replication of the algorithms 

from Table 1 and Table 2 for S  number of times. The mechanism for 

generating the random simulation errors and the bootstrap samples is 

random and independent for all 1, ,s S . The dimension for the indices 

( , , , )I J T B , the ‘true’ CES parameters, synthetic data for prices and land 

endowment are the same across all Monte Carlo replications. S  is also 

chosen to be 1000. There are totally four scenarios (OE-RR, OE-CR, ME-

RR and ME-CR) and four types of CES parameters  , , ,i ij i i      
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with 10I   for each type of parameter
4
. For each scenario with each type 

of parameter, the evaluation procedure generates a large amount of results: 

10,000,000I S B    estimates of CES parameters, 10,000I S 

confidence intervals and 10I   coverage probabilities obtained by using 

percentile and basic methods, respectively. The EMP model is the most 

computational intensive part and it is solved   1,001,000S S B    times 

for each scenario. Therefore, the evaluation procedure is very time-

consuming and the estimated total computing time for each scenario is 63 

hours for OE-RR, 83 hours for ME-RR, 43 hours for OE-CR and 46 hours 

for ME-CR. The data resampling is exclusively done in MATLAB, while 

the rest is done in GAMS. 

4.5 Results 

This section presents and discusses the results obtained from the 

bootstrapped confidence intervals evaluation procedure.  

Category  i1 i2β β  
iρ  

iθ  
iν  Mean 

o

bsc-RRC   84% 92% 88% 94% 89% 
o

prc-RRC   92% 92% 92% 93% 92% 
o

bsc-CRC   85% 93% 88% 93% 90% 
o

prc-CRC   91% 92% 91% 93% 92% 

Table 3 Empirical coverage of basic and percentile intervals based on 95% 

confidence level (with optimisation errors) 

Table 3 presents the coverage probability based on 95% confidence level 

for EMP model with optimisation errors. The 1
st
 column lists the 

                                                                 

4 Technically there are five types of CES parameter, if the share parameters of land 
1i and fertilizer 

2i  are counted separately. Since they sum up to 1, the parameter value of 
1i  can be calculated 

given
2i  and vice versa. This renders the coverage probabilities of 

1i  and 
2i  identical. Therefore, 

they count as one type of CES parameter in the results. 
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categorisation which specifies the coverage probability by the resampling 

approach and the confidence interval method. The capital letter C  stands 

for confidence interval. The superscript indicates the error structure, while 

the subscript shows the combination of the confidence interval method (bsc 

and prc representing basic and percentile methods respectively) and the 

resampling approach. For each category, 10 coverage probabilities are 

obtained for each type of the CES parameters. The values (from 2
nd

 to 5
th

 

columns) are mean value summed over the index i  for each type of the 

CES parameters. The last column sums the mean value again over all four 

types of parameters for each category. Judging by the mean values, there is 

a general tendency of undercoverage. 

Hypothesis  i1 i2β β  
iρ  

iθ  
iν  Total 

o o

bsc-RR prc-RRC C  10/10 5/10 10/10 1/10 26/40 

o o

bsc-CR prc-CRC C  10/10 2/10 8/10 8/10 28/40 

o o

bsc-CR bsc-RRC C  5/10 4/10 2/10 7/10 18/40 

o o

prc-CR prc-RRC C  6/10 5/10 6/10 2/10 19/40 

Table 4 Comparison between coverage probabilities obtained by different 

resampling approaches and bootstrap confidence interval methods (with 

optimisation errors) 

The smaller the distance between the empirical coverage probabilities and 

the true confidence level, the more precise the empirical value is. The 

precision5, i.e. this distance, is calculated for all 40 coverage probabilities 

for each category. Table 4 exhibits the comprehensive comparison and the 

values in Table 4 count how often the hypotheses specified in the 1
st
 

column are true. These hypotheses are what generally proved to be true by 

the empirical comparisons from the literature. They are formulated as 

                                                                 

5  The absolute value is chosen to calculate the distance in order to take both under- and 

overcoverage into consideration. 
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follows: 1) the coverage probability obtained with the percentile method is 

closer to the true confidence level than the one obtained with the basic 

method (2
nd

 and 3
rd

 rows of 1
st
 column) and 2) the residual resampling 

approach delivers better results than the case resampling approach (last two 

rows of 1
st
 column).  

Looking at the comparisons between the two different confidence interval 

methods while applying the same resampling approach, the aggregated 

results (the last column of 2
nd

 and 3
rd

 rows) suggests that 1) in 26 out of 40 

cases the percentile method yields better results than the basic method, if 

the residual resampling approach is applied and 2) the result is 28 out of 40 

with the case resampling approach. Low values are observed for i with the 

residual resampling approach (1/10) and i  with the case resampling 

approach (2/10). 

Comparing two resampling approaches while considering the same the 

interval methods, the results (18/40 and 19/40) suggest that the residual 

resampling approach does not always produce closer coverage probabilities 

than the case resampling approach. Based on these findings it can be 

conclude in the context of bootstrapping the EMP model parameters with 

optimisation errors that applying the percentile methods leads to a slightly 

better performance than using the basic method, whereas using different 

resampling approaches does not have a significant influence on the quality 

of the result. 

 Category  i1 i2β β  
iρ  

iθ  
iν  Mean 

m

bsc-RRC   77% 88% 86% 93% 86% 
m

prc-RRC   93% 93% 93% 93% 93% 
m

bsc-CRC   56% 64% 63% 62% 61% 
m

prc-CRC   96% 95% 96% 94% 95% 

Table 5 Empirical coverage of basic and percentile intervals based on 95% 

confidence level (with measurement errors) 

Table 5 lists the mean coverage probabilities obtained from the evaluation 

procedure with EMP model with measurement errors. Same categorisation 
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from Table 3 is applied. A brief glance at the results indicates again a 

general undercoverage compared to the desired value 95% except for the 

results for 
ij  and i  generated by using the percentile method and the 

case resampling approach (96% in the 2
nd

 and 4
th

 column of the last 

row).The percentile method provides better or equal coverage probability 

than the basic method for each type of the CES parameters. Also, the 

category combining the case resampling approach with the basic method 

results in notably lower coverage than the other categories. 

 Hypothesis  i1 i2β β  
iρ  

iθ  
iν  Total 

m m

bsc-RR prc-RRC C  10/10 10/10 9/10 7/10 36/40 

m m

bsc-CR prc-CRC C   10/10 10/10 10/10 10/10 40/40 

m m

bsc-CR bsc-RRC C  10/10 10/10 10/10 10/10 40/40 

m m

prc-CR prc-RRC C  2/10 2/10 1/10 2/10 7/40 

Table 6 Comparison between coverage probabilities obtained by different 

resampling approaches and bootstrap confidence interval methods (with 

measurement errors) 

Table 6 offers a detailed comparison with the same design of Table 4. The 

results in the 2
nd

 and 3
rd

 rows show the strong advantage of using the 

percentile method over the basic method, while the results in the last two 

rows suggest a mixed outcome. The residual resampling approach appears 

to be superior to the case resampling only in combination with the basic 

bootstrap method (40/40). In combination with the percentile method, the 

case resampling approach performs better than the residual resampling 

approach (7/40). In summary, for bootstrapping the EMP model 

parameters with measurement errors the percentile method is preferable to 

the basic method. However, no clear evidence exists to claim a superior 

resampling approach in this context. 

Our results generally agree with those from other literature. Efron and 

Tibshirani (1994) and Canty et al.(1996) show that the percentile method 

delivers better coverage probabilities compared to basic method. And the 

tendency of undercoverage is observed for both methods. Horowitz (2001) 
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states that the residual sampling has better numerical accuracy than the 

case resampling. The contexts in which the comparisons are conducted are 

often different. For example, numerical accuracy is often a test criterion 

besides empirical coverage, where an exact confidence endpoint exists. 

However, this is not the case for the bootstrapped confidence interval with 

EMP model. Empirical comparisons in the literature are often made for 

other bootstrap confidence interval methods, which are not chosen from 

this study. For example, Davison and Hinkley (1997) suggest that the 

studentized method yields the best results, if the log scale is used. And 

only at the larger sample sizes are percentile, BCa and Approximate 

Bootstrap Confidence (ABC) methods comparable with the studentized 

method. In their experiment, the lower and upper limits of the above 

confidence intervals are compared to the exact theoretical lower and upper 

endpoints, respectively. Canty et al. (1996) conclude based on their 

empirical comparison that the theoretical analysis of confidence interval 

methods is not the whole story, as the theory needs to be bolstered by 

numerical comparisons. 

4.6 Conclusion and outlook 

In this study, we adopt the bootstrap concept to an EMP model to construct 

confidence intervals for the estimated EMP model parameters. So far there 

are no studies offering possibilities to conduct statistical inference in the 

context of EMP models. This puts the reliability of the empirical results 

into question, as these estimated parameters are often the major drivers of 

the model, i.e. they determine how a model behaves in simulation. The 

simulation results given the uncertainty on the estimated parameter might 

lead to enormous consequence, if the very model, for example, provides 

evidence for policy making which would have a substantial socioeconomic 

and environmental impact on the global or a large scale. Thus, it is crucial 

to have some degrees of certainty on the value of estimated parameters. 

The EMP model considered in this chapter consists of a statistical model 

and an econometric estimation model based on a single farm optimisation 

economic model with CES crop-specific production functions. The data-

generating process with the statistical model provides sample data to the 
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econometric model to estimate the point estimate of the CES parameters. 

Stochastic errors are introduced in the data-generating process. Two error 

structures, measurement and optimisation errors, are considered. The 

sample data are handled as the ‘population’. One bootstrap sample is 

acquired by randomly resample the sample data with replacement. The 

residual and case resampling approaches are chosen for this purpose. The 

inference on the resampled data, i.e. estimating the CES parameters with 

the EMP model using the resampled data, gives an approximation of the 

inference on the point estimate. With sufficient bootstrap replications one 

can obtain the sampling distribution of the point estimates. The percentile 

and basic bootstrap confidence interval methods are chosen to calculate the 

bootstrapped confidence intervals. Monte Carlo simulation is implemented 

to exam the quality of the bootstrapped confidence intervals. The 

bootstrapping of EMP models is carried out with repeated sampling to 

determine the empirical coverage probability, i.e. how often the ‘true’ 

value is covered by the bootstrapped confidence intervals. Considering that 

multiple confidence intervals are calculated for multiple parameters, the 

result suggests that the procedure is in general plausible with exception 

mentioned above in section 4.5. The contribution of this study is that it is 

the first application of statistical inference on EMP model and gives some 

insights into the reliability of the estimated EMP model parameters. Also, 

it offers two algorithms for bootstrapping the EMP model and the 

evaluation procedure in a transparent and comprehensive way. And the 

plausible bootstrap algorithm could be applied for empirical application. 

Many other bootstrap confidence interval methods exist. Comparing with 

the methods chosen in this study, they are superior, at least on a theoretical 

level, according to the “goodness” criteria, i.e. they produce second-order 

accurate and correct confidence intervals: variance stabilised bootstrap-t 

(Tibshirani 1988), BCa method (Efron 1987), ABC interval (DiCiccio and 

Efron 1992) and double bootstrap (Beran 1987), to name a few. The rather 

simple first-order accurate variations, namely basic and percentile 

methods, are chosen, as superior methods require enormous computational 

capacity. Nevertheless, the more important first-order accuracy is covered 

in this study. These more sophisticated methods are preferable for an 
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empirical application in the context of bootstrapping EMP model, where 

Monte Carlo is not required. 

An alternative approach to conduct statistical inference on EMP model is 

outlined in Jansson and Heckelei (2010). They suggest a general Bayesian 

estimation approach of (inequality) constrained optimisation models with 

errors in variables. A combination of numerical techniques and out-of-

sample information via Bayesian techniques would also ultimately offer 

statistical inference measures on model parameters.  
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