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Abstract

Given their importance for the majority of cell physiology processes, protein
kinases are among the most extensively studied protein targets in drug discov-
ery. Inappropriate regulation of their basal levels results in pathophysiological
disorders. In this regard, small-molecule inhibitors of human kinome have been
developed to treat these conditions effectively and improve the survival rates
and life quality of patients. In recent years, kinase-related data has become in-
creasingly available in the public domain. These large amounts of data provide
a rich knowledge source for the computational studies of kinase drug discovery
concepts.

This thesis aims to systematically explore properties of kinase inhibitors
on the basis of publicly available data. Hence, an established “selectivity ver-
sus promiscuity” conundrum of kinase inhibitors is evaluated, close structural
analogs with diverging promiscuity levels are analyzed, and machine learning is
employed to classify different kinase inhibitor binding modes. In the first study,
kinase inhibitor selectivity trends are explored on the kinase pair level where
kinase structural features and phylogenetic relationships are used to explain the
obtained selectivity information. Next, selectivity of clinical kinase inhibitors
is inspected on the basis of cell-based profiling campaign results to consolidate
the previous findings. Further, clinical candidates are mapped to medicinal
chemistry sources and promiscuity levels of different inhibitor subsets are es-
timated, including designated chemical probes. Additionally, chemical probe
analysis is extended to expert-curated representatives to correlate the views
established by scientific community and evaluate their potential for chemical
biology applications. Then, large-scale promiscuity analysis of kinase inhibitor
data combining several public repositories is performed to subsequently explore
promiscuity cliffs (PCs) and PC pathways and study structure-promiscuity re-
lationships. Furthermore, an automated extraction protocol prioritizing the
most informative pathways is proposed with focus on those containing promis-
cuity hubs. In addition, the generated promiscuity data structures including
cliffs, pathways, and hubs are discussed for their potential in experimental and
computational follow-ups and subsequently made publicly available. Finally,
machine learning methods are used to develop classification models of kinase



inhibitors with distinct experimental binding modes and their potential for the
development of novel therapeutics is assessed.
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Chapter 1

Introduction

1.1 Protein Kinases

Protein kinases (or simply kinases) are a large family of enzymes responsible
for the catalysis of protein phosphorylation processes.1–3 This enzyme family
belongs to the class of transferases (subclass: phosphotransferases). They me-
diate the transfer of the γ-phosphate group from adenosine triphosphate (ATP)
to amino acid residues of protein substrates with a free hydroxyl group - serine
(Ser), threonine (Thr), and tyrosine (Tyr). The products of this enzymatic
reaction are adenosine diphosphate (ADP) and phospho-protein.

The covalently attached phosphate group transforms the substrate protein
in different ways. These include the change in its activity, location within a
cell, protein turnover or interaction with other macromolecules.4,5 In addition,
kinases regulate their own activity through the process of autophosphorylation.
Phosphorylation processes can be terminated or reversed by a separate class of
enzymes called phosphatases.6,7

Kinase targets are of great importance for drug discovery. Hence, their
classification, structural context, importance in (patho)physiology and drug
development will be discussed in the following.

1.1.1 Classification

In 2002, Manning et al. reported that the kinase family consists of 478
typical and 40 atypical enzymes, amounting to a total of 518 members.1 As one
of the largest protein families in the human proteome, kinases constitute ∼2%
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Figure 1.1: Human kinome. A phylogenetic tree representation of the human kinome
is shown. Clustering of the leaf nodes denotes their structural and functional similarity,
where branches containing neighboring nodes associate them in smaller classes (families and
subfamilies) and larger branches of the same part of the tree depict their wider classification
(group). Each kinase group is marked with capital blue letters whereas individual kinases
are given in black letters. Illustration reproduced courtesy of Cell Signaling Technology, Inc.
(www.cellsignal.com).
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of the human genome.1,2 This assembly of 518 kinases is often referred to as
the human kinome.

As stated, kinases catalyze the transfer of a phosphate group to Ser, Thr, and
Tyr residues of substrate proteins. This forms the basis for their classification as
protein-serine/threonine kinases (385 representatives), protein-tyrosine kinases
(90), and protein-tyrosine kinase-like group (43). Moreover, protein-tyrosine
kinases can be divided into receptor (58) and non-receptor (32) kinases.1 Thus,
a majority of the kinases act on both serine and threonine residues, whereas
the others act only on tyrosine. In addition, only a small number of kinases
acts on all three residues (dual-specificity kinases).1

Although the majority of human kinases share a common catalytic domain,
sequence analysis showed substantial variations with distinct and ancient func-
tions. In order to quantify this diversity, a standard kinase classification scheme
was proposed. This classification took into consideration the evolutionary his-
tory, functions, sequence, and structural similarity. Accordingly, kinases were
assigned to kinase groups consisting of many families, whereas some families
were further divided into multiple subfamilies. Groups display broad specificity
of substrate sites, families classify kinases by both broad biological function and
sequence similarity, while subfamilies signify finer functional and sequence sim-
ilarity. This classification was first published by Manning et al. It extended the
previous classification scheme proposed by Hanks and Hunter.8 In 1995, Hanks
and Hunter clustered kinases into 5 groups, 44 families, and 51 subfamilies.8

Seven years later, Manning et al. extended this classification to 9 groups, 134
families, and 196 subfamilies.1 Kinase classification has further been refined
over the years, mainly by Manning and coworkers at Salk Institute. Schematic
representation of the phylogenetic tree of human kinome is shown in Figure
1.1.

1.1.2 Molecular Structure

Given that kinases possess a high level of structural complexity, their study
from the aspect of structural biology requires special attention. Herein, the ba-
sic structural features will be outlined, as well as their importance for catalytic
activity and drug research.

3



N-terminal lobe

C-terminal lobe

G-rich loop
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GK

αC-helix

A loop

DFG

ATP-binding
region

Figure 1.2: Kinase structure. Three-dimensional structure of EGFR kinase (PDB ID:
1M17) is schematically represented. Some of the discussed structural features are depicted as
follows: N-terminal lobe, C-terminal lobe, G-rich loop (green), hinge (pink), GK residue (or-
ange), αC-helix (red), and A loop with DFG motif (blue). Molecular surface of co-crystalized
small-molecule inhibitor erlotinib marks the location of ATP-binding region.

Kinases are composed of two lobes of different sizes: a smaller amino(N)-
and a larger carboxy(C)-terminal lobe (Figure 1.2).9 The N-terminal lobe is
largely composed of an antiparallel β-sheet consisting of five strands (β1 - β5).10

Additionally, it holds a regulatory αC-helix that acquires either active or inac-
tive orientation. A conserved glycine(G)-rich loop, sometimes called P-loop, is
found between strands β1 and β2. It is responsible for binding phosphate group
of ATP. Conserved Lys residue of β3 strand forms a salt bridge with Glu of αC-
helix. This is a prerequisite for the active “αCin” conformation of kinases. The
absence of this salt bridge drives the kinase into the inactive state (“αCout”).
However, the presence of the salt bridge is not sufficient for the expression of
full kinase activity.11,12
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Opposite to N-terminal lobe, C-terminal lobe is mainly composed of he-
lices, eight in total (αD - αI, αEF1, and αEF2).13 Four conserved β-strands
(β6 - β9) are also present in the larger lobe of active kinases. In inactive ki-
nases, this structural composition is disrupted. In addition, the larger lobe
contains residues of the catalytic loop. The catalytic loop participates in phos-
phate transfer between ATP and substrate protein. Key regulatory element of
kinases present in the C-terminal lobe is the activation segment. This 35-40
residues long segment begins with the DFG (Asp - Phe - Gly) motif in nearly
all kinases.14 It controls both catalytic efficiency of an enzyme and binding of
a protein substrate. The central part of the activation segment is known as
the activation(A) loop. In all active kinases, the activation segment adopts an
open or extended conformation, whereas the inactive form of a kinase contains
the closed conformation. In the former case, the DFG motif is positioned to-
wards the ATP-binding site, and is termed “DFGin”. In the latter, the motif
is extended in the opposite direction, and is named “DFGout”. In addition,
the presence of two Mg2+ ions is important for the catalytic activity of most
kinases.

Both lobes assemble to form the catalytic spine (C-spine) and the regulatory
spine (R-spine).15,16 The C-spine is essential for ATP positioning, whereas the
R-spine interacts with a substrate to allow catalysis. The R-spine consists of
residues from both the activation segment and αC-helix. The segment of kinases
connecting the small and the large lobes is called the “hinge”. The hinge consists
of several conserved residues that provide essential hydrogen bond interactions
with the adenine moiety of ATP. The majority of current kinase inhibitors bind
competitively to the ATP-binding site, forming hydrogen bonds with hinge
residues.17

Adjacent to the hinge region, at the very end of the β5 strand, is posi-
tioned the “gatekeeper”(GK) residue. The terminology behind the name sig-
nifies its role in limiting the access to the hydrophobic pocket adjacent to the
ATP-binding site.18,19 This is particularly important for the design of small-
molecule kinase inhibitors that exploit interactions with the residues of that
region. Different sizes of GK residues in kinases, as well as their mutations, are
of great importance for inhibitor selectivity and therapeutic efficiency, respec-
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tively. About 77% of kinases contain a relatively large GK residue (e.g., Leu,
Met, Phe), whereas others contain smaller residues (e.g., Thr, Val).20

1.1.3 Clinical Significance

Members of the kinase family assume a wide range of roles in cell physi-
ology. Primarily, kinases mediate most of the signal transduction processes in
cells of eukaryotic organisms, including human cells. In addition, they con-
trol transcription, metabolism, cytoskeletal rearrangement and cell movement,
cell cycle progression, differentiation, and apoptosis. A crucial point of kinase-
directed phosphorylation is found in homeostasis and physiological responses,
intercellular communication during the development stage, as well as the per-
formance of immune and nervous systems. Evidently, the catalytic activity of
kinases is crucial to the maintenance of majority of cell physiology processes.21

Consequently, mutation, overexpression, and dysregulation of kinases is
the foundation of pathogenesis in multiple diseases. These include autoim-
mune, asthma, cardiovascular, inflammatory, metabolic, and neurological dis-
orders.22–27 However, the widely explored therapeutic indications in kinase drug
discovery are oncology-related as demonstrated by the number of designed ther-
apeutics.4,28,29 Despite their widespread potential, the clinical progress of ther-
apeutic indications involving kinases has been uneven.

Development of small-molecule modulators, in particular inhibitors, has rev-
olutionized the treatment of certain diseases, such as gastrointestinal stromal
tumors and chronic myeloid leukaemia. For these, and other conditions, kinase
inhibitors increased survival rates in patients tremendously.30–32 On the other
hand, smaller but significant responses were observed for cancer types that
highly depend on angiogenesis. These forms of cancer, such as renal cell car-
cinoma, are in particular sensitive to inhibitors that target signaling pathways
of vascular endothelial growth factor (VEGF).33–35 By far, the least therapeu-
tic efficiency has been achieved for breast, colorectal, lung, pancreatic, and
prostate cancer. These oncological disorders still retain the highest mortality
rates. Kinase inhibitors targeting these forms are successful in prolonging the
survival rate of patients by only a few months.36–38
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Besides oncology, equally exciting opportunities for kinase drug discovery ex-
ist for the other diseases.39 For example, pan-Janus kinase (pan-JAK) inhibitor
tofacitinib is approved for the treatment of rheumatoid arthritis.40 Bruton ty-
rosine kinase (BTK) inhibitors such as evobrutinib41 and MSC2364447C42 are
clinical candidates for rheumatoid arthritis and systemic lupus erythematosus,
respectively. In addition, a combined inhibitor of both phosphoinositide 3-
kinase (PI3K) δ and γ, duvelisib is currently under Phase II of clinical develop-
ment for mild asthma.43 Considerable attention is paid for inhibitors of VEGF
receptor (VEGFR) and serine/arginine-rich protein-specific kinase 1 (SRPK1),
such as X-8244 and SPHINX3145 respectively, in the treatment of wet age-
related macular degeneration. Clearly, the importance of kinase targets for the
contemporary drug discovery is multifaceted.39

1.1.4 Inhibitors of Human Kinome

The most common mechanism of action of kinase-directed therapeutics is
inhibition. The development of kinase inhibitors has taken two paths. On
one hand, monoclonal antibodies such as bevacizumab and cetuximab have
been developed as extracellular inhibitors of protein-tyrosine kinases VEGF and
epidermal growth factor receptor (EGFR), respectively.46 On the other, small-
molecule inhibitors such as crizotinib and dabrafenib, have been introduced as
inhibitors of anaplastic lymphoma kinase (ALK) and serine/threonine-protein
kinase B-Raf (BRAF) Val600Glu mutant, respectively.46 The following sections
will focus on small-molecule inhibitors of human kinome.4,5,28

As of April 12, 2019, the U.S. Food and Drug Administration (FDA)47

has approved 49 small-molecule kinase inhibitors for the market.48 Nearly all
of them are orally effective, except for netarsudil49 (given as an eye drop)
and temsirolimus50 (given intravenously). Among the approved drugs, 26 in-
hibit receptor and 10 non-receptor protein-tyrosine kinases. The remaining
13 inhibitors target protein-serine/threonine kinases. The majority of FDA-
approved kinase inhibitors (43) are used to treat malignancies (36 against solid
tumors and seven against non-solid tumors). Eight of 49 inhibitors are used
for non-oncological therapeutic indications. Two kinase inhibitors, ibrutinib
and sirolimus, are used in the treatment of both malignant and non-malignant
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Dasatinib (2GQG) 

Type I 

Lapatinib (1XKK) 

Type I½ 

Nilotinib (3CS9) 

Type II 

Cobimetinib (4AN2) 

Type III 

38M (3F9N) 

Type IV Type V 

112 (1GAG) 

R1 = AcNH2 - (Lys)3 - Leu - Pro - Ala - Thr - Gly - Asp - 

R2 = - Met - Asn - Met - Ser - Pro - Val - Gly - Asp - COOH 

Afatinib (4G5J) 

Type VI 

Figure 1.3: Types of kinase inhibitors. Kinase inhibitor examples of each discussed
inhibitor type are shown. Below each inhibitor, its clinical name or three-character PDB
name is given. In the brackets, PDB IDs are given for each crystal structure used to extract
the corresponding ligand.
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disorders. Non-malignant therapeutic indications targeted by approved kinase
inhibitors are rheumatoid arthritis (baricitinib, tofacitinib), chronic immune
thrombocytopenia (fostamatinib), myelofibrosis and polycythemia vera (rux-
olitinib), idiopathic pulmonary fibrosis (nintedanib), renal graft versus host
disease (sirolimus and ibrutinib), glaucoma (netarsudil), and psoriatic arthritis
and ulcerative colitis (tofacitinib).48

Most commonly targeted kinases by FDA-approved drugs are ALK, Bcr-
Abl, B-Raf, EGFR, and VEGFR. Direct interactions with the kinase domain are
observed for 46 of 49 inhibitors. The remaining three, everolimus, sirolimus, and
temsirolimus, bind to FK506-binding protein 12 (FKBP-12) to form a complex
which inhibits mammalian target of rapamycin (mTOR). At least 18 inhibitors
are known to be multi-kinase inhibitors. Covalent inhibition of kinase targets
is achieved by six drugs, namely acalabrutinib, afatinib, dacomitinib, ibrutinib,
neratinib, and osimertinib.48

The precise number of kinase inhibitors undergoing clinical development
is not known. Carles et al. reported at least 180 inhibitors taking part in
phase 0 to 4 of clinical trials worldwide.51 On the other hand, Klaeger et al.
explored selectivity profiles of 243 clinical candidates at various stages of clinical
development.52 The number of marketed drugs has almost doubled in size in
the course of three years (2016: 27 drugs; 2019: 49 drugs).17,48 This increase
over a short period of time clearly denotes their importance for drug discovery.

Kinase inhibitors explore distinct kinase pockets as part of their inhibition
mechanism. This provides basis for their classification into different inhibitor
types.17 First, Dar and Shokat divided small-molecule kinase inhibitors into
three classes, which they labeled as type I, II, and III.19 Type I inhibitor was
defined as a small molecule that binds in the ATP pocket of active kinases
(DFGin and αCin). Type II was introduced as compound binding to an inactive
DFGout conformation. It explores ATP-binding site and adjacent hydrophobic
pocket that opens when the DFG motif assumes the “out” state. A subtype
of type I, called type I1/2, was introduced by Zuccotto et al.53 These inhibitors
form hydrogen bonds with the hinge region and extend towards the back cavity,
interacting with residues that bind type II pharmacophores. They bind to inac-
tive kinases with DFGin and αCout conformations. Type III was described as an
allosteric inhibitor, or a non-ATP competitive inhibitor. Allosteric compounds
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bind to regions distinct from commonly explored active sites.54 For kinase in-
hibitors, this refers to regions outside the ATP-binding pocket. Furthermore,
Gavrin and Saiah divided type III allosteric inhibitors into type III and type
IV.55 According to them, type III inhibitors bind to the pocket adjacent to the
ATP-binding site, whereas type IV bind outside the phosphoacceptor region.
Type V inhibitors were defined by Lamba and Gosh as bivalent compounds
that span two separate regions of the kinase domain.56 Covalent inhibitors are
defined as a separate class of type VI inhibitors.17 Examples of the discussed
inhibitor types are given in Figure 1.3.

1.1.5 Kinase Inhibitor Data in Public Domain

With the advent of genomic technologies, high-throughput screens, and com-
putational infrastructures, kinase inhibitor experimental data has become in-
creasingly available in the public domain.57 In 2014, Hu et al. obtained 18,951
kinase inhibitors with high-confidence activity annotations from ChEMBL (re-
lease 18), a major repository of data from medicinal chemistry literature.58,59

As defined previously, high-confidence data from ChEMBL is characterized by
activity information with highest assay and highest measurement reliability.60

These compounds were annotated against 266 kinases. In the course of five
years (ChEMBL 24.1 in 2019), the number of available kinase inhibitors almost
tripled in size. Using identical extraction criteria, 53,220 kinase inhibitors ac-
tive against 311 kinases were found in ChEMBL.59 Furthermore, as of June 15,
2019, more than 4450 structures of human catalytic kinase domains are avail-
able in Protein Data Bank (PDB).61 In spite of the different origins, this data
presents a rich source of knowledge for computationally-driven efforts in kinase
drug discovery.

For example, large-scale analysis of kinase inhibitors can reveal their
structure-property relationships to complement the current chemical optimiza-
tion efforts for specific kinases. On the other hand, multi-kinase activities of
inhibitors can be systematically explored to assess their potential for different
therapeutic areas. Additionally, activity information of multi-kinase inhibitors
may be used in in silico selectivity profiling studies.62–64 In turn, this may reveal
compound features participating in the differentiation of kinase targets. This
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is of particular interest in the area of chemical biology where small-molecule
chemical probes are used to explore biological functions of protein targets.65

These and many other analyses would not be possible without the increasing
volumes of compound information from medicinal chemistry. Hence, chemoin-
formatics approaches can be used to explore the trends of kinase inhibitor data
and their potential use for drug discovery. In the following, the chemoinformat-
ics concepts used for large-scale analysis of kinase inhibitor activity data are
discussed.

1.2 Molecular Representations

Computer-friendly representations of compounds are required for efficient
storage and manipulation. Two-dimensional (2D) structures of molecules can
be understood as graphs, where nodes correspond to heavy atoms and edges
to bond relationships.66 In such graphs, nodes store atom characteristics, such
as charge or hybridization state, whereas edges capture bond information, such
as bond order or stereochemistry. Moreover, the information about hydrogen
atoms is treated as a special attribute of heavy atom nodes. Correspondingly,
a graph provides topological information about each molecule, usually stored
as a connectivity table. However, further simplification is possible with lin-
ear representations, which in computer code are treated as strings. Some of
the most popular linear representations of molecular structures are Simplified
Molecular-Input Line-Entry System (SMILES)67 and International Chemical
Identifier (InChI).68

SMILES representations were established to efficiently store chemical in-
formation and facilitate their retrieval and modeling.67,69,70 On the basis of
predefined rules, graphs of molecular structures are transformed into strings of
ASCII characters. Atoms are represented as their atomic symbols and branch-
ing is enclosed in parentheses in SMILES notation. Special symbols are defined
for aromaticity, chirality, isotope presence, and stereochemistry of a molecule.
A typical SMILES annotation will usually take 50% to 70% less space com-
pared to graph-based connectivity tables. Because of the ability to canonicalize
their representation, SMILES notations are highly popular and practical. This
allows efficient data storage and retrieval, which is not possible without canon-
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icalization. Therefore, the consistent use of canonicalized SMILES presents a
cornerstone for chemoinformatics approaches.

1.2.1 Descriptors

In addition to graph- and string-based representations, compounds can be
characterized by numerical molecular descriptors. These describe properties
and structural features of molecules. Some molecular descriptors, such as
physico-chemical properties, can be derived from experimental measurements
(e.g., dipole moment, partition coefficient, and molar refractivity), whereas oth-
ers can be obtained in silico from mathematical models using an appropriate
molecular representation (e.g., SMILES). Molecular descriptors account for a
variety of physico-chemical, surface, topological, and other properties describing
small molecules.71–73 Their retrieval depends on the dimensionality (D) infor-
mation of a molecule. In this regard, molecular descriptors can be classified as
1D, 2D, and 3D descriptors.74 1D descriptors are calculated directly from the
molecular formula or linear annotation and are commonly known as constitu-
tional descriptors (e.g., number of atoms, bond count, molecular weight). 2D
descriptors are based on molecular topology and thus require molecular struc-
ture for their calculation (e.g., topological indices, fragment counts). Lastly, 3D
descriptors require a specific three-dimensional conformation of a molecule that
provides geometrical parameters (e.g., molecular surfaces and fields, parameters
calculated in quantum chemistry programs). As an extension, 4D descriptors
are described as representations merging several conformations (an ensemble
of conformations) that combine both conformational flexibility and alignment
freedom.75 Descriptors range from those that are relatively simple to calculate
to those having much higher complexity. The values of some descriptors may
be shared among many compounds, whereas others are more discriminatory in
nature. Therefore, the selection of an appropriate descriptor set is often pivotal
to success.
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Erlotinib

NC

Figure 1.4: Substructure-based fingerprint. A substructure-based fingerprint of length
ten is shown for a kinase inhibitor erlotinib. When a feature is present, a corresponding bit
is set to “1” (blue), otherwise it is set to “0” (white). Substructural features comprising the
fingerprint are shown as molecular patterns in an enlarged bit vector representation. The
figure is adapted from Stumpfe et al.76

1.2.2 Fingerprints

Molecular fingerprints are among the most widely used group of descriptors
for chemoinformatics applications. They are defined as bit string representa-
tions of molecular properties or structural features. In binary fingerprints, each
bit position encodes the presence or absence of a feature thus taking either of
the two values: “1” (feature is present) or “0” (feature is absent). Computation-
ally, this array of bits can be manipulated and compared rather efficiently. This
establishes the basis for their extensive use in areas such as similarity searching
and machine learning.

Fingerprints can vary substantially in their design, length, and complex-
ity.76,77 One of the most commonly applied fingerprints are substructure-based
fingerprints. These fingerprints are fixed in their length, where each posi-
tion corresponds to a predefined substructural pattern. A prime example of
substructure-based fingerprints is given by Molecular ACCess System (MACCS)
keys that consist of 166 bit positions.78 Figure 1.4 shows an example of a
substructure-based fingerprint with arbitrary length.

Another popular fingerprint design are combinatorial fingerprints. In con-
trast to substructure-based design, combinatorial fingerprints have a flexible
length as their features are not predefined. Instead, all possible substructural
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Diameter: 0 Diameter: 2 Diameter: 4 

Figure 1.5: ECFP fingerprint. Calculation of an ECFP fingerprint with bond diameter
four is shown for a representative carbon atom (deep purple) of erlotinib. Each increasing
diameter representation is shown in a lighter shade of purple. The resulting topological envi-
ronment per diameter is shown as structural pattern. The connectivity information outside
observed diameter is given by dashed line, with dummy atoms represented by asterisks (*).
The figure is adapted from Stumpfe et al.76

graphs up to a given size are extracted and then hashed to obtain numbers.
The most prominent representative of this group is the Extended Connectivity
FingerPrint (ECFP).79 ECFP captures layered atom environments (topology)
around each non-hydrogen atom up to a predefined bond diameter. For exam-
ple, ECFP4 limits the bond diameter to four to delineate atom neighborhoods
of growing size. An example of how ECFP fingerprints of increasing diameter
are derived is shown in Figure 1.5. With the use of a hash function, features
of ECFP fingerprints can be folded to obtain a specified number of bits, most
commonly 1024-bit or 2048-bit representations. This however may introduce a

14



problem for the feature selection process because structural patterns of different
origin might correspond to the same bit position.80

1.3 Structure-Property Relationships

Simple molecular representations such as SMILES can be used to extract
a wide array of compound properties. However, not all compound properties
are equally considered during the chemical optimization. Increasing volumes of
compound data can be used to analyze structure-property relationships on a
large scale in order to improve our understanding of properties that require op-
timization. Structure-property relationship studies of compounds are one of the
key concepts of chemoinformatics. It relies on the “similarity property princi-
ple”, which states that structurally similar molecules share similar properties.81

For the design of compounds with desirable therapeutic efficacy, biological ac-
tivity (or simply activity) is one of the most important properties to consider.
Accordingly, the properties derived from well-defined activity values, such as
selectivity and promiscuity, are important for drug discovery applications. An
increasing number of experimental profiling campaigns is frequently supported
by in silico studies, which aim to further advance our knowledge of compound
selectivity and promiscuity. This holds true for kinase drug discovery, where
the “selectivity versus promiscuity” balance plays a leading role for a number
of therapeutic applications.

1.3.1 Activity and Selectivity

In accordance with drug discovery objectives, many chemoinformatics ap-
proaches rely on the exploration of structure-activity relationships (SARs) of
compounds. SAR analysis evaluates how structural modifications in compounds
affect their binding characteristics towards a specific target.82 In particular,
SAR analysis aims to explore sets of compounds sharing a high level of struc-
tural similarity, such as analog series. This enables us to study subtle structural
differences responsible for high (or low) levels of activity. Although SAR analy-
sis seeks to identify compounds with favorable activity values, this is often not
sufficient to satisfy drug discovery efforts.
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The development of active compounds that are selective for a target of
interest has been, and continues to be, a central goal of drug discovery.83 The
compound selectivity requirement was initially propagated by the compound
specificity paradigm in the 1980s. This paradigm states that a compound should
be highly specific for its target (single-target compounds). With the advent of
screening technologies, it was shown that many of the approved drugs elicit
multiple target activity (multi-target compounds) as part of their mechanism
of action.84–86 Although many compounds elicit their therapeutic effect through
modulation of multiple targets, compound selectivity will remain relevant for
many research areas, including medicinal chemistry and chemical biology.65,87

Kinase inhibitors are a prime example of compounds for which the interplay
between selectivity and multi-target activity plays a decisive role in determin-
ing their therapeutic efficacy.22–28 Given that the majority of kinase inhibitors
bind to the largely conserved ATP-binding site (type I inhibitors), these com-
pounds are expected to have multi-kinase activity. This has been demonstrated
by a number of experimental studies.88–91 The multi-kinase activity resembles
compound promiscuity, where small molecules specifically interact with multiple
targets (kinases).87 However, other kinase profiling studies provided contrasting
views where many kinase inhibitors showed desirable selectivity patterns.52,92,93

In addition to the active site, type II inhibitors explore an adjacent hydropho-
bic pocket that opens when the DFG motif assumes the “out” conformation.19

As this pocket is structurally less conserved than the ATP-binding site, type II
inhibitors are expected to be more selective than type I inhibitors.94 However,
some profiling experiments provided opposing evidence finding that type II in-
hibitors were frequently promiscuous.94 Hence, the typically assumed selectivity
differences of these two inhibitor types require further investigation.95,96

To support this, extensive structural studies of type I and II kinase inhibitor
binding modes were conducted.58,94,97 It was found that many type II inhibitors
contained a typical “type I head” fragment and a set of moieties specific for the
type II group. These type II-specific features included a combination of a hy-
drogen bond donor acceptor pair (e.g., amide or urea functional group) and a
hydrophobic tail. Thus, a set of 70 fragment pairs (seven hydrogen bonding
linkers and 10 hydrophobic tails) were established as a guideline for rational
design of type II inhibitors.94 However, the structural analysis confirmed that

16



the often assumed selectivity advantage of type II inhibitors could not be fully
supported.94,97 On the other hand, type I1/2 inhibitors explore kinase-specific
subpockets and binding interactions common to both type I and type II in-
hibitors.53 Thus, type I1/2 inhibitors may in fact be the most selective compared
to the inhibitors with closely related type I and II binding modes.

On the other hand, type III and IV inhibitors are claimed to be more se-
lective as they exploit binding pockets and regulatory mechanisms unique to
particular kinases.55 Only few have been reported to date as they are mainly the
product of empirical research. Considerable success has been achieved in the
field of targeted covalent inhibitors which show advantages over reversible coun-
terparts.98 First and foremost, their residence time is considerably increased.
This allows application of lower doses which minimize potential off-target ac-
tivity.99 In addition, covalent inhibitors target residues unique to their targets
(e.g., Cys) which additionally improves their selectivity. To this date, six of
them have been approved to the market by the FDA.48 Clearly, substantial
efforts have been made so far to design selective kinase inhibitors serving as
clinical candidates.

Moreover, compound selectivity plays a decisive role in other research ar-
eas such as chemical biology.65 Here, small-molecule chemical probes are used
as indispensable tools to interrogate biological consequences of target modu-
lation.100,101 Naturally, chemical probes should be subjected to stringent re-
quirements as part of their development. In particular, they should be capable
of selectively binding to designated targets and modulating their functions in
physiological context.65,100–102 Although many rigorous requirements are im-
posed on their development, many successful chemical probes for a number of
kinase targets have been developed over the years.103–107

1.3.2 Promiscuity and Polypharmacology

Increasing volumes of compound activity data continue to provide an im-
mense support for large-scale analyses of compound promiscuity.60,108 Among
these, multi-kinase inhibitors receive most attention, given their potential value
for different therapeutic areas, primarily oncology.109–111 For these inhibitors,
multi-kinase activity forms the basis of polypharmacology. Polypharmacol-
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ogy is an emerging paradigm in drug discovery according to which compounds
elicit their therapeutic effects through multi-target interactions.84–86 Compound
promiscuity forms the basis for polypharmacology. It explores specific com-
pound binding to multiple targets.87 However, compound promiscuity may also
originate from assay artifacts or nonspecific interactions.112–115 In that case,
compounds designated as kinase inhibitors would be discarded from further
consideration, or handled with care.

At least a third of FDA-approved kinase inhibitors are known to bind mul-
tiple kinases.48 For example, the orally administered multi-kinase inhibitor
sunitinib is one of the first cancer drugs approved for two therapeutic indi-
cations simultaneously: imatinib-resistant gastrointestinal stromal tumor and
renal cell carcinoma.116,117 This multi-kinase inhibitor targets members of the
protein-tyrosine kinase group, in particular VEGFR1, VEGFR2, fetal liver ty-
rosine kinase receptor 3 (FLT3), mast/stem cell growth factor receptor (KIT),
platelet-derived growth factor receptor α (PDGFRα) and PDGFRβ in both
biochemical and cell-based assays. The simultaneous inhibition of these targets
reduces the tumor vascularization and initiates apoptosis of cancer cells, ulti-
mately resulting in tumor shrinkage.117 In 2009, numerous regulatory admin-
istrations worldwide approved pazopanib for advanced soft tissue sarcoma and
metastatic renal cell carcinoma.118 Similarly to sunitinib, pazopanib is a multi-
receptor protein-tyrosine kinase inhibitor of VEGFR1, VEGFR2, VEGFR3,
PDGFRα, PDGFRβ, and c-Kit.119 Hence, pazopanib shows antiangiogenic and
antitumor effects. These and many other examples such as CHIR-258120 and
MK-2461121 support the purpose of multi-kinase inhibitors in a plethora of
oncological indications.

In addition to experimental profiling studies, promiscuity can be estimated
computationally through systematic data mining of large repositories of com-
pound activity data.122,123 In this case, data integrity and varying confidence
levels need to be carefully considered to provide reliable estimates of compound
promiscuity levels.124 Compound promiscuity can be quantified using promis-
cuity degrees (PDs). This simple measure collects the number of targets against
which a compound is active.125 Extensive analysis of high-confidence compound
activity data from ChEMBL suggested that bioactive compounds inhibited on
average one or two targets, whereas the average for the most promiscuous com-
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pounds was two to seven targets of the same protein family.122,126 Similar data
extraction criteria were applied to kinase inhibitor data which suggested that
76% of the publicly available kinase inhibitors were annotated with a single ki-
nase.127 When confidence criteria were iteratively relaxed, no notable increase
in promiscuity of kinase inhibitors was detected.111 This was in contrast to a
general assumption that ATP site-directed kinase inhibitors tend to be promis-
cuous. Computational studies of kinase inhibitor promiscuity are often ques-
tioned due to data sparseness, because all compounds were not tested against
all kinases.128 However, given the consistency of promiscuity results that origi-
nate from large data sets, these observations should be statistically meaningful
and cannot be simply attributable to data incompleteness.

There are several computational approaches used to study kinase inhibitor
promiscuity on a molecular level. For example, structurally related compounds
with alternating levels of promiscuity, known as promiscuity cliffs,129–132 can
be studied for structural features distinguishing between promiscuity and se-
lectivity.133 Additionally, network representations of chemically similar com-
pounds can be used to establish novel target relationships that infer compound
promiscuity.134–136 Moreover, data coming from X-ray crystallography can be
used to study binding site similarities of targets that contain promiscuous com-
pounds,137,138 as well as binding interactions underlining promiscuity.139,140 Ev-
idently, a multitude of computational approaches for promiscuity analysis exist
for which kinases are a representative target family to explore.

1.4 Structural Similarity

1.4.1 Fingerprint Similarity

Analysis of structure-property relationships is based on the evaluation of
compound similarity. For sets of structurally similar compounds, property rela-
tionships (e.g., activity, promiscuity) between compounds need to be estimated.
Similarity indices were developed to quantify chemical similarity on the basis of
bit string representations (e.g., fingerprints). Although many similarity indices
can be employed for this purpose, the Tanimoto coefficient (or Jaccard index)
is the most commonly used.141 It is calculated as the ratio between intersection
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and union of the two sets of patterns.142 The obtained ratio between 0 (not
similar) and 1 (identical fingerprints) is a measure of similarity for a pair of
compounds. If compound A has a chemical patterns, and compound B has
b chemical patterns, with value c representing the number of shared chemical
patterns, the Tanimoto coefficient (Tc) is calculated using the following equa-
tion:

Tc (A,B) =
c

a+ b− c
For some chemical descriptor-based approaches, similarity indices require

the definition of a threshold value to consider compounds as similar. The use
of a threshold value is not always straightforward, given that it relies on fin-
gerprint design and evaluated data set. On the other hand, substructure-based
approaches establish direct structural relationships using a set of predefined
rules (on the basis of molecular graphs).143 Some of the methods employing
substructure-based approaches will be discussed in the following.

1.4.2 Matched Molecular Pairs

Matched molecular pairs (MMPs) are defined as pairs of compounds that
differ by a chemical change at a single site.144,145 The common substructure to
both compounds is termed key fragment or MMP core, while the exchanged
fragments constitute a chemical transformation.146 Following a number of com-
putationally expensive MMP approaches, Hussain and Rea introduced an al-
gorithm that was more efficient and reliable.146 The algorithm consists of two
steps: molecule fragmentation and generation of MMPs.

First, each molecule is fragmented along the non-ring single bonds. To keep
the connectivity information, an attachment point is added to mark where each
bond was broken. Fragmentation can occur simultaneously at one, two, or three
bonds, thus generating single, double, or triple “cuts”, respectively. Frequently
considered single-cut fragments consist of a larger fragment that is used as a key
fragment, and a smaller one that is used to define the chemical transformation.
Following the systematic fragmentation of all available compounds, compound
pairs that present MMPs are identified. As several possible key fragments
may exist, only the largest one is retained whereas the others are removed.
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Figure 1.6: Matched molecular pair as promiscuity cliff. Shown are two compounds
(A and B) forming a matched molecular pair (MMP) that conforms to promiscuity cliff
(PC) requirements. The promiscuity degree (PD) is given for each compound. Structural
modifications are highlighted in orange.

Transformation size-restricted MMPs are most commonly used to define com-
pound relationships of chemically relevant analogs.147 The original algorithm
describes exhaustive fragmentation of non-ring single bonds. However, other
fragmentation rules such as REtrosynthetic Combinatorial Analysis Procedure
(RECAP)148 rules can be applied to generate RECAP-MMPs149 that resemble
chemically more meaningful transformations.

The MMP concept provides a basis for the definition of activity cliffs
(ACs)150 and promiscuity cliffs (PCs).129–132 ACs are defined as pairs of struc-
turally similar compounds (e.g., MMPs) with large differences in activity for a
particular target.150 An activity ratio of 100-fold is usually taken as threshold
for ACs. In addition, PCs are defined as pairs of structural analogs (usually
MMPs) with large differences in promiscuity (∆PD).129–132 The ∆PD is defined
as the difference of the PD values of two compounds. A number of different
∆PD values have been defined for different purposes so far.129–132 PCs formed
by inhibitors of human kinome are of particular relevance for the study of
structure-promiscuity relationships.133

Moreover, highly promiscuous compounds can be used to infer new target
hypotheses for sets of close structural analogs. Clearly, the application domain
of kinase inhibitor PCs is multifaceted and will likely expand with growing
compound activity data. An exemplary MMP, conforming to PC requirements,
is shown on Figure 1.6.
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1.4.3 Scaffolds and Compound Cores

Scaffolds are commonly referred to as core structures or structural backbones
of molecules. Two or more molecules that contain the same scaffold also share a
common substructure. The scaffold concept is widely used to cluster bioactive
compounds and relate their property relationships.151 However, the definition
of a scaffold can be viewed very differently in both medicinal chemistry and
chemoinformatics. In medicinal chemistry, the scaffold definition relies on the
subjective perception of a chemist and structural context of analyzed analog
series to which synthetic rules can be applied. In chemoinformatics, the extrac-
tion of scaffolds needs to be algorithmically efficient and generally applicable
to large data sets. Computational approaches are continuously revising and
introducing new scaffold definitions in order to satisfy the needs of medicinal
chemistry.152

The Bemis-Murcko (BM) scaffold is most widely applied scaffold definition
in chemoinformatics applications.153 BM scaffolds are generated by the removal
of all non-ring R-groups from compounds while retaining ring structures and
linkers between them. Accordingly, BM scaffolds are obtained for molecules
containing ring systems, which commonly applies to bioactive compounds. The
combination of rings and retained linker fragments is also known as a “frame-
work”. BM scaffolds can further be simplified by disregarding atom type and
bond information. It is usually done by transforming framework atoms to car-
bons and setting all bond orders to one.154 This representation, called cyclic
skeleton (CSK), further abstracts the chemical information while preserving the
molecular topology. The representative BM scaffold and CSK derived from a
compound set are shown in Figure 1.7.

Although highly popular, the concept of BM scaffolds comes with certain
limitations. In medicinal chemistry, ring structures are also used as substituents
during the optimization process and are not considered part of the modified
scaffold. However, the BM concept treats ring structures as part of the frame-
work, where an introduction of a new ring to the original molecule yields a new
BM scaffold.155 This modification would classify the compounds as dissimilar
due to the structural differences between generated BM scaffolds. On the other
hand, two molecules might still share the same BM scaffold while containing
substituents of different sizes and complexity. To overcome these shortcomings
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Compounds

BM scaffold CSK

Figure 1.7: Hierarchy of chemical representations. Three exemplary compounds and
their chemical abstractions (BM scaffold and CSK) are shown. The extracted BM scaffold
(blue) is further simplified to obtain a CSK (red).

several new definitions of MMP-based scaffolds (cores) and analog series have
been introduced in recent years.156,157

Among recent developments is the compound-core relationship (CCR)
method, which systematically identifies analog series having a common core
structure.157 The CCR method relies on three sequential steps: generation of
cores, exploration of CCRs, and identification of analog series. For each com-
pound in a data set, all possible combinations of one to five bonds are sys-
tematically cleaved using RECAP rules. Thus, each combination of RECAP
rules corresponding to the elimination of single or multiple bonds results in a
potential core. Moreover, cores and substituents need to meet predefined size
ratio. Cores that are identical except for the location of their substitution sites
are not distinguished. Then, compounds are assigned to each of their derived
cores, where the compound itself is also considered to be a core with no sub-
stitutions. At the end, an analog series is formed if two compounds share the
same core. On the basis of CCRs, a compound can belong to different analog
series. Thus, compounds are uniquely assigned to a single analog series in a
disambiguation step, preferentially assigning compounds to larger series or in
case of a tie to the larger core and series with fewer substitution sites.157 This
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Compounds All possible cores Common core

Figure 1.8: Concept of compound-core relationship method. Identification of analog
series using the CCR method is schematically represented. For two compounds, all possible
cores are generated following bond fragmentation (red line). For the two analogs, the largest
common core is identified (encircled in green) and isolated. In the common core, substitution
sites are encircled in orange. The figure is adapted from Naveja et al.157

methodology is conceptually simple, yet attractive for organic and medicinal
chemists as it allows the organization of analog series in R-group tables. This
further simplifies their use in SAR analyses.158 Figure 1.8 shows a schematic
representation of CCR method.

1.5 Machine Learning

Machine learning methods are used to develop computational models that
are able to learn patterns or rules from provided data to classify objects (predict
class labels). Machine learning has become widely popular in chemoinformat-
ics and drug discovery applications for a number of classification and regres-
sion tasks.159 In drug discovery applications, they are often used to predict
novel active compounds and compound properties, and to perform compound
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Figure 1.9: Random forest. An ensemble of three decision trees is shown forming an RF.
The outcome of each leaf node is colored either red or green, depending on the predicted
class. Prediction of a single compound instance is tracked in each tree with a yellow path.
Two out of three trees predict a red class for the observed instance. Therefore, the majority
vote predicts the final outcome to be “red”. The figure is adapted from Mitchell.159

classification and ligand-based virtual screening.160 In chemoinformatics, ma-
chine learning models typically use compound fingerprints, such as MACCS78 or
ECFP4.79 A number of machine learning methods exist, of which random forest
(RF),161 support vector machine (SVM),162 and deep neural network (DNN)163

are widely applied and considered to be state-of-the-art methods. These will
be discussed in the following regarding their application in classification tasks.

1.5.1 Random Forests

RF is a machine learning technique which uses an ensemble or “forest” of
decision trees.164 Each individual tree is trained on a bootstrapped sample of
data using a stochastic recursive partitioning method. For each tree, a random
subset of features is considered for node partitioning to avoid generation of
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correlated trees promoting feature dominance. The partitioning aims to increase
the homogeneity of groups in each terminal node. At the end, a number of
different decision trees built from bootstrapped data samples is obtained. This
model is then used to predict test data by means of consensus vote. For example,
in binary classification problems where compounds can be predicted either as
“active” or “inactive”, if the majority of decision trees predicts a compound to be
“active” then the final prediction classifies it as “active”. Figure 1.9 depicts an
example of an RF with an ensemble of three decision trees and an exemplary
majority vote for one compound instance. RF calculations require relatively
low computational power even when large number of trees and fingerprints of
different size and complexity are included. RF has been used as a method of
choice in many chemoinformatics-driven machine learning applications.20,165,166

1.5.2 Support Vector Machines

SVM aims to derive a separating hyperplane H that maximizes the distance,
so called margin, between the objects with different class labels.162 During the
learning process, SVM projects the training data of different class labels into
a high-dimensional space. If the data is linearly separable in this space, the
number of hyperplanes that correctly classifies the data is infinite. However,
only a unique H that optimizes the margin between the closest points of each
label (support vectors) is chosen. An example of an SVM model is shown in
Figure 1.10. The labels of the test data are predicted on basis of which side of
H the instance is found. The H is defined by the normal vector w and bias b
as follows:

H = {x|〈x,w〉+ b = 0}

where 〈., .〉 is a scalar product. The following conditions must be satisfied to
ensure the correct classification of all training instances:

yi
(
〈xi, w〉+ b

)
≥ 1 ∀i

where xi are the training instances and yi ∈ {−1, 1} is the class label (negative
or positive) for each training instance. The distance between the support vectors
and H is given by 1

‖w‖ , which an optimal hyperplane maximizes. When training
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Figure 1.10: Support vector machine. A linear separation between positive (blue circle)
and negative (red square) classes is shown. Here, a separating hyperplane H with a maxi-
mum margin is shown with a solid black line. The parallel lines defined by support vectors
(instances with black outline) are shown with a dashed black line.

data cannot be linearly separated, direct minimization of ‖w‖ is not possible
and thus “kernel trick” is applied, as discussed below. In this case and in order
to improve the generalization of models, slack variables ξi are introduced to
permit errors. This allows some of the training instances to fall within the
margin, or on the wrong side of the hyperplane.167 However, with the increase
of slack variable values the potential for training instances to be misclassified
increases. Thus, the misclassification of data is penalized by introducing the
cost or regularization parameter C. This optimization problem can be expressed
using Lagrangian multipliers λi,168 resulting in a representation of the H as a
linear combination of training vectors:

w =
n∑

i=1

λiyixi

27



A nonzero value of Lagrangian multipliers is obtained only for the training
examples that are misclassified or fall onto the margin. The latter case of
training examples are called support vectors. Finally, a test instance can be
classified as “positive” or “negative”, depending on the side of H the instance is
projected. Moreover, the test data can be ranked using the real value.169

The scalar product 〈., .〉 requires a vector representation of the instances.
Often given vector representations are not suitable for linear separation of the
data. A strength of SVMs is that the scalar function can be replaced by a
kernel function K〈., .〉, fulfilling certain criteria. Kernel function can be used to
replace calculation of the scalar product in an implicit high-dimensional space
that improves separability. This technique is known as the “kernel trick”.170

One of the most widely used kernel functions for fingerprint representations is
the Tanimoto kernel:

K (u, v) =
〈u, v〉

〈u, u〉+ 〈v, v〉 − 〈u, v〉

where u and v present two compound fingerprints.171 As one of the most popular
machine learning methods in chemoinformatics, SVMs have been used in many
applications including binary classification tasks,172 multi-target predictions,173

and compound ranking.174

1.5.3 Deep Neural Networks

DNNs are increasingly used in drug discovery as exemplified by a number
of applications such as bioactivity prediction, de novo design, biological image
analysis, and synthesis prediction.175 DNNs are a class of machine learning
methods that use artificial neural networks (ANNs) built with multilayered
nonlinear processing units to learn provided data representations.175 Each layer
consists of a set of nodes (neurons) which are connected with nodes of the
neighboring layers. The three basic layers are defined in DNN: the input layer,
one or more hidden layers, and the output layer. Thus, the input variables are
taken by the nodes of the input layer, transformed through the nodes of the
hidden layer(s), and processed as the final output values of the output nodes.
Each node of the hidden layer(s) and the output layer accepts the input from the
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Figure 1.11: Deep neural network. A fully connected, multilayered DNN is schematically
represented. The DNN consists of an input layer (red nodes), four hidden layers (purple
nodes), and an output layer (blue nodes). Each node presents a single neuron.

previous layer and transforms it via an activation function (usually nonlinear)
to yield an output value. For a node i the output value Y i is calculated as
follows:

Yi = g

(∑
j

Wij ∗ aj
)

where g is generally a nonlinear function, W ij is the weight of input node j on
node i, and aj refers to input variables. DNNs are trained by an iterative mod-
ification of weight values, so that the errors between predicted and true values
are optimized.176 They usually contain multiple hidden layers, with each layer
comprising hundreds of nonlinear process units. With current computational
power, DNNs are able to take a large number of input features and neurons in
multilayered architectures to automatically extract features at different hierar-
chical levels.177 An example of a DNN involving an input layer, several hidden
layers, and an output layer is given in Figure 1.11.
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1.6 Thesis Outline

This thesis consists of eight studies organized in individual chapters. Selec-
tivity and promiscuity of kinase inhibitors are explored in detail to assess the
potential of these compounds for kinase drug discovery. Moreover, structurally
related kinase inhibitors with alternating levels of promiscuity are investigated.
At the end, machine learning methods are employed to classify kinase inhibitors
with different binding modes.

• Chapter 2 systematically explores selectivity of multi-kinase inhibitors on
the basis of data from medicinal chemistry sources. Therefore, compound-
based kinase pairs with increasing phylogenetic distances are formed. Fur-
thermore, kinase binding regions are evaluated for known selectivity de-
terminants and their correlation with kinase inhibitor data is studied.

• In Chapter 3, cell-based data from a major profiling campaign is used
to study selectivity of clinical kinase inhibitors. Approaches similar to
those described in Chapter 2 are applied. Moreover, new categories of
selectivity profiles are defined for kinase pairs carrying inhibitors with
diverse selectivity potential.

• Chapter 4 assesses selectivity of clinical kinase inhibitors on the basis of
data from medicinal chemistry sources. Different data confidence criteria
are applied. In addition, different inhibitor subsets are assembled for the
estimation of selectivity profiles. These include the most and the least
selective inhibitors from the profiling experiment, type I and II inhibitors,
and chemical probes.

• In Chapter 5, selectivity analysis of chemical probes is extended to ex-
plore publicly available chemical probes. Different confidence criteria are
applied to calculate their promiscuity values. Moreover, potential for off-
target activities is evaluated.

• Chapter 6 describes large-scale promiscuity analysis of kinase inhibitors
collected from several public sources. These inhibitors are used to extract
PCs following a predefined set of rules. Network representations of PC
relationships reveal many disjoint PC clusters. These clusters are further
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explored by tracing linear PC sequences termed PC pathways which are
used to interpret structure-promiscuity relationships.

• In Chapter 7, a computational method is developed that systematically
extracts PC pathways from PC clusters. This computational approach
facilitates identification and ranking of the most interesting PC pathways
in large and complex clusters. Pathways containing promiscuity hubs are
identified.

• Chapter 8 investigates the data from studies reported in Chapter 6 and
Chapter 7 and makes them publicly available. Promiscuity hub analysis
is extended and high-priority hubs are defined.

• In Chapter 9, machine learning methods are implemented to distinguish
between kinase inhibitors with different binding modes coming from X-ray
crystallography.

Chapter 10 summarizes the major findings of the studies and discusses their
relevance for kinase drug discovery.
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Chapter 2

Exploring Selectivity of
Multi-Kinase Inhibitors across the
Human Kinome

Introduction

Many currently available inhibitors of the human kinome bind to the largely
conserved ATP-binding site. Although allosteric mechanisms of inhibition
should be the most selective, only a handful of these compounds are reported.
Hence, the evaluation of kinase inhibitor selectivity still largely depends on the
ATP site-directed representatives.

Experimental profiling studies of these inhibitors revealed compounds with
varying selectivity patterns. In addition, the substantially conserved ATP-
binding site contains sequence variations which might influence inhibitor selec-
tivity.

In this study, we systematically analyzed selectivity of multi-kinase
inhibitors on the basis of high-confidence data coming from ChEMBL.
Compound-based kinase pairs were formed and classified into categories with
increasing phylogenetic distances. For classified kinase pairs, pair- and
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compound-based selectivity profiles were generated and selectivity trends were
further evaluated.

Reprinted with permission from “Miljković, F.; Bajorath, J. Exploring Selectiv-
ity of Multikinase Inhibitors across the Human Kinome. ACS Omega 2018, 3,
1147-1153”. Copyright 2018 American Chemical Society.
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ABSTRACT: Selectivity of kinase inhibitors, or the lack
thereof, continues to be an intensely debated topic in drug
discovery research. Especially, type I inhibitors, which
represent most of the currently available kinase inhibitors,
are often thought to lack selectivity because they target the
largely conserved adenosine triphosphate-binding site in
kinases. Herein, we present a large-scale analysis of potential
selectivity among multikinase inhibitors, covering 141 human
kinases and more than 10 000 qualifying compounds. By
design, the analysis was focused on type I inhibitors and
carried out at the level of systematically generated kinase pairs sharing inhibitors. Kinase pair category- and compound-based
selectivity profiles identified in part highly selective inhibitors for many kinases. Sets of inhibitors associated with kinase pairs
frequently contained nonselective as well as increasingly selective compounds. Selectivity of inhibitors did not result from
gatekeeper residues settings or phylogenetic distance of kinases. Rather, it was most likely attributable to subtle differences
between binding regions in kinases. Taken together, the results of our study reveal that many multikinase inhibitors are more
selective than one might assume.

1. INTRODUCTION
Inhibitors of human kinases are among the most intensely
investigated compounds in drug development.1−5 Most
currently available kinase inhibitors target the adenosine
triphosphate (ATP) (cofactor)-binding site that is largely
conserved across the human kinome.6,7 Accordingly, ATP-site-
directed kinase inhibitors are expected to be promiscuous and
lack selectivity, as indicated by a number of kinase inhibitor
profiling studies.8−11 Therefore, attempts have been made to
discover other types of inhibitors that target different regions in
kinases and act by different mechanisms.12,13 ATP-site-directed
(type I) inhibitors bind to the so-called “DFG-in” conformation
of the activation loop near the catalytic site, i.e., the active form
of the kinase. In addition, type II inhibitors bind to the inactive
“DFG-out” conformation of the activation segment, occupying
pockets adjacent to the ATP-binding site that are less
conserved.13 Thus, type II inhibitors are expected to be more
selective than type I inhibitors. Furthermore, there are type III
and IV inhibitors that bind to regions outside the ATP-binding
site and act by allosteric mechanisms.13 Only a limited number
of allosteric kinase inhibitors has been reported thus far, but
these types of inhibitors might indeed be most selective.14−16

However, the often assumed lack of selectivity of type I
inhibitors continues to be debated17 and expected selectivity
differences between type I and II inhibitors are subject to
further investigation. For example, profiling experiments using
type II inhibitors have shown that these inhibitors are often
active against many kinases.13 Furthermore, although subsets of
highly promiscuous type I inhibitors have been identified18 and
promiscuity of kinase inhibitors has become a hallmark for

successful cancer treatment,2 there is also evidence for
selectivity of ATP-site-directed inhibitors. For example,
although a number of kinase inhibitor profiling experiments
have indicated a lack of selectivity of type I inhibitors,8−11

others have revealed selectivity patterns.19,20 In addition, type I
inhibitors are also capable of acting by different mechanisms.21

Furthermore, on the basis of high-confidence activity data, 76%
of publicly available kinase inhibitors were found to be
annotated with a single kinase.22 When activity data confidence
criteria were iteratively lowered, no notable increase in kinase
inhibitor promiscuity was detected,23 suggesting that promis-
cuity was not a general rule. Of course, it has long been known
that the ATP-binding site in kinases has some sequence
variation, in particular, at the “gatekeeper” position,7 where the
presence of smaller or larger residues differentiates between
classes of type I inhibitors. However, whether or not the
gatekeeper is the only factor responsible for inhibitor
differentiation within the ATP-binding site is currently
unknown. Other subtle differences might also play a role.
Clearly, the issue of kinase inhibitor selectivity is still not fully
explored.
Herein, we present a systematic analysis of selectivity among

multikinase inhibitors on the basis of currently available activity
data. Selectivity profiles were generated for sets of inhibitors
shared by kinases. The profiles revealed significant potency
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variations of subsets of inhibitors and identified compounds
with selectivity for given kinases over others.

2. MATERIALS AND METHODS

2.1. Compounds, Targets, and Activity Data. Inhibitors
of human protein kinases were assembled from ChEMBL
version 23.24 Compounds with activity in assays detecting
direct interactions (target relationship type “D”) with human
protein kinases at the highest confidence level (confidence
score 9) were selected. As potency measurements, IC50 values
were considered. The amount of available Ki values was too
small for a meaningful statistical analysis. If multiple IC50 values
were available for a compound, the final potency annotation
was calculated as the geometric mean of these values, provided
all fell within the same order of magnitude (otherwise, the
compound was disregarded). Approximate measurements
associated with “>”, “<”, or “∼” were not taken into account.
On the basis of these criteria, 40 627 inhibitors with activity
against 274 human kinases were obtained. From this compound
pool, inhibitors were selected that were active against at least
two kinases, yielding a final set of 10 367 inhibitors with activity
against 266 human kinases. ChEMBL target identifiers of these
kinases were mapped to UniProt,25 and kinases were assigned
to families and groups (of families) according to Manning et
al.6 and Miranda-Saavedra et al.26

2.2. Protein Kinase Pairs. The selected multikinase
inhibitors were used to systematically form compound-based
target pairs. Two kinases were paired if they shared at least 10
inhibitors. Given this constraint, a total of 596 pairs were
obtained that included 141 kinases and 10 060 inhibitors.
Kinase pairs were assigned to three different categories: same
family, i.e., both kinases belonged to the same family (132
pairs); different families, i.e., both kinases belonged to different
families within the same kinase group (262 pairs); and different
groups, i.e., both kinases belonged to different groups (202
pairs). Kinases in pairs from the same family, different families,
and different groups were increasingly distant (unrelated). For
each pair, compound selectivity was assessed by calculating the
logarithmic potency difference (ΔpIC50) for each inhibitor.
2.3. Gatekeeper Residue and Binding-Site Compar-

ison. The kinase−ligand interaction fingerprints and structures
(KLIFS)27,28 database defines a kinase “binding pocket” for
type I−IV inhibitors as a set of 85 discontinuous residues. This
sequence segment, which contains the gatekeeper residue at
position 45, can be extracted for human kinases from KLIFS on
the basis of UniProt identifiers using the 3D-e-Chem-VM
engine.29 For kinase pairs, gatekeeper residues were compared
and sequence identity over the 85-residue segment was
calculated as an indicator of binding-site resemblance.
Phylogenetic trees of the human kinome were drawn with
Kinome Render.30

3. RESULTS AND DISCUSSION

3.1. Qualifying Kinase Inhibitors. Figure 1 shows the
distribution of inhibitors over all 596 pairs of kinases sharing at
least 10 compounds, yielding a median value of 18 inhibitors
per pair. Hence, kinase pairs were associated with sufficient
numbers of inhibitors for a systematic assessment of selectivity
profiles. The pairs involved 141 kinases distributed across the
human kinome and 10 060 multikinase inhibitors from
ChEMBL.

Mapping of type II kinase inhibitor signature fragments13

indicated that less than 1% of kinase inhibitors available in
ChEMBL were type II inhibitors.18 Thus, although it is not
exactly known how many type II, or rare type III/IV, inhibitors
are currently available in ChEMBL, for all practical
considerations, our analysis was focused on type I multikinase
inhibitors.

3.2. Global Selectivity. Potency differences of inhibitors
against kinases forming pairs were calculated as a measure of
selectivity. The larger the potency difference was, the more
selective an inhibitor was for one kinase over the other. Initially,
the global potency difference distribution was determined.
Figure 2 (left) shows that average potency differences for all
inhibitors associated with a pair were rather small, with a
median ΔpIC50 value of 0.64 (i.e., well within 1 order of
magnitude). At a first glance, this was what one might expect
for largely nonselective inhibitors. However, the picture
changed when only the inhibitor with largest potency difference
from each pair was considered, as also shown in Figure 2
(right). In this case, the distribution yielded a median ΔpIC50
of 2.37, a difference of more than 2 orders of magnitude (100-
fold), and a third quartile difference of 3 orders of magnitude.
Thus, for individual inhibitors, a global tendency of selectivity
emerged. Systematically enumerating pairs of kinases sharing
inhibitors ensured that all possible selectivity relationships were
taken into account. The union of pairwise relationships was
expected to reveal general selectivity trends, if they existed.
The global selectivity tendency was also observed at the level

of different kinase pair categories. Figure 3a shows the
distribution of potency differences for the three pair categories
in different formats. In all three cases, the median difference for
all compounds fell within the same order of magnitude and
exceeded 2 orders of magnitude for the most selective
compounds.

3.3. Pair Category-Based Selectivity Profiles. The
global selectivity tendency was further corroborated by pair
category-based selectivity profiles shown in Figure 3b. These
profiles were generated by recording the largest inhibitor
potency difference for each pair and ordering the pairs by
increasing ΔpIC50 values. In each case, more than half of the
kinase pairs had one or more inhibitors with a potency
difference exceeding 2 orders of magnitude. Furthermore, in
each case, potency differences exceeding 4 or even 5 orders of
magnitude were observed for multiple pairs. For kinases from
different groups, 55% of the pairs had inhibitor(s) with potency

Figure 1. Distribution of compounds over kinase pairs. The boxplot
reports the distribution of inhibitors over kinase pairs, yielding a
median value of 18 inhibitors per pair. Boxplots report the smallest
value (bottom line), first quartile (lower boundary of the box), median
value (thick line), third quartile (upper boundary of the box), largest
value (top line), and outliers (points below the smallest or above the
largest value).
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differences of more than 2 orders of magnitude and 22% of
more than 3 orders of magnitude.
3.4. Compound-Based Selectivity Profiles. Detailed

views of inhibitor selectivity were provided by compound-
based selectivity profiles. Figure 4 (left) shows exemplary
profiles for kinase pairs from the same family, different families,
and different groups. Kinases from each pair had the same

gatekeeper residue. In these profiles, potency values of all
inhibitors are compared for kinases of a pair and inhibitors are
ordered according to increasing potency differences. In
addition, Figure 4 shows the least and most selective inhibitor
for each pair (middle) and the location of paired kinases on a
phylogenetic tree representing the human kinome (right). For

Figure 2. Compound potency differences for kinase pairs. Boxplots report the distribution of potency differences of inhibitors for paired kinases as
the mean potency difference of all inhibitors (left) or the largest potency difference (most selective compounds; right). The distributions yield
ΔpIC50 median values of 0.64 (left) and 2.37 (right).

Figure 3. Compound potency differences for pair categories. (a) Distributions of ΔpIC50 values (left) for all versus the most selective inhibitors
according to Figure 2 for kinase pairs from the same family (blue, 132 pairs), different families (green, 262 pairs), and different groups (red, 202
pairs). In addition, a comparison of ΔpIC50 median values is shown (right). (b) Selectivity profiles for the three pair categories that record the
potency differences of the most selective inhibitor for each pair (in the order of increasing potency differences from left to right).
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each pair, the most selective inhibitor displayed a potency
difference of more than 4 or 5 orders of magnitude.
The selectivity profiles revealed in part striking differences in

relative potencies between inhibitors. Compounds shared by
the closely related protein kinase C eta type (PKCh) and
protein kinase C theta type (PKCt) were generally slightly
more potent against PKCh, preserving relative potency
differences. However, two notable exceptions were detected,
where potency against PKCh decreased sharply. In one of these
cases, the inhibitor was essentially inactive against PKCh but
retained high potency against PKCt, resulting in high selectivity
for PKCt. The profile for macrophage colony-stimulating factor
1 receptor kinase (FMS) and tyrosine-protein kinase Lck
(LCK) contained six inhibitors with comparable potency and
four others with increasing potency differences and selectivity
for FMS over LCK. Moreover, for the distantly related 3-
phosphoinositide-dependent protein kinase 1 (PDK1) and
aurora kinase A (AurA), there were five inhibitors with the
same potency against both kinases, three with relatively small
potency differences, and 12 others that were essentially inactive
against PDK1 but increasingly potent against AurA, yielding a
subset of selective AurA inhibitors. The most selective
compound had a potency difference of nearly 6 orders of
magnitude. Many other profiles revealing similar selectivity
relationships were obtained. Thus, many inhibitors shared by
pairs of 141 human kinases were highly selective, a rather
unexpected finding.
3.5. Comparison of Gatekeeper Residues, Binding

Regions, and Compound Selectivity. In light of these
findings, we further investigated whether there might be
straightforward explanations for the observed selectivity trends.

Therefore, for all kinase pairs, combinations of gatekeeper
residues were determined. For each gatekeeper combination,
the number of pairs associated with inhibitor(s) having a
ΔpIC50 of at least 2 orders of magnitude (selectivity criterion)
was identified and compared to the number of pairs not
meeting this selectivity criterion. The results are shown in
Figure 5a. For most gatekeeper combinations, including
conserved and different residues, more pairs with selective
than nonselective inhibitors were available. Hence, conservation
of gatekeeper residues did not preclude compound selectivity,
as also illustrated in Figure 4, and for all gatekeeper
combinations represented by multiple kinase pairs, selective
inhibitors were available.
Furthermore, binding pocket similarity was calculated for all

kinase pairs with selective inhibitors and others, as shown in
Figure 5b. As expected, the similarity of binding regions
decreased with increasing phylogenetic distances of paired
kinases. However, pairs with selective and nonselective
inhibitors were widely distributed over the entire similarity
range, including all three pair categories. Hence, there was no
detectable correlation between similarities of binding regions
and the presence or absence of selective inhibitors. As shown in
Figure 5b, even kinases with highly similar binding regions
shared inhibitors that were selective. In addition, for each
category, the percentage of kinase pairs for which selective
inhibitors were available is provided. More than half of the
kinase pairs in each category had selective inhibitors. However,
there was no detectable correlation between the frequency of
pairs with selected inhibitors and phylogenetic distance. Taken
together, these findings indicated that rather subtle structural

Figure 4. Compound-based selectivity profiles. Left: exemplary compound selectivity profiles for kinase pairs belonging to different categories. For
each inhibitor, the potency against the two kinases is compared. From the left to the right, inhibitors are ordered according to increasing potency
differences. On the lower right of each graph, gatekeeper residues of the kinase pair are reported (e.g., “M|M”). Middle: comparison of the least and
most selective inhibitors for each pair. Right: kinases forming each pair are mapped onto a phylogenetic tree of the human kinome to illustrate their
category relationships.
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and/or property differences between kinases were largely
responsible for the selectivity of shared inhibitors.
Figure 5c shows the distribution of shared inhibitors over

kinase pairs from different categories. The number of shared
inhibitors decreased with increasing phylogenetic distance
between kinases in pairs. For each category, the proportion
of selective unique inhibitors was also calculated. As expected,
the percentage of selective inhibitors increased with increasing
phylogenetic distance, as also shown in Figure 5c.

4. CONCLUSIONS
In this study, we have analyzed potential selectivity of
multikinase inhibitors on a large scale based on currently
available compound activity data. Previous studies have focused
on kinase inhibitor selectivity profiling to identify new chemical
probes for orphan receptors or compounds active against still
little explored therapeutically relevant kinases.31,32 Our analysis
was facilitated by systematically generating pairs of 141
qualifying human kinases with increasing phylogenetic

Figure 5. Gatekeeper residues, binding pocket similarity, and compound selectivity. (a) Histograms compare the number of kinase target pairs for
each observed combination of gatekeeper residues (top, conserved residues; bottom, different residues), for which one or more selective (red) or no
selective (gray) inhibitors were available. As a selectivity criterion, a potency difference of at least 2 orders of magnitude (ΔpIC50 ≥ 2) was applied.
(b) Swarm plot (i.e., a boxplot in which all individual data points are displayed) capturing distributions of binding pocket similarity (sequence
identity over the 85-residue segment) of kinases in pairs belonging to different categories to the presence (red) or absence (gray) of selective
inhibitors. Individual data points on the X-axis are centered on the not displayed boxplot whisker for each category and depart from the central
position if additional points have the same binding pocket similarity value. The percentage of kinase pairs with selective inhibitors (“selective pairs”)
is given for each category. (c) Distribution of compounds over kinase pairs in different categories. In addition, the proportion of selective inhibitors is
given.
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distances that shared 10 or more inhibitors, providing a new
reference frame for selectivity analysis. Contrary to our initial
expectations, pair category- and compound-based selectivity
profiles introduced herein revealed the presence of subsets of in
part highly selective inhibitors for the majority of kinase pairs,
providing extensive kinase coverage. Because the analysis was
based on a statistically significant sample of more than 10 000
multikinase inhibitors, the detected selectivity trends were
sound. Some striking observations were made at the level of
compound-based selectivity profiles. In many instances, sets of
inhibitors associated with kinase pairs contained subsets of
nonselective compounds and others that were increasingly
selective. These observations were of particular interest because
the analysis was intrinsically focused on type I kinase inhibitors,
which are often (but not always) thought to lack selectivity. We
have also shown that observed inhibitor selectivity was not
attributable to well-known kinase features, such as gatekeeper
constellations or phylogenetic distances. It follows that
selectivity determinants in kinases are likely to result from
subtle differences that are far from being obvious, which should
provide ample opportunities for future research. Clearly,
although much progress has been made in recent years in
rationalizing kinase inhibition and underlying mechanisms of
actions, especially at the structural level, the jury on kinase
inhibitor selectivity and its possible molecular origins is still out
there. To support further exploration of kinase inhibitor
selectivity, our kinase pair and inhibitor data set is made freely
available as an open access deposition.33
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Summary

A large-scale analysis of multi-kinase inhibitor selectivity was carried out
on the basis of currently available high-confidence data. We systematically ex-
tracted 10,060 multi-kinase inhibitors from ChEMBL annotated for 141 quali-
fying human kinases. These kinases were organized in compound-based pairs of
increasing phylogenetic distances. In total 596 kinase pairs sharing at least 10
inhibitors were isolated. This provided a solid framework for computationally-
driven selectivity analysis.

Subsets of in part highly selective inhibitors across the majority of kinase
pairs were obtained using pair- and compound-based selectivity profiles. Many
instances showed subsets of nonselective kinase inhibitors, as well as others that
were increasingly selective. In addition, the known selectivity determinants of
the kinase binding region did not support the observed selectivity trends of ki-
nase inhibitors. This indicated that the selectivity features are far from obvious,
providing opportunities for subsequent analysis. Taken together, multi-kinase
inhibitors are more selective than one might anticipate.

The analysis was based on high-confidence activity data from ChEMBL.
This implies that only activity points coming from single-target assays were
taken in consideration. However, cell-based assays may provide a differentiating
view on inhibitor selectivity, as imposed by cell culture conditions. In order to
consolidate the obtained findings, data coming from a cell-based profiling study
needs to be evaluated.

In the next chapter, we focus on selectivity analysis of multi-kinase clinical
candidates derived from a comprehensive cell-based profiling study.
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Chapter 3

Evaluation of Kinase Inhibitor
Selectivity Using Cell-Based
Profiling Data

Introduction

The cell-based chemoproteomic profiling study by Klaeger et al.52 presents
the most comprehensive kinase inhibitor experiment up to date. In this work,
243 kinase inhibitors at different stages of clinical development were found to
interact with a total of 253 kinases. The study revealed compounds with dif-
ferent inhibition characteristics, including both highly promiscuous as well as
highly selective inhibitors. As a result, the profiling study data were made
publicly available.

Herein, we further explored selectivity profiles of clinical kinase inhibitors
using the available cell-based data. This yielded insights into the kinase in-
hibitor selectivity under cell-based assay conditions. In order to reconcile the
findings with previous results, compound-based kinase pairs were formed and
their selectivity profiles were evaluated.
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Evaluation of Kinase Inhibitor Selectivity Using Cell-based
Profiling Data
Filip Miljković[a] and Jürgen Bajorath*[a]

Abstract: Kinases are among the most heavily investigated
drug targets and inhibition of kinases and kinase-dependent
signaling has become a paradigm for therapeutic interven-
tion. Kinase inhibitors and associated activity data have
increasing ‘big data’ character, which presents challenges
for computational analysis, but also unprecedented oppor-
tunities for learning from compound data and for data-
driven medicinal chemistry. Herein, publicly available kinase
inhibitor data are evaluated and a number of characteristics

are discussed. In addition, selectivity of clinical kinase
inhibitors is explored computationally on the basis of
recently reported cell-based profiling data. For inhibitors
shared by pairs of kinases, selectivity profiles were gen-
erated and a variety of selective inhibitors were identified.
Uni-directional selectivity profiles revealed inhibitors that
were selective for one kinase over the other, while bi-
directional profiles uncovered compounds with inverted
selectivity for paired kinases.

Keywords: Protein kinases · drug targets · kinase inhibitors · selectivity · profiling data · compound data mining

In the first part of this contribution, we comment on
emerging big data characteristics of compound activity
data in general and kinase inhibitors in particular. In the
second part, we present a selectivity analysis for clinical
kinase inhibitors on the basis of cell-based profiling data.

Kinases are among the most popular targets in drug
discovery.[1–4] In oncology, kinase inhibitors have taken
center stage over the past decade.[2] In other therapeutic
areas such as immunology and inflammation, second
generation kinase inhibitors are on the rise.[4] While many
kinase inhibitors used in cancer treatment act on multiple
targets and are efficacious through polypharmacology,[2,5–7]

kinase inhibitors considered for other therapeutic applica-
tions, for example, the treatment of chronic inflammatory
diseases, must have a high degree of target selectivity.[4]

Compound activity data in pharmaceutical research
have increasing ‘big data’ character,[8] which also applies to
kinase inhibitors. The volume of compound activity data is
steadily increasing. Of course, millions of small molecules
with associated activity measurements now available are
still a small sample of “data points” compared to other fields
such as biology, particles physics, or – even more so –
telecommunication and social networks. However, data
volumes need to be considered within the particular
context of a scientific discipline and – from this viewpoint –
the big data era is looming in medicinal chemistry. However,
there is more to big data than increasing volumes.[8]

Additional criteria need to be taken into consideration such
as increasing heterogeneity of compound data across
different repositories, an unprecedented variety of data
entries, and their increasing complexity.[8] These criteria
clearly apply to compound activity data, supporting increas-
ing big data character. Thus, the big data era does not only
provide substantial opportunities for learning from data and

for data-driven research and development but also chal-
lenges data analysis and requires new concepts and
strategies for large-scale data exploration and learning.

For inhibitors of the human kinome, which comprises
518 kinases,[9] big data trends are evident. In 2015, we
detected 18,951 kinase inhibitors in ChEMBL[10] release 18
for which high-confidence activity data were available. In
this context, high-confidence data require highest possible
assay and measurement confidence on the basis of ChEMBL
records.[11] These 18,951 inhibitors were active against a
total of 266 human kinases belonging to 10 different kinase
groups. In 2017, we identified 45,728 kinase inhibitors in
ChEMBL release 23, which were active against 286 human
kinases from 12 groups.[11] Hence, over the course of only
two years the number of publicly available kinase inhibitors
with high-confidence activity data more than doubled (with
a factor of 2.41), while coverage of the human kinome only
moderately increased. However, when all available kinase
annotations were taken into consideration, regardless of
data confidence levels, 128,260 putative inhibitors were
identified in ChEMBL release 23 that were annotated with a
total of 439 human kinases,[11] representing more than 80 %
of the kinome. Profiling experiments in which inhibitors are
tested under varying conditions against large numbers of
kinases are a particularly rich source of activity data.[12–15]
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However, most profiling experiments are currently carried
out in pharmaceutical companies and are rarely published.

Given the relevance of polypharmacology for cancer
treatment,[2] the promiscuity of kinase inhibitors continues
to be a much debated issue. Without doubt, highly
promiscuous kinase inhibitors exist,[13,15] but there are also
highly selective inhibitors.[13,15,16] Prevalent among kinase
inhibitors are so-called type I inhibitors, which bind to the
ATP site in the active form of kinases. The ATP site is largely
conserved across the kinome.[17] By contrast, type II inhib-
itors bind to the inactive form of kinases to regions adjacent
to the ATP site that are less conserved.[17] Therefore, type II
inhibitors are often thought to be more selective than type I
inhibitors. In addition, small numbers of allosteric type III
and type IV inhibitors have been discovered that bind to
non-conserved regions in individual kinases distant from
the ATP site and are thus expected to be most selective or
even specific.[17,18]

In light of ongoing discussions about binding character-
istics, it is important to note that currently available activity
data do not support the presence of generally high degrees
of promiscuity among kinase inhibitors. Neither can the
absence of detectable promiscuity be entirely attributed to
data sparseness, given the large volumes of inhibitors and
activity measurements that are already available. For
example, more than 95 % of kinase inhibitors currently
available in ChEMBL are most likely type I inhibitors.[19] For
kinase inhibitors with high-confidence activity data in
ChEMBL release 23, the mean promiscuity degree (number
of kinase targets) was merely 1.36.[11] Even if no confidence
criteria were applied and all kinase annotations taken into
account, the mean promiscuity degree of 128,260 putative
kinase inhibitors only moderately increased to 3.86.[11] On
the other hand, neither inhibitor profiling[15] nor systematic
compound data mining[20] confirmed assumed selectivity
differences between type I and II kinase inhibitors with
experimentally confirmed binding modes. Thus, the topic of
kinase inhibitor promiscuity versus selectivity remains to be
further investigated.

In the following, we report selectivity analysis for a set
of clinical kinase inhibitors.

Recently, we have systematically investigated inhibitor
selectivity at the level of kinase pairs.[16] Pair-based analysis
was carried out to account for all possible selectivity
relationships. From ChEMBL release 23, inhibitors with high-
confidence activity data for two or more human kinases
were selected und used to form inhibitor-based kinase pairs.
Two kinases formed a pair if they shared at least 10
inhibitors. On the basis of 10,060 qualifying multi-kinase
inhibitors, 596 pairs were obtained that involved 141
kinases distributed across the human kinome. For each pair,
compound selectivity was assessed by calculating the
logarithmic potency difference (DpIC50) for each inhibitor.
On the basis of this analysis, more than half of all kinase
pairs were associated with one or more inhibitors having a
potency difference of more than two orders of magni-

tude,[16] reflecting notable selectivity. Although one might
anticipate that selectivity might increase for pairs of kinases
with increasing phylogenetic distances, interestingly, similar
proportions of pairs with selective inhibitors were detected
for kinases from the same family, different families, and
different groups.[16]

The recent publication of the currently most compre-
hensive kinase inhibitor profiling study has been an
important advance for the field. For 243 kinase inhibitors at
different stages of clinical development, cell-based chemo-
proteomic profiling was carried out.[15] Kinobead assays
using immobilized non-specific kinase inhibitors were used
to screen lysates of cancer cell lines and extract bound
target proteins. Binding was detected using quantitative
mass spectrometry. Using loaded kinobeads, dose-depend-
ent competition assays with the set of 243 clinical kinase
inhibitors were then carried out to identify their targets. The
inhibitors interacted with a total of 253 kinases, revealing
different inhibition characteristics and highly promiscuous
as well as selective inhibitors.[15] These findings correlated
well with conclusions drawn from systematic mining of
kinase inhibitor data from ChEMBL.[20]

Herein we have applied kinase pair-based analysis of
inhibitor selectivity[16] to cell-based profiling data of Klaeger
et al.[15] Therefore, clinical kinase inhibitors studied by
Klaeger et al. and their kinase annotations were assembled
from ProteomicsDB.[21] Only kinase information associated
with the “4 cell line mix” lysate type and the “kinobeads”
type were considered. Activity-related target classification
was set to “high confidence“ yielding apparent dissociation
constants (Kd values) as activity measurements for inhibitors.
Kd values were converted to pKd values by calculating the
negative decadic logarithm of reported nanomolar concen-
trations. On the basis of these criteria, 216 clinical kinase
inhibitors were obtained that were annotated with a total
of 225 human kinases.

On the basis of the selected activity data, pairs of
kinases were systematically assembled that shared at least
10 inhibitors, which resulted in a total of 2369 pairs. These
pairs involved 137 kinases and 190 clinical inhibitors.
Figure 1 shows the distribution of these kinases over the
human kinome. For all compounds associated with pairs,
potency differences between the kinases were determined
on the basis of pKd values. Figure 2 (top) shows that
potency differences between inhibitors were overall small,
with a median value of 0.67 pKd units, well within an order
of magnitude. When only the inhibitor with largest potency
difference per pair was considered, a different distribution
was observed, as shown in Figure 2 (bottom). In this case, a
median value of 2.24 was obtained, indicating that there
were individual inhibitors across many pairs with a strong
tendency of selectivity.

On the basis of these findings, we further analyzed the
most selective inhibitors for both kinases forming a pair.
Hence, in each case, the inhibitors most selective for kinase
A over B and B over A were identified, yielding two
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inhibitors per pair. Then, a selectivity range was calculated as
follows:

Selectivity range ¼ DpKd ðA over BÞ þ DpK d ðB over AÞ

where DpKd ðA over BÞ represents potency difference for inhib-
itor selective for kinase A over B and DpKd ðB over AÞ represents
potency difference for inhibitor selective for kinase B over A.
For example, if an inhibitor most selective for kinase A had
a potency difference of 0.5 and another most selective for
kinase B a potency difference of 2.0, the selectivity range for
the kinase pair was 2.5 orders of magnitude.

Figure 3 shows the distribution of selectivity ranges over
kinase pairs revealing the presence of many large selectivity
ranges, with a median of 3.42 pKd units. Thus, many pair
sets contained inhibitors with selectivity for each kinase.

For kinase pair sets, compound-based selectivity pro-
files[16] were generated. These profiles record potency differ-
ences for inhibitors. For each inhibitor, the potency against
the two kinases is plotted. Thus, each inhibitor is repre-
sented by two corresponding data points. Compounds are
then ordered according to increasing potency difference for
each kinase from the left to right and vice versa (Figure 4a).

For profile analysis, a potency difference-based selectivity
criterion of at least 2 orders of magnitude (pKd�2) was
applied, i. e., inhibitors meeting this criterion were classified
as selective. A compound set might contain one or more
inhibitors selective for kinase A over B but none selective
for B over A. These selectivity profiles, which we term uni-
directional, were originally generated for kinase inhibitors
from ChEMBL.[16] An example for an uni-directional profile is
shown in Figure 4a (top) where inhibitors become increas-
ingly selective from the right to the left for kinase FLT3 over
MAPK9. Furthermore, it is also possible that selectivity
profiles capture inhibitors that are selective for kinase A
over B and others that are selective for B over A. These bi-
directional profiles are of particular interest because they
contain inhibitors with inverted selectivity. Three exemplary
bi-directional profiles are shown below the uni-directional
profile in Figure 4a. Since compounds are ordered accord-

Figure 1. Kinase distribution. Kinases forming inhibitor-based pairs
with more than 10 inhibitors are mapped onto a phylogenetic tree
of the human kinome (drawn with KinMap[22]). Kinases are
represented as dots and color-coded by kinase groups.

Figure 2. Compound potency differences. Boxplots report distribu-
tion of potency differences of inhibitors over kinase pairs as the
mean potency difference of all inhibitors per pair (top) and the
largest potency difference (bottom, representing most selective
compounds). For each distribution, the median value is given.
Boxplots report the smallest value (bottom line), first quartile (lower
boundary of the box), median value (thick line), third quartile
(upper boundary of the box), largest value (top line), and outliers
(points below the smallest or above the largest value).
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ing to increasing potency differences with respect to both
kinases, these profiles contain inhibitors with inverted
kinase selectivity on the left and on the right. For example,
the bi-directional profile for the PDGFRB and YES1 kinase
pair comprises four inhibitors in the central section that
have essentially the same potency against both kinases and
others that are increasingly selective for PDGFRB (left) or
YES1 (right). Inhibitors with inverted selectivity for kinases
merit close inspection because they might reveal selectivity-
conferring core structures or other selectivity determinants.
Selective inhibitors from exemplary profiles are shown in
Figure 4b.

The 2369 kinase pair sets included 1453 sets (~61 %)
with selective clinical inhibitors. Thus, selective inhibitors
were widely distributed over kinase pairs. Sets with selective
inhibitors yielded 1229 uni-directional and 224 bi-directional
selectivity profiles (~10 %). The bi-directional profiles were
associated with 90 kinases and 157 inhibitors. Hence,
selectivity trends revealed by bi-directional profiles involved
a significant number of kinases and clinical inhibitors.

Figure 3. Selectivity ranges. Reported is the distribution of
selectivity ranges over kinase pairs. The boxplot is represented
according to Figure 2.

Figure 4. Selectivity profiles and representative inhibitors. (a) Shown are one uni-(top) and three bi-directional compound-based
selectivity profiles (for pairs of kinases from the same family, different families, and different groups, respectively). For each inhibitor, the
potency against the two kinases forming a pair is compared. Compounds are ordered according to increasing potency differences for each
kinase from the left to right and vice versa. The most selective inhibitors are labeled. In (b), names and structures of most selective inhibitors
meeting the pKd�2 selectivity criterion are shown and their potency differences are reported. Kinases are abbreviated as follows:[15] FLT3,
receptor-type tyrosine-protein kinase FLT3; MAPK9, mitogen-activated protein kinase 9; PRKAA1, 5’-AMP-activated protein kinase catalytic
subunit alpha-1; SIK2, serine/threonine-protein kinase SIK2; PDGFRB, platelet-derived growth factor receptor beta kinase; YES1, tyrosine-
protein kinase Yes; ABL1, tyrosine-protein kinase ABL1; TGFBR1, TGF-beta receptor type-1 kinase.
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We also revisited previously reported kinase pairs from
ChEMBL release 23[16] and searched for bi-directional
selectivity profiles. In this case, 10,060 multi-kinase inhib-
itors were annotated with 141 human kinases, yielding 596
pairs sharing at least 10 inhibitors. The corresponding pair
sets included 380 sets with selective inhibitors (pKd�2),
which yielded 288 uni- and 92 bi-directional (~24 %)
selectivity profiles.

Thus, cell-based profiling using a small set of clinical
inhibitors resulted in larger kinome coverage than collection
of a large set of inhibitors and associated activity data from
medicinal chemistry. However, in both cases, similar
selectivity trends were detected.

Herein we have discussed characteristic features of
inhibitors targeting the human kinome and carried out
kinase pair-based selectivity analysis using cell-based profil-
ing data for clinical kinase inhibitors. Our findings suggest
that many currently available kinase inhibitors have the
potential to differentiate between kinase targets and that
there are substantial differences in selectivity among these
inhibitors.
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Summary

Extensive evaluation of kinase inhibitor selectivity was carried out on the
basis of recently reported cell-based profiling data. A total of 2369 kinase pairs
were formed by 190 clinical inhibitors, targeting 137 kinases. Compared to
previous results on the basis of medicinal chemistry data, a significantly smaller
set of inhibitors yielded a larger number of qualifying kinase pairs. However,
both studies resulted in similar selectivity trends.

Furthermore, compound-based selectivity profiles with compounds meet-
ing the selectivity criteria were divided into two major types. Uni-directional
selectivity profiles uncovered inhibitors selective for one kinase over another,
while bi-directional profiles revealed compounds with inverted selectivity for
pair-forming kinases. These selectivity profiles were detected across all cate-
gories with increasing phylogenetic distances. Many currently available clinical
candidates were found to differentiate between kinase targets.

In the following study, we explore selectivity trends of clinical kinase in-
hibitors on the basis of currently available medicinal chemistry data. Kinase
inhibitors classified as chemical probes were of special interest in this study.
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Chapter 4

Reconciling Selectivity Trends
from a Comprehensive Kinase
Inhibitor Profiling Campaign with
Known Activity Data

Introduction

Previously, selectivity trends of clinical kinase inhibitors were evaluated us-
ing the cell-based activity data. Herein, we aimed to correlate these findings
with the selectivity of clinical candidates on the basis of medicinal chemistry
data.

The importance of different data confidence criteria when interpreting the
findings was discussed. For the set of most and least selective inhibitors found
in the profiling study, their PD values were estimated. Similarly, a number of
inhibitors designated as type I and type II were compared to evaluate their
selectivity. In addition, for clinical candidates designated as chemical probes
target profiles were generated.
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ABSTRACT: Kinase inhibitors are among the most intensely investigated compounds in
medicinal chemistry and drug development. Profiling experiments and kinome screens reveal
binding characteristics of kinase inhibitors and lead to better understanding of selectivity and
promiscuity patterns. However, only limited amounts of profiling data are publicly available. By
contrast, a large body of activity data for inhibitors of human kinases has become available from
medicinal chemistry. In this study, we have correlated selectivity assessment of clinical kinase
inhibitors from the most comprehensive profiling campaign reported to date with systematic
mining of activity data from other sources. The results of our comparative analysis reveal
consistency of orthogonal approaches in the study of kinase inhibitor selectivity versus
promiscuity and stress the importance of taking alternative data confidence criteria into account.
Moreover, it is also shown that there are little if any detectable differences in selectivity between
type I and II kinase inhibitors and that inhibitors designated as chemical probes have very
different target profiles.

1. INTRODUCTION

Kinase inhibitors are prime candidates for drug development in
different therapeutic areas such as oncology, inflammatory
diseases, and so forth.1−4 To better understand their binding
characteristics and target profiles, kinase inhibitors have been
and continue to besubjected to profiling experiments
including various panel assays and kinome screens.5−12 Because
the majority of current kinase inhibitors bind to the conserved
adenosine 5′-triphosphate (ATP) site in kinases, or regions
proximal to this site,12−14 selectivity versus promiscuity of
kinase inhibitors is still an intensely debated issue,2−4,12−16 with
important implications for therapeutic applications and clinical
performance.2,3,17

Recently, Klaeger et al. have reported the most compre-
hensive kinase inhibitor profiling study available to date,18

yielding a variety of binding, functional, and structural data for a
set of 243 kinase inhibitors at different stages of clinical
evaluation and development, including marketed drugs. The
authors primarily applied a chemoproteomics approach.
“Kinobeads”, that is, nonspecific kinase inhibitors immobilized
on the solid phase, were used to extract bound target proteins
from mixed lysates of different cancer cell lines. Target binding
was then determined using quantitative mass spectrometry.
Using loaded kinobeads from lysates, dose-dependent com-
petition assays with clinical kinase inhibitors were carried out to
identify their targets and determine apparent dissociation
constants.18 The set of clinical kinase inhibitors was found to
interact with a total of 253 kinases, comprising nearly half of the
human kinome. A key finding of this study has been that the
investigated clinical kinase inhibitors covered a wide spectrum
of binding characteristics ranging from selective to highly
promiscuous compounds.18

Given this extensive in vivo-oriented target identification
effort for clinical kinase inhibitors and the variety of target
profiles that were observed, we were interested in evaluating
how some of the findings of Klaeger et al. might relate to the
promiscuity assessment of kinase inhibitors on the basis of
currently available activity data. We reasoned that comparison
with literature data from medicinal chemistry might often
provide complementary or orthogonal views of inhibitor
selectivity versus promiscuity, given the many different assays
these compounds were tested in. Klaeger et al. also searched
the kinase inhibitor literature and retrieved biological activity
annotations from ChEMBL,19 the major public repository of
compounds and activity data from medicinal chemistry sources.
They noted that no bioactivity records were deposited for 35 of
the clinical kinase inhibitors under investigation.18

We have systematically collected all activity data available in
ChEMBL for the clinical kinase inhibitors studied by Klaeger et
al. and organized these data according to different confidence
criteria. Then target annotations were identified and promis-
cuity degrees (PDs) of inhibitors were calculated at different
data confidence levels. We also identified kinase inhibitors that
were most and least selective on the basis of the data of Klaeger
et al. and separately determined the target profiles for these
inhibitors. The comparison of our findings with results of
Klaeger et al. is reported herein.
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2. MATERIALS AND METHODS

2.1. Clinical Kinase Inhibitors and Data Confidence
Level Criteria. ChEMBL identifiers and SMILES representa-
tions of clinical kinase inhibitors were taken from the
supplementary information of Klaeger et al.18 and mapped to
ChEMBL (release 23, accessed in Jan 2018).19 Only human
targets were considered to conform with Klaeger et al. For
inhibitors annotated with human targets, activity data were
collected at two different confidence levels including levels 1
(intermediate) and 2 (high). For confidence level 1, the highest
assay confidence was required for ChEMBL data, and for level
2, the highest assay and, in addition, highest measurement
confidence were required for ChEMBL data. Accordingly,
activity data were only selected from direct inhibition assays
(assay relationship type “D”) for single targets with the highest
assay confidence score (“9”). In addition, only unambiguously
specified Ki or IC50 measurements with standard activity unit
(“nM”) and consistent “activity comments” were considered.
To address the compound concentration dependence of target
annotations and identify weak inhibitory interactions, we also
generated results for comparison after applying a <10 μM
activity (potency) threshold to both data confidence levels.
2.2. Selectivity Scores and Promiscuity Degrees.

Klaeger et al. introduced the “Concentration- And Target-
Dependent Selectivity” (CATDS) score for the analysis of their
experiments.18 The CATDS score quantifies the reduction in
binding of a given target to kinobeads at a particular inhibitor
concentration relative to the summed reduction in binding of all
available targets. As defined, CATDS scores of inhibitors are
target-dependent. Scores approaching 1 are characteristic of a
selective kinase inhibitor (i.e., the compound almost exclusively
inhibits a single target), whereas scores close to 0 are usually
indicative of a nonselective (highly promiscuous) inhibitor. For

each clinical kinase inhibitor found in ChEMBL, we selected
the largest available CATDS score as a selectivity measure.
Furthermore, we calculated the “promiscuity degree” (PD) of
an inhibitor as the number of its unique targets on the basis of
the activity records from ChEMBL that qualified for confidence
levels 1 or 2 in the presence or absence of the <10 μM activity
threshold.

2.3. Kinase Inhibitor Types and Chemical Probes. A
subset of clinical kinase inhibitors was assigned by Klaeger et al.
to type I or type II inhibitor category on the basis of the
available structural data and binding mode information.18 Type
I kinase inhibitors bind to the conserved ATP site in the active
form of the kinase, whereas type II inhibitors bind to the
inactive form and less conserved regions adjacent to the ATP
site.13,14 Therefore, type II inhibitors are often expected to be
more selective than type I inhibitors. We separately analyzed
PDs for inhibitors with type I or II binding mode.
Furthermore, a subset of clinical kinase inhibitors were

designated chemical probes18 on the basis of reports from the
Chemical Probes Portal.20 For such probe compounds used in
chemical biology, a high degree of selectivity is generally
required. Therefore, we also separately analyzed PD values of
the designated chemical probes among clinical kinase inhibitors.

3. RESULTS AND DISCUSSION

3.1. Clinical Kinase Inhibitors and Data Confidence
Levels. Structures of 3 of the 243 clinical kinase inhibitors were
not found in ChEMBL. In addition, 38 inhibitors were not
annotated with human targets, leaving 202 inhibitors with at
least one known human target for activity data confidence
analysis. For confidence level 1, the highest assay confidence
was required, and for the more stringent level 2, the highest
assay plus highest measurement confidence were required.

Figure 1. PDs on the basis of known activities. Box plots report the distribution of the PD of clinical kinase inhibitors on the basis of activity data
from ChEMBL at different confidence levels (top: level 2, 166 inhibitors; level 1, 185) and after applying the <10 μM activity threshold (bottom:
level 2, 164; level 1, 172). Box plots contain the smallest value (bottom line), first quartile (lower boundary of the box), median value (thick line),
third quartile (upper boundary), largest value (top line), and outliers (points below the bottom or above the top line).
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These data confidence levels were established to exclude target
annotations from the analysis that were only weakly supported
experimentally (e.g., target annotations from cell-based assays
lacking confirmation of direct target engagement).
Confidence level 1 was met by activity data of 185 of 202

clinical kinase inhibitors available in ChEMBL. These 185
inhibitors were active against a total of 394 human kinases and
218 nonkinase targets. After applying the <10 μM activity
threshold, 172 inhibitors were available for confidence level 1
that were active against 379 kinases and 64 nonkinase targets.
Furthermore, 166 of the 185 inhibitors qualified for confidence
level 2, which were active against 122 human kinases and 66
nonkinase targets. After applying the <10 μM activity threshold
to confidence level 2, 164 inhibitors were obtained with activity
against 122 kinases and 52 nonkinase targets. Hence, there was
a sharp decline in target numbers at increasing data confidence.
For comparison, at confidence level 1, clinical inhibitors were
active against a total of 394 human kinases on the basis of the
currently available data (379 human kinases after applying the
activity threshold), while Klaeger et al. identified 253 kinase
targets. The human kinome comprises 518 kinases.21

Although a significant number of nonkinase targets were
identified, the majority of the clinical kinase inhibitors were
predominantly active against kinases. After applying the <10
μM activity threshold to both data confidence levels, the
number of nonkinase target annotations notably reduced by
154 targets for confidence level 1 and by 14 targets for
confidence level 2, much more so than the number of human
kinase annotations (with 15 kinases for confidence level 1 and 0
for confidence level 2). For statistical considerations, we also
calculated fractional kinase PD values, defined as (#kinase
targets/#targets). On average, these values were very close to 1.
Therefore, for the purpose of our statistical analysis, it was not

required to further distinguish between kinase and nonkinase
targets.

3.2. Global Promiscuity Degrees. Figure 1 shows the
distribution of PD values for the inhibitor subsets at confidence
levels 1 and 2. At level 1, a broad distribution was observed with
inhibitors in the upper quartile having hundreds of target
annotations. However, although supported by in vitro assay
confidence, many of these PDs were most likely artificially high
because it is hardly conceivable that a clinical compound might
indeed act in vivo on hundreds of targets. Of course, at high
or artificially highcompound concentrations, more activities
might be detected. When the activity threshold was applied to
level 1, the distribution became much more narrow, and the
median PD was reduced from 7 to 4, whereas the distribution
for level 2 remained nearly unchanged. In this context, it should
be noted that Klaeger et al. detected 494 transcribed kinases
including mutant forms in their experiments and 363 translated
kinases, 253 of which were bound to kinobeads.18

Hence, on the basis of medicinal chemistry data, the 185
inhibitors qualifying for confidence level 1 (172 after applying
the activity threshold) were annotated with a larger fraction of
the human kinome (394 kinases, 379 after applying the
threshold) than that was accessible to the 243 inhibitors during
proteomics profiling.
However, Figure 1 also shows that many inhibitors at

confidence level 1 had only low PD values, especially after
applying the activity threshold. Taken together, these findings
were consistent with the identification of selective to highly
promiscuous inhibitors by Klaeger et al.
At confidence level 2, the distribution of the PD values was

narrow, with a median of 3, and an upper quartile range of 3−5,
with only a limited number of statistical outliers having PD
values larger than 10 (there were only little differences when
applying the activity threshold). Thus, the comparison in Figure

Figure 2. PDs for different selectivity categories. Box plots report the distribution of PD values of the subsets of the most and least selective clinical
kinase inhibitors according to CATDS scores (see Materials and Methods) at different confidence levels of ChEMBL data (top: level 2, most
selective: 36 inhibitors, least selective: 31; level 1, most selective: 38, least selective: 33) and after applying the <10 μM activity threshold (bottom:
level 2, most selective: 35 inhibitors, least selective: 31; level 1, most selective: 36, least selective: 31).
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1 revealed a strong influence of data confidence criteria on the
global distribution of PDs. Hence, analyzing activity data and
target annotations at different confidence levels yielded a
differentiated view of the target space of kinase inhibitors
charted under varying experimental stringency. It also provides
a meaningful framework for evaluating the results of profiling
experiments.
3.3. Most and Least Selective Kinase Inhibitors. Next,

we analyzed the distribution of CATDS scores reported by
Klaeger et al. to determine subsets of the most and least
selective inhibitors according to this scoring scheme. Therefore,
a score histogram was generated, and the resulting distribution
was fitted to a normal distribution, yielding a mean value m and
standard deviation σ of 0.510 and 0.285, respectively. Then
subsets of the most and least selective inhibitors were defined
by applying score thresholds of 1 σ above and below the mean,
respectively. The resulting most selective (CATDS ≥ m + σ;
CATDS ≥ 0.795) and least selective (CATDS ≤ m − σ;
CATDS ≤ 0.225) subsets contained 39 and 36 inhibitors,
respectively.
Figure 2 shows the distribution of PD values for these

subsets at confidence levels 1 and 2. At confidence level 1,
broad distributions were observed for both subsets, similar to
that of Figure 1, with median PD values of 6.5 and 8 for the
most and least selective inhibitors, respectively. Thus, differ-
ences in selectivity between these subsets were only small. The
distributions became very narrow after applying the activity
threshold, and the median PD values were reduced. However,
the distribution for the most selective inhibitors contained
compounds with hundreds of target annotations, more so than
the distribution for least selective inhibitors, indicating that this
data confidence level was inappropriate to reconcile differences
in selectivity suggested by CATDS scoring. A different picture
emerged for distributions generated at confidence level 2. In
this case, the distributions were narrow, in the presence or
absence of the activity threshold, similar to that of Figure 1,
yielding mean PD values of 2 and 4 (or 3) for the most and
least selective inhibitors, respectively. Thus, at high activity data
confidence, differences in selectivity between these subsets were
also small, taking into account that the most selective inhibitor
subset was defined by a CATDS score threshold of nearly 0.8,
and the least selective subset was defined by a CATDS score
threshold of less than 0.23. Thus, these observations suggested
that similar target profiles might yield CATDS scores of
different magnitudes, dependent on the relative binding
contributions of different targets and that CATDS scoring
and PDs might reflect selectivity in different ways.
Examples are given in Figure 3 that shows two clinical kinase

inhibitors, capmatinib and lapatinib, which both belonged to
the subset of most selective inhibitors. At confidence levels 2
and 1, capmatinib was only active against its primary kinase
target on the basis of the literature data, also reflecting high
selectivity. By contrast, lapatinib was active against 5 and 389
targets at confidence levels 2 and 1, respectively. After applying
the activity threshold, lapatinib was annotated with against 3
and 13 targets at confidence levels 2 and 1, respectively. Thus,
in this case, application of the activity threshold balanced the
view of lapatinib promiscuity at data confidence level 1.
3.4. Different Binding Modes. Clinical kinase inhibitors

available in ChEMBL included 85 compounds that were
categorized as type I and 27 as type II inhibitors on the basis of
the binding mode information. Figure 4 shows the PD value
distributions of type I and II inhibitors. Because the number of

type II inhibitors was much smaller than that of type I
inhibitors, statistical assessment was limited in this case, and it
was difficult to directly compare the distributions. However, at
confidence level 1, at least half of the designated type II
inhibitors were highly promiscuous, with a median PD of 295.5,
which was much larger than the median PD of 48 obtained for
type I inhibitors. Similar trends were observed after applying
the activity threshold, with PD median values of 9 and 26 for
type I and type II inhibitors, respectively. At confidence level 2,
the results were similar for type I and II inhibitors, with PD
median values of 4 and 3, respectively, and outliers present in
both cases. While only a limited number of type II were
available, these findings did not provide evidence for often
assumed greater selectivity of type II versus type I inhibitors,
consistent with the results and conclusions of Klaeger et al. and
earlier proposals.14

It should also be noted that 16 type I and 4 type II inhibitors
belonged to the most selective inhibitor subset according to
Figure 2, whereas 22 type I and 4 type II inhibitors belonged to
the least selective subset. Hence, there was no notable relative
enrichment of the designated type II over type I inhibitors in
the most selective subset.

3.5. Chemical Probes. Clinical kinase inhibitors classified
as chemical probes represented another interesting subset for
our analysis, given that compounds used as probes typically
have rather stringent requirements for selectivity. The 164
clinical kinase inhibitors meeting data confidence level 2 in the
presence of the activity threshold were found to contain 13
designated chemical probes that are shown in Figure 5. For
each of these inhibitors, the CATDS score is provided,
revealing the presence of a large scoring range for these
putative probes. In fact, only two of these compounds belonged
to the most selective subset (having a CATDS score of 1),
whereas two others belonged to the least selective subset (with
scores of 0.15 and 0.22, respectively). However, at high data
confidence (level 2), all 13 probes were selective (with one or
two targets) or at least moderately selective (with four, six, or
nine targets). By contrast, at confidence level 1, a clear
separation was observed, as also shown in Figure 5. In this case,
only four inhibitors retained PD values of 2, and three others
had PD values of 14, 16, and 38, whereas the remaining six
inhibitors were each annotated with more than 370 or 380

Figure 3. Examples of the most selective clinical kinase inhibitors. Two
kinase inhibitors belonging to the most selective CATDS score-based
subset are shown. For each inhibitor, the PD value on the basis of
ChEMBL data is reported at confidence levels 2 (red background) and
1 (blue background) and after applying the <10 μM activity threshold
(level 2, red outline; level 1, blue outline).
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targets, thus calling probe characteristics into question. There
were only 4 of 13 inhibitors with PD values of 2 at both
confidence levels 1 and 2, which could be considered
meaningful chemical probes applying stringent criteria.
However, when the activity threshold was applied to confidence
level 1, the number of target annotations for chemical probes
was significantly reduced, resulting in four highly promiscuous
inhibitors (with 32, 37, 81, and 121 annotations) and nine
others with less than 10 targets per probe. Taken together,
these observations also corroborated findings by Klaeger et al.
that clinical inhibitors with assumed selectivity were often
promiscuous. Figure 6 shows the two designated chemical
probes having the maximal CATDS score of 1, AZD-2014 and
SGX-523. Inhibitor AZD-2014 was only active against two
targets at data confidence levels 1 and 2 (only one after
applying the activity threshold) and belonged to the group of
four preferred chemical probes referred to above. By contrast,
SGX-523 was active against a single kinase at confidence level 2,
but annotated with 376 targets at confidence level 1, making it
difficult to support its use as a probe on the basis of available
activity data. After applying the activity threshold at level 1,
SGX-523 was left with eight targets. However, weak activities
against a variety of targets were likely in this case. This
comparison illustrates the importance of comprehensive activity
data analysis for evaluating putative chemical probes.

4. CONCLUSIONS

In this study, we haveto our knowledge for the first time
correlated results of an extensive cell-based kinase inhibitor
profiling campaign with those obtained by systematic mining of
compound activity data from different sources. Given the
limited availability of profiling data in the public domain, this
analysis was of high interest to us, especially considering the
exploration of kinase inhibitor selectivity versus promiscuity.
The analysis was focused on kinase inhibitors at different stages

of clinical development, which are typically well characterized
experimentally. At varying activity data confidence levels
substantial differences in inhibitor promiscuity were observed.
The clinical inhibitors covered a wide spectrum of target
profiles, ranging from selective to highly promiscuous
compounds, as revealed by both chemoproteomics profiling
and data mining. A subset of inhibitors was annotated with
more kinases on the basis of the activity data than were
expressed under the conditions of the profiling experiment. In
some instances, in vitro assays yielded hundreds of target
annotations for kinase inhibitors, which could not possibly
translate into in vivo settings for clinically viable compounds,
thus highlighting the likely limitations of assay relevance. It was
also of interest to determine the target profiles of kinase
inhibitors with different binding modes thought to cause
differences in selectivity. However, neither experimental
profiling nor activity data mining revealed notable differences
between type I and II kinase inhibitors. Moreover, we analyzed
kinase inhibitors that were considered chemical probes, which
also complemented the results of experimental profiling. For
putative chemical probes, very different target profiles were
observed and the majority of these compounds were non-
selective at different data confidence levels. Main findings of the
analysis can be summarized as follows:

(i) Cell-based kinase inhibitor profiling and mining of
available kinase activity data from medicinal chemistry
was complementary and revealed similar trends.

(ii) In part, significant differences in promiscuity were
detected for clinical kinase inhibitors.

(iii) The analysis revealed the importance of considering
activity data extracted from databases at different
confidence levels.

(iv) At data confidence level 1, application of an activity
threshold significantly reduced PDs and balanced the
view of kinase inhibitor promiscuity.

Figure 4. PDs for type I and type II kinase inhibitors. Box plots report the distribution of PD values for type I and type II inhibitors on the basis of
ChEMBL data at confidence levels 1 and 2 (top: level 2, type I: 75 inhibitors; type II: 24; level 1, type I: 81; type II: 26). In addition, the PD values
are reported for levels 2 and 1 after applying the <10 μM activity threshold (bottom: level 2, type I: 75; type II: 24; level 1, type I: 79; type II: 25).
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(v) Often assumed differences in selectivity between type I
and II kinase inhibitors could not be confirmed by cell-
based profiling or systematic compound data mining.

(vi) Even clinical kinase inhibitors regarded as chemical
probes showed notable difference in PDs and contained a
subset of highly promiscuous.

In summary, correlating the results of experimental profiling
and compound data mining has further advanced our
understanding of binding characteristics of currently most
advanced kinase inhibitors, clearly showing that there are no
simple relationships between clinical performance and
selectivity versus promiscuity of these compounds. We
conclude by emphasizing that the data made available by
Klaeger et al. provide a rich source for different types of follow-
up analysis. Herein, we have focused on compound selectivity,
given the applicability domain of compound data mining.
However, there are many more functional data provided by
Klaeger et al. that can be further explored via other
computational or experimental approaches.
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Hahne, H.; Tõnisson, N.; Kramer, K.; Götze, K.; Bassermann, F.;
Schlegl, J.; Ehrlich, H.-C.; Aiche, S.; Walch, A.; Greif, P. A.; Schneider,
S.; Felder, E. R.; Ruland, J.; Med́ard, G.; Jeremias, I.; Spiekermann, K.;
Kuster, B. The Target Landscape of Clinical Kinase Inhibitors. Science
2017, 358, No. eaan4368.
(19) Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.;
Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.;
Overington, J. P. ChEMBL: A Large-Scale Bioactivity Database for
Drug Discovery. Nucleic Acids Res. 2012, 40, D1100−D1107.
(20) Arrowsmith, C. H.; Audia, J. E.; Austin, C.; Baell, J.; Bennett, J.;
Blagg, J.; Bountra, C.; Brennan, P. E.; Brown, P. J.; Bunnage, M. E.;
Buser-Doepner, C.; Campbell, R. M.; Carter, A. J.; Cohen, P.;
Copeland, R. A.; Cravatt, B.; Dahlin, J. L.; Dhanak, D.; Edwards, A. M.;
Frederiksen, M.; Frye, S. V.; Gray, N.; Grimshaw, C. E.; Hepworth, D.;
Howe, T.; Huber, K. V. M.; Jin, J.; Knapp, S.; Kotz, J. D.; Kruger, R.
G.; Lowe, D.; Mader, M. M.; Marsden, B.; Mueller-Fahrnow, A.;
Müller, S.; O’Hagan, R. C.; Overington, J. P.; Owen, D. R.; Rosenberg,
S. H.; Roth, B.; Ross, R.; Schapira, M.; Schreiber, S. L.; Shoichet, B.;
Sundström, M.; Superti-Furga, G.; Taunton, J.; Toledo-Sherman, L.;
Walpole, C.; Walters, M. A.; Willson, T. M.; Workman, P.; Young, R.
N.; Zuercher, W. J. The Promise and Peril of Chemical Probes. Nat.
Chem. Biol. 2015, 11, 536−541.
(21) Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T.;
Sudarsanam, S. The Protein Kinase Complement of the Human
Genome. Science 2002, 298, 1912−1934.

ACS Omega Article

DOI: 10.1021/acsomega.8b00243
ACS Omega 2018, 3, 3113−3119

3119

63



 



Summary

Systematic evaluation of clinical kinase inhibitors was performed on the ba-
sis of publicly available data. Our comparative analysis revealed consistent se-
lectivity observations in cell-based and medicinal chemistry-driven approaches.
Significant promiscuity differences were detected for a subset of clinical candi-
dates. Consistent with this finding, sets of the most and least selective can-
didates from cell-based profiling studies revealed similar promiscuity trends,
taking different data sources into account. Varying confidence levels of activity
data strongly influenced selectivity profiles. Comparison of type I and type II
inhibitors revealed no significant differences in selectivity. However, clinical can-
didates classified as chemical probes contained a subset of highly promiscuous
representatives.

In the next study, we explore selectivity and off-target activities of desig-
nated chemical probes using activity data from different sources.
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Chapter 5

Data-Driven Exploration of
Selectivity and Off-Target
Activities of Designated Chemical
Probes

Introduction

Chemical probes must meet stringent selectivity requirements. The scien-
tific community works frequently to revise requirements for high-quality probes.
In spite of these efforts, their improper use and poor characterization represents
an ongoing problem. For example, experts at Chemical Probes Portal estab-
lish ranks and commentaries to guide external investigators who select probes
for targets of interest. Such recommendations would benefit from data-driven
evaluation.

To complement expert views, we comprehensively analyzed highly curated
probes from Chemical Probes Portal using the compound activity data from
ChEMBL. Promiscuity of chemical probes was explored by applying activity
data confidence levels of increasing stringency. Results were compared to those
reported by Chemical Probes Portal. In addition, scaffold analysis and analog
relationships were used to evaluate potential off-target activities.
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Abstract: Chemical probes are of central relevance for chemical biology. To unambiguously explore
the role of target proteins in triggering or mediating biological functions, small molecules used as
probes should ideally be target-specific; at least, they should have sufficiently high selectivity for
a primary target. We present a thorough analysis of currently available activity data for designated
chemical probes to address several key questions: How well defined are chemical probes? What is
their level of selectivity? Is there evidence for additional activities? Are some probes “better” than
others? Therefore, highly curated chemical probes were collected and their selectivity was analyzed
on the basis of publicly available compound activity data. Different selectivity patterns were observed,
which distinguished designated high-quality probes.

Keywords: chemical biology; bioactive compounds; chemical probes; target selectivity; promiscuity;
molecular scaffold; off-target activity

1. Introduction

In 2003, the Human Genome Project was completed [1,2], which catalyzed biomedical research
in an unprecedented manner. Among others, the emerging field of chemical biology was spurred on
through the availability of annotated gene sequences, the development of new screening techniques,
and advances in computational biology [3,4]. Many newly sequenced genes and their products became
available for further exploration, which also opened the door for the identification of new targets for
drug discovery [5–7]. Studying the function(s) of candidate targets in physiological environments
and under pathological conditions became a primary objective for chemical biology. For this purpose,
small molecules were used as chemical probes to specifically assess consequences of target intervention
for biological functions and processes [8–10].

Chemical probes have stringent requirements. They must be capable of selectively binding to
targets and modulating protein functions in their physiological context; ideally, probes should be
target-specific. Furthermore, if they are used in a phenotypic context, it must ultimately be possible to
deconvolute and identify targets that are responsible for an interesting biological readout [8,11–14].
These are challenging tasks. Not surprisingly, the scientific community is continuously revising
and updating requirements for high-quality probes. One example is provided by a proposal of the
Structural Genomics Consortium [15], according to which a high-quality probe should have higher than
100 nM potency against its designated target and exhibit greater than 30-fold selectivity for its primary
target over other proteins belonging to the same family. Moreover, for phenotypic applications, a probe
should display significant cellular on-target activity at 1 µM concentration. However, more often than
not, such requirements are not met by candidate compounds considered as probes [13].
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In addition to defining key requirements for chemical probes, the scientific community has set out
to evaluate and rate probes and validate their use in cellular or in vivo model systems. For example,
this is attempted through submission of candidate compounds to the Chemical Probes Portal [13,14],
which recommends probes on the basis of ratings provided by their Scientific Advisory Board (SAB),
consisting of experts in medicinal chemistry, chemical biology, or pharmacology. Guided by such
ratings, an external investigator should be capable of choosing the best available probe for a target of
interest and acquiring it through listed vendors [14].

Despite ongoing efforts to set high standards for chemical probes, the scientific community is
still facing problems due to poor characterization of small molecule modulators, improper use of
probes, and outdated recommendations [8,12,13]. The characterization and dissemination of probes
will likely benefit from further support. For example, from a scientific viewpoint, a data-driven
assessment of chemical probes is expected to complement expert views and experimental case studies,
especially since compound activity data currently grow in an unprecedented manner.

In this study, we report a comprehensive analysis of highly curated chemical probes from the
Chemical Probes Portal on the basis of compound activity data available in ChEMBL [16], the major
public repository of data from medicinal chemistry. Promiscuity of probes was calculated at different
data confidence levels and potency thresholds. Compound selectivity was investigated and compared
to reports of the Chemical Probes Portal. Applying a scaffold concept [17], activities of chemical probes
and structurally analogous bioactive compounds were compared and potential off-target activities of
probes were further explored via network analysis [18]. Our findings are reported in the following.

2. Results and Discussion

2.1. Qualifying Chemical Probes

Table 1 shows target classes of chemical probes as reported by the Chemical Probes Portal. A total
of 67 probes are listed, for which high-confidence activity data were available in ChEMBL and at
least one activity annotation for a human target with a potency of ≤10 µM. Data confidence criteria
and potency thresholds applied in our analysis are detailed in the Materials and Methods section.
The 67 probes were assigned to six target classes. Almost half of these probes (33) were directed against
protein kinases, followed by epigenetic probes (16).

Table 1. The table reports designated target classes of chemical probes from the Chemical Probes Portal,
for which qualifying activity data were available in ChEMBL.

Target Class Chemical Probes Target-Based Categories

Protein kinases 33 Chemical probes for kinase targets
Lipid kinases 1
Epigenetics 16

Chemical probes for non-kinase targetsOther post-translation
modification proteins 13

Other proteins 3
Structural proteins 1

Based on the classification in Table 1, the compounds were broadly divided into probes for
kinases (34) and non-kinase targets (33). This was done because kinase inhibitors are of particular
interest in chemical biology (as well as drug discovery), given the key role kinases play in many
signaling pathways.

Protein kinases share an adenosine triphosphate (ATP) (cofactor)-binding site that is highly
conserved across the human kinome [19]. The majority of currently available kinase inhibitors are
type I inhibitors directed against the conserved ATP site, making target promiscuity among such
inhibitors likely [20–22]. However, the presence of promiscuity cannot be assumed a priori because
many type I inhibitors also display apparent selectivity for a given kinase over others [20,22]. Hence,
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for characterizing kinase inhibitors used as chemical probes, exploring the interplay between assumed
selectivity and potential promiscuity is of particular interest.

2.2. Selectivity Trends of Chemical Probes

For each chemical probe, the promiscuity degree (PD) was defined as the number of its unique
targets on the basis of ChEMBL activity records or target annotations of the Chemical Probes Portal.
Activity of a compound against multiple targets including unrelated targets is generally rationalized
as promiscuity, whereas specificity implies exclusive activity against a single target. Furthermore,
selectivity is best understood as activity against very few related targets, for example, a primary
target and one or two others from the same family. Hence, formally it is difficult to draw a line
between low levels of compound promiscuity and selectivity. However, since promiscuity also applies
to increasingly large numbers of targets, it is advantageous to introduce the promiscuity degree as
a measure of multi-target activity, rather than selectivity degree.

PDs were calculated on the basis of medium-confidence activity data (level 1; see Materials and
Methods) and high-confidence data (level 2) applying two different potency thresholds (≤10,000 nM
and ≤100 nM; see Materials and Methods). In the following, the ≤10,000 nM threshold is referred to as
≤10µM. For each probe, four PDs were obtained by combining data confidence level 1 and 2 with the
two potency thresholds, and a fifth value was calculated on the basis of target annotations provided by
the Chemical Probes Portal. The results obtained for the 67 probes are reported in Figure 1.

Based on the information provided by the Chemical Probes Portal, probes were active against
one to four targets, with on average 1.6 targets per probe. The majority of probes only had a single
target annotation, consistent with proposed high-quality probe characteristics. On the basis of activity
data from ChEMBL, a somewhat different picture emerged. For the data confidence level 2/≤100 nM
threshold combination, most probes retained their Portal-based PD value, yielding a similar average
of 1.7 targets per probe. For the confidence level 2/≤10 µM threshold combination, nearly half
of the probes retained their PD. However, for others, an increase in promiscuity was detected,
yielding an average of 2.6 targets per probe. In some cases, a PD > 5 was observed. These findings
indicated that a subset of probes were at least weakly active against multiple targets.

Next, data confidence criteria were relaxed and PD values calculated at confidence level 1 applying
a potency threshold ≤10 µM. In this case, about half of the qualifying probes also retained their
Portal-based PD value. However, for other probes a substantial increase in promiscuity was observed,
resulting in an average PD of 6.3 targets per probe. When applying the more rigorous ≤100 nM
threshold at level 1, the mean PD decreased again to 2.2 targets per probe, revealing that reported
weak activities at medium data confidence were largely responsible for the significant increase in the
average PD.

Taken together, the results in Figure 1 show that proposed target selectivity of about 50% of
the designated high-quality probes was not altered by taking medicinal chemistry data at varying
confidence levels and potency thresholds into account. This was an encouraging finding, which also
applied to kinase probes having an intrinsic likelihood of multi-kinase activity. By contrast, a significant
increase in promiscuity was observed for another subset of probes. Table 2 reports 10 kinase probes
that were annotated with both kinase and non-kinase targets when applying the confidence level
1/≤10 µM threshold combination. Two exemplary kinase probes with a different degree of selectivity
are shown in Figure 2, NVS-PAK1-1 [23] and ruxolitinib [24].
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Figure 1. Promiscuity degree (PD) values of chemical probes are calculated on the basis of activity
records from ChEMBL at two data confidence levels and for two potency thresholds and on the basis
of target information from the Chemical Probes Portal. Probes for kinase and non-kinase targets are
distinguished. Matrix cells represent PD values and are color-coded using a continuous spectrum
ranging from light blue (0–1) to dark blue (≥20). “0” means that no target annotation is available for
a given combination.
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Table 2. Reported are kinase probes that are annotated in ChEMBL, with both kinase and non-kinase targets.

Chemical Probe
Confidence Level 2 Confidence Level 1

≤10 µM ≤100 nM ≤10 µM ≤100 nM

BMS-911543 6 (2) 1 3 6 (2) 3
BYL-719 4 (2) 1 8 (3) 1

CCT244747 2 (1) 1 2 (1) 1
CCT251545 4 (1) 2 (1) 4 (1) 2 (1)

P505-15 6 (1) 3 6 (1) 3
PF3644022 2 (1) 1 2 (1) 1
Rapamycin 5 (4) 2 (1) 7 (6) 3 (2)
Ruxolitinib 4 4 121 (1) 16

SGX-523 1 1 8 (1) 1
VX-745 3 (2) 1 24 (2) 2

1 Probes were selected if non-kinase targets were available for at least one confidence level/threshold combination.
For each combination, promiscuity degree (PD) values are reported. If non-kinase targets are available, their number
is given in parentheses. For example, “2 (1)” means that the probe is annotated with two targets, including one
kinase target and “2” that the probe is annotated with two kinases (and no non-kinase target).

Figure 2. Shown are two exemplary kinase probes. For each probe, five PD values are reported
applying different data selection criteria.

NVS-PAK1-1 [23] is an allosteric inhibitor of serine/threonine-protein kinase PAK1, as reported
by the Chemical Probes Portal. Importantly, allosteric kinase inhibitors bind to regions outside
the conserved ATP site and are thus expected to be more target-selective than type I inhibitors.
At data confidence level 2, PAK1 was the only target of NVS-PAK1-1, regardless of the potency
threshold. For the confidence level 1/≤10 µM threshold combination, only the closely related
serine/threonine-protein kinase PAK2 was detected as an additional target. However, this was
not the case when the ≤100 nM threshold was applied. Thus, on the basis of activity data analysis,
NVS-PAK1-1 was a highly selective chemical probe, consistent with its allosteric mode-of-action and
the Portal assessment.

Ruxolitinib [24] is an ATP-competitive pan-JAK inhibitor with JAK1 and JAK2 as designated
primary targets. In this case, a different picture emerged. At confidence level 2 and both potency
thresholds, activity of ruxolitinib was reported against two other members of the Janus kinase family,
JAK3 and TYK2. Moreover, at confidence level 1, drastic increases in promiscuity were detected. At the
≤100 nM potency threshold, 16 kinase annotations were obtained and at the ≤10 µM threshold, a total
of 121 targets were detected. These findings have two implications. First, promiscuity must be strictly
considered in light of data confidence and potency criteria. For example, comparing the PD values
obtained at confidence level 1 and 2, it is unlikely that ruxolitinib would be weakly active against more
than 100 targets, and thus some of these annotations might well be false positive. Second, there was
a clear difference in selectivity between NVS-PAK1-1 and ruxolitinib. Not unexpectedly, given its
classification as an ATP site-directed pan-JAK inhibitor, ruxolitinib exhibited target promiscuity,
and this well beyond the Janus kinase family, as revealed by our activity data analysis. Hence, the use
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of ruxolitinib as a pan-JAK probe might be called into question, even if a number of target annotations
detected at medium data confidence and, especially, low potency are false positive.

2.3. Chemical Probes and Historic Compounds

Chemical Probes Portal also reports a class of small molecules termed “historic compounds” [14].
As the name implies, many of these compounds were previously used as chemical probes,
but considered to be obsolete or inferior to others at some point. Typically, historic compounds were
found to be non-selective or not sufficiently potent to meet high-quality probe standards. For each
historic compound, the Portal provides a rationale as to why it should not be further considered
as a probe [14]. We reasoned that these historic compounds might present an interesting case for
comparison with current probes.

For the confidence level 2 and 1/≤10 µM threshold combinations, activity annotations for 127 of
the 164 historic compounds of Chemical Probes Portal were identified in ChEMBL, applying the
same criteria as for chemical probes. For the level 2 and 1/≤100 nM threshold combinations,
activity annotations were detected for 94 historic compounds. Figure 3 compares the distribution of
PD values for chemical probes and historic compounds for all four combinations.

Figure 3. Boxplots report the distribution of PD values of qualifying chemical probes (green) and
historic compounds (red) on the basis of ChEMBL data (top: Level 2 and 1, threshold ≤10 µM,
chemical probes: 67, historic compounds: 127; bottom: Level 2 and 1, threshold ≤100 nM,
chemical probes: 64; historic compounds: 94). Boxplots contain the smallest value (bottom line),
first quartile (lower boundary of the box), median value (thick line), third quartile (upper boundary),
largest value (top line), and outliers (points below the bottom or above the top line).

In general, historic compounds had higher PD values than current chemical probes on the basis
of available activity data, consistent with the Portal assessment. Hence, shortcomings of historic
compounds were attributable to limited target selectivity.

2.4. Scaffold Analysis of Chemical Probes

Applying the confidence level 2/≤10 µM threshold combination, 67 chemical probes, combined with
qualifying 233,675 bioactive compounds from ChEMBL and Bemis-Murcko (BM) scaffolds [17] (see Materials
and Methods), were extracted from this compound set. BM scaffolds represent molecular core structures and
compounds sharing the same scaffold from a series of analogs. The 67 chemical probes yielded 66 unique
BM scaffolds. For each probe, bioactive compounds sharing the same scaffolds were collected and their
target annotations recorded. Target annotations of structural analogs assigned to probe scaffolds provide
additional target hypotheses for probes (i.e., hints at off-target activities).
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Figure 4a shows the distribution of target annotations (red) and ChEMBL compounds (green)
over the 66 BM scaffolds extracted from probes. Only small numbers of bioactive compounds
contained probe scaffolds. For 21 scaffolds, no additional ChEMBL compounds were identified
(i.e., these scaffolds exclusively represented the probe). For 29 other scaffolds, a total of two to nine
analogs (including the probe) were identified. Only six probe scaffolds represented 30 or more analogs.
Thus, chemical probes frequently contained unique core structures. Since only limited numbers of
analogs were detected for the majority of probes, the number of cumulative target annotations per
probe scaffold was overall also small. The majority of scaffolds (53 of 66) were associated with one
to four targets and only three scaffolds with 10 or more targets. Thus, “meta-level” promiscuity of
chemical probe scaffolds was also low.

Figure 4. Cont.
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Figure 4. (a) Bar graphs report the distributions of compounds and targets over probe scaffolds.
(b) Kinase probes skepinone-L and AZD1152 are shown together with their BM scaffolds. For these
probes and their scaffolds, promiscuity degrees are compared (red background). In addition, the total
number of analogs represented by each probe scaffold is given (green). (c) Shown are 13 chemical probe
scaffolds with highest “meta-level” promiscuity (i.e., associated with five or more targets). For these
scaffolds, the promiscuity degrees (red background) and number of analogs (green) representing them
are reported. In addition, classes of primary targets of compounds containing the scaffolds are given as
reported by Chemical Probes Portal.

Figure 4b shows two kinase chemical probes and their BM scaffolds. Skepinone-L [25,26] is
an ATP-competitive MAP kinase p38 alpha inhibitor with an unusual binding mode. Its scaffold
represented a total of 48 analogs, all of which were exclusively annotated with MAP kinase
p38 alpha. Hence, skepinone-L is another highly selective kinase probe. AZD1152 [27,28]
is a phosphate-containing pro-drug that is rapidly converted in vivo into an active alcohol.
Chemical Probes Portal reports the active form of AZD1152 as a selective inhibitor of serine/threonine
kinase Aurora-B. In ChEMBL, an additional target was found for AZD1152. Moreover, although the
scaffold of AZD1152 only represented 12 analogs—much less than the skepinone-L scaffold—these
analogs were active against a total of seven targets, indicating that AZD1152 was likely less selective
than proposed. Thus, skepinone-L and AZD1152 represent another example of designated high-quality
probes with notable differences in selectivity revealed by activity data analysis, similar to NVS-PAK1-1
and ruxolitinib shown in Figure 2. The set of 13 structurally diverse scaffolds with highest “meta-level”
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promiscuity is shown in Figure 4c. Compounds containing these scaffolds were active against a total
of five or more targets.

2.5. Off-Target Activity Assessment in Networks

Going beyond scaffold analysis, similarity relationships between chemical probes and other bioactive
compounds can also be explored on the basis of matched molecular pair (MMP) analysis [29]. An MMP is
defined as a pair of compounds that are only distinguished by a chemical change at a single site. MMPs can
be efficiently generated algorithmically. As another criterion of structural similarity [30], a chemical probe
and bioactive compounds were classified as similar if they formed an MMP. Such structural relationships can
be conveniently displayed in molecular networks in which nodes represent compounds and edges account
for pairwise MMPs. If one assigns different node types to chemical probes and other bioactive compounds,
a bipartite network is obtained, which can be further extended to a tripartite design by adding targets as
a third node category. In the resulting tripartite network, edges between probes and analogs represent
similarity relationships and edges between compounds and targets activity relationships. For chemical
probes with bioactive analogs (connected by edges) additional targets associated with these analogs can
be considered since it can be assumed that probes are likely to also be active against targets of structurally
closely related compounds.

MMPs were obtained for 49 of 67 chemical probes and 738 bioactive analogs from ChEMBL.
These compounds were active against a total of 135 targets. A tripartite network was constructed
to capture all structural and activity relationships. The network revealed 47 previously unobserved
probe-target associations involving a subset of 16 chemical probes and 40 targets from ChEMBL.
New relationships can be studied in a structure-activity context by focusing on network neighborhoods
of chemical probes. An example is provided in Figure 5, which shows the network neighborhood of
CH5424802 [31], an ATP-competitive inhibitor of ALK tyrosine kinase, as reported by the Chemical
Probes Portal, for which an additional target, RET tyrosine kinase, was identified in ChEMBL.
CH5424802 had two close structural analogs with reported activity against the same and other kinases,
thus providing additional target hypotheses for the chemical probe.

Figure 5. Shown is the neighborhood of a chemical probe (CH5424802) in a tripartite network. Blue and
green nodes represent probes and bioactive analogs, respectively, and red nodes targets. Blue edges
represent interactions between probes and targets from the Chemical Probes Portal, and green edges
interaction between all compounds and targets from ChEMBL. In addition, yellow edges indicate
MMP (similarity) relationships. Targets of analogs that provide additional hypotheses for the probe
are encircled. This network should be considered “pseudo-tripartite” because the formation of edges
(MMP relationships) is also permitted here between nodes belonging to the same category, departing
from fundamental network theory. The network was drawn with Cytoscape 3.6.1. using the “organic
layout” function [32].

77



Molecules 2018, 23, 2434 10 of 12

2.6. Summary

Small molecular probes are of central importance to chemical biology. However, many currently
investigated probes remain to be fully characterized. To these ends, important contributions are made
by the Chemical Probes Portal, which carefully assesses candidate probes and prioritizes a set of highly
curated chemical probes. Herein, we have further investigated designated high-quality probes by
systematic analysis of available activity data for probes and closely related bioactive compounds.
Our analysis adds another layer to the characterization of probes for chemical biology. Taking different
data confidence and potency criteria into account, we show that ~50% of designated high-quality
probes are target-selective when all available activity data are considered, consistent with expert
curation; an encouraging finding. This applies to chemical probes directed against kinase or non-kinase
targets. On the other hand, activity data analysis also differentiates between probes and identifies
a subset of putative high-quality probes for which selectivity cannot be supported on the basis of
currently available data, as summarized in Figure 1. These chemical entities might be deprioritized
and should be used with caution when exploring biological functions and their origins. However,
the analysis also emphasizes the presence of a variety of probes with striking selectivity—including
kinase inhibitors—indicating that further progress in generating high-quality chemical probes can be
anticipated, which will be exciting to follow.

3. Materials and Methods

3.1. Chemical Probes

Chemical probes were extracted from Chemical Probes Portal (accessed in July 2018) [13,14],
which reports 189 small molecule modulators for applications in biomedical research. From this
collection, only probes were selected that (i) were classified as inhibitors of a primary target,
(ii) had non-ambiguous SMILES representations, (iii) were associated with ChEMBL identifiers
(ChEMBL IDs) [16], and (iv) had a sufficiently high rating. The last selection criterion requires
further explanation. Members of the Chemical Probes Portal SAB assign priority star ratings (1–4 stars)
to probe candidates for their application in cellular and/or in vivo models. A star rating of 1 indicates
that a candidate cannot be recommended as a probe, whereas a rating of 4 represents a high
recommendation. Expert ratings for a candidate compound are averaged to obtain a final consensus
rating. The Chemical Probes Portal endorses compounds as chemical probes only if their final rating
reaches at least 3 stars [14]. Therefore, only candidate probes with a final rating of at least 3 stars were
selected for our analysis. On the basis of selection criteria (i)–(iv), 80 highly curated probes qualified
for our analysis.

3.2. Activity Data, Confidence Levels, and Historic Compounds

For selected chemical probes, available activity data for human targets were extracted from
ChEMBL (release 24). Activity data were evaluated at two different confidence levels including level
1 (medium confidence) and level 2 (high confidence) according to [21]. For level 1, activity data
with highest assay confidence were required, i.e., activity annotations were only selected from
direct inhibition assays (ChEMBL assay relationship type “D”) for single targets at the highest
assay confidence level (“9”). For level 2, activity data with highest assay confidence plus highest
measurement confidence were selected. Highest measurement confidence required the availability of
numerically specified standard activity measurements (Ki or IC50 values with “=” standard relation),
use of the nanomolar (“nM”) activity unit, and presence of fully consistent “activity comments”
in ChEMBL. To investigate selectivity characteristics of chemical probes, two potency thresholds
were applied to activity data at confidence levels 1 and 2, i.e., ≤10,000 nM (≤10µM) and ≤100 nM.
For each chemical probe, PD values were calculated for each combination of a confidence level and
potency threshold, yielding four PD values per probe from ChEMBL data. An additional PD value was
calculated on the basis of target annotations reported by the Chemical Probes Portal. At confidence level
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2 applying the ≤10 µM potency threshold, at least one activity record for a human target was obtained
for 67 of 80 pre-selected chemical probes. These 67 probes provided our basis set for subsequent
analysis. We also searched ChEMBL for 164 historic compounds designated by the Chemical Probes
Portal on the basis of the same criteria applied to chemical probes.

3.3. Bioactive Compounds, Scaffold Analysis, and Off-Target Predictions

Scaffold analysis of chemical probes was performed applying the Bemis-Murcko (BM) scaffold
concept [17]. BM scaffolds are extracted from compounds by eliminating all R-groups while retaining
ring systems and linker moieties connecting rings. So-defined scaffolds were derived from all chemical
probes and bioactive compounds for which target annotation(s) were available at confidence level 2
applying the ≤10 µM potency threshold. Potential off-target activities of chemical probes were also
analyzed using a tripartite network data structure [18].

Author Contributions: F.M. and J.B. conceived the study and designed the experiments; F.M. performed the
experiments; F.M. and J.B. analyzed the data and wrote the paper.
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Summary

We carried out a data-driven evaluation of designated chemical probes from
Chemical Probes Portal by taking ChEMBL activity data into the account.
Different data confidence levels suggested that ∼50% of high-quality probes
were selective for their targets. On the other hand, a subset of compounds was
detected for which selectivity requirements cannot be supported. These modu-
lators may be deprioritized or used with caution in chemical biology settings.

Previous findings show that kinase inhibitors, including clinical candidates
and chemical probes, often contain different selectivity profiles. Kinase inhibitor
analogs with significant differences in promiscuity were not yet explored on large
scale.

Our next goal was the identification and analysis of pairs of structural
analogs with large differences in promiscuity.
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Chapter 6

Computational Analysis of Kinase
Inhibitors Identifies Promiscuity
Cliffs across the Human Kinome

Introduction

PCs are defined as pairs of structurally analogous compounds with large dif-
ferences in number of annotated targets. This data structure is useful to explore
structure-promiscuity relationships and derive additional target hypotheses for
close structural analogs of extensively tested compounds. PCs were previously
detected for inhibitors of the human kinome. We collected and curated kinase-
related activity data from seven public databases and consolidated them into a
new kinase data set for subsequent analyses.

This data set was used to perform promiscuity analysis and systematically
search for structural analogs forming PCs. Obtained PCs were organized in
network representations and PC pathways connecting individual PC pairs were
further evaluated.
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Computational Analysis of Kinase Inhibitors Identifies Promiscuity
Cliffs across the Human Kinome
Filip Miljkovic ́ and Jürgen Bajorath*
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Friedrich-Wilhelms-Universitaẗ, Endenicher Allee 19c, D-53115 Bonn, Germany

ABSTRACT: Kinase inhibitors are high-priority drug candidates for
a variety of therapeutic applications. Accordingly, there has been a
rapid growth in the number of kinase inhibitors and volumes of
associated activity data. A paradigm for the use of kinase inhibitors in
oncology is that these compounds have multitarget activities and
elicit their therapeutic effects through polypharmacology. An analysis
of kinase inhibitors and associated activity data from medicinal
chemistry has so far only identified small subsets of highly
promiscuous kinase inhibitors. In this study, we have collected
inhibitors of human kinases and their activity data from seven public
repositories, curated, and combined these data, yielding more than
112 000 inhibitors with well-defined activity measurements from
which qualitative target annotations were derived. An analysis of
these unprecedentedly large data sets revealed that nearly 40% of
human kinase inhibitors have multikinase activities but that only 4% are known to be active against five or more kinases.
However, structurally analogous inhibitors often displayed significant differences in the number of kinase annotations, leading to
the formation of nearly 16 000 “promiscuity cliffs”. Moreover, 2236 promiscuity cliffs (14.03%) were formed by kinase
inhibitors at different stages of clinical development. Overall, these cliffs suggested many target hypotheses for kinase inhibitors,
taking data incompleteness into consideration, as well as hypotheses for structural modifications leading to kinase selectivity.
Furthermore, from network representations, pathways comprising sequences of promiscuity cliffs were extracted that revealed
unexpected structure−promiscuity relationships. To enable follow-up investigations, all promiscuity cliffs formed by human
kinase inhibitors will be made freely available.

■ INTRODUCTION
Kinase inhibitors play a major role in drug discovery.1,2

Originally, kinase inhibitors were successfully applied in
oncology, where their therapeutic efficacy was found to be
largely due to polypharmacology.3,4 However, the clinical use of
kinase inhibitors has been further expanded to other therapeutic
areas such as immunology and inflammation or metabolic
diseases, where target selectivity of inhibitors plays an important
role.5−7 It is thus not surprising that the topic of kinase inhibitor
selectivity versus promiscuity has been intensely investigated
over the past decade and continues to be a much debated
issue.8−13 Selectivity analysis is far from being a simple task,
given the binding characteristics of kinase inhibitors and the
many experimental variables that need to be considered.
Furthermore, apparent promiscuity of compounds including
kinase inhibitors is often associated with undesired effects such
as artifacts resulting from assay interference.14−16 However,
promiscuity also refers to the presence of true multitarget
activities of compounds that represent the molecular basis of
polypharmacology.17,18

A mapping of signature fragments of kinase inhibitors
adopting different binding modes revealed by X-ray crystallog-
raphy19,20 has shown that more than 95% of the currently
available inhibitors of human kinases are type I inhibitors.21,22

These inhibitors block the adenosine triphosphate (ATP)
cofactor binding site that is largely conserved across the kinome,
so they are expected to be promiscuous.21 Subsets of highly
promiscuous kinase inhibitors have indeed been identified
including anticancer drugs,22 consistent with their polypharma-
cology. Promiscuous kinase inhibitors include approved drugs as
well as inhibitors at different stages of clinical development. A
representative example is provided by sunitinib, a multikinase
type I inhibitor, whose targets include vascular endothelial
growth factor receptor 2 and platelet-derived growth factor
receptor β kinases. Polypharmacology associated with sunitinib
and various other promiscuous kinase inhibitors has proven
essential for their efficacy in cancer treatment.2−4 On the other
hand, analyses of the available kinase inhibitors and associated
activity data have not supported the often assumed general
promiscuity of these inhibitors. For example, in the first large-
scale analysis, 18 653 publicly available inhibitors with activity
against 266 human kinases were identified for which high-
confidence activity data were available.22 On the basis of Ki and
IC50 measurements, 68 and 77% of all the inhibitors were only
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annotated with a single human kinase, respectively, and only
∼1% of the inhibitors were active against five or more kinases.22

Two years later, the number of human kinase inhibitors with
available high-confidence data had more than doubled and
43 331 inhibitors with activity against 286 human kinases were
available.23 However, despite the rapid growth in kinase
inhibitors, 76.5% of all the inhibitors were only annotated with
a single kinase on the basis of combined Ki and IC50
measurements; again, only ∼1% of all the inhibitors had
reported activity against five or more kinases.23 There is the
possibility that the dominance of kinase inhibitors with single
target annotations is at least partly due to data incompleteness24

because only a confined subset of kinase inhibitors have been
subjected to kinome profiling. On the other hand, the mean
promiscuity degree (PD) of ∼1.5 determined by activity data
analyses22,23 did not significantly increase when the activity data
confidence criteria were gradually relaxed and increasing
numbers of activity measurements considered or primary kinase
screening assays were analyzed. The PD is defined as the number
of unique kinase annotations available for an inhibitor and serves
as a qualitative measure of compound promiscuity. The PD is
derived on the basis of well-defined activity measurements
including, among others, (assay-dependent) IC50 and (assay-
independent) Ki values. Although potency values reported on
the basis of different types of measurements should not be
directly compared, they are qualified to serve as sources for
target annotations.
In the light of the findings discussed above, large-scale activity

data analysis did not provide support for the view that ATP site-
directed kinase inhibitors might generally be promiscuous.
Moreover, kinase inhibitor activity profiles are multifaceted. For
example, within the subset of promiscuous kinase inhibitors, in
part strong target selectivity tendencies for individual kinases
were detected, resulting from differential potency for multiple
kinases.25−27 In this context, it should also be noted that large-
scale analyses of kinase inhibitor activity data reported so far
were exclusively22,23,26 or mostly25,27 based on ChEMBL,28 the
major public repository for compounds and activity data from
medicinal chemistry. Hence, one might consider revisiting
kinase inhibitor analysis by integrating data from different
repositories that have become available over time. The number
of available kinase inhibitors and volumes of associated activity
data steadily grow, which reflects intense efforts to advance
inhibitors to preclinical and clinical development in different
therapeutic areas. However, there is no simple correlation
between increasing amounts of available data and clinical
advancements in the kinase inhibitor field, especially because
requirements for kinase inhibitors considered for different
therapeutic applications depart from standards established in
drug discovery including, first and foremost, kinase promiscuity
and ensuing polypharmacology.5,6

The promiscuity cliff (PC) data structure was introduced
previously to explore the structural basis of multitarget activities
of small molecules.29−31 A PC is defined as a pair of structurally
analogous compounds that have a large difference in the number
of target annotations.29 PCs have been identified in screening
libraries29 and compound sets from ChEMBL including kinase
inhibitors.30 The PC data structure is useful for exploring
structure−promiscuity relationships and deriving additional
target hypotheses for structural analogues of extensively tested
kinase inhibitors, especially those that have advanced to the
clinic or have been approved as drugs. Structurally related
compounds have often not been extensively tested. Therefore,

PCs involving such inhibitors immediately suggest follow-up
experiments, given likely data incompleteness.
Herein, we extend the systematic analysis of kinase inhibitors

and their promiscuity on the basis of inhibitors and activity data
that were selected from different source databases and
combined, yielding unprecedented coverage of the human
kinome. The analysis was combined with a systematic
assessment of the PCs formed by human kinase inhibitors and
PC pathways extracted from network representations.

■ MATERIALS AND METHODS
General Compound Selection Criteria. Compounds

were represented as canonical SMILES.32 The following
selection criteria were generally applied:

(1) Only inhibitors of human kinases having UniProt33 IDs
were selected.

(2) The permittedmolecular weight range was [200, 900] Da.
(3) Potency had to be reported using a standard concen-

tration or constant (such as IC50, Ki, or Kd) and a
numerically specified value with standard unit (such as
units μM, nM, or pM). All potency measurements were
recorded as the negative decadic logarithm.

(4) A potency threshold of 10 μM was applied (pPOT ≥ 5).
(5) If multiple potency values were reported for the same

kinase, the highest value was selected.
(6) Each kinase annotation of an inhibitor was recorded as a

separate “interaction”.

Source Databases and Data Curation. Databases were
accessed in September 2018, except PubChem, which was
accessed in June 2017. The following database-specific curation
and selection criteria were applied.

ChEMBL. From ChEMBL28 release 24, human kinase
inhibitors were selected if inhibition of single kinases (target
type “SINGLE PROTEIN”) in direct interaction assays
(relationship type “D”) at the highest level of confidence
(confidence score “9”) was reported using the standard activity
relationship “=”. In addition, consistent activity records were
required (e.g., excluding compounds designated as “active”,
“inactive”, and/or “inconclusive” in the same record).

PubChem. From PubChem,34,35 primary, confirmatory, and
panel assays for human kinases were obtained that reported
potency measurements with μM or nM activity units.
PubChem’s target GI numbers were mapped to the correspond-
ing UniProt IDs. Only compounds with a consistent designation
as active with standard relationship “=” for a human kinase assay
or across different assays for the same kinase were considered.

Probes and Drugs Portal. The Probes and Drugs Portal
combines activity data from ∼50 different sources.36 Human
kinases from the Portal data were mapped to UniProt IDs.
Kinase inhibitors with potencymeasurements such as pIC50, pKi,
or pKd were selected.

BindingDB. From BindingDB,37 inhibitors of human kinases
with available pIC50, pKi, pKd, or pEC50 were selected.

PDBbind. Protein−ligand complexes in PDBbind38 were
filtered for human kinases with UniProt IDs and associated
PDB39 codes for single targets. Reported compound activity
measurements included IC50, Kd, and Ki values with standard
relationship. Because PDBbind only provides PDB codes for
complexes, these codes were searched for matches in the KLIFS
database40 from which the corresponding inhibitors were
obtained.
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ProteomicsDB. Results of a profiling study of clinical kinase
inhibitors41 have been made available in ProteomicsDB.42 From
this data set, measurements designated as “high confidence”
were selected, given as Kd values with standard relationship,
yielding 215 human kinase inhibitors.
Drug Target Commons. Compound annotations with

human kinases in the Drug Target Commons database43 were
filtered for UniProt IDs, standard relationship “=”, and single-
target assays. The database refers to compounds using their
ChEMBL IDs. Therefore, qualifying kinase inhibitors were
retrieved from ChEMBL.
Unifying Kinase Inhibitor Data fromDifferent Sources.

To combine data from different sources, assemble unique
inhibitors, and evaluate compound sourcing, ChEMBLwas used
as a reference database. Compounds selected from all databases
were mapped to ChEMBL and the overlap was determined.
Then, inhibitors not contained in other databases were extracted
fromChEMBL by applying the selection criteria specified above.
Finally, it was determined how many unique human kinase
inhibitors were obtained from each database. Unification of
kinase data from different sources is generally hindered by the
application of different assay systems, activity detection
technologies, and experimental conditions such as varying
ATP concentrations in the assays. These variables typically lead
to different activity read-outs. Moreover, inconsistencies in data
curation may lead to further bias in judging and comparing
activity profiles. Therefore, we analyzed our data selection for
potential inconsistencies in activity data across different data
sources. Moreover, only 4.9% of the interactions had activity
variations exceeding one order of magnitude, thus lending
credence to the data curation and selection process. In this
limited number of cases, for formal consistency, the highest
reported activity value was selected and recorded to establish an
interaction.
Alerts for Pan-Assay Interference Compounds

(PAINS). For PC analysis, kinase inhibitors were screened for
pan-assay interference compounds (PAINS)14,15 using three
public filters available in ChEMBL,28 RDKit,44 and ZINC.45

Although it is by no means certain that compounds containing
PAINS substructures will cause assay interference and activity
artifacts,46,47 excluding potential false-positives is of critical
relevance for defining PCs. This is the case because single-assay
interference compounds with artificial target annotations might
give rise to many incorrect PCs. Therefore, kinase inhibitors
with PAINS alerts were excluded from PC analysis.
Promiscuity Cliffs. PCs formed by human kinase inhibitors

were identified by systematically searching for transformation
size-restricted matched molecular pairs (MMPs).48 An MMP is
defined as a pair of compounds that are only distinguished by a
chemical modification at a single site,49,50 termed a trans-
formation.50 The MMPs were then screened for a participating
inhibitor with a PD of 1−4 and another inhibitor with a larger
PD value, yielding a PD difference (ΔPD) of 5 or more. The
MMPs meeting these PD/ΔPD conditions were classified as
PCs.
PC networks in which nodes represent PC compounds and

edges pairwise PCs were generated with Cytoscape.51

Furthermore, phylogenetic trees of the human kinome52 were
drawn with KinMap.53

■ RESULTS AND DISCUSSION
Human Kinase Inhibitors. A total of 112 624 unique

inhibitors were identified that were active against 426 human

kinases (pPOT ≥ 5). These inhibitors covered 82.2% of the
human kinome (518 kinases)52 and formed a total of 234 740
unique compound−kinase interactions. For 97.2% of these
interactions, only one type of potency measurement (e.g., Ki)
was available. Furthermore, IC50, Ki, and Kd values represented
96.4% of all potency measurements, with IC50 representing two
thirds of the data (67.5%), followed by Ki (22.3%) and Kd
(6.2%) values. When a more stringent potency threshold of 100
nM (pPOT ≥ 7) was applied to this set, 69 774 inhibitors were
obtained that covered 408 human kinases.
Our previous analysis of kinase inhibitors23 was exclusively

based onChEMBL andChEMBL-specific data selection criteria.
Here, the scope of compound and activity data analysis was
expanded and data curation and selection criteria were balanced
to cover seven databases. To evaluate compound selection,
ChEMBL release 24 was used as a reference database and found
to contain 83 647 of the 112 624 inhibitors (74.3%). These
compounds had at least one human kinase annotation in
ChEMBL, not taking data confidence criteria into consideration.
Table 1 reports the number of inhibitors and interactions that

were uniquely contributed by individual databases. A subset of

3457 inhibitors was only present in ChEMBL, but no other
database. With 27 277 compounds, BindingDB provided by far
the largest fraction of unique inhibitors, which formed 44 547
interactions. BindingDB was followed by ChEMBL and
PubChem (444 unique inhibitors). In total, 31 753 inhibitors
originated from a single source database. In addition to uniquely
contributed compounds, 681 inhibitors not contained in
ChEMBL were shared by two or more other databases. The
consolidated set of 112 624 human kinase inhibitors provided
the basis for our subsequent analysis.

Promiscuity Analysis. For promiscuity analysis, each
defined compound−kinase interaction yielded an individual
target annotation for an inhibitor, whose sum gave its PD. In
addition, for each inhibitor with multikinase activity, the
“nanomolar ratio” was determined as the proportion of nM
relative to (nM + μM) potency measurements. The so-defined
nM ratio served as a measure of the strength and relevance of
interactions involving promiscuous kinase inhibitors.
Figure 1 shows the distribution of PD values of the 112 624

human kinase inhibitors. Majority of inhibitors (61%) only had a
single kinase annotation. More than a third of the inhibitors had
known activity against two to four kinases, whereas only 4%were
active against five or more kinases (4510 inhibitors). Among

Table 1. Unique Inhibitors and InteractionsOriginating from
Different Databasesa

no database unique inhibitors unique interactions

1 ChEMBL 3457 6807
2 PubChem 444 471
3 Probes and Drugs Portal 188 1971
4 BindingDB 27 277 44 547
5 PDBbind 365 380
6 ProteomicsDB 6 126
7 Drug Target Commons 16 16

∑ 31 753 54 318
aThe table reports the number of inhibitors and compound−kinase
interactions that were uniquely contributed by each database. Taken
together, 31 753 inhibitors originated from only one of the source
databases. The remaining 80 871 of the total of 112 624 qualifying
inhibitors were shared by two or more databases.
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these, 1% (1392 inhibitors) had 10 or more kinase annotations,
thus representing the subset of most promiscuous inhibitors
across the human kinome.With mean andmedian PD of 2.1 and
1.0, respectively, kinase inhibitor promiscuity was overall only
slightly higher across 426 human kinases than indicated by a
mean PD of 1.5, which was previously determined on the basis of
43 331 inhibitors with high-confidence activity data for 286
human kinases that exclusively originated from ChEMBL.23

Thus, although our current analysis was based on many more
compounds and a much larger kinome coverage, the assessment
of global promiscuity among kinase inhibitors remained
consistent with earlier findings. For promiscuous kinase
inhibitors (PD ≥ 2), a mean and median PD of 3.7 and 2.0
was obtained, respectively. Only a small subset of the inhibitors
had a high promiscuity. In addition to assessing kinase inhibitor
promiscuity, it was also of interest to determine which kinase
groups might form the largest numbers of inhibitor interactions.
For the subset of promiscuous kinase inhibitors, the highest
recorded number of interactions was found for tyrosine kinases
(group TK) (66 011 interactions; 42.8% of all interactions),
followed by CMGC (22 816; 14.8%) and AGC (16 097; 10.4%)
kinases.
Figure 2 reports the distribution of nM ratios for decreasing

numbers of promiscuous inhibitors with increasing PD values.
The widest distribution was observed for inhibitors with at least

five target annotations, yielding a median value of 0.4
corresponding to 40% nM potency values. For inhibitors with
aminimum of 10 target annotations, nM ratios were significantly
reduced, yielding a median of 0.2. However, with further
increase in PD thresholds, the distributions remained essentially
constant. About half of 538 inhibitors with a PD of at least 30
had nM ratios of 0.2 or greater. Hence, highly promiscuous
inhibitors were frequently active in the nanomolar range against
multiple kinases. Moreover, promiscuity patterns of inhibitors
greatly varied. Figure 3 shows four representative examples of
inhibitors with more than 50 kinase annotations and the
distributions of their activities across the kinome. As can be seen,
highly promiscuous inhibitors were either active against kinases
from different groups with similar frequency, corresponding to a
wide distribution of activities across the human kinome, or
predominantly targeting individual groups such as tyrosine
kinases. In addition, the distribution of μM vs nM potencies
substantially varied. In some instances, nM potencies of
inhibitors were largely confined to single kinase groups, in
others they were distributed over different groups. Thus,
inhibitors displayed diversified promiscuity patterns, which
revealed differential activities across the kinome, even for highly
promiscuous inhibitors.

Promiscuity Cliffs. Next, we systematically searched for
structural analogous kinase inhibitors forming PCs, which
required the consideration of additional analysis criteria. First,
inhibitors with PAINS alerts were excluded from PC analysis to
minimize the risk of false-positive PC assignments. Second, a
data-driven PD difference (ΔPD) criterion for cliff formation
was established.
A total of 7132 inhibitors with PAINS alerts were detected

(6.3%), thus only a small proportion, which included 4177
PAINS among 68 361 inhibitors with single kinase annotations
and 2955 PAINS among 44 263 promiscuous inhibitors.
Following the removal of PAINS, the PD value distribution
was re-calculated for the remaining 41 308 promiscuous
inhibitors, which again yielded a mean and median of 3.7 and
2.0, respectively, the same as for all promiscuous inhibitors
including PAINS, indicating that inhibitors with PAINS alerts
were in general not highly promiscuous.
We then determined the PD distribution for the subset of

promiscuous inhibitors with five or more target annotations,
which yielded a median PD of 6. Hence, on the PD scale, the top
∼2% of kinase inhibitors had PD values of 6 or greater. These
compounds were considered as candidates for highly promis-
cuous PC partners. Therefore, we set theΔPD threshold for PC
formation to 5. Accordingly, the PC of smallest magnitude
involving an inhibitor with a single kinase annotation was
formed with a qualifying structural analogue having a PD of 6. In
addition, we set the criterion that weakly promiscuous cliff
partners were limited to inhibitors with PD values ranging from
1 to 4. Application of this criterion ensured that no PCs were
formed by pairs of highly promiscuous inhibitors.
PC analysis was then based on a total of 105 492 inhibitors

without PAINS alerts. A large number of 15 939 PCs was
identified that involved 10 741 inhibitors (10.2%) including
1653 compounds with PD values of 6−295. We also determined
that 2236 PCs (14.0%) were formed by 129 kinase inhibitors at
different stages of clinical development and close structural
analogues. Nearly all (i.e., 126) clinical inhibitors forming PCs
were highly promiscuous cliff partners (PD ≥ 6), and 68 of the
clinical inhibitors formed at least 10 PCs and thus served as
“promiscuity hubs” in a PC network, as further discussed below.

Figure 1. Distribution of promiscuity degrees. A pie chart shows the
distribution of PD values for the set of 112 624 human kinase inhibitors.

Figure 2.Distribution of nanomolar ratios for inhibitors with increasing
PD values. Boxplots monitor distributions of nM ratios (vertical axis on
the left) for subsets of inhibitors at different PD thresholds (horizontal
axis). The blue curve reports the number of inhibitors in each set
(vertical axis on the right). Boxplots report the smallest value (bottom
line), first quartile (lower boundary of the box), median value (thick
line), third quartile (upper boundary of the box), largest value (top
line), and outliers (points below the smallest or above the largest value).
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Figure 4 shows the distribution of ΔPD values over all PCs.
More than half of the PCs (55%) hadΔPD values of 10 or more

and 5879 PCs (37%) ΔPD values of 20 or more. Thus,
significant numbers of large-magnitude PCs were identified. In
Figure 5, exemplary PCs of increasing magnitude are shown,
which reveal small structural changes that distinguish inhibitors
with increasingly large differences in potency. As such, each PC
encodes (i) additional target hypotheses for weakly or
nonpromiscuous inhibitors (taking data incompleteness into
consideration) and (ii) hypotheses for structural changes that
might be responsible for achieving target selectivity or trigger
promiscuity. Accordingly, computationally identified PCs
provide a wealth of opportunities for follow-up investigations.

Promiscuity Cliff Network. We then generated a global
network from all 15 939 PCs in which nodes represented
inhibitors and edges pairwise PC relationships. The global PC
network was found to consist of a total 622 clusters with two to
633 inhibitors per cluster, with a mean of 17.3 and median of 6.5
inhibitors. These clusters contained between one and 1351 PCs,
with a mean and median of 25.6 and 6.0 PCs per cluster. Thus,
PCs were typically formed by groups of structurally related
inhibitors, similar to what has been observed for activity
cliffs,54,55 the majority of which are formed in a “coordinated”
manner55 as well as for “interaction cliffs”, which take protein−
ligand interaction similarity into account, in addition to
structural similarity.56 As discussed below, coordination of
PCs further increased the structural context information for
promiscuity analysis. Figure 6a shows exemplary PC clusters
from the global network. As can be seen, these clusters vary
greatly in their size, topology, and complexity.

Promiscuity Cliff Pathways. PC clusters served as a source
of “PC pathways” (PCPs), as also illustrated in Figure 6a. A PCP
represents a linear substructure (subgraph) of a PC cluster and a
data structure for the extraction of structure−promiscuity
relationships from the clusters. Figure 6b−g show a variety of
PCPs of increasing length that are traced in clusters. A simple
PCP is depicted in Figure 6b, which was isolated from a PC
cluster with a “star” topology, resulting from a central highly
promiscuous inhibitor forming PCs with many others. This PCP
consists of only two PCs of smallest possible magnitude (i.e., PD
values of 1 and 6). Figure 6c shows a PCP from a cluster
containing a highly promiscuous inhibitor (PD 56) and a
number of weakly promiscuous analogues. The highly
promiscuous inhibitor has a substituent that is chemically
distinct from those of its analogues, which might be responsible
for its high promiscuity, providing experimentally testable

Figure 3. Promiscuity patterns. Shown are pairs of highly promiscuous inhibitors displaying different promiscuity patterns. ChEMBL IDs are reported
above the compounds and their PD values below in blue circles. For each inhibitor, a phylogenetic tree of the human kinome is shown onto which its
kinase annotations are mapped. Each dot represents a kinase the inhibitor is active against. Dots are color-coded according to compound potency
(green, nanomolar; yellow, micromolar).

Figure 4. Distribution of ΔPD values for promiscuity cliffs. A pie chart
shows the distribution of ΔPD values for the set of 15 939 PCs.
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hypotheses. The PCP depicted in Figure 6d combines inhibitors
with single kinase annotations and others with varying degrees of
promiscuity including one of the most promiscuous inhibitors
identified (compound 6, PD 165). It is striking to observe how
small chemical modifications along the PCP relate non-
promiscuous and highly promiscuous inhibitors to each other,
for example, compounds 3 (PD 1) and 4 (PD 14) or compounds
6 (PD 165) and 7 (PD 1). A characteristic feature of PC
sequences forming PCPs is that they consist of alternating
structural analogues with low and high PD values. As such, the
PCP uncovers multiple structure−promiscuity relationships
that can be further investigated. Even a medium-sized PCP, such
as the one shown in Figure 6d, provides many additional target
hypotheses for inhibitors as well as hypotheses for structural
modifications altering promiscuity. The information provided
by a single PCP would be sufficient for initiating an experimental
program to further explore a kinase inhibitor analogue series. As
shown in Figure 6e−g, PCPs of increasing lengths can be

isolated from increasingly large and complex clusters to extract
structure−promiscuity relationship information from them.
Both PCPs in Figure 6e,f are characterized by the presence of
inhibitors with significantly varying PD values. Furthermore, the
PCP in Figure 6g organizes a number of large-magnitude PCs
involving inhibitors with single target annotations and highly
promiscuous ones. It also illustrates that large series of
overlapping PCs might encompass inhibitors of varying size
and structural complexity. In cluster VI (Figure 6a) from which
this PCP was extracted, compounds 11 and in particular 13
represent promiscuity hubs (with a PD value of 16 and 34,
respectively), which have many weakly promiscuous or
nonpromiscuous near neighbors. Such promiscuity hubs and
their neighbors represent prime candidates for exploring the role
of data incompleteness in subsequent kinase profiling assays as
well as molecular origins of experimentally confirmed differ-
ences in promiscuity. Figure 7 shows exemplary clinical kinase
inhibitors and their PC network neighborhoods.

Figure 5. Exemplary promiscuity cliffs. For eachΔPD category in Figure 4, an exemplary PC is given. For each inhibitor, the PD value is reported and
chemical modifications distinguishing PC partners are color-coded.
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Figure 6. continued
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Figure 6. continued
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Figure 6. continued
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Figure 6. continued
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Concluding Discussion. In this work, we have combined
kinase inhibitors and associated activity data from different
public repositories, yielding an unprecedentedly large collection
of over 112 000 inhibitors with well-defined potency measure-
ments and achieving 82% coverage of the human kinome. On
the basis of these data, the much debated issue of kinase
inhibitor promiscuity was revisited. As in a previous analyses
focused on ChEMBL data, low global promiscuity was detected
for human kinase inhibitors, with mean andmedian PD values of
2.1 and 1.0, respectively. Only 4% of the currently available

inhibitors were active against five or more human kinases.
However, a small subset (∼1 to 2%) of highly promiscuous
inhibitors was identified that did not contain PAINS
substructures. Interestingly, highly promiscuous inhibitors
displayed different nM ratios and activity distributions across
the kinome.
Special emphasis was put on systematically identifying PCs

and PCPs. The PC concept was first introduced when analyzing
compound array experiments.29 Another previous investigation
established a promiscuity ontology of structurally related

Figure 6. Promiscuity cliff pathways. (a) Selected clusters (I−VI) from the global PC network and their composition. Nodes represent inhibitors and
edges pairwise PCs. Nodes are color-coded according to different PD ranges. Pathways formed by sequences of PCs are traced using thick black edges
and selected compounds are numbered. In (b)−(g), pathways from clusters I−VI in (a) are depicted in detail. The PD values of the participating
inhibitors are reported applying the same color code as in (a) and iterative structural modifications that distinguish inhibitors along the paths are shown
in red.
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compounds on the basis of calculated fingerprint similarity and
distinguished promiscuous from selective compounds.57 In our
current analysis, we have systematically analyzed PCs, PC
clusters, and PCPs to explore the structural modifications
associated with large promiscuity differences. Therefore, data-
driven PC criteria were established. A large number of ∼16 000
PCs were identified that were predominantly formed in a
coordinated manner, as revealed by network analysis. We

introduced the PCP concept to extract structure−promiscuity
relationships from PC clusters and organize them in an
interpretable form. The analysis uncovered many structurally
analogous inhibitors with large PD value differences and
chemical modifications converting high into weak or non-
promiscuous inhibitors and vice versa. Observed large differ-
ences in promiscuity between structural analogues were
surprising and might be due to multiple reasons, as discussed.

Figure 7. Network environment of clinical kinase inhibitors. Shown are exemplary clinical kinase inhibitors together with their neighborhoods in the
global PC network. The node corresponding to clinical kinase inhibitor is encircled and the PD values given below the inhibitor. The representation is
according to Figure 6.
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Systematic analysis of PC clusters and PCPs revealed many
structure−promiscuity relationships and additional target
hypotheses for inhibitors. As such, our study provides an
example for large-scale computational data analysis and
generation of data structures that provide a basis for
experimental design. Therefore, following publication of this
work, our kinase inhibitor data, PCs, and PC clusters will be
made freely available to enable follow-up investigations.
In summary, our analysis has yielded

1. a large kinase inhibitor collection from different sources,
achieving 82% coverage of the human kinome;

2. a detailed view of kinase promiscuity across the kinome;
3. approximately 16 000 PCs, which suggests target

hypotheses of kinase inhibitors for follow-up investiga-
tions;

4. a global PC network from which PC clusters can be
extracted;

5. PC pathways that can be directly used to explore
structure−promiscuity relationships in medicinal chem-
istry.
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Summary

Combining inhibitors from different databases, we obtained 112,624 kinase
inhibitors with well-defined activity measurements covering 82% of the human
kinome. Only 4% of the reported inhibitors were found to be active against five
or more kinases.

Altogether, ∼16,000 PCs were formed in a predominantly coordinated man-
ner as shown by the network analysis. Moreover, 2236 PCs (∼14%) were formed
by clinical kinase inhibitors. This finding suggested many target hypotheses for
inhibitors of the human kinome and provided a basis for studying structural
modifications determining inhibitor selectivity and promiscuity. From PC net-
works, PC pathways comprising sequences of PCs were isolated that revealed
unexpected structure-promiscuity relationships.

Around ∼600 disjoint PC clusters were found in the network. PC clusters of
increasing size and complexity are rich in structure-promiscuity information and
difficult to interpret interactively. Therefore, the development of an automated
protocol for identifying and extracting PC pathways from clusters was essential.

In the next chapter, a computational method for systematic identification
of PC pathways is introduced.
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Chapter 7

Systematic Computational
Identification of Promiscuity Cliff
Pathways Formed by Inhibitors of
the Human Kinome

Introduction

Nearly 16,000 PCs were extracted from network representations, forming
626 disjoint PC clusters. PC pathways were introduced as a promiscuity data
structure connecting compounds with alternating low and high promiscuity.
Automated extraction and systematic evaluation of PC pathways was required.
In this study, we developed a computational method to systematically identify
PC pathways and extract them from PC clusters. A set of pathway parameters
was defined and rank fusion was used to prioritize the most informative paths.
PC pathways capturing network nodes characterized as promiscuity hubs were
studied.
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Abstract
The ability of a small molecule to interact with multiple target proteins provides the molecular basis of polypharmacology. 
So-defined compound promiscuity is intensely investigated in drug discovery. For example, for kinase inhibitors, the inter-
play between target selectivity and promiscuity plays a decisive role for different therapeutic applications. The “promiscu-
ity cliff” (PC) concept was introduced previously to aid in promiscuity analysis. A PC is defined as a pair of structurally 
similar compounds with a large difference in promiscuity. Accordingly, PCs can reveal small structural modifications that 
might be responsible for selectivity or multi-target activity. In network representations, PCs form clusters of varying size 
and complexity that are difficult to analyze interactively. Herein, we introduce a computational method to systematically 
identify PC pathways, which are particularly rich in structure-promiscuity information, and extract them from PC clusters. 
PC pathways provide informative templates for experimental design. In a proof-of-concept investigation, we have applied 
the new computational approach to systematically identify pathways in more than 600 PC clusters formed by inhibitors of 
the human kinome, demonstrating the utility of the method and revealing many interesting promiscuity patterns.

Keywords Compound promiscuity · Structure-promiscuity relationships · Promiscuity cliffs · Promiscuity cliff pathways · 
Computational analysis · Automated pathway identification · Human kinome · Kinase inhibitors

Introduction

Possible origins of compound promiscuity continue to be 
debated in the drug discovery community. Promiscuity is 
often due to non-specific binding resulting from aggrega-
tion effects and other assay artifacts and thus highly undesir-
able [1–5]. On the other hand, compound promiscuity may 
originate from true binding events when a small molecule 
interacts with multiple targets in a defined way. Such multi-
target activities form the basis of polypharmacology with its 
associated functional effects [6–8]. The polypharmacology 
concept has gradually revised and further extended the long-
standing single-target specificity paradigm in drug discov-
ery [9, 10]. However, achieving target specificity of small 
molecules will continue to be a guiding principle for many 

therapeutic applications including, among others, the treat-
ment of chronic diseases or development of anti-infective 
agents. Target specificity is also of critical relevance in other 
areas such as chemical biology where the development of 
high-quality chemical probes to interrogate target-dependent 
functional effects is a major focal point [11, 12]. By contrast, 
compounds with multi-kinase activity have been success-
fully applied in oncology [13, 14]. Other multi-target com-
pounds show promise in therapeutic areas such as neurologi-
cal disorders [15].

There are several computational and experimental ave-
nues to explore molecular promiscuity. Compounds with 
multi-target activity can be identified through computational 
analysis of curated activity data [6, 7, 16] from medicinal 
chemistry that is available in major repositories such as 
ChEMBL [17] or biological screening data available in 
PubChem [18]. In addition, compound profiling and array 
experiments are a major source of multi-target activity infor-
mation [18–23].

The “promiscuity cliff” (PC) concept [24–26] was 
originally introduced to bridge between computational 
and experimental approaches and aid in the analysis of 
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compound array data [24]. A PC is defined as a pair of 
structurally analogous compounds, i.e., compounds that 
are only distinguished by a single substitution (R-group 
replacement), having a significant difference in the number 
of targets they are active against [24–26]. Accordingly, 
PCs reveal small chemical modifications that are impli-
cated in causing promiscuity [25, 26]. Furthermore, dif-
ferences in apparent promiscuity between PC compounds 
might be influenced by varying test (assay) frequencies. 
Thus, PCs also suggest additional target hypotheses for 
structural analogs of highly promiscuous compounds [26]. 
For meaningful applications of the PC concept, it must be 
ensured that compounds with assay liabilities and resulting 
frequent hitter characteristics are excluded from consid-
eration [26, 27]. Going beyond the analysis of compound 
array experiments, PCs were identified on a large scale in 
publicly available active compounds from different sources 
[27, 28].

Kinase inhibitors are a prime target for promiscuity 
analysis because the vast majority of currently avail-
able inhibitors target the adenosine triphosphate (ATP) 
(cofactor)-binding site that is largely conserved across 
the human kinome [29, 30]. Hence, these inhibitors are 
expected to be promiscuous [31]. However, general prom-
iscuity and lack of selectivity of kinase inhibitors is nei-
ther supported by profiling experiments [22, 23], nor com-
pound activity data analysis [32–34].

To quantify differences in kinase activities of ATP site-
directed compounds, a systematic search for PCs was carried 
out in a large collection of more than 112,000 inhibitors of 
426 human kinases (82% of the human kinome) that were 
assembled from several public compound databases [28]. 
Nearly 16,000 PCs were identified. In a global network 
representation, these PCs formed more than 600 clusters of 
varying composition [28].

PC clusters represent a rich source of information for 
promiscuity analysis. For example, from clusters, PC path-
ways (PCPs) can be isolated that represent sequences of 
compounds with alternating low promiscuity -or selectiv-
ity- and high promiscuity. Hence, inspection of PCPs makes 
it possible to follow stepwise structural modifications that 
strongly influence apparent promiscuity levels [28]. How-
ever, the large number of increasingly complex PC clusters 
quickly limits manual analysis of PCPs and makes it essen-
tially impossible to comprehensively study pathways in an 
interactive manner. Hence, there is a need to automate this 
process and enable systematic analysis of PC clusters and 
PCPs.

Herein, we present a computational approach to system-
atically identify PCPs in clusters, prioritize most informa-
tive PCPs, and extract them. In addition, an entropy-based 
measure is applied to assess the distribution of pathway-
associated kinase activities across the kinome.

Materials and methods

Data set

The previously reported set of kinase inhibitor PC clus-
ters [28] was taken for method development and subjected 
to systematic analysis. Transformation size-restricted 
matched molecular pairs (MMPs) [35, 36] were calculated 
to generate pairs of structurally analogous kinase inhibi-
tors. An MMP is defined as a pair of compounds that are 
only distinguished by a chemical modification (transfor-
mation) at a single site [36, 37]. For inhibitors forming 
MMPs, the promiscuity degree (PD) was determined as 
the number of kinase annotations on the basis of curated 
activity data, applying a potency threshold of 10 µM to 
 IC50,  Ki, or  Kd values. An MMP was considered a PC if 
the absolute difference of inhibitor PD values (ΔPD) was 
at least 5, i.e., if one inhibitor was active against five more 
kinases than the other. In addition, the PD value of the less 
promiscuous inhibitor was required to be between 1 and 4 
such that PCs could not be formed by pairs of highly pro-
miscuous inhibitors. Accordingly, the smallest possible PC 
involved an inhibitor with PD = 1 and a structural analog 
with PD = 6. Applying these criteria, a total of 15,939 
PCs were obtained that involved 10,741 kinase inhibitors, 
including 1653 inhibitors with PD values between 6 and 
295. These inhibitors were capable of participating in PCs 
as highly promiscuous cliff partners. The global network 
representation of the 15,939 PCs (nodes: compounds, 
edges: pairwise PC relationships) contained 622 disjoint 
PC clusters [28].

Computational extraction of PC pathways

For computational analysis, PCP was defined as the short-
est path between two nodes from a PC cluster. When mul-
tiple shortest paths existed between two nodes, ΔPD of 
the edges was considered and the path yielding the largest 
cumulative ΔPD value was chosen. In addition, to elimi-
nate path redundancy, only a single path was retained if 
multiple shortest paths contained the same set of promis-
cuous compounds (PD ≥ 6). So-defined PCPs were sys-
tematically generated for all pairs of promiscuous non-
terminal nodes (i.e., inhibitors forming at least two PC 
relationships with others). For each qualifying path, three 
parameters were calculated:

1. Length (number of nodes)
2. Total number of PCs involving promiscuous inhibitors 

with PD ≥ 6
3. Cumulative ΔPD of edges of the path.
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We note that the application of criterion 2 makes it pos-
sible to prioritize PCPs that contain “promiscuity hubs”, 
i.e., pathway compounds that form large numbers of PCs 
with others outside the PCP. Pathway hubs are further dis-
cussed below.

In addition to applying criteria for PCP prioritiza-
tion, a frequency model for n kinase groups [29] associ-
ated with a path is obtained by counting the frequency of 
occurrence of kinases belonging to each represented group. 
From frequency counts, the Shannon entropy (SE) [38] was 
calculated:

Here, the pi is the relative frequency of occurrence of 
each kinase group. Low SE values indicate that kinases asso-
ciated with a path belong to a single group while increasing 
values indicate that associated kinases belong to multiple 
(and increasing numbers of) groups.

PCPs were ranked separately in decreasing order accord-
ing to criteria 1–3 specified above. Then, rank fusion 
was applied. Therefore, the three ranks of each path were 
sorted in ascending order yielding a tuple (ra, rb, rc) with 
ra ≤ rb ≤ rc . The PCPs were ranked according to the lexico-
graphic order of the tuples. Initially, only the highest rank ra 
was considered and only in case of a tie, the second best rank 
rbwas used; if there was a tie for both ranks, rc was taken into 
consideration. Lexicographic ranking ensured that the high-
est ranked pathways according to each criterion appeared 
near the top of the final ranking.

All calculations were carried out using the Python-imple-
mented NetworkX package [39]. Shortest path calculations 
of the unweighted network were performed using a breadth-
first search strategy similar to Dijkstra’s algorithm [40]. The 
method organizes nodes of a network in layers of increasing 
distance around a source node. Each node in a layer repre-
sents a target node that contains pointers to all nodes of the 
previous layer, which extend possible shortest paths to the 
target node. Thus, all shortest paths from a source node to 
an arbitrary target node can be determined and prioritized 
according to the criteria outlined above.

Pathway visualization

Highly-ranked PCPs in PC clusters were visualized. Clus-
ters were drawn using NetworkX [39] applying the Kam-
ada–Kawai force-directed layout algorithm [41]. Cluster 
nodes were color-coded according to PD value ranges. In 
clusters, selected PCPs were traced using a thick black line. 

SE = −

n
∑

i=1,pi>0

pilog2pi

In addition, PCP compounds forming hubs with other nodes 
were identified. For kinases associated with PCP nodes, the 
frequency of occurrence was counted. For each selected 
PCP, a phylogenetic tree was drawn using KinMap [42], in 
which each dot represented a kinase associated with a PCP 
compound. Dots were scaled in size according to the fre-
quency of kinase annotations.

Results and discussion

The new methodology for PCP extraction from PC clusters 
was tested on kinase inhibitor PCs identified on the basis of 
medicinal chemistry data. For these active compounds, no 
test frequencies were available. We note that PCs have also 
been identified on the basis of publicly available screening 
compounds for which test frequencies were available [43]. 
These PCs also extensively formed clusters [43], similar to 
the kinase inhibitor PCs used herein. For the development 
of our method, the source of PCs (medicinal chemistry data 
or biological screening) made no difference.

Promiscuity cliff clusters

The 15,939 PCs formed by 10,741 kinase inhibitors were 
organized in a PC network in which nodes represented 
inhibitors and edges pairwise PC relationships. This net-
work contained 622 isolated clusters. Figure 1 reports the 
distribution of inhibitors, PCs, and mean ΔPD values for the 
clusters. About half of the clusters contained small numbers 
of compounds and PCs, with median values of 6.5 and 6.0, 
respectively. However, about 25% of the clusters contained 
20 or more compounds and PCs, representing increasingly 
large and complex clusters. The median ΔPD value for PC 
clusters was close to 10 and the third quartile value was 
close to 25. Thus, PC clusters captured large differences in 
compound promiscuity.

Promiscuity cliff pathways

An exemplary PCP is shown in Fig.  2a. The PCP data 
structure is particularly attractive for the analysis of prom-
iscuity patterns because PCPs consist of sequences of PC 
compounds with alternating large and small PD values. 
Hence, along a path iterative structural modifications can 
be examined that lead to large differences in promiscuity 
between structurally analogous compounds. In addition, as 
also shown in Fig. 2a, promiscuous PCP compounds fre-
quently represent promiscuity hubs forming multiple PCs 
with other structural analogs outside the path that are only 
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weakly promiscuous or non-promiscuous, which provides 
additional information. Thus, for the exploration of struc-
ture-promiscuity relationships, PCPs represent an informa-
tive data structure.

Computational identification of pathways

Manually tracing PCPs is cumbersome and becomes essen-
tially impossible when PC clusters grow in size beyond a 
few compounds such as the exemplary cluster shown in 
Fig. 2a. PC clusters contain many possible PCPs that need 
to be systematically examined to identify most informative 
paths. To these ends, computational analysis is essential and 
we introduce a new computational method for systemati-
cally identifying PCPs and extracting them from clusters. 
The approach relies on shortest path calculations between 
nodes in networks using breadth-first search akin to the Dijk-
stra’s algorithm [40]. Application of this approach makes 
it possible to exhaustively mine PC clusters for PCPs and 
automate their extraction, guided by criteria to prioritize 
PCPs according to their structure-promiscuity relationship 
information content. PCPs were extracted from all kinase 

inhibitor PC clusters containing at least two promiscuous 
compounds with PD ≥ 6. In the following, exemplary cases 
are presented.

Pathway analysis

Table 1 reports the composition of two representative clus-
ters A and B from the global PC network and their pathway 
statistics resulting from computational analysis. Cluster 
A contained 132 kinase inhibitors and 42 computation-
ally identified PCPs meeting the criteria specified above 
and cluster B contained 117 inhibitors and 21 PCPs. The 
comparison illustrates that the number of PCPs does not 
necessarily scale with the number of compounds. Rather, 
the topology of clusters and content of hubs are major fac-
tors determining the number of PCPs. For cluster A and 
B, PCPs with up to seven and five inhibitors were identi-
fied, respectively. Figure 2a depicts cluster A and the top 
ranked PCP identified by computational analysis. It consists 
of seven structural analogs with substitutions at three sites. 
The PCP compounds include two densely connected hubs 
(compounds 1 and 5) and have striking difference in prom-
iscuity including four in part highly promiscuous inhibitors, 
especially compound 1 (PD = 62), and three others with 
single kinase annotations. Large differences in promiscu-
ity along the path are accompanied by confined structural 
modifications. In Fig. 2b, a part of the hub configuration 
around highly promiscuous compound 1 is displayed, which 
forms PCs with numerous inhibitors having mostly single 
kinase annotations. These analogs are distinguished from 
the highly promiscuous inhibitor by only minor chemical 
modifications leading to very large differences in apparent 

Fig. 1  Distribution of inhibitors, 
PCs, and mean ΔPD values for 
PC clusters. Boxplots report 
distribution of compounds, PCs, 
and mean ΔPD values for 622 
kinase inhibitor PC clusters. 
Median values are reported and 
red diamond markers indicate 
the mean values of the distribu-
tions. Boxplots report the small-
est value (bottom line), first 
quartile (lower boundary of the 
box), median value (thick line), 
third quartile (upper boundary 
of the box), largest value (top 
line), and outliers (points below 
the smallest or above the largest 
value)

Table 1  Cluster and pathway statistics

For two exemplary PC clusters, the number of kinase inhibitors, PCs, 
and PCPs is reported. For PCPs, the size range (number of inhibitors) 
and cumulative ΔPD range are provided

Cluster Inhibitors PCs PCPs PCP size Cumulative ΔPD

A 132 234 42 3–7 23–230
B 117 261 21 3–5 10–175
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Fig. 2  Promiscuity cliff pathways from cluster A. In a, the top ranked 
PCP is traced. Nodes are color-coded according to PD value ranges 
and nodes of PCP compounds are numbered. Below the cluster, struc-
tures of PCP compounds are shown and their PD values are reported 
in corresponding nodes. Structural modifications distinguishing pairs 
of inhibitors along the path are colored red. In b, a promiscuity hub 
from the PCP is depicted that forms multiple PCs to other inhibitors 

with one or two kinase annotations. Structures of exemplary analogs 
are shown. In c, mapping of kinase annotations from the top ranked 
PCP onto a phylogenetic tree of the human kinome is shown. Each 
kinase associated with the PCP is represented as a red dot. The dots 
are scaled in size according to the number of kinase annotations 
along the path. In d, a lower ranked PCP from cluster A is traced
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promiscuity. These observations are puzzling and this PCP 
alone would provide a basis for extensive follow-up experi-
ments to better understand possible origins of large-mag-
nitude differences in promiscuity. For example, inhibitors 
with apparent specificity (PD = 1) might be tested against 

other PCP-associated kinases and/or additional analogs 
might be generated to probe the influence of selected and 
combined chemical modifications on promiscuity. Without 
the identification and analysis of PCPs, many of these puz-
zling structure-promiscuity relationships would most likely 

Fig. 2  (continued)
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remain unnoticed, illustrating the utility of the PCP data 
structure.

Figure 2c shows that kinase annotations of inhibitors 
forming the top ranked PCP are widely distributed across the 
human kinome. The distribution of large dots indicates that a 
variety of distantly related kinases have multiple annotations 
originating from inhibitors of the PCP, suggesting additional 
target hypotheses for PCP compounds and hub analogs.

Figure 2d depicts a lower ranked PCP from cluster A 
that overlaps with the top ranked path. This PCP consists 
of five inhibitors including two densely connected hubs 
(compound 1 and 5) and one highly promiscuous inhibitor 
(compound 1, PD = 47). The lower rank of this PCP com-
pared to the top ranked path is mainly due to its smaller 
size and lower cumulative ΔPD value. The kinome cov-
erage of kinase annotations from both PCPs is compara-
ble. Despite its lower rank, this PCP also reveals a variety 

of structure-promiscuity patterns and represents another 
informative template for experimental design.

Figure 3a depicts cluster B and its top ranked PCP. It 
consists of five inhibitors including three promiscuity hubs 
and two inhibitors with dual kinase activity. With 140 
kinase annotations, PCP compound 1 is one of the most 
promiscuous kinase inhibitors we have identified. The PCP 
contains a close structural analog of this inhibitor with dual 
kinase activity (compound 2) that only differs by a hydroxyl 
to fluoro substitution. In addition, as shown in Fig. 3b, the 
hub environment of compound 1 also contains a variety of 
close analogs with only two or three kinase annotations. 
Thus, at a first glance, one might hypothesize that many 
analogs of compound 1 would also be more promiscuous 
but might have not been sufficiently tested. However, this 
immediate and plausible assumption of data sparseness 
as a cause of apparent differences in promiscuity is called 

Fig. 2  (continued)
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into question when analyzing the kinome distribution of 
PCP kinase annotations, shown in Fig. 3c. In this case, 
kinome-wide activities only result from the pan-kinase 
inhibitor (compound 1), whereas activities of the other 

PCP compounds and PCP-associated inhibitors are strongly 
focused on the Src family within the tyrosine kinase (TK) 
group. This is a characteristic of inhibitors comprising 
cluster B, as also illustrated by considering another lower 

Fig. 2  (continued)
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Fig. 3  Promiscuity cliff pathways from cluster B. In a, the top ranked 
PCP is traced. In b, a promiscuity hub is shown in detail. In c, the 
phylogenetic tree representation of kinase annotations associated with 

the top ranked PCP is depicted. In d, a lower ranked PCP from clus-
ter B is shown. In e, the phylogenetic tree representation of the lower 
ranked PCP is displayed. The representation is according to Fig. 2

ranked PCP from this cluster, depicted in Fig. 3d. This 
PCP comprises five inhibitors and includes three promis-
cuity hubs (with a maximum of 14 kinase annotations). As 
revealed in Fig. 3e, these inhibitors are exclusively active 

against members of the TK group. Taken together, these 
observations suggest that it is unlikely that data sparseness 
alone would account for the apparent difference in promis-
cuity between compound 1 in Fig. 3a and other inhibitors in 
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Fig. 3  (continued)
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cluster B. Accordingly, exploring possible structural origins 
of pan-kinase versus TK promiscuity should, in this case, 
also be an attractive opportunity for follow-up investigation. 
Cluster A and B are representative of many PC clusters 
formed by kinase inhibitors that can be studied in detail on 
the basis of computational PCP analysis.

For the promiscuity hub examples reported in Figs. 2b 
and 3b, no comparative X-ray data are available to fur-
ther investigate promiscuity differences. However, other 
examples of promiscuous compounds have recently been 
discussed on the basis of structural data [44], which are 
well worth considering in the context of PC analysis.

Conclusions

PC clusters from network representations represent a rich 
source of structure-promiscuity relationship information. 
The PCP data structure is particularly informative for 

promiscuity analysis and suitable to aid in experimen-
tal design. However, interactive graphical analysis of 
PC clusters and manual delineation of PCPs is difficult 
and limits PC analysis. Therefore, we have introduced 
a new computational approach to systematically extract 
and organize PCPs from PC clusters. The methodol-
ogy makes it possible to exhaustively identify PCPs in 
data sets, as exemplified by our analysis of PC clusters 
formed by inhibitors of the human kinome. Systemati-
cally identified PCPs reveal many structure-promiscuity 
relationships that would be difficult, if not impossible to 
detect on the basis of interactive case-by-case analysis. 
PCPs provide a basis for exploring structural modifica-
tions that are implicated in triggering promiscuity ver-
sus selectivity and identify compound subsets in which 
apparent differences in promiscuity are likely due to data 
sparseness. Accordingly, the computational approach 

Fig. 3  (continued)
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introduced herein enables a thorough investigation of 
promiscuity patterns on the basis of PCPs and associated 
promiscuity hubs. PCPs covering the human kinome we 

have identified as a part of our study will be made freely 
available for follow-up investigations as an open access 
deposition on the ZENODO platform [45].

Fig. 3  (continued)
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Summary

We introduced a new computational method to systematically identify, pri-
oritize and extract most informative PC pathways from PC clusters. Computa-
tionally identified pathways revealed many structure-promiscuity relationships
that would be difficult, if not impossible, to manually detect using case-by-case
investigation. Promiscuity hubs and their structural analogs present a good
starting point for exploring structural modifications responsible for alternating
promiscuity levels.

With this in mind, we decided to make our data structures for promiscuity
analysis of kinase inhibitors publicly available. In the next chapter we further
analyze PC pathways and hubs.
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Chapter 8

Data Structures for Compound
Promiscuity Analysis: Cliffs,
Pathways, and Hubs Formed by
Inhibitors of the Human Kinome

Introduction

Data structures described in Chapter 6 and Chapter 7 provide ample op-
portunities for the study of structure-promiscuity relationships among kinase
inhibitors. Thus, we were determined to make them publicly available to enable
further exploration.

In this data note, the applications and limitations of these data structures
were discussed. In addition, promiscuity hub analysis was extended and a sub-
set of high-priority hubs were defined. Hub neighborhoods were analyzed to
identify structural analogs of clinical candidate hubs. Furthermore, to assess
their structural relationships, promiscuity hubs were organized into analog se-
ries using the recently developed compound-core relationship (CCR) method.
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Reproduced from “Miljković, F.; Bajorath, J. Data Structures for Compound
Promiscuity Analysis: Cliffs, Pathways, and Hubs Formed by Inhibitors of the
Human Kinome. Futur. Sci. OA 2019, 5, FSO404” with permission of Future
Science Group.
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Aim: A large collection of promiscuity cliffs (PCs), PC pathways (PCPs) and promiscuity hubs (PHs) formed
by inhibitors of human kinases is made freely available. Methodology: Inhibitor PCs were systematically
identified and organized in network representations, from which PCPs were extracted. PH compounds
were classified and their neighborhoods analyzed. Data & exemplary results: Nearly 16,000 PCs covering
the human kinome were identified, which yielded more than 600 PC clusters and 8900 PCPs. Moreover, 520
PHs were obtained. Limitations & next steps: PC and PCP data structures capture structure–promiscuity
relationships. Promiscuity assessment is also affected by data sparseness. Given the rapid growth of kinase
inhibitor data, the relevance of PC/PCP/PH information for medicinal chemistry and chemical biology
applications will further increase.

Lay abstract: Promiscuity cliffs (PCs) are formed by structurally very similar (analogous) compounds with
large differences in the number of targets they are active against. Inhibitors of human kinases are of high
interest in drug discovery and so are PCs they form. This is the case because these PCs reveal structural
modifications of inhibitors that strongly influence promiscuity (multitarget activity). Sequences of over-
lapping PCs form pathways that are rich in structure–promiscuity relationship information. PCs and PCPs
of inhibitors covering the human kinome have been systematically identified and these data are made
freely available as a basis for further investigations.
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Graphical abstract:
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A cluster from a promiscuity cliff (PC) network is shown here in which compounds are represented as
nodes and PCs as edges. Nodes are color-coded according to different promiscuity degrees (number of
kinase annotations). A PC pathway formed by five kinase inhibitors (1–5) is highlighted (black) and their
promiscuity degrees are reported in color-coded circles (red borders indicate promiscuity hubs). Structural
modifications distinguishing pairs of compounds along the pathway are colored red.

Compound promiscuity refers to the ability of small molecules to specifically bind to multiple targets [1]. Promiscuity
provides the basis for ligand-based polypharmacology [1,2], an emerging concept in drug discovery [2] that represents
a departure from the single-target specificity paradigm that has for long dominated drug-discovery efforts [3]. It
should be noted that the term promiscuity is often also used with a negative connotation, when referring to
compound aggregation- or reactivity-based assay artifacts [4,5]. However, herein promiscuity exclusively refers to
genuine multitarget activity of small molecules.

Inhibitors of human kinases are a good example for the interplay between drug polypharmacology and target
specificity or selectivity. The efficacy of kinase inhibitor drugs used in oncology clearly depends on multikinase
engagement and ensuing polypharmacology [6], whereas the use of kinase inhibitors in other therapeutic areas such
as immunology and inflammation or metabolic diseases mostly depends on kinase selectivity [7]. Experimental and
computational approaches have been used to analyze promiscuity and selectivity of kinase inhibitors [8–10].

The promiscuity cliff (PC) concept was introduced to aid in the analysis of structure–promiscuity relation-
ships [11,12], in other words, to identify small chemical changes that lead to large apparent differences in promiscuity
between structurally analogous compounds. Accordingly, a PC was formally defined as a pair of analogs with a large
difference in promiscuity [11]. PCs have been identified among compounds with activity against many therapeutic
targets [12] including protein kinases [13]. A large-scale analysis of currently available kinase inhibitors covering more
than 80% of the human kinome yielded nearly 16,000 PCs [13].

The formation of PCs can be visualized in network representations where compounds are nodes and edges pairwise
PC relationships between nodes [13]. In such networks, PCs form clusters of varying size and complexity. PC clusters
are disjoint subgraphs in a PC network. These clusters are rich in structure–promiscuity relationship information,
but difficult to analyze. Therefore, as an extension of the PC concept, the PC pathway (PCP) data structure was
introduced [13,14]. PCPs are formed in PC clusters and consist of sequences of PCs with overlapping compounds.
PCP compounds have alternating high and low promiscuity (or are highly promiscuous and nonpromiscuous).
They can be systematically extracted from PC clusters using a computational search method [14]. Nearly 16,000
PCs formed by inhibitors of human kinases were organized in more than 600 separate network clusters [13] and
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Figure 1. Promiscuity cliff. Shown is an exemplary promiscuity cliff formed by a highly promiscuous and a
nonpromiscuous kinase inhibitor. The promiscuity degree of each compound is reported in a color-coded circle. The
structural modification distinguishing the cliff compounds is colored red.

from these clusters, 8900 PCPs were isolated [14]. PCPs often contain so-called promiscuity hubs (PHs). Following
network terminology, hubs are densely connected nodes. PHs are highly promiscuous PCP compounds that form
large numbers of PCs with weakly or nonpromiscuous structural analogs outside the PCP [14]. PHs also occur in
network regions outside PCPs.

PCs, PCPs and PHs provide a wealth of hypotheses for structural determinants of promiscuity and also for
additional targets of weakly or nonpromiscuous compounds. For example, structural analogs of a PH might not
have been tested against many confirmed PH targets and thus additional targets might be inferred for individual
analogs. Taken together, PCs, PCPs and PHs provide valuable information for medicinal chemistry or chemical
biology projects. This data note details an open access deposition of PCs identified across the human kinome [13],
PCPs extracted from their network clusters [14] and PHs formed by individual kinase inhibitors including clinical
compounds. These data are made freely available in an organized and easily accessible form.

Methodology
Kinase inhibitor data
Inhibitors of human kinases were collected from several public data sources and activity data were curated [13]. A
total of 112,624 unique inhibitors with well-defined activity measurements were obtained that were active against
426 human kinases, corresponding to 82.2% of the human kinome. After removal of potential assay interference
compounds [4,5], 105,492 inhibitors remained for PC analysis. For each inhibitor, its promiscuity degree (PD) was
calculated as a total number of kinases it was active against.

Matched molecular pairs
For human kinase inhibitors, matched molecular pairs (MMPs) were generated by systematic fragmentation of
exocyclic single bonds [15]. An MMP represents a pair of compounds that are only distinguished by a single chemical
modification, termed transformation [15]. Transformation size restrictions were introduced as follows [16]: the MMP
core shared by two compounds was required to have at least twice the size (number of nonhydrogen atoms) of the
transformation substructures. In addition, each substructure was permitted to consist of at most 13 nonhydrogen
atoms and their size difference was limited to at most eight atoms. An MMP with these transformation size
restrictions represents a pair of structural analogs [16]. An exemplary MMP is shown in Figure 1. The transformation
substructures are highlighted in red and the common core structure of the compound (MMP core) is shown in
black.
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Figure 2. Promiscuity cliff cluster and pathway. Shown is a promiscuity cliff cluster in which a promiscuity cliff pathway formed by seven
kinase inhibitors (1–7) is highlighted (black). Nodes are color-coded according to different promiscuity degree values. Structures of
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Promiscuity cliffs
The definition of PCs requires the consideration of two criteria including the similarity criterion and promiscuity
difference criterion. For PC analysis of kinase inhibitors, these criteria were set as follows [13]:

• Similarity: formation of transformation size-restricted MMPs.
• Promiscuity difference: �PD ≥5; PD range of weakly promiscuous MMP inhibitor: [1,4].

We deliberately restrict the PD range of weakly promiscuous compounds in PCs to low promiscuity values (PD <5).
This restriction avoids the generation of PC pairs consisting of two highly promiscuous inhibitors (e.g., PD = 40
and PD = 20), which would not be meaningful. Accordingly, this definition ensures that a PC is consistently
formed by a highly and weakly or nonpromiscuous (PD = 1) inhibitor. Accordingly, a kinase inhibitor PC with
smallest possible PD sum is formed by a pair of inhibitors with PD values of 6 and 1, respectively. Figure 1 shows
an exemplary PC.

Promiscuity cliff pathways
PCPs are defined as linear subgraphs of PC clusters and consist of compounds with alternating high and low
promiscuity [13]. From PC network clusters, PCPs are systematically extracted using an algorithm based on breadth-
first search for shortest paths [14]. In breadth-first search, edges between neighboring nodes have equal length.
Therefore, the shortest path between two nodes is determined as the path containing the smallest number of edges.
For visualization, PC clusters in which PCPs are traced are drawn using the Kamada–Kawai force-directed layout
algorithm [17].

Promiscuity hubs
PHs are densely connected nodes in a PC network. For our current analysis, PHs are defined as inhibitors forming
at least 10 PCs with structural analogs having a PD value of 1–4 (corresponding to a PH node degree ≥10).
As a reference, in the global kinase inhibitor PC network, the mean node degree was approximately 3. We note
that PHs may or may not participate in the formation of PCPs. Special attention was paid to kinase inhibitors
at different stages of clinical development (clinical kinase inhibitors) [9] that qualified as PHs. Furthermore, PHs
are organized into analog series (ASs) using the compound–core relationship algorithm [18]. This MMP-based
method systematically extracts ASs with single or multiple substitution sites from compound collections [18]. For
compound–core relationship calculations, transformation size-restricted MMPs are applied (as described above).

Data & exemplary results
PCs & clusters
The 105,492 kinase inhibitors yielded 15,939 PCs that were formed by 10,741 unique inhibitors including 1653
compounds with PD ≥6. These PCs had �PD values ranging from 5 to 294. In a global kinase inhibitor PC
network, the 15,939 PCs were organized in 622 separate clusters that contained 2 to 633 inhibitors forming 1 to
1351 PCs [13]. Figure 2 shows an exemplary PC cluster.

Promiscuity cliff pathways & promiscuity hubs
From the 622 PC clusters, a total of 8900 PCPs were algorithmically extracted via breadth-first search (see above).
For further methodological details, the interested reader is referred to the original publication [14]. These PCPs
consisted of 3 to 17 nodes. The characteristic feature of PCPs is their sequence of alternating highly and weakly
promiscuous (or nonpromiscuous) compounds. For each PCP, the cumulative �PD was calculated over all pairs
of nodes. These �PD values ranged from 10 to 869. In the PC cluster in Figure 2, a PCP is traced that consists
of seven inhibitors including clinical kinase inhibitors cabozantinib (compound 3; 25 kinase annotations) and
foretinib (compound 5), a pan-kinome inhibitor with 191 kinase annotations.

In the global PC network, a total of 520 inhibitors (4.8%) qualified as PHs on the basis of the criteria given
above. Most PCPs (7749; 87.1%) contained at least one PH. The 520 PHs were involved in the formation of
12,131 PCs (76.1%) with 7278 weakly or nonpromiscuous structural analogs. The 12,131 PCs included 6997
PCs that involved 4300 inhibitors having a single kinase annotation. Thus, more than half of the PCs with highly
promiscuous PHs involved nonpromiscuous compounds. These findings emphasized the high information content
of PH network neighborhoods, revealing many possible structure–promiscuity relationships and suggesting a wealth
of kinase target hypotheses for structural analogs of PHs.

future science group www.future-science.com
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Figure 3. Promiscuity hub neighborhoods. Shown are promiscuity cliffs from the network neighborhoods of (A) cabozantinib and (B)
foretinib. The presentation is according to Figure 2. Exemplary inhibitors forming promiscuity cliffs with the two clinically relevant
promiscuity hubs are numbered and their structures are shown.
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promiscuity hubs are numbered and their structures are shown.
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PHs formed by clinical kinase inhibitors
The 520 PHs contained 68 clinical kinase inhibitors, 37 of which were also found in PCPs. Cabozantinib and
foretinib, shown in Figure 2, were two of these clinically relevant PHs occurring in PCPs. Their neighborhoods
are depicted in Figure 3A and B, respectively. The 68 clinical PHs formed more than 90% of all PCs involving
129 clinical kinase inhibitors contained in the global network, thus highlighting their central role for promiscuity
exploration.

Analog relationships between PHs
To further explore structural relationships between PHs, we also investigated whether they might form ASs. A
subset of 334 of the 520 PHs was found to form 88 ASs that consisted of 2 to 25 analogs. The remaining 186
PHs were not involved in analog relationships. Thus, PHs were not only structurally closely related inhibitors but
also included a variety of other compounds. However, for each of these highly promiscuous kinase inhibitors, 10
or more weakly or nonpromiscuous structural analogs were available. Therefore, PHs and their neighborhoods
provide many opportunities for experimental follow-up investigations.

Data deposition
The collection of kinase inhibitor PCs, PCPs and PHs is made available in three separate, tab-delimited text files.
In addition, a readme.txt file specifies all entries and abbreviations in the PC, PCP and PH data files.

For each PC, the Simplified Molecular Input Line Entry Systems (SMILES) [19] representation of the inhibitors,
SMILES pattern of the transformation, common MMP core, compound identifiers and PD value of the inhibitors
are provided.

For each PCP, the pathway identifier, pathway length, list of compounds forming the PCP, available PHs and
cumulative �PD value are given.

Furthermore, all PHs are listed with their compound identifiers from the PC file and SMILES representations
and clinical kinase inhibitors are identified.

The PC, PCP, PH and readme files are provided in an open access deposition on the ZENODO platform [20].

Limitations & next steps
Data sparseness is likely to affect promiscuity analysis. Sparseness refers to the situation that not all inhibitors might
have been extensively tested against all kinases. Importantly, PCs, PCPs and PHs uncover all detectable promiscuity
patterns, regardless of whether they reveal structural determinants of promiscuity or provide additional target
hypotheses. Thus, these data structures make it possible to further investigate structure–promiscuity relationships
and their potential origins in detail. Increasing availability of x-ray structures enables further exploration of PCs.
Potential origins of PC formation can be investigated on the basis of protein–ligand interactions taking active site
characteristics into consideration. Structural analysis of PCs on a larger scale than currently possible is expected to
provide new insights into structural patterns that are responsible for promiscuous versus selective binding events.

Kinase inhibitor data have rapidly grown in recent years, more so than could have been anticipated, and there
is no end in sight. Therefore, we will continue to search for PCs, PCPs and PHs and periodically update our
collections to further support promiscuity exploration.
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Executive summary

Background
• Compound promiscuity is defined.
• The promiscuity cliff (PC) and promiscuity cliff pathway (PCP) concepts are introduced.
• Promiscuity hubs (PHs) are introduced in the context of PC networks.
Methodology
• PC criteria are specified.
• PC cluster and PCP analysis are described.
• PH neighborhoods are discussed.
Data & exemplary results
• PC, PCP and PH statistics are reported.
• Exemplary PC clusters, PCPs and PHs are presented.
• Clinical kinase inhibitors forming PHs are analyzed.
• Structural relationships between PHs are systematically detected.
• An open access deposition of PCs, PCPs and PHs is described.
Limitations & next steps
• The potential influence of data sparseness on promiscuity is discussed.
• Further growth of kinase inhibitor data is anticipated.
• Data growth motivates continued promiscuity exploration.
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10. Miljković F, Bajorath J. Exploring selectivity of multikinase inhibitors across the human kinome. ACS Omega 3(1), 1147–1153 (2018).

11. Dimova D, Hu Y, Bajorath J. Matched molecular pair analysis of small molecule microarray data identifies promiscuity cliffs and reveals
molecular origins of extreme compound promiscuity. J. Med. Chem. 55(22), 10220–10228 (2012).

•• Introduction of the promiscuity cliff (PC) concept.

12. Dimova D, Gilberg E, Bajorath J. Identification and analysis of promiscuity cliffs formed by bioactive compounds and experimental
implications. RSC Adv. 7(1), 58–66 (2017).
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20 . Miljković F, Bajorath J. Promiscuitycliffs (PCs), promiscuity cliff pathways (PCPs), and promiscuity hubs (PHs) formed by inhibitors of
human kinases (open access data deposition). doi: 10.5281/zenodo.2611184 (2019).

Future Sci. OA (2019) 5(7) future science group

130



Summary

A set of ∼16,000 PCs organized in ∼600 clusters yielded 8900 PC pathways
using the automated extraction method. Moreover, 520 promiscuity hubs were
obtained that had at least 10 weakly or non-promiscuous analogs per hub. A
subset of 334 hubs was found to form 88 analog series. The remaining 186 hubs
were not involved in any analog relationships. As part of this study, PCs, PC
pathways, and promiscuity hubs were made publicly available.

Classification of kinase inhibitors on the basis of different binding modes
is made possible using X-ray crystallography data. Machine learning methods
can be applied to investigate various classification tasks.

In the next chapter, we report machine learning models for the classification
of kinase inhibitors with different binding modes.
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Chapter 9

Machine Learning Models for
Accurate Prediction of Kinase
Inhibitors with Different Binding
Modes

Introduction

X-ray structures of kinase-inhibitor complexes revealed different inhibitor
binding modes and well-defined conformational states of kinase binding sites.
Various combinations of “in” and “out” states of the DFG motif and αC-helix
defined these binding modes.

We employed machine learning methods to classify kinase inhibitors on the
basis of specific binding modes using molecular graph representations. Kinase
inhibitors were extracted from Protein Data Bank (PDB) and divided into type
I (DFGin / αCin), type I1/2 (DFGin / αCout), type II (DFGout / αCout), and
allosteric inhibitors using the KLIFS database. Global and balanced models for
binary classification were built using three machine learning methods: random
forest, support vector machine, and deep neural network. In addition, multi-
task learning was used to simultaneously classify kinase inhibitors according to
the four binding modes.
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ABSTRACT: Noncovalent inhibitors of protein kinases have different modes of action.
They bind to the active or inactive form of kinases, compete with ATP, stabilize inactive
kinase conformations, or act through allosteric sites. Accordingly, kinase inhibitors have
been classified on the basis of different binding modes. For medicinal chemistry, it would
be very useful to derive mechanistic hypotheses for newly discovered inhibitors.
Therefore, we have applied different machine learning approaches to generate models for
predicting different classes of kinase inhibitors including types I, I1/2, and II as well as
allosteric inhibitors. These models were built on the basis of compounds with binding
modes confirmed by X-ray crystallography and yielded unexpectedly accurate and stable
predictions without the need for deep learning. The results indicate that the new
machine learning models have considerable potential for practical applications.
Therefore, our data sets and models are made freely available.

■ INTRODUCTION

Tyrosine and serine/threonine kinases are major drug targets,1

and kinase inhibitors are among the most intensely
investigated drug candidates in oncology and beyond.1−3

Nearly 115000 kinase inhibitors with well-defined activity
measurements have accumulated in the public domain,4

making these inhibitors also preferred compound classes for
large-scale activity data analysis4 or the evaluation of
computational screening methods.5 Experimental efforts to
identify and characterize kinase inhibitors continue to expand.
For example, kinase profiling experiments and kinome scans
have become major sources of kinase inhibitor activity and
selectivity data.6−8 Furthermore, kinases and their complexes
with many different inhibitors have been extensively studied by
X-ray crystallography,9,10 providing essential insights into
structural features of kinases and binding characteristics of
their inhibitors.
X-ray structures of kinase−inhibitor complexes have

revealed different binding modes of inhibitors that correlate
with defined conformational changes in binding sites.11−16

Conformational determinants of different binding modes
include the activation loop with the DFG tripeptide motif,13

which opens or closes the ATP binding site region, and the
αC-helix.14 The activation loop is located at the entrance of the
ATP binding site proximal to the catalytic site and the αC-helix
adjacent to the ATP site. If the activation loop is closed,
adopting the so-called “DFG in” conformation, the kinase is
active. By contrast, if the loop opens (“DFG out”) the kinase
becomes inactive.13 In addition, the αC-helix forms a
conserved E−K salt bridge (“αC-helix in” conformation) that
is involved in coordinating phosphate groups of bound ATP. If

this salt bridge is disrupted, the helix moves out of its position
(“αC-helix out”), which renders the kinase inactive.14 Hence,
the fully active form of a kinase is characterized by the “DFG
in/αC-helix in” conformational state combination, whereas the
inactive form is characterized by the “DFG out/αC-helix out”
combination.
The majority of currently available kinase inhibitors

competitively bind to the ATP cofactor binding site in the
active form of kinases and are designated type I inhibitors.13

The ATP binding site is largely conserved across the kinome.
By contrast, type II inhibitors bind to the inactive form of a
kinase and are accommodated in an induced pocket adjacent
to the ATP binding site (often called “back pocket”) that
opens up as a consequence of the “out” movements of the
DFG motif and αC-helix.11,15 This region is less conserved
across kinases and type II inhibitors were thus originally
expected to be more selective than type I inhibitors. Moreover,
type I1/2 inhibitors were found to bind to an intermediate
“DFG in/αC-helix out” conformational combination, which
sets them apart from type I and II inhibitors.12 In addition to
active site-directed inhibitors, other types of noncovalent
inhibitors have been discovered that bind to (induced)
allosteric sites in kinases and are frequently designated type
III or IV inhibitors.13 Type III inhibitors bind to an allosteric
pocket proximal to the ATP site, whereas type IV inhibitors
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occupy allosteric pockets distant from the ATP binding site
region.
Although type II inhibitors were originally anticipated to

have higher selectivity than type I inhibitors, such differences
have not been confirmed experimentally,15 as both selective
and nonselective types I and II inhibitors have frequently been
found. However, some I1/2 inhibitors have shown high
selectivity for individual kinases.16 Furthermore, kinase binding
profiles of limited (but growing) numbers of allosteric
inhibitors discovered so far indicate that these types of
inhibitors are more selective than active site-directed
inhibitors,13,16 as one might expect.
While structural biology has yielded many insights into

inhibitor binding modes and conformational determinants,
there are already many more kinase inhibitors available than
could possibly be characterized structurally. Moreover,
although structural features including a hydrogen bond
donor−acceptor function such as an amide or urea group
and hydrophobic moieties binding into the DFG pocket below
the αC-helix have been identified to characterize some type II
inhibitors,11,15 distinguishing between different types of kinase
inhibitors on the basis of molecular structure is not
straightforward. Kinase inhibitors represent much more of a
structural continuum than discrete subsets, and differences
between them are often subtle and difficult to relate to
alternative binding modes. For example, many type II
inhibitors were found to contain a type I head fragment and
similar core structures17 and also fragments with hydrogen
bonding capacity or hydrophobic character that were more
characteristic for type II inhibitors.17,18 Such hydrogen
bonding and hydrophobic tail fragments yielded 70 different
combinations,18 which together with shared type I/II frag-
ments resulted in a structural continuum among these
inhibitors.
We have asked the question whether it might be possible to

differentiate between kinase inhibitors with different crystallo-
graphically confirmed binding modes only on the basis of
compound structure without taking additional interaction
information into account. Therefore, current state-of-the-art
machine learning methods were applied to generate a variety of
predictive models.

Kinases and their inhibitors have previously been subjected
to machine learning exercises beyond virtual screening. For
example, given the popularity of kinase profiling campaigns,
computational models have been generated to predict kinase
activity profiles of inhibitors19 or systematically evaluate
potential kinase−inhibitor interactions.20 Furthermore, multi-
task learning strategies were applied to distinguish between
highly and weakly potent kinase inhibitors.21 Moreover, in an
interesting application on kinases (rather than inhibitors),
random forest models were generated to predict activity-
relevant conformational states of kinases.22

However, to our knowledge, it has thus far not been
attempted to distinguish between kinase inhibitors adopting
different binding modes on the basis of molecular graph
representations via machine learning. Deriving such predictive
models is also relevant for the practice of medicinal chemistry
to develop binding mode hypotheses for newly identified
inhibitors, providing a basis for the design of inhibitor type-
specific optimization strategies. In the following, we report the
derivation of various machine learning models including
multitask learning that predict different types of kinase
inhibitors with high accuracy. These models were built using
existing machine learning approaches in the absence of new
experimental data. However, their surprisingly high accuracy
and notable potential for practical medicinal chemistry
applications inspired us to present this work to a medicinal
chemistry audience and make our data sets and models freely
available.

■ RESULTS

Different Types of Kinase Inhibitors. Type I, I1/2, II,
and allosteric kinase inhibitors were extracted from X-ray
structures of kinase−inhibitor complexes contained in the
KLIFS database,9,10 a specialized repository for kinase
structures. A total of 4365 X-ray structures of catalytic domains
of 287 human kinases in complex with 2969 unique inhibitors
were obtained. Figure 1 summarizes the compound selection
approach. Initially, structures were divided into complexes that
contained or did not contain inhibitors in allosteric binding
sites. Complexes with allosteric inhibitors were further
considered only if they contained ATP, ADP, AMP (or

Figure 1. Compound selection. The structure-based inhibitor selection scheme is summarized. “T” stands for “Type” and “/” means “no ligand”.
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analogues thereof), or no ligand in the ATP cofactor binding
site (but no other small molecule). From qualifying complexes,
47 allosteric inhibitors were obtained. All allosteric inhibitors
were combined into one set in order to obtain a sufficient
number of compounds for model building. Structures without
allosteric inhibitors were then surveyed for combinations of
conformational states of the DFG motif and the αC-helix that

were characteristic of different types of kinase inhibitors. This
systematic analysis led to the identification of 1425 type I
(“DFG in/αC-helix in”), 394 type I1/2 (“DFG in/αC-helix
out”), and 190 type II (“DFG out/αC-helix out”) inhibitors
(Figure 1). Designated type II inhibitors were also required to
occupy the “back pocket” proximal to the ATP binding site,
which becomes accessible when the “DFG out/αC-helix out”

Figure 2. Representative kinase structures and inhibitors. Shown are X-ray structures of kinase−inhibitor complexes that represent different active
site conformations and compound binding modes. (a) For each type of inhibitor, a representative complex is shown. For each kinase, the activation
loop containing the DFG motif and the αC-helix are colored blue and red, respectively. Bound inhibitors are shown in surface representation. “NA”
means “not applicable”. (b) The structure of each kinase inhibitor is shown and the PDB identifier of the corresponding complex is given.
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conformation is adopted. Furthermore, inhibitors available in
multiple X-ray structures were only selected and classified if
only one conformational combination was consistently
observed. If there were indications of inconsistent binding
modes across different kinases, an inhibitor was omitted from
further consideration.
The 2969 crystallographic inhibitors contained 2410 ATP

site-directed inhibitors, 1296 of which were also available as
designated kinase inhibitors in ChEMBL.23 However, only 87
of these 2410 X-ray inhibitors (3.6%) were found to adopt
alternative binding modes in different structures. Hence, there
was only very little ambiguity in the structure-based assignment
of kinase inhibitor types. In addition, on the basis of high-
confidence compound activity data from ChEMBL,23 the
number of kinase annotations per compound (promiscuity
degree) was determined for a large number of inhibitors with a
single binding mode and small number of inhibitors with more
than one observed binding mode. For inhibitors with single
and multiple binding modes, the mean promiscuity degrees
were 2.2 and 5.5, respectively, hence providing an indication
that multiple binding modes of inhibitors correlated with
increasing promiscuity.
The 2056 inhibitors that were assigned to different types

originated from X-ray structures with 191 different human
kinases. For 144 of these kinases, all inhibitors with determined
structures belonged to the same type (mostly I or II). The set
of classified crystallographic inhibitors was structurally diverse,
as revealed by the presence of 1672 distinct Bemis−Murcko
scaffolds,24 20 of which were found in inhibitors with different
binding modes.
Moreover, computational identification of analogue series25

showed that the 2056 X-ray inhibitors contained 163 analogue
series containing a total of only 405 compounds, with on
average ∼2.5 analogues per series. The remaining inhibitors
were singletons, consistent with the large number of distinct
Bemis−Murcko scaffolds extracted from the X-ray inhibitors.
For example, the 190 classified type II inhibitors contained
nine small and structurally distinct analogue series comprising
a total of 22 compounds. The remaining 168 type II inhibitors
were singletons. Thus, potential structural bias due to the
presence of large individual analogue series that might
dominate inhibitor sets and classification calculations could
be excluded.
Figure 2 shows representative structures and compounds for

all four types of inhibitors that were considered. For type I,
I1/2, and II, clinical kinase inhibitors are shown. These
structures illustrate different conformational states of the DFG
motif and αC-helix whose “in”/”out” combinations give rise to
different binding site architectures and compound binding
modes.
Inhibitor Classification via Machine Learning. Pre-

dictive models were generated for classifying kinase inhibitors
according to different binding modes deduced from X-ray
structures. The classification tasks are summarized in Figure 3.
Models were built to distinguish between type I vs II (TI/TII),
type I vs I1/2, (TI/TI

1/2), type II vs I
1/2 (TII/TI

1/2), and A vs
(I, I1/2, II) (A/(TI + TI1/2 + TII)) inhibitors. It is important
to note that type I, I1/2, and II inhibitors have overlapping
binding sites and act by related yet distinct mechanisms,
delineating a spectrum from type I over I1/2 to type II
inhibitors. Therefore, the TI/TII, TI/TI1/2, and TII/TI1/2
classification models were generated to address challenging
pairwise prediction tasks. The last task A/(TI + TI1/2 + TII)

aimed to distinguish allosteric from nonallosteric kinase
inhibitors having similar yet distinct mechanisms-of-action.
Therefore, to distinguish allosteric inhibitors with completely
distinct mechanisms from nonallosteric inhibitors with similar
mechanisms, nonallosteric inhibitors were combined in this
case. As state-of-the-art machine learning approaches, random
forest (RF), support vector machine (SVM), and deep neural
network (DNN) algorithms were applied. For each classi-
fication task and method, global and balanced models were
generated. Global models were derived on the basis of
imbalanced training sets using all available inhibitors and
balanced models on the basis of sets containing the same
number of inhibitors for different classes (see the Experimental
Section for further details).
Figure 4 summarizes the generation of training, test, and

validation sets. Two different strategies were applied.
Following strategy 1, compounds were divided into evenly
sized training and test sets and 10 independent trials were
carried out. Following strategy 2, 20% of the compounds were
excluded from modeling as an external validation set and the
remaining 80% were used to train and test models in 10

Figure 3. Derivation of classification models. Model building
strategies for distinguishing between different types of kinase
inhibitors are summarized.

Figure 4. Training, test, and validation sets. The generation of
different training, test, and external validation sets is summarized.
Two different strategies (I and II) were applied.

Journal of Medicinal Chemistry Article

DOI: 10.1021/acs.jmedchem.9b00867
J. Med. Chem. XXXX, XXX, XXX−XXX

D

138



independent trials according to strategy 1 (further details are

provided in the Experimental Section). Hence, in contrast to

test sets, the external validation set was kept constant and

consisted of compounds that were never encountered during

training and testing.

Global Models. Initially, global models derived following
strategy I in Figure 4 were evaluated, and the predictions were
monitored in ROC curves. Figure 5 shows representative
examples of individual trials of RF, SVM, and DNN models
generated for different prediction tasks using two alternative
molecular representations, the extended connectivity finger-

Figure 5. Exemplary ROC curves. For two classification tasks, TI/TII (left) and A/(TI + TI1/2 + TII) (right), representative ROC curves for a
randomly chosen trial using global models are shown. Each graph contains three curves for RF (red), SVM (blue), and DNN (green) calculations,
respectively. Inserts report AUROC values. As a molecular representation, the (a) ECFP4 and (b) MACCS fingerprint was used.

Table 1. Performance of Global Models (Strategy I)a

classification task metric RF SVM DNN

TI/TII BA 0.75 ± 0.02 0.85 ± 0.02 0.88 ± 0.02
F1 0.66 ± 0.04 0.80 ± 0.03 0.80 ± 0.02

MCC 0.68 ± 0.03 0.79 ± 0.03 0.77 ± 0.02

TII/TI1/2 BA 0.84 ± 0.01 0.89 ± 0.02 0.88 ± 0.02
F1 0.80 ± 0.02 0.86 ± 0.02 0.85 ± 0.03

MCC 0.75 ± 0.02 0.80 ± 0.03 0.78 ± 0.04

TI/TI1/2 BA 0.72 ± 0.02 0.81 ± 0.02 0.81 ± 0.01
F1 0.60 ± 0.03 0.74 ± 0.03 0.67 ± 0.02

MCC 0.57 ± 0.03 0.69 ± 0.03 0.57 ± 0.03

A/(TI + TI1/2 + TII) BA 0.63 ± 0.08 0.71 ± 0.07 0.70 ± 0.09
F1 0.33 ± 0.16 0.52 ± 0.12 0.47 ± 0.19

MCC 0.40 ± 0.10 0.53 ± 0.13 0.53 ± 0.10
aReported are the mean and standard deviation (mean ± SD) of BA, F1, and MCC values for 10 independent trials using RF, SVM, and DNN
global models based upon ECFP4 fingerprints.
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print with bond diameter 4 (ECFP4) and MACCS structural
keys. High prediction accuracy was consistently observed, with
area under the ROC curve (AUROC) values of 0.9 and above.
There were only small differences between calculations using
the alternative fingerprints. Overall, ECFP4-based calculations
displayed marginally better performance in some cases, but
there were no significant differences. Therefore, in the
following, results obtained for ECFP4 are presented.
Given the consistently observed high AUROC values,

alternative performance measures were considered for model
comparison. Table 1 summarizes the results obtained for all
classification tasks and methods on the basis of balanced
accuracy (BA), F1 score, and Matthews correlation coefficient
(MCC) (see the Experimental Section for details). MCC is
particularly well suited for evaluating predictions on unbal-
anced data sets. It ranges from −1 to +1 (with +1 indicating
perfect, 0 random, and −1 completely incorrect predictions).
The results in Table 1 confirm generally high prediction

accuracy for all prediction tasks and methods. BA values mostly
ranged from ca. 70−90%. Furthermore, MCC values
consistently exceeded 0.75 for the TI/TII and TII/TI1/2
prediction tasks and ranged from 0.40 to 0.69 for the TI/
TI1/2 and A/(TI + TI1/2 + TII) tasks. Overall lowest MCC
values were obtained for RF (between 0.40 and 0.75 for all

tasks). In addition, F1 scores mostly had values >0.6, with A/
(TI + TI1/2 + TII) tasks having the lowest F1 scores (max.
0.52 for SVM). On the basis of the different performance
measures, type II inhibitors were generally distinguished from
type I and I1/2 inhibitors with slightly higher accuracy than
type I inhibitors were distinguished from I1/2 and allosteric
inhibitors from others. Notably, only 23 allosteric inhibitors
were available for training, a smaller number than typically
used for machine learning, especially for DNNs. Nonetheless,
the resulting models were predictive. Considering all
prediction tasks, SVM produced the best performing models,
followed by DNN and RF, although performance differences
were small.

Balanced Models. Next, models were generated on the
basis of balanced training sets following strategy I, which are
often more predictive in machine learning than models derived
from imbalanced data. The results obtained for balanced
classification models are summarized in Table 2. Again, high
prediction accuracy was observed across all classification tasks
and models. BA yielded high values of ∼0.9 for the first two
classification tasks and slightly lower values of ∼0.8 for the
other two. MCC values were consistently high (>0.75) for the
TI/TII and TII/TI1/2 classification tasks. The remaining two
tasks yielded lower MCC values, as observed for global models,

Table 2. Performance of Balanced Models (Strategy I)a

classification task metric RF SVM DNN

TI/TII BA 0.88 ± 0.01 0.90 ± 0.02 0.84 ± 0.07
F1 0.87 ± 0.02 0.90 ± 0.02 0.86 ± 0.05

MCC 0.76 ± 0.03 0.80 ± 0.04 0.70 ± 0.11
TII/TI1/2 BA 0.87 ± 0.01 0.90 ± 0.02 0.86 ± 0.03

F1 0.86 ± 0.01 0.90 ± 0.02 0.87 ± 0.03
MCC 0.76 ± 0.02 0.81 ± 0.04 0.74 ± 0.06

TI/TI1/2 BA 0.79 ± 0.02 0.81 ± 0.01 0.70 ± 0.03
F1 0.78 ± 0.02 0.81 ± 0.02 0.75 ± 0.02

MCC 0.58 ± 0.04 0.62 ± 0.03 0.43 ± 0.04
A/(TI + TI1/2 + TII) BA 0.79 ± 0.04 0.75 ± 0.07 0.73 ± 0.05

F1 0.79 ± 0.05 0.70 ± 0.13 0.76 ± 0.04
MCC 0.59 ± 0.09 0.53 ± 0.13 0.49 ± 0.10

aReported are the mean and standard deviation (mean ± SD) of BA, F1, and MCC values for 10 independent trials using RF, SVM, and DNN
balanced models based upon ECFP4 fingerprints.

Table 3. Performance of Global Models on Test Sets (Strategy II)a

classification task metric RF SVM DNN

TI/TII BA 0.77 ± 0.08 0.84 ± 0.03 0.87 ± 0.03
F1 0.65 ± 0.10 0.79 ± 0.03 0.79 ± 0.02

MCC 0.66 ± 0.07 0.78 ± 0.03 0.77 ± 0.03

TII/TI1/2 BA 0.83 ± 0.03 0.88 ± 0.02 0.88 ± 0.03
F1 0.79 ± 0.04 0.85 ± 0.02 0.84 ± 0.04

MCC 0.74 ± 0.04 0.80 ± 0.02 0.77 ± 0.06

TI/TI1/2 BA 0.73 ± 0.02 0.79 ± 0.01 0.80 ± 0.01
F1 0.61 ± 0.04 0.71 ± 0.02 0.66 ± 0.03

MCC 0.59 ± 0.04 0.66 ± 0.01 0.56 ± 0.04

A/(TI + TI1/2 + TII) BA 0.63 ± 0.07 0.64 ± 0.01 0.56 ± 0.13
F1 0.28 ± 0.16 0.39 ± 0.21 0.11 ± 0.24

MCC 0.32 ± 0.13 0.52 ± 0.11 0.55 ± 0.13
aReported are the mean and standard deviation (mean ± SD) of BA, F1, and MCC values for 10 independent trials using RF, SVM, and DNN
global models based upon ECFP4 fingerprints. Predictions are reported for test sets according to strategy II.
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with lowest values (<0.5) obtained for DNN. F1 scores further
increased when assessing predictions on balanced sets, with F1
> 0.7 for all models. Taken together, the results for balanced
models corresponded to those obtained for global models.
Both categories of models yielded accurate and stable
predictions with low standard deviations across different trials.
Overall, highest prediction accuracy under balanced conditions
was observed for SVM models, followed by RF, and DNN
models. Again, performance differences were only small.
External Validation. Strategy II was implemented to

provide a constant external validation set. First, predictions for
different test sets were compared. Table 3 reports results for
global models according to strategy II. For the first three
classification tasks, BA, F1, and MCC scores were very similar
to the results obtained for global models following strategy I.
For the remaining A/(TI + TI1/2 + TII) classification task, a
maximal reduction of 0.3 was observed for the F1 score of
DNN models.
Table 4 summarizes the performance of global models in

predicting the external validation set. Overall, these predictions
were of high accuracy comparable to test set predictions. The
F1 score was only reduced for DNN and the A/(TI + TI1/2 +
TII) classification task and the MCC value only for DNN and
the TI/TI1/2 task compared to global models. We note that
the largest performance differences between test and validation
set predictions were found for F1 scores, in particular, for
DNN models. To assess the statistical significance of such
differences, nonparametric Mann−Whitney tests were per-
formed and p-values ≪0.001 were obtained for TI/TII, TII/
TI1/2, and TI/TI1/2. Therefore, for these three classification
tasks, the F1 value distributions were statistically different
(albeit of relatively small magnitude). In the case of A/(TI +
TI1/2 + TII), the p-value was 0.48, which indicated no
statistically significant differences.
The application of strategy II made it also possible to

include the multitask DNN (MT-DNN) methodology into the
comparison. In MT-DNNs, all predictive tasks are simulta-
neously modeled. These prediction tasks represent a multiclass
learning problem aiming to predict mutually exclusive classes.
Global MT-DNN models were built and evaluated on the basis
of a 40−40−20% split of training, test, and external validation
compounds.

Table 5 reports MT-DNN model performance on the test
sets and the external validation set. We note that results for

MT-DNN and single-task ML models are not directly
comparable because the performance of binary classification
tasks is only assessed on the basis of compounds that are
assigned to one of the two classes. The results in Table 5 show
that multitask learning also produced a model that predicted
test instances with high accuracy and the external validation set
with only slightly reduced accuracy on the basis of MCC and
BA values. We also note that the variance of test set results
originated from training and testing with different subsets,
whereas the validation set remained constant and only the
training set used for model building differed. Because neither
the variable test sets nor the constant validation set were used
for model hyper-parameter optimization and originated from
the same compound pool, differences in performance were
only due to random selection of different test compounds for
performance evaluation. The external validation was more

Table 4. External Validation of Global Models (Strategy II)a

classification task metric RF SVM DNN

TI/TII BA 0.76 ± 0.08 0.78 ± 0.02 0.81 ± 0.02
F1 0.63 ± 0.10 0.71 ± 0.03 0.67 ± 0.04
MCC 0.63 ± 0.06 0.70 ± 0.04 0.63 ± 0.05

TII/TI1/2 BA 0.78 ± 0.03 0.82 ± 0.02 0.79 ± 0.03
F1 0.71 ± 0.05 0.77 ± 0.03 0.72 ± 0.04
MCC 0.65 ± 0.04 0.69 ± 0.03 0.61 ± 0.05

TI/TI1/2 BA 0.70 ± 0.02 0.74 ± 0.02 0.66 ± 0.05
F1 0.56 ± 0.03 0.58 ± 0.04 0.46 ± 0.05
MCC 0.51 ± 0.03 0.47 ± 0.05 0.27 ± 0.08

A/(TI + TI1/2 + TII) BA 0.63 ± 0.06 0.63 ± 0.07 0.56 ± 0.12
F1 0.34 ± 0.15 0.36 ± 0.18 0.12 ± 0.26
MCC 0.41 ± 0.10 0.48 ± 0.09 0.60 ± 0.09

aReported are the mean and standard deviation (mean ± SD) of BA, F1, and MCC values for 10 independent trials using RF, SVM, and DNN
global models based upon ECFP4 fingerprints. Predictions are reported for the external validation set according to strategy II.

Table 5. Performance of Multitask Models on Test and
Validation Sets (Strategy II)a

class metric test sets validation set

TI BA 0.82 ± 0.02 0.73 ± 0.02
F1 0.90 ± 0.01 0.78 ± 0.02

MCC 0.66 ± 0.03 0.42 ± 0.04

TII BA 0.85 ± 0.03 0.79 ± 0.01
F1 0.77 ± 0.04 0.67 ± 0.04

MCC 0.76 ± 0.04 0.65 ± 0.04

TI1/2 BA 0.81 ± 0.02 0.68 ± 0.02
F1 0.70 ± 0.03 0.46 ± 0.03

MCC 0.62 ± 0.04 0.31 ± 0.04

A BA 0.69 ± 0.08 0.66 ± 0.08
F1 0.49 ± 0.14 0.40 ± 0.18

MCC 0.54 ± 0.12 0.44 ± 0.18
aFor MT-DNN global models, the mean and standard deviation
(mean ± SD) of BA, F1, and MCC values are reported for 10
independent trials predicting the test sets and external validation set.
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difficult to predict, as reflected by statistically significant
performance differences on the basis of F1 scores for DNN
models. Taken together, these results showed that predictions
were accurate for independently assembled sets and also
reflected the relevance of cross-validation approaches for
evaluating classifier performance.
Table 6 reports the mean confusion matrix for the external

validation set over 10 independent trials using MT-DNN.

Results across different trials were stable and revealed correct
predictions of the majority of compounds per class, except for
allosteric inhibitors, which represented the minority class and
were overall most difficult to predict. In addition, type I1/2
inhibitors were frequently confused with type I and II
inhibitors. While the majority of type I1/2 inhibitors were
correctly detected, 34% were incorrectly assigned to type I
inhibitors, representing the majority class.
As an additional control, we also generated SVM classifiers

to distinguish between kinase inhibitors and nonkinase
compounds. Initially, classification models were built using a
set of 10000 randomly drawn compounds from ZINC26 as
negative training instances. This set contained 7666 Bemis−
Murcko scaffolds,24 and the compounds had an average
molecular weight of 340.91 Da. Thus, ZINC compounds were
chemically diverse and within the weight range of kinase
inhibitors. Four different balanced models were generated to
address the TI/ZINC, TI1/2/ZINC, TII/ZINC, and A/ZINC
classification tasks. These models were highly predictive with
largest MCC values of 0.95, 0.92, 0.91, and 0.71, respectively,
and largest F1 scores of 0.97, 0.96, 0.95, and 0.86, respectively,
for the different tasks. As expected, the performance of these
control models was much higher compared to those generated
for predicting different types of kinase inhibitors. A second
series of SVM models used bioactive compounds from
ChEMBL (release 24) that were not annotated with kinases
as negative training instances. This set contained 202034
bioactive compounds with 78101 different scaffolds and an
average weight of 458.9 Da. Again, balanced SVM models were
generated for TI/ChEMBL, TI1/2/ChEMBL, TII/ChEMBL,
and A/ChEMBL. The performance of all ChEMBL-based
models was high (and only slightly lower than for models
based on ZINC compounds). For the different tasks, the
largest reported MCC values were 0.88, 0.82, 0.89, and 0.59,
respectively, and the largest F1 scores were 0.94, 0.91, 0.94,
and 0.81, respectively.
Finally, as another form of external validation, we have used

our SVM models to screen all designated high-confidence
protein kinase inhibitors (52614 inhibitors) available in
ChEMBL (release 24). On the basis of these calculations, ca.
93% of all currently available kinase inhibitors were predicted
to be type I inhibitors, consistent with other assessments.27

■ DISCUSSION AND CONCLUSIONS

In this study, we have investigated machine learning
approaches for predicting kinase inhibitors with different
binding modes. Distinguishing between type I, I1/2, II, and
allosteric (III/IV) inhibitors and exploring their activity and
selectivity profiles are topical issues in medicinal chemistry. For
all inhibitors used for modeling, binding modes were
confirmed by X-ray crystallography. However, for machine
learning, compounds were only represented using molecular
fingerprints, without taking other information into account.
Different prediction tasks were defined to distinguish between
different types of inhibitors.
When designing this study, we anticipated that these

predictions would be rather challenging, given the often only
subtle structural modifications of kinase inhibitors with
different modes of action and the structural continuum they
represent. However, we were taken by surprise. For all
prediction tasks, methods, and molecular representations, the
accuracy of classification models was consistently high,
although there were differences between individual methods
and models. Comparably high levels of accuracy were
consistently achieved by global and balanced models.
Given the generally high performance levels, DNN did not

offer an advantage over RF and SVM binary models. In this
regard, it should also be noted that only limited amounts of
training data from X-ray crystallography were available for this
study, which restricted the capacity of DNN training.
Moreover, our current and many other machine-learning
exercises in compound classification typically make use of well-
defined molecular representations such as fingerprints or arrays
of numerical descriptors. The use of such representations does
not play into strengths of deep learning. This is the case
because performance increases of deep learning architectures
over other machine learning approaches are often attributable
to initial deep representation learning such as in image analysis
or natural language processing. However, representation
learning is not required, and hence not making an impact, if
well-defined canonical representations are used, as is typically
the case in compound classification and activity prediction.
On the other hand, the deep learning MT-DNN architecture

enabled the implementation of a multiclass model to predict
the inhibitor types, making it possible to use all available
training data in concert and hence further improve the basis for
deep learning. Taken together, the results of our study show
that the machine learning models we have derived for
predicting different types of kinase inhibitors are robust and
accurate. Accordingly, these models should have considerable
potential for a variety of practical applications such as, for
example, the ChEMBL kinase inhibitor survey reported above.
The derived models can be used to predict the type of any new
kinase inhibitor. In practical applications, parallel or sequential
use of predictive models can serve as a consistency check, for
example, by initially predicting test compounds as type I vs II
inhibitors, followed by prediction of type I vs I1/2 or II vs type
I1/2 inhibitors. In addition, our findings also suggest that
allosteric kinase inhibitors can be accurately distinguished from
others. In this case, only small numbers of inhibitors were
required to generate predictive models.
As a part of our study, we make RF, SVM, and DNN global

and balanced models freely available. In addition, for each
classification task, the compound data sets and precomputed
ECFP4 fingerprints are provided. Models and data are made

Table 6. Mean Confusion Matrix for Multitask Modelsa

observed

TI TII TI1/2 A

predicted TI 205 4 27 3
TII 5 23 2 1
TI1/2 74 10 50 3
A 1 1 0 3

aThe mean confusion matrix over 10 independent trials is reported
for predictions of the external set using global MT-DNN models.
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available in an open access deposition on the Zenodo
platform.28 It is hoped that these models will be helpful in
the practice of medicinal chemistry to characterize new kinase
inhibitors.

■ EXPERIMENTAL SECTION
Compound Selection. Different types of kinase inhibitors were

selected from KLIFS,9,10 which collects and organizes X-ray structures
of kinase−inhibitor complexes from the Protein Data Bank (PDB).29

Information about conformational states of the DFG motif and the
αC-helix and bound inhibitors was obtained from KLIFS using the
open source virtual machine 3D-e-Chem-VM.30 To exclude frag-
ments, only inhibitors with a molecular weight of at least 250 Da were
considered. For selected inhibitors, SMILES representations were
generated and standardized using the OpenEye OEChem toolkit.31

Training and Test Sets for Global and Balanced Models. For
model building, two different validation strategies were implemented,
as shown in Figure 4. In the first strategy, inhibitors of each type were
randomly divided into equally sized training and test subsets (i.e., 50−
50% split). For each binary classification task, subsets from two
different classes were combined to yield the final training and test sets.
For global models, all compounds were used and thus training and
test sets contained different numbers of inhibitors of each type. For
balanced models, the number of randomly selected inhibitors of
different type in training sets was adjusted to the smaller subset.
Hence, in this case, the same numbers of training compounds with
different class labels were used. Table 7 details the composition of
these training sets.

The second strategy applied a 40−40−20% data split for training,
testing, and external validation, respectively. Accordingly, 20% of the
inhibitors in each set were excluded from training and testing and
reserved for external validation. For predicting the external validation
set, MT-DNN models were also trained and tested. For both
validation strategies, internal validation was carried out using the test
sets. RF and SVM model hyper-parameters were optimized using
internal 10-fold cross-validation, whereas hyper-parameter optimiza-
tion for DNN and MT-DNN models was carried out on the basis of
an internal 80−20% training/test data split.
Molecular Representations. As molecular representations for

machine learning, ECFP432 and MACCS33 were used. ECFP4 is a
feature set fingerprint which enumerates layered atom environments
that are encoded as integers using a hashing function. MACCS is a
fragment fingerprint where each of 166 bit positions encodes the
presence or absence of a specific structural pattern. ECFP4 was
generated using OEChem-based31 and MACCS using RDKit-based34

Python scripts.
Machine Learning Methods. Classification models were

generated using RF, SVM, and DNN algorithms. For model building,
training instances were represented by a feature vector x ∈ χ and
associated with a class label y ∈ {0,1}.
Random Forest. RF is constructed from an ensemble of decision

trees, each of which is built from a bootstrapped35 sample of training
data.36 During node splitting, a random subset of features is

considered for the construction of individual trees.36 For each RF
trial, the number of trees was set to 100 and class weights were
considered. The minimum number of samples at a leaf node
(min_samples_leaf) was optimized via 10-fold cross validation using
candidate values of 1, 5, and 10. In addition, the number of features to
search for the best data split (max_features) was set to the square root
of the total number of features. RF calculations were performed using
the Python-implemented Scikit-learn package.37

Support Vector Machine. SVM is a supervised machine learning
algorithm that constructs a hyper-plane H to best separate two classes
of objects by maximizing the distance between objects having
different class labels (margin).38 This hyper-plane is defined by a
weight vector w and a bias b such that H = {x|⟨w,x⟩ + b = 0}. To
generalize the models, slack variables are included to permit a limited
number of errors for training instances that fall within the margin or
on the incorrect side of H. Regularization or cost hyper-parameter C
controls the relation between the training errors and margin size.
Hyper-parameter C was optimized via 10-fold cross validation using
values of 0.01, 0.1, 1, 10, 100, and 1000. Moreover, different class
weights were also considered during SVM training to increasingly
penalize errors in the minority class. If linear separation of training
classes is not possible in a given feature, space kernel functions are
applied.39 The scalar product ⟨.,.⟩ is replaced by a kernel function
K(.,.) projecting the data into a higher dimensional space where linear
separation is possible.39 Herein, Tanimoto kernel40 was used as a
preferred kernel function for fingerprint representations:

= ⟨ ⟩
⟨ ⟩ + ⟨ ⟩ − ⟨ ⟩K u v

u v
u u v v u v

( , )
,

, , ,

SVM calculation protocols were implemented in Python using Scikit-
learn.32

Deep Neural Network. A feedforward DNN derives a function that
maps an input x to a class y, where y = f(x;w). The function learns the
value of parameter w to provide the best approximation.41 The DNN
architecture is composed of different layers of computational neurons,
including an input layer, several hidden layers, and an output layer.42

Each neuron of a hidden and the output layer accepts an n-
dimensional input x and transforms it into a linear m-dimensional
vector y = WTx + b, where W and b are parameters of dimension (m,
n) and m, respectively. Then, a nonlinear activation function h(y) is
applied to the weighted sum of its inputs. The weights from the
network are iteratively adjusted during training on the basis of a cost
function to minimize (gradient descent). Hyper-parameters were
either set to constant values or optimized using internal validation
with 80% vs 20% data splits.42−45 For binary DNN models, learning
rates values of 0.01 and 0.001 were evaluated. A set of network
architectures (represented as the values of the output features in
hidden layers) were investigated: [100, 100], [250, 250], [250, 500],
[500, 250], [100, 500], [500, 100], [500, 250, 100], [100, 250, 500],
and [250, 100, 250]. Thus, pyramidal, rectangular, and autoencoder
architectures were used during hyper-parameter optimization. The
epoch number was set to 30, and the batch size was set to 50.

Multitask (MT) learning aims to simultaneously model different
classification outcomes and DNN can be extended for this purpose. In
this case, an MT-DNN was implemented using an output layer with a
one-hot encoded categorical outcome that consisted of four elements
(one per inhibitor type). Categorical cross-entropy was used as the
loss function to minimize. For MT-DNN, the candidate values for the
learning rate were 0.001, 0.0001, and 0.00001. Moreover, the
following architectures (nodes per hidden layer) were evaluated:
[200,100], [2000,1000], [1000, 100, 100], and [2000,1000,100]. The
number of epochs was set to 20 and 100 for internal and external
validation, respectively, and the batch size was 64. For both single-task
(ST) and MT-DNNs, the drop-out rate was set to 25%. The Adam
optimization algorithm40 was chosen as the optimization function and
the “rectified linear unit” (ReLU)46 as the activation function. For
output nodes, the “softmax” activation function was used. DNN
architectures were implemented using TensorFlow47 and Keras.48

Table 7. Training Set Ratios for Global and Balanced
Models (Strategy I)a

training set ratio

classification task global balanced

TI/TII 712/95 95/95
TII/TI1/2 95/197 95/95
TI/TI1/2 712/197 197/197
A/(TI + TI1/2 + TII) 23/1004 23/23

aFor different prediction tasks, the ratios of kinase inhibitors from
different sets used to train global and balanced models following
strategy I are reported.
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Hyperparameter Optimization. Training of models under
hyper-parameter optimization revealed the best performance levels
were generally already achieved using standard parameter (or close to
standard parameter) settings. The observations indicated that model
performance were overall stable and not dependent on very specific
parameter settings for RF and SVM methods. However, some
preferred parameters were identified through optimization including
an architecture with three hidden layers, with following combination
of nodes [100, 250, 500] and learning rate of 0.001 for DNN binary
classification models.
For most of the trials, MT-DNN models provided the best mean

MCC performance in internal validation with an architecture of two
hidden layers and the following number of nodes: [2000, 1000], and a
learning rate of 0.01. Average MCC values across all the classes
ranged from 0.44 to 0.73, reflecting the importance of hyper-
parameter optimization.
Performance Measures. In addition to generating ROC curves

and calculating AUROC values, model performance was assessed
using three different measures including balanced accuracy (BA),
regular F1 score, and Matthews correlation coefficient (MCC). BA,
F1, and MCC are defined as

= + + +
= × + +

= × − ×
+ + + +

BA
0.5TP

TP FN
0.5TN

TN FP

F1 2
TP

2TP FP FN

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)

where TP means “true positives”, TN “true negatives”, FP “false
positives”, and FN “false negatives”.
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Summary

Herein, we explored different machine learning approaches to classify kinase
inhibitors on the basis of binding modes. Different molecular representations
were used to represent inhibitors.

Prediction was consistently high for all tasks, methods, and molecular rep-
resentations. Comparable results were obtained for both global and balanced
binary models, as well as for multi-task models. The differences between ma-
chine learning methods were minor across different binary models.

These machine learning models were accurate and robust, providing oppor-
tunities for practical applications.
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Chapter 10

Conclusion

With 518 members, protein kinases present one of the largest protein fam-
ilies in the human proteome. Dysregulation of their basal levels results in
multiple diseases. In this regard, the design of small-molecule inhibitors of the
human kinome has progressed therapeutic applications in oncology, immunol-
ogy, cardiology, and neurology. Increasing availability of kinase inhibitor data
provides opportunities for large-scale computational studies. In this thesis,
selectivity and promiscuity of kinase inhibitors were extensively explored. In
addition, a set of promiscuity data structures was defined to evaluate structure-
promiscuity relationships of close structural analogs. Finally, machine learning
methods were employed to classify kinase inhibitors on the basis of different
binding modes as revealed by X-ray crystallography. This chapter summarizes
the major findings of this thesis and draws final conclusions.

In the first study (Chapter 2 ), a systematic analysis of selectivity of multi-
kinase inhibitors was performed on the basis of single-protein assay data from
ChEMBL. As the majority of kinase inhibitors target the largely conserved ac-
tive site of kinases, they are expected to be promiscuous and lack selectivity. A
total of 10,060 multi-kinase inhibitors were annotated with 141 kinases, yield-
ing 596 compound-based kinase pairs of increasing phylogenetic distances. This
new reference frame for selectivity analysis showed that multi-kinase inhibitors
were more selective than anticipated. Given the statistically significant sample
of kinase inhibitors, clear selectivity trends were observed. Selectivity trends of
multi-kinase inhibitors were further explored using activity data from cell-based
assays. In Chapter 3, the most comprehensive kinase inhibitor profiling study
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reported to date provided a basis for the systematic exploration of multi-kinase
inhibitor selectivity. An approach similar to the one described in Chapter 2 was
used to explore selectivity patterns. In total 2369 compound-based kinase pairs
were formed by 190 inhibitors at different stages of clinical development. Sim-
ilar selectivity trends were observed with inhibitors widely distributed across
kinase pairs. Furthermore, selectivity profiles were categorized into two major
groups: uni-directional and bi-directional. Selectivity profiles suggested that
many kinase inhibitors were able to differentiate between kinase targets with
substantial differences in selectivity. Next, clinical candidates from the cell-
based profiling study were associated with activity annotations from ChEMBL
(Chapter 4 ). Subsets of highly selective and nonselective candidates were de-
tected across different confidence levels with increasing stringency. No selectiv-
ity differences were detected on the basis of compound activity data for subsets
of the most and least selective candidates from the profiling study and clinical
candidates classified as type I and II inhibitors. A number of clinical candidates
designated as chemical probes were found to be highly promiscuous. Thus, se-
lectivity trends of clinical candidates were complementary for cell-based and
medicinal chemistry-based data. In Chapter 5, the analysis was further ex-
tended to include expert-curated chemical probes from the Chemical Probes
Portal. The PD values of chemical probes were calculated on the basis of ac-
tivity annotations from ChEMBL. In addition, Portal-based PD values were
calculated for the comparison. For ∼50% of well-defined probes, promiscuity
levels were consistent with those reported by the Portal. Thus, highly selective
chemical probes were detected across different activity data confidence levels. In
addition, analog and scaffold relationships were explored to evaluate potential
off-target activities. However, off-target hypotheses could not be inferred for
the majority of probes. Furthermore, sets of close structural analogs with large
differences in promiscuity were systematically analyzed and new promiscuity
data structures were introduced. Therefore, kinase inhibitors were collected
from several public databases and assembled into a curated data set to perform
large-scale promiscuity analysis (Chapter 6 ). A comprehensive kinase inhibitor
set was obtained consisting of 112,624 inhibitors active against 426 kinases
(82% of the human kinome). Different promiscuity profiles were detected pro-
viding a basis for PC analysis. Following stringent PC criteria, ∼16,000 PCs
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were formed in a predominantly coordinated manner in network representa-
tions. Therefore, a new promiscuity data structure termed PC pathway was
defined to trace linear PC sequences in PC clusters.

As PC clusters become increasingly large and complex, manual identifi-
cation and extraction of PC pathways becomes difficult. In the next study
(Chapter 7 ), a computational method was developed to systematically iden-
tify PC pathways in clusters. Pathway parameters were defined to rank the
most informative pathways. PC pathways containing promiscuity hubs were
of particular interest for this study and revealed many unexpected structure-
promiscuity relationships. To enable further computational and experimental
follow-up analyses, PCs and PC pathways formed by kinase inhibitors were
made publicly available. In Chapter 8 the potential applications and limita-
tions of these data structures were discussed. Approximately 16,000 PCs were
organized in over 600 clusters, from which 8900 PC pathways were extracted.
Furthermore, promiscuity hub analysis was extended and 520 high-quality hubs
were identified. Application of recently reported CCR method revealed that the
majority of hubs were not structurally related. In addition, hub neighborhoods
provided many opportunities for promiscuity studies.

Different binding modes of kinase inhibitors were elucidated on the basis
of X-ray structure data. In Chapter 9, classification of kinase inhibitors ac-
cording to binding modes was investigated using a variety of machine learning
approaches. Both binary and multi-task models were built that displayed high
performance levels. A deep neural network did not provide an advantage over
random forest and support vector machine models except for multi-task learn-
ing. Accurate and robust classification models identified structural patterns
that distinguished between kinase inhibitors with different binding modes.

In conclusion, novel computational approaches for selectivity and promis-
cuity analysis of kinase inhibitors were introduced. The elucidation of ther-
apeutic and biological roles of these inhibitors largely relies on the study of
their selectivity/promiscuity profiles. In addition, close structural analogs with
large differences in promiscuity were identified to explore structure-promiscuity
relationships of kinase inhibitors and derive new target hypotheses for non-
promiscuous analogs. To these ends, new data structures were introduced to
facilitate promiscuity analysis in network representations. Finally, machine
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learning models were generated to classify kinase inhibitors into different bind-
ing modes. Taken together, these findings provided a sound basis for further
computational analyses of kinase inhibitors and application in kinase drug dis-
covery.
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