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Kurzfassung 

Räumlich verteilte Betriebe liefern Rohmilch als primären Input an eine kleine 

Anzahl milchverarbeitender Großbetriebe. Der räumliche Wettbewerb der 

verarbeitenden Betriebe hat kurz- bis langfristige Auswirkungen auf die Farm- und 

Molkereistruktur, da er die regionale Nachfrage nach Rohmilch sowie den daraus 

resultierenden Rohmilchpreis bestimmt. Eine Reihe neuerer analytischer und 

empirischer Beiträge analysieren den räumlichen Preiswettbewerb von 

Verarbeitungsunternehmen auf Milchmärkten. Agentenbasierte Modelle (ABM) 

werden neuerdings als ‚Bottom-up-Ansätze‘ eingesetzt, um die emergenten 

Marktergebnisse von autonom entscheidenden und interagierenden Marktakteuren 

besser zu verstehen. Trotz der Stärken von ABMs ist die Berücksichtigung 

interaktiven Lernens durch intelligente Agenten in ABMs nicht ausreichend gereift. 

Obwohl die Literatur von Multi-Agenten-Systemen (MASs) und Multi-Agenten-

basierte Simulation ökonomischer Interaktionsprozesse eigentlich verwandte 

Forschungsgebiete sind, haben sie bisher weitgehend getrennte Wege beschritten. 

Diese Dissertation trägt zur Entwicklung der Grundlagen für das Design von 

lernenden Agenten in räumlichen ökonomischen ABMs bei. Jedes der drei 

Hauptkapitel der Arbeit untersucht ein zentrales Thema für die Gestaltung 

interaktiver Lernsysteme mit dem übergeordneten Ziel, das Entstehen von 

Preisverhalten in realen räumlichen Agrarmärkten besser zu verstehen. 

Ein wichtiges Problem in der Literatur zum räumlichen Wettbewerb ist die 

lückenhafte theoretische Erklärung für das beobachtete Kartellverhalten in 

oligopsonistischen Märkten. Das erste Hauptkapitel leitet theoretisch ab, wie die 

Einbeziehung von Voraussicht in die Preispolitik von Agenten in räumlichen 

Märkten das System in Richtung kooperativer Nash-Gleichgewichte bringen kann. 

Es wird gezeigt, dass die Berücksichtigung eines einfachen Maßes an Voraussicht 

den Agenten die Möglichkeit eröffnet ansonsten endlose Preiskriege zu beenden. 
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Die Einführung einer „outside Option“ in die Entscheidungsmöglichkeit der 

Agenten im Rahmen eines dynamischen Preisspiels zeigt die Korrelation negativer 

Grenzerträge strategischen Kalküls mit der Relevanz der Transportkosten. 

Im zweiten Hauptkapitel stellen wir einen neuen Lernalgorithmus für rationale 

Agenten vor, der die Methode eines „hierarchischen Gradienten“ (H-PHC) 

verwendet. Während MASs-Algorithmen typischerweise nur auf kleine Probleme 

anwendbar sind, zeigen wir experimentell, wie multiple rationale H-PHC Agenten 

in der Lage sind, das Koordinationsproblem in einer Vielzahl von räumlichen (und 

nicht-räumlichen) Marktspielen, charakterisiert durch große Entscheidungsräume, 

mit mäßigem Rechenaufwand zu überwinden. 

Die theoretische Erklärung von Preisgleichgewichten in räumlichen Märkten ist in 

der Literatur umstritten. Die Mehrheit der Artikel aber erklärt das Preisverhalten 

(Molkereipreis und Frachtabsorption) allein mit der räumlichen Struktur der 

Märkte. Basierend auf einem computergestützten Ansatz mit interaktiv lernenden 

Agenten im zweidimensionalen Raum, schlägt das dritte Hauptkapitel vor, dass die 

Erklärung des Umfangs der Frachtabsorption allein mit dem Faktor Raum 

unvollständig ist. Das Preisverhalten landwirtschaftlicher Verarbeiter, speziell ihre 

Fähigkeit zur Koordination und Erzielung von gegenseitig vorteilhaften 

Ergebnissen,  ist zusätzlich abhängig von ihrer Fähigkeit voneinander zu lernen. 

Schlüsselwörter: Räumliche Agrarmärkte, agentenbasierte Modellierung, 

oligopsony, Preisbildung 
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Abstract 

Spatially dispersed farmers supply raw milk as the primary input to a small number 

of large dairy-processing firms. The spatial competition of processing firms has 

short- to long-term repercussions on farm and processor structure, as it determines 

the regional demand for raw milk and the resulting raw milk price. A number of 

recent analytical and empirical contributions in the literature analyse the spatial 

price competition of processing firms in milk markets. Agent-based models 

(ABMs) serve by now as computational laboratories in many social science and 

interdisciplinary fields and are recently also introduced as bottom-up approaches to 

help understand market outcomes emerging from autonomously deciding and 

interacting agents. Despite ABMs’ strengths, the inclusion of interactive learning 

by intelligent agents is not sufficiently matured.  Although the literature of multi-

agent systems (MASs) and multi-agent economic simulation are related fields of 

research they have progressed along separate paths. This thesis takes us through 

some basic steps involved in developing a theoretical basis for designing multi-

agent learning in spatial economic ABMs. Each of the three main chapters of the 

thesis investigates a core issue for designing interactive learning systems with the 

overarching aim of better understanding the emergence of pricing behaviour in 

real, spatial agricultural markets.  

An important problem in the competitive spatial economics literature is the lack of 

a rigorous theoretical explanation for observed collusive behavior in oligopsonistic 

markets. The first main chapter theoretically derives how the incorporation of 

foresight in agents’ pricing policy in spatial markets might move the system 

towards cooperative Nash equilibria. It is shown that a basic level of foresight 

invites competing firms to cease limitless price wars. Introducing the concept of an 

outside option into the agents’ decisions within a dynamic pricing game reveals 
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how decreasing returns for increasing strategic thinking correlates with the 

relevance of transportation costs.  

In the second main chapter, we introduce a new learning algorithm for rational 

agents using H-PHC (hierarchical policy hill climbing) in spatial markets. While 

MASs algorithms are typically just applicable to small problems, we show 

experimentally how a community of multiple rational agents is able to overcome 

the coordination problem in a variety of spatial (and non-spatial) market games of 

rich decision spaces with modest computational effort. 

The theoretical explanation of emerging price equilibria in spatial markets is much 

disputed in the literature. The majority of papers attribute the pricing behavior of 

processing firms (mill price and freight absorption) merely to the spatial structure 

of markets. Based on a computational approach with interactive learning agents in 

two-dimensional space, the third main chapter suggests that associating the extent 

of freight absorption just with the factor space can be ambiguous. In addition, the 

pricing behavior of agricultural processors – namely the ability to coordinate and 

achieve mutually beneficial outcomes - also depends on their ability to learn from 

each other. 

Keywords: spatial agricultural markets, agent-based modelling, oligopsony, 

pricing  
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Chapter 1  
Introduction 

1.1 Overall research background and objectives 

Although microeconomic textbooks introduce agricultural product markets as 

examples for perfectly competitive markets, a large number of studies emphasize 

that in reality such markets show oligopsonistic structures, especially in light of 

dramatically increased concentration in food processing (Sexton, 1990 and 2012). 

A multitude of spatially dispersed suppliers, relatively few processors and costly 

to transport raw products often also characterize the raw milk market. Collusive 

behavior on the part of processors has been studied in raw milk procurement 

markets quite recently (Graubner et al., 2011a; Huber, 2009; Bundeskartellamt 

2009; Huber, 2007 a; Huck et al., 2006; Alvarez et al., 2000). The bulky raw milk 

product can be delivered only to limited number of buyer locations. In addition, 

the perishability of raw milk weakens the dairy farmers’ bargaining position in 

negotiations with dairy processors.  

The nature of competition at the processor stage has short- to long-term 

repercussions on the structure of dairy farming, as it determines the regional 

demand for raw milk but also the raw milk prices dairy processors are willing to 

pay.  

Most spatial competition models in the literature rely on inadequate analytical 

assumptions. For example, the theoretical studies of Tribl (2012) and Koller 

(2012) assume simplified spatial shapes of market, typically linear, one-

dimensional markets with farmers distributed uniformly along a straight line and 



 

- 2- 

 

processors located at either endpoints of the market. Although these models 

present strong analytical basics, they fail to consider complex environment 

features like dynamic interactions, two-dimensional market shapes, asymmetric 

pricing policies of firms or pricing policies with various degrees of freight 

absorptions.  

An additional drawback of theoretical spatial competition models is to assume 

that objectives and corresponding rational reasoning of agents is common 

knowledge (Binmore, 1987). In a real market, however, agents make decisions 

without exact knowledge about the multiple key drivers of their market 

environment, e.g. other agents’ payoffs and preferences.  

Computational economic models, especially ABMs are recently proposed to cope 

with some of the deficiencies mentioned above. These frameworks are able to 

simulate actions and interaction of autonomous agents in complex environments 

(Grimm and Railsback, 2005). The emergence of positive and negative effects 

following policy and non-policy shocks may be detected by simulating decisions 

of many interdependent agents. However, individual agents must be equipped 

with appropriate adaptive decision mechanisms to successfully simulate such 

emergent behaviour at the system level (Kirman, 2011).  

In spatial competition context, each processor agent needs to dynamically keep up 

with the changes in the behavior of other agents. Finding the optimal pricing 

policy of processor agents among multiple, strategically interacting agents is a 

complex task. Decision rules are supposed to be continuously under review and 

revision. This problem is addressed as one of a “moving target” problem in the 

literature of MASs (Vidal, 1998). It is conceivable that agents obeying 

unpretentious rules -who behave in a non-learning fashion-, typically fail to 

accomplish desired outcomes in strategic systems. To fair better, agents must 

acquire knowledge about environment and other agents through the course of 

interaction, i.e. by Learning.  
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The realm of Multi-Agent-Systems (MASs) is the most noticeable research area 

addressing efficient approaches in strategic learning problems. Most studies in the 

MASs literature suggest Reinforcement learning as the relevant method used by 

learning agents inhibiting interactive worlds.
1
 On the other hand although MASs 

and multi agent economic simulation are related fields of research they have 

progressed along separate paths. While MASs learning algorithms are 

predominantly applicable to just small problems (Busoniu et al., 2010), 

computational economics requires learning methods, which are able to overcome 

the adaptation problem in market games with rich decision spaces.   

Many studies in the computational economics literature (e.g. the study of 

Graubner et al., 2011 in spatial competition) employ evolutionary algorithms to 

understand the equilibrium behaviour. A number of arguments support the use of 

genetic algorithms: “… if we are not concerned with the exact details of 

individual learning processes, evolutionary algorithms are a sufficient tool to 

model learning processes on a population level (Brenner, 2005, p.39).“ 

Evolutionary algorithms can be quite useful for some classes of complex 

problems especially when we are not concerned with the detailed dynamics and 

learning properties of the system.  However, interpreting the dynamics of genetic 

algorithms as individual learning processes seems not appropriate (Brenner, 2005, 

P.39). Mostly evolutionary approach might not compel Agent-based system 

designers to investigate precise clues with respect to individual learning 

mechanism of system inhabitants. Given these issues Brenner (2005) believes that 

“… it is surprising that the use of genetic algorithms, and especially the original 

genetic algorithms, has widely spread in simulating economic learning processes 

(Brenner, 2005, P.39).” 

                                                                 

1 The new introduced learning algorithm in our thesis, Hierarchical Policy Hill Climbing (H-PHC) 

can be also categorized in respect to Reinforcement learning methods.  
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In this thesis we would be more concerned with real humans characteristics -like 

foresight in decision, dynamic programming, reinforcement learning and 

hierarchical elaboration of choices- which might be crucial to understand the  

economic behaviour of learning agents in spatial markets. 

Each of three main chapters of this thesis investigates one central issue, which 

might serve as small steps towards designing improved MASs in the context of 

spatial agricultural markets:  

The analytical chapter 2 addresses the issue of Non-existence of a pure strategy 

Nash equilibrium triggering the possibility of an escalating arms race with no end 

(Schuler and Hobbs, 1982). We introduce a learning theory analogous to the 

sequential move adjustment process in Maskin and Tirole (2001) and show that 

through introduction of foresight into the agents’ pricing policy, the cyclic price 

wars move towards cooperation. Our rigorous results by means of a simplified 

market setting may hint at the reason why price-matching is the predominant 

observed behavior of processing firms in many agricultural markets, especially 

also in raw milk procurement markets. We discuss to what extent implications of 

our model coincide with prior studies in the literature. Especially we introduce the 

concept of Outside Option. 

In chapter 3 we investigate the issue of two-dimensional and non-asymmetric 

spatial price formation between farmers and processors in spatial environments by 

introducing a new Learning algorithm. While Multi-agent reinforcement learning 

algorithms are predominantly applicable to just small problems (Busoniu et al., 

2010), we introduce the H-PHC (hierarchical policy hill climbing) algorithm in 

our work, which is able to overcome the coordination problem in a variety of 

spatial (and non-spatial) market games with rich decision spaces. Indeed our 

investigation in chapter 3 concerns chiefly about the issue of Scalability. We 

show experimentally how a community of multiple rational H-PHC agents 

perform a rational and convergent learning process where agents do not need to 

model each other explicitly as agents. This will lead to extra computational 

efficiency.  

In chapter 4, we implement some learning-based scenarios of pricing in 

agricultural processor markets in two-dimensional space and in the presence of 

policies with variable levels of freight absorption. 



 

- 5- 

 

Most previous studies in the agricultural economics literature
2
 attribute the degree 

of freight absorption by processing firms just to the spatial structure of markets. 

We compare two opposite poles of learning aptitude of processors. These are low-

coordination and high-coordination scenarios. Our interaction scenarios propose 

that associating the extent of freight absorptions by pricing policy of firms just 

with factor space in spatial markets might depend on the extent of coordination 

between firms and hence policy recommendations based on such measures can 

lead us in the wrong direction. In addition to the spatial structure of the market - 

the pricing behavior of agricultural processors also depends on their ability to 

learn from each other.  

In the section 1.2 of this chapter we introduce some required background 

knowledge from literature regarding core theory and tools used in following 

chapters. In section 1.3 we discuss the summary of contributions, key results and 

limitations of following chapters. 

1.2 Background Knowledge 

1.2.1 Economic structure of the dairy market 

The milk sector is not only receptive to structural changes at farm level but also 

sensitive to agents’ interaction at the dairy processing level. Competition between 

processors will have in short- to long-term repercussions on the dairy farming 

structure, as they determine the regional demand for raw milk but also raw milk 

prices dairy processors are willing to pay. The number of dairy processors and 

their operating sites in Germany show a declining trend for years and this has 

been observed in most other EU countries as well (Boysen and Schröder, 2006).
3
 

Although agricultural markets often serve as examples for competitive markets in 

                                                                 

2 See e.g. Zhang and Sexton (2001). 

3 Since 1984, the dairy production sector in Europe was regulated by a milk quota system aiming at 

controlling milk production and price while limiting public expenditure. The liberalization of the 

EU milk market respectively the abolishment of the quota system in 2015 might have caused this 

trend to speed up. 
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microeconomics textbooks, in reality many agricultural procurement markets are 

characterized by an oligopsonistic economic structure (Sexton, 2012). Tribl and 

Salhofer (2013) offer an empirical and theoretical survey regarding the market 

power along the dairy supply chain.  

Figure 1.1: Stylized demonstration of dairy supply chain based on Tribl and 

Salhofer (2013).  

 

In order to capture the potential power relationships in each stage of the supply 

chain depicted in Figure 1.1, one must consider the options of each player to leave 

ongoing negotiations if its outside gain is higher than that of current bargaining 

process. These Outside Options (Osborne and Rubinstein, 1990) may grant 

different market players to have different market powers. For example, retailers 

might be able to swap dairy product suppliers. Likewise, the most important 

Outside Option of a dairy farm is switching to another dairy processor firm. 

Obviously, the availability and attractiveness of the Outside Options determines 

the credibility of the threat to abort negotiations and thus to exert power in the 

negotiations. It follows that if one side has more attractive Outside Options it 

possesses greater bargaining power and hence, will be less willing to accept a 

lower pay-off.  

Intuitively, a precise analysis of price and income effects in the dairy industry 

requires a comprehensive overview of price transmissions along the supply 
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chain.
4
  The emphasis in this thesis is however limited to examining the outcome 

of the interaction between farm and dairy processing level. The literature offers 

considerable empirical evidence on collusive behavior of processors towards 

farms in the raw milk market (Graubner et al., 2011a; Huber, 2009; 

Bundeskartellamt, 2009; Huber, 2007 a; Huck et al., 2006; Alvarez et al., 2000). 

The above mentioned concentration and move to oligopsonistic structures on the 

dairy processors side is accompanied by changes in land use and more generally 

long-term development of farms and might cause wide distributional effects at 

farm level. Concerns regarding market and or bargaining power in the dairy 

supply chain market has led to a recent sector inquiry by the German Federal 

Cartel Agency (2012). Hence, an improved understanding of farm structural 

changes requires the analysis of dairy firms’ competition in raw milk markets.  

1.2.2 Contractual system in Dairy markets  

The production of agricultural raw products has some unique characteristics that 

distinguish it from other commodity markets. Raw milk production can be seen as 

an important example of agricultural markets showing four distinctive 

characteristics (depicted in Figure 1.2 following Rogers and Sexton, 1994). Many 

investments are relationship-specific. Milk suppliers customize their equipment 

and invest in production facilities that suit particular needs of their dairy business 

partners. Once built, buildings and machinery are difficult to use differently and 

can be considered as sunk cost. For example, a milking parlor would be of no use 

for other production activities and the barn needs reconditioning to suit other 

production activities. Commercial vehicles on the other had can more easily be 

sold and used by another firm in a different industry (Wieck and Mosnier, 2011).
5
  

                                                                 

4 Another empirical study regarding pricing along the supply chain is done by Hellberg‐Bahr et al. ( 

2010). 

5 Basically capital investments are sunk (specific) when the unit value of investment is greater than 

the unit value of disinvestment. 
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Figure 1.2: Distinctive structural dimensions of the raw milk market in line with 

Rogers and Sexton (1994). 

 

The perishability of raw milk and associated time constraint renders a weak 

bargaining position for farmers at the negotiation stage with dairy processors. 

Having the lower discount rate as consequences of perishability may cause a 

Hold-up situation in relationship of dairy processors with producing farms 

(Osborne and Rubinstein, 1990; Binmore et al., 1986). Sunk costs associated with 

a farm’s specific investment is not compatible with the opportunistic behavior of 

dairy processing firms without contractual or property rights arrangements. 

Laffont and Tirole (1993) mention that if contracts are complete in the sense of 

using all relevant and contractible information, they may provide incentives that 

minimize efficiency losses. This might rationalize the commonness of conclusion 

of contracts in dairy markets. The German Federal Cartel Agency (BKA, 2009, 

p.73) reports that a high share of milk is committed in the long-term via supply 

contracts, i.e. it is not freely available on the spot market.  

Note that the main feature of market contracts considered in this thesis is the 

product price. However, decision-makers in real markets include factors other 

than price into their contracts. Indeed the most important reason for farms to stay 

with the same processor or switch to another is assumed in our study to be the 

delivery price. Empirical studies of the German milk market reveal that farmers’ 

preferences regarding contract design are more divers. In addition to price, 
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quantity and quality regulation, contract period, contract termination conditions 

and some further regulatory issues are relevant attributes of delivery contracts 

(Steffen et al., 2009).  

1.2.3 Existence of cooperative firms 

Hart (2009) argues that even when originally parties have agreed to cooperate 

under the terms of a rigid contract that fixes price, parties may withhold 

cooperation until renegotiation after the resolution of uncertainty lead to changes 

in costs/values of the contract. This cooperation may conclude a number of 

“helpful” or “cooperative” actions at some time t=2 (Figure 1.3), which by no 

means could be anticipated in time 0. 

Figure 1.3: Contract timeline based on Hart (2009). 

 

 

In this sense numerous - perhaps even most - contracts observed in the real world 

are highly incomplete. A vast literature on vertical integration (Grossman and 

Hart, 1986) describes how inefficiency might emerge in situations that feature 

relation-specific investment. This scenario generally results in a trade-off. 

Specific investments yield a larger surplus to be available for the partners but 

weaken the ex-post bargaining position of the investor. An inefficient level of 

under-investment results from the threat of being exploited by the other party in 

the negotiation stage after the investment took place. Hart and Moore (2008) 

explain that the risk of being held up might not necessarily be healed through 

contract. There may be other more prosaic reasons. For example imagine -due to a 

bad unexpected state of the downstream market- the processor party partner 

withholds cooperation. Courts may enforce compliance within the letter of 

contract but not the compliance within the spirit of contract. The dairy firm can 
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e.g. make the life difficult for milk producers by quibbling about quality details or 

by delaying payments due to some strict terms of the contract.  

Property right models propose that the under-investment problem can be rectified 

by means of vertical integration. This might be one possible explanation why 

Germany dairy farmers are integrated with dairy processing and marketing 

through dairy cooperatives (COOPs). The theory on COOPs suggests that the 

right of control over assets should be assigned to agents whose quasi rents are 

under risk from hold-up behavior of profit maximizing processors (Grossman and 

Hart 1990). Indeed the costs of contracting generally might increase more than the 

costs of vertical integration as assets become more specific (Klein et al., 1978). 

The share of German COOPs in milk processing is rather high (Spiller 2008b). 

COOPs process around two-thirds of milk produced in Germany and among the 

five largest dairies - measured by the quantity of milk processed - there are four 

COOPs (Steffen et al., p.6). Note that processor agents in our study are assumed 

to be fully rational, profit-maximizing processors even though several alternative 

objective functions are suggested specifically for COOPs (Cotterill, 1987).
6
  

1.2.4 Basic interaction model in Oligopsony  

The conjectural variation approach is the corner stone of most analytical and 

empirical approaches studying oligopsonistic markets. Assuming that there are N 

non-cooperative dairy plants (milk processors), the production function for a 

homogeneous good of the i-th processor in the area is  

 ,i i iq f x s                                                                                                      (1.1) 

where    is the output quantity of the representative commodity of milk products 

produced by the i-th dairy plant,    is the corresponding quantity of raw milk 

                                                                 

6 Despite of this there are empirical observations indicating that the behavior of cooperative firms is 

similar to profit maximizer investor-owned investor owned IOF firms. The question if and to what 

extend COOPs might maximize profits is a very deep and controversial question that depends 

heavily on the governance structure and the internal incentive system of the specific organization. 
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bought and    is a vector of other inputs. We assume throughout the thesis that the 

dairy agents are price takers in the output (down-stream) market as well as in the 

market for other production inputs, but that they exert market power in the raw 

milk input market. The raw milk (inverse) supply is expressed as 

 ' ,Xw f X S                                                                                                   (1.2) 

  ∑   
 
    describes the sum over all milk delivered by the farms, S presents a 

vector of supply shifters and    denotes the market price of raw milk. The (short- 

to medium-run) profit of the i-th dairy plant given a certain production capacity is 

given by 

             ,i i i X i S ipf x s w x w s                                                                     (1.3) 

where p is the price for the final processed dairy output (assumed to be a 

representative commodity) and     is a vector of prices for the other production 

factors. Deriving first order condition maximizing profit    with respect to     

yields 

 
 

,
0/1i ii

X i

i i

f x s
p w

x x
 


   

 

                                                            (1.4) 

where                   is the i-th dairy plant’s conjectural elasticity in the 

input market for raw milk and                  is the market price 

elasticity of raw milk supply. Rearranging terms leads to the following expression 

for the raw milk price: 

/ (1 / )
iX x iw pf                                                                                        (1.5) 

    
               is the marginal product of raw milk input used by the i-th 

dairy plant. According to the literature (Appelbaum, 1982; Azzam and 

Pagoulatos, 1990) the factor     offers possibilities econometrically testing 

market structure. If      , then the raw milk market is perfectly competitive, i. 

e. the marginal product of raw milk of each dairy plant equals the market price. If 

    , then the market for raw milk is monopsonistic, i.e. the dairy plants act 
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like a monopsony and consequently the marginal factor cost should be equal to 

the value marginal product. Intermediate values of    indicate the presence of 

oligopsonistic market behavior to varying degrees (Perekhozhuk et al., 2013). 

1.2.5 ABMs and MASs 

The complexity of determining price policies of dairy agents in spatial markets 

with strategic interaction makes them difficult to analyse analytically. The 

investigation of such complex systems through ABMs is well established as an 

alternative approach in the literature (Happe et al. 2006, Lobianco et al. 2010; 

Schreinermachers and Berger, 2011; Ostermeyer et al. 2011). ABMs present 

flexible and extendable platforms to simulate the behavior of autonomous entities 

called agents. Wooldridge and Jennings (1995) propose the following definition 

for an agent: “An agent is a computer system that is situated in some 

environment, and that is capable of autonomous action in this environment in 

order to meet its design objectives (Wooldridge and Jennings, 1995, p. 115)”. 

Interacting among multiple interacting agents means intrinsically nonstationary 

environment for each agent. In this context one agent’s behavior might change 

over time depending on the decisions of its counterparts. Stone and Veloso (2000) 

propose the following definition for MASs: “MASs are the subfield of AI that 

aims to provide both principles for construction of complex systems involving 

multiple agents and mechanisms for coordination of independent agents’ 

behaviors (Stone and Veloso, 2000, p. 345)” 

Stone and Veloso (2000) summarize the following useful properties, MASs offer: 

MASs enable parallelism in computation, since a Multi-agent approach enables 

the distribution of tasks to different agents. Additionally, MASs offer robustness, 

because careful distribution of control and responsibilities can lead to tolerance in 

errors, since the failure of an agent in its task can be compensated by other 

agents’ work. Moreover, another benefit of MASs is their scalability due to the 

inherently modular design. In other words, it is easier to add new agents to MASs 

than adding new capabilities to a monolithic system. Furthermore, modularity can 

also result in simpler programming. Finally, MASs prove to be useful from the 

perspective of social science as they can aid in the study of intelligence. 
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In MASs agents must be enough intelligent capable of elaborating decisions on 

theirs tasks while their knowledge about the system state respectively objectives 

of other agents is restricted. Agents must instead discover a solution through 

observation and relying on their own knowledge by learning.  

1.2.6 Learning 

Learning and intelligence are closely related to each other. Weiss (2000) defined 

learning informally as follows: “The acquisition of new knowledge and motor and 

cognitive skills and the incorporation of the acquired knowledge and skills in 

future system activities, provided that this acquisition and incorporation is 

conducted by the system itself and leads to an improvement in its performance 

(Weiss, 2000, p. 260)”. Agent-based computational economists employ various 

learning models. According to Panait and Luke (2005) there are three main 

approaches to learning: supervised, unsupervised, and reward-based learning. In 

supervised learning, an agent deals with the problem of learning the optimal 

function mapping inputs to outputs by training with a series of input and output 

pairs. A teacher or supervisor steers the learning progress through providing 

feedback on the success. Artificial Neural Networks (ANNs) are typically 

examples of supervised learning. Supervised learning becomes inadequate when 

the output for a certain input cannot be easily obtained by a supervisor 

computationally. In unsupervised learning, no feedback is provided. Data mining 

methods, clustering and discovery are examples of unsupervised learning.  

The reward-based learning methods are divided into two subsets: reinforcement 

learning (RL) and stochastic search methods such as evolutionary algorithms. In 

RL, agents learn by estimating value functions through delayed rewards. Agents 

in RL mostly elaborate decisions based on the notion of dynamic programming 

(Bellman, 1957). Dynamic programming solves optimization problems by 

combining solutions to sub-problems. Each agent solves each sub-problem just 

once and saves its answer in a table, to avoid the re-computation. In stochastic 

search methods, agents try to refine their decisions iteratively through testing each 

possible sequence of actions to find the appropriate one without considering 

historic states and their corresponding payoffs. Reward based learning models 

seem the natural choice for the majority of papers in the literature of MASs. A 
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significant part of it is concerned with RL (Busoniu et al., 2010).Given its 

relevance, we look into RL in more detail. 

1.2.7 Reinforcement learning 

Sutton and Barto (2005) provide a clear and simple account of the key ideas and 

algorithms of reinforcement learning. RL describes a non-conscious learning 

process helping agents to maximize a long-term objective function based on trial 

and error in a stationary environment. Actions that yield a positive effect will 

have a higher chance of being chosen again in the future (Sutton and Barto, 

2005). The theory of Markov Decision Processes (MDPs) offers a framework for 

modeling the decision-making procedure by agents in the context of RL. RL uses 

MDPs for world representation. A MDP (Howard, 1960) is a tuple (S, A, T, R), 

where S is the set of states, A is the set of actions, T is a transition function 

       [0 1], and R is a reward function S×A R. The transition function 

defines a probability distribution over the next states as a function of the current 

state and the agent’s action. The reward function defines the reward the agent 

receives when selecting an action at given state. Solving MDPs consists of finding 

a policy function  ,      , which maps states to actions. An optimal policy 

maximizes the sum of future rewards r, discounted by factor  , over time t. The 

optimal way for agents to learn the optimal policy is learning the optimal value 

function (Sutton and Barto, 2005). The value function    is defined for each state 

  as sum of expected discounted rewards  , given the agent follows “some 

policy”   starting in that state and following the policy until we achieve a 

Terminal-state:   

  1

0

( | , )k

t k t

k

v s E r s s  


 



                                                                         (1.6) 

Similarly, a q-function is defined as the expected discounted reward given the 

agent takes a certain action   in state   following policy  . 

  1

0

, ( | , , )k

t k t t

k

q s a E r s s a a  


 



                                                         (1.7) 
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The optimal q-function is defined as                    . It satisfies the 

Bellman optimality equation: 

       '

'

* ' ' * ' ', , , [ , , , ]      &   
a

s S

q s a T s a s r s a s max q s a s S a A


                             

                                                                                                                                                 

The equation (1.8) states that the optimal value of taking a in s is the expected 

immediate reward from undertaking a plus the expected discounted maximum 

value attainable from the next state   . Once    values corresponded to actions in 

each state are available, the optimal policy will be returned in every state by 

reinforcing the action with the largest optimal q-value.  

   * *  ,as arg max q s a                                                                                   (1.9) 

The optimal policy    of agent in each state would be typically assigning 

probabilities to actions that obtain higher q-values. A broad range of single and 

multi-agent RL algorithms are derived from the basic q-learning developed by 

Watkins (1992).  

Figure 1.4: Schematic presentation of q-learning algorithm based on Sutton and 

Barto (2005). 
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A q-learning agent maintains the value of each possible action in every state of 

the environment. These are called q-values and are stored in a table. The 

evaluations of the quality of particular actions at particular states are iteratively 

improved. The agent, subject to some error
7
, selects the most favorable action 

(the action, that gives already the maximum q-value in his current state) a in its 

current state s. Then it perceives the consequence of this action in form of the new 

state of the environment    and its reward r. Through this reward, the agent 

validates the significance of its last action and updates its q-value. Hence, q-

learning turns into an iterative approximation procedure. The agent starts with an 

arbitrary q-function, observes transitions                  , and after each 

transition updates the q-function according to 

       '

'

1     1 1   ,  ,  ,  , k k k k k k k k k k k k ka
q s a q s a r max q s a q s a   

    
 

       

(1.10)                                                                 

The term within the right bracket is the difference between the current estimate of 

q-value of          and the updated estimate of         . Parameter setting 

influences the quality of learning. For example setting factor    to 0 means that 

the q-values are never updated, hence nothing is learned. Setting a high value 

such as 0.9 means that learning can occur quickly. The discount factor  describes 

how an agent will evaluate the rewards, which he gets afterwards. If the discount 

factor meets or exceeds 1, the q-values may diverge.  

1.2.8 Multi-agent reinforcement learning 

The convergence of RL methods is based on the assumption that the environment 

is stationary. Learning among multiple strategically interacting agents is far more 

                                                                 

7 For example, in a so called epsilon greedy policy an agent chooses a random action with a small 

probability epsilon and with a probability equal to 1- epsilon decides to take the action, which gives 

already the maximum q-value in his current state. 
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demanding task since the choice environment of each agent is now intrinsically 

non-stationary. Recently there has been growing interest in the literature to extend 

learning methods to the multi-agent domain. In this case, the state transitions are 

the result of the joint action of all the agents. Because the rewards of the agents 

depend on the joint action, their payoffs depend on the joint policy. The question 

that arises is whether an agent is able to perform effectively without actually 

taking into consideration the actions of the other participating agents. 

Experiments have shown that in some cases, agents that learn about the values of 

joint actions are able to perform better than single learning agents (Claus and 

Boutilier, 1998). Hence many approaches in the literature aim to extend MDPs to 

the multi-agent case (Littman, 1994). Despite this, in many multi-agent settings 

independent single agent learners have shown also good performances (Busoniu 

et al., 2008). The generalization of the Markov decision process (once multiple 

agents interact and learn simultaneously) is named “stochastic game“. Stochastic 

games are the extension of MDPs to multiple agents and of static games to 

multiple states. 

1.2.9 Static games, repeated games and Stage games 

A static (stateless) game is a stochastic game with no state distinction and no 

dynamics, i.e.    . A static game is described by a tuple 

                  with the rewards depending only on the joint actions 

      . An important characteristic of a static game is the Nash equilibrium of 

that game. Nash equilibrium is relied on the notion of best response of agent i to a 

vector of opponent strategies. A best response strategy   
   is the strategy that 

obtains the maximum expected payoff given the other players’ strategies: 

*

1 1{ | , , , , } { | , ,   , , }   i i n i i n iE r E r             .                                  (1.11) 

The Nash equilibrium describes a joined strategy profile    
      

    such that 

each strategy   
  is a best response to others. 

A repeated game is a static game played repeatedly by the same agents. The 

substantial difference between a static game and a repeated game is that the 

agents can use the history of the game to learn about the other agents’ behavior or 
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about the reward functions, and make more decent decisions thereafter. A stage 

game is the static game that arises out of the state s of a stochastic game. The 

reward functions of the stage game in state s are the q-functions of the players 

projected on the joint action space, when the state is fixed at s (Busoniu et al., 

2010). 

1.2.10 Practical multi-agent learning 

A comprehensive taxonomy of multi-agent learning algorithms in general can be 

found in the work of Busoniu et al. (2010). Multi-agent reinforcement algorithms 

are predominantly applicable to small problems only, like small stochastic games 

and small grid worlds. Scalability is a central concern of MARL. By increasing 

the interaction domain tabular storage of q-functions for agents becomes 

economically infeasible i.e. impractical. Hence, there is continuous research 

towards the development of robust agents for large-scale, complex, open, 

dynamic and unpredictable environments (Busoniu et al., 2010). In the field of 

computational economics, some researchers prefer to develop interaction models 

on the basis of the individual based psychological RL methods. For example, 

Nicolaisen et al. (2001) use routine based Roth-Erev model (Roth and Erev, 1995) 

to investigate market power and efficiency outcomes for a short-run, wholesale 

electricity market with double- auction pricing and with buyers and sellers who 

continually update their price offers on the basis of past profit experiences. In the 

oligopoly and oligopsony learning literature, especially in spatial competition of 

agricultural markets, the most widely spread practical methods to analyse the 

firms’ behavior are evolutionary methods used e.g. in Graubner et al. (2011a and 

2011b). 

1.3 Contributions, key results and limitations 

Each of three main chapters of this thesis takes us through some basic problem for 

designing autonomous learning agents in dynamic and spatial ABMs.  

Chapter 2 of the thesis may be seen as the motivator study of the thesis. It models 

an interactive environment comprising possible asymmetric pricing policies 

between firms, as well as policies involving freight absorption. It serves 

especially as a key theory for understanding how collusive behavior might have 
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become a prevailing pattern in many agricultural markets. For example, the 

studies of Huber (2007 and 2009) show that in almost half of the area of 

Germany, more than one dairy processor agents operate in certain regions. 

Cooperation between major processors can be inferred also from numerous 

empirical and theoretical studies e.g. the milk inquiry of the German cartel 

authority (section 1.2). Indeed milk processors coordinate their prices based on a 

regional average milk price of other processors (Bundeskartellamt, 2009). Our 

study offers insight into the price-matching rationality of processor firms 

observed in raw milk markets. Herewith we constitute a simplified spatial 

configuration for a procurement market by considering two milk processors at the 

end of a line containing supplier farms. In the classic economic models it is 

typically assumed that sellers (e.g. here milk suppliers in our model) in 

procurement markets deliver the raw product to processor firms and receive the 

mill price at the buyer’s factory gate (FOB pricing). Here we presume that 

farmers receive the same price at their farm gate irrespective of their location 

relative to the processor’s production plant (UD pricing). Empirical studies 

frequently observe the application of UD pricing rules for real. A major problem 

encountered in the current literature on spatial competition with uniform delivered 

pricing policies however, is the nonexistence of pure-strategy Nash equilibria in 

competitive models due to discontinuous best response function of players 

(Dasgupta and Maskin, 1986; Beckmann, 1973; Schuler and Hobbs, 1982). In 

such cases, cyclic price wars take the place of Nash equilibrium. System 

characteristics such as limitless price wars have been made clear previously in the 

classic models of pricing in Shubik (1980) as well as in spatial competition 

models (Schuler and Hobbs, 1982). The lesson we learn from our study is not 

only how spatial characteristics of markets lead “myopic rational” agents to get 

bogged down in interminable non-cooperative price disputations, but also how 

imposing a minimal degree of awareness regarding competitor’s possible 

reactions in the agents’ pricing decision, might invite decent agents to revise their 

primary malicious based decision. We show how foresight based competition 

might force players’ policy to deviate from cyclic price patterns and move 

towards cooperation. One party not only thinks “What happens to my payoff if I 

overbid?” but also “Will I be overbid by the opponent player after I have already 

overbid?” and “what is going to be my next reaction after my opponent’s 

reaction?” The ability of real human agents to reflect on their behavior based on 
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subsequent consequences of their myopic decisions will distinguish them from 

other non-intelligent decision systems. We suggest that one substantial 

institutional feature of milk market namely contractual relationships dominating 

the market-relationships might expedite the foresight-based decision. In contrast 

to spot markets where market participants can act like myopic responder agents, 

in long-term contractual relationships one firm will necessarily try to interfere in 

market of its competitor after he learns that its opponent has achieved new 

arrangements with its suppliers. The intervening party might try to spoil the 

business plan of the opponent. The opponent might try to convince its contracted 

suppliers not to switch. We note that without considering such institutional 

aspects (contract- and auction-based interactions between market participants), 

many empirical and agent-based investigations would have overlooked some 

strong implications of contract or auction regimes.
8
  Though the full implications 

of institutional aspects of markets, e.g. contractual relationships between market 

participants, are rarely investigated in prior studies of spatial competition in 

agricultural markets, their influence upon competition and welfare might be 

pervasive. 

An additional relevant contribution of chapter 2 is the correlation between firm 

locations and collusive behavior in light of aforementioned institutional factors. 

The correlation problem has been studied well analytically in the literature of 

horizontal product differentiation too.
9
 Results from a small body of literature 

indicate that a smaller firm dispersion is more likely to sustain tacit collusions. 

The majority of studies suggest that the relationship between higher degrees of 

product differentiation and collusive behavior is robust. In our model, a larger 

spatial dispersion of firms might grant a greater outside utility and consequently 

less competition in the market. However, our model counts for the effect of 

institutional factors as a major caveat to understanding real market interactions. It 

proposes that advantages of strategic thinking for players within the system are 
                                                                 

8 The relevance of contract theory is addressed mostly in the works of Oliver Hart, the Nobel Prize 

winner of economics in 2016. See e.g. Hart (2009). 

9 Differential factor for different products can be translated into how close consumers (or here 

farmers) are to each firm stand. 
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larger, if the importance-of-space is smaller. In fact, with lower factor 

importance-of-space, competitor agents are supposed to learn more from each 

other by building price conjectures about the opponent’s compensatory reactions. 

In such interactive market structures, it is more probable that decent competitors 

recognize the value of cooperation.
10

  

Meanwhile some theoretical hurdles limit the application of our model to reality. 

A crucial limitation to establish the proposed equilibria in chapter 2 in learning 

domains might be that all agents need to recognize the same world. Agents are 

able to convey the shared understanding that unilaterally switching their pricing 

policy based on malicious decisions would be credibly prohibitive. The need for 

coordination of self-interested agents in our model is resulting from the 

dependence of any agent’s action on foreseeable actions taken by the 

counterparts. However, in many real learning domains, agents might incorporate 

some wrong beliefs toward  specific compensatory actions taken by other agents. 

This might restrict application of our theoretical model in chapter 2 to real 

learning domains. One might note that, achieving such cooperative rationality 

levels might be feasible through a structured dialog between agents during the 

course of interaction. In fact, real human businesses do use high-level 

communication forms in a wide variety of their activities. Such learning 

procedures based on high-level communicative interactions like verbal 

negotiation and mutual explanation is studied less in the literature.
11

 

In chapter 3, we propose a new decision making algorithm, called H-PHC, which 

enables multiple agents to learn in rich strategic decision spaces without explicitly 

modelling beliefs about the interaction environment and other participating 

                                                                 

10 We will draw similar inferences regarding the interrelation between importance-of-space and 

collusive behavior in Chapter 4. 

11 The idea of complex communication can be pursued in the literature of AI. For example in Sian 

(2005) multiple agents, each of them trading agricultural commodities in particular area (Kenya, 

Brazil and India) aim at cooperatively create generalized descriptions of how prices of tea, coffee 

and cocoa change due to various classes of events (flood, frost and drought) through explicit 

communication protocols. 
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agents. One intrinsic property of rational human decisions guided us to develop 

the algorithm: humans are used to hierarchically elaborate their decisions rather 

than to undertake an exhaustive enumerative search through the whole decision 

space. This avoids that agents change their decisions in an arbitrary manner and 

will reduce the dimensionality of interactions in real life procedures. For example,  

once an agent has chosen the spatial location for its processing plant, the 

computational efforts regarding optimal pricing interactions with neighbouring 

processors is considerably diminished (compare to before the decision). We 

suggest that such hierarchical rationality of agents is a sufficient condition to learn 

in rich strategic spaces with modest computational effort. It is significant that the 

H-PHC algorithm does not assume agents who know the underlying game or have 

prior knowledge regarding the corresponding Nash Equilibrium.
12

 The only 

feedback one agent might need is its own local reward as the agent does not 

explicitly model other agents’ actions or rewards. Learning buyer (milk 

processor) agents applying H-PHC algorithms in our study show to fair efficiently 

reaching the Nash equilibria. The advantage of our approach in comparison with 

alternative methods is demonstrated in Figure 1.5.  

                                                                 

12 Having prior knowledge regarding firms’ production function or best response functions is 

presumed as a pre-requirement of the learning procedure, e.g. through ANNs in Barra and 

Saracenob (2005). 
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Figure 1.5: Advantages of hierarchical approach to learning over alternative 

methods in the learning literature of pricing and quantity games. 

 

Our experiments give evidence that our algorithm succeeds to act as a cognitive 

motor encouraging non-cooperative coordination not only in various spatial 

games but also in variety of non-spatial markets.  

Despite this accomplishment, further improvement of H-PHC as a rational 

algorithm to guide agents’ decisions in non-trivial dynamic markets seems 

necessary. For example, one problem to be surmounted is the non-existence of 

Nash equilibrium in the presence of freight absorption policies (e.g. UD pricing). 

In such environments - without communication or knowing more about each 

other’s objectives - rational competing agents must continually adapt to each 

other again and again, never stabilizing at an established behavior. A rational 

learning algorithm is supposed to reflect the price instability phenomenon. By 

means of an example we show that introducing some extra decision factor into 

the algorithm (Meta-Decision), the frequent non-stationary cycling price 

procedures can be made possible. However, designing H-PHC agents able to shift 

their decisions endogenously whenever agents’ policy must be revised (through 

rationality criterion) is not completely performed. This is still an open issue to be 

improved. Indeed the remaining concern for H-PHC is how to learn rational and 

how fast. A dynamic market environment can comprise variety of endogenous 

shocks e.g. endogenous changing of farms’ supply behavior or evolving reaction 

functions of some firms and etc. Relaxation of quota regulations in agricultural 

markets in the EU is an example triggering such environmental shocks. Designing 
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highly sensitive rational agents equipped with some well-designed Meta-Decision 

module would be highly interesting. One remedy to implementation of such 

Meta-Decision mechanism could be learned from the well-known Wolf-PHC 

(Bowling and Veloso, 2002) algorithm, in which the designer imposes on agents 

to learn (new policies) slower when they are winning and faster when they are 

losing.   

Lastly one might note that the rationality levels – based on myopic rationality of 

humans – such that we spotlight in chapter 3- are primitive to describe the real 

learning processes of real economic agents. As revealed in chapter 2, we need to 

incorporate some higher levels of rationalities in order to capture empirical 

evidence regarding collusive behavior of real agents. Chapter 4 elaborates on this 

issue.  

In chapter 4, we investigate a learning based analysis of competition in a 

duopsonistic milk processor market in two-dimensional space. A buyer agent can 

offer each seller varying prices depending on the distance of that farm to the 

processor’s location. The analysis is performed in two scenarios reflecting two 

opposite poles of our understanding about learning aptitude of processors, low-

coordination and high-coordination. First, we create agents who are born with 

some previously acquired knowledge about observing the state of the world and 

using the utility maximization rule of best myopic response to boost their profit. 

We name theses agents A-level agents. We design a dynamic sequential 

interactive game by simulating their behavior. The process in which agents will 

take turns setting prices that are the best myopic response to the opponent is 

analogous to the process Cournot studied and is expected to have the same long-

run property as the simultaneous move adjustment process (Fudenberg and 

Lewin, 1998, p.11). We propose that the price competition of A-level agents will 

always be describing a self-enforcing pattern regarding its direction. Principally 

the system moves always toward some unique cyclic basin of attractions of 

pricing contest (Terminal-states).
13

  

                                                                 

13 Generally, we presume that Terminal-states represent close to Nash equilibrium strategies of the 

play, since they describe a local target in which the strategies of players will be trapped.   
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In the second stage, we investigate some type of higher rationality levels in 

decision procedure of agents. We incorporate the fact that real economic agents 

are dynamic programmers i.e. they can store predicted knowledge linked with 

forthcoming phases of bilateral price interactions and decide upon this knowledge 

while deliberating in advanced stages of policy setting. Basically, recursive 

modeling agents have been adopted from the minimax heuristic search in games 

like chess (Carmel and Markovitch, 1996). We define B-level and C-level agents 

as the agents who (compared to A-levels) act more strategically. These agents 

incorporate conjectures on upcoming reactions of their counterparts. Expected 

behavior of the other agent and the agent’s own optimal policy in the system in 

each forthcoming stage of the world get stored. Each time agents face the same 

sub-stage of the game they search for the previously known information regarding 

the upcoming stages of interaction. The agents then forecast system-wide 

consequences of their pricing behavior for their overall payoff from each current 

state of the world onward. This distinguishes our study from most theoretical 

studies, which have investigated the problem of policy making in spatial markets 

through understanding the equilibrium of interactions in static settings.  

On the basis of the aforementioned rationality levels, we draw inferences on 

pricing behavior of agents. The results of our study differ to some extent from the 

prior literature. Whereas predecessor papers often have attributed the degree of 

freight absorption by processing firms merely to the spatial structure of markets, 

we suggest that in addition the pricing behavior of agricultural processors also 

depends on their ability to learn from each other. Furthermore, our simulation 

outcomes reveal that in a world where agents learn from each other, possible 

permissible collusive pricing by agents might compromise a variety of freight 

absorption as well as mill prices. The more the factor importance-of-space 

increases, the more permissible collusive pricing actions will be assembled 

around the well-known optimal price discrimination (OD). This is because the 

larger the distance of firms in space the less fruitful are efforts regarding learning 

about the opponent compared to applying the best myopic response.   

Our simulation model shows that processor agents are better off in circumstances 

when they learn from each other rather than situations where they would not learn 

from each other. We like to give particular emphasis to the fact that Nash 

equilibrium predictions are not necessarily the efficient outcomes of markets, but 
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simply the one that will result when each player in the system is individually 

pursuing his own optimal myopic utility function (A-level perception) without 

performing learning. Like Shoham et al. (2004) we believe that learning 

procedures that specifically target Nash equilibria are troubling to be prescriptive: 

 “Nash equilibrium at the best identifies conditions under which learning can or 

should stop but it does not purport to say anything prior to that (Shoham et al., 

2004, p.3)”.   

In summary, it is worth noting that Learning in spatial systems requires 

algorithms that are scalable to a large number of agents and can be implemented 

with minimal knowledge about the actions of other agents. Most proposed multi-

agent learning algorithms in the literature fail one or both of these criteria. In 

addition, a key issue is to distinguish between recent works in computational 

economics and MASs. Although AI science and computational economics are 

related fields of research they seem to have progressed along separate paths. We 

believe significant progress in the field of ABMs can be achieved by more 

intensive cross-fertilization between the fields of machine learning and 

computational economics. This thesis proposes initial viewpoints towards how to 

involve adaptation sense of intelligent agents in agricultural agent based models. 
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Chapter 2  
Outside Option and cooperative 

behavior of learning agents in 

spatial markets 

Abstract. The recent literature on spatial competition shows empirical evidence 

for cooperative pricing in agricultural markets especially when it comes to the 

spatial pricing in raw milk markets. While the phenomenon of collusive behavior 

underpinning such outcomes is often investigated, static models predict that Nash 

equilibria in pure strategy cannot exist due to the discontinuous nature of players’ 

best response function. We design a dynamic model of spatial competition and 

investigate how a coordinative pure strategy Nash equilibrium might arise in a 

broad range of market structures if agents are actors with foresight, who learn 

from each other’s upcoming actions. A higher share of raw milk committed via 

long-term supply contracts, i.e. not freely available on the spot market, may 

reinforce the equilibrium. 

Keywords: Oligopsony, Agricultural spatial markets, learning 

JEL classification codes: D43, L13, L40, Q10, C63 

2.1 Introduction 

Food processing has experienced a substantial increase in market concentration 

(Sexton, 2012).  A number of studies emphasize that agricultural markets are 

oligopsonies. Many spatially dispersed suppliers face relatively few processors of 

raw products with relevant transport costs (Sexton, 1990 and 2012). The raw milk 

market is an example of an agricultural procurement market with high 

transactions costs and thus likely strong market power. High repercussions from 
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volatilities of supply-demand in the downstream market influence the prices at 

farm level. Farmers use specific assets to produce raw milk which is a perishable 

good. They cannot employ their farms, cows and machinery for other purposes 

during periods of low prices (United States accountability office, 2004, p.97). 

Indeed, the perishability of raw milk can put farmers in against-the-clock 

situations which enhance the counterparts’ bargaining powers i.e. dairy processors 

(European Commission, 2013, p.36). The number of dairy processors and the 

number of operating sites in Germany show a long term declining trend, a pattern 

that is repeated in most other EU countries (Boysen and Schröder, 2006). Several 

studies have recently investigated potential collusive behavior on the part of the 

milk processors (Graubner et al., 2011a; Huber, 2009; Bundeskartellamt 2009; 

Huber, 2007 a; Huck et al., 2006; Alvarez et al., 2000). Huber (2007 and 2009) 

show that more than one processor operates in almost half of the area of 

Germany, and regions exclusively served by one processor generally have a low 

density of milk (Huber, 2009, p.36). The German cartel authority found evidence 

suggesting potential collusion when they showed that milk processors set their 

prices based on regional average prices of other processors (Bundeskartellamt, 

2009). 

Despite the substantial evidence of cooperation among dairy firms in practice, 

theoretical justification of cooperative and non-cooperative equilibriums in 

suchlike markets are not well sustained.  Theoretical investigations of strategic 

interaction of firms in spatial agricultural markets are restricted by using a 

predefined set of specific behavioral assumptions regarding price setting policies 

of oligopoly firms, the so called conjectural approaches (Capozza and Van Order, 

1978).
14

 For example Graubner et al. (2011a) test whether price transmission from 
                                                                 

14 A conjecture is defined as the reaction of a firm to a change in a competitor’s price. In spatial 

competition, several conjectures are distinguished. Under the Hotelling-Smithies (HS) conjecture 

(Hotelling, 1929), a processor takes the competitor’s price as given when deciding on the own 

pricing policy. The Lösch conjecture (Lösch, 1954) presumes full coordination of the firms 

regarding their pricing policy: processors cooperate to maximize joint profits implying a cartel 

solution. According to the Greenhut-Ohta conjecture (Greenhut and Ohta., 1972), each firm assumes 

that its competitor reacts to an own price change with the same price change in the opposite 
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the producer to the wholesale price in the German raw milk market is consistent 

with certain conjecture. They suggest that the payoff matrix defined by 

cooperative and non-cooperative pricing policies has the structure of a prisoner’s 

dilemma. According to their study, the observed low price transmission in 

Germany is in line with the price-matching conjecture although, in a static Nash 

equilibrium, both processors should deviate from cooperative behavior and opt for 

non-cooperative pricing, i.e. Hotelling-Smithies conjecture.  

On the other hand the majority of studies assume the application of uniform 

delivered (UD) pricing by dairy processors. Indeed UD pricing is a basic 

constituent of several empirical and theoretical contributions investigating the 

behavior of processors (Graubner et al., 2011b; Alvarez et al., 2000; Huck et al., 

2006; Tribl, 2012).  

A major inconsistency arises from simultaneously incorporating freight 

absorption (e.g. UD pricing) and cooperative conjectures (e.g. PM conjecture) in 

the interaction of firms is the Nonexistence of pure-strategy Nash equilibria in 

static competitive models comprising freight absorption policies due to 

discontinuous best response functions (Dasgupta and Maskin, 1986; Beckmann, 

1973; Schuler and Hobbs, 1982). In the non-existence of Nash equilibrium it is 

expected that (in line with the rational behavior of agents observing the action of 

opponents) unsteady price battles occur. This fact might cause that sustaining 

cooperative interaction among processors would not be feasible. Pathological 

cyclic price behaviors had been figured out previously in the classic models of 

pricing in (Shubik, 1980) and are also discussed for spatial competition models 

(Schuler and Hobbs, 1982). 

                                                                                                                                     

 

 

direction. Lastly the price-matching (PM) conjecture (Gronberg and Meyer, 1981; Alvarez et al., 

2000) proposes a mutually agreed price commitment of market participants as the core assumption 

under spatial competition. 
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We argue in this paper that dynamic pricing policies by processor agents help 

them to escape coordination failure. We focus on understanding how dynamic 

forces in spatial market environments may create stronger incentives for 

cooperation than those in a static game. We show that rational cooperation occurs 

if agents are endowed with some minimum level of prediction capability with 

respect to the upcoming stages of the game.  

We additionally propose that contractual relationships in the milk market expedite 

the described foresight-based decision making. In contrast to spot markets where 

market participants are more likely to act like myopic responders, firm in long-

term contractual relationships is more likely to learn about the market planning of 

its competitor through its new arrangements with its suppliers, and would be 

likely to strategically respond. For example, firm might try to convince its 

contracted suppliers not to switch in response to a new contract offered by a 

competitor. The research of German cartel office (Bundeskartellamt, 2009, p.73) 

upholds the fact that a high share of milk is committed in the long term via supply 

contracts, i.e. it is not freely available on the spot market. Indeed there might be 

several reasons why such institutional aspects are established practices in milk 

markets. From dairy farms’ perspective without contractual or property rights 

arrangements making sunk costs of milk production is not compatible with the ex-

post opportunistic behavior of dairy processors (see e.g. Hart, 1995).  From this 

point of view the crucial assumption in our study comprises that long term 

contracts might encompass more closed relationships between processor agents 

and their contracted suppliers and may open up more compensatory reactions for 

processors by reacting to the potential of their suppliers to sell to another firm.  

The remainder of the paper is organized as follows: In the next section, we 

develop a basic dynamic scenario of spatial competition in the context of a 

duopsony in a hypothetical procurement market. The focus is on the main 

characteristics of market system behavior in a spot market and how that may 

change if competitors are able to make contractual compensations by means of 

compensatory supply contracts. In section 2.3, we show how processors’ 

subjective beliefs about the competitor’s ability to make contractual 

compensations may lead to coordinative behavior in the market. In the last 

section, we discuss the implications of the results in markets with inelastic supply 

and in the cased of disparity between firms’s down-stream market attributes. 
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2.2 The model 

We consider two risk neutral processors operating in a three period game. In t=0, 

dairy processor A is a monopsonist who has contracts with dairy farms that evenly 

distributed with density D = 1 on a one-dimensional area S (line market). Each 

farm produces a homogenous raw product according to the simple supply function 

     where ε is the price elasticity of supply for a single farmer and u is the 

UD price paid by the dairy. In t=1 we create dairy B just at the market boundary 

line of A. B decides then whether to enter the spatial competition with firm A. In 

t=2, A decides whether to react to the entry decision of B. If the game is not 

terminated at t=2, then both parties enter some spatial price competition in 

t=3.Neither dairies nor farmers have capacity constraints. Under the assumption 

of UD pricing, processing firms are responsible for transportation costs (t) per 

unit times distance (r) so that each farmer receives the same price. Setting 

production costs to zero in the downstream market, processors A and B receive 

prices    and   , respectively. Processors maximize profit from buying, 

transporting, and processing the raw product and selling their product to the final 

market. 

 

 

 

 



 

- 36- 

 

2.2.1 Basic scenario 

Figure 2.1: Line market and outside area for the monopsonist A. 

 

Let’s assume that SA and uA are the monopsony area and milk price of dairy A, 

respectively.  

Solving 

 
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                                                        (2.1) 

This returns optimal area and price of A as   
   

            and   
   

 

         . One can easily see from derived optimal values how increasing the 

parameter price elasticity of supply   will reinforce the Monopsony area and price 

towards zero respectively   . 
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The outside area (see Figure 2.1) describes the area in which milk procurement is 

not economical for A. Let us first assume that contracts cannot be cancelled by 

the processor in the short run, but each farm has the right to terminate the contract 

at any time (temporary assumption 1)
15

. In t=1 we create dairy B just at the 

market boundary line of A (temporary assumption 2). 

Figure 2.2: Location of potential entrant B. 

 

Locating B this way allows A to still act as the monopsonist in its area SA but 

requires agent B to make an inevitable decision regarding entering spatial 

competition with A. Assume both firms are commonly informed about following 

scenarios: in t=1, B decides to enter the spatial competition with firm A invading 

a presumed fixed small portion Alpha of A’s territory (S-Alpha > Outside > 

Alpha) hoping to procure the input in this area (fixed disputed area is temporary 

assumption 3). Alternatively, B decides to be just outside of A’s market area in 

t=1 and exerts another monopsony power just in area Outside. 

Figure 2.3: Dairy B may invade area Alpha in t=1. 

 

In t=2, A reacts to the entry decision of B. In case of entry, A may give up the 

invaded area Alpha and exercises monopsony market power just in the residual 

                                                                 

15 We use temporary assumptions 1-3 to graphically introduce the Outside Option of an agent and 

will relax them in our subsequent mathematic setting in section 2.3. 
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area S-Alpha and the game terminates. Alternatively, A decides to enter spatial 

competition in t=2 hoping to regain possession of the supply from those farmers 

in Alpha. In fact if the game is not terminated at t=2, then both parties are spatial 

price competitors in t=3.   

The derivation of a sub-game perfect equilibrium of this game depends on what 

will happen at stage 3 (backward induction). Specifically, each firm’s behavior 

hinges upon the prediction of the opponent’s price setting behavior in t=3 (i.e. 

their price conjecture). The outcome of dynamic interactions between A and B in 

t=3 will be the focus of our discussion in the following. 

2.2.2 Basic propositions 

Although price competition in t=3 exists in area Alpha, processors are allowed to 

exert a primary price scheme in their ‘backyard’ next to their own factory away 

from the opponent, i.e. the areas Outside for B and S-Alpha for A. We name these 

two distinct areas the Outside Options of the firms in our basic scenario. 

However, we relax the fixed Outside Option assumption analytically and will 

precisely define Outside Option of firms further below. Based on the basic 

scenario we make the following propositions: 

 Proposition 1: Each agent knows the maximum price set by each agent in 

price competition of t=3.  

 Proposition 2: Undesirable system characteristics such as endless price 

wars can occur in an economy of myopic agents trading in a hypothetical spot 

market. 

 Proposition 3: Introducing anticipation to the agents’ pricing policy 

moves cyclic price wars towards cooperation. 

The first proposition is based on the logical reasoning of both players in line with 

the notion of forward induction (Van Damme, 1989). Both agents might be aware 

that the maximum price set by each agent in t=3 is bounded by the net utility of 

this agent’s Outside Options in aforementioned backyard areas. Indeed, the utility 

associated with retreating to the outside area acts as a signal for the competitor in 

the spatial price competition. The logic of forward induction implies that the 

rational players may reason from the very beginning of the game trees as well as 

they are supposed to be able to argue from its end (backward induction). Being in 
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the game together with B at t=3, A knows from t=1 of the game that by turning to 

the new UD pricing strategy, B has foregone his Outside Option characterized by 

its monopsony pricing scheme. A may conclude that B is ready to set at most a 

price bounded by the net profit of B’s Outside Option (utility of monopsony B in 

Outside). The same awareness exists for B about the refusal of A to set a price 

leading to a utility below the one obtained by exerting monopsony power in S-

Alpha. This knowledge of agents regarding maximum aspiration levels of each 

other thorough setting higher prices can help us to understand the relevance of 

proposition 2. Let’s imagine a series of distinct sequential interaction stages at 

t=3 of the game. The play begins with the action of player B after deciding to 

enter. In each stage of the game just one of agents decides upon price given the 

price of the opponent. In order to illustrate the whole pricing procedure we would 

like to simulate the described statement of proposition 2. For this we relax the 

temporary assumption 3 (regarding the fixed disputation area) in Figure 2.3. 

Exactly derived utility functions of firm A (  
  

) and firm B (  
  

 ) in section 2.3 

are the basis of the agents’ decision presented in Figure 2.4. One can see how 

iteratively setting the best policy for each agent starting from any arbitrary state 

will lead to the cyclic price setting mechanism suggested in proposition 2. 
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Figure 2.4: Cyclic price setting behavior illustrating proposition 2. 

Note: Downstream market prices of A = 75 and B = 60. Transport cost and price 
elasticity of supply are set to 1. Distance between firms R=50. Overbidding 
margin = 1. 

 

We can start from the initial point of B’s creation where the firm A buys the raw 

product for a price equal to its monopsony price (i.e.   
   

= 25 in Figure 2.4). The 

follower firm B may overbid the price of A by setting a price marginally higher 

than A (e.g. assume an overbidding margin =1). As a response to B’s decision, A 

may also overbid the price set by B by a margin.
16

 Both firms may continue to bid 

up the price. Overbidding will stop when further overbidding no longer allows 
                                                                 

16 The process in which agents will take turns setting prices that are the best myopic response to the 

opponent is analogous to the process the Cournot studied and is expected to have the same log run 

property as the simultaneous move adjustment process (Fudenberg and Lewin, 1998, p.11). 
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firm B to steal firm A’s market area. The stopping point represents the point at 

which overbidding ceases to be useful for B (see proposition 1). When firm B 

reaches this point, it decreases the price to the value making B again to the 

residual claimant of the market in area outside. A now also lowers its price to 

some point marginally above B’s price since it doesn’t make sense for A to set a 

high price without B following. However the overbidding cycle is reinitiated as B 

observes the new situation triggered by A and tries to overbid again.  

Classic models of price wars, including those introduced by Cournot and Bertrand 

(Tirole, 1988) have the feature that prices are driven down to a minimum value 

(e.g. the marginal cost in Bertrand’s model). However, limit cycle price wars had 

been observed primarily in the literature in a simple model introduced by 

Edgeworth (Shubik, 1980) and is discussed in spatial competition models 

(Schuler and Hobbs, 1982), in MASs (Tesauro and Kephart, 1998) and in 

evolutionary learning algorithms (Luke and Wiegand, 2002). 

As we have seen, market price oscillations occur where processors operate like 

myopic agents in a spot market. Just marginally overbidding given an inactive 

policy of the opponent is enough to achieve an immediate reward in the market. 

Such price strategies by both agents imply non- cooperative behavior between 

firms.  

In Proposition 3 we suggested that introducing a minimal amount of anticipation 

in the agents’ pricing policy might invite agents to revise their myopic decision. 

Indeed the interaction scenarios that obtain outcomes from the basis of myopic 

optimal play do not replicate the process of learning by agents’ decisions and 

hence are troubling to be prescriptive. Rather they at the best identifying the 

dynamic of a world where learning is irrelevant or the condition under which 

learning can or should stop. For example Maskin and Tirole (2001) study the 

Markov-perfect equilibria of games in which players are worried about 

predictions of future because the future does matter. Analogously in our model 

one party not only thinks “What happens to my payoff if I overbid?” but also 

“Will I be overbid by the opponent player after I have already overbid?”  And 

“what is going to be my next reaction after my opponent’s reaction?” The ability 

of real human agents to reflect on their behavior based on subsequent reactions to 

their decisions will distinguish them from “non-intelligent” myopic actors. In 
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order to test proposition 3, in the next section we investigate whether extending 

the foresight of agents will allow for some equilibrium price range to emerge. 

2.3 The effect of contractual relationships on coordinative 

behavior 

2.3.1 Compensatory strategies 

In this section we allow the location of firms to be changed on the line market. 

The disputed area remains flexible as at the end of the previous section. In 

addition, processors face competition from one direction only. Assume each firm 

learns from its contracted suppliers when competitors try to negotiate supply 

contracts with them. They will try eventually to convince their contracted 

suppliers not to switch, for example, by means of supply contracts providing 

compensation. In this section we let there be some minimum margin ∆ Agent A 

(B) might pay more to deter agent B (A) from seeking to acquire supply contracts 

of A (B). If firm A and B have set their price equal to u in t=3, firm B will be 

informed by its contracted suppliers that the opponent A is seeking to acquire 

supply contracts of B. Firm B will then increase its price up to the constant term 

   (analogously one can presume the    term as compensation parameter of 

agent A). The function   
              describes the utility of firm A if it 

decides to increase its price to    given the strategy profile of firm B consisting of 

price    and the compensation parameter   . Assume the strategy profile 

{     } for agent B is given. Subject to the distance between firms R (0<R<∞) 

and transport cost t, the possible responses of agent A to B’s compensation 

activity might be distinguished by the following 3 distinct cases: Either A will 

undertake a ‘Competitive Pricing Strategy’( B Bu

A

 ). 

The ‘Competitive Pricing Strategy’ (CP) of A grants a utility equal to
17

 

                                                                 

17 The upper boundary of the integral must guaranty that the milk delivery area does not exceed the 

market boundary R. 
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(2.2) 

Or by knowing the compensation possibilities of agent B, A would abstain from 

acquiring new contracts and remain with the price   ;  In this case the ‘Price-

Matching Strategy’ (PM) of A ( Bu

A  ) grants a utility equal to
18
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                                                                                                                            (2.3) 

As a last alternative, A may decide to underbid agent B and act as the residual 

claimant of the market area (where agent B is non-active) by setting A’s 

monopsony price in this market.  We name the latter strategy the ‘Non-

Competitive Pricing Strategy’ (NCP) of A (
M
Au

A ).We assume that if the residual 

market area             is smaller than the calculated optimal monopsony 

area of A in the previous section,             , then A will take the residual 

market as given and maximizes its utility within this area by its ‘Non-Competitive 

Pricing Strategy’ of A, hence if                            we have:   

     
,

0
( , , )

B B
M
A

P u
R Min R

u M Mt
A B B A A AB u P u tr dr u


 

  
 

  
     

  
                         (2.4) 

                                                                 

18 The upper bound of the first integral not only foresees the market boundary R but also guaranties 

that in the case of no market overlap, the exclusive market area of A will cease at the point 

   (  
    

 
) and in the case of a market overlap will cease at the point      (  

    

 
). In the 

case of no market overlap, the upper and the lower bound of the second integral comply with each 

other. 
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It can be shown, that the monopsony price of agent A given the residual market 

area R-(     )/t is 

 
2

2 1

M B B
A A

P u
u P t R

t





   
    

   

                                                          (2.5) 

In contrast we assume that if the residual market area R-(     )/t  is larger than 

the calculated optimal monopsony area of A, then A will set its optimal 

monopsony price at its optimal Monopsony area as derived in section 2.2, hence if 

R-(     )/t≥  (2  )/(2+ε)t the ‘Non-Competitive Pricing Strategy’ of A grants 

the following utility for A: 
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       
               (2.6)        

Analogously one can derive the aforementioned equations subject to the distance 

R and transport cost t, for the best response of agent B. Setting each of the utilities 

M
Au

A , Bu

A and B Bu

A

 equal to each other and drawing the curves in a coordinate 

system will lead to phase diagrams similar to Figure 2.5. All points on the green 

curve depict the price and compensation combinations of agent B which render 

agent A to be indifferent between implementing PM and CP. On the other hand all 

points on the blue line depict the price and compensation combinations of agent B 

which render agent A to be indifferent between implementing a PM and NCP. 

Given that both firms have set their prices to u the blue area shows the region 

where PM is most beneficial for A knowing that he must at least face 

compensations by B equal to ∆. As we have seen, increasing the price is not 

improving one agent’s overall payoff for certain ranges of compensation 

constraints by its competitor.  
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Figure 2.5: Optimal strategies of agent A based on B’s strategy profile (u,∆). 

Note: The area in the upper side of the curve Bu

A = B Bu

A

   

depicts the dominance area of PM in contrast to CP. The area 

underneath the line
M
Au

A = Bu

A depicts the dominance area of 

PM in contrast to NCP. The light blue shaded area depicts the 
dominance area of PM against other strategies. Agent A and B’s 
downstream market price = 75 and Transport cost and price 
elasticity of supply are set to 1. Distance between firms=50. 

 

2.3.2 Foresight based Nash prerequisites and conditions 

Agents in the reality might not decide in a simultaneous static game. The 

sequential interaction of agents in the milk market - featuring contractual 

relationships - causes each player to model its opponent by building beliefs about 

dynamic price-policies of its opponent. We propose that in such dynamic, 

interactive environments some information play a crucial role for an agent 

especially knowing about the outside line of its opponent. Let’s define agent A’s 

outside utility line   
  as the price set by the opponent B that renders any 

infinitesimal overbidding pricing strategy δ not useful anymore for agent A and 

will invite A to survive in the residual market area by means of its NCP (recall 

proposition 1). At this point, the utility generated in the market area of agent B 



 

- 46- 

 

constitutes per definition agent B’s Outside Option.
19

  We define the outside 

utility line of agent A formally as follows (one may derive outside utility line of 

agent B and determine Outside Option of agent A in the same way): 
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(2.7)  

Outside utility line of agents help them to model each-others’ responses to its own 

decisions. According to the above mentioned definition, all points promising 

prices under the outside utility line of A will be perceived by opponent agent B as 

credible threat. We can define all points under the equation         
  

analogously as Leaving-Line of agent A (AL).  Respectively one may define   
  

and BL as agent B’s outside line respectively B’s Leaving-Line. Through 

incorporating aforementioned two constraints for policy setting of agents we 

would like to investigate necessary and sufficient conditions that will establish a 

strategy profile consisting of prices and compensation-foresight {(A,[   ,   
  ) & 

(B,[   ,   
   } as Nash equilibrium of the spatial game in t=3.  Let assume that 

both agents have set their price at the target price level    .  We first assume that 

by the prices     both agents are better off than their non-competitive strategy 

profile. In other word assumption 1 expressed in (2.8) is simply indicating that the 

equilibrium price is of interactive nature: 

   * *, { , }, : , , , ,
M NE
iuNE NE u NE

i j i ju i j A B i j j u j u             
  (2.8)                        

Assumption 1 might facilitate that neither of agents is convinced to be outside of 

market knowing the price set by the other. Given this, both agents either are 

seeking to undertake a CP or a PM strategy. For example, in Figure 2.7 all prices 

underneath the line “Assumption 1” fulfill the above mentioned properties for 

                                                                 

19 Note that if the outside utility line of A is less than Agent B's monopsony price (or vice versa), 

then no competition emerges in the market. 
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both agents. Proceeding from assumption 1 the following conditions 1-4 provide 

necessary prerequisites for both rational parties not to have right incentives for 

establishing unilateral market by undertaking competitive policies.  

Condition 1 and 2 are defined in 2.9 for B repectively A:                                  (2.9)                                                                                                                                                                                                

   
*

*

* * *

* *

, { , }, :

, , , ,i i i

O

i i i

i i i i u u

j i i j i i

i j A B i j

u u
u u u

i u i u


  

    
       

             

 

Condition 1 describes if i=A, then based on B’s deliberation how B might make 

its optimal pricing policy based on he models agent A’s responses to its own 

decisions. Deliberating to set any policy from price    onward, B must estimate 

the efficacy of setting a competitive price by considering the compensations he 

might face described by        . The curve corresponded to equation 

   
*

* *, , , ,A A Au u

B A A B A AA u A u          
 , which we name Competing-Line of B 

(BC), can be drawn as a mathematical equivalent of B’s deliberation. B knows 

that A – given B setting a price higher than    and lower than      
  will offer 

compensation to its contracted partners. Indeed based on A’s outside utility line, A 

can reasons that price compensations render a utility higher than the utility of 

being just a residual claimant of the outside market area. As long as B’s price 

does not surpass A’s outside utility line, compensation by A is perceived by B as a 

credible threat. In addition if condition 1 holds, then B could achieve a higher 

utility equal to  *, ,Au

B A AA u   
 by PM at   , compared to a CP price higher 

than      
 . Briefly explained, condition 1 allows finding the price range in 

which agent B in convinced of setting the price to    rather than undertaking any 

feasible CP strategy. Condition 2 might be understood analogous to condition 1 

and describes agent A’s decision model based on A’s model of B’s behavior. Note 

that establishing mutual coordination fails if (at least) one party feels - in contrast 

to the implied knowledge in above mentioned conditions – that he can attain 

larger margins by setting its price e.g. equal to the outside utility line of his 
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opponent. Such a party might not commit to mutual coordination and withhold 

cooperation. Condition 3 verifies whether the price spectrum of aforementioned 

interest of firms in condition 1 and 2 overlap. 

Condition 3: 

* *

A Bu u                                                                                       (2.10) 

We name the price span * *

A Bu u   the permissible price range, since it provides 

the incentives for both firms to be convinced regarding a coordinative pricing 

policy instead of pursuing unilateral competitive policies. Lastly, one must take 

into consideration that assembling bilateral accommodation will rely on agents’ 

beliefs regarding the opponent’s simultaneous behavior in the equilibrium. 

Condition 4 prescribes the prerequisite knowledge for establishing coordination in 

permissible price range: 

Condition 4: 

4.1. A knows that B knows A’s behavior in line with condition 1. 

4.2. B knows that A knows B’s behavior in line with condition 2. 

4.3. Both agents act consistent with the beliefs (4.1) and (4.2). 

Condition 4 implies that knowing more about the decision model of each agent 

does not alter the decision of either of agents regarding efficient coordination 

implied in condition 3. As it is shown price-matching equilibria can potentially 

emerge based on agents’ subjective belief regarding the competitor agent’s 

Leaving-Line. Conditions 1-4 might serve to show how sequential interaction 

nature of the game from proposed     onward can distort one-step look ahead 

myopic policies of processor agents and alter the nature of decision making by 

pricing towards what my overbidding does and what might come next by the rival 

agent after I overbid. In such a circumstance outside utility lines of firms   
  and 

  
  can potentially serve as reference points reminiscent of dynamic practice of 

opponent regarding its compensations by adapting its prices after he knows about 

decisions of rival.  With regard to Non-existence of Nash equilibrium in the game 

each firm will necessarily try to give a best myopic response by interfering in 

market e.g. through negotiations with the suppliers after he learns that its 



 

- 49- 

 

opponent has achieved new arrangements with suppliers in the market. Conditions 

1-4 persuade each party that the utility generated in the market area of the agent 

by setting its price to outside utility line of the rival (and allowing to reach its 

Outside Option) will not grant a higher payoff compared to a coordinative policy 

together with opponent player in permissible price range. Therefore whereas these 

conditions link the relative usefulness of competitive strategy of agents to the 

outside line of the rival, we must ensure that the Outside Option of agents is the 

maximum utility they can achieve by undertaking any unilateral pricing policy.
20

  

If such assumption holds, estimation of price-matching values in conditions 1 and 

2 with reference to outside utility lines is sufficient for making agents aware of 

the maximum achievable utilities without coordination (based on the behavioral 

model of the opponent). Therefore assumption 2 is introduced to consolidate 

conditions 1 and 2. Let’s name the utility one agent by setting its price to a price u 

–ex post of opponent’s next best myopic response to u- achieves the agents 

Withhold-Cooperation payoff. One might understand the Withhold-Cooperation 

pay-off of one firm in our dynamic game similarly with regard to the notion of 

Max-Min payoff (Neumann, 1928). However note that by insisting on its 

Withhold-Cooperation policy, each agent presumes rational behavior model of its 

opponent. Hence we presume that one agent selects its Withhold-Cooperation 

policy unilaterally in a first stage and by doing so it taught the opponent to adapt 

rationally in the following stage. Assumption 2 shall certain that withhold-

cooperation payoff of both agents coincide with their Outside Option:
21

  

 , , { , }O Withhold Coop

i i i
u

u ArgMax u i j A B                                                          (2.11) 

We formulate thereby agent A’s Withhold-Cooperation payoff  according to the 

utility A by setting its price to u –ex post of B’s next best myopic response to u- 

                                                                 

20 For example agents in conditions 1 and 2 just manage to sight outside utility line of the opponent 

and don’t take into considerations whether payoff of a firm can exceed its Outside Option if the 

party were underbid by competitor. 

21 As it is aforementioned Outside Option of one agent corresponds to the point where he has set its 

price equal to Outside utility line of the rival. 
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archives. One might define the agent B’s Withhold-Cooperation payoff in the 

same way: 

 

 

 
 

 

 

2
,

2

0

, , ,

0

0

( , ,0 )

A A B

B A A A

B

opt opt

A B B

P u P
Min R

t s t

opt opt

A A A B B

Withhold Coop

A A
P u P u

Min R Min R Min R
t t

opt O

A A B A B

u O

A A B A

u u R R

P u tr dr u u R R

u

P u tr dr u u u

B u u u

 
   



      
    

    



    




     


  



    


  





 

                                                                                                                          

(2.12)                                                                                                                            

The upper term in equation 2.12 implies that if A sets a price lower than agent B’s 

optimal monopsony price (section 2.2.1) agent B will set just its optimal 

monopsony price. Hence, agent A’s Withhold-Cooperation payoff turns to be 0 if 

the market area R is not larger than B’s optimal monopsony area. The second term 

means if the market area R is larger than B’s optimal monopsony area then A will 

earn some payoff in the residual market area by setting its price to u. The third 

term in equation 2.12 describes circumstances where A might have set its price 

equal to u, afterwards B will slightly overbid A. The lowest term indicates the A’s 

payoff if A is undertaking pricing policies above B’s outside utility line. In this 

case A will just gain a utility which amounts to its competitive pricing policies 

including the compensation of B (  ) amounting to zero. Figure 2.6 shows the 

fulfilment of assumption 2 in an exemplary market setting due to Withhold-

Cooperation payoff of agents. Discontinuous nature of the function can reveal this 

fact clearly. Please note that assumption 2 remains in all experimentation 

instances in our paper true.  To sum up when assumption 1-2 hold true, both 

agents get deprived of any incentives for targeting relatively unilateral through 

conditions 1-4 margins instead of mutual beneficial coordination. A Nash 

equilibrium emerges comprising prices and compensation-foresight consisting of 
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the strategy profile (   ,   
   for A and (   ,   

    for B. In equilibrium no party 

believes it can achieve a higher competitive payoff rather than its price-matching 

utility if coordination gets revoked. Although Outside Options of firms remain out 

of equilibrium, the outside lines of firms remain a credible threat for the 

opponent.  

Figure 2.6: Withhold-Cooperation payoff of agents based on opponent’s behavior 

model. 

Note: Down-stream Market prices are assumed 75 & 60 for agent 
A and B, respectively. Transport cost set to 1. Price elasticity of 
supply = 0.25 and distance between firms = 53.33.   

  =32.8336 
and   

  =30.8801 represent maximum points in both panels. 
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2.3.3 Equilibrium in an exemplary market setting 

So far we have set necessary and sufficient conditions for establishing a 

permissible price range. With the following illustration we show how strategy 

profiles fulfilling conditions 1-4 may lead to the emergence of Nash equilibrium 

in our exemplary market setting. In Figure 2.7, points under the line BL (agent 

B’s Leaving-Line) represent the extent to which overbidding yields higher utilities 

for B compared to being just the residual claimant of the remaining market area. 

Points within the curve AC (A’s Competing-Line) depict the region where further 

overbidding for A ceases to be useful. In the area between the lines, condition 2 is 

true i.e. price    is the best response of agent A given strategy profile {  ,   
 } 

of B.  

Figure 2.7: Illustration of the credible threat by agent B and accommodation by A. 

Note: Points within the area of parabolic function AC are fulfilling 

the condition   
  

         
      

     
 

         
   . Points 

underneath the line BL (B’s Leaving-Line) are fulfilling the 
condition      

    
 .  Condition 2 applies if the line BL intersects 

the parabolic function. Exact value of condition 2 for foresight 
term delta is:           

         and for price           

      . Downstream market prices of A and B = 75, respectively. 
Transport cost and price elasticity of supply are set to 1. Distance 
between firms=25. Yellow lines are corresponding to the 
boundary solution to equations 75-u>0 , 75-delta-u>0 , 125-2u>0 
and the point underneath aforementioned lines are guarantying 
positive values for price setting by price matching and competitive 
pricing respectively the market overlap (secondary constraints). 
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By having equal prices and assuming that both agents come up with the same 

situation, agent B can also induce that there would emerge no beneficial market 

access at the end of the game without coordination with the other firm A. A price-

matching strategy within the permissible price range is rational for both parties 

given the beliefs held by agents about opponent’s dynamic policy. 

2.4 Importance-of-space, inelastic supply and disparity 

between firms 

Coordination may not be easily sustained. Shared market access may not be 

applied by agents in Nash equilibrium if, for example, either party lacks the 

incentive to cooperate (condition 1 and 2) or the areas of interest don’t intersect 

(condition 3). The spatial shape of the market and differences between the 

compensation flexibilities of firms may cause a firm to not being able to foresee 

the difficulty faced if it starts an overbidding policy from the permissible price 

range onward. Another issue is inelastic supply in the short run (Gardner, 1992). 

In fact farmers cannot suddenly supply more milk if the price goes up. This 

limited flexibility creates a relatively inelastic supply of milk with respect to price 

in the short term.  
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In order to test the robustness of our results in section 2.3 we would like to 

experiment possibility of processors’ cooperation in different market structures. 

The key variable indicator in predecessor studies of spatial competition is the so 

called importance-of-space as a measure for competitiveness of a market. 

Importance-of-space (I) can be calculated through multiplying transport costs (t) 

by distance between competitors (R) divided by net value of product being sold at 

the downstream market (ρ), i.e.         (Alvarez et al., 2000). As I might 

increase, competition between the firms diminishes to the point where eventually 

they are spatially isolated monopsonies. Hence we presume I as the explanatory 

variable of our simulation study and investigate the nature of spatial competition 

by exogenously switching the location of firms toward each other.
22

 The relation 

between firm locations and collusive behavior also has been studied well 

analytically in the literature of horizontal product differentiation. The results 

obtained in a smaller body of literature shows that a smaller firm dispersion is 

more likely to sustain tacit collusion. For example the critical discount factor 

required to sustain collusion in Gupta and Venkatu (2002) and Matsumura and 

Matsushima (2005) monotonically decreases as firms are located close together. 

However the majority of studies (Chang, 1991; Häckner, 1995 and Miklós-Thal, 

2008) suggest that the relationship between product differentiation and collusive 

behavior is robust. The results of aforementioned papers are relying on the 

perception that it is difficult to sustain collusion for strong substitutes (e.g. when 

the location of firms in space is interlocked). This is because the gains from 

defection become larger. In contrast, a higher degree of horizontal differentiation 

should help firms to sustain collusion because it renders deviations less profitable. 

Note that all above papers prescribe a reversion to an infinitely repeated static 

Nash equilibrium, right after cheating by any single party, whereas the obtained 

results in our model are relying on compensatory actions of agents in the dynamic 

game described in section 2.2. 

In order to design experiments in this section let’s first take the optimal 

monopsony area of firm A derived in section 2.2.1 (              ) as a 
                                                                 

22 For access to the code please see online appendix 1: 

 (http://www.ilr.uni-bonn.de/agpo/staff/khalili/khalili.zip)! 
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measure and simulate the market by setting the distance between firms R equal to 

φ×S where φ is a coefficient representing the importance-of-space I. In the second 

step we replicate the first simulation by setting the term price elasticity of supply 

to a low level equal to 0.2. In the third step we illustrate an example for firms 

having different prices of end-products at downstream market.  

Figure 2.8 depicts the permissible price range in an exemplary market setting by 

incrementing the parameter φ form the situation where firms locations are almost 

interlocked (φ=0.2) up to the point 2×S where processors’ location imply 2 

monopsony areas. Results show that - with the exception of 2 intermediary market 

structures (φ=0.8, φ=1) – equilibrium conditions 1-4 apply in the majority of 

market conditions.
23

 Players mutually learn not to give a best myopic response in 

the less and high competitive market structures. The lower the importance-of-

space, agents are supposed to learn better from each other by building price 

conjectures about the opponent and consequently more likely settle the price 

dispute by mutual concession. This can be confirmed by looking at the difference 

between the maximum and minimum thresholds of the permissible price range in 

Figure 2.8. The greater the spatial distance the more restricted is the range of 

coordination. By gradually increasing the importance-of-space, the utility of NCP 

for firms become more attractive. However, establishing cooperative behaviors in 

markets characterized by intermediate structures seems to be awkward. This 

outcome confirms the analytical contribution in the literature on horizontal 

product differentiation that a larger spatial dispersion of firms might support 

collusive behavior, since a higher product differentiation means a greater Outside 

Option for competing firms in our model, but in the same time we show that by 

adding the effect of institutional factors -as a major caveat to understanding real 

market interactions- sometimes smaller spatial dispersion of firms might also 

encourage tacit collusion. The reason is that the degree of foresight-based 

reasoning by learning agents is higher the lower the importance-of-space. 

                                                                 

23 Note that this means in the market structures indicating φ=0.8 and φ=1 PM coordination fails to 

be established as parties have greater withhold cooperation payoffs!  
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Figure 2.8: Interaction of firms by changing the explanatory variable importance-

of-space with a unitary price elasticity of supply. 

Note: The parameter ε = 1. Downstream market prices of A = 75 
and B = 75 respectively Transport cost = 1. 

 

By increasing φ, the permissible price range shrinks and is finally confined to the 

only point promising the equilibrium price range at φ =2, i.e. to the optimal 

monopsony price derived in section 2.2.1. Figure 2.9 shows how by setting the 

coefficient of importance-of-space to its extreme value φ =2 the interests of firms 

regarding price coordination and setting the Monopsony price coincide in the non-

competitive market structure.  

Figure 2.9: Intersection of outside utility of firms with monopsony price line in a 

market with highest importance-of-space. 

Note: The parameter I=t*R/ρ=4/3. Assumption 1 matches the 
Monopsony price line and the secondary constraints regarding 
market coincide. Exact value for condition 2 is:      

    and 
        .  
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We repeated the experiment of changing importance-of-space subsequently with a 

low price elasticity of supply ( = 0.2). The obtained results are very similar to 

those observed in Figure 2.8. With only one exceptional intermediate market 

structure (φ=1), equilibrium conditions 1-4 apply in a broad range of market 

structures.  However, the lower price elasticity of supply dampened the incentive 

of firms for setting higher prices and consequently pushed down the lower 

threshold of permissible price range towards zero. Note that the minimum 

threshold would converge to the sunk cost of supplier farms in reality if we would 

have included this factor in the model.  

We investigate finally how rational agents can learn to trust their co-player and 

pursue the common goal of achieving better utility even though the firms have 

asymmetric attributes such as different processing costs or different selling prices 

at downstream market. Figure 2.10 shows an example for firms’ decisions 

involved in such situation. Downstream market prices are assumed 75 & 60 for 

agents A and agent B, respectively. The permissible price range without 

incentives for withholding cooperation is obtained within the price range 12.06 

≤   ≤14.88. Note that whether the equilibrium knowledge (or beliefs) of agents 

emerge based on sharing knowledge through communication or tacit collusions 
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without communication more strongly support this equilibrium is not incorporated 

in our model. 

Figure 2.10: Illustration of Nash equilibrium by asymmetric firms. 

Note: Exact value for condition 1 in the intersection area of BC 
(B’s Competing-Line) and AL (A’s Leaving-Line):          

  

      and              . Exact values regarding foresight 
and price of condition 2 is in the intersection area of AC (A’s 
Competing-Line) and BL (B’s Leaving-Line):         

        

and               . Equilibrium price range     where 
condition 3 applies is limited within 12.06 ≤    ≤14.88. Down-
stream Market prices are assumed 75 & 60 for agent A 
respectively B. Transport cost set to 1. Price elasticity of supply = 
0.25 and distance between firms = 53.33. 

 

2.5 Conclusion 

Undesirable system characteristics such as endless price wars are reported by 

classic pricing models (Shubik, 1980) and are discussed in spatial competition 

(Schuler and Hobbs, 1982). The significance of our model is in revealing the role 

of Outside Options of firms in the emergence of such patterns but also how by 



 

- 59- 

 

introducing a minimal amount of anticipation in the agents’ pricing policy may 

cyclic price wars move towards cooperation.  

We additionally propose that contractual relationships in the milk market expedite 

the described foresight-based decision making. In contrast to spot markets where 

market participants more likely act like myopic responders, firms in long-term 

contractual relationships might try to re-negotiate with  their suppliers after they 

become aware of opponents’ efforts to acquire their supply aiming to keep them 

from switching.  

One additional crucial implication of our model is the relationship between firms’ 

location and collusive behavior. This problem is studied analytically in the 

literature of horizontal product differentiation. The majority of studies suggest 

that the relationship between higher degrees of product differentiation and 

collusive behavior is robust. Our model approves that a larger spatial dispersion 

of firms indicates less competition in the market as it grants a larger Outside 

Option for firms. However we add the effect of institutional factors as a major 

caveat to understanding real market interactions. We propose that advantages of 

strategic thinking for players within the system are more, less the importance-of-

space is and hence a smaller dispersion of firms might support tacit collusions 

too. 
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Chapter 3                                      
Rational and Convergent learning 

in Multi-agent spatial markets 

Abstract. Many suppliers, costly transport of raw products and relatively few 

couple of processors often characterize agricultural procurement markets. 

Figuring out the pricing policy of learning agents in such markets has been a 

recent issue of the recent computational and agricultural economics’ literature. 

Yet learning in spatial systems requires algorithms that are scalable to large 

number of agents and can be implemented with minimal knowledge about the 

actions of other agents. Most proposed Multi-agent learning algorithms in the 

literature fail one or both of these criteria.  Our research in this paper is set out to 

develop an operational algorithm in order to lead rational agents to adapt their 

policy in large-scale and dynamic strategy spaces with modest computational 

effort. We introduce a new learning algorithm, Hierarchical Policy Hill Climbing 

(H-PHC) and examine our algorithm with respect to rationality and convergence, 

two desirable properties for a learning system from the literature of MASs.  

Keywords: Agricultural spatial markets, Reinforcement Learning, ABMs, 

Oligopsony  

JEL classification codes: C63, C70, D43, L13, L40 

3.1 Introduction 

Price formation in agricultural procurement markets is a complex dynamic 

process with multiple agent interaction. Consider the case of a dairy processor 

seeking to maximize its profit in a raw milk procurement market. On the raw milk 

input side, farmers and competitors are distributed in space around processors’ 
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locations. Processors compete with each other for milk delivery contracts with 

farmers. Each prospective farmer may get a price bid from each potential buyer 

and selects its business partner and production level based on offered bids.  From 

a classical economic point of view, one may predict that in such systems where 

the goods, here the raw milk are homogeneous, the offered bids will continuously 

shoot up, until the milk delivery prices equal the value of products being sold at 

downstream market net of processing costs. However, consider the spatial feature 

of raw milk markets, where varying the distance to each processor changes the 

buyers willingness to pay or what farmers ask.  

Figure 3.1: Learning problem in MASs is one of a moving target, adopted from 

Vidal (1998). 

 

 

In the described context, each processor agent needs to dynamically keep up with 

the changes in the behavior of other agents. Finding the optimal pricing policy of 

processor agents among multiple, strategically interacting agents is not a trivial 

task. This problem is addressed as one of a “moving target” problem in the 

literature of MASs (Vidal, 1998). As depicted in Figure 3.1, a learning agent 

might try to learn its optimal decision function at time t subject to some cognitive 

error term E(t). In interactive systems, each agent provides an effectively non-

stationary environment for the other agents. In such situation it is far from certain 

that an agent keeping up with the changes in the environment up to time t has an 

expected error diminishing or converging to zero at time t+1. Because the optimal 

decision function in t+1 may have moved to a new – in time t unforeseeable – 

point. In fact, agents are continuously exposed to new, incomplete information 

(and or knowledge) about the preferences and rationality of the other agents in the 
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game. This turns the task of computing a best response function complex (Parkes 

et al., 1997).
24

 The complexity of many tasks arising in such interactive settings 

makes them difficult to solve with simplified agent behaviors. In this context, 

agents must instead discover a solution relying on their own knowledge, by 

learning.  

The source of the instability problem spoiling the search procedure of agents in 

Multi-agent, interactive settings might be twofold. On one hand the actions of one 

agent strongly and frequently affect the plans of other agents. Hence when 

performance of an agent improves (gets worse), it is not necessarily clear whether 

the improvement (deterioration) is due to an altering in that agent’s own behavior 

or a negative (positive) change in the opponent’s behavior (Rosin and Belew, 

1995).  

On the other hand, pathological cyclic dynamics could emerge inherently from 

attributes of payoff matrices (Luke and Wiegand, 2002). For example, a major 

problem encountered in the current literature on spatial competition is the 

nonexistence of pure-strategy Nash equilibria in competitive models due to 

discontinuous best response functions (Dasgupta and Maskin, 1986; Beckmann, 

1973; Schuler and Hobbs, 1982). In such cases, cyclic price wars take the place of 

Nash equilibrium. For example, if agents A and B would play a ‘Rock-Scissors-

Paper’ game and agent A picks Rock, then agent B will pick Paper as a best 

myopic response. Agent A, then adapts to Scissors, causing agent B to switch to 

Rock. Then agent A adapts to Paper and agent B will consequently switch to 

Scissors. Then agent A adapts again to Rock. The same cycle will be again be 

reinitiated. 

A significant part of the research on Multi-agent learning develops learning 

techniques trying to deal with the moving target problem (Busoniu et al., 2010). A 

major challenge in the presence of multiple players is however the curse of 

dimensionality caused by the exponential growth of the discrete state-action space 

                                                                 

24 Indeed standard game theory assumes that the rationality and preferences of all the agents is 

common knowledge (see Binmore, 1987). 
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(Busoniu et al., 2010).
25

 The majority of algorithms are particularly suited to deal 

with small games (Tuyls et al., 2006) and only few single-agent learning tools 

offer the appropriate capability in the context of multiple learning agents.
26

 

It is in ABM designers’ best interest to consider methods, which obviate the need 

for agents to acquire excessive information e.g. deep knowledge about other 

agents and still coordinate well with environment (Durfee, 1995).  

In this paper, we introduce an adaptive dynamic pricing model of learning in 

large-scale strategy spaces, which comprises hierarchically minded learning 

agents. The hierarchical learning approach allows players to pursue their learning 

goal by limiting the strategic scope of their learning subject to an evolving 

environment. Rational agents in reality guide their decisions by hierarchical 

elaboration rather than undertaking exhaustive enumerative searches over the 

whole decision space. This avoids that agents change their policies in a 

completely arbitrary fashion and reduces the dimensionality of interaction. 

The remainder of the paper is organized as follows: After reviewing the relevant 

literature in section 3.2, section 3.3 provides offer a more precise insight to the H-

                                                                 

25 Just assume four dairy processors i = 1, …4) offering bids’ range ui (0<ui<100)  and being 

positioned in the center of the four quadrants of some landscape. The total size of interaction space 

(by discretizing of ui to predetermined increments having discrete values of 0.05) amounts 1.6e+13. 

26 A single learning approach is e.g. the no-regret algorithm (Cesa-Bianchi and Lugosi, 2006) where 

agents choose actions to minimize the regret of their choices based on their payoff history in 

previous rounds of the game. Even though the no-regret algorithm does not require information 

about other agents’ actions, discretization of decision space by numerous agents causes this 

algorithm to be too slow to converge in large systems (Kash et al., 2011). Moreover, the 

convergence is not guaranteed in general settings. Some alternative methods are offered able to deal 

with restricted classes of games. For example, Kash et al. (2011) propose the Stage-algorithm. This 

algorithm delivers improved performances –compared to aforementioned methods- only for specific 

environments with countable many agents. Lack of scalability, i.e. functionality when increasing the 

size of discretization, characterizes other multi-agent learning algorithms, e.g. fictitious play 

(Fudenberg and Levine, 1998) or the experience-weighted attraction model (Camerer and Ho, 

1999). 
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PHC mechanism. In section 3.4, we test our algorithm in a variety of spatial 

games. In section 3.4 we examine the H-PHC interaction model under markets 

with no Nash equilibrium as well as markets of non-spatial games. The final 

section includes some suggestion to improve the algorithm and final conclusions  

3.2 Literature context  

Basically achieving the learning goal of agents playing in MASs is strongly 

dependent on the agent’s degree of awareness (Busoniu et al., 2010). Typically, 

other agents are implicitly or explicitly recognized and ‘modelled’ as entities 

having their own objectives and intentions. Based on their degree of awareness, 

either agents will learn just to correlate actions with rewards regardless of other 

agents’ actions, or they will try to learn to predict the expected actions of others 

and use these predictions along with knowledge of the problem domain to 

determine their actions (Vidal, 2010). An example for an opponent independent 

algorithm is the Minimax-Q algorithm (Littman, 1994). The advantage of such 

algorithm is that it fulfils the safety criteria proposed in (Powers and Shoham, 

2005).
27

 The drawback of Minimax-Q is if the opponent is playing a suboptimal 

strategy, the algorithm doesn’t learn to adapt. An example for an opponent aware 

algorithm, which takes the action of its opponent explicitly into consideration, is 

Wolf-PHC algorithm (Bowling and Veloso, 2001). For instance, Bowling and 

                                                                 

27 Diverse evaluation criteria are proposed in the literature to assess performance of learning agents 

in MASs. Criteria mentioned in Powers and Shoham (2005) are ‘targeted optimality’, 

‘compatibility’ and ‘safety’. ‘Targeted optimality’ implies that agent applying the algorithm 

achieves a certain minimal threshold of average payoff against a member of the selected set of 

opponents. ‘Compatibility’ is relevant during self-play (in self-play the opponent player applies the 

same algorithm.). ‘Safety’ ensures that the agent is able to perform in a robust manner against all 

other algorithms. Desirable system properties to be maintained in Parkes et al. (1997) are efficient 

coordination and robustness to manipulative behavior. Busoniu, et al. (2010) categorized the 

suggested criteria in the literature due to two substantial properties, stability and adaption: ‘Stability 

essentially means the convergence to a stationary policy, whereas adaptation ensures that 

performance is maintained or improved as the other agents are changing their policies. 



 

- 68- 

 

Veloso (2002) use the WoLF-PHC in a fully competitive task with promising 

results even though it does not explicitly model its opponent. Carmel and 

Markovitch (1996) studied the problem of opponent modelling in game playing. 

They recursively define a player as a pair of a strategy and an opponent model, 

which is also a player. Each player acquires a model of the opponents’ depth of 

search by using its past moves as examples. Since the learner has a model of the 

opponent, it can do better than, for example, Minimax return (see e.g. the 

adaptation criteria in the precedent footnote). Vidal and Durfee (1998a) studied 

agents modeling other agents in an information market economy and showed that 

n-level agents will obtain higher payoffs than other agents in a society full of (n-

1)-level agents.
28

 For example, a 0-level agent does not do any opponent 

modeling. A 1-level agent assumes its opponent to be 0-level, 2-level agents 

model the opponent as being 1-level and so on. Vidal (2010) mentions, however, 

that computational costs of increasing a modeling level grow exponentially for an 

agent, whereas the utility gains to an agent grow smaller as other agents in the 

system increase their modeling level. Indeed, when agents learn fast by means of 

increasing their modeling levels, the system approaches its equilibrium so the 

advantages of strategic thinking for players within the system are diminished.  

Hu and Wellman (1998) mentioned that modelling other agents can be tricky. 

Agent draw inferences about learning scenarios of other agents by observing the 

history of the game, however underlying models of agents are highly sensitive to 

the agents’ assumptions about the opponent’s policy. Hu and Wellman (1998) 

suggest that when there is substantial uncertainty about the level of sophistication 

of other agents the best policy for creating learning agents is to minimize the 

assumptions about the other agents’ intentions and actions.  Durfee (1995) 

suggests that an agent knows more nested models of other agents it must do much 

more computation.
29

 Durfee (1995) characterizes alternative approaches for 
                                                                 

28 For example in Chang and Kaelbling (2001), a strategic agent A (PHC exploiter) might exploit an 

agent B (PHC learner) by modeling the learning method of B. 

29 Vidal and Durfee (1995) show that even for the pursuit game the models of interactions can be 

quite large. The pursuit game pits one player against e.g. three opponents. The opponents pursue the 

player until caught.   
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nested modeling in which agents are kept free of deep knowledge including 

explicit communication, selective searching and hierarchical elaboration of 

choices.
30

 For example, in hierarchical reinforcement learning (Barto and 

Mahadevan, 2003), one agent pursues its target by setting sub goals and 

evaluating each action based on whether the corresponded sub goal is achieved.  

Following the Durfee’s idea (1995), we aim at introducing such an adaptive 

dynamic pricing model where agents do not model each other explicitly as agents. 

Basically if modelling other agents explicitly, the learner agents must perform a 

learning task in two steps: first they draw inferences about learning scenarios of 

other players by observing the past history of that player and learn some 

underlying model of opponent’s actions. Then, agents solve some optimization 

problem given the  learning scenarios of the opponents. The hierarchical nature of 

the H-PHC agents expedites the accomplishment of both aforementioned steps 

without explicitly defining the opponents’ model of decision. It helps the agents 

in the first step because it gives more time to adapt to the opponent player’s 

established beneficial decision hierarchies. The hierarchical approach also 

improves exploration in the second step because exploration of an optimum 

solution can take big steps at upper levels of hierarchical abstraction. 

In order to make a sense how real human agents might typically act in the context 

of strategic interaction in spatial economic models let’s think through the Figure 

3.2. Assume two dairy processor firms A and B located in limited area S and 

offering milk delivery contracts to supplying farms distributed in S. After some 

history of firm’s interaction assume that both firms follow some pricing policy. At 

some point, firm A’s demand for products at the downstream market rises 

                                                                 

30 Learning based on communication is not a subject of discussion in our paper, although it has been 

discussed to some extent in the literature. For example in a pursuit game without communication, 

agents are forced to model each other strictly through observation whereas in Tan (1993) predators 

can inform each other continuously about their moves. This can give them actual inferences about 

actual position of prey. Learning based on high-level communication is more complex. 

Communicative interactions like negotiation and mutual explanation is less studied in the literature 

(Sian, 1991). 
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marginally. Consequently, A announces it would slightly increase the 

procurement price of raw milk up to some   level, since it just wants to encourage 

more production at farm level. The question here arises is how rational B will 

react to A’s policy revision. It is up to firm B to now freely revise each dimension 

of its strategic decision. A rational B will probably not directly spoil its 

established pricing policy in a fully abrupt manner when his price had been 

advantageous over a long history of firms’ interaction. Moreover, firm B must 

also not necessarily revise its previous strategic decisions for example on choice 

of location or market exit. It might be more sensible to first invest in minor 

revisions in his pricing policy or renegotiation of the pricing decision with A.
31

 

Consequently, one might suggest that both players – under non-cooperative price 

setting or by negotiating – will adjust their price setting through some established 

hierarchical approach. Solving such a problem in interactive environments is the 

core methodological issue addressed in this paper. 

                                                                 

31 Apart from the non-cooperative price setting, pricing by negotiating can be potentially the 

alternative pricing practice in real markets. In fact, cooperative behavior on the part of the 

processors and joint price setting in agricultural markets has been more extensively studied in the 

recent literature, especially when it comes to the spatial pricing in raw milk procurement markets 

(Graubner et al., 2011a; Huber, 2009; Bundeskartellamt 2009; Huber, 2007 a; Huck, Salhofer and 

Tribl, 2006; Alvarez et al., 2000). 
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Figure 3.2: Hierarchical decisions in the context of spatially interacting firms. 

 

We restrict our focus in this paper, just to the pricing policy of a learning agent 

setting their market prices in a non-cooperative way and show how such an 

approach can help opposing agents to overcome the described moving target 

problem with modest computational effort. We introduce a new algorithm, 

Hierarchical Policy Hill Climbing (H-PHC). In order to evaluate the performance 

of our algorithm we rely on two desirable properties of Multi-agent learning 

systems proposed by (Bowling and Veloso, 2002):
 
 

Property 1 (Rationality):  

If the other players’ policies converge to stationary policies, then the 

learning algorithm will converge to a policy that is a best-response to the 

other players’ policies. 

Property 2 (Convergence):  

The learner will necessarily converge to a stationary policy. 

Property 1 may help agents to keep up with the changes in the environment and 

constantly move to find optimal behavior. Property 2 is concerned with 

convergence by concurrent learning entities that are adaptively changing each 

other’s learning environments just in the case there exists Nash equilibria. In line 

with most studies of MASs we examine our designed agents based on being 

optimal (in the best-response sense) to the other agents actions and to have a 

system converging towards the Nash equilibrium. H-PHC algorithm needs to be 

potentially improved regarding its rationality and can be extended to further 

hierarchical decision levels.  
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3.3 The H-PHC algorithm  

Figure 3.3 depicts a typical application of the H-PHC algorithm in a spatial raw 

milk procurement market. The goal of each processor agent is to find the 

appropriate policy determining the price to bid to spatially dispersed milk farms 

in order to maximize firm’s utility in each period. 

Figure 3.3: Agricultural procurement market as simulation environment of H-

PHC. 

 

Each H-PHC learner dairy agent has the chance to participate in a raw milk 

auction for winning raw milk product of spatially dispersed farmers at each round 

of the game through setting its price level. The supplier farms in our model are 

price takers, therefore each farmer will choose to deliver its product to the buyer 

who proposes the highest local bid in the auction stage. When the deals are struck, 

each buyer agent knows its raw milk suppliers. A pricing policy may be finally 

evaluated by each H-PHC Agent-based on the gained profit after carrying out the 

production procedure costs and selling off the dairy products at downstream 

market. The learner then will set again its revised price in the next round of the 

game. 

The pricing policy in each iteration is evaluated based on a gradient ascent to 

update agents’ policy with regard to pricing hierarchies. A gradient ascent 

algorithm will start with a suboptimal solution and will improve over time by 
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changing its policy by small increments. Analogously Agents in H-PHC 

interaction model preclude non-useful decision hierarchies by means of gradient 

ascent learning through small increments. This might work as a driver of 

rationality in the agents’ behavior. The algorithm might fulfill the convergent 

criterion because once an agent opts out to play a policy -that apparently is 

beneficial for that agent- it automatically reduces its overall exploration rate (with 

regard to elaborating new policies). This approach to policy finding by the agent 

leads to diminished changes in their upper level decision hierarchies giving the 

opponent more time to learn rational. In the following we explain the two major 

steps of the algorithm depicted in Figure 3.3 i.e. setting price policy and 

evaluating price policy. 

3.3.1 Policy setting procedure  

In each round of the game the agent is devoted to conduct its decision across the 

decision tree - together with further propagation of search tree- from some origin 

u towards most beneficial precise terminal node.
32

 Let’s assume P represents the 

price of the processor agent at downstream market. In the setup stage, the H-PHC 

learner agent considers the function u=unif(0,P)  as its primitive bidding 

behavior. Unif might describe a random generator function from some continuous 

uniform distribution of P, which generates bids to prospective supplier farms. 

Indeed, from such primitive initial node onward, the H-PHC agent seeks to 

generate a sequence of ever-improving solutions by means of an in-depth first 

search through its decision space. Once the agent has found a solution in the 

initiation iteration of the game e.g. the primitive bidding behavior , say u, the 

agent will keep improving its search by evaluating u’s obtained payoff and 

deciding upon the direction of the solution space towards which he would like to 

expand its search. Subject to some exploration policy the agent has to decide in 

the next iteration whether to continue the developed solution (found in the first 

iteration) preferably in the direction   =unif(0,P/2) or in the direction 

                                                                 

32 Note that the decision parameter is not specified in the original algorithm to be necessarily the 

price. It could be also quantity or a product of a set of decision variables. 
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  =unif(P/2,P). Partitioning of the solution space might be done broadly by a 

general halving rule or it can be trickier depending on the nature of the task. Once 

the agent decides to conduct its search through a parent node (e.g. u here) he must 

invoke for the first time either of the parents’ children (e.g.     or    here). At 

this point the procedure of search terminates and the result can be revealed as the 

chosen price of agent in the current iteration.
33

 Hence the maximal depth of the 

search by an agent in the solution space will not be increased further than one step 

in each period of the game. Further pursuance of an already reached path succeeds 

in upcoming iterations of the game and depends on Q-values and corresponded 

probabilities for each child from the primitive solution.  Q-values and the 

corresponding probabilities are the result of policy evaluation in the beforehand 

iteration (see next section). Indeed the probability of choosing each children node 

alters after obtaining the payoff after each iteration of the game depending on the 

policy evaluation procedure. Note that the branching through the decision space 

might be undertaken subject to some Cross-Over probability. In the case of a 

Cross-Over move the learner will not decompose the searching task into entirely 

independent sub problems. A parent node might sometimes outsource the task of 

deepening the search to one of its neighbors. For example assume by branching 

the node                one agent (subject to some Cross-Over probability) 

might not only think about its children                    and     

             but also it may consider the node                  as its 

neighbor. In order to keep away the system from having nodes infinitely assigning 

credits just to each other, we set 2 constraints on the branching to neighbors. First, 

neighboring relationship will not lead to reciprocal parent-child relationship. It 

means no parent node is simultaneously its parent’s child. Second, two children 

e.g.     and     from the same parent e.g.    cannot be simultaneously 

neighbours of each other. This horizontal delivery of decision choice between 

distracted vertical paths (Cross-Over) is foreseen to examine the caution of 

                                                                 

33 Another termination criterion is when the determined price has achieved a high desired precision 

from system designer’s point of view in terms of its decimal place. This factor in named the 

Accuracy in the algorithm representation. This factor can be given exogenously in setup of the 

algorithm. 
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agents’ rationality by avoiding overspecializing themselves in upper hierarchical 

decision levels. Hence more the Cross-Over rate, more the agent is cautious about 

unilaterally deepening of its search from higher hierarchical decision levels 

towards terminal nodes. One system designer might propose some effective 

designing methods for architecture of searching tree by modifying the random 

determination of adjacent nodes for each node. For example more intelligent 

agents might be able to revise their decisions by sweeping to some states situated 

at greater distances within decision tree. In despite of Cross-Over probabilities 

one can couple some additional mechanism to the algorithm which might serve as 

further introspection tool for agents. This parameter in our algorithm is Meta-

Decision and in its humblest form it can impose some minimum (maximum) 

threshold on probability of undertaking each action despite the learning 

circumstance. Such small ever ongoing Meta probability will act as a last resort of 

actions, which has been precluded by the agent previously but need to be 

animated again. However, like the Cross-Over mechanism, designing such a 

Meta-Decision mechanism in hierarchical learning can be carried out in different 

more efficient ways. This is a matter of interest in our ongoing research.  

3.3.2 Policy evaluation procedure  

Assume that in the previous iteration of the learning process the agent pursued 

some path proceeding from root node (most upper one in its search tree) onward 

until the terminal node. When the new utility is received (based on feedback of 

the market), a marker named “Traversed-Path” is attached indicating which nodes 

the agent has gone through in the decision tree until a modest possible search 

depth up to the current stage of the game is achieved. In other words during each 

policy search within one period of the game the algorithm remembers the path 

traveled across the tree network and returns this path when the search finishes. 

Our approach to evaluate the usefulness of pursued nodes by selecting a policy is 

similar to the classic Q-learning (Watkins, 1989). Thereupon the agent assigns its 

obtained utility in recent round of the game to all nodes embedded in the 

traversed path and will update the Q-values for each node of traversed path in a 
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backward direction.
34

 Updating a predecessor node along the path is carried out 

based on the expected reward of its best decision among its successor nodes 

within the search tree. Hence the Q-value of each decision node is updated 

through a prediction of the expected utility the agent will receive when 

conducting its search towards that node and performing the best stored decision 

following that node. Analogous to Q-learning, in our algorithm some agent 

specific learning parameters influence the learning procedure of the agent. For 

example, the Learning-rate alpha determines to what extent the newly acquired 

information will override the old information in each decision node. The factor 

Recency approaching 1 might make the agent counting for only most recent 

rewards, while factor Recency near to 0 renders agent to be some longer term 

responder to recent obtained rewards. After completion, the updating of Q-values 

each agent can remember these as a measure for conducting the direction of its 

decisions with highest Q-values from the Root-state to the terminal nodes. By 

using a gradient ascent mechanism, the agent modifies its policy just by small 

increments in favor of the children nodes with the highest Q-value. By using a 

look up table for probabilities of each children node from the primitive node on, 

the algorithm can store the new policies (the probabilities of choosing each child 

from their parent node) at the beginning of next iteration. A typical updating 

procedure of Q-values is illustrated in Figure 3.4.  

                                                                 

34 By updating the Q-value of a terminal node in traversed path we suppose that the successor of 

terminate node is the node itself. 
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Figure 3.4: Policy evaluation procedure between two subsequent rounds of the 

game. 

 

H-PHC incorporates especially the factor Gradient-Size. Updating the agent’s 

policy by small increments means giving less chance of getting into suboptimal 

strategies. Agents with higher Gradient-Size parameter will commit sooner to 

their apparently beneficial decisions. Agents with lower degree of gradient ascent 

get tied more to their previous decisions more. Hence, and infinitesimally smaller 

gradient-size might encourage more robust competition within the system.  The 

algorithm is shown in the Figure 3.5 in pseudo code format.
35

 

Figure 3.5: H-PHC Algorithm 

A) SETUP-STEP 

SET GRADIENT-SIZE 0<DELTA; 0<ALPHA<1 AND 0<RECENCY<1; ACCURACY /* 

PRECISION OF PRICING BY AGENTS*/; 0< CROSS-OVER-RATE<1; 0< META-DECISION-RATE 
<1 /* in its simplest form the META-DECISION-RATE imposes some 
minimum (maximum) threshold on probability of undertaking 
each hierarchy despite the learning circumstance.*/; 
TRAVERSED-PATH = EMPTY  
                                                                 

35 For access to the code please see online appendix 2 (http://www.ilr.uni-

bonn.de/agpo/staff/khalili/khalili.zip)! 
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FOR EACH SEARCH DIRECTION:  

Q(PRIMITIVE-ACTION-NODE, SEARCH-DIRECTION)= 0;  

 (B) START-STEP 

PARENT-NODE  PRIMITIVE-ACTION-NODE 

REPEAT (C) & (D) 

(C) POLICY-SET-STEP 

1.  RESET TRAVERSED-PATH 

2.  START-STEP 

3.  BEST-FOUND-LEAF  PARENT-NODE 

    ADD BEST-FOUND-LEAF TRAVERSED-PATH 

4.  IF PARENT-NODE NOT-EXPANDED?  

                IF SIZE (PARENT-NODE)> ACCURACY 

                /* SIZE (PARENT-NODE) = ABSOLUTE DIFFERENCE BETWEEN ITS LIMITS */ 

                {EXPAND-TO-CHILDREN (PARENT-NODE) RETURN PARENT-NODE} 

                ELSE? 

                {RETURN PARENT-NODE} 

    ELSE?  

                {PARENT-NODE  SELECT-CHILDREN (PARENT-NODE)} 

                GO TO 3. 

(D) POLICY-EVAL-STEP 

1.  GO BACKWARD THROUGH TRAVERSED-PATH 

     Q(ANCESTOR NODE, SEARCH-DIRECTION) Q(ANCESTOR NODE, SEARCH-      

     DIRECTION)+ALPHA *(UTILITY + (1-RECENCY)* 

     MAX Q(CHILDREN, SEARCH-DIRECTION)- Q(ANCESTOR NODE, SEARCH-  

     DIRECTION)) 

2. FOR EACH (PARENT-NODE,SEARCH-DIRECTION):  

   IF  

   Q(PARENT-NODE,SEARCH-DIRECTION)=MAXQ(PARENT-NODE,SEARCH-DIRECTION) 

      PROBABILITY  PROBABILITY * (1 + DELTA)} 

   ELSE? 

      PROBABILITY  PROBABILITY * (1 - DELTA)} 

3.  TRANSFORM PROBABILITIES TO THE UNIT INTERVAL AND ADDING UP 
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(E) EXPAND-TO-CHILDREN(PARENT-NODE) 

1.   DETERMINE CHILDREN & NEIGHBORHOODS SUBJECT TO CROSS-OVER-RATE 

2.   Q-VALUES  0; PROBABILITIES  0 

(F) SELECT-CHILDREN (PARENT-NODE) 

     GAMBLE (CHILDREN) SUBJECT TO META -DECISION /* META- DECISION IS MADE 

SIMPLE HERE BUT CAN BE FURTHER ELABORATED*/ 

3.4 Simulation experiments 

3.4.1 Markets with free on board pricing  

The prototypical example of spatial price competition is Hotelling's model 

(Hotelling, 1929). We can adopt this model to our spatial market by considering a 

finite number of milk supplier farms living uniformly along a linear market. The 

farms deliver raw milk to two non-cooperative dairy processors (located at each 

endpoint of the line). An alternative to the linear model in the literature is Salop’s 

circular city model (Salop, 1979). Here multiple processor firms are located on a 

circle of perimeter 1, equidistant from each other. The supplier farms are 

uniformly located along the circle. Along with the aforementioned market 

configurations and without loss of generality we build most of our investigation 

on an equivalent quadratic market (Figure 3.6), which is a representative of the 

same equilibria in both Hotelling’s and Salop’s models and makes the comparison 

between the simulation results and theoretical findings more convenient.  

We first investigate the play between four dairy price-setting processors 

positioned in the four corners of the quadratic landscape in Figure 3.6. In this 

experiment we set the term ε (price elasticity of supply) to zero and assume that 

each farm supplies exactly one unit to one of the buyers. In addition, we assume 

all sellers (here milk suppliers) receive the same mill price at the buyer’s factory 

gate regardless of their farm locations. Hence, farmers are responsible for costs of 

transporting the product to the processor (Free On Board or FOB pricing). 
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Figure 3.6: Configuration of market consisting of spatial milk processors (blue 

cells) and spatial supplier farms (green cells) simulated as stated by Hotelling’s 

model (right), Salop‘s model (middle) and Quadratic landscape model (left).  

Note: As default we suppose a 20×20 quadratic grid world. The 
region is discrete in space such that each of green cells can be 
occupied by one farmer or not. The diameter for each market is 
assumed to be D=2; hence each distance between two grid cells 
of the grid world is divided by 10. In addition we limit the values 
for product price of firms in the downstream market ρ via 
normalization equal to 1. 
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The Nash equilibria of all games depicted in Figure 3.6 comprises the price 

   =ρ-tD for each agent whereas ρ is the symmetric net product value of 

processors in down-stream market and t describes a global variable for 

transportation cost (see Appendix). By designing various experiments, we tested 

whether H-PHC players successfully converge towards these equilibria through 

self-play. Figure 3.7 shows an example trajectory of players’ strategies while 

playing the quadratic spatial market game.  

Figure 3.7: Price trajectories by simulation of playing spatial market in quadratic 

landscape.  

Note: Transport cost t = 0.1 and    =.80. Learning parameters of 
agent are: Accuracy = 0.005, Learning-rate=1, Recency=0.5, 
delta=0.005, Cross-Over rate=0.1, Meta-decision rate=0. 

 

We presume the parameter t as an explanatory variable of behavior of firms and 

investigate the outcome of spatial competition between H-PHC agents by 

exogenously varying the term t. The results of simulating the quadratic market 

game with regard to a full factorial experimental design of learning parameters are 

given in table 3.1. We parameterized each agent with some different agent 

specific values i.e. Recency chosen from the list {0.5, 0.75}, alpha from {0.9, 1}, 

Cross-Over rate from {0, 0.5}, delta from {0.0025, 0.005}. We set the Accuracy 

factor of policy equal to 0.005. Five market types are assumed varying the 

transport cost chosen from the list {0.1, 0.2, 0.3, 0.8, 1}. Our experiments show 

that H-PHC learner agents approach the expected Nash equilibrium levels 
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generally around 5000 iterations (by 4-5% deviation rate) right at earlier iterations 

of the game (approximately before and about step 5000). At higher transport costs 

the agents continue for a longer period of time oscillating around the target 

solution until they cease to change their policy at some point (approximately 

between step 10000 and 20000). In order to account for all possible volatilities of 

policies we report the prices in some further steps after the system usually has 

converged (approximately between step 20000 and 30000).  

Table 3.1: Simulations results of learning agents by full factorial experimentation 

of learning parameters captured in iteration 30000 of the quadratic game and 

compared with theoretical predictions. 

Transpo

rt cost 

rate 

(t) 

Mean price (standard deviation) of agents Expected  

Nash 

equilibria 

  U(A) U(B) U(C) U(D) U(NE) 

0.10 0.802 
(0.011) 

0.804 
(0.010) 

0.803 
(0.009) 

0.805 
(0.012) 

0.800 

0.20 0.591 
(0.017) 

0.596 
(0.012) 

0.590 
(0.017) 

0.589 
(0.015) 

0.600 

0.30 0.389 
(0.021) 

0.401 
(0.028) 

0.415 
(0.019) 

0.411 
(0.025) 

0.400 

0.80 0.490 
(0.020) 

0.502 
(0.004) 

0.511 
(0.021) 

0.501 
(0.021) 

0.500 

1.00 0.510 
(0.027) 

0.505 
(0.018) 

0.505 
(0.022) 

0.510 
(0.029) 

0.500 

The reason for longer searches and some slightly larger standard deviations of 

prices on markets with higher transport costs has a clear economic reason. Note 

that the market’s competitiveness increases with lower transport cost rates. As the 

environment gets more competitive, slightly modifying the pricing policy will 

have larger implications on the agent’s payoffs. Consequently, agents have 

stronger motives for learning more precisely and this then shows in lower 

standard deviations from the Nash equilibrium price. These motives weaken as 

transport costs rise.  

We further examined the validity of the learning procedure of H-PHC agents by 

replicating the experiments of Graubner et al. (2011) in order to simulate the 
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analytical Nash equilibrium from Zhang and Sexton (2001). The former study 

aims at recapitulating the latter’s analytical result using a genetic algorithm 

approach. The latter study shows that by specifically setting the price elasticity of 

supply equal to 1 and normalizing the dimension of market D to 1 there is a 

symmetric Nash equilibrium comprising the optimal price for each agent in 

Hotelling’s linear model equal to 

2 3 4 (13 4)
 

4

NE t t t
u

   
                                                               (3.1) 

It could be shown that equation 3.1 is a special case of the general equilibrium 

 
 2 22 3 4 13 4

,
4

NE
tD t D t D

u D
  


   

                        (3.2) 

Equilibrium price 3.2 assumes that ρ > 3tD/4. 

By systematically changing the transport cost rate t ∈ {0.05,0.1,…,1.20,1,25}, we 

conducted again Graubner et al.’s simulation runs to test whether the decision 

making by H-PHC agents is consistent with the expected price behavior above. 

Similar to our experiments in the quadratic game, H-PHC learner agents in this 

linear market game narrowed their policy spectrum right at earlier iterations of the 

game and approach the expected Nash equilibrium level oscillating around the 

target solution for a relative longer period until they determine their policy at 

some point. Figure 3.8 represents the optimal policies of agents in iteration 30000 

of one random simulation run subject to noticed parameter setting. Please note 

that changing the learning parameters by switching between the coefficients 

within the range we used in our examples in this paper or repeating the simulation 

runs didn’t have any substantial influence on the depicted results in Figures 3.8 

and 3.9. 



 

- 84- 

 

Figure 3.8: Comparison between agents’ pricing policies in iteration 30000 within 

one random simulation run and expected theoretical Nash equilibrium in market 

with 20 discrete farms. 

Note: Green circles are presenting processor A and red circles 

processor B. The correlation coefficients    are 0.9176 for agent 
A respectively 0.9218 for agent B. Learning parameters: Recency 
= 0.5, Learning-rate = 1, Cross-Over rate = 0.25, Accuracy = 
0.0005, delta= 0.025, Meta-decision rate = 0. 

 

Note that the theoretical model setting in Zhang and Sexton (2001) assumes a 

continuous number of supplier agents on the line, whereas the simulation 

environment in our work features just 20 discrete suppliers along a line. The 

lower number of agents might affect the environment’s responses to agents’ price 

setting less smooth and thereby rendering it more burdensome for H-PHC agents 

to coordinate their pricing policies with higher precision. To more accurately 

approximate the theoretical equilibrium we increased the number of farms to 200 

discrete points on the linear market without changing the length of the market or 

the learning parameters. We read out the optimal policies of agents at iteration 

50000 of experiment. Results show  that H-PHC agents are able to very precisely 

approximate the analytical Nash equilibrium (blue line in Figure 3.9) in the 

updated market setting. 
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Figure 3.9: Comparison between agents’ pricing policies after iteration 50000 of 

one random simulation run and expected theoretical Nash equilibrium in market 

with 200 discrete farms. 

Note: Green circles are presenting processor A and Red circles 

processor B. The correlation coefficients    are 0.9972 for agent 
A respectively 0.9976 for agent B. Learning parameters: Recency 
= 0.5, Learning-rate = 1, Cross-over-rate = 0.25, Accuracy = 
0.0005, delta= 0.025,  Meta-Decision-rate = 0. 

 

3.4.2 Markets with uniform delivered pricing  

The prevalence of uniform delivery (UD) pricing rules is often observed for 

agricultural markets. With uniform delivery (UD) pricing farms receive the same 

price irrespective of their location relative to the processor’s production plant. In 

such market contexts, processor agents are responsible for costs of transporting 

the product to the processor. The non-existence of pure strategy Nash equilibria in 

price competition under UD pricing policies -due to discontinuous best response 

functions of players- is approved in beforehand in the literature of spatial 

competition (Dasgupta and Maskin, 1986; Beckmann, 1973 and Schuler and 

Hobbs, 1982). This feature might lead to endless divergences in policy making 

decisions of players in pure strategies. Cyclic price wars in economies are not 

only  investigated previously in the classic models of pricing in Shubik (1980) but 

also are discussed in spatial competition models (Schuler and Hobbs, 1982), in 

MASs (Tesauro and Kephart, 1998) and in evolutionary learning algorithms 

(Luke and Wiegand, 2002).  
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Based on our theoretical foundation, a rational learning algorithm is supposed to 

reflect the instability (cyclic) phenomenon of agents’ decisions. Yet without 

incorporating an appropriate Meta-Decision mechanism the expected behavior in 

H-PHC players’ interaction is not achievable. Incorporating the factor Meta–

Decision in the algorithm can potentially improve this interaction circumstance. 

The Meta–Decision mechanism supposedly should satisfy the need for “spill 

over” across actions in game play to encourage experimentation and avoid 

prolonged fixation on a suboptimal chosen action. Indeed such mechanism is a 

substantial ingredient of any reinforcement learning model e.g. Roth-Erev model 

(Roth and Erev, 1995). A Meta–Decision mechanism in its hierarchical sense can 

be complex and is a matter of further deliberation. However, the efficacy of 

implementing such a factor can be recognized just by adding the most simple 

trembling hand factor in the algorithm i.e. Meta-Decision.  

Figure 3.10 serves to show how imposing some 1 percent ever ongoing minimum 

threshold on probability of undertaking each hierarchy (despite the learning 

circumstance) in a typical pricing play between two agents B and A in Hotelling’s 

linear market (while applying UD pricing) may lead to the anticipated price 

instabilities. As it can be seen in the Figure, the system begins from a primitive 

pricing policy applied by both agents and moves toward some convergence in 

advanced. Hereto agents gradually (with some gradient ascent rate) have 

eliminated some non-useful decision hierarchies. They stepwise get stuck in 

narrower and narrower decision levels and are just playing some semi-equilibrium 

play. However the agents’ Meta-Decision procedure in active modus can threaten 

the stability of system at any time. Through random moves triggered by the 

foreseen Meta-Decision probability, firm A will notice that there exists some 

lower price level that grants a higher utility level for him -compared to the utility 

of A obtained by further playing its semi-equilibrium policy- given the B’s price 

in semi-equilibrium stage of the game. Hence the rational A might decrease its 

price to a deeper level (the first price downswing by agent A in Figure 3.10). The 

recent move of agent A renders the current pricing policy of B in such high level 

absolutely nonsense. Since the agent B is rational he begins a course of lowering 

its pricing course by lowering its price to some point marginally above A’s price 

(the reactional delayed first price downswing by B in Figure 3.10). However an 

overbidding cycle is reinitiated as A might observe the new situation triggered by 
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B (recovery of price upswing by agents). Agents continually adapt to each other 

again and again, never stabilizing at any established price (match). This process is 

carried out sometimes sporadically depending on agents timing by undertaking 

their next rational step.  

Figure 3.10: Possible non-cooperative interaction of players in an exemplary 

linear market with complete freight absorption. 

Note: Market structure: (t=0.25, ε=1). Learning parameters: Recency = 0.75, 
Learning-rate = 1, Cross-Over rate = 0.25, Accuracy = 0.0005, delta = .0025, 
meta-decision-rate = 0.01. For a better declaration, the prices are captured only if 
agents are not in Meta-Decision (random) moves. 

 

 

 

Further simulation experiments show that H-PHC agents incorporating just the 

simple above mentioned Meta-decision rate cannot guaranty to revive the rational 

property unraveled in the Figure 3.10. Rational agents are supposed to revise their 

decisions spontaneously if an updating regarding the policies is needed. A 

dynamic market environment can comprise variety of endogenous shocks like 

endogenous changing of farms’ supply behavior or evolving reaction functions of 

some firms and etc.. Relaxation of quota regulations in agricultural market in the 

EU is an example triggering suchlike environmental shocks. Endowing agents 

with the appropriate Meta-Decision mechanism to guide when and how fast to get 

out of the established decisions suited just for preceding market situation is still 

an open issue to be further deliberated. One concrete fashion of improved 

implementation of such Meta–Decision mechanism could be learned from the 

well-known Wolf-PHC (Bowling and Veloso, 2002) algorithm. In this algorithm 
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by deploying a Meta learning mechanism, the designer imposes on agents to 

identify whether they are winning or losing. As a consequence of this procedure 

the agents learn slower when they are winning but faster when they are losing.   

3.4.3 Non-spatial markets 

In the default algorithm we consider the function u=unif(0,P) as pricing behavior 

of buyer agents proposing bids to explicitly model spatial supplier agents. One 

might imagine domains where each decision node is not allowed to constitute 

distributive pricing behaviors, for example if the environment is not explicitly 

modeled or the number of supplier agents is small. In such domains the H-PHC 

algorithm might work out to evaluate the decision procedure of agents by opting 

to use the function u=random(0,P). This means that instead of assigning 

distributed prices to different farms by means of unif(0,P), we assign a random 

price drawn from the Random(0,P) to all farms. We replicate the experiments 

above by using this price function in the place of the distributive one. The results 

are qualitatively the same. Agents can converge towards the Nash equilibrium by 

incorporating the random function as well as the uniform function. This gives 

evidence that the notion of hierarchical rationality might act as a cognitive motor 

to encourage non-cooperative coordination in a variety of Multi-agent markets.  

Figure 3.11: Players’ convergence to expected Nash equilibrium in the Oligopoly 

system of 4 firms. 
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In order to examine the feasibility of this idea we conduct our investigation in 

multiple further domains.  As an example, let’s study a Cournot Oligopoly system 

of n firms having the same cost function e.g.           comprising the 

exemplary factor c=0.28 and assuming that the market price is a function of the 

total supply described by the equation p=A-aX with X being the total market 

supply and A and a being 1 and 0.001, respectively. It can be shown that each 

firm’s optimal quantity in Nash equilibrium amounts is (A-c)/(a(n+1)) (see 

appendix).  Table 3.2 represents the quantity policies of H-PHC agents in iteration 

200000 of 8 simulation runs. Indeed, in the majority of cases equilibrium is 

achieved between iteration 20000-100000. The more players are involved in the 

game the more time they need to achieve the coordination. For this we use the 

same parameters as noted in Figure 3.10 except for the factor Accuracy which is 

set to 1 and Meta-Decision rate set to 0. Note that we set the function 

u=Random(0,360=Monopol Quantity) as the primitive bidding behavior for each 

firm. The total size of interaction space by setting the factor Accuracy to 1 will be 

360 power of the players’ number. 

Table 3.2: Average H-PHC results in the exemplary non-spatial quantity market 

iteration 200000 of 8 simulation runs. 

NUMBER OF 
PLAYERS 

1 2 3 4 5 10 

THEORETICAL 
NASH 

360 240 180 144 120 65.45 

H-PHC  
(MEAN & 
STD-DEV) 

(359.8, 
0.55) 

(239, 
3.464) 

(179.866, 
4.629) 

(144.375, 
4.541) 

(119.55, 
4.248) 

(65.425, 
5.238) 

3.5 Conclusion 

Learning in spatial systems requires algorithms scalable to a large number of 

agents and that can be implemented with minimal knowledge about the actions of 

other agents. Most proposed Multi-agent learning algorithms in the literature fail 

one or both of these criteria. Our research in this paper was set out to develop an 

operational algorithm in order to lead rational agents to adapt their policy in large-

scale and dynamic strategy spaces with modest computational effort. H-PHC 

learning agents are shown to converge in exemplary spatial games to the best 

response policies or close to optimal payoffs with minimum required knowledge, 
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despite the presence of multiple agents in a rich strategic environment. Our 

experiments show that a community of rational players might be able to overcome 

the problem of a moving target through hierarchical rationality during the 

interaction. Knowing more about others’ actions causes each agent to reduce the 

domain of its oscillation regarding its actions. This approach to policy search by a 

rational agent might let other agents know more about him encouraging the arms 

race to take place in more confined strategic space. Despite our achievement 

regarding the efficacy of hierarchical learning, H-PHC in its introduced form 

needs to be improved to constitute agents capable of rationally revise their 

decisions if an updating regarding the policies is needed. We suggest some 

additional mechanism named Meta–Decision mechanism to the algorithm to 

resolve the problem. Precise implementation of Meta–Decision is still an open 

issue to be further deliberated. One exemplary fashion of Meta–Decision is 

applied in the well-known Wolf-PHC (Bowling and Veloso, 2002) algorithm.  

Explaining the empirically observed collusive behavior (price matching) of spatial 

agents by defining some higher levels of rationalities is another thinkable path of 

investigation. 
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3.7 Appendix  

Let’s first derive Nash equilibria of the Quadratic game. In order to calculate the 

total supply obtained by firm A (placed at the left upper corner of the quadratic 

landscape in Figure 3.6) by bidding the price    we might identify the supplier 

farm that is indifferent between delivering its product to either of firms A and B 

(placed at the right upper corner of the quadratic landscape in Figure 3.6). Given 

D as diameter of the landscape, the indifferent farm is given by the solution to 

                   . So the supply for firm A at the right hand  

amounts to     ∫           
   

 
. If ε = 0, we have            

      . Analogously one can calculate the supply for firm A at the region 

underneath of its location in Figure 3.6. By assuming the firm C being located at 

the left lower corner of the quadratic landscape, the total supply of A amounts to 

                             . Considering    as the net 

product value of processor A at downstream market and having fixed production 
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costs   , A might maximize equation:                           

     . Hence at Nash equilibrium of the non-cooperative market, agent A will 

set the price   
                        . Assuming that other players 

are delivering their products to the downstream market at the same price and 

presuming that the other players of the game C and B are deliberating in the same 

way as A, leads to the symmetric Nash equilibrium comprising the price    =ρ-

tD for each agent. The derived equilibrium presupposes that the potential market 

of two competing firms overlap, hence it can be easily shown that this equilibrium 

price is ρ > 3tD/2. By inserting the predetermined parameters of study we 

conclude that the derived Nash equilibrium price applies if and only if the 

parameter transport cost is restricted to the interval 0<t<1/3. Larger transport 

costs allow the processors to exert monopsony power in isolated markets.   

Deriving the Nash equilibrium in a linear Cournot game is as following: 

Assuming that the price in the market is a function of total supply X and 

calculated as p=A-aX and having the cost function of firm i be          , i 

might maximize equation                      where     represents the 

sum of supply quantities by all its competitors in the market. Solving this 

equation for    we get                 . As             we obtain 

  
                 . 
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Chapter 4                                         

A predictive model of pricing by 

learning agents in spatial 

agricultural markets 

Abstract. Despite some empirical evidence on price formation in spatial 

agricultural procurement markets, the theoretical explanation of emerging price 

equilibria is much disputed. The majority of papers attribute the pricing policy of 

processing firms merely to the spatial structure of markets using a static strategic 

setting. We analyze the price formation in a dynamic context with a 

computational approach to overcome analytical limitations in rich strategy space. 

We show that – in addition to the spatial structure of the market - the pricing 

behavior of agricultural processors also depends on their ability to learn from 

each other. 

Keywords: learning agents, spatial agricultural markets, ABMs, oligopsony  

JEL classification codes: C63, C72, L13, Q11  

4.1. Introduction 

Empirical exploration of agricultural procurement markets often indicate features 

of imperfect competition (Rogers and Sexton, 1994; Durham et al., 1996; Alvarez 

et al., 2000; Huck et al., 2006 and Graubner et al., 2011a). Indeed agricultural 

products are highly perishable goods associated with high storage costs and 

limited accessibility to alternative buyers. In this market, processors may exercise 

market power over producers located close to their processing plants. Jointly 

determined price and quantity decisions can be advantageous to processor firms, 

but harmful to farmers.  
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Predicting pricing schemes emerging in spatial markets as equilibria has been a 

subject of contributions in agricultural economics in recent years.  Three pricing 

regimes are prevalent: Free-on-board (FOB), uniform delivered (UD), and 

optimal discriminatory (OD) pricing (Beckman, 1976). Until the early 1990s, the 

researchers’ views on the choice of a pricing policy and their market implications 

are largely based on empirical observations and are quite diverse. Scherer (1980) 

proposes that the use of UD pricing in industrial markets is associated with a low 

level of competition. He suggests that in order to increase the degree of 

competitiveness in markets, firms should not be allowed to price differently from 

FOB since FOB mill pricing would make the "avoidance of independent pricing 

more difficult." The view that UD policies are collusive practices is widely 

established indicating that many industries characterized by high concentration 

and a spatially differentiated product use UD systems (Zhang and Sexton, 2001). 

In contrast, Greenhut (1981) and Greenhut et al. (1987) speculate that UD pricing 

rules emerge in highly competitive markets because it enables firms to compete 

more effectively over a larger geographical area. Greenhut (1981) investigates the 

spatial pricing policies of a sample of firms in the United States, West Germany 

and Japan. According to his observation, the prevalence of spatial pricing policies 

comprising price discrimination relative to FOB pricing schemes in real world 

appears to be significant. In addition UD pricing is almost as common in practice 

as FOB pricing.  

Various spatial pricing theories try to capture the emergence of pricing rules and 

their policy implications in agricultural markets based on characteristics of such 

markets. Espinoza (1992) and Kats and Thisse (1993) are the first well-known 

studies theoretically modelling the spatial interaction of processing firms. Both 

studies suggest that UD pricing systems are likely to be observed in equilibrium 

for highly monopolistic industries (industries where the transportation cost and/or 

the discount factor is high) but also in highly competitive industries (industries 

with low discount factor and transportation cost), while FOB is likely for 

intermediate market structures. Zhang and Sexton (2001) highlight that the 

demand function in the studies of Espinoza (1992) and Kats and Thisse (1993) is 

assumed to be perfectly inelastic leading to bias the firms’ choices in favour of 

UD pricing. Using a supply function with strictly positive (unitary) price 

elasticity, Zhang and Sexton (2001) suggest that FOB pricing policies emerge as 
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equilibrium under very competitive structures. Asymmetric FOB–UD regimes are 

Nash equilibria in less competitive markets and UD pricing emerge when 

shipping costs are high relative to the value of the finished product, for example 

for markets that are nearly monopsonistic in nature. Fousekis (2011) adopts 

Zhang and Sexton’s model to specific firm objectives and shows that the co-

existence of firms with different objective functions (e.g. profit maximizers and 

cooperatives) are likely to give rise to some mixed market structures. UD (FOB) 

pricing is chosen by both competitors in markets where transportation costs are 

small (large) relative to the net value of the primary product. A mixed FOB–UD 

pricing equilibrium emerges for an intermediate market structure.  

Graubner et al. (2011) apply a computational economics approach using a genetic 

algorithm. They use in addition a general discriminatory price-based competition 

approach in two-dimensional space, which is analytically intractable. According 

to their finding, UD pricing is an equilibrium behavior under relatively mild 

differentiation between firms (intense spatial competition) and partial but high 

freight absorption emerges under less intense competition. In contrast to the 

analytical studies, FOB pricing does not emerge in equilibrium. Table 4.1 depicts 

a group of representative theoretical contributions regarding spatial pricing forms. 
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Table 4.1: Theoretical contributions regarding spatial pricing 

Work by Space Pricing 

Game 

Supply 

elasticity 

Dynamic 

Model 

Specific 

firm 
character 

Market Equilibrium 

Outcome 

Espinosa, 

1992 

1-D Repeated  

Game 

Constant 

=0 

Yes No UD pricing in highly 

monopolistic and highly 
competitive industries and 

FOB in intermediate 

market structures 

Zhang 

and 

Sexton, 
2001 

1-D Static  Constant=1 No No FOB in very competitive 

structures. FOB–UD in 

less competitive and UD 
pricing in monopsonistic 

markets 

Fousekis, 
2011 

1-D Static Constant=1 No IOF or 
COOP 

FOB  in noncompetitive 
structures and mixed 

FOB–UD equilibrium in 

intermediate and UD 
pricing in competitive 

markets 

Graubner 
et al., 

2011 

2-D Repeated  

Game 

Variable No No UD pricing in relatively 
intense spatial competition 

and high freight absorption  

under less competition 

 

The majority of studies investigate pricing policies in spatial markets by static 

games. An assumption common to above cited studies is that the spatial pricing 

game is a simultaneous move game and players are assumed to make their 

decisions in pure or mixed strategies simultaneously in one-shot interactions. 

Note that just the Spinoza’s paper models a reversion to an infinitely repeated 

static equilibrium right after cheating by any single party. We investigate in this 

paper a dynamic setting of competition through sequential decisions of agents 

with foresight.  

We presume agents that can anticipate system-wide consequences of their pricing 

behavior and learn to use a foresight-based decision, rather than following short-

run profit maximization rules.
36

 Whereas most prior studies in the agricultural 

                                                                 

36 By doing this we can escape a major problem encountered in the predecessor studies of spatial 

competition namely the nonexistence of pure-strategy Nash equilibria in competitive models 

(Dasgupta and Maskin, 1986; Beckmann, 1973; Schuler and Hobbs, 1982). This gives rise to 

conflicting price and output preferences among processor agents. A malicious agent might observe 

 

 



 

- 100- 

 

economics literature attribute the pricing rules by processing firms just to the 

spatial structure of markets, our research foresees that in addition to the spatial 

structure of the market - the pricing behavior of agricultural processors also 

depends on their ability to learn from each other. 

The remainder of the paper is organized as follows: After reviewing other 

relevant literature in section 4.2 and declaring the simulation market context in 

section 4.3, we introduce details of our foresight based learning mechanism in 

section 4.4. In section 4.5, we test two opposite poles of processor’s learning 

aptitude i.e. low-coordination and high-coordination scenarios to draw inferences 

on the pricing behavior of agents. The final section concludes.  

4.2. Computational methods 

The study of market power in a broad range of studies in computational 

economics is often done using genetic algorithms (Vallée and Basar, 1999; 

Alemdar and Sirakaya, 2003; Arifovic, 1994; Vriend, 2000; Graubner et al. 

2011). Agents using a genetic algorithm require less prior competence in the 

specific task (Arifovic, 1994). Such evolutionary algorithms can be quite useful 

for some classes of complex problems especially when the problem is non-trivial 

to deal with.  However, interpreting the dynamics of genetic algorithms as 

individual learning processes is not straightforward (Brenner, 2005, p.39). In 

general, understanding the dynamics of co-evolutionary algorithms is complicated 

by the fact that the internal fitness measures valuing strategies are subjective 

(Luke and Wiegand, 2002 and Watson and Pollack, 2001). Vriend (2000) and 

Riechmann (2002) show that the learning dynamics of agents in evolutionary 

algorithms substantially influences the outcome of the game. For example, 

                                                                                                                                     

 

 

the state of its environment including the action of its competitors, and then decides to boost its 

profit, for example by offering prices above its current price. 
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assume the vital criterion for measuring the fitness of strategies are relative 

payoffs compared to a competitor. In this case it pays for an agent to hurt himself 

(in terms of absolute payoff) as long as he hurts its opponent even more. This type 

of spiteful behavior is a result of the implied algorithm dynamics, not of the game 

itself.
37

  

Given the problems of evolutionary methods, we study the system behavior in a 

more straightforward way by constituting agents who consciously model their 

competitors’ reactions and incorporate the notion of dynamic programming 

(Bellman, 1957). A dynamic programming agent foresees upcoming market paths 

following from his own price setting behavior (Watkins, 1989). Such kind of 

anticipative learning is also proposed as conjectural variation in the terminology 

of spatial economics (Capozza and Van Order, 1978).  

We investigate how increasing the level of rationality of agents may make a 

system more robust keeping agents away from exercising persistent price wars. 

The use of modeling levels as a useful way for agents to classify their knowledge 

about the world and opponents is established in the literature (e.g. Gmytrasiewicz, 

1992 and Vidal, 1998). Basically, heuristic searches regarding modeling other 

agents have been adopted from the minimax search in games like chess (Carmel 

and Markovitch, 1996). The minimax principle is applied in a broad literature of 

artificial intelligence: One agent maximizes her payoff under the worst-case 

assumption that the opponents will always endeavor to minimize it. In minimax 

search, an agent finds out her optimal move by exploring the sequence of her 

actions and her opponents’ recursions up to some finite depth of the game. 

Carmel and Markovitch (1996) study the problem of opponent modelling in game 

playing. They recursively define a player as a pair of a strategy and an opponent 

model, which is also a player. Each player acquires a model of the opponents’ 

                                                                 

37 In addition one main drawback of evolutionary algorithms mentioned in the literature is their 

inability to match individual learning histories: agents would remember their past experience to a 

limited extent. Brenner (2005) states: “it is surprising that the use of genetic algorithms, and 

especially the original genetic algorithms, has widely spread in simulating economic learning 

processes.” 
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depth of search by using its past moves as examples. Since the learner has a 

model of the opponent it can do better than, for example, minimax return. Vidal 

(1998) studies agents modeling other agents in an information market economy 

and shows that n-level agents will fare better in a society full of (n-1)-level 

agents.
38

 Vidal (2010) mentioned that computational costs of increasing a 

modeling level grow exponentially for an agent, whereas the utility gains to an 

agent grow at a smaller rate as other agents in the system increase their modeling 

level. Moreover, there would be no adequate system design in such model setting 

for modeling agents being at the same perception level. By applying the logic of 

infinitely recursive dynamic programming in our model, we will allow the agents 

to draw inferences about further progress of the game by looking forward in depth 

of the future game path without getting into the trap of infinite recursion with 

opponent models. By doing this, we do not impose any finite constraint for the 

search depth of agents in learning upcoming stages of the game. Agents in our 

model are assumed to have an equivalent capability to estimate each other’s 

model. Each player then maximizes a discounted sum of his per period payoffs 

independent of the history of the game. This method is analogous to the concept 

of Markov perfect equilibria (Maskin and Tirole, 2001).  

4.3. Model setting 

We presume two milk processors A and B located in two-dimensional space 

represented by a grid of cells and locations are accessible by x-y coordinates. The 

region is discrete in space such that X = Y = {-10, …, 1, 0, 1, …, 10}. Following 

Graubner et al. (2011), a general price equation including all three cases (FOB, 

UD and OD pricing) is assumed to describe the net price per unit quantity of 

supply (local price) received by farmers at each location: 

                                                                 

38 A 0-level agent is one that does not recognize the existence of other agents in the world. A 1-level 

agent recognizes that there are other agents in the world whose actions affect its payoff. A 2-level 

agent believes that all other agents are 1-level agents. In essence, the n-level agent applies the n-1-

level algorithm to all other agents in an effort to predict their action. 
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 p sp p p spu d m t d                                                                                     (4.1)       

  (   ) is the local price of firm p∈       received by supplier farm at point s, 

    is the distance between processor p and supplier s, and t describes a global 

variable for transportation cost rate. The vector (       is the representative of a 

processor’s pricing policy describing the mill price for a farmer at processor’s 

location by the term    and the share of transportation cost absorbed by each 

farm due to spatial differences of agents expressed by the term   . We limit the 

maximum possible values for product price    of A and B in the downstream 

market via normalization equal to 1. To lower the computational complexity of 

the system, the price policy parameters of agents    and    have discrete values 

between 0 and 1 with predetermined increments of 0.01 and 0.05, respectively. 

The location of processors is limited to the line between the points (-5,0) and 

(+5,0). The maximum processors’ location distance is normalized to be 1 dividing 

to 10 (between the points (-5,0) and (+5,0)). Accordingly, each distance between 

each point of the grid world is also normalized by dividing by 10. We assume that 

suppliers are price takers and aim for the highest local price offered by 

processors. The cost function of supplier farms is      

   
1

1
sp spc q q c










 


                                                                              (4.2) 

where       is the production cost of producing    amount of raw milk and ε is 

the price elasticity of supply. Following (2) each farm will produce the amount 

which maximizes its utility function        :        

     

 

max! s

s p sp sp sp

sp p sp

q u d q c q

q u d


  

 

                                                                             

(4.3) 

Note that the local prices received by each farm must be positive. Furthermore, 

the processors do not purchase the raw milk if it does not yield a positive local 
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profit for them. Hence the set of potential suppliers for each processor p is limited 

within the space by the marginal location at distance   :  

 
( 0, )

1

p p p

p p

p p

m m
r Min

t t




 


  


                                                              (4.4) 

After submitting the processors’ bids to potential suppliers, each processor will 

earn the local profit     knowing its ultimate supplier calculated as 

 sp p p sp spu d td            .                                                                   (4.5) 

Ultimately, each processor’s utility in our model is the sum of all local profits of 

its contracted suppliers. 

4.4. Simulation design and agent’s learning 

Assuming the parameter ρ=1 for both parties and parameters    and     

discretized into partitions of lengths equal to  , each agent has a pricing decision 

space set of length         . This triggers          possible pricing 

interaction between firms. We name each of those interactions a World-state. We 

first divide World-states in 2 categories: Root-states and Non-Root-states: 

a. Root-states are per definition price combinations of A and B         where 

neither    is the best myopic response to    nor vice versa is true.  

b. Non-Root-states are those states where at least one agent’s price is a best 

myopic response to the other agent’s price.  

4.4.1. A-level perception 

A-level agents are born with a previously acquired knowledge about observing 

the state of the world and use the best myopic response to boost their utility. The 

process in which agents will take turns setting prices that are the best myopic 

response to the opponent is analogous to the process Cournot studied and is 

expected to have the same long-run property as the simultaneous move 

adjustment process (Fudenberg and Lewin, 1998, p.11). In order to understand the 

relevance of A-level-perception we can simulate the market through a series of 
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distinct repeated interaction stages of the duopsony game. The play begins with 

the action of one player. In each round of the game, just one agent decides upon 

price given the price of the opponent. The game then continues in alternating 

stages.
39

 By beginning a dynamic sequential interactive game of A-level agents 

from any arbitrary history of the game, the system will recognize always a self-

enforcing pattern regarding its direction. We name this basic observation induced 

by observing the behavior of A-level agents the Basic proposition. 

Basic proposition:  

Initiating from an arbitrary starting point (either a Root-state or a Non-Root-

state) and driven by sequentially best myopic responses of agents, the system 

passes always trough a number of Non-Root-states and moves towards some 

unique set of cyclic World-states (basin of attraction).  

We divide Non-Root-states into two categories: 

a. Terminal-states consist of the set of Non-Root-states within the basin of 

attraction. 

b. Intermediary-states consist of the set of Non-Root-states which will be 

linked to the basin of attraction of the game in 1 or more steps from 

outside of the Terminal-state’s cycle.  

Figure 4.1: Typical characteristics of Root and Non-Root-states. 

Note: Characteristic of Root-state 0: No edges that connect other vertices to 0. Characteristic of 

Non-Root-states: Number of predecessor and successor node is equal to 1 (1, 4, 2 and 3). 

Characteristic of Terminal-states: Belonging to the cyclic price basin approachable from an arbitrary 

Root or Non-Root-state (5 to 10). 

 

                                                                 

39 Please note that best myopic responses get stored in tables during the simulations through 

complete search of decision space for each agent and retrieved by repeated use. 
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Figure 4.1 illustrates the characteristics of the pricing system if agents pursue 

their myopic utility starting from an arbitrary state of the world. State 0 represents 

a typical Root-state where either agent A or agent B can cause the game to move 

either in direction 0→1 or in direction 0→2.  The game will move consequently 

to the States 2, 3 and 4, which are Intermediary-states and ends up in an infinite 

circle of terminal price states consisting of states 5-10. 

Classic models of price wars, including those introduced by Cournot and Bertrand 

(Tirole, 1988) have the feature that prices are driven down to a minimum value 

(e.g. the marginal cost in Bertrand’s model). However, limit cycle price wars can 

potentially arise in markets comprising agents applying freight absorption 

policies. Such patterns can be explained by attributes of payoff matrices in spatial 

games due to the well-known nonexistence of pure-strategy Nash equilibria in 

spatial games (Dasgupta and Maskin, 1986; Beckmann, 1973; Schuler and Hobbs, 

1982).    

The most basic knowledge integrated into agents’ decision in our model is based 

on backward induction by forward-looking towards Terminal-states.                 

4.4.2. B-level perception 

B-level agents incorporate conjectures on opponent’s reaction before they set 

their own prices. Let’s assume   
  to be the best myopic response of agent A in 

state S to    and   
  to be the best myopic response of B in state S to   . We 

define the Deviation-attraction   
        for an agent A in state S =         as 

the long term utility of agent A if agent i∈{A,B} decides to act myopically in S 

foreseeing the payoffs he will get from the next upcoming state S* onward. 

Formally:  
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(4.6) 

Equation 4.6.1 describes A’s Deviation-attraction in the case counterpart B 

undertakes its best response in S. The upper bracket implies that A’s Deviation-

attraction amounts its payoff in state S* added to A’s maximum discounted payoff 

from S*. The latter depends on whether it is worth for A to cease the best response 

war in S* and receive its Accommodation-attraction payoff or he foresees that 

deviation from S* is worth for him. The lower bracket defines B’s deviation non-

sense if B’s pricing policy in S is identical to its best response. 

Equation 4.6.2 is describing circumstances, in which A decides to deviate from S. 

The upper bracket implies that if the pricing policy of A in S isn’t its best myopic 

response, he might have benefits (  ) from deviation towards state S*, however 

he must then account for B’s deliberation from S* whether to accommodate in or 

deviate from S*. Hence A’s Continuation payoff from S* then depends on B’s 

decision (deviate or accommodate) in S*. The lower bracket indicates that if 

pricing policy of A in S is its best myopic response, then he has no benefits from 

deviation from S at all.   

Analogously we define the Accommodation-attraction   
        and i∈{A,B} for 

an agent A in state S =         as the persistent utility A gains in S if both parties 

agree on price accommodation in S: 

 
         ,

,
1

co A B

A

Utility A in state u u
S i

DiscountFactor
 


                                                            (4.7) 
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Assume S is a Non-Root-state of the world. The following knowledge of agents 

might invite a B-level agent A to cease a unilateral price war from S onward 

causing S to be a collusive state: 

1. Assume       
  and        

 .  

2. A knows that   
          

        hence will not deviate unilaterally from S. 

3. Knowing that A will not respond myopically in S, B also will not respond since 

(1). 

The way of agents’ dynamic deliberation by forward looking in each stage of the 

game can be more simply depicted by figure 4.2.   

Figure 4.2: dynamic decision of agents by deviating from or accommodating in 

state  

 

In line with the mentioned logic in section 4.1, we first implement the above 

defined functions of Deviation-attractions and Accommodation-attractions of 

agents in the limited cycle of Terminal-states. In order to overcome the estimation 

of Deviation-attractions for players in the infinite play of agents in Terminal-

states we use a method analogously to the well-known value iteration algorithm 

(Sutton and Andrew, 1998).  

The algorithm shown in Figure 4.3 assumes that each agent visits sufficiently
40

 all 

Terminal-states and each time updates the estimation of its long run utility of 

deviation from one state to the upcoming one. After estimating Deviation-

                                                                 

40 By using a temporal difference parameter (which will converge to zero), each agent will be able to 

estimate the attraction of deviation in each state precisely enough. 
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attractions in Terminal-states and applying Assumptions 1, 2 and 3, each agent 

put the acquired B-level knowledge in its memory for retrieval in its advanced 

phases of bilateral price interactions with its competitor. 

 

 Figure 4.3: Algorithm 1 for estimating B-level perceptions in Terminal-states
41

 

INITIALIZE   
                                ∈       

LOOP FOR A WHILE T [UNTIL MIN     
           

                        ∈

      : 

FOR ALL S: ESTIMATE   
         ∈       

4.4.3. C-level perception 

B-level agents have learned that optimal behavior of an agent must be conditioned 

on the expected behaviors of the other agents in the system. For example let’s 

confine our attention just to the Terminal-states in Figure 4.1. Assume state 7 in 

Figure 4.1 is recognized as a collusive state based on B-level argumentation of 

agents. Hereby one may argue that agents will change their decision in the system 

based on the acquired B-level knowledge. Suppose agent A would cease the price 

war in state 7 abstaining from its myopic best response decision based on its B-

level knowledge. B knowing that A has altered its behavior in 7 might e.g. 

respond differently in state 8, i.e. decides to cease the price war instead of 

deviating. Knowing that B will cease the price war in state 8, A might e.g. be 

deprived of its previous incentive to accommodate in state 7 and so on.  It is 

obvious that agents’ recursive modeling can manipulate the strategies-beliefs 

consistency regarding the behavior of agents in the system just derived through 

their B-level knowledge. Indeed agents’ B-level perception might be self-

destructing!  

                                                                 

41 For access to the code please see online appendix 3: 

 (http://www.ilr.uni-bonn.de/agpo/staff/khalili/khalili.zip)! 
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The inconsistency problem mentioned before might be healed by designing a 

mechanism, which alters the behavior of agents until knowing more about the 

opponent’s behavior in upcoming states doesn’t manipulate any equilibrium 

strategies in the system. C-Level perception of agents is then defined as one 

agents’ knowledge which leads to determining agents’ decision subject to 

incorporating the opponents’ knowledge about agents’ own determined decision. 

By applying algorithm 2, for example in Terminal-states, we can verify whether 

collusions obtained in B-level perception would comply with learning termination 

criteria in C-level perception. Hence, the algorithm 2 assesses the credibility of 

collusion by reasoning backwards in time through Terminal-states. It proceeds by 

first assuming that a collusive decision is already compromised by both agents in 

state   . Then it explores what would be the optimal decision in the beforehand 

state and continues to assess the argumentations along the circle until it again 

moves to state   . If the optimal decision in    is again collusion, then    will be 

declared as a self-reinforcing C-level collusion. 

 

Figure 4.4: Algorithm 2 for estimating C-level perceptions in Terminal-states 

 REPEAT UNTIL ALL TERMINAL-STATES OF THE WORLD ARE EXPLORED: 

1: CHOOSE ONE OF TERMINAL-STATES     BY RANDOM. ASSUME    INITIALLY TO 

BE A COLLUSIVE STATE. 

2:     PREDECESSOR STATE OF   . 

REPEAT 3 & 4 UNTIL    IS AGAIN THE CHOSEN INITIAL TERMINAL-STATE: 

3: ASK THE AGENT X WITH        
  IN    CHOOSE ITS OPTIMAL DECISION BY 

BACKWARD INDUCTION FROM   . 

4:        AND                   ; GO TO 3. 

5: ASK THE AGENT X WITH        
  IN    CHOOSE ITS OPTIMAL DECISION BY 

BACKWARD INDUCTION FROM SUCCESSOR   . IF OPTIMAL DECISION BY X IS 

ACCOMMODATION, THEN    IS SELF-REINFORCING COLLUSION; ELSE REMOVE    

FROM COLLUSIVE STATES. 
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A summary of the forms of knowledge that agents have or trying to learn in our 

proposed learning model is depicted in table 4.2. 

Table 4.2: Levels of 

agents 

perceptionsPERCEPTION 

LEVEL 

ACQUISITION METHOD LEARNING TERMINATION 

CRITERIA 

A-LEVEL  PREVIOUSLY KNOWN BY 

AGENTS 

MAXIMIZE MYOPIC UTILITY 

B-LEVEL DYNAMIC PROGRAMMING + 

OPPONENT REACTIONS’ 

OBSERVATION 

TEMPORAL ERROR 

C-LEVEL MUTUAL OPPONENT 

RECURSIVE MODELING 

STRATEGY BELIEFS 

CONSISTENCY THROUGH 

BACKWARD INDUCTION 

 

4.4.4. Intermediary-states 

Agents’ knowledge regarding the game’s basin of attraction is the basic 

knowledge of agents’ decision given any arbitrary history of the game. Until 

agents know the optimal strategic decision in Terminal-states, the task of agents 

by reasoning in intermediary respectively Root-states is one of backward 

induction. For example, assume the path 2     in Figure 4.1. Assume in state 

3 agent B is the firm who is deliberating whether to enter stage 5 of the game or 

accommodate. In order to perform this task, B needs to know about the attraction 

of its deviation in state 3: 

 
   
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Once B finds out its optimal decision in state 3, A can learn in the analogous way 

how to behave in state 2. Respectively agent B will acquire the knowledge 
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regarding his optimal decision in Root-state 0 by having a one-step look ahead to 

state 2. In order to implement this logical deliberation in the context of 

simulation, once the values for Deviation-attraction respectively Accommodation-

attraction of states in a path are estimated by agents, these will be stored. As soon 

as the chain of reaction by agents from an arbitrary state of the system forces the 

system towards encountering previously known states, the continuation pay-offs 

of agents regarding the remaining path of the game is already stored in memory 

and will be retrieved by the decision making process of the agents. Algorithm 3 

shows the procedure of estimating the Deviation-attraction by agents through 

backward induction in Intermediary-states. 

 

 

 

 

Figure 4.5: Algorithm 3 for estimating Deviation-attractions and 

Accommodation-attractions in Intermediary-states 

REPEAT UNTIL ALL STATES OF THE WORLD ARE EXPLORED: 

1: INITIATE FROM AN ARBITRARY STATE OF THE WORLD 

2: OBSERVE THE BEST MYOPIC RESPONSE OF X 

3: OBSERVE THE BEST MYOPIC RESPONSE OF THE OPPONENT Y 

4: IF NEW STATE OF THE WORLD IS KNOWN CEASE THE EXPLORATION: ESTIMATE 

OPTIMAL DECISIONS MAKING FOR PREVIOUS STATES OF THE PATH YOU WERE WALKING 

THROUGH BY BACKWARD INDUCTION; ADD THE WHOLE PATH TO SET OF VISITED 

STATES; GO TO 1 

ELSE: GO TO 2 
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4.4.5. Root-states 

As a general rule, Root-states will be linked with Terminal-states through 

Intermediary-states. It is imaginable however that there might be some subset of 

Root-states, which can be linked directly with Terminal-states. For example 

assume that price combination of A and B in stages 5-10 in Figure 4.1 are given 

by the set                                                        

           . Given this set of Terminal-states, one can imagine that, there might 

be Root-states e.g.       ,         or         , which display the following 

characteristic: Agents will face Terminal-states, once one of them foregoes the 

collusion through unilateral deviation from any of aforementioned Root-states. 

Attraction values in each Intermediary-state analogously indicate agent’s 

perception regarding continuing the game from that state onward towards 

Terminal-states. Agents’ perception in Root-states likewise incorporates the 

knowledge of agents in Intermediary-states. In contrast to unilateral collusions 

mentioned in section 4.2, assembling mutual accommodations by both parties is a 

pre-condition for establishing collusion in Root-states. The following knowledge 

of parties would be necessary and sufficient prerequisites to establish permissible 

joint actions in Root-states: 

 

 1. A knows that   
          

        

 2. B knows that   
          

        

 3. A knows that B knows that (1). 

 4. B knows that A knows that (2). 

A good formal framework for taking about the knowledge of agents, including the 

knowledge an agent might have about another agents’ knowledge, is given in 

Vidal (1998) and Fagin et al. (1995). Whether the equilibrium knowledge (or 

beliefs) of agents emerges based on sharing the knowledge through 

communication or whether tacit collusions without communication underpin this 

equilibrium is not included in our model.  
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4.5. Simulation results 

The simulation results cover 2 scenarios, low coordination and high coordination 

reflecting 2 opposite poles of our understanding about learning aptitude of 

processors. The key factor in predecessor studies of spatial competition is the 

ratio s=t*D/ρ called importance-of-space as an indicator of competitiveness of a 

market measured by transport costs (t) multiplied distance to competitors (D) 

divided by net value of product being sold at downstream market (ρ) (Alvarez et 

al., 2000). As the ratio s increases, competition between firms diminishes to the 

point where eventually they are spatially isolated monopsonies. Hence, we 

interpret s as an explanatory variable of our study and investigate the impact of 

spatial competition by exogenously switching the location of firms toward each 

other. Simulations are conducted for several selected values of D between 0 

(where firms’ locations are interlocked) and 1 (maximum processors’ location 

distance). In the first scenario (low coordination), we investigate the flow of the 

interaction game by A-level players in Terminal-states. In the second scenario 

(high coordination), we investigate what happens if C-level players learn to 

cooperate in Root-states. 
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4.5.1. Low coordination 

From the results of our simulations in low coordination scenario, we can derive 

the following general results in view of the reviewed literature. First, decreasing 

the factor importance-of-space is triggering cyclic price paths incorporating lower 

portion of transportation costs absorbed by firms (1-alpha) whereas increasing the 

Importance-of-space will lead to exercising high freight absorption policies. 

Second, decreasing the price elasticity of supply will put pressure on farmers’ 

supply price but it also decreases the farmers’ freight absorption rate. 

Figure 4.6: The processors’ cyclic price strategies in Terminal-states based on 

inter-Firms distances 0 (upper-left hand panel), .2, .4, .6, .8, 1.0 (lower-right hand 

panel). 

Note: Transport cost, supply elasticity and net value of products 
at downstream market are set to 1. The decision space is 
discretized to .01 increments. The arrow in each panel serves to 
follow the direction of pricing sequence. 

 

Figures 4.6 (for the case of elastic supply) and 4.7 (for the case of inelastic 

supply) show how myopic play will lead to the emergence of a number of non-

cooperative cyclic actions in Terminal-states of the game. Each point represents 

some unstable World-state in the basin of attraction of the game. Such unsteady 

patterns -suggested in the basic proposition - can also be interpreted as market 

outcomes if agents evaluate their forthcoming payoffs through insignificant 

discount factors. Note that the set of World-states comprising the basin of 

attraction of the game is not always unique. For example in addition to the cycles 

depicted in Figures 4.6 and 4.7 - depending on the previous path of agents’ 
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interaction - further distinct basin of attractions might emerge. We identified 

concretely all cyclic paths. For the case of the elastic market and D=0, two 

additional terminal cyclic paths are identified by the simulations. One terminal 

path is indeed encompassing just the unique World-states    ,     = (0.990, 

0.990) for both agents. This point reveals that the system does comprise at least 

some verifiable Nash equilibrium if the locations of firms are interlocked. It is 

namely recapping the Bertrand solution with roughly zero profit for both firms. 

One possible explanation for such an outcome is that in markets with lower 

importance-of-space, no party has any incentive to offer freight absorption 

through UD pricing. The other expected terminal cyclic path in the case of D=0 in 

the elastic market includes points that are adjacent to the points depicted in the 

upper left hand panel of Figure 4.6, thereby resembling a very similar shape.  

The emergence of cyclic price competition in markets with low importance-of-

space, for example in the upper-left hand panel of Figure 4.6 (D=0), might be 

understood as a spatial case of Bertrand competition in which persistent policy 

deviations take the role of classic Bertrand Nash equilibrium. In the case of D=0, 

initiating the price vector    ,     by (0.500,  0.500) for agent B and asking the 

player A to start the sequential A-level perception game, both firms will bid up 

prices by positively updating both elements of their policy. They travel along the 

45 degree line until they achieve a point    ,      which approximates the 

Bertrand solution (0.990, 0.990). More precisely, prices travel up to the points 

(0.980, 0.970) for A and (0.980, 0.980) for B (see the most upper points in the 

upper left hand panel of Figure 4.6).  

The price competition for D=0 is depicted more accurately in Figure 4.8. The 

utility of firms show a strong oscillating pattern initially, yet in long run they 

travel along a downward sloping 45 degree line. Both firms continue to bid up 

reaching the aforementioned prices. The overbidding practice will stop when 

further overbidding no longer allows any of agents to obtain higher utilities by 

taking away from the opponent’s market area. Contrary to Bertrand competition 

where prices achieve a maximum value, opponents always preserve some local 

benefit, i.e. procurement area, in spatial competition. Given the last move of A, 

the rational competitor B ceases the overbidding procedure and decreases its price 

again down to the value of its monopsony regime driving the system to the policy 

points (0.980, 0.970) for A and (0.500, 0.500) for B. Consequently, agent A also 
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lowers its price to some point marginally above its competitor’s monopsony price. 

Yet the overbidding policy cycle is reinitiated as the beginning situation is now 

re-launched.  

For other ranges of D in Figure 4.6 the set of Terminal-states is indeed the unique 

depicted points. The larger the importance-of-space the larger is the transportation 

cost absorbed by firms (    ) approximating the optimal discriminatory pricing 

point at its maximum (1/(1+1), 1/(1+1)).
42

  

Figure 4.7 shows the Terminal-states in the case of having a market with almost 

non-elastic supply (ε=0.05). Farmers in the reality often have just limited 

flexibility to substitute outputs creating relatively inelastic supply in the short run 

(Gardner, 1992). 

Figure 4.7: The processors’ cyclic price strategies in Terminal-states for different 

inter-firms distances 0 (upper-left hand panel), .2, .4, .6, .8, 1.0 (lower-right hand 

panel) with inelastic supply. 

Note: Transport cost and net values of products at downstream 
market are set to 1. The supply elasticity is 0.05. The decision 
space is discretized to .01 increments. The arrow in each panel 
serves to follow the direction of pricing sequence. 

 

Figure 4.7 shows just one potential cyclic price strategy of firms emerging in 

Terminal-states based on different inter-firm distances in a typical inelastic 

                                                                 

42 This monopsonistic optimal pricing strategy implies freight cost absorption by the monopsony 

processor amounts    ,     = (1/(1+ε), 1/(ε+1)) (Löfgren 1986). 
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market. Similar to Figure 4.6, the depicted set of World-states representing the 

basin of attraction of the game is not always unique. For example, for the case of 

the D=0 a total of 2 terminal cyclical paths can be identified. One is demonstrated 

in Figure 4.7 just including the unique World-states    ,     = (0.990, 0.990) for 

both agents. The other Terminal-state in the case of the D=0 is the point    ,     

= (0.990, 1.0) for both agents. Both points confirm that the system setup 

comprises two Nash equilibria if the locations of firms are interlocked.
43

 By 

setting D equal to 0.2, 0.4, 0.6, 0.8, and 1.0 in the inelastic market, the set of 

Terminal-states is indeed promising a total of 2, 6, 2, 3 and 1 cyclic terminal 

paths, respectively. The alternative terminal world sets interestingly comprise 

points that are adjacent to the points depicted in Figures 4.7 resembling some 

shape very similar to the depicted paths.
44

  

Decreasing the importance-of-space leads to basins of attraction that mimic more 

FOB pricing wars with the lowest freight absorption emerging in the semi-

monopsonistic market (the lower right hand panel of Figure 4.7). Consistent with 

Figure 4.6, the lowest right hand panel in Figure 4.7 approximates the optimal 

discriminatory pricing point (.05/(1+.05), .05/(1+.05)).  

                                                                 

43 Our further simulations show that discretizing manner may have an influential on the number of 

equilibriums but not at the magnitude of the presented freight absorption rates and mill prices. 

44 Pricing policies of other Terminal-states are deviating by 0.01-0.02 increments either in factor    

or in    from each other. As an exception, for D=.8 in the inelastic market, the other two non-

depicted cycles are comprising policies with    and    numbers around 0.20. 
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Figure 4.8: Pricing policy path and volatility of utilities by agents applying 

myopic best response knowledge located according to inter-firm distance = 0 

Note: Transport cost, supply elasticity and Net value of products 
at downstream market are set to 1.  

 

4.5.2. High coordination 

In the reality human agents are capable of looking-ahead to future steps of the 

game. This might lead to collusive strategic behavior of firms in Root-states 

dampening the non-cooperative Terminal-state bias. From the results of our 

simulations in high coordination scenario, we can derive the following general 

results in view of the reviewed literature. First, if space is less magnificent the 

range of permissible collusive pricing policies in Root-states can feature some 

wide scope of mill prices as well as freight absorptions rates deviating from 

optimal discriminatory price. Second, more situated the firms far from each other 

at D=1 diverged possible joint policies are assembled approximately around the 

points depicted by low coordination scenarios! 

We computed the set of permissible collusive behaviors of firms in Root-states 

depending on D for agents having discount factors of 0.25, 0.5 and 0.75. Higher 

levels of discount factors means that agents take into account future payoffs or 

they can have deep insight to the compensation possibilities of opponents. The 

outcome of simulation with lower discount factor levels e.g. 0.25 shows that the 

agents in majority of market structures might not manage to get out of price 

disputation in terminal states. However, discount factors of .5 and .75 lead to the 

emergence of a wide range of permissible cooperative interactions among firms.  
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Figures 4.9 and 4.10 show collusive pricing policy of firms in elastic respectively 

inelastic supply market. Note that all obtained permissible pricing policies of 

firms are not indicating symmetric policies for both firms. It means reaching an 

implicit consensus among firms does not necessarily comprise identical pricing 

policies set by firms at equilibrium. Indeed the depicted prices are the set of    

and    of firms that just meet the conditions 1 and 2 in section 4.4.5. However, a 

significant number of depicted collusive policies are indeed symmetric set 

equilibrium prices. 

Figure 4.9: The processors’ equilibrium price policy and corresponded to depicted 

prices utilities in Root-states based on inter-Firms distances 1, 0.4 and 0 (from left 

to right) with discount factors 0.75. 

Note: Transport cost, supply elasticity and net value of products 
at downstream market are set to 1. The decision space is 
discretized to .05 increments. Colours represent utility ranges.  

  

 

Figures 4.9 and 4.10 reveal that lowering the factor importance-of-space leads to 

an increasing number of possible cooperative interactions among firms. This is 

because by lowering D unilaterally actions of agents have stronger impacts on the 

utility of the counterpart. Hence, in such competitive environments, agents learn 

more from each other through building price conjectures about the opponent’s 

reactions in upcoming stages of market interaction.  
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Figure 4.10: The processors’ equilibrium price policy and corresponded to 

depicted prices utilities in Root-states based on inter-Firms distances 1, 0.4 and 0 

(from left to right) with discount factors 0.75 and inelastic supply. 

Note: Transport cost and Net values of products at downstream 
market are set to 1. Supply elasticity is .05. The decision space is 
discretized to .05 increments. Colours represent utility ranges. 

  

 

The range of permissible collusions between firms in Figure 4.9 and 4.10 get 

smaller when increasing the importance-of-space from D=0 to D=0.4, but still 

encompasses a variety of freight absorption rates deviating from the optimal 

discriminatory rates. At D=1, collusive policies are assembled approximately 

around the points          (0.5, 0.5) and          (0.05/1.05, 0.05/1.05) for 

the case of elastic respectively inelastic supply (resembling distinct monopsony 

regimes for firms). Consequently, with increasing importance-of-space, learning 

more about the opponent will not persuade C-level firms to act differently from 

the low coordination scenario, i.e. for firms with “myopical minds”. Hence, 

advantages of strategic thinking for C-level players within the system are more 

diminished more the importance-of-space. Summarizing, a larger range of 

collusive freight absorption rates as well as mill prices are possible with learning 

agents, but only for lower importance-of-space.  

Note that our theoretical model (section 4.4) cannot provide insight in favour of 

any of its obtained pricing rules. Whether pricing rules granting higher utilities for 

both firms are implemented with higher probabilities in reality depends on the 

evolution of knowledge by market players and the possibility to cooperate 
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between firms. What can be asserted is the existence of some leeway for firms in 

interactive (non-monopsonistic) market environments for jointly adjusting the 

elements of their pricing policies e.g. either by jointly offering higher mill prices 

to farms and simultaneously outsourcing the freight absorption to farms or by 

offering lower mill prices and being more in charge of transport costs. This 

violates the assumption that agricultural markets are fully competitive and allows 

for the hypothesis of abuse of dominant positions in agricultural markets 

conditional on the factor importance-of-space e.g. the dairy processing sector in 

Germany (Bundeskartellamt, 2009). 

Nevertheless, obtained collusive equilibria in Root-states grant a higher expected 

utility to processor firms compared to price wars with the difference diminishing 

as the importance-of-space increases. This remains true no matter whether the 

collusive pricing policy of firms is symmetric or not. Table 4.3 demonstrates this 

by comparing expected utilities of agents obtained in Root-state collusions 

(discount factor = 0.75) with average utilities when iterating in cyclic Terminal-

states. In addition the difference between utility of agents A and B is lower in 

collusive states (see average utility differences).
45

  

Collusions might also lead to smaller volatilities in payoff of firms (see min and 

max payoffs in Table 4.3). Finally, high coordinative compromises also contribute 

to the utility maximization intention of the agents. Increasing the inter-firm 

distance in table 4.3, the utility of firms converges to the utility of OD pricing. As 

mentioned above already, the increasing the importance-of-space reduces the 

range of policies to one that assembles around the OD price. 

                                                                 

45 This measure might serve just as an indicator for inequality aversion of firms when establishing 

collusive strategies. 
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Table 4.3: The processors’ utilities based on foresight (in Root-states) compared 

to processors’ utility through non-cooperative actions (in Terminal-states). 

Note: Transport cost, supply elasticity and net value of products at downstream 
market are set to 1. 

  Firms’ coordination in 

Terminal-states (Low 

coordination) 

Firms’ coordination in Root-

states (High coordination) 

Importance-

of-space 

(I) 

Min & 

Max 

payoff 

Expected 

Payoff 

Average 

Utility 

difference 

Min & 

Max 

payoff 

Expected 

Payoff 

Average 

Utility 

difference 

0 0.00, 

13.096 

3.939 7.803 1.325, 

7.363 

4.959 1.052 

0.2 5.195, 

7.040 

6.043 0.89 6.118, 

8.700 

7.437 0.465 

0.4 7.740, 

9.823 

8.669 0.994 8.814, 

9.978 

9.288 0.279 

0.6 8.813, 

10.758 

9.683 0.755 10.141, 

10.990 

10.531 0.153 

0.8 10.5222, 

11.790 

11.192 0.648 11.245, 

11.448 

11.343 0.040 

1 11.063, 

11.993 

11.56 0.448 11.621, 

11.739 

11.666 0.000 

Essentially, we can conclude from table 4.3 that well-coordinated processor 

agents might seek collusion in order to avoid negative repercussions on their 

expected utility and price risk. This kind of coordination advantage proposed by 

our model might be realized by processors in reality, especially if the agents 

facilitate the coordination through established channels of communication.  

4.6. Conclusion 

The aim of this paper was to deepen our insight into the spatial pricing in 

agricultural procurement markets. We investigated the pricing policy of processor 
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agents in spatial agricultural markets from a game-theoretic perspective. Our 

interaction scenarios propose that associating the extent of freight absorptions by 

pricing policy of firms just with factor space in spatial markets might crucially 

depend on the extent of coordination between firms and hence policy 

recommendations based on such measures can lead us in the wrong direction.  

According to the results of the simulation in markets underlying low coordinative 

processors scenarios, when competition space is less significant, cyclic 

equilibrium paths comprising higher partial freight absorption emerge as 

equilibrium. By increasing the factor importance-of-space price cycles converge 

eventually to OD pricing. We show that even if price cycles (Terminal-states in 

our model) mimic the notion of a Nash equilibrium (such that no single agent has 

any rational myopic incentive to get out of equilibrium), such equilibria are not 

necessarily efficient outcome for major players in the market, but simply the one 

that will result from each player individually pursuing his own optimal myopic 

utility response.  

We furthermore reveal that agents who are able to base decisions on what they 

learn from their future rewards can turn market outcomes around. Our model of 

agents’ coordinative interaction suggests that in addition to the spatial structure of 

the market, the pricing behavior of agricultural processors also depends on their 

ability to learn from each other’s upcoming reactions. In a world where 

coordination matters, when competition space is less significant, permissible 

pricing rules at equilibrium are not bounded by spatial features of the market but 

encompass a variety of freight absorption rates and or mill prices. By increasing 

the factor importance-of-space established pricing behavior of firms converge yet 

again to OD pricing.  
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