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Abstract

Neutral atoms trapped in optical lattices are promising candidates for quantum information processing
and quantum simulation. Over the last decades, elegant tools for the manipulation of the internal and
external states of optically trapped atoms have been developed. The crucial capability of scalable internal
state readout in these systems, however, still relies on destructive methods. In spite of the important role
of near-resonant illumination for the manipulation and detection of atoms in the lattice, there also exists a
significant lack of studies on the heating and cooling dynamics of optically trapped atoms interacting
with near-resonant light. An in-depth understanding of the heating and cooling processes is essential to
finding the conditions of illumination that enable the non-destructive internal state readout of multiple
atoms.

This work presents an experimental system to cool, trap, manipulate, and detect the internal and external
states of a small ensemble of 87Rb neutral atoms trapped in a one-dimensional optical lattice. A
high photon detection efficiency in our experimental system allows for fast fluorescence imaging with
acquisition times of 20 ms and fast position determination of atoms in the optical lattice with an accuracy
of ∼ 40 nm.

Using this experimental system, we investigate the heating dynamics of a neutral atom trapped in a
standing wave dipole trap illuminated by a single near-resonant laser beam. A theoretical description to
describe our measurements is provided in two experimentally relevant regimes. First, we consider the
case of a weak near-resonant beam and later the case of off-resonant illumination. From this analysis, we
find settings for the illumination light which allows an atom to scatter many photons before it is expelled
from the trap.

Building on these results we demonstrate simultaneous, non-destructive determination of the internal
state of spatially resolved atoms trapped in a one-dimensional optical lattice with a fidelity of 98.6 ± 0.2%
and a survival probability of 99.0 ± 0.2%. During the readout process, less than 2% of the atoms change
their initial ground state.

In order to determine the state of atoms that are not spatially resolved, a novel image analysis technique
is presented. The technique uses Bayesian methods, which include the statistics of the detected photons
as well as the response from the EMCCD camera. The Bayesian method is implemented on experimental
data for atoms trapped in a one-dimensional optical lattice and its accuracy is tested by numerical
simulations. In addition, an extension of this algorithm for atoms trapped in two-dimensional lattices is
provided.

Finally, the non-destructive state detection method is utilized as a tool for the state determination
following the coherent control of the internal and external states of atoms in the optical trap. Here Raman
sideband cooling is implemented and utilized in an atomic compression sequence for the creation of a
small and dense atomic ensemble. These techniques will play an important role in experiments studying
the collective light interaction of the atomic ensemble in a recently added optical fiber cavity.
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CHAPTER 1

Introduction

The transmission of information between two parties has been an essential part of the evolution of
human society. The necessity for a secure communication has been always present, and it is nowadays
of vital importance for the stability of the complex human society in the information age in the 21st
century. Different ways to encode messages have emerged through the centuries giving birth to the field
of cryptography. A breakthrough in secure communication was achieved by the invention of the so-called
one-time pad encryption [1, 2], which uses a symmetric, random secret key shared between sender and
receiver. This is an optimal method and, in principle, cannot be broken provided the parties do not reuse
their key [3]. To use this scheme the two parties, however, must have a secure channel to share the secret
key.

Quantum mechanics provides a channel where the security relies on basic principles of quantum phys-
ics [4]. This was proposed by Bennett and Brassard [5, 6] and Ekert [7] who have created a scheme
to share a secret key protected by the impossibility of copying a quantum state. The distribution of
quantum states, carried by single photons, over long distances is in practice limited by the losses in the
communication channels. In contrast to a classical communication channel, quantum information cannot
be amplified since amplification, i.e. copying of the quantum state, is not possible. A solution for the
problems caused by the losses in the transmission channels has been proposed by using the so-called
quantum repeater scheme [8, 9], where a quantum memory is an essential element necessary to store and
retrieve information, i.e. qubits, at will.

The internal states of neutral atoms are prominent candidates for the storage of qubits. In particular,
atoms trapped in optical lattices are systems with ideal characteristics [10]. The tight confinement in a 3D
lattice guarantees that the atoms are localized in a small region and limits their movement over distances
much smaller than the wavelength of the light used to encode the information. The fixed locations of the
atoms are a prerequisite for long survival of the spin wave since the motion of atoms destroys the spin
wave and impedes the retrieval of the collectively encoded information [8].

Over the last decades, a large variety of tools have been developed allowing the manipulation and
detection of neutral atoms trapped in optical lattices [11–14]. Coherent manipulation of the internal and
external degrees of freedom provide the means for a precise control of the internal states as well as the
atomic motion, and has lead e.g. to the 3D cooling of an atom to its motional ground state [15–17]. These
tools have been used to perform a wide variety of experiments, from individual quantum systems [18–
20] up to quantum many body systems containing thousands of atoms [21–26]. The scalability of
quantum systems is not only essential for practical applications, such as quantum information storage and
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Chapter 1 Introduction

processing [27–30], or optical atomic clocks [31–33], but it also enables the investigation of fundamental
quantum effects. The control at the single atom level has provided experimentalists with the ability to
simulate complicated physical systems, e.g. in solid state physics, by using atoms trapped in optical
lattice showing their potential to implement quantum simulators [34–37].

Information on atoms trapped in optical lattices is in general obtained by the interaction between light
and the trapped atom. For example, by illuminating the atoms with near-resonant light and collecting the
atomic fluorescence with a high-resolution optical system, it is possible to determine with high accuracy
the number of atoms trapped in an optical lattice as well as their exact localization in the trap [38].

Optical readout can also extract information about an atom’s internal and external degrees of freedom.
For example, by sideband spectroscopy, it is possible to determine the vibrational state of an atom. In
most experiments it is required to determine the internal state of an atom with high precision. Current
techniques for the detection of the internal state of multiple atoms in an optical lattice rely on a destructive
“push-out” method [39]. Using this method, atoms in one hyperfine ground state are pushed out of the trap
when they are illuminated by a strong resonant beam, while atoms in another hyperfine ground state are
off-resonant to the illumination light and, therefore, remain trapped. With this destructive technique it is
possible to estimate their initial ground state from the atoms that survive the push-out beam. The method
has a high fidelity at the cost of removing the atoms from the trap. On the other hand, non-destructive
methods to determine the internal state for a single atom have been implemented, for example by using
an high finesse optical cavity [40–42] and more recently by resonance fluorescence for single atoms in
free space [43, 44]. However, up until now there is no technique that allows the determination of the
internal state of multiple atoms trapped in an optical lattice in a non-destructive fashion.

In this work, I present a new non-destructive tool that allows for a fast and simultaneous determination
of the internal state of multiple atoms trapped in a one-dimensional optical lattice by state dependent
fluorescence. The thesis is structured as follows:

In the first chapter, the experimental apparatus is described. Atoms are cooled in a small magneto-optical
trap and transferred into a one-dimensional tightly focused optical lattice. There a large numerical
aperture lens allows for the precise determination of the atoms’ positions in the optical lattice.

In the second chapter, we study the heating mechanisms present during the interaction between an
optically trapped neutral atom and a near-resonant optical field. We find conditions for the illumination
field that minimize the heating induced by this process allowing an atom to scatter a large number of
photons before it is expelled from the trap.

In the third chapter, I utilize the results obtained in Chapter 2 to implement state-dependent near-resonance
fluorescence, which allows non-destructive state detection. In addition, we present a novel technique that
uses Bayesian methods to include information about the experimental system in order to improve the
fidelity of the readout process. This is experimentally implemented for atoms trapped in a 1D optical
lattice, and an extension for 2D traps is provided.

In the last chapter, the non-destructive method is utilized as a tool for the state detection following the
coherent manipulation of the internal and external states of atoms in the trap. Here, Raman sideband
cooling is implemented and utilized in an atomic compression sequence for the creation of a small and
dense atomic ensemble [45].
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CHAPTER 2

Tools for atom cooling, trapping and detection

Optical cooling and trapping of neutral atoms represent one of the most elegant methods in experimental
physics and has opened a new range of possibilities by allowing access to ultra-low energies. These
techniques have lead to the ability to resolve and manipulate individual atoms in traps containing from a
single atom [18, 38, 46] up to thousands of them [21, 22, 24–26]. The large versatility of these systems
has increased the spectrum for different applications such as fundamental test of quantum mechanics [47],
quantum information [28], and quantum simulation [48].

The fast technological progress in the last decades has shown the benefits of miniaturization and integ-
ration, not only for scientific research but also in the everyday life. Integration of optical elements in
experimental systems for the study of ultracold atoms allows the usage of short focal length and large
numerical aperture lenses to create robust and efficient systems. These optical elements can be used to
create deep potentials, with a size of a few micrometers, and at the same time provide the means for a
fast and precise detection of individual atoms inside the traps.

In this chapter, I present the experimental system used to cool, trap, and detect a small ensemble of
neutral 87Rb atoms. In Sec. 2.1 a general overview of the main setup is introduced. In Secs. 2.2 and 2.3
the implementation of a small magneto-optical trap and a tightly-focused 1D optical lattice is presented.
Finally, Sec. 2.4 describes the detection of 87Rb neutral atoms in the optical lattice by fluorescence
imaging. The technique presented in this last section allows a precise determination of the position of
individual atoms in the optical lattice, the precision of this method is quantitatively analyzed.

2.1 Experimental setup overview

Laser cooling, trapping, and detection of neutral atoms, require three basic components: an ultra-high
vacuum chamber, electromagnets, and detection optics. The first is needed to isolate the atoms under
study from interactions with the surrounding gas. The second, to generate the magnetic fields used
for atom trapping and manipulation. The third is necessary to collect the atomic fluorescence in order
to observe and obtain information from the atoms. In this section, the implementation of the three
components in our system is described.
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Chapter 2 Tools for atom cooling, trapping and detection

Figure 2.1. Experimental chamber. The ultra-high vacuum chamber is mounted on an optical table.
The glass cell is located inside the quadrupole gradient coils

2.1.1 Ultra-high vacuum chamber

To store atoms in optical traps, it is necessary to reduce the background gas pressure in order to decrease
the probability that a background particle collides with a trapped atom and removes it from the trap. In
typical experiments, it is required that atoms are held in place, at least, for a few seconds. Therefore,
an Ultra-High Vacuum (UHV) environment is required. The layout of the constructed UHV chamber is
shown Fig. 2.1. To achieve the required UHV, the chamber was evacuated using two turbo pumps1 in
series while keeping the chamber temperature at 120°C for two weeks2. Then, the chamber was closed
using an all-metal valve3 and cooled down to room temperature reaching a pressure of 2.1 × 10−10 mbar,
measured from the display on the ion pump.

Vacuum pump. In the system, an ion pump from Agilent Technologies, (model VacIon Plus 75) was
installed. Ion pumps provide a continuous vacuum with no mechanical vibrations allowing to reach
pressures down to 10−11 mbar. Due to the intense magnetic fields generated by the permanent magnets
inside the pump, it is preferable to place the ion pump far from the location where the atoms are trapped.

Rubidium source. The 87Rb source is stored in three alkali metal dispensers4 that allow for 87Rb
emission on demand. One of the dispensers was entirely used after closing the system to coat the internal
walls of the UHV chamber before providing a uniform Rb background pressure gas.

Glass cell. To manipulate and cool neutral atoms, it is necessary to switch on and off magnetic fields
within a few milliseconds. This fast switching generates eddy currents in the metallic components of the

1 Pfeiffer, Model TSU 071 E.
2 Previously, the metallic components were baked at 250 °C.
3 Hositrad, model VMD38CF35R.
4 SAES, model RB/Nf/3.4/12/FT.
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2.1 Experimental setup overview

Figure 2.2. Aspheric lenses a) Diagram
of the aspheric lenses mounted in a PEEK
holder connected to an L-shaped stain-
less steel extension. b) Photography of
the lens assembly mounted on a stainless
steel L-shaped extension prior to insert-
ing it into the vacuum chamber. c) Top
view of the aspheric lenses array. All
lenses are aligned to the same focal point.
d) Photography of the four lenses during
the UV-glue curing process. In this pic-
ture, they are glued just to the lower part
of the holder.

UHV chamber, which limits the duty cycle of an experiment. The usage of a glass cell is ideal to reduce
the effect of such eddy currents. In the UHV system, we use a custom octagonal glass cell from the
company Precision Glass Blowing, which has a (non-optical) quartz body with nine optical windows each
with Anti-Reflection (AR) coating on both sides (see Fig. 2.3a). The cell is attached to the chamber via a
glass to metal transition. The AR coating provides a reflectivity < 1.5% per surface for 780-1060 nm,
which means that each window transmits ∼ 97% of the light. The delivered glass cell, though, has a
coating quality below manufacturing specifications. From the 3% of the light that is not transmitted
approximately one quarter of it is dispersed, which represents ten times the dispersion of a standard
optical element with a similar coating.

2.1.2 In-vacuum aspheric lenses

Detection of individual atoms trapped in optical potentials with a size of just a few micrometers relies on
the development of efficient optical systems with a diffraction limited performance. A high Numerical
Aperture (NA) is desirable for a better image resolution and to increase the number of collected photons
emitted by an atom. Common solutions for this application are either large working distance microscope
objectives [22, 49] or in-vacuum aspheric lenses with a shorter focal length [50]. Besides the low cost,
an aspheric lens has the advantage that it can be placed inside the UHV system, avoiding experimental
constraints such as optical compensation for imaging through a window of the vacuum cell, or other
specific geometrical restrictions. Furthermore, the short focal length provides better pointing stability.

The core of our optical system consists of four aspheric lenses with a NA=0.5, a working distance of
5.9 mm, and an effective focal length of 8 mm5. The set of lenses is arranged such that all lenses have
the same focal point (see Fig. 2.2c). These lenses were designed by the manufacturer for laser diode
collimation, the factory design considers the effect of a glass window present on the laser diodes. However,
they can be used as an objective lens for single atom imaging by using an extra long focal distance lens to
compensate for the absence of the glass window, restoring the aberration-free operation [50]. To provide
better optical access for the MOT beams, a small portion of the edge of the four lenses was removed,

5 Lightpath 352240, anti-reflection B-coated.
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Chapter 2 Tools for atom cooling, trapping and detection

Figure 2.3. Glass cell and damping Stage. a) Octagonal glass cell mounted on the vacuum chamber
with the set of aspheric lenses inside. b) Diagram showing the set of aspheric lenses mounted inside the
chamber via the damping stage. c) Top view of the damping stage. d) Calculated transfer function for
the two-stage vibration isolation system.

leaving intact the clear aperture of the lens (see Fig. 2.2d). The four lenses were carefully aligned and
glued to a PEEK holder (see Appendix A), the PEEK holder is then attached to a damping stage by an
L-shaped stainless steel bar and fixed with four silver plated screws inside the vacuum chamber (see
Fig. 2.3).

For the design of the holder, it is important to avoid any metallic component that could reflect the
microwave radiation that will be sent by an external antenna. For this reason, we have used PEEK
as a material for the lens holder. PEEK is one of the few types of plastics that are suitable for UHV
applications [51] and it is easily machined compared to brittle ceramic components.

2.1.3 Damping system

Measurements need to be performed in a vibration-free environment. To this end, the experimental
chamber is mounted in a non-magnetic vibration isolation optical table. Optical tables are designed
to reduce background noise caused by ambient vibrations, usually in the range from a few to 100 Hz.
The air spring of the supporting structure for the table is designed by the manufacturer such that its
first resonance is well above 100 Hz [52]. However, other sources of vibrations still affect the system,
especially acoustic frequencies in the range of 0.1-20 kHz. Remaining effects of external perturbations in
the low-frequency range can be reduced by active feedback techniques, which have a typical bandwidth
of a few kilohertz and can be implemented, e.g. by using piezoelectric elements [53].

Vibrations above a hundred kHz create perturbations that cannot be actively compensated. To reduce the
effect of such high frequencies, the lens system is mounted on a passive vibration isolation stage inside
the UHV system. The design of the stage was inspired by Ref. [54], it consists of two stainless steel
stacks6 separated by Viton® rubber dampers. Viton® is an elastomer that is chemically stable and it has

6 With a mass of 0.6 and 2.2 Kg respectively.
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2.1 Experimental setup overview

0.3mm0.35mm

22cm

20mm

Cooling plate

Water 
connections

Flat-wire coil
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Flat-wire coila) b)

c)

Figure 2.4. Magnetic gradient coils. a) Picture of flat-wire coil with 125 turns. b) Drawing of the
water cooling plate. c) Flat-wire cross section.

physical characteristics that make it ideal to be used inside UHV systems7. It is relatively incompressible
due to its high compressive stiffness, thus providing good long term stability. It also has a high internal
damping, making it suitable to be used as a damper for the vibration isolation stage [55]. Small cylinders
of Viton® with 6 mm diameter and 5 mm length were used as spacers. Each stage is separated from the
next one by a set of three spacers placed 120° from each other. The next layer is rotated by 60°in order to
avoid a direct line of sound [54]. The Viton® spacers rest in hexagonal shaped grooves, which provide
good lateral stability (see Fig. 2.3b,c).

The transfer function of the damping stage can be modeled as a set of coupled damped harmonic
oscillators [56–58]. From the estimated transfer function for the damping stage (see Fig. 2.3d), it is
estimated a reduction of noise at frequencies above 0.1 kHz. The cut-off frequency and the amplitude of
the first resonance could be lowered by increasing the mass as well as by including more stacks.

2.1.4 Magnetic field generation

To trap neutral atoms in a small volume, it is essential to have a fast and precise control over magnetic
fields, in particular, the ability to create either uniform fields or strong magnetic gradients. Uniform fields
can be created by a pair of coils in Helmholtz configuration for each spatial direction. The generation of
a strong gradient is typically achieved by using a pair of coils assembled in anti-Helmholtz configuration
leading to a quadrupole magnetic gradient. This section describes the set of electromagnets used to
generate such magnetic fields.

Gradient Coils

For the design of the electromagnets used to generate the quadrupole gradient, two main aspects need to
be considered: the coil dimensions and heat dissipation. It is ideal to choose the inner diameter of the
coils as small as possible to reduce the driving current required. In our system, the inner dimensions of

7 Down to 10−11mbar [54].
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Chapter 2 Tools for atom cooling, trapping and detection

the quadrupole coils are limited by the glass cell external diameter of 11 cm. Heat dissipation must be
under control, excessive heat generated by high electric current densities may damage the coils. Even at
low currents, the temperature variation of a few degrees will cause thermal expansion that can affect the
stability of the field, especially for bulky coils systems. Therefore, for powers larger than few tens of
watts water cooling is required.

The quadrupole gradient is generated by two stacks of coils in anti-Helmholtz configuration. Each stack
consists of two coils with 125 turns of flat cooper wire (see Fig. 2.1a). The coils are glued8 to a pair of
home-built cooper cooling plates as shown in Fig. 2.4b. The optimum distance between the stacks, at
which the maximum gradient is achieved, was estimated by numerically optimizing the coils system [59].
From the numerical simulation, a field gradient of dBz

dz = 4 Gauss/cm×A is expected. To reduce the
induction of eddy currents, each plate has a slit at the center and the whole system is mounted on a plastic
holder attached to the optical table.

For efficient heat dissipation, a good thermal contact between the electric conductor and the cooling plates
is desirable. For this reason, we have used cooper flat-wire9 with a cross section of 20 mm× 0.3 mm to
build the set of coils as shown in Fig. 2.4. This wire has the advantage that only a thin layer of 25 µm of
Kapton® separates the conductor and the cooling plate. The fact that heat is directly conducted by copper
itself allows for a great heat dissipation. Another advantage, compared to standard round wires, is the
density of copper in the coil, which reduces the required size of the electromagnet. When a continuous
current of 50 A is applied10 to the quadruple coils, and water cooling at 17°C flows through the cooling
plates (from the building’s cooling system), the electromagnets reach an equilibrium temperature11 of
∼ 45°C. Nevertheless, a high gradient is required just for a few milliseconds in most experimental
sequences.

Compensation Coils

Compensation and bias magnetic fields are generated by three pairs of mutually orthogonal coils. The
coils used to generate the field in the xy plane are wound around a plastic holder with an internal diameter
of 3 cm using wire of 0.7 mm diameter cross section, each one containing 90 turns. The coil in the z
direction has an internal diameter of 18.5 cm with the same number of turns and the same wire (see
Fig. 2.1).

All compensation coils are powered by low-noise current power supplies12, which provide stable current
sources with a fast switching time. They run at a constant offset that is set to compensate earth’s magnetic
field but the offset value can be changed by adding a reference voltage via the computer card. However,
when doing so, the stability of the current source is limited by the stability of the computer card. To take
full advantage of the high stability of the supplies, a set of relays was added in order to disconnect the
computer card from the power supplies when a stable field is required in the experimental sequence.

8 Fischer electronik WLK 30 adhesive, thermally conductive, 30G.
9 CMC 38390 Kapton® insulated flat wire.

10 For this measurement we used a power supply from TET electronics model Hercules-5kW, but later it was exchanged to a
power supply from Elektro-Automatik, model EA-PS-3016-20B that provides only up to 16 A.

11 The temperature was measured on the outside part of the coil. Internally the temperature might be slightly higher.
12 Toptica current controller, DC110 and two DC100, all providing up to 500 mA.
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m=+1

m=0

m=-1

a)

b)

c)

Figure 2.5. Working principle of a MOT a) Two
counter-propagating beams, with a frequency ω and
opposite circular polarization interacting with a two-
level neutral atom with a resonance frequency ω0.
b) Position dependence of the MOT’s magnetic field.
c) Position dependence of the energy splitting for
the Zeeman sub-levels.

2.2 A small magneto-optical trap

A Magneto-Optical Trap (MOT) is the essential element to cool and trap neutral atoms from a background
gas at room temperature and it has been extensively discussed in the literature [60–63]. In this section,
a very general description of the working principle of a MOT is presented and later we focus on the
experimental implementation of a small MOT, which is used to capture from a single to a few tens of
atoms.

2.2.1 Working principle

Doppler cooling. Atoms moving at velocity v in a monochromatic light field of frequency ω will
experience the Doppler effect by observing a shift in the light frequency given by ω′ = ω ± k · v, where
k is the wave number. Atoms moving towards (away from) the light source observe a higher (lower)
frequency. When the frequency of the light source is detuned an amount δ ≈ −k · v below the atomic
resonance, atoms moving towards the light source see a resonant field leading to an increased photon
absorption. In each absorption process, an atom preferentially receives a kick from the photon opposite to
its direction of motion and, due to the random direction of the spontaneous emission, the total momentum
of the atom is reduced in the direction of motion.

Optical Molasses. In an optical molasses, three orthogonal pairs of counter-propagating beams are used
to reduce the momentum along all directions by Doppler cooling. Nevertheless, the energy cannot be
arbitrarily reduced since the random nature of the spontaneous emission process acts as a dispersive
mechanism that counteracts the Doppler cooling process. In the steady state this leads, for δ = −Γ/2, to
the Doppler temperature limit [64]

T =
~Γ

2kB
,

where Γ and kB are the natural decay rate and Boltzmann constant.
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Magneto-Optical Trap. An optical molasses reduces the kinetic energy of the atoms but these can still
escape the cooling region due to the lack of a trapping force. To implement such spatial dependent
force, a magnetic gradient is introduced, which creates a position-dependent radiation pressure. The
working principle can be understood better with a 1D example. Assume that a two-level atom with three
Zeeman sublevels, m = −1, 0,+1, interacts with two counter-propagating laser beams. The laser beams
have orthogonal polarizations σ± and their frequency ω is detuned with respect to the atomic resonance
ω0 (see Fig. 2.5). The position dependence is introduced by a magnetic field gradient, which creates a
linear shift on the Zeeman levels. An atom on the right side observes a frequency closer to resonance
for the σ− beam, which pushes the atom to the left. The equivalent happens in the opposite direction,
pushing always the atom back to x = 0. The extension to 3D is straightforward by using three pairs or
counter-propagating beams.

2.2.2 Experimental implementation

Laser system

To generate the beams required to create the MOT, we use two home built diode lasers. The frequency
for both lasers is stabilized using polarization spectroscopy of Rubidium vapor cells [65–67]. The
first laser, which will be referred as the cooling laser, provides a maximum power of 60 mW and it is
locked to the crossover of the transitions F = 2 → F′ = 2, 3. Part of the laser light goes through an
Acousto-Optical Modulator13 (AOM) in double pass configuration to address the F = 2 → F′ = 3
transition, providing a frequency tuning range of ±40MHz. Both frequency and intensity of the beam
are controlled via the computer card. The rest of the light is similarly frequency shifted to address the
transition F = 2→ F′ = 2 (see Fig. 2.6).

The second laser, which will be referred as the repumping laser, provides up to 30 mW of power and
is locked to the transition F = 1 → F′ = 1. Part of the light is sent through an AOM to address the
transition F = 1→ F′ = 2. In this case, the intensity and frequency are fixed and the beams are turned
on and off by using a radio frequency switch.

13 Crystal Technology, LLC., Model: 3080-122 at 80 MHz central frequency.
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Figure 2.7. Simplified MOT setup. Light from the cooling (F = 2 → F′ = 2) and repumping
(F = 1 → F′ = 1) transitions comes out of the optical fibers and it is retro-reflected creating the six
cooling beams.

When fast switching is not necessary, the light is blocked by self-built loudspeaker mechanical shutters,
with a switching time of ∼ 5 ms, all of them are controlled by digital channels of the computer card.

MOT setup

Light from the cooling (F = 2→ F′ = 2) and repumping (F = 1→ F′ = 1) transitions is combined and
coupled into three polarization maintaining optical fibers14, which guide the light to the experimental
chamber. Each beam is retro-reflected in order to create the six cooling beams required (see Fig. 2.7).

The size of the beams used to generate the MOT is limited by the gap between the aspheric lenses
mounted inside the chamber (see Fig.2.2). To create the MOT for the first time, we used elliptical beams
for the x′ and y′ beams with a size of 3 mm× 1 mm (axis full width) and a round beam of 5 mm in
diameter for the z direction. However, stray light generated by these beams severely limits the detection
of single atoms, thus in the final setup, we use round beams on the xy plane with a diameter of 0.7 mm
and 2 mm for the z beam.

The small waist of the beams along the x′ and y′ direction have a Rayleigh length of only 0.5 m, leading
to a strong divergence. If this is not taken into account, the intensity of the retroreflected beam can be
significantly different from the incoming beam at the position of the MOT, which leads to a large optical
imbalance. To overcome this problem, a lens with a focal length of 150 mm is placed in a quasi cat’s-eye

14 All optical fibers mentioned in this work are single-mode polarization maintaining. This will be assumed unless something
different is stated.
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Figure 2.8. MOT characteristics. a-d) Number of atoms loaded in the MOT for different powers and
frequencies. e) Image of the MOT acquired by the EMCCD. The plots at the right side and at the
bottom show a Gaussian fit to the integrated image and the full width half maximum obtained from the
fit. f) Variation of the fluorescence in the MOT as a function of time.

configuration such that the waist of the retro-reflected beam is slightly smaller than the original beam in
order to compensate for the losses on the windows. The position of the lens was finally optimized by
minimizing the variation of the MOT’s position when the laser power is changed.

MOT Characteristics

The fluorescence of atoms in the MOT is collected by one of the aspheric lenses and imaged on an
Electron Multiplying Charge Coupled Device (EMCCD) camera (see Sec. 2.4.3). The high-NA aspheric
lens collects a large number of photons providing a signal to noise ratio enough to distinguish the
entrance and exit of a single atom from a trap containing a few atoms [68–70]. This effect can be used to
determine the number of detected counts per atom in the trap in order to estimate the total number of
atoms contained in the MOT (see Fig. 2.8f).

Fig. 2.8a-d shows the loading characteristics for the MOT using a magnetic gradient of 40 Gauss/cm for
different frequency detunings and intensities of the cooling laser. From the recorded data we determine
the optimum set of parameters: Px = Py = 30 µW Pz = 250 µW for the cooling beams with a detuning
of ∆ = −2π × 10 MHz, and a power Px = Py = 6 µW Pz = 50 µW for the repumper F = 1 → F′ = 1.
Fig. 2.8e shows an image of the MOT for the optimum parameters after it has been loaded for 10 s. From
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2.3 Optical dipole trap

a Gaussian fit to the integrated image of the MOT, a size of 32 × 62 µm is obtained for the FWHM. In the
image, the MOT contains ∼ 30 atoms.

2.3 Optical dipole trap

Optical dipole traps are powerful and versatile tools used in many laboratories to confine and manipulate
ultracold neutral atoms for a large variety of applications, ranging from the control of an individual
atom up to hundreds of thousands of atoms [11, 48]. This trapping technique relies on the electric
dipole interaction between an atom and a far-detuned light field. A conservative force arises from the
dispersive interaction and creates a potential proportional to the light’s intensity. The absorptive part of
the interaction leads to photon scattering, i.e. an atom absorbs a photon from the light field, which by
spontaneous decay is emitted into free space. When the detuning of the light field with respect to the
atomic resonance is large, scattering is strongly reduced, creating a quasi-conservative potential. In this
section, I will focus on a quantum-mechanical description of a single atom interacting with a single-mode
electromagnetic field using the dressed state formalism mainly following Cohen-Tannoudji’s book [71].
Later, the experimental implementation and characterization of a tightly-focused 1D optical dipole trap is
presented.

2.3.1 Monochromatic light interacting with a two-level atom: the dressed state
approach

The interaction of a laser field with an atom is, in general, a complex problem and has been studied
for a long time in the literature [72, 73]. To understand this interaction in an easy and useful way, it
is convenient to use simplified models. The simplest model for an atom in free space is a two-level
system with energy eigenstates |g〉 and |e〉 , for the ground and excited states respectively, separated by
an energy ~ω0. A laser beam can be pictured as a single-mode electromagnetic field inside a lossless
resonant cavity containing a large number N of photons with energy ~ωL. The photon number must be
large enough such that scattering of a few photons by the atom does not alter the field significantly and
can be, therefore, completely neglected. The mode volume V of the cavity has to be large enough such
that it does not modify the atomic decay rate. Both quantities photon number and mode volume can be
arbitrarily large while keeping energy density 〈N〉 /V constant. Under these assumptions, the light field
can be described using the Fock states |N〉 [71].

When the two systems, atom and light field, are brought together, it is natural to describe the system by
choosing the manifold E (N) = {|g,N〉 , |e,N − 1〉} where |i,N〉 = |i〉 ⊗ |N〉 for i = e, g. The manifold
E (N) is commonly refereed as the bare states and represents the eigenstates of the system when the atom-
light coupling is not considered. The states in E (N) are separated by an energy ~∆, where ∆ = ωL − ω0
is the detuning from the atomic resonance. E (N) creates an infinite ladder of pair of states separated by
an energy ~ω0 as shown in Fig. 2.9c.

The Hamiltonian describing the two-level atom interacting with a single mode electromagnetic field can
be written in the rotating wave approximation (RWA) as
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Two level 
atom

E.M. Field Bare 
states

Dressed 
states

a) b) c) d)

Figure 2.9. Bare and dressed states basis . a) Two-level atom. b) Single-mode EM field detuned by
∆ to the atomic transition. c) In the bare state picture the atom undergoes Rabi oscillations (circular
arrow) until spontaneous decay takes place (wavy line). d) In the dressed state picture, an atom remains
in its initial state until one of the four allowed decays occurs (Γi j). When the intensity of EM field is
spatially dependent (illustrated in the upper plot) the AC-Stark shift creates an attractive or repulsive
potential depending on the internal state.

Ĥ = ĤA + ĤL + ĤA-L, (2.1a)

ĤA = ~ω0 |e〉 〈e| , (2.1b)

ĤL = ~ωL
(
â†â

)
(2.1c)

ĤA-L = −d̂ · Ê =
RWA

~Ω0

2

(
σ̂†â + σ̂â†

)
. (2.1d)

ĤA represents the energy of the atom in free space, ĤL is the energy contained in the electromagnetic
field where â† and â are the rising and lowering operators for the field. The last term ĤA-L represents the
atom-light coupling where d̂ is the dipole operator, Ê = E0â + E∗0â† is the electric field, σ̂ = |g〉 〈e| is the
atomic lowering operator and Ω0 is the resonant Rabi frequency that characterizes the strength of the
interaction.

For a linearly polarized electric field, the resonant Rabi frequency Ω0 can be written as [63, 71]:

Ω0(r)
2

=

2
√

Nd · E0

~

2

=
6πc2Γ

~ω3
L

I(r), (2.2)

where I(r) is the intensity of the light field and Γ the atomic natural decay rate.

Due to the atom-light coupling via ĤA-L in Eq. (2.1), the bare states |g,N〉 , |e,N − 1〉 are no longer the
energy eigenstates of the system. To find the new energy eigenbasis, we diagonalize the Hamiltonian in

14



2.3 Optical dipole trap

Eq. (2.1), which spanned on the bare state basis has a matrix form

Ĥ = ~

 NωL
Ω0
2

Ω0
2 NωL − ∆

 .
The new eigenstates of Ĥ are the so-called dressed states

|+,N〉 = sin θ |g,N〉 + cos θ |e,N − 1〉 , (2.3a)

|−,N〉 = cos θ |g,N〉 − sin θ |e,N − 1〉 . (2.3b)

With their respective eigenenergies

E± = N~ωL −
~

2
∆ ±
~

2
Ω,

where the mixing angle is defined by

tan 2θ = −
Ω0

∆
, 0 ≤ θ ≤ π,

and Ω =

√
∆2 + Ω2

0 is the generalized Rabi frequency.

Spontaneous emission

Photon absorption and spontaneous emission are one of the most basic processes in atom-light interaction,
and it will be one of the central parts in this work. It is meaningful to understand how this process can be
described from the perspective of the bare and dressed states basis.

In the bare state basis. When an atom interacts with an electromagnetic field, it undergoes Rabi
oscillations between |g,N〉 and |e,N − 1〉 . Such oscillations can be understood as a coherent absorption
of a photon followed by a stimulated emission into the same mode [71]. When spontaneous emission
occurs, a photon is removed from the field and emitted into free space. This is a transition from |e,N − 1〉
to |g,N − 1〉 (see Fig. 2.9c). A spontaneous emission of a photon occurs necessarily from the excited to
ground state, i.e. transitions like |g,N − 1〉 → |g,N − 2〉 are forbidden.

In the dressed stated basis. The states |±,N − 1〉 are the eigenstates of the system, which means that in the
absence of spontaneous decay any of the dressed states will remain unchanged. However, spontaneous
decay is present and the dressed states decay. In this process, a photon is removed from the field and
emitted into free space. However, there is an interesting difference on the allowed transitions compared
with the bare state case: from the definition of the dressed states in Eq. (2.3), it is evident that both are
composed by |e,N − 1〉 and |g,N〉. In consequence, the four transitions |±,N〉 → |±,N − 1〉 are possible
(see Fig. 2.9d).

2.3.2 The secular approximation: steady state solution

The population of the dressed states varies over time depending on the light’s frequency and intensity.
The evolution of the system can be described using the density matrix formalism by solving the full
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master equation for ρ projected in the dressed state basis. Solving these equations is, in general, not a
simple problem. However, in the secular approximation, Γ � Ω, i.e. large detunings or intense fields, it
is possible to reduce the problem to a set of rate equations to describe the system [71]

ρ̇++ = −Γ+−ρ++ + Γ−+ρ−− , (2.4a)

ρ̇−− = Γ+−ρ++ − Γ−+ρ−− , (2.4b)

ρi j =
∑

N

〈N, j| ρ |N, i〉 , for i, j = −,+. (2.4c)

Here ρi j are the reduced components of the density matrix [73] that represent the population and
coherences of the corresponding dressed states. If the secular condition is fulfilled, the transition rates Γi j

are proportional to the matrix elements of the atomic rising operator
〈
σ̂†

〉
i j,

Γi j = Γ
∣∣∣〈σ̂†〉i j

∣∣∣2 for i, j = −,+, (2.5)

and the matrix elements given by

〈σ̂†〉++ = 〈+,N | σ̂† |+,N − 1〉 = sin θ cos θ, (2.6a)

〈σ̂†〉−+ = 〈−,N | σ̂† |+,N − 1〉 = − sin2 θ, (2.6b)

〈σ̂†〉+− = 〈+,N | σ̂† |−,N − 1〉 = cos2 θ, (2.6c)

〈σ̂†〉−− = 〈−,N | σ̂† |−,N − 1〉 = − sin θ cos θ. (2.6d)

The system reaches its steady state on time scales on the order of Γ−1 leading to steady state populations

ρst
++ =

sin4 θ

cos4 θ + sin4 θ
, ρst

−− =
cos4 θ

cos4 θ + sin4 θ
. (2.7)

Combining Eqs. (2.5), (2.6) and (2.7), we find the photon scattering rate in the steady state associated to
each transition

Ri j
sc = ρst

ii Γi j for i, j = −,+. (2.8)

It is important to keep in mind that these results are valid just for the secular approximation, the validity
of this approximation relies on a fast decay of the coherence between the dressed states. The decay time
must be shorter than the relevant time scales for the external dynamics of a trapped atom, only then ρ±,∓
can be completely neglected. I will come back to this point in Chap. 3.

2.3.3 A far-red detuned dipole trap for a two-level system

Now, let us consider the case of a far-red detuned light field (∆ < 0, Γ � |∆|). In this case, only one term
dominates in the superposition that defines the dressed states in Eqs. (2.3). This means that the dressed
states are well approximated by the original bare states

|+,N〉 ≈ |e,N − 1〉 , |−,N〉 ≈ |g,N〉 . (2.9)
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However, their energy strongly depends on the intensity of the field

E+ ≈ N~ωL + ~
Ω2

0(r)
4|∆|

, E− ≈ N~ωL − ∆ − ~
Ω2

0(r)
4|∆|

. (2.10)

This means that the presence of the field is reflected only as a position-dependent AC-Stark shift. For red
(negative) detuning, the energy E− is shifted downwards as the intensity increases, creating an attractive
potential U− for |−,N〉. The opposite happens for |+,N〉 where the energy E+ increases with the intensity
creating a repulsive potential U+ (see Fig. 2.9d),

U−(r) = −~
Ω2

0(r)
4|∆|

, U+(r) = ~
Ω2

0(r)
4|∆|

. (2.11)

The number of photons scattered per unit of time can be calculated using Eq. (2.8)

R++
sc (r) = Γ

(
Ω0(r)

2∆

)6

, R+−
sc (r) = Γ

(
Ω0(r)

2∆

)4

, (2.12a)

R−+
sc (r) = Γ

(
Ω0(r)

2∆

)4

, R−−sc (r) = Γ

(
Ω0(r)

2∆

)2

. (2.12b)

Even though for large detunings the dressed states look very similar to the original bare states, the
scattering rates calculated above manifest a strong difference between dressed and bare states. While
for the bare states the transition |g,N〉 → |g,N − 1〉 is forbidden, for the dressed states the transition
|−,N〉 → |−,N − 1〉 is the main decay channel.

Finally, it is convenient to express the dipole potential for the ground state in Eq. (2.11) and the scattering
rate in Eq. (2.12) using the value for the Rabi frequency in Eq. (2.2)

Ug (r) ≈ U− (r) =
3πc2Γ

2∆ω3
0

I (r) , (2.13a)

Rsc (r) ≈ R−−sc =
3πc2Γ2

2∆2~ω3
0

I (r) . (2.13b)

The role of the dipole force fluctuation

The four scattering rates in Eqs. (2.12) represent all scattered photons from the dipole trap into free space.
For a far-red detuned dipole trap, an atom remains most of the time in the state |−,N〉, therefore we can
just focus on the rates R−−sc and R−+

sc . For scattering events described by R−+
sc , an atom is transferred from

an attractive to a repulsive potential, and for the time the atom remains on the state |+,N〉, the trap exerts
a repulsive force on the atom until it decays back to the attractive potential. The random fluctuation from
a trapping to a repulsive force creates a diffusion of the atom’s total energy that can lead to the loss of the
atom. This stochastic process will be referred as the dipole force fluctuations. In contrast, for scattering
events described by R−−sc , an atom scatters a photon but the trapping potential remains the same, i.e. the
only energy gained during this process is by photon recoil (see Fig. 2.9d).

In the special case of a far-red detuned dipole trap (Ω0(r)/∆ � 1 ), from Eqs. (2.12) it follows that
R−−sc � R−+

sc , i.e. most of the scattered photons do not create any dipole force fluctuation. Therefore the
only source of heating is the recoil induced by the absorption and emission process.
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Figure 2.10. Multilevel effect on the AC-Stark Shift. a) Dipole allowed transitions used for the
calculation. The red dashed-lines were used for the 5S 1/2 ground state shift and the blue solid-lines for
5P3/2 excited state. b) The calculated AC-Stark shift for a linear π-polarized dipole trap interacting
with 87Rb. Only the relevant excited states are shown, the numbers in the level diagram indicate the AC-
Stark shift in units of MHz/mK. For π polarization the shift does not depend on the sign of the mF level.

2.3.4 AC-Stark shift in a multilevel system

The structure of an atom, 87Rb in this case, is more complex than a simple two-level system. For a real
atom, each state of the hyperfine manifold couples to every dipole-allowed transition. When the induced
AC-Stark shift is much smaller than the dipole trap detuning, it is a good approximation to assume that
the shift induced by the transitions are independent of each other and, therefore, the total AC-Stark shift
can be calculated as the sum of all the individual contribution for each allowed transition.

The effect of the multilevel atomic structure affects differently the ground and excited states. For the
hyperfine ground states of 87Rb, and π-polarized light for the dipole trap, the main contributions to the
AC-Stark shift are the D1 and D2 lines. Moreover, the AC-Stark shift for the ground state is independent
of the particular mF quantum number. Therefore, the potential for the ground state and total scattering
rate can be written as [11]

Ug (r) = −
3πc2Γ

2∆effω
3
0

I (r̃) , Rsc (r) =
3πc2Γ2

2∆2
eff
ω3

0~
I (r) , ∆eff =

1
3

(
2

∆D2

+
1

∆D1

)
where ∆D1 and ∆D2 are the detunings from the D1 and D2 lines and ∆eff is an effective detuning that
accounts for the contribution of both lines.

For the manifold in the excited state 5P3/2, each of the mF levels is shifted differently. To estimate
the AC-Stark shift for each mF level for F′ = 2, 3, we follow Ref. [74]. The calculated AC-Stark shift
induced by π-polarized light is shown in Fig. 2.10 as well as the transitions used in the calculation.
Only the states F′ = 2, 3 are shown since these are relevant levels for the discussion in the following
chapters.
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Figure 2.11. Simplified dipole trap scheme. Details such as wave plates, lenses and other optical
elements are omitted for the sake of simplicity.

2.3.5 Experimental implementation

One of the most common ways to implement an array of optical potentials is by a 1D standing-wave
dipole trap. In our system this is created by two counter-propagating linearly-polarized Gaussian beams.
The intensity of the created interference pattern is described by

I (r) = Imax
w2

0

w2 (x)
exp

−2
(
y2 + z2

)
w2 (x)

 cos2 (kDTx)

w2 (x) = w2
0

1 +

(
x
xR

)2 , xR =
πw2

0

λDT
, Imax =

8P
w2

0π
,

where P is the power of each beam (here assumed to be equal), w (x) is the spot size at position x, w0 is
the beam waist, xR is the Rayleigh length, λDT and kDT are the wavelength and wave vector and Imax is
the peak intensity. This creates trapping potentials proportional to the intensity

U (r) = U0
w2

0

w2 (x)
exp

−2
(
y2 + z2

)
w2 (x)

 cos2 (kDTx)

U0 =
3πc2ImaxΓ

2ω3
0∆eff

, ωaxial = kDT

√
2U0

m
ωradial = 2

√
U0

mw2
0

where U0 is the maximum trap depth, ωaxial and ωradial are the harmonic oscillation frequencies at the
bottom of the trap in the respective directions.
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Chapter 2 Tools for atom cooling, trapping and detection

Laser delivery system

To create potentials deep enough to trap neutral atoms, we use a Titanium-Sapphire (Ti:Sa) laser that
delivers up to 700 mW at 860 nm from which 80% can be coupled into single-mode polarization-
maintaining fibers. The beam is divided into two using a variable beam splitter, from where it is directed
into two different fibers as shown in Fig. 2.11. The power of the laser is used in different ways depending
on the experiment.

Path I. (A-E-O)15:

• A fraction of the Ti:Sa power is coupled into fiber (A). The power can be varied using a variable
beam splitter.

• After the optical fiber (A), the beam is separated into two parts, each of them is shifted +160MHz
using a pair of AOMs in double pass configuration and the light is then coupled to the fibers (E).
With this configuration, a maximum of 130 mW can be transmitted at the end of the fibers (E).

• After the output couplers (O), the light is sent to the experimental chamber.

Path II. (B-C-D-O):

• Using the variable beam splitter, 60 mW of power is transmitted at the output of the optical
fiber (B).

• After the optical fiber (B), the light is split into two beams and sent through two tapered amplifiers.
Each beam is amplified to a maximum of 2W from which, after the optical elements, 30% of the
light can be coupled into the optical fibers (C).

• After the fibers (C), each beam is sent through an AOM which shifts the frequency by -160MHz
and then are coupled into the fibers (D). With this configuration, a maximum of 180 mW can be
transmitted at the end of the fibers (D).

• If this path is used, the fibers (E) and (D) can be easily interchanged without affecting the alignment
after the point (O).

For most of the experiments path I is used since it provides better stability. If a high power is required
path II is used.

Dipole trap parameters

After the output couplers (O), the beam has a waist of 0.45 mm and is linearly polarized along the z
axis. A beam sampler reflects 10% of the light to a pair of amplified photo-diodes (PD). The PDs,
together with the AOMs are used to stabilize the dipole trap intensity by a closed feedback loop using a
proportional-integral servo circuit. The power is adjusted by adding an offset voltage to the PDs using
the computer control system.

The light transmitted after the pickup plates is sent to the experimental chamber, where it is focused
down by the set of aspheric lenses mounted inside the vacuum system. An extra pair of lenses is used to
compensate for chromatic aberrations. The physical parameters of the 1D standing wave are summarized
in Table 2.1.
15 The letters A-E indicate the label of the optical fibers used in the path shown in Fig. 2.11, and O indicates the final output.
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2.3 Optical dipole trap

Table 2.1. One-dimensional standing wave dipole-trap parameters

Quantity Symbol Calculated value

Wavelength λDT 860 nm

Waist w0 5 µm

Rayleigh length xR 91 µm

Trap depth U0 41.6 µK × P [mW]

Scattering rate Rsc 1s−1 × P [mW]

Axial frequency ωaxial 2π × 104 kHz × P [mW]1/2

Radial frequency ωradial 2π × 4 kHz × P [mW]1/2

Although all the experiments mentioned in this work are performed using only the standing wave in the
x direction, a second standing wave can be created along the y direction in exactly the same way (not
shown in the figure for simplicity). Appendix B shows the configuration used to create a two-dimensional
lattice when a high power in the beams is not required.

Experimental measurements

Lifetime measurement. To estimate the lifetime of the atoms in the trap, a few atoms are loaded from
the MOT into the dipole trap using a power of 35 mW for each arm. Then 30 images are taken with an
exposure time of 100 ms and separated in time by one second. The images are later used to estimate the
number of atoms in the dipole trap (details regarding atom counting are explained in Sec. 2.4.4). This
measurement was done for two different configurations of the trapping light.

• Configuration I. The wavelength of the Ti:Sa laser is adjusted at 880 nm and sent through the path
I creating a trap depth of 1.2 mK.

• Configuration II. The wavelength of the Ti:Sa laser is adjusted at 860 nm and sent through path II
generating a trap depth of 1.5 mK.

Fig. 2.12a shows the survival probability of the atoms trapped the dipole trap for both configurations.
From an exponential fit to the measured data, we estimate a lifetime of 49.5 ± 3.6 s for the configuration I
and 24.8 ± 0.8 s for configuration II.

AC-Stark shift measurement. To experimentally measure the AC-Stark shift induced by the dipole trap
with a wavelength of 860 nm [74], a few atoms are loaded in the standing wave and pumped to the state
F = 2,m′F = −2. The power of one arm of the trap is fixed at P1 = 18 mW and the other is adiabatically
set to four different values16 P2 =21, 41, 84, 127 mW. Then a weak illumination beam, near-resonant
to the transition F = 2,m′F = −2 → F = 3,m′F = −3 with an intensity of ∼ 0.1Isat, is turned on for
0.1 ms using different frequencies for each value of P2. The scattered fluorescence is recorded by the
EMCCD camera. By fitting a Lorentzian curve to the recorded fluorescence spectrum, we obtain the

16 Only one arm is changed in order minimize the intensity variation at the bottom of the trap, by not creating a full-contrast
interference pattern for the standing wave.
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Figure 2.12. Atomic lifetime in the dipole trap and AC-Stark shift. a) Two sets of data are shown, the
blue squares were measured using the Ti:Sa laser at 880 nm with 35 mW for each beam (trap depth of
1.2mK). Red circles using the Ti:Sa at 860 nm + tapered amplifiers with the same power for each beam,
(trap depth = 1.5mK). The lines are a fit to an exponential function and the shaded area represents a
95% confidence interval. b) AC-Stark shift spectrum for 4 different powers of the dipole trap, the
values in the legend corresponds to the respective dipole trap intensity. c) Linear fit to frequency shift
obtained for different intensities in the dipole trap. For b and c the error bars represent one standard
deviation obtained by bootstrap resampling.

resonance frequency of the AC-Stark shifted atoms for each value of P2 (see Fig. 2.12b). From the fit,
we estimate an AC-Stark shift of 2π× 9.2 ± 0.1×109 MHz W−1 m2, where we have assumed a waist
of 5 µm for the dipole trap17. This value for the AC-Stark shift is close to a theoretical expectation of
2π× 9×109 MHz W−1 m2 calculated following Ref. [74].

2.4 Fast detection of individual atoms by fluorescence imaging

To study and manipulate neutral atoms trapped in an optical lattice, it is necessary to first obtain basic
information about the atomic ensemble, for instance, the number of atoms in the trap and their position
in the lattice. One way to retrieve such information is by illuminating the atoms with near-resonant light
in a molasses configuration in order to create an image using the EMCCD camera. Then by analyzing the
image, extract the desired information. This imaging technique has already been implemented in our
research group [66, 75], as well as in other laboratories [21, 22]. In such systems, atoms are illuminated
for ∼ 1 s using a low intensity molasses in order to minimize hopping of the atoms to adjacent lattice
sites. With this technique, it is possible to determine the position of the atoms in the lattice with high
accuracy. However, it is desirable to reduce the image acquisition time, for example to implement fast
feedback loops. The exposure time, which is limited by either a low detection efficiency (<1%) [66, 75]

17 In Chap. 5, a measurement of the trapping frequency leads to a smaller waist of 4.75 µm, using this value for the dipole trap
beams we obtain an AC-Stark shift of 2π×8.1 ± 0.1×109 MHz W−1 m2 which is also close to the theoretical expectation.
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2.4 Fast detection of individual atoms by fluorescence imaging

or by atom hopping in a shallow trap (U0 ∼0.3 mK) [21, 22, 75], can be reduced by using a large NA
objective to image atoms in a deep trap.

This section presents the experimental characterization of the fast detection of individual atoms in a
tightly-focused 1D standing wave. We start with a brief introduction to the position determination
problem (Sec. 2.4.1), a description of the imaging setup (Sec. 2.4.2), and a detailed characterization of
EMCCD camera (Sec. 2.4.3). Then we analyze the quality of the imaging system and determine the line
spread function of the optical system (Secs. 2.4.4 and 2.4.5). Finally, the line spread function is used
to determine the position of the atoms in the lattice and the accuracy of the position determination is
quantified (Sec.2.4.6).

2.4.1 Localization of single atoms in an optical lattice

The position of an atom in an optical lattice can be determined using fluorescence images. The accuracy
of this position depends on the quality of the image generated, which can be deteriorated by different
mechanisms. For example: optical diffraction by the imaging optics, which leads to the formation of an
Airy pattern at the image plane that blurs the image and limits the optical resolution; the finite size of the
pixels on the CCD, which creates a spatial filter that averages out the small structures of an image; and
image contamination by stray light and electronic noise during the readout process.

The localization precision is, therefore, limited by the characteristics of the imaging system. If the noise
sources are minimized and the effect of the CCD is negligible, the generated image will still be limited
by light diffraction due to the finite aperture of the lens used to collect the atomic fluorescence. However,
it has been shown that the position determination of atoms in a 1D lattice can surpass the diffraction
limit [38, 76]. Furthermore, the localization precision of a single atom in a one-dimensional lattice can
be estimated by [76, 77]

(∆x)2 =
RMS2

PSF + ∆2
p/12

N
+

4
√
πRMS3

PSFσ
2
bnv

∆pN2 , (2.14)

where RMSPSF is the width of the Gaussian function that best approximates the point spread function, ∆p

is the size of the pixel in the object plane, σb is the RMS background noise, nV is number of vertically
integrated pixels and N is the mean number of detected photons.

In the remaining part of this chapter, we will show that by choosing an adequate magnification of the
optical system, reducing the noise sources, and using adequate parameters for the illumination light, the
position of atoms trapped in a one-dimensional lattice can be determined with an accuracy of a few tens
of nanometers from an image acquired in only 20 ms.

2.4.2 Imaging optics

The set of aspheric lenses described in Sec. 2.1.2 is used to collect light from the MOT and to detect
individual atoms in the dipole trap (see in Fig. 2.13a). A pair of aspheric lenses (3 and 4) is used to
create the standing wave dipole trap while the other pair (lenses 1 and 2) is used to collect the atomic
fluorescence. To guarantee a diffraction limited performance of the optical system, the light collected
with lens 1 is slightly divergent when leaving the glass cell (see Sec. 2.1.2) then it is collimated with
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Figure 2.13. Single atom imaging. a) Sketch of the imaging optics. b) Image taken with the EMCCD
camera. The upper row of atoms is the “normal” image, and the lower row is the image obtained
using the reflected light. The reflected image is mirrored along the x axis as illustrated by the arrows.
c) Integrated number of counts along the vertical direction for the normal and reflected images.

a compensation lens (f=600mm) and finally focused on the EMCCD camera using a lens with a focal
length of 500 mm. A pair of interference filters18 are placed in front of the camera to reduce background
light. The light collected with lens 2 is reflected back using a Porro prism19 and then focused on the
EMCCD sensor detecting up to 50% more light. Fig. 2.13b shows an example of the direct and the
reflected image. The difference in amplitude between two images is expected due to additional losses
originating from the retroreflected path (∼ 20%); furthermore, while in the direct imaging path lens 1
images a point source, in the reflected path lens 1 images an Airy disk (due to diffraction in lens 2), which
contains at most 85% of the light in the central peak.

The Porro prism was aligned in all directions such that the position of the reflected image coincides with
the position of the original image. In Fig. (2.13)b both signals appear separated by a few pixels, this was
done only for illustration purposes. From now on, we will refer to the image created by lens 1 (with no
prism) as the “direct” image, and the combination of the reflected and the direct signal as the “combined”
image.

One must note that the light reflected by the Porro prism is mirrored along the x axis (illustrated by the
arrows in Fig. 2.13b). The atoms move along the radial direction (along z and y) over distances larger
than the illumination wavelength, therefore any possible interference effects are not visible since they are
averaged out.
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Figure 2.14. Collection efficiency. a) Dipole emission for σ light illumination. b) Stacking result for
reference images (left), fluorescence collected with only one lens (middle), and fluorescence collected
using also the Porro prism (right).

Measuring the collection efficiency

All the information that we obtain from the atoms trapped in the lattice comes from the photons detected
by the EMCCD camera. For a quantitative understanding of the photon scattering process, it is necessary
to estimate the total number of scattered photons from the small fraction that is detected. It is possible
measure the detection efficiency by illuminating the atoms with an intense resonant beam as illustrated in
Fig. 2.14a, and then compare the number of detected photons with a theoretical expectation.

When an atom is illuminated with polarized light, the photon emission is described by a dipole pat-
tern [78], which needs to be taken into account to correctly estimate the number of detected photons. For
example, illuminating an atom with σ polarized light reduces slightly the number of collected photons in
comparison with the spherical emission case (see Fig. 2.14a). The percentage of photons detected when
illuminating with σ polarized light, i.e. the Collection Efficiency (CE), is given by the integration of the
dipole pattern over the solid angle subtended by the lens.

CEσ =

∫ θ=θ f

θ=θ0

∫ φ=φ0

φ=−φ0

3
8π

(
cos2 θ + 1

)
sin θdθdφ (2.15)

φ0 = arcsin


√

NA2

sin2 θ
−

1
tan2 θ

 , θi =
π

2
− arcsin(NA), θ f =

π

2
+ arcsin(NA).

18 Semrock, 780 nm MaxLine ® laser clean-up filter.
19 Porro prism from Precision Optical, a clear aperture diameter of 0.5”, 180° beam deviation < 2 arc seconds and AR coating

reflecting approximately 6.2% at 780 nm. We have observed that the edge quality of the prism plays an important role. In our
first attempt, we have used a corner cube retro-reflector but it was not possible to observe the reflected image. The problem
was solved by using a Porro prism with knife edge quality.
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Chapter 2 Tools for atom cooling, trapping and detection

From a separate measurement (see Sec. 2.4.5), we estimate that the aspheric lens used to collect the
atomic fluorescence has a NA= 0.43, thus it subtends 4.9% of the total solid angle. Using the measured
NA, Eq. (2.15) leads to a CEσ = 3.8% for a single lens. Some of the collected light is lost due to the
optical elements used to guide the collected fluorescence and due to the quantum efficiency of the camera.
Taking into account all possible losses20, we expect to detect 51 ± 13% of the collected photons, leading
to a theoretical detection efficiency of 1.9 ± 0.5% of the scattered photons.

To experimentally measure the detection efficiency, a few atoms are loaded in the dipole trap and an
image is taken. The trap is adiabatically reduced to 200 µK and then it is switched off. A strong resonant
beam is turned on for tprobe =10 µs while the camera is exposing. The resonant beam propagates along
the z direction, with an intensity of 21 Isat and is resonant with the cycling transition F = 2,mF = −2→
F′ = 3,mF = −3. At the same time, we use a strong repumper resonant with the F = 1 → F′ = 1
transition and an intensity of 14 Isat. We assume that the atom scatters photons like an ideal two-level
system at a rate

Rsc =

(
Γ

2

)
s

1 + 4 (∆/Γ)2 + s
, (2.16)

where s is the saturation parameter and ∆ the detuning of the illumination light from the atomic resonance.
Assuming an uncertainty of 10% on the power of the resonant beam and ±2π × 2.5 MHz on its frequency,
using Eq. (2.16) we estimate that the number of emitted photons is Rsctprobe ≈ 182+0.8

−20 . During the
illumination time, an atom displaces a distance d ≈ ~kΓ

4m t2 < 5 µm and remains within the field of view of
the camera.

The detection efficiency is measured for the direct image (without the Porro prism) and for the combined
image (with the Porro prism). For the direct image we obtain a detection efficiency of 1.97+0.11

−0.25%, which
agrees with the theoretical expectation, and for the combined image we obtain21 2.87+0.07

−0.32%. To obtain
the CE of the direct image, we used 3300 single and for the combined image we used 104 atoms. To
confirm that the atom did not move a distance bigger than the field of view during the illumination
process, the position of the atoms in the reference image is determined22 and used to stack all images
containing the signal of just a few photons of the detected fluorescence. With this procedure, it is possible
to obtain an image of the atoms as they fall while being illuminated (see Fig. 2.14)b.

2.4.3 EMCCD camera

To detect the weak atomic fluorescence, we use an EMCCD camera from Andor technology, model Ixon 3
DU-897-BV with 512×512 pixels of 16 µm × 16 µm and a quantum efficiency of ∼ 75% for a wavelength
of 780 nm. The EMCCD works as a usual CCD with the addition of an Electronic Multiplication (EM)
gain register before the readout process (for more details regarding the operation of an EMCCD see
Refs. [79, 80]). Due to its low electronic noise, it is capable of single photon detection when operated at
high EM gain, making it ideal for single atom imaging. This section presents the characterization of the
EMCCD as well as the determination of the mean number of counts detected per photon.

20 6 mirrors R=99.4 ± 0.4%, 3 lenses T=99.25 ± 0.25%, 1 glass cell window T=97 ± 1%, camera QE=75 ± 5%, 2 Interference
filters T = 96.5 ± 1.5%, 1 Dichroic B.S. R = 95.0 ± 2.5%. Light collected in the cropped ROI 93.5 ± 3.5%.

21 The error was estimated using Gaussian error propagation accounting for the camera photon to electron conversion error (see
Sec. 2.4.3) as well as power and frequency estimations, the statistical error in the measurement was estimated by bootstrap
resampling.

22 Details regarding the position determination are presented in Sec. 2.4.6.
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2.4 Fast detection of individual atoms by fluorescence imaging

Electronic noise characteristics

In a conventional CCD, even when no photoelectrons are generated on the sensor, undesired charges are
created during the readout process, mostly due to the conversion from the analog to a digital signal. The
number of generated electrons during this process is described by a normal distribution [80]

Pread (n, µ, σ ) =
1
√

2πσ
exp

(
−

(n − µ)2

2σ2

)
(2.17)

where µ is an electronic offset added to the output signal and σ is the width of the noise distribution.

To overcome such readout noise, in an EMCCD the signal is amplified before the readout process. To
this end, the charges are shifted through an EM gain registers where a charge generates a second one with
a small probability p0 by impact ionization (usually p0 ≈1%). Even though the probability is quite small,
after several hundreds of amplifications steps (536 for our system [79]) this results in a large gain.

One disadvantage of the EM process is that for a single photoelectron on the CCD, the number of charges
generated after the EM process is described in a probabilistic way. If a photoelectron enters the gain
register, the resulting number of electrons n after the amplification process is described by an exponential
distribution [80, 81]

PEM (γ, n) =
1
γ

exp (−n/γ) η (n) (2.18)

where η (n) is the step function, γ = (1 + p0)N , N is the number of amplification stages, and γ can be
interpreted as the mean number of generated electrons per detected photon.

Besides the readout noise, there are other sources of noise that originate in different parts of the image
transfer process. These are:

• Clock induced charges (CIC): charges that originate on the CCD when the pixels are shifted. These
charges undergo amplification on the EM register.

• Dark current: thermally generated charges in the sensor whose number is proportional to the
exposure time. To reduce these charges, we operate the camera at -80°C for short exposure times
(5-100 ms). These charges undergo full EM amplification; however, compared to other noise
sources these charges are negligible.

• Serial clock-induced charges (sCIC): charges generated by pixel shifting in the gain register,
therefore they do not undergo full amplification. An electron generated in the kth stage undergoes
just (N − k) amplification steps. Assuming an equal probability for an electron to be generated at
any stage, the total number of generated electrons due to serial CIC is [80]

PsCIC (n) =

N∑
k=1

1
γN−k

exp (−n/γN−k) η (n) (2.19)

where γN−k = (1 + p0)N−k .

• Non-uniform photo response: due to manufacturing imperfections such as pixel geometry, the
photo-response can vary at different positions on the sensor, these can be fixed by pre-calibrating
the sensor.
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Table 2.2. Low noise camera settings

Acquisition Mode: Kinetics

Trigger Mode: External Start

Vertical Shift Speed [µs]: 0.5

Pixel Readout Rate [MHz]: 10

Baseline Clamp: ON

Clock Amplitude: 2

EM Gain level: 1000

Pre-Amplifier Gain: ×5

When a low number of photoelectrons are generated on the sensor (less than one per pixel), the number
of charges after the entire multiplication and readout is a combination of the processes described above.
Therefore, the probability to generate n counts can be written as [80]

P (n) = (1 − a − Nb) Pread (n, µ, σ ) +
[
aPEM (γ, n) + bPsCIC (γ, n)

]
∗ Pread (n, µ, σ ) , (2.20)

where a and b are the probabilities for the generation of CIC and sCIC respectively. One must be aware
that the last two terms corresponding to the sCIC and CIC are convoluted with the readout noise.

The camera can be operated in a different variety of modes according to the specific application. In our
case, we are interested on detecting a few photons in time intervals of 20 ms. We have observed that the
CICs strongly depend on the trigger mode the camera is operated (see Ref. [82]). The trigger mode that
produces the lowest contamination by CICs is the external start mode. In this mode, once the camera
receives a trigger it begins to take a given number of pictures with a fixed exposure time in well defined
time periods. This limits the experiment flexibility since the time between exposures cannot be changed
and consequently, the experimental sequences need to be adapted to such constraints. Nevertheless, these
settings are preferred since for most experiments presented in this thesis, we detect only a few tens of
photons per atom (see Chap. 4). For this reason, the camera is operated using the settings that we have
found to create the lowest number of CIC which are shown in Table 2.2 (for more details see Ref. [82]).

Camera response and noise characterization

A photon detected by the EMCCD camera is transformed (after the EM process) into a given number of
charges in a probabilistic way. This process is characterized by the mean number of electrons generated
per photon, i.e. the value γ in Eq. (2.21). To experimentally measure this value, it is necessary to generate
a very small number of charges on the sensor, which means either detecting single photons or no light
at all. Since the CIC cannot be distinguished from charges generated by photons hitting the CCD, it is
enough to model the camera response using “dark” images, i.e., images where no light hits the CCD.
Using such dark images, one can also characterize the noise of the readout process. To this end, use
2 × 103 dark images to create a histogram of the number of generated charges per pixel, which is shown
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Figure 2.15. Noise histograms. Normal-
ized histogram for the detected counts
per pixel using the EMCCD camera for
dark images (black lines and transparent
area) and stray light from illumination
(red lines and shaded area). The dark
lines are fits to Eq. (2.21).

in Fig. 2.15 using a total of ∼ 6 × 108 individual pixels. To record the histogram, we use the settings
listed in Table. 2.2 and an exposure time of 20 ms.

The count histogram shown Fig. 2.15 has three characteristic regions: a dominant Gaussian peak, which
comes from the readout process; an exponential tail to the right side, which originates from the EM gain
process; and we also observe an exponential tail to the left side, which is not included in Eq. (2.20). We
attribute the latter effect to a non-perfect baseline (or bias level), which is an electronic offset added to
the output signal from the EMCCD sensor to ensure that the displayed signal level is always a positive
number of counts. We include the small effect of this tail to the noise description in Eq. (2.20) by adding
an extra term, i.e.,

P (n) = (1 − a − Nb − c) Pread (n, µ, σ ) +
[
aPEM (γ, n) + bPsCIC (γ, n) + cPc

(
γ′, n

)]
∗ Pread (n, µ, σ )

(2.21)
where, Pc (γ′, n) = γ′−1 exp (n/ γ′)η (−n). From a fit of Eq. (2.21) to the histogram in Fig. 2.15, we obtain
a value of γ = 87 ± 2 electrons generated per detected photon and a probability to generate CIC of
0.012 ± 0.001 per pixel.

In addition to the electronic noise sources intrinsic to the camera, additional contamination occurs due
to variation background light during the illumination process [76]. To characterize the contamination
due to the background light, we proceed in the same way as described before, but now using images
acquired in the presence of illumination light (with parameters listed below). The histogram for the
detected counts per pixel is shown in Fig. 2.15. From the histogram, we obtain the probability to generate
a photoelectron per pixel PBG = 0.49 ± 0.01, and a standard deviation (RMS of background noise)
σb = 0.98 ph.e−/

√
pixel.

2.4.4 Position-dependent AC - Stark shift: atom counting using the EMCCD

The imaging system depicted in Fig.2.13a is used to generate images of atoms trapped in the optical
lattice with a trap depth of 1.5 mK. To this end, the atoms are illuminated with an optical molasses for
20 ms, typical powers for the molasses light are 40 µW for the x and y direction and 350 µW for the z
direction. The light is near-resonant to the F = 2→ F′ = 3 transition with a free space detuning of -4 Γ.
The repumping laser propagates along the z direction with a power of 30 µW and is resonant with the
F = 1→ F′ = 1 transition. A typical image of atoms in the dipole trap acquired with these settings is
shown in Fig. 2.16a.
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Figure 2.16. Determining the region of interest. a) Image acquired using the EMCCD with an exposure
time of 20ms. The image also includes the reflected light using the Porro prism. b) Integrated profiles.
The readout offset has been already subtracted. The horizontal dashed line is the initial threshold and
the shaded areas represent the regions of interest. c) Total number of counts in each region of interest.

The atoms are trapped in a tightly focused standing wave dipole trap which has a waist of 5 µm and a
Rayleigh length of 90 µm. This creates a significant variation of the AC-stark shift at different positions
along the axial direction. To give a quantitative approximation, one can assume that an atom scatters
photons like an ideal two-level system. For a trap depth of 1.5 mK, Eq. (2.16) indicates that due to the
different AC-Stark shift, the scattering rate at a distance of one Rayleigh length is approximately two
times larger than the rate at the center of the trap.

In addition to this AC-Stark shift, other physical constraints such as a limited field of view, clipping on
mirrors, the influence of interference filters, the finite aplanatic region, imperfections in the sensor [76],
also create a dependence of the number of detected photons at different positions on the sensor. Such
effects must be considered for a correct estimation of number and position of atoms.

Defining the region of interest

To count the number of atoms in the standing wave, it is convenient to divide the image into small Regions
of Interest (ROI) that include just a few atoms for two reasons: first to minimize the effect of background
noise and second to use only few atoms in each region, which reduces the width of the detected counts
distribution. To define the ROI, the image is integrated along the vertical direction and a ROI is defined
as all the consecutive points of the integrated profile with values larger than a given threshold. Each
region is extended by 5 pixels to each side and the overlapping ROIs are merged. The total number of
counts in a ROI is obtained by integrating the counts and subtracting the readout offset (see Fig. 2.16).

Re-scaling atom fluorescence

To characterize the variation of the integrated fluorescence, a histogram of the total number of counts is
created using 2.7 × 105 ROI at different positions. This is shown in Fig. 2.17a together with the expected
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Figure 2.17. Atomic fluorescence at different positions on the EMCCD. a) Colored histogram for the
number of counts in a ROI at different positions. The two curves are the expected change on the atomic
fluorescence for a dipole trap with a waist of 5 µm (yellow) and 4.7 µm (red) b) Colored histogram
for the number of counts in a ROI at different positions after re-scaling procedure. c) Histogram for
the number of counts in a ROI at all positions. The lower curve is a zoom into the lower number of
occurrences. d) Same as in c but for the EMCCD counts after the re-scaling procedure and the fit to
five Gaussian curves. The acceptance intervals are indicated as the blue-shaded rectangles, the numbers
at the top are the percentage of wrongly detected events inside the acceptance interval.

variation of the fluorescence due to the AC stark shift induced by a dipole trap with a waist of 5 µm
and 4.7 µm23. In the histogram, the regions for one, two and three atoms can be easily distinguished.
However, as expected, it is not uniform through the entire sensor. To estimate properly the number of
atoms regardless the position on the sensor we fit a high order polynomial function to the part of the
histogram containing only single atoms. The result of the fit is used to re-scale the detected number of
counts for each position. Fig. 2.17b shows the histogram for the number of detected counts after the
re-scaling procedure.

Counting atoms

To determine the number of atoms in a ROI that contains total number counts c, we define an acceptance
interval I(k) = [clow(k), cup(k)] and assume that the ROI contains k atoms if c ∈ I(k). To quantify the
precision of the inferred number of atoms in a ROI, we define the function

F(c) = B +

n∑
i=1

Gi(c), Gi(c) = Ai exp
− (c − µi)2

2σ2
i

 , (2.22)

23 The trap was designed to have a waist of 5 µm at 880 nm, but after changing the wavelength to 860 nm we estimated a waist
of 4.7 µm from Raman sideband spectroscopy (see Chap 5).
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Table 2.3. Acceptance intervals for atom counting

No.
atoms

Acceptance
interval

ROIs in the acceptance
interval, N(k)

Wrong number of atoms,
Err(k)

1 4σ1 99.994% 0.2%

2 2.15σ2 97% 1%

3 0.8σ3 58% 1%

being Gi(c) Gaussian distributions and B a general offset. We fit the function F(c) to the integrated counts
histograms (see Fig. 2.17d), and use the results of the fit to determine the probability that the number of
atoms in a ROI was wrongly determined by

Err(k) =

∫ cup(k)
clow(k)

[∑n
i=1,i,kGi(c) + B

]
dc∫ cup(k)

clow(k)

[∑n
i=1 Gi(c) + B

]
dc

. (2.23)

For example, for ROIs containing a single atom (k = 1), an acceptance interval of 4σ1 leads to
Err(1) = 0.2%. In a similar way, the probability that a ROI containing k atoms is correctly assigned to
the acceptance interval I(k) is given by

N(k) =

∫ cup(k)
clow(k) Gi(c)dc∫ ∞
−∞

Gi(c)dc
. (2.24)

For example, an acceptance interval of 4σ1 leads to N(1) = 99.994%, i.e. only 0.006% of the ROIs
containing a single atom are outside the acceptance interval I(1).

In most of the measurements that will be presented in this work, we use ROIs containing only one atom.
In this case we define the acceptance interval as 4σ1. For ROIs containing more than one atom, the
acceptance interval must be smaller since the accuracy for determining the number of atoms reduces as
the number of atoms increases. To guarantee that the atom number is determined properly, for ROIs
containing two and three atoms, the acceptance region is restricted to an error of 1% (see table 2.3 and
Fig. 2.17d).

To determine the number of atoms in ROIs containing more than three atoms, it is necessary to use longer
illumination times in order to separate better the count histograms in Fig. 2.17d. In such case, the number
of photons a pixel detects before it saturates can be a limitation. This problem can be solved by using a
larger magnification to distribute the photons over more pixels [75].

2.4.5 Characterization of the optical system

Counting the number of atoms in the dipole trap is the most elemental information that can be retrieved
from the system. To take full advantage of the fluorescence image and determine the exact position of the
atom in the lattice, it is necessary to know the characteristics of the optical system. In this section, the
characterization of the line spread function for the imaging system is presented.
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Line Spread Function

When the light emitted from an object is collected using an optical system, it is unavoidable that diffraction
occurs at the edge of the lenses due to their finite clear aperture. Such diffraction blurs the image created
and imposes a physical limitation on its resolution. For the special case that the object is a point-like
source, the created image is known as the Point Spread Function (PSF), which for a perfect lens system
is the well known circular Airy pattern.

The image i(x, z) of an arbitrary object located at the focal plane (y = 0) is smeared out by the PSF. This
effect can be calculated by the convolution of the object o(x, z) and the PSF(x, z),

i (x, z) = (o ∗ PSF) (x, z) =

∫ ∞

−∞

∫ ∞

−∞

o (x, z) PSF
(
x − x′, z − z′

)
dx′dz′.

In practice, the integration limits can be restricted to the actual size of the image surface. When this
condition holds, it is convenient to work on the Fourier space where, by the convolution theorem, their
Fourier transforms are related by a simple product

I (u, v) = O (u, v) H (u, v) .

The capital letters represent the Fourier transform of the respective functions and H (u, v) = L {PS F (x, z)}
is known as the Optical Transfer Function (OTF) that can be in general written as

H (u, v) = MTF (u, v) exp [−iΘ (u, v)] , (2.25)

where MTF (u, v) = |H (u, v)| is known as the modulation transfer function and Θ (u, v) is the phase
transfer function. The Fourier representation is convenient when analyzing an imaging system which
is composed of n individual systems. In this case, the convolution theorem allows us to write the total
response of the system as H(u, v) = H1(u, v) · H1(u, v) · ... · Hn(u, v), where Hi(u, v) is the OTF of each
individual system.

As mentioned earlier, to determine the position of atoms trapped in a 1D lattice it is convenient to simplify
the problem by integrating the full image along the vertical direction (see Fig. 2.16). In this case, the
spatial resolution of the integrated image is limited by the integrated PSF known as the Line Spread
Function (LSF).

LSF (x) =

∫ ∞

−∞

PSF (x, z) dz.

The LSF and the MTF for an ideal lens with a NA=0.43 are shown in Fig. 2.18.

In reality, a lens system is never perfect and aberrations can reduce the image quality by broadening the
PSF. A common way to quantify the quality of the imaging system is by the Strehl ratio which compares
the peak of the PSF for a real system to an ideal PSF. However, throughout this work, we will quantify
the quality of the optical system using the analogous of the Strehl ratio for the LSF

S =
LSF (0)

LSFIdeal (0)
. (2.26)
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Figure 2.18. Line Spread Function in the aplanatic region. a) Ideal LSF (black solid line), effect of the
CCD on the ideal LSF (dotted black), LSF for the direct image (shaded area and solid blue line) and the
LSF for the combined image (dashed red). b) Modulation transfer function of an ideal airy function
(solid black), MTF of the CCD sensor (dash-dotted green line), and the combination of both (dotted
dark line). The shaded area and blue line is the calculated MTF of the measured LSF for the direct
image.

Effect of the CCD sensor

To create an image with a high signal to noise ratio using the EMCCD camera, it is convenient to use
as few of pixels as possible in order to reduce the influence of the background noise. However, there is
a minimum number of pixels that must be used in order to prevent information loss due to the spatial
averaging of the CCD. The Nyquist-Shannon sampling theorem [83] shows that the PSF must be imaged
onto more than two pixels, i.e. (λ/2NA) > 2∆p, where ∆p is the pixel size on the object plane. Writing
∆p = Lpix/M, with M being the magnification and Lpix the pixel size, we find a direct condition on the
magnification

M >
4NALpix

λ
≈ 35, (2.27)

where we have used a NA = 0.43.

When an image is projected on a CCD, the device creates a discretized image that is sampled with the
periodic structure of the sensor. The discretized image is a convolution between the original image and
the pixel response function HCCD(u) [76]. For a sensor with square pixels and a uniform response, the
pixel response function is given by [84]

HCCD(u) = sinc(∆pu), (2.28)

where sinc(x) = sin(πx)/πx. The MTF corresponding to Eq. (2.28) is shown in Fig. 2.18b using a
(measured) magnification of M = 35.4 and the effect of HCCD(u) on the ideal LSF is shown in Fig. 2.18a.
There one can see that the CCD reduces the amplitude of the LSF down to ∼ 0.91. However, this
represents a good trade-off since, according to Eq. (2.28), no information is lost due to the spatial filtering
of the CCD.
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Figure 2.19. Position-dependent line spread function. a) Images obtained after the stacking procedure
for single atoms at different positions on the sensor (top), and their corresponding LSF (solid line)
together with the central LSF as a reference (dashed line). b) Same as a but using the combined images
(i.e. with retro-reflector). c) Amplitude variation of the LSF at different positions on the sensor. The
triangles represent the data for the direct image and the circles for the combined image.

Measurement of the LSF using individual atoms

Using the optical system depicted in Fig.2.2a, we observe atoms trapped in the 1D lattice along 230 µm.
This field of view is a large area and we expect that the quality of an image varies in this region. To
determine the quality of the optical system, we use the images of individual atoms in order to estimate
the LSF at different positions on the CCD.

The LSF is obtained using the following algorithm:

1. The ROI are defined in the same way as in sec 2.4.4. But now, 30 extra pixels to each side are used
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instead of 5 to guarantee that the long wings of the LSF are included.

2. Only ROI containing single atoms are considered. Then a Gaussian curve is fitted to the integrated
profiles of single atoms. The fit gives as a result the atomic position with sub-pixel accuracy.

3. Each integrated profile is interpolated to increase the number of points; every pixel is divided
into 16 subpixels and the profile is interpolated using cubic spline interpolation. Then an average
profile is obtained by stacking all individual atoms centered at the same position. The result is a
first approximation to the real LSF.

4. The new LSF is used to fit integrated profile to obtain the position of the single atoms once more.
Then the same stacking procedure, described in step 3, is repeated to obtain a new LSF. This
process is repeated 5 times, each time using the new LSF to find the atom’s position.

Fig. 2.19 shows the variation of the amplitude for the LSF (normalized to its area) at different positions on
the sensor24. The analysis was done for the direct image (no retro-reflected light) and for the combined
image. In both cases the amplitude varies less than 5% in the interval from pixel 220 to 325, which
corresponds to an aplanatic region of 55 µm. From now on, we use only atoms within the aplanatic
region, which is necessary for a proper determination of an atom’s positions by fitting the image using a
common LSF.

The LSF, and its corresponding MTF, obtained using only single atoms in the aplanatic region are shown
in Fig. 2.18. From the cutoff frequency of the MTF for the direct image, νc ≈ 1.1 µm−1, we estimate a
NA of [85]

NA =
νcλ

2
= 0.43 (2.29)

which is smaller than the expected value (NA= 0.5). This reduction may be due to an aperture that is
located in the imaging path which is used to reduce the stray light. From the measurement of the LSF,
we estimate an amplitude of S = 0.85 for the normal image, and S = 0.81 for the combined image (see
Fig. 2.18).

There are different possible reasons that can explain the reduction of the LSF’s amplitude, for example.:

Atomic motion in the radial direction. Following Refs. [75, 86] we estimate a reduction of less than 3%
of the Strehl ratio due to the atomic motion.

Atoms-lens decentration. If the atoms are not aligned with the optical axis of the aspheric lens, aberrations
in the optical path will lead to a reduction of the Strehl ratio. By simulating the optical system with a
decentration of 100 µm, we expect a reduction of 20% on the Strehl ratio25.

2.4.6 Position determination in the lattice

In the previous sections, we have shown that it is possible to determine the number of trapped atoms with
good accuracy by taking images with an exposure time of only 20 ms and we have determined the LSF of
the optical system. In this section, we use the LSF obtained in Sec. 2.4.5 to estimate the atom’s position
in the lattice and we quantify the accuracy of the position determination.

24 Only atoms at the indicated position ±1pixel are used.
25 Without taking into account the effect of the CCD.
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Figure 2.20. Relative distances. a,b) Histogram for relative distance between two single atoms in
different ROIs. c) Fast Fourier transform of the self convolution for the distance histogram shown in
a,b. d) Reduced histogram for the relative distance between two atoms in different ROIs.

Single atom case

To estimate the position of well resolved single atoms, we use only regions of interest within the aplanatic
region that contain a single atom. The position of the atom in the ROI is obtained by a least-square fit
of the LSF to the integrated profile. In order to quantify the accuracy of the position determination, the
location of 4.8×104 single atoms is determined and the relative distance between all atoms that belong to
the same image is calculated. Fig. 2.20a shows the histogram for the relative distances between single
atoms. In this histogram, the periodic structure of the lattice is clearly visible.

The magnification of the optical system can be calibrated using the periodicity of the positions. To
this end, we calculate the fast Fourier transform of the auto-correlation function for the histogram
shown in Fig. 2.20a,b. The frequency is estimated with good accuracy by fitting the peak to the Fourier
spectrum (see Fig. 2.20c) obtaining a value of 1.051 ± 0.002 pixels per lattice site which corresponds to
a magnification of 35.4.

Although no information about the lattice structure was used in the fitting procedure, it is clear from the
histograms that the position of the atoms is well determined. In order to quantify the accuracy of the
position determination, a “reduced” histogram is created by taking the relative distances modulus the
lattice constant, i.e. d̃ = mod(d + λ/2, λ/2) (see Fig. 2.20d). The reduced histogram is fitted with the
function

f (n, µ, σ) = A exp
[
−

(n − µ)2

2σ2

]
+ A

(
exp

[
−

(n − µ − λ/2)2

2σ2

]
+ exp

[
−

(n − µ + λ/2)2

2σ2

])
+ B︸                                                                     ︷︷                                                                     ︸

g(n,µ,σ)

, (2.30)

where the first part corresponds to the central Gaussian, the second part (g (n, µ, σ)) accounts for neigh-
boring Gaussian curves whose tails enter this region, and B is a general offset. From a fit to Eq. (2.30)
we obtain a width of σ = 0.133 ± 0.006 λ/2 from which we can determine the accuracy of the fitting
procedure ∆x = σ/

√
2 = 40 ± 2 nm. The measured precision is, up to a factor of two, in good agreement

with the theoretical expectation ∆xtheo = 23 nm obtained by using Eq. (2.14) where RMSPSF = 0.5 µm,
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∆p = 0.45 µm, σb = 0.98ph.e−/
√

pixel, nV = 16 and N = 600, which were obtained in different sections
of this chapter.

Using Eq. (2.30), it is also possible to estimate the fraction of atoms whose position is determined on a
wrong lattice site by

Error =

∫ +λ/4
−λ/4 g (n, µ, σ)∫ +λ/4
−λ/4 f (n, µ, σ)

, (2.31)

giving, as a result, an error for the determination of the lattice site in only 0.8% of the cases.

Two atom case

If two atoms are inside the same region of interest, then two LSFs, with their relative distance as a free
parameter, are fitted to the integrated profile (see Fig. 2.21). From the relative distance of each atom pair
a histogram is created (see Fig. 2.22a). In the histogram, it is clear that for separations larger than two
lattice sites, the position is determined with a good accuracy. In the same fashion as described above, by
fitting Eq. (2.30) to the reduced histogram (see Fig. 2.22b), we obtain σ = 0.139 ± 0.008 λ/2, leading
to an accuracy of 42 ± 2 nm on the position determination, and using Eq. (2.30) we estimate a wrong
determination of the lattice site in 0.6% of the cases.

For the case of small separation (d < 2.5 λ/2), however, by fitting two LSFs to the integrated profile
we cannot resolve properly the distance between the atoms. In some cases the fitting procedure even
converges to zero distance, which is not possible due to light-induced collisions [45]. The problem for
the small distances can be easily solved by using an average position obtained from different images
of the same atoms. For example, Fig. 2.22c shows the relative distance using the average position
obtained from two images. Taking into account that the acquisition time for each picture is only 20 ms,
doubling the number of pictures extends the image acquisition time, but remains fast compared to
previous implementations [66, 75].

2.5 Summary and conclusions

This chapter provides the description of the experimental system used to cool, trap, and detect a small
number of 87Rb atoms. Small ensembles of atoms are loaded in a small magneto-optical trap from the
background gas and transferred into a tightly-focused standing wave dipole trap created by a set of
aspheric lenses mounted inside the vacuum chamber. The same aspheric lenses, together with a Porro
prism, are used to collect the atomic fluorescence and direct it to an EMCCD camera in order to image
the trapped atoms. The Porro prism used to increase the number of detected photons does not alter
significantly the imaging quality of the system. The combination of the aspheric lenses and the prism
leads to a measured detection efficiency of 2.87+0.07

−0.32%.

The tightly focused dipole trap creates a position-dependent AC-Stark shift, which is corrected on the
recorded images in order to properly count the number of atoms in the dipole trap. Furthermore, the large
collection efficiency of the optical system allows a fast determination of the position of atoms in the trap,
with an accuracy of 42 ± 2 nm using images acquired in ∼ 20 ms.
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Figure 2.21. Fitting atom pairs. LSF fit for two atoms in the same region of interest separated by
1,2,3,4,5 and 6 lattices sites. The images were taken including the retro-reflected light.
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Figure 2.22. Relative distances. a) Histogram for the relative distance of two atoms in the same ROI.
The sharp peak at zero distance comes from a wrong convergence of the fitting algorithm. b) Reduced
histogram for the relative distance between two atoms in the same ROI. c) Histogram for the relative
distance using the average position obtained from two successive images. d) Reduced histogram for
the relative distance using the average position obtained from two successive images (for d > 2.5λ/2).
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Chapter 2 Tools for atom cooling, trapping and detection

The constructed experimental system allows for an efficient usage of both the trapping light and the
collected fluorescence. A deep optical trap is created with a relatively low power, due to the tight focusing
of the light by the aspheric lenses mounted inside the vacuum system. The chosen magnification for
the imaging system distributes optimally the light over the minimum number of pixels necessary to
preserve spatial information. This minimizes the influence of the background noise and, combined with
the large detection efficiency, reduces the image acquisition time by a factor of 50 compare to previous
experimental implementations [66, 75]. The fast imaging on this system can be used for a real-time
position determination of atoms in the lattices [87], which opens the possibility for real-time feedback.
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CHAPTER 3

Resonance fluorescence of neutral atoms in
optical dipole traps

Spatially resolved imaging of optically trapped neutral atoms is an important feature of many cold
atom experiments in the field of quantum simulation and quantum information processing. Optical
microscopes with high numerical aperture make it possible to detect with high fidelity the presence
of atoms in individual sites of two-dimensional optical lattices by resolving fluorescence light under
near-resonant illumination [21, 22]. The ability to resolve and address single lattice sites is an important
tool for cold atom simulators of quantum many-body physics and could offer a route towards scalable
quantum information processing with cold atoms.

The balance of heating and cooling due to photon recoil, the differences in the trap potentials of ground
and excited states, Doppler, and sub-Doppler effects determine the time until atoms are lost from the
optical trapping potentials as well as the number of scattered photons during the illumination process. It
is known that by choosing adequate parameters for the illumination light in a 3D Molasses configuration
it is possible to reduce the temperature of an optically trapped atom leading to long storage times [88],
which has indeed been used in the previous chapter of this work.

For a precise manipulation and determination of the internal and external states of a trapped atom, it
is necessary to have a well-controlled system. In particular, for a quantitative study of the interaction
between an optically trapped atom and a Near-Resonant Field (NRF), it is required to have a good control
on the NRF’s parameters, for instance, polarization and intensity. Although a molasses illumination is
useful to cool the atoms in a dipole trap, the polarization of the light fields is not well defined. Moreover,
the counterpropagating beams create standing waves, which lead to undesired spatial intensity variations.
Therefore, for a precise control on the near-resonant illumination, it is essential to use a single beam with
a well-defined polarization and an homogeneous intensity.

The interaction of an optically trapped atom with a single near-resonant beam, unlike an optical molasses,
can lead to strong heating effects. Even though in the literature many studies exist for different cooling
mechanism such as Raman [89], cavity [90–95] and EIT cooling [96, 97], only a few comprehensive
theoretical models have investigated the dynamics of atoms trapped in optical potentials interacting with
a near-resonant illumination field [98, 99]. Nevertheless, a quantitative understanding of the heating
dynamics in such a system is crucial in order to find useful parameters for the NRF which can allow us to
obtain information on the trapped atom without removing the atom from the trap.
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Chapter 3 Resonance fluorescence of neutral atoms in optical dipole traps

One way to study the dynamics of optically trapped atoms, pioneered by Gordon and Ashkin [72] and
Dalibard and Cohen-Tannoudji [73], is by using a semiclassical model to determine the momentum
diffusion coefficient, which can be used to describe the evolution of the system, e.g. by the Fokker-Planck
equation. However, using only the momentum diffusion coefficient it is not possible to quantify atom
losses. The losses can be quantified by, instead of momentum, calculating the total energy diffusion
constant. This constant can be used to model the evolution of the atom’s energy and determine when
the energy exceeds the trap depth, i.e. when the atom is lost [100]. However, the determination of this
constant for a neutral atom trapped in a sinusoidal potential is impossible. The harmonic approximation
for the trap is not valid for a hot atom and the strong dependence among all internal and external degrees
of freedom makes a numerical calculation intractable. Therefore, the development of alternative methods
to describe the dynamics of an optically trapped atom under near-resonant illumination is necessary.

This chapter is dedicated to studying the heating dynamics of a neutral atom trapped in a standing wave
dipole trap interacting with a NRF. The analysis is presented for two different regimes. First, in Sec. 3.1
the heating induced by a weak resonant beam is presented. In this regime, we will show that heating
processes are well described by a series of quantum jumps between the atomic internal states creating
dipole force fluctuations, which can strongly heat up the trapped atom. Later in Sec. 3.2, the case for a
strong and non-resonant field is addressed using the dressed state formalism. In this case, the problem is
mapped to a series of quantum jumps between the dressed state potentials, which for large detunings
leads to a strong reduction of heating by the dipole force fluctuations. In both sections, a validation with
experimental data is presented.

3.1 Heating induced by weak near-resonant illumination

A weak NRF and a strong far-detuned dipole trap interacting with a neutral atom contribute in a different
way to the internal and external dynamics. On the one hand, the weak NRF drives the internal state of the
atom; on the other hand, the far-detuned dipole trap creates a potential that determines the atomic motion,
but this potential depends on the atom’s internal state. Therefore, the simultaneous interaction with
these two fields couples the internal and external degrees of freedom. The problem of photon absorption
in such configuration has been studied by Cohen-Tannoudji and Reynaud [71, 101]. However, we are
interested not only in the absorption process but also in the mechanical effects that this process entails.

The external dynamics strongly depends on the internal atomic state and, therefore, these two degrees of
freedom cannot be in general treated independently. In this section, we will find conditions for a weak
NRF for which the internal and external degrees of freedom can be decoupled. Finally, a semi-classical
description of the atomic motion is presented and compared with experimental data.

3.1.1 Neutral atom interacting with two light fields

Let us start the discussion by building the Hamiltonian for the experimental system. In the experimental
setup, atoms are confined in an optical dipole trap along the x axis, optically pumped to the state
F = 2,mF = −2, and later illuminated by a weak beam which propagates along the z axis and is
near-resonant with the cycling transition. Only a single illumination beam is used in order to have a
well-defined polarization and a uniform intensity. A simplified scheme of the experimental setup is
depicted in Fig. 3.1a,b.
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3.1 Heating induced by weak near-resonant illumination

In Sec. 2.3.1, we have shown that for an optical trap with a large detuning, it is a good approximation to
assume that Dipole Trap (DT) dressed-states are well approximated by the normal bare states

|g̃〉 ≡ |−,N〉DT ≈ |g,N〉 , |ẽ〉 ≡ |+,N〉DT ≈ |e,N〉 , (3.1)

and that the dominant effect of the dipole trap is a position-dependent AC-Stark shift for the ground and
excited states. Therefore, the Hamiltonian for the trapped atom can be approximated by

ĤADT =
p2

2m
+ [~ω0 + Ue (r)] |ẽ〉 〈ẽ| + Ug (r) |g̃〉 〈g̃| , (3.2)

where ω0 is the atomic resonance in free space and Ug,e (r) are the potentials induced by the dipole trap
for the ground and excited states.

The coupling of the extra NRF is included in the same manner as in Eq. (2.1) described in Sec. 2.3.1, i.e.
the Hamiltonian describing the full system in the RWA is

Ĥ = ĤADT + ĤNR + ĤA-NR, (3.3a)

ĤNR = ~ωNR
(
â†NRâNR

)
, (3.3b)

ĤA-NR =
~Ω0,NR

2

(
σ̂†âNR + σ̂â†NR

)
. (3.3c)

where â†NR, âNR are the creation and annihilation operators, ωNR is the angular frequency, and Ω0,NR is
the resonant Rabi frequency, all of them for the NRF.

3.1.2 Internal dynamics

The Hamiltonian Ĥ in Eq. (3.3) describes the evolution of the system in the absence of spontaneous
emission. However, to model the internal dynamics it is necessary to include the effects of the spontaneous
decay of the excited state. For simplicity, we first assume that the atom is infinitely heavy and we do
not consider the external degrees of freedom. The NRF is a single mode of electromagnetic field,
which is identified by its wave vector kNR and polarization εNR, containing NNR photons with frequency
ωNR = kNRc, and near-resonant with the AC-Stark shifted atomic transition. If an atom is initially in its
ground state, then the initial state of the system is

|φi〉 = |g̃,NNRkNRεNR, 0〉 ,

where the zero represents all empty modes. The interaction Hamiltonian ĤA-NR couples the initial state
|φi〉 to a final state |φ f 〉 = |ẽ, (NNR−1)kNRεNR, 0〉. The final state |φ f 〉 is, however, not only coupled to |φi〉,
but it is also coupled to all vacuum modes; the state |φ f 〉 can decay by spontaneously emitting a photon to
a previously empty mode kε, i.e. it is coupled to a continuum of states |φg〉 = |g̃; (NNR−1)kNRεNR,kε〉.

The temporal evolution of the state |φi〉 can be easily understood in two extreme cases. If the state |φ f 〉 is
only coupled to the state |φi〉 (no spontaneous decay), then this two-level system continuously undergoes
Rabi oscillations. In contrast, if |φ f 〉 were only coupled to the continuum (no stimulated emission), it
would decay exponentially with a lifetime τ = Γ−1. The two limiting cases correspond to ΩNR � Γ

and ΩNR � Γ where ΩNR =
√

Ω2
0,NR + ∆2

1 and ∆1 is the detuning of the NRF to the AC-Stark shifted
atomic transition. In the first case (intense field or large detunings), the dynamics is dominated by the
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Figure 3.1. Weak resonant field. a) Simplified experimental scheme. b) Relevant 87Rb spectrum
including the AC-Stark shift. The Zeeman levels with positive mF behave symmetrically around zero
and are not shown. The arrow represents the NRF and the wavy line the spontaneous emission on
the cycling transition. c) Dipole trap dressed-state model reduced to a two-level system with position-
dependent AC-Stark shift for the cycling transition. The arrows illustrate the absorption and emission
jumps leading to dipole force fluctuation.

Rabi nutation and it is not possible to describe the dynamics in terms of a transition rate or an absorption
cross section [71]. In the second case (weak NRF), the coupling of |φ f 〉 to the continuum |φg〉 is much
stronger than the coupling of |φ f 〉 to |φi〉, and if an atom is excited, then it will always spontaneously
emit a photon into free space. Therefore, for a weak NRF we can neglect the coupling of |φ f 〉 to |φi〉 and
describe the internal dynamics as a series of photon absorption and emission processes where a photon is
absorbed at rate [71]

Γ′ =
Γ

2
s

1 + s + 4∆2
1/Γ

2
≈

Ω2
0,NR

Γ
, (3.4)

and spontaneously emitted at the natural decay rate Γ. It is important to keep in mind that this absorption-
emission interpretation makes sense only for ΩNR � Γ, otherwise stimulated emission induced by the
NRF is not negligible any more.

3.1.3 Dipole force fluctuation: jumping regime

Describing the interaction between a two-level atom and a weak NRF as a series of quantum jumps
between the ground and excited states allows us to simplify the description for the motional dynamics
using a semi-classical model. The extension of the wave function of an atom trapped in the standing
wave is small compared with the dimension of the trap, e.g., for the ground state in a trap with a depth
of 3.46 mK, the axial extension is xaxial =

√
~/ωaxialmRb ≈ 10 nm. Furthermore, the temperature of the

atoms in the trap is significantly higher than the ground state energy and thus. It is, therefore, a good
approximation to describe the motion in a classical way. When the atom is in its ground (excited) state,
the external dynamics is determined by the potential Ug̃, (Uẽ), position and momentum are obtained by
solving the classical equation of motion. This process is schematically depicted in Fig. 3.1c.
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3.1 Heating induced by weak near-resonant illumination

Dipole force fluctuation in the Harmonic approximation

To understand how the jumping process increases the temperature of a trapped atom, we use a simple
model and focus only on the dynamics for the axial component. The axial direction is the strongest
confinement and its characteristic time scale is much faster than for the radial component. To further
simplify the problem, the excited state potential is set to zero, thereby neglecting its anti-confinement. This
is a reasonable assumption since, as described in Sec. 2.3.4, for the cycling transition and λDT = 860 nm,
Ue ≈ |Ug|/10.

We start the description for an atom in its ground state that is initially at a position x with momentum p
and has an total initial energy

Ei = Ug (x) +
p2

2m
. (3.5)

When the atom is excited it travels at a constant speed (since Ue = 0) for a distance ∆x =
p
m t during the

time it remains excited. When it decays back to its ground state, the energy changes due to the small
displacement by an amount

∆E = Ug (x + ∆x) − Ug (x) . (3.6)

To quantify the energy change it is convenient to re-write Ug (x + ∆x) in Eq. (3.6) as a Taylor series,
leading to

∆E =

∞∑
n=1

1
n!

U
(n)

g (x)
( p
m

t
)n
. (3.7)

Eq. (3.7) represents the energy change for an atom that was initially at position x with a momentum p
and has been exited for a finite time t. However, we are not interested in a single realization but in an
average over every possible outcome; therefore, we must average over all possible times and positions.
To average over time, we consider that the random time an atom spends in the excited state is described
by an exponential distribution with the natural decay time Γ−1. Averaging Eq. (3.7) we obtain

〈∆E〉t =

∞∑
n=1

U
(n)

g (x)
( p
Γm

)n
, (3.8)

where <>t denotes the average over time.

When an atom moves in a one-dimensional conservative potential, it crosses every point in the forward
and backward direction. This means that for a given position x, there are two possible values for the
momentum with the same magnitude but opposite direction ±p. Therefore, when averaging Eq. (3.8)
over momentum using a symmetric momentum distribution, all the odd terms in the expansion cancel
and only the even powers remain1

〈∆E〉t =

∞∑
n=1

k−2n
DT U

(2n)

g (x)
(
kDT p
Γm

)2n

. (3.9)

Here we have introduced the wave vector kDT = 2π/λDT which contains information about the character-
istic length of the trap. For small velocities, which holds for atoms in the dipole trap, it is satisfied that

1 Note that the average over momentum has not been performed, we have just used the symmetry of the distribution to cancel
the odd terms in the sum. To calculate the average over momentum, the explicit form of the density distribution is necessary,
but it depends on the exact shape of the potential and, therefore, a general expression cannot be provided.
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Chapter 3 Resonance fluorescence of neutral atoms in optical dipole traps

kDT p
Γm � 1 and hence only the first term in Eq. (3.9) plays an important role

〈∆E〉t ≈ U′′g (x)
( p
Γm

)2
. (3.10)

Eq. (3.10) means that, on average, the net heating induced by the Dipole Force Fluctuation (DFF) is
generated only by the curvature of the potential and not by the gradient. Furthermore, positive curvature
leads to heating but a negative curvature reduces the total energy.

In the harmonic approximation for the standing wave potential, it is straightforward to calculate the
average value for Eq. (3.10) over position

〈∆E〉t,x =

∫
ρHO(x, E) 〈∆E〉t (x) dx =

2U0k2
DTE

mΓ2 , (3.11)

where ρHO(x, E) = 1/π
√

x2
max − x2 is the position distribution probability for a harmonic oscillator, with

xmax being the turning points for an atom with total energy E =
p2

2m + Ug(x) [102].

The expression in Eq. (3.11) provides the mean energy change per scattering event due to the DFF.
To get an idea about its magnitude, we compare it with the energy gained by the recoil due to photon
emission.

〈∆E〉t,x
Erec

=
4λ2

RbU0E

λ2
DTΓ2~2

, (3.12)

For a numerical example, we use an energy E = kB×50 µK, corresponding to a typical initial temperature
of the molasses-cooled trapped atoms, obtaining

〈∆E〉t,x
Erec

≈ 2 × U0[mK], (3.13)

where the value for the trap depth must be written in millikelvin. For deep traps, the induced heating can
be stronger than the heating induced by photon recoil and, furthermore, it increases exponentially with
time. The effect becomes even larger when including the repulsive potential Ue.

To find the trap depth at which the DFF is always smaller than the recoil energy, we consider that the
maximum temperature of an atom in the trap is E = U0. Therefore, from Eq. (3.12) the heating induced
by the DFF is always smaller than the photon recoil heating when

U0 <
λDTΓ~

2λRb
≈ 300 µK kB. (3.14)

Experimental implementation

To experimentally observe the heating induced by the DFF, we perform a simple experiment. We start by
loading a few atoms in the dipole trap and optically pumping them to the state F = 2,mF = −2. The
trap depth is then adiabatically changed to a value Uset and a weak NRF, orthogonal to the dipole trap, is
turned on for a time t. The weak field is near-resonant with the cycling transition of the AC-Stark shifted
atom at the bottom of the trap. From the experiment, we determine the number of atoms that remain
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3.1 Heating induced by weak near-resonant illumination

0 0.2 0.4 0.6 0.8 1

Time [ms]
0 5 10 15 20

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

Time [ms]
0 5 10 15 20

Sc
at

te
re

d 
ph

ot
on

s 
[x

10
3 ]

0

0.5

1

1.5

Scattered photons [x103]

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

Time [ms]
0 5 10 15 20

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

Time [ms]
0 5 10 15 20

Sc
at

te
re

d 
ph

ot
on

s 
[x

10
3 ]

0

0.5

1

1.5

Scattered photons [x103]
0 0.2 0.4 0.6 0.8 1

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

Time [ms]
0 5 10 15 20

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

Time [ms]
0 5 10 15 20

Sc
at

te
re

d 
ph

ot
on

s 
[x

10
3 ]

0

0.5

1

1.5

Scattered photons [x103]
0 0.2 0.4 0.6 0.8 1

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0

0.2

0.4

0.6

0.8

1

Recoil + DFF (Exp.)
Recoil (Exp.)
Recoil + DFF (Fit)
Recoil (Fit)

a) b) c)

Figure 3.2. Experiment and theory for heating by a weak near-resonant field. In the upper graphs,
the survival probability for a trapped atom under resonant illumination. The middle plots show the
estimated number of scattered photons for different illumination times. The lower plots show the
survival probability after scattering a given number of photons. In all plots, the red circles are the
experimental data and the solid and dashed lines correspond to the Monte Carlo simulations using the
measured (gray lines) and adjusted parameters (black lines) for both models (see text). The data was
recorded for a) Uset =0.28 mK, b) Uset = 0.7 mK and c) Uset = 3.46 mK. The error bars represent the
95% confidence interval.

trapped after the illumination time and the number of scattered photons. For more details regarding the
experimental sequence see Sec. 4.1.2.

In the experiment, the depth of the dipole trap was set to three different values, Uset = 0.28, 0.7, 3.46 mK,
which create an AC-Stark shift of ∆AC/2π = 6, 15, 79 MHz. For the measurements, we use a NRF with
an intensity of 0.015 Isat detuned by ∆NR/2π = 9, 17, 79 MHz with respect to the free space resonance
respectively. The experimental data is shown in Fig. 3.2 together with two different theoretical models
which are explained below.

Dynamics model

To understand the experimental data presented in Fig. 3.2 two different Monte Carlo simulations are
presented. The first uses is a simple model that considers only the effect of the photon recoil, and the
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Chapter 3 Resonance fluorescence of neutral atoms in optical dipole traps

second one includes also the effect of the DFF.

Heating by photon recoil. In this model, we neglect the time that the atoms spends in the excited state.
Therefore, the atom is always trapped and the dynamics is always described by the ground state potential.
In this case, the only heating source is the recoil induced by the photon absorption-emission process (no
DFF is present). The photon absorption events are chosen randomly according to the photon scattering
rate Γ′ in Eq. (3.4) and the spontaneous emissions by the natural decay rate Γ. For each absorption event,
the photon recoil is added in the propagation direction of the NRF and for each spontaneous emission, the
momentum recoil is added in a random direction according to the dipole radiation distribution (for details
regarding the simulation see Appendix C). The results of the Monte Carlo simulation are presented as the
dashed lines in Fig. 3.2.

Heating by dipole force fluctuation. In this case, when the atom is in the ground state, its motion is
determined by the ground state potential, but after each photon absorption, the atom remains in the
excited state for a short time texc and during this time it feels a repulsive potential. The time texc is chosen
randomly from an exponential distribution ρ(t) = Γ exp(−Γt), and the photon recoil is added in the same
manner as in the previous case. This model recreates the heating process due to the photon recoil and the
DFF, the results of the simulation are shown as the solid line in Fig. 3.2.

For each of the models, two simulations are shown. The first simulation uses the values for the trap depth,
illumination intensity and frequencies as measured in the experiment. These are shown as light gray lines.
In the second simulation, the values are adjusted (within the experimental uncertainties) to better fit the
data2, these are shown as black lines; from now on, we just focus on this simulation for the discussion of
the results.

At the lowest value for the trap (Uset = 0.28 mK) we expect that the DFF does not play an important role
since its effect is smaller than photon recoil heating (cf. Eq. 3.14). This can be appreciated in Fig. 3.2a,
where both models (solid-black and dashed-black lines) give the same result and agree with experimental
data. However, as the trap depth increases it is expected that the DFF increases, leading to a heating
stronger than the recoil heating. This effect is already visible for Uset = 0.7 mK and it becomes strong for
Uset = 3.46 mK. For such a deep trap, if only the photon recoil were present (no DFF), it would allow an
atom to scatter ∼ 5 × 103 photons before it is expelled from the trap. However, the measurements show
that an atom is lost after scattering less than 200 photons, which reveals the significance of the DFF.

The deviation of the experimental data with respect to the simulation using the measured values in the
experiment (gray lines) comes from the fact that small variations on the experimental parameters modify
the resonance frequency leading to larger or smaller scattering rates. Therefore, by a small adjustment of
these parameters, one finds a better agreement for both the survival probability and number of scattered
photons as a function of time (black lines). Most importantly, however, is that these small adjustments on
the experimental values just change the rate at which the atom scatters a photon, but the total gain of
energy per scattered photon is insensitive to the exact values of the experimental parameters. This effect
is visible when plotting the survival probability as a function of the number of scattered photons (see the
third row of plots in Fig. 3.2). In these plots, both simulations (adjusted and not adjusted parameters)
lead to the same result and agree well the experimental data.

2 For the simulations we use the following values in the Monte Carlo simulation in Fig. 3.2: a) Usim = 0.97Uexp, Isim =

0.87Iexp, ∆sim = ∆exp + 1 MHz, T = 20 µK b) Usim = Uexp, Isim = 1.13Iexp, ∆sim = ∆exp − 1 MHz, T = 60 µK c)Usim =

0.97Uexp, Isim = 0.87Iexp, ∆sim = ∆exp + 1 MHz, T = 140 µK.
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3.2 Heating induced by off-resonant illumination

From the recorded data and its agreement with the Monte Carlo simulation, we conclude that for optical
dipole traps with weak confinement (e.g. in running wave traps), the effect of the DFF is not visible and
can be neglected. However, in traps with tight confinement (e.g. in deep standing wave lattices), the DFF
can lead to strong heating effects much larger than the photon recoil heating. This is an important finding
which indicates that for weak resonant illumination the mean number of photons that an atom can scatter
before it is lost cannot be arbitrarily increased by using deeper traps and, indeed, it reduces for very deep
traps

Even though the DFF limits the number of photons that can be scattered from the weak field at resonance
by a trapped atom, in the next section we will show that the effect of the DFF can be suppressed by
choosing adequate parameters for the NRF.

3.2 Heating induced by off-resonant illumination

When the illumination beam is not weak and resonant (ΩNR 6� Γ), then the internal and external degrees
of freedom cannot be decoupled as in the previous section, and the simple absorption and emission
picture is not valid anymore. One way to include the coherent coupling between the atom and the NRF
is to consider the dressing effect induced by this field in addition to the dipole trap dressing. However,
dressing a two-level atom simultaneously by two light fields is mathematically complex problem [103].
In order to describe the system in a simple way, the same approximations as in Sec. 3.1.1 can be made, i.e.
we assume that the effect of the dipole trap is reflected only as a position-dependent AC-Stark shift for
the atomic transition and, therefore, we use the same Hamiltonian in Eq. (3.3) to describe the system.

3.2.1 Additional dressing by a near-resonant field

To study this problem, first we find the NRF-dressed state basis. To this end, we diagonalize the
Hamiltonian in Eq. (3.3), which spanned in the bare state basis {|g̃,NNR〉 , |ẽ,NNR − 1〉} has a matrix
form

Ĥ = ~

 NNRωNR +
Ug(r)
~

Ω0,NR
2

Ω0,NR
2 NNRωNR −

(
∆NR −

Ue (r)
~

)  , (3.15)

where ∆NR = ωNR − ω0 is the detuning of the NRF from the atomic transition of the untrapped atom.
The eigenstates for (3.15) are

|+,NNR〉 = sin(θNR (r)) |g̃,NNR〉 + cos(θNR (r)) |ẽ,NNR − 1〉 , (3.16)

|−,NNR〉 = cos(θNR (r)) |g̃,NNR〉 − sin(θNR (r)) |ẽ,NNR − 1〉 ,

where the mixing angle is defined by

tan (2θNR (r)) = −
Ω0,NR

∆1 (r)
, 0 ≤ θNR < π, (3.17)

∆1 (r) = ∆NR +
Ug (r) − Ue (r)

~
.

∆1 (r) represents the total detuning of the NRF at position r that takes into account the AC-Stark shift
induced by the dipole trap (see Fig. 3.3a). The eigenenergies corresponding to the new dressed states in
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Figure 3.3. Dressing by a near-resonant field. a) Two-level atom in the dipole trap. b) NRF-dressed
states potentials (solid lines) and DT-potentials (dashed lines) for red-detuning. c) Same as b but for
a NRF resonant at λ/4 = ±0.5 where an anti-crossing is present. d) Same as b but for Blue-detuning
for the NRF. e) Same as c but for weaker NRF. Adiabatic (right arrow), and non adiabatic (left arrow)
following trajectories. In all plots U0 = 3.46 mK and Urep = 0.4 mK.

Eq. (3.16) are

E±,NR = N~ωNR + Ug (r) +
~

2
(
−∆1 (r) ±ΩNR (r)

)
,

ΩNR (r) =

√
∆2

1 (r) + Ω2
0,NR,

where ΩNR (r) is the generalized Rabi frequency. We can now identify the potentials for the NRF-dressed
states

U± (r) = Ug (r) +
~

2
(
−∆1 (r) ±ΩNR (r)

)
. (3.18)

For large detunings (red or blue) the NRF-dressed state potentials are almost identical to the bare state
potentials (see Fig. 3.3b,d), but close to the resonance an anti-crossing is present and it strongly modifies
the curvature of the potential (see Fig. 3.3c,e).

3.2.2 Transient regime and the role of dressed state coherences

In the description of the NRF-dressed-states above, from now on just referred to as Dressed States (DS),
the effect of spontaneous decay has so far not been included. Even though the DS are the eigenstates of
the Hamiltonian in Eq. (3.3), when an atom decays due to the spontaneous emission of a photon, it is
projected to ground state |̃g,NNR〉. First, let us have a look into the implications of this projection.

For the sake of argument we assume, for a short moment, that there is no position dependence in the
detuning ∆1(r) = ∆. We start our analysis with an atom that has spontaneously decayed at t = 0;
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3.2 Heating induced by off-resonant illumination

therefore, the initial state of the system is |ψ(t = 0)〉 = |̃g,NNR〉, after a finite time t the state evolves and
it is described by a superposition of both DS given by

|ψ (t)〉 = sin θNR |+,NNR〉 e−i ΩNRt
2 + cos θNR |−,NNR〉 ei ΩNRt

2 . (3.19)

In the special case of resonance, ∆ = 0 one recovers the usual Rabi flopping. For the non-resonant case,
only one of the dressed states dominants the superposition in Eq. (3.19), which translates into the fact
that full population transfer between g̃ and ẽ is not possible. The continuous evolution of the state in
Eq. (3.19) relies on the fact that the coherence between the two dressed states is maintained. However,
this is not the case for arbitrary large times. The coherence is maintained just for a small transient time
until the system reaches its steady state, which is one of the DS, and after this time all coherences are
damped.

Here an interesting problem appears. When an atom is in either of the dressed-states, then the dynamics
is dictated by its well-defined potential, e.g. if the system is in the state |+,NNR〉, the dynamics is
described by the potential U+. However, during the transient regime, an atom is in a superposition
of DS and it experiences two different forces. While the first term on the right side in Eq. (3.19) is
subjected to the potential U+ the last term is affected by U−, leading to a splitting of the wave-packet.
One possible way to model the dynamics of this system is by using quantum trajectories and quantum
jump methods [104–106], which have proven to be useful in describing the dynamics of an atom in
a state-dependent potential under near-resonant illumination [99]. However, these techniques are not
directly applicable to our system since a delocalization of the wave-packet is not considered in these
methods. This effect complicates the analysis of this problem and a numerical implementation of the full
quantum mechanical description of the 3D system becomes computationally challenging and, we do not
know of any numerical method that can reduce the computational complexity of the problem.

Even though an exact solution for this problem is difficult to obtain, if the secular approximation is
fulfilled (large detunings or intense fields), then the decay time for the coherences is much faster than
the motional dynamics in the trap and the effect the wave-packet splitting can be neglected. This will be
addressed in the next section.

3.2.3 Reduction to rate equations

We start by describing the system using the Optical Bloch Equations (OBE) in the dressed-state basis. A
general description in this basis, however, turns out to be more complicated than for the bare state case.
Fortunately, in the secular limit, ΩNR � Γ, the OBE in the DS basis can be written in a relatively simple
form [71]

ρ̇++ = −Γ+−ρ++ + Γ−−ρ−−, (3.20a)

ρ̇−− = −Γ−−ρ−− + Γ+−ρ++,

ρ̇+− = −
(
iΩ0,NR + Γcoh

)
ρ+−, (3.20b)

Γcoh = Γ

(
1
2

+ cos2 θNR sin2 θNR

)
. (3.20c)
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Chapter 3 Resonance fluorescence of neutral atoms in optical dipole traps

Here ρi j =
∑

N 〈i,NNR| ρ | j,NNR〉, where i ∈ {+,−} are the reduced populations and coherences, and the
transition rates3 between the dressed states are given by

Γ++ = Γ sin2 θNR cos2 θNR, (3.21a)

Γ−+ = Γ sin4 θNR, (3.21b)

Γ+− = Γ cos4 θNR, (3.21c)

Γ−− = Γ sin2 θNR cos2 θNR. (3.21d)

In Eqs. (3.20), Γcoh represents the decay rate for the coherences of the DS. If the time it takes for the
coherences to decay is much smaller than the time an atom needs to move a significant distance, then we
can assume that the coherences decay instantaneously at every position and hence, they do not play an
important role. For a one-dimensional standing wave, this condition reduces to

4ωaxial � Γ

(
1
2

+ cos2 θNR sin2 θNR

)
. (3.22)

The factor of 4 comes from the fact that for a quarter of the oscillation period, the atom has moved from
the top to the bottom of the trap. Condition in Eq. (3.22) is very restrictive since, for 87Rb in a standing
wave potential, it is fulfilled only for traps with an oscillation frequency ωaxial �

Γ
8 = 2π × 0.76 MHz

which imposes a strong limitation on the trap depth.

A second mechanism that reduces the influence of the coherences is the fact that Eqs. (3.20) do not
couple coherences and populations. This means that if at t = 0 one of the next conditions is satisfied

|ρ±∓(t = 0)| � ρ++, (3.23a)

|ρ±∓(t = 0)| � ρ−−, (3.23b)

then it is satisfied at every time and the effect of coherences can be always neglected.

We can rewrite Eq. (3.23) in a slightly different way by estimating the contribution of each dressed state
in the superposition created after the spontaneous emission of a photon described by Eq. (3.19). To this
end we define

D (r) = 1 −
∣∣∣cos2 θNR (r) − sin2 θNR (r)

∣∣∣ . (3.24)

This quantity measures the contribution of each dressed state in Eq. (3.19), D = 1 means that both terms
contribute equally (50-50 superposition), and D = 0 means that only one term is present. Using the
definition for D(r), inequalities (3.23) can be rewritten as

D (r) � 1. (3.25)

The latter condition must be satisfied in addition to the secular approximation Γ � ΩNR (r). If these
conditions are fulfilled, then the effect of the coherences can be neglected and the problem is reduced to a
set of rate equations described by Eq. (3.20). Therefore, we can model the dynamics of the system as
a set of quantum jumps between the dressed states where each jump is accompanied by the emission
and absorption of a photon from the NRF and the external dynamics of the atoms is determined by the
dressed state potentials U±(r) in Eq. (3.18). This is schematically depicted in Fig. 3.4.

3 The deduction for this equations is the same as described in Sec. 2.3.3.
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3.2 Heating induced by off-resonant illumination

Figure 3.4. Photon scattering in the near-resonant
field dressed-states picture. An atom is trapped in
a dressed state potential and it jumps to another
one by removing one photon from the near-resonant
field and emitting it into free space.

The condition in Eq. (3.25) is fulfilled if and only if∣∣∣∣∣Ω0,NR

∆1 (r)

∣∣∣∣∣ � 1, (3.26)

which means that the NRF must be always far-detuned with respect to the AC-Stark shifted transition.

3.2.4 Far detuning Ω0,NR � |∆1 (r)| , Γ � |∆1 (r)|: suppression of the dipole force
fluctuation

To understand the implications of the condition (3.26), let us consider a NRF with a large detuning with
respect to the AC-Stark shifted resonance (Ω0,NR � |∆1 (r)| ,Γ � |∆1 (r)|) which can be either red or
blue, but keeping in mind that the atomic resonance is shifted at every position in the trap and the large
detuning condition must be fulfilled for every position. If this is the case, then the dressed state potentials
in Eq. (3.18) are

U± (r) ≈ Ug (r) +
~

2

−∆1 (r) ± |∆1 (r)| +
Ω2

0,NR

2 |∆1 (r)|

 . (3.27)

For the case of a red detuning (∆NR < 0), from Eq. (3.27) we obtain U− ≈ Ug and U+ ≈ Ue, as illustrated
in Fig. 3.3b. Using the Eq. (3.21) one finds the transition rate between the two dressed states.

Γ++ ≈ Γ
(

Ω0,NR
2∆1(r)

)2
Γ−+ ≈ Γ

(
Ω0,NR
2∆1(r)

)4

Γ+− ≈ Γ, Γ−− ≈ Γ
(

Ω0,NR
2∆1(r)

)2
.

In this case, the largest decay rate is Γ+− and, therefore, most of the population is in state |−,NNR〉, in
which the dominant decay is Γ−−. This is a very interesting effect. It indicates that in every scattering
process the most probable scenario is that after the emission or absorption of a photon, the atom remains
in the potential U−, i.e. there is no change in the trapping force and hence no DFF.

For a NRF that is always blue detuned, all the results are the same as for the red case, but the role of the

53



Chapter 3 Resonance fluorescence of neutral atoms in optical dipole traps

dressed states is interchanged, i.e., U− ≈ Ue and U+ ≈ Ug and the subscripts of the decay rates must be
exchanged +↔ −.

3.2.5 Landau-Zener crossings

If the NRF is resonant with the AC-Stark shifted atom at some position inside the trap, then avoiding
crossings appear (see Fig. 3.3c). When the detuning ∆1 (r) is swept slowly across the resonance
(and natural decay is ignored), the atom remains in its initial DS and follows its respective potential.
However, for higher motional speeds, the atom can make a transition to the other dressed state in a
non-adiabatic way, this situation is illustrated in Fig. 3.3e. The probability PNA that an atom does not
follows adiabatically an avoided crossing was calculated by Landau [107], Zener [108], and Stückelberg
[109], and can be written in general as [110]

PNA = exp

− πΩ2
0

2
∣∣∣ ∂
∂t ∆

∣∣∣
 (3.28)

where Ω0 is the resonant Rabi frequency, and the derivative over time represents the sweep speed of the
detuning ∆. The atom’s motion in the trap sweeps the NRF frequency through the resonance and the
speed of the sweep is directly related to the speed of the atom. To calculate the maximum non-adiabatic
population transfer, we consider an atom moving with its maximum speed, i.e., UKinetic = U0. We can
then find an upper bound for the time derivative in Eq. (3.28) and write an upper limit for the probability
of non-adiabatic transfer

PNA ≤ exp

− πΩ2
0,NR

2∆maxωaxial

 . (3.29)

Here ∆max denotes the maximum AC-Stark shift induced by the dipole trap and ωaxial is the trap’s axial
frequency.

The potential for the DS for a set of experimentally accessible parameters is illustrated in Fig. 3.3c.
These are Ω0,NR = 2π × 10 MHz, ∆NR = 2π × 35 MHz, ωaxial = 2π × 0.9 MHz. For these parameters the
maximum non-adiabatic transfer is less than 10%. However, when the strength of the NRF is reduced
to Ω0,NR/2π = 3 MHz (see Fig. 3.3e) this bound is 80%, meaning that non-adiabatic crossings are not
negligible any more.

3.2.6 Experimental implementation

To experimentally explore the heating induced by the interaction with the NRF, we perform measurements
for a range of parameters for the NRF. The experimental sequence and setup are the same as described in
Sec. 3.1.3 with few differences. Here the trap depth is adiabatically set to 3.46 mK, and for this value, two
sets of data were recorded. First, for 8 different frequencies from ∆NR/2π = −12 MHz to +39 MHz using
a NRF with an intensity of 4 Isat and illumination times from 1 to 10 ms in steps of 1 ms; the second set of
data was recorded for 11 different frequencies from ∆NR/2π = +38 MHz to +132 MHz and illuminations
times from 1.5 to 15 ms in steps of 1.5 ms with an intensity of 0.6 Isat for the NRF. The results of the
measurement are shown in Fig. 3.5.
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Figure 3.5. Photon scattering and atom survival for different illuminations. a)-h) Using ∆NR/2π = −12 to +39 MHz, and INR = 4Isat. i)-s) For ∆NR/2π = +38 MHz
to +132 MHz using INR = 0.6Isat. In each case three plots are shown. Left: survival probability (circles) and number of scattered photons (squares) as a function
of time, and Monte Carlo simulation for the dressed state model (solid lines), and pure photon recoil model described in Sec. 3.1.3 (thin dashed lines). The error
bars represent 95% confidence level. Middle: Total scattering rate (solid line) and the parameter D(r = (x, 0, 0)), defined in Eq. (3.24), (long-dashed line). Right:
Potentials for the dressed states U−(r = (x, 0, 0)) (solid line) and U−(r = (x, 0, 0)) (short-dashed line).
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Chapter 3 Resonance fluorescence of neutral atoms in optical dipole traps

On top of the experimental data, two Monte Carlo simulations are presented. In the first simulation, the
three-dimensional equation of motion is solved for the atoms in the DS potentials in Eq. (3.18). The
jumps between the DS are chosen randomly according to the photon scattering rates in Eq. (3.21). For
each scattering event a photon recoil is added in the same direction as the NRF (absorption) and another
one in a random direction (emission) according to the dipole radiation distribution (for more details
regarding the simulation see Appendix C). The second simulation considers just heating by recoil from
photon absorption and emission as described in Sec. 3.1.3.

In the simulation some parameters were adjusted to best fit the data, but all of them within the experimental
uncertainties. For the first set of data: Psim = 0.8 Pexp, ∆sim = ∆exp , U0,sim = 0.96 U0,exp and an
initial temperature (in the deep trap) of T = 140 µK. For the second set of data4: Psim = 0.83 Pexp,
∆sim = ∆exp + 1 MHz, U0,sim = 0.96 U0,exp and T = 140 µK. The reduction of the trap depth can be
explained by the AC-Stark shift induced at different positions in the trap. It is estimated that the trap has
a waist of w0 = 4.75 µm and for the analysis of the experimental data we have used atoms in a region
of ±22 µm around the center of the trap; at 22 µm away from the center, the dipole trap spot size is
w′ = 1.034w0 which reduces the trap depth by ∼ 6% at the sides.

In addition to the acquired experimental data, two more figures are included for each parameter. The
first one shows the total scattering rate as a function of the position on the trap. In the same plot the
parameter D(r), defined in Eq. (3.25), is plotted. This parameter is presented here since it provides a
criteria (D(r) � 1) to determine in which cases the model used in the Monte Carlo simulation is valid.
The second plot includes the DS potentials for the respective parameters.

For the first set of data (Fig. 3.5a-h), the simulation agrees well with the measurement, even though at
some regions the condition (3.25) is not fulfilled. This agreement is mainly due to the fact that the atoms
scatter most of the photons when they are at the bottom of the trap where D(r) � 1.

In the second set of data (Fig. 3.5i-s), it is visible that for frequencies closer to resonance (expected
at 79 MHz) the measurement strongly disagrees with the simulation (Fig. 3.5k-n). A disagreement is
expected since the atoms scatter most of the photons at the bottom of the trap, where D(r) ≈ 1 invalidating
the approximation used. As the frequency increases (∆NR/2π > 94 MHz), the value for D(r) decreases
and, as expected, the simulation shows a better agreement. In all cases where D(r) � 1, the dressed state
model is very close to the pure recoil model, which indicates that the DFF is suppressed (see Fig. 3.5a-i,
p-s).

The strong heating observed close to the resonance is related to the DFF. In the measurement, we use an
intensity of only 0.6 Isat. In this regime it is expected that resonant scattering events lead to a change in
the trapping potential. A Monte Carlo simulation using the weak resonant excitation model (described in
Sec. 3.1) is shown in Fig. 3.6 focusing on the data close to resonance. It is clear that the DFF creates
significant heating that can explain the observed losses. Even though the AC-Stark shifted resonance is
expected at ∆/2π = 79 MHz5, strong heating already occurs at ∆/2π = 66 MHz. Furthermore, at this
point the weak resonant model, that predicts a strong DFF, agrees very well with the recorded data (see
Fig. 3.5l).

For the experimental data shown in Fig. 3.6, most of the scattering events occur when ΩNR is on the
order of Γ and for this regime, we do not have a valid approximation . However, the models describing

4 To record this data an extra AOM was added to increase the frequency scan and the data was recorded with five days
difference.

5 In the simulation we have used Usim = 0.96Uexp therefore according to the simulation the resonance is expected at
∆/2π = 75 MHz.
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Figure 3.6. Photon scattering and atom survival for near-resonant illumination. j-o) Survival probabil-
ity (circles), number of scattered photons (squares) and Monte Carlo simulation (solid lines) close to the
AC-Stark shifted resonance at the bottom of the trap (∼ 79 MHz) using the weak resonant illumination
model (see Sec. 3.1.3). The error bars represent 95% confidence level. The same experimental data is
shown in Fig.3.5 with the same indices.

two different regimes can be used for a qualitative understanding of this scenario and explain why strong
heating occurs when the NRF is slightly red-detuned and not only on resonance with the AC-Stark shifted
atom.

On the one hand, assuming that every scattering event changes the trapping potential (weak resonant
model), Eq. (3.10) indicates that the largest amount of heating occurs for scattering at the bottom of the
trap; on the other hand, only near-resonant events change the trapping potential. If the NRF is resonant at
the bottom of the trap, then an atom is only resonantly excited at the center of the trap. But when the atom
is hot, it spends more time close to its turning points (far from the center), where it can off-resonantly
scatter a photon without changing the trapping potential. However, when the NRF is resonant slightly to
the side of the center (see e.g. Fig. 3.5l), then there are two resonant points in the trap and, therefore,
the time that an atom interacts with resonant light increases, leading to higher chance of a resonant
excitation close to the center, where the heating is maximized. For this reason, strong heating is observed
for ∆/2π = 66 MHz while for ∆/2π = 85 MHz is not.

From the experimental data and the simulations presented in Figs. 3.5 and 3.6, we conclude that heating
dynamics of an atom interacting with an illumination beam that is near-resonant with the AC-Stark shifted
atom at the bottom of the trap the is a mixture of different types of scattering, some events change the
trapping force while others only create heating by photon recoil. However, as discussed in this chapter,
a full quantitative description in this regime must consider the effect of the coherences for the dressed
states, as well as the non-adiabaticity of the Landau-Zener crossing, which so far have been neglected.
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Chapter 3 Resonance fluorescence of neutral atoms in optical dipole traps

3.3 Summary and conclusion

We have explored the heating dynamics of a neutral atom trapped in a standing wave dipole trap
illuminated with a near-resonant field. A theoretical description and its experimental implementation
were provided for two different regimes:

• For a weak near-resonant beam, ΩNR =
√

Ω2
0,NR + ∆2

NR � Γ, we have shown that for deep traps
the fluctuations of the dipole force leads to strong heating. This heating is well described by a
series of quantum jumps between the trapping and the anti-trapping potentials induced by the
dipole trap. Theoretical and experimental results show that for deep traps, the number of photons
that an atom scatters before it is expelled from the trap decreases with an increasing trap depth.
This effect sets a limit on the deepness of the trap, and therefore, to the maximum amount of
scattered photons.

• For an off-resonant field, ΩNR =
√

Ω2
0,NR + ∆2

NR � Γ, the illumination light creates an additional
dressing to the optically trapped atom. In this case, Eq. (3.25) provides a condition in which
the effect of the coherences between the double dressed states is negligible. In this regime, the
dynamics of a trapped atom is well described by series of quantum jumps between the dressed
state potentials. Moreover, for the case of a large detuning, |∆1(r)| � Γ the quantum jumps do not
change the trapping potential leading to a strong suppression of the DFF. This result is independent
of the trap depth and, therefore, atoms trapped in deep potentials scatter more photons before
they are lost since the only source of heating is the recoil by the photon absorption and emission
processes.

The settings for the illumination light that allows the scattering of a large number of photons by an
optically trapped atom, provided in this chapter, are of a particular relevance when it is necessary to
obtain knowledge from a confined atom by near-resonance fluorescence. It provides a tool to retrieve
information from the system generating just a small amount of heating, this of particular interest in the
next chapter.
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CHAPTER 4

Non-destructive and spatially-resolved internal
state detection of neutral atoms

The prospect of quantum information science to solve tasks that are out of reach for classical information
technology has motivated impressive efforts in the field of physics over the last two decades. Trapped
atomic particles are arguably among the most advanced physical platforms that are currently considered
for quantum information devices. Pioneering experiments with trapped ions, for example, have opened
up the field of few-body quantum simulation [111–113] and computation [114] by making use of a high-
fidelity quantum optics toolbox for state preparation, single and many-qubit gates and state detection [89].
In order to increase the size of atomic quantum devices from its current limit on the order of 10 qubits,
the scalability of all aspects of atomic qubit control will be crucial.

One of the promising candidates for systems with hundreds of qubits and beyond are arrays of optically
trapped neutral atoms. Based on the favorable scaling properties of light potentials [115] and the
possibility to optically address individual atoms through high-resolution microscopes [21, 22], an
increasing number of techniques are explored with the goal of a complete quantum optics toolbox
for scalable quantum information science with neutral atoms. The studied capabilities include the
deterministic filling, operation of parallel quantum gates [116] and single site manipulation of atoms in
standing wave lattices as well as the controlled loading [23, 30, 117], lossless (re-)cooling, and two-atom
quantum gates in dipole traps and optical microtrap arrays.

The simultaneous and non-destructive readout of many atomic qubits is another essential feature that is
needed for scalable quantum information science based on neutral atoms. In the past, spatially resolved
state detection of many atoms has relied on a technique [39] where atoms in one quantum state are
intentionally pushed out from the optical trap by resonant light. Although this method can achieve high
fidelities for large arrays of neutral atoms, it is intrinsically destructive and, therefore, inefficient in
quantum information routines. Efficient readout without losing atoms from their optical trap potential
has previously been achieved for atoms coupled to high-finesse optical cavities [40–42]. More recently
non-destructive readout has been demonstrated for single atoms in optical traps using state-selective
fluorescence detection in free-space [43, 44].

This chapter is divided into two parts. Sec. 4.1 presents the experimental implementation and charac-
terization of the non-destructive state detection of 87Rb atoms trapped in an optical lattice by using
near-resonance state-dependent fluorescence. In Sec. 4.2, the information of the experimental system
is added in order to estimate the internal state of an atom in an optimal manner by Bayesian methods.
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Chapter 4 Non-destructive and spatially-resolved internal state detection of neutral atoms

This information includes the properties of the imaging system, the EMCCD characteristics and the
statistics of the photon scattering process. Finally, I show that the Bayesian methods developed in this
work represent a scalable method that can be extended for systems containing a large number of atoms in
one and two-dimensional optical lattices.

4.1 Hyperfine state readout by resonance fluorescence

To determine the internal state of an atom that has two well-separated ground states, we can use resonant
illumination which addresses only one ground state. During the illumination process, one state appears
bright (it scatters photons) while the other remains dark (it does not scatter photons). If an ideal photon
detector is used, the detection (or no detection) of a photon provides information on the internal state.

In reality, photon detectors are not ideal and there is always background noise present, which can lead to
confusing an atom in the dark state as being bright. In addition, the Poissonian nature of the photons
emitted by an atom in the bright state creates an uncertainty in the number of detected counts. These
effects, among others, broaden the distribution of the detected counts from atoms in any of these states.
For a high-fidelity state-determination, it is necessary that the distribution of detected counts for both
states are statistically well separated. This state detection scheme is widely used for trapped ions reaching
very high fidelities [89].

Our goal is to implement such a state detection scheme to distinguish between the two hyperfine
ground states, F = 1 and F = 2, of 87Rb with a high fidelity. For alkali atoms, unlike trapped ions,
there is no electron shelving technique that protects against undesired state transfer, which makes the
implementation of a state detection based on resonance fluorescence more challenging. The idea behind
our implementation is to use illumination near-resonant with the transition F = 2→ F′ = 3 [43, 44]. In
this case, an atom in the state F = 2 is bright while an atom in the state F = 1 is dark.

In addition to the high fidelity requirement, we impose the condition that the atoms remain trapped in the
optical lattice after the state readout. As shown in Chap. 3, the amount of energy imprinted by a photon
onto an atom during the illumination process strongly depends on the parameters of the illumination light.
Therefore, for an optimal state detection, it is necessary to find conditions of near-resonant illumination
for which the count distributions for the bright and dark states are well-separated and the heating induced
by the illumination light is minimized.

In this section, we find optimal settings for the illumination light that allows for a high-fidelity and
non-destructive state detection. Sec. 4.1.1 presents the experimental characterization of different effects
that create an undesired state transfer and how they are suppressed. In Secs. 4.1.2 and 4.1.3 we find the
settings for the illumination light that fulfills the required conditions for a non-destructive state detection.
Finally, Sec. 4.1.4 presents a quantitative analysis of the detection fidelity.

4.1.1 Improving the cycling transition: reducing the transfer to a dark state

Using molasses illumination, an atom can be cooled in the optical lattice. For the molasses configuration,
six beams, which are detuned by ∆NR to the transition F = 2→ F′ = 3, are used to reduce the energy in
all spatial directions. The same configuration can be used, in principle, to determine the state of the atom
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Figure 4.1. Cycling transition for 87Rb. a) Ideal closed cycling transition for 87Rb trapped in an optical
dipole trap. Just the relevant hyperfine levels and part of the Zeeman spectrum are shown. b) Effect of
polarization contamination on the closed transition

since the state F = 2 is bright and the state F = 1 is dark. However, the polarization of the molasses light
is not well defined and there is a probability of exciting the atom to the state F′ = 2 given by

P =
Rsc,2→2(∆NR)

Rsc,2→2(∆NR) + Rsc,2→3(∆NR)
≈

1
2

1 + s + 4∆2
NR

1 + s + 2(∆NR + ∆sep)2 + 2∆2
NR

, (4.1)

where ∆sep ≈ 44 Γ is the splitting between the excited states F′ = 2 and F′ = 3. For example, ∆NR = −4Γ

leads to P ≈ 1/100. This means that, on average, for every hundred scattering events, the atom is
excited to the state F′ = 2, from which it can decay to F = 1. This undesired state transfer limits the
number of scattered photons and, therefore, the fidelity. The probability in Eq. (4.1) is minimized at
resonance (∆NR = 0). However, this is not necessarily an optimum configuration for the illumination
light since, as shown in Chap. 3, these settings can lead to strong heating in the trap and larger detunings
are preferable.

The undesired population transfer can be reduced by using a well-defined circular polarization for the
illumination light in order to drive just the cycling transition. Using this closed transition, excitations to
the state F′ = 2 are suppressed (see Fig. 4.1a). To create light that is circularly polarized, it is necessary
to use a single illumination beam which propagates along a well-defined quantization axis.

Polarization purity is essential to drive a closed cycling transition. However, experimental imperfections,
such as bad polarization or non-ideal magnetic or electric fields create polarization contamination that
removes the atom from its cycling transition (see Fig. 4.1b). In our case, we use the cycling transition
F = 2,mF = −2 → F′ = 3,mF′ = −3 for which σ− polarized light is required. Throughout this work,
unless stated differently, I will always refer to this transition as the cycling transition.
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Chapter 4 Non-destructive and spatially-resolved internal state detection of neutral atoms

Polarization circularity

Creation of circular light with high purity is experimentally challenging and, in practice, there is always
a certain degree of ellipticity. Such ellipticity can be decomposed into two parts: the desired perfect
circular light and a small component of opposite circularity, which contaminates σ−-polarized light with
a σ+ component for example.

To create σ - polarized light a laser beam is sent through a linear polarizer1 and circular polarization is
created by a set of λ/4, λ/2, λ/4 retarders. The light circularity is optimized by sending the light through
a second linear polarizer and minimizing the intensity variation when rotating the second polarizer. After
optimization of the retarder orientation, we determine2 a ratio of σ+/σ− ≈ 1 × 10−4.

Magnetic field axis alignment

The effect of polarized light on an atom is decided by the direction of the atom’s quantization axis. This
axis can be defined either by a bias magnetic field that breaks the degeneracy of the Zeeman manifold
or by the electric field, i.e. the polarization, in the dipole trap. If the direction of propagation of the
near-resonant light is not perfectly parallel with the quantization axis, it creates not only contamination
of the opposite circularity but also a π-polarized component.

In the experimental setup, the quantization axis is created by a bias magnetic field along the z direction
using the z compensation. Since the coil axes are not perfectly aligned with the propagation direction
of the NRF, further adjustment of the magnetic field axis by the x and y compensation coils is required,
which is optimized by the following procedure. A small number of atoms are loaded into a dipole trap
with a depth of 1 mK and pumped into the state F = 2,mF = −2. Then the σ−-polarized beam resonant
with the transition F = 2→ F′ = 2 is turned on for 30 ms with an intensity of 0.7Is. In this configuration,
the state F = 2, mF = 2 is a dark state, whereas any polarization impurity transfers the atoms to F = 1.
This allows us to measure the number of transferred atoms after the illumination by using a push-out
beam to remove the atoms that remain in state F = 2. The optimum values for the currents of the x and y
compensation coils were experimentally optimized by minimizing the survival probability such that only
13(3)% of the atoms are transferred to F = 1. This corresponds to a fraction smaller than 1.3 × 10−3 of
the total power in undesired polarization components. In a separate measurement, we have determined
that the polarization is contaminated mostly by a π component. For details regarding this measurement
see Appendix D.

Dipole trap and magnetic field misalignment

When a neutral atom interacts with two fields at the same time, it is important to align the fields in the
same direction such that they give rise to a single well-defined quantization axis. For neutral atoms
trapped in an optical dipole trap, it is convenient to use a bias magnetic field to define the quantization
axis. When the atom is in its ground state, the magnetic field breaks the degeneracy of the hyperfine
Zeeman levels, while the dipole trap creates a uniform AC-shift for all of them, therefore the magnetic
field will define the quantization axis. However, for the excited state manifold of F′ = 3, the dipole trap
also breaks the degeneracy of the mF′ states. Furthermore, the AC-Stark shift can be much larger than the

1 CODIXX, IR 950 BC4 CW02.
2 From the measured variation of the transmitted power when rotating the second polarizer.
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Figure 4.2. Dipole trap tilt effect. Survival probability and mean number of scattered photons for
atoms illuminated for different times in the dipole trap. The blue squares are the measurement before
the tilt correction and the red circles after the correction. The experimental data was acquired using
different free-space detunings and intensities for the illumination beam. a) ∆/2π = −12 MHz, I = 4 Isat,
b) ∆/2π = −39 MHz, I = 4 Isat, c) ∆/2π = 85 MHz, I = 0.6 Isat, d) ∆/2π = 113 MHz, I = 0.6 Isat. The
top plot in c includes the survival probability when a push-out beam is applied after the interaction with
the near-resonant field (black triangles).

Zeeman splitting induced by the bias magnetic field and in such case, the atomic energy eigenstates in the
magnetic field basis do not necessarily correspond to the energy eigenstates in the dipole trap basis.

If the bias magnetic field is misaligned with the polarization of the dipole trap by an angle Θ, then any
change from the ground to the excited state, leads to a mixture of the Zeeman sub-levels. For example,
an atom that is excited to the state |F′,mF′〉 (in the magnetic field eigenbasis) can be expressed as a
superposition of eigenstates in the dipole trap basis |F′DT,mDT,F′〉

∣∣∣F′,mF′
〉

=

m
DT,F′∑

−m
DT,F′

cmDT,F′ ,mF′ (Θ)
∣∣∣F′,mDT,F′

〉
.

The coefficients for the expansion are explicitly given in Ref. [110, 118]. Since the energy eigenstates of
the excited atom are now defined by the dipole trap, the atom can decay from any state |F′DT,mDT, F′〉
with a probability |cmDT,F′ ,mF′ (Θ) |2. This effect increases the undesired probability to transfer the atom to
the dark state.

As expected from the theoretical arguments above, it was found experimentally that a misalignment of
∼ 5 degrees on the dipole trap was related to an increased transfer rate into the dark state. This effect is
more severe for illumination frequencies closer to AC-shifted resonance as can be seen from the set of
measurements shown in Fig. 4.2. The experimental data was obtained by loading a few atoms into a trap
with a depth of 3.46 mK depth (creating an AC-Stark shift of 2π× 79 MHz at the bottom). The atoms are
pumped to F = 2,mF = −2 and a beam near-resonant with the cycling transition illuminates the atoms
for different times.

In the data obtained for ∆/2π = 85 MHz before the correction of the tilt (blue squares in Fig. 4.2c), after
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Chapter 4 Non-destructive and spatially-resolved internal state detection of neutral atoms

5 ms the number of scattered photons does not increase anymore and the survival probability remains
constant, which indicates that the atom has been transferred to the dark state. This transfer to the dark
state was verified by a separate measurement where a push-out beam is used after the near-resonant
illumination to remove atoms in F = 2 (black triangles in Fig. 4.2c). The results from this measurement
indicate that the atoms are indeed transferred to the state F = 1. After the correction of the tilted dipole
trap, the effect was strongly reduced.

4.1.2 State-dependent fluorescence: experimental implementation and
characterization

The improvement of the polarization purity reduces the undesired transfer of bright atoms to the dark
state but this is just the first step towards a high-fidelity state detection. To achieve a high fidelity, it is
necessary that the count distribution for the dark and bright states are well-separated. Ideally, to find
optimum values for the NRF, it is necessary to record the count distribution for different illumination
settings, which is experimentally demanding and, in practice, impossible. Nevertheless, if the undesired
state transfer is neglected, to separate the count distributions it is sufficient to minimize the background
noise and to increase the number of photons scattered by a bright atom. Therefore, as a first step, we use
the mean number of scattered photons and the survival probability as figures of merit in order to find
optimum values for the NRF.

To this end, a large range of frequencies for different illumination intensities of the NRF has been
experimentally explored. Before describing the details of the experimental sequence, some of the most
the relevant experimental settings are listed below:

• EMCCD camera: Usually only a few tens of photons are detected from an atom in the bright state.
Therefore, it is important to reduce the electronic noise created in the detection process. For this
reason, the camera is operated in kinetic and external trigger start mode3. In this operation mode,
a trigger is sent to the camera, after which it acquires a series of Nexp images with an exposure
time of 20 ms every 35 ms.

• Reference image: It is necessary to determine with high accuracy the position of atoms in the optical
lattice. For this reason a high signal to noise Reference Image (RI) is required. The atoms are
loaded in a trap with a depth of 1.5 mK and illuminated with an optical molasses. The illumination
parameters are: Px = Py = 21 µW, Pz = 190 µW, free space detuning ∆/2π = −27 MHz, repumper
F = 2→ F′ = 2 with P = 37 µW. The molasses also cools down the atoms to about 80 µK.

• The near-resonant field:. This single beam is used for the state readout. It is detuned from the
transition F = 2,mF = −2→ F′ = 3,mF = −3 by a variable amount ∆. It is σ− polarized along
the z direction, which is defined as the quantization axis by a magnetic bias field of 1.5 Gauss (see
Fig. 4.3). The power of the NRF is different depending on the chosen detuning. The beam has a
waist of only 300 µm, which is ideal to reduce the required power in order to minimize stray light.

• Imaging optics: The atomic fluorescence is collected by the set of aspheric lenses together with
the Porro prism (see Fig. 4.3) leading to a detection efficiency of 2.87+0.07

−0.32% (see Sec. 2.4.2). The
images are created with a magnification that corresponds to 1.05 ± 0.01 pixel per lattice site.

3 These settings lead to the lowest number of clock-induced charges, for more details see Ref. [82].
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Figure 4.3. State detection sequence. a) Experimental setup and configuration of the near-resonant
field (NRF). b) Simplified diagram of the sequence used to characterize the state detection. Reference
images (RI) and state detection images (SD) are acquired alternately. c) Typical sequence of reference
images and state detection images acquired with the EMCCD camera in one iteration of the experimental
sequence.

Experimental sequence

With the parameters described above, we implement the following experimental sequence to record the
number of emitted photons for atoms in the dark (F = 1) and bright (F = 2,mF = −2) states for different
settings of the near-resonant illumination. The experimental setup, as well as a schematic representation
of the sequence, are presented in Fig. 4.3.

• Few atoms are loaded in the MOT and transferred into the dipole trap of 1.5 mK. To avoid
strong variations of the atomic fluorescence due to the AC-Stark shift, a compression sequence
is performed as described in Chap. 5 in order to place the atoms at the center of the trap. Then a
trigger is sent to the camera and the image acquisitions starts.

• RI1. Reference image.

• SD1. The atom is optically pumped to the hyperfine state F = 1. The dipole trap depth is increased
adiabatically to 3.46 mK in 5 ms. Then the NRF is turned on for a time tNR while the camera is
exposing then the dipole trap is lowered to 1.5 mK.

• RI2. Reference image.

• SD2. Same as in SD1 but now the atom is optically pumped to the hyperfine state F = 2,mF = −2.

• RI3. Reference image.

• SD3. Same as in SD1 but in this case there is no optical pumping and the NRF remains off. This
part of the sequence is used to characterize losses induced by the imaging process and technical
fluctuations. It also serves as a true dark image where no light is detected by the camera.

• RI4. Reference image, then got back to step SD1
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Figure 4.4. Determination of survival probab-
ility for a given number of counts. Measured
survival probability (black circles) and mean
number of scattered photons (red squares) for
an atom in the bright state and ∆NR/2π =

85 MHz. The solid and long-dashed lines are
the phenomenological fits. The short-dashed
straight lines exemplify the determination of
the survival probability for 1000 scattered
photons.

Two sets of data were recorded. The first set of data was recorded for 8 different frequencies from
∆NR/2π = −12 MHz to +39 MHz using a NRF with an intensity of 4 Isat and illumination times from
1 to 10 ms in steps of 1 ms. The second set of data was recorded for 11 different frequencies from
∆NR/2π = +38 MHz to +132 MHz with an intensity of 0.6 Isat and illuminations times from 1.5 ms to
15 ms in steps of 1.5 ms.

When the NRF illuminates an atom in the state F = 1, which is separated by ∆Hyp/2π = 6.8 GHz from
F = 2, it will scatter a few photons at a rate

Rsc
(
∆′

)
=

Γ

2
s

1 + s + 4(∆′/Γ)2 , (4.2)

where ∆′ = ∆NR + ∆Hyp. In the experiment, the frequency detuning ∆NR was scanned 150 MHz, which
has a negligible influence on the scattering rate in Eq. (4.2). Therefore, in the discussion below we focus
just on the results for the bright state.

Determining the number of emitted photons and survival probability

To quantify the experimental results, we need to determine the number of emitted photons as well as
the survival probability. To this end, we use only well resolved individual atoms. From the reference
images (RI1, RI2, RI3 and RI4) the positions of the atoms are obtained. A ROI of 11×25 pixels is defined
centered at the atom’s position (see Fig. 4.3), in which we expect to collect 94% of incident photons.
The number of counts contained in the ROI is integrated for the pictures corresponding to F = 1 and
F = 2 (SD1 and SD2). If the atom’s position changes by more than 2 pixels between the reference
images, then it is considered that the atom has been lost. An example of the experimental outcome for
∆NR/2π = +85 MHz and I = 0.6 Isat is shown in Fig. 4.4. The complete set of results for the bright state
has already been presented in Fig. 3.5 in Chap. 3.

4.1.3 Finding optimal parameters for the near-resonant field

From the measured set of data, we are interested on determining the parameters for which the highest
state detection fidelity is achieved. This is equivalent to finding the settings where the largest number of
photons is scattered while keeping a high survival probability. To this end, we fit a phenomenological
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model4 to the measured data and from the fit we determine the time it takes for an atom to scatter a given
number of photons and the corresponding survival probability (see Fig. 4.4).

The fitting procedure described above was used to determine the survival probability after scattering a
different number of photons for all the measured data (see Fig. 4.5). Close to the resonance (∆Res/2π =

79MHz) the survival probability severely decreases, e.g. at ∆/2π = 66 MHz, 95% of the atoms are lost
after scattering just about 400 photons. However, for large detunings, either red or blue, it is possible to
scatter a large number of photons without losing the atom. This is expected since for far detunings the
dipole force fluctuation is negligible and thus, heating is reduced. Nevertheless, there are few differences
between the red and blue-detuned case.

Red detuning. The atom starts at the bottom of the trap and as the atom is heated up, the turning points get
closer to resonance creating a runaway heating process (see Fig. 4.6c for ∆/2π = −5 MHz). Furthermore,
the closer the atom gets to the resonance, the more significant the dipole force fluctuation becomes.

Blue detuning. The atom is closer to resonance when it sits at the bottom of the trap and as its temperature
increases, it moves away from the resonance and, therefore, scatters fewer photons (see Fig. 4.6c for
∆/2π = +123 MHz).

In both cases (red or blue detuning) it is convenient to choose a large detuning in order to reduce the
dipole force fluctuation. However, there is an important difference between the two cases due to the fact
that polarization contamination excites the transition F = 2→ F′ = 2 increasing the transfer probability
to the dark state. The state F′ = 2 is separated from F′ = 3 by ∆sep = 266 MHz +∆AC, where the last
term is the AC-Stark shift induced by the dipole trap (see Fig. 4.6a). Detunings with the same magnitude,
but opposite sign, lead to different excitation to the state F′ = 2, according to

Rblue
sc (∆)

Rred
sc (∆)

≈

(
∆sep − ∆

∆sep + ∆

)2

,

where ∆ is the magnitude of the detuning and Rsc the scattering rate. Therefore, it is expected that blue
detunings transfer less atoms to the dark state.

4 To fit survival vs. time we use f1(t) = a
(
1 − tn

b+tn

)
and to fit scattered photons vs. time we fit f2(t) = atn

b+tn where a, b, n are
fitting constants.
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Figure 4.6. Off-resonant pumping. a) Atom excitation and main decay channels induced by π polariza-
tion contamination for red (top) and blue (bottom) detunings. b) Experimental data. The top plot shows
the ratio of atoms transferred to F = 1 and the lower plot shows the number of detected photons, in
both cases for three different detunings and different illumination times. The error bars represent 95%
confidence intervals. c) Scattering rates (black solid lines) at each position of the traps for the chosen
powers and detunings. The trapping potential is shown as a reference (red dashed line).

To experimentally quantify the number atoms transferred to the dark state (F = 1), atoms are prepared in
the state F = 2,mF = −2 in the dipole trap with a depth of 3.46 mK and illuminated with the NRF. After
different illumination times, atoms in the state F = 2 are removed from the trap by the push-out technique
and it is assumed that the remaining atoms were transferred to F = 1 by the illumination beam. This
measurement was implemented for three different frequency detunings: ∆/2π = −5, +24, and 123 MHz .
The illumination intensities are chosen such that we detect the same number of photons after 17.5 ms,
using I/Isat = 3.7, 1.2, and 3.2 respectively. From the measurement we observe that, as expected, the
transfer to the dark state is minimized for blue detuning, e.g. at 10 ms for blue detuning we detect more
photons than for the red case and the transfer to the dark state is always lower (see Fig. 4.6b).

Optimum parameters

In summary, larger detunings are necessary to reduce the heating during the readout process. However,
with a larger detuning also the required power increases. This leads to a larger transfer from dark to the
bright state, which is not suppressed by polarization. In addition, blue detunings transfer fewer atoms
from the bright to the dark state and, therefore, it is preferred over red detunings. For these reasons,
we conclude that in a standing wave, with a depth of 3.46 mK, it is a good trade-off to use a detuning
∆/2π = 123 MHz, i.e. detuned 2π × 44 MHz from the AC- stark shifted atom at the bottom of the trap,
and an intensity of 1.9 Isat for an illumination time of 10 ms.

For systems with lower trap frequencies, and therefore less influence of the dipole force fluctuation, it is
possible to go closer to resonance and reduce the required power for the NRF.
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Figure 4.7. State detection characterization. a) Mean error using different number of pixels for the
region of interest. b) Mean number of counts at different positions on the EMCCD. c) Mean error at
different positions on the EMCCD. d) Histogram for the number of detected counts for atoms prepared
in the state F = 1 (gray shaded area) and the fit model described in Sec. 4.2.2 (solid black line)
threshold is indicated as the blue vertical line. The inset is a zoom into the low probability events and it
includes the histogram for dark images (orange line). e) Same as in d but for atoms prepared in state
F = 2,mF = −2 (red shaded area) and a fit to the histogram (solid red line). The histogram for the state
F = 1 is included (black line) for a direct comparison.

4.1.4 State detection fidelity for resolved atoms using the threshold method

The idea behind characterizing the state detection fidelity is to prepare atoms in a well-defined initial state
and then perform a state detection measurement to later characterize the fidelity of the readout process by
comparing the prepared and detected states. The result of such characterization is a combination of state
readout and state preparation fidelities and, therefore, the accuracy is limited by the state preparation.

The experimental procedure is the same as described in Sec. 4.1.2 but in this case only for the optimum
parameters listed above. For a precise quantification of the fidelity, the mean number of detected photons
for the dark (F = 1) and bright states (F = 2,mF = −2) is not enough, but it is necessary to record the
distribution of the detected counts.

When an atom is illuminated with the NRF, depending on the internal state, a certain number of photons
is detected by the camera. In order to count these photons, a region of interest must be defined. The
histogram for the counts detected in a ROI of 7×13 pixels using 1.5×104 individual atoms is shown
in Fig. 4.7d and e. The count histograms (normalized to its area) can be interpreted as the probability
distribution that describes the number of detected counts from an atom in the ground states F = 1 and
F = 2 and will be labeled as P (c|F = 1), and P (c|F = 2) respectively.

In order to infer the internal state from the detected photons, a threshold T is chosen such that for a total
number of counts below T the atom is considered to be in the dark state (F = 1), and otherwise in the
bright state (F = 2). Given the above histograms, the state detection error for a threshold T is given
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Chapter 4 Non-destructive and spatially-resolved internal state detection of neutral atoms

by [43, 44, 119]

Err(T, |F = 1) =

∫ ∞

T
P (c|F = 1) dc, (4.3a)

Err(T, |F = 2) =

∫ T

0
P (c|F = 2) dc. (4.3b)

The optimum threshold Topt is defined as the threshold that minimizes the mean value of both errors,
i.e. ME(Topt) = min{ME(T ) | T ∈ [0,∞)}, where ME(T ) is the mean value for both errors in Eqs. (4.3).
From now on, we will refer to ME(Topt) as the mean error.

The mean error depends on the number of pixels chosen for the ROI. The larger the size of the ROI,
the more pixels used to integrate the detected counts, but at the same time the number of clock-induced
charges increases. In Fig. 4.7a the mean error dependence on the chosen number of pixels is shown. The
plot indicates that the best compromise is to choose a ROI = 7×13 pixels (which collects about 87%)
of the incident photons. Using the best parameters for the NRF described in Sec. 4.1.3, we obtain the
figures of merit:

Internal state Survival probability Mean number of counts Detection error

True dark image 99.4 ± 0.1% 69 ± 1 -

F = 1 99.4 ± 0.1% 113 ± 3 2.10 ± 0.45%

F = 2 99.0 ± 0.2% 2 484 ± 6 0.7 ± 0.4%

The survival probability for the true dark image5 turns out to be the same as for F = 1. This is not
surprising since atoms in the dark state are not expected to interact with the NRF.

These settings lead to a mean error of 1.43 ± 0.21%. Furthermore after the readout process, ∼ 98% of
the atoms remain in its initial state6. Therefore, this method is non-destructive not only in the sense that
the atom is not lost, but also that the internal state is preserved.

In the histogram for the dark state in Fig. 4.7d, a few events are observed with a large number of EMCCD
counts. These high counts can be caused either by bad state preparation or by re-pumping to the bright
state. Even though the NRF is detuned by 2π × 6.8GHz, for the settings used here, we expect, from
Eq. (4.2), that after 10 ms of interaction about 2% of the atoms are transferred to the bright state. By
comparing the true dark histogram, i.e. the one measured in between the reference pictures where no
light is present, and the dark state readout histogram, we estimate that about 2.1% of the atoms appear to
be bright, which agrees with our expectation.

To ensure that the readout fidelity does not depend on the atom’s position in the dipole trap, we select
atoms only in the interval [xi − 5, xi + 5] being xi the position on the EMCCD in pixels. In Fig. 4.7b
the mean number of detected counts for each position is plotted. There, due to the AC-Stark shift, the
number of detected counts varies about 30%, but nonetheless, in the same region the mean error remains
relatively constant (see Fig. 4.7c).

5 The true dark image corresponds to SD3 in Sec. 4.1.2, i.e. two reference images are taken and a true dark image is taken in
between. It is used to characterize the survival probability of the imaging process and losses due to technical fluctuations.

6 These same settings for the frequency detuning were used in the data shown in Fig. 4.6 (blue circles) were the transfer to the
dark state after the readout process was characterized.
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Increasing experimental repetition rates

One of the most time consuming parts in a typical experimental sequence is the loading of atoms in the
MOT, on the order of one second, which is large compared to the time scales for state manipulation and
readout that take a few tens of milliseconds. To understand how the non-destructive state detection can
speed up a given measurement, let us assume that N0 atoms are loaded initially. After nr repetitions, the
number of “effective” atoms that have contributed to the measurement is then given by

Neff = N0
1 − pnr

1 − p
,

where p is the survival probability. In order to find the optimum number of repetitions, one must consider
the MOT loading time tload and the time t rep each repetition takes in order to calculate the total number
of repetitions per unit of time for a single loading

R = Neff/(tload + nrtrep).

The number of repetitions that maximize R needs to be found numerically since there is no analytic
solution for this equation. For a typical loading time tload = 1 s, trep = 0.1 s and p = 0.99, the optimum
number of repetitions is nr = 465, which means that each atom is used on average 99 times. This is used
in Chap. 5 for the recording of the Rabi oscillation dynamics of a single atom.

4.2 State determination of multiple atoms using Bayesian methods

The threshold method for state estimation presented in Sec 4.1.4 provides a simple and accurate way
to infer the internal atomic state of a single atom. However, this method fails when multiple atoms are
present in the same region of interest. The collected fluorescence cannot be clearly attributed to different
ROIs if two atoms are not optically resolved.

A similar problem arises on the identification of neutral atoms in optical lattices in the context of (non-
state-dependent) molasses imaging, where it is necessary to differentiate between empty and occupied
lattices sites. Standard approaches for the detection of arrays of bright atom are fitting by multiple
PSFs [21, 26], or parametric deconvolution methods [22, 24, 25, 38]. However, the latter relies on
the acquisition of a high signal to noise image of the trapped atoms, which is not the case for the
state-dependent fluorescence, where the number of photons detected is very small. Related techniques
have been employed for the identification of the internal states of ion chains using images obtained by
state dependent fluorescence, e.g. in Ref. [120]. There an iterative maximum likelihood method was used
in order to determine the maximum state of up to four ions.

In this section, a novel image analysis method is presented. This method uses the information available
about the experimental system in order to differentiate between atoms in the bright and dark state using
Bayesian methods. In Sec. 4.2.1 some basic principles regarding Bayes’ theorem are reviewed and its
direct application to the state determination problem is presented. In Sec. 4.2.2 the statistics of photon
scattering by a neutral atom in the bright and dark state is discussed and, together with a model for the
EMCCD camera response, are used to reproduce the measured count histograms shown in Fig. 4.7. In
Secs. 4.2.3 - 4.2.5 the method is applied to experimental data of a few atoms and its accuracy is studied
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by numerical simulations. Finally in Sec. 4.2.6 an algorithm that extends the method for 2D optical
lattices is presented.

4.2.1 Bayes’ Theorem

In Sec. 4.1.4, the state detection fidelity was characterized by preparing atoms in a well-defined state S
and then illuminating them with a near-resonant field. By doing this, we have experimentally measured
the probability P(c|S) that for an atom in a state S we detect a total number of counts c in the ROI around
the atom as shown by the histogram in Fig. 4.7. However, for the determination of the internal state
of an atom, one usually asks the opposite question: if a number of counts c is detected, then what is
the probability P(S|c) that the atom is in state S? [121]. The answer to this question is given by Bayes’
theorem which relates these two quantities [122]

P (S|c) =
P(c|S)P(S)

P(c|B)P(B) + P(c|D)P(D)
. (4.4)

The probability P(S), for S∈ {B,D}, represents the prior probability that the atom is in state S.

So far, we have experimentally measured P(c|S) by adding up all the detected counts in a ROI but
intuitively one notices that this is not the most efficient usage of the information since each pixel provides
different amount of knowledge. Pixels that are far from the center position of the atom’s image on the
detector provide less information than pixels close to the center. This fact can be included in Bayes’
theorem by rewriting Eq. (4.4) for each individual pixel i as

Ppos
i (S) = Pi (S|c) =

Pi(c|S)Ppri
i (S)

Pi(c|B)Ppri
i (B) + Pi(c|D)Ppri

i (D)
=

Pi(c|S)Ppri
i (S)∑

S Pi(c|S)Ppri
i (S)

, (4.5)

where Pi(c|S) is the count distribution for that pixel, Ppri
i (S ) is the probability that the atom is in state S

before using the of information in pixel i, and Ppos
i (S ) is the probability that the atom is in state S after

using the information in pixel i. By utilizing Bayes’ theorem in Eq. (4.5), each pixel provides a different
amount of information. For pixels far from the center of the atom’s image, the distribution of counts for
the bright and dark states look very similar, i.e. Pi(c|D) ≈ Pi(c|B), and therefore not much information
has been gained, i.e. Ppos

i (S) ≈ Ppri
i (S). In contrast, for pixels close to the center of the atom’s image, the

count distributions are significantly different providing more information. Furthermore, the information
about the state after considering pixel i can be used as the prior knowledge for including the information
of pixel i + 1, i.e. Ppri

i+1(S) = Ppost
i (S). Since for the first pixel there is no prior information, we assume

that Ppri
1 (S ) = 0.5.

Bayes’ formula (4.5), provides a method to use the information contained pixel by pixel taking into
account their distance to the atom’s position. Nevertheless, to use Bayes’ theorem, it is necessary to know
the count distribution for every individual pixel Pi (c|S). Unlike the total count distribution P (c|S), the
distribution for each pixel cannot be experimentally measured since the atom’s position can drift with
respect to the camera, which means that the average number of counts hitting the pixel is not constant.
Even if the position of the atoms remains constant, in order to obtain reasonable smooth histograms,
the required measurement time would be extremely long. Therefore, it is necessary to obtain a general
theoretical model to efficiently generate the correct counting distribution for all pixels Pi (c|S). We
construct such a model by considering the detector properties of the EMCCD camera and determine the
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model parameters by fitting the experimental measured histograms for the counting distribution of a ROI
window in Fig. 4.7.

4.2.2 Modeling the EMCCD count histograms

The count distribution as recorded by a EMCCD camera are shaped by two main effects:

• Photon scattering statistics considering transfer between the states. Atoms in the bright state
scatter typically a large number of photons. However, if they are transferred to the dark state they
stop fluorescing. The opposite happens to an atom in the dark state, it remains dark unless it is
transferred to the bright state, where it can scatter a large number of photons. The possibility of
transitions between the two states during illumination must be considered when describing the
statistics of photon scattering events.

• Camera response. It is necessary to understand how the EMCCD camera converts photon
detection events into digital counts. This process in particular includes the electron multiplication
(EM) gain, sources of electronic noise such as Clock-Induced-Charges (CIC) and the digitization
stage.

Photon statistics from atoms in the bright and the dark state

As a first step, let us describe the statistics of photons emitted by the atom under interrogation.

Photons detected from an atom in the bright state

For a system driven on an ideal closed cycling transition, the number of photons emitted during the
illumination time is Poisson distributed. However, for a real atom, excitations by the illumination light
into states outside the two-level system can transfer the atom to a dark state thereby modifying the photon
emission distribution. This effect is described in Ref. [119], which provides an analytic expression for
the probability to detect n photons during the illumination process

PB (n, αB, n0) =
nn

0 exp [− (αB + 1) n0]
n!

+
αB

(1 + αB)n+1γinc (n + 1, (1 + αB) n0) , (4.6)

where γinc (a, x) = 1
(a−1)

∫ x
0 ya−1e−ydy is the lower incomplete gamma function, αB is the leakage

probability per detected photon, and n0 is the number of photons that would be detected on average
without leakage into the dark state.

Photons detected from an atom in the dark state

When an atom is in the dark state and the near-resonant beam is turned on, few photons are scattered at a
rate that is much lower than for the bright state. However, one of these scattering processes can transfer
the atom to the bright state where it scatters a significant amount of photons. The number of photons that
an atom scatters when it is initially prepared in the dark state is be described by [119]

PD (n, αD) = exp[−αDn0]
[
δn,0 +

αD

(1 − αD)n+1

]
γinc (n + 1, (1 − αD) n0) , (4.7)
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where αD represents the leakage rate per detected photon. The first term in the square brackets is a
Kronequer delta and accounts for the atoms that are never transferred to the dark state and the second
term accounts for atoms leaked to the bright state.

Camera response

Part of the photons emitted by the atom reach the CCD detector, where they generate electric charges that
are later amplified by electronic multiplication. To model the number of counts after the amplification
process, we start by analyzing the amplification of charges contained in a single pixel, and later generalize
it to charges distributed over many pixels.

Detecting n electrons in a single pixel

Charges on a pixel of the CCD can either be generated by photon detection events or CIC. After the
multiplication process in the EM gain register the probability to detected c counts as a result of n initial
charges is given by the Erlangen distribution [80]

PEM (c, n, γ) =
1

γnΓ (n)
cn−1 exp

(
−c/γn) , (4.8)

where γ is the mean number of counts after amplification per charge generated in the sensor (cf. the
definition used in Sec. 2.4.3). After the electronic multiplication process, noise is added in the readout
process (cf. Sec. 2.4.3), which is Gaussian distributed

Pread (c, σ, µ) =
1
√

2πσ
exp

[
−

(c − µ)
2σ2

]
. (4.9)

Therefore, the total number of EMCCD counts c after amplification and readout for a single pixel
containing n electrons is given by the convolution of the probabilities in Eqs. (4.8) and (4.9)

P1 (c, n, γ, σ, µ) = PEM (c, n, γ) ∗ Pread (c, σ, µ) . (4.10)

Detecting N electrons in m pixels.

If a set of m pixels contains a total number of charges N =
∑

ni, where ni is the number of charges
contained in pixel i, then the probability distribution describing the total number of EMCCD counts c
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4.2 State determination of multiple atoms using Bayesian methods

after the readout is7

Pm (c,N, γ, σ, µ) ≡ ∗

m∏
i=1

P1 (c, ni, γ, σ, µ) (4.11)

= ∗

m∏
i=1

PEM (c, ni, γ) ∗ Pread (c, σ, µ) (4.12)

=

∗ m∏
i=1

PEM (c, ni, γ)

 ∗ ∗ m∏
i=1

Pread (c, σ, µ)

 (4.13)

=

∗ m∏
i=1

PEM (c, ni, γ)

 ∗ Pread
(
c,
√

mσ, µ
)
, (4.14)

where the definitions in Eqs. (4.9) and (4.10) have been used. The first term in the square brackets is the
distribution describing the total number of counts after the EM amplification (before readout), which can
be simplified to ∗

∏m
i=1 PEM (c, ni, γ) = ∗

∏N
i=1 PEM (c, 1, γ) = PEM (c,N, γ).

Finally, the count distribution after readout for N charges generated in m pixels is

Pm (c,N, γ, σ, µ) = PEM (c,N, γ) ∗ Pread
(
c,
√

mσ, µ
)
. (4.15)

CIC generated in the CCD sensor

In addition to electrons generated by photons hitting the CCD, CIC contaminate the image by generating
extra electrons. The probability p0 to generate a CIC is constant throughout the CCD, and hence the
number of counts is Poissonian distributed for each pixel. Therefore, the probability that n charges are
generated in a set of m pixels is also Poissonian distributed

PCIC (n,m) =
(mp0)n exp(mp0)

n!
. (4.16)

Combined effect of camera readout and photon emission statistics

Total number of electrons generated in the sensor (photons + CIC)

The total number of charges generated in the CCD is the combined contribution of the CIC and electrons
generated by photon detection. Therefore, the total number of counts after the readout process is described
by the convolution of the probabilities in Eqs. (4.6), (4.7), and (4.16)

Ptot,S (n,m, αS, n0) = PS (n, αS, n0) ∗ PCIC (n,m) (4.17)

=

n∑
k=0

PS (n − k, αS)
(m · p0)k exp(m · p0)

k!

for S = B,D.

7 ∗
∏m

i=1 P1 represents m times the convolution of P1, i.e. ∗
∏m

i=1 P1 = P1 ∗ P1 ∗ ...P1︸           ︷︷           ︸
m times

.
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Chapter 4 Non-destructive and spatially-resolved internal state detection of neutral atoms

Distribution of counts for bright and dark atoms

Now, we have all the elements needed to model the statistics of counts generated by the camera during
the illumination of an atom by a near-resonant field. On the one hand, Eq. (4.15) describes the camera
response when N charges distributed in m pixels; on the other hand, the probability to generate N
charges on the sensor is described by Eq. (4.17). Finally, the distributions of EMCCD counts for an
atom illuminated in the bright or dark state are given by the sum of the camera response weighted by the
probability to generate N electrons

DB(c, n0 ; γ, σ,m, αB) =

∞∑
N=0

Ptot,B (N,m, αB, n0) Pm (c,N, γ, σ, µ) (4.18a)

DD(c, n0 ; γ, σ,m, αD) =

∞∑
N=0

Ptot,D (N,m, αD, n0) Pm (c,N, γ, σ, µ) . (4.18b)

Fig. 4.7 shows the result for a fit of Eqs. (4.18) to the count histograms for the bright and dark states.
From the fit we obtain the mean number of detected photons n0 = 31.1 and the leakage rates αB = 0.0010,
αD = 0.0011. For simplicity, from now on we will just write DD(c, n0) and DB(c, n0) since the values of
all other variables remain constant.

4.2.3 Single atoms: illustrative example

To illustrate how the model for the count distributions is used in Bayes’ theorem for the state detection, we
analyze just ROIs containing well-resolved single atoms. So far, Eqs. (4.18) provide a way to determine
the distribution of counts after the read out of a ROI with m pixels. However, to use these equations,
we need to estimate the mean number of photons that each pixel detects, i.e. we need to provide the
information about the spatial distribution of photons on the CCD. To simplify the problem, we will not
use the full 2D images but we integrate all images along the vertical direction and work only with the
integrated profiles, as shown in Fig. 4.8. By doing so, the spatial distribution of photons for the integrated
pixels is provided by the Line Spread Function (LSF), which was determined in Sec. 2.4.5. Using the
LSF, we are now able to compute the distributions of counts for each individual pixel, and therefore we
can use Bayes’ theorem.

Including spatial information of the LSF

We start by selecting a region of interest with mH in the horizontal direction and mV pixel in the
vertical direction containing a single atom. Integration along the vertical direction leaves us with mH
“integrated-pixels”.

Now, we determine the mean number of photons ni that each individual integrated-pixel detects using
the information in the LSF. If an atom is located at position x0 in the integrated region of interest, then
we select the interval I = [x′0 − pH, x′0 + pH], where x′0 = round(x0) and pH is the number of pixels to
the side. We denote the mean number of photons detected in the interval I by N0. The mean number of
photons ni contained in the integrated-pixel pi is

ni =

∫ pi+0.5

pi−0.5
N0 × LSF (x0 − p) dp ≈ N0 × LSF (x0 − pi) (4.19)
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Figure 4.8. Bayes update with single atoms. a) From top to bottom: single atom reference image;
reference image integrated along the vertical direction; state detection image of an atom in the bright
state; state detection image integrated along the vertical direction; Bayesian update result, the dots
represent the probability after using the previous pixel and prior the use of the next pixel (Ppri

i+1 = Ppos
i ).

b) same as in a but for an atom in the dark state. c) Calculated count distributions of different pixels for
the atom shown in a.

where LSF is the line spread function normalized to its area in the interval I.

Once ni is known, we use Eq. (4.18) to calculate the distributions for the bright and dark states, DB(c, ni),
DD(c, ni). These two distributions represent the probabilities needed for the Bayes’ update rule described
in Eq. (4.5), where Pi(B|c) = DB(c, ni) and Pi(D|c) = DD(c, ni).

If the mean number of photons contained in the interval I is constant, then the distribution of counts
for each pixel, DB,D(c, ni), only depends on the distance to the center position of the atom’s image on
the CCD. The numerical calculation for the count histograms can be slow, therefore it is convenient to
pre-compute a set of count distributions for different atom-pixel distances. Fig. 4.8c shows examples
of the calculated distributions for a few integrated-pixels. It is important to note that the position of the
atom does not always correspond to the center of a pixel (see Fig. 4.8). For this reason, it is necessary to
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Chapter 4 Non-destructive and spatially-resolved internal state detection of neutral atoms

pre-compute a large set of count histograms for different non-integer atom-pixel distances.

Experimental implementation

Fig. 4.8 illustrates the Bayesian update algorithm procedure starting at the integrated-pixel -7. At this
point, there is no prior information, thus we set Ppri

−7(B) = Ppri
−7(D) = 0.5. The number of counts detected

in the integrated-pixel -7 is used to calculate the probability Ppost
−7 (S). The result is then used as the prior

probability for the next pixel, i.e. Ppri
−6(S) = Ppost

−7 (S). This procedure is repeated up to pixel 7.

If the final probability of an atom to be in the bright state is above 0.5, then we assume that the atom is in
the bright state, else it is considered to be in the dark state. By applying this procedure to the recorded set
of experimental data, we obtain a detection error of 2.20 ± 0.35% for the dark state and 0.63 ± 0.18%
for the bright state, which leads to a mean error of 1.4 ± 0.2%. This error is the same value as the one
obtained by the threshold method in Sec. 4.1.4.

Although the mean error for the state detection of a single atom using the threshold method and the
Bayesian update algorithm is the same, the latter has the advantage that it provides a certainty on the state
determination since the result is a probability. The usefulness of the Bayesian method becomes clear
when estimating the state of many atoms that are close together, where the threshold method fails.

4.2.4 Atom pairs

When two atoms are present in the same ROI, there are four possible outcomes for the readout of the
internal state, BB, BD, DB and DD, which represent all possible combinations of bright (B) and dark (D)
states. The application of Bayes’ formula in Eq. (4.5) is straightforward by using S ∈ {BB, BD, DB, DD}
once the four counting distributions Pi(c|BB), Pi(c|BD), Pi(c|DB), Pi(c|DD) have been determined.

Including spatial information of the LSF

The procedures is the same as described in Sec. 4.2.3, but here the origin of the image is defined by x0 =

min{x1, x2} where xi is the positions of each atom. Then we select the interval I2 = [x′0− pH, x′0 + pH +d′],
where x′0 =round(x0), pH is the number of pixels to the side, d′ =round(d), and d is the distance between
the atoms (in a multiple of λDT/2).

To calculate the count distributions, first we consider the mean number photons detected from each atom
in the integrated-pixel pi using

n1,i ≈ N0 × LSF (x0 − pi) , (4.20a)

n2,i ≈ N0 × LSF (x0 − pi + d) , (4.20b)

where LSF is normalized to its area in the interval I2 and N0 is the mean number of photons expected
from a single atom in the interval I2.

The number of photons detected from the two atoms is the sum of the photons coming from each atom.
Therefore, the total distribution of detected photons is obtained by convoluting the distributions for each
atom (see Eqs. (4.6), (4.7)).

78



4.2 State determination of multiple atoms using Bayesian methods

-6 -4 -2 0 2 4 6 8

2
4
6
8

10
12

-6 -4 -2 0 2 4 6 8
0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

-6 -4 -2 0 2 4 6 8

0

0.5

1

-6 -4 -2 0 2 4 6 8

2
4
6
8

10
12

-6 -4 -2 0 2 4 6 8

-6 -4 -2 0 2 4 6 8

0

0.5

1

-6 -4 -2 0 2 4 6 8

2
4
6
8

10
12

-6 -4 -2 0 2 4 6 8

-6 -4 -2 0 2 4 6 8

0

0.5

1

-6 -4 -2 0 2 4 6 8

2
4
6
8

10
12

-6 -4 -2 0 2 4 6 8

-6 -4 -2 0 2 4 6 8

0

0.5

1

P(BB)
P(BD)
P(DB)
P(DD)

Position [Pixels]

Position [Pixels]

Po
siti

on
 

[P
ix

el
s]

Po
siti

on
 

[P
ix

el
s]

Position [Pixels] Position [Pixels] Position [Pixels]

-6 -4 -2 0 2 4 6 8

2
4
6
8

10
12

Pr
ob

ab
ili

ty
In

te
gr

at
ed

 E
M

CC
D 

co
un

ts
 [x

10
3 ]

In
te

gr
at

ed
 E

M
CC

D 
co

un
ts

 [x
10

4 ]

-6 -4 -2 0 2 4 6 8
0

1

2

3

a) b) c) d) e)

Figure 4.9. Bayes update with two atoms. a) Top: Reference image of two atoms separated by 2 lattice
sites. Middle: Reference image integrated along the vertical and fitted using two LSF. b) Top: State
detection image of two atoms in the BB state. Middle: State detection image integrated along the
vertical direction. The dashed vertical lines represent the position of each atom. Bottom: Bayesian
update result. The probability at each pixel represents the prior probability. c-e) Same as b but for the
states BD DB and DD respectively.

PS1,S2(n1,i, n2,i, αS1 , αS2 , n0) = PS1(n1,i, αS1 , n0) ∗ PS2(n2,i, αS2 , n0) (4.21)

for S1,S2 ∈ {B,D}.

Finally, the four count distributions are obtained by replacing PS in Eqs. (4.17) and (4.18) by the two-atom
distributions defined Eq. (4.21).

In the case for two atoms in the same ROI, the distributions of counts for each pixel depends not only on
the distance from the pixel to the atom’s position but also on the distance between the atoms. Therefore,
a large set of distributions that contains many different combinations of pixel-atom distance and atom
separations must be pre-computed.

Experimental implementation

In our experimental setup, we can prepare atom pairs in either the state BB or DD but we cannot address
neighboring atoms individually to create the states BD and DB in a deterministic fashion. Nevertheless,
we can use the fact that the “signal” from an atom in the dark state during the illumination is very similar
to the one of an empty lattice site. We characterize the detection method for the cases of BD and DB, by
simply simulating the dark state with an empty lattice site8.

8 In Sec. 4.1.4 it has been shown that about 2% of the atoms in the dark state appear to be bright due to the transfer
F = 1→ F = 2 induced by the near-resonant illumination, therefore, replacing the dark state with an empty lattice creates an
error of the same order.
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Figure 4.10. Bayes update result for atom pairs. Detection probability for every possible outcome for
atom pairs prepared in different states, P(S′|S). a-c) corresponds to separations of 1, 2 and 3 lattice sites
respectively. The error bars are obtained by bootstrap resampling.

The Bayesian update algorithm works in the same way as described in Sec. 4.2.3, the only difference
is that now we have four states and their respective distributions for each pixel. Fig. 4.9 shows the
application of the algorithm to the four states for a pair of atoms separated by two lattices sites.

To characterize the state detection fidelity, we are interested on determining the probability that an
atom pair prepared in a state S is detected in a state S′, which will be denoted as P(S′|S ) for the states
S,S’ ∈ {BB, BD, DB, DD}. The probability P(S′|S) for the state determination using experimental data
is plotted in Fig. 4.10 for atoms separated by 1, 2 and 3 lattices sites.

Even though atoms separated by one lattice represent the most challenging case, the determination of DD
and BB states is quite accurate (> 95%). However, it is more complicated when just one atom is bright,
i.e. for the state BD and DB. In this case, on average, only 85% of the cases are determined properly.
Moreover, one can observe that the state BD is determined with higher accuracy than the state DB. This
arises from the fact that the LSF has a small asymmetry that creates more light contamination to one
side than to the other. For two and three lattices separation, the accuracy of the algorithm is always high
(> 95%), which is remarkable taking into account that for these separations the atoms are not optically
resolved.

We define as a figure of merit the detection error for the state S

Err(S) = 1 − P(S|S). (4.22)

The mean error is then given by the average value of Err(S) for the four states. This is plotted in Fig. 4.11
for atom separations up to 6 lattice sites. As expected, the detection error decreases as the distance
between the atoms increases and it approaches the value for the single atom case (see Sec.4.2.3).

Bayesian update using the full 2D image

The Bayesian update algorithm has been applied, so far, using the vertically integrated image. If one
intends to use the algorithm over the full 2D image, then an “effective” PSF that describes the 2D
distribution of counts on the sensor is required. As a rough approximation for the effective PSF, we use
an average image of many individual atoms. The image was calculated as described in 2.4.5 but instead
of using the integrated profiles, each rows of pixels is used.
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Figure 4.11. Bayes update results for atom pairs.
Detection error Err(S ) for two atoms separated
from one to six lattice sites. The filled (unfilled)
markers are obtained using the 1D(2D)-Bayesian
update. The error bars are obtained by bootstrap
resampling.

The Bayesian update in 2D is performed in the same way as in the 1D case, but now using every single
pixel in the chosen region of interest containing a total of 13 × 15 pixels. The results of the 2D analysis
for atoms separated by 1, 2 and 3 lattice sites are shown in Fig. 4.11. We see that, as expected, the average
detection error decreases. However, the gain is almost negligible compared to the computational cost,
which has increased by a factor of 13.

4.2.5 Multiple atoms

The Bayesian update algorithm used to determine the state of two atoms can be extended for multiple
atoms by calculating all possible combinations of bright and dark atoms. For a sparsely filled lattice, it
is possible to divide the image into smaller ROI containing a few atoms, where the algorithm can be
applied. However, this is not possible for images containing a large number of atoms. For many atoms
the algorithm becomes computationally intractable due to its exponential scaling. In this section we
present a procedure, which allows the determination of the internal state of an arbitrary number of atoms
for a one-dimensional lattice. First the algorithm is introduced and later the fidelity is characterized with
numerical simulation. Finally, the algorithm is compared with an alternative detection method based on
the simultaneous fitting of many LSF to the fluorescence signal.

Bayes update for multiple atoms

When a large number of atoms Natoms are present in the same region of interest, the direct application
of Bayes’ formula in Eq. (4.5) requires the calculation of 2Natoms combinations, which demands a large
computation power. For example, in Fig. 4.12a, the schematic representation of a ROI with 13 lattice
sites containing 7 atoms is shown. In this case, all 128 combinations of bright and dark states would
have to be calculated. Fortunately, this problem can be significantly simplified. The pixels surrounding a
particular atom are mainly influence by neighbor atoms and contain very little information about atoms
that are far away. Therefore, when Bayes’ formula (4.5) is applied to a set of pixels surrounding an atom,
we can limit ourselves to including into the analysis only a few neighboring atoms. This reduces the
number of combinations that must be calculated.

Before starting with the description of the algorithm some considerations and definitions are listed
below:

• In our system, we study a region of interest in a 1D lattice. In the lattice, some sites can contain a
bright or a dark atom, but they can also be empty. For simplicity, we assume that a dark atom is
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Figure 4.12. Bayes update with multiple atoms. a-e) Schematic representation of the Bayesian update
algorithm for a one dimensional chain of neutral atoms. The dark gray regions represent the pixels
used in every step. f) Reference image for the atoms trapped in the optical lattice. g) State detection
image of atoms randomly prepared in the bright and dark state. h) Integrated counts of the signal image.
i) Bayesian update result using the information of empty lattice sites. j) Bayesian update result without
using the information on empty lattice sites.

indistinguishable from an empty lattice site and, therefore, the problem of detecting if an atom
is bright or dark is the same as finding the probability that a lattice site si contains a bright atom.
This probability will be denoted as PB(si). In the case that we have prior knowledge on which sites
are empty, we include this information by setting Ppri

B (si) = 0, where i is the index for an empty
site. Note that if the initial probability is zero then it remains zero after the application of Bayes’
formula, Eq. (4.5).

• For a lattice site si located at position xi, we define a corresponding set of surrounding integrated-
pixels Πi = [−d/2, xi + d/2], with d being the lattice separation (see Fig. 4.12a-e).

• The fluorescence of an atom in a lattice site si is not contained only in its corresponding set of
pixels Πi but the light contaminates pixels that correspond to other lattices sites. We assume that
the fluorescence of the atom contaminates nc lattice sites to each side. This implies that a set of
pixels Πi contains information of atoms in the sites si−nc, ..., si+nc.

• The set of pixels containing the atoms under study must include at least nc empty lattice sites to
the left of the first atom and to the right of the last atom. This is necessary to guarantee that all
information available for the atoms contained in the pixels on the sides is included.

We demonstrate the algorithm using the example of a ROI containing 7 atoms and 13 lattice sites, as
shown in Fig. 4.12. We assume that the fluorescence of each atom contaminates 2 neighboring sites
to each side, i.e. nc = 2. For this reason, the corresponding number of empty lattice sites has been
artificially added to each side. The information on the empty sites is included by setting Ppri

B (si) = 0 for
i = 1, 2, 10, 11, 12, 13. The procedure is then implemented as follows:
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4.2 State determination of multiple atoms using Bayesian methods

1. First we define the subset of lattice sites Σ1 = {s1, s2, s3, s4, s5}. We then calculate the probability
for 25 possible combinations of bright and dark states of the form S = S 1S 2S 3S 4S 5 for S i ∈ {B,D}
and i = 1, ...5.

2. To apply Bayes update algorithm on Σ1 we must use only the set of pixels Π1 ∪ Π2 ∪ Π3. This is
because the set Π4 contains information about the atom in lattice site s6 and it is not inside the set
Σ1 (see Fig. 4.12a). As a result of the application of Bayes’ Theorem we obtain Ppost

Σ1
(S), which

contains information about the five lattice sites in Σ1.

3. At this point we have used all the pixels that provide information to the site s1. Therefore, we
can remove it from the set under study and include s6 instead. To remove the site s1 we need to
calculate the probability that it contains a bright atom, which is done by marginalization.

PB(s1) =
∑

S2...S5∈{B,D}

Ppos
Σ1

(BS2S3S4S5) . (4.23)

4. Including the site s6 means that we redefine the set of lattice sites under study, which now is
Σ2 = {s2, s3, s4, s5, s6} (see Fig. 4.12b).

5. In order to apply Bayes update for the states in Σ2, first we need to calculate a set of prior
probabilities. To this end, we use the result of the calculated posterior probabilities Ppost

Σ1
(S)

together with the information for the site that was added, i.e. Ppri
B (s6). The new set of priors are

then given by

Ppri
Σ2

(S2...S5B) = Ppos
Σ1

(BS2...S5) Ppri
B (s6)

Ppri
Σ2

(S2...S5D) = Ppos
Σ1

(BS2...S5) Ppri
D (s6)

if PB (s1) > 0.5

Ppri
Σ2

(S2...S5B) = Ppos
Σ1

(DS2...S5) Ppri
B (s6)

Ppri
Σ2

(S2...S5D) = Ppos
Σ1

(DS2...S5) Ppri
D (s6)

if PB (s1) < 0.5

(4.24)

Here the new priors Ppri
Σ2

needs to be renormalized. In this way, all the correlations between the
state of the atoms in Σ2 are maintained.

6. We apply Bayes update formalism to Σ2 using only the set of pixels Π4. By doing this, we obtain
the posterior probabilities Ppost

Σ2
(S). Starting from step 3, the same procedure is repeated until the

last set of pixels that contains information on the last lattice site is reached. In this example, the
last lattice site is s9, therefore we use up to the set Π11 (see Fig. 4.12c-e)

By using this algorithm, all the pixels containing significant information about a given atom are used to
estimate its internal state.

Characterization of the algorithm

The application of the Bayesian algorithm for multiple atoms to experimental data is shown in Fig. 4.12f-j.
The chosen image corresponds to a set of atoms that has been prepared in state F = 2,mF = −2 and then
a π/2 microwave pulse has been applied leading to a random distribution of bright and dark atoms. The
algorithm has been applied in two different ways. In the first, the information on empty lattice sites at
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Figure 4.13. Simulation for Bayes update with multiple atoms. a) Numerical simulation for the internal
state detection fidelity of neutral atoms in a 1D standing wave as a function of the filling factor of bright
atoms. The red circles (black squares) represent the correct detection probability for the bright (dark)
atoms. The blue triangles represent the correct detection probability for an arbitrary state. The light
gray dashed lines are the results for the correct detection probability obtained by the fitting method. In
the simulation, we assume a lattice spacing of 1.051 pixels and use the LSF of our experimental system,
which has a FWHM of 3.15 pixels. b)-c) same as a but assuming lattice separations of 2.1 and 3.15
pixels respectively. All error bars represent 95% confidence interval estimated by bootstrap resampling.

positions j is included by P j(B) = 0 (see Fig. 4.12i). In the second case, no information about the empty
lattice sites was provided (Fig. 4.12j). The latter case is equivalent to finding the location of an unknown
number of atoms in the lattice using the signal image, which contains only a few photons. Even though
this is a complex scenario, the algorithm still gives reasonable good results.

To characterize the performance of the algorithm, it is necessary to have a large number of atom
combinations in bright and dark states in well-defined positions. Since we cannot deterministically
prepare the atoms in different states, we have implemented a numerical simulation. The simulation
creates a one-dimensional lattice, where 16 atoms are next to each other. The number of randomly
positioned bright atoms in the lattice was varied from 1 to 15 and each case was repeated 1000 times. In
this way we quantify the probability to detect the state properly as the ratio of bright atoms increases (see
Fig. 4.13a).

In addition to the Bayesian algorithm, the results of a second detection method are presented. This
method works by fitting multiple LSF to the state-dependent fluorescence signal and depending on the
amplitude of the fit the state is determined to be either bright or dark. For the fitting procedure only P(S|S)
is shown as a gray dashed line Fig. 4.13a. From the results of both simulations, we concluded that by
using the Bayesian algorithm, at least, 75% of the atoms are detected in the correct state. This is superior
to the fitting method where the number of detected atoms is only 68% for densely filled lattices.

In Fig. 4.13b,c two more simulations are presented. The simulations assume optical systems that have
two and three times better optical resolution, which were chosen because experimental setups with these
characteristics already exist [21, 22]. For these optical resolutions, the fidelity of the Bayesian method
increases and gives always better results compared to the fitting procedure. The Bayesian method is not
only better in terms of accuracy but also in the computational time required. While the fitting procedure
requires 90 ms to fit the fluorescence signal of 7 atoms, the Bayesian algorithm requires only 2 ms and
scales linearly with the number of atoms.
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Figure 4.14. Bayes update scheme for a 2D lattice a)-h) Schematic diagrams showing the steps for the
Bayesian update algorithm in a 2D image. The dark shaded regions represent the pixels from which the
information has already been used, and the red circles represent the positions where atoms are located.
i,j) Possible paths for the update algorithm. k) Sample of an image generated in the simulation.

4.2.6 Extension to a 2D lattice

The Bayesian algorithm for multiple atoms, presented in the previous section, represents a fast and
accurate way to determine the state of an atom and it can be applied to an arbitrarily large 1D lattice.
However, experimental systems that deal with large atom numbers typically consist of 2D arrays of
optically trapped atoms [21, 22, 24–26]. Also in these systems the implementation of Bayesian techniques
could be a powerful tool for the detection of bright atoms. Here we present a brief description of how
this can be implemented.

The implementation of a Bayesian algorithm for a 2D system is closely related to the one describe in
the previous section. For this reason most of the details are omitted and just an example following the
schematic representation in Fig. 4.14 is presented:

a) We use a 2D lattice where only nearest neighbor contamination is present. Two rows of empty
sites have been added on the sides of the atom array under study. The pixels corresponding to
outermost sites (shaded region in Fig. 4.14a) contain no information . In each iteration, we select a
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Chapter 4 Non-destructive and spatially-resolved internal state detection of neutral atoms

square patch containing 3 × 3 lattice sites and only the pixels corresponding to the central lattice
site are used in Bayes formula to calculate the probability for the 29 combination of states. This
guarantees that no pixel containing information on atoms outside the patch is used in the update.

b-d) After each update step, the patch is shifted by one lattice site in the vertical direction. The
probability for the dropped sites to contain a bright atom is estimated by marginalization. The
correlations between the six remaining atoms inside the patch are preserved and used as priors for
the next iteration together with the priors of the newly included sites. After every shift, there are
sites on the left side of the array for which no more significant information is available (indicated
by a check mark). However, for the other two dropped sites there is still information available in
the unevaluated pixels and therefore the probabilities are kept in memory and will be used as priors
later when needed. The patch is shifted upwards until the final lattice site of the vertical direction
is reached.

e-h) The patch is shifted one lattice site to the right and the whole procedure is repeated starting from
the bottom. All the previously calculated probabilities are used as priors when needed.

i) The algorithm is repeated until the last lattice site is reached.

With this algorithm, it is assured that the information contained in each pixel is used only once and
that all pixels containing information of a given lattice site are taken into account during the update
procedure. The trade-off for this method is that the correlations between the atoms inside the patch and
the atoms dropped during the shifts of the patch are lost by the marginalization process. This way to use
the information of the pixels is of course not unique (see Fig. 4.14i-j).

In order to quantify the performance of the method, a numerical simulation was implemented using the
evaluation path shown in Fig. 4.14i. For the sake of simulation speed we make the simplification to use
Poissonian counting distributions with an average of 30 photons per atom and 0.019 CICs per pixel9

rather than the correct counting. An ideal Airy PSF is used to simulate the imaging system with a FWHM
of three pixels. The lattice spacing corresponds to one FWHM of the LSF, which would correspond
to a diffraction limited imaging system with a NA ≈ 0.65. Fig. 4.14k shows an example of an image
generated. By simulating a lattice with 50% bright atoms at random positions, the state detection error
was estimated to be less than 1%. Due to the different magnification and the simplified counting statistics
the absolute value of the simulation error obtained should not be directly compared to the results in 1D.

It is important to mention that the mean number of 30 detected photons used in the simulation correspond
the number of photons detected in our system with a detection efficiency of ∼ 2.9%. However, systems
with larger numerical apertures, not only have better resolutions but also larger collection efficiencies.
For example in reference [21] approximately 10% of the light scattered by an atom is detected, which
would dramatically increase the detection fidelity.

4.3 Summary and conclusions

In this chapter, we have shown that by using a single light beam with clean sigma polarization, it is
possible to scatter a large number of photons on a closed cycling transition of optically trapped 87Rb

9 Contamination from background light can also be included in the CICs.
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atoms. This allows us to achieve simultaneous and spatially resolved internal state readout of the atomic
ensemble using an EMCCD camera.

We have determined a set of parameters for the illumination light that allows the fast state determination
with a fidelity of 98.6 ± 0.2%, which is similar to the push-out method [39, 123] and has the advantage
that the atom remains in the trap for 99.0 ± 0.2% of the cases. Moreover, after the readout process,
less than 2% of the atoms change their initial ground state. It can therefore be said that the method is
non-destructive not only in the sense that it keeps atoms in the trap, but also that it preserves the initial
hyperfine state of the atom. In addition, by re-cooling the atom after the application of a state detection
pulse, it is possible to re-use every atom an average of 100 times.

A novel image analysis technique was developed for the state determination of an atom using Bayesian
methods, which is particularly powerful for not fully resolved registers of multiple atoms. To this end,
we have presented a model that includes the statistics of the detected photons as well as the response
from the EMCCD camera, which allows us to reproduce the experimentally measured count histograms
for dark and bright atoms under near-resonant illumination.

The Bayesian method was implemented on experimental data for images containing single atoms and
atom pairs. Its accuracy for multiple atoms was tested by numerical simulations and compared with
the more established method of fitting multiple line spread functions to the fluorescence images. The
Bayesian method outperforms the fitting method not only in accuracy but also in computation time, which
is relevant for applications that require feedback. We have evaluated the Bayesian image analysis not only
for our own experimental parameters but have also estimated the performance for state-of-the-art cold
atom imaging systems. The performance of the state analysis improves dramatically with the numerical
aperture of imaging optics due to the increase in optical resolution and collection efficiency.

Finally, we have shown how the Bayesian image analysis algorithm can be applied to atoms trapped in
two-dimensional arrays. The computational time for this algorithm increases linearly with the number
of atoms. This allows for the scalable internal state readout of registers formed by large numbers of
atoms.
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CHAPTER 5

Manipulation of internal and external states of
small atomic ensembles

The coherent control of the internal atomic states is an essential requirement in most of the protocols for
quantum information and communication [8, 9, 124], where the information from a flying qubit, e.g. a
photon, is mapped onto the internal states of an atom. 87Rb has been shown to be an ideal candidate for
quantum information storage since its internal structure allows for the storage of a polarization-encoded
qubit [125]. To store this information, a strong photon-atom interaction is necessary [126, 127]. One
way to achieve this strong interaction is by confining the light into a small volume, for example inside
a high finesse optical fiber based Fabry-Perot resonator [53, 128], which are of particular interest for
future experiments in our experimental system (see Chap. 6). In such resonators, the light is confined
in a Gaussian mode with a small waist of ∼ 5 µm creating strong atom-light coupling. The interaction
between light and matter can also be enhanced by using a large number of atoms which, due to collective
effects, lead to an enhancement of the coupling strength proportional to

√
N [129–134]. In order to

confine many atoms in the small mode volume, it is necessary to implement a compression technique
that allows us to increase the density of atoms.

This final chapter is divided into two parts. In the first section I utilize the non-destructive state detection
method as the main tool to study the coherent manipulation of small atomic ensembles, first by the
usage of microwave radiation and later by a two-photon Raman process. The latter is used to reduce the
temperature of the trapped atoms below the Doppler limit by the resolved sideband cooling technique.
In the second section, I characterize a compression method that allows the creation of small and dense
atomic ensembles [45].

5.1 Coherent manipulation

Coherent manipulation of the ground states of 87Rb can be achieved, e.g. by using electromagnetic
radiation in the Microwave (MW) range or in the optical domain by a two-photon Raman process.
The coherent coupling to the motional degrees of freedom of atoms trapped in deep potentials can be
exploited to manipulate their vibrational state and cool them below the Doppler limit. In this section, the
experimental implementation of both tools is presented.
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Figure 5.1. Microwave spectroscopy of 87Rb ground states. a) Ground state levels and allowed MW
transitions for 87Rb. b) Experimental measurement of the MW spectrum. The red solid line is a fit of 7
equidistant Lorentzian curves to the experimental data.

5.1.1 Microwave manipulation

Coherent superposition of the two ground states of 87Rb can be created by a magnetic field oscillating
at the hyperfine splitting frequency ∆HFS = 6.83GHz. The dynamics of the two-level system can be
described analogously to nuclear magnetic resonance by the optical Bloch equations (see e.g. Refs. [71,
75]). In our experimental system, MW radiation is generated using a Phase Locked Dielectric Resonator
Oscillator and a Direct Digital Synthesizer. The radiation is then amplified and sent to the experimental
chamber by a home-built helix antenna. This setup is described in detail in Ref. [135].

Microwave spectroscopy

MW radiation can be used to address the nine transitions between the two hyperfine ground states of
87Rb, ( see Fig. 5.1a). These transitions can be used to measure the Zeeman splitting induced by the
presence of a constant magnetic field, which allows a precise calibration of the fields generated by the
compensation coils of the system.

To experimentally measure the Zeeman splitting, a few atoms are illuminated with a beam resonant with
the transition F = 2 → F′ = 2. During the illumination process, the magnetic field is set roughly to
zero. This creates a mixture of polarization in the illumination light leading to a uniform population
of the Zeeman manifold of F = 1. Then a bias magnetic field of 1.5 G is applied along the z direction
and a square MW pulse with a duration of 500 µs is shone onto the atoms for different frequencies
ωMW = ∆HFS + δMW. Fig. 5.1b shows the population in F = 2 after the interaction with the MW for
different frequencies. The two larger peaks correspond to the degenerate transitions. To measure the
population in state F = 2 for the data shown in Fig. 5.1b the non-destructive state detection technique
was used.
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Figure 5.2. Rabi oscillations between the ground states of 87Rb. a) The top figure shows the ex-
perimental measurement of Rabi oscillations (red circles) between the two outermost Zeeman levels
(depicted in the lower scheme) and a fit to the experimental data (solid blue). From the fit we obtain
ωRabi = 20.62 ± 0.02 kHz, and a decay time τ = 1.95+2.5

−0.4 ms. The dashed lines represent the exponential
decay. b) Same as in a but for the clock transitions. From the fit we obtain ωRabi = 23.373 ± 0.004 kHz,
and a decay time τ = 2.93 ± 0.25 ms. The population transfer process is depicted in the lower scheme.

Rabi oscillations and MW pumping to the clock states.

To coherently manipulate a small ensemble of atoms it is necessary to prepare a well-defined starting
Zeeman state. To this end, atoms are optically pumped to state F = 2,mF = −2 using a σ−-polarized
light resonant with the transition F = 2→ F′ = 2 and a repumper beam resonant with F = 1→ F′ = 2
with the same polarization. Once all atoms are transferred to the outermost Zeeman state, they interact
with the MW field in the same way. A continuous interaction leads to Rabi oscillations between the
levels |2,−2〉 and |1,−1〉 as shown in Fig. 5.2a. For this measurement, a resonant MW pulse of different
duration is shone onto the atoms. From the amplitude of the oscillation, it is estimated that 92.0 ± 1.8%
of the atoms are transferred to the state |1,−1〉1. The population transfer is mainly limited by a short
coherence time of only 52 ± 5 µs, which was measured by Ramsey spectroscopy (for details regarding
this measurement see Ref. [135]).

The simple Zeeman structure of 87Rb can be utilized to transfer the atomic population to the mF = 0
levels by using two consecutive MW π/2 pulses resonant with the transitions |2,−2〉 → |1,−1〉 and
|1,−1〉 → |2, 0〉 (see Fig. 5.2b). To characterize the population transfer to the Zeeman state mF = 0,
we measure the Rabi flopping between the levels |2, 0〉 and |1, 0〉 (see Fig. 5.2b). From a fit to the
experimental data it is estimated that 71 ± 1% of the atoms are transferred to the mF = 0 levels. This
transfer is also limited by the short coherence time but it can be improved by using the adiabatic rapid
passage technique [136] instead of the simple square π/2 pulse.

The main advantage of the non-destructive detection method developed in Chap.4 is the reuse of an atom
at a fixed position multiple times. For example, Fig. 5.3a shows the trace for a Rabi oscillation using a
single atom in the same lattice site. In this case, since just one atom is used, the only possible outcome

1 From the fit we obtain an amplitude of 0.863 ± 0.015 and we assume a state detection error of 3 ± 1% for this measurement.
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Figure 5.3. Single atom Rabi oscillation.
a) Single atom Rabi oscillation between the
state |2,−2〉 and |1,−1〉 (red circles) and a ref-
erence oscillation (blue line). b) Auto correl-
ation function for the single atom trace (red
dots) and a fit of Eq.(5.1) to the experimental
data (blue curve).

for the state is either 0 or 1. As a reference, in the same figure, the cosine function is plotted with a
Rabi frequency of ωRabi/2π = 24.44 ± 0.01 kHz, which is estimated by using 1 × 104 atoms for the same
measurement.

To visualize the oscillation of the single atom trace we calculate the autocorrelation function (see
Fig. 5.3b), which clearly shows the periodic structure. From a fit to

g = f (x) ∗ f (x) , where f (x) =

[
1 +

1
2

cos(ωRabit)
]
η(tmax − t) η(t), (5.1)

and η(t) is the step function, we obtain a frequency2 of ωRabi/2π = 24.40 ± 0.02 kHz, which is close to
the value obtained by using multiple atoms. This method allows a precise determination of the Rabi
frequency after an acquisition time of only ∼ 5 s by using the same atom. This result can be a useful tool
for systems with position-dependent Rabi frequencies.

5.1.2 Raman manipulation

An alternative way to drive coherent transitions is by a two-photon Raman process [137]. In this case,
a pair of laser fields, usually referred as the pump and Stokes beams, are used in Λ configuration with
two ground states | ↑〉, | ↓〉 and an excited state |e〉. The implementation of this configuration for 87Rb
is depicted in Fig. 5.4b. When the detuning between the laser beams and the excited state is large
compared to the atomic linewidth (Γ � ∆r), the excited state can be adiabatically eliminated and the
system is reduced to an effective two-level system, where the two ground states are coherently coupled
(see e.g. Refs. [138, 139]). At the two-photon resonance (δR = 0, see Fig. 5.4b.) the coupling strength is
characterized by an effective Rabi frequency given by

ΩR =
ΩpumpΩStokes

2∆R
, (5.2)

where Ωpump and Ωstokes are the Rabi frequencies of each laser beam. In the two-photon resonant case,
the population between the two ground states oscillates with the effective frequency ΩR. If the beams are

2 This error represents 95% confidence interval obtained directly from a least squares fit using the Jacobian matrix, while for
all other values presented in this section the errors are obtained by Bootstrap resampling.
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5.1 Coherent manipulation

not at resonance (δR , 0), then the amplitude of the oscillation is reduced and the ground state population
oscillates according to

P↑ =
Ω2

R

Ω2 sin2
(
Ω

2
t
)
, (5.3)

where Ω =

√
Ω2

R + δ2
R is the generalized Rabi frequency.

Coupling to the atomic motion

In the two-photon Raman process described above, an atom absorbs a photon from one field and
coherently emits it into the other. This emission and absorption process leads to a momentum transfer
from the photons to the atom. If the two Raman beams are co-propagating, then the absorbed and emitted
photons have the same direction leading to a negligible momentum transfer. However, if they have a
different orientation, e.g. opposite or orthogonal direction, then the momentum transfer is significant and
the coupling to the atomic motion plays an important role.

Ultracold atoms trapped in a standing wave dipole trap are usually confined close to the bottom of the trap.
In this regime, the sinusoidal potential is well approximated by a harmonic potential and the quantized
motion can be described using the creation and annihilation operators â and â†. When the atom in the
harmonic potential interacts with the two Raman beams, they couple not only the internal states but also
to the vibrational levels (see Fig. 5.4c). By choosing the two-photon detuning δR accordingly, one can
drive coherent transitions between the states | ↑, n〉 and | ↓,m〉. The coupling to the motional degrees of
freedom by a two-photon Raman process has been extensively studied in the literature (see e.g. Ref. [89]),
here just a brief summary is presented.

The resonant coupling strength between two vibrational states is given by the matrix element [64]

Ωn→m = Ω0

∣∣∣∣〈m| exp
(
iη(â + â†)

)
|n〉

∣∣∣∣
= Ω0

√
n<!
n>!

η|n−m|L|n−m|
n< exp

(
−η2/2

)
(5.4)

where n< = min(n,m), n> = max(n,m), Lαn are the generalized Laguerre polynomials, η the Lamb-Dicke
parameter defined as

η = ∆kR∆x = ∆kR

√
~

2mωtrap
, (5.5)

were ∆x is the extension of the atom in the trap, and ∆kR = |kpump − kStokes| [89]. The Lamb-Dicke
regime is defined by the condition

η2 (2n + 1) � 1, (5.6)

which means that the extension of the atomic wave function is much smaller than 1/∆kR. In this regime
Eq. (5.4) can be approximated by

Ωn→m,n ≈ Ω0
η|n−m|

|n − m|

√
n<!
n>!

, Ωn→n ≈ Ω0

(
1 −

2n + 1
2

η2
)
. (5.7)

Eq. (5.7) indicates that for |n − m| > 1, the transition strength is strongly suppressed.
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Figure 5.4. Raman spectroscopy implementation for 87Rb. a) Experimental configuration for the
Raman beams illuminating atoms in the optical lattice. b) Λ configuration for the two-photon Raman
process implemented for the outermost Zeeman levels of the ground states of 87Rb. c) Raman transitions
including the coupling to the quantized axial vibrational levels. In deep traps, also radial sidebands can
be resolved. d) Experimental measurement of the motional spectrum using the Raman transitions. The
solid line is a fit of three equidistant Lorentzian curves to the experimental data.

Raman sideband spectroscopy

To experimentally implement the two-photon Raman process described above, we use a couple of home-
built diode lasers detuned by 6.8 GHz from each other and stabilized using a phase lock loop (described
in Ref. [135]). Both lasers are detuned by ∼220 GHz from the D2 line. The Stokes laser propagates along
the axial direction with a beam waist of 80 µm, a power of 0.18 mW and is linearly polarized along the z
axis. The pump laser is σ−-polarized and it propagates along the z direction with a waist of 310 µm and a
power of 2.1 mW (see Fig. 5.4a).

The experimental sequence works in a similar way as for the MW spectroscopy described in Sec. 5.1.1
but now using Raman beams instead of MW radiation. We start by loading a few atoms in the optical
dipole trap using 36 mW for each arm (U0 ≈ 1.6 mK). The molasses illumination is used to acquire
an image and to cool the atoms at the same time. Then, the population is transferred to the state
F = 2,mF = −2 by optical pumping followed by an adiabatic reduction of the power of the dipole trap3

to 9 mW (U0 ≈ 0.4 mK). Finally, both Raman beams are turned on for 500 µs and in each repetition the
value of δR is changed. The recorded spectrum is shown in Fig. 5.4c.

By fitting three equidistant Lorentzian curves to the experimental, we extract a trap frequency of
307 ± 5 kHz, which is close to the theoretical value of ωaxial/2π = 312 kHz (see Table 2.1). This value
for the trap frequency leads to a Lamb-Dicke parameter η ≈ 0.16. For this reason, only the first sidebands
are visible. The sidebands also contain information about the temperature of the atom in the trap. By
assuming a Boltzmann, distribution one can estimate the mean temperature of an atomic ensemble
according to [89]

T =
~ωtrap

kB ln
(

n̄+1
n̄

) , (5.8)

where n̄ = R/(1 − R) is the mean vibrational quantum number, R = A∆n=−1/A∆n=+1, and A∆n=±1 is the
amplitude of the sideband that changes the vibrational state by ±1 [140]. This leads to a mean vibrational
number of n̄ = 2.4 ± 0.9 and to a temperature of T = 42 ± 27 µK.

3 We use this power for the trap since for higher values the sidebands are strongly reduced. Furthermore, these settings are
used later for resolved sideband cooling.
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Figure 5.5. Raman Spectrum in a deep trap for 87Rb. a) Full vibrational spectrum using a power
of 36 mW for each arm (U0 ≈ 1.6 mK). The solid line is a fit to three equidistant Lorentzian curves
b) Zoom into the carrier peak. The solid line is a fit to the radial sidebands using 15 equidistant
Lorentzian curves. c) Same as b but for the heating (left) sideband. d) Same as b but for the cooling
(right) sideband.

For higher powers of the dipole trap, the Lamb-Dicke parameter is reduced and, therefore, also the
amplitude of the sidebands. This is visible in the recorded spectrum using a power of 36 mW for each arm
of the dipole trap presented (see Fig. 5.5a). This configuration of the trap leads toωaxial/2π = 645 ± 1 kHz,
n̄ = 2.3 ± 0.2 and T = 87 ± 7 µK. By zooming into the peaks, a finer structure arises from the vibrational
levels of the radial motion (see Fig. 5.5b-d). Fitting multiple equidistant Lorentzian curves to the
experimental data, we obtain ωradial/2π = 27.2 ± 0.2 kHz. In both cases, for axial and radial sidebands,
the frequencies are slightly larger than the expected value ωTh,axial/2π = 623 kHz, ωTh,radial/2π = 24 kHz
(see Table 2.1). A beam waist of 4.75 µm for the dipole trap would explain the measured radial and axial
frequency. Therefore, we assume this value as the beam waist for the dipole trap.

Raman sideband cooling

Coherent transfer between the vibrational levels by a two-photon Raman transition provides a powerful
tool since the well controlled momentum transfer from a photon to an atom can lead to sub-Doppler
cooling. Here we present a brief description of the so-called resolved-sideband cooling cycle implemented
in our experimental system. For more details regarding this method see e.g. Refs. [89, 141].

When the two-photon detuning is set on resonance with the cooling sideband, δR = ωtrap, an atom
undergoes Rabi oscillations between the states | ↑, n〉 and | ↓, n − 1〉. In the absence of decoherence
an atom remains in this cycle. To break the cycle, a weak repumper resonant with the transition
F = 1 → F′ = 2 with σ− polarization is introduced (see Fig. 5.6a). Once an atom is coherently
transferred by the Raman process to the state | ↓, n − 1〉, it is then excited to the state F′ = 2 by the weak
repumper. In the Lamb-Dicke regime, Erec � ~ωtrap, an atom cannot gain momentum from the photon
recoil and, therefore, during the photon absorption and emission the vibrational state does not change. If
the Lamb-Dicke condition is fulfilled, an atom decays from the state F′ = 2 to | ↑, n − 1〉, which reduces
the vibrational number by one unit. If the process is repeated many times, an atom reaches its vibrational
ground state.
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Figure 5.6. Raman cooling of 87Rb. a) The two-photon Raman process (solid line arrows) coherently
transfers the atom from | ↑, n〉 to | ↓, n − 1〉, from where it is transferred back to | ↑, n − 1〉 by the
repumper (red dashed arrow). b) Relevant levels of 87Rb and the beams used in the cooling scheme.
c) Vibrational spectrum after 1 ms of sideband cooling. The solid red line is a fit of three equidistant
Lorentzian curves to the experimental data. The black dashed-line is the fit shown in Fig. 5.4d (spectrum
without Raman cooling)

This cooling scheme is implemented in the experimental setup using a trap with an axial frequency of
ωaxial/2π = 305 kHz and the same settings for the Raman beams as described before. The repumper
beam has a waist of 1 mm and a power of 12 µW. A weak optical pumping is added to guarantee that the
atom remains in the outermost Zeeman levels (see Fig. 5.6b). The optical pumping beam has a waist of
1 mm and a power of 10 µW. From the vibrational spectrum after 1 ms of Raman cooling in Fig. 5.6c,
we estimate a mean vibrational number n̄ = 0.054+0.058

−0.054, which leads to a temperature T < 6 µK. For the
measurement of the vibrational spectrum, the same settings are used as for the data shown in Fig. 5.4b.

It is important to mention that even though the Lamb-Dicke condition must be fulfilled, in our experi-
mental setup, one cannot arbitrarily increase the trap depth. This comes from the fact that for 87Rb, the
dipole trap creates a repulsive potential for the excited states. Therefore, the deeper the trap, more heating
is induced during the short time the atom remains in the excited state (see Chap. 3). In our experimental
system, it was not possible to cool the atoms in a trap with an axial frequency above 600 kHz.

5.2 Atomic ensemble compression

In the future this experiment aims to achieve a strong interaction of a small atomic ensemble with the
electromagnetic field of single photons confined in the small volume of a high finesse optical-fiber-based
Fabry-Perot resonator [53, 128] (see Chap. 6). This means that atoms must be confined in a small region
of ∼ 10 µm. However, the atoms are distributed in a region of about 60 µm when they are loaded from the
MOT into the 1D dipole trap. It is therefore necessary to implement a compression scheme to reduce the
width of the distribution of atoms in the trap. In this section we explore a technique realized in Ref. [45],
where the authors introduce a method to increase the filling factor of atoms trapped in an optical lattice.
They characterize their method by measuring the atomic fluorescence using a (non-spatially resolved)
photodetector. Here we analyze the method in more detail by using the spatial resolution provided by the
EMCCD camera and implementing Raman sideband cooling.
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a)

b)

10µm

Figure 5.7. Atomic compression scheme.
a) Schematic representation of the compres-
sion procedure. The wavelength has been
scaled by a factor of 10 for better visualiz-
ation of the standing wave potentials. In this
method, one of the beams is adiabatically
switched off for a small time and turned on
when the density of atoms is maximum at the
center. b) Image of atoms in the dipole trap
before and after a compression sequence.

5.2.1 Method description

The compression procedure starts by loading a few atoms in a standing wave dipole trap created by two
counter-propagating beams. Once the atoms are loaded into the lattice, they are cooled down, e.g. by
molasses illumination. After the cooling process, one arm is adiabatically switched off and the atoms are
released from their individual potentials. The atoms are now confined in the trap created by the running
wave, where the Gaussian profile of the trap attracts the atoms towards the center. By switching on the
second arm again at a time t = T/4 (being T the oscillation period in the running wave trap) most of the
atoms are trapped close to the center. This is procedure is schematically illustrated in Fig. 5.7. The final
size of the atomic ensemble depends on the dipole trap parameters and on the initial temperature of the
atoms. This dependence is discussed in detail below.

Adiabaticity criteria

To implement this compression scheme, it is necessary to carefully choose the switching time of the trap.
On the one hand, if the trap is switched off too fast, the atoms can escape the trapping potential. On the
other hand, a slow change limits the repetition rate of any experiment. From classical mechanics, it is
known that for an infinitesimally slow change of the trapping potential, the action integral s =

∮
pdx over

one oscillation period is conserved. For a harmonic potential this is a simple integral leading to s = E/ν,
where ν = ωtrap/2π is the trap frequency. Therefore, if the trap frequency is changed adiabatically, since s
remains constant, the energy changes by a proportional amount, i.e. the trapped atom follows adiabatically
the potential change [142]. This statement remains valid in the quantum regime, where for adiabatic
changes of the trapping potential the vibrational quantum number is conserved. In a real experiment,
however, the changes on the trapping potential cannot be infinitesimally slow. Nevertheless, one can
use a more practical criteria: the trap depth must not change significantly during an oscillation [142,
143]. Since the trap frequency depends on the trap depth, the change on the trap frequency during one
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Chapter 5 Manipulation of internal and external states of small atomic ensembles

oscillation period must be small compared to the frequency, i.e. ∆ν/ν = ν̇T/ν � 1, which reduces to∣∣∣∣∣ ν̇ν2

∣∣∣∣∣ � 1. (5.9)

Harmonic approximation: Compression limit

For atoms located around the center of the trap at a position z � zR, where zR is the Rayleigh length, the
trap is well approximated by a harmonic potential. By Taylor expanding the Gaussian potential created
by the running, in the harmonic approximation one finds the oscillation frequency [82]

ωrw =

√
2U0

mz2
R

. (5.10)

In a harmonic potential, all atoms oscillate at the same frequency regardless of their initial position.
Furthermore, if all atoms are initially at rest, then all of them will reach the center of the trap at a time
t = T/4, where T = 2π/ωrw is the oscillation period. In reality, the atoms are not initially at rest and
their initial velocity is randomly distributed, which creates a small difference in the time the atoms
take to arrive at the center of the trap. Assuming that the initial velocity of the atoms is described by
a Maxwell-Boltzmann distribution [82], the width of the spatial distribution of atoms in the trap has a
minimum at the time t = T/4, with a standard deviation given by

σz =
σvz

ωrw
, (5.11)

with σvz being the standard deviation of the initial velocity distribution of the atoms. Eq. (5.11) indicates
that, as expected, a higher compression is achieved by low temperatures and deep traps.

5.2.2 Experimental implementation

In this section, we implement the compression sequence using two different configurations for the
trapping light, first creating a running-wave potential with a depth of 0.3 mK (shallow trap) and later with
a depth 1.3 mK (deep trap).

Measurements in a shallow trap

Atoms are loaded in a standing wave trap and cooled down using the optical molasses. The trap is
created using λDT = 880 nm and a power of 20 mW for each arm leading to a (measured) trap depth of
∼ 0.56 mK and an axial trap frequency of ωaxial/2π = 367 ± 10 kHz. Then, one of the arms is switched
off by lowering its power during a time tramp = 2 ms following the ramp4 P(t) = P1 cos2(πt/2tramp), while
the other is increased up to 36 mW in the same way. The arm of the dipole trap remains off for a time
twait creating a running wave potential5 with Urw ≈ 0.3 mK. Afterwards the power of the arm is turned on

4 Following this ramp, the adiabatic condition in Eq. (5.9) is fulfilled for the axial
∣∣∣ν̇/ν2

∣∣∣ < 2 × 10−2 and the radial direction∣∣∣ν̇/ν2
∣∣∣ < 1 × 10−3 up to t ≈ 1.95 ms.

5 During this time, a RF-switch (Mini Circuits ZYSWA-2-50DR) is used to attenuate the RF source driving the AOM used for
power regulation in order to fully suppress the power of the dipole trap arm.
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Figure 5.8. Density oscillations in the running wave. Standard deviation obtained from a Gaussian fit
to the distribution of atoms in the dipole trap after the compression sequence for different waiting times.
a) ’Using a dipole trap at 880 nm and P = 36 mW with molasses cooling. b) Using a dipole trap at
880 nm and P = 36 mW with Raman cooling. c) Using a dipole trap at 860 nm and P = 112 mW with
molasses cooling. The error bars represent 95% confidence interval obtained by bootstrap resampling.

following the same ramp.

The experiment is repeated for ten different waiting times from 0.05 ms to 2 ms. For each time step, 500
repetitions are performed,where in each repetition we load on average 2.1 atoms. The small number
of atoms is necessary to guarantee that there are no multiple occupancies of the same site after the
compression sequence, which can lead to losses due to light-induced collisions during the imaging
process. From the experimental data, it is possible to fit the distribution of atoms in the lattice by a
Gaussian curve and obtain the width for the different waiting times, which is shown in Fig. 5.8a. In
the plot, the oscillations in the running wave can be observed. The initial distribution of atoms has a
width of 30.2 ± 0.3 µm and reaches a minimum value of 17.1 ± 0.6 µm, which represents a compression
of σinitial/σmin = 1.76 ± 0.07.

In order to find the oscillation frequency in the running wave potential we fit the phenomenological func-
tion f (t) = A

[
1 + cos(2ωrw t) exp(−t/τ)

]
+B to the data, where A and B are constants. The factor of two in

the cosine function comes from the fact that the variation of the width for the atomic distribution changes
at twice the oscillation frequency. From the fit, we extract a frequency of ωrw/2π = 443.5 ± 9.5 Hz,
which is close to the expected oscillation frequency ωTh, rw/2π = 423 Hz obtained by using Eq. (5.10).

The same measurement was repeated using Raman sideband cooling instead of molasses cooling. The
variation of the width at different times is shown in Fig. 5.8b. From the data we obtain a maximum
compression of σinitial/σmin = 2.27 ± 0.09 and an oscillation frequency of ωrw/2π = 421 ± 11 Hz. As
expected the compression is more efficient since the atoms start with a narrower energy distribution.

Measurement in a deep trap

In the second configuration, we use a dipole trap wavelength of 860 nm, and the power is increased by
a couple of tapered amplifiers. The experimental sequence is similar to the one described before for
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Figure 5.9. Losses in the compression pro-
cedure. Losses for the set containing initially
1 or 2 atoms (red squares) and initially con-
taining more than 8 atom (blue circles) after a
single compression sequence in a dipole trap
at 860 nm and P = 112 mW with molasses
cooling.

molasses cooling but with some subtle differences.

One arm of the dipole trap is ramped down from P1,i =30 mW to P1,f =0.16 mW in time tramp = 5 ms,
while the other is increased from P2,i =30 mW to P2,f =112 mW. The power on the first beam is
reduced following P1(t) = (P1,i − P1,f) cos2(πt/2tramp) + P1,f and P2(t) is changed such that the intensity
I ∝ [

√
P1(t) +

√
P2(t)]2 remains constant. With this restriction, the radial frequency remains unchanged

and only the axial frequency must fulfill the adiabaticity condition in Eq. (5.9). Then the power P1 is
set to zero creating a running wave potential with Urw ≈ 1.3 mK. Finally the power P1 is increased to
30 mW in 0.1 ms and the power P2 is adiabatically reduced to 30 mW in 5 ms. The fast switching time is
necessary to trap the atoms at a well-defined time since, in this case, the trap is deeper and atoms move
faster. With this procedure we trap about 97% of the atoms in the standing wave potentials.

The variation of the width at different times is shown in Fig. 5.8c. From the data we obtain a maximum
compression of σinitial/σmin = 2.89 ± 0.09 and an oscillation frequency of ωrw = 2π = 1 050 ± 45 Hz,
which is slightly larger than the expected frequency of 967 Hz (obtained by using Eq. 5.10). This might
indicate that the beam waist is smaller than the expected value of 4.75 µm since a waist 3% smaller
explains the measured frequency.

For this configuration of the running wave, we loaded an average of 6 atoms in each repetition. In order
to analyze the losses in the compression process, we select two subsets of data. In the first set, we use
images containing just one and two atoms. This guarantees that there are no light induced collisions
during illumination and, therefore, the losses are attributed only to the ramping of the traps. In the second
set, we select images where initially more than 8 atoms are loaded, which can lead to light-induced
collisions. The survival probability for different waiting times is plotted for both sets in Fig. 5.9. For
the set containing a few atoms, the losses remain relatively constant (within the error bars) and only at
t = 0.25 ms they seem to increase slightly. For the set containing many atoms, the losses increase when
the density is higher (at t = 0.25 ms) indicating that atoms have been trapped in the same lattice site.
These losses limit the efficiency of this compression method when the trap contains a large number of
atoms.

Effects of the anharmonicity of the trap

In all cases presented above, the compression efficiency is also limited by the anharmonicity of the trap.
Far from the center of the trap, the harmonic approximation is not valid anymore. Atoms located initially
far to the side are accelerated slower and do not reach the center at t = T/4, however they enter the
harmonic region. Therefore, in a second compression, most of the atoms oscillate in phase, which leads
to a higher compression rate. Fig. 5.10 shows the distribution of atoms in the dipole trap for different
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Figure 5.10. Atom distribution in the lattice after the compression sequence. a) Measured distribution of atoms
in the dipole trap for different waiting times after 1, 2 and 5 compressions. Here we use the shallow trap:
λDT = 880 nm, P = 36 mW (Urw = 0.3 mK) with molasses cooling. b) Initial distribution of atoms in the trap (gray
dots) and the distribution after a time t ≈ T/4 (blue dots, also indicated by the red rectangle in a ). The solid lines
are the Gaussian fits of each distribution. c), d) Same as a,b but using the deep trap: λDT = 860 nm, P = 112 mW
Urw = 1.3 mK) with molasses cooling. e) Results of a Monte Carlo simulation for the deep trap. The left plot
shows the trajectory for few atoms moving in the running wave trap, here the origin of the wings can be visualized.
The middle and right plots show the result after one and five compressions respectively simulating 104 atoms.
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Figure 5.11. Flat distribution of atoms at the center of the trap. Distribution of atoms in the dipole trap after
twait ≈ 0.8T for a) experimental data and b) Monte Carlo simulation in a dipole trap at 860 nm and P = 112 mW
using molasses cooling.

waiting times and for 1, 2 and 5 iterations of the compression sequence. The atoms that are trapped
in the harmonic region oscillate at the same frequency leading to density maxima at times multiples
of t = T/4, while atoms outside the harmonic region are dephased and lead to the formation of wing
structures, which are also visible in a Monte Carlo simulation6 presented in Fig.5.10e.

Light-induced collisions set an upper limit for the density of atoms in the lattices. When the compression
sequence is implemented with a waiting time of twait = T/4, the density is Gaussian distributed and
the probability that many atoms end up in the same lattice site is higher at the center. One can take
advantage of the anharmonicity of the trap and turn on the lattice at a time different from twait = T/4. For
example for a time twait ≈ 0.8 ms, the atomic distribution is flatter at the center. This was observed in
the experimental data (Fig. 5.11a) and verified in a Monte Carlo simulation (Fig. 5.11b). This effect is,
however, not present in a purely harmonic trap. Such flat distribution can help to reduce the losses at the
center of the trap.

Compression limit and temperature estimation

In a lattice loaded with few atoms, the losses due to light-induced collisions during the compression
sequence are rare. In this case it is possible to use this technique more than one time leading to
higher compression efficiency. Another advantage of this method is that the atoms are symmetrically
distributed around the center of the trap, where the AC-Stark shift at different positions is minimized.
This is especially useful in tightly-focused dipole traps, where the AC-Stark shift significantly modifies
the number of scattered photons by atoms trapped at different positions during the molasses imaging
process.

Although multiple repetitions create a better compression, the width of final distribution is limited by
the initial temperature of the atoms. Fig. 5.12 shows the reduction of the distribution width using up to
five repetitions, reaching a minimum value of 6.20 ± 0.13 µm. In the plot, it is visible that the width is
already close to its minimum value after two compressions. The minimum width can be used to obtain
information about the temperature of the atoms in the running wave potential. Assuming a Boltzmann

6 The simulation calculates the trajectories of atoms trapped in a 1D running wave for the deep potential with random initial
position and momentum that are Gaussian and Boltzmann distributed respectively.
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Figure 5.12. Distribution of atoms in the
trap after different iterations of the compres-
sion sequence. The results are obtained for
molasses-cooled atoms in a dipole trap at
860 nm with P = 112 mW and a free oscil-
lation time twait = T/4.

distribution for the energy of the atoms and a harmonic approximation for the trap, the distribution of
atoms in the dipole trap is described by a Gaussian distribution[143]

ρ(z) =

√
mω2

rwσ
2

2πkBTrw
exp

(
−

mω2
rwz2

2kBTrw

)
(5.12)

where the temperature is

Trw =
mω2

rwσ
2

kB
. (5.13)

The measured width of the distribution of atoms in the lattice leads to a temperature of 16 ± 1 µK in the
trap.

To further compress the atomic distribution, the initial temperature can be reduced by Raman sideband
cooling. However, even without Raman cooling, the final density is limited by the light-induced collisions.
One way to overcome this limitation is by implementing a 3D lattice, which reduces the probability of
multiple occupancies of a single site (see Chap. 6).

5.3 Summary and conclusions

In the first part of this chapter, I have illustrated the usage of the non-destructive method for the internal
state determination of 87Rb atoms. Using microwave radiation I have shown that the high fidelity of
the state detection technique allows for a precise determination of the Rabi frequency using a single
atom at a fixed lattice site in a time of ∼ 5 s. The ability to reuse the atom many times represents a big
improvement over the push-out technique, which is currently used for the state determination of neutral
atoms in optical lattices in other experimental systems.

The trap characteristics were determined by two-photon Raman spectroscopy and later, using resolved-
sideband cooling, the axial temperature of the atoms was reduced to T < 6 µK. Raman manipulation
has some advantages over MW manipulation. Besides the coupling to the atomic motion, higher Rabi
frequencies can be achieved using Raman beams, which allows a faster manipulation of the internal
states (see e.g. Ref. [135]). The laser beams employed to drive the Raman process can be used, e.g.
in combination with a spatial light modulator, to create position-dependent Rabi frequencies. This,
combined with the ability to measure position-dependent Rabi frequencies in short times can be a useful
experimental tool to study neutral atoms in complex optical lattice structures.
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Chapter 5 Manipulation of internal and external states of small atomic ensembles

In the second part of this chapter, we have studied the compression of the atomic distribution in the
optical lattice. By using molasses cooling in a deep trap (Urw = 1.3 mK), it was demonstrated that width
of the atomic distribution is reduced almost three times and Raman cooling can improve the compression
efficiency even further. We observe that losses by light induced collisions start to limit the achievable
densities. Therefore, to create a dense ensemble with a larger number of atoms it is necessary to reduce
the multiple occupancies, e.g. by using the anharmonicity of the trap to create a flatter atomic distribution
in combination with a 3D lattice to provide more sites. A configuration for such a 3D lattice is proposed
in Chap. 6, which will at the same time allow the usage of the non-destructive state detection technique.
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CHAPTER 6

Outlook

In this work, I have presented experimental methods that allow for the first time the simultaneous,
non-destructive, and spatially resolved, state detection of neutral atoms trapped in a 1D optical lattice by
near-resonance fluorescence. For this purpose a novel image analysis technique has been employed that
uses Bayesian methods to include information about the experimental system and to make efficient use of
the photon counts recorded.

The tools developed here are scalable and can be extended for atoms confined in other trap configurations,
including in 3D optical lattices with thousands of atoms [21, 22, 24–26]. One of the conditions for a
high-fidelity readout of the internal state, described in Chap. 4, is that the polarization of the optical trap is
well aligned with the magnetic field. One way to create a 3D lattice that fulfills this condition is by using
three pairs of orthogonal counter-propagating beams. Two of the beams can be linearly polarized along z.
The third one, however, cannot be polarized in the same direction but the effect of its polarization can be
minimized by using a blue-detuned field since, for a blue-detuned dipole trap, the atoms are confined at
the intensity minima. This configuration is illustrated in Fig. 6.1a. In a 3D trap with such characteristics,
it should be possible to use near-resonant illumination along the z direction to implement non-destructive
state detection. The image analysis technique developed in Chap. 4 is useful not only for the internal
state readout but it can also be used for fast determination of the position of atoms in the lattice.

The configuration of a 3D lattice as depicted in Fig. 6.1a is of a particular interest for future experiments
in this system. Currently, a high finesse optical-fiber-based Fabry-Perot resonator has been introduced
in the system [53, 128], which will allow for strong atom-light interaction between compact ensembles
of neutral atoms and single photons on the D2 line. The cavity is directly attached to the aspheric lens
holder (see Fig. 6.1b) and connected to the damping stage, which reduces external vibrations caused by
high-frequency noise.

The set of aspheric lenses will be used to create a 3D lattice for the atoms inside the resonator; two
standing wave red-detuned dipole traps will be created along the x and y direction and a blue-detuned
results from the intra-cavity lock light along the z direction (see Fig. 6.1d). The cavity will be used to
enhance the interaction between single photons and a small atomic ensemble trapped in the optical lattice
inside the resonator.

Optical cavities can be used to determine the internal state of a single neutral atom [40, 41, 144, 145] but
they do not provide precise spatial information. Therefore, state detection via the optical cavity can be
complemented by the spatially resolved state detection method presented in this work. This will allow
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Figure 6.2. Creation of dense ensembles inside the resonator a) From left to right. Atoms are loaded in
the MOT, transferred into the dipole trap, and transported inside the cavity using the optical conveyor
belt technique. Then a compression sequence using the crossed traps is applied to increase the density
of atoms inside the resonator. b) Compression scheme using a single standing wave. c) Second
compression sequence using the crossed dipole traps.
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for a high fidelity position determination of atoms inside the resonator, which is of particular relevance
for entanglement schemes [146], where the position determination of atoms is important. Furthermore,
the fast position and internal state determination can be used to implement real-time feedback on the
system providing it with great versatility.

To place the atoms inside the resonator, they must be transported from a MOT (located ∼ 1 mm away)
into the cavity. This will be done by the well known optical conveyor belt technique, implemented
previously in our research group [66, 123, 147]. However, with this transport alone, only a few atoms
can be placed in the interaction region inside the cavity mode, which has a waist of ∼ 5 µm. To increase
the number of atoms in the interaction region, the compression sequence described in Sec. 5.2 will be
used (see Fig. 6.2b). In addition to the compression technique presented in Chap. 5, which uses only
a single standing wave, the second dipole trap can be used to achieve a better compression efficiency
(see Fig. 6.2c). Moreover, the 3D lattice inside the resonator creates more than 100 lattice sites inside
the interaction region. This large number of sites minimizes the multiple occupancies of lattice sites
reducing the losses during the compression sequence, which should possible to place tens of atoms inside
the cavity mode.

The combination of the high-finesse cavity and a small atomic ensemble trapped in an optical lattice is a
promising system to implement quantum communication and quantum information storage protocols [9]
mentioned in the introduction of this thesis. In long distance communication, light is usually guided using
by optical fibers, and the fact that the resonator is already fiber-coupled, reduces losses due to free space
to fiber coupling. Using atomic ensembles, in contrast to single quantum systems, leads to collective
effects that enhance the interaction between matter and light and can therefore increase storage fidelity.
The experimental apparatus and the novel techniques presented in this thesis represent an important step
towards the creation of a high-fidelity quantum memory.
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APPENDIX A

Lens alignment

We use an aspheric lens (Lightpath 352240, anti-reflection B-coated) with a NA=0.5, a working distance
of 5.9 mm, and an effective focal length of 8 mm to create the optical dipole trap and to image single
atoms. Although these lenses were designed by the manufacturer for laser diode collimation and the
factory design accounts for the diode glass window, they can be used as an objective lens for single atom
imaging and the absence of the glass window is compensated by using an extra long-focal distance lens,
which restores the aberration-free operation [50]. In this alignment procedure, we use a compensation
lens with a focal length of 1000 mm separated by 450 mm from the aspheric lens.

Using a set of 4 aspheric lenses, we create a create a 2D lattice where trapped atoms in a fixed position,
to this end we need a lens configuration as shown in Fig. A.1a. To align the perpendicular directions, we
use a high quality sphere at the center of the lens system. When the wavefront of a focused laser beam
matches the curvature of the sphere, it is back-reflected and the sphere its located at the focal point of the
lens. This effect is used to align two lenses to the same focal point (see Fig. A.1b). We use a Si3N4 sphere
with a diameter of 4 mm from the company Saphirwerk Industrieprodukte AG. This is grade 3 sphere,
which deviates from a perfect sphere at most by 0.08 µm and has a surface roughness of 0.01µm

a)

b)

c)

Figure A.1. Lens alignment using a high-
quality sphere. a) Desired lens config-
uration. b) The wavefront of a focused
Gaussian beam matches the curvature of
a sphere and is reflected. c) Si3N4 sphere
used for the alignment procedure.
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Appendix A Lens alignment

The alignment procedure is schematically depicted in Fig. A.2.

a) We use two orthogonal Gaussian beams with a diameter of 10 mm. The beams are collimated
using a sharing interferometer1 and a beam profile camera is used to set a constant height. The
beams are retro-reflected using the end mirrors and directed to a screen that is used as a reference
(see Fig. A.2a).

b) The sphere is introduced on the beam using a translation stage and its position is monitored by
imaging the created diffraction pattern with the beam profile camera (see Fig. A.2b).

c) The correction lenses are placed and the aspheric lenses are introduced using a translation stage.
Using the reflected beam on screen as a reference it is possible to roughly align the lenses and
all directions and the final positioning along the axial direction is done by using the shear plate
interferometer (see Fig. A.2c). After the alignment, the lenses are glued to the upper part of the
PEEK holder using a small amount of UV-curing Epoxy glue2. We have cured the glue using a UV
light bulb of 80 W for ∼ 1 hr and then used small drops of Epotek 353ND glue, which was cured it
at 150 degrees3 for 3 hrs.

d) Finally, to align the last two lenses we use the transmitted beam to position the lenses. First using
the reflected image on the screen and finally using the shear plate of the transmitted beam (see
Fig. A.2d).

1 Shearing Interferometer model SI100 from Thorlabs, Inc.
2 Epotek OG116
3 It is important to mention that the 353ND glue becomes extremely watery when heated up.
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Figure A.2. Lens alignment procedure.a) 10 mm diameter beams are collimated and aligned with
respect to the table. b) Compensation lenses are placed and the sphere is introduced by using the beam
profile camera to measure its position. c) The aspheric lenses are aligned by monitoring the reflected
signal in the screen and using the shear plate interferometer. d) The two last aspheric lenses are aligned.
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APPENDIX B

Crossed dipole traps
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Figure B.1. Crossed dipole traps. a) Simplified setup for the creation of a small 2D optical lattice. After the
optical fiber (A) the beam is split into two parts. Each part is split again and shifted using a couple of AOM’s (in
double-pass configuration) and then coupled to optical fibers (E1,E2, D1, D2). After the optical fibers, the light is
focused using the aspheric lenses. Light from the atoms is collected using the same lenses in order to image the
atoms using the EMCCD camera. The setup for the MOT beams is not shown. b) Image of atoms in 1D standing
wave along the x direction and a running wave along the y direction. In the image, only the beam from the fiber D2
was used to create the running wave along y. The beam has a small offset for better visualization of both traps. All
beams have a waist of ∼ 5 µm c) Same as b but in this case the image is an average of 700 individual pictures.
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APPENDIX C

Monte Carlo simulation for the heating
dynamics

Photon scattering events are determined by a scattering rate Rsc, which in general is not constant. For an
atom trapped in a deep dipole potential, the photon scattering events depend on the atoms’ position due
to the position dependent AC-Stark shift. Furthermore, the multilevel structure of the atom introduces
additional scattering channels from which the atom can decay into the dark state |F = 1,mF = −1〉. In
order to simulate the dynamics of the system, a Monte-Carlo simulation is implemented.

C.1 Position dependent scattering rate

If the scattering rate has an upper bound, i.e. Rsc (r) ≤ Rmax, the bound can be used to randomly determine
the time it takes to scatter a photon. To this end, we use an algorithm by Zipkes et al. [148] that does not
suffer from time discretization errors. It works as follows:

1. The atom starts at a position r0 at time t = 0.

2. The system is advanced a time τ that is drawn according to the distribution

Pmax = Rmax exp (−Rmaxt) .

3. At the new position, the re-scaled rate is calculated

g =
Rsc (r (τ))

Rmax

4. The scattering event will occurred with a probability g. To decide if the event takes place or not, a
random number r is drawn from a uniform distribution in the interval [0, 1).

• If r < g, the event has taken place.

• If r > g, the event has not taken place, then go back to 2
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Appendix C Monte Carlo simulation for the heating dynamics

C.2 Multiple rates

When two different random events (independent from each other) described by exponential distributions
with rates R1 and R2 take place, one way to decide which event takes place can be implemented as
follows:

1. Draw a random time from each distribution and take the lowest value.

τ1 ↔ R1 exp (−R1t)

τ2 ↔ R2 exp (−R2t)

τ = min (τ1, τ2)

2. If τ = τ1 event 1 has occurred otherwise it was event 2.

With this procedure, both events combined are described by an exponential distribution with a total rate
R1 + R2 (see e.g. Ref. [149]) but the individual occurrences are still described by the individual rates. If
the rates are position dependence, but upper-bounded, then an event takes place with a probability g in
the same way as in C.1.

The extension to more than two random events is straightforward.

C.3 Off-resonant scattering

we have experimentally measured that the π component is the main contribution to the polarization
impurity (see App. 5.1.1). Furthermore, after the state detection process, only a few percent of the atoms
are pumped into the dark state (see Sec. 4.1.3), showing that only a few events will occur due to the
polarization impurity. This allows us to model the off-resonant scattering process with a simplified
model: just the π component for the polarization is considered. In addition, we assume that the events are
instantaneous, i.e. the dynamics while the atom is in the “wrong” mF state is neglected.

With the assumptions mentioned above, the simplified off-resonant process is implemented as follows:

1. The atom starts in the state |F = 2,mF = −2〉

2. The π-polarization impurity can transfer the atom to a new state |φ〉 with a probability Pφ, where

Pφ =
Rπsc|2,−2〉→|φ〉

(r)

Rπsc|2,−2〉→|2,−2〉 (r) + Rπsc|2,−2〉→|2,−1〉 (r) + Rπsc|2,−2〉→|1,−1〉 (r)
.

for φ = |2,−2〉, |2,−1〉, |1,−1〉 and

RQ
sc,|i〉→| f 〉 ≈

8πα2ω3
LI

3~c2

∣∣∣∣∣∣∣∑m,q
〈 f | rq |m〉 〈m| rQ |i〉
ωm − ωL + iΓ/2

∣∣∣∣∣∣∣
2

(C.1)

is the Kramers-Heisenberg formula [150], where α is the fine structure constant, ωL is the angular
frequency of the laser light, I is the incident light intensity, Q indicates the incident laser polariza-
tion, q the scattered light polarization, i, m, and f , are the initial, intermediate and final states. The
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C.4 Monte Carlo loop implementation for the weak resonant field

Kramers-Heisenberg formula accounts for the effects of interference due to scattering from the
excited states F′ = 3 and F′ = 2..

3. For |φ〉 = |F = 1,mF = −1〉 the atom has been transferred to the dark state and simulation is over.

4. For |φ〉 = |F = 2,mF = −1〉 the atom has changed its Zeeman level. If this is the case, then one of
the following two events can happen:

• Go to state |F = 2,mF = −2〉 with a probability Pback

• Go to state |F = 1,mF = −1〉 with a probability 1 − Pback, where

Pback =
Rσsc|2,−1〉→|2,−2〉

(r)

Rσsc|2,−1〉→|2,−2〉 (r) + Rσsc|2,−1〉→|1,−1〉 (r)
. (C.2)

C.4 Monte Carlo loop implementation for the weak resonant field

Here we implement the experimental situation described in Sec. 3.1.3. A neutral atom trapped in
an optical dipole trap interacting with a weak resonant field. In this case the effects of polarization
contamination are completely neglected.

1. The atom is initially in its ground state. The initial energy E0 is drawn from a Boltzmann
distribution. r0 and p0 are randomly chosen according to the initial energy.1

2. Calculate the maximum scattering rate Rmax for the given energy Ei. There are two cases.

• If the atom is in resonance with the near resonant field at some energy-accessible position,
then Rmax = Rsc(∆ = 0).

• If the atom is never in resonance, there is a detuning ∆min that is the closest point to resonance.
In such a case Rmax = Rsc (∆min), where the scattering rate is

Rsc (∆ (r)) =

(
Γ

2

)
s

1 + 4
(

2π∆(r)
Γ

)2
+ s

.

Here s is the saturation parameter s = I/I0, and ∆ (r) is the position dependent detuning.

3. The system is advanced a random time t0 drawn from the distribution

ρ (t) = Rmax exp(−tRmax)

4. Calculate the new position and momentum, r1, p1 for the atom after the time t0, i.e. solve the
equations of motion for the potential Ug (r)

1 To obtain initial random positions for the given energy we first set r = 0 and all the energy is kinetic. Then we choose
a random time tr in the interval [0,T ), where T is the period of oscillation in the radial direction. Numerically solve the
equation of motion for the ground state potential for the time tr and used the obtained momentum and position as the initial
values.
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Appendix C Monte Carlo simulation for the heating dynamics

5. A scattering event takes place with a probability

g =
Rsc (r1)

Rmax

• If there was not scattering event then r0 = r1 and p0 = p1 and go back to 3.

• If there is a scattering event, then continue.

6. The atom remains in the excited state for a time te drawn from an exponential distribution

ρ (t) = Γ exp (−Γt)

where Γ is the natural decay rate. The position and momentum of the atoms is updated by solving
the equations of motion for Ue (r).

7. The simulation terminates in the following cases:

• The atom has left the trap.

• The total simulation time has reached the limit .

If none of the previous is satisfied, then the atom is again in its ground state and ,therefore, go back
to 2.

C.5 Monte Carlo loop implementation for the dressed-state potentials

This Monte Carlo simulation describes an atom trapped in the dressed state potential created by the
interaction with a near resonant field with an intensity I that contains a small polarization contamination
Iπ = I/250.

1. Initial atomic parameters:

• Hyperfine state: |F = 2,mF = −2〉.

• Dressed state : |+,N〉 for red-detuning of the NRF.

|−,N〉 for blue-detuning of the NRF.

• E0 is drawn from a Boltzmann distribution. r0 and p0 are randomly chosen according to the
initial energy.2

2. Calculate maximum rates for the current energy E:

• Scattering rates for π off-resonant pumping, using Eq. (C.1).

• Decay rates for the current dressed state according to Eq. (3.21).

2 To obtain initial random positions for the given energy we first set r = 0 and all the energy is kinetic. Then we choose a
random time tr in the interval [0,T ), where T is the period of oscillation in the radial direction. We numerically solve the
equation of motion for the ground state potential for the time tr and use the obtained momentum and position as the initial
values.
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C.5 Monte Carlo loop implementation for the dressed-state potentials

3. Draw random times from the four distributions.

Γ±±,, Γ±∓, Rπsc|2,−2〉→|2,−1〉
, Rπsc|2,−2〉→|1,−1〉

.

where the signs for Γi j, defined in Eq. (3.21), must be chosen according to the current dressed state
and Rπsc |initial〉→|final〉 is calculated using Kramers-Heisenberg formula in Eq. (C.1). Then find the
minimum time τ. Identify the rate function that corresponds to τ. This will be labeled by R (r) ,
and its upper bound Rmax.

4. Advance the system a time τ, i.e. solve equation of motion for the current dressed state potential
Eq. (3.18)

5. The scattering event will take place with a probability g = R (r) /Rmax. If the event doesn’t take
place then go back to 3.

6. Update the new hyperfine or dressed state according to the scattering event that has occurred. Add
the photon recoil to atomic momentum and calculate total energy.

7. The simulation terminates in the following cases:

• The atom has left the trap.

• The total simulation time has reached the limit.

• The hyperfine state is |F = 1,mF = −1〉

If none of the previous conditions is fulfilled then continue.

8. If the hyperfine state is |F = 2,mF = −2〉 go to 2.

9. Change the hyperfine state to either |F = 2,mF = −2〉 with probability Pback or |F = 1,mF = −1〉
with probability (1 − Pback), where Pback is defined in Eq. (C.2)

10. If the hyperfine state is |F = 1,mF = −1〉 then the simulation stops, else go to 2.
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APPENDIX D

Measuring polarization contamination

In every experimental system, it is desirable to identify the sources of experimental imperfections. In
our system, one of the key elements is the polarization of the light. It is meaningful to know what are
the possible reasons for light polarization contamination. For example, if the circularity of the light is
badly prepared it gives rise to a small degree of ellipticity leading only to a σ contamination. However,
magnetic fields imperfections create both σ and π components. Therefore, both sources create a different
kind of light contamination. Here I present a measurement that allows us to characterize the polarization
contamination present in σ− polarized light.

When an ensemble of atoms, prepared in the state F = 2,mF = −2, is illuminated with σ− light, then any
polarization impurity transfers them into the dark state F = 1 (see Fig. D.1b). If a large number of atoms
is transferred to the dark state, the final distribution of Zeeman levels in F = 1 can be used to obtain
information about the polarization contamination.

For this purpose, atoms are loaded into the dipole trap of 1 mK and then optically pumped to the state
F = 2,mF = −2. The dipole trap is then adiabatically lowered to 220 µK, where an AC-Stark shift of
2π × 3.3 MHz is expected. A σ− beam resonant with the transition F = 2 → F′ = 2 is turned on for
40 ms with an intensity of 0.9Isat

1.

To measure the final distribution of Zeeman states we perform microwave spectroscopy on the non-
degenerated transitions |1,−1〉 → |2,−2〉, |1, 0〉 → |2, 0〉, |1, 1〉 → |2, 2〉. From the microwave spectrum
we estimate that 98.7 ± 0.5% of the population is transferred to mF = −1 (see Fig. D.1a).

Using a Monte Carlo simulation that takes into account all the possible excitation and decays channels
it is possible to calculate the polarization ratio σ+/π from the ratio of the population in the Zeeman
levels NmF=0/NmF=−1. From the amplitudes obtained in the microwave spectrum, we estimate that
σ+/π = 4.8(1.9)%. This means that the main polarization impurity in our system is the linear component
(see Fig. D.1e).

1 We use as a reference the saturation intensity for the F = 2,mF = 2→ F′ = 3,mF = 3Isat = 1.67 mW/cm2 [151]
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Figure D.1. Off-resonant pumping characterization. a) Three microwave spectra. The gray diamonds
and solid lines are the full spectrum of uniformly distributed mF states in the ground state F = 1. The
red circles and long-dashed line denote the spectrum after optical pumping to F = 2,mF = −2. The
blue squares and small-dashed line denote the spectrum after 40 ms of resonant σ− light illumination.
b) Laser configuration. The thick arrow represents the main polarization σ− and the two dashed lines
represent the polarization impurities σ+ and decay channels for c) σ+ and d) π excitation respectively.
The Clebsch-Gordan coefficients are included in each transition. e) Numerical calculation for the mF

distribution for different ratios of the polarization contamination components. The shows the measured
value obtained by microwave spectroscopy.
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