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Abstract

We present a Higgs mass calculation at two-loop level based on the effective potential approach,
which has been made available in the public computer codes SARAH and SPheno. The approach is
based on generic formulae for the two-loop effective potential available from literature and can be
applied to a large number of renormalisable supersymmetric models in a highly automated way.
Three equivalent algorithms are presented, which are completely independent of one another.
The code enables the study of the neutral Higgs boson masses at two loops in models beyond
the MSSM with a similar precision as has been widely available in MSSM spectrum generators
before the Higgs discovery in 2012. Details about the implementation, validation and limitations
of the code are presented. This precision calculation is applied to four supersymmetric models,
including the MSSM with large flavour violation, the MSSM with R-parity violation and the
NMSSM, where we found throughout that the two-loop corrections give rise to significant
contributions. An additional model, namely the MSSM extended by vectorlike quarks, is also
studied. Here we do not focus only on the two-loop Higgs mass but also on the fine-tuning in
the context of gauge mediated supersymmetry breaking. Finally, we present a collider study
examining the production of exotic long-lived neutral particles at the LHC, assuming that these
particles escape the detector. By applying analyses from the ATLAS and CMS collaborations
that focus on a large missing transverse energy signature, we obtain upper cross section limits
for arbitrary lifetimes. We found this method to be a complementary approach compared to
traditional displaced vertex searches.
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CHAPTER 1

Introduction

Modern particle physics is the study of the smallest building blocks of the world and the laws
governing their interactions. The understanding of which particles are considered fundamental
underwent many changes up to the current viewpoint of point-like quarks and leptons with forces
transmitted between them by force carrier particles. From atomic distances of 10−9 m down to
the size of a nucleus, 10−15 m = 1 fm, observations in the particle world change drastically and
are enabled by powerful particle accelerators of increasing energy. The theoretical framework
of high-energy physics is quantum field theory (QFT), the extension of quantum mechanics
into relativistic space-time. An excitation of a field that propagates through space is called a
particle.
One important ingredient of such theories in order to make meaningful predictions is that

the force mediating particles obey an internal gauge symmetry. The field that describes the
electromagnetic force transforms under a U(1) gauge symmetry. The resulting field theory is
quantum electrodynamics (QED), which is highly successful in predicting the properties of the
electron (or µ/τ) and photon and their cross sections. The success of gauge theories motivated
the incorporation of the other fundamental forces into gauged interactions. A milestone was
the unification of the weak force and the electromagnetic force by Glashow, Weinberg and
Salam (1968) [1–3]. Afterwards it was found that the strong nuclear force is described by the
non-Abelian gauge group SU(3) in a theory which is now known as Quantum Chromodynamics
(QCD) [4–8].

The electroweak theory replaced the Fermi model of weak interactions (4-fermion vertex)
and predicted two massive vector bosons as the force mediators. In 1983, the UA1 and UA2
collaborations at CERN discovered the new W± [9, 10] and Z [11, 12] bosons. Finally, the
combination of QCD and the Glashow-Weinberg-Salam electroweak theory became known as
the Standard Model of particle physics (SM). Its missing pieces were discovered over the years,
like the top quark in 1995 by the CDF and DØ collaborations at Fermilab [13, 14].

In a theory with local gauge symmetry the gauge bosons need to be massless. Including mass
terms explicitly breaks the symmetry, which results in unphysical divergent predictions for the
scattering of heavy gauge bosons (unitarity violation). This problem was solved prior to all the
mentioned particle discoveries by an ingenious trick based on spontaneous symmetry breaking
of the gauge symmetry. A new scalar field was hypothesised which “condensates” while the
universe cooled down. This means that it assumes a non-zero vacuum expectation value, similar
to a ferromagnet which spontaneously experiences magnetisation during cool-down. In the new
vacuum, fermions and gauge bosons obtain masses and the gauge symmetry is broken, but its
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Chapter 1 Introduction

virtues persist. This phenomenon is called electroweak symmetry breaking (EWSB) and is
incorporated into the SM as the famous Brout-Englert-Higgs mechanism [15–20], after its first
postulation by Robert Brout and François Englert [19] in 1964 and shortly after by Peter Higgs
[16, 17]. In EWSB the gauge group of the weak interaction, SU(2)L × U(1)Y , is spontaneously
broken to U(1)em with the side effect that three gauge bosons turn massive. The mechanism
predicts another fundamental particle, the Higgs boson. Since its creation the Standard Model
provided excellent predictions that agree with a large number of experimental measurements.
But the foundation of the model needed to be confirmed by the direct discovery of the Higgs
boson. Previous generations of colliders like the Tevatron at Fermilab and the LEP collider at
CERN set out to find it, but despite great scientific achievements they did not have the energetic
reach to give the proof. This was one of the main motivations to build the Large Hadron Collider
(LHC) at CERN. The LHC pioneered a new energy frontier with proton-proton collisions at
a centre-of-mass energy of

√
s = 7 GeV since its start-up in 2009. After the first upgrade to

8 TeV and a longer maintenance pause starting 2013, the machine became operational again
in early 2015 at the maximum CM energy of 13 TeV (Run II). During the first run already,
the discovery of the elusive boson was announced on the 4th of July 2012 by the ATLAS and
CMS collaborations who reported a mass of 125 GeV [21, 22]. This marks another milestone in
particle physics and lead to the award of the Nobel Prize in Physics 2013 to Peter Higgs and
François Englert (Robert Brout, co-author of Ref. [19], deceased before the nomination).
It is not clear whether the new boson is really the one as predicted by the Standard Model.

Many extended theories predict a larger Higgs sector with several new bosons. After the discovery
and with the start of Run II of the LHC, particle physics entered the era of precision Higgs
physics. Signal and coupling strengths were scrutinised and the mass measurement precision
increased to below 0.3% [23–25]. Any deviation from the SM properties can hint at new physics.
For example, in 2015 both ATLAS and CMS experiments reported a slight excess in the decay
h→ µτ [26, 27]. Such lepton flavour violation is highly suppressed in the SM. Excesses like this
can turn out to be statistical fluctuations, but cause excitement and speculation in the scientific
community.

Despite the success of the Standard Model, it cannot answer all experimental observations. It
does not include gravity, which is mostly irrelevant in high-energy physics due to its weakness
compared to the other three fundamental forces. The laws of gravity described by Einstein’s
theory of General Relativity (GR) accurately describe the large-scale structure of the universe,
including stars, galaxies and other celestial bodies. The combination of both theories into a
single theory of quantum gravity has been pursued by generations of physicists including Einstein
himself. Although the Standard Model is internally consistent, the absence of gravity states that
the model is incomplete. For processes at an energy scale of MP = 1019 GeV, the Planck mass,
quantum effects of gravity become relevant. This scale is related to the gravitational constant G,

MP =
√
~c

G
≈ 1.22× 1019 GeV. (1.1)

Unfortunately, this scale is so high that it exceeds by far any beam energy that can be reached
by an accelerator based on earth. It is unlikely that the Standard Model is the ultimate theory
and valid for all energies. Then, it has to be an effective theory in the low energy limit of some
ultraviolet (UV) complete theory. At most at the Planck scale (preferably below) there must be
new physics, which will be accompanied by new massive states. The Higgs mass is the weak spot
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in the sense that the existence of new massive states at a scale as high as MP poses a theoretical
problem to the SM. Through quantum effects the Higgs mass is expected to be pushed to the
same order of magnitude. Having such a large hierarchy between the Higgs mass and the Planck
mass is considered unnatural and would imply a highly fine-tuned universe. This hierarchy
problem [28–31] hints at the existence of some deeper mechanism which protects the Higgs mass
from large scales.

Besides gravity, there are many other observations which motivate physics beyond the Standard
Model. Important examples (which are briefly introduced in section 2.2) are dark matter [32–38],
neutrino masses [39–41] and the baryon asymmetry of the universe [42–46]. All attempts to
extend the theory of the Standard Model are referred to as Beyond the Standard Model physics
(BSM). A popular idea to solve the hierarchy problem is supersymmetry (SUSY), which relates
bosonic and fermionic particles. In the context of quantum field theory, the idea dates back to
Refs. [47–49] 1 and was popularised in 1974 by Wess and Zumino [51]. The first realistic SUSY
model was the Minimal Supersymmetric Standard Model (MSSM) [52, 53]. Until today SUSY
has attracted significant attention and is subject of many works, including Refs. [30, 54–67].
The MSSM predicts many yet undiscovered superpartner particles (“sparticles”) as well as

an extended Higgs sector. Supersymmetry does not only prevent the hierarchy problem, but
provides solutions to other problems like the aforementioned ones. By adding more particles
and interactions to the MSSM or SM, a large amount of extended models have been constructed.
To deal with this multitude of models in an efficient way, computer tools have been developed
that can perform analytic calculations. The key to this are generic expressions, that hold for a
model with arbitrary many particles and interactions.
Especially in supersymmetric models, the structure of a valid Lagrangian is much more

restricted than in non-supersymmetric models. The necessary steps to construct it can be
automatised by a computer. The software package SARAH [68–74], developed by Florian Staub,
automatises many otherwise time-consuming analytic tasks that come with model building.
In combination with other numerical tools, this software can be used to perform precision
calculations of observables for a wide range of models. By comparing these observables to
experimental measurements the validity of a model can be studied. In particular, the mass of the
Higgs boson is a new precision observable, measured by the ATLAS and CMS collaborations to a
high precision, which will possibly be improved by a future linear collider [75]. Supersymmetric
models predict the Higgs mass by its internal parameters - it is not a free parameter itself, as it
is in the Standard Model. Therefore, a precise prediction in SUSY models is desirable.

This thesis is structured as follows. In section 2.1 a short introduction to the SM is given. We
also list the arguments for BSM physics and supersymmetry in section 2.2 and demonstrate the
hierarchy problem. The MSSM is introduced in section 2.3 with emphasis on the Higgs potential.
The main contribution of this thesis is the implementation of a two-loop Higgs mass calculation
based on the effective potential approach in the model-independent framework of SARAH/SPheno.
Chapter 3 explains how the approach is built upon existing results from literature and shows the
necessary calculations. The practical details of the implementation are explained in chapter 4.
With the new routines, two-loop effects can be studied in different models at a level that was
not available before. We performed numerical studies of the two-loop Higgs mass effects in four
supersymmetric models, which are presented in chapter 5.
Chapter 6 contains a collider study that is thematically set apart from the Higgs mass

calculations. The study considers large Emiss
T signatures from long-lived exotic particles at the

1 SUSY was considered even earlier in a different context as a relation between mesons and baryons [50].
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Chapter 1 Introduction

LHC as a complementary approach to traditional displaced vertex searches. We explore the
potential of this approach as a way to extend the existing cross section limits on the production
of long-lived particles.
The thesis concludes in chapter 7 and highlights future developments in this field. The

modular appendix contains additional information, definitions of the necessary loop functions
and detailed results. In addition, we present the first derivatives of the effective potential
contributions including massive gauge bosons in appendix B.3.2, which is a new result and will
be useful for future calculations.
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CHAPTER 2

Theory

2.1 The Standard Model of particle physics

The Standard Model is a quantum field theory with local gauge invariance with respect to the
gauge group

GSM = SU(3)C × SU(2)L × U(1)Y . (2.1)

This group describes the strong interaction by SU(3)C (“colour”) and the electroweak force by
SU(2)L × U(1)Y (“left”, “hypercharge”). Table 2.1 lists the field content of the SM and the
representations underneath which these fields transform. The electroweak interaction has the
peculiarity of treating left and right chiral fields on a different footing. In the SM, left handed
fields are doublets under SU(2) while right handed fields are singlets. Right-handed neutrino
fields are absent from the SM. The fact that we observe massive fermions and vector bosons has
to be represented by mass terms in the Lagrangian, i.e. terms quadratic in the fields. However,

name spin s symbol generations SU(3)C SU(2)L U(1)Y

Higgs doublet 0 H =
(
H+

H0

)
1 1 2 1

2

Left-handed quark doublet 1/2 Q =
(
uL
dL

)
3 3 2 1

6

Right-handed up-quark 1/2 uR 3 3 1 2
3

Right-handed down-quark 1/2 dR 3 3 1 −1
3

Left-handed lepton doublet 1/2 L =
(
νL
eL

)
3 1 2 −1

2

Right-handed electron 1/2 eR 3 1 1 −1
B boson 1 Bµ - adjoint of U(1)Y
W bosons 1 W a

µ - adjoint (3) of SU(2)L
gluons 1 Gaµ - adjoint (8) of SU(3)C

Table 2.1: This table lists the fundamental fields of the Standard Model and the representations of the
gauge group GSM underneath which they transform.
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Chapter 2 Theory

Dirac mass terms such as ēLeR do not respect gauge invariance. The rescue comes with the
Higgs mechanism, which introduces a scalar H that is a doublet under SU(2)L. It provides
mass terms while preserving the advantages of gauge symmetry. This is achieved by Yukawa
couplings between H and fermions, contained in LYukawa,

LYukawa = Y ij
u QiH̃uRj + Y ij

d QiHdRj + Y ij
e LiHeRj + h.c., (2.2)

with Li = (νLi, eLi) and Qi = (uLi, dLi).1 The SU(3)C-invariant contraction of 3̄×3 is implicitly
assumed, q̄αqβδαβ. To form all necessary Yukawa couplings, a Higgs doublet H̃ with opposite
hypercharge Y = −1

2 is needed, which is constructed from a conjugated H,

H̃ ≡ iσ2H∗ =
(

0 1
−1 0

)(
(H+)∗
(H0)∗

)
=
(

(H0)∗
−(H+)∗

)
. (2.3)

To explain the Higgs mechanism and the generation of mass terms for vector bosons, consider
the Higgs Lagrangian

LHiggs = (DµH)†(DµH)− V (H), (2.4a)
V = µ2H†H + λ(H†H)2. (2.4b)

The minimum of the scalar potential V (H) defines the vacuum state of the theory. V only
depends on φ ≡ |H|, so the minimum is defined by

∂V

∂φ
= 2φ

(
µ2 + 2λφ2

)
= 0. (2.5)

The solutions are either φ = 0 or ±
√
−µ2/(2λ), which requires a negative µ2. The case µ2 > 0

corresponds to an unbroken theory with a ground state 〈H〉 = 0. The quartic parameter λ
needs to be positive for the potential to be bounded from below. Having µ2 negative is the
important condition for symmetry breaking to occur, and it fixes the VEV 〈|H|〉 up to a complex
phase. In the Mexican hat visualisation of V , all possible ground states are connected by a
circle. Using gauge invariance, we can apply a gauge transformation such that the minimum
is described by 〈H+〉 = 0 for the charged Higgs component and 〈H0〉 = v/

√
2 for the neutral

component with a real v. A non-zero VEV for a charged field would imply an electrically charged
vacuum state, which is unphysical. If a state |Φ〉 is invariant under a group transformation
S|Φ〉 = exp (iαaT a)|Φ〉 with generators T a, then T a|Φ〉 = 0. The generators of SU(2) are
defined as T a ≡ 1

2σ
a with the Pauli matrices σa. For the Abelian symmetry group U(1)Y the

generator is just a complex number, exp (iαY ), with a real number Y called hypercharge. The
VEV of the Higgs doublet

〈H〉 =
(

0
v√
2

)
(2.6)

leads to σi〈H〉 , 0 and Y 〈H〉 , 0. The generators σi and Y are said to be broken. But there
exists a linear combination out of T 3 and Y ,

Q ≡ T 3 + Y, (2.7)

1 The bar operator on Dirac spinors is defined as Ψ ≡ Ψ†γ0.
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2.1 The Standard Model of particle physics

which fulfils Q〈H〉 = 0 and is thus unbroken. Q is the charge generator of the electromagnetic
group U(1)em. This demonstrates electroweak symmetry breaking (EWSB) through the VEV of
the Higgs boson with the breaking pattern

SU(2)L ⊗ U(1)Y → U(1)em. (2.8)

For every broken generator, the Goldstone theorem [76, 77] predicts the emergence of massless
Nambu-Goldstone bosons. In the SM they can be identified with the three real degrees of
freedom in H± ≡ G± and G0. These fields can be set to zero by a local gauge transformation
which we are free to apply. In this way, Goldstones bosons are completely decoupled and absent
from any further calculation (unitary gauge). Explicitly, if H(x) is expressed by real fields
αa(x), h(x) as

H(x) = U(x)
(

0
(v + h(x))/

√
2

)
, U(x) ≡ exp

(
iαa(x)σa

2v

)
, (2.9)

then going to the unitary gauge transforms all doublets Φ(x) of SU(2)L as Φ(x)→ U−1(x)Φ(x).
Alternatively, we can parameterise the neutral Higgs component as

H0(x) = 1√
2

(
v + h(x) + iG0(x)

)
. (2.10)

This allows to express eq. (2.4) as a function of v, h(x), G0(x). The covariant derivative of a
field Φ is defined as

DµΦ = (∂µ − ig3G
a
µ

λa

2︸        ︷︷        ︸
only for Q,uR,dR

− ig2W
a
µ

σa

2︸         ︷︷         ︸
only for H,L,Q

+ig1Y Bµ)Φ, (2.11)

with the Gell-Mann matrices λa as the generators of SU(3) and the Pauli matrices σa as the
generators of SU(2). 2 The first term of eq. (2.4a) gives

LHiggs = · · ·+ 1
8g

2
2v

2W 3
µW

3µ + 1
8g

2
1v

2BµB
µ + 1

4g1g2v
2W 3

µB
µ + 1

4g
2
2v

2W+
µ W

−µ

+ 1
2v(∂µG0)(g1Bµ + g2W

3
µ) + i

2gvW
−
µ ∂

µH+ − i

2gvW
+
µ ∂

µH−. (2.12)

The terms in the first line are rotated to mass eigenstates Aµ, Zµ and W±µ ,(
Bµ
W 3
µ

)
=
(

cos ΘW sin ΘW

− sin ΘW cos ΘW

)(
Aµ
Zµ

)
, W±µ =

W 1
µ ∓W 2

µ√
2

, (2.13)

where the Weinberg angle ΘW is introduced,

cos ΘW = cW = g2/
√
g2

1 + g2
2, sin ΘW = cW = g1/

√
g2

1 + g2
2. (2.14)

2 In general, if Φ is a non-trivial representation of a group G with generators T a and gauge fields Gaµ, then
DµΦ = (∂µ − igGaµT

a)Φ. If G is abelian, T a is just a c-number.
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Chapter 2 Theory

This gives a vanishing mass term for the photon field Aµ and the following mass terms for W
and Z,

LHiggs = · · ·+ 1
2M

2
ZZµZ

µ+M2
WW

+
µ W

−µ+MZZµ∂
µG0 + iMW (W−µ ∂µG+−W+

µ ∂
µG−), (2.15)

with masses
MZ = 1

2

√
g2

1 + g2
2v, MW = 1

2g2v. (2.16)

The value of v is related to the Fermi constant GF = 1/(
√

2v2) and can thus be calculated as v =
246 GeV without knowledge of the Higgs mass. If unitary gauge is applied, the Goldstone fields
disappear completely, but their real degrees of freedom live on in the longitudinal components of
the now-massive vector bosons. This is sometimes described as the vectors “eating the Goldstone
bosons” to acquire mass. In a general Rξ gauge, explicit gauge fixing terms need to be added to
the Lagrangian:

LGF = − 1
2ξG

(∂µGaµ)2 − 1
2ξA

(∂µAµ)2 − 1
2ξZ

(
∂µZµ − ξZMZG

0
)2
− 1
ξW

∣∣∣∂µW−µ + iξWMWG
+
∣∣∣2 .

(2.17)

These terms are chosen to eliminate the terms of eq. (2.15) that mix scalars and vectors. This
requires an integration by parts such as

∫
d4x(∂µZµ)G0 = −

∫
d4xZµ∂

µG0 +
∫

d4x∂µ(ZµG0).
The terms in eq. (2.17) formally describe Goldstone masses, e.g. M2

G0 = ξZM
2
Z . They don’t

have a physical meaning and cannot be observed. Goldstone fields are more like book-keeping
devices that can simplify certain calculations. We now turn again to the potential V ,

V (h,G0 = H± = 0) = µ2

2 (v + h)2 + 1
4λ(v + h)4. (2.18)

The minimum requires

∂V

∂h
≡ th = µ2 (v + h) + λ (v + h)3 = 0. (2.19)

This condition is sometimes called a tadpole equation [70], because th is related to a one-point
correlation function, which at one-loop looks like a tadpole, cf. fig. 2.1. Such tadpole diagrams are
needed to determine the minimum of the potential including quantum corrections. Evaluated at

�
Figure 2.1: Tadpole diagram

h = 0, eq. (2.19) gives the relation between the VEV and the Lagrangian parameters, µ2 = −λv2,
that can be used to eliminate one of these parameters. The remaining free field h(x) is a physical,
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2.2 Motivation for physics beyond the Standard Model

massive field, called the Higgs boson. Its tree-level mass is equal to the second derivative of V ,

∂2V

∂h2

∣∣∣
min

= µ2v + 3λv2 = 2λv2 ≡ m2
h, (2.20)

where the notation
∣∣
min means evaluation at the minimum, in this case using µ2 = −λv2. The

existence of the Higgs boson is a well-established fact since its discovery in 2012 [21, 22] and its
mass has become a precision observable with an average of [23–25]

mh = (125.09± 0.32) GeV. (2.21)

By the end of the LHC’s second run at 13 TeV the precision will have further improved. Even
more improvement can be expected from a future linear collider [78].
Through EWSB the Yukawa terms of eq. (2.2) split up into

LYukawa = Y ij
u v√

2
uLiuRj + Y ij

d v√
2
dLidRj + Y ij

e v√
2
eLieRj + h.c. + . . . , (2.22)

where the dots signify all non-mass terms. The masses of the fermions are determined by the
scale v, defined by the Higgs sector, and the free parameters Yu,d,e. Fermion masses exhibit
a large hierarchy ranging from O (MeV) for u, d quarks up to mtop = 173 GeV [79]. The SM
offers no explanation to this peculiarity. Also, from the observation of flavour changing neutral
currents (FCNC) it is proven that the mass eigenstates of the down quarks (or up quarks, only
their combined effect is measureable) are not equal to the gauge eigenstates that take part in
weak interactions. Instead, d′s′

b′

 = VCKM

ds
b

 (2.23)

describe the weak eigenstates. The mixing is contained in the Cabibbo-Kobayahsi-Maskawa
matrix VCKM [80, 81] and is the only source of flavour violation within the SM. For completeness,
we give the remaining terms of the Lagrangian,

LSM = Lgauge + LHiggs + Lfermion + LYukawa + LGF + Lghost, (2.24a)

Lgauge = −1
4G

a
µνG

aµν − 1
4W

a
µνW

aµν − 1
4BµνB

µν , (2.24b)

Lfermion =
∑

fermions
iψγµDµψ, (2.24c)

Lghost = see appendix A.2. (2.24d)

More details about the SM are not to be discussed here, as excellent reviews can be found in
the literature [82–84].

2.2 Motivation for physics beyond the Standard Model

The Standard Model has been scrutinised by experiments and has produced astonishingly
accurate predictions. Although the neglect of gravity is the most obvious shortcoming to the
model, there are other shortcomings that are testable at present experiments. In this subsection
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Chapter 2 Theory

we summarise reasons to extend the Standard Model and highlight how supersymmetry is
important in this context.

2.2.1 Neutrino masses
The three neutrinos νLi are massless Weyl fermions in the Standard Model and are the only
fermionic particles that do not have a right-handed partner to form a Dirac mass term. Neutrino
oscillations, first predicted in 1967 [85] as the expected disappearance of solar νe neutrinos
and confirmed by several experiments [86–91], prove that they have masses. Oscillations of
atmospheric neutrinos νµ, ν̄µ were later confirmed by the Kamiokande experiment [89]. Those
measurements fix the mass differences, but not their absolute values or their hierarchy. Recent
observations from PLANCK tightly constrain the sum of masses ∑mν < 0.23 eV [92]. The
known neutrino parameters make up the “standard neutrino model” [93]. However, it is unclear
how the Standard Model must be extended to incorporate neutrinos. A way of achieving this is
to postulate heavy right-handed neutrino fields, which generate small neutrino masses through
the seesaw mechanism [94]. The MSSM also does not explain neutrino masses. They can be
incorporated by similiar means as in the SM, e.g. a seesaw mechanism. In the context of R-parity
violation, neutrino masses might even be explained as the result of mixing with neutralinos via
radiative corrections [95] without the need for additional right-handed neutrino fields.

2.2.2 Dark matter
Astronomical observations of the rotation speed of spiral galaxies, first discovered by Oort [32]
and Zwicky [33, 34], are inconsistent with the effect of the gravitational force exerted by the
observed amount of luminous matter within these galaxies [35, 37, 38]. There are different ways
of explaining this observation. A common idea is that there is simply more matter distributed
around galaxies than is visible by telescopes. The new, dark matter does not interact with light
or via the strong force. An introduction is found in Ref. [96]. According to measurements of
the cosmic microwave background by the WMAP [97] and PLANCK experiments [92, 98], dark
matter accounts for roughly 23 % of the entire universe’s energy density, while our observable
universe makes up only 4.3 %. The rest is ascribed to the little-known dark energy, which is the
driving force of the expansion of the universe. Neutrinos seem to fit the role of dark matter and
can possibly explain large structure formation in the universe [99]. However, neutrinos as the
dominant form of dark matter are ruled out, as they would produce too much large structure
[100]. Dark matter thus demands new physics, in the form of one or more new neutral particles.
Many SM extensions offer good dark matter candidates like Higgs singlets [101] or lightest
Kaluza-Klein states [102, 103], while supersymmetric models have the lightest neutralino [104,
105], provided that R-parity is conserved to guarantee its stability. Other candidates are axions
[106, 107] or gravitinos [108].

2.2.3 Baryon asymmetry
Particle interactions seem to produce matter and antimatter in equal amounts. Then it is an
open question why the observable universe apparently contains no larger amounts of antimatter.
Assuming a symmetric initial universe, the surplus of matter can be generated if the three
Sakharov conditions [42] are fulfilled: C and CP must be violated, also baryon number B,
and interactions have to occur out of thermal equilibrium. The Standard Model fulfils these
conditions and could potentially explain the asymmetry via electroweak baryogenesis. At some
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2.2 Motivation for physics beyond the Standard Model

point in time in the early universe, a transition from a state with unbroken electroweak symmetry
to the known state with massive gauge bosons occured. This electroweak phase transition could
be of first order and mark the departure from thermal equilibrium (electroweak baryogenesis)
[43]. However, the only source of CP violation in the SM lies in the CKM matrix and it is not
enough to generate the observed amount of baryons [109–112]. BSM models like the MSSM
offer new sources of CP violation which could fix this problem. Reviews of baryon asymmetry
models can be found in Refs. [44, 45].

2.2.4 Flavour and electroweak precision observables
Processes in which the flavour of one participant changes are called flavour observables. In the
SM, this mainly happens in the quark sector through the flavour mixing described by the CKM
matrix (quark flavour violation, QFV). Lepton flavour violation is loop-suppressed, but possible
e.g. through neutrino mixing. BSM effects can give sizeable contributions to these observables
and strong deviations from the SM prediction can indicate new physics. On the other hand,
flavour observables place strong constraints on new models [113]. The quark transition b→ s is
of high importance for constraining new physics. It occurs for example in the neutral mesons
system B0

s − B0
s and the decays Bs → µ+µ−, B → Xsγ. The impact of new physics on these

observables is discussed in Refs. [114–117]. The properties of B mesons are investigated at
specialised B-factories like Belle, BaBar and the LHCb experiment.
Another testing ground are electroweak precision observables (EWPO), of which we name

two examples. The SM predicts a W boson mass that is slightly below the measured value [118].
The MW prediction is sensitive to new physics contributions [119–121] and is thus an important
indirect probe. A similar situation exists for the anomalous magnetic moment of the muon [122],

aexpµ = gµ − 2
2 = 11659209.1(5.4)(3.3)× 10−10, (2.25)

which is one of the most precisely measured and theoretically best studied quantities. The first
error is statistical, the second one systematic. The difference between theory and experiment
[123],

∆aµ = aexpµ − aSMµ = 288(63)(49)× 10−11, (2.26)

corresponds to an inconclusive 3.6 σ deviation, possibly a sign for new physics.

2.2.5 The hierarchy problem and fine-tuning
Probably the strongest feature of supersymmetry is that it provides a solution to the hierarchy
problem [28–31]. In a renormalisable theory, finite results can be obtained even if the momenta
of virtual particles in quantum corrections are extended all the way up to infinity. This makes
the theory calculable for physical processes at infinitely high scales. However, the general belief
is that the SM is not the ultimate theory and that some new physics happens at higher scales.
Then, the SM should be considered as an effective theory valid up to some cut-off scale Λ. At
the very least, some new physics must happen at the Planck scale MP , when quantum gravity
effects become relevant. But even if the scale of new physics is only a few orders of magnitude
above the electroweak scale v = 246 GeV, then there is a hierarchy problem in the SM. Since
all masses in the SM are generated through the Higgs mechanism which determines the size
of v, they should all be of the same order as v. This is true for the heaviest particles: the top
quark, the Higgs boson and the gauge bosons W,Z. We now demonstrate how the Higgs mass is
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Chapter 2 Theory

�
(a) fermion loop (iΠa)
�
(b) quartic scalar loop (iΠb)
�
(c) cubic scalar loop (iΠc)

Figure 2.2: One-loop diagrams for scalar mass corrections

affected by the presence of large scales. The irreducible two-point diagrams of a scalar field like
the Higgs boson h at one-loop level are shown in fig. 2.2 (considering only scalars and fermions
in the loop). In the Standard Model, the diagram 2.2(a) with the top quark taking the role of f
is the most important contributor. Let iΠ(p2) be the sum of all 1PI3 scalar self-energy diagrams.
The resummation of 1PI diagrams to all orders gives the full scalar propagator

iG(p2) = i

p2 −m2
0 + Π(p2) + iε

. (2.27)

The physical mass mp is defined as the pole of the propagator, m2
p = m2

0 − Π(p2 = m2
p). All

the diagrams in fig. 2.2 diverge for large loop momenta. These ultraviolet (UV) divergences are
symptoms of the assumption that the theory is valid up to infinitely high scales or equivalently,
small distances. They can be removed by the systematic procedure of renormalisation [124],
resulting in a UV finite theory. For this, a UV regulator has to be employed. The simplest
possibility is a cut-off at Λ. Considering first only the diagram 2.2(b), with a virtual scalar S
of mass mS , the corresponding expression for the self-energy (which is calculated later in this
section) is

Πb(p2) = − λS
16π2 Λ2 +O

(
ln(Λ2/m2

S)
)
. (2.28)

Because of momentum conservation this diagram is independent of the value of p2. The one-loop
corrected Higgs mass reads

m2
h = m2

h,tree + λS
16π2 Λ2 +O (ln(Λ/mS)) . (2.29)

Assuming that the couplings λ, λS are not much greater than 1 and in the perturbative regime,
the correction term is huge, O

(
(1019 GeV)2). Then the Lagrangian parameter µ2 needs to be

equally huge, and a remarkable cancellation between both terms has to take place to end up with
a squared mass of O

(
(100 GeV)2). This large fine-tuning is considered unnatural (an interesting

discussion of the naturalness criterion can be found in Ref. [125]). A natural behaviour would
be to have a Higgs mass of the order of Λ = MP . Other particles, such as fermions and vector
bosons, do not have this illness: their mass corrections are protected by symmetries, ensuring
that corrections are of the order of their own masses only. The concept of fine-tuning may be
considered an aesthetic one and by itself it does not falsify a theory. It is rather an empirical

3 1PI=one-particle irreducible, meaning all diagrams that can not be cut into two separate diagrams by cutting
one internal line
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2.2 Motivation for physics beyond the Standard Model

hint that the theory is incomplete, or that there is a hidden mechanism behind it. A quantitative
measure of fine tuning has been established in Refs. [126, 127],

∆ ≡ max
α

(|∆α|) , ∆α ≡
∂ lnM2

Z

∂ lnα = α

M2
Z

∂M2
Z

∂α
. (2.30)

Here, α is a set of independent parameters and ∆−1
α estimates the accuracy to which α must be

tuned to achieve the correct electroweak reference scale, MZ . This definition is useful in the
context of a model embedded in a high scale (e.g. GUT scale) model, at which the parameters α
are defined. Supersymmetry solves the technical part of the hierarchy problem by systematically
eliminating the dangerous Λ2 corrections. In comparison, logarithmic contributions are very
tame, e.g. ln(1019/102) ≈ 39. We consider a toy model consisting of a complex scalar S, a Dirac
fermion f with a mass obtained through the Higgs mechanism with H = (v + h+ ia)/

√
2 (a

similar calculation was done in Ref. [67]),

L ⊃ −λS |H|2 |S|2 − λfHff (2.31a)

→ −1
2λSh

2 |S|2 − (λSv)h |S|2 − λf√
2
hff − λfv√

2
ff + . . . . (2.31b)

The masses are mS for S and mf = λfv/
√

2 for f with vertex factors C [h, S∗, S] = −iλS and
C
[
h, f̄ , f

]
= −iλSv. The self-energies of fig. 2.2 are given by

iΠa(p2) =
(
−i |λf |√

2

)2 ∫ d4q

(2π)4

−tr
[
i(/q +mf )i(/q + /p+mf )

]
(q2 −m2

f + iε)((q + p)2 −m2
f + iε)

= −
λ2
f

2 4
∫ d4q

(2π)4
q2 + qp+m2

f

(q2 −m2
f + iε)((q + p)2 −m2

f + iε)

= i
|λf |2

16π2 2
(

Λ2 −
∫ 1

0
dα
(

2∆ + 3∆ ln
(

∆ + Λ2

∆

)))
, ∆ ≡ m2

f − α(1− α)p2

p2=0= −i |λf |
2

16π2

(
−2Λ2 + 6m2

f ln
(

Λ2

m2
f

)
+ 4m2

f

)
(2.32a)

iΠb(p2) = (−iλS)
∫ d4q

(2π)4
i

q2 −m2
S + iε

= −i λS16π2 A0(m2
S)

= −i λS16π2

(
Λ2 −m2

S ln
(

Λ2

m2
S

))
(2.32b)

iΠc(p2) = (−iκ)2
∫ d4q

(2π)4
i

q2 −m2
S + iε

i

(q + p)2 −m2
S + iε

= i
κ2

16π2 B0(p2,m2
S ,m

2
S)

p2=0= −i κ
2

16π2

(
− ln

(
Λ2

m2
S

)
− 1

)
(2.32c)

The loop functions A0,B0 are defined in appendix B.1. Both Πa and Πb contain the dangerous
Λ2 contributions, but with opposite signs (λS has to be positive to ensure vacuum stability). To
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make them cancel each other, we demand

λS = |λf |2 . (2.33)

By assuming another scalar particle with the same properties as S, the terms of Πb,Πc are
effectively multiplied by two. The coupling κ = λSv can be re-expressed as κ2 = (λSv)2 =
(|λf |2 v)2 = |λf |2 · 2m2

f . The mass correction then reads (in the approximation p2 = 0)

− (Πa + 2(Πb + Πc))
p2→0=

∣∣∣λ2
f

∣∣∣
16π2

[
−2Λ2 + 2Λ2 + 6m2

f ln
(

Λ2

m2
f

)
+ 4m2

f

−2m2
S ln

(
Λ2

m2
S

)
− 4m2

f ln
(

Λ2

m2
S

)
− 4m2

f

]
(2.34)

Demanding λS = |λf |2 along with another copy of the S particle, the quadratic contributions
cancel. Imposing supersymmetry between the fermion f and two bosons S leads to exactly
these conditions. The particles f and S would be each others superpartners. More precisely,
the Dirac fermion f has four fermionic degrees of freedom, and they would be matched to four
bosonic degrees of freedom, contained in two scalar fields S1, S2. SUSY transforms bosonic
fields into fermionic ones and vice verse, so the equality of their degrees of freedom is necessary.
The cancellation is not a coincidence, but a feature of the symmetry and persists throughout
all orders of perturbation theory. Furthermore, in an unbroken SUSY model, the masses of
superpartners are equal. Assuming m2

S = m2
f , even the logarithmic terms in eq. (2.34) would

cancel. An exact supersymmetry “shields” the scalar masses from any high scale. But, our
world is not supersymmetric, since there are no superpartners of the same mass as the SM
particles. The answer could be that we live in a spontaneously broken supersymmetry, just
like the broken electroweak symmetry, in which the condition m2

f = m2
S does not hold. In that

case, logarithmic divergences appear, but quadratic divergences still cancel. The corrections
to the Higgs mass are then of the order m2

S −m2
f . This type of SUSY breaking is called soft

breaking [128], where eq. (2.33) still holds. The softly broken SUSY protects the Higgs mass
from arbitrary high scales, but not from the mass scale of the superpartners (generalised as
MSUSY). If MSUSY is much larger then O (1 TeV), the theory becomes less attractive. In that
case, a little hierarchy problem [129, 130] would be reintroduced.

2.2.6 Grand unification

The unification of forces has been a guiding principle in physics, as in the formulation of electric
and magnetic forces in Maxwell’s equations or in the electroweak theory by Weinberg, Glashow
and Salam [1–3]. The SM gauge group is the direct product of three simple Lie groups and the
choice of representations in table 2.1 strongly hints at an embedding into a higher dimensional
group. The idea of a grand unified theory (GUT) [66, 131–133] is to have a single group GGUT,
such as SU(5) or O(10), which is associated with a single coupling constant g and spontaneously
broken down to GSM. This predicts that the three forces of the SM appear as only one force at
the GUT scale. From a bottom-up perspective, the gauge couplings g1, g2, g3 can be evolved to a
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Figure 2.3: Evolution of gauge couplings (expressed through α−1
i ≡ 4πg−2

i ) in the SM (left) and MSSM
(right). The colour code is red for g3, blue for g2 and green for g1.

high scale. The evolution is described by the renormalisation group equations. 4 Physically, the
coupling g1 of U(1)Y increases with energy scale Q, while g2, g3 decrease with higher energies.
In the Standard Model, the unification seems plausible, but is not very good (fig. 2.3, left).
Including more particles into the model modifies the running of the couplings. In supersymmetry,
the additional particle content makes just the right change (fig. 2.3, right, for the MSSM) and
predicts unification at a scale MGUT ∼ 1016 GeV. The dependence of the gauge couplings gi(Q)
on the scale Q is described by the so-called beta functions, which are calculated perturbatively.
At one loop, their form is particularly simple,

βi = Q
d

dQgi(Q) = 1
16π2 big

3
i , (2.35a)

Q
d

dQα
−1
i = Q

d
dQ

(
g2
i

4π

)−1

= − 1
2πbi, (2.35b)

yielding a linear evolution of α−1
i in terms of logQ. The coefficients bi for the SM [141] and

MSSM [142] are as follows,

(b1, b2, b3)SM =
(41

10 ,−
19
6 ,−7

)
, (2.36a)

(b1, b2, b3)MSSM =
(33

5 , 1,−3
)
. (2.36b)

2.2.7 Uniqueness of supersymmetry

A relativistic gauge theory is invariant under the Poincaré group which describes the external
symmetry of space-time. On the other hand there are the internal gauge symmetries, transforming
the fields among themselves. There can also be discrete symmetries such as charge conjugation
4 The idea of the renormalisation group dates back to Kadanoff [134] and Wilson [135]. Important achievements
in its understanding were made in Refs. [136–138]. The equation by Callan and Symanzik [139, 140] led to a
widespread application of the renormalisation group.

15



Chapter 2 Theory

C, spatial inversion (parity) P and time reversal T. The Coleman-Mandula theorem [143] states
that space-time symmetries and internal symmetries cannot be combined in any but a trivial way.
The total local symmetry group of a consistent 4D quantum field theory can only be a direct
product of the Poincaré group and an internal symmetry group. However, the theorem applies
only to internal symmetries described by Lie algebras. A possible loophole to this no-go theorem
is supersymmetry, which introduces a graded Lie algebra (Lie superalgebra) with fermionic
generators Q,Q† and anticommutator relations [51]. The generalisation to Coleman-Mandula is
the theorem by Haag, Lopuszanski and Sohnius [144], stating that supersymmetry is the only
loophole that allows the connection between the two groups. The operators Q,Q† transform
bosonic states into fermionic ones and vice versa,

Q|Boson〉 = |Fermion〉, Q|Fermion〉 = |Boson〉, (2.37)

and must therefore be anticommuting two-component objects. The symmetry can be constructed
using N different generators, but the case N = 1 is mostly considered. Together with the
Poincaré generators Pµ,Mµν , they form the Lie superalgebra,

{Qα, Q†α̇} = 2σµαα̇Pµ, (2.38)
{Qα, Qβ} = {Q†α̇, Q

†
β̇
} = 0, (2.39)

[Pµ, Qα] =
[
Pµ, Q†α̇

]
= 0, (2.40)

with {A,B} ≡ AB + BA being the anticommutator and [A,B] ≡ AB − BA the commutator.
For an introduction to the dotted and undotted spinor notation we refer to Ref. [145]. Especially
eq. (2.38) is notable, as it relates the SUSY generators to the generator of space-time translations,
Pµ. Allowing local SUSY transformations [146, 147] leads directly to curved space-time and the
inclusion of gravity. In conclusion, supersymmetry is a unique extension to the total symmetry
group of a theory and points towards further unification via supergravity. Historically, searching
and formulating symmetries which could in principle be realised has been a promising concept.

2.3 Supersymmetry and the MSSM
This section introduces the MSSM [52, 53] with a focus on the Higgs sector and the scalar
potential. There exists a wealth of literature about the model and supersymmetry in general,
such as Refs. [51–67]. A popular introduction to the MSSM and the superfield notation is the
supersymmetry primer by S. Martin [60]. The complete Lagrangian is given in Ref. [148] and a
list of Feynman rules is found in Ref. [149].
A convenient framework to construct manifestly supersymmetric models is the superfield

formalism [150]. It extends the concept of space-time (in which a point is described by a four-
vector x) by introducing Grassmannian coordinates θ, θ̄. A superfield Φ(x, θ, θ̄) contains both
bosonic and fermion degrees of freedom and allows to write down manifestly supersymmetric
expressions. The components are commonly labelled Φ, Φ̃, where the field without a tilde is the
known SM-like particle (if this connection can be made at all). The gauge group G is the same
as in the SM. This fixes the necessary vector gauge fields and their fermionic superpartners, the
gauginos. The matter particle content is a set of chiral supermultiplets. Table 2.2 shows the
superfields and their components for the MSSM as well as the representations underneath which
they transform. The construction of the supersymmetric Lagrangian follows quite different rules
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superfield spin 0 spin 1/2 gen. SU(3)C SU(2)L U(1)Y

Hu Hu =
(
H+

H0

)
H̃u =

(
H̃+

H̃0

)
1 1 2 1

2

Hd Hd =
(
H0

H−

)
H̃d =

(
H̃0

H̃−

)
1 1 2 −1

2

Q Q̃ =
(
ũL
d̃L

)
Q =

(
uL
dL

)
3 3 2 1

6

U ũ∗R u†R 3 3̄ 1 −2
3

D d̃∗R d†R 3 3̄ 1 1
3

L L̃ =
(
ν̃L
ẽL

)
L =

(
νL
eL

)
3 1 2 −1

2

E ẽ∗R e†R 3 1 1 1
superfield spin 1 spin 1/2 gen. SU(3)C SU(2)L U(1)Y

Bµ Bµ λB 1 adjoint of U(1)Y
Wa

µ W a
µ λaW 3 adjoint (3) of SU(2)L

Ga
µ Gaµ λaG 8 adjoint (8) of SU(3)C

Table 2.2: This table lists the left-chiral superfields of the MSSM and the representations of the gauge
group GSM underneath which they transform. The fermionic parts are given in terms of 2-component
Weyl spinors.

than those of a non-supersymmetric one. It is derived from an auxiliary function W called
the superpotential, a holomorphic and gauge invariant function of left-chiral superfields. All
superfields in table 2.2 are chosen left-chiral, hence the use of conjugate components of U,D,E.
If the theory is supposed to be 4D-renormalisable, only terms up to the power of three in the
superfields are allowed. This translates to Lagrangian terms up to mass dimension four.
The superpotential of the MSSM is given by

WMSSM ≡ Y ij
u QiHuUj − Y ij

d QiHdDj − Y ij
e LiHdEj + µHuHd. (2.41)

The minus signs are chosen by convention, such that eq. (2.68) will have only plus signs. The
Higgs field Hd plays the same role as its SM counterpart H. However, the MSSM requires a
second Higgs doublet Hu with opposite quantum numbers for two reasons: First, the holomorphy
requirement of the superpotential forbids the use of conjugated fields. The second reason is
anomaly cancellation: In the SM, gauge anomalies of the type SU(2)2

LU(1)Y and U(1)3
Y vanish,

i.e. the conditions tr
[
T 2

3 Y
]

= tr
[
Y 3] = 0 are fulfilled (the traces run over all left-handed Weyl

degrees of freedom). This cancellation would be spoiled by introducing the fermionic partners
of only one Higgs doublet. Adding a second Higgs doublet with opposite hypercharge makes the
MSSM free of gauge anomalies.

The term µHuHd is unique to the MSSM with a parameter µ of mass dimension one. Being
a free parameter, its scale is in principle undetermined. However, it must be not much higher
than the electroweak scale if we want to avoid another hierarchy problem. This means that
µ has to be tuned to a value close to vew before EWSB takes place, which is known as the µ
problem [151].
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gauge eigenstates mass eigenstates name[
ũ, c̃, t̃

]
L,R

ũi i = 1 . . . 6 up-type squarks[
d̃, s̃, b̃

]
L,R

d̃i i = 1 . . . 6 down-type squarks
[ẽ, µ̃, τ̃ ]L,R ẽi i = 1 . . . 6 (charged) sleptons
ν̃e, ν̃µ, ν̃τ ν̃i i = 1 . . . 3 sneutrinos

H̃0
u, H̃

0
d , W̃

3, B̃ χ̃0
i i = 1 . . . 4 neutralinos

H̃−d , (H̃+
u )†, W̃−, (W̃+)† χ̃−i i = 1, 2 charginos
H0
u, H

0
d h,H,A0 (, G0) neutral Higgs, (Goldstone)

H−d , (H+
u )∗ H± (, G±) charged Higgs, (Goldstone)

g̃ g̃ gluino

Table 2.3: Gauge and mass eigenstates of the MSSM

In tab. 2.2 the fields are given in their gauge eigenstates. Fields with the same quantum
numbers usually mix to form new mass eigenstates, which are shown in tab. 2.3. The total
particle count of mass eigenstates yields 28 sparticles (not counting colour states or antiparticles
as separate entities) plus three additional Higgs states, assuming that h is identified with the
discovered 125 GeV state. In the MSSM with CP conservation in the Higgs sector, there will
be two CP-even bosons h,H and one CP-odd A0. In the more general CP-violating case, the
states h,H,A0 will mix.

In unbroken supersymmetry, particles and superpartners have the same mass. Since this is not
observed in nature, supersymmetry has to be broken. The main motivation of supersymmetry,
curing the hierarchy problem by cancelling quadratic divergences, should not get lost in the
breaking process. This can be achieved by adding terms with dimensionful couplings to the
Lagrangian, so-called soft SUSY breaking terms [128]. While the correct mechanism of SUSY
breaking is unknown, its effect is parameterised by these soft breaking parameters. The
soft-breaking Lagrangian of the MSSM is (using D̃ = d̃∗R, Ũ = ũ∗R and Ẽ = ẽ∗R alternatively)

−Lsoft = m2
Hd
|Hd|2 +m2

Hu |Hu|2

+ Q̃†m2
qQ̃+ L̃†m2

l L̃+ D̃†m2
dD̃ + Ũ †m2

uŨ + Ẽ†m2
eẼ

+ 1
2 (M1λBλB +M2λ

a
Wλ

a
W +M3λ

α
Gλ

α
G + h.c.)

+
(
T iju Q̃iHuŨj + T ijd Q̃iHdD̃j + T ije L̃iHdẼj + bHuHd + h.c.

)
, (2.42)

withm2
φ a symmetric 3×3 matrix for φ = q, u, d, l, e. All soft breaking terms have a coupling with

mass dimension ≥ 1 and include mass terms for all scalar particles (m2
φ,ij , m2

Hu
, m2

Hd
), gaugino

mass terms (M1, M2, M3), and other couplings between scalar components (Tu, Td, Te, b) that
are analogous to the superpotential terms. The large number of soft breaking parameters
complicates realistic predictions and thus requires some simplifying assumptions. Similar to the
SM, the Higgs mechanism is the necessary ingredient to provide masses for fermions and vectors.
Because of the extended scalar sector, the MSSM Higgs mechanism is more complicated. In a
general SUSY model with scalars ϕi and a gauge group made up of direct products of simple
Lie groups GA with gauge couplings gA and generators T aA, a general formula for the scalar
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potential can be given [60]:

V (ϕi) =
∑
j

|Wj |2 + 1
2
∑
A

g2
A

∑
i,j

∑
a

(
ϕ†iT

a
Aϕi

) (
ϕ†jT

a
Aϕj

)
, Wj ≡

∂W
∂ϕj

. (2.43)

ϕi assumes all non-singlet representations of the gauge subgroup GA. Evaluating the general
formula of eq. (2.43) for ϕi = Hu, Hd with respect to SU(2)L and ϕi = H+

u , H
0
u, H

0
d , H

−
d with

respect to U(1)Y gives the Higgs potential

V (Hu, Hd) = VF + VD, (2.44a)

VF (Hu, Hd) =
(
|µ|2 +m2

Hu

)
|Hu|2 +

(
|µ|2 +m2

Hd

)
|Hd|2 + (bHuHd + h.c.) , (2.44b)

VD(Hu, Hd) = g2
1 + g2

2
8

(
|Hu|2 − |Hd|2

)2
+ g2

2
2
∣∣∣H†dHu

∣∣∣2 . (2.44c)

In search for the minimum, H−d = 0 and H+
u = 0 can be assumed since nature does not exhibit

a charged ground state:

V (H0
u, H

0
d) =

(
|µ|2 +m2

Hu

) ∣∣∣H0
u

∣∣∣2 +
(
|µ|2 +m2

Hd

) ∣∣∣H0
d

∣∣∣2 +
(
−bH0

uH
0
d + h.c.

)
+ g2

1 + g2
2

8

(∣∣∣H0
d

∣∣∣2 − ∣∣∣H0
u

∣∣∣2)2
. (2.45)

Without the SUSY-breaking parameters m2
Hu
,m2

Hd
, b the minimum would be at the origin,

V (0) = 0, and electroweak symmetry breaking would not take place. b can be assumed real and
positive, because any phase can be absorbed into the relative phases of H0

u, H
0
d . The condition

that the potential is bounded from below leads to eq. (2.46a) and demanding that the origin is
unstable leads to eq. (2.46b),

2b < 2 |µ|2 +m2
Hd

+m2
Hu , (2.46a)

b2 >
(
|µ|2 +m2

Hd

) (
|µ|2 +m2

Hd

)
. (2.46b)

Assuming a breaking pattern of H0
i = (vi + φi + iσi) /

√
2 with i = u, d, the tadpole equations

are

td ≡
∂V

∂φd

∣∣∣
min

=
(
m2
Hd

+ |µ|2
)
vd − b vu + g2

1 + g2
2

8
(
v2
d − v2

u

)
vd, (2.47a)

tu ≡
∂V

∂φu

∣∣∣
min

=
(
m2
Hu + |µ|2

)
vu − b vd −

g2
1 + g2

2
8

(
v2
d − v2

u

)
vu. (2.47b)

Similarly to the SM, the Higgs fields provide masses to the gauge bosons via the gauge covariant
derivatives,

(DµHu)†(DµHu) + (DµHd)†(DµHd), (2.48)

resulting in a tree-level mass
M2
Z = 1

4(g2
1 + g2

2)(v2
u + v2

d) (2.49)

for the Z boson. From this, we can relate the VEVs of the MSSM with the SM one, i.e.
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v2 = v2
u + v2

d. Using tan β = vu/vd and eq. (2.49), the tadpoles can be expressed as

td
vd

= m2
Hd

+ |µ|2 − b tan β + 1
2M

2
Z cos 2β = 0, (2.50a)

tu
vu

= m2
Hu + |µ|2 − b cotβ − 1

2M
2
Z cos 2β = 0. (2.50b)

Adding up eq. (2.50a) and eq. (2.50b) gives the relation

m2
Hu +m2

Hd
+ 2 |µ|2 = 2b

sin 2β . (2.51)

Considering the mass matrix of the imaginary Higgs components, we get

M2
A =

(
∂2V

∂σi∂σj

)
=
(
m2
Hd

+ |µ|2 + 1
2M

2
Zc2β b

b m2
Hu

+ |µ|2 − 1
2M

2
Zc2β

)
= b

(
tan β 1

1 cotβ

)
,

(2.52)

where the last equality exploits the tadpole equations. This matrix is diagonalised by(
σd
σu

)
= ZA

(
G0

A0

)
with ZA ≡

(
cosβ sin β
− sin β cosβ

)
, (2.53)

with two eigenvalues, 0 and 2b/ sin 2β. In a general Rξ gauge, the same gauge fixing terms as in
the SM are added, eq. (2.17), changing the zero eigenvalue to ξZM2

Z , which corresponds to the
neutral Goldstone boson G0. The other state is a heavy Higgs boson A0 with mass

m2
A = 2b

sin 2β . (2.54)

Moving on to the charged Higgs fields (H−d , (H+
u )∗), we consider the mass matrixM2

H± with

(M2
H±)11 = m2

Hd
+ |µ|2 + 1

2M
2
Zc2β + 1

4g
2
2v

2
u = b tan β +M2

W sin β, (2.55a)

(M2
H±)22 = m2

Hu + |µ|2 − 1
2M

2
Zc2β + 1

4g
2
2v

2
d = b cotβ +M2

W cosβ, (2.55b)

(M2
H±)12 = b+ 1

4g
2
2vdvu = b+M2

W sβcβ, (2.55c)

⇒M2
H± =M2

A +M2
W

(
s2
β sβcβ

sβcβ c2
β

)
(2.55d)

With a field rotation(
H−d

(H+
u )∗

)
= Z±

(
G−

H−

)
, with Z± ≡

(
cosβ sin β
− sin β cosβ

)
, (2.56)

the mass matrix becomes diagonal. Very similar to the previous case, we obtain a massless field
G± (whose unphysical mass becomes ξWM2

W when gauge fixing terms are added) and a new
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massive charged Higgs H± with a mass

M2
H± = M2

W +m2
A. (2.57)

The mass matrixM2
h for the real Higgs components is given by

(
M2

h

)
11

= ∂2V

∂φ2
d

= m2
Hd

+ |µ|2 + g2
1 + g2

2
8

(
3v2
d − v2

u

)
= m2

Hd
+ |µ|2 + 1

2M
2
Z(c2β + 2c2

β),

(2.58a)(
M2

h

)
22

= ∂2V

∂φ2
u

= m2
Hu + |µ|2 + g2

1 + g2
2

8
(
3v2
u − v2

d

)
= m2

Hu + |µ|2 − 1
2M

2
Z(c2β − 2s2

β),

(2.58b)(
M2

h

)
12

= ∂2V

∂φu∂φd
= −b− g2

1 + g2
2

4 vdvu = −b−M2
Zsβcβ. (2.58c)

Substituting the minimisation conditions (2.50a) and (2.50b) intoM2
h, we get

M2
h =

(
m2
As

2
β +M2

Zc
2
β −(m2

A +M2
Z)sβcβ

−(m2
A +M2

Z)sβcβ m2
Ac

2
β +M2

Zs
2
β

)
. (2.59)

Using the formula for the eigenvalues of a symmetric matrix
(
a c
c b

)
,

λ1,2 = 1
2

(
a+ b±

√
(a− b)2 + 4c2

)
, (2.60)

we obtain the eigenvalues ofM2
h:

m2
h,H = 1

2

(
m2
A +M2

Z ∓
√(

m2
A +M2

Z

)2 − 4m2
AM

2
Zc

2
2β

)
. (2.61)

The rotation to the eigenstates h,H is described by the angle α,(
h
H

)
=
(
− sinα cosα
cosα sinα

)(
hd
hu

)
(2.62)

where α is determined by [152]

sin 2α =− m2
A +M2

Z

m2
H −m2

h

sin 2β, (2.63)

cos 2α =− m2
A −M2

Z

m2
H −m2

h

cos 2β. (2.64)

CP is conserved at tree level in the MSSM, but at higher orders, CP violation can be introduced.
In that case a mixing of all neutral components (φd, φu, σd, σu) has to be considered. The light
state h is assumed to be the 125 GeV Higgs boson. An important limit for its mass is obtained
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by expanding m2
h for m2

A �M2
Z and m2

A �M2
Z ,

m2
h = m2

A cos2 2β +O
(
m2
A

M2
Z

)
, (2.65a)

m2
h = M2

Z

cos2 2β − M2
Z

4m2
A

sin2 4β +O
(
M2
Z

m2
A

)2
 . (2.65b)

In between those limits, m2
h has no stationary point. In the decoupling limit m2

A �M2
Z , h has

SM-like couplings to gauge bosons and fermions. Also, the angle α can be approximated by

α ≈ β − π

2 for m2
A �M2

Z . (2.66)

The remarkable implication of eq. (2.65) is that the MSSM predicts a bounded tree-level Higgs
mass

mh ≤MZ |cos 2β| . (2.67)

The masses of the other Higgses A0, H0, H± are unrestricted because they depend on the free
parameter b. Fortunately, this does not rule out the MSSM because radiative corrections can be
large enough to push mh towards the measured value of 125 GeV, which will be discussed in
section 3.1. After all, the MSSM Higgs sector is described by five parameters m2

Hd
,m2

Hu
, b, vd, vu,

of which two can be eliminated by the tadpole equations. The remaining parameters are often
chosen to be tan β,MZ , mA. The massMZ is measured very precisely, leaving only two unknown
parameters, mA and tan β.
We refer to Ref. [152] for the discussion of the mass matrices of the other sparticles, since

they are not explicitly relevant for this thesis (except for the up-squark matrix, which is given
in section 5.1). The quark and lepton masses are given by (flavour indices suppressed)

LYukawa ⊃
Yuvu√

2
uLuR + Ydvd√

2
dLdR + Yevd√

2
eLeR, (2.68)

where the Yukawas are related to their SM counterparts via

Y MSSM
u = Y SM

u / sin β, Y MSSM
d,e = Y SM

d,e / cosβ. (2.69)

Some general remarks can be made based on the theoretical analysis and non-observation of
sparticles in direct searches in the ATLAS and CMS experiments. The gluino g̃ is unique in the
sense that it cannot mix with any other particle. Its mass is equal to M3 at tree level, and it
can be related to the other gaugino masses M1,M2 under simplified boundary conditions like
mSUGRA 5 [153–156] or GMSB 6 [157–161]. This roughly implies M3 : M2 : M1 ≈ 6 : 2 : 1
at the TeV scale [60], making the gluino much heavier than the neutralinos and charginos. In
a hadron collider it is most likely to detect coloured particles such as squarks and gluinos in
strong pair production. During the first run of the LHC, the lower limits of the gluino mass
have been driven far into the TeV range. For example, under the assumption mq̃ = mg̃ in the
CMSSM, the mass range mg̃ < 1.85 TeV is excluded [162].

5 minimal super-gravity
6 gauge mediated supersymmetry breaking
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2.4 Effective potential

2.4 Effective potential

So far in the introduction to the SM and MSSM, V (φ) was treated like a function of semi-
classical fields, which can be understood as the expectation value of their corresponding operators,
φi = 〈0|φ̂i|0〉. The Coleman-Weinberg effective potential [163–167] is a tool to include radiative
corrections in the potential V (φ) and it is highly useful to the understanding of symmetry
breaking and vacuum stability [168–176].

We briefly discuss its definition following Ref. [163]. Starting from the generating functional
Z[J ] with an external source J(x) in the path integral formalism,

Z[J ] =
∫
Dφ exp

(
i

∫
L{φi}+ J(x)φ(x)d4x

)
= eiW [J ], (2.70)

the functional W [J ] can be expanded in a Taylor series

W [J ] =
∑
n

1
n!

∫
d4x1 . . . d4xnG

(n)(x1, . . . , xn)J(x1) . . . J(xn) (2.71)

with the coefficients G(n)(x1, . . . , xn) being the n-point connected Green’s functions. Let a
classical field be defined by φc(x) ≡ δW

δJ(x) . This field corresponds to the vacuum expectation
value 〈0|φ̂|0〉 = φc. Now, define the Legendre transform ofW [J ] with respect to J as the effective
action Γ[φc],

Γ[φc] ≡W [J ]−
∫

d4xJ(x)φc(x). (2.72)

We can relate the conjugate variables J(x) and φc(x) via

φc(x) = δW

δJ(x) , J(x) = − δΓ
δφc(x) . (2.73)

Now consider an expansion of Γ[φc] with respect to φc, similar to eq. (2.71),

Γ[φc] =
∑
n

1
n!

∫
d4x1 . . . d4xnΓ(n)(x1, . . . , xn)φc(x1) . . . φc(xn), (2.74)

where we can identify Γ(n) as the 1PI7 Green’s functions, the sum of all 1PI Feynman diagrams
with n external lines. A proof of this statement can be found in Refs. [177, 178]. An alternative
expansion of Γ[φc] can be done with respect to external momenta about ∂µφc = 0,

Γ[φc] =
∫

d4x

(
−Veff(φc) + 1

2(∂µφc)2A(φc) + . . .

)
. (2.75)

The leading order term, corresponding to zero external momenta, is the effective potential
−Veff(φc). For the special case of J and φc independent of x, we have V ′eff(φc) = J , or, if the
external source J is not there at all,

V ′eff(φc) = 0. (2.76)

This means that in the vacuum, the value of φc is determined by the minimum of Veff. From

7 One-particle irreducible Feynman diagrams are connected diagrams that can not be disconnected by cutting a
single internal line. They are evaluated without propagators on the external lines by convention.
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Chapter 2 Theory

comparing eq. (2.74) to eq. (2.75) it follows that Γ(n) is related to Veff in the case of vanishing
external momentum by

Γ(n) = − δnVeff
δφc(x1) . . . δφc(xn) . (2.77)

The physical meaning of Veff is the minimum of the energy-density expectation value in the class
of all normalised states |ψ〉 that satisfy 〈ψ|φ|ψ〉 = φc [178], i.e.

Veff(φc) = 〈ψ|H|ψ〉 for δ〈ψ|H|ψ〉 = 0. (2.78)

Veff is calculated from vacuum loop diagrams with explicit dependence on φc [163]. Therefore,
all masses and couplings have to be taken as functions of φc. The effective potential is expanded
in loop orders,

Veff = V (0) + 1
16π2V

(1) +
( 1

16π2

)2
V (2) + . . . , (2.79)

where the tree-level part V (0) is found in the Lagrangian. The effective potential of the SM
has received increased interest recently, in the form of contributions at leading order in the top
Yukawa couplings at three loops [179] and leading QCD corrections even up to four loops [180].
The effective potential obeys an RGE [171],[

µ
∂

∂µ
− γiφi

∂

∂φi
+ βi

∂

∂λi

]
Veff = 0, (2.80)

with couplings λi and their β functions, and fields φi with their anomalous dimensions γi.

Two properties of the effective potential shall be further discussed, which are gauge dependence
and the problems that can be caused by massless scalars such as Goldstone bosons in the Landau
gauge (ξ = 0). The effective potential Veff(φi) truncated at a fixed loop order is gauge dependent,
but the physical properties derived from it are not. The evolution of Veff with respect to the
gauge parameter ξ can be described by a formula proposed by Nielsen [181],(

∂

∂ξa
+ Cai(φ, ξ)

∂

∂φi

)
Veff(φ, ξa) = 0, (2.81)

where ξa is a general set of gauge parameters and φi a set of scalar field expectation values. If
Cai(φ, ξ) can be calculated, the Nielsen identity eq. (2.81) implies that, given a solution φ̂(φ, ξ)
of the differential equations

∂φ̂i
∂ξa

= Cai(φ̂, ξ) (2.82)

with the boundary condition φ̂(φ, ξ0) = φ, the function Veff can be reparameterised by φ→ φ̂,
resulting in

V̂ (φ) ≡ Veff(φ̂(φ, ξa), ξa). (2.83)

This new function V̂ (φ, ξ) is now gauge independent,

V̂ (φ, ξ)
∂ξa

= 0. (2.84)
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Figure 2.4: The effective potential of the SM at tree-level (blue) and one-loop (orange and red). The red
dashed line marks the area where an imaginary part arises. The vertical blue (orange) dashed lines mark
the minima at tree level (one-loop).

Also, it follows directly from eq. (2.81) that at the minimum of Veff, i.e.

∂Veff
∂φi

∣∣∣
φ=v

= 0, (2.85)

eq. (2.81) reduces to
∂Veff
∂ξa

∣∣∣
φ=v

= 0, (2.86)

which means that the minimum energy Vmin is gauge invariant. The function Cai(φ, ξ) can
in fact be infinite at the minimum, which is why alternative treatments have been studied in
Ref. [171], proving the same statement, eq. (2.86).
The preferred gauge for effective potential calculations is Landau gauge, ξ = 0, in which

the Goldstones do not mix with the longitudinal vector modes and are massless. The masses
and couplings entering the effective potential are field-dependent tree-level quantities. The
squared Goldstone tree-level masses m2

G0 ,m2
G± are zero at the minimum of V (0), but not at

the minimum of the loop-corrected potential. For negative tree-level Goldstone masses, Veff
receives an imaginary part from the logarithms. A non-zero imaginary part of Veff usually
indicates instability [166], however this is not the case here. The field-dependent Goldstone
mass can be obtained from the Higgs potential as m2

G0 = µ2 + λv2 ≡ G. To make the field
dependence explicit, substitute v → φ, where φ = <(H(x))/

√
2. We illustrate the tree-level and

one-loop corrected potential of the SM in fig. 2.4 8 The red-dashed line describes the region
−v(0) ≤ φ ≤ v(0) where an imaginary part arises because of G(φ) < 0. In this picture we consider
the Lagrangian parameters as fixed while the VEVs change with loop corrections. Another way
of treating the parameters is to demand that the VEVs keep their values throughout all loop
orders, while the other Lagrangian parameters receive corrections. In practical calculations, the

8 The numerical parameters are taken from Ref. [182] λ = 0.12710, yt = 0.93697, g3 = 1.1666, µ2 = −(93.36 GeV)2,
g2 = 0.6483, g1 = 0.3587, all taken at the scaleQ = mt = 173.35 GeV. Only the dominant top quark contribution
is taken into account.
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Chapter 2 Theory

spurious imaginary part of Veff is often ignored and only the real part is minimised. By choosing
a different renormalisation scale Q (MS), the squared Goldstone mass can be tuned to a different
value. Tuning it very close to zero produces a more serious practical problem. The terms with
the lowest powers of G in the different loop orders of Veff are as follows (ln

(
m2) ≡ ln(m2/Q2)),

V
(0)
SM (φ) = 1

2G
2φ2 + . . . , (2.87)

V
(1)
SM (φ) = 3

4G
2
(

ln (G)− 3
2

)
+ . . . , (MS) (2.88)

V
(2)
SM (φ) ∼ G ln (G) + . . . . (2.89)

The dots indicate all other terms, including higher powers of Gn ln (G)m. In general the
dependence at higher orders is [179]

V (`)(φ) ∼ G3−` ln (G) , ` = 1, 2, 3, (2.90)
V (`)(φ) ∼ G3−`, ` ≥ 4. (2.91)

For ` = 3, the potential diverges logarithmically for G→ 0. For increasing powers ` ≥ 4, the
divergence becomes even worse. The tadpole equations V ′(φ) = 0 already diverge at ` = 2 for
G → 0. This is the so-called Goldstone boson catastrophe. However, this problem is rather
a practical inconvenience than a theoretical problem. It is possible to obtain sensible mass
corrections even from the IR-unsafe potential. The tree-level masses, such as G, depend on the
renormalisation scale Q. If Q is chosen such that all tree-level masses are away from zero, the
effect of the problem is minimal, as has been found in Ref. [183].

It is desirable to cure the problem by expressing Veff in a IR-finite form. Recent treatments
[184, 185] conclude that the divergence is an artefact of gauge dependence that arises because of
the truncation at a fixed loop order. The potential is simply written down in a way that is of
little use. The IR divergences can be rendered finite by resummation techniques involving higher
order dressed Goldstone loops (daisy diagrams). In principle, this causes a shift G→ G+ Πg in
the terms of V (`) (Πg is a well-defined contribution to the Goldstone mass that is calculated
perturbatively [184]). Explicit expressions for the SM have been calculated in Ref. [185] and for
the MSSM in Ref. [186]. In fact, if the loop corrections V (n) = V (n)(G0, G±) are understood as
a function of the field-dependent Goldstone masses G0, G±, it was found in Ref. [186] that the
resummed potential V̂eff has the form

V̂eff =V (0) + 1
16π2

[
V (1)(0, 0) + f(G0 + ∆0) + 2f(G± + ∆±)

]
+ 1

(16π2)2

[
V (2)(0, 0) + 1

2Ω0G0 + Ω±G±
]

(2.92)

with the one-loop integral function

f(x) ≡ x2

4

(
ln (x)− 3

2

)
. (2.93)

The constants ∆0, ∆±, Ω0 and Ω± are perturbatively calculated and depend on all masses
and couplings. This equation was resummed to the order in G such that the first derivative
can be taken safely. The result is that the tadpoles obtained from the resummed effective
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2.4 Effective potential

potential do not change at one-loop, but at two-loop they receive a correction of the order
Ω0,Ω±. Numerically, it turns out that the difference between using the resummed potential and
using the IR-unsafe potential (or even just fixing G0 = G± = 0 from the start, neglecting their
field dependence in the differentiation) is extremely small [186].

The field dependence of G0, G± can be calculated from the mass matrices (tadpole equations
must be inserted after differentiation) with the formula

∂

∂x

[
M2

diag

]
ii

=
[
U
∂M2

∂x
U †
]
ii

, no sum over i, M2
diag = UM2U †. (2.94)

Explicitly for the MSSM, we obtain

∂G0

∂vi
=1

4(g2
1 + g2

2)vi cos(2β), i = u, d, (2.95)

∂G±

∂vd
=1

4
[
g2

1vd cos(2β) + g2
2(vd − vu sin(2β))

]
, (2.96)

∂G±

∂vu
=1

4
[
−g2

1vu cos(2β) + g2
2(vu − vd sin(2β))

]
. (2.97)

These equations make clear that if one restricts oneself to the gaugeless limit,

g1 = g2 = 0, (2.98)

the Goldstone masses G0, G± are constant in the surroundings of the minimum. This way, the
Goldstone problem is completely circumvented, but it works only for models in which the Higgs
quartic potential is entirely determined by electroweak gauge couplings. In the NMSSM, this is
already not the case and the Goldstone problem resurfaces. A more practical way of avoiding
the divergence is to have the tree-level masses all away from zero. As pointed out earlier,
this is usually the case if one works in the minimum of the full effective potential (including
higher orders). Also the choice of Q allows to avoid the divergences, as has been analysed in
Ref. [183]. Alternatively, one can use the full tadpole equations in combination with tree-level
mass matrices without D-terms (i.e. gaugeless) to evaluate Veff. This is the approach chosen in
the implementation described in chapter 4, where also other arguments in favour of the gaugeless
limit are discussed.
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CHAPTER 3

Radiative Higgs mass corrections

This chapter sets up the definitions needed for the Feynman diagrammatic approach and effective
potential approach to obtain two-loop Higgs mass corrections in a model-independent way and
presents the necessary calculations. One of the main contributions of this thesis is the description
and implementation of these approaches into SARAH (previously published in Refs. [187, 188]).
The approach itself and the generic formulae from literature have existed for a long time, but
have never been utilised in an automated code in this way. An introduction to SARAH and
SPheno is given in chapter 4, along with details of the implementation. As a motivation, we first
explain the importance of radiative Higgs mass corrections and the achievements in this field.

3.1 Introduction

One of the features of the MSSM is that it predicts an upper bound for the tree-level Higgs
mass (eq. (2.67)), mh ≤ MZ = 91.2 GeV. If the MSSM is to predict the measured 125 GeV
mass, there have to be large radiative corrections. Considering that masses add in squares, the
corrections have to be about ∼ 88% the size of the tree-level value.

(125 GeV)2 ≈ (91.2 GeV)2 + (85 GeV)2. (3.1)

In recent decades a lot of effort has been taken in the calculation of Higgs mass corrections in
the MSSM, which was initiated by the observation that corrections from the stop can lift the
Higgs mass above the LEP bound of 114 GeV [189–193]. In the decoupling limit MA �MZ the
top and stop contribution at one-loop is [189, 190, 194]

m2
h = m2,tree

h + δm2
h ≈M2

Z cos2 2β + 3
4π2

m4
t

v2

[
log

(
mt̃1mt̃2

m2
t

)
+ X2

t

M2
S

(
1− X2

t

12M2
S

)]
, (3.2)

with Xt ≡ Tt − µ cotβ. The geometric mean of the stop masses arises in the logarithm,
MS = √

mt̃1mt̃2 , which is identified as the SUSY scale. The shift δm2
h is maximised for

Xt = ±
√

6MS known as the maximal mixing case. It has been estimated before the Higgs
discovery that mh ≤ 140 GeV is possible with radiative corrections in the MSSM [195], assuming
that the sparticles do not exceed 2 TeV. In realistic models, reaching 125 GeV is challenging
and usually requires very heavy and/or highly mixed stops. Explaining the large radiative
corrections at one-loop comes with a poor theoretical uncertainty. The dominant two- and
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Chapter 3 Radiative Higgs mass corrections

three-loop corrections can change the predicted pole mass by several GeV. It is remarkable that
only the light Higgs mass is that sensitive to radiative corrections. In contrast, all other SM
particles enjoy additional symmetries which ensure the smallness of their mass corrections. At
tree-level and for mA > 300 GeV, the heavy Higgs H0 has a larger share of H0

d (70%) than of
H0
u in terms of superposition, and its coupling to the top quark is therefore suppressed, leading

to smaller corrections from the top Yukawa coupling.
The full diagrammatic calculation at one-loop was done over two decades ago in Refs. [196–

199]. At two-loop, the leading corrections in the effective potential approach, or the equivalent
diagrammatic approach at zero momentum, have also been available for a long time [183,
200–210]. Several calculations using renormalisation group equation (RGE) techniques have been
made in Refs. [194, 211–216]. The contributions are classified by coupling order in terms of the
strong coupling αs ≡ g2

3/(4π), the top (bottom, tau) Yukawa coupling yt,b,τ (αt,b,τ ≡ y2
t,b,τ/(4π))

and the weak coupling, defined by the fine structure constant α ≡ e2/(4π). The dominant orders
at two loops are O (αsαt) and O

(
α2
t

)
. With these expressions known, it is straightforward to

extend them to all third-generation fermions:

O (αs(αt + αb + ατ )) , O
(
(αt + αb + ατ )2

)
. (3.3)

These contributions are widely used in different public codes such as SoftSUSY [217–220], SPheno
[221, 222], SuSpect [223] or FeynHiggs [224–227]. In particular the results of Refs. [200] are
the ones implemented in SPheno and serve as the benchmark for all extensions that we discuss
here. Even three-loop results of O

(
α2
sαt
)
for vanishing external momenta exist [228–230] and

are part of the code H3m [229]. The electroweak contributions of the MSSM have been estimated
to account for a shift of ∼ 1 GeV [195].
With the improving mass precision in the LHC Runs I and II came a new wave of advances

in this field: diagrammatic two-loop orders O (αsαt) and O
(
α2
t

)
including external momenta

exist [231–234]. Also, effective model calculations matched to the MSSM have been performed
[235, 236]. A good review about Higgs mass calculations in different tools and renormalisation
schemes is given in Ref. [237]. An earlier numerical comparison between SPheno, SoftSUSY and
SuSpect was done in Ref. [236]. The focus of attention has been on the MSSM, followed by the
NMSSM.
One motivation for models beyond the MSSM is for example that they can lift the Higgs

mass already at tree-level beyond MZ by new F -term contributions [238–246] (including the
NMSSM) or D-term contributions [247–253]. This makes these models more natural by reducing
the fine-tuning [240, 241, 244, 254–256]. A brief overview of beyond-MSSM Higgs sectors is
found in Ref. [257]. Also, non-minimal models can weaken direct SUSY constraints from collider
searches by either predicting compressed spectra or reducing the expected missing transverse
energy [258–261].
Despite the impressive advancement in this field the task of stating a reliable theoretical

uncertainty of mh still poses a challenge. The problem is that the size of the missing higher
order corrections is simply not known. One way of estimating them is to measure the variations
of the running mass mh(Q) within the interval Q/2 and 2Q, because the dependence on the
renormalisation scale Q decreases with higher orders. Another way is to calculate the ratio of
a one-loop correction to its tree-level value and assume the same scaling behaviour for higher
orders. It is possible that certain (N + 1) loop diagrams can be more important than some
individual N loop contributions. For example, strong contributions at three loops can dominate
over electroweak two-loop contributions. Finally, the Higgs mass prediction depends on the
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�

+

�Figure 3.1: Diagrams contributing to the full scalar propagator

uncertainties of the other input parameters, mainly the top mass. There can be a sizeable
discrepancy between calculations in different schemes, which are formally of higher order than
the level to which they are calculated. The upside is that this discrepancy serves as another
estimate of the theoretical uncertainty. In Ref. [195] several sources of uncertainties have been
discussed, concluding that a total uncertainty of 3 GeV is a realistic estimate for the MSSM
(including the contributions of eq. (3.3)). This number is smaller than the sum of all individual
uncertainties because it is unlikely that they sum up coherently. Compared to the experimental
uncertainty of a combined ATLAS and CMS analysis [23–25],

mh = (125.09± 0.32) GeV, (3.4)

which is below 0.3%, it is clear that theory has to catch up a lot. It has been estimated in
Ref. [120] that the theoretical uncertainty in the MSSM could be reduced to 0.5 GeV given the
inclusion of all two-loop effects with momentum dependence. The anticipated International
Linear Collider (ILC) is expected to reduce the experimental uncertainty to 50 MeV [262].
In general, there are two main approaches to calculate radiative corrections: a fixed-order

approach, including the Feynman diagrammatic (FD) and effective potential (EP) approach,
and on the other hand the effective field theory (EFT) approach. The latter is used in the tool
SUSYHD [263]. FeynHiggs uses a fixed order calculation in combination with large logarithm
resummation. EFT methods are better suited for calculations with very large SUSY masses up
to 100 TeV because they resum large logarithms. Currently the programs SARAH/SPheno use only
fixed order calculations in the DR′ renormalisation scheme. The standard approach to obtain a
loop-corrected mass spectrum is to calculate two-point Feynman diagrams (self-energies) of the
particles. A full propagator is the sum of the tree-level propagator and all higher-order two-point
functions, which are shown as a blob on the right hand side of fig. 3.1 for a scalar particle. Any
two-point diagram can be repeated n times to form another two-point diagram. This infinite
sum can be performed by virtue of the geometric series. Therefore, it suffices to consider only
one-particle irreducible diagrams (1PI). Let iΠ0(p2) be the sum of all 1PI two-point diagrams
up to a certain loop order, called the self-energy. After resummation the self-energy appears in
the denominator of the full propagator.

iG(2)
0 (p) = i

p2 −m2
0 + iε

∞∑
n=0

[
iΠ0(p2) i

p2 −m2
0 + iε

]n
= i

p2 −m2
0 + Π0(p2) + iε

(3.5)

The index 0 means that these are bare quantities which are formally divergent. In the renor-
malisation procedure they are exchanged for renormalised quantities m,Π,G(2). The rescaling
constants are free parameters and can be chosen to absorb the formal infinities into counterterms.
Calculating diagrams with counterterm contributions renders loop expressions like Π(p2) finite.
This is called renormalised perturbation theory, in which the Green’s function takes the form

iG(2)(p) = i

p2 −m2 + Π(p2) + iε
. (3.6)
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Chapter 3 Radiative Higgs mass corrections

This has the same form as eq. (3.5) with renormalised quantities instead of bare ones. So one
might as well talk only about renormalised quantities, which is what we do from now on. The
term m2 is a running MS (or DR′) mass. A short summary of the differences between those
schemes is given in appendix A.1. The physical mass is defined by the pole of G(2) in the complex
plane. For s = p2 a complex number, let the pole be at s = m2

p − impΓ. The real part of the
pole is identified with the squared physical mass and Γ is identified with the total decay width.
This leads to the pole mass condition

m2
p − impΓ−m2 + Π(m2

p − impΓ) = 0. (3.7)

In the case of a small width compared to the pole mass, Γ � mp, as is the case for the SM
Higgs boson, a Taylor expansion is justified.

Π(m2
p − impΓ) = m2

p

(
m−2

p Π(m2
p)− i Γ

mp
Π′(m2

p) +O (Γ/mp)2
)

(3.8)

Inserting eq. (3.8) into eq. (3.7), both real and imaginary part have to vanish independently,
leading to

m2
p −m2 + <[Π(m2

p)] +mpΓ=[Π′(m2
p)] = 0, (3.9a)

−mpΓ + =[Π(m2
p)] = 0, (3.9b)

in first order of Γ/mp.

In a general theory with n real scalar fields φi the tree level mass matrix for scalars follows
from the potential V (0)(φi),

M2
ij ≡

∂2V (0)

∂φi∂φj
. (3.10a)

It has to be evaluated at the minimum, defined by the tadpole equations

T
(0)
i ≡ ∂V (0)

∂φi
= 0. (3.11)

The 1PI self-energies are then described by a matrix Πij(p2), which enters the inverse propagator

Γij(p2) = p2δij −M2
ij + Πij(p2). (3.12)

The matrix Πij is expressed in the basis φi, but it can also be expressed using mass eigenstates
of the tree-level matrixM2. Either way, the complex poles p2 = sk are found from

det
[
p2δij −M2

ij + Πij(p2)
]

= 0. (3.13)

Since Πij(p2) is a highly non-trivial function of p2, the roots of eq. (3.13) can only be determined
numerically. This can be done by using p2 = m2

tree as a starting value and computing the
eigenvalues of M2

ij − Πij(p2 = m2
tree) as the next iteration. The simplest approximation to

eq. (3.13) is to consider vanishing external momenta, i.e. using only Πij(0) as was done in
section 2.2.5. In that case, the values si are the eigenvalues of the matrixM2

ij −Πij(0) and can
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Figure 3.2: General one-loop self-energy and tadpole diagrams. The fermion arrows correspond to
two-component spinor formalism. Dotted lines represent ghost fields.

be expressed in a closed form. The self-energy is calculated in loop orders,

Πij(p2) = 1
16π2 Π(1)

ij (p2) +
( 1

16π2

)2
Π(2)
ij (p2) + . . . . (3.14)

The one-loop case consists of only a few diagrams shown in fig. 3.2 that are easily calculated
with Passarino-Veltman integrals [264]. The ghost loops need to be included in a general Rξ
gauge and also the tadpole diagrams are needed. The effective potential provides a shortcut to
obtain Π(0).
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3.2 Notation

In order to write down the effective potential and subsequent calculations, we need to establish
some notation. Since we rely heavily on the results of Ref. [265], we borrow his notation as well.
A general renormalised theory consists of real scalars R′i, two-component Weyl fermions ψ′I and
real vector fields A′aµ with ghost fields ωa, ωa. Any kind of symmetry breaking is assumed to have
already been performed and the fields R′i describe fluctuations around the chosen minimum. In
case of the MSSM, the VEVs vu, vd can be thought of as already included in the mass matrices
and couplings. The mass terms are

Lkin,mass = −1
2m

2
ijR
′
iR
′
j −

1
2
(
mIJψ′Iψ

′
J + h.c.

)
− 1

2m
2
abA
′µ
a A
′
µb. (3.15)

The gauge eigenstates, indicated by primes, are rotated to mass eigenstates via

R′i = N
(S)
ji Rj , (3.16a)

ψ′I = N
(F )∗
JI ψJ , (3.16b)

A′µa = N
(V )
ba Aµb . (3.16c)

The orthogonal rotations N (S), N (V ) and the unitary N (F ) diagonalise the mass matrices as
follows:

N
(S)
ik m2

klN
(S)
jl = m2

i δij , (3.17a)

N
(F )
IK m2

KLN
(F )∗
JL = m2

IδIJ , (3.17b)

N (V )
ac m2

cdN
(V )
bd = m2

aδab. (3.17c)

Here, m2
ij and m2

ab are real symmetric, mIK is complex symmetric and m2
IJ ≡ m∗IKm

KJ is a
Hermitean matrix. N (F ) does not necessarily also diagonalise mIJ . Instead, the mass insertion

M IJ ≡ N (F )∗
II′ N

(F )∗
JJ ′ m

I′J ′ becomes block diagonal for Dirac masses,
(

0 mD

mD 0

)
, and diagonal

for Majorana masses. The interaction terms of the Lagrangian are defined as

LS = −1
6λ

ijkRiRjRk −
1
24λ

ijklRiRjRkRl, (3.18a)

LSF = −1
2y

IJkψIψJRk + h.c., (3.18b)

LSV = −1
2g

abiAaµA
µbRi −

1
4g

abijAaµA
µbRiRj − gaijAaµRi∂µRj , (3.18c)

LFV = gaJI Aaµψ
†IσµψJ , (3.18d)

Lgauge = gabcAaµA
b
ν∂

µAνc − 1
4g

abegcdeAµaAνbAcµA
d
ν + gabcAaµω

b∂µωc. (3.18e)

The couplings λijk and λijkl are real and completely symmetric in their indices, while the
Yukawa interactions yIJk are symmetric under I, J . Lowered fermionic indices indicate complex
conjugation (M IJ ,M∗IJ), in all other cases the index height does not matter. The covariant
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derivatives are given by

DµψI =∂µψI − igAaµ(T a)JI ψJ , (3.19a)
DµRi =∂µRi + igAaµθ

a
ijRj . (3.19b)

T a are the usual Hermitean generators of the gauge group with
[
T a, T b

]
= ifabcT c. Because

everything is expressed in terms of real bosons, the matrices θa are imaginary antisymmetric
matrices obeying the Lie algebra. In the case of complex fields, θa has twice the dimension of
T a. The generators T a and θa fulfil the conditions

(T aT a)ji =C(R)δji , (3.20a)
Tr (T aT a) =C(R)d(R), (3.20b)

Tr
[
T aT b

]
=S(R)δab, (3.20c)

where C(R) is the quadratic casimir of the representation R and d(R) is its dimension. S(R) is
the Dynkin index defined by convention in tab. 3.1. It is instructive to work out the coefficients

R of SU(N) C(R) d(R) S(R)
fundamental (N2 − 1)/(2N) N 1

2
adjoint N N2 − 1 N

Table 3.1: Definition of group invariants

gabij , gaij , gaJI from the covariant derivative for an unbroken gauge group, such as SU(3)C .

L ⊃ −1
2(DµRi)2 =− 1

2(∂µRi)2 − ig(∂µRi)θaijRjAaµ + 1
2g

2θaijθ
b
ikRjRkA

a
µA

bµ

=− 1
2(∂µRi)2 − igθajiAaµRi(∂µRj) + 1

2g
2θakiθ

b
kjRiRjA

a
µA

bµ (3.21a)

L ⊃ iψ†I σ̄µDµψI =iψ†I σ̄µ∂µψI + g(T a)JIAaµψ†I σ̄µψJ (3.21b)

gabij = 2g2(θaθb)ij (3.22a)
gaij = −igθaij (3.22b)
gabi = 0 (3.22c)
gaJI = g(T a)JI (3.22d)

3.3 Effective potential approach
The effective potential, truncated at two loops,

Veff(φi) = V (0)(φi) + 1
16π2V

(1)(φi) +
( 1

16π2

)2
V (2)(φi) + . . . (3.23)

is calculated perturbatively through vacuum diagrams with no external lines. The topologies at
one and two loops (fig. 3.3) are associated with the basic functions J(x), J(x, y) and I(x, y, z).
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Chapter 3 Radiative Higgs mass corrections

���
Figure 3.3: The circle topology at one-loop and “sunset” and “snowman” topologies at two-loop.

We use the definitions given in Ref. [266] which were also used in related works, Refs. [265, 267].
Earlier work on the evaluation of these functions was done in Ref. [268] 1.
The full definition of all necessary functions is given in appendix B.1. For now, the easiest

cases are presented,

J(x) =x
(
ln (x)− 1

)
, (3.24a)

J(x, y) =J(x)J(y). (3.24b)

We express all diagrams in terms of finite loop function, where the divergent epsilon terms are
subtracted by counterterms in the DR′ scheme. As a next step, the internal lines are populated
by scalars, fermions and vectors. Note that the fermion arrows correspond to the two-component
spinor formalism [150], where arrows signify chirality rather than quark/lepton number flow, and
dots between clashing arrows denote mass insertions.2 This gives the twelve diagrams shown
in fig. 3.4 that completely describe V (2). All quantities such as masses and couplings must be
expressed field-dependently. The loop corrected mass matrix at zero external momentum can be
found from the second derivative,

M2
ij −Πij(p2 = 0) = ∂2Veff

∂φi∂φj
. (3.25)

Comparing this in loop orders, we have the important relation

Π(`)
ij (0) = − ∂

2V (`)

∂φi∂φj
(3.26)

that allows to obtain mass corrections from Veff at a certain loop order. The minus sign depends
on the definition of Π. This is the effective potential approach and equivalent to calculating
Πij(0) with Feynman diagrams. Of course, p2 = 0 is only an approximation and in the end has
to give way to a full diagrammatic approach with momentum dependence. Nevertheless, p2 = 0
is a useful choice at this point. Recent studies of momentum effects in two-loop QCD corrections
[232, 234] have found that their impact on mh is about a few hundred MeV, far below other
sources of uncertainty. It has been noted earlier in Ref. [231] that neglecting momentum effects
in the case of electroweak contributions might not be a good approximation, as both effects
account for a shift of ∼ 1 GeV. On the other hand, the contributions that become accessible

1 The notation Î (I) of Ref. [268] corresponds to our I (I) for the finite (divergent) expressions.
2 Fermion propagators with a mass insertion (im/(p2 −m2)) contribute a power of −2 to the diagram’s superficial
degree of divergence, while normal fermion propagators (ipσ/(p2 −m2)) contribute a power of −1.
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3.3 Effective potential approach

SS FFV FFS FFS

SV FFV SSS SSV

V V V V V V V S GGV

Figure 3.4: All diagrams contributing to the two-loop effective potential [265], using two-component
notation for fermions.

with the effective potential approach can be much larger even in the gaugeless limit, and it is
therefore a useful step towards two-loop precision. The easiest way to calculate the derivative is
to use a numerical differentiation routine on the function Veff.

The full two-loop effective potential from Ref. [265] consists of one term for each of the 12
diagrams in fig. 3.4, where the pure gauge diagrams V V V , V V and GGV are collectively written
as Vgauge,

V (2) = VFFS + VFFS + VSSS + VSSV + VFFV + VFFV + VSS + VSV + VV V S + Vgauge. (3.27)

We use a shorthand notation for mass arguments like f(i, j, k) ≡ f(m2
i ,m

2
j ,m

2
k). If not stated

otherwise, repeated indices are summed over. The individual contributions of the diagrams are
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given by

VSSS = 1
12(λijk)2fSSS(i, j, k), (3.28a)

VSS = 1
8λ

iijjfSS(i, j), (3.28b)

VFFS = 1
2
∣∣∣yIJk∣∣∣2 fFFS(I, J, k), (3.28c)

VFFS = 1
4y

IJkyI
′J ′kM∗II′M

∗
JJ ′fFFS(I, J, k) + c.c., (3.28d)

VSSV = 1
4(gaij)2fSSV (i, j, a), (3.28e)

VV S = 1
4g

aaiifV S(a, i), (3.28f)

VFFV = 1
2
∣∣∣gaJI ∣∣∣2 fFFV (I, J, a), (3.28g)

VFFV = 1
2g

aJ
I gaJ

′
I′ M

II′M∗JJ ′fFFV (I, J, a), (3.28h)

Vgauge = 1
12(gabc)2fgauge(a, b, c). (3.28i)

The loop functions fX are combinations of J(x, y), I(x, y, z) and polynomials in x, y, z. Diagrams
without vectors (SSS, SS, FFS, FFS) are equal in both MS and DR′ schemes,

fSS(x, y) =J(x, y), (3.29)
fSSS(x, y, z) =− I(x, y, z), (3.30)
fFFS(x, y, z) =J(x, y)− J(x, z)− J(y, z) + (x+ y − z)I(x, y, z), (3.31)
fFFS(x, y, z) =2I(x, y, z). (3.32)

Diagrams with vectors differ for MS and DR′. Since we restrict ourselves to the gaugeless limit
with massless vectors, the functions can be used in a simplified form with z = 0 (starting with
the DR′ parts),

fSSV (x, y, 0) =(x+ y)2 + 3(x+ y)I(x, y, 0) + 3J(x, y)− 2xJ(x)− 2yJ(y), (3.33)
fV S(x, y) =3J(x, y), (3.34)

fFFV (x, y, 0) =− (x+ y)2 + 2xJ(x) + 2yJ(y), (3.35)
fFFV (x, y, 0) =6I(x, y, 0). (3.36)

The same functions in MS have to be understood as fMS
X = fDR′

X + ∆MSfX with

∆MSfSSV (x, y, 0) =0, (3.37)

∆MSfV S(x, y) =2xJ(y), (3.38)

fMS
FFV (x, y, 0) =0, (3.39)

∆MSfFFV (x, y, z) =2(x+ y + z)− 4J(x)− 4J(y). (3.40)

The function fFFV (x, y, 0) vanishes completely in the MS scheme. The full expressions for
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3.3 Effective potential approach

massive gauge bosons are given in appendix B.3.2. In the gaugeless limit with Landau gauge
we can completely ignore the diagrams V V V , V V , GGV , V V S and also V S. The vector
contributions for unbroken gauge symmetry can be expressed through group invariants, using
eq. (3.22).

VSSV,g = 1
4(gaij)2fSSV (i, j, a) =1

4g
2C(i)d(i)fSSV (i, i, a), (3.41a)

VV S,g = 1
4g

aaiifV S(a, i) =1
2g

2C(i)d(i)fV S(a, i), (3.41b)

VFFV,g = 1
2
∣∣∣gaJI ∣∣∣2 fFFV (I, J, a) =1

2g
2C(I)d(I)fFFV (I, I, a), (3.41c)

VFFV,g = 1
2g

aJ
I gaJ

′
I′ M

II′M∗JJ ′fFFV (I, J, a) =− 1
2g

2C(I)d(I)m2
IfFFV (I, I, a), (3.41d)

Vgauge,g = 1
12(gabc)2fgauge(a, b, c) = 1

12g
2C(a)d(a)fgauge(a, a, a). (3.41e)

One can combine the fermion-vector diagrams to give

V
(2)
FFV + V

(2)
FFV

≡g
2

2 d(I)C(I)FFV (m2
I), (3.42)

FFV (x) ≡− 4x2 + 4xJ(x)− 6xI(x, x, 0) + δMS4xJ(x), (3.43)

where δMS is zero for DR′ and one for MS. All of the above contributions to V have the form of
one coupling c1 (or two couplings c1 · c2) multiplied by a prefactor k and a loop function fX ,

V
(2)
X = k · (c1c2) · fX(m2

1,m
2
2,m

2
3), for X = FFS, FFV, SSV, V V S, gauge,

(3.44a)

V
(2)
X = k · (c1c2) ·mF1mF2 · fX(m2

F1,m
2
F2,m

2
3), for X = FFS, FFV , (3.44b)

V
(2)
X = k · (c1) · fX(m2

1,m
2
2), for X = SS. (3.44c)

For the implementation into the computer code SARAH, it is more convenient to recast the general
expressions into a form that distinguishes Dirac and Majorana fermions as well as real and
complex scalars. This amounts to a prefactor k for each of these cases. The calculations are
found in appendix B.2. A vertex between particles A,B,C is understood as

C [A,B,C] ≡ i ∂3L
∂A∂B ∂C

= i

{
cΓ A,B,C bosons,
cL ΓL + cR ΓR A,B fermions. (3.45)

The matrix Γ is the kinematic part with spin structure. In case of fermionic couplings, ΓL/R
indicate projection operators,

ΓL/R =
{
PL/R FFS coupling
γµPL/R FFV coupling . (3.46)

With the prefactors from appendix B.2 all the pieces for an implementation are in place. SARAH
extracts the couplings c, cL, cR from the Lagrangian and populates the general diagrams of
fig. 3.4 with particles. Also, a numerical differentiation routine is needed along with the analytic
functions J(x), J(x, y), I(x, y, z). Details about the implementation are given in section 4.2.
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Chapter 3 Radiative Higgs mass corrections

3.4 Analytic derivatives at two-loop

The diagrammatic approach requires many more diagrams and a system to reduce the two-loop
tensor integrals to a set of basic integrals. Such a scheme has been proposed by Tarasov [269]. In
fact, the nearly complete calculation by S. Martin of all scalar two-loop self-energies for a general
renormalisable theory has been available for almost as long as the effective potential expressions
[266, 267, 270]. The only parts that are missing are the remaining gauge contributions beyond
the leading order (∼ g2), i.e. from diagrams with more than one internal vector. Also, the
two-loop self-energy of the Z boson is needed in order to fix the electroweak VEV, v. Even in the
effective potential approach, these v corrections are necessary for gauge invariance. Recent works
like Ref. [271] (full δ(2)M2

Z in the SM) indicate that this gap might be closed in the near future.
Implementing the nearly-complete results of Refs. [266, 267, 270] would be a huge step. However,
there is a simpler way to improve the effective potential approach, which consists of taking only
analytic derivatives of the diagrams in fig. 3.4 corresponding to the terms in eq. (3.28). This
has the clear advantage of being independent of numerical relics from a finite step size in the
differentiation routine. The resulting expressions are equivalent to the diagrammatic approach
in the limit p2 = 0. In many cases, the expressions obtained by differentiating match those of
the diagrammatic calculation as in Refs. [266, 267, 270] except for a non-zero p2 in the loop
functions. In a few cases, the results obtained by differentiation are much simpler than by the
diagrammatic approach, but are fully equivalent.

Because of the equivalence to the diagrammatic approach, we refer to the method explained
here as such. It was presented in Ref. [188] along with the calculations. Instead of reciting the
lengthy calculations here, we rather explain how it is in principle done and which diagrams
are included in the implementation. The purely scalar two-loop diagrams are shown in fig. 3.5,
which are at the same time representatives for all possible two-point topologies. The naming
scheme in terms of M,S, T, U, V,W,X, Y, Z is borrowed from Refs. [266, 267, 270]. A minimal
basis to express the loop diagrams is given by four functions S, T, U,M [266] and the one-loop
functions A,B. All diagrams with fermions and vectors that do not vanish in the gaugeless
limit are shown in fig. 3.6. The tadpole diagrams in section 3.4 are needed for the minimisation
conditions at two loops. Recall that R′i is a set of real scalar fields defined in eqs. (3.16)
to (3.18) and Ri their mass eigenstates. The true minimum is at R = 0 and can have a broken
symmetry. Consider a field configuration R , 0, slightly outside the minimum. We evaluate the
field-dependent scalar masses and couplings at this point,

m2
ij(R) = −∂2L

∂Ri∂Rj
= m2

i δij + λijkRk + 1
2λ

ijklRkRl, (3.47a)

λijk(R) =
m2
ij(R)
∂Rk

= λijk + λijklRl, (3.47b)

λijkl(R) =λijk(R)
∂Rl

= λijkl. (3.47c)
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SSSS MSSSSS ZSSSS USSSS

YSSSS WSSSS XSSS VSSSSS

Figure 3.5: Two-loop self-energy diagrams involving only scalars. They also represent the basic topologies
for any two-loop self-energy.

MFFFFS MSFSFF MFFFFV

VFFFFS VSSSFF WSSFF

MSSSSV WSSSV VSSSSV

Figure 3.6: Mixed two-loop self-energy diagrams that do not vanish in the gaugeless limit. For every
fermionic diagrams there exist variants with all combinations of chirality-flipping mass insertions.
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TSS TSSS TSSSS

TFV TSV TFFFS TSSFF

Figure 3.7: Tadpole diagrams at the two-loop level which do not vanish in the gaugeless limit.

This has to be done for the fermions and vector bosons, too:

M IJ(R) =− ∂2L
∂ψI∂ψJ

= M IJ + yIJkRk, (3.48a)

∂

∂Rk
M IJ(R) =yIJk, (3.48b)

∂

∂Rr

[
M IJ(R)M∗JK(R)

]
=yIJrM∗JK(R) +M IJ(R)y∗JKr, (3.48c)

m2
ab(R)gµν =− ∂2L

∂Aaµ∂A
b
ν

=
(
m2
aδ
ab + gabiRi + 1

2g
abijRiRj

)
gµν , (3.48d)

∂

∂Ri
m2
ab(R) =gabi(R) = gabi + gabijRj , (3.48e)

∂

∂Rj
gabi(R) =gabij . (3.48f)

For a given configuration of the fields Ri , 0 the field-dependent mass matrix m2
ij(R) is again

diagonalised by a field-dependent rotation matrix Ñ(R),

R̃i = Ñij(R)Rj . (3.49)

In the basis R̃i, the couplings and masses are labelled m̃i(R), λ̃ijk(R), λ̃ijkl. The field-dependent
propagator of Ri → Rj is the ij entry of the inverse of the matrix q2 −m2(R). The derivative
of this propagator can be calculated with a mathematical identity for an invertible matrix A(x),

d
dxA−1 = −A−1 × dA

dx ×A−1. (3.50)
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This implies

∂

∂Rr

[ 1
q2 −m2(R)

]
ij

= −
[ 1
q2 −m2(R)

]
ik

−∂m2
kk′(R)

∂Rr

[ 1
q2 −m2(R)

]
k′j

. (3.51)

After differentiation the limitR→ 0 is taken, which brings back the diagonal matrix, m2(R)ik → m2
i δik.

The derivative of the mass matrix is λkk′r following eq. (3.47a). Then, eq. (3.51) becomes

→ 1
q2 −m2

i

1
q2 −m2

j

λijr = 1
m2
i −m2

j

(
1

q2 −m2
i

− 1
q2 −m2

j

)
λijr. (3.52)

We see the appearance of the difference quotient operation defined by

f (1,0)(x, y; z) = Dx,yf(x, z) ≡ f(x, z)− f(y, z)
x− y

, (3.53a)

f (1,0,0)(x, u; y, z) = Dx,uf(x, y, z) ≡ f(x, y, z)− f(u, y, z)
x− u

. (3.53b)

The operator Dx,u obeys a product rule,

Dx,u [f(x)g(x)] =f(x)g(x)− f(u)g(u)
x− u

= [Dx,uf(x)] g(x) + f(u) [Dx,ug(x)]
= [Dx,uf(x)] g(u) + f(x) [Dx,ug(x)] . (3.54)

We can now analytically differentiate the individual contributions to V (2). The propagators
of fields that are not mass eigenstates depend on all entries of the mass matrix m2. We will
however tolerate an abuse of notation of the following kind,

f(m2
ij) ∼

∫
ddq

[ 1
q2 −m2

]
ij

, (3.55)

noting that f is not a function of just one real number but of all entries of m2. Self-energies can
be calculated in the gauge eigenstate basis or mass eigenstate basis, but it is more convenient to
take derivatives with respect to the mass eigenstates Ri. The self-energies Πij and tadpoles δTk
obtained this way can be rotated to the other basis via

Π′ij =N (S)
ki N

(S)
lj Πkl, (3.56a)

δT ′i =N (S)
ki δTk. (3.56b)

We demonstrate the procedure on V (2)
SS , expressed in terms of field-dependent quantities. The
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first derivative with respect to Rr produces the tadpole expression TSS,r,

TSS,r = ∂

∂Rr
V

(2)
SS = ∂

∂Rr

[1
8 λ̃

iijjfSS(m̃2
i (R), m̃2

j (R))
]

= ∂

∂Rr

[1
8 λ̃

ikjlδikδjlfSS(m̃2
i (R), m̃2

j (R))
]

= ∂

∂Rr

1
8 λ̃

i′k′j′l′Ñi′iÑk′kÑj′jÑl′lfSS(m2
ik(R),m2

jl(R))

= ∂

∂Rr

1
8λ

ikjlfSS(m2
ik(R),m2

jl(R))

=1
4λ

ikjlf
(1,0)
SS (m2

im(R),m2
nk(R);m2

jl(R))∂m
2
mn(R)
∂Rr

=1
4λ

ikjjλikrf
(1,0)
SS (m2

i ,m
2
k;m2

j ). (3.57)

The new function f (1,0)
SS of three arguments needs to be examined. Recall that the finite part of

the one-loop integral is given by J(x) = J(x) + x
ε .

f
(1,0)
SS (x, y; z) = Dx,yJ(x, z) =Dx,y

(
J(x) + x

ε

)(
J(z) + z

ε

)
=
(
−C
i

∫
ddqDx,y

1
q2 − x

+ 1
ε

)
J(z)

=
(
−C
i

∫
ddq 1

q2 − x
1

q2 − y
+ 1
ε

)
J(z)

=
(
−B0(x, y) + 1

ε

)
J(z)

=−B0(x, y)J(z) (3.58)

The definition of B0 is given in appendix B.1.1. It is preferred to express the difference quotients
in terms of basic loop functions, because the limit x→ y is needed often. By repeated application
of the Dx,y operator one can obtain loop functions corresponding to diagrams with more legs.
The function C0 is the one-loop, three-point function at p2 = 0,

C0(x, y, z) ≡−B(1,0)
0 (x, y; z) = −B0(x, z)−B0(y, z)

x− y
. (3.59)

Differentiating TSS a second time gives the self-energy contributions,

∂2

∂Rr∂Rs
V

(2)
SS

=1
4λ

ikjj
(
λikrsf (1,0)(i, k; j) + 2λikrλii′sf (2,0)

SS (i, i′; k, j) + λikrλjj
′sf

(1,1)
SS (i, k; j, j′)

)
=1

4λ
ikjj

(
λikrsXSSS(i, k, j) + 2λikrλii′sYSSSS(i, i′, k, j) + λikrλjlsZSSSS(i, k, j, l)

)
, (3.60)
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where the new loop functions are given by

XSSS(x, y, z) =f (1,0)(x, y; z) = −B0(x, y)J(z), (3.61a)

YSSSS(x, y, z, u) =f (2,0)
SS (x, y; z, u) = C0(x, y, z)J(u), (3.61b)

ZSSSS(x, y, z, u) =f (1,1)
SS (x, y; z, u) = B0(x, y)B0(z, u). (3.61c)

The labels of the functions match those of the three diagrams of fig. 3.5 that represent the
terms. Performing the differentiation on the sunrise diagram, we obtain the two-point topologies
S,M,U,W, V . The purely-scalar diagrams are of course the easiest – the loop functions of more
complicated diagrams with vectors contain also polynomials of the squared masses. For fermions,
all combinations of propagators with or without chirality-flipping mass insertions M IJ have to
be distinguished. After this exercise in case of SS, we can formulate a rule how to quickly write
down the derivatives. The terms of the effective potential have the general form AijfX(xi, yj)
for snowman diagrams (fig. 3.3) and (Aijk)2fX(xi, yj , zk) for sunrise diagrams. The derivative
with respect to Rr is

∂

∂Rr
AijfX(xi, yj) =Aij

Rr
fX(xi, yj) +Aij

m2
ii′

∂Rr
f

(1,0)
X (xi, xi′ ; yj),

∂

∂Rr
(Aijk)2fX(xi, yj , zk) =2fX(xi, yj , zk)Aijk

∂Aijk

∂Rr

+AijkAi
′jk
{
∂m2

ii′

∂Rr
f

(1,0,0)
X (xi, xi′ ; yj , zk) + (x↔ y) + (x↔ z)

}
.

(3.62)

Often the fX are symmetric in two or more arguments and can be simplified. The total
contribution to Π(2)

ij (0) in our gaugeless limit is given by

−Π(2)
ij (0) = ΠS

ij+ΠS2F2(W )
ij +ΠS1F4(M)

ij +ΠS2F3(M)
ij +ΠS3F2(V )

ij +ΠS1F4(V )
ij +ΠSkV1

ij +ΠF4V1
ij . (3.63)

The notation in superscript means the number of scalar (fermion, vector) propagators and
the topology in parentheses. All of these contributions are listed in the appendix B. 3 The
expressions are equivalent to those in Ref. [267] if p2 = 0 is assumed. Because of the various
relations between the loop functions, such results can be presented in many different ways. It
turned out that the expressions for ΠS1F4(V )

ij ,ΠSkV1
ij ,ΠF4V1

ij found with this method have a much
simpler form than those in Ref. [267] for the gaugeless limit. It is in principle possible to extend
this calculation to the case of massive gauge bosons. One step in this direction has been done in
Ref. [188], consisting of the tadpole expressions for the neglected contributions. However, the
explicit expressions for the various derivatives such as f (1,0,0)

V V S (x, y, z) were not given. We close
this gap in this thesis and present the calculation of the missing functions in appendix B.3.2. In
the likely case that the two-loop calculation of SARAH will be updated to massive gauge bosons
or even momentum dependence, these expressions will still be required.

3 To avoid having a minus sign in front of every expression for the components ΠXY
ij stemming from the definition

of eq. (3.26), we introduce instead a minus sign in eq. (3.63).
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CHAPTER 4

Implementation details in SARAH/SPheno

4.1 The SARAH/SPheno framework

idea for a new model

create SARAH input file

analytic expressions for RGEs, masses, vertices, ...

create model files for MC tools and SPheno source code

perform RG running, calculate loop-corrected masses, fine tuning

calculate observables, decays of Higgs and sparticles

user

SARAH

SPheno

various 
tools

collider
pheno. dark matter

Higgs
constraints

vacuum
stability

Figure 4.1: The workflow within the SARAH/SPheno framework.

4.1.1 Introduction

There exist several numerical spectrum generators that are able to solve renormalisation group
equations and to diagonalise the mass matrices of a quantum field theory. This number-crunching
job is best done in compiler languages like Fortran or C/C++. Depending on the tool, the
available output can consist of much more: branching ratios, production cross sections, low-
energy observables, etc. The interface between spectrum generators and other specialised tools
(e.g. event generators) is realised by the SUSY Les Houches accord (SLHA) [272, 273]. Although
the SLHA file format is inspired by supersymmetric parameters, its structure is general enough
to be used for any model. A later extension was the Flavour Les Houches accord (FLHA) for
flavour observables [274].
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The spectrum generator of our choice is SPheno [221, 222]1, developed by W. Porod and
F. Staub. It features full one-loop corrected mass spectra, two-loop RGE running, branching
ratios and decay widths for all BSM particles and a set of low energy observables. The MSSM
is supported with several high-scale boundary conditions (CMSSM [153–156], GMSB [157–161],
AMSB 2 [275–277]) and extensions like see-saw or CP violation.

Spectrum generators are written for specific models, mostly the MSSM and NMSSM, using
hard-coded expressions. The large amount of models requires more flexible ways of calculation
than a fixed spectrum generator can offer. This inspired the creation of a meta-tool such as
SARAH [68–74]3, written by F. Staub (2009). This tool uses the symbolic manipulation power of
the Mathematica language to derive analytic expressions for a user-defined model.

By itself, SARAH calculates a complete Lagrangian for a renormalisable QFT from a minimal
user input. Kinetic terms, gauge interactions and gauge fixing terms follow from fixed rules and
are automatically added. In supersymmetry there are even more restrictions on the possible
interactions because of holomorphy of the superpotential. At its heart a model is defined by:

• Local gauge group

• Global symmetries

• Particle content and representations

• Explicit non-gauge interaction terms / superpotential

If a model is embedded in a high scale theory, the boundary conditions at the GUT scale have
to be added to the list. The part of the Lagrangian that defines non-gauge interactions (in
SUSY theories, just the superpotential) has to be given explicitly by the user, so that individual
conventions can be used. SARAH can check if any other interaction terms that respect the global
and local symmetries are missing. Further, the mixing between particles with the same quantum
numbers has to be defined by the user, because of the conventional choices that can be made
for the ordering of the fields. Such a tool requires model-independent, generic expressions that
have to be populated with particles of concrete models. The generic two-loop RGEs for all
parameters of a softly broken SUSY model studied in Refs. [278–281] are one foundation of the
code.

While it is possible to obtain important results from the analytic level alone, SARAH can export
model files in the UFO format and in the file formats of FeynArts [282], CalcHep/CompHep
[283] and WHIZARD [284]. The event generator MadGraph [285] can import UFO files. The most
important feature is the link to SPheno: Analytic expressions are cast into Fortran source code,
which can then be compiled as an add-on within the stock version of SPheno, resulting in a
customised spectrum generator. The automatised workflow is illustrated in fig. 4.1. The tool
chain can be extended by passing the SLHA spectrum file produced by SPheno to other tools
like event generators. The consistency of the Higgs sector with experimental data is checked by
HiggsBounds/HiggsSignals [286–288]. Vacuum stability can be tested with Vevacious [289].
In 2014 another meta-tool was born with FlexibleSUSY [290, 291], which imports SARAH-

generated β-functions, mass matrices, self-energies, EWSB conditions and parameter boundary
conditions to generate a C++ spectrum generator related to SoftSUSY. Both SPheno/SARAH

1 available at https://spheno.hepforge.org
2 anomaly mediated supersymmetry breaking
3 available at https://sarah.hepforge.org
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and FlexibleSUSY use the DR′ renormalisation scheme. This toolbox eliminates the tedious
task for model builders of deriving the expressions for RGEs, mass matrices, vertices etc. and
only requires the idea and physical intuition for a model.

4.1.2 Spectrum calculation
We will describe the procedure of spectrum calculation in SPheno in more detail.

1. Start from a set of running parameters at the renormalisation scale Q. This can be a
direct input from the user (low scale input) or the result of RGE running from a high
scale input. The established SM parameters are read in from the SMINPUTS block of the
SLHA file.

2. Use the parameters to solve the n tree-level tadpole equations Ti = 0. They allow to fix
n Lagrangian parameters. The easiest solutions are usually found for the soft-breaking
scalar masses, but other choices can be made by the user within the model file.

3. The parameters, now fixed to the minimum, are used to calculate the tree-level mass
spectrum.

4. The one-loop correction to the Z boson, δM (1)
Z , is calculated using the tree-level spectrum.

5. The electroweak VEV v is obtained by the measured pole mass of the Z boson, Mpole
Z , via

v2 = M2,pole
Z + δM2

Z

f(gi)
, (4.1)

with f(gi) = 1
4(g2

1 + g2
2) in the MSSM. This point is crucial for two-loop mass corrections

of any kind, because v depends on δM2
Z , which is currently only known at one-loop (for a

general model).

6. The tree-level spectrum is recalculated with the new values for the VEVs.

7. The tadpole corrections at one- and two-loop, δT (1)
i , δT (2)

i , are calculated and used to
solve the minimisation conditions again.

Ti + δT
(1)
i + δT

(2)
i = 0 (4.2)

8. The one-loop self-energies for all particles are evaluated at a fixed value of p2 (starting with
p2 = m2,tree

X ). For the neutral Higgs, also the two-loop self-energies Π(2)
h,ij(0) are evaluated

using one of the available methods.

9. In an iterative procedure the poles of the propagator matrices in p2 are determined,
satisfying

det
[
p2δij −M2

ij + Π(1)
ij (p2) + Π(2)

ij (0)
]

= 0. (4.3)

The real parts of these poles are returned as the pole masses.

The initial guess for the pole masses is s(0)
i = m2,tree

i . At the k-th order, the pole masses s(k)
i

are the eigenvalues of
M2 −Π(1)(p2 = s

(k−1)
i )−Π(2)(0). (4.4)
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The iteration continues until a relative precision of 10−5 is reached.

4.2 Two-loop self-energy and tadpole calculation

4.2.1 Numerical approach

Calculation of effective potential

The problem amounts to a combinatorial exercise of populating the relevant diagrams and
generating an expression for each diagram from generic formulae. A topology in SARAH is defined
as a two element list {A,B} with A a list of vertices and B a list of replacement rules that
describe which particles are external and internal. The following example has no external lines
and describes the sunrise topology.

1 topo logy={ {C[ F i e ldToInse r t [ 1 ] , F i e ldToInse r t [ 2 ] , F i e ldToInse r t [ 3 ] ] ,
2 C[ Ant iF ie ld@Fie ldToInsert [ 1 ] , Ant iF ie ld@Fie ldToInsert [ 2 ] ,
3 AntiFie ld@Fie ldToInsert [ 3 ] ] } ,
4 { In t e r n a l [1]−>Fie ldToInse r t [ 1 ] ,
5 I n t e r na l [2]−>Fie ldToInse r t [ 2 ] ,
6 I n t e r na l [3]−>Fie ldToInse r t [ 3 ] } }

A call of the function InsFields[topology] returns a list of populated diagrams. The diagrams
are sorted into categories SS, SSS, FFS, FFV, V S, V V V, V V,GGV . In the gaugeless limit the
last three types are not used, and from FFV, V S the diagrams with massive gauge bosons are
discarded. At this step, particles are represented by placeholder expressions without explicit
generation indices. It must be determined whether bosons are real or complex and whether
fermions are Majorana or Dirac to choose the appropriate prefactor. Also it is necessary to
determine the colour factor for each contribution. With this information, a string of Fortran
code is cast for each diagram and written into a file EffectivePotential_MODEL.f90 as part
of the subroutine

CalculateEffPot2Loop(vd, vu, ...).

which returns the value of V (2) (the dots indicate additional VEVs and all other parameters).
As an example, we show the contribution of the SSS sunrise diagram with down-type squarks
(Sd) and Higgs pseudoscalar (Ah) in the MSSM. The variables i1, i2, i3 are used to sum over
generation indices and coup1 is assigned the coupling of the three particles. The function name
Fep_SSS refers to fSSS(m2

1,m
2
2,m

2
3) (eq. (3.32)), which also depends on the renormalisation

scale Q. The contribution of the individual diagrams is saved in the array results1 for sunrise
topologies (snowman topology contributions in results2).

1 ! −−−−− diagrams o f type SSS , 8 −−−−−−
2 ! −−−− Ah, Sd , conj [ Sd ] −−−−
3 temp=0._dp
4 Do i 1 =1,2
5 Do i 2 =1,6
6 Do i 3 =1,6
7 coup1 = cplAhSdcSd ( i1 , i2 , i 3 )
8 c o l o r f a c t o r=3
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4.2 Two-loop self-energy and tadpole calculation

9 temp=temp+c o l o r f a c t o r ∗0 .5_dp∗abs ( coup1 ) ∗∗2∗Fep_SSS(MAh2( i 1 ) , ↪→
←↩ MSd2( i 2 ) ,MSd2( i 3 ) , Qscale )

10 i f ( . not . ( temp . eq . temp) ) write ( ∗ , ∗ ) ’NaN at SSS C[Ah, Sd, ↪→
←↩ conj[Sd]]’

11 End Do
12 End Do
13 End Do
14 r e s u l t s 1 (1 )=temp

In fig. 4.2 we show a simplified workflow of the two-loop calculation in SPheno, to which we will
refer in the following explanations.

Figure 4.2: Flowchart of SPheno subroutines for two-loop calculation. The modules ending in MODEL
are dynamically created by SARAH, while the other modules contain hard-coded functions. All methods
return two arrays describing the two-loop tadpoles and self-energies.

Numerical derivatives

Let Φi be the scalar fields that receive a VEV,

Φi = 1√
2

(vi + φi + iσi) . (4.5)

If CP conservation is assumed, the real parts φi do not mix with the imaginary parts σi. The
first derivatives are the corrections to the tadpole equations,

δT
(2)
i = ∂V (2)

∂vi
. (4.6)
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The self-energies Π(2)(0) are obtained by numerically differentiating V (2) twice with respect to
the VEVs,

Π(2)
ij (0) = −∂

2V (2)

∂vi∂vj
(4.7)

evaluated at the minimum of the potential. The negative sign follows from the sign convention
of the self-energy fixed in eq. (3.5) and is consistent with

M2
ij =M2

tree,ij −∆M2
ij =M2

tree,ij −Π(1)
ij (p2)−Π(2)

ij (0)

= ∂2Vtree
∂φi∂φj

−Π(1)
ij (p2) + ∂2V (2)

∂φi∂φj
(4.8)

A straightforward way to calculate the derivative is using a finite step method on the full
V (2)(vd, vu, . . . ) function (dots signify additional VEVs and all other parameters). This approach
was also chosen in Ref. [183]. Our code uses Ridders’ method of polynomial extrapolation
with dynamical step size [292] for the numerical derivation (function dfridr in fig. 4.2). It
requires an initial step size that covers a region where the function varies significantly. The
algorithm then decreases the step size dynamically to reach the desired precision. However, a
too small or too large initial step size can lead to unstable results as discussed below. Note that
changing the values of vu, vd also changes the masses and couplings, which is why they have
to be calculated anew with each call of EffPotFunction2Loop. An auxiliary function, named
CalculateCorrectionsEffPot (cf. fig. 4.2), calls the first derivative routine on the function
for V (2), resulting in an array ti_ep2L of dimension n that stores the value of the two-loop
tadpoles (n is the number of VEVs). Similarly, the second derivatives are stored in an n×n array
Pi2S_Effpot, corresponding to the self-energy matrix Π(2)

ij (0). This is the purely-numerical
method (method 1).

Semi-analytical derivative

A complication lies in the fact that the absolute value of the loop functions is of the order
O
(
M4

SUSY
)
and might change only in the decimals under a small variation of the VEVs. This is

numerically unfavourable and prone to errors. A way to improve the numerical situation is to
split up the derivatives of the expressions in eq. (3.44) using the product rule. For example, the
first derivative of eq. (3.44c) is

∂V
(2)
SS

∂vi
= k

[
∂c1
∂vi

fSS(m2
1,m

2
2) + c1

(
f ′SS(m2

1,m
2
2)∂m

2
1

∂vi
+ f ′SS(m2

2,m
2
1)∂m

2
2

∂vi

)]
, (4.9)

where f ′SS(x, y) ≡ ∂fSS(x, y)/∂x. The fact that fSS is symmetric in its arguments requires only
one first derivative f ′SS(x, y). For other loop functions, more derivatives are needed. The point
is that the derivatives of the loop functions can be calculated analytically. This is numerically
more stable in the presence of large hierarchies in the VEVs. The downside is that the first
and second derivatives of all the masses and couplings have to be calculated, which is again
done with the finite step method. This requires more differentiation, but hardly upscales
the computing time. In the subroutine SecondDerivativeEffPot2Loop the first and second
derivatives of the individual V (2) diagrams are calculated from the product rule, which requires
different rules for the diagram classes. The rules are written in auxiliary functions in the
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4.2 Two-loop self-energy and tadpole calculation

module DerivativesEffPotFunctions.f90 together with the analytical derivatives of the loop
functions (method 2 in fig. 4.2).

Goldstone bosons

While the loop functions are all regular for real arguments, their derivatives diverge for zero
masses. This infrared (IR) divergence is the Goldstone problem mentioned in section 2.4. The
terms that arise in the semi-analytical approach have the form

∂m2
G

∂vi
f ′(m2

G, y, z). (4.10)

If m2
G does not depend on vi at all, the term is zero and the problem does not occur. This is the

case in the MSSM if one works in the gaugeless limit, as was shown in eq. (2.95). In models with
an extended Higgs sector this does not hold necessarily. The problem has to be circumvented by
ensuring that no tree-level mass of a scalar becomes very close to zero. This depends on the
renormalisation scale Q and has been analysed in Ref. [183] in the MSSM, concluding that the
common choice Q = √mt̃1mt̃2 is fine. Ref. [183] compared the case of the full EP approach
(including electroweak contributions) with the gaugeless limit. In the first case, IR divergences
are clearly visible for certain values of Q in the prediction for mh. On the other hand, the mh

prediction in the gaugeless limit has no divergences even at the problematic values of Q, which
is a strong motivation of using this limit. We chose to work in the minimum of the full effective
potential (with g1, g2 , 0), but calculating tree-level masses in the gaugeless limit. This ensures
non-zero DR′ Goldstone masses.

In the case presented in Ref. [183], the difference in mh for the gaugeless and full EP case is
about 1 GeV, showing that the electroweak corrections are clearly necessary to reach a theoretical
uncertainty that matches the experimental one. However, the missing δ(2)M2

Z corrections (which
influence the value of v) have to be included as well, as their effects on mh are of the same order.
For a general model, this calculation was not available in literature at the time of writing.

4.2.2 Diagrammatic approach

A third analytical approach in the spirit of section 3.4 was supplemented to SARAH in version
4.5.0 [188]. Similarly to the previous case, the set of all two-loop tadpole diagrams is populated
with particles and then classified according to the diagrams in section 3.4. The same procedure
is done for the self-energy topologies according to figs. 3.5 and 3.6. Expressions for the
individual tadpoles and self-energies are written into the subroutine CalculatePi2S of the
module Pole2L_MODEL.f90 (fig. 4.2, method 3). They require the two-point loop functions
defined in 2LPoleFunctions.f90. In the SPhenoInput block of a Les Houches input file the
flag number 8 can be set to 3 to choose the diagrammatic method, which has become the default
setting. Because the most expensive operation is the evaluation of loop functions, unnecessary
calls should be avoided. Loop functions need to be evaluated for every combination of generation
indices on internal lines, but not for each external scalar index, as long as p2 dependence is
neglected. Therefore, the calculation must be performed in the order (1) sum over internal
indices, (2) loop function evaluation, (3) sum over external indices. There is also a check that the
coupling multiplying the loop function is non-zero to skip unnecessary calls of the loop routines.
It is possible to generalise the code to include momentum dependence. Instead of calling the
functions from 2LPoleFunctions.f90, one can link to the package TSIL [293] to calculate loop
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functions for arbitrary p2. In an unofficial test version we found that this significantly increases
the computing time up to several minutes.

4.2.3 Validation

The following control flags were added to the Les Houches input file for SARAH/SPheno version
4.4.0.

Block SPhenoInput #
...

7 ... # Skip two loop masses
8 ... # Choose two-loop method
9 ... # Gaugeless limit

10 ... # Safe mode
... #
400 ... # Step-size for purely-numerical method
401 ... # Step-size for semi-analytic method

The following values are possible:

• SPhenoInput[7]:
– 0: Don’t skip two-loop masses
– 1: Skip two-loop masses

• SPhenoInput[8]:
– 1: Two-loop calculation with purely numerical derivation
– 2: Two-loop calculation with analytical derivation of loop functions
– 3: Two-loop diagrammatic calculation
– 9: Use routines based on Refs. [200]

• SPhenoInput[9]:
– 0: Turn off gauge-less limit
– 1: Use gauge-less limit (default)

• SPhenoInput[10]:
– 0: Turn off the safe-mode (default)
– 1: Use safe-mode

• SPhenoInput[400]: a real number (default: 0.5)

• SPhenoInput[401]: a real number (default: 0.001)

To use the two-loop routines of Refs. [200]

UseHiggs2LoopMSSM = True;
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Figure 4.3: Test of the numerical stability: on the left side the initial step-size h is varied. The blue line
corresponds to the semi-analytical approach and red for the purely numerical calculation. The right
figure shows mh for large m0 (with M1/2 = −A0 = m0 and tan β = 10, µ > 0). The solid line is based
on Refs. [200], the blue points are based on our semi-analytical method and the red ones on the purely
numerical one.

must be set in the SPheno.m file. The flags SPhenoInput[400] and SPhenoInput[401] set
the initial step size for differentiation. The algorithm reduces this quantity iteratively, but
the starting value must be large enough to cover an area with significant variations. For the
fully numerical method we found that the initial step size needs to be larger compared to the
semi-analytical method, especially for heavy SUSY spectra, because the potential is of the order
O
(
M4

SUSY
)
(cf. fig. 4.3(a)). The second method usually operates acceptably with a smaller

initial step size because objects of at most order O(M2
SUSY,M

2
Z) are derived numerically. Also,

we make the approximation of treating loop masses smaller than 10−5 ×mheaviest in the loop to
be zero for the purely numerical method (< 10−8 ×mheaviest for the semi-analytical method),
where mheaviest is the heaviest mass in the loop. The flag SPhenoInput[9] (gaugeless limit)
switches off D-term contributions to mass matrices and couplings. This is enabled by default to
be consistent with the potential V (2) itself, which is gaugeless in any case.

The numerical routines were validated against the well-established routines of Refs. [200] for
a variation of m0, M1/2, tan β and A0 in the context of the CMSSM (fig. 4.4),

M0 = M1/2 = 1 TeV, A0 = −2 TeV, tan β = 10, sgn(µ) = 1. (4.11)

For the comparison one has to make some modifications to ensure that the codes use equivalent
definitions of parameters. This requires to set all couplings of the first two generations to zero.
Further, the values of µ and MA are calculated in the minimum of the gaugeless potential. That
means, they solve the tadpole equations without D-terms (by default, the calculation based
on Refs. [200] uses µ,MA calculated in the minimum with D-terms). Table 4.1 shows that the
methods agree very well. There are small numerical differences with no visible impact on the
Higgs mass, stemming from the numerical derivatives and the treatment of Goldstones. Also,
including D-terms in the tree-level mass matrices hardly makes a difference. The routines were
also validated for the NMSSM using existing Refs. [294] for the αs(αt + αb) corrections [187].
The differences between the two methods are compared in fig. 4.3, showing an improved stability
for smaller initial step sizes h (fig. 4.3(a)) and heavy spectra (fig. 4.3(b)). Note that both
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Figure 4.4: The Higgs mass at one-loop (black) and two-loop (blue, green) for variation of the CMSSM
parameters m0,M1/2, tan β,A0. The unvaried parameters are fixed to m0 = M1/2 = 1 TeV, tan β = 10,
µ > 0, A0 = −2 TeV. Blue lines include αs(αt+αt) corrections while green includes all dominant two-loop
corrections. The full lines are the results from the routines of Refs. [200], while the dots were calculated
with the routines generated by SARAH presented here.

methods reveal instabilities and deviations from the solid line for scales above 15 TeV, where
even the top mass is treated as massless in the loops. In this regime our setup suffers from a
large uncertainty anyway. It should be considered in the context of an effective theory [295]
with heavy particles decoupled. This statement applies for most SUSY spectrum generators
with fixed-order calculations.

The method based on the diagrammatic approach was validated in Ref. [188] and is shown in
fig. 4.5, comparing it to all other methods. We stress that the three methods are equivalent
and independent, so they can be used to cross-check each other. This is important for models
beyond the MSSM and NMSSM, because no other codes exist.
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Purely-
numerical

method (with
D-terms)

Purely-
numerical
method

Semi-
analytical

method (with
D-terms)

Semi-
analytical
method

Reference

Π(2)
11 [GeV2] 3475.21 3462.95 3475.18 3462.87 3460.45

Π(2)
12 [GeV2] -299.21 -297.92 -299.21 -297.92 -297.70

Π(2)
22 [GeV2] 1954.32 1954.06 1954.32 1954.06 1954.03
mh1 [GeV] 124.69 124.69 124.69 124.69 124.69
mh2 [GeV] 1963.56 1963.55 1963.56 1963.56 1963.55

Table 4.1: Two-loop self energies and loop-corrected masses calculated with the two numerical methods
in the gaugeless limit. We used m0 = M1/2 = 1 TeV,µ > 0, tan β = 10, A0 = −2 TeV. The reference
value is the one using the routines of Refs. [200]. This was presented in Ref. [187].
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Figure 4.5: Comparison between the diagrammatic calculation (“diag”) of the two-loop Higgs masses and
both EP calculations (“p-num”: purely numerical, “semi”: semi-analytical) and the routines based on
Refs. [200] (“ref”). The fixed parameters are as in eq. (4.11).
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CHAPTER 5

Application to SUSY models

Models beyond the MSSM introduce additional parameters and particles which can influence
the Higgs mass at two-loop level. These corrections could not be studied with numerical tools
prior to Ref. [187]. We revisited several common SUSY models and studied the impact of the
new corrections in different regions of parameter space. The models under consideration are:

• Section 5.1: MSSM with large flavour violation [296]

• Section 5.2: NMSSM [297]

• Section 5.3: MSSM with RPV [298]

• Section 5.4: MSSM extended by vectorlike tops [299]

The last model is also explored with respect to fine-tuning, embedded in minimal GMSB. The
results of the papers [296–299] are the content of this chapter.
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5.1 MSSM with large flavour violation

5.1.1 Introduction

The MSSM is certainly the most studied extension of the Standard Model, with a theoretical
uncertainty of the Higgs mass of a few GeV including dominant two-loop corrections [120, 195,
224, 300]. The established corrections prior to Ref. [187] are of the order

αs(αt + αb), (αt + αb + ατ )2 , (5.1)

which do not take into account a possible flavour mixing (or flavour violation, FLV) in the squark
sector between the third generation and the first and second generation. This assumption is safe
in the context of minimal flavour violation [301–303] where the only source of flavour violation
is the CKM matrix of the SM. The three generations of sfermions are then aligned with their
partner fermions and the soft-breaking terms do not introduce any additional flavour violation.
However, there is no real reason for this simplifying assumption and there are some well-

motivated non-minimal scenarios. For example, in models with gravity-mediated SUSY breaking
minimal FLV is hard to obtain [304, 305]. In recent years there has been an interest in non-
minimal gauge-mediating models [306–311] with direct couplings between the messenger and
visible sectors, which can lead to large FLV. In the MSSM, non-minimal FLV was studied in
terms of collider phenomenology [312] and flavour precision observables [313]. Large FLV can
have a big effect on the Higgs mass already at one-loop [119, 120, 314–318]. For example, in
Refs. [317, 318] corrections of O (10 GeV) were found due to large flavour mixing in the squark
sector. They can even be as high as 60 GeV if more mixing parameters are included. On the
other hand, large flavour violation is constrained by precision observables such as Bs → µ+µ−,
B → Xsγ and ∆MBs , see e.g. Ref. [313]. It is known that flavour effects can be large already at
one loop, but it was not yet studied how significant they are at two loops. We close this gap
here by considering a sample of parameter points with explicit deviations from the minimal FLV
scenario, leading to a highly mixed up-squark sector. We identify the relevant parameters that
lead to a large shift in the Higgs mass from flavour effects and study the dependence on these
parameters.

5.1.2 The model

The superpotential of the MSSM was introduced in section 2.3,

WMSSM ≡ Y ij
u QiHuUj − Y ij

d QiHdDj − Y ij
e LiHdEj + µHuHd. (5.2)

In absence of lepton flavour violation, the matrix Ye = diag(ye, yµ, yτ ) must be diagonal. In the
quark sector, the fields can be rotated into the super-CKM basis [319],

uLi → (UuL)ijuLj , dLi → (UdL)ijdLj (5.3)

where Yd, Yu become diagonal as well,

Yd = diag(yd, ys, yb), Yu = diag(yu, yc, yt). (5.4)
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5.1 MSSM with large flavour violation

The unitary Cabibbo-Kobayashi-Maskawa [81] matrix

VCKM = (UuL)†UdL (5.5)

contains all information about flavour violation. Adopting the soft-breaking terms from eq. (2.42),
the case of minimal flavour violation is described by trilinear couplings proportional to the
corresponding Yukawas, Ti = AiYi for i = u, d, e and a constant Ai. Here we study large
deviations from this limit. Consider the mass matrix of the up-type squarksM2

u in the basis
(ũL, c̃L, t̃L, ũR, c̃R, t̃R),

M2
u =

(
VCKMm

2
qV
†
CKM + 1

2v
2
uY

2
u +DLL X†

X m2
u + 1

2v
2
uY

2
u +DRR

)
, (5.6)

with a 3× 3 matrix
X = − vd√

2
µ∗Yu + vu√

2
Tu (5.7)

and DLL, DRR are diagonal matrices with D-term contributions. We focus only on mixing
between third and second generation in the up-quark sector. This is described by trilin-
ear couplings Tu,23, Tu,32 , 0 and all other off-diagonal Tu,ij = 0 for simplicity. The up-
squark sector (of the 2nd and 3rd generation) is parameterised by four soft squark masses
m2
u,33, m

2
u,22, m

2
q,33, m

2
q,22. We will write the square root of these parameters for notational

convenience in the following. The tree-level gluino mass M3 is a free parameter. All other soft
masses are set to a universal mass m̃. Hence the parameter space is spanned by

mu,33, mu,22, mq,33, mq,22, m̃,

Tu,33, Tu,32, Tu,23,

M1, M2, M3,

M2
A, tan β.

5.1.3 Numerical results

The combination SARAH/SPheno is employed for spectrum generation using the dominant two-
loop calculation described in chapter 4, taking into account all generation of sfermions. The
output for the Higgs mass will be referred to as mfull

h , in contrast to the previous standard
calculation (mapprox

h ) including the dominant contributions of eq. (5.1) based on Refs. [200] 1 .
Note that we use the label “full” even though the mentioned limitations exists (in particular the
gaugeless limit). In the following we fix the parameters of lesser importance for the Higgs mass
corrections to be

M1 = 100 GeV, M2 = 200 GeV, m̃ = 1 500 GeV,
µ = 500 GeV, M2

A = (1000 GeV)2, tan β = 10.

1 The specific settings in SPheno used for the two values of the Higgs mass are in the Flag 8 of Block SPhenoInput:
the value is set to 3 for mfull

h (diagrammatic calculation) and to 9 for mapprox
h (2-loop dominant, 3rd generation

contributions).
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Chapter 5 Application to SUSY models

Figure 5.1: Correlation between δm(1L)
h and δm(2L)

h ≡ δmh. The blue points are all points which give
a tachyon-free spectrum without any further restrictions. The red points provide at two loops a Higgs
mass with mh > 120 GeV.

For the other parameters, we scan over the following ranges:

M3 ∈ [1, 3] TeV,
mu/q,33 ∈ [0.2, 2] TeV, mu/q,22 ∈ [1.2, 2.5] TeV,

Tu,ij ∈ [−4, 4] TeV (i, j = 2, 3).

To be consistent with LHC collider limits, the second generation mass parameters are chosen
larger than 1.2 TeV. The choice of mu/q,33 leads to small stop masses which could also be
excluded by direct searches at the LHC. However, these bounds are highly dependent on the
mass of the LSP and its mass difference to the stop. In the case of a splitting below 85 GeV,
the bounds are not very severe, mt̃1 > 245 GeV [320]. Therefore, the third generation can be
much lighter. It is always possible to choose M1 such that the LSP mass is close to the stop
mass, which has almost no impact on the Higgs mass. The quantity of interest is the difference
between the two calculations

δm
(2L)
h ≡ δmh = mfull

h −m
approx
h . (5.8)

If we impose no cut upon the Higgs mass (i.e. do not require it to have the observed value of 125
GeV) then we can have very large shifts in its value through flavour effects. To begin with, we
consider a rough scan over 250k points, where the only requirement is that the spectrum contains
no tachyons, leaving 95k points. If large differences are found at two-loop level, they might
already be present at one-loop level. To observe this we show δm

(1L)
h (the difference between a

full one-loop calculations and the one-loop calculation neglecting flavour effects) against δm(2L)
h

in fig. 5.1. There is a weak correlation between the one- and two-loop effects. The more realistic
points are those with a Higgs mass of mh > 120 GeV (red points in fig. 5.1). With this cut we
obtain a set of points in which the differences at one- and two-loop level are of similar size.
As a next step, a larger, finer scan for potentially relevant models was done within the

mh > 120 GeV bound. This scan included 5 million points using a flat prior. To avoid the issue
of undersampling in a scan with six free parameters, at least 106 points have to be sampled,
which is exceeded by this number. From the total number of points, a selection of about 50k
points have mh > 120 GeV and |δmh| > 0.5 GeV, as well as fulfilling flavour constraints from
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Figure 5.2: δmh (in GeV) of the point with the maximal |δmh| per bin is shown, as function of different
ratios of important soft-breaking parameters.

important B observables, which were calculated with FlavorKit [321]. The strongest constraint
comes from b → sγ. This selection is used in the following plots. It is useful to define the
ratios ru ≡ mu,33/mu,22 and rq ≡ mq,33/mq,22 of soft mass parameters. We show in fig. 5.2
the value of δmh with the largest absolute value per bin. These plots indicate regions where
the largest corrections, positive as well as negative, can be obtained, possibly among other
points with smaller corrections residing in the same bin which are not shown. Therefore, each
plot in fig. 5.2 projects out a certain amount of points and the remaining number equals the
number of bins. Complementary, fig. 5.3 shows histograms of the number of points (normalised
to one) which survive the cut |δmh| ∈ [0.8, 7]GeV. Figure 5.3(a) (red hue) shows only points
with negative δmh and the other plot, fig. 5.3(b), (blue hue) shows only positive δmh. These
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Figure 5.3: These plots show normalised histograms of points from the generated sample that fulfil
|δmh| ∈ [0.8, 7] GeV (color bars range from 0 to 1). The left plot shows points with negative δmh (red
hue) and the right plot shows points of positive δmh (blue hue).

(a) (b)

Figure 5.4: The plots show δmh as function of min(mx,33/mx,22) (x = q, u) in (a) and as a function of
Tu,33/max(Tu,32, Tu,23) in (b), where max picks the entry whose absolute value is larger independent of
the sign.
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5.1 MSSM with large flavour violation

plots do not show the magnitude of the corrections, but rather the general location in parameter
space where positive and negative corrections can be found. We find the following behaviour:

1. From fig. 5.2(a) it can be seen that a necessary condition for a large deficit of several GeV
in mapprox

h (i.e. δmh > 0) is a large hierarchy between the third and second generation
of the soft-masses mq or mu. In particular, many such points reside in a region around
(ru, rq) = (0.8, 0.2) and (0.8, 0.2) which is visible in fig. 5.3(b). On the other hand, if rq
or ru is ≥ 0.4, one finds negative δmh. This can be seen in fig. 5.3(a), where the bulk of
points is within the area of ru ≥ 0.4, rq ≥ 0.4. It is also visible in fig. 5.4(a), where δmh is
displayed against min(ru, rq): Large negative values of δmh are found around 0.4.

2. In the case that the gluino is lighter than the second generation of soft masses (M3/mx,22 <
1, x = q, u), δmh is found positive (blue area within fig. 5.2(b)), while for a heavier gluino
(M3/mx,22 > 1, x = q, u) the additional corrections from flavour violation are negative
(red area within fig. 5.2(b)).

3. The sign of the additional corrections depends strongly on the ratio of Tu,33 and the two
off-diagonal couplings Tu,32 and Tu,23. If |Tu,32| or |Tu,23| are much bigger than |Tu,33|,
the flavoured two-loop corrections are usually large and positive, fig. 5.2(c). Negative
corrections appear in particular for the case that max(|Tu,32|, |Tu,23|) ' |Tu,33|. This is
shown in fig. 5.4(b). We checked that a similar pattern as in fig. 5.4(b) also exists at one
loop: positive (negative) corrections can be found around Tu,33/max(Tu,32, Tu,23) = 0 (at
±1, respectively), but the magnitude can be much larger.

We investigate the dependence on the different parameters for two example points, one with
positive shift and one with negative shift to the Higgs mass. The first point with positive shift
is given by

mu,33 = 300 GeV, mq,33 = 2000 GeV,
mu,22 = mq,22 = 2300 GeV,

Tu,33 = Tu,32 = −1800 GeV, Tu,23 = 0,
M3 = 1550 GeV. (5.9)

This is not a point that maximises the shift. Note that this choice of parameters respects direct
collider bounds by the same reasoning that was given earlier. Depending on the used two-loop
calculation, we find the following values for the SM-like Higgs mass:

mfull
h = 123.1 GeV, (5.10)

mapprox
h = 121.1 GeV. (5.11)

The third-generation-only approximation gives a result which is 2 GeV too small compared to
the full calculation. We checked the difference at one-loop and found mfull,(1L)

h = 116.4 GeV,
m

approx,(1L)
h = 119.5 GeV. Thus, the effects are of similar size but with different sign. For

this benchmark point, the dependence on the individual parameters is displayed in fig. 5.5.
The discrepancy δmh quickly increases for smaller values of mu,33 and M3 as well as for large
negative Tu,32. Going from smaller to larger negative values of Tu,33, the sign change of δmh is
visible at about Tu,33 = −1.2 TeV. Points with large flavour violation and sizeable splitting in
the soft masses can trigger charge and colour breaking minima [322–326]. Therefore we checked
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Figure 5.5: mfull
h (solid blue) and mapprox

h (dashed red) as functions of Tu,32, Tu,33, mu,33 and M3. The
other parameters are fixed to the values in eq. (5.9).

the vacuum stability of all surviving points within the sample with Vevacious [289] allowing
that the second and third generation of up-squarks can receive VEVs. Indeed, the benchmark
point at hand exhibits a colour breaking global minimum, but the lifetime calculated with
CosmoTransitions [327] turns out to be many times the age of the universe.

We consider a second benchmark point with negative contributions from flavour effects:

mu,33 = 720 GeV, mq,33 = 875 GeV,
mu,22 = mq,22 = 2 500 GeV,

Tu,33 = 1 200 GeV, Tu,32 = −1 900 GeV, Tu,23 = 0,
M3 = 2 600 GeV. (5.12)

Here, the minimum of the scalar potential is stable. The discrepancy between the Higgs mass
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5.1 MSSM with large flavour violation

calculations turns out to be about 3 GeV,

mfull
h = 121.2 GeV, (5.13)

mapprox
h = 124.0 GeV. (5.14)

Comparing this to the one-loop level, we find a difference of about 1 GeV: mfull,(1L)
h = 117.3 GeV,

m
approx,(1L)
h = 118.3 GeV. For this point, the flavour violation effects at two-loop are even more

important than at one-loop. The dependence on Tu,32 and Tu,33 as well as on mu,33 and M3 is
shown in fig. 5.6. Note that in the region of large |Tu,32| and δmh in fig. 5.6(a), the electroweak
potential becomes meta-stable and even short-lived. These constraints have to be taken into
account and they can be more restricting than flavour observables.
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Figure 5.6: δmh in the (Tu,32, Tu,33) and (mu,33,M3) plane. The other parameters are fixed to the values
in eq. 5.12.

5.1.4 Discussion

We have analysed the effect of large flavour mixing on the two-loop Higgs mass calculation,
compared to the third-generation-only approximation. The difference can be several GeV for
parameter points that are consistent with bounds from flavour observables, direct collider
searches and vacuum stability. The size and the sign of the flavoured two-loop contributions
depends mainly on the hierarchy in the soft-breaking squark masses, the size of the flavour
violating trilinear soft-terms and the gluino mass. We address some further questions in the
following.

1. Do the shifts at two loops correlate with those at one loop? In fig. 5.1 we saw that there
is a relationship between the shifts at one and two-loops for the rough scan. For the
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points of the fine scan shown in fig. 5.7(b) we can identify roughly two branches of points:
the horizontal one exhibits small two-loop differences that seem uncorrelated to δm(1L)

h .
The other branch shows a positive correlation between one- and two-loop shifts. Broadly
speaking, the points that show a large difference from flavour effects between approximate
and full calculation at two loops also show a discrepancy already at one loop. One could
naively assume that a large gluino mass suppresses the differences at two loops. However,
it turns out that the points of the correlated branch tend to have a gluino mass that is
much larger than the stop masses. Gluinos have the effect of enhancing the two-loop
corrections in general.

2. Are the corrections proportional to the full Yukawa (yu,d,c,s , 0) couplings? To investigate
this, we recalculated the corrections with only the top/bottom mass terms in the Yukawa
couplings non-zero, and found very little difference. In fact, only yt ≡ Y 33

u is relevant. This
means that the only the off-diagonal trilinear couplings Tu,ij are responsible for the shifts.

3. Are the differences mostly in α2
t or αtαs corrections? Using modified versions of our code

we have compared the difference between “full” and third-generation-only results for these
two cases. The strong contribution exhibits the largest differences.

Another question is whether the found discrepancies are correlated to the one-loop shifts to the
stop masses caused by flavour violation. To look at this superficially, we consider the difference
between m1L

t̃
and the same mass with flavour violating terms forced to zero,

δmt̃ ≡ m1L
t̃ −m

1L
t̃

∣∣
T23=T32=0. (5.15)

Figure 5.7(a) shows a 2D histogram of points with respect to δmt̃/mt̃ and δmh. There is no clear
sign of a correlation between the two, but rather a spread of points. This is not a conclusive
result and the correlation might still be there for some of the points. To investigate this a bit
more, we use a refined measure. A guess for the order of magnitude of the two-loop shift in the
Higgs mass can be obtained by plugging the one-loop stop masses into the one-loop Higgs mass
expressions,

∆2Lm2
h = δ1Lm2

h(m1L
t̃i

)− δ1Lm2
h(mDR′

t̃i
), (5.16)

with δ1Lm2
h(M) being the one-loop correction to the Higgs mass-squared computed using the

effective potential method found, for example, in [200]. In the presence of large flavour mixing, a
stop isn’t well defined. We consider instead the two up-type squarks with the largest components
of t̃L, t̃R as stops. We stress that ∆2L is not a true two-loop value, but merely an estimate of
the order of magnitude. However we can use it to see whether shifting both the stop masses
may correlate with the Higgs mass shift.

δ(1L)
2
m2
h ≡∆2Lm2

h −∆2Lm2
h

∣∣
T32=T23=0 , (5.17)

⇒ δm
(1L)2

h ≡
(

(mapprox
h )2 + δ(1L)

2
m2
h

)1/2
−mapprox

h ,

where δm(1L)2

h is derived from δ(1L)
2
m2
h as a parameter of mass dimension 1. The size of δm(1L)2

h

gives the would-be “two-loop” shift in the Higgs mass when the generation-mixing trilinear
couplings are turned on. It describes the same shift as the actual δmh used before, but is roughly
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(a)

(b)

(c)

Figure 5.7: (a): δmh against proportional shift in lightest stop mass (δmt̃1/mt̃1) compared to model with
T23 = T32 = 0, colours show percentage of points in each bin in a 50 by 50 grid, bins with zero points
shown as white. (b): Correlation between the off-diagonal flavour induced shift in the Higgs mass at one
and two loops. (c): δmh (ordinate) against approximation for shift from inserting on-shell stop masses
into the one-loop Higgs mass expression (abscissa) as given in equation (5.17).
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estimated only from one-loop expressions. The plot shown in fig. 5.7(c) is also not clearly
conclusive, but it does show a weak anti-correlation between δm(1L)2

h and δmh, which appears to
be the inverse of the relationship shown in fig. 5.7(b). The fact that large two-loop discrepancies
δmh can be related to a one-loop shift in the stop masses implies that the discrepancies have
an uncertainty stemming from the use of the DR′ scheme (which would be of higher order).
Passing to the on-shell scheme for at least the stop masses could reduce the observed differences,
where everything would be expressed in terms of stop pole masses. A full DR′ calculation is
much simpler and can be written down for generic models, but it can suffer from unphysical
large contributions if there are large hierarchies between the masses of particles in the loops
[200]. The Higgs mass calculation in the on-shell scheme on the other hand can have a smaller
theoretical uncertainty, but requires the inclusion of new counterterms at two loops and is less
practical. This issue has recently been studied in the case of Dirac gaugino models [328].
From considering the above it can be concluded that a sizeable contribution to δmh arises

from the new diagrams involving the trilinear couplings T23, T32 . These effects can only be
obtained if all generations of sfermions are taken into account. In the case of trilinear terms of a
magnitude comparable to the other soft terms, we can no longer trust the third-generation-only
approximation.
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5.2 NMSSM Higgs mass beyond O (αs(αt + αb))

5.2.1 Introduction

In this section we consider the NMSSM [238] and the impact of the two-loop corrections beyond
O (αs(αb + αt)) on the Higgs mass. The model involves one additional superfield S, which is a
singlet under all gauge groups. Its components, the scalar singlet S and the singlino S̃, extend
the Higgs sector and neutralino sector, respectively. One of the crucial restrictions of the MSSM
is the upper bound on the tree-level Higgs mass (eq. (2.67)) and the need for large quantum
corrections. The NMSSM enhances the Higgs mass already at tree level [238, 239] compared to
the MSSM, reducing the fine-tuning [240, 241, 244, 254–256]. Further, the µ problem of the
MSSM [151] is solved by the additional singlet, which generates an effective µ term. The NMSSM
has a rich collider phenomenology [329] and it has been shown recently that light singlinos
could explain why SUSY has remained hidden from the LHC [260]. The Higgs mass precision
in the NMSSM has received a lot of attention, with full one-loop calculations available in the
DR′ scheme [294, 330] and in different on-shell schemes [331, 332]. At the two-loop level the
dominant corrections αs(αb + αt) have been calculated in Ref. [294]. The state-of-the art codes
written specifically for the NMSSM are NMSPEC [333] and Next-to-Minimal SOFTSUSY [217–220],
which use the known MSSM-like corrections (αb + αt + ατ )2. Advanced techniques are also
implemented in FeynHiggs [224–227] and NMSSMCALC [334]. There are two-loop contributions
that are exclusive to the NMSSM, which we could address here for the first time [297]. After
introducing the model, we analyse the significance of the new corrections in a few scenarios with
heavy and light singlets.

5.2.2 The model

The NMSSM is constructed from the MSSM by adding a chiral superfield S with representations
(1,1, 0). The superpotential reads (with flavour indices suppressed)

WNMSSM = YuQHuU− YdQHdD− YeLHdE + λHuHdS + 1
3κS3. (5.18)

Without further restrictions, gauge invariance and renormalisability allow terms Sk up to k = 3.
Only the cubic term is used here, because no other dimensionful parameters should be introduced.
If the singlet receives a VEV, 〈S〉 = vs/

√
2, then the term λHuHdS generates an effective

µ-term. In this setup, the superpotential satisfies a discrete Z3 symmetry acting on all chiral
superfields as Φ→ exp(i 2π/3)Φ [335]. This symmetry is spontaneously broken by the VEV
of S. As a consequence of this breaking, the universe would be allowed to form domain walls
during its evolution, where different patches of space-time occupy different vacua [336]. The
existence and interactions of such domain walls can have interesting effects (e.g. in the context of
baryogenesis [337]), but in this case they would overdominate the energy density of the universe
[335] and contradict our observations of cosmic microwave background. A possible solution to
the domain wall problem is an explicit breaking of the Z3 symmetry (e.g. Ref. [336]). However,
our study concerns itself only with the minimal version of the NMSSM defined by eq. (5.18).

71



Chapter 5 Application to SUSY models

The soft-breaking terms are given by

−Lsoft,2 = m2
Hu |Hu|2 +m2

Hd
|Hd|2 +m2

S |S|2

+Q̃†m2
QQ̃+ L̃†m2

LL̃+ D̃†m2
DD̃ + Ũ †m2

U Ũ + Ẽ†m2
EẼ,

+1
2 (M1λBλB +M2λ

a
Wλ

a
W +M3λ

α
Gλ

α
G + h.c.) , (5.19)

−Lsoft,3 = T iju Q̃iHuŨj + T ijd Q̃iHdD̃j + T ije L̃iHdẼj + TλHuHdS + 1
3TκS

3. (5.20)

After EWSB, the singlet and the Higgs fields split into CP-even and odd components and a
VEV,

S(x) = 1√
2

(vs + φs(x) + iσs(x)) , (5.21)

H0
i (x) = 1√

2
(vi + φi(x) + iσi(x)) , i = d, u . (5.22)

We choose a phase convention such that all VEVs are real. The VEV of the singlet triggers
effective µ- and b-terms

µeff = 1√
2
λvs, beff = 1√

2
Tλvs + 1

2κλv
2
s . (5.23)

µeff and λ shall be treated as input parameters from which vs =
√

2µeff/λ is calculated. The
tadpole equations at tree level are given by

T
(0)
i = ∂V

∂φi

∣∣∣
min

= 0, i = d, u, s (5.24)

with

1
vd

∂V

∂φd
= m2

Hd
+ 1

8
(
g2

1 + g2
2

)(
v2
d − v2

u

)
+ 1

2
(
v2
s + v2

u

)
|λ|2 − 1

2v
2
s tan β<[κλ∗]− 1√

2
vs tan β<[Tλ],

(5.25a)
1
vu

∂V

∂φu
= m2

Hu + 1
8
(
g2

1 + g2
2

)(
v2
u − v2

d

)
+ 1

2
(
v2
d + v2

s

)
|λ|2 − 1

2v
2
s cotβ<[κλ∗]− 1√

2
vs cotβ<[Tλ],

(5.25b)
1
vs

∂V

∂φs
= m2

S − vdvu<[λκ∗] + v2
s |κ|2 + 1

2(v2
d + v2

u)|λ|2 − 1√
2
vdvu
vs
<[Tλ] + 1√

2
vs<[Tκ]. (5.25c)

As usual all parameters are running parameters at the scale Q. The tadpole equations receive
corrections at loop level (δT (n)

i ) and the corrected minimum is defined by the vanishing sum

T
(0)
i + δT

(1)
i + δT

(2)
i = 0 for i = d, u, s. (5.26)

Here we choose to solve for the squared soft masses, m2
Hd
,m2

Hu
,m2

S . This leaves the free input
parameters of the Higgs sector to be

λ, κ, µeff, Tλ, Tκ, tan β.
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It is sometimes convenient to define

Tλ ≡ λAλ, Tκ ≡ κAκ.

The tree-level mass matrices of the CP-even Higgs bosons are calculated from the scalar potential
via

M2
h,ij = ∂2V

∂φi∂φj

∣∣∣∣∣
min

, (5.27)

with i, j = u, d, s.

M2
h,φdφd

= 1
2
(
v2
s + v2

u

)
|λ|2 + 1

8
(
g2

1 + g2
2

)(
3v2
d − v2

u

)
+m2

Hd

M2
h,φdφu

= 1
4
(
− 2
√

2vs<
(
Tλ
)

+
(
4vdvuλ− v2

sκ
)
λ∗ − v2

sλκ
∗
)
− 1

4
(
g2

1 + g2
2

)
vdvu

M2
h,φuφu = 1

2
(
v2
d + v2

s

)
|λ|2 − 1

8
(
g2

1 + g2
2

)(
− 3v2

u + v2
d

)
+m2

Hu

M2
h,φdφs

= − 1√
2
vu<

(
Tλ
)

+ vs
((
− 1

2vuκ+ vdλ
)
λ∗ − 1

2vuλκ
∗
)

M2
h,φuφs = 1

2
(
− vd

(√
2<
(
Tλ
)

+ vsλκ
∗
)
− vs

(
− 2vuλ+ vdκ

)
λ∗
)

M2
h,φsφs = 1

2
(
2
√

2vs<
(
Tκ
)

+
(
6v2
sκ− vdvuλ

)
κ∗ +

((
v2
d + v2

u

)
λ− vdvuκ

)
λ∗
)

+m2
S (5.28)

This matrix is diagonalised by an orthogonal matrix ZH ,

ZHM2
h(ZH)T = diag(m2

h1 ,m
2
h2 ,m

2
h3) . (5.29)

The three eigenvalues ofM2
h correspond to the squares of the tree-level masses m2

h1
, m2

h2
, m2

h3
which are ordered by their mass. The lightest Higgs mass mh1 is bounded from above at tree
level [238],

m2
h,tree ≤M2

Z cos2 2β + 1
2λ

2v2 sin2 2β = M2
Z

(
cos2 2β + 2λ2

g2
1 + g2

2
sin2 2β

)
. (5.30)

The extra contribution to the tree-level Higgs mass ∼ λ2v2 sin2 2β is helpful in the sense that
radiative corrections can be smaller in order to reach 125 GeV. However, the extra term is only
relevant for small tan β. The mass matrix of the CP-odd states reads

M2
A,ij = ∂2V

∂σi∂σj

∣∣∣∣∣
φk=0,σk=0

, (5.31)

with

M2
A,σdσd

= 1
2
(
v2
s + v2

u

)
|λ|2 + 1

8
(
g2

1 + g2
2

)(
− v2

u + v2
d

)
+m2

Hd
, (5.32)

M2
A,σuσu = 1

2
(
v2
d + v2

s

)
|λ|2 − 1

8
(
g2

1 + g2
2

)(
− v2

u + v2
d

)
+m2

Hu , (5.33)

M2
A,σsσs = 1

2
(
v2
u + v2

d

)
|λ|2 + v2

s |κ|
2 + vdvu<[λκ∗] +m2

S −
√

2vs<[Tκ], (5.34)
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M2
A,σdσu

= 1
2v

2
s<[λκ∗] + 1√

2
vs<[Tλ], (5.35)

M2
A,σdσs

= −vsvu<[λκ∗] + 1√
2
vu<[Tλ], (5.36)

M2
A,σuσs = −vsvd<[λκ∗] + 1√

2
vd<[Tλ]. (5.37)

The matrixM2
A is diagonalised by ZA,

ZAM2
A(ZA)† = diag(m2

A1 ,m
2
A2 ,m

2
A3). (5.38)

The spectrum contains a massless state, which we identify as the Goldstone boson G0 = A1.
Including the gauge-fixing term

LGF ⊃ −
1

2ξZ

(
∂µZµ + ξZMZG

0
)2
, (5.39)

the Goldstone boson mass becomes ξZM2
Z . Working in the gaugeless limit, we can isolate this

state by performing a preliminary rotation,

σu =σud cosβ −G0 sin β, σd = σud sin β +G0 cosβ. (5.40)

with tan β = vu/vd. Upon substituting the tadpoles, the mass matrix readsξZM2
Z 0 0

0 ? ?
0 ? ?

 . (5.41)

Let us take the derivatives of the first eigenvalue (before applying the tadpoles) with respect to
the VEVs and with g1 = g2 = 0 (applying eq. (2.94)),

∂m2
G0

∂vd
=λ2 sin2 β vd,

∂m2
G0

∂vu
=λ2 cos2 β vu,

∂m2
G0

∂vs
=
(
λ2 −<[λκ∗] sin(2β)

)
vs −

<[Tλ]√
2

sin(2β). (5.42)

These clearly never all vanish, even in the gaugeless limit, unless λ = 0. In our approach we
solve the full tadpole equations (including gauge contributions), but use the mass matrices
of scalars and pseudo-scalars in the gaugeless limit. This way, the Goldstone mass becomes
negative, because it is effectively evaluated outside the minimum.

∂2V
(0)
gaugeless

∂(G0)2

∣∣∣∣
min

=− M2
Z

2 cos2 2β. (5.43)

This avoids the problem of massless scalars in derivatives of the effective potential (Goldstone
problem) and is valid only in the gaugeless limit. With CP conservation, the Higgs sector of the
NMSSM exhibits three CP-even Higgses (h1, h2, h3), two CP-odd ones (A1, A2) and a charged
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Figure 5.8: Feynman diagrams contributing to the effective potential at two-loop level. (a): Strong
corrections αs(αt + αb) involving coloured SM fermions (fi, f ′i = di, ui) and SUSY sfermions (f̃i, f̃ ′i =
d̃i, ũi). (b): Diagrams involving Yukawa couplings with SM fermions (fi, f ′i = di, ui, li, νi), SUSY
sfermions (f̃i, f̃ ′i = d̃i, ũi, l̃i, ν̃i), neutralinos/charginos (χi = χ̃0

i , χ̃
+
i ) and Higgs particles (φi = hi, A

0
i , H

+
i ).

(c): Diagrams contributing at the order (αλ + ακ)2 to the effective potential. They involve the
neutralinos/charginos (χi, χ′i = χ̃0

i , χ̃
+
i ) and Higgs particles (φi, φ′i = hi, A

0
i , H

+
i ). A sum over all flavour

combinations is assumed, but all CP and charge violating diagrams are not considered.

one H±. Because the hi are linear combinations of φu, φd, φs, they can be called doublet-like or
singlet-like if the corresponding coefficient is much larger than the others. If the mixings are
not too large, one of states hi can be called a singlet, or more precisely a singlet-like state. In
the following, we will distinguish two regimes: A singlet that is much heavier than the SM-like
Higgs, and a singlet of comparable or smaller mass.

5.2.3 Numerical results

The dominant strong corrections O (αs(αt + αb)) stemming from the diagrams in fig. 5.8(a)
had already been calculated for the NMSSM [294] and they were cross-checked against the
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corresponding contributions from our code (Ref. [187]). To do this, we applied a few changes to
the code to be able to switch off individual contributions. Let δ(2L)

s mh be the two-loop shift of
the Higgs mass described the diagrams in fig. 5.8(a). In our calculation of V (2)

eff the diagrams of
figs. 5.8(b) and 5.8(c) are also included, but with g1 = g2 = 0. The diagrams shown in fig. 5.8(b)
have so far only been calculated in the MSSM [200], but not in the NMSSM, where the vertices
have extra terms with λ, κ. Furthermore, the contributions of fig. 5.8(c) vanish in the MSSM
(in the gaugeless limit), but in the NMSSM they contribute at the order O

(
(αλ + ακ)2). All

of these corrections combined lead to a correction δ(2L)
full mh. We are interested in the difference

between the two calculations,
∆M = δ

(2L)
full mh − δ(2L)

s mh, (5.44)

as well as in the ratio ∆R = ∆M/δ
(2L)
s mh, which gives an estimate of the importance of the

new corrections.

Heavy singlet with moderate λ

We test the importance of the two-loop corrections beyond O (αs(αt + αb)) with a parameter
point in the constrained NMSSM. In this setup, universal boundary conditions at the GUT
scale are applied,

M1 = M2 = M3 ≡M1/2,

m2
D = m2

U = m2
Q = m2

E = m2
L ≡ m2

0 13,

Ti ≡ A0Yi, i = u, d, e.

M1/2, m0, A0, Aλ and Aκ are defined at the unification scale, while λ, κ, µeff and tan β = vu
vd

are defined at the SUSY scale. As an example we pick the parameter point fixed by

m0 = 1.4 TeV, M1/2 = 1.4 TeV, tan β = 2.9, A0 = −1.35 TeV,
λ = 0.56, κ = 0.33, Aλ = −390 GeV, Aκ = −280 GeV, µeff = 200 GeV.(5.45)

The results for the Higgs masses at different loop levels are summarised in table 5.1. Here, h2 is
the predominantly singlet scalar (about 96%) at two-loop,

φs = 0.09h1 − 0.98h2 + 0.17h3.

The SM-like Higgs is h1 and does not substantially mix with the singlet-like state. In table 5.1
it is shown that the strong two-loop corrections give a positive mass shift, but adding the
full corrections afterwards reduces the masses. We compare this to the CMSSM [54] with the
same input parameters (m0 = M1/2 = 1.4 TeV, tan β = 2.9, µ > 0, A0 = −1.35 TeV): The
contributions involving the strong interaction cause a shift by 11.3GeV, while the purely Yukawa
corrections reduce the mass by −1.4GeV. This is almost the same as the numbers in table 5.1,
therefore for this point the two-loop corrections are MSSM-dominated.
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5.2 NMSSM Higgs mass beyond O (αs(αt + αb))

Tree one-loop two-loop
(αs(αb + αt))

full
two-loop

mh1 93.8 117.6 (+ 25.4%) 126.1 (+7.2%) 124.7 (-1.1%)
mh2 214.5 209.2 (-2.4%) 209.2 (± 0%) 208.7 (-0.2%)
mh3 555.5 541.9 (-2.4%) 542.3 (+0.1%) 541.4 (-0.2%)

Table 5.1: Higgs masses at tree-level, one-loop and two-loop for the parameter point of eq. (5.45) in GeV.
The state h2 is singlet-like.

We now analyse the dependence of the shifts on λ and κ. The mass of h1 at different loop
levels is shown in figs. 5.9(a) and 5.9(b). To compare the effect of the new contributions, we
show ∆M in figs. 5.9(c) and 5.9(d) and the relative shift, ∆R, in figs. 5.9(e) and 5.9(f). The new
corrections are small compared to the strong ones in this scenario: For the above parameter
point they are about 10%–20% the size of the strong corrections. To give an impression of the
remaining uncertainty from higher order corrections we show the Higgs mass in fig. 5.10 as a
function of the renormalisation scale Q. As expected, the scale dependence is reduced at the
two-loop level. For MSUSY = √m

t̃1
m
t̃2
≈ 2 TeV we observe a variation in the range 1

2MSUSY
and 2MSUSY of 2.3GeV, which can be taken as a rough estimate of the remaining uncertainty.

Heavy singlet with large λ

So far we concentrated on moderate values of λ, which are consistent with gauge coupling
unification and do not exhibit a Landau pole below the GUT scale. However, if one surrenders this
condition then λ can assume larger values. These so-called λSUSY scenarios are popular because
they predict very moderate values for the fine-tuning [338] and have interesting phenomenological
consequences [339, 340]. Typically, λSUSY models are defined with more general soft-breaking
and superpotential terms, but we consider only the minimal version of the NMSSM here. We
choose the parameter point given by

λ = 1.6, κ = 1.6, tan β = 3, Tλ = 600 GeV, Tκ = −2 650 GeV, µeff = 614 GeV.
(5.46)

All sfermion squared soft-masses are fixed to 2 · 106 GeV2, the gaugino masses are

M1 = 200 GeV,M2 = 400 GeV,M3 = 2 000 GeV,

while the trilinear couplings Tu, Td, Te are set to zero. The corresponding masses at different
loop levels are shown in table 5.2. Again the state h2 is mostly singlet-like with a mass of about
700 GeV and h1 is the SM-like Higgs boson. For this point all two-loop shifts to h1 have the
same sign (positive), implying that the NMSSM-specific corrections become more important.

Tree one-loop two-loop
(αs(αb + αt))

full
two-loop

mh1 144.8 122.6 (-15.3%) 126.5 (+3.2%) 128.0 (+1.2%)
mh2 713.2 745.9 (+4.6%) 745.8 (+0.0%) 747.9 (+0.3%)
mh3 1454.5 1421.1 (-2.3%) 1420.1 (-0.1%) 1420.3 (+0.0%)

Table 5.2: Higgs masses at tree-level, one-loop and two-loop for the parameter point of eq. (5.46). The
state h2 is mostly singlet-like and h3 is the MSSM-like heavy Higgs.
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Figure 5.9: First row: Light Higgs mass based on the parameter point of eq. (5.45) for a variation of λ
and κ. The Higgs mass is shown at tree-level (dotted line), one-loop (dashed line) and two-loops (full line).
At two-loop level we distinguish between the αs(αb +αt) corrections (blue) and the full calculation in the
NMSSM (green). Second row: The absolute size of the two-loop contributions beyond O (αs(αb + αt)).
Third row: The relative size of these corrections normalised to the αs(αb + αt) ones.
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Figure 5.10: The light Higgs mass mh1 based on the point (5.45) is shown for a variation of the
renormalisation scale Q at one-loop (dashed line) and two-loop (full line).
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Figure 5.11: (a): The light Higgs mass based on the parameter point of eq. (5.46) for a variation of λ.
The colour and line coding is the same as in fig. 5.9. (b): Absolute size of the strong corrections (dashed)
and full ones (full line), i.e. ∆M as defined in eq. (5.44). (c): Zoom into the interesting region of (a). The
red line corresponds to the approximation of MSSM-like Yukawa correction plus strong contributions.
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Tree one-loop two-loop
(αs(αb + αt))

full
two-loop

mh1 19.4 67.8 (+249.5%) 74.5 (+9.9%) 74.2 (-0.4%)
mh2 122.7 123.5 (+0.7%) 124.3 (+0.6%) 123.3 (-0.8%)
mh3 177.4 188.2 (+6.1%) 192.7 (+2.3%) 191.1 (-0.8%)

Table 5.3: Higgs masses at tree-level, one-loop and two-loop for the parameter point of eq. (5.47).

We show again the dependence of mh1 on λ in fig. 5.11(a). The shift ∆M changes its sign at
λ ' 1.5 from negative to positive in fig. 5.11(b). We zoom into the interesting mass range in
fig. 5.11(c), in which the additional red line shows an approximation where the strong corrections
are extended by the MSSM-like Yukawa contributions O

(
(αt + αb + ατ )2), which modify only

the upper 2× 2 block of the Higgs mass matrix. This approximation is not a good one for large
λ, because the predicted shift is in the other direction. Leaving out the MSSM-like Yukawa
contributions would give a result closer to the full calculation. In conclusion, for large λ the
difference between the full (blue) and the strong (green) calculation is notable (about 1 GeV),
although the strong corrections themselves are much more important.

Light singlet case

Finally the effects in a light singlet scenario are discussed. The benchmark point BMP-A of
Ref. [341] has the interesting feature that all three scalars hi are lighter than 200 GeV,

λ = 0.596, κ = 0.596, Tλ = −27 GeV, Tκ = −240 GeV, µeff = 130 GeV,
Tt = −3 050 GeV, Tb = Tτ = −1 000 GeV, tan β = 1.68,

m2
Q,33 = 9.0 · 105 GeV2, m2

U,33 = 1.05 · 106 GeV2. (5.47)

The Higgs masses at different loop levels are summarised in table 5.3. At tree-level, the SM-like
mh2 is already quite close to 125 GeV and loop corrections play a minor role. The mixing with
the lighter singlet as well as the F -term contribution δmh ∼ λ2(v2/2) cos2 2β give it a sizeable
push. The remarkable feature is that one- and two-loop corrections are of comparable size. To
find a better understanding of the different two-loop effects, the masses of h1, h2 are shown as
a function of λ in fig. 5.12. There is a very strong dependence on λ for both masses which is
mainly dictated by the tree-level (dotted line). For small λ, there is a large mass gap between
h1 and h2 and none of them is SM-like. With increasing λ, h2 becomes lighter and for λ ' 0.55
a level crossing takes place. We zoom into this region in fig. 5.13.
The composition of h1 and h2 in terms of φd (blue), φu (green) and φs (red) components is

shown in fig. 5.14 together with ∆M . There is a direct correlation between the singlet fraction
and ∆M : For a larger singlet admixture, |∆M | decreases. Thus, despite the sizeable value of
λ, the main contribution to the two-loop masses is again dominated by the strong interaction.
Interestingly, for a light state below 80 GeV (i.e. λ > 0.592) which is 60% singlet, the αs(αb+αt)
contributions still give a sizeable push to mh1 while ∆M nearly vanishes. But if we look beyond
λ > 0.58 for the state h2 the picture reverses (fig. 5.13): The new corrections shown here can
even compensate the strong corrections and produce an overall shift towards lower masses. Using
only the strong corrections one would obtain the wrong conclusion that the mass is increased at
two-loop.
Finally, we comment on the approximation of carrying over the known two-loop Yukawa
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Figure 5.12: The two lightest Higgs masses based on the point of eq. (5.47) for a variation of λ. The
colour code is the same as in fig. 5.9.
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Figure 5.13: The masses of h1 and h2 for the light singlet case are shown (zoom into the interesting
range). The colour coding is the same as in fig. 5.9.
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Figure 5.14: The left column is for h1, the right column for h2. First row: down- (blue), up- (green)
and singlet- (red) fraction (i.e. squared entry of mixing matrix ZH1i and ZH2i , i = d, u, s) of the Higgs
particles h1, h2 at tree-level (dotted), one-loop (dashed) and two-loop (full line). Second row: absolute
size of the two-loop corrections compared to only the strong interaction.
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Figure 5.15: Left: the lightest Higgs mass at two loops based on the parameter point of eq. (5.47) for a
variation of λ. The blue line is the mass using only αs(αt + αb) corrections, the green line corresponds
to our full calculation and the red line gives the result from the approximation of using the MSSM
expressions for the pure Yukawa contributions. On the right we show the ratio of the correction from the
MSSM approximation and the full correction.
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corrections of the MSSM to the upper 2× 2 block of the Higgs mass matrix. Using the same
parameter point in the regime of large λ > 0.55, we show the MSSM approximation plus the
strong contributions as the red line in fig. 5.15 (left). We also compare the ratio of the shift
caused by these MSSM-like contributions to the shift by our full contribution in fig. 5.15 (right).
It turns out that the approximation works for small λ, but fails above λ > 0.55 where it predicts
a Higgs mass with 2 GeV difference to the full calculation. This is mainly due to the missing
corrections to the (1, 3) and (2, 3) elements of the Higgs mass matrix. Since the corrections
are negative for these entries and therefore reduce the mixing between the doublets and the
singlet, the incomplete approximation predicts a mixing that is too large, which reduces the
lighter mass eigenstate.

5.2.4 Discussion
We have examined the impact of the previously unavailable contributions from the diagrams in
figs. 5.8(b) and 5.8(c) with full dependence on the superpotential parameters in the NMSSM, in
comparison to the existing (and dominant) strong corrections O (αs(αt + αb)) [294]. As a step in
between we also considered the approximation of adding the pure MSSM Yukawa contributions
O
(
(αt + αb + ατ )2) to the strong corrections. This approximation works for small λ, but in the

case of a significant mixing between singlet and doublet states and/or large λ, the approximation
is poor and has an error of approximately 2 GeV. This is to be expected, because important
contributions to the entries (1, 3) and (2, 3) of the Higgs mass matrix are missing. Further, we
observed that by including the MSSM Yukawa part, the prediction is generally shifted in the
other direction (towards lower masses) compared to the full case, as can be seen in fig. 5.11(c)
and fig. 5.15.
The new corrections, although limited to the gaugeless limit, are essential to obtain a more

accurate calculation of the Higgs mass in the NMSSM, in particular for large λ and/or substantial
mixing between singlet and doublet Higgses. It is likely that the two-loop effects are even more
significant in other singlet extensions like the generalised NMSSM [241] for large λ, where a
large singlet scalar mass can be accommodated along with a splitting between the scalar and
higgsinos.
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5.3 Higgs mass at two-loop in the RPV-MSSM

5.3.1 The MSSM extended by R-parity violation

From the particle content of the MSSM, we can construct additional gauge invariant terms,

WRPV = 1
2λijkLiLjEk + λ′ijkLiQjDk + 1

2λ
′′
ijkUiDjDk + κiLiHu, (5.48)

which violate either baryon number (B) or lepton number (L). The simultaneous violation
of B and L can lead to rapid proton decay, which is not observed in nature. Therefore, the
potentially dangerous terms are forbidden in the usual MSSM by imposing a discrete symmetry,
called R-parity [95, 342–344]

Rp = (−1)3(B−L)+2s, (5.49)

where s is the spin of a component field. Under this symmetry, all SM fields and scalar Higgs
bosons are even, while the superpartners are odd. As a consequence, the decay products of one
sparticle must contain an odd number of sparticles. The lightest sparticle then must be stable
and provides a dark matter candidate. This is not the case in R-parity violation, but it is equally
well motivated as the Rp conserving MSSM [344–351]. Equivalently, one can define matter parity
of a superfield as PM = (−1)3(B−L). This implies that the superfields L,E,Q,U,D are all odd
under PM , while Hu,Hd are even, forbidding the terms of eq. (5.48). The MSSM extended by
RPV operators has a rich collider phenomenology [352–356] and the existing mass bounds from
colliders can be significantly weakened in this setup [357–360]. Concerning the Higgs mass, the
additional RPV couplings become relevant in two-loop self-energies and could possibly increase
the radiative corrections, thus improving the fine-tuning situation. The RPV couplings also
appear in the two-loop renormalisation group equations [361], meaning that they modify the
running of the parameters compared to the (Rp conserving) MSSM. In this section we study the
impact of RPV couplings on the light Higgs mass at two-loop in the effective potential approach,
with the restriction that only RPV interactions involving coloured states are considered [298].

Since the top Yukawa coupling is the dominant source of higher order Higgs mass corrections,
it can be expected that the operators LQD and UDD will give the most relevant contributions.
We restrict ourselves to trilinear RPV terms with baryon number violation,

W =WMSSM + λ′ijkLiQjDk + 1
2λ
′′
ijkUiDjDk, (5.50)

and more specifically to couplings to third generation particles. The λ′ijk-tensor has no symmetries
and 27 independent components. λ′′ijk must be antisymmetric in j, k because the contraction
of colour indices (εαβγUα

i Dβ
jD

γ
k) is also antisymmetric in j, k. This leaves 9 independent

components for λ′′ijk. In the following we consider only one non-zero component at a time and
its antisymmetric component, if it exists. This avoids proton decay as well as constraints from
flavour changing neutral currents [346, 362, 363]. The additional soft-breaking terms in this
model read

− LSB,RPV = T ′λ,ijkL̃iQ̃jD̃k + 1
2T
′′
λ,ijkŨiD̃jD̃k + h.c., (5.51)

where the trilinear couplings T ′λ, T ′′λ are 3× 3 matrices of mass dimension one. As for the MSSM
trilinears Tu,d,e, they can be assumed proportional to the corresponding superpotential terms,
TX = AXYX for X = u, d, e and T ′λ = A′λ′, T ′′λ = A′′λ′′.
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Figure 5.16: Two-loop corrections to the effective potential involving trilinear RPV couplings. fi are
SM fermions and f̃i are sfermions. The graph on the left involves superpotential couplings λ′, λ′′, the
middle graph involves soft breaking terms T ′λ, T ′′λ , and the graph on the right λ′, λ′′ from the F -term
scalar potential.

5.3.2 Numerical results
The new diagrams that enter the effective potential in the presence of RPV are shown in fig. 5.16.
We neglect the possibility that sneutrinos develop a VEV through the LQD operator, because
the VEVs are restricted to be below ∼ 10 MeV by the smallness of neutrino masses [345]. But
the effective potential is not the only thing that is changed by the presence of RPV couplings.
They also enter the quark self-energies at one-loop, Σq

L,Σ
q
R,Σ

q
S with q = u, d, which are related

to the Yukawa couplings as [199]

vq√
2
Yq = U q,TL mpole

q U qR + Σq
S + Σq,T

L

(
vq√

2
Yq

)
+
(
vq√

2
Yq

)
Σq
R + . . . , (5.52)

where the dots represent two-loop corrections that are relevant only for the top quark. The
matrix mpole

q is diagonal with the pole masses as entries. U qL, U
q
R are unitary matrices that

diagonalise the Yukawa matrix Yq. The condition (5.52) has to be solved iteratively for Yq. The
change of Yq stemming from this matching condition can be considered a one-loop effect, which
(formally) has a two-loop effect on the Higgs mass. This is called a threshold correction which
will become more relevant in the context of vectorlike quark extensions of the MSSM (section
5.4). Consider the parameter point given by

tan β = 10, M1 = M2 = 1
2M3 = 1 TeV, µ = 0.5 TeV,

MA = 1 TeV, m̃ = 1.5 TeV, Tu,33 = −2.5 TeV. (5.53)

All trilinear couplings Tu,d,e are zero except Tu,33 which leads to a large stop mixing. All slepton
soft masses and the squark soft masses of the first two generations are set to m̃. For the third
generation, we distinguish two hierarchies,

(i) mq,33 = 1.5 TeV, mu,33 = md,33 = 0.5 TeV ,

(ii) mq,33 = mu,33 = md,33 = 2.5 TeV .

In (i) the third generation is lighter than the other sfermions, in (ii) it is heavier. The presence
of large trilinear couplings (Tu,33) in combination with small soft masses can lead to an unstable
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Figure 5.17: ∆mh is shown for the two mass hierarchies (i) [left], and (ii) [right]. The shift is shown as a
function of Λ = λ

′

ijk, λ
′′

ijk, with the colour code: λ′′

313 (full red), λ′′

312 (full blue), λ′′

213 (full green), λ′

333

(dashed red), λ′

331 (dashed blue), λ′

313 (dashed green). The two green lines are degenerate in both plots.

vacuum [322, 325, 364]. Using the public code Vevacious [289] we found that point (i) has a
meta-stable vacuum with a lifetime longer than the age of the universe, while point (ii) is stable.
For the RPV couplings we choose

T ′λ,ijk = A0λ
′
ijk , T ′′λ,ijk = A0λ

′′
ijk, (5.54)

with A0 = −2.5 TeV. The renormalisation scale is Q = √mt̃1mt̃2 . The SM parameters are

mpole
t = 173.1 GeV, mMS

b (mb) = 4.18 GeV, mpole
τ = 1.777 GeV, αMS

s (MZ) = 0.1184 . (5.55)

We consider the difference between the two-loop Higgs mass mh(Λ) in the presence of RPV
couplings and without,

∆mh≡mh(Λ)−mh(0) , (5.56)

with Λ = λ′, λ′′. The two benchmark points predict the masses

(i) mh(0) = 110.0GeV ,

(ii) mh(0) = 124.3GeV.

in the Rp-conserving case. The points were not tuned to reproduce the experimental mass well,
but serve to demonstrate the effect of RPV couplings. In the following we modify only the
couplings

λ
′′
313, λ

′′
312, λ

′′
213, λ

′
333, λ

′
331, λ

′
313, (5.57)

for which we use dashed lines in the following plots for λ′ entries and full lines for λ′′ entries.
In fig. 5.17 we show δmh for variations of these couplings. In case (i) we find large positive
corrections of several GeV to the Higgs mass, but only for λ′′313, λ

′′
213 where stops are involved.

The LQD operators only have a minor effect for large couplings λ′333, λ
′
331, while the contribution

from λ′′213, λ
′
313 (green lines) do not show any visible effect in this setup. For heavier stops in case

(ii) the effects are much smaller. Large corrections are only found for relatively large couplings,
above the perturbativity limit that we assume to be approximately 1 at the SUSY scale (see
Refs. [365, 366]). In Ref. [365] the authors require perturbativity up to the unification scale
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Figure 5.18: The change in the top Yukawa coupling, ∆Yt(Λ), is shown for the mass hierarchy (i). The
colour code is the same as in fig. 5.17.

∼ 1016 GeV. If this condition is relaxed, one could also consider Λ <
√

4π ≈ 3.54 as the upper
limit for perturbativity. The couplings involving stops are hardly constrained by flavour physics,
in particular for non-stop masses in the TeV range [367]. We have also checked that for large
tan β = 25, the change in the Higgs mass shift in the λ′′312 case does not change substantially
(less than 5%).

As pointed out earlier, the Yukawa couplings are subject to one-loop changes by the RPV
couplings. We define

∆Yt(Λ) ≡ Yt(Λ)− Yt(0) , (5.58)

with Yt(0) = 0.85 for tan β = 10. The effect is very small: We see from fig. 5.18 that Yt changes
less than 1% even for large RPV couplings.
To analyse the dependence on the involved stop mass parameters, we consider the cases

λ′′313 = 1, T ′′λ,313 = −2.5 TeV and λ′333 = 1, T ′λ,333 = −2.5 TeV starting with fixed mq,33 =
mu,33 = md,33 = 1.5 TeV and varying the individual soft masses in fig. 5.19. For large UDD
coupling and small mu we see the largest Higgs mass corrections. In the LQD case, there is a
similarly large dependence on mq. The value of md plays a sub-dominant role in both cases.

Finally we consider the dependence ofmh on the strength of the trilinear couplings, determined
by A0. With a light right-handed stop (mu,33 = 0.5 TeV) and with all other soft masses set to
m̃ = 1.5 TeV, we show mh as a function of A0 for vanishing RPV couplings as well as λ′′313 = 1,
T
′′
λ,313 = A0 and λ′333 = 1,T ′λ,333 = A0 in fig. 5.20. Again, the RPV couplings of order 1 can easily

shift the Higgs mass prediction by several GeV. For λ′′313, the difference mh(Λ)−mh(0) depends
strongly on A0, while this is not the case for λ′333. This is consistent with the observation of
fig. 5.19 and we would expect a stronger dependence on A0 in the second case if smaller values
of mq,33 were chosen.

5.3.3 Conclusion

We have discussed the impact of the trilinear RPV couplings λ′, λ′′ on the light CP-even Higgs
mass at two-loop level. Their contribution is significant only if the new couplings allow loop
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Figure 5.19: The two-loop RPV contributions to the light Higgs mass as a function of the soft squark
masses (mX) is shown. All soft masses are set to 1.5 TeV, while mq (blue), mu (red) and md (black) are
individually varied. Left: λ′′

313 = 1, T ′′

λ,313 = −2.5 TeV. Right: λ
′

333 = 1 and T ′

λ,333 = −2.5 TeV.
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Figure 5.20: The CP-even Higgs mass mh as a function of A0 is shown for vanishing RPV couplings
(dashed), for λ′

333 = 1, T ′λ,333 = A0 (blue) and for λ′′

313 = 1, T ′′λ,313 = A0 (green). mŨ,33 = 0.5 TeV and
all other soft masses are set to 1.5 TeV.

diagrams that involve the stops. In particular, we found that if λ′′313, λ
′′
312 are close to 1 and the

soft mass parameters of the third generation squarks are relatively light (500 GeV), the two-loop
correction to the Higgs mass can be several GeV. It is important to note that the Yukawa
couplings change in the presence of RPV couplings (compared to the R-parity conserving MSSM)
via one-loop quark self-energies, however these threshold corrections are numerically small here.
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5.4 Vectorlike tops and naturalness in minimal GMSB
5.4.1 Introduction
One way to accommodate the 125 GeV Higgs mass in the MSSM without excessive fine-tuning
is to enhance the tree-level mass by new F -term or D-term contributions. At the loop level
corrections involving the top Yukawa coupling are dominant due to the hierarchy amongst the
Yukawas. If there were another heavy quark like the top with a similarly large couplings, this
would clearly give a boost to the radiative corrections of the Higgs mass and lead to reduced
fine-tuning. Fourth generation quarks are a standard item in the exotic particle search agenda of
the LHC. Current lower mass limits are at 800 GeV [368]. A vectorlike quark (VLQ) is defined
as a left-handed and right-handed fermion pair with opposite gauge quantum numbers. In
contrast to a chiral quark, a vectorlike quark does not generate a chiral anomaly and does not
have a large effect on Higgs production and decay [369]. Apart from their effect on the Higgs
mass, VLQs have also indirect effects on electroweak precision observables and flavour physics
[370–373].
When dealing with models with a large number of parameters, such as SUSY with its soft-

breaking sector, one is forced to make simplifying assumptions to study the parameter space.
There are several ideas about how SUSY breaking could occur at a high scale, described by only
few parameters. From this minimal input, the values of the different soft-breaking parameters
can be obtained by solving the RG equations. SUSY breaking is said to occur in a hidden sector
and is transmitted to the visible sector via a specific mechanism. In gauge mediated SUSY
breaking (GMSB) [157–161], messenger fields that take part in the SM gauge interactions couple
to states from the hidden sector. The soft-breaking terms of the MSSM are then generated by
loop corrections to MSSM fields involving the messengers.

In a study presented in Ref. [374] the maximum mass of the light Higgs boson was calculated
for several simplified versions of the MSSM assumingMSUSY < 3 TeV. For GMSB, the maximum
mass was determined asmmax

h = 121.5 GeV, which is too low. Obtaining a Higgs mass of 125 GeV
comes at the price of multi-TeV stop masses and an enormous fine-tuning [375]. In this section
we analyse how much the fine-tuning can be reduced in the vectorlike quark setup.

Prior to Ref. [299], the effects of vectorlike tops had only been studied at one-loop without
momentum dependence [376]. We consider the missing effects from one-loop momentum
dependence and dominant two-loop effective potential contributions. There is another relevant
effect, which stems from translating the Standard Model input parameters (i.e. fermion masses,
gauge couplings, Weinberg angle) at theMZ-threshold into running gauge and Yukawa couplings
in the DR′ scheme. Before any RGE running can take place, one needs the initial conditions in
the form of a complete set of Lagrangian parameters at a scale Q in the same renormalisation
scheme. The procedure of preparing this set is quite complicated, however a good explanation
can be found in Ref. [377], as it involves multi-loop perturbative corrections depending on
the model. As a consequence, the initial parameters (e.g. the top Yukawa coupling Yt) will
be different in the MSSM than in the model at hand. It is well known that these threshold
corrections can alter mh by several GeV in the MSSM [199]. With the SARAH/SPheno framework
we can address both the two-loop and threshold corrections to the CP-even light Higgs mass in
an automated fashion with a precision comparable to the standard calculations of Refs. [200]
usually employed for the MSSM.
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superfield spin 0 spin 1/2 gen. SU(3)C SU(2)L U(1)Y
T′ t̃′ t′ 1 3̄ 1 −2

3
T′ t̃′ t′ 1 3 1 2

3

Table 5.4: The superfields in this table are added to the MSSM particle content of table 2.2.

superfield spin 0 spin 1/2 gen. SU(3)C SU(2)L U(1)Y
Q′ Q̃′ Q′ 1 3 2 1

6

Q′ ˜̄Q′ Q̄′ 1 3̄ 2 −1
6

E′ Ẽ′ E′ 1 1 1 1
E′ ˜̄E′ Ē′ 1 1 1 −1

Table 5.5: These superfields can be added to restore gauge unification in the vectorlike-top MSSM.

Besides the effects on the Higgs mass, we also consider the fine-tuning in a UV complete
model with additional spectator superfields embedded in the 5 and 10 multiplets of SU(5). The
resulting model has been studied to some extent in [378–380]. Here, we apply GMSB boundary
conditions and study the parameter space that predicts the right Higgs mass and at the same
time offers low fine-tuning.

5.4.2 The MSSM with vectorlike tops

The MSSM is extended by two chiral superfields T′,T′, where T′ has the same quantum numbers
as U of the MSSM. They can be combined to form new interaction terms in the superpotential,

W =WMSSM + Y i
t′QiHuT′ +MT ′T′T

′ +mi
t′UiT

′
. (5.59)

The additional soft-breaking terms are given by

−Lsoft =− Lsoft,MSSM +
(
T it′Q̃iHut̃′ +BT t̃′t̃′ +Bi

t′ ũ
∗
Rit̃
′ + h.c.

)
(5.60)

+m2
t̃′

∣∣∣t̃′∣∣∣2 +m2
˜̄t′

∣∣∣t̃′∣∣∣2 +
(
m2
utũRit̃

′ + h.c.
)
. (5.61)

Here, we consider only couplings to the third generation: Y i
t′ = (0, 0, Yt′) and T it′ = (0, 0, Tt′).

Also, all parameters are taken to be real in the soft sector, neglecting CP violation. Adding
only the vectorlike tops spoils the prospect of gauge coupling unification. To reconcile this, one
can add more fields that complete the multiplets of a unified gauge group, e.g. SU(5). In the
MSSM, the fields Q,E,U fit into one 10-plet of SU(5). Assuming that T′,T′ are each part of
such a 10-plet, we can complete the multiplets with superfields Q′,Q′,E′,E′ (table 5.5). The
resulting superpotential is extended only by the mass terms

∆W = MQ′Q′Q̄′ +ME′E′Ē′, (5.62)

where we assume no other interactions of the new fields. This makes them spectator fields
that only influence the RGEs and threshold corrections, as will be explained shortly. The beta
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functions of the gauge couplings are expanded in loop orders,

βgi ≡
1

16π2β
(1)
gi + 1

(16π2)2β
(2)
gi + . . . , (5.63)

where the one-loop contribution is

β(1)
g1 =

(41
5 + 7

5 δUV

)
g3

1, (5.64)

β(1)
g2 = (1 + 3 δUV) g3

2, (5.65)
β(1)
g3 = (−2 + 2 δUV) g3

3, (5.66)

with δUV = 1 for the UV complete model and 0 in the minimal case. All beta functions have
been calculated automatically by SARAH/SPheno using generalised formulas [278] up to two loops.
Note that the strong coupling g3 has a vanishing one-loop beta function in the UV completion.
Figure 5.21 exemplifies the gauge coupling evolution in both model versions. The one-loop β
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Figure 5.21: The running of the gauge couplings α−1
i (Q) (with i = 1 (blue), 2 (orange), 3 (green)) at

one-loop is shown. The dashed lines represent the minimal vectorlike top model and the full lines the
UV-complete model. The dotted lines represent the SM-only running up to MSUSY = 1 TeV.
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functions of the Yukawa couplings are the same in both model versions and read

β
(1)
Yd,ij

=
[
Yd
(
3Y †d Yd + Y †uYu + 3Tr

(
YdY

†
d

)
− 16

3 g
2
3 − 3g2

2 −
7
15g

2
1 + Tr

(
YeY

†
e

))]
ij

+ Yt′,j
(
YdY

∗
t′

)
i
, (5.67)

β
(1)
Ye

= 3YeY †e Ye + Ye
(
3Tr

(
YdY

†
d

)
− 3g2

2 −
9
5g

2
1 + Tr

(
YeY

†
e

))
, (5.68)

β
(1)
Yt′

=
(
3Y T

u Y
∗
u + 3Tr

(
3YuY †u

)
+ Y T

d Y
∗
d + 6

(
Yt′Y

∗
t′

)
− 13

15g
2
1 − 3g2

2 −
16
3 g

2
3

)
Yt′ , (5.69)

β
(1)
Yu,ij

=
[
Yu
(
3Y †uYu + Y †d Yd + 3Tr

(
YuY

†
u

)
+ 3

(
Yt′Y

∗
t′

)
− 13

15g
2
1 − 3g2

2 −
16
3 g

2
3

)]
ij

+ 3Yt′,j
(
YuY

∗
t′

)
i
. (5.70)

The new particle content in the UV-complete model allows additional soft-breaking terms
(flavour indices suppressed):

−∆Lsoft =m2
Ẽ′
|Ẽ′|2 +m2

˜̄E′
| ˜̄E′|2 +m2

Q̃′
|Q̃′|2 +m2

˜̄Q′
| ˜̄Q′|2

+
(
m2
eE′ ẽRẼ

′ +m2
QQ′(Q̃)†Q̃′ + h.c.

)
. (5.71)

More terms are allowed by gauge invariance which mix the scalar components of E,E′, Ē′ and
Q,Q′, Q̄′. They are left out here, because the GMSB boundary conditions will force them to be
zero.

5.4.3 Gauge mediated SUSY breaking and boundary conditions

In this subsection we briefly describe the idea of gauge mediated SUSY breaking and give
the resulting GMSB boundary conditions for the soft parameters. We assume two messenger
superfields Φ1,Φ2,

Φi = φi +
√

2θψi + θ2Fi, (5.72)

that take part in SM gauge interactions and also couple to a singlet field S of the hidden sector,

W = λSΦ1Φ2, (5.73)

where Φ1 and Φ2 have opposite quantum numbers. The field S acquires a VEV along its scalar
and auxiliary component,

〈S〉 = M ′ + θ2F ′. (5.74)

The hidden mechanism that generates this VEV is left unspecified. The scales M ′ and
√
F ′ can

vary from several tens of TeV to almost MGUT [161]. The coupling λ is absorbed into M ≡ λM ′
and F ≡ λF ′. We can integrate out the auxiliary degrees of freedom F1, F2 to obtain the mass
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terms of the messenger fields,

L =
[
Φi†Φi

]
D

+ ([W]F + h.c.)

⊃−M2
(
|φ1|2 + |φ2|2

)
+ (Fφ1φ2 −Mψ1ψ2 + h.c.)

=− (M2 + F ) |φ+|2 − (M2 − F ) |φ−|2 − (Mψ1ψ2 + h.c.) . (5.75)

The scalar components can be diagonalised by defining

φ± ≡
φ1 ± φ∗2√

2
. (5.76)

The fermionic messengers have mass M , while the scalars φ± have masses m± =
√
M2 ± F .

This requires M2 > F . The soft-breaking terms in the MSSM are generated by loop corrections
that involve the messenger particles, and are therefore fully determined by the scales M,F and
the gauge structure. The gaugino masses are generated at one loop and while the scalar masses
m2
f̃
are generated at two loops. We use the leading approximations from literature [161] for the

gaugino masses,
Mi(t) = αi(t)

4π ΛG, (5.77)

and for the scalar soft masses,

m2
f̃i

= 2
3∑
r=1

C2(r, f̃)
(
αr(t)
4π

)2
Λ2
S , (5.78)

with running couplings αi(t) = gi(t)2/(4π) and a scale t = ln(M2/Q2). C2 is the quadratic
Casimir of the representation of f̃ with respect to the gauge group r = 1, 2, 3, meaning U(1)Y ,
SU(2)L and SU(3)C . In the case of an Abelian group U(1)Y , the quadratic Casimir is defined
as C2 = (3/5) Y 2. For the fundamental representation of SU(N), we have C2 = (N2 − 1)/(2N),
i.e. 4/3 for N = 3 and 3/4 for N = 2. We define the scale

Λ ≡ F

M
(5.79)

to which ΛG,ΛS are related by

ΛG = Λ · g(Λ/M), Λ2
S = Λ2 · f(Λ/M), (5.80)

with the functions calculated in Refs. [381, 382],

g(x) = 1 + x2

6 + x4

15 +O
(
x6
)
, f(x) = 1 + x2

36 −
11x4

450 +O
(
x6
)
. (5.81)
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For F �M2 this implies ΛG = ΛS = Λ. Evaluating the general equation (5.78) gives

m2
l,ii = m2

Hu = m2
Hd

=κ2
( 3

10g
4
1 + 3

2g
4
2

)
Λ2
S , (5.82a)

m2
q,ii = m2

Q̃′
= m2

˜̄Q′
=κ2

( 1
30g

4
1 + 3

2g
4
2 + 8

3g
4
3

)
Λ2
S , (5.82b)

m2
u,ii = m2

t̃′ = m2
˜̄t′ =κ2

( 8
15g

4
1 + 8

3g
4
3

)
Λ2
S , (5.82c)

m2
e,ii = m2

Ẽ′
= m2

˜̄E′
=κ2 6

5g
4
1Λ2

S , (5.82d)

m2
d,ii =

( 2
15g

4
1 + 8

3g
4
3

)
Λ2
S , (5.82e)

with i = 1, 2, 3 and κ ≡ 1/(16π2). The other soft-breaking parameters are zero up to two-loop
order:

Tx = 0 (x = d, u, e, t′),
BX = 0 (X = t′, T ),
m2
ut = m2

eE′ = m2
QQ′ = 0. (5.83a)

This constitutes the main problem of GMSB, because a large Tt is needed to accommodate the
Higgs mass. We will furthermore assume unification of all mass bilinears of the vectorlike states
to a common mass MV ′ at the reference scale M ,

MT ′ = MQ′ = ME′ = MV ′ at Q = M. (5.84)

This leaves five free parameters for the GMSB model:

M, Λ, tan β, MV ′ , Yt′ . (5.85)

In general GMSB predicts a gravitino LSP, which gives rise to the cosmological gravitino problem.
We assume that one of the proposed solutions from literature work [381, 383–388].

The fine-tuning (FT) measure ∆ based on Refs. [126, 127] was defined earlier in eq. (2.30)
and is implemented in SPheno. The smaller the value of ∆, the more natural is the model under
consideration. First, ∆α is calculated individually with respect to

α = {Λ, MV ′ , Yt′ , Yt, g3, µ, b}. (5.86)

The overall fine-tuning is given as the largest absolute value of all ∆α.

5.4.4 Tree-level properties

The tadpole equations are identical to the MSSM, as well as all mass matrices except for
up-quarks and up-squarks. As a convention, the tadpoles are solved for µ, b (cf. sec. 2.3) in the
UV-completion of the model, and for the soft masses m2

Hu
,m2

Hd
for SUSY scale input in the

minimal version. The new squarks mix with the MSSM up-type squarks. Their mass matrix is
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given by

M2
ũ =



[
m2
ũLũ

∗
L

]
ij

· · ·[
1√
2

(
vuTu − vdYuµ∗

)]
ij

[
m2
ũRũ

∗
R

]
ij

· ·
1√
2

(
vuTt′ − vdµ∗Yt′

)
1
2

(
2
(
MT ′m

∗
t′ +m2

ũt̃′

)
+ v2

uY
∗
u Yt′

)
mt̃′ t̃′

∗ ·
1√
2vu

(
M∗T ′Yt′ + Y T

u m
∗
t′

)
B∗t′ B∗T m˜̄t′∗˜̄t′


(5.87)

with the diagonal entries

mũLũ
∗
L

= − 1
24
(
− 3g2

2 + g2
1

)
1
(
− v2

u + v2
d

)
+ 1

2
(
2m2

q + v2
u

(
Y ∗t′ Yt′ + Y †uYu

))
, (5.88)

mũRũ
∗
R

= 1
2
(
2
(
m∗t′mt′ +m2

u

)
+ v2

uYuY
†
u

)
+ 1

6g
2
11
(
− v2

u + v2
d

)
, (5.89)

mt̃′ t̃′
∗ = 1

2
(
2
(
m2
t̃′ + |MT ′ |2

)
+ v2

u|Yt′ |2
)

+ 1
6g

2
1

(
− v2

u + v2
d

)
, (5.90)

m˜̄t′∗˜̄t′ =
(
m2

˜̄t′ + |MT ′ |2 + |mt′ |2
)

+ 1
6g

2
1

(
− v2

d + v2
u

)
. (5.91)

M2
ũ contains eight mass eigenstates ũi. The mass matrix of the up-type quarks reads

Mu =
( 1√

2vuY
T
u

1√
2vuYt

′

mt′ MT ′

)
. (5.92)

Here, we need two rotation matrices UuL and UuR to diagonalise this matrix,

Uu ∗L MuU
u,†
R =Mdiag

u . (5.93)

The four generations of mass eigenstates are called ui, where the first three generations correspond
to the up, charm and top quark. In this model, the CKM matrix is a 4 × 3 matrix with the
additional entries Vt′b, Vt′s, Vt′d, which can lead to new flavour mixing effects. While a full study
of flavour physics is beyond the scope of the paper presented here, we checked that these matrix
entries are within the current bounds,

|Vt′d| < 0.01, |Vt′s| < 0.01, |Vt′b| < 0.27, (5.94)

which are given in Ref. [389] at 3σ. In fig. 5.22 we show that this condition is fulfilled.

5.4.5 Loop corrections

At one-loop, the Higgs mass receives corrections of the order O (αt′). They have been discussed
widely in literature in the limit of vanishing momenta and are known to give a push of many GeV.
SARAH/SPheno uses a generalisation of the renormalisation procedure described in Ref. [199] to
calculate the full momentum dependence at one loop.
At two loops the dominant corrections of the MSSM are O (αsαt). Similar contributions

from the new heavy top, O (αsαt′) are expected to be equally important (αt′ ≡ Y 2
t′ /(4π)). The

diagrams are shown in fig. 5.23 and have to be understood as a sum over generation indices.
Also the Yukawa-like contributions O

(
α2
t

)
of the MSSM are extended by more generations of
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Figure 5.22: Absolute size |Vt′q| of the CKM entries (logarithm with basis 10 is shown) between the
vectorlike top states and the SM down quarks q = d, s, b. The colour code is |Vt′d| (full blue), |Vt′s|
(dotted red), and |Vt′b| (dashed green). We fixed here MT ′ = 1 TeV.
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Figure 5.23: Two-loop diagrams giving contributions to the effective potential O ((αt + αt′)αs). Here, the
indices of up-quark generations (ui) run from 1 to 4, and those of up-squark generations (ũi) from 1 to 8.

(s)quarks. They are described by the diagrams given in fig. 5.24 and introduce new corrections
O
(
α2
t′
)
and O (αtαt′). All other sub-dominant combinations of Yukawa couplings are also

included in our calculation.

5.4.6 Threshold corrections
To perform any RGE-based study, one needs a full set of running parameters at a given scale.
However, these quantities are usually not directly measured in experiments. Instead, the
parameters that we know with a very high precision are the electromagnetic coupling αem(MZ),
the Fermi constant GF , the Z pole mass MZ and the strong coupling αS(MZ). The pole masses
of the charged leptons are also well known. In the case of quarks, a pole mass is not well defined,
because a quark is always bound in a hadron and can never be directly observed. Only the top
pole mass can be directly measured, because its lifetime is shorter than the timescale at which
the non-perturbative hadronisation process takes place. The light quark masses md,mu,ms are
only known as running masses at a certain scale [377]. The matching in SARAH/SPheno follows
the generalised procedure of Ref. [199], which we describe in more detail in appendix A.3. To
summarise the effect, it can be said that the parameters αDR′(MZ), αDR′

s (MZ), v, sin2 ΘDR′
W and
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Figure 5.24: Two-loop diagrams giving contributions to the effective potential at O
(
(αt + αt′)2). Here,

Φ0 = {h,H,G0, A0}, Φ± = {H±, G±}, Φ = {Φ0,Φ±}. The index ranges are: Φ(1, 2); χ̃0(1− 4); χ̃±(1, 2);
u(1− 4); d(1− 3); ũ(1− 8); d̃(1− 6).

the Yukawas are all slightly different than they would be in the normal MSSM after matching.
In particular the change in Yt = Y 33

u should be notable, since it is the dominant parameter in
the Higgs mass corrections. We show the effect of the threshold correction on Yt in fig. 5.25 as a
function of Yt′ . The effect makes a few percent difference in Yt and it is stronger for smaller MT ′ .
This already has a large effect on the MSSM-like corrections and results in a few GeV change
to the Higgs mass, as we will see in the following. At Yt′ = 0, the values of the two curves in
fig. 5.25 do not agree. This is because g3 receives threshold corrections, which depends on MT ′ ,
even if no other couplings are introduced. The change in g3 enters the RGE running as well as
one-loop self-energies of the fermions.
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Figure 5.25: The top Yukawa coupling (Y 33
u ) at the SUSY scale is shown as a function of Yt′ for two

different values of MT ′ : 1.0 TeV (blue) and 3.0 TeV (dotted red). All soft masses are set to 1.5 TeV and
tan β = 3.
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5.4.7 Numerical results

Comparing one-loop, two-loop and threshold effects

Before we consider the fine-tuning in the UV complete model, we discuss the importance of the
different Higgs mass corrections in the minimal vectorlike quark extension of the MSSM. The
following parameters are assumed,

m2
u = m2

q = m2
d = m2

e = m2
l = 1 · (1.5 TeV)2,

M1 = 0.5 TeV , M2 = 1.0 TeV , M3 = 2.0 TeV,
Tu = Td = Te = 0,

µ = 1.0 TeV , M2
A = (1 TeV)2,

and for the new sector

Tt′ = mt′ = m2
ut = Bt′ = 0, MT ′ = 1 TeV,

m2
t̃′

= m2
˜̄t′

= (1.5 TeV)2,

unless stated otherwise. It was checked that all benchmark points satisfy the bounds from
flavour observables using FlavorKit [321]. The important SM input parameters are

αMS
S (MZ) = 0.1180 , mMS

b (mb) = 4.2 GeV , mpole
t = 173.2 GeV.

We choose MT ′ = 1 TeV for the mass term to be consistent with limits from direct collider
searches, which rule out heavy quark masses below 800 GeV [390]. It is expected that the
LHC Run II will be sensitive to a mass range mt′ < 1.5 TeV [391]. In the numerical results we
distinguish the different effects on the Higgs mass:

• one-loop, vanishing momenta, with thresholds (red)

• one-loop, with momentum dependence, without thresholds (orange)

• one-loop, with momentum dependence and thresholds (blue)

• all the above effects and two-loop corrections (green)

In the following we show these effects for each of three benchmark points in four perspectives,
which require some explanation. An overview plot (top left) shows mh against Yt′ . To see
explicitly the effect stemming only from the vectorlike quarks, the difference in mh between
including and neglecting vectorlike quark contributions is shown in the top right picture. The
bottom left plot shows the absolute shift in mh from one- and two-loop corrections stemming only
from the vectorlike states, and the bottom right shows the relative size of this shift compared to
the purely MSSM-like corrections.
First, we consider variations of Yt′ using the benchmark point

tan β = 2 or 10, MT ′ = 1 TeV, BT = 0, (5.95)

for two values of tan β, shown in fig. 5.26. The value mh = 125 GeV is found for Yt′ = 0.9(0.6)
in these cases. The changes made by momentum dependence at one-loop can be up to 2 GeV
for large Yt′ and they are negative. In contrast, the two-loop corrections cause a positive shift
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Figure 5.26: The full lines are for tan β = 10 and the dotted ones are for tan β = 2, both with
MT ′ = 1.0 TeV and BT = 0. Top left: mh is shown as a function of Yt′ . The red line corresponds to
one-loop with p2 = 0 and thresholds, orange is one-loop with p2 , 0 without thresholds, blue is full
one-loop with both p2 and thresholds and green includes full one-loop with dominant two-loop corrections.
Top right: This plot shows the difference in mh between including and neglecting vectorlike tops for the
same cases as before. Bottom left: This plot shows the absolute size of the one- (blue) and two-loop
(green, multiplied by 10) corrections stemming from the vectorlike states. Bottom right: This plot
shows the relative importance of the one- (blue) and two-loop (green) corrections normalised to the size
of the purely MSSM-like corrections.
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Figure 5.27: The plots show the same results as in fig. 5.26, but for Tt′ = 2.0 TeV · Yt′ , tan β = 5 and
Tu,33 = −2500 GeV. The full lines are for BT = 0, while the dashed ones correspond to BT = (1.5 TeV)2.

of similar size. The biggest contribution comes from threshold corrections (top right, red line
in fig. 5.26), which can change the mass by up to 5 GeV. The effect is stronger for small tan β.
Even for Yt′ = 0 there is a shift because αs (and Yt) is modified by the threshold corrections,
cf. eq. (A.8). The absolute shifts at one-loop can be as large as 30 GeV, while the two-loop
shifts are smaller by a factor of 10 (bottom left, fig. 5.26). In the bottom right of fig. 5.26 we
observe that the one-loop vectorlike contributions are as important as the MSSM ones, while
the two-loop contributions can reach about half their size.
As the second benchmark point, we consider

Tt′ = 2 TeV · Yt′ , BT = 0 or (1.5 TeV)2, (5.96)

for a variation of Yt′ in fig. 5.27. In the case BT = 0 there is no big difference to the previous
benchmark point. The largest changes are again due to the threshold corrections. For BT , 0
however, the picture changes: Because of the induced mass splitting between the vectorlike
stops, the two-loop effects become large for Yt′ → 1 to the extent that they can even cancel out
the purely-MSSM two-loop contributions.
The third benchmark point has a rather small M2

A,

M2
A = 105 GeV5, BT = 0 or (1.5 TeV)2, Tt′ = Tu = 0, tan β = 3, (5.97)

where we consider again the two values BT = 0 and BT = (1.5 TeV)2. The result is shown
in fig. 5.28. The green line, representing the two-loop corrections, clearly makes the largest
difference for Yt′ → 1, especially for BT = (1.5 TeV)2 (solid line). They can cancel out the other
MSSM-like two-loop contributions such that it becomes impossible to reach the preferred mass
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Figure 5.28: The plots show the same results as in fig. 5.26 for smaller M2
A = 105 GeV2 and Tt′ = Tu = 0,

tan β = 3. The dashed lines are for BT = 0, while the full ones correspond to BT = (1.5 TeV)2.
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Figure 5.29: Contour lines of constant mh at one- (left) and two-loop (middle) in the (MT ′ , Bt′) plane.
The plots in the right column show the size of the two-loop corrections stemming from vectorlike states.
The plots in the first row are for Yt′ = 1.0 with Tt′ = 0 and in the second for Yt′ = 0.7 with Tt′ = 1.4 TeV
.

of 125 GeV with this benchmark point. If BT is taken to be zero, the effect is less severe and
the MSSM contributions at two-loop are only partially cancelled out, still giving a sizeable push
to the mass.

Dependence on the vectorlike masses, stop masses and the gaugino mass

As a next step we illustrate the dependence of the new loop corrections in the (MT ′ , BT ′) plane
(fig. 5.29). It shows that at both loop levels the Higgs mass decreases with larger MT ′ , while
the dependence on BT ′ is very mild. Of course, the two-loop values are higher, which is the
result of the dominating MSSM-like contributions. The right column of fig. 5.29 singles out
only the vectorlike two-loop contributions, which are negative, but slightly increase for higher
masses MT ′ > 1 TeV or larger BT ′ . Comparing the first row (Yt′ = 1.0, Tt′ = 0) and second row
(Yt′ = 0.7, Tt′ = 1.4 TeV), we see a similar dependence, but the absolute values in the second
row are much smaller.
So far we have concentrated on the new parameters from the vectorlike sector. Since the

MSSM contributions are often dominant, we also consider the dependence on the gluino mass
parameter M3 and the soft squared mass of the left-handed stop, mq,33. Starting with the
gluino mass M3, we can see in fig. 5.30 that the two-loop corrections from vectorlike quarks
become more negative with increasing M3 and can reach up to 4 GeV. On the other hand, their
impact at one loop is tiny. However, the O

(
α2
t′
)
corrections are dominant, so the Higgs mass is
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Figure 5.30: (a): The plot shows mh vs Yt′ for different M3: 1 TeV (red), 2 TeV (blue), 3 TeV (green),
4 TeV (orange). The full lines are the two-loop results, the dotted ones the one-loop result.
(b): The absolute shift from the one- (blue) and two-loop (green) corrections involving vectorlike states
is shown. The line coding is dashed, dotted, dot-dashed, full for increasing M3. MT ′ is set to 1.5 TeV.
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Figure 5.31: (a): The plot shows mh vs Yt′ for different values of mq,33: 1 TeV (red), 2 TeV (blue), 3 TeV
(green), 4 TeV (orange). The full lines are the two-loop results, the dotted ones the one-loop result.
(b): The absolute shift from the one- (blue) and two-loop (green) corrections involving only vectorlike
states is shown. The line coding is dashed, dotted, dot-dashed, full for increasing mq,33. MT ′ is set to
1.5 TeV.
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still increased by the overall two-loop effect.
Concerning the soft stop masses, we show the same setup in fig. 5.31 for increasing mq,33.

Their impact is huge: the one-loop corrections increase by a factor of 1.5 when going from 1
to 4 TeV, and the two-loop corrections increase by a factor of nearly 3. Interestingly, the pure
vectorlike contributions show a different scaling behaviour: at one-loop they become larger for
increasing mq,33, while they decrease at two-loop. This concludes the analysis of the radiative
Higgs mass corrections in the minimal vectorlike quark MSSM.

Fine-tuning in GMSB

Minimal GMSB has the general problem that it predicts small trilinear couplings. As a result,
the Higgs mass is below 125 GeV for moderate stop masses in the TeV range. The only way to
enhance mh is to have very high stop masses, at the cost of a fine-tuning well above 1000. A
recent study (Ref. [375]) nicely shows that typical values in minimal GMSB are ∆ ∼ O

(
105).

From a probabilistic point of view [392], one could consider a FT below 100 as acceptable.
However, this is not a strict limit. Typical values for the MSSM are about 800–1000 [393]. With
additional large loop corrections from heavy vectorlike quarks, the stop masses are allowed to
be smaller and the fine-tuning is expected to improve. The full set of input parameters for this
high scale model is

M, Λ, tan β, MV ′ , Yt′ . (5.98)

We made a parameter scan for tan β, Yt′ ,Λ with a fixed M = 107 GeV and two values for
MV ′ = 0.5 TeV and 1 TeV. Of the total set of points we take slices with different Higgs masses of
122, 125 and 128 GeV and show their projections in the (tan β, Yt′) plane in fig. 5.32. The desired
Higgs mass can be achieved with a fine-tuning between 100 and 1000 in this part of parameter
space and it decreases quickly with increasing Yt′ . Also, even for Yt′ = 0, the fine-tuning is
reduced compared to the MSSM alone. The reason is that due to the different running of the
couplings, g3 at the messenger scale is larger than it would be in the MSSM. Therefore, the
squarks are heavier for the same value of Λ, leading to larger Higgs corrections. Comparing
the right column with MT ′ = 1 TeV with the left column with MT ′ = 0.5 TeV, we find that the
fine-tuning increases with MT ′ . In fig. 5.32 we also overlay red contours that show the gluino
mass, which is directly related to ΛG:

Mi(Q) = Mi(M) g
2
i (Q)
g2
i (M) = g2

i (Q)
16π2 ΛG. (5.99)

Since the LHC has set lower bounds on the gluino mass for several scenarios in the order of
∼ 1.5 TeV, the majority of points shown here are excluded. The gluino mass can only be raised
by increasing Λ, which also increases the fine-tuning. Going to larger messenger masses M
does not help, since β(1)

M3
vanishes in this model and the mass actually decreases slightly with

increasing M . We show in fig. 5.33 the fine-tuning of a selection of points in the (mg̃,mh)
plane, where in each bin the point with the lowest fine-tuning is chosen. It is interesting to
see that there are points with mh = 128 GeV with a lower fine-tuning than other points with
mh = 125 GeV and large mg̃. Most importantly, the gluino mass is the bottleneck: Requiring a
heavier gluino directly leads to a larger fine-tuning.
A large Yt′ improves the FT, but the theory might not be perturbative up to the GUT

scale. However, if we drop this condition, we must not insist on gauge coupling unification and
additional spectator fields. This alters the running of the couplings such that g3 becomes smaller
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Figure 5.32: Contours of overall fine-tuning ∆ in the (tan β, Yt′)-plane demanding a Higgs mass mh =
128 GeV (top), mh = 125 GeV (middle), and mh = 122 GeV (bottom) for the UV complete version of
the model. We fixed here M = 107 GeV and MV ′ = 0.5 TeV (left column), respectively, MV ′ = 1.0 TeV
(right column). The red dashed lines indicate the gluino mass in GeV.
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Figure 5.34: Contours of the overall fine-tuning ∆ (left) and the mass of the lightest up-squark (right,
full blue lines) and gluino (right, dashed red lines) in the (tan β, Yt′)-plane demanding a Higgs mass
mh > 122 GeV for the version of the model without spectator fields. We fixed here M = 107 GeV.
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Figure 5.35: Contours of constant Λ (grey), the lightest top-squark mass (small-dashed blue lines) and
gluino mass (dashed red lines) in the (tan β, Yt′)-plane demanding a Higgs mass mh > 122 GeV. All
contours are given in units of TeV. On the left side the UV complete model is shown, on the right the
model with only vectorlike tops. We fixed M = 107 GeV.

at the messenger scale for the same values of M and Λ (cf. fig. 5.21). As a consequence the
squarks become lighter and the Higgs mass corrections are reduced. To reconcile this, a higher
Λ is necessary, which leads to larger gluino masses. We show in fig. 5.34 contours of fine-tuning,
gluino mass and lightest up-squark mass in the (tan β, Yt′) plane for the minimal model with
vectorlike quarks for points which satisfy mh > 122 GeV. Compared to the UV complete model,
the fine-tuning does not change a lot, but the gluino masses are pushed to higher values because
of the higher Λ. We find the following fine-tuning for the minimal model,

∆ = (230, 275, 320, 380) for mg̃ = (1.0, 1.2, 1.4, 1.6) TeV (5.100)

and mh > 122 GeV. To make the change in Λ visible, we show in fig. 5.35 both models, UV
complete and minimal, side by side with contour lines of Λ (meaning the minimal Λ to obtain
mh > 122 GeV), mg̃ and the lightest up-squark mass.

5.4.8 Conclusion
The main source of fine-tuning in this model is the gluino mass. While the inclusion of vectorlike
quarks helps to reach the desired Higgs mass with a lower fine-tuning than the MSSM provides,
the need for heavy gluinos in the > 1.5 TeV range set by collider bounds excludes many low
fine-tuned points. In the minimal model, where grand unification is not enforced, one can
accommodate larger gluino masses (1.6 TeV) with a moderate fine-tuning (∆ = 380). It might
be interesting to combine vectorlike (s)quarks with a GMSB variant in a model which predicts
heavier gluinos without the cost of increasing Λ. An interesting feature is that for a given gluino
mass, the best fine-tuning is not necessarily found for the lowest Higgs mass. For example, for
mg̃ = 1.8 TeV, the lowest fine-tuning is found for a 125 GeV Higgs mass.
Concerning the loop corrections to the light Higgs mass, we have improved the existing

calculations in three respects: (i) threshold corrections from vectorlike states to SM gauge and
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Yukawa couplings, (ii) one-loop corrections with full momentum dependence and (ii) dominant
two-loop corrections from the effective potential approach presented in Refs. [187, 188]. The
momentum effects can change the mass by several GeV, but often the threshold corrections are
even more important. At two-loop, the dominant corrections are often MSSM-like, but we have
identified certain parameter regions where the vectorlike contributions are comparable or larger.
In these regions the two-loop shift to the mass can be up to 10 GeV.
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CHAPTER 6

Long-lived particles at the LHC with a missing
transverse energy signature

The content of this chapter was published in Ref. [394].

6.1 Introduction

Various BSM models predict new long-lived particles (LL), such as neutralinos in SUSY with
weak R-parity violation [344], gluinos in split-SUSY [395], “hidden valley” models [396], and LL
heavy neutrinos in the minimal B −L extension of the SM [397]. Searches for neutral long-lived
particles at the LHC have been conducted using reconstructed displaced vertices produced by
particles that decay inside the detector volume. If the LL particle lifetime is of the order of
picoseconds to nanoseconds, then its decay can yield striking signatures of displaced leptons,
jets, photons or charged tracks. Based on these signatures, many searches have been performed
at the LHC by the ATLAS (e.g. [398–400]) and CMS collaborations (e.g. [401, 402]). However,
the efficiency of these searches is reduced if an increasing proportion of the LL particles decay
outside the detector due to longer lifetimes, leading to weaker cross section limits. If more
particles decay outside the detector, this will be visible as an increased missing transverse energy.
This collider study considers this complementary signature (large Emiss

T ) to set cross section
limits for arbitrarily long lifetimes of LL particles. We concentrate on the results of two CMS
papers which searched for displaced vertices within the CMS tracker, produced either by two
leptons [399] or a quark-antiquark pair [400]. These papers set limits for a number of benchmark
points in two models: (i) a model with a heavy non-standard model Higgs boson decaying into
two LL scalar bosons X, which then decay either into pairs e+e−, µ+µ− or qq̄, and (ii) an
R-parity violating SUSY model with an LL neutralino, decaying to either `+`−ν or qq̄(′)µ. We
use measurements of the Emiss

T signature from CMS and ATLAS analyses at the 8 TeV LHC
to set upper limits at the 95% confidence level (CL) on the production cross sections for a
detector stable LL particle. Using the geometric properties of the detectors and the energy
and pseudorapidity distribution of the LL particle, we extrapolate the cross section limits to
finite lifetimes including when the mean decay distance is within the detector. This approach
extends the LHC coverage to arbitrary long lifetimes. The limits obtained from Emiss

T signals are
comparable to those from displaced vertex searches for decay distances above a few metres. In
addition they are more model independent in the sense that they do not depend on the specific
decay channel of the LL particle. We provide limits in a two-dimensional grid spanned by the
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mass of the LL particle and the mass of the mediating particle up to 2 TeV. The results are
made available in a data table which can be used for the interpretation of various other new
physics models.

6.2 Setup
6.2.1 Models
To be able to directly compare our limits to the ones from displaced vertex searches, we use the
same signal models that were studied by CMS in Refs. [399, 400]. It is important to stress that
in these papers the LL particles were allowed to decay, while in our study we simulate stable
particles. In doing this we conservatively assume that there is only a contribution to Emiss

T if
both LL particles leave the detector. Therefore we do not need to specify the decay channel of
the LL particles. We consider two signal models:

(1) A simplified model with a heavy, non-SM Higgs boson H0 produced via gluon fusion
(via an effective vertex from 1

2Tr[G2]H0), with Gaµν the gluon field strength tensor) and
decaying to two long-lived, heavy, neutral, spinless bosons X. In the CMS analyses, the
X bosons are assumed to decay into either two leptons [399] or a quark-antiquark pair
[400], while our simulation treats them as stable.

gg → H0 → XX (6.1)
X → e+e−, µ+µ−, qq̄ (in the CMS analyses) (6.2)

The production channels are shown in fig. 6.1. The decay width of the heavy Higgs is
assumed to be much smaller than its mass, ΓH � mH . Thus we only consider processes
where the heavy Higgs is produced on-shell and the mass relation mX ≤ 1

2mH holds. We
will call this model HXX for short.

�H0 �
H0

�
H0

Figure 6.1: Production channels of H0 in the HXX model, including up to 1 jet in the final state

(2) The MSSM with R-parity violating couplings and a long-lived lightest neutralino χ̃0.
The signal channel is the decay of a pair of squarks q̃ of arbitrary flavour (ũL) (strongly
produced), where each squark decays into a quark q and a neutralino χ̃0,

pp→ q̃q̃∗, q̃ → qχ̃0. (6.3)

In the CMS analyses, the neutralino decays either to `+`−ν [399] or to ud̄µ− [400], via
λijkLiLjEk or λ′ijkLiQjDk violating terms, respectively [344]. In the simulation the
neutralinos are treated as stable. The production diagrams for the squark pair are shown
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in fig. 6.2. There are three types of squark pairs q̃q̃, q̃q̃∗ or q̃∗q̃∗, which we collectively
denote as Q̃Q̃ with Q̃ = q̃, q̃∗. The branching ratio of q̃ → qχ̃0 is assumed to be 100% for
all events.

�q̃

q̃∗

�q̃

q̃

q̃∗

�q̃

q̃∗

�q
q̄

q̃

q̃∗

�q g̃

q̃

q̄ q̃∗

�q(q̄)

q(q̄)

g̃

q̃(q̃∗)

q̃(q̃∗)

Figure 6.2: Strong production of squark pairs in SUSY at tree level

6.2.2 Event generation

We look for signals where the neutral LL particle, either X or χ̃0, leaves the detector before
decaying which should show a large Emiss

T signature. For the HXX model, this can only happen
if a high PT jet is produced from initial state radiation (ISR) and recoils against the XX pair,
providing a mono-jet signature. For the simulation we used a model generated with the LanHEP
package [403–405], with an effective vertex between gluons and the heavy Higgs H0 described
by a Lagrangian term 1

2Tr[G2]H0.
In the RPV scenario, if there is small mass gap between the squark and the neutralino, one

can again use a mono-jet signature because the quark produced by the squark decay is soft and
not reconstructed as a jet. If there is a large gap, the quark from the decay q̃ → qχ̃0 can have
a high PT and appear as an energetic jet. The resulting signature will be of the type ’Emiss

T

+ jets’. To simulate this scenario the standard MSSM can be used, because the decay of the
neutralino does not have to be modelled. All SUSY masses except mχ̃0 ,mq̃ are set to 5 TeV to
match the model used by CMS.
In both cases we used MadGraph5 v2.1.2 [285] for the event generation with Pythia 6.4

[406, 407] for parton showering and hadronisation. To accurately simulate hard ISR jets, we
allow an additional matrix element jet which is matched using the kT MLM scheme [407].

6.2.3 Used CMS and ATLAS Emiss
T Analyses

Emiss
T signatures were frequently used in several dedicated studies by ATLAS and CMS in the

context of SUSY searches with decays into LSPs. To find out which search provides the strongest
cross section limits on the two models, we would have to implement the analyses of multiple
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such publications and compare the resulting bounds. Fortunately, this work is simplified by
CheckMATE [408–416], which has many results of such papers implemented and allows easy use of
the searches. The tool takes a sample of Monte Carlo events in the HEP or HEPMC format after
parton showering (PYTHIA/HERWIG) level of simulation and performs a detector simulation
for the sample using Delphes-3 [409]. CheckMATE then applies each analysis as described in
the experimental papers on the generated signal events.

The resulting efficiencies are compared with the information about signal counts provided by
the publication to produce a statement on whether a point is excluded at 95% C.L. or not. As
this depends on the assumed cross section for the signal (which has to be given by the user), this
result can also be used to establish exclusion cross section limits. Here, we do not account for
systematic uncertainty on the signal selection efficiency, because this would be model dependent.
The analyses which we used have all been validated by using published results including available
cut-flows.
In each analysis paper, CMS and ATLAS typically divide the signal space (in terms of final

state observables) into smaller signal regions. For example, these can be defined by different
intervals of Emiss

T . The signal region that gives the best expected limit is the one we use. Using
the expected instead of the observed limit avoids the ‘look elsewhere’ effect.
It turns out that from the long list of available analyses, three are particularly important,

giving the strongest limits (a fourth paper, a CMS monojet study [417], is potentially interesting,
but was not yet available in CheckMATE). Their selection cuts and signal regions are briefly
outlined below.

1. ATLAS Emiss
T + multi-jet analysis [418].

This analysis uses 20.3 fb−1 of
√
s = 8 TeV data. Emiss

T must be above 160 GeV, the
leading jet must have pT (j1) > 130 GeV and the second hardest jet pT (j2) > 60 GeV. The
signal regions are distinguished by jet multiplicity 2,3,4,5,6, corresponding to signal region
codes A,B,C,D,E, while only jets with pT > 60 GeV are valid in this count. Given one of
these five categories, signals are then subjected to loose (L), medium (M) or tight (T)
constraints. In our case, the signal regions AM, BM, BT, CM, CT are relevant. For full
details, cf. Page 3, Table 1 of [418].

2. ATLAS Emiss
T + monojet analysis [419].

This analysis uses 20.3 fb−1 of
√
s = 8 TeV data. Events must have at least one jet with

pT > 120 GeV and |η| < 2.0 and no charged leptons (of pT > 7 GeV). For the leading jet,
pT /E

miss
T > 0.5 must hold (Emiss

T > 150 GeV required). The number of jets is unrestricted,
but the leading jet is only considered (monojet-like selection). Nine signal regions are
defined between 150 GeV < Emiss

T < 700 GeV, labelled SR1 through SR9. Complete
definitions, cf. Page 7, Table 2, of [419]

3. CMS analysis using the αT variable [420].
This analysis uses 11.7 fb−1 of

√
s = 8 TeV data. Instead of Emiss

T , this analysis uses the
related variable αT [421, 422] to suppress multijet background events. This variable is
used to be more independent of mismeasurements of Emiss

T . For two back-to-back jets
with Ej1T = Ej2T , αT is equal to 0.5. A value greater than 0.5 signifies that the jets are
recoiling against significant Emiss

T . For further details of the αT variable see [420–422].
Events with e or µ with pT > 10 GeV are vetoed as well as those with an isolated photon
with pT < 25 GeV. To cut out multijet background events, αT > 0.55 is required. Also,
the scalar sum of all transverse jet energies, HT = ∑njet

i=1 E
ji
T , must be larger than 275 GeV.
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The two leading jets must each have pT > 100 GeV and the leading jet satisfies |η| < 2.5,
but these conditions are also relaxed for some signal regions. The signal regions are named
after the number of jets (23j_ for 2-3 jets or 4j_ for ≥ 4 jets) + number of b-jets (0b_ or
1b_) + lower limit of HT bin (275, 325, 375, 475 etc.). Example: 23j_0b_325.

6.2.4 Escape Probability

With the events and analyses described in section 6.2.3 we obtain the 95% cross section limits
for stable LL particles that both leave the detector. In order to extrapolate these limits for a
given finite lifetime, we need the probability for an LL particle to decay outside the detector.
Apart from the lifetime, this also depends on the direction of emission of the particle and the
speed it is travelling with. To take into account this information, we edited the CheckMATE code
so that on an event by event basis for each simulated event which passed the selection cuts we
calculated the probability of each LL particle leaving the detector before decaying, taking into
account their energy E and pseudorapidity η. The probability to leave the detector is

p(D) = exp
( −D
cβγτ

)
, (6.4)

where D is the distance from the interaction point to the periphery of the detector, which
depends on the size and shape of the detector and the pseudorapidity of the particle. Here,
β = v/c and γ = E/m are the relativistic factors and τ the lifetime of the particle. The
dependence of D on the pseudorapidity η is shown in fig. 6.3. For this calculation, the ATLAS
and CMS detectors are assumed to be cylindrical in shape, with ATLAS having a length of 46 m
and a diameter of 25 m, and CMS having a length of 21 m and a diameter of 15 m. Each event

-4 -2 0 2 4

0

5

10

15

20

25

pseudorapidity η

m
e
a
n
d
e
c
a
y
le
n
g
th
D
(m

)

Mean decay length D vs. η

ATLAS CMS

Figure 6.3: The dependence of the mean decay length D on η for ATLAS and CMS is shown.
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is weighted according to the probability that both LL particles leave the detector undecayed,

w = p1(D1)p2(D2), (6.5)

with p1, p2 denoting the probabilities for particle 1 and 2 respectively. Averaging the weights
for all events gives the proportion P of these events which would have given an Emiss

T signature.
From this we can calculate the 95% C.L. limit on the signal cross section for any lifetime,

σ95%
cτ = 1

P
σ95%

stable, (6.6)

where σ95%
stable is the cross section limits calculated using CheckMATE by assuming stable LL

particles. There is a simpler approximation to obtain the lifetime dependent limit σ95%
cτ , which

can be used by other researchers to approximate similar limits as those shown in figs. 6.4-6.5.
If one assumes isotropic production of the LL pair, it requires only an energy distribution of
the LL particles to approximate the limits. This is described in detail in the appendix C.1. We
found that this method gives a reasonable agreement with our more accurate results and it can
be applied to the limits in the result tables in C.2.
Events in which only one LL particle escapes the detector could also yield a missing energy

signature and could therefore be used to improve the limits. This has not been done here, as it
requires an understanding of how the detectors would react to the decaying particle and its decay
products. Whether they contribute to the missing energy depends on the event reconstruction
algorithms and the selection requirements of the individual analyses.

6.3 Results

We have performed the event generation described in section 6.2 and run the CMS and ATLAS
analyses using CheckMATE for the benchmark points (BPs) used in the studies [399] and [400].
The points are defined by the mass of the LL particle and of the mediating particle: (mX ,mH)
in the first model and (mχ̃0 ,mq̃) in the RPV-SUSY model. The results are the cross section
limits σ95%

stable for the σ(pp→ H0 → XX) in table 6.1 and σ(pp→ Q̃Q̃→ χ̃0χ̃0 + jets) processes
in table 6.2.

For every BP in the HXX model, the ATLAS monojet + Emiss
T paper [419] provides the best

sensitivity, as expected. In the RPV model there are different analyses that give best results.
For mq̃ = 120, 350, the CMS paper [420], which uses the αT variable, provides the best limit.
On the other hand, for mq̃ = 1000, 1500 GeV, the best limit is provided by using the ATLAS
paper [418] (large Emiss

T + multi-jet signal). In this model, the Emiss
T does not depend on ISR

and there can be multiple hard jets in general. The limits for the HXX model are weaker than
those obtained for the RPV-SUSY model, because only a small fraction of events contain the
hard ISR on which the HXX limits rely.
From the limits σ95%

stable for each benchmark point we subsequently calculate the limits for
arbitrary lifetimes, σ95%

cτ by the procedure described in section 6.2.4. The results are shown in
figs. 6.4 and 6.5. Each colour corresponds to a different BP, with the thin solid curves denoting
the limits found using the CMS detector dimensions and CMS analyses, and the dashed thin
line corresponding to the ATLAS limit. For comparison, the published results from the CMS
displaced vertex analyses [399, 400] are shown as the thick curves. These cross section limits
from displaced vertices increase in proportion to a power of the LL particle lifetime, so they
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Figure 6.4: 95% CL upper limits on cross sections for the heavy Higgs model (HXX) with mH = 125
GeV (a), 200 GeV (b), 400 GeV (c,d) and 1000 GeV (e,f) are shown. The colour red (blue) indicates
mX = 20 GeV (50 GeV) for all curves. The thin curves in the upper-right corner of all figures show our
new Emiss

T -derived limits on LL particle cross sections for each detector (solid: CMS, dashed: ATLAS).
For comparison, the cross section limits from the CMS displaced vertex searches, under the assumption
of 100% branching ratios, are shown by thick curves: displaced leptons searches (X → `+`−) [399] are
indicated by the solid curves for ` = e and by dashed curves for ` = µ; whereas displaced jet searches
(X → qq̄) [400] are indicated by dotted curves. Our new limits are identical in (c) and (d) as well as in
(e) and (f) and have been split for clarity.
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Benchmark Point mH (GeV) mX (GeV) σ95%
stable (pb) Analysis - SR

1a 125 20 38.3 ATLAS monojet [419] - SR4
1b 125 50 39.9 ATLAS monojet [419] - SR4
2a 200 20 17.1 ATLAS monojet [419] - SR4
2b 200 50 17.5 ATLAS monojet [419] - SR4
3a 400 20 3.29 ATLAS monojet [419] - SR6
3b 400 50 3.17 ATLAS monojet [419] - SR6
3c 400 150 3.16 ATLAS monojet [419] - SR6
4a 1000 20 0.94 ATLAS monojet [419] - SR7
4b 1000 50 0.96 ATLAS monojet [419] - SR7
4c 1000 150 0.94 ATLAS monojet [419] - SR7
4d 1000 350 0.97 ATLAS monojet [419] - SR7

Table 6.1: Benchmark points from Ref. [399] and Ref. [400] (Model 1, HXX) and their 95% CL upper
limit on cross section are shown, together with the CMS or ATLAS Emiss

T analysis paper from which this
limit was derived.

Benchmark Point mq̃ (GeV) mχ̃0 (GeV) σ95%
stable (pb) Analysis - SR

1 120 48 33.5 CMS αT [420] - 4j_0b_325
2 350 148 0.57 CMS αT [420] - 23j_0b_325
3 700 150 0.041 ATLAS multijet [418] - AM
4 700 500 0.24 CMS αT [420] - 23j_0b_375
5 1000 148 0.0086 ATLAS multijet [418] - AM
6 1000 500 0.025 ATLAS multijet [418] - AM
7 1500 150 0.0018 ATLAS multijet [418] - CT
8 1500 494 0.0024 ATLAS multijet [418] - CT

Table 6.2: Benchmark points from Ref. [399] and Ref. [400] (Model 2, RPV-SUSY model) and their 95%
CL upper limit on cross section are shown, together with the CMS or ATLAS Emiss

T analysis paper from
which this limit was derived.
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Figure 6.5: 95% CL upper limits on cross sections for the RPV-SUSY model with colours indicating
various mass points are shown. The thin curves in the upper-right corner of both (a) and (b) show our
new Emiss

T -derived limits on LL particle cross sections for each detector (solid: CMS, dashed: ATLAS).
For comparison, the cross section limits from the CMS displaced vertex searches, under the assumption
of 100% branching ratios are shown by thick curves: (a) for displaced dilepton searches (χ̃0 → `+`−ν)
[399], with the solid curves indicating ` = e and the dashed curves indicating ` = µ; and (b) for displaced
dijet searches [400] searches (χ̃0 → ud̄µ) shown by dotted curves.
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appear as a straight line in the double logarithmic plot. This can be understood from the
following consideration. Assuming that the detector is only sensitive to particles decaying within
a distance L from the centre, the probability that a particle decays within this volume is given
by 1 − exp(−LMPcτ ), which tends to −LMPcτ in the limit of long lifetimes. In an analysis such as
Ref. [399], where the displaced vertex is reconstructed for just one LL particle per event, the
resulting cross section limits will scale inversely to the acceptance. This scaling behaviour allows
to extrapolate the CMS limits beyond the lifetimes in their original publications, under the
condition that their results covered long enough lifetimes to to reach this asymptotic behaviour.
For the CMS displaced dijet vertex search [400] this was not the case and no such extrapolation
was done.

The smallest cross section limits from displaced vertex searches are found at cτ = O (1 cm)
and are of the order of fb, while the limits from Emiss

T searches are of the order of a pb or more.
In general, both become comparable for larger lifetimes cτ = 103 − 105 cm, depending on the
benchmark point. Above the crossing point of two corresponding lines, the limits from Emiss

T

searches are better. When making such comparisons, it is important to note that the CMS
displaced vertex limits assume a branching ratio of 1 for the decays of the LL particles, which is
made explicit. In our approach, this decay is unspecified and the limits are independent of the
branching ratio. As an example, if in a realistic scenario the X particle would decay to e+e−

with a branching ratio of 0.01, the presented CMS displaced vertex limits would be weakened
by a factor 100. This would make our limits from Emiss

T signals comparable at smaller proper
decay lengths at about 1 metre or less for certain benchmark points.

What is also noteworthy is that although the ATLAS analyses give better results for σ95%
stable in

figs. 6.4 and 6.5 (dashed lines), in the extrapolation to smaller lifetimes the CMS results become
better (full lines). This is because the CMS detector is smaller and therefore a larger fraction of
the decays will occur outside the detector. This nicely demonstrates the complementarity of the
two machines.
Furthermore one can see in fig. 6.4(e,f) a relativistic effect related to the LL particle mass.

The cross section limits for very large cτ are of the same order of magnitude for all values of
mX , because in every case nearly all decays occur outside the detector. However, the curves for
smaller masses mX are shifted to the left towards smaller values of cτ compared to larger masses
mX . Because of relativistic time-dilation, a lighter X is more likely to escape the detector than
a heavier X of equal energy.

To give a more complete result beyond the shown benchmark points, we repeated the procedure
of obtaining σ95%

stable for many values of the LL mass and mediator mass, shown in a grid in
fig. 6.6 for the HXX model and fig. 6.7 for the RPV-SUSY model, where the σ95%

stable limits are
indicated by the colour chart. The figures show different patterns: In fig. 6.6 for the HXX model
the cross section limits depend only on the mass of the heavy Higgs H0, while in fig. 6.7 they
depend largely on the mass gap ∆m = mq̃ −mχ̃0 . This can be explained by the production
and decay channels of the two models. In the HXX model, the H0 is produced on-shell before
decaying into two X bosons. The missing transverse energy is basically just pT of the H0. With
increasing mH , also the average pT increases, leading to better cross section bounds for larger
values of mH .

On the other hand, in the SUSY model each squark decays into a neutralino and a quark
(q̃ → qχ̃0), producing jets and Emiss

T . For small mass gaps ∆m = mq̃ −mχ̃0 the decay products
are soft, giving a low Emiss

T and a low signal efficiency. In these parameter regions, the monojet
searches give the best limits (or αT analyses with 2-jet signatures for low values of mq̃), which
are similar in size as for the HXX model. As ∆m increases, the Emiss

T and jet pT increase as well,
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Figure 6.6: The figure shows the upper limit of the production cross section of XX+jets final states for
the HXX–model in units of pb in the (mH ,mX) plane.
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Figure 6.7: The figure shows the upper limit of the production cross section of χ̃0χ̃0+jets final states for
the MSSM in units of pb in the (mq̃,mχ̃0) plane. Black dots indicate sample points where the ATLAS
multijet paper [418] performed best, grey stars indicate the ATLAS monojet paper [419], and pink squares
indicate best performance with the CMS αT paper [420]. A similar plot indicating the best signal regions
is shown in the fig. 6.8.
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Figure 6.8: The figure shows the upper limit of the production cross section of χ̃0χ̃0+jets final states
for the MSSM. The dots have the same meaning as in fig. 6.7, but in addition we show the best signal
regions for the ATLAS multijet analysis.

giving a larger signal cut efficiency and thus better cross section limits. ∆m appears to be the
most important parameter to describe the behaviour seen in fig. 6.7. We present another plot of
the SUSY grid scan in fig. 6.8, which also indicates which signal region gives the best result for
each point. The data points of both grid scans have been published in Ref. [394], along with an
approximation for calculating the escape probabilities, which is explained in appendix C.1.

Events in which one LL particle decays inside and the other one outside the detector were not
considered in this study. This gives more conservative bounds, as such events could potentially
give an additional Emiss

T signature, in particular for the HXX model where the requirement of
recoiling against a high-pT jet would no longer be needed. This scenario has the potential to
produce stronger limits, but is more technically difficult to realise in detector simulations.

6.4 Conclusion
We have shown that the traditional searches for long-lived neutral particles using displaced
vertices can be complemented by using missing transverse energy analyses, which extend the cross
section limits to arbitrarily long lifetimes. For the two signal models considered in Refs. [399,
400], we obtained 95% cross section limits from a Emiss

T signature which are comparable to
those from displaced vertex searches for values of cτ as short as a few metres (nanosecond
lifetimes), although for most of the benchmark points they are comparable at larger distances
from 10m – 100m. The approach shown here is more model independent because the cross
section limits found with this approach are independent of the specific decay channels of the
LL particles and their branching ratios. This is not the case for the displaced vertex searches
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of Refs. [399, 400] since for realistic cases with branching ratios of a few percent or less, the
CMS limits from displaced vertices are significantly weakened, making the limits from Emiss

T

signatures much more competitive. In this case, our limits for stable particles can be better than
the minimum obtained from displaced vertex searches for any cτ and they can be comparable
for decay distances below 1 metre.
Also the spin of the LL particle does not affect the limits in the HXX model, because the

spinless H decays isotropically into X pairs in its own rest frame. In fact, the bounds found
for the HXX model are valid for any model in which a narrow width scalar H is produced via
an effective vertex 1

2Tr[G2]H and decays into a pair of LL particles. Also in the SUSY case
the results are independent of whether the neutralino decays via RPV operators or any other
interaction, as long as the model has the same production channel assuming negligible effect
from heavy intermediate gluino exchange.
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CHAPTER 7

Summary and Conclusion

The MSSM predicts a light Higgs mass ≤ 91.2 GeV at tree level and thus requires large radiative
corrections. As of July 2012, the bar has been set high with the discovery of the 125 GeV Higgs
boson at the LHC [21, 22]. Large quantum corrections require heavy sparticles above 1 TeV
and/or a large mixing between the stops. This raises the issue of naturalness and fine-tuning
that SUSY was expected to solve. As the Higgs mass mh has become a precision observable
with a relative uncertainty below 0.3%, phenomenological tools struggle to provide comparably
accurate predictions. However there has been a lot of improvement in the field of precision
calculations lately. In particular the advanced tool FeynHiggs [227, 423] states an uncertainty
of 2 GeV for its Higgs mass calculation in the MSSM [224, 300] and also the NMSSM has
received a lot of attention (e.g. Ref. [424] contains a detailed comparison of state-of-the-art
NMSSM spectrum calculators). The full one-loop corrections with momentum dependence
are well established [196–199] and implemented in many spectrum generators. The dominant
MSSM two-loop corrections, eq. (7.1), in the zero momentum limit have also been around for
several years [200]. At three-loop level, corrections of the order O

(
α2
sαt
)
[228–230] have been

incorporated into the code H3m [229]. While SUSY phenomenologists have several choices of
tools when it comes to the MSSM and NMSSM, for models beyond that the only stop is SARAH
[68–74]. It is a tool that creates the full Lagrangian of a user-defined model from minimal
input using Mathematica’s symbolic manipulation. From the Lagrangian, mass matrices and
couplings between the particles are extracted analytically. It also employs generic formulae
to calculate other key quantities such as two-loop RGEs and radiative corrections. While the
program can be used in a stand-alone way for analytic studies at tree level, the most powerful
feature is the ability to export Fortran source code to the program SPheno [221, 222], which
creates a tailor-made spectrum generator for numerical studies beyond tree-level. This makes it
a meta-tool that can also create model files for other tools. Since 2014, FlexibleSUSY [290, 291]
offers an alternative to SPheno by producing its own customised spectrum generator. However,
it is also linked to SARAH and requires some of its output.
The main contribution of this thesis is the following:

• We have implemented a model-independent, two-loop Higgs mass calculation into SARAH/SPheno,
which allows to study models beyond the MSSM with an increased Higgs mass precision.

• Using this calculation, we studied two-loop contributions to the Higgs mass in the case of
four supersymmetric models and identified parameter regions where the novel contributions
are significant. Some of them have been studied here for the first time because they were
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unavailable in other public tools.

• We obtained production cross section limits for long-lived particles at the LHC using
analyses written by ATLAS and CMS that focus on a large Emiss

T signature. This establishes
a complementary approach to traditional searches for displaced vertices.

The extension to SARAH includes two-loop corrections to neutral Higgs bosons in the effective
potential approach, where contributions from broken gauge groups are neglected (gaugeless limit).
The idea of a numerical differentiation of the effective potential was used earlier (Ref. [183])
and the generic expressions for the full two-loop effective potential have been available for a
long time [265]. However, they were not utilised in a computer code before. There are three
independent methods implemented into SARAH/SPheno to calculate the entries of the two-loop
self-energy matrix of the neutral Higgs components. In the simplest, purely-numerical approach,
the effective potential function is numerically differentiated as a whole with respect to the VEVs.
The semi-analytical approach uses a mixture of analytical derivatives of the loop functions
and numerical derivatives of masses and couplings. In the third, diagrammatic approach we
obtained self-energies (and tadpoles) by analytically differentiating the effective potential, which
is equivalent to calculating the two-point (and one-point), two-loop Feynman diagrams with
vanishing external momentum. This leads in some cases to simpler (but equivalent) expressions
than the corresponding results from literature [267] with p2 = 0. The effective potential and
its derivatives can suffer from divergences in the case of massless scalars, which are present in
the Landau gauge (Goldstone problem). We circumvented this by working in the minimum
of the full effective potential along with tree-level scalar mass matrices in the gaugeless limit,
which results in non-zero tree-level Goldstone masses. All approaches are independent and
calculate the same quantity but differences arise because of the involved numerics. The methods
have been presented and validated in Refs. [187, 188]. A next possible step towards further
improvement could be the inclusion of contributions from massive vector bosons to the effective
potential. The tadpoles of these contributions were partially published in Ref. [188], however the
derivatives of the loop functions have not been calculated explicitly. This is done in this thesis
and constitutes a previously unpublished result. At some point, one might want to exchange
the effective potential approximation for a full momentum dependent calculation. We stress
that even in this case, the tadpole expressions obtained from the effective potential will still be
required.

For many years the established precision of the Higgs mass in the MSSM was determined by
the full one-loop corrections plus the dominant two-loop corrections stemming from the strong
interaction and pure Yukawa interactions:

O (αs(αt + αb)) , O
(
(αt + αb + ατ )2

)
. (7.1)

They were calculated in Ref. [200] in the limit of zero external momentum and are used in many
public codes. To be more precise, O (αsαt) and O

(
α2
t

)
are really dominant, while the other

corrections in eq. (7.1) are much smaller, because yt � yb, yτ . With our code it is possible to
study many models beyond the MSSM with a similar precision.

Using only the contributions of eq. (7.1) means neglecting the first two generations of sfermions.
This is reasonable unless there is a large mixing in the squark sector between generations. The
third-generation-only approximation can lead to a Higgs mass prediction that deviates by
2 GeV or more from the full contribution. This happens for large trilinear couplings and large
hierarchies between the soft masses. Points in this part of parameter space can suffer from
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vacuum instability and flavour violating decay ratios that are outside of their experimental
bounds. These conditions have to be checked in any realistic study.

We have explored the effects of the new corrections to the Higgs mass in various models beyond
the MSSM and found throughout that they can change the mass prediction by several GeV under
certain circumstances. In the NMSSM, the strong contributions O (αs(αt + αb)) and top Yukawa
contributions O

(
α2
t

)
are dominant, similar to the MSSM. The newly accessible corrections are

the Yukawa-like corrections with full dependence on the superpotential parameters λ, κ as well
the NMSSM-specific orders O

(
(αλ + ακ)2). We found a difference of 1–2 GeV between the

new and old calculation in the case of large λ and a significant mixing between the singlet and
doublet scalar states of the Higgs sector. The remaining theoretical uncertainty of mh was
estimated by variation of the renormalisation scale as 2.3 GeV, which is almost certainly an
underestimation. For example, the experimental uncertainty of the top mass has to be taken
into account as the main source of uncertainty. Also, there could be higher order corrections
that are scale-independent, and these would not show up in the estimate.
In the MSSM with R-parity violating operators λ′LQD and λ′′UDD, the new couplings

λ′, λ′′ enter explicitly the Higgs self-energies at two-loop, but not at one-loop. As expected,
large RPV couplings can change the Higgs mass prediction by several GeV. There is another
(formally two-loop) effect due to the fact that RPV couplings (represented by Λ) enter the
fermion one-loop self-energies. The matching conditions between the measured fermion pole
masses and the Yukawa couplings depends on Λ and thus the top Yukawa coupling Yt becomes
a function of Λ, however this effect is very small in the NMSSM.

The MSSM can be extended by a pair of superfields with the same quantum numbers as the
up-type superfield U. This adds a fourth generation heavy top quark to the model along with
two more up-type squarks. Because the impact of the top Yukawa coupling on the Higgs mass
is already huge, adding another quark with similar coupling strength is an effective way to raise
the Higgs mass. Previous calculations for this model included only the one-loop corrections with
vanishing external momentum. We extended this calculation in three respects: (i) Full one-loop
momentum dependence, (ii) threshold corrections and (iii) dominant two-loop corrections. As
expected, all of these effects have a profound impact on the mass. In some regions, the two-loop
shift alone accounts for a 10 GeV change. While in many cases the dominant two-loop corrections
are purely MSSM-like (cf. eq. (7.1)), we identified regions where the contributions from the
vectorlike quarks alone are comparable or larger. In addition vectorlike quarks reduce the
fine-tuning (defined by eq. (2.30)) compared to the MSSM. For an embedding of the model in
GMSB boundary conditions, we find a fine-tuning of ∼ 600 for gluino masses around 1.5 TeV
and a Higgs mass of 125 GeV. A higher gluino mass is accompanied by a higher fine-tuning:
Requiring a 2 TeV gluino leads to a fine-tuning above 1000 and makes the model unfavourable.
For comparison, realistic benchmark points in the MSSM typically have a FT of 800 – 1000
[393], while in the context of minimal GMSB it can easily be of the order 105 [375]. A model
with a fine-tuning below 100 could be called natural [392], however this number is somewhat
arbitrary. Of course, fine-tuning can not be used to falsify a model, but it is rather an indication
that a there is a hidden mechanism that is poorly described by the model.
In conclusion, the two-loop corrections that became available with the update to SARAH in

Refs. [187, 188] are a step towards a precision calculation of the neutral Higgs mass. They contain
all two-loop contributions except those that involve couplings of broken gauge groups, such as the
electroweak couplings, and they are calculated for vanishing external momentum. The accuracy
that could be reached with the corrections of eq. (7.1) for the MSSM ( ∆mth

h ∼ 3 GeV [195]) is
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now extended to all models that can be handled by SARAH. Since the estimates that have been
made for the MSSM do not necessarily carry over to other models, the real theoretical uncertainty
is probably larger. Obviously, the gap between the experimental uncertainty ∆expmh = 320 MeV
and a few GeV is still large. To close it, future work should be directed towards full electroweak
corrections and more efficient ways to evaluate momentum dependence, because this is very
time consuming. It can be expected that the theoretical uncertainty of mh in the MSSM can
drop to 0.5 GeV, if all the mentioned two-loop effects are taken into account [120]. Several steps
in this direction have been taken for MSSM codes. Also, SARAH can be extended to momentum
dependent loop functions with an external library like TSIL [293]. However this approach is
not yet well suited for useful applications because of computing time but it is likely that more
efficient ways of evaluating momentum dependent loop functions will be developed. On the
theoretical side, one must escape the gaugeless limit: Generic formulae for two-loop scalar
self-energies and tadpoles are needed with full gauge coupling dependence. Additionally, the
complete two-loop self-energy of the Z-boson is required, because it influences the electroweak
VEV and these contributions are needed to ensure gauge invariance. With regard to precision,
it is possible that dominant three-loop corrections are as important as the missing electroweak
ones at two loop. However one must always remember that a limiting factor to the theoretical
uncertainty of mh is the error of the top quark mass mt, which enters Higgs mass calculations
via Yt.

In chapter 6 of this thesis we have presented an approach to obtain upper production cross
section limits on long-lived particles in the ATLAS and CMS detectors at the LHC. The idea
is to simulate pairs of stable particles that escape undetected, leading to large quantities of
missing transverse energy in the events. The production mechanism is model dependent and
we considered two quite general scenarios: (i) strong production of a heavy scalar H0 from
effective vertices with subsequent decay H0 → XX with X being the LL particle, and (ii)
strong production of squark pairs Q̃Q̃ with subsequent decay into neutralinos and jets, Q̃→ qχ̃0

1.
Applying several analyses from ATLAS and CMS on the generated signal events, we obtain
95% CL upper cross section limits by comparing the resulting efficiencies with the information
provided in the corresponding publications of the analyses. This process is greatly simplified and
automatised by the software CheckMATE [408]. The limits are valid for stable particles, but they
can be extrapolated to smaller finite lifetimes by calculating the probability of both unstable
particles escaping the detector. This requires the energy and rapidity distribution of the LL
particles, which we extract from the Monte Carlo events, along with the dimensions of the
detectors. Going to smaller lifetimes, the limits become weaker (larger), which is complementary
to traditional long-lived particle searches focusing on displaced vertices. Combining both
methods, the coverage of the LHC in terms of cross section limits can be extended to arbitrary
lifetimes. In addition in displaced vertex searches assumptions about the decays of the LL
particles must be made and for smaller assumed branching ratios the limits become weaker. This
is not the case in our simple approach, because the decay of the LL particle happens outside
the detector and has no influence on the missing transverse energy. Therefore, our limits are
independent of the decay process and its branching ratio.

At the end of 2015, the ATLAS and CMS collaborations reported an excess at 750 GeV in the
spectrum of diphoton final states [425, 426], which caused a tremendous amount of excitement
in the scientific community. If this excess turns into a true discovery, this would be the first
sign of physics beyond the Standard Model. In the aftermath of this announcement there was a
tsunami of papers proposing extensions to the SM and MSSM to accommodate the diphoton
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excess [427]. Dealing with a variety of different models is exactly the strength of the generic
expressions implemented into SARAH, and the two-loop Higgs corrections might prove valuable
to future studies in that field. For example, vectorlike quarks in combination with large Yukawa
couplings are frequently used in attempts to describe the diphoton excess, from which we have
learned that they have a large two-loop impact on the Higgs mass.

We hope that the 13 TeV era of the LHC holds even more surprises and the first proof of new
physics.
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APPENDIX A

Additional information

A.1 Renormalisation schemes

In the Standard Model and other non-supersymmetric models the modified minimal subtraction
scheme MS [428] is the standard choice, using dimensional regularisation (DREG) in d = 4− 2ε
dimensions. Vector fields also have 4−2ε degrees of freedom in this scheme. In a supersymmetric
model, the use of DREG leads to a mismatch in the degrees of freedom between the vector
fields and gaugino fields and thus to a violation of supersymmetry. The problem is solved by
giving the vector fields the full four degrees of freedom, but still integrating over d = 4 − 2ε
spacetime dimensions. This is known as dimensional reduction (DREG) [429, 430]. The extra 2ε
components of the vector fields transform like scalars (known as epsilon scalars) in the adjoint
representation of the gauge group. This scheme is called DR [429, 430] and used for models
with unbroken supersymmetry.

However, every realistic model has to involve SUSY breaking, usually by explicit soft-breaking
terms. In these models, the epsilon scalars do not have the same masses and dimensionful
couplings as the corresponding vector fields. The unphysical scalars have to be carried around
as independent particles, making this scheme inconvenient for broken SUSY. With a slight
modification of the parameters, the masses of the epsilon scalars can be completely decoupled
from all RG equations and the expressions for physical observables. This scheme known as DR′

[431] is the best choice for all realistic SUSY models. Sometimes in literature this distinction is
not made clear and authors stating to use DR in fact use the modified DR′.

A.2 Ghost Lagrangian of the Standard Model

For completeness, we quote the definition of the ghost Lagrangian of Ref. [432] following the
Fadeev-Popov description. Recalling the gauge fixing Lagrangian,

LGF =− 1
2ξG

F 2
G −

1
2ξA

F 2
A −

1
2ξZ

F 2
Z −

1
ξW

F−F+, (A.1)

F aG =∂µGaµ, FA = ∂µAµ, (A.2)
FZ =∂µZµ − ξZMZG

0, (A.3)
F± =∂µW±µ ∓ iξWMWG

±, (A.4)
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the ghost Lagrangian is given as

Lghost =
4∑
i=1

[
c̄+
∂(δF+)
∂αi

+ c̄−
∂(δF+)
∂αi

+ c̄Z
∂(δFZ)
∂αi

+ c̄A
∂(δFA)
∂αi

]
ci

+
8∑

a,b=1
ω̄a
∂(δF aG)
∂βb

ωb. (A.5)

The ωa are the ghosts associated with SU(3)C transformations

U = e−iT
aβa (a = 1, . . . , 8) (A.6)

and c±, cA, cZ are the electroweak ghosts associated with the transformations

U = e−ig2Taαa (a = 1, 2, 3), U = e+ig1Y α4
. (A.7)

The notation δF denotes an infinitesimal gauge transformation.

A.3 Threshold corrections in the MSSM with vectorlike quarks

We discussed the importance of threshold corrections in the context of the MSSM extended by
vectorlike quarks in section 5.4. They are the result of the matching between the measured
quantities (αem(MZ), GF , MZ , αs(MZ), fermion masses) and the running parameters in the
DR′ scheme. We describe how the matching is done in SARAH/SPheno, following the generalised
procedure of Ref. [199].
First, the α and αs, given in the MS scheme in the five flavour approximation need to be

matched to their DR′ counterparts,

αDR′(MZ) = α(5),MS(MZ)
1−∆α(MZ) , (A.8a)

αDR′
s (MZ) = α

(5),MS
s (MZ)

1−∆αs(MZ) . (A.8b)

The quantities ∆α(µ) and ∆αs(µ) for the minimal vectorlike quark model read

∆α(µ) = α
2π

[
1
3 −

16
9

4∑
i=3

log mui
µ −

4
9

8∑
i=1

log mũi
µ + ∆αMSSM(µ)

]
, (A.9)

∆αs(µ) = αs
2π

[
−2

3
4∑
i=3

log mui
µ −

1
6

8∑
i=1

log mũi
µ + ∆αMSSM

s (µ)
]
. (A.10)

Here, ∆αMSSM(µ),∆αMSSM
s (µ) contain all corrections that appear in the MSSM (Ref. [199]),

except for the up-quark and up-squark terms, which are explicitly written out. The vectorlike
quarks enter these expressions in the extended sum ranges. To relate αDR′(MZ) to the running
couplings g1, g2, the running Weinberg angle sin ΘDR′

W is needed along with the electroweak VEV
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v. The latter depends on the loop corrections δM2
Z of the Z boson.

v2 =(M2
Z + δM2

Z)(1− sin2 ΘDR′
W ) sin2 ΘDR′

W

παDR′
(A.11)

sin2 ΘDR′
W =1

2 −

√√√√1
4 −

παDR′

√
2M2

ZGF (1−∆r̂)
(A.12)

Details about the one-loop corrections δM2
Z are shown in Ref. [299] and the expression for ∆r̂ is

found in Ref. [433]. The running fermion masses in DR′ (q = d, u, s, c, b) are calculated from

mDR′,SM
q = mq

1− αDR′
s

3π + ∆m(2),QCD
q + ∆m(2),EW

q

 , (A.13a)

mDR′,SM
t = mt

1− αDR′
s

3π

(
5 + 3 log M

2
Z

m2
t

)
+ ∆m(2),QCD

t + ∆m(2),EW
t

 . (A.13b)

The QCD and EW two-loop parts are not shown here for brevity and can be found in Ref. [299],
or Refs. [434, 435]. As a next step, the one-loop corrected fermion mass matrix is calculated,

M(1L)
f (p2) =M(0)

f − Σ̃S(p2)− Σ̃R(p2)M(0)
f −Mf Σ̃L(p2), (A.14)

using only reduced self-energies Σ̃S(p2), Σ̃L,R(p2), without pure QCD and EW contributions (they
are already considered in the matching conditions, eq. (A.13)). The eigenvalues ofM(1L)

f (p2)
are matched to the previously calculated DR′ SM fermion masses,

Eig
[
M(1L)

d (p2 = m2
di)
]

=(mDR′,SM
d ,mDR′,SM

s ,mDR′,SM
b ), (A.15a)

Eig
[
M(1L)

u (p2 = m2
ui)
]

=(mDR′,SM
u ,mDR′,SM

c ,mDR′,SM
t ,mDR′

t′ ). (A.15b)

The tree-level mass matrices are given by the Yukawas, M(0)
f = vfYf/

√
2 for f = d, u and

M(0)
e = vdYe/

√
2. The equations (A.15) can be solved for the Yukawa matrices, where the

CKM matrix can be used to constrain the rotation matrices U qL, U
q
R. Because the tree-level

mass matrix and the self-energies both depend on the Yukawa matrices Y DR′
d , Y DR′

u , the solving
procedure has to be done iteratively.
Once the running gauge and Yukawa couplings are determined at MZ in DR′, they are run

up to MSUSY, because some input parameters are defined only at MSUSY. Then, the complete
set of parameters is again run down to MZ with two-loop RGEs, where the calculation of all
other observables takes place.

131





APPENDIX B

Loop calculations

This chapter gives the definitions of the relevant loop functions. The second part (B.2) shows
the calculation of the prefactors that are needed to express the effective potential in the spinor
convention used by SARAH. In the third part (B.3) the collection of tadpoles and self-energies
for the diagrammatic approach is presented, as it was published in Ref. [188]. In addition, we
give the complete expressions for the tadpoles including massive vector bosons.

B.1 Basic loop functions

The loop function defined by Passarino and Veltman [264, 436] use the (−,+,+,+) metric
signature with s = −p2. This is also preferred by Martin [266] whose calculations and definitions
we use. In the main body of this thesis, the Bjorken-Drell metric (+,−,−,−) is used instead
(s = p2). However, this does not pose a problem because the loop functions are defined in
Euclidean space (after Wick rotation) and the results do not depend on the metric. One can use
the Mandelstam variable s instead of ±p2 in final results for a metric independent expression.
Dimensional regularisation in d = 4− 2ε dimensions is performed by the substitution∫

d4q → (2πµ)2ε
∫

ddq. (B.1)

It is useful to introduce the constant factor

C = 16π2 µ2ε

(2π)d = (2πµ)2ε 1
π2 . (B.2)

The scale µ is the regularisation scale, related to the renormalisation scale used in the MS, DR
and DR′ schemes by

logQ2 = logµ2 + log(4π)− γ, (B.3)

with γ the Euler-Mascheroni constant (Γ′(1) = −γ). The definition of eq. (B.3) is equivalent to
encapsulating the two constants into the divergence using ∆ = 1/ε−γ+ log 4π. For convenience,
logarithms of dimensionful quantities are given in terms of

ln
(
m2
)
≡ ln

(
m2

Q2

)
. (B.4)
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Integrals with an explicit regulator are written in bold face, while finite integrals are written in
normal typeface.

B.1.1 One-loop functions

The basic function for vacuum diagrams and tadpoles is A0(m2). The factor of i from Wick
rotation is usually factored out to obtain a real function.

A0(m2) ≡ −1
i
C

∫
ddq 1

q2 −m2

Wick→ C

∫
ddr 1

r2 +m2

= m2
(

4π µ
2

m2

)ε (
−1
ε
− 1 + γ +O (ε)

)
= m2

(
−1
ε

+ ln
(
m2
)
− 1

)
= −m

2

ε
+m2

(
ln
(
m2
)
− 1

)
(B.5a)

A0(m2) = A0(m2) + m2

ε
= m2

(
ln (m)2 − 1

)
(B.5b)

J(x) = A0(x) = x
(
ln (x)− 1

)
(B.5c)

Alternatively, A0 can be regularised with a cut-off Λ and d = 4,

A0(m2) = C

∫
ddr 1

r2 +m2 = 1
π2

∫
d4r

1
r2 +m2

= 2
∫ Λ

0
dr r3

r2 +m2 = −2
[
r2

2 −
m2

2 ln
(
m2 + r2

)]Λ

0

= Λ2 −m2 ln
(

Λ2

m2

)
+O

(
Λ−2

)
. (B.6)

B0(s, x, y) = 1
i
C

∫
ddq 1

q2 − x
1

(q − p)2 − y

= (2πµ)2ε

iπ2

∫ 1

0
dα
∫

ddq 1
(q2 + ∆)2 ∆ ≡ (1− α)x+ αy − α(1− α)s

=
∫ 1

0
dα

(
4πµ2

∆

)ε (1
ε
− γ

)
= 1
ε
−
∫ 1

0
dα ln (∆) = 1

ε
+B0(s, x, y) (B.7)
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Depending on the roots αi of the quadratic function ∆(α), it can be factorised and integrated
[264], giving

B0(s, x, y) = B0(s, x, y)− 1
ε

= −ln (−s− iε)−
∑
i

(ln (1− αi) + f(αi)) , (B.8a)

with

f(x) = F (1, x) = −x ln x− 1
x
− 1, (B.9a)

F (n, x) = −xn ln x− 1
x
− xn−1 − 1

2x
n−2 − 1

3x
n−3 · · · − 1

n
, (B.9b)∫ 1

0
xn ln (x− x1) = 1

n+ 1 (ln (1− x1) + F (n+ 1, x1)) . (B.9c)

Using cut-off regularisation, the result is

B0(s, x, y) = 1
π2

∫ 1

0
dα
∫

d4r
1

(r2 + ∆)2 = 2
∫ 1

0
dα
∫ Λ

0

r3

(r2 + ∆)2

= 1 +
∫ 1

0
dα ln

(
∆ + Λ2

∆

)
(B.10a)

B0(0,m2,m2) = ln Λ2 +m2

m2 + 1 (B.10b)

For p2 = 0 we have

B0(x, y) ≡ B0(0, x, y) =−
∫ 1

0
dαln ((1− α)x+ αy) = −J(x)− J(y)

x− y
=1−

(
xln (x)− yln (y)

)
/(x− y), (B.11)

B0(x, x) =− ln (x) . (B.12)

From this we can define
C0(x, y, z) ≡ −B0(x, y)−B0(x, z)

y − z
(B.13)

which is symmetric in all arguments. C0 corresponds to a loop with three external lines and
vanishing external momenta.
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B.1.2 Two-loop functions
We now define the two-loop functions, using the definition of Refs. [265, 266]. The index 0
means that the external momentum is set to zero, which is all that is needed for our purposes.

S0(x, y, z) =C2
∫

ddk
∫

ddq 1
(k2 + x)(q2 + y)((k + q)2 + z) , (B.14)

T0(x, y, z) =− ∂

∂x
S0(x, y, z), (B.15)

U0(x, y, z, u) =C2
∫

ddk
∫

ddq 1
(k2 + x)(k2 + y)(q2 + z)((k + q)2 + u) , (B.16)

M0(x, y, z, u, v) =C2
∫

ddk
∫

ddq 1
(k2 + x)(q2 + y)(k2 + z)(q2 + u)((k − q)2 + v) . (B.17)

The master integral is finite, M0 = M0, even for non-vanishing p2. All integrals have various
symmetries,

• S0(x, y, z) is completely symmetric,

• T0(x, y, z) is symmetric under y ↔ z,

• U0(x, y, z, u) is symmetric under z ↔ u and x↔ y,

• M0(x, y, z, u, v) is symmetric under (z, x)↔ (y, u), (x, y)↔ (z, u) and (x, u)↔ (y, z).

The snowman vacuum diagram (fig. 3.3) is simply the product of two J functions and a coupling,

J(x, y) = xy
(
ln (x)− 1

) (
ln (y)− 1

)
= J(x)J(y). (B.18)

The sunrise diagram represents the function

I(x, y, z) ≡S0(x, y, z)

=1
2(x− y − z)ln (y) ln (z) + 1

2(y − x− z)ln (x) ln (z) + 1
2(z − x− y)ln (x) ln (y)

+2xln (x) + 2yln (y) + 2zln (z)− 5
2(x+ y + z)− 1

2ξ(x, y, z), (B.19a)

ξ(x, y, z) = R

(
2 ln

(
x+ z − y −R

2z

)
ln
(
z + y − x−R

2z

)
− ln

(
x

z

)
ln
(
y

z

)
−2Li2

(
x+ z − y −R

2z

)
− 2Li2

(
z + y − x−R

2z

)
+ π2

3

)
, (B.19b)

∆(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz), (B.19c)

R(x, y, z) =
√

∆(x, y, z). (B.19d)

The dilogarithm is defined as
Li2(z) = −

∫ z

0

ln(1− t)
t

dt. (B.20)

and complex logarithms are defined by

− π < = (ln (z)) ≤ π, z ∈ C. (B.21)
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The functions are continuous for any real argument, but for negative arguments there will be an
imaginary part. Also the limits for vanishing masses are often needed.

I(0, x, y) = (x− y)
(
Li2

(
y

x

)
− ln

(
x

y

)
ln (x− y) + 1

2
(
ln (x)

)2
− π2

6

)

− 5
2(x+ y) + 2xln (x) + 2yln (y)− xln (x) ln (y) , (B.22a)

I(0, x, x) = 2J(x)− 2x− J(x, x)
x

= −x
(
ln (x)

)2
+ 4xln (x)− 5x, (B.22b)

I(0, 0, x) = −1
2
(
ln (x)

)2
+ 2xln (x)− 5

2x−
π2

6 x, (B.22c)

B0(x, x) = −ln (x) . (B.22d)

Furthermore, some functions are related to each other by the difference quotient operation.

T0(x, y, z) =− ∂

∂x
I(x, y, z) (B.23)

U0(x, y, z, u) =−Dx,yI(x, z, u) = 1
y − x

(I(x, z, u)− I(y, z, u)) (B.24)

V0(x, y, z, u) =− ∂

∂y
U0(x, y, z, u) (B.25)

M0(x, y, z, u, v) =−Dy,uU0(x, z, y, v) = 1
(u− y)(U0(x, z, y, v)− U0(x, z, u, v)) (B.26)

T 0(x, y) =lim
δ→0

[T0(δ, x, y) +B0(x, y)lnδ] (B.27)

These functions suffice as a basis for the various loop diagrams.

B.2 The two-loop effective potential in the SARAH convention

The two-loop effective potential for a general renormalisable theory calculated by Martin [265]
uses a convention with real bosons and two-component fermions only. This convention, which
we call the R-convention, is the most economic when dealing with a general theory. However,
in a specific model it is more useful to organise particles into groups, including both real and
complex scalars and vectors, as well as Majorana and Dirac fermions. We will call this the
C-convention (C for complex). This section shows the calculation of prefactors that are required
to translate the effective potential from the R-convention into the C-convention.
Note, the calculations shown here are lengthy and repetitive (presented in Ref. [187]). The

interesting result is found in the summary tables of each subsection.
Within SARAH, the model description is done in the superfield formalism which uses two-

component spinors. In the end, all fermions are expressed as four-component spinors which
is better suited to describe the SM fermions. The vertex factor for three fields φ1, φ2, φ3 is
understood as

C [φ1, φ2, φ3] = i
δL

δφ1δφ2δφ3
≡ iΓc. (B.28)

The vertex factor is decomposed into a kinematic part Γ and a coefficient. For example, two
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Dirac fermions and a vector boson have a vertex factor

C
[
Ψ,Ψ, Aµ

]
= i(cLPL + cRPR)γµ. (B.29)

PL and PR are the polarisation operators PL,R = 1
2 (1∓ γ5). The vertex factors of eq. (B.28) for

particles p1,p2,p3,(p4) can be obtained in SARAH by the command

1 Vertex [ { p1 , p2 , p3 } ]
2 Vertex [ { p1 , p2 , p3 , p4 } ] .

This returns a list

{ {p1[{i1}], p2[{i2}], p3[{i3}]},
{ {cL, GammaL},

{cR, GammaR} }}

where the i1,i2,i3 are tuples of internal indices. The Vertex function works for Dirac spinors
as well as for two-component spinors because both definitions coexist internally. If ξ and χ are
2-component spinors with the same quantum numbers, a Dirac spinor can be constructed using
the chiral representation

Ψ =
(
ξ
χ†

)
, Ψ = Ψ†γ0 = (χ, ξ†) (B.30)

with the translation table

Ψiγ
µPLΨj = ξ†i σ̄

µξj , (B.31a)
Ψiγ

µPRΨj = χiσ
µχ†j , (B.31b)

ΨiPLΨj = χiξj , (B.31c)
ΨiPRΨj = ξ†iχ

†
j (B.31d)

with σµ = (1, σi) and σ̄µ = (1,−σi) and the Pauli matrices σi. A complex scalar can be split
up like Φ(x) = (R(x) + iI(x))/

√
2 such that Φ, R, I all have the same mass.

In the following we will set up a Lagrangian term δL for each interaction term in eq. (3.18)
such that the output of a SARAH Vertex command (eq. (B.28)) would give ic or icL/R in the
C-convention. The value of c or cL/R will later be stored in a Fortran variable in SPheno.
The Lagrangian term δL is then re-expressed in terms of real bosons and two-component
fermions, such that the couplings can be matched to the R-convention. For the latter we will use
capital indices I, J,K to label Weyl spinors (ψI = (ξ1, χ1, ξ2, χ2, . . . ) and real degrees of freedom
(RK = (ϕ1, σ1, ϕ2, σ2, . . . )). Lowercase indices i, j, k are used to denote generation/flavour/colour.
For Majorana fermions and real scalars, this differentiation is not needed and the indices can be
used interchangeably.
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B.2.1 FFV and FFV

Given a set of Dirac fermions Ψi and a complex vector W a
µ , the Lagrangian term is

LFFV = Ψ̄iγ
µ(cLPL + cRPR)ΨjW

a
µ + h.c.

= cLξ
†
i σ̄

µξjW
a
µ + cRχiσ

µχ†jW
a
µ + h.c.

= cLξ
†
i σ̄

µξjW
a
µ − cRχ

†
j σ̄
µχiW

a
µ + h.c. (B.32)

There is no implicit sum over i, j, a here. The coefficients are cL/R = cL/R(i, j, a). The Minus
sign comes from the rearrangement χσµξ† = −ξ†σ̄µχ (in signatures with mostly plus as well
as mostly minus). We can arrange all 2-component spinors in a list: (ψI) = (ξ1, χ1, ξ2, χ2, . . . ).
The interaction in the R-convention is given by

LFFV =
∑
I J a

gaJI ψI†σ̄µψJA
a
µ. (B.33)

Since this term has to be real, gaJI = (gaIJ )? holds. Vectors only couple left to left and right to
right, so a rewriting of appendix B.2.1 is useful:

L = gajLiξ
i†σ̄µξjW

a
µ + gajRiχ

i†σ̄µχjW
a
µ + h.c.. (B.34)

We can match the coefficients using W a
µ = (Aaµ + iBa

µ)/
√

2 and writing (AAµ ) = (A1
µ, B

1
µ, A

2
µ, . . . )

gAjLi =
(
cL√

2
, i
cL√

2

)
, A = 1, 2 (B.35a)

gAjRi =
(
− c∗R√

2
,
ic∗R√

2

)
, A = 1, 2. (B.35b)

The original expression for FFV is given by

V
(2)
FFV

= 1
2

∑
II′JJ ′A

gAJI gAJ
′

I′ M II′M?
JJ ′FFFV (I, J,A). (B.36)

MIJ denotes a mass insertion, which in case of a single Dirac fermion is assumed to have the

form
(

0 mD

mD 0

)
in the basis of the mass eigenstates. The whole expression becomes

V
(2)
FFV,i,j

= 1
2

∑
I,J,I′,J ′

gaJI gaJ
′

I′ M
II′M?

JJ ′FFFV (I, J,A)

=
∑
A

(gAjLi g
Aj
Ri + c.c.)mDimDjFFFV (m2

Di,m
2
Dj ,m

2
A)

=
(
−cLc

∗
R

2 · 2 + c.c.
)
mDimDjFFFV (i, j, a)

= −2<[cLc∗R]mDimDjFFFV (i, j, a) (B.37)
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If we fix the same particle i = j, the factor 2 disappears.

V
(2)
FFV,i=j = −<[cLc∗R]m2

DiFFFV (i, i, a) (B.38)

Starting with a real vector instead of a complex W a
µ , we have gajLi = cL and gajRi = −c∗R, leading

to a missing factor of 1/2, but on the other hand there is also a missing factor of 2 from the
sum over I, J, I ′, J ′. Hence, the result is equal to (B.41) for i , j. If one of the fermions is a

Majorana fermion, e.g. ΨMi =
(
ξi
ξ†i

)
, then χj = ξj has to be replaced, but nothing else changes

compared to (B.41) except that mDj → mMj becomes a Majorana mass. If both fermions are
Majorana, the interaction terms are

LFFV =Ψ̄iγ
µ(cLPL + cRPR)ΨjW

a
µ + h.c.

=cLξ†i σ̄µξjW a
µ − cRξ

†
j σ̄

µξiW
a
µ + h.c.

=cL − c∗R√
2

ξ†i σ̄
µξjA

a
µ + icL + ic∗R√

2
ξ†i σ̄

µξjB
a
µ + h.c.. (B.39)

This gives the relation
gAIJ =

(
cL − c∗R√

2
, i
cL + c∗R√

2

)
, A = 1, 2 (B.40)

and leads to

V
(2)
FFV,i,j

= 1
2

∑
IJI′J ′A

gAJI gAJ
′

I′ M II′M?
JJ ′FFFV (I, J,A)

= 1
2
∑
A

((gAjj )2 + (gAij )2)mMimMjFFFV (i, j, A)

= −2<[cLc∗R]mMimMjFFFV (i, j, a). (B.41)

If i = j, the line eq. (B.39) becomes

LFFV = (cL − cR)︸         ︷︷         ︸
≡c

ξ†i σ̄
µξiW

a
µ + h.c.

=
(2<[cL − cR]√

2
Aaµ + −2=[cL − cR]√

2
Ba
µ

)
ξ†i σ̄

µξi

=
√

2
(
<[c]Aaµ −=[c]Ba

µ

)
ξ†i σ̄

µξi. (B.42)

The number c = cL − cR is the observable coupling, giving

V
(2)
FFV

= 1
2
∑
A

(gAII )2 |MII |2 FFFV (I, I, A)

= |c|2m2
MiFFFV (i, i, a). (B.43)
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B.2 The two-loop effective potential in the SARAH convention

In we consider only a real vector Aaµ and i , j from the start, the +h.c. can be dropped, and
cR = −c∗L must hold for a real Lagrangian, giving

V
(2)
FFV

= 1
2(c2

L + c2
R)mMimMjFFFV (i, j, a)

= <[c2
L]mMimMjFFFV (i, j, a). (B.44)

In the case i = j we have L = (cL − cR)ξ†i σ̄µξiAaµ, requiring to redefine c ≡ cL − cR as the
observable coupling where c is a real number. Then, the coupling term is 1

2(cL−cR)2 = 1
2c

2. Once
the couplings of the different cases have been matched for the FFV case, it is straightforward
to evaluate FFV :

V
(2)
FFV = 1

2
∑
I,J,A

∣∣∣gAJI ∣∣∣2 FFFV (I, J,A) = K · FFFV (i, j, a) (B.45)

K = 1
2 · 2

∑
A

·
(∣∣∣gAjLi ∣∣∣2 +

∣∣∣gAjRi ∣∣∣2) =
(
|cL|2 + |cR|2

)
(DiDjc,DiDjr) (B.46a)

K = 1
2
∑
A

·
(∣∣∣gAjLi ∣∣∣2 +

∣∣∣gAiRi∣∣∣2) = 1
2
(
|cL|2 + |cR|2

)
(DiDic,DiDir) (B.46b)

K = 1
2 · 2

∑
A

∣∣∣gAji ∣∣∣2 =
(∣∣∣∣cL − c∗R√

2

∣∣∣∣2 +
∣∣∣∣cL + c∗R√

2

∣∣∣∣2
)

=
(
|cL|2 + |cR|2

)
(MiMjc) (B.46c)

K = 1
2
∑
A

∣∣∣gAii ∣∣∣2 = |c|2 (MiMic) (B.46d)

K = 1
2

(∣∣∣gaji ∣∣∣2 +
∣∣∣gaij ∣∣∣2) = 1

2
(
|cL|2 + |cR|2

)
= |cL|2 (MiMjr) (B.46e)

K = 1
2
∣∣∣gaii ∣∣∣2 = 1

2 |c|
2 (MiMir) (B.46f)

The different cases are summarised in tab. B.1.
Example: In the case of the gluinos and gluons, the gauge interaction term is

LGluino = ig3f
abcλa†σ̄µAbµλ

c, (B.47)

with gbac = ig3f
abc and fabc the structure constants of SU(3). The result should be summed

freely over a, b, c, thus a factor of 1/2 must be introduced to avoid double counting. Evaluating
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DiDjc DiDjr DiMj MiMjc MiMjr

V
(2)
FFV , i , j (|cL|2 + |cR|2) (|cL|2 + |cR|2) (|cL|2 + |cR|2) |cL|2 + |cR|2 |c|2

V
(2)
FFV , i = j 1

2(|cL|2 + |cR|2) 1
2(|cL|2 + |cR|2) − |c|2 1

2 |c|
2

V
(2)
FFV

, i , j −2<(cLc∗R) −2<(cLc∗R) −2<(cLc∗R) −2<(cLc∗R) <(c2)
V

(2)
FFV

, i = j −<(cLc∗R) −<(cLc∗R) − |c|2 1
2<(c2)

V
(2)
FFS , i , j (|cL|2 + |cR|2) (|cL|2 + |cR|2) (|cL|2 + |cR|2) |cL|2 + |cR|2 |c|2

V
(2)
FFS , i = j (|cL|2 + |cR|2) 1

2(|cL|2 + |cR|2) − 1
2(|cL|2 + |cR|2) 1

2 |c|
2

V
(2)
FFS

, i , j 2<(cLc∗R) 2<(cLc∗R) 2<(cLc∗R) 2<(cLc∗R) <((c)2)
V

(2)
FFS

, i = j 2<(cLc∗R) <(cLc∗R) − <(cLc∗R) 1
2<(c2)

Table B.1: Summary of FFV , FFV , FFS, FFS contributions. The contribution is given by the prefactor
that is multiplied with the loop function (times mimj for the FFV, FFS). DiDjc(r) stands for Dirac
fermions with complex (real) scalars or vectors, MiMjc(r) for Majorana fermions.

eq. (B.44) gives

V
(2)
FFV,g̃

= 1
2(−g2

3)

 8∑
a,b,c=1

(fabc)2


︸                   ︷︷                   ︸

=24

|M3|2 FFFV (M2
3 ,M

2
3 , 0)

= −12g2
∣∣∣M2

3

∣∣∣FFFV (M2
3 ,M

2
3 , 0). (B.48)

V
(2)
FFV,g̃ = 1

2
∑
a,b,c

|cL|2 FFFV (M2
3 ,M

2
3 , 0)

= 1
2g

2
3
∑
a,b,c

∣∣∣fabc∣∣∣2 f(M2
3 ,M

2
3 , 0) = 12g2FFFV (M2

3 ,M
2
3 , 0) (B.49)

⇒ V
(2)
g̃g̃g = 12g2

3

(
FFFV (M2

3 ,M
2
3 , 0)− |M3|2 FFFV (M2

3 ,M
2
3 , 0)

)
(B.50)

The result matches that of Ref. [209], Eq. (3.74).

B.2.2 FFS and FFS

These contributions are similar in structure to FFV, FFV . Consider a set of 4-component
fermions Ψi and scalars φk = (ϕk + iIk)/

√
2. Again, for simplicity, consider i, j, k fixed.

LFFS = −Ψi(cLPL + cRPR)Ψj · φk + h.c.
= −(cLχiξj + cRξ

†
iχ
†
j)φk + h.c.

= −(cLχiξjφk + c∗Rξiχjφ
∗
k) + h.c.

= −
(
cL√

2
χiξjRk + icL√

2
χiξjIk + c∗R√

2
χjξiRk + −ic

∗
R√
2
χjξiIk

)
+ h.c. (B.51)
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B.2 The two-loop effective potential in the SARAH convention

Note that scalars couple left to right handed parts. In R-convention all scalars are real, labelled
as RK = (ϕ1, I1, ϕ2, I2. . . . ). In this convention, the interaction is given by

LFFS = −1
2
∑
I,J,K

yIJKψIψJRK + h.c.

= −1
2
∑
I,K

yIIK(ψI)2RK −
∑

I<J, K

yIJKψIψJRK + h.c., (B.52)

thus the coefficient of every term in appendix B.2.2 corresponds to a different yIJK with I < J .
The two-loop contributions to FFS and FFS are

V
(2)
FFS = 1

2
∑
I,J,K

∣∣∣yIJK ∣∣∣2 FFFS(I, J,K), (B.53)

V
(2)
FFS

= 1
4
∑
I,J,K

yIJKyI
′J ′kM∗II′M

∗
JJ ′FFFS(I, J,K) + h.c. (B.54)

The sum runs freely over I, J,K. When evaluating this sum, a symmetry factor of 2 appears in
B.53 because for each pair I , J there is an equal term with I, J interchanged. In the FFS
case, I can take 4 different indices, each of which gives the same expression in the sum.

V
(2)
FFS =

(∣∣∣∣ cL√2

∣∣∣∣2 +
∣∣∣∣ icL√2

∣∣∣∣2 +
∣∣∣∣ c∗R√2

∣∣∣∣2 +
∣∣∣∣−ic∗R√2

∣∣∣∣2
)
FFFS(i, j, k)

= (|cL|2 + |cR|2)FFFS(i, j, k) (B.55)

V
(2)
FFS

=
(
cL√

2
c∗R√

2
+ icL√

2
−ic∗R√

2

)
mDimDjFFFS(i, j, k) + hc

= 2<(cLc∗R)mDimDjFFFS(i, j, k) (B.56)

If the scalar is real instead of complex, the
√

2 will disappear everywhere and Ik can be dropped.
This leads to the exact same results as eqs. (B.55) and (B.56). If there is one Dirac and one
Majorana fermion, we can set χj = ξj in appendix B.2.2. The result also stays the same,
eqs. (B.55) and (B.56). Considering two Majorana fermions, i.e. setting χj = ξj and χi = ξi, we
get

LFFS = −
(
cL + c∗R√

2
ξiξjRk + i

cL − c∗R√
2

ξiξjIk

)
+ h.c. (B.57)
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Evaluating the contribution to the potential gives

V
(2)
FFS =

(∣∣∣∣cL + c∗R√
2

∣∣∣∣2 +
∣∣∣∣icL − c∗R√

2

∣∣∣∣2
)
FFFS(i, j, k)

=
(
|cL|2 + |cR|2

)
FFFS(i, j, k), (B.58)

V
(2)
FFS

= 1
2
∑
I<J

(yIJK)2mMimMjfFFS(i, j, k) + h.c.

= 1
2

((
cL + c∗R√

2

)2
+
(
i
cL − c∗R√

2

)2)
mMimMjfFFS(i, j, k) + h.c.

= 2<(cLc∗R)mMimMjfFFS(i, j, k). (B.59)

If there are two Majoranas and one real scalar, the interaction would be

L = −Ψi(cLPL + cRPR)ΨjRk

= −cLξiξjRk + cRξ
†
i ξ
†
jRk. (B.60)

The complex conjugate is not needed, because the right-handed part already describes the
conjugate if cR = c∗L is imposed. The contribution to V (2) is

V
(2)
FFS = |cL|2 FFFS(i, j, k), (B.61)

V
(2)
FFS

= 1
2(cL)2mMimMjFFFS(i, j, k) + h.c.

= <((cL)2)mMimMjFFFS(i, j, k). (B.62)

In the case of equal Dirac fermions and a complex scalar, the interaction Lagrangian will be

LFFS = −Ψi(cLPL + cRPR)Ψi · φk + h.c.

= −
(
cL + c∗R√

2
χiξiRk + i(cL − c∗R)√

2
χiξiIk

)
+ h.c., (B.63)

which gives

V
(2)
FFS = (|cL|2 + |cR|)FFFS(i, i, k), (B.64)

V
(2)
FFS

= 1
2

((
cL + c∗R√

2

)2
+
(
i(cL − c∗R)√

2

)2)
m2
DiFFFS(i, i, k) + h.c.

= 2<(cLc∗R)m2
DiFFFS(i, i, k). (B.65)

In the case of equal Dirac fermions and a real scalar, the interaction Lagrangian is

LFFS = −Ψi(cLPL + cRPR)Ψi ·Rk + h.c.
= −

(
cLχiξi + cRχ

†
iξ
†
i

)
Rk, (B.66)
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B.2 The two-loop effective potential in the SARAH convention

where again cR = c∗L is required. This leads to

V
(2)
FFS = |cL|2 FFFS(i, i, k) = 1

2
(
|cL|2 + |cR|2

)
FFFS(i, i, k), (B.67)

V
(2)
FFS

= 1
2 (cL)2m2

DiFFFS(i, i, k) + h.c.

= <((cL)2)m2
DiFFFS(i, i, k) = <(cLc∗R)m2

DiFFFS(i, i, k). (B.68)

Finally, there is the case of equal Majorana fermions and a complex scalar, where we have to
start with a factor of 1

2 in L,

LFFS = −1
2Ψi(cLPL + cRPR)Ψiφk + h.c.

= −1
2
(
cLξ

2
i + cR(ξ†i )2

)
φk + h.c.

= −1
2

(
cL + c∗R√

2
ξ2
iRk + i

cL − c∗R√
2

ξ2
i Ik

)
+ h.c. (B.69)

This time there is no symmetry factor in the sum over I, J , so we end up with

V
(2)
FFS = 1

2(|cL|2 + |cR|2)FFFS(i, j, k), (B.70)

V
(2)
FFS

= 1
4 (2cLc∗R)m2

MiFFFS(i, i, k) + h.c.

= <((cLc∗R)m2
MiFFFS(i, i, k). (B.71)

If the scalar is real, we have cL = c∗R and

LFFS = −1
2Ψi(cLPL + cRPR)ΨiRk

= −1
2cLξ

2
iRk + h.c., (B.72)

⇒ V
(2)
FFS = 1

2 |cL|
2 FFFS(i, i, k), (B.73)

⇒ V
(2)
FFS

= 1
4
(
c2
L

)
m2
MiFFFS(i, i, k) + h.c.

= 1
2<(c2

L)FFFS(i, i, k). (B.74)

The results for the coefficients are summarised in table B.1.

B.2.3 SSS

In the R-convention this interaction is given by

L = −1
6λijkRiRjRk

=
∑
i

(−1
6λiii)R

3
i +

∑
i,j

(−1
2λijj)RiR

2
j +

∑
i<j<k

(−λijk)RiRjRk (B.75)
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with three real scalars and λijk symmetric. The contribution to V can be split up in a similar
way,

VSSS = 1
12
∑
ijk

(λijk)2FSSS(i, j, k)

=
∑
i<j<k

1
2(λijk)2FSSS(i, j, k) +

∑
i,j

1
4(λijj)2FSSS(i, j, j)

+
∑
i

1
12(λiii)2FSSS(i, i, i). (B.76)

Consider complex scalars φi = (Ri + iIi)/
√

2.

L = cφ1φ2φ3 + c.c.
= c

2
√

2
(R1R2R3 − (I1I2R3 + I2I3R1 + I3I1R2)− i(I1I2I3 − (R1R2I3 +R2R3I1 +R3R1I2))) + c.c.

= c+ c∗

2
√

2
(R1R2R3 − (I1I2R3 + I2I3R1 + I3I1R2))

+ (−i)c− c
∗

2
√

2
(I1I2I3 − (R1R2I3 +R2R3I1 +R3R1I2))

= <c√
2

(R1R2R3 − (I1I2R3 + I2I3R1 + I3I1R2))

+ =c√
2

(I1I2I3 − (R1R2I3 +R2R3I1 +R3R1I2)) (B.77)

Identifying the particles R1, R2, R3, I1, I2, I3 with labels 1 . . . 6, we get

<(c)√
2

= −λ123 = λ453 = λ561 = λ642, (B.78)

=(c)√
2

= −λ456 = λ126 = λ234 = λ315. (B.79)

The effective potential contribution is

VSSS = 1
12(λijk)2FSSS(i, j, k)

=
∑
i<j<k

1
2(λijk)2FSSS(i, j, k) = (<(c)2 + =(c)2)FSSS(m2

1,m
2
2,m

2
3)

= |c|2 FSSS(m2
1,m

2
2,m

2
3). (B.80)

Now consider one real scalar, φ3 = R3 ∈ R,

L = cφ1φ2φ3 + c.c. = c

2(R1R2 − I1I2 + i(R1I2 +R2I1))R3 + c.c.

= <(c)(R1R2 − I1I2)R3 −=(c)(R1I2 +R2I1)R3. (B.81)
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B.2 The two-loop effective potential in the SARAH convention

The remaining five real scalars (R1, R2, R3, I1, I2) are labelled 1 . . . 5.

<(c) = −λ123 = λ345 (B.82)
=(c) = λ134 = λ234 (B.83)

Plugging this into (B.76), we get

VSSS = 1
12(λijk)2FSSS(i, j, k) =

∑
i<j<k

1
2(λijk)2FSSS(i, j, k) (B.84)

= (<(c)2 + =(c)2)FSSS(m2
1,m

2
2,m

2
3) = |c|2 FSSS(m2

1,m
2
2,m

2
3), (B.85)

which is the same result as (B.80). There is an additional factor of 2 in the coupling, but there
are only half the number of independent λ’s. Now, in the case of two real fields φ2, φ3 and one
complex field φ1,

L = cφ1φ2φ3 + c.c. = c√
2

(R1 + iI1)R2R3 + c.c.

=
√

2<(c)R1R2R3 +
√

2=(c)I1R2R3, (B.86)
⇒

√
2<(c) = −λ123, (B.87)√
2=(c) = λ234, (B.88)

there is again a factor of 2 and half the number of real field combinations. The result is the
same as in (B.80),

VSSS = |c|2 FSSS(m2
1,m

2
2,m

2
3). (B.89)

In the case of three real fields, c is real from the start and +c.c. can be omitted. There is only
one λ123 = −c,

VSSS = 1
2(c)2FSSS(m2

1,m
2
2,m

2
3). (B.90)

Now consider two equal complex scalars, φ2 = φ3.

L = c

2φ1φ
2
2 + c.c.

= <(c)
2
√

2
(R1R

2
2 − (2I1I2R2 + I2

2R1))

+ =(c)
2
√

2
(I1I

2
2 − (2R1R2I2 +R2

2I1)) (B.91)

⇒ <(c)√
2

= −λ122 = −λ155 = λ245 (B.92)

=(c)√
2

= −λ455 = λ125 = λ224 (B.93)
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Plugging this into (B.76), we obtain

VSSS =
∑
i,j

1
4(λijj)2FSSS(i, j, j) +

∑
i<j<k

1
2(λijk)2FSSS(i, j, k)

= 1
2 |c|

2 FSSS(m2
1,m

2
2,m

2
2) (B.94)

with a factor of 1
2 compared to (B.80). If φ1 = R1 is real instead of complex, L reads

L = c

2R1φ
2
2 + c.c.

= <(c)
2 (R1R

2
2 −R1I

2
2 )−=(c)R1R2I2, (B.95)

⇒ <(c) = −λ133 = +λ144, (B.96)
=(c) = −λ134, (B.97)

⇒ VSSS =
∑
i,j

1
4(λijj)2FSSS(i, j, j) +

∑
i<j<k

1
2(λijk)2FSSS(i, j, k)

= 1
2 |c|

2 FSSS(m2
1,m

2
2,m

2
2). (B.98)

In the case of two equal real scalars R2 = R3 and one complex scalar φ1, we get

L = c

2φ1R
2
2 + c.c.

= <(c)√
2

(R1R
2
2) + =(c)√

2
(I1I

2
2 ), (B.99)

⇒ <(c)√
2

= −1
2λ122,

=(c)√
2

= −1
2λ455 (B.100)

and

VSSS =
∑
i,j

1
4(λijj)2FSSS(i, j, j)

= 1
2 |c|

2 FSSS(m2
1,m

2
2,m

2
2). (B.101)

Turning φ1 into a real scalar will produce only one term ( c2R1R
2
2) with a real c = −λ122. This

gives

VSSS =
∑
i,j

1
4(λijj)2FSSS(i, j, j)

= 1
4 |c|

2 FSSS(m2
1,m

2
2,m

2
2). (B.102)
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B.2 The two-loop effective potential in the SARAH convention

Consider three equal complex scalars φ1 = φ2 = φ3.

L = c

6φ
3
1 + c.c.

= <(c)
6
√

2
(R3

1 − 3R1I
2
1 )− =(c)

6
√

2
(3R1I

2
1 − I3

1 ) (B.103)

⇒ <(c)√
2

= −λ111 = λ122 (B.104)

=(c)√
2

= −λ222 = λ112 (B.105)

⇒ VSSS =
(1

8 + 1
24

)
|c|2 FSSS(m2,m2,m2) = 1

6 |c|
2 FSSS(m2,m2,m2) (B.106)

At last, if there are three equal real scalars, we get

L = c

6R
3
1, (B.107)

⇒ c = −λ111, (B.108)

⇒ VSSS =
∑
i

1
12(λiii)2FSSS(m2,m2,m2). (B.109)

All these results are summarised in tab. B.2.

fields all different two equal all equal (φ1 = φ2 = φ3)
φ1,2,3 ∈ C 1 1/2 1/6
φ1,2 ∈ C, φ3 ∈ R 1 1/2 -
φ1 ∈ C, φ2,3 ∈ R 1 1/2 -
φ1,2,3 ∈ R 1/2 1/4 1/12

Table B.2: Prefactors for SSS contributions. The contribution is given by V (2)
SSS = k·|c|2 FSSS(m2

1,m
2
2,m

2
3),

where mi is the mass of φi. The table shows k for various cases.

B.2.4 SS

The SS contribution is given by

V
(2)
SS = 1

8
∑
ij

λiijjFSS(m2
i ,m

2
j ). (B.110)

In the R-convention this interaction is described by

L = − 1
24
∑
ijkl

λijklRiRjRKRl (B.111)

with a real and completely symmetric λijkl. Picking out only terms where i = j and k = l (both
fixed), the sum reads

L = −1
4λ

iijjR2
iR

2
j (no sum, i , j). (B.112)
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If all four scalars are equal, the term is just

L = − 1
24λ

iiiiR4
i (no sum). (B.113)

Because there are only two scalars in the loop, we only have to distinguish the cases of different
scalars and equal scalars. In the C-convention with two complex scalars φ1, φ2 we have

L = c |φ1|2 |φ2|2 , (B.114)
L = c

4 |φ1|4 (equal scalars), (B.115)

where c is the vertex factor in both cases. Introducing φi = (Ri + iIi)/
√

2 gives

L = c

4
(
R2

1 + I2
1

) (
R2

2 + I2
2

)
, (B.116)

L = c

16
(
R4

1 + I4
1 + 2R2

1I
2
1

)
(equal scalars). (B.117)

With this equation, the conventions can be matched. All real scalars (R1, R2, I1, I2) can be
labelled with indices 1, 2, 3, 4. The coefficients are

−c = λ1122 = λ1144 = λ3322 = λ3344 (different scalars), (B.118)

−c = 2
3λ

1111 = 2
3λ

2222 = 2λ1122 (equal scalars). (B.119)

Now simplify the contribution eq. (B.110) for complex different scalars. There is a factor of 2
because of the symmetry in i, j.

V
(2)
SS = 1

8λ
iijjFSS(i, j)

= 2 · 1
8
(
λ1122 + λ1144 + λ3322 + λ3344

)
FSS(i, j)

= −cFSS(i, j) (B.120)

Now repeat the calculation for two equal complex scalars:

V
(2)
SS = 1

8λ
iijjFSS(i, j)

= 1
8
(
λRRRR + λIIII + 2λRRII

)
FSS(i, i)

= −1
8

(3
2c+ 3

2c+ c

)
FSS(i, i)

= −1
2cFSS(i, i). (B.121)
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B.2 The two-loop effective potential in the SARAH convention

For one real (R2) and one complex scalar, we get

L = c

2 |φ1|2R2
2

= c

4(R2
1 + I2

1 )R2
2, (B.122)

⇒ −c = λ1122 = λ2233, (B.123)

⇒ V
(2)
SS = 2 · 1

8
(
λ1122 + λ2233

)
FSS(i, j) = − c2FSS(i, j). (B.124)

In the case of two real scalar R1, R2, we get

L = c

4R
2
1R

2
2, (B.125)

⇒ −c = λ1122, (B.126)

⇒ V
(2)
SS = 2 · 1

8
(
λ1122

)
FSS(i, j) = − c4FSS(i, j), (B.127)

and finally, for two equal real scalars R1 = R2,

L = c

24R
4
1, (B.128)

⇒ −c = λ1111, (B.129)

⇒ V
(2)
SS = 1

8
(
λ1111

)
FSS(i, i) = − c8FSS(i, i). (B.130)

The results for SS are summarised in tab. B.3.

fields φ1,2 different φ1 = φ2 equal
φ1,2 ∈ C 1 1/2
φ1 ∈ C, φ2 ∈ R 1/2 -
φ1,2 ∈ R 1/4 1/8

Table B.3: Prefactors for SS. The contribution is V (2)
SS = k · (−c)FSS(m2

1,m
2
2). The table shows k for

various cases.

B.2.5 VS

The V S contribution is given by

V
(2)
V S = 1

4
∑
a,i

(gaaii)2FV S(m2
a,m

2
i ). (B.131)

In the R-convention this interaction is described by

L =− 1
4
∑
a,i

gaaii(Aaµ)2R2
i . (B.132)
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k

V, S complex 1
one real, one complex 1/2
V, S real 1/4

Table B.4: Prefactor k for the V (2)
V S contribution.

Starting with a single complex vector Wµ
a and complex scalar φi, the interaction reads

L = c |Wµ
a |

2 |φi|2 = c

4
(
(Aµa)2 + (Bµ

a )2 +R2
i + I2

i )
)
, (B.133)

which gives gaaii = c. In this case, the sum in eq. (B.131) counts four identical terms, giving

V
(2)
V S = k ·

∑
a,i

c2FV S(m2
a,m

2
i ) (B.134)

with k = 1. If one of the particles is real, one needs to start with a factor 1
2 in the interaction to

keep gaaii = c. The sum in eq. (B.131) only counts two identical terms, resulting in k = 1
2 . If

both particles are real, the prefactor in the interaction needs to be 1
4 and the contribution has

k = 1
4 . The cases are summarised in table B.4.

B.2.6 SSV

In C-convention, the interaction between two complex scalars φi, φj and a complex vector
W a
µ = (Aaµ + iBa

µ)/
√

2 is described by

LSSV = cφi
←→
∂µφjW

a
µ + h.c. (B.135)

with c = c(a, i, j) (a, i, j fixed) and f
←→
∂µg = f∂µg − g∂µf . The same interaction in the R-

convention is given by
LSSV = −

∑
A,I,J

gAIJA
A
µRI∂

µRJ , (B.136)

with gAIJ = −gAJI , real scalars RI and real vectors AAµ . The potential in the R-convention is

V
(2)
SSV = 1

4
∑
A,I,J

(gAIJ)2FSSV (I, J,A). (B.137)

Now break down eq. (B.135) to real parts,

LSSV = cφi
←→
∂µφjW

a
µ + h.c.

= c

2
√

2
(Ri + iIi)

←→
∂µ(Rj + iIj)(Aaµ + iBa

µ) + h.c.

= <(c)√
2

(
(Ri
←→
∂µRj − Ii

←→
∂µIj)Aaµ − (Ri

←→
∂µIj + Ii

←→
∂µRj)Ba

µ

)
− =(c)√

2

(
(Ii
←→
∂µRj +Ri

←→
∂µIj)Aaµ + (Ri

←→
∂µRj − Ii

←→
∂µIj)Ba

µ

)
. (B.138)
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B.2 The two-loop effective potential in the SARAH convention

There are four terms for each <(c) and =(c) which all involve different fields, thus evaluating
eq. (B.137) gives

V
(2)
SSV = 2 · 1

4

(
4
(<(c)√

2

)2
+ 4

(=(c)√
2

)2)
= |c|2 FSSV (i, j, a), (B.139)

with a symmetry factor of 2 because of gAIJ = −gAJI . If the two scalars are complex conjugates
of each other, φj = φ∗i , appendix B.2.6 reduces to

→ <(c)√
2

(
−(Ri

←→
∂µ(−Ii) + Ii

←→
∂µRi)Ba

µ

)
− =(c)√

2

(
(Ii
←→
∂µRi +Ri

←→
∂µ(−Ii))Aaµ

)
(B.140)

= 2<(c)√
2

(
Ri
←→
∂µIiB

a
µ

)
− 2=(c)√

2

(
Ii
←→
∂µRiA

a
µ

)
, (B.141)

which gives

V
(2)
SSV = 2 · 1

4
(
2 (<(c))2 + 2 (=(c))2

)
= |c|2 FSSV (i, j, a). (B.142)

However, if the vector is real and φi = φ∗j , (B.138) becomes

LSSV = ic(Ii
←→
∂µRi)Aaµ + h.c., (B.143)

where the Hermitean conjugate can be dropped if c is chosen purely imaginary from the start.
If that is the case,

V
(2)
SSV = 1

2 |c|
2 FSSV (i, j, a). (B.144)

If another field is considered real, a factor of
√

2 disappears in the denominator and we end
up with half the terms in L, which gives again V (2)

SSV = |c|2 FSSV (i, j, a). Note that for two real
equal scalars, LSSV vanishes. All the cases are collected in tab. B.5.
Example: q̃bi , q̃c∗i , ga with c = −g3

2 (λa)cb and λa the Gell-Mann matrices.

⇒ V
(2)
q̃iq̃∗i g

= 1
2

∣∣∣∣g3
2

∣∣∣∣2
 8∑
a=1

3∑
b,c=1

|λabc|
2


︸                     ︷︷                     ︸

16

FSSV (q̃i, q̃i, 0) (B.145)

= 2g2
3FSSV (q̃, q̃, 0) c.f. [209], (3.48). (B.146)

fields k

φi, φj , V 1
φi = φ∗j , V ∈ C 1
φi = φ∗j , V ∈ R 1/2

else 1

Table B.5: This table gives k for the SSV contribution, V (2)
SSV = k · |c|2 FSSV (i, j, a).
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B.3 Self-energies and tadpoles at two loops

In this section we list the results for the first and second derivatives of the effective potential.
Although the expressions are largely identical to those calculated in Ref. [267] (with zero external
momentum), we give the full set for completeness. Further, some expressions are considerably
simplified compared to Ref. [267], but fully equivalent.

B.3.1 First derivatives of the effective potential (tadpoles)

The complete first derivative splits up in the following terms, each corresponding to a tadpole
diagram,

∂V (2)

∂R0
p

= N (S)
rp [TS + TSSFF + TFFFS + TSSV + TV S + TV V S + TFFV + TFFV + Tgauge].

(B.147)

TS contains purely scalar diagrams,

TS =TSS + TSSS + TSSSS , (B.148)

TSS =1
4λ

ikjjλikrf
(1,0)
SS (m2

i ,m
2
k;m2

j ), (B.149)

TSSS =1
6λ

rijkλijkfSSS(m2
i ,m

2
j ,m

2
k), (B.150)

TSSSS =1
4λ

rii′λijkλi
′jkf

(1,0,0)
SSS (m2

i ,m
2
i′ ;m2

j ,m
2
k). (B.151)

The new loop functions are defined as

f
(1,0)
SS (x, y; z) ≡−B0(x, y)J(z), (B.152)

f
(1,0,0)
SSS (x, y;u, v) ≡U0(x, y, u, v). (B.153)

Next, the diagrams with only fermions and scalars are given by

TSSFF =1
2y

IJkyIJlf
0,0,1
FFS(m2

I ,m
2
J ;m2

k,m
2
l )λklr

−
[1

2y
IJkyI

′J ′kM∗II′M
∗
JJ ′λ

klrU0(m2
l ,m

2
k,m

2
I ,m

2
J) + c.c.

]
, (B.154)

TFFFS =2Re
[
yIJryIKmy

KLmM∗JL
]
TFFFS(m2

I ,m
2
J ,m

2
K ,m

2
m)

+ 2Re
[
yIJry

IKmyJLmM∗KL
]
TFFFS(m2

I ,m
2
J ,m

2
K ,m

2
m)

− 2Re
[
yIJryKLmyMNmM∗IKM

∗
JMM

∗
LN

]
TFFFS(m2

I ,m
2
J ,m

2
L,m

2
m), (B.155)
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where the following definitions were used,

f
(1,0,0)
FFS (m2

I′ ,m
2
I ,m

2
J ;m2

k) ≡−B0(m2
I′ ,m

2
I)J(m2

J) +B0(m2
I′ ,m

2
I)J(m2

k) + I(m2
I′ ,m

2
J ,m

2
k)

− (m2
I +m2

J −m2
k)U0(m2

I′ ,m
2
I ,m

2
J ,m

2
k),

f
(0,0,1)
FFS (m2

I ,m
2
J ;m2

k,m
2
l ) ≡B0(m2

l ,m
2
k)J(m2

I) +B0(m2
l ,m

2
k)J(m2

J)− I(m2
I ,m

2
J ,m

2
l )

− (m2
I +m2

J −m2
k)U0(m2

l ,m
2
k,m

2
I ,m

2
J),

TFFFS(m2
I ,m

2
J ,m

2
L,m

2
m) ≡U0(m2

I ,m
2
J ,m

2
L,m

2
m),

TFFFS(m2
I ,m

2
J ,m

2
K ,m

2
m) ≡f (1,0,0)

FFS (m2
I ,m

2
J ,m

2
K ;m2

m),
TFFFS(m2

I ,m
2
J ,m

2
K ,m

2
m) ≡I(m2

I ,m
2
K ,m

2
m)−m2

IU0(m2
I ,m

2
J ,m

2
K ,m

2
m). (B.156)

Lastly, the tadpoles with vector bosons are given. In the cause of unbroken gauge groups, TFFV
and TFFV can be combined into TFV ,

TSSV =g2

2 d(i)C(i)λiir
(

3I(0,m2
i ,m

2
i )− J(m2

i ) + 2m2
i

)
(B.157)

=g2

2 d(i)C(i)λiirm2
i

[
− 12 + 11 logm2

i /Q
2 − 3 log2m2

i /Q
2)
]
,

TFV =g2d(I)C(I)Re(MII′y
II′r)4

(
− 3I(0,m2

I ,m
2
I) + 5J(m2

I)− 4m2
I + δMS

[
2J(m2

I) +m2
I

])
(B.158)

=g2d(I)C(I)Re(MII′y
II′r)4m2

I

[
6− 7 logm2

I/Q
2 + 3 log2m2

I/Q
2 + δMS

[
2 logm2

I/Q
2 − 1

]]
.

B.3.2 Tadpoles with broken gauge groups

It is likely that the two-loop calculation of SARAH/SPheno will be extended to broken gauge
groups in the near future. Therefore, it is necessary to calculate the first derivatives of the
effective potential for the case of massive vector bosons. This work was partially done in
Ref. [188], resulting in the following expressions,

TSSV = 1
2g

aijgakjλikrf
(1,0,0)
SSV (m2

i ,m
2
k;m2

j ,m
2
a) + 1

4g
aijgbijgabrf

(0,0,1)
SSV (m2

i ,m
2
j ;m2

a,m
2
b), (B.159)

TV S = 1
4g

abiigabrf
(1,0)
V S (m2

a,m
2
b ;m2

i ) + 1
4g

aaikλikrf
(0,1)
V S (m2

a;m2
i ,m

2
k), (B.160)

TV V S = 1
2g

abigcbigacrf
(1,0,0)
V V S (m2

a,m
2
c ;m2

b ,m
2
i ) + 1

4g
abigabjλijrf

(0,0,1)
V V S (m2

a,m
2
b ;m2

i ,m
2
j ), (B.161)

TFFV =2gaJI gKbJRe(MKI′y
I′Ir)f (1,0,0)

FFV (m2
I ,m

2
K ;m2

J ,m
2
a)

+ 1
2g

aJ
I gIbJg

abrf
(0,0,1)
FFV (m2

I ,m
2
J ;m2

a,m
2
b), (B.162)
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TFFV =2gaJI gKbJRe(MKI′y
I′Ir)f (1,0,0)

FFV (m2
I ,m

2
K ;m2

J ,m
2
a)

+ 1
2g

aJ
I gIbJg

abrf
(0,0,1)
FFV (m2

I ,m
2
J ;m2

a,m
2
b), (B.163)

TFFV =gaJI gaJ
′

I′ Re(yII′rM∗JJ ′)
[
fFFV (m2

I ,m
2
J ,m

2
a) +M2

I f
(1,0,0)
FFV

(m2
I ,m

2
I′ ;m2

J ,m
2
a)
]

+ gaJI gaJ
′

I′ Re(M IK′MKI′M∗JJ ′yKK′r)f
(1,0,0)
FFV

(m2
I ,m

2
I′ ;m2

J ,m
2
a)

+ 1
2g

aJ
I gbJ

′
I′ g

abrM II′M∗JJ ′f
(0,0,1)
FFV

(m2
I ,m

2
J ;m2

a,m
2
b), (B.164)

Tgauge =1
4g

abcgdbcgadrf (1,0,0)
gauge (m2

a,m
2
d;m2

b ,m
2
c). (B.165)

However, the emerging derivatives of the loop functions fSSV , fV S , fFFV , fFFV , fgauge were not
calculated. This is done in this thesis for the first time. Note that the tadpole corrections are
needed in this form even for a full momentum dependent calculation. In the MS scheme the
functions have extra terms

fX,MS = f
X,DR′ + ∆MSfX

which are needed for non-supersymmetric models. First, we quote the loop functions from the
effective potential as published in Ref. [265]. Here we include the MS term with a δMS that can
be 0 for DR′ and 1 for MS.

fSSV =1
z

[
−∆(x, y, z)I(x, y, z) + (x− y)2I(0, x, y)

+ (y − x− z)J(x, z) + (x− y − z)J(y, z) + zJ(x, y)
]

+ 2(x+ y − z/3)J(z), (B.166)

fV S =3J(x, y) + δMS2xJ(y), (B.167)

fV V S = 1
4xy

[
(−∆(x, y, z)− 12xy)I(x, y, z)

+ (x− z)2I(0, x, z) + (y − z)2I(0, y, z)− z2I(0, 0, z)
+ (z − x− y)J(x, y) + yJ(x, z) + xJ(y, z)

]
+ 1

2J(x) + 1
2J(y) + δMS (2J(z)− x− y − z) , (B.168)

fFFV =1
z

[
(∆(x, y, z)− 3z2 + 3xz + 3yz))I(x, y, z)− (x− y)2I(0, x, y)

+ (x− y − 2z)J(x, z) + (y − x− 2z)J(y, z) + 2zJ(x, y)
]

+ 2(−x− y + z/3)J(z) + δMS

(
−2xJ(x)− 2yJ(y) + (x+ y)2 − z2

)
, (B.169)

fFFV =6I(x, y, z) + δMS (2(x+ y + z)− 4J(x)− 4J(y)) , (B.170)
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fgauge = 1
4xyz

{
(−x4 − 8x3y − 8x3z + 32x2yz + 18y2z2)I(x, y, z)

+ (y − z)2(y2 + 10yz + z2)I(0, y, z) + x2(2yz − x2)I(0, 0, x)
+ (x2 − 9y2 − 9z2 + 9xy + 9xz + 14yz)xJ(y, z)

+ (22y + 22z − 40x/3)xyzJ(x)
}

+ (x↔ y) + (x↔ z)

+ δMS

(
x2 + 12yz + 2xJ(x) + (x↔ y) + (x↔ z)

)
, (B.171)

where ∆(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2xz − 2yz. What we need is the result of applying the
operators Dx,u and Dz,u (defined by eq. (3.53)) on all of these functions (for fgauge only one
derivative is needed). It is highly useful to make systematic use of the product rule (eq. (3.54))
and the following list of replacement rules,

Dx,uJ(x) =−B0(x, u), (B.172)
Dx,uJ(x, y) =−B0(x, u)J(y), (B.173)
Dx,uI(x, y, z) =− U0(x, u, y, z), (B.174)

∆(x, y, z) =x2 + y2 + z2 − 2(xy − yz − xz), (B.175)
∆(x, y, 0) =(x− y)2, (B.176)

Dx,u∆(x, y, z) =x+ u− 2(y + z), (B.177)

Dz,u
1
z

=
(1
z
− 1
u

) 1
z − u

= − 1
zu
, (B.178)

Dz,u
∆(x, y, z)

z
=1− ∆(x, y, 0)

zu
. (B.179)

The functions fV S and fFFV have the simplest structure and are easy to differentiate.

f
(1,0)
V S (x, u; y) =Dx,ufV S(x, y) = −3B0(x, u)J(y) + δMS2J(y), (B.180)

f
(0,1)
V S (x, y, u) =Dy,ufV S(x, y) = −3J(x)B0(y, u) + δMS (−2xB0(y, u)) , (B.181)

f
(1,0,0)
FFV

(x, u; y, z) =Dx,ufFFV (x, y, z) = −6U0(x, u, y, z) + δMS [2 + 4B0(x, u)] , (B.182)

f
(0,0,1)
FFV

(x, y, z, u) =Dz,ufFFV (x, y, z) = −6U0(x, y, z, u) + 2δMS. (B.183)

The other functions are more complicated combinations of polynomials and loop functions.

f
(1,0,0)
SSV,DR′

(x, u; y, z)

=1
z

(−Dx,u∆(x, y, z))I(x, y, z)− 1
z

∆(u, y, z)(Dx,uI(x, y, z))

+ 1
z

(Dx,u∆(x, y, 0))I(x, y, 0) + 1
z

(Dx,uI(x, y, 0))∆(u, y, 0)− 1
z
J(x, z)

+ 1
z

(y − u− z)Dx,uJ(x, z) + 1
z
J(y, z) +Dx,uJ(x, y) + 2J(z)

=1
z

[−(x+ u− 2(y + z))I(x, y, z) + ∆(u, y, z)U0(x, u, y, z)− J(x, z)

−(y − u− z)B0(x, u)J(z) + J(y, z)]−B0(x, u)J(y) + 2J(z) (B.184)

157



Appendix B Loop calculations

f
(0,0,1)
SSV,DR′

(x, y, z, u)

=−Dz,u
∆(x, y, z)

z
I(x, y, z)− ∆(x, y, u)

u
Dz,uI(x, y, z)− (x− y)2

zu
I(x, y, 0)

+ y − x− u
u

Dz,uJ(x, z) +
(
−y − x

zu

)
J(x, z) + x− y − u

u
Dz,uJ(y, z) +

(
−x− y

zu

)
J(y, z)

+ 2
(
x− y − u

3

)
Dz,uJ(z)− 2

3J(z)

=− 1
z

(
z + u− 2(x+ y)− ∆(x, y, u)

u

)
I(x, y, z) + ∆(x, y, u)

u
U0(z, u, y, x)− (x− y)2

zu
I(x, y, 0)

− y − x− u
u

J(x)B0(z, u)− y − x
zu

J(x, z)− x− y − u
u

J(y)B0(z, u)− x− y
zu

J(y, z)

− 2
(
x− y − u

3

)
B0(z, u)− 2

3J(z) (B.185)

The function fSSV is equal in the MS and DR′ schemes, ∆MSfSSV = 0.

f
(1,0,0)
FFV,DR′

(x, u; y, z)

=(3 + 1
z
Dx,u∆(x, y, z))I(x, y, z) + ∆(u, y, z)− 3z2 + 3uz + 3yz

z
Dx,uI(x, y, z)

− 1
z

(Dx,u∆(x, y, 0))I(x, y, 0)

− 1
z

(Dx,uI(x, y, 0))∆(u, y, 0) + 1
z
J(x, z) + u− y − 2z

z
Dx,uJ(x, z)

− 1
z
J(y, z) + 2Dx,uJ(x, y)− 2J(z)

=
(

3 + x+ u− 2(y + z)
z

)
I(x, y, z)− ∆(u, y, z)− 3z2 + 3uz + 3yz

z
U0(x, u, y, z)

− x+ u− 2y
z

I(x, y, 0) + (u− y)2

z
U0(x, u, y, 0)

+ J(x, z)− J(y, z)
z

− u− y − 2z
z

B0(x, u)J(z)− 2B0(x, u)J(y)− 2J(z) (B.186)
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f
(0,0,1)
FFV,DR′

(x, y, z, u)

=
[
Dz,u

∆(x, y, z)
z

− 3
]
I(x, y, z) +

[∆(x, y, u)
u

− 3(u− x− y)
]
Dz,uI(x, y, z) + (x− y)2

zu
I(x, y, 0)

− x− y
zu

J(x, z) + x− y − 2u
u

Dz,uJ(x, z)− y − x
zu

J(y, z) + y − x− 2u
u

Dz,uJ(y, z)

+ 2
3J(z)− 2(x+ y − u

3 )Dz,uJ(z)

=−
[
2 + ∆(x, y, 0)

zu

]
I(x, y, z) +

[∆(x, y, u)
u

− 3(u− x− y)
]
U0(z, u, x, y)

+ (x− y)2

zu
I(x, y, 0)− x− y

zu
[J(x, z)− J(y, z)]− x− y

u
B0(z, u) [J(x)− J(y)]

+ 2B0(z, u) [J(x) + J(y)] + 2
3J(z) + 2(x+ y − u

3 )B0(z, u) (B.187)

The function fFFV has a non-vanishing MS correction,

∆MSfFFV =− 2xJ(x)− 2yJ(y) + (x+ y)2 − z2, (B.188)
Dx,u∆MSfFFV =− 2J(x) + 2uB0(x, u) + x+ u+ 2y, (B.189)
Dz,u∆MSfFFV =− z − u. (B.190)

f
(1,0,0)
V V S,DR′

(x, u; y, z)

=
[
− 1

4y

(
1− ∆(y, z, 0)

xu

)]
I(x, y, z) +

[
−∆(u, y, z)

4uy − 3
]
Dx,uI(x, y, z)

+ 1
4y

(
1− z2

xu

)
I(0, x, z) + (u− z)2

4uy Dx,uI(0, x, z)

− (y − z)2

4xuy I(0, y, z) + z2

4xuyI(0, 0, z)− z − y
4xuy J(x, y) + z − u− y

4uy Dx,uJ(x, y)

− 1
4xuJ(x, z) + 1

4uDx,uJ(x, z) + 1
2Dx,uJ(x)

=− 1
4y

(
1− ∆(y, z, 0)

xu

)
I(x, y, z) +

[
3 + ∆(u, y, z)

4uy

]
U0(x, u, y, z)

+ 1
4y

(
1− z2

xu

)
I(0, x, z)− (u− z)2

4uy U0(x, u, z, 0)

− (y − z)2

4xuy I(0, y, z) + z2

4xuyI(0, 0, z)− z − y
4xuy J(x, y)− z − u− y

4uy B0(x, u)J(y)

− 1
4xuJ(x, z)− 1

4uB0(x, u)J(z)− 1
2B0(x, u). (B.191)
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f
(0,0,1)
V V S,DR′

(x, y, z, u)

=− z + u− 2(y + x)
4xy I(x, y, z) +

[
−∆(x, y, u)

4xy − 3
]
Dz,uI(x, y, z)

+ z + u− 2x
4xy I(0, y, z) + (y − u)2

4xy Dz,uI(0, y, z)− z + u

4xy I(0, 0, z)− u2

4xyDz,uI(0, 0, z)

+ 1
4xyJ(x, y) + 1

4xDz,uJ(x, z) + 1
4yDz,uJ(y, z)

=− z + u− 2(y + x)
4xy I(x, y, z) +

[∆(x, y, u)
4xy + 3

]
U0(z, u, x, y)

+ z + u− 2x
4xy I(0, y, z)− (y − u)2

4xy U0(z, u, y, 0)− z + u

4xy I(0, 0, z) + u2

4xyU0(z, u, 0, 0)

+ 1
4xyJ(x, y)− 1

4B0(z, u)
[
J(x)
x

+ J(y)
y

]
(B.192)

The function fV V S has a non-vanishing MS correction,

δMSfV V S =− 2J(z)− x− y − z, (B.193)
Dx,uδMSfV V S =− 1, (B.194)
Dz,uδMSfV V S =− 1− 2B0(z, u). (B.195)

Finally, the pure gauge function fgauge is by far the most complicated one and needs to be split
up:

fgauge(x, y, z) =fpart,gauge(x, y, z) + (x↔ y) + (x↔ z), (B.196)
fpart,gauge(x, y, z) =A(x, y, z)I(x, y, z) +B(x, y, z)I(0, y, z) + C(x, y, z)I(0, 0, x)

+D(x, y, z)J(y, z) + E(x, y, z)J(x), (B.197)

A(x, y, z) =
(
−x4 − 8x3y − 8x3z + 32x2yz + 18y2z2

)
/(4xyz), (B.198)

B(x, y, z) = (y − z)2(y2 + 10yz + z2)/(4xyz), (B.199)
C(x, y, z) = x2(2yz − x2)/(4xyz), (B.200)
D(x, y, z) = (x2 − 9y2 − 9z2 + 9xy + 9xz + 14yz)/(4yz), (B.201)

E(x, y, z) = 11
2 (y + z)− 10

3 x. (B.202)

Note how the derivative operator acts on a symmetry term with an arbitrary function g,

Dx,u
[
g(x, y, z)

∣∣∣
x↔y

]
= Dx,ug(y, x, z) = [Dy,ug(x, y, z)]x↔y . (B.203)

Using this, we can write

f (1,0,0)
gauge (x, u; y, z) =Dx,uf (1,0,0)

gauge (x, y, z)
=Dx,ufpart,gauge(x, y, z) + [Dy,ufpart,gauge(x, y, z)]x↔y

+ [Dz,ufpart,gauge(x, y, z)]x↔z , (B.204)
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hence we need all three derivatives of fpart,gauge(x, y, z) with respect to x, y and z.

Dx,ufpart,gauge(x, y, z) =(Dx,uA(x, y, z))I(x, y, z)−A(u, y, z)U0(x, u, y, z)
+ (Dx,uB(x, y, z))I(0, y, z)
+ (Dx,uC(x, y, z))I(0, 0, x)− C(u, y, z)U0(x, u, 0, 0)
+ (Dx,uD(x, y, z))J(y, z)
(Dx,uE(x, y, z))J(x)− E(u, y, z)B0(x, u) (B.205)

Dy,ufpart,gauge(x, y, z) =(Dy,uA(x, y, z))I(x, y, z)−A(x, u, z)U0(y, u, x, z)
+ (Dy,uB(x, y, z))I(0, y, z)−B(x, u, z)U0(y, u, z, 0)
+ (Dy,uC(x, y, z))I(0, 0, x)
+ (Dy,uD(x, y, z))J(y, z)−D(x, u, z))B0(y, u)J(z)
(Dy,uE(x, y, z))J(x) (B.206)

Dz,ufpart,gauge(x, y, z) =(Dz,uA(x, y, z))I(x, y, z)−A(x, y, u)U0(z, u, x, y)
+ (Dz,uB(x, y, z))I(0, y, z)−B(x, y, u)U0(z, u, y, 0)
+ (Dz,uC(x, y, z))I(0, 0, x)
+ (Dz,uD(x, y, z))J(y, z)−D(x, y, u))B0(z, u)J(y)
(Dz,uE(x, y, z))J(x) (B.207)

Up to now, we have merely used the product rule and the known replacements for derivatives of
J(x), J(x, y), I(x, y, z). Only the derivatives of the functions A,B,C,D,E are needed now to
complete the calculation.

Dx,uA(x, y, z) =
[
−ux(u2 + ux+ x2 + 8(u+ x)y) + 8ux(u+ x− 4y)z + 18y2z2

]
/(4uxyz)

(B.208)
Dx,uB(x, y, z) =− (y − z)2(y2 + 10yz + z2)/(4uxyz) (B.209)

Dx,uC(x, y, z) =−
[
u2 + ux+ x2 − 2yz

]
/(4yz) (B.210)

Dx,uD(x, y, z) = [u+ x+ 9(y + z)] /(4yz) (B.211)

Dx,uE(x, y, z) =− 10
3 (B.212)
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Dy,uA(x, y, z) =x2(x+ 8z)
4uyz + 9z

2x (B.213)

Dy,uB(x, y, z) =
[
uy(u2 + uy + y2) + 8uy(u+ y)z − 18uyz2 − z4

]
/(4uxyz) (B.214)

Dy,uC(x, y, z) = x3

4uyz (B.215)

Dy,uD(x, y, z) =−
[
x2 + 9uy + 9xz − 9z2

]
/(4uyz) (B.216)

Dy,uE(x, y, z) =11
2 (B.217)

The derivatives with respect to z are similar to the y derivatives,

Dz,uF (x, y, z) = [Dy,uF (x, y, z)]y↔z , F = A,B,C,D,E (B.218)

Including the MS remainder,

∆MSfgauge =x2 + 12yz + 2xJ(x) + (x↔ y) + (x↔ z), (B.219)
Dx,u∆MSfgauge =x+ u+ 2J(x)− 2uB0(x, u) + 12(z + y), (B.220)

the calculation is complete.

B.3.3 Second derivatives of the effective potential (self-energies)

The two-loop self-energy of a scalar particle at zero external momentum is given by Πij ,

− ∂V (2)

∂R0
p∂R

0
q

=N (S)
ip N

(S)
jq Πij , (B.221)

−Πij =ΠS
ij + ΠS2F2(W )

ij + ΠS1F4(M)
ij + ΠS2F3(M)

ij + ΠS3F2(V )
ij + ΠS1F4(V )

ij + ΠSkV1
ij + ΠF4V1

ij ,

(B.222)

where the minus is included to avoid having a minus in front of every ΠXY
ij component in the

following.

Diagrams with only scalar propagators

The purely scalar contributions corresponding to the diagrams of fig. 3.5 are contained in ΠS
ij

and identical to the expressions of Ref. [267].

ΠS
ij = 1

4λ
ijklλkmnλlmnWSSSS(m2

k,m
2
l ,m

2
m,m

2
n) + 1

4λ
ijklλklmmXSSS(m2

k,m
2
l ,m

2
m) (B.223)

+1
2λ

iklλjkmλlmnnYSSSS(m2
k,m

2
l ,m

2
m,m

2
n) + 1

4λ
iklλjmnλklmnZSSSS(m2

k,m
2
l ,m

2
m,m

2
n)

+1
6λ

iklmλjklmSSSS(m2
k,m

2
l ,m

2
m) + 1

2
(
λiklλjkmn + λjklλikmn

)
λlmnUSSSS(m2

k,m
2
l ,m

2
m,m

2
n)

+1
2λ

iklλjkmλlnpλmnpVSSSSS(m2
k,m

2
l ,m

2
m,m

2
n,m

2
p) (B.224)

+1
2λ

ikmλjlnλklpλmnpMSSSSS(m2
k,m

2
l ,m

2
m,m

2
n,m

2
p)
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The loop integral functions are given by:

WSSSS(x, y, z, u) = U0(x, y, z, u), (B.225)
XSSS(x, y, z) = −J(z)B0(x, y), (B.226)

YSSSS(x, y, z, u) = J(u)C0(x, y, z), (B.227)
ZSSSS(x, y, z, u) = B0(x, y)B0(z, u), (B.228)

SSSS(x, y, z) = −I(x, y, z), (B.229)
USSSS(x, y, z, u) = U0(x, y, z, u), (B.230)

VSSSSS(x, y, z, u, v) = [U0(x, y, u, v)− U0(x, z, u, v)]/(y − z), (B.231)
MSSSSS(x, y, z, u, v) = −M0(x, y, z, u, v). (B.232)

In the case that y = z, we have a simplification

VSSSSS(x, y, y, u, v) = = ∂

∂y
U(x, y, u, v) ≡ −V (x, y, u, v). (B.233)

Note that the expressions XSSS ,YSSS ,ZSSS follow from differentiating the tadpole TSS (snow-
man topology), while the others follow from differentiating the tadpoles TSSS , TSSSS (sunrise
topology).

Diagrams with scalar and fermion propagators

The contributions from diagrams with the topology W are

ΠS2F2(W )
ij = 1

2λ
ijklRe

[
yMNkyM

′N ′lMMM ′MNN ′
]
WSSFF (m2

k,m
2
l ,m

2
M ,m

2
N )

+1
2λ

ijklyMNkyMNlWSSFF (m2
k,m

2
l ,m

2
M ,m

2
N ), (B.234)

where the appearing loop functions are given by

WSSFF (x, y, z, u) = −2WSSSS(x, y, z, u), (B.235)
WSSFF (x, y, z, u) = −(z + u− y)U0(x, y, z, u)− I(x, z, u) +B0(x, y)(J(z) + J(u)). (B.236)

The contributions from diagrams of the topology M with four fermions are

ΠS1F4(M)
ij

=Re
[
yKMiyLNjyK

′L′pyM
′N ′pMKK′MLL′MMM ′MNN ′

]
MFFFFS(m2

K ,m
2
L,m

2
M ,m

2
N ,m

2
p)

+ 2Re
[
yKMiyLNjyKL′py

M ′NpMLL′MMM ′
]
MFFFFS(m2

K ,m
2
L,m

2
M ,m

2
N ,m

2
p)

+ Re
[(
yKMiyLNj + yKMjyLNi

)
yKL′pyMN ′pM

LL′MNN ′]MFFFFS(m2
K ,m

2
L,m

2
M ,m

2
N ,m

2
p)

+ 2Re
[
yKMiyLNjyKLpy

M ′N ′pMMM ′MNN ′
]
MFFFFS(m2

K ,m
2
L,m

2
M ,m

2
N ,m

2
p)

+ Re
[
yKMiyLNjyKLpyMNp

]
MFFFFS(m2

K ,m
2
L,m

2
M ,m

2
N ,m

2
p), (B.237)
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where

MFFFFS(x, y, z, u, v) =2M0(x, y, z, u, v), (B.238)
MFFFFS(x, y, z, u, v) =(y + z − v)M0(x, y, z, u, v)− U0(x, z, u, v)− U0(u, y, x, v)

+B0(x, z)B0(y, u), (B.239)
MFFFFS(x, y, z, u, v) =(x+ z)M0(x, y, z, u, v)− U0(y, u, z, v)− U0(u, y, x, v), (B.240)
MFFFFS(x, y, z, u, v) =(x+ y − v)M0(x, y, z, u, v)− U0(x, z, u, v)− U0(y, u, z, v)

+B0(x, z)B0(y, u), (B.241)
MFFFFS(x, y, z, u, v) =(xu+ yz)M0(x, y, z, u, v)− xU0(z, x, y, v)− zU0(x, z, u, v)

− uU0(y, u, z, v)− yU0(u, y, x, v) + I(x, u, v) + I(y, z, v). (B.242)

The diagrams with three fermion propagators and two scalar propagators (M topology) are

ΠS2F3(M)
ij =λikm

(
Re
[
yLNjyL

′PkyN
′P ′mMLL′MNN ′MPP ′

]
MSFSFF (m2

k,m
2
L,m

2
m,m

2
N ,m

2
P )

+ 2Re
[
yLNjyLPky

N ′PmMNN ′
]
MSFSFF (m2

k,m
2
L,m

2
m,m

2
N ,m

2
P )

+ Re
[
yLNjyLPkyNP ′mM

PP ′]MSFSFF (m2
k,m

2
L,m

2
m,m

2
N ,m

2
P )
)

+ (i↔ j), (B.243)

where

MSFSFF (x, y, z, u, v) = 2M0(x, y, z, u, v), (B.244)
MSFSFF (x, y, z, u, v) = (v − x+ y)M0(x, y, z, u, v) + U0(y, u, z, v)− U0(x, z, u, v)

−B0(x, z)B0(y, u), (B.245)
MSFSFF (x, y, z, u, v) = (y + u)M0(x, y, z, u, v)− U0(x, z, u, v)− U0(z, x, y, v). (B.246)

The diagrams with two fermion propagators and three scalar propagators of the topology V are

ΠS3F2(V )
ij = λiklλjkm

(
Re
[
yNPlyN

′P ′mMNN ′MPP ′
]
VSSSFF (m2

k,m
2
l ,m

2
m,m

2
N ,m

2
P )

+Re
[
yNPlyNPm

]
VSSSFF (m2

k,m
2
l ,m

2
m,m

2
N ,m

2
P )
)
, (B.247)

where

VSSSFF (x, y, z, u, v) = −2VSSSSS(x, y, z, u, v), (B.248)
VSSSFF (x, y, z, u, v) = U0(x, y, u, v) + (z − u− v)VSSSSS(x, y, z, u, v)

− (J(u) + J(v))C0(x, y, z). (B.249)
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The results from the V diagrams with four fermions are

ΠS1F4(V )
ij

=2Re
[
yKLiyK

′MjyL
′NpyM

′N ′pMKK′MLL′MMM ′MNN ′
]
VFFFFS(m2

K ,m
2
L,m

2
M ,m

2
N ,m

2
p)

+ 2Re
[(
yKLiyK

′Mj + yKLjyK
′Mi)yLNpyM ′NpMKK′MMM ′

]
VFFFFS(m2

K ,m
2
L,m

2
M ,m

2
N ,m

2
p)

+ 2Re
[
yKLiyK

′MjyLNpyMN ′pMKK′M
NN ′]VFFFFS(m2

K ,m
2
L,m

2
M ,m

2
N ,m

2
p)

+ 2Re
[
yKLiyKMjy

L′NpyM ′NpMLL′M
MM ′]VFFFFS(m2

K ,m
2
L,m

2
M ,m

2
N ,m

2
p)

+ 2Re
[(
yKLiyKMj + yKLjyKMi

)
yLNpyM ′N ′pM

MM ′MNN ′]VFFFFS(m2
K ,m

2
L,m

2
M ,m

2
N ,m

2
p)

+ 2Re
[
yKLiyKMjyLNpy

MNp]VFFFFS(m2
K ,m

2
L,m

2
M ,m

2
N ,m

2
p), (B.250)

where

VFFFFS(x, y, z, u, v) =− 2VSSSSS(x, y, z, u, v), (B.251)
VFFFFS(x, y, z, u, v) =− U0(x, y, u, v) + (v − z − u)VSSSSS(x, y, z, u, v)

− (J(v)− J(u))C0(x, y, z), (B.252)
(B.253)

VFFFFS(x, y, z, u, v) =− 2U0(x, y, u, v)− 2zVSSSSS(x, y, z, u, v), (B.254)

VFFFFS(x, y, z, u, v) =f (2,0,0)
FFS (x, y, z;u, v), (B.255)

VFFFFS(x, y, z, u, v) =− U0(x, y, u, v)− U0(y, z, u, v)− (x+ z)VSSSSS(x, y, z, u, v), (B.256)

VFFFFS(x, y, z, u, v) =f (1,0,0)
FFS (y, z, u; v) + xf

(2,0,0)
FFS (x, y, z, u; v). (B.257)

The required derivatives of fFFS are

f
(1,0,0)
FFS (x, y, u; v) ≡B0(x, y)(J(v)− J(u)) + I(x, u, v)− (y + u− v)U0(x, y, u, v),

f
(2,0,0)
FFS (x, y, z, u; v) ≡C0(x, y, z)(J(u)− J(v))− U0(x, z, u, v)− (y + u− v)VSSSSS(x, y, z, u, v),

(B.258)

with f
(2,0,0)
FFS symmetric in its first three indices. In this case there are some simplifications

compared to the source Ref. [267], (4.33)–(4.39).

Diagrams with one vector propagator and scalars

If only unbroken gauge groups and massless vectors are considered, the expressions for diagrams
including one vector propagator are greatly simplified. Diagrams involving only scalars and one
vector are given by

ΠSkV1
ij =1

2g
2d(i)C(i)

[
λijkkWSSSV (m2

k,m
2
k,m

2
k, 0) + λiklλjklGSS(m2

k,m
2
l )
]
, (B.259)

where GSS combines several diagrams into one. The full expressions of Ref. [267] simplify to the
following loop functions,

WSSSV (x, x, x, 0) ≡ 3I(x, x, 0)− J(x) + 2x, (B.260)

165



Appendix B Loop calculations

GSS(x, y) ≡4yV (x, y, y, 0) + 4xV (y, x, x, 0)− 2U0(x, y, y, 0)− 2U0(y, x, x, 0)
−2J(y)B0(x, y′)− 2J(x)B0(y, x′)

+ 2(x+ y)M(x, x, y, y, 0)− 2U0(x, y, y, 0)− 2U0(y, x, x, 0) +B0(x, y)2. (B.261)

Equivalently, GSS can also be obtained by differentiating eq. (B.158)), resulting in

GSS(x, y) =2
[
− U0(m2

i ,m
2
k,m

2
k, 0)− U0(m2

m,m
2
i ,m

2
i , 0) +B0(m2

i ,m
2
k) + 2)

]

=− 12 + 11(xlnx− ylny)− 3(xln2
x− yln2

y)
x− y

, (B.262)

GSS(x, x) =− 1 + 5lnx− 3ln2
x . (B.263)

Diagrams with one vector propagator and fermions

For the diagrams involving only fermions and one vector propagator we obtain

ΠFkV1
ij =g2d(K)C(K)

[
Re(yiKLyjKL)GFF (m2

K ,m
2
L)

+ Re(yiKLyjK′L′MKK′MLL′)GFF (m2
K ,m

2
L)
]
, (B.264)

where again several diagrams are combined into GFF , GFF ,

GFF (x, y) ≡2(x+ y)[3U0(x, y, x, 0) + 3U0(x, y, y, 0)− 5B0(x, y)]
− 6I(x, x, 0)− 6I(y, y, 0) + 10J(x) + 10J(y)− 16(x+ y)
+ δMS 4

[
J(x) + J(y)− (x+ y)B0(x, y)

]
,

GFF (x, y) ≡4
(

3U0(x, y, x, 0) + 3U0(x, y, y, 0)− 5B0(x, y)− 4
)

− δMS4
[
1 + 2B0(x, y)

]
. (B.265)
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APPENDIX C

Cross section limits for long-lived particles

C.1 Escape probability approximation

In the analysis presented in chapter 6, the probability p(D) for an LL particle to leave the
detector with the mean decay distance D = cβγτ was calculated using the pseudorapidity η
and energy E from Monte Carlo events and the detector dimensions. Defining the distance
that an LL particle travelled when it decays as r = cβγt, we have the probability exp(−r/D)
of decaying beyond a certain distance r. One can make the simplifying assumption that the
particles are produced isotropically and that their energies are not correlated (which is not
necessarily accurate). In that case, the probability of a particle crossing a small area S at a
boundary at a distance r from the origin is

p(D) =
∫
S
f(r,D)dS (C.1)

with

f(r,D) = 1
4πr2 exp

(−r
D

)
. (C.2)

In our case we wish to find the probability of a particle reaching beyond the boundary of a
cylindrical detector, Pc(D). Splitting the cylinder into a barrel and endcaps, we have

Pc(D) =
∫
barrel

f(r,D)dS + 2
∫
endcap

f(r,D)dS

= 4πR
∫ L/2

0
f(
√
z2 +R2, D) R√

z2 +R2
dz

+ 4π
∫ R

0
f(
√

(L/2)2 + ρ2, D) L/2√
(L/2)2 + ρ2 ρ dρ. (C.3)

The function Pc(D) is universal and is shown in fig. C.1. To obtain a probability as a function
of cτ , we need to integrate over the relativistic factors βγ =

√
γ2 − 1, or substituting γ = E/m,

equivalently integrate over the energy E. The integration has to be weighted with an energy
distribution function, gm(E). The resulting function is P̄c(cτ), which is also mass dependent
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Appendix C Cross section limits for long-lived particles

because of the substitution γ = E/m,

P̄c(cτ) =
∫

dE gm(E)Pc(D). (C.4)

Since P̄c(cτ) describes the fraction of events that will contribute to the Emiss
T signature in case

of unstable particles, we have the relation

σ95%
cτ × P̄c(cτ)2 = σ95%

stable, (C.5)

which can be rearranged into

σ95%
cτ = σ95%

stable × [P̄c(cτ)]−2. (C.6)

This equation (C.6) provides the needed relation between σ95%
cτ and σ95%

stable.
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Figure C.1: Escape probability Pc(D) of LL particles within a detector (left). On the right side, P−2
c (D)

is shown.

We compare in fig. C.2 how well the approximation performs against the fully MC-based
calculation. For the benchmark points considered here, the approximation is shifted by 10–30%
towards smaller cross section limits for large values of cτ , while for smaller cτ it is even shifted
by a factor of 10. Since the exclusion plots cover several orders of magnitude, the approximation
can still be useful.

C.2 Result tables

We give the results of the two grid scans performed in chapter 6 (published in Ref. [394]).
Table C.1 shows the 95% upper cross section limits σ95%

stable for stable LL particles in the HXX
model for different masses mX and mH . Also the analysis and signal region that give the best
result are given. The same information for the SUSY model is given in table C.2 for masses mq̃

and mχ̃.
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Figure C.2: A comparison of limits derived using the exact method (solid) as described in the main text
versus the approximation (dashed) described in appendix C.1.

Table C.1: The complete grid scan result of the HXX model.
mH (GeV) mX (GeV) analysis signal region σ95%

stable (pb)
100 10 ATLAS monojet [419] SR4 5.77e+01
100 20 ATLAS monojet [419] SR4 5.58e+01
100 50 ATLAS monojet [419] SR4 5.38e+01
125 20 ATLAS monojet [419] SR4 3.83e+01
125 50 ATLAS monojet [419] SR4 3.99e+01
125 62 ATLAS monojet [419] SR4 3.79e+01
200 10 ATLAS monojet [419] SR4 1.67e+01
200 20 ATLAS monojet [419] SR4 1.71e+01
200 50 ATLAS monojet [419] SR4 1.75e+01
200 100 ATLAS monojet [419] SR4 1.65e+01
400 10 ATLAS monojet [419] SR6 3.26e+00
400 20 ATLAS monojet [419] SR6 3.29e+00
400 50 ATLAS monojet [419] SR6 3.17e+00
400 150 ATLAS monojet [419] SR6 3.16e+00
400 200 ATLAS monojet [419] SR6 3.12e+00
600 300 ATLAS monojet [419] SR6 1.57e+00
750 10 ATLAS monojet [419] SR7 1.48e+00
750 20 ATLAS monojet [419] SR7 1.61e+00
750 50 ATLAS monojet [419] SR7 1.51e+00
750 150 ATLAS monojet [419] SR7 1.48e+00
750 250 ATLAS monojet [419] SR7 1.57e+00
750 300 ATLAS monojet [419] SR7 1.49e+00
750 350 ATLAS monojet [419] SR7 1.46e+00
750 375 ATLAS monojet [419] SR7 1.46e+00
850 300 ATLAS monojet [419] SR7 1.19e+00
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Appendix C Cross section limits for long-lived particles

mH (GeV) mX (GeV) analysis signal region σ95%
stable (pb)

850 400 ATLAS monojet [419] SR7 1.22e+00
1000 10 ATLAS monojet [419] SR7 9.31e-01
1000 20 ATLAS monojet [419] SR7 9.39e-01
1000 50 ATLAS monojet [419] SR7 9.55e-01
1000 150 ATLAS monojet [419] SR7 9.41e-01
1000 250 ATLAS monojet [419] SR7 9.64e-01
1000 350 ATLAS monojet [419] SR7 9.67e-01
1000 500 ATLAS monojet [419] SR7 9.69e-01
1200 150 ATLAS monojet [419] SR8 8.00e-01
1200 250 ATLAS monojet [419] SR8 8.32e-01
1200 300 ATLAS monojet [419] SR8 8.11e-01
1200 350 ATLAS monojet [419] SR8 7.85e-01
1200 400 ATLAS monojet [419] SR8 8.30e-01
1200 450 ATLAS monojet [419] SR8 7.93e-01
1200 600 ATLAS monojet [419] SR8 8.11e-01
1500 10 ATLAS monojet [419] SR8 6.17e-01
1500 20 ATLAS monojet [419] SR8 6.33e-01
1500 50 ATLAS monojet [419] SR8 6.10e-01
1500 150 ATLAS monojet [419] SR8 6.27e-01
1500 250 ATLAS monojet [419] SR8 6.32e-01
1500 350 ATLAS monojet [419] SR8 6.41e-01
1500 500 ATLAS monojet [419] SR8 6.32e-01
1500 750 ATLAS monojet [419] SR8 6.47e-01
2000 10 ATLAS monojet [419] SR8 4.90e-01
2000 20 ATLAS monojet [419] SR8 4.93e-01
2000 50 ATLAS monojet [419] SR8 5.11e-01
2000 150 ATLAS monojet [419] SR8 5.10e-01
2000 250 ATLAS monojet [419] SR8 4.90e-01
2000 350 ATLAS monojet [419] SR8 4.99e-01
2000 500 ATLAS monojet [419] SR8 4.72e-01
2000 750 ATLAS monojet [419] SR8 5.00e-01
2000 1000 ATLAS monojet [419] SR8 5.06e-01

Table C.2: The complete grid scan result of the RPV-SUSY model.
mq̃ (GeV) mχ̃ (GeV) analysis signal region σ95%

stable (pb)
120 10 CMS αT [420] 23j_0b_275 2.96e+01
120 48 CMS αT [420] 4j_0b_325 3.35e+01
120 100 CMS αT [420] 23j_0b_375 3.36e+01
200 20 CMS αT [420] 23j_0b_275 2.46e+00
200 100 CMS αT [420] 4j_0b_325 5.00e+00
200 180 CMS αT [420] 23j_0b_325 8.77e+00
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mq̃ (GeV) mχ̃ (GeV) analysis signal region σ95%
stable (pb)

350 148 CMS αT [420] 23j_0b_325 5.73e-01
350 150 CMS αT [420] 23j_0b_325 5.33e-01
400 20 CMS αT [420] 23j_0b_375 1.71e-01
400 200 CMS αT [420] 23j_0b_375 4.27e-01
400 380 CMS αT [420] 23j_0b_375 2.68e+00
600 20 CMS αT [420] 23j_0b_675 7.33e-02
600 200 CMS αT [420] 23j_0b_475 7.74e-02
600 400 CMS αT [420] 23j_0b_375 2.75e-01
600 580 ATLAS multijet [418] AM 1.56e+00
700 150 ATLAS multijet [418] AM 4.14e-02
700 500 CMS αT [420] 23j_0b_375 2.43e-01
800 20 ATLAS multijet [418] AM 1.62e-02
800 200 ATLAS multijet [418] AM 2.24e-02
800 400 CMS αT [420] 23j_0b_675 6.69e-02
800 600 CMS αT [420] 23j_0b_375 2.15e-01
800 780 ATLAS multijet [418] AM 1.39e+00
1000 20 ATLAS multijet [418] AM 7.80e-03
1000 148 ATLAS multijet [418] AM 8.56e-03
1000 150 ATLAS multijet [418] AM 8.38e-03
1000 200 ATLAS multijet [418] AM 8.68e-03
1000 400 ATLAS multijet [418] AM 1.40e-02
1000 500 ATLAS multijet [418] AM 2.54e-02
1000 600 CMS αT [420] 23j_0b_675 4.80e-02
1000 800 CMS αT [420] 23j_0b_375 1.87e-01
1000 980 ATLAS multijet [418] AM 1.55e+00
1200 20 ATLAS multijet [418] CT 3.05e-03
1200 200 ATLAS multijet [418] CT 3.49e-03
1200 400 ATLAS multijet [418] AM 6.89e-03
1200 600 ATLAS multijet [418] AM 1.14e-02
1200 800 CMS αT [420] 23j_0b_675 3.90e-02
1200 1000 CMS αT [420] 23j_0b_375 1.60e-01
1200 1180 ATLAS monojet [419] SR7 1.57e+00
1400 20 ATLAS multijet [418] CT 1.96e-03
1400 100 ATLAS multijet [418] CT 2.02e-03
1400 200 ATLAS multijet [418] CT 2.07e-03
1400 300 ATLAS multijet [418] CT 2.25e-03
1400 600 ATLAS multijet [418] AM 6.11e-03
1400 800 CMS αT [420] 23j_0b_875 1.29e-02
1400 1000 CMS αT [420] 23j_0b_675 3.44e-02
1400 1200 CMS αT [420] 23j_0b_375 1.48e-01
1400 1380 ATLAS monojet [419] SR8 1.94e+00
1500 150 ATLAS multijet [418] CT 1.79e-03
1500 200 ATLAS multijet [418] CT 1.76e-03
1500 400 ATLAS multijet [418] CT 2.06e-03
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mq̃ (GeV) mχ̃ (GeV) analysis signal region σ95%
stable (pb)

1500 494 ATLAS multijet [418] CT 2.40e-03
1600 20 ATLAS multijet [418] CT 1.51e-03
1600 200 ATLAS multijet [418] CT 1.53e-03
1600 400 ATLAS multijet [418] CT 1.73e-03
1600 600 ATLAS multijet [418] CT 2.31e-03
1600 800 ATLAS multijet [418] AM 5.68e-03
1600 1000 CMS αT [420] 23j_0b_875 1.11e-02
1600 1200 CMS αT [420] 23j_0b_675 3.06e-02
1600 1400 CMS αT [420] 23j_0b_375 1.38e-01
1600 1580 ATLAS monojet [419] SR8 2.34e+00
1700 100 ATLAS multijet [418] CT 1.35e-03
1700 400 ATLAS multijet [418] CT 1.54e-03
1800 20 ATLAS multijet [418] CT 1.23e-03
1800 200 ATLAS multijet [418] CT 1.27e-03
1800 400 ATLAS multijet [418] CT 1.38e-03
1800 600 ATLAS multijet [418] BT 2.43e-03
1800 800 ATLAS multijet [418] BT 2.97e-03
1800 1000 ATLAS multijet [418] AM 5.39e-03
1800 1200 CMS αT [420] 23j_0b_875 9.88e-03
1800 1400 CMS αT [420] 23j_0b_675 2.84e-02
1800 1600 CMS αT [420] 23j_0b_375 1.26e-01
1800 1780 ATLAS monojet [419] SR6 1.80e+00
1900 100 ATLAS multijet [418] CT 1.17e-03
2000 20 ATLAS multijet [418] CT 1.10e-03
2000 200 ATLAS multijet [418] CT 1.13e-03
2000 400 ATLAS multijet [418] CT 1.18e-03
2000 600 ATLAS multijet [418] BT 1.99e-03
2000 800 ATLAS multijet [418] BT 2.21e-03
2000 1000 ATLAS multijet [418] BT 2.83e-03
2000 1200 ATLAS multijet [418] BT 5.02e-03
2000 1400 CMS αT [420] 23j_0b_875 9.19e-03
2000 1600 CMS αT [420] 23j_0b_675 2.65e-02
2000 1800 CMS αT [420] 23j_0b_375 1.21e-01
2000 1980 ATLAS monojet [419] SR7 2.71e+00
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