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Summary

This thesis deals with the statistical mechanics of lattice models. It has two main contribu-
tions. On the one hand we implement a general framework for a rigorous renormalisation group
approach to gradient models. This approach relies on work by Bauerschmidt, Brydges, and Slade
and extends earlier results for gradient interface models by Adams, Kotecký and Müller. On the
other hand we use those results to analyse microscopic models for discrete elasticity at small
positive temperature and in particular prove convexity properties of the free energy.

The �rst Chapter is introductory and discusses the necessary mathematical background and
the physical motivation for this thesis.

Chapters 2 to 4 then contain a complete and almost self contained implementation of the
renormalisation group approach for gradient models.

Chapter 2 is concerned with a new construction of a �nite range decomposition with improved
regularity. Finite range decompositions are an important ingredient in the renormalisation group
approach but also appear at various other places. The new �nite range decomposition helps
to avoid a loss of regularity and several technical problems that were present in the earlier
applications of the renormalisation group technique to gradient models.

In the third Chapter we analyse generalized gradient models and discrete models for elasticity
and we state our main results: At low temperatures the surface tension is locally uniformly convex
and the scaling limit is Gaussian. Moreover, we show that those statements can be reduced
to a general statement about perturbations of massless Gaussian measures using suitable null
Lagrangians. This is a �rst step towards a mathematical understanding of elastic behaviour of
crystalline solids at positive temperatures starting from microscopic models.

The fourth Chapter contains the renormalisation group analysis of gradient models. The main
result is a bound for certain perturbations of Gaussian gradient measures that implies the results
of the previous chapters. This generalizes earlier results for scalar nearest neighbour models to
vector-valued �nite range interactions. We also require a much weaker growth assumption for
the perturbation. This is possible because we introduce a new solution to the large �eld problem
based on an alternative construction of the weight functions using Gaussian calculus.

The last Chapter has a slightly di�erent focus. We investigate gradient interface models for
a speci�c class of non-convex potentials for which phase transitions occur in dimension two. The
analysis of these potentials is based on the relation to a random conductance model. We study
properties of this random conductance model and in particular prove correlation inequalities and
reprove the phase transition result relying on planar duality instead of re�ection positivity.
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Chapter 1

Introduction

1.1 Outline

The main focus of this thesis is the derivation of properties of the free energy and Gibbs meas-
ures of realistic atomistic models for crystalline elastic materials using renormalisation techniques.
The purpose of this chapter is to explain the concepts that appear in the previous sentence and
provide the necessary background, in particular regarding statistical mechanics, elasticity, and
renormalisation. Let us now brie�y outline the structure of this introduction.

In Section 1.2 we introduce statistical mechanics which is the mathematical and physical
concept underlying this work. Statistical mechanics is the equilibrium theory of physical systems
with a large number of degrees of freedom. We also introduce spin systems as an important class
of models in statistical mechanics. This class contains systems with a �xed spatial ordering of
particles which arise in the modelling of, e.g., magnetism but also elasticity, the focus of this
work.

Then we discuss our main results and their implications which go in two directions. The most
important results are about realistic microscopic discrete models for elasticity. They are presented
along with the necessary background on mathematical elasticity theory, in particular the Cauchy-
Born rule in Section 1.3. Our results do not only apply to discrete models for elasticity but to
the more general class of �nite range gradient models. The prototypical example are gradient
interface models which have caught considerable attention in the literature. In Section 1.4 we
discuss our results in the context of gradient interface models.

The next section is devoted to our method: The renormalisation group approach. This is a
powerful technique to investigate the large (or small) scale behaviour of physical systems that
has been employed at various places in physics and mathematics. We will brie�y discuss the
historic background as well as the recent advances in the mathematical rigorous theory made
by Bauerschmidt, Brydges, and Slade and we give a brief sketch of the method in the context
of gradient models. Finally, in the last Section 1.6 of this chapter we will brie�y introduce
phase transitions in the context of gradient interface models. This introduction does not contain
original material even though we do not provide line by line references.

1.2 Statistical mechanics and spin systems

1.2.1 Statistical mechanics

Statistical mechanics deals with the study of macroscopic physical systems at equilibrium.
This is an area of mathematics and physics research with a long history and we will only give
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a very brief introduction of the most important notions and refer to the literature (e.g., [56,
114, 117, 133]) for a more detailed overview. Macroscopic physical systems consist of a huge
number of particles which is typically of the order 1023. For a system we denote the state space
of possible con�gurations by Ω which is then a high dimensional manifold. Classical systems can
be parametrized by the position and the momenta of the constituents. For quantum systems the
state is given by the wave function which is an element of a suitable Hilbert space. It is possible to
describe the time evolution of the system using the Hamilton equations for classical mechanics
or the Schrödinger equation for quantum systems. However, from a practical viewpoint this
approach is completely infeasible: We can neither observe the exact state of the systems, nor
can we calculate its evolution, and moreover the exact state is not very helpful to understand
the macroscopic properties of the system arising from the collective behaviour of the particles.
Therefore the approach of statistical mechanics is to consider instead of a microstate ω ∈ Ω
an equilibrium measure on Ω. This measure depends on a (canonical) a priori measure λ on Ω
(typically the Lebesgue measure in the classical case) and a Hamiltonian, i.e., an energy function
H : Ω → R. Then the Gibbs measure (canonical ensemble) for a system that is in thermal
equilibrium with a heat bath at inverse temperature β = T−1 is given by

P (dω) =
e−βH(ω) λ(dω)

Z
(1.2.1)

where Z = Z(β) denotes the partition function that is the normalisation of the measure, i.e.,

Z =

ˆ
Ω
e−βH(ω) λ(dω). (1.2.2)

The exponential weight e−βH is often called Boltzmann weight because Boltzmann gave the �rst
justi�cation for this distribution in [135]. Note that there is a competition between energy, i.e.,
states with low energy are more probable and entropy, i.e., the phase space volume contributes
to the distribution. For zero temperature the measure is concentrated on the minimizers of the
energy. It is also possible to describe systems which exchange particles with their environment
within this formalism using the grand canonical ensemble. In this case there is the number op-
erator N : Ω→ N specifying the numbers of particles in a given state. Then the grand canonical
ensemble for inverse temperature β and chemical potential µ is the probability distribution given
by

P (dω) =
e−βH(ω)+µN(ω)

Z
(1.2.3)

where Z = Z(β, µ) denotes the grand-canonical partition function that normalizes the measure.

1.2.2 Spin systems and Gibbs measures

Spin systems are a class of statistical mechanics systems that can be used to describe systems
which are arranged in a �xed spatial con�guration that have some internal degree of freedom
(spin) at each point. Here we follow [86, 92] where a detailed exposition is given. Let S be a �nite
or countable set. In this thesis we will almost exclusively consider the case of the hypercubic
lattices S = Zd or S = (Z/LZ)d. Let (E, E) be a measurable space which will be the single
spin space. We will mostly consider E = Rm. We investigate �elds which are maps σ : S → E
or equivalently σ ∈ ES = Ω. Corresponding to those equivalent viewpoints it is convenient to
use both, σ(x) and σx, for the value of the �eld at x ∈ S and we will switch between the two
expressions in the following. A random �eld or spin system is a probability measure on the
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space (ES , ES). We will denote the product σ-algebra by F = ES and the probability measures
on (Ω,F) by P(Ω,F). Random �elds can be used to model, e.g., magnetism (this is where the
name spin system arises), lattice gases, con�guration models (height functions for dimer models),
interfaces between phases, and displacements in crystals.

Example 1.2.1. An important class of random �elds are Gaussian �elds. Let C ∈ RS×S be a
positive de�nite matrix indexed by S. Then the centred (i.e., mean zero) Gaussian random �eld
with covariance C is the probability measure µC characterized by its Laplace transform

ˆ
RS
e(f,ϕ)S µC(dϕ) = e

1
2

(f,Cf) (1.2.4)

for any f ∈ RS where (·, ·) denotes the standard scalar product on RS. Gaussian �elds will play
a central role in this work.

While it is straightforward to consider Gibbs measures as introduced in the previous para-
graph for �nite S, the de�nition of Gibbs measures for in�nite S is a major challenge because
the energy is typically in�nite in this case. Dobrushin, Lanford, and Ruelle proposed to de�ne
Gibbs measures in in�nite volume by the condition that every �nite subsystem of the in�nite
system is in thermal equilibrium [76, 133]. We will make this idea precise in the following. We
denote by FΛ for Λ ⊂ S the pullback of the product σ-algebra EΛ on EΛ along the canonical
projection. We write F = FS = ES . Recall that a probability kernel from a measurable space
(X,X ) to another measurable space (Y,Y) is a map π : Y ×X → R+ such that

1. π(·, x) is a measure on (X,X ) for every x ∈ X.

2. π(A, ·) is a X measurable function for A ∈ Y.

3. π(Y, x) = 1 for all x ∈ X.

Let X ′ be a sub σ-algebra of X . A probability kernel from (X,X ′) to (X,X ) is proper if

π(X ′, ·) = 1X′ , for X
′ ∈ X ′. (1.2.5)

De�nition 1.2.2. A speci�cation is a family of proper probability kernels γΛ from (ES ,FΛc) to
(ES ,F) indexed by �nite subsets Λ ⊂ S such that γΛ′γΛ = γΛ′ for Λ ⊂ Λ′.

We de�ne the set of Gibbs measures for this speci�cation by

G(γ) = {µ ∈ P(Ω,F) : µ(A | FΛc)(·) = γΛ(A, ·) µ a.s. for A ∈ F and Λ ⊂ S �nite}. (1.2.6)

We will now describe the speci�cations we are interested in. We restrict ourselves to the case
S = Zd and translation invariant potentials. Consider a �nite set A ⊂ Zd and let U : EA → R
be a local interaction energy. For x ∈ Zd we introduce the shift τx acting on �elds ϕ by
(τxϕ)y = ϕy−x, on sets Λ ⊂ Zd by τxA = A+ x and on events A ∈ F by τx(A) = {ϕ : τxϕ ∈ A}.
We de�ne the energy HΛ : EZd → R for Λ ⊂ Zd �nite by

HΛ(ϕ) =
∑

x∈Zd : τx(A)∩Λ 6=∅

U(ϕτx(A)). (1.2.7)

Here ϕτx(A) denotes the restriction of ϕ to τx(A). We follow the convention used in [116] although
formally one should write U((τxϕ)A). We write A0 = {0, e1, . . . , ed}.
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Example 1.2.3. The Ising model has single spin space E = {−1, 1} and energy U(σA0) =∑d
i=1 Jσ0σei + hσ0 where J, h ∈ R denote the coupling constant and magnetic �eld strength and

ei the standard unit vectors. The study of this model was the starting point of statistical mechanics
and the Ising model is still an active topic of research.

Example 1.2.4. The discrete Gaussian free �eld has single spin space E = R and its energy is
given by U(ϕA0) =

∑d
i=1

1
2(ϕei−ϕ0)2 = 1

2 |∇ϕ0|2 where (∇ϕx)i = ϕx+ei−ϕx denotes the discrete
gradient. This thesis is mostly concerned with generalisation of this example.

Example 1.2.5. The single spin space for scalar ϕ4 theory is E = R and the energy is given by
U(ϕA0) = 1

2 |∇ϕ0|2 + 1
2νϕ

2
0 + 1

4gϕ
4
0. This is the simplest and most studied example in quantum

�eld theory. The renormalisation method we use was initially developed for this model. In the
literature the gradient term is usually written with a Laplacian using a summation by parts.

We assume that there is an a priori measure λ on E which typically is the counting measure
for �nite or countable E and the Lebesgue measure for Rm. The Gibbs speci�cation γUΛ,β for the
energy U at inverse temperature β is de�ned by

γUΛ (A,ψ) =
1

ZΛ,ψ,β

ˆ
A
e−βHΛ(ϕ)

∏
x∈Λ

λ(dϕx)
∏
x/∈Λ

δψx(dϕx) (1.2.8)

where ZΛ,ψ,β denotes the normalisation. A simple calculation shows that this de�nes a speci�c-
ation.

We de�ne for a ∈ Rm the shift ta of a �eld ϕ ∈ (Rm)Zd by (taϕ)x = ϕx+a. This should not be
confused with the positional shift τa. An interaction U is shift invariant if U(ϕA) = U((taϕ)A) for
all a ∈ Rm and all ϕ ∈ (Rm)Zd . We refer to shift invariant interactions U : (Rm)A → R as gradient
models because U(ϕA) can be expressed in terms of the �eld di�erences ϕx−ϕy for x, y ∈ A. The
discrete Gaussian free �eld introduced in Example 1.2.4 is the most prominent gradient model
while ϕ4-theory is not a gradient model. In this thesis we will restrict our attention to gradient
models. Gradient models are sometimes called massless using the interpretation in quantum �eld
theory. Other models are similarly called massive.

The question of existence and uniqueness of Gibbs measures are two important recurring
questions in statistical mechanics. The uniqueness of Gibbs measures is often a subtle issue and
we will discuss it in slightly more detail in Section 1.6. If more than one Gibbs measure exists
one says that a phase transition occurs [92]. It was famously shown by Peierls in [130] that phase
transitions occur for the Ising model without magnetic �eld in dimension d ≥ 2. This shows that
the approach is powerful enough to model materials where di�erent phases (identi�ed with the
di�erent Gibbs states) exist.

The existence question for Gibbs measures is in general simpler and answered positively in
many situations. E.g., for �nite spin space and bounded interaction it is rather easy to prove
the existence of a Gibbs measure (see Theorem 4.23 in [92]) using compactness arguments. For
unbounded state spaces the existence problem is non-trivial. We discuss this brie�y in the context
of E = Rm and gradient models. For gradient models existence of a Gibbs measure depends on
the dimension. It can be shown that an in�nite volume Gaussian free �eld as de�ned in Example
1.2.4 exists in dimension d ≥ 3 but does not exist in d ≤ 2. This is the case because the variance
blows up when the size of Λ is increased. Indeed, in dimension d = 1 the central limit theorem
indicates that E(ϕ2

0) ≈
√
N for the Gaussian free �eld on Λ = [−N,N ] with zero boundary

condition.
Therefore one often considers gradient Gibbs measures. Roughly speaking this means that

we consider the gradient of a �eld instead of the �eld itself, i.e. one restricts attention to the
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σ-algebra generated by the gradient variables

ηxy = ϕy − ϕx for |x− y| = 1. (1.2.9)

In particular, the law of ∇ϕ is a gradient Gibbs measure if ϕ is distributed according to a Gibbs
measure. The formal de�nition of gradient Gibbs measure is a bit technical and we refer to
Chapter 5 and the literature [89, 136]. Note that for shift invariant interaction U is measurable
with respect to the gradient variables. In�nite volume gradient Gibbs measures often exist when
Gibbs measures do not exist, e.g., there is a gradient Gibbs measure in d = 1 and d = 2 for the
quadratic potential of the Gaussian free �eld.

In the context of models for solids or interfaces it is natural to impose tilted boundary
conditions, i.e., one considers ψ = ψF with ψF (x) = Fx in (1.2.8). This corresponds to a
deformed state or a tilted surface and we refer to F as the tilt vector (or deformation matrix for
vector valued �elds). In this setting no translation invariant Gibbs measures exist, however, in
general translation invariant gradient Gibbs measures exist. For a translation invariant gradient
Gibbs measure we de�ne its tilt by

F = E (∇ϕ(0)) . (1.2.10)

An important quantity in statistical mechanics is the free energy density that is de�ned by

W (ψ, β) = lim
Λ→Zd

− ln(ZΛ,ψ,β)

β|Λ|
(1.2.11)

if this limit exists. Note that for E �nite and bounded �nite range interactions U the free energy
W does not depend on the boundary conditions. If E = Rm we are mostly interested in the
a�ne boundary conditions ψF and we write

W (F, β) = lim
Λ→Zd

− ln(ZΛ,ψF ,β)

β|Λ|
. (1.2.12)

Let us remark that the existence of the limit is non-trivial and we will brie�y discuss this in
Chapter 3.

1.3 Mathematical theory of nonlinear elasticity

A body is elastic if it returns to its original shape when an applied force is removed. This is
an extremely common phenomenon observed in a wide range of materials ranging from rubber
to metals. Therefore a sound theoretical understanding of elasticity is very important, e.g., for
engineering applications. Starting with the work of Ball the macroscopic theory of elasticity has
seem tremendous progress. However, it remains mostly open how the macroscopic theory can be
justi�ed from microscopic models. This section explains the di�culties of this problem, gives a
brief overview of the physical background, and explains how microscopic models for elasticity �t
in the context provided in the previous section. We also present a simpli�ed version of the main
results of this thesis. Parts of the following are close to [15] and [115] where a more detailed
exposition is given.

1.3.1 Macroscopic theory of nonlinear elasticity

Since we do not actually work with the macroscopic theory of nonlinear elasticity we will
only give a brief overview of the theory that motivates our results and refer to the extensive
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literature for a more detailed treatment (see, e.g., [8, 58, 59, 100, 124]). In continuum mechanics
one considers a reference con�guration Ω ⊂ R3 that is deformed by applied forces and boundary
conditions. This deformation is described by a deformation map ϕ : Ω → R3. A hyperelastic
(or Greens elastic) material is characterized by a stored energy function WSE : R3×3 × R+ → R
that gives the energy density as a function of a local deformation gradient (strain tensor) and
the temperature. Note that the usual de�nition of an elastic material is more general than the
case of hyperelasticity considered here (see [100, 61] for a thorough discussion and a justi�cation
that hyperelasticity is a natural condition for conservative elastic materials). The total energy
assigned to a deformation ϕ at inverse temperature β = T−1 is

I(ϕ) =

ˆ
Ω
WSE(Dϕ(x), β) dx. (1.3.1)

We mostly assume that the temperature is constant throughout the sample and drop it from
the notation. The equilibrium deformations are given by minimisers of this functional subject to
certain boundary conditions for ϕ∂Ω. Indeed, the Euler-Lagrange equation is equivalent to the
balance of forces for all subsets of Ω.

Let us remark that from a mathematical viewpoint convexity properties of WSE are essential
for the existence of minimisers of the functional I. It is well known that (strict) convexity and
minor growth assumptions for WSE are su�cient for the existence and uniqueness of minimizers
of I and there are non-convex functions WSE where minimizers do not exist. However, it is
easy to see that realistic stored energy densities are not convex. Indeed it is natural to assume
that WSE(13×3) = minWSE , i.e., the undeformed con�guration has minimal energy. Moreover,
frame indi�erence suggests that WSE(QA) = WSE(A) for all Q ∈ SO(3), in particular WSE is
minimized on SO(3). This implies that WSE is not convex. To address this problem new no-
tions of convexity like polyconvexity and quasiconvexity were introduced as su�cient conditions
for the existence of minimisers [14]. Under such convexity assumptions on the stored energy
density, nonlinear elasticity theory has been intensively studied and applied to several physically
interesting setting (microstructures, rods, beams, . . . ).

In practice the shape of WSE can be determined from measurements. For a deeper theor-
etical understanding it would be interesting to relate the macroscopic theory to an underlying
microscopic theory of matter. Let us mention two key challenges. First, the samples of suitably
rescaled microscopic models should concentrate on the minimisers of (1.3.1) for some stored en-
ergy density WSE . Moreover, WSE should be given by the free energy density of the underlying
model and it might be possible to derive (convexity) properties of WSE from the microscopic
theory. Let us remark that elastic behaviour of di�erent materials arises for di�erent physical
reasons even though their macroscopic behaviour can be modeled with the same approach. On
the one hand, for rubber-like materials that consist of connected polymer chains the free energy
is dominated by the entropy contributions and elastic behaviour arises from the stretching of the
polymer chains (see [60] for a recent approach to microscopic models of rubber elasticity). On
the other hand, for crystalline solids elastic behaviour arises from the change of energy that is
required to deform the lattice ordering. Note that the class of crystalline solids contains many
materials, in particular all metals. In the following we restrict our attention to crystals and we
will brie�y review the results for microscopic models.

1.3.2 Cauchy-Born rule

In this section we consider atomistic models for crystalline matter at zero temperature and
review their relation to the continuum theory. For a proper understanding of the interaction of
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Figure 1.1: (left) The a�ne deformation following the Cauchy-Born rule. (right) A deformation
with lower bulk energy.

atoms in crystals it is necessary to consider the (quantum mechanical) interactions of the electron
hulls using, e.g., Thomas-Fermi theory (see [120]). Here we restrict our description to theories
with an e�ective interaction between atoms that are considered as classical point particles. For
ease of notation we only consider pairwise interactions of atoms at positions x, y ∈ Rd given by
V (|x − y|) for some potential V : R+ → R. A typical example of a potential that models the
interaction of (free) atoms is the Lenard-Jones potential V (r) = Ar−12−Br−6 for A,B > 0. Here
the �rst term models the strong short scale repulsion and the second term models the attraction
due to van der Waals forces. The general shape of the Lenard-Jones potential that includes short
distance repulsion and long distance attraction also applies to interaction potentials for bound
atoms. We remark, however, that for a realistic model of crystalline solids it is not su�cient to
consider only pairwise interactions. For n atoms with positions xi ∈ Rd the associated energy is

En(x1, . . . , xn) =
∑
i<j

V (|xi − xj |). (1.3.2)

For zero temperature the system con�guration is concentrated on minimizers of the energy En.
Empirically it can be observed that in several materials, namely crystals, the atoms are arranged
in regular periodic patterns in the solid phase. Even the simple question, when minimizers of
the energy 1.3.2 exhibit a periodic structure is not solved for general potentials V . This question
is well known under the name crystallisation conjecture (see [34] for a recent review). We now
consider a potential such that the minimizers of the energy arrange in the shape of some lattice
Λ ⊂ R3. Then the connection between the free energy density W introduced in the previous
subsection and the microscopic model is typically made using the Cauchy-Born hypothesis. This
refers to the assumption that the lattice follows an applied linear deformation A of the boundary
in an a�ne way, i.e., the lattice Λ is mapped under the linear boundary condition Ax to the
lattice AΛ. Then the stored energy density WSE(A) of some linear map A in the reference
con�guration is given by the energy density of the transformed lattice AΛ. For a cubic lattice
this amounts to (see [80])

WSE(A) =
1

2

∑
x∈Zd\{0}

V (|Ax|). (1.3.3)

In the literature the consequences and validity of this rule have been widely discussed, see [81,
153] for an overview, but several questions remain open. Let us present some of the results that
are related to our analysis.
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Figure 1.2: The creation of a slip plane through the motion of a dislocation from top left to
bottom right.

For certain potentials it has been established by E and Ming in [80] that for a�ne boundary
conditions close to the identity the a�ne transformation of the lattice is indeed a local min-
imum of the energy, thus justifying the Cauchy-Born rule. Let us emphasize one important
observation: The a�ne transformation of the lattice is in general only a local minimum, not the
global minimum of the energy [80]. The reason is that for volume preserving transformations
(e.g., shears) large scale reordering allows to transform the bulk of the sample to a translation
of the energy minimizing lattice Λ at the prize of certain boundary contributions. This is illus-
trated in Figure 1.1. We conclude that elasticity is not an equilibrium phenomenon in the strict
sense. However, elastic deformations of solids persist on geological time scales and are therefore
metastable.

The reason for this stability is that a reduction of the energy requires large scale reordering
of the lattice (in particular through the formation of slip planes by the motion of dislocations)
as illustrated in Figure 1.2. For small loads this is prevented by the large energy barrier. Note
that for large loads such non-reversible deformations occur frequently and this is studied in the
theory of plasticity.

Since large scale reordering is rare for small deformations, it is of interest to consider models
that exclude any reordering by �xing the neighbourhood relations of the atoms in the crystal.
Note that �xing the neighbourhood relation excludes all types of defects (point defects, line
defects, etc.) that appear in solids and in�uence their behaviour [107].

This type of model is sometimes called mass and spring model because it can be thought of as
atoms arranged in a �xed pattern and neighbouring atoms are connected by a spring modelling
their interaction and preventing the atom to leave its position in the lattice (see Figure 1.3).
Friesecke and Theil use a model where only nearest and next to nearest neighbours interact
through potentials V1 and V2. They assume that V1 and V2 are quadratic, i.e., the atoms
interact as if ideal springs were attached between nearest and next to nearest neighbours. In
[87] they establish that the Cauchy-Born rule holds for an open range of spring constants for the
potentials V1 and V2 in dimension d = 2 but there are also parameters for which the Cauchy
Born rule does not hold.
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Figure 1.3: Schematic illustration of a nearest-neighbour mass and spring model

Their result was generalized to more general potentials and arbitrary dimensions by Conti,
Dolzmann, Kirchheim, and Müller in [62]. They consider a general �nite range interaction. It
depends on a �nite set A ⊂ Zd that contains the unit cell {0, 1}d. To a deformation ψ : A→ Rd

we assign an energy U : (Rd)A → R. Recall that for a ∈ Rd we de�ned the map ta : (Rd)A →
(Rd)A by ((taψ)x)x∈A = (ψx + a)x∈A and similarly we de�ne for F ∈ Rd×d the map ψ 7→ Fψ
by (Fψ)x = Fψx for x ∈ A. Moreover we write (Rd)A0 for the subspace of all ψ such that∑

x∈A ψx = 0. Let us state assumptions on U :

i) For all a ∈ Rd and Q ∈ SO(d) we have U(ta(Qψ)) = U(ψ).

ii) The energy satis�es U ≥ 0 and U(ψ) = 0 if and only if ψ is a rigid body rotation, i.e.,
ψx = Qx+ a for all x ∈ A and some Q ∈ SO(n) and a ∈ Rd.

iii) We have U ∈ C2 and D2U(1) is strictly positive on the orthogonal complement of the
subspace spanned by all ta and in�nitesimal rotations W ∈ Rd×dskew. Here 1 denotes the
identity deformation given by 1x = x for x ∈ A.

iv) We assume

lim inf
ψ∈(Rd)A0 ,ψ→∞

U(ψ)

|ψ|d
> 0. (1.3.4)

Under these conditions they establish the following theorem.

Theorem 1.3.1 (Theorem 5.1 in [62]). Assume that U satis�es the assumptions i)-iv). Then
the Cauchy-Born rule holds for all A ∈ Rd×d close to SO(n), i.e., for every Λ ⊂ Zd �nite the
unique minimizer of

HΛ(ψ) =
∑

x∈Zd,τx(A)∩Λ 6=∅

U(ψτx(A)) (1.3.5)

with a�ne boundary condition ψx = Ax for x /∈ Λ is given by the a�ne function ψx = Ax for
all x ∈ Λ.
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The key ingredient in the proof is the construction of a discrete null Lagrangian N such that
U + N is locally strictly convex and lies above a strictly convex function. This observation will
also be crucial in Chapter 3. Note that the conditions i)-iii) for the energy are physical. Only
the �nite range of interaction and the condition iv) that prevents the reordering are unphysical
simpli�cations.

Let us mention that recently several generalisations of the previous results were found [39,
40, 79, 129]. Those works study, e.g. the dynamics of this model under a change of boundary
conditions and the relation between minimisers of (1.3.1) and local minimisers of the atomistic
models.

1.3.3 Solids at positive temperature

In the previous section we reviewed the validity of the Cauchy-Born rule on the level of
energy minimisers which corresponds to temperature T = 0. This approach, however, completely
neglects thermal �uctuations which are essential for a proper understanding of matter. Let us
assume that we have particles in a heat and particle bath with inverse temperature β and chemical
potential µ that are interacting through a two-body potential V . Then using (1.2.3) and the
energy (1.3.2) we obtain for n ≥ 0

Pβ,µ(N = n, dx1, . . . ,dxn) =
1

Zβ,z

e−βEn(x1,...,xn)+µn

n!
dx1 . . . dxn (1.3.6)

where Zβ,z is a normalising constant and n! accounts for the fact that the particles are indistin-
guishable (Gibbs paradox). Note that it is not necessary to include the momenta of the particles
in the model because their integral just contributes a constant factor per particle which can be
included in the chemical potential. One would expect that this model shows the di�erent states
of matter. In particular, the phase transition between gas and liquid/solid which would be vis-
ible as an abrupt change of the density (particle number) of the system. Again, rigorous results
are completely missing for such detailed models of matter which shows that the properties of
matter are still poorly understood from a mathematical point of view. Only for toy models such
as the Widom-Rowlinson model [57] or under unrealistic mean �eld assumption [119] a discon-
tinuity of the density has been shown. But even if a rigorous analysis of this equilibrium model
was possible this cannot be applied to elasticity because equilibrium statistical mechanics and
completely physical models are incompatible as discussed in the previous subsection. Indeed,
the equilibrium measure will be concentrated on con�gurations involving plastic deformations.
Hence, we restrict our analysis of elastic materials at non-zero temperature to models with a
�xed neighbourhood relation, i.e., we consider atoms arranged in a regular (hypercubic) pattern
and each atom interacts with a �nite number of neighbours. The associated Gibbs measure in
�nite volume Λ is given by

γ(dψ,ϕ) = e−βH
U
Λ (ψ)

∏
x∈Λ

dψx
∏
x/∈Λ

δϕx(dψx) (1.3.7)

where the �eld ϕ prescribes a boundary condition. Let us list some questions of interest that
were already brie�y discussed in Section 1.3.1 in the context of discrete �nite temperature models
for elasticity:

1) In what sense can the macroscopic stored energy density WSE and the free energy density
W of the microscopic model be related? What is the relation between typical microscopic
con�gurations ϕ : Λ → Rd and the macroscopic deformation u : Ω → Rd that minimizes
(1.3.1)?
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2) What are (convexity) properties of the free energy density W?

3) What properties do the Gibbs measures satisfy? In particular, how do the correlations
decay for large distances?

4) Is there a unique in�nite volume Gibbs measure for a given tilt?

There are very few results concerning this class of models. Most results are restricted to scalar
�elds and they will be discussed in Section 1.4. Let us already emphasize here that a major
di�culty in the analysis of the Gibbs measure is the non-convexity of U . Some general results
concerning, e.g., the structure of the set of Gibbs measures can be found in [92, 136]. Several very
interesting results concerning the questions above can be found in the work [116] by Kotecký and
Luckhaus. They work under rather mild conditions on the potential U : U has to be invariant
under rigid body motions (this is condition i) above) and needs to satisfy a certain lower and
upper bound and some bound on the oscillations. These assumptions are neither weaker nor
stronger than the assumptions we consider. They show in particular that the free energy F 7→
W (F ) (de�ned with slightly di�erent boundary conditions) exists and is a quasiconvex function
of the external deformation F . Moreover, they establish a large deviation principle for the
distribution of the Gibbs measure with decreasing mesh-size Λε = D ∩ (εZ)d with D ⊂ Rd. The
rate function of the large deviation principle is given by the functional (1.3.1) with WSE(·, β) =
W (·, β). Moreover, they show that the distribution of the �eld locally converges to an in�nite
volume gradient Gibbs measure in the sense of gradient Young-Gibbs measures. In particular,
this gives a partial answer to the �rst two questions. Their very weak assumptions on the
potential U do not allow them to address smoothness properties of the free energy F 7→ W (F ).
This is one of the questions that will be addressed here.

1.3.4 Results for discrete elasticity

We will now give a sketch of the two results that we obtain for the model introduced above
at su�ciently low temperature. Our �rst main result is a convexity result for the free energy.

Assume that U satis�es the assumptions i)-iv) and in addition U ∈ Cr for
some r ≥ 5 and the derivatives satisfy a mild growth assumption at∞. Then
for β > β0 and δ > 0 su�ciently small the function

Wβ : Bδ(1d×d)→ R, (1.3.8)

de�ned in (1.2.12) is Cr−4 and D2Wβ(1) is strictly positive on the subspace
orthogonal to in�nitesimal rotations (skew-symmetric matrices).

The precise statement of this theorem is Theorem 3.3.1 in Chapter 3. Let us emphasize that
for the sake of giving an overview we neglected several details in the statement. Heuristically
the strict convexity of the free energy close to the identity follows from the strict convexity of
the potential at the identity and a bound for the entropy that is small for low temperatures.
Our second main result concerns the scaling limit of the model. For this result we work on the
torus TN = (Z/LNZ)d where L > 1 is an odd integer. We denote by γFN,β the �nite volume
Gibbs measure for the energy HTN and tilt F (cf. Chapter 3 for an explanation how the tilt is
implemented in a periodic setting and note that γFN,β really has tilt F in the sense of de�nition
(1.2.10)). It is consistent to denote the Gibbs measure with the same letter as the speci�cation
because no boundary conditions are required on the torus.
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Assume that U satis�es the assumptions i)-iv) and in addition U ∈ C3 and
the derivatives satisfy a mild growth condition at ∞. Then there are δ, β0,
and L0 > 0 such that for F ∈ Bδ(1d×d), β ≥ β0, and L ≥ L0 there is an
operator C and a subsequence N` → ∞ such that for f ∈ C∞((R/Z)d,Rd)

and fN : TN → Rd given by fN (x) = L−N
d+2

2 f(L−Nx)

lim
N`→∞

EγFN,βe
(fN` ,ϕ) = e

1
2β

(f,Cf)
. (1.3.9)

In particular the scaling limit is Gaussian.

The precise statement can be found in Theorem 3.3.2 in Chapter 3.
Those two results provide a partial answer to the second and third question above. There

are several open questions concerning the nature of the Gibbs measures for this model and we
will discuss those questions brie�y in the context of gradient interface models below, but they
equally apply to the models of discrete elasticity discussed here.

1.4 Gradient interface models

In this section we will discuss our results in the context of gradient interface models. Gradient
interface models are spin systems as de�ned in Section 1.2 with state space E = R, i.e., scalar
real valued �elds. Their local interaction energy U is of the form U(ϕA) =

∑d
i=1 V (∇iϕ(0))

where A = {0, e1, . . . , ed} and V : R→ R is a nearest neighbour potential. The most prominent
example is the Gaussian free �eld introduced in Example 1.2.4 where the potential V (x) = x2/2
is quadratic. Gradient interface models are a class of models that can be used as an e�ective
model for a continuous interface or for interfaces in spin systems, e.g., the interface between the
plus and the minus phase of an Ising model. Let us remark that the free energy is often called
surface tension in the context of gradient interface models.

Our main results are derived in a general framework that includes models for discrete elasticity
and gradient interface models as special cases. We will present our results also in the context
of gradient interface models because they have been a very active theme of research in the last
years and this allows us to compare our approach to techniques used earlier. Here we just sketch
some of the known results and we refer to the reviews [88, 93, 136] for a complete overview.

1.4.1 Gradient interface models with convex potentials

Many results about gradient interface models are restricted to convex and even interaction
potentials V , i.e., potentials V ∈ C2(R) that satisfy V (−x) = V (x) and

C1 ≤ V ′′ ≤ C2 (1.4.1)

for two constants 0 < C1 < C2. The prototypical example for this class is the Gaussian free
�eld where the Gaussian structure and the Markov property of the �eld simplify the analysis.
Very �ne results are known for the discrete Gaussian free �eld and there has been a recent
surge of results, e.g., about the maximum of the �eld, level sets of the �eld, entropic repulsion,
level set percolation. The guiding principle is that most of the results for discrete Gaussian free
�elds can be generalised to strictly convex potentials. Let us highlight some of the results. The
important work [89] by Funaki and Spohn established the strict convexity of the free energy
surface tension, uniqueness and existence of the Gibbs measure for a given tilt u ∈ Rd, and the



Gradient interface models with convex potentials 13

derivation of the hydrodynamic limit. Estimates for the decay of covariances were shown in [67,
128]. It was shown that the scaling limit of the model is Gaussian (see [128] for zero tilt using
homogenisation and [94] for the general case). See also [125] for a scaling limit in a bounded
domain and some interesting coupling results. Large deviations results were shown in [69, 136].
Recently also �ner results have been shown concerning, e.g., the scaling of the maximum [27,
150]. Several tools have been developed to study gradient interface models. Let us brie�y sketch
some of the most important ideas that are connected in various ways.

1. Langevin-dynamics. The Gibbs measure for gradient interface models is the equilibrium
distribution of an associated Langevin dynamics (ϕt(x))(t,x)∈R+×Zd given by

dϕt(x) = −
∑
y∼x

V ′(ϕt(x)− ϕt(y)) dt+
√

2 dBt(x) (1.4.2)

where {Bt(x), x ∈ Zd} is a family of independent Brownian motions. This dynamics and
a coupling argument was used in [89] to show uniqueness of the Gibbs measure.

2. Hel�er-Sjöstrand random walk representation and Brascamp-Lieb inequality. The Hellfer-
Sjöstrand random walk representation is a technique that was introduced by Hel�er and
Sjöstrand in [104] and �rst applied to gradient interface models by Naddaf and Spencer
in [128]. The basic observation underlying this approach is that the gradient interface
model can be related to a time dependent random walk in a random environment which
is a generalisation of the relation between the simple random walk and the Gaussian free
�eld. Very roughly the key relation can be expressed for a gradient Gibbs measure µ and
observables F (ϕ) and G(ϕ) as

Covµ(F,G) =
∑
x∈Zd

ˆ ∞
0

E

(
∂F (ϕ0)

∂ϕ0(x)

∂G(ϕt)

∂ϕt(Xt)

)
dt (1.4.3)

where ϕt evolves according to the dynamics (1.4.2) with ϕ0 distributed according to µ and
Xt is a random walk on Zd with time dependent transition rates qt,x,y = V ′′(ϕt(x)−ϕt(y))
and X0 = x. This representation can be used to derive correlation inequalities like the
FKG-correlation inequality and the Brascamp-Lieb inequality (see [38]) that states that
variances for a Gibbs measure for the potential V satisfying (1.4.1) can be bounded by
the variances of the rescaled discrete Gaussian free �eld with potential x → 1

2C1x
2. The

Hel�er-Sjöstrand representation can also be applied to understand the large scale behaviour
of the model. Here the Kipnis Varadhan approach [113] is an important ingredient.

3. Cluster swapping. Cluster swapping is a technique introduced by She�eld in [136]. The
basic idea is similar to the Swendsen-Wang algorithm that can be used for fast Monte-
Carlo simulations of (near) critical Ising models. The key observation is that if ϕx < ψx
and ϕy < ψy then strict convexity of the potential implies that

V (ϕ(x)− ϕ(y)) + V (ψ(x)− ψ(y)) < V (ϕ(x)− ψ(y)) + V (ψ(x)− ϕ(y)). (1.4.4)

This implies in particular that

HΛ(min(ϕ,ψ)) +HΛ(max(ϕ,ψ)) < HΛ(ϕ) +HΛ(ψ). (1.4.5)

Based on this observation he introduces for a coupling of two Gibbs measures a cluster
swap map that maps very roughly (ϕ,ψ) 7→ (min(ϕ,ψ),max(ϕ,ψ)) on in�nite clusters of
the set ϕ > ψ (the �elds are de�ned using a carefully chosen o�set ϕ0 − ψ0 = h). This
map can be used to show that the surface tension is strictly convex and the gradient Gibbs
measure for a given tilt u is unique.
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4. Stochastic homogenisation. Already in one of the early works by Naddaf and Spencer [128]
stochastic homogenisation was used to investigate the large scale behaviour of the random
walk in the Hel�er-Sjöstrand representation. In the past years (quantitative) stochastic ho-
mogenisation became a highly active �eld of research and we refer in particular to the early
works by Gloria, Otto, and Neukamm [97, 96] and to the works by Armstrong, Kuusi, and
Mourrat [9, 10]. Dario recently presented a new approach to understand �uctuations and
the partition function of the gradient interface model without using the Hellfer-Sjöstrand
technique [65]. Instead his approach relies on stochastic homogenisation techniques sim-
ilar to the approach in [9] and the extension of estimates for elliptic partial di�erential
equations to gradient interface models.

However, all those techniques use the convexity of the potential in an essential way and it is
not clear how to obtain any results for potentials that are not convex. Indeed, the Langevin
dynamics is contracting when the same Brownian motion is used for two solutions if V is convex,
the random walk only exists when V ′′ ≥ 0, the inequality (1.4.4) is not true for non-convex
V , and for V non-convex it is not expected that the elliptic theory can be applied. Therefore
it remains a major challenge to �nd more robust techniques that apply to (some) non-convex
potentials.

1.4.2 Gradient interface models with non-convex potentials

In this section we review the known results for gradient interface models with non-convex
potentials. For non-convex potentials results are rather scarce because the techniques for convex
potentials do not apply. Some general results about the surface tension can be found in [136].
Let us again (cf. Section 1.3.3) emphasize the work [116] where existence and convexity of the
surface tension and large deviation principles were shown under very general assumptions. For
high temperatures several results are known for potentials of the form V + g where V is strictly
convex and g satis�es some bound on the second derivative (g′′ ∈ Lp for some p ≥ 1 is su�cient).
Then for β su�ciently small the surface tension is strictly convex, the Gibbs measure is unique,
covariances decay, the scaling limit is Gaussian, and the hydrodynamic limit can be derived [64,
63, 70]. All those results rely on the fact that the interaction potential becomes strictly convex
after a one step integration procedure so that this case is e�ectively reduced to the convex case
discussed above. One possibility to regain convexity is to integrate out the �eld on the even
sublattice of Zd.

For small temperatures it is not expected that convexity can be restored using a one step
integration procedure. Moreover, it is known that the behaviour for general non-convex potentials
can be very di�erent from the convex case as phase transitions (non-uniqueness) of the gradient
Gibbs measure can occur (see [32] and Section 1.6 below). Nevertheless we do not expect this
type of behaviour at low temperatures. When rescaling a potential V ∈ C2(R) with unique
minimum in zero by V 7→ Vβ = βV (·/

√
β) (this corresponds to a change of temperature and

a rescaling of the �eld such that its �uctuations remain of constant size) the potential locally
approaches a quadratic function as β → ∞ (see Figure 1.4) and the non-convexity becomes
energetically less favourable. This suggests that the interface model behaves similarly to the
case where V is strictly convex. It is di�cult to make this idea rigorous because the event that
∇iϕ(x) is in the non-convex region of Vβ has positive probability for any β so it occurs with a
positive density. A further aspect that makes the analysis of gradient models di�cult is that
they are critical. This means that the correlation of the gradient �elds are expected to decay
only polynomially as

E(∇ϕ(x)∇ϕ(y)) ≈ |x− y|−d. (1.4.6)
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The slow decay of correlations implies that naive approaches that involve a sum over the covari-
ance fail since the covariance is not integrable. Therefore a careful multiscale analysis seems to
be necessary to obtain results for the low temperature case. To our knowledge the only results
in this case seem to be the convexity of the surface tension [116] and the strict convexity of the
surface tension for small tilts. Strict convexity was shown by Adams, Kotecký, and Müller using
a renormalisation group approach in [4].

1.4.3 Results for gradient interface models and outlook

Most of this thesis is devoted to a generalisation of the results in [4]. The main improvement
is that we are now able to handle interactions relevant for microscopic elasticity as discussed in
the previous section, but we also derive some new results for gradient interface models which we
discuss here. Again, we only provide a sketch of the result and refer to Chapter 3 for a precise
statement. The results are very similar to the ones discussed in the previous section, however
the assumptions are slightly di�erent.

Assume that V ∈ Cr satis�es V ′′(0) > ε and

V (x) ≥ V ′(0)x+ V (0) + ε|x|2 (1.4.7)

for some ε > 0 and that all derivatives up to order r of V grow at most
polynomially. Then there is β0 > 0 and δ > 0 such that for β ≥ β0 the
surface tension W : Bδ(0)→ R is strictly convex and in Cr−4.

The precise statement of this statement in the more general context of generalized gradient
models can be found in Proposition 3.2.4 and Theorem 3.2.3 in Chapter 3. We can also derive
the scaling limit. We again work on the torus TN = (Z/LNZ)d where L > 1 is an odd integer
and denote by γuN,β the �nite volume Gibbs measure for the energy HTN and tilt u.

Assume that V ∈ C3 satis�es V ′′(0) > ε and

V (x) ≥ V ′(0)x+ V (0) + ε|x|2 (1.4.8)

for some ε > 0 and that all derivatives up to order 3 of V grow at most
polynomially. Then there are β0, δ > 0, and L0 such that for any β ≥ β0,
|u| ≤ δ and L ≥ L0 there is an operator C and a subsequence N` → ∞
such that for f ∈ C∞((R/Z)d,R) and fN : TN → Rd given by fN (x) =

L−N
d+2

2 f(L−Nx)

lim
N`→∞

EγuN,βe
(fN` ,ϕ) = e

1
2β

(f,Cf)
. (1.4.9)

In particular the scaling limit is Gaussian.

The precise statement can be found in Proposition 3.2.4 and Theorem 3.2.6 in Chapter 3.
The �rst result was derived under more restrictive growth and smoothness assumptions in [4]
(see Theorem 2.1 and Proposition 2.2 there). Indeed, they require that

V (x)− V ′(0)x− V (0) ≥ 1
2(V ′′(0)− ε)x2 (1.4.10)
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for a small ε > 0. The second result concerning the scaling limit was �rst shown in [105] in the
setting of [4]. Here we adapt the proof to our setting. We extend the method used in [4] in
several directions and we will discuss those changes in the next Section 1.5.

To understand �ner properties of the model a natural question addresses the behaviour of the
gradient-gradient correlations. This is answered in the Ph.D. thesis of Hilger [106] where the same
decay of correlations as for an anisotropic Gaussian free �eld is shown. The major open question is
whether uniqueness of the Gibbs measure can be established under the assumptions stated above.
This might require new techniques because our analysis is con�ned to the periodic setting which
cannot be su�cient to conclude uniqueness of the Gibbs measure (i.e., asymptotic independence
of the boundary condition). This would be the basis of an analysis of the hydrodynamic limit
but is also of interest for the existence of microstructures in materials. Note that our smoothness
result for the surface tension is a hint towards uniqueness of the Gibbs measure. Indeed, for
models with �nite spin space and bounded interactions it was rigorously shown that coexistence
of Gibbs measures and non-di�erentiability of the free energy are closely related (see [92, 132,
138]).

1.5 Renormalisation group approach to statistical mechanics

In this section we describe the renormalisation group approach. This is the method that will
be used to prove the main results stated in the previous sections. We start with a brief historical
overview and refer to, e.g., [110] for details.

1.5.1 The renormalisation group for critical phenomena

The term critical phenomena refers to the behaviour of systems at the critical point where a
phase transition occurs. For many classical systems in statistical mechanics (e.g., Ising model,
percolation, ϕ4 theory, self-avoiding random walks) it is observed that there is a phase transition
between a subcritical and a supercritical phase. The subcritical and supercritical phase are
typically easier to understand because correlations decay exponentially. However, as the critical
point is approached the correlation length diverges giving rise to many interesting phenomena.
In particular the system becomes self similar at the critical point. Often universality is observed
at the critical point, i.e., on large scales the system is independent of microscopic details of
the interaction, e.g., the lattice structure, and only depends on the dimension. Various critical
exponents are used to describe the large distance behaviour at and near the critical point. Often
there is a critical dimension dc for each model such that for d > dc the model exhibits mean �eld
behaviour (i.e., the lattice can be replaced by a tree and the critical exponents agree in both
cases) while for d = dc there are typically logarithmic corrections to the mean �eld behaviour.
The case d � dc and sometimes also d > dc is well understood for many models using the
lace expansion [50, 141]. Moreover, in dimension d = 2 special techniques relying on conformal
invariance apply and a lot of progress has been made recently (see [118]). For 2 < d < dc critical
behaviour is poorly understood. Gradient models are special and do not �t in this framework
because they are always critical in the sense that their correlations only decay polynomially for
all temperatures and all dimensions.

The renormalisation group method was introduced as a tool to understand the large scale
behaviour of critical systems. A �rst important step was the block spin approach developed by
Kardano� in [109]. He studied the Ising model and introduced the block spin as the average
of the Ising spins on a square of sidelength L. Then he argued that the block spins interact
approximately similar to an Ising model with di�erent (renormalized) coupling constants. Later
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this procedure was made rigorous by Gaw¦dzki and Kupiainen in [90, 91]. Kardano�'s ideas
already contained two important ingredients that exploit the approximate self similarity: Coarse
graining and rescaling. Coarse graining is used to average out the microscopic degrees of freedom
and the rescaling is used to restore approximately the original structure of the model. Today
one refers to the combination of a coarse graining step and a rescaling step as a renormalisation
group transformation. This transformation gives rise to a dynamical system whose long time
behaviour describes the large scale behaviour of the model.

Based on, amongst other ideas, Kardano�'s block spin approach and the removal of diver-
gences in quantum �eld theory Wilson introduced the renormalisation group to study second-
order phase transitions [146, 147] in 1971 and the Kondo problem [149] in 1974. For his con-
tributions he was awarded the Nobel price in 1982. A review of his work can be found in his
Nobel lecture [148]. Since then renormalisation group techniques have become a standard tool
in theoretical physics. The rigorous implementation, however, is a major challenge since it is
very di�cult to control the error terms in the perturbative expansions used in physics. Never-
theless renormalisation techniques have been widely applied in mathematics, e.g., to quantum
�eld theory [1, 2, 11, 12, 28, 95], the Coulomb gas [74, 75], the Fermi liquid [85], and the Bose
gas [13]. Brydges and Yau introduced many important ideas in the seminal paper [52] about
the dipole gas and those ideas heavily in�uenced many of the works mentioned before. Based
on the approach used in [52], Bauerschmidt, Brydges, and Slade started a long programme to
build a general framework for rigorous renormalisation group techniques. The general method is
developed in a series of papers [44, 45, 20, 46, 47]. They apply their method to �nd the critical
exponents and its logarithmic corrections for the ϕ4-theory (see Example 1.2.5) [22] and the
weakly self avoiding random walk [21] in the critical dimension dc = 4. See also [25, 26, 140, 121]
for some further results in this direction. Their approach has been generalised to the analysis of
the Coulomb gas by Falco in [82, 83]. The technique was also applied to gradient models in [4].
Here we extend the results for gradient models.

Let us remark that recently there was another new development in the theory of renormal-
isation for the analysis of nonlinear stochastic partial di�erential equation introduced by Martin
Hairer [102]. In this setting renormalisation is required to remove ultraviolet (i.e., short scale)
divergences from a priori ill-posed equations in contrast to the infrared problems faced in stat-
istical physics. However, understanding the long term behaviour of stochastic partial di�erential
equation provides information about their equlibrium distribution which might relate the two
approaches. See [126] for �rst results concerning the long term behaviour. Let us also mention
[17] for a recent new approach using variational techniques to show existence of the equilibrium
measure of ϕ4-theory, providing another approach to renormalisation that heavily uses techniques
from singular stochastic partial di�erential equations.

1.5.2 The renormalisation group approach for gradient models

We now provide a very brief sketch of the renormalisation method in the spirit of Bauer-
schmidt, Brydges, and Slade in the setting of gradient models. We refer to Section 4.2 for a
slightly more detailed overview of our method and to the lecture notes [42], the recent book [24],
and [19] for a description of the general method for ϕ4-theory. The basic problem is to control
perturbation of Gaussian integrals in the limit Λ→ Zd,

ZΛ =

ˆ
P (ϕ)µ(dϕ). (1.5.1)

Here µ denotes a Gaussian measure and P (ϕ) =
∏
x∈Λ(1 +K(x, ϕ)) denotes a perturbation. We

assume that K(x, ϕ) is identical for each point x (K(τyx, τyϕ) = K(x, ϕ)), local in the sense that
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Figure 1.4: (left) Typical example of an admissible potential: V is convex at the global minimum
satis�es a quadratic lower bound and may be non-convex away from the minimum. (right) The
change of temperature decreases the in�uence of the non-convexity and drives the potential closer
a the quadratic potential.

K(x, ϕ) only depends on the values of ϕ in a neighbourhood of x, of gradient type, i.e., shift
invariant in the sense that K(x, taϕ) = K(x, ϕ), and small in a sense that will be made precise in
Chapter 3. It is also of interest to understand �ner properties in particular expectation values of
the measure P (ϕ)µ(dϕ). Since this requires similar techniques, we restrict to the analysis of the
partition function ZΛ here. The basic structure appears in all the problems mentioned above,
i.e., in the analysis of the ϕ4 model, the weakly self-avoiding random walk, and the Coulomb gas.
Let us very brie�y explain how this structure arises in the analysis of gradient interface models.
In this case the partition function is given by

ZN =

ˆ
e
−β
∑
x∈ΛN

∑d
i=1 V (∇iϕ(x))

λ(dϕ) (1.5.2)

where for concreteness we work on the torus ΛN = (Z/(LNZ))d where L is an integer and λ
denotes the Hausdor�-measure on the subspace of RΛN with average 0. Note that we can assume
that V (0) = V ′(0) = 0 because constants contribute −β |ΛN | dV (0) to the energy and the linear
term disappears since

∑
x∈ΛN

∇iϕ(x) = 0. Moreover we assume by rescaling ϕ that V ′′(0) = 1.
We write

V (x) =
x2

2
+ g(x) (1.5.3)

where g(0) = g′(0) = g′′(0) = 0. Using this decomposition and the coordinate change ϕ′ = ϕ
√
β

we obtain

ZN =

ˆ
e
−β
∑
x∈ΛN

∑d
i=1 g

(
∇iϕ
′(x)√
β

)
e
− 1

2

∑
x∈ΛN

|∇ϕ(x)|2
λ(dϕ′). (1.5.4)

Note that the expression e−
1
2

∑
x∈ΛN

|∇ϕ′(x)|2 is proportional to the density of the discrete Gaussian
free �eld on the torus. Moreover, as β →∞ the function x→ βg(x/

√
β) converges to 0 pointwise

for g ∈ C3, as a Taylor expansion at 0 shows.
Thus we have shown that ZN equals up to a normalisation factor an expression as in (1.5.1)

where K(x, ϕ) = e
∑d
i=1 βg(∇iϕ(x)/

√
β) − 1. For a general version of this calculation we refer
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to Proposition 3.2.4 in Chapter 3. The basic approach is to use a coarse graining procedure to
estimate the integral (1.5.1). This is implemented using a decomposition of the Gaussian measure
µ = µf ∗ µl where µf denotes the �uctuation �eld that captures the local strong �uctuations of
the measure µ and µl captures the remaining long distance �uctuations. Then a renormalisation
step consists �rst of the integration with respect to the �uctuation �eld that eliminates the
strong �uctuations of the local degrees of freedom. The rescaling step is di�cult to implement
due to the lattice structure. Instead the rescaling is replaced by a change of the norms which
require typical �elds to be smooth on the next length scale. This procedure is then iterated. The
concrete implementation is slightly di�erent in that we use a �xed decomposition of the measure
in N + 1 terms that is �xed beforehand. Let us now describe the implementation in our setting
in a bit more detail. For reasons that will become clear later we introduce for q ∈ Rd×dsym with
|q| < 1

2 the family of Gaussian measures

µ(q) =
e
− 1

2

∑
x∈ΛN

∑d
i,j=0∇iϕ(x)(δij+qij)∇jϕ(x)

Z(q)
λ (1.5.5)

where Z(q) denotes the normalisation constant. We denote the covariance of µ(q) by C(q) =
(∇∗(1 + q)∇)−1 where ∇∗ denotes the backward discrete derivative which is the adjoint of the
discrete forward derivative. We use so called �nite range decompositions which is a decomposition
of µ(q) = µ

(q)
1 ∗ . . . µ(q)

N+1 in a series of Gaussian measures with covariances C(q)
k . We will discuss

�nite range decompositions in a bit more detail below in Section 1.5.4 and state here only there
de�ning properties. The �rst property is the �nite range property that states

E
µ

(q)
k

(∇iϕ(x)∇jϕ(x)) = 0 for |x− y|∞ ≥
Lk

2
. (1.5.6)

The second property is the regularity of the covariance which ensures that µ(q)
k captures the

�uctuations on the length scale κ

|∇αx∇βyC
(q)
k+1(x, y)| ≤ CL−(d−2+|α|+|β|)k (1.5.7)

where we denote by C(q)
k+1 the kernels of the covariance and α and β denote multiindices and

| · | their degree. Using this decomposition we can rewrite the initial integral as a series of
integrations and obtain

ZN =

ˆ
P (q)

(N+1∑
k=1

ϕk

)
µ

(q)
1 (dϕ1) . . . µ

(q)
N+1(dϕN+1) (1.5.8)

where it will be useful to allow us to renormalise the measure using the matrix q. If we de�ne
inductively Pk+1(ϕ) = TK(Pk, q)(ϕ) =

´
Pk(ϕ+ϕk+1)µ

(q)
k+1(dϕk+1) with P0 = P (q) we can view

this as a (scale dependent) dynamical system and ZN = PN+1(0). Note that at this point it
is not clear how this might be helpful because the space of Pk is in�nite dimensional. The key
observation that makes this dynamical system tractable is that only a �nite number of explicit
terms (coordinate directions) grow under this systems while all other directions are contracting.
Let us provide a heuristic explanation of this fact. More detailed explanations can be found in
the references given above and in Section 4.4.2. For a monomial ∇αϕ(x) the variance under µ(q)

k+1

is bounded by

E
µ

(q)
k+1

(
|∇αϕk+1(x)|2

)
= ∇α(∇∗)αC(q)

k+1(x, x) ≤ CL−k(2|α|+(d−2)). (1.5.9)
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Therefore the size of the �eld ∇αϕk+1(x) is typically of the order of the square root of the

variance which is L−k(|α|+ (d−2)
2

). We de�ne the dimension of the �eld ϕ by [ϕ] = (d − 2)/2 so
that the size of a monomial ∇αϕ(x) can be expressed as L−k([ϕ]+|α|). Since we do not rescale the
system the natural length scale at the k-th step is Lk. Therefore the natural size associated to
the �eld ∇αϕk+1 is the sum over a block B of sidelength Lk∑

x∈B
|∇αϕk+1(x)| ≈ Lk(d−[ϕ]−|α|). (1.5.10)

We obtain a similar expression for the product of monomials∑
x∈B

∣∣∣∣∣
s∏
l=1

∇αlϕk+1(x)

∣∣∣∣∣ ≈ Lk(d−s[ϕ]−
∑s
l=1 |αl|). (1.5.11)

Only terms that satisfy d− s[ϕ]−
∑s

l=1 |αl| ≥ 0 do not decrease as k becomes large. In renorm-
alisation those terms are usually referred to as relevant or marginal (if d− s[ϕ]−

∑s
l=1 |αl| = 0).

All other terms are labelled irrelevant because they contract under the renormalisation. Since we
consider gradient models all the functionals Pk are measurable with respect to gradients of the
�elds so we only need to consider terms with |αl| ≥ 1. Then one easily sees that the relevant and
marginal terms amount to constants, the linear terms ∇αϕ(x) with |α| ≤ d/2 + 1 and the quad-
ratic terms ∇iϕ(x)∇jϕ(x). Note that in principle we also have to consider non-local products
like ∇iϕ(x)∇jϕ(y). However, one easily sees that they can be rewritten as ∇iϕ(x)∇jϕ(x) plus
irrelevant terms with additional discrete gradients.

It turns out that it is possible to rewrite Pk = Kk ◦ e−Hk where the formal de�nition of the
◦ operation can be found in Section 4.4.2. Here it is su�cient to view this representation as a
change of coordinates. The functional Kk is an element of a suitable in�nite dimensional Banach
space that collects the irrelevant directions on scale k and Hk is an element of a �nite dimensional
space that is spanned by the �nite number of relevant directions. The expansion that is used for
the representation of Hk and Kk is related to polymer expansions and cluster expansions that
are a standard tool in statistical mechanics and we refer to [41] for details. We can de�ne the
renormalisation map T k for the new coordinates so that T k(Kk, Hk, q) = (Kk+1, Hk+1) satis�es

(Kk+1 ◦ e−Hk+1)(ϕ) =

ˆ
(Kk ◦ e−Hk)(ϕ+ ψ)µ

(q)
k+1(dψ). (1.5.12)

The sequence of maps T k de�nes a scale dependent dynamical system and the point (0, 0, q)
corresponds to a Gaussian �xed point for any q. Moreover it turns out that T k can be de�ned
such that this �xed point is hyperbolic where the directions Kk are contracting and Hk are
expanding. This requires a careful de�nition of T k because even though Kk only contains
the irrelevant directions the convolution with µ

(q)
k+1 creates relevant terms. The structure of a

dynamical system can be exploited in the vicinity of the �xed point using a stable manifold
theorem and a �ne tuning of q. It can be shown that the scaling limit of the model agrees with
the long distance behaviour of the Gaussian measure µ(q) so that this �ne tuning is physically
meaningful. We also show that all operations are smooth as a function of the perturbation
K(x, ϕ). The key challenges in this approach are the proper setup and proof of the hyperbolicity
of the �xed point and smoothness of the maps T k close to the �xed point which are the statements
of Theorem 4.4.7 and 4.4.8.

1.5.3 Di�erences to earlier work

Let us here highlight the main di�erences of our work for gradient models to the implementa-
tion of the renormalisation group approach for ϕ4-theory by Bauerschmidt, Brydges, and Slade.
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At the end of this section we will also discuss the main di�erences to the earlier work for gradient
models by Adams, Kotecký, and Müller.

There are two main di�culties in the analysis of ϕ4-theory that do not appear for gradient
models. First, the de�nition of the renormalisation map T k for the ϕ4-model is substantially
more di�cult because a second order perturbation theory is required. This is related to the fact
that the ϕ4 term is marginal and cannot be absorbed into the Gaussian measure. In this setting
the �xed point of the dynamical system in non-hyperbolic and they need a �ner analysis of �nite
dimensional dynamical systems with a non hyperbolic �xed point (cf. [23]). For gradient models
�rst order perturbation theory is in general su�cient, but second order perturbation theory is
necessary to handle observables that can be used, e.g., to estimate the decay of covariances [106].

A second di�erence to the work by Bauerschmidt, Brydges, and Slade is that they also deal
with Grassmann variables and supersymmetric theories because the weakly self avoiding random
walk corresponds to a supersymmetric version of the ϕ4 theory. Therefore, they need to introduce
very general abstract results and proofs while we restrict to special cases adapted to our settings
and more simple minded proofs.

While the analysis of gradient models is much simpler with respect to the two aspects de-
scribed above there are also new challenges. An additional di�culty compared to the analysis
of ϕ4-theory is the missing symmetry. While the invariance of all terms under all isometries of
the lattice reduces the e�ective number of relevant terms for ϕ4-theory to three we consider an
anisotropic setting with far more relevant parameters. This makes the �ne tuning of the matrix
q in the stable manifold theorem slightly more subtle and we need smoothness of the renorm-
alisation map T k with respect to q. In ϕ4-theory only continuity is required at this point. To
obtain the smoothness of T k with respect to q we need additional regularity for the family of
�nite range decomposition C

(q)
k . This will be discussed in the next Section.

A second di�erence of this work compared to the techniques used by Bauerschmidt, Brydges,
and Slade is a new solution of the large �eld problem. The large �eld problem refers to the fact
that the contracting error coordinate Kk is of higher order and therefore small for small �elds
ϕ but it is in general unbounded and increases for large or rough �elds ϕ. Heuristically this
contribution is suppressed by the Gaussian measure that has only little mass on large �elds but
rigorous implementation of this intuition has caused substantial di�culties. The �rst solution to
this problem was found by Gaw¦dzki and Kupiainen who treat small and large �elds di�erently
and explicitely show that the large �eld contribution is negligible [90, 91]. This approach is
still widely used see [13, 72, 73]. Later, Brydges and Yau use suitable weight functions that
control the growth of Kk(ϕ) as the �eld increases [52]. This idea was adopted in the approach
by Bauerschmidt, Brydges, and Slade [47] and also in the adaption to gradient models [4]. In all
those works the weight functions are given by carefully chosen explicit functions. One important
improvement in the present work is that we instead use function implicitly de�ned by Gaussian
integration which are almost optimal (cf. Section 4.5). Let us remark that the large �eld problem
seems to be slightly more delicate in the context of gradient models because we want to require
minimal growth assumptions on the potential V at in�nity. In contrast, large �elds are highly
suppressed due to the ϕ4-term in ϕ4-theory.

Let us now also list the most important changes of our work compared to [4]. We extend their
results in several directions. We consider general �nite range interactions for vector valued �elds
and we are able to consider d ≥ 2 instead of d = 2 and d = 3. This requires mostly notational
changes but can otherwise be easily integrated in the framework. The two main di�erences
address the two challenges discussed above. We construct new large �eld regulators and we show
smoothness of the renormalisation map T k with respect to q. This allows us to handle potentials
with weaker growth assumptions than in [4] and to avoid several technical di�culties that are
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present in [4].

1.5.4 Finite range decompositions

The use of �nite range decompositions as de�ned above is an important ingredient in the
renormalisation analysis. They have the useful property that contributions from well separated
regions with distance bigger than Lk factorize when integrated against the measure µ(q)

k , i.e.,

E
µ

(q)
k

(F (∇ϕ(x))G(∇ϕ(y))) = E
µ

(q)
k

(F (∇ϕ(x)))) E
µ

(q)
k

(G(∇ϕ(y))) (1.5.13)

for any functionals F , G if |x−y| ≥ Lk. This keeps the combinatorics of the polymer expansions
much simpler than for decompositions whose covariance only decays exponentially in the distance.
Such decompositions that have also been used in statistical mechanics [90]. On the other hand
it is much harder to obtain �nite range decompositions because the �nite range constraint and
the condition that C(q)

k is the kernel of a positive operator are di�cult to satisfy simultaneously.
Finite range decompositions were constructed in [3, 43, 51] using the Poisson kernel. A very
general construction was found by Bauerschmidt in [18] where he exploited the �nite speed of
propagation of the wave equation.

A major technical di�culty in the analysis of gradient models in [4] is that a loss of regularity
occurs for the renormalisation map T k which is not di�erentiable in q. The origin of this loss of
regularity is, roughly speaking, that the map

q → E
µ

(q)
k+1

(F (ϕ)) (1.5.14)

is not di�erentiable in q for bounded functionals F . Instead one is forced to estimate the
derivative in terms of D2F , thereby losing regularity.

The basic problem is already present in the one dimensional setting where a simple calculation
shows that

d

dC

ˆ
R
f(x)

e−
x2

2C

√
2πC

dx =
1

2C

ˆ
R
f(x)

(
x2

C
− 1

)
e−

x2

2C

√
2πC

dx. (1.5.15)

This implies that the derivative can be bounded uniformly for f ∈ L∞(R) only if C is bounded
away from zero. Similarly bounds for (1.5.14) require lower bounds on the eigenvalues of the
covariances of the �nite range decomposition. Those can be obtained using a slight modi�cation
of earlier construction of �nite range decompositions. Initially this was shown in the author's
Master's thesis [55] based on the decomposition from [3]. The generalisation to �nite range
instead of nearest neighbour interactions based on the decomposition constructed in [18] was
done as a part of the author's Ph.D. work and can be found in Chapter 2. This work was also
published [54]. This decomposition is then employed in Chapter 4 to avoid the loss of regularity.

1.6 Phase transitions for gradient interface models

This last section of the introduction deals with a slightly di�erent line of research that is
presented in Chapter 5. Recall that we de�ned a phase transition as the coexistence of at
least two Gibbs measures. Phase transitions are a huge topic of research in physics but also in
statistical mechanics and we refer to the literature for an overview of the existing mathematical
results [92]. Here we are concerned with phase transitions for gradient interface models. Our
motivation is that results in this direction might be a small �rst step towards a understanding of
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phase transitions in crystalline materials. Indeed, the presence of di�erent phases, e.g., martensite
and austenite and the occurance of microstructures has been long studied using di�erent e�ective
macroscopic models [16, 127]. It is of considerable interest to relate the macroscopic models to
a underlying microscopic model and relate the coexistence of phases of the two models.

As discussed in Section 1.4 robust techniques for gradient models only work for very small
or high temperature. For example, the rigorous renormalisation group analysis discussed above
requires initial conditions very close to the Gaussian �xed point. In the case of gradient models
this restricts the results to very small temperatures. Since no robust techniques for the analysis
of gradient models at intermediate temperatures are known the goal of studying phase transition
of models for crystalline matter seems to be currently out of reach.

A more modest goal is to understand the range of possible phenomena that occur at inter-
mediate temperatures using suitable simpler toy models. For simplicity we restrict our attention
to scalar nearest neighbour interactions, i.e., gradient interface models. A promising class of toy
models is given by potentials V that can be represented as a mixture of Gaussians, i.e., V can
be written as

e−V (x) =

ˆ
R+

ρ(dκ) e−
κx2

2 (1.6.1)

where ρ is a (positive) Borel measure. This class of potentials was introduced in [32] and has
caught some attention.

One important result is that phase transitions may occur for this type of potential as shown
in [32] by Biskup and Kotecký, i.e., the authors construct two distinct ergodic gradient Gibbs
measures of zero tilt. In particular, this result shows that new phenomena occur for gradient
interface models with non-convex potentials compared to convex potentials where the Gibbs
measure is unique for every tilt. Their proof relies on the use of re�ection positivity which is
a powerful technique that has been widely used to show the existence of phase transitions and
we refer to the review [31] for an overview. It is, however, not robust under perturbations and
it can only be applied on the torus. A further result concerning this model was shown in [33]
by Biskup and Spohn where they establish that the scaling limit of all ergodic zero tilt gradient
Gibbs measures for V as in (1.6.1) is a Gaussian free �eld if ρ has compact support in (0,∞).
Recently, this result was extended to the class of potentials V (x) = (1 + x2)α with 0 < α < 1/2
in [151]. This is a class of potential with subquadratic growth and therefore the corresponding
measure ρ is not compactly supported in (0,∞). All those results rely on the observation that
the structure of the potential allows to raise κ to a degree of freedom, enabling us to express
Gibbs measures as a mixture of non-uniform Gaussian �elds.

In Chapter 5 we are going to study the properties of the κ-marginal corresponding to gradient
Gibbs measures with zero tilt for this type of potential in more detail. This gives rise to a
random conductance model whose properties we analyse. In particular we establish correlation
inequalities. Mostly we restrict our analysis to the case where

ρ = pδq + (1− p)δ1 (1.6.2)

for two parameters p ∈ [0, 1] and q ≥ 1. In this case it turns out that the random conductance
model has several similarities to the random cluster model and we adapt some of the techniques
that have been introduced in this context see [77]. In particular we use planar duality to reprove
the phase coexistence result proved in [32] using re�ection positivity, i.e., we show the following.
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For d = 2 and q > 1 su�ciently large and p satisfying q = p4/(1−p)4

there are two translation invariant gradient Gibbs measures with
zero tilt for the potential V given by

e−V (x) = pe−
qx2

2 + (1− p)e−
x2

2 . (1.6.3)

The precise statement is Theorem 5.2.4. Moreover, we establish uniqueness of the gradient
Gibbs measure for almost all values of p and q and show that the Dobrushin criterion can
be applied to prove uniqueness for a small range of parameters in d ≥ 4. All the results for
potentials as in (1.6.1) are restricted to zero tilt. We will brie�y discuss some extensions and
ideas for non-zero tilt at the end of Chapter 5.



Chapter 2

Finite range decompositions of

Gaussian measures with improved

regularity

This chapter is based on the author's master's thesis [55]. Here we extend and simplify
the results. In particular, we no longer use the construction introduced in [3] and
instead rely on a di�erent �nite range decomposition constructed in [18]. This allows
us to consider general �nite range interactions while our earlier results were restricted
to nearest neighbour interactions. Moreover, we obtain optimal L dependence for the
bounds of the discrete derivatives of the �nite range decomposition. These extensions
are necessary for the results in Chapter 4. The results of this chapter have been
published as a research paper

Simon Buchholz. Finite range decomposition for Gaussian measures with im-
proved regularity. J. Funct. Anal., 275(7):1674�1711, 2018.
URL: https://doi.org/10.1016/j.jfa.2018.02.018.

The text of this chapter agrees with the publication up to minor editorial changes.

2.1 Introduction

In this paper we consider �nite range decompositions for families of translation invariant
Gaussian �elds on a torus TN = (Z/LNZ)d. A Gaussian process ξ indexed by TN has range
M if E(ξ(x)ξ(y)) = 0 for any x, y such that |x − y| ≥ M . A �nite range decomposition of ξ
is a decomposition ξ =

∑
k ξk such that the ξk are independent processes with range ∼ Lk.

Equivalently, if C(x, y) is the covariance of ξ then a �nite range decomposition is possible if there
are covariances Ck(x, y) such that C =

∑
k Ck, Ck(x, y) = 0 for |x − y| & Lk, and Ck is positive

semi-de�nite.
Here we consider vector valued Gaussian �elds ξA whose covariance is the Greens function of

a constant coe�cient, anisotropic, elliptic, discrete di�erence operator A = ∇∗A∇ (plus higher
order terms). Our main object of interest is the corresponding gradient Gaussian �eld ∇ξA,
i.e., we consider the σ-algebra generated by the gradients. They are referred to as massless �eld
in the language of quantum �eld theory. Gradient �elds appear naturally in discrete elasticity
where the energy only depends on the distance between the atoms. The analysis of gradient
Gaussian �elds is di�cult because they exhibit long range correlations only decaying critically

©2019. This chapter is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
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as E(∇iξr(x)∇jξs(y)) ∝ |x − y|−d. Finite range decompositions of gradient Gaussian �elds are
the basis of a multi-scale approach to control the correlation structure of the �elds and avoid
logarithmic divergences that appear in naive approaches.

Finite range decompositions of quadratic forms have appeared in di�erent places in mathem-
atics. Hainzl and Seiringer obtained decompositions of radially symmetric functions into weighted
integrals over tent functions [101]. The �rst decomposition for a setting without radial symmetry
was obtained for the discrete Laplacian by Brydges, Guadagni, and Mitter in [43]. Their results
are based on averaging the Poisson kernel. Brydges and Talarczyk in [51] generalised this result
to quite general elliptic operators on Rm that can be written as A = B∗B. Adams, Kotecký,
and Müller adapted this work in [3] to the discrete anisotropic setting. Their decomposition has
the property that the kernels CA,k are analytic function of the operator A. Later, Bauerschmidt
gave a very general construction based on the �nite propagation speed of the wave equation and
functional calculus [18].

The goal of this work is to improve the regularity of the previous constructions. We show lower
bounds for the previous decomposition and modify the construction such that we can control
the decay behaviour of the kernels in Fourier space from above and below. This implies that the
integration map F → E(F (·+ξA,k)) is di�erentiable with respect to the matrix A uniformly in the
size N of the torus. Our results hold for vector valued �elds and we allow for higher order terms
in the elliptic operator which corresponds to general quadratic �nite range interaction. This
allows us to handle, e.g., realistic models for discrete elasticity where next to nearest neighbour
interactions are included. The construction is based on the Bauerschmidt decomposition in [18]
but in a previous version of this project [53] we started from the construction in [3].

The main application of �nite range decompositions is the renormalisation group approach to
problems in statistical mechanics. Renormalisation was introduced by Wilson in the analysis of
phase transitions [148]. Brydges and Yau [52] adapted Wilson's ideas to the statistical mechanics
setting and initiated a long stream of developments. Recently Bauerschmidt, Brydges, and Slade
introduced a general framework and investigate the φ4 model [22] and the weakly self avoiding
random walk [21]. Their approach allows one to analyse functional integrals E(K) where K is a
non-linear functional depending on a �eld on a large lattice and the expectation is with respect
to a (gradient) Gaussian �eld with long ranged correlation. A key step is that this integral can
be rewritten as a series of integrations using a �nite range decomposition of the Gaussian �eld.
Then one can analyse the correlation structure scale by scale.

Adams, Kotecký, and Müller extend this method to the anisotropic setting where A is not
necessarily a multiple of the Laplacian and they show strict convexity of the surface tension
for non-convex potentials for small tilt and low temperature [4]. However, they face substantial
technical di�culties because the integration map F → E(F (· + ξA,k)) is not di�erentiable with
respect to A for their �nite range decomposition and regularity is lost. The results of this paper
allow to avoid this loss of regularity and therefore simplify their analysis.

This paper is structured as follows: In Section 2.2 we introduce the setting, state the main
result, and give a brief motivation for the bounds of the new �nite range decomposition. Then,
in Section 2.3 we prove the main result based on the �nite range decomposition from [3]. Finally,
in Section 2.4 we show the smoothness of the integration map. For the convenience of the reader
the appendix states the precise results of [3] when applied to our setting.

Notation: In this paper we always understand inequalities of the form

A ≥ B (2.1.1)

for A,B ∈ Cn×nher in the sense of Hermitian matrices,i.e., A−B is semi-positive de�nite. Moreover
we use the inclusion R 3 t→ t · Id ∈ Cn×nher without re�ecting this in the notationt.
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2.2 Setting and main result

Fix an odd integer L ≥ 3, a dimension d ≥ 2, and the number of components m ≥ 1 for the
rest of this paper. Let TN = (Z/(LNZ))d be the d dimensional discrete torus of side length LN .
We equip TN with the quotient distances d (or | · |) and d∞ (or | · |∞) induced by the Euclidean
and maximum norm respectively. We are interested in gradient �elds. The condition of being
a gradient is, however, complicated in dimension d ≥ 2. Therefore we work with usual �elds
modulo a constant which are in one-to-one correspondence to gradient �elds. De�ne the space
of m-component �elds as

VN = {ϕ : TN → Rm} = (Rm)TN . (2.2.1)

Since we take the quotient modulo constant �elds we can restrict our �elds to have average zero,
hence we set

XN =

ϕ ∈ VN :
∑
x∈TN

ϕ(x) = 0

 . (2.2.2)

Let the dot denote the standard scalar product on Rm which is later extended to Cm. For
ψ,ϕ ∈ XN the expression

〈ϕ,ψ〉 =
∑
x∈TN

ϕ(x) · ψ(x) (2.2.3)

de�nes a scalar product on XN and this turns XN into a Hilbert space H. The discrete forward
and backward derivatives are de�ned by

(∇jϕ)r(x) = ϕr(x+ ej)− ϕr(x) r ∈ {1, . . . ,m}, j ∈ {1, . . . , d},
(∇∗jϕ)r(x) = ϕr(x− ej)− ϕr(x) r ∈ {1, . . . ,m}, j ∈ {1, . . . , d}.

(2.2.4)

Here ej are the standard unit vectors in Zd. Forward and backward derivatives are adjoints of
each other.

Next we introduce the set of operators for which we discuss �nite range decompositions. We
�x some necessary notation. Let I ⊂ Nd

0 \ {0, . . . , 0} be a �nite set of multiindices which is �xed
for the rest of this work. We assume that I contains all multiindices of order 1, i.e., the gradient.
We de�ne R = maxα∈I |α|∞. With G = (Rm)I we denote the space of discrete derivatives with
α ∈ I and for any �eld ϕ we denote Dϕ(x) ∈ G for the vector (∇αϕ(x))α∈I . We equip G with
the standard scalar product

(Dϕ(x), Dψ(x)) =
∑
α∈I

(∇αϕ(x),∇αψ(x))Rm . (2.2.5)

For any z ∈ G we write z∇ for the restriction of z to the gradient components α = e1, . . . , ed.
We consider non-negative quadratic forms Q : G → R that satisfy

Q(z) ≥ ω0|z∇|2 (2.2.6)

for some ω0 > 0. This condition for general �nite range interactions already appeared in [128].
To keep the notation consistent with [3] we denote the corresponding symmetric generator by
A : G → G. By de�nition A satis�es (z,Az) = Q(z). The matrix elements of A are denoted
by Aαβ ∈ Rm×m, i.e., Q(Dϕ(x), Dψ(x)) = (ADϕ(x), Dψ(x)) =

∑
α,β∈G ∇αϕ(x)Aαβ∇βψ(x).
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Usually we consider the set of generators A whose operator norm with respect to the standard
scalar product on G satis�es

‖A‖ ≤ Ω0 (2.2.7)

for some �xed Ω0 > 0. We denote the set of symmetric operators A such that (2.2.6) and (2.2.7)
hold by L(G, ω0,Ω0). We think of I, ω0, and Ω0 as �xed and in the following and all constants
depend on d, m, R, ω0, and Ω0 in the following. From the operator A we obtain a corresponding
elliptic �nite di�erence operator

A =
∑
α,β∈G

(∇α)∗Aαβ∇β. (2.2.8)

The operator A de�nes a Gaussian measure µA on XN that is given by

µA(dϕ) =
e−

1
2
〈ϕ,Aϕ〉√

det (2πA−1)
λ(dϕ) (2.2.9)

where λ denotes the m(LNd − 1) dimensional Hausdor�-measure on the a�ne space XN .
In the following we discuss �nite range decompositions for the Greens functions of operators

A : XN → XN with A ∈ L(G, ω0,Ω0). In [18] and [3] only the case where I = {e1, . . . , ed}
was discussed. By assumption 〈ϕ,Aϕ〉 ≥ ω0〈∇ϕ,∇ϕ〉 which implies positivity of the operator.
Hence the operator A is invertible and we call its inverse operator C = A−1. The operator C

is the covariance operator of the Gaussian measure µA. Since A is translation invariant (i.e.,
[τx,A] = 0 where τx : XN → XN denotes the translation operator (τxφ)(y) = φ(y − x) and
[A,B] = AB − BA is the commutator) the same is true for C. Translation invariance implies
that the operator C has a unique kernel C : TN → Rm×m (cf. Lemma 3.5 in [3]) such that

(Cϕ)(x) =
∑
y∈TN

C(x− y)ϕ(y) (2.2.10)

and C ∈ MN where MN is the space of m × m matrix valued functions on TN with average
zero, i.e., Cij ∈ XN for all 1 ≤ i, j ≤ m (this condition can always be satis�ed because constant
kernels generate the zero-operator on XN ).

Remark 2.2.1. Note that the kernel C de�nes an extension C of the operator C from the space
XN to the space VN that annihilates constant �elds. Since the space of constant �elds is the
orthogonal complement of XN in VN the operator C is a positive semi-de�nite operator on an
euclidean space. Hence it is the covariance of a Gaussian measure on VN and this measure is
concentrated on XN and its restriction to XN agrees with µA given by equation (2.2.9). This
implies by general Gaussian calculus that

EµA (ϕ(x)ϕ(y)) = C(x− y). (2.2.11)

Let us de�ne the term �nite range.

Lemma and De�nition 2.2.2. Let C : XN → XN be a translation invariant operator with
kernel C ∈ MN . We say that C has range at most l for 2l + 3 < LN if the following three
equivalent statements hold.

1. 〈ϕ,Cψ〉 = 0 for all ϕ,ψ ∈ XN with dist∞(suppϕ, suppψ) > l.



Setting and main result 29

2. There is M ∈ Matm,m(R) such that C(x) = M for d∞(x, 0) > l.

3. suppCϕ ⊂ suppϕ+ {−l, . . . , l}d for all ϕ ∈ XN .

For 2l + 3 ≥ LN property 2 shall be the de�ning property.

Proof. This is Lemma 3.6 in [3]. The implication (ii)⇒ (iii)⇒ (i) is always true.

Note that under the condition of De�nition 2.2.2 for a positive operator C the gradient �eld
with covariance C has �nite range of correlations. Indeed, from (2.2.11) we conclude that for
x, y ∈ TN with |x− y|∞ > l + 1

EC(∇iϕ(x)∇jϕ(y)) = ∇∗j∇iC(x− y) = 0. (2.2.12)

Observe that the operator A introduced before has range at most R. We seek a decomposition
of C = A−1 into translation invariant and positive operators Ck with

C =

N+1∑
k=1

Ck (2.2.13)

such that the range of Ck is smaller than Lk/2 and the Ck satisfy certain bounds. This implies
that Ck is the covariance operator of a Gaussian measure on XN and the Gaussian variables
∇iϕ(x) and ∇jϕ(y) (where ϕ is distributed according to this measure) are uncorrelated and
therefore independent for |x− y|∞ ≥ Lk/2. A decomposition satisfying the �nite range property
and translation invariance will be called �nite range decomposition. Note, however, that they are
only useful in the presence of strong bounds because, e.g., the trivial decomposition CN+1 = C

and Ck = 0 for k ≤ N has the �nite range property.
Translation invariant operators are diagonal in Fourier space which will be introduced brie�y

because the strongest bounds of the kernel Ck are the bounds for its Fourier transform. De�ne
the dual torus

T̂N =

{
(−LN + 1)π

LN
,
(−LN + 3)π

LN
, . . . ,

(LN − 1)π

LN

}d
. (2.2.14)

For p ∈ T̂N the exponentials fp : TN → C with fp(x) = eip·x are well de�ned since eip·x is a
(LNZ)d periodic function on Zd. Here and in the following we use the immediate generalisations
to complex valued �elds. The Fourier transform ψ̂ : T̂N → C of a scalar �eld ψ : TN → C is
de�ned by

ψ̂(p) =
∑
x∈TN

e−ip·xψ(x) =
∑
x∈TN

fp(−x)ψ(x) (2.2.15)

and the inverse transform is given by

ψ(x) =
1

LNd

∑
p∈T̂N

eip·xψ̂(p). (2.2.16)

The Fourier transform maps the space XN bijectively on the subspace {ψ̂ : T̂N → C| ψ̂(0) = 0}.
Clearly f̂p(q) = LNdδpq for p, q ∈ T̂N . For matrix- or vector-valued functions we de�ne the
Fourier transform component-wise. The Fourier transform satis�es

〈ψ,ϕ〉 =
1

LNd

∑
p∈T̂N

ψ̂(p) · ϕ̂(p) (2.2.17)
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where we extended the scalar product anti-linearly in the �rst component, this means v · w =∑m
i=1 viwi. Hence the functions L−

Nd
2 fpei for p 6= 0 and ei ∈ Rm a standard unit vector form

an orthonormal basis of XN (complexi�ed). Let A,B ∈ MN be two matrix-valued functions.
De�ne the convolution by

A ∗ B(x) =
∑
y∈TN

A(x− y)B(y). (2.2.18)

Note that by (2.2.10) the kernel of the composition AB of the operators A and B with kernels
A and B is given by A ∗ B.

Consider a translation invariant operator K with kernel K ∈ MN . As in the continuous
setting the Fourier transform of a convolution is the product of the Fourier transforms, i.e.,

K̂ψ(p) = K̂ ∗ ψ(p) = K̂(p)ψ̂(p). (2.2.19)

Hence translation invariant operators are indeed (block) diagonal in Fourier space with eigenval-
ues given by the Fourier transform of the kernel.

Next we calculate the Fourier modes of the kernel of the operator A. A simple calculation
shows that ∇̂iϕ(p) = qi(p)ϕ̂(p) and ∇̂∗iϕ(p) = qi(p)ϕ̂(p) where qi(p) = eipi − 1 and qi(p) =
e−ipi − 1 denotes the complex conjugate. This implies

Â(p) =
∑
α,β∈I

q(p)αAαβq(p)
β (2.2.20)

where q(p)α =
∏d
i=1 qi(p)

αi . Note again the formal similarity to the continuum setting. The
estimate 4

π2 t
2 ≤ |eit − 1|2 ≤ t2 for t ∈ [−π, π] immediately implies that 4

π2 |p|2 ≤ |q(p)|2 ≤ |p|2

for any p ∈ T̂N . Hence we �nd using |p| <
√
dπ and |α|1 ≤ dR for α ∈ I

‖Â(p)‖ =

∥∥∥∥ ∑
α,β∈I

q(p)αq(p)βAαβ

∥∥∥∥ ≤ ‖A‖ ∣∣(q(p)α)α∈I
∣∣2
G ≤ Ω0|p|2 · |I|(dπ2)dR (2.2.21)

On the other hand we also �nd a lower bound for the Fourier modes and a ∈ Rm using the
assumption (2.2.6) for z = (aq(p)α)α∈I

a · Â(p)a ≥ ω0|q(p)|2|a|2 ≥
4ω0

π2
|p|2|a|2. (2.2.22)

Together this yields the important bound

‖Â(p)‖ ≤ Ω|p|2 and Â(p) ≥ ω|p|2. (2.2.23)

Finally we note that by the Fourier inversion formula (2.2.16) for any multi-index α

∇αCk(x) =
1

LNd

∑
p∈T̂N

Ĉk(p)q(p)αfp(x). (2.2.24)

The L∞ − L1 bounds for the Fourier transform also hold in the discrete case

‖∇αCk(x)‖ ≤ 1

LNd

∑
p∈T̂N

‖Ĉk(p)‖|p||α|. (2.2.25)
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Finally we introduce a dyadic partition of the dual torus for j = 1, . . . , N

Aj = {p ∈ T̂N : L−j−1 < |p| ≤ L−j} (2.2.26)

A0 = {p ∈ T̂N : L−1 < |p|}. (2.2.27)

When the size of the torus T̂N is not clear from the context we write AN
j = Aj for clarity.

Observe that

|Aj | ≤ κ(d)L(N−j)d (2.2.28)

for some constant κ(d) > 0.
Let us now state the main result of [18] adapted to our setting.

Theorem 2.2.3. Assume that d ≥ 2 and A ∈
⋃
ω0>0 L(G, ω0,Ω0). Then there is a decomposition

CA =
∑N+1

k=1 CA,k where CA,k are positive, translation invariant operators and the map A →
CA,k(x) only depends on R and Ω0 but not on ω0. The CA,k are polynomials in A for 1 ≤ k ≤ N
and real analytic for k = N + 1. This decomposition has the �nite range property

1. CA,k(x) = −Mk for 1 ≤ k ≤ N and |x|∞ ≥ Lk/2 where Mk ∈ Rm×m are positive semi-
de�nite matrices independent of A (for Ω0 and G �xed). In particular CA,k has range
smaller Lk/2.

Moreover we have the following bounds for ω0 > 0 and A ∈ L(G, ω0,Ω0)

2. In Fourier space the following bounds hold for any positive integers ` and ñ and symmetric
Ȧ ∈ L(G)

‖D`
AĈA,k(p)‖ ≤

{
C`,n̄|p|−2(|p|L(k−1))−n̄ for |p| > L−k (p ∈ Aj, j ≤ k − 1),

C`L
2k‖Ȧ‖` for p ≤ L−k (p ∈ Aj, j ≥ k).

(2.2.29)

Here C` and C`,n̄ are constants that do not depend on L, N , or k. The corresponding lower
bound reads

ĈA,k(p) ≥

{
cmin

(
|p|−2, L2

)
for k = 1,

cL2k for |p| < L−k (p ∈ Aj, j ≥ k).
(2.2.30)

for some constant c > 0 depending on the same quantities as C`.

3. In particular, we have

sup
x∈TN

∥∥∥D`
A∇αCA,k(x)

∥∥∥ ≤ {C(α, `)L−(k−1)(d−2+|α|) for d+ |α| > 2

C(α, `) ln(L)L−(k−1)(d−2+|α|) for d+ |α| = 2.
(2.2.31)

Here C(α, `) denotes a constant that does not depend on L, N , and k.

Remark 2.2.4. We usually work on a torus with �xed side-length in this paper. In applications
one is often interested in the thermodynamic limit N → ∞. Hence, it is also interesting to in-
vestigate the dependence of the �nite range decomposition on the size LN of the torus. In [20] the
dependence of a �nite range decomposition on the size of the torus and the relation to decompos-
itions of the corresponding operator on Zd are discussed in more detail and this is used to extend
the renormalisation analysis from discrete tori to Zd in [47]. We state the corresponding result for
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the dependence on the size of the torus adapted to our setting. To compare decompositions for dif-

ferent sizes of the torus let us choose ΛN =
{
−(LN − 1)/2,−(LN − 3)/2, . . . , (LN − 1)/2

}d ⊂ Zd

as the underlying set of TN . Note that ΛN ⊂ ΛN ′ for N ≤ N ′. Let us denote by CNk the kernels
of the decomposition depending on the torus size LN . It can be shown (cf. the proof of Theorem
2.2.3 in Appendix 2.A) that for k ≤ N ≤ N ′ and x ∈ ΛN the decomposition from Theorem 2.2.3
satis�es

CNk (x)− CN ′k (x) = −(MN
k −MN ′

k ), (2.2.32)

hence the kernels agree up to a constant shift locally and they are constant for |x|∞ ≥ Lk/2. We
de�ne Λ′N =

{
x ∈ Zd : |x|∞ < (LN − 1)/4

}
. Then we have x − y ∈ ΛN for x, y ∈ Λ′N ⊂ Zd.

Now (2.2.32) implies that for x, y ∈ Λ′N such that x+ ei, y + ej ∈ Λ′N

EµNk ∇iϕ(x)∇jϕ(y) = ∇∗j∇iCNk (x− y) = ∇∗j∇iCN
′

k (x− y) = E
µN
′

k
∇iϕ(x)∇jϕ(y). (2.2.33)

This means that the covariance structures of µNk and µN
′

k agree locally. In particular we can
conclude that for any set X ⊂ Λ′N satisfying X + ei ⊂ Λ′N for 1 ≤ i ≤ d, any 1 ≤ k ≤ N , and
any measurable functional F : (Rm)X → R

ˆ
XN

F (∇ϕ�X)µNk (dϕ) =

ˆ
XN′

F (∇ϕ�X)µN
′

k (dϕ). (2.2.34)

Hence the in�uence of the �nite size of the torus is restricted to the last term of the decomposition.

Theorem 2.2.3 is a special case of the much more general Theorem 1.2 in [18] except for the
simple lower bound. For the convenience of the reader we include all relevant calculations for the
concrete setting in the appendix. The estimates are similar to the ones that appeared in [20].

Our main result is an extension of this result which additionally gives controlled decay of
the kernels in Fourier space. In particular the operators Ck,A and Ck,A′ are comparable for
the new construction. The main application of the following theorem is the regularity of the
renormalisation map which is stated in Proposition 2.4.1 in Section 2.4.

Theorem 2.2.5. Let L > 3 odd, N ≥ 1 as before and let ñ > n be two integers. Fix Ω0 > ω0 > 0
and consider the family of symmetric, positive operators A ∈ L(G, ω0,Ω0). Then there exists a
family of �nite range decomposition CA,k of CA such that the map A→ CA,k(x) only depends on
R, ω0, and Ω0. The map is a polynomial in A for 1 ≤ k ≤ N and real analytic for k = N + 1.
The operators CA,k satisfy

CA =
N+1∑
k=1

CA,k,

CA,k(x) = Mk for 1 ≤ k ≤ N , and |x|∞ ≥
Lk

2
,

(2.2.35)

where Mk ≤ 0 and Mk is independent of A. The α-th discrete derivative for all α with |α|1 ≤ n
is bounded by

sup
x∈TN

sup
‖Ȧ‖≤1

∥∥∥∇αD`
ACA,k(x)(Ȧ, . . . , Ȧ)

∥∥∥ ≤ {3C(α, `)L−(k−1)(d−2+|α|) for d+ |α| > 2

3C(α, `) ln(L)L−(k−1)(d−2+|α|) for d+ |α| = 2.

(2.2.36)
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where the constants are the same as in Theorem 2.2.3. We have the following lower bounds in
Fourier space for some c = c(ñ) > 0

ĈA,k(p) ≥

{
cL−2(d+ñ)−1L2jL(k−j)(−d+1−n) for p ∈ Aj and j < k

cL−2(d+ñ)−1L2k for p ∈ Aj and j ≥ k.
(2.2.37)

Similar upper bounds hold with some constant C = C(ñ)

‖ĈA,k(p)‖ ≤

{
CL2(d+ñ)+1L2jL(k−j)(−d+1−n) for p ∈ Aj and j < k

CL2k for p ∈ Aj and j ≥ k.
(2.2.38)

For the derivatives of the kernels and for ‖Ȧ‖ ≤ 1, ` ≥ 1, p ∈ Aj we have the following stronger
bounds in Fourier space∥∥∥∥ d`

ds`
ĈA+sȦ,k(p)

∥∥∥∥ ≤
{
CL2(d+ñ)+1L2jL(k−j)(−d+1−ñ) for p ∈ Aj and j < k

CL2k for p ∈ Aj and j ≥ k,
(2.2.39)

i.e., the decay of the derivative of the Fourier modes for large p is governed by ñ and not by n
as in (2.2.38). The lower and upper bound can be combined to give for ` ≥ 1 and p ∈ Aj∥∥∥∥ d`

ds`
ĈA+sȦ,k(p)

∥∥∥∥ · ∥∥∥ĈA,k(p)−1
∥∥∥ ≤ {ΞL4(d+ñ)+2L(k−j)(n−ñ) for p ∈ Aj and j < k

ΞL2(d+ñ)+1 for p ∈ Aj and j ≥ k.
(2.2.40)

The constants Ξ = Ξ(ñ, `) do not depend on N , k, or L.

The proof of this theorem can be found in Section 2.3.

Remark 2.2.6. For the calculations it is advantageous to express the bounds mostly in terms of
the single quantity L. To get a better feeling for the bounds it is useful to write them in terms
of |p| and L. The de�nition of Aj implies that |p| ≈ L−j for p ∈ Aj. Hence up to constants

that also depend on L we �nd Ĉk(p) ≈ L2k for |p| . L−k and Ĉk(p) ≈ |p|−2(Lk|p|)−(d−1+n)

otherwise. For ` ≥ 1, however, we �nd ‖ d`

dA`
ĈA,k(p)‖ . |p|−2(Lk|p|)−d+1−ñ for |p| & L−k and

‖ d`

dA`
ĈA,k(p)‖ . L2k otherwise. In particular the quotient of the derivative and the kernel itself

is bounded by a constant for |p| . L−k and behaves as (|p|Lk)n−ñ for p & L−k, i.e., decays as
fast as we like if we choose ñ� n.

Remark 2.2.7. From the proof it is clear that Remark 2.2.4 also applies to the �nite range
decomposition in Theorem 2.2.5.

Remark 2.2.8. It is possible to obtain similar results using the decomposition based on averaging
the Poisson kernel over cubes that appeared in [3]. Some steps can be found in the earlier version
[53] of this work. To prove Theorem 2.2.5, however, technical modi�cations of the construction
in [3] must be implemented in order to handle the generalisation to higher order operators and
to get rid of some L dependent constants in the bound (2.2.31).

Since the theorem is rather technical we brie�y motivate the need for lower bounds and
the speci�c structure of the bounds. As pointed out before we are interested in bounds for
∂AECk,A(F (· + ξ)). By Theorem 2.2.3 the derivatives of the covariance Ck,A with respect to A
are controlled. By the chain rule we need to bound the derivatives of expectations of Gaussian
random variables with respect to their covariance. Let us brie�y discuss this problem in a general
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setting. Consider a smooth map M : R→ Rs×ssym,+ mapping to the s× s dimensional, symmetric,
and positive matrices. We denote the Gaussian measure on Rs with covariance M(t) by

µM(t)(dx) = ϕM(t)(x) dx =
e−

1
2
〈x,M(t)−1x〉√

det(2πM(t))
dx. (2.2.41)

Let F ∈ Cb(Rs,R) be a bounded and continuous function. We are interested in a bound for the
expression ∣∣∣∣ d

dt

ˆ
Rs
F (x)µM(t)(dx)

∣∣∣∣
t=0

∣∣∣∣ . (2.2.42)

In principle this seems easy because the Gaussian integral acts as a heat semi-group which is
in�nitely smoothing. However this is only true as long as the eigenvalues do not approach zero
(think of the delta distribution which is a (degenerate) Gaussian measure). Therefore lower
bounds on the eigenvalues of M(t) control the smoothing behaviour of the semigroup. Now
we discuss the necessary bounds in a bit more detail. An elementary calculation, with the
abbreviations M = M(0) and Ṁ = Ṁ(0), shows∣∣∣∣ d

dt

ˆ
Rs
F (x)µM(t)(dx)

∣∣∣∣
t=0

∣∣∣∣ =

∣∣∣∣12
ˆ

Rs
F (x)

(
〈x,M−1ṀM−1x〉 − TrM−

1
2 ṀM−

1
2

)
µM (dx)

∣∣∣∣ .
(2.2.43)

The trace term arises as the derivative of the determinant. To bound this expression one needs
bounds on M−1, i.e., lower bounds on the spectrum of M are required. With the help of the
Cauchy-Schwarz inequality it can be shown that∣∣∣∣ d

dt

ˆ
Rs
F (x)µM(t)(dx)

∣∣∣∣
t=0

∣∣∣∣ ≤ ‖F‖L2(Rs,µM(t))
‖M−

1
2 ṀM−

1
2 ‖HS. (2.2.44)

To bound the right hand side of this equation we need lower bounds on the �nite range de-
composition and the derivatives of the kernels with respect to A have to decay faster than the
kernels itself. Denote Ċk,A = d

dtCk,A+tȦ where Ȧ is a �xed symmetric operator. Then the Hilbert
Schmidt norm from the right hand side of (2.2.44) corresponds for scalar �elds (m = 1) to the
expression

‖C−
1
2

N,AĊN,AC
− 1

2
N,A‖

2
HS =

∑
p∈T̂N\{0}

(̂̇CN,A(p)

ĈN,A(p)

)2

. (2.2.45)

In other words this expression shows that the derivative of the expectation is not controlled by
the change of the covariance but rather by the relative change of the covariance. Moreover it is
more di�cult to bound the Hilbert-Schmidt norm for bigger number of degrees of freedoms, i.e.,
increasing torus size. We observe that since we have no lower bound for all ϕ ∈ T̂N in Theorem
2.2.3 we cannot bound the expression (2.2.45). Moreover this is not an issue of missing bounds.
This can be seen easily for the decomposition constructed in [3]. Their decomposition has the
property that Ck,tA = t−1Ck,A. This implies d

dtCk,A−tA
∣∣
t=0

= Ck,A, i.e., each summand in (2.2.46)
is 1. Hence the entire sum diverges like LNd − 1. Therefore we have to modify the construction
such that we obtain better lower bounds for the kernels while their derivatives continue to have
good decay properties. With the decomposition from Theorem 2.2.5 the bounds (2.2.23) and
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(2.2.40) the expression (2.2.44) can be bounded uniformly in N for ñ − n > d/2 in the scalar
case as follows

‖C−
1
2

N,AĊN,AC
− 1

2
N,A‖

2
HS =

∑
p∈T̂N\{0}

(̂̇CN,A(p)

ĈN,A(p)

)2

≤ C
N∑
j=0

|Aj |L2(N−j)(n−ñ)

≤ C
N∑
j=0

L(N−j)(2(n−ñ)+d) ≤ C.

(2.2.46)

This means that we can bound the derivative of expectation values of F (·+ ξN,A) with respect
to A uniformly in N for the new decomposition. For k < N one obtains similarly the bound

‖C−
1
2

k,AĊk,AC
− 1

2
k,A‖

2
HS ≤ CL(N−k)d. (2.2.47)

This already indicates that for k < N the derivative is bounded only for certain functionals F .
For details and the general case k < N and m > 1 cf. Section 2.4.

Note that (2.2.43) can be also bounded using the following observation(
〈x,M−1ṀM−1x〉 − TrM−

1
2 ṀM−

1
2

)
µM (dx) =

s∑
i,j=1

(Ṁi,j∂xi∂xjϕM (x)) dx. (2.2.48)

Integration by parts then implies∣∣∣∣ d

dt

ˆ
Rs
F (x)µM(t)(dx)

∣∣∣∣
t=0

∣∣∣∣ =

∣∣∣∣∣∣12
ˆ

Rs

s∑
i,j=1

Ṁi,j

(
∂xi∂xjF (x)

)
µM (dx)

∣∣∣∣∣∣ (2.2.49)

The bounds on M−1 are no longer needed. Now, however, we bound an integral over F by
an integral over the second derivative of F , i.e., we lose two orders of regularity. This loss
of regularity causes substantial di�culties in the renormalisation analysis in [4] which can be
avoided by using the decomposition from Theorem 2.2.5.

2.3 Construction of the �nite range decomposition

The lower bound for the Fourier transform of the kernel of the �nite range decompositions
Ck for |p| . L−k allows one to construct a new �nite range decomposition which satis�es a
global bound from below. The key idea is to use suitable linear combinations of the original
decomposition, i.e., we use the ansatz Dk =

∑k
j=1 λk,jCj . By construction of the Cj the range

of Dk is not larger than Lk/2. The discrete derivatives of Dk,A shall be bounded as in (2.2.31)
for all |α| ≤ n for some integer n > 0. Thus we need for |α| ≤ n the estimate λk,j |∇αCj(x)| ≤
λk,jL

−(j−1)(d−2+|α|) ≤ L−(k−1)(d−2+|α|) which is satis�ed if λk,j ≤ L−(k−j)(d−2+n). These bounds
on λk,j are the largest possible (later we will add 1 in the exponent so that the sum over j is still
uniformly bounded). Then for p ≈ L−j with j ≤ k we �nd, using Ĉj(p) & L2j ≈ |p|−2, a lower
bound

D̂k(p) ≥ λk,j Ĉj(p) & L−(k−j)(d−2+n)|p|−2 ≈ |p|−2(Lkp)−(d−2+n). (2.3.1)

This decays much slower in Fourier space than the decomposition from Theorem 2.2.3 and
therefore it is helpful to bound the expression in (2.2.44). The construction above yields a
decomposition with good lower and upper global bounds on the Fourier modes of the �nite range
decomposition. The following proposition states the precise result.
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Proposition 2.3.1. Let n > 0 be an integer. Then the family CA of operators with A ∈
L(G, ω0,Ω0) has a �nite range decomposition into operators DA,k such that CA =

∑N+1
k=0 DA,k

and

DA,k(x) = Mk if |x|∞ ≥
Lk

2
(2.3.2)

where Mk ≤ 0 is a constant matrix. Furthermore for any multi-index α with |α| ≤ n and the
constants C(α, `) from Theorem 2.2.3 the discrete derivative in x and the directional derivative
in A satisfy

sup
‖Ȧ‖≤1

|∇αD`
ADA,k(x)(Ȧ, · · · , Ȧ)| ≤ 2C(α, d)L−(k−1)(d−2+|α|). (2.3.3)

Moreover we also have a lower bound on DA,k in Fourier space

D̂A,k(p) ≥

{
cL2jL(k−j)(−d+1−n) for p ∈ Aj and j < k

cL2k for p ∈ Aj and j ≥ k.
(2.3.4)

The upper bound in Fourier space reads

‖D`
AD̂A,k(p)‖ ≤

{
CL2(n+d)+1L2jL(k−j)(−d+1−n) for p ∈ Aj and j < k

CL2k for p ∈ Aj and j ≥ k.
(2.3.5)

In particular the quotient between the lower bound (2.3.4) and the upper bound (2.3.5) is bounded
by a constant for all p ∈ T̂N and A,A′ ∈ L(G, ω0,Ω0), i.e.,

KL2(d+n)+1D̂A,k(p) ≥ ‖D`
A′D̂A′,k(p)‖ (2.3.6)

for some constants K = K(n, `).

Remark 2.3.2. The �nite range decomposition DA,k has the property

DA,k+1 ≥ L−d+1−nDA,k

which can be seen easily from the construction below. One easily sees that L−d+1−n can be replaced
by ηL−d+2−n for any η < 1. This bound seems to be optimal under the condition that the discrete
derivatives up to order n are bounded as in (2.3.3) because the bound for ‖∇αDk,A‖∞ strengthens
by a factor of Ld−2+n in each step if |α| = n. Lower bounds of this type might be useful for a
new approach to the de�nition of the norms for the renormalisation group approach.

Remark 2.3.3. The construction is slightly more �exible when we start from the continuous
decomposition in [18] (cf. Appendix A ). Then we de�ne

DA,k =

ˆ
R+

Φk(t) · tWt(A) dt (2.3.7)

where Φk : R+ → R+ is a family of positive functions that are a decomposition of unity with
supp(Φk) ⊂ (0, Lk/(2R)) and it behaves as Φk(t) ≈ (tL−k)d−1+n for t < Lk/(2R). Since this is
more technical we used to the simpler construction below based on the discrete decomposition in
Theorem 2.2.3.
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Remark 2.3.4. Note that the only relevant di�erence between the result of this Proposition and
Theorem 2.2.5 is the decay of D`

AD̂A,k(p) for ` > 0 which is here given by L(k−j)(−d+1−n). In
Theorem 2.2.5 the decay is improved to L(k−j)(−d+1−ñ) where ñ > n is any integer. However,
this small change helps a lot with the sum in equation (2.2.46) which cannot be bounded by using
Proposition 2.3.1.

Proof. We sometimes omit A from the notation. Let Ck be a �nite range decomposition as in
Theorem 2.2.3. De�ne for 1 ≤ k ≤ N

Dk =
k∑
j=1

λk,jCj (2.3.8)

where the coe�cients λk,j = λk−j are given by

λk,j = λk−j = L(k−j)(−d+2−n−1) for j < k,

λk,k = 1−
∞∑

j=k+1

λj,k = 1−
∞∑
i=1

λi.
(2.3.9)

Since λj,k is a geometric series for j > k we �nd that 1 ≥ λk,k > 1/2. We de�ne the last term of
the decomposition by

DN+1 =

N+1∑
j=1

( ∞∑
k=N+1

λk,j

)
Cj (2.3.10)

This de�nition implies that
∑N+1

k=1 Dk = C. The operators Dk clearly have the correct range.
Since λi is a geometric series we can estimate λN+1,j ≤

∑∞
k=N+1 λk,j ≤ 2λN+1,j . Therefore we

do not explicitly mention the case k = N + 1 in the following. The discrete derivatives can be
estimated easily for |α| ≤ n using (2.2.31)

|∇αD`
ADA,k(x)(Ȧ, . . . , Ȧ)| ≤

k∑
j=1

λk,j |∇αD`
ACA,j(x)(Ȧ, . . . , Ȧ)|

≤
k∑
j=1

C(α, `)L(k−j)(−d+2−n−1)−(j−1)(d−2+|α|)

≤ C(α, `)L−(k−1)(d−2+|α|)
k∑
j=1

L(j−k)(n−|α|+1)

≤ 2C(α, `)L−(k−1)(d−2+|α|).

(2.3.11)

In the last step we used n − |α| ≥ 0 and we estimated the geometric series by 2. It remains to
prove the bounds in Fourier space. For j ≥ k and p ∈ Aj we use (2.2.30) and λk,k ≥ 1

2

D̂k(p) ≥
1

2
Ĉk(p) ≥

c

2
L2k. (2.3.12)

For 1 ≤ j < k we employ again (2.2.30) on the Cj summand of Dk

D̂k(p) ≥ λk,j Ĉj(p) ≥ cL(k−j)(−d+2−n−1)L2j ≥ cL(k−j)(−d+1−n)L2j . (2.3.13)
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Finally, for j = 0 equation (2.2.30) applied to the C1 term yields

D̂k(p) ≥ λk,1Ĉ1(p) ≥ L(k−1)(−d+1−n)c|p|−2 ≥ cLk(−d+1−n)Ld+n−1L−2 ≥ cL(k−j)(−d+1−n)L2j .

(2.3.14)

The proof of the upper bound (2.3.5) is straightforward but technical. For j ≥ k and p ∈ Aj the
bound is immediate from the second estimate of (2.2.29) because

‖D̂k(p)‖ ≤
k∑

k′=1

λk,k′‖Ĉk′(p)‖ ≤ C
k∑

k′=1

L2k′λk,k′ ≤ 2CL2k. (2.3.15)

On the other hand for j < k and p ∈ Aj we �nd with (2.2.29) for any n̄ > 0

‖D̂k(p)‖ ≤
k∑

k′=1

λk,k′‖Ĉk′(p)‖ ≤

≤
j∑

k′=1

L(k−k′)(−d+1−n)CL2k′ +
k∑

k′=j+1

L(k−k′)(−d+1−n)Cn̄|p|−2(|p|Lk′−1)−n̄.

(2.3.16)

The �rst summand is a geometric sum bounded by twice the largest term

j∑
k′=1

L(k−k′)(−d+1−n)CL2k′ ≤ 2CL(k−j)(−d+1−n)L2j . (2.3.17)

The second summand in (2.3.16) is also a geometric series and for n̄ = d+ n it can be bounded
similarly

k∑
k′=j+1

L(k−k′)(−d+1−n)C|p|−2(|p|Lk′−1)−n̄ ≤ CL2(j+1)
k∑

k′=j+1

L(k−k′)(−d+1−n)(Lk
′−j−2)−(d+n)

≤ CL2(d+n)+1L2jL(k−j)(−d+1−n).

(2.3.18)

Now the estimates (2.3.17) and (2.3.18) plugged in (2.3.16) imply (2.3.5) for ` = 0. This ends
the proof for ` = 0. For ` > 0 only the constants in the upper bound change.

So far we have constructed a �nite range decomposition with n controlled discrete derivatives
and matching lower and upper bounds on the Fourier coe�cients. Finally we want to prove
Theorem 2.2.5 where we stated the existence of a �nite range decomposition for CA where the
derivatives with respect to A of the kernel decay better in Fourier space than the kernel itself. The
key idea is to start with a decomposition as in Proposition 2.3.1 with many controlled derivatives,
then subtract something constant such that the decomposition remains positive. Finally we add
the subtracted part in a way that we get strong lower bounds. Then the derivatives with respect
to A only hit the fast decaying �rst term. The main problem is to ensure that the operators
remain positive. In the scalar case the fact that all operators are simultaneously diagonalised by
the Fourier transform simpli�es the analysis slightly and this would allow one to obtain slightly
stronger results than the one stated in Theorem 2.2.5.

For the construction we have to �x an operator where for simplicity we choose −∆, where
−∆ = ∇∗∇ denotes the lattice Laplacian. The linear map A : G → G corresponding to the
discrete Laplacian acting on vectors in Rm has the matrix elements Aαα = idm×m for |α| = 1
and 0 otherwise. With a slight abuse of notation we denote �nite range decompositions of the
Laplacian by D−∆,k.



Smoothness of the renormalisation map 39

Proof of Theorem 2.2.5. Let Dñ
A,k and Dñ

−∆,k be �nite range decompositions as constructed in
Proposition 2.3.1 with ñ controlled derivatives. Let Dn

−∆,k be a �nite range decomposition of
C−∆ as constructed in Proposition 2.3.1 with derivatives up to order n bounded. Then we de�ne

CA,k = Dñ
A,k −

L−2(d+ñ)−1

K(ñ, ` = 0)
Dñ
−∆,k +

L−2(d+ñ)−1

K(ñ, ` = 0)
Dn
−∆,k (2.3.19)

where K ≥ 1 is the constant from the inequality (2.3.6). Clearly we have

CA =

N+1∑
k=1

CA,k, (2.3.20)

this decomposition has the correct �nite range and it is translation invariant. Bounds on the
discrete derivatives already hold for each term separately by (2.3.3). The same is true for the
upper bounds in Fourier space. Moreover the stronger bound for the derivatives with respect to
A follows from the fact that only the �rst term depends on A and the bounds given in equation
(2.3.5) in Proposition 2.3.1. It remains to prove the lower bounds in Fourier space which also
imply positivity of the decomposition. The third term satis�es the lower bound so it remains to
proof that the �rst two terms together are positive. But this is a consequence of (2.3.6) which
in particular gives

D̂ñA,k(p) ≥
L−2(d+ñ)+1

K(ñ, ` = 0)
‖D̂ñ−∆,k(p)‖. (2.3.21)

2.4 Smoothness of the renormalisation map

The goal of this section is to prove the following proposition stating the smoothness of the
renormalisation map based on the �nite range decomposition from Theorem 2.2.5. This is similar
to the motivation given in Section 2.3. We �rst discuss the simplest smoothness statement as an
illustration without technical problems. Then, in Proposition 2.4.5, we prove the more general
smoothness statement that allows to avoid the loss of regularity in [4]. Both propositions rely
on an interesting localisation property of �nite range decompositions discussed in Lemma 2.4.3.

Proposition 2.4.1. Let B ⊂ TN be a cube of side length Lk. Let F : XN → R be a bounded
functional that is measurable with respect to the σ-algebra generated by {ϕ(x)|x ∈ B}, i.e., F
depends only on the restriction ϕ�B. Then the following bound holds∣∣∣∣∂A ˆ

XN
F (ϕ+ ψ)µCA,k+1

(dϕ)

∣∣∣∣ ≤ CL‖F‖L2(XN ,µCA,k+1
) (2.4.1)

where CA,k+1 is a �nite range decomposition as in Theorem 2.2.5 with ñ− n > d/2 and CL is a
constant that does not depend on N or k but in contrast to the previous sections it does depend
on L.

Remark 2.4.2. The condition that F depends on the values of the �eld in a cube of side length
Lk appears naturally in the renormalisation group analysis, cf., e.g., [42].
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As stated in Proposition 2.4.1 we show a bound for derivatives of the renormalisation map
which does not depend on N . In principle this could be di�cult since the dimension of the space
XN over which we integrate increases with N . We have seen in equation (2.2.46) in Section
2.2 that the number of terms appearing in the bounds for the derivatives with respect to the
covariance is proportional to the dimension of the space XN and therefore that the naive estimate
is only su�cient to bound the derivative for k = N . For k < N (2.2.47) suggests that there is
no uniform in N bound for general functionals F . This means we have to exploit the special
structure of the functionals.

The following heuristics suggests that the speci�c structure of the functionals is indeed suf-
�cient to bound the derivative uniformly in N . We integrate in the k-th integration step with
respect to a measure of range Lk which satis�es bounds uniformly in N and the functionals
Fk(ϕ) that appear are local in the sense that they only depend on the values of ϕ on B. Hence
in some sense the size of the torus should not be seen by this integration. This idea will be made
rigorous in the sense that locally the distribution on a block B of a �eld ξ with distribution µCA,k
is the same as the distribution of a �eld ξ̃ de�ned on a torus of size comparable to B.

A bit more quantitatively we motivate the O(1) bound as follows. From (2.2.47) we �nd the
bound ∣∣∣∣∂A ˆ

XN
F (ϕ+ ψ)µCA,k+1

(dϕ)

∣∣∣∣ ≤ C√L(N−k)d‖F‖L2(XN ,µA,k+1) (2.4.2)

for general functionals F . If F depends only on the values of ϕ in a block of side-length Lk it
depends only on the fraction L(k−N)d of the degrees of freedom. We expect that each degree of
freedom contributes equally which suggests the bound stated in (2.4.1).

Let us sketch a proof of Proposition 2.4.1 that makes the previous consideration precise.
Below, we also give a longer proof based on Lemma 2.4.3 because the second proof can be used
to establish Theorem 2.4.5. Consider the set T of translation operators given by

T = {τa : a = (a1, . . . , an) ∈ (3Lk+1Z)d, 0 ≤ ai ≤ LN − 3Lk+1}. (2.4.3)

Then there is a constant such that |T | ≥ cL(N−k−1)d. Recall that F only depends on ϕ�B
hence the random variable F (τaϕ) only depends on ϕ�B+a. The de�nition of T implies that for
τa1 , τa2 ∈ T with τa1 6= τa2 the sets B+ a1 and B+ a2 have distance at least Lk+1 which implies
that the random variables F (τa1ϕ) and F (τa2ϕ) are independent. Then we can estimate using
translation invariance of µA,k+1, independence of τaF , and (2.4.2)∣∣∣∣∂A ˆ

XN
F (ϕ)µA,k+1(dϕ)

∣∣∣∣ =
1

|T |

∣∣∣∣∣∂A∑
τ∈T

ˆ
XN

F (τϕ)µA,k+1(dϕ)

∣∣∣∣∣
≤ C
√
L(N−k−1)d

|T |

∥∥∥∥∥∑
τ∈T

F (τϕ)

∥∥∥∥∥
L2(XN ,µA,k+1

≤ C
√
L(N−k−1)d

|T |

(∑
τ∈T

ˆ
XN

F 2(τϕ)µA,k+1

) 1
2

≤ C

√
L(N−k−1)d

|T |
‖F‖L2(XN ,µA,k+1)

≤ C‖F‖L2(XN ,µA,k+1).

(2.4.4)



Smoothness of the renormalisation map 41

We introduce some notation necessary for the next lemma. Let k ≤ N ≤ N be positive
integers. We denote by π = πN,N : TN → TN the projection and group homomorphism of
discrete tori. Recall that VN was de�ned in (2.2.1) and denotes the set of �elds on TN . Let
σ : VN → VN with σ = π∗ be the pull-back of �elds, i.e., for ϕ ∈ VN we de�ne (σϕ)(x) = ϕ(πx).
Clearly σϕ has average zero if ϕ has average zero hence σ also maps the subspace XN to XN . In
other words, identifying functions on TN with periodic functions on Zd, the function σϕ is just
the (LNZ)d periodic function ϕ understood as a (LNZ)d periodic function. With this notation
we can state the following lemma. Here C =

∑N+1
k=0 Ck denotes a �nite range decomposition

such that Ck is a non-negative translation invariant, positive operator on VN (see Remark 2.4.4
below) with kernels Ck satisfying Ck(x) = −M ≤ 0 for d∞(x, 0) ≥ Lk/2 where M is a positive
semi-de�nite symmetric matrix.

Lemma 2.4.3. Let X ⊂ TN and D = diam(X) = supx,y∈X d∞(x, y). Choose N ∈ N such that

LN > 2D ≥ LN−1 and assume k ≤ N ≤ N . De�ne a Gaussian measure νk,N on VN by its

covariance operator Dk,N given by the kernel Dk,N : TN → Rm×msym

Dk,N (x) = (L(N−N)d − 1)M +
1

LNd

∑
p∈T̂N

eipxĈk(p) (2.4.5)

where Ĉk(p) are the Fourier coe�cients of the kernel Ck of the covariance operator Ck. They are
well de�ned because T̂N ⊂ T̂N . Let FX : VN → R be a measurable functional that only depends on
{ϕ(x)|x ∈ X}, i.e., F is measurable with respect to the σ-algebra generated by {ϕ(x)|x ∈ X}.
Then the following identity holdsˆ

VN
FX(ξ)µk(dξ) =

ˆ
VN

FX(σψ) νk,N (dψ). (2.4.6)

Remark 2.4.4. Note that the measure µk appearing on the left hand side of equation (2.4.6) was
de�ned on XN ⊂ VN . In Remark 2.2.1 we discussed that µk agrees with a degenerate Gaussian
measure on VN which implies that the left hand side is well de�ned.

We postpone the proof of this Lemma to the end of this section. Instead we continue with
the smoothness estimates.

Proof of Proposition 2.4.1. The proof relies on the bound (2.2.44) which we recall here. We
consider a smooth map M : (−ε, ε)→ Rs×ssym,+ and we denote M = M(0) and Ṁ = Ṁ(0). Then∣∣∣∣ d

dt

ˆ
Rs
F (x)µM(t)(dx)

∣∣∣∣
t=0

∣∣∣∣ ≤ ‖F‖L2(Rs,µM(t))
‖M−

1
2 ṀM−

1
2 ‖HS. (2.4.7)

To see this we start from (2.2.43) and apply Cauchy-Schwarz∣∣∣∣ d

dt

ˆ
Rs
F (x)µM(t)(dx)

∣∣∣∣
t=0

∣∣∣∣
≤ 1

2

(ˆ
Rs
|F (x)|2 µM (dx)

) 1
2
(ˆ

Rs

(
〈x,M−1ṀM−1x〉 − TrM−

1
2 ṀM−

1
2

)2
µM (dx)

) 1
2

.

(2.4.8)

Then the change of variable y = M−
1
2x and an orthogonal transformation yieldsˆ

Rs

(
〈x,M−1ṀM−1x〉 − TrM−

1
2 ṀM−

1
2

)2
µM (dx) = 2‖M−

1
2 ṀM−

1
2 ‖2HS. (2.4.9)
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Here the norm on the right hand side is the Hilbert Schmidt norm given by ‖A‖HS =
√

TrAAT .
Lemma 2.4.6 below states a much more general version of this estimate.

We apply (2.4.7) to the measures from Lemma 2.4.3. We set M(t) = DA+tȦ,k+1,k+1 and de-

note ḊA,k+1,k+1 = d
dtDA+tȦ,k+1,k+1

∣∣∣
t=0

and D̃ = D
− 1

2
A,k+1,k+1ḊA,k+1,k+1D

− 1
2

A,k+1,k+1. Combining

this with Lemma 2.4.3 (here we need F to be local) we get the estimate∣∣∣∣∣∣∣DA

ˆ

XN

F (ϕ)µ
(A)
k (dϕ)(Ȧ)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣DA

ˆ

Vk+1

F (σψ) ν
(A)
k+1,k+1(dψ)(Ȧ)

∣∣∣∣∣∣∣ ≤ ‖F‖L2(Vk+1,ν
(A)
k+1,k+1)

‖D̃‖HS

(2.4.10)

where µ(A)
k+1 = µCA,k+1

and ν
(A)
k+1,k+1 = νDA,k+1,k+1

. Note that reading Lemma 2.4.3 backwards
implies ‖F‖

L2(Vk+1,ν
(A)
k+1,k+1)

= ‖F‖
L2(XN ,µ

(A)
k+1)

. The operators DA,k+1,k+1 are diagonal in Fourier

space and satisfy by de�nition (see (2.4.5)) the equality D̂A,k+1,k+1(p) = ĈA,k+1(p) for p ∈
T̂k+1 \ {0} hence the Hilbert-Schmidt norm is given by

‖D̃‖HS =
∑

p∈T̂k+1\{0}

‖ĈA,k+1(p)−
1
2
̂̇CA,k+1(p)ĈA,k+1(p)−

1
2 ‖2HS. (2.4.11)

Note that the Fourier mode for p = 0 does not contribute because it does not depend on A.
Indeed, we have CA,k(x) = −M for |x| > Lk+1/2 independent of A and ĈA,k(0) = 0 for all
A hence (2.4.5) implies that D̂A,k+1,k+1(0) is independent of A. We bound the expression in
(2.4.11) using (2.2.40) and (2.2.23) (denoting Aj = Ak+1

j ⊂ T̂k+1)∑
p∈T̂k+1\{0}

‖ĈA,k+1(p)−
1
2
̂̇CA,k+1(p)ĈA,k+1(p)−

1
2 ‖2HS

≤ m
∑

p∈T̂k+1\{0}

(
‖ĈA,k+1(p)−1‖‖̂̇CA,k+1(p)‖

)2

≤ m
k+1∑
j=0

∑
p∈Aj

Ξ2L8(ñ+d)+4L2(k+1−j)(n−ñ)

≤ mΞ2L8(ñ+d)+4
k+1∑
j=0

|Aj |L(k+1−j)(2n−2ñ)

≤ mΞ2L8(ñ+d)+4
k+1∑
j=0

κ(d)L(k+1−j)dL(k+1−j)(2n−2ñ)

≤ C

(2.4.12)

where we used 2ñ− 2n > d in the last step.

We need a more general version of Proposition 2.4.1 to avoid the loss of regularity in [4].
Namely we must generalise the result in Proposition 2.4.1 to higher order derivatives and we
have to replace the L2 norm of F on the right hand side of (2.4.1) by a Lp norm for any p > 1.
To understand the motivation for this lemma we refer to the description of the renormalisation
approach in the aforementioned work [4].
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Theorem 2.4.5. Let CA,k+1 a �nite range decomposition as in Theorem 2.2.5 with ñ− n > d/2
and X ⊂ TN be a subset with diameter D = diam∞(X) ≥ Lk. Let F : VN → R be a functional
that is measurable with respect to the σ-algebra generated by {ϕ(x)|x ∈ X}, i.e., F depends only
on the values of the �eld ϕ in X. Then for ` ≥ 1 and p > 1 the following bound holds∣∣∣∣ d`

dt`

ˆ
XN

F (ϕ)µA+tA1,k+1(dϕ)|t=0

∣∣∣∣ ≤ Cp,`,L(DL−k)
d`
2 ‖A1‖`‖F‖Lp(XN ,µA,k+1). (2.4.13)

Proof. We use the notation from Section 2.2 and the proof of Proposition 2.4.1. We �rst give
explicit calculations for ` = 1 and ` = 2 and indicate the general case in the end. Recall in
particular the de�nition of ϕM(t)(x) in (2.2.42) and note that

d

dt
ϕM(t)(x)

∣∣∣∣
t=0

=
1

2

(
〈x,M−1ṀM−1x〉 − Tr M−1Ṁ

)
ϕM (x)

d2

dt2
ϕM(t)(x)

∣∣∣∣
t=0

=

[
1

4

(
〈x,M−1ṀM−1x〉 − TrM−1Ṁ

)2
− 〈x,M−1ṀM−1ṀM−1x〉+

+
1

2

(
〈x,M−1M̈M−1x〉 − Tr

(
M−1M̈

))
+

1

2
Tr
(
M−1ṀM−1Ṁ

)]
ϕM (x).

(2.4.14)

We need the following general lemma from [145].

Lemma 2.4.6. Let X be a vector of n independent standard normal variables and A ∈ Rn×n a
matrix. Then for any real s0 ≥ 2 there is a constant C(s0) such that for 1 ≤ s ≤ s0 the estimate

E|〈x,Ax〉 − TrA|s ≤ C(s0)‖A‖sHS (2.4.15)

holds.

Proof. This is a special case of Theorem 2 in [145]. The extension from s ≥ 2 to s ≥ 1 is a direct
consequence of Hölder's inequality.

Using this lemma and the Hölder inequality with exponents p and p′ we bound∣∣∣∣ d

dt

ˆ
Rs
F (x)µM(t)(dx)

∣∣
t=0

∣∣∣∣ ≤ 1

2
‖F‖Lp(µM )‖〈x,M−

1
2 ṀM−

1
2x〉 − TrM−

1
2 ṀM−

1
2 ‖Lp′ (µid)

≤ Cp‖F‖Lp(µM )‖M−
1
2 ṀM−

1
2 ‖HS

(2.4.16)

For the second derivative we �nd similarly the bound∣∣∣∣ d2

dt2

ˆ
Rs
F (x)µM(t)(dx)

∣∣
t=0

∣∣∣∣ ≤
‖F‖Lp(µM )

(
1

2
|TrM−

1
2 ṀM−1ṀM−

1
2 |+

+
1

4
‖(〈x,M−

1
2 ṀM−

1
2x〉 − TrM−

1
2 ṀM−

1
2 )2‖Lp′ (µid)+

+
1

2
‖〈x,M−

1
2 M̈M−

1
2x〉 − TrM−

1
2 M̈M−

1
2 ‖Lp′ (µid)+

+‖(〈x,M−
1
2 ṀM−1ṀM−

1
2x〉 − TrM−

1
2 ṀM−1ṀM−

1
2 ‖Lp′ (µid)

)
(2.4.17)
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where p′ denotes the Hölder conjugate of p. The �rst trace term in (2.4.17) can be bounded by
Hölder inequality for Schatten norms (cf. Theorem 2.8 in [139]) which yields

|TrM−
1
2 ṀM−1ṀM−

1
2 | ≤ ‖M−

1
2 ṀM−1ṀM−

1
2 ‖Tr ≤ ‖M−

1
2 ṀM−

1
2 ‖2HS. (2.4.18)

The trace norm is de�ned by ‖A‖Tr = Tr
√
AA∗. With the bound (2.4.18), Lemma 2.4.6, and

the estimate ‖AB‖HS ≤ ‖AB‖Tr ≤ ‖A‖HS‖B‖HS we conclude from (2.4.17)∣∣∣∣ d2

dt2

ˆ
Rs
F (x)µM(t)(dx)

∣∣
t=0

∣∣∣∣ ≤
≤ Cp‖F‖Lp(µM )

(
‖M−

1
2 ṀM−

1
2 ‖HS + ‖M−

1
2 M̈M−

1
2 ‖HS + ‖M−

1
2 ṀM−

1
2 ‖2HS

)
.

(2.4.19)

For ` > 2 the estimates are similar but more involved. We introduce some additional notation.
Let us state the general structure of d`

dt`
ϕM(t)(x)

∣∣∣
t=t0

. We write dδi

dtδi
M(t)

∣∣∣
t=t0

= M δi(t0) for any

positive integer δi. In the following we consider multiindices δ = (δ1, . . . , δr) such that r ≥ 1
and δi > 0 are integers. The length of an index is denoted by L(δ) = r, we call |δ|1 =

∑r
i=1 δi

the degree of an index. With I` we denote the set of such multiindices δ such that |δ|1 ≤ ` and
r ≥ 2. Moreover I` is de�ned similarly with r ≥ 2 replaced by r ≥ 1. This distinction accounts
for a cancellation of the r = 1 terms. We de�ne for any δ = (δ1, . . . , δr) and r ≥ 1

Mδ(t) =
r∏
i=1

M−
1
2 (t)M δi(t)M−

1
2 (t). (2.4.20)

In the following three types of terms appear:

Qδ(x, t) = 〈M(t)−
1
2x,Mδ(t)M(t)−

1
2x〉, Rδ(t) = TrMδ(t) with δ ∈ I` and

Sd(x, t) = 〈x,M(t)−1Md(t)M(t)−1x〉 − TrM(t)−1Md(t) with 1 ≤ d ≤ `.
(2.4.21)

The general expression can be written as

d`

dt`
ϕM(t)(x)

∣∣∣∣
t=t0

= P`(x, t0)ϕM(t0)(x) (2.4.22)

where P`(x, t) is a linear combination of terms

k1∏
i=1

Qδi(x, t)

k2∏
i=1

Rεi(t)

k3∏
i=1

Sdi(x, t). (2.4.23)

Here δi, εi ∈ I` and 1 ≤ di ≤ ` such that
∑k1

i=1 |δi|1 +
∑k2

i=1 |εi|1 +
∑k3

i=1 di = `, i.e. the total
order of derivatives is `. From now on we drop the time argument and assume t = 0. The explicit
calculations for ` = 1 and ` = 2 showed that we need to bound the p′-norm of P`. Using Hölder's
inequality with exponents `

|δi|1 ,
`
|εi|1 , and

`
di

we estimate∥∥∥∥∥
k1∏
i=1

Qδi(x)

k2∏
i=1

Rεi

k3∏
i=1

Sdi(x)

∥∥∥∥∥
Lp′ (µM )

≤
k1∏
i=1

‖Qδi(x)‖ p′`
|δi|1

k2∏
i=1

‖Rεi‖ p′`
|εi|1

k3∏
i=1

‖Sdi(x)‖ p′`
di

≤ max
δ∈I`
‖Qδ(x)‖

`
|δ|1
p′`
|δ|1

∨max
δ∈I`
|Rδ|

`
|δ|1 ∨ max

1≤d≤`
‖Sd(x)‖

`
di
p′`
d

≤ max
δ∈I`
‖Qδ(x)‖

`
2
p′` ∨max

δ∈I`
|Rδ|

`
2 ∨ max

1≤d≤`
‖Sd(x)‖`p′` ∨ 1

(2.4.24)
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In the second step we used that
∏
xαii ≤ maxxi if

∑
αi = 1. Then, in the third step, we

exploited that the Lp norms are monotone on probability spaces and |δ|1 ≥ L(δ) ≥ 2 for δ ∈ I`.
We estimate the three terms with the help of Lemma 2.4.6. For 1 ≤ d ≤ `
ˆ

Rs
|Sd(x)|p′` µM (dx) =

ˆ
Rs
|〈x,M−

1
2MdM−

1
2x〉 − TrM−1Md|p′` µid(dx)

≤ Cp′`‖M−
1
2MdM−

1
2 ‖p

′`
HS.

(2.4.25)

Similarly we estimate the Q terms
ˆ

Rs
|Qδ(x)|p′` µM (dx) =

ˆ
Rs
|〈y,Mδy〉|p

′` µid(dy)

≤
ˆ

Rs
2p
′`
(
|〈y,Mδy〉 − TrMδ|p

′` + |TrMδ|p
′`
)
µid(dy)

≤ 2p
′`
(
Cp′`‖Mδ‖p

′`
HS + |Rδ|p

′`
)
.

(2.4.26)

For δ ∈ I` we �nd δ1, δ2 ∈ Ī` such that δ = (δ1, δ2). We bound the trace term for δ using
Mδ = Mδ1Mδ2 and the Hölder inequality for Schatten norms by

|Rδ| = |TrMδ| ≤ ‖Mδ1‖HS‖Mδ2‖HS ≤ ‖Mδ1‖2HS ∨ ‖Mδ2‖2HS. (2.4.27)

The estimates (2.4.25), (2.4.26), and (2.4.27) imply that there is a constant C̄`,p such that the
following estimate holds

∣∣∣∣ d`

dtl

ˆ
Rs
F (x)µM(t)(dx)

∣∣∣∣
t=0

∣∣∣∣ ≤ ‖F‖Lp(µM )

(ˆ
Rs
|P`(x)|p′ µM (dx)

) 1
p′

≤ C̄`,p‖F‖Lp(µM )

(
max
δ∈Ī`
‖Mδ‖`HS ∨ 1

)
.

(2.4.28)

After these technical estimates the rest of the proof is similar to the proof of Proposition 2.4.1.
We considerM(t) = DA+tȦ,k+1,N where N is the smallest integer such that LN ≥ 2D (or N = N

if D ≥ LN/2). Moreover we again denote Dr
A,k+1,k+1 = dr

dtrDA+tȦ,k+1,N

∣∣∣
t=0

and for δ ∈ I`

Mδ =

L(δ)∏
i=1

D
− 1

2

A,k+1,N
Dδi
A,k+1,N

D
− 1

2

A,k+1,N
. (2.4.29)

Using Lemma 2.4.3 and (2.4.28) we bound∣∣∣∣D`
A

ˆ
XN

F (ϕ)µ
(A)
k+1(dϕ)(Ȧ, . . . , Ȧ)

∣∣∣∣ =

∣∣∣∣∣D`
A

ˆ
VN

F (σψ)ν
(A)

k+1,N
(dψ)(Ȧ, . . . , Ȧ)

∣∣∣∣∣
≤ C‖F‖

Lp(VN ,ν
(A)

k+1,N
)

(
max
δ∈I`
‖Mδ‖`HS ∨ 1

)
= C‖F‖

Lp(XN ,µ
(A)
k+1)

(
max
δ∈I`
‖Mδ‖`HS ∨ 1

) (2.4.30)

where µ(A)
k+1 = µCA,k+1

and ν
(A)

k+1,N
= νDA,k+1,N

. For the last identity we used Lemma 2.4.3

backwards.
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It remains to estimate the Hilbert-Schmidt norm of the operators Mδ. The operators Mδ

are diagonal in Fourier space and by construction we have the equality D̂A,k+1,N (p) = ĈA,k+1(p)

for p ∈ T̂N and all A hence we can bound the operator norm of the Fourier modes of Mδ for
‖Ȧ‖ ≤ 1 using (2.2.40) for p ∈ Aj and j < k as follows

‖M̂δ(p)‖ ≤
L(δ)∏
i=1

‖D̂−1
k,N̄

(p)‖ · ‖D̂δi
k,N̄

(p)‖

≤
L(δ)∏
i=1

Ξ(δi)L
4(ñ+d)+2L(k−j)(n−ñ)

≤ Ξ̄(δ)2L4L(δ)(ñ+d)+2L(δ)L(k−j)(n−ñ).

(2.4.31)

Here we wrote Ξ̄(δ) =
∏L(δ)
j=1 Ξ(δj) for the product of the constants. Similar, for p ∈ Aj with

j ≥ k,

‖M̂δ(p)‖ ≤ Ξ̄(δ)L2L(δ)(ñ+d)+L(δ). (2.4.32)

Then the Hilbert-Schmidt norm is bounded by (with Aj = AN
j ⊂ T̂N )

‖Mδ‖2HS =
∑

p∈T̂N\{0}

‖M̂δ(p)‖2HS ≤ m
∑

p∈T̂N\{0}

‖M̂δ(p)‖2

≤ m
k−1∑
j=0

∑
p∈Aj

Ξ̄s2L8`(d+ñ)+4L2(k−j)(n−ñ) +m

N∑
j=k

∑
p∈Aj

Ξ̄2L4`(d+ñ)+2

≤ CL8`(d+ñ)+4
k−1∑
j=0

L(N−j)dL(k−j)(2n−2ñ) + CL4`(d+ñ)+2
N∑
j=k

L(N−j)d

≤ CL8`(d+ñ)+4L(N−k)d.

(2.4.33)

where we used 2ñ− 2n > d in the last step. The bound (2.4.12) and 2D > LN−1 imply that

‖Mδ‖`HS ≤ CL
`
2

(N−k)d < C(DL−k)
`d
2 . (2.4.34)

Plugging this into (2.4.30) ends the proof.

Finally we prove Lemma 2.4.3.

Proof of Lemma 2.4.3. The proof of the lemma is divided into two steps.
Step 1: First we show that we can �nd another Gaussian measure on VN such that the local

covariance structure is the same but all Fourier coe�cients of the kernel except the ones that
satisfy p ∈ T̂N ⊂ T̂N vanish (see (2.4.38) below). De�ne the kernel of an operator Ck,N : TN →
Rm×msym by

Ck,N (x) =
1

LdN

∑
p∈T̂N

eipxĈk(p) + λM (2.4.35)
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where here and in the following we write λ = L(N−N)d − 1. Clearly the Fourier modes of Ck,N
are given by Ĉk,N (p) = L(N−N)dĈk(p) for p ∈ T̂N \ {0}, Ĉk,N (0) = L(N−N)dĈk(p) + LNdλM , and
0 otherwise. By assumption Ck is a non-negative operator on VN , i.e., all Fourier coe�cients
are non-negative and M is positive by assumption, hence Ck,N also is a non-negative operator.
Therefore it de�nes a (highly degenerate) Gaussian measure µk,N on XN with covariance operator
Ck,N .

We are interested in this measure because of the following remarkable property: For x ∈ TN
with d∞(x, 0) ≤ (LN − 1)/2 we have Ck,N (x) = Ck(x), i.e., locally the measures µk and µk,N have

the same covariance structure Let us prove this property. First we observe that for p ∈ T̂N the
exponential fp is a well de�ned function on TN and with slight abuse of notation (identifying the
exponentials on TN and TN ) it satis�es fp(x) = fp(πx) for x ∈ TN . Hence we �nd for x, y ∈ TN

1

LNd

∑
p∈T̂N

eip(x−y) =
1

LNd

∑
p∈T̂N

eip·π(x−y) =

{
1 if π(x) = π(y)

0 else.
(2.4.36)

Using this, we calculate

Ck,N (x) =
1

LNd

∑
p∈T̂N

eipxĈk(p) + λM

=
1

LNd

∑
p∈T̂N

eipx

∑
y∈TN

e−ipyCk(y)

+ λM

=
∑
y∈TN

Ck(y)

 1

LNd

∑
p∈T̂N

eip(x−y)

+ λM

=
∑
y∈TN

π(y)=π(x)

Ck(y) + λM.

(2.4.37)

In the �rst step we used the de�nition of the kernel, in the second we used the de�nition of
the Fourier transform and the third step interchanged the order of summation. Now for a given

point x ∈ TN there is exactly one y0 ∈ TN such that π(x) = π(y0) and d∞(y0, 0) ≤ LN−1
2 . If

d∞(x, 0) ≤ LN−1
2 we have x = y0. Moreover, for d∞(y, 0) > LN−1

2 ≥ Lk−1
2 we have Ck(y) = −M

by assumption. Hence we have

Ck,N (x) = Ck(x)− (L(N−N̄)d − 1)M + λM = Ck(x) (2.4.38)

for d∞(x, 0) ≤ LN−1
2 as claimed. Actually we have even shown that Ck,N is the (LNZ)d periodic

extension of Ck�[
−LN−1

2
,...,L

N−1
2

]d .
Next we claim that if ξ is distributed according to µk and ϕ is distributed according to µk,N

then ξ�X
Law
= ϕ�X . First we note that since the distribution of ξ and ϕ is Gaussian with mean zero

the same holds for the restrictions ξ�X and ϕ�X . Then it is enough to prove that all covariances

agree because they determine the law. By the assumption x, y ∈ X ⇒ d∞(x, y) ≤ D ≤ LN−1
2 .

Hence Ck(x− y) = Ck,N (x− y) and therefore

E
(
ξi(x)ξj(y)

)
= Cijk (x− y) = Cij

k,N
(x− y) = E

(
ϕi(x)ϕj(y)

)
. (2.4.39)
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By assumption there exists a functional F̃X : (Rm)X → R such that FX(ξ) = F̃X(ξ�X). Hence
we �nd

ˆ
VN

FX(ξ)µk(dξ) =

ˆ
VN

F̃X(ξ�X)µk(dξ) =

ˆ
VN

F̃X(ϕ�X)µk,N (dϕ)

=

ˆ
VN

FX(ϕ)µk,N (dϕ).

(2.4.40)

Step 2: In the second step we show that the measure µk,N is the push-forward of νk,N along
σ, i.e., µk,N = σ∗νk,N . The measure νk,N was de�ned in the statement of the lemma by the
kernel Dk,N : TN → R

Dk,N (x) =
1

LNd

∑
p∈T̂N

eipxĈk(p) + λM. (2.4.41)

From this equation we can similarly to Step 1 extract the Fourier decomposition of this operator
and see that this expression de�nes a non-negative operator and therefore the covariance of a
Gaussian measure. Note that for x ∈ TN

Dk,N (π(x)) = Ck,N (x) (2.4.42)

which is again a consequence of fp(πx) = fp(x) for p ∈ T̂N . In other words the kernel Ck,N is

already (LNZ)d periodic and hence also de�nes a function TN → R which we call Dk,N . The
previous de�nition has the advantage that it makes clear that this kernel de�nes a Gaussian
measure. The proof of µk,N = σ∗νk,N is standard. We prove that the characteristic functions for
both measures agree. Let v : TN → Rm be a �eld. We have to show

ˆ
VN

ei〈v,ϕ〉 µk,N (dϕ) =

ˆ
VN

ei〈v,ϕ〉 σ∗νk,N (dϕ). (2.4.43)

The left hand side is the characteristic function of a Gaussian measure given by

ˆ
VN

ei〈v,ϕ〉 µk,N (dϕ) = exp

(
−
〈v,Ck,Nv〉

2

)
(2.4.44)

as completion of the square shows. The right hand side is slightly more complicated. By a change
of variable we �nd

ˆ
VN

ei〈v,ϕ〉 σ∗νk,N (dϕ) =

ˆ
VN

ei〈v,σψ〉 νk,N (dψ)

=

ˆ
VN

ei〈σ
∗v,ψ〉 νk,N (dψ)

= e−
1
2
〈σ∗v,Dk,Nσ

∗v〉.

(2.4.45)

Here σ∗ : VN → VN is the adjoint of σ : VN → VN with respect to the standard scalar product
on both spaces, i.e., σ∗ is characterised by 〈ϕ, σξ〉 = 〈σ∗ϕ, ξ〉 for ϕ ∈ VN and ξ ∈ VN . It is easy
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to see that σ∗v(x) =
∑

x∈TN :π(x)=x v(x). Then we �nd

〈σ∗v,Dk,Nσ
∗v〉 =

∑
x,y∈TN

σ∗v(x)Dk,N (x− y)σ∗v(y)

=
∑

x,y∈TN

∑
x∈TN
π(x)=x

∑
y∈TN
π(y)=y

v(x)Dk,N (π(x− y))v(y)

=
∑

x,y∈TN

v(x)Ck,N (x− y)v(y)

= 〈v,Ck,Nv〉.

(2.4.46)

Together with the equations (2.4.44) and (2.4.45) this shows the claim.
Conclusion: From equation (2.4.40) and Step 2 we conclude

ˆ
VN

FX(ξ)µk(dξ) =

ˆ
VN

FX(ϕ)σ∗νk,N (dϕ) =

ˆ
VN

FX(σψ) νk,N (dψ). (2.4.47)

2.A Proof of Theorem 2.2.3

In this appendix we discuss those details of the proof of Theorem 2.2.3 that are not already
contained in the much more general discussion in [18]. The key ingredient of the proof is the
following lemma

Lemma 2.A.1 (Lemma 2.3. in [18]). Let B > 0 be a constant. There is a smooth family of
functions Wt ∈ C∞(R) for t > 0 such that for λ ∈ (0, B), t > 0

λ−1 =

ˆ ∞
0

tWt(λ) dt, (2.A.1)

Wt(λ) ≥ 0. (2.A.2)

Moreover Wt�(0,B) is the restriction of a polynomial in λ of degree at most t. For t ≤ 1 we have
the explicit formula

Wt(λ) = C/t (2.A.3)

for some constant C > 0. For t ≥ 1 and integers `, n ≥ 0 the following estimate holds

(1 + t2λ)nλ`
∣∣∣∣ ∂`∂λ`Wt(λ)

∣∣∣∣ ≤ C`,n. (2.A.4)

In addition we can choose Wt such that it satis�es

Wt(λ) ≥ ε (2.A.5)

for some ε > 0 and λ ≤ Bmin(1, t−2).
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Proof. This is Lemma 2.3. in [18] (with rescaled λ) except for the lower bound (2.A.5). The
lower bound is however easily obtained from the construction in [18]. One possible choice for the
function Wt is given by

Wt(λ) =
∑
n∈Z

ϕ

(
arccos

(
1− λ

2B

)
t− 2πnt

)
(2.A.6)

for λ ∈ (0, B) where ϕ : R→ R+
0 is any symmetric non-negative function such that ϕ̂ is supported

in [−1, 1] and smooth. More precisely, we let ϕ = |κ|2 where κ̂ is even and supported in [−1
2 ,

1
2 ]

and we can moreover choose κ̂ to be non-negative, which implies for |x| < 2 that

κ(x) =
1

2π

ˆ
R
κ̂(k)eikx dx =

1

2π

ˆ 1
2

− 1
2

κ̂(k) cos(kx) dx >
√
ε (2.A.7)

for some ε > 0. The bound arccos(1−x) ≤ π
2

√
2x for x ∈ [0, 2] implies that for λ < Bmin(t−2, 1)

the estimate |t arccos(1− λ
2B )| < 2 holds. Hence for those λ we bound

Wt(λ) ≥ ϕ
(

arccos

(
1− λ

2B

)
t

)
=

∣∣∣∣κ(arccos

(
1− λ

2B

)
t

)∣∣∣∣2 ≥ ε. (2.A.8)

Proof of Theorem 2.2.3. We set B = π2dΩ ≥ max(spec(A)) where Ω is the constant in (2.2.23).
Based on the previous lemma we obtain a �nite range decomposition by de�ning for 2 ≤ k ≤ N

Ck =

ˆ Lk

2R

Lk−1

2R

tWt(A) dt

C1 =

ˆ L
2R

0
tWt(A) dt

CN+1 =

ˆ ∞
LN

2R

tWt(A) dt

(2.A.9)

This decomposition indeed satis�es
∑N+1

k=1 Ck = C because spec(A) ⊂ [0, B] by (2.2.23) and
property (2.A.1). Since Wt is a polynomial of degree at most t and supp(Aϕ) ⊂ supp(ϕ) +
[−R, . . . , R]d the �nite range property in the theorem holds.

Next, we want to show that the matrix −Mk = CA,k(x) with |x| ≥ Lk/2 is positive de�nite
and independent of A and we want to show(2.2.32). The kernel CA,k is uniquely characterised
by the conditions that CA,kϕ = CA,k ∗ ϕ for ϕ ∈ XN and CA,k ∈ MN (space of matrix valued
kernels with average zero). By construction of CA,k = Ck(A) we know that for 1 ≤ k ≤ N there
are coe�cients ck,l such that Ck(A) =

∑
ck,lA

l. Observe that the action of the �nite di�erence
operator A can be written as

Aϕ(x) =
∑

y∈[−R,R]d

ayϕ(x+ y) (2.A.10)

where ay ∈ Rm×m are coe�cients such that
∑

y ay = 0. In particular the kernel A ∈ MN of A

satis�es A(x) = 0 for d∞(x, 0) > R. The same holds for powers Al and d∞(x, 0) > lR because
the kernel of Al is given by the l-fold convolution A ∗ . . . ∗ A. Therefore only the constant
term of the polynomial contributes to the kernel of CA,k(x) for |x| ≥ Lk/2 in particular it is
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independent of A. Note that the kernel of A0 = idXN is given by (δ0−L−Nd)1m×m because this
function has average zero and constant shifts do not change the operator so it generates the same
operator as δ01m×m. In order to show Mk ≥ 0 it is therefore su�cient to show ck,0 ≥ 0 because
Mk = −ck,0L−NdId. The inequality Wt(0) ≥ 0 implies that the constant term of the polynomial
Wt is positive. Hence

ck,0 =

(ˆ Lk/(2R)

Lk−1/(2R)
t ·Wt(0) dt

)
> 0. (2.A.11)

Using similar arguments we can show Remark 2.2.4. Note that for l ≤ (LN − 1)/(2R) the
operator Al with kernel A∗l does not 'wrap around' the torus. In particular we have for x ∈ ΛN
and N ≤ N ′

A∗lN (x) = A∗lN ′(x) (2.A.12)

where AN denotes the kernel of AN and N indicates the size of the torus. Since Wt is a �xed
polynomial independent of N of degree at most t a simple calculation then implies (2.2.32).

It remains to establish the bounds. Here it is useful to rely on the estimate (2.2.23) for the
spectrum of the Fourier coe�cients instead of the bounds on the quadratic form Q. Since A is
diagonal in Fourier space and this property carries over to polynomials in A the identity

Ĉk(p) =

ˆ Lk

2R

Lk−1

2R

t ·Wt(Â(p)) dt (2.A.13)

holds for 2 ≤ k ≤ N and similar identities hold for k = 1 and k = N + 1. Using this equation
we can derive strong bounds for the Fourier modes of Ck. Let us denote the eigenvalues of the
symmetric and positive matrix Â(p) by ω|p|2 ≤ λ1 ≤ . . . ≤ λm where we plugged in the lower
bound (2.2.23). The key observation is that by estimate (2.A.4) for t ≥ 1

‖Wt(Â(p))‖ = max
1≤i≤m

|Wt(λi)| ≤
Cn

(λ1t2)n
≤ Cn

(ω|p|2t2)n
. (2.A.14)

The estimate (2.A.14) implies with n ≥ 2 and n = 0 respectively

‖Ĉk(p)‖ ≤
ˆ ∞
Lk−1

2R

Cn
(ω|p|2t2)n

t dt ≤ Cn(2R)2n−2

(2n− 1)ωn
|p|−2(|p|Lk−1)−(2n−2) ∀ 2 ≤ k ≤ N + 1 (2.A.15)

‖Ĉk(p)‖ ≤
ˆ 1

0

C0

t
t dt

ˆ Lk

2R

1
C0t dt ≤ C0 +

C0L
2k

8R2
∀1 ≤ k ≤ N. (2.A.16)

where we used Wt(λ) ≤ C0/t for t ≤ 1 in the second estimate. Note that the �rst bound does
not hold for k = 1 and the last bound does not hold for k = N + 1. Moreover there is the trivial
bound

‖Ĉk(p)‖ ≤ ‖Ĉ(p)‖ = ‖Â(p)−1‖ ≤ |p|
−2

ω
. (2.A.17)

The most useful combination of these bounds is

‖Ĉk(p)‖ ≤


Cn′ |p|−2(|p|L(k−1))−n

′
for |p| ≥ L−(k−1), n′ ≥ 2,

C|p|−2 forL−(k−1) > |p| ≥ L−k,
CL2k forL−k > |p|.

(2.A.18)
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This bound also holds for k = 1 and k = N + 1. Indeed we have (|p|Lk−1)−n
′ ≥ (π

√
d)−n

′
for

k = 1 so (2.A.17) implies the �rst estimate and {p ∈ T̂N : |p| < L−(N+1)} = ∅. In particular
(2.A.18) contains (2.2.29) for ` = 0. For |α|+ d > 2 we get using (2.A.18) with n′ > d− 2 + |α|
and (2.2.25)

‖∇αCk(x)‖ ≤ C

LNd

( ∑
p∈T̂N

|p|≥L−(k−1)

|p||α|−2(|p|L(k−1))−n
′
+

∑
p∈T̂N

L−(k−1)>|p|≥L−k

|p||α|−2 +
∑
p∈T̂N
L−k>|p|

|p||α|L2k
)

≤ C
ˆ

L−(k−1)≤r

rd−3+|α|(rL(k−1))−n
′
dr + C

ˆ

L−k<r<L−(k−1)

rd−3+|α| dr + C

ˆ

r<L−k

L2kr|α|+d−1 dr

≤ CL−(k−1)(d−2+|α|) + CL−k(d−2+|α|) ≤ CL−(k−1)(d−2+|α|)

(2.A.19)

where we approximated the Riemann sums by their integrals possibly increasing the constant.
This approximation can be justi�ed using a dyadic decomposition for the sums. Note that the
constant C does not depend on N or L. The condition d+ |α| > 2 was used to bound the second
integral. For d+ |α| = 2 it behaves as

´
dr
r ≈ ln(L) hence we get an additional logarithm in this

case.
Next we consider derivatives with respect to the parameter matrix A. We need the following

simple lemma for which we did not �nd an exact reference in the literature. Similar arguments
can be found in [137].

Lemma 2.A.2. Let A,B ∈ Rm×msym be symmetric matrices and let λ1 ≤ . . . ≤ λm be the ei-
genvalues of A counted with multiplicity. Let f be a holomorphic function. Then there is a
combinatorial constant Cm,` such that∥∥∥∥ d`

ds`
f(A+ sB)

∣∣∣∣
s=0

∥∥∥∥ ≤ Cm,` sup
λ∈[λ1,λm]

|f (`)(λ)|‖B‖`. (2.A.20)

Proof. The proof is based on a representation of the matrix derivative using the Cauchy formula
that appears e.g. in [111]. Note that the eigenvalues of A + sB are continuous functions of
s ∈ R for A and B symmetric [111]. Let C be a curve around all the eigenvalues of A + sB for
s ∈ (−ε, ε) with winding number 1. By the Cauchy formula

f(A+ sB) =
1

2πi

ˆ
C
f(z)(zId− (A+ sB))−1 (2.A.21)

Di�erentiating ` times with respect to s or using the Neumann series for the matrix inverse gives

d`

ds`
f(A+ sB)

∣∣∣∣
s=0

=
`!

2πi

ˆ
C
f(z)(zId−A)−1B(zId−A)−1B . . . B(zId−A)−1. (2.A.22)

Now we write A =
∑m

i=1 λiPi as a sum of orthogonal projections such that
∑m

i=1 Pi = Id. Then
we �nd for z /∈ spec(A) that (zId − A)−1 =

∑n
i=1(z − λi)−1Pi. Plugging this in (2.A.22) we

bound∥∥∥ d`

ds`
f(A+ sB)

∣∣∣∣
s=0

∥∥∥ =
∥∥∥ `!

2πi

m∑
i1,...,i`+1=1

ˆ
C

f(z)

(z − λi1) . . . (z − λin)
Pi1BPi2 . . . BPi`+1

∥∥∥
≤

m∑
i1,...,i`+1=1

∣∣∣∣ `!2πi

ˆ
C

f(z)

(z − λi1) . . . (z − λi`+1
)

∣∣∣∣ ‖B‖`
(2.A.23)
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The term in absolute values is the sum of divided di�erences [35] and by the mean value theorem
for �nite di�erence (Proposition 43 in [35]) there is a ξ ∈ (min1≤j≤n+1 λij ,max1≤j≤n+1 λij ) such
that

`!

2πi

ˆ
C

f(z)

(z − λi1) . . . (z − λi`)
= f (`)(ξ). (2.A.24)

This implies the claim∥∥∥∥ d`

ds`
f(A+ sB)

∣∣∣∣
s=0

∥∥∥∥ ≤ m(`+1) sup
λ∈[λ1,λm]

|f (`)(λ)|‖B‖`. (2.A.25)

We apply this lemma to the Fourier modes of the operators AA+sA1 where A1 ∈ L(G) is a
linear and symmetric but not necessarily positive operator. Note that Wt can be extended to
a holomorphic function in a neighbourhood of (0, B) because this holds for the arccos function
and ϕ is holomorphic since ϕ̂ has compact support. Then we �nd using linearity of the Fourier
transform, Lemma 2.A.2, the bounds for the spectrum of the Fourier modes (2.2.23), and the
estimate (2.A.4) for t ≥ 1∥∥∥∥ d`

ds`
Wt(ÂA+sA1(p))

∥∥∥∥ =

∥∥∥∥ d`

ds`
Wt(ÂA(p) + sÂA1(p))

∥∥∥∥
≤ Cm,`‖ÂA1(p)‖` sup

λ∈Conv(spec ÂA(p))

|W (`)
t (λ)|

≤ Cm,`Ω`|p|2`‖A1‖` sup
λ∈Conv(spec ÂA(p))

|W (`)
t (λ)|

≤ Cm,`Ω`‖A1‖`|p|2` sup
λ∈Conv(spec ÂA(p))

Cn,`
λ`(1 + λt2)n

≤ Cm,n,`
(

Ω

ω

)`
‖A1‖` min(1, (ω|p|2t2)−n).

(2.A.26)

The bound extends to t < 1 because Wt(λ) = C/t is constant in this case. We obtain up to a
constant exactly the same bound we used before to �nd (2.A.15) (for k ≥ 2) and (2.A.16) (for
k ≤ N). Let us check that also the bound ‖Ĉk(p)‖ < C|p|−2 generalises to ` ≥ 1. We bound for
L−k < |p| < L−(k−1) and ‖Ȧ‖ ≤ 1

‖D`
AĈk(p)(Ȧ, . . . , Ȧ)‖ ≤

ˆ |p|−1

Lk−1

2R

Cm,0,` · tdt+

ˆ Lk

2R

|p|−1

Cm,2,`
|p|4t4

tdt ≤ C|p|−2 (2.A.27)

Hence we �nd a bound similar to (2.A.18)

‖D`
AĈk(p)(Ȧ, . . . , Ȧ)‖ ≤


Cn′ |p|−2(|p|L(k−1))−n

′
for |p| ≥ L−(k−1), n′ ≥ 2

C|p|−2 forL−(k−1) > |p| ≥ L−k

CL2k forL−k > |p|

(2.A.28)

This bound completes the proof of the upper bound in Fourier space (2.2.29). As in (2.A.19)
this bound also implies (2.2.31) for ` ≥ 1.
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Finally we consider the lower bound. For |p| ≤ t−1 we �nd ‖Â(p)‖ ≤ Ω|p|2 ≤ Bt−2. Hence
(2.A.5) implies Wt(Â(p)) ≥ ε1m×m. Using this bound we �nd for |p| ≤ L−k and k ≥ 2

Ĉk(p) =

ˆ Lk

2R

Lk−1

2R

tWt(Â(p)) dt ≥ εL2k

16R2
. (2.A.29)

Using the positivity of Wt we get for k = 1

Ĉ1(p) =

ˆ L
2R

0
tWt(Â(p)) dt (2.A.30)

≥ ε
ˆ min( L

2R
,|p|−1)

0
tdt ≥ ε

2
min

(
|p|−2,

L2

4R2

)
. (2.A.31)

This completes the proof of Theorem 2.2.3.



Chapter 3

Models for discrete elasticity at positive

temperature

The results of this and the following chapter are joint work in progress with Stefan
Adams, Roman Kotecký, and Stefan Müller.

3.1 Introduction

The purpose of this chapter is to state our main results for microscopic models of elasticity
and gradient models and reduce them to statements about perturbations of Gaussian integrals
that are then proved in Chapter 4. For a general background on gradient models, a motivation
of our results, and references to the literature we refer to the introduction in Chapter 1.

Let us brie�y recall the setting. We consider general �nite range potentials given by a function
U : (Rm)A → R where A is a �nite subset of Zd that are invariant under shifts. The corresponding
Gibbs measure describes the behaviour of, e.g., crystalline solids or discrete interfaces. We are
mostly interested in properties of the free energy for this class of models. Recall that by (1.2.12)
the free energy is given by

W (F, β) = lim
Λ→Zd

− ln(ZΛ,ψF ,β)

β|Λ|
(3.1.1)

where

ZΛ,ψ,β =

ˆ
A
e−β

∑
τx(A)∩Λ6=∅ U(ϕA)

∏
x∈Λ

λ(dϕx)
∏
x/∈Λ

δψx(dϕx). (3.1.2)

It is convenient to reformulate the �nite range interaction as generalized gradient models, i.e.,
the interaction potential can equivalently be written as a function U : (Rm)I → R acting on a
set of discrete derivatives (∇αϕ)α∈I indexed by I. This contains gradient interface models as
a special case. Our analysis is restricted to potentials that can be bounded below by a strictly
convex function agreeing with the potential in the origin, i.e.,

U(z)−DU(0)z − U(0) ≥ ω|z|2 (3.1.3)

where ω > 0 is a positive constant.
Under this assumption it is possible to extract an explicit dominant contribution of the free

energy and we obtain a perturbative contribution that can be expressed as a perturbation of a
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Gaussian integral and that is formally of order β−1. Our main results are that the assumption
(3.1.3) together with a smoothness condition on U imply a good control on the perturbative
part of the free energy. Then it is a simple consequence that the free energy is strictly convex
in a neighbourhood of the origin for small temperatures and that the scaling limit is Gaussian
for small external deformations and small temperatures. This extends earlier results for convex
potentials by Funaki and Spohn [89] and Giacomin, Olla, and Spohn [94] to certain non convex
potentials. For a detailed review of the literature we refer to Chapter 1.

Models for nonlinear discrete elasticity have the property that the energy is invariant under
rotations and the minimum of the energy is obtained for the undeformed state, i.e., the identity
deformation. This results in a degenerate minimum of the energy. In general the analysis
of spontaneously broken symmetries in models with continuous spins is very di�cult and no
rigorous renormalisation group analysis for such models is known. In the context of elasticity
one is usually interested in a�ne boundary conditions that break the symmetry. In fact, it is even
possible to use discrete null Lagrangians to construct a physically equivalent energy that satis�es
the growth assumption (3.1.3). This allows us to apply our results for generalised gradient models
also to models for nonlinear elasticity.

This chapter is structured as follows. In Section 3.2 we properly de�ne gradient interface
models and state our main results Theorem 3.2.6 and Theorem 3.2.9. We reduce them to general
statements about perturbations of Gaussian integrals by showing the smallness of the perturba-
tions in Proposition 3.2.4. The proof of this proposition is the only longer proof in this section
but nevertheless essentially an exercise in bounding derivatives using the product and chain rule.
In Section 3.3 we generalise the results to statements about discrete elasticity in Theorem 3.3.1
and Theorem 3.3.2 using discrete null Lagrangians.

3.2 Setting and main results

3.2.1 General setup

Fix an odd integer L ≥ 3 and a dimension d ≥ 2. Let TN = (Z/(LNZ))d be the d-dimensional
discrete torus of side length LN where N is a positive integer. We equip TN with the quotient
distances | · | and | · |∞ induced by the Euclidean and maximum norm respectively. De�ne the
space of m-component �elds on TN as

VN = {ϕ : TN → Rm} = (Rm)TN . (3.2.1)

Since the energies we consider are shift invariant we are only interested in gradient �elds. How-
ever, the condition of being a gradient is not entirely straightforward in dimension d ≥ 2; thus we
rather work with usual �elds modulo a constant or, equivalently, with �elds with the vanishing
average

ϕ ∈ XN =
{
ϕ ∈ VN :

∑
x∈TN

ϕ(x) = 0
}

(3.2.2)

that are in one-to-one correspondence with gradient �elds. Let the dot denote the standard scalar
product on Rm which is later extended to Cm. For ψ,ϕ ∈ XN the expression

(ϕ,ψ) =
∑
x∈TN

ϕ(x) · ψ(x) (3.2.3)

de�nes a scalar product on XN and this turns XN into a Hilbert space. We use λN for the
m(LNd − 1)-dimensional Hausdor� measure on XN , equip the space XN with the σ-algebra
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BXN induced by the Borel σ-algebra with respect to the product topology, and useM1(XN ) =
M1(XN ,BXN ) to denote the set of probability measures on XN , referring to elements inM1(XN )
as random gradient �elds.

The discrete forward and backward derivatives are de�ned by

(∇iϕ)s(x) = ϕs(x+ ei)− ϕs(x) s ∈ {1, . . . ,m}, i ∈ {1, . . . , d},
(∇∗iϕ)s(x) = ϕs(x− ei)− ϕs(x) s ∈ {1, . . . ,m}, i ∈ {1, . . . , d}.

(3.2.4)

Here ei are the standard unit vectors in Zd. Forward and backward derivatives are adjoints of
each other. We use ∇ϕ(x) and ∇∗ϕ(x) for the corresponding m× d matrices.

In this article we study a class of random gradient �elds de�ned (as Gibbs measures) in
terms of Hamiltonians HN : XN → R that are in their turn given by a �nite range potential
U : (Rm)A → R. Here, A ⊂ Zd is a �nite set and we use R′ to denote the range of the
potential U , R′ = diam∞A. Anticipating that U is invariant with respect to translations in Rm,
U(ψ) = U(taψ) for any ψ ∈ (Rm)A with (taψ)s(x) = ψs(x) + as, a ∈ Rm, it depends on ψ only
modulo translations by vectors from Rm, or, equivalently, depends for connected sets A only on
gradients ∇ψ(x), x ∈ A. For any ϕ ∈ XN and any B ⊂ TN , we use ϕB to denote the restriction
of ϕ to B, and de�ne

HN (ϕ) =
∑
x∈TN

U(ϕτx(A)) (3.2.5)

where τx(A) denotes the set A translated by x ∈ TN , τx(A) = A + x = {y : y − x ∈ A}. The
corresponding gradient Gibbs measure γN,β ∈M1(XN ) at inverse temperature β = T−1 is de�ned
as

γN,β(dϕ) =
exp
{
−βHN (ϕ)

}
ZN,β

λN (dϕ) (3.2.6)

with

ZN,β =

ˆ
XN

exp
{
−βHN (ϕ)

}
λN (dϕ). (3.2.7)

Given that the torus has a periodic structure, we implement suitable boundary conditions
following the Funaki-Spohn trick as introduced in [89]. Given a linear map (deformation) F :
Rd → Rm, we de�ne the Hamiltonian HF

N (ϕ) on the torus TN with the �external deformation� F
by

HF
N (ϕ) =

∑
x∈TN

U((ϕ+ F )τx(A)). (3.2.8)

Here we identify F with the linear map x → Fx and ϕ ∈ XN with a (LNZ)d periodic function
and the set TN with Zd ∩ [−1

2(LN − 1), 1
2(LN − 1)]d.

The �nite volume gradient Gibbs measure γFN,β under a deformation F is then de�ned as

γFN,β(dϕ) =
1

ZN,β(F, 0)
exp

(
−βHF

N (ϕ)
)
λN (dϕ), (3.2.9)

where ZN,β(F, 0) is the normalizing partition function. A useful generalization of the partition
function ZN,β(F, f) with a source term f ∈ XN is de�ned by

ZN,β(F, f) =

ˆ
XN

exp
(
−βHF

N (ϕ) + (f, ϕ)
)
λN (dϕ). (3.2.10)
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In particular, it characterizes the Gibbs measure γFN,β and will be used to analyse its scaling
limit.

While our major long-term objective is the speci�cation of the gradient Gibbs measures with
a given deformation as it was done in [89] for the scalar case with convex interactions, in the
present paper we will restrict our attention to the analysis of the partition function ZN,β(F, 0)
and the scaling limit of the partition function ZN,β(F, f). In particular, we investigate local
convexity properties of the functions

WN,β(F ) = −
ln ZN,β(F, 0)

βLNd
. (3.2.11)

and of the free energy

Wβ(F ) = lim
N→∞

WN,β(F ) = − lim
N→∞

ln ZN,β(F, 0)

βLNd
. (3.2.12)

For the scaling limit of the gradient Gibbs measure we will analyse the Laplace transform

lim
N→∞

EγFN,βe
(fN ,ϕ) = lim

N→∞

ZN,β(F, fN )

ZN,β(F, 0)
(3.2.13)

where fN ∈ XN is the rescaled discretization fN (x) = L−N( d+2
2

)f(L−Nx) of a smooth function
f : (R/Z)d → Rm with average zero. The function fN is a slowly varying �eld that allows us to
examine the long distance behaviour of the random �eld ϕ.

Let us remark that when m = d, this is the setting for microscopic model of nonlinear
elasticity with F representing an a�ne deformation applied to a solid as will be discussed in
detail in Sections 3.3.1 and 3.3.2. In the scalar case, m = 1, the model describes the behaviour
of a random microscopic interface and the map F actually determines a vector�a macroscopic
tilt applied to the discrete interface and the free energy Wβ(F ) then corresponds to the interface
free energy/surface tension with a given tilt.

3.2.2 Generalized gradient model

Up to now we considered �nite range interactions with support A that is without loss of
generality taken to be contained in a discrete cube of side R′, A ⊂ QR′ = {0, . . . , R′}d. We
introduce the m dimensional space of shifts VQR′ = {(a, . . . , a) ∈ (Rm)QR′ : a ∈ Rm} and its
orthogonal complement V⊥QR′ in (Rm)QR′ . General interactions of range R′ are thus functions on

the m((R′ + 1)d − 1)-dimensional space V⊥QR′ ' (Rm)QR′/ ∼ of local �eld con�gurations where
the equivalence relation ∼ identi�es con�gurations that di�er only by a constant �eld. However,
for our analysis it is more convenient to use an equivalent formulation with a space of local
deformations introduced in terms of higher order derivatives of the �elds.

We consider sets of multiindices I satisfying

{ei ∈ Rd : 1 ≤ i ≤ d} ⊂ I ⊂ {α ∈ Nd
0 \ {(0, . . . , 0)} : |α|∞ ≤ R′}. (3.2.14)

Moreover we de�ne the speci�c set IR′ = {α ∈ Nd
0 \ {(0, . . . , 0)} : |α|∞ ≤ R′}. Note that the

case I = {e1, . . . , ed} corresponds to nearest neighbour interactions.
We consider the vector space G = (Rm)I equipped with the standard scalar product

(z, z)G =
∑
α∈I

zα · zα, z = (zα)α∈I ∈ G. (3.2.15)
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We write GR′ if I = IR′ . For any ϕ ∈ XN and any x ∈ TN , we then use Dϕ(x) to denote the

extended gradient�the vector (∇αϕ(x))α∈I ∈ G with ∇αϕ(x) =
∏d
j=1∇

α(j)
j ϕ(x).

Assuming that L > R′ + 1 so that the de�nition of Dϕ does not wrap around the torus, we
have the following equivalence.

Lemma 3.2.1. There exists an isomorphism Π : GR′ → V⊥QR′ inducing a one-to-one correspond-

ence between functions on V⊥QR′ and those on GR′ : for any U : V⊥QR′ → R′, there is U : GR′ → R

such that U(Dψ(0)) = U(ψ) for any ψ ∈ V⊥QR′ .

Proof. Both spaces GR′ and V⊥QR′ have the same dimension m((R′ + 1)d − 1). The isomorphism

between them can be explicitly given by the map V⊥QR′ 3 ψ 7→ Dψ(0) ∈ G. This map is linear
and injective (Dψ1(0) = Dψ2(0) implies ψ1 − ψ2 ∈ VQR′ ). We de�ne Π to be its inverse.

For any U : V⊥QR′ → R, we de�ne U : GR′ → R by U(z) = U(Π(z)). Given that Π is an

isomorphism, we have U(Dψ(0)) = U(ψ) for any ψ ∈ V⊥QR′ .

There are obvious generalisations of the previous lemma to index sets I with the property that
if α ∈ I and 0 6= β ≤ α then β ∈ I. In particular a similar statement holds for A = {0, e1, . . . , ed}
and I = {e1, . . . , ed}.

Let G∇ and G⊥ be orthogonal subspaces of G given by G∇ = {z ∈ G : zα = 0 for |α|1 6= 1}
and G⊥ = {z ∈ G : zα = 0 for |α|1 = 1}, respectively. For any z ∈ G let z∇ ∈ G∇ and z⊥ ∈ G⊥
be the corresponding projections. We refer to z∇ as to the gradient components of z. Finally,
let us observe that the vector space of linear maps F : Rd → Rm can be identi�ed with the
md-dimensional space G∇ employing the isomorphism F 7→ F = DF (x) (for any x ∈ Rd). On
Lin(Rd; Rm) ' Rm×d we de�ne the usual Hilbert-Schmidt scalar product by

(F,G) =

d∑
i=1

Fei ·Gei =

d∑
i=1

m∑
j=1

Fi,sGi,s. (3.2.16)

With this scalar product the isomorphism F 7→ F becomes an isometry and we will often not
distinguish between |F | and |F |.

With the function U on GR′ corresponding to U on V⊥QR′ , we get U(ψ + F ) = U(Dψ(0) + F )

for any ψ ∈ V⊥QR′ leading to an alternative expression for the Hamiltonian HF
N (ϕ),

HF
N (ϕ) =

∑
x∈TN

U(ϕτx(A) + F ) =
∑
x∈TN

U(Dϕ(x) + F ). (3.2.17)

Let us introduce the class of interactions U, functions of the extended gradients Dϕ of the
�elds, for which we will prove our claims that will be, eventually, used to prove Theorems 3.3.1
and 3.3.2.

First, let Q : G → G be a symmetric positive linear operator and let Q : G → R be the
corresponding quadratic form Q(z) = (z,Qz). For any ϕ ∈ XN and any x ∈ TN we can
now introduce the quadratic interaction Q(Dϕ(x)) expressed explicitly in terms of the matrix(
Qαβ, α, β ∈ I

)
of the operator Q as

Q(Dϕ(x)) =
∑
α,β∈I

∇αϕ(x) ·Qαβ∇βϕ(x). (3.2.18)

For any twice di�erentiable function U on G we de�ne the symmetric quadratic form QU by

QU(z) := D2U(0)(z, z). (3.2.19)
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We will assume that the quadratic form QU satis�es the bounds

ω0|z|2 ≤ QU(z) ≤ ω−1
0 |z|

2 for all z ∈ G (3.2.20)

for some ω0 ∈ (0, 1). We will see in Remark 3.3.12 in Section 3.3.2 that for the lower bound the
condition

ω0|z∇|2 ≤ QU(z) ≤ ω−1
0 |z|

2 for all z ∈ G (3.2.21)

is su�cient.
We begin the analysis of the general case by extracting the relevant leading low temperature

contribution from the partition function and �nd a formula for the remainder that will be analysed
in the following sections. Similarly to [4], we de�ne the function U : G × Rd×m → R by

U(z, F ) = U(z + F )− U(F )−DU(F )(z)− QU(z)

2
. (3.2.22)

It describes the remainder of the Taylor expansion of U(z + F ) around F collecting all third
order terms plus the di�erence D2U(F )(z, z) − D2U(0)(z, z) since we want to keep only the
quadratic term that does not depend on F . Notice that the function V(z) = U(z, 0) = U(z) −
U(0)−DU(0)z− QU(z)

2 is the third order remainder of the Taylor expansion of U yielding V(0) =
DV(0) = D2V(0) = 0.

In terms of the function U the Hamiltonian can be expressed as

HF
N (ϕ) =

∑
x∈TN

U(Dϕ(x) + F ) = LNdU(F ) +
∑
x∈TN

(
U(Dϕ(x), F ) +

QU(Dϕ(x))

2

)
, (3.2.23)

where we used that the terms linear in Dϕ(x) cancel because
∑

x∈TN Dϕ(x) = 0 in the periodic
setting. Using equation (3.2.23) we can rewrite the partition function (3.2.10) as

ZN,β(F, f) = e−βL
NdU(F )

ˆ
XN

e(f,ϕ)e
−β
∑
x∈TN

(U(Dϕ(x),F )+
QU(Dϕ(x))

2
)
λN (dϕ). (3.2.24)

The positive quadratic form βQU de�nes the probabilistic Gaussian measure

µβ(dϕ) =
1

ZQU

N,β

exp
(
−β

2

∑
x∈TN

QU(Dϕ(x))
)
λN (dϕ) (3.2.25)

with an appropriate normalization factor ZQU

N,β .
Thus

ZN,β(F, f) = e−βL
NdU(F )ZQU

N,β

ˆ
XN

e(f,ϕ)e
−β
∑
x∈TN

U(Dϕ(x),F )
µβ(dϕ) (3.2.26)

Finally, rescaling the �eld by
√
β, introducing the Mayer function corresponding to the remainder

U,

KF,β,U(z) = exp
(
−βU( z√

β
, F )

)
− 1, (3.2.27)
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and using the shorthand µ = µ1, we express the partition function ZN,β(F, f) in terms of the
polymer expansion

ZN,β(F, f) = e−βL
NdU(F )ZQU

N,β

ˆ
XN

e
(f, ϕ√

β
)
e
−β
∑
x∈TN

U(
Dϕ(x)√

β
,F )

µ(dϕ)

= e−βL
NdU(F )ZQU

N,β

ˆ
XN

e
( f√

β
,ϕ)

∏
x∈TN

(1 +KF,β,U(Dϕ(x)))µ(dϕ)

= e−βL
NdU(F )ZQU

N,β

ˆ
XN

e
( f√

β
,ϕ)

∑
X⊂TN

∏
x∈X
KF,β,U(Dϕ(x))µ(dϕ).

(3.2.28)

The integral in the last expression gives the perturbative contribution

ZN,β
(
F,

f√
β

)
=

ˆ
XN

e
( f√

β
,ϕ)

∑
X⊂TN

∏
x∈X
KF,β,U(Dϕ(x))µ(dϕ). (3.2.29)

Introducing the perturbative components of the free energy by

WN,β(F ) = −
lnZN,β(F, 0)

LdN
and Wβ(F ) = − lim

N→∞

lnZN,β(F, 0)

LdN
(3.2.30)

we can rewrite the WN,β and the free energy Wβ de�ned in (3.2.11) and (3.2.12) as

WN,β(F ) =U(F ) +
WN,β(F )

β
− 1

βLNd
lnZQU

N,β , (3.2.31)

Wβ(F ) =U(F ) +
Wβ(F )

β
− lim
N→∞

1

βLNd
lnZQU

N,β . (3.2.32)

Here, in both expressions the last term is a constant independent of F .
It will be useful to generalise our formulation slightly and, instead of a particularKF,β,U above,

to consider a general function K : G → Rm and, instead of the quadratic form QU depending on
U, to consider a general positive de�nite quadratic form Q and de�ne the partition function

ZN (K,Q, f) =

ˆ
XN

e(f,ϕ)
∑
X⊂TN

∏
x∈X
K(Dϕ(x))µQ(dϕ). (3.2.33)

with the Gaussian measure

µQ(dϕ) =
1

ZQ
N,β

exp
(
−1

2

∑
x∈TN

Q(Dϕ(x))
)
λN (dϕ). (3.2.34)

Introducing then the free energies

WN (K,Q) = − lnZN (K,Q, 0)

LdN
(3.2.35)

and

W(K,Q) = − lim
N→∞

lnZN (K,Q, 0)

LdN
, (3.2.36)

we readily get

WN,β(F ) = WN (KF,β,U,QU) and Wβ(F ) = W(KF,β,U,QU). (3.2.37)
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The key result of this paper consists in a good control of the behaviour of the partition
function ZN (K,Q, f) and thus also WN and W for a class of admissible perturbations K. Intro-
ducing �rst an appropriate space for the functions K, we will later formulate conditions on U

that guarantee that KF,β,U (accompanied with Q = QU) belongs to this space.
Let Q : G → R be a positive de�nite quadratic form and ζ ∈ (0, 1). We de�ne the Banach

space Eζ,Q consisting of functions K : G = (Rm)I → R such that that the following norm is �nite

‖K‖ζ,Q = sup
z∈G

∑
|α|≤r0

1

α!
|∂αK(z)|e−

1
2

(1−ζ)Q(z). (3.2.38)

We will usually use the abbreviations

E = Eζ,Q, ‖ · ‖ζ = ‖ · ‖ζ,Q. (3.2.39)

The following theorem then provides bounds for the perturbative free energy.

Theorem 3.2.2. Fix the spatial dimension d, the number of components m, the range of in-
teraction R′, the set of multiindices {e1, . . . , ed} ⊂ I ⊂ {α ∈ Nd

0 \ {(0, . . . , 0)} : |α|∞ ≤ R′},
real constants ω0 > 0, ζ ∈ (0, 1) and an integer r0 ≥ 3. For K ∈ E let WN (K,Q) be de�ned by
(3.2.33) and (3.2.35).

Then there exist L0 ∈ N such that for every odd integer L ≥ L0 there exists a constant
% = %(L) > 0 with the following properties. For any integer N ≥ 1 and any quadratic form Q on
G = (Rm)I that satis�es the bounds

ω0|z|2 ≤ Q(z) ≤ ω−1
0 |z|

2 for all z ∈ G, (3.2.40)

the map K 7→WN (K) de�ned as WN (K) = WN (K,Q) is C∞ in B%(0) ⊂ Eζ,Q and its derivatives
are bounded independently of N , i.e.,

1

`!
‖D`WN (K)(K̇, . . . , K̇)‖ ≤ C`(L) ‖K̇‖`ζ,Q ∀K ∈ B%(0) ∀` ∈ N. (3.2.41)

In particular there exist W ∈ Cr(B%(0)) and a subsequence Nn → ∞ such that WNn converges
to W for all r ∈ N and the derivatives of W are bounded as in (3.2.41).

This is the main technical Theorem of the paper. The main steps of the proof will be
summarised in Section 4.2 and it will be eventually proven in Section 4.9.

Its immediate consequence that we will use is the claim concerning smoothness of the function
F 7→WN (KF ,Q) where Rm×d 3 F 7→ KF ∈ E is a function that satis�es suitable conditions and
Q is a �xed quadratic form.

Theorem 3.2.3. Let d, m, R′, I, ω0, ζ, r0, L ≥ L0, % = %(L) and a �xed Q be as in The-
orem 3.2.2. Let r1 ≥ 2 be an integer. Then for each integer N ≥ 1, each open set O ⊂ Rm×d

and any map O 3 F → KF ∈ Eζ,Q of class Cr1 that satis�es the bounds

sup
F∈O
‖KF ‖ζ,Q < %, (3.2.42)

sup
F∈O

∑
|γ|≤r1

1

γ!
‖∂γFKF ‖ζ,Q <∞, (3.2.43)

the function F 7→ WN (F ) := WN (KF ,Q) is in Cr1(O) and the derivatives |∂αFWN (F )|, |α| ≤ r1

can be bounded in terms of L and Θ := supF∈O
∑
|γ|≤r1

1
γ!‖∂

γ
FKF ‖ζ,Q. In particular there exists

W ∈ Cr1−1,1(O) and a subsequence Nn →∞ such that WNn →W in Cr1−1, and the derivatives
of W up to order r1− 1 as well as the Lipschitz constant of the (r1−1)-st derivative are bounded
in terms of L and Θ.
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Proof. The claim follows from Theorem 3.2.2 and the chain rule.

Now we show that for potentials U from a reasonable class of functions, the assumptions of
the previous theorem hold for the corresponding functions KF = KF,β,U de�ned as in (3.2.27),

KF,β,U(z) = exp

(
−βU(

z√
β
, F )

)
− 1, (3.2.44)

with U de�ned in terms of U in (3.2.22) and with Q = QU de�ned in (3.2.19).

Proposition 3.2.4. Let r0 ≥ 3 and r1 ≥ 0 be integers and assume that

U ∈ Cr0+r1(G) (3.2.45)

Recall that QU(z) = D2U(0)(z, z) and assume that

ω0|z|2 ≤ QU(z) ≤ ω−1
0 |z|

2 (3.2.46)

for some ω0 ∈ (0, 1). Let 0 < ω ≤ ω0
8 and suppose that U : G → R satis�es the additional

conditions

U(z)−DU(0)z − U(0) ≥ ω|z|2 ∀z ∈ G, and (3.2.47)

lim
t→∞

t−2 ln Ψ(t) = 0 where Ψ(t) := sup
|z|≤t

∑
3≤|α|≤r0+r1

1

α!
|∂αU(z)|. (3.2.48)

Then there exist ζ̃ (depending on ω and ω0), δ0 > 0 (depending on ω, ω0 and Ψ(1)), C1

(depending on ω, r0 and the function Ψ) and Θ (depending on ω, r0, r1 and the function Ψ)
such for all δ ∈ (0, δ0] and all β ≥ 1 the map Bδ(0) 3 F 7→ KF = KF,β,U ∈ E = E ζ̃ is Cr1 and
satis�es

‖KF ‖ζ̃,QU
≤ C1(δ + β−1/2) (3.2.49)

and ∑
|γ|≤r1

1

γ!
‖∂γFKF ‖ζ̃,QU

≤ Θ. (3.2.50)

In particular, given % > 0 there exists δ > 0 and β0 ≥ 1 (both depending on ω, ω0, and the
function Ψ) such that for all β ≥ β0 and all F ∈ Bδ we have (3.2.50) and

‖KF ‖ζ̃,QU
≤ %. (3.2.51)

The proof is postponed to Section 3.2.3. It is shown there that we may take ζ̃ = ωω0
2 . Explicit

expressions for δ0, C1 and Θ are given in (3.2.89), (3.2.94) and (3.2.111), respectively. The proof
also shows that dependence of δ0 and C1 on the number of derivatives of U can be slightly
improved. If we set Ψr(t) := sup|z|≤t

∑
3≤|α|≤r

1
α! |∂

αU(z)| then δ0 depends on ω, ω0 and Ψ3(1)
while C1 depends on ω, r0 and the function Ψr0 .

Remark 3.2.5. Let us state some remarks concerning this result.

1. We may assume without loss of generality that U(0) = DU(0) = 0 since both the Mayer
function U and assumptions of the proposition are invariant under adding an a�ne function
to U. The lower growth assumption (3.2.47) is then much weaker than the corresponding
condition in [4]. Assumption (3.2.47) only requires any quadratic bound from below while

in [4] the condition U(z) ≥ Q(z)
2 −ε|z|

2 for some small ε > 0 was imposed, i.e., the potential
was assumed to grow almost as fast as the quadratic approximation at 0.
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2. Let us emphasize that we do not require that 0 is a minimum of the potential. In fact the
theorem applies by a simple translation for all points z0 such that

U(z)−DU(z0)(z − z0)− U(z0) ≥ ω|z − z0|2 (3.2.52)

for some ω ≥ 0. In particular from Theorem 3.2.6 below we recover the known result that
the surface tension is strictly convex everywhere for strictly convex potentials.

3. The proposition can be generalized to some singular potentials, e.g., it is possible to consider
potentials U + V where U is as before and V : G → R ∪ {∞} satis�es V(z) ≥ 0, 0 /∈
suppV, and e−V ∈ Cr0+r1 . The one dimensional potential V(x) = η(x)|x − 2|−1 where
η ∈ C∞c ((1,∞)) satis�es e−V(x) ∈ C∞(R), hence non-trivial examples for such potentials
with singularities exist.

Let us brie�y indicate the necessary extensions to prove this result. Suppose that ε > 0
is chosen such that dist(0, suppV) ≥ ε. We choose δ0 ≤ ε/2. On the complement of the
support of V we can argue as in the proof of Proposition 3.2.4 below. If (z/

√
β, F ) is in

the support of V and |F | ≤ δ0 we conclude that |z| ≥ ε
√
β/2. In this regime we use the

estimate∣∣∣e−βV( z√
β
,F )−βU( z√

β
,F ) − 1

∣∣∣
Tz,F
≤
∣∣∣e−βV( z√

β
,F )
∣∣∣
Tz,F

∣∣∣e−βU( z√
β
,F )
∣∣∣
Tz,F

+ |1|Tz,F (3.2.53)

where | · |Tz,F is de�ned in (3.2.97) below. Then the �rst term can be controlled by the
assumption on V and the second term is bounded in (3.2.110). The condition |z| ≥ ε

√
β/2

implies that when multiplied with the weight of the ‖·‖E-norm both summands are exponen-
tially small in β.

Theorem 3.2.6. Under the assumptions of Proposition 3.2.4 with r1 ≥ 2 there is a β0 > 0
and δ0 > 0 such that the free energies WN,β|Bδ0 (0) are Cr1 and uniformly convex for β ≥ β0,

in particular D2WN,β(F )(Ḟ, Ḟ ) ≥ ω0
4 |Ḟ |

2. Also every limit Wβ = lim`→∞WN`,β is uniformly
convex.

Proof. Proposition 3.2.4 and Theorem 3.2.3 imply together that there are constants β1 and δ1

such that WN,β|Bδ(0) is uniformly Cr1 for β ≥ β1 and δ ≤ δ1. This means in particular that

there is a constant Ξ > 0 independent of β and δ such that |D2WN,β(Ḟ, Ḟ )| ≤ Ξ|Ḟ |2 in Bδ(0)
for β ≥ β1 and δ ≤ δ1. The bound (3.2.48) on the third derivative of U implies that there is a
δ2 > 0 such that for δ ≤ δ2 and F ∈ Bδ(0)

|D2U(F )(z, z)− QU(z)| = |D2U(F )(z, z)−D2U(0)(z, z)| ≤ ω0

2
|z|2 (3.2.54)

and thus

D2U(F )(z, z) ≥ ω0

2
|z|2. (3.2.55)

Let β2 = 4Ξ/ω0. Then for β ≥ max(β1, β2), δ ≤ min(δ1, δ2) and F ∈ Bδ(0)

D2WN,β(F )(Ḟ, Ḟ ) = D2U(F )(Ḟ , Ḟ ) +
D2Wβ(F )

β
(Ḟ, Ḟ ) ≥ ω0

2
|Ḟ |2 − Ξ

4Ξ/ω0
|Ḟ |2 ≥ ω0

4
|Ḟ |2

(3.2.56)

The assertion for the limitWβ follows from the fact that the pointwise limit of uniformly convex
functions is uniformly convex.
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Finally we address the scaling limit of the model. This is a statement about the Laplace
transform of the measure with density

∑
X⊂TN

∏
x∈X K(Dϕ(x))µQ(dϕ)/Z(K,Q, 0).

Theorem 3.2.7. Fix the spatial dimension d, the number of components m, the range of inter-
action R′, the set of multiindices {e1, . . . , ed} ⊂ I ⊂ {α ∈ Nd

0 \ {(0, . . . , 0)} : |α|∞ ≤ R′}, real
constants ω0 > 0, ζ ∈ (0, 1) and an integer r0 ≥ 3. Let Td = Rd/Zd. For f ∈ C∞(Td,Rm) with´
f = 0 we de�ne fN ∈ VN by fN (x) = L−N

d+2
2 f(L−Nx).

For K ∈ E let ZN (K,Q, fN ) be de�ned by (3.2.33). Then there exist L0 ∈ N such that for
every odd integer L ≥ L0 there exists a constant % = %(L) > 0 with the following properties. For
any quadratic form Q on G = (Rm)I that satis�es the bounds

ω0|z|2 ≤ Q(z) ≤ ω−1
0 |z|

2 for all z ∈ G, (3.2.57)

and any K ∈ B%(0) ⊂ Eζ,Q there is a subsequence N` →∞ and a matrix q ∈ R(m×d)×(m×d)
sym such

that for all f ∈ C∞(Td,Rm)

lim
`→∞

Z(K,Q, fN`)
Z(K,Q, 0)

= e
1
2

(f,CTdf) (3.2.58)

where CTd is the inverse of the operator ATd acting on u ∈ H1((R/Z)d,Rm) with
´
u = 0 by

(ATdu)s = −
m∑
t=1

d∑
i,j=1

(Q− q)i,j;s,t∂i∂jut. (3.2.59)

Here Q is the operator associated to the quadratic form Q via (3.2.18). The identity (3.2.59)
states in particular that the operator A depends only on the restriction of Q to G∇ and for ease
of notation we identify i with the multiindex ei.

Remark 3.2.8.

1. Note that the rescaling L−
Nd
2 would correspond to a central limit law behaviour of the

random �eld. Due to the strong correlations we need to use the stronger rescaling with

L−N( d+2
2

). One easily sees that the scaling limit of the gradient �eld ∇ϕ involves the central
limit scaling, cf. e.g. [33] and [128].

2. Note that the limiting covariance is dominated by the gradient-gradient contribution of the
interaction while the higher order terms are not directly present, see also [128]. In other
words, the limiting covariance C depends only on the action of Q on the subspace G∇,
de�ned after Lemma 3.2.1, which can be identi�ed with Rm×d. There might be an implicit
dependence on the higher order terms through the matrix q. This behaviour does not come
as a surprise because it is already present in the Gaussian setting where K = 0. The higher
order terms can change the local correlation structure. They have, however, little in�uence
on the long distance correlation because roughly speaking their long wave Fourier modes
are very small and decay with |p||α| with |α| ≥ 3 compared to |p|2 for the gradient-gradient
interaction.

Again, the abstract Theorem 3.2.7 for the Laplace transform of perturbations of Gaussian
measures has a concrete counterpart for the Gibbs measures of generalized gradient models.
Recall that the Gibbs measure γF,UN,β with tilt F was de�ned in (3.2.9) where the Hamiltonian is
given by (3.2.17) in terms of U.
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Theorem 3.2.9. Assume that U satis�es the assumptions of Proposition 3.2.4 with r0 = 3 and
r1 = 0. Let β ≥ 1 and F ∈ Bδ(0) be such that (3.2.51) holds with % as in Theorem 3.2.2. Then

there is a subsequence (N`) and a matrix q ∈ R(m×d)×(m×d)
sym such that for f ∈ C∞(Td,Rm) with´

f = 0 and fN (x) = L−N
d+2

2 f(L−Nx)

lim
`→∞

E
γF,UN`,β

e(fN` ,ϕ) = e
1

2β
(f,CTdf) (3.2.60)

where CTd is the inverse of the operator ATd acting on u ∈ H1((R/Z)d,Rd) with
´
u = 0 by

(ATdu)s = −
m∑
t=1

d∑
i,j=1

(QU − q)i,j;s,t∂i∂jut. (3.2.61)

Proof. Combining (3.2.28), (3.2.29), and (3.2.33) we get

E
γF,UN,β

e(fN ,ϕ) =
ZN,β(F, fN )

ZN,β(F, 0)
=

ZN,β(F, f√
β

)

ZN,β(F, 0)
=

Z(KF,β,U,QU,
fN√
β

)

Z(KF,β,U,QU, 0)
. (3.2.62)

The assumptions ensure that Theorem 3.2.7 can be applied which implies the claim.

3.2.3 Embedding of the initial perturbation

Proof of Proposition 3.2.4. The main point is to obtain the additional factor β−1/2+δ in (3.2.49)
which can be made as small as desired by taking δ small and β large. This factor essentially
comes from the third order Taylor expansion. We may assume that U(0) = DU(0) = 0 since the
second and higher order derivatives of U (and thus also the function U) and the assumptions in
Proposition 3.2.4 are invariant under addition of an a�ne function to U. The rest of the argument
is then essentially an exercise in estimating polynomials and their exponentials. Observe that
for functions f ∈ Cr0(G) the norms |f |Tz introduced in Appendix A amount to

|f |Tz =
∑
|α|≤r0

1

α!

∣∣∂αz f(z)
∣∣ (3.2.63)

(see Example 4.A.8 and equation (4.A.43)).
The proof of Proposition 3.2.4 can be split into the following steps:

Step 1. For any f ∈ Cr0(G) we have

|ef |Tz ≤ ef(z)(1 + |f |Tz)r0 (3.2.64)

and
|ef − 1|Tz ≤ max(ef(z), 1)(1 + |f |Tz)r0 |f |Tz . (3.2.65)

We �rst note that for f1, f2 ∈ Cr0(G) we have |f1f2|Tz ≤ |f1|Tz |f2|Tz . This follows abstractly
from Proposition 4.A.9 and Example 4.A.8 in the appendix. Alternatively one can easily verify
this by a direct calculation using that the (truncated) product of Taylor polynomials is the Taylor
polynomial of the product. To prove (3.2.64) we set f̃(y) = f(y)− f(z). Then ef(y) = ef(z)ef̃(y).
Since f̃(z) = 0 the r0-th order Taylor polynomial of ef̃ at z agrees with the Taylor polynomial
of
∑r0

m=0
1
m!(f̃)m. By the triangle inequality and the product property we get

|ef̃ |Tz ≤
r0∑
r=0

1

r!
|f̃ |rTz ≤ (1 + |f̃ |Tz)r0 ≤ (1 + |f |Tz)r0 . (3.2.66)
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This �nishes the proof of (3.2.64). Now (3.2.65) follows from the identity

ef − 1 =

ˆ 1

0
eτff dτ. (3.2.67)

Jensen's inequality and the product property.
We will now use the claims of Step 1 for

f(z) = Uβ(z, F ) = βU(
z√
β
, F ). (3.2.68)

Step 2. For β ≥ 1 and |F | ≤ δ ≤ 1, we have

|Uβ(·, F )|Tz ≤ (β−1/2 + δ)Ψ̃(|z|) (3.2.69)

where
Ψ̃(t) := 3(1 + t)3 Ψ(t+ 1). (3.2.70)

Actually, we show a slightly stronger bound,

|Uβ(·, F )|Tz ≤
[
3(1 + |z|2∞)|F |+ (1 + |z|∞)3β−1/2

]
Ψ
( |z|√

β
+ δ
)
. (3.2.71)

Let us remark that in this proof D refers as usual to total derivatives and ∂ to partial
derivatives. Without reference to z or F , the derivatives ∂U (or ∂iU) and DU refer to the
derivatives of the function U evaluated at the corresponding argument while ∂ziU( z√

β
+ F ) and

DzU( z√
β

+ F ) refer to the derivatives of the map z → U( z√
β

+ F ). Clearly ∂ziU( z√
β

+ F ) =
1√
β
∂iU( z√

β
+ F ) and ∂FiU( z√

β
+ F ) = ∂iU( z√

β
+ F ).

For derivatives of the 3rd or higher order we use that ∂αz Uβ(z, F ) = β1− |α|
2 ∂αU( z√

β
+ F )

which yields ∑
3≤|α|≤r0

1

α!
|∂αz Uβ(z, F )| ≤ β−1/2 Ψ(

|z|√
β

+ δ). (3.2.72)

To estimate the lower order terms we use the third order Taylor expansion in z. This yields

Uβ(z, F ) =
1

2
D2U(F )(z, z)− 1

2
D2U(0)(z, z) + β−1/2

ˆ 1

0

(1− τ)2

2
D3U(F +

τz√
β

)(z, z, z) dτ,

DzUβ(z, F )(ż) = D2U(F )(z, ż)−D2U(0)(z, ż) + β−1/2

ˆ 1

0
(1− τ)D3U(F +

τz√
β

)(z, z, ż) dτ,

D2
zUβ(z, F )(ż1, ż2) = D2U(F )(ż1, ż2)−D2U(0)(ż1, ż2) + β−1/2

ˆ 1

0
D3U(F +

τz√
β

)(z, ż1, ż2) dτ.

(3.2.73)

Using further the bound

|D2U(F )(ż1, ż2)−D2U(0)(ż1, ż2)| ≤
ˆ 1

0
D3U(τF )(F , ż1, ż2) dτ (3.2.74)
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combined with

1

3!
|D3U(τF )(F , z, z)| ≤

∑
|α|=3

1

α!

∣∣∣∂αU(τF )
∣∣∣ |z|2∞ |F |∞, (3.2.75)

as well as

1

3!

∣∣∣D3U(F +
τz√
β

)(z, z, z)
∣∣∣ ≤ 1

3!

dimG∑
i1,i2,i3=1

∣∣∣∣∂i1∂i2∂i3U(F +
τz√
β

)

∣∣∣∣ |z|3∞
=
∑
|α|=3

1

α!

∣∣∣∂αU(F +
τz√
β

)
∣∣∣ |z|3∞, (3.2.76)

with
´ 1

0
(1−τ)2

2 dτ = 1
3! , we deduce that

|Uβ(z, F )| ≤ (3|z|2∞ |F |∞ + |z|3∞β−1/2) Ψ(
|z|√
β

+ δ). (3.2.77)

Reasoning similarly for the �rst and second derivatives of Uβ we obtain (3.2.71). Since |F |∞ ≤
|F | = |F | we deduce (3.2.69).

Step 3. There exist δ0 > 0 such that

− Uβ(z, F ) ≤ 1

2
QU(z)− ω

2
|z|2 ∀ β ≥ 1, z ∈ G, F ∈ Bδ0(0). (3.2.78)

Using the de�nitions (3.2.22) and (3.2.68), we need to show that

β
(
U(F +

z√
β

)− U(F )−DU(F )(
z√
β

)
)
≥ ω

2
|z|2. (3.2.79)

For F = 0 this follows directly from the assumption (3.2.47),

β
(
U(

z√
β

)− U(0)−DU(0)(
z√
β

)
)
≥ βω

∣∣∣∣ z√β
∣∣∣∣2 = ω |z|2 ≥ ω

2
|z|2. (3.2.80)

This can be extended to the case when F is small if compared with z/
√
β. On the other

hand, if F is comparable or bigger than z/
√
β, we can rely on the third order Taylor expansion

around 0.
Indeed, consider �rst the case when z√

β
is large. Let κ := 9

ωω0
≥ 9 and assume that |z|√

β
≥ κδ

and |F | = |F | ≤ δ. The estimate (3.2.47) with the assumption U(0) = DU(0) = 0 implies

βU(F +
z√
β

) ≥ ωβ
∣∣F +

z√
β

∣∣2 ≥ ωβ( |z|√
β
− |F |

)2 ≥ ω(1− 1

κ

)2|z|2. (3.2.81)

For z and F as before and using DU(0) = 0, D2U(0) = QU, and the third order Taylor expansion,
we bound

β

∣∣∣∣DU(F )(
z√
β

)

∣∣∣∣ ≤ β∣∣∣∣D2U(0)(F ,
z√
β

)

∣∣∣∣+ sup
|ξ|≤|F |

β

2

∣∣∣∣D3U(ξ)(F , F ,
z√
β

)

∣∣∣∣ (3.2.82)



Embedding of the initial perturbation 69

Evaluating the �rst term as

β

∣∣∣∣D2U(0)(F ,
z√
β

)

∣∣∣∣ ≤ β∣∣D2U(0)(F , F )
∣∣1/2∣∣∣∣D2U(0)(

z√
β
,
z√
β

)

∣∣∣∣1/2
≤ β

ω0
|F | |z|√

β
≤ β

κω0

( |z|√
β

)2
=
|z|2

κω0

(3.2.83)

and the second term, assuming that 3Ψ(1)δ ≤ 1, as

sup
|ξ|≤|F |

β

2

∣∣∣∣D3U(ξ)(F , F ,
z√
β

)

∣∣∣∣ ≤ 3βΨ(1)δ
1

κ

∣∣∣∣ z√β
∣∣∣∣2 ≤ |z|2κ , (3.2.84)

we get the bound

β

∣∣∣∣DU(F )(
z√
β

)

∣∣∣∣ ≤ (1 +
1

ω0

) |z|2
κ
. (3.2.85)

Similarly, assuming again that δ ≤ 1
3Ψ(1) , we get

β|U(F )| ≤ β
∣∣D2U(0)(F , F )

∣∣+ sup
|ξ|≤|F |

β

2

∣∣D3U(ξ)(F , F , F )
∣∣ ≤ β( δ2

ω0
+ 3Ψ(1)δ3

)
≤ (1 +

1

ω0
)
|z|2

κ2
.

(3.2.86)
Combining the bounds (3.2.81), (3.2.85) and (3.2.86) imply (3.2.78) once

(
1 +

1

ω0

)1

κ
(1 +

1

κ
) ≤ ω

((
1− 1

κ

)2 − 1

2

)
. (3.2.87)

For this to be true, it su�ces when

2(1 +
1

κ
) ≤ κω0ω

((
1− 1

κ

)2 − 1

2

)
. (3.2.88)

Indeed, with the choice κ = 9
ωω0
≥ 9, the left hand side is bounded from above by 2(1 + 1/9) =

20/9 while the right hand side from below by 9((8/9)2 − 1/2) = 47/18 > 20/9.
It remains to consider the case |z|/

√
β < κδ. We choose

δ0 := min
( 1

1 + κ
,

3ω0

16κΨ(1)

)
. (3.2.89)

With |z|/
√
β < κδ and δ ≤ δ0, we get |z|√

β
+ δ ≤ (κ + 1)δ ≤ 1 . Hence, from (3.2.77) with

|z|∞ ≤ |z|, κ ≥ 9, and assuming ω ≤ ω0
2 , we get

|Uβ(z, F )| ≤ (3 + κ)δΨ(1)|z|2 ≤ 4

3
κδΨ(1)|z|2 ≤ 1

4
ω0|z|2 ≤

1

2
(ω0 − ω)|z|2 ≤ 1

2
QU(z)− 1

2
ω|z|2.
(3.2.90)

Thus (3.2.78) holds for this choice of δ0 and |z|/
√
β ≤ κδ. Finally for δ ≤ δ0 also the condition

δ ≤ 1
3Ψ(1) is satis�ed and thus (3.2.78) holds for all z and all F ∈ Bδ0(0).

Step 4. Let 0 < δ < δ0 with δ0 ≤ 1 given by (3.2.89). Then, with ζ̃ = ωω0
2 , we have

‖e−Uβ(·,F ) − 1‖ζ̃,QU
≤ C1(δ + β−1/2) ∀ β ≥ 1, F ∈ Bδ(0). (3.2.91)
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Combining (3.2.65), (3.2.69) and (3.2.78) and using that β−1/2 + δ ≤ 2 we get

|e−Uβ(·,F ) − 1|Tz ≤ e
1
2
QU(z)−ω

2
|z|2(β

−1/2
0 + δ0) Ψ̃(|z|) (1 + 2Ψ̃(|z|))r0 . (3.2.92)

Given that 1
2
ωω0

2 QU(z) ≤ 1
4ω|z|

2 we have

e−
1
2

(1−ωω0
2

)QU(z) ≤ e−
1
2
QU(z) e

1
4
ω|z|2 . (3.2.93)

Thus multiplying (3.2.92) by the weight e−
1
2

(1−ωω0
2

)QU(z) and setting

C1 = sup
t≥0

e−
ω
4
t2 Ψ̃(t)(1 + 2Ψ̃(t))r0 <∞ with Ψ̃(t) = 3(1 + t)3 Ψ(t+ 1), (3.2.94)

we get (3.2.91), thus completing Step 4.

The estimates (3.2.92) and (3.2.93) imply that the assumptions of Lemma 3.2.10 below hold.
This shows that F → KF is continuous. Together with (3.2.91) this ends the proof for r1 = 0.

It remains to show the bound (3.2.50) for the derivatives with respect to F . Considering
�rst the case |γ| = 1, we need to estimate

∂

∂Fi
e−Uβ(z,F ) = −e−Uβ(z,F ) ∂

∂Fi
Uβ(z, F ). (3.2.95)

By the chain and product rules, the derivatives ∂αz of this expression exist for |α| ≤ r0. Moreover
by (3.2.64) and the product property of the | · |Tz norm,∣∣∣ ∂

∂Fi
e−Uβ(·,F )

∣∣∣
Tz
≤ e−Uβ(z,F )(1 + |Uβ(·, F )|Tz)r0

∣∣∣ ∂
∂Fi

Uβ(z, F )
∣∣∣
Tz
. (3.2.96)

Then it remains to bound
∣∣∣ ∂
∂Fi

Uβ(z, F )
∣∣∣
Tz
.

For the higher derivatives with respect to F the combinatorics becomes more complicated.
Therefore, it is actually useful to introduce the norm |·|Tz,F for Taylor polynomials in two variables
(see Appendix 4.A.2),

|f |Tz,F :=
∑
|α|≤r0

∑
|γ|≤r1

1

α!

1

γ!

∣∣∂αz ∂γF f(z, F )
∣∣. (3.2.97)

Note that, in particular, the expression
∣∣∣ ∂
∂Fi

Uβ(z, F )
∣∣∣
Tz

is controlled by this norm. As a pre-

paration we show an estimate similar to the result of Step 2 for the | · |Tz,F norm of Uβ(z, F ).

Step 5. For β ≥ 1 and |F | ≤ 1 we have

|Uβ(z, F )|Tz,F ≤ 2r0+r1+1(1 + |z|)3Ψ(|z|+ 1). (3.2.98)

To estimate the terms in the de�nition of | · |Tz,F norm, we distinguish three cases depending
on the order of derivatives.

For |γ| = 0 we have shown in Step 2 that for β ≥ 1 and |F | ≤ 1,∑
|α|≤r0

1

α!

∣∣∂αz Uβ(z, F )
∣∣ = |Uβ(·, F )|Tz ≤ 6(1 + |z|)3Ψ(1 + |z|). (3.2.99)
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For |γ| ≥ 1 and |α| ≥ 2 we use that |∂αz ∂
γ
FUβ(z, F )| = β1−|α|/2∣∣∂α+γU( z√

β
+ F )

∣∣. The
combinatorial identity ∑

α+γ=δ

1

α!

1

γ!
=

1

δ!

∑
α+γ=δ

δ!

α!γ!
=

1

δ!
2|δ| (3.2.100)

then implies∑
2≤|α|≤r0,
1≤|γ|≤r1

1

α!

1

γ!
|∂αz ∂

γ
FUβ(z, F )| ≤ 2r0+r1

∑
3≤|δ|≤r0+r1

1

δ!

∣∣∣∂δU(
z√
β

+ F )
∣∣∣ ≤ 2r0+r1Ψ(|z|+ 1).

(3.2.101)

For the terms with α = 0 and |γ| ≥ 1, one di�erentiates with respect to F the second order
Taylor expansion of Uβ in the variable z,

Uβ(z, F ) =

ˆ 1

0
(1− τ)D2U(τ

z√
β

+ F )(z, z) dτ − D2U(0)(z, z)

2
. (3.2.102)

Using the identity

∑
|γ|=k

1

γ!
|∂γf(F )| = 1

k!

dimG∑
i1,...ik=1

|∂i1 . . . ∂ikf(F )| (3.2.103)

valid for any f ∈ Ck(G), we get∑
j1,...,j`

∑
α:|α|=k

1

α!
|∂j1 . . . ∂j`∂

αf(z)| = (k + `)!

k!

∑
α:|α|=k+`

1

α!
|∂αf(z)|. (3.2.104)

Hence (3.2.102) implies∑
1≤|γ|≤r1

1

γ!
|∂γFUβ(z, F )| ≤ (r1 + 2)!

2r1!
|z|2∞Ψ(|z|+ 1) ≤ (r1 + 2)2

2
|z|2Ψ(|z|+ 1) (3.2.105)

Similarly, the Taylor expansion for the derivative,

DzUβ(z, F )(ż) =

ˆ 1

0
D2U(τ

z√
β

+ F )(z, ż) dτ −D2U(0)(z, ż), (3.2.106)

implies that∑
|α|=1

∑
1≤|γ|≤r1

1

γ!
|∂αz ∂

γ
FUβ(z, F )| ≤ (r1 + 2)!

r1!
|z|∞Ψ(|z|+ 1) ≤ (r1 + 2)2|z|Ψ(|z|+ 1). (3.2.107)

Thus, combining (3.2.99), (3.2.101), (3.2.105), and (3.2.107) we get (3.2.98) since (r1 + 2)2 ≤
4 · 2r1 < 2r0+r1 .

Step 6. Derivatives with respect to F .

Let δ0 and ζ̃ be like in Step 4. The map Bδ0(0) 3 F 7→ e−Uβ(·,F ) ∈ E is r1 times continuously
di�erentiable and ∑

|γ|≤r1

1

γ!
‖∂γFKF ‖ζ̃,QU

≤ Θ. (3.2.108)

with Θ depending on Ψ, ω, r0, r1, and R′.
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By the chain and product rule it follows that the the derivatives ∂αz ∂
γ
F e

Uβ(z,F ) exists for all
|α| ≤ r0 and |γ| ≤ r1 and are continuous in (z, F ). To get a bound for |∂γF eUβ(z,F )|Tz and to prove
higher di�erentiability of F 7→ eUβ(·,F ), we proceed similarly to Step 4. As shown in Appendix
4.A.2 the product property extends to the norm | · |Tz,F .

From the product property one deduces as in Step 1 that∑
|γ|≤r1

1

γ!

∣∣∂γF ef(·,F )|Tz = |ef |Tz,F ≤ e
f(z,F ) (1 + |f |Tz,F )r0+r1 . (3.2.109)

For f = −Uβ we �nd with the results of Step 3 and Step 5 that∑
|γ|≤r1

1

γ!

∣∣∂γF e−Uβ(·,F )|Tz ≤ e
1
2
QU(z)−ω

2
|z|2 (1 + 2r0+r1+1(1 + |z|)3Ψ(|z|+ 1)

)r0+r1

≤ e
1
2

(1−ζ̃)QU(z)e−
1
4
ω|z|2 (1 + 2r0+r1+1(1 + |z|)3Ψ(|z|+ 1)

)r0+r1 .

(3.2.110)

where we used (3.2.93) and the de�nition of ζ̃ in the second step. Invoking Lemma 3.2.10 below,
it follows by induction in |γ| that the map F 7→ e−Uβ(·,F ) is r1 times continuously di�erentiable
as a map from Bδ0(0) to E. Moreover (3.2.110) implies the estimate (3.2.108) for the higher
derivatives with

Θ = (|G|+ 1)r1 sup
z
e−

1
4
ω|z|2 (1 + 2r0+r1+1(1 + |z|)3Ψ(|z|+ 1)

)r0+r1 (3.2.111)

where (|G|+ 1)r1 ≥ |{γ : |γ| ≤ r1}| counts the number of terms in the sum
∑
|γ|≤r1 which arises

because we interchange the sum with the supremum in the de�nition of the ‖·‖ζ̃,QU
norm.

Lemma 3.2.10. Let O be an open set in a �nite dimensional space and h : O × G → R a map
satisfying two conditions:

(i) For each (F, z) ∈ O × G and each α with |α| ≤ r0 the partial derivatives ∂αz h(F, z) exist
and are continuous in O × G,

(ii) lim|z|→∞ e
− 1

2
(1−ζ)QU(z) supF∈O |h(F, ·)|Tz = 0.

De�ne the function g : O → Eζ by taking (g(F ))(z) = h(F, z). Then g ∈ C0(O,Eζ).
Moreover, if the conditions (i) and (ii) hold for all partial derivatives hi(F, z) = ∂

∂Fi
h(f, z) then

g ∈ C1(O,Eζ).

Proof. To prove that F → h(F, ·) is a continuous map from O to Eζ note that h is uniformly
continuous on compact subsets of O×G. Let δ > 0. By assumption there exists an R such that
supF∈O e

− 1
2

(1−ζ)Q(z)|h(F, ·)|Tz ≤ δ if |z| > R. Let Fk → F . Then

lim sup
k→∞

‖h(Fk, ·)− h(F, ·)‖ζ

= lim sup
k→∞

sup
z∈G

e
1
2

(1−ζ)QU(z)|h(Fk, ·)− h(F, ·)|Tz

≤ 2δ + lim sup
k→∞

sup
|z|≤R

e−
1
2

(1−ζ)QU(z)|h(Fk, ·)− hi(F, ·)|Tz = 2δ

by uniform continuity on compact sets. Since δ > 0 was arbitrary this shows that g ∈ C0(O,Eζ).
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Assume now that all partial derivatives hi = ∂
∂Fi

h satisfy (i) and (ii). The same reasoning as
before implies that F 7→ hi(F, ·) is a continuous map from O to Eζ . Then we use that

h(F + ηei, z)− h(F, z)− hi(F, z)η =

ˆ 1

0
[hi(F + tη, z)− hi(F, z)] η dt, (3.2.112)

divide by η, use Jensen's inequality for | · |Tz and take the limit η → 0 to show that the map
g : O → Eζ has partial derivatives given by hi(F, ·). Moreover these partial derivatives are
continuous. Since O is in a �nite dimensional space this implies the assertion that g ∈ C1(O,Eζ).

3.3 Discrete nonlinear elasticity

3.3.1 Main results for discrete elasticity

In this section we consider models of discrete elasticity and analyse local convexity properties
of the free energy and the scaling limit of Gibbs measures. Indeed, the study of such models
is a key motivation for the present work and it is the reason why we considered vector-valued
�elds and interactions beyond nearest neighbour interactions in the previous section. An addi-
tional di�culty in discrete nonlinear elasticity is that the invariance under rotations leads to a
degeneracy of the quadratic form Q which we considered in the previous section. Thus condi-
tion (3.2.47) is violated and the results in the previous section cannot be applied directly. We
will overcome this di�culty by adding a suitable discrete null Lagrangian, see De�nition 3.3.3,
equation (3.3.46) and Lemma 3.3.10 in the next subsection.

We consider the general setting of (3.2.5) with m = d. Thus let A be a �nite subset of Zd

and let U : (Rd)A → R be an interaction potential. For �elds ϕ : ΛN → Rd we consider the
Hamiltonian

HN (ϕ) =
∑
x∈TN

U(ϕτx(A)) (3.3.1)

where τx(A) denotes the set A translated by x ∈ TN , τx(A) = A + x = {y : y − x ∈ A}. For
simplicity (and without loss of generality), we suppose that the support set A of the potential U
contains the unit cell of Zd, {0, 1}d ⊂ A.

For any ψ,ψ′ ∈ (Rd)A we introduce the scalar product

(ψ,ψ′) =
∑
x∈A

ψ(x) · ψ′(x) (3.3.2)

and the corresponding norm |ψ|. Then we can naturally split (Rd)A = VA ×V⊥A , where VA ∼ Rd

is the d-dimensional subspace of shifts VA = {(a, . . . , a) ∈ (Rd)A : a ∈ Rd}, and V⊥A is the
d(|A| − 1)-dimensional orthogonal complement of VA.

For a linear map F : Rd → Rd we consider the extension to (Rd)A given by (Fψ)(x) =
F (ψ(x)). For ease of notation we will use the same symbol F for the original map and the
extension to (Rd)A and similarly for the extension to (Rd)Zd .

We assume that the potential U :
(
Rd
)A → R satis�es the following conditions.

(H1) Invariance under rotations and shifts: We have

U(ψ) = U(R(taψ)) (3.3.3)

for any ψ ∈ (Rd)A and any R ∈ SO(d), a ∈ Rd, with R(taψ)(x) = R(ψ(x) + a).
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(H2) Ground state: U(ψ) ≥ 0 and U(ψ) = 0 if and only if ψ is a rigid body rotation, i.e., there
exists R ∈ SO(d) and a ∈ Rd such that ψ(x) = Rx+ a for any x ∈ A.

(H3) Smoothness and convexity: Let 1 ∈ (Rd)A denote the identity con�guration 1(x) = x.
Assume that U is a C2 function and D2U(1) is positive de�nite on the subspace orthogonal
to shifts and in�nitesimal rotations given by skew-symmetric linear maps.

(H4) Growth at in�nity:

lim inf
ψ∈V⊥A , |ψ|→∞

U(ψ)

|ψ|d
> 0. (3.3.4)

(H5) Additional smoothness and subgaussian bound: U ∈ Cr0+r1 with r0 ≥ 3 and r1 ≥ 0 and

lim
|ψ|→∞

|ψ|−2 ln
( ∑

2≤|α|1≤r0+r1

1

α!
|∂αψU(ψ)|

)
= 0, (3.3.5)

where ∂αψU(ψ) =
∏
x∈A

∏d
s=1

∂|α|

∂
α(x,s)
ψs(x)

U(ψ) for any multiindex α : A× {1, . . . , d} → N.

The �rst four conditions are the same as in [62]. The last condition is a minor additional
regularity assumption for the potential. It was stated as a separate item to make clear that it is
only required in the renormalisation group analysis but not in the convexi�cation argument in
Section 3.3.2.

In [62] these assumptions are used to prove that the Cauchy-Born rules holds at zero temper-
ature, in the sense that the energy minimiser subject to a�ne boundary conditions is a�ne. Here
we use this result as a starting point for a study of the Gibbs distribution for the Hamiltonian HN

at low temperatures using the renormalisation group approach. The ground state in the setting
of discrete elasticity corresponds to the a�ne deformation given by the identity. Therefore we
consider deformations F ∈ Rd×d for which F −1 is small. For a linear function F , its restriction
to A and to τx(A) di�er by the constant vector F (x) ∈ Rd and thus U(F |A) = U(F |τx(A)). Hence
for linear maps F we simply write U(F ) instead of U(F |τx(A)). As in (3.2.8) we de�ne

HF
N (ϕ) =

∑
x∈TN

U((ϕ+ F )τx(A)). (3.3.6)

and we recall the de�nition of the corresponding partition function ZN,β(F, 0) and the function

WN,β(F ) = −
lnZN,β(F, 0)

βLNd
(3.3.7)

in (3.2.10) and (3.2.11), respectively.
Note that WN,β inherits the rotational invariance of U , i.e.

WN,β(RF ) = WN,β(F ) for all R ∈ SO(d). (3.3.8)

This follow immediately from the fact that the Hausdor� measure λN on the space XN of LN

periodic �elds with average zero is invariant under the map ϕ 7→ Rϕ.
In analogy with (3.2.31) we de�ne

WN,β(F ) := β (WN,β(F )− U(F )) +
lnZQUN,β
LdN

(3.3.9)
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where ZQUN,β is the partition function of the following Gaussian integral based on the quadratic

form βQU = βD2U(1):

ZQUN,β :=

ˆ
XN

exp
(
− β

2

∑
x∈TN

QU (ϕτx(A))
)
λN (dϕ). (3.3.10)

Note the integral is well-de�ned since the quadratic form ϕ 7→
∑

x∈TN QU (ϕτx(A)) is positive
de�nite on the �nite-dimensional space XN even though D2U(1) is only positive semide�nite.
Indeed, if

∑
x∈TN QU (ϕτx(A)) = 0 for ϕ ∈ XN then the assumption {0, e1, . . . , ed} ⊂ A and (H3)

imply that ∇iϕj(x) = Wij(x) where W (x) is a skew-symmetric d × d matrix. Discrete Fourier
transform shows that all Fourier modes of Ŵ (p) are skew-symmetric rank one matrices and thus
vanish. This implies ϕ = 0.

Rewriting (3.3.9) we get

WN,β(F ) = U(F ) +
WN,β(F )

β
− 1

β

lnZQUN,β
LdN

. (3.3.11)

Note that the last term on the right hand side is independent of F . It is easy to see, e.g. by
discrete Fourier transform, that its limit for N →∞ exists.

Theorem 3.3.1. Suppose the potential U satis�es the assumptions (H1) to (H5) with r0 = 3
and r1 ≥ 0. Then for all su�ciently large odd L there exist a δ(L) > 0 and β0(L) > 0 such that,
for any β ≥ β0 and any N ≥ 1 the functions WN,β : Bδ(1)→ R are in Cr1, with bounds on the
Cr1 norm that are independent of N and β.

In particular, for r1 ≥ 2, D2WN,β(G) is positive de�nite on the subspace orthogonal to the
tangent space at G of the orbit SO(d)G , for all G ∈ Bδ(1), uniformly in N .

Moreover there exists a subsequence (N`) such that WN`,β converges in Cr1−1 to the free
energy Wβ(F ). For r1 ≥ 3 the second derivative D2Wβ(1) is strictly positive on the subspace
orthogonal to the skew-symmetric matrices.

The second part of the theorem asserts that WN,β is uniformly convex near 1 modulo ro-
tational invariance. Equivalently this can be stated as follows. Since WN,β is rotational in-
variant there exists a smooth function ŴN,β , de�ned in a small neighbourhood of 1 such that
WN,β(F ) = ŴN,β(F TF ). Then Ŵ is uniformly convex in a neighbourhood of 1, uniformly in N .

The discussion in Section 3.3.2 below implies a variant of the convexity result. There exists
a null Lagrangian N (actually a multiple of the determinant) such that WN,β + N is uniformly
convex in Bδ(1) and this property extends to Wβ + N for all r1 ≥ 2.

We also get a result for the scaling limit of the Gibbs state.
We consider QU = D2U(1). We de�ne Q∇U as the restriction of QU to linear maps. More

precisely consider a linear map F : Rd → Rd and recall that FA denotes the restriction of F to
the discrete set A. Now we set

Q∇U (F ) := QU (FA) = D2U(1)(FA, FA) (3.3.12)

We identify the space of linear maps with the space Rd×d of d× d matrices. Using the Hilbert-
Schmidt scalar product (F,G) =

∑d
i,s=1 Fi,sGi,s on Rd×d there is a unique symmetric operator

Q∇U such that Q∇U (F ) = (Q∇UF, F ) and we denote the components of the associated matrix by
(Q∇U )i,j;s,t.
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Theorem 3.3.2. Under the assumptions of Theorem 3.3.1, there is a subsequence (N`) and

a matrix q(F ) ∈ R(d×d)×(d×d)
sym such that for f ∈ C∞((R/Z)d,Rd) with

´
f = 0 and fN (x) =

L−N
d+2

2 f(L−Nx)

lim
`→∞

EγFN`,β
e(fN` ,ϕ) = e

1
2β

(f,CTdf)
. (3.3.13)

Here, CTd is the inverse of the operator ATd acting on functions u ∈ H1((R/Z)d,Rd) with
´
u = 0

by

(ATdu)s = −
d∑
t=1

d∑
i,j=1

(Q∇U − q)i,j;s,t∂i∂jut. (3.3.14)

For a discussion why only the restriction Q∇U and not the full quadratic form QU appears
in the limiting covariance see Remark 3.2.8. The operators Q∇ and Q∇ − q are not positively
de�nite on the set of all matrices because skew-symmetric matrices are in their null space. They
are, however, positive de�nite on symmetric matrices. By Korn's inequality this implies that A
is an elliptic operator and that its inverse C is well-behaved. Actually we will see in the proof of
Theorem 3.3.2 that the operator A can be also written in terms of Q∇U+N such that Q∇U+N and
Q∇U+N − q are positive de�nite.

Along the lines of Section 1.8.3 in [47] one can show that in both theorems convergence
holds not only for a subsequence but for the full sequence and that the convergence of WN,β

holds in Cr1 and not just Cr1−1, see [106]. In a slightly di�erent situation the existence of the
thermodynamic limit limN→∞WN,β(F ) was established in [116] under very weak conditions on
the interaction U .

3.3.2 Reformulation of discrete elasticity as generalized gradient models

We saw in (3.2.17) that the Hamiltonian HF
N can be formulated in terms of a potential U

with �nite range support A as well as in terms of the generalized gradient potential U. However,
the potential U and thus also U has a degenerate minimum and we cannot directly apply the
results stated in the previous section. Instead we �rst need to gain local coercivity. This can be
done with the help of an addition of a discrete null Lagrangian.

Let us �rst introduce the concept of discrete null Lagrangians.

De�nition 3.3.3. A function N :
(
Rd
)A → R is called a discrete null Lagrangian if for any �nite

set Λ ⊂ Zd and any ϕ, ϕ̃ ∈ (Rd)Zd such that ϕ(x) = ϕ̃(x) for all x /∈ Λ we have the following
identity∑

x∈ΛA

N(ϕτx(A)) =
∑
x∈ΛA

N(ϕ̃τx(A)) where ΛA := {x ∈ Zd : τx(A) ∩ Λ 6= ∅}. (3.3.15)

If N is a discrete null Lagrangian and ϕ(x) = F (x) for x /∈ Λ then, in particular,∑
x∈ΛA

N(ϕτx(A)) =
∑
x∈ΛA

N(Fτx(A)). (3.3.16)

It is useful to note that (3.3.15) holds if and only if∑
x∈Λ′

N(ϕτx(A)) =
∑
x∈Λ′

N(ϕ̃τx(A)) for some �nite Λ′ with ΛA ⊂ Λ′ ⊂ Zd. (3.3.17)

This follows immediately from the observation that x ∈ Λ′ \ΛA implies that τx(A) ⊂ Zd \Λ and
hence ϕτx(A) = ϕ̃τx(A).
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Example 3.3.4. Let A = {0, y} where y ∈ Zd and N(ϕ) = ϕ(y) − ϕ(0). Then N is a discrete
null Lagrangian. To see this we use the criterion (3.3.17). Consider a cube Λ′ which is so large
that

ΛA ⊂ Λ′, Λ ∩
(
(y + Λ′) \ Λ′

)
= ∅ and Λ ∩

(
Λ′ \ (y + Λ′)

)
= ∅. (3.3.18)

Now ∑
x∈Λ′

N(ϕτx(A)) =
∑

x∈(y+Λ′)\Λ′
ϕ(x)−

∑
x∈Λ′\(y+Λ′)

ϕ(x). (3.3.19)

Thus the assertion follows from (3.3.18) since ϕ = ϕ̃ in Zd \ Λ.
It follows that all the maps ϕ 7→ ∇αϕ(0) with α 6= 0 are discrete null Lagrangians.

Example 3.3.5. An important example of a nonlinear discrete null Lagrangian is given by the
discrete determinant. For d = 2 and a map ψ : {0, 1}2 → R2 one de�nes the discrete determinant
as the oriented area of the polygon generated by the points ψ(0), ψ(e1), ψ(e1 + e2), ψ(e2). Thus

N(ψ) :=
1

2
ψ(e1)× (ψ(e1 + e2)− ψ(e1))− 1

2
ψ(e2)× (ψ(e1 + e2)− ψ(e2)) (3.3.20)

where a× b = a1b2 − a2b1 =

∣∣∣∣a1, b1
a2, b2

∣∣∣∣ denotes the vector product. This implies that for the square

Q` = {0, 1, . . . , `}2 with the oriented boundary

~P` =
(
(0, 0), (1, 0),.., (`, 0), (`, 1),.., (`, `), (`− 1, `),.., (0, `), (0, `− 1),.., (0, 0)

)
, (3.3.21)

the sum
∑

x∈Q` N(ϕτx({0,1}2)) is the oriented area of the oriented polygon ϕ(~P`). Thus it follows

from the criterion (3.3.17) that N is a discrete null Lagrangian (given Λ, take Λ′ = Q`−b `2c with
su�ciently large `).

To generalise the discrete determinant to higher dimensions, it is useful to reformulate �rst
the case d = 2 and to express N with the help of the continuous null Lagrangian det∇ψ for
ψ : Ω ⊂ R2 → R2. For ϕ : Z2 → R2de�ne Iϕ : R2 → R2 as the multilinear interpolation, i.e.,
for x ∈ Z2 the map Iϕ|x+[0,1]2(y) is the unique map which is a�ne in each coordinate direction
yi and agrees with ϕ on x + {0, 1}2. Note that Iϕ is de�ned consistently along the lines xi ∈ Z
and is continuous on R2. Note also that Iϕ(~P1) is the boundary of the polygon generated by he
points ϕ(0), ϕ(e1), ϕ(e1 + e2), ϕ(e2). Thus

N(ϕ) =

ˆ
(0,1)2

det∇Iϕ dx (3.3.22)

and for Q`, ∑
x∈Q`

N(ϕ|τx({0,1}2)) =

ˆ
(0,`)2

det∇Iϕ dx. (3.3.23)

The integral on the right hand side depends only on Iϕ|∂(0,`)2 and thus only on ϕ|~P`. This gives
another proof that N is a discrete null Lagrangian.

For d ≥ 3 and ϕ : Zd → Rd we de�ne the multilinear interpolation in the same way. We then
de�ne the discrete determinant Ndet : (Rd){0,1}

d → R by

Ndet(ψ) =

ˆ
(0,1)d

det∇Iψ dx. (3.3.24)
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The same reasoning as above shows that Ndet is a discrete null Lagrangian. Note that for each
y ∈ (0, 1)d the expression ∇Iϕ(y) is a linear combination of the values ϕ(x) for x ∈ {0, 1}d.
Thus Ndet is a homogeneous polynomial of degree d on (Rd){0,1}

d
. If F : Rd → Rd is linear and

ϕF (y) = Fy for all y ∈ {0, 1}d then Iϕ(y) = Fy and thus

Ndet(F ) = detF. (3.3.25)

Discrete null Lagrangians are de�ned using Dirichlet boundary conditions on Zd. One can
extend the null Lagrangian property to periodic perturbations. We will only need the following
result.

Lemma 3.3.6. Assume that N : (Rd)A → R is a discrete shift-invariant null Lagrangian and
assume that N is bounded on bounded sets. Let F : Rd → Rd be a linear map. Assume that
|A|∞ := sup{|y|∞ : y ∈ A} ≤ 1

8L
N . Then for all periodic functions ϕ : TN = Zd/LNZd → Rd∑

x∈TN

N((F + ϕ)τx(A)) =
∑
x∈TN

N(Fτx(A)) = LdNN(FA). (3.3.26)

Proof. The proof is standard, but we include it for the convenience of the reader. Fix F and
ϕ. Note that by shift-invariance N(Fτx(A)) = N(FA). We use the set [−L

N−1
2 , L

N−1
2 ]d as the

fundamental domain of TN . Extend ϕ to an LN -periodic function on Zd. Let M be a large odd
integer and consider a cut-o� function η : Zd → [0, 1] such that

η(x) = 1 if |x|∞ ≤ (M − 2)L
N−1
2 + |A|∞, η(x) = 0 if |x|∞ ≥M LN−1

2 − 2|A|∞, (3.3.27)

Apply the criterion (3.3.17) with the set Λ′ = ΛM := [−MLN−1
2 , MLN−1

2 ]d, ϕ̃ = 0 and ηϕ in place
of ϕ. This gives ∑

x∈ΛM

N((F + ηϕ)τx(A)) =
∑
x∈ΛM

N(Fτx(A)) = MdLdNN(FA). (3.3.28)

Now ∑
x∈ΛM−2

N((F + ηϕ)τx(A)) = (M − 2)d
∑
x∈TN

N((F + ϕ)τx(A)). (3.3.29)

By shift invariance we have N((F + ηϕ)τx(A)) = N(FA + (ηϕ)τx(A)). Since ϕ is bounded on
Zd we get |FA + ηϕ| ≤ C. Using the assumption that N is bounded on bounded sets we get
|N((F + ηϕ)τx(A))| ≤ C ′ and∑

x∈ΛM\ΛM−2

|N((F + ηϕ)τx(A))| ≤ C ′(Md − (M − 2)d)LdN . (3.3.30)

Dividing (3.3.28) by Md and passing to the limit M →∞ we get (3.3.26).

Using the discrete determinant one can show the following result.

Theorem 3.3.7. [Theorem 5.1 in [62]] Under the assumptions (H1)-(H4) there is a shift invari-

ant discrete null Lagrangian N ∈ C∞(
(
Rd
)A
,R) and a shift invariant function E ∈ C2(

(
Rd
)A
,R)

such that:

(i) E is uniformly convex on the subspace V⊥A orthogonal to the shifts;
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(ii) For all ψ ∈
(
Rd
)A

U(ψ) + N(ψ) ≥ E(ψ); (3.3.31)

(iii) For ψ ∈
(
Rd
)A

that are close to rotations ψR(x) = Rx with R ∈ SO(d),

U(ψ) + N(ψ) = E(ψ). (3.3.32)

In fact one can take N = αNdet for some α ∈ R where Ndet is the discrete determinant de�ned
in (3.3.24). Hence N is polynomial of degree d and in particular smooth. Moreover N depends
only on the values of the deformation in one unit cell whose corners are contained in A and for
a�ne maps F : Zd → Rd, restricted to A it yields

N(FA) = α detF. (3.3.33)

Remark 3.3.8. The heart of the matter is to show that for small α > 0 the quadratic form
D2(U +αNdet)(z) is positive de�nite on V⊥A for z = 1 (and hence for z in a small neighbourhood
of 1). This is easy. Indeed D2U(1) is positive semide�nite on V⊥A since 1 is a minimum of U
and by assumption positive de�nite on the complement of the space S ⊂ V⊥A of skew symmetric
linear maps. It thus su�ces to show that D2Ndet is positive de�nite on S. For F ∈ S we have
Ndet(F ) = detF . Moreover etF is a rotation and hence det etF = 1. Computing the second
derivative at t = 0 we get

0 = D det(1)(F 2) +D2 det(1)(F, F ) = TrF 2 +D2 det(1)(F, F ) = −|F |2 +D2 det(1)(F, F ).
(3.3.34)

Here we used that TrF 2 = (F T , F ) = (−F, F ). Thus D2 det(1)(F, F ) = |F |2 for all F ∈ S.

In the following we want to rephrase the model given by the Hamiltonian (3.2.17) in the
setting introduced in Section 3.2.1. The key idea is to consider the energy given by U + N
instead of U . The function U + N is bigger than a strictly convex function and agrees with
it in a neighbourhood of the identity. In particular the second derivative at the identity is
strictly positive (modulo shift invariance) so it almost falls in the class of energies satisfying the
assumptions of Proposition 3.2.4 (up to a trivial shift from 0 to 1(R′)d). One minor issue is that
we restricted the passage from �nite range interaction U to generalized gradient interactions U
to cubes QR′ and GR′ and the interactions need to satisfy the lower bound (3.2.20). Since the
interaction term U only depends on the �eld in A its second derivative will never satisfy (3.2.20)
when A ( QR′ . The addition of another null Lagrangian, however, gives us an energy that has
a strictly positive Hessian at the identity.

Recall the de�nition (3.3.2) of the norm on (Rd)A and note that the assumption {0, 1}d ⊂ A
implies for ψ ∈ (Rd)A

|∇ψ(0)|2 ≤ 2

d∑
i=1

(|ψ(0)|2 + |ψ(ei)|2) ≤ 2d|ψ|2. (3.3.35)

Uniform convexity of E orthogonal to shifts and shift invariance imply that there is a constant
µ > 0 such that for ψ ∈ V⊥A

E(1A + ψ) ≥ E(1A) +DE(1A)(ψ) + µ|ψ|2 ≥ E(1A) +DE(1A)(ψ) +
µ

2d
|∇ψ(0)|2. (3.3.36)
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Since the �rst and the last expression are shift invariant we conclude that we have for all ψ ∈
(Rd)A

E(1A + ψ) ≥ E(1A) +DE(1A)(ψ) +
µ

2d
|∇ψ(0)|2. (3.3.37)

Hence, the growth of E is controlled from below by the gradient in one point. We now
introduce a null Lagrangian that allows us to redistribute the gradient lower bound to gain
coercivity on (Rd)QR′ .

Lemma 3.3.9. De�ne N0 : (Rd)QR′ → R by

N0(ψ) = −
d∑
i=1

|∇iψ(0)− ei|2 +
1

R′(R′ + 1)d−1

d∑
i=1

∑
y,y+ei∈QR′

|∇iψ(y)− ei|2. (3.3.38)

Then the function N0 is a null Lagrangian and N0(ψ) = 0 if ψ is the restriction of an a�ne map.

Proof. This is similar to Example 3.3.4. Note that #{y ∈ QR′ : y + ei ∈ QR′} = R′(R′ + 1)d−1.
Thus

N0(ψ) =
1

R′(R′ + 1)d−1

d∑
i=1

∑
y,y+ei∈QR′

Ny,i(ψ) (3.3.39)

where Ny,i(ψ) = |∇iψ(y)− ei|2 − |∇iψ(0)− ei|2. (3.3.40)

Thus it su�ces to show that for all y ∈ QR′ with y + ei ∈ QR′ the map Ny,i : (Rd)QR′ → R is a
null Lagrangian. We use the criterion (3.3.17). Assume that ϕ̃ = ϕ in Zd \ Λ. Take Λ′ so large
that ΛQR′ ⊂ Λ′ and

(
(y + Λ′)∆Λ′

)
∩ ΛQR′ = ∅. Here ∆ denotes the symmetric set di�erence.

Since ∑
x∈Λ′

Ny,i(ϕτx(QR′ )
) =

∑
x∈(y+Λ′)\Λ

|∇iϕ(x)− ei|2 −
∑

x∈Λ\(y+Λ′)

|∇iϕ(x)− ei|2 (3.3.41)

and
(
(y + Λ′)∆Λ′

)
∩ ΛQR′ = ∅ we conclude that ϕτx(QR′ )

= ϕ̃τx(QR′ )
for all x ∈

(
(y + Λ′)∆Λ′

)
and in particular ∇iϕ(x) = ∇iϕ̃(x). Thus

∑
x∈Λ′ Ny,i(ϕτx(QR′ )

) =
∑

x∈Λ′ Ny,i(ϕ̃τx(QR′ )
). This

shows that Ny,i is a null Lagrangian.
Finally, if ψ is the restriction of an a�ne map then ∇iψ(y) = ∇iψ(0) and hence N0(ψ) =

0.

We de�ne the energies Ũ, Ñ, Ẽ : (Rd)QR′ → R for ψ ∈ (Rd)QR′ by

Ũ(ψ) = U(ψ|A), (3.3.42)

Ñ(ψ) = N(ψ|A) +
µ

2d
N0(ψ), (3.3.43)

Ẽ(ψ) = E(ψ|A) +
µ

2d
N0(ψ). (3.3.44)

Those functionals inherit the properties Ũ+Ñ ≥ Ẽ with equality in a neighbourhood of rotations
(restrictions of rotations are still rotations) and from (3.3.37) we infer that for any ψ ∈ (Rd)QR′

Ẽ(1QR′ + ψ) = E(1A + ψ|A) +
µ

2d

1

R′(R′ + 1)d−1

d∑
i=1

∑
x,x+ei∈QR′

|∇iψ(x)|2

≥ Ẽ(1QR′ ) +DẼ(1QR′ )(ψ) +
µ

2d

1

R′(R′ + 1)d−1

d∑
i=1

∑
x,x+ei∈QR′

|∇iψ(x)|2
(3.3.45)
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where we used the DN0(1QR′ ) = 0 and N0(1QR′ ) = 0.
Recalling Lemma 3.2.1, we use the isomorphism Π : GR′ → V⊥QR′ to de�ne the functions

U,E,N : GR′ → R by

U(z) = Ũ(Πz + 1QR′ ), E(z) = Ẽ(Πz + 1QR′ ), and N(z) = Ñ(Πz + 1QR′ ). (3.3.46)

Because of (3.3.31) and (3.3.32) they satisfy

U(z) + N(z) ≥ E(z), (3.3.47)

U(z) + N(z) = E(z) for z close to 0. (3.3.48)

Moreover, their de�nition implies that

U((1+ F + ϕ)τx(A)) = U(F +Dϕ(x)). (3.3.49)

Hence the Hamiltonian for the discrete elasticity model de�ned in (3.3.6) can be written as

H1+F
N (ϕ) =

∑
x∈TN

U(F +Dϕ(x)). (3.3.50)

The functionals U, N, and E are di�erentiable since they are a composition of a di�erentiable
and a linear map. Moreover (3.3.47), (3.3.48), and the bound (3.3.45) imply that there is ω1 > 0
such that for all z ∈ GR′

U(z) + N(z) ≥ E(z) ≥ E(0) +DE(0)(z) + ω1|z|2

= (U + N)(0) +D(U + N)(0)z + ω1|z|2.
(3.3.51)

where we used that
∑d

i=1

∑
y,y+ei∈QR′

|∇iψ(y)|2 de�nes a norm on V⊥QR′ ' GR′ and all norms on
a �nite dimensional space are equivalent.

We now show that under the assumptions (H1) to (H5) the potential U + N satis�es the
conditions in Proposition 3.2.4 and that the generalised gradient model with the potential U+N

is equivalent to the discrete elasticity model with the potential U (see Lemma 3.3.10 below).
Once this is done we can easily deduce our main result for discrete elasticity, Theorem 3.3.1 and
Theorem 3.3.2, from the corresponding results for generalized gradient models, Theorem 3.2.3
and Theorem 3.2.7.

As in (3.2.19) and (3.2.22), we de�ne the quadratic part

QU+N(z) := D2(U + N)(0)(z, z) (3.3.52)

and the function

(U + N)(z, F ) = (U + N)(z + F )− (U + N)(F )−D(U + N)(F )(z)− QU+N(z)

2
. (3.3.53)

Note that (3.3.51) implies

QU+N(z) ≥ 2ω1|z|2 (3.3.54)

Since U and N hence U and N are C2 we also have

QU+N(z) ≤ 1

ω2
|z|2 (3.3.55)
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for some ω2 > 0.
Lemma 3.3.6 implies that

LNdN(F ) =
∑
x∈TN

N(Dϕ(x) + F ). (3.3.56)

From (3.3.56) and (3.3.53), we �nd

H1+F
N (ϕ) = −LNdN(F ) +

∑
x∈TN

(U + N)(Dϕ(x) + F )

= LNdU(F ) +
∑
x∈TN

(U + N)(Dϕ(x), F ) +
∑
x∈TN

(
D(U + N)(F )(Dϕ(x)) +

QU+N(Dϕ(x))

2

)
= LNdU(F ) +

∑
x∈TN

(
(U + N)(Dϕ(x), F ) +

QU+N(Dϕ(x))

2

)
.

(3.3.57)

In the last equality we used the equation
∑

x∈TN Dϕ(x) = 0. As a result, the partition function
for the discrete elasticity model de�ned in (3.2.10) can be expressed as

ZUN,β(1 + F, fN )) = e−βL
NdU(F )Z

QU+N

N,β Z
U+N
N,β

(
F,

fN√
β

)
(3.3.58)

where

ZU+N
N,β (F, f) :=

ˆ
XN

e(f,ϕ)
∑
X⊂TN

∏
x∈X

KF,β,U+N(Dϕ(x))µ(dϕ), (3.3.59)

with KF,β,U+N de�ned by replacing U by U+N and U by U + N in (3.2.27), (3.2.22) and (3.2.19).
The calculations so far can be summarised as follows.

Lemma 3.3.10. Let ZUN,β(F, 0) denote partition function of the discrete elasticity model with

interaction U and deformation F , let γF,UN,β denote the corresponding �nite volume Gibbs measure,
let

WU
N,β(F ) = −

lnZN,β(F, 0)

βLNd
, (3.3.60)

and let

WU
N,β(F ) = β(WU

N,β(F )− U(F )) +
lnZQUN,β
LdN

(3.3.61)

be the quantity de�ned in (3.3.9). Let ZU+N
N,β (F, 0) denote the partition function of the generalised

gradient model with interaction U+N and deformation F , let γF,U+N
N,β be the corresponding Gibbs

measure and let

WU+N
N,β (F ) = −

lnZU+N
N,β (F, 0)

LdN
. (3.3.62)

be the quantity in (3.2.30) Then

ZUN,β(1 + F, 0) = eβL
dNN(F )ZU+N

N,β (F, 0), (3.3.63)

WU
N,β(1 + F ) =WU+N

N,β (F ), (3.3.64)

E
γ1+F,U
N,β

e(f,ϕ) = E
γF,U+N
N,β

e(f,ϕ). (3.3.65)
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Proof. Equation (3.2.28), applied to U + N instead of U gives

ZU+N
N,β (F, f) = e−βL

Nd(U(F )+N(F ))Z
QU+N

N,β Z
U+N
N,β (F,

f√
β

)

=
(3.3.58)

e−βL
NdN(F )ZUN,β(1+ F, f)

(3.3.66)

Taking f = 0 we get (3.3.63). Dividing both sides by the corresponding expression for f = 0 we
get (3.3.65). It follows from (3.3.58) that

LdNWU+N
N,β (F ) = − lnZUN,β(1 + F, 0)− βLNdU(F ) + lnZ

QU+N

N,β

= LdNWU
N,β(1 + F ) + lnZ

QU+N

N,β − lnZQU

N,β

(3.3.67)

Thus (3.3.64) follows if we can show that

Z
QU+N

N,β = ZQU

N,β. (3.3.68)

To prove (3.3.68) note that Lemma 3.3.6 implies that∑
x∈TN

N(sDϕ(x) + tDϕ(x)) =
∑
x∈TN

N(0) = 0. (3.3.69)

Taking the derivative with respect to s and t at s = t = 0 we get
∑

x∈TN QN(Dϕ(x)) = 0. This
yields (3.3.68).

We now prove that the potential U + N satis�es the conditions in Proposition 3.2.4 so that
we can apply the results from the previous section.

Lemma 3.3.11. Under the hypotheses (H1), (H2), (H3), (H4), and (H5) the function U + N

satis�es the assumptions of Proposition 3.2.4, i.e.,

U + N ∈ Cr0+r1(GR′), (3.3.70)

ω0|z|2 ≤ QU+N(z) ≤ ω−1
0 |z|

2 (3.3.71)

U(z) + N(z)−
(
U(0)−N(0)

)
−D

(
U(0) + N(0)

)
(z) ≥ ω1|z|2, and (3.3.72)

lim
t→∞

t−2 ln Ψ(t) = 0 where Ψ(t) := sup
|z|≤t

∑
3≤|α|≤r0+r1

1

α!
|∂α
(
U(z) + N(z)

)
|. (3.3.73)

with ω0 = min(2ω1, ω2), where ω1 and ω2 are the constants in (3.3.51) and (3.3.55), respectively.

Proof. The �rst condition is a consequence of the smoothness of Q, N, and U which follows by the
chain rule from the smoothness of U postulated in (H5) and the smoothness of the polynomial
N . The second condition follows from (3.3.54) and (3.3.55). The third condition follows from
(3.3.51). The last condition follows from the fact that the U-term is controlled by (H5) and the
chain rule and that N is a polynomial.

Finally we show how to deduce the results for the discrete elasticity model from those for the
generalised gradient models.

Proof of Theorem 3.3.1. By Lemma 3.3.11 the potential U + N satis�es the assumption of Pro-
position 3.2.4 (with ω := ω0

8 ). Thus Theorem 3.3.1 follows from Theorem 3.2.3 and (3.3.64).
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Proof of Theorem 3.3.2. By Lemma 3.3.11 the potential U + N satis�es the assumption of Pro-
position 3.2.4 (with ω := ω0

8 ) and thus Theorem 3.2.9 can be applied to the generalised gradient
model. Together with (3.3.65) this gives

lim
`→∞

Eγ1+F
N`,β

e(fN` ,ϕ) = e
1

2β
(f,CTd

f) (3.3.74)

where CTd is the inverse of the operator ATd given by

(ATdu)s = −
d∑
t=1

d∑
i,j=1

(QU+N − q)i,j;s,t∂i∂jut. (3.3.75)

In particular the operator ATd depends only on the action of QU+N on the subspace G∇R′ . Now
each z ∈ G∇R′ is of the form z = F = DF where F : Rd → Rd is linear. By the de�nition of U and
N, see (3.3.42)�(3.3.44) and (3.3.46), we have

(U + N)(F ) = (U + N)(1A + FA) +
µ

2d
N0(1QR′ + FQR′ ) = (U + N)(1A + FA) (3.3.76)

since N0 vanishes on linear maps. Thus

QU+N(F ) = D2(U + N)(1)(FA, FA) = Q∇U+N(F ) (3.3.77)

where we used the de�nition (3.3.12) ofQ∇U+N for the second identity. It follows that the operator
ATd can be written as

(ATdu)s = −
d∑
t=1

d∑
i,j=1

(Q∇U+N − q)i,j;s,t∂i∂jut. (3.3.78)

Now Q∇U+N = Q∇U + Q∇N and it only remains to show that Q∇N generates the zero operator.
Multiplying by a test function g ∈ C∞(Td,Rd), denoting the scalar product on Rd by ·, recalling
that N(FA) = α detF and using that det is a null Lagrangian on maps de�ned on Td, i.e.´

Td(det(1 +∇h)− det1) dx = 0 for all h ∈ C∞(Td,Rd), we get

−
ˆ

Td
g ·

d∑
i,j=1

(Q∇N )i,j∂i∂jf dx =

ˆ
Td

d∑
i,j=1

∂ig · (Q∇N )ij∂jf (3.3.79)

=

ˆ
Td
αD2 det(1)(∇f,∇g) =

d

ds

d

dt |s=t=0

ˆ
Td
α det(1 + s∇f + t∇g) = 0. (3.3.80)

Thus in (3.3.78) we may replace Q∇U+N by Q∇U and this �nishes the proof of Theorem 3.3.2.

Remark 3.3.12. Completely independent from the analysis of discrete elasticity the null Lag-
rangian N0 introduced in Lemma 3.3.9 can be used to gain coercivity in generalized gradient
models with Rm valued �elds. Indeed, the same arguments as used in this section show that the
requirement in (3.2.20) can be replaced by (3.2.21).



Chapter 4

Renormalisation group analysis of

gradient models

The results of this chapter are joint work in progress with Stefan Adams, Roman
Kotecký, and Stefan Müller. A sketch how the loss of regularity can be avoided based
on a new �nite range decomposition (see Chapter 2) already appeared in the author's
master's thesis [55]. More precisely, Lemma 4.6.4 is similar to Lemma 6.6 in [55].

4.1 Introduction

This chapter contains our renormalisation group analysis of gradient models based on the
approach by Bauerschmidt, Brydges, and Slade [44, 45, 20, 46, 47] and extending the paper [4]
by Adams, Kotecký, and Müller. For a general background on the approach and references to
the literature we refer to Chapter 1. Recall that the goal of the renormalisation analysis is to
control perturbations of Gaussian integrals of the form

ZN (K,Q, f) =

ˆ
XN

e(f,ϕ)
∑
X⊂TN

∏
x∈X
K(Dϕ(x))µQ(dϕ). (4.1.1)

for small perturbations K. In this chapter we control this expression using a careful multiscale
analysis obtaining the representation formula in Theorem 4.9.1 as our main result. We will
outline the general strategy in the next section. Here we just recall very brie�y the di�erences
to the earlier works and explain the outline of this chapter.

The main di�erence to the analysis of the ϕ4-theory are, on the one hand, that only �rst
order perturbation theory is necessary and we obtain a dynamical system with a hyperbolic �xed
point. On the other hand, we have less symmetry and therefore more relevant terms. Moreover,
the large �eld problem, i.e., the control of the perturbations K for large �elds ϕ is more subtle
in our setting.

We extend the results by Adams, Kotecky, and Müller in several directions. We consider
general �nite range interactions for vector valued �elds. Since the method is rather robust in
this respect this requires mostly notational changes. We use a new �nite range decomposition
as constructed in Chapter 2 that avoids a loss of regularity thus simplifying several arguments
concerning the smoothness of the renormalisation maps (see Section 4.7). We treat norms in
a more systematic way which allows us to consider all dimensions d ≥ 2 instead of d ∈ {2, 3}
(see Section 4.6 and Appendix 4.A). The main improvement is the construction of new weight
functions that allow us to handle potentials with much weaker growth assumptions, in particular
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we can deal with realistic interactions for discrete elasticity as discussed in Chapter 3. This
provides a new solution of the large �eld problem in our setting. The construction of the weights
is mostly independent of the remaining parts of this chapter and can be found in Section 4.5.
Finally, there are several smaller changes regarding, e.g., the combinatorics.

Let us now outline the structure of this chapter. The main result we prove is the representa-
tion formula in Theorem 4.9.1. From this result it is rather straightforward to conclude the main
results of the previous Chapter, Theorem 3.2.2 and Theorem 3.2.7. Since the proof is rather
involved we provide the reader with an overview of the general strategy and the main steps of
the proof in the next Section 4.2. Moreover, in Section 4.3, we describe the most important
parameters used in the argument in order to facilitate the understanding of the interaction of
the various parts of the following arguments and as a future reference for the various restrictions
on their choice. In Section 4.4 we discuss the general setup of the multiscale analysis. Then, in
Section 4.5 we construct the new weight functions. Section 4.6 contains important submultiplic-
ativity estimates for our norms and the de�nition of the projection on the relevant directions
which corresponds to the operator loc in the language of Bauerschmidt, Brydges, and Slade. The
following two Sections 4.7 and 4.8 contain the proofs of the key results that the renormalisation
map is smooth and has a hyperbolic �xed point. Then Section 4.9 contains the proof of the
main results based on the representation theorem. The latter theorem is proved in 4.10 using a
suitable stable manifold theorem.

4.2 Explanation of the method

In this section we outline our general approach. It follows closely the programme for the
rigorous renormalisation group analysis of functional integrals which has been systematically
developed by Brydges, Slade and coworkers over the last decades, see [42, 48, 24] for surveys and
additional references to earlier and related work.

4.2.1 Set-up

We focus on an outline of the strategy to prove Theorem 3.2.2, the proof of Theorem 3.2.7 is
very similar. We want to study the integral

Z :=

ˆ
XN

∑
X⊂Λ

K(X,ϕ)µ(0)(dϕ) (4.2.1)

where

K(X,ϕ) =
∏
x∈X
K(Dϕ(x)) (4.2.2)

and µ(0) is the Gaussian measure given by

µ(0)(dϕ) =
1

Z(0)
e
− 1

2

∑
x∈ΛN

Q(Dϕ(x))
λ(dϕ). (4.2.3)

It turns out that it is convenient to embed this problem into a more general family of problems
of the form

Z(H0,K0, q) :=

ˆ
XN

(e−H0 ◦K0)(ΛN , ϕ)µ(q)(dϕ). (4.2.4)
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Here q is a small symmetric md×md matrix and µ(q) is the Gaussian measure given by

µ(q)(dϕ) =
1

Z(q)
e
− 1

2

∑
x∈ΛN

Q(Dϕ(x))−(q∇ϕ(x),∇p(x))
λ(dϕ). (4.2.5)

The circ product ◦ of maps F,G de�ned the subsets of ΛN is given by

F ◦G(X) =
∑
Y⊂X

F (Y )G(X \ Y ) (4.2.6)

for X ⊂ ΛN . The sum includes the empty set and we set F (∅) = G(∅) = 1. The de�nition
of the circ product is motivated by the following property. If F and G factor, i.e. if F (X) =∏
x∈X F ({x}) and G(X) =

∏
x∈X G({x}) then

F ◦G(X) =
∏
x∈X

(F +G)({x}). (4.2.7)

The term H0 plays a special role which will be further discussed below. It only contains so
called relevant terms, namely constants and certain linear and quadratic expressions in ϕ. More
speci�cally we assume that

H0(X,ϕ) =
∑
x∈X

H0({x}, ϕ) (4.2.8)

H0({x}, p) =a∅ +
∑

1≤|α|≤bd/2c+1

m∑
i=1

ai,α∇αϕi(x) +
1

2
(a∇ϕ(x),∇ϕ(x)) (4.2.9)

where a is symmetric md×md matrix.
The original problem corresponds to the choices q = 0, H0(X,ϕ) = 0 and K0(X,ϕ) =∏

x∈X K(Dϕ(x)).

4.2.2 Finite range decomposition

The �rst idea is to replace the integration against the Gaussian measure µ(q), by a sequence
of integration against Gaussian measures µ(q)

k , k = 1, . . . N + 1 such that the measure µ(q)
k

essentially detects the behaviour of the �elds ϕ on the spatial scales between Lk−1 and Lk.
More precisely, we express the translation-invariant covariance operator C(q) of the Gaussian

measure µ(q) as a sum of translation-invariant covariance operators with �nite range, i.e.,

C(q) =

N+1∑
k=1

C
(q)
k , and the corresponding kernels satisfy C(q)

k = −Ck for |x|∞ ≥
Lk

2
.

(4.2.10)

Moreover the kernel C(q)
k behaves like the Green's function of the discrete Laplace operator on

scale Lk−1, i.e., ∣∣∣∇αC(q)
k (x)

∣∣∣ ≤ {CαL−(k−1)(d−2+|α|) for d+ |α| > 2

Cα ln(L)L−(k−1)(d−2+|α|) for d+ |α| = 2.
(4.2.11)

Then µ(q) = µ
(q)
N+1 ∗ . . . ∗ µ

(q)
1 and thus the quantity Z(H0,K0, q) can be expressed as an N + 1

fold integral. Alternatively we can de�ne the convolution operator R(q)
k by

(R
(q)
k F )(ψ) =

ˆ
XN

F (ψ + ϕ)µ
(q)
k (dϕ). (4.2.12)



88 Renormalisation group analysis of gradient models

Then the integral we are interested in can be written as

Z(H0,K0, q) =
(
R

(q)
N+1R

(q)
N . . .R

(q)
1 (e−H0 ◦K0)

)
(ΛN , 0). (4.2.13)

4.2.3 The renormalisation map

In view of (4.2.13) the key idea is to de�ne a map T k : (Hk,Kk, q) 7→ (Hk+1,Kk+1) such
that

e−Hk+1 ◦Kk+1(ΛN ) = R
(q)
k+1(e−Hk ◦Kk(ΛN )). (4.2.14)

Then

Z(H0,K0, q) =
(
R

(q)
N+1(e−HN ◦KN )

)
(ΛN , 0) =

ˆ
XN

(e−HN ◦KN )(ΛN , ϕ)µ
(q)
N+1(dϕ). (4.2.15)

Of course the property (4.2.14) does not determine T k uniquely. Indeed, for any H̃ such that
H̃ satis�es (4.2.8) we can write using (4.2.7)

e−H ◦K(X) = (e−H̃ + e−H − e−H̃) ◦K(X) =
(
e−H̃ ◦ (e−H − e−H̃) ◦K

)
(X) = e−H̃ ◦ K̃(X)

(4.2.16)

where K̃ = (e−H − e−H̃) ◦K.
The guiding principle for the de�nition of T k is that we want T k(0, 0, q) = (0, 0) and that

the derivative of T k at the origin is contracting in Kk and expanding in Hk. This will allow us to
apply the stable manifold theorem to show that the term on the right hand side of (4.2.15) is 1
up to an exponentially small correction provided that we chose H0 suitably in dependence of K0,
see the next subsection. Indeed, the special form of relevant Hamiltonians given in (4.2.9) stems
from the fact that exactly monomials of this form do not lead to a contraction under application
of R(q) if we equip the space of functionals with natural scale dependent norms. See the text
after (4.4.42) for further discussion on relevant vs. irrelevant monomials. The de�nition of the
map T k thus involves three key steps

� Integration against µ(q)
k+1, i.e., application of R(q)

k+1

� Extraction of the relevant terms, see (4.4.66) where R′ = R
(q)
k+1

� Coarse-graining to maps de�ned on disjoint blocks of size Lk+1 (k + 1-blocks) and their
union (k+1-polymers) rather than single points and subsets of ΛN , see (4.4.65) and (4.4.67)

The motivation for the coarse graining is that a �eld ϕ which is typical under the next-scale
measure µ(q)

k+2 varies only slowly on scale Lk+1. The circ product is adjusted to the coarse
graining: for two maps F,G on k-polymers the circ product is de�ned as

F ◦G(X) =
∑

Y k-polymer,Y⊂X
F (Y )G(X \ Y ). (4.2.17)

In particular for k = N there are only two polymers, the whole torus ΛN and the empty set. Thus
the right hand side of (4.2.15) simpli�es further since e−HN ◦KN (ΛN ) = e−HN (ΛN ) +KN (ΛN ).
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The key results about the maps T k are contained in Theorems 4.4.7 and 4.4.8 below: they
are smooth in a small neighbourhood (uniformly in k and N) and the derivatives at the origin
are given by

DT k(0)

(
Ḣ

K̇

)
=

(
Ak Bk

0 Ck

)(
Ḣ

K̇

)
(4.2.18)

where
‖A−1

k ‖ < c ≤ 1, ‖Ck‖ < c ≤ 1. (4.2.19)

These estimate give a precise formulation of the idea that the �ow is contracting in theK variable
and expanding in the H variable.

4.2.4 Application of the stable manifold theorem and �ne tuning

The uniform smoothness of the maps T k and the contraction estimates (4.2.19) allow us
to apply a discrete version of the stable manifold theorem. This guarantees that there exists a
smooth function Ĥ0 such that for each su�ciently smallK0 the �ow starting with (Ĥ0(K0, q),K0)
satis�es HN = 0 and ‖KN‖ ≤ CηN for a suitable η < 1. This is described in full detail in
Section 4.10 below (for a slightly modi�ed situation).

The basic idea is very simple. One considers the vector Z = (H0, . . . ,HN1 ,K1, . . .KN ) and
a weighted norm ‖Z‖ = max(max0≤k≤N−1 η

−k‖Hk‖,max1≤k≤N η
−k‖Kk‖). The space of vectors

with �nite norm is denoted by Z. Then one reformulates the conditions that (Hk+1,Kk+1) =
T k(Hk,Kk, q) and HN = 0 as a �xed point condition. More precisely one de�nes a map T̃ on Z
which has K0 and q as an additional parameters such every Z which satis�es T̃ (q,K0, Z) = Z
also satis�es (Hk+1,Kk+1) = T k(Hk,Kk, q) for k ≤ N − 2 and TN−1(Hk−1,Kk−1) = (0,KN ).

The contraction estimates (4.2.19) will imply that that map T̃ (q,K0, ·) does indeed have a
�xed point Z = Ẑ(q,K0) for every small K0. Then the map Ĥ0 is obtained by taking the H0

component of Ẑ. Thus we get for each small K0

Z(Ĥ0(K0, q),K0, q) =

ˆ
XN

(1 +KN (ΛN , ϕ))µ
(q)
N+1(dϕ) (4.2.20)

where KN is exponentially small (and depends smoothly on K0 and q). If Ĥ0(K0, 0) = 0 holds
by chance we have solved our original problem. In general, there is, however, no reason why this
should be true.

In the �nal step we will thus use the freedom to tune the free parameter q so that the e�ects
of q in the Gaussian measure µ(q) and the e�ect of Ĥ0(K0, q) cancel exactly up to a constant
term which can be pulled out of the integral. Thus the �nal dependence our original partition
function Z(K) on K is encoded in this constant term, up to an exponentially small term which
comes from KN . This allows us to conclude easily.

The details of this �ne-tuning procedure are explained in Section 4.10. It is actually conveni-
ent to write the enlarged family of problems in a slightly di�erent way. Instead of working only
with q as the main free parameter we use a full relevant Hamiltonian (see (4.2.9)) as the free
parameter and identify q with the quadratic part a of the relevant Hamiltonian. Denoting the
relevant Hamiltonian by H and the quadratic part by q(H) we are thus lead to study the family
of problems

ˆ
XN

(
e−H0 ◦ K̂0(H,K)

)
(ΛN )µ(q(H))(dϕ) with K̂0(H,K) = e−HK, (4.2.21)
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see Section 4.10. We then show as above that there exists a function Ĥ0 such that the choice
H0 = Ĥ0(H,K) leads to HN = 0 and an exponentially small KN . In fact we can use exactly
the argument given above in connection with the observation that the map (H,K) → e−HK is
smooth. It is then easy to see that there exists a map Ĥ such that Ĥ0(Ĥ(K),K) = Ĥ(K) and
that the integral for H = Ĥ(K) and H0 = Ĥ0(H,K) agrees with our original integral up to a
scalar factor.

4.2.5 A glimpse at the implementation of the strategy

Our main objects are relevant Hamiltonians Hk and perturbationsKk. The relevant Hamilto-
nians are described by the parameters a∅ for the constant part, aα,i for the linear part and a
for the quadratic part. The Kk are functions depending on a k-polymer X and the �eld ϕ. One
key ingredient is to design the RG maps T k so that at each step the relevant terms are correctly
extracted. This can already by guessed at the level of the linearised problem. Another key
ingredient is to design norms for Hk and Kk which allow us to prove uniform smoothness and
contraction estimates. The construction of such norms will be described in detail in Section 4.4.
Here we just mention three guiding principles

� The norms at scale k for the �elds ϕ should be such that a �eld which is 'typical' under
the measure µ(q)

k has norm of approximately order 1;

� For a �xed k polymer the norm on the functional ϕ 7→ K(X,ϕ) should be dual to the �eld
norm. For linear functionals it is clear what duality means. Homogeneous polynomials or
degree r can be viewed as linear functionals on the r-fold tensor product of the space of
�elds and there is a natural way to design norms which behave well under tensorisation
(see Appendix 4.A);

� Our starting perturbation factors, i.e. K0(X) =
∏
x∈X K0({x}). This suggests that for

small K the size of K(X) should decrease exponentially in the number of blocks in X. The
property that K factors is lost in the iteration. To keep the idea that the contribution from
large polymers is exponentially small, a weight A|X|k where |X|k is the number of k-blocks
in the polymer X is introduced in the de�nition of the norm of Kk.

Two further points turn out to be important. First, while the factorisation property is in
general lost, the �nite range condition (4.2.10) on the covariance in the �nite range decomposition
ensures that factorisation still holds between polymers that are separated by one block. Here
we use the fact that we work on �elds with zero average. Thus the the action of the kernel C(q)

k

on �elds by discrete convolution does not change if add a constant to the kernel. Hence the
condition condition C(q)

k = −Ck for |x|∞ ≥ Lk

2 is equivalent to assuming that C(q)
k is supported

in {x : |x|∞ < Lk

2 }.
This factorisation property for polymers that are separated by one block allows us to track

only Kk(X, ·) for connected polymers X. The functional for general polymers is then obtained
by multiplying over the connected components.

The second point is the so called large �eld problem. With exponential small probability very
large values of the �eld∇ϕ(x) may arise. Since a typical perturbation K(Dϕ(x)) = e−U(Dϕ(x))−1
contains also exponential terms care has to be taken that the integrals in each step are well-
de�ned. This problem is well known in rigorous renormalisation theory and handled by the
introduction of carefully chosen weights, or large-�eld regulators, in the norms of Kk. In Sec-
tion 4.5 we present a new construction of weights which leads to almost optimal weights.
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4.3 Choice of parameters

The precise implementation of the renormalisation construction involves a number of para-
meters which help to �ne tune the properties of the renormalisation map and to ensure the key
smoothness and contraction estimates in Theorems 4.4.7 and 4.4.8 from which the main results
Theorem 3.2.2 and 3.2.7 can be deduced.

The purpose of this subsection is to give an overview over these parameters and to explain
how they are chosen. Detailed descriptions are given in the following subsections. Here we focus
on a bird's eye view to emphasise the idea the parameters can be chosen in such a way that all
the restriction which arise in the following sections can be satis�ed simultaneously.

Actually most of the parameters can be chosen once and for all (in dependence on the dimen-
sion d of the model and the maximal order R0 of discrete derivatives in a coordinate direction).
We will refer to these as '�xed parameters' and we will not track how the various constants
depend on these parameters. A list of these �xed parameters is given in Subsection 4.3.2 below.
We �rst discuss the free parameters which we will adjust to obtain the desired smoothness and
contraction estimates.

4.3.1 The free parameters L, h, and A

There are three free parameters, namely

� L ∈ N: The size of a basic block

� h � 1: A scaling factor in the norm for the �elds; the �eld norm on level k involves a
term h−1

k with hk = 2kh, see (4.4.74) and (4.4.76). A �eld which is typical on scale k
(i.e., under the measure µk+1) has norm of order h−1

k . Since the norms on functionals are
de�ned by duality the standard Hamiltonian H(ϕ) =

∑
x∈B |∇ϕ|2 for a block B on scale

k has norm h2
k. In our earlier work [4] we used a scaling factor h which was independent

of k. The reason we now need scaling factors hk which grow su�ciently rapidly in k is
related to the new choice of nearly optimal weights (see Section 4.5). Among others, we
want to bound the �eld norm by the increase in the logarithm of the weights as we go
from scale k to k+1 (see (4.5.25)). This essential requires that

∑
k<N h

−2
k can be bounded

independent of N . A similar issue arises for the estimates (4.5.23) and (4.5.24). The choice
of exponentially growing scaling factors is mostly for convenience. We can not allow for
faster than exponential growth because factors of hk+1/hk appear in the proof of the change
of scale estimate in Lemma 4.6.1 and Lemma 4.6.9.

� A� 1: A parameter which penalises the contributions of functionals de�ned on long poly-
mers. The norm on functionals involves a supremum over all k-polymersX of A|X|‖K(X)‖k
where |X| denotes the number of k-blocks in X.

Our goal is to show that there exists a number L0 and functions L 7→ h0(L) and L 7→
A0(L) such that the renormalisation maps T k = T

(q)
k have good properties (in a suitable small

neighbourhood of 0 and for su�ciently small q) if

L ≥ L0, h ≥ h0(L), and A ≥ A0(L). (4.3.1)

In the following we �rst review the choice for the �xed parameters. Then we describe the
key steps in the proof and discuss which restrictions on the free parameters L, h, and A arise in
each step.
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4.3.2 Fixed parameters

The following parameters are �xed once and for all and dependence on them is usually not
indicated in the following

� d: Spatial dimension.

� m: Number of components of ϕ.

� R0: A nonzero integer which determines the maximal number of discrete (forward) deriv-
atives through the set {e1, . . . , ed} ⊂ I ⊂ {α ∈ Nd

0 \ {(0, . . . , 0)} : |α|∞ ≤ R0}.

� r0 ≥ 3: An integer which measures smoothness of the functionals in the �eld. Loosely
speaking, the restriction r0 ≥ 3 arises from the fact that third order terms are always
irrelevant, but quadratic terms are not. More precisely, the condition r0 ≥ 3 is crucial for
the two-norm estimate (4.6.2). This estimate in particular allows us to deduce the crucial
contraction estimate for C(q) from a contraction estimate for the action of the extraction
operator 1 − Π2 on Taylor polynomials at zero. See Lemma 4.6.9 and Lemma 4.8.3 in
connection with (4.8.2) for further details. We will take

r0 = 3. (4.3.2)

� r1 ≥ 2: An integer which measures smoothness with respect to external parameters (e.g.,
the deformation F )

� pΦ: Number of discrete derivatives in the de�nition of the �eld norm |φ|j,X . We need
pΦ ≥ bd/2c+ 2 to get the right decay in L in the Poincaré type estimate in Lemma 4.6.10
which is the main ingredient in the proof of the contraction estimate for 1 − Π2 (see
Lemma 4.6.9 and we will take

pΦ = bd/2c+ 2. (4.3.3)

� M : Number of discrete derivatives in the de�nition of the quadratic form MX
k in (4.5.2).

We need M ≥ pφ + bd/2c + 1 to be able to apply the discrete Sobolev embedding and to
get control of pΦ discrete derivatives in the supremum norm. We will take

M = pΦ + bd/2c+ 1 = 2bd/2c+ 3. (4.3.4)

� R: A geometric parameter which is used to de�ne a neighbourhood around blocks (see
(4.4.34)). It determines the allowed range of dependence of the functionals on the �rst

scale, e.g., K({x}, ϕ), H0({x}, ϕ), and M{x}
0 (see (4.2.2), (4.2.8), and (4.5.2)) may only

depend on ϕ�x+[−R,R]d . This implies that we need that R ≥ max(R0,M, pΦ) = max(R0,M)
and we will take

R = max(R0,M) = max(R0, 2bd/2c+ 3). (4.3.5)

� n: The number of discrete derivatives controlled in the �nite range decomposition (see
Theorem 4.4.1). We need n ≥ 2M to control the integral of the weights against the
Gaussian measures obtained by the �nite range decomposition (see Theorem 4.5.1x) and
its proof in Lemma 4.5.7) and we will take

n = 2M = 4bd/2c+ 6. (4.3.6)
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� ñ: A secondary parameter in the �nite range decomposition (see Theorem 4.4.1) which
relates to the decay of the derivative of the Fourier symbols with respect to the quadratic
form we decompose. We need ñ ≥ n+ bd/2c+ 1 to bound the derivative of the maps R(q)

k

with respect to q (see Theorem 4.4.2) and we will take

ñ = 2M = n+ bd/2c+ 1 = 5bd/2c+ 7. (4.3.7)

� ω0 > 0: A parameter which controls the coerciveness and boundedness of the quadratic
form Q. We require (see (3.2.40)

ω0|z|2 ≤ Q(z) ≤ ω−1
0 |z|

2 for all z ∈ G = (Rm)I . (4.3.8)

� ζ ∈ (0, 1): This parameter controls the exponential weight in the norm ‖ · ‖ζ which is
de�ned in (3.2.38) and measures the allowed growth of the perturbation K(z) as z →∞.

� ζ ∈ (0, 1
4): This parameter analogously controls the growth of the weights, see (4.5.10). To

make the norms of the perturbation K and the corresponding functional K consistent we
choose ζ = 1

4ζ, see (4.5.8) as well as (4.10.46), (4.10.26) and Lemma 4.10.3.

� η ∈ (0, 2
3 ]: This parameter controls the rate of convergence of ‖Hk‖ and ‖Kk‖. More

precisely it appears in the de�nition of the norm of the vector (H0, . . . ,HN−1,K1, . . .KN ).
Vectors with norm ≤ 1 satisfy ‖Hk‖ ≤ ηk and ‖Kk‖ ≤ ηk, see (4.10.2). For the purpose of
the current paper we could take η = 2

3 , but other applications require smaller values of η.

4.3.3 Choice of the free parameters in the key steps of the proof

The key technical results are the uniform smoothness and contraction estimates for the renor-
malisation maps T k (see Theorem 4.4.7 and Theorem 4.4.8). From those the assertions follow
by standard abstract results as outlined in Section 4.10 a discrete stable manifold theorem (The-
orem 4.10.1), a second �xed point theorem (Lemma 4.10.6) which implies a representation formula
for the partition function (Theorem 4.9.1). From this formula the desired results follow easily,
see Section 4.9.2 and Section 4.9.3.

The key steps in the proof of the smoothness and contraction estimates are:

� construction of a familiy of �nite range decompositions;

� de�nition of the renormalisation map and factorisation properties;

� construction of weights;

� submultiplicativity of the norms;

� estimates for the extraction map Π2 and for (1−Π2) (with change of scales);

� smoothness and uniform estimates on the derivatives of the renormalisation map (The-
orem 4.4.7);

� contraction estimates for the linearised operator (Theorem 4.4.8).

We now review the role of the free parameters in the key steps.
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Family of �nite range decompositions. In Theorem 4.4.1 we obtain a �nite range decom-
position for all quadratic forms with ω0/2 ≤ Q ≤ 2ω−1

0 . Dependence on of the estimates on
L is expressed explicitly and there is no restriction on L. The parameters h and A do not ap-
pear. A key property is that the convolution operators R(q)

k which correspond to the �nite range
composition for the quadratic Q(q)(z) = Q(z) − (qz∇, z∇) depend smoothly on q, with bounds
independent of N , see Theorem 4.4.2.

De�nition of the renormalisation map: locality, factorisation, geometric properties.

To make the combinatorics or coarse-graining and the properties of the �nite range decompostion
interact nicely we de�ne various neighbourhoods of a polymer and locality conditions on the
functionals ϕ 7→ K(X,ϕ), see Section 4.4.2.

Consistency of these de�nitions requires L ≥ 2d + R. The construction involves a map π
which assigns to a polymer X at scale k (a union of blocks of size Lk) a polymer π(X) at scale
k+ 1. In general X is not contained in π(X), but the condition L ≥ 2d +R guarantees that the
corresponding small scale neighbourhoods, de�ned in (4.4.34), satisfy X∗ ⊂ π(X)∗. To ensure
that the renormalisation map preserves the factorization property we need the stronger relation

L ≥ 2d+2 + 4R, (4.3.9)

see Proposition 4.4.6.

Weights. To deal with the large �eld problem we introduce families of weak weights wXk (ϕ) and
wk:k+1(ϕ) as well as strong weightsWX

k (ϕ) which depend on the �eld ϕ and a polymer X. These
weights need to satisfy certain natural supermultiplicativity properties and to be consistent with
application of the integration map Rqk+1. These properties are summarised in Theorem 4.5.1.
They hold provided that the following constraints are satis�ed

L ≥ 2d+3 + 16R, (4.3.10)

h ≥ Cδ−1/2(L), (4.3.11)

Here δ(L) is a parameter that appears in the construction of the weights, see (4.5.10) and (4.5.57).
It measures how much the weights can be perturbed using the termsMk de�ned in (4.5.4). The
free parameter A does not appear in the construction of the weights.

Submultiplicativity of the norms. The map T k can be written as composition of linear
maps, the harmless map H 7→ e−H for relevant Hamiltonians and a number of polynomial maps
which arise from the combinatorics of the circ product and the coarse-graining procedure. The
key di�culty is that the degree of the polynomials is not bounded independent of N . Hence an
important idea is to work with norms which are submultiplicative so that polynomials (and their
derivatives) can be easily estimated. The submultiplicativity of the relevant norms, de�ned in
(4.4.86)-(4.4.88), essentially follows from general facts about tensor product norms on (Taylor)
polynomials (see Appendix 4.A) and the supermultiplicativity of the weights. The details are
described in Section 4.6. The submultiplicativity estimates require only that the weights satisfy
the properties stated in Theorem 4.5.1. Thus the conditions (4.3.10) and (4.3.11) are su�cient
as discussed above. The parameter A does not appear.
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Estimates for Π2 and (1−Π2). A key step in the de�nition of the map T k is the extraction
of relevant terms. We need that this leads to a bounded map from Kk to Hk+1 and, more

importantly that due to the extraction of the relevant terms the linearisation C(q)
k of the map

Kk 7→ Kk+1 is a strong contraction.
As we will discuss below the main step is to analyse the extraction at the level of Taylor

polynomials at zero. This leads to the de�nition of the projection Π2 and the remainder map
1 − Π2, see Section 4.6.4. The key properties of these maps are stated in Lemma 4.6.7 and
Lemma 4.6.9. The L dependence is handled explicitly in these lemmas and L only needs to
satisfy a mild geometric condition: L ≥ 2d + R. The estimates only rely on the de�nition of
the �eld norms in (4.4.74) and the dependence on h (or hk = 2kh) cancels exactly. The free
parameter A does not appear.

Uniform smoothness estimates. The restrictions on L and h are of the form

L ≥ L0, h ≥ h0(L) (4.3.12)

and come from Theorem 4.5.1 through Lemma 4.6.3 (submultiplicativity of the norms) and
Lemma 4.6.4 (smoothness of the integration map).

The restrictions on A take the form

A ≥ A0(L) (4.3.13)

and arise from smoothness estimates for the polynomial maps, in particular P1. An explicit
choice of A0(L) is given in (4.7.91)

Otherwise the dependence of constants L, h and A is tracked explicitly in Section 4.7 and we
get explicit bound for the �nal neighbourhood Uρ,κ on which S is smooth. We can take κ as in
Theorem 4.5.1 and ρ can be taken of the form ρ = cA−2 where c is given explicitly in terms of
a constant in the �nite range decomposition and the bound for the map Π2, see Section 4.7.8.
The bounds for the derivatives do not depend on h.

Contraction estimates. The contraction estimates impose conditions on all three parameters.
To show that the contributions from single blocks are contracting we need L ≥ L0 in order
to exploit the good L-dependence of (1 − Π2). Here L0 depends on the constant AB from
Theorem 4.5.1 (this is the only non-geometric condition on L). An explicit choice is given in
(4.8.8). The parameter A is used to cancel the combinatorial explosion and can be chosen as
A ≥ A0 where A0 depends on AP from Theorem 4.5.1. An explicit choice of A0 can be found
in (4.8.9). Moreover, Lemma 4.8.6 imposes the minor additional condition (4.8.38) on A0. For
h we obtain the condition h ≥ h0 where h0 must satisfy the condition in Theorem 4.5.1 and, in
addition, h0 ≥

√
C2,0 (see (4.8.29)) where C2,0 is the constant in the estimate (4.4.13) for the

�nite range decomposition.

4.4 Description of the multiscale analysis

In this section we introduce the key elements of the multiscale analysis. We recall the results
on �nite range decomposition from Chapter 2 and we de�ne function spaces and norms. We
continue to work on the discrete torus TN = (Z/(LNZ))d.
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4.4.1 Finite range decompositions

Recall that G = (Rm)I where {e1, . . . , ed} ⊂ I ⊂ {α ∈ Nd
0 \ {0, . . . , 0} : |α|∞ ≤ R0} and the

extended gradient is the vector Dϕ(x) = (∇αϕ(x))α∈I ∈ G. For a positive de�nite quadratic
form Q on G the expression

e
− 1

2

∑
x∈TN

Q(Dϕ(x))

Z
λN (dϕ) (4.4.1)

de�nes a Gaussian measure on XN . In this section we recall the existence result of a �nite range
decomposition for the covariance of such Gaussian measures that we obtained in Chapter 2.
Using this decomposition we can rewrite our initial functional integral as a series of integrations.
For the convenience of the reader we also repeat some de�nitions that were already given in
Chapter 2.

We denote the generator of Q by Q : G → G and we get a corresponding elliptic �nite
di�erence operator A on XN

AQϕ =
∑
α,β∈G

(∇α)∗Qαβ∇βϕ. (4.4.2)

We use AQ to denote the covariance of the Gaussian measure generated by CQ = A−1
Q .

The operator AQ : XN → XN commutes with translations, hence its inverse CQ also com-
mutes with translations. Thus there exists a unique kernel CQ : TN → Rm×m that satis�es∑

x∈TN CQ(x) = 0 and

(CQϕ)(x) =
∑
y∈TN

CQ(x− y)ϕ(y). (4.4.3)

Recall that L ≥ 3 is odd. The dual torus is given by

T̂N =

{
−(LN − 1)π

LN
,−(LN − 3)π

LN
, . . . ,

(LN − 1)π

LN

}d
(4.4.4)

For p ∈ T̂N , we de�ne the functions fp : TN → C by fp(x) = ei〈p,x〉. Then the Fourier
transform ψ̂ : T̂N → C of a function ψ : TN → C is de�ned by

ψ̂(p) =
∑
x∈TN

fp(−x)ψ(x). (4.4.5)

For vector and matrix valued functions the Fourier transform is de�ned component-wise. In
particular, the Fourier transform diagonalises translation invariant operators

ĈQϕ(p) = ĈQ(p)ϕ̂(p). (4.4.6)

We will also use the Plancherel identity

(ϕ,ψ)TN =
1

LNd

∑
p∈T̂N

ϕ̂(p)ψ̂(p). (4.4.7)

The discrete derivatives satisfy

∇̂ϕ(p) = q(p)ϕ̂(p) (4.4.8)
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with qj(p) = eipj −1 for 1 ≤ j ≤ d. For p ∈ T̂N we have |p|2 ≤ |q(p)| ≤ |p|. The Fourier transform
of the kernel AQ of the operator AQ is therefore given by

ÂQ(p) =
∑

α,β∈M
q(p)αQαβq(p)

β. (4.4.9)

and ĈQ(p) =
(
ÂQ(p)

)−1
.

We consider the set of all quadratic forms Q that satisfy,

ω0|z∇|2 ≤ Q(z) ≤ 1

ω 0
|z|2 (4.4.10)

for some constant ω0 ∈ (0, 1) which is a slightly weaker condition than (3.2.40). Note that (4.4.9)
then implies that there exists a constant ω such that

ω|p|2 ≤ ÂQ(p) ≤ 1

ω
|p|2,

ω

|p|2
≤ ĈQ(p) ≤ 1

ω|p|2
,

(4.4.11)

where ω only depends on ω0, R0, and d. Let us also restate the main results from Chapter 2.

Theorem 4.4.1 (Theorem 2.2.5). Fix ω0 > 0. Consider the family of symmetric, positive
operators Q : G → G corresponding to quadratic forms Q that satisfy (4.4.10) with ω0. Let L > 3
be odd, N ≥ 1 as before and let ñ > n be two integers. Then there exists a family of �nite range
decomposition CQ,k, k = 1, 2, . . . , N + 1, of the operator CQ such that

CQ =

N+1∑
k=1

CQ,k, with

CQ,k(x) = −Ck for |x|∞ ≥
Lk

2
,

(4.4.12)

where Ck ≥ 0 is a constant, positive semi-de�nite matrix that is independent of Q. The family
CQ,k satis�es the following bounds where all constants may depend on R, d, m, ω0, n, and ñ.
The α-th discrete derivative for all α with |α| ≤ n is bounded by

sup
|Q̇|≤1

∣∣∣∇αD`
QCQ,k(x)(Q̇, . . . , Q̇)

∣∣∣ ≤ {Cα,`L−(k−1)(d−2+|α|) for d+ |α| > 2

Cα,` ln(L)L−(k−1)(d−2+|α|) for d+ |α| = 2.
(4.4.13)

Further, for kernels in Fourier space we have the following lower bounds with a constant c > 0,

ĈQ,k(p) ≥

{
cL−2(d+ñ)−1L2jL(k−j)(−d+1−n) for L−j−1 < |p| ≤ L−j and j < k

cL−2(d+ñ)−1L2k for |p| ≤ L−k−1,
(4.4.14)

and similar upper bounds with a constant C,

∣∣∣ĈQ,k(p)∣∣∣ ≤
{
CL2(d+ñ)+1L2jL(k−j)(−d+1−n) for L−j−1 < |p| ≤ L−j and j < k

CL2k for |p| ≤ L−k−1.
(4.4.15)
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For the derivatives of the kernels with |Q̇| ≤ 1 and ` ≥ 1 we �nally have the following stronger
bounds∣∣∣∣ d`

ds`
ĈQ+sQ̇,k(p)

∣∣∣∣ ≤
{
C`L

(d+ñ)+1L2jL(k−j)(−d+1−ñ) for L−j−1 < |p| ≤ L−j and j < k,

C`L
2k for |p| ≤ L−k−1.

(4.4.16)

The lower and upper bound can be combined to give, for ` ≥ 1 and Q, Q̃ satisfying 3.2.20∣∣∣∣ d`

ds`
ĈQ+sQ̇,k(p)

∣∣∣∣ · ∣∣∣ĈQ̃,k(p)−1
∣∣∣ ≤ {K`L

4(d+ñ)+2L(k−j)(n−ñ) for L−j−1 < |p| ≤ L−j and j < k,

K`L
2(d+ñ)+1 for |p| ≤ L−k−1,

(4.4.17)

where the constants K` do not depend on N or k.

Moreover we recall Theorem 2.4.5 that states that expectations with respect to µ
C
Q
k+1

are

di�erentiable in Q. This will be a key ingredient in the proof of the smoothness of our renorm-
alisation map.

Theorem 4.4.2 (Theorem 2.4.5). Let CQ,k+1 a �nite range decomposition as in Theorem 4.4.1
with ñ−n > d/2 and X ⊂ TN be a subset with diameter D = diam∞(X) ≥ Lk. Let F : VN → R
be a functional that is measurable with respect to the σ-algebra generated by {ϕ(x)|x ∈ X}, i.e.,
F depends only on the values of the �eld ϕ in X. Then for ` ≥ 1 and p > 1 the following bound
holds∣∣∣∣ d`

dt`

ˆ
XN

F (ϕ)µQ+tQ1,k+1(dϕ)
∣∣
t=0

∣∣∣∣ ≤ C`,p(L)(DL−k)
d`
2 |Q1|

` ‖F‖Lp(XN ,µQ,k+1). (4.4.18)

The constant depends in addition on K` from (4.4.17) and therefore on ω0, d, m, n, ñ, and R0.

We already explained in Section 4.2 that in order to prove Theorem 3.2.3 it is not su�cient
to decompose the Gaussian measure generated by Q but we have to consider small perturbations
of this quadratic form. However, it is su�cient to consider only perturbations of the gradient-
gradient term of the quadratic form. They are parametrized by symmetric maps q : Rd×m →
Rd×m and we denote with |q| its operator norm with respect to the standard scalar product on
Rd×m. We consider the family of quadratic forms Q(q) given by

Q(q)(z) = Q(z)−z∇ · qz∇ (4.4.19)

and the corresponding family of operators

A(q) =
∑
α,β∈G

m∑
i,j=1

(∇α)∗Q(α,i),(β,j)∇β−
∑

|α|=|β|=1

m∑
i,j=1

q(α,i),(β,j)(∇(α,i))∗∇(β,j) (4.4.20)

where ∇(α,i)ϕ(x) = ∇αϕi(x) and Q denotes the generator of Q. The partition function of the
Gaussian measure generated by A(q) will be denoted by

Z(q) =

ˆ
XN

e−
1
2

(ϕ,A(q)ϕ) dϕ. (4.4.21)

In the following we will always assume that q ∈ Bκ = Bκ(0) := {q ∈ R(d×m)×(d×m))
sym : |q| ≤ κ}

for some κ with κ ≤ ω0
2 . Later we will impose additional conditions on κ.
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Note that the family Q(q) satis�es the condition (4.4.10) with ω0 = ω0/2 for q ∈ Bκ.
To obtain our main results we �x a �nite range decomposition as in Theorem 4.4.1 with

parameters ω0 = ω0/2 and

n = 2M = 4

⌊
d

2

⌋
+ 6, ñ = n+

⌊
d

2

⌋
+ 1 = 5

⌊
d

2

⌋
+ 7. (4.4.22)

The choice is related to the choice of the norms and a Sobolev embedding as we will see later.
In particular we obtain a �nite range decomposition C

(q)
k with kernels C(q)

k with 1 ≤ k ≤ N + 1

for q ∈ Bκ of the covariances C(q) =
(
A(q)

)−1
. To state the result in Theorem 4.5.1 in slightly

bigger generality we consider more general choices of parameters there.
The key property of these decompositions is their �nite range which implies for a random

Gaussian �eld ϕ with covariance C(q)
k that E(∇iϕ(x)∇jϕ(y)) = ∇∗j∇iC

(q)
k (x− y) = 0 if |x− y| ≥

Lk/2, rendering the gradient variables ∇iϕ(x) and ∇jϕ(y) to be independent. In particular, this
implies

E(F1(∇ϕ�X)F2(∇ϕ�Y )) = E(F1(∇ϕ�X))E(F2(∇ϕ�Y )) (4.4.23)

for sets X and Y such that dist(X,Y ) ≥ Lk/2. In analytic terms this means

ˆ
XN

F1(∇ϕ�X)F2(∇ϕ�Y )µ
C

(q)
k

=

ˆ
XN

F1(∇ϕ�X)µ
C

(q)
k

ˆ
XN

F2(∇ϕ�Y )µ
C

(q)
k

(4.4.24)

We will use this factorization property frequently in the following. Also, we will often use the
shorthand µ(q)

k = µ
C

(q)
k

, dropping occasionally q from the notation.

If ϕ is distributed according to µ and the �elds ϕk are independent and distributed according
to µk, the �nite range decomposition amounts, in probabilistic language, to the claim that

ϕ
D
=

N+1∑
k=1

ϕk (4.4.25)

in distribution. Or, from the analytic viewpoint, it is formulated in terms of the convolution of
measures,

µ = µ1 ∗ . . . ∗ µN+1. (4.4.26)

The renormalisation maps are then de�ned by sequential integrations,

(R
(q)
k F )(ϕ) =

ˆ
XN

F (ϕ+ ξ)µ
(q)
k (dξ) = F ∗ µ(q)

k (ϕ) (4.4.27)

for 1 ≤ k ≤ N + 1. Later we will de�ne Banach spaces of functionals that will guarantee that
this map is well-de�ned and continuous. For F integrable with respect to µ(q) this de�nition
implies

ˆ
XN

F (ϕ)µ(q)(dϕ) =

ˆ
XN×...×XN

F

(
N+1∑
i=1

ϕi

)
µ

(q)
1 (dϕ1) . . . µ

(q)
N+1(dϕN+1)

= (R
(q)
N+1 . . .R

(q)
1 )(F )(0)

(4.4.28)
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Figure 4.1: Torus (Z/(LZ))d with d = 2, L = 2, and N = 4. The light, middle, and dark gray
regions are connected 0,1, and 2-polymers, respectively. The image is taken from [55] and similar
to Figure 1 in [83].

4.4.2 Polymers and relevant Hamiltonians

In this section we de�ne certain subsets of the torus that will be used to organize the multiscale
analysis. To keep these de�nitions simple we introduce the constant

R = max(R0, 2bd/2c+ 3) = max(R0,M) (4.4.29)

depending only on the range of the interaction R0 and the dimension d.
We use ΛN referring to the set underlying the torus TN = (Z/(LNZ))d, and identify it

sometimes with the set ΛN = {z ∈ Zd : |zi| ≤ LN−1
2 }. For every 1 ≤ k ≤ N we pave the torus

with blocks of side length Lk which are translates by (LkZ)d of the block B0 = {z ∈ Zd : |zi| ≤
Lk−1

2 }. We refer to these blocks as k-blocks on ΛN and denote their set by

Bk = {B : B is a k-block}. (4.4.30)

Next, we summarise a notation for particular unions of blocks:

� A union of k-blocks is called a k-polymer and Pk will be the set of all k-polymers. Note
that this de�nition of polymers di�ers from the de�nitions inspired directly by physics, in
particular polymers need not be connected.

� A set X ⊂ TN is connected if for all x, y ∈ X there is a sequence x = x0, x1, . . . , xm = y
with xi ∈ X for 0 ≤ i ≤ m such that |xi − xi+1|∞ = 1 for 0 ≤ i ≤ m− 1 (see also Figure
4.1). This notion corresponds to graph connectedness in the graph with vertices ΛN and
edges between x, y ∈ ΛN if |x− y|∞ = 1. We say that X,Y ⊂ TN are touching if X ∪ Y is
connected.
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� Sets A and B are strictly disjoint if their union is not connected. An important property
is that for X,Y ∈ Pk such that X and Y are strictly disjoint we have dist(X,Y ) > Lk. If
ξk is distributed according to µk this implies that the gradient �elds ∇ξk restricted to X
and Y are independent by the �nite range property.

� We use Pc
k to denote the set of connected k-polymers and C(X) to denote the set of

connected components of a polymer X.

� Bk(X) is the set of all k-blocks contained in a polymerX with |X|k denoting their number.

� The closure X ∈ Pk+1 of a k-polymer X ∈ Pk is the smallest (k + 1)-polymer containing
X.

� We say that a connected polymer X ∈ Pc
k is small if |X|k ≤ 2d. We use Sk to denote all

small k-polymers. All other polymers in Pc
k \ Sk will be called large. Small polymers are

introduced because they need a special treatment in the renormalisation procedure. The
reason boils down to the fact that for large polymers X ∈ Pc

k \ Sk the closure satis�es
|X|k+1 ≤ α(d)|X|k for some α(d) < 1. For X ∈ Sk, however, it is possible that |X|k+1 =
|X|k.

� For any block B ∈ Bk and k ≥ 1 let B̂ ∈ Pk be the cube of side length (2d+1 +1)Lk centred
at B. Note that this is similar to the de�nition of the small set neighbourhood in [4] but
the side length is slightly bigger. For B ∈ B0 let B̂ ∈ P0 denote the cube centred at B
of side length (2d+1 + 2R + 1) where R denotes the range of the interaction as de�ned in
(4.4.29).

� For any polymer X ∈ Pk and k ≥ 1 we de�ne the small neighbourhood X∗ ∈ Pk−1 of X by

X∗ =
⋃

B∈Bk−1(X)

B̂. (4.4.31)

For k = 0 we de�ne X∗ = X + [−R,R]d ∩ TN ∈ P0. Note that we view ∗ as a map from
Pk to Pk−1 for k ≥ 1. In particular, X∗∗ = (X∗)∗ ∈ Pk−2 for X ∈ Pk and k ≥ 2. If the
scale of the considered polymer is not clear from the context it will be indicated explicitly.
The de�nition of B̂ implies that for X ∈ Pk, k ≥ 1, and x ∈ X∗,

dist∞(x,X) ≤ (2d +R)Lk−1. (4.4.32)

� Finally, for any X ∈ Pk we de�ne the large neighbourhood

X+ =
⋃

B∈Bk is touching X

B for k ≥ 1 and X+ = X∗ for k = 0. (4.4.33)

For future reference we recapitulate the de�nitions of neighbourhoods:

B̂ =

{
B + [−2d −R, 2d +R]d ∩ TN for B ∈ B0

B + [−2dLk, 2dLk]d ∩ TN for B ∈ Bk, k ≥ 1

X∗ =


X + [−R,R]d ∩ TN for X ∈ P0

X + [−2d −R, 2d +R]d ∩ TN for X ∈ P1

X + [−2dLk−1, 2dLk−1]d ∩ TN for X ∈ Pk, k ≥ 2

X+ =

{
X + [−R,R]d ∩ TN for X ∈ P0

X + [−Lk, Lk]d ∩ TN for X ∈ Pk, k ≥ 1.

(4.4.34)
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Let us also collect several obvious geometric consequences of the de�nitions.
For strictly disjoint U1, U2 ∈ Pk+1 and L ≥ 2d+2 + 4R we have

dist(U∗1 , U
∗
2 ) ≥ Lk+1 − 2(2dLk +R) ≥ Lk+1

2
. (4.4.35)

For L ≥ 2d +R and X ∈ Pk we have

X∗ ⊂ X+. (4.4.36)

Indeed, for k = 0 it holds as the equality and for k ≥ 1 the inclusion follows from (4.4.32).
Moreover, for L ≥ 2d +R and k ≥ 0

X∗ ⊂ X+ ⊂ Y ∗ for X ∈ Sk and Y ∈ Pk+1 such that X ∩ Y 6= ∅. (4.4.37)

To verify the second inclusion, let B ∈ Bk(X ∩ Y ). We will show that then X+ ⊂ B̂ and thus
X+ ⊂ Y ∗. Indeed, given that X is small, it is contained in a cube of side length (2d+1 − 1)Lk

centred at B. For k ≥ 1 this implies that X+ is contained in a cube of side length (2d+1 + 1)Lk

centred at B, while for k = 0 in a cube of side length 2d+1 + 2R+ 1 centred at B. In both cases
it implies that X+ ⊂ B̂.

Now we introduce the class of functionals we are going to work with. We set

M(Pk,VN ) = {F : Pk × VN → R|F (X, ·) ∈M(VN ), F local, translation and shift invariant}.
(4.4.38)

Here, M(VN ) is the set of measurable real functions on VN with respect to the Borel σ-algebra.
Locality of F is de�ned by assuming that F (X,ϕ) depends only on the value of the �eld ϕ on
X∗, that is, assuming the equality F (X,ϕ) = F (X,ψ) to be valid whenever ϕ�X∗ = ψ�X∗ . The
translation invariance of F means that for any a ∈ (LkZ)d we have F (τa(X), τa(ϕ)) = F (X,ϕ),
where τa(B) = B + a and τaϕ(x) = ϕ(x− a). Finally, for a local functional F and a connected
polymer X, the shift invariance means that F (X,ϕ + ψ) = F (X,ϕ), where ψ is a constant
function, ψ(x) = c for x ∈ X∗. For general polymers X we de�ne the shift invariance by
assuming that F (X,ϕ+ψ) = F (X,ϕ) whenever ψ is a step function�a constant on each nearest
neighbour graph-connected component ofX∗. Here nearest neighbour graph-connectedness refers
to the usual nearest neighbour graph structure on ΛN (de�ning the set E(ΛN ) of edges in ΛN as
E(ΛN ) = {{x, y}, x, y ∈ ΛN such that |x− y|2 = 1} in contrast to the relation |x− y|∞ = 1 used
when de�ning connectedness of polymers). Note that for k ≥ 1 and X ∈ Pk the graph-connected
components of X∗ agree with the connected components we de�ned before.

It is convenient to de�ne the functionals on VN instead of XN the space of �elds with average
zero which are in one-to-one correspondence with gradient �elds. Nevertheless, all the measures
µ

(q)
k appearing in the following are supported on XN which implies that the functionals are only

evaluated for ϕ ∈ XN . Moreover the measures µ(q)
k are absolutely continuous with respect to

the Hausdor� measure on XN . Note that for F ∈ M(VN ) such that F (ϕ + c) = F (ϕ) for any
ϕ ∈ VN and any constant �eld c ∈ VN , the restriction F �XN is measurable with respect to the
Borel σ-algebra on XN . Indeed, the condition F (ϕ+ c) = F (ϕ) implies that for any Borel O ⊂ R
with A = (F �XN )−1(O) , we have F−1(O) = A×X⊥N ⊂ XN ⊕X⊥N = VN .

Let us formulate an equivalent characterisation of shift invariance. For any subset X ⊂ ΛN
we introduce the set of edges E(X) = {{x, y} ∈ E(Zd), x, y ∈ X} and the set of directed edges
~E(X) = {(x, y), (y, x), {x, y} ∈ E}. For ϕ ∈ VN we can view ∇ϕ as a function from ~E(ΛN ) to
Rm by taking ∇ϕ((x, x+ ei)) = ∇iϕ(x) = ϕ(x+ ei)−ϕ(x) and ∇ϕ((x+ ei, x)) = ∇∗iϕ(x+ ei) =
ϕ(x)− ϕ(x+ ei).
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Lemma 4.4.3. A functional F : Pk × VN → R is local and shift invariant i� for each X ∈ Pk
there is a functional F̃X : ~E(X∗) → R such that F (X,ϕ) = F̃X(∇ϕ� ~E(X∗)) for any ϕ ∈ VN , i.

e., F (X, ·) is measurable with respect to the σ-algebra generated by ∇ϕ� ~E(X∗).

Proof. We �rst observe that for a graph connected set Y , a �xed y ∈ Y , and η : ~E(Y ) → Rm,
there is at most one function ϕ̃ : Y → Rm such that ϕ̃(y) = 0 and ∇ϕ̃ = η. Note that a necessary
condition is that η((x, y)) = −η((y, x)) for any (x, y) ∈ ~E(Y ).) Indeed, if there were two such
functions ϕ̃1 and ϕ̃2 and a point z ∈ Y such that ϕ̃1(z) 6= ϕ̃2(z), we would get a contradiction
since ϕ̃1(z) − ϕ̃2(z) =

∑n
i=0 η(xi,xi+1) −

∑n
i=0 η(xi,xi+1) = 0 for any path x0 = y, x1, . . . , xn = z.

Such a path exists since the graph (Y,E(Y )) is connected.
Now, let F be shift invariant and local, Y1, Y2, . . . , Yn be the graph connected components

of X∗, and let yi ∈ Yi, i = 1, 2, . . . , n. Note that the argument above implies that for η :
~E(X∗) → Rm there is at most one ϕ ∈ VN such that ϕ(yi) = 0 and ∇ϕ� ~E(X∗) = η. Then

we de�ne F̃X(η) = F (ϕ) if such a ϕ exists and F̃X(η) = 0 otherwise. For ϕ ∈ VN de�ne
ϕ̃(x) = ϕ(x)−

∑
i ϕ(yi)1Yi(x). Then by shift invariance we have

F (X,ϕ) = F (X, ϕ̃) = F̃X(∇ϕ̃� ~E(X∗)) = F̃X(∇ϕ� ~E(X∗)). (4.4.39)

The opposite implication is obvious.

In addition to the set M(Pk,VN ) of functionals we consider its obvious generalizations
M(Pc

k,VN ), M(Sk,VN ) and M(Bk,VN ). We use the shorthand M(Pk),M(Pc
k),M(Sk), and

M(Bk). There are two canonical inclusions ι1 : M(Bk) → M(Pc
k) and ι2 : M(Pc

k) → M(Pk)
given by (ι1F )(X,ϕ) =

∏
B∈Bk(X) F (B,ϕ) and (ι2F )(X,ϕ) =

∏
Y ∈C(X) F (Y, ϕ), respectively. In

the following we will usually drop ι from the notation and write F (X,ϕ) = FX(ϕ) for F ∈M(Bk)
and F (X,ϕ) =

∏
Y ∈C(X) F (Y, ϕ) for F ∈M(Pk). The set M(Pk) can be endowed by an associ-

ative and commutative product ◦,

(F1 ◦ F2)(X,ϕ) =
∑

Y ∈Pk(X)

F1(Y, ϕ)F2(X \ Y, ϕ), F1, F2 ∈M(Pk) (4.4.40)

that is useful to streamline the notation. For example, it serves as a shorthand for the expansion
of the product

(F1 + F2)X(ϕ) = (F1 ◦ F2)(X,ϕ) (4.4.41)

with F1, F2 ∈M(Bk).
Finally, we introduce the space of relevant Hamiltonians M0(Bk) ⊂ M(Bk) given by all

functionals of the form

H(B,ϕ) =
∑
x∈B
H({x}, ϕ) (4.4.42)

where H({x})(ϕ) is a linear combination of the following relevant monomials :

� The constant monomial M∅({x})(ϕ) ≡ 1;

� the linear monomials Mi,α({x})(ϕ) := ∇i,αϕ(x) := ∇αϕi(x) with 1 ≤ |α| ≤ bd/2c+ 1;

� the quadratic monomials M(i,α),(j,β)({x})(ϕ) = ∇αϕi(x)∇βϕj(x) with |α| = |β| = 1.
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The rationale for declaring exactly these monomials as relevant is based on the following heuristic
argument concerning the decay of their expectations under the measures µk: Let us assign the
scaling dimension [ϕ] = d−2

2 to the �eld ϕ, and the scaling dimension [Mm ] = r[ϕ] +
∑r

i=1 |αi|
to a general monomial Mm({x})(ϕ) = ∇α1ϕi1(x) · · · ∇αrϕir(x) (with αi 6= 0). The relevance of
the scaling dimension follows from the asymptotics Eµk |Mm({x})|2 ∼ L−2k[Mm ] and the fact that,
by the smoothness properties of correlations of µk, we expect that the �elds ϕ(x) and ϕ(y) are
correlated only if |x − y| ≤ cLd. As a result, for a k-block B we get Eµk

(∑
x∈BMm({x})2

)
∼

L−2k[Mm ]+2kd. Hence the relevant monomials are exactly those for which the expectation of
|
∑

x∈BMm({x})| under µk is not expected to decay for large k. One often calls the monomials
for which this quantity grows with k relevant, those for which it remains of order 1 marginal
and those for which it decays as irrelevant. To avoid clumsy notation such as 'not irrelevant' or
'relevant or marginal' we include marginal monomials into our list of relevant polynomials.

Any H ∈ M0(Bk) is clearly shift invariant and local (the fact that B + [−R,R] ∩ TN ⊂ B+

once R ≥ bd/2c+ 1 implies that H ∈M0(Bk) and thus M0(Bk) ⊂M(Bk)).

4.4.3 De�nition of the renormalisation map

In this section we de�ne the �ow of the functionals under the renormalisation maps (4.4.27).
Speci�cally the �ow will be described by two sequences of functionalsHk andKk. The coordinate
Hk ∈M0(Bk) stems from the �nite dimensional space of relevant Hamiltonians and collects the
relevant and marginal directions whereas the perturbation Kk ∈ M(Pc

k) is an element of an
in�nite dimensional space that collects all remaining irrelevant directions of the model. In this
section we introduce the map T k that maps the operators Hk and Kk to the next scale operators
Hk+1 and Kk+1. Formally it is given by a map

T k : M0(Bk)×M(Pc
k)× R(d×m)×(d×m) →M0(Bk+1)×M(Pc

k+1), (4.4.43)

where we re�ected the fact that it also depends on the a priori tuning matrix q which is mostly
suppressed in the notation in this section. In the following we �x a scale k and write (H,K) =

(Hk,Kk) and (H ′,K ′) = (Hk+1,Kk+1). Using R(q)
k or a shorthand Rk for T k with a �xed q,

the key requirement for the renormalisation transformation is the identity

R
(q)
k+1(e−H ◦K)(ΛN , ϕ) = (e−H

′ ◦K ′)(ΛN , ϕ). (4.4.44)

Moreover it must be chosen in such a way that the map K 7→ K ′ is contracting. For most
polymers this will follow from the de�nition of the norms and the fact that typically the number
of blocks decreases when the scale is changed, i.e., |X|k+1 < |X|k. However, for k-blocks X ∈ Bk,
and in general also for X ∈ Sk, this is not true, |X|k+1 = |X|k. As a result, we have to subtract
the dominant part of their contribution and include it in the Hamiltonian H ′. The process
of selection of the relevant part that is to be included to the space of relevant Hamiltonians
determines a projection

Π2 : M(Bk)→M0(Bk). (4.4.45)

Existence, boundedness and further properties of this projection are discussed in Subsection 4.6.4
below. Slightly informally, Π2F is de�ned as a �homogenization� of the second order Taylor
expansion T2 around zero. Namely, considering the second order Taylor expansion of F (B) given
by ϕ̇ 7→ F (B)(0) + DF (B)(0)(ϕ̇) + 1

2D
2F (0)(ϕ̇, ϕ̇), we de�ne Π2F as the ideal Hamiltonian

F (B)(0) + `(ϕ̇) + Q(ϕ̇, ϕ̇) where ` is the unique linear relevant Hamiltonian that satis�es the
condition `(ϕ̇) = DF (B, 0)(ϕ̇) for all ϕ̇ whose restriction to B+ is a polynomial of degree bd/2c+1
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and similarly Q(ϕ̇, ϕ̇) is the unique quadratic relevant Hamiltonian that agrees with D2F (B, 0)
on all functions whose restriction to B+ is a�ne. Note that B+ does not wrap around the torus
for k ≤ N − 1 and L ≥ 5 and, as a consequence, the condition that ϕ restricted to B+ is a
polynomial is well-de�ned.

We defer the de�nition of T k and �rst motivate its de�nition with a sequence of manipulations
starting with the left hand side of (4.4.44). We de�ne the relevant Hamiltonian on the next scale
by

H ′(B′, ϕ) =
∑

B∈Bk(B′)

H̃(B,ϕ) (4.4.46)

where H̃(B,ϕ) is de�ned by

H̃(B,ϕ) = Π2R
′H(B,ϕ)−Π2R

′K(B,ϕ). (4.4.47)

Note that we need to subtract only the contributions that stem from a single block. In the
following we write

I(B,ϕ+ ξ) = exp(−H(B,ϕ+ ξ)), Ĩ(B,ϕ) = exp(−H̃(B,ϕ)), and J̃ = 1− Ĩ . (4.4.48)

Using repeatedly the identities (4.4.41), we rewrite the initial integral in (4.4.44) in terms of the
next scale Hamiltonian,
ˆ
XN

I(ϕ+ ξ) ◦K(ϕ+ ξ)µk+1(dξ) =

ˆ
XN

Ĩ(ϕ) ◦ (I − Ĩ)(ϕ+ ξ) ◦K(ϕ+ ξ)µk+1(dξ)

=

ˆ
XN

Ĩ(ϕ) ◦ (1− Ĩ)(ϕ) ◦ (I − 1)(ϕ+ ξ) ◦K(ϕ+ ξ)µk+1(dξ)

= Ĩ(ϕ) ◦
(ˆ
XN

J̃(ϕ) ◦ (I − 1)(ϕ+ ξ) ◦K(ϕ+ ξ)µk+1(dξ)

)
.

(4.4.49)

This allows to to introduce an intermediate perturbation functional K̃ : P × VN × VN → R by

K̃(X,ϕ, ξ) = (J̃(ϕ) ◦ (I(ϕ+ ξ)− 1) ◦K(ϕ+ ξ))(X). (4.4.50)

The initial integral then becomes

R′(I ◦K)(ΛN , ϕ) =
∑

X∈P(ΛN )

ĨΛN\X(ϕ)

ˆ
XN

K̃(X,ϕ, ξ)µk+1(dξ). (4.4.51)

In the next step we regroup the terms in a such a way that we obtain an expression in the
form e−H

′ ◦K ′ with H ′ ∈ M0(Bk+1) and K ′ ∈ M(Pc
k+1). For X ∈ Pk \ Sk we just include the

contribution of the integral of K̃(X) to the terms labelled by U = X in K ′. Introducing, on the
spacesM(Pk), the norms with the weight A|X|k we will prove the contractivity of the linearisation
of the map Tk. For A > 1 and X ∈ Pk \ Sk for which we can show that |X|k+1 < |X|k, this is
based on the suppression factor A|X|k+1−|X|k . However, for X ∈ Sk this strategy does not work
since we might have |X|k+1 = |X|k. In this case, as explained above, we have to include the
dominant part of their contribution into the Hamiltonian H ′ as anticipated in (4.4.47).

In addition, for X ∈ S = Sk, we have to determine to which of the blocks B′ ∈ B′ = Bk+1,
among those that intersect X, we attribute the corresponding contribution. This is achieved
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in the following claim. There exists a map π̃ : Pc → Pc′ that is translation invariant, i.e.,
π̃(τaX) = τaπ̃(X) for a ∈ (Lk+1Z)d and, for connected polymers, satis�es

π̃(X) =


X if X ∈ Pc \ S,
B′ where B′ ∈ B′ with B′ ∩X 6= ∅ for X ∈ S \ {∅},
∅ if X = ∅.

(4.4.52)

We then extend π̃ to a map π : P → P ′ de�ned on all polymers by

π(X) =
⋃

Y ∈C(X)

π̃(Y ) ∀ X ∈ P. (4.4.53)

To show the existence of a map π̃, it su�ces to de�ne the image π̃(X) for any X ∈ S and show
that the resulting π̃ is translation invariant. �Unwrapping� the torus TN , it can be viewed as
a projection P : Zd → TN with the preimage of any point x ∈ TN being the set P−1({x}) =
{τax, a ∈ (LNZ)d}. The preimage of any X ∈ S is a collection of sets {τaX̂, a ∈ (LNZ)d}, where
X̂ ⊂ Zd can be chosen as a connected set X̂ ⊂ Zd (recall that any X ∈ S is connected) for
which X = P (X̂). For any X ∈ S consider the k-block B(X) ∈ B(X) such that the preimage
of its centre in X̂ is the �rst one in the lexicographic order in Zd among the preimages in X̂ of
centres of k-blocks in B(X). We determine the image π̃(X) as the (k + 1)-block B′ = B(X).
Translation invariance of the map π̃ follows immediately from the fact that B(τaX) = τaB(X)
for any a ∈ (LkZ)d.

We claim that for X ∈ Pk and L ≥ 2d +R,

Pk−1 3 X∗ ⊂ π(X)∗ ∈ Pk. (4.4.54)

By (4.4.53) it is su�cient to show this for X connected. For connected polymers X that are
not small this is clear by (4.4.52). For X ∈ Sk this is a consequence of (4.4.37) applied with
Y = π(X).

We de�ne the function χ : P × P ′ → R by

χ(X,U) = 1π(X)=U . (4.4.55)

This de�nition ensures
∑

U∈P ′ χ(X,U) = 1. Using the relation (ΛN \X)∪ (X \U) = (ΛN \U)∪
(U \X) we rearrange the right hand side of (4.4.51)

R′(I ◦K)(ΛN , ϕ) =
∑
U∈P ′

Ĩ
ΛN\U

(ϕ)

[∑
X∈P

χ(X,U)ĨU\X(ϕ)Ĩ−(X\U)(ϕ)

ˆ
XN

K̃(X,ϕ, ξ)µk+1(dξ)

]
(4.4.56)

where the shorthand expression I−X = (IX)−1 was used. Therefore we de�ne

K ′(U,ϕ) =
∑
X∈P

χ(X,U)ĨU\X(ϕ)Ĩ−(X\U)(ϕ)

ˆ
XN

K̃(X,ϕ, ξ)µ(dξ) (4.4.57)

for any U ∈ P ′.

Lemma 4.4.4. For H, H̃ ∈M0(Bk), I, Ĩ, and J as in (4.4.48), and L ≥ 2d+2+4R the functional
K ′ de�ned in (4.4.57) has the following properties
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i) If K is translation invariant on scale k, i.e., K(X,ϕ) = K(τaX, τaϕ) for a ∈ (LkZ)d then
K ′ is translation invariant on scale k + 1.

ii) If K is local, i.e., K(X,ϕ) only depends on the values of ϕ in X∗ then K ′ is local.

iii) If K is invariant under shifts then K ′ is also shift invariant.

iv) If K ∈M(P) then K ′ ∈M(P ′).

v) If K∈M(P) factors on the scale k, i.e.,

K(X1 ∪X2, ϕ) = K(X1, ϕ)K(X2, ϕ) for strictly disjoint X1, X2 ∈ P, (4.4.58)

then K ′ factors on scale k + 1, i.e.,

K ′(U1 ∪ U2, ϕ) = K ′(U1, ϕ)K ′(U2, ϕ) for strictly disjoint U1, U2 ∈ P ′. (4.4.59)

Proof. The �rst claim is a consequence of the translation invariance of K,H, and π.
For the second claim we observe that I(X,ϕ), J(X,ϕ), Ĩ(X,ϕ), and K(X,ϕ) only depend

on the values of ϕ� X∗. Moreover χ(X,U) = 1 implies by (4.4.54) for L ≥ 2d + R that X∗ ⊂
U∗. Since the ∗ operation is monotone and the renormalisation map R preserves locality, the
functionals K ′(U,ϕ) only depend on ϕ�U∗ .

To prove the shift invariance of K ′, we �rst notice that I, Ĩ, and J are shift invariant because
they are compositions of H, H̃ ∈ M0(Bk) with the exponential. Thus, by Lemma 4.4.3, the
functionals K(X,ϕ), I(X,ϕ), Ĩ(X,ϕ), and J(X,ϕ) can be rewritten as functionals of ∇ϕ� ~E(X∗).

As in the locality argument this implies that K ′ can be written as K ′(U,ϕ) = K̃U (∇ϕ� ~E(U∗))
and is thus shift invariant.

The claim iv) is a consequence of the �rst three claims.
To prove the last claim, we observe that functionals F,G ∈M(P) that factor on the scale k,

satisfy the equality (F ◦G)(X ∪ Y ) = (F ◦G)(X)(F ◦G)(Y ) whenever the polymers X and Y
are strictly disjoint. Indeed,

(F ◦G)(X ∪ Y ) =
∑

Z⊂X∪Y
F (Z)G((X ∪ Y ) \ Z)

=
∑
Z1⊂X
Z2⊂Y

F (Z1 ∪ Z2)G(X ∪ Y \ (Z1 ∪ Z2))

=
∑
Z1⊂X

∑
Z2⊂Y

F (Z1)F (Z2)G(X \ Z1)G(Y \ Z2) = (F ◦G)(X)(F ◦G)(Y ).

(4.4.60)

Given that the ◦-product is associative, we can extend this to three functionals: the product
F ◦G ◦H factors if F , G, and H factor. In particular, the functional K̃ factors on the scale k.

Let U1, U2 ∈ Pk+1 be strictly disjoint polymers and let X ∈ Pk be a polymer such that we
have

⋃
Y ∈C(X) π(Y ) = π(X) = U = U1 ∪ U2. We claim that there is a unique decomposition

X = X1 ∪X2 such that X1 and X2 are strictly disjoint and satisfy π(Xi) = Ui.
For the existence, consider X1 = U∗1 ∩ X, X2 = U∗2 ∩ X. Clearly, X1 and X2 are strictly

disjoint and X1 ∪ X2 = X since by (4.4.54) we know that X ⊂ (U1 ∪ U2)∗ = U∗1 ∪ U∗2 . The
inclusions π(Xi) ⊂ U+

i together with U+
1 ∩ U2 = U1 ∩ U+

2 = ∅ and U = π(X) = π(X1) ∪ π(X2)
imply that π(Xi) = Ui.
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Uniqueness follows from the observation that π(X̃i) = Ui implies by (4.4.54) that X̃i ⊂ U∗i ,
and thus X̃i ⊂ Xi.

Assuming L ≥ 2d+2 + 4R and using (4.4.32) and (4.4.35), we conclude that the distance
between X∗1 and X∗2 is bigger than the range of µk+1,

dist(X∗1 , X
∗
2 ) ≥ dist(U∗1 , U

∗
2 ) ≥ Lk+1

2
. (4.4.61)

Thus, using that K̃ factors on scale k, we get

ˆ
XN

K̃(X1 ∪X2, ϕ, ξ)µk+1(dξ) =

ˆ
XN

K̃(X1, ϕ, ξ)K̃(X2, ϕ, ξ)µk+1(dξ)

=

ˆ
XN

K̃(X1, ϕ, ξ)µk+1(dξ)

ˆ
XN

K̃(X2, ϕ, ξ)µk+1(dξ).

(4.4.62)

Finally, we observe that

(X1 ∪X2) \ (U1 ∪ U2) = (X1 \ U1) ∪ (X2 \ U2)

(U1 ∪ U2) \ (X1 ∪X2) = (U1 \X1) ∪ (U2 \X2).
(4.4.63)

The inclusion '⊂' holds in general, the other inclusion follows from X1 ∩ U2 = X2 ∩ U1 = ∅.
As a result, using manipulations similar to (4.4.60) for strictly disjoint U1, U2 ∈ P ′, these

facts imply

K ′(U1 ∪ U2, ϕ) =
∑
X∈P

χ(X,U1 ∪ U2)Ĩ(U1∪U2)\X(ϕ)Ĩ−(X\(U1∪U2))(ϕ)

ˆ
XN

K̃(X,ϕ, ξ)µk+1(dξ)

=
∑
X∈P

1π(X)=U1∪U2
Ĩ(U1∪U2)\X(ϕ)Ĩ−(X\(U1∪U2))(ϕ)

ˆ
XN

K̃(X,ϕ, ξ)µk+1(dξ)

=
∑

X1,X2∈P
1π(X1)=U1

1π(X2)=U2

Ĩ(U1∪U2)\(X1∪X2)(ϕ)

Ĩ(X1∪X2)\(U1∪U2)(ϕ)

ˆ
XN

K̃(X1 ∪X2, ϕ, ξ)µk+1(dξ)

=
∑

X1,X2∈P
1π(X1)=U1

1π(X2)=U2

ĨU1\X1(ϕ)

ĨX1\U1(ϕ)

ĨU2\X2(ϕ)

ĨX2\U2(ϕ)

ˆ
XN
K̃(X1, ϕ, ξ)µk+1(dξ)

ˆ
XN
K̃(X2, ϕ, ξ)µk+1(dξ)

= K ′(U1, ϕ)K ′(U2, ϕ)

(4.4.64)

For future reference we state a concise de�nition of T k. Recall that we de�ned for 0 ≤ k ≤
N − 1 and Hk ∈M0(Bk) the next scale Hamiltonian Hk+1 ∈M0(Bk+1) by

Hk+1(B′, ϕ) =
∑

B∈Bk(B′)

H̃k(B,ϕ) (4.4.65)

where

H̃k(B,ϕ) = Π2R
′H(B,ϕ)−Π2R

′K(B,ϕ). (4.4.66)
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For Kk ∈ M(Pc
k) we denote K̃k(ϕ, ξ) =

(
1− e−H̃k(ϕ)

)
◦
(
e−Hk(ϕ+ξ) − 1

)
◦ Kk(ϕ + ξ) and we

de�ne Kk+1 ∈M(Pc
k+1) for U ∈ Pc

k+1 by

Kk+1(U,ϕ) =
∑
X∈P

χ(X,U) exp
(
−
∑

B∈Bk(U\X )̃

Hk(B,ϕ) +
∑

B∈Bk(X\U )̃

Hk(B,ϕ)
)ˆ
XN

K̃(X,ϕ, ξ) µ
(q)
k+1(dξ)

(4.4.67)

where χ(X,U) = 1π(X)=U and π : Pk → Pk+1 was de�ned in (4.4.53).

De�nition 4.4.5. Let 0 ≤ k ≤ the renormalisation transformation

T k : M0(Bk)×M(Pc
k)× R(d×m)×(d×m)

sym →M0(Bk+1)×M(Pc
k+1) (4.4.68)

is de�ned by

T k(Hk,Kk, q) = (Hk+1,Kk+1) (4.4.69)

where Hk+1 and Kk+1 are given by (4.4.65) and (4.4.67) respectively.

We have the following result for T k.

Proposition 4.4.6. For L ≥ 2d+2 + 4R and 0 ≤ k ≤ N − 1 the renormalisation transformation
T k is well-de�ned and satis�es for Hk ∈M0(Bk), Kk ∈M(Pc

k), Hk+1 ∈M0(Bk+1), and Kk+1 ∈
M(Pc

k+1) with T k(Hk,Kk, q) = (Hk+1,Kk+1) the identity

R
(q)
k+1(e−Hk ◦Kk)(ΛN , ϕ) = (e−Hk+1 ◦Kk+1)(ΛN , ϕ). (4.4.70)

Proof. Lemma 4.4.4 iv) implies that Kk+1 ∈ M(Pc
k+1). From Lemma 4.4.4v) we conclude that

ι2Kk+1(U) equals the expression on the right hand side of (4.4.67) for all U ∈ Pk+1. Now (4.4.70)
follows from (4.4.56).

Of course the condition (4.4.70) is not su�cient for our analysis. In addition we need smooth-
ness and boundedness results for the map T k. This requires to equip the spaces M(Pc

k) with a
norm. In the next section we will de�ne the relevant norms which will allow us to establish the
smoothness result and to prove contraction properties of T k.

4.4.4 Norms

Next we introduce suitable norms on the space M(Pk,VN ) of local functionals (see (4.4.38)).
For any F ∈ M(Pc

k,VN ) and any X ∈ Pc
k we de�ne F (X) ∈ M(VN ) by F (X)(ϕ) = F (X,ϕ).

Fixing now r0 ∈ N with r0 ≥ 3, we introduce a norm ‖F (X)‖k,Tϕ based on a norm of the
r0-th order Taylor polynomial of the functional F (X) at ϕ as well as the norm ‖F (X)‖k,X =
supϕw

−X(ϕ)‖F (X)‖k,Tϕ , where w−X(ϕ) = 1
wX(ϕ)

and wX is an appropriately chosen weight

function. The main di�erence in comparison with [4] (which was based on earlier work of Brydges
et al., cf. e.g. [44] and [42]) is in the choice of these weights. The current choice allows us to
relax substantially the growth condition for the potential. An additional di�erence with respect
to [4] is that we use a di�erent norm on polynomials (essentially the projective instead of the
injective norm on the dual tensor product, see Appendix 4.A). This is not crucial but it puts our
approach in line with the much more general framework developed in [44, 45].

The main observation for the de�nition of the norms on Taylor polynomials is that the action
of polynomials can be linearised by looking at their action on (direct sums) of tensor products.
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More precisely a homogeneous polynomial P (r) of degree r on the space of �elds X can be
uniquely identi�ed with a symmetric r-linear form and hence with an element P (r) in the dual
of X⊗r (see Lemma 4.A.1).

To de�ne a linear action of a general polynomial P we recall that ⊕∞r=0X⊗r is the space of
sequences g = (g(0), g(1), . . .) with g(r) ∈ X⊗r and with only �nitely many non-vanishing terms.
Then we de�ne the dual pairing

〈P, g〉 =

∞∑
r=0

〈P (r), g(r)〉 (4.4.71)

with the space of test functions

Φ := Φr0 := {g ∈ ⊕∞r=0X⊗r : g(r) = 0 for all r > r0}. (4.4.72)

The restriction to the space Φr0 means that the linear maps P correspond to polynomials of
order at most r0.

In the following we take X = VN as the space of �elds with norms de�ned on Φ as follows.
On V⊗0

N = R we take the usual absolute value on R. Let

X ∈ Pk and j ∈ {k, k + 1}. (4.4.73)

For ϕ ∈ VN and x ∈ Λ we de�ne ∇i,αx ϕ = (∇αϕi)(x) and consider the norms

|ϕ|j,X = sup
x∈X∗

sup
1≤i≤m

sup
1≤|α|≤pΦ

wj(α)−1
∣∣∇i,αx ϕ

∣∣ (4.4.74)

= sup
x∈X∗

sup
1≤i≤m

sup
1≤|α|≤pΦ

wj(α)−1 |∇αϕi(x)| .

where
pΦ = bd/2c+ 2 (4.4.75)

and the weights wj(α) are given by

wj(α) = hj L
−j|α| L−j

d−2
2 with hj = 2jh. (4.4.76)

The | · |j,X -norm for the �elds depends on a k-polymer X and a scale j ∈ {k, k + 1} and it
measures the size of the �eld in a weighted maximum-norm in a neighbourhood of this polymer.
The weights are chosen so that a typical value of the �eld ξ distributed according to µ(q)

j+1 has

norm of order h−1
j (cf. (4.4.13)). The parameters hj allow to control the scaling of the �eld

norms | · |j,X and since norms are de�ned by duality the parameter hj also appears in the norm
for Hamiltonians H ∈ M0(B). See Section 4.3.1 for further discussion why we choose scaling
factor hj which grow with j.

Viewing homogeneous terms g(r) ∈ V⊗rN as maps (or more precisely equivalence classes of
maps modulo tensor products involving constant �elds, see Section 4.A.4 in the appendix) from

Λr to (Rp)⊗r with ∇αj acting on the j-th argument of g(r)
i1...ir

, we introduce the norm

|g(r)|j,X = sup
x1,...,xr∈X∗

sup
m∈mpΦ,r

wj(m)−1∇m1 ⊗ . . .⊗∇mrg(r)(x1, . . . , xr) (4.4.77)

= sup
x1,...,xr∈X∗

sup
m∈mpΦ,r

wj(m)−1∇α1 ⊗ . . .⊗∇αrg(r)
i1...ir

(x1, . . . , xr)
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where mpΦ,r is the set of r-tuples m = (m1, . . . ,mr) with m` = (i`, α`) and 1 ≤ |α`| ≤ pΦ and

wj(m) =
r∏
`=1

wj(α`). (4.4.78)

The norm de�ned above is actually the injective tensor norm on (VN , | · |j,X)⊗r, see (4.A.71),
implying, in particular, that

|ϕ(1) ⊗ . . .⊗ ϕ(r)|j,X = |ϕ(1)|j,X . . . |ϕ(r)|j,X for any ϕ(1), . . . , ϕ(r) ∈ X . (4.4.79)

We now de�ne a norm on the space Φ of test functions by

|g|j,X = sup
r∈N0

|g(r)|j,X = sup
r≤r0
|g(r)|j,X . (4.4.80)

and a dual norm on polynomials by

|P |j,X := sup{〈P, g〉 : g ∈ Φ, |g|j,X ≤ 1}. (4.4.81)

Assume that F ∈ Cr0(VN ) satis�es the locality condition with respect to a polymer X ∈ Pc,

F (ϕ+ ψ) = F (ϕ) if ψ|X∗ = 0. (4.4.82)

We de�ne the pairing
〈F, g〉ϕ := 〈Tayϕ F , g〉. (4.4.83)

and the norm
|F |j,X,Tϕ = |TayϕF |j,X = sup{〈F, g〉ϕ : g ∈ Φ, |g|j,X ≤ 1}. (4.4.84)

Here Tayϕ F denotes the Taylor polynomial of order r0 of F at ϕ.
We remark in passing that the right hand side of (4.4.84) may be in�nite since | · |j,X is only

a seminorm, but this will not occur in the cases we are interested in, namely when F is local and
shift invariant in the sense described in the paragraph following (4.4.38). More precisely the right
hand side of (4.4.84) is �nite if and only if Tayϕ F (ϕ̇ + ψ̇) = Tayϕ F (ϕ̇) for all ϕ̇ ∈ VN and all

ψ̇ ∈ VN with |ψ̇|j,X = 0 (to see this one uses the fact VN is �nite dimensional and the zero norm
elements of V⊗rN are linear combinations of tensor products ξ1 ⊗ . . . ⊗ ξr where at least one of
the ξi has zero norm). Note that |ψ̇|k,X = 0 implies that ψ̇ is constant on each graph-connected
component of X∗ and therefore by the de�nition of shift invariance F (ϕ + ψ̇) = F (ϕ) for all
ϕ ∈ VN .

The �nal norms for the functional F are weighted sup-norms over ϕ of the norm |F |k,X,Tϕ .
Dividing the norm |F |k,X,ϕ by a regulator wk(ϕ), we allow the functional to grow for large �elds.
A way to think about these regulators is that |F (ϕ)| ≤ ‖F (X)‖wk(ϕ). This bound must behave
well with respect to integration against µk+1 and satisfy certain submultiplicativity properties.
The exact de�nition of the regulator is slightly involved and will be given in the next section.

Now, we de�ne a norm on the class of functionals M(Pc
k) = M(Pc

k,VN ) de�ned in (4.4.38).
Writing F (X)(ϕ) = F (X,ϕ) for any F ∈M(Pc

k,VN ), we sometimes use the abbreviation

|F (X)|k,Tϕ := |F (X)|k,X,Tϕ . (4.4.85)

Let WX
k , w

X
k , w

X
k:k+1 ∈ M(Pk) be weight functions that will be de�ned in the next section.

Let us denote W−Xk = (WX
k )−1 and similarly for w. The strong and weak norms are de�ned,
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respectively, by

|||F (X)|||k,X = sup
ϕ
|F (X)|k,TϕW−Xk (ϕ), (4.4.86)

‖F (X)‖k,X = sup
ϕ
|F (X)|k,Tϕ w−Xk (ϕ), (4.4.87)

‖F (X)‖k:k+1,X = sup
ϕ
|F (X)|k,Tϕ w−Xk:k+1(ϕ). (4.4.88)

The last norm is a version of the weak norm which lies between the weak norms of scales k and
k+ 1. In fact we will use the strong norm only for functionals in M(B) which already factor over
single blocks. We write |||F |||k = |||F (B)|||k,B where the right hand side is independent of B by
translation invariance.

Finally, for any A ≥ 1 we de�ne the global weak norm for F ∈ M(Pc
k) given by a weighted

maximum of the weak norms over the connected polymers

‖F‖(A)
k = sup

X∈Pc
k

‖F (X)‖k,XA|X|k . (4.4.89)

For polymers X that are not connected we will usually estimate the norm of F (X, ·) by
the product of the norms of F (Yi, ·) where Y1, Y2, . . . are the connected components of X. In
Lemma 4.6.3 we will state submultiplicativity properties of the norms needed for these estimates.
With the norm (4.4.89) we also consider the version where we replace the weak k norm by the
in-between k : k + 1 norm.

We �nally introduce another norm on the space of relevant Hamiltonians (at scale k). Recall
that we de�ned these to be functionals of the form

H(B,ϕ) = Ldka∅ +
∑
x∈B

∑
(i,α)∈v1

ai,α∇αϕi(x) +
∑
x∈B

∑
(i,α),(j,β)∈v2

a(i,α),(j,β)∇αϕi(x)∇βϕj(x).

(4.4.90)

Here B is a k-block and the index sets v1 and v2 are given by

v1 := {(i, α) : 1 ≤ i ≤ m, α ∈ NU0 , 1 ≤ |α| ≤ bd/2c+ 1}, (4.4.91)

v2 := {(i, α), (j, β) : 1 ≤ i, j ≤ m, α, β ∈ NU0 , |α| = |β| = 1, (i, α) ≤ (j, β)}, (4.4.92)

where U = {e1, . . . , ed}. The expression (i, α) ≤ (j, β) refers to any ordering on {1, . . . ,m} ×
{e1, . . . , ed}, e.g. lexicographic ordering. We use ordered indices to avoid double counting since
∇αϕi(x)∇βϕj(x) = ∇βϕj(x)∇αϕi(x). We now introduce a norm for relevant Hamiltonians
which is expressed directly in terms of the coe�cients am and given by

‖H‖k,0 = Lkd |a∅|+
∑

(i,α)∈v1

hkL
kdL−k

d−2
2 L−k|α| |ai,α|+

∑
m∈v2

h2
k |am |. (4.4.93)

The weights in front of the coe�cients are chosen in such a way that the norm ‖·‖k,0 is equivalent
(uniformly in k and N) to the strong norm |||·||| (see Lemma 4.6.7 and Lemma 4.6.8 below).
Intuitively the weight in L can also be understood by recalling that the typical value of |∇αϕi(x)|
under µk+1 is of order L−k|α|L−k

d−2
2 .

Note that the norms depend on the constants hk, A and also on L that will be chosen later.
We will need one additional norm because the renormalisation map Rk+1 does not preserve
factorisation on scale k so that we cannot rely on submultiplicativity. This norm will only be
required in the smoothness result in Section 4.7 and we postpone the de�nition of the last norm
to that section.
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4.4.5 Properties of the renormalisation map

We are interested in results for �xed values of

d,m,R0, ω0, ζ (4.4.94)

and therefore we usually do not keep track of the dependence of constants on these parameters.

Our de�nition of the renormalisation transformation T k in De�nition 4.4.5 satis�es the con-
dition (4.4.44). A second requirement for the map T k is that it separates relevant and irrelevant
contributions properly. Observe that the origin (0, 0) is a �xed point of the transformation for
every q. The separation of relevant and irrelevant contributions can be made precise by showing
that the linearisation of T k at the origin de�nes a hyperbolic dynamical system. A close look at
the de�nition of T k reveals that H ′ is in fact a linear function of K and H, i.e., we can write

T k(H,K, q) = (A
(q)
k H +B

(q)
k K,Sk(H,K, q)) (4.4.95)

where A(q)
k and B(q)

k are linear operators. We need two theorems concerning the renormalisation
transformation T k. The �rst theorem states local smoothness of the map S which is required to
apply an implicit function theorem. Let us denote with Uρ,κ ⊂M0(Bk)×M(Pc

k)×R(d×m)×(d×m)
sym

the subset

Uρ,κ = {(H;K, q) ∈M0(Bk)×M(Pk)× R(d×m)×(d×m)
sym : ‖H‖k,0 < ρ, ‖K‖(A)

k < ρ, |q| < κ}
(4.4.96)

Theorem 4.4.7. Let L0 = max(2d+3 + 16R, 4d(2d + R)). For every L ≥ L0 there are h0(L),
A0(L), and κ(L) such that for h ≥ h0(L) and A ≥ A0(L) there exists ρ = ρ(A) such that the
map Sk satis�es

Sk ∈ C∞
(
Uρ,κ, (M(Pc

k+1), ‖·‖(A)
k+1)

)
. (4.4.97)

Moreover there are constants C = Cj1,j2,j3(A,L) such that

‖Dj1
1 D

j2
2 D

j3
3 Sk(H,K, q)(Ḣj1 , K̇j2 , q̇j3)‖(A)

k+1 ≤ C‖Ḣ‖
j1
0

(
‖K̇‖(A)

k

)j2
‖q̇‖j3 (4.4.98)

for any (H,K, q) ∈ Uρ,κ and any j1, j2, j3 ≥ 0.

The proof of this theorem can be found in Section 4.7. The second theorem concerns the
hyperbolicity of the linearisation of the renormalisation transformation. Recall that η ∈

(
0, 2

3

]
is a �xed parameter that controls the contraction rate of the renormalisation �ow.

Theorem 4.4.8. The �rst derivative of T k at H = 0 and K = 0 has the triangular form

DT k(0, 0, q)

(
Ḣ

K̇

)
=

(
A

(q)
k B

(q)
k

0 C
(q)
k

)(
Ḣ

K̇

)
(4.4.99)
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where

(A
(q)
k Ḣ)(B′, ϕ) =

∑
B∈B(B′)

Ḣ(B,ϕ) + L(k+1)d
∑

(i,α),(j,β)∈v2

a(i,α),(j,β) (∇β)∗∇αC(q)
k+1,ij(0) (4.4.100)

(B
(q)
k K̇)(B′, ϕ) = −

∑
B∈B(B′)

Π2

(ˆ
XN

K̇(B,ϕ+ ξ)µ
(q)
k+1(dξ)

)
(4.4.101)

(C
(q)
k K̇)(U,ϕ) =

∑
B:B=U

(1−Π2)

ˆ
XN

K̇(B,ϕ+ ξ)µ
(q)
k+1(dξ)

+
∑

X∈Pc
k\B(X)

π(X)=U

ˆ
XN

K̇(X,ϕ+ ξ)µ
(q)
k+1(dξ).

(4.4.102)

There exists a constant L0 such that there are constants h0 = h0(L), A0 = A0(L), and κ(L) > 0
such that for any L ≥ L0, A ≥ A0(L), h ≥ h0(L) and for |q| < κ(L) the following bounds hold
independent of k and N

‖C(q)
k ‖ ≤

3

4
η, ‖(A(q)

k )−1‖ ≤ 3

4
, and ‖B(q)

k ‖ ≤
1

3
. (4.4.103)

Here the norms denote the operator norms for maps (M(Pc
k), ‖·‖

(A)
k )→ (M(Pc

k+1), ‖·‖(A)
k+1),

(M0(Bk+1), ‖·‖k+1,0) → (M0(Bk), ‖·‖k,0), and (M(Pc
k), ‖·‖

(A)
k ) → (M0(Bk+1), , ‖·‖k+1,0). In ad-

dition the derivatives of the operators with respect to q are bounded:

‖∂`qA
(q)
k Ḣ‖0 ≤ C‖Ḣ‖0, ‖∂`qB

(q)
k K̇‖0 ≤ C‖K̇‖, ‖∂`qC

(q)
k K̇‖ ≤ C‖K̇‖ (4.4.104)

for some constant C = C`(A,L). The proof shows that L0 only depends on d, m, R0, and on ζ
and ω0 through AB where AB comes from Theorem 4.5.1.

Proof. Here we only show the validity of the expressions for the operators A(q)
k , B(q)

k , and C(q)
k

and the bound (4.4.104). The bounds for the operator norms will be shown in Section 4.8 in
Lemma 4.8.5, Lemma 4.8.6 and Lemma 4.8.1. The proof of the bounds (4.4.104) can be found

in Corollary 4.7.9 for the operators A(q)
k and B(q)

k . For C(q)
k it follows from Theorem 4.4.7 and

the identity

∂`qC
(q)
k = ∂`q∂KSk(0, 0, q). (4.4.105)

To obtain the formula for A(q)
k we recall that by (4.4.65) and (4.4.66)

(A
(q)
k Ḣ)(B′, ϕ) =

∑
B∈Bk(B′)

Π2R
(q)
k+1Ḣ(B,ϕ). (4.4.106)

We write the Hamiltonian Ḣ as a sum of constant, linear and quadratic terms, Ḣ(ϕ) = Ldka∅+
`(ϕ) +Q(ξ). Then

Ḣ(B,ϕ+ ξ) = Ḣ(B,ϕ) +Q(ξ) + terms linear in ξ (4.4.107)

where in view of (4.4.90)

Q(ξ) =
∑
x∈B

∑
(i,α),(j,β)∈v2

a(i,α),(j,β)∇αξi(x)∇βξj(x).
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Linear terms vanish when integrated against µk+1(dξ). Observe that the projection Π2

preserves relevant Hamiltonians, i.e., Π2H = H for H ∈ M0(Bk). It remains to evaluate the
integral of the quadratic form Q(ξ, ξ). Since the covariance of µk+1 is translation invariant we
have for E = Eµk+1

E(∇αξi(x)∇βξj(y)) = E((∇β)∗∇αξi(x)ξj(y)) =
(
(∇β)∗∇αCij

)
(x− y). (4.4.108)

This implies that
ˆ
XN

Q(ξ)µ
(q)
k+1(dξ) =

∑
x∈B

∑
(i,α),(j,β)∈v2

a(i,α),(j,β) (∇β)∗∇αC(q)
k+1,ij(0). (4.4.109)

Summing over B ∈ Bk(B′) we get the formula (4.4.100) for A(q) using that |B| = Ldk and
|Bk(B′)| = Ld to obtain the prefactor L(k+1)d of the constant term.

The formula for B(q)
k is a direct consequence of the de�nitions (4.4.65) and (4.4.66).

We now derive the formula for C(q)
k . Recall that we de�ned K̃(K,H)(ϕ, ξ) = (1−e−H̃k(ϕ)))◦

(e−Hk(ϕ+ξ)−1)◦Kk(ϕ+ξ). We calculate the derivative at 0 in direction K̇, hence we set Hk = 0
and

H̃k(B,ϕ) = −Π2R
(q)
k+1Kk(B,ϕ). (4.4.110)

This implies for the derivative of K̃ at zero

DKK̃(0)(K̇)(X,ϕ, ξ) =


K̇(X,ϕ+ ξ)−Π2R

(q)
k+1K̇(X,ϕ) if X ∈ Bk,

K̇(X,ϕ+ ξ) if X ∈ Pc
k \ Bk,

0 if X ∈ Pk \ Pc
k.

(4.4.111)

The derivative vanishes for non-connected polymers because K factors on scale k. Now the
de�nition (4.4.67) implies (4.4.102).

Finally we show that the derivative of Kk+1 with respect to Hk vanishes. To this end we
notice that

DHK̃(0)(Ḣ)(X,ϕ, ξ) =

{
Ḣ(X,ϕ+ ξ)−Π2R

(q)
k+1Ḣ(X,ϕ) for X ∈ Bk,

0 otherwise.
(4.4.112)

Thus (4.4.67) implies that the derivative vanishes for U /∈ Bk+1 and we infer that for B′ ∈ Bk+1

DHKk+1(Ḣ)(B′, ϕ) =
∑

B∈Bk(B′)

ˆ
XN

Ḣ(B,ϕ+ ξ)− (Π2R
(q)
k+1Ḣ)(B,ϕ)µ

(q)
k+1(dξ)

=
∑

B∈Bk(B′)

(R
(q)
k+1Ḣ)(B,ϕ)− (Π2R

(q)
k+1Ḣ)(B,ϕ) = 0

(4.4.113)

where we used that R(q)
k+1 maps relevant Hamiltonians to relevant Hamiltonians as shown above

and Π2 is the identity on relevant Hamiltonians.

4.5 A new large �eld regulator

In this section we construct a new large �eld regulator. It allows for substantially rougher
initial perturbations than the previous regulator in [4] or [42]. Previously explicit estimates for
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carefully chosen Gaussian integrals were used to construct the regulators. In the new approach
we de�ne the weights implicitly based on the abstract formula for Gaussian integrals.

Recall that we de�ned the constant

M = M(d) = pΦ + bd/2c+ 1 = 2bd/2c+ 3 (4.5.1)

that is related to the discrete Sobolev embedding (note that compared to [4] we changed M).
For any k-polymer X we de�ne the linear operator MX

k : XN → XN by

MX
k =

∑
1≤|α|≤M

L2k(|α|−1)(∇∗)αχX∇α (4.5.2)

where χX : TN → R is de�ned by

χX(x) =
∑

B∈Bk(X)

1B+(x) =
∣∣{B ∈ Bk(X) : x ∈ B+}

∣∣. (4.5.3)

Here 1 denotes the indicator function. Recall that B+ = (B + [−Lk, Lk]) ∩ T dN for k ≥ 1 and
B+ = (B + [−R,R]d)∩ TN for k = 0. Note that here and in the following we sometimes use the
natural inclusion R ↪→ Rm×m given by λ → λ Id without re�ecting this in the notation. Let us
also introduce the operator

Mk =
∑

1≤|α|≤M

L2k(|α|−1)(∇∗)α∇α. (4.5.4)

The operators MΛN
k and Mk are related by

MΛN
k = Ξk

∑
1≤|α|≤M

L2k(|α|−1)(∇∗)α∇α = ΞkMk (4.5.5)

where Ξk = |B+|k, B ∈ Bk accounts for the sum over 1B+ . From the de�nition of B+ we �nd
Ξ0 = (2R+ 1)d, ΞN = 1, and Ξk = 3d for 1 ≤ k < N and therefore in particular

Ξk ≤ Ξmax = (2R+ 1)d. (4.5.6)

Note that Mk is translation invariant and therefore diagonal in Fourier space.
Recall that we consider the space G = (Rm)I where I satis�es {e1, . . . , en} ⊂ I ⊂⊂ {α ∈

Nd
0 \ {0, . . . , 0} : |α|∞ ≤ R0}. We assume that Q is a quadratic form on G that satis�es (4.4.10).

From now on we use the shorthand notation A = AQ = A(0) for the operator generated by Q on
XN (cf. (4.4.2) and (4.4.20)),

(ϕ,Aϕ) =
∑
x∈TN

Q(Dϕ(x)). (4.5.7)

Let ζ ∈ (0, 1
4) be a parameter. We will later set

ζ = ζ/4 (4.5.8)

where ζ ∈ (0, 1/2) is the parameter in the norm on E that appears in Theorem 3.2.3. Let
δj = 4−jδ > 0 be a sequence of real numbers with δ to be speci�ed later. We de�ne large �eld
regulators wXk , w

X
k:k+1 for the weak norm for 0 ≤ k ≤ N by

wXk (ϕ) = e
1
2

(AXk ϕ,ϕ), wXk:k+1(ϕ) = e
1
2

(AXk:k+1ϕ,ϕ) (4.5.9)
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where AX
k and AX

k:k+1 are linear symmetric operators on XN that are de�ned iteratively by

(ϕ,AX
0 ϕ) = (1− 4ζ)

∑
x∈X

Q(Dϕ(x)) + δ0(ϕ,MX
0 ϕ) for X ∈ P0,

AX
k:k+1 =

(
(AX

k )−1 − (1 + ζ)Ck+1

)−1
for X ∈ Pk and 0 ≤ k ≤ N,

AX
k+1 = AX∗

k:k+1 + δk+1M
X
k+1 for X ∈ Pk+1 and 0 ≤ k ≤ N − 1.

(4.5.10)
Here Ck+1 is a �nite range decomposition for the operator A = A(0) as in Theorem 4.4.1. The
de�nition of AX

k:k+1 is a bit sloppy because A
X
k is in general not invertible, however the de�nition

makes sense on the space ker(AX
k )⊥ and then AX

k:k+1 is the extension by zero of this operator;
see the beginning of the Subsection 4.5.1 and Lemma 4.5.5 i) below. We use the neighbourhood
X∗ in the de�nition of AX

k+1 to account for the fact that in the reblocking step we also add
contributions to X that come from polymers that are not contained in X but only in X∗.

We de�ne the strong norm weight functions almost as in [4] by

WX
k (ϕ) = e

1
2

(GXk ϕ,ϕ) with (ϕ,GX
k ϕ) =

1

h2
k

∑
1≤|α|≤b d

2
c+1

L2k(|α|−1)(∇αϕ,1X∇αϕ) (4.5.11)

where as before hk = 2kh with h = h(L) to be chosen later.
To motivate the de�nition of the weight functions, we add several observations. In the

evaluation of functional integrals
´
F (ϕ)µ(dϕ) where µ is a Gaussian measure it is a well

known problem that the functional F is in general unbounded for large �elds ϕ. This is the
large �eld problem that makes the construction of good norms for F di�cult. A more detailed
discussion can be found in [42]. In our approach we de�ned the norms for F in (4.4.87) by
‖F‖k,X = supϕ|F (ϕ)|k,X,Tϕ(wXk (ϕ))−1 where wXk are the weight functions. They regulate the
allowed growth at in�nity. The larger the weight function the weaker the norm. So the results
get stronger, i.e., the class of admissible potentials is bigger, if we can choose wk bigger. The
growth assumptions for the potential V in our theorems are weaker then those in [4] due to the
larger weights that we construct in this section.

The �rst key requirement for the norm is that the renormalisation map, i.e., convolution with
the partial measures µk+1 is bounded. This yields the condition∥∥∥∥ˆ

XN
F (ϕ+ ·)µk+1(dϕ)

∥∥∥∥ = sup
ψ
w−Xk+1(ψ)

∣∣∣∣ˆ
XN

F (ϕ+ ψ)µk+1(dϕ)

∣∣∣∣
≤ ‖F‖ sup

ψ
w−Xk+1(ψ)

ˆ
XN

wXk (ϕ+ ψ)µk+1(dϕ).

(4.5.12)

In other words the renormalisation map is bounded if and only if wXk ∗µk+1 . CwXk+1. Therefore
the optimal choice is wXk+1 ∝ wXk ∗ µk+1. In general this is a very implicit de�nition that is

not very useful. If, however, wk(ϕ) = e
1
2

(ϕ,AXk ϕ) is an exponential of a quadratic form, the
convolution can be carried out explicitly and then the next weight has the same structure, i.e., it
is again the exponential of a quadratic form. Indeed, by general Gaussian calculus the following
identity holds for a given linear symmetric positive operator A on a �nite dimensional vector
space V and a covariance operator C

ˆ
V
e

1
2

(A(ϕ+ψ),ϕ+ψ) µC(dψ) =

(
det(C−1 −A)

detC−1

)− 1
2

e
1
2

((A−1−C)−1ϕ,ϕ)

= det
(
1− C

1
2AC

1
2

)− 1
2
e

1
2

((A−1−C)−1ϕ,ϕ)

(4.5.13)
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under the assumption that A < C−1. This implies that the next scale quadratic form is essentially
given by the expression for AX

k:k+1 in (4.5.10).
The second key requirement for the norms of the functionals is that they are submultiplicative

for distant polymers, i.e., ‖FXF Y ‖ ≤ ‖FX‖ · ‖F Y ‖ if X and Y are strictly disjoint polymers.
This condition is necessary to regroup the terms and estimate products. Since the maximum
norm is sub-multiplicative we �nd the condition wXk w

Y
k ≥ wX∪Yk for the weights. At �rst sight

this might appear problematic because we have no explicit expression for wXk . But it turns out
that the �nite range property of µk+1 ensures that the weight functions factor for strictly disjoint
polymers if we choose wXk+1 ∝ wXk ∗µk+1. To show this we note that wX0 (ϕ) only depends on the
values of ϕ in a neighbourhood of X. The same is true for wXk (ϕ) because it is a convolution
of w0 with some measure. Then the factorisation follows by induction from the �nite range
property

wX∪Yk+1 = wX∪Yk ∗ µk+1 = (wXk · wYk ) ∗ µk+1 = (wXk ∗ µk+1)(wYk ∗ µk+1) = wXk+1w
Y
k+1. (4.5.14)

Finally, let us brie�y mention why we need the second set of weights wk:k+1 that includes the
operator MX

k . The reason is twofold. On the one hand, in every step we also need to control
contribution from the Hamiltonian terms on blocks that are bounded in the strong norm but
the blocks are not separated from the considered polymer. Therefore sub-multiplicativity does
not hold in this case. Instead we add the operator MX

k that allows us to bound the terms from
the Hamiltonian. Secondly, the �eld norm |ϕ|k,X must be controlled by the weight function wXk .
This is also guaranteed by the addition of the termMX

k . It turns out, however, that this changes
the weight functions only slightly for su�ciently small prefactor δ (see Lemma 4.5.3 below).

4.5.1 Properties of the weight functions

Here and in the following we consider the extensions of the quadratic forms GX
k , M

X
k , A

X
k ,

and AX
k:k+1 to VN by GX

k ϕ = 0, for ϕ ∈ X⊥N = {constant �elds} and similarly for the other
forms. Then we can also extend the weight functions wXk , w

X
k:k+1, and WX

k to Vn using their
de�nition (4.5.9) and (4.5.11). This extension has the property that wXk (ϕ+ ψ) = wk(ϕ) if ψ is
a constant �eld.

In the following theorem we collect the properties of the weight functions wXk , w
X
k:k+1, and

WX
k . The claims of the theorem will be reformulated and proven directly in terms of the operators

AX
k , A

X
k:k+1, and G

X
k in the following subsections. We state our results for general values of pΦ,

M , n, and ñ but we will later only use the weights for the parameters chosen as indicated before.
Recall our convention that we do not indicate dependence on the �xed parameters ω0, ζ, d, m,
R0, M , n, and ñ

Theorem 4.5.1. Consider G as above and let Q be a quadratic form on G satisfying

ω0|z∇|2 ≤ Q(z) ≤ ω−1
0 |z|

2 (4.5.15)

with a constant ω0 ∈ (0, 1) and let ζ ∈ (0, 1
4). Let M ≥ pΦ + bd2c + 1 and let C

(q)
k be a family

of �nite range decompositions for the quadratic forms z 7→ Q(z) − (qz∇, z∇), with n ≥ 2M and
ñ > n. Then, for every

L ≥ 2d+3 + 16R, (4.5.16)

there are constants λ > 0, δ(L) > 0, κ(L) (speci�ed in (4.5.55), (4.5.57), and (4.5.81)) and
h0(L) given by

h0(L) = δ(L)−
1
2 max(8

1
2 , cd) (4.5.17)
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such that the weight functions de�ned in (4.5.9) and (4.5.11) are well-de�ned and satisfy:

i) For any Y ⊂ X ∈ Pk, 0 ≤ k ≤ N , and ϕ ∈ VN ,

wYk (ϕ) ≤ wXk (ϕ) and wYk:k+1(ϕ) ≤ wXk:k+1(ϕ). (4.5.18)

ii) The estimate

wXk (ϕ) ≤ exp

(
(ϕ,Mkϕ)

2λ

)
and wXk:k+1(ϕ) ≤ exp

(
(ϕ,Mkϕ)

2λ

)
(4.5.19)

holds for 0 ≤ k ≤ N , X ∈ Pk, and ϕ ∈ VN .

iii) For any strictly disjoint polymers X,Y ∈ Pk, 0 ≤ k ≤ N , and ϕ ∈ VN ,

wX∪Yk (ϕ) = wXk (ϕ)wYk (ϕ). (4.5.20)

iv) For any polymers X,Y ∈ Pk such that dist(X,Y ) ≥ 3
4L

k+1, 0 ≤ k ≤ N , and ϕ ∈ VN ,

wX∪Yk:k+1(ϕ) = wXk:k+1(ϕ)wYk:k+1(ϕ). (4.5.21)

v) For any disjoint polymers X,Y ∈ Pk, 0 ≤ k ≤ N , and ϕ ∈ VN ,

WX∪Y
k (ϕ) = WX

k (ϕ)W Y
k (ϕ). (4.5.22)

vi) For h ≥ h0(L), disjoint polymers X,Y ∈ Pk, 0 ≤ k ≤ N , and ϕ ∈ VN ,

wX∪Yk (ϕ) ≥ wXk (ϕ)W Y
k (ϕ). (4.5.23)

vii) For h ≥ h0(L), X ∈ Pk and U = π(X) ∈ Pk+1, 0 ≤ k ≤ N − 1, and ϕ ∈ VN ,

wUk+1(ϕ) ≥ wXk:k+1(ϕ)
(
WU+

k (ϕ)
)2
. (4.5.24)

viii) For any h ≥ h0(L) and all 0 ≤ k ≤ N − 1, X ∈ Pk+1 and ϕ ∈ VN ,

e
|ϕ|2k+1,X

2 wXk:k+1(ϕ) ≤ wXk+1(ϕ). (4.5.25)

ix) There is a constant AP = AP(L) such that for q ∈ Bκ, ρ = (1 + ζ)1/3 − 1, X ∈ Pk,
0 ≤ k ≤ N , and ϕ ∈ VN ,(ˆ

XN

(
wXk (ϕ+ ξ)

)1+ρ
µ

(q)
k+1(dξ)

) 1
1+ρ

≤
(
AP
2

)|X|k
wXk:k+1(ϕ). (4.5.26)

x) There is a constant AB independent of L such that for q ∈ Bκ, ρ = (1 + ζ)1/3− 1, X ∈ Pk,
0 ≤ k ≤ N , and ϕ ∈ VN ,(ˆ

XN

(
wBk (ϕ+ ξ)

)1+ρ
µ

(q)
k+1(dξ)

) 1
1+ρ

≤ AB
2
wBk:k+1(ϕ). (4.5.27)

Proof. The theorem follows from a sequence of lemmas in the following sections. Lemma 4.5.5
establishes basic properties of the operators AX

k and AX
k:k+1 that imply i) and ii). Lemma 4.5.6

concerns factorisation properties of the operators AX
k and AX

k:k+1 that allow us to conclude iii)-
vii). Lemma 4.5.7 gives a bound on a particular determinant that implies ix) and x). Finally,
Lemma 4.5.8 bounds the �eld norm | · |k,X in terms of the weights. This easily yields property
viii).
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4.5.2 The main technical matrix estimate

In this subsection we prove a crucial technical estimate which shows that the iterative pro-
cedure (4.5.10) introducing the operators Ak → Ak:k+1 → Ak+1 is well-de�ned.

We �rst recall some standard facts about monotone matrix functions. We say that two
Hermitian matrices A and B satisfy A ≤ B if (Ax, x) ≤ (Bx, x) for all x. We say that a map
f from a subset U of the Hermitian matrices to the Hermitian matrices is matrix monotone if
A ≤ B implies f(A) ≤ f(B) for all A,B ∈ U .

Lemma 4.5.2. i) The map A 7→ −A−1 is matrix-monotone on the set of positive de�nite
Hermitian matrices.

ii) Let C be Hermitian and positive de�nite. For positive de�nite Hermitian matrices A with
A < C−1 de�ne

f(A) := (A−1 − C)−1. (4.5.28)

Then f is matrix monotone.

iii) If we extend f to Hermitian matrices A with 0 ≤ A < C−1 by

f(A) =

{
((AkerA⊥)−1 − (PkerA⊥CPkerA⊥))−1 on kerA⊥,

0 on kerA.
(4.5.29)

then the extended function is still matrix monotone.

iv) If 0 ≤ A < C−1 then A1/2CA1/2 < 1 and the extended function f satis�es

f(A) = A1/2(1−A1/2CA1/2)−1A1/2. (4.5.30)

There is the following absolutely convergent series representation for f and 0 ≤ A < C−1

f(A) =
∞∑
i=0

A(CA)i. (4.5.31)

Proof. The assertions are classical. We include a proof for the convenience of the reader.
The �rst assertion follows from Löwner's theorem ([122], see also [103]) since the imaginary

part of the map C\{0} 3 z 7→ −z−1 = −z̄
|z|2 is non-negative in the upper half-plane. Alternatively,

it can be proved elementary as follows. First, monotonicity is clear for B = 1 since for a positive
de�nite symmetric matrix A the condition A ≤ 1 is equivalent to spec(A) ⊂ (0, 1] while the
condition A ≥ 1 is equivalent to spec(A) ⊂ [1,∞). To prove the result for a general B assume

A ≤ B and note that this implies F
T
AF ≤ F TBF for all matrices F . Taking F = B−1/2 we get

B−1/2AB−1/2 ≤ 1 and thus B1/2A−1B1/2 ≥ 1 which implies that A−1 ≥ B−1/21B−1/2 = B−1.
The second assertion follows by applying the monotonicity of the inversion map twice.
The third assertion follows since the right hand side is the limit limε↓0 f(A+ ε1).
The fourth assertion is clear for 0 < A < C−1. Fix A with 0 ≤ A < C−1. Then there

exist δ > 0 and ε0 > 0 such that for all ε ∈ (0, ε0) we have Aε := A + ε1 ≤ (1 − δ)C−1.

Thus C ≤ (1 − δ)A−1
ε and hence A1/2

ε CA
1/2
ε ≤ (1 − δ)1. Passing to the limit ε ↓ 0 we get

A1/2CA1/2 ≤ (1 − δ)1 and the validity of (4.5.30). Equation (4.5.31) follows from (4.5.30) by
expanding the the Neumann series.

We now show the crucial technical lemma that allows us to �nd suitable bounds for the
operators Ak . Basically this lemma shows that for su�ciently small δ the MX

k terms are just
a small perturbation of the operators.
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Lemma 4.5.3. Suppose that Q, M , n, ñ, and Ck = C
(0)
k satisfy the assumptions of Theorem

4.5.1. Then the following holds. For all λ ∈ (0, 1/4) and L ≥ 3 odd, there is a constant
µ(λ, L) ≥ 1 such that for any ε ∈ (0, 1), 0 ≤ δ < 1+ε

µ and for all 0 ≤ k ≤ N − 1, the boundλM−1
k + (1 + ε)

N+1∑
j=k+2

Cj

−1

+ δMk+1 ≤

λM−1
k+1 + (1 + ε− µδ)

N+1∑
j=k+2

Cj

−1

(4.5.32)

holds in the sense of Hermitian operators on XN .

Remark 4.5.4. The proof is quite technical and not very insightful. Therefore we �rst give a
brief heuristic argument. All operators are diagonal in the Fourier space. Thus it is su�cient to
show the bound for all Fourier modes p ∈ T̂N \ {0} of the kernels of the operators that actually
are m ×m matrices. Note that Mk acts diagonally with respect to the m components and thus
its Fourier modes are multiples of the identity. We use M̂k(p) ∈ R to denote the coe�cient
of the Fourier mode and use the embedding into Rm×m when necessary. Let q(p)j = eipj − 1
and note that the Fourier multiplier of ∇ is the vector q(p) whose norm is of the order |p|:
|p|/2 ≤ |q(p)| ≤ |p| for p ∈ T̂N (cf. (4.4.8)). Therefore we can write

M̂k(p) =
∑

1≤|α|≤M

L2k(|α|−1)|q(p)2α| (4.5.33)

To shorten the notation we introduce the notation

CN+1
k+1 =

N+1∑
j=k+1

Cj . (4.5.34)

There are two regimes |p| ≤ L−k and |p| ≥ L−k requiring di�erent treatment.

Using (4.5.33), for |p| < L−k we �nd that M̂k(p) ≈ |p|2. Indeed, since, roughly speaking,
Ĉj(p) ≈ |p|−2 for |p| ≈ L−j, we observe that |p|−2 ≈ ĈN+1

k+1 (p) for |p| ≤ L−k. Hence, after
factoring out the term |p|2, we are left to show an inequality of the type α−1 + δ ≤ (α − µδ)−1

for given real numbers α and δ. This is true for some large µ if α is uniformly bounded above
and below and δ > 0 is bounded above.

For |p| ≥ L−k the asymptotic behaviour is M̂k(p) ≈ |p|2ML(2M−2)k and ĈN+1
k (p) ≈ 0.Then

the bound is implied by M̂k(p)� M̂k+1(p).

Proof. Here, we implement rigorously the heuristics described above. The �rst step is to compare
the operators Mk and Mk+1. For |p| ≥ L−k and L ≥ 8 we observe using |p|/2 ≤ |q(p)| ≤ |p|
that

4|q(p)|2 ≤ 16|q(p)|4L2k ≤ 32

L2

∑
|α|=2

L2(k+1)(|α|−1)|q(p)2α| ≤ 1

2

∑
|α|=2

L2(k+1)(|α|−1)|q(p)2α|

≤ 1

2
M̂k+1(p).

(4.5.35)

Hence, for |p| ≥ L−k and L ≥ 8, we have

4M̂k(p) = 4
∑

1≤|α|≤M

L2k(|α|−1)|q(p)2α| ≤ 4|q(p)|2 +
4

L2

∑
2≤|α|≤M

L2(k+1)(|α|−1)|q(p)|2|α| ≤ M̂k+1(p).

(4.5.36)
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We claim that there is a constant k0 = k0(λ) independent of k and N such that

2 ĈN+1
k+2 (p) = 2

N+1∑
k′=k+2

Ĉk′(p) ≤ λM̂k+1(p)−1 (4.5.37)

for |p| ≥ L−k+k0 . To prove this we observe that for L−j−1 < |p| ≤ L−j and j < k − k0 the sum
on the left hand side is by (4.4.15) dominated by a geometric series which implies∣∣∣∣∣

N+1∑
k′=k+2

Ĉk′(p)

∣∣∣∣∣ ≤ C1L
2(d+ñ)+1L2jL−(k+2−j)(d−1+n) = C1L

d+2ñ+2−nL2jL−(k+1−j)(d−1+n).

(4.5.38)

Note that ∑
|α|=l

|q(p)2α| ≤ |q(p)|2l ≤ |p|2l (4.5.39)

This implies that, for j ≤ k and |p| ≤ L−j , the right hand side of (4.5.37) satis�es

M̂k+1(p) ≤
M∑
l=1

L2(l−1)(k+1)L−2lj ≤ 2L−2jL2(M−1)(k+1−j). (4.5.40)

Therefore we �nd that

λ−1M̂k+1(p)

∣∣∣∣∣
N+1∑
k′=k+2

Ĉk′(p)

∣∣∣∣∣ ≤ 2C1

λ
Ld+2ñ+2−nL(k+1−j)(2M−1−d−n) ≤ 1

2
(4.5.41)

for k − j > k0 with k0 = k0(λ) = dlog3(4C1/λ)e + d + 2ñ + 2 − n where we used that L ≥ 3
and n ≥ 2M and thus 2M − 1− d− n ≤ −1. Note that the constant C1 from (4.4.15) does not
depend on L. Hence, in particular, k0 is independent of L. This proves (4.5.37). The bounds
(4.5.36) and (4.5.37) thus, for |p| ≥ L−k+k0 , δ < 1

4λ , and ε < 1, jointly imply(
λM̂

−1

k (p) + (1 + ε)ĈN+1
k+2 (p)

)−1
+ δM̂k+1(p) ≤ 1

λ
M̂k(p) + δM̂k+1(p)

≤ 1

4λ
M̂k+1(p) +

1

4λ
M̂k+1(p)

≤
(

2λM̂
−1

k+1(p)
)−1

≤
(
λM̂

−1

k+1(p) + (1 + ε)ĈN+1
k+2 (p)

)−1
.

(4.5.42)

In the �rst and the last step we used the fact that the inversion of a Hermitian positive de�nite
matrix is a monotone operation (see Lemma 4.5.2). This ends the proof for p ∈ T̂N with
|p| ≥ L−k+k0 .

For p ∈ T̂N such that |p| < L−k+k0 we note that there are constants ω1, ω2,Ω1,Ω2 depending
on L, k0(λ), and λ such that

ω1|p|−2 ≤ ĈN+1
k+2 (p) ≤ (1 + ε)ĈN+1

k+2 (p) ≤ Ω1|p|−2 and (4.5.43)

ω2|p|−2 ≤ λM̂
−1

k+1(p) ≤ Ω2|p|−2. (4.5.44)
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Indeed, the upper bounds are trivial and even hold uniformly in k0 and N for all p because
Ĉ(p) ≤ Ω1|p|−2 for some constant Ω1 by (4.4.11) and Mk+1 ≥ −∆. The �rst lower bound
follows from (4.4.14) which implies the bound

ĈN+1
k+2 (p) ≥ Ĉj(p) ≥ cL−2(d+ñ)−1L2j ≥ cL−2(d+ñ)−3|p|−2 (4.5.45)

for L−j−1 < |p| < L−j and j ≥ k + 2. For L−j−1 < |p| < L−j and k − k0 ≤ j < k + 2 we use

ĈN+1
k+2 (p) ≥ Ĉk+2(p) ≥ cL−2(d+ñ)−1L(k+2−j)(−d+1−n)L2j ≥ cL−2(d+ñ)−3L(k0+2)(−d+1−n)|p|−2.

(4.5.46)

Therefore the lower bound in (4.5.43) holds with ω1 = cL−2(d+ñ)−3+(k0+2)(−d+1−n). The second
lower bound is a consequence of (4.5.39) which implies

M̂k+1(p) ≤
M∑
l=1

L2(l−1)(k+1)|p|2l ≤
M∑
l=1

L2(l−1)(k+1)L2(l−1)(−k+k0)|p|2 ≤ 2L2(M−1)(k0+1)|p|2.

(4.5.47)
if |p| < L−k+k0 . So the lower bound in (4.5.44) holds with ω2 = λ(2L2(M−1)(k0+1))−1.

Observe that ĈN+1
k+2 (p) and M̂k+1(p) are Hermitian and they commute because M̂k+1(p) is a

multiple of the identity. Therefore we can work in basis where both matrices are diagonal which
reduces the estimates to the scalar case m = 1. Then the bound we want to show is essentially
the estimate (a−x)−1− a−1 > x/a2 for a > x > 0. In more detail, using (4.5.43) and the trivial
estimate M̂k(p) ≤ M̂k+1(p), we �nd for |p| < L−k+k0 , m = 1, and 0 < δ < (1 + ε)/µ,(

λM̂
−1

k+1(p) + (1 + ε− µδ)ĈN+1
k+2 (p)

)−1
−
(
λM̂

−1

k (p) + (1 + ε)ĈN+1
k+2 (p)

)−1

≥
(
λM̂

−1

k+1(p) + (1 + ε− µδ)ĈN+1
k+2 (p)

)−1
−
(
λM̂

−1

k+1(p) + (1 + ε)ĈN+1
k+2 (p)

)−1

≥
µδĈN+1

k+2 (p)(
λM̂

−1

k+1(p) + (1 + ε− µδ)ĈN+1
k+2 (p)

)(
λM̂

−1

k+1(p) + (1 + ε)ĈN+1
k+2 (p)

)
≥ µδω1|p|−2

(Ω1 + Ω2)2|p|−4

≥ δM̂k+1(p)
µω1ω2

λ(Ω1 + Ω2)2
.

(4.5.48)

Then for

µ ≥ λ(Ω1 + Ω2)2

ω1ω2
(4.5.49)

(where ω1, ω2, Ω1, and Ω2 where introduced in (4.5.43) and (4.5.44)) the inequality (4.5.32) fol-
lows. For m > 1 the claim follows by applying (4.5.48) to each diagonal entry of the diagonalised
matrices. The estimates (4.5.42) and (4.5.48) imply the claim.

4.5.3 Basic properties of the operators AX
k:k+1 and A

X
k

Recall that ζ ∈ (0, 1
4) is a �xed parameter and Ξmax was de�ned in (4.5.6). For given values

of h, δ, and µ (that will be speci�ed later) we de�ne sequences

hj = 2jh, δj = 4−jδ, ζj = 2ζ −
j∑
i=0

µΞmaxδi. (4.5.50)

The following lemma proves the claims i) and ii) from Theorem 4.5.1.
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Lemma 4.5.5. Under the assumptions of Theorem 4.5.1, for every L ≥ 2d+3 + 16R, there are

constants λ > 0, µ(L) > 1, and δ(L) ∈
(

0, ζ
2µΞmax

)
such that ζj ≥ ζ for all j = 0, . . . , N , and

for all 0 ≤ k ≤ N :

i) The operators AX
k:k+1 and AX

k are well-de�ned, symmetric and non-negative operators on
XN for any X ∈ Pk.

ii) Translation invariance: For any translation τaϕ(x) = ϕ(x − a) with a ∈ (LkZ)d/(LNZ)d

the equalities (ϕ,AX
k ϕ) = (τaϕ, τ−aA

X+a
k τaϕ) and (ϕ,AX

k:k+1ϕ) = (τaϕ,A
X+a
k:k+1τaϕ) hold.

iii) Locality: The operators AX
k and AX

k:k+1 only depend on the values of ϕ in X++ and the
are shift invariant, i.e., they are measurable with respect to the σ-algebra generated by
∇ϕ� ~E(X++).

iv) Monotonicity: For Y ⊂ X the inequalities AY
k ≤ AX

k and AY
k:k+1 ≤ AX

k:k+1 hold in the
sense of operators.

v) Bounds: The weight functions are bounded from above as follows

AX
k ≤

λM−1
k + (1 + ζk)

N+1∑
j=k+1

Cj

−1

(4.5.51)

AX
k:k+1 ≤

λM−1
k + (1 + ζk)

N+1∑
j=k+2

Cj

−1

. (4.5.52)

Proof. Note �rst that the estimate ζj ≥ ζ is an immediate consequence of the de�nition of δ.
The proof is by induction on k. First, for k = 0, the properties i), iii), and iv) are ob-

vious. Indeed, Q has range at most R, is positive, and Dϕ(x) can be expressed as a func-
tion of ∇ϕ� ~E(x+[0,R]d). Similarly MX

0 is non-negative, symmetric, and monotone in X and

MX
0 ϕ only depends on the values of ∇ϕ restricted to the bonds ~E((X+ + [−M,M ]d)∩TN ) and

(X+ + [−M,M ]d) ∩ TN ⊂ X++ since R ≥M by (4.4.29) and (4.5.1).
Translation invariance for k = 0 follows from the facts that the discrete derivatives commute

with translations and τ−a1X+aτa = 1X where 1X denotes the multiplication operator with the
indicator function of X which implies translation invariance of the operators Mk in the set
variable that is (ϕ,MX

k ϕ) = (τaϕ,M
X+a
k τaϕ). A similar statement holds for Q. Finally, we

establish the bound (4.5.51). First we note that there exist two constants Ω, ω > 0 independent
of L, such that the operator A (see (4.5.7)) satis�es the bounds

ωA ≤M0 ≤ ΩA. (4.5.53)

This is a consequence of the fact that both operators have the Fourier modes bounded uniformly
by |p|2 from above and below. For A the bounds follow from (4.4.11) and for M0 the lower

bound follows from |q(p)|2 ≥ |p|2
4 while the upper bound follows from |q(p)| ≤ |p| and the fact

that the dual torus is bounded. Then, for δ0 ≤ ζ/Ω, we estimate

AX
0 ≤ A

ΛN
0 = (1− 4ζ)A + δ0M0 ≤ (1− 3ζ)A ≤ 1

(1 + 3ζ)A−1
≤ 1

ζωM−1
0 + (1 + 2ζ)C

.

(4.5.54)
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Hence (4.5.51) holds for k = 0 and λ ≤ ζω. We now �x

λ = min

(
ζω,

1

4

)
(4.5.55)

where ω was introduced in (4.5.53) and

µ = µ(λ, L) > 1 (4.5.56)

as in Lemma 4.5.3. We then set

δ(L) = min

(
ζ

Ω
,

ζ

2µΞmax

)
, (4.5.57)

where Ξmax was introduced in (4.5.6)
Now we perform the induction step from AX

k to AX
k:k+1.

First we show that AX
k:k+1 is well de�ned. By the induction hypothesis, the operator AX

k is
non-negative and symmetric and the bound (4.5.51) implies

AX
k ≤

(
(1 + ζk)Ck+1

)−1
. (4.5.58)

Since Ck+1 is also symmetric, Lemma 4.5.2 implies thatAX
k:k+1 is well-de�ned using the extension

de�ned in (4.5.29) and it can be expressed as follows

AX
k:k+1 =

(
AX
k

) 1
2

(
1−

(
AX
k

) 1
2 Ck+1

(
AX
k

) 1
2

)−1 (
AX
k

) 1
2 . (4.5.59)

This expression shows that the operator AX
k:k+1 is symmetric and, again by Lemma 4.5.2,

also non-negative. Moreover, the matrix monotonicity stated in Lemma 4.5.2 implies that the
monotonicity AY

k:k+1 ≤ AX
k:k+1 for Y ⊂ X follows from the induction hypothesis AY

k ≤ AX
k .

To prove the claim ii) for AX
k:k+1, we use the induction hypothesis, the series representation

(4.5.31) for AX
k:k+1, and the translation invariance of the kernel Ck+1, [τa,Ck+1] = 0. The easiest

way to show the locality of AX
k:k+1 stated in iii) is based on the observation that, by Gaussian

integration (4.5.13), we get the identity

ˆ
XN

e
1
2

(ϕ+ξ,AXk (ϕ+ξ)) µ(1+ζ)Ck+1
(dξ) =

e
1
2

(ϕ,((AXk )−1−(1+ζ)Ck+1)−1ϕ)

det

(
1−

(
(1 + ζ)Ck+1

) 1
2 AX

k

(
(1 + ζ)Ck+1

) 1
2

) 1
2

=
e

1
2

(ϕ,AXk:k+1ϕ)

det

(
1−

(
(1 + ζ)Ck+1

) 1
2 AX

k

(
(1 + ζ)Ck+1

) 1
2

) 1
2

.

(4.5.60)

By the induction hypothesis the left hand side is measurable with respect to the σ-algebra
generated by ∇ϕ� ~E(X++), hence the same is true for the right hand side.

For the proof of v) for AX
k:k+1 we �rst note that, by the monotonicity iv), it is su�cient

to prove the bound for X = ΛN . This is an immediate consequence of the bound for AΛN
k ,
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Lemma 4.5.2 iii), and the inequality ζk ≥ ζ which implies

AΛN
k:k+1 = ((AΛN

k )−1 − (1 + ζ)Ck+1)−1 ≤

λM−1
k + (1 + ζk)

N+1∑
j=k+1

Cj − (1 + ζ)Ck+1

−1

≤

λM−1
k + (1 + ζk)

N+1∑
j=k+2

Cj

−1

.

(4.5.61)

It remains to show the induction step from AX
k:k+1 to AX

k+1. We begin with the observation
that the operatorsMX

k+1 are well-de�ned, symmetric, non-negative, monotone in X, and transla-
tion invariant. MoreoverMX

k+1 only depends on ∇ϕ� ~E(X++[−M,M ]d) and X
++[−M,M ]d ⊂ X++

once L ≥M , the inequality that follows from M ≤ R ≤ L.
Now, the points i) and ii) follow from the induction hypothesis applied to AX∗

k:k+1 and the
previous observation. The claim iv) follows from the induction hypothesis for Ak:k+1 applied
to X∗ ⊂ Y ∗ for X ⊂ Y and the monotonicity of MX

k+1. To show iii), it remains to check that
AX∗
k:k+1 is measurable with respect to ∇ϕ� ~E(X++). Using the induction hypothesis we are left to

show the inclusion (X∗)++ ⊂ X++. Note that by (4.4.34),

(X∗)++ =

{
X + [−2d − 3R, 2d + 3R]d for X ∈ P1,

X + [−(2d + 2)Lk−1, (2d + 2)Lk−1]d for X ∈ Pk, k ≥ 2.
(4.5.62)

Therefore (X∗)++ ⊂ X++ holds for X ∈ Pk, k ≥ 1, and L ≥ 2d + 3R.
Finally, the bound for AX

k+1 is a direct consequence of Lemma 4.5.3 and our choice for

δ. Indeed, recall that δΞmax ≤ ζ
2µ ≤

1
µ and δk+1 ≤ δ, hence Lemma 4.5.3 and the induction

hypothesis imply

AX
k+1 ≤ A

ΛN
k+1 = AΛN

k:k+1 + δk+1M
ΛN
k+1 ≤

λM−1
k + (1 + ζk)

N+1∑
j=k+2

Cj

−1

+ δk+1ΞmaxMk+1 ≤

≤

λM−1
k+1 + (1 + ζk − µδk+1Ξmax)

N+1∑
j=k+2

Cj

−1

. (4.5.63)

The claim follows from ζk − ζk+1 = µΞmaxδk+1.

4.5.4 Subadditivity properties of the operators AX
k and AX

k:k+1

In this section we prove that the weight operators satisfy additivity properties that directly
imply the statements iii)-vii) in Theorem 4.5.1. In Section 4.6 we will also prove that they imply
that the norms we de�ned in Section 4.4.4 are sub-multiplicative.

Lemma 4.5.6. The weight operators AX
k and AX

k:k+1 satisfy for 0 ≤ k ≤ N − 1, under the same
assumptions as in Theorem 4.5.1 with δ and λ as in Lemma 4.5.5, the following (sub)additivity
properties:
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i) Additivity: For any strictly disjoint X,Y ∈ Pk, the equality

AX∪Y
k = AX

k +AY
k (4.5.64)

holds. For any X,Y ∈ Pk such that dist(X,Y ) ≥ 3
4L

k+1, we have

AX∪Y
k:k+1 = AX

k:k+1 +AY
k:k+1. (4.5.65)

ii) Subadditivity: For any disjoint k-polymers X,Y ∈ Pk, the inequality

AX
k +GY

k ≤ AX∪Y
k (4.5.66)

holds if h−2 < δ. For any (k + 1)-polymer U ∈ Pk+1 and a k-polymer X ∈ Pk such that
π(X) = U , the inequality

AX
k:k+1 + 2GU+

k ≤ AU
k+1 (4.5.67)

holds if 8h−2 < δ.

Proof. We �rst prove (4.5.64) and proceed by induction. Note that for all k ≥ 0 and any disjoint
X,Y ∈ Pk we have

MX∪Y
k = MX

k +MY
k (4.5.68)

since a block B ∈ Bk is contained in X ∪Y if and only if either B ⊂ X or B ⊂ Y . From (4.5.68)
with k = 0 and (4.5.10), it follows that (4.5.64) holds for k = 0. Hence it su�ces to show that
(4.5.64)k ⇒ (4.5.65)k for k ≥ 0 and (4.5.65)k ⇒ (4.5.64)k+1 for k ≥ 0.

To prove the second statement, (4.5.65)k ⇒ (4.5.64)k+1, we consider strictly disjoint X,Y ∈
Pk+1. Then dist(X,Y ) ≥ Lk+1 and, by (4.4.32), X∗, Y ∗ ∈ Pk satisfy

dist(X∗, Y ∗) ≥ Lk+1 − 2(2d +R)Lk ≥ 3

4
Lk+1 (4.5.69)

for L ≥ 2d+3 + 8R. Then

AX∗∪Y ∗
k:k+1 = AX∗

k:k+1 +AY ∗
k:k+1 (4.5.70)

by (4.5.65)k. Together with (4.5.68) this implies AX∪Y
k+1 = AX

k+1 +AY
k+1.

To prove the statement (4.5.64)k ⇒ (4.5.65)k, we observe that by property iii) in Lemma 4.5.5,
the operator AX

k is, for a k-polymer X ∈ Pk, measurable with respect to the σ-algebra gen-
erated by ∇ϕ� ~E(X++) and similarly AY

k ϕ is measurable with respect to the σ-algebra gener-

ated by ∇ϕ� ~E(Y ++). Let X,Y ∈ Pk be polymers such that dist(X,Y ) ≥ 3
4L

k+1. Note that

dist(X++, Y ++) ≥ dist(X,Y )−4Lk > Lk+1/2 for L > 16 and k ≥ 1 and thus dist(X++, Y ++) ≥
dist(X,Y ) − 4R > L/2 for k = 0 and L ≥ 16R. This implies that ∇ξk+1� ~E(X++) and
∇ξk+1� ~E(Y ++) are independent under µk+1 and therefore also under the measure µ(1+ζk+1)Ck+1

.

Hence the random variables (ϕ + ξk+1,A
X
k (ϕ + ξk+1)) and (ϕ + ξk+1,A

Y
k (ϕ + ξk+1)) are in-

dependent under the same measure for ξk+1 and any ϕ. To simplify the notation we denote
C = (1 + ζk+1)Ck+1. Independence and the formula (4.5.13) for Gaussian integration shows that
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there exist positive constants cX , cY , and cX∪Y such that

e
1
2

(AX∪Yk:k+1ϕ,ϕ)

cX∪Y
=

ˆ
XN

e
1
2

(AX∪Yk (ϕ+ξ),ϕ+ξ) µC(dξ)

=

ˆ
XN

e
1
2

((AXk +AYk )(ϕ+ξ),ϕ+ξ) µC(dξ)

=

ˆ
XN

e
1
2

(AXk (ϕ+ξ),ϕ+ξ) µC(dξ)

ˆ
XN

e
1
2

(AYk (ϕ+ξ),ϕ+ξ) µC(dξ)

=
e

1
2

(AXk:k+1ϕ,ϕ)

cX

e
1
2

(AYk:k+1ϕ,ϕ)

cY
,

(4.5.71)

where, in the second step, we used the induction hypothesis. In the third step we used that
the integral factors by the �nite range property of Ck+1. Evaluation for ϕ ≡ 0 shows that the
constants must satisfy cX∪Y = cXcY which implies AX∪Y

k:k+1 = AX
k:k+1 + AY

k:k+1. The equality
cX∪Y = cXcY can also checked explicitly. Using (4.5.13) we can rewrite

c2
Xc

2
Y = det(1− C

1
2AX

k C
1
2 ) det(1− C

1
2AY

k C
1
2 )

= det(1− C
1
2 (AX

k +AY
k )C

1
2 + C

1
2AX

k CA
Y
k C

1
2 )

= det(1− C
1
2AX∪Y

k C
1
2 ) = c2

X∪Y .

(4.5.72)

Here we used the induction hypothesis for the linear term. The quadratic term vanishes because
AX
k CA

Y
k = 0 which we now show. Note that supp (AY

k ϕ) ⊂ X++. Indeed, the symmetry of
AY
k and the locality property iii) in Lemma 4.5.5 imply that (ψ,AY

k ϕ) = 0 for any ψ with
suppψ ∩ Y ++ = ∅. Since the kernel C(x) of C is constant for |x|∞ ≥ Lk+1/2 we �nd that
Cϕ(x) = c for some constant c for x /∈ BLk+1/2(suppϕ). Using dist(X++, Y ++) ≥ Lk+1/2 we

conclude that ∇CAY
k ϕ� ~E(X++) = 0 for all ϕ ∈ XN and therefore AX

k CA
Y
k ϕ = 0.

Now we prove ii). We �rst observe that the following operator inequality is true for h−2 < δ

δkM
X
k ≥ δk

∑
1≤|α|≤M

L2k(|α|−1)(∇∗)α1X+∇α ≥ δkh2
kG

X+

k ≥ GX
k . (4.5.73)

This implies (4.5.66) for k = 0. For k ≥ 1 the monotonicity of AX
k−1:k in X, the positivity of

MX
k , and the additivity property (4.5.68) of MX

k imply

AX∪Y
k = A

(X∪Y )∗

k−1:k + δkM
X∪Y
k ≥ AX∗

k−1:k + δkM
X
k + δkM

Y
k ≥ AX

k +GY
k . (4.5.74)

It remains to prove (4.5.67). Note that δk+1h
2
k+1 = δh2 ≥ 8. Similar to (4.5.73) we conclude

that for U ∈ Pk+1

δk+1M
U
k+1 ≥ δk+1

∑
1≤|α|≤M

L2(k+1)(|α|−1)(∇∗)α1U+∇α ≥ δk+1h
2
k+1G

U+

k+1 ≥ 8GU+

k+1. (4.5.75)

Recall that by (4.4.54) we have X ⊂ X∗ ⊂ U∗ if U = π(X). Together with (4.5.75) this implies

AU
k+1 = AU∗

k:k+1 + δk+1M
U
k+1 ≥ AX

k:k+1 + 8GU+

k+1 ≥ AX
k:k+1 + 2GU+

k (4.5.76)

where we used in the last step that h2
k+1 = 4h2

k and therefore 4GX
k+1 ≥ GX

k . Note that in the

last expression the operation U+ in GU+

k is still on scale k + 1.
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4.5.5 Consistency of the weights under R
(q)
k+1

In this subsection we prove the necessary bounds that imply the integration property of the
weights ix) and x) in Theorem 4.5.1. They follow from a Gaussian integration stated in (4.5.13)

with the operators AX
k and the covariances C(q)

k+1.

Lemma 4.5.7. Under the same assumptions as in Theorem 4.5.1 with δ and λ as in Lemma 4.5.5
the operators AX

k satisfy the following additional properties:

i) Let ρ = (1 + ζ)
1
3 − 1. There is a constant AP depending on ζ, and in addition on L if

d = 2, and a constant κ = κ(L) such that for any k-polymer X and q ∈ Bκ = {q ∈
R(d×m)×(d×m)

sym | |q| < κ} the following estimate holds

det

(
1− (1 + ρ)

(
C

(q)
k+1

)1/2
AX
k

(
C

(q)
k+1

)1/2
)−1/2

≤
(
AP
2

)|X|k
. (4.5.77)

For blocks X ∈ Bk the same estimate holds for a constant AB which does not depend on L.

ii) Integration property: Let AP and ρ be the constants from i). Then

ˆ
XN

e
1+ρ

2
(AXk (ϕ+ξ),ϕ+ξ) µ

(q)
k+1(dξ) ≤

(
AP
2

)|X|k
e

1+ρ
2

(AXk:k+1ϕ,ϕ) (4.5.78)

for any polymer X and the same bound with AP replaced by AB holds for any block X ∈ Bk.

Proof. The statement i) can be proved similarly to Lemma 5.3 in [4]. We rely on the abstract
Gaussian calculus sketched at the beginning of this section. One di�culty is the fact that we
need to renormalise the covariance. Hence we later need the integration property ii) not only for

µ
(0)
k+1 but also for q in a small neighbourhood Bκ(0). As in Section 4.4.1 we impose the condition

κ ≤ ω0/2. This condition ensures that the �nite range decomposition of the covariance C(q) is
de�ned for q ∈ Bκ under the assumption (4.4.10) on Q.

The �rst step is to bound the spectrum of the operator (C
(q)
k+1)

1
2AX

k (C
(q)
k+1)

1
2 . This is a

necessary condition for the convergence of the integral in (4.5.78) and it is also needed to bound

the determinant. We show that the covariance operators C
(q)
k+1 and C

(0)
k+1 are comparable for

small q. Namely, for a su�ciently small neighbourhood Bκ of the origin, the inequality C
(q)
k+1 ≤

(1 + ρ)C
(0)
k+1 holds for q ∈ Bκ. Since both operators are block-diagoinal in the Fourier space, it

is su�cient to show the estimate for all Fourier modes. Indeed, we observe that for p ∈ T̂N and
q satisfying |q| < ω0/2, the bound (4.4.17) with ` = 1 implies∣∣∣Ĉ(q)

k+1(p)− Ĉ(0)
k+1(p)

∣∣∣ ≤ ˆ 1

0

∣∣∣∣ d

dt
Ĉ(tq)
k+1(p)

∣∣∣∣ dt ≤ |q|K1L
4(d+ñ)+2 1∣∣∣(Ĉ(0)

k+1(p))−1
∣∣∣ . (4.5.79)

From this and the bound Id/|A−1| ≤ A, we infer that

Ĉ(q)
k+1(p)− Ĉ(0)

k+1(p) ≤ |q|K1L
4(d+ñ)+2Ĉ(0)

k+1(p). (4.5.80)

The claim now follows for q ∈ Bκ where

κ = min(ρL−4(d+ñ)−2/K1, ω0/2). (4.5.81)



130 Renormalisation group analysis of gradient models

Note that here, the lower bounds for the �nite range decomposition are essential. We can rewrite
C

(q)
k+1 ≤ (1 + ρ)C

(0)
k+1 equivalently as

(C
(q)
k+1)

1
2 (C

(0)
k+1)−1(C

(q)
k+1)

1
2 ≤ (1 + ρ). (4.5.82)

The constants ζk that appear in Lemma 4.5.5 satisfy the inequality ζk ≥ ζ, and we assumed
ζ ∈ (0, 1/4). Thus we have ρ ∈ (0, 1/4). Using this, the bounds (4.5.51) and (4.5.82), for X ∈ Pk
we estimate

(1 + ρ)
(
C

(q)
k+1

) 1
2
AX
k

(
C

(q)
k+1

) 1
2 ≤ (1 + ρ)

1 + ζk

(
C

(q)
k+1

) 1
2
(
C

(0)
k+1

)−1 (
C

(q)
k+1

) 1
2

(p)

≤ (1 + ρ)2

(1 + ρ)3
< 1− ρ

2
.

(4.5.83)

Therefore we have shown that the determinant in (4.5.77) is non-vanishing.

To complete the proof of (4.5.77), we bound the trace of (C
(q)
k+1)

1
2AX

k (C
(q)
k+1)

1
2 . Recall that

the operators C
(q)
k+1 and AX

k can be extended to VN so that they annihilate constant �elds.
This extension does not change the trace. Let ηX : TN → R be a cut-o� function such that
ηX�X++ = 1, supp(η) ⊂ X+++, and ηX satis�es the smoothness estimate

|∇lηX | ≤ ΘL−lk (4.5.84)

for l ≤ 2M where Θ does not depend on L or X. We use mηX to denote the operator of
multiplication by ηX . First we note that

mηXA
X
k mηX = AX

k (4.5.85)

because AX
k is self adjoint and depends only on ϕ(x) for x ∈ X++. We observe that, for

symmetric operators, the inequality A ≥ B implies that TrA ≥ TrB which by (4.5.51) yields

Tr
(
C

(q)
k+1

) 1
2
AX
k

(
C

(q)
k+1

) 1
2

= Tr
(
C

(q)
k+1

) 1
2
mηXA

X
k mηX

(
C

(q)
k+1

) 1
2

≤ 1

λ
Tr
(
C

(q)
k+1

) 1
2
mηXMkmηX

(
C

(q)
k+1

) 1
2

=
1

λ
TrmηXMkmηXC

(q)
k+1.

(4.5.86)

Recall that λ from (4.5.55) does not depend on L.
The remaining part of the proof is, up to minor details, the same as in [4, Lemma 5.3]. For

the trace calculation we will use the orthonormal basis eix(y) = δyxei of VN , where ei ∈ Rm is a
standard basis vector. Note that(

mηXC
(q)
k+1e

i
x0

)
(x) = ηX(x)C(q)

k+1(x− x0)ei. (4.5.87)

For the evaluation of the operator Mk, we need the product rule for discrete derivatives that
reads

∇i(fg) = ∇ifSig + Sif∇if (4.5.88)

where

(Sif)(x) :=
1

2
f(x) +

1

2
f(x+ ei). (4.5.89)
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The operators Si commute with discrete derivatives and we use the usual multiindex notation
Sα for α ∈ Nd

0. This implies that

MkmηXC
(q)
k+1e

i
x0

(·) =

=
∑
|α|≤M

L2k(|α|−1)
∑

β1+β2=α
γ1+γ2=α

Kβ1,β2
γ1,γ2

(Sβ2)∗Sγ2(∇β1)∗∇γ1η(·)(Sβ1)∗Sγ1(∇β2)∗∇γ2C(q)
k (· − x0)ei

(4.5.90)

where Kβ1,β2
γ1,γ2 is a combinatorial constant. Note that ‖Si‖ = 1 where, only here, we use ‖·‖ to

denote the operator norm with respect to the maximum norm ‖·‖∞ on VN . The bound (4.4.13)

for the discrete derivatives of C(q)
k+1 and the choice of n ≥ 2M for the regularity parameter of the

�nite range decomposition, jointly imply that there is a constant CM = CM (L) > 0 such that

sup
x∈TN

|∇αC(q)
k+1(x)| ≤ CML−k(d−2+|α|) for all |α| ≤ 2M , (4.5.91)

where CM is independent of L for d > 2, but CM ∝ ln(L) for d = 2. Using this combined with
(4.5.84) and (4.5.91), we get

‖MkmηXC
(q)
k+1e

i
x0
‖∞

≤
∑
|α|≤M

L2k(|α|−1)
∑

β1+β2=α
γ1+γ2=α

Kβ1,β2
γ1,γ2
‖(Sβ2)∗Sγ2(∇β1)∗∇γ1η‖∞‖(Sβ1)∗Sγ1(∇β2)∗∇γ2C(q)

k+1(· − x0)ei‖∞

≤
∑
|α|≤M

L2k(|α|−1)
∑

β1+β2=α
γ1+γ2=α

Kβ1,β2
γ1,γ2
‖∇β1+γ1η‖∞‖∇β2+γ2C(q)

k+1e
i‖∞

≤
∑
|α|≤M

L2k(|α|−1)
∑

β1+β2=α
γ1+γ2=α

Kβ1,β2
γ1,γ2

ΘL−k(|β1|+|γ1|)CML
−k(d−2+|β2|+|γ2|)

≤ CMΘK
M∑
l=1

L2k(l−1)L−k(d−2+2l) ≤ CMΘKML−kd = ΩL−kd.

(4.5.92)

Here K is a purely combinatorial constant depending on the Kβ1,β2
γ1,γ2 .

Using (4.5.86) and (4.5.92), this implies

Tr
(
C

(q)
k+1

) 1
2
AX
k

(
C

(q)
k+1

) 1
2 ≤ 1

λ

∑
x∈ΛN

m∑
i=1

(eix,mηXM
ΛN
k mηXC

(q)
k+1e

i
x)

≤ 1

λ

∑
x∈supp(ηX)

m∑
i=1

‖MΛN
k mηXC

(q)
k+1e

i
x‖∞ ≤

Ωm|X+++|L−kd

λ
≤ Ωm(7R+ 1)d

λ
|X|k = Θ1|X|k.

(4.5.93)

where Θ1 depends on L if d = 2. The factor (7R+1)d arises because X+++ = (X+[−3R, 3R]d)∩
TN for X ∈ P0. It could be strengthened to 7d for k ≥ 1.

The appearance of an L-dependent term seems to be only an artefact of the use of a cuto�
function. Let us show how we can get rid of the L-dependence if X is a single block. This shows
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the second part of the �rst statement. First, let us consider 0 ≤ k ≤ N−1. Note that by (4.4.13)
there is a constant C ′M independent of L such that

sup
x∈TN

|∇αCk+1(x)| ≤ C ′ML−k(d−2+|α|) for all 1 ≤ |α| ≤ 2M. (4.5.94)

Consider the set

T =
{

0, 2Lk, 4Lk · · · , (L(N−k) − 3)Lk
}d
. (4.5.95)

Then the blocks τa(B) and τb(B) with a, b ∈ T, a 6= b, have distance at least Lk for B ∈ Bk.
Therefore we �nd using properties ii), iv), and v) from Lemma 4.5.5 and i) from Lemma 4.5.6

TrC
1
2
k+1A

B
k C

1
2
k+1 =

1

|T |
∑
a∈T

TrC
1
2
k+1A

τa(B)
k C

1
2
k+1 ≤

1

|T |
TrC

1
2
k+1A

ΛN
k C

1
2
k+1 ≤

1

λ|T |
TrC

1
2
k+1MkC

1
2
k+1

(4.5.96)

This trace is estimated similarly to (4.5.92) using (4.5.94) as follows

1

λ|T |
TrC

1
2
k+1MkC

1
2
k+1 =

1

λ|T |
∑
x∈TN

m∑
i=1

(eix,MkCk+1e
i
x) ≤ mLNd

λ|T |
‖MkCk+1‖∞

≤ KmLNd

λ|T |

2M∑
l=1

L2l(k−1)C ′ML
−k(d−2+2l) ≤

C ′MKmL
Nd

λ|T |
L−kd,

(4.5.97)

where K denotes again a combinatorial constant and none of the constants depends on L. Using
the bound |T | = (LN−k − 1)d/2d ≥ 4−dL(N−k)d we �nd that there is a constant Θ2 independent
of L such that for all blocks B ∈ Bk

TrC
1
2
k+1A

B
k C

1
2
k+1 ≤ Θ2|B|k = Θ2. (4.5.98)

Note that for k = N there is only one block and we can use the same argument with T = {0}.
The estimate for the determinant is now standard. We denote the eigenvalues of the operator

(1 + ρ)
(
C

(q)
k+1

) 1
2
AX
k

(
C

(q)
k+1

) 1
2
by λi. Recall that ρ = ρ(ζ) < 1/4 is a constant and the bound

(4.5.83) on the spectrum implies that λi ∈ [0, 1− ρ/2]. Concavity of the logarithm implies that
ln(1− x) ≥ ln(ρ/2)

1−ρ/2 x = − ln(2/ρ)
1−ρ/2 x for x ∈ [0, 1− ρ/2]. Using this we obtain the bound
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=
∑
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) 1
2
. (4.5.99)

From (4.5.93) we conclude that, for AP ≥ 2 exp(Θ1(1 + ρ) ln(2/ρ)/(2(1− ρ/2)),
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1− (1 + ρ)
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2
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(1 + ρ) Tr
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) 1
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AX
k

(
C

(q)
k+1

) 1
2

≥ −2|X|k ln

(
AP
2

)
(4.5.100)
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which implies the claim (4.5.77). Similarly we �nd the same statement for blocks B ∈ Bk for the
constant AB ≥ 2 exp(Θ2(1 + ρ) ln(2/ρ)/(2(1− ρ/2)) which does not depend on L.

The integration property ii) follows directly from Gaussian calculus (which is justi�ed because
of (4.5.83)) and the previous point i),

ˆ
XN
e

1+ρ
2

(AXk (ϕ+ξ),ϕ+ξ) µ
(q)
k+1(dξ)

=

(
det 1− (1 + ρ)

(
C
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) 1
2
AX
k

(
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(q)
k+1

) 1
2

)− 1
2

exp

(
1

2

(
ϕ, (((1 + ρ)AX

k )−1 − C
(q)
k+1)−1ϕ

))
≤
(
AP
2

)|X|k
exp

(
1 + ρ

2
(ϕ, ((AX

k )−1 − (1 + ρ)2C
(0)
k+1)−1ϕ)

)(
AP
2

)|X|k
e

1+ρ
2

(ϕ,AXk:k+1ϕ),

(4.5.101)

where we again used the monotonicity of the inversion combined with the bound (1 + ρ)C
(q)
k+1 ≤

(1 + ρ)2C
(0)
k+1 ≤ (1 + ζ)C

(0)
k+1 for q ∈ Bκ. If X is a block we can replace AP by AB.

Finally, we prove the property Theorem 4.5.1viii).

Lemma 4.5.8. Under the same assumptions as in Theorem 4.5.1 and with δ and λ as in
Lemma 4.5.5, the norm for the �elds can be bounded in terms of the weights as follows

i) Interaction with the �eld norm: For any polymer X ∈ Pk+1 the bound

|ϕ|2k+1,X ≤ (ϕ,AX
k+1ϕ)− (ϕ,AX

k:k+1ϕ) (4.5.102)

holds if h ≥ h0 = (M ′32M ′S/δ)1/2 := cdδ
−1/2 where M ′ = bd2c+ 1, S = S(d) is the Sobolev

constant in Lemma 4.5.9, and δ is the constant from Lemma 4.5.5.

Proof. This property follows from the discrete Sobolev inequality stated in the next lemma.

Lemma 4.5.9. Let B` = [0, `]d ∩ Zd and M ′ = bd2c+ 1. For f : B` → R we de�ne the norm

‖f‖B`,2 =

∑
x∈B`

|f(x)|2
 1

2

. (4.5.103)

Then the following Sobolev inequality holds for some constant S(d) > 0

max
x∈B`

|f(x)| ≤ S(d)`−
d
2

∑
0≤|α|≤M ′

‖(`∇)αf‖2 (4.5.104)

where we assume that f is de�ned in a neighbourhood of B` such that all discrete derivatives
exist.

Proof. Sobolev already considered such inequalities on lattices, see [142] for a similar statement.
Also, a similar claim with d derivatives appeared in [43][Proposition B2] and [44][Lemma 6.6].
For the statement above a proof can be found, e.g., in [4, Appendix A].
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We apply this lemma to the function ∇αϕi for 1 ≤ |α| ≤ pΦ = bd/2c + 2 and the set B∗

for B ∈ Bk+1. Using that B ⊂ B∗ ⊂ B+ for B ∈ Bk+1 we obtain that the side-length of B∗ is
contained in [Lk+1, 3Lk+1] and therefore

max
x∈B∗

|∇αϕi(x)|2 ≤M ′S(d)(Lk+1)−d
∑

0≤|β|≤M ′
‖(3Lk+1∇)β∇αϕi‖2B∗,2

≤M ′32M ′S(d)L−(k+1)d
∑

1≤|γ|≤M

L2(|γ|−|α|)(k+1) (∇γϕi,1B∗∇γϕi)

≤M ′32M ′S(d)L−(k+1)(d+2|α|−2)(ϕ,MB
k+1ϕ).

(4.5.105)

Here we used that M = M ′ + pΦ = 2bd/2c + 3 by (4.5.1) and the de�nition of MX
k in (4.5.2).

Note that the de�nition of MB
k involves the term 1B+ ≥ 1B∗ . Using the de�nition (4.4.74) of

the primal norm we deduce

|ϕ|2k+1,B =
1

h2
k+1

max
x∈B∗

max
1≤i≤m

max
1≤|α|≤pΦ

L(k+1)(d−2+2j)|∇αϕ(x)|2

≤ M ′32M ′Ξ(d)

h2
k+1

(ϕ,MB
k+1ϕ)

≤ δk+1(ϕ,MB
k+1ϕ)

(4.5.106)

provided that h2 ≥M ′32M ′S(d)/δ. We can now easily conclude for a general polymer X ∈ Pk+1,

|ϕ|2k+1,X = max
B∈B(X)

|ϕ|2k+1,B

≤
∑

B∈B(X)

δk+1(ϕ,MB
k+1ϕ)

= δk+1(ϕ,MX
k+1ϕ) = (ϕ,AX

k+1ϕ)− (ϕ,AX
k:k+1ϕ).

(4.5.107)

4.6 Properties of the norms

In this section we collect some bounds for the norms we de�ned before. In particular we
establish submultiplicativity of the norms as well as bounds for the renormalisation maps Rk

and the projection Π2. Here and in the following section we assume that for any given L our
norms are de�ned using weights as in Theorem 4.5.1 with ζ, M , pΦ, n, and ñ as indicated in
Section 4.3.2.

4.6.1 Pointwise properties of the norms

Specialising the general properties of norms on Taylor polynomials described in Appendix 4.A
to the (injective) tensor norms de�ned in (4.4.77) and the dual norm in (4.4.84) we obtain the
following result.

Recall that ~E(X∗) denotes the set of directed edges in the small neighbourhood X∗ of a
polymer X ∈ Pk. Lemma 4.4.3 states that functional F : Pk × VN → R is local and shift
invariant if and only if for each X ∈ Pk the map ϕ 7→ F (X,ϕ) is measurable with respect to the
σ-algebra generated by ∇ϕ� ~E(X∗). Recall also that we always assume r0 ≥ 3.
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Lemma 4.6.1. Let X ∈ Pk, F,G ∈ Cr0(VN ) and assume that F and G are measurable with
respect to the σ-algebra generated by ∇ϕ� ~E(X∗). Then

|FG|k,X,Tϕ ≤ |F |k,X,Tϕ |G|k,X,Tϕ (4.6.1)

and

|F |k+1,X,Tϕ ≤ (1 + |ϕ|k+1,X)3
(
|F |k+1,X,T0 + 16L−

3
2
d sup

0≤t≤1
|F |k,X,Ttϕ

)
. (4.6.2)

Proof. The �rst inequality will follow from Proposition 4.A.9 applied to a certain quotient space.
In the following we will de�ne this quotient space and show that it is a Banach space on which
the Taylor polynomials of F and G act. We �rst note that |ψ|k,X = 0 implies that ∇ψ� ~E(X∗) = 0

and therefore by assumption F (ϕ+ ψ) = F (ϕ) for ϕ ∈ VN . Hence, F and G have the property
that (Tayϕ F )(ϕ̇ + ψ̇) = (Tayϕ F )(ϕ̇) and (TayϕG)(ϕ̇ + ψ̇) = (TayϕG)(ϕ̇) for all ϕ̇ ∈ VN and

all ψ̇ ∈ VN with |ψ̇|k,X = 0
This implies that the norms in (4.6.1) are �nite (see the remark after (4.4.84)) and that the

Taylor polynomials act on the quotient space VN/∼ and on ⊕r0r=0(VN/∼)⊗r where ϕ ∼ ξ if and
only if |ξ − ϕ|k,X = 0. Moreover | · |k,X is a norm on this quotient space. Thus the assertion
follows from Proposition 4.A.9.

Similarly for the second inequality we again use that F acts on the quotient space VN/∼
where ϕ ∼ ξ if |ϕ− ξ|k,X = 0. Since |ϕ|k,X = 0⇔ |ϕ|k+1,X = 0 both | · |k,X and | · |k+1,X de�ne
norms on VN/∼. We may thus apply the two norm estimate (4.A.51) in Proposition 4.A.11 with
the norms |g|k,X and |g|k+1,X and r = 2. It follows directly from the de�nition of the norms
|g|j,X in (4.4.76), (4.4.77) and (4.4.78) (and the fact that |αi| ≥ 1) that

|g(r)|k,X ≤ 2rL−r
d
2 |g(r)|k+1,X ∀g(r) ∈ V⊗rN . (4.6.3)

Here we used in particular that hk+1/hk = 2. Thus the quantity ρ(3) in Proposition (4.A.11)
satis�es

ρ(3) ≤ 16L−
3
2
d. (4.6.4)

Therefore the two norm estimate (4.A.51) with r = 2 implies (4.6.2).

Lemma 4.6.2. Let ϕ ∈ VN . Then

1. for any F1, F2 ∈M(Pk) and any (not necessarily disjoint) X1, X2 ∈ Pk, we have

|F1(X1)F2(X2)|k,X1∪X2,Tϕ ≤ |F1(X1)|k,X1,Tϕ |F2(X2)|k,X2,Tϕ ; (4.6.5)

2. for any F ∈M(Pk) and any polymer X ∈ Pk the bound

|F (X)|k+1,π(X),Tϕ ≤ |F (X)|k,X∪π(X),Tϕ ≤ |F (X)|k,X,Tϕ (4.6.6)

holds if L ≥ 2d +R.

Proof. In view of (4.6.1) (applied with X = X1 ∪X2, F = F1 and G = F2) the �rst inequality
follows from the bound

|F (X)|k,X∪Y,Tϕ ≤ |F (X)|k,X,Tϕ (4.6.7)
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which itself is a consequence of the estimate |ϕ|k,X ≤ |ϕ|k,X∪Y .
The second inequality in (4.6.6) follows from (4.6.7). To prove the �rst inequality in (4.6.6)

it is su�cient to show that for any polymer X ∈ Pk and any ϕ ∈ VN the primal norms satisfy
the estimate

|ϕ|k,X∪π(X) ≤ |ϕ|k+1,π(X) (4.6.8)

for L ≥ 2d +R. Note that by (4.4.54) the condition L ≥ 2d +R implies that X∗ ⊂ π(X)∗. This
fact and the bound

h−1
k+1L

(k+1)( d−2
2

+|α|) ≥ h−1
k Lk( d−2

2
+|α|)L

2
≥ h−1

k Lk( d−2
2

+|α|) (4.6.9)

for |α| ≥ 1 imply (4.6.8).

4.6.2 Submultiplicativity of the norms

Lemma 4.6.3. Assume that L ≥ 2d+3 + 16R odd, and h ≥ h0(L) where h0(L) is speci�ed in
(4.5.17) in Theorem 4.5.1. Let K ∈M(Pk) factor at scale 0 ≤ k ≤ N − 1 and let F, F1, F2, F3 ∈
M(Bk). Then the following bounds hold:

i) For every X ∈ Pk

‖K(X)‖k,X ≤
∏

Y ∈C(X)

‖K(Y )‖k,Y (4.6.10)

‖K(X)‖k:k+1,X ≤
∏

Y ∈C(X)

‖K(Y )‖k:k+1,Y . (4.6.11)

More generally the same bounds hold for any decomposition X =
⋃
i Yi such that the Yi are

strictly disjoint.

ii) For every X,Y ∈ Pk with X and Y disjoint

‖K(Y )FX‖k,X∪Y ≤ ‖K(Y )‖k,Y |||F |||
|X|k
k . (4.6.12)

iii) For any polymers X,Y, Z1, Z2 ∈ Pk such that X ∩ Y = ∅, Z1 ∩ Z2 = ∅, and Z1, Z2 ⊂
π(X ∪ Y ) ∪X ∪ Y

‖FZ1
1 FZ2

2 FX3 K(Y )‖k+1,π(X∪Y ) ≤ ‖K(Y )‖k:k+1,Y |||F1||||Z1|k
k |||F2||||Z2|k

k |||F3||||X|kk . (4.6.13)

iv) For B ∈ Bk

|||1(B)|||k,B = 1. (4.6.14)

Proof. The proof is the same as in [4] with the di�erence that the de�nition of the weight functions
changed. The submultiplicativity from Lemma 4.6.2 reduces the proof to the factorisation of the
weight functions stated in Theorem 4.5.1 iii). Indeed, for i) we observe that

‖K(X)‖k,X = sup
ϕ∈VN

|K(X)|k,X,Tϕ
wXk (ϕ)

= sup
ϕ∈VN

∣∣∣∏Y ∈C(X)K(Y )
∣∣∣
k,X,Tϕ∏

Y ∈C(X)w
Y
k (ϕ)

≤ sup
ϕ∈VN

∏
Y ∈C(X)

|K(Y )|k,Y,Tϕ
wYk (ϕ)

≤
∏

Y ∈C(X)

‖K(Y )‖k,Y .

(4.6.15)
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The same proof applies for a general decomposition X =
⋃
i Yi into strictly disjoint sets Yi. To

prove the estimate for the ‖·‖k:k+1,X norm it su�ces to use property iv) in Theorem 4.5.1 instead
of property iii). The proof of ii) relies on Theorem 4.5.1 vi) which together with (4.6.5) implies

‖K(Y )FX‖k,X∪Y ≤ sup
ϕ∈VN

|K(Y )|k,Y,Tϕ
∏
B∈Bk(X) |F (B)|k,B,Tϕ

wYk (ϕ)WX
k (ϕ)

≤ sup
ϕ∈VN

|K(Y )|k,Y,Tϕ
wXk (ϕ)

∏
B∈Bk(X)

|F (B)|k,B,Tϕ
WB
k (ϕ)

≤ ‖K‖k,X |||F |||
|X|k
k .

(4.6.16)

To prove iii) we use property vii) in Theorem 4.5.1 and estimate (4.6.6) to get

‖FZ1
1 FZ2

2 FX3 K(Y )‖k+1,π(X∪Y ),Tϕ ≤ sup
ϕ∈VN

|FZ1
1 FZ2

2 FX3 K(Y )|k,X∪Y ∪π(X∪Y ),Tϕ

wX∪Yk:k+1(ϕ)
(
W

π(X∪Y )+

k (ϕ)
)2 . (4.6.17)

where for U ∈ Pk+1 the neighbourhood U+ is given by U+ = U + [−Lk+1, Lk+1]d ∩ TN , see
(4.4.34). Now Theorem 4.5.1 i) implies that wX∪Yk:k+1 ≥ wYk:k+1. Moreover we have X ⊂ π(X ∪
Y ) ∪ X ∪ Y , Z1 ∪ Z2 ⊂ π(X ∪ Y ) ∪ X ∪ Y and Z1 ∩ Z2 = ∅. Thus the factorisation property
(4.5.22) of the strong weight function yields(

W
π(X∪Y )+

k (ϕ)
)2
≥WZ1∪Z2

k (ϕ)WX
k (ϕ) = WZ1

k (ϕ)WZ2
k (ϕ)WX

k (ϕ). (4.6.18)

Together with (4.6.5) we get

‖FZ1
1 FZ2

2 FX3 K(Y )‖k+1,π(X∪Y ),Tϕ

≤ sup
ϕ∈VN

∏
B∈Bk(Z1) |F1(B)|k,B,Tϕ

∏
B∈Bk(Z2) |F2(B)|k,B,Tϕ

∏
B∈Bk(X) |F3(B)|k,B,Tϕ |K(Y )|k,Y,Tϕ

WZ1
k (ϕ)WZ2

k (ϕ)WX
k (ϕ)wYk:k+1(ϕ)

≤ |||F1||||Z1|k |||F2||||Z2|k |||F3||||X|k‖K(Y )‖k:k+1,Y

.

(4.6.19)

where we used the de�nition of the norms in the last inequality. The last property is clear from
the de�nitions.

4.6.3 Regularity of the integration map

The next lemma gives the bound for the renormalisation maps R(q)
k . Moreover it states

regularity of the renormalisation map with respect to the parameter q. This is one of the major
di�erences compared to [4] where the authors have to deal with a loss of regularity for the q
derivatives. The regularity we obtain here is a consequence of the new �nite range decomposition
from Theorem 4.4.1 that was constructed in [54].

Lemma 4.6.4. Assume that L ≥ 2d+3 + 16R and let AP = AP(L) ≥ 1, κ = κ(L) > 0 be the
constants from from Theorem 4.5.1. Then for q ∈ Bκ and X ∈ Pk

‖(R(q)
k+1K)(X)‖k:k+1,X ≤ AP|X|k‖K(X)‖k,X . (4.6.20)

Let X ∈ Pk be a polymer such that π(X) ∈ Pc
k+1. Then for ` ≥ 1 and q ∈ Bκ
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sup
|q̇|≤1
‖∂`q(R

(q)
k+1K)(X)(q̇, . . . , q̇)‖k:k+1,X ≤ C`(L)AP

|X|k‖K(X)‖k,X . (4.6.21)

The same bounds hold with AP replaced by AB if X ∈ Bk is a single block.

Proof. We �rst consider ` = 0. Here we argue similar to [4]. Since Taylor expansion commutes
with convolution we have

|(R(q)
k+1K)(X)|k,X,Tϕ ≤

ˆ
XN
|K(X)|k,X,Tϕ+ξ

µ
(q)
k+1(dξ). (4.6.22)

It follows that

‖(R(q)
k+1K)(X)‖k:k+1,X ≤ sup

ϕ
w−Xk:k+1(ϕ)

ˆ
|K(X)|k,X,Tϕ+ξ

µ
(q)
k+1(dξ)

≤ sup
ϕ
w−Xk:k+1(ϕ)

ˆ
‖K(X)‖k,X wXk (ϕ+ ξ)µ

(q)
k+1(dξ)

≤
(
AP
2

)|X|k
‖K(X)‖k,X

(4.6.23)

where we used Theorem 4.5.1 ix) in the last step. Using Theorem 4.5.1 x) AP can be replaced
by AB for single blocks.

For the derivatives we argue similarly. First we bound the diameter of X. Note that we have
B ∩X 6= ∅ for any block B ∈ Bk+1(π(X)) by de�nition of π. This implies |π(X)|k+1 ≤ |X|k. By
(4.4.54) we have X∗ ⊂ π(X)∗. We get using (4.4.32)

diam(X∗) ≤ diam(π(X)∗) ≤ Lk+1|π(X)|k+1 + 2(2d +R)Lk ≤ 2Lk+1|X|k. (4.6.24)

Next we claim that for ` ≥ 1, p > 1 and D = diam(X∗)

sup
|q̇|≤1

∣∣∣∣ d`dt` |t=0
R(q+tq̇)K(X)

∣∣∣∣
k,X,Tϕ

≤ Cp,`(L)(DL−k)
d`
2

(ˆ
XN
|K(X)|pk,X,Tϕ+ξ

µ
(q)
k+1(dξ)

)1/p

(4.6.25)

Indeed we have〈
Tayϕ

d`

dt` |t=0
(R(q+tq̇)K)(X,ϕ), g

〉
=

d`

dt` |t=0

ˆ
XN
〈Tayϕ+ξK(X), g〉 µ(q+tq̇)

k+1 (dξ). (4.6.26)

Denote the integrand in (4.6.26) by F (ξ) = Fϕ,g(ξ) and observe that we have the bound |F (ξ)| ≤
|K(X)|k,X,Tϕ+ξ

|g|k,X . Passing to absolute values and using Theorem 4.4.2 with Q1(z) being the
generator of the quadratic form z 7→ −(q̇z∇, z∇) we get∣∣∣〈Tayϕ

d`

dt` |t=0
R(q+tq̇)K(X), g

〉∣∣∣p
≤Cp`,p(L)(DL−k)

d`p
2 ‖F‖p

Lp(X ,µ(q)
k+1)
‖q̇‖p`

≤Cp`,p(L)(DL−k)
d`p
2

ˆ
XN
|K(X)|pk,X,Tϕ+ξ

µ
(q)
k+1(dξ) |g|pk,X ‖q̇‖

p`.

Taking the supremum over g with |g|k,X ≤ 1 and over q̇ with ‖q̇‖ ≤ 1 we get (4.6.25).
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Now (4.6.24) implies that DL−k ≤ 2L|X|k. Using that xd`/22−x is bounded and (4.6.25) we
see that there is another constant C ′`,p(L) such that

sup
‖q̇‖≤1

∣∣∣∣ d`dt` |t=0
R(q+tq̇)K(X)

∣∣∣∣
k,X,Tϕ

≤ C ′`,p(L)2|X|k‖K(X)‖k,X
(ˆ
|wXk (ϕ+ ξ)|pµ(q)

k+1(dξ)

) 1
p

.

(4.6.27)

Now we set p = 1 + ρ where ρ = (1 + ζ)1/3 − 1. Then Theorem 4.5.1 ix) implies

sup
‖q̇‖≤1

∣∣∣∣ d`dt` |t=0
R(q+tq̇)K(X)

∣∣∣∣
k,X,Tϕ

≤ C`(L)A
|X|k
P ‖K(X)‖k,X wXk:k+1(ϕ) (4.6.28)

The conclusion follows by multiplying with w−Xk:k+1(ϕ) and then taking the supremum over ϕ.
Again, using Theorem 4.5.1 x) we can replace AP by AB for single blocks.

4.6.4 The projection Π2 to relevant Hamiltonians

In this subsection we introduce the projection Π2 to relevant Hamiltonians and prove its
key properties. The argument is based on a natural duality between relevant monomials in the
�elds and monomials on Zd. The projection Π2 is a very special case of the operator loc (in
fact locB) introduced by Brydges and Slade [45], except that we do not need to symmetrise
between forward and backward derivatives. Since our situation is much simpler than the general
case considered in [45] we give a self-contained exposition, which follows the strategy in [45], for
the convenience of the reader. For d ≤ 3 a more simple-minded proof of the boundedness and
contraction properties of Π2 was given in Lemma 6.2 and Lemma 7.3 of [4]. This argument can
be extended to the case d > 3, but we prefer to follow the more elegant approach of [45]. As
pointed out in [45], related questions are discussed in the paper [36] by de Boor and Ron.

Regarding dependencies on the various parameters we recall our convention that we do not
indicate dependence on the �xed parameters described in Section 4.3. The parameter A does
not enter at all, so we only indicate dependence on L and h.For the contraction estimate which
involves norms on scales k and k + 1 we use that the ratio hk+1/hk is bounded, in fact with our
choice hk+1/hk = 2. Inspection of the proofs shows that the constants which appear in the rest
of this subsection depend only on the spatial dimension d the number of components m and the
parameter R = max(R0,M) where R0 is the range of the interaction and M = pΦ + bd/2c+ 1 =
2bd/2c+ 3.

We follow closely the notation of [45], with the following exception. Since we only deal with
forward derivatives we set

U = {e1, . . . , ed} ' {1, . . . , d}. (4.6.29)

In contrast, U is the set {±e1, . . . ,±ed} in [45]. We also drop various subscripts + which refer
to forward derivatives.

Relevant monomials in the �elds. Recall that we declared the following monomials to be
relevant.

� The constant monomial M∅({x})(ϕ) ≡ 1;

� the linear monomials Mi,α({x})(ϕ) := ∇i,αφ(x) := ∇αφi(x) for 1 ≤ |α| ≤ bd/2c+ 1;
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� the quadratic monomials M(i,α),(j,β)({x})(ϕ) = ∇αϕi(x)∇βϕj(x) for |α| = |β| = 1.

We introduced the corresponding index sets (recall that U = {e1, . . . , ed} ' {1, . . . , d})

v0 := {∅}, v1 := {(i, α) : 1 ≤ i ≤ m, α ∈ NU0 , 1 ≤ |α| ≤ bd/2c+ 1}, (4.6.30)

v2 := {
(
i, α), (j, β)

)
: 1 ≤ i, j ≤ m, α, β ∈ NU0 , |α| = |β| = 1, (i, α) ≤ (j, β)}. (4.6.31)

and v = v0 ∪ v1 ∪ v2. Here (i, α) ≤ (j, β) refers to any ordering on {1, . . . ,m} × {e1, . . . , ed},
e.g. lexicographic. We use ordered indices to avoid double counting since M(i,α),(j,β)({x})(ϕ) =
M(j,β),(i,α)({x})(ϕ).

In the following we will always consider levels k with

0 ≤ k ≤ N − 1. (4.6.32)

For a k-block B and m ∈ v we de�ne

Mm(B) =
∑
x∈B

Mm({x}). (4.6.33)

We denote by V = V0 ⊕ V1 ⊕ V2 the space of relevant Hamiltonians, with

V0 = R, V1 = span{Mm(B) : m ∈ v1}, V2 = span{Mm(B) : m ∈ v2}. (4.6.34)

Given a local functional K(B) we want to extract a 'relevant' part H = Π2K(B) ∈ V in
such a way that the functional K(B) − Π2K(B) measured in the next scale norm ‖ · ‖k+1,B is
much smaller than K(B) measured in the ‖ · ‖k,B norm, see Lemma 4.6.9 below. This is not
true without extraction as can be seen by considering the constant functional. In fact we need
to gain a factor which is small compared to L−d (to compensate the e�ect of reblocking which
combines Ld blocks on the scale k to a single block on the scale k + 1) and for this we need to
extract exactly the elements of V.

We will show that H = Π2K(B) can be characterised as follows. Let K(0) + K(1) + K(2)

denote the second order Taylor polynomial of K at 0 written as a sum of the constant, linear
and quadratic part. We will show that there exist unique H(i) ∈ Vi such that

H(0) =K(0); (4.6.35)

H(1)(ϕ) =K(1)(ϕ) for all ϕ such that ϕ�B+ is a polynomial of degree ≤ bd/2c+ 1; (4.6.36)

H(2)(ϕ) =K(2)(ϕ) for all ϕ such that ϕ�B+ is a linear map. (4.6.37)

Here the large set neighbourhood B+ was de�ned in (4.4.33). We then de�ne H = Π2K by
H = H(0) +H(1) +H(2).

We can write this in a more concise notation by using the dual pairing 〈K, g〉0 introduced in
(4.4.71) and (4.4.83). Before we do so we note that both H(ϕ) and K(B)(ϕ) depend only on
values of the �eld on the set B+ if L ≥ 2d +R (see Section 4.4.2).

Since k ≤ N − 1 the enlarged block B++ does not wrap around the torus TN for L ≥ 7 and
we can view B++ as a subset of Zd rather than of TN . Note that ∇αϕi(x) for |α| ≤ pΦ and
x ∈ B∗ only depends on ϕ�B++ for L ≥ 2d +R since by (4.4.36) B∗ ⊂ B+.

We will thus consider in this subsection the space of �elds

X = (Rm)B
++
/Nk,B (4.6.38)
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equipped with the norm

|ϕ|k,B =
1

hk
sup
x∈B∗

sup
1≤|α|≤pΦ

sup
1≤i≤m

Lk|α|Lk
d−2

2 |∇αϕi(x)| (4.6.39)

where

Nk,B = {ϕ ∈ (Rm)B
+

: |ϕ|k,B = 0}. (4.6.40)

Note that Nk,B contains in particular the constant functions.

Polynomials on Zd. We introduce a convenient basis for polynomials on Zd as follows. For
t ∈ Z and k ∈ N we de�ne the polynomial

t 7→
(
t

k

)
:=

t(t− 1) . . . (t− k + 1)

k!
(4.6.41)

and we extend this by
(
t
0

)
= 1 and

(
t
k

)
= 0 if k ∈ Z \ N0. Then ∇

(
t
k

)
=
(

t
k−1

)
where ∇ denotes

the one dimensional forward di�erence operator. For a multiindex α ∈ N{1,...,d}0 and z ∈ Zd de�ne

bα(z) =

(
z1

α1

)
. . .

(
zd
αd

)
. (4.6.42)

Then
∇βbα = bα−β. (4.6.43)

This relation leads to a natural duality between monomials in ∇ and polynomials on Zd. Finally
we set

b(i,α)(z) = bα(z)ei, (4.6.44)

where e1, . . . em is the standard basis of Rm, and

bm = bi,α ⊗ bj,β for m = ((i, α), (j, β)). (4.6.45)

We also de�ne the normalised symmetrised tensor products

fm = Nmbm = Nm
1

2

(
bi,α ⊗ bj,β + bj,β ⊗ bi,α

)
for m = ((i, α), (j, β)). (4.6.46)

where

N(i,α),(j,β) =

{
1 if (i, α) = (j, β),

2 if (i, α) 6= (j, β).
(4.6.47)

This agrees with the much more general de�nition Nm = |
→
Σ(m)|
|Σ0(m)| . in (3.9) of [45]. There

→
Σ(m)

denotes the group of permutation that �x the species and
→
Σ0 is the subgroup that �xes m =

(m1,m2). In our case there is only one species so that
→
Σ(m) is simply the group of permutations

of two elements and
→
Σ0(m) =

→
Σ(m) if m1 = m2 and

→
Σ0 = {id} otherwise.

We now de�ne the subspaces Pk ⊂ X⊗k of (equivalence classes of) functions by

P0 := R, P1 = span{b(i,α) : (i, α) ∈ v1}, P2 := span{fm : m ∈ v2}. (4.6.48)

and we set P = P0 ⊕ P1 ⊕ P2.
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De�nition and properties of the projection Π2.

Lemma 4.6.5. Let K ∈ M(Pc
k) and let B be a k-block. Then there exist one and only one

H ∈ V such that

〈H, g〉0 = 〈K(B), g〉0 ∀g ∈ P. (4.6.49)

We remark in passing that (4.6.49) is equivalent to (4.6.35)�(4.6.37). For H(0) we simply
evaluate at ϕ = 0, for H(1) we use test functions ϕ such that ϕB+ is a polynomial of degree
bd/2c + 1. For H(2) the implication (4.6.49) =⇒ (4.6.37) follows by taking g = ϕ ⊗ ϕ for
a linear function ϕ. For the converse implication one can use polarisation, i.e., the identity
d
ds

d
dt |s=t=0

(H(2) −K(B))(sbi,α + tbj,β) = 0.

De�nition 4.6.6. We de�ne Π2K(B) = H where H is given by Lemma 4.6.5.

We now state the main properties of Π2: the maps Π2 is bounded on a �xed scale and 1−Π2

is a contraction under change of scale.
Recall that on relevant Hamiltonians H =

∑
m∈v amMm(B) we de�ned in (4.4.93) the norm

‖H‖k,0 = Lkd|a∅|+
∑

(i,α)∈v1

hkL
kdL−k

d−2
2 L−k|α||ai,α|+

∑
m∈v2

h2
k|am |. (4.6.50)

Lemma 4.6.7 (Boundedness of Π2). There exists a constant C such that for L ≥ 2d + R and
0 ≤ k ≤ N − 1

‖Π2K(B)‖k,0 ≤ C|K(B)|k,B,T0 . (4.6.51)

Since Π2H = H for H ∈ V, Lemma 4.6.7 shows in particular that ‖H‖k,0 ≤ C|H|k,T0 ≤
C|||H|||k,B. We can also prove the converse estimate, in fact a slightly stronger result which will

be useful to bound eH (see Lemma 4.7.3 below). De�ne

|ϕ|2k,`2(B) :=
1

h2
k

sup
(i,α)∈v1

1

Lkd

∑
x∈B

L2k|α|Lk(d−2)|∇αϕi(x)|2 =
1

h2
k

sup
(i,α)∈v1

∑
x∈B

L2k(|α|−1)|∇αϕi(x)|2.

(4.6.52)

Then it follows directly from the de�nition of |ϕ|k,B in (4.4.74) that

|ϕ|k,`2(B) ≤ |ϕ|k,B. (4.6.53)

Lemma 4.6.8. For H ∈M0(Bk), L ≥ 3, and 0 ≤ k ≤ N we have

|H|Tϕ ≤
(
1 + |ϕ|k,`2(B)

)2 ‖H‖k,0 ≤ 2(1 + |ϕ|2k,`2(B)) ‖H‖k,0 (4.6.54)

and in particular

|||H|||k,B ≤ 4‖H‖k,0. (4.6.55)

Lemma 4.6.9 (Contraction estimate). There exists a constant C such that for all L ≥ 2d +R

|(1−Π2)K(B)|k+1,B,T0 ≤ CL−(d/2+bd/2c+1)|K(B)|k,B,T0 . (4.6.56)
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Proofs.

Proof of Lemma 4.6.5 (existence and uniqueness of Π2). Clearly H(0) = K(0) = K(0).
Step 1: There exist one and only one H(2) ∈ V2 such that

〈H(2), g〉0 = 〈K(B), g〉0 ∀g ∈ P2. (4.6.57)

Indeed each H(2) ∈ V2 is of the form H(2) =
∑

m∈v2
amMm . Now M(i,α),(j,β)(B) de�nes a unique

symmetric element of (X ⊗ X )′ via (see Lemma 4.A.1)

〈M(i,α),(j,β)(B), ϕ⊗ ψ〉 =
1

2

∑
x∈B
∇αϕi(x)∇βψj(x) +∇βϕj(x)∇αψi(x). (4.6.58)

Thus in view of (4.6.43), (4.6.46) and (4.6.47) we get

〈Mm(B), fm ′〉0 = Lkdδmm ′ ∀m ,m ′ ∈ v2. (4.6.59)

It follows that there is one and only one H(2) which satis�es (4.6.57) and the coe�cients are
given by

am = L−dk〈K(B), fm〉0 = L−kd〈K(2), fm〉0 ∀m ∈ v2. (4.6.60)

Step 2: There exist one and only one H(1) ∈ V1 such that

〈H(1), ϕ〉0 = 〈K(B), ϕ〉0 ∀ϕ ∈ P1. (4.6.61)

Writing H(1) =
∑

(i,α)∈v1
ai,αMi,α(B) and testing against the basis {bi′,α′ : (i′, α′) ∈ v1} of P1

we see that the condition for H(1) is equivalent to∑
m∈v1

Bm ′m am = 〈K(B), bm ′〉0 ∀m ′ ∈ v1 (4.6.62)

where

Bm ′m =
∑
x∈B
∇αbα′(x) δii′ =

∑
x∈B

bα′−α(x) δii′ for m = (i, α), m ′ = (i′, α′). (4.6.63)

In particular

Bmm = Ldk and Bm ′m = 0 if |α| > |α′|. (4.6.64)

Thus if we order the indices (i, α) in such a way that (i, α) < (i, α′) if |α| < |α′| then B is
a triangular matrix with entries Ldk on the diagonal. Therefore B is invertible and hence the
coe�cients of H(1) are uniquely determined.

Proof of Lemma 4.6.7 (boundedness of Π2). We have

Lkd|a∅| = |H(0)| = |K(0)|. (4.6.65)

Since L ≥ 2d + R we can again view B++ as a subset of Zd. Moreover, since the space of
polynomials of a certain degree is invariant by translation we assume without loss of generality
that 0 ∈ B. This implies that

|bi,α|k,B =
1

hk
Lk

d
2 if |α| = 1 and thus |fm |k,B ≤ 2

1

h2
k

Lkd ∀m ∈ v2. (4.6.66)
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Then (4.6.60) implies that

|am | ≤ L−dk|K(2)|k,B,T0 |fm |k,B ≤ 2
1

h2
k

|K(2)|k,B,T0

and therefore ∑
m∈v2

h2
k|am | ≤ 2 #v2 |K(2)|k,B,T0 . (4.6.67)

To estimate the coe�cients of H(1) we note that the system (4.6.63) for the coe�cients a(i,α)

decouples for di�erent i since B(i,α)(i′,α′) = Cαα′δii′ . Hence it is su�cient to prove the estimate
for the scalar case m = 1. It convenient to work in a rescaled basis. Using again that 0 ∈ B we
get for |α′| ≥ |α|

sup
x∈B∗

|∇αbα′(x)| = sup
x∈B∗

|bα′−α(x)| ≤ (diam∞B
∗)|α

′|−|α| (4.6.68)

and the left hand side vanishes for |α′| < |α|. Thus

|bα′ |k,B ≤ sup
1≤|α|≤|α′|

1

hk
Lk

d−2
2 Lk|α|(diam∞B

∗)|α
′|−|α| ≤ C ′ 1

hk
Lk

d−2
2 Lk|α

′| (4.6.69)

where

C ′ := (L−kdiam∞B
∗)pΦ−1 = (L−kdiam∞B

∗)bd/2c+1 (4.6.70)

depends only on d and R (the dependence from R arises from the fact that for k = 0 we have
diam∞B

∗ = 2R+ 1).
Now we use the basis of test functions given by

b̃α′ = hkL
−k d−2

2 L−k|α
′|bα′ . (4.6.71)

Then
|̃bα′ |k,B ≤ C ′. (4.6.72)

We de�ne rescaled coe�cients

ãα = hkL
dkL−k

d−2
2 L−k|α|aα (4.6.73)

In these new quantities (4.6.62) can be rewritten as∑
α∈v1

Aα′α ãα = 〈K, b̃α′〉. (4.6.74)

with

Aα′,α =h−1
k L−dkLk

d−2
d Lk|α| hkL

−k d−2
2 L−k|α

′| Bα′α =
(4.6.63)

L−dkLk(|α|−|α′|)
∑
x∈B

bα′−α(x).

Hence

Aα′α = δα′α if |α′| = |α|, |Aα′α| ≤
1

(α′ − α)!
if α′ − α ∈ N{1,...,d}0 \ {0} (4.6.75)
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and Aα′α = 0 if α′i < αi for some i ∈ {1, . . . , d}. This implies that (A − 1)bd/2c+1 = 0. Indeed,
let V` := span(eα : |α| ≤ `). Then AT − 1 acts on Vbd/2c+1 and we have (A − 1)TVl ⊂ Vl1 and
(AT − 1)V1 = {0}. Thus

A−1 = (1 + (A− 1))−1 = 1 +

bd/2c∑
r=1

(A− 1)r. (4.6.76)

Since the matrix elements of A− 1 are bounded this implies that

|ãα| ≤ C sup
α′∈v1

〈K(B), b̃α′〉0 ≤
(4.6.72)

CC ′|K(1)(B)|k,B,T0 . (4.6.77)

Here C is a combinatorial constant which depends only on the dimension d. Thus

‖H(1)‖k,0 =
∑
α∈v1

|ãα| ≤ CC ′#v1 |K(1)(B)|k,B,T0 (4.6.78)

in the scalar case m = 1. For m > 1 the equations for the di�erent components i decouple and
thus the estimate holds with an additional factor m. Combining this with (4.6.65) and (4.6.67)
we get ‖H‖k,0 ≤ C

∑2
r=0 |K(r)(B)|k,B,T0 ≤ C|K(B)|k,B,T0 .

Proof of Lemma 4.6.8. The assertion (4.6.55) follows from (4.6.54), the de�nition of the strong
norm in (4.4.86) and (4.5.11) as well as the estimates |ϕ|2k,`2(B) ≤ G

B
k (ϕ) and (1 + t) ≤ 2et/2 for

t ≥ 0.
To prove (4.6.54) we use that |M∅({x})|k,T0 = 1 and that by (4.A.74) and (4.A.70) we have

|Mi,α({x})|k,B,T0 ≤ hkL−k|α|L−k
d−2

2 and |Mm({x})|k,B,T0 ≤ h2
kL
−kd ∀m ∈ v2. (4.6.79)

Now for ϕ = 0 the estimate (4.6.54) follows directly by summing (4.6.79) over x ∈ B. For
ϕ 6= 0 we use that for the decomposition of H = H0 +H1 +H2 in constant, linear and quadratic
terms we get

TayϕH = Tay0H + (H1(ϕ) +H2(ϕ)) + Lϕ (4.6.80)

where H1(ϕ) + H2(ϕ) is a constant term and Lϕ is the linear functional de�ned by Lϕ(ψ) =
2H2(ϕ⊗ ψ) or explicitly by

Lϕ(ψ) =
∑
x∈B

∑
(i,α)≤(j,β),|α|=|β|=1

a(i,α),(j,β)

(
∇αϕi(x)∇βψj(x) +∇βϕj(x)∇αψi(x)

)
. (4.6.81)

Since ∇αψi(x) = Mi,α({x})(ψ) we get from (4.6.79) (with |α| = 1) and the Cauchy-Schwarz
inequality for

∑
x∈B

|Lϕ|k,T0 ≤
∑
x∈B

∑
(i,α)≤(j,β),|α|=|β|=1

|a(i,α),(j,β)|
(
|∇αϕi(x)|+ |∇βϕj(x)|

)
hkL

−k d
2

≤2 sup
(i,α),|α|=1

1

hk

(∑
x∈B
|∇αϕi(x)|2

)1/2 ∑
m∈v2

h2
k|am | (4.6.82)

It follows directly from the de�nition of H2 and the inequality |ab| ≤ 1
2a

2 + 1
2b

2 applied to
∇αϕi∇βϕj that

|H2(ϕ)| ≤ sup
(i,α),|α|=1

1

h2
k

(∑
x∈B
|∇αϕi(x)|2

) ∑
m∈v2

h2
k|am |. (4.6.83)
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Finally the Cauchy-Schwarz inequality for
∑

x∈B gives

|H1(ϕ)| ≤ sup
(i,α)∈v1

1

hk

(∑
x∈B

L2k(|α|−1) |∇αϕi(x)|2
)1/2 ∑

(i,α)∈v1

hkL
k d

2L−k(|α|−1) |a(i,α)| (4.6.84)

Now (4.6.82)�(4.6.84) imply that

|TayϕH − Tay0H|k,T0 ≤
(
2‖ϕ‖k,`2(B) + ‖ϕ‖2k,`2(B)

)
‖H‖k,0. (4.6.85)

Together with the estimate for ϕ = 0, i.e., |H|k,T0 ≤ ‖H‖k,0, this concludes the proof.

Proof of Lemma 4.6.9 (contraction estimate). This will easily follow from a duality argument
given below and the following result.

Lemma 4.6.10. There exists a constant C such that for all L ≥ 2d +R

min
P∈P1

|ϕ− P |k,B ≤ CL−(d/2+bd/2c+1)|ϕ|k+1,B ∀ϕ ∈ X (4.6.86)

and

min
P∈P2

|Sg − P |k,B ≤ CL−(d+1)|g|k+1,B ∀g ∈ X ⊗ X . (4.6.87)

Here S is the symmetrisation operator, de�ned by S(ϕ ⊗ ψ) = 1
2(ϕ ⊗ ψ) + 1

2(ψ ⊗ ϕ) and linear
extension.

Proof. Since L ≥ 2d +R we can view B++ as a subset of Zd. We �rst show (4.6.86). It su�ces
to consider the scalar case m = 1 since the estimate can be done component by component. The
small set neighbourhood B∗ can be written as

B∗ = a+ [0, ρ]d with L−kρ ≤ C (4.6.88)

where C = max(2R+ 1, 3). We will apply Lemma 4.B.1 for the estimate of the remainder term
in the Taylor expansion with

s := bd/2c+ 1 = pΦ − 1 (4.6.89)

and

Ms := Ms,ρ = sup{|∇αϕ(x)| : |α| = s+ 1, x ∈ Zd ∩
(
a+ [0, ρ]d

)
}. (4.6.90)

Then it follows from the de�nition of the �eld norm |ϕ|k+1,B that

Ms ≤ hk+1L
−(k+1)(s+1)L−(k+1) d−2

2 |ϕ|k+1,B. (4.6.91)

Let P = Taysa ϕ be the discrete Taylor polynomial of order s of ϕ at a. Then by Lemma 4.B.1
we have for t = |β| ≤ s and all x ∈ Zd ∩

(
a+ [0, ρ]d

)
∣∣∣∇β[ϕ(x)− P (x)]

∣∣∣ ≤Ms

(
|x− a|1
s− t+ 1

)
≤Ms(dρ)s+1−t ≤MsCL

k(s+1−t). (4.6.92)
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Here C depends only on d and R and we used that |x− a|1 ≤ dρ. Taking into account that for
|β| = s+ 1 we have ∇β(ϕ−P ) = ∇βϕ and using (4.6.92), the de�nition of Ms and the fact that
hk+1/hk = 2 we get

|ϕ− P |k,B ≤ C
1

hk
Lk

d−2
2 Lk(s+1)Ms ≤

(4.6.91)
CL−

d−2
2 L−(s+1)|ϕ|k+1,B

= CL−(s+ d
2

)|ϕ|k+1,B.

(4.6.93)

This �nishes the proof of (4.6.86).
The proof of the second estimate is similar. We consider the space

P̃2 := span{bi,α ⊗ bj,β : |α| = |β| = 1}

Thus P̃2 is the non symmetrised counterpart of P2. In particular SP̃2 = P2 where S is the
symmetrisation operator. For P̃ ∈ P̃2 and |α|+ |β| ≥ 3 we have (∇i,α⊗∇j,β)P̃ = 0. Using again
that hk+1/hk = 2 we deduce that

h−2
k Lk(|α|+|β|)Lk(d−2)|(∇i,α ⊗∇j,β)(g − P̃ )(x, y)|

≤ 4L−(|α|+|β|+d−2)|g|k+1,B ≤ 4L−(d+1)|g|k+1,B if |α|+ |β| ≥ 3. (4.6.94)

To prove (4.6.87) it only remains to estimate ∇i,α ⊗ ∇j,β(g − P̃ ) for |α| = |β| = 1. We de�ne
P̃ ∈ P̃2 by

P̃ =
∑

(i′,α′),(j′,β′),|α′|=|β′|=1

(∇i′,α′ ⊗∇j′,β′g)(a, a) bi′,α′ ⊗ bj′,β′ . (4.6.95)

Then ∇i,α ⊗∇j,βP̃ = const = (∇i,α ⊗∇j,βg)(a, a) for |α| = |β| = 1.
We now de�ne

M2 := sup{|(∇i,α ⊗∇j,βg)(x, y)| : |α| ≥ 1, |β| ≥ 1, |α|+ |β| = 3, x, y ∈ a+ [0, ρ]d}. (4.6.96)

Then

M2 ≤ h2
k+1L

−3(k+1)L−(k+1)(d−2)|g|k+1,B (4.6.97)

We claim that for

|(∇i,α ⊗∇j,βg)(x, y)− (∇i,α ⊗∇j,βg)(a, a)︸ ︷︷ ︸
=∇i,α⊗∇j,β P̃

| ≤M2(|x− a|1 + |y − a|1)

≤ 2dρM2 for |α| = |β| = 1.

(4.6.98)

This estimate is a special case of the Taylor remainder estimate in Lemma 3.5. of [45], but it can
also be easily veri�ed as follows. For h : RB

++ × RB
++ → R the di�erence h(x, y) − h(a, a) can

be estimated in B∗×B∗ by the maximum of the �rst order forward derivatives of h in B∗ times
|x− a|1 + |y − a|1. Now apply this with h = ∇i,α ⊗∇j,βg.

Since ρ ≤ CLk the estimates (4.6.98), (4.6.97), and (4.6.94) jointly imply that |g − P̃ |k,B ≤
CL−(d+1)|g|k+1,B. Application of the symmetrisation operator S does not increase the norm (see
Lemma 4.A.5) and thus |Sg − SP̃ |k,B ≤ CL−(d+1). Since P := SP̃ ⊂ P2 the assertion (4.6.87)
follows.
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Proof of Lemma 4.6.9 (continued). It follows from the de�nition of the norm |g|j,B for j ∈ {k, k+
1} and g ∈ X⊗r in (4.4.77) and the fact that hk+1/hk = 2 that

|g|k,B ≤ 8L−
3
2
d|g|k+1,B ∀g ∈ X⊗r ∀r ≥ 3. (4.6.99)

Since Π2K(B) depends only on the second order Taylor polynomial of K we get the estimate

|〈(1−Π2)K(B), g〉0| = |〈K(B), g〉0| ≤ |K(B)|k,B,T0 |g|k,B
≤ 8L−

3
2
d|K(B)|k,B,T0 |g|k+1,B ∀g ∈ X⊗r ∀r ≥ 3.

(4.6.100)

Now for ϕ ∈ X we have by the de�nition of Π2, the boundedness of Π2 and Lemma 4.6.10

|〈(1−Π2)K(B), ϕ〉0| = min
P∈P1

|〈(1−Π2)K(B), ϕ− P 〉0|

≤ |(1−Π2)K(B)|k,B,T0 min
P∈P1

|ϕ− P |k,B

≤ C |K(B)|k,B,T0 L
−(d/2+bd/2c+1) |ϕ|k+1,B.

(4.6.101)

Since the pairing 〈(1−Π2)K(B), g〉0 depends only on Sg we get similarly for g ∈ X ⊗ X

|〈(1−Π2)K(B), g〉0| = min
P∈P2

|〈(1−Π2)K(B), Sg − P 〉0|

≤ |(1−Π2)K(B)|k,B,T0 min
P∈P2

|Sg − P |k,B

≤ C |K(B)|k,B,T0 L
−(d+1) |g|k+1,B.

(4.6.102)

The desired assertion follows from (4.6.100)� (4.6.102) and the de�nition (4.4.84) of the norm
|K(B)|k+1,B,T0 .

4.7 Smoothness of the renormalisation map

In this section we prove Theorem 4.4.7. The strategy is to write the renormalisation map
S as a composition of simpler maps and to show smoothness for those maps. For this section
we �x a scale k. No index will in the following denote quantities on scale k while a prime will
denote quantities on the next scale k + 1.

4.7.1 Decomposition of the renormalisation map

Recall from Section 4.4.2 that the space of functionals K ∈ M(Pk) which factorise over
connected components can be identi�ed with the spaceM(Pck) via the map ι2 : M(Pck)→M(Pk)
given by (ι2K)(X) =

∏
Y ∈C(X)K(Y ). We often do not distinguish betweenK and ι2K. Similarly

the space of functionals F which factorise over k-blocks can be identi�ed with the elements of
M(Bk) via FX := (ι1F )(X) :=

∏
B∈Bk(X) F (B).

To simplify the notation we introduce the following abbreviations from [4] for the Banach
spaces involved in the decomposition of the map S:

M (A) = (M(Pck), ‖·‖
(A)
k ),

M ′(A)
= (M(Pck+1), ‖·‖(A)

k+1),

M0 = (M(Bk), ‖·‖k,0),

M ||| = (M(Bk), |||·|||k),

Bκ =
{
q ∈ R(d×m)×(d×m)

sym : |q|op < κ
}
.

(4.7.1)
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Here it is understood that M (A) consists of those elements of M(Pck) for which the norm ‖·‖(A)
k

is �nite and similarly for the other spaces. The abbreviationsM (A) etc. should not be confused
with the notation for the quadratic forms that appeared in Section 4.5.

We also need a slight modi�cation of the spacesM (A) because the renormalisation map does
not preserve factorisation on scale k, i.e., in general for K ∈M(Pck)

RK(X,ϕ) 6=
∏

Y ∈C(X)

RK(Y, ϕ) (4.7.2)

(here we identi�ed K in ι2K). In other word RK cannot be identi�ed with an element ofM(Pck).
In [4] this problem is solved by the use of the embedding M(Pc) → M(P) and the submulti-
plicativity estimates from Lemma 4.6.3. In the current setting, however, it is not possible to
estimate the derivative with respect to q of the renormalisation map R(q) on arbitrary polymers
(cf. Lemma 4.6.4).

To overcome this di�culty we introduce the space of functionals that live on scale k but
factor only on scale k + 1.

More precisely we use the following de�nition. Recall the de�nition of the map π : Pk → Pk+1

in (4.4.52) and (4.4.53).

De�nition 4.7.1. We say that X ∈ Pk \ ∅ is a cluster, X ∈ Pcl
k , if π(X) ∈ Pc

k+1. For X ∈ Pk,
Y ⊂ X is a cluster of X if there is U ∈ Ck+1(π(X)) such that

Y =
⋃

Z∈C(X):π(Z)⊂U

Z (4.7.3)

We use Ccl(X) to denote the set of all clusters of X.

Lemma 4.7.2. Assume that L ≥ 2d+2 + 4R. Let X ∈ Pk \ ∅. Then

(i) For any U ∈ Ck+1(π(X)), there is a cluster Y of X, Y ∈ Ccl(X), such that π(Y ) = U .

(ii) X =
⋃
Y ∈Ccl(X) Y ;

(iii) Two clusters of Y1, Y2 ∈ Ccl(X) are either identical or strictly disjoint on scale k;

(iv)
∑

Y ∈Ccl(X) |C(Y )| = |C(X)|;

(v) If K ∈M(Pk) factors over connected components on the scale k then

(Rk+1K)(X,ϕ) =
∏

Y ∈Ccl(X)

(Rk+1K)(Y, ϕ). (4.7.4)

Proof. Let X ∈ Pk and U = π(X). By de�nition (4.4.53) of π we have

U =
⋃

Z∈C(X)

π(Z). (4.7.5)

Note �rst that a component of X cannot be shared between two components of U :

Z ∈ Pc
k implies that π(Z) ∈ Pc

k+1. (4.7.6)

Indeed, if Z ∈ Sk then π(Z) is a single block and hence connected. If Z ∈ Pc
k \Sk then π(Z) = Z

and, in particular, Z ⊂ π(Z) and every block B ∈ Bk+1(π(Z)) contains at least one point from
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Z. For any two points x, y ∈ π(Z) consider x′ ∈ Z ∩ Bx, where Bx ∈ Bk+1(π(Z)) is the block
that contains the point x and similarly y′ ∈ Z ∩ By. Given that Z as well as any block are
connected, there exist a path joining x with y via x′ and y′.

Thus, in view of (4.7.5) and the fact that a connected set cannot be contained in a union of
two nonempty disjoint sets, we get

Z ∈ C(X) implies that π(Z) is contained in one component of U (on scale k + 1) (4.7.7)

For a connected component U1 ∈ C(U) we consider the corresponding cluster Y1 de�ned by
(4.7.3), i.e.,

Y1 =
⋃

Z∈C(X):π(Z)⊂U1

Z. (4.7.8)

Then (4.7.5) and (4.7.7) jointly imply π(Y1) = U1 thus proving the �rst claim. Moreover, (4.7.7)
also implies the second claim. To prove the third claim let U1 and U2 be two di�erent components
of π(X). Again by (4.7.7). the corresponding clusters Y1 and Y2 de�ned by (4.7.3) are disjoint.
Since Y1 and Y2 are unions of k-components of X they must by strictly disjoint on scale k.

The fourth claim follows now from the fact that clusters are union of distinct elements of
C(X).

To prove the last claim, it is su�cient to show that for di�erent components U1 and U2

of U = π(X) with the corresponding clusters Y1 ⊂ U1 and Y2 ⊂ U2, the �elds ∇ξk+1�Y ∗1
and ∇ξk+1�Y ∗2 are independent if ξk+1 is distributed according to µk+1. Note that by (4.4.54)

Y ∗i ⊂ Ui∗ and by (4.4.35) dist(U∗1 , U
∗
2 ) ≥ Lk+1

2 for L ≥ 2d+2 +4R which implies the independence
of the gradient �elds. Therefore we �nd for any polymer X ∈ Pc

k and K ∈ M(Pcl
k ) the identity

(4.7.4).

The space of functionals which factorise over clusters can again be identi�ed with the space
M(Pcl

k ). Now we need to equip this space with a norm.It turns out that we need norms that
involve in addition to the parameter A that regulates the growth depending on the number of
blocks another parameter B that regulates the growth depending on the number of connected
components of the polymer. For K ∈M(Pcl

k ) and A,B > 1, we de�ne

‖K‖(A,B)
k = sup

X∈Pcl
k

A|X|kB|C(X)|‖K(X)‖k,X . (4.7.9)

We also consider the norm ‖·‖(A,B)
k:k+1 obtained by replacing, in the right hand side above, the norm

‖·‖k,X by the norm ‖·‖k:k+1,X .
Again we introduce abbreviations for the corresponding normed spaces

M̂
(A,B)

= {M(Pcl
k ), ‖·‖(A,B)

k },

M̂
(A,B)

: = {M(Pcl
k ), ‖·‖(A,B)

k:k+1}.
(4.7.10)

Recall the de�nition of K ′ = S(H,K, q) in (4.4.67): for U ∈ P ′ we have

K ′(U,ϕ) =
∑
X∈Pk

χ(X,U)ĨU\X(ϕ)Ĩ−X\U (ϕ)

ˆ
XN

(J̃(ϕ) ◦ P (ϕ+ ξ))(X)µ
(q)
k+1(dξ), (4.7.11)

where Ĩ = e−H̃ , J̃ = 1 − Ĩ, P = (I − 1) ◦ K, I = e−H , and H̃(B,ϕ) = (Π2R
(q)
k+1H)(B,ϕ) −

(Π2R
(q)
k+1K)(B,ϕ).
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Using �rst the de�nition of the ◦ product and then the factorisation property (4.7.4) (and
(4.4.60) for P2 = (I − 1) ◦K to verify its assumption) we get

K ′(U,ϕ) =
∑

X1,X2∈Pk
X1∩X2=∅

χ(X1 ∪X2, U)ĨU\(X1∪X2)Ĩ−X1∪X2\U (ϕ)J̃X1(ϕ)

ˆ
XN

P (X2, ϕ+ ξ)µ
(q)
k+1(dξ)

=
∑

X1,X2∈Pk
X1∩X2=∅

χ(X1 ∪X2, U)ĨU\(X1∪X2)Ĩ−X1∪X2\U (ϕ)J̃X1(ϕ)
∏

Y ∈Ccl(X2)

(R
(q)
k+1P )(Y, ϕ)

(4.7.12)

It is now easy to see that the map S can be rewritten as a composition of the following maps.
The exponential map

E : M0 →M |||, E(H) = exp(H), (4.7.13)

three polynomial maps

P1 : M ||| ×M ||| ×M ||| × M̂
(A/(2AP ),B)

: →M ′(A)
,

P1(I1, I2, J,K)(U,ϕ) =
∑

X1,X2∈Pk
X1∩X2=∅

χ(X1 ∪X2, U)I
U\(X1∪X2)
1 (ϕ)I

(X1∪X2)\U
2 JX1(ϕ)

∏
Y ∈Ccl(X2)

K(Y, ϕ),

P2 : M ||| ×M (A) →M (A/2), P2(I,K) = (I − 1) ◦K,

P3 : M (A/2) → M̂
(A/2,B)

, P3K(X,ϕ) =
∏

Y ∈C(X)

K(Y, ϕ),

(4.7.14)

and, �nally, two maps which include an integration with respect to µ(q)
k+1. This is the point where

regularity is lost for derivatives in q direction if the original �nite range decomposition from [3]
is used. These maps are given by

R1 : M̂
(A/2,B)

×Bκ → M̂
(A/(2AP ),B)

: ,

R1(P, q)(X,ϕ) = (R
(q)
k+1P )(X,ϕ) =

ˆ
XN

P (X,ϕ+ ξ)µ
(q)
k+1(dξ)

(4.7.15)

and

R2 : M0 ×M (A) ×Bκ →M0,

R2(H,K, q)(B,ϕ) = Π2

(
(R

(q)
k+1H)(B,ϕ)− (R

(q)
k+1K)(B,ϕ)

)
.

(4.7.16)

In terms of these maps the map S can be expressed as

S(H,K, q) =

P1

(
E
(
−R2(H,K, q)

)
, E
(
R2(H,K, q)

)
, 1− E

(
−R2(H,K, q)

)
, R1

(
P3

(
P2(E(−H),K)

)
, q
))
.

(4.7.17)

Note that when we insert in the arguments I1 and I2 of P1 we �nd I1 = I−1
2 . Since the

inversion is not continuous for the strong norm we have to introduce the two terms as di�erent
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arguments of P1. They are, however, equal to E(H) and E(−H) for some H and we clearly have
‖H‖k,0 = ‖−H‖k,0.

Compared to [4] the smoothness estimates for R1 and R2 change. Actually they become
much simpler because the bulk of the work has been done in [54]. The estimate for P1 changes
slightly because of the slight changes in the combinatorics. The proof for the smoothness of E
has been simpli�ed. The remaining smoothness estimates are very similar.

To control the polynomial maps P2 and P3 we will use the assumptions on L and h in
Lemma 4.6.3, i.e.,

L ≥ 2d+3 + 16R, h ≥ h0(L), (4.7.18)

where h0(L) is as in Lemma 4.6.3. For P1 we need a slightly stronger assumption for L

L ≥ max(2d+3 + 16R, 4d(2d +R)), h ≥ h0(L). (4.7.19)

For the maps R1 and R2 we use the assumption

L ≥ 2d+3 + 16R, (4.7.20)

in Lemma 4.6.4. Finally, for the map E we use the weaker condition

L ≥ 3. (4.7.21)

4.7.2 The immersion E

Lemma 4.7.3. Assume (4.7.21). Then the map

E : B 1
8
(M0(Bk), ‖ · ‖k,0)→ (M(Bk), |||·|||k,B) de�ned by E(H) = eH (4.7.22)

is smooth and the r-th derivative (viewed as a map from B 1
8
(M0(Bk)) to the set of r-multilinear

forms on M0(Bk) with values in M(Bk)) is uniformly bounded. More precisely if we set

‖DrE(H)‖ := sup
{∣∣∣∣∣∣DrE(H)(Ḣ1, . . . , Ḣr)

∣∣∣∣∣∣
k,B

: ‖Ḣi‖k,0 ≤ 1 for i = 1, . . . , r
}

(4.7.23)

and

Cr := 2re
1
4 max
t≥0

e−
t
4 (1 + t)r, (4.7.24)

then

DrE(H)(Ḣ1, . . . , Ḣr) = eHḢ1 . . . Ḣr (4.7.25)

and

‖DrE(H)‖ ≤ Cr for any H ∈ B 1
8
(M0, ‖ · ‖k,0). (4.7.26)

Moreover, ∣∣∣∣∣∣eH − 1
∣∣∣∣∣∣
k,B
≤ 8‖H‖k,0 for any H ∈ B 1

8
(M0, ‖ · ‖k,0). (4.7.27)

Proof. We �rst recall some notation. In (4.6.52) we de�ned the (semi)norm on �elds

|ϕ|2k,`2(B) =
1

h2
k

sup
(i,α)∈v1

∑
x∈B

L2k(|α|−1)|∇αϕi(x)|2. (4.7.28)
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Since (4.7.21) holds we can apply Lemma 4.6.8 guaranteeing that

|H|k,B,Tϕ ≤ 2(1 + |ϕ|2k,`2(B)) ‖H‖k,0 for all H ∈M0(Bk). (4.7.29)

The strong norm |||·|||k,B is de�ned using the weight WB
k = e

1
2

(ϕ,GBk ϕ) where

(ϕ,GB
k ϕ) =

(4.5.11)

1

h2
k

∑
1≤|α|≤bd/2c+1

L2k(|α|−1)(∇αϕ,1B∇αϕ) ≥ |ϕ|2k,`2(B). (4.7.30)

Thus

|||F |||k,B =
(4.4.86),(4.5.11)

sup
ϕ
e−

1
2

(ϕ,GBk ϕ)|F |k,B,Tϕ ≤ sup
ϕ
e
− 1

2
|ϕ|2

k,`2(B) |F |k,B,Tϕ . (4.7.31)

To prove the di�erentiability we argue by induction. The main point is to show that

lim
Ḣ→0

1

‖Ḣ‖k,0
sup

‖Ḣi‖k,0≤1

∣∣∣∣∣∣∣∣∣(eH+Ḣ − eH − eHḢ)Ḣ1 . . . Ḣr︸ ︷︷ ︸
=:f(Ḣ)

∣∣∣∣∣∣∣∣∣
k,B

= 0. (4.7.32)

We have

f(Ḣ) = eH(eḢ − 1− Ḣ)Ḣ1 . . . Ḣr (4.7.33)

In the following we assume, without loss of generality, that

‖Ḣ‖k,0 ≤
1

16
. (4.7.34)

Combining the equality

eḢ − 1− Ḣ =
∞∑
m=2

1

m!
Ḣm = Ḣ2

∞∑
m=0

1

(m+ 2)!
Ḣm, (4.7.35)

with the product property of the Tϕ norm, the estimate
∑∞

m=0
1

(m+2)!x
m ≤ ex valid for x ≥ 0,

and (4.7.29), we infer that

|eḢ − 1− Ḣ|k,Tϕ ≤ |Ḣ|2k,Tϕe
|Ḣ|k,Tϕ ≤ ‖Ḣ‖2k,0 4(1 + |ϕ|2k,`2(B))

2 e
1
8

(1+|ϕ|2
k,`2(B)

)
. (4.7.36)

Thus, using again the product property, the assumptions ‖H‖k,0 ≤ 1
8 and ‖Ḣi‖k,0 ≤ 1, as well

as (4.7.29), we get

|f(Ḣ)|k,Tϕ ≤ e
|H|k,Tϕ ‖Ḣ‖2k,0 4(1 + |ϕ|2k,`2(B))

2 e
1
8

(1+|ϕ|2
k,`2(B)

)
r∏
j=1

|Ḣj |k,Tϕ

≤ e
1
4

(1+|ϕ|2
k,`2(B)

) ‖Ḣ‖2k,0 4(1 + |ϕ|2k,`2(B))
2 e

1
8

(1+|ϕ|2
k,`2(B)

)
2r((1 + |ϕ|2k,`2(B))

r

≤‖Ḣ‖2k,0 2r+2(1 + |ϕ|2k,`2(B))
(r+2)e

3
8 e

3
8
|ϕ|2

k,`2(B)

≤ 2r+2C ′re
3
8 ‖Ḣ‖2k,0 e

1
2
|ϕ|2

k,`2(B) ,

where C ′r = supt≥0 e
− t

8 (1 + t)r+2. Using (4.7.31) we get |||f(Ḣ)|||k,B ≤ 2r+2C ′re
3
8 ‖Ḣ‖2k,0 and the

assertion (4.7.32) follows.
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To prove the bound (4.7.26) we use the product property of the Tϕ norm to deduce that

|DrE(H)(Ḣ1, . . . , Ḣr)|k,Tϕ
≤ e|H|k,Tϕ |Ḣ1|k,Tϕ . . . |Ḣr|k,Tϕ
≤ e

1
4 e

1
4
|ϕ|2

k,`2(B) ‖Ḣ1‖k,0 . . . ‖Ḣr‖k,0 2r(1 + |ϕ|2k,`2(B))
r,

≤Cre
1
2
|ϕ|2

k,`2(B) ‖Ḣ1‖k,0 . . . ‖Ḣr‖k,0.

Dividing both sides by e
1
2
|ϕ|2

k,`2(B) , taking the supremum over ϕ, and using the de�nition (4.7.31),
we get (4.7.26). Finally, the bound (4.7.27) follows from (4.7.26) with r = 1 since eH − 1 =´ 1

0 DE(tH)(H) dt and C1 = 2e1/4 maxt≥0 e
− t

4 (1 + t) = 8e−1/2.

4.7.3 The map P2

We next consider the map

P2(I,K) = (I − 1) ◦K. (4.7.37)

Lemma 4.7.4. Let L and h satisfy the lower bounds (4.7.18). Then the map P2 restricted to
Bρ1(1)×Bρ2 ⊂M |||×M (A) with ρ1 < (2A)−1 and ρ2 <

1
2 is smooth for any A ≥ 2 and satis�es

the bounds

1

j1!j2!
‖(Dj1

I D
j2
KP2)(I,K)(İ , . . . , İ, K̇, . . . , K̇)‖(A/2)

k ≤
(

2A ˙|||I|||k
)j1 (

2‖K̇‖(A)
k

)j2
. (4.7.38)

In particular, for I ∈ Bρ1(1) and K ∈ Bρ2 this implies

‖P2(I,K)‖(A/2)
k ≤ 2A|||I − 1|||k + 2‖K‖Ak . (4.7.39)

On right hand side of (4.7.38) we used the convention

a0 = 1 (4.7.40)

that we will use also in the rest of this section.

Proof. We have

P2(I,K)(X) = ((I − 1) ◦K)(X) =
∑

Y ∈P(X)

(I − 1)X\YK(Y )

=
∑

Y ∈P(X)

∏
B∈Bk(X\Y )

(I(B)− 1)
∏

Z∈C(Y )

K(Y ).
(4.7.41)

Using i) and ii) of Lemma 4.6.3 and Γk,A(Y ) = A|Y |k we get

‖P2(I,K)(X)‖k,X ≤
∑

Y ∈P(X)

|||I − 1||||X\Y |k

(
‖K‖(A)

k︸ ︷︷ ︸
≤1

)|C(Y )|
A−|Y | ≤

( 1

2A
+

1

A

)|X|
≤ 1 (4.7.42)

where we used that
∑

Y ∈P(X) a
|X\Y | b|Y | = (a+ b)|X| and A ≥ 2.
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The derivatives of P2 are given by

1

j1!j2!
(Dj1

1 D
j2
2 P2(I,K)(İ , . . . , İ, K̇, . . . , K̇))(X)

=
∑

Y ∈P(X),Y1∈P(X\Y ),|Y1|=j1
J⊂C(Y ),|J |=j2

(I − 1)X\(Y ∪Y1)İY1
∏

Z∈C(Y )\J

K(Z)
∏
Z∈J

K̇(Z). (4.7.43)

Using the bound
(
n
j

)
≤ 2n, we can estimate the norm of the expression above similarly as in

(4.7.42),

1

j1!j2!
‖(Dj1

1 D
j2
2 P2(I,K)(İ , . . . , İ, K̇, . . . , K̇))(X)‖k,X

≤
∑

Y ∈P(X)

(|X\Y |
j1

)
|||I − 1||||X\Y |−j1k

∣∣∣∣∣∣İ∣∣∣∣∣∣j1
k

(|C(Y )|
j2

)(
‖K‖(A)

k

)|C(Y )|−j2(‖K̇‖(A)
k

)j2A−|Y |
≤

∑
Y ∈P(X)

2|X\Y |(2A)−|X\Y |+j1
∣∣∣∣∣∣İ∣∣∣∣∣∣j1

k
2|C(Y )|2−|C(Y )|+j2(‖K̇‖(A)

k

)j2A−|Y |
≤
(A

2

)−|X|(
2A
∣∣∣∣∣∣İ∣∣∣∣∣∣

k

)j1(2‖K̇‖(A)
k

)j2 .
(4.7.44)

Equation (4.7.39) follows from

d

dt
P2(1 + t(I − 1), tK) = D1P2(1 + t(I − 1), tK)(I − 1) +D2P2(1 + t(I − 1), tK)K (4.7.45)

using that P2(1, 0) = 0.

4.7.4 The map P3

The smoothness of the maps P3 is implied by similar estimates, but simpler, as those for P2.

Lemma 4.7.5. Let L and h satisfy the lower bounds (4.7.18) and let A ≥ 2, B ≥ 1. Consider

the map P3 : M (A/2) → M̂
(A/2,B)

given by

P3K(X) =
∏

Y ∈C(X)

K(Y ). (4.7.46)

Its restriction to Bρ = {K ∈M (A/2) : ‖K‖(A/2)
k ≤ ρ} is smooth for any ρ satisfying

ρ ≤ (2B)−1. (4.7.47)

Moreover the following estimate holds for all j ≥ 0

1

j!
‖(DjP3K)(K̇, . . . , K̇)‖(A/2,B)

k ≤
(

2B‖K̇‖(A/2)
k,r )

)j
. (4.7.48)

Proof. We note that

1

j!
DjP3(K)(X)(K̇, . . . , K̇) =

∑
J⊂C(X)
J=j

∏
Z∈C(X)\J

K(Z)
∏
Z∈J

K̇(Z). (4.7.49)
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Using the bound
(|C(X)|

j

)
≤ 2|C(X)| and i) from Lemma 4.6.3 for K ∈ Bρ we get

B|C(X)|
(A

2

)|X| 1
j!
‖(DjP3K)(K̇, . . . , K̇)(X)‖k,X ≤ (2B)|C(X)|(‖K‖(A/2)

k

)|C(X)|−j(‖K̇‖(A/2)
k,r

)j
≤
(
2B‖K̇‖(A/2)

k,r

)j
.

(4.7.50)

4.7.5 The map P1

Next we show smoothness of the outermost map P1 given by

P1(I1, I2, J,K)(U,ϕ) =
∑

X1,X2∈Pk
X1∩X2=∅

χ(X1 ∪X2, U)I
U\(X1∪X2)
1 (ϕ)I

(X1∪X2)\U
2 JX1(ϕ)

∏
Y ∈Ccl(X2)

K(Y, ϕ)

(4.7.51)

Lemma 4.7.6. Let L and h satisfy the lower bounds (4.7.19) and

A0(L) = (48AP)
Ld

α (4.7.52)

where AP was introduced in Theorem 4.5.1 ix) and α(d) = (1 + 2d)−1(1 + 6d)−1. Further, let
A ≥ A0(L), B = A and

ρ1 = ρ2 ≤
1

2
, ρ3 ≤ A−2, ρ4 ≤ 1. (4.7.53)

Then the map P1 restricted to the neighbourhood

U = Bρ1(1)×Bρ2(1)×Bρ3(0)×Bρ4(0) ⊂M ||| ×M ||| ×M ||| × M̂
(A/(2AP ),B)

: (4.7.54)

is smooth with the bound on derivatives,

1

i1!i2!j1!j2!
‖Di1

I1
Di2
I2
Dj1
J D

j2
K P1(I1, I2, J,K)(İ1, . . . , İ1, İ2, . . . , İ2, J̇, . . . , J̇, K̇, . . . , K̇)‖(A)

k+1,r

≤ ˙|||I1|||i1 ˙|||I2|||i2(A2 ˙|||J |||)j1(‖K̇‖(A/(2AP ),B)
k:k+1 )j2 .

(4.7.55)

Proof. We �rst note some simple inequalities for polymers. Recall from Lemma 4.7.2 that∑
Y ∈Ccl(X)

|C(Y )| = |C(X)|. (4.7.56)

Next let X ∈ Pk and U = π(X). Then by (4.4.54) we have X ⊂ U∗ and hence

|X \ U |k + |U \X|k ≤ |U∗|k, |X|k ≤ |U∗|k. (4.7.57)

We also have
|U∗|k ≤ 2|U |k if L ≥ 4d(2d +R). (4.7.58)

Indeed for B′ ∈ Bk+1 and k ≥ 1

|B′∗|k ≤ (L+ 2d+1)d ≤ Ld
(

1 +
1

2d

)d
≤ Lde

1
2 , (4.7.59)
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while for k = 0,

|B′∗|0 ≤ (L+ 2d+1 + 2R)d ≤ Ld
(

1 +
1

2d

)d
≤ Lde

1
2 .

Finally, for X2, X ∈ Pk with X2 ⊂ X we use the identity

|C(X2)| =
∑

Y ∈C(X)

|C(X2 ∩ Y )|. (4.7.60)

It su�ces to show that each connected component of X2 is a connected component of X2 ∩ Y
for some Y ∈ C(X) (with Y ∩X2 6= ∅) and vice versa. Now if Z ∈ C(X2) then Z is a connected
subset of X and hence contained in exactly one component Y of X. Thus Z is a connected
subset of X2∩Y . In fact Z ∈ C(X2∩Y ) because dist∞(Z, (X2∩Y )\Z) ≥ dist∞(Z,X2 \Z) ≥ Lk
as Z ∈ C(X2).

Conversely consider Y ∈ C(X) with X2 ∩ Y 6= ∅ and Z ∈ C(X2 ∩ Y ). Then Z is a connected
subset of X2. Moreover dist∞(Z, (X2 \ Y ) \Z) ≥ dist∞(Y,X \ Y ) ≥ Lk and dist∞(Z, (X2 ∩ Y ) \
Z) ≥ Lk. Thus dist(Z,X2 \ Z) ≥ Lk and therefore Z ∈ C(X2). This concludes the proof of
(4.7.60).

Now let U ∈ Pck+1 be a connected polymer. Lemma 4.6.3 implies that

‖P1(I1, I2, J,K)‖k+1,U,r

≤
∑

X1,X2∈Pk
X1∩X2=∅

χ(X1 ∪X2, U) |||I2||||(X1∪X2)\U |
k |||I1||||U\(X1∪X2)|

k |||J ||||X1|
k

∥∥∥ ∏
Y ∈Ccl(X2)

K(Y )
∥∥∥
k:k+1,X2

≤
(4.7.56)

∑
X1,X2∈Pk
X1∩X2=∅

χ(X1 ∪X2, U) 2|(X1∪X2)\U | 2|U\(X1∪X2)|A−2|X1|×

×
( A

2AP

)−|X2|
B−|C(X2)|(‖K‖(A/(2AP ),B)

k:k+1

)|C′(X2)|

≤
(4.7.57)

22|U∗|k (AP)|U
∗|k

∑
X1,X2∈Pk
X1∩X2=∅

χ(X1 ∪X2, U)A−2|X1|−|X2|B−|C(X2)|

≤
(4.7.58),(4.7.60)

(4AP)2|U |k
∑

X1,X2∈Pk
X1∩X2=∅

χ(X1 ∪X2, U)
∏

Y ∈C(X1∪X2)

A−2|X1∩Y |−|X2∩Y |−|C(X2∩Y )|,

(4.7.61)

where we used B = A to get the last inequality.
Now we use the crucial fact that, for connected polymers X, their closure typically satis�es

the bound |X|k+1 < c|X|k for some c < 1 . For the precise formulation, we record this standard
inequality (4.C.1) in Lemma 4.C.1 (Appendix C). It is stating that for connected polymers
X ∈ Pc

k \ Sk, we have

|X|k ≥ (1 + 2α(d))|X|k+1, (4.7.62)

where 0 < α(d) = ((1+2d)(1+6d))−1 < 1 is a positive constant. This implies, for Y ∈ C(X1∪X2)
and Y /∈ Sk, that

2|X1 ∩ Y |+ |X2 ∩ Y |+ |C(X2 ∩ Y )| ≥ |Y | ≥ (1 + 2α(d))|π(Y )|k+1, (4.7.63)
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where we used that π(Y ) = Y since Y is not small. If Y ∈ Sk we note that either |X1 ∩ Y | ≥ 1
or |X2 ∩ Y | ≥ 1. In either case we get

2|X1 ∩ Y |+ |X2 ∩ Y |+ |C(X2 ∩ Y )| ≥ |Y |+ 1 ≥ 2|π(Y )|k+1 ≥ (1 + 2α(d))|π(Y )|k+1. (4.7.64)

Inserting (4.7.63) and (4.7.64) into (4.7.61), we get

‖P1(I1, I2, J,K)‖k+1,U ≤ (4AP)2|U |k
∑

X1,X2∈Pk
X1∩X2=∅

χ(X1 ∪X2, U)
∏

Y ∈C(X1∪X2)

A−(1+2α)|π(Y )|k+1

≤ (4AP)2|U |k 3|U
∗|k A−(1+2α)|U |k+1 ≤

(4.7.58)
(12AP)2|U |kA−(1+2α)|U |k+1

≤
((12AP)2Ld

A2α

)|U |k+1

A−|U |k+1 .

(4.7.65)

For the second inequality we used that X1 ∪X2 ⊂ U∗ if χ(X1 ∪X2, U) 6= 0 and that there are
3|U
∗|k possibilities for partitions of U∗ into three disjoint sets X1, X2 and X3 = U∗ \ (X1 ∪X2).

We also used that by the de�nition of π we have π(X) = ∪Y ∈C(X)π(Y ) and thus |π(X)|k+1 ≤∑
Y ∈C(X) |π(Y )|k+1.

Thus we get for A ≥ (12AP)
Ld

α

‖P1(I1, I2, J,K)‖(A)
k+1 ≤ 1. (4.7.66)

Let us now proceed to the bounds for derivatives.Similarly to the derivatives of P3 in Lemma
4.7.4, we get

1

j!
Dj
( ∏
Y ∈Ccl(X)

K(Y )
)

(K̇, . . . , K̇) =
∑

J⊂Ccl(X)
|J |=j

∏
Y ∈J

K̇(Y )
∏

Y ∈Ccl(X)\J

K(Y ). (4.7.67)

For ‖K‖(A/(2AP ),B)
k:k+1 ≤ 1 we use Lemma 4.6.3 to get,

1

j!
‖Dj

( ∏
Y ∈Ccl(X)

K(Y )
)

(K̇, . . . , K̇)‖k:k+1,X ≤
∑

J⊂C′(X)
|J |=j

∏
Y ∈J
‖K̇(Y )‖k:k+1,Y

∏
Y ∈C′(X)\J

‖K(Y )‖k:k+1,Y

≤
(4.7.56)

(|C′(X)|
j

)( A

2AP

)−|X|
B−|C(X)|(‖K̇‖(A/(2AP ),B)

k:k+1

)j
.

(4.7.68)

A similar bound holds for the factors of I1, I2, and J . Therefore, similarly to (4.7.61), we bound

1

i1!i2!j1!j2!
‖DI1

i1
DI2
i2
DJ
j1D

K
j2P1(I1, I2, J,K)‖k+1,U

≤
∑

X1,X2∈Pk
X1∩X2=∅

χ(X1 ∪X2, U)
(|(X1∪X2)\U |

i2

)
|||I2||||(X1∪X2)\U |−i2

k
˙|||I2|||i2k ×

×
(|U\(X1∪X2)|

i1

)
|||I1||||U\(X1∪X2)|−i1

k
˙|||I1|||i1k

(|X1|
j1

)
|||J ||||X1|−j1

k
˙|||J |||j1k ×

×
(C′(X2)

j2

)( A

2AP

)−|X2|
B−|C(X2)|(‖K̇‖(A/(2AP ),B)

k:k+1

)j2 .
(4.7.69)



The map R1 159

Assume that χ(U,X1 ∪ X2) = 1. Then X1 ∪ X2 ⊂ U∗. and we can bound the combinatorial
factor by(|(X1∪X2)\U |

i2

)(|U\(X1∪X2)|
i1

)(|X1|
j1

)(|C′(X2)|
j2

)
≤ 2|(X1∪X2)\U |+|U\(X1∪X2)|+|X1|+|X2|

≤
(4.7.57)

22|U∗|k ≤
(4.7.58)

42|U |k .
(4.7.70)

Then we bound, exactly as in (4.7.61),

1

i1!i2!j1!j2!
‖DI1

i1
DI2
i2
DJ
j1D

K
j2P1(I1, I2, J,K)‖k+1,U

≤ (16AP)2|U |k
∑

X1,X2∈Pk
X1∩X2=∅

χ(X1 ∪X2, U)
∏

Y ∈C(X1∪X2)

A−2|X1∩Y |−|X2∩Y |−|C(X2∩Y )|×

×
(

1
2

˙|||I1|||k
)i1(1

2
˙|||I2|||k

)i2(A2 ˙|||J |||k
)j1(‖K̇‖(A/(2AP ),B)

k:k+1

)j2 .
(4.7.71)

Now, we can conclude as in (4.7.65) that

1

i1!i2!j1!j2!
‖DI1

i1
DI2
i2
DJ
j1D

K
j2P1(I1, I2, J,K)‖k+1,U,r

≤
((48AP)2Ld

A2α

)|U |k+1

A−|U |k+1 ˙|||I2|||i2k ˙|||I1|||i1k
(
A ˙|||J |||k

)j1(‖K̇‖(A/(2A′),B)
k:k+1,r

)j2
≤ A−|U |k+1 ˙|||I1|||i1k ˙|||I2|||i2k

(
A2 ˙|||J |||k

)j1(‖K̇‖(A/(2A′),B)
k:k+1,r

)j2
(4.7.72)

once A > (48AP)
Ld

α . This implies the claim (4.7.55).

4.7.6 The map R1

Next we discuss the smoothness of the maps R1 and R2 which depend explicitly on q. The
proofs are similar to those in [4] however we do not have to deal with the q derivatives explicitly
because we already controlled them in Lemma 4.6.4. Let us begin with the map R1 which is
de�ned by

R1(P, q)(X,ϕ) = (R
(q)
k+1P )(X,ϕ) =

ˆ
XN

P (X,ϕ+ ξ)µ
(q)
k+1(dξ). (4.7.73)

Lemma 4.7.7. Let L and h satisfy the lower bound (4.7.20) and let κ = κ(L) be the constant
introduced in Theorem 4.5.1 and speci�ed in (4.5.81). For B ≥ 1 and any A ≥ 4AP the map R1

restricted to M̂
(A/2,B)

k × Uκ is smooth and satis�es

‖Dj
PR1(P, q)(X, ·)(Ṗ, . . . Ṗ )‖(A/(2AP ),B)

k:k+1 ≤ (‖Ṗ‖(A/2)
k )j(‖P‖(A/2)

k )1−j . (4.7.74)

and

‖D`
qD

j
PR1(P, q)(X, ·)(q̇, . . . , q̇, Ṗ, . . . Ṗ )‖(A/(2AP ),B)

k:k+1 ≤ C`(L)‖q̇‖`(‖Ṗ‖(A/2)
k )j(‖P‖(A/2)

k )1−j .

(4.7.75)

for ` ≥ 1 and 0 ≤ j ≤ 1. The constants C`(L) do not depend on h or A. The derivatives vanish
for j > 1.
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Proof. Note �rst that the map R1 is linear in P . Therefore the statement for the derivative in P
direction is trivial and we only need to consider the q derivative. Note that X ∈ Pcl

k is equivalent
to the condition that π(X) is connected. Therefore we can apply Lemma 4.6.4. From (4.6.20)
we get

‖(R(q)
k+1K)(X)‖k:k+1,X ≤ AP|X|k‖K(X)‖k,X . (4.7.76)

and hence

‖R(q)
k+1K‖

(A/(2AP ),B)
k:k+1 = sup

X∈Pcl
k

B|C(X)|
( A

2AP

)|X|k
‖R(q)

k+1K(X)‖k:k+1,X

≤ sup
X∈Pcl

k

B|C(X)|
( A

2AP

)|X|k
AP
|X|k‖K(X)‖k,X

= ‖K(X)‖(A/2,B)
k:k+1 .

(4.7.77)

Similarly, for ` ≥ 1, we get

‖D`
qR

(q)
k+1K‖

(A/(2AP ),B)
k:k+1 = sup

X∈Pcl
k

B|C(X)|
( A

2AP

)|X|k
‖D`

qR
(q)
k+1K(X)‖k:k+1,X

≤ C`(L) sup
X∈Pcl

k

B|C(X)|
( A

2AP

)|X|k
AP
|X|k‖K(X)‖k,X

= C`(L)‖K(X)‖(A/2,B)
k:k+1 .

(4.7.78)

4.7.7 The map R2

Lemma 4.7.8. Let L and h satisfy the lower bound (4.7.20). For any h ≥ 1 and A ≥ 1 the map
R2 de�ned in (4.7.16) is smooth. Moreover there exist a constant C0 (which is independent of
L, h and A) and for each ` ≥ 1 there exist a constant C`(L) (which is independent of h an A)
such that

‖Dj1
HD

j2
KD

`
qR2(H,K, q)(Ḣ, K̇, q̇)‖k,0 ≤ C`(L)‖q̇‖`


‖H‖k,0 + ‖K‖(A)

k if j1 = j2 = 0

‖Ḣ‖k,0 if j1 = 1, j2 = 0

‖K̇‖(A)
k if j1 = 0, j2 = 1,

(4.7.79)

and

Dj1
HD

j2
KD

`
qR2(H,K, q)(Ḣ, . . . , Ḣ, K̇, . . . , K̇, q̇, . . . , q̇) = 0 if j1 + j2 ≥ 2. (4.7.80)

Proof. First we observe that R2(H,K, q) = R
(q)
2,aH −R

(q)
2,bK where both R(q)

2,a and R(q)
2,b are linear

maps given by

R
(q)
2,aH = Π2R

(q)
k+1H, R

(q)
2,bK = Π2R

(q)
k+1K. (4.7.81)

This implies (4.7.80). Due to the linearity with respect toH andK the bounds for the derivatives
with respect to H and K follow from the case without derivatives in H or K direction. We
consider the two operators separately.
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The estimate for the operator R(q)
2,a is simple because its action on Hamiltonians can be

calculated explicitly. It only changes the constant part

a∅ 7→ a∅ +
∑

(i,α),(j,β)∈v2

a(i,α),(j,β) (∇β)∗∇αC(q)
k+1,ij(0), (4.7.82)

see Proposition 4.4.8. Using the bound (4.4.13) and the de�nition (4.4.93), we get

‖D`
qR

(q)
2,aH‖k,0 ≤ ‖H‖k,0 + c2,`h

−2
k ‖H‖k,0 ≤ (1 + c2,`(4.4.13))‖H‖k,0 (4.7.83)

if h ≥ 1.
Further, let us consider the map R(q)

2,b . From the linearity of Π2 and Lemma 4.6.7 we get

‖D`
qΠ2R

(q)K(B, ·)(q̇, . . . , q̇)‖k,0 ≤ ‖Π2(D`
qR

(q)K(B, ·))(q̇, . . . , q̇)‖k,0
≤ C(4.6.51)|D`

qR
(q)K(B, 0)(q̇, . . . , q̇)|k,B,T0

≤ C(4.6.51) ‖D`
qR

(q)K(B)(q̇, . . . , q̇)‖k:k+1,B.

(4.7.84)

In the last step we used that by de�nition (4.4.88),

‖F (B)‖k:k+1,B = sup
ϕ
w−Bk:k+1(ϕ) |F (B)|k,B,T0 ≥ |F (B)|k,B,T0 (4.7.85)

since w−Bk:k+1(0) = 1. Now, Lemma 4.6.4 for ` ≥ 1 yields

‖D`
qΠ2R

(q)K(B, ·)(q̇, . . . , q̇)‖k,0 ≤ C(4.6.51) ‖D`
qR

(q)K(B)(q̇, . . . , q̇)‖k:k+1,B

≤ C(4.6.51)C`,(4.6.21)(L)AB ‖q̇‖` ‖K(B)‖k,B

≤
C(4.6.51)C`,(4.6.21)(L)AB‖q̇‖`

A
‖K‖(A)

k .

(4.7.86)

This implies that

‖D`
qR

(q)
2,bK‖k,0 ≤ C`(L)‖q̇‖`‖K‖(A)

k (4.7.87)

for ` ≥ 1. The bounds (4.7.83) and (4.7.87) jointly yield the desired estimate for ` ≥ 1. For
` = 0 we get, instead of (4.7.86), a slightly sharper estimate,

‖Π2R
(q)K(B, ·)‖k,0 ≤ C(4.6.51) ‖R(q)K(B)‖k:k+1,B ≤

C(4.6.51)AB

A
‖K‖(A)

k . (4.7.88)

Together with (4.7.83) and the assumption A ≥ 1 this implies the desired estimate for ` = 0 with

C0 = 1 + c2,`,(4.4.13) + C(4.6.51)
AB
A
. (4.7.89)

Corollary 4.7.9. The operators A
(q)
k and B

(q)
k satisfy the estimate (4.4.104).

Proof. The operators A(q)
k and B(q)

k satisfy the identities

A
(q)
k H(B′, ϕ) =

∑
B∈B(B′)

R
(q)
2,aH(B,ϕ)

B
(q)
k K(B′, ϕ) = −

∑
B∈B(B′)

R
(q)
2,bK(B,ϕ).

(4.7.90)

Hence, the claim follows from bounds (4.7.83) and (4.7.87).
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4.7.8 Proof of Theorem 4.4.7

Proof of Theorem 4.4.7. The assertion follows from the smoothness of the individual maps E,
P1, P2, P3, R1, and R2 and the chain rule. To get an estimate for a neighbourhood Uρ,κ 3 0
on which the map S is smooth and to see on which parameters the constants ρ and κ depend,
we sequentially trace the dependence back to the neighbourhoods on which the individual maps
and their compositions are smooth.

First, we �x a constant A ≥ A0(L), where

A0(L) = (48AP(L))
Ld

α with α(d) = (1 + 2d)−1(1 + 6d)−1 (4.7.91)

is as in Lemma 4.7.6 and set

B = A. (4.7.92)

Thus, by Lemma 4.7.6, the map P1 is smooth in a neighbourhood O1 = Bρ1(1) × Bρ2(1) ×
Bρ3(0)×Bρ4(0) with

ρ1 = ρ2 = 1
2 , ρ3 = A−2, and ρ4 = 1. (4.7.93)

Using Lemma 4.7.7, we �nd a neighbourhood O2 = Bρ5×Bκ of the origin such that R1 is smooth
on O2 and R1(O2) ⊂ Bρ4 . Indeed, we may take

κ = κ(L) to be the constant κ de�ned in (4.5.81) (4.7.94)

and

ρ5 = ρ4 = 1. (4.7.95)

Similarly, by Lemma 4.7.3, there exists a neighbourhood O3 = Bρ6(0) such that E is smooth on
O3 and E(O3) ⊂ Bρ1(1) ∩Bρ2(1) ∩Bρ3(1). Indeed, since A ≥ A0(L) ≥ 2, it su�ces to take

ρ6 = 1
8 min(1, ρ1, ρ2, ρ3) = 1

8A
−2. (4.7.96)

In view of Lemma 4.7.8, there exists a neighbourhood O4 = Bρ7(0) × Bρ8(0) × Bκ such that
R2(O4) ⊂ Bρ6 . Indeed, we may take

ρ7 = ρ8 =
ρ6

C0,(4.7.79)
=

1

8A2 C0,(4.7.79)
. (4.7.97)

This de�nes the �rst restriction on the �nal neighbourhood Uρ,κ, namely,

Uρ,κ ⊂ Bρ7(0)×Bρ8(0)×Bκ(0). (4.7.98)

The second restriction comes from the condition

P3(P2(E(−H),K)) ∈ Bρ5(0). (4.7.99)

To satisfy this condition, we note that by Lemma 4.7.5 there exists a neighbourhood O5 = Bρ9(0)
such that P3(O5) ⊂ Bρ5 . It su�ces to take

ρ9 =
1

2B
min(ρ5, 1) =

1

2A
. (4.7.100)
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By Lemma 4.7.4, there exists a neighbourhood O6 = Bρ10(1) × Bρ11(0) with P2(O6) ⊂ Bρ9(0).
Taking into account the bound (4.7.39) and the fact that ρ9 ≤ 1, we may take

ρ10 =
ρ9

4A
=

1

8A2
, ρ11 =

ρ9

4
=

1

8A
. (4.7.101)

Using once more Lemma 4.7.3, we see that the condition (4.7.99) holds if

(H,K) ∈ Bρ12(0)×Bρ11(0) with ρ12 = 1
8ρ10 =

1

64A2
. (4.7.102)

Combining this with (4.7.98), we see that the map S is C∞ in the set

Uρ,κ = Bρ(0)×Bρ(0)×Bκ(0) (4.7.103)

once

ρ = min(ρ7, ρ8, ρ11, ρ12) =
1

8A2
min

( 1

C0,(4.7.79)
,
1

8

)
(4.7.104)

and the constant κ = κ(L) is as above. Since A ≥ A0 ≥ AP ≥ AB we deduce from (4.7.89) that

C0,(4.7.79) ≤ 1 + c2,`,(4.4.13) + C(4.6.51). (4.7.105)

Thus we may take

ρ =
1

8A2
min

( 1

1 + c2,`,(4.4.13) + C(4.6.51)(d,m,R)
, 1

8

)
. (4.7.106)

Finally, the chain rule implies the estimate (4.4.98).

4.8 Linearisation of the renormalisation map

In this section we prove the bounds for the operator norms stated in Theorem 4.4.8. These
contraction estimates make precise the idea thatHk andKk collect the relevant and the irrelevant
terms, respectively. Throughout this section we assume that

q ∈ Bκ where Bκ = Bκ(0) and κ = κ(L) is introduced in Theorem 4.5.1. (4.8.1)

4.8.1 Bounds for the operator C(q)

By (4.4.102) we have, for K ∈M(Pc
k),

(C(q)K)(U,ϕ) = F (U,ϕ) +G(U,ϕ) (4.8.2)

where F ∈M(Pc
k+1) is de�ned by

F (U,ϕ) =
∑

X∈Pc
k\B

π(X)=U

ˆ
XN

K(X,ϕ+ ξ)µ
(q)
k+1(dξ). (4.8.3)

and

G(B′, ϕ) =
∑

B∈Bk(B′)

G(B)(ϕ) (4.8.4)
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with

G(B)(ϕ) := (1−Π2)R
(q)
k+1K(B,ϕ). (4.8.5)

if B′ is a k + 1 block while

G(U,ϕ) = 0 ∀U ∈ Pc
k+1 \ Bk+1. (4.8.6)

For ease of reading we restate the key bound from Theorem 4.4.8 as Lemma 4.8.1 below. Recall
the de�nition of R in (4.4.29) and let AB and AP(L) denote the constants which appear in the
integration estimates in Theorem 4.5.1 ix) and x). Recall also that η ∈ (0, 2

3 ] is a �xed parameter.
This parameter actually controls the contraction rate of the �ow.

Lemma 4.8.1. There exists an L0 such that for each L ≥ L0 there exists an A0(L) and a h0(L)
with the property that for all A ≥ A0(L) and all h ≥ h0(L)

‖C(q)‖(A) = sup
‖K‖(A)

k ≤1

‖C(q)K‖(A)
k+1 ≤

3

4
η for all q ∈ Bκ. (4.8.7)

We may take

L0 = max
(
(4η−1C ′ABC1)

1
d′−d , (32η−1C ′AB(C2 + 1))

2
d , 2d+3 + 16R

)
, (4.8.8)

A0(L) = max
(8

η
AP

2Ld(2d+1 + 1)d2d ,
(8AP
ηδ

) 1+2α
2α

)
(4.8.9)

and h0(L) as in (4.5.17) in Theorem 4.5.1. Here C1 is the constant in the estimate |(1 −
Π2)K(B)|k+1,B,0 ≤ C1L

−d′ |K(B)|k,B,0 in Lemma 4.6.9 and C2 is the constant in the estimate
|Π2K(B)|k+1,B,0 ≤ C2|K(B)|k,B,0 in Lemma 4.6.7. Moreover d′ = bd/2c + d/2 + 1, C ′ =

maxx≥0(1 + x)5e−
1
2
x2
, and α and δ are the constants from Lemma 4.C.1 and Lemma 4.C.2,

respectively.

There are two mechanisms that ensure contractivity of the map C(q). For the operator F
de�ned in (4.8.3) we use that the operation π reduces the number of blocks, i.e., |π(X)|k+1 <
|X|k. The de�nition of the norm ensures that we gain a factor of A|X|k−|π(X)|k+1 which can be
used to cancel the combinatorial explosion of the number of terms. For the operator G, i.e., the
contributions of single blocks this is not possible. For single block we use instead that (1−Π2)K
measured at scale k + 1 is much smaller than K measured at scale k (see Lemma 4.6.9).

We �rst consider the simpler large polymer term F .

Lemma 4.8.2. Let L ≥ 2d+3 + 16R and de�ne

A0(L) := max
(8

η
AP

2Ld(2d+1 + 1)d2d ,
(8AP
ηδ

) 1+2α
2α

)
(4.8.10)

where AP is the constant from Theorem 4.5.1 ix) and α and δ are the constants from Lemma
4.C.1 and Lemma 4.C.2, respectively. Then for all A ≥ A0(L)

‖F‖(A)
k+1 ≤

1
4η‖K‖

(A)
k . (4.8.11)

Proof. Lemma 4.6.2 states that for U = π(X)

|R(q)
k+1K(X,ϕ)|k+1,U,Tϕ ≤ |R

(q)
k+1K(X,ϕ)|k,X,Tϕ . (4.8.12)
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The inequality (4.5.24) in Theorem 4.5.1 vii) implies that

wXk:k+1(ϕ) ≤ wUk+1(ϕ). (4.8.13)

We conclude that

‖Rk+1K(X,ϕ)‖k+1,U = sup
ϕ∈XN

|Rk+1K(X,ϕ)|k+1,U,Tϕ

wUk+1(ϕ)
≤ sup

ϕ∈XN

|Rk+1K(X,ϕ)|k,X,Tϕ
wXk:k+1(ϕ)

= ‖Rk+1K(X,ϕ)‖k:k+1,X .

(4.8.14)

Using this bound we can estimate

A|U |k+1‖F (U)‖k+1,U ≤ A|U |k+1

( ∑
X∈Pc

k\Sk
π(X)=U

‖Rk+1K(X)‖k:k+1,X +
∑

X∈Sk\Bk
π(X)=U

‖Rk+1K(X)‖k:k+1,X

)
.

(4.8.15)

We bound the two summands separately. For the �rst term we use that π(X) = U implies
X = U for large polymers X so that we can use the bound |X|k+1 ≤ 1

1+2α |X|k in Lemma 4.C.1
and Lemma 4.C.2. Bounding in addition the map Rk+1 using Lemma 4.6.4 we infer that

A|U |k+1
∑

X∈Pc
k\Sk

π(X)=U

‖Rk+1K(X)‖k:k+1,X ≤ A|U |k+1
∑

X∈Pc
k\Sk

X=U

AP
|X|k‖K(X)‖k,X

≤ A|U |k+1
∑

X∈Pc
k\Sk

X=U

‖K‖(A)
k

(AP
A

)|X|k
≤ ‖K‖(A)

k

∑
X∈Pc

k\Sk
X=U

(
APA

− 2α
1+2α

)|X|k ≤ 1
8η‖K‖

(A)
k

(4.8.16)

for A ≥
(

8AP
ηδ

) 1+2α
2α . For the second contribution we observe that π(X) is a single block for

X ∈ Sk, i.e., the second summand in (4.8.15) is only non-zero if U ∈ Bk+1. Moreover we can
bound the number of small polymers X that intersect a block B′ ∈ Bk+1 by Ld(2d+1 + 1)d2d .
Indeed there are Ld possibilities to pick the �rst block B of X and then all further blocks are
contained in a cube of side-length (2d+1 + 1)Lk centred at B and there are at most 2d of them.

This implies for U ∈ Bk+1 and A ≥ AP

A|U |k+1
∑

X∈Sk\Bk
π(X)=U

‖Rk+1K(X)‖k:k+1,X ≤ A
∑

X∈Sk\Bk
π(X)=U

AP
|X|k‖K(X)‖k,X ≤ A‖K‖

(A)
k

∑
X∈Sk\Bk
π(X)=U

(AP
A

)|X|k

≤ A‖K‖(A)
k Ld(2d+1 + 1)d2dAP

2

A2
≤ 1

8η‖K‖
(A)
k

(4.8.17)

for A ≥ 8η−1AP
2Ld(2d+1 + 1)d2d .

Next we consider the contribution from single blocks. Recall from (4.8.5) that for a k-block
B we de�ned G(B)(ϕ) = (1−Π2)Rk+1K(B,ϕ).

Lemma 4.8.3. Assume that L ≥ 2d+3 + 16R. Then we have

|G(B)|k+1,B,Tϕ ≤ AB(1 + |ϕ|k+1,B)5
(
C1L

−d′ + 8(C2 + 1)L−
3
2
dwBk:k+1(ϕ)

)
‖K‖k,B. (4.8.18)
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where
d′ = d/2 + bd/2c+ 1 > d (4.8.19)

and where AB is the constant which appears in the integration estimate for the weights in
Theorem 4.5.1 x). The constant C1 is the constant in the estimate |(1 − Π2)K(B)|k+1,B,0 ≤
C1L

−d′ |K(B)|k,B,0 in Lemma 4.6.9 while the constant C2 is the constant in the estimate
|Π2K(B)|k+1,B,0 ≤ C2|K(B)|k,B,0 in Lemma 4.6.7.

Proof. From the two norm estimate (4.6.2) and the contraction estimate (4.6.56) we get

|G(B)|k+1,B,Tϕ

≤ (1 + |ϕ|k+1,B)3
(
|(1−Π2)Rk+1K(B)|k+1,B,T0 + 8L−

3
2
d sup

0≤t≤1
|(1−Π2)Rk+1K(B)|k,B,Ttϕ

)
≤ (1 + |ϕ|k+1,B)3

(
C1L

−d′ |Rk+1K(B)|k,B,T0 + 8L−
3
2
d sup

0≤t≤1
|(1−Π2)Rk+1K(B)|k,B,Ttϕ

)
(4.8.20)

Now by Jensen's inequality and the estimate (4.5.27) in Theorem 4.5.1 x) with ϕ = 0

|Rk+1K(B)|k,B,T0 ≤
ˆ
XN
|K(B)|k,B,Tξ µk+1(dξ)

≤
ˆ
XN
‖K‖k,B wBk (ξ) µk+1(dξ) ≤ AB ‖K‖k,B. (4.8.21)

The second term is bounded similarly. By (4.6.54), (4.6.53), Lemma 4.6.7 and (4.8.21) we
get, for all t ∈ [0, 1],

|Π2Rk+1K(B)|k,B,Ttϕ ≤ (1 + |ϕ|k,B)2‖Π2Rk+1K(B)‖k,0
≤C2(1 + |ϕ|k,B)2|Rk+1K(B)|k,B,T0 ≤ C2(1 + |ϕ|k,B)2AB ‖K‖k,B. (4.8.22)

Using the monotonicity of t 7→ wk:k+1(tϕ) we get from (4.6.20) in Lemma 4.6.4

|Rk+1K(B)|k,B,Ttϕ ≤ wBk:k+1(ϕ) ‖Rk+1K(B)‖k:k+1,B ≤ AB wBk:k+1(ϕ) ‖K(B)‖k,B. (4.8.23)

Since |ϕ|k,B ≤ |ϕ|k+1,B the estimate (4.8.18) now follows from (4.8.20), (4.8.21), (4.8.22) and
(4.8.23).

Lemma 4.8.4. Assume that L ≥ 2d+3 + 16R and that h ≥ h0(L) where h0(L) satis�es (4.5.17).
Let B′ ∈ Bk+1 be a k + 1 block and recall that G(B′) =

∑
B∈Bk(B′)G(B). Then

|G(B)|k+1,B′,Tϕ ≤ C ′AB
(
C1L

−d′ + 8(C2 + 1)L−
3
2
d
)
wB

′
k+1(ϕ) ‖K‖k,B. (4.8.24)

and
‖G(B′)‖k+1,B′ ≤ C ′AB

(
C1L

d−d′ + 8(C2 + 1)L−
1
2
d
)
‖K‖k,B. (4.8.25)

where
C ′ = max

x≥0
(1 + x)5e−

1
2
x2
.

In particular there exists an L0 such that for L ≥ L0 and h ≥ h0(L)

‖G‖(A)
k+1 ≤

1
2η‖K‖

(A)
k ∀A ≥ 1. (4.8.26)

We may take

L0 = max
(
(4η−1C ′ABC1)

1
d′−d , (32η−1C ′AB(C2 + 1))

2
d , 2d+3 + 16R

)
. (4.8.27)
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Proof. Indeed by (4.5.25) in Theorem 4.5.1 viii) and the de�nition of C ′ we have

(1 + |ϕ|k+1,B′)
5 ≤ (1 + |ϕ|k+1,B′)

5wB
′

k:k+1(ϕ) ≤ C ′wB′k+1(ϕ).

Since |ϕ|k+1,B ≤ |ϕ|k+1,B′ and wBk:k+1 ≤ wB
′

k:k+1 the estimate (4.8.24) follows from Lemma 4.8.3.
Now (4.8.25) follows from (4.8.24) after summing over B, dividing by wk+1,B′(ϕ) and taking the
supremum over ϕ. Finally (4.8.26) holds if we take L0 so large that

C ′ABC1L
d−d′
0 ≤ 1

4
η and 8C ′AB(C2 + 1)L

−d/2
0 ≤ 1

4
η. (4.8.28)

Clearly both conditions are satis�ed if L satis�es L ≥ L0 and L0 is the number in (4.8.27).

Proof of Lemma 4.8.1. This follows from (4.8.2), Lemma 4.8.2 and Lemma 4.8.4.

4.8.2 Bound for the operator
(
A(q)

)−1

Lemma 4.8.5. Let C2,0 be the constant in (4.4.13) for ` = 0. Then for

h ≥
√
C2,0 (4.8.29)

and hk = 2kh the operator A(q) : (M0(Bk), ‖ · ‖k,0)→ (M0(Bk+1), ‖ · ‖k+1) satis�es

‖
(
A(q)

)−1‖ ≤ 3

4
. (4.8.30)

Proof. Let H ′ = A(q)H. As before we denote the coe�cients of the expansion of H and H ′ in
monomials by am and a′m , respectively. Here m ∈ v. By (4.4.100) we have a′m = am for m 6= ∅ and

a′∅ = a∅ +
∑

(i,α),(j,β)∈v2

a(i,α),(j,β) (∇β)∗∇αC(q)
k+1,ij(0). (4.8.31)

Thus A := A(q) is invertible and by the de�nition (4.4.93) of the ‖ ·‖k,0 norm in connection with
the relations hk+1 ≥ 2hk and L ≥ 2 we get

‖H‖k,0 =Lkd |a∅|+
∑

(i,α)∈v1

hkL
kdL−k

d−2
2 L−k|α| |ai,α|+

∑
m∈v2

h2
k |am |

≤Lkd |a′∅|+
∑

(i,α)∈v1

hkL
kdL−k

d−2
2 L−k|α| |a′i,α|+

∑
m∈v2

h2
k |a′m |

+ Lkd
∑

(i,α),(j,β)∈v2

|a(i,α),(j,β)| |(∇β)∗∇αC(q)
k+1,ij(0)|

≤ 1
2‖H

′‖k+1,0 + Lkd
∑

(i,α),(j,β)∈v2

|a(i,α),(j,β)| |(∇β)∗∇αC(q)
k+1,ij(0)|

(4.8.32)

The bound (4.4.13) implies that for ((i, α), (j, β)) ∈ v2∣∣∣(∇β)∗∇αC(q)
k+1,ij(0)

∣∣∣ ≤ C2,0 L
−kd. (4.8.33)

Using in addition that∑
(i,α),(j,β)∈v2

|a(i,α),(j,β)| =
∑

(i,α),(j,β)∈v2

|a′(i,α),(j,β)| ≤
‖H ′‖k+1,0

h2
k+1

(4.8.34)
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and hk+1 = 2k+1h ≥ 2h we conclude that

‖A−1H ′‖k,0 ≤
1

2
‖H ′‖k+1,0 +

C2,0‖H ′‖k+1,0

h2
k+1

≤ 3

4
‖H ′‖k+1,0 (4.8.35)

provided that h2 ≥ C2,0.

4.8.3 Bound for the operator B(q)

Recall from (4.4.101) that B(q)
k : (M(Pc

k), ‖ · ‖
(A)
k )→ (M0(Bk+1), ‖ · ‖k+1,0) is de�ned by

(B
(q)
k K)(B′, ϕ) =

∑
B∈Bk(B′)

Π2

(ˆ
XN

K(B,ϕ+ ξ)µ
(q)
k+1(dξ)

)
(4.8.36)

Lemma 4.8.6. Assume that

L ≥ 2d+3 + 16R, (4.8.37)

and

A ≥ A0 := 3C2ABL
d (4.8.38)

where C2 is the constant in Lemma 4.6.7 and AB is the constant in Theorem 4.5.1 x). Then the
operator norm of B(q) satis�es

‖B(q)‖ ≤ C2ABL
d

A
≤ 1

3
. (4.8.39)

Proof. Set H ′(B′) = −(B
(q)
k K)(B′). For a B ∈ Bk(B′) set H(B) = −Π2R

(q)K(B). Then H(B)
can be written as

H(B) =
∑
x∈B

∑
m∈v

am Mm({x}).

By translation invariance H ′(B′) can be written as

H ′(B′) =
∑
x∈B′

∑
m∈v

am Mm({x})

with the same coe�cients am . Thus it follows from the de�nition (4.4.93) of the norm ‖ · ‖k,0 on
relevant Hamiltonians and the relation hk+1 = 2hk that

‖B(q)K‖k+1,0 ≤ max(Ld, 2Ld/2, 4) ‖Π2R
(q)
k+1K(B)‖k,0 ≤ Ld ‖Π2R

(q)
k+1K(B)‖k,0. (4.8.40)

Lemma 4.6.7 and (4.8.21) (which is a consequence of (4.5.27)) imply that

‖Π2(R
(q)
k+1K)(B)‖k,0 ≤ C2|R(q)

k+1K(B)|k,B,T0 ≤ C2AB‖K(B)‖k,B. (4.8.41)

Since ‖K(B)‖k,B ≤ A−1‖K‖(A)
k the desired assertion follows.
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4.9 Proofs of the main results

4.9.1 Main result of the renormalisation analysis

We �x ζ ∈ (0, 1) and we recall from (3.2.38) that the Banach space E consists of functions
K : G = (Rm)I → R such that that the following norm is �nite

‖K‖ζ = sup
z∈G

∑
|α|≤r0

1

α!
|∂αK(z)|e−

1
2

(1−ζ)Q(z). (4.9.1)

Recall that η ∈ (0, 2
3 ] is a parameter controlling the rate of contraction of the renormalisation

�ow.

Theorem 4.9.1. Let κ = κ(L) be as in Theorem 4.5.1. Moreover, let L0, h0(L), A0(L), ρ(A),
Cj1,j2,j3(L,A), and C`(L,A) be such that the conclusions of Theorem 4.4.7 and Theorem 4.4.8
hold for every triple (L, h,A) with L ≥ L0, h ≥ h0(L), A ≥ A0(L). Assume also that

h0(L) ≥ δ(L)−
1
2 (4.9.2)

where δ(L) is the constant introduced in (4.5.57) in Lemma 4.5.5.
Then for every triple (L, h,A) with L ≥ L0, h ≥ h0(L), and A ≥ A0(L) there exists a

% = %(L, h,A) > 0 such that for each N ≥ 1 there are C∞ maps êN : B%(0) ⊂ E → R,

q̂N : B%(0) ⊂ E → Bκ(0) ⊂ R(d×m)×(d×m)
sym and K̂N : B%(0) ⊂ E →M

(A)
N (de�ned in (4.7.1))with

the following properties. For each K ∈ B%(0) ⊂ E
ˆ
XN

∑
X⊂TN

∏
x∈X
K(Dϕ(x))µ(0)(dϕ) =

Z
(q̂N (K))
N eL

NdêN (K)

Z
(0)
N

ˆ
XN

(
1 + K̂N (K)(ΛN , ϕ)

)
µ

(q̂N (K))
N+1 (dϕ)

(4.9.3)

where Z
(q)
N denotes the normalisation introduced in (4.4.21). The derivatives of these maps satisfy

bounds that are uniform in N and the map K̂N is contracting in the sense that there is a constant
C > 0 such that for all ` ≥ 0

1

`!
‖∂`KK̂N (K)(K̇, . . . , K̇)‖(A)

N ≤ C`(L, h,A) ηN ‖K̇‖`ζ (4.9.4)

Moreover ˆ
XN
|K̂N (K)(ΛN , ϕ)|µ(q̂N (K))

N+1 (dϕ) ≤ 1

2
. (4.9.5)

More generally the following identity holds for fN ∈ XN and K ∈ B%(0)ˆ
XN

e(fN ,ϕ)
∑
X⊂TN

∏
x∈X
K(Dϕ(x))µ(0)(dϕ)

= e
1
2

(fN ,C
(q̂N (K))fN )Z

(q̂N (K))
N eL

NdêN (K)

Z
(0)
N

ˆ
XN

(
1 + K̂N (K)(ΛN , ϕ+ C(q̂N (K))fN )

)
µ

(q̂N (K))
N+1 (dϕ).

(4.9.6)

We may take % as the minimum of the radius %̃ in Lemma 4.10.6 and A
2ABC1,(4.9.4)

.

Actually the proof shows that we may take % as the minimum %̃ in Lemma 4.10.6 and
A

2ABC1,(4.9.4)
η−N . Thus for N ≥ N0(L, h,A) we may take % simply as in Lemma 4.10.6.

We will prove this theorem at the end of Section 4.10. In the remainder of the current section
we show how Theorem 4.9.1 implies the main results in Section 3.2.
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4.9.2 Proof of the main theorem

Proof of Theorem 3.2.2. Choose the parameter % in the statement of Theorem 3.2.3 as the num-
ber %(L, h0(L), A0(L)) in Theorem 4.9.1. We apply �rst (3.2.35) and then (3.2.33) and (4.9.3)
from Theorem 4.9.1 and obtain that the perturbative free energy can be expressed as

WN (K)=− 1

LNd
lnZN (K,Q, 0)

=− êN (K)− 1

LNd
ln

(
Z

(q̂N (K))
N

Z
(0)
N

)
− 1

LNd
ln

(ˆ
XN

(
1 + K̂N (K)(ΛN , ϕ)

)
µ

(q̂N (K))
N+1 (dϕ)

)
.

(4.9.7)

The �rst term is C∞ uniformly in N by Theorem 4.9.1. Similarly the second term is C∞

uniformly in N by Theorem 4.9.1, Lemma 4.9.2 below and the chain rule.
To address the last term we introduce the notation

G(KN , q) =

ˆ
XN

KN (X,ϕ)µ
(q)
N+1(dϕ) = R

(q)
N+1KN (ΛN , 0). (4.9.8)

Then the last term is given by L−Nd ln(1 + G(K̂N (K), q̂N (K))). Note that for any positive
function G the derivative Dk ln(1 + G) is given by a polynomial in derivatives of G divided by
(1 +G)k. It follows from (4.9.5) that 1 +G ≥ 1

2 . By the chain rule it is su�cient to show that

G : Bκ(0) ×M (A)
N → R is smooth because q̂(K) and K̂N (K) are smooth functions. For the

derivatives with respect to q we use (4.6.21) from Lemma 4.6.4 to estimate

|∂`qG(KN , q))| ≤ ‖∂`qR
(q)
N+1KN (ΛN )‖N :N+1,ΛN

≤ C`(L)
AB
A
‖K̂N‖(A)

N

(4.9.9)

We have thus established that W̄N is C∞ with uniform bounds.

To show smoothness of the second term on the right hand side of (4.9.7) we used the following
result.

Lemma 4.9.2. Let fN (q) = 1
LNd

ln
(
Z(q)

Z(0)

)
. Then fN ∈ C∞(Bω0/2(0)) and the derivatives of fN

can be bounded uniformly in N .

Proof. To emphasise dependence on N we denote the operator A(q) on L2(XN ) de�ned in (4.4.20)

temporarily by A
(q)
N . Fourier transform diagonalises this operator in the scalar case m = 1 and

block-diagonalises it for general m (with m × m blocks). By (4.4.9) the Fourier transform is
given by

Â
(q)
N (p) =

∑
α,β∈I

q(p)αQαβq(p)
β+

∑
|α|=|β|=1

q(p)αqαβq(p)
β (4.9.10)

where qαβ denotes the m ×m matrix with entries q(α,i)(β,j) and the j-th component of q(p) is

given by qj(p) = eipj − 1. Since q ∈ Bω/2(0) it follows from (4.4.11) that A(q)
N is positive de�nite

and Gaussian calculus gives

fN (q) =
1

LNd
1

2
ln

detA
(q)
N

detA
(0)
N

=
1

LNd
1

2

∑
p∈T̂N\{0}

ln det
(
Â(q)
N (p)

)
− ln det

(
Â(0)
N (p)

)
=

1

LNd
1

2

∑
p∈T̂N\{0}

ln det
( 1

|p|2
Â(q)
N (p)

)
− ln det

( 1

|p|2
Â(0)
N (p)

) (4.9.11)
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Now it follows from (4.9.10) and (4.4.11) that q 7→ 1
|p|2 Â(q)(p) is linear in q and both

1
|p|2 Â(q)(p) and its inverse are bounded uniformly in N and p ∈ T̂N \ {0}. In particular

det

(
1
|p|2 Â

(q)
N (p)

)
lies in a �xed compact subset of (0,∞). The determinant is smooth and

the logarithm is smooth away from 0. Since the sum contains LdN − 1 terms it follows that the
function fN is smooth and the derivatives are bounded uniformly in N .

4.9.3 Proof of the scaling limit

In the setting of [4] the scaling limit was derived by Hilger [105]. Here we follow a similar
strategy. In this section K is �xed and we use the abbreviations

eN = êN (K), qN = q̂N (K), KN = K̂N (K). (4.9.12)

Proof of Theorem 3.2.7. Recall that we consider f ∈ C∞(Td; Rm) where Td = Rd/Zd and de�ne
rescaled functions on ΛN = Zd/(LNZd) by

fN (x) = L−N
d+2

2 f(L−Nx)− cN (4.9.13)

where the constant cN is chosen so that ∑
x∈TN

fN (x) = 0. (4.9.14)

Note that in the statement of Theorem 3.2.7 we did not subtract to constant from fN . Since
(cN , ϕ) = 0 for all ϕ ∈ XN subtracting the constant does, however, not a�ect the statement of
Theorem 3.2.7.

We rewrite the right hand side of equation (3.2.58) using the de�nition (3.2.33) and (4.9.6)
from Theorem 4.9.1

Z(K,Q, fN )

Z(K,Q, 0)
= e

1
2

(fN ,C
(qN )

N fN )

´
XN

(
1 +KN (ΛN , ϕ+ C(qN )fN )

)
µ

(qN )
N+1(dϕ)´

XN (1 +KN (ΛN , ϕ)) µ
(qN )
N+1(dϕ)

. (4.9.15)

Here we used that the contribution of the term Z(qN )eL
NdeN

Z(0) in (4.9.6) cancels in the quotient
because that term does not depend on fN . The matrix qN depends on N . Since qN is bounded
independently of N we �nd a subsequence N` → ∞ such qN` converges to q. In the following
we only consider this subsequence, but for ease of notation we still write qN . One can actually
show convergence of the whole sequence [106] using the techniques from [47].

We consider the two terms on the right hand side of (4.9.15) in two steps. First we show that
the second term converges to 1 by showing that this holds for the numerator and the denominator.
In fact it su�ces to show convergence for the numerator since the denominator corresponds to
the special case fN = 0. Theorem 4.5.1 x) and (4.9.4) imply that∣∣∣∣ˆ
XN

KN (ΛN , ϕ+ C(qN )fN )µ
(qN )
N+1(dϕ)

∣∣∣∣ ≤ ‖KN‖(A)
N

A

ˆ
XN

wΛN
N (ϕ+ C(qN )fN )µ

(qN )
N+1(dϕ)

≤ CηN 1

A
AB w

ΛN
N :N+1(C(qN )fN ).

(4.9.16)

The weight function can be bounded using Theorem 4.5.1 ii)

ln(wΛN
N :N+1(C(qN )fN )) ≤ 1

2λ

(
C

(qN )
N fN ,MNC

(qN )
N fN

)
(4.9.17)
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By (4.4.11) the Fourier modes of the kernel of C(qN ) satisfy |Ĉ(qN )(p)| ≤ C|p|−2 ≤ CL2N . Recall
that qi(p) = eipi − 1 and q(p)α =

∏d
i=1 qi(p)

αi for any multiindex α ∈ Nd. Using the Plancherel
identity (4.4.7) we get(
C(qN )fN ,MNC

(qN )fN

)
= L−Nd

∑
1≤|α|≤M

∑
p∈T̂N

(Ĉ(qN )(p)f̂N (p), L2N(|α|−1)|q(p)2α|Ĉ(qN )(p)f̂N (p))

= L−Nd−2N
∑

1≤|α|≤M

∑
p∈T̂N

L2N |α||q(p)2α| |Ĉ(qN )(p)f̂N (p)|2

≤ CL−Nd+2N
∑

1≤|α|≤M

∑
p∈T̂N

L2N |α||q(p)2α||f̂N (p)|2

= CL2N
∑

1≤|α|≤M

L2N |α|(∇αfN ,∇αfN ).

(4.9.18)

To estimate the discrete derivatives at x we apply a Taylor expansion of f of order r. This gives

fN (x+ a) = L−N
d+2

2 f(L−Nx+ L−Na)

= L−N
d+2

2

 ∑
0≤β≤r

(L−Na)β

β!
∂βf(L−Nx) +Rr

 (4.9.19)

where Rr denotes the remainder that can be bounded by Cr+1|∇r+1f |∞|L−Na|r+1. Since the
discrete derivative of order |α| annihilates polynomials up to order |α| − 1 and since the discrete
derivative is a bounded operator the identity (4.9.19) implies that

|∇αfN (x)| ≤ C|α|L−N
d+2

2 |∇|α|f |∞L−N |α| (4.9.20)

and thus

L2N
∑

1≤|α|≤M

L2N |α|(∇αfN ,∇αfN ) ≤ C
M∑
r=0

|∇rf |∞. (4.9.21)

Combining (4.9.16), (4.9.17), (4.9.18), and (4.9.21) we conclude that∣∣∣∣ˆ
XN

KN (ΛN , ϕ+ C(qN )fN )µ
(qN )
N+1(dϕ)

∣∣∣∣ ≤ CηN ABA exp

(
C

M∑
r=0

|∇rf |∞

)
→ 0 (4.9.22)

as N →∞. This implies that the numerator on the right hand side of (4.9.15) converges to 1.
The second step is to prove the convergence of the the prefactor

1

2
(fN ,C

(qN )
N fN )→ 1

2
(f,CTdf). (4.9.23)

To show this we change the scaling of the system. Usually we think that the system size grows
with N while the distance between the atoms remains �xed , but now it is more convenient to
�x the system size and to let the distance between the atoms go to zero.

We de�ne the rescaled torus T ′N and the corresponding dual torus T̂ ′N in Fourier space by

T ′N = L−NTN , T̂ ′N = LN T̂N . (4.9.24)
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Recall from (4.4.4) that
T̂ ′N = {ξ ∈ (2πZ)d : |ξ|∞ ≤ (LN − 1)π} (4.9.25)

(here we use that L is odd and hence LN − 1 is even and we identify the dual torus with its
fundamental domain). To make the notation clearer we will write x and z for coordinates in TN
and T ′N , respectively and similarly p and ξ for coordinates in T̂N and T̂ ′N , respectively. Note
that there is an inclusion T ′N → (R/Z)d = Td. For a function g : T ′N → C we de�ne the discrete
Fourier transform by

ĝ(ξ) := L−dN
∑
z∈T ′N

g(z)e−iξ·z ∀ξ ∈ T̂ ′N . (4.9.26)

The prefactor L−dN is chosen so that for g ∈ C0(Td) the sum is the Riemann sum which
corresponds to the integral for the coe�cient in the Fourier series of g. For brevity we write for
the rest of this subsection

CN = C(qN ). (4.9.27)

This quantity should not be confused with the �nite range decomposition at scale N . We de�ne
the rescaled functions f ′N : T ′N → Rm,

f ′N (z) = LN
(d+2)

2 fN (LNz) = f(z)

C′N (z) = LN(d−2)CN (LNz).
(4.9.28)

Note that the rescaling of CN re�ects the expected behaviour of the Green's function of the
Laplacian, namely CN (x) ∼ |x|2−d. Then the corresponding Fourier transforms f̂ ′N : T̂ ′N → Cm,
and Ĉ′N : T̂ ′N → Cm×mher satisfy

f̂ ′N (ξ) = L−Nd
∑
z∈T ′N

f(z)e−izξ = L−N
d−2

2

∑
x∈TN

fN (x)e−iL
−N ξx = L−N

d−2
2 f̂N (L−Nξ)

Ĉ′N (ξ) = L−2N ĈN (L−Nξ).

(4.9.29)

Using this rescaling, Plancherel and the zero-average condition (4.9.14) we �nd that

(fN ,CNfN ) =
1

LNd

∑
p∈T̂N\{0}

(f̂N (p), ĈN (p)f̂N (p)) =
∑

ξ∈T̂ ′N\{0}

(f̂ ′N (ξ), Ĉ′N (ξ)f̂ ′N (ξ)) (4.9.30)

On the other hand the Plancherel identity and the fact that f has average 0 yield

(f,Cf) =
∑

ξ∈(2πZ)d\{0}

(f̂(ξ), ĈTd(ξ)f̂(ξ)) (4.9.31)

where the Fourier modes are given by

f̂(ξ) =

ˆ
Td
f(z)e−iξz,

ĈTd(ξ) =

 d∑
i,j=1

ξiξj(Q+ q)ij

−1

.

(4.9.32)

The last expression is well de�ned because Q+q is positive de�nite. Now we show the pointwise
convergence

lim
N→∞

(f̂ ′N (ξ), Ĉ′N (ξ)f̂ ′N (ξ)) = (f̂(ξ), ĈTd(ξ)f̂(ξ)) (4.9.33)



174 Renormalisation group analysis of gradient models

for ξ ∈ (2πZ)d \ {0}. First note that f̂ ′N (ξ) → f̂(ξ) for all ξ ∈ (2πZ)d \ {0} because f̂ ′N (ξ) is
a Riemann sum approximation of the integral for f̂(ξ). For the covariance we observe that by
(4.9.10)

Ĉ′N (ξ) = ĈN (L−Nξ)L−2N

=

 ∑
α,β∈I

LNq(L−Nξ)αQαβL
Nq(L−Nξ)β +

d∑
|α|=|β|=1

LNq(L−Nξ)αqαβL
Nq(L−Nξ)β

−1

.

(4.9.34)

We have LNq(L−Nξ)α = LN (eiL
−N ξj − 1)→ iξj as N →∞ for α = ej and LNq(L−Nξ)α → 0 as

N → ∞ for |α| ≥ 2. Then the assumption qN → q along the subsequence we consider and the
fact that the inversion of matrices is continuous yield

Ĉ′N (ξ)→ ĈTd(ξ) as N →∞ (4.9.35)

This establishes (4.9.33).
Next we show that the Fourier modes are uniformly bounded from above. Note that |Ĉ′N (ξ)| =

L−2N |ĈN (L−Nξ)| ≤ C|ξ|−2 by (4.4.11). The de�nition of q(p) and discrete integration by parts
yield

|q(p)|2rf̂N (p) =
∑
x∈TN

fN (x)∆re−ipx =
∑
x∈TN

∆rfN (x)e−ipx. (4.9.36)

The estimate |p| ≤ 2|q(p)| the rescaling (4.9.29), and (4.9.20) imply for ξ ∈ T̂ ′N and p = L−Nξ

|ξ|2r|f̂ ′N (ξ)| = L2rN |p|2rL−N
d−2

2 |f̂N (p)|

≤ Cr L2rNL−N
d−2

2

∑
x∈TN

|∆rfN (x)|

≤ Cr L2rNL−N
d−2

2

∑
x∈TN

L−N
d+2

2 |∇2rf |∞ L−2rN ≤ Cr|∇2rf |∞.

(4.9.37)

Note that by (4.4.11) and (4.9.29) we have |Ĉ′N (ξ)| ≤ CL−2NL2N |ξ|−2 ≤ C|ξ|−2. We hence
deduce that

(f̂ ′N (ξ), Ĉ′N (ξ)f̂ ′N (ξ)) ≤ Cr|ξ|−2r−2 |∇2rf |∞ ∀ξ ∈ T̂ ′N \ {0}. (4.9.38)

For r ≥ bd2c the right hand side is summable over ξ ∈ (2πZ)d\{0} and the dominated convergence
theorem and the pointwise convergence (4.9.33) imply that∑

ξ∈T̂ ′N\{0}

(f̂ ′N (ξ), Ĉ′N (ξ)f̂ ′N (ξ)) =
(4.9.25)

∑
ξ∈(2πZ)d\{0}

1|ξ|∞≤(LN−1)π (f̂ ′N (ξ), Ĉ′N (ξ)f̂ ′N (ξ))

→
∑

ξ∈(2πZ)d\{0}

(f̂(ξ), ĈTd(ξ)f̂(ξ)).
(4.9.39)

Now (4.9.30) and (4.9.31) show that (fN ,CNfN )→ (f,CTdf) (along the subsequence considered).
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4.10 Fine tuning of the initial condition

In this section we prove Theorem 4.9.1 by the use of a stable manifold theorem and an addi-
tional application of the implicit function theorem to determine the renormalised Hamiltonian.
The setting for the stable manifold theorem is very similar to the situation in Theorem 2.16 of
[42] but for completeness and for the convenience of the reader we provide a detailed proof.

The stable manifold theorem boils down to an application of the implicit function theorem
to the whole trajectory of relevant and irrelevant interactions (Hk,Kk). We de�ne the Banach
space

Z = {Z = (H0, H1, . . . ,HN−1,K1, . . . ,KN ) : Hk ∈M0(Bk),Kk ∈M(Pck)} (4.10.1)

equipped with the norm

‖Z‖Z = max

(
max

0≤k≤N−1

1

ηk
‖Hk‖k,0, max

1≤k≤N

1

ηk
‖Kk‖

(A)
k

)
(4.10.2)

where
η ∈

(
0, 2

3

]
. (4.10.3)

is a �xed parameter. Note that a bound on ‖Z‖Z implies exponential decay of the norms of Hk

and Kk in k. The functionals HN and K0 do not appear in Z because we want to achieve the
�nal condition HN = 0 and we treat K0 as a �xed initial condition, see (4.10.10) below.

We de�ne a dynamical system T on Z. The map T depends in addition on two parameters,
a relevant Hamiltonian H ∈ M(B0) and the interaction K ∈ E. Here we �x ζ ∈ (0, 1) and we
recall from (3.2.38) that the Banach space E consists of functions K : G = (Rm)I → R so that
the following norm is �nite

‖K‖ζ = sup
z∈G

∑
|α|≤r0

1

α!
|∂αK(z)|e−

1
2

(1−ζ)Q0(z). (4.10.4)

The Hamiltonian H will eventually allow us to extract the correct Gaussian part in the measure
(the renormalized covariance).

More precisely we consider a map T : E×M(B0)×Z → Z de�ned by T (K,H, Z) = Z̃ where
the coordinates of Z̃ are given by

H̃0(K,H, Z) = (A
(q(H))
0 )−1

(
H1 −B(q(H))

0 K̂0(K,H)
)
, (4.10.5)

H̃k(K,H, Z) = (A
(q(H))
k )−1(Hk+1 −B

(q(H))
k Kk), for 1 ≤ k ≤ N − 2, (4.10.6)

H̃N−1(K,H, Z) = −(A
(q(H))
N−1 )−1B

(q(H))
N−1 KN−1, (4.10.7)

K̃k+1(K,H, Z) = Sk(Hk,Kk, q), for 1 ≤ k ≤ N − 1, (4.10.8)

K̃1(K,H, Z) = S0(H0, K̂0(K,H), q(H)). (4.10.9)

Here the map K̂0 is de�ned by

K̂0(K,H)(X,ϕ) = exp (−H(X,ϕ))
∏
x∈X
K(Dϕ(x)). (4.10.10)

and q(H) is the projection on the coe�cients of the quadratic part of H, i.e., q(i,α)(j,β) =
1
2a(i,α),(j,β) for (i, α) < (j, β), q(i,α)(j,β) = 1

2a(j,β),(i,α) for (i, α) > (j, β), and q(i,α)(j,β) = a(i,α),(j,β)
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for (i, α) = (j, β) where a(i,α),(j,β) denotes the coe�cients of the quadratic term of H. The factor
1
2 arises because q is symmetric. Note that the de�nition (4.10.7) of HN−1 re�ects the �nal
condition HN = 0.

One easily sees that

T (K,H, Z) = Z if and only if

T k(Hk,Kk, q(H)) = (Hk+1,Kk+1) ∀0 ≤ k ≤ N − 1 with HN = 0 and K0 = K̂0(K,H).
(4.10.11)

Here T k is the renormalisation group map de�ned in De�nition 4.4.5. Proposition 4.4.6 then
implies that a �xed point of T satis�es
ˆ
XN

(e−H0 ◦ K̂0(K,H))(ΛN , ϕ+ ψ) µ(q(H))(dϕ) =

ˆ
XN

(
1 +KN (ΛN , ϕ+ ψ)

)
µ

(q(H))
N+1 (dϕ).

(4.10.12)

4.10.1 Existence of a �xed point of the map T (K,H, ·)

Theorem 4.10.1 below states that for su�ciently small H and K there is a unique �xed
point Ẑ(K,H) which depends smoothly on K and H. In particular (4.10.12) holds with H0 =
ΠH0Ẑ(K,H) and KN = ΠKN Ẑ(K,H) where ΠH0Z and ΠKNZ denote the projection onto the H0

component and the KN component, respectively. Now the right hand side of (4.10.12) deviates
from 1 only by an error of order O(ηN ) and the left hand side of (4.10.12) looks very similar to
the functional ˆ

X

∑
X⊂ΛN

∏
x∈X
K(Dϕ(x))µ(0)(dϕ) (4.10.13)

which we want to study, but is in general not identical to it due to the presence of the terms
ΠH0Ẑ(K,H) and q(H). Another application of the implicit function theorem then leads to
Lemma 4.10.6 below which shows that there exist an H = Ĥ(K) such that ΠH0Ẑ(K,H) = H.
Then short calculation shows that left hand side of (4.10.12) agrees with the expression (4.10.13)
up to an explicit scalar factor which involves the constant term in H and the ratio Z(q(H))/Z(0)

of the Gaussian partition functions, see (4.10.79) below. From this representation we will easily
deduce the main theorem of the previous section, Theorem 4.9.1.

Recall the convention that, say, C(4.10.50) denotes the constant which appears in equation
(4.10.50).

Theorem 4.10.1. Let κ = κ(L) be as in Theorem 4.5.1. Moreover, let L0, h0(L), A0(L), ρ(A),
Cj1,j2,j3(L,A), and C`(L,A) be such that the conclusions of Theorem 4.4.7 and Theorem 4.4.8
hold for every triple (L, h,A) with L ≥ L0, h ≥ h0(L), A ≥ A0(L). Assume also that

h0(L) ≥ max(δ(L)−1/2, 1) (4.10.14)

where δ(L) is the constant introduced in (4.5.57). Then for every triple (L, h,A) that satis�es
L ≥ L0, h ≥ h0(L), A ≥ A0(L) there exist constants ρ1 = ρ1(h,A) > 0, ρ2 = ρ2(L) > 0 and
Cj1,j2,j3 such that T is smooth in Bρ1(0)×Bρ2(0)×Bρ(A)(0) ⊂ (M(B0); ‖ · ‖0,0)×E ×Z,

1

j1!j2!j3!
‖Dj1
KD

j2
HD

j3
Z T (K,H, Z)(K̇, . . . Ḣ, . . . , Ż)‖Z ≤ Cj1,j2,j3(L,A) ‖K̇‖j1ζ ‖Ḣ‖

j2
0,0 ‖Ż‖

j3
Z

∀ (K,H, Z) ∈ Bρ1(0)×Bρ2(0)×Bρ(A)(0)

(4.10.15)
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and

q(H) ∈ Bκ(0) ∀H ∈ Bρ2(0). (4.10.16)

We may take

ρ1(h,A) =
ρ(A)

2R0dr0+3hr0A
, ρ2(L) = min

(
1

8
,

κ(L)

C(4.10.50)(m, d)

)
(4.10.17)

Moreover there exist ε = ε(L, h,A) > 0, ε1 = ε1(L, h,A) > 0, ε2 = ε2(L, h,A) > 0, and
Cj1,j2(L,A) > 0 such that for each (K,H) ∈ Bε1(0)×Bε2(0) there exists a unique Z = Ẑ(K,H)
in Bε(0) that satis�es

T (K,H, Ẑ(K,H)) = Ẑ(K,H). (4.10.18)

The map Ẑ is smooth in Bε1(0)×Bε2(0) and satis�es the bounds

1

j1!j2!
‖Dj1
KD

j2
H Ẑ(K,H)(K̇, . . . , Ḣ)‖Z ≤ Cj1,j2(L, h,A) ‖K̇‖j1ζ ‖Ḣ‖

j2
0,0

∀ (K,H) ∈ Bε1(0)×Bε2(0).

(4.10.19)

The parameters ε, ε1 and ε2 can be bounded from below by ρ1, ρ2, ρ(A) and bounds on the
�rst and second derivatives of T . We may take

ε = min

(
1

48C0,0,2

,
ρ(A)

2

)
, ε1 = min

(
1

24C1,0,1

,
ε

8C1,0,0

, ρ1

)
, ε2 = min

(
1

24C0,1,1

, ρ2

)
(4.10.20)

where Cj1,j2,j3 are the constants in (4.10.15).

The condition (4.10.14) is implied by the conditions we use to prove Theorem 4.4.7 and
Theorem 4.4.8. We added it here since in principle the conclusions of these theorems might hold
under weaker conditions on L and h. Condition (4.10.14) is used in Lemma 4.10.2 which ensures
smoothness of the map (K,H) 7→ K0.

Proof of Theorem 4.10.1, Set-up. The proof is mostly along the lines of the proof of Proposition
8.1 in [4]. The situation here is, however, much simpler then in [4] because no loss of regularity
occurs when we take derivative with respect to q (or H). Thus we can use the usual implicit
function theorem in Banach spaces which can be found, e.g., in Theorem 4.E. [154]. To apply
the implicit function theorem we verify its assumptions.

Here Theorem 4.4.7 and Theorem 4.4.8 are the key ingredients. The �rst result gives smooth-
ness of the maps K̃k (except for k = 1) while Theorem 4.4.8 will be used to show that the deriv-
atives of T are small. Then we can apply the implicit function theorem to the map T −π3 where
π3 is the projection on the third component. The main remaining point in showing smoothness
of the map T is to show smoothness of the maps (K,H) 7→ K0. We �rst state and prove this
result. Then we will continue the proof of Theorem 4.10.1.

Lemma 4.10.2. Assume that L ≥ 5 and

h ≥ max(δ(L)−1/2, 1) (4.10.21)
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where δ(L) is the constant de�ned in (4.5.57). Set

ρ1 = (2R0dr0+3hr0A)−1, ρ2 =
1

8
. (4.10.22)

Then the map K̂0 : (E, ‖·‖ζ) × (M0(B0), ‖·‖0,0) → (M(Pc
0), ‖·‖0) de�ned in (4.10.10) is smooth

on Bρ1(0)×Bρ2(0) and there exist numerical constants Cj2 and Cj1,j2 such that

1

j2!
‖Dj2
HK̂0(K,H)(Ḣ, . . . , Ḣ)‖(A)

0 ≤ Cj2 2R0dr0+2hr0A ‖K‖ζ ‖Ḣ‖j2 ∀(K,H) ∈ Bρ1(0)×Bρ2(0),

(4.10.23)

with

C0 = 1 (4.10.24)

and, for j1 ≥ 1,

‖Dj1
KD

j2
HK̂0(K,H)(K̇, . . . Ḣ)‖(A)

0 ≤ Cj1,j2(2R0dr0+3hr0A)j1 ‖K̇‖j1ζ ‖Ḣ‖
j2

∀(K,H) ∈ Bρ1(0)×Bρ2(0).
(4.10.25)

To prove this lemma we decompose K0 in a series of maps and show smoothness for each of
them. Then the chain rule implies the claim. It is convenient to introduce the weight function

wX−1:0(ϕ) = exp

(
1

2
(1− ζ)

∑
x∈X

Q(Dϕ(x))

)
(4.10.26)

and to de�ne ‖·‖(4A)
−1:0 as in (4.4.89) and (4.4.88). We can write K0(K,H) = P4(I(K), E(H)),

where E is the exponential de�ned in (4.7.13) and where the inclusion map I and the product
map P4 are given by

I : (E, ‖·‖ζ)→ (M(Pc0), ‖·‖(4A)
−1:0), I(K)(X,ϕ) =

∏
x∈X
K(Dϕ(x)) (4.10.27)

P4 : (M(Pc0), ‖·‖(4A)
−1:0)× (M(B0), |||·|||0)→ (M(Pc0), ‖·‖(A)

0 )), P4(K,F )(X,ϕ) = K(X,ϕ)FX(ϕ).
(4.10.28)

Smoothness of E was established in Lemma 4.7.3. We will now show smoothness of I and of P4

in Lemma 4.10.3 and Lemma 4.10.5, respectively, and then conclude the proof of Lemma 4.10.2.

Lemma 4.10.3. Let I be the map de�ned in (4.10.27). Assume that

ρ1 ≤ (2R0dr0+3hr0A)−1 and h ≥ 1. (4.10.29)

Then I is a smooth on Bρ(0) ⊂ E and, for all K ∈ Bρ(0)

‖I(K)‖(4A)
−1:0 ≤ 2R0dr0+2hr0A ‖K‖ζ (4.10.30)

1

j!
‖DjI(K)(K̇, . . . , K̇)‖(4A)

−1:0 ≤ (2R0dr0+3 hr0A)j ‖K̇‖jζ . (4.10.31)

.
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Remark 4.10.4. We could avoid h-dependence of the constants and neighbourhoods here and in
all other statements in this section as well as in Theorem 4.9.1 if we work with the norm

‖K‖ζ,h := sup
z∈G

∑
|α|≤r0

1

α!
h|α||∂αK(z)|e−

1
2

(1−ζ)Q0(z), (4.10.32)

This gives slightly better results, because, roughly speaking our current setting leads to conditions
of the type 'hr0‖K‖ζ small' while it su�ces that ‖K‖ζ,h is small which is a weaker condition on
the low derivatives of K. We prefer, however, to keep the notation in Section 3.2 simple and not
to introduce a more complicated norm with another parameter.

Proof. Note that the functional I(K) is translation invariant, shift invariant and local. Thus
I(K) is an element of M(Pc0). We �rst estimate |I(K)({x})|0,{x},Tϕ . Let us introduce the set
Im = I×{1, . . . ,m} where we recall that I ⊂ {0, . . . , R0}d\{0, . . . , 0}. We consider multiindices
γ ∈ NIm0 . Recall that for m = (α, i) ∈ Im we de�ned the monomials

Mm({x})(ψ̇) := ∇m ψ̇(x) := ∇αψ̇i(x). (4.10.33)

The Taylor expansion of order r0 of I(K)({x}) is given by

Tayϕ I(K)({x})(ψ̇) =
∑
|γ|≤r0

1

γ!
∂γK(Dϕ(x))

∏
m∈Mm

(∇m ψ̇(x))γm . (4.10.34)

Hence we have

Tayϕ I(K)({x}) =
∑
|γ|≤r0

1

γ!
∂γK(Dϕ(x))

∏
m∈Mm

(Mm({x}))γm . (4.10.35)

The triangle inequality and the product property in Lemma 4.6.1 imply

|I(K)({x})|0,{x},Tϕ ≤
∑
|γ|≤r0

1

γ!
|∂γK(Dϕ(x))|

∣∣∣∣∣ ∏
m∈Mm

(Mm({x}))γm

∣∣∣∣∣
0,{x},T0

≤
∑
|γ|≤r0

1

γ!
|∂γK(Dϕ(x))|

∏
m∈Mm

∣∣Mm({x})
∣∣γm

0,{x},T0

(4.10.36)

Next we give a crude estimate for
∣∣Mm({x})

∣∣
0,{x},T0

. The de�nition of {x}∗ = {x}+[−R,R]d

ensures that the reiterated di�erence quotient ∇αϕ̇(x) for α ∈ I can be written as a linear
combination of values ∇iϕ(y) with y ∈ {x}∗ involving at most 2|α|−1 terms. Using an induction
argument we easily see that for α ∈ I

|∇αi ψ̇(x)| ≤ 2|α|−1 sup
y∈{x}∗

|∇iψ̇(y)| ≤ 2R0d h |ψ̇|0,{x} (4.10.37)

where we used the de�nition (4.4.74) of | · |0,X and the fact that for j = 0 the weights in (4.4.76)
reduce to w0(i, α) = h. Now (4.10.37) and the de�nition of the | · |0,{x},T0

norm by duality give
the estimate ∣∣Mm({x})

∣∣
0,{x},T0

≤ 2R0d h. (4.10.38)



180 Renormalisation group analysis of gradient models

From (4.10.36), (4.10.37), the condition h ≥ 1 and the de�nition (3.2.38) we infer that

|I(K)({x})|0,{x},Tϕ
w
{x}
−1:0(ϕ)

≤ 2R0dr0 hr0 ‖K‖ζ
e

1
2

(1−ζ)Q0(Dϕ(x))

e
1
2

(1−ζ)Q0(Dϕ(x))
= 2R0dr0 hr0‖K‖ζ (4.10.39)

Since wX−1,0 factors over any polymer the submultiplicativity estimate (4.6.1) combined with the
trivial estimate | · |0,X,Tϕ ≤ | · |0,x,Tϕ whenever x ∈ X implies that

|I(K)(X)|0,X,Tϕ
wX−1:0(ϕ)

≤ (2R0dr0 hr0)|X| ‖K‖|X|ζ (4.10.40)

Thus we get for ρ1 ≤ (2R0dr0 hr04A)−1.

‖I(K)(X)‖(4A)
−1:0 ≤ sup

X∈Pc0

(
2R0dr0 hr04A ‖K‖ζ

)|X|
≤ 2R0dr0 hr04A ‖K‖ζ ≤ 1. (4.10.41)

This proves (4.10.30).
As in Lemma 4.7.5 the derivatives are estimated similarly. For ρ1 ≤ (2R0dr0+1 hr04A)−1 we

get

(4A)|X|
1

j!
‖DjI(K)(K̇, . . . , K̇)(X)‖0,X ≤

(
|X|
j

)
(2R0dr0 hr04A)|X| ‖K‖|X|−jζ ‖K̇‖jζ

≤(2R0dr0+1 hr04A)|X| ‖K‖|X|−jζ ‖K̇‖jζ

≤
(

2R0dr0+1 hr04A‖K̇‖ζ
)j
.

(4.10.42)

This shows that I is smooth on Bρ1(0) and the estimate (4.10.31) holds.

Lemma 4.10.5. Assume that

h ≥ max(δ(L)−1/2, 1) (4.10.43)

where δ(L) was introduced in (4.5.57). Then the map P4 de�ned in (4.10.28) is smooth on the

set M
(4A)
−1:0 ×B1(1) with B1(1) ⊂ (M(B0), |||·|||0). Moreover on that set we have

‖P4(K,F )‖(A)
0 ≤ ‖K‖(4A)

−1:0, (4.10.44)

1

j2!
‖Dj1

KD
j2
F P4(K,F )‖(A)

0 ≤
(
‖K‖(4A)

−1:0

)1−j1 (
‖K̇‖(4A)

−1:0

)j1 ∣∣∣∣∣∣∣∣∣Ḟ ∣∣∣∣∣∣∣∣∣j
0
. (4.10.45)

for j1 ∈ {0, 1} while the left hand side vanishes for j1 ≥ 2.

Proof. For brevity we write δ instead of δ(L). It follows from the de�nitions of the quadratic
forms MX

0 and GX
0 in (4.5.2) and (4.5.11) and assumption (4.10.43) that δMX

0 ≥ GX
0 . Taking

into account that in (4.5.10) we have δ0 = δ and 4ζ = ζ (see (4.5.8)) we deduce from (4.5.10)
that

(ϕ,AX
0 ϕ) ≥ (1− ζ)

∑
x∈X

Q(Dϕ(x)) + (GX
0 ϕ,ϕ). (4.10.46)
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Since wX0 (ϕ) = e
1
2

(AX0 ϕ,ϕ) and WX
0 (ϕ) = e

1
2

(GX0 ϕ,ϕ) the de�nition of wX−1:0 in (4.10.26) implies
that

wX0 ≥ wX−1:0W
X
0 = wX−1:0

∏
B∈B0(X)

WB
0 .

Together with Lemma 4.6.1 we get

‖P4(K,F )(X)‖0,X = sup
ϕ

|FX(ϕ)K(X,ϕ)|0,X,Tϕ
wX0 (ϕ)

≤ sup
ϕ

|K(X,ϕ)|0,X,Tϕ
wX−1:0(ϕ)

∏
B∈B0(X)

sup
ϕ

|F (B,ϕ)|0,B,Tϕ
WB

0 (ϕ)

≤ ‖K‖(4A)
−1:0 (4A)−|X| |||F ||||X|0 ≤ ‖K‖(4A)

−1:0 (2A)−|X|

(4.10.47)

where we used that F ∈ B1(1) ⊂ B2(0) ⊂ (M(B0), |||·|||0). Multiplying by A|X| and taking the
supremum over X we get (4.10.44).

To estimate the derivatives we observe that P4 is linear in K. Therefore it is su�cient to
note that

1

j!
‖Dj

FP4(K,F )(Ḟ, . . . , Ḟ )(X)‖0,X ≤ ‖K‖(4A)
−1:0 (2A)−|X|2|X| |||Ḟ |||j0 (4.10.48)

where the additional factor 2|X| is again the combinatorial factor of the derivatives. Hence

1

j!
‖Dj

FP4(K,F )(Ḟ, . . . , Ḟ )‖(A)
0 ≤ ‖K‖(4A)

−1:0 |||Ḟ |||
j

0. (4.10.49)

Proof of Lemma 4.10.2. To see that the K̂0 is smooth on Bρ1×Bρ2 for the given values of ρ1 and
ρ2 it su�ces to note that I is smooth on Bρ1 and E maps B 1

8
(0) to B1(1) (see (4.7.27)). Then

the assertion follows from the fact that P4 is smooth on M (4A)
−1:0 × B1(1). The bound (4.10.23)

for j2 = 0 with C0 = 1 follows from (4.10.44) and (4.10.30). The other bounds follow from the
bounds in Lemma 4.7.3, Lemma 4.10.3 and Lemma 4.10.5 in connection with the chain rule.

Proof of Theorem 4.10.1, conclusion. We �rst note that the mapH 7→ q(H) is linear and satis�es

|q(H)| ≤ C(m, d)

h2
‖H‖0,0 ≤ C ‖H‖0,0. (4.10.50)

This follows from the de�nition of the norm ‖ · ‖0,0 in (4.4.93) and the fact that all norms on

R(d×m)×(d×m)
sym are equivalent.
Next we establish smoothness of the coordinate maps for H̃k and K̃k in a neighbourhood of the

origin. We �rst consider the maps K̃k+1 with k ≥ 1. Then K̃k+1(K,H, Z) = Sk(Hk,Kk, q(H))
and in particular K̃k+1 does not depend on K. Smoothness of K̃k+1 follows from the smoothness
of Sk (see Theorem 4.4.7) and (4.10.50) as long as

ρ2 ≤
κ(L)

C(4.10.50)
(4.10.51)
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Regarding the bounds on the derivatives of K̃k+1 we have

1

j2!j3!

∥∥∥∥ 1

ηk+1
Dj2
HD

j3
Z K̃k+1(K,H, Z)(Ḣ, . . . , Ż)

∥∥∥∥(A)

k+1

≤Cj2,j3(L,A)
1

η

1

ηk

(
‖K̇k‖

(A)
k + ‖Ḣk‖k,0

)j3
Cj2(4.10.50) ‖Ḣ‖

j2
0,0

≤Cj2,j3(L,A) ‖Ż‖j3Z ‖Ḣ‖
j2
0,0.

(4.10.52)

He we used the convention that we denote indicate the dependence of constants on �xed paramet-
ers like η. Similarly smoothness of H̃k and the bounds on the derivatives follow from (4.10.50),
(4.4.103) and (4.4.104).

The main point is to show smoothness of the map K̃1(K,H, Z) = S0(K̂0(K,H), H0, q(H))
and to bound the derivatives of K̃1. We �rst note that for ρ1 and ρ2 given by (4.10.17)

K̂0(Bρ1(0)×Bρ2(0)) ⊂ Bρ(A)(0). (4.10.53)

Indeed this follows directly from (4.10.23) with j2 = 0. Now the desired properties of K̃1 follow
from Lemma 4.10.2, Theorem 4.4.7 and the chain rule.

Next we show that at the origin the di�erential of the map Z 7→ T (K,H, Z) is contraction.
It follows from the de�nition of the maps K̃k and H̃k in (4.10.5)�(4.10.8) in combination with
(4.4.99) in Theorem 4.4.8 that

DHk+1
H̃k(0, 0, 0) = (A

(0)
k )−1 for 0 ≤ k ≤ N − 2, (4.10.54)

DKkH̃k(0, 0, 0) = −(A
(0)
k )−1B

(0)
k , for 1 ≤ k ≤ N − 1, (4.10.55)

DKkK̃k+1(0, 0, 0) = C
(0)
k for 1 ≤ k ≤ N − 1 (4.10.56)

and all other derivatives vanish. To estimate the operator norm of DZT (0, 0, 0) let Ż ∈ Z with
‖Ż‖Z ≤ 1 and set

Z ′ = DZT (0, 0, 0)Ż (4.10.57)

We denote the coordinates of Ż by Ḣk and K̇k and the coordinates of Z ′ by H ′k and K ′k. The
de�nition of the norm on Z implies that ‖Ḣk‖k,0 ≤ ηk and ‖K̇k‖k ≤ ηk. The bounds from
Theorem 4.4.8 imply that

‖H ′0‖0,0 ≤ ‖(A
(0)
0 )−1‖η ≤ 3

4
η,

η−k‖H ′k‖k,0 ≤ η−k‖(A
(0)
k )−1‖ηk+1 + η−k‖(A(0)

k )−1‖ ‖B(0)
k ‖η

k ≤ 3

4
(η +

1

3
), 1 ≤ k ≤ N − 2,

η−(N−1)‖H ′N−1‖N−1,0 ≤ η−(N−1)‖(A(0)
N−1)−1‖ ‖B(0)

N−1‖η
N−1 ≤ 3

4
· 1

3
,

η−1‖K ′1‖ = 0,

η−k‖K ′k‖ ≤ η−k‖C
(0)
k−1‖η

k−1 ≤ 1

η

3

4
η =

3

4
, 2 ≤ k ≤ N.

(4.10.58)

Since η ≤ 2
3 this implies that

‖DZT (0, 0, 0)‖ ≤ 3

4
. (4.10.59)
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Thus the assumptions of the implicit function theorem are satis�ed for the map T −π3 and since
T is smooth (with bounds on the derivatives that are independent of N) the implicit function
Ẑ is de�ned in a neighbourhood Bε1 × Bε2 ⊂ E ×M(B0) with ε1 and ε2 independent of N and
the derivatives of Ẑ can be bounded independent of N .

To show that the speci�c choice of ε1, ε2 and ε given Theorem 4.10.1 is su�cient assume that

ε1 ≤ ρ1, ε2 ≤ ρ2, ε ≤ ρ(A)/2 (4.10.60)

and that

2C0,0,2 ε+ C1,0,1 ε1 + C0,1,1 ε2 ≤
1

8
. (4.10.61)

Then for (K,H, Z) ∈ Bε1 ×Bε2 ×Bε we have

‖DZT (K,H, Z)‖ ≤ 3

4
+ ‖DZT (K,H, Z)−DZT (0, 0, 0)‖ ≤ 7

8
. (4.10.62)

Note that the de�nition of T implies that T (0,H, 0) = 0 for all H ∈ Bε2(0) ⊂ Bρ2(0). Thus if in
addition

C1,0,0 ε1 ≤
1

8
ε (4.10.63)

then we have

‖T (K,H, 0)‖ < 1

8
ε ∀ (H,K) ∈ Bε1(0)×Bε2(0). (4.10.64)

It follows from (4.10.62) and (4.10.64) that for all (K,H) ∈ Bε1(0) × Bε2(0) the map Z 7→
T (K,H, Z) is a contraction and maps the closed ball Bε to itself. Thus by the Banach �xed
point theorem there is a unique Ẑ(K,H) ∈ Bε such that

T (K,H, Ẑ(K,H)) = Ẑ(K,H). (4.10.65)

Moreover ‖Ẑ(K,H)‖ ≤ 8‖T (K,H, 0)‖ < ε so that Ẑ(K,H) ∈ Bε(0). It follows from the implicit
function theorem applied at the point (K,H, Ẑ(H,K)) that the function Ẑ is locally smooth. By
uniqueness Ẑ is smooth in Bε1(0)× Bε2(0). Finally one easily sees that the choices in (4.10.20)
imply (4.10.60), (4.10.61) and (4.10.63).

4.10.2 Existence of a �xed point of the map ΠH0Ẑ(K, ·)

Theorem 4.10.1 and the de�nition of the ‖ · ‖Z norm show the existence of sequence of

maps Hk and Kk such that R(q)
k+1

(
eHk ◦Kk

)
(ϕ) =

(
eHk+1 ◦Kk+1

)
(ϕ), the coordinate Kk is

exponentially decreasing and HN = 0. In particular equation (4.10.12) holds. But this sequence
will in general not satisfy the correct initial condition because the H0 coordinate of the �xed
point is only given implicitly by the �xed point equation. We can, however, use the arti�cially
inserted coordinate H and apply the implicit function theorem once more to show that we can
choose H such that H0 = H. Then a simple calculation shows that this �xed point satis�es the
correct initial condition up to an explicit scalar factor,see (4.10.79) and (4.10.82) below.

We use the same notation as in Theorem 4.10.1. In particular Ẑ : Bε1(0) × Bε2(0) → Z
denotes the �xed point map. We denote by ΠH0 : Z → M0(B0) the bounded linear map that
extracts the coordinate H0 from Z.
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Lemma 4.10.6. Under the assumptions of Theorem 4.10.1 there is a constant %̃ > 0 which can
be chosen independently of N and a map Ĥ : B%̃(0) ⊂ E → Bε2(0) ⊂M0(B0) such that

ΠH0Ẑ(K, Ĥ(K)) = Ĥ(K) and q(Ĥ(K)) ⊂ Bκ(0) for all K ∈ B%̃(0). (4.10.66)

Moreover Ĥ is smooth in B%̃(0) and the derivatives can be bounded uniformly in N . We may
take

%̃ = min

(
1

4C1,1
,
ρ′

2C1,0
, ε1

)
where ρ′ = min

(
1

8C0,2
,
ε2
2

)
(4.10.67)

and where Cj1,j2 are the constants in the estimate (4.10.19) for the derivatives of Ẑ.

Note that the condition Ĥ(B%̃(0)) ⊂ Bε2(0) and (4.10.16) imply that

q(Ĥ(K)) ∈ Bκ(0) for all K ∈ Bρ(0) (4.10.68)

since ε2 ≤ ρ2.

Proof. We �rst note that T (0,H, 0) = 0. Hence by uniqueness of the �xed point we get

Ẑ(0,H) = 0 for all H ∈ Bε2(0) (4.10.69)

and in particular
DHẐ(0, 0) = 0. (4.10.70)

We now consider the function

f = ΠH0 ◦ Ẑ − π2 : Bε1 ×Bε2 ⊂ E ×M0(B0)→M0(B0) (4.10.71)

where π2(K,H) := H. Condition (4.10.70) implies that DHf(0, 0)Ḣ = −Ḣ. Hence we can apply
the implicit function theorem to f and �nd a %̃ > 0 and a smooth function Ĥ : B%̃(0) ⊂ E →
M0(B0) such that f(ΠH0Ẑ(K, Ĥ(K)), Ĥ(K)) = 0, i.e.,

ΠH0Ẑ(K, Ĥ(K)) = Ĥ(K). (4.10.72)

We can choose %̃ independent of N because the derivatives of Ẑ are bounded uniformly in N .
It only remains to show that the choice (4.10.67) for %̃ is admissible and Ĥ(Bρ(0)) ⊂ Bε2(0).

To see this we argue exactly as in the proof of Theorem 4.10.1. First assume that ρ′ ≤ ε2/2 and

2C0,2 ρ
′ + C1,1 %̃ ≤

1

2
(4.10.73)

Then DHẐ(0, 0) = 0 implies that

‖DH(ΠH0 ◦ Ẑ)‖ ≤ ‖DHẐ‖ ≤
1

2
in B%̃(0)×Bρ′(0). (4.10.74)

If in addition

C1,0 %̃ ≤
1

2
ρ′ (4.10.75)

then ‖(ΠH0 ◦ Ẑ)(K, 0)‖ ≤ 1
2ρ
′ for K ∈ Bρ(0). Thus for such K the map H 7→ (ΠH0 ◦ Ẑ)(K,H)

is a contraction and maps Bρ′(0) to itself. Hence this map has a unique �xed point Ĥ(K) ∈
Bρ′(0) ⊂ Bε2(0). Smoothness of Ĥ follows from the implicit function theorem.
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4.10.3 Proof of Theorem 4.9.1

Proof. The heart of the matter is the identity (4.10.79) below. In combination with Lemma 4.10.6
and the identity (4.10.12) it yields immediately the representation (4.9.3). The further assertions
in Theorem 4.9.1 then follow from the properties of the map Ĥ in Lemma 4.10.6. To simplify
the notation we write ê and q̂ instead of êN and q̂N for the maps whose existence is asserted in
Theorem 4.9.1.

Recall that for an ideal Hamiltonian H we denote the matrix which de�nes the quadratic
part by q(H). We denote the constant part by e(H). Then

∑
x∈ΛN

H(K)(x, ϕ) = e(H)LNd +
1

2

∑
x∈ΛN

〈q(H)∇ϕ(x),∇ϕ(x)〉 (4.10.76)

where we used that the sum over the linear terms in the �eld vanishes because
∑

x∈ΛN
∇αϕi(x) =

0 for any ϕ ∈ XN and any multiindex α and 1 ≤ i ≤ m, due to the periodic boundary conditions.
Recall that λ is the Hausdor� measure on XN . The de�nition of the partition function Z(q)

implies that

e
1
2

∑
x∈ΛN

〈q∇ϕ(x),∇ϕ(x)〉
µ(0)(dϕ) =

Z(q)e
− 1

2

∑
x∈ΛN

Q(Dϕ(x))−〈q∇ϕ(x),∇ϕ(x)〉
λ(dϕ)

Z(q)Z(0)

=
Z(q)

Z(0)
µ(q)(dϕ)

(4.10.77)

Recall also that K(X,ϕ) =
∏
x∈X K(Dϕ(x)). Thus by the de�nition (4.10.10) of K̂0(K,H)

(K̂0(K,H) ◦ e−H)(ΛN , ϕ) = (Ke−H ◦ e−H)(ΛN , ϕ)

=
∑

X⊂ΛN

K(X,ϕ)e−H(X,ϕ) e−H(ΛN \X,ϕ)

=
∑

X⊂ΛN

K(X,ϕ) e
−
∑
x∈ΛN

H(x,ϕ)
.

(4.10.78)

Using the identities (4.10.76)�(4.10.78) we get

ˆ
XN

∑
X⊂ΛN

K(X,ϕ)µ(0)(dϕ)

=

ˆ
XN

(
K̂0(K,H) ◦ e−H

)
(ΛN , ϕ) · e

∑
x∈ΛN

H(x,ϕ)
µ(0)(dϕ)

=
Z(q(H))

Z(0)
eL

Nde(H)

ˆ
XN

(
K̂0(K,H) ◦ e−H

)
(ΛN , ϕ)µ(q(H))(dϕ)

(4.10.79)

Now let 0 < % < %̃ with %̃ as in Lemma 4.10.6 and de�ne the following maps on B%(0) ⊂ E

q̂(K) := q(Ĥ(K)), ê(K) := e(Ĥ(K)), K̂N (K) := ΠKN Ẑ(K, Ĥ(K)). (4.10.80)

Here ΠKN denotes the projection from Z to the KN coordinate of Z. By Lemma 4.10.6 we have

ΠH0Ẑ(K, Ĥ(K)) = Ĥ(K). (4.10.81)
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Using the abbreviation H0 = ΠH0Ẑ(K, Ĥ(K)) we getˆ
XN

(
K̂0(K, Ĥ(K)) ◦ e−Ĥ(K)

)
(ΛN , ϕ)µ(q(Ĥ(K))(dϕ)

=

ˆ
XN

(
K̂0(K, Ĥ(K)) ◦ e−H0

)
(ΛN , ϕ)µ(q(Ĥ(K))(dϕ)

=
(4.10.12)

ˆ
XN

(
1 + K̂N (K)(ΛN , ϕ)

)
µ

(q(Ĥ(K))
N+1 (dϕ)

(4.10.82)

Taking H = Ĥ(K) in (4.10.79) and using that q(Ĥ(K)) = q̂(K) and e(Ĥ(K)) = ê(K) we obtain
the desired representation (4.9.3)

Smoothness of maps q̂, ê and K̂N as well as bounds on the derivatives which are independent
on N follow from the same property for Ĥ and Ẑ as well the linearity and uniform boundedness
of the projections H 7→ q(H), H 7→ e(H) and Z 7→ KN . In particular uniform bounds on the
derivatives of K 7→ Ẑ(K, Ĥ(K)) and the de�nition ‖ · ‖Z imply that

1

ηN
1

l!
‖D`
KK̂N (K)(K̇, . . . , K̇)‖(A)

N ≤ C`(L, h,A) ‖K̇‖`ζ . (4.10.83)

This proves (4.9.4). To show (4.9.5) we note that the de�nition of ‖ · ‖(A)
N and Theorem 4.5.1 x)

yield ˆ
X
K̂N (ΛN , ϕ)µ

(q)
N+1(dϕ) ≤

ˆ
X

1

A
‖K̂N‖(A)

N wN (ϕ)µ
(q)
N+1(dϕ)

≤ 1

A
‖K̂N‖(A)

N AB wN :N+1(0) =
AB
A
‖K̂N‖(A)

N .

(4.10.84)

Since K̂N (0) = 0 it follows from (4.9.4) with ` = 1 that ‖K̂N‖(A)
N ≤ C1,(4.9.4)η

N‖K‖ζ . Thus
(4.9.5) holds if % satis�es in addition

AB
A
C1,(4.9.4)η

N% ≤ 1

2
. (4.10.85)

Finally the representation (4.9.6) can be derived arguing as in (4.10.79) and (4.10.82) and
using Gaussian calculus. More precisely we use that for every positive quadratic form C

(fN , ϕ+ CfN )− 1

2
(C−1(ϕ+ CfN ), ϕ+ CfN ) =

1

2
(fN ,CfN )− 1

2
(C−1ϕ,ϕ). (4.10.86)

Since the Hausdor� measure λ on XN is translation invariant this implies thatˆ
XN

e(fN ,ϕ)G(ϕ)µ(q)(dϕ) = e
1
2

(fN ,C
(q)fN )

ˆ
XN

G(ϕ+ C(q)fN )µ(q)(dϕ). (4.10.87)

Using now �rst (4.10.78) as in (4.10.79) and then (4.10.87) we getˆ
XN

e(fN ,ϕ)
∑

X⊂ΛN

K(X,ϕ)µ(0)(dϕ)

=
Z(q(H))

Z(0)
eL

Nde(H)

ˆ
XN

e(fN ,ϕ)
(
K̂0(K,H) ◦ e−H

)
(ΛN , ϕ)µ(q(H))(dϕ)

= e
1
2

(fN ,C
(q(H))fN ) Z

(q(H))

Z(0)
eL

Nde(H)

ˆ
XN

(
K̂0(K,H) ◦ e−H

)
(ΛN , ϕ+ C(q(H))fN )µ(q(H))(dϕ)

(4.10.88)
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Taking as before H = Ĥ(K), using the abbreviation H0 = ΠH0(Ẑ(K, Ĥ(K)) = H, the relations
q(H) = q̂(K) and e(H) = ê(K) and �nally (4.10.12) we see that the right hand side of (4.10.88)
equals

e
1
2

(fN ,C
(q̂(K))fN )Z

(q̂(K))

Z(0)
eL

Ndê(K)

ˆ
XN

(
1 + K̂N (K)

)
(ΛN , ϕ+ C(q̂(K)fN )))µ

(q̂(K))
N+1 (dϕ). (4.10.89)

This concludes the proof of (4.9.6) and thus of Theorem 4.9.1.

4.A Norms on Taylor polynomials

The following material is essentially contained in [44]. We include it for the convenience of the
reader because the notation is simpler than in [44] (since we do not have to deal with fermions)
and because we would like to emphasise that the basic results (product property, polynomial
property and two-norm estimate) follow from general features of tensor products and are not
dependent on the special choice of the norm in (4.A.68).

Before we start on the details let us put this appendix more precisely into context. The
uniform smoothness estimates for the polynomial maps and the exponential map in Section 4.7
rely heavily on the submultiplicativity of the norms on the functionals K(X,ϕ). This submul-
tiplicativity in turn is based on two ingredients: submultiplicativity of the weights (see The-
orem 4.5.1 iii) and Theorem 4.5.1 iv)) and the choice of a submultiplicative norm on Taylor
polynomials which we address in this appendix.

For smooth functions on Rp one can easily check that a suitable `1 type norm on the Taylor
coe�cients (see (4.A.43) below) is submultiplicative. We deal with smooth maps on the space
XN of �elds and, more importantly, we want the norm on Taylor polynomials to re�ect the
typical behaviour of the �eld on di�erent scales k, i.e., under the measure µ(q)

k+1. In this setting
a more systematic approach to the construction of the norms is useful.

The main idea is to view a homogeneous polynomial of degree r on a �nite dimensional
space X as a linear functional on the tensor product X⊗r. A norm on X induces in a nat-
ural way norms on the tensor products (see De�nition (4.A.43)) and by duality on polynomials
(see (4.A.24), (4.A.25) and (4.A.27)). This norm automatically satis�es submultiplicativity (see
Propositions 4.A.6 and 4.A.9) and in addition we get useful properties such as the polynomial
property in Proposition 4.A.10 and the two-norm estimate in Proposition 4.A.11.

4.A.1 Norms on polynomials

Let X be a �nite dimensional space vector space. For de�niteness we consider only vector
spaces over R, but the arguments apply also to vector spaces over C. The main idea is to linearise
the action of polynomials on X . We say that P : X → R is a polynomial if in some (and hence
in any) basis P is a polynomial in the coordinate with respect to that basis. For r-homogeneous
polynomials we can use the following representation (alternatively this representation can be
used as a coordinate-free de�nition of an r-homogeneous polynomial).

Lemma 4.A.1. Let P be an r-homogeneous polynomial on X . Then there exist a unique sym-
metric element P of the dual space (X⊗r)′ such that P (ξ) = 〈P , ξ ⊗ . . .⊗ ξ〉.

Here we write 〈·, ·〉 to denote the dual pairing of (X⊗r)′ and X⊗r. We say that g ∈ X⊗r is
symmetric if Sg = g where the symmetrisation operator S is de�ned in (4.A.20).
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Proof. Existence: de�ne 〈P , ξ1 ⊗ . . .⊗ ξr〉 = 1
r!

d
dtr

. . . d
dt1 |ti=0

P (ξ(t)) where ξ(t) =
∑r

i=1 tiξi and

where the ξi run through a basis. Then extend P by linearity. Homogeneity implies that

P (ξ ⊗ . . .⊗ ξ) =
1

r!

d

dtr
. . .

d

dt1 |ti=0
(t1 + . . .+ tr)

rP (ξ) = P (ξ). (4.A.1)

Uniqueness: if P ,Q ∈ (X⊗r)′ are symmetric and 〈P − Q, ξ(t) ⊗ . . . ⊗ ξ(t)〉 = 0 then applying
d
dtr

. . . d
dt1 |ti=0

we deduce that P −Q = 0.

We denote by
⊕∞

r=0X⊗r the space of sequences (g(0), g(1), . . .) with g(r) ∈ X⊗r for which
only �nitely many of the g(r) are non-zero. By writing a general polynomial P as a sum of
homogeneous polynomials we can associate to P a linear map on

⊕∞
r=0X⊗r via1

〈P , g〉 =
∞∑
r=0

〈P (r), g(r)〉. (4.A.2)

Here X⊗0 := R and P (0) is the constant term P (0). We will de�ne a norm on
⊕∞

r=0X⊗r. This
induces a norm on P by duality. The point is to de�ne the norm on

⊕∞
r=0X⊗r in such a way

that the norm on P enjoys the product property: ‖PQ‖ ≤ ‖P‖ ‖Q‖.
Here we consider only �nite dimensional spaces Xi. The study of tensor products of (in�nite

dimensional) Banach spaces has been a very active �eld of research beginning with Grothendieck's
seminal work [99], see, e.g., [66, 134].

Let Xi be �nite dimensional normed vector spaces over R and with dual spaces X ′i . We say
that an element of ξ ∈ X1 ⊗ . . .⊗Xr is simple if

ξ = ξi ⊗ . . .⊗ ξr with ξi ∈ Xi and we de�ne ‖ξ1 ⊗ . . .⊗ ξr‖ = ‖ξ1‖ . . . ‖ξr‖. (4.A.3)

Note that by de�nition of the tensor product every element of X1 ⊗ . . .⊗Xr can be written as a
�nite combination of simple elements. We recall the de�nition of two standard norms on tensor
products.

De�nition 4.A.2. The projective norm (or largest reasonable norm) on X1 ⊗ . . .⊗ Xr is given
by

‖g‖∧ = inf

{∑
i

‖ξi‖ : g =
∑
i

ξi with ξi simple

}
(4.A.4)

Here the in�mum is taken over �nite sums. The injective norm (or smallest reasonable norm)
is given by

‖g‖∨ = sup
{
〈ξ′1 ⊗ . . .⊗ ξ′r, g〉 : ‖ξ′i‖X ′i ≤ 1 for all i = 1, . . . , r

}
. (4.A.5)

There is a third important norm based on the Hilbertian structure, but we will not use this
here.

One easily sees that

‖g‖∨ ≤ ‖g‖∧ and ‖ξ1 ⊗ . . .⊗ ξr‖∨ = ‖ξ1 ⊗ . . .⊗ ξr‖∧ = ‖ξ1‖ . . . ‖ξr‖. (4.A.6)

Therefore for simple elements we write simple write ‖g‖ instead of ‖g‖∨ or ‖g‖∧.
1Actually polynomials act even more naturally on the space of symmetric tensor products ⊕∞m=0 �m X , see

Chapters 1.9 and 1.10 in [84], but the easier duality with ⊕∞r=0X⊗r is good enough of us.
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Example 4.A.3. We show that the injective norm on (Rp, | · |∞)⊗r is the `∞ norm and the
projective norm on (Rp, | · |1)⊗r is the `1 norm.

Let e1, . . . , ep be the standard basis of Rp. For ϕ =
∑p

i=1 ϕiei set |ϕ|∞ = max1≤i≤p |ϕi| and
consider X = (Rp, |·|∞). Denote the dual basis by e′i, i.e. e

′
i(ϕ) = ϕi. Then the dual space consists

of functionals of the form ` =
∑p

i=1 aie
′
i and the dual norm is given by |`|X ′ = |a|1 =

∑p
i=1 |ai|.

Thus X ′ is isometrically isomorphic to (Rp, | · |1).
Let E = {1, . . . , p}. Then an element g ∈ X⊗ can be identi�ed with an element of RE

r

via g =
∑

(i1,...,ir)∈Er gi1...ir ei1 ⊗ . . . ⊗ eir . Similarly L ∈ (X ′)⊗r can be uniquely expressed as

L =
∑

(i1,...,ir)∈Er ai1...ir e
′
i1
⊗ . . .⊗ e′ir . We claim that

‖g‖∨ = |g|∞ := max
(i1,...,ir)∈Er

|gi1...ir |, (4.A.7)

‖L‖∧ = |L|1 :=
∑

(i1,...,ir)∈Er
|ai1...ir |. (4.A.8)

Indeed ‖L‖∧ ≤ |L|1 since e′i1 ⊗ . . . ⊗ e′ir is simple. On the other hand for every simple L =

l1 ⊗ . . .⊗ lr with lj =
∑p

ij=1 a
(j)
ij
e′ij we have

|L|1 =
∑

(i1,...,ir)∈Er

∣∣∣∣∣∣
r∏
j=1

p∑
ij=1

a
(j)
ij

∣∣∣∣∣∣ ≤
r∏
j=1

p∑
ij=1

|a(j)
ij
| =

r∏
j=1

|`j |X ′ = ‖L‖∧. (4.A.9)

Thus |L|1 ≤ ‖L‖∧ for all simple L and by de�nition of ‖ · ‖∧ this implies |L|1 ≤ ‖L‖∧ for all L.
To prove (4.A.7) we �rst note that

±gi1...ir = 〈±e′i1 ⊗ . . .⊗ e
′
ir , g〉 ≤ ‖g‖∨ (4.A.10)

and hence |g|∞ ≤ ‖g‖∨. To prove the converse inequality we note that for lj ∈ X ′ as above the
estimate (4.A.9) implies that

〈`1 ⊗ . . .⊗ `r, g〉 =
∑

(i1,...,ir)∈Er

r∏
j=1

p∑
ij=1

a
(j)
ij

gi1...ir ≤
r∏
j=1

‖`j‖X ′ |g|∞. (4.A.11)

Thus ‖g‖∨ ≤ |g|∞.

De�ne dual norms on (⊗ri=1Xi)′ by

‖L‖′∨ := sup{〈L, g〉 : g ∈ ⊗ri=1Xi, ‖g‖∨ ≤ 1}, ‖L‖′∧ := sup{〈L, g〉 : g ∈ ⊗ri=1Xi, ‖g‖∧ ≤ 1}.
(4.A.12)

The dual space (⊗ri=1Xi)′ can be identi�ed with (⊗ri=1X ′i ). Indeed, let ξ′i ∈ X ′i , let ξi run through
a basis of Xi and de�ne

ι(ξ′1 ⊗ . . .⊗ ξ′r)(ξ1 ⊗ . . .⊗ ξr) =

r∏
i=1

〈ξ′i, ξi〉. (4.A.13)

By linearity ι(ξ′1⊗ . . .⊗ ξ′r) can be extended to a linear functional on ⊗ri=1Xi, i.e., to an element
of (⊗ri=1Xi)′. Now let ξ′i run through a basis of X ′i . Then ι can be extended to a unique linear
map from (⊗ri=1X ′i ) to (⊗ri=1Xi)′ and one easily checks that ι is injective and hence bijective
since both spaces have the same dimension. With this identi�cation and using the fact that the
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closed unit ball in the projective norm is the convex hull C = conv({ξ : ξ simple, ‖ξ‖ ≤ 1}), the
Hahn-Banach separation theorem and the fact that for �nite dimensional spaces X ′′ = X one
easily veri�es that

‖L‖′∧ = ‖L‖∨ and ‖L‖′∨ = ‖L‖∧. (4.A.14)

One can also easily check that the projective and the injective norm are associative with respect
to iterated tensorisation.

Lemma 4.A.4. The following properties hold

1. (Tensorisation estimate) Assume that � = ∨ or � = ∧. Then for g ∈ X⊗r, h ∈ X⊗s and
L ∈ (X⊗r)′, M ∈ (X⊗r)′

‖g ⊗ h‖� ≤ ‖g‖�‖h‖� and ‖L⊗M‖′� ≤ ‖L‖′� ‖M‖′�. (4.A.15)

2. (Contraction estimate) Assume that � = ∨ or � = ∧. For L ∈ (X⊗(r+s))′ and h ∈ X⊗s
de�ne M ∈ (X⊗r)′ by 〈M, g〉 = 〈L, (g ⊗ h)〉. Then

‖M‖′� ≤ ‖L‖′� ‖h‖� (4.A.16)

Proof. To prove the �rst estimate in (4.A.15) for� = ∨ assume that ‖ξ′i‖ ≤ 1 for i ∈ {1, . . . , r+s}.
Then

〈ξ′1 ⊗ . . .⊗ ξ′r+s, g ⊗ h〉 = 〈ξ′1 ⊗ . . .⊗ ξ′r, g〉 〈ξ′r+1 ⊗ . . .⊗ ξ′r+s, h〉 ≤ ‖g‖∨ ‖h‖∨. (4.A.17)

Next we consider � = ∧. For each δ > 0 there exist gi, hj simple such that∑
i

‖gi‖ ≤ (1 + δ)‖g‖∧,
∑
j

‖hj‖ ≤ (1 + δ)‖h‖∧. (4.A.18)

Now gi ⊗ hj is simple and thus ‖gi ⊗ hj‖∧ = ‖gi‖ ‖hj‖. The assertion follows from the triangle
inequality and fact that∑

i

∑
j

‖gi‖ ‖hj‖ =
∑
i

‖gi‖
∑
j

‖hj‖ ≤ (1 + δ)2‖g‖∨ ‖h‖∨. (4.A.19)

The second estimate in (4.A.15) follows from the �rst (applied to X ′ instead of X ) and
(4.A.14). Finally (4.A.16) follows from (4.A.15) and the de�nition of the dual norm.

On X⊗r we de�ne the symmetrisation operator by

S(ξ1 ⊗ . . .⊗ ξr) =
1

r!

∑
π∈Sr

ξπ(1) ⊗ . . .⊗ ξπ(r), (4.A.20)

where the sum runs over all permutation of the set {1, . . . , r}, and extension by linearity. Simil-
arly we can de�ne S on X ′⊗r = (X⊗r)′. Then

〈SL, g〉 = 〈L, Sg〉. (4.A.21)

Indeed the identity holds if g is simple and hence by linearity for all g.

Lemma 4.A.5. For � = ∨ or � = ∧ we have

‖Sg‖� ≤ ‖g‖� ∀g ∈ X⊗r and ‖SL‖′� ≤ ‖L‖′� ∀L ∈ X⊗r. (4.A.22)
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Proof. The second assertion follows from the �rst and (4.A.21). To prove the �rst assertion for
� = ∧ it su�ces to note that S maps a simple element of norm 1 to a convex combination of
simple elements of norm 1. For � = ∨ we use (4.A.21) to get 〈ξ′1⊗ . . . ξ′r, Sg〉 = 〈S(ξ′1⊗ . . . ξ′r), g〉.
Now we use again that S maps a simple element of norm 1 to a convex combination of simple
elements of norm 1.

We now de�ne a norm on ⊕∞r=0X⊗r by

‖g‖X ,� := sup
r
‖g(r)‖X ,� (4.A.23)

Here ‖g(0)‖ = |g(0)|R where | · |R is the absolute value on R. For a polynomial P =
∑

r P
(r)

written as a sum of homogeneous polynomials of degree r the norm is de�ned by

‖P‖′X ,� = sup{〈P , g〉 : ‖g‖X ,� ≤ 1} (4.A.24)

where 〈P , g〉 was de�ned in (4.A.2). We have

‖P‖′X ,� =

∞∑
r=0

‖P (r)‖′X ,� =

∞∑
r0

‖P (r)‖′�. (4.A.25)

Similarly we can de�ne a seminorm by considering only test functions g in the space

Φr0 := {g ∈ ⊕∞r=0X⊗r : g(r) = 0 ∀r > r0}. (4.A.26)

Then

‖P‖′r0,X ,� := sup{〈P, g〉 : g ∈ Φr0 , ‖g‖ ≤ 1} =

r0∑
r=0

‖P (r)‖′X ,�. (4.A.27)

This de�nes is a seminorm on the space of all polynomials and a norm on polynomials of degree
≤ r0. When r0 and X and � are clear we simply write ‖P‖ = ‖P‖′r0,X ,�.

Proposition 4.A.6 (Product property). Let r0 ∈ N0 ∪ {∞}. Assume that � ∈ {∨,∧}. Let P
and Q be polynomials on X . Then

‖PQ‖ ≤ ‖P‖ ‖Q‖. (4.A.28)

Proof. We �rst show the assertion for an r-homogeneous polynomial P and a k−r-homogeneous
polynomial Q. If r = 0 or k− r = 0 the assertion is clear. We hence assume r ≥ 1 and k− r ≥ 1.
We �rst note that PQ = S(P ⊗ Q) where S is the symmetrisation operator introduced above.
Indeed both sides are symmetric elements of X⊗k and they agree on ξ⊗ . . .⊗ξ. Thus the desired
identity follows from the uniqueness statement in Lemma 4.A.1. Now it follows from the second
estimate in (4.A.15) and (4.A.22) that ‖PQ‖ ≤ ‖P‖′� ‖Q‖′� = ‖P‖ ‖Q‖. This �nishes the proof
for homogeneous polynomials.

Finally consider general P,Q and their decompositions into homogeneous polynomials P =∑
r P

(r), Q =
∑

sQ
(s). Then it follows from (4.A.27) and the triangle inequality that

‖PQ‖ ≤
r0∑
k=0

k∑
r=0

‖P (r)Q(k−r)‖ ≤
r0∑
k=0

‖P (r)‖‖Q(k−r)‖ ≤ ‖P‖ ‖Q‖. (4.A.29)
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4.A.2 Norms on polynomials in several variables

The product property for polynomials can be easily extended to polynomials in several vari-
ables. To simplify the notation we illustrate this for the case of two variables. A polynomial
P (x, y) on X × Y which is r-homogeneous in x and s-homogeneous in y can be identi�ed with
an element P of X⊗r ⊗ Y⊗s which is symmetric in the sense that

P (ξπ(1) ⊗ . . .⊗ ξπ(r) ⊗ ηπ′(1) ⊗ . . .⊗ ηπ′(s)) = P (ξ1 ⊗ . . .⊗ ξr ⊗ η1 ⊗ . . .⊗ ηs) (4.A.30)

for all permutations π and π′. We de�ne a space of test functions

Φr0,s0 := {g ∈ ⊕r,s∈N0X⊗r ⊗ Y⊗s : g(r,s) = 0 if r > r0 or s > s0} (4.A.31)

with the norm

‖g‖� := sup
r,s∈N

‖g(r,s)‖X ,Y,�. (4.A.32)

Decomposing a general polynomial in homogeneous pieces P (r,s) we de�ne the pairing

〈P, g〉 =
∑
r,s∈N0

〈P (r,s), g(r,s)〉 (4.A.33)

and the dual norm

‖P‖′� = ‖P‖′r0,s0,X ,Y,� = sup{〈P, g〉 : g ∈ Φr0,s0 , ‖g‖�}. (4.A.34)

Then

‖P‖′� =

r0∑
r=0

s0∑
s=0

‖P (r,s)‖′� =

r0∑
r=0

s0∑
s=0

‖P (r,s)‖′� (4.A.35)

where P (r,s) are the (r, s)-homogeneous pieces of P .
For M ∈ (X⊗r1 ⊗ Y⊗s1)′ and L ∈ (X⊗r2 ⊗ Y⊗s2)′ we de�ne M ⊗ L in (X⊗r1+r2 ⊗ Y⊗s1+s2)′

by

〈M ⊗ L, ξ1 ⊗ . . .⊗ ξr1+r2 ⊗ η1 ⊗ . . .⊗ ηs1+s2〉 (4.A.36)

= 〈M, ξ1 ⊗ . . .⊗ ξr1 ⊗ η1 ⊗ . . .⊗ ηs1〉 〈L, ξr1+1 ⊗ . . .⊗ ξr1+r2 ⊗ ηs1+1 ⊗ . . .⊗ ηs1+s2〉. (4.A.37)

Then the same argument as before shows that

‖M ⊗ L‖� ≤ ‖M‖� ‖L‖� for � ∈ {∨,∧}. (4.A.38)

We also de�ne a symmetrisation operator SX ,Y which symmetrises separately in the variables on
X and the ones in Y, i.e.,

S(ξ1 ⊗ . . .⊗ ξr ⊗ η1 ⊗ . . .⊗ ηs) :=
1

r!

1

s!

∑
π

∑
π′

(ξπ(1) ⊗ . . .⊗ ξπ(r) ⊗ ηπ′(1) ⊗ . . .⊗ ηπ′(s)).

(4.A.39)

Again it is easy to see that S has norm 1. Thus for two homogeneous polynomials P and Q one
sees as before

‖PQ‖ = ‖S(P ⊗Q)‖ ≤ ‖P‖ ‖Q‖ = ‖P‖ ‖Q‖. (4.A.40)

Now the product property for polynomials is obtained as before by decomposing P and Q in
(r, s)-homogeneous polynomials.
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4.A.3 Norms on Taylor polynomials

De�nition 4.A.7. Let p0 ∈ N0, let U ⊂ X be open and let F ∈ Cr0(U). For ϕ ∈ U denote the
Taylor polynomial of F at ϕ by Tayϕ F and de�ne

‖F‖Tϕ = ‖TayϕF‖′r0,X ,�. (4.A.41)

where � refers to the norm used for the tensor products.

When the norm on the tensor products is clear we often drop �.

Example 4.A.8. Let X = (Rp, | · |∞) and set E = {1, . . . , p}. In (4.A.7) we have seen that the
injective norm of g ∈ X⊗r is given by ‖g‖∨ = sup(i1,...ir)∈Er |gi1...ir | = |g|∞. Let F ∈ Cr0(X ).
The Taylor polynomial of order r0 at zero can be written as

P (ϕ) =

r0∑
r=0

1

r!

p∑
i1,...,ir=1

∂rF

∂ϕi1 . . . ∂ϕir
(0)

r∏
j=1

ϕij =
∑
|γ|1≤r0

1

γ!
∂γF (0) ϕγ (4.A.42)

where the sum in the term on the right hand side runs over multiindices γ ∈ NE
0 and |γ| :=∑

i∈E γ(i). The term corresponding to r = 0 is de�ned as F (0). We claim that

‖F‖T0 =

r0∑
r=0

1

r!

p∑
i1,...,ir=1

∣∣∣∣ ∂rF

∂ϕi1 . . . ∂ϕir
(0)

∣∣∣∣ =
∑
|γ|≤r0

1

γ!
|∂γF (0)| . (4.A.43)

Indeed it su�ces to verify the �rst identity, the second follows by the usual combinatorics. Denote
the middle term in (4.A.43) byM . Since we use the `∞ norm on X⊗r = RE

r
we get for all g ∈ Φr0

〈F, g〉0 =

r0∑
r=0

1

r!

ϕ∑
i1,...,ir=1

∂rF

∂ϕi1 . . . ∂ϕir
(0) gi1...ir ≤M sup

0≤r≤r0
|g(r)|∞ ≤M‖g‖X ,∨ (4.A.44)

The inequality becomes sharp if we take gi1...ir = sgn ∂rF
∂ϕi1 ...∂ϕir

(0). This proves (4.A.43).

Proposition 4.A.9 (Product property, see [44], Proposition 3.7). Let U ⊂ X be open and let
F ∈ Cr0(U). Then

‖FG‖Tϕ ≤ ‖F‖Tϕ ‖G‖Tϕ . (4.A.45)

Proof. This follows from Proposition 4.A.6 and the fact that the Taylor polynomial of the product
is the product of the Taylor polynomials, truncated at degree r0.

By the considerations in Section 4.A.2 the product property also holds for polynomials in
several variables.

Proposition 4.A.10 (Polynomial estimate, see [44], Proposition 3.10). Assume � ∈ {∨,∧}.
Let F be a polynomial of degree r ≤ r0. Then

‖F‖Tϕ ≤ (1 + ‖ϕ‖)r‖F‖T0 . (4.A.46)

Proof. Let F be a polynomial of degree r with homogeneous pieces Fr. Then we can write
F (ϕ) =

∑r
r=0〈Fr, ϕ⊗ . . .⊗ ϕ〉. Set G(ξ) = F (ϕ+ ξ). For r > k de�ne Bk,r ∈ (X⊗r)′ by

〈Bk,r, g〉 = 〈Fr, g ⊗ ϕ⊗ . . .⊗ ϕ〉. (4.A.47)
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Set Bk,k = Fk. Since the Fr are symmetric we get

G(ξ) =
r∑

k=0

〈Bk, ξ ⊗ . . .⊗ ξ〉 where Bk =
∑r

r=k

(
r
k

)
Bk,r. (4.A.48)

Now by the contraction estimate (4.A.16) we have ‖Bk,r‖′� ≤ ‖Fr‖′� ‖ϕ‖
r−k
X . Thus

‖G‖T0 ≤
r∑

k=0

r∑
r=k

(
r

k

)
‖Fr|′� ‖ϕ‖r−kX 1k ≤

r∑
r=0

(1 + ‖ϕ‖X )r ‖Fr‖′� ≤ (1 + ‖ϕ‖X )r ‖F‖T0 .

(4.A.49)

Since ‖F‖Tϕ = ‖G‖T0 this concludes the proof.

Proposition 4.A.11 (Two norm estimate, see [44], Proposition 3.11). Let F ∈ Cr0(X ). Assume
that � ∈ {∨,∧}. Let ‖ · ‖X ,� and ‖ · ‖X̃ ,� denote norms on the tensor products X⊗r based on
norms ‖ · ‖X and ‖ · ‖X̃ . Denote the corresponding norms of the Taylor polynomials of F by
‖F‖Tϕ and ‖F‖T̃ϕ De�ne

ρ(n) := 2 sup{‖g‖X ,� : g ∈ X⊗r, ‖g‖X̃ ,� ≤ 1, n ≤ r ≤ r0}. (4.A.50)

Then, for any r < r0,

‖F‖T̃ϕ ≤ (1 + ‖ϕ‖X̃ )r+1

(
‖F‖T̃0

+ ρ(r+1) sup
0≤t≤1

‖F‖Ttϕ
)
. (4.A.51)

Proof. Let P denote the Taylor polynomial of order r of F computed at 0. By Proposition 4.A.10
and the trivial estimate ‖P‖T̃0

≤ ‖F‖T̃0
we have

‖P‖T̃ϕ ≤ (1 + ‖ϕ‖X̃ )r ‖P‖T̃0
≤ (1 + ‖ϕ‖X̃ )r+1 ‖F‖T̃0

. (4.A.52)

Let R = F − P . It thus su�ces to show that

‖R‖T̃ϕ ≤ (1 + ‖ϕ‖X̃ )r+1 ρ(r+1) sup
0≤t≤1

‖F‖Ttϕ . (4.A.53)

To abbreviate set

M := sup
0≤t≤1

‖F‖Ttϕ = sup
0≤t≤1

r0∑
k=0

1

k!
‖DkF (tϕ)‖′X ,�. (4.A.54)

Here we view DkF (ϕ) as an element of (X⊗r)′. For k ≥ r + 1 we have DkR = DkF and

〈DkR(ϕ), g〉 = 〈DkF (ϕ), g〉 ≤ ‖DkF‖′X ,� ‖g‖X ,� ≤ ‖DkF‖′X ,�
1

2
ρ(r+1)‖g‖X̃ ,� (4.A.55)

and thus
r0∑

k=r+1

1

k!
‖DkR(ϕ)‖′X̃ ,� ≤

1

2
ρ(r+1)M. (4.A.56)
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For k ≤ r we apply the Taylor formula with remainder term in integral form to 〈DkR, g〉 and get

|〈DkR(ϕ), g〉| (4.A.57)

≤
ˆ 1

0

1

(r − k)!
(1− t)r−k |〈Dr+1F (tϕ), g ⊗ ϕ⊗ . . .⊗ ϕ〉| dt

≤M (r + 1)!

(r + 1− k)!
‖g ⊗ ϕ⊗ . . .⊗ ϕ‖′X ,�

≤ 1

2
ρ(r+1)M

(r + 1)!

(r + 1− k)!
‖g ⊗ ϕ⊗ . . .⊗ ϕ‖′X̃ ,�

≤ 1

2
ρ(r+1)M

(r + 1)!

(r + 1− k)!
‖g‖′X̃ ,� ‖ϕ‖

r+1−k
X̃ .

Thus

1

k!
‖DkR(ϕ)‖′X̃ ,� ≤

1

2
ρ(r+1)M

(
r + 1

k

)
‖ϕ‖r+1−k

X̃ 1k. (4.A.58)

Summing this from k = 0 to r we get

r∑
k=0

1

k!
‖DkR(ϕ)‖′X̃ ,� ≤

1

2
ρ(r+1)M(1 + ‖ϕ‖X̃ )r+1. (4.A.59)

Together with (4.A.56) this concludes the proof of (4.A.53)

4.A.4 Examples with a more general injective norm on X⊗r

We will be mostly interested in the case that the norm on X is de�ned by a speci�c family
of linear functionals on X (abstractly one can always de�ne the norm in this way since for �nite
dimensional space X ′′ = X ). Then the injective norm on X⊗r is de�ned by the tensor products
of these functionals (see Proposition 4.A.13 below).

Let E be a �nite set. On RE consider a �nite family B of linear functionals ` : RE → R. Let

NB := {ϕ ∈ RE : `(ϕ) = 0 ∀` ∈ B}. (4.A.60)

Then the linear functionals induce a norm on X := RE/NB, namely

‖ϕ‖X := sup{|`(ϕ)| : ` ∈ B}. (4.A.61)

Proposition 4.A.12. The dual space of X is given by X ′ := span{` : ` ∈ B} and the norm on
X ′ is given by

‖ξ′‖X ′ = inf
{∑

i

|λi| : ξ′ =
∑
i

λi`i, `i ∈ B, λi ∈ R
}
. (4.A.62)

In particular ‖`‖X ′ ≤ 1 for all ` ∈ B.

Proof. Let C denote the closed convex hull of B ∪−B. It follows from the de�nition of norm on
X that C ⊂ B1(X ′). For the reverse inclusion one uses that points ξ′ /∈ C can be separated by a
linear functional, i.e., that there exist a g ∈ X such that ξ′(g) > 1 and ξ̃′(g) ≤ 1 ∀ξ̃′ ∈ C. This
implies ‖g‖ ≤ 1 and hence ‖ξ′‖ > 1.

Proposition 4.A.13. The injective norm on X⊗r can be characterized by

‖g‖∨ = sup{|〈`1 ⊗ . . .⊗ `r, g〉| : `i ∈ B}. (4.A.63)
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Note that in the special case E = {1, . . . , p} and B = {e′1, . . . , e′p} we recover (4.A.7).

Proof. Denote the right hand side of (4.A.63) by m. Since ‖`‖X ′ ≤ 1 for all ` ∈ B we get
m ≤ ‖g‖∨. To prove the reverse inequality let δ > 0 and assume that ‖ξ′i‖ ≤ 1. Then by
(4.A.62) there exist λi,j ∈ R and `i,j ∈ B such that ξ′i =

∑
j λi,j`i.j and

∑
j |λi,j | ≤ 1 + δ. Thus

|〈ξ′1 ⊗ . . . ⊗ ξ′r, g〉| ≤ (1 + δ)rm and hence ‖g‖∨ ≤ (1 + δ)rm. Since δ > 0 was arbitrary we
conclude that ‖g‖∨ ≤ m.

4.A.5 Main example

We now come to our main example. Consider the torus Λ = Zd/LNZd and set Λ =
{1, . . . ,m} × Λ. The elements of RΛ = Rm ⊗ RΛ can be viewed as maps from Λ to R or as
maps from Λ→ Rm. We will use both viewpoints interchangeably.

We are interested in linear functionals RΛ which are based on discrete derivatives. More
precisely let e1, . . . , ed denote the standard unit vectors in Zd and set

U = {e1, . . . , ed}. (4.A.64)

We remark in passing that here our notation di�ers from [45]. There they also consider backward
derivatives and U denotes the set {±e1, . . . ,±ed}. For e ∈ U and f : Λ→ R the forward di�erence
operator is given by

∇ef(x) = f(x+ e)− f(x). (4.A.65)

For a multiindex α ∈ NU0 we write

∇α =
∏
e∈U

(∇e)α(e), ∇0 = Id . (4.A.66)

For a pair (i, α) ∈ {1, . . . ,m} × NU0 and x ∈ Λ we de�ne

∇i,αx ϕ = ∇αϕi(x). (4.A.67)

We set NΛ = {ϕ : Λ → Rp : ϕ constant}. Given weights w(i, α) > 0 we de�ne a norm on
X = RΛ/NΛ by

‖ϕ‖X = sup
x∈Λ

sup
1≤i≤m

sup
1≤|α|≤pΦ

w(i, α)−1∇i,αx ϕ (4.A.68)

Here and in the following we always use the `1 norm for multiindices

|α| = |α|1 =
∑
i∈U

αi. (4.A.69)

On the scale k we will usually use the weight

wk(i, α) = L−k|α|hk, hk = hkL
−k d−2

2 , hk = 2kh. (4.A.70)

Note that for an element ϕ ∈ X we cannot de�ne a pointwise value ϕ(x) but the derivative
∇αϕ(x) are well de�ned if α 6= 0. Indeed ϕ is uniquely determined by the derivatives with
|α|1 = 1. We can choose a unique representative ϕ̃ of the equivalence class ϕ + N by requiring∑

x∈Λ ϕ̃(x) = 0 and we sometimes identify the space X = RΛ/N with the space {ψ ∈ RΛ :∑
x∈Λ ψ(x) = 0}.
The tensor product X ⊗X is the quotient of RΛ⊗RΛ by span{constants⊗ϕ,ϕ⊗ constants :

ϕ ∈ RΛ}. Again an element g(2) ∈ X ⊗ X does not have pointwise values gij(x, y) but the



Estimates for Taylor polynomials in Zd 197

derivatives ∇i,α ⊗∇j,βg(2)(x, y) = ∇α ⊗∇βgij(x, y) are well de�ned (for α 6= 0 and β 6= 0) and
the derivatives with |α|1 = |β|1 = 1 determine g(2) uniquely. Here ∇i,α acts on the �rst argument
of g(2) and ∇j,β on the second argument. Similar reasoning applies to X⊗r and by Proposition
4.A.13 the injective norm on X⊗r is given by

‖g(r)‖X ,∨ = sup
x1,...,xr∈Λ

sup
m∈mpΦ,r

w(m)−1∇m1 ⊗ . . .⊗∇mrg(r)(x1, . . . , xr). (4.A.71)

Here

w(m) =
r∏
j=1

w(mj) (4.A.72)

and mpΦ,r is the set of r-tupels m = (m1, . . . ,mr) with mj = (ij , αj) and 1 ≤ |αj | ≤ pΦ. Note that
here each αj is a multiindex, i.e., an element of NU0 , not a number. For m ∈ mpΦ,r consider the
monomial

Mm({x})(ϕ) :=
r∏
j=1

∇mjϕ(x). (4.A.73)

Then the element Mm({x}) ∈ (X⊗r)′ which corresponds to Mm({x}) is given by the symmetrisa-
tion S(∇m1

x ⊗ . . .⊗∇mrx ). Thus in view of (4.A.71) and (4.A.22) we get

‖Mm({x})‖T0 = ‖Mm({x})‖′X ,∨ ≤ w(m). (4.A.74)

We consider functionals F localised near a polymer X ⊂ Λ, i.e. F (ϕ) = F (ψ) if ϕ = ψ in X∗

where X∗ is the small set neighbourhood of X, see (4.4.34). Then it is natural to work with �eld
norms which are also localised. There are di�erent ways to do that. We follow the approach in
[4] and de�ne

‖ϕ‖X ,X := sup
x∈X∗

sup
1≤i≤p

sup
1≤|α|≤pΦ

w(i, α)−1 |∇i,αϕ(x)|, (4.A.75)

see (4.4.77). Let us remark that Brydges and Slade take a more abstract, but similar, approach
and de�ne

‖ϕ‖∼X ,X = inf{‖ϕ− ξ‖X : ξ�{1,...,p}×X = 0}, (4.A.76)

see eqns. (3.37)�(3.39) in [44].

4.B Estimates for Taylor polynomials in Zd

Here we give a proof of the remainder estimate which was the key ingredient in proving the
contraction estimate for the linearised operator C(q). Recall that for f : Zd → R the discrete
s-th order Taylor polynomial at a is given by

Taysaf(z) :=
∑
|α|≤s

∇αf(a) bα(z − a) (4.B.1)

where

bα(z) =
d∏
i=1

(
zj
αj

)
and

(
zj
αj

)
=
zj . . . (zj − αj + 1)

αj !
. (4.B.2)

It is easy to see that ∇βbα = bα−β with the conventions b0 ≡ 1 and bα−β = 0 if α−β /∈ N{1,...,d}0 .
Recall that U = {e1, . . . , ed}.
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Lemma 4.B.1. Let s ∈ N0, ρ ∈ N and de�ne

Mρ,s = sup{|∇αf(z)| : |α| = s+ 1, z ∈ Zd ∩
(
a+ [0, ρ]d

)
}. (4.B.3)

Then for all β ∈ NU0 with t = |β| ≤ s∣∣∣∇β[f(z)− Taysaf(z)]
∣∣∣ ≤Mρ,s

(
|z − a|1
s− t+ 1

)
∀z ∈ Zd ∩

(
a+ [0, ρ]d

)
. (4.B.4)

The estimate is sharp for a = 0 and t = 0 since the function f(z) =
(
z1+...+zd

t+1

)
satis�es

∇αf = 1 for all α with |α| = t+ 1 (see proof).

Proof. This result in classical and is a (very) special case of Lemma 3.5 in [45]. Since the
notation here is simpler we include the short proof along the lines of [45] for the convenience
of the reader. We may assume that a = 0. It su�ces to show (4.B.4) for t = 0. Indeed
if the result is known for t = 0 we can use that ∇β Tays0 f = Tays−t0 ∇βf and deduce that
|∇βf(z)− Tays−t0 ∇βf(z)| ≤Mρ,s

( |z|1
s−t+1

)
. Here we used that Mρ,s−t(∇βf) ≤Mρ,s(f).

The proof for t = 0 is by induction over the dimension d. We �rst note that for z ∈ Nd
0(

|z|1
s+ 1

)
= bs+1(z1 + . . .+ zd) =

∑
|α|=s+1

bα(z). (4.B.5)

Indeed the �rst identity follows immediately from the de�nition of bs+1 (as a polynomial on
Z) since zi ≥ 0. To prove the second identity we show that both side have the same discrete
derivatives at z = 0. Indeed the discrete derivative ∇β of the left hand side evaluated at zero is
given by bs+1−|β|(0). This equals 1 for |β| = s + 1 and 0 if |β| 6= s + 1. The same assertion is
true for the right hand side.

Thus it su�ces to show that

|f(z)− Tays0f(z)| ≤Mρ,s

∑
|α|=s+1

bα(s). (4.B.6)

Note that if zj ∈ Z and 0 < zj < αj for some j then bα(z) = 0. Thus

bα(z) ≥ 0 ∀z ∈ Zd ∩ [0, ρ]d. (4.B.7)

For d = 1 we use the discrete Taylor formula with remainder

f(z) =

s∑
r=0

∇rf(0) br(z) +

z−1∑
z′=0

bs(z − 1− z′)∇s+1f(z′). (4.B.8)

This formula is easily proved using induction over s and the summation by parts formula

z−1∑
z′=0

bs(z − 1− z′) g(z′) = bs+1(z)g(0) +

z−1∑
z′′=0

bs+1(z − 1− z′′)(g(z′′ + 1)− g(z′′)). (4.B.9)

Since ∇bs+1 = bs we have

z−1∑
z′=0

|bs(z − 1− z′)| =
z−1∑
z′=0

bs(z − 1− z′) =

z−1∑
z′=0

bs(z
′) = bs+1(z) (4.B.10)
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and thus the Taylor formula with remainder implies (4.B.6) for d = 1.
Now assume that (4.B.6) holds for d − 1. Set α′ = (α1, . . . , αd−1) and α = (α′, αd) and

similarly z = (z′, zd). Then the induction hypothesis gives (for zj ≥ 0)∣∣∣f(z′, zd)−
∑
|α′|≤s

∇α′f(0, zd) bα′(z
′)
∣∣∣ ≤Mρ,s

∑
|α′|=s+1

bα′,0(z). (4.B.11)

Now by the result for d = 1 applied to the zd direction∣∣∣∇α′f(0, zd)−
∑

αd≤s−|α′|

∇(α′,αd)f(0) bαd(zd)
∣∣∣ ≤Mρ,s bs+1−|α′|(zd). (4.B.12)

Since bα′(z′) bαd(zd) = bα(z) it follows that∣∣∣ ∑
|α′|≤s

∇α′f(0, zd) bα′(z
′)−

∑
|α|≤s

∇αf(0) bα(z)
∣∣∣

≤ Mρ,s

∑
|α′|≤s

bα′(z
′) bs+1−|α′|(zd) = Mρ,s

∑
|α|=s+1,|α′|≤s

bα(z).
(4.B.13)

Combining (4.B.11) and (4.B.13) we see that (4.B.6) holds for d.

4.C Combinatorial lemmas

In this appendix we state two lemmas that are used in the reblocking step.

Lemma 4.C.1. Let X ∈ Pc
k \ Sk and α(d)) = (1 + 2d)−1(1 + 6d)−1. Then

|X|k ≥ (1 + 2α(d))|X|k+1. (4.C.1)

For any X ∈ Pk we have

|X|k ≥ (1 + α(d))|X|k+1 − (1 + α(d))2d+1|C(X)|. (4.C.2)

Proof. This is Lemma 6.15 in [42].

Lemma 4.C.2. There exists δ(d, L) < 1 such that∑
X∈Pc

k\Sk
X=U

δ|X|k ≤ 1 (4.C.3)

for any k ∈ N and U ∈ Pc
k+1.

Proof. This is Lemma 6.16 in [42].





Chapter 5

Phase transitions for a class of gradient

�elds

5.1 Introduction

In this chapter we are going to study gradient interface models for a class of non-convex
potentials. We refer to the introduction in Chapter 1 for an overview of the results for gradient
interface models. Let us just recall two results for convex interaction potentials. Funaki and
Spohn showed in [89] that for every tilt vector u there exists a unique translation invariant
gradient Gibbs measure. Moreover, the scaling limit of the model is a massless Gaussian �eld as
shown by Naddaf and Spencer [128] for zero tilt and generalised to arbitrary tilt by Giacomin,
Olla, and Spohn [94]. For non-convex potentials in general far less is known with two exceptions.
First, in the high temperature phase for certain potentials essentially the same results as for
convex potentials can be shown ([64, 63, 70]). On the other hand, for small temperatures
some results in particular the existence of the scaling limit can be proved for periodic boundary
conditions as discussed in Chapter 3. For intermediate temperatures that correspond to very
non-convex potentials no robust techniques are known. All results to date are restricted to the
special class of potentials introduced by Biskup and Kotecky in [32] that can be represented as

e−V (x) =

ˆ
R+

e−
κx2

2 ρ(dκ) (5.1.1)

where ρ is a non-negative Borel measure on the positive real line. Biskup and Kotecky mostly
considered the simplest nontrivial case, denoting the Dirac measure at x ∈ R by δx,

ρ = pδq + (1− p)δ1 (5.1.2)

where p ∈ [0, 1] and q ≥ 1. They show that in dimension d = 2 and for q > 1 su�ciently large
there exist two ergodic zero-tilt gradient Gibbs measures. Later Biskup and Spohn showed in
[33] that nevertheless the scaling limit of every zero-tilt gradient Gibbs measure is Gaussian if
the measure ρ is compactly supported in (0,∞). In [151] their result was recently extended by
Ye to potentials of the form V (s) = (1+s2)α with 0 < α < 1

2 . Those potentials can be expressed
as in (5.1.1) but ρ has unbounded support so that the results from [33] do not directly apply.

The main reason to study this class of potentials is that they are much more tractable
because using the representation (5.1.1) the variable κ can be considered as an additional degree
of freedom. This leads to extended gradient Gibbs measures which are given by the joint law
of (ηe, κe)e∈E(Zd). These extended gradient Gibbs measures can be represented as a mixture
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of non-homogeneous Gaussian �elds with bond potential κeη2/2 for every edge e ∈ E(Zd) and
κe ∈ R+. This implies that for a given κ the distribution of the gradient �eld is Gaussian with
covariance given by the inverse of the operator ∆κ where

∆κf(x) =
∑
y∼x

κ{x,y}(f(x)− f(y)). (5.1.3)

where x ∼ y denotes the neighbourhood relation in a graph. In all the works mentioned before
this structure is frequently used, e.g. in [33] it is proved that the resulting κ-marginal of the
extended gradient Gibbs measure is ergodic so that well known homogenization results for random
walks in ergodic environments can be applied. The main purpose of this chapter is to investigate
the properties of the κ-marginal of extended gradient Gibbs measures in a bit more detail. The
starting point is the observation that the κ-marginal of an extended gradient Gibbs measures
with zero tilt is itself the Gibbs measure for a certain speci�cation. This speci�cation arises as
the in�nite volume of an in�nite range random conductance model de�ned on �nite graphs. On
the other hand, we show that starting from Gibbs measure for the random conductance model we
can construct a zero tilt gradient Gibbs measure thus showing a one to one relation between the
two notions of Gibbs measures. In particular, we can lift results about the random conductance
model to results about gradient Gibbs measures. Note that one major drawback is the restriction
to zero tilt that applies here and to all earlier results for this model. Let us mention that massive
R-valued random �elds have been earlier connected to discrete percolation models to analyse the
existence of phase transitions [152]. For gradient models the setting is slightly di�erent because
we consider a random conductance model on the bonds while for massive models one typically
considers some type of site percolation.

The main motivation for our analysis is that it provides a �rst step to the completion of the
phase diagram for this potential and zero tilt and a better understanding of the two coexisting
Gibbs states. Moreover, the random conductance model appears to be interesting in its own right.
We could de�ne the random conductance model and prove several of the results for arbitrary ρ
but we mostly restrict our analysis to the simplest case where ρ is as in (5.1.2) and the potential
is of the form

e−Vp,q(x) = pe−
qx2

2 + (1− p)e−
x2

2 . (5.1.4)

We prove several results about the random conductance model in particular correlation inequal-
ities (that extend to arbitrary ρ). One helpful observation is that the random conductance model
is closely related to determinantal processes because its de�nition involves a determinant weight.
This simpli�es several of the proofs because all correlation inequalities can be immediately led
back to similar results for the uniform spanning tree. Using the correlation inequalities it is
possible to show uniqueness of its Gibbs measure in certain regimes.

It was already observed in [32] that the gradient interface model with potential Vp,q exhibits
a duality property when de�ned on the torus. Moreover, there is a self dual point psd = psd(q) ∈
(0, 1) where the model agrees with its own dual. The self dual point satis�es the equation(

psd

1− psd

)4

= q. (5.1.5)

In [32] it is shown that the location of the phase transition in d = 2 must be the self dual point.
We extend the duality to the random conductance model and arbitrary planar graphs. Using

the fact that Z2 as a graph is self-dual we can use the duality to prove non-uniqueness of the
Gibbs measure therefore reproving the result from [32] without the use of re�ection positivity.
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Many of our techniques and results for the random conductance model originated in the study
of the random cluster model and we conjecture further similarities.

This chapter is structured as follows. In Section 5.2 we give a precise de�nition of gradient
Gibbs measures and state our main results. Then, in Section 5.3 we introduce and motivate
the random conductance model and its relation to extended gradient Gibbs measures. We prove
properties of the random conductance model in Sections 5.4 and 5.5. In Section 5.6 we use the
duality of the model to reprove the phase transition result. Finally, in Section 5.7 we discuss some
possible future directions. Two technical proofs and some results about regularity properties of
discrete elliptic equations are delegated to appendices.

5.2 Model and main results

Speci�cations. Let us brie�y recall the de�nition of a speci�cation because the concept will
be needed in full generality for the random conductance model (see Section 5.4). We consider
a countable set S (mostly Zd or the edges of Zd) and a measurable state space (F,F) (mostly
either |F | = 2 or (F,F) = (R,B(R))). Random �elds are probability measures on (FS ,FS)
where FS denotes the product σ-algebra. The set of probability measures on a measurable space
(X,X ) will be denoted by P(X,X ). For any Λ ⊂ S we denote by πΛ : FS → FΛ the canonical
projection. We often consider the σ-algebra FΛ = π−1

Λ (FΛ) of events depending on the set Λ.
Recall that a probability kernel γ from (X,B) to (X,X ), where B ⊂ X is a sub-σ-algebra, is
called proper if γ(B, ·) = 1B for B ∈ B.

De�nition 5.2.1. A speci�cation is a family of proper probability kernels γΛ from FΛc to FS
indexed by �nite subsets Λ ⊂ S such that γΛ1γΛ2 = γΛ1 if Λ2 ⊂ Λ1. We de�ne the set of random
�elds admitted to γ by

G(γ) = {µ ∈ P(FS ,FS) : µ(A|FΛc)(·) = γΛ(A|·) µ-a.s. for all A ∈ FS and Λ ⊂ S �nite}.
(5.2.1)

Remark 5.2.2. 1. We use the convention that we call µ ∈ G(γ) a Gibbs measure for any
speci�cation, not only for Gibbsian speci�cations (see [92] for a de�nition of Gibbsian
speci�cations).

2. There is a well known equivalent de�nition of Gibbs measures. A co�nal set I is a subset
of subsets of S with the property that for any �nite set Λ0 ⊂ S there is Λ ∈ I such that
Λ0 ⊂ Λ. Then µ ∈ G(γ) if and only if µγΛ = µ for Λ ∈ I where I is a co�nal subset of
subsets of S. See Remark 1.24 in [92] for a proof.

Gradient Gibbs measures. We introduce the relevant notation and the de�nition of Gibbs
and gradient Gibbs measures to state our results. For a broader discussion see [92, 136]. In this
paragraph we consider real valued random �elds indexed by a lattice Λ ⊂ Zd. We will denote
the set of nearest neighbour bonds of Zd by E(Zd). More generally, we will write E(G) and
V(G) for the edges and vertices of a graph G. To consider gradient �elds it is useful to choose
on orientation of the edges. We orient the edges e = {x, y} ∈ E(Zd) from x to y i� x ≤ y
(coordinate-wise), i.e., we can view the graph (Zd,E(Zd)) as a directed graph but mostly we
work with the undirected graph.

To any random �eld ϕ : Zd → R we associate the gradient �eld η = ∇ϕ ∈ RE(Zd) given
by ηe = ϕy − ϕx if {x, y} ∈ E(Zd) are nearest neighbours and x ≤ y. We formally write
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ηx,y = ηe = ϕy − ϕx and ηy,x = −ηe = ϕx − ϕy. The gradient �eld η satis�es the plaquette
condition

ηx1,x2 + ηx2,x3 + ηx3,x4 + ηx4,x1 = 0 (5.2.2)

for every plaquette, i.e., nearest neighbours x1, x2, x3, x4, x1. Vice versa, given a �eld η ∈ RE(Zd)

that satis�es the plaquette condition there is a up to constant shifts a unique �eld ϕ such that
η = ∇ϕ (the antisymmetry of the gradient �eld is contained in our de�nition). We will refer to

those �elds as gradient �elds and denote them by RE(Zd)
g . To simplify the notation we write ϕΛ

for Λ ⊂ Zd and ηE for E ⊂ E(Zd) for the the restriction of �elds and gradient �elds. We usually
identify a subset Λ ⊂ Zd with the graph generated by it and as before we write E(Λ) for the
bonds with both endpoints in Λ.

For a subgraph H ⊂ G we write ∂H for the (inner) boundary of H consisting of all points
x ∈ V(H) such that there is an edge e = {x, y} ∈ E(G)\E(H). In the case of a graph generated

by Λ ⊂ G we have x ∈ ∂Λ if there is y ∈ Λc such that {x, y} ∈ E(G). We de�ne
◦
Λ = Λ\∂Λ. For

a �nite subset Λ ⊂ Zd we denote by dϕΛ the Lebesgue measure on RΛ. We de�ne for ω ∈ RE(Zd)
g

and Λ �nite and simply connected (i.e., Λc connected) the following a priori measure on gradient
con�gurations

ν
ωE(Λ)c

Λ (dη) = ∇∗

∏
x∈
◦
Λc

δϕ̃(x)(·) dϕ◦
Λ

 (5.2.3)

where ϕ̃ is a con�guration such that ∇ϕ̃ = ω, dϕ◦
Λ
denotes the Lebesgue measure on R

◦
Λ, and ∇∗

the push-forward of this measure along the gradient map ∇ : RZd → RE(Zd)
g . The shift invariance

of the Lebesgue measure implies that this de�nition is independent of the choice of ϕ̃ and it
only depends on the restriction ωE(Λ)c since Λ is simply connected. For a potential V : R → R
satisfying some growth condition we de�ne the speci�cation γΛ

γΛ(dη, ωE(Λ)c) =
exp

(
−
∑

e∈E(Λ) V (ηe)
)

ZΛ(ωE(Λ)c)
ν
ωE(Λ)c

Λ (dη) (5.2.4)

where the constant ZΛ(ωE(Λ)c) ensures the normalization of the measure. We introduce the nota-
tion EE = π−1

E (B(R)E) for E ⊂ E(Zd) for the σ-algebra of events depending only on E. Measures
that are admitted to the speci�cation γ, i.e., measures µ that satisfy for simply connected Λ ⊂ Zd

µ(A | EE(Λ)c)(·) = γΛ(A, ·) µ a.s. (5.2.5)

will be called gradient Gibbs measures for the potential V .
For a ∈ Zd we consider the shift τa : RE(Zd) → RE(Zd) that is de�ned by

(τaη)x,y = ηx+a,y+a. (5.2.6)

A measure is translation invariant if µ(τ−1
a (A)) = µ(A) for all a and A ∈ B(R)E(Zd). An event is

translation invariant if τa(A) = A for all a ∈ Zd. A gradient measure is ergodic if µ(A) ∈ {0, 1}
for all translation invariant A.
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Main results. Our �rst main result is the following almost always uniqueness result for the
gradient Gibbs measures for potentials as in (5.1.4).

Theorem 5.2.3. For every q and d ≥ 2 there is an at most countable set N(q, d) ⊂ [0, 1] such
that for any p ∈ [0, 1] \N(q, d) there is a unique shift invariant ergodic gradient Gibbs measure
µ with zero tilt for the potential Vp,q.

This theorem is proved in Section 5.5 below the proof of Theorem 5.5.1. Moreover, we reprove
the non-uniqueness result originally shown in [32] for this type of potential.

Theorem 5.2.4. There is q0 ≥ 1 such that for d = 2, q ≥ q0, and p = psd(q) the solution of
(5.1.5), there are at least two shift invariant gradient Gibbs measures with 0 tilt.

The proof of this theorem is given at the end of Section 5.6. Moreover we prove uniqueness
for 'high temperatures' and dimension d ≥ 4, i.e., in the regime where the Dobrushin condition
holds.

Theorem 5.2.5. Let d ≥ 4. For any q ≥ 1 there exists p0 = p0(q, d) > 0 such that for all
p ∈ [0, p0)∪ (1− p0, 1] there is a unique shift invariant ergodic gradient Gibbs measure with zero
tilt for the potential Vp,q. Moreover, there exists q0 = q0(d) > 1 such that for any q ∈ [1, q0] and
any p ∈ [0, 1] there is a unique shift invariant ergodic gradient Gibbs measure with zero tilt for
the potential Vp,q.

The proof of this Theorem is given in Section 5.5 below the proof of Theorem 5.5.6.
The main tool in the proofs of these theorems is the fact that the structure of the potentials

V in (5.1.1) allows us to consider κ as a further degree of freedom and we consider the joint
distribution of the gradient �eld η and κ. We show that the law of the κ-marginal can be
related to a random conductance model. The analysis of this model then translates back into
the theorems stated before. We will make those statements precise in the next section. Let us
end this section with some remarks.

Remark 5.2.6. 1. For spin systems with �nite state space and bounded interactions there are
general results that show that phase transitions, i.e., non-uniqueness of the Gibbs measure
are rare, see, e.g., [92]. Theorem 5.2.3 establishes a similar result for a speci�c class of
potentials for a unbounded spin space. As discussed in more detail at the end of Section
5.5 we expect that for every q ≥ 1 the Gibbs measure is unique for all p ∈ [0, 1] except for
p = pc for some critical value pc = pc(q). Hence, Theorem 5.2.3 is far from optimal but we
hope that the results provided in this chapter prove useful to establish stronger results.

2. Let us compare the results to earlier results in the literature. For p/(1 − p) < 1/q the
potential Vp,q is strictly convex so that uniqueness of the Gibbs measure is well known
and holds for every tilt. The two step integration used by Cotar and Deuschel extends the
uniqueness result to the regime p/(1 − p) < C/

√
q (see Section 3.2 in [63]). In particular

the case p ∈ [0, p0) in Theorem 5.2.5 is included in earlier results. However, the potential
becomes very non-convex (has a very negative second derivative at some points) for p close
to 1 and the uniqueness result for p ∈ (1 − p0, 1] and d ≥ 4 appears to be new. In this
regime the only known result seems to be convexity of the surface tension as a function of
the tilt which was shown in [4] (see in particular Proposition 2.4 there). Their results apply
to p very close to one, q − 1 very small, and d ≤ 3. The results from in Chapter 3 extend
this result to any dimension d ≥ 2 and to arbitrary q for p su�ciently close to 1 depending
on q.
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3. The restriction to dimension d ≥ 4 arises from the fact that the Green's function for
inhomogeneous elliptic operators in divergence form decays slower than in the homogeneous
case.

5.3 Extended gradient Gibbs measures and random conductance

model

Extended gradient Gibbs measure. In this work we restrict to potentials of the form
introduced in (5.1.1). As already discussed in more detail in [32] and [33] it is possible to use
the special structure of V to raise κ to a degree of freedom. Let µ be a gradient Gibbs measure
for V . For a �nite set E ⊂ E(Zd) and Borel sets A ⊂ RE and B ⊂ RE+ we de�ne the extended
gradient Gibbs measure

µ̃((ηb, κb)b∈E ∈ A×B) =

ˆ
B
ρE(dκ)Eµ

(
1A

∏
e∈E

e−
1
2
κeη2

e+V (ηe)

)
. (5.3.1)

It can be checked that this is a consistent family of measures and thus we can extend µ̃ to a
measure on (R × R+)E(Zd). It was explained in [32] that µ̃ is itself a Gibbs measure for the
speci�cation γ̃Λ de�ned by

γ̃Λ((dη̄,dκ̄), (η, κ)) =
exp

(
−1

2

∑
e∈E(Λ) κ̄eη̄

2
e

)
ZΛ(ηE(Λ)c)

ν
ηE(Λ)c

Λ (dη̄)
∏

e∈E(Λ)

ρ(dκ̄e)
∏

e∈E(Λ)c

δκe(dκ̄e). (5.3.2)

Note that the distribution (dη̄,dκ̄)E(Λ) actually only depends on ηE(Λ)c and is independent of
κ. Let us add one remark concerning the notation. In this work we essentially consider three
strongly related viewpoints of one model. The �rst viewpoint are gradient Gibbs measures that

are measures on RE(Zd)
g . Thy will be denoted by µ and the corresponding speci�cation is denoted

by γ. Then there are extended gradient Gibbs measures for a speci�cation γ̃. They are measures

on RE(Zd)
g ×RE(Zd)

+ and will be denoted by µ̃. The η-marginal of µ̃ is a gradient Gibbs measure µ.

Finally there is also the κ-marginal of µ̃ which is a measure on RE(Zd)
+ and will be denoted by µ̄.

An important result here is that µ̄ is a Gibbs measure for a speci�cation γ̄ if ρ is a measure as in
(5.1.2). In this case µ̄ is a measure on the discrete space {1, q}E(Zd). We expect that this result
can be extended to far more general measures ρ but we do not pursue this matter here. To keep
the notation consistent we denote objects with single spin space R, e.g., gradient Gibbs measures
without symbol modi�er, objects with single spin space {1, q}, e.g., the κ-marginal with a bar,
and objects with single spin space {1, q}×R, e.g., extended Gibbs with a tilde. Let us also �x a
notation for the corresponding relevant σ-algebras. We write as before EE for the σ-algebra on
RE(Zd) generated by (ηe)e∈E and we de�ne E = EE(Zd). For the κ-marginal we similarly consider

the σ-algebra FE on {1, q}E(Zd) generated by (κe)e∈E and we write again F = FE(Zd). For the

extended space RE(Zd) × {1, q}E(Zd) we use the product σ-algebra AE = π−1
1 (EE)⊗ π−1

2 (FE).
It was already remarked in [32] that this setting resembles the situation for the Potts model

that can be coupled to the random cluster model via the Edwards-Sokal coupling measure.

The random conductance model. As explained before our strategy is to analyse the κ-
marginal of extended gradient Gibbs measures and use the results to deduce properties of the
gradient Gibbs measures for V . The key observation is that the κ-marginal of extended gradient
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Gibbs measures is given by the in�nite volume limit of a strongly coupled random conductance
model. To motivate the de�nition of the random conductance model we consider the κ-marginal

of the extended speci�cation γ̃ de�ned in (5.3.2). For zero boundary value 0̄ ∈ RE(Zd)
g with 0̄e = 0

and λ ∈ {1, q}E(Zd) we obtain

γ̃Λ

(
κE(Λ) = λE(Λ) , 0̄

)
=

1

Z

ˆ ∏
e∈E(Λ)

p1λe=q(1− p)1λe=1e−
1
2
λ2
eω

2
e ν

0̄E(Λ)c

Λ (dω). (5.3.3)

We write Λw = Λ̄/∂Λ for the graph where the entire boundary is collapsed to a single point (this
is called wired boundary conditions and we will discuss this below in more detail). We denote

the lattice Laplacian with conductances λ and zero boundary condition outside of
◦
Λ by ∆̃Λw

λ ,

i.e., ∆̃Λw

λ acts on functions f :
◦
Λ → R by ∆̃Λw

λ f(x) =
∑

y∼x λ{x,y}(f(x) − f(y)) where we set

f(y) = 0 for y /∈
◦
Λ. The de�nition (5.3.2) and an integration by parts followed by Gaussian

calculus imply then

γ̃Λ

(
κE(Λ) = λE(Λ) , 0̄

)
=

1

Z
p|{e∈E(Λ) :λe=q}|(1− p)|{e∈E(Λ) :λe=1}|

ˆ
e−

1
2

(ϕ,∆̃Λw

λ ϕ) dϕ◦
Λ

=
1

Z

p|{e∈E(Λ) :λe=q}|(1− p)|{e∈E(Λ) :λe=1}|√
det(2π)−1∆̃Λw

λ

.
(5.3.4)

It simpli�es the presentation to introduce the random conductance model of interest in a slightly
more general setting. We consider a �nite and connected graph G = (V,E). The combinatorial
graph Laplacian ∆c associated to set of conductances c : E → R+ is de�ned by

∆cf(x) =
∑
y∼x

c{x,y}(f(x)− f(y)) (5.3.5)

for any function f : V → R. Note that we de�ned the graph Laplacian as a non-negative operator
which is convenient for our purposes and common in the context of graph theory. In the following
we view the Laplacian ∆c as a linear map on the space H0 = {f : V → R :

∑
x∈V f(x) = 0} of

functions with vanishing average. We de�ne det ∆c as the determinant of this linear map. By
the maximum principle the Laplacian is injective on H0, hence det ∆c > 0. Sometimes we clarify
the underlying graph by writing ∆G

c .

Remark 5.3.1. In the general setting it is more natural to let the Laplacian act on H0 instead of
�xing a point to 0 as in the de�nition of ∆̃Λw

λ above where this corresponds to Dirichlet boundary
conditions. It would also be possible to �x a point x ∈ V(G) and consider ∆̃G

c acting on functions
f : V(G) \ {x0} → R de�ned by (∆̃G

c f)(x) =
∑

y∼x c{x,y}f(x)− f(y) for x ∈ V(G) \ {x0} where
we set f(x0) = 0. It is easy to see using, e.g., Gaussian calculus and a change of measure that
the determinant of ∆̃G

c is independent of x0 and

|G| det ∆̃G
c = det ∆G

c . (5.3.6)

Motivated by (5.3.4) we �x a real number q ≥ 1 and consider the following probability
measure on {1, q}E

PG,p(κ) =
1

Z

p|{e∈E:κe=q}|(1− p)|{e∈E:κe=1}|
√

det ∆κ
(5.3.7)
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where Z = ZG,p denotes a normalisation constant such that PG,p is a probability measure. In
the following we will often drop G and p from the notation and we will always suppress q. We
restrict our attention to q ≥ 1 because by scaling the model with conductances {1, q} has the
same distribution as a model with conductances {α, αq} for α > 0 so that we can set the smaller
conductance to 1. Let us state a remark concerning the relation to the random cluster model.

Remark 5.3.2. 1. We chose the notation such that the similarity to the random cluster model
is apparent. Both models have the parameter p as a priori distribution of the bonds that is
then correlated by a complicated in�nite range interaction depending on q. They reduce to
Bernoulli percolation for q = 1. At the end of Section 5.5 we state a couple of conjectures
about the behaviour of this model that show that we expect similarities with the random
cluster model in many more aspects.

2. While there are several close similarities to the random cluster model there is also one
important di�erence that seems to pose additional di�culties in the analysis of this model.
The conditional distribution in a �nite set depends on the entire con�guration of the con-
ductances outside the �nite set (not just a partition of the boundary as in the random cluster
model). In particular the often used argument that the conditional distribution of a random
cluster model in a set given that all boundary edges are closed is the free boundary random
cluster distribution has no analogue in our setting.

3. We refer to the model as a random conductance model since we will (not very surprisingly)
use tools from the theory of electrical networks. Note that in the de�nition of the potential
V the parameters correspond to di�erent (random) sti�ness of the bonds.

5.4 Basic properties of the random conductance model

Preliminaries. As before we consider a connected graph G = (V,E). To simplify the notation
we introduce for E′ ⊂ E and κ ∈ {1, q}E the notation

h(κ,E′) = |{e ∈ E′ : κe = q}| (5.4.1)

s(κ,E′) = |{e ∈ E′ : κe = 1}| (5.4.2)

for the number of hard and soft edges respectively and we de�ne h(κ) = h(κ,E) and s(κ) =
s(κ,E). Let us introduce the weight of a subset of edges t ⊂ E by de�ning

w(κ, t) =
∏
e∈t

κe. (5.4.3)

We will denote the set of all spanning trees of a graph by ST(G). We will identify spanning trees
with their edge sets. In the following, we will frequently use the Kirchho� formula

det ∆c = |G|
∑

t∈ST(G)

w(c, t). (5.4.4)

for the determinant of a weighted graph Laplacian (cf. [144] for a proof). Let us remark that
the Kirchho� formula is frequently used in statistical mechanics and has also been used in the
context of gradient interface models for some potentials as in (5.1.1) in [49].

Remark 5.4.1. Note that equation (5.4.4) remains true for graphs with multi-edges and loops.
Indeed, loops have no contribution on both sides and multi-edges can be replaced by a single edge
with the sum of the conductances as conductance.
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Correlation inequalities We will now show correlation inequalities for the measures P = PG,p.
We start by recalling several of the well known correlation inequalities. To state our results we
introduce some notation. Let E be a �nite or countable in�nite set. Let Ω = {1, q}E and F
the σ-algebra generated by cylinder events. We consider the usual partial order on Ω given by
ω1 ≤ ω2 i� ω1

e ≤ ω2
e for all e ∈ E. A function X : Ω → R is increasing if X(ω1) ≤ X(ω2) for

ω1 ≤ ω2 and decreasing if −X is increasing. An event A ⊂ Ω is increasing if its indicator function
is increasing. We write µ̄1 % µ̄2 if µ̄1 stochastically dominates µ̄2 which is by Strassen's Theorem
equivalent to the existence of a coupling (ω1, ω2) such that ω1 ∼ µ̄1 and ω2 ∼ µ̄2 and ω1 ≥ ω2

(see [143]). We introduce the minimum ω1 ∧ω2 and the maximum ω1 ∨ω2 of two con�gurations
given by (ω1 ∧ ω2)e = min(ω1

e , ω
2
e) and (ω1 ∨ ω2)e = max(ω1

e , ω
2
e) for any e ∈ E. We call a

measure µ̄ on Ω strictly positive if µ̄(ω) > 0 for all ω ∈ Ω. Finally we introduce for f, g ∈ E
and ω ∈ Ω the notation ω±±fg ∈ Ω for the con�guration given by (ω±±fg )e = ωe for e /∈ {f, g} and
(ω±∗fg )f = 1 + (q − 1)±, (ω∗±fg )g = 1 + (q − 1)±. We de�ne ω±f similarly. We sometimes drop
the edges f , g from the notation. We write µ̄(ω) = µ̄({ω}) for ω ∈ Ω and µ̄(X) =

´
ΩX dµ̄ for

X : Ω→ R.

Theorem 5.4.2 (Holley inequality). Let Ω = {1, q}E be �nite and µ̄1, µ̄2 strictly positive meas-
ures on Ω that satisfy the Holley inequality

µ̄2(ω1 ∨ ω2)µ̄1(ω1 ∧ ω2) ≥ µ̄1(ω1)µ̄2(ω2) for ω1, ω2 ∈ Ω. (5.4.5)

Then µ̄1 - µ̄2.

Proof. The original proof appeared in [108], a simpler proof can be found , e.g., in [98, Theorem
2.1].

A strictly positive measure is called strongly positively associated if it satis�es the FKG lattice
condition

µ̄(ω1 ∨ ω2)µ̄(ω1 ∧ ω2) ≥ µ̄(ω1)µ̄(ω2) for ω1, ω2 ∈ Ω. (5.4.6)

Theorem 5.4.3. A strongly positively associated measure µ̄ satis�es the FKG inequality, i.e.,
for increasing functions X,Y : Ω→ R

µ̄(XY ) ≥ µ̄(X)µ̄(Y ). (5.4.7)

Proof. A proof can be found in [98, Theorem 2.16].

The next theorem provides a simple way to verify the assumptions of Theorem 5.4.2 and
Theorem 5.4.3. Basically it states that it is su�cient to check the conditions when varying at
most two edges.

Theorem 5.4.4. Let Ω = {1, q}E be �nite and µ̄1, µ̄2 strictly positive measures on Ω. Then µ̄1

and µ̄2 satisfy (5.4.5) i� the following two inequalities hold

µ̄2(ω+
f )µ̄1(ω−f ) ≥ µ̄1(ω+

f )µ̄2(ω−f ), for ω ∈ Ω, f ∈ E, (5.4.8)

µ̄2(ω++
fg )µ̄1(ω−−fg ) ≥ µ̄1(ω+−

fg )µ̄2(ω−+
fg ), for ω ∈ Ω, f, g ∈ E.. (5.4.9)

In particular, (5.4.8) and (5.4.9) together imply µ̄1 - µ̄2.

Proof. See [98, Theorem 2.3].
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We state one simple corollary of the previous results.

Corollary 5.4.5. Let µ̄1, µ̄2 be strictly positive measures on Ω = {1, q}E such that one of the
measure µ̄1, µ̄2 is strongly positively associated. Then

µ̄2(ω+
f )µ̄1(ω−f ) ≥ µ̄1(ω+

f )µ̄2(ω−f ), for ω ∈ Ω, f ∈ E (5.4.10)

implies µ̄1 - µ̄2.

Proof. Assuming that µ̄1 is strongly positively associated we �nd using �rst the assumption
(5.4.10) and then (5.4.6)

µ̄2(ω++
fg )µ̄1(ω−−fg ) ≥

µ̄1(ω++
fg )µ̄2(ω−+

fg )

µ̄1(ω−+
fg )

µ̄1(ω−−fg ) ≥ µ̄2(ω−+
fg )µ̄1(ω+−

fg ). (5.4.11)

Now Theorem 5.4.4 implies the claim. The proof if µ̄2 is strictly positively associated is similar.

It is convenient to derive the following correlation results for the measures PG,p from corres-
ponding results for the weighted spanning tree measure. The weighted spanning tree measure
on a connected weighted graph (G, κ) is a measure on ST(G) with distribution

QGκ (t) =
w(κ, t)∑

t′∈ST(G)w(κ, t′)
. (5.4.12)

This model has been studied extensively, see [29] for a survey. An important special case is the
uniform spanning tree corresponding to constant conductances κ that assigns equal probability
to every spanning tree.

The following lemma provides the basic estimate to check the condition (5.4.9) for the meas-
ures PG,p. Recall the notation κ±±fg introduced before Theorem 5.4.2 and also the shorthand
κ±±.

Lemma 5.4.6. For a �nite graph G and κ ∈ {1, q}E as above

det ∆κ++ det ∆κ−− ≤ det ∆κ+− det ∆κ−+ . (5.4.13)

Remark 5.4.7. The proof in fact extends to any κ ∈ RE+ and (κ±±fg )f = c±f , (κ±±fg )g = c±g with

c−f ≤ c
+
f and c−g ≤ c+

g .

Proof. The lemma can be derived from the fact that the weighted spanning tree has negative
correlations. It is well known (see, e.g., [29]) that for all positive weights κ on a �nite graph G
the measure QGκ has negative edge correlations

QGκ (e ∈ t|f ∈ t) ≤ QGκ (e ∈ t). (5.4.14)

Simple algebraic manipulations show that this is equivalent to

QGκ (e ∈ t, f ∈ t)QGκ (e /∈ t, f /∈ t) ≤ QGκ (e ∈ t, f /∈ t)QGκ (e /∈ t, f ∈ t). (5.4.15)

We introduce the following sums

Afg =
∑

t∈ST(G), f,g∈t

w(κ, t), Af =
∑

t∈ST(G), f∈t, g /∈t

w(κ, t),

Ag =
∑

t∈ST(G), g∈t, f /∈t

w(κ, t), A =
∑

t∈ST(G), f,g /∈t

w(κ, t).
(5.4.16)
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With this notation multiplication by (Afg +Af +Ag +A)2 shows that (5.4.15) is equivalent to

AfgA ≤ AfAg. (5.4.17)

It remains to show that the statement in the lemma can be deduced from (5.4.17) (actually
the statements are equivalent). Clearly we can assume κ = κ−−, i.e., κf = κg = 1. Using the
Kirchho� formula (5.4.4) we �nd the following expression

|G|−1 det ∆κ±± =
∑

t∈ST(G)

w(κ±±, t) = (κ±±)f (κ±±)gAfg + (κ±±)fAf + (κ±±)gAg +A.

(5.4.18)

Hence we obtain

|G|−2 det ∆κ+− det ∆κ−+ = (qAfg + qAf +Ag +A) (qAfg +Af + qAg +A) ,

|G|−2 det ∆κ++ det ∆κ−− =
(
q2Afg + qAf + qAg +A

)
(Afg +Af +Ag +A) .

(5.4.19)

Subtracting those two identities we �nd that only the cross-terms between Af , Ag and between
Afg, A do not cancel and we get

|G|−2 (det ∆κ+− det ∆κ−+ − det ∆κ++ det ∆κ−−) = (q2 + 1− 2q)(AfAg −AfgA)

= (q − 1)2(AfAg −AfgA).
(5.4.20)

We can conclude using (5.4.17).

The previous lemma directly implies that the measures PG,p are strongly positively associated.

Corollary 5.4.8. The measure PG,p satis�es the FKG lattice condition for any κ1, κ2 ∈ {1, q}E

PG,p(κ1 ∧ κ2)PG,p(κ1 ∨ κ2) ≥ PG,p(κ1)PG,p(κ2) (5.4.21)

and the FKG inequality

EG,p(XY ) ≥ EG,p(X) EG,p(Y ) (5.4.22)

for any increasing functions X,Y : {1, q}E → R.

Proof. Lemma 5.4.6 and the trivial observation that h(κ++)+h(κ−−) = h(κ+−)+h(κ−+) imply
for any κ ∈ {1, q}E and f, g ∈ E the lattice inequality

PG,p(κ++)PG,p(κ−−) ≥ PG,p(κ+−)PG,p(κ−+). (5.4.23)

Then Theorem 5.4.4 applied to µ̄1 = µ̄2 = PG,p implies that the FKG lattice condition (5.4.21)
holds and therefore by Theorem 5.4.3 also the FKG-inequality (5.4.22).

Let us �rst state a trivial consequence of this corollary.

Lemma 5.4.9. The measures PG,p and PG,p
′
satisfy for p ≤ p′

PG,p
′
% PG,p. (5.4.24)

Proof. Using Corollary 5.4.8 and Corollary 5.4.5 we only need to check whether (5.4.10) holds
for µ̄1 = PG,p and µ̄2 = PG,p

′
. This is clearly the case if p ≤ p′.
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The next step is to show correlation inequalities with respect to the size of the graph. More
speci�cally we show statements for subgraphs and contracted graphs. This will later easily imply
the existence of in�nite volume limits. Moreover, we can bound in�nite volume states by �nite
volume measures in the sense of stochastic domination. Let F ⊂ E be a set of edges. We de�ne
the contracted graph G/F by identifying for every edge f ∈ F the endpoints of f . Similarly for
a set W ⊂ V of vertices we de�ne the contracted graph G/W by identifying all vertices in W .
The resulting graphs may have multi-edges. We also consider connected subgraphs G′ = (V ′, E′)
of G. Recall the notation κ± = κ±f for f ∈ E. We use the notation ∆G′

κ for the graph Laplacian

on G′ where we restrict the conductances κ to E′ and we denote by ∆
G/F
κ the graph Laplacian

on G/F . The following lemma relates the determinants of the di�erent graph Laplacians.

Lemma 5.4.10. With the notation introduced above we have for κ ∈ {1, q}E

det ∆G′

κ+

det ∆G′
κ−
≥

det ∆G
κ+

det ∆G
κ−
≥

det ∆
G/F
κ+

det ∆
G/F
κ−

. (5.4.25)

Remark 5.4.11. The lemma again extends to κ ∈ RE+ and κ±f with (κ+
f )f = c+ > c− = (κ−f )f .

Proof. The proof is similar to the proof of Lemma 5.4.6. We derive the statement from a property
of the weighted spanning tree model. For graphs as above and e ∈ E′ the estimate

QG
′

κ (e ∈ t) ≥ QGκ (e ∈ t) ≥ QG/Fκ (e ∈ t) (5.4.26)

holds (see Corollary 4.3 in [29] for a proof). We can rewrite (assuming again κf = 1, i.e., κ = κ−)

det ∆G
κ+

det ∆G
κ−

=

∑
t∈ST(G),f /∈tw(κ, t) + q

∑
t∈ST(G),f∈tw(κ, t)∑

t∈ST(G),f /∈tw(κ, t) +
∑

t∈ST(G),f∈tw(κ, t)
. (5.4.27)

Note that ∑
t∈ST(G),f∈tw(κ, t)∑
t∈ST(G),f /∈tw(κ, t)

=
QGκ (f ∈ t)
QGκ (f /∈ t)

(5.4.28)

and therefore (using κ = κ−)

det ∆G
κ+

det ∆G
κ−

=
1 + q

QG
κ−

(f∈t)
QG
κ−

(f /∈t)

1 +
QG
κ−

(f∈t)
QG
κ−

(f /∈t)

= 1 + (q − 1)QGκ−(f ∈ t). (5.4.29)

Similar statements hold for the graphs G/F and G′. Hence (5.4.26) implies (5.4.25).

Let us remark that the probability QGκ (f ∈ t) can also be expressed as a current in a certain
electrical network. In order to avoid unnecessary notation at this point we kept the weighted
spanning tree measure and we will only exploit this connection when necessary below.

Again, the previous estimates implies correlation inequalities for the measures PG,p. In the
following we consider a �xed value of p but di�erent graphs so that we drop only p from the
notation but we keep the graph G. We introduce the distribution under boundary conditions
for a connected subgraph G′ = (V ′, E′) of G. For λ ∈ {1, q}E we de�ne the measure PG,E

′,λ on
{1, q}E′ by

PG,E
′,λ(κ) =

1

Z

ph(κ)(1− p)s(κ)√
det ∆G

(λ,κ)

(5.4.30)
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where (λ, κ) ∈ {1, q}E denotes the conductances given by κ on E′ and by λ on E \ E′. This
de�nition implies that we have the following domain Markov property for ω ∈ {1, q}E′

PG(κE′ = ω | κE\E′ = λE\E′) = PG,E
′,λ(ω). (5.4.31)

Since the measure PG is strongly positively associated, (5.4.31) and Theorem 2.24 in [98] implies
that the measure PG,E

′,λ is strongly positively associated. We now state the consequences of
Lemma 5.4.10 on stochastic ordering.

Corollary 5.4.12. For a �nite graph G = (V,E), a connected subgraph G′ = (V ′, E′), an edge
subset F ⊂ E, and con�gurations λ1, λ2 ∈ {1, q}E such that λ1 ≤ λ2 the following holds

PG
′
- PG,E

′,λ1 , PG,E
′,λ1 - PG,E

′,λ2 , PG,E\F,λ2 - PG/F . (5.4.32)

More generally, we have for λ ∈ {1, q}E and E′′ ⊂ E′ or E′′ ∩ F = ∅ respectively

PG
′,E′′,λE′ - PG,E

′′,λ, PG,E
′′,λ - PG/F,E

′′,λE\F . (5.4.33)

Proof. From Lemma 5.4.10 we obtain for f ∈ E′ and any κ ∈ {1, q}E′

PG,E
′,λ(κ+)

PG,E′,λ(κ−)
≥ PG

′
(κ+)

PG′(κ−)
. (5.4.34)

Similarly, Lemma 5.4.10 implies for f ∈ E \ F and κ ∈ {1, q}E\F

PG/F (κ+)

PG/F (κ−)
≥ PG,E\F,λ(κ+)

PG,E\F,λ(κ−)
. (5.4.35)

Then the the strong positive association of PG and Corollary 5.4.5 imply the �rst and the
last stochastic ordering claimed in (5.4.32). The stochastic domination result in the middle of
(5.4.32) follows from (5.4.31) and a general result for strictly positive associated measures (see
[98, Theorem 2.24]). The proof of (5.4.33) is similar.

In�nite volume measures. The de�nition of the measure P shows that it is a �nite volume
Gibbs measure for the energy E(κ) = ln(det ∆κ)/2 and a homogeneous Bernoulli a priori meas-
ure. We would like to de�ne in�nite volume limits for the measures PG and de�ne a notion of
Gibbs measures in in�nite volume. This requires some additional de�nitions. Recall the de�ni-
tion of the σ-algebras FE for E ⊂ E(Zd) and note that there is a similar de�nition for general
graphs which will be used in the following. An event A ⊂ F is called local if it measurable with
respect to FE for some �nite set E, i.e., A depends only on �nitely many edges. Similarly we
de�ne a local function as a function that is measurable with respect to FE for a �nite set E. We
say that a sequence of measures µn on {1, q}E(Zd) converges in the topology of local convergence
to a measure µ if µn(A) → µ(A) for all local events A. For a background on the choice of
topologies in the context of Gibbs measures we refer to [92]. The construction of the in�nite
volume states proceeds similarly to the construction for the random cluster model by de�ning a
speci�cation and introducing the notion of free and wired boundary conditions. For simplicity we
restrict the analysis to Zd but the generalisation to more general graphs is straightforward. First,
we de�ne in�nite volume limits of the �nite volume distributions with wired and free boundary
conditions. Let us denote by Λn = [−n, n] ∩ Zd the ball with radius n in the maximum norm
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around the origin and we denote by En = E(Λn) the edges in Λn. We introduce the shorthand
Λwn = Λn/∂Λn for the box with wired boundary conditions. We de�ne

µ̄0
n,p = PΛn,p, µ̄1

n,p = PΛwn ,p (5.4.36)

for the measure P on Λn with free and wired boundary conditions respectively. From Corollary
5.4.12 and equation (5.4.31) we conclude that for any increasing event A depending only on edges
in En

µ̄0
n+1(A) = PΛn+1(A) = PΛn+1(PΛn+1,En,κ(A)) ≥ PΛn(A) = µ̄0

n(A). (5.4.37)

We conclude that for any increasing event A depending only on �nitely many edges the limits
limn→∞ µ̄

0
n,p(A) and similarly limn→∞ µ̄

1
n,p(A) exist. Using standard arguments we can write

every local event A as a union and di�erence of increasing local events and we conclude that
limn→∞ µ̄

0
n,p(A) and limn→∞ µ̄

1
n,p(A) exist. It is well known (see [30]) that this implies conver-

gence of µ̄0
n,p and µ̄1

n,p to a measure on {1, q}E(Zd) in the topology of local convergence. We
denote the in�nite volume measures by µ̄0

p and µ̄
1
p.

Lemma 5.4.13. The measure µ̄0
p and µ̄1

p satisfy the FKG-inequality and for 0 ≤ p ≤ p′ ≤ 1 the
relations

µ̄0
p - µ̄

1
p, µ̄0

p - µ̄
0
p′ , µ̄1

p - µ̄
1
p′ . (5.4.38)

Moreover they are invariant under symmetries of the lattice and ergodic with respect to transla-
tions.

Proof. This is a consequence of Corollary 5.4.8 and Corollary 5.4.12 and a limiting argument.
See the proof of Theorem 4.17 and Corollary 4.23 in [98] for a detailed proof for the random
cluster model which also applies to the model considered here. Ergodicity is proved by showing
that the measures are even mixing.

In�nite volume speci�cations. We now introduce the concept of in�nite volume Gibbs
measures for this model. We �rst consider the case of a �nite connected graph G. For E ⊂ E(G)
we consider the �nite volume speci�cations γ̄GE : F × {1, q}E(G) → R

γ̄GE(A, λ) =
1

Zλ

∑
κ∈A

1κEc=λEc

ph(κ)(1− p)s(κ)

√
det ∆κ

(5.4.39)

where the normalisation Zλ ensures that γ̄GE(·, λ) is a probability measure. A simple calculation
shows that γ̄G is indeed a speci�cation, i.e., γ̄GE are proper probability kernels that satisfy for
E ⊂ E′

γ̄GE′ γ̄
G
E = γ̄GE′ . (5.4.40)

Since γ̄E(·, λ) is concentrated on a �nite set it is helpful to use the notation γ̄E(κ, λ) = γ̄E({κ}, λ).
The measure PG is a �nite volume Gibbs measure, i.e., it satis�es

PGγ̄GE = PG (5.4.41)

or put di�erently for κ, λ ∈ {1, q}E

γ̄GE(κ, λ) = PG,E,λ(κE)1κE(G)\E=λE(G)\E . (5.4.42)
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We would like to call µ a Gibbs measure on {1, q}Zd for the random conductance model if

µ̄γ̄Zd
E = µ̄ (5.4.43)

holds for all E ⊂ E(Zd) �nite. However, γ̄GE is a priori only well de�ned for �nite graphs so that
we use an approximation procedure for in�nite graphs. Let G be an connected in�nite graph.
We are a bit sloppy with the notation and do not distinguish between γ̄HE for a subgraph H of
G and its proper extension to F × {1, q}E(G), i.e., we de�ne for κ, λ ∈ {1, q}E(G)

γ̄HE (κ, λ) = 1κEc=λEc γ̄
H
E (κE(H), λE(H)). (5.4.44)

We denote for f ∈ E(G) and κ ∈ {1, q}E(G) by κ+ and κ− as before the con�gurations such that
κ+
e = κ−e for e 6= f and κ−f = 1, κ+

f = q.

In the following we assume p ∈ (0, 1). For p ∈ {0, 1} the measures PG,p agree with the
Dirac measure on the constant 1 or constant q con�guration. Since we assume that E is �nite
the speci�cation γ̄HE is uniquely characterized by the fact that it is proper and it satis�es for
κ, λ ∈ {1, q}E(H) such that κEc = λEc

γ̄HE′(κ
−, λ)

γ̄HE′(κ
+, λ)

=
1− p
p

√
det ∆H

κ+

det ∆H
κ−

=
1− p
p

√
1 + (q − 1)QH

κ−(f ∈ t) (5.4.45)

where we used (5.4.29) in the second step. We show that we can give meaning to this expression
in in�nite volume. For this we sketch the de�nition of spanning trees in in�nite volume but we
refer to the literature for details (see [29]). A monotone exhaustion of an in�nite graph G is a
sequence of subgraphs Gn such that Gn ⊂ Gn+1 and G =

⋃
n≥1Gn. It can be shown that for any

�nite sets E1 ⊂ E2 ⊂ EG the limit limn→∞ QGnκ (t∩E2 = E1) exists. In fact this is a consequence
of (5.4.26) and the arguments we used for µ̄0

n above. Hence it is possible to de�ne a measure
QG,0κ on 2E(G), the power set of E(G) which will be called the weighted free spanning forest on
G (as the name suggest the measure is supported on forests but not necessarily on trees, i.e., on
connected subsets of edges). Similarly, we can de�ne the wired spanning forest QG,1κ replacing
the subgraphs Gn by the contracted graphs Gn/∂Gn. By de�nition those measures satisfy

lim
n→∞

QGnκ (f ∈ t) = QG,0κ (f ∈ t) (5.4.46)

lim
n→∞

QGn/∂Gnκ (f ∈ t) = QG,1κ (f ∈ t) (5.4.47)

for any f ∈ E. Then it is possible to de�ne two families of proper probability kernels γ̄G,0E and

γ̄G,1E for E ⊂ (E(G)) �nite by the property that for f ∈ E and κ, λ ∈ {1, q}E(G) such that
κEc = λEc

γ̄G,0E (κ−, λ)

γ̄G,0E (κ+, λ)
=

1− p
p

√
1 + (q − 1)QG,0

κ− (f ∈ t) (5.4.48)

γ̄G,1E (κ−, λ)

γ̄G,1E (κ+, λ)
=

1− p
p

√
1 + (q − 1)QG,1

κ− (f ∈ t). (5.4.49)

From and (5.4.45) and (5.4.45) we conclude that γ̄G,0 and γ̄G,1 are well de�ned. Moreover we
obtain that this family of probability kernels satisfy for λ, κ ∈ {1, q}E(G)

γ̄G,0E (κ, λ) = lim
n→∞

γ̄GnE (κ, λ), (5.4.50)

γ̄G,1E (κ, λ) = lim
n→∞

γ̄
Gn/∂Gn
E (κ, λ). (5.4.51)
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Note that the concatenation for γ̄G,0 for E′, E ⊂ E(Zd) is given by

γ̄G,0E γ̄G,0E′ (κ, λ) =
∑

σ:σEc=λEc

γ̄G,0E (σ, λ)γ̄G,0E′ (κ, σ), (5.4.52)

in particular it only involves a �nite sum in the case of a �nite spin space. We conclude using
(5.4.50) and (5.4.51) that γ̄G,0E and γ̄G,1E de�ne two speci�cations on G.

Suppose the wired and the free uniform spanning forest on G agree. This implies that also
the weighted wired and free spanning forest QG,0κ and QG,1κ on G agree if the conductances κe
are contained in a compact subset of (0,∞) (see Theorem 7.3 and Theorem 7.7 in [29]). Thus

γ̄G,1E = γ̄G,0E in this case. In particular we obtain that γ̄Zd,0
E = γ̄Zd,1

E because the free and the
wired uniform spanning forest on Zd agree (Corollary 6.3 in [29]). In the following we will denote
this speci�cation by γ̄E . To ensure consistency with the earlier de�nition of γ̃ we de�ne for
a connected subset Λ ⊂ Zd that γ̄Λ = γ̄E(Λ). We can now give a formal de�nition of Gibbs
measures for the random conductance model.

De�nition 5.4.14. A measure µ̄ ∈ P({1, q}E(Zd)) is a Gibbs measure if it is admitted to the
speci�cation γ̄E.

As one would expect the in�nite volume measures µ̄0
p and µ̄

1
p are Gibbs measures.

Lemma 5.4.15. The measures µ̄0
p and µ̄1

p are Gibbs measures as de�ned in De�nition 5.4.14.
Moreover any Gibbs measure µ̄ satis�es µ̄0

p - µ̄ - µ̄
1
p.

Proof. By equation (5.4.41) we have for E ⊂ En

µ̄0
nγ̄

Λn
E = µ̄0

n. (5.4.53)

We show that both sides converge in the topology of local convergence as n→∞. Let A be an
increasing event depending on a �nite number of edges. We have seen in (5.4.37) that µ0

n(A)
is an increasing sequence and converges by de�nition to µ0(A). We derive the convergence of
the left hand side of equation (5.4.53) from the following three observations. First, we conclude
from (5.4.32) and (5.4.42) that γ̄Λn

E (A, ·) is an increasing function. Second, using (5.4.33) and

(5.4.42) we obtain γ̄Λn+1

E (A, κ) ≥ γ̄Λn
E (A, κEn) for all κ ∈ {1, q}En+1 . The third observation is

that (5.4.37) can also be applied to an increasing function instead of an increasing event. These
three facts imply

µ̄0
n(γ̄Λn

E (A, ·)) ≤ µ̄0(γ̄Λn
E (A, ·)) ≤ µ̄0(γ̄E(A, ·)). (5.4.54)

On the other hand, we obtain for any m ∈ N

lim
n→∞

µ̄0
n(γ̄Λn

E (A, ·)) ≥ lim
n→∞

µ̄0
n(γ̄Λm

E (A, ·)) = µ̄0(γ̄Λm
E (A, ·)). (5.4.55)

Sending m→∞ we get

lim
n→∞

(µ̄0
nγ̄

Λn
E )(A) ≥ (µ̄0γ̄E)(A). (5.4.56)

Hence, we have shown that

µ̄0γ̄E(A) = lim
n→∞

µ̄0
nγ̄

Λn
E (A) = lim

n→∞
µ̄0
n(A) = µ̄0(A) (5.4.57)

holds for any increasing and local event A. Using standard arguments (5.4.57) holds for all
local events. Therefore µ0 is a Gibbs measure. The proof for µ1 is the same up to a reverse of
inequalities. Finally, a limiting argument and the comparison of boundary conditions show that
µ̄0
p - µ̄ - µ̄

1
p for any Gibbs measure µ (see [98, Proposition 4.10]).
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Let us introduce the class of quasilocal speci�cations. A quasilocal function on a general state
space is a function X : FS → R that can be approximated arbitrarily well by local functions,
i.e.,

inf
Y local

sup
ω∈FS

|X(ω)− Y (ω)| = 0. (5.4.58)

A speci�cation γ is called quasilocal if γΛX is a quasilocal function for every local function X.
Quasilocality is a natural and useful condition for a speci�cation (see [92]). We will show that
the speci�cation γ̄E is quasilocal. This is direct consequence of the following result that shows
uniform convergence of γ̄Λwn

E to γ̄E . This result will be of independent use later.

Lemma 5.4.16. The speci�cations γ̄En and γ̄
ΛwN
En

satisfy

lim sup
N→∞

sup
κ,λ∈{1,q}E(Zd)

|γ̄En(κ, λ)− γ̄ΛwN
En

(κ, λ)| = 0. (5.4.59)

Proof. First, we claim that it is su�cient to show that

lim sup
N→∞

sup
κ∈{1,q}E(Zd)

sup
f∈En

|QZd
κ (f ∈ t)− Q

ΛwN
κ (f ∈ t)| = 0. (5.4.60)

Indeed, using (5.4.60) in (5.4.45) we obtain

lim sup
N→∞

sup
κ,λ∈{1,q}E(Zd)

κEc
n

=λEc
n

sup
f∈En

γ̄En(κ−f , λ)

γ̄En(κ+
f , λ)

/
γ̄

ΛwN
En

(κ−f , λ)

γ̄
ΛwN
En

(κ+
f , λ)

= 1. (5.4.61)

Since En is �nite this implies the claim.
It remains to prove (5.4.60). This is a consequence of the transfer current theorem (see

Theorem 4.1 in [29]) that states in the special case of the occupation property that for f =
{x, y} ∈ E(G)

QGκ (f ∈ t) = If (f) = κf (δx − δy)(∆G
κ )−1(δx − δy) (5.4.62)

where the expression If (f) denotes the current through the edge f when 1 unit of current is
induced respectively removed at the two ends of f . In the last step we used that If (f) can be
calculated by applying the inverse Laplacian to the sources to obtain the potential which can
be used to calculate the current through f . Now (5.4.60) follows from the display (5.4.62) and
Lemma 5.B.3.

Relation to extended gradient Gibbs measures In this paragraph we state the results
that relate the random conductance model to extended gradient Gibbs measure. This is �nally
the justi�cation to consider this model. The proofs of the results in this paragraph are deferred
to Section 5.A. The �rst Proposition establishes that the κ-marginal of extended gradient Gibbs
measures are Gibbs states for the random conductance model.

Proposition 5.4.17. Let µ̃ be an extended gradient Gibbs measure associated to a translation
invariant and ergodic gradient Gibbs measure µ with zero tilt. Then the κ-marginal µ̄ of µ̃ is a
Gibbs measure in the sense of de�nition 5.4.14.
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The second main result in this paragraph is a reverse of Proposition 5.4.17, namely that it is
possible to obtain an extended Gibbs measure with zero tilt for the potential Vp,q, given a Gibbs
measure µ̄ for the random conductance model with parameters p, q.

Proposition 5.4.18. Let µ̄ be a Gibbs measure in the sense of De�nition 5.4.14 for parameters
p and q and κ ∼ µ̄. Let ϕκ be the random �eld that for given κ is a Gaussian �eld with zero
average, ϕκ(0) = 0, and covariance (∆κ)−1, i.e., ϕκ satis�es for f : Zd → R with �nite support
and

∑
x f(x) = 0

Var ((f, ϕκ)Zd) = (f, (∆κ)−1f). (5.4.63)

Let µ̃ be the joint law of (κ,∇ϕκ). Then µ̃ is an extended Gibbs measure for the potential Vp,q
with zero tilt, in particular its η-marginal is a gradient Gibbs measure with zero tilt.

As a last result in this direction we state a very useful result from [33] that characterizes the
law of ϕ given κ for extended gradient Gibbs measures if ϕ is distributed according to a gradient
Gibbs measure.

Proposition 5.4.19. Let µ be a translation invariant, ergodic gradient Gibbs measure with zero
tilt and µ̃ the corresponding extended gradient Gibbs measure. Then the conditional law of ϕ
given κ is µ̃-almost surely Gaussian. It is determined by its expectation

E
(
ϕx | F

)
(κ) = 0 (5.4.64)

and the covariance given by (∆κ)−1, i.e., for f : Zd → R with �nite support and
∑

x f(x) = 0

Varµ̃ ((f, ϕ)Zd | F) (κ) = (f, (∆κ)−1f). (5.4.65)

Proof. This is Lemma 3.4 in [33].

In particular those results establish the following. Assume that µ is an ergodic zero tilt
gradient Gibbs measure. Let µ̄ be the κ-marginal of the corresponding extended gradient Gibbs
measure µ̃ (which by Proposition 5.4.17 is Gibbs for the random conductance model). We can
use Proposition 5.4.18 to construct an extended gradient Gibbs measure µ̃′. Using the de�nition
of µ̄′ in Proposition 5.4.18 and Proposition 5.4.19 we conclude that we get back the extended
gradient Gibbs measure we started from, i.e., µ̃ = µ̃′.

5.5 Further properties of the random conductance model

In this section we state and prove more results about the random conductance model con-
sidered in this work and use the results from the previous section to derive corresponding results
for the associated gradient interface model. We end this section with some conjectures and open
questions. We start by proving µ̄0

p = µ̄1
p for almost all values of p which will in particular implies

uniqueness of the Gibbs measure for those p.

Theorem 5.5.1. For every q ≥ 1 there are at most countably many p ∈ [0, 1] such that µ̄1
p 6= µ̄0

p.

Proof. It is a standard consequence of the invariance under lattice symmetries and µ̄0
p - µ̄

1
p that

µ̄1
p = µ̄0

p is equivalent to µ̄
1
p(κe = q) = µ̄0

p(κe = q) for one and therefore any e ∈ E(Zd) (see, e.g,
Proposition 4.6 in [98]). Lemma 5.5.3 below implies for e ∈ E(Zd)

µ̄0
p(κe = q) ≤ µ̄1

p(κe = q) ≤ µ̄0
p′(κe = q) (5.5.1)

for any p′ > p. In particular, we can conclude that µ̄0
p = µ̄1

p holds for all points of continuity of
the map p 7→ µ̄0

p(κe = q). Since this map is increasing by Lemma 5.4.9 it has only countably
many points of discontinuity.
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We are now in the position to prove Theorem 5.2.3.

Proof of Theorem 5.2.3. We note that a translation invariant zero tilt Gibbs measure exists for
any p and q, e.g., as a limit of torus Gibbs states (see the proof of Theorem 2.2 in [32]). It
remains to show uniqueness. Consider p such that µ̄1

p = µ̄0
p which is true for all but a countable

number of p ∈ [0, 1] by Theorem 5.5.1 above. Let µ1 and µ2 be ergodic zero tilt gradient Gibbs
measures for V = Vp,q. By Proposition 5.4.17 the corresponding κ-marginals µ̄1 and µ̄2 of the
extended Gibbs measures µ̃1 and µ̃2 are Gibbs measures in the sense of De�nition 5.4.14 and
therefore equal. Using Proposition 5.4.19 we conclude that since µ1 and µ2 are ergodic zero tilt
gradient Gibbs measures their laws are determined by µ̄1 and µ̄2, hence µ1 = µ2.

Remark 5.5.2. Similar arguments for this model appeared already in the proof of Theorem 2.4
in [32] where they use the convexity of the pressure to show that the number of q-bonds on the
torus is concentrated around its expectation in the thermodynamic limit. However, this is not
su�cient to conclude uniqueness.

The key ingredient in the proof of Theorem 5.5.1 is the following lemma that compares
µ̄1
p(κe = q) with µ̄0

p′(κe = q) for p < p′. Intuitively the reason for this result is that a change of
p is a bulk e�ect of order |Λ| while the e�ect of the boundary conditions is of order |∂Λ|.

Lemma 5.5.3. For any p < p′ we have

µ0
p′(κe = q) ≥ µ1

p(κe = q). (5.5.2)

Proof. The proof follows the proof of Theorem 1.12 in [77] for the random cluster model that
shows the analogous result for the random cluster model. The only di�erence is that the
comparison between free and wired boundary conditions is slightly less direct. We de�ne
a = µ̄0

p′(κe = q) and b = µ̄1
p(κe = q). Comparison between boundary condition implies

µ̄0
n,p′(κe = q) ≤ µ̄0

p′(κe = q) = a for any e ∈ En. Recall that h(κ) = |{e ∈ E(G) : κe = q}|
denotes the number of q-bonds and s(κ) similarly the number of 1-bonds. The de�nition of a
and b implies for 0 < ε < 1− a

µ̄0
n,p′(h(κ)) ≤ a|En| ⇒ µ̄0

n,p′(h(κ) ≤ (a+ ε)|En|) ≥ ε. (5.5.3)

Similarly for 0 < ε < b

µ̄1
n,p(h(κ)) ≥ b|En| ⇒ µ̄1

n,p(h(κ) ≥ (b− ε)|En|) ≥ ε. (5.5.4)

Our goal is to show that b − ε ≤ a + ε. We denote by ∆0 and ∆1 the graph Laplacian on
Λn with free and wired boundary conditions respectively. To compare the boundary conditions
we denote by T1 = ST(Λwn ) the set of wired spanning trees on Λn and by T0 = ST(Λn) the
set of spanning trees on Λn with free boundary conditions. There is a map Φ : T0 → T1 such
that Φ(t)�Λn−1 = t�Λn−1 . Indeed, removing all edges in En ⊂ En−1 from t we obtain an acyclic
subtree of Λwn , hence we can �nd a tree Φ(t) such that t�Λn−1 ⊂ Φ(t) ⊂ t. The observation
|t \ Φ(t)| = |∂Λn| − 1 implies that w(κ, t) ≤ w(κ,Φ(t))q|∂Λn|−1. Since Φ does not change the
edges in En−1 each tree t ∈ T1 has at most 2|En\En−1| preimages. We obtain that

|Λn|−1 det ∆0
κ =

∑
t∈T0

w(κ, t) ≤
∑
t∈T0

w(κ,Φ(t))q|∂Λn|−1 ≤ 2|En\En−1|q|∂Λn|
∑
t∈T1

w(κ, t)

= 2|En\En−1|q|∂Λn||Λwn |−1 det ∆1
κ.

(5.5.5)
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Similarly, there is an injective mapping Ψ : T1 → T0 such that t ⊂ Ψ(t). Indeed, we �x a tree tb
in the graph (Λn \ Λn−1,E(Λn \ Λn−1) and de�ne Ψ(t) = t ∪ tb ∈ T0. We get

|Λwn |−1 det ∆1
κ =

∑
t∈T1

w(κ, t) ≤
∑
t∈T1

w(κ,Ψ(t)) ≤
∑
t∈T0

w(κ, t) = |Λn|−1 det ∆0
κ. (5.5.6)

Inserting the bound |En\En−1| ≤ 2d|∂Λn| we infer from the de�nition (5.3.7) for any κ ∈ {1, q}En(
22dq

)−|∂Λn|/2
µ̄0
n,p(κ) ≤ µ̄1

n,p(κ) ≤
(

22dq
)|∂Λn|/2

µ̄0
n,p(κ). (5.5.7)

We de�ne the constant α = p′(1 − p)/(p(1 − p′)) > 1. Simple manipulation show that for any
function X : {1, q}En → R

µ̄0
Λn,p′(X) =

µ̄0
Λn,p

(αh(κ)X)

µ̄0
Λn,p

(αh(κ))
. (5.5.8)

Therefore we obtain

µ̄0
Λn,p′ (h(κ) ≤ (a+ ε)|En|) =

µ̄0
Λn,p

(αh(κ)1h(κ)≤(a+ε)|En|)

µ0
Λn,p

(αh(κ))

≤
µ̄0

Λn,p
(αh(κ)1h(κ)≤(a+ε)|En|)

µ̄0
Λn,p

(αh(κ)1h(κ)≥(b−ε)|En|)

≤ α(a+ε)|En|

(22dq)
−|∂Λn|/2 α(b−ε)|En|µ̄1

Λn,p
(h(κ) ≥ (b− ε)|En|)

.

(5.5.9)

From (5.5.3) and (5.5.4) we conclude

ε2 ≤
(

22dq
)|∂Λn|/2

α(a−b+2ε)|En| (5.5.10)

which implies a − b + 2ε ≥ 0 as n → ∞ since α > 1 and |En|/|∂Λn| → ∞. The lemma follows
as ε→ 0.

The next result is a non-uniqueness result for the random conductance model.

Theorem 5.5.4. In dimension d = 2 and for q > 1 su�ciently large there are two distinct Gibbs
measures µ̄1

psd
6= µ̄0

psd
at the self-dual point de�ned by equation (5.1.5).

The proof uses duality of the random conductance model and can be found in Section 5.6.
This result easily implies Theorem 5.2.4.

Proof of Theorem 5.2.4. Using Proposition 5.4.18 we infer from Theorem 5.5.4 the existence of
two translation invariant extended gradient Gibbs measures µ̃0 and µ̃1 constructed from µ̄0

psd
6=

µ̄1
psd

. Their η-marginals µ0 and µ1 are not equal since then the κ-marginals µ̄1 and µ̄2 would
agree. They both have zero tilt by Proposition 5.4.18 and the de�nition of µ̃ shows that µ̃ is
translation invariant if µ̄ is translation invariant.

Remark 5.5.5. A proof similar to Lemma 3.2 in [33] shows that ergodicity of µ̄1 and µ̄2 implies
that µ0 and µ1 are itself ergodic. The only di�erence is that η given κ is not independent (which
κ given η is). Instead one has to rely on the decay of correlations for Gaussian �elds stated in
Appendix 5.B.
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Theorem 5.5.6. For d ≥ 4 there is q0 > 1 such that for p ∈ [0, 1] and q ∈ [1, q0) the Gibbs
measure for the random conductance model is unique. Similarly, for d ≥ 4 and q ≥ 1 there is a
p0 = p0(q, d) > 0 such that the Gibbs measure is unique for p ∈ [0, p0) ∪ (1− p0, 1].

Proof. We are going to apply Dobrushin's criterion (see, e.g., [92, Theorem (8.7)]. The necessary
estimate is basically a re�ned version of the proof of Lemma 5.4.6. Fix two edges f, g ∈ E(Zd).
Recall the notation λ±± = λ±±fg and λ± = λ±f introduced above Theorem 5.4.2. We will write
γ̄f = γ̄{f} in the following. Note that (5.4.45) and γ̄f (λ+, λ) + γ̄f (λ−, λ) = 1 imply that

γ̄f (λ+, λ) =
γ̄f (λ+, λ)

γ̄f (λ+, λ) + γ̄f (λ−, λ)
=

p

p+ (1− p)
√

1 + (q − 1)Qλ−(f ∈ t)
(5.5.11)

We need to bound the entries of the Dobrushin matrix given by

Cfg = sup
λ∈{1,q}E(Zd)

|γ̄f (λ++
fg , λ

++
fg )− γ̄f (λ+−

fg , λ
+−
fg )|

= sup
λ∈{1,q}E(Zd)

∣∣∣∣∣ p

p+ (1− p)
√

1 + (q − 1)Qλ−+(f ∈ t)
− p

p+ (1− p)
√

1 + (q − 1)Qλ−−(f ∈ t)

∣∣∣∣∣ .
(5.5.12)

Since the derivative of the map x 7→ p/(p + (1 − p)
√
x) is bounded by p(1 − p) for x ≥ 1 we

conclude that

sup
λ∈{1,q}E(Zd)

|γ̄f (λ++, λ++)− γ̄f (λ+−, λ+−)| ≤ p(1− p)(q − 1) |Qλ−+(f ∈ t)− Qλ−−(f ∈ t)| .

(5.5.13)

We can express Qλ−+(f ∈ t) through the measure Qλ−− as follows

Qλ−+(f ∈ t) =
Qλ−−(f ∈ t, g /∈ t) + qQλ−−(f ∈ t, g ∈ t)

qQλ−−(g ∈ t) + Qλ−−(g /∈ t)
. (5.5.14)

A sequence of manipulations then shows that

Qλ−+(f ∈ t)− Qλ−−(f ∈ t) =
(q − 1)

(
Qλ−−(f ∈ t, g ∈ t)− Qλ−−(f ∈ t)Qλ−−(g ∈ t)

)
qQλ−−(g ∈ t) + Qλ−−(g /∈ t)

. (5.5.15)

The numerator can be rewritten using the transfer-current Theorem for two edges (see [29, Page
10] and equation below 4.3 in [123])

Qλ−−(f ∈ t, g ∈ t)− Qλ−−(f ∈ t)Qλ−−(g ∈ t) = −Iλ−−f (g)Iλ
−−

g (f). (5.5.16)

where Iκf (g) denotes the current through g in a resistor network with conductances κ when 1
unit of current is inserted (respectively removed) at the ends of f (using a �xed orientation of
the edges here, e.g., lexicographic). All together we have shown that

Cfg ≤ sup
κ∈{1,q}E(Zd)

p(1− p)(q − 1)2Iκf (g)Iκg (f). (5.5.17)

Using electrical network theory we can express for f = (x, x+ ei) and g = (y, y + ej)

Iκf (g) = κg
(
δy+ei − δy, (∆κ)−1(δx+ei − δx)

)
Zd = κg∇x,i∇y,jGκ(y, x) (5.5.18)
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where Gκ denotes the inverse of the operator ∆κ which exists in dimension d ≥ 3 and whose
derivative exists in dimension d ≥ 2. Combining the bound (5.B.6) in Lemma 5.B.2, (5.5.17),
and (5.5.18) we conclude for f ∈ E(Zd) that∑

g∈E(Zd)

Cfg ≤ C(q, d)p(1− p)(q − 1)2
∑
x∈Zd

(1 + |x|)2(2−d−2α). (5.5.19)

In dimension d ≥ 4 the sum is �nite. Now, for �xed q, the sum becomes smaller 1 for p
su�ciently close to 0 or 1. Therefore there is p0 = p0(q, d) such that the Gibbs measure is
unique for p ∈ [0, p0) ∪ (1 − p0, 1]. On the other hand, the constant C(q, d) from Lemma 5.B.1
is decreasing in q. Therefore we can estimate for all p ∈ [0, 1] and q ≤ 2∑

g∈E(Zd)

Cfg ≤
C(2, d)

4
(q − 1)2

∑
x∈Zd

(1 + |x|)2(2−d−2α). (5.5.20)

Hence the Dobrushin criterion is satis�ed for q su�ciently close to 1 and all p ∈ [0, 1].

Remark 5.5.7. 1. Note that the gradient-gradient correlations in gradient models at best only
decay critically with |x|−d (which is the decay rate for the discrete Gaussian free �eld). In
particular, the sum of the covariance

∑
g∈E(Zd)Cov(ηf , ηg) diverges in this type of model.

We use crucially in the previous theorem that the decay of correlations is better for the
discrete model: They decay with the square of the gradient-gradient correlations.

2. The averaged (annealed) second order derivative of the Greens functions decays with the
optimal decay rate |x|−d as shown in [67]. For the application of the Dobrushin criterion
we, however need deterministic bounds which are weaker.

3. To extend the uniqueness result to d = 3 and d = 2 and q close to 1 one would need estimates
for the optimal Hölder exponent α depending on the ellipticity contrast of discrete elliptic
operators. Here the ellipticity contrast can be bounded by q. There do not seem to be any
results in this direction in the discrete setting. In the continuum setting the problem is open
in for d ≥ 3, but has been solved for d = 2 in the continuum where α→ 1 as the ellipticity
contrast converges to 1 [131].

Note that we can again lift the uniqueness result for the Gibbs measure of the random
conductance model to a uniqueness result for the ergodic gradient Gibbs measures with zero tilt.

Proof of Theorem 5.2.5. The proof follows from the uniqueness of the Gibbs measure proven in
Theorem 5.5.6 in the same way as the proof of Theorem 5.2.3.

Open questions Let us end this section by stating one further result and two conjectures
regarding the phase transitions of this model. They are most easily expressed in terms of per-
colation properties of the model even though the interpretation as open and closed bonds is
somehow misleading in this context. We write x ↔ y for x, y ∈ Zd and κ if there is a path of
q-bonds in κ connecting x and y and similarly for sets. Observe that the results of [78] can be
applied to the model introduced here and we obtain the existence of a sharp phase transition.

Theorem 5.5.8. For every q the model undergoes a sharp phase transition in p, i.e., there is
pc(q, d) such that the following two properties hold. On the one hand there is a constant c1 > 0
such that for p > pc su�ciently close to pc

µ̄1(0↔∞) ≥ c1(p− pc). (5.5.21)
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On the other hand, for p < pc there is a constant cp such that

µ̄1
n(0↔ ∂Λn) ≤ e−cpn. (5.5.22)

Proof. The proof of Theorem 1.2 in [78] for the random cluster model applies to this model.
Indeed, it only relies on µ1

n,p being strongly positively associated and a certain relation for the p
derivative of events stated in Theorem 3.12 in [98] which is still true since the p-dependence is
the same as for the random cluster model.

Remark 5.5.9. For d = 2 the self dual point de�ned in (5.1.5) and the critical point agree:
pc = psd. This can be seen based on Theorem 1.5 and the arguments used in the proof of Theorem
1.4 in [78] for the random cluster model .

In the random cluster model the most interesting phenomena happen for p = pc and the
subcritical and supercritical phase are much simpler to understand (in particular in d = 2). Due
to the di�erences explained in Remark 5.3.2 those questions seem to be harder for our random
conductance model. Nevertheless we conjecture the following stronger version of Theorem 5.5.1
and Theorem 5.5.6

Conjecture 5.5.10. For p 6= pc there is a unique Gibbs measure.

Note that the sharpness result Theorem 5.5.8 shows that the probability of subcritical q-
clusters to be large is exponentially small. Nevertheless it is not clear how this can be used to
show uniqueness of the Gibbs measure in our setting. The behaviour at pc is also very interesting.
A phase transition is called continuous if µ1

pc(0↔∞) = 0 and otherwise it is discontinuous. In
the random cluster model the uniqueness of the Gibbs measure at pc is equivalent to a continuous
phase transition. We do not know whether the same is true for the random conductance model
considered here. We state a second conjecture about the nature of the phase transition in terms
of Gibbs measures.

Conjecture 5.5.11. There is a q0 such that for q > q0 there is non-uniqueness of Gibbs measures
µ̄1
pc,q 6= µ̄0

pc,q at the critical point while for q < q0 the Gibbs measures agree µ̄1
pc,q = µ̄0

pc,q.

A partial result in the direction of this conjecture is Theorem 5.5.4 that states non-uniqueness
for large q in dimension d = 2 and Theorem 5.5.6 that shows uniqueness for q close to 1 and
d ≥ 4.

5.6 Duality and coexistence of Gibbs measures

In this section we are going to prove that µ0
psd
6= µ1

psd
for large q which implies the non-

uniqueness of gradient Gibbs measures stated in Theorem 5.2.4. This is a new proof for the
result in [32]. They consider conductances q1, q2 with q1q2 = 1 which makes the presentation
slightly more symmetric.

In contrast to their work we do not rely on re�ection positivity but instead we exploit the
planar duality that is already used in [32] to �nd the location of the phase transition. Therefore
it is not possible to extend the argument given here to d ≥ 3 while the proof using re�ection
positivity is in principle independent of the dimension (see also Section 5.7). In addition to
planar duality we rely on the properties proved in Section 5.4, in particular on the Kirchho�
formula. Similar arguments were developed in the context of the random cluster model and we
refer to [98, Section 6 and 7].

We proceed now by stating the duality property in our setting. For a planar graph G = (V,E)
we denote its dual graph by G∗ = (V ∗, E∗). The dual graph has the faces of G as vertices and
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the vertices of G as faces and each edge has a corresponding dual edge. For a formal de�nition
of the dual of a graph and the necessary background we refer to the literature, e.g., [144].

For any con�guration κ : E → {1, q} we de�ne its dual con�guration κ∗ ∈ {1, q}E∗ by
κ∗e∗ = 1 + q − κe where e∗ ∈ E∗ denotes the dual edge of an edge e ∈ E. More generally we
denote for E1 ⊂ E by E∗1 = {e∗ : e ∈ E1} the dual edges of the edges E1. We also introduce the
notation Ed

1 = {e∗ ∈ E∗ : e /∈ E1} = (Ec
1)∗ for E1 ⊂ E for the dual set of an edge subset. Note

that E1 is acyclic if and only if Ed
1 is spanning, i.e., every two points x∗, y∗ ∈ V ∗ are connected

by a path in Ed
1 . In particular, t ⊂ E is a spanning tree in G if and only if td is a spanning tree

in G∗ and the map t 7→ td is an involution and in particular bijective from ST(G) to ST(G∗).
Recall that h(κ, t) = |{e ∈ t : κe = q}| denotes the number of q-bonds in the set t ⊂ E(G) of

κ and the similar de�nition of s(κ, t) for the number of soft 1-bonds in t. The de�nitions imply
that

h(κ) = s(κ∗), s(κ) = h(κ∗), (5.6.1)

h(κ, t) = s(κ∗)− s(κ∗, td), s(κ, t) = h(κ∗)− h(κ∗, td). (5.6.2)

The last two identities follow from the observation that s(κ∗, td) = h(κ,E \ t) and similarly for
s and h interchanged. We calculate the distribution of κ∗ if κ is distributed according to PG,p

P(κ∗) = P(κ) ∝ ph(κ)(1− p)s(κ)√∑
t∈ST(G) q

h(κ,t)
=

ps(κ
∗)(1− p)h(κ∗)√∑

td∈ST(G∗) q
s(κ∗)−s(κ∗,td)

=

(
p√
q

)s(κ∗)
(1− p)h(κ∗)√∑

td∈ST(G∗) q
h(κ∗,td)−|td|

.

(5.6.3)

This implies that if κ is distributed according to PG,p the dual con�guration κ∗ is distributed
according to PG

∗,p∗ where q∗ = q and

p∗

1− p∗
=

(1− p)
p/
√
q
. (5.6.4)

Note that the self dual point psd de�ned by p∗sd = psd is given by the solution of

p4

(1− p)4
= q. (5.6.5)

We will now restrict our attention to Z2. Let us mention that detailed proofs of the topological
statements we use can be found in [112].

We can identify the dual of the graph (Z2,E(Z2)), which will be denoted by ((Z2)∗,E(Z2)∗),
with Z2 shifted by the vector w = (1

2 ,
1
2). We also consider the set of directed bonds ~E(Z2) and

~E(Z2)∗. For a directed bond ~e = (x, y) ∈ E(Z2) we de�ne its dual bond as the directed bond
~e∗ = (1

2(x + y + (x − y)⊥), 1
2(x + y + (y − x)⊥) where ⊥ denotes counter-clockwise rotation by

90◦, i.e., the linear map that satis�es e⊥1 = e2, e⊥2 = −e1. In other words, the dual of a directed
bond ~e is the bond whose orientation is rotated by 90◦ counter-clockwise and crosses ~e.

Every point x ∈ Z2 determines a plaquette with corners z1, z2, z3, z4 ∈ (Z2)∗ where zi are the
four nearest neighbours of x in (Z2)∗ and the plaquette has faces e∗1, e

∗
2, e
∗
3, e
∗
4 ∈ E(Z2)∗ where e∗i

are the dual bonds of the four bonds ei that are incident to x. Vice versa every point z ∈ (Z2)∗

determines a plaquette in Z2. We write P(Z2) for the set of plaquettes of Z2.
For a bond e = {x, y} we de�ne the shifted dual bond e + w = {x + w, y + w}. Similarly,

we de�ne E + w = {e+ w ∈ E(Z2)∗ : e ∈ E} for a set E ⊂ E(Z2). For a subgraph G ⊂ Z2 we
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Figure 5.1: Examples of q-contours. In the second example there are two nested q-contours.
Curly bonds indicate soft bonds with κe = 1 and straight bonds indicate hard bonds with
κe = q. In red the dual bonds of the contours are shown. The horizontal curly bond in the top
middle connects two point in int γ.

denote by P(G) = {P ∈ P(Z2) : all faces of P are in E(G)} the plaquettes of G. A subgraph
G ⊂ Z2 is called simply connected if the union of all vertices v ∈ V(G), all edges {x, y} ∈ E(G)
which are identi�ed with the line segment from x to y in R2 and all plaquettes P(G) is a simply
connected subset of R2.

An important tool in the analysis of planar models from statistical mechanics is the use of
contours. Let us provide a notion of contours that is useful for our purposes. Our de�nition
is slightly more complicated than the de�nition of contours for the random cluster model. We
consider closed paths γ = (x∗1, . . . , x

∗
n, x
∗
1) with x∗i ∈ (Z2)∗ (not necessarily all distinct) along

pairwise distinct directed dual bonds ~b∗1 = (x∗1, x
∗
2), . . . ,~b∗n = (x∗n, x

∗
1). We denote the vertices in

the contour by V(γ)∗ = {x∗i : 1 ≤ i ≤ n} and the bonds by ~E(γ)∗ = {~b∗i : 1 ≤ i ≤ n}. Similarly
we write ~E(γ) = {~bi : 1 ≤ i ≤ n} for the corresponding primal bonds. We also consider the
underlying sets of undirected bonds E(γ) and E(γ)∗. Finally, we denote the heads and tails of
~bi by yi and zi, i.e., ~bi = (zi, yi).

De�nition 5.6.1. A contour γ is a closed path in the dual lattice without self-crossings in the
sense that there is a bounded connected component int(γ) of the graph (Z2,E(Z2) \ E(γ)) such
that ∂(int(γ)) = {zi : 1 ≤ i ≤ n}. We denote the union of the remaining connected components
by ext(γ) and we de�ne the length |γ| of the contour as the number of (directed) bonds it contains,
i.e., |γ| = |~E(γ)| = n.

Note that ext(γ) is not necessarily connected and that {x, y} ∈ E(γ) if x ∈ int(γ) and
y ∈ ext(γ) (see Figure 5.1).

Contours are a suitable notion to de�ne interfaces between hard and soft bonds.

De�nition 5.6.2. A contour γ is a q-contour for κ if the following two conditions hold. First,
the primal bonds b ∈ E(γ) are soft, i.e., κb = 1. Moreover, for every plaquette with center
x∗ ∈ V(γ)∗ all its faces b such that b ∈ E(int(γ)) are hard, i.e., satisfy κb = q.

Our goal is to show that q-contours are unlikely for large values of q and p ≤ psd. We now
�x a contour γ and introduce some useful notation and helpful observations for the proof of the
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following theorem. We use the shorthand Gi = int(γ) and Ei = E(int(γ)). We observe that Gi
is simply connected because γ is connected and without self-crossings. Therefore the faces of
Gi consist of plaquettes in Z2 and one in�nite face. We also consider the graph G with edges
E = Ei∪E(γ) and endpoints of edges as vertices. Let 1̄ ∈ {1, q}E denote the con�guration given
by 1̄e = 1 for all e ∈ E. We write Gw = G/∂G = G/ext(γ) for the graph G with wired boundary
conditions. Moreover we introduce the graph H∗ with edges E∗i and their endpoints as vertices.
We claim that H∗/∂H∗ agrees with the graph theoretic dual of Gi. To show this we need to
prove that we identify all vertices that lie in the same face of Gi. First we note that every point
in

◦
H∗ = H∗ \ ∂H∗ determines a plaquette in P(Gi) and this is a bijection. Then it remains to

show that all vertices in ∂H∗ lie in the in�nite face of Gi. This follows from the observation

∂H∗ = V(γ)∗ ∩V(H∗). (5.6.6)

To show the observation we note that if x∗ ∈ ∂H∗ then there are edges e∗1 /∈ E(H∗) and
e∗2 ∈ E(H∗) incident to x∗. This implies that there is a face e′ = {z1, z2} of the plaquette with
center x∗ such that z1 ∈ V(Gi) but e′ /∈ E(Gi). Then e ∈ E(γ) and therefore x∗ ∈ V(γ)∗

because x∗ is an endpoint of e∗ ∈ E(γ)∗. This ends the proof of the inclusion '⊂'. Now we note
that if x∗ ∈ V(H∗)∩V(γ)∗ there is an edge e∗ ∈ E(γ)∗ incident to x∗ which is not contained in
E(H∗) and therefore x∗ ∈ ∂H∗.

Finally we remark that if γ is a q-contour for κ then

κ∗e∗ = 1 + q − κe = 1 if e∗ ∈ E(H∗) is incident to ∂H∗. (5.6.7)

Indeed, we argued above that if e∗ ∈ E(H∗) is incident to ∂H∗ then x∗ ∈ V(γ)∗. Thus e ∈ Ei
is a face of the plaquette with center x∗ so that the de�nition of q-contours implies that κe = q.

Theorem 5.6.3. Let γ be a contour. The probability that γ is a q-contour under the measure
PG

w,Ei,1̄ for p = psd is bounded by

PG
w,Ei,1̄(γ is a q-contour) ≤

(
4

q
1
8

)|γ|
q

1
2 . (5.6.8)

Remark 5.6.4. The general idea of the proof is the same as when proving similar estimates for
the Ising model. One tries to �nd a map from con�gurations where the contour is present to
con�gurations where this is not the case and then estimates the corresponding probabilities. The
more similar argument for the random cluster model can be found, e.g., in Theorem 6.35 in [98].
For an illustrated version see [77].

Proof. We denote the set of all κ ∈ {1, q}E such that γ is a q-contour for κ by Ωγ .
Step 1. We de�ne a map Φ : Ωγ → {1, q}E with Φ(κ) = κ# as follows. Recall the de�nition

of the dual con�guration κ∗ on E∗ ⊂ E(Z2)∗ and de�ne for e ∈ E

κ#
e =

{
κ∗e−w if e− w ∈ Ei∗,
1 otherwise.

(5.6.9)

We claim that

κ#
e = 1 if e ∈ E \ Ei. (5.6.10)

By de�nition of κ#, we only need to consider the case e − w ∈ Ei
∗ = E(H∗). We will show

a slightly more general statement. Let us introduce the set Ẽ = E(H∗) + w = E∗i + w ⊂ E
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Figure 5.2: (left) The dashed line indicates a q-contour for the depicted con�guration. In red the
dual con�guration on E∗ for the edges E is shown. (right) The con�guration κ# for κ depicted
on the left. The blue edges are the shifted dual edges forming the set Ẽ.

Figure 5.3: (left) An example of a wired tree t# for κ#. (center) The subtree t̃. (right) The
shifted tree t̃− w and the dual tree Ψ(t#).

and the graph G̃ consisting of the edges Ẽ and their endpoints as vertices. See Figure 5.2 for
an illustration of this construction. We remark that G̃ agrees with H∗ shifted by w, which we
denote by G̃ = H∗ + w. Equation (5.6.7) implies that

κ#
e = κ∗e−w = 1 for e ∈ G̃ incident to ∂G̃ (5.6.11)

because then e−w ∈ E(H∗) is incident to ∂H∗. It remains to show that all edges e ∈ E ∩ Ẽ \Ei
are incident to ∂G̃. From e ∈ E \Ei we conclude that e ∈ E(γ). The edge e−w has a common
endpoint with e∗ ∈ E(γ)∗ and is therefore incident to V(γ)∗ in this case. Using the observation
(5.6.6) this implies that e− w ∈ E(H∗) is incident to ∂H∗.

Our goal is to compare the probabilities of PG
w,Ei,1̄(κEi) and PG

w,Ei,1̄(κ#
Ei

). To achieve this
we use a strategy similar to the proof of Lemma 5.5.3.

Step 2. We de�ne a map Ψ : ST(Gw)→ ST(Gw) with Ψ(t#) = t in the following steps

1. We choose deterministically a subset t̃ ⊂ t#�Ẽ such that t̃ is a spanning tree on G̃/∂G̃ and
all edges in t#�Ẽ \ t̃ are incident to ∂G̃.

2. We set Ψ(t#)�Ei = {e ∈ Ei : e∗ /∈ t̃− w} = (t̃− w)d (as a subset of E∗i ).

3. We consider a �xed b ∈ E(γ) that is incident to int(γ) and ext(γ) and we de�ne t =
Ψ(t#) = Ψ(t#)�Ei ∪ b
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See Figure 5.3 for an illustration of the construction. We have to show that this construction is
possible, in particular that t ∈ ST(Gw).

We start with the �rst step. The relation G̃ ⊂ G implies

∂G ∩ G̃ ⊂ ∂G̃. (5.6.12)

Hence G̃/∂G̃ agrees with (G/∂G)/(G̃
c∪∂G̃) up to self loops. This implies that t#�Ẽ is spanning

in G̃/∂G̃ if t# ∈ ST(Gw). We consider the subset t′ ⊂ t#�Ẽ consisting of all edges e ∈ t#�Ẽ that
are not incident to ∂G̃. The set t′ contains no cycles because t# ∈ ST(Gw) and no edge in t′ is
incident to ∂G by (5.6.12). Therefore we can select a spanning tree t̃ in G̃/∂G̃ with t′ ⊂ t̃ ⊂ t#�Ẽ
deterministically, e.g., using Kruskal's algorithm.

We now argue that the second and third step yield a spanning tree in Gw. Clearly it is
su�cient to show that Ψ(t#)�Ei ∈ ST(Gi). We note that the relation between G̃ and H∗ implies
that t̃ − w is a spanning tree on H∗/∂H∗. As shown before the theorem H∗/∂H∗ agrees with
the dual of Gi and thus (t̃− w)d ∈ ST(Gi).

Step 3. The next step is to consider κ# = Φ(κ) and t = Ψ(t#) and compare the weights
w(κ#, t#) and w(κ, t). First we argue that

w(κ#, t#) = w(κ#, t̃). (5.6.13)

Since t̃ ⊂ t# it is su�cient to show that t# \ t̃ contains only edges e such that κ#
e = 1. Indeed,

let e be an edge in t# \ t̃. For e /∈ Ẽ we have κ#
e = 1 by de�nition. Let us now consider

e ∈ Ẽ ∩ (t# \ t̃). (5.6.14)

By construction of t̃ the edge e is incident to a vertex v ∈ ∂G̃. This implies that e−w ∈ E(H∗)
is incident to v − w ∈ ∂H∗ ⊂ V(γ)∗. Using (5.6.7) we conclude that

κ#
e = κ∗e−w = 1. (5.6.15)

For the trees t̃ and Ψ(t#)�E we can apply the usual duality relations stated before. Using
(5.6.2) and as before κ# = Φ(κ) and t = Ψ(t#) we obtain

h(κ#, t#) = h(κ#, t̃) = h(κ∗, t̃− w) = s(κ,Ei)− s(κ,Ei ∩ t). (5.6.16)

We compute

w(κ#, t#)

w(κ, t)
=
qh(κ#,t#)

qh(κ,t)
= qs(κ,Ei)−s(κ,t∩Ei)−h(κ,t∩Ei) = qs(κ,Ei)−|t∩Ei| = qs(κ,Ei)−|V(Gi)|+1.

(5.6.17)

In the last step we used that t ∩ Ei is a free spanning tree on Gi and therefore has |V(Gi)| − 1
edges.

Step 4. We bound the number of preimages of a tree t under Ψ. Note that Ψ factorizes into
two maps t# → t̃ → t. The second map is injective since we only pass to the dual tree which
is an injective map and we add one additional edge. For the �rst map we observe that we only
delete edges e incident to ∂G̃. However, for x ∈ ∂G̃ the point x − w ∈ ∂H∗ is contained in the
contour by (5.6.6). Therefore there are at most 4|γ| such edges. We conclude that

|{t# ∈ ST(Gw) : Ψ(t#) = t}| ≤ 24|γ| (5.6.18)
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for every t ∈ ST(Gw). The displays (5.6.17) and (5.6.18) imply∑
t#∈ST(Gw)

w(κ#, t#) ≤
∑

t#∈ST(Gw)

w(κ,Ψ(t#))qs(κ,Ei)−|V(Gi)|+1 ≤ qs(κ,Ei)−|V(Gi)|+124|γ|
∑

t∈ST(Gw)

w(κ, t).

(5.6.19)

Step 5. We can now estimate the probabilities of the patterns κ and κ# = Ψ(κ) under
PG

w,Ei,1̄ using (5.6.19) and κ#
e = 1 = 1̄e for e ∈ E \ Ei

PG
w,Ei,1̄

psd (κEi)

PG
w,Ei,1̄

psd (κ#
Ei

)
=

PG
w

psd
(κ)

PGwpsd
(κ#)

=
p
h(κ,Ei)
sd (1− psd)s(κ,Ei)

p
h(κ#,Ei)
sd (1− psd)s(κ#,Ei)

√√√√∑t#∈ST(Gw)w(κ#, t#)∑
t∈ST(Gw)w(κ, t)

≤

(
psd

1−psd

)h(κ,Ei)

(
psd

1−psd

)h(κ#,Ei)
q
s(κ,Ei)−|V(Gi)|+1

2 22|γ| = 22|γ|q
1
4

(h(κ,Ei)−h(κ#,Ei))q
s(κ,Ei)−|V(G)|+1

2

(5.6.20)

where we used equation (5.6.5) of psd in the last step. The de�nition of κ# implies that
h(κ#, Ei) = h(κ#, Ẽ) = s(κ,Ei) and we get

PG
w,Ei,1̄(κEi)

PGw,Ei,1̄(κ#
Ei

)
≤ 22|γ|q

1
4

(h(κ,Ei)+s(κ,Ei)−2|V(Gi)|+2) = 22|γ|q
1
4

(|Ei|−2|V(Gi)|+2) (5.6.21)

Now we observe that 4|V(Gi)| − 2|E(Gi)| = |~E(γ)}| = |γ|. We end up with the estimate

PG
w,Ei,1̄(κEi)

PGw,Ei,1̄(κ#
Ei

)
≤ 22|γ|q−

1
8
|γ|q

1
2 =

(
4q−

1
8

)|γ|
q

1
2 . (5.6.22)

Conclusion. Note that the map Φ is injective, hence

PG
w,Ei,1̄(γ is a q-contour) ≤

∑
κ∈Ωγ

PG
w,Ei,1̄(κEi)∑

κ∈Ωγ
PGw,Ei,1̄(Φ(κ)Ei)

≤
(

4q−
1
8

)|γ|
q

1
2 . (5.6.23)

Using correlation inequalities we can derive the following stronger version of the previous
theorem. For a simply connected subgraph H ⊂ Z2 we say that γ is contained in H if all faces
of plaquettes with center x∗ for x∗ ∈ V(γ)∗ are contained in E(H).

Corollary 5.6.5. For any p ≤ psd, any simply connected subgraph H ⊂ Z2, and a contour γ
that is contained in H the probability that γ is a q-contour can be estimated by

PHp (γ is a q-contour) ≤
(

4q−
1
8

)|γ|
q

1
2 . (5.6.24)

Proof. We estimate

PHp (γ is a q-contour) = PHp (γ is a q-contour, κb = 1 for b ∈ E(γ) )

≤ PHp (γ is a q-contour | κb = 1 for b ∈ E(γ) )

= PH,E(H)\E(γ),1̄
p (γ is q-contour).

(5.6.25)
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For the measure PH,E(H)\V(γ),1̄ the bonds crossing the contour are �xed to the correct value.
Hence the event that γ is a q-contour for κ is increasing under this event, such that the stochastic
domination results proved in Lemma 5.4.9 and Corollary 5.4.12 imply that

PH,E(H)\V(γ),1̄
p (γ is a q-contour) ≤ PG

w,E(G),1̄
psd

(γ is q-contour) (5.6.26)

where G denotes the graph corresponding to γ as introduced above Theorem 5.6.3. Theorem
5.6.3 implies the claim.

We can now give a new proof for the coexistence result stated in Theorem 5.2.4.

Proof of Theorem 5.5.4. First we note that the duality between free and wired boundary con-
ditions in �nite volume implies that µ0

psd
and µ1

psd
are dual to each other in the sense that if

κ ∼ µ0
psd

then κ∗ ∼ µ1
psd

(on (Z2)∗)). The proof is the same as for the random cluster model, see,
e.g., [98, Chapter 6]. Hence, it is su�cient to show that µ0

psd
(κe = q) < 1/2 because then we can

conclude that

µ̄1
psd

(κe = q) = µ̄0
psd

(κe = 1) > 1/2 (5.6.27)

whence µ̄1
psd
6= µ̄0

psd
.

Note that if κe = q and there is any contour γ such that e ∈ E(int(γ)) and κb = 1 for
b ∈ E(γ) then there is a q-contour surrounding e. We can thus estimate for e ∈ En

PΛn+1,En,1̄(κe = q) ≤ PΛn+1,En,1̄(there is a q-contour around e) (5.6.28)

where as before 1̄e = 1 for all e. The shortest contour γ that surrounds the edge e has length
6 so the bound in Corollary 5.6.5 implies that PΛn+1,En,1̄(γ is a q-contour) ≤ C/q

1
4 for any

γ surrounding e. Using Corollary 5.4.12 we can compare boundary conditions to obtain the
relation µ̄0

n - PΛn+1,En,1̄. This and a standard Peierls argument imply for q su�ciently large

µ̄0
n,psd

(κe = q) ≤ PΛn+1,En,1̄(κe = q) ≤ C

q
1
4

≤ 1

4
. (5.6.29)

Taking the limit n→∞ we obtain µ̄0
psd

(κe = q) ≤ 1
4 .

5.7 Further directions

In this section we give a brief overview about some further open questions and possible
directions that might be of interested.

Spin wave calculation. The most important technical ingredient in the proof of the phase
transition in [32] are spin wave calculations for the partition functions of certain periodic con-
�gurations (see Section 3.2 and Theorem 3.3 there). Here we show how the Kirchho� formula
(5.4.4) for the determinant of the graph Laplacian can be used to simplify those calculations
substantially and we sketch how this makes the spin wave calculations in higher dimensions feas-
ible. This basically extends the proof of the phase transition to dimension d ≥ 3 but a detailed
account of the Peierls argument and a proof of re�ection positivity would still require some work.
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Figure 5.4: A small part of the pattern κm.

Let TL = (Z/(LZ))d with L even denote the d-dimensional torus with side-length L. For
κ ∈ {1, q}E(TL) we introduce the free energy

FL(κ) = −L−d ln

(
ph(κ)(1− p)s(κ)

(2π)
1
2

(Ld−1)

ˆ
e−

1
2

(ϕ,∆̃κϕ)λ(dϕ)

)
(5.7.1)

where λ denotes the Lebesgue measure on RTL with one point pinned to 0. Using (5.3.6), (5.4.4),
and Gaussian calculus we obtain

FL(κ) = −L−d
(
h(κ) ln(p) + s(κ) ln(1− p)− 1

2 ln
( ∑
t∈ST(TL)

w(κ, t)
))

(5.7.2)

The key result of the spin wave calculations in [32] is that for large q the free energy of one of
the homogeneous patterns is much lower than of certain mixed periodic pattern uniformly in
p ∈ [0, 1]. Those mixed periodic patterns are obtained by considering any con�guration on the
edges of the unit cube Qd = {0, 1}d and then we extend this con�guration by repeated re�ection
along planes given by {x ∈ Rd : ei · x = n} for some n ∈ Z and 1 ≤ i ≤ d. Since we assumed
that L is even this de�nes a con�guration in {1, q}E(TL).

To clarify the setting we consider a concrete example in dimension d = 2. We consider the
patterns κ1 with κ1

e = 1 for every edge, κq with κqe = q for every edge and the mixed pattern
κm sketched in Figure 5.4 which can be formally de�ned by κe = 1 i� and only if one of the
endpoints of e has two even coordinates (this is well de�ned for L even). Since the number of
trees on TL is clearly bounded by 22L2

we obtain

FL(κq) ≤ −2 ln(p) +
L2 − 1

2L2
ln(q) + ln(2),

FL(κ1) ≤ −2 ln(1− p) + ln(2).

(5.7.3)

To estimate the free energy of κm from below we construct a tree by choosing a spanning forest
on the subgraph induced by the q-edges which can then be extended to a tree on TL. For κm

this construction yields a tree t containing 3
4L

2 − 1 edges e ∈ t with κe = q. Hence,

FL(κm) ≥ − ln(p)− ln(1− p) +
3
4L

2 − 1

2L2
ln(q). (5.7.4)

Together these estimates imply

FL(κm)−min(FL(κ1), FL(κq)) ≥ FL(κm)− 1

2
(FL(κ1) + FL(κq)) ≥ 1

8
ln(q)− ln(q)

4L2
− ln(2).

(5.7.5)
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In the thermodynamic limit the middle term vanishes and we see that as q becomes large there is
an increasing energy gap between the free energy of the inhomogeneous pattern compared to the
free energy of the optimal homogeneous pattern uniformly in p. This is the result of Theorem 3.3
in [32] for the pattern κm.

Let us sketch how to extend the result to a general pattern κm with periodic structure as
described above. The generalisation of the free energies of the homogeneous patterns to d ≥ 2 is
straightforward

FL(κq) ≤ −d ln(p) +
Ld − 1

2Ld
ln(q) +

d ln(2)

2
,

FL(κ1) ≤ −d ln(1− p) +
d ln(2)

2
,

(5.7.6)

where we used that there are at most 2|E(TL)| = 2dL
d
trees on TL. Let NV denote the number

of vertices in Qd that are endpoint of an edge e ∈ E(Qd) with κme = q (call them q-vertices)
and NE be the number of edges e ∈ Qd that satisfy κme = q. The subgraph H of TL induced by
the q-edges of κM and its endpoints has LdNV /2

d vertices (every vertex is contained in 2d cells
(translates of Qd)) and LdNE/2

d−1 edges (every edge is contained in 2d−1 cells). Moreover, due
to the construction by repeated re�ection of κm each connected component of H has at least L
vertices. We denote the connected components of H by C(H). We can �nd an acyclic subgraph
of H with

|V(H)| − |C(H)| = LdNV

2d
− 1

L

LdNV

2d
=
LdNV

2d
(1− L−1) (5.7.7)

edges that can be extended to a tree on TL. We estimate the sum in (5.7.2) by the contribution
of this tree and obtain the estimate

FL(κm) ≥ − NE

2d−1
ln(p)− d2d−1 −NE

2d−1
ln(1− p) +

LdNV (1− L−1)

2d+1Ld
ln(q). (5.7.8)

This implies for κm /∈ {κ1, κq}

FL(κm)−min(FL(κ1), FL(κq)) ≥ FL(κm)− d2d−1 −NE

d2d−1
FL(κ1)− NE

d2d−1
FL(κq)

≥
(
NV (1− L−1)

2d+1
− NE

d2d
(1− L−d)

)
ln(q)− d ln(2)

2

≥ 1

d2d+1
(dNV − 2NE) ln(q)− 1

2L
ln(q)− d ln(2)

2

≥ 1

d2d
ln(q)− 1

2L
ln(q)− d ln(2)

2
.

(5.7.9)

In the second to last step we bounded NV ≤ 2d. In the last step we used that dNV −2NE counts
the number of edges e ∈ Qd (with multiplicity) such that κme = 1 that are going out of one of
the NV q-vertices, i.e., vertices that are incident to a q-bond. Since κm is not homogeneous this
is at least 2 with equality if there is only one edge e in Qd such that κme = 1. We conclude that
there is an energy gap uniformly in κm and p ∈ [0, 1] that diverges as q → ∞. Note that the
prefactor of q is optimal and we recover the optimal scaling 1/8 ln(q) for d = 2 as in Theorem
3.3. in [32].
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u

F (κ1, u)

F (κq, u)

Figure 5.5: Sketch of the free energies of the homogenous patterns as a function of their tilt.
The dashed line is a sketch of their lower convex envelope.

Extension of the scaling limit result. The correlation inequalities derived in Section 5.4
might be useful to extend the scaling limit result from [33] to certain measures ρ on (0,∞) with
non-compact support. They can be used to derive a priori bounds on the κ-marginal for any
Gibbs measure µ̄ of the random conductance model. Then one could use the recent sharp results
for invariance principles and heat kernel estimates for random walks in random environment
shown in [6, 7].

For a speci�c example this was done in [151]. Note, however, that the proof for the passage
from extended gradient Gibbs measures to Gibbs measures for the random conductance model
stated in Proposition 5.4.17 cannot be directly generalised to ρ with support that extends to 0
or ∞.

Models with disorder. It was suggested by Codina Cotar to consider models with disorder
in this setting in dimension 2, i.e., in the simplest case (pe)e∈E(Z2) ∈ [0, 1]E(Z2) is a set of i.i.d.
random variables. Aizenman and Wehr showed that there is no phase transition in d = 2 for
several models with disorder including the Ising model [5]. The basic heuristic given by Imry and
Ma is that the energy �uctuations in a domain |Λ| are of order

√
|Λ| while the strength of the

symmetry breaking is bounded by C|∂Λ|. This lead to the prediction that symmetry breaking
cannot persist in the presence of disorder in d = 2 where both terms are of the same order.

It might be possible to extend this result to our setting. Here the correlation inequalities are
very helpful because they introduce an ordering on the phase space. This potentially simpli�es
the proof, e.g., for the Ising model a streamlined proof can be found in [37]. While the lower
bound on the �uctuation of the disorder rely on general abstract arguments the bound for the
strength of the symmetry breaking is more model dependent. Here one might bound this energy
using techniques similar to the proof of Lemma 5.5.3.

Non-zero tilt The most interesting extension would be results about the model at non-zero
tilt. This work and all earlier works heavily rely on the assumption of zero tilt. As discussed in
[33] the main problem is that one needs to understand the behaviour of the corrector for non-zero
tilt. This becomes also apparent in the proof of Proposition 5.4.17 (see (5.A.5)).

Let us provide a simple heuristic about the behaviour of the model with non-zero tilt if
ρ = pδq + (1 − p)δ1 and q large. Note that for large q typically the measure is concentrated on
almost homogenous con�qurations of κ for zero tilt. The thermodynamic limit of the free energy
of the homogenous con�gurations can be easily evaluated (see [32]) and one obtains for some
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constant c ∈ R

F (κq, u) = −2 ln(p) +
ln(q)

2
+ q
|u|2

2
+ c, (5.7.10)

F (κ1, u) = −2 ln(1− p) +
|u|2

2
+ c. (5.7.11)

Those functions are plotted for p ≥ psd in Figure 5.5. If the κ-marginal is mostly homogenous
we expect the free energy to be approximately the lower convex envelope of those two functions.
In particular there might be a linear piece of the surface tension. This would be in contrast
to convex potentials or the setting considered in Chapter 3 where the surface tension is strictly
convex. For tilts u in the linear region one could conjecture that there is no translation invariant
and ergodic Gibbs state because the tilt might not concentrate in the thermodynamic limit.
Instead every in�nite volume Gibbs state might be a mixture of a state with mostly 1-bonds
and tilt u1 with |u1| > |u| and a state with mostly q-bonds and tilt uq with |uq| < |u|. This
is, however probably very di�cult to investigate because this is not a bulk phenomenon but one
needs to understand, roughly speaking, the free energy up to surface order.

5.A Proofs of Proposition 5.4.17 and Proposition 5.4.18

In this section we pay the last remaining debt of proving two propositions from Section 5.2.

Proof of Proposition 5.4.17. For λ ∈ {1, q}E(Zd) and E ⊂ E(Zd) �nite we de�ne the cylinder
event

A(λE) = {κ ∈ {1, q}E(Zd) : κE = λE} ∈ FE . (5.A.1)

With a slight abuse of notation we drop the pullback from the notation when we consider the
set π−1

2 (A(λE)) ⊂ RE(Zd) × {1, q}E(Zd). Since all local cylinder events in F can be written as a
union of events of the form A(λEL) it is by Remark 5.2.2 su�cient to show

µ̄(A(λEL)) = µ̄γ̄En(A(λEL)) (5.A.2)

for all L, n ≥ 0 and all λ ∈ {1, q}E(Zd). Using the quasilocality of γ̄ and Remark 4.21 in [92] it
is su�cient to consider L = n and we will do this in the following. We are going to show this
claim in a series of steps.

Step 1. We investigate the distribution of the κ-marginal conditioned on ωEc
N
.

Since µ̃ is a gradient Gibbs measure we know by (5.3.2) that for ω ∈ RE(Zd)
g and κ ∈ {1, q}E(Λ)

µ̃(A(κE(Λ)) | EE(Λ)c)(ω) =
1

Z

ˆ
ph(κ)(1− p)s(κ)

∏
e∈E(Λ)

e−κeη
2
e ν

ωE(Λ)c

Λ (dη) =
Z(κ, ω)

Z
(5.A.3)

where Z is the normalisation and

Z(κ, ω) =

ˆ
ph(κ)(1− p)s(κ)

∏
e∈E(Λ)

e−
1
2
κeη2

e ν
ωE(Λ)c

Λ (dη) (5.A.4)

denotes the partition function corresponding to the con�guration κ. Let ϕ ∈ RZd be the con�g-
uration such that ∇ϕ = ω and ϕ(0) = 0. We denote by χκ the corrector of κ, i.e., the solution



Proofs of Proposition 5.4.17 and Proposition 5.4.18 235

of ∇∗κ∇χκ = 0 with boundary values ϕΛc . A shift of the integration variables and Gaussian
calculus implies (see also (5.3.4))

Z(κ, ω) = Z(κ, 0̄)e−
1
2

(∇χκ,κ∇χκ)E(Λ) = e−
1
2

(∇χκ,κ∇χκ)E(Λ)
ph(κ)(1− p)s(κ)√
det 2π(∆̃Λw

κ )−1

(5.A.5)

where 0̄ is the con�guration with vanishing gradients, i.e., 0̄e = 0 for e ∈ E(Zd). The necessary
calculation to obtain (5.A.5) basically agrees with the calculation that shows that the discrete
Gaussian free �eld can be decomposed in a zero boundary discrete Gaussian free �eld and a
harmonic extension. We now restrict our attention to Λ = ΛN = [−N,N ]d ∩ Zd for N ∈ N. We
introduce the law of the κ-marginal for wired non-constant boundary conditions for κ ∈ {1, q}EN
by

µ̄1,ω
N (κ) =

Z(κ, ω)

Z
. (5.A.6)

Note that µ̄1,0̄
N = µ̄1

N where µ̄1
N was de�ned in (5.4.36).

Step 2. In this step we are going to show that there is N0 ∈ N depending on n such that
for N ≥ N0 and uniformly in λ ∈ {1, q}E(Zd)∣∣∣∣µ̄(A(λEn) | A(λEN\En)

)
− µ̄1

N

(
A(λEn) | A(λEN\En)

)∣∣∣∣ ≤ 4ε., (5.A.7)

i.e., the boundary e�ect is negligible. We start by showing that typically the di�erence between
the corrector energies for con�gurations κ and κ̃ that only di�er in En will be small. This
will allow us to estimate the di�erence between µ̄1

N and µ̄1,ω
N conditioned to agree close to the

boundary.
Recall that we consider the case that Λ = ΛN is a box. The Nash-Moser estimate stated in

Lemma 5.B.1 combined with the maximum principle for the equation ∇∗κ∇χκ = 0 imply for
b ∈ En and some α = α(q) > 0

|∇χκ(b)| ≤
C (maxx∈∂ΛN ϕ(x)−miny∈∂ΛN ϕ(y))

|N − n|α
. (5.A.8)

We introduce the event M(N) = {ω : maxx∈∂ΛN ϕ(x) − miny∈∂ΛN ϕ(y) ≤ (lnN)3}. Consider

con�gurations κ, κ̃ ∈ {1, q}E(Zd) such that κe = κ̃e for e /∈ En. Using the fact that the corrector
is the minimizer of the quadratic form (∇χκ, κ∇χκ)EN with given boundary condition we can
estimate

(∇χκ, κ∇χκ)EN ≤ (∇χκ̃, κ∇χκ̃)EN ≤ (∇χκ̃, κ̃∇χκ̃)EN + |En|q sup
b∈En

|∇χκ̃|2. (5.A.9)

From (5.A.8) we infer that for N ≥ 2n and ϕ ∈M(N)

|(∇χκ, κ∇χκ)EN − (∇χκ̃, κ̃∇χκ̃)EN | ≤ C|En|q
(lnN)3

Nα
. (5.A.10)

By choosing N1 ≥ 2n su�ciently large we can ensure that for N ≥ N1, ϕ ∈M(N), and uniformly
in κ, κ̃ as before

1− ε ≤ e
1
2

(∇χκ,κ∇χκ)EN−
1
2

(∇χκ̃,κ̃∇χκ̃)EN ≤ 1 + ε. (5.A.11)
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Using this in (5.A.5) we conclude that for N ≥ N1∨2n, ω ∈M(N), ε < 1/3, and λ ∈ {1, q}E(Zd)∣∣∣∣µ̄1,ω
N

(
A(λEn) | A(λEN\En)

)
− µ̄1

N

(
A(λEn) | A(λEN\En)

)∣∣∣∣ ≤ 2ε

1− ε
≤ 3ε. (5.A.12)

This implies∣∣∣µ̃(A(λEn) | A(λEN−En) ∩M(N)
)
− µ̄1

N

(
A(λEn) | A(λEN\En)

)∣∣∣ ≤ 3ε. (5.A.13)

From Lemma 5.A.1 below and Proposition 5.4.19 we infer that for an extended gradient Gibbs
measure µ̃ associated to an ergodic zero tilt Gibbs measure µ and any λ ∈ {1, q}E(Zd)

µ̃
(
M(N)c | A(λEN\En)

)
≤ C

ln(N)
≤ ε (5.A.14)

for all N ≥ N2 and N2 su�ciently large. We conclude that for N ≥ N0 := N1 ∨N2 ∨ 2n∣∣∣∣µ̄(A(λEn) | A(λEN\En)
)
− µ̄1

N

(
A(λEn) | A(λEN\En)

)∣∣∣∣
≤ µ̃

(
M(N) | A(λEN\En)

) ∣∣∣∣µ̃(A(λEn) | A(λEN\En),M(N)
)
− µ̄1

N

(
A(λEn) | A(λEN\En

)∣∣∣∣
+ µ̃

(
M(N)c | A(λEN\En)

) ∣∣∣∣µ̃(A(λEn) | A(λEN\En),M(N)c
)
− µ̄1

N

(
A(λEn) | A(λEN\En

)∣∣∣∣
≤ 3ε+ ε = 4ε.

(5.A.15)

Step 3. Using the previous results we can now �nish the proof. We rewrite

µ̄
(
A(λEn)

)
=

∑
σ′∈{1,q}EN\En

µ̄
(
A(σ′EN\En)

)
µ̄
(
A(λEn) | A(σ′EN\En)

)
=

∑
σ′∈{1,q}EN\En

∑
σ∈{1,q}EN

µ̄
(
A(σ′EN\En) ∩A(σEN )

)
µ̄
(
A(λEn) | A(σ′EN\En)

)
=

∑
σ∈{1,q}EN

µ̄
(
A(σEN )

)
µ̄
(
A(λEn) | A(σEN\En)

)
.

(5.A.16)

The identity above and the fact that γ̄En is proper imply adding and subtracting the same term∣∣∣∣µ̄(A(λEn)
)
− µ̄γ̄En

(
A(λEn)

)∣∣∣∣
=

∣∣∣∣ ∑
σ∈{1,q}EN

µ̄
(
A(σEN )

)
µ̄
(
A(λEn) | A(σEN\En)

)
−
ˆ
µ̄(dκ)1A(σEN )(κ) γ̄En

(
A(λEn), κ

)∣∣∣∣
≤
∣∣∣∣ ∑
σ∈{1,q}EN

µ̄
(
A(σEN )

)
µ̄
(
A(λEn) | A(σEN\En)

)
− µ̄

(
A(σEN )

)
γ̄

ΛwN
En

(
A(λEL), σEN

)∣∣∣∣
+

∣∣∣∣ ∑
σ∈{1,q}EN

µ̄
(
A(σEN )

)
γ̄

ΛwN
En

(
A(λEn), σEN

)
−
ˆ
µ̄(dκ)1A(σEN )(κ) γ̄En

(
A(λEn), κ

)∣∣∣∣.
(5.A.17)
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We continue to estimate the right hand side of this expression. We start with the �rst term.
Since µ̄1

ΛN
is a �nite volume Gibbs measure (see (5.4.53)) we have for A ∈ FEN

µ̄1
ΛN

(
A | A(σEN\En)

)
= µ̄1

ΛN

(
A | FEc

n

)
(σEN ) = γ̄

ΛwN
En

(A, σEN ). (5.A.18)

Using this and the bound (5.A.7) we obtain for N ≥ N0∣∣∣∣ ∑
σ∈{1,q}EN

µ̄
(
A(σEN )

)
µ̄
(
A(λEn) | A(σEN\En)

)
− µ̄

(
A(σEN )

)
γ̄

ΛwN
En

(
A(λEn), σEN

)∣∣∣∣
≤

∑
σ∈{1,q}EN

µ̄
(
A(σEN )

)∣∣∣∣µ̄(A(λEL) | A(σEN\En)
)
− µ̄1

ΛN

(
A(λEN ) | A(σEN\En)

)∣∣∣∣
≤ 4ε

∑
σ∈{1,q}EN

µ̄
(
A(σEN )

)
≤ 4ε.

(5.A.19)

We now address the second term on the right hand side of (5.A.17). By Lemma 5.4.16 there
is N3 such that for N ≥ N3 and any λ, σ ∈ {1, q}E(Zd)

|γ̄En(σ, λ)− γ̄ΛwN
En

(σ, λ)| < ε. (5.A.20)

This implies for N ≥ N3∣∣∣∣ ∑
σ∈{1,q}EN

µ̄
(
A(σEN )

)
γ̄

ΛwN
En

(
A(λEn), κ

)
−
ˆ
µ̄(dκ)1A(σEN )(κ) γ̄En

(
A(λEn), κ

)∣∣∣∣
≤

∑
σ∈{1,q}EN

ˆ
µ̄(dκ)1A(σEN )(κ)

∣∣∣γ̄ΛwN
En

(
A(λEn), σEN

)
− γ̄En

(
A(λEn), κ

)∣∣∣
≤ ε

∑
σ∈{1,q}EN

µ̄
(
A(σEN )

)
≤ ε.

(5.A.21)

Using (5.A.17), (5.A.19), and (5.A.21) we conclude that for any ε > 0∣∣∣∣µ̄(A(λEn)
)
− µ̄γ̄En

(
A(λEn)

)∣∣∣∣ ≤ 5ε. (5.A.22)

This ends the proof.

The following simple Lemma was used in the proof of Proposition 5.4.17.

Lemma 5.A.1. Let λ ∈ {1, q}E(Zd) and denote by ϕλ the centred Gaussian �eld on Zd with
ϕ(0) = 0 and covariance ∆−1

λ . Then ϕλ satis�es

P
(

max
x∈∂ΛN

ϕλ(x)− min
y∈∂ΛN

ϕλ(y) ≥ (lnN)3
)
≤ C(lnN)−1. (5.A.23)

Proof. We use the notation 1̄ ∈ {1, q}E(Zd) for the con�guration given by 1̄e = 1 for e ∈ E(Zd).
The Brascamp-Lieb inequality (see [38, Theorem 5.1]) implies for the centred Gaussian �elds ϕλ

and ϕ1̄ that

E
(

(ϕλ(x)− ϕλ(0))2
)
≤ E

(
(ϕ1̄(x)− ϕ1̄(0))2

)
≤

{
C ln(|x|) for d = 2

C for d ≥ 3.
(5.A.24)
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It is well known that for a centred Gaussian random vector X ∈ P(Rm) with E(X2
i ) ≤ σ2 the

expectation of the maximum is bounded by

E(max
i
Xi) ≤ σ

√
2 lnm. (5.A.25)

We use this for the Gaussian �eld ϕλ and conclude that

E

(
max
x∈∂ΛN

ϕλ(x)− ϕλ(0)

)
≤

{
C ln(N)2 for d = 2

C ln(Nd−1) for d ≥ 3.
(5.A.26)

A simple Markov bound implies that there is C = C(d) > 0 such that

P

(
max
x∈∂ΛN

ϕλ(x)− min
y∈∂ΛN

ϕλ(y) ≥ (lnN)3

)
≤ C(lnN)−1. (5.A.27)

It remains to provide a proof of Proposition 5.4.18. We will only sketch the argument.

Proof of Proposition 5.4.18. First we remark that the law of (κ,∇ϕκ) is a Borel-measure on

{1, q}E(Zd) × RE(Zd)
g . This follows from Carathéodory's extension theorem and the observation

that for a local event A ∈ EE with E ⊂ E(Zd) �nite the function κ 7→ µϕκ(A) is continuous (this
can be shown using Lemma 5.B.3). By Remark 5.2.2 it is su�cient to prove that µ̃γ̃Λn = µ̃ for all
n. To prove this we use an approximation procedure. We �x n and de�ne for N > n a measure

µ̃N on RE(Zd)
g × {1, q}E(Zd) as follows. The κ-marginal of µ̃N is given by µ̄N = µ̄γ̄

ΛwN
En

where as

before we extended γ̄
ΛwN
En

to a proper probability kernel on {1, q}E(Zd). For given κ, let ϕκ be the

centred Gaussian �eld with zero boundary data outside of
◦
ΛN and covariance (∆̃

ΛwN
κEN

)−1 where

∆̃
ΛwN
κEN

was de�ned in Section 5.3. The measure µ̃N is the joint law of (κ, ϕκ) where κ has law
µ̄N . We claim that for N > n

µ̃N γ̃Λn = µ̃N . (5.A.28)

We prove this by showing the statement for the measures µ̃N
(
· |A(λEN\En)

)
for every con�g-

uration λ ∈ {1, q}E(Zd). To shorten the notation we write µ̃λN = µ̃N
(
· |A(λEN\En)

)
. By de�ni-

tion of µ̃N the ϕ-�eld conditioned on κ has density exp(−1
2(ϕ, ∆̃

ΛwN
κ ϕ))/

√
det 2π(∆̃

ΛwN
κ )−1 dϕ◦

ΛN

where dϕΛ =
∏
x∈Λ dϕx denotes the Lebesgue measure. This implies for B ∈ B(RΛN ) and

σ ∈ {1, q}E(Zd) such that σEN\En = λEN\En

µ̃λN

(
ϕ ∈ B, κ ∈ A(σEN )

)
= µ̃λN

(
A(σEN )

)ˆ
B

exp(−1
2(ϕ, ∆̃

ΛwN
σ ϕ))√

det 2π(∆̃
ΛwN
σ )−1

dϕ◦
ΛN

(5.A.29)

We use the de�nition of µ̃N and the fact that speci�cations are proper to rewrite

µ̃λN

(
A(σEN )

)
=
µ̄γ̄

ΛwN
En

(
A(σEN ) ∩A(λEN\En)

)
µ̄γ̄

ΛwN
En

(
A(λEN\En)

) =
µ̄
(

1A(λEN\En )(κ)γ̄
ΛwN
En

(A(σEN , κ)
)

µ̄
(
A(λEN\En)

)
= γ̄

ΛwN
En

(σEN , λEN ) = 1σEN\En=λEN\En

1

Zλ

ph(σ,EN )(1− p)s(σ,EN )√
det ∆

ΛwN
σ

.

(5.A.30)
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Note that

ph(σ,{e})(1− p)s(σ,{e})e−
σeη

2
e

2 =

ˆ
{σe}

ρ(dκe) e
−κeη

2
e

2 . (5.A.31)

The last three displays, a summation by parts, and (5.3.6) lead us to

µ̃λN (ϕ ∈ B, κ ∈ A(σEN )) =
1

(2π)|ΛN ||ΛwN |Zλ

ˆ
B
ph(σ,EN )(1− p)s(σ,EN )

∏
e∈EN

e−
σeη

2
e

2 dϕ◦
ΛN

=
1

Z ′λ

ˆ
B

dϕ◦
ΛN

ˆ
A(σEN )

∏
e∈EN

ρ(dκe) e
−κeη

2
e

2 .

(5.A.32)

Combining this with the de�nition (5.3.2) we conclude that for σ′ ∈ {1, q}E(Zd) such that

σ′EN\En = λEN\En and ω ∈ RE(Zd)
g such that ωEc

N
= 0

µ̃λN

(
B×A(σEN ) |AEcn

)
((ω, σ′))

=
1

Zλ,ω

ˆ
B
ν
ωEc

n
Λn

(dη)

ˆ
A(σEN )

∏
e∈En

ρ(dκe)
∏
e/∈En

δσ′e(dκe)
∏
e∈EN

e−
κeη

2
e

2

= γ̃Λn

(
B×A(σEN ), (ω, σ′)

)
.

(5.A.33)

This implies µ̃λN γ̃Λn = µ̃λN and (5.A.28) follows directly.
It remains to pass to the limit in equation (5.A.28), i.e., we show that the right hand side

converges in the topology of local convergence to µ̃ and the left hand side to µ̃γ̃Λn thus �nishing
the proof. We only sketch the argument. Since γ̃(A, ·) is a measurable, local, and bounded
function if A is a local event it is su�cient to show that µ̃N converges to µ̃ locally in total
variation, that is for every Λ ⊂⊂ Zd

lim
N→∞

sup
A∈AE(Λ)

|µ̃N (A)− µ̃(A)| = 0. (5.A.34)

Where we used the σ-algebra AE on RE(Zd)
g ×{1, q}E(Zd) de�ned in Section 5.3 as the product of

the pullbacks of EE and FE . We �rst consider the κ-marginals of µ̃N and µ̃. They are given by
µ̄N = µ̄γ̄

ΛwN
En

and µ̄ = µ̄γ̄En where we use that µ̄ is a Gibbs measure. We can estimate the total
variation of those two measures by

‖µ̄γ̄ΛwN
En
− µ̄γ̄En‖TV ≤ sup

κ∈{1,q}E(Zd)

sup
A⊂{1,q}E(Zd)

|γ̄ΛwN
En

(A, κ)− γ̄En(A, κ)|

≤ 2|En| sup
σ,κ∈{1,q}E(Zd)

|γ̄ΛwN
En

(σ, κ)− γ̄En(σ, κ)|.
(5.A.35)

In the second step we used that the speci�cations are proper thus we can assume A ⊂ A(κEc
n
)

and use that |A(κEc
n
)| ≤ 2|En|. Using Lemma 5.4.16 we conclude

lim
N→∞

‖µ̄N − µ̄‖TV = lim
N→∞

‖µ̄γ̄ΛwN
En
− µ̄γ̄En‖TV = 0. (5.A.36)
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We address the η-marginals of the measures µ̃ and µ̃N . We write µ̃(· | κ), µ̃N (· | κ) ∈ P(RE(Zd)
g )

for the conditional distribution of the η-�eld for a given κ ∈ {1, q}E(Zd). From the construction
this is well de�ned for every κ. We de�ne the centred Gaussian �eld ϕκ by ϕκ(0) = 0 and its

covariance (∆κ)−1 and the centred �elds ϕκN pinned to 0 outside of
◦
ΛN with covariance (∆̃

ΛwN
κ )−1

and we denote their gradients by ηκ = ∇ϕκ and ηκN = ∇ϕκN . Note that by de�nition of µ̃ and
µ̃N the law of ηκ and ηκN coincides with µ̃(· | κ) and µ̃N (· | κ). Fix an integer L. We introduce
the Gaussian vectors Xκ = (ϕκ(x) − ϕκ(0))x∈ΛL and Xκ

N = (ϕκN (x) − ϕκN (0))x∈ΛL . Note that
given Xκ, Xκ

N the gradient �eld ηκ�E(ΛL) respectively η
κ
N�E(ΛL) can be expressed as a function

of Xκ and Xκ
N respectively. This implies that

sup
B∈EE(ΛL)

∣∣µ̃N (B | κ)− µ̃(B | κ)
∣∣ ≤ ‖Xκ −Xκ

N‖TV. (5.A.37)

Theorem 1.1 in [71] states that the total variation distance between two centred Gaussian vectors
Z1, Z2 with covariance matrices Σ1 and Σ2 can be bounded by 3

2 |Σ
−1
1 Σ2−1|F where | · |F denotes

the Frobenius norm. Using this theorem and the uniform convergence of the covariance of ηκN to
the covariance of ηκ stated in Lemma 5.B.3 we conclude that

lim
N→∞

sup
B∈EE(ΛL)

∣∣µ̃N (B | κ)− µ̃(B | κ)
∣∣ ≤ lim

N→∞
‖Xκ −Xκ

N‖TV = 0. (5.A.38)

We denote for a set A ∈ A and κ ∈ {1, q}E(Zd) by Aκ the intersection of A and the line through
κ, i.e., Aκ = {η ∈ RE(Zd) : (η, κ) ∈ A}. Using disintegration, (5.A.36), (5.A.38), and the
dominated convergence theorem we estimate

lim
N→∞

sup
A∈AE(ΛL)

|µ̃N (A)− µ̃(A)|

= lim
N→∞

sup
A∈AE(ΛL)

∣∣∣∣ˆ µ̄(dκ) µ̃(Aκ | κ)−
ˆ
µ̄N (dκ) µ̃N (Aκ | κ)

∣∣∣∣
≤ lim

N→∞
sup

A∈AE(ΛL)

ˆ
µ̄(dκ)

∣∣∣µ̃(Aκ | κ)− µ̃N (Aκ | κ)
∣∣∣

+ lim
N→∞

sup
A∈AE(ΛL)

∣∣∣∣ˆ µ̄(dκ) µ̃N (Aκ | κ)−
ˆ
µ̄N (dκ) µ̃N (Aκ | κ)

∣∣∣∣
≤ lim

N→∞

ˆ
µ̄(dκ) ‖Xκ −Xκ

N‖TV + lim
N→∞

‖µ̄− µ̄N‖TV = 0.

(5.A.39)

We conclude that for any local event A

µ̃(A) = lim
N→∞

µ̃N (A) = lim
N→∞

µ̃N γ̃Λn(A) = µ̃γ̃Λn(A). (5.A.40)

5.B Estimates for discrete elliptic equations

In this appendix we collect some regularity estimates for discrete elliptic equations. We
consider as before uniformly elliptic κ : E(Zd) → R+ with 0 < c− ≤ κe ≤ c+ < ∞ for all
e ∈ E(Zd). We denote corresponding set of conductances by M(c−, c+) = [c−, c+]E(Zd).

Next we state a discrete version of the well known Nash-Moser estimates for scalar elliptic
partial di�erential equations with L∞ coe�cients.
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Lemma 5.B.1. Let 0 < c− < c+ <∞, Λ ⊂ Zd, and κ ∈M(c−, c+). Let u : Λ→ R be a solution
of

−∇∗κ∇u = 0 in
◦
Λ (5.B.1)

Then there are constants α = α(c−, c+, d) and C = C(c−, c+, d) such that the following estimate
holds for x, y ∈ Λ

|u(x)− u(y)| ≤ C‖u‖L∞(Λ)

(
|x− y|

d(x, ∂Λ) ∧ d(y, ∂Λ)

)α
. (5.B.2)

Proof. This is Proposition 6.2 in [68].

Moreover we state some consequences for the Green's function of uniformly elliptic operators
in divergence form. We de�ne the Green's function Gκ : Zd × Zd → R as the inverse of ∆κ, i.e.,
Gκ satis�es for d ≥ 3

∆κGκ(·, y) = δy, lim
x→∞

Gκ(x, y) = 0. (5.B.3)

It is well known that such a Green's function does not exist in dimension 2, however the derivative
∇x,iGκ does exist in dimension 2, in particular one can make sense of expressions as Gκ(x1, y)−
Gκ(x2, y). Formally one can de�ne ∇Gκ by adding a mass m2 to the Laplace operator, i.e.,
consider the Green's function of ∆κ +m2 and then send m2 → 0. The following estimates hold
for the Green's function.

Lemma 5.B.2. For any d ≥ 3 and κ ∈M(c−, c+) the estimate

0 ≤ Gκ(x, y) ≤ C

|x− y|d−2
(5.B.4)

holds where the constant C depends only on c−, c+, and d. Moreover there exist α > 0 depending
on c+/c−,and d and C depending on c−, c+, and d such that for d ≥ 2

|∇xGκ(x, y)| ≤ C

|x− y|d−2+α
, (5.B.5)

|∇x∇yGκ(x, y)| ≤ C

|x− y|d−2+2α
. (5.B.6)

Proof. These estimates are well known. Estimates for the corresponding parabolic Green's func-
tion are called Nash-Aronson estimates and they can be found, e.g., in Proposition B.3 in [94].
Integrating the bound for the parabolic Green's function implies (5.B.4). The estimates (5.B.5)
and (5.B.6) follow for d > 2 from (5.B.4) and Lemma 5.B.1. For d = 2 one can bound the
oscillation of the Green's function using Nash-Aronson estimates and the parabolic Nash-Moser
estimate. In particular as shown, e.g., in [9, Chapter 8] there is a constant C = C(c−, c+) such
that for all r > 0

sup
x,y∈B2r(0)\Br(0)

|Gκ(x, 0)−Gκ(y, 0)| ≤ C. (5.B.7)

Lemma 5.B.1 then implies (5.B.5) and (5.B.6).
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The previous results allow us to bound the di�erence between the Green's function in a set
with Dirichlet boundary conditions and the Green's function on whole space. We de�ne the
Green's function GΛw

κ : Λ× Λ→ R with Dirichlet boundary values in �nite volume by

∆κG
Λw

κ (·, y) = δy in
◦
Λ,

GΛw

κ (x, y) = 0 for x ∈ ∂Λ.
(5.B.8)

For clarity we write GZd
κ = Gκ in the following.

Lemma 5.B.3. Let 0 < c− < c+ <∞ and R > 0, then

lim
n→∞

sup
x,y∈BR(0)

1≤i,j≤d

sup
κ∈M(c−,c+)

∣∣∣(δx+ei − δx, GΛwn
κ (δy+ej − δy)

)
−
(
δx+ei − δx, GZd

κ (δy+ej − δy)
)∣∣∣ = 0.

(5.B.9)

Remark 5.B.4. Note that the two scalar products can be rewritten as ∇x,i∇y,jGΛwn
κ (x, y) and

∇x,i∇y,jGZd
κ (x, y). This expression agrees with the gradient correlations of a Gaussian �eld:

E
(∆

Λwn
κ )−1

(
ηx,x+eiηy,y+ej

)
= ∇x,i∇y,jGΛwn

κ (x, y). (5.B.10)

A similar equation holds when Λwn is replaced by Zd. Thus the lemma implies local uniform
convergence of the covariance matrix of those two gradient Gaussian �elds.

Proof. The di�erence of the Green's function in d > 2 can be expressed through the corrector
ϕκ,n,y : Λn → R that is de�ned by

GΛn
κ (·, y) = GZd

κ (·, y)− ϕκ,n,y(·). (5.B.11)

Using the de�nition of the Green's function we obtain that the corrector satis�es

∆κϕκ,n,y = 0 in
◦
Λn

ϕκ,n,y(x) = GZd
κ (x, y) for x ∈ ∂Λn.

(5.B.12)

The estimate (5.B.4) in Lemma 5.B.2 now implies

|ϕk,n,y(z)| ≤
C

|dist(y, ∂Λn)|d−2
(5.B.13)

for z ∈ ∂Λn. By the maximum principle for ∆κ the bound extends to all z ∈ Λn. The claim
then follows from(

δx+ei − δx, GZd
κ (δy+ej − δy)

)
−
(
δx+ei − δx, GΛwn

κ (δy+ej − δy)
)

= ϕκ,n,y(x) + ϕκ,n,y+ej (x+ ei)− ϕκ,n,y(x+ ei)− ϕκ,n,y+ej (x)

= ∇iϕκ,n,y+ej (x)−∇iϕκ,n,y(x).

(5.B.14)

The extension to dimension d = 2 is again slightly technical. We can de�ne

ϕκ,n,y(·) =
(
GZd
κ (·, y)−GZd

κ (y, y)
)
−GΛn

κ (·, y). (5.B.15)
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The corrector satis�es

∆κϕκ,n,y = 0 in
◦
Λn

ϕκ,n,y(x) = GZd
κ (x, y)−GZd

κ (y, y) for x ∈ ∂Λn.
(5.B.16)

Using (5.B.7) we can bound for y ∈ Bn/2(0)

max
x∈∂Λn

ϕk,n,y(x)− min
x∈∂Λn

ϕk,n,y(x) ≤ C. (5.B.17)

Lemma 5.B.1 implies ∇ϕκ,n,y(x) ≤ Cn−α for x ∈ Λn/2 and we can conclude using (5.B.14).
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