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ABSTRACT

We carry out a comprehensive analysis of the neutron-proton interaction up to the third order in the

scheme of chiral effective field theory on the lattice. The complete two-pion exchange potential is

taken into account to allow for a variation of the lattice spacing. We analyze the perturbative as well

as the non-perturbative inclusion of the higher-order corrections and present a thorough analysis of the

theoretical uncertainties.

In addition, a first attempt is made to include chiral contributions at the fourth order as well as the

electromagnetic effects relevant for proton-proton scattering. For that, we include all fourth order local

four-nucleon interactions and the dominant corrections to the two-pion exchanges. As expected, the

higher order chiral corrections give an improved description for the scattering of two nucleons. This

work should be extended by performing an uncertainty analysis and investigating the lattice spacing

dependence in the future.

We further scrutinize nuclei with even and equal numbers of protons and neutrons using nuclear

lattice effective field theory, based upon a set of highly improved (smeared) leading order interactions.

We present numerical evidence that reveals a first-order transition at zero temperature from a Bose-

condensed gas of alpha particles to the nuclear liquid, which is regulated by the strength and locality of

the nucleon-nucleon interactions.
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CHAPTER 1

Introduction

Atomic nuclei are complex, interacting many-body systems composed of protons and neutrons, which

can be regarded as different isospin projections of a single particle, the nucleon. While a qualitative under-

standing of the properties of atomic nuclei can be reached by means of phenomenological descriptions of

nucleons exchanging mesons (preferentially pions), any systematically improvable theoretical framework

should account for the fact that the nucleons and pions themselves are composite particles, made up

of quarks that interact by exchange of gauge bosons, referred to as gluons. The theory of quarks and

gluons, quantum chromodynamics (QCD), has so far presented a formidable task for analytical methods

that have been extremely successful for the weak and electromagnetic interactions. This situation is

particularly troublesome at low energies, where quarks and gluons are confined and the running QCD

coupling αs becomes large. This has prompted the emergence of lattice Monte Carlo (MC) simulations of

QCD (lattice QCD), whereby the properties of baryons and mesons (referred to collectively as hadrons)

are extracted by stochastical methods on a discretized space-time lattice.

Since the emergence of lattice QCD in the 1980’s, algorithms and computer hardware have evolved

to the point where lattice QCD simulations are able to provide an accurate description of the properties

of isolated hadrons, as well as of hadronic interactions (for instance meson-meson scattering) at low

energies. Nevertheless, lattice QCD for nucleonic few- and many-body systems remains very challenging,

as such simulations require pion masses Mπ close to the physical value, and lattices significantly longer

in each dimension than can be accommodated on presently available computers. Another significant
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Chapter 1 Introduction

computational challenge is the exponentially unfavorable signal-to-noise ratio in simulations at large

baryon number. In this situation, further progress can be made by working directly with theoretical

frameworks written in terms of the composite degrees of freedom (nucleons and pions) on the hadronic

level. However, care must be taken such that the connection to the fundamental theory (QCD) is not

lost. Here, we will focus on the framework of chiral effective field theory (χEFT), which provides a

systematically improvable, ab initio description of the nuclear forces, which is expressed in terms of a

low-momentum expansion, valid below the chiral symmetry restoration scale Λχ ' 1 GeV of QCD.

Given the nuclear Hamiltonian of χEFT, a choice has to be made as to the numerical methods by which

the properties of nuclei are computed. For systems with four nucleons or less, a semi-analytic approach is

provided by the Faddeev-Yakubovsky integral equations, and the nuclear lattice Hamiltonian may also be

diagonalized exactly by numerical Lanzcos methods. However, for systems composed of more than four

nucleons, methods such as MC simulations or basis-truncated eigenvector methods are required, due to

the unfavorable scaling of Lanczos methods with nucleon number A. Here, we shall focus on combining

the lattice MC approach with nuclear χEFT. This allows us to use efficient numerical methods already

developed within lattice QCD and condensed matter physics, such as auxiliary-field transformations,

pseudofermion methods, and non-local configuration updating schemes such as hybrid Monte Carlo

(HMC). It should be noted that at each order in the χEFT expansion, a number of unknown short-range

couplings appear, in addition to contributions from long-range one-pion exchange (OPE), two-pion

exchange (TPE),... At a given lattice spacing (which functions as the momentum cut-off or regulator

of the effective field theory (EFT)), these unknown coefficients can be determined by a least-squares

fit of the lattice action to available data for the A = 2 and A = 3 systems (such as neutron-proton (np)

scattering phase shifts and mixing angles). For A ≥ 4, we may use these short-distance couplings in

lattice MC calculations in order to obtain testable predictions for a wide range of light and medium-heavy

atomic nuclei.

In the first part of this thesis, we show how to efficiently compute np phase shifts and mixing

angles using an improved spherical wall method, which allows for an accurate and straightforward

calculation at center-of-mass (CM) momenta close to the momentum cutoff, as well as for high angular

momentum partial waves, where the Lüscher method popular in the lattice QCD community becomes

increasingly cumbersome. Our method uses an “auxiliary potential” to modify the shape and strength

of the spherical hard-wall boundary, which enables the discrete energy eigenvalues to be continuously

shifted, and furthermore allows for a unique determination of the scattering phase shifts and mixing
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angles in the Stapp parameterization. Our spherical wall method is also applicable to so-called adiabatic

projection calculations, whereby a cluster Hamiltonian (for instance for alpha-alpha scattering) is

computed numerically by MC simulation of χEFT. We also take the first steps in extending the lattice

χEFT to next-to-next-to-next-to-leading order / NNNLO (N3LO), by including the N3LO two-nucleon

operators in our analysis of np scattering. Finally, we extend our analysis to include the electromagnetic

and isospin-breaking (IB) effects in proton-proton (pp) scattering.

In the second part of this thesis, we discuss how χEFT can be extended to account for medium-heavy

nuclei in a competitive way. In this context, it should be noted that several other choices (besides

nuclear lattice EFT) are routinely made for the nuclear forces and calculational methods used to describe

interacting low-energy protons and neutrons. For A = 3 and A = 4, several studies have used the

Nijmegen [1], CD-Bonn [2], and AV18 [3] two-nucleon forces, together with the Tucson-Melbourne [4]

and Urbana-IX [5] three-nucleon forces. Light nuclei and neutron matter have also been extensively

studied using these phenomenological potentials within the Green’s Function MC and auxiliary-field

diffusion MC methods. In addition to MC methods, a notable approach is the no-core shell model

(NCSM), which produces approximate eigenvectors in a reduced vector space. The NCSM method has

been applied to light nuclei both in terms of phenomenological potential models, as well as nuclear

forces derived from χEFT. In this situation, the main advantages of lattice χEFT is the favorable ∼ A2

scaling with nucleon number, and the completely ab initio treatment of nuclear interactions and nucleon

configurations. The main challenge of nuclear χEFT is to control the sign oscillations (akin to the

infamous “sign problem” in MC simulations) of the MC probability weight for large A, and when the

number of neutrons significantly exceeds the number of protons (so-called neutron-rich nuclei).We

show that this can be achieved with a novel lattice formulation of the nuclear Hamiltonian, whereby a

combination of locally and non-locally smeared operators are used.

This thesis is organized as follows: In Sec. 2, the chiral symmetry of the strong interactions and the

emerging χEFT is briefly reviewed, with an eye on the nuclear Hamiltonian. In Sec. 3, the pertinent

lattice methods are discussed. The nuclear Hamiltonian is rewritten in discrete variables and its is shown

how on deals with nucleon-nucleon scattering in such a framework. Sec. 4 contains the results for

np scattering up to next-to-next-to-leading order / NNLO (N2LO) with a full inclusion of the leading

two-pion exchange. In Sec. 5, results at N3LO are displayed, in particular the inclusion of the Coulomb

interaction in the pp systems is presented. Then, in Sec. 6, a novel leading order (LO) action is presented

that shows promise to address nuclei up to the mid-mass region. Sec. 7 contains a short summary and
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outlook.
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CHAPTER 2

Chiral Perturbative Theory and Nuclear

Interactions

2.1 Chiral Symmetry

QCD has achieved a great success in describing the interactions of quarks and gluons in the high-energy

(Λ � 1 GeV) regime. It constitutes the strong interaction part of the so-called standard model (SM). The

QCD Lagrangian has the form

LQCD = q̄(iγµDµ
−M)q −

1
4
G

a
µνG

aµν (2.1)

= L
0
QCD − q̄Mq , (2.2)

where Dµ = ∂µ − igsG
a
µλ

a, with λa the SU(3) Gell-Mann matrices acting on the color space. Its algebra

satisfies

[λa, λb] = i f abcλc , (2.3)

with the structure constants f abc. The quark field has Dirac µ, color a, and flavor f indices, which is

written as qa
µ f .
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The mass matrix M in flavor space is

M = diag(mu,md,ms, · · · ) . (2.4)

Ga
µ is the gluon field. It serves to connect of the quark fields in spacetime. For the sake of building a

gauge invariant action, we define the gluon field strength tensor as

G
a
µν = ∂µG

a
ν − ∂νG

a
µ + gs f abcGb

µG
c
ν . (2.5)

u, d, s are the light quarks, usually treated relativistically, while the other quarks (c, b, t) are heavy in the

sense of a typical hadronic scale of about 1 GeV, and are not considered here. Light quarks are identical

except for their mass and charges.

Using the definitions

qR =
1
2

(1 + γ5)q ,

qL =
1
2

(1 − γ5)q ,
(2.6)

we rewrite the Lagrangian as follows

LQCD = q̄Li /DqL + q̄Ri /DqR − q̄LMqR − q̄LcMqR −
1
4

Ga
µνG

aµν , (2.7)

L
0
QCD = q̄Li /DqL + q̄Ri /DqR −

1
4

Ga
µνG

aµν . (2.8)

The left- and right-handed fields are the eigenstates of the chirality operator γ5 with eigenvalues -1

and 1, respectively. In the limit of vanishing quark mass, the Lagrangian L0
QCD has a global symmetry

SU(3)L×SU(3)R×U(1)V×U(1)A.

According to Noether’s theorem, there are 18 conserved currents: nine right-handed

Ra
µ = q̄Rγµ

λa

2
qR , ∂µRa

µ = 0 , (2.9)

and nine left-handed ones,

La
µ = q̄Lγµ

λa

2
qL , ∂µLa

µ = 0 . (2.10)
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2.1 Chiral Symmetry

It is instructive to form linear combinations of these terms to obtain nine vector currents

Va
µ = Ra

µ + La
µ = q̄γµ

λa

2
q , ∂µVa

µ = 0 , (2.11)

and nine axial-vector currents

Aa
µ = Ra

µ − La
µ = q̄γµγ5

λa

2
q , ∂µAa

µ = 0 . (2.12)

In this manner, 18 conserved charges are obtained,

Qa
R =

∫
d3xRa

0 ,
dQa

R

dt
= 0 , (2.13)

Qa
L =

∫
d3xLa

0 ,
dQa

L

dt
= 0 , (2.14)

or, equivalently,

Qa
V =

∫
d3xVa

0 ,
dQa

V

dt
= 0 , (2.15)

Qa
A =

∫
d3xAa

0 ,
dQa

A

dt
= 0 . (2.16)

The algebra of the chiral group SU(3)L×SU(3)R is generated,

[Qa
R,Q

b
R] = i f abcQc

R , [Qa
L,Q

b
L] = i f abcQc

L , [Qa
R,Q

b
L] = 0 . (2.17)

For Qa
V and Qa

A, the commutation relations are

[Qa
V,Q

b
V] = i f abcQc

V , [Qa
A,Q

b
A] = i f abcQc

V , [Qa
V,Q

b
A] = i f abcQc

A . (2.18)

Note that the quark number symmetry U(1)V is realized as the baryon number operator, while the axial

U(1)A is broken at the quantum level due to the axial anomaly.
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2.2 Symmetry Breaking

The QCD Lagrangian is approximately invariant, namely in the limit of vanishing quark mass, under

global chiral SU(3)L×SU(3)R transformations in flavor space. Chiral symmetry is broken explicitly due

to the nonvanishing quark masses. Even with zero quark masses, QCD is spontaneously broken to the

isospin group SU(3)V due to the formation of a quark condensate 〈qq̄〉. The Nambu-Goldstone theorem

predicts massless boson modes in this case, which are identified as the pions, kaoens and etc. of the

theory. This is called spontaneous symmetry breaking. It means that the symmetry of the Lagrangian is

not exactly realized in the groud state of the system.

2.3 Chiral Lagrangian for Nuclear Interactions

2.3.1 Chiral Effective Field Theory

As described above, χEFT is a low-energy effective theory of QCD where pions and nucleons are explicit

degrees of freedom. It provides a theoretical framework for organizing the low energy interactions in

powers of particle momenta. It is systematic, model-independent and based upon a local SU(3) gauge

symmetry in the instrinsic color space. In the case of nuclear interactions, there are two different types of

contributions. First, the one- and two-pion exchanges can be related to pion-nucleon scattering and thus

this type of contribution is entirely fixed [6]. In addition, there are short-range interactions, whcih come

with unknown low-energy constant (LEC)s. These new LECs must be determined from a fit to nuclear

systems. For more details, see the review [7].

2.3.2 Hierarchy of Nuclear Force

The low-energy effective theory of QCD is constructed by identifying all operators that respect the

underlying symmetries of QCD, and to use the relavant separation of scales to derive a hierarchy in

such operators. This hierarchy is manifest in a power-counting scheme, typically demarcated as LO,

next-to-leading order (NLO), and so on. As pointed out by Weinberg [8], in systems with two or more

nucleons, the power counting does not apply to the T-matrix but rather to the interaction potential, as the

8



2.3 Chiral Lagrangian for Nuclear Interactions

Leading order

Next−to−next−to−next−to−leading order

Next−to−leading order

Next−to−next−to−leading order

Figure 2.1: Chiral expansion of the two-nucleon force. Here solid/dashed lines denote nucleons/pions. The
interactions of different dimensions are depicted by different symbols, see Ref. [7] for details.

nuclons in nuclei behave non-relativistically. The corresponding expansion takes the form:

V = Vct +V1π +V2π +V3π + · · ·

= V (0)
ct +V (0)

1π

+V (2)
ct +V (2)

1π +V (2)
2π

+V (3)
1π +V (3)

2π

+V (4)
ct +V (4)

1π +V (4)
2π +V (4)

3π + · · ·

(2.19)

Note that three-body interations first appear at N2LO. In Weinberg’s scheme, the EFT power counting is

equivalent to dimensional analysis for irreducible diagrams.

In the context of χEFT, one can study the potential systematically in powers of particle momenta p/Λ,

where Λ is the typically around 500 MeV.

V = V (NN)
+ V (3N)

+ V (4N)
+ · · · , (2.20)

9
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V = V (0)
+ V (2)

+ V (3)
+ V (4)

· · · , (2.21)

V = Vct + V1π + V2π + V3π · · · . (2.22)

In this thesis, we will concentrate to the nucleon-nucleon / 2N / two-nucleon (NN) potential.

2.3.3 Leading Order Interations

Here, we briefly discuss the LO potential based on the Weinberg power counting. It consists of the

long-ranged OPE potential and two four-nucleon terms without derivatives. All these terms count as

(p/Λ)0. The higher order contributions are given succesively in the course of this thesis.

One-Pion Exchange Potential

In momentum space, the static OPE potential takes the form

V pp
1π = Vnn

1π = V1π(M
π0) , (2.23)

Vnp
1π = −V1π(M

π0) + 2(−1)I+1V1π(Mπ±) , (2.24)

where I denotes the total isopin of the NN system and

V1π(Mπ) = −

(
gA

2 fπ

)2

τ1 · τ2
σ1 · qσ2 · q

q2
+ M2

π

. (2.25)

Here, q is the transfer between initial and final relative momentum of the two nucleons. gA, fπ, Mπ are

nucleon axial-vector constant, the pion decay constant and the pion mass, respectively. Their numerical

values will be given later.

Contact Interactions without Derivatives

The LO four-nucleon contact interactions are given by

V (0)
NN =

1
2

C0 (N†N)2
+

1
2

CI (N†τN)2 (2.26)

in terms of the LECs C0 and CI. These must be determined form a fit to the NN system.
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CHAPTER 3

Lattice Methods

Lattice field theory, born in the 70’s after the pioneering work by K.G. Wilson [9] has become an

important method in theoretical physics. With the great advancements of supercomputing resources, the

growth of the field has been accelerated in recent years. The theoretical and numerical methods used in

lattice field theory have been applied to many fields of physics: particle physics, field theory, statistical

physics, condensed matter physics and non-linear phenomena. The lattice method used in Lattice field

theory is a kind of regularization scheme of quantum field theory (QFT) which puts the quantum field on

a space-time cubic lattice with some lattice spacing a, In this system the theory has a natural momentum

cutoff pmax ∼ 1/a, so that the ultraviolet divergence problem can be avoided. Physical observables are

extracted from the partition funtion via the Path Integral based upon first principles. Lattice field theory

is a non-perturbative method.

QCD describes the strong interaction in the context of the SM. Here quarks and gluons are the explicit

degrees of freedom, and the theory’s non-perturbative behavior in the low-energy regime (< 1 GeV) is a

big challenge. On the other hand, Lattice EFT, using nucleons as degrees of freedom, is applied to few-

and many-body systems in low-energy nuclear physics. It combines lattice methods with the principles

of χEFT described in the previous chapter. In this manner, we can build a self-consistent formalism on a

lattice, which I describe below in more detail.

11



Chapter 3 Lattice Methods

3.1 Lattice Conventions

A lattice means a (3, 1)-dimensional (hyper-)cubic box, with a spatial lattice spacing a and a temporal

spacing at. It spans L lattice spacings along each spatial direction and Lt temporal spacings along the

fourth axis. A dimensionless parameter αt is defined as at/a, which indicates an asymmetric lattice

in terms of time and is used in our calculations. We make use of ns = (nx, ny, nz) to label integer-

valued lattice sites along the 3-dimensional spatial axis, while nt denotes the number of Euclidean time

steps and n = (ns, nt) denoting the (3,1)- lattice site. In the corresponding Brillouin momentum space,

ks = (kx, ky, kz) denotes some integer-valued momentum with a unit ã = 2π/La and k = (ks, kt) with a

unit ãt = 2π/Ltat for kt.

Here and in what follows, the symbol ‘hat’, when applied to variables, implies that they are dimen-

sionless, that means a quantity is expressed in appropriate powers of the lattice spacing. In terms of

derivatives, the symbol ‘hat’ refers to the finite differece approximation of the derivative in continuum

so that ∇̂µ = (a∇i, at∇0). A common differencing scheme employed in lattice QCD is the symmetric

forward-backward difference,

∇̂i f (x) =
1
2

[
f
(
x + aî

)
− f

(
x − aî

)]
,∇̂0 f (x) =

1
2

[
f
(
x + at0̂

)
− f

(
x − at0̂

)]
,

∇̂
2
i f (x) = f

(
x + aî

)
+ f

(
x − aî

)
− 2 f (x) ,∇̂2

0 f (x) = f
(
x + at0̂

)
+ f

(
x − at0̂

)
− 2 f (x) .

However, this definition deviates from the ideal one and induces an error originating from the finite lattice

spacing. An improved method to deal with this systematic error uses higher order finite differences

∇̂l f (n) =
1
2

ν+1∑
j=1

(−) j+1θ j

[
f (n + jl̂) − f (n − jl̂)

] [
1 + O(a2ν+2)

]
, (3.1)

∇̂
2
l f (n) = −

ν+1∑
j=0

(−) jω j

[
f (n + jl̂) + f (n − jl̂)

] [
1 + O(a2ν+2)

]
(3.2)

with the hopping coefficients θ j andω j in the Table 3.1 and l = {1, 2, 3}. An order ν of hopping coefficients

indicates O(a2ν)-improved. We use a standard plane-wave function exp
[
i 2πks · ns/L

]
as a test acting on

the differece operator

−i ∇̂l exp
(
i
2π
L

ks · ns

)
=

ν+1∑
j=1

(−) j+1θ j sin
(

j
2π
L

[ks]l

) exp
(
i
2π
L

ks · ns

)
+ O(a2ν+3) ,
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3.2 Chiral Effective Field Theory on the Lattice

Table 3.1: Hopping coefficients ω j and θ j for ν-order of finite difference

ν ω(ν)
0 ω(ν)

1 ω(ν)
2 ω(ν)

3 ω(ν)
4

0 1 1 0 0 0
1 5/4 4/3 1/12 0 0
2 49/36 3/2 3/20 1/90 0
3 205/144 8/5 1/5 8/315 1/560

ν θ(ν)
1 θ(ν)

2 θ(ν)
3 θ(ν)

4

0 1 0 0 0
1 4/3 1/6 0 0
2 3/2 3/10 1/30 0
3 8/5 2/5 8/105 1/140

−
1
2
∇̂

2
l exp

(
i
2π
L

ks · ns

)
=

ν+1∑
j=0

(−) jω j cos
(

j
2π
L

[ks]l

) exp
(
i
2π
L

ks · ns

)
+ O(a2ν+4) .

As a result, we obtain the correction of the physical momentum on a lattice

2π
L

[k̂s]l =

ν+1∑
j=1

(−) j+1θ j sin
(

j
2π
L

[ks]l

)
, (3.3)

1
2

(
2π
L

[k̂s]l

)2

=

ν+1∑
j=0

(−) jω j cos
(

j
2π
L

[ks]l

)
. (3.4)

It should be mentioned that this correction depends on the definition of the discretized derivative.

3.2 Chiral Effective Field Theory on the Lattice

In chiral perturbation theory (χPT), and in particular χEFT, Lagrangians are expanded in increasing

powers of pion masses and small momenta. Lattice χEFT is developed from the chiral expansion of

the QCD Lagrangian. The LO Lagrangian contributes mostly to the χEFT whereas higher orders are

perturbatively suppressed. The Lagrangian density at lowest order in χEFT scheme reads

L =
1
2
∂µπ

I∂µπI
−

1
2

M2
π,Iπ

IπI
+ N†i∂0N + N†

∇
2

2mN
N

−
gA

2 fπ
N†τI σi∇iπ

IN −
1
2

C0(N†N)(N†N) −
1
2

CI(N
†τIN)(N†τIN) . (3.5)

13



Chapter 3 Lattice Methods

which is divided into three sectors: the free mesons and nucleons, as well as the interaction part. Here N

is the nucleon field with spin and isospin indices, and the pion field π takes an isospin index. σ and τ are

Pauli matrics in spin and isospin space respectively, and repeated indices are implicitly summed over.

Meanwhile, we write down the corresponding action

S = S b + S f + S int , (3.6)

where

S b =

∫
d4x

[
1
2
∂µπ

I∂µπI
−

1
2

M2
π,Iπ

IπI
]
, (3.7)

S f =

∫
d4x N†

i∂0 +
∇

2

2m

 N , (3.8)

S int = S πN + S NN , (3.9)

S πN =

∫
d4x

[
−
gA

2 fπ
N†τI σi∇iπ

IN
]
, (3.10)

S NN =

∫
d4x

[
−

1
2

C0(N†N)(N†N) −
1
2

CI(N
†τIN)(N†τIN)

]
. (3.11)

In the following sections, we build up the lattice version for this action. It is convienent to perform a

Wick rotation, t = x0
→ −iτ = −ixE

0 , so that one has a representation of the field theory in Euclicean

space and the connection between the field theory and statistical physics is constructed. The rule of Wick

rotation is

xµ = (x0, ~x)→ (−ixE
0 , x

E
i ) , (3.12)

xµ = (x0,−~x)→ (−ixE
0 ,−xE

i ) , (3.13)

∂µ = (∂0, ∂i)→ (i∂E
0 , ∂

E
i ) , (3.14)

∂µ = (∂0,−∂i)→ (i∂E
0 ,−∂

E
i ) , (3.15)

d4x→ −id4xE , (3.16)

where the upper letter ‘E’ indicates Euclicean space.
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3.2 Chiral Effective Field Theory on the Lattice

3.2.1 Nucleonic Fields on the Lattice

In continuious Minkowski space-time, the action of the free nucleonic fields reads

S f[N,N
†] =

∫
d4x N†(x)(i∂0 +

∇
2

2mN
)N(x)

=

∫
(−i)d4xE NE†(xE)(−∂E

0 +
∇

E
∇

E

2mN
)NE(xE)

= i
∫ d4xE NE†(xE)

∂E
0 −
∇

E
∇

E

2mN

 NE(xE)
 , (3.17)

where

NE(xE) = N(x) , NE†(xE) = N†(x) ,

and we define

S E
f [NE,NE†] =

∫
d4xE NE†(xE)

∂E
0 −
∇

E
∇

E

2mN

 NE(xE) . (3.18)

so that S f = iS E
f . We show how to rotate the Minkowski time to Euclicean time in detail and discretize

the Euclicean space-time by a replacement

xE
µ → (atn̂t, an̂i) = a(

1
αt

n̂t, n̂i) , (3.19)

NE(xE)→ NE(an̂) , NE†(xE)→ NE†(an̂) , (3.20)∫
d4xE

→ ata
3
∑

n̂

, ∂E
µ =

1
a

(
1
αt
∂̂0, ∇̂) , (3.21)

where n̂ = (n̂t/αt, n̂i) and it is dimensionless. As a result,

S E
f = a3at

∑
n̂

NE†(an̂)

 1
at
∂̂0 −

∇̂
2

2a2mN

 NE(an̂)

= αt

∑
n̂

N̂†(n̂)
 1
αt
∂̂0 −

∇̂
2

2m̂N

 N̂(n̂) , (3.22)

where

N̂(n̂) = a3/2NE(an̂) , N̂†(n̂) = a3/2NE†(an̂) , m̂N = amN . (3.23)
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Chapter 3 Lattice Methods

Here we introduce the Grassmann fields η and η∗ for nucleons. The Grassmann fields are periodic with

respect to the spatial extent of the lattice

η(ns + Lx̂, nt) = η(ns + Lŷ, nt) = η(ns + Lẑ, nt) = η(ns, nt) ,

η∗(ns + Lx̂, nt) = η∗(ns + Lŷ, nt) = η∗(ns + Lẑ, nt) = η∗(ns, nt) ,
(3.24)

and antiperiodic along the temporal axis

η(ns, nt + Lt) = −η(ns, nt) ,

η∗(ns, nt + Lt) = −η∗(ns, nt) .
(3.25)

The integral measure is written asDηDη∗ for short. ηn and η∗m denote η̂(n̂) and η̂∗(m̂) respectively. Note

that the nucleonic field carries spin and isopin index,

DηDη∗ =
∏

ntns,si

dηsi,ntns
dη∗si,ntns

. (3.26)

The convention for Grassmann integration is

∫
dη =

∫
dη∗ = 0 , (3.27)∫

dη η =

∫
dη∗ η∗ = 1 , (3.28)∫

dηdη∗ η∗η = 1 . (3.29)

The action for a single nucleon can be rewritten as

S E
f (η, η∗) = αt

∑
n

∑
si

η∗si,n

 1
αt
∂̂0 −

∇̂
2

2m̂N

 ηsi,n , (3.30)

and the two-point correlation function is

〈ηs1i1,n
η∗s2i2,m

〉 =

∫
DηDη∗ηs1i1,n

η∗s2i2,m
exp(−S E

f )∫
DηDη∗ exp(−S E

f )
. (3.31)
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3.2 Chiral Effective Field Theory on the Lattice

The subscripts s1s2 denote spin indics and i1i2 isospin indics. We rewrite the nucleonic action in the form

S E
f =

∑
nm

∑
s1i1 s2i2

η∗s1i1,n
Ks1i1n,s2i2mηs2i2,m

, (3.32)

where K is given by

Ks1i1n,s2i2m = δs1 s2
δi1i2

1
2

(δnt+1,mt
− δnt−1,mt

)δns,ms
+

αt

2m̂N

∑
l̂

∑
ν

(−)νων(δns+νl̂,ms
+ δns−νl̂,ms

)


= δs1 s2

δi1i2

1

L3Lt

∑
ktks

K(k̂) exp
(
i
2π
Lt

kt(nt − mt)
)

exp
(
i
2π
L

ks · (ns − ms)
)
, (3.33)

and

K(k̂) = i sin
(
2π
Lt

kt

)
+

αt

2m̂N

∑
ν

(−)νων
∑

l̂

2 cos
(
ν

2π
L

[ks]l

)
. (3.34)

We then have

〈ηs1i1,n
η∗s2i2,m

〉 = K−1
s1i1n,s2i2m

= δs1 s2
δi1i2

1

L3Lt

∑
ktks

K(k̂)−1 exp
(
i
2π
Lt

kt(nt − mt)
)

exp
(
i
2π
L

ks · (ns − ms)
)
. (3.35)

Meanwhile the equal-time Green’s function is obtained

〈ηs1i1,ns
(nt)η

∗
s2i2,ms

(nt)〉 = δs1 s2
δi1i2

1

L3

∑
ks

Ks(ks)
−1 exp

(
i
2π
L

ks · (ns − ms)
)
, (3.36)

where

Ks(ks) =
αt

2m̂N

∑
ν

(−)νων
∑

l̂

2 cos
(
ν

2π
L

[ks]l

)
. (3.37)

3.2.2 Mesonic Fields on the Lattice

Consider the equation of motion of the pion field

(� + M2
π,I)π

I(x) = 0 , (3.38)
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Chapter 3 Lattice Methods

where πI is a pseudoscalar field with isospin degree of freedom, � is the d’Alembert operator, and x

stands for the space-time vector with components xµ. This equation of motion follows from an action

principle, δS b = 0, where

S b =

∫
d4x

[
1
2
∂µπ

I∂µπI
−

1
2

M2
π,Iπ

IπI
]

(3.39)

Any information about the pion field is contained in the Green functions

GII′
π (x, y) = 〈Ω|T {πI(x)πI′(y)}|Ω〉 , (3.40)

where |Ω〉 is the ground state of the the system and T denotes the time-ordered product of the operators.

The path integral representation of the Green functions is

GII′
π (x, y) =

∫
Dπ πI(x)πI′(y) exp(iS )∫

Dπ exp(iS )
= 〈πI(x)πI′(y)〉 . (3.41)

We derive the formulation continued to imaginary time,

S E
b =

∫
d4xE

(
1
2
∂E
µπ

EI∂E
µπ

EI
+

1
2

M2
π,Iπ

EIπEI
)
, (3.42)

GII′
π (xE, yE) =

∫
DπE πEI(xE)πEI′(yE) exp(−S E)∫

DπE exp(−S E)
, (3.43)

where πE(xE) = π(x). We now put the pion field on the lattice,

S E
b → αt

∑
n̂

1
2

 1

α2
t

∂̂0π̂
I(n̂)∂̂0π̂

I(n̂) + ∂̂iπ̂
I(n̂)∂̂iπ̂

I(n̂) + M̂2
π,I π̂

I(n̂)π̂I(n̂)


=

1
2

∑
nm,II′

πI
nDII′

nmπ
I′
m , (3.44)

where

π̂(n̂) = aπE(an̂) , M̂π,I = aMπ,I . (3.45)
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3.2 Chiral Effective Field Theory on the Lattice

It is convenient to take π̂(n̂) in its matrix form πn, and then

DII′
nm = δII′

 1
αt

(2δnt,mt
− δnt+1,mt

− δnt−1,mt
)δns,ms

+ αtδnt,mt

∑
l̂

∑
ν

(−)νων(δns+νl̂,ms
+ δns−νl̂,ms

) + αtM̂
2
π,Iδnm


= δII′

1

L3Lt

∑
ktks

DI(k̂) exp
(
i
2π
Lt

kt(nt − mt)
)

exp
(
i
2π
L

ks(ns − ms)
)
, (3.46)

where

DI(k̂) =
2
αt

(
1 − cos

2π
Lt

kt

)
+ 2αt

∑
l̂

∑
ν

(−)νων cos ν
2π
L

[ks]l + αtM̂
2
π,I . (3.47)

The discretized two-point function is

〈πI
nπ

I′
m〉 = [D−1]II′

nm

= δII′
1

L3Lt

∑
ktks

DI(k̂)−1 exp
(
i
2π
Lt

kt(nt − mt)
)

exp
(
i
2π
L

ks(ns − ms)
)
. (3.48)

The pion instantaneous correlation function at some certain spatial separation is then

〈πI
ns

(nt)π
I′
ms

(nt)〉 = δII′
1

L3

∑
ks

DI
s(k̂s)

−1 exp
(
i
2π
L

ks(ns − ms)
)
, (3.49)

where

DI
s(ks) = αt

2 ∑
l̂

∑
ν

(−)νων cos ν
2π
L

[ks]l + M̂2
π,I

 . (3.50)

3.2.3 Interactions on the Lattice: One-Pion Exchange and Transfer Matrix Operator

Consider the long-range interaction between the nucleonic field and pion.

S πN =

∫
d4x

[
−
gA

2 fπ
N†τI σi∇iπ

IN
]
. (3.51)

At LO, the OPE contributions to the Lagrangian of the χEFT interaction on the lattice takes the form
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Chapter 3 Lattice Methods

S E
πN = αt

gA

2 f̂π

∑
I,l

∑
n̂

∑
s1 s2i1i2

∂̂l π̂
I(n̂) N̂†s1i1

(n̂)(τI)i1i2
(σl)s1 s2

N̂s2i2
(n̂) , (3.52)

where f̂π = a fπ. Now we write down the partition function with nucleonic field, pion field and their

interactions

Z =

∫
DηDη∗Dπ exp

(
−S E

f − S E
b − S E

πN

)
. (3.53)

Here more details are presented for this system. Z has the following explicit form on a finite, periodic,

Euclicean time lattice,

Z =

∫ ∏
n̂

∏
si

dηsi,n̂dη∗si,n̂

∏
I

dπI
n̂

 exp
(
−S E

f − S E
b − S E

πN

)
→

∫ ∏
nt

∏ns

∏
si

dηsi,n̂dη∗si,n̂

∏
I

dπI
n̂

∏
nt

{
exp

(
−H(nt)

f − H(nt)
b

)
exp

(
−Hf − Hb − HπN

)}
. (3.54)

The actions of the nucleons and pions are seperated into time-dependent parts and stationary parts

S E
f =

∑
nt

H(nt)
f +

∑
nt

Hf , (3.55)

S E
b =

∑
nt

H(nt)
b +

∑
nt

Hb , (3.56)

S E
πN =

∑
nt

HπN , (3.57)

where

Hf = αt

∑
ns

η̂∗(n̂)
 1
αt
∂̂0 −

∇̂
2

2m̂N

 η̂(n̂) , (3.58)

Hb = αt

∑
ns

∑
I

1
2

 1

α2
t

∂̂0π̂
I(n̂)∂̂0π̂

I(n̂) +
∑

l

∂̂lπ̂
I(n̂)∂̂lπ̂

I(n̂) + m̂2
ππ̂

I(n̂)π̂I(n̂)

 , (3.59)

HπN = αt

∑
ns

gA

2 f̂π

∑
I,l

∑
s1 s2i1i2

∂̂l π̂
I(n̂)η̂∗s1i1

(n̂)[τI]i1i2
[σl]s1 s2

η̂s2i2
(n̂) . (3.60)
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3.2 Chiral Effective Field Theory on the Lattice

The partition function has a condensed form as

Z → Tr

∏
nt

M(nt)

 , (3.61)

where

M(nt) =

∫ ∏
ns

∏
si

dηsi,ns
(nt)dη

∗
si,ns

(nt)
∏

I

dπI
ns

(nt)

 exp
(
−Hf − Hb − HπN

)
=

∫ ∏ns

∏
I

dπI
ns

(nt)

 e−Hb

∫ ∏ns

∏
si

dηsi,ns
(nt)dη

∗
si,ns

(nt)

 exp
(
−Hf − HπN

)
=

∫
Dπ(nt) e−Hb

∫
Dη(nt)Dη

∗(nt) exp
(
−Hf − HπN

)
=

∫
Dπ(nt) e−Hb

[
: exp

(
−Hf − HπN

)
:
]
. (3.62)

The double colon :: denotes normal-ordered operators. The transfer matrix indicates the evolution of

a quantum system in an infinitesmal timestep ε, which means we may obtain the evolution operator

between any two time points by accumulating the transfer matrix over the time interval. In this section

we investigate further the transfer matrix of a nucleonic system from which spectral information can

be extracted as well as any observations of interest in the scattering process, such as scattering lengths,

effective ranges cross sections and phase shifts.

In non-relativistic χEFT with instantaneous interactions, the Hamiltonian, Eq. (3.58), becomes static

Hf = αt

∑
ns

η̂∗(n̂)
− ∇̂2

2m̂N

 η̂(n̂) , (3.63)

Hb = αt

∑
ns

∑
I

1
2

∑
l

∂̂lπ̂
I(n̂)∂̂lπ̂

I(n̂) + m̂2
ππ̂

I(n̂)π̂I(n̂)

 , (3.64)

HπN = αt

∑
ns

gA

2 f̂π

∑
I,l

∑
s1 s2i1i2

∂̂l π̂
I(n̂)η̂∗s1i1

(n̂)[τI]i1i2
[σl]s1 s2

η̂s2i2
(n̂) . (3.65)

If only the NN system is of interest in the discussion, the transfer matrix can be written as

21



Chapter 3 Lattice Methods

M(nt) → : exp

−αt

∑
ns

∑
β={1,2}

η(β)∗
ns

(nt)
− ∇̂2

2m̂N

 η(β)
ns

(nt) (3.66)

+α2
t
g2

A

4 f̂ 2
π

∑
nsms

∑
II′

∑
s1 s2

〈∆s1
π̂I

ns
(nt)∆s2

π̂I′
ms

(nt)〉 η
(1)∗
ns

(nt)σ
(1)
s1
τ(1)Iη(1)

ns
(nt) η

(2)∗
ms

(nt)σ
(2)
s2
τ(2)I′η(2)

ms
(nt)

 : ,

where

〈∆s1
π̂I

ns
(nt)∆s2

π̂I′
ms

(nt)〉 =

∫
Dπ(nt) ∆s1

π̂I
ns

(nt)∆s2
π̂I′

ms
(nt) exp(−Hb)∫

Dπ(nt) exp(−Hb)

= δII′
1

L3

∑
ks

[q̂s]s1
[q̂s]s2

αt(q̂
2
s + M̂2

π,I)
exp

(
i
2π
L

ks · (ns − ms)
)
, (3.67)

and in which

q̂2
s =

∑
l

∑
ν

(−)νων2 cos ν
2π
L

[ks]l , (3.68)

[q̂s]l =
∑
ν

(−)ν+1oν sin ν
2π
L

[ks]l . (3.69)

We introduce the CM scheme (CMS) for two identical nucleons

Rs = (ns + ms)/2 , rs = ns − ms . (3.70)

Rs, rs indicates motions of CM and the relative position of the nucleons, respectively. The transfer matrix

is rewritten as

M(nt) → : exp

−αt

∑
rs

η(2)∗
−rs/2

(nt)η
(1)∗
rs/2

(nt)
− ∇̂

2
r

2(m̂N/2)

 η(1)
rs/2

(nt)η
(2)
−rs/2

(nt)

−αt

∑
rs

∑
II′

∑
s1 s2

[V1π(rs, nt)]
II′
s1 s2

η(1)∗
rs/2

(nt)σ
(1)
s1
τ(1)Iη(1)

rs/2
(nt) η

(2)∗
−rs/2

(nt)σ
(2)
s2
τ(2)I′η(2)

−rs/2
(nt)

 : . (3.71)

with

[V1π(rs, nt)]
II′
s1 s2

= δII′
1

L3

∑
ks

− g2
A

4 f̂ 2
π

 [q̂s]s1
[q̂s]s2

αt(q̂
2
s + M̂2

π,I)
exp

(
i
2π
L

ks · rs

)
, (3.72)
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3.2 Chiral Effective Field Theory on the Lattice

where we have integrated out the translational motion of the two-body system as a whole.

3.2.4 Interactions on the Lattice: First Order Contact Interactions and Auxillary

Fields

Consider the contact interactions that appear at LO in χEFT.

S NN =

∫
d4x

[
−

1
2

C0(N†N)(N†N) −
1
2

CI(N
†τIN)(N†τIN)

]
. (3.73)

Following the routine shown previously, we can write down the action for contact term / contact operator

/ contact interaction (CT)s in Euclicean space,

S E
NN = αt

∑
n̂

1
2

Ĉ0N̂†(n̂)N̂(n̂)N̂†(n̂)N̂(n̂) +
1
2

ĈI

∑
I

N̂†(n̂)τI N̂(n̂)N̂†(n̂)τI N̂(n̂)

 , (3.74)

where

Ĉ0 = a−2C0 , (3.75)

ĈI = a−2CI . (3.76)

We may easily include this zero-range contact interaction into the transfer matrix, Eq. (3.62)

M(nt) →

∫
Dπ(nt) e−Hb

[
: exp

(
−Hf − HπN − HNN

)
:
]
. (3.77)

with the static Hamiltonians

Hf = αt

∑
ns

η∗n

− ∇̂2

2m̂N

 ηn ,

Hb = αt

∑
ns

∑
I,l

[
1
2
∂̂lπ

I
n∂̂lπ

I
n +

1
2

m̂2
ππ

I
nπ

I
n

]
,

HπN = αt

∑
ns

gA

2 f̂π

∑
I,l

∑
s1 s2i1i2

∂̂l π
I
n η
∗
s1i1,n

(τI)i1i2
(σl)s1 s2

ηs2i2,n
,

HNN = αt

∑
ns

1
2!

∑
α,β

Ĉ0 η
(α)∗
n η(α)

n η(β)∗
n η(β)

n + ĈI

∑
I

η(α)∗
n τ(α)aη(α)

n η(β)∗
n τ(β)aη(β)

n

 . (3.78)
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Auxillary Fields

A formal integral relation in Gaussian form,

∫
ds
√

2π
exp

[
−

1
2

s2
+ bs

]
= e

1
2 b2

, (3.79)

allows us to rewrite the operator : exp (−HNN) : into path integral form. As compared to the inversion of

Eq. (3.79), we have

: exp (−HNN) :→
∫
DsDsI exp

[
−Hss − HsIsI

− HsN − HsIN

]
, (3.80)

where

Hss =
1
2

∑
ns

s2
n , (3.81)

HsN =

√
−αtĈ0

∑
ns

sn η
∗
nηn , (3.82)

HsIsI
=

1
2

∑
ns

[sI]
2
n , (3.83)

HsIN =

√
−αtĈI

∑
ns

[sI]n η
∗
nτηn , (3.84)

andDsDsI is written as shorthand for the integral measure

∫
DsDsI =

∫ ∏
n

dsn
√

2π

d[sI]n
√

2π
. (3.85)

The formula for the full transfer matrix at LO of χEFT is

M(nt) →

∫
Dπ(nt)Ds(nt)DsI(nt) e−Hb−Hss−HsIsI

[
: exp

(
−Hf − HπN − HsN − HsIN

)
:
]
. (3.86)

Ref. [10] demonstrates the physical meaning of the transfer matrix in Figs. 3.1 and 3.2, it also shows how

the auxiliary field formalism makes the problem amenable to pralell computing.
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Figure 3.1: Worldline description of the interaction of four nucleons with explicit pion exchanges and contact
interactions.

Figure 3.2: Worldline description in erms of auxiliary fields. As can be seen, such a description is particularly
suited for paralell computing.

Transfer Matrix of 2-Body System at Leading Order

Note that the CT for the single nucleonic system vanishes due to the anticommutation relation for the

nucleonic fields. When it comes to a NN system, we have

S E
NN(η, η∗) = αt

∑
n

Ĉ0 η
(1)∗
n η(1)

n η(2)∗
n η(2)

n + ĈI

∑
I

η(1)∗
n τ(1)Iη(1)

n η(2)∗
n τ(2)Iη(2)

n

 , (3.87)

so that
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: exp (−HNN) :→ : exp

−αt

∑
ns

Ĉ0η
(1)∗
ns

(nt)η
(1)
ns

(nt) η
(2)∗
ns

(nt)η
(2)
ns

(nt)

−αt

∑
ns

∑
I

ĈIη
(1)∗
ns

(nt)τ
(1)Iη(1)

ns
(nt) η

(2)∗
ns

(nt)τ
(2)Iη(2)

ns
(nt)

 :

→ : exp

−αt

∑
nsms

Ĉ0η
(1)∗
ns

(nt)η
(1)
ns

(nt) η
(2)∗
ms

(nt)η
(2)
ms

(nt)

−αt

∑
nsms

∑
I

ĈIη
(1)∗
ns

(nt)τ
(1)Iη(1)

ns
(nt) η

(2)∗
ms

(nt)τ
(2)Iη(2)

ms
(nt)

 :

→ : exp

−αt

∑
rs

η(2)∗
−rs/2

(nt)η
(1)∗
rs/

(nt)
[
Vct,0(rs, nt)

]
η(1)

rs/2
(nt)η

(2)
−rs/2

(nt)

 : , (3.88)

where

Vct,0(rs, nt) = Ĉ0δrs,0 + ĈIδrs,0

∑
I

τ(1)Iτ(2)I

=
1

L3

∑
ks

Ĉ0 + ĈI

∑
I

τ(1)Iτ(2)I

 exp
(
i
2π
L

ks · rs

)
(3.89)

with ‘ct’ indicating CTs of nucleon-nucleon (NN). Now we can write down the complete transfer matrix

for the NN system at LO,

M(nt) → : exp

−αt

∑
rs

η(2)∗
−rs/2

(nt)η
(1)∗
rs/2

(nt)
− ∇̂

2
r

2(m̂N/2)

 η(1)
rs/2

(nt)η
(2)
−rs/2

(nt)

− αt

∑
rs

η(2)∗
−rs/2

(nt)η
(1)∗
rs/2

(nt)
[
V1π(rs, nt)

]
η(1)

rs/2
(nt)η

(2)
−rs/2

(nt)

−αt

∑
rs

η(2)∗
−rs/2

(nt)η
(1)∗
rs/2

(nt)
[
Vct,0(rs, nt)

]
η(1)

rs/2
(nt)η

(2)
−rs/2

(nt)

 : (3.90)

with

V1π(rs, nt) =
1

L3

∑
ks

exp
(
i
2π
L

ks · rs

) − g2
A

4 f̂ 2
π

∑
I

τ(1)Iτ(2)I

q̂2
s + M̂2

π,I

q̂s · σ
(1) q̂s · σ

(2) . (3.91)
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3.3 Interactions on the Lattice: Improvement of Contact Interactions

In the previous sections we discussed the LO interactions, both pionic or contact, as well as long-

ranged or short-ranged interactions due to pion exchange. Here we discuss, in general, a little about the

structure of the interaction between two nucleons. When we focus on the position-spin structure of the

potential, the vectors for individual nucleons can be only given by the position, momentum and spin:

r1, r2,p1,p2,σ1,σ2. Due to the constraint of Galilean symmetry, the interactions are parameterized by

the relative distance between the two particles, r = r1 − r2, or the relative momentum, p = (p1 − p2)/2,

and must be independent of the CM motion. We therefore construct operators satisfying the following

properties: rotational invariance, invariance under a parity operation, time reversal invariance, hermiticity,

invariance in respect to interchanging the nucleon labels. Finally the form can be only taken as

{
1spin,σ1 · σ2, S 12(r), S 12(p),L · S, (L · S)2

}
×

{
1isospin, τ1 · τ2

}
, (3.92)

where L = r× p, S = (σ1 +σ2)/2 and S 12(x) = 3σ1 · x̂ σ2 · x̂−σ1 ·σ2 with x̂ = x/|x|. The operators are

built up with this position-spin-isospin structure multiplied by scalar functions of r2, p2 and L2, which

give contributions of higher order momentum.

In momentum space, the matrix of the interactions can be written in the basis of initial and final CM

momenta of the two nucleons p and p′. The same logic stated above lead to the most general form of the

momentum-spin-isospin structure as

{
1spin,σ1 · σ2, S 12(q), S 12(k), iS · q × k,σ1 · q × k σ2 · q × k

}
×

{
1isospin, τ1 · τ2

}
, (3.93)

where q = p′ − p is the transfer momentum and k = (p′ + p)/2 is the average momentum. The operators

are multiplied with the scalar functions that depend on p2, p′2,p · p′.

In the scheme of χEFT, CTs have contributions at order Q0, Q2, Q4, ... which correspond respectively

to terms of LO, NLO, N3LO ... with Q denoting the typical relative momentum of the two nucleons,

Q ∼ p, p′ ∼ q, k.

At LO, there are four operators with dimension Q0

Vct,0 = α1 + α2σ1 · σ2 + α3τ1 · τ2 + α4τ1 · τ2 σ1 · σ2 . (3.94)

but only two of them are independent due to symmetry constraints, see Appendix E of Ref. [11]. We

27



Chapter 3 Lattice Methods

therefore choose two of them to construct the LO potential

Vct,0 = C0 + CIτ1 · τ2 . (3.95)

At NLO, generally we have 14 operators of Q2

Vct,2 = β1 q2
+ β2q2τ1 · τ2 + β3q2σ1 · σ2 + β4q2σ1 · σ2τ1 · τ2

+ β5 k2
+ β6k2τ1 · τ2 + β7k2σ1 · σ2 + β8k2σ1 · σ2τ1 · τ2

+ β9 i S · q × k + β10 i S · q × k τ1 · τ2

+ β11σ1 · qσ2 · q + β12σ1 · qσ2 · qτ1 · τ2 + β13σ1 · kσ2 · k + β14σ1 · kσ2 · kτ1 · τ2 . (3.96)

from which, after symmetry considerations are taken into account, there remain 7 linearly independent

operators

Vct,2 = C1 q2
+ C2q2τ1 · τ2 + C3q2σ1 · σ2 + C4q2σ1 · σ2τ1 · τ2

+ C5σ1 · qσ2 · q + C6σ1 · qσ2 · qτ1 · τ2 + C7i S · q × k . (3.97)

At N3LO, totally 30 operators with dimension Q4 are available of which we have 15 free coefficients.

Vct,4 = D1 q4
+ D2 q4 τ1 · τ2 + D3 q4σ1 · σ2 + D4 q4τ1 · τ2 σ1 · σ2 (3.98)

+ D5(q · k)2
+ D6(q · k)2 τ1 · τ2 + D7(q · k)2 σ1 · σ2 + D8(q · k)2τ1 · τ2 σ1 · σ2

+ D9q2i S · q × k + D10q2i S · q × k τ1 · τ2 + D11q2 σ1 · qσ2 · q + D12q2 σ1 · qσ2 · q τ1 · τ2

+ D13q2 σ1 · kσ2 · k + D14(σ1 · q × k) (σ2 · q × k) + D15(σ1 · q × k) (σ2 · q × k) τ1 · τ2 .

This basis can be further reduced, see Ref. [12]. This will, however, not be considered in what follows.

How do these interactions with high order momentum join in the transfer matrix? Perturbatively or

non-perturbatively? In Sec. 3.2.3, we have presented how the Lagrangian of the LO interactions leads to

the partition funtion and transfer matrix as an evolution operator for a general many-body system, as well

as, especially in a two-body system, and how the fundamental pion-nucleon interactive vertex becomes

an effective potential depending on the relative positions of the two nucleons.

χEFT allows us to investigate nuclear forces order by order in powers of particle momenta. The LO

interactions contribute the most, the next important are included at NLO, and then the N2LO, N3LO and
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so on.

In the following Sec. 4, we discuss separately the case of treating non-perturbatively the higher-order

contributions, i.e.

MLO = : exp
[
− Hf − αtVLO

]
: ,

MNLO = : exp
[
− Hf − αtVLO − αtVNLO

]
: ,

M
N2LO

= : exp
[
− Hf − αtVLO − αtVNLO − αtVN2LO

]
: ,

M
N3LO

= : exp
[
− Hf − αtVLO − αtVNLO − αtVN2LO

− αtVN3LO

]
:, (3.99)

and the case of a perturbative treatment of these, that is

MLO = : exp
[
− Hf − αtVLO

]
: ,

MNLO = MLO − αt : VNLOMLO : ,

MN2LO = MNLO − αt : V
N2LO

MLO : ,

MN3LO = M
N2LO

− αt : V
N3LO

MLO : , (3.100)

where Hf represents the kinetic energy of the nucleons, Eq. (3.63), and

VLO = V1π + Vct,0 ,

VNLO = V2π,2 + Vct,2 ,

V
N2LO

= V2π,3 ,

V
N3LO

= V2π,4 + Vct,4 .

A perturbative analysis beyond LO is also adopted in practical MC simulations of heavier nuclei.

3.3.1 High Order Contact Interactions in Position Space

We now provide the form of these operators when discretized on a lattice.
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Density and current operators

Following Ref. [13, 14], we define the point-like local density operator

ρ(n) ≡
∑
i, j

a†i, j(n)ai, j(n) , (3.101)

the local isospin density operator

ρI(n) ≡
∑
i, j, j′

a†i, j(n)(τI) j, j′ai, j′(n) , (3.102)

the local spin density operator

ρS (n) ≡
∑
i,i′, j

a†
i, j′

(n)(σS )i,i′ai′, j(n) , (3.103)

and the local isospin-spin density operator

ρS ,I(n) ≡
∑

i,i′, j, j′
a†i, j(n)(σS )i,i′(τI) j, j′ai′, j′(n) , (3.104)

where σS and τI denote the Pauli matrices for spin and isospin, respectively. Similarly, we define the

current density operator

Πl(n) ≡
∑
i, j

a†i, j(n)∇lai, j(n) −
∑
i, j

∇la
†

i, j(n)ai, j(n) , (3.105)

the isospin-current density operator

Πl,I(n) ≡
∑
i, j, j′

a†i, j(n)(τI) j, j′∇lai, j′(n) −
∑
i, j, j′
∇la

†

i, j(n)(τI) j, j′ai, j′(n) , (3.106)

the spin-current density operator

Πl,S (n) ≡
∑
i,i′, j

a†i, j(n)(σS )i,i′∇lai′, j(n) −
∑
i,i′, j

∇la
†

i, j(n)(σS )i,i′ai′, j(n) , (3.107)

and the spin-isospin-current density operator

30
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Πl,S ,I(n) ≡
∑

i,i′, j, j′
a†i, j(n)(σS )i,i′(τI) j, j′∇lai′, j′(n) −

∑
i,i′, j, j′

∇la
†

i, j(n)(σS )i,i′(τI) j, j′ai′, j′(n), (3.108)

At leading order

At this order we have the following operators

O
(0)
1 ≡

1
2

:
∑

n
ρ(n)ρ(n) : , (3.109)

O
(0)
2 ≡

1
2

:
∑

n

∑
I

ρI(n)ρI(n) : , (3.110)

At next-to-leading order

As discussed in the previous sections, there are seven independent contact operators with two derivatives

at NLO. Here, we use the basis and lattice formulation of Ref. [14], which leads to the following NLO

contact operators

O
(2)
1 ≡ −

1
2

:
∑

n

∑
l

ρ(n)∇2
l ρ(n) : , (3.111)

O
(2)
2 ≡ −

1
2

:
∑

n

∑
I,l

ρI(n)∇2
l ρI(n) : , (3.112)

O
(2)
3 ≡ −

1
2

:
∑

n

∑
S ,l

ρS (n)∇2
l ρS (n) : , (3.113)

O
(2)
4 ≡ −

1
2

:
∑

n

∑
S I,l

ρS ,I(n)∇2
l ρS ,I(n) : , (3.114)

O
(2)
5 ≡

1
2

:
∑

n

∑
S

∇S ρS (n)
∑
S ′
∇S ′ρS ′(n) : , (3.115)

O
(2)
6 ≡

1
2

:
∑

n

∑
S

∇S ρS ,I(n)
∑
S ′
∇S ′ρS ′(n) : , (3.116)

O
(2)
7 ≡ −

i
2

:
∑

n

∑
l,S ,l′

εl,S ,l′

[
Πl(n)∇l′ρS (n) + Πl,S (n)∇l′ρ(n)

]
: , (3.117)

where Πl(n) and Πl,S (n) denote current density and spin-current density operators.
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At next-to-next-to-next-to-leading order

In order to deal with the N3LO contact interactions on the lattice, tensor-current densities are introduced,

Πkl(n) ≡
∑
i, j

a†i, j(n)∇k∇lai, j(n) −
∑
i, j

∇ka†i, j(n)∇lai, j(n)

−
∑
i, j

∇la
†

i, j(n)∇kai, j(n) +
∑
i, j

∇k∇la
†

i, j(n)ai, j(n) , (3.118)

Πkl,S (n) ≡
∑
i,i′, j

a†i, j(n)(σS )i,i′∇k∇lai′, j(n) −
∑
i,i′, j

∇ka†i, j(n)(σS )i,i′∇lai′, j(n)

−
∑
i,i′, j

∇la
†

i, j(n)(σS )i,i′∇kai′, j(n) +
∑
i,i′, j

∇k∇la
†

i, j(n)(σS )i,i′ai′, jn) , (3.119)

Πkl,I(n) ≡
∑
i, j, j′

a†i, j(n)(τI) j, j′∇k∇lai, j′(n) −
∑
i, j, j′
∇ka†i, j(n)(τI) j, j′∇lai, j′(n)

−
∑
i, j, j′
∇la

†

i, j(n)(τI) j, j′∇kai, j′(n) +
∑
i, j, j′
∇k∇la

†

i, j(n)(τI) j, j′ai, j′n) , (3.120)

Πkl,S ,I(n) ≡
∑

i,i′, j, j′
a†i, j(n)(σS )i,i′(τI) j, j′∇k∇lai′, j′(n) −

∑
i,i′, j, j′

∇ka†i, j(n)(σS )i,i′(τI) j, j′∇lai′, j′(n)

−
∑

i,i′, j, j′
∇la

†

i, j(n)(σS )i,i′(τI) j, j′∇kai′, j′(n) +
∑

i,i′, j, j′
∇k∇la

†

i, j(n)(σS )i,i′(τI) j, j′ai′, j′n) ,

(3.121)

Based upon these tensor-current densities, as well as the local densities and current densities operators,

we obtain the contact interactions at order Q4 on the lattice

O
(4)
1 ≡

1
2

:
∑

n

∑
kl

ρ(n)∇2
k∇

2
l ρ(n) : , (3.122)

O
(4)
2 ≡

1
2

:
∑

n

∑
I,kl

ρI(n)∇2
k∇

2
l ρI(n) : , (3.123)

O
(4)
3 ≡

1
2

:
∑

n

∑
S ,kl

ρS (n)∇2
k∇

2
l ρS (n) : , (3.124)

O
(4)
4 ≡

1
2

:
∑

n

∑
S I,kl

ρS ,I(n)∇2
k∇

2
l ρS ,I(n) : , (3.125)

O
(4)
5 ≡

1
4

:
∑

n

∑
kl

[
Πkl(n)∇k∇lρ(n) + ∇kΠl(n)∇lΠk(n)

]
: , (3.126)

O
(4)
6 ≡

1
4

:
∑

n

∑
I,kl

[
Πkl,I(n)∇k∇lρI(n) + ∇kΠl,I(n)∇lΠk,I(n)

]
: , (3.127)
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O
(4)
7 ≡

1
4

:
∑

n

∑
S ,kl

[
Πkl,S (n)∇k∇lρS (n) + ∇kΠl,S (n)∇lΠk,S (n)

]
: , (3.128)

O
(4)
8 ≡

1
4

:
∑

n

∑
S I,kl

[
Πkl,S I(n)∇k∇lρS I(n) + ∇kΠl,S I(n)∇lΠk,S I(n)

]
: , (3.129)

O
(4)
9 ≡ −

i
2

:
∑

n

∑
k,lS l′

εl,S ,l′

[
Πl(n)∇2

k∇l′ρS (n) + Πl,S (n)∇2
k∇l′ρ(n)

]
: , (3.130)

O
(4)
10 ≡ −

i
2

:
∑

n

∑
I,k,lS l′

εl,S ,l′

[
Πl,I(n)∇2

k∇l′ρS ,I(n) + Πl,S ,I(n)∇2
k∇l′ρI(n)

]
: , (3.131)

O
(4)
11 ≡

1
2

:
∑

n

∑
l,S ,S ′
∇S ρS (n)∇2

l ∇S ′ρS ′(n) : , (3.132)

O
(4)
12 ≡

1
2

:
∑

n

∑
l,I,S ,S ′

∇S ρS ,I(n)∇2
l ∇S ′ρS ′,I(n) : , (3.133)

O
(4)
13 ≡ −

1
8

:
∑

n

∑
l,S ,S ′

[
ΠS ;S (n)∇2

l ΠS ′;S ′(n) + ΠS ;S ′(n)∇2
l ΠS ′;S (n) − 2 ΠS S ′;S (n)∇2

l ρS ′(n)
]

: , (3.134)

O
(4)
14 ≡

1
8

:
∑

n

∑
i jS ,klS ′

εi jS εklS ′

[
Π jl,S (n)∇i∇kρS ′(n) + Π jl,S ′(n)∇i∇kρS (n)

+ ∇iΠ jl,S (n)∇kρS ′(n) + ∇iΠ jl,S ′(n)∇kρS (n)
]

: , (3.135)

O
(4)
15 ≡

1
8

:
∑

n

∑
I,i jS ,klS ′

εi jS εklS ′

[
Π jl,S ,I(n)∇i∇kρS ′,I(n) + Π jl,S ′,I(n)∇i∇kρS ,I(n)

+ ∇iΠ jl,S ,I(n)∇kρS ′,I(n) + ∇iΠ jl,S ′,I(n)∇kρS ,I(n)
]

: , (3.136)

3.3.2 Contact Interactions in Spherical Harmonic Basis

In this section, the contact operators are reconstructed in a spherical harmonic basis. Operators in this

form can be easily projected onto specific angular momenta, which is convenient when comparing with

experimental NN scattering data that are separated into different partial waves.

At order Q2N there are totally 2N momenta p or p′ multiplied together in the amplitude of each

operator. For the sake of maintaining rotational invarience, p and p′ have to be combined to generate a

basis of representations of the rotation group SO(3). It is natural to construct this basis from spherical

harmonics.

Let us define ai j,p and a†i j,p as the lattice annihilation and creation operators for a specific momentum

state with spin i = 0, 1 (up, down) and isospin j = 0, 1 (proton, neutron). The operator [ap]S ,S z;I,Iz
is
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combination of {ai j,p} which has some certain total spin and isospin.

[ap]S ,S z;I,Iz
=

∑
ii′ j j′

ai j,pMii′(S , S z)M j j′(I, Iz)ai′ j′,−p . (3.137)

with

Mii′(0, 0) =
1
√

2
[δi0δi′1 − δi1δi′0] (3.138)

Mii′(1, 0) =
1
√

2
[δi0δi′1 + δi1δi′0] (3.139)

Mii′(1, 1) = δi0δi′0 (3.140)

Mii′(1,−1) = δi1δi′1 . (3.141)

We define

[Op]2M
S ,L,J,Jz;I,Iz

=
∑
S zLz

CJ,Jz
L,Lz,S ,S z

[Pp]2M
S ,S z;L,Lz;I,Iz

(3.142)

[Pp]2M
S ,S z;L,Lz;I,Iz

= p2MR∗L,Lz
(p) [ap]S ,S z;I,Iz

. (3.143)

with the spherical solid harmonics

RL,Lz
(p) =

√
4π

2L + 1
pLYL,Lz

(θ, φ) . (3.144)

and Clebsch-Gordan (CG) coefficiencts CJ,Jz
L,Lz,S ,S z

. The even integer 2M gives higher powers of the

momentum.

A set of CTs on the basis of spherical harmonics is constructed as:

[V2N]{2mo,2mi}

S ,I,Iz,J,Jz;{Lo,Li}
(p′,p) =

1
2

([
Op′

]2mo

S ,Lo,J,Jz;I,Iz

)† [
Op

]2mi

S ,Li,J,Jz;I,Iz
+

1
2

{
(Lo,mo)↔ (Li,mi)

}
. (3.145)

A specific operator is completely characterized by a set of quantum numbers (J, S , I, Li, Lo,mi,mo), where

J ,S and I are total angular momentum, total spin and total isospin. Li and Lo are orbital momentum. mi

and mo provide necessary powers of momentum. The subindex i and o denote incoming and outgoing

states of the scattering process, respectively. Note that J, S , I are good quantum numbers, whereas Li and

Lo can be different for the spin-triplet case where different orbital state are mixed due to the spin-orbital
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coupling, such as 3S1 −
3 D1 and 3P2 −

3 F2. In addition, due to the odd parity of the two-particle system,

the total isospin I can be obtained from the parities of total spin S and orbital momentum L.

We are interested in how many groups of quantum numbers (J, S , I, Li, Lo,mi,mo) there exist at any

Q2N . They have to satisfy the following conditions that

2N = 2mi + Li + 2mo + Lo

if S = 0, then


Lo = Li

J = Li

if S = 1 and Lo = Li, then J = {Li + 1, Li, Li − 1}

if S = 1 and |Li − Lo| = 2, then J = (Li + Lo)/2 (3.146)

At Q0, Q2, Q4, there are 2, 7 and 15 independent operators respectively. All of the cases are listed

in Tab. 3.2. Generally, the number of independent operators at order Q2N is (N + 1)(3N + 4)/2. This

respresentation of the operators into the angular momentum basis with spin and isospin structure q,k, σ, τ

is exactly equivalent in the continuum limit. The coefficients of CTs are therefore linearly dependent.

Taking the LO terms as an example

Vct,0 = C0 + CIτ1 · τ2 , (3.147)

when in the angular momentum basis, the form will be taken as

Vct,0 = C0,1S0
[V0]{0,0}0,1,Iz,0,0;{0,0} + C0,3S1

[V0]{0,0}1,0,0,1,Jz;{0,0}
. (3.148)

They satisfy a simple relation that

[ C0

CI

]
= 4π

[ 3/4 1/4

1/4 −1/4

][ C0,1S0

C0,3S1

]
, (3.149)

so are the higher order coefficients. Using the improved definition of momentum on a lattice with finite

spacing, Eq. (3.1), the relation between transfer/average momentum q,k and initial/final momentum p,p′

becomes complicated for that sin q , sin p′ − sin p simply, despite that q = p′ − p. The dependence of

coeffients in angular momentum basis on ones in spin-isospin basis is not linear any more. Fortunately
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Table 3.2: Operator basis for the contact interactions at various orders.

Q2N S J Lo Li 2mo 2mi

Q0 0 0 0 0 0 0
1 1 0 0 0 0

Q2 0 0 0 0 2 0
0 1 1 1 0 0
1 1 0 0 2 0
1 0 1 1 0 0
1 1 1 1 0 0
1 2 1 1 0 0
1 1 2 0 0 0

Q4 0 0 0 0 4 0
0 0 0 0 2 2
0 1 1 1 2 0
0 2 2 2 0 0
1 1 0 0 4 0
1 1 0 0 2 2
1 0 1 1 2 0
1 1 1 1 2 0
1 2 1 1 2 0
1 1 2 2 0 0
1 2 2 2 0 0
1 3 2 2 0 0
1 1 2 0 2 0
1 1 2 0 0 2
1 2 3 1 0 0

the linear relationship will be restored when we take the lattice spacing to zero. This limit is, however,

actually not taken, so one must deal with these artefacts as described e.g. in Ref. [15].

3.4 Two-Body Scattering on the Lattice

In this section, we investigate the transfer matrix of the NN system from which we obtain properties of

the NN scattering states.

3.4.1 Hamiltonian Projection onto the Spherical Harmonic Basis

We have the form of the Hamiltonian, as well as the transfer matrix, of the nucleonic system on the lattice

including any information for observable quantities. We are interested in spectrum so that diagnolizing
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the transfer matrix is a feasible path to those physical states but not elegent for the huge dimension of

matrix ∼ L3
× L3

× . . . .

The case for two-body systems seems clear: due to rotational invariance, the eigenstates of the

Hamiltonian are degenerate with numerous degrees of freedom. We classify those position bases {|r〉}

playing symmetric roles under rotational transformation to separate redundancy. The new basis set is

characterized by the representation of a SO(3) group, namely angular momentum.

Let |n〉 ⊗ |S z〉 be the NN scattering state with lattice separation vector n and z-component of total

intrinsic spin S z. We define radial coordinates on the lattice by grouping together lattice mesh points

with the same radial distance to define radial position states and project onto states with total angular

momentum J, Jz in the continuum limit, see Ref. [16]. Using spherical harmonics Y`,`z
with orbital

angular momentum `, `z and Clebsch-Gordan coefficients CJ,Jz
`,`z,S ,S z

, we define

|r〉J,Jz
L =

∑
r′,`z,S z

CJ,Jz
`,`z,S ,S z

Y`,`z
(r̂′)δr,|r′ ||r

′
〉 ⊗ |S z〉, (3.150)

where δr,|r′ | is a Kronecker delta function that selects lattice points where |r′| = r. The Hamiltonian is

reducible into a sparse matrix as compared to the case using the normal position basis,

H → HJ,Jz

r′,r
=


J,Jz
J−1〈r

′
|H|r〉J,Jz

J−1
J,Jz
J−1〈r

′
|H|r〉J,Jz

J+1
J,Jz
J+1〈r

′
|H|r〉J,Jz

J−1
J,Jz
J+1〈r

′
|H|r〉J,Jz

J+1

 (3.151)

3.4.2 Spherical Wall Method to Determine Phase Shift on the Lattice

In the CM frame, a two-body nonrelativistic system can have several discrete bound states (E < 0) and

a continuum of scattering states (E > 0). Phase shifts can be extracted from the wave functions which

include all information of the collision and has an asymptotic behavior of a spherical wave at distances

large compared to the range of interactions.

Lüscher’s formula [17–20], widely used in lattice QCD, relates the S-wave scattering phase shifts to

the energy levels below the inelastic threshold calculated within a finite cubic volume. There also exists

extensions of Lüscher’s formular for higher partial waves, see Ref. [21].

In a spherical wave case, phase shifts are determined when the wave function propagates to the

asymptotical region, greater than the range of interactions and less than the lattice size, see Ref. [22]

ψ(r) � Ah−J (kr) − Bh+
J (kr) , (3.152)
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Where k is linked with energy lever by E = k2/m. A,B, which is obtained by least square fitting and

satisfies the simple relation B = S A with S indicating the scattering matrix, S = e2iδJ .

In the spin triplet case, spin-orbit coupling generates mixing between partial waves states of similar

parity, but separated by two units of angular momentum, e.g. S-D wave, P-F wave, D-G wave, ... ψ has

two compoents with orbital quantum number L = J ± 1, both behave as a spherical bessel function at

asymmptotical region,

ψ(r) �

 AJ−1h−J−1(kr)

AJ+1h−J+1(kr)

 −
 BJ−1h+

J−1(kr)

BJ+1h+
J+1(kr)

 . (3.153)

In the Stapp parameteriztion Ref. [23], the scattering matrix S takes the form as

S =

 exp(iδJ−1)

exp(iδJ+1)

 ×
 cos(2ε1) i sin(2ε1)

i sin(2ε1) cos(2ε1)

 ×
 exp(iδJ−1)

exp(iδJ+1)

 (3.154)

For each total angular momentum J, there exists a pair of independent wave functions {ψ, ψ′} degenerate

for spin-orbital coupling, so that we have

 AJ−1A′J−1

AJ+1A′J+1

 = S

 BJ−1B′J−1

BJ+1B′J+1

 . (3.155)

and then S = (BB′)(AA′)−1

In practice it is not necessary to determine the complete set of eigenstates of the system. What we need

is a series of typical sampling points on the diagram of phase shifts vs. energy levels. Thus we impose a

hard spherical wall potential as a "pick-up" machine at some large enough separation of nucleons, Rwall,

to calculate lattice phase shifts, Ref. [22, 24], see Fig. 3.3(a).

Vwall(r) =


0, if r < Rwall ;

∞, else .
(3.156)

After entering the wall, the spectrum of the nucleonic system shrinks to a subset of the original one,

for the wall removes the copies of the interactions arising from the periodic boundaries of the lattice

and suppresses those of scattering states which are still dancing at the foot of the wall, while but not

influencing their behavior inside. Certainly the wall does not exist, it is a fictitious "pick-up" tool so that

38



3.4 Two-Body Scattering on the Lattice

Rwall

(a)

wall 

(b)

Figure 3.3: (a)spherical wall (b)Auxiliary potential for the improved spherical wall as described in the text.

we may adjust the position of the wall to extract another set of the scattering states.

3.4.3 More on the Spherical Wall Method

In Ref. [16], the distance between two particles are divided into 3 parts, see Fig. 3.3(b). The innermost

(labeled by Region I) is interactive region where the particles influence each other. The intermediate

(labeled by Region II) is asymptotical region where the distance of two particles is large enough so that

the interaction between them vanishes Although this region II may extend to infinite, an extra potential

can be imposed artificially outside the intermediate region, labeled by Region III, which serves as a filter

without change of the inner part.

In the case that the potential in Region III does not exist, the 2-particle system has a continuous

spectrum of scattering states in continuous space or has a relatively high-dense spectrum on a lattice.

Choosing a specific potential in Region III has no impact on interactive region and asymptotical region

but picks up several certain energy levels due to the boundary restriction in Region III.

As described in Ref. [16], we impose a hard spherical wall boundary at some large radius Rwall and a

smooth auxiliary Gaussian potential in front of the wall, which we call Vaux(r). The auxiliary potential

has the form

Vaux(r) = V0 exp
[
−(r − Rwall)

2
]
, (3.157)

with adjustable coefficient V0 that is used to probe different values of the scattering energy. The auxiliary

potential is non-negligible only when r is a few lattice units away from the wall at Rwall. We determine the
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asymptotic phase shifts from the radial wave function at points where r is large but Vaux(r) is negligible.

For coupled partial waves such as the 3S1 −
3D1 channel, we determine the two phase shifts and mixing

angle using an additional auxiliary potential Uaux(r) with the same functional form as Vaux(r), but with

imaginary Hermitian off-diagonal couplings between the two partial waves,

 0 iUaux(r)

−iUaux(r) 0

 . (3.158)

This complex-valued auxiliary potential breaks time-reversal invariance and allows us to extract informa-

tion about the two independent phase shifts and mixing angle from the real and imaginary parts of the

complex-valued wave functions.
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CHAPTER 4

Scattering of Two Nucleons: Numerical Result

In this section1, the LECs of the NN force at LO, NLO and N2LO in nuclear lattice EFT (NLEFT) are

determined by means of a chi-square (χ2) minimization with respect to np phase shifts and mixing angles.

This procedure allows us to provide quantitative estimates of the uncertainties of the NLO constants in

the scheme of NLEFT, along with estimates of their systematical errors and the impact of such errors

on the binding energies of nuclei. The LO interaction consists of smeared, local CTs and static OPE.

We show results for a fully non-perturbative analysis up to N2LO, followed by a perturbative treatment

of contributions beyond LO. The pioneering calculations of Ref. [13, 14] (and almost all calcuations of

nuclear properties) were performed with a coarse lattice spacing of a = 1.97 fm, which corresponds to a

relatively low momentum cutoff of π/a = 314 MeV 2. We also study the effects of decreasing the lattice

spacing to a ' 1 fm, which greatly decreases the impact of lattice artifacts and systematical errors, and

discuss the possibility of further improving the lattice action to decrease remaining discretization effects.

The first study of discretization errors and lattice spacing variation at LO has been performed in Ref. [27].

In prior work at a = 1.97 fm, the TPE potential at NLO and N2LO contributions were integrated out

by means of a Taylor expansion in powers of q/2Mπ. Since we now use lattice spacings as small as

a ' 1 fm, the full structure of the TPE potential needs to be included.

1 This section is based on the publication [25].
2 Note that such soft nucleon-nucleon interactions lead to better convergence properties in the calculations of many-nucleon

systems and nuclear matter, see e.g. [26].
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4.1 Lattice Notations

The free part of NN Hamiltonian is given by [13]

Hfree ≡
6ω0

2mN

∑
n

∑
i, j=0,1

a†i, j(n)ai, j(n) (4.1)

−
ω1

2mN

∑
n

3∑
l=1

∑
i, j=0,1

a†i, j(n)
[
ai, j(n + êl) + ai, j(n − êl)

]
+

ω2

2mN

∑
n

3∑
l=1

∑
i, j=0,1

a†i, j(n)
[
ai, j(n + 2êl) + ai, j(n − 2êl)

]
−

ω3

2mN

∑
n

3∑
l=1

∑
i, j=0,1

a†i, j(n)
[
ai, j(n + 3êl) + ai, j(n − 3êl)

]
,

where the êl with l = 1, 2, 3 are unit vectors in the spatial directions, and mN is the nucleon mass. Here

we introduce the so-called stretched action to correct the lattice dispersion relation so as not to diviate

from continuum too much, see Ref. [28]. The stretched hopping coefficients are defined in terms of the

O(a4)- and O(a2)-improved hopping coefficients, see Table 3.1,

ωstr
k ≡ ω

(2)
k +N

(
ω(2)

k − ω
(1)
k

)
, (4.2)

where N = 10 is adopted in this study.

Ref. [13] showed that an on-site interaction such as those in Eq. (3.109) and (3.110) do not suffice to

provide a favorable description of the S-wave phase shifts except at very low momenta. Hence, smeared

contact operators were introduced according to

O
(0)
1 →

1

2L3 :
∑

q
f (q )ρ(q )ρ(−q ) : (4.3)

and

O
(0)
2 →

1

2L3 :
∑

q
f (q )ρI(q )ρI(−q ) : , (4.4)

where the smearing factor f (q ) is

f (q ) ≡ f −1
0 exp

−bs
q 4

4

 , (4.5)
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with bs an adjustable parameter detemined in the fit procedure, and normalized by

f0 ≡
1

L3

∑
q

exp
−bs

q 4

4

 (4.6)

with

q 2

2
≡

3∑
l=1

[
ω0 − ω1 cos

(
2π
L

ql

)
+ ω2 cos

(
4π
L

ql

)
− ω3 cos

(
6π
L

ql

) ]
, (4.7)

where the ql are lattice momentum components, and the O(a4)-improved hopping coefficients ωi are

listed in Table 3.1.

In the analysis of the Ref. [29], smeared contact operators were found to dramatically improve the

convergence of the NLEFT expansion in the S-wave channels, at the price of introducing unwanted

attractive forces in the P-wave channels. By means of the projection operators [30],

P(0,1)
≡

(
1
4
−
σ1 · σ2

4

) (
3
4

+
τ1 · τ2

4

)
, (4.8)

P(1,0)
≡

(
3
4

+
σ1 · σ2

4

) (
1
4
−
τ1 · τ2

4

)
, (4.9)

for the (S , I) = (0, 1) and (1, 0) channels, good agreement at LO in the P-wave channels can be recovered

(although a similar problem of unwanted forces in the D-wave channels persists). In the present work,

we use the corresponding smeared LO contact operators

O
(0)
(0,1) ≡

3

32L3 :
∑

q
f (q ) ρ(q ) ρ(−q ) : −

3

32L3 :
∑

q
f (q )

∑
S

ρS (q ) ρS (−q ) :

+
1

32L3 :
∑

q
f (q )

∑
I

ρI(q ) ρI(−q ) : −
1

32L3 :
∑

q
f (q )

∑
S ,I

ρS ,I(q ) ρS ,I(−q ) : , (4.10)

for (S , I) = (0, 1), and

O
(0)
(1,0) ≡

3

32L3 :
∑

q
f (q ) ρ(q ) ρ(−q ) : +

1

32L3 :
∑

q
f (q )

∑
S

ρS (q ) ρS (−q ) :

−
3

32L3 :
∑

q
f (q )

∑
I

ρI(q ) ρI(−q ) : −
1

32L3 :
∑

q
f (q )

∑
S ,I

ρS ,I(q ) ρS ,I(−q ) : , (4.11)
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for (S , I) = (1, 0), where ρS (n) and ρS ,I(n) are local spin density and local spin-isospin density operators,

defined in Sec. 3.3.1. The NLO CTs are taken as Eq. (3.111) – (3.116) except the spin-orbit operator O(2)
7

projected onto I = 1 following the treatment of Ref. [14],

O
(2)
7 → −

i
2

[
3
4

:
∑

n

∑
l,S ,l′

εl,S ,l′
(
Πl(n)∇l′ρS (n) + Πl,S (n)∇l′ρ(n)

)
:

+
1
4

:
∑

n

∑
l,S ,l′,I

εl,S ,l′
(
Πl,I(n)∇l′ρS ,I(n) + Πl,S ,I(n)∇l′ρI(n)

)
:
]
, (4.12)

which eliminates lattice artifacts in the S = 1 even-parity channels. For the derivative operator ∇l in the

NLO CTs, we use a simplified definition

∇l f (n) ≡
1
2
[
f (n + aêl) − f (n − aêl)

]
, (4.13)

where a is the spatial lattice spacing, and êl is a unit vector in spatial direction l. For the double derivative

operator ∇2
l , we take

∇
2
l f (n) ≡ ∇l

[
∇l f (n)

]
=

1
4
[
f (n + 2aêl) + f (n − 2aêl) − 2 f (n)

]
. (4.14)

In the radial transfer matrix formalism, we project each of the NLO contact operators onto the NN partial

waves under consideration, such that V i
X is the matrix element of operator i in channel X. If we denote

the complete set of NLO contact interactions by V (2)
ct , we find

〈
1S0|V

(2)
ct |

1S0〉 = C̃1V1
1S0

, (4.15)

〈
1P1|V

(2)
ct |

1P1〉 = C̃4V1
1P1

, (4.16)

〈
3P0|V

(2)
ct |

3P0〉 = C̃5V1
3P0

+ C̃6V5
3P0

+ C̃7V7
3P0

, (4.17)

〈
3P1|V

(2)
ct |

3P1〉 = C̃5V1
3P1

+ C̃6V5
3P1

+ C̃7V7
3P1

, (4.18)

for the uncoupled channels, and

〈
3SD1|V

(2)
ct |

3SD1〉 = C̃2V1
3SD1

+ C̃3V5
3SD1

, (4.19)

〈
3PF2|V

(2)
ct |

3PF2〉 = C̃5V1
3PF2

+ C̃6V5
3PF2

+ C̃7V7
3PF2

, (4.20)
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for the coupled ones. It is clear that only certain combinations of the contact operators contribute to each

partial wave, which allows for a simplified fitting procedure. Specifically, we determine C1S0
and C̃1 by

fitting the 1S0 channel, C̃4 by means of the 1P1 channel, C̃5, C̃6 and C̃7 from a simultaneous fit to the 3P0,
3P1 and 3P2-3F2 channels, and finally C3S1

, C̃2 and C̃3 by fitting the 3S1-3D1 channel.

We note that the fitted LECs C̃i are given in terms of those of the NLO operators in Eq. (3.111)

through (3.116) and (4.12) by the relation



C̃1

C̃2

C̃3

C̃4

C̃5

C̃6

C̃7



=



1 1 -3 -3 -1 -1 0

1 -3 1 -3 0 0 0

0 0 0 0 1 -3 0

1 -3 -3 9 -1 3 0

1 1 1 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 0 0 1





Cq2

CI2,q2

CS2,q2

CS2,I2,q2

C(q·S)2

CI2,(q·S)2

CI=1
(q×S)·k



, (4.21)

which can be inverted in order to find the original LECs Ci, once the C̃i have been determined.

4.2 Interactions on the Lattice: Improvement of Pion Exchange

Potential

The TPE contributes at NLO and N2LO. At LO, the OPE potential is given by Ref. [13, 28]

V (0)
1π (Mπ) =

1
2

:
∑

S 1,S 2,I

∑
n1,n2

− g2
A

4 f 2
π

GS 1,S 2
(n1 − n2,Mπ) ρS 1,I

(n1)ρS 2,I
(n2) : , (4.22)

where the pion propagator is

GS 1,S 2
(n1 − n2,Mπ) ≡

1

L3

∑
k

exp
[
i
2π
L

k · (n1 − n2)
]
×GS 1,S 2

(k,Mπ) , (4.23)

with

GS 1,S 2
(k,Mπ) ≡

qS 1
qS 2

M2
π + q2 , (4.24)
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we take

q2
≡ 2

3∑
l=1

[
ω0 − ω1 cos

(
2π
L

kl

)
+ ω2 cos

(
4π
L

kl

)
− ω3 cos

(
6π
L

kl

) ]
, (4.25)

using the O(a4)-improved hopping coefficients ωi of Table 3.1. For the numerator of Eq. (4.24), we take

qi ≡ sin
(
2π
L

ki

)
, (4.26)

which coincides with the choice of derivative operator in Eq. (4.13). We also include the isospin-breaking

(IB) effects due to the pion mass differences, Eq. (3.91). Specifically, we take

V (0)
1π (I = 1) = 2V (0)

1π (M
π±

) − V (0)
1π (M

π0) , (4.27)

V (0)
1π (I = 0) = −2V (0)

1π (M
π±

) − V (0)
1π (M

π0) , (4.28)

for the isospin-triplet and isospin-singlet channels, respectively. This approach is consistent with the

conventions of the Nijmegen partial wave analysis (PWA). For more details on the IB corrections to the

NN interaction, see Ref. [7, 31] (and references therein).

The first contribution from the TPE potential appears at NLO in χEFT. We note that several prior

continuum calculations including TPE exist. For instance, in Ref. [32, 33], dimensional regularization

(DR) was used to remove the divergence appearing in the loop integral, and a non-local momentum-

dependent form factor was applied to suppress the high-momentum contributions when solving the

Lippmann-Schwinger equation. In Ref. [34], another regularization called spectral function regularization

(SFR) was proposed. Compared to DR, the SFR method introduces an additional cutoff to remove the

short-range components of the TPE potential. Recently, a new position-space regularization was proposed

in Ref. [35–37]. The study of effects in nuclear lattice EFT due to different choices of regularization of

the TPE is beyond the scope of the current work. In this work, we use the DR expressions with discretized

lattice momenta. We also note that the lattice spacing serves as a natural ultraviolet (UV) cut-off.

Thus far, nuclear lattice EFT calculations have been performed with a lattice spacing of a = 1.97 fm,

and hence the TPE potentials at NLO and N2LO have not been included explicitly, but rather been

absorbed into the CTs. Since we are here studying the effects of reducing the lattice spacing to a ' 1 fm,

we shall for the first time include the full TPE structure. As for the smeared LO CTs and the OPE potential,

we define the lattice formulation of the TPE potential in momentum space, and Fourier transform the

results to coordinate space. The TPE potential is of the form
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V (2)
2π =

1
2

:
∑
n1,n2

∑
S 1,S 2

T (2)
S 1,S 2

(n1 − n2)ρS 1
(n1)ρS 2

(n2) : +
1
2

:
∑
n1,n2

∑
I

W (2)
C (n1 − n2)ρI(n1)ρI(n2) :

+
1
2

:
∑
n1,n2

∑
S

V (2)
S (n1 − n2)ρS (n1)ρS (n2) : , (4.29)

at NLO. The explicit expressions for the components of Eq. (4.29) are

T (2)
S 1,S 2

(n1 − n2) ≡
1

L3

∑
k

exp
[
i
2π
L

k · (n1 − n2)
]
× T (2)

S 1,S 2
(k) , (4.30)

where

T (2)
S 1,S 2

(k) ≡ 18g4
AF(2)(q) qS 1

qS 2
, (4.31)

and

W (2)
C (n1 − n2) ≡

1

L3

∑
k

exp
[
i
2π
L

k · (n1 − n2)
]
×W (2)

C (k) , (4.32)

with

W (2)
C (k) ≡ F(2)(q)

[ 48g2
AM4

π

4M2
π + q2 + 4M2

π

(
5g4

A − 4g2
A − 1

)
+ q2

(
23g4

A − 10g2
A − 1

) ]
, (4.33)

and

V (2)
S (n1 − n2) ≡

1

L3

∑
k

exp
[
i
2π
L

k · (n1 − n2)
]
× V (2)

S (k) , (4.34)

with

V (2)
S (k) ≡ −18g4

AF(2)(q) q2 , (4.35)

where the function F(2)(q) is given by

F(2)(q) ≡ −
1

384π2 f 4
π

L(q) , (4.36)

and L(q) is the loop function

L(q) ≡

√
4M2

π + q2

2q
log


√

4M2
π + q2

+ q√
4M2

π + q2
− q

 , (4.37)
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in DR. In order to coincide with the definitions of the derivative operator Eq. (4.13) and the double-

derivative operator Eq. (4.14), we take

qi → sin
(
2π
L

ki

)
, (4.38)

q2
i →

[
sin

(
2π
L

ki

)]2

, (4.39)

which ensures that the divergences appearing in the loop diagrams can be absorbed by tuning the contact

interaction LECs Ci.

Similarly, we parameterize the sub-leading (N2LO) contribution to the TPE as

V (3)
2π =

1
2

:
∑
n1,n2

∑
S 1,S 2,I

T (3)
S 1,S 2

(n1 − n2)ρS 1,I
(n1)ρS 2,I

(n2) :

+
1
2

:
∑
n1,n2

∑
S ,I

W (3)
S (n1 − n2)ρS ,I(n1)ρS ,I(n2) :

+
1
2

:
∑
n1,n2

V (3)
C (n1 − n2)ρ(n1)ρ(n2) : , (4.40)

where

T (3)
S 1,S 2

(n1 − n2) ≡
1

L3

∑
k

exp
[
i
2π
L

k · (n1 − n2)
]
× T (3)

S 1,S 2
(k) , (4.41)

with

T (3)
S 1,S 2

(k) ≡ c4F(3)(q) (4M2
π + q2) qS 1

qS 2
, (4.42)

and

W (3)
S (n1 − n2) ≡

1

L3

∑
k

exp
[
i
2π
L

k · (n1 − n2)
]
×W (3)

S (k) , (4.43)

with

W(3)
S (k) ≡ −c4F(3)(q) q2 , (4.44)

and

V (3)
C (n1 − n2) ≡

1

L3

∑
k

exp
[
i
2π
L

k · (n1 − n2)
]
× V (3)

C (k) , (4.45)

with

V (3)
C (k) ≡ 6F(3)(q) (2M2

π + q2)
[
2M2

π(2c1 − c3) − c3q2
]
, (4.46)
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Table 4.1: Summary of lattice spacings a (spatial) and at (temporal) and box dimensions L. The physical spatial
lattice volume V is kept constant at (La)3

' (63 fm)3.

a−1 [MeV] a−1
t [MeV] a [fm] L La [fm]

100 150 1.97 32 63.14
120 216 1.64 38 62.48
150 337.5 1.32 48 63.14
200 600 0.98 64 63.14

where the function F(3)(q) is given by

F(3)(q) ≡ −
g2

A

32π f 4
π

A(q) , (4.47)

and A(q) is the loop function

A(q) ≡
1
2q

arctan
(

q
2Mπ

)
, (4.48)

in DR. For the momenta q, we again apply the conventions of Eq. (4.26) and (4.39).

4.3 Phase Shifts and Mixing Angles to N2LO

We now turn to a description of our calculational methods. We take fπ = 92.2 MeV for the pion decay

constant, and gA = 1.29 for the nucleon axial coupling constant to account for the Goldberger-Treiman

relation (GTR) Ref. [31]. For the nucleon mass, we use mN = 938.38 MeV, and for the charged and

neutral pion masses, we take M
π±

= 139.57 MeV and M
π0 = 134.98 MeV, respectively. We use the

isospin-averaged pion mass

Mπ ≡
2
3

M
π±

+
1
3

M
π0 = 138.03 MeV , (4.49)

in the TPE potential expressions at NLO and N2LO. For the constants c1, c3 and c4 that appear in the

TPE potential at N2LO, we use c1 = −1.10(3) GeV−1, c3 = −5.54(6) GeV−1 and c4 = 4.17(4) GeV−1

from the accurate Roy-Steiner analysis of pion-nucleon scattering adopted to the counting of the nucleon

mass used here Ref. [6]. Also, as the uncertainties of these LECs are very small, we only consider the

central values in the following.

We determine the optimal parameter values for the NLEFT action up to N2LO by performing a

chi-square fit to np phase shifts and mixing angles. For this purpose, we define the uncertainties of the
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Chapter 4 Scattering of Two Nucleons: Numerical Result

Table 4.2: Summary of the fitting procedure, indicating which parameters are fitted to what scattering channel at
each order in NLEFT, and the resulting χ2/Ndof (for a = 0.98 fm).

order fit channels fit parameters χ2/Ndof

LO 1S0, 3S1 C1S0
, C3S1

, bs 30.38

NLO

1S0 C1S0
, C̃1 1.77

3S1, ε1 C3S1
, C̃2, C̃3 88.81

1P1 C̃4 11.94
3P0, 3P1, 3P2 C̃5, C̃6, C̃7 6.51

N2LO

1S0 C1S0
, C̃1 0.36

3S1, ε1 C3S1
, C̃2, C̃3 28.81

1P1 C̃4 2.79
3P0, 3P1, 3P2 C̃5, C̃6, C̃7 25.59

empirical scattering observables (in each partial wave) according to Ref. [37, 39], which gives

∆i ≡ max
[
∆

PWA
i ,

∣∣∣∣∣δNijmI
i − δPWA

i

∣∣∣∣∣, ∣∣∣∣∣δNijmII
i − δPWA

i

∣∣∣∣∣, ∣∣∣∣∣δReid93
i − δPWA

i

∣∣∣∣∣] , (4.50)

where ∆
PWA
i denotes the uncertainty of the PWA, while δPWA

i signifies the phase shift (or mixing angle)

in channel i of the PWA (see also Ref. [40]). Furthermore, δNijmI
i , δNijmII

i and δReid93
i refer to the PWA

results based on the Nijmegen I, Nijmegen II and Reid93 NN potentials, respectively. Hence, a measure

of systematical error in the PWA is accounted for in our analysis. The χ2 function to be minimized is

defined as

χ2
≡

∑
i

(
δPWA

i − δcal
i

)2

∆
2
i

, (4.51)

where i runs over all values of pCM and channels included in the analysis. In Eq. (4.51), δPWA
i is the phase

shift (or mixing angle) at a given momentum pCM from the PWA, δcal
i is the corresponding calculated

NLEFT value, and ∆i is given by Eq. (4.50).

When fitting the phase shifts and mixing angles of the Nijmegen PWA, we note certain simplifying

features. Specifically, at LO we determine C1S0
, C3S1

, and the smearing parameter bs, by fitting the 1S0

and 3S1 phase shifts. At NLO and N2LO, we no longer update the value of bs. At NLO, we determine

C1S0
and C̃1 by fitting the 1S0 phase shift, C3S1

, C̃2 and C̃3 by fitting the 3S1 phase shift and the mixing
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4.3 Phase Shifts and Mixing Angles to N2LO

Table 4.3: Fitted constants and low-energy parameters for a = 0.98 fm. The LO constants C1S0
and C3S1

are given in

units of [10−4 MeV−2], and the Ci of the NLO interaction in units of [10−8 MeV−4]. Due to the large lattice (L = 64)
for a = 0.98 fm, an uncertainty analysis using the variance-covariance matrix as in Table 4.4 was numerically
unfeasible. Hence, an estimated uncertainty of 2% has been assigned, which is consistent with the uncertainties for
larger a. For entries with a dagger (†), the deuteron energy Ed has been included as an additional constraint.

LO NLO N2LO

C1S0
−0.101(2) −0.105(2) −0.106(2)

C3S1
−0.118(2) −0.087(2) −0.088(2)

bs 0.399(8) − −

C
q2 − 0.00440(8) 0.135(2)

C
I2,q2 − 0.0373(8) 0.0303(6)

C
S2,q2 − −0.0292(6) −0.0301(6)

C
S2,I2,q2 − −0.00190(4) −0.0254(5)

C
(q·S)2 − 0.0378(8) 0.0360(7)

C
I2,(q·S)2 − 0.00200(4) 0.0212(4)

CI=1
(q×S)·k − 0.0150(3) 0.0165(3)

Ed [MeV] 2.16(4) 2.22(4)† 2.22(4)†

r1S0
[fm] 2.12(4) 2.50(5) 2.63(5)

a1S0
[fm] −22.5(4) −23.4(5) −23.7(5)

r3S1
[fm] 1.73(3) 1.70(3) 1.74(3)

a3S1
[fm] 5.4(1) 5.4(1) 5.4(1)

angle ε1, C̃4 by fitting the 1P1 phase shift, and finally C̃5, C̃6 and C̃7 by fitting the the 3P0, 3P1 and 3P2

phase shifts. The N2LO fits are similar, apart from the inclusion of the N2LO TPE potential operators.

We do not take the deuteron binding energy Ed as an additional constraint in the LO fits, as we do not

expect Ed to be accurately reproduced in an LO calculation. At NLO and N2LO, the experimental value

Ed = 2.224575(9) MeV is taken as an additional constraint. At LO, we fit up to center-of-mass momenta

of pmax
CM = 100 MeV, while at NLO and N2LO we fit up to pmax

CM = 150 MeV. Our fitting procedure at each

order in NLEFT is summarized in Table 4.2.

Prior NLEFT work has used a relatively coarse lattice spacing of a = 1.97 fm, which corresponds to a

momentum cutoff Λ ∼ π/a = 314 MeV. This relatively low cutoff may induce significant lattice artifacts,

particularly at high momenta. With this in mind, we here aim to study the NN scattering problem for

a = (200 MeV)−1
= 0.98 fm, with a temporal lattice spacing of at = (600 MeV)−1. The number of lattice

points in each spatial dimension is L = 64, thus the physical volume is V = (La)3
' (63 fm)3, which is

expected to be large enough to accommodate the NN system without introducing significant finite volume
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Chapter 4 Scattering of Two Nucleons: Numerical Result

Table 4.4: Fitted constants and low-energy S-wave parameters for a = 0.98 fm. The LO constants C1S0
and C3S1

are given in units of [10−4 MeV−2], and the Ci of the NLO interaction in units of [10−8 MeV−4]. The smearing
parameter bs of the LO contact interactions is determined by the LO fit, and thereafter kept fixed at NLO and
N2LO. The values in parentheses are the uncertainties calculated using the variance-covariance matrix according to
Eq. (A.5).

order fit parameters a = 1.97 fm a = 1.64 fm a = 1.32 fm

LO
C1S0

−0.4676(2) −0.3290(7) −0.201(5)

C3S1
−0.6377(2) −0.4482(2) −0.265(5)

bs 0.0524(2) 0.0917(2) 0.173(6)

NLO

C1S0
−0.5(1) −0.35(2) −0.220(2)

C3S1
−0.44(7) −0.21(1) −0.152(4)

C
q2 −0.05(3) −0.032(9) −0.006(1)

C
I2,q2 0.08(2) 0.075(2) 0.052(1)

C
S2,q2 −0.06(3) −0.046(3) −0.0341(7)

C
S2,I2,q2 0.03(2) 0.029(2) 0.0081(2)

C
(q·S)2 0.11(2) 0.091(4) 0.0553(2)

C
I2,(q·S)2 −0.11(2) −0.074(4) −0.0240(8)

CI=1
(q×S)·k 0.037(8) 0.026(4) 0.019(2)

N2LO

C1S0
−0.5(1) −0.33(4) −0.21(2)

C3S1
−0.5(1) −0.22(1) −0.15(2)

C
q2 0.08(3) 0.093(7) 0.118(7)

C
I2,q2 0.07(2) 0.0668(4) 0.045(4)

C
S2,q2 −0.06(3) −0.05(2) −0.036(7)

C
S2,I2,q2 0.01(2) 0.005(3) −0.014(4)

C
(q·S)2 0.10(3) 0.086(7) 0.056(4)

C
I2,(q·S)2 −0.10(3) −0.055(4) −0.006(4)

CI=1
(q×S)·k 0.031(8) 0.025(4) 0.018(2)

effects for the energy region pCM < 200 MeV studied here. Our lattice parameters are summarized in

Table 4.1.

First, we consider the problem of np scattering by treating all orders in NLEFT up to N2LO non-

perturbatively, similar to what is done in the continuum. This means that we construct the transfer matrix

according to

M ≡ : exp
[
− αt(Hfree + VLO + VNLO + V

N2LO
)
]

: , (4.52)
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Table 4.5: Low-energy S-wave parameters, as a function of the lattice spacing a and the order of the NLEFT
expansion. Ed is the deuteron binding energy, and the ai and ri denote the scattering lengths and effective ranges in
channel i. The experimental value of Ed is from Ref. [38], and the scattering lengths and effective ranges are from
Ref. [2]. For entries marked with a dagger (†), the empirical deuteron energy Ed has been included in the fit as an
additional constraint.

order a [fm] Ed [MeV] r1S0
[fm] a1S0

[fm] r3S1
[fm] a3S1

[fm]

LO
1.97 2.00(1) 2.041(1) −22.4(4) 1.686(1) 5.46(1)
1.64 2.07(1) 2.093(5) −22.5(7) 1.6932(8) 5.45(1)
1.32 2.12(2) 2.11(2) −22.5(5) 1.71(1) 5.44(1)

NLO
1.97 2.2246(3)† 2.4(6) −23(4) 1.79(3) 5.31(2)
1.64 2.2246(1)† 2.3(1) −23(2) 1.73(1) 5.33(1)
1.32 2.2246(1)† 2.47(3) −23(1) 1.70(1) 5.336(9)

N2LO
1.97 2.2246(3)† 2.6(6) −24(4) 1.82(3) 5.35(2)
1.64 2.2246(1)† 2.5(3) −23(2) 1.74(1) 5.36(1)
1.32 2.22457(7)† 2.6(2) −23(1) 1.744(7) 5.382(5)

experiment − 2.224575(9) 2.77(5) −23.740(20) 1.753(8) 5.419(7)

where the potential terms are given by

VLO = C1S0
O

(0)
(0,1) + C3S1

O
(0)
(1,0) + V (0)

OPE , (4.53)

at LO,

VNLO = C
q2O

(2)
1 + C

I2,q2O
(2)
2 + C

S2,q2O
(2)
3 + C

S2,I2,q2O
(2)
4 + C

(q·S)2O
(2)
5

+ C
I2,(q·S)2O

(2)
6 + CI=1

(q×S)·kO
(2)
7 + V (2)

TPE , (4.54)

at NLO, and

V
N2LO

= V (3)
TPE , (4.55)

at N2LO. Our results for the smallest lattice spacing, a = 0.98 fm, are shown in Fig. 4.1. Clearly, the

description of the S-wave channels is quite good even at LO, particularly for 3S1. Compared to LO,

significant improvements occur at NLO and N2LO, in particular for the 1P1, 3P0 and 3P2 channels, as

well as for the mixing angle ε1. While the NLO contributions appear central for a good description of

the P-waves and ε1, the TPE contributions at N2LO do not appear to produce a significant systematical

effect, although we note that certain channels (such as 3P2) show marked improvement at N2LO. While
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Figure 4.1: Phase shifts and mixing angles for np scattering up to N2LO in NLEFT, for our smallest (spatial) lattice
spacing of a = 0.98 fm = (200 MeV)−1 and a temporal lattice spacing at = (600 MeV)−1. The (blue) squares,
(green) circles and (red) triangles denote LO, NLO and N2LO results, respectively. The NPWA is shown by the
solid black line.

the results for the D-waves appear rather accurate, we note that the current way of smearing the LO

contact interactions does produce unwanted additional forces in the D-wave channels, which should be

dominated by OPE alone.

In Table 4.2, we also give the value of χ2/Ndof for each of our fits (a = 0.98 fm), where Ndof equals to

the number of fitted data points (phase shifts or mixing angles at a given momentum) minus the number

of adjustable parameters. At LO with a = 0.98 fm, we find χ2/Ndof ' 30, which is reasonable given

the rather stringent uncertainty criterion (4.50) of the PWA. This indicates that we have a satisfactory

description of the 1S0 and 3S1 channels in the range pCM < 100 MeV. At NLO, the main contribution

to χ2/Ndof arises from ε1 with pCM > 100 MeV, while at N2LO ε1 and the P-wave channels contribute
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Figure 4.2: Phase shifts and mixing angles for np scattering up to N2LO in NLEFT, for a = 1.32 fm = (150 MeV)−1.
For notations, see Fig. 4.1.

roughly equally. These observations are consistent with the results shown in Fig. 4.1.

We also give the S-wave low-energy parameters for a = 0.98 fm in Table 4.3, along with a summary

of the fitted parameters. We find that the NLO and N2LO results clearly provide the closest agreement

with the empirical scattering lengths and effective ranges, taken from Ref. [2]. We note that a3S1
and r3S1

are both stable at various orders in NLEFT, and reasonably close to the empirical values. This is easily

understood since the phase shift in the 3S1 channel is accurately reproduced already at LO. For a1S0
and

r1S0
, a clear improvement is observed at NLO and N2LO compared to the results at LO. We also find that

at NLO and N2LO, Ed can be accommodated without sacrificing any accuracy in the other low-energy

parameters. Finally, C1S0
and C3S1

for a = 0.98 fm are in reasonably close agreement with the continuum

results of Ref. [37] for a cutoff of R = 1.0 fm, which suggests that lattice artifacts are under control.
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Figure 4.3: Phase shifts and mixing angles for np scattering up to N2LO in NLEFT, for a = 1.64 fm = (120 MeV)−1.
For notations, see Fig. 4.1.

4.4 Variation of the Lattice Spacing

Up to this point, we have mostly elaborated on our results for a = 0.98 fm, which is the smallest lattice

spacing we have considered. We shall next comment on our findings when the lattice spacing is varied in

the range 1.97 ≥ a ≥ 0.98 fm, while the physical lattice volume is kept constant at V = (La)3
' (63 fm)3

(see Table 4.1 for a summary of lattice parameters). As we work within the transfer matrix formalism,

the temporal lattice spacing at should also be varied when a is changed. Here, we choose at such that

at/a
2 is kept constant. This is motivated by the fact that the Hamiltonian scales with the lattice spacing

as H ∼ 1/a2. For a pioneering LO calculation of the effects of varying a, see also Ref. [27].

In Table 4.4, we summarize the fitted constants of the NN interaction as a function of a, along with

the S-wave low-energy parameters in Table 4.5. We note that the uncertainties of the fitted constants
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Figure 4.4: Phase shifts and mixing angles for np scattering up to N2LO in NLEFT, for a (spatial) lattice spacing
a = 1.97 fm = (100 MeV)−1 and a temporal lattice spacing at = (150 MeV)−1. For notations, see Fig. 4.1.

are obtained by an analysis of the variance-covariance matrix according to Eq. (A.5), while those of

the S-wave parameters are obtained using Eq. (A.8). Our computed S-wave parameters appear very

stable with respect to lattice spacing variation, which suggests that lattice spacing effects are small in the

S-wave channels.

Our results for np phase shifts and mixing angles for a = 1.32 fm are shown in Fig. 4.2, for a = 1.64 fm

in Fig. 4.3, and finally for a = 1.97 fm in Fig. 4.4. Together with the results for a = 0.98 fm shown in

Fig. 4.1, it is immediately apparent that lattice spacing effects are small for the S-waves in the range

0 < pCM < 200 MeV, which is consistent with the behavior of the S-wave parameters. On the other hand,

this situation is quite different for the P-waves and D-waves. For these higher partial waves, as well

as for the mixing angles ε1 and ε2, the lattice spacing effects remain small only up to pCM < 100 MeV.
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Table 4.6: Summary of fit results (in units of a) for the perturbative NLO+N2LO analysis at a = 1.97 fm. Fitted
values of Ed are indicated by a dagger (†). Note that the values of C1S0

, C3S1
and bs are fixed by the LO fit.

LO NLO N2LO

C1S0
−0.462(8) − −

C3S1
−0.633(6) − −

bs 0.054(3) − −

∆C − −0.2(2) −0.0(2)
∆C

I2 − −0.02(9) 0.03(9)
C

q2 − 0.03(5) 0.12(5)
C

I2,q2 − 0.04(2) 0.03(3)
C

S2,q2 − −0.05(5) −0.02(5)
C

S2,I2,q2 − 0.00(2) −0.01(2)
C

(q·S)2 − 0.06(2) −0.05(2)
C

I2,(q·S)2 − −0.10(2) −0.07(2)

CI=1
(q×S)·k − 0.039(5) 0.038(5)

Ed [MeV] −2.02(4) −2.224(3)† −2.224(3)†

For pCM > 100 MeV, the deviations from the Nijmegen PWA increase rapidly, but are nevertheless

systematically reduced when a is decreased.

To conclude, for the S-waves the lattice spacing effects remain small throughout the range of pCM

considered here, even for the (rather coarse) lattice spacing of a = 1.97 fm. For the P-waves and

D-waves, this situation holds only up to pCM ' 100 MeV. However, we note that a = 0.98 fm suffices

to give an accurate description for pCM ' 200 MeV, regardless of the channel under consideration.

This suggests that the observed discrepancies could be eliminated by a combination of improved lattice

momentum operators and N3LO effects, possibly taken together with a lattice spacing somewhat smaller

than a = 1.97 fm. We would like to stress that the phase shifts agree within uncertainties below 150 MeV

(with a few exceptions) for the lattice spacings considered. This validates the statements made in Ref. [27]

about the lattice spacing independence of observables in the NN sector.

4.5 Perturbative Treatment of Higher Orders

We have thus far demonstrated that non-perturbative fits to np scattering data are feasible to any given

order in NLEFT, provided that the requisite potential operators have been worked out. Nevertheless, for
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Table 4.7: Summary of fit results (in units of a) for the perturbative NLO+N2LO analysis at a = 1.64 fm. Notation
as in Table 4.6.

LO NLO N2LO

C1S0
−0.47(1) − −

C3S1
−0.64(1) − −

bs 0.091(5) − −

∆C − −0.2(2) 0.3(3)
∆C

I2 − −0.00(9) 0.1(1)
C

q2 − 0.04(6) 0.18(6)
C

I2,q2 − 0.08(3) 0.06(3)
C

S2,q2 − −0.05(5) 0.00(6)
C

S2,I2,q2 − −0.01(3) −0.01(3)
C

(q·S)2 − 0.06(3) 0.08(4)
C

I2,(q·S)2 − −0.07(3) −0.06(4)

CI=1
(q×S)·k − 0.051(9) 0.05(1)

Ed [MeV] −2.13(4) −2.224(2)† −2.224(2)†

practical reasons (such as sign oscillations and increased computational complexity) the contributions

of NLO and higher orders are usually treated perturbatively in MC simulations of nuclear many-body

systems. With this in mind, we show here how our analysis of phase shifts and mixing angles can be

applied in a way consistent with current lattice MC work.

Before discussing our results, we briefly summarize the differences between the perturbative and

non-perturbative analyses. We again start with a LO fit, the parameters of which are fixed by fitting the
1S0 and 3S1 channels (but not Ed). As in the non-perturbative analysis, for the LO fits we consider data

up to pmax
CM = 100 MeV. For higher-order (NLO and N2LO) fits, we include data up to pmax

CM = 150 MeV.

Since higher orders in NLEFT are treated perturbatively, the transfer matrix is constructed in a different

way than in Eq. (4.52). To be specific, in the perturbative analysis the transfer matrix is and as in previous

MC studies of NLEFT, we introduce the additional operators Ref. [14]

∆V ≡ ∆C (4.56)

∆V
I2 ≡ ∆C

I2 τ1 · τ2 , (4.57)

which we classify as NLO perturbations and add to the NLO potential in Eq. (4.54) when Mpert is
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Table 4.8: Summary of fit results (in units of a) for the perturbative NLO+N2LO analysis at a = 1.32 fm. Notation
as in Table 4.6.

LO NLO N2LO

C1S0
−0.44(1) − −

C3S1
−0.59(1) − −

bs 0.18(1) − −

∆C − 0.0(2) 0.4(2)
∆CI2 − 0.05(9) 0.30(9)
Cq2 − 0.04(6) 0.62(6)
CI2,q2 − 0.19(4) 0.07(3)
CS2,q2 − −0.03(5) 0.07(5)
CS2,I2,q2 − −0.01(3) −0.12(3)
C(q·S)2 − 0.09(4) 0.02(4)
CI2,(q·S)2 − −0.05(4) 0.12(4)
CI=1

(q×S)·k − 0.12(1) 0.11(1)

Ed [MeV] −2.14(3) −2.224(1)† −2.224(1)†

computed. This is achieved because the LO LECs are kept fixed and thus fitting these finite shifts is

equivalent to a refit of the LO LECs, as it is done in the non-perturbative case. Additionally, ∆V and

∆V
I2 absorb part of the (sizable) short-distance contributions from TPE at NLO and N2LO. At NLO, we

also studied an operator of the form
∑

i τ1,iτ2,iq
2
i which accounts for rotational symmetry breaking effects

on the lattice, but no significant effects were observed.

As for the non-perturbative case, we give results for a range of lattice spacings for the perturbative

analysis. The fitted parameters for a = 1.97 fm, a = 1.64 fm and a = 1.32 fm are given in Tables 4.6,

4.7 and 4.8, respectively. The corresponding phase shifts and mixing angles are shown in Figs. 4.5, 4.6

and 4.7. For each computed phase shift, we provide an estimated uncertainty according to

∆δ ≡

√
(JT
δ )iEi j(Jδ) j ×

√
χ2

min/Ndof , (4.58)

where Ei j denotes the variance-covariance matrix of the fitted parameters, according to Eq. (A.4), and Jδ

is the Jacobian vector of the phase shift (or mixing angle) in question. The last factor in Eq. (4.58) is the

so-called Birge factor described in App. A, which approximately accounts for the systematical errors in

the analysis.

At LO, we reproduce well the low-momentum region, and obtain a realistic deuteron binding energy.
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Figure 4.5: Fitted LO + perturbative NLO/N2LO np phase shifts and mixing angles for a = 1.97 fm. The shaded
bands denote the continuum results of Ref. [37], and the NPWA is given by the black line.

In particular, we note that the 3S1 PWA data are almost perfectly reproduced. This is largely caused by

the very accurate PWA data of this channel, which gives this channel a relatively high weight in the χ2

function. We note that this may potentially worsen the agreement in other channels, where a comparable

accuracy of the PWA data is not available. Also, the expectation is that the P-waves should be well

described at LO, since they are dominated by the OPE potential contribution. The reason why this is
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Figure 4.6: Fitted LO + perturbative NLO/N2LO np phase shifts and mixing angles for a = 1.64 fm. The shaded
bands denote the continuum results of Ref. [37], and the NPWA is given by the black line.

not the case for our LO results is that, in the perturbative calculation, and in order to be consistent with

the MC simulations, we treat the momentum q 2 in the denominator of the OPE as in Eq. (4.25), and

factors of q as in Eq. (4.26). This choice considerably suppresses the OPE potential contribution already

at intermediate momenta, which worsens the description of the P-waves.

Moving to NLO, a significant improvement is found in some channels, particularly for 1P1 and 3P1,
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Figure 4.7: Fitted LO + perturbative NLO/N2LO np phase shifts and mixing angles for a = 1.32 fm. The shaded
bands denote the continuum results of Ref. [37], and the NPWA is given by the black line.

where the PWA is now well described up to ∼ 100 MeV. On the other hand, we note that the 3P0

and 3P2 channels, as well as the D-waves, show little improvement. We attribute these features to the

deficiencies in the OPE as mentioned above. The description of the S-wave channels is found to improve

at intermediate momenta, which is mainly due to the NLO CTs and to the parts of the NLO TPE potential

that contribute to the S-waves.
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Chapter 4 Scattering of Two Nucleons: Numerical Result

At N2LO, while no new unknown parameters contribute, the sub-leading TPE potential enters as a

prediction from πN scattering in χEFT. Thus, the NLO constants are refitted at N2LO in order to absorb

the strong short-distance isoscalar contributions from the πN LECs. The NLO and N2LO results appear

in most cases virtually indistinguishable (as shown in Fig. 4.5) as far as the level of agreement with the

PWA is concerned, except for the 1D2 channel where the high-momentum tail is noticeably improved.

For our perturbative analysis, we have also compared the computed scattering observables at different

orders in NLEFT with the continuum results of Ref. [37]. We find that our S-waves agree with the

continuum results (within errors) up to at least pCM ' 100 MeV, and in some cases over the entire range

of momenta considered. The P-waves show good agreement within errors only for some channels, and

only for NLO/N2LO. As already mentioned, this is mainly due to the non-optimal description of OPE at

LO. For the D-wave channels, only 3D1 shows good agreement with the continuum calculations. For the
1D2 channel, the LO and NLO results overshoot the continuum error band, while the N2LO result is in

agreement due to the large uncertainty. For 3D2, the NLO/N2LO terms do not contribute at all and hence

cannot improve the result. Further, for 3D3 the lattice calculations start to deviate from the PWA and the

continuum results for pCM > 100 MeV.

Finally, it is important to stress that for cms momenta below 150 MeV, the phase shifts agree within

the uncertainties (with the exception of ε1, were deviations set in at about 110 MeV). This validates the

statements made in Ref. [27] about the lattice spacing independence of observables in the NN sector.

4.6 Further Improvements

Next, we shall discuss two problems that require further study to resolve. First, while a clear improvement

was observed in the non-perturbative case for the scattering observables (and fitted parameters) as a was

decreased, a similar improvement is not found in the perturbative analysis. At LO, the quality of the

description improves in general with decreasing a, particularly for the 3S1-3D1 coupled channel. However,

at NLO/N2LO the picture is more complicated. We note that the P-waves and remaining D-wave channels

do improve, but the description of the 1S0 and 3S1-3D1 channels may in fact deteriorate for smaller a.

We attribute this effect to the increasing influence of the TPE potential. While the effect of TPE on the

S-waves can be absorbed by smeared contact interactions as was done in the non-perturbative calculation,

in the perturbative case we only have standard (without smearing) contact interactions available. This is

sufficient for a = 1.97 fm, as the TPE potential contribution then closely resembles a contact interaction.
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Table 4.9: Summary of fit results with perturbatively improved OPE (in units of a) for the perturbative NLO+N2LO
analysis at a = 1.97 fm. Notation as in Table 4.6.

LO NLO N2LO

C1S0
−0.462(8) − −

C3S1
−0.633(6) − −

bs 0.054(3) − −

∆C − −0.2(3) −0.0(3)
∆C

I2 − −0.1(1) 0.03(9)
C

q2 − −0.03(7) 0.05(7)
C

I2,q2 − 0.09(3) 0.06(3)
C

S2,q2 − −0.05(6) 0.00(6)
C

S2,I2,q2 − 0.00(2) −0.03(3)
C

(q·S)2 − 0.02(2) −0.03(3)
C

I2,(q·S)2 − −0.07(2) 0.10(3)

CI=1
(q×S)·k − 0.014(7) 0.012(5)

Ed [MeV] −2.02(4) −2.224(3)† −2.224(3)†

A possible solution for smaller a would be to include a smeared version of the NLO/N2LO contact

interactions. Alternatively, one could use exact momentum operators for the NLO CTs, which do have a

higher influence at larger momenta. This was not necessary nor observable for a = 1.97 fm, but may

improve the 3S1 channel once a is decreased. Finally, we note that the choice of c1, c3 and c4 may also

have an effect, as it influences the strength of the different contribution to TPE potential. However, to use

the full power of χEFT, one should utilize the values determined from pion-nucleon scattering.

Second, we show preliminary results including a perturbative improvement of the OPE operator. In

order to remedy the aforementioned discrepancies in the peripheral partial waves such that consistency

with the MC calculation is maintained, we introduce a new operator at NLO that accounts for the

difference between OPE potential with the momenta of Eq. (4.25) and (4.26) and the “exact” lattice

momentum qex ≡ 2πk/L. This gives

∆VOPE ≡ −
g2

A

4F2
π

τ1 · τ2

[
(σ1 · qex)(σ2 · qex)

q 2
ex + M2

π

−
(σ1 · q )(σ2 · q )

q 2
+ M2

π

]
, (4.59)

so that by adding ∆VOPE to VOPE, one recovers OPE potential with the exact momentum. It should

be noted that this differs slightly from treating OPE potential at LO with the exact momentum, since
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∆VOPE is treated as a perturbation, while VOPE is implemented non-perturbatively. Also, q approaches

qex as a→ 0. This means that, simultaneously, ∆VOPE becomes less important, and VOPE gives a better

description of the P-waves, as we approach the continuum limit. This is consistent with Figs. 4.2-4.4 of

the non-perturbative calculation, where the P-waves clearly improve as a decreases.

Our perturbative results with ∆VOPE included are given in Fig. 4.8 and Table 4.9, where as expected

one can observe a clear improvement in the description of the P-waves. The experimental results for the
1P1, 3P0 and 3P1 channels are now well reproduced for the range of fitted momenta pCM < 150 MeV. In

general, we find that all the P-wave channels and the ε1 mixing angle appear much closer to the PWA at

NLO with improved OPE, than without this correction. Additionally, we find that the D-waves (except

for the 3D3 channel) also improve significantly with respect to the LO result. In the case of 3D3, the

correction is too large and so the computed values fall below the PWA ones. Again, this improvement

is mostly attributable to ∆VOPE, although we recall that the first order of TPE potential (NLO) also

contributes to the high-momentum tails in some of the D-wave channels.

4.7 Nuclear Binding Energies

In MC simulations of NLEFT, the binding energies of nuclei receive perturbative energy shifts that

depend on the NLO constants Ci and their uncertainties, in addition to any inherent MC uncertainties.

For instance, in Ref. [41], only the MC errors were taken into account, and the Ci were assumed to be

accurately known and uncorrelated. Since our analysis provides us with the complete variance-covariance

matrix of the NLO parameters Ci, we are now in a position to estimate the uncertainties of the nuclear

binding energies at N2LO, due to uncertainties and correlations of the Ci. From our present results, we

observe larger correlations between ∆C and C2
q, between ∆C2

I and CI2,q2 , between ∆C2
I and CS2,q2 , and

also between C(q·S)2 and CI2,(q·S)2 .

In order to obtain a first, rough estimate of the relative magnitude of MC and fitting errors in calculations

of nuclear binding energies EB, we recall that these are calculated according to

EN2LO
B = ELO

B + Ci
∂EB

∂Ci

∣∣∣∣∣
Ci=0

, (4.60)

where summation over i is assumed. In the MC calculation, the LO binding energies are computed

non-perturbatively, and the second term in Eq. (4.60) represents the perturbative shift due to the NLO
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4.7 Nuclear Binding Energies

constants Ci in the 2NF, which we take from Ref. [41]. We note that

EN2LO
B ≡ EB(C1S0

,C3S1
, bs,Ci) , (4.61)

is a function of all the coupling constants up to N2LO, while the LO values

ELO
B ≡ EB(C1S0

,C3S1
, bs,Ci = 0) , (4.62)

equal to the binding energies at Ci = 0. In terms of the variance-covariance matrix from the perturbative

analysis in Section 4.5,

∆EN2LO
B =

√
∂EB

∂Ci

∣∣∣∣∣
Ci=0
Ei j

∂EB

∂C j

∣∣∣∣∣
C j=0

, (4.63)

gives us the uncertainties in the N2LO energy shifts due to the fitting errors of the Ci. The results so

obtained are given in Table 4.10.

We note that the errors due to the uncertainties in the Ci are of comparable magnitude to the MC

errors, even when Ei j has been evaluated without consideration of the systematical errors encoded by

the Birge factor. This may suggest that the procedure of fixing the Ci from NN data may, at present,

be the main factor limiting the accuracy of NLEFT calculations beyond LO for heavier nuclei. This

issue is currently under further investigation. It should also be noted that the quoted NLEFT binding

energies in Table 4.10 are not expected to coincide with the empirical ones, as the three-nucleon (3N)

and higher-order contributions have been neglected (see Ref. [41] for further discussion).

Table 4.10: Nuclear binding energies with 2N forces up to N2LO in the NLEFT expansion for a = 1.97 fm, data
taken from Ref. [41]. The first parenthesis gives the estimated Monte Carlo error in the calculation of EN2LO

B , and
the second parenthesis the error due to variance-covariance matrix in Eq. (4.63). For reference, we also show the
experimental binding energies.

EN2LO
B (2N) EB(exp)

4He −25.60(6)(2) −28.30
8Be −48.6(1)(3) −56.35
12C −78.7(2)(5) −92.16
16O −121.4(5)(7) −127.62
20Ne −163.6(9)(9) −160.64
24Mg −208(2)(2) −198.26
28Si −275(3)(2) −236.54
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Figure 4.8: Fitted LO + perturbative NLO/N2LO np phase shifts and mixing angles for a = 1.97 fm including the
improved OPE. The shaded bands denote the continuum results of Ref. [37], and the NPWA is given by the black
line.
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CHAPTER 5

Two-Nucleon Scattering with Coulomb Potential:

Numerical Results

We investigate the two-nucleon (NN) system at N3LO in χEFT which consists of one-, two-, and three

pion exchange potential and a set of contact interactions with zero, two and four derivatives. Nucleonic

fields and effective interactions are located on the lattice within the framework of spectral function

regularization for the multi-pion exchanges. Ref. [31] has shown that three-pion exchange (3PE) is

negligibly small so that we do not consider about it. This section is a small extension of Ref. [42,

43] in which the nature of nuclear clustering at LO has been studied. This is the first attempt to give

information for N3LO LECs including TPEs with/without Coulomb interaction by fitting phase shifts of

neutron-proton (np) or proton-proton (pp) scattering process. We use a definition of contact interactons

different from Sec. 4 which has been described in Sec. 3.3.2. We discuss how Coulomb interaction

plays its role in NN scattering process, Ref. [15], and further give LECs of high derivatives terms up to

N3LO including Coulomb interaction. The fitting results can be used to perturbatively calculate in-depth

information for many-body nuclei.
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Chapter 5 Two-Nucleon Scattering with Coulomb Potential: Numerical Results

5.1 Lattice Notations

We use a spatial lattice spacing a = (100 MeV)−1
= 1.97 fm and time lattice step at = (100 MeV)−1

=

1.97 fm and write αt for the ratio at/a. Axial-vector coupling constant is gA = 1.29 as derived from the

GTR, the pion decay constant is fπ = 92.2 MeV, and the neutral, charged and charge-averaged pion mass

are M
π0 = 134.98 MeV, Mπ± = 139.57 MeV, Mπ = 138.03 MeV, respectively. The nucleon mass is taken

as m = 938.92 MeV, and the electromagnetic fine structure constant is αEM = 1/137. We will use lattice

units where the quantities are multiplied by the appropriate power of the spatial lattice spacing a to make

the combination dimensionless.

Following Ref. [42], we construct a new short-range interactions smeared by nearest neighbors. aNL

denotes a four-component spin-isospin column vector while a†NL is a four-component spin-isospin row

vector. For real parameter sNL, we define the nonlocal (NL) annihilation and creation operators for each

spin and isospin component of the nucleon,

ai, j,sNL
(n) = ai, j(n) + sNL

∑
|n′ |=1

ai, j(n + n′) , (5.1)

a†i, j,sNL
(n) = a†i, j(n) + sNL

∑
|n′ |=1

a†i, j(n + n′) , (5.2)

For spin indices S = 1, 2, 3, and isospin indices I = 1, 2, 3, we define point-like densities,

ρ(n) = a†(n)a(n) , (5.3)

ρS (n) = a†(n)[σS ]a(n) , (5.4)

ρI(n) = a†(n)[τI]a(n) , (5.5)

ρS ,I(n) = a†(n)[σS ⊗ τI]a(n) . (5.6)

and also the smeared nonlocal densities,

ρNL(n) = a†NL(n)aNL(n) , (5.7)

ρS ,NL(n) = a†NL(n)[σS ]aNL(n) , (5.8)

ρI,NL(n) = a†NL(n)[τI]aNL(n) , (5.9)

ρS ,I,NL(n) = a†NL(n)[σS ⊗ τI]aNL(n) . (5.10)
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5.1 Lattice Notations

We focus on the Hamiltonian of interest in this section

H = Hfree + V0 + V1π + Vcoul → (LO)

+
(
∆Vct,0 + Vct,2

)
+ V2π,2 + V1π,IB → (NLO)

+
(
Vpp + Vnn

)
+ V2π,3 → (N2LO)

+
(
Vct,4

)
+ V2π,4 → (N3LO) (5.11)

with V1π,IB denoting isospin-breaking OPE and Vct,4 contact interactions at order Q4. The kinetics of

nucleons Hfree takes the form as Eq. (4.1). The OPE interaction V1π has the form

V1π =
1
2

:
∑

n1,n2,S 1,S 2,I

ρS 1,I
(n1) fS 1S 2

(n1 − n2)ρS 2,I
(n2) : , (5.12)

where fS 1S 2
is defined as

fS 1S 2
(n1 − n2) =

1

L3

∑
k

exp
[
i
2π
L

k · (n1 − n2)
]
× F(1π)

S 1S 2
(k) (5.13)

with

F(1π)
S 1S 2

(k) = −
g2

A

4 f 2
π

qS 1
qS 2

q2
+ M2

π0

× exp
[
−bπq2

]
, (5.14)

and each lattice momentum component qS is an integer kS multiplied by 2π/L. The :: symbol indicates

normal ordering, where the annihilation operators are on the right-hand side and the creation operators

are on the left-hand side. There is a subtle difference from the pion exchanges used in Sec. 4, as well as

Ref. [25], that those used in this section are all smeared by a Gaussian factor with parameter bπ in order

to remove short-distance lattice artifacts. It results in better preservation of rotational symmetry and will

be especially useful at smaller lattice spacings, Ref. [27]. Two-pion exchanges at order Q2 and Q3, V2π,2

and V2π,3, are given by Eqs. (4.29) and (4.40) along with the Gaussian smearing. In this work, we use the

value of bπ = 0.700.

We have a series of TPE diagrams at N3LO, Fig. 2.1. The full TPE at N3LO of nucleon-nucleon

potential are presented in Ref. [44] using dimensional regularization. In Ref. [31], another scheme of

the spectral function regularization is used to derive the divergent loop integrals in order to improve the

singularity of short-range behavior. In this work, we only take the bubble diagram and two-loop diagram
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into account. Their expressions in terms of transfer and average momenta {q,k} are given in App. B so

that we have V2π,4(q) by summing Eqs. (B.10)-(B.15) with their corresponding spin-isopin structures.

We present these pion exchange interactions in position space by density operators. The bubble diagram

(bbl) is

V (4,bbl)
2π =

1
2

:
∑
n1,n2

V (4,bbl)
C (n1 − n2)ρ(n1)ρ(n2) : +

1
2

:
∑
n1,n2

∑
S ,I

W (4,bbl)
S (n1 − n2)ρS ,I(n1)ρS ,I(n2) :

+
1
2

:
∑
n1,n2

∑
S 1,S 2,I

T (4,bbl)
S 1,S 2

(n1 − n2)ρS 1,I
(n1)ρS 2,I

(n2) : , (5.15)

and the two-loop diagram (lp) regularized by spectral funtion is

V (4,lp)
2π =

1
2

:
∑
n1,n2

V (4,lp)
C (n1 − n2)ρ(n1)ρ(n2) : +

1
2

:
∑
n1,n2

∑
I

W(4,lp)
C (n1 − n2)ρI(n1)ρI(n2) : (5.16)

+
1
2

:
∑
n1,n2

∑
S

V (4,lp)
S (n1 − n2)ρS (n1)ρS (n2) : +

1
2

:
∑
n1,n2

∑
S ,I

W (4,lp)
S (n1 − n2)ρS ,I(n1)ρS ,I(n2) :

+
1
2

:
∑
n1,n2

∑
S 1,S 2

T (4,lp1)
S 1,S 2

(n1 − n2)ρS 1
(n1)ρS 2

(n2) : +
1
2

:
∑
n1,n2

∑
S 1,S 2,I

T (4,lp2)
S 1,S 2

(n1 − n2)ρS 1,I
(n1)ρS 2,I

(n2) : ,

where VC, WC, VS, WS, T are fourier transformation of Eqs. (B.10)-(B.15) with a Gaussian smearing

factor similar to Eq. (5.14). E.G.,

W(4,bbl)
S (n1 − n2) =

1

L3

∑
k

exp
[
i
2π
L

k · (n1 − n2)
]
× W (4,bbl)

S (k) , (5.17)

T (4,bbl)
S 1,S 2

(n1 − n2) =
1

L3

∑
k

exp
[
i
2π
L

k · (n1 − n2)
]
× T (4,bbl)

S 1S 2
(k) , (5.18)

T (4,lp1)
S 1,S 2

(n1 − n2) =
1

L3

∑
k

exp
[
i
2π
L

k · (n1 − n2)
]
× T (4,lp1)

S 1S 2
(k) , (5.19)

T (4,lp2)
S 1,S 2

(n1 − n2) =
1

L3

∑
k

exp
[
i
2π
L

k · (n1 − n2)
]
× T (4,lp2)

S 1S 2
(k) , (5.20)

with

W(4,bbl)
S (k) = W (4,bbl)

S (q) exp [−bπq2] , T (4,bbl)
S 1S 2

(k) = qS 1
qS 2

W(4,bbl)
T (q) exp [−bπq2] ,

T (4,lp1)
S 1S 2

(k) = qS 1
qS 2

V (4,lp)
T (q) exp [−bπq2] , T (4,lp2)

S 1S 2
(k) = qS 1

qS 2
W (4,lp)

T (q) exp [−bπq2] .

where q equals to integers k multiplied by 2π/L and q is modulus of q. LECs in TPE are extracted from
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the accurate Roy-Steiner analysis of pion-nucleon scattering, Ref. [6]. We make use of c1 = −1.10(3) ×

10−3MeV−1, c3 = −5.54(6) × 10−3MeV−1, c4 = 4.17(4) × 10−3MeV−1, d̄1 + d̄2 = 6.18(8) × 10−6MeV−2,

d̄3 = −8.91(9) × 10−6MeV−2, d̄5 = 0.86(5) × 10−6MeV−2, d̄14 − d̄15 = −12.18(12) × 10−6MeV−2.

The LO short-range interactions are developed from the zero-range interactions.

V0 =
c0

2

∑
n′,n,n′′

: ρNL(n′) fsL
(n′ − n) fsL

(n − n′′)ρNL(n′′) : (5.21)

where fsL
is defined for real parameter sL as

fsL
(n) = 1 for |n| = 0 ,

= sL for |n| = 1 ,

= 0 otherwise . (5.22)

In Ref. [42] the parameters sNL, sL, c0 are fitted by the average inverse scattering length and effective

range of the two s-wave channels, as well as the finite-volume energies of 8Be. Throughout this work,

they are taken as sNL = 0.0800, sL = 0.0800, and c0 = −18.50 × 10−6MeV−2.

High order contact interactions are contructed in Sec. 3.3.2 and listed in detail in App. C, Eqs. (C.5)-

(C.28), by point-like annihilation and creation operators which are replaced for nonlocal smeared

formalism, Eqs. (5.1)-(5.2), in this work,

∆Vct,0 = ∆C0,1S0
V (0)

1S0
+ ∆C0,3S1

V (0)
3S1

(5.23)

Vct,2 = C2,1S0
V (2)

1S0
+ C2,3S1

V (2)
3S1

+ C2,1P1
V (2)

1P1

+ C2,3P0
V (2)

3P0
+ C2,3P1

V (2)
3P1

+ C2,3P2
V (2)

3P2
+ C2,3SD1

V (2)
3SD1

(5.24)

Vct,4 = D4,1S0;1V (4)
1S0;1

+ D4,1S0;2V (4)
1S0;2

+ D4,3S1;1V (4)
3S1;1

+ D4,3S1;2V (4)
3S1;2

+ D4,1P1
V (4)

1P1
+ D4,3P0

V (4)
3P0

+ D4,3P1
V (4)

3P1
+ D4,3P2

V (4)
3P2

+ D4,1D2
V (4)

1D2
+ D4,3D1

V (4)
3D1

+ D4,3D2
V (4)

3D2
+ D4,3D3

V (4)
3D3

+ D4,3SD1;1V (4)
3SD1;1

+ D4,3SD1;2V (4)
3SD1;2

+ D4,3PF2
V (4)

3PF2
(5.25)

IB has been addressed in Ref. [45]. In this work, the IB is taken from NLO, of the same size asO(Q2), into

account except Coulomb potential. For the sake of simplicity, we consider the first order isospin-breaking
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contribution of OPE taking place at O(Q2) and that of short-range interactions taking place at O(Q3).

The IB effect of OPE originates from the different masses of pion triplet, Eq. (3.7). In OPE potential,

the pion mass is neutral, M
π0 = 134.98 MeV, and we know from Eq. (3.91) that the difference between

isospin-symmetric OPE, Eq. (5.12), and isospin-breaking OPE can be written as, Ref. [15],

V1π,IB =
1
2

:
∑
n1,n2

∑
S 1,S 2

∑
I={1,2}

ρS 1,I
(n1)T (IB)

S 1S 2
(n1 − n2)ρS 2,I

(n2) : , (5.26)

and

T (1π,IB)
S 1S 2

(n1 − n2) =
1

L3

∑
k

exp
[
i
2π
L

k · (n1 − n2)
]
× T (1π,IB)

S 1S 2
(k) (5.27)

with

T (1π,IB)
S 1S 2

(k) = −
g2

A

4 f 2
π

qS 1
qS 2

 1

q2
+ M2

π±

−
1

q2
+ M2

π0


× exp

[
−bπq2

]
, (5.28)

where q equals to k multipled by 2π/L. The first IB CTs apprear at O(Q3) which take the form as,

following Ref. [15]

Vpp = C3,ppOpp (5.29)

Opp =
1
2

:
∑

n

[
1
2
ρNL(n) +

1
2
ρI=3,NL(n)

] [
1
2
ρNL(n) +

1
2
ρI=3,NL(n)

]
: , (5.30)

for isospin state pp and

Vnn = C3,nnOnn (5.31)

Onn =
1
2

:
∑

n

[
1
2
ρNL(n) −

1
2
ρI=3,NL(n)

] [
1
2
ρNL(n) −

1
2
ρI=3,NL(n)

]
: . (5.32)

for isospin state neutron-neutron. Due to the practical consideration that the empirical phase shifts

for neutron-neutron scattering cannot be easily measured, we deal with C3,nn approximately as −C3,pp

The left part can be attributed to Q4 or higher order contributions, see Ref. [45], so that Vpp + Vnn →

C3,pp(Opp − Onn). We do not consider IB of TPEs so that the pion mass in TPE is simply taken as
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charge-averaged, Mπ = 138.03 MeV.

Our task in this section is to fit coefficients of subleading or higher order short-range interactions

∆Vct,0, Vct,2, Vct,4 and Vpp by pp and np phase shifts.

5.2 Interactions on the Lattice: Coulomb Potential

In pp scattering process, Coulomb interaction between the electronic chargers, Vcoul = αEM/r, should

be included for the pp case with the fine structure constant taken as 1/137. The singularity of Coulomb

potential originated from the zero-range interaction is supposed to be carefully removed in our lattice

simulation. A naïve convention is to take the zero-range Coulomb potential as zero, whereas other

conventions are allowed for that it can be absorted by the CTs irrelative to momentum.

In this study, Coulomb effective potential is written as

Vcoul = −
αEM

2

∑
n1,n2

:
[
1
2
ρ(n1) +

1
2
ρI=3(n1)

]
1

d(n1 − n2)

[
1
2
ρ(n2) +

1
2
ρI=3(n2)

]
: , (5.33)

where d(n1 − n2) is the shortest length of n1 − n2 as measured on the periodic lattice, and we define the

value of d at the origin to be 1/2. The notation ρI=3 refers to the I = 3 isospin component of the density

operator with isospin ρI .

We measure phase shifts and mixing angles by fitting asymptotical behavior of the nucleonic wave

functions. Spherical bessel functions are combined into wave functions in the non-interactive region

for the case of np process, Eq. (3.152), because they are solutions of Helmholtz equation. Long-range

Coulomb potential influences the motion of chargers no matter how much long their distance is. Thus

we decompose the radial wave functions into the combination of solutions of Helmholtz equation with

Coulomb potential, Ref. [15],

ψ(r) � A g−L(kr) − B g+
L(kr) (5.34)

where

g±L(kr) = −GL ± iFL (5.35)
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with

η =
αEMm

2k
, (5.36)

FL(η, kr) = (kr)Le−ikrcL(η) 1F1(L + 1 − iη, 2L + 2, 2ikr) , (5.37)

GL(η, kr) =
(2i)2L+1 (kr)Le−ikr

Γ(L + 1 − iη)
Γ(2L + 2)cL(η)

U(L + 1 − iη, 2L + 2, 2ikr) + iFL(η, kr) , (5.38)

and

cL(η) =
2Le−πη/2 |Γ(L + 1 + iη)|

Γ(2L + 2)
. (5.39)

The function 1F1 is Kummer’s confluent hypergeometric function of the first kind, and the function U is

Kummer’s confluent hypergeometric function of the second kind.

Then a story similar in Sec. 3.4.2 goes, the coefficients A and B satisfy the relation B = S A with S

indicating the scattering matrix, S = e2iδL .

5.3 Neutron-Proton Scattering at N3LO

Let us now present results for np scattering at N3LO. From the TPE contributions we only consider the

bubble diagrams with two dimension-three insertions and the two-loop diagram built from LO insertions.

We need to include the D-waves in the fitting procedure now. The resulting LECs are shown in Tab. 5.1.

The resulting phase shifts are shown in Fig. 5.1. As expected, we find an improvement in the description

of most partial waves. However, a thorough error analysis along the lines of Ref. [37] should be done in

the future.

5.4 Proton-Proton Scattering up to N3LO

Next we consider pp scattering at N3LO. Of course there are fewer partial waves in this case due to the

Pauli principle. From the TPE contributions we only consider the bubble diagrams with two dimension-

three insertions and the two-loop diagram built from LO insertions. Here we only consider the lowest

partial waves where the Coulomb effect is most pronounced. The relevant LECs are shown in Tab. 5.2.

The lowest partial waves for pp scattering are depicted in Fig. 5.2. Note that the Coulomb interaction

only appears at NLO in our counting, therefore the LO description of the 1S0 partial wave is far off the

empirical result. Having said this, we observe a trend similar to the np case, namely the N3LO description

is the best. We notice again that this should be supplemented by a thorough error analysis.
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Table 5.1: LECs for np scattering at NLO, N2LO, and N3LO. The values of LECs at LO, NLO, N3LO, are given in
units of [10−4MeV−2], [10−8MeV−4], [10−12MeV−6], respectively.

NLO N2LO N3LO

∆C
0,1S0

0.10919669 0.15273328 0.14984439

∆C
0,3S1

−.02922424 −.02853001 −.03099366

C
2,1S0

0.00199304 0.01022774 0.01106095

C
2,3S1

0.00104715 −.00156102 −.00145621

C
2,3SD1

−.05209445 −.07268494 −.06972326

C
2,1P1

0.20520544 0.23023119 0.21317679

C
2,3P0

0.00274363 0.01279163 0.01186457

C
2,3P1

0.16263367 0.17204053 0.17226589

C
2,3P2

0.04998091 0.06492118 0.07461369

D
4,1S0;1

− − −.00031571

D
4,1S0;2

− − 0.00168885

D
4,3S1;1

− − −.00180739

D
4,3S1;2

− − −.00145621

D
4,3SD1;1

− − 0.00607977

D
4,3SD1;2

− − −.03109305

D
4,1P1

− − −.00497417

D
4,3P0

− − −.00171225

D
4,3P1

− − −.00001781

D
4,3P2

− − 0.00498841

D
4,3PF2

− − 0.01999829

D
4,1D2

− − 0.01203088

D
4,3D1

− − 0.00050418

D
4,3D2

− − −.04000000

D
4,3D3

− − 0.00250397
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Figure 5.1: Phase shifts for np scattering at LO (downward blue triangles), NLO (red crosses), N2LO (green
triangles), N3LO (magenta stars) as a function of CM momentum. The NPWA results are shown by the solid
(yellow) curves.
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Table 5.2: LECs for pp scattering at NLO, N2LO, and N3LO. The values of LECs at LO, NLO, N3LO, are given in
units of [10−4MeV−2], [10−8MeV−4], [10−12MeV−6], respectively.

NLO N2LO N3LO

∆C
0,1S0

0.11577718 0.15515046 0.14307987

C
2,1S0

0.00183307 0.00887531 0.01201563

C
2,3P0

−.00659107 0.01004595 0.01186403

C
2,3P1

0.15798787 0.17368014 0.16726571

C
2,3P2

0.04498001 0.05998001 0.06961663

D
4,1S0;1

− − −.00031474

D
4,1S0;2

− − 0.00179488

D
4,3P0

− − 0.00178983

D
4,3P1

− − −.00017810

D
4,3P2

− − 0.00498864

D
4,3PF2

− − 0.00999893

D
4,1D2

− − 0.00250394
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Figure 5.2: Phase shifts for the low partial waves of pp scattering at LO (downward blue triangles), NLO (red
crosses), N2LO (green triangles), N3LO (magenta stars) as a function of CM momentum. The NPWA results are
shown by the solid (yellow) curves.
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CHAPTER 6

Nuclear Binding Near A Quantum Phase

Transition

In this section1 we discover an unexpected twist in the story of how nucleons self-assemble into nuclei.

Lattice MC simulation results are presented using lattice interactions at LO in chiral effective field theory,

together with Coulomb interactions between protons. In the lattice calculations discussed here we use a

spatial lattice spacing of 1.97 fm and time lattice spacing of 1.32 fm. We are using natural units where

the reduced Planck constant ~ and the speed of light c equal 1. We consider two different variants of the

LO action, one with a new type of non-local smearing of the contact interactions. This was originally

intended to suppress the remaining sign oscillations, but in fact leads to new insights about the nature of

nuclear binding.

6.1 A Leading Order Action with Local and Nonlocal Contact

Interactions

Our starting point is two lattice interactions A and B at LO in chiral effective field theory which are by

design similar to each other and tuned to experimental low-energy nucleon-nucleon scattering phase

shifts. The details of these interactions and scattering phase shifts are presented below, here we note

1 The work of this chapter is based on the publication [43].
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some important points. The interactions appear at LO in chiral effective field theory and consist of

short-range interactions as well as the potential energy due to the exchange of a pion. As the short-range

interactions are not truly point-like, they are actually what we call improved LO interactions. We

write the nucleon-nucleon interactions as VA(r′, r) and VB(r′, r), where r is the spatial separation of the

two incoming nucleons and r′ is the spatial separation of the two outgoing nucleons. The short-range

interactions in VA(r′, r) consist of nonlocal (NL) terms, which means that r′ and r are in general different.

In contrast, the short-range interactions in VB(r′, r) include nonlocal terms and also local terms where r′

and r are fixed to be equal. The main difference between interactions A and B is the degree of locality of

the short-range interactions. Another difference is that there are extra parameters contained in interaction

B, and these are used to reproduce S-wave scattering for two alpha particles.

For our LO lattice calculations we use a spatial lattice spacing a = (100 MeV)−1
= 1.97 fm and time

lattice step at = (150 MeV)−1
= 1.32 fm. Our axial-vector coupling constant is gA = 1.29 as derived

from the GTR, the pion decay constant is fπ = 92.2 MeV, and the pion mass is Mπ = M
π0 = 134.98 MeV.

For the nucleon mass we use m = 938.92 MeV, and the electromagnetic fine structure constant is

αEM = (137.04)−1. We do not consider any IB terms other than the Coulomb interaction in these LO

calculations. We use σS with S = 1, 2, 3 for the Pauli matrices acting upon spin, and τI with I = 1, 2, 3

for the Pauli matrices acting upon isospin. We will use lattice units where the quantities are multiplied

by the appropriate power of the spatial lattice spacing a to make the combination dimensionless. We

write αt for the ratio at/a. We use the notation
∑
〈n′ n〉 to denote the summation over nearest-neighbor

lattice sites of n. We write
∑
〈n′ n〉i to indicate the sum over nearest-neighbor lattice sites of n along the

ith spatial axis. Similarly, we define
∑
〈〈n′ n〉〉i as the sum over next-to-nearest-neighbor lattice sites of n

along the ith axis and
∑
〈〈〈n′ n〉〉〉i as the sum over next-to-next-to-nearest-neighbor lattice sites of n along

the ith axis. Our lattice geometry is chosen to be an L3 periodic lattice, and so the summations over n′ are

defined using periodic boundary conditions.

For each lattice site n on our lattice and real parameter sNL, we define nonlocal annihilation and

creation operators for each spin and isospin component of the nucleon,

aNL(n) = a(n) + sNL

∑
〈n′ n〉

a(n′) , (6.1)

a†NL(n) = a†(n) + sNL

∑
〈n′ n〉

a†(n′) . (6.2)
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For spin indices S = 1, 2, 3, and isospin indices I = 1, 2, 3, we define point-like densities,

ρ(n) = a†(n)a(n) , (6.3)

ρS (n) = a†(n)[σS ]a(n) , (6.4)

ρI(n) = a†(n)[τI]a(n) , (6.5)

ρS ,I(n) = a†(n)[σS ⊗ τI]a(n) . (6.6)

For spin indices S = 1, 2, 3, and isospin indices I = 1, 2, 3, we also define smeared nonlocal densities,

ρNL(n) = a†NL(n)aNL(n) , (6.7)

ρS ,NL(n) = a†NL(n)[σS ]aNL(n) , (6.8)

ρI,NL(n) = a†NL(n)[τI]aNL(n) , (6.9)

ρS ,I,NL(n) = a†NL(n)[σS ⊗ τI]aNL(n) , (6.10)

and smeared local densities for real parameter sL,

ρL(n) = a†(n)a(n) + sL

∑
〈n′ n〉

a†(n′)a(n′) , (6.11)

ρS ,L(n) = a†(n)[σS ]a(n) + sL

∑
〈n′ n〉

a†(n′)[σS ]a(n′) , (6.12)

ρI,L(n) = a†(n)[τI]a(n) + sL

∑
〈n′ n〉

a†(n′)[τI]a(n′) , (6.13)

ρS ,I,L(n) = a†(n)[σS ⊗ τI]a(n) + sL

∑
〈n′ n〉

a†(n′)[σS ⊗ τI]a(n′) . (6.14)

The nonlocal short-range interactions are written as

VNL =
cNL

2

∑
n

: ρNL(n)ρNL(n) : +
cI,NL

2

∑
n,I

: ρI,NL(n)ρI,NL(n) : , (6.15)
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while the local short-range interactions are

VL =
cL

2

∑
n

: ρL(n)ρL(n) : +
cS,L

2

∑
n,S

: ρS ,L(n)ρS ,L(n) :

+
cI,L

2

∑
n,I

: ρI,L(n)ρI,L(n) : +
cSI,L

2

∑
n,S ,I

: ρS ,I,L(n)ρS ,I,L(n) : . (6.16)

The :: symbol indicates normal ordering, where the annihilation operators are on the right-hand side

and the creation operators are on the left-hand side. As described in previous work, Ref. [15], we take

special combinations of the four local short-range operator coefficients so that the interaction in odd

partial waves vanish completely. For our work here, we also make the strength of the local short-range

interactions equal in the two S-wave channels. As a result, we have only one independent coefficient,

cS,L = cI,L = cSI,L = −1
3 cL. In future work it may be useful to consider relaxing this condition.

The OPE interaction has the form

VOPE = −
g2

A

8 f 2
π

∑
n′,n,S ′,S ,I

: ρS ′,I(n
′) fS ′S (n′ − n)ρS ,I(n) : , (6.17)

where fS ′S is defined as

fS ′S (n′−n) =
1

L3

∑
q

exp[−iq · (n′ − n) − bπq2]qS ′qS

q2
+ M2

π

, (6.18)

and each lattice momentum component qS is an integer multiplied by 2π/L. The parameter bπ is included

to remove short-distance lattice artifacts in the OPE interaction. It results in better preservation of

rotational symmetry and will be especially useful at smaller lattice spacings, Ref. [27].

We use a free lattice Hamiltonian, Ref. [15], of the form,

Hfree =
49

12m

∑
n

a†(n)a(n) −
3

4m

∑
n,i

∑
〈n′ n〉i

a†(n′)a(n)

+
3

40m

∑
n,i

∑
〈〈n′ n〉〉i

a†(n′)a(n) −
1

180m

∑
n,i

∑
〈〈〈n′ n〉〉〉i

a†(n′)a(n) . (6.19)

For interaction A at LO, the lattice Hamiltonian is

HA = Hfree + VNL + VOPE , (6.20)
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with sNL = 0.07700, cNL = −0.2268, cI,NL = 0.02184, and bπ = 0.7000. These parameters are determined

by fitting to the low-energy nucleon-nucleon phase shifts and the observed deuteron energy. For the

corresponding LO + Coulomb interactions, we simply add VCoulomb to HA.

For interaction B at LO, we have

HB = Hfree + VNL + VL + VOPE , (6.21)

with sNL = 0.07700, sL = 0.8100, cNL = −0.1171, cI,NL = 0.02607, cL = −0.01013, and bπ = 0.7000.

For the corresponding LO + Coulomb interactions, we simply add VCoulomb to HB. These parameters are

determined by fitting to the low-energy nucleon-nucleon phase shifts, the observed deuteron energy, and

the low-energy alpha-alpha S-wave phase shifts.

6.2 Neutron-Proton Scattering

In Fig. 6.1 we show the LO lattice phase shifts for proton-neutron scattering versus the center-of-

mass relative momentum for interactions A (red triangles) and B (blue squares). For comparison

we also plot the phase shifts extracted from the Nijmegen PWA [40] (black lines) and a continuum

version of interaction A (green dashed lines). In the first row, the data in panels a,b,c,d correspond

to 1S0,
3S1,

1P1,
3P0 respectively. In the second row, panels e,f, g,h correspond to 3P1,

3P2,
1D2,

3D1

respectively. In the third row, panels i, j,k,l correspond to 3D2,
3D3, ε1, ε2 respectively. The level of

agreement with the experimental phase shifts for interactions A and B is typical for LO chiral effective

field theory at our cutoff momentum of π/a ≈ 314 MeV. The agreement would be somewhat better if

we were to use a smaller value of the smearing parameter bπ in the OPE potential. However, we prefer

the higher value of bπ to reduce sign oscillations in the MC lattice simulations. The LO interactions are

more than sufficient to illustrate the ideas of this work but not sufficient for precision calculations. For

precision calculations, this would be just the first step in the chiral effective field theory expansion, and

the phase shifts would be systematically improved at each higher order, NLO, N2LO, and so on. We note

the good agreement between the continuum results in green dashed lines and lattice interaction A results.

This is a good indication that we have successfully reduced lattice artifacts from the calculations and was

part of the motivation for introducing the parameter bπ. The nonlocal smeared interaction VNL makes a

non-negligible contribution to the S-wave interactions only. Furthermore, the local smeared interaction

VL makes a nonzero contribution to only the even partial waves (S , D, · · · ). Hence the interactions A and
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Figure 6.1: Nucleon-nucleon scattering phase shifts. We plot LO lattice phase shifts for proton-neutron scattering
versus the center-of-mass relative momentum for interactions A (red triangles) and B (blue squares). For comparison
we also plot the phase shifts extracted from the Nijmegen PWA, Ref. [40] (black lines) and a continuum version
of interaction A (green dashed lines). In the first row, the data in panels a, b,c,d correspond to 1S0,

3S1,
1P1,

3P0
respectively. In the second row, panels e,f,g,h correspond to 3P1,

3P2,
1D2,

3D1 respectively. In the third row, panels
i, j,k,l correspond to 3D2,

3D3, ε1, ε2 respectively.

 0

 20

 40

 60

 80

0 50 100 150

a

 0

 60

 120

 180

0 50 100 150

b

-10

-5

 0

 5

0 50 100 150

c

 0

 5

 10

 15

0 50 100 150

d

Nijmegen PWA
Continuum LO

Lattice LO-A
Lattice LO-B

-10

-5

 0

0 50 100 150

δ 
or

 ε
 (

de
g)

e

 0

 2

 4

 6

0 50 100 150

f

-1

 0

 1

 2

 3

0 50 100 150

g

-6

-4

-2

 0

0 50 100 150

h

 0

 5

 10

0 50 100 150

i

-1

 0

 1

0 50 100 150

j

-5

 0

 5

0 50 100 150

pcms (MeV)

k

-2

-1

 0

0 50 100 150

l

B are exactly the same in all odd partial waves. We see that the S-wave interactions for interactions A

and B are also quite similar, though the 1S0 partial wave scattering is somewhat more attractive for

interaction A. On the other hand, the D-wave partial waves are more attractive for interaction B.

6.3 Ground State Engergies of Nuclei

Based on these LO interactions, we know calculate the ground state energies of various nuclei, in

particluar alpha-cluster type ones. This will lead to somesurprising findings.

We let a†
↑,p(n), a†

↓,p(n), a†
↑,n(n), and a†

↓,n(n) be the creation operators for a spin-up proton, spin-down
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proton, spin-up neutron, and spin-down neutron. We write ã†
↑,p(0), ã†

↓,p(0), ã†
↑,n(0), and ã†

↓,n(0) for the

corresponding zero-momentum creation operators. We also write
∏

ã† as shorthand for the product

∏
ã† = ã†

↑,p(0)ã†
↓,p(0), ã†

↑,n(0)ã†
↓,n(0) . (6.22)

For the ground state energy calculations of 3H and 3He we use a lattice volume of (16 fm)3. The initial

states we choose are

|Ψ
3H
i 〉 =

∑
n,n′,n′′,n′′′

e−α|n−n′ |e−α|n−n′′ |e−α|n−n′′′ |a†
↑,p(n′)a†

↑,n(n′′)a†
↓,n(n′′′) |0〉 , (6.23)

|Ψ
3He
i 〉 =

∑
n,n′,n′′,n′′′

e−α|n−n′ |e−α|n−n′′ |e−α|n−n′′′ |a†
↑,n(n′)a†

↑,p(n′′)a†
↓,p(n′′′) |0〉 , (6.24)

with α = 2 in lattice units. In panel a of Fig. 6.2 we show the energy versus projection time t = Ltat

for 3He for the LO interaction A (blue plus signs and dashed lines), LO interaction B (red squares and

dashed lines), LO + Coulomb interaction A (blue crosses and solid lines), and LO + Coulomb interaction

B (red triangles and solid lines). As we are not including IB effects other than Coulomb interactions,

the LO and LO + Coulomb results for 3H are exactly the same as the LO results for 3He. The error bars

indicate one standard deviation errors due to the stochastic noise of the MC simulations. The lines are

extrapolations to infinite projection time using the ansatz,

E(t) = E0 + c exp[−∆E t] , (6.25)

where E0 is the ground state energy that we wish to determine. The results for the ground state energies

are shown in Table 6.1. For the ground state energy calculations of 4He we use a lattice volume of

(12 fm)3. The initial state we choose is

|Ψ
4He
i 〉 =

∏
ã† |0〉 . (6.26)

In panel b of Fig. 6.2 we show the energy versus projection time t = Ltat for 4He for the LO interaction

A (blue plus signs and dashed lines), LO interaction B (red squares and dashed lines), LO + Coulomb

interaction A (blue crosses and solid lines), and LO + Coulomb interaction B (red triangles and solid

lines). The error bars indicate one standard deviation errors of the MC simulations, and the lines are

extrapolations to infinite projection time using the ansatz in Eq. (6.25). The results for the ground state
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Chapter 6 Nuclear Binding Near A Quantum Phase Transition

Figure 6.2: Energy versus projection time for 3H,3He, and 4He. In panels a and b we plot the energy versus
projection time t = Ltat for 3He and 4He respectively for the LO interaction A (blue plus signs and dashed lines),
LO interaction B (red squares and dashed lines), LO + Coulomb interaction A (blue crosses and solid lines), and
LO + Coulomb interaction B (red triangles and solid lines). The LO and LO + Coulomb results 3H are the same as
the LO results for 3He. The error bars indicate one standard deviation errors from the stochastic noise of the MC
simulations, and the lines show extrapolations to infinite projection time.
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energies are shown in Table 6.1.

We note that while that the 3H energies for interactions A and B are underbound, the energies for 4He

are near the physical value. This may seem puzzling since in continuum-space calculations there is a

well-known universal correlation between the 3H and 4He energies called the Tjon line, Refs. [46–48].

Our lattice results show some deviation from this universal behavior due to lattice artifacts associated

with our lattice spacing of 1.97 fm. This is not a new observation. The same behavior has been analyzed

previously at the same lattice spacing but with a different lattice interaction, Refs. [15, 49]. In order to

match the physical 3H and 4He energies at the same time, higher-order short-range 3N interactions at

N4LO and possibly the LO short-range four-nucleon interaction at N5LO are needed. However a much

simpler solution is to use a smaller lattice spacing, as these lattice deviations from the continuum-space

Tjon line decrease very rapidly with the lattice spacing.

For the ground state energy calculations of 8Be, 12C, 16O, and 20Ne we use a lattice volume of (12 fm)3.
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The initial states we use are

|Ψ
8Be
i 〉 =

∏
ã† · M∗

∏
ã† |0〉 , (6.27)

|Ψ
12C
i 〉 =

∏
ã† · M∗

∏
ã† · M∗

∏
ã† |0〉 , (6.28)

|Ψ
16O
i 〉 =

∏
ã† · M∗

∏
ã† · M∗

∏
ã† · M∗

∏
ã† |0〉 , (6.29)

|Ψ
20Ne
i 〉 =

∏
ã† · M∗

∏
ã† · M∗

∏
ã† · M∗

∏
ã† · M∗

∏
ã† |0〉 . (6.30)

The interspersing of the transfer matrix M∗ in between the products of creation operators allows us

to create all nucleons with zero momentum without violating the Pauli exclusion principle. In panels

a,b, c,d of Fig. 6.3 we show the energy versus projection time t = Ltat for 8Be, 12C, 16O, and 20Ne

respectively for the LO interaction A (blue plus signs and dashed lines), LO interaction B (red squares

and dashed lines), LO + Coulomb interaction A (blue crosses and solid lines), and LO + Coulomb

interaction B (red triangles and solid lines). The error bars indicate one standard deviation errors from

the stochastic noise of the MC simulations, and the lines are extrapolations to infinite projection time

using the ansatz in Eq. (6.25). The results for the ground state energies are shown in Table 6.1. The LO +

Coulomb results for interaction B are in good agreement with experimental results, better overall than the

N2LO results in Ref. [41]. However, there is significant underbinding for interaction A with increasing

nucleon number. For interaction A, it is illuminating to compute the ratio of the LO energy for each of

the alpha-like nuclei to that of the alpha particle. For 8Be the ratio is 1.997(6), for 12C the ratio is 3.00(1),

for 16O it is 4.00(2), and for 20Ne we have 5.03(3). These simple integer ratios indicate that the ground

state for interaction A in each case is a weakly-interacting Bose gas of alpha particles. This interpretation

is also confirmed by calculations of NN spatial correlations and local four-nucleon correlations.

To understand how interactions A and B can produce such completely different physics, we consider

their alpha-alpha S-wave phase shifts. While interaction fails at describing these phase shifts, this is

different for interaction B. In fact, Interaction B was tuned to the nucleon-nucleon phase shifts and

the alpha-alpha S-wave phase shifts, and so the agreement with experimental data is very good. This

difference in the description of the alpha-alpha S-wave phase shifts explains the large differences between

interactions A and B for the energies of the larger alpha-like nuclei.

For both interactions A and B, the auxiliary-field MC simulations presented here have far milder

MC sign cancellations than in previous lattice simulations of the same systems, Ref. [41]. This very

promising development will allow for much larger and previously difficult simulations in the future. The
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Chapter 6 Nuclear Binding Near A Quantum Phase Transition

Figure 6.3: Energy versus projection time for 8Be,12C,16O, and 20Ne. In panels a,b,c,d we plot the energy versus
projection time t = Ltat for 8Be, 12C, 16O, and 20Ne respectively for the LO interaction A (blue plus signs and
dashed lines), LO interaction B (red squares and dashed lines), LO + Coulomb interaction A (blue crosses and
solid lines), and LO + Coulomb interaction B (red triangles and solid lines). The error bars indicate one standard
deviation errors from the stochastic noise of the MC simulations, and the lines show extrapolations to infinite
projection time.
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savings come from two innovations. The first is the introduction of the nonlocal interactions in VNL.

Ironically, the implementation of general nonlocal interactions in quantum MC simulations have long

been problematic due to sign oscillations. However, the auxiliary-field implementation of the interactions

in VNL are extremely favorable from the point of view of sign oscillations. The reason for this is the

very simple structure of the terms in VNL. This leads to fewer issues with so-called interference sign

problems as discussed in Ref. [50]. The other innovation reducing the sign problem is the introduction
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of the parameter bπ in the OPE interaction. This decreases the short-distance repulsion in the S-wave

channels responsible for some sign oscillations.

What we have discovered is that alpha-alpha scattering is very sensitive to the degree of locality of the

nucleon-nucleon lattice interactions. It can be shown that this dependence on the degree of locality is

due to the compactness of the alpha-particle wave function. In contrast, the nucleon-nucleon scattering

phase shifts make no constraint on the degree of locality of the nucleon-nucleon interactions. For

example, if one starts with a purely local interaction, a unitary transformation can be used to define

a new interaction which is highly nonlocal but having exactly the same phase shifts. The differences

only become apparent in systems with more than two nucleons and can be understood as arising from

three-body and higher-body interactions. Interaction A is a perfectly valid starting point for describing

nucleon-nucleon interactions. However, substantial higher-nucleon interactions will be needed to rectify

the missing strength of the alpha-alpha interactions and the additional binding energy in nuclei. These

resultssuggests a strategy for improving future ab initio nuclear structure and reaction calculations by

incorporating low-energy light-nucleus scattering data in addition to nucleon-nucleon scattering data.

6.4 Ground State Energies as A Function of λ

To further elucidate the physics behind this different LO interaction, let us consider the one-parameter

family of interactions, Vλ = (1 − λ)VA + λVB with the Coulomb interactions switched off. While the

properties of the two, three, and four nucleon systems vary only slightly with λ, the many-body ground

state of Vλ undergoes a quantum phase transition from a Bose-condensed gas to a nuclear liquid. This

phase transition occurs when the alpha-alpha S-wave scattering length aαα crosses zero, and the Bose

gas collapses due to the attractive interactions. At slightly larger λ, finite alpha-like nuclei also become

bound, starting with the largest nuclei first. The last alpha-like nucleus to be bound is 8Be at the so-called

unitarity point where |aαα| = ∞. Empirically we find that the quantum phase transition occurs at the point

λ∞ = 0.0(1). The uncertainty of ±0.1 is due to the energy levels having a slow dependence on λ near

λ = 0.0. Since any Vλ represents a seemingly reasonable starting point for the effective field theory at

LO, one may end up crossing the phase transition when considering higher-order effects beyond LO. It is

in this sense that we say nature is near a quantum phase transition.

Let us study this phase transition in more detail At the phase transition point the alpha clusters become

non-interacting in the dilute limit, and so we should find the following simple relationship among the
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ground state energies provided that the finite volume is sufficiently large:

E4He = 1/2 E8Be = 1/3 E12C = 1/4 E16O = 1/5 E20Ne . (6.31)

In Fig. 6.4 we plot the LO ground state energies E4He, 1/2 E8Be, 1/3 E12C, 1/4 E16O, 1/5 E20Ne versus λ.

We see that the phase transition occurs at λ∞ = 0.0(1).

Figure 6.4: Ground state energies versus λ. We plot the LO ground state energies E4He, 1/2 E8Be, 1/3 E12C, 1/4 E16O,
1/5 E20Ne versus the parameter λ which interpolates between VA and VB.
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To determine the critical point λ20 when 20Ne becomes bound, we compare E20Ne with the threshold

energy E16O + E4He. For this analysis we also include the finite-volume energy one obtains at infinite

S-wave scattering length for the 16O +
4He system. At infinite scattering length the energy of any

two-body system with reduced mass µ in a periodic box of size L is, Ref. [51, 52]

∆E =
4π2d1

mL2 , (6.32)

where

d1 ≈ −0.095901 . (6.33)

We find that the critical point for the binding of 20Ne is λ20 = 0.2(1). A similar analysis for the binding

of the other alpha nuclei finds λ16 = 0.2(1) for 16O, λ12 = 0.3(1) for 12C, and λ8 = 0.7(1) for 8Be. One

finds a sudden change in the nucleon-nucleon density correlations at long distances as λ crosses the

critical point, going from a continuum state to a self-bound system. As λ increases further beyond this
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Table 6.1: Ground state energies of 3H, 3He, 4He, 8Be, 12C, 16O, 20Ne for interactions A and B. We show LO
results, LO + Coulomb results, and experimental data. All energies are in units of MeV. The error bars denote one
standard deviation errors.

Nucleus A (LO) B (LO) A (LO + Coulomb) B (LO + Coulomb) Experiment
3H −7.82(5) −7.78(12) −7.82(5) −7.78(12) −8.482

3He −7.82(5) −7.78(12) −7.08(5) −7.09(12) −7.718
4He −29.36(4) −29.19(6) −28.62(4) −28.45(6) −28.296
8Be −58.61(14) −59.73(6) −56.51(14) −57.29(7) −56.591
12C −88.2(3) −95.0(5) −84.0(3) −89.9(5) −92.162
16O −117.5(6) −135.4(7) −110.5(6) −126.0(7) −127.619

20Ne −148(1) −178(1) −137(1) −164(1) −160.645

critical value, the nucleus becomes more tightly bound, gradually losing its alpha cluster substructure

and becoming more like a nuclear liquid droplet. The quantum phase transition at λ∞ = 0.0(1) is the

corresponding phenomenon in the many-body system, a first-order phase transition occurring for infinite

matter.
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CHAPTER 7

Summary

In this thesis we first presented a systematic study of neutron-proton scattering up to N2LO in the scheme

of NLEFT in Sec. 4. We obtained the corresponding LECs that parametrize the short-distance interaction

by fitting phase shifts and mixing angles. Previous works at a coarse lattice spacing a ' 2 fm, see

Refs. [13, 14], had shown good agreement with empirical data at momenta up to the pion mass. Here,

the full TPE was included in order to improve the trends of phase shifts at high momenta. Also, we

could lower the lattice spacing to a ' 1 fm, which requires the full inclusion of the TPE, whereas for

coarse lattices its contribution can be absorbed into the LECs of the four-nucleon terms. Quantitative

uncertainties of the fitted LECs were estimated by a statistical analysis, and a technical discussion about

systematical errors was given. Deviations of the phase shifts from data originate from the uncertainties

of LECs and loss of contributions of high order interactions. We showed that the former dominates

at low momenta while the latter dominates at high momenta and is therefore treated as systematic

errors. Effects of finite lattice spacings were scrutinized in the range of 1 − 2 fm and it was found that

a coarse lattice has slight impact on the phase shifts either at low momenta (less than 100 MeV) or at

low partial waves (S-waves), whereas a fine lattice can improve the scattering behavior in the opposite

situation. We have also presented a comparison of fully non-perturbative N2LO calculations with a

perturbative treatment of contributions beyond LO for pratical reasons, such as sign oscillation problems

and increasing computational complexity in MC simulation on many-body system. It can be stated that

the physics of the two-nucleon system (nucleon-nucleon scattering and the deuteron) is independent
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of the lattice spacing for momenta below the pion mass. This can be made more precise at N3LO. In

Sec. 5, we presented first results at this order based on the improved, though incomplete, TPE and the

contribution from the new contact interactions. We also included the Coulomb force in the proton-proton

system. As expected, these corrections improve the description of the data, though a thorough error

estimation still has to be performed.

In Sec. 6 we presented numerical evidence from ab initio lattice simulations showing that nature is

near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using

lattice effective field theory, we perform MC simulations for systems with up to twenty nucleons. For

even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature

from a Bose-condensed gas of alpha particles (4He nuclei) to a nuclear liquid. Whether one has an

alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and

we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon

interactions. This insight should be useful in improving calculations of nuclear structure and important

astrophysical reactions involving alpha capture on nuclei. Our findings also provide a tool to probe the

structure of alpha cluster states such as the Hoyle state responsible for the production of carbon in red

giant stars and point to a connection between nuclear states and the universal physics of bosons at large

scattering length.

This work offers rich perspectives. First, for precision nuclear studies, it is mandatoy to include the

two-nucleon forces at N3LO as developed here, supplemented by the corresponding contributions of

the three-nucleon forces not discussed here. Further, improving the actions by more refined smearing

procedures will allow to reduce the constributions from the three- and four-body forces and eventually

lead to a precise calculation of the proton and neutron driplines up to the mid-mass region of the nuclear

chart.
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APPENDIX A

Uncertainty Analysis

From the definition of χ2 given in Eq. (4.51), we note that χ2 is a function of the LO and NLO coupling

constants

χ2
≡ χ2(C1S0

,C3S1
, C̃1, . . . , C̃7) , (A.1)

such that if χ2 is expanded around its minimum, one finds

χ2
= χ2

min +
1
2

∑
i, j

hi j(Ci −Cmin
i )(C j −Cmin

j ) + . . . , (A.2)

where the Hessian matrix is given by

hi j ≡
∂2χ2

∂Ci∂C j
, (A.3)

and Cmin
i denotes the set of parameters that minimizes the χ2 function. Given that χ2 reaches its minimum

value for Ci = Cmin
i , the terms with one derivative vanish. Keeping terms up to second order, we obtain

the Hessian approximation to the error (or variance-covariance) matrix

Ei j ≡
1
2

h−1
i j , (A.4)

and the standard deviations

σi =

√
σ2

i =
√
Eii , (A.5)
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of the fitted constants are obtained from the diagonal elements of the error matrix.

In the absence of systematical errors, we expect to find a normalized chi-square of χ̃2
≡ χ2/Ndof ≈ 1,

where Ndof is the number of degrees of freedom (number of fitted data - number of free parameters) in

the fit. However, in our analysis χ̃2 > 1 in most cases, particularly at LO and for larger values of the

lattice spacing a. Such a systematical error suggests that the uncertainties computed from Eq. (A.5)

are underestimated. Following Ref. [53], we therefore rescale the input errors by the Birge factor [54],

according to

∆i → ∆i

√
χ̃2

min , (A.6)

which leads to the replacement

χ2
→

χ2

χ̃2
min

= Ndof
χ2

χ2
min

, (A.7)

such that χ2/Ndof ≈ 1 for Ci = Cmin
i . For a given observable O, we assign an uncertainty according to

∆O ≡

√
(JT
O)iEi j(JO) j , (A.8)

where

(JO)i ≡
∂O

∂Ci
, (A.9)

is the Jacobian vector of O with respect to the Ci.
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APPENDIX B

Two-Pion Exchange Potential

The chiral expansion of the TPE potential (TPEP) starts at next-to-leading order, The TPEP in momentum

space can be decomposed as

V2π = [VC + τ1 · τ2WC] + [VS + τ1 · τ2WS] σ1 · σ2

+ [VT + τ1 · τ2WT] σ1 · q σ2 · q + [VLS + τ1 · τ2WLS] i (σ1 + σ2) · q × k . (B.1)

V (2)
2π , which denotes TPEP at NLO, takes the form Eq. (B.1), where

W (2)
C = −

L(q)

384π2 f 4
π

4M2
π(5g4

A − 4g2
A − 1) + q2(23g4

A − 10g2
A − 1) +

48g4
AM4

π

4M2
π + q2

 , (B.2)

V (2)
T = −

1

q2 V (2)
S = −

3g4
A

64π2 f 4
π

L(q) , (B.3)

V (2)
C = V (2)

LS = W (2)
S = W(2)

T = W (2)
LS = 0 . (B.4)

The loop function L(q) is defined as

L(q) =

√
4M2

π + q2

q
log

√
4M2

π + q2
+ q

2Mπ

. (B.5)
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As for V (3)
2π , which denotes TPEP at N2LO, we have,

V (3)
C = −

3g2
A

16π f 4
π

[2M2
π(2c1 − c2) − c3q2](2M2

π + q2)A(q) , (B.6)

W(3)
T = −

1

q2 W (3)
S = −

g2
A

32π f 4
π

c4(4M2
π + q2)A(q) , (B.7)

V (3)
S = V (3)

T = V (3)
LS = W(3)

C = W (3)
LS = 0 , (B.8)

with

A(q) =
1
2q

arctan
q

2Mπ

, (B.9)

where k = (p + p′)/2, τi denotes the Pauli matrices in isospin space of the nucleon i, and σi the ones in

spin space.

At N3LO, only one-loop bubble diagram (bbl), which has two dimension-three insertions, and two-loop

diagram (lp), built from LO insertions only, in the scheme of spectral function regularization, Ref. [37],

are taken into account in this work:

V (4,bbl)
C =

3

16π2 f 4
π

L(q)

[c2

6
(4M2

π + q2) + c3(2M2
π + q2) − 4c1M2

π

]2
+

c2
2

45
(4M2

π + q2)2

 , (B.10)

W (4,bbl)
T = −

1

q2 W (4,bbl)
S =

c2
4

96π2 f 4
π

(4M2
π + q2)2 ; (B.11)

and

V (4,lp)
C,S (q) = −

2q6

π

∫ ∞

2Mπ

dµ
ρC,S(µ)

µ5(µ2
+ q2)

, (B.12)

V (4,lp)
T (q) =

2q4

π

∫ ∞

2Mπ

dµ
ρT(µ)

µ3(µ2
+ q2)

, (B.13)

W(4,lp)
C,S (q) = −

2q6

π

∫ ∞

2Mπ

dµ
ηC,S(µ)

µ5(µ2
+ q2)

, (B.14)

W(4,lp)
T (q) =

2q4

π

∫ ∞

2Mπ

dµ
ηT(µ)

µ3(µ2
+ q2)

, (B.15)

where ρi and ηi denotes the corresponding spectral functions,
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ρC(µ) = −
3g4

A(µ2
− 2M2

π)

πµ(4 fπ)6

×

(M2
π − 2µ2)

2Mπ +
2M2

π − µ
2

2µ
log

µ + 2Mπ

µ − 2Mπ

 + 4g2
AMπ(2M2

π − µ
2)

 ,

ηS(µ) = µ2ηT(µ) = −
g4

A(µ2
− 4M2

π)

π(4 fπ)6


M2

π −
µ2

4

 log
µ + 2Mπ

µ − 2Mπ

+ (1 + 2g2
A)µMπ

 ,

ρS(µ) = µ2ρT(µ) = −

g2
Ar3µ

8π f 4
π

(d̄14 − d̄15) −
2g6

Aµr3

(8π f 2
π )3

[
1
9
− J1 + J2

] ,

ηC(µ) =

 rt2

24π f 4
π µ

[2(g2
A − 1)r2

− 3g2
At2](d̄1 + d̄2) +

r3

60π f 4
π µ

[6(g2
A − 1)r2

− 5g2
At2]d̄3

−
M2
πr

6π f 4
π µ

[2(g2
A − 1)r2

− 3g2
At2]d̄5

−
1

92160π3f6
πµ

2 [−320(1 + 2g2
A)2M6

π + 240(1 + 6g2
A + 8g4

A)M4
πµ

2

− 60g2
A(8 + 15g2

A)M2
πµ

4
+ (−4 + 29g2

A + 122g4
A + 3g6

A)µ6] log
2r + µ

2Mπ

−
r

2700(8π f 2
π )3µ

[
−16(171 + 2g2

A(1 + g2
A)(327 + 49g2

A))M4
π

+4(−73 + 1748g2
A + 2549g4

A + 726g6
A)M2

πµ
2
− (−64 + 389g2

A + 1782g4
A + 1093g6

A)µ4
]

+
2r

3(8π f 2
π )3µ

[
g6

At4J1 − 2g4
A(2g2

A − 1)r2t2J2

] , (B.16)

where we have

r =
1
2

√
µ2
− 4M2

π , t =

√
µ2
− 2M2

π , (B.17)

and

J1 =

∫ 1

0
dx

 M2
π

r2x2 − (1 +
M2
π

r2x2 )
3
2 log

rx +

√
M2
π + r2x2

Mπ

 ,

J2 =

∫ 1

0
dx x2

 M2
π

r2x2 − (1 +
M2
π

r2x2 )
3
2 log

rx +

√
M2
π + r2x2

Mπ

 . (B.18)
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APPENDIX C

Contact Interactions in Spherical Harmonics

Basis in Position Space

We define contact operators in coordinate space for any order. ai j,n and a†i j,n denote the annihilation and

creation operators on lattice site n with spin i = 0, 1 (up, down) and isospin j = 0, 1 (proton, neutron).

The pair annihilation operators [anan′]S ,S z;I,Iz
read

[anan′]S ,S z;I,Iz
=

∑
ii′ j j′

ai j,nMii′(S , S z)M j j′(I, Iz)ai′ j′,n′ . (C.1)

The operators P and O take information for total spin, total isospin and orbital angular momentum or

total angular momentum of the 2-body system.

[Pn]2M
S ,S z;L,Lz;I,Iz

= [an∇
2MR∗L,Lz

(∇) an]S ,S z;I,Iz
, (C.2)

[On]2M
S ,L,J,Jz;I,Iz

=
∑
S zLz

CJ,Jz
L,Lz,S ,S z

[Pn]2M
S ,S z;L,Lz;I,Iz

, (C.3)

where RL,Lz
is solid harmonics and CJ,Jz

L,Lz,S ,S z
CG coefficients. The zero-ranged contact potential with

quantum numbers (J, S , I, Li, Lo,mi,mo) at order Q2N in position space is built as

[V2N]{2mo,2mi}
2S +1(LiLo)J ,I

(Jz, Iz) =
1
2

[
O2mo

S ,Lo,J,Jz;I,Iz

]†
O2mi

S ,Li,J,Jz;I,Iz
+

1
2

{
(Lo,mo)↔ (Li,mi)

}
. (C.4)
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Appendix C Contact Interactions in Spherical Harmonics Basis in Position Space

Operators at Order Q0

S-wave spin singlet, V (0)
1S0

,

[V0]{0,0}1S0,1
(0, Iz) =

[
O0

0,0,0,0;1,Iz

]†
O0

0,0,0,0;1,Iz
(C.5)

S-wave spin triplet, V (0)
3S1

,

[V0]{0,0}3S1,0
(Jz, 0) =

[
O0

1,0,1,Jz;0,0

]†
O0

1,0,1,Jz;0,0
(C.6)

Operators at Order Q2

S-wave spin singlet, V (2)
1S0

,

[V2]{2,0}1S0,1
(0, Iz) =

1
2

[
O2

0,0,0,0;1,Iz

]†
O0

0,0,0,0;1,Iz
+

1
2

[
O0

0,0,0,0;1,Iz

]†
O2

0,0,0,0;1,Iz
(C.7)

S-wave spin triplet, V (2)
3S1

,

[V2]{2,0}3S1,0
(Jz, 0) =

1
2

[
O2

1,0,1,Jz;0,0

]†
O0

1,0,1,Jz;0,0
+

1
2

[
O0

1,0,1,Jz;0,0

]†
O2

1,0,1,Jz;0,0 (C.8)

P-wave spin singlet, V (2)
1P1

,

[V2]{0,0}1P1,0
(Jz, 0) =

[
O0

0,1,1,Jz;0,0

]†
O0

0,1,1,Jz;0,0
(C.9)

P-wave spin triplet, V (2)
3P0

, V (2)
3P1

, V (2)
3P3

,

[V2]{0,0}3P0,1
(0, Iz) =

[
O0

1,1,0,0;1,Iz

]†
O0

1,1,0,0;1,Iz
(C.10)

[V2]{0,0}3P1,1
(Jz, Iz) =

[
O0

1,1,1,Jz;1,Iz

]†
O0

1,1,1,Jz;1,Iz
(C.11)

[V2]{0,0}3P2,1
(Jz, Iz) =

[
O0

1,1,2,Jz;1,Iz

]†
O0

1,1,2,Jz;1,Iz
(C.12)
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SD-wave mixing channel, V (2)
3SD1

,

[V2]{0,0}3SD1,0
(Jz, 0) =

1
2

[
O0

1,0,1,Jz;0,0

]†
O0

1,2,1,Jz;0,0
+

1
2

[
O0

1,2,1,Jz;0,0

]†
O0

1,0,1,Jz;0,0
(C.13)

Operators at Order Q4

S-wave spin singlet, V (4)
1S0;1

, V (4)
1S0;2

[V4]{4,0}1S0,1;1
(0, Iz) =

1
2

[
O4

0,0,0,0;1,Iz

]†
O0

0,0,0,0;1,Iz
+

1
2

[
O0

0,0,0,0;1,Iz

]†
O4

0,0,0,0;1,Iz
(C.14)

[V4]{2,2}1S0,1;2
(0, Iz) =

[
O2

0,0,0,0;1,Iz

]†
O2

0,0,0,0;1,Iz
(C.15)

S-wave spin triplet, V (4)
3S1;1

, V (4)
3S1;2

,

[V4]{4,0}3S1,0;1
(Jz, 0) =

1
2

[
O4

1,0,1,Jz;0,0

]†
O0

1,0,1,Jz;0,0
+

1
2

[
O0

1,0,1,Jz;0,0

]†
O4

1,0,1,Jz;0,0 (C.16)

[V4]{2,2}3S1,0;2
(Jz, 0) =

[
O2

1,0,1,Jz;0,0

]†
O2

1,0,1,Jz;0,0 (C.17)

P-wave spin singlet, V (4)
1P1

,

[V4]{2,0}1P1,0
(Jz, 0) =

1
2

[
O2

0,1,1,Jz;0,0

]†
O0

0,1,1,Jz;0,0
+

1
2

[
O0

0,1,1,Jz;0,0

]†
O2

0,1,1,Jz;0,0 (C.18)

P-wave spin triplet, V (4)
3P0

, V (4)
3P1

, V (4)
3P2

,

[V4]{2,0}3P0,1
(0, Iz) =

1
2

[
O2

1,1,0,0;I,Iz

]†
O0

1,1,0,0;I,Iz
+

1
2

[
O0

1,1,0,0;I,Iz

]†
O2

1,1,0,0;I,Iz
(C.19)

[V4]{2,0}3P1,1
(Jz, Iz) =

1
2

[
O2

1,1,1,Jz;I,Iz

]†
O0

1,1,1,Jz;I,Iz
+

1
2

[
O0

1,1,1,Jz;I,Iz

]†
O2

1,1,1,Jz;I,Iz
(C.20)

[V4]{2,0}3P2,1
(Jz, Iz) =

1
2

[
O2

1,1,2,Jz;I,Iz

]†
O0

1,1,2,Jz;I,Iz
+

1
2

[
O0

1,1,2,Jz;I,Iz

]†
O2

1,1,2,Jz;I,Iz
(C.21)
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D-wave spin singlet, V (4)
1D2

,

[V4]{0,0}1D2,1
(Jz, 0) =

[
O0

0,2,2,Jz;1,Iz

]†
O0

0,2,2,Jz;1,Iz
(C.22)

D-wave spin triplet, V (4)
3D1

, V (4)
3D2

, V (4)
3D3

,

[V4]{0,0}3D1,0
(Jz, 0) =

[
O0

1,2,1,Jz;0,0

]†
O0

1,2,1,Jz;0,0
(C.23)

[V4]{0,0}3D2,0
(Jz, 0) =

[
O0

1,2,2,Jz;0,0

]†
O0

1,2,2,Jz;0,0
(C.24)

[V4]{0,0}3D3,0
(Jz, 0) =

[
O0

1,2,3,Jz;0,0

]†
O0

1,2,3,Jz;0,0
(C.25)

SD-wave mixing channel, V (4)
3SD1;1

, V (4)
3SD1;2

[V4]{2,0}3SD1,0;1
(Jz, 0) =

1
2

[
O2

1,0,1,Jz;0,0

]†
O0

1,2,1,Jz;0,0
+

1
2

[
O0

1,2,1,Jz;0,0

]†
O2

1,0,1,Jz;0,0 (C.26)

[V4]{0,2}3SD1,0;2
(Jz, 0) =

1
2

[
O0

1,0,1,Jz;0,0

]†
O2

1,2,1,Jz;0,0 +
1
2

[
O2

1,2,1,Jz;0,0

]†
O0

1,0,1,Jz;0,0
(C.27)

PF-wave mixing channel, V (4)
3PF2

,

[V4]{0,0}3PF2,1
(Jz, Iz) =

[
O0

1,1,2,Jz;1,Iz

]†
O0

1,3,2,Jz;1,Iz
(C.28)
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