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Abstract  

Plant parasitic nematodes are pathogens of great economic importance causing major 

losses in various food crops world-wide. A reliable, effective and efficient control method is 

establishing resistant cultivars of which understanding plant defense against nematodes is 

the first step towards this solution. Plant defence relies on recognition of Pathogen-

Associated Molecular Patterns (PAMPs) by surface-localised Pattern-Recognition Receptors 

(PRRs) prior to pathogen penetration. Upon PAMP perception, PRRs trigger intracellular 

signalling cascades leading to activation of PAMP-Triggered Immunity (PTI). PRRs 

perceiving a wide-range of PAMPs have now been characterized for various models of plant-

pathogen interactions; however, even though Nematode derived PAMPs (NAMPS) such as 

ascarosides have been identified, none of their perceiving receptors have been 

characterized. Here we show that invasion of Arabidopsis roots by parasitic nematodes 

triggers PTI-like responses including an upregulation of defense related genes. Treating 

Arabidopsis roots with a nematode aqueous solution (NemaWater) similarly induced 

expression of defense genes. Among the upregulated genes were a number of plasma-

membrane – localized Receptor-Like Kinases (RLKs) belonging to Leucine Rich Repeat 

(LRRs), Never In Mitosis A (NIMA) rElated Kinases (NEKs), Cysteine-Rich RLKs (CRKs) 

and Phytosulfokine Kinase (PSK) families. Nematode infection assays with candidate genes 

demonstrated that loss of NILR1 (for NEMATODE-INDUCED LRR-RLK 1) expression 

enhances the susceptibility of plants to a broad range of nematodes suggesting that NILR1 

is a PRR that perceives a conserved nematode-derived NAMP. This finding is equally 

supported by experiments showing that nilr1 is defective in ROS burst as well as in seedling 

growth inhibition upon NemaWater treatment compared with wild-type control. In addition, 

presence ROS burst by NemaWater on rice plants suggested triggering of PTI by a NILR1 

homologue in rice.  

We further showed AtNEK5 and NILR3 as potential NAMP receptors due to susceptibility of 

their knock out mutants to sedentary nematodes while two CRKs; CRK 19 and CRK10 
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portrayed roles in defense against nematodes in a species dependent manner. In addition, 

we demonstrated that the co-receptor BAK1 can be utilized to mine for potential receptors 

and signalling components involved in immunity against nematodes through successful 

BAK1-GFP pull down assay. The identification of NILR1 among others PRR perceiving 

NAMPs and successful baiting of BAK1 to pulldown nematode derived immunity 

components are major steps forward in understanding plant basal defense against 

nematodes. Consequently, these findings will not only increase knowledge into plant-

nematode interaction but also pave way for further exploration of plant immunity studies. As 

a direct effect, the vital information from this study remains as a resource for molecular 

breeding of nematode resistant plants and a solution to yield loss due to nematode.  
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Zusammenfassung 

Pflanzenparasitäre Nematoden sind Pathogene von großer ökonomischer Relevanz, da sie 

weltweit enorme Verluste in diversen Nutzpflanzensorten verursachen. Eine verlässliche, 

effektive und effiziente Regulierung ist die Verwendung resistenter Kultivare, wobei das 

Verständnis der Verteidigungsstrategien von Pflanzen gegen Nematoden ein erster Schritt 

zu dieser Lösung ist. Pflanzliche Verteidigungsstrategien beruhen auf der Erkennung 

sogenannter „Pathogen-Associated Molecular Patterns“ (PAMPs) durch „Pattern-

Recognition Receptors“ (PRRs) bevor der Pathogen eindringt. Durch die Perzeption von 

PAMPs lösen PRRs intrazelluläre Signalkaskaden aus, die zur Aktivierung der PAMP-

Triggered Immunity (PTI) führen. PRRs, die eine Viezahl von PAMPs erkennen, werden 

inzwischen in unterschiedlichen Modellen über die Planze-Pathogen Interaktionen 

beschrieben. Jedoch, obwohl nematodenbezogene PAMPs (NAMPs), wie zum Beispiel 

Ascaroside, identifiziert wurden, wurde bislang kein entsprechender Rezeptor 

charakterisiert. Hier zeigen wir, dass die Invasion von Arabidopsiswurzeln durch 

pflanzenparasitäre Nematoden PTI ähnliche Signale auslöst, einschließlich einer 

Hochregulation von Genen der Pflanzenabwehr. Die Behandlung von Arabidopsiswurzeln 

mit einer wässrigen Nematodenlösung (NemaWater) induziert auf eine ähnliche Weise die 

Expression von Abwehrgenen. Unter den hochregulierten Genen befinden sich eine Reihe 

„Receptor-Like Kinases“ (RLKs) der Plasmamembran, die zu den Familien der „Leucine Rich 

Repeat (LRRs), Never In Mitosis A (NIMA) rElated Kinases (NEKs), Cysteine-Rich RLKs 

(CRKs)“ und „Phytosulfokine Kinase“ (PSK) gehören. Nematoden-Infektionsstudien 

demonstrierten, dass der Verlust des Kandidatengens NILR1 (for NEMATODE-INDUCED 

LRR-RLK 1), die Anfälligkeit der Pflanzen gegenüber einer Reihe von Nematodenarten 

erhöht. Dieses Ergebnis legt nahe, dass es sich bei NILR1 um ein NAMP erkennendes PRR 

handelt. Gleichzeitig wird diese Annahme durch Experimente unterstützt, die zeigen, dass 

die transgene Pflanze nilr1 eine beeinträchtigte ROS Ausschüttung sowie eine Hemmung 
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des Keimlingswachstums nach Behandlng mit NemaWater aufweist. Zusätzlich suggerierte 

die ROS Ausschüttung in Reispflanzen durch NemaWater Behandlung, dass in diesem Fall 

ein NILR1 Homolog PTI auslöst. Außerdem zeigten wir, dass es sich bei AtNEK5 und NILR3 

um potentielle NAMP Rezeptoren handelt, da die entsprechenden Knockout-Mutanten 

anfälliger gegenüber sedentären Nematoden waren, während die Rollen von CRKs; CRK 19 

und CRK10, in speziesabhängigen Abwehrmechanismen vermutet werden. Zusätzlich 

konnten wir demonstrieren, dass der Korezeptor BAK1 in einer „GFP pull down“ Analyse zur 

Suche nach potentiellen Rezeptoren und Signalkomponenten, involviert in 

Immunitätsmechanismen gegen Nematoden, verwendet werden kann. Die Identifizierung 

von NILR1 neben anderen PRR erkennenden NAMPs und das erfolgreiche Ködern von 

BAK1 zum Detektieren von nematodenbezogenen Immunitätskomponenten sind wichtige 

Schritte zu einem Verständnis der basalen Pflanzenabwehr gegen Nematoden. Folglich 

werden diese Erkenntnisse nicht nur das Wissen über die Pflanzen-Nematoden Interaktion 

bereichern, sondern auch den Weg ebnen für zukünftige Untersuchungen des 

Pflanzenimmunsystems. Als direkter Effekt stellt diese Studie eine Resource für molekulare 

Züchtung nematodenresistenter Pflanzen sowie eine Strategie zur Reduktion von 

Ernteausfällenn dar.  
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Chapter 1 

INTRODUCTION 

1.1 Nematodes 
 

Nematodes are worm-like moulting animals believed to have been observed as early as 

during the ancient civilizations dating back to 450 B.C, by great minds like Hippocrates. They 

are described as long, thin and hair-like animals and the word nematode is derived from the 

greek word Nematoidea which is a combination of νῆμα (nêma, nêmatos) meaning thread 

and -eiδἠς (-eidēs) meaning species. During the 18th and 19th century, different types of 

nematode were continuously discovered and identified mainly based on observations and 

morphology. It is also during this time period that free-living and parasitic nature of 

nematodes was first described in both animals and plants. This paved way and greatly 

contributed to understanding basic nematode biology and hence taxonomic classification of 

nematodes. However, it is in the last century that nematodes have been well studied mainly 

due to realization of their economic importance, and as such Nematology; the study of 

nematode, has become a well advanced and integrated study in mainstream biology to date.  

Nematodes inhabit all kinds of habitats except dry soils and are numerous in number with a 

prediction of one hundred million species in marine ecosystems alone. However, only about 

26,646 nematode species cutting across different habitats have been described so far 

(Lambshead 1993; Hugot et al., 2001). Regardless of their habitats, nematodes are 

structurally transparent consisting of three layers including ectoderm, mesoderm and 

endoderm (Kennedy and Harnett, 2001). They have muscles on their outer wall which is 

essential for their movement as well as moulting from the inner hypodermis. Their wavy-like 

movement is aided by the elasticity of their body since the spaces between the body wall 

and the body-long alimentary canal is filled with fluids (Lee et al., 2002).  

1
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As living organisms, nematodes have been classified as animals on the phylogenetic tree. 

The discovery of molecular-biology techniques in the past decades have made empirical 

analysis of the evolutionary history of the phylum nematoda possible, through a network 

stemming from kingdom animalia. The first molecular phylogenetic notation of Nematode 

was framed through ribosomal small units mapping and as a result, Nematoda is now 

claimed to be a sister phylum to Nematomorpha, both of which belong to taxa Ecdysozoa 

(Fig 1) (Blaxter et al., 1998; Schmidt-Rhaesa, 1997; Dunn et al., 2008). Even though these 

two phyla are quite similar, Nematomorpha species are described as horse hair worms due 

to hair-like structure on their body and have a parasitoid life cycle different from Nematoda 

species. Nematoda is comprised of three subclasses; Chromadoria, Enoplia and Dorylaimia 

(De Ley and Blaxter, 2004). Among these, chromadoria and Enoplia are mainly marine 

nematodes, and Dorylaimia are mainly plant parasites. Nematodes have been further 

classified based on their feeding behaviour, structural morphology and parasitism as 

Parasitic or free-living (Blaxter et al., 1998; Dorris et al., 1999). Majority of nematodes are 

free-living and feed on fungi, algae and bacteria. 

A well-known free-living nematode is Caenorhabditis elegans. In 1963, Sydney Brenner 

discovered the potential role that coulc be played by Caenorhabditis briggsae in the 

expansion of his developmental and neurological studies to other field that were quite left out 

in mainstream science at the time (Brenner 1988, 2002).  Later, it was discovered that 

Caenorhabditis elegans was the easy to grow, genetically modify and had the advantage of 

a short life cycle of the two genii. C elegans thus became a model organism who`s similarity 

in cellular and molecular processes to the rest of the metazoans, has become a point of 

reference for the rest of the Animalia kingdom (Felix, 2008). It was particularly a major 

breakthrough in animal and human science when C elegans became the first multi cellular 

organism whose complete cell lineage and entire connectome was described (The C. 

elegans Sequencing Consortium, 1998; Jarell, 2012). C elegans is currently utilized by more 

than 1000 laboratories across the globe (Bolker, 2012). 
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Figure 1. Nematode molecular phylogenetic framework. 

Nematodes, whether parasitic or free-living, have much in common in almost every stage of 

their biology. For example they switch to parasitic and free-living status within their life cycle 

mainly at the third juvenile or larval stage. However, parasitic nematodes major difference 

from free-living nematodes is their propensity for host interaction, an adaptation that has 

been evolutionary acquired due to need to counter host defence and competition for 

resources with the hosts (Maule, 2011). Brugia malayi (Chromadoria; Spiruromorpha) was 

the first parasitic nematode to have its whole genome sequenced. There are currently 19 

publicly accessible nematode genomes of which the majority is parasitic (Ghedin et al., 

2007). Nematode parasitism is mainly directed to animals and plants. Animal parasitic 

nematodes invade and parasitize animals; vertebrates and invertebrates including human 

beings, causing damage and in some cases death, for example the guinea worm 

(Dracunculus medinensis) and intestinal worm (Ascaris lumbricoides), which is believed live 

inside more than 1 billion human beings (Muller, 2011; Dold and Holland, 2011). They also 

include entomopathogenic nematodes which usually are utilized as biological pest controls 

(Dillman and Sternberg, 2012). Plant parasitic nematodes on the other hand account for 7% 

of the nematode phylum. They parasitize wide range of plant species for example the root-

knot nematode (Meloidogyne incognita) (Decraemer and Hunt, 2006). However, regardless 

of their host choices, both animal and plant parasitic nematodes share some characteristics; 

the ability to locate and infect their host, to manipulate host for survival and nutrition and to 

suppress development at a critical stage in their life cycle. 

1.1.1  Plant parasitic nematodes 
 

These nematodes are also referred to as Phyto-parasitic nematodes. Phyto-parasitic 

nematodes are microscopic in size ranging from 0.25 mm to 3.0 mm. They possess a hollow 

needle-like mouth spear called a stylet which is the signature morphological characteristic 

traversing the whole plant parasitic nematode class. Phyto-parasitic nematodes occur in 
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distinctive stages; egg, juvenile and cyst. The juvenile stage is the main invasive one of all 

the stages. 

In view of their life cycle, plant parasitic nematodes have a wide variety of interactions with 

their host. Depending on their life style, they are classified as endoparasitic or ectoparasitic 

and migratory or sedentary. Migratory ectoparasitic nematodes like the Trichodorus spp, the 

vector of Tobacco rattle virus, move within the soil and use roots tips and root hairs as a 

source of nutrients ephemerally (Decraemer and Geraert, 2006; Jones, 2013). Migratory 

endoparasitic nematodes on the other hand enter and move within the host while drawing 

nutrients from it; for example Radopholus spp (Fallas, 1996). The movement inside the plant 

not only cause extensive tissue damage but also increases chance of infection from other 

pathogens. Semi-endoparasitic nematodes have an initial migratory stage but enter the plant 

at one stage later in their parasitic cycle forming a feeding structure within the host; for 

example Heterodera glycine.  

Decraemer and Hunt in 2006 reported the number of Phyto-parasitic nematodes species to 

be as high as 4100. In addition, a survey conducted in 2012 highlighted top 10 plant-

parasitic nematodes in molecular plant pathology; Root-knot (Meloidoyne spp.), cyst 

(Heterodera and Globodera spp.), Root lesion (Pratylenchus spp.), Burrowing (Radopholus 

similis), Ditylenchus dipsaci, Pine wilt (Bursaphelenchus xylophilus), Xiphinema index, 

Nacobbus aberrans, Aphelenchoides besseyi, and Reniform (Rotylenchus reniformis) 

nematodes. Losses due to nematodes in agriculture globally are estimated at about 80 

billion US dollars annually, and the figure is proposed to be higher considering the 

unreported cases from farmers in developing countries, who are unaware of symptoms of 

nematode attack (Nicol et al., 2011). Management of these nematodes has for the past 

decades included cultural practices such as crop rotation, planting timing, flooding, and 

biological controls with antagonist and physical methods like solarisation and farrowing that 

have so far been effective. However most of these practices are only practical in small scale 

farming which is not sustainable if food production is to be increased (McDonald and Nicol, 
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2005). On the other hand, use of inorganic chemical pesticides such as nematicides and 

fumigants, has been on the lead as an effective method that actually eliminates the 

nematode. Unfortunately, they are expensive, harmful to the environment and the speed into 

which nematodes gain resistance renders them inefficient and ineffective in the long term. 

These negative impacts have prompted gradual withdrawal of pesticides such as methyl 

bromide which was banned by the European Union in 2010, hence further making the 

nematode problem more severe in absence of an immediate alternative (UNEP 2000; 

Kearns et al., 2014). In rue of this problem, an effective, stable, eco-friendly and long lasting 

solution to parasitic nematodes menace is required. 

Scientists believe that a reliable and effective way of tackling the nematode problem is 

through introduction of nematode resistant and free transgenic plants. Recent successes in 

application of biotechnology tools and genetic advances are promising. Even though 

nematodes are obligate biotrophs and are difficult to culture in virto as research organism, 

and nematode at parasitic stages could live inside plant roots making the biochemical 

analysis of their secretions cumbersome, recent advances in molecular biology tools like 

RNA interference have made functional analysis of nematode genes possible. In addition, 

whole genome sequencing and ability of cyst and root-knot nematodes; most economically 

important nematodes, to infect Arabidopsis thaliana; a common model plant in plant 

pathology, have had great impact on nematode research (Sijmons et al., 1991; Opperman et 

al., 2008; Abad et al., 2008; Kikuchi et al., 2011). As a direct result, plant nematode 

interactions studies have greatly advanced to cellular level with genetics to support it (Curtis 

et al., 2007; Jones, 2012). These studies form the basic understanding to which creation of 

nematode free transgenic plants can be achieved. 

1.1.1.1  Cyst nematode Heterodera schachtii 
 

Cyst nematodes are sedentary biotrophs which forms a “cyst”; a pear shaped reddish-brown 

dead body. Nematode cysts can survive under all kinds of environmental conditions for as 

6
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long as 20 years in the absence of a host (Wharton and Ramlov, 1995; Jones et al., 1998). 

Since the life of cyst nematode takes place in the soil, they are parasitized at egg, juvenile 

and or cyst stage by various microorganism, preys and insects (Kerry, 1988; Nordbring-

Hertz et al., 2006; Khan and Kim, 2007). For example, nematophagus fungi have been 

reported to have nematicidal potential against nematodes. Mites on the other hand feed on 

them (Yang et al., 2011). Cyst nematodes belong to family Hoplolaimide in Order 

Tylenchida. They are also placed in subfamily Heterodeninae with 8 genera (Heterodera, 

Globodera, Cactodera, Dolichodera, Punctodera, Paradolichodera, Vittatidera and 

Betulodera) and 115 species (Turner and Evans, 1998; Turner and Subbotin, 2013). Even 

though the most economically damaging genera are Heterodera and Globodera, the former 

remains as the largest genus within this subfamily encompassing 82 species. The most 

damaging of the species include soybean (Heterodera glycines), potato (Globodera pallida 

and G. rostochiensis) and cereal (H. avenae, H. filipjevi and H. latipons) cyst nematode. 

However, a lot of information about cyst nematodes is drawn from research on the sugar 

beet (Heterodera schachtii), soybean and potato “golden” cyst nematodes (Bohlman, 2015). 

Cyst nematodes are the most invasive and specialized plant parasitic nematodes with a 

limited number of hosts. In addition, due to their specialized life style, their host range differs 

a lot between species within their class. In 1965, Steele reported H. schachtii to have the 

largest number of host plants; 218 species in 23 plant families with about 80% of them 

belonging to Brassicaceae and Chenopodiaceae families. Among these species, Sugar beet 

(Beta vulgaris) is the main host and most affected plant of economic importance. For 

example, it’s used to make the sugar hence its common name sugar beet cyst nematode. In 

addition, Arabidopsis thaliana was identify to be a host of H. schachtii and as a result, both 

the nematode and the plant have since been utilized as model system for plant-nematode 

interaction studies (Sijmons et al., 1991). 

Morphologically, nematodes cysts are about 300-1700 µm long and 200-800 µm wide. Using 

the stylet, nematodes penetrate plant cells and allow entry or movement into or inside the 

7
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host. They have dorsal muscles and protractor muscles which moves the stylet forward while 

backward movement occurs by shear elasticity of the oesophagus. The head region also has 

the circumpharyngeal nerve ring from which, the dorsal and ventral nerves control sensory 

functions and movement especially when nematode is locating a host or a female to mate 

with. The stylet draws secretions from the dorsal gland and amphids which contain effectors 

that suppresses host defence. Amphids, the main chemo-sensors in C. elegans have 

neurons specialized in detection of a variety of stimuli. However, in plant parasitic 

nematodes, it remains just as a speculation that they play a role in sensing root leachates or 

diffusates during invasion (Bergmann, 2006; Sobczak, 1999).  

The stylet, oesophagus, intestines, rectum and anus forms the digestive system. The 

oesophagus contains the metacorpus, procorpus and basal bulb. The key function of the 

metacorpus is to draw nutrients from the plant into the intestine and secretions from glands 

to the plant (Hewezi and Baum, 2013). Glands have glands cells, which contain secretory 

granules responsible for production of the effectors. Cyst nematodes have three main 

glands; one dorsal gland and two subventral glands. Subventral glands produce the cell-wall 

degrading enzymes for example cellulases, pectate lyases and expansins meaning they are 

highly active at the second juvenile stage which is the main infective stage (Davis et al., 

2011; Chen et al., 2005; Vanholme et al., 2007). The dorsal oesophageal glands on the 

other hand are responsible for the production of effectors when juveniles are migrating inside 

the root and inducing the feeding site (Tytgat et al., 2002; Wyss, 1992). 

The nematode`s body is covered with a cuticle which is moulted off by the hypodermis at 

every Juvenile stage. The cuticle is believed to contain proteins, lipids and carbohydrates 

which could play a role in host immunity through preventing recognition by the plants during 

nematode attack. For example, peroxidase has been reported on the surface of juveniles 

and could be a protectant from Reactive Oxygen Species (ROS) produced at nematode 

migratory stage during the nematode invasion (Eisenback, 1985; Waetzig, 1999; Robertson 

et al., 2000; Curtis, 2007). The cuticle allows exchange of gas and solutes and water 
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diffusion. Nematodes also have an inner pseudocoelom which is built along the longitudinal 

muscles and forms the hydroskeleton with which, together with the cuticle, maintain body 

shape and aid in locomotion by acting against internal turgor pressure.  

Sexually, cyst nematodes are dimorphic. The males are slightly bigger than females and 

have spicules for mating. During mating, the protractor muscles moves the spicules forward 

from the cloaca into the female vulva to release sperms and retractor muscles backwards 

from the female. On the other hand, the female nematodes have double sets of genitalia, 

each having the ovary, the oviduct, uterus, and the spermatheca for holding sperms 

deposited in the vagina. Inside the female are eggs and each is have a three layered shell; 

the outer vitelline layer important for fertilization, the middle chitin layer, which contains chitin 

mircofibril core proteins that gives strength to the egg, and the semipermeable inner lipid 

layer that allows gases and ion movement (Burgwyn et al., 2003). While some eggs are laid 

in gelatinous matrix which hatches into J2s, others emerge directly from the cyst. Upon 

fertilization and complete maturation, the female harbours eggs in its body and its cuticle 

hardens and turns into a cyst. Cyst nematodes also have a tale region at its rear end where 

there are two phasmids. 

Cyst nematodes are well adapted to their life cycle which begins in the soil with a cyst 

containing viable eggs and in presence of a host plant (Fig 3). Juveniles are held within the 

egg in a perivitelline fluid, which contains trehalose (Womersley and Smith, 1981). Trehalose 

restrict the movement of the second stage juveniles (J2) and thus for the nematode to be 

hatched out of the cyst, host factors for example glycinoeclepin A, α-solanine and α-

chacoine, induces Calcium dependent reactions that increases permeability of the inner lipid 

layer permitting efflux of trehalose (Wesemael et al, 2006). At this point there is also influx of 

water into the egg which activates the J2 metabolically. Once J2s are mobile, they cut a slit 

in the egg shell mechanically using the stylet although Cotton et al., 2014 also suggested 

that chitinase might be involved in degradation of the middle chitin layer of the egg shell 

allowing J2s to exit from the cyst. The J2s finds the root point where to initiate invasion 
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based on physical-chemical gradients of CO2, pH, redox potential and temperature (Wang et 

al., 2009). Usually, J2s invade the root at the elongation zone using the stylet and by the 

help of cell-wall degrading enzymes, to makes an entry hole (Chen et al., 2005; Vanholme et 

al., 2007). J2s then move on the outer layers of the root intracellularly through the cortex 

until they reach the vascular cylinder. Here they try out different cells until they find a suitable 

cambial or procambial cell which becomes the Initial Syncytial Cell (ISC) (Wyss and Zunke, 

1986). For about 7hrs, J2 maintain its stylet in the ISC without movement awaiting plant 

responses. In the event there are defense responses for example callose disposition or 

protoplast disintegration, J2s escapes the ISC and finds another cell to form the ISC. 

(Golinowski et al., 1997; Sobczak et al., 1999). Once an ISC established in absence of plant 

defence responses, the stylet movement is restarted injecting secretions into the cytoplasm 

which induces formation of a feeding tube. It is through the feeding tube that nematodes 

draw nutrients of all kinds of metabolites and small proteins from the feeding site (Müller et 

al, 1981; Wyss, 1992; Böckenhoff and Grundler, 1994; Akker et al., 2014). At this stage, J2 

whose dorsal gland is now enlarged to produce effectors injects these secretions which 

supresses host defense responses and reprogram developmental processes (Hewezi and 

Baum, 2013). In contrast, the activities of subventral glands are reduced and cell-wall 

degrading enzymes are now produced by the plant after the nematode-induced 

reprogramming. As a direct consequence, the cell wall of hundreds of neighbouring cells to 

the ISC disintegrates forming a multi-nucleate big cell which increases in size due to 

endoreduplication. This becomes the syncytium (De Almeida et al., 2013). In the syncytium, 

the vacuole disintegrates into small vacuoles suspended in the cytoplasm together with 

many plastids, mitochondria, ribosome and endoplasmic reticulum. The syncytium is the sole 

source of nutrients for the nematode which makes its metabolism to increase significantly 

(Szakasits et al., 2009). J2 remain immobile and moults to third stage juvenile (J3), a point at 

which the nematode start to internally differentiate into male or female. Both male and 

female depends on syncytium for nutrition even though females consume 29 times more 

food and have 10 times larger syncytium compared to the males.  
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Figure 2. Morphology of cyst nematode (Endo, 1984). 
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Figure 3. Life cycle of cyst nematode. The second stage Juveniles (J2s) emerges from the 

cyst, enter the plant at the elongation zone and move intercellularly until the vascular 

bundles (A). The J2s select one cell as an Initial Syncytium Cell (ISC) (B). The cell walls of 

the neighbouuring cells to the ISC dissolve and elarges the ISC into a single syncytium. The 

J2 molts into J3 ad start to differentiate as male and female. The nematode remains 

immobile (C). J3 moults to J4 (D). J4 differentiate completely as male and female where the 

male moves outside the plants and leaves its shell (E). The male moves in the soil search for 

a female to mate with for fertilization (F). The eggs develop inside the female body. The 

female dies and oxidizes to have a reddish brown colour which harbours the eggs. Within 

the eggs, the J1 develops to J2 which can infect the plant in the next cycle (G). (Modified 

from Art for science, 2015).  

This is of course due to female reproduction role of producing hundreds of eggs which 

increases their body size as it gradually develops (Kerstan, 1969; Müller et al., 1981; Müller, 

1985: Grundler et al., 1991). Male J3 stop feeding and its syncytium starts to degrade while 

its female counterpart enlarges. J3 from both of the genders then moults into fourth stage 
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juvenile (J4) of which the male develops within its cuticle. Depending on the environmental 

conditions and nutrients supply, most J4 undergoes a last moult into a completely 

differentiated female in abundance and or a male in adverse conditions. The male then 

become mobile again, shed off its shell and moves out of the root. The now mature female 

nematode produces sex pheromones which attracts the male to mate (Jaffe et al., 1989; 

Aumann et al., 1998). Upon fertilization, the eggs develop into single-celled embryos and the 

female further enlarges to form an ovoid shape. The embryo, still within the egg develops 

further into J1 and the female dies. Her cuticle hardens, oxidizes and become the reddish-

brown cyst which carries and protects the eggs. A final moult occurs from the J1 to J2, ready 

to begin a new nematode cycle (Tylka et al., 1993; Niblack et al., 2006). Depending on 

temperatures, the life cycle of cyst nematode can take between 21 to 30 days to complete. 

1.1.1.2   Root-knot nematodes 

 

 Root-knot nematodes share a lot of similarity to cyst nematodes and are mainly classified in 

genus Meloidogyne. Meloidogyne is of Greek origin, meaning "apple-shaped female". They 

were first reported in 1855 by Berkeley on cucumbers. There are approximately 100 

Meloidogyne species described to date (Jones et al., 2013). The most widespread and 

economically important species are M. incognita, M. javanica, M. arenaria, M. hapla, M. 

chitwoodi and M. graminicola. Root-knot nematodes are primarily tropical to sub-tropical 

organisms although M. hapla and M. chitwoodi are well adapted to temperate climates. 

Unlike cyst nematodes, they can parasitize any vascular plant and as such have a wide host 

range making them difficult to manage (Jones and Goto, 2011). General management 

methods apply to root-knot nematodes. Genes from tomato (Mi), prunus (Ma and RMia), 

carrot (Mj) and pepper (Me) have been reported to confer resistance to Meloidogne species. 

Mi-1 gene has gone further to be cloned successfully for commercial purposes, even though 

their success in the field is highly depended on temperature and Mi gene dosage (Jacquet et 

al., 2005). 
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Most of these nematodes are 400 to 2000 µm long. Generally, females of root-knot 

nematodes have a globose body, with a short neck containing their stylet, metacarpus, 

esophageal gland cells and distinct lips. The female cuticular morphological features of the 

perineum are used for perineal pattern analysis which is used in establishing differences 

among Meloidogyne species. The males on the other hand often have visible spicules for 

mating and a blunt-rounded tail. Many Meloidogyne species are parthenogenic or 

facultatively parthenogenic and as such, can reproduce without fertilization from a male. 

Generally, males are fewer and longer compared to females. 

As of their life cycle, Melodogyne spp is quite similar to cyst nematodes. However, unlike 

cyst nematode, root-knot nematodes move within the plant intercellularly downwards to the 

elongation zone to escape the casparian strip after invasion in order to enter the vascular 

bundle. Their feeding site is actually a group of cells known as "giant-cells. Parasitized cells 

rapidly become multinucleate as nuclear division occurs in the absence of cell wall formation 

(uncoupled cytokinesis), resulting in bigger cells. Contrary to cyst nematodes´ syncytium, 

giant cells undergo continuous cycle of mitosis and their nuclei are irregular with large 

nucleoli. The giant-cells produce large amounts of proteins and also act as nutrient sinks, 

drawing plant nutrients such as carbohydrates into it. The root-knot nematode forms the 

feeding tube which acts as a sieve to filter cytosol as the nematode feeds. Esophageal gland 

cell secretions triggers increase in the production of plant growth regulators, demonstrated to 

play a role in increasing cell division and size. Cells neighbouring the giant-cells also 

become hypertrophied and divide rapidly, resulting in gall formation (Berg et al., 2008). Galls 

appear as knots in the roots and thus the name root knot nematodes. Inside the gall, the J2 

becomes sessile by atrophy of the somatic musculature of their body excluding the head. 

The nematode moults three times after which its adult stage resumes feeding. Just like cyst 

nematodes, Meloidogyne spp were reported to parasitize Arabidopsis. In addition, M. hapla 

and M. incognita genomes data are publicly available. This has further paved way for plant-
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root knot nematode interaction studies which entails a deeper understanding of plant 

responses to nematodes at cellular and molecular level (Sijmons et al., 1991). 

1.2  Plant defense 
 

In nature, plants often suffer from diseases caused by biotic stress agents like bacteria, 

fungi, viruses, nematodes and oomycetes as well as abiotic stress components which mainly 

encompass environmental factors like drought, salinity, Ozone, temperature among others. 

In addition, herbivores, both small and big animals, feed on or cause mechanical damage to 

plants, a scenario which is not considered as a disease even though it affects the plant in 

similar manner. Through evolution, plants have adapted to thrive in spite of their enemies by 

having an elaborate defense system which can be either constitutive or inducible (Dieter, 

2008). Constitutive defense is the pre-existing measures against possible threats in plants. It 

is the main first line of defense against herbivores and pathogens. It is characterized by 

physical barriers like barks and waxy cuticle which are also adapted as thorns (Carissa 

bispinosa), spikes (Acacia erioloba), prickles (Solanum pyracanthum), shrinkage (Mimosa 

pudica), Milky latex (Euphorbia pulcherrima) and Trichromes (Capsicum pubescens) among 

others. The plant cell wall, in addition, is like an exoskeleton surrounding the plant cell and 

consists of cellulose microfibrils, pectin, hemicelluloses, proteins and lignin which all can 

vary in composition. These plant modifications ward off or cause allergic reactions to 

herbivore and prevent pathogen entry into the plant. In addition, volatile organic compounds 

such as toxic alkaloids, terpenoids, phenolic compounds and saponins are also produced by 

plants as a chemical defense whose odour, bitterness and reaction deters attackers. 

Chemical defense is usually utilized by plants in the event where the physical barriers are 

non-existent or have been overcome by the herbivores and or pathogen (Osbourne, 1996; 

Tierens et al., 2001). For example phenolic compounds like protocatechuic acid and 

catechol in scales of red onion inhibit conidia germination of Colletotrichum circinans on its 

surface. 
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Contrary to animals, plants do not have mobile immune cells and a somatic adaptive 

immune system. However, they are reliant on immunity within each cell which ignites 

defense responses upon invasion and thus referred to as induced defense. This is a kind of 

plant immunity which before and after pathogen invasion can be divided into primary and 

secondary immunity respectively. Primary defense occur before the pathogen entry inside 

the plant. At cellular level it is referred to as innate immunity due to its conserved nature  and 

is characterized by Plant Recognition Receptors (PRRs), which recognizes a conserved 

signature ligand from the pathogen or the herbivore (Ausubel, 2005). These molecules from 

pathogens are called Pathogen Associated Molecular Patterns (PAMPs) and as such 

pathogen induced plant innate immunity is also referred to as PAMP Triggered Immunity 

(PTI). PRRs can also recognize plant indigenous molecules produced when pathogens 

cause mechanical cellular damage during infection and these molecules are called Damage 

Associated Molecular Pattern (DAMPs). Recognition of DAMPs elicits similar responses as 

would PAMPs of which a signal is transduced to the cell nucleus where activation of defense 

responses is induced. When a pathogen overcomes PTI, mainly by ligand modifications to 

avoid recognition by immune receptors, it henceforth gains access to the cell cytosol. Here it 

introduces secretions that are targeted to modify plant cellular processes or supress PTI in 

favour of the pathogen, which further increases invasion by more pathogen and growth of 

more mutualistic symbionts. These secretions have been reported to include various 

compounds particularly effectors and as such, the phenomenon is called Effector Triggered 

Susceptibility (ETS). 

Some plants have evolved ways of preventing colonization of the plant cell by the pathogen 

by co-evolutionary acquiring the R-genes. R-genes (virulence genes) encode the 

polymorphic Nucleotide Binding and Leucine Rich Repeat (NB-LRR) proteins that directly or 

indirectly bind to pathogen effectors (avirulence factors), inducing defense responses and 

thus Effector Triggered Immunity (ETI) (Jones and Dangl, 2006). This phenomenon was first 

described in the model of recognition of specific resistance genes “gene-for-gene”. The 
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paradigm that activated immune responses in ETI occur faster, robust and prolonged 

compared to those in PTI (Jones and Dangl, 2006). The R genes functions quite similar to 

resistant genes conferring immunity in animals as NB-LRR proteins are broadly related to 

animal CATERPILLER/NOD Like Receptors (NLR) proteins. ETI mediates plant resistance 

against obligate biotrophs or hemi-biotrops but not necrotrophs, through a hypersensitive 

response (HR) characterized by cell death at points of infection (Matzinger, 2002; 

Glazebrook, 2005). So far there are only two types of cell death that have been described; 

vacuolar and necrosis cell deaths. In vacuolar cell death, a combination of autophagy-like 

process and release of hydrolases from collapsed lytic vacuoles causes removal of cell 

contents primarily during organ formation. Necrosis on the other hand occurs typically under 

abiotic stress and involves early rupture of the plasma membrane and shrinking of the 

protoplast. HR causes the pathogen nucleus to disintegrate into a homogenous mass and its 

cytoplasm dense. As a direct consequence, pathogen growth beyond the dead cell is halted.  

Generally, HR is meant to isolate the infection at the invasion point and thus prevent 

extensive infection and pathogen colonization (van Doorn et al., 2011). HR has been well 

studied in various diseases caused by different microbial agents like Synchytrium 

endobioticum causing wart disease of potato, Phytophthora infestans causing late blight 

disease of potato and Pyricularia oryzae causing blast of rice among others. R gene 

resistance is also associated with activation of Salicylic Acid (SA) signalling pathway which 

mainly involves three well known genes; Protein Arginine Deiminase (PAD) 4, Non-

expressor Pathogenesis Related Gene (NPR) 1 and Enhanced Disease Susceptibility (EDS) 

1. The high concentration of SA generated during ETI has particularly promotes NPR1 

degradation and as such NPR1 is considered a repressor of ETI, which is contrary to its role 

in PTI as a positive regulator of SA-mediated basal resistance. Interestingly, HR activates of 

SA signalling throughout the plant an indication of the cross talk among ETI defense 

responses. SA induces activation of pathogenesis-Related (PR) genes directly involved in 

disease resistance against pathogens sensitive to SA dependent responses. This 

phenomenon is known as Systemic Acquired Resistance (SAR) which localizes infection by 
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the primary pathogen which in turn results in the induction of a wide spread and long lasting 

resistance to secondary pathogens in plant systemic tissues (Falk, 1999; Wildermuth, 2001; 

Zhang et al., 2003; Durrant and Dong, 2004). In addition to SA, some defense responses are 

dependent binaurally or singularly on Jasmonate (JA) and Ethylene (ET) pathways. These 

pathways occur parallel to one another with very few cases where they tend to have a 

negative interaction. JA-dependent signalling occurs through increased JA synthesis and 

consequently increases the expression of defense related genes such as Plant Defensin 

(PDF) 1 and transcription factors Ethylene Response Factor (ERF) 1, Related to APetala 

(RAP) 2, Jasmonate-INsensitive (JIN) 1 and Ethylene-Insensitive (EIN) 2 involved in defense 

responses. Cellulose synthases in the plant cell wall is involved in regulation of JA levels 

while JA-amino synthetase is required for conjugation of JA and several amino acids like 

isoleucine. The conjugated version of isoleucine is reported to be the active form of JA and 

thus JAR1 gene which encodes JA-amino synthetase is required for JA biosynthesis and in 

turn regulating JA levels. There is a complex hormonal cross talk between SA and JA/ET 

pathways of which most are confirmed to be activated in a mutually repressive manner and 

as such, resistance based on either pathway heavily depends on the pathogen involved. SA 

pathway-dependent defense responses are involved in resistance against biotrophic and 

hemibiotrophic pathogens; organism that rely on living tissues for nutrition. JA and ET 

pathways-dependent on the other hand responses against insect wounding and 

necrotrophs; organisms that obtain nutrients from dead cells (McDowell and Dangl, 2000; 

Wildermuth et al., 2001; Glazebrook et al., 2003; Van Wess et al., 2003; Dong, 2004; Trusov 

et al., 2006). This phenomenon has been observed in various cases like during infection with 

Pseudomonas syringae where NahG transgene induced SA levels reduction triggers 

overexpression of JA-induced genes. At the same time, treating Arabidopsis with SA and JA 

at the same time abolished JA-mediated induction of the PDF1.2 gene, while infection by the 

hemibiotrophic bacterial pathogen Pseudomonas syringae. PV. tomato (Pst) DC3000, which 

enhanced SA production, led to reduced resistance to the necrotrophic fungal pathogen 

Alternaria brassicicola in neighbouring cells (Spoel et al., 2003, 2007; Van der Does et al., 
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2013). The antagonistic behaviour of these hormonal pathways has been reported to be 

highly dependent on SA-signalling gene (NPR1), SA biosynthesis, metabolism regulating JA-

inducible transcription factor NAC and downstream transcription factors WRKYs and TGAs 

genes (Spoel et al., 2003; Li et al., 2004; Mao et al., 2007; Zander et al., 2010). The main 

player NPR1 protein contains a BTB/POZ and an Ankyrin repeat domains involved in 

protein-protein interaction. It is suggested that NPR1 regulates PR gene expression through 

direct interaction and as a cofactor of the TGA transcription factors (Zhang et al., 1999, 

2003; Zhou et al., 2000). Regardless of their antagonistic relationship, SA and JA pathways 

are not always antagonistic even though in very few cases. One such case is in rice where 

JA signalling positively regulates plant resistance to the biotrophic pathogen Xanthomonas 

oryzae PV. oryzae (Xoo). This was suggested to be caused by activation of a common 

defence system by both hormonal pathways. Other studies have also found that their 

antagonistic relationship is highly dependent on their concentrations (Mur et al., 2006; 

Yamada et al., 2012; Tamaoki et al., 2013). Plant defense hormones i.e. SA, JA, and ET 

precisely regulates plant immune responses both locally and systemically thus coordinate 

defense in different parts of the plant and against different types of pathogens (Erb et al., 

2012; Pieterse et al., 2012; Wasternack, 2013). 

Besides hormonal signalling, some studies have reported that a phytoalexin such as 

camalexin (3-thiazol-2′yl-indole) as a plant antimicrobial effector in ETI often considered as a 

defense marker protein. Its synthesis is induced by pathogens such as Pseudomonas 

syringae, Alternaria brassicicola, and Botrytis cinerea, and some abiotic stresses, such as 

amino acid starvation. It has also been shown to inhibit the growth of fungal pathogens. 

Camalexin induction in Arabidopsis infected with P. syringae is dependent on the 

transcription factor WRKY33, which directly binds to the camalexin biosynthesis promoter 

gene PAD3. Defense signalling cascade involving MPK3/MPK6 signalling leads directly to 

phosphorylation of WRKY33, and this drives camalexin production in Arabidopsis infected 

plants (Ren et al., 2008; Qiu et al., 2008; Mao et al., 2011). PAD3 encodes cytochrome P450 
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monoxygenase CYP71B15, which is a camalexin biosynthetic enzyme and is currently 

utilized as a defense marker gene as well as WRKY33 gene among others (Glazebrook, 

2005). 

1.2.1  PAMP Trigerred Immunity (PTI) 
 

The term PAMP was first described in 1989 by Janeway in her then visionary theory of 

recognition. She proposed that microbial components are recognized by innate immune 

receptors allowing detection of infection. The theory was experimentally validated later and 

has become a standard that constitute legitimate contribution to understanding plant-

microbes interaction (Janeway, 1989; Medzhitov and Horng, 2009; Medzhitov 2013). PAMPs 

have to date come to be well characterized following a certain criteria; PAMPs have a 

distinct structure, are essential for survival and are produced via pathways restricted within a 

given class of microorganisms. Since molecular patterns are not present only in pathogens, 

for example, they are also found in beneficial and mutualistic bacteria, the term Microbial 

Associated Molecular Patterns (MAMPs) is sometimes used (Janeway, 1989; Beutler, 2003; 

Medzhitov 2007). PAMP and DAMP recognition is considered as detection of “non-self-

signals” and “self-molecules” since the molecule recognized originates from the pathogen 

and host respectively (Boller and Felix, 2009). Within the molecular patterns (also called 

elicitors), the PRRs recognize only small and conserved part of it. PRRs are adapted to 

recognize molecules of diverse nature like proteins, carbohydrates, nucleic acids and lipids 

among others. The first molecule to ever be clearly characterized as a PAMP is a short 13-

amino acid peptide of a conserved fragment within a calcium-dependent cell-wall 

transglutaminase, from the oomycete Phytophthora sojae called Pep13. This PAMP elicits 

defence responses in Solanaceae spp (Nürnberger, 2004). Currently, there is at least one 

PAMP that has been reported from bacteria, fungi, oomycetes, Virus, nematodes, insects 

and parasitic plants. PAMP perception is specific and most of PAMP are restricted to a 

specific type of species, however there are some exceptions for example Necrosis- and 
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ethylene-inducing-peptide-1-Like Proteins (NLPs) and β-glucans. NLPs and β-glucan 

structure are present in multivariant organisms such as bacteria, oomycetes and fungi and 

induce PTI responses similarly (Ranf, 2017). Generally, even though most of PAMP involved 

in PTI are characterized, not all of their recognizing PRR are known. Nonetheless, almost all 

plant PRRs involved in PTI and reported so far are surface localized and exists as either 

Receptor-Like Kinases (RLKs) or Receptor-Like Proteins (RLPs). RLKs are composed of an 

extracellular domain that binds to specific region of a PAMP, a transmembrane domain 

which maintains the receptor at the cell membrane and an intercellular cytoplasmic kinase 

domain responsible for signal transduction. RLPs are structurally similar to RLKs but lacks 

an intracellular kinase domain hence for their PAMP induced signal transduction to be 

completed, they always recruits other RLKs or Receptor-Like Cytoplasmic Kinases (RLCKs) 

existing freely in the cytoplasm. Regardless of their nature as RLKs, RLPs or RLCKs, PRR 

extracellular kinases or PRR-associated kinases contain alteration in a conserved positively 

charged arginine (R) residue, located within a charge cluster. R neutralizes the negatively 

charged catalytic aspartate (D) next to it. Therefore, R blocks the catalytic function of D 

residue. This region of the kinase is called RD motif and it mediates phosphor-transfer 

during intracellular signalling. In close proximity to the RD motif is the kinase activation loop 

which when activated, produces negatively charged phospho amino acids that in turn 

overcomes the positively charged R residue leading to activation of kinase. Some PRR 

kinases don’t have R which is mainly substituted by non-charged residues such as cysteine, 

glycine, leucine and phenylalanine residues. This region is commonly known as non-RD 

motif. Contrary to RD kinases, non-RD kinases don’t auto-phosphorylate their kinase 

activation loop hence non-RD receptor are proposed to have a different activation 

mechanism, whose difference in functionality to RD kinases is currently unknown. Majority of 

Plant RLKs have RD kinase (Fig 4) which phosphorylates serine/threonine residues (Dardick 

et al., 2012). 
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Once RLKs recognize the elicitor, at cellular level, intracellular signalling is triggered via 

activation of Mitogen Activated Protein Kinase (MAPK) cascades to the nucleus leading to 

genetic reprogramming that induces early defense responses (Asai et al., 2002; Mishra et 

al., 2006). Among these responses is the rapid and robust expression of defense marker 

genes such as Pathogenesis Related (PR), Flg22-induced Receptor-like Kinase (FRK) 1 and 

WRKY genes (Asai et al., 2002; van Loon et al., 2006; Gust et al., 2007; Boudsocq et al., 

2010; Ahuja et al., 2012; Bednarik, 2012). Reactive Oxygen Species (ROS) production like 

superoxide anions (O2
-) also occurs within seconds to minutes thus populary referred to as 

oxidative burst. PAMP/DAMP induced oxidative burst has been observed in both vertebrates 

and plants as a main PTI induction characteristic where toxicity nature ROS damages or kills 

the pathogen. In addition, ROS production induces crosslinking within plant cell wall making 

them less prone to degrading enzymes from pathogens (Apostol et al., 1989; Apel and Hirt, 

2004; Kohchi et al., 2009; O'Brien et al., 2012). The plasma membrane also become 

depolarized allowing an influx of extracellular Ca2+ in the cytosol (Ca2+ burst), which begis to 

occur at 30th and 120th second and  peaks between 4 to 6 min after invasion (Jeworutzki et 

al., 2010; Ranf et al., 2011; Nomura et al., 2012). Ca2+ burst induces the opening of other 

membrane transporters allowing influx of H+ and efflux of K+, Cl–, and NO3
- which in turn 

increases the pH of the extracellular region to pathogen´s demise. At the same time, Ca2+ 

ions entering the cell cytoplasm from the apoplast activates calcium-dependent proteins 

such as Ca2+ Dependent Protein Kinases (CDPKs) (Boller and Felix 2009; Boudsocq et al., 

2010; Jeworutzki et al., 2010). Callose is an amorphous homopolymer composed of (1, 3)-β-

Glucan callose and is normally deposited between the plasma membrane and the pre-

formed cell wall at the point of pathogen attack, upon PAMP recognition. Callose acts as a 

physical barrier blocking or slowing down invading pathogens from entering the plant 

However, its regulation is not well known as its biosynthesis is not described hence, there 

exist no mechanism of understanding how its deposition is induced as a response to PAMP 

perception (Radford et al., 1998; Luna et al., 2011; Kemmerling, 2012). PAMP perception 

also activates biosynthesis of ethylene which is an immunity hormone. PTI also alters 
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metabolite composition and the production of secondary defense compounds for example 

glucosinolates in fungi infected Brassicaceae spp (Bednarek et al., 2009; Sana et al., 2010).  

Generally, as the first line of plant cellular defense, PTI is a stringent, robust and occurs 

within seconds to minutes. It is also very temperate and efficient to almost all non-host 

pathogens. Altogether, PTI responses contributes to basal resistance by preventing 

establishment of infection by pathogens, controls stomatal closure to prevent bacteria entry 

and surprisingly, PTI also inhibits growth of commensal microbiota, an indication that PAMPs 

presensce cut across a whole class for every organism, regardless if the organism is 

pathogenic or not (Melotto et al., 2008; Sawinski et al., 2013; Gourion et al., 2014; Rovenich 

et al., 2014). In addition, PTI prevents microbial colonization by cutting nutrient supply and 

releasing anti-microbial compounds which in turn starve pathogens and reduces release of 

effectors into the cell (Chen et al., 2010; Wang et al., 2012; Xin et al., 2016; Yamada et al., 

2016). PTI has also been associated with seedling growth inhibition due to the redistribution 

of plant resources from growth related processes to those leading towards defense (Gomez-

Gomez et al., 1999; Boller and Felix, 2009) 

Most of the PRRs are RLKs. RLKs have a monophyletic origin within the whole superfamily 

of plant kinases. In the sequenced Arabidopsis genome, the RLK (also named pelle) family 

formed based on similarity to the basic structure of animal receptor tyrosine kinases (RTKs), 

contains 610 RLK homologs representing about 2.5% of the annotated protein-coding genes 

(Arabidopsis Genome Initiative, 2000; Shiu and Bleecker, 2001). Among these, 193 RLKs do 

not have an obvious receptor configuration as determined by the absence of putative signal 

sequences and or transmembrane regions. The remaining 417 genes with receptor 

configurations have similar transmembrane and intracellular domains. However, their 

extracellular domains differ in their structural features particularly in the type and 

arrangement of its respective amino acids. These differences greatly contribute to their 

classifications into 21 subfamilies. The sizes of each the subfamily varies greatly however, 

Leucine Rich repeat (LRR) subfamily is the largest one containing 216 genes with LRR 
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motifs. The currently known PRR containing LRR ectodomains binds to peptides or proteins 

type of elicitors. Similarly, in animals, the most well characterized PRRs are the Toll-Like 

Receptors (TLRs) containing LRR extracellular domain. TLRs are involved in the sensing 

stimuli from bacteria, fungi, protozoa, and viruses. A well-studied example of all TLRs is 

TLR5 that interacts directly with its single microbial ligand flagellin (Felix et al., 1999; 

Hayashi et al., 2001; Smith et al., 2003). In plants, the best characterized receptor is 

Flagellin Sensing 2 (FLS2), which has a 28 LRRs containing ectodomain that directly binds 

to a 22 amino acid peptide (flg22) at the N-terminus of flagellin. Flagellin is building protein 

block of the flagellum which is the motility and virulent structure in bacteria. It is highly 

abundant and freely released from the wall of flagellum (Gomez-Gomez and Boller, 2000; 

Chinchilla et al., 2006; Yamaguchi et al., 2006; Zipfel et al., 2006). Flg22 binds to LRR3-16 

section of FLS2 super helical ectodomain which directly interacts and forms a heterodimer 

complex with the LRR-RLK Brassinosteroid-Associated Kinase (BAK) 1 RD ectodomain; one 

of the five genes belonging to the Somatic Embryogenesis Receptor Kinase (SERK) family.  

Perception of flg22 by FLS2 initiates PTI responses of which ROS burst is the most 

immediate one. NADPH oxidases belonging to the Respiratory Burst Oxidase Homolog 

(RBOH) family; which contains 10 members in Arabidopsis, plays a crucial role in ROS 

production. 

The induction of ROS production begins with BAK1/FLS2 heterodimer complex associating 

with and phosphorylating the RLCK Botrytis Induced Kinase 1 (BIK1), In turn BIK1 binds 

directly to the N-terminal domain of RBOHD, phosphorylating its residues S39, S339, S343 

and S347 in a ligand -Dependent manner. RBOHD possess a core C-terminal region 

containing a trans-membrane domains and the functional oxidase domain responsible for 

superoxide production. Specifically, NADPH oxidases transfer electrons from cytosolic 

NADPH or NADH to apoplastic oxygen, leading to the production of superoxide (O2-).  
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Figure 4. Described and putative PRR receptors along with their domain organizations 

and kinase functionality. Most plant and animal PRRs identified to date contain kinase 

domains. In addition, PRR kinases or PRR-associated kinases contain a positively charged 

and conserved arginine (R) residue located within a charge cluster, adjacent to the key 

catalytic aspartate (D) (the RD motif). Receptor kinases lacking the R and instead having an 
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uncharged residue such as Cys, Gly, Phe, or Leu, are referred to as non-RD. Kinase domain 

are connected to the extra-cellular domain by transmembrane domain. PRRs are grouped in 

different families based on the different components of their extra cellular receptor domain 

with majority belonging to LRR family. Atleast one PRR has been characterized from the 

whole microbial class of Oomycetes, Fungi and Bacteria within both monocots and dicots 

(Dardick et al., 2012). 

 

Figure 5. Plants recognize different bacterial PAMPs through different types of plant 

cell surface receptors. LRR receptors sense proteinaceous PAMPs. Flagellin which exist in 

three pecific epitopes; flg22, flgII-28, and CD2-1, are bound by FLS2 in Arabidopsis, FLS3 in 

tomato and an unknown receptor in rice, respectively. FLS2 Heterodimerizes with 

BAK1/SERK3 and other SERK-RLKs upon ligand binding. EF-Tu epitopes elf18 and EFa50 

are perceived by EFR in family Brassicaceae and an undescribed receptor in rice, 

respectively. XA21, XPS1 and CORE recognize the bacterial RaxX21-sY epitope RaxX, 

XUP and CSP where XA21 constitutively interacts with rice co-receptor SERK2. RLPs 

ReMAX and RLP23 perceive the Xanthomonas protein eMax and the nlp20 epitope of NLPs, 

respectively. LysM family RLPs LYM1-LYM3 and LYP4-LYP6 recognize the N-
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acetylglucosamin-containing glycan backbone of PGN in Arabidospis and rice, respectively. 

Lectin receptors facilitate recognition of the glycolipid LA moiety of LPS in Brassicaceae. 

LRR-RLPs ReMAX and RLP23 form constitutive dimers with the LRR-RLK SOBIR. RLP23-

SOBIR, but not ReMAX-SOBIR, also associates with BAK1 in a ligand dependent manner.. 

FLS3, XPS1 and ReMAX-SOBIR presumably also interact with yet unidentified (SERK-like) 

LRR-RLKs. LysM-RLPs associate with CERK1 for signalling. Star (*) indicates existence of 

proof of direct PRR-ligand binding. (Ranf et al., 2017). 

O2- is then converted to hydrogen peroxide (H2O2) by superoxide dismutase (Torres and 

Dangl, 2005; Marino et al., 2012; Suzuki et al., 2011, 2012). Apoplastic Ca2+ is reported to 

be required for PAMP-induced ROS production by binding to the EF-hand motif of RBOHD 

and phosphorylation by Ca2+ regulated protein kinases (Ogasawara et al., 2008; Kadota et 

al., 2004, 2014; Ranf et al., 2011; Segonzac et al., 2011; Marino et al., 2012). Other than 

BIK1, other RLCKs like PBS1-Like Kinases 1, 2 and 5 (PBL1, PBL2 and PBL5) and 

Brassinosteroid Signalling Kinase 1 (BSK1) also associates with the FLS2/BAK1 

heterodimer complex and are then released to activate downstream immune responses. All 

in all, BIK1 is most well characterized positive regulator of PTI responses and induced 

resistance to Pseudomonas syringae (Lu et al., 2010; Laluk et al., 2011; Liu et al., 2013; Shi 

et al., 2013; Zhang et al., 2010).  

SERKs belong to subfamily II of the LRR-RLK family, containing only five members; SERK1, 

SERK2, BAK1/SERK3, BAK1-like (BKK1)/SERK4 and SERK5 in Arabidopsis. SERKs were 

originally described as embryogenic markers in Daucus carota (carrot) and later as potential 

co-receptors when their shape was identified to be complimentary to the spiral shape of 

LRR-RLKs which allowed ligand binding and receptor activation (Hecht et al., 2001; Brandt 

and Hothorn, 2016). BAK1/SERK3 was initially shown to be a positive regulator of the 

brassinosteroid growth signalling pathway via LRR-RLK Brassinosteroid Insensitive (BRI) 1. 

Similarly, BAK1 (SERK3) acts as a co-receptor upon flg22 perception essential for signalling 

activation in equally similar manner (Chinchilla et al., 2007; Sun et al., 2013). A lot of studies 

27



Introduction 

 

Wang`ombe 
 

are implicating SERKs in many signalling pathways especially as an increasing number of 

LRR-RLKs and LRR-RLPs type PRRs are recruiting BAK1 or other SERKs in their 

perception of ligands from different type of pathogens (Fig 5). This heavily suggests SERKs 

might be universal co-receptors for almost all LRR-RLKs. For example, in rice, BAK1 

ortholog OsSERK2 forms a complex with the LRR-RLK XA21 receptor conferring resistance 

to the bacterium Xanthomonas oryzae (Chen et al., 2014). In tomato, BAK1 ortholog also 

interacts with the LRR-RLP Ethylene-Inducing Xylanase (EIX) 1 when bound to fungal 

xylanase initiating defense responses against Cladosporium fulvum (Liebrand et al., 2013; 

Santiago et al., 2013). In addition, BAK1 is recruited into a pre-formed Suppressor Of BAK1 

(SOBIR1)-RLP23 complex in a Necrosis and ethylene-inducing peptide 1-Like protein (NLP) 

20 dependent manner. NLPs are generally proteins present in many prokaryotes and 

eukaryotes (Fig 6). NLPs recognition induces the formation of a tripartite PRR complex that 

activates defense against the oomycete and fungal pathogens Phytophthora infestans and 

Sclerotinia sclerotiorum respectively (Albert et al., 2015). In DAMPs perception, LRR-RLKs 

PEP RECEPTOR1 (PEPR1) and its homolog PEPR2 recognize the wound-induced 

endogenous peptide AtPep1. However, only PEPR1 that has been reported to form a 

complex with BAK1 activates PTI like responses (Huffaker and Ryan, 2007; Yamaguchi et 

al., 2006, 2010; Krol et al., 2010; Tang et al., 2014; Ranf et al., 2017).  

It is interesting that many different functions are dependent on five receptor proteins only 

hence begging the question why plant membrane signalling pathways depends on such few 

co-receptor kinases. Many scientist believe that to understand SERKs in plant signalling, the 

receptors supported needs to be identified or further studied, the perceived ligands 

characterized, specific signalling cascade in different LRR-RK pathways described and their 

regulation mechanisms by other cellular factors such as RLP, RLCK and phosphatases 

demonstrated (Schmidt et al., 1997; Li, et al., 2012; Santiago et al., 2013; Sun et al., 2013; 

Wang et al., 2015; Brandt and Hothorn, 2016). 
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Figure 6. Plant PRRs perceive different fungal and oomycete molecular patterns.  

Tomato LRR-RLPs EIX1-EIX2 sense fungal xylanase and binds also to BAK1. RLP23, 

RLP30, and RLP42/RBPG1 recognizes NLP epitope nlp20, SCFE1, and 

endopolygalacturonases (PGs), respectively, and constitutively associate with RLK SOBIR 

and BAK1 as signalling co-receptors. RLP42-SOBIR presumably also interacts with a SERK-

like RLK. Chitin oligomers are recognized by Arabidopsis LysM-RLP CEBiP, LYK5 and rice 

LYP4-LYP6, and recruites CERK1 for signalling in a ligand dependent manner. In 

Arabidopsis, chitin is sensed through LYK5, a pseudo-kinase, which recruits CERK1 in a 

chitin-dependent manner. Oomycete NLPs are also sensed through RLP23-SOBIR-BAK1. 

Elicitins are sensed through ELR in a BAK1-SOBIR-dependent manner. Heptaglucan 

fragments derived from oomycete cell walls are perceived through soluble GBP. GBP 

presumably associates with a yet unknown transmembrane protein for signalling. Star (*) 

indicates existence of proof of direct PRR-ligand binding. (Ranf et al., 2017). 

Besides the LRRs, other PRRs` ectodomains contains Lysine Motifs (LysMs), lectin Motifs 

(LeMs) and Epidermal Growth factor (EGF). These ectodomains are involved in perception 

carbohydrates like bacteria Lipopolysaccharides (LPs) and fungal chitin as well as DAMPs 
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for example extracellular ATP and the plant-cell-wall-derived OligoGalacturonides (OGs). A 

typical example is the Arabidopsis LysM-RLK CERK1/RLK1/LYK1 which contains three 

LysM motifs and perceives a 7 t0 8 GlcNAc residues containing oligomers of fungal chitin. In 

rice, the chitin-binding protein is the LysM-RLP CEBiP containing a three extracellular LysM 

domains and a C-terminal tail. CEBiP homodimerizes to bind long chitin oligomers and 

activate defense in a similar mechanism as in Arabidopsis chitin receptor AtCERK1 (Kaku et 

al., 2006; Miya et al., 2007; Brutus et al., 2010; Willmann et al., 2011; Liu et al., 2012; Choi 

et al., 2014; Kouzai et al., 2014; Hayafune et al., 2014).  

PTI has been widely studied in plants against fungi, bacteria and oomycetes. However, there 

are few case studies regarding PTI induced by insects, viruses and nematodes. Plants 

sense non-self-nucleic acids signals as viral double-stranded RNA during infection inducing 

not only PTI but also gene silencing. Viral dsRNA perception triggers a signalling cascade 

involving and dependent on SERK1 and a specific dsRNA receptor however, the mechanism 

behind this perception is still unknown and the signalling pathways involved are yet to be 

unveiled. All in all, PTI restricts virus infection and mediates antiviral resistance in plants 

(Niehl et al., 2016). Invasive parasitic plants have recently demonstrated to be recognized by 

host plants (Fig 7). The first report was done on Dodders (Cuscuta spp); a holoparasite that 

rap around almost all dicotyledonous plants except tomato and penetrate their stem with 

haustoria to their vascular bundles for nutrition. One of the dodder species Cuscuta reflexa 

was identified to encode a 2kDa peptide having an O-esterified modification; Cuscuta factor 

(CuF), perceived by the LRR-RLP Cuscuta receptor 1 (CuRe1) triggering PTI responses like 

ROS burst and production of ethylene in tomato (Fürst et al., 2016).  

Nematode induced PTI is only sparsely studied. Nevertheless, Ascarosides abundantly 

found in whole nematode class was recently reported to induce PTI and Root knot 

nematodes have been shown to induce PTI in a BAK1 dependent manner which will be 
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discussed further below (Holbein et al., 2016; Ranf, 2017). 

 

Figure 7. Plant PRRs recognize non-self molecular patterns from parasitic plants as 

well as host-derived self molecular patterns. The tomato LRR-RLP CuRe1 recognizes a 

yet unidentified glycoprotein from the parasitic Cuscuta spp and dimerizes with tomato 

SOBIR homologs and presumably SERK-like RLKs upon ligand recognition. LRR-RLKs 

PEPR1/PEPR2 and RLK7 PEPR1/PEPR2 and RLK7 associate with BAK1 and other SERKs 

to perceive endogenous PEP and PIP peptides derived from PROPEP and PROPIP 
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precursors, respectively. Pectin-derived OGs and extracellular ATP are sensed by RLK 

WAK1 and L-lectin-RLK DORN1, respectively. Star (*) indicates existence of proof of direct 

PRR-ligand binding. (Ranf et al., 2017). 

Plants have to defend themselves to survive as well as reproduce to grow at the same time. 

Therefore understanding the regulatory mechanisms used by plants to balance growth and 

defense can improve plant breeding and engineering strategies for selection of the ideal 

genetic traits required to make the plants thrive. Growth-defense trade-offs mainly involves 

growth hormones such as auxin, Brassinosteroids (BRs), Gibberellins (GAs), and cytokinins. 

The best example depicting the molecular components involved in balancing growth is 

mainly observed in the relationship between FLS2 and the growth related 

BRASSINOSTEROID INSENSITIVE 1 (BRI1). BAK1 associates with both FLS2 and BRI1 

receptors. It is thus believed that their competition for BAK1 incurs BR-mediated suppression 

of PTI defense (Belkhadir et al., 2012; Albrecht et al., 2012; Lozano-Durán et al., 2013). BRs 

are polyhydroxylated steroid phytohormones involved in various plant developmental 

processes like germination and senescence. BR stabilizes the growth receptor BRI1/BAK1 

co-receptor complex, causing activation of their kinase domains (Li and Chory, 1997; Li et 

al., 2002; Nam and Li, 2002; Wang and Chory, 2006; Hothorn et al., 2011; She et al., 2011). 

The resulting phosphorylation events leads to inactivation of the glycogen-synthase-kinase-

3-like kinase BRASSINOSTEROID INSENSITIVE 2 (BIN2) kinase and thus activation of 

transcription factors BRI1-EMS-SUPPRESSOR 1 (BES1) and BRASSINAZOLE-

RESISTANT 1 (BZR1), to promote the expression of BR-regulated genes (Mora-Garcia et 

al., 2004; Tang et al., 2011). Upon PAMP recognition, BAK1 de-associates from BRI1 and 

forms a complex with FLS2, the transphosphorylation events that follow allows BIN2 to 

phosphorylates BES1and BZR1 thus blocking activation of BR-responsive genes and 

consequently growth inhibition (He et al., 2002; Wang et al., 2002; Yin et al., 2002; He et al., 

2005; Yin et al., 2005; Vert and Chory, 2006). This in turn induces PTI responses. BZR1 

transcription factor has also been linked in WRKY40-regulated genes as well as the cell 
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elongation related transcription factor HBI1. However, the mechanism involved in PTI 

suppression in favour of growth is not yet clear (Bai et al., 2012; Lozano-Durán et al., 2013). 

BR and GA mediated growth-defense cross talk functions in synergy to promote growth in 

response to environmental and developmental signals (Jaillais and Vert, 2012; Lilley et al., 

2013). In presence of GAs, there is formation of a heterodimer of BZR1 and Phytochrome 

Interacting Factor 4 (PIF4) which binds to and activates promoters of growth related genes. 

Without bioactive GAs, A family of transcriptional repressors known as DELLA proteins binds 

and inactivates PIFs mediating defense (De Lucas et al., 2008; Bai et al., 2012; Gallego-

Bartolome et al., 2012; Oh et al., 2012). Pathogen infection also activates auxin pathway 

including promotion of auxin biosynthesis genes and repression of AUX/ indole-3-acetic acid 

(IAA) genes and as such infection is enhanced (O'Donnell et al., 2003; Thilmony et al., 

2006). This is achieved by heterodimerization of the AUX/IAA proteins with the AUXIN 

RESPONSIVE FACTORS (ARF) transcription factors. To survive the effects of pathogen 

induced or pathogen produced auxin, plants suppress auxin signalling during defense by 

inhibiting auxin F-box receptors that stabilizes AUX/IAA proteins and represses of auxin 

synthesis genes (Navarro et al., 2006). This suppression is partly due to microRNA miR393 

which when induced by for example flg22, directly cleaves Transport Inhibitor Response 1 

(TIR1) and two functional paralogs Auxin signalling F-Box proteins 2 and 3 (AFB2 and 

AFB3) transcripts (Jones-Rhoades and Bartel, 2004; Sunkar and Zhu, 2004; Navarro et al., 

2006). SA induced growth inhibition has been associated with suppression of auxin 

reception, import and export and signalling. GH3 enzymes; responsible for regulating auxin 

homeostasis by conjugating IAA with different amino acids are also induced by SA (Wang et 

al., 2006, 2007). JA at the same time suppresses the expression of the auxin efflux carrier 

PIN formed 2 (PIN2) as well as it endocytosis and membrane accumulation (Sun et al., 

2011). Lastly, resource allocation involved in growth-defense balancing is reported to occur 

at all levels, in prioritizing of carbon and nitrogen pools towards production of defense 

compounds. Some of them involved in protein folding and secretions gearing towards 

defense for example PR proteins are proposed to be regulated by TL1 BINDING 
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TRANSCRIPTION FACTOR 1 (TBF1) during PTI and SAR (Pajerowska-Mukhtar et al., 

2012, Huot et al., 2015).  

Although the overall importance of PAMP-triggered immunity for plant defense is 

established, it has not been used commercially to produce transgenic disease free lines. 

Nevertheless, there are reports of successfully transferring PRRs between two plant families 

and retaining their activity. A gene encoding a PAMP receptor does not introduce a novel 

defense mechanism into the plant. The transferred PAMP receptor merely allows the 

receiving plant to recognize infection, so it can respond with its own, natural immune system. 

For example, expression of EFR, a PRR from Arabidopsis thaliana, confers responsiveness 

to bacterial EF Tu in the solanaceous plants Nicotiana benthamiana and Solanum 

lycopersicum, making them more resistant to a range of phytopathogenic bacteria of 

different genera. This strategy can be utilized to confer more resistance to nematodes taking 

advantage of the natural innate immunity in the plant. 

1.2.2  Plant defense against nematodes 
 

For a long time, PTI induced by nematodes had remained terra incognita to nematology 

community. However, recent studies have sort to shed some light in the ability of plant to 

recognize nematodes (Fig 8). For example, beneficial and entomopathogenic nematodes 

such as Steinernema carpocapsae has been reported to induce resistance in Arabidopsis 

and Hosta spp characterized by increased catalase and peroxidase as well as 

overexpression of PR genes (Jagdale et al., 2009). In addition, some reports suggest that 

cell wall degrading enzymes produced by nematodes could cause PTI like responses 

induced by DAMPs. In addition, other reports have indicated that Root-knot nematodes 

cause apoplastic and cell membrane localized ROS production during early stages of 

invasion i.e. penetration and migration in tomato roots. This ROS burst was shown to be 

derived from the cell membrane localized RBOHD and RBOHF that are directly 

phosphorylated by BIK1 during PTI (Wojtaszek et al., 1997; Torres et al., 2002; Torres 2009; 
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Kadota et al., 2015). BIK1 on the other hand has been reported to be a positive regulator of 

root knot nematode induced PTI responses. In general and regardless of the components 

involved, reports have it that PTI due to root knot nematode could be dependent or 

independent of co receptor BAK1 and is linked to Camalexin and glucosinolates (Teixeira et 

al., 2016). All in all, a nematode derived compound which induces clearly recognizable and 

immediate effects as PTI responses had not been identified till recently when a group of 

defense signalling molecules present in a wide array of nematodes were characterized as 

PAMPs (Manosalva et al., 2016). Ascarosides as they are referred are a family of small 

endogenous molecules whose key functions are upstream of conserved signalling pathways 

in developmental timing and behaviour in nematodes. For example acarosides acts as 

pheromones. The term “ascarosides was first coined when a specific type of lipid was 

detected for the first time in roundworms from family Ascaridia (Ludewig and Schroeder, 

2013). They have been further described as glycosides derived from a dideoxysugar 

ascarylose linked to a fatty acid side chain. Specifically, they are also described as 

integrating building blocks from carbohydrate metabolism, peroxisomal β-oxidation of fatty 

acids and amino acid catabolism (von Reuss et al., 2012). Prior to the establishment of a 

reliable ascarosides naming system, compounds were named based simply by the length of 

their side chain for example a 10 carbon ascaroside was named C10 which of course led to 

confusion once more compounds having the same number of carbon molecules were 

identified. Fortunately, a new, easy to search, gene identifier naming system has been 

developed; Small Molecule IDentifiers (SMIDs), which consist of lower case letter depicting 

the general structure of the compound class, followed by the compound sign and ends with a 

number. For example icas#7 or hbas#10. The SMID database is publicly available for all 

small molecules identified from nematodes especially C. elegans (Srinivasan et al., 2012; 

von Reuss et al., 2012). In the study, among the 200 ascaroside molecules identified to date, 

ascr#18 was found to be the most abundant among cysts, root-knot and lesion nematodes. 

Ascr#18 induced PTI responses at very low concentrations (10 nM) in Arabidopsis just like 

responses caused by other PAMPs such as triggering SA and JA signalling pathways, 
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expression of PR related defense genes and increased resistance to other pathogens. 

These responses were also observed when other dicotyledonous and monocotyledonous 

plants such as tomato, barley and potato were treated with ascarosides at varying 

concentrations. In addition, Ascr#18 applied to the root not only induced defense genes in 

the roots but also resistance in the leaves, a phenomeno suggested to be caused by its 

translocation to the leaves, or the induction of a mobile signal that was translocated to the 

leaves. This remain to be proven since there is no reports of ascr#18 detected in the leaves 

so far. Nevertheless, the ability of Ascr#18 to induce PTI responses lead to the idea of a 

receptor capable of perceiving ascarosides both in roots and in shoot, and which is yet to be 

identified (Manoslava et al., 2016).  

PTI is very important for plant survival. Therefore, plant parasitic nematodes, whether 

sedentary endo parasitic which have a prolonged interaction with the plants, or migratory 

ectoparasitic who have a very short interaction; require a PTI suppression mechanism for 

them to thrive in presence of defense responses and maintain feeding structures. Most 

successful biotrophs deliver effectors that inhibit PTI or PTI response. Comparative 

genomics approaches have allowed identification of these effectors. Root-knot nematode 

genomes are now available; for M. incognita and M. hapla, as well as cyst nematode H. 

glycines and G. pallida. Through prediction of effectors using these available data, and the 

confirmation of their expression in esophageal glands via In situ hybridization, effectors are 

believed to be secreted into the host through the stylet. Identification of effectors is important 

since deciphering their functions gives us an insight into their role in host manipulation (Abad 

et al., 2008; Opperman et al., 2008; Haegeman et al., 2012; Hewezi and Baum, 2013). Most 

characterized effectors specifically bind to or mimic plant proteins affecting hormonal 

balance, signalling and cell morphogenesis. Calreticulins (CRTs) are the only nematode PTI 

suppressors known that react directly due to a PAMP like elf18. CRTs are highly conserved 

calcium binding proteins present in both plants and animals and acts as Ca2+ binding 

chaperones, regulating Ca2+ storage and signalling. CRTs are located near nuclear 
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envelope, in the cytoplasm, or at the cell surface. They regulate numerous cell functions 

such as gene expression, cell adhesion and immunity regulation indirectly via calcium 

binding and or directly interacting with signalling proteins (Gold et al. 2010; Michalak et al., 

2009). The calreticulin (CRT) Mi-CRT secreted from M. incognita is produced from the 

subventral glands of preparasitic J2 and in the dorsal gland of parasitic stages. It is secreted 

into plant via the stylet and accumulates at the cell wall of giant cells. It has been linked to 

suppressing normal elf18-induced callose deposition in Arabidopsis and reduced activation 

of defence-related genes (Jaubert et al., 2005; Jaouannet et al., 2012, 2013). That 

notwithstanding, the type III effector protein from Pseudomonas syringae AvrPtoB has also 

been shown to suppress PTI by the ubiquitination of FLS2 and the co-receptor Chitin elicitor 

receptor kinase 1 (CERK1) (Goehre et al., 2008; Gimenez-Ibanez et al., 2009). In addition, 

Phytophthora infestans effector AVR3a targets the host E3 ligase CMPG1 important for the 

downstream signal transduction pathway induced by INF1. This reveals the possibility that 

plant-parasitic nematodes could equally target the ubiquitination pathway as some of their 

effectors are similar to E3 (Gao et al., 2003; Bos et al., 2010). H. schachtii effector HS19C07 

interacts with Arabidopsis UXIN INFLUX Transporter LAX3 resulting in reduced auxin 

transport in the syncytium and thus interfere with its development (Lee et al., 2011; Wang et 

al., 2011). Furthermore, sedentary endoparasitic nematodes secrete plant chorismate 

mutase homologs that are similarly suggested to affect auxins pool and root growth as well 

as the affecting the shikimate pathway, resulting in decreased SA and phytoalexin 

biosynthesis (Doyle and Lambert, 2003; Jones et al., 2003; Huang et al., 2005; Grunewald et 

al., 2009). M. incognita effector Mi8D05 interacts with a plant aquaporin Tonoplast Intrinsic 

Protein (TIP2) affecting nutrients and solutes transport that in turn interfering GC 

enlargement and nematode feeding (Xue et al., 2013). On the other hand, H. schachtii 

effector Hs10A06 targets spermidine synthase 2 to alters SA signalling and protects the 

nematodes from ROS and PR proteins in Arabidopsis (Hewezi et al., 2010, 2015). 

Suppression of PTI by diverse pathogens in a single host suggests that different pathogens 
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may target a small number of host components generally involved in, or that regulates plant 

defence responses. 

Nevertheless, Effectors equally triggers ETI that counters the effects of PTI suppression and 

unlike nematode induced PTI; ETI triggered by nematodes is better understood. R genes 

proteins especially NB-LRR proteins that allow resistance to nematodes have been 

identified. However, very few nematode Avr proteins have been identified (Smant and Jones, 

2011).  

 

Figure 8. Immune responses during plant-nematode interaction. Nematode invasion 

causes cell wall damage, which consequently release damage-associated molecular 

patterns (DAMPs) and activates plant basal defence responses by Wall-Associated Kinases 

(WAKs). Nematodes secrete cell wall degrading polygalacturonases (PG) which interacts 

with plant PG-inhibiting proteins (PGIPs), to form small cell wall oligogalacturonides (OGs) 

that induces DAMP-associated immunity. Nematode Associated Molecular Patterns 

(NAMPs) such as ascarisides are perceived by unknown plasma-membrane localized 

pattern recognition receptors (PRRs) to induce Pattern Triggered Immunity (PTI) 
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characterized by Reactive Oxygen Species (ROS), callose, and lignin production. BRI1 

Associated receptor-like Kinase 1 (BAK1) act as a co-receptor to unidentified LRR-RLK to 

initiate PTI. Nematodes, consequently, secrete apoplastic VAP1, CRT, CEP12, 4F01, 30C02 

and SPRYSECs effectors to counter the immunity. Plants R-genes encoding Nucleotide 

binding Leucine rich Repeat, (NLRs) recognizes effectors to initiate Effector Triggered 

Immunity (ETI). In addition to NLRs, non-NLRs type R-genes also exists against nematodes. 

Star (*); indicates existence of proof of nuclear localization of effectors. (Holbein et al., 2016) 

Similar to ETI caused by other biotrophic pathogens, Nematode effectors can induce HR 

which is targeted at the feeding structure or the cells around it for example in the case of 

responses induced by Mi-1 and Hero A in tomato to root knot and potato cyst nematodes 

respectively (Rossi et al., 1998; Milligan et al., 1998; Sobczak et al., 2005). However, R 

genes incurring resistance for example, resistance by Rhg4 gene in soybean against H. 

glycines is due to a serine hydroxymethyl transferase (Liu et al., 2012). Several Cf genes (for 

resistance against Cladosporium fulvum; the leaf mold fungus), such as Cf-2, Cf-4, Cf-5 and 

Cf-9, have been suggested to encode extracellular receptors that perceive elicitor molecules 

secreted by the fungus (De Wit, 1992). Several Cf genes have been cloned and found to 

encode proteins with LRRs, which may function as extracellular, membrane-bound receptors 

(Thomas et al., 1998). Particularly, the extracellular plant immune receptor protein Cf-2 of 

the red currant tomato Solanum pimpinellifolium, was previously reported to confer 

resistance only to C. fulvum. Currently it is known that the root parasitic nematode G. 

rostochiensis also activate Cf-2-mediated disease resistance by perturbing the apoplastic 

papain-like cysteine protease Rcr3pim which is common component among the two 

pathogens. Apoplastic Rcr3pim is a molecular target of the Venom Allergen-like Protein (Gr-

VAP1) of G. rostochiensis pathotype Ro1-Mierenbos juveniles, released during the early 

stages of nematode parasitism. However, how venom allergen-like protein Gr-VAP interacts 

with Rcr3pim of S. pimpinellifolium, in nematode virulence is not yet understood. VAPs 

constitute a monophyletic clade of cysteine-rich secretory proteins within the Sperm Coating 
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Protein/Tpx-1/Ag-5/Pr-1/Sc-7 (SCP/TAPS) superfamily. They are the most abundant 

released secretory proteins during infection by plant and animal parasitic nematodes 

(Lozano-Torres et al., 2012).  

Just like in PTI, some proteins have been shown to supress nematode induced ETI. For 

example, at least one member of the SPRYSEC effectors family identified in potato cyst 

nematodes has been shown to suppress ETI in plants (Cotton et al., 2014). However, the 

mechanism behind SPRYSEC-19 mediated ETI suppression is still unknown. Other 

SPRYSECs from G. pallida also suppress ETI too. The RYSEC-19 effector from G. 

rostochiensis suppresses ETI induced by Gpa2 and the related Rx in the presence of the 

respective avirulence factor recognized by these R proteins (Postma et al., 2012; Mei et al., 

2015). 

Regardless of these known facts about plant interaction with nematodes, there is still more 

questions that remain to be answered. The significance of the economic importance of plant 

parasitic nematodes in agriculture is a driving force to try and better exploit genetics in crop 

improvement. That will require an understanding of plant defense and especially PTI which 

is still under-explored especially PTI activation, its induced signalling cascade and the 

components involved in its regualtion. 

1.3  Arabidopsis thaliana 
 

This plant is named after Johannes thalius; a physician from Nordhausen Thüringen in 

Germany. He discovered it in the Harz Mountains in 1577 and was the first to describe it, 

naming it Pilosella siliquosa (Thal's Gänsekresse). Carl Linnaeus (Carl von Linné) later in 

1753 named the plant Arabis thaliana in honour of Thalius. In 1842, the German botanist 

Gustav Heynhold who worked in botanical gardens in Dresden and Frankfurt placed it in the 

newly erected genus Arabidopsis (Greek for “Like Arabis”). Thal cress or mouse-ear cress 

as is commonly known is a small flowering plant and a member of the mustard family (family 
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Brassicaceae) , with a wide natural distribution throughout Eurasia. Even though in 1873, 

Alexander Braun described a double flower phenotype when he reported the first mutant, it 

was Erna Reinholz who undertook her PhD work in Prof. Friedrich Laibach lab in Frankfurt, 

who isolated the first induced Arabidopsis mutants. All in all, it was Laibach; a German 

botanist and founder of the experimental Arabidopsis research, who drove attention on the 

plant since the 1930s. He particularly proposed the potential of Arabidopsis thaliana as a 

model organism for genetics. The growth of Arabidopsis research has over the last 40 years 

been remarkable, rewarding, and transformative. Even though Arabidopsis has been found 

to have no direct importance to agriculture, it has many characteristics which make it a 

usable model and a reference point while deducing genetics, cellular, and molecular biology 

of flowering plants. Important features include a short generation time where the whole life 

cycle starting from seed germination to maturation of the first seeds takes 6 weeks. It is 

small rosette plants that range from 2 to 10 cm in diameter and 20 to 25 cm tall. Flowers are 

2 mm long and self-pollinates and as the bud opens, crossing can be achieved by releasing 

pollen on the surface of stigma. Mature seeds are 0.5 mm long and are produced in thin 

fruits called siliques; 5 to 20 mm long. A silique contains 20 to 30 seeds. This prolific seed 

production through self-pollination ensures easy reproduction and production of lots of 

seeds. About 750 different ecotypes have been obtained from natural populations for 

experimental purposes. However; the Columbia and Landsberg ecotypes are the accepted 

standards for genetic and molecular studies (Greilhuber et al., 2006; Koornneef and Meinke, 

2009). Arabidopsis has its whole genome sequenced which is relatively small (114.5 Mb/125 

Mb total). Arabidopsis genome has an extensive genetic and physical map on its 5 

chromosomes. The Arabidopsis Information Resource (TAIR) preserves and updates a 

database of genetic and molecular biology data for A. thaliana including the complete 

genome sequence along with gene structure, expression and protein information. In addition, 

it provides the gene DNA sequence, seed stocks, genome maps, physical markers, genetic 

markers and related publications. The function of the gene is updated as research articles 

are released. Efficient transformation methods utilizing Agrobacterium tumefaciens makes 
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Arabidopsis very easy to genetically manipulate and thus easy to study. A huge genomic 

resources and mutants lines are a readily available from Stock Centres. For example, the 

Arabidopsis Biological Resource Center (ABRC) at the Ohio State University, USA and 

Nottigham Stock Centre (NASC) at the University of Nottingham's Sutton Bonington 

Campus, in the English county of Nottinghamshire. Arabidopsis has been described as a 

host of various pathogens and as such it has been utilized for studies in plant pathology. 

Plants in an entire species could confer resistance to all isolates of a microbial species for 

example nematodes and they are as such referred to as non-host or species resistance. The 

breakthrough in establishing a plant nematodes interaction model was achieved when 

culture conditions for successful infection and development of nematodes was established 

for cyst nematodes H. schachtii, H. trifolii, and H. cajani, root-knot nematodes M. incognita 

and M. arenaria as well as migratory nematode P. penetrans on Arabidopsis (Sijmons et al., 

1991). Currently, this model plant is used in plant nematode interaction studies, majoring in 

H. schachtii and M. incognita as the target pathogens.  

 

Figure 9. An illustration of different growth and development stages in Arabidospsis 

thaliana. 
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1.4  Objectives 
 

Many reports have clearly demonstrated that nematode like other pathogens can trigger PTI 

responses. However, the PRRS involved in nematode PTI remain elusive. In our study, we 

focused on: 

 Characterization of receptor genes upregulated due to nematodes. 

 

 Identification of putative receptors that recognizes conserved molecular signature 

from nematodes. 

 

 

 Deducing the signalling components involved in induction of PTI due to nematodes. 
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Abstract

Plant-parasitic nematodes are destructive pests causing losses of billions of dollars annu-

ally. An effective plant defence against pathogens relies on the recognition of pathogen-

associated molecular patterns (PAMPs) by surface-localised receptors leading to the activa-

tion of PAMP-triggered immunity (PTI). Extensive studies have been conducted to charac-

terise the role of PTI in various models of plant-pathogen interactions. However, far less is

known about the role of PTI in roots in general and in plant-nematode interactions in particu-

lar. Here we show that nematode-derived proteinaceous elicitor/s is/are capable of inducing

PTI in Arabidopsis in a manner dependent on the common immune co-receptor BAK1. Con-

sistent with the role played by BAK1, we identified a leucine-rich repeat receptor-like kinase,

termed NILR1 that is specifically regulated upon infection by nematodes. We show that

NILR1 is essential for PTI responses initiated by nematodes and nilr1 loss-of-function

mutants are hypersusceptible to a broad category of nematodes. To our knowledge, NILR1

is the first example of an immune receptor that is involved in induction of basal immunity

(PTI) in plants or in animals in response to nematodes. Manipulation of NILR1 will provide

new options for nematode control in crop plants in future.

Author summary

Host perception of pathogens via receptors leads to the activation of antimicrobial defence

responses in all multicellular organisms, including plants. Plant-parasitic nematodes

cause significant yield losses in agriculture; therefore resistance is an important trait in

crop breeding. However, not much is known about the perception of nematodes in plants.

Here we identified an Arabidopsis leucine-rich repeat receptor-like kinase, NILR1 that is

specifically activated upon nematode infection. We show that NILR1 is required for the

induction of immune responses initiated by nematodes and nilr1 loss-of-function mutants

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006284 April 13, 2017 1 / 22
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are hypersusceptible to a broad category of nematodes. Manipulation of NILR1 will pro-

vide new options for nematode control in crop plants in the future.

Introduction

Plant-parasitic nematodes attack the majority of economically significant crops, as shown by

international surveys indicating an overall yield loss of 12%. In some crops, such as banana, a

loss of up to 30% has been reported. Losses amount to $100 billion annually worldwide [1].

The economically most important nematodes belong to the group of sedentary endoparasitic

nematodes that includes root-knot nematodes (Meloidogyne spp.) and cyst nematodes (Globo-
dera spp. and Heterodera spp.). Most chemical pesticides used for control of plant-parasitic

nematodes are environmentally unfriendly, expensive and ineffective in the long term. There-

fore, an increased demand for novel crop cultivars with durable nematode resistance is inevita-

ble [2, 3]. In this context, it is important to identify and characterize the different natural

means by which plants defend themselves against nematodes.

The infection cycle for root-knot and cyst nematodes begins when second-stage juveniles

(J2) hatch from eggs. J2, the only infective stage, search for roots guided by root exudates.

They invade the roots by piercing the epidermal root cells using a hollow spear-like stylet.

After entering the roots, they migrate through different cell layers until they reach the vascular

cylinder. There, root-knot nematodes induce the formation of several coenocytic giant cells,

whereas cyst nematodes induce the formation of a syncytium. Because established juveniles

become immobile, the hypermetabolic and hypertrophic feeding sites serve as their sole source

of nutrients for the rest of their lives. In a compatible plant-nematode interaction, plant

defence responses are either down-regulated or overcome by the nematodes [4–6]. A cocktail

of secreted molecules including effectors that are synthesized in the oesophageal glands of the

nematodes is purportedly responsible for modulating the plant defences as well as the induc-

tion and development of the syncytium [7–10]. Whereas most root-knot nematodes reproduce

parthenogenically, cyst nematodes reproduce sexually. Although the mechanism of sex deter-

mination in cyst nematodes is not clear, studies have shown that the majority of juveniles

develop into females under favourable nutritional conditions. When juveniles are exposed to

adverse growth conditions, as it is the case with resistant plants, the number of male nema-

todes increases considerably [11].

Numerous studies have shown that plants sense microbes through the perception of patho-

gen/microbe-associated molecular patterns (PAMPs or MAMPs) via surface-localised pattern

recognition receptors (PRRs), leading to the activation of PAMP-triggered immunity (PTI).

The activation of PTI is accompanied by the induction of an array of downstream immune

responses including bursts of calcium and reactive oxygen species (ROS), cell-wall reinforce-

ment, activation of mitogen-associated and calcium-dependent protein kinases (MAPKs and

CDPKs), and massive reprogramming of the host transcriptome [12–15]. Together, these

downstream responses can fend off the pathogen’s infection. PAMPs are typically evolutionary

conserved across a class of pathogens and perform an important function in the pathogen life

cycle [16].

Plant PRRs are either plasma membrane-localised receptor-like kinases (RLKs) or receptor-

like proteins (RLPs) [14]. Both RLKs and RLPs consist of an extracellular receptor domain

(ECD) for ligand perception, a single membrane-spanning domain, but only RLKS have a

cytoplasmic kinase domain. The major classes of RLKs are leucine-rich repeat (LRR)-RLKs,

lysine-motif (LysM)-RLKs, crinkly4 (CR4)-RLKs, wall-associated kinases (WAKs),
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pathogenesis-related protein 5 (PR5)-RLKs and lectin-RLKs (LeCRKs). Nevertheless, it is

becoming increasingly clear that PRRs do not act alone but are part of multiprotein complexes

at the plasma membrane [13]. For example, the LRR-RLK BRASSINOSTEROID INSENSI-

TIVE-1 (BRI1)-ASSOCIATED KINASE 1 (BAK 1) forms receptor complexes with various

LRR-containing PRRs to positively regulate PTI [14–15, 17]. In addition to PAMPs, plant

PRRs can also perceive endogenous molecules, so-called damage-associated molecular pat-

terns (DAMPs) that are released upon cell damage or pathogenic attack [16].

Although extensive studies have been conducted to characterise the role of PTI response in

various models of plant-pathogen interactions, relatively less information is available pertain-

ing to nematode-induced PTI responses in plants. To date, no PRR that recognises a nema-

tode-associated molecular pattern (NAMP) has been identified [18]. However, some recent

work suggests that nematode infection triggers PTI responses in host through surface-localised

receptors. For example, silencing of the orthologues of BAK1 in tomato (Solanum lycopersi-
cum, Sl) (SlSERK3A or SlSERK3B) has been shown to increase the susceptibility of these plants

to nematodes due to defects in activation of basal defence [19]. In a more recent publication, it

was shown that nematode infection triggers PTI responses in Arabidopsis in a BAK1-depen-

dent and BAK1-independent manners. These authors showed that several PTI-compromised

mutants including bak1-5 were significantly more susceptible to root-knot nematodes as com-

pared to control [20]. However, the identity of ligands and/or receptors involved in BAK1-me-

diated response remains unknown. As far as NAMP identification is concerned, ascarosides,

which are conserved nematode-secreted molecules, have been shown to elicit plant defence

responses that lead to reduced susceptibility against various pathogens [21].

In comparison to PTI, Effector-triggered immunity (ETI) during plant-nematode interac-

tion is relatively well studied. A number of host resistance genes (R-genes) against nematodes

have been described and their mode of action is relatively well investigated [22]. Notably, a

host cell-surface immune receptor Cf-2 has been shown to provide dual resistance against a

parasitic nematode Globodera rostochiensis and a fungus Cladosporium fulvum through sensing

perturbations of the host-derived protease RCR3 by the venom allergen-like protein of Globo-
dera rostochiensis [23]. In the present study, we provide evidence that nematodes induce PTI-

like responses in Arabidopsis that rely on the perception of elicitors by membrane-localised

LRR-RLKs.

Results

Nematode infection triggers PTI responses in host plants

To reveal changes in gene expression in response to nematodes at and around the infected

area, GeneChip analysis was performed. Small root segments (approx. 0.5 cm) containing

nematodes that were still in their migratory stage (defined as continuous stylet movement),

were cut and compared with corresponding root segments from plants that were not infected.

Total RNA was extracted, labelled, and amplified to hybridize with the GeneChip Arabidopsis

ATH1 Genome (Affymetrix UK Ltd). The ATH1 Genome Array contains more than 22,500

probe sets representing approximately 24,000 genes. Subsequent analysis of the data showed

that approximately 2,110 genes were differentially expressed (FDR< 0.05; Fold change > 1.5).

Among them, 1,139 were upregulated, whereas 971 were downregulated (S1 Data). To explore

regulation of the biological processes, molecular functions, and their distribution across differ-

ent cellular components, a gene ontology enrichment analysis was performed on significantly

upregulated genes. Those categories which were particularly over-represented in the differen-

tially upregulated genes included the immune system response, response to stimulus, death,

and the regulation of the biological processes (Fig A in S1 Text). We have previously published
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a subset of 62 genes representing selected jasmonic acid (JA), ethylene (ET) and salicylic acid

marker (SA), signalling and biosynthesis genes from this GeneChip data, which were also vali-

dated by qRT-PCR [24]. In general, transcript levels of genes involved in JA/ET signalling and

biosynthesis were increased. However, in comparison to JA/ET, changes in SA-related genes

were relatively less pronounced. Nevertheless, a slight increase in a SA biosynthesis (PAL1)

and few SA signalling genes (NPR1, NPR3) was also observed (S2 Data). A detailed look at the

transcriptomic data indicate that nematode infection triggered the induction of genes previ-

ously shown to be induced during PTI (Fig 1A) [25–27].

NemaWater elicits PTI responses in host plants

Our transcriptome data showed the induction of PTI-like responses upon nematode infection,

however, it was unclear whether this induction was due to the recognition of nematodes by

plant receptors or whether it was the result of wounding due to continuous nematode move-

ment. To clarify this, we established a PTI screening assay involving the measurement of ROS

burst, one of the hallmark responses of PTI. For this purpose, we incubated the pre-infective J2

of H. schachtii in H2O for 24 hours at RT. The water obtained after removing the nematodes

was termed as NemaWater (Heterodera schachtii NemaWater, HsNemaWater; Meloidogyne
incognita NemaWater, MiNemaWater) and was used to treat Arabidopsis roots (see Methods

for details). After treatment, ROS burst was measured using a root-based procedure adapted

from a previous work [27]. Flg22 and H2O treatments were used as positive and negative con-

trols, respectively. Treatment with flg22 as well as with HsNemaWater induced a strong and

consistent ROS burst in roots (Fig 1B). The ROS burst with HsNemaWater was, however,

slightly delayed as compared to flg22; the ROS burst to flg22 occurs within 10 to 40 min, while

that to HsNemaWater occurred after 20 to 120 min. Although HsNemaWater induced a con-

sistent ROS burst in Arabidopsis roots, it was not clear whether this is due to the presence of a

NAMP in HsNemaWater or whether it is due to the production of an eliciting-molecule by

plants (upon NemaWater treatment), which in turn induced production of ROS burst in

roots. Such an eliciting-molecule could be called as DAMP or a NIMP (nematode-induced

molecular pattern). One way to address the question of NAMP, or DAMP/NIMP was to dilute

the HsNemaWater with H2O and analysed the production of ROS burst in roots. We hypothe-

sised that if ROS burst is due to production of a DAMP or NIMP, diluting the NemaWater

would not only reduce the magnitude of the ROS burst but may also slow its kinetics. How-

ever, our data showed that although magnitude of ROS burst was reduced strongly upon dilu-

tion, there was no delay in production of ROS between different dilutions (Fig 1C). Next, we

incubated the HsNemaWater with Arabidopsis roots for 60 min and then used this HsNema-

Water for production of ROS burst on fresh roots. The data showed that prior incubation of

HsNemaWater with roots did not cause any significant change in magnitude as well as kinetics

of ROS Burst (Fig 1D). Regardless of the nature or origin of elicitor, activation of ROS burst

upon HsNemaWater treatment confirmed our observations from transcriptomic studies indi-

cating that PTI-like responses are induced upon nematode detection.

To confirm whether NemaWater from different species of nematodes elicit a similar

response, we produced NemaWater from the root-knot nematode species, Meloidogyne incog-
nita (MiNemaWater) and performed ROS burst assays. We observed a strong and consistent

ROS burst (Fig 1E) similar to that of H. schachtii (Fig 1B). A prolonged treatment of young

Arabidopsis seedlings with flg22 activated defense responses and leads to growth inhibition

[28]. Although the mechanism underlying this growth inhibition is unclear, it is commonly

accepted that activation of defense responses may take the resources away from growth.

Importantly, this assay has frequently been used to analyse the eliciting capacity of PTI

Nematode perception in plants
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Fig 1. Nematode infection induced defense responses in plants that are characteristics of PTI. (A) Expression of PTI marker genes

in microarray analysis upon nematode infection in migratory stage. Root segments from uninfected roots were used as control. Values

indicate fold change compared with control. Asterisk indicates significant difference to control (FDR <0.05; Fold change >1.5). (B) Root

segments from Col-0 plants were treated with water, HsNemaWater or flg22 and ROS burst was measured using L-012 based assay from

0 to 120 min. (C) Root segments from Col-0 plants were treated with water, different dilutions of HsNemaWater or flg22 and ROS burst

Nematode perception in plants

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006284 April 13, 2017 5 / 22

49

https://doi.org/10.1371/journal.ppat.1006284


components [28, 29]. We tested whether NemaWater also caused seedling growth inhibition,

and found that both flg22 and HsNemaWater inhibited seedling growth and reduced the root

weight to a similar extent (Fig 1F, Fig B in S1 Text). Our results suggest that NemaWater con-

tains potential elicitor/s that is/are recognized by an immune receptor in plants leading to the

activation of PTI-like responses. To test this hypothesis, we incubated 12-day-old Arabidopsis

seedlings in HsNemaWater for one hour: ddH2O alone was used as a control. RNA was

extracted from the roots of both the non-treated control and NemaWater-treated seedlings.

They were subsequently labelled, amplified, and hybridized with a GeneChip, as described

above. The data analysis showed that 2,520 genes were differentially expressed, of which, 1,422

were upregulated and 1,098 were downregulated (FDR< 0.05; Fold change> 1.5; S3 Data). A

gene ontology enrichment analysis for differentially upregulated genes showed the over-repre-

sentation of categories such as immune system response, response to stimulus, death, signaling

and the regulation of the biological processes (Fig C in S1 Text). A look at the expression of

hormonal response gene upon HsNemaWater treatment showed the same tendency for upre-

gulation of JA/ET-related genes as observed upon nematode infection as described above (S2

Data). Moreover, a significant increase in the expression of genes characteristics for PTI was

detected (Fig 2A). This upregulation in expression of PTI marker genes was very similar to

that observed upon infection with nematodes (Fig 2B). Interestingly, expression of camalexin

biosynthesis genes (PAD3/CYP71B15, CYP71A12) was upregulated only in nematode-infected

plants but was not regulated upon HsNemaWater treatment (Fig 2B). This was further con-

firmed by analyzing a reporter line (pCYP71A12:GUS) [30] on treatment either with nema-

todes or with HsNemaWater. We found a strong GUS expression upon nematode infection,

whereas such an expression was absent in seedlings treated with HsNemaWater (Fig 2C–2E).

We validated the microarray data by measuring the expression of 13 genes via qRT-PCR upon

treatment with HsNemaWater. Our analysis showed a similar trend for expression of selected

genes as shown by microarray data (Table 1). Together, these results suggest that both nema-

tode infection and NemaWater treatment induce PTI responses including a significant activa-

tion of JA pathways. The data analysis also showed that the changes in gene expression

triggered upon treatment of seedlings with HsNemaWater were to an extent similar to those

that were observed upon nematode infection (Fig 2F and S4 Data). Even so, both treatments

induced expression of a distinct set of genes, which may reflect differences in both treatments

such as number and concentration of elicitors, duration of treatments, physical damage, etc.

On the basis of our finding that NemaWater triggers PTI responses, we asked whether pre-

treatment with NemaWater effects plant responses to nematodes and other pathogens. To test

this, plants were pre-treated with HsNemaWater 24 hours prior to inoculation and were then

infected with juveniles of H. schachtii or M. incognita or the virulent bacterial pathogen Pseu-
domonas syringae pv. tomato (see Methods for details). We found a strong decrease in number

of nematodes in HsNemaWater-treated plants compared with Col-0 (Fig 3A and 3B, Fig D in

S1 Text). Similarly, the growth of virulent P. syringae was also reduced strongly upon HsNema-

Water treatment (Fig 3C and 3D).

was measured using L-012 based assay from 0 to 120 min. (D) Root segments from Col-0 plants were incubated with HsNemaWater for 1

hour and then this HsNemaWater was used for production of ROS burst on fresh root segments. Water, fresh HsNemaWater or flg22,

were used as controls. (E) Root segments from Col-0 plants were treated with water, MiNemaWater, or flg22 and ROS burst was

measured using L-012 based assay from 0 to 120 min. (B-E) Bars represent mean ± SE for three technical replicates. Experiment was

repeated three times with same results. RLU, relative light units. (F) 5-day-old Col-0 seedlings were incubated in water, HsNemaWater or

flg22 for seven days. Fresh weight was measured at 12 days after germination. Data were analysed using t-test. Asterisk represent

significant difference to water-treated control root segments (P<0.05). Hs, Heterodera schachtii. Mi, Meloidogyne incognita.

https://doi.org/10.1371/journal.ppat.1006284.g001
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NemaWater-induced PTI responses are mediated by BAK1

Induction of PTI by NemaWater indicated the presence of putative elicitor(s) in NemaWater.

To test whether these elicitors is/are of proteinaceous nature, we added Proteinase K to HsNe-

maWater and performed a ROS production assay. Duration and intensity of NemaWater-

induced ROS burst varied in different experimental batches, which may be due to differences

in the concentration of elicitors in different preparations of NemaWater and the possibility

that NemaWater may contain more than one elicitor. Therefore, we used total photon count

as a more reliable parameter for quantification of ROS burst activation in this study. We

observed that the treatment of HsNemaWater with Proteinase K or heat strongly reduced the

induction of ROS burst (Fig 4A). These results were further confirmed by seedling growth

inhibition assays (Fig 4B). BAK1 has been shown to act as a co-receptor for LRR-RLKs and

LRR-RLPs, which typically detect proteinaceous ligands [14, 15]. Considering the data from

Proteinase K treatment (Fig 4A and 4B) and recently published data on root-knot nematodes

[20], we hypothesized that bak1 mutants would be more susceptible to cyst nematodes. A nem-

atode infection assay was performed on bak1-5 and the double mutant bak1-5 bkk1-1 (BKK1

Fig 2. NemaWater treatment induced defense responses in plants that are characteristics of PTI. (A) Expression of

PTI marker genes in microarray analysis upon HsNemaWater treatment. Root segments from uninfected roots were used as

control. Asterisk indicates significant difference to control (FDR <0.05; Fold change >1.5). (B) A heatmap showing expression

of PTI marker genes upon nematode infection or upon HsNemaWater treatment. (A-B) Values represent fold change

compared with control. (C-E) Expression of glucuronidase (GUS) driven by pCYP71A12 in control (C), H. schachtii infection at

migratory stage (D) and HsNemaWater treated plants (E) (F) A Venn diagram showing distribution of upregulated genes in

Arabidopsis upon nematode infection or upon HsNemaWater treatment.

https://doi.org/10.1371/journal.ppat.1006284.g002
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being the closest homolog of BAK1) [31]. Both mutants were significantly more susceptible to

nematodes compared with Col-0, as they allowed more females to develop (Fig 4C). We also

investigated whether BAK1 is required for PTI-responses upon HsNemaWater treatment and

found that the nematode-derived ROS burst was strongly reduced in bak1-5 mutants (Fig 4D).

Similar results were obtained in seedling growth inhibition assays (Fig 4E and Fig E in S1

Text).

Table 1. Validation of changes in gene expression upon HsNemaWater treatment via qRT-PCR. The values represent relative fold change in response

to NemaWater treatment as compared with control roots. 18S was used as housekeeping gene to normalize the data. All values are means of three biological

replicates +/- SD.

Locus GeneChip qRT-PCR Function

Fold Change Control vs HsNemaWater treated roots

At3g55950 2.2 3.6 +/- 1.6 Crinkly4 Related 3

At4g21390 8.3 6.9 +/- 2.51 B120: serine/threonine kinase

At1g66880 4.3 5.3 +/- 1.1 Protein kinase superfamily protein

At1g69930 38.4 38.1 +/- 6.2 Glutathione-s-transferase 11

At3g46230 36.4 34.2 +/- 18.7 Heat shock protein 17.4

At2g38470 12.6 10.0 +/- 7.7 WRKY33

At5g25930 6.0 5.22 +/- 0.3 LRR-RLK, Protein phosphorylation

At4g23190 5.2 5.38 +/- 1.1 Cysteine-rich-RLK

At1g74360 4.1 3.28 +/- 2.2 Nematode-Induced-LRR-RLK 1

At5g48540 3.7 3.03 +/- 1.3 RLK-family protein

At1g11050 3.6 2.52 +/- 0.9 ATP-binding protein kinase

At1g61590 -2.4 -1.56 +/- 0.28 Defense response protein kinase

At4g26790 -2.5 -9.3 +/- 6.6 GDSL-motif esterase/lipase

https://doi.org/10.1371/journal.ppat.1006284.t001

Fig 3. Pre-treatment with NemaWater induces resistance to pathogens. (A-B) Roots of Col-0 plants were treated with water or HsNemaWater

prior to infection and number of females were counted at 14 dai for cyst nematodes and number of galls were counted at 19 dai for root-knot

nematodes. Bars represent mean ± SE for three independent biological replicates. (C-D) Plants were sprayed with flg22 or HsNemaWater prior to

inoculation and C. F.U/cm2 was counted at 4 dai. Bars represent mean ± SE. Experiments were repeated three times with similar results. Asterisks

represent significant difference to water-treated control root segments (P<0.05).

https://doi.org/10.1371/journal.ppat.1006284.g003
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Nematode-triggered PTI is mediated by LRR-RLK NILR1

Within the group of 593 commonly upregulated genes between two microarray experiments,

52 genes encoded RLKs (including 11 LRR-RLKs, 7 LeCRKs and 1 LysM-RK) and 2 encoded

RLPs (S4 and S5 Data). Out of 52 candidate RLKs, we selected homozygous loss-of-function

T-DNA mutants for ten genes (from five different RLK families), including those coding for

three LRR-RLKs and one LeCRK. Confirmed loss-of-function mutants were then screened for

infection against H. schachtii. Of particular interest, we found one LRR-RLK mutant, termed

NILR1 (NEMATODE-INDUCED LRR-RLK 1; NILR1, At1g74360), which showed a consis-

tent increase in the number of female nematodes as compared with Col-0 (Fig 5A and Fig F

Fig 4. NemaWater treatment induced PTI responses were reduced strongly upon proteinase K, heat treatment, and in bak1-5 plants. (A)

Effect of Proteinase K and heat on production of ROS burst in root segments from Col-0 plants treated with water, HsNemaWater or flg22. ROS

burst was measured by using L-012 based assay from 0 to 120 min. PK, Proteinase K. Bars represent mean ± SE for two independent biological

replicates. Data were analysed using single-factor ANOVA and Tukey’s post hoc test (P<0.05). Columns sharing same letter are not statistically

different. (B) 5-day-old Col-0 seedlings were incubated in water, HsNemaWater, or flg22 with or without Proteinase K for seven days. Fresh weight

was measured at 12 days after germination. Bars represent mean ± SE for two independent biological replicates. Data were analysed using single-

factor ANOVA and Tukey’s post hoc test (P<0.05). Columns sharing same letter are not statistically different. (C) Average number of female

nematodes per plant in Col-0, bak1-5 and bak1-5 bkk1. (D) Root segments from Col-0 and bak1-5 plants were treated with water, HsNemaWater or

flg22 and ROS burst was measured using L-012 based assay from 0 to 120 min. (E) 5-days-old Col-0 and bak1-5 seedlings were incubated in water,

HsNemaWater or flg22 for seven days. Fresh weight was measured at 12 days after germination. (C-E) Bars represent mean ± SE for three

independent biological replicates. Data were analyzed using single-factor ANOVA and Dunnet post hoc test. Asterisks represent significant

difference to control (P<0.05).

https://doi.org/10.1371/journal.ppat.1006284.g004
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Fig 5. Knock-out nilr1-1 enhances susceptibility to nematodes. (A) Average number of female

nematodes induced by H. schachtii per plant in Col-0, nilr1-1 and nilr2-1. Bars represent mean ± SE for three

biological replicates. (B) Average number of galls induced by M. incognita per plants in Col-0, nilr1-1 and nilr2-

1. Bars represent mean ± SE for three biological replicates. (C) Root segments from Col-0, and nilr1-1 plants

were treated with water, HsNemaWater or flg22 and ROS burst was measured using L-012 based assay from

0 to 120 min. Bars represent mean ± SE for sixteen biological replicates. (D) 5-day-old Col-0 and nilr1-1

seedlings were incubated in water, HsNemaWater, or flg22 for seven days. Fresh weight was measured at 12

days after germination. Bars represent mean ± SE for three independent biological replicates. (E) 5-day-old

Col-0 and nilr2-1 seedlings were incubated in water, HsNemaWater, or flg22 for seven days. Fresh weight

was measured at 12 days after germination. Bars represent mean ± SE for three independent biological

replicates. (F) Root segments from Col-0 and nilr2-1 plants were treated with water, HsNemaWater or flg22

and ROS burst was measured using L-012 based assay from 0 to 120 min. Bars represent mean ± SE for

sixteen biological replicates (A-E) Data were analysed using single-factor ANOVA and Tukey’s post hoc test

(P<0.05). Columns sharing same letter are not statistically different.

https://doi.org/10.1371/journal.ppat.1006284.g005
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and G in S1 Text). In comparison to nilr1-1, the loss-of-function mutant for NILR2
(AT1G53430) did not show any change in susceptibility to nematodes (Fig 5A). Based on our

data with Proteinase K and BAK1, we hypothesized that NILR1 may be a PRR involved in the

perception of nematodes. Therefore, this study focused on the characterization of NILR1 and
NILR2, while other candidate genes will be described elsewhere.

To test NILR1’s involvement in nematode perception other than H. schachtii, we analysed

nilr1-1 mutants for infection with root-knot nematode M. incognita. Our data showed that

nilr1-1 was significantly more susceptible to M. incognita than Col-0. In comparison, there was

no change in susceptibility of nilr2-1 to M. incognita (Fig 5B). To investigate whether enhanced

susceptibility of nilr1-1 to nematodes is due to impairment in PTI responses, we performed

ROS burst assays on root segments from Col-0 and nilr1-1 upon treatment with NemaWater

from two different nematode species (H. schachtii and M. incognita). Notably, the Nema-

Water-induced ROS burst was strongly reduced in nilr1-1 (Fig 5C and Fig H in S1 Text). Simi-

lar results were obtained in seedling growth inhibition assays (Fig 5D and Fig I in S1 Text). We

also tested nilr2-1 for seedling growth inhibition and ROS burst induction upon treatment

with NemaWater. We found that even though ROS production was reduced in nilr2-1 upon

HsNemaWater treatment, the growth of these plants was inhibited to the same extent as Col-0

(Fig 5E and 5F and Fig I in S1 Text). Next, we isolated an additional homozygous knock-out

T-DNA line for NILR1 (nilr1-2) and analysed it for infection by H. schachtii and production of

ROS burst upon HsNemaWater treatment (Fig J-L in S1 Text). We observed that nilr1-2 plants

were impaired in ROS production and were also significantly more susceptible to H. schachtii
as compared to Col-0 (Fig K-L in S1 Text). Together our results show that NILR1 is an impor-

tant component of host immune responses that are activated upon nematode infection.

NILR1 is widely conserved in dicotyledonous plants

NILR1 is closely related to LRR-RLK BRI1, belonging to the subfamily X of LRR-RLKs [32].

NILR1 encodes a serine/threonine kinase with 1,106 amino acid residues (predicted molecular

weight 121.8 kDa) and shows all of the characteristics of an LRR-RLK. NILR1 has been sug-

gested to have an extracellular domain with 22 tandem copies of LRRs, which are interrupted

by a 76-amino acid island located between LRR17 and LRR18. The island domain of NILR1 is

longer than those of BRI1 and contains a cysteine cluster with the pattern of Cx25Cx16C, which

is followed by a transmembrane domain and a cytoplasmic kinase domain (Fig M-N in S1

Text) [31]. Moreover, a pair of cysteines at the amino terminal flanks NILR1’s LRR domain

with the characteristic spacing formerly observed in several plant LRR-RLKs [33]. Previous

analysis has shown that NILR1 is presumably localised to the cell membrane, and that homo-

logs are conserved among ten different species of flowering plants [32]. To gain further

insights into molecular functions of NILR1, we determined its subcellular localization by con-

focal microscopy transiently expressing 35S::NILR1-GFP in the epidermis of Nicotianna
benthamiana. We detected a strong GFP signal at the plasma membrane (PM) (Fig 6A). The

PM localization of NILR1 was confirmed by co-localization with PM marker (see Methods for

details). To investigate the conservation of NILR1, we conducted a BLAST search using ECD’s

amino acid sequence of NILR1 against non-redundant protein sequences of all land plants.

We detected homologues of NILR1 among different species of the Brassicaceae family. Addi-

tionally, orthologues of NILR1 were found to be widely conserved in the genome of various

dicotyledonous as well as monocotyledonous plant species. (Fig O in S1 Text). To further

determine whether NILR1 is conserved across the plant kingdom and to test for effects of

NemaWater, we measured the ROS burst upon HsNemaWater treatment in the dicotyledon-

ous tomato, sugar beet (Beta vulgaris) and tobacco (Nicotianna benthamiana), as well as in
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Fig 6. NILR1 is localised in plasma membrane. (A) Confocal microscopy of epidermis of Nicotianna benthamiana transiently expressing

35S:NILR1-GFP and plasma membrane marker 35S:PIP2A-mCherry. Scale, 50 μm. (B-E) Leaf discs from tomato (B), N. benthamiana (C),

sugarbeet (D) and rice plants were treated with water, HsNemaWater or flg22 and ROS burst was measured using L-012 based assay from

0 to 120 min. Bars represent mean ± SE for three technical replicates. Experiment was repeated three times with same results. RLU,

relative light units.

https://doi.org/10.1371/journal.ppat.1006284.g006
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monocotyledonous rice (Oryza sativa). We detected a strong ROS burst in sugar beet and

tomato (Fig 6B and 6C), the magnitude of ROS burst was delayed and reduced in N. benthami-
ana (Fig 6D). In comparison to dicotyledonous, experiments with monocotyledonous rice

showed that NemaWater induce a ROS burst, which was above the water control (Fig 6E).

However, this burst was strongly delayed and was not consistent across several experiments.

A further exploration of publicly available Arabidopsis expression data through the eFP

browser [33] revealed that NILR1 is only moderately expressed in sepals and in senescent

leaves under controlled growth conditions. However, NILR1 expression is upregulated in

response to biotic stresses such as Botrytis cinerea, Phytophthora infestans and non-adapted

Pseudomonas syringae strains (Fig P and Q in S1 Text). Also NILR1 shows a low basal expres-

sion in various root tissues but displays a relatively high expression in endodermis, pericycle

and stele [34]. The overall structure of NILR1 and its similarity to BRI1 supports its role as a

surface-localised receptor that is involved in the perception of extracellular signals.

Discussion

In comparison to other pathosystems, not much is known about the importance of PTI in host

defense against nematodes. In fact, no PRR involved in nematode perception has thus far

been characterized. Additionally, so far only ascarosides have been recently shown to act as

NAMPs. On the other hand, a number of nematode resistance genes (R-genes) either at the

cell surface or inside cells have been characterised [22, 23]. In the present study, we provide

insights into the molecular events associated with the basal resistance of plants to nematodes.

We demonstrate that PTI-like responses are activated upon nematode infection and that they

contribute significantly to basal resistance against nematodes.

The observation that cyst nematode infection induces the activation of a number of JA bio-

synthesis and signalling genes during migratory stages is supported with biochemical measure-

ments showing an elevated amount of JA in Arabidopsis roots 24 hours after nematode

infection [24]. In contrast to JA there was no strong activation of SA signalling in our tran-

scriptome data during migratory stages. Nevertheless, a slight increase in some SA biosynthesis

and signalling genes was observed. Intriguingly, plants that are deficient in different aspects of

SA-signalling and biosynthesis have been shown to be more susceptible to cyst nematode

infection [35]. These observations raise the question as to whether JA activation in roots upon

nematode infection is only because of wounding during migration. Remarkably, we observed

the same pattern of JA activation in roots upon treatment with HsNemaWater indicating that

JA activation is an important component of defense responses that are activated upon nema-

tode recognition and is not only correlated to wounding. This hypothesis contradicts the gen-

eral view that SA plays a more prominent role against biotrophs while JA/ET appears to be

more important in resistance against necrotrophic pathogens and herbivorous insects [36–38].

This view, however, is mainly based on observations with leaf pathogens, whereas only limited

information is available on the role of plant hormones in defense against root pathogens [39].

It may be that JA plays a more dominant role in the plant-pathogen interactions in roots. This

hypothesis is supported by experiments on rice plants that indicated a key role for JA during

interaction with root-knot nematodes [40]. Unlike the migratory phase, a number of studies

addressing changes in gene expression during the sedentary phase of cyst and root-knot nema-

todes infection revealed a strong suppression of host defence responses [4–6]. Based on data

from the current study and previous literature, we concluded that nematode invasion activates

PTI responses, which are suppressed during later stages of nutrient acquisition and feeding

site development. Indeed, an increasing number of nematode effectors involved in suppression

of PTI have been characterised during last few years [8, 10, 18, 22, 23].

Nematode perception in plants

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006284 April 13, 2017 13 / 22

57

https://doi.org/10.1371/journal.ppat.1006284


We observed that NemaWater treatment triggers responses, including ROS burst, immune

gene expression and seedling growth inhibition that are characteristic of PTI. In addition,

plants treated with NemaWater were more resistant to nematodes compared with water-

treated control plants. On the basis of these data we propose that NemaWater contains elici-

tor/s that is/are perceived by plant surface-localised receptors leading to activation of PTI.

The fact that NemaWater derived from two different nematode species induces similar

responses suggests that the elicitor component/s is/are conserved among different nematode

species. Although the identity of the elicitor in NemaWater remains unknown, it is likely to be

a heat-sensitive protein since treatment with heat as well as with Proteinase K strongly reduced

its activity. Nevertheless, the residual growth inhibition in spite of addition of Proteinase K in

NemaWater hints towards the possibility of an additional non-proteinaceous NAMP in Nema-

Water. However, it is also plausible that the residual growth inhibition is caused by Proteinase

K itself. This view is supported by our data (Fig 4A) and some previous studies where a slight

ROS burst was observed upon Proteinase K treatment alone [27].

NemaWater-induced responses are dependent on BAK1, which has been shown to act as a

co-receptor for LRR-type PRRs, which typically detect proteinaceous ligands [12, 15, 17].

Even though we hypothesise that the NemaWater-derived elicitor/s is/are perceived by a sur-

face-localized receptor, the possibility remains that such elicitor/s may not come into contact

with host plants during infection. However, the fact that NemaWater was produced by incu-

bating the nematodes without any further treatment strongly supports the idea that the elicitor

is naturally secreted into the environment. It is also possible that the treatment of seedlings

with NemaWater leads to the release of plant endogenous elicitors (DAMPs), which are again

sensed by plants leading to the activation of PTI responses. However, since diluting Nema-

Water reduced only the magnitude but did not slow down the kinetics of ROS burst and thus

makes it unlikely that a NemaWater induced DAMP is responsible for activation of PTI

responses. Regardless of the origin of elicitor, it is clear that induction of PTI responses

involves a component of NemaWater (therefore a NAMP) and is not only due to direct

mechanical wounding by nematodes.

Loss of NILR1 expression enhances the susceptibility of plants to nematodes suggesting that

it is involved in the recognition of nematode-associated patterns. We propose that NILR1 is a

PRR (or a component of a PRR complex) that recognises a NAMP leading to the activation of

PTI responses. This hypothesis is supported by experiments showing that nilr1-1 is defective in

the ROS burst as well as in seedling growth inhibition upon NemaWater treatment compared

with Col-0. Notably, nilr1-1 and nilr1-2 did not respond differently to flg22 as compared with

Col-0. On the other hand, bak1-5 was defective in PTI activation in response to both flg22 and

NemaWater indicating a BAK1-mediated role for NILR1 in nematode recognition. In compar-

ison to nilr1 (nilr1-1, nilr1-2), nilr2-1 did not show any change in susceptibility to neither cyst

nor to root-knot nematodes compared to Col-0. Similarly, there was no change in seedling

growth inhibition as compared with Col-0. Nevertheless, activation of ROS burst upon Nema-

Water treatment was decreased in nilr2-1 as compared with Col-0. This seemingly contradic-

tory observation raises the question as to whether NILR2 also plays a role in perception of

nematodes. A possible explanation could be that knocking out NILR2 may alter receptor com-

plex formation and function, which selectively influence downstream signalling pathways

without substantially influencing plant susceptibility to nematodes. This hypothesis also pre-

dicts that distinct signalling pathways that are activated during nematode perception may lead

to diverse signalling outputs independently from each other. In fact, a recent study suggests

activation of BAK1-dependent and BAK1-independent PTI pathways in response to RKN

infection [19].
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In conclusion, the identification of NILR1 as an LRR-RLK required for NemaWater-

induced immune responses and basal resistance to nematodes is a major step forward in

understanding of the molecular mechanisms underlying plant-nematode interactions. More-

over, the wide distribution of NILR1 among monocot and dicot plants is different from the

majority of currently known PRRs and provides a unique opportunity for manipulation. How-

ever, sequence similarity does not necessarily indicate similar functions. It is therefore plausi-

ble that some of these homologues represent BRI1 or similar receptors and appeared in our

analysis due to close similarity between NILR1 and BRI1. In fact, absence of a consistent ROS

burst in rice plants upon NemaWater treatment hints that rice plants may not encode a func-

tional NILR1. However, it is also possible that production of ROS burst upon treatment with

NemaWater in some plant species such as rice requires further optimisation. A more detailed

study would be needed to investigate this aspect.

Future work will focus on the purification and identification of elicitor/s present in Nema-

Water that are recognised in an NILR1-dependent manner. Further, conservation and func-

tion of NILR1 in various crop plants will be investigated. This will not only help in increasing

our understanding of induced immune responses, but also provide potential opportunities to

breed or engineer durable resistance against nematodes.

Materials and methods

Plant growth and nematode infection

Arabidopsis thaliana seeds were sterilized with 0.6% sodium hypochlorite and grown in Petri

dishes containing agar medium supplemented with modified Knop’s nutrient medium under

the previously described conditions [41, 42]. The infection assays with cyst nematodes were

performed as previously described [41]. Briefly, 60–70 J2s of H. schachtii were inoculated to

the surface of an agar Knop medium containing 12-days-old plants under sterile conditions.

For each experiment, 15–20 plants were used per genotype and experiments were repeated at

least three times independently. The number of females per plant was counted at 14 days after

inoculation (dai). For each experiment, 15–20 plants were used per genotype, and experiments

were repeated at least three times independently.

For infection assays with root-knot nematodes, approximately 100 J2s of M. incognita were

inoculated to the surface of agar MS-Gelrite medium containing 12-day-old plants and num-

ber of galls was counted at 21 dpi. M. incognita was propagated on greenhouse cultures of

tomato (Solanum lycopersicum cv. Moneymaker) plants. Galls on roots of tomato were cut into

smaller pieces of approximately 1 cm, crushed, and incubated for 3 min in 1.5% NaOCl2. Sub-

sequently, the suspension was passed through a series of sieves to separate nematode eggs from

root pieces. Eggs were collected in a 25 μm sieve. For surface sterilisation, eggs were incubated

in a 10% NaOCl2 for 3 minutes and washed with abundant sterile water. The clean egg suspen-

sion was further washed with 150 μL Nystatin (10,000 U/ mL) and 2mL gentamycin sulphate

(22.5 mg/mL) in a total volume of 30 mL. The suspension was stored at RT in darkness.

Freshly hatched J2s were rinsed in water, incubated for 20 minutes in 0.5% (w/v) streptomy-

cin-penicillin and 0.1% (w/v) ampicillin-gentamycin solution and for 3 minutes in 0.1% (v/v)

chlorhexidine and washed three times with liberal amounts of sterile autoclaved water. For

each experiment, 15–20 plants were used per genotype, and experiments were repeated at least

three times independently.

Gene expression analysis at the nematode migratory stage

Ten hours after inoculation with H. schachtii, small root segments containing nematodes with

moving stylets were marked under the binocular. Movement of stylet indicates the migration
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phase of nematodes. The infected area around nematode head was then dissected. Corre-

sponding root segments from uninfected plants were used as a control. RNA was extracted

using a Nucleospin RNA extraction kit (Macherey-Nagel, Durren, Germany) according to the

manufacturer’s instructions. The quality and quantity of RNA was analysed using an Agilent

Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) and a Nanodrop (Thermo Fisher

Scientific, Waltham, MA, USA) respectively. The cDNA synthesis was performed with

NuGEN’s Applause 3’Amp System (NuGEN, San Carlos, CA, USA) according to the manufac-

turers’ instructions. NuGEN’s Encore Biotin Module (NuGEN) was used to fragment cDNA.

Hybridization, washing and scanning were performed according to the Affymetrix 30 Gene-

Chip Expression Analysis Technical Manual (Affymetrix, Santa Clara, CA, USA). Three chips

each were hybridized with control and infected samples, with each microarray representing an

independent biological replicate. The primary data analysis was performed with the Affymetrix

Expression Console v1 software using the MAS5 algorithm.

NemaWater production and gene expression analysis upon NemaWater

treatment

Approximately 300 brown cysts were collected from nematode stock culture, which was main-

tained on mustard roots under sterile conditions. These cysts were incubated in 3 mM ZnCl2

in funnels (hatching chambers) to induce hatching. Before collection of J2s, the hatching

chamber was checked for microbial contamination. After seven days, J2s were collected in a

falcon tube containing double distilled autoclave water. The mixture of nematode in ZnCl2

was spinned at 800 rpm for 3 min and supernatant was discarded. Afterwards, 1 ml of 0.05%

HgCl2 was added and nematodes were incubated in it for 3 min to surface-sterilize them.

HgCl2 was then removed and autoclaved double distilled water was added in excess (approxi-

mately 30 ml). The J2s were left in water for three min to wash them and remove HgCl2. After

3 min, nematodes were spinned down at 800 rpm for 3min and the entire washing step was

repeated three times.

Approximately 40,000 sterile J2s of H. schachtii were incubated in 2 ml dd H2O for 24 hours

at room temperature with continuous shaking. Afterwards, the nematode-water mixture was

briefly centrifuged at 800 rpm for 2 minutes. The supernatant was removed to a new Eppen-

dorf tube and was labelled as NemaWater. All steps of NemaWater production were per-

formed under sterile conditions. Twelve-days-old Arabidopsis plants grown in Knop medium,

as described above, were removed from agar plates and incubated in NemaWater for one hour

each. Whole roots from 10 plants were cut and frozen in liquid nitrogen. Arabidopsis roots

treated only with dd H2O were used as a control. Three biological replicates were performed.

RNA was extracted, amplified and hybridised to perform a microarray analysis, as described

above. Three chips for each were hybridised for a control and for NemaWater treated samples,

with each microarray representing an independent biological replicate.

Statistical analysis of microarray data

Affymetrix.CDF and.CEL files were loaded into the Windows GUI program RMAExpress

(http://rmaexpress.bmbolstad.com/) for background correction, normalisation (quantile) and

summarisation (median polish). After normalisation, the computed robust multichip average

(RMA) expression values were exported as a log scale to a text file. Probe set annotations were

performed by downloading Affymetrix mapping files matching array element identifiers to

AGI loci from ARBC (http://www.arabidopsis.org). All genes that were more than 1.5 fold dif-

ferentially regulated (t-test; P< 0.05) were pre-selected for further analysis using False dis-

cover rate at 5%.
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Validation of microarray chip data upon NemaWater treatment

To validate the microarray expression data, 11 up- and two down-regulated genes were ran-

domly selected. The samples were collected in the same manner as the microarrays analysis for

NemaWater. RNA was extracted using a Nucleospin RNA Xs (Macherey- Nagel, Germany) kit

according to the manufacturer’s instructions. cDNA was synthesized using a High Capacity

cDNA Reverse Transcription Kit (Life technologies cat.no. 4368814), according to the manu-

facturer’s instructions. The transcript abundance of targeted genes was analysed using the Ste-

pone Plus Real-Time PCR System (Applied Biosystems, USA). Each sample contained 10 μL of

Fast SYBR Green qPCR Master Mix with uracil-DNA, glycosylase, and 6-carboxy-x-rhoda-

mine (Invitrogen), 2 mM MgCl2, 0.5 μL of forward and 0.5 μL of reverse primers (10 μM),

2 μL of complementary DNA (cDNA) and water in 20 μL of total reaction volume. Samples

were analysed in three technical replicates. To serve as an internal control, 18S genes were

used. Relative expression was calculated as described previously [43], by which the expression

of the target gene was normalized to 18S to calculate fold change. All primer sequences are

listed in S6 Data.

Genotyping and expression analysis of knock-out mutants

Single T-DNA inserted knockout mutants for selected genes (AT1G74360: nilr1-1,

SAIL_859_H01, nilr1-2, GK-179E06; AT1G53430: nilr2-1, SALK129312C) were ordered from

relevant stock centre. The homozygosity of mutants was confirmed via PCR using primers

given in S6 Data. The homozygous mutants were confirmed to be completely absent from

expression through RT-PCR with primers given in S6 Data.

Oxidative burst assay

The production of an ROS burst was evaluated using a modified protocol adapted from previ-

ous work [27]. Small root segments (approx. 0.5 cm) were cut from 12-days-old plants and

floated in ddH2O for 12 hours. Afterwards, the root segments were transferred to a well in a

96-well plate containing 15 μl of 20 μg/ml horseradish peroxidase and 35 μl of 0.01M

8-Amino-5-chloro-2,3-dihydro-7-phenyl-pyrido[3,4-d] pyridazine sodium salt (L-012, Wako

Chemicals). Next, 50 μl of either 1 μM flg22 or NemaWater was added to the individual wells.

The experiments were performed in four technical replicates, and ddH2O was used as a nega-

tive control. Light emission was measured as relative light units in a 96-well luminometer

(Mithras LB 940; Berthold Technologies) over 120 minutes and analysed using instrument

software and Microsoft Office Excel. For experiments with Proteinase K, 100 μl of Proteinase

K was added to 1 ml of NemaWater or flg22, and the mixture was incubated at 37˚C for 4

hours. For heat treatment, samples were incubated at 90˚C for 30 min. ddH2O was used as a

negative control. The experiments were performed in three technical replicates and indepen-

dently repeated multiple times as indicated in figure legends.

Growth inhibition assay

Arabidopsis plants were grown in Knop medium, as described above. Five-days-old plants

were transferred to a well in a 6-well plate containing a liquid MS medium supplemented with

either 1 ml of 1 μM flg22 or NemaWater. ddH2O was used as a negative control. Fresh weight

and length of the roots were measured 7 days after they were transferred to MS medium. The

experiments were performed in three technical replicates and independently repeated multiple

times as indicated in figure legends.
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In silico structural analysis and localization of NILR1

The amino acid sequence for ECD of NILR1 was used to blast against all land plants sequences

resulting in 318 hits across kingdom. Representative sequences from 44 unique species were

used to generate a multiple alignment file. A Gblock function was used to refine alignment,

and a maximum-likelihood analysis was performed with the PHYML software [44]. A non-

parametric approximate likelihood ratio test was used for branch support as an alternative to

usual bootstrapping procedure [45].

ECD sequence of NILR1 was used to search the SWISS-MODEL template library (SMTL

version 2016-03-23, PDB release 2016-03-18) with Blast and HHBlits for evolutionary related

matching structures matching [46–48]. NILR1 match best with BRASSINOSTEROID INSEN-

SITIVE 1 (BRI1) and the PDB file from SWISS-MODEL was used to view 3-dimensional

structures with NCBI Cn3D [49].

Coding region of NILR1 was amplified without stop codon using gateway forward and

reverse primers as given in S6 Data. The amplified fragment was cloned into pDONR207

using BP clonase (Invitrogen) according to manufacturer’s instructions. The resultant pEN-

TRY vector (pENTRY/NILR1) was then used to clone NILR1 into the destination vector

pMDC83:CGFP [50] using LR clonase (Invitrogen) according to manufacturer’s instructions.

The expression vector (35S:NILR1-GFP) was transformed into Agrobacterium strain GV3101

and co-infiltrated together with a plasma membrane mCherry marker 35S:PIP2A-mCherry
[51] into epidermis of 6-week old Nicotianna benthamiana leaves [52]. The GFP and mCherry

signal was detected using a confocal microscope (Zeiss CLSM 710).

Supporting information

S1 Text. (A) GO categories preferentially upregulated during migratory stages of nematode

infection. (B) Inhibition of root growth upon NemaWater treatment. 5-day-old Col-0 seed-

lings were incubated in water, HsNemaWater or flg22 for seven days. Fresh weight of root was

measured at 12 days after germination. Data were analyszed using t-test. Asterisk represent sig-

nificant difference to water-treated control root segments (P<0.05). Hs, Heterodera schachtii.
(C) GO categories preferentially upregulated upon NemaWater treatment. (D) An illustration

of our method for cyst nematode counting. Each petridish is screened at 14 dpi under the bin-

ocular microscope and each female nematode is marked (represented by dots) to calculate rate

of infection per plant. (E) NemaWater treatment growth inhibition was reduced strongly in

bak1-5. 5-day-old Col-0 and bak1-5 seedlings were incubated in water, NemaWater, or flg22

for seven days. Fresh weight of the root was measured at 12 days after germination. Data were

analyzed using single-factor ANOVA and Dunnet’s post hoc test (P<0.05). Columns sharing

same letter are not statistically different. (F) Genotyping for NILR1 and NILR2 mutants.

Genomic DNA of Col-0 or knockout lines (nilr1-1, nilr2-1) was PCR amplified using primers

given in S6 Data. The presence or absence of intact wild-type allele is shown. (G) RT-PCR for

presence or absence of gene expression in Col-0 or knockout mutants. RNA from Col-0 or

knockout lines (nilr1-1, nilr2-1) was extracted to synthesize single stranded cDNA. The pres-

ence or absence of expression is shown using primers given in S6 Data. (H) Knock-out nilr1
enhances susceptibility to nematodes. Root segments from Col-0, and nilr1-1 plants were

treated with water, flg22 or NemaWater from M. incognita (MiNemaWater) and ROS burst

was measured using L-012 based assay from 0 to 120 min. Bars represent mean ± SE for twelve

biological replicates. (I) NemaWater-induced growth inhibition was reduced strongly in nilr1-
1. 5-day-old Col-0, nilr1-1and nilr2-1 seedlings were incubated in water, NemaWater, or flg22

for seven days. Fresh weight of the root was measured at 12 days after germination. Data were

analyzed using single-factor ANOVA and Dunnet’s post hoc test (P<0.05). Columns sharing
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same letter are not statistically different. (J) Expression analysis of for nil1-2 mutants. RT-PCR

for presence or absence of gene expression in Col-0 or knockout mutants. RNA from Col-0 or

knockout line (nilr1-2) was extracted to synthesize single stranded cDNA. The presence or

absence of expression is shown using primers given in S6 Data. (K) Knock-out nilr1-2
enhances susceptibility to nematodes. Average number of female nematodes per plants in Col-

0 and nilr1-2. Bars represent mean ± SE for six biological replicates. (L) Knock-out nilr1-2
enhances susceptibility to nematodes. Root segments from Col-0 and nilr1-2 plants were

treated with water, flg22 or NemaWater from M. incognita (MiNemaWater) and ROS burst

was measured using L-012 based assay from 0 to 120 min. Bars represent mean ± SE for three

technical replicates. Experiment was repeated three times with similar results. (M) NILR1

encodes a LRR receptor kinase. Primary structure of the NILR1 divided into signal peptide; N-

terminal containing a pair of cysteine residues (underlined); the LRR domain with LRR con-

sensus residues in grey; the island domain containing a cysteine cluster with the pattern of

Cx2Cx16C; the transmembrane domain; and the Ser/Thr kinase domain. (N) A putative struc-

tural model for ECD of NILR1. The model was built using BRI1 as template. Conserved and

similar residues between BRI1 and NILR1 are highlighted as red or blue respectively. Grey

color represents additional residues. (O) Conservation of NILR1 in land plants. A phylogram

tree generated from maximum-likelihood trees construction method based on alignment of

sequence spanning NILR1’s ECD. The number next to each branch (in brown) indicates a

measure of support. The number varies between 0 and 1 where 1 represent maximum. (P)

Expression of NILR1 during development stages of plants. As revealed by eFP browser. (Q)

Expression of NILR1 under different biotic stress conditions as revealed by eFP browser [34].

(PDF)

S1 Data. Arabidopsis genes differentially regulated (FDR<0.05; Fold change >1.5).during

migratory stages of nematode infection. Root segments from uninfected roots were used as

control. Values indictae fold change compared with control.

(XLSX)

S2 Data. Expression data for a selection of Jasmonic Acid- (JA), Ethylene- (ET) and Sali-

cylic Acid genes (SA)-related biosynthesis, signaling and marker genes with fold changes

obtained from microarrays analysis representing migratory stages of nematode infection.

Values indictae fold change compared with control. Values in green are significantly different

(FDR<0.05; Fold change>1.5).

(XLSX)

S3 Data. Arabidopsis genes differentially regulated (FDR<0.05; Fold change >1.5) upon

HsNemaWater treatment. Root segments from uninfected roots were used as control. Values

indictae fold change compared with control.

(XLSX)

S4 Data. A set of commonly upregulated genes between two microarrays (S1 and S3 Data).

(XLSX)

S5 Data. All RLKs and RLPs differentially commonly upregulated between two microar-

rays (S1 and S3 Data).

(XLSX)

S6 Data. Primer sequences used in this study.

(DOCX)
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Abstract 

Plant parasitic nematodes are of great economic importance for they cause massive losses 

in agriculture. A credible solution to their control begins by understanding how plants defend 

themselves against the pathogen.  The first line of plant defense is induced by recognition of 

Pathogen Associated Molecular Patterns (PAMPs) by Plant Recognition Receptors (PRRs). 

We previously reported the first receptor that recognized nematodes; NILR1. However, 

considering the large number of receptor genes that were reported to be up regulated due to 

nematodes, we sort to explore further to identify more nematode receptors. Here we report 

four genes; CRK10 (At4g23180), CRK19 (At4g23270), NILR3 (At1g53440) and NEK5 

(At3g20860), essential in PAMP triggered immunity against sedentary plant parasitic 

nematodes as their loss of function mutants were hyper susceptible.  
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Introduction 

Plant parasitic nematodes are a major cause of food insecurity worldwide (Nicol et al., 2011). 

The most economically significant species belong to the cyst and root-knot nematode 

classes. They infect a majority of plants belonging to family brassicaceae and cause disease 

symptoms in the plant characteristic to those of malfunctioning root system like stunted 

growth, galling or formation of cysts in the roots and excessive formation of lateral roots. 

Above the ground, there is stunted development of leaves, foliage yellowing and wilting 

(Jones et al., 2013). Management of these nematodes has for a long time involved utilization 

of chemical based nematicides, which are not only expensive and harmful to the 

environment but also nematodes acquired resistance against them (Morris et al., 2016). The 

most effective and efficient control strategy is believed to be the production of resistant 

varieties. To achieve this, understanding plant nematode interaction and especially plant 

defense is inevitable. Plant defense exist as innate immunity and Effector Triggered 

Immunity (ETI) where the latter is induced by effectors secreted into the cell by the pathogen 

once it overcomes the innate immunity. While ETI is widely studied against nematodes, very 

little is known about nematode-induced innate immunity. As the first level of defense before 

the pathogen enters the plant cell, innate immunity is generally characterized by Plant 

Recognition Receptors (PRRs), which perceives conserved molecular signatures commonly 

known as Pathogen Associated Molecular Patterns (PAMPs). PAMP-triggered Immunity 

(PTI) has been well studied in all other patho-systems and it involves a series of cellular 

events including Reactive Oxygen Species (ROS) and calcium bursts, activation of Mitogen 

Associated protein Kinases (MAPKs), and callose deposition in the cell wall among others 

(Jones and Dangl, 2006). It is not until recently when the first nematode molecular pattern 

was identified as ascarosides (Manosalva et al., 2016). This family of small-molecule 

pheromones is characteristic of the whole Nematoda phylum, however, the receptor 

recognizing ascarosides is yet to be identified. In addition, we recently reported a receptor 

that is involved in recognition of nematodes; the membrane-localized NILR1 as described in 
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chapter 2 is a receptor like kinase belonging to the LRR super family. Lack of NILR in 

Arabidopsis rendered the plant susceptible to nematode infection. However, the PAMP 

whose recognition is mediated by NILR1 remains unknown. These discoveries, however, 

have shed new light on nematode-induced PTI and have paved the way for further studies. 

Nevertheless and regardless of these discoveries, previously reported transcriptomic data at 

nematode migratory stage and due to a nematode diffusate; NemaWater, revealed a huge 

number of upregulated genes involved in various biological processes such as response to 

stimulus, death and immune system response (Mendy et al., 2017). Among these genes, 51 

belong to the Receptor-Like Kinase (RLK) family suggesting that there are multiple receptors 

involved in nematode induced PTI. Here we analysed the role of 25 of these genes in 

nematode infection that had not been previously studied. Expectedly, a number of genes 

belonged to Leucine-Rich Repeat (LRR) family similarly to NILR1. Another family heavily 

implicated was Cysteine-rich Receptor-like Kinases (CRKs) family formed by the Domain of 

Unknown Function 26 (DUF26) RLKs, which have been suggested to play important roles in 

the regulation of pathogen defence and programmed cell death. In addition, NIMA rElated 

Kinases (NEKs) implicated in cell cycle control showed potential involvement in nematode 

induced defense. 

Results 

CRKs and NILR3 play a role in immunity against nematodes. 

Among the 51 RLKs genes upregulated in two microarray data previously reported (Mendy 

et al., 2017), we selected 25 genes (Table 1) whose role in nematode infection was 

unknown. Loss-of-function mutants were obtained and screened for infection against H. 

schachtii. Infection was demonstrated by deducing the average number of females per plant 

in percentage to Col-0 at 100%. Among the 25 mutants tested, there were 2 mutants of CRK 

genes; CRK10 (At4g23180) and CRK19 (At4g23270). Crk19 (At4g23270) was significantly 

susceptible to infection by H.schachtii compared to wild type Col0 (Fig. 1). On the contrary to 
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Crk19 (At4g23270), crk10 (At4g23180)   showed no difference with Col-0 when infected with 

H. schachtii. 

 

Figure 1. The average number in percentage of female H. schachtii nematodes per 

plant in Col-0 and 25 RLKs TDNA-insertion lines. Bars represent mean ± SE for three 

biological replicates. 

To identify their involvement in nematode perception besides that of cyst nematode, we 

analysed CRK10 (At4g23180) and CRK19 (At4g23270) mutants for infection with root-knot 

nematode M. incognita. Interestingly, our data showed no difference in susceptibility of crk19 

(At4g23270) to infection in comparison to wild type Col-0 (Fig. 2). The opposite was true for 

crk10 (At4g23180) which was significantly hyper susceptible to infection with M. incognita 

compared to Col-0. Similary to crk19 (At4g23270), One mutant of an LRR gene; nilr3 

(Nematode Induced LRR-RLK 3) At1g53440)), was only significantly hyper susceptible to 

infection by H. schachtii and not to M. incognita compared to Col-0 (Fig 1 & 2). 
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NEK5 role in PTI is conserved within sedentary plant parasitic 

nematodes  

Among the 25 mutants tested for susceptibility to both H. schachtii and M. incognita, one 

was a loss of function mutant of NIMA-related kinase 5 (NEK5). In contrast to CRK mutants, 

nek5 (At3g20860) was significantly hyper susceptible to infection by both H. schachtii and M. 

incognita compared to wild type Col-0 (Fig 1 & 2). 

 

Figure 2. The average number in percentage of galls induced by M. incognita per plant 

in Col-0 and 8 RLKs TDNA-insertion lines. Bars represent mean ± SE for three biological 

replicates. 
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PSKR1 acts negatively to PTI during infection by cyst nematode H. 

schachtii. 

Out of the 25 mutants tested, only 4 described above were significantly hypersusceptible to 

infection by either or both H. schachtii and M. incognita. Although transcriptome level of one 

of the LRR receptor gene was upregulated; Phytosulfokine receptor 1 (PSKR1) (At2g0220), 

its loss of function mutant (pskr1 (At2g0220)) was resistant to infection by H. schachtii (Fig 

1). Nevertheless, there was no significant difference in percentage galling due to M. 

incognita when pskr1 (At2g0220) was compared to wildtype Col0 (Fig 2). 

Discussion 

Recent studies on PTI in plants against nematodes have shed the light on a topic that was 

largely unknown.  Demonstrating the ability of ascarosides to induce PTI like responses to 

great extent hinted the plants ability to recognize molecules embedded or released by 

nematodes. In addition, identification of NILR1 further demonstrated that plant receptors 

have ability to interact with nematode in activities that leds to induction of PTI responses. 

Here we analysed 25 other genes that had previously been reported to be upregulated by 

cyst nematode H. schachtii. CRK19 (At4g23270) and NILR3 (At1g53440) demonstrated 

roles in PTI induced specifically by cyst nematodes while CRK10 (At4g23180) only to root 

knot nematodes. Interestingly, NEK5 (At3g20860) was shown to play a role against both 

sedentary parasitic nematodes. Never In Mitosis A (NIMA) is a Ser/Thr protein kinase that 

was originally found in a mitotic mutant of Aspergillus nidulans (Oakley and Morris, 1983; 

Osmani et al., 1987). NIMA rElated Kinases (NEKs) are family mitotic kinases which exist 

conservatively in eukaryotes such as budding yeast (Saccharomyces cerevisiae), 

Chlamydomonas, Tetrahymena, mammals, plants among others (O’Regan et al., 2007; 

Parker et al., 2007). NEKs have a conserved N-terminal catalytic serine/threonine kinase 

domain, as well as a long basic C-terminal non-catalytic extension. They are mainly involved 

in various mitotic functions like mitotic initiation, spindle formation, centrosome separation 
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and cytokinesis in fungi and mammals. In plants NEKs are quite conserved having been 

successfully retrieved from poplar, Arabidopsis and rice whose genome contains nine, seven 

and six NEK members respectively (Vigneault et al., 2007).  Many of the plant NEKs have 

been associated with hypocotyl development and flowering while some such as AtNEK6 has 

not only been involved in plant growth regulation and responses to ABA and high osmolarity 

during the seed germination stage, but also plays a role in salt tolerance and abiotic stresses 

(Sakai et al., 2008; Lee et al., 2010). However, except these few studies, functions of plant 

NEKs remain unknown, and their role in plant growth and stress response are still largely 

unclear. In our study, we demonstrated that AtNEK5 plays a role in PTI against sedentary 

plant parasitic nematodes. It`s expression is the highest among all the AtNEKs and in roots, 

its mostly expressed in mature tissues. Fortunately, AtNEK5 is widely conserved in plants as 

it has homologues in rice Oryza sativa (Os) (OsNek6; Os02g37830) and poplar Populus 

trichocarpa (Pt) (PtNek6 grail3.0152000301 b) (Vigneault et al., 2007).  While very little is 

known about NEKs in plants, NEK5 remain as the first receptor in the NEK family to be 

associated with pathogenic responses specifically against nematodes. 

Unlike NEKs, CRKs are well known receptors. In the study, CRK19 and CRK10 indicated a 

role in defense against cyst nematodes and root-knot nematodes respectively. This 

phenomenon can be likened to various reports that have associated CRKs to biotic stress 

including but not limited to pathogen defence and programmed cell death (Acharya et al., 

2007; Wrzaczek et al., 2010).  CRKs are group of RLKs also referred to as DUF26 (Domain 

of Unknown Function 26; PFAM domain PF01657) RLKs and are characterized by a single 

or multiple repeats of DUF26 domain (also called antifungal domain since it has the 

antifungal protein ginkbilolobin-2 (Gnk2) from Ginkgo biloba) consisting of four conserved C-

X8-C-X2-C cysteine motif in their extracellular domain (Fig 4). The conserved cysteine 

residues it’s believed to maintain the CRKs` three-dimensional structure through disulphide 

bridges. It also forms zinc finger motifs to mediate protein-protein interaction and may be the 

target for thiol redox regulation (Idänheimo et al., 2014). This group is one of the largest in 
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RLK family in Arabidopsis containing 44 members arranged in several clusters of which 19 

of them are simultaneously in chromosome IV starting with CRK5 to CRK24 excluding CRK9 

(Fig 3) (Chen et al., 2001). The rest of the 23 CRKs from CRK1 to CRK46, are distributed 

within chromosomes I, III and V in Arabidopsis. Expression of several AtCRKs is not only 

induced during plant development but also by pathogens infection, Salicylic acid (SA), 

Ozone and Reactive Oxygen Species (ROS) (Czernic et al., 1999; Du and Chen, 2000; 

Chen, 2001; Chen et al., 2003; Acharya et al., 2007; Ohtake et al., 2000; Wrzaczek et al., 

2010; Bourdais et al., 2014). For example CRK4, CRK5, CRK19 and CRK20 have been 

associated with defense against Pseudomonas syringae such as cell death and SA 

dependent responses to infection (Czernic et al., 1999; Chen et al., 2003, 2004; Acharya et 

al., 2007; Ederli et al., 2011; Yang et al., 2013). CRK-interacting protein; kinase-associated 

type 2C protein phosphatases is known to interact with these CRKs through its kinase-

interacting FHA domain. Therefore, CRK19 could possibly have dual function as its ability to 

induce defense is confirmed not to be restricted to bacteria, but also due to nematode 

recognition. The close relation in CRK19 structure to CRK5, CRK4 and 20 and their joint 

interacting protein are high indications which are yet to be proven of their shared biological 

functions in nematode induced PTI as they are in bacteria defense responses. CRK10 on 

the other hand has been hypothesized to be cytokinin-regulated since it contains an adenine 

aptamer motif.  Transcriptome analysis of genes differentially expressed upon cytokinin 

treatment has actually shown that CRK10 is downregulated by three folds. However, direct 

binding of cytokinin to the extracellular domain of CRK10 is yet to be proven (Grojean and 

Downes, 2010). Promoter analysis of CRK10 has been reported to contains a W-boxes 

recognized by the plant WRKY18 TF. In addition, WRKY proteins are important for inducible 

expression of CRK10 (Du and Chen, 2000). It is therefore highly possible that the role of 

CRK10 in nematode perception is related to WRKYs transcription factors involved in plant 

defense.  
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LRR-RLKs have been widely associated with perception of microbial ligands. In our study, 

NILR3 (At1g53440) indicated a role in plant defense against cyst nematodes. While the 

function of this gene remain mostly unknown, expression of NILR3 homology in cucumber 

Cucsa.057870.1 (referred to as probable LRR receptor-like serine/threonine-protein kinase) 

was altered in leaves of aphid-infested cucumber plants (Liang et al., 2015). Both Aphids 

and nematodes can cause physical disruption of tissues and as such releases Damage 

Associated Molecular Pattern (DAMP) that might be recognized by NILR3. Similarly, a 

common PAMP between nematodes and aphids could be involved. 

 

Figure 3. Location of CRK10 and CRK19 genes in chromosome 4 and their domain 

structure. (A) CRK10 and CRK19 are located in the largest tandem array on chromosome 

IV (CRK5–CRK24). (B) CRKs have conserved protein structure that includes a signal 
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peptide (SP), an extracellular domain containing one or more cysteine-rich DUF26 domains, 

transmembrane domain (TM), and intracellular kinase domain. 

Our most intricately surprising finding in our study is the role of PSKR1 in nematode 

susceptibility regardless of its upregulated gene expression in our previously microarray data 

(Mendy et al., 2017). This receptor perceives Phytosulfokine (PSK); a Penta peptide of the 

sequence Tyr-Ile-Tyr-Thr-Gln containing a sulphate group on each of the two tyrosine 

residues (Sauter, 2015). PSK were first identified in cell cultures of Asparagus 

(Matsubayashi and Sakagami, 1996). PSK promotes somatic embryogenesis, pollen 

germination and adventitious root formation (Yamakawa et al., 1998; Chen et al., 2000; 

Hanai et al., 2000; Igasaki et al., 2003). PSKR1 has a putative GC catalytic domain within 

subdomain IX of its kinase a characteristic it shares with the DAMP receptor PepR1 (Qi et 

al., 2010; Kwezi et al., 2011). While PSK is also perceived to lesser extent by PSKR2, only 

PSKR1 is the main receptor and the most widely studied. Among the LRR receptor kinases, 

the PSK receptors PSKR1 and PSKR2 are closely related to the brassinosteroid receptor 

(Brassinolide Insensitive 1 BRI1) involved in growth. The leucine-rich repeats of PSKR1, 

PSKR2, and BRI1 contain an island domain which binds their ligands (Kinoshita et al., 2005; 

Shinohara et al., 2007; Clouse, 2011). Studies have revealed binding of PSKR1 to 

Arabidopsis thaliana H (+)-ATPase (AHA1) and AHA2, the two most highly expressed 

isoforms of AHA gene family of 11 members. In comparison, BRI1 similarly activates AHA1 

and hyperpolarization of the plasma membrane in a brassinolide-dependent manner. Most 

interestingly, Just like BRI1, PSKR1 interacts with BRI1 Associated Kinase 1 (BAK1) to form 

a PSKR1/BAK1 complex. BAK1 binds to several LRR receptors recognizing ligand from 

numerous pathogens as it does to the growth receptor BRI1 and as such very vital in growth 

and defense especially in PTI simultaneously. Functionally so far, PSK signalling through 

PSKR1 regulates root and hypocotyl elongation of Arabidopsis seedlings (Matsubayashi et 

al., 2006; Kutschmar et al., 2009; Stührwohldt et al., 2011; Caesar et al., 2011). Besides this 

role, there are contrdadicting reports on PSKR1 role in plant defense. For example, loss of 
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function mutants of PSKR1 are more resistant to biotrohic bacteria Pseudomonas syringae 

pv. Tomato DC3000 and showed reduced formation of lesions (Igarashi et al., 2012). 

Contrary, pskr1 mutant was more susceptible to necrotrophic fungi Alternaria brassicicola by 

increased fungal growth unlike in wild type. In plant nematode interactions, pskr1 mutants 

are observed to have impairment of root-knot nematode reproduction and the giant cells 

development is not fully differentiated or halted (Rodiuc et al., 2016). Likewise, here we 

report that loss of function mutant of PSKR1 was more resistant to biotrophic cyst nematode. 

The role of PSKR1 in Plant defense is thus pathogen-dependent and this antagonistic effect 

between biotrophic and necrotrophic pathogen resistance is linked to enhanced SA and 

reduced jasmonate pathways. PSKR1 therefore act similarly to BRI1 as they share 

regulatory elements and they both respond negatively to immunity responses during defense 

and growth cross talk. However, downstream signalling upon PSK perception is still unclear 

and the mechanism underlying these regulatory functions remain to be explored. 

In conclusion, this study explores various genes that are involved in PTI and can possibly 

perceive nematode ligands. It is intriguing to find these four genes from families associated 

with pathogenic responses, playing a vital role in PTI. Further studies require elucidation of 

the components involve in their PTI roles, be it the PAMP recognized or the downstream 

signalling components. 

Material and methods 

Plant growth  

Single T-DNA inserted knockout mutants for the listed RLKs genes were ordered from 

Nottingham Stock Centre (NaSC) (Table 1). Arabidopsis wildtype Col-0 and RLKs mutants’ 

seeds were sterilized in 0.7 % NaOcl and the bleach extracted with 70% Ethanol. The seeds 

were rinsed 5 times with autoclaved distilled water and air-dried under the clean bench. 

Seeds were seeded in petri dishes (Fig 4A) of modified KNOP and or Murashige and Skoog 

(MS) media and then incubated in long day conditions (16hrs light/8hrs dark). 
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Table 1. List of RLKs TDNA insertion mutants screen for susceptibility to nematodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene 

count 

Order 

Numbe

r 

Mutant type Locus Gene 

count 

Order 

Number 

Mutant type Locus 

 1 N872213 Sail-51-E04 AT4G30340 15 N663996 Salk-130548C At1g53440 

2 N862547 Sail-321-F05 AT3G59700 16 N678301 salk-028536C At5g24430 

3 N664269 Salk-

147351C 

At4g21390 17 N685170 salk-008585C At2g02220 

4 N686377 Salk-

076637C 

At4g32300 18 N686653 salk-111817C At5g65600 

5 N677232 Salk-

143489C 

At1g11330 19 N675275 salk-057158C At3g09830 

6 N663753 Salk-

116653C 

At4g23180 20 N800003 CS800003 AT1G73080 

7 N661711 Salk-

019639C 

At4g23270 21 N2030753 GK-878D10-1 At1g16670 

8 N671724 salk-

094512C 

At3g14840  N2030754 GK-878D10-

10 

At1g16670 

9 N654909 salk-

134409C 

At1g06840 22  N414335 GK-150C07-8 AT5G47070 

10 N663387 Salk-

094492C 

At1g09970 23  N446527 GK-485F03-4 AT3G59350 

11 N660433 Salk-

054652C 

At3g20860 24  N423042 GK-241A02-7 AT1G66880 

12 N663922 Salk-

126675C 

At1g61370 25 N412564 GK-131G12-7 AT3G57120 

13 N860331 Salk-091274 AT5G25930  N412564 GK-131G12-

10 

AT3G57120 

14 N684335 Salk-

099335C 

At4g18950 
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Figure 5. 12 days old Arabidopsis plants on KNOP medium (Left). Hatching of H. 

schachtii in its chamber made up of a 100µm sieve in a funnel. The J2s hatch from the 

cyst in 0.05% zinc chloride ( Right).  

Nematode infection 

H. schachtii assay: J2s hatched from cysts of a sterile H. schachtii culture (Fig 5B) and 

were sterilized using 0.03% mercury chloride (HgCl2) for 3 minutes after which, they were 

rinsed thoroughly with autoclaved distilled water.  

 

Figure 6. An illustration of H. schachtii female at 14 days post infection and its 

syncytium (Left) and galling at 21 days post infection with M. incognita (right) whose 

sizes were measured as a parameter for susceptibility to nematode. 

Approximately 60 to 70 sterile J2 were inoculated to 12days old mutant and col0 wild type in 

plants knop medium under sterile conditions. 12 plants were used per genotype while the 
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experiments were done independently and in triplicates. The number of females per plant 

was counted at 14 days post inoculation (Fig 6A). 

M. incognita assay: M. incognita eggs were extracted from heavily galled tomato (Solanum 

lycopersicum cv. Money-maker) plants from a greenhouse propagated culture. Tomato 

plants were blended in 1.5% NaOCl2 for about 3 minutes and rinsed with tap water. The 

paste was passed through a stack of sieves; 250µm 150µm 100µm 50µm, 20µm. The eggs 

were collected in 500 ml Erlenmeyer flask and surface sterilized in 10% NaOCl2 for 3 

minutes. Eggs were rinsed with sterile tap water and the Sterile eggs suspension was 

incubated in a sterile 500ml glass chamber with 150 μL Nystatin (10,000 U/ mL) and 2mL 

gentamycin sulphate (22.5 mg/mL) in a total volume of 30 ml. The chamber was stored at 

room temperature in the dark for 4 days. The hatched J2s were incubated in 0.5% (w/v) 

streptomycin-penicillin for 20minutes and similarly with 0.1% (w/v) ampicillin-gentamycin 

solution. J2s were rinsed with autoclaved distilled water and subsequently incubated in 0.1% 

(v/v) chlorhexidine for 3 minutes after which they were thoroughly washed with autoclaved 

distilled water. Approximately 100J2s were inoculated on each plant in MS media. 12 plants 

were used per genotype and Col0. Experiments were done independently and in triplicates. 

In each experiment, the numbers of galls were tallied (Fig 6B). 

Statistical analysis 

Data were statistically analysed using SigmaPlot v 14.0. Statistical analysis included one-

way Analysis Of Variance (ANOVA) (Dunnet t-test) of average number of females per plant 

for H. schachtii infection assay and number of galls per plant for M. incognita infection assay. 
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Abstract 

Plant innate immunity involves recognition receptors that perceives ligands derived from 

pathogen. Ligand perception initiates a signalling cascade that leads to changes in 

expression of various defense genes and defense responses in plants. Upon ligands 

recognition, Plant Recognition Receptors (PRRs) forms heteromeric complexes with other 

receptor kinases, receptor proteins and cytoplasmic kinases that aid in phosphorylation and 

signal transduction. Several studies have implicated the SERK LRR-RLKs as co-receptors 

not only to growth and development associated receptors but also many PRRs involved in 

plant immunity. One particularly is SERK3/BAK1 which has been described as a universal 

co-receptor to different pathogens induced basal immunity including bacteria, fungi and 

oomycetes. BAK1 has been reported to play a role in plant innate immunity against 

nematodes. We suggested that as a co-receptor, BAK1 interacts with other receptors and 

possibly other components while initiating defense signalling. This study, not only confirm 

the role of BAK1 in nematode induced basal defense, but also that it equally forms a 

complex which can be analysed to determine the specific proteins involved. 
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Introduction 

Plants have a complex immune system that consists of two layers of receptors aimed at 

preventing penetration of pathogens in the plant and subsequent disease. The first layer 

involves Plant Recognition Receptors (PRRs), which recognizes conserved molecular 

signatures from pathogens. The second level occurs once the first line of defense is crippled 

by pathogen secreted effectors (Avr Proteins) and is characterized by effectors recognition 

by intracellular Nucleotide-Binding Receptors (NLRs/ R gene proteins) and as such referred 

to as Effector Triggered Immunity (ETI) (Win et al., 2012).  

Various studies have clarified many details about functioning of PRRs and identity of 

Pathogen Associated Molecular Patterns (PAMPs). Majority of identified PRRs in plants are 

either Receptor Like Kinases (RLKs), which have an extracellular ectodomain, a 

transmembrane domain and a C-terminal cytoplasmic kinase domain or Receptor Like 

Proteins (RLPs) which are similar to RLKs but lack the cytoplasmic kinase domain (Shiu and 

Bleecker, 2001; Macho and Zipfel, 2014). In addition, most of the identified PRRs 

extracellular domains are Leucine Rich Repeats (LRR), which is the largest group of 

receptors in Arabidopsis. PAMP recognition triggers a series of events such as Reactive 

Oxygen Species (ROS) burst, Calcium burst, increased extracellular pH and cell wall 

reinforcement by Callose disposition. In addition, activation of Mitogen -Activated Protein 

kinases (MAPK) and Calcium-Dependent Protein Kinases (CDPKs) occur which in turn 

regulates the activity of relevant nuclear transcriptional factors associated with induction of 

defense gene expression (Macho and Zipfel, 2014).  
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PRRs have been shown to recruit other receptors regardless of their nature as RLKs, RLPs 

and/or other cytoplasmic kinases upon PAMP perception to form heteromeric complexes 

most of which are LRR-RLKs of the Somatic Embryogenesis Receptor Kinase (SERK) 

family. They are characterized by an LRR domain with five residue repeats, followed by a 

Ser-Pro-Pro (SPP) motif, the serine and proline rich domain, a single membrane-spanning 

domain, a cytoplasmic kinase domain and a small C-terminal tail. Among its five members 

(SERK1-5), SERK3 was identified to form a complex with the brassinosteroid; plant 

hormones with roles in growth and development, receptor Brassinosteroid Insensitive1 

(BRI1) and thus renamed BRI1-Associated Kinase 1 (BAK1). Besides brassinosteroid 

signalling, BAK1 has been implicated in other developmental processes like in photo 

morphogenesis, root development and stomatal patterning (Whippo and Hangarter, 2005; 

Du et al., 2012; Meng et al., 2015; Jordá et al., 2016).  In immunity, BAK1 has been 

confirmed to associate to an array of LRR-RLKs perceiving PAMPs derived from various 

pathogens for example Flagellin Sensitive 2 (FLS2) and EF-TU Receptor (EFR) that 

perceives a 22 epitope of the flagellin (flg22) and elongation factor Tu (EF-Tu) from bacteria 

respectively. In addition, BAK1 is associated with LRR-RLPs for example, RLP23, BAK1 and 

Suppressor of BRI1 interacting receptor kinase 1 (SOBIR1) forms a tripartite complex upon 

recognition of a conserved a 20-amino-acid fragment of Necrosis and ethylene-inducing 

peptide 1-Like Proteins (NLP20) present in several prokaryotic and eukaryotic species 

(Monaghan and Zipfel, 2012; Zhang et al., 2013; Chen et al., 2014; Albert et al., 2015). 

BAK1 has also been associated with resistance in tomato where the membrane bound 

immune receptor Ve1 recognizes secreted fungus Verticillium dahliae effector Avirulence on 

Ve1 tomato (Ave1) (Fradin et al., 2009; Zhang et al., 2013). Some reports have suggested 

that the specificity of these multiple functions of BAK1 in development, immunity and cell 

death is determined by some amino acid residues of its ectodomain and specific proteins 

interacting with BAK1 (Halter et al., 2014). 
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Like most of the plant pathogens, Plant Parasitic Nematodes (PPN) are important in 

agriculture as they cause great damage to plants that leads to incurring of massive losses in 

the tune of 100billion dollars. To effectively control PPN, understanding plant immunity 

especially nematode induced PTI is inevitable. Unfortunately, very little is known regarding 

PAMP recognition by PRRs and the signalling components involved including BAK1. 

Nevertheless, few reports have sort to shed to a topic that for a long time remained elusive. 

For example, BAK1 has been associated with induction of PTI defense responses against 

root knot nematode in Arabidopsis equally associated with camalaxin and glucosinolate 

pathway (Teixeira et al., 2016). Similarly, silencing the Arabidopsis homologue of BAK1 in 

tomatoes led to plants being hyper susceptible to root-knot nematodes linked to absence of 

PTI (Peng and Kaloshian, 2014). In our most recent publication, the Nematode Induced 

LRR-RLKs 1 (NILR1) activity was suggested to be BAK1 dependent due to their similar PTI 

responses to cyst nematode Heterodera schachtii (Mendy et al., 2017). These evidences 

highly indicate a central role of BAK1 in nematode induced PTI. However, direct binding or 

PRR to BAK1 and the nematode derived PAMP recognized remain to be studied. 

 In this study, we aimed at identifying the role played by BAK1 at molecular level upod 

induction by nematodes. We also sort to deduce the components that form a complex with 

BAK1 in nematode induced PTI. This is essential for identification of RLKs and or RLPs in 

plants involved as well as for understanding the mechanism behind signal transduction. We 

aimed at utilized ImmunoPrecipitation (IP) techique, followed by liquid chromatography 

tandem mass spectrometry (LC-MS/MS) in finding BAK1 protein interactors. 

Results 

BAK1 forms a complex induced by nematodes 

Knowing that BAK1 is required in nematode recognition (Teixeira et al., 2016; Mendy et al., 

2017), we proposed that BAK1 do form a heteromeric complex upond ematode ligand 

perception similary to those formed in other pathosystem. We obtained Arabidopsis thaliana 
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transgenic plants expressing AtBAK1 from the strong 35S promoter, fused translationally to 

green fluorescent protein (GFP) (35::BAK1-GFP). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. BAK1 forms a protein complex induced by nematodes. (A) Immunoblot from 

BAK1-GFP proteins indicating a signal at 120kDa position from both 35::BAK1-GFP 

NemaWater treated Roots (NWR) and 35::BAK1-GFP Infected Roots (IR). 35::BAK1-GFP 

Non Infected Roots (NIR) were used as negatively control to the treatments. The signal from 

the infected roots was much intense compared to the non infected roots. 
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 (B) Coomasie blue stained gel showing pull down of 35::BAK1-GFP NemaWater treated 

Roots (NWR), 35::BAK1-GFP Infected Roots (IR) and 35::BAK1-GFP Non Infected Roots 

(NIR) forming a complex  band at 120kDa position, different from the input sample. Col-0 

whole plants were used as negative experimental control which showed no GFP pull down. 

To identify proteins that form nematode derived PAMP (NAMPs) elicited complex with BAK1, 

we performed Co - Immunoprecipitation (coIP) experiments on Arabidopsis transgenic 

35::BAK1-GFP roots before; (35::BAK1-GFP Non Infected Roots (NIR)) and after infection 

with H. schachtii at 16hpi (35::BAK1-GFP Infected Roots (IR)) and treatment with 

NemaWater; a water solution obtained after incubation with sterile H. schachtii J2s for 24hrs 

(35::BAK1-GFP NemaWater treated Roots (NWR)). BAK1-GFP immunoprecipitated proteins 

as detected by Western blot with a α-HA antibody upon α-GFP antibody (Fig 1A) on the 

three protein samples tested; NIR, NWR and IR at 120kDa position. Similarly, SDS page 

was performed on the three samples and Coomassie blue staining which confirmed the 

immunoblot complex position that differed from the input sample and was absent in wildtype 

Col0 plants (Fig 1B) 

Protein Identification  

To identify the proteins contained in the BAK1-GFP pull down bands from the Nemawater 

treated, Infected root and Non infected gel bands, a tripsin digestion was performed to the 

extracted gel bands. Liquid chromatography electrospray ionization tandem mass 

spectrometry (LC/MS/MS) is currently being performed to deduce the identity of the peptide 

sequence in the BAK1-GFP pull down bands for all samples. 

Discussion  

In recent years, coImmunoPrecipitation (coIP) has turned out to be the most direct technique 

to study protein-protein interactions in vitro in presence of antibodies against the target 

proteins. The technology utilizes the fundamental principle of the specific antigen-antibody 
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reaction where the entire intact protein complex is pulled out of solution as a first step in 

identification unknown members of the complex. Isolated proteins complex are digested into 

peptides before analysis by liquid chromatography-mass spectrometry (LC-MS/MS) for 

peptide characterization. 

In this study, we report first time isolation of protein complex pulled by GFP attached to the 

the well known PRR co-receptor BAK1. Although the signal size is not an expression of 

difference in the constitution of the protein complex, in our study, nematode infected 

35::BAK1-GFP roots pull down complex signal was observed to be much more intense 

compared to that of the non-infected (Fig 1A). The results went forth to demonstrate the 

ability of BAK1 to form a nematode induced protein complex. This can be likened to other 

similar studies whose approaches were similar. For example similar strategy was used to 

identify the components of downstream immune signalling by using a GFP tagged EFR (EF-

Tu receptor) and subsequent identification of RBOH genes as part of its complex (Roux et 

al., 2011; Kadota et al., 2014).  

Material and methods 

Plant growth and nematode preparation 

Seeds of Arabidopsis transgenic plants overexpressing BAK1 attached to GFP; 35s::BAK1-

GFP, were kindly provided by Prof. Dr. Cyril Zipfel (The Sainsbury Laboratory, Norwich, UK). 

BAK1-GFP plants were grown in greenhouse conditions on sand soil mix of 80:20 ratios and 

after 8 weeks, seeds were harvested. Seed sterilization and seeding was done under sterile 

conditions in a clean bench.  

1ml of 0.7% Sodium hypochlorite was used to sterilize the seeds for 5 minutes in a 2ml 

Eppendorf tube and the chemical extracted using 1ml 70% ethanol. The seeds were 

thoroughly rinsed with autoclaved double deionized water (ddH20) and pipetted out on a 

clean filter paper in a petri dish. Seeds were air dried under the clean bench for 2hrs. 
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Knop medium was prepared according to table1, autoclaved and poured in 70mm diameter 

petri dishes. 3 seeds were planted per petri dish and incubated under long day conditions 

(16hrs light/8hrs dark). 

Table 1. A list of modified Knop medium ingredients and their quantities. 

Ingredients Content Mass L-1  Volume L-1 

Knop 

Stock soluiton1 KNO3   

MgSO4 

121.32g 

19.71g 

2ml 

Stock solution 2 Ca(NO3)2 x 

7H2O 

120g 2ml 

Stock solution 3 KH2PO4 27.22g 2ml 

Stock solution 4 FeNaEDTA 7.34g 0.4ml 

Stock solution 5 H3BO3 

MnCl2 

CuSo4 X 5H2O 

CaCl2 x 6H2O 

NaCl 

2.86g 

1.81g 

0.073g 

0.03g 

2g 

0.2ml 

Sucrose 20g 

Daishin agar 8g 
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Simultaneously, Cysts from a sterile laboratory culture of H. schachtii were harvested and 

incubated in 3% zinc chloride for or 5days.  Fresh J2s were sterilized using 0.03% mercury 

chloride and rinsed thoroughly with autoclaved ddH20. 

Nematode infection and sampling 

Approximately 200J2s were inoculated per plant and incubated under long day conditions 

(16hrs light/8hrs dark).15hrs post infection (15hpi), long pieces of roots at nematode 

migratory stage were cut and frozen in liquid nitrogen. The sampling was repeated until a 

quantity of 9gs was achieved and labelled Infected Roots (IR). Equal amounts of uninfected 

roots were sampled in a similar manner and labelled Non-Infected Roots (NIR). The samples 

were crashed with mortar and pestle in presence of sand and 0.5 g polyvinylpolypyrrolidone 

(PVPP). The samples were preserved in -800C. 

NemaWater treatments and sampling 

Approximately 10,000 sterile J2s were incubated for 24hrs in 20ml of ddH20 while gently 

shaking. The nematodes were then discarded and the remaining solution labelled 

NemaWater. In 6 well plates, whole 10 days old plants were incubated with 3ml per well. The 

roots were cut and frozen in liquid Nitrogen. The process was repeated until 9gs of material 

was achieved and labelled NemaWater treated Roots (NWR). Non-treated wild type Col0 

whole plants were collected in a separate 15ml falcon tube. The sample was crashed with 

mortar and pestle in presence of sand and 0.5 g polyvinylpolypyrrolidone (PVPP). The 

samples were preserved in -800C. 

Protein isolation and ImmunoPrecipitation (IP) 

A modified protocol by Kadota et al. 2014 was followed for protein isolation and 

immunoprecipitation.  
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50ml extraction buffer was prepared accordingly; 50 mM Tris–HCl pH 7.5, 100–150 mM 

NaCl, 10 % Glycerol, 5 mM DTT, 1 % (v/v) Protease inhibitor cocktail (P9599, Sigma), 0.5–2 

% (v/v), IGEPAL CA-630, 1 mM Na 2 MoO 4 ·2H 2 O, 1 mM NaF, 1.5 mM Activated sodium 

orthovanadate (Na 3 VO 4) and 1 mM EDTA (Optional). 5gs of each of the BAK1-GFP NIR, 

NWR and Infected Roots IR samples was incubated in 10ml of extraction buffer and 1mM 

Phenylmethanesulfonyl fluoride (PMSF) for 2hrs at 40C while rotating at 10rpm. 2gs of wild 

type Col0 whole plant powder was used as an experimental negative control (-CS). The 

sample lysates were then centrifuged at 12000rpm 4 °C for 20 min using Beckman Coulter 

B409 - Optima L-90K Ultracentrifuge. The crude protein samples were each passed through 

a 20ml Bio-Rad empty fritted column into a fresh 15ml falcon tube. The protein samples 

were again centrifuged at 1500g for 1minute to completely remove PVPP and the 

supernatant transferred to a new tube.  

200µl of each protein sample was used aliquoted in a low binding tube as an input sample. 

Input samples were spun at full speed for 10 minutes and the supernatant discarded. Elution 

was done by adding 40µl 2× NuPAGE LDS buffer with NuPAGE sample reducing agent then 

heating at 700C 15 min and centrifuging at full speed for 2minutes. 

Preparation of agarose beads; approximately 120ul of chromatek GFP-Trap®_A beads were 

transferred into a low binding tube and washed 3 times with 600ml extraction buffer for each 

wash by spinning at 1000rpm for 1 minute and discarding the supernatant. The beads were 

then eluted with 1.2ml extraction buffer. 400µl of the beads was pipetted into each protein 

sample and incubated on a roller at 40C for 2hrs. Protein-beads mixtures were centrifuged at 

500g for 1min and the supernatants transferred to another falcon tube. The beads were 

pipetted into low binding tubes using extraction buffer. The beads were washed with 

extraction buffer 3 times by centrifuging at 500g for 30sec at 40C. Beads were eluted by 

adding 80µl 2× NuPAGE LDS buffer with NuPAGE sample reducing agent and heating at 

700C 15 min and after, centrifuging at full speed for 2minutes.  
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SDS page 

20µl of each eluted sample was loaded into wells of NuPAGE Bis-Tris precast Gels from 

Thermo fisher using greiner bio one tips in NIR, NWR, and IR order in addition to 10µl Page 

Ruler™ Prestained Protein Ladder; 10 to 180 kDa. The gel was then run using ice cold 1X 

NuPAGE MOPs SDS running buffer in an XCell SureLock® mini gel running tank at Amp/A 

20 for 150 minutes.  

Western Blotting 

The gel was removed from the cassette and stack together with 8 cm by 8 cm Immun-Blot® 

PVDF Membrane pre-soaked in methanol. Two 9cm by 9cm blotting papers and two same 

sized sponges were introduced on each side of the gel-membrane and the stack placed 

firmly XCell II™ Blot Module. The module was placed in an XCell SureLock® mini gel 

running tank and run in 1X SDS buffer with 20% methanol at 200 Amp for 70 minutes. The 

membrane was then blocked using 5% TBS Tween20-milk powder for 20 minutes. 3µl of 

primary antibody Anti-HA rat (Roche 11867423001)1:5000 was added and incubated at 40C 

overnight. The membrane was cleared off the blocking solution and washed three times with 

15ml TBS-Tween at 40C room for 15minutes each time. 15ml of 5% TBS Tween20-milk 

powder with 3µl secondary antibody Anti-GFP mouse (Roche 11814460001)1:5000 was 

added into the membrane and incubated at 40C for 1.5hrs. The secondary antibody was 

washed off using 15ml TBS-Tween at 40C for 15minutes three times. The membrane was 

soaked evenly in 1ml of Enhanced ChemiLuminescence (ECL) solution prepared from 

Pierce™ ECL Western Blotting Substrate (Thermo fisher) according to manufacturer’s 

instructions and spread on clear paper. Imaging was done by exposure to film using image 

quant LAS 4000 program connected to a BioSpectrum Imaging System with an increment of 

30 seconds. 

Coomassie blue staining and gel cutting for LC-MS/MS analysis  
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SDS page was repeated twice with the remaining 60µl of each sample in NIR, NWR, IR and 

–CS order as well as their respective eluted input samples. The gel was washed 4 times 

each with 100ml of autoclaved ddH20 to remove excessive SDS. Each of the gels was 

treated with 15ml of SimplyBlue™ Safe Stain from Life technologies for 2 hrs while shaking 

gently at room temperature. The stain was washed off by incubating at room temperature 

with autoclaved distilled water overnight and then twice for 1hr each duration while shaking 

gently. The IP samples for NIR, NWR and IR at positions 130kDa, 120kDa and 100kDa were 

cut precisely under clean glass plate using a sharp scalpel and stored in -800C for LC-

MS/MS analysis. 

Protein Identification and characterisation using MS/MS data 

A tripsin digestion was performed to the extracted gel bands. Liquid chromatography 

electrospray ionization tandem mass spectrometry (LC/MS/MS) is currently being done to 

deduce the identity of the peptide sequence in the BAK1-GFP pull down bands for all 

samples 
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DISCUSSION AND CONCLUSION 

The use of resistant cultivars is the most successful and preferable method to manage yield 

loss due to nematodes. To facilitate this, the importance to know and understand plant 

innate immunity can never be more emphasized. In the recent decades, various studies 

have sort to elaborate on the topic and the successful identification of acarosides as 

nematode derived PAMP (NAMP), the ability of nematode to induce PTI and association of 

BAK1 in nematode induced PTI has provided the evidence of PTI induction by nematodes. 

In our studies, we have demonstrated the molecular events induced by nematodes and PTI-

like responses that follow there after contributing to plant tolerance to nematodes. The 

induction of differentiated gene expression by NemaWater demonstrated presence of 

elicitors capable of inducing defense responses. Equally to NemaWater treatment, 

nematode attack at migratory stage caused the upregulation of several hormonal response 

gene involved primarily in JA/ET pathway which is active defense against necrotrophic 

pathogens and herbivorous insects (Kessler and Baldwin, 2002; Rojo et al., 2003; 

Glazebrook, 2005; Howe and Jander, 2008). This finding therefore confirmed the role of 

JA/ET pathway in promoting both nematode parasitism and damage associated responses 

even though nematodes are biotrophs. This was in contrast to SA pathway whose activation 

has been shown to inhibit nematode parasitism even though it has been shown to promote 

infection by biotrophic pathogens (Branch et al., 2004; Wubben et al., 2008). Similary, only 

slight increase in expression of SA biosynthesis genes was observed in our study 
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Even though similar trends were observed in both scenarios at nematode migratory stage 

and NemaWater treatment, there were some genes expressed specific to either of the 

treatment.  Migration of nematode involves stylet movement forward and backward to 

facilitate nematode entry into the cell which in the process causes a lot of damage and would 

explain the upregulation of a share of genes at migratory stage specifically. Concurrently, a 

huge number of genes were upregulated due to treatment with NemaWater alone. 

Interestingly, nematode infection induces suppression of innate immunity and therefore 

upregulation of genes involved in these functions is thus expected mostly induced by 

secreted effectors by the nematodes into NemaWater.  For example, in comparison to what 

is already known, the patterns of gene expression we observed in Soybean cyst nematode 

infected plants have been shown to suggest coordinated regulation of genes involved in 

parasitism. In addition, Calreticulin (CRT) Mi-CRT secreted from M. incognita triggers 

suppression of callose disposition and reduced activation of defence-related genes 

(Szakasits et al., 2009; Jaubert et al., 2005; Jaouannet et al., 2012, 2013). 

We also demonstrated that nematode can induce PTI. One of the best characterized PTI 

signalling event is ROS burst which has so far proven to be a valuable tool to study plant 

immunity signalling components and regulatory mechanisms. ROS production is dependent 

on the membrane localized NADPH respiratory burst oxidase homolog D (RbohD) 

(Wojtaszek et al., 1997; Torres et al., 2002; Torres 2009; Kadota et al., 2015). ROS initiates 

a series of downstream signalling events crucial for triggering defense to reduce pathogen 

growth. The ability of NemaWater to induce ROS burst in wildtype Col-0 plants proved 

presence of PAMPs and activation of defense responses due to nematodes. That 

notwithstanding, NemaWater inhibited growth of wildtype Col-0 plants after treatment for 1hr. 

Growth inhibition is as a result of immunity and growth crosstalk where activation of 

immunity forces the plant to shift resources and nutrients towards defense ultimately 

reducing growth. Growth vs immunity has been associated to the functioning of 

brassinosteroid (BR) pathway. When BR is recognized by BRI1, there is formation of a 
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heteromeric complex with BAK1 that initiates a signalling cascade and phosphorylate BIK1, 

BSK1 and Brassinosteroid Suppressor 1 (BSU1). Phosphorylation of these components 

inactivates the negative growth regulators of BR pathway; Brassinosteroid-INsenstive 2 

(BIN2), and activates some transcription factors BrassinaZole-Resistant 1 (BZR1) and 

Homolog of Brassinosteroid enhanced expression 2 interacting with increased leaf 

Inclination 1 (HBI1) (Fan et al., 2014). Brassinosteroid signalling and PTI have BAK1, BIK1 

and BSK1 in common as part of their signalling (Lin et al., 2013). It is currently known that 

the roles of these components shift from growth to immunity or vice versa controlled by 

transcription factors BZR1 and HBI1 which acts in favour of growth in absence of a pathogen 

and vice versa (Gallego-Bartolome et al., 2012). Growth vs immunity has also been 

associated to hormonal crosstalk involving a shift in Gibberellins, Jasmonate and auxin. 

However, it remain unclear how the shift of hormones when PTI is activated results into 

changes in cellular processes that inhibits growth (Navarro et al., 2006; Eichmann and 

Schäfer, 2015). 

Knowing that nematodes can thus cause PTI responses, we sort to find out if that translated 

into effects to overall infection due to nematode. In addition, we hypothesised those potential 

receptors genes involved in activation of PTI would be over expressed during nematode 

attack. Using reverse genetics especially use of knock-out mutations of genes is a 

commonly used strategy utilized in elucidating gene functions including but not limited to 

identification of novel PRRs (Shiu and Bleecker, 2001; Matsuda and Aiba, 2004; Bi et al., 

2010). We demonstrated that among the 51 upregulated RLKs genes shared between 

NemaWater treatment and at nematode migratory stage, loss of function mutations of 5 of 

the genes rendered the plants hyper susceptible to a group of sedentary endoparasitic 

nematode attack. Susceptibility was illustrated by the female count per plant against wildtype 

as an increase in food supply and a constantly optimum environment favours nematodes 

differentiation into female cysts nematode (Wyss and Grundler, 1992; Lewis and Gaugler, 

1994). For root knot nematodes, galling was the main characteristic used as a measure of 
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susceptibility. Mainly, these genes belonged to CRK-RLK, NEK and LRR-RLK families 

whose majority of gene members remain to be characterized. While NEK5 belonging to the 

NEK family was shown to play a role in PTI induced by both cyst and root-knot nematodes, 

there are no reports indicating or implicating this family to pathogenic responses. However, 

most studies have shown its plays a role in salt tolerance and abiotic stresses (Sakai et al., 

2008; Lee et al., 2010). Members of this gene family involvement in tolerance to abiotic 

stress could be a hint as to their role in immunity against biotic stress too. In addition, NEK5 

involvement is also a great indicator of that this family could contain potential PRRs which 

are yet to be characterized some probably involved in nematode triggered PTI. Unlike NEK 

family, CRKs have been linked to biotic stress for example programmed cell death, among 

others (Acharya et al., 2007; Wrzaczek et al., 2010). Nevertheless, our study found out that 

genes belonging to this family can be species-specific in the role, since CRK19 and CRK10 

expressed immunity against cyst nematodes and root-knot nematodes respectively. The 

CRKs` DUF26 domain possesses a conserved C-X8-C-X2-C motif whose Cys residue forms 

Cys bridges believed to be targeted for apoplastic redox modification (Ohtake et al., 2000; 

Chen, 2001; Bourdais et al., 2015). Members of this family such as the (PlasmoDesmata-

Located Proteins (PDLPs), has also been associated with regulation of cell to cell 

communications and plant immunity (Amari et al., 2010; Lee et al., 2011; Caillaud et al., 

2014). In addition, CRKs are transcriptionally induced in response to abiotic stresses such 

as salicylic SA, Ozone, salt, and drought treatments (Chen et al., 2003, 2004; Wrzaczek et 

al., 2010; Bourdais et al., 2015; Yeh et al., 2015). A group of CRKs are also strongly induced 

in response to pathogens and PAMP treatment such as CRK28 and CRK29 (Wrzaczek et 

al., 2010; Bourdais et al., 2015). CRK28 for example is dependent on the co-receptor BAK1 

and associated with FLS2 forming a complex to coordinate enhanced plant immune 

response against bacteria. Members of this family is thus a potential player in immunity 

(Yadeta et al., 2017). Further studies into the mechanism of binding of these receptors to 

PAMPs remain to be elucidated on. 
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Among all subfamilies in the RLKs family, the LRR-RLK gene family is most widely 

associated with pathogenic responses and disease resistance. Expectedly, in our study, 

11LRR genes were upregulated due to nematode invasion. We studied four LRR genes; 

NILR1, NILR2, NILR3 and PSKR1 that were upregulated due to nematode invasion and 

NemaWater treatment. However, further studies into infection with cyst nematodes revealed 

NILR2 to play no role in nematode induced PTI. NILR3 homology in cucumber 

Cucsa.057870.1, referred to as probable LRR receptor-like serine/threonine-protein kinase 

was one of the genes with altered expression in leaves of aphid-infested cucumber plants 

(Liang et al., 2015). NILR3 not only was upregulated due to nematode attack and 

NemaWater treatment, but also potrayed a role in nematode infection. Since both aphids 

and nematodes induce damage, it remains to be demonstrated if the role of NILR3 in PTI is 

due to PAMP or DAMP perception. Intrigingly, PSKR1 was observed to act against immunity 

in nematodes. Several recent reports have shown that sulfated peptides are important 

signaling molecules utilized by plants to integrate growth and development programs with 

stress responses. Activation of stress responses comes at the cost of reduced growth. 

Improper regulation or prolonged activation of stress responses can lead to stunted growth 

and even cell death. PSKα perception by PSKR1 leads to the downregulation of SA-related 

responses after biotrophic pathogen infection, thereby preventing an over-induction of this 

particular signaling pathway that would otherwise reduce the fitness of the plants and leave 

them vulnerable to necrotrophic pathogens (Mosher and Kemmerling, 2013). It is thus not 

surprising that plants lacking PSKR1 were more resistant to nematode attack due to 

absence of PSKR1-mediated regulation of PAMP responses.  

Loss of function mutation of NILR1 gene rendered the plant more susceptible to a class of 

sedentary nematode attack. Its insensitivity to NemaWater during ROS bursts and growth 

inhibition assay confirmed it’s important in PTI activation due to Nematode only. Just as it’s 

predicted structural characteristics based on BRI1 model as having a transmembrane 

domain, NILR1 has been confirmed to be localized in the plasma membrane when 
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transiently expressed in Nicotiana bethamiana epidermis. Similarly to all secretory proteins 

processed from the endoplasmic reticulum, a signal peptide is required for their secretion 

and as such, NILR1 has a signal peptide in its predicted structure. The presence of an 

extracellular domain is where potentially a nematode PAMP of protein nature binds and it 

consists of 22 tandem LRRs residues that have a 76 amino acid Island Domain (ID) cysteine 

cluster with the pattern of Cx2Cx16C between LRR17 and LRR18. Although the precise 

ligand-binding sites of LRR-RKs are not understood, the extracellular Island Domain (ID) 

usually plays a more stabilizing role during ligand binding (Torii, 2004). The Ser/Thr kinase 

domain can be hypothesized to function in signal transfer to the intracellular regions. 

Generally, the structure of NILR1 mimics most PRRs that have already characterized for 

example FLS2 which has all 3 domains. These predicted structures are based on 

Arabidopsis genome. A BLAST search of amino acid sequence of NILR1 extra cellular 

domain against non-redundant protein of land plants indicated presence of homologues in 

different Brassicaceae family species and in both monocots and dicots. In our study, NILR1 

homologous from tomato Solanum lycopersicum (SlNILR1) was transiently expressed in the 

epidermis of Nicotiana bethamiana found to be localized in the plasma membrane 

suggesting structural similarity to NILR1 (Fig E in S2). In addition, treatment of tomato plant 

induced a ROS burst similar to that in Arabidopsis suggesting the tomato homologous elicit 

responses similar to those of AtNILR1.  Nevertheless, the functions of these homologues 

from land plants and their similarity or differences with AtNILR1 remain to be studied. In 

addition, the PAMPs perceived by NILR1 is yet to be identified.  

The potential of Co-immuno precipitation technology has recently being in the fore front in 

PTI studies especially in demonstrating the ability of a PAMP to physically bind to the 

receptor and the signalling components involved. This method can be used to characterize 

the PAMP in NemaWater that binds to NILR1 as well as the signalling cascade that follows 

after perception. The successful transformation of NILR1 into an expression vector and 

further expression in Arabidopsis is the first step towards attaining this objective (Fig A to D 
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of S2). In addition, NILR1 over expression lines are important in studying the physiological  

and functional changes due to NILR1 gene. 

In confirmation to already available reports, BAK1 is involved nematode induced PTI. While 

there are reports of PTI induction independent on BAK1, knocking out mutation of the BAK1 

gene rendered the plant hyper susceptible in our study. Since previous studies had reported 

similar findings due to root knot nematodes, our results showing the involvement of BAK1 in 

PTI induced by cyst nematode confirmed that BAK1 role is conserved. In all reported cases, 

BAK1 acts as a co-receptor to a stable PRR forming a complex. Using co-

immunoprecipitation and western blotting techniques, we managed to pull down BAK1 and 

its associated proteins which froms a complex upon nematode perception. Protein-protein 

interaction studies have so far used these methods successfully to decipher formation of a 

complex induced by pathogens such as bacteria and fungi (Chinchilla et al., 2007; Albert et 

al., 2015). In our case, deducing the identity of the protein components of the BAK1 complex  

pulldown is underway. 
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CONCLUSION 

Here we report a comprehensive study into basal immunity by nematodes. Characterization 

of NILR1 as the first ever reported nematode PRR is a broad step towards understanding 

PTI in plants induced by nematode among other receptors. In addition, implication of CRKs, 

NEKs, and LRRs in nematode Induced PTI potrays presence of multiple receptors that plays 

a role in nematode perception and the gene families mainly involved. Through the receptors 

described, it is possible now to screen for their perceived NAMPs. Interestingly, just like 

other reports, PSKR1 was observed to be a nematode triggered PTI regulator other than 

inducer a similar scenario to ther patho system. This demonstrates the similarity of 

nematode responses to other pathogens and the conserved nature of innate immunity in 

plants. The successful pull down of BAK1 complex on the other hand, was the first step 

towards identifying its interactors during nematode perception. A mass spectrometry 

analysis of the complex peptides would be required to identify the protein components 

involved which could further drive the understanding of BAK1 dependents nematode 

molecular signalling. In addition, it might as well show how immunity is regulated and players 

involved.  

These findings bring us closer to understanding plant immunity and PRRs involved in PTI 

against nematodes. Since PAMP receptor molecules differ among plant species, the 

heterologous expression of PAMP recognition systems has been used to engineer broad-

spectrum disease resistance to important bacterial pathogens. Increased resistance has 

been obtained using this strategy against a range of bacterial diseases in both monocots 

and dicots. Similar strategy can be utilized to generate transgenic plants expressiong PRRs 

that perceive nematodes which would confer fitness against parasitic nematodes. 
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Fig A: GO categories preferentially upregulated during migratory stages of 
nematode infection.
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Fig B: Inhibition of root growth upon NemaWater treatment. 5-day-old Col-0 
seedlings were incubated in water, flg22, or HsNemaWater for seven days. Fresh 

weight of root was measured at 12 days after germination. Data were analyzed 

using t-test. Asterisk represent significant difference to water-treated control root 

segments (P<0.05). Hs, Heterodera schachtii.
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Fig C: GO categories preferentially upregulated upon NemaWater 
treatment.
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Fig D: An illustration of our method for cyst nematode counting. Each Petri 
dish is screened at 14 dpi under the binocular microscope and each female 
nematode is marked (represented by dots) to calculate rate of infection per plant. 

Fig E: Growth inhibition was impaired in bak1-5 upon NemaWater 
treatment. 5-day-old Col-0 and bak1-5 seedlings were incubated in water, flg22,

or HsNemaWater for seven days. Fresh weight of the root was measured at 12 days 
after germination.  Data were analyzed using single-factor ANOVA and Dunnet’s 
post hoc test (P<0.05).  
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Fig F: Genotyping of NILR1 and NILR2 mutants. Genomic DNA of Col-0 or 
knockout lines (nilr1-1, nilr2-1) was PCR amplified using primers given in Dataset 6. 

The presence or absence of intact wild-type allele is shown. 

Fig G: RT-PCR for presence or absence of gene expression in Col-0 or 
knockout mutants. RNA from Col-0 or knockout lines (nilr1-1, nilr2-1) was extracted to 
synthesize single stranded cDNA. The presence or absence of expression is shown 

using primers given in Dataset 6. The upper and lower panel run separately. 
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Fig H: Knocking of NILR1 impair ROS burst to MiNemaWater. Root 
segments from Col-0, and nilr1-1 plants were treated with water, 

flg22 or NemaWater from M. incognita (MiNemaWater) and ROS burst was 
measured using L-012 based assay from 0 to 120 min. Bars represent mean 

± SE for twelve biological replicates. Columns sharing same letter are not 

statistically different. 

Fig I: NemaWater-induced growth inhibition was reduced strongly in nilr1-1.  5-

day-old Col-0, nilr1-1and nilr2-1 seedlings were incubated in water, flg22, or 

NemaWater for seven days. Fresh weight of the root was measured at 12 days 

after germination. Data were analyzed using single-factor ANOVA and Dunnet’s 

post hoc test (P<0.05).  
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Fig J: Expression analysis of nilr1-2 mutants. RT-PCR for presence or absence of 

gene expression in Col-0 or knockout mutants. RNA from Col-0 or knockout line 

(nilr1-2) was extracted to synthesize single stranded cDNA. a and b represent two 

independent plants. The presence or absence of expression is shown using primers 

given in Dataset 6. 

Fig K: Knock-out nilr1-2 enhances susceptibility to nematodes. Average number 

of female nematodes per plant in Col-0 and nilr1-2. Bars represent mean ± SE 

for six biological replicates. 
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Fig L: Knock-out nilr1-2 enhances susceptibility to nematodes. Root 
segments from Col-0, and nilr1-2 plants were treated with water, flg22 or 
NemaWater from H. schachtii (HsNemaWater) and ROS burst was measured using L-012 

based assay from 0 to 120 min. Bars represent mean ± SE for three technical 

replicates. Experiment was repeated three times with similar results.
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Signal peptide 1 
TMVTRVIMTDDDSQSLCFLCFLFFFITAIAVAG 

N-Terminus   
35 
DSLDSDREVLLSLKSYLESR
NPQNRGLYTEWKMENQDVVC
QWP GIICTPQRSR 

LRR domain 1-17 
88 
VTGINLTDSTISGPLFKNFS
ALTE 
LTYLDLSRNTIEGEIPDDLS
RCHN 
LKHLNLSHNILEGELSLPGL
SN 
LEVLDLSLNRITGDIQSSFP
LFCNS 
LVVANLSTNNFTGRIDDIFN
GCRN 
LKYVDFSSNRFSGEVWTGFG
R 
LVEFSVADNHLSGNISASMF
RGNCT 
LQMLDLSGNAFGGEFPGQVS
NCQN 
LNVLNLWGNKFTGNIPAEIG
SISS 
LKGLYLGNNTFSRDIPETLL
NLTN 
LVFLDLSRNKFGGDIQEIFG
RFTQ 
VKYLVLHANSYVGGINSSNI
LKLPN 
LSRLDLGYNNFSGQLPTEIS
QIQS 
LKFLILAYNNFSGDIPQEYG
NMPG 
LQALDLSFNKLTGSIPASFG
KLTS 
LLWLMLANNSLSGEIPREIG
NCTS 
LLWFNVANNQLSGRFHPELT
RMG 

 
Island domain I 
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493 
SNPSPTFEVNRQNKDKIIAGSGECLAMKRWIPAEFPPFNFVYA
ILTKKSCRSLWDHVLKGYGLFPVCSAGSTVRTLKI 

LRR domain (18-22) 

SAYLQLSGNKFSGEIPASIS

QMDR 
LSTLHLGFNEFEGKLPPEIG
QLP 
LAFLNLTRNNFSGEIPQEIG
NLKC 

LQNLDLSFNNFSGNFPTSLN
DLNE 
LSKFNISYNPFISGAIPTTG
QVAT               

LXXL[ DN] 
LSXNX[FIL][STE] 
GX[FIL] 
PX[SE][FIL][SG] RQNXX 

690 
FDKDSFLGNPLLRFPSFFNQSGNN 

TRKISNQVLGNRPRT 
Transmembrane domain 

729 
LLLIWISLALALAFIACLVVSGIVLM 

Ser/Thr kinase 
755 
VVKASREAEIDLLDGSKTRHDMTSSSGGSSPWLSGKIKVIRL
DKSTFTYADILK 
ATSNFSEERVVGRGGYGTVYRGVLPDGRE
VAVKKLQREGTEAEKEFRAEMEVLS 
ANAFGDWAHPNLVRLYGWCLDGSEKILVH
EYMGGGSLEELITDKTKLQWKKRID 
IATDVARGLVFLHHECYPSIVHRDVKASN
VLLDKHGNARVTDFGLARLLNVGDS 
HVSTVIAGTIGYVAPEYGQTWQATTRGDV
YSYGVLTMELATGRRAVDGGEECLV 
EWARRVMTGNMTAKGSPITLSGTKPGNGA
EQMTELLKIGVKCTADHPQARPNMK 
EVLAMLVKISGKAELFNGLSSQGYIEM 

 
Fig M: NILR1 encodes a LRR receptor kinase. Primary structure of the 

NILR1 divided into signal peptide; N-terminal containing a pair of cysteine 

residues (underlined); the LRR domain with LRR consensus residues in 

grey; the island domain containing a cysteine cluster with the pattern of 

Cx2Cx16C; the transmembrane domain; and the Ser/Thr kinase domain. 
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Fig N: A putative structural model for ECD of NILR1. The model was built using BRI1 

as template. Conserved and similar residues between BRI1 and NILR1 are 

highlighted as red or blue respectively. Grey color represents additional residues. 

White dashed box represent Island domain 
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Fig O: Conservation of NILR1 in land plants. A phylogram tree generated from 

maximum-likelihood   trees    construction    method    based    on    alignment    of   

sequence spanning NILR1's ECD. The number next to each branch (in brown) 

indicate a measure of support. The number varies between 0 and 1 where 1 

represent maximum. 
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Fig P: Expression of NILR1 during development stages of plants. 
 
 
 

163



 

164



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Fig Q: Expression of NILR1 under different biotic stress conditions. 
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S2  

 

(i) 

NILR1 Without stop codon 

Forward primer 

GGGGACAAGTTTGTACAAAAAAGCAGGCTGCATGACTATGGTGACGCGTGTG 

Reverse primer 

 GGGGACCACTTTGTACAAGAAAGCTGGGTCCATTTCTATGTAACCTTGTGAAGATAAG 

NILR1 With stop codon 

Forward Primer  

GGGGACA AGT TTG TAC AAA AAA GCA GGC TGCATGACTATGGTGACGCGTGTG 

Reverse primer  

GGGGACCACTTTGTACAAGAAAGCTGGGTCTTACATTTCTATGTAACCTTGTGAAGATA

AG    

 

(ii) 

 

Figure A: Amplification of NILR1 gene. RT-PCR using 2 pairs of primers (i) with one 

amplifying the gene with stop codon (+SC) and another without (-SC) from wildtype Col0 

genomic DNA (ii). 

-SC +SC 1KB 
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Figure B. A genetic map of the donor vector used to deliver NILR1 gene into 

destination vector. The amplified NILR1 fragments were cloned into pDONR207 using BP 

clonase (Invitrogen) according to manufacturer's instructions separately.  

PMDC 83

 

PMDC32 

 

Figure C: A map of destination vector used to over express NILR1. BP cloning resultant 

pENTRY vectors (pENTRY/NILR1-sc) and (pENTRY/NILR1-sc) were used to clone NILR1 

into the destination vector pMDC83 and PMDC32 respectively, via Gateway LR cloning 

using LR clonase (Invitrogen) according to manufacturer's instructions. In both cases, the 

gene replaced the ccdB gene and were regulated by the strong 35s promoter. Both vectors 

conferred Hygromycine resistance for selection of transformants 
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Figure D: An illustration of transformation of Arabidopsis with NILR1. The expression 

vector pMDC83 35S:NILR1-GFP and PMDC32 35S:NILR1 were transformed into 

Agrobacterium strain GV3101 to generate NILR1-GFP and NILR1 over expression lines 

respectively. In vivo transformation of Arabidopsis thaliana Col0 wildtype plants with each 

vector was performed via floral dipping. These plants were labelled as T0 and upon maturity, 

they produced T1 seeds. T1 seeds were selected in 25mg/ml hygromycine and the 

germinated plantlets transferred to soil. T1plants produced T2 seeds which were selected on 

hygromycine. Each transformant was transplanted into soil and each  plant´s T2 seeds 

harvested individually. 

(i) 

GWAY-SlNILR1-F 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTCAGAAGAGGAATCTGATATTCTTC

TTCT 

GWAY-SlNILR1-R 

GGGGACCACTTTGTACAAGAAAGCTGGGTTTCAAAATGAAGGAGAAGTGCTACGACT 

(ii) 
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Figure E. Localization SlNILR1 homologoue from tomato in epidermis of Nicotina 

bethamiana.  SlNILR1 gene was amplified using the primers (i). Amplified SlNILR1 gene 

was cloned into PMDC 83. The expression vector 35S:SlNILR1-GFP was transformed into 

Agrobacterium strain GV3101 and co-infiltrated together with a plasma membrane mCherry 

marker 35S:PIP2A-mCherry into epidermis of 6-week old Nicotianna benthamiana leaves. 

The GFP and mCherry signal was detected using a confocal microscope (Zeiss CLSM 710). 

Similarly to mCherry plasma membrane marker (red), SlNILR1-GFP signal (Green) was 

detected on the plasma membrane where both signals overlapped (yellow). 
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