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RHEINISCHE FRIEDRICH–WILHELMS–UNIVERSITÄT BONN

Abstract
by Alessandro Ridolfi

for the degree of

Doctor rerum naturalium

Pulsars are fast rotating, magnetized neutron stars that result from the supernova ex-
plosion of massive stars. Thanks to their coherent radiation, emitted in the form of
collimated beams from the two magnetic poles, pulsars can be exploited as outstanding
natural laboratories for fundamental physics. Pulsars can also be part of binary systems
where, in most cases, the neutron star is spun-up (or recycled) up to rotation periods as
low as a few milliseconds, by accreting matter and angular momentum from the com-
panion star. Such millisecond pulsars are characterized by an extraordinary rotational
stability.

Globular clusters (GCs), spherical groups of stars that are gravitationally bound, are
very efficient “factories” of recycled pulsars, thanks to their very high stellar densities,
which favour two- or three-body gravitational interactions and the formation of exotic
binary systems. This thesis is about the study of the pulsars in 47 Tuc and M15, which
are two among the richest GCs for the number of pulsars hosted, having 25 and 8 known
such objects, respectively.

After providing an overview of the pulsar phenomenon (Chapter 1), I review in detail
the main methods that are used in this thesis to search for and further study radio pulsars
(Chapter 2). Particular focus is given to pulsar timing, a technique through which it is
possible to build a precise model (called timing solution) that describes the rotational,
astrometric and orbital characteristics of the neutron star and the possible binary system
in which it is found. Being pulsars among the most polarized sources in the Universe,
polarimetry is another major technique, complementary to timing, to investigate some
properties of pulsars that would otherwise be inaccessible.

In Chapter 3, I review the main characteristics of globular clusters. The physical
conditions found in the latter sharply differ from those found in the Galactic plane. In
particular, the extremely crammed cores of GCs are capable of greatly altering the stan-
dard evolutionary paths of single stars and binary systems. As a result, the population of
pulsars in GCs is very peculiar and very often composed by non-standard end products
of binary evolution.

In Chapter 4, I present the results of the analysis of about two decades of data of
47 Tuc, taken with the Parkes radio telescope. All the previously known timing solutions
are extended with the inclusion of additional data. For several other pulsars, the timing
solutions are instead presented for the very first time since their discovery. For a few
particularly faint binary pulsars, I use specific time-domain techniques developed with the
goal of maximizing the number of detections and allowing their detailed characterization.

The timing results of all the 25 pulsars of 47 Tuc are then used in Chapter 5 to study
the dynamics and other important properties of the cluster. The much more precise



measurements of the pulsar proper motions are used to infer the proper motion of the
cluster as a whole. The measured higher-order spin frequency derivatives, instead, are
used to derive the cluster distance, which results to be no smaller than 4.69 kpc. All the
observed properties of the pulsars can be accounted for without invoking the presence of
an intermediate-mass black hole at the core of 47 Tuc, although this hypothesis cannot be
ruled out yet. Since almost all the pulsars are located very close to the cluster core, the
population of neutron stars in 47 Tuc is likely to have reached a dynamical equilibrium
with the stellar population. The only exception is 47 Tuc X, a very peculiar binary system
that is much farther away than any other known pulsar of the cluster. This system has
probably formed in a three-body exchange encounter that has flung the resulting binary
towards the outskirts of the cluster.

A sub-population of the pulsars in 47 Tuc is constituted by the so-called “black widows”
and “redbacks”. These are pulsars in extremely tight orbits with a very light companion
star that is losing mass. Such a mass outflow often causes a change in the gravitational
field of the binary, which results in an orbital variability detectable through the timing.
In Chapter 6 I present a detailed study of the seven black widows/redbacks of 47 Tuc.
I find that, while some of these pulsars show a strong orbital variability, a few others
appear remarkably stable.

The pulsars in the other globular cluster, M15, are studied in Chapter 7, primarily
through polarimetry. I use recent data taken with the 305-m Arecibo radio telescope to
derive the polarimetric properties of five pulsars of the cluster for the first time. One of the
pulsars, called M15C, is a binary millisecond pulsar in a double neutron star system and
its peculiarity is that it is showing evidence of relativistic spin precession (RSP) occurring,
an effect predicted by Einstein’s General Relativity. Because of RSP the pulsar spin axis
is precessing about the total angular momentum of the binary system, with a full cycle
every 275 years. This in turn causes the pulsar radiation beam to change orientation
with respect to the distance observer. The variations of the polarimetric properties over
time are thus used to model RSP in M15C, and derive constraints on the geometry of the
system. I find a large misalignment angle between the pulsar spin axis and the orbital
angular momentum, which is not surprising given that the binary has probably formed
in a chaotic three-body exchange interaction. The pulsar’s visible beam is slowly moving
away from our line of sight and it might become undetectable by as early as 2018. On
the other hand, the secondary beam (from the other magnetic pole) is approaching our
line of sight and could become detectable from around 2041.

Finally, in Chapter 8, I summarize the results and discuss the possible future devel-
opments, in the light of the upcoming new generation of radio telescopes.



Acknowledgements

These four years as a PhD student have been an amazing experience and here I would like to
thank many people who greatly contributed to make it as such.

My first and biggest thanks is owed to my family, and in particular to my parents, Fabio
and Myriam. Ever since I was a kid, they have always encouraged and strongly supported me
to follow my passions and dreams. This thesis is a very important achievement for me and it is
dedicated to them!

Another very special thanks is for Wonju Kim. In these last two years, she has always stood
by me, even in the most stressful moments and has given me invaluable support and motivation
in all my pursuits.

I am profoundly grateful to my advisor, Paulo Freire. These few words cannot do justice to
how much he contributed to both my scientific and personal growth. I thank him for always
being a source of inspiration and a role model, for having taught me the “hidden secrets” of
pulsar astronomy and for sharing many enjoyable moments outside of work.

A very special thanks also goes to my supervisor, Michael Kramer. I greatly thank him for
his insightful scientific advice, for his constant support and for his dedication. I also thank him
for making the MPIfR group such a pleasant and friendly working environment, which I truly
enjoyed throughout these years.

Great thanks to our secretary, Kira Kühn, for always promptly helping in many situations
and with all the bureaucratic and administrative issues.

Many thanks to Jan Behrend, Markus Krohs, Yusuf Özdilmac and all the MPIfR Rechen-
zentrum people, for their helpfulness and promptness in solving software and hardware related
issues.

During these years, I had the chance to visit (thanks, Paulo!) and observe with the Arecibo
radio telescope, until a few months ago the largest radio telescope on Earth! I would like to
wholeheartedly thank all the Arecibo staff for the excellent work and support that they have
always provided and without which a large part of this thesis could have not been possible. I
would like to particularly thank Arun Venkataraman, Chris Salter, Hector Hernandez, Robert
Minchin, Angel Vazquez, Andrew Seymour and Giacomo Comes.

Thanks to my fellow PhD and Master’s students! In particular I would like to mention
Cherry Ng, Pablo Torne, Nicolas Caballero, Jason Wu, Patrick Lazarus, John Antoniadis, Ma-
rina Berezina, Joey Martinez, Golam Shaifullah, Eleni Graikou, Nataliya Porayko and Andrew
Cameron.

Thanks to all the post-docs and staff members of the Fundamental Physics group for sharing
nice scientific discussions as well as very nice and joyful times together. A special mention is
owed to Gregory Desvignes, who not only greatly helped me with a large part of my work, he
also organized great FIFA tournaments! ;-)

Big thanks to the MPIfR OpenArena community of players, for sharing very amusing and
nerdy moments between hard work sessions. :-)

I would also like to thank again all my colleagues and friends from the Astronomical Ob-
servatory of Cagliari. In particular, I would like to thank my former Master’s thesis supervisor
Andrea Possenti, as well as Alessandro Corongiu, Noemi Iacolina and Marta Burgay, with whom
I had the chance, during my PhD, to continue to collaborate on other exciting scientific projects.
I would like to remark how important my Master’s thesis experience in Sardinia was and how



6

the passion, enthusiasm and strong friendships that resulted from it have been great motivations
for me to continue in this field. A special mention is for Caterina Tiburzi, who I really thank
for her care and strong friendship that has accompanied me throughout these years.

Big thanks to my friend and colleague Vittorio De Falco. Starting our doctoral studies at a
very similar times (although in different cities) we shared our experiences and supported each
other over the course of our PhD. I also thank his supervisor, Maurizio Falanga, very much for
inviting me at ISSI Bern, where I had a great work and leisure time with him, Vittorio and the
other nice people of the institute.

Many other people from outside of work have also contributed to make my stay in Bonn so
great. Among these, I would like to mention Giulia Mariani, Mariangela Vitale, Marcus Bremer,
Moritz Böck and Pietro Pilo Boyl.

Finally, I would very much like to thank Paulo Freire, Michael Kramer, Nicolas Caballero,
Ralph Eatough, Gregory Desvignes and Caterina Tiburzi for reading all or part of this thesis,
and contributing to significantly improve it.



Contents

Acknowledgements 5

1 Introduction 13
1.1 The discovery of radio pulsars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 The birth of a pulsar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 The structure of a neutron star . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 The pulsar “Standard Model” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Dipole radiation, spin-down and braking index . . . . . . . . . . . . . . . 16
1.3.2 Characteristic age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.3 Characteristic magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 The pulsar “fauna” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.1 Young pulsars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.2 Ordinary pulsars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.3 Recycled pulsars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Pulsar phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.1 Single and integrated pulse profiles . . . . . . . . . . . . . . . . . . . . . . 23
1.5.2 Emission spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.3 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6 Scientific applications of pulsars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6.1 Interstellar medium and plasma physics . . . . . . . . . . . . . . . . . . . 24
1.6.2 Ultra-dense matter and NS equations of state . . . . . . . . . . . . . . . . 25
1.6.3 General Relativity and alternative theories of gravity . . . . . . . . . . . . 25
1.6.4 Pulsar Timing Arrays and detection of nHz gravitational waves . . . . . . 26
1.6.5 Stellar and binary evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.6.6 Globular cluster studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.7 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Observing a pulsar 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Effects of the interstellar medium . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.2 Faraday Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.3 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.4 Scintillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Radio telescopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1 Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 Down-conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.3 Back-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3.1 Incoherent and coherent de-dispersion . . . . . . . . . . . . . . . 36
2.3.3.2 Observing modes: timing, search and baseband . . . . . . . . . . 38

2.4 Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.1 Observations and data acquisition . . . . . . . . . . . . . . . . . . . . . . 39
2.4.2 RFI removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



8 Contents

2.4.3 De-dispersion trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.4 Periodicity search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.5 Binary pulsars: acceleration search . . . . . . . . . . . . . . . . . . . . . . 43
2.4.6 Candidate selection, folding and confirmation . . . . . . . . . . . . . . . . 44
2.4.7 Determination of the binary orbit . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5.1 Observations and data acquisition . . . . . . . . . . . . . . . . . . . . . . 45
2.5.2 Extraction of the topocentric Times-of-Arrival . . . . . . . . . . . . . . . 48
2.5.3 The timing formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5.3.1 Barycentering terms . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5.3.2 Interstellar terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.3.3 Binary terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5.4 Fit and parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.6 Polarimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.6.1 Stokes parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.6.2 Rotating Vector Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.6.3 Polarization calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.6.3.1 NDO: Noise-Diode only . . . . . . . . . . . . . . . . . . . . . . . 69
2.6.3.2 MEM: Measurement Equation Modelling . . . . . . . . . . . . . 70
2.6.3.3 METM: Measurement Equation Template Matching . . . . . . . 72

2.6.4 RM measurement and correction for Faraday effect . . . . . . . . . . . . . 73

3 Pulsars in Globular Clusters 75
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2 Globular clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2.1 Static models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2.2 Evolution and stellar dynamics . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 The population of pulsars in globular clusters . . . . . . . . . . . . . . . . . . . . 81
3.4 Science with globular cluster pulsars . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Finding pulsars, orbits and timing solutions in 47 Tuc 85
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 The 47 Tuc dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 Updated timing solutions for 18 pulsars in 47 Tuc . . . . . . . . . . . . . . . . . . 87
4.4 47 Tuc P, V, W and X: four elusive binaries . . . . . . . . . . . . . . . . . . . . . 88

4.4.1 Acceleration search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.4.2 Orbital solution for 47 Tuc X . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4.3 T0-search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.3.1 Choice of the step size . . . . . . . . . . . . . . . . . . . . . . . . 91
4.4.4 Periodograms and improved orbital periods for 47 Tuc P, V and W . . . . 92
4.4.5 Timing of the elusive binaries . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 The new isolated pulsars 47 Tuc Z, aa, ab . . . . . . . . . . . . . . . . . . . . . . 93

5 Implications on the dynamics of 47 Tucanae 103
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2 Cluster parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



Contents 9

5.4 Proper motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.1 Comparison with optical proper motions . . . . . . . . . . . . . . . . . . . 107
5.4.2 Proper motion pairs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Spin period/frequency derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.5.1 First spin period derivative and upper limits on the cluster acceleration . 109
5.5.2 Second spin frequency derivative (jerk) . . . . . . . . . . . . . . . . . . . . 111
5.5.3 Third spin frequency derivative . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6 Orbital period derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.6.1 Measurements of cluster accelerations . . . . . . . . . . . . . . . . . . . . 115
5.6.2 Intrinsic spin period derivatives . . . . . . . . . . . . . . . . . . . . . . . . 115

5.6.2.1 47 Tuc Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.6.2.2 47 Tuc S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.6.2.3 47 Tuc T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.6.2.4 47 Tuc U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.6.2.5 47 Tuc X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.6.2.6 47 Tuc Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.7 New detections of the rate of advance of periastron . . . . . . . . . . . . . . . . . 118
5.8 The exceptional binary system 47 Tuc X . . . . . . . . . . . . . . . . . . . . . . . 119
5.9 What the pulsars tell us about cluster dynamics . . . . . . . . . . . . . . . . . . . 124

5.9.1 An intermediate mass black hole in the centre of 47 Tuc? . . . . . . . . . 127

6 The population of “black widow” and “redback” pulsars of 47 Tuc 129
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.2 Characterization of the orbital variability . . . . . . . . . . . . . . . . . . . . . . 130
6.3 The black widow and redback pulsars in 47 Tuc . . . . . . . . . . . . . . . . . . . 131

6.3.1 47 Tuc I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.2 47 Tuc J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.3 47 Tuc O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.4 47 Tuc P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3.5 47 Tuc R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3.6 47 Tuc V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.7 47 Tuc W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7 Polarimetric studies of the pulsars in M15 141
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.2 The M15 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.3 Calibration of the M15 L-wide/PUPPI data . . . . . . . . . . . . . . . . . . . . . 144

7.3.1 Feed cross-coupling in the Arecibo L-wide receiver . . . . . . . . . . . . . 144
7.4 RMs, polarimetric profiles and mean flux densities . . . . . . . . . . . . . . . . . 148
7.5 Relativistic spin precession in PSR B2127+11C . . . . . . . . . . . . . . . . . . . 151

7.5.1 Evidence of RSP in M15C . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.5.2 Updated timing solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.5.3 Geometry of the precessional RVM . . . . . . . . . . . . . . . . . . . . . . 155
7.5.4 Analysis and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.5.5 Beam map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163



10 Contents

8 Summary and future work 165
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.2.1 Improving the models for the dynamics and gas content of 47 Tuc . . . . 167
8.2.2 Continuing the monitoring campaign of M15 . . . . . . . . . . . . . . . . 168
8.2.3 Searching for the companion radio pulsar of M15C . . . . . . . . . . . . . 168
8.2.4 Searching for new pulsars in both clusters . . . . . . . . . . . . . . . . . . 168

8.3 Prospects with the new upcoming radio telescopes . . . . . . . . . . . . . . . . . 169

Bibliography 171

List of Figures 184

List of Tables 185



Contents 11

Acronyms used in this thesis

ACS Advanced Camera for Surveys
ADC Analogue-to-Digital Converter
AFB Analogue Filterbank
AU Astronomical Unit
BAT Barycentric Arrival Time
BB Binary Barycentre
BH Black Hole
BIPM Bureau International des Poids e Mesures
BS Blue Straggler
BT Blandford & Teukolsky binary model
BTX Extended Blandford & Teukolsky binary

model
BWP Black Widow Pulsar
CBR Caltech Baseband Recorder
CMD Colour-Magnitude Diagram
CO WD Carbon-Oxygen White Dwarf
CPU Central Processing Unit
DADA Distributed Acquisition and Data Analy-

sis format
DFT Discrete Fourier Transform
DM Dispersion Measure
DNS Double Neutron Star
EoS Equation of State
EPTA European Pulsar Timing Array
FAST Five-hundred-meter Aperture Spherical

Telescope
FFT Fast Fourier Transform
FPGA Field-Programmable Gate Array
FT Fourier Transform
FWHM Full Width at Half Maximum
GC Globular Cluster
GPS Global Positioning System
GPU Graphics Processing Unit
GR General Relativity
GW Gravitational Wave
HA Hour Angle
He WD Helium White Dwarf
HMXB High-Mass X-ray Binary
HPC High-Performance Computer
HST Hubble Space Telescope
IAU International Astronomical Union
ICRS International Celestial Reference System
IEEE Institute of Electrical and Electronics En-

gineers
IGM Intergalactic Medium
IMBH Intermediate-Mass Black Hole
IMXB Intermediate-Mass X-ray Binary
IPTA International Pulsar Timing Array
ISM Interstellar Medium
JPL Jet Propulsion Laboratory
LCP Left-handed Circular Polarization
LIGO Laser Interferometer Gravitational-wave

Observatory
LMXB Low-Mass X-ray Binary
LNA Low-Noise Amplifier
LO Local-Oscillator

MEM Measurement Equation Modeling
METM Measurement Equation Template

Matching
MJD Modified Julian Date
MRP Mildly Recycled Pulsar
MS Main Sequence
MSP Millisecond Pulsar
NANOgrav North American Nanohertz Observa-

tory for Gravitational Waves
NDO Noise-Diode-Only calibration

method
NIST National Institute of Standards and

Technology
NS Neutron Star
OPM Orthogonal Polarized Mode
ONeMg WD Oxygen-Neon-Magnesium White

Dwarf
PA Linear Polarization Position Angle
PFB Polyphase Filterbank
PK Post-Keplerian
PMB Parkes Multi-Beam Receiver
PPTA Parkes Pulsar Timing Array
PTA Pulsar Timing Array
PUPPI Puertorican Ultimate Pulsar Pro-

cessing Instrument
RBP Redback Pulsar
RCP Right-handed Circular Polarization
RFI Radio Frequency Interference
RG Red Giant
RM Rotation Measure
RSP Relativistic Spin Precession
RV Radial Velocity
RVM Rotating Vector Model
S/N Signal-to-Noise ratio
SAT Site Arrival Time
SI International System of Units
SKA Square Kilometre Array
SMBH Stellar-Mass Black Hole
SN Supernova
SNR Supernova Remnant
SSB Solar System Barycentre
TAI International Atomic Time
TCB Barycentric Coordinate Time
TCG Geocentric Coordinate Time
TDB Barycentric Dynamic Time
tMSP Transitional Millisecond Pulsar
ToA Time of Arrival
TT Terrestrial Time
UTC Universal Coordinated Time
VLBI Very-Long-Baseline interferometry
WAPP Wideband Arecibo Pulsar Proces-

sors
WD White Dwarf
WFC Wide Field Channel
XCOR Arecibo three-level Autocorrelation

Spectrometer



12 Contents

Physical and Astronomical Constants

Speed of light c 299 792 458 m s−1

Newton constant of gravitation G 6.674 08(31)× 10−11 m3 kg−1 s−2

Planck constant h 6.626 070 040(81)× 10−34 J s

Elementary charge e 1.602 176 6208(98)× 10−19 C

Electron mass me 9.109 383 56(11)× 10−31 kg

Proton mass mp 1.672 621 898(21)× 10−27 kg

Boltzmann’s constant kB 1.380 648 52(79)× 10−23 J K−1

Astronomical unit AU 149 597 870 700 m

Parsec pc 3.085 675 581 491 367 3× 1016 m

Julian year yr 31 557 600 s

Solar mass M� 1.988 55(25)× 1030 kg

Solar mass in units of time T� = GM�/c
3 4.925 490 947× 10−6 s

Nominal Solar radius R� 695 700 m

Main pulsar data analysis software used in this thesis

Package Used for References Website

PRESTO Pulsar searching Ransom (2001) http://www.cv.nrao.edu/
~sransom/presto

PSRCHIVE
Pulsar data
reduction

Hotan et al. (2004)
van Straten et al. (2012) http://psrchive.sourceforge.net

DSPSR Folding van Straten & Bailes (2011) http://dspsr.sourceforge.net

TEMPO Timing − http://tempo.sourceforge.net

PSRALEX
T0-search, orbital
variability studies This thesis http://github.com/

alex88ridolfi/PSRALEX

modelRVM
Modelling of
relativistic spin
precession

Desvignes et al. (in prep.) http://github.com/gdesvignes/
modelRVM

http://www.cv.nrao.edu/~sransom/presto
http://www.cv.nrao.edu/~sransom/presto
http://psrchive.sourceforge.net
http://dspsr.sourceforge.net
http://tempo.sourceforge.net
http://github.com/alex88ridolfi/PSRALEX
http://github.com/alex88ridolfi/PSRALEX
http://github.com/gdesvignes/modelRVM
http://github.com/gdesvignes/modelRVM
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1.1 The discovery of radio pulsars

The possibility of the existence of extremely dense objects, even denser than white dwarfs (WDs),
had already been put forward by many theoreticians in the first half of the XX century. Shortly
after the neutron was discovered by James Chadwick in 1932, Baade & Zwicky (1934) proposed
that a supernova explosion could result in the formation of a cold and very compact neutron
star (NS), whose density could exceed that of nuclear matter (Oppenheimer & Volkoff, 1939).
Later, Colgate & White (1966) predicted that, in the explosion, the conservation of magnetic
flux and angular momentum would allow the star to retain a strong magnetic field and to reach
spin frequencies of tens or hundreds of Hz. This would result in the emission of electromagnetic
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waves, as suggested by Hoyle et al. (1964) and Pacini (1967), who proposed this mechanism as
the source of energy of the observed X-ray emission in the Crab Nebula.

The confirmation of this picture arrived in the year 1967. At the Mullard Radio Astronomy
Observatory in Cambridge (UK), Anthony Hewish and his student Jocelyn Bell were carrying
out a survey to study the scintillation in the interplanetary medium, at a frequency of 81.5 MHz.
During their analyses, they detected an extremely regular pulsed signal, repeating with a period
of ∼ 1.337 s. The signal appeared every day at the same sidereal time, thus suggesting a non-
terrestrial origin. Other hints, such as the inability to measure the parallax, pointed towards
a position of the source well outside the Solar System. The measurability of some frequency
dispersion within the 1-MHz wide band of the receiver further corroborated the hypothesis that
the object (named CP 1919) was located at Galactic distance scales. Shortly later, the term
“pulsar” (standing for PULSating stAR) was coined by the journalist A. R. Michaelis to refer to
the newly discovered class of objects.

CP 1919, presented in the paper by Hewish et al. (1968) and nowadays known as PSR
B1919+21, was shortly followed by the discovery of another three pulsating sources with similar
properties (Pilkington et al., 1968). This fostered the development of a wealth of different theo-
ries to explain the observed properties of these objects. Hewish et al. (1968) already suggested
that a pulsed radiation with the periodicity of CP 1919 and with its remarkable stability could
have been produced by the radial oscillations of either a WD or a NS. Burbidge & Strittmatter
(1968) and Saslaw et al. (1968) proposed that the periodic emission could have derived from
an orbital motion, whereas Ostriker (1968) hypothesized hot spots on the surface of a rotating
WD as the source of emission. On the contrary, Gold (1968) suggested that the pulsations were
originated by a rotating NS.

Over time, the latter model was the only one that survived the new observational evidence
that came along with the new discoveries. For instance, the observation of a slow-down in the
pulsation rate in several sources was incompatible with the orbital motion scenario, since the
latter would rather imply an increase in the rate, as a consequence of the orbital energy loss via
emission of gravitational waves. The discoveries of the Vela pulsar (Large et al., 1968) and the
Crab pulsar (Staelin & Reifenstein, 1968; Comella et al., 1969), which showed pulse frequencies
of ' 11 Hz and ' 30 Hz, respectively, ruled out all the WD-based models. Indeed, such short
periodicities could not be explained by any oscillation modes of a WD. On the other hand, if
those frequencies were interpreted as rotational rates, WDs would have to be excluded since
they cannot spin that fast without disrupting their outer layers.

In the end, the model of a rotating NS, proposed by Gold (1968), was the only one able
to account for all the observed features, including, among other things, the association with
supernova remnants (Gold, 1969).

As of today, there is no doubt that pulsars are indeed NSs, although, after exactly fifty years
from their discovery, we are still uncertain about the precise mechanism that generates their
radio emission.

1.2 The birth of a pulsar

As is now well-known in stellar astrophysics, a NS can be considered as the endpoint of the
evolution of a massive (& 8 M�) main-sequence (MS) star. During its MS phase a star can
sustain itself against its own gravity thanks to the radiative pressure generated by nuclear
fusion (Vogt, 1926; Russell, 1931). This is achieved by converting hydrogen into helium through
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the proton-proton chain reaction, an exothermic process that releases the energy necessary to
keep the star structure in a stable equilibrium. When the hydrogen reservoir is depleted, the
star first shrinks, causing an increase in the core temperature, until the latter is high enough to
ignite the fusion of helium. The larger energy released by this process makes the star expand
and enter the so-called giant phase. When helium is also depleted, a new contraction followed
by a heating and the burning of heavier elements occurs. For sufficiently heavy stars (& 8 M�)
the cycle continues until iron (56Fe) is burned. Contrary to the previous reactions, the fusion of
56Fe is an endothermic process, meaning that there is no associated release of energy. Rather,
energy has to be provided to make the process happen. As a result, the star is no longer able
to counteract its self-gravity and, therefore, the collapse is unavoidable. In this event, called
core-collapsed supernova, about 1010 times the luminosity of the Sun is released in a tremendous
explosion (Arnett, 1996). While the outer layers are violently ejected to form a supernova
remnant (SNR), the core implodes. If the latter has a mass larger than the Chandrasekhar mass
(' 1.44 M�; Chandrasekhar, 1931, 1935) the collapse will continue until the matter is confined
to a radius of ∼ 10 km (Lattimer & Prakash, 2001). In such a small volume, the densities
reached are of the order of the atomic nuclei, ∼ 1014 g cm−3. In such conditions, neutrinos,
being extremely weakly interacting particles, can still leave the star undisturbed. For protons
and electrons, on the other hand, these densities are so high that they fuse together to form
neutrons (a process referred to as neutronization of matter, or inverse-β decay). A new force,
quantum in nature because due to the pressure of a degenerate gas of fermions (the neutrons),
soon builds up to counteract gravity. A neutron star is born.

1.2.1 The structure of a neutron star

The first attempts to build a consistent model of the interior of a NS were made by Oppen-
heimer & Volkoff (1939) and Tolman (1939), who first devised the basic equation for building
neutron star models, nowadays called the Tolman-Oppenheimer-Volkoff equation. Since then,
many models have been proposed. Despite that, the exact composition of a NS is still an open
astrophysical issue.

Although differing from one another on the details, most models agree on the fact that a NS
must be constituted by a number of layers, where matter has different densities and states. Also,
by using the inferred NS radius (∼ 10 km) and mass (∼ 1.4 M�) mentioned above and the typical
physical properties of the progenitor stars, it is possible to estimate the order of magnitude of
some basic characteristics of NSs (and, thus, of pulsars), on which all models agree. In particular,
by using the conservation of angular momentum during the supernova explosion, it is easy to
show that the resulting NS must rotate much faster than the progenitor star, reaching rotational
periods of the order of tens of milliseconds. Similarly, from the conservation of magnetic flux, it
is possible to derive a typical NS surface magnetic flux density of the order of 1010−12 G. These
estimates are in excellent agreement with the observational evidence.

1.3 The pulsar “Standard Model”

Although we are still far from having a deep understanding of all the physical processes under-
lying the radio pulsar phenomenon, many observed characteristics are excellently explained by
a simplified model that is now widely accepted among pulsar astronomers, and that was first
developed by Goldreich & Julian (1969) under specific assumptions. Over the years, it has been
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further improved, by relaxing some of these assumptions, and today’s version of it could be
referred to as the current “Standard Model” for pulsars.

In this model, the NS, placed initially in a vacuum, is endowed with a perfectly dipolar
magnetic field B whose magnetic moment, m, is misaligned by an angle αm (called magnetic
inclination) with respect to the pulsar spin axis, S (Fig. 1.1). The fast rotation of the magnetic
field induces an electric field that, in turn, exerts a strong force that rips off the charged particles
from the NS surface, then forming a dense plasma that surrounds the star. On the other hand,
the plasma particles, bound to the magnetic field lines, can co-rotate with the star only up to a
distance, called light cylinder radius (RLC), at which its tangential speed is equal to the speed
of light, c, namely:

RLC =
cP

2π
' 4.77× 104 km ·

(
P

s

)
, (1.1)

where P is the pulsar spin period. This radius represents the outer limit of the pulsar magneto-
sphere, which is the region where the magnetic field lines close within RLC, and thus where the
charged particles can actually be confined. The coherent radiation that we observe in pulsars,
though, is generated in the region just above the two magnetic poles, called polar gaps. Here the
charged particles are accelerated along the open field lines, producing highly collimated radio
“beams” of radiation. If the observer is fortuitously placed in the right position, it will be swept
by at least one of the two beams, once per rotation of the NS. Therefore, the pulsar appears to
us as a “cosmic lighthouse”, as we receive the pulsar radiation with a periodicity that matches
the NS rotation period.

1.3.1 Dipole radiation, spin-down and braking index

The ultimate source of energy of a pulsar spinning with angular frequency Ω = 2π/P , is its
rotational kinetic energy:

Erot =
1

2
I Ω2 , (1.2)

where I is the NS moment of inertia, typically assumed to be 1045 g cm2. The rate of energy
loss, also referred to as spin-down luminosity, Lsd, can be obtained simply by taking the time
derivative:

Lsd = − d

dt

(
1

2
I Ω2

)
= −I Ω Ω̇ = 4π2 I Ṗ

P 3
. (1.3)

This power is released in several ways, such as high-energy emission, a wind of particles and, for
a very small fraction, through magnetic dipolar emission. Indeed, from classical electrodynamics
(e.g. Jackson, 1962) it is known that a magnetic dipole with magnetic moment m, rotating with
an angular frequency Ω, radiates power in the form of electromagnetic waves at a rate of:

Ėdipole =
2

3

|m|2Ω4 sin2 αm

c3
, (1.4)

where, again, αm is the angle between m and the rotation axis. Although not realistic, it is
useful to make the approximation that all the pulsar rotational energy is lost only through the
latter mechanism. Under this assumption, we can equate Eq. (1.3) to Eq. (1.4) to derive the
pulsar spin-down, Ω̇:

Ω̇ = −
(

2|m|2 sin2 αm

3 I c3

)
Ω3 . (1.5)
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Figure 1.1: Schematic representation of
the pulsar “Standard Model”: the magne-
tosphere (light blue) is confined to the last
closed line of the dipolar magnetic field.
The latter is in turn determined by the
light cylinder, an imaginary cylinder of ra-
dius RLC, namely the distance at which the
corotation speed equals the speed of light.
The pulsar radiation beam (red) is colli-
mated along the magnetic moment, m, and
misaligned with respect to the spin axis, S,
by an angle αm.

Hence, the spin-down rate is proportional to the third
power of the spin frequency. However, this is the case
only if the dipole radiation is the only process in-
volved. Because, in reality, this is not true, Eq. (1.5)
can be written in a more general form:

Ω̇ = −KΩn ⇔ ḟ = −Kfn ⇔ Ṗ = KP (2−n) ,
(1.6)

where K is a constant and we have also rewritten the
same equation in terms of the spin period P = Ω/(2π)
and spin frequency f = 2π/Ω. In Eq. (1.6), n is
referred to as the braking index. This quantity is im-
portant because its value depends on the physical pro-
cesses involved in the emission, and thus is a potential
probe for the pulsar energy loss mechanism. Indeed,
by further differentiating Eq. (1.6) with respect to
time and by using it again to eliminate the constant
K, we have:

n =
ff̈

ḟ2
, (1.7)

that is, the braking index can be obtained by only
measuring the spin frequency and its first two time
derivatives. In practice, this is difficult, since f̈ is
often dominated by timing noise or it is too small to
be measured.

1.3.2 Characteristic age

Another important quantity that can be estimated by
simply measuring P and Ṗ is the age of the pulsar.

Let us take Eq. (1.6) written in terms of P and Ṗ
and let us separate the variables:

dP

dt
= KP (2−n) ⇒ P (n−2)dP = Kdt . (1.8)

We can now integrate both members, assuming n 6= 1,
from the birth of the pulsar (t = 0) to the current time
τp: ∫ P

P0

P (n−2)dP = K

∫ τp

0
dt , (1.9)

where P0 ≡ P (t = 0) is the pulsar spin period at birth.
Solving the integrals, we find:

τp =
P

(n− 1)Ṗ

[
1−

(
P0

P

)n−1
]
. (1.10)

If we make the further assumptions that the current pulsar spin period is much larger than its
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value at birth (P0 � P ) and that the only source of energy loss is the magnetic dipole emission
(n = 3), Eq. (1.10) reduces to:

τp(P0 � P ;n = 3) ≡ τc =
P

2Ṗ
. (1.11)

This quantity is called characteristic age and should be considered as an order-of-magnitude
estimate of the real age of the pulsar.

1.3.3 Characteristic magnetic field

The strength, B, of a dipolar magnetic field scales with the distance r from the magnetic moment
as:

B(r) ∝ |m|
r3

. (1.12)

Under the assumption of magnetic braking as the only spin-down mechanism (n = 3) we can
solve Eq. (1.4) for |m| to derive an expression for the magnetic field strength, Bs, at the surface
of a NS of radius R (e.g. Lorimer & Kramer, 2004):

Bs ≡ B(r = R) =

√
3c3

8π2

I
R6 sin2 αm

PṖ '
(

Ṗ

10−15

)1/2

×
(
P

s

)1/2

× 1012 G , (1.13)

where, typically, it is assumed R ∼ 10 km, I ' 1045 g cm2 and αm = 90 deg.

1.4 The pulsar “fauna”

According to the ATNF pulsar catalogue1 (version 1.55, Manchester et al. 2005a) and including
two newly discovered pulsars discussed in this thesis, 2575 rotation-powered pulsars are currently
known. Almost all (precisely 97%) are seen in the radio band, whereas the remainder are
observed only at higher frequencies.

Many pulsars share some common features that are used to characterize the overall popula-
tion. A convenient way to do so is to place the pulsars in a graph with P versus Ṗ , which can
be seen as the equivalent of the Hertzsprung-Russell diagram for normal stars. Indeed, as the
latter, not only does the P -Ṗ diagram spotlight the different pulsar populations, it also allows
us to better understand the evolution of the single objects, as we shall see. The P -Ṗ diagram
for the currently known total pulsar population is shown in Fig. 1.2.

There exist a few main groups of pulsars that differentiate themselves for their values of P
and Ṗ , and for this reason they cluster together in different parts of the diagram, some of which
are highlighted by ellipses in Fig. 1.2. The groups themselves have fairly fuzzy boundaries that
can overlap, so they should not be regarded as definitive, rather just as a guidance. In the
following of this section we discuss in more detail only those categories that are relevant for the
work of this thesis.

1.4.1 Young pulsars

We regard as young, those pulsars that show very small characteristic ages (τc . 100 kyr) and
that are very likely to have resulted from a recent supernova explosion. Many of these objects are

1http://www.atnf.csiro.au/research/pulsar/psrcat

http://www.atnf.csiro.au/research/pulsar/psrcat
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Table 1.1. Main classes of pulsars with corresponding parameter ranges.

Group P (s) Ṗ (s s−1) Bs (G) τc (yr)

Young ∼ 0.01− 1 & 10−15 ∼ 1012 − 1014 . 105

Ordinary ∼ 0.1− 5 ∼ 10−17 − 10−12 ∼ 1010 − 1013 ∼ 105 − 109

MRPs ∼ 0.01− 0.2 . 10−18 ∼ 109 − 1011 & 108

MSPs ∼ 0.001− 0.1 . 10−18 ∼ 108 − 1010 & 108

Magnetars ∼ 2− 12 ∼ 10−15 − 10−9 ∼ 1013 − 1015 ∼ 104 − 107

indeed located in the middle of a SNR which can be clearly associated with the birth of the pulsar
(a striking example is the Crab pulsar, Staelin & Reifenstein 1968). Young pulsars typically have
relatively slow spin periods (P ∼ 0.01− 1 s) and very large spin period derivatives (Ṗ & 10−15),
implying very high spin-down luminosities and strong magnetic fields (Bs ∼ 1012−14 G). Many of
them exhibit red noise in their spin-down behaviour, with the occasional occurrence of glitches,
i.e. sudden changes in the spin period and spin period derivatives. These pulsars are located
around the top-centre region of the P -Ṗ diagram.

1.4.2 Ordinary pulsars

Because of the energy loss discussed above, a young pulsar will eventually move along a south-
east track in the P -Ṗ diagram, reaching the big cluster of the so-called ordinary pulsars2 in the
centre-right region of the P -Ṗ diagram. As their position suggests, they are characterized by
long periods (P ∼ 0.1 − 5 s), high spin-down rates (Ṗ ∼ 10−17 − 10−12) and strong magnetic
fields (Bs ∼ 1010−13 G). The transition from a young to an ordinary pulsar can occur over time
scales of 105 − 109 yr, that are the typical values of the characteristic ages measured for this
class of objects.

If not perturbed by other phenomena, an ordinary pulsar continues to spin down, until
it crosses the so-called death line in the P -Ṗ diagram. At this point, the physical processes
acting in the pulsar magnetosphere become too weak to keep the radio emission active (Chen &
Ruderman, 1993). As a consequence, the pulsar becomes undetectable.

1.4.3 Recycled pulsars

Even though pulsars naturally spin down through the emission of electromagnetic radiation, they
can also undergo an increase in their rotational speed. This is the case when a pulsar is part of
a binary system with a MS companion star that eventually evolves into a giant or supergiant
and fills its Roche lobe. When this happens, the pulsar’s gravitational pull is predominant at
the inner Lagrangian point (L1) of the system. Through this point, the companion starts losing
mass from its outer layers. The matter is accreted by the pulsar, which not only gains mass,
but also angular momentum, and thus spins faster and faster over time (e.g. Radhakrishnan &
Srinivasan, 1982; Podsiadlowski et al., 2002). This process, called recycling (e.g. Bhattacharya
& van den Heuvel, 1991; Tauris & van den Heuvel, 2006), can last from 107 to 109 yr and the
result is a pulsar with a spin period in the range ∼ 1 − 100 ms. Recycled pulsars also show a
much smaller magnetic field strength, and a consequent spin-down rate of orders of magnitudes
smaller than that of ordinary pulsars. Indeed, it is a common belief that the accretion of matter

2In the literature, it is also customary to refer to this class with other adjectives, such as “normal” or “canonical”
with the same meaning as “ordinary”, as used in this thesis.
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provokes, among other things, a quenching of the pulsar magnetosphere, although the details of
the process are still poorly understood.

Even though they all share the features described above, recycled pulsars can be divided into
further sub-classes, of which the most relevant for this thesis are discussed in the following.

Millisecond pulsars

Millisecond pulsars (or MSPs, for short), in the standard formation scenario (e.g. Alpar et al.,
1982), are the typical result of a recycling process occurred in a Low-Mass X-ray binary (LMXB),
i.e. a binary system consisting of a pulsar and a MS star of mass smaller than ∼ 1 M�. The
low mass implies that the lifetime of the companion star in its evolved giant phase, and thus the
lifetime of the accretion process, is of the order of 109 yr. This is enough to bring the pulsar
spin period down to . 10 ms and its magnetic field to ∼ 108 G. Because of these characteristics,
MSPs are located in the bottom-left corner of the P -Ṗ diagram. Having the smallest spin-down
rates among the known pulsar population, and being glitches extremely rare events in this class
of objects, MSPs represent the most stable and precise astrophysical clocks in the Universe.

It is also an observational fact that the majority of MSPs are found in binary systems, in most
cases with a low-mass WD companion in a circular orbit (attained through tidal circularization
processes) as we would naturally expect from the theory of their formation outlined above.
Nevertheless, some 40% of them are isolated.

The existence of isolated MSPs is probably related to two other sub-classes of MSPs that
have been gaining more and more importance over the last decade, for various reasons. These
are the “black widow” pulsars (BWPs) and the “redback” pulsars (RBPs, see Freire 2005; Roberts
2013 for reviews). Both categories, together referred to as “spiders”, are characterized by very
short orbital periods of the order of a few hours, a very low-mass companion that is undergoing
mass loss and the often presence of eclipses in the pulsar radio signal. The distribution of the
companion mass in these systems shows a clear bimodality (see e.g. Fig. 1 in Roberts, 2013)
that is commonly used as the criterion to distinguish between the two classes: in BWPs the
companions have masses of . 0.1 M� and are typically being ablated by the strong wind of
the pulsar, which can make them completely stripped stars; on the other hand, in RBPs the
companions are heavier (∼ 0.1 − 0.5 M�) non-degenerate stars and their mass loss occurs via
Roche lobe overflow. Also, compared to BWPs, RBPs generally show longer eclipses (which can
obscure the pulsar signal for up to 60% of the orbit) and a much stronger orbital variability,
very likely due to the gravitational influence of the matter outflowing from the companion.

Since the discovery of PSR B1957+20, the first BWP found by Fruchter et al. (1988), the
relevance of the “spiders” in pulsar astrophysics has been constantly increasing, and the rea-
sons are manifold. Originally, it was believed that the strong ablation process seen in PSR
B1957+20 and similar objects could eventually make the companion star completely evaporate,
thus providing an explanation for the existence of isolated MSPs in the Galaxy. However, it
was later realized that the typical timescale for such a process would be too long (more than a
Hubble time) to complete and thus the idea was abandoned. A new burst of interest arose in
the late 2000’s as many new such systems were discovered with the γ-ray Fermi satellite (Ray
et al., 2012), which more than doubled the total BWP/RBP population in a matter of a few
years. In the same years, the redback pulsar PSR J1023+0038, formerly detected as a LMXB
(Bond et al., 2002; Thorstensen & Armstrong, 2005; Homer et al., 2006), was seen switching to
a radio-MSP state (Archibald et al., 2009), to then switch back to a LMXB state a few years
later (Stappers et al., 2014; Deller et al., 2015; Campana et al., 2016). This represented the
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Figure 1.2. Period−Period-derivative (P -Ṗ ) diagram for the currently 2021 pulsars (of a total popu-
lation of 2575) that are not associated with globular clusters and for which both the spin period and
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first direct evidence of the validity of the recycling model. PSR J1023+0038 is now considered
the archetype of a new class of “transitional MSPs” (tMSPs), namely RBPs that swing between
LMXB and radio-MSP states. As of today, in addition to PSR J1023+0038, another two tMSPs
are known: PSR J1824−2452I in the GC M28 (Papitto et al., 2013) and the newly discovered
PSR J1227−4853 (XSS J12270−4859 in its LMXB state, Roy et al., 2014; Bassa et al., 2014;
Bogdanov et al., 2014; de Martino et al., 2014; Roy et al., 2015).

In addition to the “spiders”, there are also another two sub-groups of MSPs that deserve a
particular mention. The first group is that of MSP-WD binaries in eccentric orbits (see Section
1.6.5), two representatives of which are PSR J2234+0511 (Antoniadis et al., 2016) and PSR
J1946+3417 (Barr et al., 2017). Even more interesting are the triple systems, i.e. MSPs with
two companion stars. To date, two such objects are known, namely PSR B1620−26 (Sigurdsson
et al., 2003) and PSR J0337+1715 (Ransom et al., 2014). In both cases the pulsar is part of a
hierarchical configuration, that is, the third body revolves around the inner binary system along
an orbit that is much wider than those of the other two stars. This is indeed one of the few
stable configurations in a three-body problem. For the sake of simplicity, the two triple systems
have been plotted as binaries in Fig. 1.2.

Mildly recycled pulsars

When a pulsar forms within either an Intermediate-Mass X-ray Binary (IMXB) or a High-
Mass X-ray Binary (HMXB), i.e. systems where the companion star has a mass in the range
∼ 0.1− 10 M� and & 10 M�, respectively (Tauris & van den Heuvel, 2006), the fast evolution
of the MS star implies a short-lasting accretion phase. As a consequence, the pulsar is only
partially spun-up and thus becomes a mildly recycled pulsar (MRP), with a spin period in
the range ∼ 10 − 200 ms. In addition to the spin-up, also the magnetic field quenching is
only partially fulfilled, as MRPs show surface field strengths between ∼ 109 − 1011 G. If the
companion star eventually explodes in a supernova (SN) event, it will leave a second neutron star
that will possibly remain bound to pulsar, thus forming a double neutron star system (DNS).
These systems are characterized by a large eccentricity, induced by the supernova explosion.
Examples of MRPs in a DNS are the Hulse-Taylor pulsar (PSR B1913+16, Hulse & Taylor,
1975) and PSR J0737−3039A/B (Burgay et al., 2003; Lyne et al., 2004). Alternatively, the
companion can end its life by ejecting its outer layers in the form of a planetary nebula and
leaving a massive carbon-oxygen WD (CO WD) or oxygen-neon-magnesium WD (ONeMg WD)
companion (Tauris et al., 2000, 2011, 2012). Binary systems so formed are characterized by low
orbital eccentricities, but generally not as low as the results of LMXB evolution (MSP-He WD
systems).

1.5 Pulsar phenomenology

Radio pulsars are characterized by peculiar phenomenological features that make them very
distinctive sources in the sky. Below we review the most important characteristics, easily rec-
ognizable in any pulsar observation. For a more complete discussion of the pulsar phenomenon,
we refer to Chapter 1 of Lorimer & Kramer (2004).
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Figure 1.3. Integrated pulse profiles of four extremely bright pulsars as observed at 1.4 GHz with the
Arecibo radio telescope. As can be seen, the profile morphology greatly varies from one pulsar to the
other. For three pulsars, namely PSR B1929+10, B1933+16 and B2020+28, the profile has been zoomed
in on the pulse region to better show the profile complexity. For PSR B1937+21, a full rotation is instead
displayed to show the presence of an interpulse separated by about ∼ 180 deg from the main pulse.

1.5.1 Single and integrated pulse profiles

The observed signal of a pulsar consists of a train of pulses emitted at intervals as long as the pul-
sar spin period. The shapes and intensities of the single pulses are generally extremely variable,
even between two subsequent rotations of the NS. However, if one adds up a sufficiently high
number (normally a few hundreds or thousands, Helfand et al. 1975) of single pulses coherently,
the resulting summed (or integrated) profile shows a remarkable stability over time, in a given
frequency band. The integrated profile can thus be considered as the “fingerprint” of a pulsar,
thanks to which the latter is distinctively recognizable.

Fig. 1.3 shows the detail of the integrated profiles of four bright pulsars of the Northern
Sky. As can be seen, the shape and the complexity can vary significantly from one pulsar to the
other. In some cases, the profile can be the result of the blending of two (as for PSR B2020+28)
or more (as for PSR B1929+10) components.

The profile shape and its duty cycle (i.e. the fraction of the pulsar period that shows
emission) also depends on the magnetic inclination angle, αm. If αm ' 90 deg, it is very likely
for the observer to see the emission coming from both magnetic poles. In this case the profile
shows a so-called interpulse, that is, a second pulse which is separated by about 180 deg (i.e.
half a rotation of the NS) from the main pulse. A clear such example is visible in the integrated
pulse profile of PSR B1937+21 (Fig. 1.3), the first MSP ever discovered (Backer et al., 1982).
On the other hand, if αm is very small, it is possible that our line of sight will fall within the
beam of emission for most of the time, resulting in a profile that occupies most of the pulsar
rotation cycle (see e.g. the profile of PSR B0826−34, Fig. 1.2 of Lorimer & Kramer 2004).
Observationally, MSPs tend to have pulse profiles with larger duty cycles compared to ordinary
pulsars. This suggests that the emission beam in the former is generally wider than in the latter.

Another important characteristic, which is more prominent in young pulsars, is the depen-
dence of the integrated pulse profile on the observing frequency. This phenomenon has been
mainly justified by arguing that the emission at different frequencies occurs in the magneto-
sphere at different heights from the surface, resulting in different profile shapes (Komesaroff,
1970; Cordes, 1978).
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1.5.2 Emission spectra

Another quantity that is strongly dependent on the observing frequency, νobs, is the pulsar
mean flux density, Smean, that is the integrated intensity of the pulse profile, averaged over one
rotation period. For most of the known pulsars, this dependence comes in the form of an inverse
power-law relation:

Smean(νobs) ∝ (νobs)
% , (1.14)

where % is the spectral index. The average measured value for the latter is % ' −1.8 ± 0.2
(Maron et al., 2000) with no substantial difference between ordinary pulsars and MSPs (Kramer
et al., 1998; Toscano et al., 1998). A small fraction of pulsars show more complex behaviours:
for some of them the observed spectrum cannot be fitted by Eq. (1.14) and instead requires
a two-component power-law; in some other a spectral turnover is observed, with the emission
peaking somewhere between 100 MHz (Sieber, 1973; Kuniyoshi et al., 2015) and about 1 GHz
(Kijak et al., 2011; Rajwade et al., 2016), and then decreasing again at lower frequencies.

Excluding magnetars (young pulsars which have very peculiar emission spectra), the current
record for the highest-frequency detection of a radio pulsar is the case of pulsar PSR B0355+54,
which has recently been detected up to 138 GHz (Torne et al., in prep.).

1.5.3 Polarization

Having a fraction of linear polarization of up to 100% and an average circular polarization of
about 10%, pulsars are among the most polarized sources known in the Universe. By using
the two orthogonal receptors that virtually all modern radio telescope receivers have, it is also
possible to measure the linear polarization position angle (PA), which is of particular interest
if used in combination with the Rotating Vector Model (RVM, Radhakrishnan & Cooke, 1969;
Komesaroff, 1970). Polarization will be thoroughly discussed in Section 2.6.2.

1.6 Scientific applications of pulsars

The ever-increasing interest that pulsar astronomy has generated over the decades is not only
due to the fascination that these exotic objects have per se, but also because pulsars have proved
to be incredibly versatile tools to study a number of astrophysical phenomena. Thanks to their
extreme rotational stability, pulsars can literally be used as super-precise clocks in different
astrophysical environments. Furthermore, as highlighted in Section 1.5.3, pulsars are highly
polarized sources. Polarization is another way of exploiting pulsars in other fields of physics and
astrophysics. Here follows a selection of the most relevant scientific applications of pulsars.

1.6.1 Interstellar medium and plasma physics

The pulsar low-frequency radio emission, as well as its large fraction of linear polarization,
are ideal tools to probe the ionized component of the Galactic interstellar medium (ISM). The
different propagation speed of the pulsar signal, from the source to the Earth, as a function of the
observing frequency (a phenomenon called dispersion, see Section 2.2.1) allows us to measure
the free electron content along the line of sight. Thanks to their large number, people were
able to use pulsars to build detailed maps of the electron density distribution in our Galaxy
(Cordes et al., 1991; Cordes & Lazio, 2002, 2003; Schnitzeler, 2012; Yao et al., 2016). Similarly,
combining such maps with polarimetric measurements of a large set of pulsars, the large-scale
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structure of the Galactic magnetic field has been inferred (Noutsos et al., 2008). Very recently,
the discovery of Fast Radio Bursts and the flourishing of the related research (e.g. Lorimer et al.,
2007; Thornton et al., 2013), is making the possibility of applying similar techniques to even the
intergalactic medium (IGM) a more concrete prospect for the near future.

Apart from ISM/IGM studies, pulsars are important tools for the study of plasma physics
under extreme conditions, as their emission originates near the NS surface, where the gravita-
tional and magnetic field strengths reach exceptional values, unattainable in any laboratory on
the Earth. Pioneering studies on the pulsar emission properties were conducted, e.g., by Rankin
(1983a,b, 1986, 1990) and Kramer et al. (1997).

1.6.2 Ultra-dense matter and NS equations of state

Even though the exact composition and state of the matter in a NS is still unknown, it is believed
that the density at the NS core is higher than that of an atomic nucleus (Lattimer & Prakash,
2004). There exist a number of models that can be indirectly tested through observations of
pulsars. This gives us a unique chance to study the physics of matter at supra-nuclear density.
By observing pulsar binary systems, sometimes combining radio observations of the pulsar with
optical data for the companion, it is possible to measure the mass of the NS. Because the
proposed equations of state (EoS) make predictions on what would be the maximum allowed
mass for a stable NS, more and more measurements of the masses of new pulsars have constantly
raised the value of the maximum observed mass for a NS. This way, a number of models can
be ruled out for their inability to account for such large masses. Currently, the most stringent
limits are set by the measured mass of ' 2 M� in the pulsars PSR J1614−2230 (Demorest et al.,
2010) and PSR J0348+0432 (Antoniadis et al., 2013).

Recently, however, the discovery of a 2-M� pulsar by Antoniadis et al. (2013) has significantly
restricted the number of possibly correct models, ruling out all of those that predict a maximum
stable NS mass below that value.

1.6.3 General Relativity and alternative theories of gravity

Pulsars in binary systems, especially those with tight orbits, represent outstanding testbeds for
General Relativity (GR). Devised by Albert Einstein around 1915 (e.g. Einstein, 1915), GR
is still, one hundred years later, the most successfull theory of gravitation. After successfully
passing various tests in the weak-field regime with Solar System experiments in the first half
of the XX century (e.g. Eddington 1919; for a comprehensive review see Will 2001), it was
not until the discovery of binary pulsars that the same tests, in the strong-field regime, were
possible. Fortuitously, the first binary pulsar discovered (i.e. PSR B1913+16; Hulse & Taylor
1975) was a DNS in a very compact orbit with an orbital period of 7.75 h, which implies that
relativistic effects are measurable. In this binary, the two NSs can be effectively treated as two
point masses, thus making the system an excellent laboratory for GR. The pioneering work done
on this system by Barker & O’Connell (1975) and Taylor & Weisberg (1982, 1989) paved the
way to a series of analogous tests applied to other binary pulsars in the successive years. The
current state of the art is PSR J0737−3039, the only DNS known where both NSs are detected
as pulsars (Burgay et al., 2003; Lyne et al., 2004). This binary, with an extremely tight orbit of
only 2.4 h, has allowed the most precise test of GR to date, which showed that Einstein’s theory
is correctly describing gravity up to a precision of at least 0.05% (Kramer et al., 2006).

As has happened for Newtonian gravitation, scientists have good reasons to believe that
even GR cannot be the ultimate theory in describing this fundamental force. For this reason,
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several alternative theories of gravity have been proposed over the decades (e.g. Brans & Dicke,
1961; Damour & Esposito-Farese, 1992; Hořava, 2009). Some of these theories, such as those
that introduce an additional scalar field, have also been tested through the study of a few tight
MSP-WD binary systems and very stringent constraints on them have recently been derived
(Freire et al., 2012).

Even though binary systems are typically the main tools used to test alternative theories of
gravity, it has been shown that even isolated pulsars can provide important insights. As a recent
example, Shao et al. (2013) derived the best limits on the isotropic violation of local Lorentz
invariance by studying the possible pulse profile variations of two isolated MSPs.

1.6.4 Pulsar Timing Arrays and detection of nHz gravitational waves

Another remarkable application of pulsar astronomy is the detection of Gravitational Waves
(GWs), tiny ripples in space-time that propagate at the speed of light, predicted by GR. The
first evidence of their existence was indeed obtained by measuring the orbital decay in PSR
B1913+16 over a few years (Taylor & Weisberg, 1982). Thirty-four years later, in February 2016,
the Laser Interferometer Gravitational-Wave Observatory (LIGO) collaboration announced the
first direct detection, through their two ground-based laser interferometers, of a GW coming
from a black hole (BH) merger.

Sazhin (1978) was the first to realize that the passage of a GW would also have an effect
on the propagation time of the signal of a pulsar. A few years later, Hellings & Downs (1983)
pointed out the possibility of detecting very low-frequency (nHz) GWs by studying the cross-
correlation in the signals of an array of MSPs located at different sky positions. Such calculations
were then further developed by e.g. Jenet et al. (2004, 2005) and Sanidas et al. (2012).

At present, the detection of nHz GWs with pulsars is pursued by three large collaborations:
the European Pulsar Timing Array (EPTA, Kramer & Champion, 2013), the Australian Parkes
Timing Array (PPTA, Hobbs, 2013) and the North-American Observatory for Gravitational
Waves (NANOgrav, McLaughlin, 2013). The data collected are also shared by the three groups
in the framework of a worldwide collaboration (the International Pulsar Timing Array, or IPTA,
Manchester 2013) with the aim of building the most sensitive GW detector in the nHz regime.

1.6.5 Stellar and binary evolution

Because pulsars are the result of the death of the progenitor star, their study can provide insights
into the physics of supernovae. For instance, the space velocity as well as the polarimetry
(e.g. Noutsos et al., 2012) of a pulsar can be related to possible asymmetries in the supernova
explosion, which give the NS a “kick” (e.g. Spruit & Phinney, 1998; Janka, 2007).

Also, pulsars in binary systems are key tools to understand stellar evolution. The ever-
increasing variety of system types, with different companion stars and orbital characteristics,
poses a continuous challenge in our attempt to justify their existence within a coherent picture.
While the evolutionary paths of the most common types of binary pulsars have mostly been
successfully modelled (such as circular pulsar-He WD and pulsar-CO WD binary systems, Tauris
& Savonije 1999; Tauris et al. 2000, 2011, 2012) and the recycling model has been confirmed
by the discovery of tMSPs (e.g. Papitto et al., 2013), other more exotic, recently found binaries
require more complicated explanations. Notable examples are the highly eccentric binary PSR
J1903+0327, composed by a MSP and a MS star, whose probable origin from a hierarchical
triple system has been discussed by several authors (e.g. Freire et al., 2011; Portegies Zwart
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et al., 2011). Similarly, a few newly discovered eccentric pulsar-WD systems have fostered a
series of non-standard evolutionary paths that invoke a rotationally-delayed accretion-induced
collapse of a spinning WD (Freire & Tauris, 2014), or even the interaction of the binary with a
circumbinary disk (Antoniadis, 2014).

1.6.6 Globular cluster studies

The subset of pulsars residing in globular clusters, besides being exploitable individually as any
other pulsar, can be used together to provide unique insights into the many characteristics of
these groups of stars that are still not fully understood (e.g. Hessels et al., 2015). Being the
“protagonists” of this thesis, we refer to Chapter 3 for a detailed discussion of the many peculiar
applications of pulsars in GCs.

1.7 Thesis outline

This thesis deals with the study of pulsars in globular clusters, through the application of a wide
range of analysis techniques that are also used in other fields of pulsar astronomy. In particular,
this work focuses on the pulsars of two well-known GCs, namely 47 Tucanae and M15. Here
follows a brief outline of the thesis.

• In Chapter 2 we give the reader a general overview of the main issues related to
the observation of a pulsar. We first discuss the relevant astrophysical phenomena
caused by the presence of the interstellar medium that astronomers need to take into
account when dealing with pulsar data. With these in mind, we describe the typical
instrumentation used to carry out pulsar observations, from the telescope to the data-
recording machines. Then, the three main data analysis techniques used in this thesis
are discussed in detail. These are: (a) pulsar searching, needed to discover new pulsars
and/or re-detect the known ones; (b) pulsar timing, which is the main tool used to
extract information from pulsars and which has been extensively utilized throughout
this thesis; (c) polarimetry, an indispensable tool to access some specific properties of
pulsars and very often complementary to pulsar timing.

• In Chapter 3 we discuss about pulsars in globular clusters. The currently known
GC pulsar population is presented, with a focus on the differences among the different
clusters. Then, we examine the many possible scientific applications of GC pulsars,
with a particular regard to how their collective properties can tell us a great deal about
the GC physics.

• In Chapter 4 we present the analysis of about two decades of data of the globular
cluster 47 Tucanae, taken with the Parkes radio telescope. After a general introduction
of the cluster, we present up-to-date timing solutions for all the 25 pulsars. Of these,
23 are phase-connected and several of them are completely new.

• InChapter 5 we utilize the derived timing solutions to derive some important physical
properties of 47 Tucanae, such as the distance and the proper motion. Among other
things, we also confront our results with the hypothesis of having an intermediate-mass
black hole at the centre of the cluster.
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• In Chapter 6 we focus on a subpopulation of the pulsars in 47 Tucanae, namely
that of the black widows/redbacks. We present a detailed characterization of several
of these pulsars and discuss about their strong orbital variability.

• In Chapter 7 we revisit five of the eigth known pulsars in the globular cluster M15.
Thanks to data acquired in full-polarimetry mode from the year 2014, we present, for
all the five pulsars, accurately calibrated polarimetric profiles. The same polarization
data are used to study the relativistic spin precession effect in the pulsar M15C, a
double neutron star system in a very eccentric orbit.

• In Chapter 8 we summarize our results and discuss possible future prospects, espe-
cially in the context of the upcoming next generation of radio telescopes such as FAST,
MeerKAT and the SKA.
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Observing a pulsar
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2.1 Introduction

The exploitation of pulsars for scientific purposes requires the utilization of advanced technol-
ogy, both in hardware and software. In this thesis, a broad range of instrumentation set-ups
and analysis techniques have been extensively used. In this chapter, we review in detail the
fundamental steps that are needed to do science with pulsars.

In Section 2.2 we discuss the possible impact that the interstellar medium can have on the
pulsar signal during its long journey from the neutron star to the Earth. This is of extreme
relevance when designing both a telescope data acquisition system and data analysis software.

In Section 2.3 we present the typical instrumentation set-up used for pulsar observations.
We describe how the pulsar radiation is collected and then pre-processed in hardware and/or
software, before being stored for successive analysis.

In Section 2.4 we show the way new pulsars are typically searched for, which we refer to as
pulsar searching. This requires the implementation of advanced time- and/or frequency-domain
algorithms, of which we describe the most important examples.

In Section 2.5 we thoroughly discuss pulsar timing, the most important and most widely
used tool to derive the physical parameters of interest of pulsars and their environments.

In Section 2.6 we deal with pulsar polarimetry. Since pulsars are typically highly polar-
ized sources, polarimetry provides additional insights into the physics of pulsars and of their
surrounding environments.

2.2 Effects of the interstellar medium

Before reaching the observer on the Earth, the electromagnetic waves produced by a pulsar must
travel a long distance, very often of the order of a few kpc, within our Galaxy. The latter is
permeated with the interstellar medium (ISM), mostly ionized gas, which can very often be also
inhomogeneous and turbulent. The interaction of the broad-band pulsar radiation with the ISM
results in a number of physical effects that cause significant changes in the former. These effects
must be taken into consideration and corrected if one wants to recover the original signal.

Dispersion is an effect that always occurs in the presence of a homogeneous plasma. Faraday
rotation, instead, also requires the plasma to be magnetized. Another two effects, namely scat-
tering and scintillation, are effective only if the plasma is also inhomogeneous and/or turbulent.

2.2.1 Dispersion

In a vacuum, an electromagnetic wave of any frequency ν propagates at the speed of light, c.
On the other hand, it can be shown from Maxwell’s equations that, if the radiation travels in
a medium, its speed (more precisely, its group velocity, vg) will be reduced by a frequency-
dependent factor, called refractive index, n(ν), as:

vg(ν) = n(ν) · c . (2.1)

The refractive index is always < 1 and its exact value also depends on the physical properties of
the medium. Neglecting higher order terms and corrections due to the presence of a magnetic
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field, the refractive index of the ionized ISM is (e.g. Lorimer & Kramer, 2004):

n(ν) =

√
1−

(
νp

ν

)2

. (2.2)

Here νp is the so-called plasma frequency, defined as:

νp =

√
e2ne

πme
' 8.5 kHz

(
ne

cm−3

)1/2

, (2.3)

where e is the charge of the electron, me its mass, and ne is the electron number density of the
plasma.

Eq. (2.2) tells us that, in a medium, electromagnetic waves propagate faster at higher
frequencies. In the limit ν → ∞, the refractive index n(ν) → 1 and the propagation speed is
the same as in a vacuum (vg = c). On the other hand, electromagnetic waves with a frequency
ν < νp do not propagate at all.

From Eq. (2.1) it is possible to calculate the delay ∆t(ν,∞) with which an electromagnetic
wave of frequency ν would reach the Earth, compared to another one of infinite frequency:

∆t(ν,∞) =

[ ∫ d

0

dl

vg(ν)

]
− d

c
, (2.4)

where the integral is calculated along the optical path from the radiation source to the Earth
and d is the distance between the two. Because for typical pulsar observations ν � νp, it is
possible to expand the dispersion relation (Eq. 2.2) as a Taylor series up to the first order and
substitute it into Eq. (2.4), thus obtaining:

∆t(ν,∞) '
1

c

∫ d

0

[
1 +

1

2

ν2
p

ν2

]
dl − d

c
=

e2

2πmec

1

ν2

∫ d

0
ne dl ≡ D · DM

ν2
. (2.5)

Here we have defined the quantity D .
= e2/(2πmec), called dispersion constant, and most im-

portantly the quantity:

DM
.
=

∫ d

0
ne dl . (2.6)

The latter integral is called dispersion measure and represents a measurement of the free electron
content along the line of sight between the pulsar and the observer. As we shall see, the
knowledge of the DM is of fundamental importance in all pulsar observations and data analyses.

A straightforward way to measure the DM stems from Eq. (2.5) and consists in measuring the
difference ∆t(ν1,ν2) in the arrival time of the pulsar signal observed at two different frequencies,
ν1 and ν2 (with ν1 < ν2):

∆t(ν1,ν2) =
e2

2πmec
·
(

1

ν2
1

− 1

ν2
2

)
·DM. (2.7)

Once the DM is known, one can integrate Eq. (2.6) to derive the distance of the pulsar, provided
that the electron number density distribution, ne(l), is known. Although the latter is usually
not accurately known, there exist a few models that give a reasonably good estimate of the
Galactic electron content distribution. The most used example is the NE2001 model (Cordes &
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Lazio, 2002, 2003), which, when used for this purpose, provides distances with a typical relative
uncertainty of ∼ 30%. More recently, another model (YMW16) has been presented by Yao et al.
(2016).

The opposite procedure is also possible: if we have a way to measure the distance of a pulsar
(for instance, via the association with a globular cluster or by measuring its parallax), we can
use the DM to estimate the electron content along the associated line of sight. This is indeed
the method used to refine Galactic models (like the NE2001 and the YMW16), which can thus
improve as more and more pulsars are discovered and their DMs and distances are measured.

2.2.2 Faraday Rotation

If the ionized ISM is permeated with a magnetic field with a non-zero component B‖ along the
direction of propagation of an electromagnetic wave travelling through it, the latter will undergo
a change in the plane of its linear polarization (see also Section 2.6). This effect is called Faraday
rotation and can be intuitively explained by the fact that the free electrons, oscillating inside the
magnetic field, are subject to a Lorentz force that makes them move circularly in a preferential
rotation direction. The circular motion, in turn, induces an additional local magnetic field that
superimposes to the external field. This causes the two circular polarization states of light
to “experience” a different refractive index and they thus have different propagation speeds.
Because a linearly polarized wave can always be seen as the superposition of two circularly
polarized waves, the different propagations speeds of the latter two will cause a change in the
relative phase, which will translate into a change in the angle of the linear polarization, ψ.

In general, for an electromagnetic wave of frequency ν travelling a distance d in a magnetized
and ionized ISM, the phase lag undergone with respect to an infinite-frequency wave, can be
expressed as (Lorimer & Kramer, 2004):

∆ψ(ν) = −k(ν) d , (2.8)

where k(ν) = 2πνn(ν)/c is the wavenumber. The refraction index n(ν), in the presence of a
magnetic field, contains an additional term that depends on the circular polarization state of
the radiation, namely:

n(ν) =

√
1−

ν2
p

ν2
∓
ν2

p νB

ν3
, (2.9)

where the “−” sign is for a left-handed and the “+” sign for a right-handed circularly polarized
wave. The quantity νB is called cyclotron (or Larmor) frequency and contains the dependence
on B‖:

νB =
eB‖

2πmec
. (2.10)

Making the reasonable assumptions that ν � νp and ν � νB (which are true in virtually
all pulsar observations), we can use Eq. (2.8)-(2.9) to calculate the differential phase rotation
between the two circular polarizations as:

∆ψF(ν) =

∫ d

0

[
k+(ν)− k−(ν)

]
dl ' e3

πm2
ec

2ν2
·
∫ d

0
neB‖ dl , (2.11)

where k+(ν) and k−(ν) is the wavenumber of the right and left circularly polarized wave, re-
spectively.
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Because the linear polarization position angle ψ is periodic on π and not 2π, the change in
ψF corresponds to half of the change in ψ:

∆ψ =
1

2
∆ψF =

1

2

e3 λ2

πm2
ec

4
·
∫ d

0
neB‖ dl ≡ λ2 × RM , (2.12)

where λ is the radiation wavelength and we have introduced the rotation measure:

RM =
e3

2πm2
ec

4
·
∫ d

0
neB‖ dl . (2.13)

An interesting application of the measurement of both the DM and the RM of a pulsar is
the possibility of inferring the average magnetic field component along the line of sight, 〈B‖〉,
by combining Eq. (2.6) and (2.13):

〈B‖〉 =

∫ d
0 neB‖ dl∫ d

0 ne dl
≡ 1.23 µG

(
RM

rad m−2

)(
DM

pc cm−3

)−1

. (2.14)

2.2.3 Scattering

The actual Galactic ionized ISM is far from being a perfectly homogeneous gas. Rather, it very
often shows irregularities and turbulence that have a significant impact on the pulsar signal
passing through it.

The first relevant effect to be considered is scattering. The density irregularities of the
local free electron content cause a continuous change in the local refractive index seen by the
electromagnetic wave. This makes the different rays have different non-straight optical paths
from the pulsar to the observer, translating into longer propagation times. As a result, for any
given frequency, while most of the radiation will arrive at once, part of it will arrive at a later
time, forming a “tail” in the observed pulse profile.

The simplest way to describe the scattering phenomenon was presented by Scheuer (1968),
with the so-called thin-screen model. In this model the inhomogeneities are assumed to follow
a Kolmogorov spectrum and to be confined within a thin layer located somewhere between
the pulsar and the observer. With these simple assumptions, it can be shown (e.g. Lorimer &
Kramer, 2004) that the observed intensity of a pulse as a function of time results:

I(t) ∝ e−∆t/τs , (2.15)

where ∆t is the time delay due to the longer optical path. Hence, the observed pulse profile
emitted by the pulsar will be the intrinsic pulse shape convolved with a one-side exponential
function, with a characteristic timescale τs, which in turn depends on the radiation frequency
as:

τs ∝ ν−4 . (2.16)

Therefore, when observing at low frequencies (ν . 1 GHz) the scattering effect can be severe
and, depending on the specific case, it can cause complete smearing of the pulsed signal.

2.2.4 Scintillation

Closely related to scattering is another phenomenon, called scintillation. The same inhomo-
geneities that are at the origin of the exponential scattering tails, are also responsible for in-
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tensity fluctuations of the observed pulsar signal, as first noted by Lyne & Rickett (1968). The
distorted wavefronts indeed produce constructive or destructive interference at the location of
the observer, within a typical bandwidth (called scintillation bandwidth) of size ∆ν. A condition
necessary for the interference to occur is that (Lorimer & Kramer, 2004):

2π∆ντs ∼ 1. (2.17)

Recalling Eq. (2.16), this implies that ∆ν ∝ 1/τs ∝ ν4. Similarly to scattering, scintillation
acts over a timescale that depends on the physical properties of the scattering screen, as well as
on the observing frequency.

2.3 Radio telescopes

Historically, the primary way by which astronomers study pulsars is by observing them with
single-dish radio telescopes. Because of their characteristics, pulsars are technologically de-
manding, as they require:

• large collecting areas, to build up a signal of sufficient signal-to-noise ratio (S/N)
within a reasonably short observing time, in spite of their intrinsic faintness;

• high time resolution, in order to resolve their short pulsations due their fast rotational
regimes;

• high frequency resolution, to correct for the effect of dispersion.

• large computing power and storage capacity, to properly handle the large amount of
data collected.

The functioning scheme of a modern radio telescope can be divided into three main parts,
as illustrated in Fig. 2.1:

• The front-end, also called receiver, is the part of the telescope that collects the astro-
physical radiation, amplifies it, and filters out unwanted spurious signals.

• The down-conversion consists of a series of devices that electronically manipulate the
received signal to make it easier to be transmitted and further processed.

• The back-end is the piece of hardware and/or software responsible for the digitization,
further processing and final storage of the data.

In the following subsections, these stages will be reviewed in more detail.

2.3.1 Front-end

Typical radio telescopes have reflectors (also dubbed as “dishes”) with diameters from a few tens
of metres (e.g. 64 m of the Parkes radio telescope) to a few hundred metres (e.g. 305 m for the
Arecibo radio telescope). The dish is usually a paraboloid, since this shape has the property of
focusing the plane wavefronts coming from infinity onto a single point, called the primary focus.
The largest non-steerable telescopes, however, must use different designs, with reflectors that
have, for instance, the shape of a spherical cap.
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At the focus is placed the front-end (or receiver), a device that, through a wave guide,
collects the incoming radiation. The latter is then converted into electric voltages by means of
two receptors that sample the two orthogonal (either linear or circular) polarization states of
light (see Section 2.6). The signal of each polarization is then amplified by a Low-Noise Amplifier
(LNA), which is cryogenically cooled to minimize the impact of thermal noise on the receiver
sensitivity. Then, a band-pass filter removes all the unwanted frequencies outside the range of
interest, which might accidentally have been added because of the presence of terrestrial radio
frequency interference (RFI) produced by human activities. After this, a further amplification
of the signal is usually performed.

2.3.2 Down-conversion

The central radio frequency, νRF, of the signal at this stage roughly corresponds to the cen-
tral value of the frequency range to which the receiver is sensitive. However, dealing with a
high-frequency electric signal has several downsides: for instance, its transmission is typically
accompanied by high power losses; also, despite constantly improving, the hardware available
nowadays may still not be fast enough to sample it without loss of information. For this reason,
the original signal is converted into another one of lower frequency, but with the same infor-
mation content. This is achieved by using a Local-Oscillator (LO), a device that produces a
monochromatic sinusoidal wave of fixed frequency νLO. For each polarization, the signal is taken
by a mixer and multiplied by the LO wave. The result of this operation is the production of two
new signals with two new intermediate carrier frequencies νIF = νRF ± νLO. By using another
band-pass filter, only the signal at the lower frequency is retained. An additional amplifier may
also be used to boost the latter before transmitting it to the back-end.

2.3.3 Back-end

The back-end can be regarded as the actual data acquisition system of the telescope. In the back-
end, the down-converted analogue signals of the two polarizations are sampled and digitized by
two Analogue-to-Digital Converters (ADCs), which, according to the Nyquist-Shannon theorem
(Nyquist, 1928; Shannon, 1949), must have a sampling frequency at least two times higher than
the signal bandwidth, to retain all the information. Later, the digitized signal is processed by a
polyphase filterbank (PFB), a piece of hardware (typically a Field Programmable Gate Array, or
FPGA) or software that, by performing a Fast Fourier Transform (FFT), takes N samples and
translates them into N/2 frequency channels. The conversion of time information into frequency
information is done with the purpose of later correcting for the dispersion effect, which would
otherwise cause smearing of the pulsed signal across the whole band (Fig. 2.2). De-dispersion is
generally carried out by a High-Performance Computer (HPC) and can be done with different
methods (see Section 2.3.3.1). After de-dispersing, the HPC may further process the data,
depending on the observing mode chosen. The final step consists in the storage of the data in a
format suitable for successive analysis.

2.3.3.1 Incoherent and coherent de-dispersion

The main purpose of the data stream channelization performed by the polyphase filterbank is
the correction of interstellar dispersion. Such correction, called de-dispersion, can be applied
using two different approaches, one of which does not use the phase information of the Fourier-
transformed signal, whereas the other does.
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Figure 2.2. Dispersion effect in an example observation of pulsar PSR B1933+16 taken at 1.4 GHz
with the Arecibo radio telescope. Left: the pulsed signal shows the characteristic quadratic delay due
to the dispersion effect (with a DM of 158.52 pc cm−3) across the observing band (top panel); as a
result, the integrated profile is completely smeared out (bottom panel). Right: the same observation
after de-dispersing the signal; the pulses in all frequency channels are now aligned (top panel) and the
actual integrated pulse profile shape is correctly restored (bottom panel).

In the first approach, called incoherent de-dispersion, the total bandwidth is divided into
several channels. A proper time shift, calculated from the best available estimate of the DM via
Eq. (2.5), is then applied to each channel. This way, the pulsed signal in each channel is aligned
across the whole band. This way of de-dispersing the pulsar signal, despite being easy to apply
and computationally inexpensive, is limited by the fact that each channel will intrinsically retain
some smearing that is proportional to its width.

The way to overcome this issue is by using another approach, called coherent de-dispersion
(Hankins, 1971; Hankins & Rickett, 1975). In this method, the Nyquist-sampled signal is Fourier-
transformed with an FFT and converted into a series of complex voltages (i.e. a sequence of
amplitudes and phases) that represent the harmonic content of the electromagnetic wave. For
each component of the Fourier spectrum, the relative phase is then rotated by an amount that
is proportional to the DM of the pulsar. This is equivalent to applying a time shift equal to the
dispersive delay relative to the particular frequency considered. In other words, we are actually
doing the same thing as in the case of incoherent de-dispersion, except that this operation is
now done in the Fourier domain and we are applying a different shift to every single Fourier
components that make up the original signal, and not to a group of them altogether (i.e. a
channel). Once the correction is applied, an inverse Fourier transform is performed to recover
the real-valued, dispersion-free, original pulsar signal. Because this method involves several FFT
operations, it is very costly in terms of computing power. Nowadays, modern back-ends are able
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to perform real-time coherent de-dispersion, over a large bandwidth, by implementing it over
multiple Graphics Processing Units (GPUs; e.g. De & Gupta, 2016).

2.3.3.2 Observing modes: timing, search and baseband

The format in which the signal is processed and then recorded depends on the chosen observing
mode. Modern digital pulsar back-ends are usually capable of working in three different modes,
each suitable for specific scientific applications, which we will now briefly review:

• Timing/Folding mode: it is used to observe pulsars whose basic characteristics are
already known and the data are recorded in a format suitable for pulsar timing (see
Section 2.5). The incoming signal is processed in real-time through a procedure called
folding. When folding, the observing band is first divided into a number of channels
and the dispersion effect is removed (coherently or incoherently) according to the value
of the DM. After de-dispersing, the time series of each channel is divided into chunks
of arbitrary length (from a few seconds to several minutes), called sub-integrations.
Each sub-integration is further split into intervals of roughly the length of the pulsar
spin period. These are then summed coherently in phase according to the pulsar timing
solution, which is a model that fully describes the rotation of the NS. This way, hundreds
or thousands of single pulses are added together to form an integrated profile (see Section
1.5.1), one for each sub-integration/frequency-channel pair. The resulting file is called
folded archive and it is essentially a collection of integrated profiles (see Fig. 2.3), which
can either retain or not the full polarimetric information. Further details about timing
and folded archives can be found in Section 2.5.

• Search mode: it is used to record data in a format suitable for pulsar searching. As
for the timing mode, the bandwidth is first divided into a few hundreds or thousands
of channels. Usually, no de-dispersion is applied because, when searching for pulsars,
the DM is not known a priori (different case is when observing a globular cluster,
see below). In the time domain, groups of samples are added together to retain a
time resolution of typically a few tens of µs, enough to be sensitive to the fastest
MSPs. For search purposes, polarization information is generally not needed, hence
the signals of the two polarizations are usually added together. However, as for timing
mode, it is also possible to observe in full-Stokes mode, thus retaining the polarization
information. The search-mode files so produced can later be folded to obtain folded
archives, exactly as in timing mode. For this reason, as we shall see in the next chapters,
search mode is also particularly suitable for observations of pulsars in globular clusters,
where the same data contain the signals of several pulsars at once. In this case, it is
also common to apply de-dispersion with the average DM of the cluster, to minimize
the pulse broadening of all the pulsars that reside in it.

• Base-band mode: in this mode the signal is down-converted from the actual observing
frequency range [νlo, νlo + ∆ν], where νlo is the frequency of the lower edge of the
observing band and ∆ν is the bandwidth, to the base-band, i.e. to the frequency range
[0,∆ν]. In this case, the recorded data are the actual raw voltages of the two orthogonal
receptors, sampled at the Nyquist frequency (2∆ν), thus retaining all the information
of the signal. This guarantees the maximum flexibility and allows the astronomer
to arbitrarily exchange time resolution for frequency resolution in the post-processing
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phase. The data are usually stored in the standard DADA format1. Because there is
no information loss, base-band data are extremely voluminous and hence this mode
is used only for very specific scientific applications. For example, base-band data are
particularly suitable for studies that require very high time resolution (such as studies
of giant radio pulses, see e.g. Karuppusamy 2009) or when the data must be correlated
with observations made with other telescopes (like in the Large European Array for
Pulsars project, Bassa et al. 2016).

2.4 Searching

The search for and discovery of new pulsars clearly represents a fundamental element of pulsar
astronomy that also drives the whole field. Since the discovery of the first pulsar, huge advances
have been made in both observing systems and analysis software. Nowadays, the two software
packages that are most widely used for this purpose are PRESTO2 (Ransom, 2001) and SIGPROC3

(Lorimer, 2011). Both packages allow astronomers to find the periodic signals coming from
pulsars with no prior knowledge of their characteristics.

In this section we will review the basic steps that are part of a search pipeline, like the one
used for this thesis (see Chapter 4). These are:

• Observations and data acquisition

• RFI removal

• De-dispersion trials

• Search for periodicities

• Candidate selection

• Candidate folding and confirmation

2.4.1 Observations and data acquisition

The search for new pulsars begins by pointing the telescope to a particular region of the sky.
According to how such a region is chosen, we can have a blind search or a targeted search. In the
first case, the sky, or a large area of it, is surveyed uniformly by doing a sequence of pointings.
In the second case, the telescope is directed towards specific regions or objects, where one or
more radio pulsars are very likely to be present (e.g. γ-ray point sources, globular clusters).
In both cases, the telescope collects the radiation coming from the chosen target for a certain
amount of time that depends on the characteristics of the telescope and of the receiving system,
as well as on the chosen search strategy. Because they typically require to cover a much smaller
area of the sky, targeted searches can usually afford much longer integration times for the single
observations, compared to blind searches. The equation that relates the observing parameters
to the corresponding search sensitivity is called radiometer equation (Dewey et al., 1984) and,

1http://psrdada.sourceforge.net
2http://www.cv.nrao.edu/~sransom/presto
3http://sigproc.sourceforge.net

http://psrdada.sourceforge.net
http://www.cv.nrao.edu/~sransom/presto
http://sigproc.sourceforge.net
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Figure 2.3. Example of an uncalibrated folded archive of pulsar PSR B2127+11A, observed at
1.4 GHz with the Arecibo radio telescope. The archive is a collection of profiles, one for each sub-
integration/frequency-channel pair. If the observation is done in full-Stokes mode, as in this example,
each profile contains the full polarimetric information: the black line is the total intensity, the red line
the linear polarization and the blue line the circular polarization profile.

for a pulsar, it reads:

Smean =
(S/N) ζ Tsys

G
√
npol ∆tobs ∆ν

√
W

P −W
. (2.18)

Here Smean is the pulsar mean flux density, S/N the detection signal-to-noise ratio, ζ a correction
factor due to the digitization, Tsys the system temperature, G the telescope gain, npol the number
of polarizations, ∆tobs the observing time, ∆ν the receiver bandwidth, P the pulsar spin period
and W the pulse width. Given the parameters of the observing set-up, Eq. (2.18) gives us the
minimum mean flux density that a pulsar must have to be detected with a signal-to-noise ratio
of S/N, when observed for a time ∆tobs.

The data are typically acquired in search mode, retaining a very high time resolution (of the
order a few tens of µs), to be able to resolve even the very short pulses of the fastest MSPs, and
a very high frequency resolution, to better correct for the effects of interstellar dispersion and
identify narrow-band terrestrial RFI.
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Figure 2.4. Example observation of pulsar PSR B2127+11B, taken at 1.4 GHz with the Arecibo radio
telescope. The top panels show the intensity as a function of pulse phase and observing frequency,
whereas the bottom panels show the resulting integrated pulse profile, after summing all the frequency
channels. On the left, the original folded archive is displayed: prominent narrow-band RFI can be seen
between 1200 and 1400 MHz and around 1630 MHz. On the right, the same archive is shown after
clipping all the channels affected by RFI.

2.4.2 RFI removal

We regard as RFI all the unwanted non-astrophysical signals that fall within, or close to, the
telescope observing band. RFI signals are produced by human activity, through a variety of
different devices and, for this reason, their morphology ranges widely. In the time domain, RFI
can be persistent, temporary, or even appear as short-lived bursts. In the frequency domain,
they are usually narrow-band (Fig. 2.4) but can be broad-band in the case of short bursts. Slow
changes in the receiver gain can also produce very low-frequency signals (the so-called red-noise,
see e.g. Lazarus et al. 2015). RFI is deleterious because, being usually very strong, it can
easily hide the astrophysical signals of interest. This is particularly harmful in the case of pulsar
searching because, very much like pulsar signals, RFI can be stable periodic signals that may be
easily mistaken for promising pulsar candidates.

In the last few decades, with the spread of telecommunication systems, the problem of RFI
has grown exponentially. Consequently, a number of techniques have been developed to mitigate
the effects. A standard way to identify RFI signals is to exploit the fact that they are terrestrial
in origin, and thus they are not dispersed. It is thus common practice to take the acquired data
without correcting for dispersion (i.e. DM = 0 pc cm−3) and look for strong periodic signals
both in the time and frequency domain (e.g. Eatough et al., 2009). Based on this, we can later
ignore (for instance, by creating a mask) all the time intervals and frequency channels where
RFI was found.
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2.4.3 De-dispersion trials

As explained in Section 2.2.1, the signal of a pulsar travels through the ionized component of the
ISM and, because of dispersion, it arrives at the observer at different times across the observing
band. If not corrected, this effect can make the observed pulsar completely undetectable. When
searching for new pulsars, we do not know a priori the associated DM, in most cases4. Hence,
the DM is treated as a free parameter. A sequence of DM trial values are thus explored within
a certain range of interest and, for each DM trial, a time correction calculated with Eq. (2.5) is
applied to each frequency channel of the search-mode data.

When searching in DM, it is important to choose an appropriate step size, ∆DM. Choosing
too small a step means increasing the total computational cost without gaining in sensitivity.
Conversely, if the step is too large, one might miss the actual DM value of the pulsar, causing
its signal to be smeared out and, thus, be undetected. The optimal value of ∆DM depends on
the observing frequency ν, the total observing bandwidth ∆ν, as well as the chosen sampling
time tsamp. Lorimer & Kramer (2004) provide an approximate formula to calculate the i-th trial
DM value as a function of these three parameters:

DMi = 1.205× 10−7 pc cm−3(i− 1) tsamp (ν3/∆ν), (2.19)

where tsamp is expressed in ms and ν and ∆ν in MHz. For each trial value, once the de-dispersion
is applied, the frequency channels are summed together to produce an RFI-free de-dispersed time
series, which will then be searched for possible pulsar signals. At higher DM values, because of
intra-channel smearing, this step is made coarser and the time-series is down-sampled to avoid
unnecessary additional computations with no corresponding gain in sensitivity.

2.4.4 Periodicity search

Although there exist multiple methods to search for pulsars, the most commonly used ones are
based on Fourier Transforms (FT), which exploit the intrinsic periodicity of pulsar signals. The
Fourier theorem states that any function can be represented as the superposition of a (possibly
infinite) number of sinusoids, each with a proper amplitude, phase and frequency. The FT is the
mathematical tool used to perform such a decomposition. Because the radiation coming from
a pulsar has an intrinsic periodicity, while thermal noise does not, the Fourier component with
the pulsar period will have a much larger amplitude (and, hence, power) compared to all the
other sinusoidal components, and will thus be easily detectable in the Fourier domain.

Because the de-dispersed time series generated as described in Section 2.4.3 are discrete,
uniformly sampled sequences of data, the FT is performed in its discrete implementation, called
Discrete Fourier Transform (DFT, see e.g. Press et al., 1992). However, the calculation of the
DFT of an N -sample time series requires a number of operations of the order O(N2) which,
for long observations, can easily become prohibitively expensive in terms of computational time
even for modern machines. The solution to this problem is the Fast Fourier Transform algorithm
(FFT, Cooley & Tukey, 1965), an extremely efficient implementation of the DFT that only
requires a O(N logN) number of operations. Virtually all modern Fourier-domain analysis
software, including PRESTO and SIGPROC, are based on the FFT.

4There are some exceptions, most notably in targeted searches. For instance, pulsars residing in the same
globular cluster typically have similar DM values. Hence, if the DM of one pulsar is known, one can greatly
narrow the range of DM trials, when searching for new pulsars in the same cluster.
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However, despite being periodic, the signal coming from a pulsar is typically not a sinusoidal
function. Rather, it is a train of pulses with more or less complex shapes. In the Fourier
domain, such a morphology translates into a spectrum where the signal power is shared among
the fundamental periodicity and its harmonics (i.e. integer multiples and sub-multiples of the
fundamental periodicity). This effect is stronger for smaller pulse duty cycles. In order to
correctly recover all the pulsar signal power, it is common practice to do a so-called harmonic
summing : copies of the Fourier spectrum, each stretched by an integer factor, are created and
subsequently summed to the original spectrum. This way, possible harmonically related peaks
will be added together, increasing the power of the pulsar signal over the noise level. The method
is usually implemented adding up to 1, 2, 4, 8 or 16 harmonics.

2.4.5 Binary pulsars: acceleration search

An additional complication is introduced if the pulsar is part of a binary system. In this case,
the neutron star undergoes a time-varying acceleration due to its motion along the orbit, that
results in a time-varying observed spin period and spin period derivative:

Pobs(t) = P

[
1 +

vl(t)

c

]
; Ṗobs(t) = P

al(t)

c
, (2.20)

where P and Ṗ are the intrinsic spin period and spin period derivative, Pobs and Ṗobs the
observed ones, vl(t) and al(t) the pulsar velocity and acceleration component along the line
of sight, respectively. As a consequence, the power of the pulsar signal in the Fourier domain
will be spread across several frequency bins, adjacent to the fundamental harmonic. Clearly,
the effect will be stronger for pulsars undergoing larger accelerations, as in the case of very
tight binaries. Because binary pulsars are very interesting for a number of reasons, people have
devised several methods to improve the sensitivity of pulsar searching software for such systems.
The most commonly used method is called acceleration search. In the acceleration search, the
pulsar is assumed to undergo a constant radial acceleration al throughout the length ∆tobs of
the considered observation. In PRESTO, such an acceleration translates into a maximum number
zmax of adjacent Fourier bins across which the power of the pulsar signal will be spread, and
that can be calculated as (Ransom et al., 2002):

zmax = ∆t2obs

al
cP

. (2.21)

If the Fourier bin has a size ∆νbin, all the bins in the interval [ν0 − zmax∆νbin, ν0 + zmax∆νbin]
around a given frequency ν0 will be considered and properly processed to possibly recover the
power spread by the binary motion.

In time-domain based acceleration search software, like SIGPROC, the constant acceleration
is implemented via a corresponding variable stretching or squeezing of the time series.

However, in both cases, the assumption of a constant acceleration is a valid approximation
only for binary systems whose orbital period is about 10 times longer than the observation
considered (e.g. Ransom et al., 2003; Ng et al., 2015). Since the pulsar orbit (and thus its radial
acceleration) is not known a priori, the acceleration search is performed with several trial values
of al.

Searches for binary pulsars are very computationally demanding, not only because they add
a dimension to the parameter space searched (in addition to the DM and the spin period P ), but
also because the acceleration search algorithm requires a number of operations that increases
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very quickly with the number of acceleration trials. To overcome this issue, people have started
implementing this and other search algorithms on modern GPUs (e.g. PRESTO-ON-GPU5). Thanks
to the high level of parallelization that they allow, GPUs can be tens or even hundreds of times
faster than Central Processing Units (CPUs), depending on the specific task considered.

2.4.6 Candidate selection, folding and confirmation

Even after removing the most prominent RFI from the data, the number of periodic signals found
per single observation can easily exceed a few thousand, the vast majority of which will turn out
to be spurious signals. It is thus of fundamental importance to implement sifting criteria with
which to reduce the total number of candidates. For instance, the same periodicity detected
at different DMs or acceleration trial values can be considered as a single candidate. Similarly,
some candidates can be found to be harmonically related to others and probably originate from
the same signal. After filtering out the least significant signals and grouping the likely related
ones, the search pipeline folds the most promising pulsar candidates. As explained in Section
2.3.3.2 the folding procedure consists in taking the original observation, de-dispersing it at the
candidate DM, and then splitting it into time chunks that will be summed coherently in phase
according to the candidate spin period and acceleration (which translates into a spin period
derivative, see Eq. 2.20). The folding usually produces a diagnostic plot that contains useful
information, such as the integrated pulse profile, the pulse amplitude as a function of pulse
phase and time and as a function of pulse phase and frequency, the S/N as a function of trial
DM etc. From this plot it is possible to check, for instance, whether the putative pulsar signal
is actually broad-band or if it results from RFI. However, the typical number of candidate plots
so produced is still prohibitively high to be examined by a human. For this reason, in the last
decade, more and more software has been developed to automatically evaluate the goodness of
a candidate (Eatough et al., 2010; Lee et al., 2013; Morello et al., 2014; Zhu et al., 2014), in
some cases through machine-learning algorithms. If the folded candidate passes all the sanity
checks and the final human inspection, it can eventually be re-observed at a later time for the
final confirmation.

2.4.7 Determination of the binary orbit

If the newly discovered pulsar shows signs of a changing period (i.e. of binarity), it is necessary
to first determine the approximate orbital parameters, before proceeding with its follow-up
timing. There are two main ways to do so, that can also be used sequentially. The first way is
the period-acceleration diagram method, proposed by Freire et al. (2001a), which is particularly
suitable for cases in which the detections are very sparse. The method makes use of the measured
accelerations, which are plotted as a function of the corresponding period measured in the same
detection of the pulsar. This way, the dependence on time is removed. A circular binary will
manifest itself in the diagram as a perfect ellipse, whose position and semi-major axes will
depend on the physical characteristics of the orbit. An eccentric binary will instead exhibit
more complex shapes. The data can then be fitted with codes like CIRCORBIT6 and ORBITFIT7

(Freire et al., 2001a) to obtain the orbital parameters through a least-square fitting procedure.
Thanks to its independence on the cadence of the detections, the period-acceleration diagram

5https://github.com/jintaoluo/presto2_on_gpu
6CIRCORBIT, ORBITFIT and FITORBIT are part of a suite of codes developed at Jodrell Bank, whose list can be

found at http://www.jb.man.ac.uk/pulsar/Resources/tools.html. The CIRCORBIT code can be downloaded
from http://www3.mpifr-bonn.mpg.de/staff/pfreire/programs/circorbit.tar.

https://github.com/jintaoluo/presto2_on_gpu
http://www.jb.man.ac.uk/pulsar/Resources/tools.html
http://www3.mpifr-bonn.mpg. de/staff/pfreire/programs/circorbit.tar
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method can always be used to get a first estimate of the orbital parameters, which can in turn
be used as initial guesses for the second method. The latter consists in fitting Pobs(t), i.e. the
pulsar period values detected from the search pipeline, as a function of time. Indeed, we recall
that the observed spin period is expected to vary because of the varying doppler effect due to
the orbital motion (Eq. 2.20). In the case of a circular orbit, Pobs(t) will be a perfect sinusoid
with the period of the binary and with the amplitude corresponding to the projected size of the
orbit. In the case of an eccentric binary, the shape of Pobs(t) will be more complicated and will
also depend on the orientation and on the eccentricity of the orbit. As in the previous method,
specific codes (such as e.g. FITORBIT7) can be used to fit Pobs(t) for either a circular or an
eccentric orbit, and hence obtain the refined orbital parameters of the system. If the number of
detections is large enough in the time range considered, the first step with the period-acceleration
diagram method can be skipped.

2.5 Timing

Once a pulsar is discovered, the main tool used for its further study is pulsar timing, a technique
that exploits the exceptional rotational stability of pulsars. In a nutshell, it consists in precisely
measuring the times-of-arrival (ToAs) of the pulses and build a model that, by taking into
account all the possible effects that influence the propagation time of the signal from the NS
to the observer, is able to correctly describe the pulsar rotation within a given time range. In
building the timing model, a series of parameters are fitted. These can be, for instance:

• Rotational: e.g. the spin period and spin period derivative of the pulsar.

• Astrometric: e.g. the position, proper motion and parallax of the pulsar.

• ISM-related: e.g. the dispersion measure.

• Binary: e.g. the projected size of the orbit, the orbital period, the eccentricity etc., if
the pulsar is in a binary system.

If the model is good enough to predict each ToA to within a small fraction of the pulsar spin
period, we refer to the model as a phase-connected (or phase-coherent) timing solution (or
ephemeris). A phase-connected timing solution is capable of accounting for every single rotation
of the NS, within the time range considered. When this is the case, it means that all the
parameters considered in the model are precise enough to not "lose" any rotation of the NS.
The measured parameters can thus be used in a wide range of scientific applications (see Section
1.6).

In the following sections we will discuss in detail all the basic steps of pulsar timing, from
the data acquisition to the construction of a phase-connected timing solution. A general scheme
of the whole procedure is shown in Fig. 2.5. A list of the software packages and relative routines
used in this thesis to perform the single steps can be found in Table 2.1.

2.5.1 Observations and data acquisition

The observing set-up and strategy for timing first depends on whether we already have a phase-
connected solution or not, for the pulsar considered.

For a newly-discovered pulsar, the only parameters usually known are the position, the spin
period and the DM (as well as some of the orbital parameters in the case of a binary system, see
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Table 2.1. Software packages and relative routines used in this thesis for pulsar timing and polarimetry.

Operation Routine Software Package References

De-dispersion / Folding dspsr DSPSR van Straten & Bailes (2011)

RFI removal pazi PSRCHIVE Hotan et al. (2004); van Straten et al. (2012)

Archive manipulation pam PSRCHIVE Hotan et al. (2004); van Straten et al. (2012)

Standard profile creation
psradd PSRCHIVE Hotan et al. (2004); van Straten et al. (2012)

psrsmooth PSRCHIVE Hotan et al. (2004); van Straten et al. (2012)

ToA extraction pat PSRCHIVE Hotan et al. (2004); van Straten et al. (2012)

Timing
tempo TEMPO http://tempo.sourceforge.net

tempo2 TEMPO2 Edwards et al. (2006); Hobbs et al. (2006)

Polarization calibration
pac PSRCHIVE Hotan et al. (2004); van Straten et al. (2012)

pcm PSRCHIVE Hotan et al. (2004); van Straten et al. (2012)

RM measurement rmfit PSRCHIVE Hotan et al. (2004); van Straten et al. (2012)

Flux calibration fluxcal PSRCHIVE Hotan et al. (2004); van Straten et al. (2012)

Section 2.5.3.3). However, their precision is typically too low to allow a correct real-time folding
of new observations made at later times. In this case, even though for the purpose of timing,
the pulsar is observed in search-mode. Indeed, thanks to the much finer time resolution, search-
mode data can be re-folded at a later time, when the pulsar ephemeris is improved, without any
risk of signal loss. This strategy is particularly suitable for binary pulsars (especially redback
systems, as we shall see in next chapters), in which inaccurate orbital parameters can easily lead
to a loss of phase connection and, thus, to a non-detection of the pulsar when folding the data.

If, instead, the pulsar already has a good timing solution, a typical timing observing campaign
will be done using a coherent de-dispersion folding mode of the telescope back-end. The known
value of the pulsar DM allows the back-end to completely remove the intra-channel dispersive
smearing through coherent de-dispersion. A large number of frequency channels is anyway
usually retained, to later allow a better clipping of narrow-band RFI. In the time domain, the
sub-integrations are usually chosen to be short, not only to minimize the impact of small errors
in the timing parameters, but also to later excise short-lived or impulsive RFI. In most cases,
a 10-s sub-integration length represents a good trade-off that permits a successive correction,
once the model is updated, without having unnecessarily large data sizes.

In both cases, the data file is time-stamped with the start time of the observation (Fig. 2.3),
according to the local observatory clock, which is typically a high-precision hydrogen maser clock.
The observatory time is constantly compared to the time kept by an ensemble of atomic clocks
located on-board the Global Positioning System (GPS) satellites. The differences between the
two times are recorded onto a file that contains the observatory clock corrections, to be applied
to the data at a successive step. The proper tagging of the observation is of utmost importance
for the correct timing of pulsars, since all the subsequently extracted ToAs are calculated on the
basis of the observation start time.

It is also common practice, especially in high-precision pulsar timing, to perform a very short
observation of the receiver noise-diode to later calibrate the data in polarization, which can also
provide higher timing precision. This topic will be covered in more detail in Section 2.6.

http://tempo.sourceforge.net


48 Chapter 2. Observing a pulsar

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1

F
lu

x 
(A

rb
itr

ar
y 

U
ni

ts
)

Pulse Phase, φ

τ
Integrated profile
Standard profile

Figure 2.6. Illustration of the ToA determination. A high-S/N, or even noise-less, standard profile (red
line), after being scaled, is cross-correlated with the observed integrated profile (black line) to determine
the time shift τ .

2.5.2 Extraction of the topocentric Times-of-Arrival

A folded archive is essentially a table containing an integrated profile for each sub-integration
/ frequency-channel pair (Fig. 2.3). A time-stamp, tstart, marks the date and time (or epoch)
at which the observation began. Each integrated profile is also assigned an epoch tint, which is
referred to some particular fiducial point of the profile and it is usually chosen to be referred to
the single pulse closest to the mid-point of the sub-integration time interval.

The ToA extraction process is done by using a high-S/N reference profile of the pulsar,
usually referred to as the template, or standard profile. The latter can be just a single high-S/N
observation, the addition of several observations together, or even a completely noise-less profile
obtained, e.g. by fitting the real profile with analytic functions (Kramer et al., 1994; Kramer,
1994), or by smoothing it with a wavelet transform (Demorest et al., 2013). Each real integrated
profile P(t) is then regarded as a scaled and shifted version of the template T (t), with some
noise N (t) superimposed (Taylor, 1992; Lorimer & Kramer, 2004):

P(t) = a+ bT (t− τ) +N (t). (2.22)

The ToA is evaluated by doing a cross-correlation of the template with the integrated profile
(Fig. 2.6). Such procedure determines the time shift τ between the fiducial point of the template
and that of the integrated profile. The final ToA value will thus be:

ToA = tint + τ . (2.23)

Because every ToA determined in this way is topocentric, it is often referred to as site arrival time
(SAT). Although there exist several different techniques, the cross-correlation itself has typically
been done in the Fourier domain with the so-called Fourier phase gradient (commonly known as
FFTFIT) algorithm (Taylor, 1992), which guarantees an accuracy in the ToA determination up
to a fraction of the chosen profile bin width, by estimating the relative uncertainty through a χ2
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optimization routine. More recently, other techniques based on one-dimensional Markov-Chain
Monte Carlo algorithms have been shown to be preferable in the low-S/N regime (Verbiest et al.,
2016).

An important caveat to consider is the possible evolution of the integrated pulse profile as
a function of frequency (see Section 1.5.1). If not properly taken into account, this effect can
introduce systematic errors when trying to determine ToAs at a frequency which significantly
differs from that of the standard profile. This issue has recently become increasingly important
because of the development of back-ends capable of processing a very large bandwidth (such as
PUPPI at Arecibo, DuPlain et al. 2008) as well as of ultra-wide-band receiving systems (such as
the Ultra-Broad-Band receiver7 at Effelsberg and the Ultra-Wideband Low-frequency receiver
at Parkes, Manchester 2015). In the last few years, new sophisticated methods have thus been
devised to correctly account for the frequency dependence of the pulse profile when evaluating
the ToAs (Liu et al., 2014; Pennucci et al., 2014).

2.5.3 The timing formula

Within the framework of the “Pulsar Standard Model” (see Section 1.3), where the pulsar be-
haves exactly like a lighthouse, each observed pulse corresponds to a single rotation of the NS.
Therefore, between each pair of ToAs, an integer number of rotations of the pulsar must have
occurred.

In a reference frame centered on the pulsar and co-moving with it, the number of rotations,
N , made by the NS from a reference time t0 to any given time t, can be modelled by a smooth
function, that can be expanded as a Taylor series (Lorimer & Kramer, 2004):

N(t) = N0 + f0(t− t0) +
1

2
ḟ0(t− t0)2 + . . . = N0 +

∑
k≥0

1

(k + 1)!
f

(k)
0 (t− t0)k+1 , (2.24)

where f0 ≡ f(t0) and f (k)
0 ≡ f (k)(t0) are the pulsar spin frequency and the k-th spin frequency

derivative at the reference epoch t0, respectively.
It is important to remark that the time t in Eq. (2.24) is the proper time of the pulse

emission as it would be measured by an observer located at the position of the pulsar. Such
a reference frame is clearly different from that used to obtain the topocentric ToAs (SATs),
which are measured at the telescope site. Therefore, in order to compare the rotational model
against real data, we first need to refer each SAT (henceforth, tsat) to the pulse emission time
(henceforth, tpsr) as measured at the pulsar centre of mass8. This process involves a series of
relativistic frame transformations (see Fig. 2.7) and for the general case of a binary pulsar, it
can be divided into three steps:

• (tsat → tbat) The SAT is first referred to the Solar System barycentre (SSB), thus
becoming a Barycentric Arrival Time (BAT).

• (tbat → tbb) The BAT is then referred to the binary system barycentre (BB).

• (tbb → tpsr) The time at the BB is finally converted into the pulsar emission time.

7www3.mpifr-bonn.mpg.de/staff/pfreire/BEACON.html
8Clearly, the real emission of the pulsar comes from some location near the NS surface, and not from its centre

of mass. However, assuming that the true point of emission does not change over the time scale of interest, the
difference between the true emission time and that measured from the centre of mass, will be constant and will
thus represent an irrelevant offset in Eq. (2.24) (Edwards et al., 2006).

www3.mpifr-bonn.mpg.de/staff/pfreire/BEACON.html
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Figure 2.7. Vectors involved in the relativistic frame transformations performed during the timing
procedure.

Each of these steps is composed by a series of correction terms that allow us to pass from tsat

to tpsr. Following Edwards et al. (2006), the full equation containing all the contributions from
the three steps, can be written as:

tpsr = tsat+ ∆Clk − (∆�R + ∆�D + ∆�E + ∆�S + ∆�$ + ∆⊕Atm)︸ ︷︷ ︸
barycentering terms

+ ∆∗VP + ∆∗D + ∆∗E + ∆∗ν︸ ︷︷ ︸
interstellar terms

+ ∆bin
R + ∆bin

E + ∆bin
S + ∆bin

A + ∆bin
K︸ ︷︷ ︸

binary terms

.
(2.25)

In the next subsections each group of contributions will be reviewed in detail.

2.5.3.1 Barycentering terms

The first seven correction terms in Eq. (2.25) are those that allow us to refer the topocentric
ToA to the SSB. The SSB is a convenient reference frame because, unlike the Earth, it can
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be considered as an inertial frame to a very good approximation. Below follows a detailed
description of each contribution.

∆Clk The observatory clock used to time-stamp the acquired data is usually stable only over
time-scales of a few weeks. For this reason, it is constantly compared to the much more
stable GPS-based time and the offsets found are recorded onto a file. ∆Clk embodies
the local observatory clock corrections and the referencing of the time to a much more
stable universal time standard, through a series of conversions. Specifically, the local
observatory time (SAT) is first converted to the GPS-based Universal Coordinated
Time, UTC(GPS), as measured by the National Institute of Standards and Technology
(NIST) and then to the normal Universal Coordinated Time, UTC. The difference
between UTC(GPS) and UTC is that the latter takes into account the ever-decreasing
rotation rate of the Earth, whereas the former does not. UTC is then referred to the
International Atomic Time (TAI) realization, TT(TAI), of the Terrestrial Time (TT).
TT is a theoretical time standard, whose real clocks are only approximations, that is
based on the definition of second by the International System of Units (SI). TAI, on the
other hand, is the most precise real time standard available, as it is based on an ensemble
of hundreds of atomic clocks spread across the Earth surface. Because the definition
of UTC is based on TAI, the latter is always ahead of UTC by a certain number of
so-called leap seconds (precisely 37, as of January 2017). Leap seconds are offsets that
are artificially added to UTC every few years to account for the irregular changes in
the mean solar day length, due to the slowing Earth rotation rate. Despite being the
most precise time standard, TAI is also subject to small instabilities. However, once
published, TAI is never corrected. For this reason, TT(TAI) is in turn converted to
the TT(BIPM) time standard, a retroactively corrected version of the former provided
every year by the Bureau International des Poids e Mesures (BIPM), and then finally
referred to the SSB through either the Barycentric Dynamic Time (TDB) or Barycentric
Coordinate Time (TCB). We refer to Hobbs et al. (2012) for a more comprehensive
discussion about time standards and pulsars.

∆�R It is the Solar System Rømer delay, which accounts for the difference between the
arrival time at the observatory (SAT) with respect to the arrival time as it would be
measured at the SSB, assuming that the radiation propagates in a vacuum and ignoring
the binary motion of the pulsar (which will be taken into account by another correction
term). It is thus just a classical geometrical delay that depends on the relative position
of the Earth along its orbit, with respect to the pulsar. The Solar System Rømer delay
can be expressed as:

∆�R = −(rse + reo) · r̂sb
c

, (2.26)

where rse is the vector connecting the SSB to the Earth centre, reo the vector connecting
the Earth centre to the location of the observatory on the Earth surface, and r̂sb is the
unit vector that from the SSB points to the binary system barycentre.

∆�D It is the dispersion delay caused by the ionized component of the interplanetary
medium. This essentially coincides with the solar wind, whose density profile is mod-
elled with a radial profile that roughly scales with the heliocentric distance r as ∼ r−2

(Issautier et al., 1998). Keeping in mind the simplifying assumptions made (see Ed-
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wards et al., 2006) the associated delay for an electromagnetic wave of frequency ν is
then:

∆�D =
D
ν2

∫ ∞
0

nsw
e (〈rse〉)

[
〈rse〉
r(l)

]2

dl , (2.27)

where D is the usual dispersion constant, nsw
e (〈rse〉) is the assumed solar wind free

electron number density at the average distance 〈rse〉 = 1 AU of the Earth from the
Sun, and the integral is calculated along the line of sight from the observer to the
pulsar. Recent measurements made by Issautier et al. (1998, 2001) and Splaver et al.
(2005) agree on a value nsw

e (〈rse〉) ' 4 cm−3.

∆�E It is the Solar System Einstein delay, i.e. the time dilation associated with the rel-
ativistic space-time coordinate frame transformation from the observatory site to the
SSB, whose analytical expression is (Irwin & Fukushima, 1999; Edwards et al., 2006):

∆�E =
1

c2

∫ t

t0

[
U⊕ +

v2
⊕
2

+ ∆L
(PN)
C + ∆L

(A)
C

]
dt+

reo · vgb +W0 tsat

c2
. (2.28)

Here U⊕ is the gravitational potential at the geocentre given by all the bodies in the
Solar System except the Earth; v⊕ is the velocity of the geocentre with respect to the
SSB; ∆L

(PN)
C and ∆L

(A)
C are higher-order relativistic terms and corrections due to the

asteroids, respectively (Fukushima, 1995); t0 is a specific epoch thanks to which Eq.
(2.28) correctly relates the measured TT arrival time to the coordinate time scales rec-
ommended by the International Astronomical Union (IAU), namely TCG (geocentric)
and TCB (barycentric, Edwards et al. 2006). The second term accounts for the time
dilation and gravitational redshift due to the Earth itself when referring the time from
the geocentre to the actual observatory position on the Earth surface, whose positions
are related by the vector reo; vgb is the relative velocity of the geocentre with respect to
the Earth barycentre; W0 is the approximate spin potential of the Earth at the geoid.

∆�S It is the Solar System Shapiro delay (Shapiro, 1964), i.e. the delay due to the longer
optical path that light has to travel when propagating in the curved space-time in
proximity of the Solar System bodies. Backer & Hellings (1986) provide an expression
that is a first-order approximation:

∆�S = −2
∑
j

Gmj

c3
ln(r̂op · rj + |rj |) + (O2) , (2.29)

where mj is the mass of the j-th body, r̂op is the unit vector from the observatory to
the pulsar, and rj the vector from the observatory to the j-th body. Higher-order terms
are usually negligible and can become important only when the radiation grazes a body
at a very short distance. Accurate Solar System ephemerides are regularly provided,
e.g., by the Jet Propulsion Laboratory (JPL) (e.g. Folkner et al., 2009, 2014).

∆�$ It is the annual parallax term. In most cases, the pulsar radiation wavefront is con-
sidered to be perfectly plane when it reaches the observatory site. While this is a very
good approximation for most pulsars, it might not be adequate for pulsars that are close
enough to our Solar System. In the latter cases, the actual curvature of the wavefront
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Figure 2.8. Illustration of the parallax effect in its first-order approximation. The curvature of the
wavefront is responsible for an extra delay that depends on the position of the Earth along its orbit.

translates into a delay in the arrival time of the radiation at the observatory, compared
to the plane-wave approximation case (Fig. 2.8), which depends on the position of
the Earth along its orbit. The magnitude of the delay thus varies in a quasi-sinusoidal
fashion, with a period of half a year, and can be expressed as (Backer & Hellings, 1986):

∆�$ = − 1

2cd
(rso ∧ r̂sp)2 = − 1

2cd
[(rso · r̂sp)2 − |rso|2] , (2.30)

where rso is the vector connecting the SSB to the observatory and r̂sp the unit vector
connecting the SSB to the pulsar. Clearly, the observable modulation is smaller for
pulsars that are far from the ecliptic plane and vanishes for those located at the ecliptic
poles.

∆⊕Atm It is the delay associated with the propagation of the radiation through the Earth
atmosphere, where several effects contribute. Firstly, the group velocity of electromag-
netic waves in the atmosphere is different from the speed of light in a vacuum. Secondly,
the atmosphere refractivity (which also changes between the ionosphere and the non-
ionized troposphere) lengthens the optical travel path of the radiation. Thirdly, the
ionosphere itself has a small dispersive effect that induces an additional delay, depend-
ing on the frequency of the radiation. However, all these effects are usually too small
to be measured with the currently available sensitivity and some of them can become
relevant only for very low-frequency (. 300 MHz) observations.
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2.5.3.2 Interstellar terms

The second block of terms in Eq. (2.25) comes into play when referring tbat to the binary system
barycentre (or to the pulsar itself if this is isolated) and are related to the propagation of light
through the ISM.

∆∗VP It is the vacuum propagation delay, i.e. simply the radiation travel time from the BB
to the SSB due to the finite speed of light in a vacuum. Its expression is, trivially:

∆∗VP =
d

c
, (2.31)

where d is the distance between the BB and the SSB. Because the actual value of d is
hardly ever known9, most of the time this term cannot actually be calculated. However,
it only represents a constant offset. It is therefore relevant only for very specific cases
where it is important to know the real time of emission, for instance if we want to relate
the pulsar signal to some other phenomenon that occurred at a specific time.

∆∗D It is the frequency-dependent interstellar dispersion delay, due to the ionized compo-
nent of the ISM, already discussed in Section 2.2.1. The associated delay is exactly
that of Eq. (2.5), taking care of the fact that the radiation frequency as it would be
measured at the SSB, νSSB, differs from the observed one, νobs, mostly because of the
Doppler shift due to the Earth motion (by a factor of up to ∼ 10−4). The correction
term can thus be written as:

∆∗D =
D
ν2

SSB

DM . (2.32)

Another caveat to consider is that, in some pulsars, the DM is seen to vary with time
(e.g. Backer et al., 1993; You et al., 2007; Lam et al., 2016). In these cases, more
sophisticated models must be used to take these variations into account (Keith et al.,
2013; Lee et al., 2014).

∆∗ν This term accounts for all the possible delays associated with frequency-dependent
effects that deviate from the inverse-square law and that cannot thus be absorbed by
∆∗D. This contribution can be expressed as a sum of power laws with different spectral
indices αj , namely:

∆∗ν =
∑
j

kj(νSSB)αj with αj 6= −2 , (2.33)

where kj is the scale factor of the j-th contribution.

∆∗E It is the Einstein delay associated with the relativistic coordinate transformation from
the SBB to the BB and it can be calculated in an analogous way to Eq. (2.28).

9The actual pulsar distance can be known through the measurement of its parallax, derived either via timing
or via very-long-baseline interferometry (VLBI) observations, or through the association of the pulsar with some
other object of known distance (e.g. a globular cluster or a supernova remnant).
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2.5.3.3 Binary terms

If the pulsar considered is isolated, applying the correction terms described in Sections 2.5.3.1
and 2.5.3.2 will directly give the pulsar emission time, tpsr. If, instead, the pulsar is part of a
binary system, the third block of terms on the right-hand side of Eq. (2.25) must also be taken
into account.

Timing models for pulsars in binary systems require a set of additional parameters to describe
the orbital motion. In theory, in the case of a purely Keplerian orbit (which is an adequate
description for a large number of systems), the 3-D motion of the pulsar along the orbit is fully
described by six spatial parameters and one time parameter, namely;

• the orbital inclination, i;

• the longitude of the ascending node, Ωasc
p ;

• the longitude of periastron, ωp;

• the semi-major axis, ap;

• the eccentricity, e;

• the orbital period, Pb;

• the epoch of passage at periastron, T0;

where the first three parameters specify the orientation of the orbit in the sky, whereas the latter
four univocally determine the position of the pulsar along the orbit, as a function of time. The
motions of the pulsar and that of its companion are related by the well-known third Kepler’s
law:

P 2
b

a3
=

4π2

G(Mp +Mc)
, (2.34)

where Mp and Mc are the masses of the pulsar and of its companion, respectively, and

a = ap + ac , (2.35)

is the orbital separation, i.e. the sum of the semi-major axis of the pulsar orbit, ap, and the
semi-major axis of the companion orbit, ac. These quantities are in turn related to each other
and to the masses of the bodies as: 

ap = a
Mc

Mp +Mc

ac = a
Mp

Mp +Mc

. (2.36)

The pulsar motion along the orbit is then conveniently described within a cartesian reference
frame (i, j,k) with the origin coinciding with the BB (Fig. 2.9). Following the convention used
by Damour & Taylor (1992), i and j are chosen to lie on the orbital plane, with the former
pointing towards the ascending node of the pulsar orbit, and the latter towards the opposite
direction of the observer along the projection of the line of sight; k = i∧ j is thus orthogonal to
the binary orbit and parallel to the orbital angular momentum, L. In this frame, the position
of the pulsar can be expressed in polar coordinates in a particularly simple form. Calling rp the
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system with Mp = 1.4 M�, Mc = 2.0 M�, Pb = 3 h and ωp = 70 deg. The reference frame (i, j,k) is
highlighted in red.
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radial distance of the pulsar and Θp the angle measured anti-clockwise from the i direction to
the pulsar position vector, the trajectory of the pulsar is described by:

Θp = ωp +AT

rp =
ap(1− e2)

1 + e cos(AT − ωp)

. (2.37)

Here we have introduced the true anomaly, AT, which is the angle used to identify the pulsar
orbital phase, and which is measured exactly like Θp, but starting from the periastron direction.
The dependence of AT with time can be obtained with the aid of two auxiliary angles, namely
the eccentric anomaly, E (see Fig. 2.10), and the mean anomaly,M . By definition, in the purely
Keplerian case, M is linearly proportional to time t, as:

M =
2π

Pb
(t− T0) . (2.38)

The dependence of E on the true anomaly is instead given by a transcendental equation:

tan

(
AT

2

)
=

√
1 + e

1− e
tan

(
E

2

)
. (2.39)

It can be shown (see e.g. Capderou, 2005) that M is related to E through the implicit function
(known as Kepler’s equation):

M = E − e sinE , (2.40)

which does not have a closed-form solution and must be solved numerically. Solving first
Eq. (2.39) and then (2.40) is therefore necessary to pass from AT to M , and thus be able
to express Eq. (2.37) as a function of time.

It is important to remark that, apart from a few exceptional cases, it is generally not possible
to fully characterize the orbit through pulsar timing. In other words, timing does not allow us
to easily measure all the seven orbital parameters listed above. Rather, only five observables
are usually measurable. These are ωp, Pb, e, T0 and xp = ap sin i, the latter being the projected
semi-major axis of the pulsar orbit along the line of sight. With only these five parameters
measured, we have no information on the system inclination as well as the on masses of the
pulsar and its companion. However, by combining Eq. (2.34) with Eq. (2.36), it is possible to
obtain a useful relation for these three parameters:

f(Mp)
.
=

4π2

G

x3
p

P 2
b

=
(Mc sin i)3

(Mp +Mc)2
. (2.41)

The quantity f(Mp) so defined is said to be the mass function of the pulsar. Because it depends
only on the easily measurable parameters xp and Pb, it is often used to constrain the companion
mass. Indeed, it is easy to see that:

f(Mp) =
Mc(

Mp

Mc
+ 1

)2 sin3 i < Mc sin3 i ⇒ Mc >
f(Mp)

sin3 i
> f(Mp) , (2.42)

that is, the pulsar mass function represents a lower limit to the mass of the companion. Also,
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because the current range of observed pulsar masses is relatively narrow (∼ 1−2 M�, Antoniadis
et al. 2013), it is possible to use f(Mp) to infer the companion mass for an assumed inclination
of the system and a given value of the pulsar mass, typically chosen to be 1.4 M�.

One way to directly measure the inclination and the masses of the pulsar and its companion
is by measuring two or more so-called post-Keplerian (PK) parameters. As their name suggests,
they are parameters used to describe deviations from Newtonian gravity, for instance due to
relativistic effects. In General Relativity (GR) and all boost-invariant gravity theories (e.g.
Blandford & Teukolsky, 1976; Damour & Deruelle, 1985, 1986; Will & Zaglauer, 1989), the five
most important PK parameters are: the rate of advance of periastron, ω̇; the time dilation and
gravitational redshift parameter, γ; the orbital decay, Ṗb; the range, r, and the shape, s, of the
Shapiro delay. Their expressions in GR are (Lorimer & Kramer, 2004):

ω̇ =3 T
2/3
�

(
Pb

2π

)−5/3 1

1− e2
(Mp +Mc)

2/3 ,

γ =T
2/3
�

(
Pb

2π

)1/3

e
Mc(Mp + 2Mc)

(Mp +Mc)4/3
,

Ṗb =− 192π

5
T

5/3
�

(
Pb

2π

)−5/3[1 + (73/24)e2 + (37/96)e4

(1− e2)7/2

]
MpMc

(Mp +Mc)1/3
,

r =T�Mc ,

s ≡ sin i = T
−1/3
�

(
Pb

2π

)−2/3

xp
(Mp +Mc)

2/3

Mc
,

(2.43)

where T� = GM�/c
3 = 4.925490947 µs and the masses are expressed in solar units.

Hence, in a PK framework, some of the equations seen before will have additional contribu-
tions. For example, the mean anomaly M is obtained by integrating the instantaneous orbital
frequency fb(t) = [Pb + Ṗb (t− T0)]−1 and Eq. (2.38) thus becomes:

M =

∫ t

T0

fb(t) dt =
2π

Pb
(t− T0) − πṖb

P 2
b

(t− T0)2 . (2.44)

Similarly, the longitude of periastron, ωp, will also have a time-dependent contribution given by
the rate of advance of periastron:

ωp(t) = ωp,0 + (t− T0) ω̇ , (2.45)

where ωp,0 = ωp(T0).
As can be seen from Eqs. (2.43), the characteristic of the PK parameters (also valid in any

boost-invariant theory of gravity) is that they only depend on the usual Keplerian parameters
and on the masses of the pulsar and its companion. For this reason, it is possible to plot them
in a graph with Mc versus Mp, also called mass-mass diagram. Each measured PK parameter
will identify a line in the diagram that corresponds to a certain total mass Mtot = Mp + Mc

and indicates all the possible combinations of values for Mp and Mc that add up to Mtot.
Therefore, when measuring two PK parameters, the intersection of the two corresponding lines
in the diagram will give a separate measure of the two masses Mp and Mc. Measuring three or
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Figure 2.10. Definition of the true anomaly, AT, and of the eccentric anomaly, E. The true anomaly is
defined to be the angle between the vector connecting the BB to the periastron, and the vector connecting
the BB to the pulsar. The eccentric anomaly is instead defined through the aid of an auxiliary circle of
the same size as the orbital semi-major axis, ap, onto which the pulsar position is projected.

more PK parameters will instead enable us to test theories of gravity: if the theory considered
is correct, all the lines should intersect, within the uncertainties, at one specific point.

With the above discussion in mind, we are finally ready to describe the binary correction
terms of Eq. (2.25) in detail:

∆bin
R It is the orbital Rømer delay. Very much like its Solar System equivalent term, it

accounts for the difference between the arrival time at the BB and at the actual pulsar
position. Its formal expression is (Damour & Taylor, 1992):

∆bin
R = xp [cosE − e (1 + δr)] sinωp + xp sinE

√
1− e2(1 + δΘ)2 cosωp , (2.46)

where δr and δΘ are another two PK parameters that represent relativistic deformations
of the orbit (Lorimer & Kramer, 2004) and they vanish in the purely Keplerian case.

∆bin
E It is the orbital Einstein delay. It embodies the delay due to the gravitational redshift

caused by the companion star’s gravity and the time dilation associated with the coor-
dinate transformation from the reference frame centered to the BB, to that co-moving
with the pulsar along its orbit. The contribution can be written as (Lorimer & Kramer,
2004):

∆bin
E = γ sinE . (2.47)
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∆bin
S It is the orbital Shapiro delay and it accounts for the extra propagation time of the

pulsar signal when passing through the curved space-time near the companion star. Its
amplitude can be written as:

∆bin
S = −2r ln

[
1− e cosE − s

(
sinωp(cosE − e) +

√
1− e2 cosωp sinE

)]
. (2.48)

Recalling that s = sin i, we see that ∆bin
S depends on the system inclination and on the

considered orbital phase, peaking at the pulsar superior conjunction (Θp = ωp +AT =
π/2).

∆bin
A It is the aberration term. It accounts for the change in the direction of the observer,

as seen from the pulsar, caused by the Lorentz boost associated with the coordinate
transformation from the BB to the pulsar itself. The equation describing the delay is
provided, e.g., by Damour & Deruelle (1986):

∆bin
A = X

[
sin(ωp +AT) + e sinωp

]
+ Y

[
cos(ωp +AT) + e cosωp

]
, (2.49)

where X and Y are parameters that depend on the pulsar spin axis and on the size of
the orbit (Edwards et al., 2006).

∆bin
K It is the so-called Kopeikin term and it includes three contributions, namely the change

in the viewing angle of the binary due to the proper motion of the system (Kopeikin,
1996), the annual-orbital parallax and the orbital parallax (Kopeikin, 1995). However,
it is generally much smaller than the other binary correction terms.

2.5.4 Fit and parameter estimation

For each observed topocentric ToA, once the timing formula (Eq. 2.25) has been used to derive
the pulsar proper time of emission, tpsr, the latter is plugged into Eq. (2.24) to calculate
the associated rotation number or, equivalently, the associated rotational phase φ(tpsr). The
observed phases are then compared against the theoretical values, φtheo, predicted by the timing
model, to form the so-called timing residuals, which are simply the differences between the two.
A statistical estimator is then used to evaluate the goodness of the model in describing the data.
The most commonly used estimator is the reduced chi-square, χ2

red (Taylor & Weisberg, 1989):

χ2
red =

1

Ndof

∑
i

(
φ(tpsr,i)− φtheo

i

σi

)2

, (2.50)

where σi is the uncertainty associated with the i-th ToA and Ndof is the number of degrees of
freedom, which is the difference between the number of ToAs and the number of parameters
fitted in the model. If the timing model is good enough to predict, on average, the correct
rotational phases of the ToA within the uncertainties, we have χ2

red ∼ 1. The timing residuals
will then be Gaussianly distributed around zero and will not show any kinds of correlation
(panel a in Fig. 2.11) . On the contrary, if some effects are not correctly taken into account, or
are even completely unmodelled, χ2

red > 1 and the residuals will be highly correlated showing
clear trends (panels b, c and d in Fig. 2.11). This often happens when extending the dataset
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Figure 2.11. Signatures of simulated timing residuals in the case of: a) a good timing model; b) an
incorrect spin period derivative; c) an incorrect position; d) an incorrect proper motion.

with newly taken data: as the number of ToAs increases and the time span lengthens, new
effects may become apparent and the timing model used may need to be updated. Although the
least-squares fit procedure is by far the most widely used technique in pulsar timing (e.g. Hobbs
et al., 2006), it relies on several underlying assumptions that can very often be broken down. In
particular, strong covariances and non-linearities in the parameters, as well as correlated sources
of noise, have led to the development of more advanced techniques that make use of χ2 mapping
(e.g. Lazarus et al., 2014) or Bayesian parameter sampling algorithms (e.g. Lentati et al., 2014;
Caballero et al., 2016).

The whole procedure of folding, ToA extraction and timing can be re-iterated several times
on the same dataset in order to increase the quality of the ToAs themselves and thus optimize
the resulting timing solution.

2.6 Polarimetry

In this section we will give an overview of the property of polarization of electromagnetic waves.
Firstly, we will give the mathematical framework within which polarization is usually studied.
Secondly, the RVM (introduced in Section 1.5.3) will be described in more detail. Lastly, we
will briefly review the main methods used to correctly calibrate pulsar data. In this section, we
follow the IAU/IEEE conventions (Hamaker & Bregman, 1996; van Straten et al., 2010) and
Rybicki & Lightman (1979) as a reference unless otherwise stated.

2.6.1 Stokes parameters

Let us consider a monochromatic electromagnetic wave of frequency ν (wavelength λ = c/ν),
propagating along the z-direction of a Cartesian reference frame (x,y, z) as shown in Fig. 2.12.
The frame is chosen such that the x and y axes lie in the plane of the sky, with x pointing
towards the North direction, y towards East, and z is directed towards the observer (i.e. it is
parallel to the line of sight). The electric field E of the electromagnetic wave will thus oscillate
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in the x-y plane and can therefore be decomposed into the two orthogonal components:

E(z, t) = Ex(z, t) · x̂ + Ey(z, t) · ŷ . (2.51)

Here x̂ and ŷ are the unit vectors along the x and y direction, respectively, and the components
are: {

Ex(z, t) = E0,x cos(ωt− kz − ϕx)

Ey(z, t) = E0,y cos(ωt− kz − ϕy)
, (2.52)

where ω = 2πν is the wave angular frequency, k = 2π/λ is the wavenumber, E0,x and E0,y are
the constant amplitudes of the x and y electric field components, and ∆ϕ = ϕy−ϕx is the phase
difference between the two components. Because in a monochromatic wave ∆ϕ is constant, it is
easy to verify that Eq. (2.52) represents the parametric form of an ellipse in the x-y plane. The
ellipse, as shown in Fig. 2.13, has a semi-major axis that is rotated by an angle ψ with respect
to the x-axis and has an eccentricity E that is related to the angle ξ as tan ξ =

√
1− E2. This

is true if we impose the conditions:

E0,x cosϕx =
√
E2

0,x + E2
0,y cos ξ cosψ

E0,x sinϕx =
√
E2

0,x + E2
0,y sin ξ sinψ

E0,y cosϕy =
√
E2

0,x + E2
0,y cos ξ sinψ

E0,y sinϕy = −
√
E2

0,x + E2
0,y sin ξ cosψ

. (2.53)

Fig. 2.14 shows the different possible polarization states of an electromagnetic wave. If, at a
given point of the z-axis, the electric field describes an ellipse in the x-y plane as a function of
time, the electromagnetic wave is said to be elliptically polarized. In the special case in which
∆ϕ = 0 or ∆ϕ = π, the ellipse degenerates into a line and the electric field will thus always
oscillate along a single particular direction. In this case the radiation is said to be linearly
polarized. The direction of oscillation is identified by the angle ψ in the x-y plane and it can be
calculated as:

ψ = arctan

(
Ey
Ex

)
. (2.54)

Another special case occurs if E0,x = E0,y and ∆ϕ = ±π/2, when the ellipse reduces to a
circumference. If ∆ϕ = −π/2 the electric field rotates clockwise, as seen from the observer, and
we have a left-handed circular polarization (LCP). Conversely, when ∆ϕ = +π/2 the electric
field rotates counter-clockwise, and we have a right-handed circular polarization (RCP).

The polarization state of an electromagnetic radiation is conveniently described by the so-
called Stokes parameters (Stokes, 1851). These are four quantities, I,Q, U, V , defined as:

I = E2
0,x + E2

0,y = E2
0

Q = E2
0,x − E2

0,y = E2
0 cos(2ξ) cos(2ψ)

U = 2E0,xE0,y cos ∆ϕ = E2
0 cos(2ξ) sin(2ψ)

V = 2E0,xE0,y sin ∆ϕ = −E2
0 sin(2ξ)

, (2.55)

where E0 =
√
E2

0,x + E2
0,y is the total amplitude of the electric field. While I is just the total

intensity of the electric field, Q, U and V contain the full polarimetric information, as they are
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Figure 2.12. Definition of the linear polarization position angle, ψ on the plane of the sky and of the
left- (LCP) and right-handed (RCP) circular polarization in the IAU/IEEE conventions.
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Figure 2.13. Polarization ellipse. The angle ξ determines the polarization state (ξ = ±45 deg for
circularly polarized radiation, ξ = 0 deg for linearly polarized radiation), whereas the angle ψ, called
position angle (or linear polarization angle, PA), determines the orientation of the polarization ellipse.
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Figure 2.14. The different polarization states of light as a function of the phase shift ∆ϕ between the
component along x (solid black line) and the component along y (dashed black line) of the electric field.
The polarization state is linear for ∆ϕ = 0 deg and ∆ϕ = 180 deg, and it is circular for ∆ϕ = ±90 deg.
All the other values of ∆ϕ produce an elliptical polarization state.

functions of both amplitudes, E0,x and E0,y, of the electric field components and of their phase
difference, ∆ϕ. Eqs. (2.55), where the quantities ∆ϕ, E0,x and E0,y are all time-independent,
are valid only for a monochromatic wave. The latter is, by definition, 100% polarized. However,
in most of real cases, only a fraction p < 1 of the radiation is polarized. The Stokes parameters
are thus better re-defined as time-averaged quantities:

I = 〈E2
0,x + E2

0,y〉 = 〈E2
0〉

Q = 〈E2
0,x − E2

0,y〉 = 〈E2
0 cos(2ξ) cos(2ψ)〉 = Ip cos(2ξ) cos(2ψ)

U = 〈2E0,xE0,y cos ∆ϕ〉 = 〈E2
0 cos(2ξ) sin(2ψ)〉 = Ip cos(2ξ) sin(2ψ)

V = 〈2E0,xE0,y sin ∆ϕ〉 = 〈−E2
0 sin(2ξ)〉 = −Ip sin(2ξ)

, (2.56)

where 〈 〉 is the time-average operator. The degree of polarization, p, is thus defined as:

p =

√
Q2 + U2 + V 2

I
, (2.57)

which is 0 for a completely unpolarized radiation, and 1 for a fully-polarized radiation.

For a fully circularly polarized wave, it can be easily seen that Q = U = 0, whereas V = ±1.
On the other hand, for a fully linearly polarized radiation, V = 0, I2 = Q2 + U2 and the
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Figure 2.15. Illustration of the Rotating Vector Model (RVM). As the line of sight (coloured curved
arrows) cuts the beam at different angular distances from the pulsar magnetic axis, the shape and offset
of the linear polarization position angle curve will change accordingly.

previously introduced linear polarization angle (PA), ψ, only depends on Q and U , as:

PA ≡ ψ =
1

2
arctan

(
U

Q

)
. (2.58)

This shows that Q and U only contain information about the linearly polarized component of
the electromagnetic wave, whereas V is only related to the circularly polarized component. It
is therefore useful to define the linearly polarized intensity as:

L =
√
Q2 + U2. (2.59)

Finally, the polarization of light can be studied within the framework of the Müller calculus
(Müller, 1948). In this framework, Stokes parameters can be gathered and treated as a four-
vector S = (I,Q, U, V ) with the same mathematical properties of an event in relativistic space-
time (Britton, 2000). For this reason, we can write S = (S0, ~S), where S0 ≡ I is the equivalent of
the time-coordinate and ~S ≡ (Q,U, V ) is the equivalent of the vector with the spatial components
in a Minkowski space-time. In a three-dimensional cartesian reference frame with axes (Q,U, V ),
the sphere of radius |~S| =

√
Q2 + U2 + V 2 is called Poincaré sphere. Each point on this sphere

identifies a different polarization state.

Any physical process that can alter the polarization state S, is represented by a 4×4 matrix
M that acts on the Stokes four-vector, such that the new polarization state S ′ is given by the
matrix product:

S ′ = M · S. (2.60)

If, after applying M, the polarization state changes, the three-dimensional vector ~S will move
in the Poincaré sphere, which will expand if the polarized fraction increases, or will shrink in
case of depolarization.

As we will discuss in Section 2.6.3, Müller calculus is the mathematical tool by which it is
possible, among other things, to calibrate pulsar data.



66 Chapter 2. Observing a pulsar

2.6.2 Rotating Vector Model

Pulsars are usually highly polarized sources. In particular, very soon after their discovery,
polarimetry measurements showed that, in a significant number of pulsars, the linear polarization
angle ψ varies as a function of the rotational phase φ with a characteristic S-shaped trend. The
explanation to this phenomenon was first given by Radhakrishnan & Cooke (1969), and further
developed by Komesaroff (1970), with the so-called Rotating Vector Model (RVM). In this model,
which assumes a perfectly dipolar pulsar magnetic field, the linear polarization angle corresponds
to the direction of the projected magnetic field line in the sky (Fig. 2.15). As our line of sight
crosses the beam during the NS rotation, we observe different field lines and thus ψ varies as:

tan(ψ0 − ψ) =
sinαm sin(φ− φ0)

sin(αm + βm) cosαm − cos(αm + βm) sinαm cos(φ− φ0)
. (2.61)

Here αm is the same magnetic inclination as defined in Section 1.3 and φ0 is the rotational
phase at which the observer’s line of sight is at the smallest angular distance βm (called impact
parameter) from the pulsar magnetic axis. The rotational phase φ = φ0 also corresponds to
the inflection point in the linear polarization angle swing, where ψ = ψ0 and the observer, the
pulsar spin axis and the pulsar magnetic axis all lie in the same plane. By fitting Eq. (2.61) to
the data, it is in principle possible to infer the orientation of the pulsar spin and magnetic axis
(e.g. Everett & Weisberg, 2001). In practice, because ψ is measured only in the on-pulse region
of a pulsar profile, αm and βm are rather poorly fitted in the majority of cases because of the
small pulse duty cycle and, hence, of the small range of φ used. In this regard, the presence of
an interpulse (which is typically separated by ∼ 180 deg from the main pulse) with measurable
linear polarization would greatly increase the range of pulse longitudes with a measured value of
ψ, which would in in turn significantly help to constrain the fitted model and, hence, the values
of the RVM parameters.

Notwithstanding, it is very common to have polarization angle swings that do not follow the
prediction of the RVM (e.g. Xilouris et al., 1998; Johnston & Weisberg, 2006; Johnston et al.,
2008). In particular, the ψ-curves are often “broken” by abrupt jumps, which in most cases are
about 90 deg in magnitude (Backer et al., 1976). Such jumps are thought to be generated by
two orthogonal emission states called Orthogonal Polarized Modes (OPMs, Manchester et al.
1975).

2.6.3 Polarization calibration

The data recorded by the telescope back-end do not contain the intrinsic polarization properties
of the observed pulsar. This is because the incoming radiation is modified by a number of effects.
These include the Faraday rotation and a series of other effects that occur in the hardware chains,
from the signal reception to the data output. Ignoring for the moment the Faraday rotation,
the measured Stokes vector Sobs of the pulsar can be written as:

Sobs = Mtot · Sin , (2.62)

where Sin is the intrinsic Stokes vector of the pulsar and Mtot is the Müller matrix that accounts
for the effects of the hardware chains. Mtot can in turn be expressed as the product of four
matrices, each accounting for a different effect (e.g. Heiles et al., 2001; Lorimer & Kramer, 2004):

Mtot = MAmp ·MCC ·MFeed ·MΠ , (2.63)
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where, because of the non-commutative nature of the matrix product, the order is important.
The four matrices involved are:

MΠ It accounts for the change in the parallactic angle (Π), which is defined as the angle
between the great circle passing through the source and the Zenith and the great circle
passing through the source and the celestial poles. The parallactic angle changes as a
function of the source position in the observatory sky and can be calculated via the
simple formula (Lorimer & Kramer, 2004):

Π = arctan

(
sinHA cos l⊕

sin l⊕ cos δ − cos l⊕ sin δ cosHA

)
, (2.64)

where HA is the source Hour Angle, l⊕ is the latitude of the observatory on the Earth
and δ is the source declination. In modern radio telescopes with alt-azimuthal mounts,
this causes an apparent rotation of the source with respect to the telescope feed, by
an angle Π, as the source is being tracked. The effect on the Stokes parameters is
described by the matrix (Heiles et al., 2001; Lorimer & Kramer, 2004):

MΠ =


1 0 0 0

0 cos 2Π sin 2Π 0

0 − sin 2Π cos 2Π 0

0 0 0 1

 , (2.65)

which represents a rotation in the Poincaré space about the V -axis by an angle 2Π,
resulting in a mixing between the Q and the U components and, hence, in a rotation
in the observed linear polarization angle, ψ.

MFeed It describes the geometry of the telescope feed in the ideal case, and corresponds to
the basis used to represent the incoming electric field. Currently, the vast majority
of radio telescope receivers have either two orthogonal linear or circular receptors,
although elliptical receptors can in principle also be used. The matrix describing the
feed geometry is (Heiles et al., 2001; Lorimer & Kramer, 2004):

MFeed =


1 0 0 0

0 cos 2Υ 0 sin 2Υ

0 0 1 0

0 − sin 2Υ 0 cos 2Υ

 . (2.66)

For a feed that samples the two orthogonal linear polarizations of the incoming signal
(dual linear feed), Υ = 0 deg and thus MFeed = 1, where 1 is the identity matrix.
For a feed that samples the two orthogonal circular polarizations (dual circular feed),
Υ = 45 deg. All the other values of Υ, instead, represent possible dual elliptical
configurations.

MCC While MFeed describes the geometry of an ideal feed, MCC accounts for possible
imperfections that cause cross-coupling effects, i.e. the unwanted spillover of power
from one receptor to the other. This can be due, for instance, to electric power leakage
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or imperfections in mounting the two receptors, which may not be perfectly orthogonal
(Heiles et al., 2001). If the imperfections are small, the associated matrix is, to the first
order:

MCC =


1 0 A B

0 1 C D

A −C 1 0

B −D 0 1

 , (2.67)

where A,B,C,D are defined as:
A = ε0 cosφ0 + ε1 cosφ1

B = ε0 sinφ0 + ε1 sinφ1

C = ε0 cosφ0 − ε1 cosφ1

D = ε0 sinφ0 − ε1 sinφ1

. (2.68)

The quantities ε0 and ε1 are the amplitudes (also called ellipticities) of the cross-
coupling of the two receptors, whereas φ0 and φ1 are the relative phases.

MAmp It accounts for the differential gain and the differential phase between the signals of
the two receptors (Fig. 2.16). The former arises from the different amplification chains
associated with the two receptors. The latter, instead, is mostly due to the different
lengths l0 and l1 of the cables carrying the two polarization signals; to the first order,
this causes a relative phase delay δφ = 2πcν(l1− l0), which is thus linearly proportional
to the signal frequency ν. The matrix describing both effects, in the approximation
that the differential gain δΓ is small, is (Heiles et al., 2001):

MAmp =


1 δΓ/2 0 0

δΓ/2 1 0 0

0 0 cos δφ − sin δφ

0 0 sin δφ cos δφ

 . (2.69)

Calibrating pulsar data in polarization means determining all the six unknown parameters (δΓ,
δφ, ε0, ε1, φ0, φ1) of the Mtot matrix. These parameters (optionally together with the absolute
gain Γ, necessary if we want to calibrate also in flux) represent the full reception model of the
system (Table 2.2). After the latter is determined, the intrinsic Stokes parameters of the pulsar
can be derived by inverting Mtot and applying it to the observed Stokes four-vector:

Sin = (Mtot)
−1 Sobs . (2.70)

The accurate polarization calibration is of great importance not only because it is necessary to
correctly interpret the data in polarimetric studies of pulsars, but also because it can actually
improve the precision of pulsar timing (van Straten, 2006). Indeed, by looking at Eq. (2.65)-
(2.69) it can be seen that some effects can also have an impact on the Stokes parameter I, which
represents the total intensity profile of the pulsar, typically used for generating the ToAs. If
not properly calibrated, data of highly polarized pulsars can be affected by distortions in the
pulse profile shape that can easily translate into systematic timing errors as a function of the
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parallactic angle (Britton, 2000).
In the following sections, we will review the main techniques used for calibrating the polar-

ization in astronomical pulsar data.

2.6.3.1 NDO: Noise-Diode only

The most basic way to perform polarization calibration involves the use of an artificial signal
that is generated by a device (often called noise-diode, sometimes also cal-probe) and injected
directly into the two receiver receptors (e.g. Lorimer & Kramer, 2004). The noise-diode is usually
designed to produce a signal that is 100% linearly polarized and that illuminates both receptors
equally (Fig. 2.16). In the case of a dual linear feed (MFeed = 1), this means that the signal has
a position angle of 45 deg, and hence its polarization state is represented by the Stokes vector:

Scal =


Ical

0

Ical

0

 , (2.71)

where Ical is the intensity of the noise-diode signal. However, because of the differential gain
and phase of the response of the two receptors, the observed Stokes vector will be:

Sobs = MAmp · Scal , (2.72)

where the cross-coupling effects have been neglected and the parallactic angle effect is not present
since the signal is not astronomical (MCC = MΠ = 1). Explicitly:

Iobs

Uobs

Qobs

Vobs

 =


1 δΓ/2 0 0

δΓ/2 1 0 0

0 0 cos δφ − sin δφ

0 0 sin δφ cos δφ




Ical

0

Ical

0

 ⇒



Iobs = Ical

Uobs =
δΓ

2
Ical

Qobs = Ical cos δφ

Vobs = Ical sin δφ

. (2.73)

This is a system of four linear equations in the three unknowns, Ical, δφ and δΓ, that, once solved,
relates the differential gain and phase to the observed parameters:

δφ = arctan

(
Vobs

Qobs

)

δΓ =
2Uobs

Iobs

. (2.74)

As previously stated, the above treatment is valid in the ideal case in which the noise-diode
signal is 100% linearly polarized at 45 deg, which hardly ever corresponds to a real case. In
reality, the noise-diode signal is not fully polarized and it is likely illuminating the two receptors
not equally. If the two assumptions are relaxed, the noise-diode input Stokes vector can be
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Figure 2.16. Scheme of the procedure used in the NDO polarization calibration method. An artificial
square wave, 100% linearly polarized, illuminates the two receptors equally. By measuring the output
signal it is then possible to determine the differential gain, δΓ, and the differential phase δφ of the two
receptors. See Section 2.6.3.1 for details.

written as:

Scal =


Ical

Qcal

Ucal

0

 , (2.75)

where it is still assumed that the signal is injected in-phase into both receptors and thus Vcal = 0.
In this case, Eq. (2.73) becomes:


Iobs

Uobs

Qobs

Vobs

 =


1 δΓ/2 0 0

δΓ/2 1 0 0

0 0 cos δφ − sin δφ

0 0 sin δφ cos δφ




Ical

Qcal

Ucal

0

 ⇒



Iobs = Ical +
δΓ

2
Qcal

Uobs =
δΓ

2
Ical +Qcal

Qobs = Ucal cos δφ

Vobs = Ical sin δφ

. (2.76)

This is a system of four equations in the five unknowns Ical, Qcal, Ucal, δΓ, δφ. The way to
solve it is by obtaining an independent measure of Ical through the observation of a source of
known flux, typically a quasar (Lorimer & Kramer, 2004). This procedure allows us to remove
an unknown in Eq. (2.75), and thus to solve the system of equations.

2.6.3.2 MEM: Measurement Equation Modelling

Because it takes only a few seconds to observe the noise-diode signal, and possibly a few extra
minutes to observe a flux calibrator, the NDO method described above is very straightforward
and easy to carry out. However, it is limited by the fact that it does not account for the possible
feed cross-coupling, which can be very important for high-precision polarimetry studies.

One way to overcome this limitation is to use the Measurement Equation Modelling (MEM)
method, described in van Straten (2004) and shown schematically in Fig. 2.17. In addition
to the noise-diode signal, the MEM method requires the observation of a strongly polarized
pulsar over a wide range of parallactic angles, as well as of a (possibly unpolarized) source with
a well-determined degree of circular polarization (e.g. a quasar). If the pulsar is observed at
NΠ different parallactic angles and, for each pointing, there is a measurement of the pulsar
polarization at Nφ different pulse longitudes, then we end up with a system of equations that
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Figure 2.17. Schematic representation of the MEM polarization calibration method. See text for the
details.
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can be written as:



S•obs, k(Πj) = Mtot(Γ, δΓ, δφ, ε0, ε1, θ0, θ1; Πj) · S•in, k(Πj) with
k = 1, . . . , Nφ

j = 1, . . . , NΠ

Scal
obs = MAmp(Γ, δΓ, δφ) ·MCC(ε0, ε1, θ0, θ1) · Scal

in

S∗obs = Mtot(Γ
∗, δ∗Γ, δ

∗
φ, ε
∗
0, ε
∗
1, θ
∗
0, θ
∗
1; Πj) · S∗in

. (2.77)

Here S•obs, k and S•in, k are the observed and intrinsic Stokes four-vectors of the k-th pulse
longitude of the pulsar, respectively, whereas S∗obs and S∗in are the observed and intrinsic Stokes
four-vectors of the quasar, respectively. The dependence of the Müller matrices on the seven
parameters of the full reception model (Table 2.2) have been made explicit.

We point out that the reception model parameters describing the quasar observation (marked
with the asterisk in their superscripts) are in general different from those of the pulsar and noise-
diode observations (with no superscripts). The reason is that, when switching between the quasar
and the pulsar, the system attenuation levels can be changed, because of the large difference
in the fluxes of the two sources. Eq. (2.77) is thus a system of 4 + 4 + 4NφNΠ equations and
14 + 4 + 4 + 4Nφ unknowns, and it is thus usually overdetermined. The determination of the
14 parameters can then be achieved via a least-square fitting algorithm (van Straten, 2004).

It is important to note that, if the absolute orientation of the pulsar in the sky is not known,
it is not possible to measure the absolute orientations of the receptors, θ0 and θ1, but only their
relative orientation. All the position angles will be thus measured with respect to the direction
of one of the receptors.

2.6.3.3 METM: Measurement Equation Template Matching

The MEM method is undoubtedly the most complete and accurate way to characterize the
observing system response and, hence, to calibrate the data. However, it is very time consuming,
since it requires to observe a test pulsar along a large portion of its track in the sky. Hence, it
is usually not possible to apply the MEM method with a high cadence.

A good compromise between calibration accuracy and time cost is represented by the Mea-
surement Equation Template Matching (METM) method, proposed by Athanasiadis et al. (2003)
and van Straten (2013). Apart from the noise-diode signal, the METM method requires at least
one uncalibrated observation of a highly polarized reference pulsar (good candidates are PSR
B1937+21 and PSR B1929+10) and a well-calibrated observation of the same pulsar10, that
will be regarded as a template. Given Nobs observations of the reference pulsar, the system of
equations to solve is:

10The well-calibrated observation of the reference pulsar could have been obtained, for instance, with the MEM
method at a preceding epoch.
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Table 2.2. Parameters involved in a complete calibration, in polarization and flux, of the data.

Value for ideal

Parameter Symbol Units Matrix linear feed Model

Absolute Gain Γ - MAmp N/A {NDO, MEM, METM} + Flux

Differential Gain δΓ - MAmp 0 NDO, MEM, METM

Differential Phase δφ deg MAmp 0 NDO, MEM, METM

Ellipticity of receptor 0 ε0 deg MCC 0 MEM, METM

Ellipticity of receptor 1 ε1 deg MCC 0 MEM, METM

Orientation of receptor 0 θ0 deg MCC 0 MEM, METM

Orientation of receptor 1 θ1 deg MCC 0 MEM, METM


S•obs, k(Πn) = Mtot(Γ, δΓ, δφ, ε0, ε1, θ0, θ1; Πn) · S•template,k with

k = 1, . . . , Nφ

n = 1, . . . , Nobs

Scal
obs = MAmp(Γ, δΓ, δφ) ·MCC(ε0, ε1, θ0, θ1) · Scal

in

(2.78)
where S•template,k is the known Stokes four-vector of the k-th pulse longitude of the reference
pulsar template observation and all the other variables have the same meaning as for Eq. (2.77).
The METM technique finds the best instrumental response parameters such that each observa-
tion of the reference pulsar can match the template through the application of the inverse of
Mtot. Similarly to the case of MEM, this is achieved through a least-square fitting algorithm.

2.6.4 RM measurement and correction for Faraday effect

Even after a proper correction for the instrumental response, the polarization properties of a
pulsar are often not directly visible in the data. The main reason for this is the Faraday rotation
effect. As explained in Section 2.2.2, a non-zero RM causes a rotation of the linear polarization
angle ψ as a function of the radiation frequency. Hence, if not properly taken into account, the
effect will lead to the so-called bandwidth depolarization: because every frequency channel has a
different value of ψ, the linear polarization will appear severely reduced, when summing all the
channels incoherently (Fig. 2.18).

The solution is thus to obtain a measurement of the RM and then apply an adequate counter-
rotation to each frequency channel, according to Eq. (2.12), before summing all the frequency
channels. Several methods have been developed to estimate the RM in pulsar data. One straight-
forward way is to do a brute-force search for the value of the RM, and look for the value that
maximizes the intensity of the linear polarization of the pulsar. Another way is to fit the observed
ψ as a function of frequency for Eq. (2.12).

After these steps, the data will be finally containing the real intrinsic polarimetric properties
of the pulsar, which can thus be used for further scientific investigations.
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Pulsars in Globular Clusters
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3.1 Introduction

Of the total currently known pulsar population, a non-negligible fraction is known to be hosted by
globular clusters (GCs). Pulsars in globular clusters show striking differences when compared to
the population of the Galaxy, mainly due to the very peculiar characteristics of their surrounding
environment. In this chapter, we give an overview of the science of pulsars in GCs.

In Section 3.2 we introduce globular clusters, discussing their physical characteristics and
origin.

In Section 3.3 we analyze the currently known population of pulsars in globular clusters,
highlighting its peculiar properties and differences with respect to that of the Galaxy.

In Section 3.4 we review the most important scientific applications for which pulsars in
globular clusters are particularly suitable.

3.2 Globular clusters

Globular clusters are self-gravitating groups of 104− 106 stars, confined in a volume of a few pc
across, that orbit the bulge of a host galaxy, exactly like a satellite.

GCs exhibit extremely high stellar densities. In their cores, these can reach 102 − 106 stars
per cubic parsec, thus exceeding those of the Galactic field by several orders of magnitude.

The first discovery of a GC in our Galaxy dates back to 1665, when the German astronomer
Abraham Ihle observed what would later be referred to as the M22 cluster. Due to the limited
sizes of the telescopes available at that time, the number of clusters known slowly increased to
34 over the next century or so. A major advance was made in 1782 by William Herschel who,
using telescopes with larger apertures, began an extensive survey that led to the discovery of 36
new clusters. In 1789, he also coined the term globular cluster, which he used to refer to these
objects in his second “Catalogue of a Second Thousand New Nebulae and Clusters of Stars”.
As of 2010, according to the Harris Catalogue1 (Harris, 1996), we know 157 GCs in the Milky

1 http://physwww.physics.mcmaster.ca/~harris/mwgc.dat

http://physwww.physics.mcmaster.ca/~harris/mwgc.dat


76 Chapter 3. Pulsars in Globular Clusters

Way, while another few tens are very likely to be present but invisible because of obscuration
by Galactic dust. The number of GCs in other galaxies can greatly differ from that of the
Milky Way and it seems to be higher in giant elliptical galaxies. For instance, the cD-type M87
supergiant elliptical galaxy is estimated to be populated by & 10000 GCs (Tamura et al., 2006;
Harris, 2009).

The way GCs form is still rather poorly understood and is thus object of debate. Over the last
decades, several theories have been proposed, and they are commonly divided into three main
categories: primary, secondary and tertiary. The difference is in the fact that they hypothesize
that GCs formed before, together with and after the formation of their host galaxy, respectively
(Fall & Rees, 1988).

Although the actual formation process is still a mystery, observations show that the Milky
Way GCs are certainly among the oldest stellar systems in the Universe, with ages of the order
of a few billion years, i.e. as old or older than the Galaxy. The first evidence for this is that
there is no sign of active star formation in any known cluster. Secondly, all the stars that belong
to a specific cluster show very similar chemical composition, in particular in their iron content
(Gratton et al., 2004); hence, all the stars must have formed together. Lastly, all GCs are
constituted by population-II stars, which contain a very small fraction of elements heavier than
helium (i.e. they have a low metallicity).

The primary way to study the stellar population of a GC is the Colour-Magnitude Diagram
(CMD, also known as Hertzsprung-Russell Diagram) which, in most of Galactic GCs, shows very
distinctive features (see Fig. 3.1). In particular we can always distinguish:

• The main-sequence (MS) branch, where all the low-mass stars that are still in the
hydrogen-burning stage of their life are located. In GCs, the MS branch is interrupted
at the so-called main-sequence turn-off point where it bends and joins the red giant
(RG) branch. This is a clear sign of the fact that all the stars in the cluster have
roughly the same composition and age, and the only difference is their birth mass.

• The red giant branch (RG), where are found the stars that have left the main sequence
phase, and have thus expanded in size and become cooler.

• The horizontal branch (HB), namely a group of stars that, after passing through a
giant phase, have ignited helium fusion in their hot and dense cores. A subclass of
HB stars is represented by the RR Lyrae, which are stars that undergo periodic radial
oscillations and hence show a variable luminosity.

• The blue stragglers (BS). These are stars that are more luminous and bluer than the
stars at the turn-off point, thus they appear to the left of the latter. For this reason,
if they were born together with all the other stars of the clusters, they seem to violate
the standard stellar evolutionary models. To explain their characteristics, astronomers
hypothesized that they may be the result of mass transfer, merger, or even collision of
binaries (e.g. Knigge et al., 2009; Perets & Fabrycky, 2009; Ferraro et al., 2015), which
may in turn have allowed them not to evolve off the main sequence yet.

• The white dwarf (WD) island. Here we can find all those stars that were born massive
enough to evolve quickly, such that they have already stopped their fusion processes
and have become WDs.

The interpretation of the peculiar shape of the CMD of GCs is that the more massive stars
have already exhausted the hydrogen in their cores, and thus they have already left the main
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sky) of the same class of stars in
a globular cluster and determines
the distance to the globular clus-
ter by comparing the observed
flux to the assumed intrinsic lu-
minosity of the star. Classes of
stars used to determine the dis-
tances to globular cluster stars in-
clude white dwarfs (15), main-
sequence stars (16), horizontal
branch (HB) stars (17), and RR
Lyrae stars (a subclass of HB
stars) (18). Details regarding
these different types of stars are
found in Fig. 2 and its caption.
The key to the success of this
approach involves the accuracy in
determining the intrinsic lumi-
nosity of the standard candle.
This can be done by using theo-
retical models, or by directly
measuring the distance to a near-
by standard candle star using trig-
onometric parallax. This distance
estimation can be combined with
a measurement of the star’s flux
to determine the intrinsic lumi-
nosity of that standard candle.

Studies of the internal dy-
namics of the stars within a
globular cluster provide an in-
dependent method for determin-
ing the distance to a globular
cluster. The dynamical distance
estimate compares the relative
motion of globular cluster stars
in the plane of the sky (proper
motion) to their motions along
the line of sight to the star (ra-
dial velocities). The measured
radial velocities are independent
of distance, whereas the mea-
sured proper motions are small-
er for more distant objects;
hence, a comparison of the two observations
allows one to estimate the distance to a glob-
ular cluster.

As these discussions make clear, the dis-
tance determination for globular clusters is
subject to many uncertainties. However, our
knowledge of the distance scale is evolving
rapidly. Many of the distance indicators to
globular clusters make use of HB stars. Our
knowledge of the evolution of HB stars con-
tinues to advance through the use of increas-
ingly more realistic stellar models. Studies of
the evolution of HB stars and their use as
distance indicators have shown that the lumi-
nosity of the HB stars depends not only on
metallicity, but also on the evolutionary sta-
tus of the stars on the HB in a given globular
cluster (19, 20).

To compare different distance indica-
tors, it is convenient to parameterize the
distance estimate by what it implies for the

visual (V) magnitude of an RR Lyrae star,
Mv(RR). The results are summarized in
Table 1 for the different distance indica-
tors. There are three new features of this
compilation, as compared to those associ-
ated with previous analyses: (i) Hipparcos
parallaxes for metal-poor, blue HB stars in
the field to calibrate the globular cluster
distance scale are included (17 ); (ii) the
statistical parallax results on field RR
Lyrae stars are included; (iii) a new HST
parallax for the star RR Lyrae itself is
included, which is considerably more accu-
rate than the Hipparcos parallax (18); and
(iv) only distance estimates for systems
with [Fe/H] ! –1.4 are included.

To compare the different distance esti-
mates, these Mv(RR) values must be translat-
ed to a common [Fe/H] value. For this, an
Mv(RR)–[Fe/H] slope of 0.23 " 0.06 is used,
as suggested by models (19). We used [Fe/H]

# –1.9, as this is the mean of
the globular clusters whose av-
erage age will be determined.
Because the different distance
estimates span a relatively
modest range in [Fe/H] (0.54
dex), the exact value of the
Mv(RR)–[Fe/H] slope has only
a minor effect in our resultant
distance scale. The weighted
mean value of the absolute
magnitude of the RR Lyrae
stars at [Fe/H] # –1.9 is
Mv(RR) # 0.46 mag.

The statistical parallax tech-
nique yields values for Mv(RR)
that are larger (i.e., fainter) than
the other distance techniques.
When statistical parallax results
are included in the weighted
mean, the standard deviation
about the mean is 0.13 mag.
When the statistical parallax re-
sults are not included in the anal-
ysis, the mean becomes
Mv(RR) # 0.44 and the standard
deviation about the mean drops to
0.07 mag. In earlier analyses, the
statistical parallax data were not
included (5), because there were
suggestions that some systematic
differences might exist between
RR Lyrae stars in the field and
those in globular clusters. How-
ever, subsequent investigations
have shown that this is not the
case (21).

Using the "0.13 mag stan-
dard deviation results in a long
tail at low values of Mv(RR). It
is inappropriate to include this
spurious low tail when quoting
an allowed range. An asymmet-
ric Gaussian distribution

Mv(RR) # 0.46–0.09
$0.13 mag has a low range

consistent with that derived when the statis-
tical parallax result is not included, but has a
mean and high range equivalent to the value
derived by including the statistical parallax
result in a straightforward way. This is the
distribution that will be used to derive the
allowed distance scale for metal-poor globu-
lar clusters.

Stellar Evolution Input Parameters
Seven critical parameters used in the com-
putation of stellar evolution models have
been identified whose estimated uncertain-
ty can significantly affect derived globular
cluster age estimates (5). In order of impor-
tance, they are (i) oxygen abundance
[O/Fe] (22), (ii) treatment of convection
within stars, (iii) helium abundance, (iv)
14N $ p 3 15O $ % reaction rate, (v)
helium diffusion, (vi) transformations from

Fig. 2. A schematic color-magnitude diagram for a typical globular cluster
(33) showing the location of the principal stellar evolutionary sequences.
This diagram plots the visible luminosity of the star (measured in magni-
tudes) as a function of the surface color of the star (measured in B-V
magnitude). Hydrogen-burning stars on the main sequence eventually ex-
haust the hydrogen in their cores (main sequence turnoff ). After this, stars
generate energy through hydrogen fusion in a shell surrounding an inert
hydrogen core. The surface of the star expands and cools (red giant branch).
Eventually the helium core becomes so hot and dense that the star ignites
helium fusion in its core (horizontal branch). A subclass is unstable to radial
pulsations (RR Lyrae). When a typical globular cluster star exhausts its
supply of helium, and fusion processes cease, it evolves to become a white
dwarf.
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Figure 3.1. Scheme of the typical Colour-Magnitude Diagram of a GC. Figure adapted from Krauss &
Chaboyer (2003).

sequence and migrated towards the RG branch. Since we have very precise models for the
evolution of a MS star, the turn-off point can hence be used to measure the age of the GC: the
older the cluster, the more stars will have had time to evolve and leave the MS branch, and thus
the position of the turn-off point will have moved down, towards stars of lower mass and later
spectral type.

Although not directly detectable at visible wavelengths and thus not present in the CMD,
GCs are also populated by a number of NSs and stellar-mass black holes (SMBHs), which
resulted from the explosion of the most massive born MS stars. As we shall see, NSs and BHs
have a central role in the dynamical evolution of a GC.

3.2.1 Static models

A globular cluster can be studied, to a very good approximation, as a self-gravitating spherically-
symmetric N -body system. In other words, it can be treated as a classical collisional gas with
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the stars acting like the gas particles.
The structure of a GC is conveniently described by means of three characteristic radii that

are related to its physical parameters. Following Spitzer (1987), these are:

• The core radius, rcore, defined as the distance from the core at which the cluster surface
brightness is half of its central value.

• The half-mass radius, rhm, defined as the radius within which half of the mass of the
cluster is contained.

• The tidal radius, rtid, defined as the radius beyond which the gravitational pull of the
host galaxy becomes higher than that of the cluster itself. A star located at a distance
r > rtid would thus be ripped off from the cluster.

.
Propaedeutic to the study of the dynamical evolution of a GC is the derivation of a static

model, in which the cluster main physical properties (such as the density) remain constant over
time and which provides a zero-order solution for the equations that govern the cluster dynamics
(Spitzer, 1987). A fundamental assumption underlying this approach is that the granularity of
the cluster due to the presence of self-gravitating masses (i.e. the stars) is ignored, and the
gravitational potential throughout the cluster can hence be considered as a continuous smooth
function of the position. The validity of a static model is legitimated by the consideration that
all the internal and external processes that drive the evolution of a GC act over time-scales that
are normally far longer than the so-called crossing time, tcross, which is the typical time-scale
that takes for a star to cross the cluster. The simplest class of static cluster models is the one
that assumes an isotropic distribution for the velocities of the stars. Examples of solutions of
this kind are the Plummer model and the isothermal sphere. Both models have the advantage of
having a particularly simple analytic solution for the cluster radial density profile, ρ(r). On the
other hand, it is known from observations that these two model are not a good representation
of real GCs, for their behaviour at large and short distances from the centre, respectively.

A way to overcome these issues is to assume a so-called lowered Maxwellian energy distri-
bution for the cluster stars, which is a Maxwellian with a cut-off applied to its high-velocity
tail (Spitzer, 1987). This assumption is justified by the fact that GCs are always under the
gravitational influence of the host galaxy, which will capture all the stars that are farther away
than the tidal radius from the cluster core. Models with such an energy distribution are called
King models (King, 1962, 1966). Extensions of them are the King-Michie models (Michie, 1963),
which also account for a possible anisotropy of the velocity distribution. Both King and King-
Michie models can be solved via numerical integration. For practical purposes, it is sometimes
convenient to use some analytic approximations to the King model. An example is the one used
by Freire et al. (2005), derived from King (1962) and in which ρ(r) has the simple form:

ρ(r) =
ρ0[

1 + (r/rcore)2
]3/2 , (3.1)

where ρ0 ≡ ρ(r = 0) is the central density.

3.2.2 Evolution and stellar dynamics

Static models are very useful tools that can be applied to several different case studies. However,
we know that GCs do evolve over time. The difficulty in modelling the evolution of GCs is mainly
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related to the many different time-scales involved, from the orbital periods of tight binaries of
the order of a few hours, to the several billions of years of the ages of most of the clusters known.
This means that, in general, a very high number of steps in numerical integrations are needed.

As a zero-order approximation, the evolution of the GC can in principle be obtained as a
sequence of static solutions resulting from dynamical effects that are treated as perturbations.
However, much more advanced and realistic methods are available nowadays, among which the
four most important ones are (e.g. Davies, 2013):

• Gas models: the GC is treated as a spherically-symmetric self-gravitating gas and its
structure is represented by the density ρ(r) and temperature T (r), where the latter
takes the role of the velocity dispersion of the stars (e.g. Larson, 1970a,b; Lynden-Bell
& Eggleton, 1980; Heggie & Hut, 2003). Thermal conduction drives the evolution of
the cluster.

• Fokker-Planck models: the cluster is described through a distribution function F(r,v, t)
that depends on the position r, on the velocity v, and on time, t. The evolution of the
cluster is thus modelled by evolving F(r,v, t) via the collision-less Boltzmann equation
(Binney & Tremaine, 2008), which can be solved numerically using finite-difference
methods (Cohn, 1979; Chernoff & Weinberg, 1990; Drukier, 1995).

• Monte-Carlo models: the cluster stars having similar orbits are considered as a single
particle. At every step, a couple of particles are chosen randomly, their mutual in-
teraction is calculated and their orbits are modified accordingly (e.g. Hénon, 1971a,b;
Fregeau et al., 2003; Giersz & Heggie, 2009).

• N -body models: all the stars of the cluster are treated individually and their motion
is integrated numerically: at every step, the force undergone by each star is calculated
and all the positions and velocities are updated accordingly (e.g. Aarseth, 1999, 2003;
Hurley et al., 2005). They are the most realistic way of modelling a GC but they are
also the most computationally challenging.

In all cases, the main driver of the long-term evolution of a GC is the two-body relaxation,
namely the exchange of kinetic energy between two stars due to their mutual gravitational inter-
action, whose effect eventually provokes major changes in the cluster structure. A characteristic
time-scale associated with this process is the relaxation time, trlx, which can be defined as the
time it takes for the velocity of a star to change by an order of magnitude comparable to its
initial value (e.g. Binney & Tremaine, 2008). For a typical GC, trlx is of the order of 108−109 yr
and the exact value depends on the considered location of the cluster, with the denser inner
regions having shorter relaxation times compared to cluster outskirts. Therefore, the core of the
cluster typically evolves much faster than the outer parts.

The two-body relaxation is responsible for one of the most important processes in the evolu-
tion of a GC: the so-called mass segregation. The repeated encounters and consequent scattering
will indeed make the total kinetic energy be evenly distributed among all the stars of each partic-
ular location of the cluster, with the more massive stars thus ending up to have slower velocities.
As a consequence, the lighter stars will likely be flung towards the cluster outskirts, whereas
the heavier ones will tend to sink towards the core. Over the time-scale a few trlx, the core can
hence reach extremely high densities.

The core of a GC is also a strongly self-gravitating system, whose temperature T is defined
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Figure 3.2. Illustration of the binary hardening, namely the mechanism by which the collapse of a GC
core is eventually halted. A single star passes in the vicinity of a binary system and gets deflected by
its gravitational pull. The binary system transfer some of its binding energy U to the single star. As a
result, the single star will increase its kinetic energy, whereas the binary will become more bound, i.e. it
will shrink. In this process the binary eccentricity is typically increased.

as for an ideal gas (Binney & Tremaine, 2008):

1

2
M〈v2〉 =

3

2
kBT , (3.2)

where kB is the Boltzmann constant,M is the stellar mass and 〈v2〉 is the mean square velocity
of the stars. For N stars, the total kinetic energy is K = (3/2)NkB〈T 〉, with 〈T 〉 being the mass-
weighted mean temperature. On the other hand, the virial theorem (e.g. Binney & Tremaine,
2008) states that, for a system of particles bound by potential forces, the total energy of the
system is Etot = −K, and hence:

Etot = −3

2
NkB〈T 〉. (3.3)

The system heat capacity:
C =

dEtot

d〈T 〉
= −3

2
NkB (3.4)

is therefore negative. This has a strong impact on the GC evolution. A negative heat capacity
means that, as the system (i.e. the cluster core) loses energy via the two-body scattering, it will
continuously shrink, therefore increasing its temperature, which will lead to an even larger energy
loss. This positive-feedback process, called gravothermal catastrophe (Antonov, 1962), makes the
core reach extremely high densities, an event called core-collapse. Core-collapsed clusters can
be recognized by the fact that their radial density profiles (derived by optical observations) do
not become flat around r = 0, but rather show a cusp. A classic example is the globular cluster
M15 (Guhathakurta et al., 1996), which is an object of study of this thesis (see Chapter 7).

Although in theory unstoppable, the collapse of a GC can in fact be halted by the injection
of energy into the core, which balances the natural energy loss. This energy is typically provided
by scattering involving binary systems: when an isolated star has a close encounter with a tight
binary, the latter will transfer part of its orbital energy to the former. The result is a tighter
(and, in most cases, more eccentric) binary with a more negative binding energy, and a scattered
star with an increased kinetic energy and, thus, higher velocity (Fig. 3.2, see e.g. Heggie 1975;
Hut & Bahcall 1983; Sigurdsson & Phinney 1995). Even if the cluster core is originally empty
of binary systems, these can be formed over time in a number of ways, the most important of
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Figure 3.3. Histogram of the 28 globular clusters currently known to host radio pulsars, as of January
2017.

which are tidal captures (e.g. Fabian et al., 1975; Press & Teukolsky, 1977), and three-body
encounters, where three initially unbound stars result in a binary and a runaway star.

3.3 The population of pulsars in globular clusters

As of today, 146 pulsars have been discovered2 in 28 different Galactic GCs (Fig. 3.3), repre-
senting ∼ 6% of the overall currently known pulsar population3. However, the estimated total
number of GC pulsars that are potentially observable (i.e. with the beam pointing towards us)
in our Milky Way is in fact much larger, with the most recent calculations done by Turk &
Lorimer (2013) indicating a value of a few thousands. Currently, the two richest clusters are
Terzan 5 and 47 Tucanae, with 34 and 25 pulsars known, respectively.

Because of the characteristics above described, the crammed GC environments greatly foster
dynamical interactions between stars. These result in very high rates of formation and disruption
of binaries, with the creation of exotic systems where a NS can be recycled by a companion star
during one or multiple events. These conditions are absolutely unattainable in the low-density
Galactic field, where the probability of close encounters is orders of magnitudes lower than in
GCs (Hills, 1975). As a result, the population of pulsars in GCs shows striking differences with
respect to that of the Galaxy.

For instance, the vast majority of GC pulsars are very fast spinning, with 82% classifiable
as MSPs (P < 10 ms), to be compared with a value of ∼ 7% for the Galactic field pulsars.
Indeed, the frequent close encounters involving stars and binaries is believed to be the reason

2See http://www.naic.edu/~pfreire/GCpsr.html for the most up-to-date GC pulsar catalogue.
3According to the ATNF pulsar catalogue, version 1.55.

http://www.naic.edu/~pfreire/GCpsr.html
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Figure 3.4. Scheme of the total known globular cluster population, as of January 2017.

for the copiousness of X-ray binary systems (composed by a NS and a MS companion star) in
GCs (Clark, 1975). Such X-ray binaries are the places where NSs can be spun-up and eventually
turned into MSPs.

A similar comparison can be applied to the fraction of binaries, which is ∼ 52% in GCs
compared to ∼ 7% in the field. Restricting to MSPs, the fraction of those found in binary
systems is ∼ 52% for GCs (Fig. 3.4), compared to ∼ 66% in the Galaxy.

In addition to the different relative fractions of the pulsar sub-classes, GCs are host of exotic
systems that do not follow the canonical evolutionary paths and would then be extremely difficult
(if not impossible) to see in the Galaxy. These include young pulsars, partially recycled pulsars,
and binary systems that are clearly the result of secondary exchange encounters. Verbunt &
Freire (2014) noted that the properties of the pulsar population of a GC are strongly related to
the encounter rate per binary, γb. The latter in turn depends on the physical characteristics of
the cluster, specifically the density and the radius of its core. In GCs with a low γb (such as
47 Tuc) the binaries that are formed have a low probability of being perturbed, hence they are
likely to follow a standard evolutionary path. This may include a complete mass-transfer phase
in which the NS can be fully recycled. On the contrary, in those cluster where γb is higher, it is
more likely to find exotic objects. Examples of this case are PSR B2127+11C in M15 (Prince
et al., 1991), PSR B1718−19A in NGC 6342 (Lyne et al., 1993) and J1807−2459A in NGC 6544
(Lynch et al., 2012), all of which are clearly products of one or multiple exchange encounter
events.

3.4 Science with globular cluster pulsars

Pulsars in GCs can be exploited in a wide range of scientific applications, the most important of
which will be reviewed in this section. As pointed out by Hessels et al. (2015), GC pulsars can
be used individually, for instance to perform studies of fundamental physics, or as an ensemble
of objects that can act as probes for the physical properties of the host cluster.

Two single-pulsar applications suitable for GCs are:

• NS masses and equation of states. The high eccentricities of many binaries found in
GCs can greatly help the measurement of the pulsar masses. For these systems, the
relativistic precession of periastron is indeed much easier to measure with respect to
the highly circular systems that are mostly found in the Galaxy and it is thus a PK
parameter that gives immediate access to the total mass of the binary (e.g. Freire et al.,
2008). In this case, the masses of the individual bodies can be derived by measuring a
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second PK parameter or, when possible, through optical spectroscopy of the companion
star. As explained in Section 1.6.2, measurements of NS masses are very valuable to
constrain the various equation of states proposed for the structure of NSs. Additional
constraints can be provided by the fastest-spinning pulsars which, as explained above,
are much more likely to be present in GCs thanks to the possible repeated recycling
events that they can undergo (e.g. Hessels et al., 2006).

• Physics of accretion and the link between LMXBs and MSPs. The high number (a
couple of dozens, to date) of BWPs and RBPs found in GCs provides an excellent
opportunity to study the physical processes underlying the eclipses that are often seen
in such systems. By studying the properties of the eclipses one can infer important
details about the rate of mass loss undergone by the companion. As discussed in Section
1.4.3, this is particularly important since some RBPs, so-called transitional have been
seen swinging between the two states (e.g. Papitto et al. 2013, see also Section 6.4)
and thus represent a unique chance to understand the relationship between LMXBs
and MSPs.

Belonging to the second class of studies, it is worth mentioning:

• GC potential and dynamics. As explained by Phinney (1992, 1993) the gravitational
potential of a GC imparts non-negligible accelerations to the pulsars in the cluster,
which in turn affect the observed pulsar spin and orbital period derivatives. Therefore,
by measuring the latter, it is possible to directly probe the GC potential. This is
particularly true for those pulsars that are closest to the GC cores, where the effect is
stronger. The opposite approach is also possible: if we know the GC physical properties,
in particular the maximum expected acceleration at the cluster centre, we can obtain
an upper limit on the intrinsic spin-down of the pulsars (Freire et al., 2001b). The
measurement of the pulsar proper motions via pulsar timing can also be used to infer
several important properties of the cluster. Firstly, they can be used in combination
with optical observations to infer the global proper motion of the cluster and the latter
can be used to extrapolate its orbit in the Galaxy (Hessels et al., 2015). Secondly, if
both the proper motions of the pulsars and that of the GC are known with enough
precision, it is possible to derive the trajectories of the pulsars inside the cluster, once
a model for the GC potential is assumed. This can in turn have a significant impact for
the study of the dynamics of the cluster and the formation of the pulsars that reside
in it. Thirdly, the population itself of a single cluster, with its peculiar fraction of
binaries and isolated pulsars, carries important information that can be used to study
the structure and the history of the cluster (Verbunt & Freire, 2014).

• Intra-cluster medium. Even though GCs, being very old, contain a very small quantity
of gas, the effects of the latter can be observable in pulsar data. By accurately measuring
the DMs of the various pulsars and combining this information with their positions, it
is indeed possible to detect the ionized component of the intra-cluster medium. This
has been successfully done by (Freire et al., 2001b) for the first time for the globular
cluster 47 Tucanae. If the RMs are also measured through polarimetry observations, it
is then possible to also probe the intra-cluster magnetic field (Ho et al. 2014, Abbate
et al., in prep.).
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4.1 Introduction

In this chapter we present new results derived from the analysis of about two decades of data
of the globular cluster 47 Tucanae taken with the Parkes radio telescope in New South Wales
(Australia).

47 Tucanae (also known as NGC 104 or 47 Tuc, for short) is a well-known GC visible in
the Southern Sky. With its diameter of about 37 pc, it is one of the largest clusters known.
Although it is massive (∼ 106 M�, Pryor & Meylan 1993) and has a fairly high central density (∼
105 M� pc−3, Pryor & Meylan 1993), it is not a core-collapsed cluster (Harris, 1996). The centre
of 47 Tuc is located at a right ascension α = 00h 24m 5s.67 and declination δ = −72◦ 04′ 52.′′62,
whereas its core radius is θc = 0.347 arcmin (McLaughlin et al., 2006). For the cluster distance,
d, we use 4.69 kpc1 (Woodley et al., 2012). These values will be used throughout the text.

The previous observations of 47 Tuc with the Parkes radio telescope have provided outstand-
ing scientific results that include the discovery of 25 radio MSPs (Manchester et al., 1990, 1991;
Robinson et al., 1995; Camilo et al., 2000; Knight, 2007; Pan et al., 2016), all of which have spin
periods smaller than 8 ms. This is a very exceptional population, since only ∼ 7% of the non-
cluster pulsars in the Galaxy have spin periods of less than 8 ms. As expected from a GC with a
relatively low encounter rate per binary (Verbunt & Freire, 2014), a large fraction (60%) of the
pulsars in 47 Tuc are part of binary systems. This is similar to that of the Galactic non-cluster
MSP population (∼ 66%), but very different from the general pulsar population, where the num-
ber in binaries is ∼ 7%. The binary pulsar population of 47 Tuc is composed by eight pulsar-WD
binaries, five “black widow” pulsars (BWPs), with orbital periods of Pb ∼ 0.06 − 0.4 days and
companion masses of Mc ∼ 0.02 − 0.05 M�, and two eclipsing “redback” pulsars (RBPs) with
Pb ∼ 0.1− 0.2 days and Mc ∼ 0.1− 0.5 M� (see Section 1.4.3).

Until now, 16 pulsars had published timing solutions (Robinson et al., 1995; Camilo et al.,
2000; Freire et al., 2001b, 2003). These have allowed exceptional scientific results, among which
are the study of the stellar evolution in GCs (Rasio et al., 2000), a detailed study of the dynamics
of the cluster (Freire et al., 2001b) and the very first detection of ionized gas in a globular cluster
(Freire et al., 2001c). Additionally, all the pulsars with a measured position have been detected
at X-ray wavelengths (Grindlay et al., 2001, 2002; Heinke et al., 2005; Bogdanov et al., 2005,
2006, Bhattacharya et al., in prep.) and six WD companions (of pulsars 47 Tuc Q, S, T, U, W
and Y; Edmonds et al., 2001, 2002; Cadelano et al., 2015; Rivera-Sandoval et al., 2015) have
been detected at optical wavelengths.

Here, we present complete phase-connected timing solutions for seven previously unsolved
pulsars, of which four are in binaries (47 Tuc R, W, X, Y) and three are isolated (47 Tuc Z, aa,
ab). For another two binary systems (47 Tuc P and V), where this was not possible, we present
very accurate orbital parameters. For all the other pulsars, we extend their timing solutions
(last updated by Freire et al. 2003) with an additional 10 years of data. The much longer timing
baseline has allowed us to obtain much more precise parameters for all the pulsars, enabling us
to investigate new and previously inaccessible properties of the pulsars and their host cluster.

1A more recent assessment places 47 Tuc at a slightly smaller distance, 4.53 kpc (Bogdanov et al., 2016). The
distance of the cluster and its impact on the study of its dynamics will be discussed in Chapter 5.
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4.2 The 47 Tuc dataset

The 20-cm 47 Tuc dataset used consisted of 519 pointings to the cluster done with the 64-m
Parkes radio telescope, at 414 different epochs2, between October 1997 and August 2013. All
the observations together amount to a total of ∼ 1770 hours. Of the 519 pointings, 438 were
longer than 1 hour, whereas 30 were shorter than 10 minutes, the latter mostly being the result
of accidental failures in the observing system or stops imposed by adverse weather conditions.

The observing setup was mostly the same as described in Freire et al. (2003). The vast
majority of the observations were carried out at a frequency of ' 1.4 GHz using the central
beam of the Parkes Multi-Beam Receiver (PMB, Staveley-Smith et al., 1996), whose size (full-
width half-maximum, FWHM) is 14.4 arcmin. Occasionally, when the PMB was not available, we
observed 47 Tuc with the H-OH receiver at the same frequency. Another handful of observations
were made with other receivers, namely the “436-MHz”, the “660-MHz”, the “10-50cm” and the
METH6 receiver. Until August 1999 we used the PMB filterbank as back-end. When using the
PMB receiver, we had a central observing frequency fc = 1374 MHz, a bandwidth of 288 MHz
divided into 96, 3-MHz wide, channels and a sampling time of 125 µs. At that frequency, for
a pulsar with the average DM of 47 Tuc (' 24.4 pc cm−3), the dispersive smearing is 234µs
across a single channel, resulting in an effective time resolution of 265µs. From August 1999
we switched to a different configuration, and most of the observations were carried out with the
Analogue Filter Bank (AFB) back-end, with a central frequency fc = 1390 MHz, 256 MHz of
bandwidth divided into 512, 0.5-MHz wide, channels and a sampling time of 80 µs. For this
observing system the dispersive smearing of the 47 Tuc pulsars is only 37 µs across a single
channel, which gives an effective time resolution of 88 µs. After summing the signals of the two
polarizations and integrating for the time of the chosen sampling interval, all the data were 1-bit
digitized and recorded onto magnetic tapes as filterbank (Lorimer, 2011) search-mode files.

4.3 Updated timing solutions for 18 pulsars in 47 Tuc

For 16 pulsars in 47 Tuc, namely 47 Tuc C, D, E, F, G, H, I, J, L, M, N, O, Q, S, T and U,
phase-connected timing solutions had already been published (Robinson et al., 1995; Camilo
et al., 2000; Freire et al., 2001b, 2003). For another two, i.e. pulsars R and Y, the timing
solutions were already derived in 2006, but had not as yet been published.

Hence, for each pulsar, we started by using the most up-to-date ephemeris available to de-
disperse and fold all our dataset anew with DSPSR3 (van Straten & Bailes, 2011), producing as
many folded archives as the number of observations, among which we looked for those where the
pulsar was detected. After that, we selected the best detections to built a high-S/N template.
The latter was then cross-correlated with the integrated profiles of all the detections found,
using the PSRCHIVE4 pulsar software package (Hotan et al., 2004; van Straten et al., 2012), to
extract topocentric times-of-arrival (ToAs, see Section 2.5.2 for details). After applying the clock
corrections of the Parkes radio telescope, the ToAs were referred to the Solar System barycentre
(SSB) by TEMPO. This was achieved by first correcting for the Earth rotation using data from the

2We call “pointing” a single, continuous observation of 47 Tuc, that hence corresponds to a single recorded
data file. An “epoch” is instead used as a synonym for “day”. The full list of pointings with the relative observing
parameters can be found at: http://www3.mpifr-bonn.mpg.de/staff/pfreire/47Tuc/Observations_Table.
html

3http://dspsr.sourceforge.net
4http://psrchive.sourceforge.net

http://www3.mpifr-bonn.mpg.de/staff/pfreire/47Tuc/Observations_Table.html
http://www3.mpifr-bonn.mpg.de/staff/pfreire/47Tuc/Observations_Table.html
http://dspsr.sourceforge.net
http://psrchive.sourceforge.net
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Table 4.1. Number of detections of the four “elusive” binary pulsars of 47 Tuc obtained with the three
different search methods as well as by refolding the whole dataset with the relative timing solutions
(reported in Table 4.5).

PRESTO PRESTO Folding
Pulsar (20-min) (60-min) T0-search (Timing)

47 Tuc P 0 0 4 4
47 Tuc V 0 0 7 19
47 Tuc W 1 1 23 34
47 Tuc X 12 16 − 312

International Earth Rotation Service, and then correcting for the Earth motion around the SSB
using the JPL DE421 Solar System Ephemeris (Folkner et al., 2009). The differences between the
observed ToAs and the values predicted by our ephemeris were then fitted by TEMPO through a
weighted χ2 minimization for the astrometric, rotational and possibly orbital parameters. When
doing so, we fixed the parallax to a value corresponding to the assumed distance of 47 Tuc,
4.69 kpc (Woodley et al., 2012). This procedure allowed us to extend the timing solution of
each of the 18 pulsars, meaning that all the pulsar ephemerides are now capable of accounting
for every single rotation of the relative pulsars at least until the date of the latest ToAs, around
the year 2013. The updated timing solutions derived for these pulsars are presented in Tables
4.2-4.4, whereas the post-fit timing residuals are shown in Fig. 4.3.

4.4 47 Tuc P, V, W and X: four elusive binaries

Among the pulsars known to reside in 47 Tuc, there are four extremely faint binaries, namely 47
Tuc P, V, W and X. The combination of very low fluxes, orbital characteristics and scintillation,
makes these pulsars remarkably elusive. For this reason, neither a phase-connected timing
solution nor a well-determined orbit was previously available for any of them. Therefore, we
implemented more sophisticated techniques in order to obtain as many detections of the pulsars
as possible, which in turn enabled us to perform a more thorough analysis of these poorly studied
binaries. For two of these pulsars, as we shall see, this allowed us to obtain phase-connected
timing solutions for the very first time since their discovery.

4.4.1 Acceleration search

We have carried out a deep search of the whole dataset using a machine endowed with two
NVIDIA K20 and two NVIDIA K40 GPUs and a search pipeline that made use of the GPU-
based version of PRESTO (see Section 2.4.5). Each observation was split into chunks of both 20
and 60 minutes of length. On each chunk we first ran the rfifind routine to look for bursts of
RFI, creating a mask and filtering out bad frequency channels or time intervals. Then, again
for each chunk, a 0-DM (i.e. without correcting for the dispersion effect due to the interstellar
medium) time series was created and searched for prominent persistent terrestrial low-level
RFI (dubbed “birdies”) with a Fast Fourier Transform. The periodicities found were marked as
interference, to be ignored during the analysis, and stored in a so-called “zaplist” file. After that,
nine de-dispersed time series were created for an assumed DM of 23.90 pc cm−3 to 24.70 pc cm−3
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Figure 4.1. Period-acceleration diagram for the binary pulsar 47 Tuc X. The fit returned an orbital
period of Pb ' 10.9 days and a projected semi-major axis of xp ' 11.9 lt-s for the pulsar orbit.

with steps5 of 0.10 pc cm−3. The time series were then searched in the Fourier domain by the
accelsearch routine, summing up to 8 harmonics, with a zmax-value (see Eq. 2.21) ranging
from 0 (absence of acceleration) up to 1200 for the 60-minute chunks and up to 200 for the
20-minute chunks. All the candidate pulsar-like signals with a detection significance of σ ≥ 2.0
were recorded onto files, one for each chunk and each DM.

Once the search was done, we looked for all the candidates with the highest σ values that
were detected at periods close to the known barycentric spin periods of the pulsars of our sample
of interest (namely 47 Tuc P, V, W and X) and that appeared at multiple adjacent DM values.
Table 4.1 shows the number of detections that we obtained for each pulsar.

4.4.2 Orbital solution for 47 Tuc X

47 Tuc X is a formerly known, but unpublished, millisecond pulsar that had been discovered in
previous searches of the cluster. The pulsar had already been found with non-zero accelerations,
indicating the occurrence of a binary motion. Our PRESTO 20- and 60-minute search pipelines
produced a sufficiently large number of new detections of this pulsar to allow us to estimate its
orbital parameters with the period-acceleration diagram method (Freire et al., 2001a, see also
Section 2.4.7). Among the 16 different epochs at which the pulsar was detected, we selected
the 7 best ones. We then used TEMPO to fit the latter for the barycentric spin period, P , and
its first derivative, Ṗ , thus finding a local timing solution for each epoch. After converting the
Ṗ values into radial accelerations al (through the relation al = cṖ /P , where c is the speed of
light), we fitted for the orbital period, Pb, and projected semi-major axis of the pulsar orbit,
xp, via Eq. (7) and (8) of Freire et al. (2001a), using CIRCORBIT (see Section 2.4.7). The data
points and best-fit curve are shown in Fig. 4.1. The fit revealed that the pulsar is in a circular
orbit with Pb ' 10.9 days and xp ' 11.9 lt-s.

5Such an interval more than covered the DM range of the pulsars known in 47 Tuc when the search was done.
However, a newly discovered pulsar, 47 Tuc aa, has a DM of ' 24.94 pc cm−3 (Pan et al., 2016). This implies
that the range of DM’s in 47 Tuc is larger than what we assumed in the present work.
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4.4.3 T0-search

As shown in Table 4.1, pulsars P, V and W were either detected once or not at all in our
PRESTO searches. The reasons for the very low rate of detection are manifold: these pulsars are
all intrinsically very faint, their orbital periods are very short (reducing the maximum possible
integration time where the constant acceleration approximation is effective, see e.g. Ransom
et al. 2003) and two of them (V and W) are eclipsed for a large fraction of the orbit. Only when
both the scintillation and the observed orbital phase interval were favourable, did we have the
chance of detecting these pulsars. Because of their very compact orbits, comparable with the
length of a single observation, the orbital parameters of pulsars P, V, and W were already known
at the time of their discovery with a reasonable degree of accuracy. However, the uncertainties
on their orbital periods, together with the large orbital variability that some of them show (see
Chapter 6), prevented us from predicting their correct orbital phases at a later time. Unlike
the uncertainty associated with the projected semi-major axis, the uncertainty ∆φb(t) on the
orbital phase φb at any time t, grows linearly with time, as:

∆φb(t) =
∆Pb · (t− t0)

P 2
b

, (4.1)

where t0 is the epoch at which the orbital period Pb and its uncertainty ∆Pb were estimated.
The uncertainty on φb translates into an uncertainty in T0, the epoch of passage at periastron6,
in the pulsar ephemeris. This is the reason why, even knowing the spin periods and the rough
values of the orbital parameters of the three pulsars at the epoch of their discoveries, we could
not simply fold the more recent data to look for possible new detections: the correction for
the Rømer delay due to the binary motion would be applied with a wrong orbital phase, thus
smearing out the signal.

What we did instead was a search in orbital phase, or, equivalently, in the value of T0. For
this reason we will refer to it as T0-search throughout the rest of this thesis.

First, we created a full-length (i.e. this time we did not split the observations into chunks)
de-dispersed time series for each observation of our 47 Tuc dataset, at a DM of 24.40 pc cm−3.
We chose to use a single value of the DM since, for the purpose of just detecting the pulsars, a
more precise value is unimportant. Then, for each pulsar, we folded all the de-dispersed time
series with an ephemeris that had all the known parameters fixed, with the exception of T0.
The latter was instead searched, allowing its value to vary between the epoch of the beginning
of the observation, tstart, and tstart + Pb, where Pb was the (rough) value of the orbital period
of the pulsar considered. This procedure has been implemented in the alex_T0_search routine
of the PSRALEX7 software package, which we used to perform the search. The choice of using
de-dispersed time series instead of the original search-mode files is justified, apart from the fact
that we know the DMs of the pulsars very precisely, by the huge advantage in computational
speed that the former have over the latter, when folding. To further minimize the computational
costs without degrading the sensitivity of our search, the choice of the step size was also crucial
and will be now discussed in detail.

6For circular orbits (as is the case for all the pulsars discussed in this chapter), where the periastron is not
defined, T0 is conventionally chosen to coincide with Tasc, the epoch of passage at the ascending node.

7http://github.com/alex88ridolfi/PSRALEX

http://github.com/alex88ridolfi/PSRALEX
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4.4.3.1 Choice of the step size

Let us consider the case of a perfectly circular orbit (as is practically the case for pulsars P, V
and W) and let us assume to know the exact orbital period, Pb, and projected size of the orbit,
xp. Then, if the orbital phase predicted by an incorrect ephemeris differs from the actual phase
φb by a quantity ∆φb, the correction applied for the orbital Rømer delay at a time t will be
wrong by the quantity:

xp sin[φb(t) + ∆φb]− xp sin[φb(t)] =

=xp

{
sin[φb(t) + ∆φb]− sin[φb(t)]

}
=

=xp

{
2 cos

[
φb(t) + ∆φb + φb(t)

2

]
sin

[
φb(t) + ∆φb − φb(t)

2

]}
=

= 2xp sin

(
∆φb

2

)
cos

[
φb(t) +

∆φb

2

]
=

=A cos

[
2π

Pb
(t− T0) +

∆φb

2

]
,

(4.2)

where we used the Prosthaphaeresis formulas and the amplitude of the sinusoid is:

A = 2xp sin(∆φb/2) . (4.3)

When folding, the integrated pulse profile will have a width W ∼ A. If A & P , where P is the
pulsar spin period, the residual orbital modulation will completely smear out the pulsar signal,
resulting in a non-detection.

For this reason, we imposed that the step size in our T0-search be sufficiently small such
that, in the case of the best trial value, A ≤ P/4, which translates into the condition:

∆φb ≤ 2 arcsin

(
P

8xp

)
. (4.4)

The resulting total number of steps is thus:

N =
2π

∆φb
=

π

arcsin(P/8xp)
. (4.5)

For pulsars P, V and W, the latter amounts to 262, 4441 and 2601, respectively.

As already mentioned, this calculation is valid under the assumption of knowing the correct
values for Pb and xp. In general, this is not the case, since our goal is in fact to obtain a better
value for Pb. Incorrect starting values of Pb and xp introduce additional errors to the applied
Rømer delay corrections, which further degrade our sensitivity. This degradation can be partly
compensated by using a finer grid of values in the T0-search. In our work, in the case of pulsars
P and W, we started with good values of Pb and xp, precise enough to fold an observation
correctly, once the exact value of T0 was determined; for V, instead, the values were not as
precise. In our analysis, in order to maximize our sensitivity, we decided to use a number of
steps which was ∼ 2 times larger than the values reported above for all the three pulsars.
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Figure 4.2. Periodograms for pulsars 47 Tuc P, V and W. In each plot the dashed line marks the
initial guess of Pb, corresponding to the best-fit value derived by running TEMPO on the best detection
obtained from our T0-search; the dark grey and light grey areas represent the relative formal 1-σ and 2-σ
uncertainties, respectively. The solid vertical lines indicate the measured T0 values that we used. The
horizontal segments indicate the orbital period obtained by dividing the time interval that they connect
by the integer number reported above them. In each plot, the red line highlights the orbital period that
is an integer submultiple of all time intervals.

4.4.4 Periodograms and improved orbital periods for 47 Tuc P, V and W

After folding all the observations with all the trial values of T0, we ordered by signal-to-noise
ratio (S/N) the resulting archives, which were then inspected visually. From every archive where
we clearly detected the pulsar (see Table 4.1 for the number of detections obtained with the T0-
search for each pulsar), we extracted the topocentric ToAs and fitted for T0 only with TEMPO,
to obtain a refined value of it for each epoch. The latter were in turn used to improve the
measurement of the orbital period using the periodogram method described by Freire et al.
(2001a), which essentially consists in finding a value of Pb that fits an integer number of times
between any pair of measured values of T0. Fig. 4.2 shows the periodograms for 47 Tuc P, V
and W.

4.4.5 Timing of the elusive binaries

Differently from the case of the 18 pulsars discussed in Section 4.3, for these four elusive binaries
we did not have a phase-connected timing solution from where to start. Therefore, we proceeded
differently, as described in the following.

For each pulsar, we started by constructing a first ephemeris that included the average
barycentric spin period, the nominal position and proper motion of the cluster, as well as a simple
Keplerian (BT, Blandford & Teukolsky, 1976) binary model with the refined orbital parameters
obtained through the period-acceleration diagram for pulsar X, and through the T0-search and
the periodogram method for P, V and W. We then used the ephemeris to re-fold the entire
dataset with DSPSR. This occasionally allowed us to obtain a few additional detections. After
that, we proceeded similarly to the case of the previous 18 pulsars. We first used PSRCHIVE to
extract the topocentric ToAs, by cross-correlating the pulse profiles against a high-S/N template
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that we had previously built from the best detections (the template profiles used for all the 25
pulsars of 47 Tuc are shown in Fig. 4.4). The ToAs were then converted by TEMPO and referred
to the SSB. In this case, because our preliminary ephemeris was not phase-connected, we let
TEMPO fit not only for the astrometric, rotational and orbital parameters, but also for arbitrary
jumps between groups of ToAs belonging to different epochs. This produced a more refined,
but still non-coherent, timing solution. The latter was then used to refold the data again, often
yielding new detections of the pulsar and, thus, more ToAs that were then included in the fit. In
doing this, we tried to remove as many arbitrary jumps as possible by trying to guess the exact
number of rotations between the ToAs that they separated. The whole procedure was iterated
a few times until we converged to the best (presumably phase-connected) solution. For two of
the pulsars (namely 47 Tuc W and X) we were able to remove all the arbitrary jumps and thus
to obtain a fully phase-connected timing solution, capable of unambiguously account for every
single rotation of the NS. The best-fit timing parameters for all the four elusive binary pulsars
of 47 Tuc are reported in Table 4.5.

4.5 The new isolated pulsars 47 Tuc Z, aa, ab

47 Tuc Z was first discovered by Knight (2007) as a 4.55-ms pulsar without signs of acceleration.
The relatively good amount of detections allowed the author to confirm the isolated nature of
the NS, and to build a first good, but not phase-connected, ephemeris. 47 Tuc aa and ab were
instead discovered as a 1.84- and 3.70-ms isolated pulsar, respectively, with a stacked-search
technique by Pan et al. (2016).

Our PRESTO-based search pipeline described in Section 4.4.1 allowed us to obtain additional
detections for all the three pulsars. Starting from these detections, we built a first ephemeris
for each pulsar and we proceeded as described in the previous section. By extracting ToAs and
fitting them with TEMPO, we were able to obtained refined ephemerides, which in turn allowed to
increase the number of detections. This process was re-iterated until phase-connected solutions
were obtained (reported in Table 4.2). Because of the scarcity and sparsity of its detections,
47 Tuc aa could not be solved manually and required the use of a code developed by P. Freire
for the automatic finding of timing solutions. This code will be presented in Freire (in prep.).
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Table 4.2. Timing parameters of the ten isolated pulsars in 47 Tuc. The associated 1-σ uncertainties
were calculated using a Monte-Carlo bootstrap routine implemented in TEMPO. For all the pulsars, a
fixed parallax value of 0.2132 mas was assumed; the time units are TDB; the assumed terrestrial time
standard is UTC(NIST); the Solar System ephemeris used is the JPL DE421.

Pulsar 47 Tuc C 47 Tuc D 47 Tuc F 47 Tuc G 47 Tuc L

Phase-connected? . . . Yes Yes Yes Yes Yes
Reference Epoch (MJD) 51600.000 51600.000 51600.000 51600.000 51600.000
Start ToA (MJD) . . . 47857.439 47716.842 48494.790 48600.489 50686.683
End ToA (MJD) . . . 56508.971 56508.976 56466.879 56466.879 56388.208
Number of ToAs . . . 6225 3607 1785 594 411
Residuals RMS (µs) . . 12.33 8.74 7.83 11.25 17.02
α (J2000) (hh:mm:ss) . 00:23:50.3546(1) 00:24:13.88092(6) 00:24:03.85547(10) 00:24:07.9603(1) 00:24:03.7721(3)
δ (J2000) (dd:mm:ss) . −72:04:31.5048(4) −72:04:43.8524(2) −72:04:42.8183(2) −72:04:39.7030(5) −72:04:56.923(2)
µα (mas yr−1) . . . . 5.2(1) 4.24(7) 4.52(8) 4.5(1) 4.4(2)
µδ (mas yr−1) . . . . −3.1(1) −2.24(5) −2.50(5) −2.9(1) −2.4(2)

f (Hz) . . . . . . . . 173.708218965958(4) 186.651669856731(3) 381.158663656311(5) 247.501525096385(8) 230.08774629142(2)
ḟ (Hz s−1) . . . . . . 1.50421(6)×10−15 1.1922(3)×10−16 −9.3711(1)× 10−15 2.5825(1)×10−15 6.4611(2)×10−15

f̈ (Hz s−2) . . . . . . 1.3(4)×10−27 −1.2(2)× 10−27 6.8(7)×10−27 6.0(9)×10−27 −13(13)× 10−28

DM (pc cm−3) . . . . 24.600(4) 24.732(3) 24.382(5) 24.436(4) 24.40(1)

Derived Parameters

θα (arcmin) . . . . . . −1.1784 +0.6316 −0.1396 +0.1762 −0.1460
θδ (arcmin) . . . . . . +0.3520 +0.1460 +0.1634 +0.2151 −0.0719
θ⊥ (arcmin) . . . . . 1.2298 0.6483 0.2149 0.2781 0.1627
θ⊥ (core radii) . . . . 3.5442 1.8683 0.6194 0.8014 0.4689
r⊥ (pc) . . . . . . . . 1.6778 0.8845 0.2932 0.3794 0.2220
P (ms) . . . . . . . . 5.7567799955164(1) 5.35757328486572(7) 2.62357935251262(3) 4.0403791435651(1) 4.3461679994616(3)
Ṗ (10−21 s s−1) . . . −49.850(2) −3.4219(9) 64.5031(7) −42.159(2) −122.0406(10)

ȧl (10−21 m s−3) . . . −2.3(7) 1.98(26) −5.3(5) −7.3(1.1) 1.7(1.7)

Table 4.2 – continued

Pulsar 47 Tuc M 47 Tuc N 47 Tuc Z 47 Tuc aa 47 Tuc ab

Phase-connected? . . . Yes Yes Yes Yes Yes
Reference Epoch (MJD) 51600.000 51600.000 51600.000 51600.000 51600.000
Start ToA (MJD) . . . 48491.694 48515.534 51003.792 51413.635 51000.785
End ToA (MJD) . . . 55526.513 55648.110 54645.852 54816.499 56388.135
Number of ToAs . . . 315 436 107 49 210
Residuals RMS (µs) . . 20.15 12.98 58.78 26.41 24.85
α (J2000) (hh:mm:ss) . 00:23:54.4899(3) 00:24:09.1880(2) 00:24:06.041(2) 00:24:07.2783(8) 00:24:08.1615(5)
δ (J2000) (dd:mm:ss) . −72:05:30.756(2) −72:04:28.8907(7) −72:05:01.480(6) −72:05:19.521(4) −72:04:47.602(2)
µα (mas yr−1) . . . . 5.0(3) 6.3(2) 4(2) 4.6(8) 4.2(6)
µδ (mas yr−1) . . . . −2.0(4) −2.8(2) 1(2) −5(1) −2.9(5)

f (Hz) . . . . . . . . 271.98722878874(2) 327.44431861739(1) 219.5656060346(1) 541.8936549490(1) 269.93179806134(4)
ḟ (Hz s−1) . . . . . . 2.8421(4)×10−15 2.3435(2)×10−15 2.19(3)×10−16 1.3475(4)×10−14 −7.155(6)× 10−16

f̈ (Hz s−2) . . . . . . 7(2)×10−27 −9(2)× 10−27 8(25)×10−27 7(3)×10−26 −8(3)× 10−27

DM (pc cm−3) . . . . 24.43(2) 24.574(9) 24.45(4) 24.941(7) 24.37(2)

Derived Parameters

θα (arcmin) . . . . . . −0.8594 +0.2707 +0.0286 +0.1237 +0.1917
θδ (arcmin) . . . . . . −0.6354 +0.3955 −0.1479 −0.4484 +0.0838
θ⊥ (arcmin) . . . . . 1.0688 0.4793 0.1506 0.4651 0.2092
θ⊥ (core radii) . . . . 3.0801 1.3812 0.4340 1.3403 0.6028
r⊥ (pc) . . . . . . . . 1.4581 0.6539 0.2054 0.6345 0.2854
P (ms) . . . . . . . . 3.6766432176002(3) 3.0539543462608(1) 4.554447383906(3) 1.8453805296800(5) 3.7046394947985(5)
Ṗ (10−21 s s−1) . . . −38.418(5) −21.857(2) −4.56(1) −45.89(1) 9.820(8)
ȧl (10−21 m s−3) . . . −8.0(2.6) 8.5(1.5) −11(33) −39(16) 8.7(3.6)

Parameters: α: right ascension; δ: declination; µα: proper motion in right ascension; µδ: proper motion in declination; f :
spin frequency; ḟ : 1st spin frequency derivative; f̈ : 2nd spin frequency derivative; DM: dispersion measure; xp: projected
semi-major axis of the pulsar orbit; e: eccentricity; η: first Laplace-Lagrange parameter; κ: second Laplace-Lagrange
parameter; ω: longitude of periastron; T0: epoch of passage at periastron; Tasc: epoch of passage at the ascending node;
Pb: orbital period; Ṗb: orbital period derivative; fb: orbital frequency; f

(n)
b : n-th orbital frequency derivative; ω̇: rate of

periastron advance; θα: angular offset from cluster centre in right ascension; θδ: angular offset from cluster centre in
declination; θ⊥: total angular offset from cluster centre; r⊥: projected distance from cluster centre; P : spin period; Ṗ :
observed spin period derivative; al,GC: line-of-sight acceleration from cluster field; Ṗint: intrinsic spin period derivative;
Bs: surface magnetic field; Lsd: spin-down luminosity; τc: characteristic age; ȧl: jerk; f(Mp): pulsar mass function;
Mc,min: minimum companion mass; Mc,med: median companion mass; Mtot: total system mass.
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Table 4.3. Timing parameters for seven of the eight MSP-WD binaries in 47 Tuc. The associated
1-σ uncertainties were calculated using a Monte-Carlo bootstrap routine implemented in TEMPO. For all
the pulsars, a fixed parallax value of 0.2132 mas was assumed; the time units are TDB; the assumed
terrestrial time standard is UTC(NIST); the Solar System ephemeris used is the JPL DE421.

Pulsar 47 Tuc E 47 Tuc H 47 Tuc Q 47 Tuc S

Phase-connected? . . . Yes Yes Yes Yes

Reference Epoch (MJD) 51600.000 51600.000 51600.000 51600.000

Start ToA (MJD) . . . 48464.854 48517.512 50689.700 50686.683

End ToA (MJD) . . . 56508.948 56508.972 56388.178 56466.879

Number of ToAs . . . 1812 1073 697 577

Residuals RMS (µs) . . 6.06 17.04 12.73 9.50

α (J2000) (hh:mm:ss) . 00:24:11.10528(5) 00:24:06.7032(2) 00:24:16.4909(1) 00:24:03.9794(1)

δ (J2000) (dd:mm:ss) . −72:05:20.1492(2) −72:04:06.8067(6) −72:04:25.1644(6) −72:04:42.3530(4)
µα (mas yr−1) . . . . 6.15(3) 5.1(2) 5.2(1) 4.5(1)

µδ (mas yr−1) . . . . −2.35(6) −2.8(2) −2.6(1) −2.5(1)

f (Hz) . . . . . . . . 282.779107035000(3) 311.49341784423(1) 247.943237418920(9) 353.306209385356(9)

ḟ (Hz s−1) . . . . . . −7.87728(4)× 10−15 1.775(1)×10−16 −2.0907(2)× 10−15 1.50466(1)×10−14

f̈ (Hz s−2) . . . . . . 2.9(2)×10−27 1.60(2)×10−25 7(11)×10−28 −7.8(8)× 10−27

DM (pc cm−3) . . . . 24.236(2) 24.369(8) 24.265(4) 24.376(4)

Binary Parameters

Binary Model . . . . . DD DD ELL1 ELL1

xp (lt-s) . . . . . . . 1.9818427(4) 2.152813(2) 1.4622043(9) 0.7662686(8)

e . . . . . . . . . . . 3.159(4)×10−4 7.0558(1)×10−2 – –

η . . . . . . . . . . . – – 6.2(1)×10−5 9.1(3)×10−5

κ . . . . . . . . . . . – – −5.1(2)× 10−5 3.87(2)×10−4

ω (deg) . . . . . . . . 218.6(1) 110.603(1) – –

T0 (MJD) . . . . . . . 51001.7900(8) 51602.186289(7) – –

Tasc (MJD) . . . . . . – – 51600.2842078(2) 51600.6250241(2)

Pb (days) . . . . . . . 2.2568483(9) 2.357696895(10) 1.1890840496(4) 1.2017242354(6)

Ṗb (10−12 s s−1) . . . 4.8(2) −0.7(0.6) 1.0(2) −4.9(4)

ω̇ (deg/yr) . . . . . . 9(2)×10−2 6.73(2)×10−2 – 0.33(9)

Derived Parameters

θα (arcmin) . . . . . . +0.4179 +0.0795 +0.8326 −0.1301
θδ (arcmin) . . . . . . −0.4587 +0.7636 +0.4578 +0.1712

θ⊥ (arcmin) . . . . . 0.6205 0.7677 0.9502 0.2150

θ⊥ (core radii) . . . . 1.7882 2.2123 2.7383 0.6196

r⊥ (pc) . . . . . . . . 0.8465 1.0473 1.2963 0.2933

P (ms) . . . . . . . . 3.53632915276243(3) 3.2103407093504(1) 4.0331811845726(2) 2.83040595787912(7)

Ṗ (10−21 s s−1) . . . 98.5103(5) −1.830(1) 34.0076(6) −120.541(1)
al,GC (10−9 m s−2) . . +7.31(32) −1.0(0.9) +3.0(0.7) −14.2(1.1)
Ṗint (10−21 s s−1) . . 11.9(3.7) 9(9) −6(9) 13(10)

Bs, (108 G) . . . . . . 2.07 2.31 < 1.96 1.94

Lsd (1033 erg s−1) . . 10.62 19.82 −0.72 23.17

τc (Gyr) . . . . . . . 4.7 > 1.9 > 5.0 > 1.3

ȧl (10−21 m s−3) . . . −3.10(26) −154.5(2.2) −0.9(1.3) 6.6(6)

f(Mp) (M�) . . . . . 0.0016409130(15) 0.001927197(6) 0.002374007(5) 0.0003345154(10)

Mc,min (M�) . . . . . 0.159 0.168 0.181 0.091

Mc,med (M�) . . . . 0.185 0.196 0.212 0.105

Mtot (M�) . . . . . . 2.3(7) 1.665(7) – 3.1(1.1)

Parameters: see Table 4.2
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Table 4.3 – continued
Pulsar 47 Tuc T 47 Tuc U 47 Tuc Y

Phase-connected? . . . Yes Yes Yes

Reference Epoch (MJD) 51600.000 51600.000 51600.000

Start ToA (MJD) . . . 50683.712 48515.506 50739.663

End ToA (MJD) . . . 56466.934 56466.919 56508.973

Number of ToAs . . . 554 1309 804

Residuals RMS (µs) . . 54.36 9.68 8.11

α (J2000) (hh:mm:ss) . 00:24:08.5491(5) 00:24:09.8366(1) 00:24:01.4026(1)

δ (J2000) (dd:mm:ss) . −72:04:38.932(3) −72:03:59.6882(4) −72:04:41.8363(4)
µα (mas yr−1) . . . . 5.1(6) 4.6(2) 4.4(1)

µδ (mas yr−1) . . . . −2.6(7) −3.8(1) −3.4(1)

f (Hz) . . . . . . . . 131.77869947406(2) 230.264772211776(6) 455.23717843241(1)

ḟ (Hz s−1) . . . . . . −5.1021(2)× 10−15 −5.04916(9)× 10−15 7.2891(2)×10−15

f̈ (Hz s−2) . . . . . . −3(2)× 10−27 1.88(6)×10−26 −2.11(9)× 10−26

DM (pc cm−3) . . . . 24.41(2) 24.337(4) 24.468(4)

Binary Parameters

Binary Model . . . . . ELL1 ELL1 ELL1

xp (lt-s) . . . . . . . 1.338501(5) 0.5269494(7) 0.6685965(7)

η . . . . . . . . . . . 3.55(7)×10−4 −2.9(4)× 10−5 −3(3)× 10−6

κ . . . . . . . . . . . 1.85(7)×10−4 1.43(2)×10−4 7(224)×10−8

Tasc (MJD) . . . . . . 51600.5692696(7) 51600.3893516(1) 51554.8340067(2)

Pb (days) . . . . . . . 1.126176771(1) 0.42910568324(8) 0.5219386107(1)

Ṗb (10−12 s s−1) . . . 2.5(1.1) 0.66(5) −0.82(7)

ω̇ (deg/yr) . . . . . . – 1.2(3) –

Derived Parameters

θα (arcmin) . . . . . . +0.2215 +0.3207 −0.3283
θδ (arcmin) . . . . . . +0.2280 +0.8821 +0.1799

θ⊥ (arcmin) . . . . . 0.3179 0.9386 0.3743

θ⊥ (core radii) . . . . 0.9160 2.7049 1.0788

r⊥ (pc) . . . . . . . . 0.4336 1.2805 0.5107

P (ms) . . . . . . . . 7.5884798073671(9) 4.3428266963923(1) 2.19665714352124(6)

Ṗ (10−21 s s−1) . . . 293.80(1) 95.228(2) −35.1720(8)
al,GC (10−9 m s−2) . 7.7(3.5) 5.31(38) −5.4(4)
Ṗint (10−21 s s−1) . . 99(89) 18(5) 4.7(3.3)

Bs, (108 G) . . . . . . 8.67 2.81 1.02

Lsd (1033 erg s−1) . . 8.94 8.79 17.48

τc (Gyr) . . . . . . . >0.43 3.8 >3.1

ȧl (10−21 m s−3) . . . 7.8(3.7) −24.4(8) 13.9(6)

f(Mp) (M�) . . . . . 0.002030139(25) 0.0008532200(35) 0.0011779754(37)

Mc,min (M�) . . . . . 0.171 0.126 0.141

Mc,med (M�) . . . . 0.200 0.146 0.164

Mtot (M�) . . . . . . – 1.7(7) –

Parameters: see Table 4.2
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Table 4.4. Timing parameters of four of the five “black widow” systems of 47 Tuc. The associated
1-σ uncertainties were calculated using a Monte-Carlo bootstrap routine implemented in TEMPO. For all
the pulsars, a fixed parallax value of 0.2132 mas was assumed; the time units are TDB; the assumed
terrestrial time standard is UTC(NIST); the Solar System ephemeris used is the JPL DE421.

Pulsar 47 Tuc I 47 Tuc J 47 Tuc O 47 Tuc R

Phase-connected? . . . Yes Yes Yes Yes

Reference Epoch (MJD) 51600.000 51600.000 51600.000 51600.000

Start ToA (MJD) . . . 47859.462 47717.894 50683.712 50742.607

End ToA (MJD) . . . 56466.878 56388.106 56508.991 55362.896

Number of ToAs . . . 1201 10135 1903 449

Residuals RMS (µs) . . 18.26 4.89 9.70 10.81

α (J2000) (hh:mm:ss) . 00:24:07.9347(2) 00:23:59.4077(1) 00:24:04.65254(6) 00:24:07.5851(2)

δ (J2000) (dd:mm:ss) . −72:04:39.6815(7) −72:03:58.7908(5) −72:04:53.7670(2) −72:04:50.3954(5)
µα (mas yr−1) . . . . 5.0(2) 5.27(6) 5.01(5) 4.8(1)

µδ (mas yr−1) . . . . −2.1(2) −3.59(9) −2.58(8) −3.3(2)

f (Hz) . . . . . . . . 286.94469953049(1) 476.04685844061(1) 378.308788360098(6) 287.31811946930(1)

ḟ (Hz s−1) . . . . . . 3.7771(2)×10−15 2.2190(2)×10−15 −4.34352(8)× 10−15 −1.22467(2)× 10−14

f̈ (Hz s−2) . . . . . . −3.35(9)× 10−26 2.0(1)×10−26 4.38(5)×10−26 −8.5(1.5)× 10−27

DM (pc cm−3) . . . . 24.43(1) 24.588(3) 24.356(2) 24.361(7)

Binary Parameters

Binary Model . . . . . ELL1 BTX BTX ELL1

xp (lt-s) . . . . . . . 3.8446(1)×10−2 4.04058(6)×10−2 4.51533(3)×10−2 3.3363(1)×10−2

e . . . . . . . . . . . – 0 0 –

η . . . . . . . . . . . 0 – – −10(6)× 10−5

κ . . . . . . . . . . . 0 – – −3(7)× 10−5

ω (deg) . . . . . . . . – 0 0 –

T0 (MJD) . . . . . . . – 51600.1084250(6) 51600.0757563(3) –

Tasc (MJD) . . . . . . 51600.002421(2) – – 51600.0029871(6)

Pb (days) . . . . . . . 0.2297922489(4) – – 6.623147751(6)×10−2

Ṗb (10−12 s s−1) . . . −0.8(2) – – 0.19(4)

fb (s−1) . . . . . . . – 9.59191153(1)×10−5 8.511956725(6)×10−5 –

f
(1)
b

(s−2) . . . . . . – −21(34)× 10−22 −7.3(1)× 10−20 –

f
(2)
b

(s−3) . . . . . . – −19(21)× 10−29 −10(2)× 10−29 –

f
(3)
b

(s−4) . . . . . . – 3.9(5)×10−35 33(15)×10−37 –

f
(4)
b

(s−5) . . . . . . – −15(24)× 10−44 – –

f
(5)
b

(s−6) . . . . . . – −5.5(8)× 10−50 – –

f
(6)
b

(s−7) . . . . . . – 58(23)×10−59 – –

f
(7)
b

(s−8) . . . . . . – 55(10)×10−66 – –

f
(8)
b

(s−9) . . . . . . – −89(20)× 10−74 – –

f
(9)
b

(s−10) . . . . . . – −3.9(8)× 10−80 – –

f
(10)
b

(s−11) . . . . . – 86(15)×10−89 – –

f
(11)
b

(s−12) . . . . . – 15(37)×10−96 – –

f
(12)
b

(s−13) . . . . . – −42(8)× 10−104 – –

Derived Parameters

θα (arcmin) . . . . . . +0.1742 −0.4821 −0.0783 +0.1473

θδ (arcmin) . . . . . . +0.2156 +0.8972 −0.0192 +0.0371

θ⊥ (arcmin) . . . . . 0.2772 1.0185 0.0806 0.1519

θ⊥ (core radii) . . . . 0.7989 2.9352 0.2322 0.4378

r⊥ (pc) . . . . . . . . 0.3782 1.3895 0.1099 0.2072

P (ms) . . . . . . . . 3.4849920616629(1) 2.10063354535248(6) 2.64334329724356(4) 3.4804627074933(2)

Ṗ (10−21 s s−1) . . . −45.873(2) −9.7919(9) 30.3493(6) 148.351(3)

al,GC (10−9 m s−2) . −11.8(3.7) – – 10.1(1.9)

Ṗint (10−21 s s−1) . . 92(43) – – 31(22)

Bs, (108 G) . . . . . . 5.65 – – 3.29

Lsd (1033 erg s−1) . . 85.55 – – 29.04

τc (Gyr) . . . . . . . 0.60 – – > 0.73

ȧl (10−21 m s−3) . . . 35(1) −12.5(9) −34.68(37) 8.9(1.5)

f(Mp) (M�) . . . . . 0.0000011555(1) 0.0000048646(2) 0.0000053461(1) 0.0000090898(10)

Mc,min (M�) . . . . . 0.0132 0.0214 0.0221 0.0264

Mc,med (M�) . . . . 0.0153 0.0248 0.0256 0.0306

Parameters: see Table 4.2
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Table 4.5. Timing parameters for the four “elusive” binary pulsar systems of 47 Tuc discussed in Section
4.4. The associated 1-σ uncertainties are the nominal values calculated by TEMPO. For all the pulsars, a
fixed parallax value of 0.2132 mas was assumed; the time units are TDB; the assumed terrestrial time
standard is UTC(NIST); the Solar System ephemeris used is the JPL DE421.

Pulsar 47 Tuc P 47 Tuc V 47 Tuc W 47 Tuc X

Phase-connected? . . No No Yes Yes

Reference epoch (MJD) 51000.000 51000.000 50000.000 54000.000

Start ToA (MJD) . . . 50689.609 51012.862 51214.216 50981.881

End ToA (MJD) . . . 54260.850 56508.781 54934.047 56508.949

Number of ToAs . . . 28 99 199 719

Residuals RMS (µs) . 10.43 25.32 10.20 14.51

α (J2000) (hh:mm:ss) 00:24:20(29) 00:24:05.359a 00:24:06.058(1) 00:24:22.38565(9)

δ (J2000) (dd:mm:ss) . −72:04:10(62) −72:04:53.20a −72:04:49.088(2) −72:01:17.4414(7)
µα (mas yr−1) . . . . 4.9a 4.9a 6.1(5) 5.8(1)

µδ (mas yr−1) . . . . −2.7a −2.7a −2.6(3) −3.3(2)

f (s−1) . . . . . . . 274.49748(2) 207.892963(3) 425.10779625320(5) 209.576694635350(2)

ḟ (Hz s−2) . . . . . . −5(3)× 10−14 − 1.56415(2)×10−14 −8.0646(3)× 10−16

f̈ (Hz s−2) . . . . . . − − 1.5(7.4)×10−27 1.3(7.8)×10−28

DM (pc cm−3) . . . . 24.29(3) 24.105(8) 24.367(3) 24.539(5)

Binary Parameters

Binary Model . . . . BT BTX BTX ELL1

xp (lt-s) . . . . . . . 0.038008(4) 0.74191(2) 0.243443(2) 11.9170570(9)

e . . . . . . . . . . . 0 0 0 –

η . . . . . . . . . . . – – – 4(1)×10−7

κ . . . . . . . . . . . – – – −2(2)× 10−7

ω (deg) . . . . . . . . 0 0 0 –

T0 (MJD) . . . . . . 52912.5481(1) 51803.775137(2) 51585.3327393(2) –

Tasc (MJD) . . . . . – – – 53278.0247041(2)

Pb (days) . . . . . . 0.147248891(7) − − 10.921183545(1)

Ṗb (10−12 s s−1) . . − − − 6(2)

fb (s−1) . . . . . . . − 5.45609205(4)×10−5 8.70594798(3)×10−5 −
f
(1)
b

(s−2) . . . . . . − −2.34(4)× 10−18 −1.26(4)× 10−18 −
f
(2)
b

(s−3) . . . . . . − 2.34(6)×10−26 4.0(2)×10−26 −
f
(3)
b

(s−4) . . . . . . − 2.31(6)×10−33 6.3(3)×10−33 −
f
(4)
b

(s−5) . . . . . . − −6.7(2)× 10−41 −9.2(4)× 10−40 −
f
(5)
b

(s−6) . . . . . . − 5.6(1)×10−49 6.3(3)×10−47 −
f
(6)
b

(s−7) . . . . . . − − −2.7(1)× 10−54 −
f
(7)
b

(s−8) . . . . . . − − 7.4(3)×10−62 −
f
(8)
b

(s−9) . . . . . . − − −1.22(5)× 10−69 −
f
(9)
b

(s−10) . . . . . − − 9.3(4)×10−78 −
Derived Parameters

θα (arcmin) . . . . . 1.1289 -0.0239 +0.0299 +1.2899

θδ (arcmin) . . . . . +0.7063 -0.0097 +0.0589 +3.5863

θ⊥ (arcmin) . . . . . 1.3314 0.0258 0.0660 3.8105

θ⊥ (core radii) . . . . 3.8368 0.0744 0.1902 10.9813

r⊥ (pc) . . . . . . . 1.8163 0.0352 0.0901 5.1986

P (ms) . . . . . . . . 3.6430207(2) 4.81016762(7) 2.3523445319370(3) 4.77152291069355(5)

Ṗ (10−21 s s−1) . . . 683(419) − -86.553(1) 18.3609(7)

al,GC (10−9 m s−2) . − − − 1.7(7)

Ṗint (10−21 s s−1) . . − − − < 2

Bs, (108 G) . . . . . − − − < 3

Lsd (1033 erg s−1) . . − − − < 7

τc (Gyr) . . . . . . . − − − > 4

ȧl (10−21 m s−3) . . . − − −1(5) −0.2(1.1)

f(Mp) (M�) . . . . . 2.7188×10−6 9.743×10−3 8.764×10−4 1.524×10−2

Mmin
c (M�) . . . . . 0.0176 0.3048 0.1269 0.3616

Mc,med (M�) . . . . 0.0204 0.3594 0.1479 0.4279
aThe proper motion was set to the average value of the 22 pulsars with a phase-connected timing solution available at
the time of the analysis.

Parameters: see Table 4.2
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determined.
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Figure 4.4. High-S/N integrated pulse profiles (used as templates in our timing analysis) for all the 25
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bar on the top right of each panel shows the nominal AFB back-end sampling interval (80 µs).
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5.1 Introduction

The timing results presented in the previous chapter are relevant not only for the characteri-
zation of the individual pulsars of 47 Tuc, but also because they enable a series of additional
investigations of the cluster itself.

Here, we discuss the results shown in Chapter 4 in detail and use them to constrain some
dynamical properties of 47 Tuc, obtaining significant improvements over the previously published
models of the cluster (Freire et al., 2003).

5.2 Cluster parameters

In the analysis presented in this chapter, we benefit greatly from the new studies of Hubble Space
Telescope (HST ) data that have become available since the last study of the cluster potential
(Freire et al., 2003). These data provide much more precise cluster parameters and in some cases
entirely new information. As already anticipated in Section 4.1, McLaughlin et al. (2006) place
the centre of 47 Tuc at right ascension α = 00h 24m 5.67s and declination δ = −72◦ 04′ 52.′′62;
they also measure the core radius: θc = 0.347 arcmin. A newly available measurement, which
will be of great importance for this work, is the 1-D proper motion dispersion for stars at the
cluster centre obtained from differential HST astrometry: σµ,0 = 0.573 mas yr−1 (Watkins et al.,
2015a).

From Eq. (1)-(34) in Spitzer (1987), which is accurate to ∼0.5% for clusters where the tidal
radius, rtid, is much larger than the core radius, rcore (such as 47 Tuc, where log10(rtid/rcore) =
2.07, see Harris 1996), we derive the following expression for the central density:

ρ(0) =
9σ2

µ,0

4πGθ2
c

, (5.1)

where we have replaced the spectroscopic radial velocity (RV) dispersion σ0 with σµ,0 d (where d
is the distance to 47 Tuc) and the core radius rcore with θc d. The distance terms then cancel out;
this means that the central density can be determined solely from the aforementioned angular
measurements, independently of d. For the value of σµ,0 and θc of 47 Tuc, Eq. (5.1) yields
ρ(0) = 1.20× 105 M� pc−3.

For the distance d, we use 4.69 kpc (Woodley et al., 2012). Other recent assessments placed
the cluster at very similar distances; for instance, using the (relatively well-trusted) WD cooling
track model, Hansen et al. (2013) derived a distance of 4.6 ± 0.2 kpc. Using other methods,
like the self-consistent isochrone fits to colour-magnitude diagrams and the eclipsing binary star
V69, Brogaard et al. (2017) derived a slightly smaller distance of 4.4±0.2 kpc. Averaging several
recent measurements, Bogdanov et al. (2016) obtained a distance of 4.53+0.08

−0.04 kpc.
However, not all distance estimates match: by comparing their measurement of σµ,0 to their

best estimate of σ0, Watkins et al. (2015b) derived a kinematic distance of 4.15 ± 0.08 kpc,
consistent with the earlier estimate of McLaughlin et al. (2006) (d = 4.02 ± 0.35 kpc).

A possible explanation of this discrepancy is that the σ0 measurements (generally close
to 11 km s−1), are biased towards smaller values. Likely reasons for this are discussed in
detail in Bogdanov et al. (2016). Briefly, those authors pointed out that the RV measurements
used for comparison were intended to be of single stars, but HST images show that a number
of the targeted “stars” actually comprise more than one star of similar brightness. The RV
measurements of combined stars tend to be closer to the cluster mean than single stars, so
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this has the effect of reducing the inferred velocity dispersion, and the resultant distance to the
cluster. Indeed, when Watkins et al. (2015b) included a larger sample of RV measurements that
extend further out from the core of 47 Tuc to compare with their proper motions, they found
a distance of 4.61+0.06

−0.07 kpc (see their Appendix A, Fig. 9), consistent with the larger distances
mentioned above.

This issue is crucial for the interpretation of our results. As we will see in Sections 5.5 and
5.6, our results also favour this large distance, in detriment of the smaller kinematic distance
estimates. This is also crucial for addressing the question of the presence of an intermediate
mass black hole in the centre of 47 Tucanae, which has been repeatedly raised in the literature.

5.3 Positions

Fig. 5.1 shows the positions of all the 23 pulsars in 47 Tuc with a phase-connected timing
solution, with their numerical values being listed in Tables 4.2 to 4.5.

The first striking evidence is that all the pulsars, with the exception of one, are well within
the distance of 47 Tuc C to the centre of the cluster, namely 1.22 arcmin. Since the Parkes
beam at 20 cm has a FWHM of 14.4 arcmin, this is not a selection effect. Rather, it is a clear
consequence of the mass segregation produced by dynamical friction. Indeed, closer to the core,
the relaxation time is much shorter, hence the pulsars are likely to have reached dynamical
equilibrium with the stellar population there.

The only exception to this is represented by the binary system 47 Tuc X, which stands out
for its distance of ∼ 3.8 arcmin from the nominal cluster centre, more than three times farther
than pulsar C. The system is very interesting not only for its unusual location, but also for other
reasons that will be thoroughly discussed in Section 5.8.

5.4 Proper motions

One of the main benefits of long-term timing is a better determination of the proper motions.
In Freire et al. (2001b), the number and precision of the proper motions was small and only
the motion of the GC as a whole was detectable. With a few more years of intense timing with
the high-resolution AFB data, some of the proper motions were measured precisely enough to
detect relative motions, particularly for 47 Tuc D, E and J (Freire et al., 2003).

Because of the increased timing baselines, the proper motions presented here are signifi-
cantly more precise. In Fig. 5.2, we display the 17 pulsars for which both the proper mo-
tion 1-σ Monte Carlo uncertainties (in ecliptic longitude and ecliptic latitude) are smaller than
0.3 mas yr−1. Although the proper motions themselves are displayed in J2000 equatorial coor-
dinates, the error ellipses are aligned according to ecliptic coordinates, where the measurement
uncertainties are least correlated. For these pulsars, the (unweighted) average proper motion is
µα = 5.00 mas yr−1 and µδ = −2.84 mas yr−1, and is depicted by the solar symbol in Fig. 5.2.
This represents the simplest estimate for the proper motion of the cluster as a whole, and it
is consistent with the estimate presented in Freire et al. (2003): µα = 5.3 ± 0.6 mas yr−1 and
µδ = −3.3 ± 0.6 mas yr−1. The standard deviations of the proper motions around this average
(σµ) are 0.59 mas yr−1 in α and 0.49 mas yr−1 in δ. At a distance of 4.69 kpc (Woodley et al.,
2012), these standard deviations correspond to 13.2 and 10.9 km s−1 respectively. The uncer-
tainty in the mean value is given by σµ/

√
N , where N is the number of measurements (17, in
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Figure 5.1. Positions of the 23 pulsars in 47 Tuc with a phase-connected timing solution determined.
The blue dots and the red dots indicate the binary and the isolated pulsars, respectively. The grey
dashed circle marks the cluster core radius, placed at a distance of 0.347 arcmin (McLaughlin et al.,
2006). The distance of pulsar 47 Tuc X from the nominal cluster centre is ∼ 3.8 arcmin, more than three
times that of pulsar C, the second farthest in 47 Tuc.
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this case). Thus our uncertainties for the mean cluster motion are σµα = 0.14 mas yr−1 and
σµδ = 0.12 mas yr−1.

An alternative method to estimate the overall motion of the cluster is to require that all ob-
served pulsar proper motions fit within the smallest possible velocity envelope. This corresponds
to finding the centre of a circle defined by the proper motions of the three outermost pulsars in
the proper motion plot, namely 47 Tuc D, E and U (alternatively we can use 47 Tuc D, N and U;
we prefer the former set because the proper motion for 47 Tuc E is known much more precisely).
This minimal proper motion envelope is represented by the dashed circle and has a radius of
1.10 mas yr−1; at 4.69 kpc this represents a velocity of 24.5 km s−1, or about half of the escape
velocity from the centre of the cluster (∼ 50 km s−1, e.g. McLaughlin et al. 2006). The centre
of this minimal envelope is at µα = 5.16 mas yr−1 and µδ = −2.85 mas yr−1, represented by a
solid dot at the centre of Fig. 5.2. This µα is nearly 1-σ consistent with the average estimated
above, the µδ is practically identical to the average.

5.4.1 Comparison with optical proper motions

We now compare these numbers with previous literature. Regarding the absolute proper motion,
the latest relevant study combines HIPPARCHOS and GAIA positions to derive absolute proper
motions for five Galactic globular clusters, among which is 47 Tuc (Watkins & van der Marel,
2016). The values they obtain (µα = 5.50 ± 0.70 mas yr−1 and µδ = −3.99 ± 0.55 mas yr−1)
are consistent with our measurement of the average proper motion in α, but in δ the deviation
is −2.1-σ, i.e. only marginally consistent. In Section 3.1 of that paper they list previous
measurements of the proper motion of 47 Tuc and discuss their consistency, and it is clear that
there is some disagreement between the proper motion estimates obtained by different methods.
The situation will likely improve significantly with the second release of GAIA data.

Our 1-D standard deviations for the proper motions is consistent with the σµ,0 obtained by
Watkins et al. (2015a). This result agrees qualitatively with the observation by McLaughlin
et al. (2006) that the observed velocity dispersion is largely constant across magnitude range,
i.e. it appears to be the same for stellar populations of different masses.

5.4.2 Proper motion pairs?

Given the extreme proximity of 47 Tuc I and G in the plane of the sky and in acceleration, there
is a suggestion that these pulsars could be in a bound system, with a semi-major axis ap of at
least 600 AU (Freire et al., 2001b). Such systems are not stable in 47 Tuc, since their cross section
for violent interactions is too large, but they can exist temporarily. If this were the case, then
the maximum relative orbital velocity should be of the order of v ∼

√
GMtot/ap = 2 km s−1.

At the distance of 47 Tuc, this translates to an upper limit on the difference of proper motions
of about 0.09 mas yr−1. As we can see from Fig. 5.2, the difference is of the order of 1 mas yr−1,
ten times larger. We conclude therefore that, despite their proximity, these two pulsars are not
in a bound system.

Two other pulsars, 47 Tuc F and S, are also remarkably close to each other and have DMs
that are 1-σ compatible. In this case the minimum separation is 3700 AU (Freire et al., 2003),
requiring a maximum relative orbital velocity of v ∼ 0.8 km s−1 and a maximal proper motion
difference of 0.036 mas yr−1. Interestingly, this is not excluded by our measurements: as we can
see in Fig. 5.2, the proper motion of 47 Tuc F falls within the 1-σ contour for the proper motion
of 47 Tuc S. The latter covers 1.1% of the proper motion surface within the velocity envelope
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Figure 5.2. Proper motions for the 17 pulsars in 47 Tuc where the 1-σ uncertainties are smaller than
0.3 mas yr−1. The proper motions are displayed by their 1-σ error ellipses, where the axes are aligned
along ecliptic coordinates (where the positional and proper motion uncertainties are well defined). The
differences in transverse velocity between the pulsars is highly significant, particularly for precisely timed
pulsars like 47 Tuc D, E, F, J and O. The average of all proper motions in α and δ (µα = 5.00 mas yr−1

and µδ = −2.84 mas yr−1) is given by the solar symbol near the centre of the plot. The dashed circle
represents the minimal possible velocity envelope for these pulsars, its centre (the solid dot at the centre
of the plot, at µα = 5.16 mas yr−1, µδ = −2.85 mas yr−1) represents an estimate of the proper motion
of the globular cluster. This circle has a radius of 1.10 mas yr−1. At the assumed distance to 47 Tuc
(4.69 kpc) this is a velocity difference of 24.5 km s−1, or about half of the escape velocity.



5.5. Spin period/frequency derivatives 109

determined above, so that is the probability of coincidence for any given pulsar. Given their
spatial proximity, the proper motion coincidence is suggestive of a temporarily bound status.

As mentioned in Freire et al. (2001b), another test of the bound nature of these systems
would be the detection of changes in their line-of-sight accelerations, which will produce a
second derivative of the spin frequency, f̈ , also referred to as jerk. However, as we shall see in
Section 5.5, the f̈ ’s of these pulsars (with the possible exception of 47 Tuc I) can be accounted
for by their movement in the cluster potential.

5.5 Spin period/frequency derivatives

We will now discuss the measurements of the spin frequency (or, equivalently, spin period)
derivatives of the pulsars in 47 Tuc. Like those of other pulsars in GCs (and unlike the spin
frequency derivatives observed in the Galactic disk) the first spin frequency derivatives for the
pulsars in 47 Tuc are mostly caused by dynamical effects. Higher spin frequency derivatives are,
within our timing precision, instead caused entirely by dynamical effects.

5.5.1 First spin period derivative and upper limits on the cluster acceleration

The observed variation of spin period, Ṗobs, is generally given by the following equation:

Ṗobs

P
=

Ṗint

P
+
µ2d

c
+
al,GC

c
+
aGal

c
, (5.2)

where P is the observed pulsar spin period, Ṗobs is the observed spin period derivative, Ṗint is
the intrinsic spin period derivative, µ is the composite proper motion, d is the distance to the
cluster (the term µ2d/c is known as the Shklovskii effect, see Shklovskii 1970), c is the speed of
light, al,GC is the line-of-sight acceleration of the pulsar in the gravitational field of the cluster
and aGal is the difference between the accelerations of the Solar System and 47 Tuc in the field of
the Galaxy, projected along the direction to 47 Tuc (aGal = −1.172 × 10−10 m s−2, calculated
using the Reid et al. 2014 model for the Galactic rotation). In principle, this equation could
have other contributions, in particular accelerations caused by nearby stars; however, as shown
by Phinney (1993), even in dense clusters those are very rarely relevant. As we shall see, the
dominant term for the pulsars in 47 Tuc is al,GC.

For most pulsars, we can only derive an upper limit, al,max, on this dominant term from
Ṗobs/P , since Ṗint is generally not known but is always positive:

al,max
.
= al,GC +

Ṗint

P
c =

Ṗobs

P
c− µ2d− aGal. (5.3)

These limits, calculated for all the pulsars, are displayed graphically in Fig. 5.3 as triangles
pointing down (to emphasize that they represent an upper limit on the cluster acceleration).
The black solid lines, instead, represent the maximum line-of-sight acceleration due to the cluster
potential (al,GC,max) for the analytical model of the cluster described in Freire et al. (2005). This
uses the mass distribution described in King (1962) for the case where we are near (within ∼ 4
core radii) the centre of the cluster:

ρ(x) =
ρ(0)

(1 + x2)3/2
, (5.4)
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Figure 5.3. Line of sight accelerations (al) as a function of the total angular offset from the centre of
the cluster (θ⊥) for the pulsars in 47 Tuc. The inverted triangles represent, for each pulsar system, an
upper limit for its acceleration in field of the cluster, as determined from Ṗobs via al,max (see discussion
in Section 5.6). This is not a measurement of the real acceleration in the field of the cluster because of a
contribution from the intrinsic spin period derivative of each pulsar (Ṗint). The red error bars represent
measurements of the line-of-sight accelerations of 10 binary pulsars (47 Tuc E, H, I, Q, R, S, T, U, X
and Y, which are named), determined from their orbital period derivatives, Ṗb,obs. We also plot the
maximum and minimum theoretical accelerations along each line of sight using an analytical model of
the cluster described in Section 5.5, with distances of 4.69 kpc (solid lines) and 4.15 kpc (dotted lines).
We also name the systems with recently determined timing solutions (R, W, Z, aa, ab). The core radius
is indicated by the vertical dashed line.
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where x is the distance to the centre divided by the core radius rcore = θc d. Here we use the
ρ(0) defined in Eq. (5.1). Since this is independent of distance, the mass of the cluster within
a particular angular distance (i.e. within x core radii, MGC(x)) is proportional to d3, so the
acceleration at that x is proportional to MGC(x)/d2, i.e., proportional to d:

aGC(x) =
9σ2

µ,0 d

θc

1

x2

(
x√

1 + x2
− sinh−1 x

)
. (5.5)

The line-of-sight component of this acceleration, al,GC(x), can be obtained by multiplying aGC(x)
by l/x, where l is the distance (also in core radii) to the plane of the sky that passes through the
centre of the cluster (Σ), such that x =

√
l2 + x2

⊥ and x⊥ = θ⊥/θc. For each of the pulsar line-
of-sight distances to the centre of the cluster, θ⊥, we calculate al,GC(x) for a variety of values of
l, recording the maximum values found, al,GC,max. These are the solid lines displayed in Fig. 5.3.
For the line of sight going through the centre, we obtain the largest possible acceleration induced
by the field of the cluster:

al,GC,max(0) = 1.5689
σ2
µ,0 d

θc
; (5.6)

the numerical factor matches the more general expectation of 1.50 ± 0.15 from Eq. (3.6) in
Phinney (1993). The latter was used to constrain the cluster parameters in Freire et al. (2003).

Apart from d, the predicted al,GC,max(x⊥) depends only on unambiguous angular measure-
ments, meaning that the measurements of pulsar accelerations can be used to constrain d, i.e.,
this is a second kinematic distance measurement.

None of the pulsars, including those with recently found solutions (47 Tuc R, W, X, Y, Z,
aa and ab, all named in Fig. 5.3), has a value of al,max that is significantly larger than the
model al,GC,max for its line of sight: the magnitude of al,GC must be significantly larger than
the contribution from Ṗint, otherwise a majority of Ṗobs would be positive, while in fact similar
numbers of pulsars have negative and positive Ṗobs. For three pulsars, 47 Tuc E, U and X, the
al,max is slightly larger than al,GC,max. For 47 Tuc E and U, this is caused by the contribution of
their Ṗint; as we will see in Section 5.6, their line-of-sight accelerations are (just about) consistent
with the cluster model. For 47 Tuc X, it is likely that the same is happening, although in that
case the Ṗb, obs is not yet precise enough to reach any definite conclusions. However, it is unlikely
that the analytical acceleration model described above is still entirely valid at its large θ⊥.

5.5.2 Second spin frequency derivative (jerk)

In the absence of substantial timing noise (as is the case for most MSPs), the second spin
frequency derivative (f̈) reflects the rate of change of al, known as the jerk. Rearranging Eq.
(2) in (Joshi & Rasio, 1997), we obtain:

ȧl
c

=

(
ḟ

f

)2

− f̈

f
' −f̈P, (5.7)

where the approximation is valid since the first term, (ḟ/f)2, is many orders of magnitude
smaller than f̈/f . According to Phinney (1992), ȧl has two main physical contributions. The
first (ȧl,GC) arises from the movement of the pulsar in the potential of the cluster: different
positions in the cluster will generally have a different al,GC; the movement of the pulsar from
one position to the other will therefore cause a variation of this quantity. The second contribution
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to ȧl is due to the gravity of nearby stars; this is more significant for denser clusters.
Freire et al. (2003) detected the second spin frequency derivative for only one pulsar, 47 Tuc H

(f̈ = 1.6 ± 0.2 × 10−25 Hz s−2). They then estimated the maximum jerk induced by the motion
of the pulsar in the mean field of the cluster (ȧl,GC,max) and the corresponding f̈ (f̈max) using
a slightly modified version of Eq. (4.3) in Phinney (1993):

ȧl,GC,max(0)

c
= − f̈max

f
= −4π

3
Gρ(0)

vl,max

c
, (5.8)

where vl,max is the maximum velocity of the pulsar relative to the cluster, in this case assumed to
be moving along the line of sight; in Freire et al. (2003) this was assumed to be σ0 ∼ 13 km s−1.
The sign depends on the direction of vl,max, if the latter is positive (i.e., the pulsar is moving
away from us), then ȧl,GC,max(0) is negative. The f̈ of 47 Tuc H is much larger than the
estimated f̈max, from this they concluded that this system is being perturbed by a nearby stellar
companion.

However, that estimate of ȧl,GC,max (and f̈max) is not very precise: first, because Eq. (5.8)
applies only to the centre of the cluster; second because, as we have seen in Section 5.4, individual
pulsars can have velocities along any direction that are almost twice as large as σ0. Furthermore,
and owing to our larger timing baseline T , we are now able to measure ȧl precisely for almost all
MSPs in 47 Tuc (see Tables 4.2-4.4). This improvement in measurements of ȧl must be matched
by an improvement in the prediction of ȧl,GC,max.

This prediction is obtained from the gradient of al,GC along the radial direction r ≡ l rcore

where it reaches a maximum, at r = l = 0 (i.e. in the plane Σ) and then multiplying it by vl,max.
Near this plane l is small, so x =

√
l2 + x2

⊥ ' x⊥ is basically independent of l. In that case, the
line-of-sight accelerations can be derived trivially from Eq. (5.5) multiplied by the projection
factor l/x⊥:

al,GC(x⊥) =
9σ2

µ,0 d

θc

l

x3
⊥

 x⊥√
1 + x2

⊥

− sinh−1 x⊥

 . (5.9)

Being proportional to l in the vicinity of Σ, these line-of-sight accelerations are zero for any
object in Σ, so the only non-zero spatial derivative of al,GC in that plane is along its normal:
the radial direction r. This derivative is trivial since Eq. (5.9) is linear on l. Using dl/dr =
dl/(d θc)dl = 1/(d θc), we obtain, for l = 0 (not forgetting vl,max):

ȧl,GC,max(x⊥) =
9σ2

µ,0

θ2
c

1

x3
⊥

 x⊥√
1 + x2

⊥

− sinh−1 x⊥

 vl,max. (5.10)

For the line of sight going through the centre (x⊥ = θ⊥ = 0), Eq. (5.10) cannot be evaluated
directly, but the limit of the terms with x⊥ is −1/3. Thus, in that limit, we recover the result
of Eq. (5.8) (with the central density from Eq. 5.1) for the most extreme ȧl,GC,max:

ȧl,GC,max(0) = −
3σ2

µ,0

θ2
c

vl,max. (5.11)

Apart from vl,max, these predictions for ȧl,GC,max depend only on angular measurements. In our
calculations, we used vl,max = ve, i.e., the velocity envelope derived in Section 5.4.

The comparison between this prediction and the measured jerks is displayed graphically in
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Figure 5.4. Line of sight acceleration derivatives (ȧl) as a function of the total angular offset from the
centre of the cluster (θ⊥) for the pulsars in 47 Tuc. The red error bars represent measurements of the
line-of-sight acceleration derivatives for all the pulsars. We also plot the maximum and minimum values
of ȧl,GC (ȧl,GC,max) predicted by Eq. (5.10) (solid lines). For some pulsars (47 Tuc H and U and possibly
47 Tuc J), the observed ȧl is larger than ȧl,GC,max; this is likely due to the presence of a nearby star.
The core radius is indicated by the vertical dashed line.
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Fig. 5.4. The red dots and red vertical error bars depict the measurements of the jerks and
associated uncertainties. We also plot (in solid black lines) the ȧl,GC,max predicted for each line
of sight by our cluster model.

Most pulsars have jerks that are smaller than our estimate of ȧl,GC,max for their lines of
sight; such jerks can therefore be attributed to the movement of the pulsars in the mean field
of the cluster. However, a few stand out. For 47 Tuc H, the observed f̈ is consistent with that
reported in 2003, but 10 times as precise: f̈ = 1.60 ± 0.02 × 10−25 Hz s−2; the corresponding
jerk (ȧl = −1.545(22) × 10−19 m s−3) is much larger (in absolute terms) than |ȧl,GC,max| for
that pulsar’s line of sight (or any in the cluster), so we come to the same conclusion as Freire
et al. (2003): this system must have a nearby companion. We can now see that this is also true
for 47 Tuc U and J. For 47 Tuc M and aa the observed jerks are only ∼ 1-σ away from the
ȧl,GC,max for their lines of sight.

An intriguing observation is that the systems with jerks larger than the cluster mean-field
expectation lie preferably at distances from the core of about 1 arcmin. This is counter-intuitive
since the stellar density is larger nearer the core − those pulsars are the most likely to be
perturbed by nearby stars. The fact that none is being unambiguously perturbed by nearby
stars suggests that the probability for a stellar interaction inducing a measurable f̈ is quite
small, at least in this cluster. If this probability is small near the core, it should be even smaller
at 1 arcmin from the centre, where the pulsars with larger-than-expected jerks lie. This suggests
that these systems are not really just passing nearby stars, but they are being orbited by other
objects, as in the case for the triple system PSR B1620−26, which is also found in an environment
with lower stellar density (Thorsett et al., 1999; Sigurdsson et al., 2003). These orbits must have
significantly larger orbital periods than our timing baseline, since we do not yet measure a full
orbital period. Such wide orbits would not be stable in the vicinity of the cluster centre, thus
explaining the lack of significant stellar jerk for the pulsars nearer the core.

5.5.3 Third spin frequency derivative

Unlike for the lower spin frequency derivatives, the third and higher spin frequency derivatives,
f (n), can only be caused by the gravitational field of nearby objects.

The idea that 47 Tuc H is being influenced by a nearby stellar companion is supported by
the fact that it is the pulsar in the cluster for which the measurement of f (3) is most significant,
f (3) = (3.8 ± 1.7) × 10−35 Hz s−3, a 2.3-σ “detection”. Most of the black widow systems
also appear to have a non-zero f (3), but in no case is the measurement more significant than
2-σ. For the other main candidate for a stellar companion, 47 Tuc U, we measure f (3) =
(−1.0 ± 1.3) × 10−35 Hz s−3; we therefore did not fit for this parameter in the derivation of its
timing solution (Table 4.3).

Since the uncertainty in the measurement of f (3) scales with T−9/2, continued timing will
improve these measurements very quickly. The rate of improvement will be even faster for higher
frequency derivatives. The measurement of five such derivatives allows a unique determination
of the five Keplerian orbital parameters (Joshi & Rasio, 1997); we would then know whether
47 Tuc H and its companion are bound or not.

5.6 Orbital period derivatives

Another quantity that greatly benefits from prolonged timing is the measurement of the variation
of the orbital period, Ṗb. For most of the eclipsing binaries like 47 Tuc V, W, J and O (see
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Chapter 6), there are unpredictable variations in the orbital period with time, similar to those
observed for other eclipsing binaries in the Galaxy (e.g. Shaifullah et al. 2016); in these cases
we need many orbital frequency derivatives to describe the evolution of orbital phase with time.
For the remaining binary pulsars, namely the MSP-WD systems (47 Tuc E, H, Q, S, T, U, X
and Y) and two of the black widow systems (47 Tuc I and R), the phase evolution of the orbit
can be described with a period and a period derivative only.

5.6.1 Measurements of cluster accelerations

If the orbital period, Pb, in the reference frame of the binary is stable, then we will not be able
to measure orbital frequency derivatives higher than 1st order (unless the system is in a triple,
in which case the effects will be much more obvious in the spin frequency derivatives). At the
Earth, the observed orbital period derivative will then be given by (Damour & Taylor, 1991):

Ṗb,obs

Pb
=

Ṗb,int

Pb
+
µ2d

c
+
al,GC

c
+
aGal

c
, (5.12)

where all parameters are as in Eq. (5.2), except that Ṗb,obs is the observed orbital period deriva-
tive and Ṗb,int is the intrinsic orbital period derivative. For the MSP-WD systems, the intrinsic
variation of the orbital period, Ṗb,int, should be dominated by energy loss due to the emission
of gravitational waves. This is expected to be a very small quantity: for the MSP-WD system
with the shortest orbital period, 47 Tuc U (Pb = 0.42911 days), the expected orbital decay is
−1.36× 10−14 s s−1 (this assuming that the MSP has a mass of 1.4 M� and an orbital inclination
i = 90 deg), which is a factor of 2 smaller than the current measurement uncertainty for the
Ṗb,obs for that pulsar. The cases of 47 Tuc I and R are discussed in detail in Section 6.4.

Re-writing Eq. (5.12), and ignoring the intrinsic term, we can, for each pulsar, calculate the
cluster acceleration, since the remaining terms are also known, in particular the proper motion
(see Section 5.4):

al,GC =
Ṗb, obs

Pb
c− µ2d− aGal. (5.13)

These accelerations are presented in Tables 4.3 and 4.5, and depicted graphically as the vertical
red error bars in Fig. 5.3. Like the values of Ṗobs/P , they represent important constraints on
the dynamics of the cluster. As we can see in Fig. 5.3, the accelerations for 47 Tuc S, E and
U can (just about) be accounted for by the mass model for the cluster described in Section 5.5
with a distance of 4.69 kpc. With the kinematic distance (4.15 kpc, represented by the dotted
line in Fig. 5.3), this model cannot account for these accelerations.

We conclude therefore that our acceleration measurements are not compatible with a distance
d significantly smaller than 4.69 kpc, in agreement with most published distance estimates; they
appear to be incompatible with the kinematic distance of 4.15 kpc. A more robust probabilistic
estimate of the cluster distance most favoured by our measurements will be presented elsewhere.

5.6.2 Intrinsic spin period derivatives

As we can see from Fig. 5.3, the measured values of al,GC tend to be similar, but slightly smaller
than al,max. The difference, as evident from Eq. (5.3), is due to the contribution from Ṗint.
The values of Ṗint can be obtained directly from the observables by subtracting Eq. (5.12) from
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Eq. (5.2) and re-arranging the terms (and taking into account the fact that the Ṗb,int are small):

Ṗint = Pobs

[(
Ṗ

P

)
obs
−
(
Ṗb

Pb

)
obs

]
. (5.14)

The intrinsic values of Ṗ and resulting estimates for the characteristic age, τc, are also presented
in Tables 4.3 and 4.4. For most of the other pulsars, less constraining upper limits for Ṗb,int were
derived assuming the largest possible negative value of aGC for the line of sight of the pulsar
(see Freire et al. 2001b and Freire et al. 2003).

Although the estimates of Ṗint are not measured with high significance (only a couple of
cases, 47 Tuc E and U, are measured with 3-σ significance), they already allow a comparison
with the MSPs in the Galaxy. Putting the limits in a P -Ṗ diagram (Fig. 5.5), we see that these
pulsars have characteristics similar to the majority of MSPs in the disk of the Galaxy. They are
very different from some of the “young” globular cluster pulsars (depicted in red), for which the
Ṗobs are too large to be explained by cluster accelerations (for a discussion, see e.g., Freire et al.
2011, Johnson et al. 2013, Verbunt & Freire 2014 and references therein).

As discussed in detail below, these τc estimates agree qualitatively with the total ages (τo)
estimated for the WD companions that have been detected by the HST (Edmonds et al., 2001,
2002; Rivera-Sandoval et al., 2015; Cadelano et al., 2015), i.e., we find no case where τc � τo. A
similar comparison was done in Rivera-Sandoval et al. (2015) and Cadelano et al. (2015) using
preliminary numbers from our timing program. It is interesting to note that the two apparently
oldest WD companions, 47 Tuc Q and Y, are those that have the largest lower limits for τc.

5.6.2.1 47 Tuc Q

For 47 Tuc Q, Ṗint = (−5.8 ± 9.3) × 10−21 s s−1. This means that we cannot specify an upper
limit for the characteristic age τc = P/(2Ṗint), since Ṗint could be very small. Its 2-σ upper
limit, 1.28 × 10−20 s s−1, implies a minimum τc of 5.0 Gyr.

For a variety of reasons, the τo for the WD companion of this pulsar is highly uncertain: the
cooling age ranges from 0.3 to 5 Gyr (this value depends very sensitively on the mass of the
WD), plus ∼ 1 Gyr for the proto-WD phase (Rivera-Sandoval et al., 2015). We thus find that
an age close to 6 Gyr is preferred for this system.

5.6.2.2 47 Tuc S

For 47 Tuc S, Ṗint = (1.3 ± 1.0) × 10−20 s s−1. Again, no reliable upper age can be derived,
but a lower limit for τc of 1.3 Gyr can be derived from the 2-σ upper limit of Ṗint. The cooling
age for the WD companion ranges from 0.1 to 0.4 Gyr, to this we should add up to 0.4 Gyr for
the time the companion spent as a proto-WD (Rivera-Sandoval et al., 2015). This suggests that
τo is not larger than 0.8 Gyr. This is fine since τc assumes a starting spin period that is much
shorter than the present spin period. This is clearly not the case for most MSPs, particularly
those with shorter spin periods, meaning that the real age will generally be smaller than τc.

5.6.2.3 47 Tuc T

For 47 Tuc T, the timing constraints are not so precise and we get Ṗint = (9.9± 8.9)×10−20 s s−1.
This implies a 2-σ lower limit τc > 0.43Gyr. The estimated τo is from 0.1 and 0.8 Gyr (Rivera-
Sandoval et al., 2015), consistent with τc.



5.6. Orbital period derivatives 117

10-22

10-20

10-18

10-16

10-14

10-12

10-10

10-8

 0.001  0.01  0.1  1  10

Pe
rio

d 
D

er
iv

at
iv

e,
 P.  (s

 s
-1

)

Period, P (s)

SNR Association
Isolated, Galactic
Binary, Galactic
Magnetar
Pulsar in GC
Pulsar in 47 Tuc

Bs = 10 8 G

Bs = 10 10 G

Bs = 10 12 G

Bs = 10 14 G

τc = 1 Gyr

τc = 1 Myr

τc = 1 Kyr

L sd
 = 10

30  er
g/s

L sd
 = 10

33  er
g/s

L sd
 = 10

36  er
g/s

L sd
 = 10

39  er
g/s

Figure 5.5. Period-period derivative (P -Ṗ ) diagram for the pulsars in the ATNF Pulsar Catalogue. The
newly derived period derivatives for the MSPs in 47 Tuc (in dark blue) place them in the same region
of the diagram where the majority of Galactic MSPs occur, i.e., they appear to be normal millisecond
pulsars. Based on this sample, we conclude that 47 Tuc does not appear to have young pulsars like some
seen in some other globular clusters (red dots).
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5.6.2.4 47 Tuc U

For 47 Tuc U, Ṗint = (1.82 ± 0.55) × 10−20 s s−1. This means we can establish solid lower and
upper limits for τc from the 2-σ upper and lower limits of Ṗint: 2.4 < τc < 9.4Gyr. For the
WD companion Rivera-Sandoval et al. (2015) derive a τo between 1.6 − 2.1 Gyr, slightly lower
than τc. As for 47 Tuc S, this is fine since τc represents an upper limit on the age that assumes
a very small initial spin period.

5.6.2.5 47 Tuc X

For 47 Tuc X, we obtain Ṗint = (−1± 3)× 10−20 at the 3-σ level. Because the pulsar must be
spinning down, the real value must be positive. Hence we can put an upper limit and say that
Ṗint . 2× 10−20 with ∼ 99% probability. This implies a characteristic age of τc & 4 Gyr at the
3-σ level.

5.6.2.6 47 Tuc Y

For this pulsar Ṗint = (4.7 ± 3.3) × 10−21 s s−1, from the 2-σ upper limit of Ṗint we derive a
lower limit for τc of 3.1 Gyr. Rivera-Sandoval et al. (2015) derive a τo between 3.1 to 3.9 Gyr,
in agreement with τc.

5.7 New detections of the rate of advance of periastron

Another measurement that substantially benefits from a much extended timing baseline is the
rate of advance of periastron, ω̇. For a binary system consisting of two point masses (a reasonable
approximation for the MSP-WD binaries in 47 Tuc), this is solely an effect of relativistic gravity.
In General Relativity, and to leading post-Newtonian order, it depends only on the Keplerian
parameters and the total mass of the system Mtot (Eq. 2.43).

To measure this effect, we need a system with a significant orbital eccentricity (e), otherwise
it is impossible to measure the longitude of periastron (ωp) with enough precision to detect
its variation with time. For most MSP-WD systems in the Galaxy, e is too small for such a
measurement to be feasible. In globular clusters, on the other hand, the stellar density is so high
that binary pulsars are perturbed by close encounters with other members of the cluster; this
will generally increase their orbital eccentricity (Phinney, 1992, 1993). The large eccentricities
of many binaries in GCs has allowed the measurement of their ω̇ and, consequently, of the binary
masses (see e.g., Özel & Freire 2016 and references therein). However, the perturbations (and
corresponding increases in e) are larger for the wider binaries; this implies that, generally, when
we are able to measure ω̇ well, then the wide orbit makes it hard to measure other relativistic
parameters (these would be useful for determining the individual masses of the components of
the binary). There are only two exceptions to date, both products of exchange interactions
located in core-collapsed clusters (PSR J1807−2500B in NGC 6544, Lynch et al. 2012, and
PSR B2127+11C in M15, Jacoby et al. 2006, see Chapter 7).

Among the known binary pulsars in 47 Tuc, the most eccentric by far is 47 Tuc H (e =
0.0705585±0.0000007), which is also the second widest known in the cluster (Pb = 2.3577 days).
This orbital eccentricity is 4− 5 orders of magnitude larger than observed in MSP-WD systems
of similar Pb in the Galactic disk. For this system, Freire et al. (2003) measured ω̇ = 0.0658 ±
0.0009 deg yr−1 (where the uncertainty is the 1-σ error returned by TEMPO). This allowed an
estimate of the total mass of the system of Mtot = 1.61 ± 0.03 M� (1-σ). Our current value is
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a factor of five better: ω̇ = 0.06725 ± 0.00019 degyr−1; this implies Mtot = 1.665 ± 0.007 M�
(1-σ). No other relativistic orbital effects are detectable, so it is not possible to determine
the individual masses in this binary. However, combining this constraint with the constraint
sin i ≤ 1, we obtain Mp < 1.49 M� and Mc > 0.175 M�, for the mass of the pulsar and of the
companion, respectively.

Although much lower, the eccentricities of most of the MSP-WD systems in 47 Tuc are also
orders of magnitude larger than observed among MSP-WD systems with similar orbital periods
in the Galactic disk. Because of this, we have made significant (> 3-σ) detections of ω̇ in 3
other systems: 47 Tuc E (ω̇ = 0.090 ± 0.016 deg yr−1, Mtot = 2.3 ± 0.7 M�), 47 Tuc S
(ω̇ = 0.311 ± 0.075 deg yr−1, Mtot = 3.1 ± 1.1 M�) and 47 Tuc U (ω̇ = 1.17 ± 0.32 deg yr−1,
Mtot = 1.7 ± 0.7 M�). These measurements are, however, not yet precise enough to derive
any astrophysically interesting values of the total masses for these systems. Improving them
is important, because if we can determine precise total masses for these systems, then we will
have good estimates for the masses of these pulsars, since their WD companion masses are
relatively well known from optical photometry (Edmonds et al., 2002; Rivera-Sandoval et al.,
2015; Cadelano et al., 2015).

Another two systems where ω̇ might be detectable in the future are 47 Tuc Q (0.46 ±
0.22 deg yr−1) and 47 Tuc T (0.30 ± 0.28 deg yr−1), again two systems for which we have good
optical detections of the WD companions. For the remaining MSP-WD systems (47 Tuc X and
Y), the orbital eccentricities are too low for a measurement in the foreseeable future.

5.8 The exceptional binary system 47 Tuc X

In Section 5.3 we have already mentioned 47 Tuc X as a peculiar system for its unusual loca-
tion compared to the other pulsars in the cluster. However, the binary has other interesting
characteristics that make it unique. For this reason, we have conducted a very detailed study
of 47 Tuc X, also using wavelengths other than the radio. Here we present our results and the
most relevant implications will be discussed in Section 5.9.

Astrometric parameters and dispersion measure

The first remarkable feature of 47 Tuc X is its position of ' 3.81 arcmin away from the cluster
centre, equivalent to ' 10.98 core radii. This is more than three times the distance of 47 Tuc
C, the previous farthest pulsar known in 47 Tuc. The corresponding projected linear distance,
for the assumed cluster distance of 4.69 kpc (Woodley et al., 2012), is r⊥ ∼ 5.20 pc. Using the
measured DM of 24.539± 0.005 pc cm−3, and the linear relation by Freire et al. (2001c), we can
also infer the distance component along the line of sight r‖ ' 2.37 pc. Such an estimate should
not be considered as very robust, since the Freire et al. (2001c) model is only known to work
well in the central regions of the cluster.

Orbit and mass function

Given the high circularity of the 47 Tuc X orbit and the absence of strong orbital variability, we
opted for the ELL1 binary model (Lange et al., 2001, N. Wex, unpublished), which is particularly
suitable for systems with very low eccentricities. The measured values for the first and second
Laplace-Lagrange parameters are η ≡ e sinωp = (4.1± 1.4)× 10−7 and κ ≡ e cosωp = (−2.4±
1.5) × 10−7, respectively, corresponding to an eccentricity e =

√
η2 + κ2 = (4.8 ± 1.5) × 10−7.
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As we shall see in Section 5.9, this is among the smallest eccentricities ever measured in a binary
pulsar. The measured orbital period and projected semi-major axis of the pulsar orbit translate
into a mass function f(Mc) = 1.52 × 10−2 M�. For an assumed pulsar mass of 1.4 M�, this
implies a minimum (i = 90 deg) companion mass of Mc = 0.36 M� and a median (i = 60 deg)
value of Mc = 0.43 M�.

X-ray detection

47 Tuc has been studied repeatedly by the Chandra X-ray Observatory , but no list of Chandra
X-ray sources outside the half-mass radius has been published. We utilized the deepest Chandra
observations of 47 Tuc that cover the position of 47 Tuc X and retain spectral information.
These were 4 ∼ 65-kilosecond observations done in 2002 using the ACIS-S array in full-frame
mode, described by Heinke et al. (2005) (the short interleaved subarray observations do not
cover the position of 47 Tuc X). Note that these observations, with a 3.2-s frame readout time,
are not sensitive to pulsations at the X-ray spin period. We downloaded the Level 2 reprocessed
event lists provided by the Chandra X-ray Center pipeline reprocessing1, which applied the
latest calibration files to the data. We reprojected the 4 event files to a common tangent
point, constructed an image of the S3 CCD chip in the 0.3−6 keV energy band, and ran the
wavdetect source detection algorithm. An X-ray source was clearly detected at the coordinates
α = 00h:24m:22.416s, δ = −72◦:01′:17.′′29, with astrometric uncertainty of 0.6 arcsec (90%
confidence), consistent with the radio timing position of 47 Tuc X. At this distance from the
cluster core (3.81 arcmin) source crowding is low, with a 0.1% probability of a chance coincidence
based on the local density of detected sources, so we are confident that this is the true X-ray
counterpart.

We extracted source and local background spectra and constructed response files for each
of the four observations, and combined them. Only 35 counts were attributed to 47 Tuc X,
after subtracting a local background of 12.3±4.6 counts (the low count rate and relatively high
background were due in part to 47 Tuc X’s position significantly off-axis, reducing the detector
sensitivity and increasing the size of the point spread function). Therefore, we grouped the
spectra by 10 counts/bin (retaining the last underfilled bin) and fitted only simple spectral
models with the XSPEC X-ray spectral fitting program (Arnaud, 1996). In each fit, we included
photoelectric absorption by the interstellar medium (the XSPEC model tbabs) using Wilms et al.
(2000) abundances and Verner et al. (1996) cross-sections, with the hydrogen column density,
NH, fixed to 1.3×1020 cm−2 (Gratton et al., 2003; Predehl & Schmitt, 1995). We also performed
fits to the unbinned spectra using the C-statistic (Cash, 1979), with consistent results. A simple
absorbed power-law fit is statistically acceptable, with an inferred photon index of 2.4+0.5

−0.4. Such
a soft value for the photon index would be unusual for magnetospheric emission from radio
pulsars, where the index is typically between 1 and 2 (e.g. Becker & Aschenbach, 2002). It
is also rather softer than the photon index (1.1−1.7) measured in cases where the emission is
thought to be powered by a shock between a wind from the donor star, and a pulsar wind (e.g.
Bogdanov et al., 2005, 2010). Thus, it seems likely that part or all of the X-rays are produced by
emission from one or both heated polar caps, as seen in many MSPs with similar spin properties
and X-ray luminosities (Zavlin et al., 2002; Zavlin, 2006; Bogdanov et al., 2006). We therefore
fitted the spectrum with blackbody (for consistency with previous works) and hydrogen neutron
star atmosphere (NSATMOS, Heinke et al. 2006) models, both of which were good fits. The
X-ray spectrum with the fitted NSATMOS model is shown in Fig. 5.6. For the blackbody fit, the

1http://cxc.harvard.edu/cda/repro4.html

http://cxc.harvard.edu/cda/repro4.html
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Figure 5.6. Chandra X-ray spectrum of 47 Tuc X, fit with a hydrogen atmosphere neutron star model:
observed data binned by 10 counts/bin (crosses), and best-fit model folded through instrumental response
(solid line).

inferred temperature is 3.0+1.0
−0.8× 106 K with an inferred equivalent radius of 0.07±0.05 km. For

the NSATMOS model, we fixed the neutron star mass to 1.4 M�, the radius to 10 km, and the
distance to 4.69 kpc (Woodley et al., 2012; Hansen et al., 2013), and allowed the normalization
to vary. In this case, the inferred temperature was 1.9+1.0

−0.7 × 106 K, and the inferred radius was
0.2+0.4
−0.1 km. In either case, the inferred 0.5−10 keV luminosity was 2.0± 0.6× 1030 erg s−1.

Comparing the spectral fits to the X-ray spectrum of 47 Tuc X with those for other MSPs,
we see that the best-fit temperatures tend to be higher than those for the other MSPs in 47 Tuc
(Bogdanov et al., 2006), while the best-fit emitting radii are smaller. However, 3 of the 5 MSPs
in NGC 6752 have higher fitted blackbody temperatures, and smaller best-fit radii, than 47
Tuc X (Forestell et al., 2014). The remarkably high temperature of 47 Tuc X, as for those in
NGC 6752, could be due to the presence of an undetected non-thermal spectral component, in
addition to the predominating thermal component. The limited statistics preclude a definite
answer.

Characteristic age, magnetic field and spin-down luminosity

Our radio timing precision was enough to detect the orbital period derivative, which amounts to
Ṗb = 6±2×10−12 s s−1. As discussed in Section 5.6.2, this opens the possibility of constraining
the intrinsic spin down of the pulsar, and thus other relevant quantities that depend upon it.

From this we can also give limits for the spin-down luminosity of the pulsar, Lsd, its char-
acteristic age, τc, and its surface magnetic field, Bs using equations (3.5), (3.12) and (3.15),
respectively, from Lorimer & Kramer (2004). We find Lsd . 7 × 1033 erg s−1, Bs . 3 × 108 G
and τc & 4 Gyr at the 3-σ level.
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Figure 5.7. A section of the stacked ACS/WFC F435W image centered on the radio position of 47 Tuc
X, which is marked with a red circle. The radius of the circle is equal to the 3-σ positional error (0.21
arcsec). The star that is indicated with tick marks is the closest detection to the radio position at a
separation of 0.3 arcsec. The size of the image is 3′′× 3′′. North is up, East to the left.

Search for the optical counterpart

The location of 47 Tuc X, being almost 4 arcmin away from the centre of 47 Tuc, was observed
with HST on only one occasion. The four images that include the position of 47 Tuc X were
taken with the Wide Field Channel (WFC) on the Advanced Camera for Surveys (ACS) as part
of program GO-12971 (PI: H. Richer). These observations were obtained on 2013 February 26
between 05:32 and 7:19 UT, and include two exposures (one of 290 s and one of 690 s) in the
F435W filter, and another two (of 360 s and 660 s) in the F555W filter. We retrieved these
images from the HST archive and started our data reduction with the flat-fielded flc images,
which are corrected for the degradation of the charge transfer efficiency by the CALACS pipeline
version 8.3.0. We processed the images with the DRIZZLEPAC software (Gonzaga et al., 2012) to
remove the geometric distortion and create stacks for each filter. The resulting master images
have a pixel scale of 0.05 arcsec pixel−1. Next, we tied the absolute astrometry to the same
reference system as the radio coordinates, i.e. the International Celestial Reference System
(ICRS), using stars in the UCAC2 catalogue (Zacharias et al., 2004). As the UCAC2 stars in
the ACS images are all saturated, we employed the following method. Based on the cataloged
coordinates of 140 UCAC2 stars, we first derived an astrometric solution for a 30-s V -band
image of the cluster taken on 2002 October 29 with the Wide Field Imager on the ESO/2.2-m
telescope at La Silla, Chile. The resulting solution has r.m.s. residuals of ∼ 0.026 arcsec in
both right ascension and declination. From this image we selected 24 unsaturated and relatively
isolated stars in the vicinity of 47 Tuc X to astrometrically calibrate the 290-s F435W exposure
of GO-12971, resulting in a r.m.s. residuals of 0.035 arcsec in right ascension and 0.045 arcsec
in declination. Finally, we transferred this solution to the stacked F435W and F555W images
of the field around 47 Tuc X with ∼ 500 stars and negligible r.m.s. residuals (∼ 0.01 arcsec).
We used DAOPHOT to extract photometry; the resulting magnitudes in the F435W and F555W
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Figure 5.8. B435 − V555 versus V555 colour-magnitude diagram extracted from a ∼ 1 arcmin2 section of
the ACS/WFC images around 47 Tuc X. The nearest detection to 47 Tuc X is marked with a large filled
circle, and has typical main-sequence−star colors. Photometry is given in the Vega-mag system and has
been converted to absolute magnitudes using an unreddened distance modulus of (m −M)0 = 13.36
(Woodley et al., 2012) and a reddening of E(B − V ) = 0.024 (Gratton et al., 2003). Errors on the
photometry are comparable to the symbol size, and include the DAOPHOT errors, and the errors on
(m −M)0 and E(B − V ). The sequence of stars with MV555 & 8 and 0.2 . MB435 −MV555 . 0.7 are
stars in the Small Magellanic Cloud.

filters (denoted with B435 and V555, respectively) were calibrated to the Vega-mag system using
the zeropoints provided by the STScI2. Fig. 5.7 shows a section of the F435W image around the
radio position of 47 Tuc X, which is marked with a circle. The radius of the circle represents
the 3-σ error on the absolute astrometry of the image. Here, σ = 0.072 arcsec and equals the
quadratic sum of all the astrometric errors mentioned above, plus the systematic error in the
alignment of the UCAC2 coordinates to the ICRS (about 0.010 arcsec; Zacharias et al. 2004).
The errors on the radio position are negligible. The star that is closest to 47 Tuc X is located
at a separation of 0.3 arcsec (4.1-σ). In the colour-magnitude diagram of Fig. 5.8, this star falls
right on the main sequence. We consider its angular offset from 47 Tuc X too large to make this
star a convincing counterpart. Also, the evolutionary path for such a companion would exclude
such a low eccentricity as we measure (see below).

For example, the He WD companions of five 47 Tuc MSPs that Rivera-Sandoval et al. (2015)
identified with the same method as used here, were all excellently aligned to the radio positions,
with a maximum offset of 0.016 arcsec (0.2-σ).

From the faintest detection with S/N & 3 we estimated the detection limit in the F435W
band. We find that it corresponds to an absolute magnitude of MB435 ' 13.7, where we adopted
the unreddened distance modulus (m −M)0 = 13.36 ± 0.02 ± 0.06 (random and systematic
error, respectively) from Woodley et al. (2012) and the reddening E(B − V ) = 0.024 ± 0.004
from Gratton et al. (2003). In the standard MSP formation scenario, the companion to the MSP
is a low-mass WD, which is all that is left of the original donor star after it has lost most of

2http://www.stsci.edu/hst/acs/analysis/zeropoints

http://www.stsci.edu/hst/acs/analysis/zeropoints
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its envelope during the mass-transfer stage. Based on the theoretical relation between the WD
mass and the orbital period of the MSP-WD binary, the measured orbital period of 10.92 days
for 47 Tuc X implies a WD mass between ∼ 0.22 and 0.27 M� (Tauris & Savonije, 1999; De
Vito & Benvenuto, 2010). Based on our non-detection of a WD near 47 Tuc X and the cooling
tracks of 0.2− 0.3 M� WDs computed for the metallicity of 47 Tuc (see Rivera-Sandoval et al.,
2015), we find that the lower limit to the age of the WD must be ∼ 1.7 Gyr for it to remain
undetected, assuming the companion is indeed a low-mass WD.

5.9 What the pulsars tell us about cluster dynamics

Thanks to the large timing baseline and uniform time coverage provided by the high-resolution
AFB observations made at Parkes, we were able to obtain great improvements in the measure-
ment of several key parameters for the pulsars in 47 Tuc. This is particularly true for those
parameters that are relevant for the study of the dynamics of the cluster: the proper motions,
the real line-of-sight accelerations as determined from the orbital period derivatives, and the
jerks. From these physical quantities, we can already derive some preliminary conclusions.

The first one is about the distance of 47 Tuc. As already mentioned in Section 5.6.1, based
on the stellar proper motion dispersion near the centre of the cluster and the analytic cluster
acceleration model presented in Section 5.5, the measurements of acceleration derived from Ṗb,obs

can only be accounted for by this model if the distance to the cluster is close to 4.69 kpc. If
we instead use the smaller distances suggested by kinematic studies, then the cluster model is
unable to predict the line-of-sight accelerations of three binary pulsars, 47 Tuc E, S, and U. The
distance that our model favours coincides with most photometric and spectroscopic distances
published to date (see e.g. Woodley et al. 2012 and references therein); this suggests that the
kinematic distances are too small. As discussed by Bogdanov et al. (2016), this is likely to be
due to systematic under-estimates of σ0 and our results support this conclusion.

Other important considerations can be made based on the characteristics of the pulsar pop-
ulation of the cluster. 47 Tuc is known to have one of the largest total stellar interaction rates
(ΓGC) among clusters in the Milky Way system (Verbunt & Hut, 1987; Bahramian et al., 2013).
A consequence of this is that, following the frequent exchange encounters, many old, “dead” neu-
tron stars end up binding themselves in binaries with main sequence companions. Subsequent
evolution of these companions cause transfer of gas to the NSs, i.e. the system becomes a low-
mass X-ray binary (LMXB). After this, the companion typically becomes a low-mass WD, and
the NS becomes a radio MSP. The large number of MSPs in 47 Tuc can therefore be understood
primarily as a consequence of the large ΓGC.

The characteristic ages of the binary MSPs in 47 Tuc and the optical ages of their WD
companions suggest that these systems have been forming at a near-constant rate throughout
the age of the cluster, i.e., there is no indication of an early burst of MSP formation (which would
make all pulsars look very old). There are also no signs of an ongoing burst of MSP formation
either, since none of the pulsars in the cluster has a large Ṗint that cannot be accounted for by
the cluster acceleration model, and none have characteristic ages smaller than about 0.33 Gyr
(the lower limit for the age of 47 Tuc I). In this respect, the situation in 47 Tuc offers a stark
contrast to that observed in some of the core-collapsed clusters, in particular NGC 6624, where
at least three pulsars (out of the six known in that cluster) have characteristic ages smaller than
0.2 Gyr (Lynch et al., 2012), and in a particular case (PSR B1820−30A) as small as 25 Myr
(Freire et al., 2011).
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Table 5.1. Populations of pulsars in 47 Tuc.

Class # of pulsars Pulsar names

Isolated 10 C, D, F, G, L, M, N, Z, aa, ab
MSP-WD 8 E, H, Q, S, T, U, X, Y
Black Widow 5 I, J, O, P, R
Redback 2 V, W

The difference between the populations of these clusters reflects fundamentally different
dynamics. Although both types of clusters have a similar ΓGC, the interaction rate per binary,
γb (Verbunt & Freire, 2014) is much higher in NGC 6624 than in 47 Tuc. The fundamental
reason for this is the fact that NGC 6624 has a collapsed core. Instead, the pulsar population
in 47 Tuc has the characteristics one would expect for a GC with a low γb: any newly formed
LMXBs evolve undisturbed to their normal outcomes (MSP-WD binaries, black widows and
isolated MSPs, as observed in the Galactic disk). All systems have large τc the moment they
form. There are no mildly recycled pulsars − there are currently no companion stars in GCs
massive enough (and evolving fast enough) to result in mild recycling, as seen for instance in
double neutron star systems and pulsars with massive WD companions in the Galactic disk.
This is the likely reason for the remarkably small range of spin periods (1.8 < P < 7.6 ms) for
the pulsars in 47 Tuc.

On the contrary, in clusters with higher γb, we can find a higher percentage of isolated
pulsars (from the disruption of MSP-WD systems), mildly recycled - and apparently young -
pulsars (from the disruption of X-ray binaries, which leaves the recycling process incomplete)
and products of secondary exchange interactions, i.e. exchange interactions that happen after the
formation of the MSP. None of the MSPs in 47 Tuc is clearly the product of such an interaction.

Furthermore, in high-γb GCs we find many pulsars very far from the cluster core. An
extreme example is NGC 6752 (D’Amico et al., 2002; Corongiu et al., 2006), a core-collapsed
cluster where two of the five known pulsars lie at more than 14 core radii from the centre. This
phenomenon is common in other core-collapsed GCs and is caused by chaotic binary interactions,
which typically have a strong recoil that can propel MSPs to the outer reaches of the cluster.
In 47 Tuc, all pulsars but one appear to lie close to the core, their radial distribution being as
expected from mass segregation of a dynamically relaxed population (Heinke et al., 2005). Even
for the exceptional system, 47 Tuc X, it is not clear whether there was a recoil in the past (see
below).

Another important consideration can be made by observing that all the binary systems in
47 Tuc have relatively small orbital eccentricities compared to what we see in denser clusters,
like Terzan 5 and M28 (for even denser clusters, binary destruction sets in, but we do see a few
very eccentric survivors) and the only “eccentric” binary in 47 Tuc, 47 Tuc H, might have gained
its eccentricity from an object orbiting it, not from interactions with other stars.

In this regard, a particular mention goes to 47 Tuc X, by far the binary with the lowest
measured eccentricity in the cluster. Ranking 3rd among the most circular systems with a
measurable non-zero eccentricity (after PSR J1909−3744 and PSR J1738+0333), the circularity
of 47 Tuc X is even more remarkable when related to its long orbital period and to the fact
that it resides in a globular cluster. Indeed, pulsar X is by far the most circular system ever
found in a GC and, more generally, it is the binary with the lowest eccentricity-to-orbital-period
ratio known, with a value of e/Pb = 4.4× 10−8 days−1 (compared to 7.4× 10−8 days−1 of PSR
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J1909−3744 and 9.6 × 10−7 days−1 of PSR J1738+0333). The eccentricity and the position of
47 Tuc X can give us important clues about how this system may have formed. Here we discuss
two possible formation hypotheses, where the main difference is the orbit of the system in the
cluster.

In the first scenario, an unrecycled NS near the core of the GC has a close encounter with
a main sequence (MS) binary, with subsequent chaotic interactions. In such encounters, the
most likely outcome is the high-speed ejection of the lightest star among the three (likely one
of the light MS stars); by conservation of momentum, the newly formed NS-MS binary will also
recoil. Its orbit around the cluster will become eccentric, and it will spend most of its time in
the outskirts of the cluster. Such an exchange interaction would induce a residual eccentricity.
The extremely low eccentricity of the orbit implies that the circularization occurred after the
formation of the current binary, hence the current companion star must be the former donor
that spun up the pulsar. This is similar to the case of pulsar PSR J1911−5958A in NGC 6752
(Bassa et al., 2006; Corongiu et al., 2012). We also note that, if the system has actually been
ejected from the core but is still bound to the cluster, it will be making many more periodic
visits to the central regions of 47 Tuc. Even though the relaxation timescale at the projected
distance of 47 Tuc X is more than 3 Gyr, because the orbits within the cluster are non-Keplerian,
the system will spend a fairly long time in proximity of the core, thus significantly reducing the
relaxation timescale and, equivalently, increasing the probability of dynamically interacting with
other bodies. This would in turn increase the eccentricity of the binary (Phinney, 1992). Because
47 Tuc X instead has an extremely circular orbit, the system must be relatively young. There is
nothing unusual in this formation path − this is the normal evolution for all MSPs in globular
clusters. Most other systems formed in this way eventually sink back to the core of the cluster,
because of dynamical friction, and eventually reach an equilibrium configuration dictated by
mass segregation (Heinke et al., 2005). This is the reason why all other MSPs apart from
47 Tuc X lie, at least in projection, within 1.2 arcmin from the centre of the cluster. The fact
that 47 Tuc X is found in the outskirts would suggest that, since recycling, it has had no time
to sink back to the core, which would in turn indicate that it was recycled later than the other
MSPs in the cluster.

However, despite these two indications that the system must be young, the optical non-
detection introduced a lower limit on the age of the system of ∼ 1.7 Gyr. This problem is
avoided in the second possible formation scenario, where the system was born directly in the
outskirts. In this case, 47 Tuc X may have formed in two ways: either from a primordial MS−MS
star that naturally evolved first into a LMXB and then into the current pulsar-WD binary we
see today, or again from a dynamical encounter that set the system to a nearly circular orbit
around the cluster. In both ways, the motion in the cluster would be such that the system never
approached the central regions, the probability of dynamical encounters was low and thus the
evolution of 47 Tuc X would resemble that which happens in the Galactic field, which naturally
retains the low eccentricity obtained after the end of the recycling phase.

In both scenarios, it is difficult to tell whether the companion is a He WD or a Carbon-
Oxygen (CO) WD. The median mass of the companion, inferred from the mass function,
MWD ' 0.43 M�, lies roughly at the border that discriminates the two types. However,
as already mentioned at the end of Section 5.8, the companion mass range predicted by the
Pb−MWD relation for He WDs (Tauris & Savonije, 1999) is somewhat lower than the minimum
mass derived from the mass function, thus making a CO WD type more likely.

Regardless of the formation history and the nature of its companion, 47 Tuc X does not
belong to any of the groups of pulsars so far discovered in the cluster (see Table 5.1). However,
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this is quite understandable: its position in the outskirts of 47 Tuc enables it to maintain a
long orbital period for a long time without binary destruction, while the other pulsars, closer in,
would likely be ionized (thus leaving isolated MSPs) by stellar encounters. 47 Tuc X looks just
like many other MSPs in the field, which are in wide orbits together with a He WD companion.
The dense and ionizing dynamical environment, generally prevents us from seeing such systems
in globular clusters.

A detailed characterization of the pulsar populations of other GCs will be very important
for testing the whole picture described in this section. In particular, the pulsar populations
in low-γb GCs (like M3, M5, M13, M22, M53, M62, NGC 6749 and NGC 6760) should have
characteristics similar to 47 Tuc, thus different from those in the high-γb clusters. This appears
to be true (Freire et al., 2005; Hessels et al., 2007; Lynch et al., 2011, 2012), but it could be
refuted (or further confirmed) by timing more of the pulsars in those clusters − and finding new
ones.

5.9.1 An intermediate mass black hole in the centre of 47 Tuc?

Recently, the possibility of a 2200-M� intermediate mass black hole (IMBH) at the centre of
47 Tuc has been raised considering only the Ṗobs of the pulsars (Kızıltan et al., 2017), which
give us upper limits on the pulsar accelerations (al,max) via Eq. (5.3). In this work, we consider
not only the al,max, but also measurements of jerk along the line of sight (ȧl), and actual
measurements of the line-of-sight accelerations in the field of the cluster (al,GC) for 10 binary
pulsars, as discussed in previous sections. This is important because these accelerations are
more constraining than the al,max taken into account in Kızıltan et al. (2017).

The simple analytical cluster model described in Section 5.5 can account for all the al,GC

despite the fact that these are more constraining than the al,max. In the cases where these are
missing, the cluster model can account for all the al,max (from the Ṗobs) as well. Furthermore,
the model also accounts for the jerks observed for all the pulsars that lie (in projection) in the
core. Thus, considering all the available observations, we come to the conclusion that we have
no evidence for the existence of an IMBH at the centre of the cluster: its gravity is not necessary
to explain our results.

Let us first elaborate further on the issue of the predicted accelerations. As mentioned in
Section 5.5 and 5.6, if we accept (against the arguments presented in the literature listed before)
the standard deviation of the spectroscopic velocity measurements (σ0 = 11.0 km s−1) then
d ∼ 4 kpc. The latter value is the estimate used in Kızıltan et al. (2017). In this case, our
model also under-predicts the Ṗobs of 47 Tuc S. This issue has already been discussed in detail
by Freire et al. (2003), who concluded that the cluster as a whole must be more massive than
suggested by this measurement of σ0. Our measurement of Ṗb, obs for this binary system (which
was not taken into account by any previous studies) further increases the disagreement with the
prediction of our d ∼ 4.15 kpc model. Hence, such a model is unlikely to be correct.

Let us accept for the time being that the explanation for the large acceleration of 47 Tuc S is
the pull from a central IMBH. In this case, the accelerations would be enhanced within its radius
of influence, about 10 arcsec from the centre (see Fig. 2 in Kızıltan et al. 2017); farther away
they would still be the accelerations predicted by a normal cluster model with σ0 = 11.0 km s−1

and d ∼ 4.15 kpc. However, as we can see in Fig. 5.3, such a model cannot account for the
measured accelerations (from Ṗb, obs) of 47 Tuc E and U: these systems lie, in projection, at
37.2 and 56.3 arcsec from the centre, respectively. A model with d = 4.69 kpc can, as discussed
above, account for all these accelerations without an IMBH.
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Furthermore, within the inner 10 arcsec, an IMBH would produce greatly enhanced jerks
to any nearby pulsar. However, as we have seen above, the cluster model with d = 4.69 kpc
can also account for all jerks in this region. It is only for a few pulsars well outside the core
(47 Tuc H, U and J) that additional contributions (very likely from nearby stars) are needed.

To summarise, a model with d = 4.69 kpc and no central IMBH can account for all measured
accelerations, while a model with d = 4.15 kpc and an IMBH cannot. Also, the distance of
4.69 kpc is in much better agreement with all (non-kinematic) distance measurements (and, as
previously discussed, even kinematic distance measurements when we use stars slightly outside
the core, where the possibility of pairs of stars falling within the same pixel decreases). Such a
model, we find, is far more likely to be an accurate description of the cluster.

Despite the fact that pulsar measurements provide no positive evidence in favour of a central
IMBH at the centre of 47 Tuc, we cannot exclude such a possibility, particularly if the mass is
much smaller than 2200 M�. A probabilistic estimate of the mass of this hypothetical IMBH
will be presented elsewhere.
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The population of “black widow” and
“redback” pulsars of 47 Tuc
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6.1 Introduction

In this chapter, we focus on one sub-population of the pulsars in 47 Tuc, namely that of the black
widow and redback binary systems (of which we have discussed the main differences in Section
1.4.3). Currently, there are five black widows (pulsars I, J, O, P, R) and two redbacks (pulsars
V and W) known in 47 Tuc. In Chapter 4 we have derived very precise orbital parameters
for 47 Tuc P, V and W and, for the latter, we have also obtained a phase-connected timing
solution. For the other black widows and redbacks, we have extended the previously known
timing solutions.

Here we review the main characteristics of all the black widow and redback pulsars in 47
Tuc: for the previously studied pulsars, we highlight the improvements obtained by our extended
timing, whereas for pulsars P, V and W, we present a more thorough analysis.

Finally, we discuss the intrinsic orbital variability, a phenomenon that is very evident in
some of these pulsars, but seems to be absent in others.

6.2 Characterization of the orbital variability

Both black widows and redbacks are known for their orbital variability: the orbital period (and
sometimes the projected semi-major axis) of these pulsars changes unpredictably with time, as
seen in long-term timing of some black widow systems (see e.g. Shaifullah et al., 2016). For such
cases, a simple Keplerian (BT) model is inadequate to correctly describe the orbit. Instead,
it is necessary to use a BTX model (D. Nice, unpublished; http://tempo.sourceforge.net),
which allows a description of the orbital behaviour through the use of multiple orbital frequency
derivatives, although only within the time range spanned by the data. In short, the number of
orbits NBTX

b at any given time t is given by a Taylor expansion:

NBTX
b (t) = N0 +

Nd∑
k=0

1

(k + 1)!
f

(k)
b (t− T0)(k+1) (6.1)

where N0 is an arbitrary constant, Nd is the number of orbital frequency derivatives, T0 is the
time of passage at periastron (or at the ascending node, in the case of a circular orbit), and
f

(k)
b is k-th orbital frequency derivative calculated at the time t = T0. As a rule, we choose the
number of orbital frequency derivatives to be the minimum such that the reduced chi-square
χ2 ∼ 1 in the timing residuals.

As we shall see in the next section, some of the black widows and redbacks in 47 Tuc required
the used of the BTX model. To study how well the model was describing our data, we followed
a method similar to the one used by Ng et al. (2014) for PSR J1731−1847. For each group
of ToAs (that is, for each detection), we calculated the epoch of passage at periastron, T pred

0 ,
closest to the mid-point 〈Tobs〉 of the observation, that a simple Keplerian model would predict.
This is equivalent to finding t closest to 〈Tobs〉 in Eq. (6.1), after setting to zero all the orbital
frequency derivatives. Then, we fitted the ToAs with TEMPO for T0 only, using a simple Keplerian
model (i.e., setting all the f (k)

b to zero) in the ephemeris, and keeping all the other parameters
fixed, thus obtaining a measured value T obs

0 . The difference ∆T0 = T pred
0 −T obs

0 was then plotted
against the sum of the terms with k ≥ 1 of Eq. (6.1), which represents the deviation from the
Keplerian model. This procedure has been coded in the alex_orbital_variability routine of
the PSRALEX software package, which we used for the actual analyses of the 47 Tuc pulsars.

http://tempo.sourceforge.net
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6.3 The black widow and redback pulsars in 47 Tuc

In this section we present the seven black widow/redback pulsars of 47 Tuc in more detail. For
those systems that have already been thoroughly studied in the past literature, we recall their
main characteristics and point out the improvements obtained with our long-term timing over
the previously published solutions. For the other systems, we report the detailed analyses that
we have made.

6.3.1 47 Tuc I

47 Tuc I is a 3.48-ms binary pulsar in a 5.5-h orbit, discovered by Manchester et al. (1991) and
further studied by different authors (Robinson et al., 1995; Camilo et al., 2000; Freire et al.,
2001b, 2003). Its mass function, f(Mp) = 1.555× 10−6 M�, implies a median companion mass
of Mc = 0.015 M�, hence it belongs to the black widow class. Since it does not show radio
eclipses, it may have a low orbital inclination.

Our extended timing, compared to the latest publication, improved all the previously mea-
sured parameters and allowed us to detect the second spin frequency derivative as well as the
first orbital frequency derivative.

6.3.2 47 Tuc J

47 Tuc J is a 2.10-ms eclipsing binary pulsar in a 2.9-h orbit. As pulsar I, it was discovered by
Manchester et al. (1991) and further studied by several authors (Camilo et al., 2000; Robinson
et al., 1995; Freire et al., 2001b, 2003). Its mass function, f(Mp) = 4.86 × 10−6 M�, implies a
median companion mass of Mc = 0.025 M�, so it is also a black widow.

Thanks to its very high intrinsic brightness, pulsar J features the best timing precision among
all the 47 Tuc pulsars, with a timing residual r.m.s. of only 4.89 µs.

With our timing, we improved all the previously measured parameters and measured the
second spin frequency derivative, f̈ . Furthermore, we detected a strong intrinsic orbital vari-
ability. The orbital period appears to vary by a fraction of a ms in a quasi-sinusoidal fashion
(Fig. 6.1). A BTX binary model with twelve orbital frequency derivatives was thus necessary
to correctly describe this behaviour within the timing baseline considered.

6.3.3 47 Tuc O

47 Tuc O is a 2.64-ms eclipsing binary pulsar in a 3.3-h orbit. It was discovered by Camilo et al.
(2000) and further studied by Freire et al. (2001b) and Freire et al. (2003). Its mass function,
f(Mp) = 5.35 × 10−6 M�, implies a median companion mass of Mc = 0.025 M�, hence it is a
black widow.

As for pulsar J, besides improving the measurement of all the parameters and detecting f̈ , we
detected an intrinsic orbital variability. Indeed, the orbital period of 47 Tuc O shows a constant
increase until MJD ∼ 54300, which is then followed by a decrease (Fig. 6.1). In this case, only
three orbital frequency derivatives were necessary to model the variability. This is in part due
to the fact that the timing baseline for this pulsar is shorter than that of 47 Tuc J. We point out
that these variations are not caused by any nearby objects, as the motion of the system would
be obvious in variations of the observed pulse period.
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Figure 6.1. Orbital variability for six of the seven “black widow”/“redback” pulsars in 47 Tuc. Top
panels: deviation of the epoch of passage at the ascending node from the prediction of a standard
Keplerian model as a function of time. The red line is the theoretical prediction of the BTX model, the
black points are the values measured with timing (see text for the detailed description of the method).
Bottom panels: corresponding change of the orbital period from the reference value as a function of time.
Note that the latter is just the time derivative of the red line of the upper panel.
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6.3.4 47 Tuc P

47 Tuc P is a 3.64-ms binary pulsar in a 3.5-h orbit that was discovered in a single observation
(on MJD 50689) by Camilo et al. (2000). The authors determined the binary parameters by
extracting 14 ToAs that covered more than one orbit. Our T0-search (described in Section 4.4.3)
yielded an additional 4 detections (of which only one had high S/N and the other three were
relatively faint) from which we were able to extract another 14 ToAs, thus bringing the total
number to 28, over a time span of ∼ 9.8 years. Because of the sparsity of the data, we were
unable to obtain a phase-connected timing solution. Notwithstanding, we were able to fit for the
spin period, spin period derivative, position and binary parameters. We kept the proper motion
fixed to the value of global motion of the cluster. The latter was calculated as an unweighted
mean of the proper motions of all the 22 pulsars with a timing solution available at the time of
the analysis, namely µα = 4.9± 0.9 mas yr−1 in right ascension and µδ = −2.7± 0.7 mas yr−1

in declination. Both the position and spin period derivative are, as expected, rather poorly
determined and their values should be taken as just indicative. The orbit is correctly described
by a simple Keplerian model, with no evidence of orbital frequency derivatives. This, together
with the very low median mass of the companion (Mc ∼ 0.02 M�) and the total absence of radio
eclipses, strengthens the hypothesis that 47 Tuc P is a black-widow type system, possibly seen
at a low orbital inclination. Indeed, as pointed out by Freire (2005), some black widows have
lower mass functions as a result of lower orbital inclinations, which in turn make the display of
eclipses less likely. On the contrary, systems seen more edge-on appear to have larger masses
and tend to exhibit eclipses.

To measure the DM, we summed in time each of our 4 detections, retaining as many frequency
sub-bands as possible, depending on the S/N. From every sub-band we extracted one time-of-
arrival, for a total of 12 usable ToAs. The latter were then fitted for the DM only, allowing
arbitrary phase jumps between the different epochs. The resulting measured DM was 24.29 ±
0.03 pc cm−3, a value slightly lower than the average, which suggests that the pulsar is on the
near side of the cluster. In fact, we can obtain a rough estimate of the distance component along
the line of sight, r‖, through the linear relation found by Freire et al. (2001c) between the DM
and the radial distance from the plane of the sky containing the centre of 47 Tuc. Using this
relation and the measured DM, we infer r‖ ' −1.36 pc, with the negative sign indicating that
the pulsar is indeed placed between the observer and the cluster centre.

No calibration data are currently available to determine the flux densities of the 47 Tuc
pulsars. However, having the lowest detection rate (0.97%) in our dataset, 47 Tuc P is probably
the faintest currently known pulsar in the cluster.

6.3.5 47 Tuc R

47 Tuc R is an eclipsing 3.48-ms binary pulsar, originally discovered by Camilo et al. (2000) but
no timing solution has been published since then. With an orbital period of only 96 minutes, it
was, at the time of discovery, the binary radio pulsar with the shortest orbital period known.

From our timing analysis, we obtained a phase-connected timing solution based on 449 usable
ToAs spanning ∼ 13 years (Table 4.4).

Its mass function, f(Mp) = 9.09 × 10−6 M�, implies a median companion mass of Mc =
0.031 M�, making the system belong to the black widow class.

In the case of 47 Tuc R, no strong orbital variability emerged from our data, and the orbit was
correctly described by a simple Keplerian model together with a single orbital period derivative.
Given the high circularity of the system, we opted for an ELL1 binary model, as in the case
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of other pulsar-WD systems (see Section 5.8), thanks to which we measured an eccentricity of
e ∼ 10−4.

6.3.6 47 Tuc V

47 Tuc V is a 4.81-ms binary pulsar in a 5.1-h orbit, first presented by Camilo et al. (2000).
The pulsar was detected twice in their data (on MJD 51012 and 51055), and the authors were
able to give a rough estimate of the orbital parameters by extracting a total of 11 ToAs. At
both epochs the pulsar was on the near side of its orbit, as the spin period was increasing during
the observations. With the T0-search, we were able to detect 47 Tuc V in another 7 pointings.
Through our timing analysis as described in Section 4.4.5 we were able to obtain an additional
12 (mostly faint) new detections, bringing the total number to 19. After constructing a high-S/N
template profile, we carefully extracted 88 usable new ToAs. In total, we had 99 ToAs spanning
∼ 10.7 years. As for pulsar P, we were unable to obtain phase-connection with our timing: in
addition to the proper motion (set to the same average value as for P), the large covariances seen
also forced us to not fit for the spin period derivative as well as for the position, the latter being
set to the nominal cluster centre value. However, allowing arbitrary jumps between groups of
ToAs, we derived an incoherent timing solution that enabled us to measure the spin period and
the binary parameters with good precision. The parameters are reported in Table 4.5.

Using the same method as described in the previous section, we independently measured the
DM, obtaining a value of 24.105±0.008 pc cm−3, the lowest amongst all the 47 Tuc pulsars. For
this DM value, the projected distance along the line of sight from the cluster centre, predicted
by the linear relation of Freire et al. (2001c), is r‖ ' −4.12 pc.

Eclipses

In the two discovery observations, Camilo et al. (2000) noted that the pulsar signal was being
irregularly eclipsed over time scales as short as their 2-minute long sub-integrations. Our new
19 detections allowed us to get a deeper insight into the morphology and, possibly, nature of the
eclipses. Not only did we confirm the presence of irregular short-lived eclipses, we also found
that the pulsar is always invisible for roughly 50% of the orbit around its superior conjunction,
likely being enshrouded by the gas that the companion star is losing.

The presence of long and persistent eclipses implies that the system inclination, i, cannot be
small and that the companion is likely non-degenerate. Choosing a conservative lower limit of
i & 20 deg and a pulsar mass of Mc = 1.4 M�, the mass function implies that the companion
has a mass in the range 0.30 M� . Mc . 1.17 M�, pointing towards a main sequence type.
This range, together with the observed eclipsed fraction of the orbit of ∆φeclb ∼ 0.5, can be used
to estimate the rough projected size, Rc, of a supposedly spherical obscuring gas cloud through
simple geometrical considerations. In the case of a circular, edge-on (i = 90 deg) orbit, this can
be expressed by the relation:

Rc = ap(1 + q) sin

(
2π∆φeclb

2

)
(6.2)

where ap is the radius of the pulsar orbit and q = Mp/Mc is the mass ratio. From the previous
considerations, 1.19 . q . 4.59, and thus 1.79 R� . Rc . 2.05 R�. On the other hand, the
inferred Roche-lobe radius RL of the companion, calculated with the approximate formula by
Eggleton (1983), is in the range 0.75 R� & RL & 0.46 R�, implying that the gas is extending
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1 2 3 4 5 6 7

Figure 6.2. Intensity as a function of pulse phase (x-axis) and orbital phase φb (y-axis) for 7 sample
detections of 47 Tuc V. As can be clearly seen, the pulsar is always eclipsed for about 50% of its orbit
around the superior conjunction (i.e. φb = 0.25). In addition, several short-lived eclipses often occur
at other orbital phases, sometimes accompanied by excess time delays (panel 5) and sometimes with a
broadening of the pulse (panel 3).

far beyond the gravitational influence of the companion star. Hence, the companion is probably
undergoing continuous mass loss through the Roche-lobe overflow of its outer layers. We confirm
the presence of frequent, short-lived, eclipses that hide the pulsar over time scales of minutes
when the pulsar is on the near side of its orbit (panels 1-2 of Fig. 6.2). Sometimes the signal
disappeared even for relatively long times (panels 5 and 7), whereas in another occasion (panel
5), the pulse also underwent a visible delay of roughly ∼ 0.5 ms. Very likely, besides the presence
of a large gas cloud surrounding the companion, clumps of ionized plasma of smaller size are
wandering around the binary, occasionally intercepting the pulsar signal. When the physical
characteristics (density and temperature) of the gas clump are such that the optical depth
at our observing frequency is low, we still see the signal, but delayed because of the additional
contribution to the dispersion measure that the clump introduces. Given our observing frequency
of 1390 MHz, in the case of the 0.5-ms delay seen in panel 5 of Fig. 6.2, the inferred extra DM
is ' 0.24 pc cm−3.

The strong orbital variability is a common characteristic among redback binary systems and
it thus supports the hypothesis that 47 Tuc V belongs to this class, as already hinted by the
mass function and the presence of long eclipses.

It is important to note that, although the five-derivative BTX model used here is able to
predict the orbital phase of 47 Tuc V observations within the time spanned by the data, it
has no predictive capacity outside that range. Also, the predicted large swing in ∆T0 between
MJD∼ 54500 and ∼ 56700 has no data supporting it. For these reasons, we should not consider
this BTX binary model as a faithful representation of the binary orbit evolution, especially in
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those time intervals where the data points are very sparse. Rather, the model should be seen
as a display of the unpredictable orbital variability similar to that observed in other redback
systems.

A transitional MSP?

The detections of 47 Tuc V appear clustered in three main groups, separated by two large gaps of
∼ 6.8 (MJD 51815−54298) and ∼ 6.0 years (MJD 54322−56508), respectively, where the pulsar
was never visible. A similar behaviour is seen in tMSPs (see Section 1.4.3), which periodically
switch between radio-MSP and LMXB phases, over a time scale of a few years.

The strong orbital variability of 47 Tuc V, its persistent and irregular eclipses, the disappear-
ance of its radio pulsations within intervals of a few years, and the mass of the companion of the
order of ∼ 0.3−0.4 M�, are all typical characteristics of tMSPs that suggest that pulsar V might
indeed be a member of this class. To constrain this hypothesis, we have looked into archival
Chandra data and the literature on optical studies, to search for signs of an active tMSP. We
used two methods: with the Chandra data, we searched for X-ray outbursts; from the optical
studies, we searched for periodic signals at 47 Tuc V’s orbital period.

Transitional MSPs, during their active LMXB states, have X-ray luminosities in the range of
LX = 1033−1034 erg s−1; such luminous objects would be easily detected by Chandra anywhere
in 47 Tuc. The data considered are grouped into four widely separated epochs. The first
group of Chandra observations took place on MJD 51619−51620 (Grindlay et al., 2001). These
observations were only 19 days after a detection of pulsations from 47 Tuc V on MJD 51600.
Thus, it seems unlikely that pulsar V would be X-ray active during this Chandra observation,
and the X-ray sources at 1033 erg s−1 in this observation can be ruled out. The next two
groups of observations were carried out on MJD 52547−52558 and 53723−53743, both in the
midst of the first gap in radio pulsation. No new Chandra sources significantly brighter than
1031 erg s−1 were seen in these data. The final Chandra observations occurred in the MJD range
56905−57055, after the radio data considered, and also show no new bright sources. We point
out that there are at least two caveats that must be considered: a) it is possible that pulsar V
was X-ray active during small fractions of the time in the radio detection gaps; b) it is possible
that the actual position of 47 Tuc V is beyond the field of view of Chandra. Even though both
hypotheses appear unlikely, we are currently not able to rule them out.

We make reference to three major optical surveys for periodicities in 47 Tuc: two ground-
based, and one using the HST over a smaller field of view. The optical light curve of the tMSP
PSR J1023+0038, which has a similar orbital period (4.75 h), though slightly lower companion
mass (0.24 M�) compared to 47 Tuc V, varies between a magnitude of Vmin = 17.0 and Vmax =
16.4 in its active state (Halpern et al., 2013), and between Vmin = 17.7 and Vmax = 17.35 in
its passive state (Thorstensen & Armstrong, 2005). Placing PSR J1023+0038 (d = 1.37 kpc,
Deller et al. 2012) at the distance of 47 Tuc would suggest Vmin = 19.7 and Vmax = 19.1 in
the active state, or Vmin = 20.3 and Vmax = 20.0 in the passive state. The B- and V -band
photometric variability study of 47 Tuc done by Kaluzny et al. (2013) covered the entire Parkes
beam down to about V = 20.5, though the core region could not be studied due to confusion.
These observations were obtained primarily in 2009 and 2010 and coincide with the second gap
in which 47 Tuc V is not detected, suggesting it may have been in the active LMXB state of a
tMSP. In the LMXB state, the tMSPs PSR J1023+0038 and XSS J12270−4859 have sinusoidal
light curves (Coti Zelati et al., 2014; de Martino et al., 2015), i.e. having a single minimum
and maximum per orbital cycle. None of the variables in the study by Kaluzny et al. (2013)
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had a period comparable to the 5.1-h orbital period of 47 Tuc V. The range where Kaluzny
et al. (2013) found variables with similar orbital periods (the faintest variable detected had
Vmax = 19.6) covered the range expected for 47 Tuc V in the active state. This suggests that,
if 47 Tuc V was an active tMSP in 2009−2010 with similar properties as PSRJ1023+0038, it
is likely that it would have been detected by the authors, unless 47 Tuc V resides in the core
region.

Weldrake et al. (2004) performed a photometric variability study of 47 Tuc in September
2002 (MJD 52508−52541), during the first gap in radio detections of 47 Tuc V. They observed
for 33 continuous nights, for 10 h/night with 6-minute exposure times. The field of view was
52 arcmin per side, using a single filter that covered the Cousins V and R bands, and median
seeing of 2.2 arcsec. They detected variables down to a magnitude of V = 20, but blending
prevented them from studying stars within the central 6 arcmin in radius. Two variables showed
interesting periods of 0.2144 (V80) or 0.2155 (V34) days. V80, at 24 arcmin from 47 Tuc’s
centre, should not be visible in the 14.4-arcmin wide beam of the Parkes radio telescope, while
V34, at 9.3 arcmin from 47 Tuc’s centre, is not too distant to be plausible, although the period
is not an exact match. V34 is (barely) inside the field of view of Chandra ACIS-I observations
on March 16, 2000 (MJD 51619), and a Chandra HRC-S observation on January 8, 2006 (MJD
53743), the latter also during the first gap in radio detections of 47 Tuc V. Neither Chandra
observation showed a detection, with upper limits of LX < 3 × 1030 erg s−1 (during 2000) and
LX < 1× 1031 erg s−1 (during 2006). We rule out that any variable detected by Weldrake et al.
(2004) is the counterpart of 47 Tuc V, and note that should 47 Tuc V have entered an active
state in 2002, it would probably have been detected by this study.

Finally, Albrow et al. (2001) performed a deep search for variable stars in a 8.3-day sequence
of HST WFPC2 images, covering much of the central region of 47 Tuc (roughly 2.5 × 2.5 arcmin,
off-centre). Due to the HST sharp point-spread function, this study was mostly complete down
to V = 22 for > 10% variations. No periodic signals were found that matched the period of
47 Tuc V. Since this study would have been sensitive to a signal from 47 Tuc V even in a passive
state, given its predicted optical properties, it is likely that 47 Tuc V is not projected upon the
central portion of the cluster investigated by Albrow et al. (2001). We note that 47 Tuc W,
with a shorter orbital period of 3.1 h, was identified in this dataset by Edmonds et al. (2002) at
V = 22.3.

Observational evidence thus suggests that 47 Tuc V did not turn on as an accreting tMSP
during its radio disappearances. Even bearing in mind the aforementioned caveats relative to
the X-ray analysis, the lack of any compelling signals in the three optical surveys is a strong
indication that 47 Tuc V is very likely not a tMSP. If so, the question about what is causing such
long stretches of non-detections still holds. Scintillation can be ruled out since it acts over much
shorter timescales of hours or days in all 47 Tuc pulsars, and this was also the case for pulsar
V during the intervals in which it was visible. A similar consideration applies to the observed
eclipses, whose timescales are of the order of minutes for the short-lived events showed in Fig.
6.2, or hours for the regular obscurations seen during about half the orbit. We believe that some
more fundamental and long-lived physical process, such as an increase in the rate of mass loss
from the companion star, may have occurred. This may have resulted in an engulfment of the
pulsar, which thus became invisible until the mass loss switched back to the original rate.
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6.3.7 47 Tuc W

47 Tuc W is a 2.35-ms binary pulsar in a 3.2-h orbit. Like pulsars P and V, it was originally
discovered by Camilo et al. (2000), who detected it at a single epoch (MJD 51214) during which
the favourable scintillation conditions brought the signal far above the detection threshold. On
that occasion, the pulsar was also eclipsed for a large portion of the observation. The high S/N
of the discovery observation allowed the authors to extract 12 ToAs and derive a first rough
orbital solution, which was in turn used by Edmonds et al. (2002) to obtain the first optical
identification of the companion of 47 Tuc W. The association with the radio pulsar was validated
by the optical photometry, which showed sinusoidal variations at a period consistent with that
derived at radio frequencies.

Our T0-search produced 23 more detections of the radio MSP, from which we built a first
incoherent timing solution. This was in turn used to refold the whole dataset, allowing us to
spot the pulsar in another 11 pointings. Thanks to the large number of detections, we built a
high-S/N template profile that revealed a previously unresolved third peak in the profile (Fig.
4.4), which was instead blended with the major peak in Camilo et al. (2000). With this template,
we carefully extracted 187 more ToAs. Our timing data for 47 Tuc W thus consisted of 199
ToAs, spanning ∼ 10.2 years. The high number of ToAs, together with their frequent cadence,
allowed us to obtain a phase-connected timing solution. The timing residuals (Fig. 4.3) had an
r.m.s. of 10.20 µs. The best-fit parameters are reported in Table 4.5 and will now be discussed
in detail.

Astrometric parameters and dispersion measure

Fig. 5.1 shows the radio timing position of 47 Tuc W relative to the nominal centre of the cluster
and to the other pulsars in 47 Tuc. With an angular distance of only 0.066 arcmin, it is the closest
pulsar to the cluster centre. As expected, the measured right ascension (α) and declination (δ)
are both consistent, within 1.1-σ, with the optical position of the companion as measured by
Edmonds et al. (2002) on an Hubble Space Telescope astrometric frame tied to the positions
of the other MSPs in the cluster. The measured proper motion along the same coordinates,
µα = 6.1± 0.5 mas yr−1 and µδ = −2.6± 0.3 mas yr−1, is consistent with the global motion of
the cluster, as calculated in Section 6.3.4, within less than 1-σ. The DM was measured using
the same method as for pulsars P and V and amounts to 24.367± 0.003 pc cm−3, a value that,
like in the case of 47 Tuc P, is very close to the average DM of all the 47 Tuc pulsars. According
to the Freire et al. (2001c) linear relation, this corresponds to a line-of-sight distance from the
cluster centre of just r‖ ' −0.21 pc. This corroborates the hypothesis, already suggested by the
position, that the three-dimensional distance of 47 Tuc W from the cluster centre is very small.

Long-term orbital variability

For 47 Tuc W, we needed to use a BTX model to correctly take into account the pulsar orbital
motion. In this case the number of orbital frequency derivatives that we had to introduce
was nine. We used the same method described in Section 6.2 to study the long-term orbital
variability. The resulting plot is shown in Fig. 6.1. The lower panel shows that the orbital
period varies with an amplitude of a few milliseconds in a quasi-periodic fashion and with a
characteristic timescale of roughly 3 years. Contrary to the case of pulsar V, the coherence
(phase-connection) of the timing solution and the frequent cadence of the data guarantee that
the fitted BTX model is a reasonably faithful description of the actual changes in the orbital
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Figure 6.3. Intensity as a function of pulse phase (x-axis) and orbital phase φb (y-axis) for 7 sample
detections of 47 Tuc W. The pulsar systematically exhibits eclipses between φb ' 0.09 and φb ' 0.43
that appear to be much more regular than those of 47 Tuc V.

dynamics within the time span considered. However, the inability of the model to predict the
orbital phase outside that range still holds. The large orbital variability prevents us from using
47 Tuc W as a probe for the cluster gravitational potential in the vicinity of the core.

Eclipses and redback nature

The new 34 detections of 47 Tuc W constitute a good sample for a qualitative study of the
eclipses. As shown in Fig. 6.3, the pulsar shows regular eclipses that last for about one third
of its orbit. Using our sample of detections, we measured the mean eclipse ingress and egress
orbital phases to be φingb = 0.09 and φegrb = 0.43, respectively, resulting in the pulsar not being
visible for ∼ 34% of the orbit, on average. The eclipse is thus centered at orbital phase φb = 0.26,
that is about 2 minutes later than the pulsar superior conjunction (φb = 0.25). Also, the eclipse
egress exhibits, on average, a smoother transition that is often accompanied by a delay of the
pulses, whereas the ingress transition is generally shorter and more abrupt. These characteristics
are very similar to those found at X-ray wavelengths by Bogdanov et al. (2005), who proposed
that the X-ray eclipses could be caused by a shock produced by the interaction of the energetic
pulsar wind with the gas spilling out from the companion via Roche-lobe overflow, through the
inner Lagrangian point (Fig. 2 in Bogdanov et al., 2005). The gas flow would have a “cometary”
shape due to the orbital Coriolis forces, from which the observed asymmetry of the X-ray and
radio eclipses originate. Our radio observations are thus in support of this model.

Based on the median companion mass of 0.148 M�, 47 Tuc W can be classified as a redback
system.
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6.4 Discussion

From what we have just discussed in Section 6.3, we can see that the black widow and redback
pulsars of 47 Tuc can be divided into two groups, based on their orbital beaviour. This can be
seen in Fig. 6.1, where we have used the method outlined in Section 6.2 to plot the variation of
the orbital period, and the consequent shift in the epoch of passage at the ascending node, as
a function of time for six of these pulsars (the four detections of 47 Tuc P are too few to yield
any meaningful conclusions, hence it has been excluded).

A first set of pulsars, constituted by 47 Tuc J, O, V and W, is characterized by a strong
orbital variability, indicated by the high number of orbital frequency derivatives used in the
relative binary models. These are necessary to correctly account for the erratic behaviour of the
orbits, which evolve in a semi-chaotic fashion. It is important to recall that the BTX models
are only valid in the region for which we have data, i.e. they do not have predictive power and
cannot accurately describe the orbital phase evolution outside the timing baseline. This is the
reason why the model seems to “explode” around the extrema of the time range.

The second set of pulsars is represented by 47 Tuc I and R. Even with the long timing baseline
being considered here, the orbits of these two pulsars could be correctly described without the
need of invoking any orbital frequency derivatives higher than the first (which in these cases we
report as Ṗb,obs). This could be due, to some extent, to lack of timing precision. Looking at
Fig. 6.1, we can see that the oscillations in ∆T0 for 47 Tuc J are quite small compared to the
dispersion of the data points observed in 47 Tuc I and R. If the latter could be timed with the
same precision as 47 Tuc J, it might be possible that subtle oscillations in ∆T0 (such as those
observed for 47 Tuc J) would become detectable. However, the values of Ṗb,obs/Pb for these two
systems are remarkably similar to their Ṗobs/P (see Fig. 5.3); they are even slightly smaller as
one would expect from a positive intrinsic spin period derivative Ṗint: for 47 Tuc I, we obtain
Ṗint = (9.2 ± 4.3) × 10−20 s s−1, and for 47 Tuc R Ṗint = (3.1 ± 2.2) × 10−20 s s−1, values that
are similar to those of the remaining pulsars. This makes it likely that, as in the case of Ṗobs/P ,
the Ṗb,obs/Pb observed in these systems is mostly caused by the acceleration of the pulsars in the
field of the globular cluster, aGC. These systems have such short orbital periods that, despite the
small companion masses, we must take into account an intrinsic variation of the orbital period
caused by the emission of gravitational waves. In this case, Eq. (5.14) becomes:

Ṗint = Ṗobs −
Ṗb,obs − Ṗb,int

Pb
P. (6.3)

Assuming a pulsar mass of 1.4 M� and an orbital inclination of 60 deg for both pulsars, we obtain
for the orbital variation Ṗb,int = −4.8 × 10−15 s s−1 for 47 Tuc I and Ṗb,int = −7.6 × 10−14 s s−1

for 47 Tuc R. Inserting these terms in Eq. 6.3, we obtain even smaller intrinsic spin period
derivatives: Ṗint = (7.8 ± 4.3) × 10−20 s s−1 for 47 Tuc I and Ṗint = (−1.6 ± 2.2) × 10−20 s s−1

for 47 Tuc R, implying lower limits on the characteristic ages of both systems of 0.33 and 2.0 Gyr
respectively. This means that the agreement between the cluster acceleration and the observed
orbital period derivative is even more precise when we take the gravitational wave emission into
account.

Provisionally, we conclude that the black widow systems come in two flavours, with and
without strong orbital variability. It is plausible that this is determined by some physical process,
related to the mass loss rate of the companion star, that we do not yet fully understand.
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Polarimetric studies of the pulsars in
M15

The work presented in this chapter is part of an ongoing project on the monitoring and the study of the
pulsars in the globular cluster M15. I am the lead scientist of the project. I wrote two proposals, made
the vast majority of the relative observations, and carried out the data reduction, timing and polarimetric
analysis for all the pulsars. When completed, this work will be presented in an article, in which I will be
the lead author, with the following provisional author list and title:

• Ridolfi, A.; Desvignes, G.; Freire, P. C. C.; Kramer, M.; Wex, N., Venkataraman, A.;
Kirsten, F.; “Long-term observations of the pulsars in M15 - I. Polarimetry properties of five
pulsars and relativistic spin precession in PSR B2127+11C”; To be submitted to MNRAS
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7.1 Introduction

NGC 7078 (also known as M15) is one of the most luminous and most massive Galactic globular
clusters known. With an estimated age of ∼ 13 Gyr (e.g. McNamara et al., 2004; Monelli
et al., 2015), it is also one of the oldest systems of stars in our Galaxy. The very old age is
also confirmed by its extremely low measured metallicity (Fe/H ' −2.3, Carretta et al., 2009).
The inferred distance of M15 from the Solar System is ' 10.3 kpc (Watkins et al., 2015b),
which is more than twice the distance of 47 Tuc. Its position in the sky (α = 21h 29m 58.33s,
δ = +12◦ 10′ 01.′′2, Goldsbury et al. 2010) near the celestial equator makes M15 visible to the
305-m Arecibo radio telescope, a non-steerable spherical dish located in Puerto Rico.

The interest for M15 mostly stems from the fact that it is in an advanced post-core-collapsed
state (Djorgovski & King, 1986), a fact signaled by the observed central cusp in the radial
brightness profile. This has led to speculations about the possible presence of an intermediate-
mass black hole (IMBH) in the cluster (e.g. Newell et al., 1976). Recent works, however, have
challenged this hypothesis by putting stringent constraints on the maximum possible mass of
the black hole (e.g. Kirsten & Vlemmings, 2012), and by showing how the observed properties
of the cluster could be explained with just a high concentration of stellar remnants in the core
(e.g. den Brok et al., 2014).

The presence of a large number of compact objects in the cluster is also supported by direct
evidence. Indeed, a series of observations of M15 made with the Arecibo telescope in the years
1989 and 1990 have led to the discovery of 8 radio pulsars residing in the cluster (Wolszczan
et al., 1989; Anderson et al., 1990; Middleditch, 1992; Anderson, 1993). Of these, seven are
isolated pulsars (four of which being MSPs, Anderson 1993) and one is a mildly recycled pulsar
in an eccentric binary system (Prince et al. 1991; Jacoby et al. 2006, see also Section 7.5).

Until circa 2013, all the pulsars were monitored fairly regularly at Arecibo through observa-
tions made in total-intensity mode (i.e. summing the two polarization signals). This allowed a
very good long-term timing of the pulsars but no polarimetric studies were possible.

In this chapter we exploit the most recent M15 data that we have taken in full-Stokes mode
with the Arecibo telescope to investigate the polarimetric properties of the pulsars in the cluster.
After giving a detailed description of our whole dataset (Section 7.2) we present the strategy
used to calibrate the data in polarization and flux (Section 7.3). Then, in Section 7.4, we report
on the measured fluxes, RMs and polarimetric profiles of the five pulsars detectable in our data.
Finally, in Section 7.5, we use the polarimetric properties of the binary pulsar M15C to study
relativistic spin precession, a secular effect occurring in this system.

7.2 The M15 dataset

Our M15 dataset consisted of about 28 years of observations entirely taken with the Arecibo
radio telescope, spanning from 1989 to 2016. The whole dataset can be divided into two main
parts. The first (and older) part was taken with three different observing set-ups:

• From April 1989 until January 1994, the cluster was observed at a central frequency
of 430 MHz with a bandwidth of 10 MHz, using the 430-MHz line feed and the Arecibo
three-level autocorrelation spectrometer (XCOR) as back-end. The latter was providing
128 frequency channels in each of the two circular polarizations and a time resolution
of 506.6 ms (Wolszczan et al., 1989; Jacoby et al., 2006). Starting from February 1994,
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Figure 7.1. Graphical sketch of the different set-ups (receiver+backend) used to observe the globular
cluster M15 over the years with the Arecibo radio telescope.

a major upgrade of the Arecibo telescope forced a stop in the observing program until
the end of 1998.

• Starting from January 1999, the XCOR was replaced by the newer Caltech Baseband
Recorder (CBR, Jenet et al., 1997) as back-end. The CBR was capable of 2-bit dig-
itizing the two polarization signals in quadrature and record the baseband data onto
magnetic tapes. Later, the data were converted into 32-channel coherently-dedispersed
(at the DM of the pulsar M15C) search-mode filterbank files (see Section 2.3.3.2). This
observing set-up was used until early 2001.

• From then, almost all the successive observations of M15 were carried out using the
gregorian L-wide receiver, which has a central frequency of 1.4 GHz. This was done
until mid-2014, using the four Wideband Arecibo Pulsar Processors (WAPPs, Dowd
et al., 2000), each of which is able to process 100 MHz of bandwidth with 256 time-lags
(i.e. frequency channels), a sampling time of 64 µs and a 3-level digitization, for a total
effective bandwidth of 400 MHz divided into 1024 frequency channels.

The second and newest part of the M15 dataset is composed by observations that have been
made specifically in the context of this thesis (Arecibo project P2910, P.I. Ridolfi):

• From July 2014 until December 2016 we observed M15 with a quarterly cadence. The
reason of this cadence was to monitor the rapid changes observed in the pulsar M15C
(see Section 7.5). For all the observations, we made use of the newest pulsar back-
end available at Arecibo, i.e. the Puertorican Ultimate Pulsar Processing Instrument
(PUPPI, a clone of the GUPPI back-end in use at the Green Bank Telescope, DuPlain
et al. 2008). By using multiple GPUs, PUPPI is capable of producing coherently-
dedispersed data, for up to 800 MHz of bandwidth, in real time. The vast majority of
the observations were made with the L-wide receiver, with a central frequency of 1.4
GHz. When observing with this receveir, we always used PUPPI in full-Stokes (i.e.
retaining the polarization information) coherent-search mode, with a total bandwidth
of 800 MHz divided into 512 channels, and a time resolution of 10.24 µs. As for
the CBR data, the coherent de-dispersion was made at the DM of M15C. Whenever
possible, we also made parallel use of (at least some of) the WAPPs, with exactly the
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same configuration as used in the past. This was done to later be able to compare the
timing with PUPPI and with the WAPPs and to measure the time offset between the
two back-ends. A few observations were also made with the “327-MHz”, the Gregorian
“430-MHz”, the “S-low” and the “C-band” receivers. For the former three, we used
only PUPPI in full-Stokes coherent search-mode with a bandwidth of 100, 100 and
800 MHz, respectively. With the “C-band”, we instead used only the WAPPs, because
PUPPI was not capable of operating with that receiver. To later correctly calibrate
each pulsar in polarization and in flux, most of the observing sessions included one
or more observations of the receiver noise-diode, and a pair of on-source/off-source
observations of the quasar QSO B2209+080, whose radio flux and spectrum is known
very accurately (Kuehr et al., 1981).

A schematic diagram summarizing the different observing set-ups used over the years at Arecibo
for the observations of M15 is shown in Fig. 7.1. A detailed list of the most recent observations
conducted under project P2910 is given in Table 7.1.

We point out that, because the observations of M15 have been made and processed by several
people over the years and stored on different storage media, most of the original XCOR, CBR
and (partly) WAPP files got lost or could not be retrieved. For some of these early data, and
depending on the pulsar of the cluster considered, we only had the ToAs that were extracted by
previous astronomers; in some other cases, we managed to retrieve at least the folded archives,
from which we were able to extract the ToAs autonomously. However, this is relevant only for
the timing analysis, which is beyond the scope of this chapter.

Here we focus only on the most recent full-Stokes PUPPI data taken with the L-wide receiver.
The few PUPPI observations taken at different frequencies were excluded from our polarimetric
analyses either because the pulsars were too faint or not detected at all, or because RFI contam-
ination was too severe. All the L-wide PUPPI raw data files were folded with DSPSR with the
most up-to-date ephemeris available for each pulsar. Of the eight known pulsars, only five were
actually detectable. These are M15A, M15B, M15C, M15D and M15E. Hence, all the analyses
presented in this chapter are relative to these five pulsars only.

7.3 Calibration of the M15 L-wide/PUPPI data

To calibrate the full-Stokes data of M15 taken with the L-wide receiver and PUPPI, we followed
the standard NDO procedure, as described in Section 2.6.3.1. For the vast majority of the epochs
(see Table 7.1) we had at least one observation of the noise-diode and one pair of on-source/off-
source observations of the flux calibrator QSO B2209+80. For these epochs, we were able to
perform an NDO calibration in both polarization and absolute flux. The few epochs lacking
an associated observation of the flux calibrator made on that day, were calibrated using the
available pair of QSO B2209+080 observations that was closest in time. This is justified by the
fact the system equivalent flux density of the Arecibo L-wide receiver never changed significantly
over time, having a measured average value of 3.0 Jy and a standard deviation of only 0.1 Jy.

7.3.1 Feed cross-coupling in the Arecibo L-wide receiver

To make sure that the polarization calibration of our data done with the NDO method was
accurate enough (particularly important in the case of pulsar M15C, see Section 7.5), we in-
vestigated the impact of the possible cross-coupling of the two linear receptors in the Arecibo
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Table 7.1. List of the recent observations of M15 made with the Arecibo radio telescope, in the context
of this thesis, between 2014 and 2016. The (UP) note next to the S-low receiver indicates that the upper
part of the receiver available band was used.

Epoch Receiver Back-end Noise-Diode Flux-Calibrator Notes

(MJD) Observation Observation

56845 L-wide PUPPI Yes No

56847 327-MHz PUPPI Yes Yes Only M15A detected

56944 L-wide PUPPI + WAPP Yes Yes

56965 L-wide PUPPI + WAPP Yes Yes

56966 430MHz PUPPI Yes Yes Only M15A detected

57037 L-wide PUPPI + WAPP Yes Yes

57038 C-band WAPP No No No pulsar detected

57088 L-wide PUPPI Yes Yes

57089 430MHz PUPPI Yes Yes Only M15A detected

57128 L-wide PUPPI Yes No

57143 L-wide PUPPI Yes No

57158 S-low PUPPI Yes Yes Severe RFI

57159 S-low PUPPI Yes No Severe RFI

57205 S-low PUPPI Yes Yes Severe RFI

57206 L-wide PUPPI + WAPP Yes Yes

57248 L-wide PUPPI + WAPP Yes Yes

57249 S-low (UP) PUPPI Yes No Severe RFI

57342 L-wide PUPPI + WAPP Yes Yes

57343 L-wide PUPPI + WAPP Yes Yes

57403 L-wide PUPPI + WAPP Yes Yes

57404 L-wide PUPPI + WAPP Yes Yes

57405 L-wide PUPPI + WAPP Yes No

57408 S-low (UP) PUPPI Yes No Severe RFI

57526 L-wide PUPPI + WAPP Yes Yes

57527 L-wide PUPPI + WAPP Yes Yes

57528 L-wide PUPPI + WAPP Yes Yes

57531 L-wide PUPPI + WAPP Yes Yes

57643 L-wide PUPPI + WAPP Yes Yes

57644 L-wide PUPPI + WAPP Yes Yes

57647 L-wide PUPPI + WAPP Yes Yes

57648 L-wide PUPPI + WAPP Yes Yes

57730 L-wide PUPPI + WAPP Yes No

57732 L-wide PUPPI + WAPP Yes Yes

57734 L-wide PUPPI + WAPP Yes Yes

57735 L-wide PUPPI + WAPP Yes Yes

57740 L-wide PUPPI + WAPP Yes Yes
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Figure 7.2. Schematic representation of the observing strategy used to investigate the cross-coupling of
the two linear receptors in the Arecibo L-wide receiver. Over 3 hours, three bright and highly polarized
pulsars (PSR B1933+16, PSR B1929+10 and PSR B1937+21) were alternately observed, every time for
3 minutes each, following an observation of the receiver noise-diode. For each pulsar, this resulted in a
total of 7 pointings over a wide range of parallactic angles. After that, a pair of on-source/off-source
observations of the quasar QSO B2209+80 was observed to be used as a completely unpolarized flux
calibrator.

L-wide receiver.
To do so, we observed three extremely bright and highly polarized pulsars (PSR B1937+21,

PSR B1933+16 and PSR B1929+10) over a wide range of parallactic angles, to be able to
apply the MEM calibration method (see Section 2.6.3.2). The choice of observing three different
pulsars was made to later cross-check the consistency of the results derived for each of them, as
a sanity check.

The observations (made under Arecibo project P3113, P.I. Ridolfi) consisted of a single 3-
hour long session in which we continuously switched between the three pulsars. This was possible
thanks to the very similar right ascensions of the pulsars, which thus had very similar rise and
set times at the site. Every time, each pulsar was observed for 3 minutes, following a 90-second
long observation of the noise-diode. For each pulsar, this resulted in a total of 7 observations
over a wide range of parallactic angles. In addition to that, the quasar QSO B2209+08 (the
same observed in each M15 observing session) was observed on-source and off-source, to be later
used as a completely unpolarized reference flux calibrator. A sketch of the observing strategy is
shown in Fig. 7.2.

The observing set-up was chosen to exactly match that of our regular campaign of M15:
we used the L-wide receiver in combination with PUPPI, the latter used in full-Stokes coherent
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Figure 7.3. Comparison between the NDO and MEM calibration techniques as applied to an observation
of M15C taken on MJD 57736. To each NDO-calibrated Stokes profile (black dotted lines) we subtracted
the corresponding MEM-calibrated Stokes profile (blue dot-dashed lines, shown flipped for a better
visualization), derived from the solution obtained from pulsar B1929+10 (first row), B1933+16 (second
row) and B1937+21 (third row). All the resulting residual profiles (red solid lines) are always well within
the noise level, indicating a very small cross-coupling in the Arecibo L-wide receiver and, hence, the
actual equivalence between the results obtained with the NDO and MEM calibration methods.
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Table 7.2. Measured values of the cross-coupling parameters of interest for the Arecibo L-wide receiver,
as derived via the MEM calibration technique, using three different pulsars.

Cross-Coupling Parameter PSR B1933+16 PSR B1929+10 PSR B1937+21
〈ε0〉 (deg) 0.312± 0.484 0.003± 0.363 −0.219± 0.559

〈ε1〉 (deg) 0.375± 0.503 0.060± 0.360 −0.157± 0.623

〈θ1〉 (deg) 0.171± 0.439 −0.479± 0.380 0.303± 0.488

search-mode, 800 MHz of bandwidth divided into 512 channels and a sampling time of 10.24 µs.
The analysis of the data was carried out as follows. For each of the three pulsars, we used

DSPSR and the best available ephemeris to fold the 7 search-mode data files acquired during
the corresponding pointings. This produced 7 folded archives, which were processed, together
with the relative noise-diode and quasar observations, using the pcm routine of PSRCHIVE. As
explained in the documentation page1, pcm uses the noise-diode observations to perform a first
NDO calibration on each archive, from which it derives a first guess of the receiver instrumental
response. We let the code choose the best 64 profile bins (typically the ones with the highest
polarized flux) whose relative Stokes parameters were corrected for the parallactic angle rota-
tion and for the previously derived instrumental response. The on-source quasar observation is
instead used to estimate the mixing of Stokes I and V . The variation of the four Stokes pa-
rameters, as a function of the parallactic angle, is then fitted simultaneously for the 64 selected
bins, to derive the MEM solution, i.e. the complete instrumental response of the system.

The cross-coupling parameters of interest (i.e. ε0, ε1 and θ1, where the latter represents
the relative orientation of the two receptors and not an absolute value) derived with the MEM
solutions are reported in Table 7.2. The values of three cross-coupling parameters, averaged
over the observing bandwidth, are very small in all the solutions. In the worst case (for PSR
B1933+16), we found the ellipticities of the two receptors to be ε0 ' 0.3 deg and ε1 ' 0.4 deg,
corresponding to a mixing of about 1.3% between the linear and circular polarization. This
indicates that the cross-coupling in the L-wide receiver is very small and practically negligible
for our purposes.

To verify that the extremely small cross-coupling does not indeed make a significant difference
in the polarization properties of our data, we took the observation of M15C that was closest
(i.e. done the next day) to our P3113 observations and we calibrated it with both the standard
NDO method and with each of the three derived MEM solutions. We then subtracted each of
the MEM-calibrated Stokes profiles to the ones derived with the NDO calibration and looked at
the residual profile. As evident from Fig. 7.3, the residual profiles do not show any significant
signals that stand out from the noise, indicating that the NDO and MEM calibrations give
equivalent results.

7.4 RMs, polarimetric profiles and mean flux densities

After the data were properly calibrated, we measured the RM for all the five detectable pulsars
at L-band. To do so, we applied the rmfit routine of PSRCHIVE to our folded archives, in which
we retained the full frequency resolution. In each archive, we looked for the RM value that
maximizes the total linear polarization, spanning a range between −1000 and +1000 rad m−2.

For pulsars A, B and C the single observations had, in most cases, enough S/N to be able to

1http://psrchive.sourceforge.net/manuals/pcm

http://psrchive.sourceforge.net/manuals/pcm


7.4. RMs, polarimetric profiles and mean flux densities 149

Table 7.3. Measured RMs and mean flux densities (S1400) at 1.4 GHz for the five pulsars of M15
detectable in our PUPPI dataset. The reported values are the averages of all the measurements obtained
for the single L-wide/PUPPI observations and the associated uncertainties are the relative standard
deviations. Exceptions are the RM measurements for M15D and M15E and the flux density measurement
for M15C (see notes below).

Pulsar RM (rad m−2) S1400 (µJy)

M15A −69.6(5.5) 117.9(16.5)

M15B −73.6(6.3) 22.0(5.4)

M15C −68.9(5.0) < 40?

M15D −67.7(4.6)† 9.2(3.4)

M15E −72.8(2.4)† 9.1(2.8)

† Single measurement performed on the sum of all the available observations of the pulsars, necessary to increase
the resulting S/N. In this case, the relative uncertainty is calculated through the error propagation formula,
with the off-pulse noise standard deviation used as the error for the flux density of the single pulse profile bins.
? Because M15C is precessing, its mean flux density is not steady and it is currently decreasing (see Fig. 7.5).

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.44 0.48 0.52

F
lu

x 
(A

rb
itr

ar
y 

U
ni

ts
)

Pulse Phase

-90

-60

-30

0

30

60

90

P
.A

. (
de

g)

M15A

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.54 0.60 0.66 0.72

F
lu

x 
(A

rb
itr

ar
y 

U
ni

ts
)

Pulse Phase

-90

-60

-30

0

30

60

90

P
.A

. (
de

g)

M15B

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.45 0.60 0.75 0.90

F
lu

x 
(A

rb
itr

ar
y 

U
ni

ts
)

Pulse Phase

-90

-60

-30

0

30

60

90

P
.A

. (
de

g)

M15D

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.15 0.30 0.45 0.60

F
lu

x 
(A

rb
itr

ar
y 

U
ni

ts
)

Pulse Phase

-90

-60

-30

0

30

60

90

P
.A

. (
de

g)

M15E

Figure 7.4. Polarimetric properties for pulsars A, B, D and E in M15. Bottom panels: polarization-
calibrated total intensity (black lines), linear polarization (red lines) and circular polarization (blue lines)
profiles. Top panels: corresponding measured linear polarization angles.
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Figure 7.5. Measured mean flux density at 1.4 GHz as a function of time for the precessing binary
pulsar M15C.

measure the RM independently on each epoch (i.e. on each folded archive). For pulsars D and
E, instead, because of their faintness, it was necessary to sum all the observations together to
maximize the resulting S/N. This allowed us to correctly run rmfit and derive one single RM
measurement for each of the two pulsars.

Table 7.3 shows the RMs associated with all the five pulsars. In the case of pulsars A, B
and C, the reported value is an average of all the independent measurements obtained. As can
be seen, the measured RMs for the five pulsars are all compatible within 1-σ, with an ensemble
weighted average of −71.3 ± 1.1 rad m−2. This sharply contrasts with what has recently been
seen in 47 Tuc, where the pulsar RMs span from positive to negative values and show a large
gradient along one particular direction (Abbate et al, in prep.). The low dispersion in the
measured RMs of the pulsars in M15 thus suggests that the contribution of the cluster to the
RMs is very small compared to the contribution of our Galaxy. Hence, it is likely that the M15
intracluster magnetic field is very weak.

For each pulsar, we then used the measured RMs reported in Table 7.3 to correct for the
Faraday effect and thus obtain the intrinsic polarimetric profiles. Again, for pulsars A and B, this
was done independently on all the single observations, which were later added together to obtain
very-high-S/N profiles. For pulsars D and E, instead, we directly corrected the previously-built
summed archives. The resulting integrated polarimetric pulse profiles for pulsars A, B, D and
E are shown in Fig. 7.4.

Because pulsar C is a precessing pulsar, it constitutes an exceptional case: although its RM
is expected to remain roughly constant, so do not its polarimetric properties. Hence, for M15C,
we corrected the single observations for the Faraday effect with the average RM of the pulsar
(−68.9 rad m−2). The resulting polarimetric profiles, shown in Fig. 7.8, were then used to
conduct the study described in the next section.

Finally, being all the observations calibrated in flux, we were also able to measure the mean
flux densities, S1400, relative to the central observing frequency (1.4 GHz), for all the five pulsars.
In Table 7.3 we report the unweighted average of all the flux density measurements for pulsars A,
B, D and E. Pulsar C is treated differently because it has recently becoming fainter and fainter
over time and for it we thus report only an upper limit. The detailed actual trend of S1400 as a
function of time for M15C is shown in Fig. 7.5. Our measurements of the flux densities of the
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pulsars in M15 are all in excellent agreement with previously published values (see e.g. Kirsten
et al. 2014), with the obvious exception of M15C, for the reasons discussed above.

7.5 Relativistic spin precession in PSR B2127+11C

Relativistic spin precession (RSP) is another effect, predicted by GR and by other relativistic
theories of gravity (de Sitter, 1916; Fokker, 1921; Damour & Ruffini, 1974; Barker & O’Connell,
1975), that can have measurable effects on the observables of a pulsar. In a binary system,
RSP is the manifestation of relativistic spin-orbit coupling, namely the interaction between the
rotational and the orbital motions of the two stars.

Calling L the orbital angular momentum of the binary, the resulting effect of RSP is that the
spin angular momentum of the pulsar, S, will undergo a change in its orientation with respect to
a distant observer, by precessing about the total angular momentum of the system, J = L + S,
at a constant angular rate given by (Barker & O’Connell, 1975):

Ωso = T
2
3
� ·
(

2π

Pb

) 5
3

· Mc(4Mp + 3Mc)

2(Mp +Mc)4/3
· 1

1− e2
, (7.1)

with the usual meaning of the quantities involved and Mp and Mc expressed in solar masses.
Because S is usually much smaller than L, we can safely make the approximation J ' L, so
that the precession occurs about the orbital angular momentum. Now, we recall that the pulsar
magnetic axis m, along which the emission is beamed, is assumed to be oriented at a constant
angle αm with respect to the pulsar spin axis (see Section 1.3). An obvious consequence of RSP
is that the observer’s line-of-sight cut through the emission beam, will change over time. This
results in a slowly time-varying observed pulse profile shape, intensity and polarimetry, as the
observer’s line of sight will probe different regions of the pulsar beam. Clearly, the larger is the
misalignment angle, δso, between S and L, the larger the effect will be; on the contrary, if S ‖ L,
there will be no precession at all.

To date, significant evidence of observational changes that can be ascribed to RSP has been
seen in PSR B1913+16 (Weisberg et al., 1989; Kramer, 1998; Weisberg & Taylor, 2002, 2005;
Clifton & Weisberg, 2008), PSR B1534+12 (Arzoumanian, 1995; Stairs et al., 2004; Fonseca
et al., 2014), PSR J0737−3039B (i.e. the double-pulsar system, Manchester et al., 2005b; Breton
et al., 2008; Perera et al., 2010; Ferdman et al., 2013; Perera et al., 2014), PSR J1141−6545
(Manchester et al., 2010) and, more recently, PSR J1906+0746 (Desvignes et al., 2013; van
Leeuwen et al., 2015). These changes can provide unique insights into several properties of
both the pulsar and the binary, such as the pulsar beam structure and emission mechanism, the
geometry of the system as well as its formation history. Last but not least, the modelling of
RSP can represent an independent test of GR.

7.5.1 Evidence of RSP in M15C

PSR B2127+11C (or M15C, for short) is the only known binary system in M15. It is in a double
neutron star system with a very eccentric (e ' 0.68) orbit and an orbital period of Pb ' 8 h,
which make it very similar to PSR B1913+16, the Hulse-Taylor pulsar. After its discovery by
Anderson et al. (1990), its subsequent timing (Prince et al., 1991; Anderson, 1993; Deich &
Kulkarni, 1996; Jacoby et al., 2006) has led to the precise measurement of three post-Keplerian
parameters in the system: the advance of periastron, the Einstein delay and the orbital decay
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M15C Profile Evolution
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Figure 7.6. Evolution of the total intensity pulse profile of the precessing binary pulsar M15C between
the years 2006−2016. The profiles are aligned using the timing solution listed in Table 7.4.
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due to the emission of gravitational waves.
Since then, the continuous monitoring campaign (as described in Section 7.2) has resulted

in the observation of significant changes in the pulse profile of M15C, as can be seen in Fig.
7.6. Indeed, after 2009, the pulsed signal of M15C became fainter and fainter, and disappeared
around 2011. Recent interferometric images made by Kirsten et al. (2014), along with new
pulsed observations made in 2013, revealed that M15C became again detectable, although much
fainter and with a different pulse profile.

For this reason, starting from mid-2014, we decided to undertake the monitoring campaign
described in Section 7.2 with the goal of modelling the ongoing RSP in M15C. The observations
have been done in full-Stokes mode in order to exploit the possibly time-varying polarimetric
properties of M15C. In particular, as Kramer & Wex (2009) pointed out, one should expect the
observed linear polarization angle (PA) curve of the precessing pulsar to change in its shape and
absolute value. This is indeed what we see our ∼ 2.5 yr of polarimetric data. As can be seen in
Fig. 7.8, the S-shape curve of the PA in M15C has become slightly flatter. At the same time, we
recorded significant changes in the total intensity, linear polarization and circular polarization
profiles of M15C, together with a fast decrease in the brightness of the pulsar. None of such
changes are seen in any of the other four pulsars detectable in the same data, therefore the
phenomenon has to be intrinsic to M15C. Since the characteristics of M15C closely resemble
those of PSR B1913+16, where RSP has been observed and modelled, there was no doubt that
RSP had to be responsible for the observed changes in the pulsar.

7.5.2 Updated timing solution

As a preliminary step for the study of RSP, we utilized the additional 10 years of new data
available to extend the timing solution of M15C from that last published by Jacoby et al.
(2006). The older extant XCOR and CBR datasets (spanning the years 1989−2001) consisted
in previously extracted ToAs. For the vast majority of the newer WAPP (2002−2016) and
the totality of the PUPPI (2014−2016) data, we had the original raw files. These were folded
with DSPSR using the most up-to-date ephemeris available, from which we obtained the relative
archives. We then followed the usual timing analysis as thoroughly discussed in Section 2.5 and
Section 4.3, but with a difference. Because the pulse profile of M15C showed a major change in
our PUPPI/WAPP data starting from 2014, with a sharp increase in the pulse width (see Fig.
7.6), we decided to use two different standard profiles: the first one was constructed by adding
data taken up to the year 2008, until when the pulse shape was stable narrow; the second one
was built adding data taken in the year 2014, when the pulse width had almost doubled and the
S/N was still high. In both cases the summed profiles were de-noised using a wavelet smoothing
algorithm implemented in the psrsmooth routine of PSRCHIVE. The resulting noiseless template
was then cross-correlated against the data.

The ToAs so obtained for the WAPP and PUPPI data were combined with those of the
XCORR and CBR. In total, we had 5648 ToAs, spanning ∼ 27.67 years, which we fitted with
TEMPO. In doing so, we also fitted for arbitrary jumps between groups of ToAs relative to dif-
ferent observing systems. The same was done between groups of ToAs extracted with different
templates (as in the case of the WAPP data taken before and after 2014), as using different
templates introduces an arbitrary phase offset due to the different fiducial point chosen in the
profiles. Thanks to the parallel use of PUPPI and the WAPPs in most of our post-2014 obser-
vations, we were able to measure the time delay between the two back-ends and thus to remove
the arbitrary phase jump between these two observing systems.
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Table 7.4. Timing parameters for the pulsar in the double neutron star system M15C. The associated
1-σ uncertainties were calculated using a Monte-Carlo bootstrap routine implemented in TEMPO. A fixed
parallax value of 0.1 mas was assumed; the time units are TDB; the assumed terrestrial time standard
is UTC(NIST); the Solar System ephemeris used is the JPL DE421.

Pulsar Name M15C

Reference Epoch (MJD) . . . . . . . . . . . . . . . . . . . . . 50000.000
Start of Timing Data (MJD) . . . . . . . . . . . . . . . . . . . 47632.493
End of Timing Data (MJD) . . . . . . . . . . . . . . . . . . . 57740.848
Number of TOAs . . . . . . . . . . . . . . . . . . . . . . . . 5648
Residuals RMS (µs) . . . . . . . . . . . . . . . . . . . . . . . 5.96
Right Ascension, α (J2000) (hh:mm:ss) . . . . . . . . . . . . . 21:30:01.20439(3)
Declination, δ (J2000) (dd:mm:ss) . . . . . . . . . . . . . . . . 12:10:38.2031(9)
Proper Motion in α, µα (mas yr−1) . . . . . . . . . . . . . . . −1.10(5)
Proper Motion in δ, µδ (mas yr−1) . . . . . . . . . . . . . . . . −3.28(8)
Spin Frequency, f (s−1) . . . . . . . . . . . . . . . . . . . . . 32.755422697332(1)
1st Spin Frequency derivative, ḟ (Hz s−2) . . . . . . . . . . . . −5.351636(7)×10−15

2nd Spin Frequency derivative, f̈ (Hz s−3) . . . . . . . . . . . . −3.6(4)×10−28

Dispersion Measure, DM (pc cm−3) . . . . . . . . . . . . . . . 67.1348(2)
Epoch of glitch #1 (MJD) . . . . . . . . . . . . . . . . . . . . 52000.000
Permanent pulse frequency increment of glitch #1 (Hz) . . . . . 1.435(2)×10−9

Epoch of glitch #2 (MJD) . . . . . . . . . . . . . . . . . . . . 56000.000
Permanent pulse frequency increment of glitch #2 (Hz) . . . . . 1.276(4)×10−9

Binary Parameters

Binary Model . . . . . . . . . . . . . . . . . . . . . . . . . . DDGR
Projected Semi-major Axis, xp (lt-s) . . . . . . . . . . . . . . . 2.518380(5)
Orbital Eccentricity, e . . . . . . . . . . . . . . . . . . . . . . 0.6813901(8)
Longitude of Periastron, ω (deg) . . . . . . . . . . . . . . . . . 345.30608(10)
Epoch of passage at Periastron, T0 (MJD) . . . . . . . . . . . . 50000.06434476(6)
Rate of periastron advance, ω̇ (deg/yr) . . . . . . . . . . . . . . 4.4644772
Orbital Period, Pb (days) . . . . . . . . . . . . . . . . . . . . 0.335282048243(7)
Orbital Period derivative, Ṗb (10−12 s s−1) . . . . . . . . . . . −3.9402375
Rate of change of orbital period minus GR prediction (10−12 s s−1) 9.6(2)×10−2

Einstein Delay, γ (s) . . . . . . . . . . . . . . . . . . . . . . . 0.004823288
Total Mass, M (M�) . . . . . . . . . . . . . . . . . . . . . . 2.7129(1)
Companion Mass, Mc (M�) . . . . . . . . . . . . . . . . . . . 1.3636(8)
Rate of change of projected semi-major axis, ẋp (10−12 s s−1) . . −0.021(6)
Rate of change of eccentricity, ė (10−12) . . . . . . . . . . . . . 0.007(2)
Relativistic deformation of the orbit, δθ (10−6) . . . . . . . . . . 5.836
Relativistic deformation of the orbit, δr (10−6) . . . . . . . . . . 5.584

Derived Parameters

Spin Period, P (s) . . . . . . . . . . . . . . . . . . . . . . . . 3.05292961486000(10)×10−2

1st Spin Period derivative, Ṗ (s s−1) . . . . . . . . . . . . . . . 4.987928(7)×10−18

Mass Function, f(Mp) (M�) . . . . . . . . . . . . . . . . . . . 0.153
Surface Magnetic Field, Bs (108 G) . . . . . . . . . . . . . . . 167.05
Intrinsic Spin-down, Ṗint (10−21 s s−1) . . . . . . . . . . . . . 9140.48
Intrinsic Spin-down Luminosity, Lsd (1033 erg s−1) . . . . . . . 12.68
Characteristic Age, τc (Gyr) . . . . . . . . . . . . . . . . . . . 0.05
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Figure 7.7. Timing residuals associated with the timing solution listed in Table 7.4 for pulsar M15C.

For the orbit of M15C we used the DDGR binary model (e.g. Taylor & Weisberg, 1989),
which assumes GR as the correct theory of gravity. In this model, the binary-component masses
are fitted and all the PK parameters are then evaluated according to GR.

The resulting timing solution is listed in Table 7.4, whereas the corresponding timing residu-
als are shown in Fig. 7.7. The greatly increased time span of our data allowed us to measure all
the astrometric parameters with a much better precision than reported in Jacoby et al. (2006),
in some cases of even one order of magnitude. Besides seeing similar improvements in all the
orbital parameters, we were also able to detect, although with low significance, changes in the
projected semi-major axis and in the orbital eccentricity. Furthermore, we detected two glitches,
occurring sometime between 2002−2006 and between 2010−2014.

A detailed investigation of the two glitches of M15C is beyond the scope of this chapter and
will be discussed in a future publication.

7.5.3 Geometry of the precessional RVM

In this section we utilize the PAs, as measured for M15C from our full-Stokes PUPPI data, to
constrain the geometry of the pulsar and its binary system, as discussed by Damour & Taylor
(1992) and Kramer & Wex (2009). In the following, we use the same conventions as in the latter
two papers.

As previously discussed, the precessional phase, Φso, of the rotation axis of M15C about the
orbital angular momentum of the binary varies linearly with time, t, as:

Φso(t) = Ωso t+ Φ0 , (7.2)
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Table 7.5. Parameters involved in the modelling of the precessional RVM of M15C and relative best-fit
values with associated 2-σ uncertainties. Similar values (consistent within the 2-σ uncertainties) are
obtained when assuming an inclination of i′ = 180 deg−i = 130.34 deg.

Parameter Symbol Best-fit value Notes

Magnetic inclination of the main beam αm 115+5
−4 deg Free parameter

Spin-orbit misalignment angle δso 76+22
−20 deg Free parameter

Reference precessional phase Φ0 257+21
−19 deg Free parameter

PA constant shift ∆ψ0 39+30
−29 deg Free parameter

Pulse phase of spin axis closest approach φi0 − Free parameter, one for each epoch i

Precession rate Ωso 1.31 deg/yr Constant, calculated through GR

Orbital inclination i 49.66 deg Constant, calculated through GR

where Φ0 ≡ Φso(t = t0) is a reference precessional phase at some chosen epoch t0 and Ωso is the
constant angular precession rate. If we assume GR, the latter is known and can be calculated
via Eq. (7.1).

We now introduce the polar angle Λ, which is the angle, defined between 0 and π, between the
observer’s line of sight and the pulsar spin axis S. The polar angle depends on the precessional
phase through the equation:

cos Λ(t) = cos δso cos i+ sin δso sin i cos(Ωso t) , (7.3)

where i is the usual orbital inclination, and δso is the misalignment angle introduced in Section
7.5. These two angles are assumed to be constant, as they are not affected by RSP. What is
instead affected by RSP is ψ0, namely the PA corresponding to the inflection point in the PA
swing curve. Once referred to infinite frequency, ψ0 gives the orientation of the pulsar spin axis
as projected on the plane of sky. Because of RSP, it is thus a time-varying quantity that can be
expressed as:

ψ0(t) = ηso(t) + ∆ψ0 , (7.4)

where ∆ψ0 = Ωasc +∆ψF +∆ψA is a constant offset that is the sum of three main contributions,
namely the longitude of the ascending node of the pulsar orbit (Ωasc), the Faraday rotation effect
(ψF) and the orbital aberration (∆ψA). The time-varying term, ηso(t), is called precessional
longitude and embodies the effect of RSP. It can range between 0 and 2π and can be obtained
by solving the system of equations:

cos ηso(t) =
sin δso sin Φso(t)

sin Λ(t)

sin ηso(t) =
cos Λ(t) cos i− cos δso

sin i sin Λ(t)

. (7.5)

Ultimately, the value of ψ0(t) is well described by the RVM (Eq. 2.61) which, for convenience,
we report again here in its explicit form:

ψ0(t) = arctan

{
sinαm sin(φ− φ0)

sin[π − Λ(t)] cosαm − cos[π − Λ(t)] sinαm cos(φ− φ0)

}
− ψ , (7.6)



7.5. Relativistic spin precession in PSR B2127+11C 157

Table 7.6. List of the “epochs” fitted for the precessional RVM of M15C. Due to ever-decreasing bright-
ness of the pulsar, the last four epochs are in fact the addition of multiple observations, made on different
days.

Epoch # Summed MJDs Total integration time (s) S/N

1 56845 4221 66.96

2 56944 7200 78.44

3 56965 7200 23.42

4 57037 4664 19.04

5 57088 3157 15.41

6 57128 1433 15.52

7 57143 1172 11.85

8 57206 5098 15.29

9 57248 7278 11.52

10 57342, 57343 14399 30.20

11 57403, 57404, 57405 18135 46.96

12 57526, 57527, 57528, 57531 30406 43.14

13 57643, 57644, 57647, 57648 24388 34.95

14 57730, 57732, 57734, 57735, 57740 28900 11.41

where we have used the relation π − Λ(t) = αm + βm(t).

7.5.4 Analysis and results

The set of Eqs. (7.2)-(7.6) can be used to perform a global fit to the polarization angle values
measured in the polarization-calibrated data of M15C. The dataset used for the precessional
RVM fit of M15C consisted of a total of 14 “epochs”, spanning ∼ 2.5 yr, from July 2014 to
December 2016. Because of the steady decrease in flux of the pulsar, some of these epochs
are in fact constituted by the sum of a few, closely spaced single observations, which were
previously independently calibrated and corrected for the Faraday rotation. This was necessary
to guarantee a sufficiently high S/N in each resulting profile to be actually informative and,
hence, beneficial to our fit. The list of the epochs used in our analysis, with the details of the
summed observations, total integration time and resulting S/N is reported in Table 7.6. The
corresponding profiles are shown in Fig. 7.8

For the actual fit of our polarimetric data, we used modelRVM2 (Desvignes et al., in prep.).
This code is able to estimate the precessional RVM parameters using a Bayesian approach, based
on the MultiNest parameter space sampling algorithm (Feroz et al., 2009). As discussed in
the previous section, the parameters involved in the precessional RVM are: αm, δso, Φ0, ∆ψ0,
Ωso, i, and one φ0 for each epoch involved. However, in the case of M15C, both the inclination
and the precession rate are known, thanks to the timing measurement of the PK parameters.
Hence, we decided to keep these two parameters fixed in our analysis to the values predicted by
GR, namely i = 49.66 deg and Ωso = 1.31 deg yr−1. In total, our model had 19 free parameters,
which were sampled by modelRVM using uniform priors.

In Fig. 7.9 we show the one- and two-dimensional marginalized posterior distributions for
the four parameters of interest in our model. We find αm = 115+5

−4 deg, δso = 76+22
−20 deg,

2https://github.com/gdesvignes/modelRVM

https://github.com/gdesvignes/modelRVM
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Figure 7.8. Bottom panels: polarization calibrated total intensity (black lines), linear polarization (red
lines) and circular polarization (blue lines) M15C profiles of the 14 epochs fitted to the precessional RVM.
Top panels: theoretical polarization angle swing (light blue lines), as predicted by the best-fit solution
of the precessional RVM, plotted over the measured polarization angles (black bars).
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Figure 7.8 – continued
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Figure 7.8 – continued

Φ0 = 257+21
−19 deg and ∆ψ0 = 39+30

−29 deg, at the 2-σ level. Although an assumed inclination
of i = 180 deg−i = 130.34 deg is also possible, our results do not change significantly, being
consistent with the aforementioned values within the 2-σ uncertainties. This is very likely due
to the small time span of our data (2.5 yr) with respect to the precession cycle (275 yr), which
is too short to allow us to break the degeneracy between the two inclinations.

Regardless of the true value of the inclination, the solution found predicts a magnetic incli-
nation angle larger than 90 deg, meaning that we are currently observing the pulsar “southern”
beam. The misalignment angle δso, although not very well constrained, is also large, as we were
indeed expecting given the very fast profile changes observed. The fact that the pulsar spin
axis is not aligned with the orbital angular momentum is not surprising: as Prince et al. (1991)
discussed in detail, M15C is, in all probability, the result of chaotic exchange encounters. Hence,
the pulsar rotation axis has no a priori preferred direction.

The precessional RVM solution can be used to make important predictions about the future
behaviour of the pulsar. In particular, we can calculate the values of the impact parameter of the
main beam, βm, as a function of time. The same can be done for the secondary beam from the
opposite magnetic pole, assuming a perfectly dipolar magnetic field, the magnetic inclination of
the main beam, αm, and that of the secondary beam, αs, are related simply by:

αs = π − αm. (7.7)

Calling βm the impact parameter of the secondary beam, it is also easy to see that (Fig. 7.10):

αm + βm = αs + βs. (7.8)
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Figure 7.9. One and two-dimensional marginalized posterior distribution functions for the four pa-
rameters of interest of M15C, as computed by modelRVM. From top to bottom and left to right, the
represented parameters are the angle between the rotation axis and the magnetic axis, αm, the mis-
alignment angle, δso, the reference precessional phase, Φ0 and the constant PA offset, ∆ψ0. In the
analysis, we fixed the inclination i = 49.66 deg and the precession angular rate, Ωso = 1.31 deg yr−1,
namely to the values predicted by GR as derived from our timing analysis. Although an inclination of
i′ = 180 deg−i = 130.34 deg is also possible, our results do not change significantly when using the
latter value.
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Figure 7.10. Graphical representation of the present (left) and future (right) geometry of the precessing
pulsar M15C with respect to the distant observer. Currently, our line of sight falls between the magnetic
and the spin axis, with a minimum angular distance of βm ' −12 deg. Over time, the relativistic spin
precession will cause this distance to increase in its absolute value until our line of sight will completely
move away from the main beam. However, in a few decades, it may be possible that the secondary
beam will approach the observer’s line of sight enough, so that we may be able to see the interpulse.

Combining Eq. (7.7) and (7.8), we can thus relate βs to the main beam parameters:

βs(t) = 2αm + βm(t)− π , (7.9)

where the dependence of both impact parameters on time has been made explicit.
The predictions on βm(t) and βs(t) calculated by our best-fit model of the precessional RVM

can be seen in Fig. 7.11. The estimated values are βm ' −12 deg and βs ' 38 deg in early
2017, both decreasing over time.

The knowledge of αm and βm, together with the pulse duty cycle W , also enables us to
estimate the angular radius ρm of the conical beam envelope, which can be calculated as (Gil
et al., 1984; Lorimer & Kramer, 2004):

ρm = arccos

[
cosαm cos(αm + βm) + sinαm sin(αm + βm) cos

(
W

2

)]
, (7.10)

where W is measured in units of longitude of rotation. Given that our line of sight is moving
away form the magnetic axis over time, the best estimate for ρm is obtained using the values
relative to the most recent epoch available. These are βm ' −11.9 deg and W10 ' 22.3 deg
(where the subscript indicates that the M15C pulse duty cycle is measured at the 10% intensity
level), from which we derive ρm ' 13.0 deg.

The beam angular radius can in turn be used to make predictions on the future disappearance
of the M15C main pulse and on the possible appearance of the interpulse from the secondary
beam. Indeed, a condition necessary for a beam to be detectable is that its impact parameter
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date of discovery of M15C.

|β| . ρ. From βm(t) and βs(t), we can thus predict that the main pulse of M15C may become
undetectable any time between late 2017 and late 2018. Correspondingly, assuming it to have
the same angular size of the main beam, we expect the secondary beam to become detectable
roughly between the year 2041 and 2053.

We note that such predictions are based on the assumption that ρm = 13.0 deg. However,
this value can be considered as a lower limit. If M15C continues to be detectable in the coming
months or years, βm will become more and more negative, implying a larger ρm and thus,
different predicted ranges.

7.5.5 Beam map

Another interesting application of the precessional RVM result is the possibility of obtaining a
“tomography” of the currently visible beam of M15C, over the range of impact parameter values
spanned by our data.

To do this properly, all epochs should in principle be calibrated in flux. This is necessary to
have the correct relative scale of intensities for the different emission regions of the beam. For
all the PUPPI data, we correctly performed the flux calibration as described in Section 7.3.

For the older WAPP data, we did not have any flux calibrator nor noise-diode observations.
Hence, for these data, we calculated the mean flux density by using the radiometer equation
(Eq. 2.18). Being the latter method different from the proper flux calibration procedure, we
investigated possible systematic errors by using the most recent data taken simultaneously with
PUPPI and the WAPPs. Specifically, we compared the mean flux density obtained from the
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Figure 7.12. Reconstructed morphology of the currently visible beam of M15C. We remark that we did
not correct for possible aberration/retardation effects (Blaskiewicz et al., 1991), hence this is just the
observed emission pattern. The dashed circles represent 2-deg steps in the beams radius. The dotted
lines mark the cuts of the observer’s line of sight through the emission beam on the days reported next
to them. The gap between MJD 55605 and 56845 corresponds to a period in which M15C was extremely
faint, and hence very often undetectable.

proper flux-calibration of the PUPPI data, with that obtained from the radiometer equation on
the corresponding WAPP data. We found that the radiometer equation method was underes-
timating the flux by a factor of ∼ 4.3, on average. This factor was then used to rescale all the
WAPP observations accordingly.

Once the mean flux density for all the PUPPI and WAPP data was estimated, each total-
intensity profile was fitted with a number of Gaussian functions, which were used to have an
analytic representation of the pulse profiles. These profiles were then aligned in phase: for
the PUPPI data, we used the best-fit φi0 values, i.e. the pulse longitude of the PA swing
inflection point of each epoch; for the WAPP data, we aligned the profiles using the phase of
the timing solution. We note that the PA swing can in principle be shifted in pulse longitude by
relativistic effects such as aberration and retardation (Blaskiewicz et al., 1991), which depend on
the emission height of the observed radiation. However, given that most of our data (WAPP) is
lacking polarimetric information, we preferred to reconstruct just the observed emission pattern,
without correcting for the aforementioned effect.

The intensities of the analytic profiles were put in a two-dimensional grid with the axes being
pulse longitude and latitude, and a 2D spline interpolation was performed. The resulting beam
pattern obtained was finally plotted in polar coordinates with the y-axis being the North-South
direction (i.e. aligned with the pulsar spin axis) and x-axis the orthogonal East-West direction.
The final beam map so obtained can be seen in Fig. 7.12.
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8.1 Summary

Radio pulsars are strongly magnetized neutron stars that act like cosmic “lighthouses” and
that, while spinning extremely fast, are characterized by an extraordinary rotational stability.
This is particularly true for the so-called recycled (or millisecond) pulsars (MSPs), which have
been spun-up by the accretion of matter and angular momentum from a companion star, thus
reaching spin periods of only a few milliseconds. Recycled pulsars are very common in globular
clusters, because the latter provide very dense environments where the probability for a star
to gravitationally interact with other objects is much higher than in the Galactic plane. This
greatly promotes the formation (and the disruption) of binary systems composed by an old,
“dead” neutron star and a main sequence star. When the latter evolves into a giant it fills its
Roche lobe and transfers its mass to the neutron star, thus “recycling” it.

In this thesis, we have studied the radio pulsars located in two different globular clusters,
47 Tuc and M15, and we have exploited them to investigate a number of astrophysical issues.
The main tool utilized was the pulsar timing technique, described in Chapter 2. We explained
that a timing solution is a model that describes the rotational behaviour of the pulsar and that
a timing solution is said to be phase-connected if it is able to account for every single rotation
of the neutron star. Timing thus allows us to precisely measure those physical parameters that
are affecting the propagation time of the pulsar radiation.

The first part of the thesis was about the pulsars in 47 Tuc (Chapter 4). To begin, we
have analyzed about two decades of data taken with the Australian Parkes radio telescope. In
particular, we have presented phase-connected timing solutions for 23 of the 25 pulsars known to
reside in the cluster. In some cases, which involved some exceptionally faint binary pulsars, this
has required the development and the application of time-domain search techniques specifically
devised for the purpose. For some of the previously known pulsars (47 Tuc R, W, X, Y), we
managed to obtain phase-connected solutions for the first time, finally unveiling their physical
characteristics, which had remained unknown for more than a decade. The same is true for
another three recently discovered isolated pulsars, namely 47 Tuc Z, aa and ab. The derived
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characteristics of these three pulsars are largely consistent with those of the other isolated mil-
lisecond pulsars in 47 Tuc. For many other pulsars, the solutions presented here constitute a
major update, since we included an additional 10 years of data, almost doubling their timing
baseline. This has allowed us to determine the pulsar proper motions with a precision signif-
icantly better than those previously published, as well as higher order spin period derivatives.
For nine binary systems, we also measured changes in the orbital period which, in eight cases,
are solely due to the acceleration of the binary in the globular cluster; these have allowed, for the
first time, the measurement of real accelerations along the line of sight, which we have in turn
been used to estimate the pulsar characteristic ages, magnetic fields and spin-down luminosities.
For the only two pulsars that still lack a phase-connected solution, namely 47 Tuc P and V, we
have greatly improved the measurement of their orbital parameters. Pulsar V is particularly
interesting because it behaves like one of the so-called transitional millisecond pulsars, which
are known to swing between a radio pulsar and a low-mass X-ray binary state. However, our
analysis of optical and X-ray data seems to exclude this hypothesis.

The new and extended timing solutions of the pulsars in 47 Tuc have also enabled a wealth
of additional scientific investigations. One of these is the possibility of studying the cluster
dynamics (Chapter 5). First, we have used the much more precise proper motion measurements
of the 47 Tuc pulsars to infer the proper motion of the cluster as a whole, for which we found a
value of 5.16 mas yr−1 in right ascension and −2.85 mas yr−1 in declination. The same proper
motions have also been used to investigate the intriguing positional coincidence of two pulsar
pairs, namely that of 47 Tuc I and G, and that of 47 Tuc F and S. We concluded that the
former pair is unlikely to be a bound system, whereas the latter is probably in a temporarily
bound status. We have also provided an estimate of the cluster distance by showing how our
measurements of the real line-of-sight accelerations can be accounted for by an analytic King
model only if the cluster is about 4.69 kpc away. Furthermore, we have pointed out how such
a model is also able to correctly account for the observed acceleration derivatives (jerks), for
the pulsars near the core, without the need of invoking the existence of an intermediate-mass
black hole at the centre of the cluster. The latter, however, cannot be ruled out yet and further
investigations are needed in order to constrain this hypothesis. Regarding the evolution of the
cluster, the wide range of characteristic ages measured by our timing suggests that the pulsars
in 47 Tuc have probably been forming at a near-constant rate throughout the age of the cluster.

Although 47 Tuc has a high stellar interaction rate, ΓGC (which favours the recycling of
straggling neutron stars and, thus, the formation of MSPs), its interaction rate per binary,
γb is rather low (Verbunt & Freire, 2014). This implies that the vast majority of the formed
binaries can evolve completely undisturbed, thus producing systems whose characteristics closely
resemble those observed in the Galaxy. This is supported by the fact that almost all the pulsars
are found very close to the cluster core, an expected consequence of mass segregation and the
low probability of three-body exchange interactions, which would cause the hurling towards the
outskirts of the cluster. The only exception is constituted by 47 Tuc X, a binary MSP that is
more than three times farther away than any other pulsar. We discussed how this system is
peculiar also for its characteristics, having by far the widest and the least eccentric orbit of all
the 47 Tuc binaries. We have studied this system in detail at multiple wavelengths and we have
discussed two different formation scenarios.

Another important application of the derived timing solutions is related to the population
of black widow and redback binary pulsars of 47 Tuc (Chapter 6). The long-term timing has
allowed us to detect, in four such objects, a strong orbital variability, which is instead absent
in the other two systems where we have a good orbital model, despite the very similar orbital
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characteristics. The orbital variability is, in all probability, related to the mass outflow from
the low-mass companion star; however, we were unable to find any obvious correlation with
particular characteristics of the pulsar and/or of the system. Provisionally, we concluded that
black widow pulsars seem to have a bimodal behaviour, with some of them showing a stable
orbit and some other showing chaotic orbital dynamics. This may have important implications
for the possible inclusion of this class of binaries in pulsar timing arrays.

The second part of the thesis dealt with the pulsars in M15 (Chapter 7), a globular cluster
known to host seven isolated pulsars and one binary pulsar. Such a different population, com-
pared to that of 47 Tuc, reflects the very different dynamical state of this cluster, which has
a core-collapsed core. In this case, polarimetry was the chief tool used for our analysis. Our
dataset consisted of 27 years of observations made with the Arecibo telescope, which we have
used to update the timing solutions of the five detectable pulsars, namely pulsars A, B, C, D and
E. We then focused on the most recent full-Stokes data, taken over the last 2.5 years, to do the
first polarimetric study of the pulsars in this cluster. After accurately calibrating these data, we
have obtained the rotation measures (RMs), the full-polarimetric integrated pulse profiles and
the mean flux densities, for all the five pulsars. We have noted how the RMs are all consistent
within 1-σ, suggesting the absence of a significant intra-cluster magnetization. After that we
focused on M15C, a mildly recycled binary pulsar in a double neutron star system where the
relativistic spin precession effect is causing the pulsar spin axis to precess about the total angular
momentum of the binary, with a periodicity of ∼ 275 years. We have used M15C’s time-varying
polarimetric properties to model the precession effect and constrain the system geometry. We
found that the angle between the pulsar spin axis and the total angular momentum is large
(∼ 76 deg). The currently visible beam of M15C is moving away from our line of sight and
it might become undetectable already in 2018. On the other hand, the secondary beam, from
the opposite magnetic pole, is approaching us and we expect it to become detectable sometime
between 2041 and 2053. Finally, the long-term timing and the polarimetry have been jointly
used to reconstruct the morphology of the currently visible beam of M15C.

8.2 Future work

47 Tuc and M15 are certainly among the most studied globular clusters known to host pulsars.
The work presented here represents an additional contribution to our knowledge and under-
standing of these two stellar systems and their pulsars. However, many scientific issues are still
open and several additional studies can be done. A large fraction of these can already be done
with the same data used in this thesis. Here we list the most relevant ones.

8.2.1 Improving the models for the dynamics and gas content of 47 Tuc

The long-term timing of the pulsars in 47 Tuc paves the way for a more accurate analysis of the
physical characteristics of the cluster. Prager et al. (2016) exploited the long-term timing of 36
MSPs in the globular cluster Terzan 5 by modelling the observed spin period and spin period
derivative of all the pulsars, to derive independent measurements of the key parameters of the
cluster. In the paper, they also applied the analysis to 47 Tuc using the previously published
timing parameters of the pulsars, which did not include our measurements of the jerks and were
obviously less precise than those derived in this thesis. It will thus be very interesting to include
our new measurements in their model to improve the characterization of the physical parameters
of 47 Tuc. In a similar way, the Freire et al. (2001c) gas model of 47 Tuc can be further improved
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by including the newly timed pulsars and by using our more accurate parameters for the older
pulsars. The RMs obtained by Abbate et al. (in prep.) from recent observations taken in
full-Stokes mode with the Parkes telescope for many of the 47 Tuc pulsars can also be combined
with the gas model to look for a possible intra-cluster magnetic field.

8.2.2 Continuing the monitoring campaign of M15

The precession effect is currently making M15C fainter and fainter and we predict that the pulsar
might very soon become undetectable. The follow-up of M15C in the next few months is thus
of utmost importance to be able to monitor the rapid changes seen in the emission properties
of the pulsar before this is not any longer possible. A larger data span will also allow us to
further constrain our precessional model and thus make more accurate predictions on when the
secondary beam may become visible.

The same data will be very valuable for the timing of the other four detectable pulsars in
the cluster, for which we expect to detect higher order spin frequency derivatives, exactly as we
did for the pulsars in 47 Tuc.

8.2.3 Searching for the companion radio pulsar of M15C

Relativistic spin precession affects not only the spin axis orientation of M15C, but also that of
its companion NS. If the latter is also a radio pulsar, it might thus become observable in the
future, thanks to the change in its orientation due to the precession. If so, the system would
be the second double pulsar system known, after PSR J0737−3039A/B. The different orbital
characteristics, though, could in theory enable new and even more stringent tests of General
Relativity. For this reason, it is our highest priority to conduct a deep search for the companion
pulsar in our recent high-resolution data that we have taken with the Arecibo telescope. In
doing this, we will exploit the large number of observations taken with PUPPI at 1.4 GHz, to
combine them together to increase our sensitivity. This will be achieved by using a code, part
of the PSRALEX software package developed in the context of this thesis, which is able to remove
the orbital modulation in the data. This has the effect of making both M15C and its companion
look as if they were isolated pulsars, thus greatly simplifying the search. The same PUPPI
data taken at different observing frequencies will also be helpful, given that we have no prior
knowledge of how steep the radio spectrum of the companion may be.

8.2.4 Searching for new pulsars in both clusters

The same multi-year search-mode data that we have used for our timing and polarimetric analysis
is perfectly suitable for conducting new deep searches for new pulsars in both 47 Tuc and M15.
Pan et al. (2016) has already shown how reprocessing archival globular cluster data with a novel
stack-search pipeline can be fruitful in detecting faint new pulsars. However they have worked
on only ∼ 1100 h of 47 Tuc data, which is less than two thirds of our whole 47 Tuc dataset. On
the other hand, we have utilized a newly-developed GPU-based accelerated search pipeline that
proved to be extremely effective in re-detecting faint millisecond pulsars in extremely compact
binaries.

Although we do not expect a large number of new discoveries, applying these two pipelines on
the remaining part of the 47 Tuc dataset and on the new high-resolution search-mode PUPPI
data of M15, has the potential of detecting new faint pulsars that may have been missed in
previous searches.
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8.3 Prospects with the new upcoming radio telescopes

Many of the objectives listed above will become much easier to achieve with the new generation
of radio telescopes coming online soon.

One of these is the Five-hundred-meter Aperture Spherical Telescope1 (FAST, Nan et al.
2011), a spherical reflector 500 meters across located in the Guizhou Province, Southwest China,
which began operations in September 2016. Although its design is very similar to that of Arecibo,
FAST is able to observe as far as 40 degrees from the zenith, thus covering about twice as much
sky as the Puertorican dish. This is possible thanks to its active surface, which is able to
dynamically synthesize an effective 300-m wide paraboloid on different parts of the reflector.
Such a huge collecting area allows FAST to reach unprecedented sensitivities over very short
time scales, making the telescope an ideal instrument for searching for highly relativistic binary
systems. Because Arecibo and FAST are located at very similar latitudes, all the sky visible to
the former is also entirely visible to the latter. Therefore, the globular cluster M15 is certainly a
possible FAST observing target. Apart from conducting even deeper searches in this and other
globular clusters, the Chinese telescope might be very useful to follow up the geodetic precession
of M15C when the flux density of the pulsar will go below the Arecibo detectability threshold.
Similarly, FAST might be sensitive enough to detect pulsars F, G and H in single observations.
This would allow us to extend their timing solutions, which would in turn be useful for the study
of the dynamics of M15.

Being very far south, 47 Tuc is instead not observable by FAST. However, two new other
facilities will soon be able to observe this cluster. The first one is MeerKAT 2 (Booth & Jonas,
2012), an array of 64 dishes, each 13.5-m across, located in South Africa. The telescope con-
struction was completed in 2016 and it is slated to become fully operational by the end of 2017.
Thanks to its large collecting area, wide observing bandwidth and position in the Southern
Hemisphere, MeerKAT will become the paramount facility with which to follow up 47 Tuc. Its
much greater sensitivity, compared to the Parkes telescope, will very likely allow us to discover
many more pulsars in the cluster, as well as re-detecting those already known with a much higher
rate. This should eventually enable us to find phase-connected timing solutions for 47 Tuc P
and V, the only two pulsars, currently known in the cluster, that are left to be solved.

MeerKAT will be the most sensitive radio telescope in the Southern Hemisphere until with
completion of the Square Kilometre Array3 (SKA), a telescope composed by thousands of small
antennas, which will be located across two continents (precisely in South Africa and Australia).
The SKA will provide a huge leap in sensitivity and will thus likely produce major advances in
many scientific areas, including astrophysics of pulsars. Regarding pulsars in globular cluster,
the SKA is expected to double or even triple the currently known population during its first
phase, whereas, when fully operational, the number of cluster pulsars discovered might be of
the order of a few hundreds or thousands (Hessels et al., 2015). Not only will this allow us to
study a large number of potentially very interesting single objects, it will also give us a unique
opportunity to better understand the history, dynamics and evolution of these peculiar systems
of stars.

1http://fast.bao.ac.cn
2http://public.ska.ac.za/meerkat
3http://skatelescope.org

http://fast.bao.ac.cn
http://public.ska.ac.za/meerkat
http://skatelescope.org
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