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Summary

In this thesis we discuss the heat flow on time-dependent metric measure spaces.
It will be useful to distinguish between the heat flow (on functions forwards in
time), the adjoint heat flow (on functions backwards in time) and the dual heat
flow (on measures backwards in time). We obtain existence of the heat flow and
its adjoint in two different ways, in particular, first, by solving it in a suitable
weak sense, and second, by applying a minimizing movement scheme (also re-
ferred to as JKO-scheme) using Cheeger’s energy on time-dependent L2-space
and the relative entropy on time-dependent L2-Kantorovich space, respectively.
Let us remark that the latter way requires less regularity assumptions on the
space. Of particular interest are properties which characterize the underlying
space as a super-Ricci flow as introduced by Sturm in [59]. Similar to weak lower
Ricci curvature bounds in the sense of Lott, Sturm and Villani, the definition of
super-Ricci flows employs a convexity property of the time-dependent relative
entropy called dynamic convexity. This thesis is subdivided into three parts.

In the first part we establish the equivalence of dynamic convexity of the
relative entropy on the (time-dependent) L2-Kantorovich space, monotonicity
of L2-Kantorovich distances under the dual heat flow, gradient estimates for
the heat flow and a dynamic version of Bochner’s inequality involving the time-
derivative of the metric. We also give a characterization for the dynamic -
convexity of the relative entropy, where N can be thought of as an upper bound
on the dimension. These results represent a dynamic analogue to the charac-
terization of weak curvature-dimension bounds obtained in [6] and [24] and can
be seen as a contribution to the research topic of weak Ricci flows, cf. e.g. [46],
[29]. Moreover, we characterize the heat flow on functions as the unique forward
EVI-flow for Cheeger’s energy on the Hilbert space of square integrable func-
tions and the dual heat flow on probability measures as the unique backward
EVI-flow for the relative entropy on the L2-Kantorovich space.

In the second part we strengthen our assumptions on the metrics and ob-
tain refined gradient and transport estimates. As an application we construct
Brownian motions such that the distance of their paths is controlled.

In the last part we introduce notions of dynamic gradient flows on time-
dependent metric spaces as well as on time-dependent Hilbert spaces. We prove
existence of solutions for a given class of time-dependent energy functionals in
both settings via a JKO-scheme adapted to our time-dependent setting. In
particular we apply our results to the relative entropy on the space of proba-
bility measures endowed with the time-dependent L?-Kantorovich distance and
to Cheeger’s energy on the time-dependent Hilbert space of L2-integrable func-
tions. As in the static setting, it is crucial for the existence concerning the
relative entropy gradient flow that each underlying metric measure space sat-
isfies a lower Ricci curvature bound. We identify the gradient flow for the
time-dependent Cheeger’s energy and the gradient flow of the time-dependent
relative entropy with the heat flow and the forward dual heat flow, respectively
introduced in the first part. This is possible since we obtain uniqueness for the
gradient flows of Cheeger’s energy and the relative entropy.
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1 Introduction

Over the last several years the theory of optimal transport has proven to be an
effective instrument for studying geometric structures for non-smooth spaces on
the one hand and for studying diffusion equations on the other. The relative
entropy and the Kantorovich distance, objects which are defined on the space of
probability measures, play a crucial role in both applications. Concerning the
geometry of the underlying space, its curvature is captured in the behavior of
the relative entropy along Kantorovich geodesics, while diffusion equations can
be characterized as a Kantorovich gradient flow of the relative entropy. Inter-
estingly there is a strong interplay between diffusion equations on the one hand
and the geometry of the underlying space which is again reflected in terms of
optimal transport.

In this thesis we study diffusion equations on spaces with geometries which
evolve in time. The diffusion equations we consider are given by the heat equa-
tion and its adjoint. In the first part we prove existence and uniqueness of
solutions for both types of equations and give a characterization of super-Ricci
flows introduced by Sturm in [59]. The defining property of super-Ricci flows is
given by the so-called dynamic convexity of the relatice entropy. We show the
one-to-one correspondence of gradient estimates for the heat flow in the sense of
Bakry-Emery on the one hand and dynamic convexity of the relativ entropy on
the other. Equivalently we obtain that the adjoint heat flow satisfies contraction
estimates with respect to the Kantorovich distance. We show in the second part
that the gradient estimate and the transport estimate possess the property of
self-improving. This leads to pathwise contraction estimates for the trajectories
of Brownian motions. In the last part we introduce notions of dynamic gradient
flows and prove existence via a time-dependent JKO-scheme. We identify the
heat flow with the dynamic gradient flow of Cheeger’s energy and the (forward)
adjoint heat flow with the dynamic gradient flow of the relative entropy.

In the following we give a brief survey of optimal transport, weak notions
of Ricci curvature and gradient flows. Then we give an informal overview of
the results obtained in this thesis. The precise statements can be found in the
Chapters 2, 3 and 4.

1.1 Optimal Transport

The problem of optimal transport goes back to Monge’s work “Mémoire sur la
théorie des déblais et des remblais” ([47]) in the late 18th century. He questioned
how to transport a certain amount of soil from one place to the other such
that the total cost is as low as possible. The modern way to describe the
Monge’s optimal transport problem goes as follows. Let X,Y be two Polish
spaces and p € P(X), v € P(Y) two probability measures. Fix a cost function
c: X xY — R. We minimize

T~ /c(m,T(x)) du(x)

among all transport maps T from p to v, i.e. all measurable maps T: X —
Y such that Tup = v. The measure Ty € P(Y) is called push forward of
w through T and is characterized by [ fdTwup = [ f o Tdu for all functions



f:Y — R. Unfortunately this formulation carries some disadvantages. For
instance if p is a Dirac measure and v not, there exists no admissible 7T'. It took
almost two hundred years for Kantorovich to propose a relaxation to overcome
these difficulties, (see [31] for an English translation of the Russian article from
1942).

Given a cost function ¢: X xY — R and two probability measures u € P(X),
v € P(Y) Kantorovich’s optimal transport problem consists of minimizing

v c(z,y) dvy(z,y)
XxXY

among all transport plans v from p to v, i.e. all probability measures v € P(X x
Y') such that v(AxY) = u(A) and y(X x B) = v(B) for all measurable sets A C
X, B CY. Transport plans can be thought of as multivalued transport maps.
Every transport map 7' admits a transport plan v = (Id x T)xpu. Moreover
there always exists a plan, e.g. p x v, and under mild assumptions on the cost
c there exists even a minimizer. It is well-known that these kind of problems,
where a linear functional has to be minimized under a affine constraint, admits
a dual problem, where a linear functional has to be maximized.

Kantorovich himself introduced the associated dual problem ([31]). It con-
sists of maximizing

www»/wummm+/vwmwm

among all functions ¢ € L'(u), ¥ € L*(v) such that p(x) + 9 (y) < c(z,y). For
a cost function which is continuous and bounded from below the minimum of
the Kantorovich problem is equal to the supremum of the dual problem,

min [ elwy) dy(o.9) =sup [ p@)duto) + [0 vy
7 JXxY R
The supremum is actually a maximum and is of the form (¢, ), where p©*
is the c-transform
“+(y) := inf — .
¢ (y) = inf c(z,y) - o(2)
The study of the dual problem reveals significant information for the transport
problem and has been performed by several authors, e.g. Knott and Smith [33]
and Rachev and Riischendorf [51].
If X = Y and the cost function is given by the squared distance dP of
X, where p is a natural number, we recover the LP-Kantorovich distance on
measures defined by

Wy (p,v) == (igf/d”(fv’y) dv(r,y))l/p,

where the infimum is taken among all transport plans v € P(X?) from u to
v. Strictly speaking, this does not define a distance since it is possible that
W, (u, v) = oo, but if W, is restricted to the space P,(X) of Borel probability
measures with finite moments of order p

muw:&epaw/ﬂm%mmm<w}



where xyo € X can be chosen arbitrarily, we recover all the axioms of a distance.
A basic fact [62, Theorem 6.9] is that given a Polish space X, i.e. a complete
separable metric space, the space (P,(X), W,) is a Polish space as well.

A simple consequence of Holder’s inequality is the fact that

p<q=W,<W,

Hence, the metric Wy, also known as the Kantorovich-Rubinstein distance, is the
weakest of all the W),’s. The other extreme case is given by W, := limp_,oc W,
which is the most restrictive of all the LP-Kantorovich distances.

Another famous representative is given by the L?-Kantorovich distance Ws.
One of the interesting features of (P2(X), Wa) is that it inherits certain geo-
metric properties of the space X. If (X,d) is a geodesic space, i.e. for each
x,y € X there exists a curve v: [0,1] — X with v(0) = = and (1) = y such
that d(v(s),v(t)) = |s—t|d(x,y), then (P2(X), W3) is geodesic as well. Further-
more, each geodesic ¢ — p; in Po(X) can be lifted to a measure on the geodesics
in X such that the joint law of the start and end point produces an optimal
transport plan between pg and pq, cf. [2, Theorem 2.10]. As an example we
consider the Dirac measures 0, and 6, for x,y € X. It is important to note that
the classical linear interpolation between d, and dy

t—= = (1 —1)d; +tdy,

is not the right object since it has infinite length as soon as x # y. The right way
to interpolate between these measures is given by displacement interpolation, i.e.
t — d,,, where t — ~y; is a geodesic on X connecting = to y. The terminology
for probability measures on RY goes back to McCann [45].

1.2 Weak Notions of Lower Ricci Curvature Bounds

The concept of curvature is closely related to the behavior of geodesics. Imag-
ine a point = on a smooth N-dimensional Riemannian manifold (M, g) and a
tangential vector v attached to z. Let U be an arbitrary neighbourhood of the
point x. Now we transport every point in the neighbourhood along the geodesic
with initial velocity v. If we assume that the manifold has positive curvature the
geodesics will tend to diverge (at least for short times), whereas negative cur-
vature will mean that geodesics will tend to converge (at least for short times).
Both scenarios result in a distortion of the initial neighbourhood U. A simple
formula where the Ricci curvature comes into play is given in the following. Let
U; denote the image set of the geodesics at time ¢, then the volume vol(Uy) is
given by the following formula

2
vol(Uy) = vol(U) (1 — §Ric(v) + lower order terms),
where Ric(v) = Ric(v,v) denotes the Ricci tensor.

The Ricci curvature is said to be bounded from below by some K € R if for
every v in the tangent space

Ric(v) > Kg(v).

10



By now lower Ricci curvature bounds are well-understood in terms of optimal
transport. Crucial in this context is the relative entropy functional or Boltzmann
entropy on the space of probability measures P(M), which is given by

Ent(u|vol) = /plogpdvol with p = pvol.

It turns out that convexity properties of u — Ent(u|vol) are directly related
to the curvature of the underlying space. Sturm and von Renesse proved that
M has Ricci curvature bounded from below by some K € R if and only if
the relative entropy is K-geodesically convez, i.e. for any pair of measures
w, v € Dom(Ent(-|vol)) NPz (M) there exists a geodesic (1) C P2(M) such that
o = p and gy = v and

Ent(p|vol) < (1 — ¢)Ent(po|vol) + tEnt(uq|vol) — %t(l — )WZ (o, 1)

for every ¢t € [0,1]. A first hint in that direction has been achieved by Otto and
Villani in [50] and later by Cordero-Erasquin, McCann and Schmuckenschlager
in [22].

Surprisingly, the notion of geodesic convexity does not employ any differen-
tiable structure of the manifold M, and is suitable to generalize the notion of
Ricci curvature bounded from below to the class of metric measure spaces, i.e.
metric spaces equipped with a Borel reference measure. We say that a metric
measure space (X, d, m) has Ricci curvature bounded from below by K € R (in
short CD(K, 00)) if the relative entropy Ent(-|m) is K-geodesically convex on
(P2(X), W5). This definition, introduced independently by Sturm in [57] and
Lott and Villani in [43], is consistent with the smooth Riemannian case and
stable under measured Gromov-Hausdorff convergence.

This notion of lower Ricci bounds is dimension independent, but many ge-
ometric applications are not provided until the additional presence of an up-
per dimension bound. The curvature-dimension condition (in short CD(K, N)
where N is an upper bound for the dimension) was introduced by Sturm in [57]
and constitutes a tightening up of the much simpler CD(K, c0) condition. It
provides geometric inequalities such as Brunn-Minkowski, which further leads to
volume growth estimates (Bishop-Gromov inequality) and diameter estimates
(Bonnet-Myers theorem).

A different approach to describe curvature-dimension bounds has been initi-
ated by Bakry and Emery in [13] by means of the functional I'-calculus in Dirich-
let spaces. Given is a strongly local, symmetric Dirichlet form £: L?(X,m) —
[0, 0] on a measure space (X, B, m) generating the Markov semigroup (P;)¢>0
in L?(X,m) with operator Ag. The Dirichlet form admits the representation
formula

£(u,v) = /F(u,v)dm _ —/uAgvdm,

where I' denotes the so-called Carré du champ T'(u,v) := 5(Ag(uv) — ulgv —
vAgu) on a suitable algebra A of functions which are dense in the domain of
Ag. The intrinsic distance dg induced by the Dirichlet form is given by

de(z,y) = sup{(y) — ¥(x)[yp € A, T(¢) < 1}.

11



As a basic example consider the Dirichlet energy
E(u,v) = /Vu - Vv dvol

on a n-dimensional smooth Riemannian manifold (M, vol) endowed with its
natural volume. Consequently, I'(u) = |[Vu|? and Ag = A, where A denotes the
usual Laplace-Beltrami operator on M, and one recovers the geodesic distance
d in M by the intrinsic distance d(z,y) = de(z,y). The crucial observation is
the fact that the manifold has Ricci curvature bounded from below by K if and
only if Bochner’s inequality holds

1 1
QAgF(u) —I'(u, Agu) > N(Agu)2 + KT'(u), (1)
where N > n. Using the notion of the Carré du champ itéré
2 (u,v) := Al (u,v) — I'(u, Agv) — T'(v, Agu),

Bochner’s inequality can be expressed as I'y(u) := Iy (u, u) > 4 (Agu)*+KT'(u).

The resulting weak notion of curvature-dimension bounds called Bakry-
Emery condition and in short BE(K, N), is obtained by using (1) as definition.
Essentially, considering the case N = oo for plainness, the property BE(K, c0)
is equivalent to the pointwise gradient estimate for the Markov semigroup

P(Ptu) S 672Ktpt(]-—‘(u))v

see e.g. [64]. This curvature-dimension condition implies many functional and
geometric inequalities like Poincaré, Log-Sobolev and Talagrand inequality (see
e.g. [14], [24], [62]).

Another feature of the gradient estimate is that it is self-improving, since it
leads to the stronger contraction estimate

(T(Pu))” < e 2K P (T (u)®) for every a € [1/2,2].

This has been shown by Bakry in [12], and later by Savaré in the setting of
metric measure spaces [55]. Both authors prove the stronger gradient estimate
by showing

D(D(w)) < 4(T2(uw) — KT(u))T(u),

which represents an already stronger version of Bochner’s inequality.

1.3 Gradient Flows

In [30] Jordan, Kinderlehrer and Otto showed that the solution to the heat
equation

Oepr = Apy on R”™ x (0,00)

is the relative entropy gradient flow on the space of probability measures with
respect to the L?-Kantorovich distance. They constructed the solution via a
discrete approximation procedure. This procedure is called by many names in
the literature: minimizing movement-, implicit Euler-, or JKO-scheme.

12



By now this result has been extended to more general settings, like Rieman-
nian manifolds [23], Hilbert spaces [9], Finsler spaces [49], Alexandrov spaces
[28] and metric measure spaces satisfying Ricci curvature bounds [5].

There are several ways to define gradient flows in metric spaces, which are
not necessarily equivalent. For a comprising study we refer to the monograph
[4]. Let us start with a very strong formulation called EVI-gradient flow. To
motivate this let F: R™ — (—o00,+00] be a convex and lower semicontinuous
functional. A smooth curve z: [0,00) — R™ solves the gradient flow equation
¢ = —VE(z;) if and only if it satisfies

d1 9 n
ﬁi\xt—yl < E(y) — E(x) Vy € R™.
The latter formulation requires only the metric structure of the space and is
therefore suitable to be taken as the definition of a gradient flow in metric
spaces. Applied to the metric space (Py(R™), W2) the solution p; to the heat
equation is the gradient flow in the following sense

d1
%§W2(Mt’0)2 < E(o) - E(u) Vo € P2(R"), (2)
where y, = pydz and E(u,) = [ pilog pydz. One consequence of estimate (2)
is the contraction of flows, i.e. for two flows i, 4 solving (2) we have

Wa (e, ve) < Walpo, vo)-

In particular we immediately obtain that EVI-gradient flows are unique, i.e.
given a probability measure fi, there exists at most one EVI-gradient flow p
starting in po.

Let us now come back to the case where the underlying space is a general
metric measure space (X,d,m). The heat flow on metric measure spaces is
defined as the EVI-gradient flow of Cheeger’s energy

1
Ch(u) = = inf {liminf (lip un)?dm |u, € Lip(X),/ |t — ul2dm — 0} ,

2 n—oo [y x
on the Hilbert space of L?-integrable functions L?(X,m). Here lipu: X —
[0,00] denotes the local Lipschitz constant. Since u — Ch(u) defines a lower
semicontinuous and convex functional on a Hilbert space, existence and unique-
ness is guaranteed by the general theory of monotone operators, cf. [19]. This
flow is characterized by the fact that it solves the heat equation in the following
sense

d+

—u; = Acpu
dt t Ch'lUt,

where % denotes the right derivative and —Agpu is the element of minimal
L?(X,m) norm in the subdifferential D~Ch(u). The subdifferential D~ F is
a generalization of the gradient VF' for convex functionals F' which are not
necessarily differentiable. D~Ch(u) consists of all v € L?(X,m) such that

/v(g —u)dm < Ch(g) — Ch(u) for every g € L*(X,m).

13



We will see soon that it cannot be taken for granted that the solution to the
heat equation is an EVI-gradient flow for the relative entropy on (P2(X), Wa).
This is closely related to the potential lack of linearity of the operator Acy.
Nonetheless under the assumption that (X, d,m) satisfies CD(K, c0) the solu-
tion to the heat equation (p;) solves

1 t t
Eut(uofm) = Ent(ufm) + 5 [ | ds+ [ [VEutP(ulmds, (3
0 0

where pp = pym, |f1] denotes the metric speed and |VEnt| denotes the slope. A
curve yy which solves (3) is called EDE-gradient flow. Moreover the heat flow
can be unambiguously defined as the EVI-gradient flow of Cheeger’s energy
on L%(X) or as the EDE-gradient flow of the relative entropy on Pa(X). The
identification is feasible thanks to Gigli, who showed uniqueness for solutions
of (3) in [26]. This result is surprising since no contraction properties can be
expected at this general level.
On the other hand if there exists a curve (u) satisfying

%%Wg(ut, o)* + %WQ(Mt, 0)? < Ent(o|m) — Ent(u|m) Vo € P2(X), (4)
then (X, d, m) has a Riemannian Ricci curvature bounded from below by K € R
(in short RCD(K,0)), i.e. (X,d,m) satisfies CD(K,00) and the heat flow
is linear. The latter is also equivalent to saying Cheeger’s energy constitutes
a bilinear form in L?(X,m). Remarkably, this is also true for the converse
implication; if (X, d, m) is a RCD(K, co) space then estimate (4) holds.

This notion of Riemannian curvature bounds has been introduced by Ambro-
sio, Gigli and Savaré in [6] and provides a bridge between the gap of CD(K, 00)
and BE(K, 00) spaces in the sense that BE(K, o) is equivalent to RCD(K, 00):
If the Polish space X endowed with probability measure m and Dirichlet form
€ satisfies BE(K, 00) then under minimal technical assumptions the measure
space (X, m) endowed with the induced metric dg is a RCD(K, 0o) space. Con-
versely, if (X, d, m) is a RCD(K, c0) space then (X, d, m) equipped by £ := 2Ch
is a BE(K, ) space and dg = d.

By Kuwada’s duality approach in [36], the self-improvement of the gradient
estimates shown by Savare in [55] leads to stronger contraction estimates for
the heat flow on measures

W, (e, ) < e KW, (1, v) for every pu,v € P(X),p € [1, 0],

which is consistent with the Riemannian case, see [63].

Finally, as already mentioned above, many geometric and functional inequal-
ities are present only under combined curvature-dimension condition. The re-
sults in [6, 7] has been generalized to RCD(K, N) and BE(K, N) spaces respec-
tively by Erbar, Kuwada and Sturm in [24].

1.4 The Results of Chapter 2

In the first part of this thesis we describe the evolution of geometries in terms of
optimal transport and present a time-dependent version of the characterization
for lower Ricci curvature bounds obtained by Erbar, Kuwada and Sturm in [24].

14



In the smooth Riemannian setting a family of metric tensors (g;) is a Ricci
flow if —%@ g = Ric, where Ric is the Ricci tensor of g. Similar to the static case
where one studies lower curvature bounds we relax the notion of Ricci flows by
requiring g to be “only” a super-Ricci flow —%@g < Ric.

The aim of Chapter 2 is to characterize weak super-Ricci flows by means
of optimal transport and Bakry—Emery calculus. We will rely on the notion of
weak super-Ricci flows on time-dependent metric measure spaces introduced by
Sturm via optimal transport in [59]. The defining property is obtained by the
notion of dynamic convezity of the relative entropy, which has been initiated in
[59], too.

Let (X, d¢, myt)ie(o,) be a family of metric measure spaces such that the map
t > log dy(x,y) is Lipschitz continuous uniformly in z and y and m; = e~ftm for
some reference measure m. We assume that the logarithmic densities f: (0,7) x
X — R are Lipschitz continuous in time and space and each (X,d;, m;) is a
RCD(K, N) space for some finite numbers K and N. Hence &; := 2Ch, defines
a symmetric strongly local Dirichlet form.

We introduce the heat equation

Opuy = Aguy on (s,7) x X
as well as the adjoint heat equation
0svs = —Agus + (0sfs)vs  on (o,t) x X.

Both equations are interpreted in a distributional sense, i.e. u solves the heat

equation if
/ / WOty dmedt = —/ Et(ug, wy) dt Yw
s X s

and v solves the adjoint heat equation if

t t
/ / wsasvs dms ds = / Es (U87 ws) + / (asfs)vsws ds V'LU,
o JX o X

where w is chosen from a suitable class of test functions. Here, the adjoint
heat equation has to be understood backwards in time, i.e. in order to obtain
existence of solutions one has to prescribe terminal data.

We show that a number of regularity properties hold, e.g. existence, unique-
ness and kernel representations. We refer to Chapter 2 for the detailed state-
ments. Here, we will only stick to the core message.

We denote the heat flow ¢t — P; ;u as the solution to the heat equation such
that limy s Py su = u in L*(X,m) and the adjoint heat flow s — P} v as the
solution to the adjoint heat equation such that lim, ~ Py,v = v in L?(X,m).
They are adjoint in the following way

/uPt*,svdms = /Pt,suv dmy.

It turns out that the heat flow preserves constants, whereas the adjoint heat
flow is mass preserving in the sense that [ Pl vdm, = J vdm,. Consequently,

we define the dual heat flow s — P, ;4 on measures by duality f ud]st,su =
[ P, sudp.
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In [59] Sturm introduced the notion of dynamic convexity. We say that the
relative entropy Si(u) = Ent(u|m,) is dynamically convex if for a.e. ¢t € (0,T)
and every Wi-geodesic (itq)qeo,1] it holds

1
aast(ﬂa”a:l - aaSt(Ma”a:O Z _QWE(MO’MIL

where W; = W, denotes the L?-Kantorovich distance with respect to dy.

We prove that dynamic convexity of the relative entropy can be equivalently
obtained in terms of contraction estimates for the dual heat flow ]—c’m and the
heat flow P; g;

Ft(Pt,su) < Pt,s(rsu)a (5)
Ws(pt,s,ufapt,sy) § Wt(,u,u). (6)

The contraction estimates for the dual heat flow result from the fact that this
flow solves a dynamic version of EVI. The contraction estimates for the heat flow
on the other hand constitute a gradient estimate in the spirit of Bakry—Emery,
which can be equivalently stated as a time-dependent version of Bochner’s in-
equality

1 .
iArFr(ur) - Fr(urv Arur) > =Ty (ur) for a.e. 7,

N | =

where u, = P, su and f‘r is a weak version of the time-derivative 0, I',.. This has
to be interpreted in a distributional sense, namely tested against adjoint heat
flows ]ADWQ, where g > 0.

In this sense our main result can be seen as the dynamic counterpart of
RCD(K, x0) < BE(K, c0) obtained in [7, 6].

Recalling the static setting, the curvature-dimension condition CD(K, N)
has been introduced since it provides a broader range of geometric applications.
In the same spirit the notion of super-Ricci flows has been tightened up to
N-super-Ricci flows [59], which we will use to obtain the dynamic counterpart
RCD(K,N) < BE(K,N) from [24]. In particular we characterize N-super-
Ricci flows by means of N-dimensional contraction estimates of the heat flows
and a dynamic version of Bochner’s inequality.

But let us emphasize that many properties which are available for the heat
semigroup on static metric measure spaces hold no longer true for the heat
propagator on time-dependent metric measure spaces. For example it is not
clear whether the operator and semigroup commute, or that the semigroup maps
L? into the domain of the operator. In particular the domain of the Laplace
operator Dom(A;) will depend on time.

A similar result in the framework of smooth families of compact Riemannian
manifolds which characterizes super solutions of Ricci flows has been established
by McCann and Topping in [46]. They show that super solutions of Ricci flows
can be equivalently characterized by the contraction estimate (6). Arnaudon and
Coulibaly and Thalmeier [10] define a Brownian motion with time-dependent
metric on a compact manifold and obtain a Bismut type formula if the metrics
evolve as a Ricci flow. Philipowski and Kuwada [38, 39] obtain McCann’s and
Topping’s result as a corollary for non compact Riemannian manifolds with
uniform lower Ricci curvature bound by constructing couplings of Brownian
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motions. Lakzian and Munn [40] adopted the characterization of super-Ricci
flow by McCann and Topping to a family of distance metrics defined on the
disjoint union of closed manifolds M7, M5. They show that this is a super-Ricci
flow provided that the distance function itself is a super solution to the heat
equation on M; x Ms. Haslhofer and Naber [29] characterize Ricci flows of
Riemannian manifolds in terms of infinite-dimensional gradient estimates and
suggest a weak notion of Ricci flows based on this characterization. Kleiner
and Lott [32] introduce singular Ricci flows, which arise from Ricci flows with
surgery starting from a compact three-dimensional Riemannian manifold as the
surgery parameter tends to zero.

The results presented in Chapter 2 are obtained together with Karl-Theodor
Sturm in the preprint [35] and can be seen as a contribution to the research of
weak Ricci flows.

1.5 The Results of Chapter 3

Starting from the fact shown in Chapter 2 that being a super-Ricci flow implies
the gradient and transport estimates

(Ft(Pt,su)) S Pt,s (FS(U)), Ws(Pt,SMu Pt,sy) S Wt(/’h V)

for the heat flows Pm,lf’t,s, it is quite natural to ask whether we can obtain
stronger estimates as in the case of static RCD(K, co0) spaces. Crucial for this is
the self-improvement property of the gradient estimate which itself arises from
the self-improving of Bochner’s inequality.

Let (X, di, m¢)¢c(o,ry) be a family of metric measure spaces. As before we
assume that each (X, d;, m;) is a RCD(K, N) space for some finite numbers K
and N and m; = e~ftm for some reference measure m such that the logarithmic
densities f: (0,7) x X — R are Lipschitz continuous in time and space. We
will strengthen our assumptions on the metrics in the sense that the map ¢ —
logd;(z,y) is continuously differentiable with logarithmic derivative which is
uniformly bounded and in a certain sense “well-behaved” on the diagonal.

Firstly, we show time-differentiability of the I'-operator. Along with the L?-
Kantorovich transport estimate we obtain a “real” dynamic Bochner inequality

Atft (U) - Ft (’U,, Atu) Z atft (’U,),

real in the sense that it involves the derivative of the I'-operator, and it holds
in a class of test function which do not only arise as a heat flow.

With this we can proceed and adapt the strategy of Bakry and Savaré in
[12] and [55] respectively, and derive the crucial estimate

1
Fu(Te(w) < 4(Ta.(u) = 5OTe(w) ) Tu(u),
by applying Bochner’s inequality to polynomials. Note that this approach has

not been applicable in Chapter 2, since arbitrary polynomials are not necessarily
descended from a heat flow. We then follow the ideas from Chapter 2 and derive

(T4(Prsu)™ < Py (Ds(u)®)  for every a € [1/2,1].

17



Finally, applying the duality approach by Kuwada in [36], we obtain for the
heat flow on measures the stronger transport estimate

Wpys(ﬁ’tysu, Pt,su) < Wp(p,v)  for every p € [1,00],

where W), s denotes the LP-Kantorovich distance with respect to the metric d;.
In particular, for p = §,,v = é, and p = co we find the following estimate for
the heat kernel

Woo,s(pt,s(y; ')7pt,s(x7 )) S dt(xa y)7

where p; s(x,dz) = py s(x, 2) dmg(2). As an application we will introduce Brow-
nian motions on time-dependent metric measure spaces and construct a stochas-
tic process on X x X which is a coupling of Brownian motions (X}!)s<t, (X2)s<t
on X such that almost surely

ds(Xslast) S dt(x7y>

These types of transport estimates are reminiscent of the static RCD(K, 00)
case, where the lower Ricci curvature bound K controls how fast the distance
between two distributions may expand, or has to diminish, in time. Here, the
super-Ricci flow, which is given by the lower Ricci curvature bound —dg; /2 if
we think of a smooth setting, controls the expansion of mass in time in a similar
way. Note that the map s — W), s(us, vs) is non-decreasing. Speaking of a
backward super-Ricci flow, as in [46] on Riemannian manifolds, this leads to a
contraction of mass in time.

A similar result as in Theorem 3.1 and Theorem 3.2 has been derived by
Haslhofer and Naber in [29] in the case of smooth Riemannian manifolds evolving
as a super-Ricci flow. They give a characterization of super-Ricci flows in terms
of a gradient estimate as in Theorem 3.2 with & = 1 and @ = 1/2 and in terms
of a Bochner’s formula.

Arnaudon, Coulibaly and Thalmeier [10] showed existence of Brownian mo-
tions on a smooth time-dependent setting and apply their results to Ricci flows.
Kuwada and Philipowski [38] construct couplings of Brownain motions such
that the normalized Perelman’s £-distance of the coupling is a supermartingale,
see also [60]. This construction is obtained on smooth Riemannian manifolds
evolving as a super-Ricci flow.

1.6 The Results of Chapter 4

We have seen that the solution to the heat equation in R™ can be obtained
as a gradient flow of the relative entropy with respect to the L2-Kantorovich
distance via the JKO-scheme. We will show a similar result in Chapter 4.

Let (X, ds, m¢)iejo,7) be a family of metric measure spaces, such that the map
t — logdi(z,y) is Lipschitz continuous uniformly in z and y and there exist a
Borel probability measure m and a measurable function f: [0,7] x X — R such
that e~7tm = m;. We assume that the logarithmic densities f are Lipschitz
continuous with respect to the time variable.

We show that the solution to the forward adjoint heat equation introduced
in Chapter 2

atpt = Atpt + (atft)pt on (O,T) x X (7)
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can be obtained as a gradient flow of the relative entropy with respect to the L2-
Kantorovich distance on the one hand and on the other we obtain the solution
to the heat equation from Chapter 2

8tut = Atut on (O,T) x X (8)

as a gradient flow of Cheeger’s energy with respect to the L?-norm.

In the case of the relative entropy S; = Ent(-|m;) on the time-dependent
metric space (P2(X), W) we obtain existence of a gradient flow p; in the EDE
sense, i.e.

1 [t 1 [t t

i)+ [ i+ 5 [ 19,8 B u)dr = Soipo) + [ @S0 w)ar (9
if we additionally assume that each underlying metric measure space (X, d;, m;)
satisfies a lower Ricci curvature bound in the sense of Lott, Sturm and Villani.
This equality can be seen as a time-dependent extension of equality (3). The
extension appears in the time-dependence of the metric speed |2, the slope
|V..S,|? and the time derivative (9,.S,) of the functional. Further we prove
that solutions of (9) are unique. This result enables us to identify the entropy
gradient flow with the solution p; to the forward adjoint heat equation (7) by
showing that pym, solves (9).

We will prove existence for such types of gradient flows on more general time-
dependent metric spaces (X,d;) and for a broader class of energy functionals
E:[0,T] x X — (—00,00]. For this we use a JKO-scheme adapted to our time-
dependent setting in the following way. We fix a step size h > 0 and an initial
value Z, and define recursively for nh < T

1
ah =z, zh = arg min {Enh(m) + %dih(m,xﬁfl)}. (10)

Under sufficient regularity assumption (see Section 4.3) we are able to show
existence of a subsequence h — 0 and a limit curve (z;) such that the constant
interpolations ZJ' converge to z; as h goes to 0. This limit curve constitutes
a dynamic gradient flow in the EDE sense. In the special case of the entropy
on probability space we even obtain uniqueness of the flow using the convexity
properties of the squared metric speed and squared slope, noting that the time
derivative 9;S; is a linear perturbation.

Concerning the gradient flow for Cheeger’s energy Ch; on the time-dependent
Hilbert space L2(X,m;), we show that there exists a gradient flow u; in the sense
that

3tut S _Dt_Cht(ut) fOI‘ a.e. t S (O,T), (11)

where D, denotes the subdifferential with respect to the scalar product (g, h); =
/ + ghdm;. We identify Cheeger’s energy gradient flow with the heat flow on
functions via the dynamic EVI introduced in Chapter 2.

We obtain existence via the JKO-scheme (10) applied to a given class of
convex energy functionals on time-dependent Hilbert spaces. Let us emphasize
that many properties we have in the static setting for this kind of gradient
flow are no longer true in the time-dependent setting, e.g. a minimal selection
principle, i.e. that the minimal element with respect to the norm is attained.
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Let us conclude that the existence of the entropy gradient flow as well as
the existence of Cheeger’s energy gradient flow are obtained in a more general
framework than the one in Chapter 2. For the entropy gradient flow we require
that each static space (X, d, m;) satisfies CD(K, co) instead of RCD(K, N) and
that the logarithmic density f,: X — R of the measure m; = e fm are Lips-
chitz continuous only in time and not in space. For Cheeger’s energy gradient
flow we only require the Lipschitz continuity of the logarithmic densities f;.

Gradient flow formulations for time-dependent functionals similar to (9) and
(11) have been considered recently. Rossi, Mielke and Savaré in [53] investigate
the doubly nonlinear evolution equation on a reflexive Banach space V'

DY (Oput) + Fi(ug) 20 in V* ae.,

where V¥ is a convex potential and F' is a time-dependent family of multivalued
maps. They prove existence of gradient flows using a time-dependent JKO
scheme. Ferreira and Valencia-Guevara [25] introduce gradient flows for time-
dependent functionals on metric spaces and apply their results to a class of
PDEs on R" such as the Fokker-Planck equation

Op = KkAp+V - (VV(t,x)p).

The results presented in Chapter 4 are obtained in the preprint [34]. The tech-
niques we use to obtain existence of the entropy gradient flow are inspired by
[53] and [25]. Concerning Cheeger’s energy gradient flow we adopt the methods
in [48] to our time-dependent setting.
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2 Heat Flows on Time-dependent Metric Mea-
sure Spaces and Super-Ricci Flows

In this chapter we study the heat flow on time-dependent metric measure spaces.
With the help of the heat flow we obtain equivalent characterizations to the
notion of weak super-Ricci flows introduced by Sturm in [59] in terms of opti-
mal transport. These notions consist of Bakry—Emery—like gradient estimates,
a dynamic version of Bochner’s inequality and L?-Kantorovich contraction es-
timates. We prove that the heat flow emerges as a EVI-like gradient flow with
respect to Cheeger’s energy on the space of L?-integrable functions on the one
hand and with respect to the relative entropy on the space of probability mea-
sures on the other. These results represent a time-dependent version of the
characterization of curvature-dimension bounds obtained by Ambrosio, Gigli
and Savaré in [7] and Erbar, Kuwada and Sturm in [24] respectively.

2.1 Main Results

We consider a time-dependent metric measure space (X, dt’mt)tel where I =
(0,T) and X is a compact space equipped with one-parameter families of geodesic
metrics d; and Borel measures m;. We always assume the measures m; are mu-
tually absolutely continuous with bounded, Lipschitz continuous logarithmic
densities and that the metrics d; are uniformly bounded and equivalent to each
other with
‘logdt(x’y)‘ <L-|t—s] (12)
ds(z,y)

(‘log Lipschitz continuity’). Moreover, we assume that for each ¢ the static space
(X,dt, my) satisfies a Riemannian curvature-dimension condition in the sense of
3], [24]. (In various respects, the latter is not really a restriction, see Lemma
2.8.)

Thus for each ¢, the detailed analysis in [7] guarantees a well-defined Lapla-
cian A; on L?(X,m;) characterized by —fX Apuvdmy = E(u,v) where the
Dirichlet energy

Ei(u, u):/ |Viul?dm; = liminf /(liptv)2 dmy
X X

v—uin L2(X,my)
vELip(X,dy)
is defined either in terms of the minimal weak upper gradient |Viu| of u €
L?(X,my) or alternatively in terms of the pointwise Lipschitz constant lip,v(.).

Heat equation

Our first important result concerns existence and uniqueness for solutions of
two types of diffusion equations on the time-dependent metric measure space
(X, dy,my)rer. The heat equation acting on functions forward in time as well as
for the adjoint heat equation acting on functions backward in time. Moreover,
it yields regularity of solutions and representation as integrals with respect to a
heat kernel.

Theorem 2.1. There exists a heat kernel p on {(t,s,2,y) € I x X? : t >
s}, Hdlder continuous in all variables and satisfying the propagator property

per(2,2) = [ prs(@,9)ps,r(y, 2) dmg(y), such that
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(i) for each s € I and h € L*(X,m)

(t.2) = Prahle) i= [ prole,)hly) dma)
is the unique solution to the heat equation
Orur = Apuy on (s,T) x X
with ugs = h;
(ii) for each t € I and g € L*(X,my)

(5.0) = Plagw) i= [ sl y)ala) dm(o)
is the unique solution to the adjoint heat equation

Dsvs = —Ayvs + fo - s on (0,t) x X
dmf,)

dmg

with v; = g. Here fs = —875(

t=s"

Let us emphasize that many properties of the heat kernel available in the
static setting drop away in the time-dependent setting. For example we can-
not hope that the propagator P, s is symmetric, neither to m, nor to my, or
that it commutes with the operator A;, or A;. Moreover the operators A; de-
pend strongly on time and the the propagator P; s does not map L?(X) into
the domain Dom(A;) for each t. Nonetheless we derive various important L2-
properties and estimates — partly in the more general setting of heat flows for
time-dependent Dirichlet forms — the most prominent of them being the EVI-
characterization, the energy estimate and the commutator lemma.

Theorem 2.2. (i) The heat flow is uniquely characterized as the dynamic
forward EVI(—L/2, 0o)-flow for € on L*(X,my )1 in the following sense:
for all solutions (ut)te(s’f) to the heat equation, for all T < T and all
w € Dom(E)

L

2 1
2 - w]?, =

*gt(ut) — %&(w)

1 2
2 0F e~ .

s=t
(ii) For all s € (0,T) and u € Dom(E;)
P, su € Dom(Ay) for a.e.t>s
and fST e 3EE=9) [ 1A, P, qu|?dm; dt < 1&(u) for all T > s..

(iii) For all o0 < T, all u,v € L? and a.e. s,t € (o,7) with s <t

/ [AtPtysus - Pt,sAsusi| V¢ dmt S C- Vi—s

where ug = Ps ;u, v = PT*’tv.
We define the dual heat flow Py, : P(X) — P(X) by

(Proap)(dy) = [ [t du(x)] ma(dy).

In particular, (Ptysém)(dy) = pt.s(x,dy) and 15,5’5 (g . mt) = (Pt”:sg) S M.
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Characterization of super-Ricci flows

In [59], Sturm introduced and analyzed the notion of super-Ricci flows for time-
dependent metric measure (X, d;, my)ter. The defining property of the latter is
the so-called dynamic convexity of the Boltzmann entropy S : I x P — (—o00, x|
with

St(,u):/ulogudmt if p=umy

and Sy(p) = oo if p & my. Here P = P(X) will denote the space of proba-
bility measures on X, equipped with time-dependent Kantorovich-Wasserstein
distances W; induced by d;, t € I.

The main goal of this chapter is to characterize super-Ricci flows in terms of
the heat flow (acting on functions, forwards in time) and of the dual heat flow
(acting on probability measures, backwards in time). Our first result in this
direction is a complete analogue to the characterization of synthetic lower Ricci
bounds in the sense of Lott-Sturm-Villani for ‘static’ metric measure spaces
derived by Ambrosio, Gigli, Savaré [7].

Theorem 2.3. The following assertions are equivalent:

(I) For a.e. t € (0,T) and every Wi-geodesic (1*)qejo,1] in P with p°, p' €
Dom/(S)

05 Sy — 0 Sy > 50T WEG Y (13)
(‘dynamic convezity’).
(IT) For all0<s<t<T and p,v € P
W@(Pt,sﬂvpt,sy) < Wip,v) (14)
(‘transport estimate’).
(III) For alluw € Dom(€) and all0 < s <t <T
[VilPrsw)]” < Pus(1950f%) (15)
(‘gradient estimate’).

(IV) For all0 < s <t < T and for all us,gs € F with g > 0, g € L™,
us € Lip(X) and for a.e. v € (s,t)

Lo (u)(g:) 2 5 [ (wgrdm, (16)

(‘dynamic Bochner’s inequality’ or ‘dynamic Bakry-Emery condition’) where
ur = Prsus and g, = P/,.gt. Moreover, the following regularity assump-
tion is satisfied:

u, € Lip(X) for all v € (s,t) with suplip,u,(z) < co. (17)

T,
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Here and in the sequel
1
I‘2,r(ur)(g1") = / |:§FT(U7")AT'97‘ + (Aru7')2g7" + F'r'(ur,gr)Arur} dm,

denotes the distribution valued I's-operator (at time 7) applied to u, and tested
against g, and

I'r (ur) =Ww- (%1_{1(1) %(Fwé(ur) - FT(“T))

denotes any subsequential weak limit of % (I‘TJF(; — I‘,«,(s)(ur) in L2((s,t) x X).

EVI characterization of the dual heat flow

It turns out that the dual heat flow (acting on probability measures, backward
in time) is the backward gradient flow for the Boltzmann entropy — in a very
precise, strong sense — and it is the only one with this property.

Theorem 2.4. Each of the assertions of the previous theorem implies that the
dual heat flow t — py = Pmu 1s the unique dynamical backward EVI-gradient
flow for the Boltzmann entropy S in the following sense:

For every u € Dom(S) and every 7 < T the absolutely continuous curve t — pu;

satisfies
1
5837W32,t(u370')|5:t7 > St(pe) — Se(o)

for all o € Dom(S) and allt < 7.

Characterization of super-N-Ricci flows

For static metric measure spaces, it turned out that many powerful applications
of synthetic lower bounds on the Ricci curvature are available only in combi-
nation with some synthetic upper bound on the dimension. This lead to the
so-called curvature-dimension condition CD(K, N). In a similar spirit, in [59]
the notion of super Ricci flows for time-dependent metric measure spaces was
tightened up towards N-super Ricci flows.

We aim to characterize super- N-Ricci flows in terms of the heat flow, the dual
heat flow, and the time-dependent Bochner inequality. Our main result provides
a complete characterization, analogous to the proof of the equivalence of the
curvature-dimension condition of Lott-Stum-Villani and the Bochner inequality
of Bakry—Emery for ‘static’ metric measure spaces derived by Erbar, Kuwada,
and Sturm in [24].

Theorem 2.5. For each N the following are equivalent:

(In) For a.e. t € (0,T) and every Wy-geodesic (1*)qcpo,1) in P with p°, p' €
Dom/(S)
a — a 1. 1 2
0 Su(H)] ymy - =00 Se(n) oz = =507 W (1, 1)+ 5 |Se () =S ()]
(18)
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(IIy) Forall0<s<t<T and p,v € P
. 2
W2 (P, Po) < WP p1v) — o / (Broit) — S:(P)]| dr. (19)

(I11y) For allu € Dom(E) and all0 < s <t < T

t
’vt(Pt,su)F < Pt,s(|vs(u)|2) - % (Pt,rAeruydr. (20)

(IVy) For all0 < s <t <T and for all us,g: € F with g >0, gt € L™, us €
Lip(X) the regularity assumption (17) is satisfied and for a.e. r € (s,t)

Ca(w)(or) 2 5 [ B @grdm, + 5 ( [ Arwgndm,)” (2)

(‘dynamic Bochner inequality’ or ‘dynamic Bakry—Emery condition’) where
Up = Pr,sus and gr = Ptfrgt'

Remark 2.6. a. In (In), the requested property for a.e. t will imply that it
holds true for all t € (0,T).

b. The transport estimate (ILy) implies the ‘stronger’ property

WQ(Ptéu,Ptéy)<Wt (v N/ / 8 Sy( p, dadr

where (p%), denotes the W,.-geodesic connecting Pr tib and Prtu

The strategy for the proof is as follows. In Chapter 2.7, we present the impli-
cations (Iy) = (IIy) and (IIIy) = (IIy) as well as the converse of the
latter in the case N = co. Chapter 2.8 is devoted to the proof of the implication
(IIIy) <= (IVy) as well as to the proof of the equivalence (IIy)= (IVy).

In Chapter 2.9 we prove that (III) implies the dynamic EVTI (‘evolution
variation inequality’). More precisely, we derive two versions, the dynamic EVI~
and a relaxed form of the dynamic EVI*. The combination of these two versions
implies that the dual heat flow is the unique EVI flow for the Boltzmann
entropy.

The latter will be proven in a more abstract context in Chapter 2.10 which
is devoted to the study of dynamical EVI-flows in a general framework. Here in
particular, it will also be shown that (IIIy) & EVI™ = (Iy). O

Remark 2.7. Note that the reqularity assumption (17) in our formulation of the
dynamic Bochner inequality is not really a restriction. Indeed, such an estimate
with C = 2(K + L) will always follow from the log-Lipschitz bound (12) and the
RCD(—K, 00)-condition for the static mm-spaces (X, dy, my).

Let us give two motivating examples of super-Ricci flows as defined in [59,
Definition 2.4]. In the first example we construct a super-Ricci flow on the
spherical cone by means of a Ricci flow on the punctured spherical cone, while
in the second example we only draw a rough sketch.
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Example. Consider the product M x [0, 7], where M = S%(1/+/3) x S2(1/+/3)
and S%(r) denotes the 2-dimensional sphere with radius r. We contract each of
the fibers S := M x {0} and N := M X {7} to a point, the south and the north
pole, respectively. The resulting space is called spherical cone and is denoted by
Y(M). We endow (M) with

o metric dg(ny defined by
cos(dsany (2, s), (2, 5))) := cos scos s’ + sin s sin s’ cos(d(z, 2") A ),
where (z,s), (2, s") € M x [0,7] and d is the metric of M,
e measure din(z,s) ;= dm(z) ® (sin s ds), where m is the volume of M.

Since M is a RCD*(3,4) space, the cone of it is a RCD*(4,5) space. The
punctured cone Yo := X(M) \ {S,N'} is an incomplete 5-dimensional Rieman-
nian manifold. Let gy denote the metric tensor of ¥o. The curvature of the
punctured cone can be calculated explicitly and is given by Ric(go) = 4go. Then

g(t) == (1 —8t)go.

defines a solution to the Ricci flow Ric(gy) = 7%atgt with g(0) = go, which
collapses to a point at time T = %.

Let T = (0,T) with T" < T. We claim that the associated metric mea-
sure space (X(M),dsary(t),m4)ier is a super-Ricci flow. Fiz t € I and let
po, 1 € Dom(Sy) on N(M) be given. Let (ta)acio, be a Wi-geodesic con-
necting o, 1. Then, p, = (eq)«V, where v is an optimal path measure, i.e. a
probability measure on the di-geodesics IT'(S(M)) of X(M) such that (eg, 1)V is
an optimal coupling of (eg)«V = po, (e1)«V = p1, where e,: T(X(M)) — X(M)
denotes the evaluation map. According to Theorem 3.3 in [11] every optimal
path measure v will give no mass to di-geodesics through the poles. Hence we
can omit the di-geodesics through the poles without changing the Wy-geodesics.
Since the punctured cone (2o, gt)ter 1 a Ricci flow, and in particular a super-
Ricci flow in the sense of Definition 2.4 in [59], the metric measure space
(B(M),ds(ar)(t), Mit)ter is a super-Ricci flow as well.

Let us emphasize that for each t € [0,1/8) the sectional curvature of the
punctured spherical cone ¥q is neither bounded from below nor from above. In-
deed, for x,y € S?(1/v/3) and 0 < r < m an orthonormal basis of the tangent
space Ty X0 is given by {1y, Uz, 01,02, W} where

1 1
Ai: p i70a0 ) Ai: . Oa i707 b= 070a1
v Slnr(u ) v SIHT'( v ) v ( )

and uy,uy is an orthonormal basis of Ty (S%(1/+/3)) and vy, vz is an orthonormal
basis of T,,(S?(1/v/3)). Then for the sectional curvature we find

g (itn, i12) 3 —cos?r g (itn, 01) cos?r
€C(z,y,r) (UL, U2) = X ) €C(z,y,r)\U1,V1) = ——
(z,y,7) Sin2 (z,y,7) Sin2 -
2
. cos®r .
Sec(g,y,ry (U1, 02) = ———5—, SeC(zy,rm (U1, W) =1,

sin“ r

and analogously if we replace i1 by the vectors s, 01, 02. This implies in partic-
ular that Ric(y y 1 (&,§) = 4, but for r — 0 and r — 7, Sec(y y ) (U1, U2) — +00

and Sec (g ) (U1, 0;) = —o0.
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Example. Consider a surface of revolution with piecewise constant negative
curvature Ric = —K for some K > 0 depicted in Figure 1. Under the evolution
of a Ricci flow the curvature of the surface where Ric = —K will increase, while
the curvature of the “edges” (Ric = 4o00) will decrease. In this sense the region
of negative curvature will inflate, while the edges will smooth out. Under the
evolution of a super-Ricci flow the surface inflates as well but it may keep the
edges.
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Figure 1: Surface of revolution of a piecewise hyperbolic space

Finally, let us briefly comment on the a priori assumption that each of the
static spaces satisfies a Riemannian curvature-dimension condition.

Lemma 2.8. Given a time-dependent mm-space (X, dy, my)ier which satisfies
all the assumptions mentioned in the beginning of this chapter but no Rieman-
nian curvature-dimension condition is requested. Instead of that, each static
mme-space (X,d, my) is merely assumed to be infinitesimally Hilbertian and Sy
1s requested to be absolutely continuous along Wi-geodesics.

Then assertion (In) of the Main Theorem 2.5 implies that for a.e. t € I the
static space

(X,d,my)  satisfies a RCD*(—L, N) condition.

Proof. (In) together with the log-Lipschitz bound (12) implies that along all
Wi-geodesics

o 1
OFSun)] ooy = 02 Se W) sngy = —L-WRG ") + 5|50 = S

In combination with the absolute continuity of a — Si(u®) this yields the
RCD*(—L, N)-condition, cf. [59]. O

Preliminary remarks.

We use 0; as a short hand notation for %. Moreover, we put 0; u(t) =
limsup,_,; 7 (u(t) — u(s)) and 9; u(t) = liminf,_; 7 (u(t) — u(s)).

In the sequel, r,s,t always denote ‘time’ parameters whereas a,b denote
‘curve’ parameters.
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2.2 The Heat Equation for Time-dependent Dirichlet Forms
2.3 The Heat Equation

Let us choose here a setting which is slightly more general than for the rest
of the chapter. We assume that we are given a Polish space X and a o-finite
reference measure m, on it which is assumed to have full topological support.
Moreover, we assume that we are given a strongly local Dirichlet form &, with
domain F = Dom(f,’o) on H = L?(X,m,) and with square field operator I,
such that & (u) = [y To(u,u) dm, for all functions u € F. These objects will
be regarded ab reference measure and reference Dirichlet form, resp., in the
subsequent definitions and discussions. The spaces H and F will be regarded
as a Hilbert space equipped with the scalar products [ uvdm, and E(u,v) +
[ wvdms, resp. We identify H with its own dual; the dual of F is denoted by
F*. Thus we have F C ‘H C F* with continuous and dense embeddings.

Let I C R be a bounded open interval, say I = (0,T) for simplicity. In
order to deal with time-dependent evolutions we consider for 0 < s < 7 < T the
Hilbert spaces

Fiury = 12((5:7) = F) N (5,7) = F°)

equipped with the respective norms ([ ||lu¢||% + [|Orue || % dt)l/Q. According
to [52], Lemma 10.3, the embeddings F(; ) C C([s,7] — H) hold true which
guarantee that values at t = s and t = 7 are well defined.

Moreover, assume that we are given a one-parameter family (m¢):c(o,1) of

measures on X such that m; = e~ ftm,, for some bounded measurable function
fonlx X with f; € F and 3C s.t. Vt,x

To(fi)(@) < C. (22)
The basic ingredient will be a 1-parameter family (I't);e(o,7) of

e symmetric, positive semidefinite bilinear forms I'; on F, each of which has
the diffusion property

k

Ly (U(u, . up),v) = > Wilug, ... ue)De(ug,0)
i=1

(Vk € N,Yv,uq,...,ux € FNL®(X,m,),¥¥ € C(R*) with ¥(0) = 0),

e and all of them being uniformly comparable (‘uniformly elliptic’) w.r.t.
the reference form ', on F, i.e. 3C s.t. Vt € (0,T),Vu € F,Vo € X

& To(w)(x) < T(w)(z) < OTo(w)(@). (23

For each t € (0,T) we define a (strongly local, densely defined, symmetric)
Dirichlet form & on L?(X,m;) with domain Dom(&;) = F and a self-adjoint,
non-positive operator A; on L?*(X,m;) with domain Dom(A;) C F uniquely
determined through the relations

/Ft(um)dmt Ei(u,v) = /Atuvdmt
X

28



for u,v € F. Recall that u € Dom(A;) if and only if u € F and 3C” such that
Ei(u,v) < C" - ||v]|L2(m,) for all v € F.

Definition 2.9. A function u is called solution to the heat equation
Au = O on (s,7) x X

if u € Fs7y and if for all w € F, 1)

*/ St(ut,wt)dt:/ <atutawt67ft>]:*,]:dt (24)

where (-,-yr«r = (-,-) denotes the dual pairing. Note that thanks to (22),
w € L?((s,7) = F) if and only if we™! € L?((s,7) — F).

Since u; € Dom(A;) (and thus dyu; € L?) for almost every ¢ by virtue of
Theorem 2.20 we may equivalently rewrite the right hand side of the above
equation as

/ <3tut,wte_f‘>p7fdt:/ /8tut~(wte_f")dm<>dt:/ /@ut-wtdmtdt
s s X s X

which allows for a more intuitive, alternative formulation of (24) as follows:

—/ St(ut,wt)dt:/ /8tut-wtdmtdt.
s s X

Theorem 2.10. For all 0 < s <7 < T and each h € H there exists a unique
solution u € F(s 7y of the heat equation on (s,7)x X with us = h (or equivalently
with limy s uy = h).

Proof. For each t the bilinear form &£ on F is defined by

E(u,v) = —/Atuvdmo
X

/ Ly (u, velt)e™ It dm,
b

/ [T¢(u,v) + Tt (u, ft)] dme
X

for u,v € F. It immediately follows that u € F, ) is a solution to the heat
equation if and only if for all w € F(, 7

_/ 5f(ut»wt)dt=/ /(%ut-wtdmodt.
s s X

(Indeed, we simply have to replace the test function w; by we/t.)

Our assumptions on I'y and f; guarantee that £ for each t is a closed coercive
form with domain F = Dom(€,) on H = L?(X,m,), uniformly comparable to
E,. For each t , the operator A; is a bounded linear operator from F to JF*.
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Indeed,

1A HC
tlpFe = SUD S Tm 12
uwe fnuu/ o]l ¥
< sup 73 12/|tuv|dm<>
wwe [ful 2 - (o]l ¥
+ sup ﬁ/ [wle(u, fi)| dme
woer |lull 3% - ol ¥

< (1+Ir(I1L?)

if C' is chosen such that |T';(u,v)| < C - To(u)/? - To(v)'/2 for all u,v and t.
Thus we may apply the general existence result for solutions to time-dependent
operator equations O;u = Aiu on a fixed Hilbert space H. For this, we refer
to [42], Chapter III, Theorem 4.1 and Remark 4.3, see also [52], Theorem 10.3.
(Note, however, that the latter assumes a continuity of ¢ — A; in operator norm
which is not really necessary.) O

Remark 2.11. We denote this solution by u,(z) = P, sh(x). Then (P, s)o<s<i<T
is a family of bounded linear operators on H which has the propagator property

Pt,r:Pt,sOPs,r

for all m < s < t. For fired s and h the function t — P;sh is continuous
in " (due to the embedding F(s ) C C([s,T] — H)). And by construction the
function (t,x) — P; sh(zx) is a solution to the (forward) heat equation Oyu = Au
on (s,T) x X. That is, for all h € H

Ot Py sh = AP, sh. (25)

Note that the operator Py s : H — H in the general time-dependent case is not
symmetric — neither with respect to me nor with respect to m; nor with respect
to my.

2.4 The Adjoint Heat Equation

Definition 2.12. Given 0 < 0 <t < T, a function v is called solution to the
adjoint heat equation

—Agv+90sf v =05 on (o,t) x X

if v € Foy and if for all w € Fo )

t t t
/ Es(vs, wg)ds + / / Vg - Wy + g fs dmg ds = / / OsVs - Wg dmg ds.
o o JX o JX

Theorem 2.13. Assume (22) and

[fe(z) = fs(@)] < Lt = s|. (26)
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(i) Given 0 < o < t < T, for each g € H there exists a unique solution
v € Flou) of the adjoint heat equation on (o,t) x X with v, = g.

(i) This solution can be represented as
Us = Ptfsg

in terms of a family (P;,)s<t of linear operators on H satisfying the ‘ad-
joint propagator property’

P, =P, oP, (Vr <s<t).
(iii) The operators Py s and Py are in duality w.r.t. each other:

/Pt’sh ~gdm; = /h - P} g dm (Vg,h € H).

Proof. (i), (ii) The assumption implies that the same arguments used before to
prove existence and uniqueness of solutions to the heat equation d;u = A;u can
now be applied to prove existence and uniqueness of solutions to the adjoint
heat equation —0sv = Azv — (s fs)v.

(iii) Put uy = P sh and vy = P} g. Then

/utvt dmy —/usvs dmg
= //Burvrdmrdr—i—//uravrdmrdr—//urvrafrdmrdr

= /E(UT,UT dr—/ Er(up, v, )dr = 0.
O

Note, however, that — even under the assumption m,(X) < oo — in gen-
eral constants will not be solutions to the adjoint heat equation. Instead of
preserving constants, the adjoint heat flow preserves integrals of nonnegative
densities.

Lemma 2.14. For each fized t, the operators Ay and A} : u — Ayu — Oeft - u
on L?(X,m;) have the same domains: Dom(A;) = Dom(A})

Proof. Recall that v € Dom(Af) if and only if v € Dom/(&;) and if there exists
a constant C' such that for all u € Dom/(&;)

Er(u,v) +/uv8tf dmy < C - ul p2(m,)-

Boundedness of d;f implies that this is equivalent to v € Dom(A;). O

In contrast to the form domains, the operator domains Dom(A4;) in general
will depend on ¢.
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Example 2.15. Consider H = L*(R, dx) with m;(dx) = dx and
Te(u)(@) = [1+t-1g, (2)] - [u'(2)]?
forteI=(0,1). Then
Dom(A;) = {u e WIR)NW22(RU)NW22(Ry) : w/(0—) = (1+1) -u’(0+)}.
Thus Dom(As) # Dom(A) for all s # t.

Proof. Obviously, u € Dom(A;) if and only if u € WH?(R) and [L+¢- 1, Ju’ €
WL2(R). O

A basic quantity for the subsequent considerations will be the time-dependent
Boltzmann entropy. Here we put Si(v) := f U - logvdm; and consider it as a
time-dependent functional on the space of (not necessarily normalized) measur-
able functions v : X — [0, 00].

Proposition 2.16. (i) For all solutions u > 0 to the heat equation and all
s <t
Si(ug) < e . S, (uy).

(i) For all solutions v > 0 to the adjoint heat equation and all s <t
t
Ss(vs) < Sp(ve) + L/ / vy dm,. dr.
s X

Note that fX vpdm, is independent of v if mo(X) < 0.

Proof. In both cases, straightforward calculations yield
elto, {eLt /ut log uy dmt] < /(log ug + 1)Opuy dmy
= —/Ft(logut) ur dmy < 0
and
0Os / vslogvsdm, = /(log vs + 1)0svs dmg — /vs log vs - Os fs dmig

= /I‘S(logvs)vs alms—i—/vs < O0sfsdmg > —L/US dmg.

O
2.5 Energy Estimates
Throughout this section, assume (22) as well as (26) and in addition
t
T (u) — Ds(u)| < 2L - / I (u)dr (27)

for all u € F and all s < ¢.
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Recall that by definition each solution u to the heat equation on (s,7) x X
satisfies u € L?((s,7) = F) N H'((s,7) = F*) C C((s,7) — H) and

T 1
[ et dt < Sl (28)

We are now going to prove that these assertions can be improved by one order
of (spatial) differentiation. To do so, we first define a self-adjoint, non-positive
operator A; on L?(X,ms) by

—/ fltuvdmozgt(u,v) ::/ T (u,v) dms
X X

for all u,v € F. Then Dom(A;) = Dom(A;) and
fltu = Atu + Ft(u, ft)

Indeed, — [ Ajuvdme = [Ty(u,velt)e frdm, = — ffltuvdmo—i—f Ty (u, fi)vdms,.
Next, consider the Hille-Yosida approximation A,‘f = (I —6A,) 14, of 4, on
L2(X,ms,), put & (u,v) := — [ ASuvdm, and recall the well-known fact that
EX(u,u) 7 E(u,u) for each u € F as 6 \, 0. More generally,

Lemma 2.17. For all o, 8 > 0 with § —a < §: F C Dom((I — 5A,)~>AP)
and for all u € F:

u e Dom(AY) = sup H(I— (5[1,5)_‘1;1qu < 00
>0 L2

with H(I— 6141,5)_0‘;1?11” L7 HAtBuH , for 6\, 0.

Proof. For fixed t we apply the spectral theorem to the non-negative self-adjoint
operator —A; on H which yields the representation —A; = fo A E) in terms of
projection operators. For each continuous semi-bounded ¢ : Ry — R

Dom (cp(ﬂait)) {u EH: / N)[2dEy (u u)}

and (®(—Ay)u,v)y = [5° ®(A\)dEx(u,v). Thus, in particular,
F = {u eEH: / )\dEA(u,u)}
0

B

Dom ((I— 5121:&)_&;1?) = {u €H: /OOO ‘(1—35}0“

Moreover, by monotone convergence as 0 \, 0

and
2

dE(u, u)}

H(I— Mt)*aAEuH;

_/0 ‘(1+6>\)“

2

dEx(u,u) /Ooo)\2ﬂdE,\(u7u):H~
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Lemma 2.18. For all § > 0 and all u,v € F the map t — & (u,v) is absolutely
continuous with

lﬁtéf(u,v)‘ < g {c‘ft(u,u) —I—St(v,v)] .

Proof. For all 6,u,v as above, put v} = (I —6A;) 'u and v¥ = (I — 64,)" v
Then

. 1 _ _ _ .
8E(u,v) = lim- [(1 A ) YA — (I 6At)_1Atu} v dme

e—0 €

1 . _ _ .
= lim- [(1 A ) (A — A (1 — 6At)’1u] - vdme

e—0 €

. 1gs
= lim - {&(u?,vﬁﬁ Erre( utathre }

e—0 €
L
< 5l lim [gt(utaut) + Epe(viyev +e)]
L
< gllné[gt(uu)+5t+evv}: [tuu —I—c‘:tvv)}.
Here we also used the fact that & (ud,ud) & (ug, ug) as § — 0. O

Lemma 2.19. There exists a constant C' such that for all 0 < s <7 < T, for
all solutions u € Fs ;) to the heat equation on (s,7) x X and for all 6 >0

T - - 2
/ / (7= 64072 | dmedt < O [Ea(ua) + JusllFogm,)] - (29)
s X

Thus, in particular, if ugs € F then u; € Dom(flt) for a.e. t € (s,7) and

[
s X

Proof. For any § > 0 and u € F

dme dt < C - [5S(us) n ||u5||%2(ms)} . (30)

Elu) 2 &)=~ [ 0wtz -2 [ el o) dt—o

= Q/T/X(I—(Sflt)_lfitu~Atutdmodt—ol

= Z/T/X(I—5flt)_1/~1tu~fltutdm<>dt
2/T/X(I5/~1t)1fltu'I‘t(ut,f,§)dmo dt — oy

T _ _ o2
/ / ‘(I—éAt)fl/QAtu‘ dme dt — 01 — 09.
s X

0 = /@83(1%)

according to the previous Lemma and

0y = /ST/X‘(I—5;1t)1/2Ft(Ut,ft) i

) c
< o[ [ Tutwyet dmodt < el
s X

%

Here

T L
dt < L/ gt(ut)dt < 5”“3”%2(7”8)

dme dt
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for ' = sup, |T(f)e’|| L (m,). Moreover, Es(us) < C"E(us) for C" =
sup, [|e/*]| oo (sm,)- Thus the claim follows with C' = max{C", ££}. O

Theorem 2.20. For all 0 < s <7 < T and for all solutions u € Fs 1y to the
heat equation

(i) uy € Dom(Ay) for a.e. t € (s, 7).
(i) If the initial condition us € F then
ue L*((s,7) = Dom(A.) N H'((s,7) = H).

More precisely,

e_3LTET(uT) + 2/ 6_3Lt/ |Atut|2 dmy dt < e 3Ls - Es(ug). (31)
s X

(#ii) For all solutions v to the adjoint heat equation on (o,t) x X and all s €
(0,1)
Es(vs) + vsllT2(m,y < ). [&(Ut) + lloel 22, |-

Moreover, vy € Dom(Ag) for a.e. s € (o,t).

Proof. (i): In the case us € F, this follows from the previous Lemma and the fact
that Dom(A;) = Dom(A;). In the general case u, € H, by the very definition
of the heat equation it follows that u, € F for a.e. o € (s,7). Applying the
previous argument now with o in the place of s yields that u; € Dom(A;) for
a.e. t € (0,7) and thus the latter finally holds for a.e. t € (s, 7).

(ii): The log-Lipschitz bound (27) states |0;T'+(.)| < 2L-T(.). Together with
(26) this implies 05, (ur)|,_, < 3L - & (uy). Therefore,

S0, [ HE (u)] < DuEilus)|,_, = —2 / |Ayur[2dim
where the last equality is justified according to (i).
(iii) Similarly as we did in the previous Lemmas, we can construct a reg-

ularization for the adjoint heat equation which will allow to prove that vy €
Dom(As) for a.e. s € (0,t). Therefore, we may conclude

0sEs(vs) > 2/ | Agvg)?dms — 3L - E5(vy) — Z/Asvs g - Os fs dmyg
> 3L & (vs) — g/vf dmg
and thus
2 L 2
0.[u(w0) + [en By = —3L-Es(w) 5 [o2dm.
+2/ [Fs(vs) +U§ . asfs]dms - /Uf ' asfs dmg
> 3L [£(0) + 053 2gm, |-
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Remark 2.21. For fized s and a.e. o > s the operator P, maps H into
Dom(&) and then for a.e. t > o the operator Py, maps Dom(E) into Dom(A,).
Thus by composition, for a.e. t > s the operator P, s maps H into Dom(A,).

A simple restatement of the assertions of the subsequent Proposition 2.22
will yield that for all s <t and all h € H

e0<h<l = 0<P,h<l
e P, ;1 =1 provided m¢(X) < 0o
o (Poh)° < Pry(h2).
Proposition 2.22. The following holds true.
(i) For all solutions u to the heatl equation on (s,7) x X and allt > s
us > 0 a.e. on X — uy >0 a.e. on X.
More generally, for any M >0
us < M a.e. on X — ur < M a.e. on X.
If mo(X) < oo then this implication holds for all M € R.
(i1) For all solutions v to the adjoint heat equation on (o,t) X X and all s <t
v >0 a.e on X — vs > 0 a.e. on X.
More generally, for any M >0
vy < M ae. on X = vy < LN ge. on X.
If mo(X) < oo then this implication holds for all M € R.
(iii) For all solutions u to the heat equation on (s,7) X X, allt > s and all

pE [1700]

L/p-(t=s) ,

[l Lo (m,) <€ [s ]| o (.-

In particular, [, dm; < e**=%) [ugdmg for nonnegative solutions.

(iv) For all solutions u, g to the heat equation on (s,7) x X and all t > s

u? <gs a.e onX — uf < g; a.e.on X.

Proof. (i) Assume that u solves the heat equation. Put w = (v — M)4. Then
for each t, strong locality of the Dirichlet form &; implies

E(ue, (ug — M)y) = E((wy — M)y, (uy — M)4).
The chain rule applied to ®(z) = ()4 implies that a.e on (s,T) x X

Opue - (ug — M)y = Op(uy — M)y - (ug — M)
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Therefore, for a.e. ¢

o
IN

= M)y, (w — M)+) = 5t(ut, (up — M)+)
/atut7 (we — )Jre_ft dme = —/at(ut — M)y (ug — M)Jre_ft dm,

< —§€Lt O { Lt/X(ut—M)f_dmt},

where we used (26) in the last inequality. Thus us < M will imply u; < M for
all t > s.

In the case, mo(X) < oo, the constants will be in H and solve the heat
equation. Thus the previous argument can also be applied to v + M which
yields the claim.

A

(ii) Assume that v solves the adjoint heat equation. Then with a similar
calculation as before we obtain for a.e. s

1
533 /(vs — eL(tfs)M)i dm

1
= /(vs - eL(tis)M)-‘ras(’Us - eL(tis)M)+ dmg — 5 /(vs - eL(tis)M)iasfs dm

1
= /(vs — LI M (Ogvs + LM dmy — 5 /(vS — eL(t*S)M)iasfs dmgg
=E,(vs, (v — "M ) —i—/vs(vs — MM L, £ dimg
1
+ /(vs — L= (el M), dmy — 3 /(vS — L= M2 0, f dmg

3
> — iL/(v5 — eL(t_S)M)i dms.
Applying Gronwall’s inequality yields
[ = KM dm, < 10 [ b2

which proves the claim.
(ili) Assume p € (1,00). (The case p = oo follows from (i), and the case

p =1 follows from (ii) by duality.) Then, by the previous arguments the linear
operator

Pis: LY(myg) + L™ (mg) — L*(my) + L™ (my)
maps L'(m) boundedly into L'(m;) and L°(m,) boundedly into L°(my).
Then, by the Riesz-Thorin interpolation theorem P, s maps LP(m) boundedly
into LP(m;) with quantitative estimate

| Pr sl 2o (myy < €XE97P [l Lo () -

(iv) Choose w = (u? — g);. Then, again by the chain rule and since u and
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g are solutions to the heat equation, we find for a.e. ¢

1
—elt .y, {e“/ w?dmt}
2 X

IN

/@(u? — gt)wt dmt

= /atut(Qutwt) dmt — /atgtwt dmt
= —&(ut, 2upwy) + Er(ge, we)

= —5t(uf — gt7’LUt) — 2/ Ft(ut,ut)wt dmt
X

= —5t(wt7wt) - 2/ Ft(ut7ut)wt dm; <0,
X

where we applied the strong locality in the last equation. Thus

/wtzdmt < el(t=9) /wfdms

for all ¢ > s. This proves the claim.

As a direct consequence we obtain the following corollary.

Corollary 2.23. Forall s <t

(i) 1Ps,sll Lo (my)—Lo0 (my) < 1, 1P sll2t (my—Lr(myy < 1,

L(tis)a ||Pt>':sHL°°(mt)—>L°°(ms) S eL(tis);

HPtfs||L2(mt)_)L2(ms) S eL(t*s)/2'

(i) || PesllLmay—riim,) < e

(iii) I|Pesllz2(my)»z2am < €792,

The next result yields that the heat flow is a dynamic EVI(—L/2, co)-flow
for 1 times the Dirichlet energy 1&; on L?(X, m,). For the definition of dynamic
EVI-flows we refer to Section 2.10.

Theorem 2.24. (i) Then the heat flow is a dynamic forward EVI(—L/2, 00)-

flow for %x the Dirichlet energy on L?%(X,my)scr, see section 2.10. More

precisely, for all solutions (us)ic(s,7y to the heat equation, for all 7 < T
and all w € Dom(E)

5t(ut) - lé't(w) (32)

1 n 2
- 2

s=t Z .
where ||.||s is defined according to Definition 2.71 with dy(v,w) = v —

w||, = (f [v—w|2dmg)/2.

(ii) The heat flow is uniquely characterized by this property. For allt > s and
all solutions to the heat equation ||u||; < e“®=5)/2||ug|s.

Proof. (i) Assumption (26) implies 8t||va <L Hv”f as well as (following the
argumentation from Proposition 2.72)

2

s,t

L 2
Os ol loze < 5 10l

38



for all v and t. Therefore, we can estimate

1 : 1
gl —wll] = e sy (s =il = o= wl)
. 1 2 2
i ey (e = w2, = e =)
L
< (up —w, Opug)e + *H“t - wHtQ

4
L
= —&(u,u) + E(w,u) + Z”ut —w||

1 1 L
< —§8t(u,u) + ié’t(w,w) + ZHUt - wth

(ii) Uniqueness and the growth estimate immediately follow from the EVI-
property. Indeed, the distance HH , and the function £ on the time-dependent

geodesic space L?(X,my)er satisfy all assumptions mentioned in Section 2.10
on EVI-flows. In particular, the distance is log-Lipschitz: 8tHva <L Hva and
the energy satisfies the growth bound & < Cjy &;. O

The next lemma states semicontinuity of the heat flow and the adjoint heat
flow with respect to the seminorm V€.

Lemma 2.25. Let u,g € Dom(E), 0 <r <t <T. Then
I%Ptfsg =g in (Dom(&),VE),

li\r‘n Po,u=u in (Dom(€),VE).

Proof. Since Py g — g in L?(X) and the Dirichlet energy is lower semicontin-
uous we have

&i(g) < lilsn/glf E(Py59)-
On the other hand from Theorem 2.20(iii)
Eo(Prog) + 1P gl 2(m.) < "7 (Eg) + 119l L2(my))s
for every s < t. Hence, again since ;g — u in L?(X),

Eu(g) = limsup e "= (E (P g) + 1P o9l L2 m.)) = 9l 22 (mo)

s/t
> limsup & (P} g) = limsup &,(P/,g),
s, 't ’ s/t ’

where the last identity follows from the Lipschitz property of the metrics and
the logarithmic densities. Then, since &; is a bilinear form, the parallelogram
identity yields

lim/Sup E(Plg—g) = lim;up(%t (9) +2&(P;9) — E(u+ Pl yg))
s 't s Nt

< 4&(g) — liminf & (g + Py o9)) < 48:(g) — £:(29)

:0’
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where the last inequality is a consequence of the lower semicontinuity of &;.
The second assertion follows along the same lines replacing Theorem 2.20(iii)
by Theorem 2.20(ii). O

2.5.1 The Commutator Lemma

In the static case, generator and semigroup commute. In the dynamic case, this
is no longer true. However, we can estimate the error

‘/X [Ay(Py su) — Py o(Agu)] vdmy)| .

To guarantee well-definedness of all the expressions, we avoid ‘Laplacians’ and
use ‘gradients’ instead.

Lemma 2.26. For all o < 7, all solutions u € F(5 7y to the heat equation, and
all solutions v € F(, ) to the adjoint heal equation

1€ (g, vy) — Es(us, vs)| < Cusg,vy) - |t — s|/? (33)
for a.e. s,t € (0,7) with s <t where

Clugyve) = C - [Exue) + Eulwr) + [0l13 ] (34)
with C := Le3(LADT

In other words, the commutator lemma states

’/ [At(Pt_’sus) — Ptvs(Asus)] vedmy| < Clug,vy) - |t — s|1/2. (35)
X

Proof. Obviously, the function r — &, (u,,v,) is finite (even locally bounded)
and measurable on (o,7). Therefore, by Lebesgue’s density theorem for a.e.
s,t € (o,7)
1 t 1 s+0
gt(utavt) = ;1\1‘%5 s g’r(urvvr) d7”7 (‘:S(US,'US) :(%I\I‘r(l)g‘/s g’r(uhvr) dr

and thus

t—o

. 1
Er(ug,ve) — Es(ug,vs) = (%1{1}) 5 (57«+5(Ur+5, Vpts) — Er (U, vr)) dr.

To proceed, we decompose the integrand into three terms
1 1
g [€r+5 (UT+57 UT+5) - gr(u'ry Ur)} = g [gr+5 (ur+57 Ur+§) - 57’+6 (u'm ’U'r‘Jr(S)]
+ [gr+5 (UT, UrJr(S) - gr (um Ur+5)]

+ [gT(uT’UT-‘rtS) - gr(ura’ur)}
= a,(0) + B (0) + 7 (9).

1
5
1
5
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Let us first estimate the second term

1
/87(5) = 5 [57'4-5 (UT' + U7'+6) + gr—i—é (ur - U7'+5) - 57'(“7- + Ur+6) - 57'(“7‘ - U’r'—‘,—é)}
3L
< T SLE, (uy + Vrps) + Er(ty — Vyys)]
3L
< o efto (Er(ur) + Erg5(Vris)]

due to the fact that [9,&,(w)| < 3LE&.(w) for each w € F. According to
Theorem 2.20, the final expressions can be estimated (uniformly in §) in terms
of &(us) and & (ve) + [|ve]|72(,,,)- Thus we finally obtain

t—8
lim Br(d)dr < %

N0 (& (ur) + Er(vy)] dr

S

3L aris
< (- 5) T MO [£4us) + E(o0) + ol agny |-

Now let us consider jointly the first and third terms

t—6 1 t—o
/ [ (8) + e (0)]dr = 3 / [€T+5((UT+5 — Uy, UT+5) + & (urv (V46 — UT))] dr
- _S / [(ur+5 - ur) “ArysVrys e Ireo
X

+A - (Vpps — vp) - e*f’} dme dr

t—§
= *7/ / / r+eur+e‘ r+5vr+5 € e +

: ( Ar—&-e”r-&-e + fr+evr+e) fr:| dmo dr de

Integrability of |A,u,|?> w.r.t. dm, dr implies that ftt s [Avur2dm, dr — 0 as

§ — 0as well as [’ o | Ay ur|2dm,. dr — 0. Thus together with Lipschitz conti-
nuity of ¢ — f; this implies

t—§
g / / / I:Ar-‘reu’r-‘re . Ar+51}r+5 . e_fr+6 + _Arur . AT+€UT+€ . e_fr:| dmo drde — 0
0 X

as 0 — 0. Thus (since f is bounded by L and since r — lvr|lL2(m,) is non-

decreasing)
1 § t—§ .
S N / / / |Arur : fr+evr+e| dmr dr de
4 0 s X

' 1/2
2
L-Jt— 5\1/2 . (/ |A,«u7«| dm, dr) Nvell 2 (mo)

] 1/2
L- |t — 5‘1/2 : <2€3L(ts)gs(us)> : ”UtHLz(mt)'

lim
§—0

t—0
/ (00 (8) + (6] dr

IN

IN
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To summarize, we have

t—6
‘gt(uhvt) - 58(“5a“8)| - gi\% / (r(8) + Br(8) + 7 (8)) dr
3L
< |t—s = o3L(t=s) [gs(us) + E(vy) + ||vt||%Z(mt)}
) 1/2
Lt —s|'/2 (263L(t_3)5s(u9) vell 2 m,)
< Ol oM B+ Eulo) + [0l

with C' := Le3(EHDT according to the energy estimates of the previous Theorem.
O

2.6 Heat Flow and Optimal Transport on Time-dependent
Metric Measure Spaces

We are now going to define, construct, and analyze the heat equation on time-
dependent metric measure spaces (X, dt’mt)tel'

2.6.1 The Setting

Here and for the rest of the chapter, our setting is as follows:

The ‘state space’ X is a Polish space and the ‘parameter set’ I C R will be a
bounded open interval; for convenience we assume I = (0,7'). For each ¢ under
consideration, d; will be a complete separable geodesic metric on X and m; will
be a o-finite Borel measure on X. We always assume that there exist constants
C,K,L,N' € R such that

e the metrics d; are uniformly bounded and equivalent to each other with

dt(m7y) ‘
lo <L-|lt—s 36
Jou gy < 2= )

for all s,t and all z,y (‘log Lipschitz continuity in t’);

e the measures m; are mutually absolutely continuous with bounded, Lips-
chitz continuous logarithmic densities; more precisely, choosing some ref-
erence measure m,, the measures can be represented as m; = e~ frm, with
functions f; satisfying |fi(x)| < C, |fi(z) — fi(y)] < C - di(z,y) and

|fs(@) = f(@)| < L-|s 4 (37)
for all s,¢ and all z, y;

e for each ¢ the static space (X,d;,m;) is infinitesimally Hilbertian and
satisfies a curvature-dimension condition CD(K, N’) in the sense of [57],
[43], [5]-

In terms of the metric d; for given ¢, we define the L?-Kantorovich- Wasserstein
metric W; on the space of probability measures on X:

1/2
Wi(u,v) = inf{/ di(z,y) dg(z,y) : q€ Cpl(uﬂ/)}
XxX
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where Cpl(u,v) as usual denotes the set of all probability measures on X x X
with marginals © and v. In general, it is not really a metric but just a pseudo
metric. Denote by P = P(X) the set of all probability measures p on X
(equipped with its Borel o-field) with Wy (u,d,) < oo or some/all z € X and
tel

The log-Lipschitz bound (36) implies that for all s,t € I and all y,v € P

Wt(:uv V)
W, v)

log

’gL-|t—s|. (38)

Note that the latter is equivalent to weak differentiability of ¢ — Wy(u,v) and
10:Wi(p,v)| < L - Wi(p,v) for all p,v € P.
A powerful tool is the dual representation of W2

32 =sw{ [[odut [vars oo+ 00) < g},

where the supremum is taken among all continuous and bounded functions
,1. Closely related to this is the d;-Hopf-Lax semigroup defined on bounded
Lipschitz functions ¢ by

1
; ;= inf —d? X.
ap(x) = inf {w(y) o di(y)p, a>0,z€

The map (a,z) — QF p(x) satisfies the Hamilton-Jacobi equation

1 . .
0aQap(x) = =5 (lip,Qup)*(2),  lim Qup(w) = ¢(a). (39)
In addition, since (X, d;) is assumed to be geodesic,

Lip(QL¢) < 2Lip(¢), Lip(Q'f(z)) < 2[Lip(p)]*.

See for instance [7, Section 3] for these facts.
For p,v € P(X) the Kantorovich duality can be written as

1
5Wf(uo,u1) = sgp { / Qlpduy — / <Pduo}~ (40)

We say that a curve pu: J — P(X) belongs to ACP(J;P(X)) if

b
Wi (u®, pub) < / g(r)dr VYa<belJ

for some g € LP(J). We will exclusively treat the case p = 2 and call p a
2-absolutely continuous curve. Recall that there exists a minimal function g,
called metric speed and denoted by |fi,|: such that

cal . 1: Wt(uahu‘b)
e i= fim = =0

See for example [4, Theorem 1.1.2]. For continuous curves p € C([0,1], P(X))
satisfying p® = wu®m with u® < R, u belongs to AC?([0,1],P(X)) if and
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only if for each ¢t € (0,T) there exists a velocity potential (®¢), such that
[ [To(®¢)dp®da < oo and

ay
/Lpdp“l - /(pdu“o :/ /Ft(go,@?)duada, for every ¢ € Dom(&). (41)
ag
Moreover we can express the metric speed in the following way
it = [ Tol@t)duc, (42

See section 6 and 8 in [8] for a detailed discussion.

Occasionally, we have to measure the ‘distance’ between points z,y € X
which belong to different time sheets. In this case, for s,t € I and u,v € P(X)
we define

n 1/2
W, — inf Ui a1 )l a;—1 ,,0;
st(p,v) =1in hg% 0:a0<sﬂga”:1’ {;(a, ai-1) ﬂ(ai,l)(ﬂ s 1 )}
a;—a;—1<h -

where the infimum runs over all 2-absolutely continuous curves p: [0,1] — P(X)
with ug = p, g1 = v. See Section 6.1 for a detailed discussion and in particular
for the equivalent characterization

1/2

1
Wesliov) = inf { e da} (43)
, 0 sta(t—s)

where the infimum runs over all 2-absolutely continuous curves (p®)qcp0,1] in
P(X) connecting p and v.

In the following we will make frequently use of the concept of regular curves,
which already has been successfully used in [7, 24, 8]. We use the refined version

of [8].
Definition 2.27. For fized t € [0,T], let p* = u®m; € P(X), a € [0,1]. We
say that the curve p is reqular (w.r.t. my) if:
1. w € C([0,1], LY (X)) N Lip([0, 1], F*),
2. there exists a constant R > 0 such that u® < R m-a.e. for everya € [0,1],
3. there exists a constant E > 0 such that &(v/u*) < E for every a € [0,1].

Remark. Due to our assumptions on the measures, (p*)q is a reqular curve
w.r.t my if and only if it is also a regular curve w.r.t mg. In this case, it is also
a regular curve w.r.t my, where ¥ is a function belonging to C1([0,1],R). So we
will just say regular curve.

We will use the following approximation result which is a combination of [8,
Lemma 12.2] and [24, Lemma 4.11].

Lemma 2.28. Let X be a RCD(K, o0) space. Let pg, p1 € P(X) and (p*)acjo,1]
be the Wi-geodesic connecting them. Then there exists a sequence of regular
curves (p%)acjo,1), n € N, such that

Wipt, pa) = 0 for every a € [0,1], (44)
1
fimsup [ |ga[Eda < W2 (oo, o). (45)
n—oo Jo
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If we additionally impose that pg, p1 € Dom(S), then

Se(p) = St(pa) for every a € [0,1], (46)
and
limsup sup Si(pl) < sup Si(p,) = max Si(pa). (47)
n—oo a€l0,1] a€l0,1] a€l0,1]

Proof. We follow the argumentation in [8, Lemma 12.2] and approximate pg, p1
by two sequences of measures {o7'}, with bounded densities. Then as in [7,
Proposition 4.11] one employs a threefold regularization procedure to the W;-
geodesic (v7), connecting off and o}: Given k € N, we first define p?*! =
H! /kvg, where H! denotes the static semigroup. Then we set

n,k,2 __ n,k,1 / /
a _/pafa’Xk(a )da?
R

where 1 (a) = kx(ka) for some smooth kernel y € C.(R). Finally we set p™* =
hl/k7tpg’k’2, where h'/%t denotes the mollification of the static ¢-semigroup.
Then by a standard diagonal argument one obtains a sequence of regular curves
in the sense of Definition 2.27 satisfying (44) and (45).

In order to show (46) and (47) note that since X is a RCD(K, c0) space
we have that a — S¢(p,) is K-convex, where (p,) denotes the W, geodesic.
Together with the lower semicontinuity of the entropy the map a — Si(pa) is
continuous. Using the convexity properties we follow the argumentation in [24,
Lemma 4.11] and insert the explicit formulas of the regularization (p}') to obtain

Su(p) < Si(pl?) < / 3o ()81 (oo
K (48)
< Sy(pa) + / 3 (@) |54 (Paar) — Se(pa)da’.

Since a — S¢(p,) is uniformly continuous by compactness, the last term vanishes
as n — oco. Thus we obtain limsup,,_, . St(p?) < S¢(pa). The lower semiconti-
nuity in turn implies (46).

One obtains (47) from (48) by exploiting the uniform continuity of the entropy
along geodesics on compact intervals once more. O

Later on in this chapter (Section 2.7.2), we will see that there is an easier
construction of regular curves based on the ‘dual heat flow’ to be introduced
next.

2.6.2 The Heat Equation on Time-dependent Metric Measure Spaces

Due to the CD(K, N')-condition for each of the static spaces (X,d:, m;), the
detailed analysis of energies, gradients and heat flows on mm-spaces due to
Ambrosio, Gigli and Savaré [4, 5, 6, 7] applies. In particular, for each ¢ there is
a well-defined energy functional

E(u) :/ |Viul?dm; = liminf /(liptv)2 dmy (49)
D' v—uin L2(X,m¢) J X
vELip(X,dy)
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for u € L*(X,m;) where lip,u(z) denotes the pointwise Lipschitz constant (w.r.t.
the metric d;) at the point « and |V;u| denotes the minimal weak upper gradient
(again w.r.t. d;). Since (X, d;, m¢) is assumed to be infinitesimally Hilbertian,
for each t under consideration &; is a quadratic form. Indeed, it is a strongly
local, regular Dirichlet form with intrinsic metric d; and square field operator

I‘t(u) = |Vtu|2.

In the sequel, we freely switch between these two notations of the same object.
The Laplacian A; is defined as the generator of &, i.e. as the unique non-
positive self-adjoint operator on L?(X,m;) with domain D(A;) C D(&;) and

7/ Awvdmg = E(u,v) (Vu € D(A¢),v € D(&)).
X

Thanks to the RCD(K, co)-condition, for each ¢ the domain of the Laplacian
coincides with the domain of the Hessian [27], i.e. Dom(A;) = W22(X,dy, my).
Indeed, the ‘self-improved Bochner inequality’ implies that

To.(u) > K |Voul? + [Viulkg

which after integration w.r.t. m;, integration by parts, and application of Cauchy-
Schwarz inequality gives

IV2ull? < (1+ K-/2) - (1A + [lu]?) (50)

with K_ := max{—K,0} and |.||? := ||.H%2(mt).
Note that in general, Dom(A;) may depend on ¢, see Example 2.15.

Due to our assumptions that the measures are uniformly equivalent and that
the metrics are uniformly equivalent, the sets L2(X,m;) and W12(X, dy, my) :=
D(&;) do not depend on t and the respective norms for varying ¢ are equivalent
to each other. We put H = L?*(X,m,) and F = D(&,) as well as

Fls,r) = LQ((S,T) — .7:) ﬂHl((S,T) — .7-"*) C C([S,T] — ’H)

for each 0 < s < 7 < T. For the definition of ‘solution to the heat equation’
and for the existence of the heat propagator we refer to the previous chapter.

Theorem 2.29. (i) For each 0 < s < 7 < T and each h € H there exists a
unique solution u € F(s 7y to the heat equation Oyuy = Auy on (s,7) X X with
us = h.

(i) The heat propagator Py s : h — u; admits a kernel py s(x,y) w.r.t. ms,
i.e.

P, sh(z) = /ptys(x,y)h(y) dms(y). (51)

If X is bounded, for each (s',y) € (s,T) x X the function (t,z) — pys(x,y) is
a solution to the heat equation on (s',T) x X.

(#ii) All solutions u : (t,x) — us(x) to the heat equation on (s,7) x X are
Hélder continuous in t and x. All nonnegative solutions satisfy a scale invariant
parabolic Harnack inequality of Moser type.
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(iv) The heat kernel p s(x,y) is Holder continuous in all variables, it is
Markovian

/ Prs(w,y) dms(y) = 1 (Vs < t,Vx)

and has the propagator property

pt,T(Ia Z) = \/pt,s(xa y) ps,r(y7 Z) dm?(y) (VT <s< t7vs7 Z)

Proof. (i) It remains to verify the boundedness and regularity assumptions on
ft and T'y which were made for Theorem 2.10. Choose a reference point tg €
and put T'y = I'y;. Then & (u) = [Ty, (u)e f0odm,. The uniform bounds on
f+ and on T',(f;) are stated as assumption (37). The log Lipschitz bound (36)
on d; implies the requested uniform bound on I';. The claim thus follows from
Theorem 2.10.

(ii), (iii), (iv) The RCD-condition with finite N’ implies scale invariant
Poincaré inequalities and doubling properties for each of the static spaces (X, d¢, my)
with uniform constants. Together with the uniform bounds on f;, T'(.) and
T';(ft) this allows to apply results of [41] which provides all the assertions of the
Theorem. O

Remark 2.30. The formula (51) allows to give a pointwise definition for
Py sh(z) for each h € L*(X,ms) (or, in other words, to select a ‘nice’ version)
and, moreover, it allows to extend its definition to h € L' U L>.

Recall, however, that in general the operator P,  is not symmetric w.r.t. any
of the involved measures (my, ms or mg) and that in general the operator norm
in LP for p #£ oo will not be bounded by 1.

2.6.3 The Dual Heat Equation

By duality, the propagator (P s)s<; acting on bounded continuous functions

induces a dual propagator (P, s)s<; acting on probability measures as follows
/ wd(Pyop) = / (P (YueCy(X),VpeP(X)).  (52)

It obviously has the ‘dual propagator property’ Pt,r = PS,T o ]5,5,8. Whereas the
time-dependent function v,(z) = P, su(x) is a solution to the heat equation

3tv = At’U, (53)

the time-dependent measure v,(dy) = P, 4u(dy) is a solution to the dual heat
equation

—0sv = A,
Here again A, is defined by duality: [ud(Agu) = [Agudp  (Yu,Vp).

If we define Markov kernels p; s(x, dy) for s < ¢t by py s(z, dy) = pr.s(x,y) dms(y)
then

Py su(r) = /U(y)pt,s(x,dy) = /u(y)pt,s(m,y) dms(y)
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and the dual propagator is given by

Puatld) = [ ps(ody) o) = | [ (o) dute)| am.o)

In particular, (P; .0,)(dy) = pr.s(z, dy). Note that P, qu(X) = J Pis1(z)dp(x) =
1.

Theorem 2.31. (i) For each 0 < o < t < T and each g € H there exists a
unique solution v € Foy) to the adjoint heat equation Osvs = —Agvs + (Osfs)vs
on (o,t) x X with vy = g.

(ii) This solution is given as vs(y) = P;,g(y) in term of the adjoint heat
propagator '

Py og(y) = / pra(,9)g(x) dmy (). (54)

If X is bounded, for each (t',z) € (0,t) x X the function (s,y) > pis(x,y) is a
solution to the adjoint heat equation on (0,t") x X.

(iii) All solutions v : (s,y) — vs(y) to the adjoint heat equation on (o,t) x X
are Holder continuous in s and y. All nonnegative solutions satisfy a scale
inwvariant parabolic Harnack inequality of Moser type.

Proof. The assumption on Lipschitz continuity of £ — f; implies that all the reg-
ularity assumptions requested in [41] also hold for the time-dependent operators
As — (0sfs) (which then are just the operators A; perturbed by multiplication
operators in terms of bounded functions). Thus all the previous results apply
without any changes. O

Corollary 2.32. For all g,h € L*(X)

/h-Pt’fsgdms = /Pt7sh-gdmt

and
Pyo(g-mi) = (Plog) - ms. (55)

Lemma 2.33. (i) P, , is continuous on P(X) w.r.t. weak convergence.

(ii) The dual heat flow s — ps = Ist,s,u is uniformly Holder continuous (w.r.t.
any of the metrics W,,r € I, see next section). More precisely, there exists a
constant C' such that for all s,s'" < t, all 7 and all p

Wi (s, prsr) < C - |s = 5. (56)

(iii) If X is compact then for each s <t

PtSZP(X)—)D

)

where D={pu € P(X): p=ums, u€ FNL®, 1/uec L*=}. R
(iv) For u € P(X) such that p € Dom(S), the dual heat flow (Pysft)s<t
belongs to

AC2([0,1], P(X)).
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Proof. (i) For each bounded continuous u on X the function P; ;u is bounded
continuous. Thus u,, — p implies

/Udf)t,s,un = /Pt,SUd/Ln — /Pt,SUd/“L = /Udf)t,s,u

which proves the requested convergence Pt,s L —> Pt,s -
(i) Given ps = Py sp and py = Py op for s < s’ < ¢. Then

W2 (ps, s ) // (2, y) ps s (2, y) dmis (y) dps ().

According to [56, 41], the heat kernel admits upper Gaussian estimates of the
form

¢ d3 (x,y)
e R

with o := |s—s’| and B, (r, z) denoting the ball of radius r around z in the metric
space (X,d;). Moreover, Bishop-Gromov volume comparison in RCD(K, N)-
spaces provides an upper bound for the volume of spheres

AR < () VIR )

r

for R > r where A(r,z) = 0,4m,(B-(r,z)) and thus (by integrating from 0 to

Vo)

A(R,z) < N eBVIKIN=D . (B, (Vo,z))

for R > \/o. Hence, we finally obtain
W2 i) < [ [0 poston) dima(y) dio @)

< mmay f e on (- S )am ] @

0o N-1
SCO-FC/ / R2~exp<—R—)N%~6RV‘K|(N_1)deuS/(x)
x Je Co g /

<C'-o

(iii) By definition of solution to the adjoint heat equation, the densities
ug of P op (wrt. my) lie in Dom(E). Parabolic Harnack inequality implies
continuity and positivity. Together with compactness of X this yields upper
and lower bounds (away from 0) for w.

(iv) In a similar calculation as in Proposition 2.16, we find for pu = vmy,
s = Ist)s,u since the dual heat flow is mass preserving,

/ / (log v, )dprdr = Se() s(hs) / /vT(? frdm.dr

< Sp(p) +my(X) + L(t — s).
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Now choose ¢ € Dom(E) with ¢,T'(¢) € L>°(X). Then

’ [ oumi [ bv.dm.| = / 6 (6.0, )dr
< / t ( / Fr<¢)vrme)1/2 ( / I, (log vr)vrdmr)m dr
< / t < / Ft(gb)vrdm,)lﬂ (&Mst) / Fr(logvr)v,«dm,)lﬂ dr

Then, Theorem 7.3 in [1] yields

i f? < 460 [T, log v Jurdm, € L ((0.1)

where the last conclusion is due to our previous calculation. O

Lemma 2.34. Let u,g € Dom(€) and t € (0,T) with g € L*(X,m;). Then,

o1 »
}ILI{%E (/ugdmt - /uPtvt_hgdmt_h> = /Ft(u, g)dmy.

Proof. Without loss of generality assume that ¢ > 0 and [ gdm; = 1. The
general case can be obtained by considering the positive and negative parts
separately and normalization. We first prove that for ¢ € Dom(€) and u €
Lip(X)

1 1
7 (/ ugdmy — /uPtfthgdmth) :/ /Ft,rh(u,Pt*’tf,,hg)dmt,rhdr.
0

(57)

Note that for 0 <r; <ry; <1

* *
‘/“Pt,t—mhgdmt—rzh - /upt,t—rlhgdmt—rlh

< Lip(u)Wa (P t—ryn(gme), Pra—rin(gme)),

and hence, as a consequence of Lemma 2.33(ii), the map r = [wP},_,,gdm;_,p,
is absolutely continuous. Thus

1 I
n (/ ugdmy _/uptfthgdmth) = _E/ ar/upt’ftfrhgdmtfrhdr
0
1 /1
=— 7/ /ue Jemrn) Py rpgdme — f/ /uPtftfrhgare_f“""Ldmodr

:/ Ef rh(Pft rh9,U€ ~fe- Th dT’+/ / t,t— rhguUe ~fe- Tha ft rhdmodr
0
—/ /Pt*)tfrhgue_ft*”‘8Tft_rhdm<>d7“

0

1 1
:/ gffrh(Ptftfrhga uei‘ftirh)dr = / gtfrh(Ptftfrhgv u)dr,
0 0
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where we used that r — P/, g is a rescaled solution to the adjoint heat
equation.

Since we assume that the space has a lower Riemannian Ricci bound, we
obtain equation (57) for every u € Dom(&) by approximating with Lipschitz

functions u,, satisfying u, — wu strongly in (Dom(E), /|| - H2L2(X) +&(+)), see

[6, Proposition 4.10]. Hence

1 . e )
%{%E (/ ugdmy — /Upt,thgdmth> = }ILI{‘I})/O /thrh(uvPt,tfrhg)dmtfrhdr

1
:A %‘1\‘1’%/thrh(uvPt,tfrhg)dmtfrhdr

_ / T (u, g)dme,

where the third inequality directly follows from Lemma 2.25 and the second
equality follows from dominated convergence. O

To summarize:

> Given any h € L*(X,ms) the function (¢,z) — ui(x) = P sh(z) solves
the heat equation dyu; = Aguy in (s,T) x X with initial condition us = h.
In Markov process theory, this is the Kolmogorov backward equation (in
reverse time direction).

> By duality we obtain the dual propagator PLS acting on probability mea-
sures. Given any v € (P(X), W,), the probability measures (s,y) — ps =
pt,sy solve the dual heat equation —0sus = Asus in [0,%) x X with terminal
condition p; = v.

> Their densities vy = 3’# solve the Fokker-Planck equation or Kolmogorov

forward equation (in reverse time direction)
—851]5 = Asvs_asfs *Us
in (0,t) x X. The latter is also called adjoint heat equation.

2.7 Towards Transport Estimates

In the sequel, N always will denote an extended number in [1,00]. The as-
sumptions from section 2.6.1 will always be in force (in particular, we assume
RCD*(K, N’) and the bounds (36) and (37)). Moreover, X will be assumed to
be bounded (and thus compact).

2.7.1 From Dynamic Convexity to Transport Estimates

Definition 2.35. We say that the time-dependent mm-space (X, dy, mt)te[ s a

super-N-Ricci flow if the Boltzmann entropy S is dynamical N-convex on I X P
in the following sense: for a.e. t € I and every Wy-geodesic (u*)acio,1] in P
with p°, u* € Dom(S)

R 1, 1
OF U)oy = 0 S| g = — 500 WE (0, 1Y) + [ Sutu) = Suu!)
(58)
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N -super Ricci flows in the case N = oo are simply called super Ricci flows.
Recall that D={pu € P(X): p=ums, u€ FNL®, 1/u€ L>®}.

Proposition 2.36. Given probability measures pu,v € D C P, then the W-
geodesic (p*)acio,1] connecting i and v has uniformly bounded densities % o<
and there exist Wy-Kantorovich potentials ¢ from p to v and vy from v to u (both
conjugate to each other) such that

5(1515(;7 )’a O+ sl Et(¢, ) 8aSt(Pa)|a:1_ S +(€t('l/),'0)-

Proof. This result uses only properties of the static mm-space (X, d;, m;). It can
be found as estimate (6.19) in the proof of Theorem 6.5 in [3]. Note that due to
our (upper and lower) boundedness assumption on u, v, no extra regularization
is requested. O

Proposition 2.37. Given 7 < T and p,v € D C P, put pu = If’t,Tu and
v, = P, v. For each t € (0,7), let ¢, and ¢, be any conjugate Wy-Kantorovich
potentials from py to vy and vice versa. Then for every t € (0,7)

SO )t > 66 ) + Eth0) (59)
whereas 1

§3th2(Mm Ve)lp=t— < E(de, we) + E(vr, ve). (60)
Here uy and vy denote the densities of py and vy, resp., w.r.t. my.

Proof. We closely follow the argumentation of the proof of Theorem 6.3 in [3].
According to Proposition 2.20, us, v; € Dom(E). Moreover, due to boundedness
of X, the Kantorovich potentials ¢, and 1, are Lipschitz and thus also lie in
Dom(€). Since ¢; and 1), are conjugate W-Kantorovich potentials from gy to
v and vice versa, we get

1
§Wt2(/lt7’/t) = /¢tdut+/¢td1/t

whereas )
W)= [ s+ [ iy
for r # t. Thus

1. .1
3 llgl\fgf — [Wf (s ) = W (s, v4)]

U@mfm /wm—mﬂ
= t(¢t7Ut) + & (e, v1).

Similarly, we obtain

v

1 1
3 lim sup [th(ﬂty ve) = Wi (pr, Vr)]
r 't -r
< hmsupi U Geldpe — dpr] + /wt [dvy — dvr]]
r, 't

= E(be,up) + E Wy, vy).
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Theorem 2.38. Assume that (X, dt’mt)te(o )

(1e)e<r and ()i<- are dual heat flows started in probability measures fi,,v, €
D. Then

is a super-Ricci flow and that

a;,WtQ(/,Lh l/t) Z 0.

Proof. The assumptions on the densities are preserved by the dual heat flow,
that is, p; and v; will have densities in Dom/(&) which are bounded from above
and bounded away from 0, uniformly in ¢. According to Proposition 2.36

0aSt (') — 0uSe (™) < Ei(u,ur) + Er(Wy, vr)

with ¢; and v being suitable W;-Kantorovich potentials from p; to 14 and vice
versa. Proposition 2.37 yields

1
Et(br, ur) + Ex(r, vr) < §8r_Wt2(Mr7 V7‘)|,,,:t+~

Being a super-Ricci flow implies

1
_gar_Wf(Nta Vt)’ < 3a5(771_) - aa5(770+) (61)

r=t—

for every Wi-geodesic (n”)pep0,1] connecting i and v;. Summing up these in-
equalities (and multiplying by 2), we arrive at

Oy Wi (pry vy)| + a;Wf(Ut;Vt)L:t >0, (62)

r=t+

which seems to be almost the claim. However, applying the chain rule for (non
continuously differentiable) functions which depend twice on the same variable
requires some care. Note that the first term in the above inequality reads
liminfs o 5 (WZ(te+s, Virs) — WE (e, ve)). To conclude 8 W2 (e, v¢) > 0 we
will have to replace the second term in the above inequality by

... 1
hgn\"lglf 5 (Wt%ra(ﬂwré» Vigs) — Wi (pess, Vt+5))-

To do so, we pass to the integrated version (w.r.t. ¢). Using the absolute conti-
nuity of ¢ — W2 (s, v4), we obtain for all r < s

s ) 1
Wsz(MSa V) — Wrz (o, V) = / hf;l\sup 5 [WE(#H&, Vits) — Wt?(;“’tv V)
r 0

+ Wi s (pets, Virs) — WE(fesss Vt+5)} dt

2/ hm1nf6(W (tt6, Vits) — Wf(ut71/t))dt
,

+11r§1§51p 5 / Wi s(thers, vers) — Wt2(m+5,ut+5))dt

:/T hgl\glfé(wt (Htts, Vivs) — Wt2(.ut7’/t)>dt

U S
+ hfsn\%lf g/r (WtQ(Nt, ve) = Wit s (s, Vt))dt

!
> /T {hgn\lnf 5 (Wtz (Htss Virs) — Wi (s, Vt))

+ hm 1nf 5( (e, ve) — W25 (e, ut))}dt >0,
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where the last inequality is due to (62). This proves the claim. In the previous
argumentation, we twice interchanged | ...dr and liminfs or limsups which is
justified by Lebesgue’s dominated convergence theorem since %[Wf_i_ s — W7 is

uniformly bounded (due to the log-Lipschitz bound on the distances). O

Corollary 2.39. Assume that (X, dt’mt>te(0 ) 18 a super-Ricci flow and that

(1)i<r and (V¢)i<r are dual heat flows started in points ji, and v, € P, resp.,
for some 7 € (0,T]. Then for all0 <s<t<rt

VVS(,U&VS) S Wt(,utyyt)- (63)

Proof. For measures (., v, with densities in Dom(&) which are bounded from
above and bounded away from 0 the estimate (63) immediately follows from
the previous theorem and the fact that the map ¢ — Wi(us, 1) is absolutely
continuous (Lemma 2.33).

The set of such probability measures is dense in P (w.r.t. weak topology)
and according to Lemma 2.33, ]375,5 is continuous on P. Thus the estimate (63)
carries over to all p,,v, € P. O

Theorem 2.40 (“(Iy) = (IIy)”). Assume that (X, dt7mt)t€(0 o
N-Ricci flow and that probability measures p., vy € P are given for some T €

(0,T]. Then the dual heat flows (p)i<r and (v¢)i<- starting in these points
satisfy for all0 < s <t <7

1S @ super-

W) < Wer) = [ 18000) =S, (04

Proof. For measures p,, v, within the subset D we follow the proof of the pre-
vious Theorem 2.38 line by line and finally use the enforcement of the super

Ricci flow property to deduce
1 1
——liminf =
50 0

[Wt2+5(ut+5, vigs) — Wipiys, Vt+6)} < 0.51(7 ) — 0uSe ()

1
N [St(pt) — St(Vt)}Q
instead of (61). Together with the other estimates from the proof of the previous
theorem this gives

| 1
—5 liminf < W2is(hrsr vivs) = Weneve)| < =~ [Se(pe) — Se(m)]? .

5—0 0 - N
Integrating this w.r.t. ¢ yields the claim.
For general u,,v, € P we apply the previous result to the pair s,y € D
(cf. Lemma 2.33) which already yields the claim for all 0 < s < ¢t < 7. The
claim for ¢ = 7 now follows by approximation

t

2
WSQ(.USa Vs) < WtZ(,uta Vt) - N [ST(,U’!’) - ST‘(VT')F dr

- WE(M‘MV‘F) - %/T [Sy(per) — ST(VT)]2 dr

as t T 7. Here the convergence of the integrals is obvious. The convergence of
the first term on the right-hand side follows from Lemma 2.33. O
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2.7.2 From Gradient Estimates to Transport Estimates

Theorem 2.41 (“(IlLy) = (ILy)”). Assume that (X, dt’mt)te(o ) satisfies

the Bakry-Ledoux gradient estimate (IIIy) for the primal heat flow. Then the
dual heat flow starting in arbitrary points p2, ut € P(X) satisfies for all 0 <
s<t<T

T

W2 ) < W) = 5 [ (S - sl P (69)

Proof. (i) Given 7 € I and a regular curve (see chapter 3) (1$)aco,1], define of
each t < 7 the Wi-action

k
1 Gic1  a
Ay (py) = sup {Za-—let (g™t pgt) : keN, O=a0<a1<...<ak:1}

=1

of the curve a +— p¢ = P u. Let t € (0,7] be given with A, (11;) < oo. In other
words, such that the curve a — pf is 2-absolutely continuous. (Obviously, this
is true for ¢ = 7. The subsequent discussion indeed will show that this holds
for all t < 7.) Let (uf)scjo,1] and (®§)qe[o,1] denote the densities and velocity
potentials for the curve (iuf)qcjo,1) (see [8, Theorem 8.2], or (41),(42)) in the
static space (X, d;, m¢). Then, in particular,

1 1
M) = [ el da= [ [ (V08 g da

Given s € (0,t) and € > 0 choose bounded Lipschitz functions —¢Y, ! which
are in W -duality to each other such that

W2l ul) < 2[/}(@idui—/xw‘3du2}+6(t—8)

and let (¢§)qe[o,1] denote the Hopf-Lax interpolation of Y, ! in the static space
(X, d57 ms)-

Then applying the continuity equation (41) and the Hamilton-Jacobi equa-
tion (39) yields

e + [At(ut) W2(ul, )|
> t_s/Itldaf—{/soiduif/wgdug]
_ tis/ [/ |V, 08| dpg — 26/Pts¢sdut]da
- t_s// (19205 = VPt = [VuPLsot] + Pl Vot disgda
> / / |V, ®f —VtPtscps| dus da

t—s

_c PTATPTS duldadr >0
+N<t75>/s/o/X Bt diidadr
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where for the second last inequality we have used the Bakry-Ledoux gradient
estimate (ITIy).

In the case N = oo this already proves the claim. Indeed, since € > 0 was
arbitrary it states that

W2 (1, 1) < Az (1)

for any regular curve (u%).co,1]- Given any p2,pul € P(X) we can choose
regular curves (u2,,)qco,1) for n € N such that A (u;,) — W2(u2, ut) and
Wr (12, 19) — 0 as well as W, (pt,, put) — 0 for n — co. According to Lemma
2.33, the latter also implies W, (ngn,us) — 0 as well as W(pl,,, put) — 0 for
n — oo where ug ,, == Aﬂs;ﬂm. Together with the previous estimate (applied
with ¢ = 7 to the regular curves (15 ,,)ac[0,1]) We obtain

W23, pg) = T WE(HS i) < N Ar () = W2 (i3, piz)-

This is the claim.
Moreover, applying this monotonicity result to each pair p7* =", u% of points
on the initial regular curve selected by an arbitrary partition (a;);=1,. x yields

As(pg) < Ar ()

for all s < 7. In particular, this implies that the previous argumentation is valid
forallt <.

(ii) Moreover, the previous estimates for given s,t,e can be tightened up
by choosing k € N and (ai)izl _____ r as well as for ¢ = 1,..., k suitable bounded
Lipschitz functions —gos ‘ i which are in W,-duality to each other and which
are ‘almost maximizers’ of the dual representation of WZ( & 1,,ug'i) such that

b A - )]

1
> /24— A =Y W2 () |
=1 @i — Gi-1
> 1/1|/'ﬂ|2da— 2 Zk: 1 {/ SDl,idul_/ o,iduo]
bl —s t t— s ¢ a; — a1 s s XSDS s
=1
= t—s/ /|Vt(ba‘ d/,Lt 28 / Pta‘P d/lt d
= [ It - T Pt POt
1
> ! //|th>‘t1—vtpt7sgpg’k|2d,u?da
t—sJo Jx

2 t ol 12
—_— P, AP, o a _.
+N(t — 8) /S /0 /X |: trQrty sQg :| d/Jt dadr (a)

The function %" here is obtained for a € (a;_ 1, ai) by Hopf-Lax interpolation
i1tk i—k .
of the Lipschitz functions ¢g' ' " := —L— (ps P and %k = ?}IFIS@S .

a;—a;_—
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Now let us choose ¢ to be a Lebesgue density point of ¢ — fol Et(Py 58, Pryul) da.
Then for s sufficiently close to ¢ the commutator lemma (applied to time points
r and t) implies that

1 t 1 5
|:(t _ S) / / /X PtWATPr,s(PZ’de?da d7“1|
s JO

1 tort A 2
> APy o2 duddadr| —e- N/2.
7[(7&-8)‘/8 A L t4t,5Ps My aG Ti| € /

Let us also briefly remark that the densities u§ of the measures uf are bounded
away from 0, uniformly in a (due to the smooth dependence on a of the measures
in the regularized curve we started with) and locally uniformly in ¢ (due to the
parabolic Harnack inequality for solutions to the adjoint heat equation). In
particular, in the subsequent calculations the singularity of the logarithm at 0
does not matter. Thus

1

1
a a 2 a
@ = =5 | [ 190 = Vet Pt da

20 [t 2
+N‘/ /VtPt,st”“thogu?du?da‘ —€
0 X

2 ! 2
> O -V, log u dutd ‘ -
> N—l—e’/o /XVt ¢ - Viloguy duyda €
1 2 al? a a a,k|2 a
{ — 2| |Vilogut[*dpg da} | V08— VP o™ [P dpd da
t—s € Jx X
2 ! a a a 2
> Foe /0 /thcbt-vtlogut dutda‘ —e = (B)

provided s is sufficiently close to t. Finally, using the continuity equation for
the curve (uf)qejo,1) (and its velocity potentials ®f) we obtain

2
P

(B) = | Sieh) — SuD)

Passing to the limit s ¢ yields

2
— €

_ ) 2
€+ O Au(py) > ———|[Se(t) — Se(py)

~ N+e

and thus (since € > 0 was arbitrary)

Suud) — Sid)|”

OF Adii) > (66)

Recall that this holds for a.e. t € (0,7). Moreover, note that ¢t — Ay(p;) is
absolutely continuous. Indeed, by Lemma 2.33 and the log-Lipschitz assumption
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(36)

WE (e hee) = WEE )| < |WE e ) = WGt i)
b b
W2t i) = WRGat )|
2./€
< 2Leeb WR(ut, ) + — XL WR (e, pb)

1—2ye !
1 1
+$Wt2(/i?+ea /J?) + %WE (lu?+e7 /%l:))
< CoVeW?(uf, ui) + Crv/e.

Thus we may integrate (66) from any s € (0,7) to 7 to obtain

) < Ari) = = [ [5u00) = )] . (67)

Finally, given arbitrary p2,ul € P(X) the subsequent lemma provides a
construction of 2-absolutely continuous, regular curves (fiZ)qejo,1] connecting
pl, pl for ae. o < 1 with

Ag(fiy) = W2(ud, u7)

as 0 /7. Carrying out the previous estimations, finally resulting in (67), with
(fig)ac(o,1] in the place of (u7)ae(o,1] yields

W2l pms) < As(iy)
< A — = [ [S0) — Su(ud)) dt

S
T

9 2
= W2 pg) = | (i) = Sulwe)]” dt.

This proves the claim. O

Lemma 2.42. (i) Assume (III) (with N = oc) and let (u*)qe(0,1] be an arbitrary
W, -geodesic in P(X). Let x be a standard convolution kernel on R. Then for
a.e. t <71 and every 6 > 0 the measures

pi? = /R (Pf,tu”(“)”b) x(b)db = Py, ( /R uﬂ(a)”bx(b)db)

constitute a reqular curve (,u?’é)ae[o’l] (in the sense of Definition 2.27). Here
¥(a) = 0 for a € [0,8], ¥(a) = 1 for a € [1 —4,1], and I(a) = =5 for
a€[6,1-90].

Choosing t, /7 and 6, \, 0 yields a sequence of reqular curves satisfying
(44) - (47). In addition, for these approximations the endpoints are simply given
by the dual heat flow:

a,0p
pet = Pry,p”

fora =0 as well as a =1 and for all n.
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Proof. The re-parametrization by means of ¥ forces the curve to be constant
for some short interval around the endpoints and squeeze it in-between. The
latter leads to a moderate increase of the metric speed. The former guarantees
that the endpoints remain unchanged under the convolution. The convolution
w.r.t. the kernel y guarantees smooth dependence on a, i.e. (1) of Def 2.27.
(44) follows from Lemma 2.33. Smoothness in a (thanks to the convolution)
and Hélder continuity in (¢, z) (being a solution to the adjoint heat equation)
guarantee uniform boundedness of u{(z) for (a,¢,z) € [0,1] x (0,¢] x X for each
t <7, ie. (2) of Def 2.27. Moreover, uf(x) is uniformly bounded away from 0.
Thus (3) of Def 2.27 is equivalent to a uniform bound for the energy & (u®).
Boundedness of u? for r < 7 implies

1 T 1 1
/ / E(uf)dtda < 7/ ||uﬁ||2L2(m\)da < 0.
o Jo 2 Jo !

Thus for a.e. t < T

1
/ E(u)da < oo and & (ul) < oo, E(uf) < 0.
0

Convolution w.r.t. the kernel x thus turns the integrable function a — &, (uf(a)>

into a bounded function: [, & (uf(a+5b)> x(b)db < C. Since the energy u —

&i(u) is convex, Jensen’s inequality implies

& ( / uf<“+5”>x(b)db> < / & (u;9(“+5*’>) x(b)db < C.
R R

The action estimate (45) follows from part (i) of the previous proof. Indeed,
the dual heat flow decreases the action. Also convolution in the a-parameter
decreases the action. The re-parametrization increases the action by a factor
bounded by ﬁ.

The entropy estimates (46) and (47) follow as in the proof of Lemma 2.28 [

2.7.3 Duality between Transport and Gradient Estimates in the
Case N = 0

In the subsequent chapter, we will prove the implication (IIy) = (IIIy) by
composing the results (IIy) = (IVy) and (IVy) = (IIly). Partly, these
arguments are quite involved. (And actually, for the last one, we freely make
use of the subsequent Theorem 2.43).

Here we present a direct, much simpler proof in the particular case N = oc.
Indeed, this proof will yield a slightly stronger statement: the equivalence of
the respective estimates for given pairs s,t. See also [37] for a related result.

Theorem 2.43 (“(II) & (III)”). For fired 0 < s < t < T the following are
equivalent:

(I),s For all p,v € P
Ws(Pt,s,va pt,sy) S Wt(lu/v V) (68)
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(IIl); s For all u € Dom(E)

TP su) < P s(Ts(u)) m-ae. on X. (69)

Proof. “(Il)¢,s = (III); s”: Given a bounded Lipschitz function u on X, points
z,y € X, and a di-geodesic (7%)4¢0,1] connecting x and y, put uf = d,a and
u¢ = Py gu. The transport estimate W, (ug, u2) < Wy(ug, u?) implies that

it vy, < ]y, = |31y, = dilz,y)-

Thus following the argumentation from [6], Theorem 6.4, we obtain

Pt,su(x) - Pt,su(y)‘ = ’/Udpt,saz - /Udpt,s(sy‘
1 1/2
| (1) iy, do
0

1 1/2
[ (Planfm) - il

< di(w,y) - sup {Pt,s|VsU’2(Z) Ddi(z,2) + di(z,y) = dt(377y)}-

IN

IA

The Hélder continuity of z — P,575|V5u‘2(z)7 therefore, allows to conclude that

(Ps |Vsu’2)1/2 is an upper gradient for P; su. This proves the claim for bounded
Lipschitz functions. The extension to u € Dom(&) follows as in [6].

“(IIT)¢,s = (II);,s”: previous Theorem. O

2.8 From Transport Estimates to Gradient Estimates and
Bochner Inequality

As before, for the sequel a time-dependent mm-space (X, di, my)er will be given
such that

e for each ¢t € I the static space satisfies the RCD*(K, N’) condition for
some finite numbers K and N’

e the distances are bounded and log-Lipschitz in ¢, that is, |0:di(z,y)| <
L - di(z,y) for some L uniformly in ¢, z,y (existence of d;d; for a.e. t)

e fis L-Lipschitz in t and z.

2.8.1 The Bochner Inequality
The Time-Derivative of the I'-Operator

Definition 2.44. Given an interval J C I and v € Fy with Tp(u,)(z) < C
uniformly in (r,z) € J x X. Then we define I.‘T (ur)(x) as (one of the) weak
subsequential limit(s) of

oz [rsstin) = Do) @) (70)
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in L?(J x X) for § — 0. That is, for a suitable 0-sequence (3,), and all
g€ L?(JxX)

L// [FH(;”(ur)—F,,,(;n(ur)] grmedr—>// 1.“T (ur) gr dm,. dr
20n JyJx JJx

as n — oQ.

Actually, thanks to Banach-Alaoglu theorem, such a weak limit always exists
since (70) — due to the log-Lipschitz continuity of the distances — defines a family
of functions in L?(J x X) with bounded norm. Thus in particular we will have

hm 1nf— / / Drys(uy) — I‘T,g(ur)] gr dm,. dr

g/J/X v (ur) gr dm, dr (71)

1
< limsup / / {Fr+6(u7’) - Frfé(ur)} gr dm. dr.
50 20 J;5J)x

Remark 2.45. All the subsequent statements involving I.‘T (uy) will be inde-
pendent of the choice of the sequence (6,)n and of the accumulation point in
L?(J x X). For instance, the precise meaning of Theorem 2.3 is that each of
the properties (I), (II) or (III) will imply (IV) for every choice of the weak

subsequential limit f‘r (ur). Conversely, if (IV) is satisfied for some choice
of the weak subsequential limit f‘r (uy) then it implies properties (I), (II) and
(IIX). Indeed, the only property of f‘r (uy) which enters the calculations is (71).

Note that the log-Lipschitz continuity of the distances also immediately im-
plies that

‘ Ty ()

< 2L -T,(uy). (72)

Lemma 2.46. For every u € F; with sup, , I'v(u,)(x) < oo and every g €
L=(J x X)

// f‘r (ur) gr dm,. dr = lim —// Tris, (Ur, trys, )—Tr (ur,ur_,_(;n)} gr dm,. dr.
JJXx

'Il‘)OO

In particular,

hm 1nf / / Urys(tpgs,up) — Fr(uﬂﬂs,ur)} gr dm,. dr

g// I (ur) gr dm,. dr
JJx

< limsup - / / Lrys ur+67 ur) =T (ur+57 ur):| gr dm. dr.
N0 0
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Proof.

/J/X f‘r (ur) gr dm,. dr = nh_)rr;O (% /J /X |:Fr+§n (ur) — Fr(ur):| gr dm, dr
+ % /J /X (e (ur) = T, ()] g iy )
:nli_)ngo (ﬁ /J /X [FH(;R (up) — Fr(ur)} gr dm,. dr

+ ﬁ /J /X |:F7‘+51L (Urts,) — FT(uTJr(;”)} g dm, dr)

1
lim (7 / / |:Fr+5n (um ur+5n) - Fr(um ur+5n)i| gr dmr dr
on JyJx

n—oo

1
+ E /J /X [FH—&L (ur+5n —Uuy) — Fr(ur+5n - ur)] gr dm, dr‘)

1
= lim —// {FT_H;"(uT,uT_H;n) —Fr(ur,ur_ﬂsn)] g dm,. dr.
on JyJx

n— oo

Here for the second equality we used index shift and Lusin’s theorem (to replace
Gr+s, dm,1s,. again by g,dm,). The last equality follows from the log-Lipschitz
continuity of r — d, which allows to estimate

1
*’ / / [Fr-i-é (Urgs — ur) = Dr(tpis — UT)} gr dmy dT‘
o1 x
<2L- / / Ty (tpss — up) g dmy,. dr
JJx
<C. / Er(Uprs —up)dr — 0
J

as § — 0 since r — wu,, as a map from J to F, is ‘nearly continuous’ (Lusin’s
theorem). O
The Distributional I';>-Operator

Definition 2.47. Forr € (0,T) and u € Dom(A,) with |V,u| € L we define
the distribution valued I's-operator as a continuous linear operator

Ty, (u): FAL® 5 R

by
1
Lo, (@)= [ [ = 5T (Owhg) + (&g + T g) A, (73)
Note that
Tor(@)(9)] < 2V0ulloc - [V2ullz - (Vg2 + llglloo - 1A,
Ve - Vg2 - [1Avule
< gl - 18l + € [Vt - [ ¥rgll2 - (1Al + full2)

thanks to the fact that ||[VZul|3 < (1+ K_) - (|Aul3 + |lul|3), cf. (50).
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Also note that the assumptions on u will be preserved under the heat flow (at
least for a.e. r) and the assumptions on g are preserved under the adjoint heat
flow. If u is sufficiently regular (i.e. Au € Dom(&,) and |V,u|> € Dom(A,))
then obviously

T, (u)(g) = / Ty () - g dimy

for all g under consideration where as usual I'y . (u) = $A, |V, ul? = T (u, Ayu).
On the other hand, if ¢ € Dom(A,) then in (73) we may replace the term
—I (T (), g) by Tr(u)Ag.

The Bochner Inequality — Various Versions

Definition 2.48. (i) We say that (X, d;, my)er satisfies the dynamic Bochner
inequality with parameter N € (0,00] if for all 0 < s < t < T and for all
us, gt € F with g > 0, g € L™, us € Lip(X) and for a.e. r € (s,t)

P (o) 2 5 [ B (wdgedm, + ([ Arwgidm,) (7

where u, = P, sus and g, = P},gi, cf. (21).

(ii) We say that (X,dy, mi)ier satisfies property (IVy) if it satisfies the
dynamic Bochner inequality with parameter N as above and in addition the
regularity assumption (17) is satisfied, i.e. u, € Lip(X) for all v € (s,t) with
sup,. , lip,u,(z) < oo.

Note that in the case N = oo inequality (74) simply states that

1 e
]-‘2,7’(“7“) Z 5 Fr (Ur)mr

as inequality between distributions, tested against nonnegative functions g, as
above.

2.8.2 From Bochner Inequality to Gradient Estimates

Theorem 2.49 (“(IVy) = (IIIN)”). Suppose that the mm-space (X, dy, my)ier
satisfies the dynamic Bochner inequality (74) and the regularity assumption from
Definition 2.48 (ii). Then for a.e. x € X

2 [t 2

Ly(Psu)(x) — P oTs(u)(z) < N [P Avuy ()] dr, (75)

Proof. Given s,t € (0,T) as well as u € Lip(X) and g € F N L*® with g > 0,
put u, = P, su, g, = P}, g for r € [s,t] and consider the function

h, = /grl"r(u,,)dmr = /Fr(ur)d,ur

with u, := g, m,.
(a) Choose s < o < 7 <t such that

1 T 1 o+6
h, <liminf — / hr.dr and hg, > limsup — / h,dr. (76)
N0 9 S s SO0 0o
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Note that by Lebesgue’s density theorem, the latter is true at least for a.e. 0 > s
and for a.e. 7 < t. (Moreover, at the end of this proof (as part (b)) we will
present an argument which allows to conclude that (76) holds for o = s,7 = t.)
Then

. . 1 T—06
hy —hs < hgn\%lf 5 /U [hTJr(; — hr] dr

1 T—0
<limsup 5 / i (Upy5)d(ptrys — pir) dr
N\0

—|—hm1nf / /gr Urys(tprs, ur) — Dp(tpps, u) | dm,. dr

T—9

+ limsup 5 / / gr Fr+5 (UT_A,_,;, Ur+s — uT’) + I (u?”+5 — Up, u?”) dm, dr
60 X

= (I)+ (II)+ (IIT") + (III").

Each of the four terms will be considered separately. Since r — p, is a solution
to the dual heat equation, we obtain

T—6
(I) =limsup — / / 6 (Urts) / Aqgq dmyg dq)d
5\0
BT 1 —fa
hgn\}(r)lf/(ﬂr&/xfr(ur) (5/,,,5 Aggqe dq)dm<> dr
——/ /I‘T(ur)-Argrmedr
o X

due Lebesgue’s density theorem applied to r +— A,.g.e~ /7. Note that the latter
function is in L? (Theorem 2.20) and the function r + I',.(u,) is in L thanks
to Definition 2.48 (ii).

The second term can easily estimated in terms I', according to Lemma 2.46:

T—0
(1) = hm lnf / / Gr |Trps(Urys, ur) — Dr(urys, ur) | dmy dr

g/ / 9r FT (uy)dm.dr.
o X

The term (I11') is transformed as follows

(II1')
T—0
= - hgn\%lf / / T+t5 gm ur+5) + 9gr AT+6U7‘+§ / A qUq dQ) dm,. dr
:—liminf/ / r(gres,tr) + grs Ay ur . f/ Agug dg)dm,. dr
N0 o+d 4 r—4§ o )

/ / gr7u'r +97 A U7> . Aru'r' dmr d’f‘.

Here again we used Lebesgue’s density theorem (applied to 7 — A,u,.) and the
‘nearly continuity’ of r — g, as map from (s,t) into L?(X,m) and as map into
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F (Lusin’s theorem). Moreover, we used the boundedness (uniformly in r and
z) of g, and of V,u, as well as the square integrability of A, u,..
Similarly, the term (I71") will be transformed:

T—0
(Irr'y = - hm mf / / (Gryur) + gr Aru,« / Aqug dq) dm, dr

/ / r(Gryur) + g A Ur) . (AruT)dmr dr.

Summarizing and then using (74), we therefore obtain

hy —hg = (I)+ (IT) + (I1T") + (111")

S/ / —T(u) - Avgr + g f‘r (uy) — Q(Fr(gr,ur) + g, Arur) Arur}dmr dr

A 2 [T A 2
<_7 = T xr .
— / rUr gr dmrj| dr N . |:/XP7',T rurgdm7—1| dr
Thus
2 [T 2
/ FT(PTJu)gme_/ PTUPU(u)gme < _*/ [/ PTrArurgdm-r} dr.
X ’ X ? N - X s

(77)

(b) Recall that, given u and g, this holds for a.e. 7 and a.e. 0. Now let us
forget for the moment the term with N. Choosing ¢’s from a dense countable
set one may achieve that the exceptional sets for o and 7 in (77) do not depend
on g. Next we may assume that o, 7 € [s,t] with ¢ < 7 is chosen such that (77)
with N = oo simultaneously holds for all u from a dense countable set C; in
Lip(X). Approximating arbitrary u € Lip(X) by w, € C; yields

/FT(PT,Uu)gme—/ P. ,Ts(u)gdm,
X X

n

Sliminf/ L (Proup)gdm, — lim/ P. ;To(uy)gdm, <O0.
X noJx

due to lower semicontinuity of the weighted energy on L?. In other words, we
have derived the gradient estimate (III) for almost all times o and 7. Thanks to
Theorem 2.43 this implies the transport estimate (IT) for these time instances.
But both sides of the transport estimate are continuous in time (thanks to the
continuity of r + W, and the continuity of the dual heat flow). This implies
that the transport estimate holds for all 0,7 € [s,t] with o < 7. In particular,
it holds for ¢ = s and 7 = t. Again by Theorem 2.43 it yields the gradient
estimate for given s and ¢ and thus our initial assumption (76) is satisfied for
the choice 0 = s and 7 = t.

(c) Taking this into account, we may conclude that (77) (for given N) holds
with the choice 0 = s and 7 = ¢. Finally, choosing sequences of g’s which
approximate the Dirac distribution at a given x € X then implies that for all
u € Lip(X)

Ly(Prsu)(z) — PrDy(u)(a) < —~ / (Prvbur(@)]?dr (18)

for a.e. z € X. This proves the claim for bounded Lipschitz functions. The
extension to u € Dom/(&) follows as in [6]. O
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2.8.3 From Gradient Estimates to Bochner Inequality

In the previous chapter and the previous sections of this chapter, we have proven
the implications (IIIy) = (IIx) and (IVy) = (IIIy). Taking the subsequent
section into account, where we show (IIy) = (IVy), we already have proven
that (IIIx) = (IVy). In the sequel, we will present another, more direct proof
for this implication.

Theorem 2.50 (“(Illn) = (IVN)”). Suppose that the mm-space (X, dy, my)ier
satisfies the gradient estimate (75). Then the dynamic Bochner inequality (74)
holds true as well as the regularity assumption from Definition 2.48 (ii).

Proof. Assume that the gradient estimate (IIIy) holds true. It immediately im-
plies the regularity assumption (17). To derive the dynamic Bochner inequality,
let s,t € (0,T) as well as u € Lip(X) and g € F N L*> with g > 0 be given. Put
ur = P gu, g = P[.g for r € [s,t] and as before consider the function

h, = /grfr(ur)dmr.

Then (ITIy) implies that for all s <o <7 <t

. . 1 T*(S
hy —hy < hgn\l(r)lf 5 /U [hr+5 — hr]dr

. . 1 )
= hgn\}glf S / / Fr+6 (ur+5) - Pr+5,rrr (ur)] gr+6dmr+5 dr

2 T—(S 1 7"+6 2
< — — limsup / < / (PrJr&qAQUQ) dq gr+5dmr+5 dr
N 50 Jo

2 [T 2
<- N/U ligginf / / Fresaata dqg”‘sdm”‘s)

9 r+3§
=— N h%n\%lf ( / / Agug ggdmy dq) dr

o

= N / JANE T grdm,,) dr

according to Lebesgue’s density theorem. On the other hand, similarly to the
argumentation in the previous section, we have

h: — hg >hmsup5/ hpys — ]dr
> hm mf / / s (Upps)d(phrys — i) dr
o—9
+ lim sup < / / gr Fr+5 (ur+67 ur) - Fr(ur+6, ur)} dmr dr
N0 d o—0
+ hm 1nf / / Ir | Drgo (Ui, Uprs — wr) + D (tpgs — ur,ur)}dmr dr
o—9
+(

=(I)+ (II) + (IIT') + (I11").
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Each of the four terms can be treated as before which then yields
hy —he > (I)+ (I1) + (I1T") + (111")

> [ /X [~ To(w)  Drgr g0 T () = 2(T g ) + 90 Ayuy) Ayt dimy dr
:/GT [_ 2T, (ur)(gr) + / I:r (ur) gr m,‘] dr.

Combining this with the previous upper estimate and varying o and 7, we thus
have proven the dynamic Bochner inequality

. 2 2
> —
20 - (ur ) (gr) ,/Fr (ur) grmy + N(/XArur grme)
for a.e. r € (s,t). O

2.8.4 From Transport Estimates to Bochner Inequality

Theorem 2.51 (“(IIn) = (IVN)”). Suppose that the mm-space (X, dy, my)ier
satisfies the transport estimate (19)=(64). Then the dynamic Bochner inequality
(20)=(74) with parameter N holds true as well as the reqularity assumption (17).

Proof of the reqularity assumption. Thanks to Theorem 2.43, we already know
that the transport estimate (IIy) implies the gradient estimate (IIIy) in the
case N = oo. This proves the requested regularity. O

Proof of the dynamic Bochner inequality. We follow the argumentation from [18]
with significant modifications due to time-dependence of functions, gradients,
and operators and mainly because of lack of regularity.

Let 0 < s <t < Tand g, € FNL*® with g¢ > 0, g¢ 0 as well as
us € Lip(X) be given and fixed for the sequel. Without restriction [ g;dm, = 1.
For 7 € (s,t), put u; = Prsus and g, = P} g;. Note that — thanks to the
parabolic Harnack inequality — ¢ is uniformly bounded from above and bounded
from below, away from 0, on (s',#')x X for each s < s’ < t' < t. In the beginning,
let us also assume that ||us||eo < 1/4.

For each 7 € (s,t), define a Dirichlet form £J on L?(X, g, m,) with domain
Dom(&9) := Dom(E) by

Ed(u) = /I‘T(u)gTme for u € Dom(E).

Associated with the closed bilinear form (€2, Dom(€9)) on L?(X, g,m.), there
is the self-adjoint operator AZ and the semigroup (H7'9)y>0, i.6. ug = H9u
solves

Ogttg = Au, on (0,00) x X, Uy = U

where A%y = Aru + I';(logg,,u). For fixed o € (s,7), we define the path
(97")axo0 to be
97% =g (1 +uy — Hu,). (79)
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Note that these are probability densities w.r.t. m.. Indeed, for all @ > 0 and all
s<o<T<t

/g‘;’“me =1+ /uo(l —H1)g:m; =1

thanks to conservativeness and symmetry of H]*9 w.r.t. the measure g,m..
Moreover, gZ** > 0 for all a, o and 7 since the uniform bound ||us||e < 1/4 is
preserved under the evolution of the time-dependent heat flow, thus ||us||ee <
|| Po,sts|loo < 1/4, as well as under the heat flow in the static mm-space at fixed
time 7, thus ||[H s ||co < ||to]eo < 1/4.

Now let us assume that the transport estimate (IIy) holds true and apply
it to the probability measures g,m, and g¢m,. Then for all s <o <7 <t and
alla >0

Wg(PT,S(ngT)a Pﬂa(gg,am”) < WE(ngngg’am‘r)
2 [T A A .
- N [ST(PT,T(ngT>) - Sr(f)‘rﬂ‘(gf-7 mT))]QdT'

Dividing by 2a? and passing to the limit a \, 0, the subsequent Lemmata 2.52,
2.53 and 2.54 allow to estimate term by term. We thus obtain

1
- §/Pr,a(1“a(ua))gfdmr+/1“T(Pr,aug,ug)gfdmr

<—————— [ T (uy)g-dm, — — Iy (Prr(log Pr,g:),us) g-dm,| dr.
S STl ) e = ), ) TP los Prag) o) g

Replacing us by nus for n € Ry sufficiently small, we can get rid of the con-
straint ||us||eo < 1/4. Then Lemma 2.52, Lemma 2.53 and Lemma 2.54 applied
to nug instead of ug gives us

2
- % / Pr,o(rd(uﬂ))grdmr + 7’2 / FT(PT,auaa ua’)g‘rdmf

,,72

2 T 2
n
S a1 o 1. 11\ F‘r Ug g‘rdm‘r - 7/ |:/ Fr PT,’I" logP:rg‘r y Ug g‘rme:| d?".
Sty ] oot =5 | [ 0P ton 0.

Dividing by n? and letting 7 — 0 this inequality becomes

1
_ §/PT,U(FU(UU))gTme +/FT(PTVUu0,ug)gTme

1 17 ?
S 5 /FT(UU)gTme - N/ |:/ 1_\'r (PT,T(IOg P:,rg'r)aun) gTme:| dT.

This can be reformulated into

1 1
f/FT(uT)gTme - */Fa(ua)gadma
2 2
1 1
~ 5 [ Petundgedm — 5 [ Totungedme + [ Totar un)gedme (s0)

1 /" * ’
§ *ﬁ \/g |:/ FT (P‘r,r(k)g PT,TQ"')’ UU) gTdm"':| dr.

68



Now let us try to follow the argumentation from the proof of Theorem 2.50 and
consider again the function

h, = /grfr(ur)dmr

for r € (s,t). Recall that we already know from Theorem 2.43 that the transport
estimate (IIy) implies the gradient estimate (ITI) (‘without N’). Thus for all
s<o<T<t

1 T 1 T—9
I - hets —he)dr < h, —hy < liminf - heis —hy)d
l?fgpa/,_é( +5 = hy)dr i in 5/0 (hrts = he)dr

Arguing as in the proof of Theorem 2.50 we get

h'r - ha 2 / |:_ 2]-‘2,7“(“7“)(97‘) + / f‘r (u'r‘) gr My d?".

On the other hand, applying the previous estimate (80) (with r + §, » and ¢ in
the place of 7, ¢ and r) we obtain

h: — hg
1 T—0 2 r+6 2
<timint s [ [- % [ 0o (Prasa08 P 9r) ) g | da

+ /FT+6(UT+6 - ur)gr+6dmr+6:| dr.

We estimate the term with the square from below using Young’s inequality

2
/FT+6 <P7'+5,q(10g Pj—&-é,qgr-&-é)v ur) 97'+5dm7'+5:|
1 2
> [/ I, (Pr,q(log gq)a Ur) grdmr:|

1+e€
1 2
T |:/ Lrgs (Pr+5,q(10g P:+6,q9r+6)a ur) grdmyi5 — /FT (an(log 9q); ur) grdmr] )

where € > 0 is arbitrary. Further estimating and using the log-Lipschitz conti-
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nuity r — I',. yields
2
[ [ Ers(Prasi08 P ) ) grssdinrss = [ T2 (Prllogg). ) grdmr}
2
<2 [ / Pris(Pras o108 0,). 1) grssdmy.ps — / P, (Pras glongy). u, ngde]
2
+2 {/ Ly (Pv"-&-é,q(log 9a)> ur) Grsdmeis — /Fr (an(log 9q), U?") gr+5dmr+5:|

2| [10(Pratiosagu) gessdine s — [T (Pratogg). ) g, 2

< 161252

2
|:/ Fr+6 (Pr+6,q(10g gq)a ur) gr+5dmr+6 + C / Fr+5 (Pr—i-(s,q (log gq) - ur) gr+5dmr+5:|
2
+2 |:/ Pr (Pr+5,q(10g gq) - Pr,q(IOg gq)7 ur) gr+6dmr+6:|

2
+2 l:/ I, (Pr,q(loggq)a UT) d(gr+5dmr+5 - ngT):| ,

which, after integration over [r,r + d] and division by § > 0, converges to 0 as
0 goes to 0. Indeed,

2
K

r+6
5/ ‘ /I‘H(; (Pr+6,q(10g P:+5,qg7“+5)7 Ur) Gr5dMirys
r+48
< 05(/ /I‘q(log gq)ququr) Er(ur) — 0,
r d—0

and Lemma 2.25 and Lebesgue differentiation theorem

1 ’I"+5 2
g / ’ /Fr (Pr-‘ré,q(log gq) - Pr,q(IOg gq)a ur) gr-i—édmr-i-é’ dq m 0,

while

1 [rte ,
g/r [/ J (Pr,q(log Qq),ur) d(grssdm, s — grmr)} dq «?—?(? 0.

Thus, since € is arbitrary, and from the Lebesgue differentiation theorem we get
1 r+3 2
lim inf 5 [/ | (PH(;,q(log Plis 49r+6) ur) gr+5dmr+5] dr
-

5—0
2 2
> [/ Fr<loggq,ur> grdm,} = [/(Arur)gTdm,.] .

Finally, with Corollary 2.23, the log-Lipschitz continuity of r — I',., Lemma
2.25, and Lebesgue differentiation theorem applied to r — A,u,, which is in
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L?((s,t),H) thanks to Theorem 2.20,

1 T—90
lim sup — / /Fr+5(ur+5 - ur)gr+6dmr+6 dr
5—0 6 o

. 1 T—0
< limsup 5 / |1gr+6llo0 / Lryo(Uris — U, Upys)dmyys dr
6—0 o

L (b
< limsup 5 / eLlTM_tngtHoo-
5—0 o

(/Fr+5(ur+5 - Umur+5)dmr+6 - /Fr+6(ur+6 — Uy, ur)dmr—i-é) dr

1 T—9
= lim sup 5 / eL|T+5_t|HgtHoo'
5—0 o

r+6
(— // AqugdgArtstpysdm, 5 — /Fr(ur+5 - ur,ur)dmr) dr

T 1 T
:hmsup(/ —eLlr*t‘HgtHoo/f/ AqugdgApuydm,dr
-0 o+ 0 Jrzs

T—0 1 r+6
+/ eL|r+6—t|||gt||oo/g/ AquqqururdmrdT)

:/ eL|T—t‘||gt||oo(—/(Arur)2dmr+/(Arur)2dm,,) = 0.

Combining the previous estimates we get

hy —hs < —% /;(/Aru,« g,«dm,.>2d7"7

and then

,% T</Arur grdmr)2dr 2 /T [7 2o (ur)9r) + / £ (o) mr} o

o

which proves the claim. O

Lemma 2.52. For every s <o <71 <1,

2( D g,a
lim inf Wg’ (P'r,a(gq- m‘r)a P‘r,a(grm‘r))
a—0 20,2

1
> _/§PT,U<PU(UU))gTme+/F7(u77u0)97dm7‘

Proof. We denote by Q7 the Hopf-Lax semigroup with respect to the metric d,.
Note that aQ7(¢) = Qf(a¢), so the Kantorovich duality (40) can be written as

2
Wov,ve) _ isip { / Qo pdir — / ¢d’/2] :

2a2
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We deduce

Wz(P‘r U(gg7am7) P ngT / Q(T’U’U T,0 gT ) - uUP‘::UgT

2 dmg

Qaus — p* Qo — Uy
/ - to TO’(gT _gT)de+ . Ua UPT,UgTde

P* o,a __ -
+/ug T,g( g )dmm

a

Note that, since ug is a Lipschitz function, u, is a Lipschitz function as well.
Indeed, from the dual representation of the Kantorovich-Rubinstein distance
W1 with respect to the metric dg, we deduce

o (&) — o (3)] = \ [ sl - [usla1aPu()(@)

< Lips(“S)Wsl(Pms((sa:)v Pt75(5y)) < Lips(us)Ws(pa7S<5x)v Py s(5y))
S Llps (’U’S)WU((SCE» 51/) = Llps (us)da (2177 y)a
where the last inequality is a consequence of Theorem 2.43
Since 0 > (Q%uy(z) — uy(x))/a > —2Lip(u,)? and ¢2¢ — g, in L*(X)

the first integral vanishes. For the second integral we use (39) and estimate by
Fatou’s Lemma

a—0

o o Uo * 1 .
liminf/MPTagTdma > —i/hpa(ug)zP:UgTdmg.
0 s ;

For the last integral an argument similar to Lemma 2.34 for HI'9 (compare
Lemma 4.14 in [7]) yields

11111/1/)0 - gT _gT)dma = /FT(PT,anaua)grme-

a—0

Combining the last two estimates we obtain

o 0
liminf W5 (P‘r 0(9 mT) PT,G (ngT))
a—0 20,2

1
> =5 [ o 0P pgedme + [ T (Prsto, s )godms

1
=5 [ Tolwn) P pgodimg + [ Tr(Prsin,u)grdm,,

where the last inequality follows from our static RCD(K, N') assumption, which
implies Poincaré inequality and doubling property for the static space (X, dy, ms ),
and the fact that u, is a Lipschitz function (cf. [20]). O

Lemma 2.53. For every s <o <71 <t,

. W:(g2*ms, grms) 1 /
1 2T < F'r o 'rd T
WP e S sl J e
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Proof. Let (Q7)q>0 be the d; Hopf-Lax semigroup and fix a bounded Lipschitz
function ¢. Note that

1 3 T o,a T T
0, [ @u(@)gzedm. <~ [ Jtip (@76P gz dm. + [ T2(Q0. HIur)gsdm,
B / {_;hpT(ngﬁ)z(l +ue — Hy%u,) + ' (Q 0, H;’guo)} grdme,

where the inequality follows from [4, Lemma 4.3.4] and dominated convergence.
Applying the Cauchy-Schwartz inequality and that I'-(v) < lip.(¢) m,-a.e., we
find

/ P (Qa, Hug)grdim, < \J€,(Qao)Eg(Hiu,)

< \// lip, (Q7¢)%grdm,Eg(Haus).

Then, since 14+ u, — HI9uy, > 1 —2||ts||o0, We obtain using Young’s inequality

1 1

e — (H;—vguo_) S - -
2(1 = 2||uo o) 2(1 = 2[ue]|oo)
1

=———— | I''(us)g-dm,.
2(1—2||u0|w>/ (o)

9, / QL ()90 dm, < £, (us)

Integrating over [0, a,

/Qg(bggﬂ—me - /(bg‘rdmr < B .

a/1 ol 11\ 1—“r Ug gTme)
<172\|ua||oo>/ (s)

and dividing by a > 0 proves the claim since the Kantorovich duality can be

written as
w2 1
Wrlnm) 1o, [ [azoan - [ ¢>d4
a ¢

2a?
and ¢ was an arbitrary bounded Lipschitz function. O

Lemma 2.54.

/T {Sr(ﬁf,r(gi’“mr)) — 5l AT’T(ngT))rdT

a

lim inf
a—0

2

2/ |:/FT(PT,T(IOggr>7uU)gTme:| dr.
S
Proof. With the same estimates as in [18] we have

[Sr(pﬁr(gg’am.,.)) - ST(pT,r(ngT))}Q

2 * _o,a 2 2
1 (P)TT‘gT7 797")
> P* (g% — g,)log g.dm,| — = LT =2 dm,| .
_(Hé)[/(m(gf) g)oggdm] 5[/ 7 dm

73



Next we apply Jensen’s inequality to the convex function o: RxR — RU{+o00}
defined by

ifr=0=s,
if s #0,
400, ifs=0andr+#0.

a(r,s) =
Recall that the map dx — pr,(x,y)dm,(z) is not Markovian, but Lemma 2.23
implies
0< Mey(y) = / Pror(@,y)dm (x) < X777,
X
Hence we can write

[ atPig = P oo P g ),

a((g7 () — g7 () M7 (y), g7 () M7+ (y))
= / / M,

- / / ((g7(@) — g2 (2)), g (2))prr (&, y)dimr (2)dim (3)
- / a((97°(@) — g+ (@), g ())dmo (z) = / 9r (Y — HT9u,)%dm.,

Pror (@, y)dme (z)dm, (y)

where we applied Jensen’s inequality in the second, Fubini in the third, and the
definition of g2* in the last line. Dividing by a and taking the lim sup we end
up with

lim sup —
a—0 @

HZ9 o Wo
< lim sup 2||tg||0o /gT <auu) dm; = =2||us||co /gTI‘T(uJ, 1)dm, = 0.
a—0 a

| [ (P2 = Plg,) |
/( 9 9 ) dm, < limsupf/gT(ug —Hg’gua)Qme
a

P:J«QT a—0

The first equality follows from the fact that 1 (H]9u, —us) — Afu, weakly in
F* (cf. Lemma 2.34 and [7, Lemma 4.14]).
Since § > 0 is arbitrary it suffices to show

1
lim — [ P’ (9(Hy%uy — ug))log Py .gdm, = /FT (Prr(log Pf,.g), ug)gdm..

a—0

This, indeed, follows from the fact that P;.(log P},g) € F = Dom(E;) =
Dom(&7) (thanks to uniform boundedness of P;,.g from above and away from
0) and from the fact that 1 (H9u, —u,) — Afu, weakly in F* as a \, 0, more
precisely (cf. Lemma 2.34)

1/(I_I;’gua - ua)d)g'rdmr — _/FT(UU7¢)gTme

a

for all ¢ € F as a \(0. O
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2.9 From Gradient Estimates to Dynamic EVI

In this section we will prove that the dual heat flow is a dynamic backward EVI-
gradient flow presumed that the Bakry-Emery gradient estimate (IIT) holds for
the (‘primal’) heat equation. We will present the argument only in the case
N = co. That is, we now assume that for all v € Dom(€) and 0 < s <t < T

Ty(Psu) < P g(Ts(u)) m-ae. on X. (81)

For the notion of dynamic backward EVI*-gradient flow we refer to section 2.10.

As in the previous chapters, the assumptions from section 2.6.1 will always
be in force, in particular, we assume the RCD* (K, N')-condition for each static
mm-space (X, ds, m;) as well as boundedness and L-Lipschitz continuity (in t)
for log d;(x,y) and (in ¢t and z) for fi(x).

2.9.1 Dynamic Kantorovich-Wasserstein Distances

For the subsequent discussions, let us fix s,t € I and — if not stated otherwise
-1 :1]0,1] — R will always denote the linear interpolation

da) = (1 —a)s + ta, (82)

In the following we introduce dynamic notions of the distance between two
measures ‘living in different time sheets’. The first notion seems to be natural
and is defined via the length of curves, while the second one uses the approach
of Hamilton Jacobi equations.

Definition 2.55. For s <t and a 2-absolutely continuous curve (1%),e(0,1] we
define the action

As ¢ (1) im sup { Z(ai - ai_l)’lwg(ai_l)(u“’”,/f”)

=1
h—0

For two probability measures pu,v € P(X) we define

W2, (1,v) = inf { A1) e € AC2([0,1), P(X)) with po = p = v}
Lemma 2.56. The following holds true.

i) The action p— As (1) is lower semicontinuous, i.e. if uf — p® for every
a as j — oo we have

Asyt(,u) S hm inf As,t(ﬂj)~

J—0o0

it) For every absolutely continuous curve

As,t(,UJ) = %E)% inf { Z(ai - a’i—l)ilwg(awl)(uai_l ) :Uai)

i=1

0=a0<-~-<an:1,ai—ai,1Sh}.

(0]



Proof. Since p — p, for every a € [0,1] in the Wasserstein sense we have for
every partition 0 =ag < - <ap =1

—1 2 a;— a; —1 2 (2 a;
Z;(ai_ai—l) Wﬁ(ai,l)(:u L )_jli)rgoz;(ai_ai—l) Wﬂ(ai,l)(:uj 1an ),
and hence

> (@i = aia) Wi, (ot pt) < lim inf Aq ¢ (15)-

i=1

Taking the supremum over each partition and letting h — 0 proves
As ¢ () < liminf A ¢ (1)
j—oo

We prove the second assertion by contradlctlon Assume that there exists a
sequence h; — 0, and a partition 0 = a} < --- < a ; = 1 such that

n
. . ) , J i
daly < andm Sl - )WL 0t < A
=1

For every j € N we define the curve (u§)ae(o,1) by

.u’ 7:u‘aj ,,1fa€[z 17&3]

-1

where (MZ?fl,ai)ae[a o] denotes the W, 9(al_,)" -geodesic connecting p® 1 and

pal. Note that for every partition {@;}X, with a@; — @;_1 < h;

N n
_ _ _ a; a;— . a,J a’
Z(ai - ai—l) lvvqg(ai_l)(.uj s Hj 1) < e*thi Z(a] - a ) lws(a 1)(.“ s 171)3

=1

=1

since for every a!_| < a1 < ay < a
Wit 5" S <

Hence
Asi(py) < e Z al —al 1W2<a£ )(M“'z,u“gfl)-

This is a contradiction since p§ — p, for every a and hence

lim inf .As,t(/ij) > As,t(:u)'
j—o0

Proposition 2.57. For s <t & I and u°, u' € P we have

W24l ) = nt { / IS (33)

where the infimum runs over all 2-absolutely continuous curves (u*)aepo,1] in P
connecting p° and p'.
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Proof. Choose an arbitrary partition 0 = a9 < a1 < -+ < a, = 1 with
ai —ai—1 < h. Let (u")qep,1) € AC?([0,1],P(X)). Then, from the absolute
continuity of (1), and the log Lipschitz property (36) we deduce

n ai—1 2
Z(ai - ai—l)ilwg(aifﬂ( “ b < Z — Qi 1 </ |,[1'a|19(ai1)da'>

i=1 i

< Z/a ma‘%(az‘—l)da
i=1ai

1
2 [ )i o
0

Taking the supremum over all partitions and letting h — 0 we obtain

1
“a)2
M)S/O |Ma\19(a)da;

W2, (110, 1) <mf{/ 2 d}

and consequently

To verify the other inequality, we fix again a curve (tiq)qeo,1] € AC?([0, 1], P(X))
with finite energy A ;(u). For each h > 0 we consider the partition 0 = a¢ <
a; <---<ap <1< apy; with a; = th and nh < 1. We extend p, by @1 when-
ever a > 1. We define p” to be the W(a;_,)-geodesic connecting pq,_, with
fa; Whenever a € [a;_1,a;]. Then we clearly have that u* € AC?([0, 1], P(X))
and since p is absolutely continuous, for each a € [0,1], " — p, in (P(X), W).
Note that |1 |g() is a uniformly bounded function in L?([0, 1])

n+1
/ |Na|19(a)da < 62Lh Z/ |/‘La|19(a1 1)

n+1
2Lh Z —a;_ 1 Wq?(a,ifl)('u“’ifl”uai) < 00,

since u is a piecewise geodesic and A ;(1) < co. Then, by the Banach-Alaoglu
Theorem there exists a subsequence (not relabeled) h — 0, and a function
A € L*([0,1]) such that |"|y) — A in L?([0,1]). Hence from the convergence

of u — 1, we get
Wﬂ(a) (,U/aa Ma+5) = iILL)InO Wﬁ(a) (NZ? NZ+§)
a+9d s a+9d
. . . . . tfs .
< 1121;1(1)1f/a || 9(a)db < h}rznﬁl(r)lfe ( )/a |16 |9 () db
a-+0
= 3(t=s) / A(b)db,
and hence

lftal9(a) < A(a) for a.e. a € [0,1].
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Consequently,

1 1 !
0 ' 0

n+1
< liminf e**"
< liminf ¢ Z Iu B ai1)
n+1
< lim inf 2" Z i — i—1) Wg(ai_l)(ua,;_l,/iai) < A (),

h—0

which proves the claim.
O

To conclude this section we define a dynamic ‘dual distance’ inspired by the
dual formulation of the Kantorovich distance. We introduce the function space
HLSy defined by

HLSy := {gp € Lipy([ao, a1] % X)‘
1 . .
Oatpa < —§F19(a)(<pa) L* xm a.e. in (ag,a1) x X ;.

In particular for all nonnegative ¢ € L'(X) and ¢ € HLSy

/¢<pa1dm /¢s0a0dm < —f/ /qﬁrﬁ (a)(pa)dmda.

Definition 2.58. Let s <t and let ¥: [ag,a1] — [s,t] denote the linear inter-
polation. Define for two probability measures g, fi1

W3 (1o, 1) == 2sup{/s0a1du1 - /waoduo},
o]

where the supremum runs over all maps ¢(a, ) = @q(z) € HLSy.

Note that Wy does not necessarily define a distance. It does not even have
to be symmetric. The next Lemma collects two essential properties of Wy.

Lemma 2.59. The following holds true.

1. Wy is lower semicontinuous with respect to the weak-*topology on P(X) x

P(X).
2. For every o, u1

W(po, 1) < 22157 (ay — ag) Wi (1o, p1).- (84)

Proof. To show the first assertion, let pg, 1 € P(X) and choose ¢ € HLSy
almost optimal, i.e.

1 -
§W19(M0aﬂ1) < /ﬁpaldﬂl */@aodM0*€
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where € > 0. Let pug — 1o, n — 1 be two sequences converging in duality with
continuous bounded functions on X. then, since p,, and ¢,, belong to Cy(X),

1~
§W19(,LL0,,LL1) S/gpald:ual _/(Pao — €

=JLH;O{/ SOf“‘“”f‘/ %ﬂd’“‘g} -
1. . T n ,n
< g Hminf Wy (ug, u) —e.

This proves, since € > 0 was arbitrary, that Wy is lower semicontinuous with
respect to the weak-*topology on P(X) x P(X). The second statement follows
from the Kantorovich duality. Indeed, let ¢ € Lip,(X). As already mentioned
above the Hopf-Lax semigroup ¢ := Q;(¢) solves

d 1 1 _ _ .
PR < —irs(gpb) < —3¢ 2L t‘F(l,b)erbt(apb) L' xm a.e. in(0,1) x X.
(85)
Set @q = e’QL‘Sft‘(al — ao)flgov(a), where ~: [ag,a1] — [0,1] with v(a) =
aal%“&. Then ¢ solves
d 1 .
Ta Pa < *gFﬂ(a)(Sﬁa) in (ag,a1) x X,
and
e =t gy — ag) ™! </<P1d#1 —/wod/Jo) = /@aldﬂl —/%odﬂo-
Hence

1.~
6—2L|S_t|(a1 — ao)_l (/ Qpldﬂl — /SOOdMO) < §W§(M0aul)

Taking the supremum among all ¢ the Kantorovich duality for the metric
W implies B
W2 (0, 1) < €217 (a1 — ag) W3 (10, ).
O

Proposition 2.60. Let ¥: [0,1] — [s,t] be the linear interpolation. Then we
have Wy < Wi ;.

Proof. Fix ¢ € HJSy and (u)qe[o,1) 2-absolutely continuous curve. We subdi-
vide [0,1] into [ intervals [(k — 1)/1,k/] of length ;. On each interval [(k —
1)/1, k/1] we approximate (fa)|((k—1)/1k/ by regular curves (02" acio—1)/1,6/1-
Obviously, for each k,n the map [(k —1)/1,k/l] 3 a — [ @adpk™ is absolutely
continuous;

/ asndparn — / adpa < Lip(@arn)W (pasns pa) + lparn — palloc:

Let u®™ be the density of the regular curve p¥™. Hence for fixed k,n

d . n 1 n
%/wau’;mdm < /(pau’;’ dm — 5/1/2 o) (@a)dm
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From Lemma 87 we deduce
ak,n dm < 1| 'k,n|2 +1 (l )2d k.n
a Pa =5 Pa’ 19(k—1/1) 5 1Py(k—1/1)Pa) GPg" -

Adding these two inequalites, integrating over [(k — 1)/I, k/l] and noting that

_plt=sl
et (hpﬁ(k—l/z)(%))QSFﬂ(a)(%) m a.e.,

we obtain
/(pk/luz)/lldm—/(pk_l/lul;ill/ldm
! g k,n |2 1 L lt=sl k/l -
=3 " dat S(1—e b7 I dpmd
=5 /161/1 |Pa |19(k—1/l) a+ 2( e )/kl/l/( 1p19(k_1/l)<pa) " da

1 k/t k Cl [t—s]
< - SRL,T 2 d — 1 _ —L 7
<3 /k—l/l 1P [9(—1/1yda + 9 (I—e )

Taking the limit 7 — oo (and taking the scaling into account) gives

1 C _plt=sl
/@k/zduk/l - /Sokfl/ld/ikfl/l < §ZW3(1€—1/1)(M1€71/17M1€/1) + 271(1 —e 1T,

Summing over each partition and noting that the left hand side is a telescoping
sum yields

!
1 C _plt=s]
/901dM1 —/@oduo <5 E W35 o1y (k=105 1) + 71(1—6 L.
k=1

Letting | — co we obtain the desired estimate. O

Corollary 2.61. Let s < t and [0,1] 3 a — ¥(a) = (1 — a)s + at. Then for
every i, 1 € P(X) we have

Ws,t(ﬂ()v pi) = Wﬁ(ﬂm p).

Proof. We already know from Proposition 2.60 that W ¢ (o, pt1) > Wi (o, ph1).
Hence it remains to prove the other inequality.

For this let (¢,) € HLSy, and (u,) an absolutely continuous curve connect-
ing po and p.

Consider the Partition 0 = ag < a1 < ...a, = 1 with a; —a;_1 < h for some
h > 0. Set

a; —a a— ai_
[ai_1,ai] > a v 9i(a) = ———(a;_1) + ———-
a; — aj—1 a; — Gi—1

and @}, = Pala;_,,a;]- Notice that (@} ), is in HLSy,. Hence
W§1 (,uai—uluai) S 2 {/(paiduai - /@ailduail} .

80



Then summing over the partitions and taking the scalings into account we end
up with

n

Z(ai - ai—1)71W§(ai_1)(#ai_1a#ai) < eth‘Sit‘ Z ng (/Laq‘,—u,u'ai)

1= =1

1
n
< 9¢2Lhls—] Z {/%iduai - /%“dua“}
=1

= 2¢2Lhls—t] {/901d,u1 - /@od,uo}’

where we made use of Lemma 2.59(ii) in the first inequality. Taking the supre-
mum over all (¢,) € HLSy we deduce

n

Z(ai - ai—l)ilwg(ai,l)(:uai—l ) Pﬂi) < 62Lh‘87t‘W1§ (,LL(), ,ul)v (86)

=1

We conclude

Wit(uo?#l) S Wg(/l'()mul)a

from taking the supremum in (86) over the partition 0 = ag < a1 < -+ < a, =1
with a; — a;—1 < h and subsequently letting h \, 0.
O

2.9.2 Action Estimates

Let us recall the following estimate about the oscillation of a — [ pdp® from |7,

Lemma 4.12]. For fixed ¢t > 0, let (p®), be a 2-absolutely continuous curve in P

with p% = u*m; and u € C*((0,1), L*(X,m;)). Then for any Lipschitz function
1

 we have
a L. a
‘/U pdmy| < §|P |§+§/Ft(80)dﬂ : (87)

Actually, we have inequality (87) for each ¢ € Dom(E) since we assume that
each (X,d;,m;) is a static RCD(K, co) which implies that Lipschitz functions
are dense in the domain of the quadratic form &£ with respect to the norm
llol)? + E(p) (Proposition 4.10 in [6]).
Moreover we will use the following result about difference quotients and
concatenations of functions in F; ).

Lemma 2.62. Let 0 < s < T.
1. Let u € Fs4). Then for almost every a € (s,t)

1
E(uaJrh — Ug) = Oqug weakly” in F*,

i.e. for every v € F and for almost every a € (s,t)

/%(uaHl — Ug)vdmy, = (OgUq, V).
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2. For u € F(sp) and ¥ € C*([0,1]) the linear interpolation from s to t, we
have that (u o) € Fo,1) with distributional derivative

Oa(uod)(a) = (t — 5)0atty(q)-

Proof. From Corollary 5.6. in [41] it follows for u € F(5 ;) and v € F

a+h
/ua_,_;ﬂ)dm<> — /uavdm<> :/ (Opup, v)db.

Since b — (dpup,v) is in L(s,t) we apply the Lebesgue differentiation theorem
and obtain that for almost every a € (s,t)

1 1 a+h

lim — — = lim — = :
Lim /ua+hvdm<> /uavdm<> Lim /a (Opup, v)db = (Ogg, V)
This proves the first assertion. To show the second recall that we can approx-
imate each u € F( 4 by smooth functions (u™) C C*°([s,t] — F) by virtue of
[41, Lemma 5.3]. So for each n € N and for each smooth compactly supported

test function ¥: (0,1) — F we have that

Al /(u" 0 9)(a)0atpadmoda = —/01 /ﬁ(a)aaug(a)z//admoda.

Note that the term on the left-hand side converges to fol J(wod)(a)dupadmoda
as n — 0o since

1 t
[ [ oo = uonauvadmodal < (e~ 55" [ 1luz = wallA10u0 1L o
0 s

where we applied integration by substitution. Similarly for the right-hand side

1 t
/ 9(@)(Butl ) — Batho(ay, Ya)dmoda| < / 19et? — Battall - |9-1 o || Fda,
0 s

and consequently as n — oo

/01 /(u 0¥)(a)0utedmoda = — /ol(t — §)(Dattg(a), Ya)da,

which is the assertion. O

For the following lemmas let (p4)acjo,1) be a regular curve and let 4: [0,1] —
[0,00)

Y(a) = (1 — a)s + at, where s < t.

Set pg9 = Pt,ﬁ(a) (pa) = Ua, 919 (a)-

Lemma 2.63. The curve (ua,0)acfo,1) belongs to Lip([0,1], F*) with uas €
L3([0,1] — F) and distributional derivative Oyu, 9 € L= ([0,1] — F*) satisfying

aaua,ﬂ = 7(t - S)Aﬂ(a)ua,ﬂ + aafﬂ(a)ua,ﬂ - P;:ﬁ(a)(ﬁa)-
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Proof. First we show that (u,) is in L?([0,1] — F). For this recall that, since
(pq) is regular, u, < R and &,(\/u,) < E for all a € [0,1] and hence by Lemma
2.23 we get

1 1
[ el < € [t
< Rell=2) /01 |[tall £t (m,)da = ReX(=2),
and by Theorem 2.20
/01 Eo(a) (Ua,9)da < 3Lt=s) /[Et(ua) + ||Ua|\%2(mt)]da
< e3L(t_s)\/E[/Ol 26, (\/ug)da + R] < 3L \/R(2E + R).
This shows that (ug9) is in L2([0,1] — F).

Next we show that (u,,) is contained in Lip([0,1], 7*). For this let ¢ €
F. Then, for almost every ag,a; € (0,1), we obtain with Lemma 2.62, since

P/ g(a)ytan € F0,1)5
/wuawgdm<> — /1/1uawgdm<>
— [P syt = Praaytasdme + [ 0P (0, = o)

al ay .
:(t - 5) / 5:9)((1) (Ptfﬁ(a)uaoa 1/1)da + (t - 5) / /fﬁ(a)Ptfﬂ(a)uaolbdmoda
ag

ao

+ / Pro(an) (7960 (t1g, — g}y
al
S(t—s)/ Ea(a) (Pl g(aytiao) /> Eg(ay (Wel? @) 2 da
ag

a .
¢ =) [ oo el Pty 2 19677 22

ao

Ll llooo(Prip(ay) (7)) /2 sup i 5+ (a1 — a0)

<(t = 5)Ev(a) (w)”Q/ Lip(fo(a))Eo(a) (P g(a)thao) "/ *da

ao

aq .
+(t— 5)/ Hfﬁ(a)HOOHPtfﬁ(a)uaoHLQ(mﬂ(a))”wefﬂ(a)||L2(mo)da

ao

Ll llooo (Prp(ay) (7)) /2 sup i |5+ (a1 — ao)-
a

Due to our assumptions on f we have that

Lip(fl?(a)) <C, ||f19(a)||00 <L, ||ft||00 <C,
while the energy estimate Theorem 2.20 and Corollary 2.23 yields

€o(a) (Pt*:ﬁ(a)uao) < A=) €4 (uay) + Hua0||2L2(mt,)}’

L(t—s)/2

||P:19(a)ua0||L2(m19(a)) <e HuaoHLQ(mt)~
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Note that the last two expressions are bounded since u is a regular curve. More-
over from (23), the gradient estimate (81) and Corollary 2.23 we find

Eo( P p(ar) (el?@))) < Ceb =9 Lip(elr@1))2Ey o) (1)

Applying (23) once more we find that there exists a constant A such that

[ o ime ~ [ uagdmo < (@1 = an) o], (38)
and thus
||ual - UaOHJ-'* <A

Note also that (88) holds for every ag, a1 by approximating with Lebesgue points.
This implies the existence of J,u,9 € L*([0,1], F*) such that

/wual,ﬁdmo_/wuao,ﬂdmo :/ <aaua,19’w>}-*,}_da~

ao

Fix ¢ € Lip,(X). By a similar calculation as above it ultimately follows
that

1
lim f(/ YUgtn9dMe — /wuaﬁdmo)

h—0 h

=(t— 8)5§(a)(P{fﬁ(a)ua, Y)+(t—s) / Jéﬂ(a)P;g(a)Uaﬂ)dmo

li P foat+n) (ua+h - ua)
+ hlg})/ t,0(a+h) (Ve ) dm

almost everywhere. To determine the last integral recall that u € C*([0, 1], L' (X)).
Then since 1) € Lip,(X)

. Uq — Uq .
}ILIL%/Pt,ﬁ(a+h)(¢€fﬁ(a+h>)%dmt :/Pt,ﬁ(a)(1/1€f’9(“))uadmt

= /(wef““))P:ﬁ(a)ﬂadmﬂ(a) = (P} y(a)la, V) F+,F-
From the Lipschitz continuity of (u4,9) we deduce that for almost every a € [0, 1]

<aaua,19» w>.7:*,.7: = <_(t - S)A19(a)ua,19 + 8af19(a)ua,19 - P:ﬁ(a) (ua)v 1Z)>.7:*,.7:'

We conclude the proof by approximating ¢ € F with bounded Lipschitz func-
tions. O

Lemma 2.64. For any map ¢ € HLSy the map a — [ padpa,9 is absolutely
continuous and

1
1
/sﬂldpl,ﬁ*/ipodpo,ﬁ S/ [* i/rﬂ(a)(s%)dpa,ﬂJF/Pt,ﬁ(a)(SOa)aaua dmy
0

+ (t — 8) /Fﬂ(a)(@aa ua719)dm19(a):| da.
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Proof. Let us begin by showing that a +— pg 9 is 2-absolutely continuous. In-
deed, let ap < a1, we have with the equivalence of the gradient estimate (81)
and the Wasserstein contraction (68)

Wﬂ(ao) (paoﬂa Pay 719)
< Wﬂ(ao)(Pt,ﬁ(au)paoa Pt,ﬂ(ao)pal) + Wﬂ(ao)(Pt,ﬂ(ao)pm y Pt,ﬁ(m)pal)
S Wt(paoapal) + Wﬂ(ao)(Pt,ﬂ(ao)palvPt,ﬂ(al)pa1)~
By virtue of Lemma 2.33(iv) we have that p, = ng(a)pal = UgMy(q) 18 in

AC?([0,1], P(X)). This proves that a — p, » is 2-absolutely continuous.
To conclude that a — f Yadpa,9 is absolutely continuous we write

/@a1dpa1,19_/90aodpa0,q9

= /(90111 _Soao)dpahﬁ +/30a0dpa1,19 _/QDaOdan,ﬁ

< H@al - SOU«OHOO + Lip(<pao)W(palﬂ97paoﬂ9)'

To compute its derivative we consider difference quotients. Since
¢ € Lip([0,1], L>(X)) is in HLSy and ug4p9 — Uq,9 in L'(X) we have

N 1
lim A" /(Wa+h = Pa)dpatny < —5 / Va(ayPal*dpa,s- (89)
h—0 2

Now we need to determine

1

flbli% E(/ Pat 7@ (Uqip,9 — Uaw)dme + /(p“uﬁh’ﬁd(mﬂ(wh) — My(a)))-

The expression on the right hand side clearly converges to

—(a) / Pafo(a)tla,0dMp(a), (90)
while from Lemma 2.63 we deduce

. _ 1 _
%li% e fﬂ(a)@aﬁ(ua-&-h,ﬂ — Uq,9)dMme =(0gUay, e 7@ 0y 7 7+,

and after inserting

<aauaae_fﬂ(a)<pa>]:,]:* (91>

:(t - S) ( / fﬂ(a)ua,ﬂspae_fﬁ(a>dm<> + 5§(a) (ua,'&a (Pae_fwa) )) (92>

=(t - s) ( / fo(a)Ua0Padmy(ay + /Fﬁ(a)(ua,ﬂ, sﬂa)dmﬁ(a)) (93)
Then from the absolute continuity of a — [ p,dp,,9 together with (89), (90)
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and (93), we obtain

1
/ﬁpldpm */sﬁodpo,ﬂ :/ 3a/90adpa,ﬁda
0
! 1 5 .
< {— 3 Vo) Pal“dpas + | Pro@)Pattadmy
0
- (t—s)/%fﬁ(a)ua,ﬂdmﬂ(a) +(t_s)/f19(a)ua,19<padm19(a)
+(t—s) /Fﬂ(a)(ua,ﬂ»Sﬁa)dmﬂ(a)}da
! 1 ) .
< |: ) |V19(a)§0a| dpa,ﬂ + Pt,ﬂ(a)@auadmt
0

+(t—s) /Fﬁ(a)(uaﬂ%@a)dmﬂ(a)}da-

We regularize the entropy functional by truncating the singularities of the
logarithm. Define e : [0, 00) by setting e’ (r) = log(e+r)+1 and e.(0) = 0. Then
ec is still a convex function and e, € Lip, ([0, R]). For any ¢t and p = um,; € P(X)
we define

Si() = | eturdm.

Note that for any p € Dom(S) we clearly have S¢(p) — S(p)as ¢ — 0.

As in [7] we introduce

/

pe(r) == e.(r?) —loge.

Lemma 2.65. With the same notation as in Lemma 2.64 we find for any e > 0

Si (p1,9) — S<(po,w)
1
Z/ /uaPt,ﬁ(a)(e/g(ua,ﬁ))dmﬂ(a) +4(t_5)/eg('ua,ﬁ)rﬂ(a)(\/ua,ﬂ)dpa,ﬁ
0

+(t —s) / f:ﬁ(a) (ta,€L(ta,p) — €L (Uq,9))dmy(q)da.

Proof. From the convexity of e. we get for every ag,a; € [0,1] by virtue of
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Lemma 2.63

Sf?(al)(pal,ﬂ) - Sf?(ao)(pao,ﬁ)
:/ea(uahg) - €E(ua0719)€7f‘9(“0)dm0 —|—/e€(ua1719)(effﬁ<“1> — e 2@ )dm,
Z/eé(uao,ﬁ)(ual,ﬁ — Ugyp)e 70 dmy +/65(Ua1,19)(67f"9(“1) — e o) dm,,
z/al(@aua,g,67f19<"0>e’8(ua0719)> - /ee(uahg)ﬁ(a)fﬁ(a)efff"(a)dmo)da

ao

(ll . . .
= [ (0@ Bt + 900 eyt + Progo ). e/ )
ao
— /66(ual’g)ﬁ(a)ﬂg(a)e—fﬂwdmo)da

al . . .
:/ (_19(0’)<A19(a)ua,197 e—fmao)els(uawg)) + /ﬂ(a)fﬂ(a)ua,ﬁe_f‘”“())eé(uao’ﬁ)dmo

ao

+/Ptflg(a)(ua)e_fﬂao)els(uag’g)dmo—/es(ualyﬁ)ﬁ(a)fﬁ(a)e_fl’(“)dmo)da.

Now fix h > 0 and choose a partition of [0, 1] consisting of Lebesgue points
{a;}1 such that 0 < a;4+1 —a; < h. Then

n

S5 (p1.0) = S2(p0.0) = Y (S50 (Pai0) = Sia,_y) (Pai1.0))

i—1
23 [ @t )
i=1 Y ai—1
-|-/19((1)f-g(a)ua,qge_fﬂ(“ifl)e",s(uai_lﬂg)dm<>
+/ {jﬁ(a)(ua)e_f"(”ifl’e;(uaifl,ﬁ)dmo—/es(uai’ﬂ)ﬁ(a)ﬂg(a)e—fﬂ(‘”dmo)da
= [0 ot + [ S astim.

+/Ptfﬁ(a)(ﬂa)<fdmo */wgﬁ(a)fﬁ(a)67f79<“')dmo)da,
where

= e rine (u,, | ), for a € (ai_1,a]

wZ = ec(Uq;,0), for a € (a;—1, a;].

Letting h — 0 we obtain

I emPr@el (ug9), in LY (X) for ae. a € (0,1)
wh = ec(ua9), in LY(X) for a.e. a € (0,1),
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and thus from dominated convergence

Si(p1,9) — S5(pov)
1
Zlil}?sgp[/ (—9(a)(Ag(a)ta,9, S0 +/19(a)fa(a>ua,ﬁ<3dmo
— 0

+/Ptfﬂ(a)(ﬂa)§fdmo */wgﬁ(a)f.ﬂ(a)eifﬁ(a)dmo)da]

1
>lim sup[/ (—'19(0/)<A19(a)ua,197 g(’;)da]
h—0 0

1
+/ (/ﬁ(a)fﬂ(awa,ﬁe*f““)eé(ﬂa,ﬂ)dmo
0

+/Ptfﬂ(a)(ﬁa)eifﬁ(a)e/e(ua,ﬂ)dmo*/6 (ta,9)V ( )fﬂ( )€ ~fo@ dm o)da.

To see that (Ay(a)ta,9,s") = (Ap(a)ta,v, e 7@€, (uq,9)), recall that from The-
orem 2.20 it suffices to show that

sh 5 emPrwel (ug,9) in L*(X).

This is a consequence of the boundedness of u,» and fyq). Then again by
dominated convergence we have

Si(p1,9) — S5 (po.v)

1
2/ [19(a)5§(a)(ua,«9,e_f“@e;(ua,ﬁ))+/19(a)fﬁ(a)“a,ﬁ€_fl’(“)eé(ua,ﬁ)dmo
0
b [ Py tia)e o0 e ua)dme = [ ec(ua.0)9(a) fagae 0 dmelda
1
- / [9(0)E0(0) (e, €. () + / 9() fotaytia o€ (tta.0)dmoga)
0

+/Ptfﬂ(a)(ua)els(ua,ﬁ)dmﬂ(a) —/es(uaﬁ) (@) fo(a)dmo(a))da.

O
2.9.3 The Dynamic EVI~-Property
Proposition 2.66. Let p* = u®m; be a regular curve. Then setting p§ =
Py 9(a)p®, it holds
*Wﬁ p1.9:P09) — (t = 8)(Si(p1.9) — Ss(po.9))
(94)

/ |pa|tda - t - S / /fﬂ(a)dpa,ﬁda-
0
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Proof. Applying Lemma 2.64 and Lemma 2.65, we find

/ ordprs — / podpo.s — (t— 5)(SE(p1.0) — 5% (po.0))
1 1
< [ [ [ taPraeroa = (¢ = s)etunaams = 5 [ Ty (oa)dpus
0
+ (t - S) /Pﬂ(a) ((pam ua,ﬁ>dm19(a) - 4(t - 8)2 / eg(ua,ﬁ)rﬁ(a)(\/ ua,ﬁ)dpa,ﬁ
—(t—s)? /(es(ua,ﬁ) - e/a(Ua,ﬁ)ua,ﬂ)fﬁ(a)dmﬁ(a)}da-
(95)

Then since

drel(r) > dr?(el(r))* = r(pL (V7))

we can estimate

—4uua,9¢7 (Ua,9) o (a) (Vla,9) < ~ta,0 (0 (v1a,9))*To(a) (Vla0)
- _ua,ﬁr19(a) (pf(\/m))7

and while, with ¢.(r) := /r(2 — /rpL(1/T)),

LCy(a)(Ua,9; a) = 24/Ua,9L9(a) (\/Ua,05 Pa)
= ua,ﬁrﬁ(a) (pz—:(\/ Ua,ﬁ)y Qoa) + Qe (ua,ﬁ)rﬂ(a) (\/ Uq, 9, @a)

we find

/ s — / odpo.s — (t — 3)(S(p1.0) — 55 (po.0))
1
1
.aP a [ - /5 a d a5 F a a d a
< [ taPrara(on = (0= etwagame = 5 [ Towle)dpes
L t—s) / Tty (P Pe (Vi) dpass — (¢ — 5)? / Loty (P (Va9))dpas
+(t - 5)/QE(ua,ﬁ)Fﬁ(a)(\/ua,ﬁaQoa)dmﬂ(a)
- (t - 8)2 /(es(ua,ﬂ) - els(ua,ﬁ)ua,ﬁ)f.ﬂ(a)dmﬂ(a)}da“

(96)
Hence, by means of (87), the gradient estimate (81), and Young inequality
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22y < §x2 + y?/6 this yields
/90161/)1,19 - /WOdpo,ﬁ — (t = 5)(S5(p1,9) — S5(po,v))
Yr1, 1 ,
< [ [510alt 5 [ Te(Prsa(@a = (t = $)ek(ua,0))dpa
0
1
~ 5 [ PuowLacwea = (¢ = - i))dp,
+(t - S)/QE(ua,ﬁ)Fﬁ(a)(\/ua,ﬂ7Spa)dmﬂ(a)
—(t—s)? /(es(ua,ﬂ) - e/s(ua,ﬁ)ua,ﬁ)]&ﬁ(a)dmﬁ(a)} da
1 1 .19
< | 310l 4= 9) [ lacua ) IPoco) (Fags ) ldmace

_ (t — 5)2 /(eg(uaﬂg) — e/s(uaﬂg)uaﬂg)flg(a)dmg(a)} da

tri, (t—s)
S/O {§|pa|% + 25 /(QE(ua,ﬂ))QFﬁ(a)(‘Pa)dmﬂ(a)

t—s)d
+( 5 ) /Fﬂ(a)(\/ua,ﬁ)dmﬂ(a)

—(t—s)? /(es(ua,ﬂ) - e/a(ua,ﬂ)ua,ﬁ)fﬁ(a)dmﬁ(a)} da.

We first pass to the limit € — 0,

. 20 — 20, — _ 2 <
lim g=(r) =0, g:(r) = 4r(1 5+r) < dr,

. _ / - _

lim (ec(r) = rez(r)) = -,

lec(r) —rel(r)| < 2(e +7)|log(e + )| + 7 +cloge < 2v/e+r+7+cloge,
and then, 6 — 0,

/ ordpry — / odpos — (t — 8)(St(pr.9) — Ss(p0.0))

1
1 . .
< [ [316a+ 0= 9 [ Jotwdpas]da.
0

Taking the supremum over ¢ we obtain the desired estimate (94). O

Theorem 2.67. Assume that the gradient estimate holds true for the time-
dependent metric measure space (X, ds,my)eeo,r). Then for every p € Dom(S)

and every T € (0,T] the dual heat flow p, == Py - emanating in u we have

S4(10) = $1(0) < 5 W 0) = W20 = (0= ) [ [ oarpeda

(97)
foralls € (0,7) and all o, p € Dom(S). Here (pa)acjo,1) denotes the Wi-geodesic
connecting po = pig, p1 =0 and pa9 = P; 9(a)(Pa)-
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In particular py is a dynamic upward EVI~ -gradient flow, i.e. for every
t € (0,7) and every o € Dom(S) we have

1

53;Ws2,t(ﬂs,0)\s=t— > Si(pe) — Se(o).

Proof. Let (pa)acjo,1] be a Wi-geodesic connecting p; and o, which exists and
is unique. We approximate the geodesic (pq)qe0,1] by regular curves (pf)ae0,1]-
Proposition 2.66 states that for each (p})aco,1)

Wﬂ Plﬁ»/’oﬁ) (t— )(St(qus) S(Poﬁ))

/ ‘pa |§da - t - S / /fﬂ(a)dpa ﬂda

Since for every a € [0,1] p? converges to p, in duality with bounded continuous
functions, py , converges to p,,y in duality with bounded continuous functions
as well. By virtue of Lemma 2.59 we obtain

(98)

liminf W3 (o7 5, pi.9) = W3 (p1,9, po,0)-
n—oo

Note that (p7) also converges to p, in duality with L> functions, since Lemma
2.28 provides sup,, S;(pl) < co. The same argument applies then to p!;. Hence

nlirréo/fﬂ(a)dpg,ﬁ = /fﬂ(a)dpa,19~

Then we end up with

1 -
3 Wi (s, 0) = (t = 5)(Si(0) = s (11s))
L . (99)
< §Wt (g, 0) — (t—9) / /fﬁ(a)dpa,gda.
0
Applying Corollary 2.61 we obtain
(t = )(Ss(ps) = Si(0))
Lo Lo o [N [
< §Wt (pt,0) — §Ws,t(#s70’) —(t—s) fo(a)dpavda.
0
Dividing by ¢t — s and letting s * t we find
o 1 2 2
St(pe) — Si(0) < 11£n/1¥1fm (Wi (e, o) = Wiy (s, 0))
1,._
= 555 Wez,t(:us?J)ls:t—'
O
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2.9.4 Summarizing

The precise integrated version (97) of the EVI~-property indeed also implies
a relaxed version of the EVIT-property which then in turn allows to prove
uniqueness of dynamic EVI-flows for the entropy.

Corollary 2.68. The gradient estimate (III) implies the EVIT(—2L, co)-property.
More precisely, for every u € Dom(S) and every T < T the dual heat flow
we = Py -1 emanating in u satisfies

1
58;W3,t(ﬂs70)\s:t > Si(pe) — Si(o) = LW (e, o)

for allt <7 and all 0 € P(X).

Proof. Given p; := Ptmu for t7, consider (97) for fixed s < 7 and with s \ t.
Then

Ss(ps) — Ss(o) = ?{2 Ss(ts) — Si(o)
< lim — [W? — W2, (s
= SI{% 2(t _ S) |:Wt (/’Lta U) Ws,t(/”'m U)}
< (tm o W2 (e 0) — W2(ps.0)
=N\t 2(t—s) LT s
Lo 2
+§ |:Wt (/j/ta U) + Ws (/’[/57 0->i|)
1,
= 30 W (1, 0)imst + LW (115, 0)
where the last estimate follows from (102). O

Corollary 2.69. Assume that (ITI) holds true and that (jit)ie(o,r) @5 a dynamic
upward EVI~- or EVIT gradient flow for S emanating in some p € P. Then

Mt = Pt,r#

for all t € (o,7). That is, the dual heat flow is the unique dynamic backward
EVI~-flow for the Boltzmann entropy.

Proof. Corollary 2.78 together with Corollary 2.68 and Theorem 2.67. O

Theorem 2.70. The gradient estimate (II11y) implies the dynamic N -convezity
of the Boltzmann entropy (In).

Proof. According to Theorem 2.41 and Theorem 2.67 the gradient estimate
(ITIy) implies both

e the transport estimate (IIy) and
e the EVI~ (0, 0o)-property

According to Theorem 2.80, both properties together imply dynamic N-convexity.
O
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2.10 EVI, Contraction Estimates and Dynamic Convexity
2.10.1 Time-dependent Geodesic Spaces

For this chapter, our basic setting will be a space X equipped with a 1-parameter
family of complete geodesic metrics (d;)ie;r where I C R is a bounded open
interval, say for convenience I = (0,7). (More generally, one might allow d; to
be pseudo metrics where the existence of connecting geodesics is only requested
for pairs z,y € X with di(z,y) < 0o.) We always request that there exists a
constant L € R (‘log-Lipschitz bound’) such that

dt(xvy)‘
log <L-|[t—s 100
‘ ds(z,y) 6= <l (100)

for all s,t and all z,y (‘log Lipschitz continuity in ¢’);

Let us first introduce a natural ‘distance’ on I x X.

Definition 2.71. Given s,t € I and z,y € X we put

1 1/2
ds,t(xhy) := inf {/ |’7a|§+a(ts)da} (101)
0

where the infimum runs over all absolutely continuous curves (v*)qef0,1) in X
connecting x and y.

Proposition 2.72. (i) The infimum in the above formula is attained. FEach
minimizer (v*)qe(0,1] 95 @ curve of constant speed, i.e. |¥*|syqt—s) = ds,i(7,Y)
for all a € [0,1].

(ii) A point z € X lies on some minimizing curve v with z =~ if and only
if

ds,t ((E, y) = ds,r(xv Z) + dr,t(z7 y)

with r = s+ a(t — s).

(iii) For all s,t € I and z,y € X

1— 67L|tfs| ds,t(x7y) _ 6L|tfs| -1
Lit—s| = ds(z,y) — Llt—s|

Thus in particular,

Lds(x, Y).- (102)

< Z
-2

Ords ¢(2,y) ‘t:s

(iv) Foralls <tel and z,y € X

i 1/2
T : t=8 o
dsi(@:y) = %L{% (tilglz)i {; ti —ti—1 i (x“ 5511)} (103)

where the infimum runs over all k € N. all partitions (t;)i=o,....x of [s,t] with
to =s,tx = 1 and |t; — ti—1| < § as well as over all x; € X with xo = x,x = y.

Proof. (i) For each absolutely continuous curve (v*)qe[0,1]

1 1/2 1
<A ;Ya|3+a(t—s)da) = /0 H/a|s+a(t—s)da
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with equality if and only if the curve has constant speed.

(ii) Restricting the minimizing curve for ds; to parameter intervals [0, a]
and [a, 1] provides upper estimates for ds ,.(z, z) and d,.(z,y), , resp., and thus
yields the “>”-inequality. Conversely, given any pair of minimizers for d; ,(z, 2)
and d,.(z,y) by concatenation a curve connecting = and y can be constructed
with action bounded by the scaled action of the two ingredients. This proves
the “<”-inequality.

(iii) The log-Lipschitz continuity of the distance implies that for each abso-
lutely continuous curve

1 1 1
67La|tfs|/ |7a|sda < / ".Ya|s+a(t—s)da < 6Laltfsl‘/ |"y“|sda.
0 0 0

(iv) see section 2.9.1 for the argument in the case of Wi ;. O

2.10.2 EVI Formulation of Gradient Flows

For the subsequent discussion, a lower semi-bounded function V' : I x X —
(=00, 00] will be given with Vi(z) < Cy - Vi(x) + Cy for all s,t € I and x € X
(thus, in particular, Dom(V) = {z € X : Vi(x) < oo} is independent of z)
and such that for each ¢ € I the function x — Vi(z) is k-convex along each
di-geodesic (for some k € R). We also assume that minimizing d;-geodesics
between pairs of points in Dom(V') are unique.

In previous chapters, the following results will be applied

e to the Boltzmann entropy S; on the time-dependent geodesic space (P, W )ier
as well as

e to the Dirichlet energy & on the time-dependent geodesic space L2(X, my)ser
in the place of the function V; on the time-dependent geodesic space (X, dy)er-

Definition 2.73. Given a left-open interval J C I, an absolutely continuous
curve (x¢)ieg will be called dynamic backward EVI~-gradient flow for V' if for
allt € J and all z € Dom(V})

1

SO (w02)| 2 Vilw) Vi) (104)

s=t—
where ds; is defined in Definition 2.71.

A curve (x4)ieg with a right-open interval J C I will be called dynamic
backward EVIt-gradient flow for V if instead

1,
50 diilwez)| = Vilw) = Vi(2)

forallt e J.
It is called dynamic backward EVI-gradient flow if it is both, a dynamic
backward EVI*-gradient flow and a dynamic backward EVI~-gradient flow.
We say that the backward gradient flow (x¢)icy emanates in o' € X if
limy rgup g 20 = 2.

Being a dynamic backward EVI*-gradient flow for V obviously implies that
xy € Dom(V,) for all t < 7.
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Remark. Note that these definitions are slightly different from a previous one
presented in [59]. If ds depends smoothly on s then
8 d (xs7 )‘s:tf = 85_(1%(‘%5”2)‘3 +a d (.’Et7 )’s:tf

=t—

and always 05 d2 (x4, 2 )|s:t7 > bY(7) for any digeodesic v connecting x; and
z.

Often, we ask for an improved notion of dynamic backward EVI-gradient
flows, involving parameters N € [1,00] (regarded as an upper bound for the
‘dimension’) and/or K € R (regarded as a lower bound for the ‘curvature’).
The choices N = co and K = 0 will yield the previous concept.

Definition 2.74. We say that an absolutely continuous curve (xt)te(gj) 18 a
dynamic backward EVI(K, N)-gradient flow for V if for all z € Dom(V;) and
allt € (o,7)

K

1
285 df (JL‘S,Z)‘ - — dz(sr:t,z)

(105)
> Vi(z) — N/ 0aVi(y (1 —a)da
where v denotes the d;-geodesic connecting x; and z.
Analogously, we define dynamic backward EVI*(K, N)-gradient flows for
V.
In the case, K = 0, dynamic backward EVI(K, N)-gradient flows will be
simply called dynamic backward EVIy-gradient flows.

The concept of ‘backward’ gradient flows is tailor-made for our later appli-
cation to the dual heat flow. This flow is running backward in time and on
its way it tries to minimize the Boltzmann entropy. Regarded in positive time
direction, it follows the ‘upward gradient’ of the entropy.

On the other hand, in calculus of variations mostly the ‘downward’ gradient
flow will be considered where a curve tries to follow the negative gradient of a
given functional.

Definition 2.75. We say that an absolutely continuous curve (T¢)ic(q,r) 05 @
dynamic forward EVI(K, N)-gradient flow for V' if for all z € Dom(V;) and all
te(o,7)

K
s=t B 5 . d?(l't,Z)

>t v+ [ (0ai6) -

where v denotes the d;-geodesic connecting rs and z.
We say that a forward gradient flow emanates in a given point ' € X if
limp o 2 = 2'.

fade (zs,2)

(106)

We will formulate all our results for ‘backward’ gradient flows and leave it
to the reader to carry them over to the case of ‘forward’ gradient flows.

Lemma 2.76. For each dynamic backward EVI* (K, oo)-gradient flow (T¢)te(or)
for'V

/ Vi(zy)dt < oo.
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Proof. Choose z € Dom(V'), apply the EVI(K, co)-property at time ¢, and then
integrate w.r.t. time ¢

/ Vi(zy)dt < / [Vt(z) + §8sd§)t(xs,z)|szt - Edf(xt,z)}dt

g

1 T
< (CoVr(2) + )T —0) + 3 / [&df(mt, 2) + (L — K) d?(zy, z)}dt
1 1 L—-K [T
= (CoVi(z)+Cy)(r—0)+ §d72.(x7, z) — id?j(mg, z) + 5 / d?(xy, z)dt.
Obviously, the right hand side is finite which thus proves the claim. O

2.10.3 Contraction Estimates

Theorem 2.77. Given two curves (2t)ie(o,r) and (Yt)ie(o,r), one of which is
an is a dynamic backward EVI~ (K, N)-gradient flow for V' and the other is a
dynamic backward EVIT (K, N)-gradient flow for V, then for allo <s <t <T

2 [t 2
d2(xs,ys) Se_zK(t‘s)-df(xt,yt)—N/ e 2=V (2,) =V (y,)| dr. (107)

S

Proof. Assume that the curve (xt)te(gﬂ is a dynamic backward EVI~-gradient
flow for V' and (yt):e(o,r) is a dynamic backward EVIT-gradient flow for V. It
implies that r — d,.(x,,y,) is absolutely continuous since

|di (e, yt) — ds (s, ys)| < ds(s,7¢) + ds(ys, ye) + L(t — s)de(ze, yt)-

Thus by the very definition of EVI flows

1 t 1 540
Blary) - o) =lmsw [5 [ Blarp)dr—5 [ donp)ar
] 5 t—o 0 s

1 t
= limsup — / [d?(wr, yr) = i _s(wr—s, yrfa)} dr
s+0

SO 0
> liminfl/t [d2($ yr) —d%, _s(z,,y 5)] dr
RV STLE L

1t
+ liminf — / (2, _s(xr,yr—s5) — d>_s(@r—s,yr—5)] dr
5\0 sis b

1t
= liminf — / [d2 (@, yr) — d2 o s(xr, yr—s)] dr

N0 546
t—6
. 2 2
* hgn\}élf S s [dr+5,r(x7‘+57 yT) - d?” (x“ y’")] dr.
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If we could interchange the liminf with integration we calculate further

QA
Z /s ll(rsﬂ\%lf g [d?(xm Z/v) - dir_é(xrayr—(S)] dr

t
1
+ / liminf <[4, (@res,9r) = d)(ar,y,)] dr
t 1
K 2 1 a 2
>2 [ (G Vi) ~Vile) + 5 [ (0%:00) ada]dr
t 1
K , 1 o)
+2/ [2 di (e, yr) + Vi(zr) — Valyr) + N/ (8 V(%)) (1 —a)da}dr

*QK/ (Tr, yr dr+—// 5‘V ’yr dadr

> 2K/ (r, yr) Vi (yr)

Dividing by ¢ — s and passing to the limit ¢ — s \, 0 yields

d r.

2

2
Oud; (e, 1) = 2K d (w4, y0) + N Vi(xe) — Vi(ye)

for a.e. t. The claim now follows via ‘variation of constants’.
It remains to justify the interchange of liminfs\ o and [ ...dr in (*) which

2
requires quite some effort. Recall from Proposition 2.72 that % —

2L - |t — s| for all z,y, s, t with [t — s| < 1. Thus we can estimate

1] <

1 2 2
75 |:dr(x7“7 y’l“) - dr,r—zs(xT7 yrfé)i|
1
< _5 |:dq2ﬂ(l.7‘) yr) - d?«f&(xrv yrfé)] + 01

1 T
= —f/ 8Sd§(xr,ys) ds + 01
d r—o

IN

1 s
5 [ 0| _ ds oo
1) r—§ ’ t=s

2 T
,/ |:‘/S(£L'T) 7‘/5(y5):|d8+01 +02+03
4 r—ao

< 2Cy - Vi(zy)+2C1 + C+ 01+ 02 + 03

IN

where for the last inequality we used the growth estimate of s — Vi(z) and
the lower boundedness of V' and where we put with oy (r, ) = 2L d?(x,,yr—s),
0o(r,0) = 2L%f:_5 d*(zy,yo) do, 03(r) = K d?(z,,y,). Continuity of r — d,
and of r — z, as well as of r — y, imply that for any fixed z € X the function
r + d*(z,,z) is bounded as well as r +— d?(y,_s,2) for r € (s,t), uniformly
in § € (0,1). Thus o01(r,d) + 02(r,0) + 03(r,6) < C" which finally justifies the
interchange of limit and integral.
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Similarly, we can estimate

1
_g |:d3‘+5’r(xr+5a yT) - d'l2" (mr? yT):|
1 r44
< *5/ 5'sdf(9€s,yr) d5+0,1

< 2Co - Vi(yr) +2Co + C + 0 + o + 0f.

In both cases, the final expression is integrable w.r.t. r € [s,t] according to
Lemma 2.76 since by assumption V;(z;) < oo as well as V;(y:) < oo. O

Corollary 2.78. Assume that (v¢)ic(0,r) 95 a dynamic backward EVI(K, N)-
gradient flow for V- and that (y)ie(o,r) s a dynamic backward EVI~ (K, N)- or
EVIT (K, N)-gradient flow for V emanating in the same point . = y,. Then

Ty = Yt
forallt < 7.

Corollary 2.79. Assume that for given T, a dynamic upward EVI(K, oo)-
gradient flow terminating in ©' exists for each x’ in a dense subset D C X.
Then this flow can be extended to a flow terminating in any ' € X and satis-

fying
ds(LEs, y‘?) S eiK(tis) . dt(‘rta yt) (108)

forany s <t <T.

2.10.4 Dynamic Convexity
Let us recall the notion of dynamic convexity as introduced in [59].

Definition 2.80. We say that the function V : I x X — (—o0, 00| is strongly
dynamically (K, N)-convex if for a.e. t € I and for every d;-geodesic (v*)ac(o,1]
with 4%, 1 € Dom(V;)

o 1. K 1 )
O Vi(y7)-0, W(7?+)2—§3t di- (1%, 9"+ 5 A () V) = V()]
(109)

Theorem 2.81. Assume that for each t € I and each &' € Dom(V;) there
exists a dynamic backward EVI(K, N)-gradient flow (s)se (04 for V emanating
in &' and such that limg ~ Vi(zs) = Vi(z). Then V is strongly dynamically
(K, N)-convez.

To be more precise, we request the inequality (104) at the point ¢ and the
inequality (105) at all times before ¢.

Proof. Fix t € I and a dy-geodesic (7*)qep,1) with 4°,7* € Dom(V;). The a
priori assumption of x-convexity implies v* € Dom(V;) for all a € [0,1]. For
each a, let (v¢)s<; denote the EVIy-gradient flow for V' emanating in v* = ~7.
Then for all a € (0, 3)

Lo a
Vvt(/ya) - ‘/;5(70) < 585 di,t(’}/s 7’70)

1
ia;dg(’ygv 70)

s=t—

A+ a’Ldi(y", ")

IN

s=t
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(due to the log-Lipschitz continuity of s +— dy) and

1 1

V(YT = Vily) < S00dL ()

1
< 50 A

Moreover, the previous Theorem 2.77 implies

1, 2 l1—a 2 1— 1
— — K a ay _
2 aS d (fYS 778 ) dt (’y » Y ) N

ACHERACT

s=t—

1 1 _ .
—[5dE0mAT = SR0E T - K a4
1 t
N

= lim inf
st

2
Ve(3) = V()| dr > 0.

(Here we used the requested continuity V,.(v%) — Vi(v*) for r 7 t.)
Adding up these inequalities (the last one multiplied by ﬁ and the pre-
vious ones by 1) yields

[ = M) + Vi ) = Vi)

1 1
< liminf —— ([~ d? ——d} ; !
= A 2(t—s)<[d( (A= 2d( O+ d( )
1
-5 L2, V) + T e () + d2( “ 7))
12l 2107 — (e 71‘“)—¥V(7a)—‘/(71‘“)2
R 1—2a 8" N(1—2a)l"" K
1
< Timi 20,0 A\ 20,0 1
2
—[(1—2@)K—2(IL] -df(vo,vl)—m“/} _‘/;5('71_&) :
In the limit a — 0 this yields the claim. O
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3 Improved Gradient Estimates for the Heat Flow
and Couplings of Brownian motions

In this chapter we show that the gradient estimates for the heat flow are self-
improving. On the level of the dual heat flow this means that if the transport
estimate holds with respect to the L2-Kantorovich distance it also holds with
respect to the L°°-Kantorovich distance. We use this observation for the con-
struction of couplings of Brownian motions and obtain pathwise contraction for
their trajectories.

3.1 Main Results

In Chapter 2 it has been shown that a family of metric measure spaces (X, d;, my)ter
is a super-Ricci flow if and only if the gradient estimate

Ft(Pt,su) S Pt,s(rs<u))

holds for every u € Dom(€) and every 0 < s < t < T, or, equivalently by duality
[36], if the L?-Kantorovich transport estimate

W o(Prspt, Py o) < Wai(p,v) (110)

holds for every p,v € P(X) and every 0 < s <t < T.

In this paper we improve the gradient estimate (and therefore the transport
estimate) in the sense of Savaré [55] and Bakry [12] respectively. For this we
aggravate our assumption regarding the time-dependence of the metric. We will
restrict ourselves to metrics such that the map ¢t — log d;(x,y) is continuously
differentiable (instead of Lipschitz continuous as in Chapter 2) and its derivative
h¢(x,y) is continuous as y — x, see (117) and (118). We then obtain that
t — T'y(u) is differentiable and derive a dynamic version of Bochner’s inequality

1 1
5Au(Tu(w) = To(u, Agu) > Z(OT)(w).

In contrast to Chapter 2, where also a dynamic version of Bochner’s inequality
has been derived, the function u does not need to arise as a heat flow P; sus.

Theorem 3.1. Let (X, d;, mi)ier be a one-parameter family of geodesic Polish
metric measure spaces satisfying (113), (114), (117) and (118) such that each
(X,d¢,m:) is a RCD(K, N) space. If the transport estimate (110) holds, then
the dynamic Bochner inequality (120) holds at all t € I.

Having established a dynamic version of Bochner’s inequality we can follow
the arguments in [55] and obtain the improved gradient estimate.

Theorem 3.2. Let (X, di, mi)icr be as in Theorem 3.1. Then, if the dynamic
Bochner inequality (120) and the reqularity assumption (132) is satisfied, for
every a € [1/2,1] we have for a.e. 7 <t and o > s

L7 (Prou)® < Pro(lo(u)®), (111)

for every u € Dom(E) and m-a.e. xz € X.
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As a consequence we obtain that if (X, d;, m;) is a super-Ricci flow in the
sense of Chapter 2, then for § € [1, 2]

VP sull < Pro(IVsulf)
and for p € [1, 0]
WP,S(pt,S,ua pt,s’/) < Wpyt (,LL, V)v (112)

see Corollary 3.17. Similar as in [58] we will apply these results to Brownian mo-
tions and construct a coupling (X2, X2) of Brownian motions such that almost
surely

ds<XslaXs2) S dt($7y),
see Theorem 3.25.

Example. A possible example for the setting chosen in this paper is the super-
Ricci flow on the spherical cone over the product of the 2-spheres with radius
1/V3 constructed in Chapter 2. This space is a RCD*(4,5)-space, and the
punctured cone is a 5-dimensional (non-complete) Riemannian manifold with
constant curvature 4. A possible Ricci flow on the punctured cone is given by
distances which shrink to one point homothetically in time. The completion of
this flow is a super-Ricci flow which shrinks to a point homothetically in time.
Hence, for time points smaller than the collapsing time the metrics satisfy the
assumptions (117) and (118). The same argumentation can be used to obtain
(113) for the measures.

3.2 Proof of the Main Results

In the sequel let (X, d;, m¢)ier, where I = (0,T), be a one-parameter family of
geodesic Polish metric measure spaces such that the following holds:

1. There exists a finite reference measure m with full topological support
such that m; = e~/* with Borel functions (f;) satisfying

[fe(@)] < C, |filz) = fily)] < Cdi(z,y),  |fi(x) = fo(a)| < LIt = s,

(113)
with constants C, L > 0 independent of z,y € X and s,t € I.
2. the distance is “log-Lipschitz” continuous, i.e.
[ Tog(ds (z, y) /ds (w,))| < Lt 5| (114)

for all x,y € X and all s,t € I,

3. there exist constants K, N € R such that for each t € I the space
(X, dy, my) satisfies the Riemannian curvature-dimension bound RCD (K, N)
in the sense of [7], [24].

In the sequel let us introduce the time-dependent quantities which we are
going to use.
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Let P(X) denote the space of all Borel probability measures. We set for
each p € [1,00)

1/p
Wp,twl,m):min{ /. de(x,wdv(x,ymenmhuz)} 7
X

where TI(pg, po) is the space of all measures in P(X x X) whose marginals
(e;)#p coincide with p;. We also set

Woo,t(p1, p2) = inf {||de|[ oo () |y € T, p2) } = Jim Wy (1, i2),

with essential supremum ||d||pe(,) = inf{C > 0|d(x,y) < Cy-a.e. x,y}. For
the second equality see e.g. Lemma 3.2 in [36].

We recall that the Cheeger energy Ch; at time ¢ € I is defined as the convex
and lower-semicontinuous functional in L?(X,m;)

1
Chy(u) := inf { lim inf 3 lip; ()2 dmt}
X

n— oo

where the infimum is taken over all bounded Lipschitz functions w,, € Lip,(X)
such that w, — wu in L?*(X,m) (cf. [5, 59]). Here, lip,u denotes the local
Lipschitz constant w.r.t. the metric d;

. : |uly) — u(z)|
lip,u(x) := limsup ———=—,
i) yﬁmp di(x,y)

and Ch; admits the local representation formula
1 2
Cht(u) = — |Vtu|* dmt,
2 J/x

where |Viu|. is the minimal relaxed gradient [5]. Since (X,d;, m;) satisfies a
Riemannian curvature bound, (in particular Ch; is quadratic) & := 2Chy is a
strongly local Dirichlet form with Carré du Champ

Ty(u) = |Veul?
cf. [55, 7, 6], i.e.

Thanks to (115), £(u,v) = [ I¢(u,v) dm; where
1
Ti(u,v) := Z(Ft(u +v) = Ti(u —v)).
I'(-,-) satisfies the chain rule and the Leibniz rule
Iy (0(’[1,)7 U) = ol(u)rt (ua ”U), Iy (UU, w) =uly (”U, w) + ol (u7 ’LU),

where u,v,w € Dom(&;) and 6 € Lip(R), 6(0) = 0. We call the linear generator
A; the Laplacian and

—/ Ayuvdmy = E(u,v) Vu € Dom(A),v € Dom(&:),
X
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with domain Dom(A;) C Dom(&;).
Due to our assumptions (113) and (114), the sets L2(X, m;) and Wh2(X, dy, my) 1=
D(&;) do not depend on t and the respective norms for varying ¢ are equivalent
to each other. We put H = L*(X,m) and F = Dom(&,,) for some fixed tq as
well as
Fom =L*((s,7) = F)nH' ((s,7) = F*) cC([s,7] = H)

foreach 0 <s<7<T.

The Heat Equations
A function w is called solution to the heat equation
Ay = O on (s,7) x X
if u € Fs 7y and if for all w € F, ;)
—/ Er(ug, wy)dt = / (Ovu, wtefft>}‘*,}‘ dt
where (-,-)r« 7 = (-,-) denotes the dual pairing. Note that thanks to (113),
w € L*((s,7) = F) if and only if we™/ € L*((s,7) = F).
Further a function v is called solution to the adjoint heat equation
—Agv+0sf v =050 on (o,t) x X
if v € F,4) and if for all w € F )
t t t
/ Es(vs, wg)ds +/ / Vs Wy - Og fs dmg ds = / (85v5,wse_fs>pfds.
o o JX o
We recall the following results from Chapter 2.

Theorem 3.3. (i) For each 0 < s < 7 < T and each h € H there exists a
unique solution u € F(s ) to the heat equation Oyur = Aguy on (s,7) x X with
us = h.

(ii) The heat propagator Py s : h — u; admits a kernel p, s(x,y) w.r.t. ms,
i.e.

Py Jh(x) = / pr.o (20, 9)(y) dma(y).

If X is bounded, for each (s',y) € (s,T) x X the function (t,z) — p¢s(x,y) is
a solution to the heat equation on (s',T) x X.

(11i) All solutions u : (t,x) — us(xz) to the heat equation on (s,7) x X are
Hélder continuous in t and x. All nonnegative solutions satisfy a scale invariant
parabolic Harnack inequality of Moser type.

(iv) The heat kernel p; s(x,y) is Holder continuous in all variables, it is
Markovian

/pt,s(5177dy) = /pt,s(x,y) dms(y) =1 (Vs < t,Va)

and has the propagator property

per(z,2) = /pt,s(:v,y) Psr(y, 2) dmg(y) (Vr < s < t,Vs, 2).
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Theorem 3.4. (i) For each 0 < 0 < t < T and each g € H there ezists a
unique solution v € Fo ) to the adjoint heat equation Osvs = —Agvs + (0sfs)vs
on (o,t) x X with vy = g.

(ii) This solution is given as vs(y) = P;yg(y) in term of the adjoint heat
propagator

Py gly) = / s (2, 1) () dma(3). (116)

If X is bounded, for each (t',x) € (0,t) x X the function (s,y) — prs(x,y) is a
solution to the adjoint heat equation on (0,t') x X.

(iii) All solutions v : (s,y) — vs(y) to the adjoint heat equation on (o,t) x X
are Holder continuous in s and y. All nonnegative solutions satisfy a scale
invariant parabolic Harnack inequality of Moser type.

By duality, the propagator (P, s)s<: acting on bounded continuous functions
induces a dual propagator (P, s)s<; acting on probability measures as follows

JudtBan = [(Padn vue ). € PX)

The time-dependent function v,(z) = P, su(x) is a solution to the heat equation,
whereas the time-dependent measure v4(dy) = P, sp(dy) is a solution to the dual

heat equation
—0sv = A,

Again A, is defined by duality: [wd(Apu) = [Aaudp Yu,Vp.
We recall Theorem 2.20 and Lemma 2.34 from Chapter 2.

Lemma 3.5. Let u,g € F and t € I with gm; € P(X). Then,

.1 .
%1{‘%5 (/ugdmt — /uPt’thgdmth> = /Ft(u, g)dmg.

Theorem 3.6. For all 0 < s < 7 <T and for all solutions u € F, 1) to the
heat equation

(i) ur € Dom(Ay) for a.e. t € (s,7).
(ii) If the initial condition us € F then
u € L*((s,7) = Dom(A.) NH'((s,7) = H).

More precisely,

e 3E (ur) + 2/ e*SLt/ |Atut}2 dmy dt < e 355 . £ (uy).
s X

(i4i) For all solutions v to the adjoint heat equation on (o,t) x X and all s €
(0,t)
5s(vs) + ”USH%Z(mS) < 63L(tis) : {‘%(Ut) + H’UtHQL?(mt)]

Moreover, vs € Dom(Ayg) for a.e. s € (o,t).
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3.2.1 From Transport Estimates to Bochner’s Inequality

In this section we aggravate the regularity of the map r — logd,(z,y). We
assume that there exists a C® map 7 + h,.(z,y), uniformly bounded |h,.(x,y)| <
C such that for each s,t € I and =,y € X

di(,y) = dy(a,y)el- o0, (117)
Consequently, for each z,y € X, r — logd,(z,y) is continuously differentiable

with derivative k. (z,y) = < logd,(z,y).
Moreover we assume that

Vo € X,r € I the limit lim h,(x,y) := H,(x) exists, measurable in z,
Y= (118)
and r — H,(z) is continuous Vz € X.
We obtain the following lemma.
Lemma 3.7. Let u € Lip(X). Then for all s,t € I and x € X
lip,u(z) = lip,u(x)e™ JH (@) dr,

Proof. For s < t, we obtain from the very definition of the local slope

hptu(aj) = lim sup |u(y) — u(m)| < lim sup |U(y) - u(x)le— liminfy o [ hy(z,y) dr
y—a di(2,y) Yy ds(z,y)

=lipju(z)e” Ji Hr(@)dr

where we applied dominated convergence. Changing the roles of s and ¢ yields

hpsu(aj) — lim sup ‘u(y) — U(l‘)‘ < lim sup |u(y) — u($)| e~ lim inf,_, f: hr(z,y)dr
y—z ds(z,y) y—a di(z,y)
=lip,u(z)e” Ji He (@) dr
which proves the assertion. O

We apply our observation to the minimal relaxed gradient. We say that
G € L*(X,my) is a t-relazed gradient of u € L*(X,my) if there exists Lipschitz
functions u,, € L?(X, m;) such that

u, — u in L?(X,my) and lip,u, — G in L*(X,m;), G < Gm-a.e. in X.
G is the minimal t-relaved gradient |Viul, if its L?(X,m;) norm is minimal

among all relaxed gradients, see [5, Definition 4.2]. The collection of all t-relaxed
gradients is convex and closed in L?(X,m;) [5, Lemma 4.3].

Proposition 3.8. For m-a.e. x € X
Vol (2) = |Vyul. (z)e J: Hr@dr

for each w € F and for all s,t € I. In particular for m-a.e. © € X, t —
|Viul.(z) is continuously differentiable.
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Proof. Assume s < t. Let u, € L?(X,ms) be a sequence of Borel Lipschitz
functions such that u, — u and lip,u, — |Vsul. in L?(X, ms), see Lemma 4.3
in [5]. Then since H is uniformly bounded

lipty (e~ ds ArOVdr |7 | (Ve S HrOdr iy 120X my).

This implies that |Vul,(-)e™ /s #-()d" ig a relaxed gradient of u with respect
to the d; norm, and hence from Lemma 4.4 in [5]

IViul.(-) < [Vsul.(-)e™ JoHCdr o ae. in X.
Changing the roles of s and ¢ yields that
Vil () = |Vauly (e S HrOdr pae in X.

Choosing s and t from a dense and countable set D in I the argument from
above implies that m-a.e. in X

Voulo(-) = [Vsul (e J HrO)dr (119)

for each s and ¢ in D. Since the dependence of the left and the right side of
the equality is continuous with respect to s and t, we conclude that for m-a.e.
z € X, |Vul.() = |Vsul«()e™ JSH()dr polds for every s and ¢ in 1.

Similarly, we choose u in a dense and countable set C' in F ([6, Proposition
4.10]) and obtain that m-a.e. equation (119) holds for every s,t € I and every
u € C. Given u € F we approximate u by a sequence u,, € C, i.e. |Viu,| —
|Viu| in L2(X,m;). Then there exists a subsequence u,, such that for m-
ae. € X, |Viup,|(z) = |Viu|(z). Equality (119) implies that for the same
subsequence |Vguy, |(z) — |Vsul(z) for m-a.e. x. Hence we showed that for
m-a.e. © € X, (119) holds for every u € F and every s,t € I.

The last assertion follows directly from the fact that » — H,.(x) is supposed
to be continuous for all x € X. O

We give a refined weak dynamic version of Bochner’s inequality, cf. Chapter
2.

Definition 3.9. We say that the dynamic Bochner inequality holds at time t
if for all w € Dom(Ay) N L>®(X,my) such that T¢(u) € L™(X,m¢), and all
g € Dom(Ay) N L>®(X,my) with g >0

%/I’t(u)Atg dmy + /(Atu)Qg + T (u, g)Arudmy > %/(@Ft)(u)g dm.
(120)

This is a “real” Bochner inequality in the sense that on the one hand u and
g do not have to arise as a heat flow (see Definition 2.48), and on the other we
employ the time-derivative 9;I'+(u) in contrast to the definition in Chapter 2.
For the proof of Theorem 3.1 we use the same starting point as in the proof
of Theorem 2.51. This argumentation is inspired by [18], where the authors
prove the equivalence between Wasserstein contraction estimates and Bochner’s
inequality in the static setting.
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Proof of Theorem 3.1. Define u = htug, where ug € L*(X,m;) N L*(X,my)
and h! the static semigroup mollification

1 [ r
htug == ——= ot —)dr.
U0 52/0 TUOH(&_) T

Here, (H!),>o denotes the (static) semigroup associated to & and x € C2°((0, 00))
with k > 0 and fooo krdr = 1. Recall that u, Ayu € Dom(A;) N Lip,(X).

Let g € FNL>*(X,m;) such that g > 0. Then, the transport estimate (110)
together with Lemma 2.52 and Lemma 2.53 in Chapter 2 eventually yields

1

1
_ 5/Pt,s(l“s(u))gdmt +/Ft(Pt7su,u)gdmt < i/Ft(u)gdmt.

We subtract % J Ti(u)gdm, on each side and divide by ¢ — s obtaining

ﬁ [ / [i(u)gdm, — / Pt,s(rs(u))gdmt:|

L b [/Ft(Pt,su,U)gdmt - /Ft(“)gdmt]

t—s
<0.

(121)

We decompose the first term on the left-hand side into the following two terms

ﬁ [ / Ly(u)gdm, — / T (u) p;sgdms}

s | [ Eutwigdm [ B+ [P g i,

Recall that I'y(u) € F [55, Lemma 3.2] and thus we can apply Lemma 3.5, which
gives us

limﬁ { / T, () gdmy — / rt(u)ngsgdms] - / T (Ty(u), g)dmy,  (122)

s/t

LT < LT, (u) € L(X, my),

=
o Ly(u) —Ts(u) o,
hgn/}{lf/ =) (P
/ Di(u) — Ts(uw) Ti(u) — Ts(uw)
(t—9) (t—9)

> /(6‘tFt)(u)gdmt — lim/sup 2L|\I‘t(u)||Loc(X,mt)||Pt’fsge*f5 — ge*ff||L1(X,mt)
s 1t

while, since

g)dmy

> lim inf gdm; + lim/i‘?f/ (P;sge’fs — geTt)dm

s 't

~ [ (@) wgdm:
(123)
where we used Proposition 3.8 in the last inequality and that Pt”jsge*fs — gefr
in L'(X,m) as s — t.
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Regarding the second term on the left-hand side of (121), note that the
Leibniz rule and the integration by parts formula is applicable and we get

/ Ty (Py u, w)gdm, = / Ty (g Pyt w)dm, — / Ty(g,u) Py udm
(124)

_ / BP; (g Avu)dm, — / Pr(Ty(g.w)udm,.

Subtracting [ T'y(u)gdm, and applying (124)

( / Ty (Pyst, w)gdmy — / Ty (u)gdmy)

(t—s)
1

:(tfs)(_/wptfs(gAt“)dms +/¢(9AtU)dmt)

(ti8)(—/Pt",s(f‘t(g,u))udms + /Ft(u,g)udmt).

Letting s ' t we have since g € F N L (X, m;) and Apu € Lipy(X), gAsu €
FNLY(X,my)

+

tin (= [ uPtaAdm, + [[utgAmidm) = [TitwgAm)m
by virtue of Lemma 3.5. In order to determine
. 1 X
E/Hi m(— / P (Tt(g,u))udmg + /Ft(u,g)udmt),

we need to argue whether T';(g,u) € F. But this is the case, since, due to our
static RCD(K, co) assumption, we may apply Theorem 3.4 in [55] and obtain

Li(Te(g,u)) < 2(v2(u) — KTy (w))Ti(g) + 2(72(9) — KT (9))'7(u) my-ae.,

where vo(u), v2(g9) € L*(X,m;). Our regularity assumptions on u and g provide
that the right hand side is in L'(X,m;) and consequently Lemma 3.5 implies
1
ll;% (t_is)(_/Pt)ts(Ft(g7u))Udms + /Ft(uag)U'dmt) = /Ft(rt(g7u)7u)dmt-
Combining these observations we find
. 1
ll/n% m(/ L'y (Py su, uw)gdmy — /I‘t(u)gdmt)
:/Ft(u79Atu)dmt + /I‘t(]_"t(g,u),u)dmt = _/(Atu)29+ L'i(g, u) Ayudmy.
(125)
Hence from (121), (122), (123) and (125)
1 1
5 [ @) @gdm, + 5 [ TuTiu).g)dmi < [ (Aug + Tilg. w)Audm.
Let now g € Dom(A)NL>®(X, m) with g > 0 and u € Dom(A;)NL>® (X, my)
with T'yu € L (X, m;). Then from the above argumentation we obtain
1
B /Ft(héu)Atg dmy + /(At(hZu))2g + Ty(g, htu) Ay (hiu)dm,
1
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Since (O:I';)(u)(x) = —2H(z)T'i(u)(x) for m-a.e. © € X and |H(x)| < C, we
obtain the assertion by letting ¢ — 0 with taking into account that

||hiu — ul|F — 0 as € — 0 and Ashlu = hLAu.

3.2.2 Self-improvement of the Gradient Estimate
Quasi-regular Dirichlet Forms

We follow the approach in [55] and briefly recall the notion of quasi-regular
Dirichlet forms developed in [44] and [21]. We denote by F = {u € L*(X,m)|€(u) <
oo} the domain of a Dirichlet form £: L?(X,m) — [0, 00], where X is a Pol-
ish space and m is a o-finite Borel measure. F is a Hilbert space with norm
l|ul|% = H““%%x,m) + E(u). If F is a closed set in X we denote

Fr:={u € Flu(z) =0 for m-a.e. x € X \ F}.

Definition 3.10. Given a Dirichlet form £ on a Polish space X, an &E-nest
is an increasing sequence of closed subsets (Fj)ren C X such that UgenFr, 1S
dense in F.

A set N C X is E-polar if there is an E-nest (Fy)ren such that N C X \UgenFy.
If a property holds in a complement of an E-polar set we say that it holds -
quasi-everywhere (€-q.e.).

A function u: X — R is said to be E€-quasi-continuous if there exists an E-nest
(Fk)ken such that every restriction lek 1s continuous on Fy,.

The Dirichlet form & is said to be quasi-regular if the following three properties
hold.

1. There exists an E-nest (Fi)ren consisting of compact sets.

2. There exists a dense subset of F whose elements have & -quasi-continuous
representatives.

8. There exists an E-polar set N C X and a countable collection of £-quasi-
continuous functions (fr)ren C F separating the points of X \ N.

For every u € F the quasi-regularity implies that v admits an &-quasi-
continuous representative @. The representative is unique g.e. and

if u € F with |u] < Cm-a.e., then |a] < C q.e.. (126)
The following Lemma is taken from [55, Lemma 2.6].

Lemma 3.11. Let & be a strongly local, quasi-reqular Dirichlet form with linear
generator A. Let ¢ € LY(X,m) N L>(X,m) nonnegative and ¢ € L' (X, m) N
L?(X,m) such that

/wAgdmZ—/qudm
X X
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for any nonnegative g € FNL>® (X, m) with Ag € L*°(X,m). Then v € F with

5<w>§/xwwdm, [ein =0

and there exists a unique finite Borel measure p = py — om with py > 0,
p(X) < [ pdm such that every E-polar set is |u|-negligible, the q.c. represen-
tative of any function in F belongs to L* (X, |u|) and

—5(w,g)=—/F(¢,g)dm=/§du for every g € F.

We denote by A*u the measured valued Laplacian, i.e. the signed measure
W= p4 — p— such that

E(u,p) = /@du for every ¢ € F. (127)

Contraction Estimates for the Heat Flows P, ; and ]Stys

For each t € I we define the Hessian
1
Hi[u)(9.h) := 5 (Te(g. T b)) + T, Te(u. 9)) = Ta(w,Tulg, 1) ).

Recall that on a family of closed Riemannian manifolds (M, g;) we obtain the
equality

Ht [U](g, h) = <Vt2uvtg7 Vth>gt .

Further note that [(VZuVig, Vih)g, | < |Viulps|Vig||Vih|, where |- |gs denotes
the Hilbert-Schmidt norm. If the manifold has Ricci curvature bounded from
below by some K € R then with || ||2 = || - ||z and K_ = max{—K, 0}

1IVEulmsll3 < 1+ K- /2) (| Avul 3 + ||ull3).
We define the distribution valued I's-operator
Doy(u): FNL®NL' - R
as in Chapter 2.
Definition 3.12. For each u € Dom(A;) such that u,T¢(u) € L (X, m;) we
define
Lau(w)o) = [ ~3Tu(Tu(w).g)dm + [(9(am)? + Tulg wAru) dm,

where g € F such that g € L*(X,m¢) N L2 (X, my).

Note that thanks to the static RCD(K, N)-condition the domain of the
Laplacian coincides with the domain of the Hessian, i.e. Dom(A;) = W22(X, d;, my),
and

IT2.6(u)(9)] < MglloellAeul 3 + CllVTe (W)l ool [v/E () (| Aull2 + [full2),

cf. section 2.8 in Chapter 2. Moreover, each & = 2Ch; defines a quasi-regular
Dirichlet form ([55, Theorem 4.1]).
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Proposition 3.13. Suppose that Bochner’s inequality holds at timet € I. Then
for every u € Dom(A;) with u,T'y(u) € L™®(X, my)

1. T'y(u) € F with

%&(Ft(U)) < LITe(w)lloo€ (1) + [T (1) oo [ Agul[3

+ CIIAtUIlz\/HFt(U)Qlloo(llAtUIlé +ull3).

2. There exists a finite nonnegative Borel measure p4 such that every &E;-
polar set is p4-negligible and for each g € F the &-q.c. representative
g€ LY X, py) with

224(u)(9) = [ g(@Ts)w)dmi + [ G

In particular T'a ¢ (u) is a finite Borel measure with

202 1 (u) = (O T's) (w)m + pu.

Proof. Let u. = htu. Choosing ¢ = T'y(u.) and ¢ = —(9;Tt) (ue) — 2T (ue, Ague)
in Lemma 3.11 and applying Bochner’s inequality together with the Leibniz rule
yields

gt(Ft(us)) S —/Ft(ue)(((?tft)(us) + 2Ft(u€, At’ll,g)) dmt.
Applying the Leibniz rule once again we obtain
5t(Ft(u6)) S - /(Ft(ue)(ﬁtft)(us) — 2(Atu€)2Ft(u5) — 2Ft(uE,Ft(u5))Atu5) dmt.

Note that as ¢ — 0, I'(u.) — ['(u) pointwise, in L' and in the weak* L
topology. The latter is due to the fact that I'(u. —w) is uniformly bounded and
converges to 0 in L. Moreover by the uniform boundedness of T'(u.) in L we
obtain that T'(u.) — I'(u) in L?. Hence we find

and

/Ft(u)(atft)(u) dmt = /Ft(u)zth dmt

T 2 _H, T

—il_r% T (ue)“e™ dmy —igr%)/Ft(ug)(ﬁtFt)(ug) dmy,
while

e—=0

/(Atu)zft(u) dm; = lim [ (hiAu)?T(u.) dmy = liné/(Atus)QI‘t(us) dmg.
e—
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In order to show that

1i1r(1) Dy (ue, Ti(ue)) Ayue dmy = /Ft(u,Ft(u))Atudmt,
e—

we show that T'y(ue,Tt(u.)) weakly converges to I'y(u,Ty(u)) in L% Take a
sufficiently smooth testfunction ¢ (¢ € F N L), then we easily deduce

[ rtue g dm =~ [ Sutiuyedm — [T o) dm,
— f/AtuFt(u)godmt f/Ft(u,ap)Ft(u) dmy

by the strong L? convergence of Asu., the weak*-L> convergence of I'(u.)
and the L! convergence of I'(uc, ). Moreover ||Ty(ucs,¢(ue))||2 is uniformly
bounded in € since

/IFt(uaFt(ue))\gdmt < AT () oo O (| Avue[5 + [[ue13)
< CITe(u)? /oo [([|Aul]3 + [ul3)

since the domain of the Laplacian coincides with the domain of the Hessian,
cf. Section 2.8 in Chapter 2, [27]. Consequently we obtain that T'y(ue, I'i(ue))
weakly converges to T'y(u, T'y(u)) in L? since F N L% is dense in L? [5, Theorem
4.5).

We conclude

%&(Ft(u)) < - / %Ft(u)(&Ft)(u) — Ty (u)(Agu)? — Ty (u, Ty (u)) Ayu dmy

< LIITe () l|oo€e(w) + [[Te(w)l oo | Arul |3 + CI\AtUI\z\/IIFt(U)QHoo(HAtUI\% +[ull).

We show the second claim again by using the semigroup mollification u. :=
hiu. By Lemma 3.11 we deduce that

/gdA;Tt(uE) - /gQFt(us,AtuE) dmy
— [+ [ g0T ) din,
where A} is the measure valued Laplacian, and p4 (u.) the nonnegative Borel

measure with iy (uo)(X) < [(Apue)? + %(@Ft)(ug) dmy. Hence, since g = §
q.e.

/ g dpy (ue)
:/—I‘t(l"t(ug),g) dmt—l—/Qg(AtuE)2 + 2T (g, ue ) (Apue ) dmy — /g(@tl"t)(ug)dmt.

Note that the right hand side converges as e — 0 since I'(u.) — I'(u) weakly in
F. Indeed, take a test function ¢ € Dom(A;). Then

lim [ Ty(T¢(ue), @) dmy = — lim/I‘t(us)Atgo dmy = /I‘t(Ft(u),cp) dmy.
e—0 e—0
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Since &;(I'y(ue)) is uniformly bounded in e by the first claim and Dom(A;) is
dense in F we deduce that

li
e—0

m [ Ty(Te(us), g) dm, = /rt<rt<u>7g>dmt vgeF.

Define the linear functional fi4(u): F N L® — R by

fir (u)(g) := lim [ gdpuy (ue).

Note that if g > 0 we have fi4(u)(g) > 0 by the Bochner inequality. The Hahn-
Banach theorem implies that there exists a linear functional M: F — R such
that M(g) = py(u)(g) for all g € FNL>® and M(g) > 0 for all g € F such that
g > 0 a.e.. Moreover, if g € F with g <1 m-a.e.

M(g) = py(u)(g) = gig%/gdm(ue) < p(ue) (X) < /(Atu)2 + CTy(u) dmy.

Thus by Proposition 2.5 in [55] there exists a unique finite and nonnegative
Borel measure 4 in X such that every &-polar set is p4-negligible and for each
g € F the &-q.c. representative § € L'(X, uy ) with

M(g) = / Gdpiy.
Consequently
224(0)(9) = [ @) w)dmi + [ Gans,
and hence I'y; is measure valued with 2T (u) = (0:'¢) (w) my + py. [

By virtue of Lebesgue’s decomposition theorem we denote by 72 .(u) €
L' (X, m;) the density wrt my

Ta¢(u) = yor(u)ms +Tq (u), Ty (u) L my,
and thus by the above Lemma
1
o, (u) > i(ﬁtf‘t)(u) m-a.e. and Fit(u) > 0. (128)

We define for u, h € Dom(A;) such that T'y(u), Tt (h) € L=(X,my)

oo, 0)(g) = 3T2(u+ h)(9) = 7T2alu — W)(9),

where g € F N L*°. Note that the right-hand side is well-defined since the
domain of the Laplacian and the Hessian coincide and

1 1 1
Lo (u, h)(g) = /_irt(g’ Li(u, h)) + gAulih + iAtth(U,g) + iAtUFt(h,g) dmy
Similarly,
1 1
Toa (k) = St ) = S = ).

The following Lemma is an adaptation of Lemma 3.3 in [55].
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Lemma 3.14. Let u = (u;)]~q with u; € Dom(A;) such that u,T'y(u) €
L>(X,my) and let ¥ € C3(R™) with ¥(0) = 0. Then

Lod(H(E) = 3 Lo ) )02, )

+22 (0:0)(0) (01 V) (7) Hy[ug) (wy, ug) my
7,k

+ > (0 Y) (@) (D) (W)T ¢ (s, 1 )Ty (g, up ) M
i,5,k,h

In particular mg-a.e.

V2, (¥(w)) = Z V2,0 (wi, uy)(0; W) () (0; W) ()

+2Z (0:9)(w)(951 V) (@) Hyui] (uy, uk)
1,5,k

+ Z 0 W) (1) (0jn W) (@) Ty (us, ui )T (ur, up).
i,7,k,h

Proof. Note that U(u) € Dom(A;) with I'y(u) € L* since

Zaxp (@)Ts(us,uy) € LY N L™,

Za W(@)Agu; + Y 0 U(a)Ty (us, uy) € L2,

i,

Thus by definition for each g € F N L™

209, (W(u))(9) = /—Ft(g, De(W(@))) + 29(Ae W (@))* + 20 (g, ¥(@)) Ae ¥ (@) dmy.

We calculate using the notation ¢ = ¥(u), ¢; = 9;¥(a) and ;; = 0;;¥(u) for
the first term

[ ruto.vucw @) dm
_Z{/ —Ty(g9i0, Te(us, uj)) dm
+/g(Ft(ui,uj)At(wiwj)+2Ft(¢i¢j,rt(ui,uj))) dmt}
:Z/th(9¢i¢j,Ft(ui,uj))dm+/29(]+H) dmy,

where

I= Z Dy (us, uy) (¢i(¢jkAtuk + Yienle(u, un)) + Yiwthjale(uy, Uh))

ij.k,h

and

11 =37 e (Telun, Doy ) + Ty, Do (i, ) )

.9,k
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On the other hand
[ 290 (@)? + 205 W(@) A0 (@) dim

= 22/ (AtUiAtUjgdjidjj + Ft(uhgd)iwj)Atuj) dmt

- Z /29 ¢2Atukwkjrt(ulauj)+¢2Ft(uk7uh)wkhjrt(ulauj)

iyj sk
+ Yl (s, T (uy, Uk))) dmy.
Adding up and collecting terms yields
2T, (¥(a))(9)

= Z/ < — De(gpidy, Te(ui, ug)) + 2993005 Apui Aguy + 2T (us, gwi%‘)AtU]‘)dmt

+Z/29¢z¢]k(rt(uk,rt(uwUg))‘f’rt(ug,Ft(Uuuk)) Ft(uurt(ug,uk)))dmt

1,5,k

+ 3 [ 200l ) ) dm

i,5,k,h

—2zr2t Uzauj)(ngwj +Z/4g¢z1/)]k Ht[uz](ukauj)) dmy

N

+ Z /2ngkwgkrt(uk,Uh)Ft(UZ,UJ)dmt

i,5,k,h

for each g € F N L.
For arbitrary g € F, set g™ := gAn. Then, by dominated convergence (recall
that § € L'(X, 1))

lim [ g™ dla, (¥(a) = lim ( / 9" (OT) (¥ (@) dime + / g"du)

~ [gars.(v().

Similarly we can pass to the limit for the other integrals and obtain for all g € F

2F2 t =2 Z F2 t u“ U’] 91/%% + Z /49¢z¢]k Ht [uz](uka u])) dmt
4,3,k

+ Z /2g¢ik'(/}jkrt(uk7Uh)rt(ui7uj)dmta
idh

and hence the result. O

Proposition 3.15. Suppose that Bochner’s inequality holds at time t. Then
for every u € Dom(A;) N L*™(X,my¢) such that T'y(u) € L™ (X, my)

Du(T() < 4(72,0(u) — 50T (w))Ti(u).
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Proof. We choose the same polynomial ¥: R3 — R as in [55] by
U(a) := Aug + (uz2 — a)(ug — b) — ab, A a,beR,
where 4 = (uy,us,us), where each u; € Dom(A¢) N L™(X,my) with T'y(u;) €
L>(X,m;). We apply Lemma 3.13 and obtain
1 .
2.t (¥ (@) > 5(8tI‘t)(\If(ﬂ)) m-a.e. in X, (129)

where both sides of the inequality depend on A, a,b € R. Choosing A, a,b in a
dense and countable subset D of R yields that (129) holds m-a.e. for all A, a,b
in D. Since

(8,1) (¥ Za U (a @) (0T (us, ),
and
'7215 Za‘l’ '72t(uzvuj +228\I] ajklp( )Ht[ ](uj>uk)
1,5,k
+ Z O0ie W (1) 0 W ()T (wi, wj )Ty (wge, upn),
i,5,k,h

cf. [55, Lemma 3.3], both sides are continuous in A, a, b, and hence we conclude
that (129) holds for all A, a,b in R.
Thus, for m-a.e. € X we may set a := uz(x), b := us(x) so that

81\11(12)(37) =)\, 82‘1’(’1])(.’17) =0= 83\11(12)(37)
823\:[/(7._1/)({17) =1= 832\:[/('&)(%)7 &J\I/(ﬂ)(x) =0 else,

m-a.e., and exploiting (129) yields
1
No2,0(r) + ANH, [0z, us) + 2( T (uz, ua)? + Ta(uz)To(ug) ) > SN0 (u):

Using Cauchy-Schwartz inequality I'y (ug, u3)? < T'y(u2)T'(u3) this can be trans-
formed into

1
N (y0(t1) = 5 (T (ur) ) + AN ) (uz, ) + 4T (uz) T (ug) > 0,
and since A is arbitrary [27, Lemma 3.3.6] we obtain
1
(Hufer] (2, u5))* < (92.0(u1) = 5T () ) Te(2) T (3).
From the definition of the Hessian we deduce that

Hilui)(uz, uz) + Hy[ug](u1,uz) = Ty (T (u1, uz), us)

and consequently

Te(Te(ur, ug), us)| < v/Te(us) (\/72t (u1) 3tFt)( 1) VT (u2) (130)

+\/’Y2,t(u2) — 5(3trt)(u2) Ft(“l))- (131)
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We obtain (130) for arbitrary ug € F N L*°(X,m;) by approximating us by a
sequence uj converging in energy with

T(ug) — D), Ty(ug, Ty(ur, ug)) — Ti(us, De(ug, uz))

pointwise and in L'(X,m;), cf. Theorem 3.4 in [55] Hence we may choose
us = T'¢(u1,uz), and obtain the result choosing u; = us.
O

Now we are ready to prove Theorem 3.2. We will assume that

u, € Lip(X) for all r € (s,t) with suplip,u,(z) < cc. (132)

T,

Proof of Theorem 3.2. Define for each € > 0 the concave and smooth function
we(+) := (e + -)® — e®. Note that this function satisfies

2wl (r) + 4rw’(r) > 0. (133)

For each s,t € (0,7) under consideration as well as u € Lip(X) and g €
F N L* with g > 0, we set u, = P u, g, = P}, g for r € [s,t]. Note that for
a.e. r € [s,t] up € Dom(A,) and u, ' (u) € L (X, m,).

We consider the function

hy = /grwe(l“r(ur))dmr-

Choose s <o <71 <t and 0 > 0 sufficiently small that o < 7 — § such that

1 (7 1 ot
hi <liminf — / hydr and hZ > limsup — / hdr.
N0 0 S s SO0 o

Note that by Lebesgue’s density theorem, this is true at least for a.e. 0 > s and
for a.e. 7 <t. Then from

T o+d T—9
/ h, dr — / h, dr = / (hyys — hy) dr,

and the concavity of w. we deduce

he — h <hm1nf / hpys — }dr

T—08
<limsup — / / We (Trgs (trgs5))d(porgs5 — i) dr

N0
+hm1nf 5/ / grw Uy |:Fr+§(ur) - Fr(ur) dm,. dr
T—0
+ h?\s(l)lp < / / g’r'w;(FT (u7'))F7'+6(ur+67 Ur+ts — U,-) dmr
T—0
+ lim sSup < 5 / / grw Uy F7'+5(u7‘+5 — Up, U7-) dmr dr
OO0
—:(I) + (II) + (III') + (I11").
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Let us denote with a slight abuse of notation §, = g,w.(I';(u,)). Note that
G € L'NL>®(X) and § € F. Each of the four terms will be considered separately.
Since r — ., is a solution to the dual heat equation, we obtain

T—9
(I)= hr;l\"sélp / / We(Lrgs(Urss)) / Aggq dmyg dQ)d

= — liminf (u)) (= Aggoe T dg)dme d

—/ /wE(Fr(ur))~Argrdmrdr
o X

due Lebesgue’s density theorem applied to r — A,.g.e~77. Note that the latter
function is in L? (Theorem 3.6) and the function r — w(T,(u,)) is in L
thanks to (132).

The second term can estimated according to Proposition 3.8:

T—6
(IT) =liminf = / /gT rs(ur) — Tp(uy) | dmy. dr

50
_ / / i (D7) (up )y .
o X

The term (I11") is transformed as follows
(I11)

T—9
=limsup — / / §r+(5rr+5(ur+5> Ur4s5 — ur) dmyysdr
5N\0 X

T—0 §
. N N 1
= hm mf/ / FT+5(gT+§7 Upts) + Jrts Ar+5ur+5> (5 / Aqug dQ> dm, sdr

/ / g?”7 UT + Gr A ur) - Ayu, dmy dr.

Here again we used Lebesgue’s density theorem (applied to 7 — A,u,) and the
‘nearly continuity’ of r — g, as map from (s,t) into L?(X,m) and as map into
F (Lusin’s theorem). Moreover, we used the boundedness (uniformly in r and
z) of g, and of T',.(u,) as well as the square integrability of A,.u,..

Similarly, the term (I7I") will be transformed:

T—0
(IT1") =limsup - / / 3Dy (g s — Upyuy) dmy. dr
N0 O

T—34
:—hmlnfd/ / e (ryur) + Gr Ay ur / Agug dq)me dr

/ / r(GryUr) + Gr Ay ur) . (AruT)dmr dr.
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We therefore obtain
S=I)+ II)+ (III")+ (111")

—he
/ / - Ws Ur)) “Argr + Gr (arrr)(ur) - 2(Fr(§r7 ur) + gr Arur) Arur:| dm, dr

/ / Gr) = Tr(Tr(up))l (Tr (ur))gr + Gr (0:T) (uir)

— 2(T(Gr ur) + Gr Apuy) A u,«} dm,. dr

— [ 2@ [ [ [P o, + 308w dm, v

Applying (128), Proposition 3.15, (133) and taking into account the concavity
of w. we further deduce for a.e. r € [s, ],

< [ [ 2rm i+ 90 Q7)) = L)) (s ] i

/ [ [ (rrtu0) = 5070 0)) (240 w0) + 46T ) )) ] i

Hence we showed that, given u and g, there exists exceptional sets (which
are null sets) for 7 and o outside of these sets

/ wo(Ts (Pryu))g dme — / Py oo (T (1)) g dma < 0 (134)
X X

holds. Choosing g¢’s from a dense countable set one may achieve that the excep-
tional sets for o and 7 in (134) do not depend on g. Next we may assume that
0,7 € [s,t] with o < 7 is chosen such that (134) simultaneously holds for all u
from a dense countable set C; in Lip(X). We approximate arbitrary u € Lip(X)
by u, € C; in energy and in L? such that \/I';(P;,u,) — G in L?, for some
G € L*(X). This is possible since |[v/T+(Proun)||r2(x) is uniformly bounded.
Then we have on the one hand

fimsup [ ProweCo(u)) gdms < [ ProweCow) gdm,  (135)
X X

n—oo

since

/ Py oto. (T (1)) g dm. — /X Py woe(Ty (u)) g dims
< [ P2ogit(Ca@)(Ty(ur) = o)) dm,
<||P7 gl (T |Lx(X)]/  (n) — T () dmy |
On the other hand we find

liminf | wo(T'7(Proun))gdm, > / we(T7(Prouw))gdm,. (136)
X

n—oo X
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Indeed, since P; up, — Py uand /T (Pr ,u,) — G in L2(X) we know I'( P, ,u) <
G? m-a.e. and hence

/wE(FT(PTJun))gmef/ we(T7(Prou))gdm,

X X

:/ ‘Ds( FT(PT,Jun))gdm'r_/ ‘Z)E( FT(PT,UU))gme
X X

> /X & (T (Pra) (0 (Protn) = [T (Prgu))g dm.

> /X & (/T (Prow) (T (Prgin) — G)gdim,

where @(r) = w(r?), which is convex and monotone. Combining (134), (135)
and (136) yields

/X o (T (Py o)) g diny — /X Py oto.(Ty (1) g dm,

<lim inf/ we (D7 (Pr oup))g dm, — lim sup/ P ywe(To(up)) gdm,
X X

n n

<liminf (/ we (L7 (Pr pup))g dm, —/ PTJwE(FU(u,L))gme) <0.
X X

n

Letting e — 0 we showed that

/(FT(PT,UU))O‘gmeg/ P; o (Tp(u)®) gdm.. (137)
X b'e

Since Lip(X) is dense in F we can extend (137) to arbitrary w € F. Since g is
arbitrary we obtain the result. O

3.3 Application to Super-Ricci flows and Couplings of Brow-
nian Motions

In this section we apply the previous results to super-Ricci flows as defined in
Chapter 2. We recall that the defining property is the relative entropy S: I X
P(X) — (—o0, 0] given by

Si(p) = /plogpdmt

whenever © = pm;, and S;(u) = oo otherwise.
We proved the following.

Definition 3.16. We say that (X,d:,m:) is a super-Ricci flow if one of the
following equivalent assertions holds

i) Fora.e. t € (0,T) and every Wy-geodesic (1*)qejo,1] in P(X) with p°, p' €
Dom(S)

_ a 1,_
00 Se(1)] oy = 0 Seln)] oy = =500 W (7, 1) (138)

(‘dynamic convexity’).
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it) For all0 <s <t <T and u,v € P(X)
We(Pyopty Prsv) < Wilp,v) (139)
(‘transport estimate’).
iii) For allu € Dom(E) and all0 < s <t <T
|Ve(Prsw)[ < Prs(IVsul?) (140)
(‘gradient estimate’).

i) For all0 < s < t < T and for all us,g: € F with g > 0, g € L™,
us € Lip(X) and for a.e. v € (s,t)

Lo (ur)(gr) 2 %/ﬁ (ur)grdm, (141)

(‘dynamic Bochner inequality’ or ‘dynamic Bakry-Emery condition’) where
ur = P sus and g. = Pj,.gt. Moreover, the reqularity assumption (132)
is satisfied.

The following corollary is a consequence of Theorem 3.1 and Theorem 3.2.

In particular, choosing u = 0, and v = §, for some arbitrary ,y € X, Corollary
3.17 implies for p = oo

Woo,s(Pt,s(Sa;a Pt,s5y) S dt(l‘, y) (142)

Corollary 3.17. Suppose that (X, d;, m¢)icr is a super-Ricci flow satisfying the
assumptions in Theorem 3.1. Then

i) for every u € F N L™ (X, my) and every B € [1,2]
‘VtPt’su|f < Pt,savsulf)a (143)

i) for every u,v € P(X) and every p € [1, 0]
Wos(Prspts Prav) < Wy (i, v). (144)

Proof. Note that, taking into account I'(u) = |[Vu|? due to our static Rieman-
nian curvature bound, (143) holds at least for a.e. s < t by Definition 3.16,
Theorem 3.1 and Theorem 3.2. Then applying Kuwada’s duality [36, Theorem
2.2] implies that (144) holds at all these time instances. Indeed, (143) implies
that for all u € Lipy(X), |ViP; suls < Pro(|Vsu|2)1/? and thus by Proposition
3.11 in [7] lip, Pt su < Pt75(|Vsu|f)1/B. We obtain

lip, (Ps,su) < Py (lip,(u)?)/?

by virtue of |Vu|, < lipu (Lemma 4.4 in [5]) and the monotonicity of the
functions P; 5, 7% and r'/#. We deduce from Theorem 2.2 in [36] for a.e. s <t

Wp,s(—ﬁt,sﬂy pt,sl/) S Wp,t(ﬂv I/)7

where p is the Holder conjugate of 8; 1/p+ 1/8 = 1. Since both sides of (144)
are continuous in s and ¢ (see Lemma 3.18 below), we obtain that (144) holds
for all times s < ¢ and thus also (143) holds for all times by Theorem 2.2 in [36].
The same applies to p = 1 in (143) by noting that lip, (P, su) < P; ¢ (lip, (u)?)/?
for all 8 > 2 by virtue of Jensen’s inequality. O
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Lemma 3.18. We obtain the following continuity estimate for the heat flow
ws = Py s, where p € P(X). There exist constants ¢,c’ > 0 depending only on
K,N and L such that

Wyt (phs, prsr )P < cls — s'|P/2e1s=5'1/2,
for all0 < s, <t.

Proof. Assume 0 < s < s’ <t. Then by us = Aszysus/ we estimate

Wt (pts, 1) // (@, Y)ps s (2, y) dms(y) dps (z).

By virtue of the Gaussian upper bounds ([41, Section 4]) and the Bishop Gromov
volume comparison in RCD(K, N) spaces ([57, Theorem 2.3]) we obtain for
o = s — s and By(r,z) denoting the ball of radius r around z in the metric
space (X, dy)

C Cex (_d?(x,y))
mi(Bi(Vo, ) Co
A(R,z) < (E)N*1 RVIRIND L Ay, 1)

r

p8’75($7 y) S

for R > r where A(r,x) = 0,1my(B;(r,x)) and thus (by integrating from 0 to

Vo)

RN—l
oN/2

A(R,z) < N CeBVIEIN=1 (B, (Vo )

for R > /0. Then estimating further yields (with varying constants)

[ [ e e o) o o)

< /X {mt(Bt(CM . /X d¥(z,y) - exp ( _ d?(gj{;y))dmt(y)} dps ()

<C’ap/2—|—0// RP. exp( gg)NgN/Z ePVIKIN=D 4R dpiy (z)

< Co_p/2 +c//0_p/2ec /2 < ca_p/2ec 0/2.

(145)
O
Brownian motions

In the remainder of this section we follow the approach in [58] and construct cou-
plings of two Brownian motions (X!)s<¢, (X2)s<; on X such that the distance
ds between X! and X2 does not increase.

Definition 3.19. Let u € P(X) andt € I. We call a stochastic process (Xs)s<i
on a probability space (0, X, P) with values in X a Brownian motion on X with
initial distribution p if the process is sample-continuous and if for all s <t

P[X, € Al = Py (1 //ptsxydms()du()
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Remark. Let us remark that the Brownian motion defined here has time-
dependent generator A instead of %AS. This is only for convenience and

the stochastic process with generators (%As)sgt/g is given by (f(s)sgt/g, where

XS = X23-

In order to prove existence of a Brownian motion we consider for fixed t €
the finite subset J = {¢1,--- , .} of (0,¢] and the finite dimensional distribution
P, where € P(X), defined by

P (B, x ... x By)
::/ / e / Doty (Tt s Tay ) Mgy (Tt ) - - P (@, 2, ) dimg, (x4, ) dp(x).
x JB, B

The family of probability measures {P%|.J finite C (0,¢]} defines a projective
family, hence the Kolmogorov extension theorem [16, Theorem 35.5] implies
that there exists a unique probability measure P(%, g on (X O B(X)OH) such
that (WJ)#P(%J] = P!/. Here, m; denotes the projection w — (w(t1),...,w(t,))
from X (O to X7

For every s € (0,1] the map 74: w ~ w(s) from X to X is a stochastic
process with finite-dimensional distributions (P%);. The following Proposition
yields existence of a continuous modification (X;)s<¢, and hence a Brownian
motion.

Proposition 3.20. For eacht € I and each p € P(X) there exists a Brownian
motion on X with initial distribution u, which is unique in low.

Proof. We need to show that there exists positive constants «, 8,¢ > 0 such
that the above mentioned process 7, satisfies

Eld(ny,m,)% < c|s — 8|45 (146)

for all s, s € (0,t]. Then the Kolmogorov continuity theorem [16, Theorem 39.3]
implies that there exists a modification (X;)s<; such that the map s — X, (w) is
continuous for P(*(L)’ §7a-€ W Hence the process (X;)s<¢ on the probability space
(X(O*t],B(X)(Ovt],P(‘(‘)yt]) yields the desired properties. For o > 2 (146) follows
from (145) in the proof of Lemma 3.18.

Since all finite-dimensional distributions are uniquely determined this pro-

cess is unique in law. O

Couplings of Brownian motions

We introduce the o-field BY(X?) := MNuep(x2) BY(X?) of universally measurable
subsets of X2, i.e. the intersection of all B¥(X?), where v runs through the set
P(X?) and where BY(X?) denotes the completion of the Borel o-field on X2
w.r.t. v € P(X?). Let D := {k27"|k,n € N}N(0, ] denote the set of nonnegative
dyadic number s in (0,¢] and D,, := {k27"|k € N} N (0, ¢] for fixed n € N.

In the remainder we will asume that the transport estimate (144) holds for
all p € [1, 00].

Lemma 3.21. For each s <t there exists a Markov kernel ¢ , on (X2, B*(X?))
with the following properties:
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i) For each (x,y) € X? the probability measure 4 s((%,y),-) is a coupling of
the probability measures pys(z,-) and ps(y,-).

i) For each (x,y) € X* and ¢} [((z,y),")-a.e. (2',y) € X?
ds(xlvyl) S dt(‘r,y)

Proof. By virtue of the transport estimate (142) there exists at least one proba-
bility measures with properties i) and 4). Indeed, define s = If’tyséx, o PA’tséy
and let ~y, € II(us, vs) such that W, o(ps, vs) = ||ds\|Lp(7p). Since 7y, € (s, vs),
(7p)pen is tight ([62, Lemma 4.4]) and hence there exists a subsequence p; and
a probability measure v such that v,, weakly converges to «y. Since II(us, vs) is
closed we obtain that v € II(us, vs). Moreover, since ds A R € Cp(X x X)

llds A RllLr(y) = Hm |lds A Bl[Lo(y,, ) < I [[ds||ooec,, ) < dilz,y),

where the second inequality follows from the Holder inequality and the last from
Corollary 2.15. Letting R — oo and p — oo, we obtain

||dsHL°°(Fy) < dt(xay)

Hence the set of all these couplings 7 is non-empty and satisfies i) and ii).
Moreover, for given x,y € X this set is closed w.r.t. weak convergence in
P(X?). According to a measurable selection theorem [17, Theorem 6.9.2] we
may choose a coupling ¢; ;((,y), ) such that the map

(z,9) = ¢/ ((,),), (X BYX?) = (P(X?),B(P(X?)))
is measurable. O]

Lemma 3.22. For eachn € N and s,s’ € D,, there exists a Markov kernel qgls),

on (X2, B%(X?)) with the following properties:

i) For each (z,y) € X? the probability measure qu)/((a:,y), 1) is a coupling of

Ds,s’ ('1:7 ) and Ds,s’ (y, )
ii) For each (z,y) € X?

de(2',y') < ds(z,y)
fOT’ Q.gtls)’ ((3?, y)a -)-CL.C. (:E/a y/)
Proof. For s =127" and s’ = k27" with | > k we put
Q5,5 = Q(gt1)2-n 5" © -+ - 95 (1—1)2-n"
Obviously we have for r € D,, such that s’ <r < s,
") o g =" (147)

and the properties 4) and i) hold by iteration, cf. Lemma 2.3 in [58]. O

124



We fix a distribution v € P(X?) with marginals v; and vo. Similarly
as before for any finite subset J = {t1,...,t.} of D, we consider the finite-

dimensional distribution Q" on (X2)!/!

M (4, x ... x Ay)

/] - / 20 (22, ) ) (), e,y )l )

where ¢; ;. ql(2_ﬂ ¢, ©4f 19-n Whenever 127" <t < (I+1)27".
Lemma 3.23. For fized finite J C D,, the family {an)|n eRn>m}isa
tight family of probability measures on (X2)1,

Proof. Let J = {t1,...,t,} with each t; € D,,. The families {P;, (11)]i =

ryand {P,;, ()i =1,...,r} are tight by virtue of Prokhorov’s theorem,
see e.g. [17]. This means that given € > 0 there exist compact sets Bi, By C X
such that for alli =1,...,r

Py, (n)(X\ By) <&, Pis(1n)(X\By) <e.

Applying A; x Ay C X X A3 U A; x X and (147) yields for the compact set
B = (Bl X BQ)T and n € N

QU(X?)\ B) < 3" QW (X?\ By x By)

Si [QEZZ((X \ By) x X) + Q" (X x (X \ Bz))}

=3 [P ) (X \ Ba) + Py (v2) (X \ B)]

i=1
<2re,

where the last two inequalities follow from i) of Lemma 3.22 and the tightness
of {P,+,(vj)}s respectively. Hence the family {Q(]")|n € R,n>m} is tight. O

For J = {t1,...,t,} as above we set
(X" = X" (1,y1)s s (@) = (1,000, 20),
and similarly for €5.

Proposition 3.24. There exists a projective family {Q%|J finite C D} of prob-
ability measures and a subsequence (n;)ien such that for each finite J C D

i) QS”") — QY weakly in P((X?)V) as | — oo,
i) and (€1)4Q7 = P, (€2)4QY = Pj*.

In particular there ezists a probability measure Q% € P((X2)P) such that for
all finite J C D

(m7)#Qp = Q7

and

(€1)4Qp = Pp's  (63)4Qp = Iy’
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Proof. Lemma 3.23 yields for each fixed J the existence of a weakly converging
subsequence anl) by virtue of Prokhorov’s theorem. By a diagonal argument

we may choose a subsequence such that Qf]"l) weakly converges for all finite
J C D. Note that

(6)4Q5" = P, (3)4Q5" = Py

and hence the same holds true for the limit. We obtain the last assertion by
applying Kolmogorov’s extension theorem. O

The next theorem is in particular true for super-Ricci flows satisfying addi-
tionally (117) and (118).

Theorem 3.25. Let (X, d:,m¢)ier be a family of RCD(K, N) spaces such that
(113) and (114) hold. Moreover we assume that the transport estimate (144)
holds for every p € [1,00]. Then, for each x,y € X there exists a continuous
stochastic process (Xg)g<t such that (Xs)s<t s a coupling of the Brownian mo-

tions (X1)s<t and (X2)s<¢ with values in X and initial distributions 8, and d,

‘E)(S

respectively and it satisfies for Q([s -a.e. path

d&(X37X.S2) S dt(x7y)7
for each s <'t.

Proof Set v = (vi,12) = (dz,0y). Consider the coordinate process ms =
(rl,72): (X?)P — X2. Under Q% the process (ml)sep has distribution Pj!
and satisfies the continuity property (146). The corresponding statement holds
true for the process (m2)sep. Hence, the process m, = (wl, 72) satisfies the

Kolmogorov continuity theorem for o > 2 since

Eldy(ms, 15)°] gza/?( [de(7}, 71))°) + Bldy (2, 7%)° ])

§c2a/2|8 _ S/‘a/z,

with product metric ap((wl, yh), (22, 9?)) = d? (2!, 2?)+d?(y', y?). Consequently
there exists a continuous modification (X;)s<; = (X1, X2)s<; defined by X, =
limg s sep e for Qf-a.e. w and all s < ¢, cf. Lemma 63.5 in [15]. The process
(X%)s<t, i = 1,2 is a Brownian motion by continuity of s — p; s(z, dy).

We need to justify that for Qp-a.e. path

dS(X;an) < dt(x7y)-

For each n € N let Q](Dn) be the projective limit of the family ( (n ))Jch, which
exists thanks to the Kolmogorov extension theorem. C0n81der the coordinate

process (wS”))SeDn = (7rs ) 2200y b from (X2)P» — X2. Then QD” -a.e.

we have dg (s ) ) < d(z,y) by virtue of Lemma 3.22. Applying Propo-
sition 3.24 and n) of Lemma 3.22 we obtain for a subsequence

E(dy(mt,n2) AR = lim B[(dy (xb ), 7200) p R]7
—00

< Jim E[(dy(w,y) A R))"" = di(,y) A R,
—00
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for each s € D. Letting R and p tend to co we find for each s € D
ds(mg,73) < dy(,y).

Since the process (Xs)sep is a modification we get for each s € D and Q%-a.c.
ds(X1, X2%) < dy(w,y). Since D C (0,t] is a dense and countable subset we
obtain the result by continuity of s — X, (w).

O
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4 Gradient Flow for the Boltzmann Entropy and
Cheeger’s Energy on Time-dependent Metric
Measure Spaces

In this chapter we study notions of gradient flows on metric spaces where the
functional as well as the metric varies in time. Our main focus will be on
two cases; Cheeger’s energy on the space of L2-integrable functions as well as
the relative entropy on the space of Borel probability measures. Recalling the
heat flow and its adjoint introduced in Chapter 2 we show that the first can
be equivalently defined as Cheeger’s energy gradient flow while the second can
be defined as the entropy gradient flow. Let us emphasize that we obtain the
existence of both gradient flows via a time-dependent JKO-scheme in a more
general framework than the one chosen in Chapter 2.

4.1 Main Results

Gradient Flows on Time-dependent Metric Spaces and their Appli-
cation to the Entropy on Time-dependent Probability Spaces

Before we treat entropy gradient flows on space of probability measures, we
consider the more general case given by some energy functional E: [0,7] x X —
(—o00, 0] where X is a topological space endowed with a one-parameter family
of complete separable geodesic metrics (d:); indexed by t € [0,T]. We always
assume that the map ¢ — logd;(x,y) is Lipschitz continuous, i.e. there exists a
constant L such that

[log(di(z,y)/ds(z,y))| < Lt — s|. (148)

Additionally we impose a weak topology ¢ on X in the sense that d; is se-
quentially o-lower semicontinuous, such that each sequence (z,) C X with
sup,, ,,, di(Tn, Tm) < oo admits a o-convergent subsequence.

We will say that an absolutely continuous curve is a dynamic EDI-gradient
flow if

1 t 1 t t
Ey(20) < Bo(o) — 5/ |x'7.|fdr—§/ |v,.E,.|2(a;,.)dr+/ (0,E,) () dr,
0 0 0
(149)

where |Z,|, and |V, E,| denote the metric speed and the metric slope respec-
tively with respect to the metric d,.. This formula represents a time-dependent
version of the so-called Energy Dissipation inequality, in short EDI. Note that
the dissipation is perturbed by the partial time-derivative of the functional along
the curve. There are some technical issues in defining the time-dependent met-
ric speed and the partial time-derivative if the functional is not supposed to be
differentiable. We refer to Section 4.3 for the discussion.

In order to prove existence of dynamic gradient flows in the EDI sense we
will adapt the minimizing movement scheme introduced by Jordan, Kinderlehrer
and Otto in [30] in the following way. We fix a time step h > 0 and an initial
value Z. Recursively we define for every n € N such that nh < T the minimizer
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1
zh =z, ah = argmyin (Enh(y) + thih(m‘ﬁl,y)) . (150)

Under the assumption that F is uniformly Lipschitz in ¢, sequentially o-lower
semicontinuous in & and uniformly bounded from below (for the precise assump-
tions see A1, A2, A3a/A3b, A4 in Section 4.3) we show weak sequential com-
pactness of the scheme, cf. Proposition 4.23. Since we want to show that the
limit curve which we obtain is a dynamic gradient flow in the EDI sense we have
to tighten up our assumptions on the functional. The first assumption involves
the lower semicontinuity of the slope, which is well-known from the “static”
theory of gradient flows, while the second requires upper semicontinuity of the
partial time-derivative. Then we obtain the following result, cf. Proposition
4.24.

Theorem A. We assume additionally to our standing assumptions that the
partial time-derivative is upper semicontinuous, i.e. if T, — x as n — oo then
limsup,,_,. Ot E(xy) < OLE(x), and the squared slope is lower semicontinuous,
i.e. if t, — t and x, > x, then |V E|*(z) < liminf|V,, E¢|*(2z,). Then for
every T € Dom(E) there exists a dynamic gradient flow in the EDI sense, i.e.
a curve (xy)o<i<t satisfying (149) and limy oz, = 7.

Similar to the static setting we ask when do we have equality in (149), which
is also called energy dissipation equality, in short EDE. To answer this question
we additionally assume that the functional is K-geodesically convex, i.e. there
exists a constant K € R such that for every ¢ € [0, 7] and for any pair of points
x,y in the domain Dom(FE) there exists a di-geodesic (74)ae[o,1) connecting x
and y such that for all a € [0, 1]

A =9) 200 m).

Ey(7a) < (1= @)Ey(70) +aBy(m) — K

Furthermore we have to impose an additional restraint on the partial time-
derivative, i.e. for almost every t € [0,T]

lim inf By, (n) — Ey(wn)

n—00 tn, —

> 0 Ey(x), if t, \(t, xp L orasn — oo

We obtain the existence of a dynamic gradient flow in the EDE sense as a
corollary of the weak chain rule, cf. Proposition 4.8, and Theorem A.

Theorem B. Under combination of the previous assumptions, for every T €
Dom(E) there exists a curve (x¢)o<i<r Satisfying

1 t 1 t t
B+ [ VinPard [V B = B@)+ [ @B e 051
0 0 0

such that limy\ o x¢ = .

Let us remark that uniqueness of the flow is not available on this level of
generality. We will say a few more words on dynamic gradient flows in the EVI
sense introduced in Chapter 2, which provides uniqueness. Under appropriate
conditions we show in Proposition 4.12 that dynamic EVI implies dynamic EDE.
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The analysis we described above is designed for the study of entropy gradient
flows on time-dependent space of probability measures. Let us describe this
application in more detail. We fix again a topological space X equipped with a
one-parameter family d; of geodesic separable complete metrics such that (148)
holds and a one-parameter family of Borel measures such that m; = e~ f*m for
some probability measure m and suitable functions f; satisfying

[fe(x) — fs(x)| < L¥|t — 5] Vr e X. (152)

Given two probability measures u,v € Pa(X), where P2(X) denotes the space
of probability measures with finite second moments with respect to any metric
d¢, we introduce for every t € [0, 7] the L2-Kantorovich distance defined by

1/2
Wi(u,v) = inf {/ di(x,y) dr(z,y)|r is a coupling of 1 and V} .
XxX

Let us remark that we suppose that the space X is boundedly compact such
that the weak topology on Po(X) is adequate for our analysis. The relative
entropy S; on P(X) is given by

Si(p) ::/ plog pdmy,
X

provided that i has a density p with respect to m;. We assume that each static
space (X,d:,m;) has Ricci curvature bounded below by some K € R, i.e. for
each ¢ and each p, v there exists a Wi-geodesic (pa)qep0,1] connecting p and v
such that

Su(pa) < (1 = @)Su() +aSy(v) — wall—a)WP(uw).  (153)

This assumption is essential for the availability of the lower semicontinuity of the
squared slope. In particular it is satisfied if the sequence (X, d;, m;) constitutes
a super-Ricci flow in the sense of Sturm in [59]. We obtain the following result,
see also Theorem 4.31 and Theorem 4.33.

Theorem C. For every i € Po(X) in the domain of the relative entropy there
exists an absolutely continuous curve (p)o<i<T C Pa2(X) satisfying

1 t ) 1 t t
Suu) + 5 [ i+ 5 19,8 P dr = Sol) + [ (0:5,)nr)ar (154)
0 0 0

and lim;_o puy = 1. Moreover this curve is unique.

In the static metric measure space setting it is a well-known fact that the
heat equation can be unambiguously defined as the gradient flow of the entropy
or as the gradient flow of the Dirichlet energy. Here we prove a similar result
for the forward dual heat flow from Chapter 2 under the assumption that each
(X,dt, m:) satisfies a Riemannian curvature-dimension condition, cf. Theorem
4.45.

Theorem D. Let (ut)o<i<r be a continuous curve in P2(X). Then the follow-
ing are equivalent:
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1. (ut) is a dynamic gradient flow for the relative entropy in the EDE sense.

2. () is given by p(dz) = pr(x)my(dx), where py is a solution to the adjoint
heat equation

Oepe(x) = Arpi(z) — pe(2) 0 fi().

Gradient Flows on Time-dependent Hilbert Spaces and their Appli-
cation to Cheeger’s Energy on the Time-dependent Space of Square
Integrable Functions

We start by considering a functional E: [0,7] x H — [0,00] where H is a
separable Hilbert space H endowed with a family of scalar products ({-,-);). We
assume that (148) holds for the distances ||x —y||; ;= v/{(z — ¥,z — y); and that
the map x — E;(x) is convex and lower semicontinuous. Moreover we require
that ¢t — E;(z) is Lipschitz continuous in the following way

AC1 Ve Vs, t € [0,T):  |Ei(x) — Es(z)| < CLE ()|t — s|.

In this framework, we will choose a different approach to define a notion of dy-
namic gradient flows. We will say that an absolutely continuous curve (z;)o<t<T
is a dynamic gradient flow if

0wy € =Dy Ey(x4) for almost every ¢ € (0,7,

where D; E¢(x) denotes the (-, -);-subdifferential of E; at some z in the domain
Dom(Ey), which is defined as the set of all v € H such that

Ei(y) — Ex(z) 2 (v,y —x)  Vy e H.

We show the following using a time-dependent minimizing movement scheme,
see also Theorem 4.38.

Theorem E. For every x € Dom(E) there exists a unique dynamic gradient
flow (x4)o<i<r with limy o2y = .

Let us remark that although the functional is convex in the space variable
and Lipschitz in the time variable we do not have a minimal selection principle,
even if we fix the metric. This is explained in Section 4.5. By this we mean
that it is not necessary for the norm of the curve’s derivative to be the element
in the subdifferential with minimal norm, as it is the case in the static setting.
But still this type of gradient flow implies dynamic EVI, cf. Proposition 4.35.

We apply the existence result to the framework described in the following.
Let (X, d;, m;) be a family of complete separable metric measure spaces satisfy-
ing (148) and (152). For each ¢ € [0, 7] let us denote by Ch;: L*(X,m;) — [0, 00]
Cheeger’s functional given by

n—oo

1
Chy(u) = §inf {liminf/ (lipyun ) *dmy|u,, € Lip(X),/ [y — ul*dm; — 0} )
X X
where lip,u denotes the local slope given by

lip,u(z) = limsup ————*
pru(z) y%zp di(,y)

131



By making use of the minimal relaxed gradient |V ul. ([5, Definition 4.2]),
this functional admits an integral representation

1
Chy (1) = 5/ IV ul2dmy,
X

set equal to +o00 if u has no relaxed slope. We obtain the existence of a dynamic
gradient flow for the family of convex and lower semicontinuous functional (Chy)
as a direct consequence of Theorem E, cf. Theorem 4.47. Moreover we identify
the gradient flow with the heat flow introduced in Chapter 2 for spaces which
satisfy a Riemannian curvature-dimension condition, for the precise statement
see Theorem 4.48.

Theorem F. Let @ € Dom(Ch). Then there exists a unique dynamic gradient
flow for (Chy) starting in @, i.e. an absolutely continuous curve (u)o<i<r C
Dom(Ch) solving

Opuy € —D; Chy(u)  for ae. t € (0,T) (155)
and lim;_,o u; = u.

Theorem G. Let (i) be the solution to the heat equation Oy = A4l on
(0,T) x X starting in some @ € Dom(Ch). Then (i) satisfies

oy € —D; Chy(ay)  for a.e. t € (0,T),

and can be constructed as the limit of a minimizing movement scheme. Con-
versely, let (uz) be the dynamic gradient flow of Cheeger’s functional (Chy) start-
ing in 4 € Dom(Ch). Then (u;) solves the heat equation

815’1145 = At’ll,t on (O,T) x X.

In particular uy = @ in L*(X) for every t € [0,T].

Structure of the chapter

Let us explain the structure of the chapter in the following. In Section 4.2
we briefly recall the concept of gradient flows in metric spaces. In Section 4.3
we introduce the notion of dynamic EDI-, EDE- and EVI(K, co)-gradient flows
on time-dependent metric spaces (X, dt):ejo,7) satisfying (152) and show that
EVI(K, o0) implies EDE. We show existence of dynamic EDI-gradient flows for
a class of energy functionals E: [0,T]x X — (—o0, +00]. Moreover we give suffi-
cient conditions for the existence of EDE-gradient flows. In Section 4.4 we apply
the results from Section 4.3 and prove existence and uniqueness of dynamic EDI-
gradient flows in time-dependent metric measure spaces (X, dz, m¢)¢cjo,7] for the
time-dependent entropy functional S: [0,T] x P(X) — (—o0,+0o0]. In Section
4.5 we consider dynamic gradient flows in the form of (155) on time-dependent
Hilbert spaces (H, (-,)¢)te[o,r]- We prove existence and uniqueness of such gra-
dient flows for a class of energy functionals E: [0,T] x H — [0, +00]. In Section
4.6 we recall the concept of heat equation on time-dependent metric measure
spaces introduced in Chapter 2. We identify the dynamic EDI-gradient flow
of the entropy with the forward adjoint heat flow. We apply the results from
Section 4.5 and directly obtain existence and uniqueness of a dynamic gradient
flow for Cheeger’s functional and identify it with the heat flow.
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4.2 Gradient Flows in Metric Spaces

We briefly recall the notions of gradient flows on metric spaces (X, d). A curve
x: [a,b] — X is said to belong to ACP([a,b]; X) for 1 < p < oo, if there exists
g € LP(a,b) such that

t
d(zs,x) < / g(r)dr for every a < s <t <b. (156)
The metric speed of x, defined by
d
] o= lim T T,
h—0 h

exists for Ll-a.e. t € (a,b), is of class LP(a,b) and is the smallest function such
that (156) holds, see e.g. [2, Theorem 1.1.2].
Given E: X — (—o00,400] we define the slope |VE|(z) at = by

z) — +
IVE|(z) := lir;j;lp w

We now are ready to give three possible definitions of gradient flows in a metric
framework, cf. [4, 2].

Definition 4.1. 1. An absolutely continuous curve (zr;) C X is a EDI-
gradient flow if it satisfies the following Energy Dissipation Inequality
1/ 1/
E(zs) + 5/ |2, |2dr + 5/ \VE|*(x,)dr < E(z;) Vs>t  (157)
t t

2. An absolutely continuous curve (x;) C X is a EDE-gradient flow if it
satisfies the following Energy Dissipation Equality

I I
E(zs) + 5/ || 2 dr + 5/ \VE|*(z,)dr = E(z;) Vs>t  (158)
t t

3. An absolutely continuous curve (xz;) C X is a EVI-gradient flow (with
respect to A € R) if it satisfies the following Evolution Variation Inequality

1d A
E(xy) + §£d2(xt,y) + §d2(xt,y) < E(y) forae tel0,T],Vye X.
(159)

If the underlying space is a Hilbert space and the energy functional is convex,
these formulations are equivalent. Moreover we can characterize the flow in
terms of the subdifferential by

&y € —D7 E(xy), (160)
where D~ E(z) consists of all v € X such that
E(z) + (v,y —z) < E(y) VyeX.

In this chapter we are interested in finding substitutions for formulations
of the form (157) and (158), where the metric as well as the functional varies
in time. A formulation in the sense of (159) has already been introduced in
Chapter 2. Moreover, in the Hilbert space case, we study the time-dependent
counterpart of relations of the form (160).

133



4.3 Dynamic Gradient Flows in Time-dependent Metric
Spaces

In the sequel we fix a one-parameter family of complete geodesic metric spaces
(X, d¢); indexed by t € [0,T]. We always assume that the map ¢ — logd;(z,y)
is Lipschitz continuous, i.e. there exists a constant L such that

[log(de(x,y)/ds(z,y))| < L|t — s|. (161)
We give a simple example for this setting.

Example 1. Let M be a smooth closed manifold equipped with a smooth family
of Riemannian metrics (g;) evolving under a Ricci flow, i.e.

1 .
§atgt = —Ric(g:),

where Ric(g) denotes the Ricci curvature. At least for short time intervals we
have existence and uniqueness of such a flow (see e.g. Theorem 5.2.1 in [61]).
Under the assumption that the curvature does not blow up (|Ric| < L), we have
metric equivalence

|0¢ log g (v,v)| < L.
This implies that (161) holds for the geodesic distances (d).

The Metric Speed

Definition 4.2. Let [0,T] > t — z, € X be a curve. We say that (x;) €
ACP([0,T); X), for p € [1,00], if for any (and thus for all) t* € [0,T] there
exists a function g € LP(0,T) such that

dt*(xt,xs)g/ g(rydr YO<t<s<Tel0,T].
t

We define the length of a curve x: [0,7] — X to be

LJ,( —hmbup{ZdtJ Z‘t37$tj+1 Oztl<...<tn:t,tj+1—tj§h}.

It is a direct consequence of the definition of L,(t) that if z,, — 2 pointwise as
n — oo we have L,(t) < liminf, ,o Ly, () for every ¢ € [0,T].

Note that L, is absolutely continuous as soon as x is and hence we may
define the momentaneous speed of the curve as the derivative of its length.

Lemma 4.3. For any curve x € ACP(0,T) the function t — || is in LP(0,T),
and for almost every t € (0,T)

d
2] = lim o, ) = |@le.

—t |3—t‘
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Proof. If we show the second assertion the first assertion is an easy consequence
of (161). Let z be an absolutely continuous curve and choose an arbitrary
partition s =1 <ty < ... <ty41 =t. Then we find

N N
dt(xh l‘s) < Z dti (xt'i7xti+1) +C Z |t - ti|dt(xti’xti+1)

i=1 i=1

N t
S oy (w1, 31,,,) + Clt — 5] / o(r)dr,
=1 s

IN

where we used (161) and g is some L function. Hence we may estimate

t
difan.) L0~ L(s) + Clt =] [ glrydr
Dividing by |t — s| and letting s — ¢ we deduce

lim sup LAGIED)

< L, (t) for almost every .
s—t |t - 5|

We show the other inequality by contradiction. Fix i > 0 and consider the set

of points
1 L.
F = {t:liminf du(s, 31) _ /Lw(r)dr <-ne.
S\ T s

We assume that the Lebesgue outer measure £*(F) > 0. Fix § > 0 and cover
the set F' with intervals

Fi=|J(t = b1,t +6;), where 6, <4,
teF

such that
t .
dt(xt,x5)</ Lo(r)dr — |t — sln/2 (162)

for all t € F and some s € (t —6¢,t+0;). From the Besicovitch covering theorem
[17, Theorem 5.8.1] it follows that there exists a constant N and a subcollection

F1, -+, Fn each consisting of at most countably many disjoint intervals B such
that
N
rclJ U B
1=1 BeF;

Since the outer measure of I is strictly positive we can find a family F; of at
most countably many disjoint intervals denoted by F; = {(t; —d;,t; +9;),i € I}
such that El(UBe}-j B) > % L*(F) > 0.

We define a curve 2°: [0, 7] — X in the following way

376 R ifte (ti,ti + (51)
t x; else.
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Note that this curve is not continuous but still its length is finite. Further we
observe that x9 converges to x; pointwise as § goes to 0 and hence

liminf L,s (T) > Ly (T).
§—0

It suffices to show that

L,s(T) < Lo(T)(1+ L6) — gﬁl <U(ti,ti + 50) , (163)

iel
since then

o N
< < - —
Lz(T) = hgri:(glf Lz5 (T) = Lz(T) 4N‘C (F) < LI(T)7
which is clearly a contradiction. Hence for the outer measure it must hold
L*(F) = 0 and therefore already £*(F) = 0. Since L, is absolutely continuous
we conclude

dt(ffs,ft)

lim inf > L,(t) for almost every t € [0,T].
s—t ‘s — t|

It remains to show (163). Take a partition (p;)72; of [0, 7], with 0 < p;41—p; <
h and h << 4. Consider the points near the boundary of (¢;,t; + d;)

j5 = max{jlp; <t;,1 < j<m}, j7=min{jlpjp1 >t + 6,1 < j <m}.

Since x is absolutely continuous we can estimate

5
dP-S (IP.<’
. i

J; ;

IA

<+h
z° Y=d, _(xp _,x4,) < /inS (r)dr
P, P.<\*p <Mt ) = g )
Jj—+1 J; J; P

0

where g € LP(0,T'). Applying (162), (161) and again the absolute continuity we
obtain

dp 1) - dpj; (xti’ xpj3+1)
K3

i i i i

0 4
(0 _,x
iZ pj.z ijJr

< dpj; (ztw xti-‘r&t) + dp],; (zti+5i’ xpj;+1)

ti+d;+h

< dti (l'thtﬂrtsi)(l + L(Sl) + / g(T‘)dT
ti+6;
titd; ti+dith
< / (Ly(r) —n/2)dr(1 + LJ;) +/ g(r)dr.
t; ti+0;

Taking the supremum over all partitions (p;) and letting h — 0 we can estimate
the length of the curve %

. ti+d;
Ls(T) < / fo(r)dr + Z/ (L (r) — n/2)dr(1 + C*5))
(0, T)\U; (ti,ti+6:) o Jt

< /((m L (r)dr(1 + L&) — /2L <U(ti, t; + 51.)) ,

%

which proves (163).
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The Slope
Definition 4.4. Let E: [0,T] x X — (—o0,+00] and s,t € [0,T], z € X with
E.(x) < co. Then the slope |VsE;|(x) of Ey with respect to ds is given by
E - F + E - F
|VsE¢|(x) = lim sup [Ee(x) 0] = lim sup max {t(x) t(y) ) 0} .

We mainly deal with the case ¢ = s in the definition of the slope. We estimate
the deviation of the d; slope from the ds slope in the following lemma.

Lemma 4.5. Let s,t € [0,T] and © € X such that Ey(x) < oo and |VsE|(x) <
00. Then we have

IViE|(z) — [V Bl ()] < LIt — s[|Vs Ee| (2).
Proof. This follows from (161) and logr < r—1 and log(r~!) > 1—r respectively.
O
4.3.1 Dynamic EDI- and EDE-Gradient Flows

Let us first motivate the definition of dynamic EDI-gradient flows by considering
a Hilbert space X endowed with a family of scalar products ({,-):) depending
smoothly on t. Let F;: X — R be a C! functional also smoothly depending on
time. In this setting we understand a gradient flow as a curve solving

Ll.']t = —vtEt(fEt). (164)

Let us observe that (164) can be rewritten as

d 1 1.
T Bi@) < =5 IViB [ (z0) = Slad? + (0B (), (165)
where (0, E})(z;) stands for - E,(z;)| . Indeed, along any differentiable curve
s=t
it holds
S B() = B ()|_ (Vi) £
dttﬂﬁt—dssxt ot t£t\ Tt ), Tt )t
d 1 1.
> o Bslze)| - §|VtEt|?($t) - §|$t|3,

and we have equality if and only if (164) holds. The functional’s dependence on
the time variable leads to a “drift” of the gradient flow, i.e. in some sense the
gradient flow does not follow the steepest descent. To illustrate this we give an
example about the asymptotic behavior.

Example 2. Let X = R and d; = |v — y| for t € [0,00) and z,y € R. We
consider the energy Ey(z) = (z —t)* and the curve z, = e 2 +t — 1. Note
that

1
2

i*t = —672t +1= —Q(Z't — t) = _8.LEt(x)?

and hence (x;) is a gradient flow. A well-known fact in the theory of gradient
flows is that for strictly convex functionals the gradient flow converges to the

137



minimum of the functional as t — oo, see e.g. [2, Theorem 8.1(v)]. In our case

the minima depend on time and are given by zi™" =t. Hence
-2t
|xt_xmin|: |6 _1|
t 2 )

which obviously does not converge to 0 ast — oo.

Let us now come back to our original family of complete, separable geodesic,
metric spaces (X, d;) such that (161) holds true. We call a measurable functional
E on [0,T] x X admissible if it satisfies the following assumptions.

A1l The domain Dom(E;) := {z € X|E;(z) < oo} is time-independent and
nonempty.

A2 For each t € [0,T], z — E;(z) is uniformly bounded from below.
A3a For each t € [0,T], x — Ei(x) is lower semicontinuous.

A4 The map t — Ei(z) is uniformly Lipschitz continuous, i.e. there exists a
constant L* such that

|Ey(z) — Es(z)| < L*|t —s| Vt,s€[0,T],z € Dom(E),

and the set of differentiability points of the map ¢ — E;(x) can be chosen
regardless of z € X as soon as x € Dom(FE).

Note that the Lipschitz continuity of the map ¢ — Fy(z) provides a.e. differ-
entiability in ¢ for every fixed x. But this is not enough to get a meaningful
expression in (165), since we may have that for some absolutely continuous curve
(x¢), t = Ey is not differentiable at z; for every ¢t. To circumvent this problem
we suppose that the set of differentiability points can be chosen independent of
x, cf. [25, 53]. To illustrate this we give the following example, which has also
been discussed in [53].

Example 3. Let X = R and di(x,y) = |x — y| for every t € [0,T], z,y € R.
Consider the following energy functional E: [0,T] x R — [0,00) given by

E(z) = |z —t|.

Then the map t — Ei(x) is clearly Lipschitz continuous with well-defined deriva-
tive 0y Ey(z) as long as t € [0,T]\ {z}. If we choose the curve (xt)iep0,1] €
C>([0,T)) by setting x¢ = t, the map s — Es(x;) is not differentiable at any
t € [0,7T]. Indeed, for every t € [0,T] the right derivative OsEq(xt)|s—¢+ equals
1, while the left derivative OsEs(wt)|s—— equals —1.

Definition 4.6. We call a locally absolutely continuous curve (zy)o<i<r @ dy-
namic EDI-gradient flow for an admissible functional E: [0, T]x X — (—o0, 00|,
if for every t € [0,T]

1t 1t ¢
Et(xt)+§/ \$|$dr+§/ |V, E,|*(x,)dr < Eo(xo)—i—/ (0r-Ey)(z,)dr, (166)
0 0 0
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where we used the shorthand notation (,Ey)(xi) = LB, (x¢)|r—¢. We call a
locally absolute continuous curve x: [0,T] — X a dynamic EDE-gradient flow
for an admissible functional E: [0,T] x X — (—o0, 0], if for every t € [0,T]

1 t 1 t t
Et(xt)+§/ |x'|§dr+§/ |VTET|2(xT)dr:E0(xO)+/ (0,-E,) (2, )dr, (167)
0 0 0

Clearly, (167) implies (166). In the following we want to give sufficient
conditions for the other implication.

Definition 4.7. We say that the above mentioned functional E is K -convez for
K € R, if for every t € [0,T] and for any pair of points x,y € Dom(FE) there
exists a dg-geodesic (Va)ac[o,1] connecting x and y such that for all a € [0,1]

Eif) < (1= )Bio) + aBi(n) ~ K D0, ). (168)

The convexity assumption allows us to reformulate the slope

Ei(z) - E(y) | K~ ’

|ViEi|(x) = sup + Tdt(x7y) ) (169)

y#z di(z,y)

with K~ := max{0, —K}, cf. [4, Theorem 2.4.9].
The next proposition can be thought of as a weak chain rule in the sense of
[2, Proposition 3.19]. The convexity of the functional plays an important role in
the proof of this result. Unlike in the static case we additionally have to impose
a condition on the difference quotients of the functionals, cf. [25, Theorem 5.4].

Proposition 4.8. Let E: [0,T] x X — (—o00,+00] be a K-conver admissible

functional. Moreover assume that for almost every t € [0, T

lim inf By, () — Ey(wn)

n—00 tn, —

> O E(x), if tn \( t, Ty 2 asn — oco. (170)

Then for every locally absolutely continuous curve (xy) C Dom(E), the function
t — Ei(xt) is absolutely continuous and it holds

Et(xt)—Es(xs)zf(aTET)(x,)dr—/ VB |() dr, s <t (171)

In particular, if (x¢) is a dynamic EDI-gradient flow, it is a dynamic EDE-
gradient flow as well.

Proof. In view of [4, Lemma 1.1.4(a)] we can find an increasing and abso-
lutely continuous map s: [0,7] — [0, L], whose inverse ¢ is Lipschitz. The
reparametrization () := x(t) satisfies |24/~ < 1 for almost every s € [0, L]
with respect to some fixed metric dy«. Notice that it is sufficient to prove that
s = Ey5)(25) =: o(s) is absolutely continuous, as then Ey(z;) = Ei(Z4)) is
absolutely continuous and for almost every ¢ € [0, T

d v Ben(@een) — Ex(zt)
g Prlwn) = Jimy h

> lim inf Et+h(13t+h) - Et($t+h) + liminf Et(l’t-s-h) - Et(l“t) dt(l"t+h, th)
h—0 h h—0 dt(l't+h, xt) h
_ +
> 3tEt($t) — limsup [Et(xt) Et($t+h)] dt($t+h, xt)
h—0 di(Toqn, ) h

> OpEy(xy) — |ViEy|(x4)| 2],
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where we used (170) in the third inequality. After integration we obtain (171).
In view of the convexity of E we may use the representation formula of the
slope (169) and write using a* < (a + b)* + b~ and the Lipschitz property of
the functional
@(s1) = (s0) < [Vi(sy) Beisn)| (@s1)de(sy) (Tsy 5 L)
K~ I *
+ Tdf(sl)(fswfﬂso) + L*|s1 — 52
-~ K~ C *
< (19460 Beton | (@5,) + =5-D) e st = so| + L|s1 = s,

(172)
where D is the finite diameter of the image {Z}s with respect to d;. Changing
the roles of sy and s; yields

(1) = o(s0)|
IS - K~ C *
< (IVeton) Bon) (1) + V(o0 Bon) (o) + =D )t = 5| + Lt = .

Applying [4, Lemma 1.2.6] we conclude that the map s — ¢(s) is in the Sobolev
space W11(0, L). To prove absolute continuity we simply check that it coincides
with its continuous representative. We already know that s — ¢(s) is lower
semicontinuous and therefore continuity follows if we show
€
lim sup 1 o(s+r)dr < o(s) Vse(0,L).
eN\0 2e —e

This can be seen by applying (172) once more and we get

1 >
lim sup — / o(s+r)—p(s)dr
eN\0 2e _e

s K-
< limsup - / (IVestm) Beonl (@sr) + =5 D)eClr| + L*|rldr
eNo 2e —€ 2

1 f° K~
<limsup 7/ <|Vt(s+r)Et(S+r)|(:%5+r) + ——D)e® + L*dr = 0.
o 2 . 2

4.3.2 Dynamic EVI(K, c0)-Gradient Flows

Let us recall the dynamic version of EVI(K, oo)-gradient flows introduced in
Chapter 2.

Definition 4.9. For s,t € [0,7] and an absolutely continuous curve (Tq)aefo,1],
we define the action

As,t(l’)

msup { 30— a 1) "By, ) (s a,)

=1
h—0 .

n
i=1
O:ao<-~~<an:1,ai—ai_1§h},

where 9: [0,1] — [0,00) denotes the linear interpolation with 9(0) = s and
(1) = t. For two points 2°,x' € X we define

d? (2%, ") = inf{ Ay (z)|z: [0,1] = X absolutely continuous,zo = 2°, 21 = z'}.
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Note that using the definition of the metric speed we obtain for the action
the more intuitive expression, cf. Proposition 2.72,

1
Agi(a) = /0 Fal2 ) da.

We understand ds ¢ (x, y) as “dynamic distance” between the points = and y but,
of course, strictly speaking it does not define a metric, since e.g. ds.(z,y) #
ds(y,x) as soon as x # y. However, it clearly holds d((z,y) = dis(y, ),
dyi(z,y) = di(z,y) and dg ¢ (x,2) = 0.

We will use the following notation: 9; u(t) := limsup,_,, wt)zuls)

t—s

Definition 4.10. Let E : [0,T] x X — (—00,00] be a lower semicontinuous
functional in X. An absolutely continuous curve (x)o<i<r will be called dy-
namic EVI(K, oo)-gradient flow for E if for allt € (0,T) and all y € Dom(Ey)

1 K
§8jd§,t(x57y) 1 ?di%(xhy) < Eiy(y) — Ei(y).

We say that the gradient flow (x;)o<i<7 starts in 2’ € X if limy\ o2y = 2.

We show uniqueness of dynamic EVI(K, co) flows by proving a contraction
type estimate. This estimate involves the logarithmic Lipschitz control L from
(161). For an estimate without this control see Theorem 2.77.

Lemma 4.11. The following holds true.
1. Suppose that (x4) is a EVI(K, co)-gradient flow. Then for everyt € (0,T)

K@y, am)

1
53:_0@(%, y)\s:t < Et(y) — Ey(wy) + (L D)

2. There exists at most one EVI(K,0o)-gradient flow starting in x’. More
precisely the following holds: Let (z¢) and (yi) be two EVI(K, 00)-gradient
flows. Then for all s <t

dt (l’t, yt) S 6(SLiK)(tis)ds (xsv ys)' (174)
Proof. To show the first assertion note that with d; (v, zs) = ds¢(x5,y)

dt2,s(y7 l‘s) - d?(yv xt)

a:—dg,s(y7xs>s:t+ = lim sup

s\t s—t
—2L(s—t) 42 _ g2

Z limsup ¢ dt (yaxs) dt (yaxt)

s\t s—t

2 a2 —2L(s—t) _ 1

Z hmsup{dt (y7xs) dt (y7xt) + (6 )d?(y,l's)}

s\t s—1 s—t

) 672L(37t) _ 1)

= 8jd?(y7 :L's)|s:t+ + i{% Td?(ya xs)

= a:d?(yams)b:i%k - 2Ld§(y7xt)7

where the first inequality is due to the logarithmic Lipschitz continuity (161),
and the second equality follows from the absolute continuity of (z;). The same
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2 2
argument holds for doit(ms,y)szt_ := limsup; W replacing

OF di (y, xs)|s=t4+ by OF dF(y,xs)|s=¢—, and hence from the EVI(K, o) inequality
we deduce

K
a5 d?(xhy)

1
§8jd§(ms»y)\s:t < Ei(y) — E(x) + (L — 9 )

In order to show the second assertion, let (), (y:) be two EVI(K, 0o) gradient
flows. Observe that from the absolute continuity of (x:) and (y:) it follows that
the map t — d?(z¢,y:) is absolutely continuous as well. This can be seen by
applying triangle inequality and (161). Hence we may write for a.e. ¢ € (0,7

1d 2 1. d%(mhyt)_d?(mmyt)
el <Z
gt (e ST
1 d2 S 7d2 S
+ L lim sup FE@s2¥e) = ds (@5 ye) (175)
2 st t—s
—i—llimsup d (w4, ys) — df (20, 9e)
2 s\t s—1t ’

where we used an adaption of [4, Lemma 4.3.4]. Applying (173) and (161) we
obtain for a.e. £ € (0,7

1d

K
§adf(ﬂﬁt,yt> <Ei(yt) — Ey(z¢) + (L — E)df(l‘t,yt)

+ Ldt2 (xtv yt)
K.
+ E(z) — Ev(ye) + (L — E)dt (¢, Yt)
=(3L - K)d?(l"t,yt)-
We conclude from Gronwall’s inequality for a.e. t > s
dt2 (*T’t? yt) < €(6L72K)(tis)d§ (l‘s, ys)'

From the continuity of ¢ — d(z, y;) we obtain that the estimate holds for every
t > s and in particular we have uniqueness.
O

In this general framework it is possible to produce dynamic EVI-gradient
flows which are not dynamic EDI-gradient flows as we see in the next example.

Example 4. Let X = R and di(z,y) = |x — y| for every t € [0,T], z,y € X.
As already seen in Exzample 3, the energy functional Ei(z) = |z — t| is not
differentiable at xy =t for any t € [0,T]. Hence it is not a EDI-gradient flow
in the sense of Definition 4.6. But it immediately follows from

1
SOl =yl = (t—y) <ly—t| = Buly) = Bulw), Wy € X,

that (z¢) is a EVI(0, 00)-gradient flow.

We can exclude such behavior if we restrict ourselves to admissible function-
als.

142



Proposition 4.12. Let E: [0,7] x X — R be an admissible functional, i.e. sat-
isfying the assumptions A1, A2, A3 and A4 from the previous section. Let (x)
be a dynamic EVI(K,co)-gradient flow for E such that (z;) € AC? .([0,T]; X)
and t — Ei(xy) is absolutely continuous. Then it is a dynamic EDE-gradient
flow as well.

Proof. First note that for a.e. t
1 .
SO B () > Ll (). (176)

Since E is admissible and ¢t — E}(x;) is supposed to be absolutely continuous
it holds for a.e. t

iEt(xt) =(0:Ey)(2¢) + lim inf B(@e4n) — Er(x)

dt h—0 h
:(8tEt)(xt) + lim inf Et($t+h) - Et(xt) dt(xt+ha mt)
h—0 dt (.Tt_H“ J?t) h (177)
. Ei(xt) — Ex(xe4n) de(Tiqn, xt)
>0 Ey)(xe) — limsu
2(0:E)(zy) haOp di(T4n, 1) h

1 1. .
>(0:Ey)(x4) — §|VtEt|2($t) - §|$t|t2-

To show the converse inequality recall that ¢ — d?(z4,y) is absolutely contin-
uous. Hence, applying the same calculation as in (175) to the constant curve
Yyt =y, we can write for every ¢t € [0,7 — h] and every y

1, 1, 1 [ha
§dt+h($t+h,y) - §dt (z,y) = 5 ; %ds(xmy)ds
t+h K )

S Es(y) - Es(xs) + (2L - ?)ds(‘xmy)d‘s

t

We set y = x; and find

1

1
§d2+h($t+h,$t) Sh/ Evinr(x) — Erpnr (Teqnr)dr
0

K t+h
+(2L — 5)/ d?(x,, ;) dr.
t

Again by (161) and the 2-absolute continuity of (z;) we obtain for some function
9 € Lip[0,T]

loc

62Lh

1 1 K t+h
idf(xt—i—haxt) S h/ Et—‘,—hr(xt) — Et+hr(1't+h”r‘)dr —+ |2L — Elhz/ gz du .
0 t

Dividing by A% and letting k \, 0, dominated convergence yields

%|33t|? < /1 im Ei(xy) — E}tlJrhr(xtJrhr) n EtJrhr(xt;l_ Et(wt)dr
01 hd\o , (178)
= *iﬁEt(mt) + i(GtEt)(xt)
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for a.e. t € (0,T). Concerning the slope of E we find that using (173) and (176)
: [Ey(2e) — Ey(y)]*
ViE¢|(x¢) =limsu
Vi Ee|(2) y—mp d.(z,9)
+ 2 2 +
. [785 dt (xsvy)S:t + (2L B K)dt (xtay)]
<lim sup
Y 2d¢ (e, y)
o [Rlbdi(eny) + (L~ K)d ()]
<lim sup
Yo 2di(z¢,y)

(179)

< &t
for almost every ¢. Combining (178) and (179) we conclude

d .
%Et(l‘t) < (0cB) (1) — |$t|%

VB ()
2 2 '
We obtain (167) from (177) and (180) after integrating on the interval (0,¢). O

(180)
< (OcEy) (1)

4.3.3 Existence of Dynamic EDI-Gradient Flows
We are interested in the following problem.

Problem 1. Given a function E: [0,T] x X — (—o0,400], and an initial value
Z € Dom(E), find an EDI-gradient flow (x¢) for E.

Under suitable topological assumptions we will find a gradient flow for a cer-
tain class of energy functionals using the minimizing movement scheme, which
we describe in the subsequent sections, cf. [4].

Topological assumptions

We additionally impose a topology o on X such that o is weaker than the
topology induced by (d;) and d; is sequentially o-lower semicontinuous, i.e.

if 2, > x and y, >y, then liminf d;(2,,,y,) > di(z,y) for every t € [0, T].
n—oo

Let E: [0,T] x X — (—00,00] be a functional satisfying A1, A2, and A4. We
will extend our assumptions by the following.

A5 If (z,) C X with sup,, ,,, d¢(Tn, Zm) < 00, then (z,,) admits a o-convergent
subsequence.

A3b For each t € [0,T], z — E;(x) is sequentially o-lower semicontinuous.

Approximation
We fix a time step h > 0 and subdivide the interval [0, 7] into the partition
Pri={to=0<t1 < - <ty_1 <T <tn}, t, =nh,N € N.

For 0 < t < T we define the piecewise constant interpolants h(t) and h(t)
associated with the partition P, in the following way;

h(0) =0 = h(0), and for t € (t,_1,tn] h(t) =t,, h(t)=t,—1.  (181)
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The definition implies that h(t) N\, t and h(t) /¢ if b N\, 0.

For a given initial value  we recursively define a sequence (") of minimizers
by
L2 (2,2 )} (182)
2% tn »¥n—1

Proposition 4.13. For every & € Dom(E) and h > 0 there exists a solution
to the minimization problem (182).

zh =7, zh = argmmin {Etn (z) +

Proof. Existence follows by the direct method of calculus. Define
1

Since FE is uniformly bounded from below we may take a minimizing sequence
(2n)nen such that d?(x,,, ) remains bounded uniformly in n. From the triangle
inequality we deduce that sup,, ,, d¢(7n,rm) < co. Hence A5 guarantees exis-
tence of a o-convergent subsequence z,,. The weak limit point € Dom(E)
is a minimizer of ¢(h, Z,t; ), which is due to the o-lower semicontinuity of the
distance and the functional. O

Definition 4.14. Fiz h > 0 and let s € [0,T — h]. For 0 <r <T — s define

. 1
Jer(y) = min { By (@) + -d2 (@9 |, (183)
. 1
Asr(y) = argmin { By, (@) + o-d2(w,9) }- (184)

Lemma 4.15. For z, € As . (y) we have

Vs Botrl(er) < ~di(n,y)
and for 0 <ry <ro <T —s
&2 p(@ry,y) < A2y (ry,y) +4rira L™, (185)
Proof. By optimality of x,, we have for every z € X
Egir(zr) — Esir() < aZ o (xy) — d2y g, (2, y)

dsin(zy, ) - 2rdsyp (2, )
(ds-‘rh(xa y) - ds-‘rh (JL,«, y))(ds-‘rh(xa y) + ds+h(xT7 y))
2rdsqn (2, )
< (ds+h(‘r7 y) + ds-‘rh(x?"a y))
- 2r ’
Taking the limsup as x — x,, we get the assertion. To show the second assertion
note that on the one hand we have

1 1
Esyr (vr,) + dith(xnvy) < Eoyry (Tr,) + d§+h (Trys Y)s
27‘1 27"1

and on the other

1 1
Esir, (-737'2) + 7d§+h(x7'27y) < Egyry (xn) + 7d§+h (le ) y)
2’1"2 27’2

Adding these two inequalities, using the Lipschitz property of ¢ — F(z) and
dividing by 5 — 5 yields (185). O
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Lemma 4.16. The map r — Js . (y) is locally Lipschitz and for almost every
r € (0,T — s) we have for x, € As r(y)

a
dr

Proof. Fix 0 <7y <ro <T —s. Then
Jsira(Y) = Jsn (Y) =Bsiry (Try) — By, (7))

1 1
+ 7dz+h(xr23y) - 7d§+h(x7‘1ay)

27“2 27“1
T — T2 (187)
SES+’I‘2 (xrl) - Es+7‘1 (-’I;rl) + 7d§+h (mrl ) y)

! d§+h(l‘r, y) + (87‘ES+T)($T)' (186)

Jsr(y) = 52

27’27"1

To —T1 2
d x
27“2701 s+h( 7"17y)7

<L*(rg —m1) —

where L* denotes the Lipschitz constant from A4. Conversely, changing the
roles of z,, and z,,, we obtain

To —T1 2

Is,r (y) = Jsr (y) =2 =L (r2 —11) — oty ds+h(xr2»y)-

Combining these two inequalities yields

re — 1]

| s (Y) = Jsmy (Y)| < L¥[rg — 1] + d§+h<x7“27y)a

27“1 T2
which means r — J,(y) is locally Lipschitz. Dividing by 7o — r1 and letting
r1 — 1o in (187) yields on the one hand for the left derivative

d-

1
% d§+h(xra y) + (arEs—'rr)(‘xT’)v

<
Jsr(y) < 5,3

for every differentiability point r of r — FEj;,. On the other hand we obtain
similarly for the right derivative

dr

1
ar d?—&-h(xra y) + (arEs-‘rr)(x?")v

Js,r(y) > 52

for every differentiability point of r +— E;,,.. By local Lipschitz continuity we
have for a.e. 0 <r <T — s

d 1

_ 2
%Jsm(y) = _ﬁdwh(wray) + (OrEgir) (@r).-
O
Lemma 4.17. For s € [0,T] and 0 <71 <ro <T —s
Es(y) = oy (y) = Cr1 2 Js 0, (y) — Cra (188)
l_i_r>r[1) ds+n(y, ) =0 if y € Dom(E). (189)

In particular im, o Js »(y) = Es(y).
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Proof. The first inequality in (188) directly follows from

1 *
Eopr, (2r,) + %dirh(xnay) < Eopr,(y) < Es(y) + L7y

The second one follows by

1 1
Esyr (2) + d§+h (z,9) > Estry (2) + d3+h(x, Y)
2’/’1 27‘2

1
> E5+T2 (CL’) + de§+h(xay) - L*(TQ - rl)a

and minimizing over all z. Since for every x € Dom(FE)

0< d§+h(y, Tr) < —2rEgp,(2,) + di-&-h(% z) + 2rEs . ()

—2rinf E +d2,, (y,x) + 2rEsy,(2).

S

<
<

Passing to the limit » — 0

}i_r)r(l) a2, (xr,y) < d2,,(2,y) for every x € Dom(E).

Since y € Dom(E) we conclude (189). To check the last one we combine (188)
with the lower semicontinuity of x — FEy(z),

Et(y) > lim sup Jt,r(y) > lim 1(1)1f Et-&-r(xr) > Et(y)
r—

r—0
O
Corollary 4.18. For every 0 < rqg < T — s we have
L

E3+7"0 (xTo) =+ Trods—&-h (xrov y)

ro "o (190)
=FE (y) - / ﬁdi—kh('ﬁrv y)dT + / (87’Es+r)($r)dr'
0 0

Proof. Integrate (186) from 0 to 7o and use that lim,_,o Js - (v) = Es(y). O

In the following we introduce dynamic counterparts for the variational in-
terpolation, the discrete speed and the discrete slope, cf. [4, 53].

Definition 4.19. Let z € Dom(E) be the initial value and x" be a sequence

defined by the minimization problem (182). A discrete solution is a curve t ~— T

defined by

E? = x,}i, fort € (tn_1,tn],

and TP = 7.
A variational interpolation is a map t — &1 defined by
~h . Lo h
Zy = argmin {Et(x) + gdtn (am:rnfl)}7

fort=tn_1+71€ (th_1,tn],
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and Tl = 7.
We define the discrete speed Dsp": [0,T] — [0,00) and the discrete slope
Dsl": [0,T] — [0,00) in the following way

1
Dspﬁ = Edtn(ft};axi}ﬁlﬂ 1)v re (tnflvtn]
1
Dsl! = di, (&) BN, 1€ (tho1,ta)

Note that ! =zl =z} .

Proposition 4.20. We have for 0 < s<t<T

h(s)

N 1 [h® s 1 B -
Eﬁ(t)(jt)"‘ 5/ (Dspy)~dr + 2/h( : (Dsl)=dr

(191)

R(t)
~Ero (@) + [ @)@k
h(s)

Proof. Let t € (tn—1,tn]. We want to apply equation (190) with s = ¢,_1,

ro=t—s,y=a"_,. Then with z,, = Z} and z, = &' _ | we find

1 K 1
~h 2 (~h _h 2 h ~h
Et(xt ) + 2<t _ tnfl)dtn (zt ?‘rn—l) + /tnl 2(7" _ tnfl)Z tn (‘Tn—hxr)dr
t
i)+ [ @B)G
tn—1

For t = t,, we obtain

1 i bn 1 N
E, (i‘fn) + W/ i, (i‘?n,ifwl)dr +/ 2726@1 (fﬁl,ﬂﬂfﬁ)dr

tn—1 tn—1 (r_tnfl)

in
i, el )+ [ @B @

tn—1

(192)
Summing up from n 4+ 1 to m yields

_ 1 K ho
Etm(x?m)—i—m Z / dfj(x?j,xﬁj_l)dr

m t; 1 - _ tm ~
3 [ st = s [ om e
j=n+1 tj—1 J-1 b

Now plugging in the definitions of the discrete slope and the discrete speed
respectively

1 tm 1 t7n
E;,, (Eh )+ 5/ (Dspff)er + 5/ (Dslf)2dr
t t

n n

tm
=E&n@£)-+]/ (OE,)(@")dr,
t

n

which shows (191).
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Remark 4.21. Alternatively, for t € (tn—_1,t,] we can write

1
2t —tn_1)

:Eo(ff)+/0 (0, E,)(")dr.

Ey(2]) +

The following proposition provides essential a priori bounds.

Proposition 4.22. There exist constants Cy, Cy, C3 such that for all
0<t,mh<T

1 [t I
&bl vy [ Dulydre s [(Dsttyar

Ey (&) < C, (193)
1 o~ 5
n=1
d2. (&l z1) < C3h, for some fived t*. (195)

Proof. From Remark 4.21 we deduce
E,(il) < Eo(z) + L*T,

which shows (193).
We drop the nonnegative slope term in equation (192) to obtain

1 L - - tn _
Lp@h & y<B, @ )-BE. @)+ / (0,B,)(@")dr.

tnfl

Summing up to m and applying the Lipschitz property of ¢t — E;

tm—1
- Zdtn i, ) < Bu(eh) ~ Bl + [ 0@
0
< Ey(Ty,) = By, (2,) + TL",
we obtain on the one hand

By, (2] ) < Ey,(2) + TL",

and since inf F(z) > —o0
1 & 2 (=h =h
% Z dtn (mtnaztn,_l) < Ca.
n=1

To show (195) note that for ¢ € (¢,_1,t,)

d?n(£?7j?):d%n(~ ) (‘T?’ Ly 1)+2d2 ( Ly 17IZ)

< d4d} (b, xh_ )+8(t—tn 1)hC,

where the third inequality is a consequence of (185). Applying (194) and (16

we conclude (195).
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Proposition 4.23. There exists a subsequence h,, with lim, h,, = 0, a curve
(z:) € AC*([0,T]; X) and a function A € L*(0,T) such that

— a. ~ a.
z?" — Ty, 9:?“ — x; for all t,

and |Dsp"| — A weakly in L*(0,T).
Further ||y < A(t) holds almost everywhere.

Proof. We want to apply a refined version of Arzela-Ascoli [4, Proposition 3.3.1]
to the family (z");,~0. Owing to the estimates (161) and (194) we have

dp (1, Z) < tCheC,

and together with A5 this yields that the curves z": [0,T] — X take values in
a o-sequentially compact set. From the estimate (194) we further deduce

s tm
1
/ DsplPdr < 3 L (@l 7 ) < 20,
t

Jj=tn

for h(s) = t,, h(t) = t,. Applying the Banach Alaoglu Theorem we can extract
a subsequence h,, and a function A € L2([0,T]) such that |Dsp/»| — A weakly
in L2([0, 7). For fixed t* and s < t we deduce from the log-Lipschitz property
(161)
h(t) 1
diofal ) < [ pde(abal )
h(s)

h

</ " ldf (zh, z" )eLm(r)_t*ldr

—= h h(r)\"r>%r—h ’
h(s)

and hence

limsupdt*(if”,ih")g/ A(r)e ™=t ldp.,
¢

S
n—oo

Propostion 3.3.1 in [4] and (195) imply that there exists a further subsequence,
not relabeled, and a limit curve « : [0,7] — X such that

J_T?n N T, i’?" BN Tt vVt € [O,T]

This curve is absolutely continuous since

n—00

¢
dy- (24, 25) < liminf dy- (20, 20) < / A(r)eX =t dy,

In particular if we take t* =t in the argumentation above the Lebesgue differ-
entiation theorem implies that

1 t
|#]: < limsup t—/ A(r)erIm=tar < A(t)
st —SJs

holds true for almost every t.
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Proposition 4.24. Suppose additionally to our standing assumptions A1, A2,
A3b, A} and A5 that

o Ifx, > x asn — oo then

limsup 0y By (zn) < 0 Ey(), (196)

n—roo

o ift, =t and x, > x, then

|V E|?(z) < liminf |V, Ey|*(2,).

Then every limit curve xy from Proposition 4.23 satisfies the EDI formula

1t 1 [t t
Ei(zy) + 5/ || 2dr + 5/ |V,.E,|*(x,)dr < Ey() —|—/ (0rE,)(z,)dr,
0 0 0
(197)
for every t € [0,T].
Proof. Recall that Proposition 4.20 states for s =0

N R B B
By (@) + 5/0 (Dspym)dr + 5/0 (Dsl)?dr

R (1)
= Fo(%) + / (0. E,)(&h)dr.
0

Since both Z'", Z'" o-converges to z; for every t, z — Ey(x) and = — 0, Fy(x)
is o-upper semicontinuous and ¢ — Ey(x) is Lipschitz continuous uniformly in
z, we know

lim inf By, (2") > Ey(21),

n—o0 n (t
and

¢ ¢ ¢
/ (0-Ep)(zy)dr > / lim sup(, E,.) (2" )dr > lim inf/ (0, E,)(&")dr,
0 0 0

where the last inequality follows from Fatou’s Lemma. From Proposition 4.23
and Lemma 4.15 we deduce

¢ ¢ ¢
/ || 2dr < / A(r)?dr < lim inf/ (Dspl)2dr,
0 0 0

n—oo

and

t t t
/O |V, E,|*(z,)dr < liminf /0 Vi Br * (@ )dr < Tim inf /0 (Dsll)2dr

Combining these inequalities with (191) we conclude
1t 1t ,
E(x)+ = | |&lzdr+ = [ |V Er*(z,)dr
2Jo 2 Jo

< liminf

h Lo B2 1o B 2
B (@) + 5 /0 (Dspy)dr + 5 /O (Dsl)2dr

<liminf

R ()
Eo(2) + /0 <a,«E,«)(az¢">dr]

§Eo(f)+/0 (0, E,)(x,)dr,
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which is the assertion.

4.4 Dynamic Gradient Flow of the Entropy

In this section we want to study gradient flows for the Boltzmann entropy on
space of probability measures, where the metric of the space and the reference
measure of the entropy varies in time. To show existence we apply the results
from Section 4.3.3. We then go on to show also uniqueness.

Let X be a topological space equipped with a family of complete separable
geodesic metrics (d;)e[o,r) satisfying (161) and a Borel probability measure
m. We define P(X) to be the space of Borel probability measures on X and
we denote the subspace of probability measures absolutely continuous to the
measure m by P*(X). Further let Py(X) be the space of probability measures
with bounded second moments on X

Pa(X) = {u € P(X)‘ /df(l’,:co)d,u(x) < o0

for some, and thus any, zo € X,t € [O,T]}.

We say that a sequence ji, C P(X) converges weakly to y if lim [ fdpu, =
f « Jdp for every continuous bounded function f € Cl? (X). We say that a se-
quence p, C L'(X,m) converges weakly to p if lim fx fpndm = fx fpdm for
every bounded function f € L>°(X,m). Note that if p,, converges weakly to p
in L'(X,m) then p, = p,m converges weakly to u = pm in P(X).

4.4.1 Time-dependent Kantorovich Metrics
For every metric d; we define the L?-Kantorovich distance W; on the space
PQ (X)
Wi(p,v) = inf{Cy(7) : mhyy = p, why = v}'/2,
where Cy(7) is the cost of the plan v € P(X x X)

Cily) = /d?(x,y)dv(x,y%

and 71';&7 denote the first and second marginals of ~.

For each ¢t € [0,T], (P2(X),W:) is a geodesic Polish space, see e.g. [62, 2].
It is well-known that convergence in the L2-Kantorovich distance W, implies
weak convergence in P(X) and that W; is lower semicontinuous on P(X) (cf.
[62, Theorem 6.8] and [62, Remark 6.10]). The bound (161) is equivalent to

| log Wi (1, v)/Wes(p,v)| < Lt — s, (198)

for all s,t and all probability measures on X, see Lemma 2.1 in [59].

The convexity of the squared metric speed is crucial for showing uniqueness
of the gradient flow. More precisely we have the following result [26, Lemma
14].
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Lemma 4.25. Let (ud), (u?) € AC?([0,T7; P(X)) be two absolutely continuous
curves. Define py> (ut +12)/2. Then (u}?) is absolutely continuous and the
following bound on its metric derivative holds

L2 < it 17 4 |27

|1 5

Proof. Fix s,t € [0,T]. Pick optimal plans v*,+?, which minimize Wy (u}, ul)
and Wy (u2, 12) respectively. Then the plan (7! +~2)/2 has marginals ;" and
pl? and therefore it holds

1 2
, el
W2 ) < [ @ )

5 [ Bt @+ [ By are)

1 1
= Wk ps) + SWE (i 13)-

Thus the curve (4;2) is absolutely continuous. Dividing by (s — ¢)2 and taking
the superior limit as s goes to t we get for its speed

7+ 1)

1,212 <
|M |t— 9

4.4.2 Time-dependent Boltzmann Entropy

We consider a family of measures (1)o7 on X. We suppose that for ev-
ery t € [0,T] there exists a function f; € L>(X,m) such that m; = e ftm
Moreover let us always assume that there exists a constant L* such that

[fe(x) = fs(@)] < L7t — s (199)

for all s,t and all x.
We denote by S; the relative Boltzmann entropy with respect to my,

S:[0,T] x Pa(X) — [—00, 0],

(t, 1) =Se(p) = Ent(u|me) = /plogpdmt,

where p = du/dm; provided that p < my. Otherwise we set Sy(u) = oo. It
follows directly from the representation of the measures m; that

St(1) = Ent(p /ft Ydp(z

where Ent(u) = Ent(u|m).
In the next lemma we list the crucial properties of the relative entropy func-
tional.

Lemma 4.26. The entropy S: [0,T] x Pa(X) — [—00,00] satisfies A1, A2,
A3b and A4, i.e.
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1. The domain Dom(S;) is time-independent.
2. Si(p) is uniformly bounded from below.

3. For each t € [0,T], u — Si(p) is lower semicontinuous with respect to
weak convergence on th space of probability measures.

4. For every p € Dom(S) the map t — Si¢(p) is Lipschitz continuous with
Lipschitz constant L* and for the derivative it holds

O St (1 /(9tft Ydu(z) for a.e. t €[0,T).

Moreover the set of differentiability points of t — Si(u) can be chosen
independent of p.

Proof. The domain is time-independent by virtue of (199). Since m(z) = 1 we
can estimate Ent(x) > 0 and hence for y € P*(X)

> /ft(w)du(x) > lfullee > —1folliw — L'T.

If p ¢ P*°(X) we know that S;() = oo and we conclude inf; ,, S¢(p) > —oo.
For every ¢ the measure m;(X) is finite and thus u — S;(u) is lower semi-
continuous with respect to weak convergence (Lemma 4.1 in [57]).
Fix u € Dom(S). The Lipschitz continuity of ¢ — f;(z) ensures [9;S:(p)] <
C. Tt is clear that for every x € X the map t — f;(z) is differentiable for
a.e. t € [0,T]. Hence the integral [, fttf |0 fi(x)|dtdu(z) exists and the Fubini-
Tonelli theorem states

/. :atfx \dtdu(x / [ oun@ana

The Fubini theorem again yields that for a.e. ¢ the map z — 0,f;(z) is p-
integrable and so for a.e. t the integral

/ 00 fo () dpi ()
X

exists. Take a differentiability point ¢ of f;(z). Then for p-a.e. z € X

hm (ft+h—ft)( ) = O fi(z), and |(ft+h — fo)(@)] < L7

Hence we conclude that for a.e. ¢ € [0,T]

1
lim E[StJrh(/”L) = lim / 5 [fern(x /@ft Ydp(x

h—0

where the last equality is due to the dominated convergence theorem. Finally,
for u < m, the inclusions

{t € [0,7]| hm St+h( ) — Se(w)] exists}
{t €[0,T] |hm [fi+n(x) — fi(x)] exists for p a.e. a:}

{t €[0,T] |hm [fe+n(x) — fi(x)] exists for m a.e. x}
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show that the set of differentiability points of ¢ — S;(u) does not depend on g,
since the complement {t € [0, T]|lim 4 [fi4n () — fi(z)] exists for m a.e. a:}c is
negligible. O

Since we want to apply the results from Section 4.3.3, we still need to check
the assumptions in Proposition 4.24. To show the lower semicontinuity of the
squared slope, it is essential to assume that the entropy is K-convex for some
K € R, ie. we have a uniform bound on the Ricci curvature of (X, d;, m;). We
briefly recall the arguments in [26].

Definition 4.27. The set GP C P(X?) is the set of plans «y such that

1. the marginals w%gy, i = 1,2 are absolutely continuous with densities bounded
away from 0 and oo,

2. sup  di(x,y) < oo for some t € [0,T], and thus for any.
(x,y)€supp(v)

Given v € GP and pu € P5¢(X), we define the plan v, € P(X?) and the
measure vy, € (X) as

dp () = -2

2
= — " _dvy(z,y), Uy, =T5Y,.
drl ’Y(]C) 7( y) Vo #Vn

Note that since v, < 7, we have v, ,, < m with density

dr? du(x
par) = T [ g )

where (v,), C P(X) is the disintegration of v with respect to its second
marginal.
Observe that from 2. of the definition of the set GP we have that the cost
Ct(v) of a plan v € GP is always finite and v, € P2(X) since pu € Pa(X).
The next Proposition gives an alternative representation formula for the
slope in terms of good plans, cf. [26, Theorem 12].

Proposition 4.28. For every t € [0,T] and every u € Dom(S) it holds

(Se(p) = Se(v) — E-Wi(p, )+

sup
vEP(X) Wi, v)
VD (200)
— sup (Se(p) — St(”%u) - KTCt('Yu))_‘—’
yeGP Ct(’}/ﬂ)

where the value of the second expression is taken by definition as 0 if Cy(vy,) = 0.

Proof. We start with proving >. For this fix a plan v € GP such that v, , # p.
From Cy(v,) > W2(u,v,,,) > 0 we obtain

(St(p) = Se(vyu) — %WE(% V)t
Wt(:uv V%#)

S (Se(p) = Si(vy 1) = E-Crly)*

B Ct('Yu) .
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To show the reverse inequality take v € P$°(X) different from p. Lemma
10 in [26] provides a sequence (y") C GP such that Si(vyn ) — Si(v) and
Ci(vr) = WE(p,v) as n — oo and hence

(Si(p) — Se(v) = SWE(p,v)) "

Wt(“ﬂ V)
~ lim (Se() = Si(vyn ) — SCe(vi)) T

which shows <.
O

We get the following as consequence of formula (200), cf. [26, Corollary 13].

Corollary 4.29. Suppose that S is K-convex. Then for every t € [0,T]

(VeS| (1) < liminf VeS| (pn),
whenever ji, — pi as n — 0o such that sup,, S¢(i,) < oco. Further p i+ |V;.S;|?
is convez with respect to linear interpolation on the sublevels of S.

Proof. Consider the map p — Ci(7y,). It is clearly linear. Also, one can show
that it is weakly continuous on sublevels of the entropy. From [26, Proposition
11] we further know that p — Sy(u) — S¢(v,,,) is lower semicontinuous with
respect to weak convergence on sublevels of the entropy and convex with respect
to linear interpolation. Hence

b i)~ Sulva) — G

is lower semicontinuous with respect to weak convergence on the sublevels of the
entropy. The same holds true for its positive part. Now apply that the function
U: R? — R defined by

< ifb >0,
U(a,b) =40 ifa=b=0,
+oo ifa#0,b=00rb<0,

is convex, continuous on [0, 00)?\ {(0,0)} and increasing in a, and the conclusion
follows. From formula (200) the assertion follows.

O

4.4.3 Existence and Uniqueness of EDE-Gradient Flow for the En-
tropy

In this section we want to show existence and uniqueness of the dynamic EDI-

gradient flow with respect to the functional S on the complete geodesic space

(P2(X),Wy). For this we additionally have to assume that X is boundedly

compact, i.e. closed balls are compact. For this reason we can take A5 for

granted, as shown in the next lemma.
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Lemma 4.30. Assume that X is boundedly compact. Then the following holds
true. If (pn) C Po(X) with sup,, ,, Wi(ftn, pim) < 00, then (pun)n is sequentially
precompact with respect to weak convergence.

Proof. If sup,, ,, Wi(pin, i) < oo for a sequence (p,) C Po(X) the second
moments are uniformly bounded. Then Lemma 16 in [26] implies that (u,) is
tight. Applying Prokhorov’s theorem we infer that (u,) is weakly sequentially
precompact.

O

Theorem 4.31. Assume additionally that X is boundedly compact. Suppose
that S is K-convex for some K € R. Then for every i € Dom(S) there exists
a curve () € AC%([0,T), Po(X)) starting in fi and satisfying

1 t ) 1 t t
Sulp) + 5 / vl + / 19,5, [2(ur)dr < So(juo) + / (0:5,)(ur)dr, (201)
0 0 0

for every t € [0,T].

Proof. We may apply Proposition 4.23 and obtain a limit curve . € AC?([0, T; P2(X))
starting in i such that

/j‘?n — M, and /j‘?ﬂ — Mt vt € [07T]7

where i and fi" are defined as in Definition 4.19. and satisfy by Proposition
4.20

h 1 Tn(t) 1 hn (t)
o) 4y [ sl [ ostear
0 0

[\

hon (t)
— () + / (8,5, (i )dr.

From Corollary 4.29, Lemma 4.15 and Lemma 4.5 together with (161), applying
Fatou’s Lemma we obtain

t t
/|VTST|2(ur)dr§hminf/ 19,5, (il )dr

t
<tmint | (9 So () + 19,1 ) = [Vl )

t
< lim inf { / (Dsl)2dr + 2Ch,, / (Dsll)2dr + Ch2 / (Dslf}")er].
0

n—r oo

We deduce . t
/ 'VTST|2<Mr)dr§hminf/ (Dsiy)?dr
0 0

from the estimate fOt(Dslff“)er < So(p) + L*T — infy ,, S¢(p)
To show that (201) is valid, it is left to show that

lim/o (&ST)(/lf")dr:/O (0-5,) (1) dr-.
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This already follows if we prove that a stronger convergence than weak conver-
gence of measures holds true. In fact, from (193) we know that there exists a
density pi' = dj" /dm € L'(X,m) for every t € [0,T] and n € N. The lower
semicontinuity of the entropy implies that sup, Si(p:) < oo and thus p: = pm,
for some p; € L' (X, m). Choose an arbitrary subsequence h,,, . Then since the

family of densities (ﬁ? "R is equiintegrable, i.e.
B B
sup/ max{0, p, "* log p; "* }dm < oo,
kEJx

(cf. [17, Theorem 4.5.9]), the Dunford-Pettis Theorem ([17, Corollary 4.7.19])
hn

ensures that there exists a subsubsequence p, ' that converges in the weak

topology of L'(X,m) to the function p; € L'(X,m). Hence for the original

subsequence we already have

i — pyin LY(X,m) Vte[0,T).

As a direct consequence we obtain (201), since similar as in Proposition 4.24

I I
Suu) + 5 [ Vil + 5 [ 19,8
0 0
n(t)

. _h 1 [ B\ 2 1 [ B \2
<timinf |Si (@) +5 [ (Dspl a5 [ (st
han (1)
<liminf So(ﬂ)—l—/ (8TST)(ﬁf”')dr]
n—oQ 0

<So() + / (0:5,) (ur)dr.

O

Remark 4.32. Actually, the statement of Theorem 4.31 holds true without
assuming that X is boundedly compact, since m is assumed to be finite. If
(X,d) is a Polish space and m € P(X) we may apply zlogz > —1/e and
Jensen’s inequality to obtain

u(E) 1
Ent,,(u) > p(E)1 —= | — - VE e B(X).
i) > () o (2420 ) 1 (x)
Taking into account that the singleton {m} is tight, this shows tightness of the
sublevels of the entropy since u(E) — 0 as m(E) — 0. Hence we could replace
our assumption A5 in section 4.3.3 by assuming that for each t € [0,T) the
sublevels of the functional are sequentially o-compact. See also [5, Remark 7.5].

Theorem 4.33. Assume S is K-conver and i € Dom(S). Then there exists
at most one dynamic EDI-gradient flow (ui) starting in . Moreover we have
equality in (201), i.e. for everyt € [0,T] it holds the following dynamic EDE

1 t ) 1 t t
i) + 5 [ i+ 5 [ 19,82 = Saluo) + [ (000) )
0 0 0
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Proof. Let us first observe that a weak chain rule for gradient flows is applicable.
For this we prove that a variant of the assumption in Proposition 4.8 concerning
the time derivative is satisfied by the entropy S:;. We choose a sequence p,, =
pnm converging to p = pm such that sup, S(u,) < co. We need to show that
for almost every ¢

nlL}H;o St ( t) — tSt 'LLn o nlﬁoo/ ft ) (x)dm(x) B atSt(M)7
(202)

if t,, \(t as n — oo. This would imply the weak chain rule (171) in Proposition
4.8 restricted to curves which are contained in the sublevels of the functional.
In order to show (202) note that as in the proof of Theorem 4.31 the sequence
(pn) is equi-integrable and thus p,, converges to p in duality with L functions.
Then we decompose

ftn — ft pndm :/ (ftn -ft atft>pndm+/atftpn dm
X

X it ty —t

— ft‘n f o ftn *ft B

_/pn|<M< p— atft)pndm+/pnl>M< g (9tft)p”dm
+/atftpndm

The third integral clearly converges to [ 8 fipdm = 9,S;(1) by Lemma 4.26,
while the first vanishes by dominated convergence. The second vanishes after
letting n — oo and then M — oo by equi-integrability of (p,,).

Let us assume that there exist two dynamic EDI-gradient flows (u}), (1?)
starting from i € Dom/(S). As seen in the proof of Theorem 4.31 we know that
these curves are contained in the sublevels of S and hence together with the
weak chain rule it follows

So(1) = Si(ul) + /|#|2dr+/|vs|ﬂr /aSur

So(71) = Si(12) + /Iul2d+ /|vswrdr—/awr

Now define

‘ul,Q _ 1y + pf

t>0.
t 5 =

Then M(l)’Q = [t and from the strict convexity of the entropy, the convexity of the
squared slope (Corollary 4.29) and the convexity of the squared speed (Lemma
4.25) we have that

t
Sol) > Sy(ul?) /Iu”l dr+ 1 /|VS| 2ydr [ 0.5, (nt?
0

whenever these curves are different. But since (202) is applicable to M% ’2, this
contradicts (171). O
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4.5 Dynamic Gradient Flows in Hilbert Spaces

Let (H,(-,-)t)te[o,7] be a one-parameter family of separable Hilbert spaces. We

assume that (161) holds for the distances ||z — y||¢+ := /{(x —y,z — y):+. Let
E:[0,T] x H — RU {400} be a functional such that z — E;(x) is convex
and lower semicontinuous. Again we require that the domain Dom(E;) =
{z: Ei(z) < oo} is time independent. The subdifferential D; E;(x) of E; at
some x € Dom(E) is the set of all v € H such that

Ei(y) — Ey(z) > (v,y —x)y Yy € H.

It follows from the definition of the subdifferential that D, E; is monotone, i.e.
for every v € D; Ey(x), w € Dy Ey(y) we have

(v—w,z—y) > 0. (203)
Note that D; E¢(z) is closed and convex. Hence we can set Vi E:(z) as the
element of minimal || - ||;-norm in D; E;(z) as soon as D; E(x) # (.

Definition 4.34. We say that (x¢)o<i<r s ¢ dynamic gradient flow for E
starting from x € H if it is locally absolutely continuous and

Owxy € =Dy E(z4) for a.e. t € (0,T)
and limy o v = .

We cannot hope to have a minimal selection result, i.e. %xt = —ViEi(y).
We illustrate this in the following example.

Example 5. Consider once again the energy functional Ei(z) = |z — t| on R.
Then the curve x; = t defines a gradient flow of Ey since Oyxy =1 € —D~ Ey(xy),
but 8t:17t 7& *VEt(IEt) =0.

In the following we show that the gradient flow in the sense of Definition

4.34 is a dynamic forward EVI(—L/2,00) gradient flow introduced in Section
4.3.2. We recall that for s,t € [0,T], v € AC?([0, 1]; H) the action of the curve

Asyly) = Jimsup {37 (@ = i) e = a0 Pras |

—0 ‘
=1

where the supremum runs over all partitions 0 = ag < a; < ---a, = 1 such that
a; — a;—1 < h for some h > 0.
For z,y € H we define

[l = ylI2, = inf As(7),
where the infimum runs over all curves v € AC?([0, 1]; H) such that o = 2 and
M=y

Proposition 4.35. Let E: [0,T] x H — (—o0,+0o0] be a functional such that
x — Ei(x) is convex and lower semicontinuous for each t € [0,T]. Let (x;) be
a gradient flow of E in the sense of Definition 4.34. Then, with L denoting
the the logarithmic Lipschitz control (161) of the distances, (x;) is a dynamic
forward EVI(—L/2,00) gradient flow, i.e. for all y € Dom(E) and a.e. t

1 L
58:”335 — |2, T ZH% —y|l} < Eu(y) — Ex(ay).
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Proof. Let y € Dom(E). Then

1 1
78+ o 2 —1li o 2 o 2
505 llws = ullsy| _, =timsup s (lzs = vllse = lle = ylle)

. 1
s11msup{ (s — 9112,  llos — y|%>}

s—t 2(S_t)

1
+limsup{ ————(||zs — 2 _ ||z — 2}
nsup { 5=l =l = s = o)

The first limsup can be estimated with the help of Proposition 2.72(iii) by

. 1
s {5l =l e o)

s—t

1 gellt=sl—q
<li ( —1)lles — yli2
e { s (g e

) 1 L[t — s> + o]t — s|?)
:hmsup{2( (2 )|-Ts_y|§}

st s—t) Lit — s]
L
<l — ol
where the last inequality follows from the continuity of ¢ — z; and ¢t — || - ||;.

For the second limsup we apply that () is supposed to be a gradient flow of
E;

. 1
s { 5ol ol = o= i1}

s—t
=(v — y, 0xe)e < Er(y) — Ei(x)

for a.e. £ > 0. Combining these two observations we conclude

1 L
55:”% —yll2, - < ZH% =yl + Ei(y) — Eylzy),

which proves the claim. [

4.5.1 Existence and Uniqueness
We assume that the following holds for the energy functional, cf. [54].

1. z — E;(x) is lower semicontinuous
and Ey(x) >0 VY(t,x) € [0,T] x Dom(E),

2. 3C1Vz € Dom(E)Vs,t € [0,T]: |Ei(z) — Es(z)] < CLE(z)|t — s].
By virtue of the functional’s lower semicontinuity we obtain that if v, € D; E¢(z,,)
and z, = x, v, — v, then v € D; Ei(x).

‘We write

e(x) := sup E(x).
t€[0,T]

Note that from the Lipschitz property it follows that there exists a constant
Cy > 0 such that for all x € Dom(FE)

< i .
e(z) < Cy tel[%,fT] Ei(x) (204)
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Approximation

We fix a time step h > 0 and subdivide the interval [0, 7] into
Pri={to=0<t1 < - <tny_1 <T <tn} t, =nh,N € N,

For 0 < t < T we define the piecewise constant interpolants h(t) and h(t)
associated with the partition Py, in the following way;

h(0) =0 = h(0), and for t € (t,_1,t,] h(t) =t,, h(t)=t,_1.  (205)

The definition implies that h(t) N\, t and h(t) /¢ if b \, 0.
For a given initial value T we recursively define a sequence (z") of minimizers

by
. 1
dhi=a, ol = argmin {Etn (2) + 5 lle = 2|2, } (206)

We can argue as in the proof of Proposition 4.13 and directly obtain for every
Z € Dom(FE) and h > 0 a (unique) solution to the minimization problem (206).
As in section 4.3.3 we define piecewise constant interpolants by setting

h=al for t € (t,_1,t], al i=ah | fort € (tp_1,tn),

and moreover, the piecewise linear interpolant

h Ty h n—1

for t € [tp—1,tn).

For t € (tn_1,t,) we denote the time derivative of ¢ — z' by 1.
Recall that the variational interpolation is a map t — ! defined by

2
tn [

fort =t, 1 +7€ (tn_1,tn],

- . 1
= argmin {Et(x) + §||$ —an

and 7} = 7. Finally we define t — o/ by

~h h
Xy — X,

="t Tl e (toq,th).
t_tnfl

As in Section 4.3.3, in order to extract a converging subsequence, we proof
a priori estimates on the discrete solutions. The proof is along the lines of
Proposition 6.3 in [53].

Proposition 4.36. The following inequality holds for the interpolants z", x",

#h and "

=h 1 E(t) hi|2 1 E(t) ~h||2
Bro@l)+3 | V5 / I

o (207)

< By (T) +01[ e(E)dr.
h(s)
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In particular there exists a constant M such that for all h > 0

N

1
sup e(zf) <M, Y ol —anllf, <M, (208)
te(0,7) —h
4 h ’ h
/0 212, dr < M. /O 612, dr < M. (209)

Moreover
|z — x| € O(h), lay — 2| € O(h), lzf —xy||* € O(h).  (210)
Proof. Consider the map
. 1
ris Jop(y) = min { Bopr (@) + -l = w20}

for a given s € [0,7], y € D, 0 < r < T —s. We claim that this map is
differentiable almost everywhere in (0,7 — s) and for every ro € (0,7 — s) for
the minimizer (0,79] 3 r — =, it holds

1 |
arllor =9t [ graller =yl idr+ By (o)

2
"o " (211)
< Ei(y) + C’l/ e(x,)dr.
0
Indeed, arguing similar as in (187) we obtain that for ry <7y € (0,7 — s)
Jora () = T () = (Esiry (@r,) = Eiory (%))
(212)

S_

31t (ro — )|y, — 921 <0,

hence the map 7 +— Js(y) is the sum of a locally Lipschitz and of a nonincreas-
ing function

Jora () < s (y) + (r2 — r1)Cre(ary),
and differentiable almost everywhere. So let r € (0,7 — s) be a differentiable
point of 7 — J; (y). Then with (212) we get

d 1 )
%Js,r(y) + 22 ||:CT - st+h
- (sren(y) = Tsn(y)
=1 ( S,rth : [ 2 )
hlg%) n 20 + h)r“m y||s+h
Es r r) Es r\4tr
<liminf —*F +nl2r) +r(r) < Cre(zr),
h—0 h

and integrating from 0 to ro gives us (211).

Applying (211) with t € (t,_1,tn], y = 2" |, s =t, 1 and rg =t — s we
obtain for &

1 ~ t 1 . -
2(t_t1)||x?$2—1||t2n+/ mHIQ*IZ—lHidTJFEt(SC?)
n— tn—1 n—
(213)
t
<E, (" )+ Ci / (@) dr. (214)
tn—1
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Inserting ¢ = t,, we get for the interpolants z?, o/

1 tn ) tn 1 .
o [Nk [ SR dr + B @)
o " (215)
< By, (zh_ )+ 01/ e(zM)dr.
tn—1

Summing over the partition we end up with (207).
Note that the minimality and (204) imply that for r € (t,—1,tn], t = tn—1+7
~h ~h
e(xtn_l) Z Et(xtn_l) Z

|2y — 2,7, + E(@y) = Eu(@7) 2 =-e(@)),

T

1 1
2h 2
and hence with (215) we can estimate

n—1

t’”.
B (zh) < B, ,(z"_)+ CiCy / ez )dr.

tn—1

Summing over the partitions and applying (204) once more we obtain for some
constant C > 0

tn

eih xh exh 7).
(#) < C(By 0>+/0 (z)dr)

We obtain the first inequality in (208) by applying a discrete Gronwall argument
(see e.g. [54, Lemma 4.5]). It directly follows that the right-hand side of (207) is
bounded and (209) holds. The second inequality in (208) is a direct consequence
of the first estimate in (209).

In order to show the first statement in (210) recall that (213) together with
(208) implies (with some different constant M)

138 — zi||* < 2hM.

The other two assertions in (210) follow from (209) via Hélder’s inequality
¢
2 — ) < / &]dr < /M(E—5) Yo<s<t<T.

O

The following result provides the compactness of the approximate solutions.

Proposition 4.37. For every sequence of time-steps (h;);jen such that h; —
0 as j — oo there exists a subsequence h; (not relabeled) and an absolutely
continuous curve (x;) € AC*([0,T]; H) and such that

2l = 2y in CO([0,T): H),

and
@l = &y in L2([0,T): H).

_h; ~hy .
Moreover for each t € [0,T), Z,”,Z,” — x+ in H.
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Proof. Let 0 < g < h be two stepsizes and {tJ }n 2o {th} o the corresponding

partitions of the interval [0,1]. Let {z?}" and {x%}nzo be the solution to
the minimizing problem (206) with respect to the stepsizes h and g respectively
with initial condition mg and z§. The Euler-Lagrange equation of zl is

S D Eth( )

i.e.
hNalh —al_y xl —y)n + B (a) — Ep(y) <0 Vy € H.

Inserting the definition of the piecewise linear interpolation zf' at t € (t!_,, ")

(&7, @) — Yyer + Eyn (zf) — En (y)

216
< (6~ ) (413, + 3 (By (k) ~ By (ehr)) vy € H, o

where we applied the convexity of z +— E;(z). The same argumentation for z7
at t € (7 9) yields

ml’m

(@, 2] —y)eo, + Eyg (x]) — By (y)

< =) (16015, + (B, 08~ B ) e

For t € (th_,,t")yn (t?,_,,t9,) we get by putting y = z{ into (216) and y = x}

m—1°"m

into (217) and adding them

<1‘?, x? - xg>th + <$§7.’K? - Z‘?>ty

+ By (a1) — Eyg () + Byg, (x]) — Eyp (2)

Ey (a) — Ep (ah
< ¢ ) (e, + Balen) = Puloady 21
. t%)(llwt 2 + L P (@) gEts’n (xmfl)).

The Lipschitz property (161) of the metric together with the polarization iden-
tity gives

<$?,CL’? - wg>t’,‘b + <5b?’$t $?> t9,

. . 1.
> (o — f, o} = af)g, — Llth — 10,1 (@}, o} —afug, + 5lli7 — (af —af)
while the Lipschitz property of the energy yields

Eth (xt) Es (xt )+ By, (xf) - Eth (xf) > Cl|th — 15| (Et;g (m?) + Et{; ($?)>
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Inserting these two inequalities into (218) we find

= <$? a:t,x? _xt>t§7n

Et{;(x ) — Et“( Lp— 1))

@th — Xy Htfn

< (e —th) (1l + 3
Eyo (29) — E,9 .I‘g
+ 0= ) (el + 2T = )y (219
1.
+ Lith = t5,] (il 2k — afhug, + 5110k — (@b — 2Dl )

+ Crlth — thl (Euy (o) + By (7))

Integrating (219) on the interval (t"_; V7 | t) we can estimate

h
||$t _xt”tg ||xtﬁfl\/tfn71 —xfﬁ, RV 1||t$”
t Eon(azl_ )= Eun (2l
Sh/ (*foH?th wn (Ty_1) o ( n))dr
tlr’]‘,—lvtgn,—l " h
t Ey (22 ) — B (29)
149112 ta, m—1 tm m )d
£ [y, (I - =SR2 " e

t
Liing) [ (12113, dr + Nl — 2113, )
t g

h
n—1Vtm_1
t

+ailing) | (Buy (a2) + By (29)) dr.

h
th_ vtd

m—1

Summing over the partition {th g}N"+N = {t"MMNr U {t?n}ﬁigzo and exploiting

the Lipschitz property of ¢ — H Ht

n+m

laf =2l <l — 2B+ Lo D s = s 2
j=1 - 17
n t?
# [l + Byl - Byl dr
j=1"1tj-
m t;.’
+3 [ ol + Byl - By @) dr
=17t ’
t
h
L g) [ (I dr + o = o212 dr

t
+Ci(hAg) / (Bnry (@) + By (a2)) dr-
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Applying once more the Lipschitz property of ¢ — FE,(x), we can further estimate

n+m

9|12 h [ 2
o =l < laf =218 + Lo 3 Nt = s,
+ h{Eo(wh) — Eyy (@) + 9(Bo(ah) ~ i, (@1))

t t
+L(hAg) / 4112,y dr + C(h A g) / e — 82 dr
0 0

+Ci(hAg) / (Bury (2) + Engry (29))dr

+ClZ/h -—t? 1) ( d?"—l—ClZ/ (] =t} _ ) By (x]_,)dr.

(221)
From the positivity of E and from (209) as well as (208) we can deduce (with
varying constants)

n+m
ot = atly, <lleh = bl + L0 D lieho, = s s,
+ hEo(ag) + gBo(zf)
t
h 2
+CUAD) +OWAg) [Nk —atldr
+C(hANg)+Ch+Cyg

n+m

h :
<|lzg — zg|I3 + Lg 21 [E# h xf?:qlllj(tﬁgl)
J

+C(h+g)+C(hAg).
The last inequality follows from

e < sup(V2CnhM + ||

2CTM

) <

= =sup||z
n

sup ||z}
!

where we used the definition of (z )re[o 7] in the second equality, triangle in-
equality and Cauchy-Schwartz inequality in the second, C = C(L) is the con-
stant arising from the log-Lipschitz control (161) of the metric.

For h, g sufficiently small there exists a r satisfying 1 — L(h A g) > + > 0.
Applying the discrete Gronwall lemma [54, Lemma 4.5] we finally obtain

et — f|lfy, < KO (h+ g)e" M END < kO (h+ g)e* ™. (223)

This shows that if h; is a vanishing sequence of stepsizes, {x"}; C C°([0,T]; H)
is a Cauchy sequence. Since C°([0,T]; H) is a Banach space there exists a con-
tinuous curve (z¢):cjo,7) and a subsequence (not relabeled) such that xt — T
in C([0,7); H) as j — oo. From (210) it follows immediately that also x? ,xi
converge to x¢.

Since fOT ||:177’}J ||2dr < M we can extract a further subsequence (not relabeled)
with

i~ in L2([0,T); H)
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where u is some function in L?([0,7]; H). As a consequence we obtain that the
limit function (z;) € AC?*([0,T]; H) since for all 0 < s <t < T

t t
(= lim H/ @l dr|| - S/ [
J]—00 s s

where t* is an arbitrarily fixed timepoint in [0,7]. We still have to show that
u, = &, almost everywhere. This follows again straightforward from the weak
convergence of . Let y € H, then

h
S

[lze — zg|er Zjli>1£10||.13?] -z dr, (224)

t t
) h; v . B
(x — x5, Yy = lim(z,? — xgj,y>t* = hrn(/ xfﬂ dr,y)e = (/ Updr, Y)er.
S S

Since y € H is arbitrary we obtain

t
Ty — Tg = / u,-dr,
S
Tt —Ts

I="+ = u; at every Lebesgue point of u.

and hence lim,_,;

O

Theorem 4.38. Let E be as in the beginning of this section. Then for every
x € Dom(E) there exists a unique map t — x4 from [0,T] to X with lims oz =
x such that

Owwy € =Dy Ei(z4) for a.e. t € (0,T).

Proof. Recall that the minimizers of (206) with z! := z satisfy the Euler-
Lagrange equation, that is in terms of the subdifferential of E, the piecewise
linear interpolant x} and the piecewise constant interpolant z

(&h, zh — Yyen + Eyn (zh) — Epn(y) <0 Vye H, for every t € (th | th.

The log Lipschitz property together with the polarization identity gives then for
all y € H and almost every ¢ € [0, T

(@, 7 = y)e + Bo(7}) — Be(y) < Lh(|[a|[7 + |27 — yll7) + Crh(e(@}) + e(y)).

Integrating this inequality over the interval (s,t) for some 0 < s < t < T we
deduce

/<¢f,§;¢—y>,.dr+/ B (&) — B (y) dr
s s (225)

t t
< Ih / #4112 + 12" — yl2 dr + Crh / (e(z") + e(y))dr.

Applying Proposition 4.37 we get existence of a subsequence and a curve (x;) €
AC?([0,T]; H) such that z} — x; in C°([0,T]; H) and & — i, weakly in
L3([0,T]; H). Hence we get for all y € Dom(E)
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/:(:‘cr,:cr — y)rdr + /: Ev(z,) — Ey(y)dr

t t
< lim inf/ (&l z" — ), dr + lim inf/ E.(zh) — E.(y)dr
s h—0 s

h—0

¢ ¢
< lim inf {/ (&h zh —9),.dr +/ E.(zh) - E,,(y)dr}

h—0

t t
<liminf {Lh / #2 + |2 — |2 dr + Cyh / (e(a) + e(y)dr
h—0 s s

<0,

where we applied Fatou’s Lemma and the lower semicontinuity of = — E;(z) in
the first inequality, estimate (225) in the third inequality and the non-negativity
of Fi(y), (208) and (209) in the last. Dividing by ¢t — s and letting s — ¢ we
infer from the Lebesgue differentiation theorem that

(i, 20 —y)¢ + Ey(2) — E(y) <0

for almost every ¢t € (0,7) and y € X.
Since Z! converges to x; for every t we clearly have that limg\ o 7 = 2.
Suppose there exists two absolutely continuous curves (), (Z¢):e[o,r) such

that for every y € X and almost every ¢ € [0, T

IN

(T, 0 — )t + Ey(x) — Ei(y)

0,
(T4, 8¢ — Y)t + Ee(d4) — Ee(y) <0

IN

with lim o0 2¢ = limg,0 Z¢+ = 0. Inserting &; for y into the first inequality and
x¢ for y into the second we obtain by adding and using (203)

1 - . .
Ouslles = &ulF] = i — dr — @) 0.
s=t

From the log-Lipschitz continuity of the metric we deduce

1 - -
Osglles = &l[5| _ < Ll — &ll7-
s=t

Applying Gronwall’s inequality we conclude ||z; — %4||? < e2Ft||zg — Fo||2 = 0

for almost every ¢ € [0,7] and hence for every ¢t € [0,T] by continuity. This
proves uniqueness. O

4.6 The Heat Equation on Time-dependent Metric Mea-
sure Spaces

Let (X, d¢, m¢)iepo,r) be a family of Polish metric measure space. We always
assume that (161) holds and that there exists a reference measure m € P(X)
such that m; = e~/*m with Borel functions f; satisfying | f;(z)| < C and

[fe(@) = fo(e)| < L7t = 5|, [fu(x) = fu(y)] < Cdi(z,y). (226)
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Let us denote Cheeger’s energy by Chy: L*(X,m;) — [0, 00]

n—oo

1
Chy(u) = 3 inf {liminf/ (lipyun)2dmy : u, € Lip(X), / [y — ul*dm; — O} )
X
where lip,u denotes the local slope defined by

lip,u(z) := limsup ———=~
Pe =) y—mp di(z,y)

By making use of the minimal relaxed gradient |Viu|. ([5, Definition 4.2]), this
functional admits the integral representation

1
Cht(u) = 5/ |Vtu|idmt,
X

set equal to +oo if u has no relaxed slope. This defines a convex and lower
semicontinuous functional in L?(X,m;) [5, Theorem 4.5].

Lemma 4.39. Fizt € [0,T] and let u € Dom(Chy). Then presuming (161)
\Viul, < el Voul, m-a.e in X, Vsel0,T).

Proof. Since u € Dom(Ch;) we know u € Dom(Ch,) as well and there exist
bounded Borel Lipschitz functions u, € L?(X,m,) such that

Up — u, lipyu, — |Vul, strongly in L2(X,my),

see e.g. [5, Lemma 4.3 (c)]. This implies that e**=*!|V ul|, is a relaxed ds-
gradient since

Up — U, eL‘t_s‘lipSun — eth_S||Vsu|* strongly in L?(X, my)

and
L|t—s|1:
|vtun‘* S € | S‘hpsuna

c.f. [5, Lemma 4.3. (a)]. Thus Lemma 4.4 in [5] yields the assertion. O

The domain of Cheeger’s energy endowed with the norm

VIR + Chal)

is a Banach space, cf. [20, Theorem 2.7]. In the following we additionally
impose that for each ¢ the space (X, dy,my) is infinitesimally Hilbertian, i.e.
Cheeger’s energy Ch,; defines a quadratic form. In particular the domain is a
separable Hilbert space and Lipschitz functions are dense, see [6]. In this case
we will denote by &; the associated Dirichlet form, which is the unique bilinear
symmetric form satisfying

Et(u,u) = 2Chy(u)  Yu € Dom(Chy) N L2 (X, my).
Moreover & is strongly local [6, Proposition 4.14], i.e.

u,v € Dom(&),v constant on {u # 0} = E(u,v) =0,
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and admits the integral representation
Er(u,v) = /Vtu -Vwdm; u,v € Dom(Chy) N L*(X,my),

where
[Vi(u +ev)[f = [Veul?

2¢e

and the limit is understood in L(X,m;), see [6, Proposition 4.14].

We define the Laplace operator A; as the generator of &, i.e. as the
unique non-positive self adjoint operator on L?(X, m;) with domain Dom(A;) C
Dom(Chy) and

Viu- Vv := lim
eN\0

—/ Ayuvdmy = E(u,v)  Yu € Dom(Ay),v € Dom(Chy) N L*(X,my).
X

Due to our assumptions the sets L?(X,m;) and Dom(Ch;) do not depend
on t. We set F = Dom(€) and H = L*(X,m;) and define for 0 < s <7< T
the Hilbert space

Flsyr) = Lz((S,T) = F)N Hl((S,T) — F7),

equipped with the norm ([ ||u||%+||0¢ue||%. dt)'/2. According to Lemma 10.3
in [52] we have F(, -y C C([s, 7] = H).
Definition 4.40. A function u is called solution to the heat equation
Oru = Agu on (s,7) X X
if u € Frs7y and if for all v € F, 1
— /T Er(ug,vy)dt = /T<8tut, wte_f‘>p7;dt, (227)

where (-,-) F+ 7 denotes the dual pairing.
A function v is called solution to the adjoint heat equation

—Agv 4 0sf v =050 on (o,t) x X

if v € Flopy and if for all w € Figy)

t t t
/ 55(’05, ws)dS + / / Vs - W - Os fs dm ds = / <68v87 wseifs>~7:7]:* ds.
o o JX o

We assume that each static space (X, dy, m;) satisfies the Riemannian curvature-
dimension condition RCD(K, N'), i.e. (X, d:, m;) satisfies the curvature-dimension
condition CD(K, N') in the sense of [5, 57, 43] for some finite numbers K, N’
and it is infinitesimally Hilbertian.

By virtue of Theorem 2.29 and Theorem 2.31 we have under combination of
the previous assumptions on (X, d;, m;) existence and uniqueness to solutions
of the heat and the adjoint heat equation with initial condition us = h € H and
terminal condition v; = h € H respectively. We denote these solutions by

u(z) = P sh(x), vs(x) = Ptfsh(:ﬁ).
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Both solutions, called heat flow and adjoint heat flow respectively, admit the
following kernel representations

Prah(@) = [ o)) ), (228)

Piuhy) = [ g o), (220)
where [ pys(z,y) dms(y) =1, and pep (2, 2) = [ pe,s(,y)ps,r (Y, 2) dms(y).
4.6.1 Identification of the Forward Adjoint Heat Flow with the Dy-

namic EDI-Gradient Flow for the Entropy

We consider the adjoint heat flow (p;)o<¢<r parametrized forwards in time, i.e.
solving

Opr = Dypy + peOefy on (0,7) x X
with nonnegative initial data py = h. We identify (p;) with the dynamic EDI-
gradient flow (u:) of S via py = pyms. In order to show this we adapt the
strategy in [5]. We prove that u: = pymy is a dynamic EDI-gradient flow of S.
From the uniqueness it follows that both flows coincide.

Lemma 4.41. Let h € H and (p;) be the solution to the forward adjoint heat
flow on (0,T) x X with pg = h.

1. The flow (p;) is mass preserving, i.e.

/pt dm; = /hdmo Yo <t<T. (230)
2. Ife: R — [0, 00] is a convex lower semicontinuous function and e’ is locally
Lipschitz in R, it holds for L'-a.e. t € (0,T)
d 1 2 /
o e(pe) dmy = — [ €"(pe)[Vepeli dmy + | Ocfi(pee’ (pi) — e(pr)) dm.
(231)

Proof. Since the measure is finite, 1 € H, and hence

8t/pt dmy = <atpt7€_ft>]:*,-7:

=&(pt, 1) + /Pt(atpt)dmt - /pt(atpt)dmt =0,

which shows the first assertion.

In order to prove (231) we assume by a standard approximation that e’ is
bounded and globally Lipschitz, cf. [5, Theorem 4.16]. Since e is convex and
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p € Fo,r we have for ty) < t;

/e(ptl)dmtl _/e(pto)dmto
> [ oudlon =), + [ elor,) dlons, — m,)
t1 t1
:/ <8tpt,e’(pto)e_f‘l)}-*,}-dt—/ /e(pto)atftdmtdt
to

to

t1 1 ) 1 ) t1
> [ (= S0 = Gl 1 [ [ elor)onfidmi) at,
to 2 2 to

which is integrable. Changing the roles of ¢y and t; shows that s — [ e(p;) dmy
is absolutely continuous. Then, since p € F(o,r), we deduce from the mean
value theorem for a.e. ¢

1
%{)%E(/e(ﬂwh)dmwh —/e(ﬂt)dmt)
1 1
— lim — _ —fitn im — —fe4n _ o= fi
tim & [ (eloeen) = elp)e oo dm o+ fim & [ elp(e o — e F dm

= lim e’(pt)mdmt —/e(pt)atft dmy
h—0 h

:<atpt7€/(pt)e_ft>}'*,]—'_/B(Pt)atft dmy,

cf. [41, Corollary 5.5], [8, Lemma 12.3]. Since p is a solution to the forward
adjoint heat equation we have

(Osps, 6/(p5)€7f5>7:*,}' = —&(ps, e/(ps)) +/P56/(pS)ans dms
= [0 an.+ [ o p)o.s dm,,
which proves (231). O

Proposition 4.42. Let (p;)o<i<r be the solution of the forward adjoint heat
equation with nonnegative initial datum h € H. Then it holds

t 2
/ / ool g ar < /hloghdmo+/hdmo
0o J{p.>0} Pr

) (232)
() + [ [@f)pdmar

and the map t — [ pylog prdmy is locally absolutely continuous in [0,T] and

d [Vepel?
—_— /pt IOg Pt dmt = 7/ dmt + /(8tft)pt dmt (233)
dt {p>0} Pt

for a.e. t €10,T].
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Proof. Since all solutions admit a kernel representation, we have p; > 0 for all
€ (0,T). Applying formula (231) to p; + € we get

d
dt

|tht\

/( ¢+ log(pr+ €) dmy = — [ 0L

*d t+/8tft t+€)dmt

Integrating from 0 to ¢ and letting € go to 0, we obtain by applying dominated
and monotone convergence

/ pilog py dmy — / po log po dmg

t 2
\Y%
= / _ / [Veprl dm, + / (O fr) pr dm. drr.
0 {p->0}  Pr
Using plogp > p — 1 and the conservation of total mass (230) leads to
t 2
/ / Mdmrdrg/hloghdmo—&-/hdmo
0 J{p.>0} Pr
t
_mt(X) + / /(arfr)pr dm,. dr,
0

which proves (232). As a consequence from (232) and (234) we get the local
absolute continuity of s — [ p,log psdms and (233). O

(234)

The following two lemmas are crucial to conclude that the forward adjoint
heat flow defines the EDE-gradient flow for the relative entropy. The first lemma
gives an estimate of the squared slope of the entropy in terms of the Fisher
information, which is an estimate in the static setting, while the second lemma
represents a dynamic version of Kuwada’s Lemma, see e.g. [28, Proposition 3.7].
The proof of Proposition 4.44 relies on the dual formula of the dynamic distance
W (recall Definition 4.9) in terms of subsolutions to a modified Hamilton-
Jacobi equation, cf. Section 2.9.1.

Proposition 4.43. For u = pm; € Dom(S)

V,pl2
Vs < | Ntk i,
{p>01 P

Proof. Since each static space (X, d;, m;) satisfies CD(K, o0), Theorem 9.3 in
[5] yields the assertion. O

Proposition 4.44. Let (p;)o<i<r be the solution to the forward adjoint heat
equation with nonnegative initial datum h € H such that [ hdmg = 1. Then the
curve t > py = pymy is locally absolutely continuous and satisfies

liul; < / |tht|* dmy  for a.e. t € [0,T].
{pt>0} Pt

Proof. From (230) we know that fpt dmy = 1 for every 0 < ¢t < T. Hence each
e = pymy is a probability measure.
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Let s < ¢ and set ¢ :=t — s. Then, with ¥(a) = s + a, we define HLSy as in
Section 2.9.1

. 1
HLS) = {p € Liny(10.6] x )| Qus < 5 Voo (00)1

L' x m a.e. in (0,0) x X},

W3 (s, f12) = 2sup{/wdut - /«podus},
®

where the supremum runs over all maps ¢(a,z) = pq(x) € HLSy. Then we
have by Lemma 2.59

and

WS2(I‘LS7 Mt) < 62L66W3(M5, /Lt>

By applying [4, Lemma 4.3.4] to the function (a,b) — [ papsdmg, where ¢ €
HLSy, we obtain

)
/905 dﬂlt*/wo dﬂs :/ aa\/%oa dﬂs—‘—a da
0

/ / s+a Saa | dus+a - €s+a(ps+a7 SDa) da

/ / s+a Sﬂa | d,uls+a

1 Vs a\Ps+a z
+/2|Vs+a(§0a)| d,ufs—i-a 5/ Mdmﬁ_ada
{ps+a>0}

Ps+a
/ / |vs+a(ps+a)‘* dmgrq da.
{ps+a>0} Ps+a

Taking the supremum over all ¢

W (/1457 < 2L56/ / |vs+a(ps+a)|* dms+ada
{ps+a>0} Ps+a

Dividing by 62 and letting 6 — 0 we conclude

Vspsls
|,Us s —/ | <P | dm
{ps>0}  Ps

Now we are ready to prove our main result of this section.

Theorem 4.45. Let (X, dy,m¢)icjo,r) be a family of Polish metric measure
spaces with geodesic distances (d;) satisfying (161) such that m; = e~Ftm, where
m € P(X) and (f) are Borel functions satisfying |fi(x)] < C and (226). As-
sume that each static space satisfies RCD(K, N') for finite numbers K, N’ € R.
Let h € H nonnegative with i = hmg € Dom/(S5).
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1. Let (p¢) solve the forward adjoint heat equation starting from h, then p, =
pemy is the dynamic EDE-gradient flow for the relative entropy S starting
m .

2. Conversely, let (ui) be the dynamic EDE-gradient flow for S, then u; =
prmy and (pe) is the solution to the forward adjoint heat equation.

Proof. Proposition 4.42 applied the forward flow (p;) yields

d Vipe|?
%/ptlogptdmt:—/ ﬂdmt—k/(@tﬁ)ptdmt
{pe>0} Pt

Integrating from 0 to ¢ and using Proposition 4.44 and Proposition 4.43 we
obtain

1 t ) 1 t t
St(lu’t) + 5/ |MT|%dT + 5/ |VTST|2(:U’r)dr < SO(ﬂ) +/ (67”57’)(/1*7")6”'
0 0 0

Moreover, by virtue of Proposition 2.16, (u;) is contained in the sublevel set
of the entropy and hence, similarly as in the proof of Theorem 4.33, we get for
all ¢

Su(yue) — Solp) > / (0,5,) e — / PR AR

Thus we have

1 t ) 1 t - t
Sulpe) + 5 / o2+ / IV, 5,2 () = So(B) + / (8,5, (ur)dr-

To show the converse implication, let p; be the solution to the adjoint heat
equation parametrized forwards in time. From the previous argumentation we
know that fi; = pym; is a dynamic EDE-gradient flow of the entropy. From
Theorem 4.33 there is at most one gradient flow starting from fi, hence fiy =
for every t € [0,T]. O

Remark 4.46. Let us recall the complete picture of forward and backward equa-
tion described in Section 4.6. The heal equation (forward in time) induces the
adjoint heat equation (backward in time) and vice versa. Then ps := psms,

where ps denotes the adjoint heat flow (backward in time) is an upward dy-
namic EDI gradient flow in the sense that

1 T - 1 T ) T
Selpe) 5 [ i+ 5 [ 19 )P dr = Seler) + [ 0,8

Equivalently, and this is what we showed, if uy = pymy, where py solves the
adjoint heat equation forward in time, then pu; solves

1 t ) 1 t t
Sulue) + 5 / el dr+ / 19,5, ()| dr = So(juo) + / (0:5,)(ur) dr.

But then the heat equation is a backward equation.
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4.6.2 Identification of the Heat Flow with the Dynamic Gradient
Flow for Cheeger’s Energy

In the following let (X, d¢, m¢)¢cjo,7) be a family of Polish metric measure spaces.
We suppose that (d;) satisfies (161) and m; = e~/*m, where m is a o-finite Borel
measure on X and (f;) are Borel functions satisfying

[fe(x) = fo(y)l < L7[t = s|. (235)
We denote the space of square integrable functions by
L*(X) = {u € L*(X, m;)| for some (and hence any) t € [0, T]}
and consider Ch: [0, 7] x L?(X) — [0, 00] defined by

1
(t,u) > Chy(u) = 7/ IV ul2dm,,
2 /x

where [V,u|, denotes the minimal relaxed gradient of u. With (u,v); = [w -
vdmy, L*(X,m;) = (L*(X),(-,-);) is a separable Hilbert space and since the
assumptions on the energy functional from Section 4.5 are satisfied by Ch we
directly obtain existence of gradient flows in the sense of Definition 4.34.

Theorem 4.47. Let uw € Dom(Ch). Then there exists a unique dynamic gradi-
ent flow for Ch starting in @, i.e. an absolutely continuous curve (u;) solving

Owuy € —D; Chy(uy)  for a.e. t € (0,T)
and lim;_,o u; = .

Proof. Obviously Ch; > 0 for every t € [0,T]. Moreover u — Ch(u) is convex
and lower semicontinuous by Theorem 4.5 in [5]. From Lemma 4.39 and (235)
we obtain

|Chy (1) — Chy(u)] < | / Voul? — |Voul? dmy| + | / IVl d(my — my)|
§2L\t—s|/|vsu|idmt—&—L*eL*‘t_sHt—s|/|V5u\idms

< 2L|t — sle ! / IVsul? dmg + L 15|t — | / IV sul? dm,
< (2L + L*)eP 1172l — 5|Chy(u).
We get the result as a consequence of Theorem 4.38. O

In the case when the underlying space satisfies RCD(K, N’) we may identify
the gradient flow for Cheeger’s energy with the heat flow J;u; = Azuy.

Theorem 4.48. Let (X, dy,m¢)icjor) be a family of Polish metric measure
spaces with geodesic distances (d;) satisfying (161) such that m; = e~Ftm, where
m € P(X) and (f) are Borel functions satisfying |fi(x)] < C and (226). As-
sume that each static space satisfies RCD(K, N') for finite numbers K, N' € R.
Let (@) be the solution to the heat equation Oyt = Aty on (0,T) x X starting
in some @ € Dom(Ch). Then (u;) satisfies

8{[@ S —D;Cht(fbt) fO’I" a.e. te (O,/I‘)7
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and can be constructed as the limit of a minimizing movement scheme. Con-
versely, let (uy) be the dynamic gradient flow of Cheeger’s energy Ch starting in
@ € Dom(Ch). Then (u:) solves the heat equation

atut = Atut on (O,T) x X.
In particular uy = @y in L?(X) for every t > 0.

Proof. Both flows satisfy the dynamic EVI(—L/2,00) gradient flow inequality
almost everywhere by virtue of Proposition 4.35 and Theorem 2.24. Hence from
the contraction estimate (174)

[y — |2 < € ||uy — ag||> for ae. t > s,
we obtain

[lur — el [f < lim €™ |uy —@lls =0 for ae. t,

and hence by continuity ||us — ||+ = 0 for every t. O
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