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Preface

In this thesis we mainly study finiteness properties of classifying spaces for families of
subgroups. Let us recall that for a discrete group G and a family F of subgroups of G we
say that a G-CW complex EF (G) is a model for the classifying space for the family F if the
fixed point set (EF (G))H is contractible if H ∈ F and empty otherwise. For example, if we
choose the family consisting only of the trivial subgroup, then the corresponding classifying
space is the universal cover of the Eilenberg-MacLane space K(G, 1). Two other important
choices for families of subgroups are Fin, the family of finite subgroups, and VCyc, the
family of virtually cyclic subgroups. The corresponding classifying spaces EFin(G) = EG
resp. EVCyc(G) = EG play an important role in the formulation of the Baum-Connes resp.
the Farrell-Jones conjecture. For example, the latter conjecture predicts that the algebraic
K-theory of a group ring can be computed by an equivariant homology theory evaluated on
the space EG. It is thus an interesting question whether a group admits a finite-dimensional
or finite classifying space EG. Although there are large classes of groups which have a
finite-dimensional classifying space EG, the quest of finding finite models for EG, apart
from trivial examples, has proven elusive. In 2006 Juan-Pineda and Leary [JL06] formulated:

Conjecture. A group G admits a finite model for EG if and only if G is virtually cyclic.

Juan-Pineda and Leary were able to verify their conjecture for abelian and hyperbolic
groups and since then no counterexample to their conjecture has been found. One goal
of this thesis lies in verifying the conjecture for an extensive class of groups. As it turns
out, most proofs work by examining whether a given group has the so-called BVC property.
The latter property for a group G says that there are only finitely many virtually cyclic
subgroups V1, . . . , Vn of G such that any virtually cyclic subgroup of G is conjugate to a
subgroup of one of the Vi. Heuristically, this means that G has only finitely many conjugacy
classes of maximal virtually cyclic subgroups. It is not hard to see that a group G has a
model for EG with finite 0-skeleton if and only if G has the BVC property. In a large part
of this thesis we shall study the BVC property or rather a weaker, but more flexible variant
of this property that we call bVCyc. For a group G and a family of subgroups F of G, we
say that G has bF if there are finitely many subgroups H1, . . . ,Hn of G lying in F such
that any cyclic subgroup is conjugate to a subgroup of one of the Hi.

We prove that HNN extensions of finitely generated free groups and one-relator groups
have bVCyc if and only if they are virtually cyclic, thereby resolving the aforementioned
conjecture for these classes of groups. Moreover, we shall establish a connection between
the bVCyc property and the conjugacy growth function for finitely generated groups under
the assumption that cyclic subgroups are undistorted. Namely, we prove that a finitely
generated group with bVCyc whose cyclic subgroups are undistorted has at most linear
conjugacy growth. As an application we succeed in proving that finitely generated linear

4



groups and certain CAT(0) groups have bVCyc only if they are virtually cyclic.

After these positive results we provide constructions of groups that elucidate some of the
non-intuitive behavior of the bVCyc property. For example, we will construct a finitely
generated torsion-free group G = H o Z such that G has bVCyc but H does not. We also
provide an example of a finitely generated group with bVCyc that has exponential conjugacy
growth, which shows that the assumption on the cyclic subgroups being undistorted is
necessary in the aforementioned theorem.

For the class of residually finite groups, we will provide some evidence why the conjecture of
Juan-Pineda and Leary might hold. In fact, we conjecture that a residually finite group with
bVCyc or bCyc is already virtually cyclic. Since finitely generated linear and ascending HNN
extensions of finitely generated free groups are residually finite, resolving this conjecture
would also yield alternative proofs for these classes of groups. Suppose G is a residually
finite group with bCyc, i.e. there are n cyclic subgroups V1, . . . , Vn of G such that any cyclic
subgroup of G is conjugate to a subgroup of one of the Vi. Then any finite quotient of G
has at most n conjugacy classes of maximal cyclic subgroups. We will almost classify the
finite groups with only two conjugacy classes of maximal cyclic subgroups. In particular,
we will show that such groups are solvable of derived length at most 4. This result implies
that a residually finite group with bCyc as above with n ≤ 2 is virtually cyclic.

After having studied finiteness properties of the space EG, we will provide results on
the homotopy type of the quotient space BG = EG/G. Juan-Pineda and Leary asked
whether BG being homotopy equivalent to a finite CW complex implies that BG is already
contractible. We will answer this question affirmatively for abelian groups and poly-Z-groups.
For abelian groups we will show that H2(BG;Z) is not finitely generated unless G is locally
virtually cyclic.

Finally, we study two inheritance properties for the Farrell-Jones conjecture. It is known
that the Farrell-Jones conjecture has an inheritance property for finite products, i.e. if
two groups G1 and G2 satisfy the conjecture, then so does their direct product G1 ×G2.
One might ask whether a corresponding inheritance property still holds for infinite direct
products. Another question, popularized by Wolfgang Lück, is, whether for any group there
exists a minimal family, possibly different from the family of virtually cyclic subgroups, with
respect to which the Farrell-Jones conjecture holds. We will show that these two properties,
formulated suitably, actually turn out to be equivalent.

Parts of the results in the first four chapters have already been published in [vW] and
[vW17] in joint work with Xiaolei Wu, sometimes with slightly different notions and proofs.
For example, in this thesis we consistently work with the bVCyc instead of the BVC property.
Also, we provide some alternative proofs e.g. for CAT(0) groups using the notion of
conjugacy growth.
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1. Classifying Spaces for Families of
Subgroups

In this chapter we introduce classifying spaces for families of subgroups, discuss their basic
properties and highlight previous work. We recall their finiteness properties and the main
conjecture due to Juan-Pineda and Leary that this thesis will come back to repeatedly.

Definition 1.0.1. A family of subgroups F of a group G is a nonempty subset of the set of
all subgroups of G that is closed under conjugation and forming subgroups.

Examples 1.0.2. The following list gives some families of subgroups one commonly en-
counters.

• T r: the family containing only the trivial subgroup

• Fin: the family of finite subgroups

• Cyc: the family of cyclic subgroups

• VCyc: the family of virtually cyclic subgroups

• All: the family of all subgroups

For a type of family like Fin, VCyc, etc. we sometimes want to explicitly specify the group
the family is to be taken with respect to. For example, to indicate that we consider the
family of finite subgroups of the group G, we will use the notation Fin(G).

Definition 1.0.3. Given a group G and a family F of subgroups of G we call a G-CW
complex EF (G) a model for the classifying space for the family F if the set of fixed points
(EF (G))H is contractible if H ∈ F and empty otherwise.

Alternatively, the space EF(G) can be characterized as the terminal object in the G-
homotopy category of G-CW-complexes whose isotropy groups are contained in F (see
[Lüc05, Definition 1.8]). In other words, for any G-CW-complex X whose isotropy groups
lie in F there exists a G-map X → EF(G) which is unique up to G-homotopy. For any
group G and any family F of subgroups of G there exists a classifying space EF (G) [Lüc05,
Theorem 1.9]. There are also definitions for the classifying space for a family of subgroups
that are applicable if G is a topological group and not just discrete. However, since we will
only deal with discrete groups, Definition 1.0.3 suffices for our purposes. It is customary to
abbreviate EF(G) by EG for F = VCyc the family of virtually cyclic subgroups, EG for
F = Fin the family of finite subgroups and EG for F = T r the family consisting only of
the trivial subgroup. The space EG is also sometimes called the classifying space for proper
actions.
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1. Classifying Spaces for Families of Subgroups

The spaces EG resp. EG play an important role in the formulation of the Baum-Connes
resp. the Farrell-Jones conjecture. For example, the Farrell-Jones conjecture predicts that a
certain G-homology theory evaluated on the space EG computes the algebraic K-theory of
a group ring of G. But classifying spaces for families have also other applications, e.g. one
can sometimes compute the group homology of G by relating the spaces EG and EG and
finding a nice model for the latter space.

Since any family contains the trivial subgroup, one sees from Definition 1.0.3 that any
classifying space EF (G) is necessarily contractible.

Examples 1.0.4. (1) Consider the real numbers R with the standard Z-action by trans-
lations. Since this action is free, R is a model for EZ. As Z is torsion-free, it also
follows that EZ = R.

(2) The space S∞, equipped with the antipodal Z/2-action, is a model for the trivial
family, since S∞ is contractible.

(3) The reals R are a classifying space for the family of finite subgroups of the infinite
dihedral group D∞ acting in the standard way. Any nontrivial finite subgroup of
D∞ = 〈a, b | a2 = 1, aba−1 = b−1〉 is cyclic of the form 〈abn〉 for some n ∈ Z. The
involution abn acts on R via x 7→ −(x+ n) with the single fixed point −n/2.

(4) The space consisting of a single point is a classifying space for the family of all
subgroups. For example, for G finite we have EG = {pt} and for G virtually cyclic
EG = {pt}.

There are often quite natural models for the classifying space for proper actions. For
example, a proper G-CW complex which is a complete CAT(0)-space, on which G acts by
isometries is a model for EG. Other models for the classifying space for proper actions are
given by the Rips complex for hyperbolic groups, Teichmüller space for mapping class groups,
Culler-Vogtmann Outer space for the outer automorphism group of a finitely generated free
group and tree models arising from Bass-Serre theory, see also [Lüc05] for a good overview
of these models.

The situation for EG is more delicate. As an illustrative example, in the following we
want to present the construction of a rather simple model of the classifying space EG for
G = Z×Z following [JL06] which is originally due to Lück. Note that since G is torsion-free
the space R2 with the standard Z2-action is a model of minimal dimension for EG = EG.

The construction of EG proceeds as follows: Let T be a countably infinite tree with vertex
set V . Let us index the maximal infinite cyclic subgroups of Z×Z by V , so for each v ∈ V we
have an infinite cyclic subgroup Hv ≤ Z×Z and we let Qv = G/Hv

∼= Z. We equip the tree
T with the trivial G-action and construct a G-space X with an equivariant projection map
to T as follows: Above the vertex v we take a 1-dimensional model for EQv (e.g. the real
line R with its translation action by Z). The action of G on EQv is induced by the quotient
map G � Qv. Above each edge (v, w) of T we take the join EQv ∗ EQw of the chosen
models and the map to the edge in T is induced by the projection EQv × EQw × I → I.
We are now left to show:

Proposition 1.0.5. The G-CW-complex X is a model for E(Z×Z) of minimal dimension.
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1.1. Finiteness Properties

EQv1

EQv2

EQv3

Figure 1.1.: A model for E(Z× Z) with underlying tree T = R.

Proof. We see easily that the isotropy groups of X are either Hv or Hv ∩Hw for v, w ∈ V
and hence cyclic. Now, let H ≤ G be a virtually cyclic group. Since G is torsion-free,
H is either trivial or infinite cyclic. But X is contractible, since we can first contract all
classifying spaces EQv onto the tree T and afterwards contract T to a point. So assume
that H is infinite cyclic. Then H ≤ Hv for a unique v ∈ V and we see that

XH = XHv = EQv

where in the last step we have used that the groups Hv are maximal infinite cyclic subgroups,
so (EQw)Hv = ∅ for v 6= w. Since the EQv are contractible, it follows that X is a model for
EG.

We can describe the quotient space X/G as follows: Above each vertex v there is a copy of
S1 being a model of BQv and above each edge (v, w) there is a copy of S3 being the join of
BQv and BQw. Hence the integral homology groups H1(X/G) and H3(X/G) are both free
abelian of infinite rank. In particular, the dimension of EG has to be at least 3. Since X
was 3-dimensional, we have already constructed a minimal model.

1.1. Finiteness Properties

It is an interesting question what finiteness properties a model of a classifying space for a
family of subgroups has and what the obstructions to such finiteness properties are. Let us
first recall the following basic definition.

Definition 1.1.1 (Finiteness properties of G-CW-complexes). A G-CW-complex X is finite
if X has only finitely many equivariant cells. The G-CW-complex X is of finite type if
each n-skeleton Xn is finite. It is called of dimension at most n if X = Xn and it is called
finite-dimensional if it is of dimension at most n for some n ∈ N.

For example, for a hyperbolic group G the Rips complex provides a finite model for EG
[MS02]. Also there are finite-dimensional models for EG for G a countable elementary
amenable group of finite Hirsch length [FN13; DP13].
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1. Classifying Spaces for Families of Subgroups

Definition 1.1.2. Let G be a group and let F be a family of subgroups of G. We will
denote by gdF(G) the geometric dimension of G with respect to the family F , which is
defined to be the infimum over the dimensions of all G-CW-models for EFG. As usual, we
abbreviate gdG = gdFinG and gdG = gdVCycG.

Lemma 1.1.3. Let G be a group and F a family of subgroups of G. Then there is a
model for EF (G) with a finite 0-skeleton if and only if G contains finitely many subgroups
H1, . . . ,Hn in F such that for any H ∈ F there is some g ∈ G so that Hg ≤ Hi for some i.

Proof. Suppose that EF (G) has a finite 0-skeleton, say
⊔n
i=1G/Hi for some Hi ∈ F . Given

a group K ∈ F , consider the 0-dimensional G-CW-complex G/K. By the universal property
of EF (G) and the equivariant cellular approximation theorem there is a G-map from G/K
to the 0-skeleton of EF(G). Thus we have a G-map from G/K to G/Hi for some i. But
this implies that K is conjugate to a subgroup of Hi. The claim follows.

Conversely, given subgroups H1, . . . ,Hn in F with the stated properties, we let X0 =⊔n
i=1G/Hi. By an equivariant version of killing homotopy groups [Lüc89, Proposition 2.3]

one inductively constructs a G-CW complex X with the prescribed 0-skeleton whose fixed
point sets XH are contractible for H ∈ F .

For the family Fin of finite subgroups Lück could completely characterize what it means for
a group G to admit a model of finite type for EG in terms of group-theoretical conditions.

Theorem 1.1.4. A group G admits a model of finite type for EG if and only if the following
two conditions are satisfied:

(1) The group G contains only finitely many conjugacy classes of finite subgroups.

(2) For any finite subgroup H ≤ G the Weyl group WG(H) = NG(H)/H is finitely
presented and of type FP∞.

Proof. This is [Lüc00, Theorem 4.2].

Note that for families like VCyc a similar group-theoretic characterization as in Theorem 1.1.4
is not known.

Given a family of subgroups F of a group G and a subgroup K ≤ G we let F ∩ K =
{H ∩K | H ∈ F}, which is a family of subgroups of K, called the restriction of F to K.

Proposition 1.1.5 (Transitivity Principle). Let G be a group and let F ⊆ G be two
families of subgroups of G.

(1) Let n ∈ N0 and suppose that for every H ∈ G there exists an n-dimensional model for
EF∩HH. Then

gdF (G) ≤ n+ gdG(G) .

(2) Suppose there exists a finite model for EF∩HH for any H ∈ G and a finite model for
EGG. Then there exists a finite model for EFG. The corresponding statement is true
if we replace “finite” by “finite type” everywhere.

Proof. This is [LW12, Proposition 5.1].
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1.2. The Classifying Space for Virtually Cyclic Subgroups

Definition 1.1.6. Let F be a family of subgroups. For a natural number n ≥ 1, we say
that a group G has property nF if there are H1, . . . ,Hn ∈ F such that any cyclic subgroup
of G is contained in a conjugate of Hi for some i. We say that G has bF if G has nF
for some n ∈ N. We call the subgroups Hi witnesses to bF for G and we say that the set
{H1, . . . ,Hn} is a witness to bF for G.

The following is immediate:

Lemma 1.1.7. If π : G→ Q is an epimorphism of groups and G has bF , then Q has bπ∗F ,
where π∗F = {K ≤ π(H) | H ∈ F}. In particular, if G has bVCyc, then so does Q.

Lemma 1.1.8. Let G be a group and suppose K ≤ G is a finite index subgroup. If G has
bF , then so does K.

Proof. Letm = [G : K] and letKgi for 1 ≤ i ≤ m be the right cosets ofK in G. Furthermore
let {H1, . . . ,Hn} be witnesses to bF for G. Then consider the following finite collection of
subgroups of K which lie in F :

{giHjg
−1
i ∩K | 1 ≤ j ≤ n, 1 ≤ i ≤ m}

We claim that these constitute witnesses to bF for K. Let C ≤ K be some cyclic subgroup,
then there exists some g ∈ G such that C ≤ gHjg

−1 for some j. Write g = kgi for some i
and some k ∈ K. Then k−1Ck ≤ giHjg

−1
i ∩K.

Lemma 1.1.9. Let G be a group satisfying bF where F is a family of Noetherian subgroups,
i.e. any subgroup of an element H ∈ F is finitely generated. Then G satisfies the ascending
chain condition on normal subgroups.

Proof. The group G can be written as G =
⋃n
i=1

⋃
g∈GH

g
i where {Hi | 1 ≤ i ≤ n} is

a witness to bF . But then any normal subgroup N of G can be likewise expressed as
N =

⋃n
i=1

⋃
g∈G(N ∩Hi)g.

Let (Nj) be an ascending chain of normal subgroups of G. For any i, the chain (Nj ∩Hi)j
has to stabilize since Hi was Noetherian, i.e. there exists ji such that Nj ∩Hi = Nj+1 ∩Hi

for all j ≥ ji. Then the original chain stabilizes at jmax = max1≤i≤n ji.

1.2. The Classifying Space for Virtually Cyclic Subgroups

In [JL06] Juan-Pineda and Leary formulated the following conjecture, which will be the
main motivation for this thesis.

Conjecture 1.2.1. A group G admits a finite model for EG if and only if G is virtually
cyclic.

In the same paper Juan-Pineda and Leary verified their conjecture for the class of hyperbolic
groups, relying on work of Gromov. In Chapter 3 we give an alternative proof of this fact
using conjugacy growth. Later Kochloukova, Martínez-Pérez and Nucinkis verified the
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1. Classifying Spaces for Families of Subgroups

conjecture for elementary amenable groups [KMN11] and Groves and Wilson [GW13] gave
a simplified proof for the class of solvable groups. As most of the proofs only use the fact
that EG has a finite 0-skeleton, we suggest the following strengthening of the conjecture.

Conjecture 1.2.2. A group G has a model for EG of finite type if and only if G is virtually
cyclic.

The following notion has been introduced in [GW13] by Groves and Wilson.

Definition 1.2.3. We say that a group G has BVC if there are finitely many virtually
cyclic subgroups V1, . . . , Vn of G such that every virtually cyclic subgroup of G is conjugate
to a subgroup of some Vi. The set {V1, V2, . . . , Vn} is called a witness to BVC and we shall
similarly call the Vi witnesses to BVC.

By Lemma 1.1.3 a group G has BVC if and only if it admits a classifying space EG with
finite 0-skeleton. If G has a model for EG of finite type, then there is a model of finite type
for EG as well as EG by the transitivity principle Proposition 1.1.5. This follows since there
are models of finite type for EV and EF for V virtually cyclic and F finite. In particular,
it follows that G is finitely presented. Moreover, Theorem 1.1.4 gives further conditions on
the Weyl groups WG(H) for H ≤ G finite. In almost all cases with the notable exception
of elementary amenable groups these additional conditions are rarely useful nor necessary
to settle Conjecture 1.2.1 affirmatively for reasonable classes of groups. Most arguments
revolve around the BVC property.

The following is well-known, for a proof see e.g. [JL06, Proposition 4].

Lemma 1.2.4. Let V be a virtually cyclic group. Then V contains a unique maximal
normal finite subgroup F such that exactly one of the following holds

(a) the finite case, V = F ;

(b) the orientable case, V/F is infinite cyclic;

(c) the nonorientable case, V/F is isomorphic to the infinite dihedral group D∞.

Sometimes orientable resp. nonorientable virtually cyclic groups are called virtually cyclic
groups of type I resp. of type II and we shall denote by VCycI the family of subgroups
consisting of the finite as well as the orientable virtually cyclic subgroups. A useful
consequence of Lemma 1.2.4 is that torsion-free virtually cyclic groups are cyclic. In
particular, for torsion-free groups there is no difference between the bCyc and BVC property.

Lemma 1.2.5. For any nonorientable virtually cyclic group V there exists a model of finite
type for EVCycI (V ).

Proof. We will see below in Lemma 1.3.6 that there exists a model of finite type for
ECyc(D∞). If V is an arbitrary nonorientable virtually cyclic group, there exists an
epimorphism π : V → D∞ with finite kernel. The model of finite type for ECyc(D∞), viewed
via π as a V -CW-complex, is a classifying space for the family VCycI .

By an application of the transitivity principle, see Proposition 1.1.5, we can thus record:
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1.2. The Classifying Space for Virtually Cyclic Subgroups

Corollary 1.2.6. If G is a group admitting model of finite type for EG, then there is also
model of finite type for EVCycI (G).

Definition 1.2.7. Let G be a group. An element g ∈ G is called primitive if g cannot be
written as a proper power, i.e. g cannot be written as g = hn for some h ∈ G and n ≥ 2.

Of course, a primitive element is always of infinite order. And it is easy to see that an
element g ∈ G is primitive if and only if the subgroup 〈g〉 is maximal cyclic. As the following
example shows, when counting the number of primitive elements in a group, special care
has to be taken if torsion is present.

Example 1.2.8. The group G = Z/2Z× Z contains infinitely many primitive conjugacy
classes. In fact, let gi = (−1, 2i) ∈ G. Then gi is primitive for any i ≥ 1: Suppose
(−1, 2i) = (x, y)k for some k > 1, then ky = 2i. In particular, k is even and thus xk cannot
equal −1.

It is not hard to see that in a virtually cyclic group any two infinite cyclic subgroups
have to intersect non-trivially. The following lemma provides a quantitative variant of this
statement.

Lemma 1.2.9. Let V be an infinite virtually cyclic group. Then there exists some non-zero
k ∈ Z and some infinite order element v0 ∈ V such that for any element v ∈ V of infinite
order there exists some m ∈ Z such that vk = vkm0 .

Proof. Suppose V is nonorientable, and let π : V → Z o Z/2 be an epimorphism onto the
infinite dihedral group with finite kernel. Since the kernel of π is finite and all infinite order
elements of ZoZ/2 lie in Zo {0}, any infinite order element of V lies in π−1(Zo {0}) ≤ V .
Moreover, note that π−1(Z o {0}) is an orientable virtually cyclic subgroup. So we can
suppose from the beginning that V ∼= F oϕ Z is orientable, where F is some finite group
and ϕ is an automorphism of F . Let k = |ϕ| · |F | where |ϕ| denotes the order of ϕ. We
define v0 = (e, 1) for e the neutral element of F . Let v = (x,m) ∈ V be arbitrary, then
vk = (y, |ϕ| ·m)|F | for some y ∈ F . And thus vk = (e, km) = vkm0 .

Lemma 1.2.10. Let G be a group and let H ≤ G be a finite index subgroup. If G has
BVC, then so does H.

Proof. The proof proceeds the same way as the proof of Lemma 1.1.8.

A virtually cyclic group contains only finitely many conjugacy classes of finite subgroups.
This immediately implies:

Lemma 1.2.11. Let G be a group with BVC. Then G has finitely many conjugacy classes
of finite subgroups. In particular, the order of finite subgroups in G is bounded.

Lemma 1.2.12. Let π : G→ Q be a surjective group homomorphism and suppose that Q
is torsion-free. If G has BVC, then Q has bCyc.

Proof. If V1, V2, . . . , Vn are virtually cyclic witnesses to BVC for G, then it is easy to see
that π(V1), π(V2), . . . , π(Vn) are cyclic witnesses to bCyc for Q.
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1. Classifying Spaces for Families of Subgroups

We will see in Chapter 4 that the BVC property does not pass to quotients in general, so
the assumption of torsion-freeness in Lemma 1.2.12 is essential.

Lemma 1.2.13. Let G be a torsion-free group. If G has infinitely many conjugacy classes
of primitive elements, then G does not have bCyc.

The following lemma is a slight generalization of [GW13, Lemma 2.2], where we have
replaced the BVC by the bVCyc condition. The arguments given by Groves and Wilson
carry over and we will repeat them here for the convenience of the reader.

Lemma 1.2.14. Let G be a group with bVCyc. Then the following assertions hold.

(1) The group G satisfies the ascending chain condition for normal subgroups.

(2) If L and M are normal subgroups of G with M < L and L/M a torsion group, then
there are only finitely many normal subgroups K of G such that M ≤ K ≤ L.

(3) The group G has no quotient which is an extension of an infinite abelian torsion group
by an infinite cyclic group.

(4) Let
1 = Gn ≤ Gn−1 ≤ · · · ≤ G1 ≤ G0 = G

be a series of normal subgroups of G. Then the number of factors Gi/Gi−1 that are
not torsion groups is bounded by the number of infinite groups in a witness to bVCyc
for G.

Proof. (1) is Lemma 1.1.9. For (2) let V1, . . . , Vn be witnesses to bVCyc for G. Let
Wi = L ∩ Vi and define Wi = MWi/M . As L/M is a torsion group, Wi is finite. By the
bVCyc property any element of L is conjugate in G to an element of Wi. Then also every
element of L/M is conjugate in G/M to an element of Wi. If K is a normal subgroup of
G such that M ≤ K ≤ L, then K/M can be written as a union of conjugacy classes of
elements in the finite set

⋃n
i=1Wi. Hence there are only finitely many such subgroups K.

For (3) note that for T the infinite cyclic group a ZT -module with finitely many submodules
is necessarily finite. Combining this fact with (2) yields the claim. For the last claim (4),
suppose that Gn−1 is not a torsion group. Then it contains an infinite subgroup of some Vi
and thus the image of Vi in G/Gn−1 is finite. The claim then follows by induction.

Theorem 1.2.15. If G is solvable and G has bVCyc, then G is virtually cyclic.

Proof. The corresponding statement for BVC has been proven by Groves and Wilson in
[GW13] and carries over in our slightly more general context. Their key result [GW13,
Lemma 2.4] deals with torsion-free groups with the BVC property. But for torsion-free
groups there is no difference between the BVC and bVCyc property. All other statements
proven in [GW13] also hold for the bVCyc property, see for example Lemma 1.2.14.

Since an abelian group with bVCyc is virtually cyclic we obtain:

Corollary 1.2.16. If G is a group having bVCyc, then the abelianization Gab is finitely
generated of rank at most one.
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1.3. The Classifying Space for Cyclic Subgroups

Example 1.2.17. The Thompson groups are a family of three finitely presented groups, F ≤
T ≤ V . Thompson’s group F can be defined by the presentation 〈A,B | [AB−1, A−1BA] =
[AB−1, A−2BA2] = 1〉, see [CFP96]. Since F ab ∼= Z2, it follows that F does not have bVCyc.
Since the orders of finite cyclic subgroups in T and V are unbounded, we see that T and V
also do not have bVCyc.

Motivated by previous proofs of Conjecture 1.2.2 that mostly only depend on the BVC
property, we ask:

Question 1.2.18. Is a finitely presented group with bVCyc (or with BVC) already virtually
cyclic?

For the formulation of the preceding question it is important that we require the group
to be finitely presented. There are non virtually cyclic groups that are finitely generated
and have bVCyc. For example, Ivanov [Ols91, Theorem 41.2] constructed finitely generated
infinite torsion groups that have only finitely many conjugacy classes.

1.3. The Classifying Space for Cyclic Subgroups

An analogous conjecture as Conjecture 1.2.2 can be formulated if one replaces the family of
virtually cyclic subgroups by the family of cyclic subgroups. In fact, Lück–Reich–Rognes–
Varisco asked in [Lüc+17, Question 4.9] whether a group G that admits a model of finite type
for ECyc(G) is already finite, cyclic or infinite dihedral. Now, note that for important classes
of groups the bVCyc property already implies that the group at hand is virtually cyclic. As
a matter of fact, the following chapters are mostly dedicated to this problem. Since a group
with bCyc certainly has the bVCyc property, in this section we want to address the question
which virtually cyclic groups have the bCyc property. Moreover, we will determine which
virtually cyclic groups admit a finite resp. finite-dimensional classifying space for the family
of cyclic subgroups. Contents of this section have also previously appeared in [vW17].

Example 1.3.1. Let D∞ = Z o Z/2 = 〈t, s | s2 = 1, sts = t−1〉 be the infinite dihedral
group. Then 〈t〉, 〈s〉 and 〈ts〉 are witnesses to bCyc for D∞ since tst−1 = t1−2ns. A
straightforward calculation also shows that there cannot be fewer witnesses.

Remark 1.3.2. Observe that bCyc fails to pass to finite index overgroups, a counterexample
is provided by Z ≤ Z× Z/2.

Note that there is no assumption about absence of torsion in the following (cf. Lemma 1.2.13).

Observation 1.3.3. If G has bCyc, then G has only finitely many primitive conjugacy
classes.

Lemma 1.3.4. Let F be a finite group and suppose that V = F oϕ Z is a group with bCyc.
Then F = 1.

Proof. Let d be the order of ϕ. Then F × dZ is a subgroup of index d in F oϕ Z. Hence by
Lemma 1.1.8, we can assume V = F × Z.
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1. Classifying Spaces for Families of Subgroups

Now assume that F is nontrivial. Let c be an element of maximal order in F and let p be
a prime that divides its order. Then for any n ≥ 1, gn = (c, pn) ∈ F × Z is primitive in
F × Z. If fact, if (x, k)m = (xm,mk) = (c, pn), for some m > 1, then p divides m. On the
other hand since xm = c, c lies in the subgroup generated by x. But since c has maximal
order, we have x and c generate the same cyclic subgroup in F . But since p divides the
order of c and m, this cannot happen. When n 6= m, gn is not conjugate to gm since the
second coordinate differs. Thus by Observation 1.3.3, the claim follows.

Proposition 1.3.5. A virtually cyclic group V has bCyc if and only if V is finite, infinite
cyclic or infinite dihedral.

Proof. By Lemma 1.2.4 and Lemma 1.3.4, the only case left to consider is if V is nonorientable,
i.e. there is an exact sequence

1→ F → V → D∞ → 1

with F finite. But then V has a finite index subgroup isomorphic to F o Z, hence F = 1
and the claim follows from Example 1.3.1.

Lemma 1.3.6. There exists a model of finite type for ECycD∞ and any model for ECycD∞
has to be infinite-dimensional.

Proof. Let D∞ = ZoZ/2 = 〈s, t | s2 = 1, sts = t−1〉. We claim that the join E = Z ∗EZ/2,
given an appropriate action, is a model for ECycD∞. We write [x, y, q] for an element in E,
where x ∈ Z, y ∈ EZ/2 and q ∈ [0, 1]. Note that [x, y, 0] = [x, y′, 0] and [x, y, 1] = [x′, y, 1]
for all x, x′ ∈ Z and y, y′ ∈ EZ/2. We then define the action as follows:

t · [x, y, q] = [x+ 2, y, q]
s · [x, y, q] = [−x, s · y, q]

Then one observes that the stabilizer of [x, y, q] with 0 < q < 1 is trivial. The stabilizer of
[x, y, 0] is equal to 〈txs〉 and the stabilizer of [x, y, 1] equals 〈t〉. One furthermore checks
that for n 6= 0

E〈t
n〉 = EZ/2 ' ∗ ,

and for n arbitrary
E〈t

ns〉 = Z〈t
ns〉 = {n}.

Since E itself is contractible as well, it follows that E is a model for ECyc(G) of finite
type. The claim about the infinite-dimensionality of any model for ECyc(G) follows from
Lemma 1.3.9 below by noting that 〈t〉 is a normal maximal cyclic subgroup of D∞. Alter-
natively, observe that E/D∞ is homotopy equivalent to the suspension of RP∞.

Corollary 1.3.7. Let G be a virtually cyclic group, then it has a model for ECyc(G) of
finite type if and only if it is finite, infinite cyclic or infinite dihedral.

Proof. By Proposition 1.3.5, we only need to prove that there is a model of finite type for
ECyc(G) if G is finite, infinite cyclic or infinite dihedral. If G is a finite group, then the
standard bar-construction provides such a model. If G is infinite cyclic, we can take ECyc(G)
to be a point. In case G is infinite dihedral Lemma 1.3.6 provides a model of finite type.
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1.3. The Classifying Space for Cyclic Subgroups

Observation 1.3.8. Let H be a subgroup of a group G and let X be a model for ECyc(G),
then resGH X is a model for ECyc(H).

For the following lemma, recall that the classifying space EF of a non-trivial finite group F
cannot be finite-dimensional [Bro82, VIII.2.5].

Lemma 1.3.9. Let G be a group and suppose that H ≤ G is a maximal cyclic subgroup.
Moreover, assume that [NG(H) : H] is finite but not equal to one. Then any model for
ECyc(G) has to be infinite-dimensional.

Proof. Let X be a model for ECyc(G). Since H is cyclic, the CW-complex XH is contractible.
Observe that all isotropy groups of XH are equal to H since H was maximal cyclic. This
implies that the Weyl group NG(H)/H of H acts freely on XH . Since NG(H)/H is
non-trivial finite, XH has to be infinite-dimensional.

Proposition 1.3.10. Let G be a finite group with a finite-dimensional model for ECyc(G).
Then G is already cyclic.

Proof. We prove the claim by induction on the order of G. Then by Observation 1.3.8 we
only need to consider finite groups G such that every proper subgroup is cyclic. If G is a
p-group, then G is in particular solvable. Otherwise any Sylow p-subgroup is cyclic and
thus G is solvable by [Rob, Theorem 10.1.10]. In any case, the proper subgroup [G,G] has
to be cyclic. Let H be a maximal cyclic subgroup containing [G,G], then NG(H) = G. By
Lemma 1.3.9, it follows that H = G and hence G is cyclic.

Proposition 1.3.11. Let V be a virtually cyclic group. Then ECycV is finite-dimensional
if and only if V is cyclic.

Proof. By Proposition 1.3.10 we only need to prove the claim if V is infinite. Suppose V
is orientable, i.e. V ∼= F oϕ Z for some finite group F and some ϕ ∈ Aut(F ) and assume
that ECycV is finite-dimensional. If d denotes the order of ϕ then F × Z ∼= F oϕ dZ and by
Observation 1.3.8 also F × Z has a finite-dimensional classifying space. But Z ≤ F × Z is a
normal maximal cyclic subgroup, thus F = 1 by Lemma 1.3.9.

Now, suppose V was nonorientable having a finite-dimensional model for ECycV . Let F
be the maximal normal finite subgroup of V ∼= F oD∞, then F o Z is a subgroup of V
of finite index. By the above, it follows that F = 1, so V is infinite dihedral. But this is
impossible by Lemma 1.3.6.

Corollary 1.3.12. A virtually cyclic group V has a finite or finite-dimensional model for
ECycV if and only if V is cyclic.

From Proposition 1.3.11 we immediately obtain the following observation:

Observation 1.3.13. If G is a group having a finite-dimensional model for ECyc(G), then
there is a finite-dimensional model for EG. Conversely, suppose that G is a group having a
finite-dimensional model for EG. Then G admits a finite-dimensional model for ECyc(G) if
and only if Cyc(G) = VCyc(G).
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1. Classifying Spaces for Families of Subgroups

Obviously the condition Cyc(G) = VCyc(G) holds whenever the group G is torsion-free.
However, this is not necessary, even for virtually free groups. For example, groups of the
form G = ∗ni=1Z/niZ where ni ≥ 0 admit a finite-dimensional model for ECyc(G) if and only
if ni 6= 2 for all i or G ∼= Z/2 by the Kurosh subgroup theorem.

Lemma 1.3.14. Let A be an abelian group with ECyc(A) finite-dimensional. Then A is
cyclic, torsion-free of finite rank or locally finite cyclic.

Proof. By Proposition 1.3.10 we can assume in the following that A is infinite. If A is
finitely generated, we can write A ∼= Zn × F with F finite abelian and n ≥ 1. In particular,
A contains Z× F , so F = 1, i.e. A is torsion-free. More generally, if A contains an element
of infinite order x, then any finite set {y1, . . . , yn} ⊆ A together with the element x will
generate an infinite abelian subgroup, which must be torsion-free by the previous observation.
The claim about the rank of A then follows since gd (Zn) = n + 1 if n ≥ 2, see [LW12,
Example 5.21]. The only case that remains is A being an infinite torsion group. But since
any finite subgroup has to be cyclic, it follows that A is locally finite cyclic.

We also want to remark that a locally cyclic group A is isomorphic to a subquotient of the
group of rational numbers [Kur55, Chapter VIII, Section 30]. In particular, A is countable.
By [LW12, Theorem 4.3] it follows that the minimal dimension of a model for ECyc(A) is at
most one. If A is torsion-free abelian of finite rank, then A embeds into the finite-dimensional
Q-vector space A ⊗Z Q. Hence A is countable as well and since any finitely generated
subgroup H of A has a classifying space ECyc(H) of dimension at most rank(A) + 1, [LW12,
Theorem 4.3] implies that A has a finite-dimensional model for ECyc(A). So the converse of
Lemma 1.3.14 holds as well.

Proposition 1.3.15. Let G be elementary amenable and suppose that there is a finite-
dimensional model for ECyc(G). Then G is virtually solvable of finite Hirsch length.

Proof. Since ECyc(G) has a finite-dimensional model, so does EFcyc(G) by Proposition 1.1.5,
where Fcyc denotes the family of finite cyclic subgroups. It follows that the Hirsch length
h(G) of G is finite, since h(G) ≤ cdQ(G) ≤ gdFcyc(G) <∞. The first inequality follows from
[Hil91, Lemma 2]. For the second inequality note that Q[G/F ] is a projective QG-module
for F finite [Bro82, I.8 Ex. 4] and thus the cellular chain complex of EFcyc(G) yields a
projective resolution of Q over QG. Moreover, note that any locally finite subgroup H of G
has to be locally cyclic by Proposition 1.3.11, in particular H is abelian. Combined with the
structure theorem of elementary amenable groups of finite Hirsch length [HL92], it follows
that G is virtually solvable.

In contrast to the result of Proposition 1.3.15 we want to mention that any elementary
amenable group of finite Hirsch length and cardinality ℵn admits a finite-dimensional model
for the classifying space of virtually cyclic subgroups [FN13; DP13].
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2. Free Products, HNN Extensions and
One-Relator Groups

In this chapter we study the bVCyc property for some standard group-theoretic constructions
such as free products and HNN extensions. Using some quite technical arguments we will
show that ascending HNN extensions of finitely generated free groups do not have the bVCyc
property. In Chapter 4 we will later see that the question whether an ascending HNN
extension has the bCyc property depends heavily on the base group. As an application of
the result on HNN extensions of free groups we will answer Question 1.2.18 affirmatively
for the class of one-relator groups using an inductive argument. Most of the results of this
chapter have appeared, with slight changes, in [vW].

We begin by recalling some standard results on free products of groups. Let A and B be
groups and let G = A∗B be the free product of A and B. A sequence of elements g1, . . . , gn
of G is called reduced if each gi is non-trivial and is contained in one of the factors, A or
B, and consecutive elements gi, gi+1 lie in distinct factors. We allow n = 0 for the empty
sequence.

Lemma 2.0.1 (Normal form for free products). In a free product G = A ∗B the following
two equivalent statements hold:

(1) Any element of g ∈ G can be written uniquely as g = g1 . . . gn such that g1, . . . , gn is
a reduced sequence.

(2) If g = g1 . . . gn with n > 0 and g1, . . . , gn is a reduced sequence, then g 6= 1 in G.

Proof. This is given as [LS, Theorem IV.1.2].

We call an element g = g1 . . . gn of G = A ∗ B cyclically reduced if g1, . . . , gn is a reduced
sequence and if g1 and gn lie in different factors or n ≤ 1.

Lemma 2.0.2 (Conjugation in free products). Each element of G = A ∗B is conjugate to
a cyclically reduced element. Suppose g = g1 . . . gn and h = h1 . . . hm are cyclically reduced
elements that are conjugate in G. Then n = m. If n > 1, then the sequences g1, . . . , gn and
h1, . . . , hm are cyclic permutations of each other. If n ≤ 1, then g and h are contained in
the same factor and are conjugate in this factor.

Proof. Consult [LS, Theorem IV.1.4].

Proposition 2.0.3. Let G = A ∗B be a free product with A and B nontrivial, then G has
bVCyc if and only if G is virtually cyclic.

Proof. If A and B are finite groups, then A ∗B is a virtually free group. But note that the
free group Fn on n letters has bVCyc if and only if n = 1. So in the following we can assume
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2. Free Products, HNN Extensions and One-Relator Groups

without loss of generality that A is infinite. Then A ∗B is not virtually cyclic. Let a1, a2, . . .
be an infinite sequence of pairwise different elements in A and let b ∈ B be a non-trivial
element. Then the elements aib for i ≥ 1 are cyclically reduced and form infinitely many
conjugacy classes of primitive elements in G. Suppose G had bVCyc, then there would be
some i and j with i 6= j such that 〈aib〉 and 〈ajb〉 would be contained in the same virtually
cyclic subgroup up to conjugation. By Lemma 1.2.9 we would have that (aib)m is conjugate
to (ajb)n in G for some m,n 6= 0. Lemma 2.0.2 then implies that n = m and (aib)n would
be a cyclic permutation of (ajb)n. But since ai 6= aj , this is impossible.

Given a group H and an isomorphism θ : A → B between two subgroups A and B of H,
we can define a new group H∗θ = H∗At=B, called the HNN extension of H along θ, by the
presentation 〈H, t | t−1xt = θ(x), x ∈ A〉. The letter t is called stable letter. If H = A or
H = B, we call the associated HNN extension ascending and if H = A and B is a proper
subgroup of H (or vice versa), we call the ascending HNN extension proper. In the study
of HNN extensions, Britton’s Lemma and Collins’ Lemma provide important information
about normal forms and the conjugation action. We give a quick review of the two lemmas
and refer to [LS, IV.2] for proofs.

Definition 2.0.4. A sequence g0, t
ε1 , g1, . . . , t

εn , gn of elements with gi ∈ H and εi ∈
{−1,+1} is said to be reduced if there is no pinch, where we define a pinch to be a
consecutive sequence t−1, gi, t with gi ∈ A or t, gj , t−1 with gj ∈ B.

Lemma 2.0.5 (Britton’s Lemma). If the sequence g0, t
ε1 , g1, . . . , t

εn , gn is reduced and
n ≥ 1, then g0t

ε1g1 · · · tεngn 6= 1 in H∗θ.

In the following we will not distinguish between a sequence of words as above and the
element it defines in the HNN extension H∗θ.

Give any g ∈ H∗θ, we can write g in a reduced form. Let w = g0t
ε1g1 . . . t

εngn 6= 1 be
any reduced word in H∗θ which represents g. Then we define the length of g, written
as |g|, to be the number n of occurrences of t± in w. Moreover, we call an element
w = g0t

ε1g1 . . . t
εngn 6= 1 cyclically reduced if all cyclic permutations of the sequence

g0, t
ε1 , g1, . . . , t

εn , gn are reduced. Every element of H∗θ is conjugate to a cyclically reduced
element.

Lemma 2.0.6 (Collins’ Lemma). Let G = 〈H, t | t−1xt = θ(x), x ∈ A〉 be an HNN
extension. Let u = g0t

ε1g1 . . . t
εngn and v be cyclically reduced elements of G that are

conjugate and n ≥ 1. Then |u| = |v|, and u can be obtained from v by taking a suitable
cyclic permutation v∗ of v, which ends in tεn , and then conjugating by an element z, where
z ∈ A if εn = −1, and z ∈ B if εn = 1.

Proposition 2.0.7. Let H be a group and let θ : A → B be an isomorphism between
two subgroups of H. If [H : A], [H : B] ≥ 2, then the corresponding HNN extension
G = H∗θ = 〈H, t | t−1at = θ(a), a ∈ A〉 does not have bVCyc.

Proof. We choose α ∈ H \A and β ∈ H \B and define

wn = t−1αtn+1β ∈ G
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for n ≥ 1. Note that the elements wn are of infinite order and cyclically reduced. By Collins’
Lemma, they are not conjugate to each other. If G had bVCyc, there would exist a virtually
cyclic subgroup V ≤ G and two natural numbers n 6= m such that wn and wm are contained
in V up to conjugation. Thus there would exist some pn, pm ∈ Z such that wpnn is conjugate
to wpmm . We claim that this is impossible. In fact, first note that wpnn and likewise wpmm
are cyclically reduced. Since we assumed that wpnn is conjugate to wpmm , their lengths must
coincide by Collins’ Lemma. Hence we arrive at the equation |pn|(n+ 2) = |pm|(m+ 2). On
the other hand, there is a canonical quotient map q : G→ 〈t〉 ∼= Z. We would then obtain
q(wpnn ) = q(wpmm ). This means pnn = pmm. But the two equations can never hold at the
same time when n,m ≥ 1 unless n = m.

If G = H∗θ where H = A or H = B, i.e. H is an ascending HNN extension, it is not
easy to decide whether G has bVCyc. In fact, we will later see in Chapter 4 that there are
torsion-free groups H which do not have bCyc, but such that G = H oθ Z has bCyc for some
θ ∈ Aut(H). So in order to show that an extension H oθ Z does not have bVCyc we need
to impose additional conditions on either H or θ or on both.

Given an automorphism θ of a group H, we say that two elements h, h′ in H are θ-conjugate
if h = xh′θ(x−1) for some x ∈ H. This is an equivalence relation whose equivalence
classes are called θ-twisted conjugacy classes. The number of θ-twisted conjugacy classes
is sometimes called the Reidemeister number of θ and denoted by R(θ). For θ = idH one
recovers the usual notion of conjugacy.

Lemma 2.0.8. Let θ be an automorphism of H such that H has infinitely many θ-twisted
conjugacy classes, then the semidirect product G = H oθ Z does not have bVCyc.

Proof. Note that in H oθ Z, the elements (h, 1) and (h′, 1) are primitive and they are in
the same conjugacy class if and only if h and h′ are in the same θ-twisted conjugacy class
in H. In fact, (h, 1) is conjugate to (h′, 1) in H oθ Z if and only if we can find (x, k) ∈ G
such that (x, k)(h, 1)(x, k)−1 = (xθk(h)θ(x−1), 1) = (h′, 1). This is equivalent to saying that
θk(h) is θ-conjugate to h′. But h and θ(h) are θ-conjugate in H since θ(h) = h−1hθ(h).

Since H has infinitely many θ-twisted conjugacy classes, we have infinitely many primitive
elements of the form (h, 1) ∈ G that are not conjugate to each other. If G had bVCyc, there
would be infinitely many elements (h1, 1), (h2, 1), . . . that are not conjugate to each other,
but that lie in the same virtually cyclic subgroup. In particular, the elements hi are pairwise
distinct and the group V generated by (h1, 1), (h2, 1), . . . is virtually cyclic. Consider the
canonical quotient map q : H oθ Z→ Z. Note that q is onto when restricted to V and thus
the kernel of q|V must be finite since V is virtually cyclic. However, this contradicts the
fact that there are infinitely many pairwise distinct hi. Thus G does not have bVCyc.

A group is said to have property R∞ if it has infinitely many θ-twisted conjugacy classes
for any automorphism θ.

Corollary 2.0.9. Suppose H is a group with the property R∞. Then any semidirect
product H oθ Z does not have bVCyc.

The question of which classes of groups have the R∞ property was first addressed in [FH94].
Many groups with the R∞ property are now known, for example non-elementary hyperbolic
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2. Free Products, HNN Extensions and One-Relator Groups

groups, relatively hyperbolic groups and most generalized Baumslag-Solitar groups. For
more information about groups with the property R∞ and further examples, see [FT15].

In the following we will analyze the case of an ascending HNN extension of a free group F
of finite rank in detail. We will first deal with the case that θ : F → F is injective with its
image lying in the commutator subgroup of F . Given a group G, we denote the r-th term
in the lower central series by Γr(G) = [Γr−1(G), G] where Γ1(G) = G. By [jHal, Corollary
10.3.5] we know that [Γr(G),Γs(G)] ≤ Γr+s(G).

Lemma 2.0.10. For any free group F of finite rank we have:

(1)
⋂
r≥1 Γr(F ) = {1}.

(2) Γr(F )/Γr+1(F ) is a free abelian group for any r.

Proof. The proof can be found in [jHal, Chapter 11].

Corollary 2.0.11. Let θ : F → F be an injective map of the finitely generated free group
F with the image of θ lying in the commutator subgroup of F . If x ∈ Γr(F ), then
θ(x) ∈ Γ2r(F ).

Proof. If x ∈ Γ1(F ) = F , then by assumption on θ we have θ(x) ∈ [F, F ] = Γ2(F ). Let
r ≥ 2 and suppose that for any s < r the claim holds. If x ∈ Γr(F ) = [Γr−1(F ), F ], then by
induction we get θ(x) ∈ [Γ2(r−1)(F ),Γ2(F )] ≤ Γ2r(F ).

Lemma 2.0.12. Let G = 〈H, t | t−1xt = θ(x), x ∈ H〉 be an ascending HNN extension of
a group H. Then any element of G can be written in the form tpht−q with p, q ≥ 0 and
h ∈ H. Moreover, we have 〈H〉G =

⋃
i≥0 t

iHt−i where 〈H〉G denotes the normal closure of
H in G.

Proof. The claim about the form elements of G take follows since for any h ∈ H, ht = tθ(h)
and similarly t−1h = θ(h)t−1 in G. For the second part, notice that certainly tiHt−i ≤ 〈H〉G
for any i. Since G/〈H〉G ∼= 〈t〉, we have that if g = tpht−q ∈ 〈H〉G, then p = q. Thus
〈H〉G =

⋃
i≥0 t

iHt−i.

Lemma 2.0.13. Let G = F∗θ be an ascending HNN extension of a non-abelian free group
F of finite rank with im(θ) ≤ [F, F ]. Suppose that x, y ∈ F are non-primitive in G and
generate a free subgroup of rank 2. Then xy is primitive in G.

Proof. Suppose x, y and xy are all non-primitive. Let x = um, y = vn, xy = wl for some
u, v, w ∈ G and m,n, l ≥ 2. Let q be the canonical quotient map from G to 〈t〉 ∼= Z mapping
F to 0. Then u, v, w ∈ ker q as x and y lie F . Note that ker(q) is the normalizer of F in G.
By Lemma 2.0.12, there exist some p ≥ 0 such that u, v, w lie in the free subgroup tpFt−p.
But by [LS62], the equation umvn = wl has a solution in a free group only if u, v, w generate
a free subgroup of rank 1. This contradicts our hypothesis on x and y.

For future reference we record the following simple lemma.

Lemma 2.0.14. Let f : A→ A be an automorphism of a free abelian group A. If f(ka) = la
for some a 6= 0 and positive integers k, l, then k = l.
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Proof. We have A ∼=
⊕

i∈I Z for some index set I. Note that non-trivial element a ∈ A is
primitive if and only if the greatest common divisor of its finitely many non-zero coordinates
equals 1. Moreover, any non-trivial a ∈ A can be written as a = d · x with x primitive and
d ∈ N. Since f is an automorphism, it will preserve primitive elements. Now, suppose that
f(ka) = la with k, l ∈ N and a 6= 0. We write a = d · x as above with x primitive. Then
kf(x) = lx and by cancelling common factors we might as well assume that k and l are
coprime. Since k divides all coordinates of the prime element x, it has to equal to 1 and the
same holds for l since f(x) is primitive.

Proposition 2.0.15. Let G = 〈F, t | t−1xt = θ(x), x ∈ F 〉 be an ascending HNN extension
of a non-abelian free group F of finite rank, and suppose that the image of θ lies in the
commutator subgroup of F . If x, y ∈ F \ [F, F ] generate a non-abelian free subgroup in F
and x is primitive, then the elements {xkyxky−1 | k ≥ 2} form pairwise distinct primitive
conjugacy classes. In particular, G does not have bCyc.

Proof. Note first that xkyxky−1 = xk · (yxy−1)k does not lie in [F, F ] and is primitive when
k ≥ 2 by Lemma 2.0.13. Note that every element in G can be written in the form tpwt−q for
some p ≥ 0, q ≥ 0 and w ∈ F by Lemma 2.0.12. Now if xkyxky−1 is conjugate to xlyxly−1

for some k 6= l, then xkyxky−1 = (tpwt−q)xlyxly−1(tqw−1t−p) for some p, q ≥ 0 and w ∈ F .
Hence θp(xkyxky−1) = wθq(xlyxly−1)w−1.

If p 6= q, the equation never holds. In fact, assume without loss of generality that p >
q. By Lemma 2.0.10 we know that θq(x) ∈ Γr(F ) \ Γr+1(F ) for some r ≥ 2. Then
θp(x) ∈ Γr+1(F ) by Corollary 2.0.11 and thus θp(xkyxky−1) ∈ Γr+1(F ). On the other hand,
θq(xl) ∈ Γr(F ) \ Γr+1(F ) for any l > 0 since Γr(F )/Γr+1(F ) is a free abelian group by
Lemma 2.0.10. Now xlyxly−1 = x2l · [xl, y−1] so that θq(xlyxly−1) = θq(x2l)[θq(xl), θq(y−1)]
and [θq(xl), θq(y−1)] ∈ Γr+1(F ) by Corollary 2.0.11, we have θq(xlyxly−1) ∈ Γr(F )\Γr+1(F ).
So we would obtain that wθq(xlyxly−1)w−1 ∈ Γr(F ) \ Γr+1(F ), whereas θp(xkyxky−1) ∈
Γr+1(F ). Hence the equation cannot hold.

If p = q, then the equation again cannot hold unless k = l. In fact, let r ∈ N such that
θp(x) ∈ Γr(F ) \ Γr+1(F ), then θp(xkyxky−1) lies in Γr(F ) \ Γr+1(F ) by the same argument
as above. By forming the quotient by Γr+1(F ) we obtain an equation in the free abelian
group Γr(F )/Γr+1(F ). Writing elements in the quotient using brackets, we would have
k
(
[θp(x)] + [θp(yxy−1)]

)
= l

(
[wθp(x)w−1] + [wθp(yxy−1)w−1]

)
. Note that Γr(F )/Γr+1(F )

is a free abelian group by Lemma 2.0.10 and the action of w on Γr(F )/Γr+1(F ) in-
duced by conjugation is an isomorphism. Thus the equation k

(
[θp(x)] + [θp(yxy−1)]

)
=

l
(
[wθp(x)w−1] + [wθp(yxy−1)w−1]

)
can never hold unless k = l by Lemma 2.0.14.

Actually we have some supporting evidence that the ascending HNN extensions appearing in
Proposition 2.0.15 are actually hyperbolic. Recall that containing a Baumslag-Solitar group
is an obstruction for a group to be hyperbolic. For some classes of groups like one-relator
groups and ascending HNN extensions of finitely generated free groups it is conjectured
that this is the only obstruction. Kapovich [Kap00] shows that this conjecture holds for
ascending HNN extensions of finitely generated free groups where the associated injective
endomorphism used to form the HNN extension is a so-called immersion [Kap00, Definition
3.1]. However, the endomorphims we consider are not necessarily immersions.

Proposition 2.0.16. Let G = 〈F, t | t−1xt = θ(x), x ∈ F 〉 be an ascending HNN extension
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of a non-abelian free group F of finite rank, and suppose that the image of θ lies in the
commutator subgroup of F . Then G does not contain any Baumslag-Solitar subgroup.

Proof. Let N be the kernel of the canonical homomorphism π : G→ 〈t〉 ∼= Z and note that
N is locally free. Suppose G contains a Baumslag-Solitar subgroup generated by a, b which
satisfy bamb−1 = an for some non-zero m,n ∈ Z. By applying the homomorphism π we
see that a ∈ ker(π) = N or m = n. Let us consider the first case. By Lemma 2.0.12 we
can write a = tkxt−k and b = tpyt−q for some k, p, q ≥ 0 and x, y ∈ F . The equation then
reads ytαxmt−αy−1 = tβxnt−β or equivalently x−nt−βytαxmt−αy−1tβ = 1 where α = k − q
and β = k − p. If α ≥ 0 and β ≥ 0, we obtain x−nθβ(y)tα−βxmt−(α−β)θβ(y)−1 = 1. By
Britton’s Lemma this equation can only hold if α = β or we have a pinch, so γ = β −α > 0.
If α = β, then p = q and so b ∈ N . But as N is locally free, it does not contain a
Baumslag-Solitar group. So assume that γ > 0 in the following. If we let ω = θβ(y) we then
obtain ωθγ(xm)ω−1 = xn. However, this is impossible by Lemma 2.0.10 and the fact that
the image of θ is contained in [F, F ]. If α ≥ 0 and β < 0, then it is easy to see that the
expression is already reduced and thus non-trivial. If α < 0 and β < 0, we observe that
the expression x−nt−βyθα(xm)y−1tβ is reduced and thus represents a non-trivial element.
Similarly, one can exclude the case that α < 0 and β > 0. Lastly, if α < 0 and β = 0, we
obtain yθα(xm)y−1 = xn, which is also impossible by Lemma 2.0.10.

Hence we are left to consider the case that n = m. Suppose that g, h ∈ G generate a free
abelian group of rank 2. Recall that G ∼= N o Z so that after taking suitable powers gi
and hj we can arrange that gih−j ∈ N . Hence in the following we can suppose without
loss of generality that g ∈ N . We can write g = tkxt−k and h = tpyt−q with k, p, q ≥ 0 and
x, y ∈ F . Since g and h commute, we obtain 1 = t−αx−1tαyt−βxtβ where α = p − k and
β = q − k. If α ≥ 0 and β ≥ 0, we obtain yθβ(x)y−1 = θα(x) which implies that α = β
using Lemma 2.0.10. Hence p = q and h ∈ N . But N does not contain a free abelian group
of rank 2. If α > 0 and β < 0, then we observe that θα(x−1)yt−βxtβ does not contain a
pinch. Similarly one can exclude the case that α < 0 and β > 0. If α < 0 and β < 0 we
rewrite y = t−αx−1tαyt−βxtβ = t−αx−1t−βθ−(α+β)(y)tαxtβ and the latter expression does
not contain any pinch. The remaining cases that α = 0 and β < 0 resp. α < 0 and β = 0
can be excluded in a similar way.

Theorem 2.0.17. Let G be an HNN extension of a free group of finite rank, then G does
not have bCyc.

Proof. By Proposition 2.0.7, we can assume G = 〈Fn, t | t−1xt = θ(x), x ∈ Fn〉, where
θ : Fn → Fn is injective and Fn denotes a free group of rank n. For n = 1 the group G is
solvable but not virtually cyclic. Thus G does not have bCyc by Theorem 1.2.15. So in the
following we assume that n > 1.

Note first that we have an induced map θ̄ : Fn/[Fn, Fn] → Fn/[Fn, Fn] ∼= Zn. Since the
rank of the abelian group is finite, there exists some k ≥ 1 such that rank(ker(θ̄k+1)) =
rank(ker(θ̄k)). But since Zn is free abelian, it follows that ker(θ̄k+1) = ker(θ̄k), and we will
denote this group by K. This implies that θ̄k induces an injective endomorphism of Zn/K.
If K is a proper subgroup of Zn, we consider the induced quotient map Fn∗θk → (Zn/K)∗θ̄k .
Note that the quotient is a torsion-free metabelian group which is not virtually cyclic. Hence
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Fn∗θk does not have bCyc by Theorem 1.2.15 and Lemma 1.1.7. As Fn∗θk is a finite index
subgroup of Fn∗θ (see for example [Kap00, 2.2]) we conclude that the latter group does not
have bCyc by Lemma 1.1.8.

If K = Zn, we are in the situation that the image of θk lies in the commutator subgroup of
Fn. By Proposition 2.0.15 the group Fn∗θk does not have bCyc. Again by Lemma 1.1.8 it
follows that Fn∗θ does not have bCyc.

We now want to apply the previous results to answer Question 1.2.18 affirmatively for
the class of one-relator groups. Recall that a one-relator group is a group G which has a
presentation with a single relation, so G = 〈x1, . . . , xn | r〉 where r is a word in the free
group F on the letters x1, . . . , xn. The group G is torsion-free precisely when r, as an
element of the free group F , is not a proper power. If r = sn for some maximal n ≥ 2 and
s ∈ F , then s, considered as an element in G, is of order n. In all cases there exists a finite
G-CW model for EG, see for example [Lüc05, 4.12].

A one-relator group with torsion is a hyperbolic group by Newman’s Spelling Theorem
[New68]. In particular, the one-relator groups containing torsion satisfy Conjecture 1.2.2 by
the work of Juan-Pineda and Leary. However, our proof of the following theorem does not
depend on this fact.

Theorem 2.0.18. A one-relator group has bVCyc if and only if it is cyclic.

Proof. Let G be a one-relator group. If the one-relator presentation of G contained three
or more generators then G would surject to Z2, in particular G would not have bVCyc by
Corollary 1.2.16. Thus we can restrict to the case that G has two generators, so

G = 〈a, b | R(a, b) = 1〉

for some word R(a, b) in the free group on the two generators a, b. By [LS, Lemma V.11.8]
we can moreover assume that the exponent sum of one of the generators in the single relator
equals to zero, say for the generator a. The following rewriting procedure, which we outline
for the reader’s convenience, is standard. The proofs of the mentioned facts can be found
in [LS, IV.5]. We let bi = aiba−i for all i ∈ Z. Then R can be rewritten as a cyclically
reduced word R′ in terms of these, so R′ = R′(bm, . . . , bM ) for some m ≤M , such that the
elements bm, bM occur in R′. If m = M , then R(a, b) = bm for some m ∈ Z and thus G ∼= Z
or G ∼= Z ∗ Z/|m| where |m| ≥ 2. Note that by Proposition 2.0.3 the latter group does not
have bVCyc. So in the following we can assume that m < M . We let

H = 〈bm, . . . , bM | R′(bm, . . . , bM ) = 1〉.

Moreover we define A to be the subgroup of H generated by bm, . . . bM−1 and we let B to
be the subgroup of H generated by bm+1, . . . bM . Then A and B are free subgroups of the
one-relator group H and G is isomorphic to the HNN extension H∗θ where θ : A→ B is
the isomorphism defined by θ(bi) = bi+1 for m ≤ i < M .

If [H : A] ≥ 2 and [H : B] ≥ 2, then G does not have bVCyc by Proposition 2.0.7. Otherwise
G is an ascending HNN extension, say with H = A. Since A was free, G is an ascending HNN
extension of a finitely generated free group. The claim now follows from Theorem 2.0.17.
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3. Conjugacy Growth and Finiteness of
Classiying Spaces

In this chapter we shall establish a connection between the bVCyc property and the so-called
conjugacy growth function for finitely generated groups under the assumption that cyclic
subgroups are undistorted. The basic idea being that a group G with bVCyc should “look”
like a virtually cyclic group up to conjugation and thus should have the same conjugacy
growth function as a virtually cyclic group. As applications we will be able to prove
Conjecture 1.2.2 on the finiteness of the classifying space for virtually cyclic subgroups for
the class of linear groups and CAT(0) cube groups. The proof for the class of linear groups
has already been given in [vW17], whereas for CAT(0) groups we provide an alternative
proof.

First, let us set up some notation. Let G be a finitely generated group and let S be a
finite generating set that is symmetric, i.e. S = S−1. Recall that with such a choice
of generating set we can define the so-called word norm on G by setting |g|S = min{n |
g = s1s2 . . . sn where si ∈ S}. The word norm on G induces the word metric by setting
dS(g, h) = |g−1h| for g, h ∈ G. Let BG,S(n) denote the ball of radius n around the identity
element of G with respect to the word metric dS . We define the word growth function
βGS : N→ N of G with respect to S by βGS (n) = |BG,S(n)|, so βGS (n) measures the number
of elements in G whose shortest length expression in terms of the generating set S does not
exceed n.

In recent years, also popularized by Guba and Sapir [GS10], a growth function of a similar
spirit received increasing attention:

Definition 3.0.1. Let G be a finitely generated group with S a symmetric finite generating
set. The conjugacy growth function γGS : N→ N of G with respect to S is defined by

n 7→ |{(g) | (g) ∩BG,S(n) 6= ∅}| .

Here, (g) denotes the conjugacy class of an element g ∈ G. Of course, γGS (n) ≤ βGS (n).

In order to obtain an invariant of the group which does not depend on the specific generating
set, we need to impose an equivalence relation. For two functions f, g : N → N we write
f � g if there exists some C ∈ N such that f(n) ≤ g(Cn) for all n ∈ N. And we write f ∼ g
if f � g and g � f .

With this notion of equivalence, the class of the word growth resp. conjugacy growth
function does not depend on the generating set. If S and T are finite symmetric generating
sets of G, let K = max{|s|T | s ∈ S}. Then |ω|T ≤ K · |ω|S for any ω ∈ G and from this it

26



follows that γGT (Kn) ≥ γGS (n), thus γGS � γGT .

In the following we will only talk about the class of the word growth resp. conjugacy growth
function and thus we will omit the generating set from the notation.

Examples 3.0.2. (1) The free abelian group Zm has word growth β(n) ∼ nm. Since the
conjugation action is trivial, γ(n) ∼ β(n).

(2) A non-abelian finitely generated free group F has exponential word growth β(n) ∼ 2n.
Since in a free group two reduced words are conjugate if and only if they are cyclic
permutations of each other, the conjugacy growth is exponential as well since γ(n) ∼
2n/n ∼ 2n. More generally, non-elementary hyperbolic groups have exponential
conjugacy growth [CK02].

(3) Let us consider the Baumslag-Solitar group BS(1, 2) = 〈a, t | t−1at = a2〉. Observe
that t−natn = a2n , which implies that the word length of am is O(log(|m|)). Since ak
and al are not conjugate if k 6= l and k, l are odd, we see that BS(1, 2) has exponential
conjugacy growth.

(4) The Heisenberg group H = 〈x, y, z | [x, y] = z, [z, x] = 1 = [y, z]〉 has word growth
β(n) ∼ n4 but conjugacy growth γ(n) ∼ n2 log(n), see for example [GS10].

Geometrically, one can interpret the conjugacy growth function as follows. Given a closed
Riemannian manifold M , the set of free homotopy classes of loops in M is in bijective
correspondence with the set of conjugacy classes of π1(M) and by the Švarc-Milnor Lemma
the conjugacy growth function of π1(M) is then equivalent to the function counting free
homotopy classes of loops which have a representative of a given length.

Let us record here the following two basic properties of the conjugacy growth function.

Lemma 3.0.3. Let G be a finitely generated group. Then the following assertions hold:

(1) Suppose H ≤ G is a finite index subgroup. Then γH � γG.

(2) If Q is a quotient of G, then γQ � γG.

Proof. This is [Bd10, Lemma 3.1].

For metric spaces, and in particular for finitely generated groups, there is an equivalence
relation called quasi-isometry, that tries to capture the large-scale geometry of the metric
space. For finitely generated groups the inclusion of a finite index subgroup into the group
is an example of a quasi-isometry. It is known that the word growth β is an invariant under
quasi-isometry. However, quasi-isometry invariance of the conjugacy growth γ fails in the
most extreme way: Hull and Osin [HO13] show that there exists a finitely generated group
G of exponential conjugacy growth that contains a subgroup of index two which contains
only two conjugacy classes. In particular, this finite index subgroup has constant conjugacy
growth. In Chapter 4 we will build on their work to show that there also exists a finitely
generated group without bCyc which has a subgroup of index two with property bCyc.

The next question we want to address shortly is which functions (up to the mentioned
equivalence relation) can occur as the word growth or conjugacy growth function of a finitely
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generated group. For the following, keep the example of the Heisenberg group in mind. A
celebrated theorem of Gromov asserts that a finitely generated group G with polynomially
bounded word growth is already virtually nilpotent. And by a theorem of Bass [Bas72]
a finitely generated virtually nilpotent group has polynomial word growth β(n) ∼ nd(G),
where the exponent d(G) can be computed via d(G) =

∑
k≥1 k · rank(Γk/Γk+1). Here Γk

denotes the the k-th term in the lower central series of G and rank denotes the rank of
an abelian group. In particular, from the above considerations it follows that there is no
group that has word growth n2 log(n) for example. The situation for the conjugacy growth
is again very different. Note that the conjugacy growth function is at most exponentially
growing as well as non-decreasing. A theorem of Osin and Hull [HO13] asserts that these
are the only restrictions, i.e. any exponentially bounded non-decreasing function can be
realized as the conjugacy growth function of a finitely generated group.

Guba and Sapir made a couple of conjectures in [GS10] about the behaviour of the conjugacy
growth function for certain “reasonable” classes of groups. Some of these have been resolved
by now and we want to highlight two of these results:

Theorem 3.0.4 (Breuillard–de Cornulier, [Bd10]). If G is a virtually solvable finitely
generated group that is not virtually nilpotent, then G has exponential conjugacy growth.

Finitely generated linear groups are known to satisfy the Tits alternative, which says
that such a group is either virtually solvable or contains a non-abelian free subgroup. In
particular, a non virtually solvable linear group has exponential word growth. But more is
true:

Theorem 3.0.5 (Breuillard–de Cornulier–Lubotzky–Meiri, [Bre+13]). Let G be a finitely
generated linear group that is not virtually solvable. Then G has exponential conjugacy
growth.

Before we can prove the main theorem connecting the bVCyc and conjugacy growth notion,
we need to set up some further notation. Let G be a group with a finite symmetric generating
set S. For an element g ∈ G, we define its length up to conjugacy by

|g|cS = min
{∣∣∣hgh−1

∣∣∣
S
| h ∈ G

}
.

By definition, this number only depends on the conjugacy class (g) of g.

Definition 3.0.6. [BH99, III.Γ.3.13] Let G be a finitely generated group with S a symmetric
finite generating set of G. The algebraic translation number of an element g ∈ G with
respect to S, denoted by ||g||S , is defined by the limit

||g||S := lim
n→∞

|gn|S
n

.

An element g ∈ G is undistorted if the translation number ||g||S is positive.

It is easy to see that an element g ∈ G of a finitely generated group G is undistorted if and
only if the cyclic subgroup 〈g〉 is quasi-isometrically embedded in G.
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Theorem 3.0.7. Let G be a finitely generated group with bVCyc. Suppose that the virtually
cyclic witnesses are quasi-isometrically embedded. Then the conjugacy growth function of
G is at most linear.

Proof. Let S be a finite generating set for G and let {V1, . . . , Vm} be a witness to bVCyc.
First note that there are only finitely many conjugacy classes of elements of finite order in
a virtually cyclic subgroup, so in the following it suffices to count the number of infinite
order elements. We denote by o(g) the order of an element g ∈ G. Now observe that

{(g) | o(g) =∞, |g|cS ≤ n} ⊆
m⋃
i=1
{(g) | o(g) =∞, |g|cS ≤ n, where g ∈ Vi}

⊆
m⋃
i=1
{g ∈ Vi | o(g) =∞, |g|cS ≤ n} .

Now |g|cS ≥ ||g||S , hence {g ∈ Vi | o(g) =∞, |g|cS ≤ n} ⊆ {g ∈ Vi | o(g) =∞, ||g||S ≤ n}.
Since the subgroup Vi is quasi-isometrically embedded, the cardinality of the latter set is
bounded by Cin for some constant Ci > 0: We know from Lemma 1.2.9 that there exists
some g0 ∈ Vi and k ∈ Z (that only depends on Vi) such that for any g ∈ Vi of infinite order
there exists somem ∈ Z such that gk = gm0 . Hence |k|·||g||S = ||gk||S = ||gm0 ||S = |m|·||g0||S .
In particular |m| ≤ n|k|

||g0||S . The last expression makes sense, since ||g0||S > 0, as 〈g0〉 is quasi-
isometrically embedded. It then follows that | {g ∈ Vi | o(g) =∞, ||g||S ≤ n} | ≤ 2 n|k|

||g0||S |Fi|,
where Fi is the unique maximal normal finite subgroup of Vi.

Conjecture 1.2.1 due to Juan-Pineda and Leary has been verified for hyperbolic groups in
their original paper [JL06]. Alternatively, this also follows from Theorem 3.0.7 together with
a result due to Coornaert–Knieper [CK02] which states that non-elementary hyperbolic
groups have exponential conjugacy growth.

Corollary 3.0.8. A hyperbolic group G has bVCyc if and only if G is virtually cyclic.

3.1. Linear Groups

The goal of this section is to prove Conjecture 1.2.2 for the class of linear groups by basically
using results on the conjugacy growth of these groups. Special care has to be taken if there
are distorted elements present, so in general Theorem 3.0.7 is not directly applicable.

Definition 3.1.1. For a field K and d ∈ N, a subgroup of the general linear group GLd(K)
is called a linear group.

Let A be a finitely generated domain. It is a theorem of Platonov [Pla68] that GLd(A) is
virtually residually p-finite for all but finitely many primes p if char(A) = 0. If char(A) = p,
then GLd(A) is residually p-finite. From this Selberg’s Lemma follows easily: A finitely
generated linear group over a field of characteristic 0 is virtually torsion-free. Moreover, we
have that a finitely generated linear group over an arbitrary field is residually finite.
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In [GS10] it was conjectured that a non-virtually solvable finitely generated linear group
has exponential conjugacy growth, which was later proven in [Bre+13]. In order to verify
Conjecture 1.2.2 for linear groups, we rely on the following stronger result:

Theorem 3.1.2. [Bre+13, Theorem 1.2] For every d, there exists a constant c(d) > 0 such
that if K is a field and S is a finite symmetric subset of GLd(K) generating a non-virtually
solvable subgroup, then

lim inf
n→∞

logχS(n)
n

≥ c(d) ,

where χS(n) is the number of elements in K[X] appearing as characteristic polynomials of
elements of BG,S(n).

Definition 3.1.3. Let K be a field. An absolute value on K is a function

| · | : K→ R≥0

that satisfies the following conditions:

(1) |x| = 0 if and only if x = 0.

(2) |xy| = |x||y| for all x, y ∈ K.

(3) |x+ y| ≤ |x|+ |y| for all x, y ∈ K.

Lemma 3.1.4. Let G be finitely generated subgroup of GLd(K) where K is some field. Let
g ∈ G be an element such that at least one of its eigenvalues is not a root of unity. Then g
is undistorted.

Proof. First of all we can assume without loss of generality that K is a finitely generated
field containing all eigenvalues of the element g since G is finitely generated. Let λ be an
eigenvalue of g which is not a root of unity. By [Tit72, Lemma 4.1], up to replacing g by its
inverse, there exists an absolute value | · | on a field extension K′ of K such that |λ| > 1.
Let || · || be a submultiplicative matrix norm on the vector space of n× n matrices over K′.
For example, we can take

||A|| = max
i

Σn
j=1|aij |

where A = (aij). Then for two n × n matrices A,B over K′ we have ||AB|| ≤ ||A|| · ||B||
and |µ| ≤ ||A|| for any eigenvalue µ of A.

Now, let s1, . . . , sm be the elements of some finite symmetric generating set S for G and
let s = max1≤i≤m ||si||. If g can be written as a word of length l in the generators S, then
||g|| ≤ sl. Hence 1 < |λ| ≤ sl, so l ≥ logs |λ|. Since gk has eigenvalue λk, we have

|gk|S ≥ logs |λ|k ,

thus

||g||S = lim
k→∞

|gk|S
k
≥ logs |λ| .

Therefore g is undistorted.
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3.2. CAT(0) Groups

Lemma 3.1.5. Let G be finitely generated subgroup of GLd(K) where K is a field of
positive characteristic. Then any element of infinite order in G is undistorted.

Proof. If an element g ∈ G has at least one eigenvalue which is not a root of unity, we are
done by Lemma 3.1.4. So suppose that all eigenvalues of g are roots of unity. We claim
that g must have finite order. In fact, some power h of g will only have eigenvalues equal to
one, i.e. h is unipotent in GLd(K). So (h− I)m = 0 for some m. Choose n with pn ≥ m,
where p is the characteristic of K. Then

0 = (h− I)pn = hp
n − I,

thus h has finite order, and so g has finite order.

Proposition 3.1.6. Let G ≤ GLd(K) be a finitely generated group where K is a field of
positive characteristic. Then G has bVCyc if and only if G is virtually cyclic.

Proof. If G is virtually solvable, then Theorem 1.2.15 implies the result. Otherwise we obtain
a contradiction from Theorem 3.0.5 and Theorem 3.0.7 since virtually cyclic subgroups are
undistorted by Lemma 3.1.5.

For linear groups over fields of characteristic zero a slightly more involved argument has
to be used since not all virtually cyclic subgroups are undistorted. However, counting the
number of characteristic polynomials and using Theorem 3.1.2 suffices to show:

Theorem 3.1.7 ([vW17]). A finitely generated linear group has bVCyc if and only if G is
virtually cyclic.

Since the property bVCyc passes to quotients by Lemma 1.1.7, we can immediately conclude
that representations of finitely generated groups having bVCyc are rather trivial:

Corollary 3.1.8. Let ϕ : G → L be a surjective homomorphism where G is a finitely
generated group with bVCyc and L is linear. Then L is virtually cyclic.

3.2. CAT(0) Groups

In this section, we study the conjugacy growth of CAT(0) groups. For example, we will
show that CAT(0) groups containing Z2 as a subgroup have strictly faster than linear
conjugacy growth. Moreover, we will be able to deduce that CAT(0) cube groups have
linear conjugacy growth if and only if they are virtually cyclic. As an application we can
then verify Conjecture 1.2.2 for the class of CAT(0) cube groups. Xiaolei Wu and I have
shown this with different means already in [vW]. However, the basic ideas are quite similar.

Let us first recall the basic definition of CAT(0) spaces and CAT(0) groups. Given a
metric space (X, d), we say that X is geodesic if any two points p, q ∈ X can be joined
by a geodesic, i.e. there is a map γ : [0, l] → X such that γ(0) = p, γ(1) = q and
d(γ(t), γ(t′)) = |t− t′| for all t, t′ ∈ [0, l]. In particular, l = d(p, q). We call the image of a
geodesic connecting p and q a geodesic segment and denote it by [p, q] (although there might
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3. Conjugacy Growth and Finiteness of Classiying Spaces

be several such segments). A geodesic triangle ∆ is given by three points x, y, z and geodesic
segments [x, y], [y, z], [z, x]. For any such ∆ there is a corresponding comparison triangle
∆ in Euclidean space, i.e. it is given by three points x, y, z that satisfy d(x, y) = d(x, y),
d(y, z) = d(y, z) and d(z, x) = d(z, x). A point p ∈ [x, y] is called a comparison point of
p ∈ [x, y] if d(x, p) = d(x, p) and similarly there are comparison points for the other two
geodesic segments. The triangle ∆ is said to satisfy the CAT(0) inequality if d(p, q) ≤ d(p, q)
for all comparison points p, q. We say that X is a CAT(0) space if all geodesic triangles in X
satisfy the CAT(0) inequality. Without going into details we want to mention that instead
of considering general CAT(0) spaces one also often considers CAT(0) cube complexes which
are CAT(0) spaces arising from gluing standard cubes. These CAT(0) cube complexes have
a more combinatorial flavor and stronger ridigity results are known.

A group G is called a CAT(0) group resp. a CAT(0) cube group if it acts acts properly
and cocompactly via isometries on a CAT(0) space resp. a CAT(0) cube complex. It is
known that CAT(0) groups are finitely presented, have only finitely many conjugacy classes
of finite subgroups and solvable subgroups are virtually abelian [BH99, III.Γ.1.1]. Ontaneda
has shown [Ont05, Proposition A] that a CAT(0) group G admits a finite model for EG.
Moreover, Lück has proven in [Lüc09] that there is a finite-dimensional model for EG.

For studying the conjugacy growth function of groups it is usually important to find a good
conjugacy invariant. For CAT(0) groups this invariant will be the translation length:

Definition 3.2.1. [BH99, II.6.1] Let X be a metric space and let g be an isometry of X.
The displacement function of g is the function dg : X → R≥0 defined by dg(x) := d(gx, x).
The translation length of g is the number |g| := inf{dg(x) | x ∈ X}. The set of points where
dg attains this infimum will be denoted by Min(g). For a group G acting by isometries on X,
we let Min(G) :=

⋂
g∈G Min(g). An isometry g is called semi-simple if Min(g) is non-empty.

An action of a group by isometries of X is called semi-simple if all of its elements are
semi-simple.

It is clear that the translation length is invariant under conjugation, i.e. |hgh−1| = |g| for
any g, h ∈ G. Moreover, for g semi-simple, we have that |gn| = |n| · |g| for any n ∈ Z. If G is
a CAT(0) group, then any element of G is semi-simple [BH99, II.6.10]. Another important
ingredient of our proofs will be the following theorem that translates the existence of a free
abelian group into geometric data:

Theorem 3.2.2 (Flat Torus Theorem, [BH99, II.7.1]). Let A be a free abelian group of
rank n acting properly by semi-simple isometries on a CAT(0) space X. Then:

(1) Min(A) =
⋂
α∈A Min(α) is non-empty and splits as a product Y ×En, here En denotes

Rn equipped with the standard Euclidean metric.

(2) Every element α ∈ A leaves Min(A) invariant and respects the product decomposition;
α acts as the identity on the first factor Y and as a translation on the second factor
En.

(3) The quotient of each n-flat Y × En by the action of A is an n-torus.

The question whether the converse of the Flat Torus Theorem holds, i.e. the question
whether the existence of an n-dimensional flat in a CAT(0) space X implies that a group G
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acting properly and cocompactly on X contains a free abelian subgroup of rank n, is known
as the Flat Closing Conjecture. The Flat Closing Conjecture would imply, for example,
that a CAT(0) group is hyperbolic if and only if it does not contain Z2.

For x ∈ R>0, denote by B(x) the number of natural numbers which are expressible as the
sum of two square integers. Landau and Ramanujan have shown that B(x) is asymptotically
proportional to x/

√
ln(x), i.e. the limit

K = lim
x→∞

x√
ln(x)

exists and is positive. The number

K = 1√
2

∏
p≡3 (mod 4)

( 1
1− 1/p2

)1/2

≈ 0.764 ,

where p denotes a prime number, is also known as the Landau–Ramanujan constant. A
generalization of this result has been obtained by Paul Bernays in his Ph.D. thesis [Ber12]:

Theorem 3.2.3. Let f(x, y) = ax2 + bxy+ cy2 ∈ Z[x, y] be a primitive (i.e. the coefficients
a, b, c have no common non-trivial divisor) positive-definite quadratic form with negative
discriminant D = b2 − 4ac. Let Bf (n) be the number of positive integers less than or equal
to n which are representable by f . Then Bf (n) grows asympotically proportional to n/

√
lnn.

Recall that a two-dimensional lattice L is called arithmetic if there exists some real number
s such that sL is isometric to a Z-submodule of rank two in an imaginary quadratic number
field. Otherwise the lattice is called non-arithmetic.

Proposition 3.2.4. Let v1, v2 be two linearly independent vectors in the plane R2, and
for any n ∈ N let S(n) be the number of elements in the set

{||v|| | v = xv1 + yv2, ||v|| ≤ n, x, y ∈ Z} .

Then S(n) grows asympotically proportional to n2/
√

lnn or n2.

Proof. This is [MO06, Proposition 1]. If the lattice corresponding to v1, v2 is non-arithmetic,
we obtain quadratic growth by [Küh96, Corollary, p.166]. Otherwise, possibly after scaling,
the associated quadratic form of the lattice is positive definite with negative discriminant
and we can apply Theorem 3.2.3 to obtain a growth rate of n2/

√
lnn.

Proposition 3.2.5. Suppose that G is a CAT(0) group which contains a subgroup isomor-
phic to Z2. Then the conjugacy growth of G is strictly faster than linear.

Proof. Suppose G is acting properly and cocompactly on the CAT(0) space X and let
H ≤ G be a free abelian subgroup of rank two. By the Flat Torus Theorem, H acts on
a flat plane P inside X via translations. Let x0 be a point in P , then the translation
length of any h ∈ H can be calculated easily via dX(x0, hx0), again by the Flat Torus
Theorem. Now given n > 0, let Bc

H(n) be the set of G-conjugacy classes of elements in H
with word length up to conjugacy at most n. Since the translation length is an invariant of
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3. Conjugacy Growth and Finiteness of Classiying Spaces

the conjugacy classes and |h| = dX(x0, hx0) for any h ∈ H, Proposition 3.2.4 together with
the Švarc-Milnor lemma [BH99, I.8.19] imply that |Bc

H(n)| grows asympotically at least as
fast as n2/

√
lnn.

A semi-simple isometry is called hyperbolic if its translation length is strictly positive.
Moreover, one calls a hyperbolic isometry rank one if no axis of this isometry bounds a flat
half-plane.

Lemma 3.2.6. Let G be a group which acts on a CAT(0) cube complex X properly and
cocompactly via isometries and suppose that G is not virtually cyclic. Then G contains a
rank one isometry or G contains a free abelian subgroup of rank 2.

Proof. This result is essentially due to Caprace and Sageev [CS11], see also [vW, Lemma
4.15].

Theorem 3.2.7. A CAT(0) cube group has at most linear conjugacy growth if and only if
it is virtually cyclic.

Proof. By Lemma 3.2.6, we only need to deal with the case G contains a rank one isometry
or a subgroup isomorphic to Z2. If G contains a rank-one isometry, then G is acylindrically
hyperbolic [Sis16] and thus has exponential conjugacy growth by [HO13, Theorem 1.1]. If
G contains Z2, the result follows from Proposition 3.2.5.

Corollary 3.2.8. A CAT(0) group containing Z2 does not have bVCyc. In particular, a
CAT(0) cube group has bVCyc if and only if it is virtually cyclic.

Proof. Since infinite order elements in a CAT(0) group are undistorted, Theorem 3.0.7
applies. Then Proposition 3.2.5 respectively Theorem 3.2.7 yield the claim.
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In this chapter we want to construct groups that exhibit wild behaviour with respect to
the BVC property and its variants bCyc and bVCyc. Our constructions heavily rely on
the machinery of HNN extensions that was introduced in Chapter 2. The output of these
constructions will usually be a countable group with the desired exotic properties. To obtain
a finitely generated group with the same properties, we will make use of small cancellation
theory over relatively hyperbolic groups as developed in [Osi10] and [HO13]. This theory
was used by Osin to give the first constructions of finitely generated groups with finitely
many conjugacy classes. Most of the contents of this chapter have been published in [vW17].

There are various notions of relative hyperbolicity, most notable the definitions due to
Bowditch and Farb [Bow12; Far98] that build on Gromov’s idea of relative hyperbolicity.
These turn out to be equivalent if one additionally imposes a condition called Bounded
Coset Penetration or BCP for short in Farb’s definition. We will quickly outline Osin’s
more general approach via relative Dehn functions in the following, see also [Osi06].

Given a group G and a collection {Hλ}λ∈Λ of subgroups of G, we say that G is generated
by X ⊆ G relative {Hλ}λ∈Λ if G is generated by

⋃
λ∈ΛHλ ∪X. We shall always assume

that X is closed under taking inverses. We have a natural quotient map

F = (∗λ∈ΛHλ) ∗ F (X)→ G

where F (X) is the free group with free basis X. We denote by N the kernel of this quotient
map. Moreover, we let H =

⊔
Hλ \ {1} and by (H ∪ X)∗ we denote the free monoid

generated by H ∪ X. We say that G has a relative presentation with generators X and
relations R ⊆ (H ∪X)∗ if N is the normal closure of R in F . The relative presentation
is said to be finite if X and R are finite. Any word W ∈ (H ∪ X)∗ that represents the
trivial element in G can be written as W =

∏k
i=1 f

−1
i Rifi in F where fi ∈ F and Ri ∈ R.

A function f : N → N is called a relative isoperimetric function if for any n ∈ N and any
word W ∈ (H∪X)∗ of length at most n that represents the trivial element in G there is an
expression as above with at most k ≤ f(n) relations. The smallest relative isoperimetric
function of the given relative presentation is called Dehn function.

Definition 4.0.1. A group G is hyperbolic relative to a collection {Hλ}λ∈Λ of subgroups
of G if G is finitely presented with respect to {Hλ}λ∈Λ and the relative Dehn function with
respect to {Hλ}λ∈Λ is linear.

If G is a group that is hyperbolic relative to a family {Hλ}λ∈Λ of subgroups, we call an
element g ∈ G parabolic, if it is conjugate to an element lying in one of the parabolic
subgroups Hλ. Non-parabolic elements of infinite order are called loxodromic. For g ∈ G a
loxodromic element, there exists a unique maximal virtually cyclic subgroup EG(g) that
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4. Constructions of Monster Groups

contains g. It is given by

EG(g) = {h ∈ G | ∃ m ∈ N \ {0} such that h−1gmh = g±m}.

Recall that two elements a, b ∈ G are called commensurable if there exists k, l ∈ Z \ {0} such
that ak is conjugate to bl. A subgroup S of G is called suitable if there exist two loxodromic
elements s1, s2 ∈ S that are not commensurable such that EG(s1) ∩ EG(s2) = 1.

Theorem 4.0.2 ([HO13, Theorem 6.2]). Let G be a group hyperbolic relative to a collection
of subgroups {Hλ}λ∈Λ, S a suitable subgroup and t1, . . . , tm arbitrary elements of G. Let
N ∈ N and X a finite relative generating set of G. Then there exists a group G and an
epimorphism q : G→ G such that:

(a) The group G is hyperbolic relative to {q(Hλ)}λ∈Λ.

(b) We have q(ti) ∈ q(S) for 1 ≤ i ≤ m.

(c) The map q is injective on BG,H∪X(N).

(d) q(S) is a suitable subgroup of G.

(e) If G is torsion-free, then so is G.

(f) If g, g′ ∈ BG,H∪X(N), then g and g′ are conjugate if and only if q(g) and q(g′) are
conjugate.

(g) If g ∈ BG,H∪X(N) is loxodromic, then EG(q(g)) = q(EG(g)).

As in previous chapters, BG,H∪X(N) denotes the ball of radius N in the Cayley graph
Γ(G,H∪X). Note that the Cayley graph is in general not locally finite. In our applications
we usually only use that

⋃
λ∈ΛHλ ⊆ BG,H∪X(N). The group G is defined by G = G/N

where N = 〈t1w1, . . . , tmwm〉G for some elements w1, . . . , wm ∈ S. It is possible to choose
w1, . . . , wm ∈ [S, S], which will be important later on if we wish to define homomorphisms
from G onto abelian groups that are induced from a corresponding homomorphism defined
on G.

We will make use of the following two lemmas repeatedly. For the convenience of the reader,
we recall their statements:

Lemma 4.0.3 ([Osi06, Theorem 1.4]). Let G be a group hyperbolic relative to a collection
of subgroups {Hλ}λ∈Λ. Then for every λ ∈ Λ and g ∈ G \Hλ the intersection Hλ ∩Hg

λ is
finite.

In particular, if G is torsion-free and h, h′ ∈ Hλ are not conjugate in Hλ, then they are not
conjugate in G.

Lemma 4.0.4 ([HO13, Lemma 2.14]). Let G be a group and A,B two isomorphic subgroups.
Let g ∈ G be an element that is not conjugate to any element of A ∪B. Then in the HNN
extension G∗At=B
(1) g is conjugate to some g′ ∈ G in G∗At=B if and only if g and g′ are conjugate in G.

(2) If g is primitive in G, then it is primitive as an element of G∗At=B.
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Proof. We will reproduce here the proof of (2), also correcting an inconsequential mistake.
Suppose ω ∈ G∗At=B with ωn ∈ G. We claim that it follows that ω ∈ G or ω is conjugate
to an element of A ∪ B. To prove this we will induct on the t-length of ω. If a reduced
word representing ω contains no stable letters, then certainly ω ∈ G. Since ωn ∈ G it also
follows that the t-length of ω is even. Suppose now that the t-length of ω equals two, then
we can write ω = g0t

εg1t
−εg2 where ε ∈ {−1, 1} and g0, g1, g2 ∈ G. Then Britton’s Lemma

implies that t−εg2g0t
ε is a pinch or freely trivial, so t−εg2g0t

ε = h ∈ A ∪B. Without loss of
generality, suppose that h ∈ A, then g2g0 ∈ B. We then obtain ωn = g0t

ε(g1h)n−1g1t
−εg2.

Since ωn ∈ G, by Britton’s Lemma it follows that tε(g1h)n−1g1t
−ε is trivial or a pinch and

thus tε(g1h)n−1g1t
−ε = h′ for some h′ ∈ B. Hence ωn = g0h

′g2 = g0h
′g2g0g

−1
0 is conjugate

to h′g2g0 ∈ B.

For the induction step, write ω = g0e
ε0 . . . t−ε0gn. As before, it follows that t−ε0gng0t

ε0 = h
for some h ∈ A ∪ B. Let u′ = t−ε0g−1

0 ωg0t
ε0 = g1t

ε1 . . . gn−1h and let u be a cyclically
reduced conjugate of u′. Then u is conjugate to ω, so un is conjugate to ωn ∈ G. As un is
cyclically reduced it follows that un ∈ G. Since u has shorter t-length than ω the induction
hypothesis applies.
Lemma 4.0.5. Let G be hyperbolic relative to a subgroup H and suppose that G is
torsion-free. Let h ∈ H be primitive as an element of H. Then h is primitive in G.

Proof. First note that non-trivial powers of loxodromic elements are loxodromic again. In
fact, let g be loxodromic and suppose that gn is parabolic for some n 6= 0, i.e. gn = αyα−1,
where y ∈ H and α ∈ G. Then it would follow that 0 = τ rel(y) = τ rel(gn) = |n|τ rel(g) > 0 by
[Osi06, Lemma 4.24, Theorem 4.25], where τ rel(g) denotes the relative translation number
of g.

So if h = gn for some g ∈ G and n ≥ 1, then g has to be parabolic, i.e. g = αxα−1 for some
x ∈ H and α ∈ G. By Lemma 4.0.3 it follows that α ∈ H, thus n = 1, since h was primitive
in H.
Lemma 4.0.6. Let G be a group and let a, b ∈ G be two primitive elements. Then any
primitive element g ∈ G, considered as an element of the HNN extension G∗at=b is still
primitive.

Proof. Let g ∈ G be a primitive element. If g is neither conjugate to an element of 〈a〉 nor
〈b〉, then Lemma 4.0.4 implies that g is primitive as an element of the HNN extension. So
we can assume without loss of generality that g = a. Let a = ωn with n ≥ 1, where ω is
of t-length 2, so ω = g0t

εg1t
−εg2 for g0, g1, g2 ∈ G and ε ∈ {±1}. For the equality a = ωn

to hold, the expression t−εg0g2t
ε must be a pinch or trivial, so say g2g0 = bm for some m.

Then t−εg2g0t
ε = am. Expanding the power of ω, we obtain

ωn = g0t
εg1(amg1)n−1t−εg2 .

This implies that g1(amg1)n−1 ∈ 〈a〉, say g1(amg1)n−1 = ak. Thus

a = ωn = g0b
kg2 = g0b

kg2g0g
−1
0 = g0b

k+mg−1
0

But since a is primitive in G, it follows that k+m ∈ {±1}. The equation g1(amg1)n−1 = ak

is equivalent to (amg1)n = amak = am+k = a±1, which implies that n = 1, again since a is
primitive. The induction step works as in the proof of Lemma 4.0.4.
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Lemma 4.0.7. Let G be a group and let a, b ∈ G be arbitrary non-trivial elements. Then
any primitive element g ∈ G, considered as an element of the HNN extension G∗(an)t=bm is
primitive as long as |n|, |m| ≥ 2.

Proof. Let g ∈ G be a primitive element. Then g is neither conjugate to an element of 〈an〉
nor 〈bm〉. Thus the claim follows from Lemma 4.0.4.

The next proposition shows that the converse of Lemma 1.2.10 does not hold, even if we
additionally impose finite generation on the group.

Proposition 4.0.8. There exists a finitely generated torsion-free group G with a finite
index subgroup H such that H has bCyc, but G does not.

Proof. The construction of [HO13, Theorem 7.2] already provides an example. We give the
additional arguments here that are necessary to show that the constructed group fails to
have bCyc. First, in [HO13, Lemma 7.1] a countable torsion-free group C is constructed that
contains a subgroup N of index 2 such that N has exactly two conjugacy classes. Moreover,
there is a free group F ≤ N of rank 2 and an element a ∈ C such that for any two distinct
elements f1, f2 ∈ F the elements af1 and af2 are not conjugate. The construction of C
proceeds by iteratively forming HNN extensions starting with the free group A0 = 〈a, b, c〉
of rank 3 and the epimorphism ε0 : A0 → 〈a | a2 = 1〉 ∼= Z2. We let F = 〈b, c〉. It is then
clear that af with f ∈ F is primitive in A0. Suppose An and εn : An → Z2 have already
been constructed. Let Kn = ker(εn) and enumerate all elements of Kn \ {1} = {k0, k1, . . .}
and form the multiple HNN extension

An+1 = 〈An, (ti)i∈N | ktii = k0〉 .

We can extend εn to An+1 by mapping all stable letters ti to the neutral element of Z2. Note
that εn(af) for f ∈ F is non-trivial. Hence by Lemma 4.0.4 it follows that the elements af
with f ∈ F are primitive in An+1. The group C is defined by

⋃
n≥0An and N =

⋃
n≥0Kn.

It is then clear that the elements af with f ∈ F are still primitive in C.

In [HO13, Theorem 7.2] small cancellation theory is then used to produce a finitely generated
torsion-free group G from C which contains a subgroup H of index 2 with only two conjugacy
classes but such that G has exponential conjugacy growth. In particular, we know that H
has bCyc. We can now simply adapt the proof of Theorem 7.2. of [HO13] and observe that
the elements af with f ∈ F are primitive in the finite stages G(i) of the construction by
Lemma 4.0.5 since they lie in the parabolic subgroup C. Since af1 and af2 lie in different
conjugacy classes for distinct elements f1, f2 ∈ F , the group G has infinitely many primitive
conjugacy classes. Hence G does not have bCyc by Lemma 1.2.13.

Lemma 4.0.9. Let H be a torsion-free countable group. There exists a 2-generated
torsion-free group G that contains H as a subgroup such that

(1) Any g ∈ G is conjugate to an element of H.

(2) If h ∈ H is primitive, then it is primitive as an element of G.

(3) If h, h′ ∈ H are not conjugate, then they are not conjugate in G.
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Proof. Let
G(0) = H ∗ F (x, y)

where F (x, y) is the free group on the free generators x and y. Enumerate the elements of
H = {1 = h0, h1, h2, . . .} as well as G(0) = {1 = g0, g1, g2, . . .}.

Suppose the group G(i) has been constructed such that G(i) is hyperbolic relative to H,
〈x, y〉 is a suitable subgroup and h1, . . . , hi lie in 〈x, y〉 and gj for 1 ≤ j ≤ i is conjugate to
an element of H. Construct G(i + 1) from G(i) as follows: If gi+1 is parabolic, then let
G′(i) = G(i), otherwise let ι : EG(i)(gi+1)→ 〈h1〉 be an isomorphism and form

G′(i) = 〈Gi, t | et = ι(e) for e ∈ E(G(i)(gi+1)〉 .

By [HO13, Corollary 2.16], G′(i) is still hyperbolic relative to H and 〈x, y〉 is again suitable.
Now apply Theorem 4.0.2 to the suitable subgroup 〈x, y〉, the words {hi+1, t} resp. {hi+1}
to obtain G(i+ 1). Observe that there is a canonical quotient map G(i)→ G(i+ 1). Here
we do not distinguish between H and its image in G′(i) or G(i+ 1). Note that G(i+ 1) is
also hyperbolic relative to H and 〈x, y〉 is again suitable.

Letting G be the direct limit of the G(i), it follows that G will be two-generated and any
element of G will be conjugate to an element of H. Moreover, if h ∈ H is primitive, then it
will remain primitive in G(i) by Lemma 4.0.5 for any i, thus it will be primitive in G. By
Lemma 4.0.3 non-conjugate elements in H remain non-conjugate in G.

Proposition 4.0.10. There exists a finitely generated torsion-free group G which has
exactly three conjugacy classes {(1), (x), (x2)}, where x ∈ G is a primitive element.

Proof. We first construct a countable group as follows. We let G0 = 〈x〉 ∼= Z. Of course,
the only primitive elements in G0 are x and x−1. Suppose we have already constructed a
chain G0 ≤ G1 ≤ . . . ≤ Gn of countable torsion-free groups such that the element x, viewed
as an element of Gn, is primitive. To construct Gn+1 out of Gn, we first enumerate all
primitive elements of Gn by {p1, p2, . . .} and enumerate all non-trivial elements that are
non-primitive by {g1, g2, . . .}. Secondly, we form the multiple HNN extension

Gn+1 = 〈Gn, {si}i∈N, {ti}i∈N | psii = x, gtii = x2〉 .

By an inductive application of Lemma 4.0.6 and Lemma 4.0.7 it follows that x remains
primitive in Gn+1. Finally, we let G =

⋃
n≥0Gn. By construction, G satisfies our desired

properties. Note that since x is primitive, x and x2 are non-conjugate. To obtain a finitely
generated example we can apply Lemma 4.0.9.

Remark 4.0.11. If we let G be a group as constructed in Proposition 4.0.10 and x ∈ G a
primitive element, then G× Z does not have bCyc, since it has infinitely many primitive
conjugacy classes {(x, n) | n ∈ Z}. On the other hand, G× Z has bCyc if G is a torsion-free
group with exactly two conjugacy classes.

As we have noted, if G is a torsion-free group with exactly two conjugacy classes G× Z has
bCyc. However, the situation changes if we allow for a semidirect product:
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Proposition 4.0.12. There exists a countable torsion-free group H with exactly two
conjugacy classes such that a certain extension H o Z does not have bCyc.

Proof. Let G0 = 〈a, b〉 be a free group of rank 2, let ε0 : G0 → Z be defined by mapping a
to 0 and b to 1. Note that for any m ∈ Z, the element abm is primitive and ε0(abm) = m.

Suppose Gn and εn : Gn → Z have been constructed. To obtain Gn+1, enumerate all
non-trivial elements of ker εn by {g1, g2, . . .} and form the multiple HNN extension

Gn+1 = 〈Gn, {ti}i∈N | gtii = a〉 .

We can extend εn to Gn+1 to define εn+1 : Gn+1 → Z by arbitrarily assigning a value to
the stable letters ti. Now note that for m 6= 0, abm ∈ G0 ≤ Gn is neither conjugate to an
element of 〈gi〉, nor to an element of 〈a〉. Thus, by Lemma 4.0.4, the elements abm are
primitive in Gn+1 for m 6= 0.

Let G be the direct limit of the Gn, and let ε : G→ Z be induced by the epimorphisms εn.
Any non-trivial element of ker(ε) is then conjugate to a. However, since for m 6= 0, the
elements abm are primitive and obviously in different conjugacy classes as ε(abm) = m, it
follows that G does not have bCyc.

Proposition 4.0.13. For any m ≥ 1, there exists a finitely generated torsion-free group G
that has exactly n+ 1 conjugacy classes (1), (x1), . . . , (xm) such that xki is conjugate to xi
for any i and any k 6= 0.

Proof. Note that any torsion-free group with exactly two conjugacy classes will have the
property that xk is conjugate to x as long as x is non-trivial. So we will demonstrate the
claim for m = 2, the general case follows from an analogous argument. Let G−1 = 〈a, b〉 be
a free group of rank two, and define

G0 = 〈G−1, {si}i∈Z\{0}, {ti}i∈Z\{0} | (ai)si = a, (bi)ti = b〉 .

Now observe that the elements a and b are not conjugate in G0 by repeated application of
Lemma 4.0.4. If we form an HNN extension with relation (ai)si = a we apply Lemma 4.0.4
to the element b. For relations of the type (bi)ti = b we apply the same lemma to the
element a.

We proceed constructing countable torsion-free groups Gn for n ≥ 1 inductively. First,
observe that we can write Gn \ {1} = S0 t Sa t Sb, where Sa resp. Sb are those elements of
Gn which have a non-trivial power that is conjugate to a resp. b, and S0 being defined as
the complement of Sa ∪ Sb. Note that Sa ∩ Sb = ∅: If g ∈ Sa ∩ Sb, then gk ∼ a and gl ∼ b
for some k, l 6= 0. But then gkl ∼ al ∼ a, and at the same time gkl ∼ bk ∼ b. But this is
impossible since a and b are not conjugate in Gn by induction. Our construction proceeds
in two steps:

Step 1. Enumerate all element of Sa ∪ Sb = {g1, g2, . . .}. We form the multiple HNN
extension

Q = 〈Gn, {ti}i∈N | gtii = b if gi ∈ Sb , otherwise gtii = a〉 .
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In other words Q is the direct limit of a sequence of HNN extensions Q0 ≤ Q1 ≤ Q2 ≤ . . .
where Q0 = Gn and

Qi = 〈Qi−1, ti | gtii = b if gi ∈ Sb , otherwise gtii = a〉 .

Now we prove by induction that a and b are not conjugate in Qi for any i. Suppose the
claim is true for Qi−1. If gi ∈ Sa then apply Lemma 4.0.4 to the element b. Note that b is
not conjugate to a power of a in Qi−1 by induction. Moreover b is not conjugate to gni for
any n 6= 0 in Qi−1. Otherwise, it would follow that b ∼ bk ∼ gnki ∼ an ∼ a in Qi−1 since
there is some k 6= 0 such that gki ∼ a. Interchanging the roles of a and b, we see that the
same conclusion holds if gi ∈ Sb. Hence it follows that a and b are non-conjugate in Q.

Step 2. Enumerate all elements of S0 = {h1, h2, . . .}. Again we construct a sequence of
HNN extensions P0 ≤ P1 ≤ . . ., starting with P0 = Q. Suppose Pi−1 has been constructed
and a, b are non-conjugate in Pi−1. To form Pi, we consider the following cases:

1. If a non-trivial power of hi is conjugate to a in Pi−1, we form the HNN extension

Pi = 〈Pi−1, si | hsii = a〉 .

We can again employ Lemma 4.0.4 to the element b to prove that a and b are
non-conjugate in Pi using the same argument as in step 1.

2. If a non-trivial power of hi is conjugate to b in Pi−1, we let

Pi = 〈Pi−1, si | hsii = b〉 .

Again, interchanging the roles of a and b one sees that these two elements remain
non-conjugate in Pi.

3. In the remaining case we can choose

Pi = 〈Pi−1, si | hsii = a〉 .

and observe that Lemma 4.0.4 can be applied.

We let Gn+1 =
⋃
i≥0 Pi. Note that a and b are non-conjugate in Gn+1 and all elements of

Gn \ {1} are either conjugate to a or b in Gn+1.

Finally, we define G =
⋃
n≥0Gn. Again, Lemma 4.0.9 yields a finitely generated example.

We see in particular that for a group G as constructed in the previous proposition, the
group G× Z has bCyc.

Example 4.0.14. Letting G be an infinite 2-generated group of exponent p with exactly p
conjugacy classes (for example, as constructed in [Ols91, Theorem 41.2]), then the group
G× Z does not have bCyc. This can be seen by considering the elements (x, pn) for n ∈ N
where x ∈ G is non-trivial.

It is easy to see that a torsion-free group with infinitely many commensurability classes
cannot have bCyc. The following shows that a converse to Lemma 1.2.13 does not hold.
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Proposition 4.0.15. There exists a finitely generated torsion-free group G without primi-
tive elements that does not have bCyc.

Proof. We first prove that there exists a torsion-free countable group without primitive
elements and infinitely many commensurability classes. We start by an inductive procedure,
letting G0 = F2 be the free group on two generators. In fact, any countable torsion-free group
with infinitely many commensurability classes of elements would work as well. Suppose Gn
has been constructed, enumerate all non-trivial elements Gn \ {1} = {g1, g2, . . .} and define
Gn+1 as the following multiple HNN extension:

Gn+1 = 〈Gn, {ti}i∈N | gtii = g2
i 〉

Suppose x, y ∈ Gn \ {1} are not commensurable. For any i ∈ N and for any k, l ∈ Z \ {0} it
follows that xk is not conjugate to an element of 〈gi〉 or yl is not conjugate to an element of
〈gi〉. By Lemma 4.0.4 it follows that x and y are not commensurable in Gn+1. Letting G be
the direct limit of the Gn, we have that there are infinitely many commensurability classes
in G and any non-trivial element of G can be written as a proper power of a conjugate of
itself. To obtain a finitely generated example, apply Lemma 4.0.9.

Proposition 4.0.16. There exists a finitely generated torsion-free group G without bCyc
and exactly two commensurability classes.

Proof. Let G0 = 〈a, b〉 be a free group of rank two. Suppose Gn has been constructed, then
enumerate all elements {g1, g2, . . .} of Gn \ {1} that are not primitive. We form the multiple
HNN extension

Gn+1 = 〈Gn, {ti}i∈N | gtii = b2〉 .

By Lemma 4.0.7 any primitive element of Gn stays primitive in Gn+1. Similarly, also
non-conjugate primitive elements g, h ∈ Gn will stay non-conjugate in Gn+1 by Lemma 4.0.4.
If we let G be the direct limit of the Gn, then G contains infinitely many primitive conjugacy
classes, thus G fails to have bCyc. However, given any non-trivial element g ∈ G, by
construction g2 will be conjugate to b2. Thus there are precisely two commensurability
classes. Finally, to obtain a finitely generated group with the same properties, apply
Lemma 4.0.9.

Lemma 4.0.17. Let G be a group such that centralizers of all non-trivial elements are
infinite cyclic. Let a, b ∈ G and suppose that an = bm for some m,n 6= 0. If a is primitive,
then b ∈ 〈a〉.

Proof. Note that CG(an) = 〈x〉 for some x ∈ G and a ∈ CG(an) and b ∈ CG(an), thus
a = xk for some k and b = xl for some l. Since a is primitive it follows that k = ±1. Hence
b ∈ 〈a〉.

In a hyperbolic group the centralizers of infinite order elements are virtually cyclic [BH99,
III.Γ.3.10]. In particular if G is torsion-free hyperbolic and g is a primitive element, then
CG(〈g〉) = 〈g〉. Then NG(〈g〉) is virtually cyclic, thus infinite cyclic, since G is torsion-free.
So NG(〈g〉) = 〈x〉. As g ∈ NG(〈g〉) = 〈x〉 and g is primitive, we have NG(〈g〉) = 〈g〉 as well.
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Lemma 4.0.18. Let G be a torsion-free hyperbolic group and let a, b be two primitive
elements such that a is not conjugate to b±1. Then the HNN extension G∗at=bk is hyperbolic
for any nonzero interger k.

Proof. By [KM98, Corollary 1], we only need to show that the HNN extension G∗at=bk
is separated. Recall that a subgroup U of G is called conjugate separated if the set
{u ∈ U | ux ∈ U} is finite for all x ∈ G \U . And an HNN extension G∗θ for an isomorphism
θ : U → V is called separated if either U or V is conjugate separated, and the set U ∩ V g is
finite for all g ∈ G. Now 〈a〉 is conjugate separated since CG(〈a〉) = NG(〈a〉) = 〈a〉. And if
〈a〉 ∩ 〈g−1bkg〉 was non-empty, then an = (g−1bg)km for some m,n 6= 0. By Lemma 4.0.17
it follows that b is conjugate to a±1 which contradicts our assumptions.

Proposition 4.0.19. There exists a countable torsion-free group G and an epimorphism
ε : G→ Z such that G has bCyc but ker(ε) does not.

Proof. Let G0 = 〈a, c, d〉, and ε0 : G0 → Z be defined by mapping a to 1 and the other free
generators to 0. Moreover, choose a bijection φ0 : N0 → G0 \ {1}.

For each n > 0 we construct a countable torsion-free group Gn, an epimorphism εn : Gn → Z
and choose a bijection φn : N0 → Gn \ {1} such that

(a) Gn is either an HNN extension of Gn−1 through the stable letter tn or equals Gn−1.
Moreover, Gn is a hyperbolic group.

(b) εn|Gn−1 = εn−1 .

(c) Any primitive element x ∈ ker(εn−1) is primitive as an element of Gn.

(d) If two primitive elements x, y ∈ ker(ε0) are conjugate in Gn, then the tn−1-length of
ω is at most one.

Furthermore we choose the bijection φ : N0 → N0 × N0 which enumerates the elements of
N0 × N0 diagonally, i.e. {(0, 0), (1, 0), (0, 1), (0, 2), (1, 1), . . .}.

Now, suppose Gn has been constructed. Let (i, j) = φ(n) and let gn = φi(j) ∈ Gn. In Gn,
if gn is not primitive, or if it is conjugate to an element of 〈a〉 or 〈d〉, then set Gn+1 = Gn,
εn+1 = εn and φn+1 = φn. Otherwise we construct Gn+1 as an HNN extension depending
on the value of εn(g) as follows:

(i) If εn(gn) 6= 0, we set
Gn+1 = 〈Gn, tn | gtnn = aεn(gn)〉 .

(ii) If gn ∈ ker(εn), we define

Gn+1 = 〈Gn, tn | gtnn = d〉 .

Note that in both cases Lemma 4.0.18 applies and thus Gn is hyperbolic.

If gn is conjugate in Gn to an element of 〈c, d〉, say gn = α−1
n xnαn for some xn ∈ 〈c, d〉, we

define εn+1 : Gn+1 → Z by tn 7→ |εn(αn)|+ 4ε(tn−1) + 1, otherwise we let tn 7→ εn(tn−1) + 1.
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Here, we interpret ε(t−1) = 1. Note that αn and xn are not unique here, but we fix our
choices for each such gn.

Furthermore we choose a bijection φn+1 : N0 → Gn+1 \ {1}.

Proof of (c). Let x ∈ ker(εn) be primitive. The claim in case (i) follows directly from
Lemma 4.0.4 since x is not conjugate to any element in 〈gn〉 ∪ 〈a〉. In case (ii) we can apply
Lemma 4.0.6 since since gn is primitive in Gn by assumption and d ∈ ker(ε0) is primitive in
Gn by induction.

Proof of (d). Let x, y ∈ ker(ε0) ≤ Gn+1 be primitive and let ω ∈ Gn+1 be a reduced word
such that ω−1xω = y. If ω contains no tn or t−1

n , then we are certainly done, thus we can
moreover assume that we are in case (ii). Suppose the tn-length of ω is at least two, then
we can write ω = ω1t

±1
n ω2t

±1
n ω3 as a reduced expression, where ω2 ∈ Gn and ω1, ω3 ∈ Gn+1.

If ω = ω1tnω2tnω3 we know that t−1
n ω−1

1 xω1tn has to be a pinch, so ω−1
1 xω1 ∈ 〈gn〉, i.e.

ω−1
1 xω1 = gkn. Since x is primitive as an element of Gn+1, it follows that k = ±1. But we

also know that t−1
n ω−1

2 dkω2tn has to be a pinch, thus ω−1
2 dkω2 = gmn where m = ±1. Since

ω2 ∈ Gn, this is impossible by our choice of gn. Similarly the case that ω = ω1t
−1
n ω2t

−1
n ω3

is impossible.

If ω contains two adjacent stable letters whose exponents are different, we first consider the
case that ω = ω1tnω2t

−1
n ω3. Then t−1

n ω−1
1 xω1tn has to be a pinch, thus ω−1

1 xω1 = gkn with
k = ±1, so that t−1

n gkntn = dk. Now we also know that tnω−1
2 dkω2t

−1
n has to be a pinch,

thus ω−1
2 dkω2 ∈ 〈d〉, so ω2 ∈ 〈d〉 since Gn is hyperbolic. But then ω was not a reduced word

to begin with. Thus we have shown that the reduced element ω has tn-length at most one.
If ω = ω1t

−1
n ω2tnω3 then an analogous argument applies since 〈gn〉 is self-normalizing as

well since gn is primitive in case (ii).

We now define G as the direct limit of the Gn. Note that the εn induce an epimorphism
ε : G→ Z.

G has bCyc. Let g ∈ G be a non-trivial element. We claim that it is conjugate to an
element in 〈a〉 ∪ 〈d〉. We can find n such that g ∈ Gn. Since Gn is hyperbolic we can
find a primitive element h in Gn such that g is some power of h. If h is conjugate to an
element of 〈a〉 ∪ 〈d〉 or if h is conjugate to gn+1 in Gn+1 we are done. Otherwise, h remains
primitive in Gn+1 by Lemma 4.0.4. On the other hand, our enumeration function φ and
the construction guarantees that in the end any primivite element will be conjugate to an
element in 〈a〉 ∪ 〈d〉.

ker(ε) does not have bCyc. We first prove that if x, y are two primitive elements in
〈c, d〉 ≤ ker(ε0) and there is some ω ∈ Gn+1 such that ω−1xω = y, then |ε(ω)| ≤ 2ε(tn),
where we interpret ε(t−1) = 1 as above. Let n = −1, and note that the conjugating element
ω lies in 〈c, d〉 since G0 is free. In particular, ε(ω) = 0 ≤ 2ε(t−1). Now suppose n ≥ 0 and
let ω ∈ Gn+1 such that ω−1xω = y. By (d) it follows that the tn-length of ω is at most
one. If the tn-length equals zero, we are done by induction since ε(tn−1) < ε(tn). If the
tn-length is non-zero we can assume without loss of generality that ω = ω1tnω2 where ω1
and ω2 are elements in Gn. Since ω−1xω = y, it follows that ω−1

1 xω1 ∈ 〈gn〉 and similarly
ω−1

2 d±1ω2 = y. Here, gn is the element in the kernel of εn that was used to construct Gn+1
from Gn via an HNN extension.
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Suppose ω−1
1 xω1 = g±1

n . Then we also know that gn = α−1
n xnαn, thus by induction we know

that |ε(ω1α
−1
n )| ≤ 2ε(tn−1) since xω1α

−1
n = x±1

n , so |ε(ω1)| ≤ |ε(αn)|+ 2ε(tn−1). Moreover,
by induction we also conclude that |ε(ω2)| ≤ 2ε(tn−1). Altogether we obtain

|ε(ω)| ≤ |ε(ω1)|+ ε(tn) + |ε(ω2)|
≤ 2ε(tn) .

We are now ready to show that ker(ε) contains infinitely many primitive conjugacy classes.
Let x, y be two primitive elements in subgroup 〈c, d〉 ≤ ker(ε0) such that x is not conjugate
to y in ker(ε0). Suppose x and y are conjugate via some ω ∈ ker(ε), i.e. ω−1xω = y. There
is some n ∈ N such that x, y, ω ∈ Gn+1. As in the proof above we can assume without
loss of generality that ω = ω1tnω2 with ω1, ω2 ∈ Gn and ω−1

1 xω1 = g±1
n , ω2d

±1ω2 = y
such that |ε(ω2)| ≤ 2ε(tn−1) and |ε(ω1)| ≤ |ε(αn)|+ 2ε(tn−1). But since we chose ε(tn) >
|εn(αn)|+ 4ε(tn−1), we see that ω cannot lie in the kernel of ε.

Theorem 4.0.20. There exists a finitely generated torsion-free group G = H o Z such
that G has bCyc but H does not.

Proof. Let C be a torsion-free countable group having bCyc and admitting an epimorphism
ε : C → Z such that ker(ε) contains infinitely many conjugacy classes that are primitive in
C, see Proposition 4.0.19. Let

G(0) = C ∗ F (x, y) .

We extend ε to α0 : G(0)→ Z by mapping x and y to 1 ∈ Z. Moreover, we enumerate the
elements of C = {c0 = 1, c1, c2, . . .} and those of G(0) = {g0 = 1, g1, g2, . . .}. Essentially
the same argument as in the proof of [HO13, Theorem 7.2] applies. There is a sequence of
groups G(i) and epimorphisms αi : G(i)→ Z such that G(i+ 1) is a quotient of G(i) and
αi descends to an epimorphism αi+1 : G(i+ 1)→ Z. Under the quotient maps the group C
embeds into G(i) such that G(i) is hyperbolic relative to C. Moreover, in G(i) the following
holds: (a) the elements c1, . . . , ci are contained in 〈x, y〉 and (b) the elements g1, . . . , gi are
conjugate to elements of C. If we define G as the direct limit of the G(i), we obtain an
induced epimorphism α : G → Z. By (a) G is 2-generated and by (b) G has bCyc since
C has bCyc. Since G(i) is hyperbolic relative to C, if elements c, c′ ∈ C are conjugate in
G(i), i.e. wcw−1 = c′ for some w ∈ G(i), then w ∈ C by Lemma 4.0.3. Thus Lemma 4.0.5
together with the previous observation imply that ker(α) contains infinitely many primitive
conjugacy classes.

Proposition 4.0.21. There exists a countable torsion-free group G and an epimorphism
ε : G→ Z such that both G and ker(ε) have bCyc, and ker(ε) contains a non-abelian free
subgroup.

Proof. We will first inductively construct a specific sequence G0 ≤ G1 ≤ . . . of groups,
together with epimorphisms εn : Gn → Z such that εn+1|Gn = εn as follows: We let
G0 = 〈a, b, c〉 be a non-abelian free group and let ε0 : G0 → Z be defined by mapping a to 1
and b, c to 0. Now, suppose Gn has been constructed such that Gn−1 ≤ Gn, together with
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an epimorphism εn : Gn → Z. We enumerate all elements of Gn = {1 = g0, g1, g2, . . .} and
define Gn+1 as the following multiple HNN extension

Gn+1 = 〈Gn, {ti}i∈N | gtii = aεn(gi) if εn(gi) 6= 0 and gtii = b otherwise 〉 .

We can then extend εn to Gn+1 to define εn+1, by mapping the stable letters ti to 0 ∈ Z.
Finally, we let G be the direct limit of the Gn. Observe that G has bCyc with witnesses
〈a〉 and 〈b〉 and that there is an induced epimorphism ε : G→ Z such that 〈b, c〉 ≤ ker(ε).
Moreover, since the stable letters of the HNN extensions are contained in ker(ε), also ker(ε)
has bCyc with only one cyclic group 〈b〉 as the witness.

Using arguments as in the proof of [HO13, Theorem 7.2] one can construct a group as in
the previous proposition that is additionally finitely generated.

We have shown in Theorem 3.0.7 that a finitely generated group with bVCyc whose virtually
cyclic subgroups are quasi-isometrically embedded has at most linear conjugacy growth. The
following proposition shows that one cannot omit the assumption on the cyclic subgroups
being undistorted.

Proposition 4.0.22. There exists a torsion-free finitely generated group G of exponential
conjugacy growth that has bCyc .

Proof. As a first step, we will prove that there exists a torsion-free countable group G that
contains an infinite cyclic subgroup 〈a〉 such that G has bCyc and the elements a2k+1 are
pairwise non-conjugate. Moreover, there is an element t ∈ G, such that at = a2. In the
end, the latter property will ensure that the word length of an element am is O(log(|m|)).
We will construct G as direct limit of countable groups G0 ≤ G1 ≤ . . . as follows: We let
G0 = 〈a, t | at = a2〉 be the Baumslag-Solitar group BS(1, 2). Note that this group has
exponential conjugacy growth, as the elements a2k+1 are pairwise non-conjugate, see [GS10,
Example 2.3]. To construct Gn+1 from Gn inductively, we first enumerate all elements in
Gn \ (

⋃
g∈G〈ag〉) = {g1, g2, . . .} and then form the multiple HNN extension

Gn+1 = 〈Gn, {si}i∈N | gsii = t〉 .

It follows inductively from Lemma 4.0.4 that the elements a2k+1 are pairwise non-conjugate
viewed as elements of Gn+1. The direct limit G =

⋃
n≥0Gn then satisfies the previously

required properties as any element in G\ (
⋃
g∈G〈ag〉) will be conjugate to the element t ∈ G0.

In the second step we want to construct a group with the same properties but which
is additionally finitely generated. In the following we will write C instead of G for the
previously constructed countable group. We let

G(0) = C ∗ F (x, y)

and enumerate the elements of C = {c0 = 1, c1, c2, . . .} resp. G(0) = {g0 = 1, g1, g2, . . .}.
Note that G(0) is hyperbolic relative to C and x, y generate a suitable subgroup of G(0).
In the following we will not distinguish notationally between elements of G(0) and their
representatives in quotients of G(0). We will inductively construct quotient groups G(i) of
G(0) such that
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(a) the subgroup C embeds under the quotient map into G(i). Again, we will not
distinguish between C and its image in G(i).

(b) G(i) is torsion-free and hyperbolic relative to C. Moreover, x and y generate a suitable
subgroup of G(i).

(c) The elements cj for 1 ≤ j ≤ i, considered as elements in G(i), lie in the subgroup
generated by x and y.

(d) In G(i), for 1 ≤ j ≤ i, the elements gj are conjugate to elements in C.

(e) The elements a2k+1 are pairwise non-conjugate in G(i).

To construct G(i + 1) from G(i), we proceed as follows: If gi+1 is parabolic, we set
G′(i) = G(i), otherwise we choose an isomorphism ι : EG(i)(gi+1)→ 〈t〉 and form the HNN
extension

G′(i) = 〈G(i), s | es = ι(e), e ∈ EG(i)(gi+1)〉 .

Note that 〈x, y〉 is still a suitable subgroup of G′(i) [HO13, Corollary 2.16].

In the next step, we apply Theorem 4.0.2 to G′(i) and the elements {s, ci+1} resp. {ci+1}
in the case that gi+1 is parabolic, to obtain a quotient G(i+ 1) of G′(i). Since s will lie in
the subgroup 〈x, y〉, we obtain a quotient map G(i)→ G(i+ 1). By construction, (d) holds
for G(i+ 1). The properties (a)-(c) follow directly from Theorem 4.0.2. The last statement
(e) is a consequence of Lemma 4.0.3 and the fact that G(i+ 1) is torsion-free.

Finally, let G be defined as the direct limit of the G(i). By (c) it follows that G is 2-generated,
property (d) implies that G has bCyc since the same was already true for C. Moreover, by
(e), the elements a2k+1 ∈ C are pairwise non-conjugate in G as well. Thus G has exponential
conjugacy growth.

Proposition 4.0.23. Let Q be a countable group with n conjugacy classes. Then there
exists a torsion-free countable group G with n+1 conjugacy classes such that Q is isomorphic
to a quotient of G.

Proof. Let {q0 = 1, q1, . . . , qn−1} ⊆ Q be representatives of conjugacy classes of elements
in Q. Since Q is countable, there is a countable free group G0 and an epimorphism
ε0 : G0 → Q. We can moreover assume without loss of generality that ker(ε0) is non-trivial.
Choose preimages g1, . . . , gn−1 of q1, . . . , qn−1 under ε0 and choose some non-trivial element
g0 ∈ ker(ε0).

We now inductively define countable torsion-free groups Gm together with epimorphisms
εm : Gm → Q such that Gm−1 ≤ Gm and εm|Gm−1 = εm−1. Suppose Gm and εm have
already been constructed. Enumerate all non-trivial elements {h1, h2, . . .} of Gm and form
the multiple HNN extension

Gm+1 = 〈Gm, {ti}i∈N | relations explained below 〉 .

For any i ≥ 1 we know that εn(hi) is conjugate to qji for some ji. If qji = 1, then we
impose the relation htii = g0. Otherwise there is some αi ∈ Gn such that εm(α−1

i hiαi) = qji .
We then impose the relation (α−1

i hiαi)ti = gi. With these choices we can extend εm to
εm+1 : Gm+1 → Q by mapping all stable letters ti to the trivial element in Q.
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Finally, we let G be the direct limit of the groups Gm. By construction, representatives of
the conjugacy classes of G are {1, g0, g1, . . . , gn−1}.

Note that the above construction is optimal in the sense that if Q has n conjugacy classes
and contains torsion then any torsion-free group G that surjects onto Q must have at least
n+ 1 conjugacy classes.

Example 4.0.24. Let G =
⊕∞

n=1 Z/2Z. An application of [Osi10, Theorem 1.1] yields
an embedding of G into a finitely generated group with only three conjugacy classes. In
particular, this latter group has bCyc and bVCyc. But it cannot have BVC by Lemma 1.2.11,
since the orders of finite subgroups in G are not bounded.

The previous example combined with Proposition 4.0.23 now shows:

Corollary 4.0.25. There exists a group G with BVC such that a quotient of G fails to
have BVC.

This corollary should serve as motivation why we study the bVCyc instead of the BVC
property.
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5. Finite Groups and Residually Finite
Groups

We have seen in Chapter 2 and Chapter 3 that ascending HNN extensions of finitely
generated free groups and linear groups satisfy Conjecture 1.2.2. Recall that a group is
residually finite if the intersection of all its finite index subgroups is trivial. It is well-known
that finitely generated linear groups are residually finite and even virtually residually p-finite.
In [BS05] Borisov and Sapir show that ascending HNN extensions of finitely generated
free groups are residually finite. Actually, they even prove that ascending HNN extensions
of finitely generated linear groups are residually finite. In [BS09] they improve upon this
result by showing that ascending HNN extensions of finitely generated free groups are
virtually residually p-finite for every sufficiently large prime p. Note that non-ascending
HNN extensions of free groups need not be residually finite. A prominent example is given
by the Baumslag-Solitar group BS(2, 3) = 〈a, t | t−1a2t = a3〉 which is not even Hopfian.
Mal’cev [Mal83] proved that any split extension of a finitely generated residually finite group
by a residually finite group is again residually finite. In particular, ascending non-proper
HNN extensions, i.e. semidirect products with Z, of finitely generated residually finite groups
are residually finite. It has been proven by Sapir and Wise that ascending HNN extensions
of residually finite groups need not be residually finite [SW02]. Given our previous results
on the BVC property and its variants, we formulate the following conjecture.

Conjecture 5.0.1. A residually finite group with BVC or bCyc is virtually cyclic.

One goal of this chapter is to give supporting evidence for this conjecture. By the fol-
lowing lemma we might as well assume from the beginning that the group appearing in
Conjecture 5.0.1 is torsion-free, so that there is no difference between the BVC and bCyc
property.

Lemma 5.0.2. Let G be a residually finite group with BVC or bCyc. Then there is a
torsion-free finite index subgroup in G that has bCyc.

Proof. If G has BVC or bCyc, there are only finitely many conjugacy classes of finite
order elements by Lemma 1.2.11, say (g1), . . . , (gn) with gi ∈ G of finite order. For each i
choose some finite index normal subgroup Ni EG such that gi /∈ Ni, so (gi) ∩Ni = ∅. Let
N =

⋂n
i=1Ni EG. Note that N is of finite index in G and N is torsion-free by construction.

Since N is of finite index in G, it has bCyc by Lemma 1.1.8 resp. Lemma 1.2.10.

Definition 5.0.3. Let G be a group and H a subgroup of G. We call H conjugate-dense
in G if G =

⋃
g∈GH

g.
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5. Finite Groups and Residually Finite Groups

By a simple counting argument it follows that a group G does not admit a proper finite
index conjugate-dense subgroup. In particular, a finite group has no proper conjugate-dense
subgroup. We can thus record:

Proposition 5.0.4. Let G be a residually finite group with 1Cyc. Then G is cyclic.

Proof. As G has 1Cyc, any finite quotient of G will have a cyclic conjugate-dense subgroup
and thus will be cyclic. As G is residually finite, it thus embeds into a direct product of
cyclic subgroups. Hence G is abelian, from which the claim follows easily.

We want to remark that there are groups G which are not virtually cyclic but which have
1Cyc nevertheless. For example, there is even a finitely generated group with exactly two
conjugacy classes by the work of Osin [Osi10]. So even in this very special case of having a
single witness we need to impose additional properties on the group in order to deduce that
it is virtually cyclic.

Proposition 5.0.5. Let G =
∏
i∈I Fi with Fi finite. If G has bCyc, then G is finite.

Proof. Since G has bCyc, there are only finitely many conjugacy classes of finite order
elements. In particular, there exists some M > 0 such that exp(Fi) ≤M for all i ∈ I. Here,
exp denotes the exponent of a finite group, i.e. the least common multiple of all element
orders in the group. The uniform bound on the exponents implies that G is torsion. As G
has bCyc, it follows that G has only finitely many conjugacy classes. Since G is residually
finite, by [KMT14, Theorem 2.3] it follows that G is finite.

One might also consider a weaker variant of Conjecture 5.0.1 where one demands that the
group in question is even residually p-finite. Here we want to provide an argument giving
some supporting evidence why such a conjecture might hold.

Lemma 5.0.6. A finite p-group cannot be the union of p proper subgroups.

Proof. Suppose G =
⋃p
i=1Hi for Hi some proper subgroups of G. If |G| = pn, then

|Hi| ≤ pn−1 and thus

pn = |G| ≤ 1 +
p∑
i=1
|Hi \ {1}| ≤ 1 + p(pn−1 − 1) ,

which is impossible.

Lemma 5.0.7. Let G be a finite p-group with at most n conjugacy classes of maximal
cyclic subgroups with n < p. Then G is cyclic.

Proof. We prove the claim by induction on s, where |G| = ps. If s = 1, the claim is
obviously true. So let G be a finite p-group with at most n conjugacy classes of maximal
cyclic subgroups, and |G| > p. Since a p-group has non-trivial center, G/Z(G) has order
strictly smaller than G and G/Z(G) also has at most n conjugacy classes of maximal cyclic
subgroups. Thus G/Z(G) is cyclic by induction. This implies that G itself was abelian. By
Lemma 5.0.6 the claim follows.
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Theorem 5.0.8. Let G be a residually p-finite group for infinitely many primes p. If G
has bCyc, then G is virtually cyclic.

Proof. We know that G has nCyc for some n ∈ N. Choose some prime p > n such that G
is residually p-finite. Lemma 5.0.7 implies that all finite p-quotients are cyclic. Thus G is
residually cyclic. In particular, G is abelian and the claim follows.

Note that the property of being residually p-finite for infinitely many primes p seems to be
quite restrictive. Groups satisfying this property are for example free groups and finitely
generated torsion-free nilpotent groups [Iwa43; Gru57]. Also certain free products with
amalgamation of free groups or finitely-generated torsion-free nilpotent groups satisfy this
property, see e.g. [KM93, Theorem 4.4]. Also observe that Theorem 5.0.8 is not enough
to prove Conjecture 5.0.1 for the class of finitely generated linear groups over a field of
characteristic 0. Although such linear groups are virtually residually p-finite for infinitely
many primes p, the indices of the corresponding subgroups usually grow with the size of
the prime and thus also the bound on the number of cyclic witnesses grows. A proof along
these lines might still be possible if one can bound the indices of the subgroups well enough.
However, we were not able to do so.

In unpublished work we also investigated the number of maximal cyclic subgroups as well
as the number of conjugacy classes of cyclic subgroups in finite p-groups for odd primes p.
We were able to establish lower bounds on these quantities that increase with the order of
the group. The ultimate aim was to answer the following question.

Question 5.0.9. Does the number of conjugacy classes of maximal cyclic subgroups of a
finite p-group for p > 2 grow with the order of the group?

Despite quite some effort we were neither able to prove this property nor provide examples of
arbitrarily large p-groups that only have a bounded number of conjugacy classes of maximal
cyclic subgroups. For p = 2, the generalized quaternion groups provide such an infinite
family as we shall see below (Lemma 5.2.19).

Instead of asking whether a residually finite group G with BVC is virtually cyclic, one
could weaken the conclusion and ask whether the group is just finitely generated. For an
arbitrary residually finite group this does not seem to simplify the situation. However,
we can answer the question if we demand that the group G is locally extended residually
finite or LERF, sometimes also called subgroup-separable. Recall that this means that for
any finitely generated subgroup H of G and any g ∈ G \H there exists an epimorphism
π : G→ F onto a finite group F such that π(g) /∈ π(H).

Lemma 5.0.10. Let G be a LERF group with BVC. Then G is finitely generated.

Proof. Let V1, . . . , Vn ≤ G be the virtually cyclic witnesses and let H = 〈V1, . . . , Vn〉 ≤ G.
Observe that H is finitely generated as virtually cyclic groups are finitely generated.
Moreover, the subgroup H is conjugate-dense in G. If π : G→ F is an epimorphism onto a
finite group F , then π(H) is a conjugate-dense subgroup of F , hence π(H) = F . Now G
being LERF implies that H = G.
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5. Finite Groups and Residually Finite Groups

Definition 5.0.11. For a group G we let σ(G) be the smallest integer such that G is the
union of σ(G) many cyclic subgroups. If there is no such integer we let σ(G) =∞. Similarly,
we define γ(G) resp. δ(G) to be the minimal number of cyclic subgroups such that G is the
union of G-conjugates resp. Aut(G)-conjugates of these cyclic subgroups and σ(G) =∞
resp. δ(G) =∞ if there is no such number.

If G is finite, then σ(G) equals the number of maximal cyclic subgroups of G and γ(G)
equals the number of conjugacy classes of maximal cyclic subgroups.

Lemma 5.0.12. Suppose G = H1×H2× . . .×Hn where the Hi are non-trivial torsion-free
groups. Then γ(G) ≥ 2n − 1. If G =

∏
i∈I Hi with Hi non-trivial torsion-free and |I| =∞,

then γ(G) =∞.

Proof. Let πi : H → Hi denote the canonical projections. Pick elements hi ∈ Hi \ {1} and
for each non-empty subset S ⊆ {1, . . . n} define the element hS by πi(hS) = hi if i ∈ S and
πi(hS) = 1 otherwise. Then let CS = 〈hS〉. If CgS ≤ K for some cyclic subgroup K and
g ∈ G, then the support of a generator k of K, i.e. the set of those integers i such that
πi(k) 6= 1, equals S since G is torsion-free. This implies that γ(G) ≥ 2n − 1. The last claim
follows analogously.

Note that the bound given in Lemma 5.0.12 is optimal. For example, let H be a torsion-free
group with exactly two conjugacy classes. Then γ(H × H) = 3 with the corresponding
maximal cyclic subgroups generated by (h, 1), (1, h), (h, h), where h is a non-trivial element
of H. This example generalizes to multiple factors.

Finite groups with two conjugacy classes of maximal cyclic subgroups are abundant. For
example, the finite dihedral groups whose order is not divisible by 4 belong to this class
and we shall see many more examples below. The bigger part of this chapter is devoted to
proving the following theorem.

Theorem 5.0.13. A finite group G with at most two conjugacy classes of maximal cyclic
subgroups is solvable of derived length at most 4.

The fact that such groups are solvable will follow from a result we prove in Appendix A
about the distribution of element orders in finite simple groups, where we rely on the
classification of the finite simple groups. To obtain a bound on the derived length we
will need to carefully analyze the structure of these groups, sometimes coming close to a
classification result. We were heavily inspired by the work of Costantini and Jabara. In
[CJ09] they study finite groups whose cyclic subgroups of the same order are conjugate.
They call these groups csc-groups and they prove:

Theorem 5.0.14 ([CJ09, Corollary 2.9]). A solvable csc-group has derived length at most 4.

At the end of this chapter we actually show that G/Z(G) is a csc-group for a finite group
G with γ(G) = 2. Hence, assuming the groups are solvable, Theorem 5.0.13 can be
seen as a corollary to Theorem 5.0.14. However, we see that G/Z(G) is a csc-group only
after a detailed structural analysis that sometimes parallels the arguments used to derive
Theorem 5.0.14. Using Theorem 5.0.13 it is now easy to verify Conjecture 5.0.1 if we have
at most two virtually cyclic witnesses.
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5.1. Group Coverings and Maximal Cyclic Subgroups

Theorem 5.0.15. Let G be a residually finite group with 2Cyc. Then G is virtually cyclic.

Proof. For any g ∈ G there is an epimorphism ϕg : G → Fg where Fg is a finite group
and ϕg(g) 6= 1. Now, by Theorem 5.0.13 we know that Fg is solvable of derived length at
most 4. Moreover, G embeds into

∏
g∈G Fg. Since the derived length of the Fg is bounded,

the product
∏
g∈G Fg is itself solvable. Thus G is solvable as well and by Theorem 1.2.15 it

follows that G is virtually cyclic.

For a solvable group G, let us denote by dl(G) the derived length of G. Theorem 5.0.13
also motivates the following question.

Question 5.0.16. Does there exist a function f : N→ N such that for any finite solvable
group G one has dl(G) ≤ f(γ(G))?

An affirmative answer to the previous question would imply that residually solvable groups,
in particular residually p-finite groups, would satisfy Conjecture 5.0.1 by the proof of
Theorem 5.0.15. Note that there cannot be an analogous upper bound such as formulated
in Question 5.0.16 for the nilpotency class of a nilpotent group. Recall that the maximal
nilpotency class of a p-group of order pn is equal to n− 1. Now consider the 2-groups of
maximal nilpotency class, these are the quaternion, dihedral and semidihedral groups. But
these happen to have only three conjugacy classes of maximal cyclic subgroups, independent
of their order.

5.1. Group Coverings and Maximal Cyclic Subgroups

Before we study the finite groups G with two conjugacy classes of maximal cyclic subgroups,
we want to a highlight some related problems and afterwards make some easy observations
about maximal cyclic subgroups. Note that a group G with γ(G) = 2 can be written
as the union G =

⋃
g∈GC

g ∪Dg with C and D maximal cyclic subgroups of G. On the
other hand, it is an easy exercise to show that no group can be written as the union of
two proper subgroups. If a group G admits an epimorphism onto the Klein four-group
K4 = C2 × C2, then pulling back the three non-trivial cyclic subgroups of K4 shows that G
is the union of three proper subgroups. Conversely, Scorza’s theorem [Zap91] tells us that if
G = H1 ∪H2 ∪H3, where the Hi are proper subgroups of G, then each subgroup Hi has
index two in G and N := H1 ∩H2 = H1 ∩H3 = H2 ∩H3 is a normal subgroup such that
G/N ∼= K4.

Given a group G and a collection H of proper subgroups of G, we say that H is a cover of
G if

⋃
H∈HH = G. A cover of minimal possible size is called minimal cover and a cover is

called irredundant if no proper subcollection is also a cover. A nice survey on group coverings
can be found in [Bha09]. For example, generalizing Scorza’s theorem, Cohn [Coh94] has
classified the groups which admit a minimal cover of size 4, 5 or 6. By Tomkinson [Tom97]
there does not exist a group that has a minimal cover with 7 elements. There are also
interesting results if one restricts the class of groups that one allows in a cover:

Theorem 5.1.1 (Baer, [Rob, Theorem 4.16]). A group is central-by-finite if and only if it
admits a finite covering consisting of abelian subgroups.
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5. Finite Groups and Residually Finite Groups

Let us now concentrate on coverings by cyclic subgroups and start with a couple of easy
examples.

Examples 5.1.2. (1) The quaternion group Q8 has the Klein four group as a quotient
and thus can be covered by three proper subgroups. In fact, we have σ(Q8) = 3 with
each maximal cyclic subgroup of order 4.

(2) For any n ≥ 0 we have σ(C4n+2 × C2) = 3. The generators of the maximal cyclic
subgroups are given by (1, 0), (1, 1), (2, 1). All of these elements have order 4n + 2,
hence the corresponding cyclic subgroups are indeed maximal.

For two natural numbers n,m we denote by (n,m) the greatest common divisor of n and m
and by [n,m] the least common multiple of n and m.

Lemma 5.1.3. Let H be a finite group and let n ≥ 2 be some natural number such that
(n, |H|) = 1. Then G = Cn ×H has σ(G) = σ(H).

Proof. Let Cn = 〈t〉 and let h ∈ H be a generator of a maximal cyclic subgroup in H. Since
n and ord(h) are coprime there exists some α ∈ N such that αn ≡ 1 mod ord(h). Let k,m
be some natural numbers and let l = (m− k)αn+ k. Note that l ≡ m mod ord(h). Hence

(th)l = tlhl = tkhm

It follows that G can be covered by σ(H)-many cyclic subgroups.

From Lemma 5.1.3 it follows in particular, that there are arbitrarily large non-solvable
groups with a bounded number of maximal cyclic subgroups.

Observation 5.1.4. If π : G→ Q is an epimorphism of finite groups, then for any maximal
cyclic K of Q there exists some maximal cyclic D ≤ G such that π(D) = K.

Proof. Let K ≤ Q be a maximal cyclic subgroup. Of course, there is some cyclic subgroup
C ≤ G such that π(C) = K. Let C ≤ D with D maximal cyclic. Then π(C) ≤ π(D) and
since π(D) is cyclic and π(C) = K was maximal cyclic, it follows that π(C) = π(D).

Remark 5.1.5. Of course, even if π : G→ Q is an epimorphism, the image of a maximal
cyclic subgroup of G under π need not be maximal cyclic. For example, consider the
projection C2 × C2 → C2 onto one factor.

Lemma 5.1.6. Let G be a finite group and let π : G→ Q be a surjective group homomor-
phism. If γ(G) = γ(Q), then the image of any maximal cyclic subgroup of G under π is
maximal cyclic in Q.

Proof. Let C1, . . . , Cn and V1, . . . , Vn be representatives of conjugacy classes of maximal
cyclic subgroups of G resp. Q. Note that for any Vi there is some maximal cyclic subgroup
Di ≤ G such that π(Di) = Vi. Now Di is conjugate to one of the Cj . As γ(G) = γ(Q) it
follows that there exists a bijection σ ∈ Sn such that π(Ck) = Vσ(k) for all k ∈ {1, . . . , n}
and the claim follows.
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Definition 5.1.7. For a finite group G we letM(G) be the set of maximal cyclic subgroups
of G. We define

Ψ(G) :=
⋂

M∈M(G)
M ,

and call it the maximal cyclic residual.

It is easy to see that the subgroup Ψ(G) is a characteristic subgroup of G.

Lemma 5.1.8. Let G be a finite group. The subgroup Ψ(G) satisfies the following
properties:

(1) Ψ(G) ≤ Z(G).

(2) Ψ (G/Ψ(G)) = 1.

(3) σ(G) = σ (G/Ψ(G)) and γ(G) = γ (G/Ψ(G)).

Proof. For (1) let x ∈ Ψ(G) and y ∈ G. Then 〈y〉 ≤ C for some maximal cyclic subgroup C
of G. Since x ∈ Ψ(G), it follows that x ∈ C. Hence x and y commute.

To prove (2) let π : G→ G/Ψ(G) denote the quotient homomorphism and let K ≤ G/Ψ(G)
be a maximal cyclic subgroup. Then there is some maximal cyclic subgroup C ≤ G such
that π(C) = K. Thus π−1(K) = CΨ(G). Since Ψ(G) ≤ C, it follows that π−1(K) = C,
i.e. preimages of maximal cyclic subgroups are again maximal cyclic. Also, if D ≤ G is a
maximal cyclic subgroup, then π(D) ≤ L for some maximal cyclic subgroup L ≤ G/Ψ(G),
hence D ≤ π−1(L) and by our previous consideration we have D = π−1(L). With these
observations it follows that

π−1

 ⋂
L∈M(G/Ψ(G))

L

 = Ψ(G)

and thus Ψ(G/Ψ(G)) = 1. Also (3) follows from the observations in the proof of (2).

Lemma 5.1.9. Let G be a finite group and let C1, C2, . . . , Cn be representatives of the
conjugacy classes of the maximal cyclic subgroups of G. Then Ψ(G) = C1 ∩ C2 ∩ . . . ∩ Cn.

Proof. Let H = 〈C1, C2, . . . , Cn〉. Then H is a conjugate-dense subgroup of G, thus H = G.
Let N = C1 ∩ C2 ∩ . . . Cn. Since G is generated by C1, C2, . . . , Cn and the Ci are cyclic, it
follows that N is central, in particular normal. Thus Ψ(G) =

⋂
g∈GN

g = N as claimed.

Lemma 5.1.10. LetG be a finite group andN a subgroup ofG. Then γ(N) ≤ [G : N ]·γ(G).

Proof. This follows from the proof of Lemma 1.1.8.

Lemma 5.1.11. Let G be a finite non-cyclic subgroup and suppose that C is a maximal
cyclic normal subgroup. Then γ(G/C) < γ(G).

Proof. This is straightforward.

Corollary 5.1.12. If G is a finite group with γ(G) = 2 such that one of the maximal cyclic
subgroups is normal, then G is metacyclic.

55



5. Finite Groups and Residually Finite Groups

5.2. Finite Groups with Few Cyclic Subgroups up to Conjugation

As we will be investigating finite groups G with γ(G) = 2 in detail in this section, let us
make the following definition.

Definition 5.2.1. For any n ≥ 1 we let Γ≤n resp. Γn be the class of finite groups G such
that γ(G) ≤ n resp. γ(G) = n. We denote by ΓI≤n resp. ΓIn the subclass of Γ≤n resp. Γn
which consists of those groups in which any two distinct maximal cyclic subgroups intersect
trivially.

Moreover, we introduce the following notation: If S is a subset of a group G, we let

[S]G :=
⋃
g∈G

Sg .

As mentioned in the introduction of this chapter, our goal is to prove that any group
G ∈ Γ≤2 is solvable of derived length at most 4. The following is an easy, but very important
observation:

Lemma 5.2.2. Let G be a finite group and H,K ≤ G be two subgroups whose conjugates
cover G, i.e.

G = [H]G ∪ [K]G .

Then NG(K) = K or NG(H) = H. In particular, if G ∈ Γ2, then at least one maximal
cyclic subgroup is self-normalizing.

Proof. First of all we can assume without loss of generality that both H and K are proper
subgroups of G. Also note that we only need to take conjugates of H (resp. K) by elements
representing the cosets of NG(H) (resp. NG(K)). Thus

|G| ≤ [G : NG(H)] · |H|+ [G : NG(K)] · |K| .

Dividing by the order of G we obtain

1 ≤ 1
[NG(H) : H] + 1

[NG(K) : K] .

Hence it follows that H or K is self-normalizing or [NG(H) : H] = 2 = [NG(K) : K]. We
assume the latter case and consider the equation G =

⋃
g∈GH

g ∪Kg again, this time we
avoid overcounting the identity element to arrive at the following inequality:

|G| ≤ 1 + [G : NG(H)] · (|H| − 1) + [G : NG(K)] · (|K| − 1) .

Hence

1 ≤ 1
|G|

+ 1
2
|H| − 1
|H|

+ 1
2
|K| − 1
|K|

= 1
|G|

+ 1− 1
2

( [G : H]
|G|

+ [G : K]
|G|

)
.
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With this it would follow that 2 ≥ [G : K] + [G : H]. Since H and K are proper subgroups,
we arrive at a contradiction.

Also note that there need not be a self-normalizing maximal cyclic subgroups as soon as
γ(G) > 2, an example being the Klein four-group C2 × C2.

Since a finite group G is nilpotent if and only if all proper subgroups H ≤ G are properly
contained in their normalizer NG(H), we can record:

Corollary 5.2.3. There is no finite nilpotent group G with γ(G) = 2.

Proposition 5.2.4. There is no nilpotent group G with γ(G) = 2.

Proof. By Theorem 1.2.15 such a group is necessarily virtually cyclic and by Corollary 5.2.3
we can assume that G is infinite. Note that the infinite dihedral group D∞ is not nilpotent.
Since the quotient of a nilpotent group is nilpotent, it follows that a nilpotent infinite
virtually cyclic group has to be orientable. By Proposition 1.3.5 we know that an orientable
virtually cyclic group V that is non-cyclic cannot have bCyc.

The proof of Proposition 5.2.4, together with Example 1.3.1, also shows:

Lemma 5.2.5. A virtually cyclic group V with γ(V ) ≤ 2 has to be infinite cyclic or finite.

Definition 5.2.6. In a finite group G a nilpotent subgroup H with NG(H) = H is called
a Carter subgroup.

It was proven by Carter [Car61] that any solvable group contains a Carter subgroup and any
two Carter subgroups are conjugate. A finite non-solvable group need not contain a Carter
subgroup, for example A5 does not contain a Carter subgroup. However, it was shown much
later by Vdovin [Vdo08] that any two Carter subgroups of a not necessarily solvable finite
group are conjugate. The proof of this result is deep and relies on the classification of finite
simple groups. Even though groups G ∈ Γ2 will turn out to be solvable, we will rather rely
on the result of Vdovin for the moment.

Definition 5.2.7. A subgroup H ≤ G is called abnormal if g ∈ 〈H,Hg〉 for all g ∈ G.

The following was already shown by Carter for solvable groups and the same proof combined
with a result of Vdovin gives this more general result.

Proposition 5.2.8. Let G be a finite group and let H ≤ G be a Carter subgroup. Then
H is abnormal in G.

Proof. Let g ∈ G and letK = 〈H, g−1Hg〉. Now H and g−1Hg are nilpotent self-normalizing
subgroups of K. By [Vdo08] there exists some k ∈ K such that k−1Hk = g−1Hg, thus
gk−1 ∈ NG(H) = H ≤ K. Hence g ∈ K as desired.

Lemma 5.2.9. Let G ∈ Γ2 and let C and D be representatives of the conjugacy classes of
maximal cyclic subgroups of G. Then [D : C ∩D] divides [G : C] and similarly [C : C ∩D]
divides [G : D]. In particular, it follows that |C|·|D|/|C∩D| divides the order of G.
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Proof. Let I = C ∩D. Note that D acts on the set X of right cosets Cg of C in G via right
multiplication. The stabilizer of Cg is then given by D ∩ Cg = C ∩D = I. The claim now
follows from decomposing the set X into orbits and the orbit-stabilizer theorem. Each orbit
has cardinality |D/I|.

Lemma 5.2.10. Let G ∈ Γ2, then exactly one conjugacy class of a maximal cyclic subgroup
is self-normalizing.

Proof. By Lemma 5.2.2 we know that at least one maximal cyclic subgroup is self-normalizing,
say C. Let D be a maximal cyclic subgroup whose conjugacy class is distinct from the class
of C. If D was self-normalizing as well, the subgroups C and D would be conjugate by
[Vdo08], which would imply that G is cyclic.

Throughout this chapter we will adapt the convention that, if not explicitly stated otherwise,
a subgroup C of a group G ∈ Γ2 is a self-normalizing maximal cyclic subgroup, which is
unique up to conjugation by Lemma 5.2.10. With D ≤ G we designate a maximal cyclic
subgroup which is not self-normalizing. In the same vein we shall usually write c resp. d for
a generator of C resp. D.

Note that C being self-normalizing also implies that C is maximal nilpotent, i.e. if
C ≤ H ≤ G with H nilpotent, then C = H.

Lemma 5.2.11. Let G ∈ Γ2 and suppose that N is a normal subgroup of G such that
G/N is cyclic. Then G = NC. In particular, it follows that G/N is cyclic if and only if
G = NC.

Proof. The homomorphic image of a Carter subgroup is again a Carter subgroup by [Vdo08].
Hence CN/N ≤ G/N is maximal cyclic, so that CN/N = G/N .

Since the abelianization of a group G ∈ Γ2 is certainly cyclic we obtain similarly Gab =
C[G,G]/[G,G] ∼= C/(C ∩ [G,G]). We also want to mention that G′ = [G,G] is a proper
subgroup of G, which follows from a result on the existence of self-normalizing cyclic
subgroups in finite simple groups, see Theorem 5.2.69.

Observe that the intersection C ∩D where C,D are representatives of the maximal cyclic
subgroups of a group G ∈ Γ2 equals the intersection of all maximal cyclic subgroups Ψ(G)
by Lemma 5.1.9.

Lemma 5.2.12. A group G ∈ Γ2 is generated by the cyclic subgroups C and D.

Proof. Let H = 〈C ∪D〉. Then H is a conjugate-dense subgroup of G, so G = H.

Lemma 5.2.13. If G ∈ Γ2, then [G,G] = [C,D].

Proof. Let N = [C,D], we prove that N is normal using that G is generated by c and d.
Namely, we prove that γ−1[cn, dk]γ ∈ N when γ = c or γ = d. One observes that

[cn · c, dk] = [cn, dk]c · [c, dk]
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and likewise

[cn, dk · d] = [cn, d] · [cn, dk]d

Thus N is normal. Moreover G/N is abelian, thus [G,G] ≤ N . Since N ≤ [G,G], the claim
follows.

Remark 5.2.14. For G ∈ Γ2 we certainly have G = 〈C〉G ∪ 〈D〉G, thus at least one of the
subgroups 〈C〉G or 〈D〉G equals G. Hence G is normally generated by a single element.
Such a group is called a group of weight one. It has been shown in [Kut76] that a finite
group has weight one if and only if its abelianization is cyclic. Note that any simple group
is of weight one. Of course, if G is infinite with property 2Cyc, then G has weight one as
well. It is therefore the quotient of a knot group by [Gon75].

Sometimes the following lemma is useful in establishing lower bounds on γ. Here, ϕ denotes
the Euler totient function.

Lemma 5.2.15. Let G be a finite group and d ∈ N. Then the number of conjugacy classes
of elements in G of order d is at most ϕ(d) · γ(G).

5.2.1. Cyclic Subgroups up to Automorphism

If G is a finite group with γ(G) ≤ n and N EG, then N can be covered by at most n cyclic
subgroups up to conjugation in G, hence δ(N) ≤ n. Because of this fact it will turn out to
be useful to know the number of maximal cyclic subgroups up to automorphism for certain
families of groups like generalized quaternion groups. Let us first consider dihedral groups.
Let D2n be the dihedral group of order 2n and recall that it has the following presentation:

D2n = 〈r, s | rn = s2 = (sr)2 = 1〉 = Cn o C2 .

Note that the center of D2n is trivial if n > 2 is odd and Z(D2n) = 〈rn/2〉 ∼= C2 for n > 2
even.

Lemma 5.2.16. For n ≥ 2 we have that γ(D2n) = 2 if n is odd and γ(D2n) = 3 if n is
even. Moreover, any two distinct maximal cyclic subgroups intersect trivially, so D2n ∈ ΓI2
for n > 2 odd.

Proof. Observe that rsr−1 = r2s, thus rmsr−m = r2ms. Since for n odd, 2 ∈ (Z/nZ)×, it
follows that any element rks is conjugate to s in D2n. Hence for n odd D2n has exactly two
conjugacy classes of maximal cyclic subgroups, given by 〈r〉 and 〈s〉. If n is even, one has
〈r〉, 〈s〉 and 〈rs〉 as representatives of conjugacy classes of maximal cyclic subgroups. As s
and rs are not conjugate if n is even, we have γ(D2n) = 3. The claim about the intersection
of maximal cyclic subgroups follows from this description immediately since 〈r〉 is a normal
subgroup.

By a deep result of Shult [Shu69a] we know that a p-group G with p odd and δ(G) = 1 is
elementary abelian. A p-group G with δ(G) = 2 can be non-abelian:
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Example 5.2.17. For p an odd prime the Heisenberg group Hp = 〈x, y, z | xp = yp = zp =
1, [x, z] = 1 = [y, z], [x, y] = z〉 has δ(Hp) = 2. Representatives of the Aut(Hp)-conjugacy
classes of maximal cyclic subgroups are given by Z(Hp) = 〈z〉 and 〈x〉.

Lemma 5.2.18. The dihedral group D2n = 〈r, s | rn = s2 = (sr)2 = 1〉 = Cn o C2 has
δ(D2n) = 2 for n ≥ 3. Moreover, δ(D2) = δ(D4) = 1.

Proof. Suppose n ≥ 3. In the proof of Lemma 5.2.16 we have seen that 〈r〉, 〈s〉 and 〈rs〉 are
representatives of not necessarily distinct conjugacy classes of maximal cyclic subgroups.
There is a homomorphism ψ : D2n → D2n defined by r 7→ r and s 7→ rs. As ψn = id the
map ψ is an isomorphism. Hence δ(D2n) ≤ 2. Also note that for n ≥ 3, 〈r〉 is the unique
cyclic subgroup of order n in D2n, hence 〈r〉 is characteristic, and n is the maximal element
order in D2n. This implies that δ(D2n) ≥ 2 as s does not lie in 〈r〉. The claims for n < 3
are immediate as D2 is of order 2 and D4 ∼= C2 × C2.

Recall the presentation of the generalized quaternion groups Q2n+1 = 〈a, b | a2n = 1, b2 =
a2n−1

, b−1ab = a−1〉. Any element in Q2n+1 can be uniquely represented in the form aibj

where 0 ≤ i < 2n and j ∈ {0, 1}. The center of Q2n+1 is cyclic of order 2, generated by b2.

Lemma 5.2.19. The quaternion groups Q2n+1 have γ(Q2n+1) = 3 for all n ≥ 2.

Proof. Observe that a−1(anb)a = an−2b. This implies that any element aib is conjugate to
the element b or ab, depending on the parity of i. Hence the conjugates of 〈a〉, 〈b〉 and 〈ab〉
cover the quaternion group, so γ(Q2n+1) ≤ 3. Using the normal form of elements and the
fact that b−1(anb)b = a−nb and a−1(anb)a = an−2b one sees that none of the three cyclic
subgroups 〈a〉, 〈b〉 and 〈ab〉 is redundant. Hence γ(Q2n+1) = 3.

Lemma 5.2.20. We have δ(Q8) = 1 with a maximal cyclic subgroup of order 4 and for
n > 2 we have δ(Q2n+1) = 2 with representatives of maximal cyclic subgroups of order 4
and 2n.

Proof. The proof of Lemma 5.2.19 shows that conjugates of 〈a〉, 〈b〉 and 〈ab〉 cover Q2n+1 .
One checks that (ab)2 = b2, which implies that ψ : Q2n+1 → Q2n+1 , defined on generators
by a 7→ a, b 7→ ab, is a homomorphism. As ψ is surjective, it is an isomorphism. Thus
δ(Q2n+1) ≤ 2. If n = 2, the map given on generators by a 7→ b−1, b 7→ a−1 is an isomorphism
that conjugates 〈a〉 to 〈b〉. Hence δ(Q8) = 1. If n > 2, then we have δ(Q2n+1) ≥ 2 as well
by Lemma 5.2.18 since Q2n+1/Z(Q2n+1) ∼= D2n .

5.2.2. The class ΓI2

Before we investigate the class Γ2, we consider groups in the smaller class ΓI2, in which
distinct maximal cyclic subgroups intersect trivially. It turns out that for proving the
solvability of the groups in ΓI2 we will not need to rely on the classification of finite simple
groups. Let us first give a couple of examples of groups in the class ΓI2.

Examples 5.2.21. (1) The symmetric group S3 has two conjugacy classes of maximal
cyclic subgroups of order 2 resp. 3, hence S3 ∈ ΓI2.
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(2) The (up to isomorphism) unique non-abelian group of order 21, i.e. the metacyclic
group G = C7 o C3 = 〈c, d | d7 = 1, c3 = 1, c−1dc = d2〉 lies in ΓI2.

(3) Lemma 5.2.16 shows that the dihedral groups D2n ∈ ΓI2 for n > 2 odd.

(4) The alternating group A4 is contained in ΓI2. The group A4 has two conjugacy
classes of maximal cyclic subgroups, generated by the elements (1, 2)(3, 4) and (1, 2, 3).
Note that, although the class of (1, 2, 3) splits in A4, the subgroup generates all
conjugacy classes with the same cycle type. Also observe that distinct maximal cyclic
subgroups intersect trivially. The group A4 is not metacyclic and has Fitting subgroup
F (A4) ∼= C2 × C2 and A4/F (A4) ∼= C3. So in general, a group G ∈ ΓI2 does not split
as G ∼= D o C.

Let G ∈ ΓI2 and write G = [C]G ∪ [D]G. Then it follows that

|G| − 1 = [G : NG(C)] · (|C| − 1) + [G : NG(D)] · (|D| − 1)

Since NG(C) = C, we obtain the following important equation:

[G : C] = 1 + [G : NG(D)] · (|D| − 1)

Moreover, by Lemma 5.2.9 we know that |C| · |D| divides |G|.

Observation 5.2.22. For G ∈ ΓI2 we have |G| =
∣∣∣[D]G

∣∣∣ · |C|.
Proof. Using that

∣∣∣[D]G
∣∣∣ = [G : NG(D)]·(|D|−1)+1 and [G : C] = 1+[G : NG(D)]·(|D|−1)

the claim follows.

We will later see that actually CG(D) = [D]G and G = CG(D) o C. The next result could
have also been deduced from the fact that Carter subgroups are unique up to conjugation,
see Lemma 5.2.10. In this special case, a simpler argument suffices.

Lemma 5.2.23. For a group G ∈ ΓI2, there is exactly one conjugacy class of a maximal
cyclic subgroup that is self-normalizing.

Proof. There is at least one by Lemma 5.2.2. Suppose that C = NG(C) and D = NG(D).
Then by the above equation |G| − 1 = [G : C] · (|C| − 1) + [G : D] · (|D| − 1), which can be
rewritten as

|C| · |D| = |G| · (|D|+ |C| − |C| · |D|)
Hence |G| divides |C| · |D|. By Lemma 5.2.9 it follows that |G| = |C| · |D|. This implies
that 1 = |D| + |C| − |C| · |D| or in other words (|C| − 1) · (1 − |D|) = 0, which yields a
contradiction.

Lemma 5.2.24. Let G be a finite group such that distinct maximal cyclic subgroups of G
intersect trivially. Then any abelian subgroup of G is cyclic or elementary abelian.

Proof. First note that if K,K ′ ≤ G are two cyclic subgroups of the same order then K = K ′

or K ∩K ′ = 1. Now let A ≤ G be abelian and decompose A using the invariant factor
decomposition

A ∼= Ck1 ⊕ Ck2 ⊕ . . .⊕ Ckn ,
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where ki|ki+1. Now the claim follows from the fact that a group Ck ⊕ Ckm where k,m > 1
cannot be contained in G, since the elements (1, 1) and (0, 1) have both order km but
〈(1, 1)〉 ∩ 〈(0, 1)〉 6= 1.

Lemma 5.2.25. For a group G ∈ ΓI2 we have |G| = |C| · |D| if and only if G = CD if and
only if D is a normal subgroup of G.

Proof. We already know that G = CD if and only if |G| = |C| · |D|. The remaining claim
then follows from the fact that

[G : C] = 1 + [G : NG(D)] · (|D| − 1) .

Observation 5.2.26. If G ∈ ΓI2 contains a non-trivial normal cyclic subgroup, then D is a
normal subgroup.

Proof. Let K ≤ G be a non-trivial normal cyclic subgroup. Suppose K ≤ Cg for some g ∈ G.
Then K ≤ Cg for all g ∈ G. This yields a contradiction since [G : NG(C)] = [G : C] > 1
and different maximal cyclic subgroups intersect trivially. Hence K ≤ Dg for some g ∈ G,
and then also for all g ∈ G, since K is normal. Hence Dg ∩D 6= 1, so Dg = D for all g ∈ G.
In other words, D is a normal subgroup of G.

Lemma 5.2.27. A group G ∈ ΓI2 has trivial center.

Proof. Suppose that Z(G) 6= 1. Note that Z(G) is cyclic since γ(G) = 2. If Z(G) ≤ C, then
the condition on trivial intersections of maximal cyclic subgroups would imply that C is a
normal subgroup. Thus Z(G) ≤ D and D is a normal subgroup of G by Observation 5.2.26.
But Z(G) ≤ CG(C) = C. Since C ∩D = 1, we arrive at a contradiction.

Lemma 5.2.28. For G ∈ ΓI2 and C ′ ≤ C non-trivial or D′ ≤ D non-trivial, we have
NG(C ′) = NG(C) = C and NG(D′) = NG(D).

Proof. Let g ∈ NG(C ′), then 1 6= C ′ = g−1C ′g ≤ C ∩ g−1Cg, thus C = g−1Cg, i.e.
g ∈ NG(C) = C. With the same argument the claim for D′ follows.

Lemma 5.2.29. Let G ∈ ΓI2 and letD′ ≤ D be a non-trivial subgroup. Then CG(D′)∩Cg =
1 for all g ∈ G.

Proof. Let x ∈ CG(D′) be a non-trivial element and let D′ = 〈d′〉. So x−1d′x = d′,
equivalently d′−1xd′ = x, i.e. d′ ∈ CG(x). Suppose x is conjugate to an element of C, so
x = g−1cmg for some cm 6= 1 and g ∈ G. Then d′ ∈ CG(x) = g−1CG(cm)g = g−1Cg by
Lemma 5.2.28. Thus it would follow that D′ ∩ g−1Cg 6= 1, which is a contradiction.

As CG(D)∩Cg = 1 for all g ∈ G, it follows that CG(D) acts freely on the set of right cosets
of C in G. In particular, it follows that |CG(D)| divides [G : C]. Moreover, the fact that
CG(D) ∩ Cg = 1 implies that

D ≤ CG(D) ≤ [D]G .

Below in Theorem 5.2.47 we will actually see that CG(D) = [D]G.
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Lemma 5.2.30. If G ∈ ΓI2 and D EG, then CG(D) = D.

Proof. The claim follows since D ≤ CG(D) ≤ [D]G = D.

Observation 5.2.31. Let G ∈ ΓI2 and let D′ ≤ D be a non-trivial subgroup. Then
CG(D)E CG(D′).

Proof. Let x ∈ CG(D) and g ∈ CG(D′). Since CG(D′) ≤ NG(D′) = NG(D) by Lemma 5.2.28,
we know that gdg−1 = dn for some n ∈ N. Thus

(g−1x−1g)d(g−1xg) = g−1(x−1dnx)g
= g−1dng

= d

Thus g−1xg ∈ CG(D) and CG(D) is a normal subgroup of CG(D′).

Lemma 5.2.32. Let G ∈ ΓI2 with |G| = |C| · |D|. Then CG(D) = D EG.

Proof. By Lemma 5.2.25 we know that that D E G is a normal subgroup and G = CD.
Suppose ckdn ∈ CG(D), then ckdc−k = d, so d−1ckd = ck. If ck 6= 1, then d−1Cd ∩ C 6= 1,
thus d−1Cd = C. But this is impossible. Hence CG(D) = D.

Lemma 5.2.33. Let G ∈ ΓI2 and suppose that gn ∈ C for some n ∈ Z such that gn 6= 1.
Then g ∈ C.

Proof. Note that gn ∈ Cg ∩ C, hence g ∈ NG(C) = C.

Lemma 5.2.34. Let G ∈ ΓI2 and let H ≤ G be a nilpotent subgroup. Suppose that
H ∩ Cg 6= 1 for some g ∈ G. Then H is cyclic.

Proof. Let C ′ = H ∩ Cg ≤ Cg. Then

NH(C ′) = H ∩NG(C ′) = H ∩NG(Cg) = H ∩ Cg = C ′

by Lemma 5.2.28. Thus C ′ is self-normalizing in H, hence C ′ = H.

Proposition 5.2.35. Let G ∈ ΓI2 and let H ≤ [C]G be a subgroup. Then H is cyclic.

Proof. We prove the claim by induction on the order of H. We can thus assume that all
proper subgroups of H are cyclic. Then H is solvable. Namely, either H is a p-group for
some prime p or all Sylow subgroups of H are proper. In the latter case H is solvable by
[Rob, Theorem 10.1.10] since all Sylow subgroups of H are cyclic by assumption. As H is
solvable, H ′ is a proper subgroup of H and thus cyclic. If H ′ is trivial then H is cyclic by
Lemma 5.2.34. Otherwise there is some g ∈ G such that H ′ ≤ Cg and

H = NH(H ′) = NG(H ′) ∩H = Cg ∩H ≤ Cg ,

since NG(H ′) = NG(Cg) = Cg.
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Observation 5.2.36. Let G ∈ ΓI2 and H ≤ G be a subgroup such that H ∩ Cg 6= 1 for
some g ∈ G. Then NH(H ∩ Cg) = H ∩ Cg.

Proof. Without loss of generality we can assume that g = 1. We let C ′ = H ∩ C. Note that
C ′ = H ∩ C = H ∩NG(C ′) = NH(C ′) by Lemma 5.2.28.

Lemma 5.2.37. Let G ∈ ΓI2 and let H ≤ G be nilpotent. Then H ⊆ [D]G or H is cyclic.

Proof. Suppose that H is non-trivial and not contained in [D]G, hence H ∩Cg 6= 1 for some
g ∈ G. Now H ∩ Cg is a non-trivial self-normalizing subgroup of H by Observation 5.2.36.
Since H is nilpotent, H = H ∩ Cg and thus H is cyclic.

Corollary 5.2.38. Let G ∈ ΓI2, then any Sylow subgroup of G is either contained in [D]G
or in [C]G.

Corollary 5.2.39. For G ∈ ΓI2 we have (|C|, |D|) = 1.

Proof. Suppose p is a prime dividing |C| as well as |D|. Consider the Sylow p-subgroup P
of G. Since there is C ′ ≤ C of order p, C ′ is subconjugate to P . Similarly the subgroup
D′ ≤ D of order p is subconjugate to P . However this contradicts Corollary 5.2.38.

We can strengthen Corollary 5.2.39 to:

Corollary 5.2.40. For G ∈ ΓI2 we have (|C|, |CG(D)|) = 1. Moreover, (|C|, [G : C]) = 1.

Proof. Suppose p is a common prime divisor of |C| and |CG(D)|. Then there is an element
x ∈ CG(D) of order p. Since CG(D) ⊆ [D]G by Lemma 5.2.29 it follows that p divides |D|.
But this contradicts Corollary 5.2.39. If p is a common prime divisor of [G : C] and |C|,
then the Sylow p-subgroup P ≤ G has to be conjugate to a subgroup of C by Lemma 5.2.37,
which yields a contradiction.

Remark 5.2.41. Note that Corollary 5.2.40 cannot be strengthened to (|C|, |NG(D)|) = 1.
For example, in G = S3, we have |C| = 2 and D EG, thus (|C|, |NG(D)|) = (2, 6) = 2.

Lemma 5.2.42. Let G ∈ ΓI2 and let N EG be a normal subgroup lying in [D]G. Then

|N | = 1 + [G : NG(D)] · (|D ∩N | − 1)

Proof. We know that N = [D ∩ N ]G since N is normal in G. Since all cyclic subgroups
(D ∩ N)g ≤ N have the same order, they either intersect trivially or are equal. Hence
|N | = 1+[G : NG(D∩N)] · (|D∩N |−1). Since NG(D∩N) = NG(D) the claim follows.

The following is a special case of Theorem 5.2.47 that we will prove below. It only relies on
Burnside’s normal p-complement theorem instead of Thompson’s theorem on the nilpotency
of Frobenius kernels.

Lemma 5.2.43. Let G ∈ ΓI2 and suppose |C| = pn for some prime p. Then [D]G is a
subgroup.
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Proof. We know that C is a Sylow p-subgroup of G since (|C|, |D|) = 1. Since NG(C) = C,
it follows by Burnside’s normal p-complement theorem that there is a normal subgroup N
of index pn. Moreover, N ≤ [D]G as |N | is coprime to p. By Lemma 5.2.42 we have |N | =
1 + [G : NG(D)](|D ∩N | − 1). At the same time |N | = [G : C] = 1 + [G : NG(D)](|D| − 1).
So |D| = |D ∩N |, thus D ≤ N and the claim follows.

Lemma 5.2.44. Let G ∈ ΓI2 and suppose that N = [D]G is a subgroup. Then [G,G] ≤ N ,
or in other words [G,G] ∩ Cg = 1 for all g ∈ G.

Proof. We have that [dn, cm] = d−n(c−mdncm) ∈ N . Together with the fact that [G,G] =
[C,D], the claim follows.

Let us recall the following important notion:

Definition 5.2.45. A finite group G is called Frobenius if there exists a non-trivial proper
subgroup H that is malnormal, i.e. Hg ∩H = 1 for all g ∈ G \H. The subgroup H is called
Frobenius complement.

Given a Frobenius group G with Frobenius complement H, one defines the Frobenius kernel
K =

(
G \ [H]G

)
∪ {1}. Using character theory Frobenius has shown that K is actually a

subgroup [Fro01] and there is still no proof known that does not rely on character theory.
One has |K| ≡ 1 mod |H| and Frobenius groups split as semidirect products G = K oH.
It is a theorem proven by Thompson in his Ph.D. thesis that Frobenius kernels are nilpotent
[Isa08, Theorem 6.24]. Moreover, the Frobenius kernel equals the Fitting subgroup F (G) of
G and any two Frobenius complements are conjugate by the Schur-Zassenhaus theorem.
Sometimes we shall make use of the following result:

Lemma 5.2.46 ([Isa08, Theorem 6.4]). Let K be a normal subgroup of a finite group G
and suppose that H is a complement for K in G. Then the following are equivalent:

(1) H ∩Hg = 1 for all g ∈ G \H.

(2) CG(h) ≤ H for all non-trivial h ∈ H.

(3) CG(k) ≤ K for all non-trivial k ∈ K.

We are now ready to formulate the main theorem of this section:

Theorem 5.2.47. Let G ∈ ΓI2. Then G is a Frobenius group with Frobenius kernel
F (G) = G′ = CG(D) = [D]G and Frobenius complement C ∼= Gab and exactly one of the
following holds:

(1) The cyclic subgroup D is normal, so that G is metacyclic and splits as G = D o C.
Moreover, all Sylow subgroups of G are cyclic.

(2) The subgroup CG(D) is a non-cyclic elementary abelian p-group for some prime p.
Moreover, CG(D) is, being normal, the Sylow p-subgroup of G.

In particular, the derived length of G equals 2.

Proof. We know that C ∩ Cg = 1 for all g ∈ G \ C, so G is a Frobenius group with
Frobenius complement C. Let K be the Frobenius kernel, then K = [D]G. The derived
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subgroup of G is then given by G′ = K[C,C] = K. By [Isa08, Theorem 6.24] K is a
nilpotent group, in particular the center Z(K) is non-trivial. If Z(K) is cyclic, then Z(K)
is a non-trivial normal cyclic subgroup of G. Thus D is normal by Observation 5.2.26 and
since G is Frobenius with Frobenius kernel D we have CG(D) ≤ D, hence D = CG(D). By
Corollary 5.2.38 all Sylow subgroups of G are cyclic.

So suppose in the following that Z(K) is non-cyclic. Then 〈D,Z(K)〉 is a non-cyclic abelian
subgroup of G. By Lemma 5.2.24 it follows that D is of order p where p is some prime.
Thus CG(D) ⊆ [D]G is a p-group. Since |G| = [G : CG(D)] · |CG(D)| = [G : C] · |C| and
(|CG(D)|, |C|) = 1, it follows that p divides [G : C]. Suppose for the moment that p divides
[G : CG(D)] as well. But

[G : C] · [NG(D) : CG(D)] = [NG(D) : CG(D)] + [G : CG(D)] · (|D| − 1)

implies that p would divide [NG(D) : CG(D] as well. Now, NG(D)/CG(D) ↪→ Aut(|D|) and
the latter group has order p− 1, which yields a contradiction. Hence ([G : CG(D)], p) = 1,
so CG(D) is the Sylow p-subgroup of G.

Let q 6= p be another prime and suppose that q divides [G : CG(D)] as well as [G : C], let
[G : CG(D)] = qα · n and [G : C] = qβ ·m where (q, n) = 1 = (q,m) and α, β ≥ 1. Since
D is of order p and (|C|, |D|) = 1, we have |C| = qγk for some γ ≥ 1 and k ∈ N such that
(q, k) = 1. Then |G| = [G : C] · |C| = qβ+γmk = [G : CG(D)] · |CG(D)| = qαn · |CG(D)|.
Since (|CG(D)|, q) = 1, it follows that α = β + γ. Let Q be the Sylow q-subgroup, which is
of order qα. Since D is of order p, we have Q ∩Dg = 1 for all g ∈ G. Hence Q ⊆ [C]G and
by Proposition 5.2.35 it follows that Q is cyclic. But then |Q| divides |C| which yields a
contradiction. Thus we have shown that ([G : CG(D)], [G : C]) = 1. Since (|CG(D)|, |C|) = 1
as well, it follows that [G : CG(D)] = |C| and [G : C] = |CG(D)|. Recall that CG(D) ⊆ [D]G
and the latter subset contains 1+[G : NG(D)](|D|−1) = [G : C] = |CG(D)| elements. Hence
CG(D) = [D]G and thus CG(D) is a normal subgroup, so CG(D) = CG(D)g = CG(Dg). In
particular, CG(D) is an abelian subgroup of G.

Corollary 5.2.48. Let G ∈ ΓI2 and suppose that CG(D) = D. Then D is normal.

Even if D < CG(D) is a proper subgroup, it is in general not the case that CG(D) = NG(D).
There is a group G ∈ ΓI2 of order 72 with CG(D) = F (G) ∼= C3 × C3 and |C| = 8 such that
[NG(D) : CG(D)] = 2.

Corollary 5.2.49. Let G ∈ ΓI2. Then CG(D′) = CG(D) for any non-trivial subgroup
D′ ≤ D.

Proof. We always have CG(D) ≤ CG(D′). As CG(D) is the Frobenius kernel of G, and D′
is non-trivial, the reverse inclusion holds as well by Lemma 5.2.46.

Lemma 5.2.50. Let G ∈ ΓI2. Then the number of conjugacy classes k(G) is given by

k(G) = [G : C]− 1
|C|

+ |C| .

Proof. By Corollary 5.2.49 we know that CG(D′) = CG(D) for all non-trivial subgroups
D′ ≤ D. Moreover, we have |G| = |CG(D)| · |C| by Theorem 5.2.47. We consider the class
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equation for G and denote by k the number of conjugacy classes in G that intersect D.
Then

|G| = 1 + k · [G : CG(D)] + (|C| − 1) · [G : CG(C)]
= 1 + k · [G : CG(D)]− [G : C] + |G|

Now k(G) = 1 + k + (|C| − 1) and the claim follows since [G : CG(D)] = |C|.
Corollary 5.2.51. Let G ∈ ΓI2 and suppose that D is a normal subgroup of G. Then |C|
divides |D|−1 and the number k(G) of conjugacy classes is given by k(G) = (|D|−1)/|C|+ |C|.
Proposition 5.2.52. Let G ∈ ΓI2 and suppose that Gab is of order two. Then G is a
dihedral group.

Proof. By Theorem 5.2.47 we know that C is of order two. By Lemma 5.1.10 it follows
that γ(CG(D)) ≤ 2 · γ(G) = 4. First let us assume that CG(D) is non-cyclic, thus
CG(D) is an elementary p-abelian group Cnp for some prime p and some n ≥ 2. Since
γ(Cnp ) = pn−1 + pn−2 + . . .+ p+ 1, it follows that p ∈ {2, 3} and n = 2. As (|C|, |D|) = 2,
we must have p = 3. Let ϕ ∈ Aut(C3 × C3) be an automorphism of order two and let
x ∈ C3×C3 be a non-trivial element. Either x = ϕ(x) or 〈xϕ(x2)〉 is a non-trivial subgroup.
Note that ϕ(xϕ(x2)) = ϕ(x)x2 = (xϕ(x2))2. Thus in both cases there exists a non-trivial
cyclic subgroup that is invariant under ϕ. But then (C3 × C3) oϕ C2 would contain a
non-trivial normal cyclic subgroup which contradicts Observation 5.2.26. Hence we conclude
that CG(D) = D with D of odd order. Let |D| = pk1

1 p
k2
2 . . . pkrr and recall that there is a

unique element of order two in the automorphism group of C
p
ki
i

given by z 7→ z−1 as long
as pi is odd. Since the automorphism group of D is the direct product of the automorphism
groups of C

p
ki
i

and Z(G) = 1, it follows that C acts on D = 〈d〉 via d 7→ d−1. Hence G is a
dihedral group.
Lemma 5.2.53. Let G ∈ ΓI2 and suppose that D is even. Then D is of order two and
F (G) = NG(D) = CG(D) is an elementary abelian 2-group.

Proof. Suppose that D is a normal subgroup and let D′ ≤ D be of order two. We have
NG(D′) = CG(D′) as D′ is of order two. It would follow that G = NG(D) = NG(D′) =
CG(D′) = D by Corollary 5.2.49. Thus the claim follows from Theorem 5.2.47.
Lemma 5.2.54. If G ∈ ΓI2, then 〈D〉G is a proper subgroup and G is normally generated
by C.

Proof. Note thatD ≤ CG(D)EG and CG(D) is a proper subgroup of G. Now CG(D) = [D]G,
in particular 〈D〉G = CG(D). Since G = 〈C〉G ∪ 〈D〉G is the union of two subgroups, it
follows that G = 〈C〉G.

5.2.2.1. Classification

In this section we want to improve upon Theorem 5.2.47 and obtain a classification of the
groups G ∈ ΓI2 in the sense that we will list the groups that appear, though not necessarily
determining if some of them are isomorphic. We begin by analyzing the metacyclic groups
G ∈ ΓI2 in detail.
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Lemma 5.2.55. Let p be an odd prime and let K be a cyclic group of order pn for some
n ≥ 1. Let ϕ ∈ Aut(K) be a non-trivial automorphism whose order is coprime to p. Then
Fix(ϕ) = {y ∈ K | ϕ(y) = y} = {1}, i.e. ϕ acts fixed point freely on K.

Proof. Let K = 〈x〉. We know that |Aut(K)| = pn−1(p− 1), so the order of ϕ divides p− 1.
We can write ϕ(x) = xm for some m that satisfies

(m, p) = 1

pn |
(
mp−1 − 1

)
Now, let y ∈ Fix(ϕ), say y = xk. Then xk = ϕ(xk) = xkm, so pn divides k(m − 1). If pn
divides k, then y = 1. So we can assume that p divides m− 1. We now write

mp−1 − 1 = ((m− 1) + 1)p−1 − 1

=
p−1∑
i=0

(
p− 1
i

)
(m− 1)i − 1

= (m− 1)
p−1∑
i=1

(
p− 1
i

)
(m− 1)i−1

Note that

p−1∑
i=1

(
p− 1
i

)
(m− 1)i−1 = p− 1 +

(
p− 1

2

)
(m− 1) + . . .+

(
p− 1
p− 1

)
(m− 1)p−2

Since p divides m− 1 and p ≥ 3 it follows that p cannot divide
∑p−1
i=1

(p−1
i

)
(m− 1)i−1. Since

pn divides mp−1 − 1, it follows that pn has to divide m− 1. Thus ϕ(x) = xm = x, so ϕ is
the identity.

Lemma 5.2.56. Suppose G ∈ ΓI2 with F (G) = D cyclic of order pn for some odd prime p.
Then the order of C divides p− 1. Conversely, for any odd prime power pn and divisor d of
p− 1 there exists precisely one group G ∈ ΓI2 up to isomorphism such that F (G) is cyclic of
order pn and the order of the maximal cyclic subgroup C equals d.

Proof. First note that the natural homomorphism C → Aut(D) is injective since CG(D) = D.
As p is odd, the group Aut(D) is cyclic and thus the uniqueness statement follows. Since
C has order coprime to |D| = pn it follows that |C| divides p− 1 as C ≤ Aut(D) and the
latter group is of order pn−1(p− 1).

Now let us prove the existence statement. Let D be a cyclic group of order pn and choose
the subgroup C ≤ Aut(D) of order d and define G = DoC. For a ∈ C we denote by ϕa the
corresponding automorphism of D. We will show that G ∈ ΓI2 with corresponding maximal
cyclic subgroups C and D. Let (x, a) ∈ G. If a = 1, then the element is contained in D. So
suppose a 6= 1. We can compute for any y ∈ D

(y, 1)−1(x, a)(y, 1) = (y−1xϕa(y), a) .
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Let us define the set S = {yϕa(y)−1 | y ∈ D} ⊆ D and the map f : D → S, y 7→ yϕa(y)−1.
If f(y) = f(z) then z−1y ∈ Fix(ϕa). By Lemma 5.2.55 the latter subgroup is trivial. Hence
f is injective, thus also surjective since S ⊆ D. In particular, for x ∈ D there exists some
y ∈ D such that x = yϕa(y)−1. Thus (x, a) is conjugate to (1, a) ∈ C. The claim about
maximal cyclic subgroups intersecting trivially follows easily since C is self-normalizing, D
is normal and (|C|, |D|) = 1.

Theorem 5.2.57. Let G = DoC ∈ ΓI2 be metacyclic and let π(|D|) = {p1, . . . , pr}. Then
|C| divides (p1− 1, p2− 1, . . . , pr − 1). Conversely, for any two given two numbers n,m with
π(n) = {p1, . . . , pr} and m a divisor of (p1 − 1, p2 − 1, . . . , pr − 1), there exists at least one
group D o C ∈ ΓI2 with |D| = n and |C| = m.

Proof. Let Pi be the Sylow pi-subgroup of G. As (|C|, |D|) = 1 and D is normal in G,
Pi ≤ D. Actually, F (G) = D = P1P2 . . . Pr. As Pi is a characteristic subgroup of G we can
form Gi = PiC. Now, observe that C is a Carter subgroup of Gi and as G = DC one sees
that Gi ∈ ΓI2. Then Lemma 5.2.56 applies and so |C| divides pi − 1 for all 1 ≤ i ≤ r. Using
the construction in the proof of Lemma 5.2.56 the second claim follows as well.

Example 5.2.58. There are two non-isomorphic groups in ΓI2 of the form C65 o C4. First,
note that 65 = 5 · 13, (Z/5Z)× is of order 4 with generators {2, 3}. The group (Z/13Z)× is
generated by 2 and the cyclic subgroup of (Z/13Z)× of order 4 has the generators {5, 8}.
Let us define

Gn,m = 〈α, β, c | α5 = β13 = c4 = 1, [α, β] = 1, αc = αn, βc = βm〉

Then K = G2,5 ∼= G3,8 and L = G2,8 ∼= G3,5 lie in ΓI2 by the proof of Theorem 5.2.57.
However, one can show that K and L are not isomorphic.

We will now determine the structure of the groups G ∈ ΓI2 where F (G) is a non-cyclic
elementary abelian p-group. First, let us construct some prototypical examples. Note that,
if not mentioned otherwise, the group of units of a field is acting in the natural way on the
field by multiplication.

Lemma 5.2.59. For any n ≥ 1 the group G = Fpn o F×pn lies in ΓI2. Moreover, NG(D) =
Fpn o F×p where D = 〈(1, 1)〉.

Proof. Note that the group multiplication is given by (x, a) · (y, b) = (x + ay, ab) and so
(y, b)−1 = (−b−1y, b−1) where (x, a), (y, b) ∈ G = Fpn o F×pn . We let D = 〈(1, 1)〉 and we let
C = 〈(0, t)〉 where t is a generator of F×pn .

Let (x, a) ∈ G. If a = 1 and x 6= 0, then (0, x−1)(x, 1)(0, x−1)−1 = (1, 1), so (x, 1) lies in D
up to conjugation. If a 6= 1, then note that for any y ∈ Fpn we have

(y, 1)(x, a)(y, 1)−1 = (x+ y − ay, a) = (x+ y(1− a), a)

So we can choose y = −x(1− a)−1 in order to conjugate (x, a) to (0, a).

We now are left to show that C is malnormal, i.e. Cg ∩ C = 1 unless g ∈ C. We compute

(y, b) · (0, a) · (y, b)−1 = (y · (1− a), a)
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If (y · (1− a), a) ∈ C, then y = 0 so that (y, b) = (0, b) ∈ C or a = 1. As D is of order p it
follows that G ∈ ΓI2.

The last claim about the normalizer of D follows from a straightforward computation.

Observation 5.2.60. Let C ≤ F×pn , then C, considered as a subgroup of Fpn o C is
malnormal by Lemma 5.2.59.

Lemma 5.2.61. Let n ≥ 2 and let C ≤ F×pn be of order pn−1/p−1. Then (C · x) ∩ Fp 6= ∅
for all x ∈ Fpn if and only if (n, p − 1) = 1. If (n, p − 1) = 1, then C · x intersects Fp in
precisely one point.

Proof. Note that C acts without fixed points on F×pn with exactly (p− 1) orbits. Consider
the orbits C · 1, . . . , C · (p − 1). If the orbits are not pairwise distinct, there will exist
another orbit that will not intersect Fp. Observe that the orbits are pairwise distinct if
and only if C ∩ F×p = 1. Since F×pn is cyclic, this happens precisely if (|C|, |F×p |) = 1. As
(pn−1/p−1, p− 1) = (n, p− 1) by Lemma A.0.8, the claim follows.

Lemma 5.2.62. Let n ≥ 2 and let C ≤ F×pn be of order pn−1/p−1. If G = Fpn o C ∈ Γ2
then (n, p− 1) = 1. Conversely, if (n, p− 1) = 1, then G ∈ ΓI2.

Proof. For the convenience of the reader we recall that conjugation in G is given by

(y, b) · (x, a) · (y, b)−1 = (b · x+ y − a · y, a) .

First, let us assume that G ∈ Γ2. By Observation 5.2.60 the subgroup C is malnormal
and hence a self-normalizing maximal cyclic subgroup. Since |G| is divisible by p, but
(|C|, p) = 1, the subgroup D has order divisible by p. It follows that any element (x, 1) with
x ∈ Fpn lies in D up to conjugation. Now,

(y, b) · (x, 1) · (y, b)−1 = (b · x, 1)

and by Lemma 5.2.61 we can conclude that (n, p− 1) = 1.

For the converse, let us assume that (n, p− 1) = 1. Let D = 〈(1, 1)〉 ≤ Fpn . If (x, a) ∈ G
with a 6= 1, then choosing y = −x(1− a)−1 yields

(y, 1) · (x, a) · (y, 1)−1 = (0, a) ∈ C .

Also observe that
(0, b) · (x, 1) · (0, b)−1 = (b · x, 1) .

By Lemma 5.2.61 we know that for any x ∈ Fpn there exists some b ∈ C such that b ·x ∈ Fp.
Moreover, by Observation 5.2.60 it follows that distinct maximal cyclic subgroups intersect
trivially, so G ∈ ΓI2.

Let p be a prime and let q = pm for some m ≥ 1. The Cayley-Hamilton theorem implies
that the maximum element order of GLn(q) is bounded by qn − 1. In fact, view the finite
field Fqn as an n-dimensional Fq-vector space and for a primitive element α ∈ F×qn , i.e. a
generator of the cyclic group F×qn , consider the Fq-linear invertible map Fqn → Fqn , x 7→ α ·x.
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Of course, the latter map has order |F×qn | = qn − 1. Any element in GLn(q) of this maximal
order qn − 1 is called a Singer cycle. The corresponding cyclic subgroup that is generated
by a Singer cycle is called a Singer cyclic subgroup. It is a standard fact that any two Singer
cyclic subgroups of GLn(q) are conjugate [Hup67, II.7].

Proposition 5.2.63. Let G ∈ ΓI2 with F (G) an elementary abelian p-group of order pn
with n ≥ 2. Then pn−1/p−1 divides |C| and |C| divides pn − 1.

Proof. By the discussion preceding this proposition, the maximum element order of GLn(p)
is equal to pn − 1. Now, we have pn = 1 + [C : NC(D)](p− 1), so

[C : NC(D)] = pn − 1
p− 1 .

In particular, we have |C| ≥ pn−1/p−1. We also know that |C| is coprime to p. We now claim
that these facts together already imply that C is contained in a Singer cyclic subgroup.
Let c ∈ C be a generator and we view C as a subgroup of GLn(p). As the order of c is
coprime to p, the corresponding matrix has distinct eigenvalues in the algebraic closure and
thus is diagonalizable. Putting c into the primary rational canonical form, the matrix is a
block sum of companion matrices associated to irreducible polynomials. Suppose for the
moment that the primary rational canonical form of c contains more than one block. Each
block of size m, being the companion matrix of an irreducible matrix, acts as the power of
a Singer cycle, and thus its order divides pm − 1. It follows that the order of c, being the
least common multiple of the orders of the blocks, is strictly smaller than pn−1/p−1, yielding
a contradiction. Hence the primary rational canonical form of c contains a single block and
thus C is contained in a Singer cyclic subgroup. Hence |C| divides pn − 1 as claimed.

5.2.3. The class Γ2

Let us now consider the more general class Γ2 which contains the finite groups with exactly
two conjugacy classes of maximal cyclic subgroups. Recall that csc-groups are finite groups
whose cyclic subgroups of the same order are conjugate. It turns out that some of the ideas
used in the analysis of csc-groups are also applicable here [CJ09], although our arguments
tend to be much more involved.

Remark 5.2.64. Let G ∈ Γ2. Since G = [C]G ∪ [D]G it is impossible that both [D]G and
[C]G are subgroups of G. We have seen in the previous section that for groups G ∈ ΓI2
the set [D]G forms a subgroup. In contrast, for groups in Γ2, it can happen that both,
[C]G and [D]G are not subgroups. For example, there is a group G ∈ Γ2 of order 168 with
F (G) ∼= (C2)3 and complement of the form C7 o C3. The subgroup C is of order 6 and D
is of order 7 and neither [C]G nor [D]G are subgroups of G. For example, one can show
that [D]G contains 72 elements, but the Sylow 7-subgroup of G is cyclic of order 7.

Remark 5.2.65. We also want to mention that not every group G ∈ Γ2 is a csc-group.
There is a group G of order 896 which contains two conjugacy classes of involutions. It
has |C| = 14, |D| = 4, Z(G) ∼= C2 but C ∩D = 1. Moreover, the Fitting subgroup F (G)
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equals the Sylow 2-subgroup P of G and Z(G) = Z(P ) such that P/Z(P ) is a Suzuki
2-group of order 64 (we shall recall the definition and properties of Suzuki 2-groups below
in Definition 5.2.110).

In the following, ϕ denotes the Euler totient function.

Lemma 5.2.66. Let G ∈ Γ2 and suppose Ψ(G) = C ∩D = 1. Then

|G| = 1 +
∑

16=C′≤C
[G : NG(C ′)] · ϕ(|C ′|) +

∑
1 6=D′≤D

[G : NG(D′)] · ϕ(|D′|)

Proof. This is a consequence of the fact that G = [C]G ∪ [D]G and [C]G ∩ [D]G = 1 by
Lemma 5.1.9.

Now, suppose that G ∈ Γ2 and Z(G) = 1. Then the class equation yields

|G| = 1 +
∑

16=C′≤C
[G : CG(C ′)] · ϕ(|C ′|) +

∑
di

[G : CG(di)]

where the latter sum ranges over representatives di of non-trivial conjugacy classes that
intersect D. Combining this equation with the one from Lemma 5.2.66 we obtain:∑

16=D′≤D
[G : NG(D′)] · ϕ(|D′|) =

∑
di

[G : CG(di)]

Also note that in a group G ∈ Γ2 the number of maximal cyclic subgroups is |M(G)| = [G :
NG(C)] + [G : NG(D)]. As C is self-normalizing, we certainly have |M| ≥ [G : C] + 1. This
bound is sharp, as can be seen by considering G = S3.

Lemma 5.2.67. Let G ∈ Γ2 with C ∩D = 1. If D is a normal subgroup, then G ∈ ΓI2.

Proof. Since D is normal, it follows that |G| = |C| · |D| since G/D is cyclic and has order
|C| since C ∩D = 1. We know that G = [C]G ∪D. Thus

|G| ≤ 1 + [G : NG(C)] · (|C| − 1) + (|D| − 1) = |D| · |C|

Thus we have actually an equality and thus Cg ∩ C = 1 if Cg 6= C.

Lemma 5.2.68. Suppose G ∈ Γ2. Then G = 〈C,D〉 = 〈C,Cd〉 = 〈C(cd), Cd〉.

Proof. The first claim was already proven in Lemma 5.2.12. Let d ∈ D be a generator. Now,
observe that C ≤ G is abnormal, hence d ∈ 〈C,Cd〉. Since C and D generate G, it follows
that 〈C,Cd〉 = G. For the last claim, let H = 〈Ccd , Cd〉. Note that Ccd = Cd·d

−2cd =
(Cd)d−2cd. Since Cd is abnormal, it follows that d−2cd ∈ H. Also d−1cd ∈ H, then d−1 ∈ H
as d−2cd = d−1d−1cd. Thus c ∈ H as well. The claim follows.
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5.2.3.1. Solvability of Groups in Γ2

We shall prove now that any group G ∈ Γ2 is solvable. We do so by relying on a result
proven in Appendix A which ultimately considers the distribution of element orders in finite
simple groups. First, we want to highlight a result by Zhang, which he also obtained using
the classification of finite simple groups:

Theorem 5.2.69 ([Zha89]). There are no self-normalizing cyclic subgroups in non-abelian
finite simple groups.

In particular, this implies that there is no finite simple group G with γ(G) = 2 by
Lemma 5.2.2. The following example shows that having a cyclic self-normalizing sub-
group is not enough to deduce solvability:

Example 5.2.70. The smallest non-solvable group that contains a cyclic self-normalizing
subgroup is the special semilinear group ΣL2(8) = SL2(8) o C3. It has order 1512 and
γ(ΣL2(8)) = 4.

In [Bra81] Brandl introduces the problem of covering a finite group G by Aut(G)-conjugates
of a proper subgroup, i.e. for which groups G and proper subgroups U is

G =
⋃

ϕ∈Aut(G)
ϕ(U) ?

For example, Brandl shows that a finite solvable group that is covered up to automorphism by
a nilpotent subgroup is already nilpotent. He also asks whether a finite group G containing
a solvable subgroup that covers G up to automorphism is already solvable and provides a
reduction theorem to finite simple groups [Bra81, Theorem 6]. The question has since been
answered affirmatively by Saxl [Sax88]. We shall use ideas from the reduction theorem of
Brandl to prove:

Theorem 5.2.71. Any group G ∈ Γ2 is solvable.

Proof. We prove the claim by induction on the order of G. Let N E G be a minimal
normal subgroup of G. By induction G/N is solvable. Since N is minimal normal, hence
characteristically simple, there exists some simple group S such that N is isomorphic to the
direct product of n factors of S for some n ∈ N. Suppose that S is non-abelian. Since N is
normal in G, it is covered by two cyclic subgroups up to automorphism, say

N =
⋃

ϕ∈Aut(N)
ϕ(C) ∪ ϕ(D)

where C,D ≤ N are cyclic. Let g ∈ S, then there exists some ϕ ∈ Aut(N) such that
ϕ ((g, . . . , g)) ∈ C or ϕ ((g, . . . , g)) ∈ D. We know that Aut(N) ∼= Aut(S) o Sn as S is
non-abelian simple, so there are automorphisms ϕi ∈ Aut(S) such that ϕ ((g, . . . , g)) =
(ϕ1(g), . . . , ϕn(g)). Let πi : N → S denote the i-th canonical projection. It follows that
ϕi(g) ∈ πi(C) or ϕi(g) ∈ πi(D) for all i. In particular S is covered by two cyclic subgroups
up to automorphism. By Corollary A.0.3, this is only possible if S is cyclic of order p, which
yields a contradiction. Thus G is solvable.

As a consequence of the solvability of groups in Γ2 we can record:
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Lemma 5.2.72. Suppose G ∈ Γ2 and F (G) is cyclic, then G is metacyclic.

Proof. Note that G acts on F (G) by conjugation and the kernel of this action equals
CG(F (G)) = F (G) since G is solvable. Thus G/F (G) is isomorphic to a subgroup of
Aut(F (G)). But the latter is abelian, thus G/F (G) is cyclic.

5.2.3.2. The Center and Conjugacy Classes

Lemma 5.2.73. Let G be a finite group and let A ≤ G be an abelian Carter subgroup.
Then CG(B) = NG(B) for all B ≤ A.

Proof. Let g ∈ NG(B). Note that A ≤ CG(B) and also Ag ≤ CG(Bg) = CG(B). Hence
〈A,Ag〉 ≤ CG(B). Now A and Ag are Carter subgroups of 〈A,Ag〉, hence by [Vdo08] there
exists some h ∈ 〈A,Ag〉 such that Ah = Ag. This implies that hg−1 ∈ NG(A) = A. Since
h ∈ CG(B) and hg−1 ∈ CG(B), also g ∈ CG(B).

Lemma 5.2.74. Let G be a finite group with abelian Carter subgroup A. Then Z(G) = AG.

Proof. Observe that A is maximal nilpotent. If g ∈ Z(G), then 〈g,A〉 is abelian, thus g ∈ A.
So Z(G) ≤ A and since Z(G) is normal in G, it follows that Z(G) ≤ AG. By Lemma 5.2.73
we have G = NG(AG) = CG(AG), so AG ≤ Z(G).

Lemma 5.2.75. Suppose G ∈ Γ2. For any g ∈ G we have CG(D) ∩ Cg ≤ Z(G). Moreover,
C ∩D ≤ Z(G) = CG = C ∩ Cd.

Proof. By Lemma 5.2.68 we know G = 〈C,D〉 = 〈Cg, D〉 = 〈C,Cd〉, thus CG(D) ∩ Cg ≤
Z(G), C ∩D ≤ Z(G) and C ∩ Cd ≤ Z(G). By Lemma 5.2.74 we have Z(G) = CG. Since
Z(G) = CG ≤ C ∩ Cd the equality follows.

Corollary 5.2.76. If G ∈ Γ2 and Z(G) = 1, then CG(D) ⊆ [D]G.

Observation 5.2.77. If G ∈ Γ2, then G/Z(G) ∈ Γ2 as well. Suppose γ(G/Z(G)) ≤ 1, then
G/Z(G) would be cyclic, thus G abelian. However, this contradicts the fact that γ(G) = 2.
So γ(G/Z(G)) = 2.

Lemma 5.2.78. If G ∈ Γ2, then Z(G/Z(G)) = 1.

Proof. Let G = G/Z(G) and C = CZ(G)/Z(G). Then Z(G) =
⋂
g∈GC

g. The preimage of
Z(G) in G is then equal to

⋂
g∈G(Z(G)C)g =

⋂
g∈GC

g = Z(G), by Lemma 5.2.75.

Of course, the previous lemma shows once more that any group in Γ2 is not nilpotent.

Lemma 5.2.79. Let G ∈ Γ2. Then |Z(G)| divides (|C|, |D|).

Proof. Of course, we can assume that Z(G) 6= 1. Let c ∈ C and d ∈ D be generators. Let
ck ∈ Z(G) be a generator of Z(G). Note ck · d ∈ Cg or ck · d ∈ Dg′ . The first case can never
happen: if ckd = g−1cmg for some m ∈ N, then ckgdg−1 = gckdg−1 = cm since ck ∈ Z(G).
Thus gdg−1 ∈ C, which would imply that G has only a single conjugacy class of maximal
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cyclic subgroups. Hence it follows that ckd ∈ Dg′ . Note that ord(ckd) =
[
ord(ck), ord(d)

]
as ck and d commute. In particular, |Z(G)| = ord(ck) divides the order of ckd. But then
|Z(G)| divides the order of D. Since Z(G) ≤ C, the claim follows.

Lemma 5.2.80. Let G ∈ Γ2 and suppose that the orders of representatives of the two
conjugacy classes of maximal cyclic subgroups of G/Z(G) are coprime. Then (|C|, |D|) =
|Z(G)|.

Proof. Let K,L be representatives of conjugacy classes of maximal cyclic subgroups in
G/Z(G). By hypothesis, (|K|, |L|) = 1. Let π : G→ G/Z(G) be the canonical projection.
Then, without loss of generality, π(C) = K and π(D) = L. Note that C ∩Z(G) = Z(G), so
|C| = |Z(G)| · |K| and |D| = |Z(G)∩D| · |L|. It follows that (|C|, |D|) ≤ |Z(G)|. Combining
this with Lemma 5.2.79 yields the claim.

Lemma 5.2.81. Let G ∈ Γ2 and suppose that (|C|, |D|) = 1. Then any non-cyclic quotient
Q of G has two conjugacy classes of maximal cyclic subgroups with coprime orders and
Z(Q) = 1.

Proof. This is a consequence of Lemma 5.1.6 and Lemma 5.2.79.

Lemma 5.2.82. Let G ∈ Γ2 and suppose (|C|, |D|) = 1. Then CG(C ′) ⊆ [C]G for any
non-trivial subgroup C ′ ≤ C.

Proof. Suppose CG(C ′) ∩Dg 6= 1 for some g ∈ G, without loss of generality we can assume
that g = 1. So there is some non-trivial subgroup D′ ≤ D such that D′ ≤ CG(C ′). Let C ′ =
〈x〉 and D′ = 〈y〉. Since x and y commute, the order of xy is equal to [|C ′|, |D′|] = |C ′| · |D′|,
since |C| and |D| were assumed to be coprime. But xy ∈ Cg or xy ∈ Dg for some g ∈ G. In
particular the order of xy divides the order of C resp. D, which yields a contradiction.

Observation 5.2.83. Let G ∈ Γ2 with Z(G) = 1. Then having CG(C ′) ⊆ [C]G for all
1 6= C ′ ≤ C is equivalent to the statement that |C| and |D| are coprime. Suppose there is a
prime p dividing |C| as well as |D|. Let P ≤ G be a Sylow p-subgroup. Note that P has to
intersect [C]G as well as [D]G non-trivially as [C]G ∩ [D]G ≤ Z(G) = 1 and the orders of C
and D are divisible by p. Since Z(P ) 6= 1, it follows that there exists a non-trivial subgroup
C ′ ≤ C with CG(C ′) ∩Dg 6= 1 for some g ∈ G. The converse of the statement is provided
by Lemma 5.2.82.

Remark 5.2.84. We know that C ∩D ≤ Z(G) by Lemma 5.2.75. But in general C ∩D is
a proper subgroup of Z(G), as we have already seen in Remark 5.2.65. The same example
also shows that a group G with C ∩D = 1 need not have (|C|, |D|) = 1. However, we shall
prove at the end of this chapter that (|C|, |D|) = |Z(G)| (cf. Proposition 5.2.149).

Proposition 5.2.85. Let G be a finite group and let C and D be two cyclic subgroups of
G such that

G = Z(G) ∪ [C]G ∪ [D]G .

If G/Z(G) ∈ Γ2, then G ∈ Γ2.
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Proof. We can assume without loss of generality that C and D are maximal cyclic such
that C maps under π : G→ G/Z(G) = G onto a self-normalizing cyclic subgroup of G. It
then follows that NG(C) = Z(G)C = CG(C). Let H = Z(G)C and let g ∈ NG(H), then
g ∈ NG(C) = C. Hence g ∈ Z(G)C. It follows that NG(H) = H = CG(H). Hence H
is an abelian self-normalizing subgroup, in particular it is a Carter subgroup of G. By
Lemma 5.2.74 we have HG = Z(G). We know that in G = G/Z(G) , Z(G) = CG. Then
π−1(CG) = (Z(G)C)G = HG = Z(G). It follows that Z(G) = 1. In particular, it follows
that C ∩D = 1.

Now, let c ∈ C be a generator of C and let z ∈ Z(G) be arbitrary. Consider the element
zc. If zc ∈ Z(G), then it would follow that c ∈ Z(G), but then G/Z(G) would be cyclic. If
zc ∈ [D]G, say zc = g−1dng for some d ∈ D, n ∈ N and g ∈ G, we would have c = g−1d

n
g.

However, we have seen that C ∩D = 1, so that this would imply that c = 1. Again, this is
impossible as G/Z(G) is non-cyclic. Hence zc = g−1cng for some n ∈ N and g ∈ G. Then
g ∈ NG(H) = H = Z(G)C, so that zc = cn, and thus z ∈ C.

Observation 5.2.86. Suppose G is a finite group and G = Z(G) ∪ [C]G for some cyclic
group C. Then G/Z(G) has CZ(G)/Z(G) as a conjugate-dense subgroup. Thus G/Z(G) is
cyclic, which implies that G is abelian.

Lemma 5.2.87. If G ∈ Γ2, then the number of conjugacy classes k(G) satisfies the following
inequality:

1 + |C| ≤ k(G) ≤ |C|+ |D| − 1

Proof. Let x, y ∈ C \ {1} and suppose g ∈ G with g−1xg = y. In particular, x and y have
the same order, and thus 〈x〉 = 〈y〉 ≤ C. Hence g ∈ NG(〈x〉) = CG(〈x〉) by Lemma 5.2.73,
which implies that x = y. A generator of D together with the elements of C then provide
at least 1 + |C| conjugacy classes. The upper bound follows easily.

The bound given in Lemma 5.2.87 is sharp as one observes for the group A4. It has a cyclic
self-normalizing subgroup C of order 3 and |D| = 2. Moreover, k(A4) = 4.

5.2.3.3. Direct Products

One might wonder whether direct products of groups in Γ2 provide further examples of
groups with two conjugacy classes of maximal cyclic subgroups. But this happens only in
trivial cases:

Proposition 5.2.88. A finite group G = G1 × G2 lies in Γ2 if and only if G1, G2 ∈ Γ≤2
and precisely one of the factors is cyclic and (|G1|, |G2|) = 1.

Proof. Suppose that neither G1 nor G2 is cyclic, i.e. γ(G1) = γ(G2) = γ(G) = 2. Let
πi : G→ Gi denote the canonical projections. By Lemma 5.1.6 we know that representatives
of the conjugacy classes of maximal cyclic subgroups are of the form C = 〈c〉 = 〈(c1, c2)〉
and D = 〈d〉 = 〈(d1, d2)〉, where ci resp. di are generators of the corresponding maximal
cyclic subgroups in Gi. We now consider the element (c1, d2). Suppose it is conjugate to
an element of C, then (g1, g2)−1(c1, d2)(g1, g2) = (g−1

1 c1g1, g
−1
2 d2g2) = (ck1, cm2 ) for some
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k,m ∈ Z. It would follow that g−1
2 d2g2 ∈ 〈c2〉, hence G2 would have γ(G2) = 1. If the

element (c1, d2) was conjugate to an element of D, it would likewise follow that γ(G1) = 1.
Hence at least one of G1 and G2 has to be cyclic. If both are cyclic, then G1×G2 is abelian
and hence it lies in Γ2 if and only if it is cyclic. And this happens precisely when |G1| and
|G2| are coprime.

So from now on we assume that G1 is cyclic and γ(G2) = 2. So G1 = C1 = 〈c1〉 and we
have to choose c = 〈(c1, c2)〉. Note that NG(C) = 〈(c1, 1), (1, c2)〉 ∼= C1 × C2 which has to
be cyclic, thus C1 and C2 have to have coprime orders. Moreover, we have D = 〈d〉 with
the generator of the form d = (x, d2). Since (c1, d2) cannot be conjugate to C (for otherwise
γ(G2) = 1), we must have that g−1(c1, d2)g = (x, d2)k = (xk, dk2) for some g = (g1, g2) ∈ G
and k ∈ Z. Since g−1

1 c1g1 = xk, i.e. Cg1
1 ≤ 〈x〉, it follows that Cg1

1 = 〈x〉. Hence we can
choose without loss of generality x = c1, so d = (c1, d2).

Now consider the element (1, d2). An analogous argument as before shows that this element
has to lie in a conjugate of D, say g−1(1, d2)g = (c1, d2)n = (cn1 , dn2 ). It follows that |C1|
divides n and n is coprime to |D2|. Thus |C1| and |D2| are coprime. Since |C1| and |C2|
are coprime as well, it follows that |G1| = |C1| and |G2| are coprime.

Conversely, let us suppose that G1 = 〈c1〉 is cyclic, G2 ∈ Γ2 and |G1| and |G2| are coprime.
We choose c = (c1, c2) and d = (c1, d2). Suppose g = (g1, g2) ∈ G with g1 = ck1 is an arbitrary
element. If g2 = γ−1cm2 γ, then g = (1, γ)−1(ck1, cm2 )(1, γ). But (ck1, cm2 ) ∈ 〈c〉 ∼= C1 × C2,
since |C1| and |C2| are coprime. Similarly, if g2 = γ−1dm2 γ, it follows that g is conjugate
to (ck1, dm2 ). And the latter element lies in 〈d〉 ∼= C1 × D2, again since |C1| and |D2| are
coprime.

Let G ∈ Γ2. If the orders of Z(G) and G/Z(G) are coprime, then by Schur-Zassenhaus
G ∼= Z(G)×G/Z(G). Hence by Proposition 5.2.88 it follows that G ∼= Z(G)×G/Z(G) if
and only if the orders of Z(G) and G/Z(G) are coprime.

5.2.3.4. Metacyclic Groups

We have already seen that groups in the class ΓI2 are not necessarily metacyclic. Nevertheless,
understanding the structure of the metacyclic groups lying in Γ2 will be important later on.

Example 5.2.89. Suppose G = DC ∈ Γ2 with D EG and Z(G) = 1. So G = D oϕ C for
some automorphism ϕ. Note that dc = d−ncdn for some n. Suppose that |C| = 2. Then
1 = (dc)2 = dcdc = dϕ(d), so ϕ(d) = d−1. If D′ ≤ D is of order 2, then ϕ fixes D′. Thus
D′ ≤ CG(C) = C, which contradicts the fact that C ∩D ≤ Z(G) = 1. Hence D is odd, and
G is a dihedral group.

Proposition 5.2.90. Let G ∈ Γ2 be metacyclic with Ψ(G) = C∩D = 1. Then G ∈ ΓI2, and
in particular |D| ≡ 1 mod |C|, so |C| and |D| are coprime. Also D is a normal subgroup
of G and G = D o C.

Proof. LetN ≤ G be a normal cyclic subgroup such that G/N is cyclic. Then G/N = CN/N ,
so G = CN . If N ≤ C, then G would be cyclic. Hence N ≤ D, and so N ∩C ≤ D ∩C = 1.
Note that |C| · |D| divides |G| = |C| · |N |. This implies |D| = |N |, so N = D. We
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have G = D ∪ [C]G, and thus |G| = |D| + |[C]G \ {1}|. Note that |[C]G \ {1}| ≤ [G :
NG(C)] · (|C|−1) = [G : C] · (|C|−1) = |G|−|D|. It follows that |G| ≤ |D|+ |G|−|D| = |G|.
Hence |[C]G \ {1}| = [G : NG(C)] · (|C| − 1), which is only possible if distinct conjugates of
C intersect trivially. Together with the fact that D is a normal subgroup, it follows that
G ∈ ΓI2. Since G is a Frobenius group with Frobenius complement C and Frobenius kernel
D, we have that |D| ≡ 1 mod |C|.

Lemma 5.2.80 together with the previous proposition implies:

Corollary 5.2.91. For G ∈ Γ2 and G metacyclic, it follows that |Z(G)| = (|C|, |D|).

Corollary 5.2.92. Suppose G ∈ Γ2 is metacyclic and Z(G) = 1, then all Sylow subgroups
of G are cyclic.

Proof. This is Theorem 5.2.47.

We can read off C resp. D from any decomposition of a metacyclic group:

Corollary 5.2.93. Let G ∈ Γ2 with Z(G) = 1 and such that G = B o A with A and B
cyclic. Then B = D and A = Cg for some g ∈ G.

Proof. By Proposition 5.2.90 we know that G ∈ ΓI2. Since B is cyclic and normal, it follows
that B ≤ D. Moreover, A ≤ Cg for some g ∈ G. Otherwise A ≤ D and thus G would be
cyclic. Note that |G| = |D| · |C| = |B| · |A|. The claim follows.

Remark 5.2.94. The recognition property proven in Corollary 5.2.93 fails if we allow
Z(G) 6= 1. There are metacyclic groups G ∈ Γ2 with normal cyclic K EG such that G/K
is cyclic and such that K is a proper subgroup of D. For example, the group G = C3 o C4
has |D| = 6 and |C| = 4.

Recall that for a finite p-group G one defines for any i ≥ 1 the following subgroups:

Ωi(G) = 〈{g ∈ G | gpi = 1}〉

Furthermore, we abbreviate Ω(G) = Ω1(G).

Proposition 5.2.95. Let G ∈ Γ2 and suppose that G/Z(G) is metacyclic. Then G is
metacyclic as well. In fact, all Sylow subgroups of G are cyclic. Moreover, D is a normal
subgroup and Z(G) = C ∩D.

Proof. We have G = (Z(G)D)C where N = Z(G)D E G. Moreover, by considering the
quotient G/Z(G) we obtain that CG(D) = Z(G)D. Observe that N ∩ C = Z(G) since
N is abelian. Let P ≤ G be a Sylow p-subgroup of G. Note that PZ(G)/Z(G) is cyclic
as it is a Sylow p-subgroup of G/Z(G). If PZ(G)/Z(G) is contained in Z(G)C/Z(G) =
C/Z(G) (up to conjugation), then P is cyclic. Otherwise PZ(G)/Z(G) ≤ DZ(G)/Z(G),
so P ≤ Z(G)D = N . In particular, it follows that P is abelian and since P is the Sylow
p-subgroup of N , hence characteristic in N , it follows that P E G. If (p, |Z(G)|) = 1,
then P is actually contained in a conjugate of D, so it is cyclic. So we can assume that p
divides |Z(G)|. Suppose that P is non-cyclic. Then also Ω(P ) is non-cyclic. Since p divides
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|Z(G)| it follows that Ω(P ) intersects C. Since Ω(P ) is non-cyclic, it also intersects D. Let
Z = Ω(P ) ∩ C ≤ N ∩ C = Z(G) and T = Ω(P ) ∩D. Then

Ω(P ) = [Z]G ∪ [T ]G = Z ∪ [T ]G .

It follows that pn = |Ω(P )| = p + [G : NG(T )](p − 1) for some n ≥ 2. So [G : NG(T )] is
divisible by p. However, P ≤ NG(T ), which yields a contradiction. Hence we have shown
that any Sylow subgroup of G is cyclic. In particular, any abelian subgroup is cyclic. Thus
Z(G)D = D, i.e. Z(G) ≤ D and D is a normal subgroup.

A group is called characteristically metacyclic if it contains a characteristic cyclic subgroup
such that the corresponding quotient is cyclic.

Corollary 5.2.96. A metacyclic group G ∈ Γ2 is characteristically metacyclic.

Proof. Since D is normal subgroup of G and the orders of C and D are distinct, D is a
characteristic subgroup of G.

A finite group G whose Sylow subgroups are cyclic is split metacyclic. So we get:

Corollary 5.2.97. Any metacylic group G ∈ Γ2 splits, so G = KL with K and L cyclic,
K EG and K ∩ L = 1. Moreover, we have K ≤ D and L ≤ C (up to conjugation).

Remark 5.2.98. Even though by Corollary 5.2.97 any metacyclic group G ∈ Γ2 splits,
it is not necessarily the case that there exists a complement to D EG. Again, the group
G = C3 o C4 provides an example. It has |D| = 6 and |C| = 4, but there is no complement
to D.

Lemma 5.2.99. Let G ∈ Γ2 and suppose that N EG is a cyclic subgroup such that G/N
is metacyclic. Then G is metacyclic as well.

Proof. Note that DN/N ≤ G/N is normal by Proposition 5.2.95. Thus DN EG. If N ≤ D,
then DN = D EG. In particular, G is metacyclic. If N ≤ C, then N ≤ Z(G) since N is
normal and the normal core of C equals the center of G. In particular, we know that G/Z(G)
is metacyclic being a quotient of G/N . Then G is metacyclic by Proposition 5.2.95.

Lemma 5.2.100. Let G ∈ Γ2 be metacyclic. Then the number of conjugacy classes that
intersect C \ Z(G) equals |C| − |Z(G)| and the number of conjugacy classes that intersect
D \ Z(G) equals

|Z(G)| · |D| − 1
|C|

,

where |D| = |D|/|Z(G)| and |C| = |C|/|Z(G)|. The total number of conjugacy classes in G is
given by

k(G) = |C|+ |Z(G)| · |D| − 1
|C|

= |Z(G)| ·
(
|C|+ |D| − 1

|C|

)

Proof. We know that G = G/Z(G) is a Frobenius group. If x ∈ C \ Z(G), then CG(x) = C
since in the quotient CG(x) = C and Z(G) = C ∩ D. Similarly, if y ∈ D \ Z(G), then
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CG(y) = D. If x, x′ ∈ C \ Z(G) and g−1xg = y for some g ∈ G, then g−1xg = y and it
follows that g ∈ NG(〈x〉) = CG(〈x〉) = C. Thus g ∈ C, so that x = y. Hence there are
|C| − |Z(G)| conjugacy classes in G that intersect C \ Z(G). Let µ denote the number of
conjugacy classes in G that intersect D \ Z(G). Then the class equation yields

|G| = |Z(G)|+ (|C| − |Z(G)|) · [G : CG(C)] + µ[G : CG(D)] .

Note that CG(C) = C and CG(D) = D. We then obtain

µ = |Z(G)| · [G : C]− 1
[G : D] .

The claim then follows as |G| = |Z(G)| · |G/Z(G)| = |Z(G)| · |C| · |D|.

Lemma 5.2.101. Let G ∈ Γ2 be metacyclic with |D| = pn for some prime p. Then
Z(G) = 1, so G ∈ ΓI2.

Proof. First observe that D is the Sylow p-subgroup of G since |G| = |C|·|D|/|Z(G)| = |C| · |D|
where D denotes the image of D in G/Z(G). And |C| is coprime to |D| and thus also
coprime to |D| as |D| = pn. Let C ′p denote the subgroup of C whose order is coprime to p.
Then C ′p is a complement of D and so G = DC ′p. Note that p 6= 2 since otherwise C ′p = 1
since it has to divide p− 1. Note that Z(G) ≤ D and since F (G) = D, C ′p ≤ Aut(D). By
Lemma 5.2.55 C ′p acts fixed point freely on D, which shows that Z(G) = 1.

Lemma 5.2.102. Let G be a finite metacyclic group. Then G contains a non-trivial
characteristic cyclic subgroup unless G ∼= Cn × Cn for some n ∈ N.

Proof. By [Ber08, Theorem A.9.1] a metacyclic group G containing no characteristic
subgroup of prime order is isomorphic to a group of the form Cn × Cn ×Q8 where Q8 is of
odd index in G or it isomorphic to Cn × Cn. In the first case Q8 is a characteristic Sylow
2-subgroup of G, hence Z(Q8) would furnish a non-trivial characteristic cyclic subgroup of
G. Thus only the latter case remains.

Lemma 5.2.103. Let G ∈ Γ2 and suppose that N ≤ G is a metacyclic subgroup of index 2.
Then G is metacyclic.

Proof. Suppose that G is a minimal counterexample. If K was a non-trivial characteristic
subgroup of N , then N/K is certainly metacyclic and N/K ≤ G/K ∈ Γ2 is of index two.
Since G is minimal, it would follow that G/K is metacyclic. But then Lemma 5.2.99
would imply that G is actually metacyclic. Thus we can assume that N does not contain
any non-trivial characteristic cyclic subgroups. By Lemma 5.2.102 it then follows that
N ∼= Cn × Cn for some n ≥ 2. By factoring out all Sylow subgroups of N but one we can
moreover assume that n = p is a prime number. Note that N ≤ F (G) and F (G) is of
index two in G since G cannot be nilpotent by Corollary 5.2.3. Thus N = F (G) and so
by Lemma 5.2.115 we know that Z(G) = 1, hence N ∩ C = 1. As G = NC, it follows that
|C| = 2. Also N ⊆ [D]G, thus N = [D ∩N ]C . Hence

p+ 1 = p2 − 1
p− 1 = [C : NC(D ∩N)] .

However, this is impossible as C is of order two.
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5.2.3.5. Frobenius Groups

By Theorem 5.2.47 we know that any group G ∈ ΓI2 is a Frobenius group. We shall now
answer the question how Frobenius groups in Γ2 look like.

Proposition 5.2.104. Let G ∈ Γ2 be a Frobenius group with Frobenius kernel N . Then
G = N o C with C maximal cyclic. Moreover, N = [D]G and so |C| and |D| are coprime.

Proof. We denote by H a Frobenius complement of G. In particular, H is self-normalizing
and G = N o H. Moreover, |N | ≡ 1 mod |H| and N =

(
G \ [H]G

)
∪ {1}. Hence

G \ N = [H]G \ {1}. Let C = 〈c〉 be a self-normalizing maximal cyclic subgroup of G.
Suppose C ≤ N . By Thompson’s theorem N is nilpotent. But since C is maximal nilpotent
it follows that C = N . However, N is normal and C is abnormal, which would imply that
G = C. So we can assume that C ≤ H, at least up to conjugation. If D = 〈d〉 was contained
in H up to conjugation as well, then a conjugate of an element of n ∈ N would lie in H.
However, since N is normal, this would contradict the fact that H ∩N = 1. Hence D ≤ N .

Let h ∈ H be an arbitrary non-trivial element. There is some g ∈ G such that g−1hg = dn

or g−1hg = cn for some n ∈ N. In the first case h ∈ N since D ≤ N and N EG. Thus only
the latter case can occur. But then Hg ∩H 6= 1, which implies that g ∈ H. It follows that
C ≤ H is a conjugate-dense subgroup of H, hence C = H.

Note that |G| = |N | · |C| and D ≤ N , so [D]G ≤ N . Since G \ {1} = [D]G \ {1} ∪ [C]G \ {1}
and C ∩D ≤ Z(G) = 1, it follows that

|G| − 1 = (
∣∣∣[D]G

∣∣∣− 1) + [G : NG(C)] · (|C| − 1)

=
∣∣∣[D]G

∣∣∣− 1 + [G : C] · (|C| − 1)

=
∣∣∣[D]G

∣∣∣− 1 + |G| − |N |

Hence we have additionally
∣∣∣[D]G

∣∣∣ = |N | and hence [D]G = N . The last claim follows now
since |N | and |H| are coprime.

Remark 5.2.105. There are Frobenius groups G ∈ Γ2 that do not lie in ΓI2. For example,
there is a unique Frobenius group G of order 84 and this group lies in Γ2. However,
F (G) ∼= C14 × C2, so by Theorem 5.2.47 the group does not lie in ΓI2 since F (G) is not a
p-group for a prime p.

Proposition 5.2.106. Let G ∈ Γ2 with Z(G) = 1 and suppose that |C| = pn for some
prime p. Then G is a Frobenius group.

Proof. First note that C = P is a Sylow p-subgroup since C is maximal nilpotent. So if p
divided |D|, then D ∩ Cg 6= 1, but Z(G) = 1. Hence (|C|, |D|) = 1. Also, since P is cyclic
and NG(P ) = NG(C) = C, it follows that there is a normal p-complement N , so G = NC,
with N EG and N ∩ C = 1. Hence N ⊆ [D]G.

We claim that D ≤ N . Let d ∈ D be a generator of D, then d = gck for some g ∈ N and
k ∈ N. Then dp

n = (gck)pn = g̃ckp
n = g̃ for some g̃ ∈ N since N is normal in G. Thus

81



5. Finite Groups and Residually Finite Groups

dp
n ∈ N . Since p does not divide the order of D, it follows that d ∈ N . Since N ⊆ [D]G,

and D ≤ N , we have N = [D]G.

So |G| =
∣∣∣[D]G

∣∣∣ · |C|. But also G \ {1} = ([C]G \ {1})∪̇([D]G \ {1}, from which it follows
that |G| = |[C]G| + |[D]G| − 1. Putting these two equations together, we obtain that
|[C]G \ {1}| = |[D]G| · (|C| − 1). But note that |[C]G \ {1}| ≤ [G : NG(C)] · (|C| − 1) =
[G : C] · (|C| − 1) = |[D]G| · (|C| − 1) with equality if and only if distinct conjugates of C
intersect trivially. Hence C is a Frobenius complement.

5.2.3.6. Normal p-Subgroups and Cyclic Quotients

Lemma 5.2.107. Let G ∈ Γ2 with Z(G) = 1 and let N be a minimal normal subgroup
such that G = NC. Then G ∈ ΓI2, and in particular, G is a Frobenius group.

Proof. Since G is solvable, N is an elementary abelian p-group for some prime p. Note that
N ∩ C is a normal subgroup of N since N is abelian, also N ∩ C is a normal subgroup of
C. Thus N ∩ C is a normal subgroup of G = NC. Since N is minimal normal, N ∩ C = 1
or N ∩ C = N . In the latter case N ≤ C, but this would mean that the normal core of C,
which is equal to the center of G, is non-trivial. Hence N ∩ C = 1, so that N ⊆ [D]G. If K
and L are maximal cyclic subgroups of N , there exists g, h ∈ G such that g−1Kg ≤ D and
h−1Lh ≤ D. Since K and L are of the same order, it follows that g−1Kg = h−1Lh. But
G = NC with N abelian, thus there exists some cn ∈ C such that K = c−nLcn. Hence any
two non-trivial cyclic subgroups of N are conjugate via an element of C.

Now let C ′ ≤ C be some subgroup and suppose that N ∩CG(C ′) 6= 1. Since C ≤ CG(C ′) it
follows by the previous observation that N ≤ CG(C ′). Hence G = CG(C ′). It follows that
C ′ = 1.

Let C ′ ≤ C be non-trivial, then N ∩ CG(C ′) = 1. If gck ∈ CG(C ′), where g ∈ N , then
g ∈ CG(C ′), hence g = 1. Thus CG(C ′) = C. It follows that G is a Frobenius group
with Frobenius complement C and Frobenius kernel N . Note that G = [D]G ∪ [C]G with
[D]G∩[C]G = 1 and |[C]G| = [G : NG(C)]·(|C|−1)+1 = [G : C](|C|−1)+1 = |G|−[G : C]+1.
Hence

|G| = 1 + |[D]G \ {1}|+ |[C]G \ {1}|
= |[D]G \ {1}|+ |G| − |N |+ 1 .

So |N | = |[D]G \ {1}|+ 1 = |[D]G|. Since N ⊆ [D]G, it follows that N = [D]G and so D is
of prime order p. Hence G ∈ ΓI2.

Lemma 5.2.108. Let G = (Cpk)n be a homocyclic p-group and let ci(G) be the number
of cyclic subgroups of order pi. Then for 1 ≤ i ≤ k we have

ci(G) = p(i−1)(n−1) · p
n − 1
p− 1 .

Proof. For a finite group, the number of cyclic subgroups of a certain order m is given
by the number of elements of order m divided by ϕ(m). In particular, for a finite abelian
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p-group G we have
ci(G) = |Ωi(G) \ Ωi−1(G)|

pi−1(p− 1) .

If G = (Cpk)n, then |Ωi(G)| = |(Cpi)n| = pin and the claim follows.

Lemma 5.2.109. Let G ∈ Γ2 with Z(G) = 1 and suppose that P EG is an abelian p-group.
If G/P is cyclic, then G ∈ ΓI2 and P is the Sylow p-subgroup. In particular, P is cyclic or
elementary abelian.

Proof. First note that G = PC and P ∩ C is a normal subgroup of P since P is abelian.
Hence P ∩C is a normal subgroup of G. Since Z(G) is the normal core of C and P ∩C ≤ C,
it follows that P ∩ C = 1. Hence P ⊆ [D]G. Since P is a normal subgroup of G it follows
that Aut(P ) acts transitively on the set of cyclic subgroups of P of the same order. By
[HBa, Theorem VIII.5.8(b)] we know that P has to be homocyclic. If P is cyclic, then
Proposition 5.2.90 applies. So in the following assume that P is non-cyclic.

Let exp(P ) = pk for some k ≥ 1. We prove the claim by induction on k. If exp(P ) = p,
then Lemma 5.2.107 shows the claim. In particular, |C| and |D| are coprime. Suppose
k ≥ 2. Then Ω(P ) ≤ P is a characteristic subgroup of P and exp(P/Ω(P )) = pk−1. Let
π : G→ G/Ω(P ) denote the canonical quotient map. If G/Ω(P ) is cyclic, then G = Ω(P )C
and since exp(Ω(P )) = p we are done. Otherwise G/Ω(P ) ∈ Γ2 and π(G) = π(P )π(C).
Since C ∩ Ω(P ) ≤ C ∩ P = 1, we know that |C| = |π(C)|. By induction it follows that
|π(C)| is coprime to p. Hence P is a Sylow p-subgroup of G. If k ≥ 2, then the number of
cyclic subgroups of order p2 in P is divisible by p by Lemma 5.2.108. Note that C permutes
the cyclic subgroups of the same order in P transitively. So if k ≥ 2, then p would divide
|C|, a contradiction.

If we drop the assumption that P is abelian in Lemma 5.2.109, we will need to take into
account a certain class of 2-groups that we shall recall here:

Definition 5.2.110 ([HBa, Definition VIII.7.1]). A Suzuki 2-group G is a non-abelian
2-group which has more than one involution and such that there exists a solvable group of
automorphisms of G that permutes the involutions of G transitively.

Suzuki 2-groups have first been classified by Higman in [Hig63]. Let us collect some
properties of Suzuki 2-groups, see [HBa, Theorem VIII.7.9]. Let G be a Suzuki 2-group.
Then the following assertions hold:

(1) G has nilpotency class 2, exponent 4 and G′ = Φ(G) = Z(G) = Ω(Z(G)) = Ω(G) and
|G| = |Z(G)|2 or |G| = |Z(G)|3.

(2) The center Z(G) is non-cyclic. If it were cyclic, then |Z(G)| = 2 so |G| = 4 or |G| = 8.
But |G| = 4 impossible, since G is non-abelian. The non-abelian groups of order 8 are
the quaternion group, which contains a unique involution, and the dihedral group D8
which has Ω(D8) = D8.

(3) By [Bry81, Theorem 2] the automorphism group of a Suzuki 2-group is solvable.

Higman identified four different types of Suzuki 2-groups and denoted these by the letters
A,B,C,D. The Suzuki 2-groups G with |G| = |Z(G)|2 are of type A, those with |G| =
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|Z(G)|3 belong to one of the types B,C and D. It will later turn out that only Suzuki
2-groups of type A can appear as the Sylow 2-subgroups of groups in the class Γ2. Let n be
an integer and let q = 2n. Then n is not a power of 2 if and only if there exists a non-trivial
automorphism θ of Fq of odd order. For such an integer n and automorphism θ of odd
order Higman defined a Suzuki 2-group A(n, θ). Higman showed that A(n, θ) ∼= A(n, θ′) if
and only if θ±1 = θ′ and any Suzuki 2-group G with |G| = |Z(G)|2 is isomorphic to a group
A(n, θ) for some n and θ.

Note that there are no Suzuki 2-groups of order less than 64 and there are exactly two
isomorphism classes of Suzuki 2-groups of order 64. Exactly one of these is of type A.

Lemma 5.2.111. Let G ∈ Γ2 with Z(G) = 1 and suppose P is a normal Sylow p-subgroup,
such that G/P is cyclic. Then P = [D]G. Moreover, it follows that P is cyclic, elementary
abelian or p = 2 and P is a Suzuki 2-group. If P is cyclic or elementary abelian, then
G ∈ ΓI2.

Proof. We first claim that if G = PC ∈ Γ2 such that Z(G) = 1 and P is a normal Sylow
p-subgroup, then (|C|, |D|) = 1. We use induction on the nilpotency length of P . If P is
abelian, then Lemma 5.2.109 applies. Otherwise Z(P ) is a proper subgroup of P and we
let π : G→ G/Z(P ) denote the canonical quotient map. Of course, π(G) = π(P )π(C) and
π(P ) is again a normal Sylow p-subgroup of G/Z(P ). If π(G) is cyclic, then G = Z(P )C
and Lemma 5.2.109 applies. So in the following suppose that G/Z(P ) is non-cyclic. Also
note that Z(P ) ∩ C ≤ Z(G) = 1, which implies that |π(C)| = |C|. By induction it follows
that p does not divide |C|. Hence P ∩ C = 1, so P ⊆ [D]G. As DZ(P )/Z(P ) is a p-group
by induction, it follows that D is a p-group, so that P = [D]G. If P is abelian, then
Lemma 5.2.109 directly applies. Otherwise p = 2 by a result of Shult [Shu69a; Shu69b].
If P contains a single involution, then this involution is a central element of G as P EG.
However this contradicts the fact that Z(G) = 1. If P contains more than one involution,
then P is a Suzuki 2-group.

5.2.3.7. A Bound on the p-Length

For a finite group G and p a prime, we denote by Op(G) the largest normal p-subgroup of
G. Similarly, Op′(G) denotes the largest normal subgroup of G whose order is coprime to p.
The upper p′p series is given by alternatingly applying Op′ and Op.

1 = P0 EN0 E P1 EN1 E . . . Pn ENn E . . .

Here, Ni/Pi = Op′(G/Pi) and Pi+1/Ni = Op(G/Ni). For the first terms one usually writes
N0 = Op′(G), P1 = Op′p(G), N1 = Op′pp′(G), etc. Given a finite solvable group G the length
of the upper p′p series is called the p-length of G, denoted by lp(G).

Given the finite field Fpn we can consider the following transformation group, called the
semilinear group:

Γ(pn) = {x 7→ a · ϕ(x) | a ∈ (Fpn)×, ϕ ∈ Aut(Fpn)}

The group Γ(pn) contains the subgroup of linear transformations Γ0(pn) = {x 7→ a · ϕ(x) |
a ∈ (Fpn)×} ∼= F×pn as a normal subgroup. Thus Γ(pn) is metacyclic. Furthermore, we define
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the semilinear affine group as follows:

AΓ(pn) = {x 7→ a · ϕ(x) + b | a ∈ (Fpn)×, b ∈ Fpn , ϕ ∈ Aut(Fpn)}

It is not hard to see that AΓ(pn) is a solvable 2-transitive group.

Theorem 5.2.112 (Huppert’s theorem, [HBb, Theorem XII.7.3]). Any 2-transitive solvable
permutation group of degree pn is similar to a subgroup of the semilinear affine group
AΓ(pn), except possibly if pn ∈ {32, 52, 72, 112, 232, 34}.

We shall now analyze the exceptional cases appearing in Huppert’s theorem:

Lemma 5.2.113. There is no group G ∈ Γ2 such that F (G) is elementary abelian of order
pn ∈ {32, 52, 72, 112, 232, 34} having a non-cyclic complement in G and such that all cyclic
subgroups of order p in F (G) are conjugate.

Proof. Let M ≤ G be a complement of F (G) in G. As G is solvable, it follows that
CG(F (G)) = F (G). Hence we can consider M as a subgroup of Aut(F (G)) ∼= GLn(p). In
particular, there are only finitely many groups which satisfy our hypotheses. As all cyclic
subgroup of order F (G) are conjugate, M acts irreducibly on F (G), and of course M ∈ Γ2.
One can check, for example using GAP (see Appendix B), that there are no such groups
with γ(G) = 2. For example, if pn = 32, then M is necessarily isomorphic to SL2(3) and
the corresponding group G has γ(G) = 4.

Theorem 5.2.114. Any group G ∈ Γ≤2 has p-length at most 1 for any prime p.

Proof. Let G be a counter-example of minimal order. Then any proper quotient of G
lies in Γ≤2 and thus has p-length at most 1. By [Rob12, 9.3.8] it follows that G = NH
for Op′p(G) = F (G) = N an elementary abelian p-group of order pn which is the unique
minimal normal subgroup of G and H a complement of N , which is also a maximal subgroup.
Moreover, we know that CG(N) = N . Suppose Z(G) 6= 1. Then N ≤ Z(G) ≤ C, which
would imply that N = CG(N) = NG(N) = G. Thus Z(G) = 1.

Suppose that N intersects C as well as D non-trivially. Then any element of order p in H
will be conjugate to N , so it will lie in N as N is a normal subgroup. But H ∩N = 1, thus
H is a p′-subgroup. However, this would imply that G has p-length equal to 1.

Hence we can assume that N ⊆ [C]G or N ⊆ [D]G. In particular, all subgroups of order
p in N are conjugate. We can view H as a subgroup of GLn(p) acting naturally on the
Fp-vector space F (G). Let Ĥ = H · Z(GLn(p)) and consider Ĝ = F (G)Ĥ. Then Ĥ is a
maximal subgroup of Ĝ and Ĝ is a solvable 2-transitive primitive permutation group. By
Theorem 5.2.112 and Lemma 5.2.113 it follows that Ĥ and thus also H is metacyclic. We
get that G = NH = NDC where K = ND EG is a normal subgroup.

Suppose N ⊆ [C]G, let Z = N ∩C and so N = [Z]G = [Z]D as N is abelian and G = NDC.
By Lemma 5.2.73 ND(Z) = CD(Z) and certainly CD(Z) = CD(Zd) for all d ∈ D. Since
N = [Z]D we obtain that CD(Z) = CD(N) and CD(N) = CG(N) ∩D = N ∩D = 1. The
last equality follows from the fact that Z(G) = 1. Hence ND(Z) = 1 and so we obtain
pn−1/p−1 = [D : ND(Z)] = |D|. But then |D| would be coprime to p and this would imply
that all cyclic subgroups of order p would be conjugate, so the p-length of G would be 1.
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If N ⊆ [D]G, then N ∩D ≤ Z(K) and it follows that N ≤ Z(K) since K is normal and
N = [N ∩ D]G. As K is abelian and CG(N) = N it follows that D ≤ N , i.e. K = N .
But then G/N is cyclic. However, Lemma 5.2.109 would then imply that N is the Sylow
p-subgroup, again showing that G has p-length equal to 1.

5.2.3.8. The Fitting Subgroup

Lemma 5.2.115. Let G ∈ Γ2 with F (G) = P an abelian Sylow p-subgroup. Then
Z(G) = 1.

Proof. As P is abelian, Ω(P ) = {g ∈ P | gp = 1} is an elementary abelian p-group. Suppose
Z(G) 6= 1. Since Z(G) is cyclic, Z = C ∩ Ω(P ) = Z(G) ∩ Ω(P ) 6= 1. Let T = D ∩ Ω(P ).
Then Ω(P ) = Z∪ [T ]G. Let |Ω(P )| = pn. Suppose for the moment that T 6= 1 and Z∩T = 1.
Then n ≥ 2 and

pn − 1
p− 1 = 1 + [G : NG(T )] .

Since P ≤ CG(T ) ≤ NG(T ) we arrive at a contradiction since the equation implies that
[G : NG(T )] is divisible by p. If T = 1 or Z = T , then Ω(P ) = Z is cyclic. Thus also P is
cyclic. Since F (G) is cyclic, G is metacyclic by Lemma 5.2.72. But then Lemma 5.2.101
implies that Z(G) = 1 in this case as well.

Similarly we obtain:

Lemma 5.2.116. Let G ∈ Γ2 and F (G) = P be the Sylow p-subgroup of G. Then Z(G) = 1
or Z(P ) is cyclic.

Proof. Note that Z(G) ≤ F (G), hence Z(G) ≤ Z(P ). Let N = Ω(Z(P )). Suppose Z(G) 6= 1.
Then Z = N ∩ Z(G) 6= 1. If N was non-cyclic, then T = N ∩D 6= 1 and N = Z ∪ [T ]G. If
N is of rank n ≥ 2, then pn−1/p−1 = 1 + [G : NG(T )]. So it would follow that [G : NG(T )] is
divisible by p, which is impossible as P ≤ NG(T ). Thus N must be cyclic and so also Z(P )
is cyclic.

Lemma 5.2.117. Let G ∈ Γ2 and suppose that F (G) = P is an elementary abelian Sylow
p-subgroup. Then F (G) is minimal normal.

Proof. If P only intersects C (or only intersects D) then the claim follows easily. So suppose
that P intersects C as well as D, so Z = P ∩ C 6= 1 and T = P ∩D 6= 1. Let H ≤ P be a
non-trivial normal subgroup of G that is contained in H. If H intersects C and D, then
again H = P . So assume that it either intersects C or D, say D. Then H = [H ∩D]G. Note
that H ∩D = P ∩D = T . We also know that the number of non-trivial cyclic subgroups in
P equals [G : NG(Z)] + [G : NG(T )]. Let |P | = pn and |H| = pm for n ≥ 2 and 1 ≤ m < n.
Then

pn − 1
p− 1 = [G : NG(Z)] + [G : NG(T )] = [G : NG(Z)] + pm − 1

p− 1
From this it follows that [G : NG(Z)] is divisible by p. However, since P is abelian we know
that P ≤ CG(Z) ≤ NG(Z). Since P is the Sylow p-subgroup of G we know that [G : NG(Z)]
is coprime to p, a contradiction.
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Lemma 5.2.118. Let G ∈ Γ2 such that F (G) is the Sylow p-subgroup of G with
|F (G)| = pn ∈ {26, 34, 36, 72, 74, 132, 172, 192, 232, 292, 312, 472} ∪ {34, 54, 74, 114, 234, 38}.
Then G/F (G) is cyclic.

Proof. Let M be a complement of P = F (G) in G, so G = PM . Then as in the proof of
Lemma 5.2.113 one sees that the complement M is isomorphic to a subgroup of GLn(p) and
so there are only finitely many groups G that we need to consider. To further restrict the
groups to consider, we see that by Lemma 5.2.115 we have Z(G) = 1 and the complement
M has to be an irreducible solvable subgroup of GLn(p) by Lemma 5.2.117 which has order
coprime to p. For example, if pn = 72, then up to isomorphism the possible non-cyclic
complements are S3, C3oC4 and SL2(3), none of which yield a group G with γ(G) = 2. The
other cases can similarly be dealt with, for example using GAP, see also Appendix B.

Theorem 5.2.119. Let G ∈ Γ2 and suppose that F (G) = P an elementary abelian Sylow
p-subgroup. Then G/F (G) is metacyclic.

Proof. First note that by Lemma 5.2.115 we know that Z(G) = 1. By Lemma 5.2.117 F (G)
is minimal normal and thus Φ(G) = 1 as Φ(G) is a proper subgroup of F (G). Hence there
exists some maximal subgroupM such that F (G) is not contained inM . Then G = F (G)M .
Note that F (G) ∩M E F (G) as F (G) is abelian. Thus F (G) ∩M is a normal subgroup of
G contained in F (G). By the minimality of F (G) and since M does not contain F (G), it
follows that F (G) ∩M = 1, so M is a complement. Moreover, as CG(F (G)) = F (G), we
can think of M as embedded in Aut(F (G)) ∼= GLn(p) where n is such that |F (G)| = pn.
Let M̂ = M · Z(GLn(p)) and consider Ĝ = F (G)M̂ . Then M̂ is a maximal subgroup of Ĝ
and Ĝ is a solvable primitive permutation group of rank 3. In [Fou69, Theorem 1.1] these
were classifed and we have three cases to consider:

(1) G is a subgroup of the affine semilinear group, and thus M is metacyclic.

(2) The group G belongs to a finite set of exceptional groups where

pn ∈ {26, 34, 36, 72, 74, 132, 172, 192, 232, 292, 312, 472} .

These were handled in Lemma 5.2.118.

(3) In the last case G is imprimitive and G acts on the socle V = V1⊕V2, where V1 and V2
are minimal imprimitivity subspaces. Then M̂ contains an index 2 subgroup that acts
transitivley on the non-zero elements of V1 and hence is determined by Theorem 5.2.112.
As dimV1 = dimV2, the degrees of the exceptional cases in Huppert’s theorem are
squared, so pn ∈ {34, 54, 74, 114, 234, 38}. By Lemma 5.2.118 the complement M has
to be cyclic.

In the non-exceptional case of Huppert’s theorem we have that M̂ |V1 is metacyclic
and of index two in M̂ . Note that Z(M̂) = Z(M) · Z where Z = Z(GLn(p)). Thus
M̂/Z(M̂) ∼= M/Z(M) and the latter group lies in Γ≤2 as M is a quotient of G. The
image of the group M̂ |V1 under the canonical map M̂ |V1 ↪→ M̂ → M̂/Z(M̂) is then of
index 1 or 2. As the image of a metacyclic group is metacyclic and M̂/Z(M̂) ∈ Γ≤2 it
follows by Lemma 5.2.103 that M̂/Z(M̂) is metacyclic. Thus M/Z(M) is metacyclic.
Since M ∈ Γ≤2, it follows by Proposition 5.2.95 that M itself is metacyclic.
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Lemma 5.2.120. Let G ∈ Γ2 with F (G) an elementary abelian Sylow p-subgroup. Suppose
that G/F (G) is metacyclic, but not cyclic. Then F (G) ⊆ [C]G and D is a self-normalizing
subgroup of F (G)D. Moreover, if |F (G)| = pn, then |D| = pn−1/p−1 and ND(Z) = CD(Z) =
1, where Z = F (G) ∩ C. So D acts fixed point freely on F (G) and (n, p− 1) = 1.

Proof. First note that by Lemma 5.2.115 we have that Z(G) = 1. We know that
DF (G)/F (G) is normal in G/F (G) by Proposition 5.2.95, so N = F (G)DEG. Suppose that
F (G) = P intersects C as well as D. First observe that P ∩D ≤ Z(N), so [P ∩D]G ⊆ Z(N)
since Z(N) is normal in G. In particular, we have H = 〈[P ∩D]G〉 ≤ Z(N) ∩ P , and H is
a normal subgroup of G. We also know that G = NC. Note that Z(N) ∩ C ≤ Z(G) = 1,
hence Z(N) ⊆ [D]G. Since H ≤ Z(N) ⊆ [D]G, it follows that H = [D ∩ P ]G. Thus H is
a proper non-trivial normal subgroup contained in P . But this contradicts the fact that
P is minimal normal by Lemma 5.2.117. Hence we know that P ⊆ [D]G or P ⊆ [C]G.
Suppose P ⊆ [D]G, then P ≤ Z(N) so that N is abelian. Note that CG(F (G)) = F (G),
hence D ≤ F (G) = P . In particular, it would follow that G/F (G) = G/P is cyclic, which
we excluded in our hypotheses. Hence P ⊆ [C]G.

Let Z = P ∩C. Then P = [Z]G = [Z]D since G = F (G)DC and F (G) is abelian. It follows
that pn−1/p−1 = [D : ND(Z)] = [D : CD(Z)] since NG(Z) = CG(Z). Now observe that
CD(Z) = CD(Zx) for any x ∈ D. Thus CD(Z) = CD(P ) = D ∩CG(P ) = D ∩P = 1. Using
that CD(Z) = 1 it also follows that CG(Z) = CG(F (G) ∩C) = F (G)C. Moreover, we know
that we can view D ≤ Aut(P ) and since the order of D equals pn−1/p−1 it acts as a Singer
cyclic subgroup. Then by Observation 5.2.60 it follows that D is a self-normalizing subgroup
of PD. As PDEG any G-conjugate of D lies in PD. Since D is a Carter subgroup, it then
follows that for each g ∈ G there exists some g′ ∈ PD such that Dg = Dg′ . This implies
that N = PD ∈ ΓI2. Then by Lemma 5.2.62 it follows that (n, p− 1) = 1.

Let D ≤ F×pn be the cyclic subgroup of order pn−1/p−1. We define Γ̃(pn) = {x 7→ a · ϕ(x) |
a ∈ D,ϕ ∈ Aut(Fpn)} ≤ Γ(pn) and call it the reduced semilinear group. Let us record the
following curious fact:

Lemma 5.2.121. Suppose (p− 1, n) = 1. Then the reduced semilinear group Γ̃(pn) is
isomorphic to Γ(pn)/Z(Γ(pn)).

Proof. Let G = Γ(pn) and H = Γ̃(pn). Observe that Z(G) = F×p and the composition
H → G→ G/Z(G) of the natural inclusion and projection is a homomorphism with kernel
H ∩Z(G) = D ∩ F×p = 1 since (p− 1, n) = 1. As the groups H and G/Z(G) have the same
order, the claim follows.

I learned a proof of the following from Jyrki Lahtonen.

Lemma 5.2.122. Let Fpn be the finite field of order pn and suppose τ is a generator of
the (cyclic) Galois group of the field extension Fpn/Fp Let V = {y − τ(y) | y ∈ Fpn}. Then
for any x ∈ Fpn the set (V + x) ∩ Fp is non-empty if and only if (p, n) = 1. Moreover, if
(p, n) = 1, then |(V + x) ∩ Fp| = 1.

Proof. Note that V is a vector space over Fp of dimension n− 1 as the canonical linear map
Fpn → V, y 7→ y − τ(y) has kernel Fp.
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Consider the trace map tr : Fpn → Fp, x 7→ x + xp + . . . + xp
n−1 . Note that V ⊆ ker(tr)

since tr(xp) = tr(x). Moreover ker(tr) contains at most pn−1 elements as it is given by a
polynomial of degree pn−1. Thus V = ker(tr). Also note that if x ∈ Fp, then tr(x) = nx.
So if p divides n, then tr(x) = 0 for all x ∈ Fp, thus Fp ⊆ V . If (p, n) = 1, then Fp ∩ V = 0,
so Fpn = V ⊕ Fp as dim(V ) = n− 1.

If p divides n, we can pick x ∈ Fpn \V , which will then satisfy (V +x)∩Fp ⊆ (V +x)∩V = ∅.
If (p, n) = 1, the decomposition Fpn = V ⊕ Fp implies that any coset of V intersects Fp in a
single element.

Proposition 5.2.123. Let p and n be prime numbers such that (p− 1, n) = 1. Then the
reduced semilinear group G = Γ̃(pn) lies in ΓI2.

Proof. Let D be the subgroup of F×pn of order pn−1/p−1 and C = Cn. We will show that these
subgroups are representatives of the conjugacy classes of the maximal cyclic subgroups.
The group law is given by (a, α) · (b, β) = (a · α(b), α ◦ β). Here we view Cn as the group of
automorphisms of the field Fpn . Note that (a, α)−1 = (α−1(a−1), α−1). Let (b, β) ∈ G be
an arbitrary element. If β = id, then the element is contained in D. So suppose β 6= id. In
general, conjugation is given by the following formula

(a, α)(b, β)(a, α)−1 = (aα(b)β(a−1), β)

Let τ(a) = ap be the Frobenius automorphism which is the generator of Cn. Then β = τk

for some k. If (n, k) 6= 1, then n would divide k has n is prime. This would imply that
β = id, so β(a) = ap

k . As we assumed that β is non-trivial, it follows that (n, k) = 1. By
Lemma A.0.9 it then follows that

(
pk − 1, pn−1/p−1

)
= (p− 1, n) = 1. Thus for any b ∈ D

there exists some a ∈ D such that b = ap
k−1 = β(a)a−1. By the formula above

(a, id) · (b, β) · (a, id)−1 = (baβ(a)−1, β) = (1, β) ∈ Cn

Thus G ∈ Γ2. As the maximal cyclic subgroups D and Cn intersect trivially, it also follows
that Z(G) = 1, thus G ∈ ΓI2 as G is metacyclic.

Lemma 5.2.124. Let G = Fpn oH with H = Γ̃(pn) reduced semilinear. Assume that n is
a prime different from p and that (n, p− 1) = 1. Then G ∈ Γ2.

Proof. We write P = Fpn . Multiplication of elements in the group G is given as follows

(x, a, α) · (y, b, β) = (x+ a · α(y), a · α(b), α ◦ β)

We let D ≤ H be the cyclic subgroup of order pn−1/p−1 that is contained in F×pn . And we
set C = 〈(1, 1, τ)〉 with τ the Frobenius automorphism. Observe that (1, 1, τ)k = (k, 1, τk).
As (p, n) = 1 it follows that C has order pn.

By Proposition 5.2.123 H and by Lemma 5.2.62 PD both lie in Γ2. We are thus left to
show that any element (x, 1, α) with α 6= id is conjugate to an element of C. Observe that

(y, b, id) · (x, 1, α) · (y, b, id)−1 = (b · x+ y − bα(b−1)α(y), bα(b−1), α)

We can now choose b = 1. Then we are left to show that x+ y−α(y) ∈ Fp for some y ∈ Fpn .
But this is the case by Lemma 5.2.122 since n is prime and thus α is a generator of Cn.
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Lemma 5.2.125. Let H ≤ F×pn oCn = G where D ≤ F×pn of order pn−1/p−1 is contained in
H. Suppose that (n, p− 1) = 1 and D EH is maximal cyclic. Then H ≤ D o Cn = Γ̃(pn).

Proof. First note that Z(G) = F×p . Since D ≤ F×pn we know that D(H ∩ Z(G)) ≤ F×pn .
Note that D ∩ (H ∩ Z(G)) = 1 as D ∩ Z(G) = 1 because (|D|, |Z(G)|) = 1. As D
is maximal cyclic and contained in the cyclic subgroup D(H ∩ Z(G)) it follows that
H ∩ Z(G) = 1. Now let h = (z · x, α) ∈ H ≤ G where z ∈ Z(G) and x ∈ D. Recall that
multiplication of group elements is given by (a, α) · (b, β) = (a · α(b), α ◦ β) in F×pn o Cn.
Then hn = (zn · x · α(x) · . . . αn−1(x), αn) = (zn · x · α(x) · . . . αn−1(x), id) since α(z) = z
because z ∈ F×p . Let x′ = x · α(x) · . . . αn−1(x) ∈ D and let m = |D| = pn−1/p−1. Then
(zn ·x′, id)m = (znm, id) = hnm ∈ H. As H∩Z(G) = 1 it follows that znm = 1. Now observe
that (p− 1, nm) = 1 since (p− 1, n) = 1 = (p− 1,m), so z = 1. The claim follows.

We now establish a converse of Lemma 5.2.124.

Proposition 5.2.126. Let G ∈ Γ2 with F (G) = P an elementary abelian Sylow p-subgroup
such that G/F (G) ∈ Γ2. Then G is isomorphic to the group described in Lemma 5.2.124. In
particular, the rank n of P is a prime number different from p, |C| = p ·n and |D| = pn−1/p−1
and (n, p− 1) = 1.

Proof. By Lemma 5.2.120 and another application of Theorem 5.2.112 it follows that G
is isomorphic to a subgroup of Fpn o (F×pn o Cn). By H we denote the complement of
F (G) = P , which then lies in F×pn o Cn. First let us suppose that Z(H) 6= 1. Then the
maximal cyclic C is generated by an element (x, a, α) where a ∈ Z(H) \ {1} and without
loss of generality we can assume that x ∈ Fp. We then obtain

(x, a, α)k =
(
x · (1 + a+ a2 + . . .+ ak−1), ak, αk

)
=
(
x · a

k − 1
a− 1 , a

k, αk
)
.

But then it would follow that C ∩ P = 1 since if ak = 1, then also the first component of
(x, a, α)k would be trivial. However C∩P is non-trivial, hence Z(H) = 1. By Lemma 5.2.125
H is of the form L o Ck with L ≤ F×pn of order pn−1/p−1 and k a divisor of n. Suppose
Ck = 〈σ〉 is a proper subgroup of the Galois group Cn. Then Fix(Ck) = Fpm ⊆ Fpn where
m = n/k. But then Z(H) would contain L∩F×pm which is cyclic of order (pn−1/p−1, pm − 1) =
pm−1/p−1 · (n/m, p− 1) by Lemma A.0.9. So if m > 1, then the center Z(H) would be
non-trivial. We conclude that H = Lo Cn. We can thus assume that the generator of C is
of the form (x, 1, τ) with τ a generator of the Galois group.

We know that H ∈ Γ2 is metacyclic with Z(H) = 1. Thus H is a Frobenius group by
Proposition 5.2.90 with Frobenius complement C = 〈(1, τ)〉. In particular, CH(C ′) = C for
any non-trivial subgroup C ′ ≤ C. If n is not prime, there exists some proper non-trivial
subgroup C ′ = 〈1, σ〉 of C and as above we see that Fix(〈σ〉) intersects non-trivially with
the subgroup of F×pn of order pn−1/p−1. Let a be a non-trivial element of this intersection,
then (a, 1)(1, σ)(a, 1)−1 = (aσ(a)−1, σ) = (1, σ) and (a, 1) is not contained in C. It follows
that n is a prime number.

If (n, p) 6= 1, then n = p as they are both primes. But then (x, 1, τ)p = (p·x, 1, id) = (0, 1, id),
so C would have order p, which yields a contradiction.
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Remark 5.2.127. The orders of the maximal cyclic subgroups C and D are coprime in
the group described in Proposition 5.2.126. Namely, let q = p − 1 and write pn − 1 =
((p− 1) + 1)n − 1 =

∑n
k=1

(n
k

)
qk. As n is a prime number, the binomial coefficients

(n
k

)
are

divisible by n if 1 ≤ k < n. Hence we obtain

pn − 1
p− 1 ≡ q

n−1 mod n .

But we also know that (n, p− 1) = (n, q) = 1. Thus we see that (|C|, |D|) = (np, pn−1/p−1) =
(n, pn−1/p−1) = 1.

Proposition 5.2.128. Let G ∈ Γ2 and let F (G) = P be the Sylow p-subgroup. Assume
that G/F (G) ∈ Γ2. Then P ⊆ [C]G and Z(G) = 1. Moreover, P is elementary abelian or
p = 2 and P is a Suzuki 2-group.

Proof. We will additionally prove that D is a self-normalizing subgroup of PD and that |D|
is coprime to p. We prove the claims by induction on the order of G.

If Φ(P ) = 1, then the claims follow from Lemma 5.2.120. So suppose Φ(P ) 6= 1, then we
have Z(P ) ∩ Φ(P ) 6= 1 and we can choose N EG a minimal normal subgroup contained in
Z(P ) ∩ Φ(P ). We let Z = N ∩ C and T = N ∩D.

Suppose first that Z(G) 6= 1. Then Z(P ) is cyclic by Lemma 5.2.116. We first claim that
N ≤ C. If Z(P ) ≤ C there is nothing to show, so suppose Z(P ) ≤ D, hence N = T is a
normal subgroup of G. Thus we obtain a monomorphism C/CC(T ) ↪→ Aut(T ) where the
latter group is of order p− 1. Note that by Proposition 5.2.126 |C| and p− 1 are coprime.
Hence C centralizes T . Thus N = T ≤ Z(G) ≤ C also in this case. Suppose x ∈ P is an
arbitrary element conjugate to an element of D. Then in G/N we have xN conjugate to an
element of DN/N . But by induction Z(G/N) = 1 and PN/N is a contained in the union of
conjugates of CN/N . Since CN/N and DN/N intersect trivially we obtain that x ∈ N ≤ C.
Hence P ⊆ [C]G. Note that P cannot be abelian by Lemma 5.2.115. By [Shu69a] we then
have p = 2 and P ∼= Q8 or P is a Suzuki 2-group. The first case is impossible since we would
obtain a group G/Φ(P ) ∈ Γ2 with Fitting subgroup P/Φ(P ) ∼= C2 × C2 whose quotient
by P/Φ(P ) is non-cyclic. Actually, one sees by direct inspection that there is a unique
group H ∈ Γ2 up to isomorphism with F (H) ∼= C2×C2, namely A4. Also P being a Suzuki
2-group is impossible, since a Suzuki 2-group has non-cyclic center.

So for the rest of the proof we can assume that Z(G) = 1. We also know that G/F (G)
is metacyclic by Theorem 5.2.119. Let K = PD EG. Since P is normal in G, also Z(P )
is normal in G. Suppose that T 6= 1. We know that T ≤ N ≤ Z(P ) and T ≤ D, hence
T ≤ Z(PD) = Z(K). Thus 〈[T ]G〉 ≤ Z(K) Since Z(G) = 1, we have Z(K) ∩ C = 1, i.e.
Z(K) ⊆ [D]G. This implies that [T ]G = 〈[T ]G〉. Since N is minimal normal, it follows that
N = [T ]G.

We write π : K → K/N . We can write D = Dp · Dp′ where |Dp| = p and Dp′ is of
order coprime to p. By the inductive hypothesis, DN/N is a self-normalizing subgroup of
PD/N = K/N . Hence, for any g ∈ G there exists some k ∈ K such that π(Dg) = π(Dk).
Observe that π(Dp′) = Dp′N/N ∼= Dp′ is of order |Dp′ |. In particular, π(Dg

p′) ≤ π(Dk) and
π(Dk

p′) ≤ π(Dk) are both cyclic subgroups of the same order. Hence π(Dg
p′) = π(Dk

p′). Let
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dp′ be a generator of Dp′ , hence g−1dp′g = k−1dαp′k · z for some α and z ∈ N . Taking a
p-power we obtain that g−1dpp′g = k−1dαpp′ k. And since dpp′ is also a generator of Dp′ , it
follows that g−1Dp′g = k−1Dp′k. Thus K = N ∪ [C]K ∪ [D]K . Then by Proposition 5.2.85
we can conclude that K ∈ Γ2. In particular, Z(K) is cyclic, so N = T is cyclic. As
above we then obtain that C centralizes T , so T ≤ Z(G). A contradiction, as we already
established that Z(G) is trivial. Thus it follows that T = N ∩D = 1 and so |D| = |DN/N |
is coprime to p by induction. Hence we obtain P ⊆ [C]G. If P is abelian, then by the proof
of Lemma 5.2.109 we obtain that P is elementary abelian since P = [P ∩ C]G = [P ∩ C]D
and |D| is coprime to p. By Lemma 5.2.120 we have that D is a self-normalizing subgroup
of PD. If P is non-abelian, then p = 2. As before, P ∼= Q8 is impossible. So P is a Suzuki
2-group. By Remark 5.2.127 CΦ(P )/Φ(P ) and DΦ(P )/Φ(P ) ∼= D have coprime orders
and thus also |C| and |D| are coprime as (|D|, p) = 1. By Lemma 5.2.82 it then follows
that CG(C ′) ≤ [C]G for any non-trivial C ′ ≤ P . Hence CK(C ′) ≤ [C]G ∩K = [C ∩K]G.
Now, (C ∩K)P/P ≤ K/P ∼= D is trivial as |C| and |D| are coprime, so C ∩K ≤ P . Thus
CK(C ′) ≤ P and thus K = PD is a Frobenius group with Frobenius complement D. In
particular, D is a self-normalizing subgroup of K.

5.2.3.9. Sylow Subgroups and Derived Length

For determining the structure of the Sylow subgroups of groups in Γ2 it has previously been
helpful to appeal to a result of Shult [Shu69a] as well as Higman [Hig63]. For example,
recall the arguments used in the proof of Lemma 5.2.111. However, a complication arises
in the general case, since we cannot expect that cyclic p-subgroups of the same order are
conjugate:

Remark 5.2.129. For G ∈ Γ2, if C ∩ D = 1 and P E G is a normal Sylow p-subgroup.
It does not necessarily follow that P ⊆ [C]G or P ⊆ [D]G. Again the group G of order
896 that was already mentioned in Remark 5.2.65 is an example. It contains a normal
Sylow 2-subgroup of order 27. We have |[C]G| = 770 and |[D]G| = 127 and there is a single
2-element in [C]G, namely an element of order 2.

Lemma 5.2.130. If G ∈ Γ2 and F (G) = P is the Sylow p-subgroup and G/F (G) is cyclic
and Z(G) 6= 1, then Z(G) = Z(P ). If Z(G) ≤ D, then G ∼= SL2(3).

Proof. By Proposition 5.2.128 we already know that Z(G) ≤ Z(P ) and Z(P ) is cyclic.
If Z(P ) ≤ C, we are done. If Z(P ) ≤ D, we know that Z(G) = C ∩ D. We denote by
G = G/Z(G). We know that P ⊆ [D]G. Let x ∈ P . If x = 1, then x ∈ Z(G) ≤ D.
Otherwise x ∈ Dg, so x = g−1dmg · z for some z ∈ Z(G). As Z(G) ≤ D it follows that
x ∈ Dg. Hence P ⊆ [D]G and as in the proof of Lemma 5.2.111 it follows that P is abelian,
a Suzuki 2-group or the quaternion group Q8. The group P cannot be abelian, otherwise
Z(G) = 1 by Lemma 5.2.115. Also P is not a Suzuki 2-group since these have non-cyclic
center, so the only group remaining is the quaternion group Q8 ∼= P . Let H ≤ G be a
complement of P , so G = PH with H ∩ P = 1. As F (G) = P is self-centralizing, it follows
that H ≤ Aut(Q8) ∼= S4. A quick computation, e.g. via GAP, reveals that there is a unique
group (even if we allow non-cyclic complements H) up to isomorphism in Γ2 with these
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properties, namely SL2(3). For G = SL2(3) we know that C ∩D = Z(G) is of order 2 and
thus Z(P ) = Z(G) also in this case.

Lemma 5.2.131. Suppose G ∈ Γ2 and F (G) = P is a non-cyclic Sylow p-subgroup where
p 6= 2 and G/F (G) is cyclic. Then G ∈ ΓI2, so in particular P is elementary abelian and
P = [D]G.

Proof. We prove the claim by induction on the order of G. If Φ(P ) = 1, we are done. If
Z(G) = 1 we are also done by Lemma 5.2.111. So assume that Z(G) 6= 1 and Φ(P ) 6= 1. By
Lemma 5.2.116 it follows that Z(P ) is cyclic and of course also Z(P )∩Φ(P ) 6= 1. Choose a
minimal normal subgroup N ≤ Z(P ) ∩ Φ(P ) of G.

If P/N is cyclic, then P is abelian since N ≤ Z(P ). By Lemma 5.2.115 it follows that
Z(G) = 1 and hence P is elementary abelian by Lemma 5.2.109. So we can assume that
P/N is non-cyclic. By induction it then follows that P/N is elementary abelian and covered
by conjugates of DN/N . Suppose N ∩D 6= 1, then N ≤ D and this implies that P ⊆ [D]G.
As in the proof of Lemma 5.2.111 the claim follows in this case. So we can assume that
N ∩D = 1. Then the p-subgroups of D and C are of order p, so P has exponent p, thus
|Z(P )| = p. Hence N = Z(P ). Let T = P ∩ D, then P = Z(P ) ∪ [T ]G. Note also that
N ≤ Z(P ) ∩ Φ(P ), hence Z(P ) ≤ Φ(P ). Since P/N is elementary abelian it follows that
Φ(P ) ≤ N . Thus Z(P ) = Φ(P ) and hence P is an extraspecial p-group of exponent p.
Note that we can write G = PCp′ with Cp′ ≤ C of order coprime to p and Cp′ ≤ Aut(P )
since F (G) = P . Let ϕ ∈ Cp′ be a generator of Cp′ . As ϕ acts trivially on Z(P ) and
as it acts irreducibly on P/Φ(P ) we get from [Win72, Corollary 2] that the order of ϕ
divides pn + 1 where |P | = p2n+1. Note that |P/Φ(P )| = p2n and by Proposition 5.2.63 it
follows that p2n−1/p−1 divides |Cp′ |. Since |Cp′ | also divides pn + 1, we obtain that n = 1, so
|Cp′ | = p+ 1. But then G/Z(P ) would be a group of the form (Cp × Cp) o Cp+1 ∈ ΓI2. But
this is impossible by Lemma 5.2.62 since (2, p− 1) 6= 1 as p is odd.

Lemma 5.2.132. Let G ∈ Γ2 with F (G) = P a Suzuki 2-group as the Sylow 2-subgroup.
Also suppose that G/F (G) is cyclic. Then the subgroup H = Z(P )C lies in ΓI2 and
P ∼= A(n, θ) for some θ and n ∈ N.

Proof. We know that Z(G) = 1 by Lemma 5.2.130 since Suzuki 2-groups have non-cyclic
center. Moreover, by Lemma 5.2.111 we have G = PC with P ∩ C = 1 and P = [D]G.
By Lemma 5.2.82 we know that CG(y) ⊆ [C]G for any non-trivial element y ∈ C. Since
|C| and p are coprime it follows that CG(x) ≤ P for any x ∈ P \ {1}. Thus H = Z(P )C
is a Frobenius group with Frobenius complement C by Lemma 5.2.46. In particular, C
is a self-normalizing subgroup of H. For any g ∈ G the group Cg is a Carter subgroup
of H, hence there is some h ∈ H such that Cg = Ch. Let T = D ∩ Z(P ). Note that
Z(P ) = [T ]G = [T ]C as G = PC. Let x ∈ H be an arbitrary element, then if x, considered
as an element of G = PC ∼= P o C, has a non-trivial C-component, then it has to lie in a
conjugate of C. And by the previous observation, any G-conjugate of C is an H-conjugate.
If x ∈ Z(P ), then x ∈ T g for some g ∈ C ≤ H. It follows that H lies in Γ2 as well. As T
is of order p and C is malnormal, it follows that H ∈ ΓI2. By Proposition 5.2.63 we have
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|C| = |Z(P )| − 1. Note that also G/Z(P ) ∈ ΓI2 and thus |C| = |P/Z(P )| − 1 by the same
lemma. Hence |Z(P )| = |P/Z(P )| and this implies that P ∼= A(n, θ).

Lemma 5.2.133. Suppose G ∈ Γ2 and F (G) = P is the Sylow 2-subgroup of G, P/Z(P ) ∼=
A(n, θ) is a Suzuki 2-group, G/F (G) is cyclic and Z(G) 6= 1. Then Z(G) = Z(P ) is of
order 2 and P is of exponent 4, Ω(P ) is elementary abelian of rank n+ 1 and P/Ω(P ) is
elementary abelian of rank n. Moreover, C ∩D = 1 and the largest powers of 2 that divide
|C| resp. |D| are 2 resp. 4. In particular, all cyclic subgroups of G of order 4 are conjugate.

Proof. By Lemma 5.2.130 we know that Z(G) = Z(P ). Write G = G/Z(G). Then
|D| = |Z(G) ∩D| · |D| and |D| = p2 by Lemma 5.2.111 where p = 2. So D is a p-group,
hence D ≤ P . Suppose for the moment that C ∩D = Z(G) ∩D 6= 1. In particular there
would exist a cyclic subgroup of order p in C∩D. This implies that any two cyclic subgroups
of order p = 2 are conjugate in G. However, as Z(P ) is non-trivial, this implies that P
contains a unique involution since Z(P ) is a normal subgroup of G. This would imply
that P is cyclic or a generalized quaternion group, a contradiction. Hence it follows that
C∩D = Z(G)∩D = 1, so |D| = |D| = p2. Also note that |C| = |C∩Z(G)|·|C| = |Z(G)|·|C|
where |C| is coprime to p. By Lemma 5.2.80 we know that |Z(G)| = (|C|, |D|) since in
G/Z(G) the order of C and D are coprime. Thus |Z(G)| either equals 2 or 4. Observe
that P = Z(P ) ∪ [D]G. Suppose Z(G) = Z(P ) is of order 4, then the number of cyclic
subgroups of order 4 in P equals 1 + [G : NG(D)]. As P is neither cyclic nor of maximal
class, the number of cyclic subgroups of order 4 is even by [Ber08, Theorem 1.17 (b)].
Thus [G : NG(D)] is odd and so P ≤ NG(D), in other words D E P . As the exponent
of P/Z(P ) ∼= A(n, θ) equals 4, this would imply that all cyclic subgroups and hence all
subgroups of A(n, θ) are normal. But this is impossible.

Hence Z(P ) is of order 2. Let D′ ≤ D be the subgroup of order 2, we then claim that
Ω(P ) = Z(P ) ∪ [D′]G. First note that P = [D]G and so Ω(P ) = [D′]G since P is a Suzuki
2-group and D∩Z(P ) = 1. Let x, y ∈ Z(P )∪ [D′]G be two elements of order 2, and suppose
x · y is of order 4. Then 〈x · y〉 = Dg for some g ∈ G. But then x · y would be of order
4 as D ∩ Z(G) = 1, which contradicts the fact that Ω(P ) is elementary abelian. Hence
Ω(P ) = Z(P ) ∪ [D′]G. As Ω(P ) = [D′]G it follows that P/Ω(P ) is elementary abelian of
order pn and thus |Ω(P )| = pn+1.

Theorem 5.2.134. Let G ∈ Γ2 and let P be a Sylow p-subgroup of G. Then P is cyclic
or elementary abelian or p = 2 and the Sylow p-subgroup is isomorphic to Q8, a Suzuki
2-group or Z(P ) ∼= C2 with P/Z(P ) a Suzuki 2-group.

Proof. Let P ≤ G be a Sylow p-subgroup. By Theorem 5.2.114 we can assume that P is
normal, possibly after factoring out Op′(G). Moreover, we can factor out successively Sylow
q-subgroups of F (G) for q 6= p. After finitely many steps we can thus assume that G ∈ Γ≤2
such that F (G) = P . If G is cyclic, we are done, so assume G ∈ Γ2. We have to consider
two cases:

(1) G/F (G) is cyclic. By Lemma 5.2.131 we can assume that p = 2. If Z(G) = 1 then
Lemma 5.2.111 yields the result. So suppose that Z(G) 6= 1. Note that Z(G/Z(G)) = 1
by Lemma 5.2.78 and F (G/Z(G)) = F (G)/Z(G). By Lemma 5.2.130 we know that
Z(G) = Z(P ). Again by Lemma 5.2.111 we need to consider the following cases:
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a) P/Z(G) is cyclic. Then P is abelian. By Lemma 5.2.115 this would imply that
Z(G) = 1, a contradiction.

b) P/Z(G) is elementary abelian. Let G = G/Z(G) and D = DZ(G)/Z(G) etc.,
then it follows that |D| = |D|·|D∩Z(G)| is a power of p, so D ≤ P . Moreover, we
observe that P = Z(G)∪[D]G. Suppose first that Z(P )∩D = Z(G)∩D = C∩D =
1. Then |D| = |D| = p. Let z ∈ Z(G) and d ∈ D be generators of the respective
groups. If zd = g−1cng for some g ∈ G, n ∈ N and c ∈ C, then d = g−1cng in G.
But C ∩D = 1, thus it would follow that d = 1, i.e. d ∈ Z(G), which yields a
contradiction. Thus zd = g−1dng for some n ∈ N. Hence ord(zd) = ord(d) = p,
on the other hand ord(zd) = [ord(z), ord(d)] = [ord(z), p] = ord z. So ord(z) = p
as well, and thus P is abelian since p = 2 and all non-trivial elements of P
have order 2. As above, this is impossible. So we conclude that Z(P ) ∩D 6= 1,
hence the subgroup of Z(P ) order two also lies in all conjugates of D. Thus
P is a 2-group containing a unique involution as P = Z(G) ∪ [D]G. It follows
that P is cyclic or a generalized quaternion group. Now P cannot be cyclic by
Lemma 5.2.115 and by Lemma 5.2.19 it follows that P ∼= Q8 since δ(P ) ≤ 2.

c) P/Z(G) is isomorphic to a Suzuki 2-group. Then Lemma 5.2.133 yields that
Z(G) = Z(P ) is order two.

(2) G/F (G) ∈ Γ2. By Proposition 5.2.128 it follows that Z(G) = 1 and P is either
elementary abelian or a Suzuki 2-group.

The proof of Theorem 5.2.134 also shows:
Corollary 5.2.135. Let G ∈ Γ2 and let P ≤ G be a Sylow p-subgroup. If P is elementary
abelian or a Suzuki 2-group, then all cyclic p-subgroups are conjugate in G. If p = 2, then
at least all cyclic subgroups of order 4 are conjugate.

In the following we will prove that certain Suzuki 2-groups actually appear as Sylow
2-subgroups of groups in Γ2. First, we will prove a couple of easy lemmas.
Lemma 5.2.136. Let q = 2n and α ∈ F×q . Let θ be an automorphism of Fq of odd order
and let Vα = {γαθ + αγθ | γ ∈ Fq}. Then αθ+1 /∈ Vα.

Proof. As noted in [Hig63] the map ψ : Fq → Fq, λ 7→ λ1+θ is bijective as θ is of odd order.
Suppose that ψ(α) = αθ+1 ∈ Vα, so ψ(α) = γαθ + αγθ for some γ ∈ Fq. Observe that
ψ(α+ γ) = (α+ γ) · (αθ + γθ) = ψ(α) + ψ(γ) + γαθ + αγθ = ψ(α) + ψ(γ) + ψ(α) = ψ(γ).
Since ψ is injective, it follows that α+ γ = γ, so α = 0, which is a contradiction.
Lemma 5.2.137. Let θ ∈ Aut(Fq) where q = 2n and n ≥ 2. For α ∈ F×q the set
Vα = {γαθ + αγθ | γ ∈ Fq} is a vector space over F2. Then Vα is of dimension n− 1 if and
only if θ generates the Galois group of Fq/F2. Otherwise the dimension of Vα is strictly
smaller than n− 1.

Proof. Let ϕ : Fq → Vα be the linear map γ 7→ γαθ + αγθ. Suppose γαθ + αγθ = 0 for
some γ 6= 0. Then θ(αγ−1) = αγ−1. If θ is a generator of the Galois group it follows that
αγ−1 ∈ F2, so α = γ. Thus ker(ϕ) = {0, α} ∼= F2.
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Putting the previous two lemmas together we obtain:

Lemma 5.2.138. Let q = 2n and n ≥ 2 and suppose θ ∈ Aut(Fq) is a generator of the
Galois group and of odd order. Then Fq = Vα ∪ (αθ+1 + Vα) and Vα ∩ (αθ+1 + Vα) = ∅ for
each α ∈ F×q .

The Suzuki 2-group A(n, θ) admits a cyclic group F×q of automorphisms that permutes the
involutions transitively as described in [Hig63]. In the following proposition the semidirect
product is understood with this particular action.

Proposition 5.2.139. Let q = 2n with n ≥ 2 and let θ ∈ Aut(Fq) be a generator of odd
order. Then G = A(n, θ) o F×q ∈ Γ2.

Proof. We know from [Hig63] that P = A(n, θ) is given as a set by Fq × Fq and elements
(ζ, α), (η, γ) ∈ Fq × Fq are multiplied as follows:

(ζ, α) · (η, γ) = (ζ + η + α · γθ, α+ γ)

Then
(η, γ)−1 = (γθ+1 + η, γ)

And so conjugation is given by

(η, γ) · (ζ, α) · (η, γ)−1 = (ζ + γαθ + αγθ, α)

Moreover, an element λ ∈ F×q acts on an element in P via (ζ, α) 7→ (λ1+θζ, λα). Then the
group multiplication in P o C is given by the following formula:

(ζ, α, λ) · (η, γ, µ) = (ζ + λθ+1η + α(λγ)θ, α+ λγ, λµ)

We choose the cyclic subgroup D to be generated by (0, 1). Then

D = {(0, 0), (0, 1), (1, 0), (1, 1)} ,

where the elements in D of order 4 are (0, 1) and (1, 1). Suppose (ζ, α) ∈ A(n, θ). Note that
this element is conjugate to

(λ1+θ(ζ + γαθ + αγθ), λα) ,

where γ ∈ Fq and λ ∈ F×q . If α = 0, then we see that (ζ, 0) is conjugate to (1, 0) since
λ 7→ λ1+θ is invertible. If α ∈ F×q , then we can choose λ = α−1 and by Lemma 5.2.138 there
exists some γ ∈ Fq such that ζ = γαθ + αγθ or ζ = α1+θ + γαθ + αγθ, corresponding to
whether (ζ, α) is conjugate to (0, 1) or (1, 1). So we have shown that A(n, θ) ⊆ [D]G. Now,
suppose that (ζ, α, λ) ∈ G is given where λ 6= 1. We compute

(ζ, α, λ)(η,γ,1) = ((1 + λθ+1)η + ζ + γαθ + (γ + α)(λγ)θ + (λγ)θ+1,

(1 + λ)γ + α,

λ)

Now observe that 1 + λ 6= 0 and 1 + λθ+1 6= 0 and thus we can find γ and η such that
(ζ, α, λ)(η,γ,1) = (0, 0, λ). Thus G ∈ Γ2.

Our next goal will be to show that non-cyclic Sylow subgroups of groups in Γ2 are already
normal.
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Observation 5.2.140. Let G ∈ Γ2 and assume that |C| is odd and |D| = 2. Then the
Sylow 2-subgroup is normal. Namely, let t ∈ G be an involution. Suppose t /∈ O2(G). Then
by [Isa08, Theorem 2.13, p. 55] there exists an element g ∈ G of odd prime order such
that tgt−1 = g−1. Since g is of odd order it has to be conjugate to an element cm ∈ C.
In particular, it follows that NG(〈g〉) = CG(〈g〉). Hence t ∈ CG(〈g〉), thus g = g−1 which
contradicts the fact that g is not an involution. Thus any involution is contained in O2(G).
Since there is no element of order 2n with n ≥ 2 in G, it follows that the Sylow 2-subgroup
equals O2(G).

Using ideas from [Sez14, Theorem 4.4] and [CJ09, Corollary 2.8] we are now ready to show:

Theorem 5.2.141. Suppose G ∈ Γ2. Then any non-cyclic Sylow subgroup of G is normal.

Proof. Let p be a prime and denote by P the Sylow p-subgroup of G. We prove the claim
by induction on the order of G and distinguish two cases:

(1) Suppose Op(G) 6= 1. If P/Op(G) is non-cyclic, then by induction P/Op(G) is a normal
subgroup of G/Op(G), hence P is a normal subgroup of G. So we can assume in
the following that P/Op(G) is cyclic. Suppose P is elementary abelian, then by
Corollary 5.2.135 all cyclic subgroups of order p would be conjugate. However, there
exist elements of order p in P \Op(G) that cannot be conjugate to non-trivial elements
of Op(G). Hence we can assume that p = 2. If P ∼= Q8, then Op(G) has to one of three
normal cyclic subgroups of order 4 in Q8. But then P \Op(G) contains 4 elements,
each of order 4. As the cyclic subgroups of order 4 are conjugate by Corollary 5.2.135,
this again yields a contradiction. Suppose P is a Suzuki 2-group. Note that P ab

is elementary abelian, so P ′ ≤ Op(G) and P/Op(G) is cyclic of order 2. Then
P = Op(G) ∪ xOp(G). If x was of order two, then x ∈ Ω(P ) = P ′ ≤ Op(G), so x is of
order 4. If all elements of Op(G) were of order at most two, then Op(G) ≤ Ω(P ) = P ′,
again yielding a contradiction since P ab is non-cyclic. As all cyclic subgroups of order
4 are conjugate, this yields a contradiction. Finally, suppose that P is such that Z(P )
is of order 2 and P/Z(P ) is a Suzuki 2-group. If Op(G) contains a cyclic subgroup
of order 4 then all cyclic subgroups of order 4 are contained in Op(G). As P is the
union of Z(P ) and all cyclic subgroups of order 4 it follows that P = Z(P ) ∪Op(G).
As P is non-abelian it follows that P = Op(G). If Op(G) only contains elements of
order 2, then Op(G) ≤ Ω(P ). By Lemma 5.2.133 we know that P/Ω(P ) is non-cyclic,
contradicting our initial assumption that P/Op(G) is cyclic.

(2) Suppose Op(G) = 1, and let us abbreviate F = F (G), then (p, |F |) = 1. Let N EG be
a minimal normal subgroup, so N ≤ F . Then PN/N is a normal subgroup of G/N
by induction, so PN/N ≤ F (G/N). As F/N ≤ F (G/N), it follows that [F, P ] ≤ N .
If M EG was another minimal normal subgroup of G, then by the same argument
[F, P ] ≤M . But as N and M are distinct, it follows that [F, P ] ≤ N ∩M = 1. This
would imply that P ≤ CG(F ) ≤ F , a contradiction. Hence we can assume that G has
a unique minimal normal subgroup. In particular, |F | is divisible by a single prime
q. Let Q be the Sylow q-subgroup of G. Then F ≤ Q. If Q was cyclic, G would be
metacyclic by Lemma 5.2.72 and thus all Sylow subgroups would be cyclic as well by
Proposition 5.2.95. Hence Q is non-cyclic and then Oq(G) 6= 1 and by the result of

97



5. Finite Groups and Residually Finite Groups

(1) we obtain that Q is normal, thus F (G) = Q. Moreover, by taking the quotient
by Φ(Q) we can assume that Q is elementary abelian. By Theorem 5.2.119 it follows
that G/F (G) is metacyclic with only cyclic Sylow subgroups. This contradicts the
fact that PF/F ∼= P is non-cyclic.

Proposition 5.2.142. Let G ∈ Γ2 and suppose (|C|, |D|) = 1. Let P ≤ G be a cyclic
Sylow p-subgroup of G such that the normal core of P is non-trivial. Then P is a normal
subgroup of G.

Proof. First observe that Z(G) = 1 by Lemma 5.2.79. Suppose P ≤ C up to conjugation,
then C contains a non-trivial normal subgroup, which would contradict the fact that
Z(G) = 1. Hence we can assume that P ≤ D and so p divides |D|. We now prove the claim
by induction on the order of G.

Suppose N EG is a minimal normal subgroup of G whose order is qn where q is a prime
not equal to p. Let π : G → G/N denote the quotient map. Note that PG ∩N = 1 since
their orders are coprime. Thus π(PG) = PGN/N ∼= PG is non-trivial and of course π(P ) is
a Sylow p-subgroup of G/N . By induction π(P ) is a normal subgroup, hence H = PN EG.
Note that PGN ∼= PG ×N . In particular, there exists an element h of order pq in H. The
order of h has to divide |C| or |D|. Since |C| and |D| are coprime and p divides |D|, it
follows that also q divides |D|. It follows that N ⊆ [D]G so that N = [N ∩ D]G. Since
N is abelian, it follows that N ∩ D ≤ Z(H). Now H is normal in G and since Z(H) is
characteristic in H, it follows that Z(H) is normal in G, hence we obtain for all g ∈ G:

(N ∩D)g ≤ Z(H)g = Z(H) .

This implies N ≤ Z(H) and thus H is abelian. Then P EN is characteristic in N as it is
the unique Sylow p-subgroup of H. Hence P is a normal subgroup of G which we wanted
to show.

So now we can now assume that all minimal normal subgroups are p-groups and since P is
cyclic there is a unique one. It follows that the Fitting subgroup F (G) is a p-group, hence
F (G) ≤ P . So F (G) is cyclic, which implies by Lemma 5.2.72 that G is metacyclic. By
Proposition 5.2.90 it follows that D is a normal subgroup of G. In particular, P is a normal
subgroup.

Remark 5.2.143. If G ∈ Γ2 and the normal core of D is non-trivial, then D is not
necessarily normal. There is a group G ∈ Γ2 of the form (C14×C2)oC3 which has |D| = 14
but |DG| = 7.

Theorem 5.2.144. The derived length of any G ∈ Γ2 is bounded by 4.

Proof. We prove the claim by induction on the order of G. If N,M are two distinct minimal
normal subgroups, then the canonical homomorphism G → G/N × G/M is injective as
N ∩M = 1. Hence we can assume that there is a unique minimal normal subgroup N ,
which is a p-group for some prime p. Then F (G) is a p-group as well. Let P ≤ G be a Sylow
p-subgroup, so N ≤ F (G) ≤ P . If P is cyclic, then F (G) is cyclic and so G is metacyclic
by Lemma 5.2.72. Otherwise P is normal by Theorem 5.2.141, so P = F (G).
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Note that the derived length of P is at most 3 by Theorem 5.2.134, so if G/P is cyclic, we
are done. If G/P is non-cyclic, then by Proposition 5.2.128 it follows that P is elementary
abelian or a Suzuki 2-group. In particular, the derived length of P is at most 2. Hence G
has derived length at most 4 since G/P is metacyclic.

Observe that the bound on the derived length in Theorem 5.2.144 is sharp by the following
example.

Example 5.2.145. There is a group G ∈ Γ2 of order 1344 which splits as P o (C7 o C3)
with F (G) = P the Suzuki 2-group of order 64 with |Z(P )| = 8. The group G has derived
length equal to 4.

5.2.3.10. Additional Structural Properties

Lemma 5.2.146. Let G ∈ Γ2 with Z(G) = 1 and G/F (G) metacyclic. Suppose F (G) =
PK with P an elementary abelian Sylow p-subgroup of G and K a cyclic subgroup. Then
K = 1 or G/F (G) is cyclic.

Proof. Suppose C and D both intersect F (G) non-trivially. By Corollary 5.2.135 all cyclic
subgroups of P are conjugate, hence P ⊆ [C]G or P ⊆ [D]G. Suppose for the moment
that P ⊆ [C]G. For any x ∈ P \ {1} the subgroup 〈x〉K is cyclic since |K| is coprime to
p. If 〈x〉K ≤ Dg for some g ∈ G, then 〈x〉 ≤ Ch ∩Dg ≤ Z(G) for some h ∈ G. But this
contradicts our assumption on G. Thus we have F (G) = PK ⊆ [C]G. A similar argument
shows that F (G) ⊆ [D]G if P ⊆ [D]G.

By assumption G/F (G) is metacyclic, thus N = F (G)D is a normal subgroup of G. If
F ⊆ [D]G, then it would follow that F ≤ Z(N) and so N is abelian. HenceD ≤ CG(F (G)) =
F (G) and thus G/F (G) is cyclic. If F (G) ⊆ [C]G, then K ≤ C. But as K is a normal
subgroup of G, we have K ≤ Z(G) = 1.

Lemma 5.2.147. Let G ∈ Γ2 with F (G) = PQ with P,Q two non-cyclic elementary
abelian Sylow subgroups corresponding to distinct primes. Then Z(G) = 1.

Proof. The proof is similar to the proof of Lemma 5.2.115.

Lemma 5.2.148. LetG ∈ Γ2 with F (G) = PQ with P,Q two distinct non-cyclic elementary
abelian Sylow subgroups. Suppose G/F (G) is metacyclic but not cyclic. Then F (G) ⊆ [C]G.

Proof. From the previous lemma we know that Z(G) = 1. By Corollary 5.2.135 we know
that P resp. Q is contained in [C]G or [D]G. Using Z(G) = 1, it follows that F (G) ⊆ [C]G
or F (G) ⊆ [D]G. Assume the latter. We know that N = F (G)D is a normal subgroup of
G since G/F (G) is metacyclic. Then F (G) ≤ Z(N), and so N ≤ CG(F (G)) = F (G). But
this would imply that G/F (G) is cyclic. Hence we obtain F (G) ⊆ [C]G.

Proposition 5.2.149. For G ∈ Γ2 we have |Z(G)| = (|C|, |D|).
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Proof. By Lemma 5.2.80 it suffices to show the claim for groups G ∈ Γ2 with Z(G) = 1.
Moreover, one direction has been proven in Lemma 5.2.79. For the other, suppose that p is
a common prime divisor of |C| and |D|. Let P ≤ G be the Sylow p-subgroup. Denote by
Cp resp. Dp the cyclic subgroups of order p in C resp. D. If P is cyclic, then there is some
g, g′ ∈ G such that Cgp ≤ P and Dg′

p ≤ P . But then Cgp = Dg′
p and thus Z(G) 6= 1. If P is

elementary abelian or a Suzuki 2-group, then by Corollary 5.2.135 Cp and Dp are conjugate
and the claim follows as well. In the remaining cases by Theorem 5.2.134 we have that P is
non-cyclic with Z(P ) of order 2. As P is normal in G by Theorem 5.2.141, Z(P ) ≤ Z(G),
a contradiction. The claim follows.

Corollary 5.2.150. For a group G ∈ Γ2, the quotient G/Z(G) is a csc-group.

Theorem 5.2.151. A group G ∈ Γ2 contains at most one non-cyclic Sylow subgroup.

Proof. Suppose G contains more one non-cyclic Sylow subgroup. By Theorem 5.2.141 we
know that non-cyclic Sylow subgroups of G are normal. By passing to a suitable quotient
of G we can thus assume that G contains exactly two distinct non-cyclic Sylow subgroups.
Denote by P a non-cyclic Sylow p-subgroup and by Q a non-cyclic Sylow q-subgroup of
G for primes p 6= q. We can moreover pass to successive quotients of G in order to ensure
that F (G) = PQ. By modding out Φ(F (G)) we can assume that P and Q are elementary
abelian. As all Sylow subgroups of G/F (G) are cyclic, it follows that G/F (G) is metacyclic.
By Lemma 5.2.147 we have Z(G) = 1 and Proposition 5.2.149 implies that (|C|, |D|) = 1.
Recall that this implies that any non-cyclic quotient of G has trivial center as well by
Lemma 5.2.81. Let us distinguish now two cases:

(1) If G/F (G) is cyclic, we have G = F (G)C. As F (G) = PQ is abelian, we have
F (G) ∩ C ≤ Z(G) = 1. Thus F (G) ⊆ [D]G. Since |C| and |D| have coprime orders,
CG(C ′) ≤ C for all non-trivial subgroups C ′ ≤ C. Hence G is a Frobenius group
with Frobenius complement C by Lemma 5.2.46. The same argument applies to the
quotient groups G/P and G/Q which therefore lie in the class ΓI2. We know that D is
cyclic of order pq and hence F (G) = [D]G = [D]C . Let |P | = pn and |Q| = qm where
n,m ≥ 2. The number of cyclic subgroups of order pq in F (G) is given by(

pn − 1
p− 1

)
·
(
qm − 1
q − 1

)
= [C : NC(D)]

As G/P and G/Q lie in ΓI2, by Proposition 5.2.63 it then follows that |C| divides
pn − 1 as well as qm − 1. Since by the above observation (pn−1/p−1) · (qm−1/q−1)
divides |C| it follows that qm−1/q−1 divides p − 1 and pn−1/p−1 divides q − 1. Since
we assumed n,m ≥ 2, it follows in particular that q + 1 ≤ qm−1/q−1 ≤ p − 1 and
p+ 1 ≤ pn−1/p−1 ≤ q − 1. Thus q + 3 ≤ p+ 1 ≤ q − 1, a contradiction.

(2) If G/F (G) is non-cyclic, then by Lemma 5.2.148 F (G) ⊆ [C]G. By Proposition 5.2.95
the subgroup N = F (G)D is normal in G. As in (1) we obtain that CN (D′) ≤ D
for any non-trivial subgroup D′ ≤ D. Thus N is a Frobenius group with Frobenius
complement D. In particular, D is a Carter subgroup of N . As G = NC we have
[C]G∩N = [C ∩N ]N . These two facts together imply that G ∈ Γ2. Also note that the
two conjugacy classes of maximal cyclic subgroups of N with representatives C ∩N
and D have coprime orders. Hence (1) applies and we again arrive at a contradiction.
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Let us recall the following standard definition:

Definition 5.2.152. A finite group G is called 2-Frobenius if there exist normal subgroups
H,K EG such that 1 ≤ H ≤ K ≤ G and K is a Frobenius group with Frobenius kernel H
and G/H is a Frobenius group with Frobenius kernel K/H.

In proofs in Section 5.2.3.8, see e.g. Lemma 5.2.120, we have already seen that some groups
in Γ2 are 2-Frobenius. We can now record the following important theorem:

Theorem 5.2.153. Let G ∈ Γ2 with Z(G) = 1. Then exactly one of the following holds:

(1) G/F (G) is cyclic. Then G is a Frobenius group and F (G) = [D]G. Either G is
metacyclic or G contains a unique non-cyclic Sylow p-subgroup P EG and a cyclic
normal subgroup K whose order is coprime to p such that F (G) = PK. Moreover,
PC ∈ Γ2 and KC ∈ Γ2 if K is non-trivial.

(2) G/F (G) is metacyclic but not cyclic. Then G is a 2-Frobenius group with F (G) ⊆ [C]G.
Furthermore, F (G) = P is a non-cyclic Sylow p-subgroup of G and G/Φ(F (G)) has
the form described in Proposition 5.2.126. Let n be the rank of P/Φ(P ). Then n is a
prime different from p with (n, p− 1) = 1, |D| = pn−1/p−1 and

|C| =
{
p · n, if P elementary abelian
p2 · n, if P a Suzuki 2-group

Proof. The claims follow easily from the previous results.

For a finite group G denote by π(G) the set of element orders in G that are prime numbers.
Then the prime graph, sometimes also called Gruenberg-Kegel graph, of G has as a vertex
set π(G) and there is an edge between distinct elements p, q if and only if there exists
an element of order pq in G. Now, the Gruenberg-Kegel theorem [Wil81] asserts that a
solvable finite group G whose prime graph has at least two connected components is either
a Frobenius or a 2-Frobenius group. Observe that a finite group G ∈ Γ2 with Z(G) = 1 has
(|C|, |D|) = 1 by Proposition 5.2.149. This implies that the prime graph of G has at least
two components and so the result of Theorem 5.2.153 should be seen as an instance of the
Gruenberg-Kegel theorem.
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Given a group G and a family of subgroups F of G we now want to study the finiteness
properties of the classifying space BF (G) = EF (G)/G. Again we shall use the convention
that BG = BFin(G) and BG = BVCyc(G). As the G-homotopy type of EF (G) is uniquely
determined, so is the homotopy type of BF (G). However, if BF (G)→ X is some homotopy
equivalence to another CW-complex X, there need not be a G-homotopy equivalence of
G-CW complexes whose quotient realizes the given map. The situation is different for the
trivial family F = T r, since EG is the universal cover of BG. Thus finiteness conditions
of the G-CW complex EG are equivalent to finiteness conditions of the CW-complex BG.
For example, BG has a finite model if and only if EG has a finite model. We shall see
below that a corresponding statement fails for finite-dimensionality if we take the family of
finite or the family of virtually cyclic subgroups. The following question goes back to [JL06,
Remark 17] and motivated our study:

Question 6.0.1. Suppose BG is homotopy equivalent to a finite CW-complex. Is BG
necessarily contractible?

In contrast to Question 6.0.1, in the case of the family of finite subgroups, Leary and
Nucinkis showed [LN01] that every connected CW-complex is homotopy equivalent to BG
for some group G. By [LN01, Proposition 3] we know that π1(BF (G)) ∼= G/N where N is
the smallest normal subgroup of G containing all subgroups of F . In particular, it follows
that BG is simply-connected for any group G. Then Question 6.0.1 is equivalent to the
question whether BG is contractible if all homology groups H∗(BG;Z) are finitely generated.
Question 6.0.1 appears to be more difficult than Conjecture 1.2.2 in the sense that our
proofs for certain classes of groups depend on the validity of Conjecture 1.2.2.

In the following let us discuss the question whether BG being homotopy-equivalent to a
finite-dimensional complex implies the existence of a finite-dimensional model for EG. It is
consistent with Zermelo-Fraenkel set theory with axiom of choice (ZFC) that for G locally
finite of cardinality ℵn the minimal dimension of EG is equal to n+ 1 [LW12, Example 5.32].
A lower bound for the dimension of EG is provided by the rational cohomological dimension,
namely we have cdQ(G) ≤ gd (G). And it is consistent with ZFC that cdQ(G) = n + 1.
Note that for G locally finite VCyc(G) = Fin(G) and BG = BG is contractible as we
shall see below. In particular, it is consistent with ZFC that the gap between the minimal
dimension of a model for BG and the minimal dimension of a model for EG is arbitrarily
large. Actually, it is then also consistent with ZFC that there exists a locally finite group of
cardinality ℵω which does not admit a finite-dimensional model for EG = EG. Summarizing,
we have seen that if BG is homotopy-equivalent to a finite CW-complex, it is in general
impossible to conclude that EG is finite-dimensional.
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Lemma 6.0.2. Let V be a virtually cyclic group. Then BV is contractible if and only if V
is finite or nonorientable. If V is orientable, then BV = S1. In particular, Hn(BV ;Z) = 0
for n ≥ 2 in all cases.

Proof. For V = Z, we have of course BV = BV = K(V, 1) = S1. For V = D∞ = Z/2 ∗ Z/2
the infinite dihedral group, we get that π1(BD∞) = 1 since D∞ is generated by elements of
finite order. But more is true: we have R as a model for ED∞, and moreover R/D∞ ∼= [0, 1/2]
(see also Examples 1.0.4).

More generally, if V is an orientable virtually cyclic group, there exists an epimorphism
π : V → Z with finite kernel. Then R serves as a model for EV by pulling back the
standard Z-action on R via π. Thus BV = S1. Similarly, if V is nonorientable, then BV is
contractible.

6.1. Locally F Groups

For G a group and F a family of finitely generated subgroups of G we want to give an easy
argument here to show that BFG is contractible for G locally F , i.e. a group such that all
its finitely generated subgroups lie in the family F . In [JL06, p. 10] Juan-Pineda and Leary
note that BG is contractible for G locally virtually cyclic and provide a proof in the case
that G is countable by constructing an explicit model.

Ramras [Ram18] has a given a nice account on functorial models for EF (G) resp. BF (G).
We shall use in the following that BF(G) can be viewed as the geometric realization of
the nerve of the orbit category OrF (G). Recall that the category OrF (G) has as objects
transitive G-sets G/H with H ∈ F and as morphisms G-maps. One observes that

Hom(G/H,G/K) ∼= {g ∈ G | gHg−1 ≤ K}/ ∼

where g ∼ gk for all k ∈ K.

Also recall that a category C is filtered if the following two conditions are met:

(1) For any two objects X,Y in C there exists an object Z in C and morphisms X → Z
and Y → Z.

(2) For two morphisms f, g : X → Y there exists an object Z in C and a morphism
h : Y → Z such that hf = hg.

By a classical result, the nerve of a filtered category is contractible, see e.g. [Qui10, Corollary
2, p. 93].

Proposition 6.1.1. Let G be a group and let F be a family of finitely generated subgroups
of G. If G is locally F , then BFG is contractible.

Proof. We verify that the orbit category OrF (G) is filtered.

(1) For two transitive G-sets G/H, G/H ′, we note that 〈H,H ′〉 is again in F since
H,H ′ are finitely generated and G is locally F . Then certainly there are G-maps
G/H → G/〈H,H ′〉 and G/H ′ → G/〈H,H ′〉.
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6. Finiteness of the Classifying Space BG

(2) Let two G-maps α, β : G/H → G/K be given. These are represented by elements
a ∈ G and b ∈ G, i.e. α(H) = aK and β(H) = bK. We consider the finitely generated
subgroup L = 〈a, b,K〉 ∈ F . Then we let π : G/K → G/L be the canonical map. It
follows that πα = πβ.

In particular, Proposition 6.1.1 implies that BG is contractible for all locally virtually cyclic
groups G. One might ask whether there are groups G that are not locally virtually cyclic
but which nevertheless have a contractible classifying space BG. These certainly exist by
[JL06, Example 4]. However, we cannot find such new examples by only considering filtered
categories as the following result shows.

Proposition 6.1.2. Let G be a group and let F be a family of finitely generated subgroups
containing all cyclic subgroups. The category OrF (G) is filtered if and only if G is locally
F .

Proof. The proof of Proposition 6.1.1 showed that a locally F group has a filtered orbit
category. So let us suppose that OrF(G) is a filtered category. Let a ∈ G be non-trivial
element and let K ∈ F . Consider the two G-maps π : G/1→ G/K, 1 7→ K and α : G/1→
G/K, 1 7→ aK. By the second property of filtered categories, there exists some V ∈ F and
a G-map λ : G/K → G/V such that λ ◦ π = λ ◦ α. Let x ∈ G so that λ(K) = xV . Since λ
is a G-map, we have K ≤ xV x−1. Moreover, xV = (λ ◦ π)(1) = (λ ◦ α)(1) = λ(aK) = axV
implies that a ∈ xV x−1. Thus a and K both lie in the same subgroup xV x−1 ∈ F . Now,
if H ≤ G is a finitely generated subgroup, then by an inductive argument we obtain that
H ∈ F . The assumption that F contains all cyclic subgroups is needed in the beginning of
the induction.

6.2. Lück-Weiermann Construction

Suppose we have a group G and two families of subgroups F ⊆ G of G. We want to recall
a construction due to Lück and Weiermann [LW12] that allows us to obtain a model for
EG(G) from a model for EF (G) using a pushout. The spaces that are being attached are
classifying spaces for certain generalized normalizer subgroups. We will be interested in the
case that F = Fin and G = VCyc. As mentioned before, for large classes of groups there
exist finite models for the classifying space of proper actions. Our strategy in answering
Question 6.0.1 can then be outlined as follows: For certain classes of groups we shall obtain
EG from EG by attaching infinitely many classifying spaces. In a second step we compute
the homology of EG, at least partially, in the hope that the attached classifying spaces
generate enough classes in the homology of EG.

To perform the construction we will assume that the set G \F of subgroups of G is equipped
with an equivalence relation ∼ that satisfies the following additional properties, which we
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6.2. Lück-Weiermann Construction

will refer to as (P):

(1) If H,K ∈ G \ F with H ≤ K, then H ∼ K.

(2) If H,K ∈ G \ F and g ∈ G, then H ∼ K ⇔ gHg−1 ∼ gKg−1.
(P)

Notation 6.2.1. We let [G \ F ] denote the set of equivalence classes under the equivalence
relation ∼ and we denote by [H] ∈ [G \ F ] the equivalence class of an element H ∈ G \ F .

By property (2) of (P) the G-action by conjugation on the set G \ F induces a G-action on
[G \ F ]. We then define the subgroup

NG[H] = {g ∈ G | [g−1Hg] = [H]},

which is equal to the isotropy group of [H] under the G-action we just explained.

Moreover, we define a family of subgroups of NG[H] by

G[H] = {K ≤ NG[H] | K ∈ G \ F , [K] = [H]} ∪ (F ∩NG[H]).

Note that G[H] ⊆ G.

Definition 6.2.2 (Equivalence relation on VCyc \ Fin). In the case that F = Fin and
G = VCyc we choose the equivalence relation defined by

V ∼W ⇔ |V ∩W | =∞,

where V,W ∈ VCyc \ Fin.

Theorem 6.2.3 ([LW12, Theorem 2.3]). Let F ⊆ G and ∼ as above an equivalence relation
on G \F satisfying (P). Let I be a complete system of representatives [H] of the G-orbits in
[G \F ] under the G-action induced by conjugation. Choose arbitrary NG[H]-CW-models for
EF∩NG[H](NG[H]) and EG[H](NG[H]), and an arbitrary G-CW-model for EF (G). Define a
G-CW-complex X by the following cellular G-pushout

∐
[H]∈I G×NG[H] EF∩NG[H](NG[H]) EF (G)

∐
[H]∈I G×NG[H] EG[H](NG[H]) X

∐
[H]∈I idG×NG[H]f[H]

i

such that f[H] is a cellular NG[H]-map for every [H] ∈ I and i is an inclusion of G-CW-
complexes, or such that every map f[H] is an inclusion of NG[H]-CW-complexes for every
[H] ∈ I and i is a cellular G-map. Then X is a model for EG(G).

Notation 6.2.4. Let F ⊆ G be two families of subgroups of G. We say that G satisfies
(MF⊆G) if every subgroup H ∈ G \ F is contained in a unique subgroup Hmax which is
maximal in G \ F , i.e. if K ∈ G \ F with Hmax ≤ K, then K = Hmax.

We say that a group G satisfies (NMF⊆G) if G satisfies (MF⊆G) and every maximal subgroup
Hmax ∈ G \ F is a self-normalizing subgroup, i.e. NGHmax = Hmax.
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6. Finiteness of the Classifying Space BG

Corollary 6.2.5. Let G be a group satisfying (MFin⊆VCyc). LetM be a complete system
of representatives of the conjugacy classes of maximal infinite virtually cyclic subgroups
V ≤ G. Then EG can be obtained by the following cellular G-pushout:

∐
V ∈MG×NGV ENGV EG

∐
V ∈MG×NGV EWGV EG

∐
F∈M idG×fV

i

Here, EWGV is viewed as an NGV -CW-complex via the projection map NGV �WGV =
NGV/V , the maps starting from the left upper corner are cellular and one of them is an
inclusion of G-CW-complexes.

Corollary 6.2.6. Let G be a group satisfying (NMFin⊆VCyc) and let M be a complete
system of representatives of the conjugacy classes of maximal infinite virtually cyclic
subgroups. Then EG can be obtained via the following cellular G-pushout:

∐
V ∈MG×V EV EG

∐
V ∈MG/V EG

∐
V ∈M p

i

Here, i is an inclusion of G-CW-complexes and p is the obvious projection.

Lemma 6.2.7. Let G be a group and let I be a complete set of representatives of conjugacy
classes of elements in [VCyc \ Fin] as in the statement of Theorem 6.2.3. If G has bVCyc,
then I is finite.

Proof. Let V1, . . . , Vn be witnesses to bVCyc for G. We claim that |I| ≤ n. For each Vi that
is infinite, choose some infinite cyclic subgroup Hi ≤ Vi. If V ≤ G is some infinite virtually
cyclic subgroup, choose some infinite cyclic subgroup H ≤ V . By the bVCyc property there
exists some g ∈ G such that Hg ≤ Vj for some j. But then Hg ∩Hj is an infinite group,
hence V g ∼ Hj .

In the light of Lemma 6.2.7 one has to be cautious that the converse does not hold. First of
all, observe that representatives of [VCyc \ Fin] might as well taken to be infinite cyclic.
Then having finitely many conjugacy classes of elements in [VCyc \ Fin] is equivalent to
the statement that there are only finitely many commensurability classes of infinite order
elements in the group. Note that by Proposition 4.0.16 there exists a torsion-free group
with only two commensurability classes that fails to have bCyc.

Definition 6.2.8. For a group G we denote by Tor(G) the subgroup of G which is generated
by all elements of finite order.
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As noted in the introduction of this chapter, we have π1(BG) ∼= G/Tor(G).

Remark 6.2.9. Note that Tor(G) is a characteristic subgroup of G. In general, the
subgroup Tor(G) contains elements of infinite order and the quotient G/Tor(G) is not
torsion-free. As an example, consider G = Z ∗Z D∞ = 〈g, a, b | g2 = ab, a2 = 1 = b2〉.
There is an epimorphism π : G→ Z/2 by killing a and b. In an amalgamated product, an
element of finite order is conjugate to an element lying in one of the factor groups. Hence
Tor(G) ≤ ker(π), and thus g /∈ Tor(G) defines an element of order 2 in G/Tor(G).

Suppose α : G → Q is a group homomorphism. It induces a map Bα : BG → BQ and
π1(Bα) can then be identified with the natural map

G/Tor(G)→ Q/Tor(Q)

which is induced by α. Thus H1(Bα) : H1(BG) → H1(BQ) can be identified with the
abelianization of the above map:

H1(Bα) : (G/Tor(G))ab → (Q/Tor(Q))ab

Also observe that (G/Tor(G))ab ∼= Gab/Tor(Gab). For an abelian group A, we write
Af = A/Tor(A) for the torsion-free part.

Lemma 6.2.10. Let G be a group satisfying (MFin⊆VCyc), then there is an exact sequence

. . .→
⊕
V ∈M

H2(BNGV )→ H2(BG)⊕
⊕
V ∈M

H2(BWGV )→ H2(BG)→

→
⊕
V ∈M

(NGV )ab
f → Gab

f ⊕
⊕
V ∈M

(WGV )ab → . . .

Proof. The long exact sequence arises as the Mayer-Vietoris sequence for the pushout
obtained from Corollary 6.2.5.

Lemma 6.2.11. Let G be a group satisfying (NMFin⊂VCyc) and letM be a complete system
of representatives of the conjugacy classes of maximal infinite virtually cyclic subgroups.
Then there is an exact sequence

0→ H2(BG)→ H2(BG)→
⊕
V ∈M

V ab
f → Gab

f → 0 .

Here, H2(BG)→ H2(BG) is induced by the canonical map BG→ BG and the inclusions
V → G for V ∈M induce the other map. For n > 2, the canonical mapHn(BG)→ Hn(BG)
is an isomorphism. Moreover, note that⊕

V ∈M
V ab
f
∼=

⊕
V ∈Mo

Z ,

where Mo denotes the subset of M consisting only of orientable infinite virtually cyclic
subgroups.
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Proof. By taking the G-quotient of the pushout of Corollary 6.2.6 we obtain the following
long exact sequence

. . .→
⊕
V ∈M

H2(BV )→ H2(BG)→ H2(BG)→
⊕
V ∈M

H1(BV )→ H1(BG)→ 0

The sequence is exact at the right, since BG is simply-connected, so H1(BG) = 0. By
Lemma 6.0.2, Hn(BV ) = 0 for all virtually cyclic groups V for n ≥ 2.

By [LW12, Example 3.6] a hyperbolic group satisfies the condition (NMFin⊆VCyc). Moreover,
by [JL06, Theorem 13] there are infinitely many conjugacy classes of orientable maximal
infinite virtually cyclic subgroups. Hence we obtain:

Corollary 6.2.12. Let G be a non-elementary hyperbolic group. Then H2(BG) contains
a free abelian group of infinite rank.

This was already shown by Juan-Pineda and Leary [JL06, Corollary 16], albeit with a
slightly different proof.

6.2.1. Abelian and Poly-Z-Groups

Juan-Pineda and Leary computed in [JL06, Example 3] that H2(BZ2) and H3(BZ2) are
free abelian of infinite rank using an explicit model that we reviewed in Proposition 1.0.5.
Let us consider more generally G = Zn for n ≥ 2. Using Corollary 6.2.5 and the fact
that NGV = G = Zn, WGV = G/V ∼= Zn−1 for V maximal infinite cyclic, we obtain the
following long exact sequence

0→ Hn+1(BG)→
⊕
V ∈M

Hn(BG)→ Hn(BG)⊕
⊕
V ∈M

Hn(BZn−1)→ . . . ,

whereM denotes the set of maximal infinite cyclic subgroups of G. Note thatM is infinite
and since Hn(BZn−1) = 0 and Hn(BZn) ∼= Z, it follows that Hn+1(BG) is a free abelian
group of infinite rank. This also implies that gd (Zn) ≥ n+ 1. In fact, by [LW12, Example
5.21] we have gd (Zn) = n+ 1. For G finitely generated abelian we have G ∼= Zn ⊕ T with
T finite abelian. It follows that Hn+1(BG) contains a free abelian subgroup of infinite rank
as a direct summand whenever G is not virtually cyclic.

Lemma 6.2.13. Let G = Zn with n ≥ 2. Then H2(BG) is a free abelian group of infinite
rank.

Proof. Of course, G is torsion-free and satisfies MFin⊆VCyc. By Corollary 6.2.5 we can
obtain EG by the following pushout of G-CW-complexes:

∐
V ∈MG×NGV ENGV EG

∐
V ∈MG×NGV EWGV EG

∐
V ∈M idG×NGV fV

i
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Taking the quotient by G and using that NGV = G and WGV = G/V , we get:

∐
V ∈MBG BG

∐
V ∈MB(G/V ) BG

∐
V ∈M gV

i/G

The corresponding Mayer-Vietoris sequence yields

. . .→ H2(BG)→
⊕
V ∈M

H1(BG)→ H1(BG)⊕
⊕
V ∈M

H1(B(G/V ))→ H1(BG) = 0

We let
θG :

⊕
V ∈M

G→ G⊕
⊕
V ∈M

G/V

be the map that is induced by the sum of the identity idG and the projections G→ G/V
on each summand. Then the long exact sequence yields that H2(BG) surjects onto ker(θG).
One computes that ker(θG) = {(gV )V ∈M ∈

⊕
V ∈M V |

∑
V ∈M gV = 0}. AsM is infinite,

it follows that ker(θG) is of infinite rank. Since it is free abelian, H2(BG) contains a free
abelian group of infinite rank. Since the kernel of the map H2(BG) →

⊕
V ∈MH1(BG)

appearing in the Mayer-Vietoris sequence is free abelian as well, it follows that H2(BG) is
free abelian of infinite rank.

Let us generalize the previous result to not necessarily finitely generated abelian groups:

Proposition 6.2.14. Let G be an abelian group that is not locally virtually cyclic. Then
H2(BG) is not finitely generated.

Proof. First note that an abelian group is locally virtually cyclic if and only if it does not
contain a copy of Z2 as a subgroup. In particular, it follows that the complete set I of
representatives of elements in [VCyc\Fin] is infinite. Since G is abelian we have NG[V ] = G
for any virtually cyclic V . By Theorem 6.2.3 there exists a G-pushout

∐
V ∈I G×G EG EG

∐
V ∈I G× EVCyc[V ]G EG

∐
V ∈I idG×Gf[V ]

i

Here, VCyc[V ] = {K ≤ G | K ∈ VCyc(G) and |K ∩ V | = ∞} ∪ Fin. After taking the
quotient by G we obtain the following part of the Mayer-Vietoris sequence:

. . .→ H2(BG)→
⊕
V ∈I

H1(BG)→ H1(BG)⊕
⊕
V ∈I

H1(BVCyc[V ]G)→ H1(BG) = 0
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As before, let Gf = G/Tor(G) denote the torsion-free quotient of G. Now the last non-trivial
map in the long exact sequence can be identified with

θ :
⊕
V ∈I

Gf → Gf ⊕
⊕
V ∈I

Gf/NV

where NV = 〈K | K cyclic and |K ∩ V | = ∞} ≤ Gf and given by the sum of idG and
the canonical projections. Then ker(θ) = {(gV )V ∈I ∈

⊕
V ∈I NV |

∑
V ∈I gV = 0} which

is not finitely generated. Then H2(BG), which surjects onto ker(θ) cannot be finitely
generated.

We see in particular that an abelian group G has a contractible classifying space BG if and
only if it is locally virtually cyclic. It is also worthwhile to note that a torsion-free locally
cyclic group is isomorphic to a subgroup of the rational numbers Q, see e.g [Kur55, Chapter
VIII, Section 30].

We call a group G poly-Z if there exists a chain of subgroups 1 = G0 ≤ G1 ≤ G2 ≤ . . . ≤
Gn = G such that Gi EGi+1 and Gi+1/Gi is infinite cyclic for all i = 0, 1, . . . , n− 1. Note
that poly-Z groups do not necessarily satisfy the condition MFin⊆VCyc. An example is
already provided by the non-trivial extension ZoZ, see [LW12, Example 3.7]. For a poly-Z
group G we know that the cohomological dimension cd(G) is given by cd(G) = max{i |
Hi(G;Z/2) 6= 0}, see e.g. [Lüc05, Example 5.26].

Proposition 6.2.15. Let G be a poly-Z group that is not infinite cyclic. Then there is
some n such that Hn(BG;Z/2) is not finitely generated.

Proof. By [Lüc05, Example 5.26] we know that there exists a finite model for EH for any
virtually poly-Z group H. In [LW12, Theorem 5.13] a model of minimal dimension for EG
is being constructed. In the course of this proof one obtains the following pushout, where
the index set I runs over certain infinite cyclic subgroups of G:

∐
C∈I G×NGC ENGC EG

∐
C∈I G×NGC EWGC EG

∐
C∈I idG×NGCfC

i

Here, i is an inclusion of G-CW complexes and fC is a cellular NGC-map for every C ∈ I.
Observe that I has to be infinite. Otherwise, we would obtain a classifying space EG of finite
type since NGC and WGC are virtually poly-Z. But this is impossible by Theorem 1.2.15
since G is solvable but not virtually cyclic. By taking the quotient by G one obtains the
following pushout:

∐
C∈I BNGC BG

∐
C∈I BWGC BG
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Of course, as G is torsion-free, we have BG = BG and BNGC = BNGC. From the pushout,
we obtain the following Mayer-Vietoris sequence, suppressing the coefficient group Z/2 in
the notation:

. . .→ Hk+1(BG)→ Hk

(∐
C∈I

BNGC

)
→ Hk(BG)⊕Hk

(∐
C∈I

BWGC

)
→ . . .

We also observe that gd(G) = vcd(G) = cd(G), gd(NGC) = cd(NGC) and gd (WGC) =
cd(NGC) − 1, the proof of which can be found in the proof of [LW12, Theorem 5.13]
as well. In particular, we see that the homology groups of all spaces appearing in the
pushout, will vanish in large enough degrees. Now, let k be the largest integer such that
there are infinitely many C ∈ I with gd(NGC) = k and with only finitely many C ∈ I
with gd(NGC) = k + 1. Then there are only finitely many C ∈ I with gd(BWGC) ≤ k.
Observe that Hk(NGC;Z/2) 6= 0 for infinitely many C. As Hk(BG) is finite, the above
exact sequence shows that Hk+1(BG) cannot be finitely generated.

As a corollary we obtain an affirmative answer to Question 6.0.1 for the class of poly-Z-
groups.
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7. The Farrell-Jones Conjecture for Infinite
Products and Minimal Families

The Farrell-Jones conjecture for algebraic K-theory predicts that the so-called assembly
map

HGn (EG,K)→ HGn ({pt},K) ∼= Kn(RG)

induced by the projection EG→ {pt} is an isomorphism for all groupsG and all commutative
rings R. Here, HG∗ is an equivariant homology theory such that HGn ({pt},K) ∼= Kn(RG)
where K is a spectrum associated to the algebraic K-theory of R and RG is the group ring.
The Farrell-Jones conjecture enjoys multiple useful inheritance properties. For example, if
G satisfies the conjecture, then any subgroup of G satisfies it as well. One also knows that if
groups G1 and G2 satisfy the conjecture, then so does the direct product G1 ×G2. It is an
interesting and open problem whether the Farrell-Jones conjecture also has an inheritance
property for infinite products of groups. This property would be quite strong. For example,
the Farrell-Jones conjecture is trivially true for finite groups, since EG = {pt} for G finite,
and thus it would hold for arbitrary products of finite groups. As the conjecture has the
subgroup inheritance property, it would follow that the conjecture holds for all residually
finite groups.

In the formulation of the Farrell-Jones conjecture one could also replace the family of
virtually cyclic subgroups by another family F of subgroups of G and study the induced
map

HGn (EFG,K)→ HGn ({pt},K) .

This more general assembly map is obviously an isomorphism if F = All, the family of
all subgroups of G, since then EFG = {pt}. This motivates the question, popularized by
Wolfgang Lück, whether for any group G there exists a smallest family F with respect to
which the Farrell-Jones conjecture in this more general sense holds.

We will address the relation between the inheritance property for infinite products and the
existence of minimal families in the context of the so-called fibered isomorphism conjectures.
The fibered isomorphism conjecture is a framework for conjectures like the Farrell-Jones
conjecture that has a certain inheritance property already built in. It will turn out that the
two mentioned properties, suitably formulated, are actually equivalent in this context.

7.1. The Fibered Isomorphism Conjecture

In the following we want to recall the so-called fibered isomorphism conjecture, FIC for
short, for an equivariant homology theory H?

∗. A convenient definition is given in [BLR08],
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which we shall adapt. We say that G satisfies the fibered isomorphism conjecture for H?
∗

relative to the family F of subgroups of G if for any group homomorphism ϕ : K → G the
induced map

HK∗ (Eϕ∗FK)→ HK∗ ({pt})
is an isomorphism. Here, ϕ∗F = {H ≤ K | ϕ(H) ∈ F} is a family of subgroups of K.

The fibered isomorphism conjecture automatically enjoys useful inheritance properties, like
stability under taking subgroups and the transitivity principle, see [BLR08, Lemma 1.5,
Theorem 1.4].

7.2. Equivalence of the Product and Intersection Property

We now formulate the properties whose equivalence we establish below.

(P): For any set of groups and associated families of subgroups (Gi,Fi)i∈I such that
each (Gi,Fi) satisfies the FIC, the group

∏
i∈I Gi satisfies the FIC relative to the family∏

i∈I Fi := {H ≤
∏
i∈I Hi | Hi ∈ Fi}.

(I): For any group G and families of subgroups (Fi)i∈I of G such that (G,Fi) satisfies the
FIC for any i ∈ I, the group G satisfies the FIC relative to the family

⋂
i∈I Fi.

Note that in the context of the Farrell-Jones conjecture a proof of property (P) would not
immediately imply that the Farrell-Jones conjecture holds for infinite products of finite
groups, since the product family would coincide with the family of all subgroups. However,
if (P) holds for the Farrell-Jones conjecture and (Gi)i∈I is a family of torsion-free groups,
then also

∏
i∈I Gi would satisfies the Farrell-Jones conjecture (with respect to the family of

virtually cyclic groups). This follows from the fact that the Farrell-Jones conjecture holds
for abelian groups and the transitivity principle [BLR08, Theorem 1.4].

Theorem 7.2.1. The product property (P) and the intersection property (I) are equivalent.

Proof. (P) ⇒ (I): Let G be a group and let (Fi)i∈I be families of subgroups of G such that
(G,Fi) satisfies the FIC for any i ∈ I. By (P) we know that (

∏
i∈I G,

∏
i∈I Fi) satisfies

the FIC. Let ∆: G →
∏
i∈I G denote the diagonal map. By the fibered property, we

then know that G satisfies the FIC relative to the family ∆∗(
∏
i∈I Fi). Now observe that

∆∗(
∏
i∈I Fi) =

⋂
i∈I Fi by the following calculation:

H ∈ ∆∗
(∏
i∈I
Fi

)
⇔ ∆(H) ∈

∏
i∈I
Fi

⇔
∏
i∈I

H = ∆(H) ≤
∏
i∈I

Hi for some Hi ∈ Fi

⇔ H ≤ Hi for all i ∈ I and some Hi ∈ Fi
⇔ H ∈

⋂
i∈I
Fi

(I) ⇒ (P): Let (Gi,Fi)i∈I be a family of groups and associated families of subgroups.
Suppose that each (Gi,Fi) satisfies the FIC. Now consider the canonical projection maps
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pj :
∏
i∈I Gi → Gj . Using fiberedness we conclude that

∏
i∈I Gi satisfies the FIC relative to

the family p∗j (Fj). Using property (I), it follows that
∏
i∈I Gi satisfies the FIC relative to⋂

i∈I p
∗
i (Fi). We have

⋂
i∈I p

∗
i (Fi) =

∏
i∈I Fi by the following:

H ∈
∏
i∈I
Fi ⇔ H ≤

∏
i∈I

Hi for some Hi ∈ Fi

⇔ pi(H) ≤ Hi ∈ Fi for all i ∈ I
⇔ pi(H) ∈ Fi for all i ∈ I
⇔ H ∈ p∗i (Fi) for all i ∈ I
⇔ H ∈

⋂
i∈I

p∗i (Fi)
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In this appendix we shall provide the arguments that are necessary to show that finite
groups with at most two conjugacy classes of maximal cyclic subgroups are solvable, see
also Section 5.2.3.1. The arguments involve a careful analysis of the element orders in finite
simple groups.

Definition A.0.1. For a finite group G we define the spectrum ω(G) to be the set of
element orders in G and we let µ(G) be the subset of ω(G) consisting of the maximal
elements of ω(G) with respect to the divisibility relation. We call µ(G) the reduced spectrum
of G.

Obviously the spectrum ω(G) is determined by the reduced spectrum µ(G). It is an
interesting question for which groups the spectrum and the order of the group determine the
isomorphism class of the group. For example, In [VGM09] it was proven that a finite simple
group G and a finite group H such that |G| = |H| and ω(G) = ω(H) are already isomorphic.
The spectra of finite simple groups have been investigated thoroughly, for example in [KS09]
the maximum element orders of finite groups of Lie type over a field of characteristic p 6= 2
have been determined. We shall prove using the classification of the finite simple groups:

Theorem A.0.2. A non-cyclic finite simple group G has |µ(G)| ≥ 3.

From this we can immediately deduce:

Corollary A.0.3. A finite simple group G is covered by two cyclic subgroups up to
automorphism if and only if G is cyclic of prime order.

Recall that Bertrand’s postulate asserts that for any n > 1 there exists a prime p with
n < p < 2n. Using a strengthened version of this postulate we can now estimate the size of
the reduced spectrum of alternating groups.

n µ(An) δ(An)
4 2, 3 2
5 2, 3, 5 3
6 3, 4, 5 3
7 4, 5, 6, 7 5
8 4, 6, 7, 15 6
9 7, 9, 10, 12, 15 7

Table A.1.: Spectra and number of automorphic cyclic subgroups for alternating groups

115



A. Spectra of Finite Simple Groups

Proposition A.0.4. We have µ(An) ≥ 3 for all n ≥ 5. In fact, µ(An)→∞ as n→∞.

Proof. By [Pas92, p. 869] there are at least three primes p with n/2 < p ≤ n for n ≥ 17. The
same holds for n = 13 and n = 14. In these cases there are elements of distinct prime orders
p1, p2, p3 in An, where n/2 < pi ≤ n. Using the cycle decomposition of elements in An one
sees that the corresponding maximal elements in µ(An) are distinct since pipj ≥ pi + pj > n.
The other cases can be checked by a direct computation, see also Table A.1. The second
claim is implied by the prime number theorem.

Before we can prove Theorem A.0.2 we need to collect a couple of elementary number-
theoretic lemmas. For p a prime number and n ∈ N, we write (n)p for the largest power of
p dividing n. Also recall that we denote by (n,m) resp. [n,m] the greatest common divisor
resp. the least common multiple of two natural numbers n,m.

Lemma A.0.5 ([Zav04, Lemma 6 (iii)]). For q, n,m ∈ N (q > 1) the following formulas
hold:

(qn − 1, qm − 1) = q(n,m) − 1

(qn + 1, qm + 1) =
{
q(n,m) + 1, if (n)2 = (m)2
(2, q + 1) , if (n)2 6= (m)2

(qn − 1, qm + 1) =
{
q(n,m) + 1, if (n)2 > (m)2
(2, q + 1) , if (n)2 ≤ (m)2

Lemma A.0.6. For any q ∈ N and n ∈ N even we have(
q2n − 1, q2n − qn + 1

)
= 1 .

Proof. Using Euclid’s algorithm we obtain that(
q2n − 1, q2n − qn + 1

)
= (3, qn + 1)

Now observe that for n = 2k we get that qn + 1 ≡ (q mod 3)2 + 1 which is congruent to 1
or 2 modulo 3. Hence (3, qn + 1) = 1.

Lemma A.0.7. For n odd an q ≥ 2 we have(
qn − 1
q − 1 ,

qn + 1
q + 1

)
= 1 .

Proof. Observe that

qn − 1
q − 1 −

qn + 1
q + 1 = 2 · (qn−2 + qn−4 + . . .+ q)
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As (qn−1/q−1, 2) = 1, it follows that(
qn − 1
q − 1 ,

qn + 1
q + 1

)
=
(
qn − 1
q − 1 , 2 · (q

n−2 + qn−4 + . . .+ q)
)

=
(
qn − 1
q − 1 , (q

n−2 + qn−4 + . . .+ q)
)

=
(
qn−1 + qn−3 + . . .+ q2 + 1, qn−2 + qn−4 + . . .+ q

)
=
(
1, qn−2 + . . .+ q

)
= 1 .

Lemma A.0.8. Let a ∈ N with a ≥ 2 and let n ∈ N and let d be a divisor of n.

(1) We always have (
an − 1
ad − 1 , a− 1

)
= (n/d, a− 1) .

(2) We have

(
an − 1
ad − 1 , a+ 1

)
=


1 if n is odd
a+ 1 if n is even and d is odd
(n/d, a+ 1) if n and d are even

(3) If n and n/d are even, then(
an − 1
ad + 1 , a+ 1

)
=
{
a+ 1 if d is even
(n/d, a+ 1) if d is odd

(4) If n is odd, then (
an + 1
ad + 1 , a+ 1

)
= (n/d, a+ 1) .

Proof. Let µ = n/d and z = ad. For proving (1) we let b = a− 1 and note that an−1/ad−1 =
zµ−1/z−1 = zµ−1 + . . .+ z + 1 = (b+ 1)d(µ−1) + . . .+ (b+ 1)d + 1.

Thus (an−1/ad−1, a− 1) =
(
(b+ 1)d(µ−1) + . . .+ (b+ 1)d + 1, b

)
= (µ, b) = (n/d, a− 1) as

claimed.

For part (2) we let b = a + 1, so z = ad = (b − 1)d. Then
(
zµ−1 + . . .+ z + 1, b

)
=(

(−1)d(µ−1) + . . .+ (−1)d + 1, b
)
. If d is even, then (−1)d(µ−1) + . . . + (−1)d + 1 = µ. If

d is odd and n is even, then (−1)d(µ−1) + . . . + (−1)d + 1 = 0. If d and n are odd, then
(−1)d(µ−1) + . . .+ (−1)d + 1 = 1.

For part (3) we can write an−1/ad−1 = zµ−1/z−1 as before. Note that we assumed µ to be
even, hence

zµ − 1
z − 1 = −(−z)µ − 1

(−z)− 1 = −
(
(−z)µ−1 + . . .+ (−z) + 1

)
.
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If d is even we have z = ad ≡ 1 mod (a+1), which implies that zµ−1/z−1 ≡ 0 mod (a+1) as
µ is even. If d is odd, then z ≡ −1 mod (a+1) and we obtain (zµ−1/z−1, a+ 1) = (n/d, a+ 1).

For (4) note that µ is odd, since n is odd. Hence

an + 1
ad + 1 = zµ + 1

z + 1 = (−z)µ − 1
(−z)− 1 = (−z)µ−1 + . . .+ (−z) + 1

Also d is odd, thus z = ad ≡ (−1)d ≡ −1 mod (a+ 1). So (−z)µ−1 + . . .+ (−z) + 1 ≡ µ
mod (a+ 1) and the claim follows.

Lemma A.0.9. Let a ∈ N with a ≥ 2 and let n,m ≥ 1, then:

(1) (
an − 1
a− 1 , a

m − 1
)

= a(n,m) − 1
a− 1 ·

(
n

(n,m) , a− 1
)

(2) Suppose n is even. Then

(
an − 1
a+ 1 , a

m − 1
)

=


a(n,m)−1
a+1 ·

(
n

(n,m) , a+ 1
)

if m is even

a(n,m) − 1 if m is odd

(3) Suppose n is even. Then

(
an − 1
a+ 1 , a

m + 1
)

=


(2, a+ 1) if (n)2 ≤ (m)2

a(n,m)+1
a+1 ·

(
n

(n,m) , a+ 1
)

if (n)2 > (m)2 = 0

a(n,m) + 1 if (n)2 > (m)2 > 0

(4) If n is odd, then

(
an + 1
a+ 1 , a

m − 1
)

=


a(n,m)+1
a+1 ·

(
n

(n,m) , a+ 1
)

if m is even

1 if m is odd

(5) If n is odd, then

(
an + 1
a+ 1 , a

m + 1
)

=


a(n,m)+1
a+1 ·

(
n

(n,m) , a+ 1
)

if m is odd

1 if m is even

Proof. Let d = (n,m), z = ad, λ = m/d and µ = n/d. Then an − 1 = (z − 1) · (zµ−1/z−1) and
am − 1 = (z − 1) ·

(
zλ−1/z−1

)
. Thus(

an − 1
a− 1 , a

m − 1
)

= z − 1
a− 1

(
zµ − 1
z − 1 , (a− 1)z

λ − 1
z − 1

)

Note that
(
zµ−1/z−1, zλ−1/z−1

)
= z(µ,λ)−1/z−1 = 1 since (µ, λ) = 1. Hence we are left to

compute (zµ−1/z−1, a− 1) = (an−1/ad−1, a− 1) which is provided by Lemma A.0.8. Hence
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(1) follows. For (2) we first consider the case that d is even. Then a+1 divides ad−1 = z−1.
We can then write

an − 1
a+ 1 = z − 1

a+ 1 ·
zµ − 1
z − 1

and am − 1 = (z−1/a+1) · (a+ 1) ·
(
zλ−1/z−1

)
. Thus we obtain

(
an − 1
a+ 1 , a

m − 1
)

= z − 1
a+ 1

(
zµ − 1
z − 1 , (a+ 1) · z

λ − 1
z − 1

)

= z − 1
a+ 1 ·

(
zµ − 1
z − 1 , a+ 1

)
And (zµ−1/z−1, a+ 1) = (an−1/ad−1, a+ 1) = (a+ 1, n/d) by Lemma A.0.8.

If d is odd, then by Lemma A.0.8 we know that a+ 1 divides zµ−1/z−1, so that we can write

an − 1
a+ 1 = (z − 1) · zµ − 1

(z − 1)(a+ 1)

and am − 1 = (z − 1) ·
(
zλ−1/z−1

)
. Hence

(
an − 1
a+ 1 , a

m − 1
)

= (z − 1) ·
(

zµ − 1
(z − 1)(a+ 1) ,

zλ − 1
z − 1

)

But the second factor equals one, as zµ−1/z−1 and zλ−1/z−1 are already coprime.

For (3) first consider the case that (n)2 ≤ (m)2. In this case we know by Lemma A.0.5
that (an − 1, am + 1) = (2, a+ 1). If a is even, then certainly also (an−1/a+1, am + 1) = 1 =
(2, a+ 1). So assume that a is odd. Since n is even we have

an − 1
a+ 1 = −(−a)n − 1

(−a)− 1 = −
(
(−a)n−1 + . . .+ (−a) + 1

)
.

Thus we have a sum of n odd terms, thus an−1/a+1 is even. It follows that (an−1/a+1, am + 1) =
2 = (2, a+ 1).

So suppose now that (n)2 > (m)2 = 0, in other words n is even and m is odd. Then
(an − 1, am + 1) = a(n,m) + 1 and (n,m) is odd, so that a+ 1 divides a(n,m) + 1. We obtain(

an − 1
a+ 1 , a

m + 1
)

= a(n,m) + 1
a+ 1 ·

(
an − 1

a(n,m) + 1
, (a+ 1) · am + 1

a(n,m) + 1

)
= a(n,m) + 1

a+ 1 ·
(

an − 1
a(n,m) + 1

, a+ 1
)

= a(n,m) + 1
a+ 1 ·

(
n

(n,m) , a+ 1
)
,

where in the last line we used Lemma A.0.8.

For the last claim assume that (n)2 > (m)2 > 0. Observe that d = (n,m) is even, hence(
a+ 1, ad + 1

)
= (2, a+ 1). Moreover, we still have that (an − 1, am + 1) = ad + 1. If a
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A. Spectra of Finite Simple Groups

is even, then
(
a+ 1, ad + 1

)
= 1 and so (a + 1)(ad + 1) divides an − 1. If a is odd, then

it follows that an−1/ad+1 is even using that n/d is even since we assume that (n)2 > (m)2.
Hence also in this case (a+ 1)(ad + 1) divides an − 1. We can then compute(

an − 1
a+ 1 , a

m + 1
)

= (ad + 1) ·
(

an − 1
(a+ 1)(ad + 1) ,

am + 1
ad + 1

)
= ad + 1

For (4) we first consider the case that m is odd. We know that (an + 1, am − 1) = (2, a+ 1).
If a is even, then (an + 1, am − 1) = 1 = (an+1/a+1, am − 1). If a is odd we know that

an + 1
a+ 1 = (−a)n − 1

(−a)− 1 = (−a)n−1 + . . .+ (−a) + 1

is odd as well since n is odd. Thus also in this case (an+1/a+1, am − 1) = 1. Suppose now
that m is even, then (an + 1, am − 1) = ad + 1 where d = (n,m). Also d is odd and thus
a+ 1 divides ad + 1. So(

an + 1
a+ 1 , a

m − 1
)

= ad + 1
a+ 1 ·

(
an + 1
ad + 1 , (a+ 1) · a

m − 1
ad + 1

)
= ad + 1

a+ 1 ·
(
an + 1
ad + 1 , a+ 1

)
= ad + 1

a+ 1 ·
(
n

d
, a+ 1

)
by Lemma A.0.8.

For part (5), if m is even, then (an + 1, am + 1) = (2, a+1). As in (4) we see that an+1/a+1 is
odd if a is odd and thus (an+1/a+1, am + 1) = 1. Ifm is odd, so that (an + 1, am + 1) = ad+1
we obtain (

an + 1
a+ 1 , a

m + 1
)

= ad + 1
a+ 1 ·

(
an + 1
ad + 1 , (a+ 1) · a

m + 1
ad + 1

)
= ad + 1

a+ 1 ·
(
an + 1
ad + 1 , a+ 1

)
= ad + 1

a+ 1 ·
(
n

d
, a+ 1

)
as in (4).

Lemma A.0.10. Let q ∈ N. If q is odd an n is even, then (qn+1/2, 2) = 1. If q is odd and
n is odd, then (qn + 1)(2) = (q + 1)(2). Moreover, for any q ∈ N and and any n,m ∈ N we
have (qn + 1)(2) = (qm + 1)(2) whenever m ≡ n mod 2.

Proof. If n is even and q is odd, say q = 2k+1, then qn = 1+
(n

1
)
(2k)+

(n
n

)
(2k)2+. . .+

(n
n

)
(2k)n.

Hence qn+1/2 ≡ 1 + n · k ≡ 1 mod 2 since n is even. If q is odd and n is odd, then it is
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easy to see that (qn+1/q+1, 2) = 1, so (qn + 1)(2) = (q + 1)(2). If q is even, then certainly
(qn + 1)(2) = 0. The last claim then follows.

It is also straightforward to see that(
qn − 1
q − 1 , 2

)
=
{

2 if n even and q odd
1 otherwise

Lemma A.0.11. Let a ∈ N with a ≥ 2 and let n ∈ N be odd. Then(
an + 1
a+ 1 , a+ 1

)
= (n, a+ 1) .

Proof. As n is odd we have an+1/a+1 = (−a)n−1/(−a)−1 = (−a)n−1 + (−a)n−2 + . . .+ (−a) + 1.
The result follows.

Lemma A.0.12. Suppose a ∈ N is odd and n ∈ N . Then

(1) (
an − 1

2 , a− 1
)

= a− 1
2 · (n, 2)

(2) (
an + 1

2 , a− 1
)

=


1 if n is even
1 n is odd and 4|(a− 1)
2 otherwise

(3) (
an + 1

2 , a+ 1
)

=
{

1 if n is even
(a+1)/2 if n is odd

(4) (
an − 1

2 , a+ 1
)

=


a+ 1 if n is even
1 if n is odd and 4|(a+ 1)
2 otherwise

Proof. For (1) we write an = ((a− 1) + 1)n =
∑n
k=0

(n
k

)
(a − 1)k. Then an−1/2 = (a−1)/2 ·((n

1
)

+
(n

2
)
(a− 1) + . . .+

(n
n

)
(a− 1)n−1), so that an−1/2 ≡ a−1/2 · n mod (a − 1). Hence

(an−1/2, a− 1) = (a−1/2 · n, a− 1) = (a−1)/2 · (n, 2).

For (2) again write an = ((a− 1) + 1)n and observe that

an + 1
2 = 1 + a− 1

2 ·
((

n

1

)
+
(
n

2

)
(a− 1) + . . .+

(
n

n

)
(a− 1)n−1

)

so that (an+1)/2 ≡ 1 + (a−1)/2 · n mod (a− 1). If n is even, then (a−1)/2 · n ≡ 0 mod (a− 1),
hence (an+1)/2 and a− 1 are coprime. If n is odd, then (a−1)/2 · n ≡ (a−1)/2 mod (a− 1) and
so ((an+1)/2, a− 1) = (1 + (a−1)/2, a− 1) = (1 + (a−1)/2, 2) and the claim follows.
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For (3), we write an = ((a+ 1)− 1)n =
∑n
k=0

(n
k

)
(a+ 1)k(−1)n−k. If n is odd, then

an + 1
2 = a+ 1

2

((
n

1

)
(−1)n−1 +

(
n

2

)
(a+ 1)(−1)n−2 + . . .+

(
n

n

)
(a+ 1)n−1

)

So (an+1)/2 ≡ (a+1)/2 · n mod (a+ 1) and the latter is equal to (a+1)/2 mod (a+ 1) as n is
odd. Thus ((an+1)/2, a+ 1) = (a+1)/2. If n is even, then

an + 1
2 = 1 + a+ 1

2 ·
((

n

1

)
(−1)n−1 +

(
n

2

)
(a+ 1)(−1)n−2 + . . .+

(
n

n

)
(a+ 1)n−1

)

so that (an+1)/2 ≡ 1 − (a+1)/2 · n mod (a + 1) and since n is even we have (a+1)/2 · n ≡ 0
mod (a+ 1). Thus (an+1)/2 and a+ 1 are coprime.

To prove (4), we write an = ((a+ 1)− 1)n and obtain for n even

an − 1
2 = a+ 1

2

((
n

1

)
(−1)n−1 +

(
n

2

)
(a+ 1)(−1)n−2 + . . .+

(
n

n

)
(a+ 1)n−1

)

≡ −a+ 1
2 · n ≡ 0 mod (a+ 1)

If n is odd, we obtain

an − 1
2 = −1 + a+ 1

2

((
n

1

)
(−1)n−1 +

(
n

2

)
(a+ 1)(−1)n−2 + . . .+

(
n

n

)
(a+ 1)n−1

)

≡ −1 + a+ 1
2 · n mod (a+ 1)

≡ −1 + a+ 1
2 mod (a+ 1) .

So ((an+1)/2, a+ 1) = (−1 + (a+1)/2, a+ 1) = (2, 1 + (a+1)/2), which completes the proof.

Definition A.0.13. For a group G we denote by meo(G) = sup{ord(g) | g ∈ G} the
maximum element order in G.

To estimate the maximum element order in a simple group of Lie type we often rely on:

Lemma A.0.14 ([VGM09, Lemma 1.3 (3)]). If S is a simple group of Lie type of rank n of
a field of order q, then if S is distinct from Ree and Suzuki groups and E8(q), then element
orders of S are at most qn+1/q−1

The following is probably well-known. At least for q odd the result is given in [KS09, Table
A.1].

Lemma A.0.15. The maximum element order in PSLn(q) for n ≥ 2 is given by

meo(PSLn(q)) =

q if n = 2 and q 6= 2 is prime
qn−1

(q−1)·(n,q−1) otherwise
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Proof. The spectrum of PSLn(q) has been determined in [But08, Corollary 3]. For the
convenience of the reader we will state the result here. Let d = (n, q − 1). Any element
order in PSLn(q) is a divisor of the following numbers:

(1) qn−1
(q−1)d

(2) [qn1−1,qn2−1]
(n/(n1,n2),q−1) where n1, n2 > 0 such that n1 + n2 = n.

(3) [qn1 − 1, qn2 − 1, . . . , qns − 1] for s ≥ 3 and n1, . . . , ns > 0 such that n1+n2+. . .+ns =
n.

(4) pk · q
n1−1
d where k, n1 > 0 such that pk−1 + 1 + n1 = n.

(5) pk · [qn1 − 1, qn2 − 1, . . . , qns − 1] for s ≥ 2 and k, n1, . . . , ns > 0 such that pk−1 + 1 +
n1 + n2 + . . .+ ns = n.

(6) pk if pk−1 + 1 = n for k > 0.

By (1) and (6) the stated element order exists in PSLn(q) in each case. We will first
show that the numbers given in (2), . . . , (5) do not exceed the number given in (1).
For (2) note that [qn1 − 1, qn2 − 1] = (qn1−1)(qn2−1)/(q(n1,n2)−1). If (n1, n2) = 1, the claim
follows. Otherwise q(n1,n2) − 1 ≥ (q − 1) · q ≥ (q − 1) · d as d ≤ q. Since (qn1 − 1)(qn2 −
1) ≤ qn1+n2 − 1 = qn − 1 the claim follows in this case as well. For (3), observe that
[qn1 − 1, qn2 − 1, . . . , qns − 1] ≤ (qn1−1)(qn2−1)...(qns−1)/(q−1)2 as s ≥ 3. Now (q−1)2 ≥ (q−1)d
and so the given number does not exceed (qn−1)/d(q−1). To prove that (4) does not exceed
(1) observe that pk−1 = (1 + (p− 1))k−1 ≥ 1 + (k − 1)(p− 1) ≥ k by Bernoulli’s inequality.
Hence n ≥ k + 1 + n1. It is also easy to see that (qm − 1)(q − 1) ≤ qm+1 − 1 for all
m, q ≥ 1. It follows that pk(qn1 − 1)(q − 1) ≤ qk · (qn1+1 − 1) ≤ qk+n1+1 − 1 ≤ qn − 1,
which implies the claim. For (5) note that pk(q − 1)d [qn1 − 1, qn2 − 1, . . . , qns − 1] ≤
qk(q − 1)2 · (qn1+n2+...+ns−1)/q−1 = qk(q − 1)(qn1+n2+...+ns − 1) ≤ qk(q1+n1+n2+...+n2 − 1) ≤
qk+1+n1+n2+...+ns−1. As pk−1+1+n1+n2+. . .+ns = n we have k+1+n1+n2+. . .+ns ≤ n,
and hence qk+1+n1+n2+...+ns − 1 ≤ qn − 1, which implies the claim.

We now show that (6) does not exceed (1) if n ≥ 3 or if n = 2 and q is composite. We have
pk−1 + 1 = n for some k > 0, hence pk = p(n− 1). Using the binomial expansion one checks
that qn−1 ≥ (n−1)q(q−1)2 for n ≥ 4. This implies that dp(n−1)(q−1) ≤ (n−1)q(q−1)2 ≤
qn−1 for n ≥ 4. If n = 3 one checks that dp(n−1)(q−1) ≤ 6q(q−1) ≤ q3−1 = qn−1 for q ≥ 5.
If n = 4 and q = 4 or q = 2, an explicit calculation verifies that p(n−1) ≤ (qn−1)/d(q−1). The
case that q = 3 is impossible as we require that pk−1 +1 = n = 3. So now suppose that n = 2
and q is composite, so q = pk for k ≥ 2. We need to verify that dp(q− 1) ≤ q2 − 1 = qn − 1,
which is equivalent to showing that dp ≤ q + 1 = pk + 1. Now, dp ≤ 2p ≤ p2 + 1 ≤ pk + 1,
which proves the claim.

If n = 2 and q is prime we now show that (1) is at most as big as (6) except in the case q = 2.
If n = 2 and q = 2, we have meo(PSL2(2)) = 3 = q + 1 as claimed. So suppose that n = 2
and p = q > 2, so p is odd. It is now easy to see that (qn−1)/(q−1)d = (p+1)/(2,p−1) = (p+1)/2
does not exceed p.

After these preparations are we now ready to prove the main theorem.

Proof of Theorem A.0.2. We dealt with the alternating groups in Proposition A.0.4 and
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the spectra of the sporadic simple groups are calculated in Section A.1. So we are left to
show the claim for the finite simple groups of Lie type. Let us first consider the Chevalley
groups:

An−1(q) = PSLn(q), n ≥ 2
Note that PSL2(3) ∼= A4 and PSL2(2) ∼= S3 are not simple. If n = 2 and q > 3, then
µ(PSL2(q)) = {p, q−1/d, q+1/d} where d = (q − 1, 2) by [Hup67, Theorem 8.27].

So suppose that n ≥ 3 and let d = (n, q − 1). We can choose the following element
orders according to [But08, Corollary 3]:

a = qn − 1
d(q − 1)

b =
[
q − 1, qn−1 − 1

]
d

= qn−1 − 1
d

c = p · q
n−2 − 1
d

Then (b, c) = (q−1)/d so that

[b, c] = p(qn−1 − 1)(qn−2 − 1)
d(q − 1)

We also have (a, b) = 1 by Lemma A.0.9 and

(a, c) = q(n,2) − 1
q − 1 · (n/(n,2), q − 1)

d

We have [a, b] = (qn−1)(qn−1−1)/d2(q−1). We claim that [a, b] > qn/d(q−1), which is equiva-
lent to (qn− 1)(qn−1− 1) > qnd. Note that (qn− 1)(qn−1− 1) > q2n−3 and qnd ≤ qn+1.
If n ≥ 4 the claim follows as q2n−3 > qn+1. For q ≥ 3 we have (qn−1)(qn−1−1) > q2n−2

as (q − 1)2 > q so that the inequality holds for all n ≥ 3 in this case. The only case
that remains is q = 2 and n = 3 which can be checked explicitly.

We show that [b, c] > qn/d(q−1), or equivalently p(qn−1 − 1)(qn−2 − 1) > qn as long as
n 6= 3 or q 6= 2. Note that p(qn−1−1)(qn−2−1) > q2n−5 so that the inequality is clearly
satisfied if n ≥ 5. If n = 4 one sees that (q3 − 1)(q2 − 1) > q4 for q ≥ 3. If n = 4 and
q = 2 an explicit computation again shows that (q3− 1)(q2− 1) > q4. If n = 3, we have
[b, c] > qn/d(q−1) as long as q ≥ 3 by a straightforward computation. The remaining case
that n = 3 and q = 2 has been excluded in the beginning and an explicit computation
of the spectrum yields µ(PSL(3, 2)) = {3, 4, 7}.

For showing that [a, c] > qn/d(q−1) we need to show that p(qn − 1)(qn−2 − 1)(q − 1) >
qn(q(n,2)−1) (n/(2,n), q − 1). If n is odd, we need to prove that p(qn−1)(qn−2−1) > qnd.
Note that p(qn − 1)(qn−2 − 1) > q2n−4 and qnd ≤ qn+1, so that the inequality holds
for n ≥ 5. If n = 3 and q ≥ 3 a simple calculation shows that p(qn − 1)(qn−2 − 1) ≥
2(qn − 1)(qn−2 − 1) > qn+1. The remaining case that n = 3 and q = 2 is then easily
verified. If n is even, we need to verify that p(qn − 1)(qn−2 − 1) > qn(q + 1) (n/2, q − 1).
Certainly, p(qn−1)(qn−2−1) > q2n−4 whereas qn(q+ 1) (n/2, q − 1) ≤ q2n ·2q · q ≤ qn+3,
so that the inequality holds for n ≥ 7.
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If n = 6, certainly (n/2, q − 1) ≤ 3 and a computation shows that p(qn − 1)(qn−2 − 1) ≥
2(qn−1)(qn−2−1) > 3qn(q+1). If n = 4, so that (n/2, q − 1) ≤ 2, a similar computation
shows the claim for q ≥ 3. If n = 4 and q = 2 a direct calculation verifies the inequality.

Bn(q) = Ω2n+1(q), n ≥ 2
We first consider the case that q is odd and n ≥ 3. The case that n = 2 and q is odd
will be dealt with below since Ω5(q) ∼= PSp4(q) (see e.g. [Wil09, Section 3.11]). The
spectrum Ω2n+1(q) for n ≥ 3 has been determined in [But10, Corollary 6] and so we
can choose the following element orders:

a = qn + 1
2

b =
[
q − 1, qn−1 + 1

]
= (q − 1)(qn−1 + 1)

2

c = p
qn−1 − 1

2

We have (a, b) = (2, (qn+1)/2),

(a, c) =
{

(q+1)/2 if n is odd
1 if n is even

and using Lemma A.0.12 one shows that (b, c) = (q−1)/2 · (n− 1, 2). We are now
going to show that [a, b], [a, c] and [b, c] are larger than qn+1/q−1. Note that [a, b] =
(qn+1)(qn−1+1)(q−1)/4(a,b) and we thus need to show that (qn + 1)(qn−1 + 1)(q − 1)2 >
4 (a, b) qn+1. We have (qn+1)(qn−1+1)(q−1)2 > q2n−1, whereas 4 (a, b) qn+1 ≤ 8qn+1 ≤
qn+3 since q ≥ 3. Thus the inequality certainly holds if n ≥ 4. If n = 3 a more careful
analysis shows that (qn + 1)(qn−1 + 1)(q − 1)2 > qn+3 for q ≥ 3.

To show that [a, c] > qn+1/q−1 we distinguish whether n is odd or even. If n is odd, then
[a, c] = p/2·(qn+1)(qn−1+1)/q+1 and thus we need to prove that p/2·(qn+1)(qn−1−1)(q−1) >
qn+1(q + 1). Now, p/2 · (qn + 1)(qn−1 − 1)(q − 1) > q2n−2 and qn+1(q + 1) < qn+3 so
that the inequality holds for n ≥ 5. If n = 3, we see that (q3 + 1)(q − 1)2 > q3 · q = q4

for q ≥ 3 which shows the claim. If n is even, [a, c] = p/4 · (qn + 1)(qn−1 − 1) and we
need to show that p/2 · (qn + 1)(qn−1 − 1)(q − 1) > 2qn+1, which is easily seen to be the
case for n ≥ 4.

We compute [b, c] = p/2·(n−1,2) · (qn−1 +1)(qn−1−1). It is easy to see that (q−1) · [b, c] >
qn+1 whenever n ≥ 4. If n = 3, one checks that (q−1)p/4 · (qn−1 + 1)(qn−1 − 1) > qn+1

for q ≥ 4 using that p ≥ 2. If n = 3 and p = 3 = q, a direct computation verifies the
inequality.

Now suppose that q is a power of 2 and n ≥ 2. For example, we can compute using
GAP:

µ(Ω5(2)) = {4, 5, 6}
µ(Ω5(4)) = {4, 6, 10, 15, 17}
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By [But10, Corollary 3] we can pick the following element orders

a = qn + 1
b = qn − 1
c = 2(qn−1 + 1)

We have (a, b) = (2, q + 1) = 1 = (a, c) and

(b, c) =
{
q + 1 if n is even
1 if n is odd

If n is even, we now show that (q − 1)[b, c] > qn+1 except if n = 2 and q = 2.
In this exceptional case we computed above that |µ(Ω5(2))| = 3. We have [b, c] =
2(qn−1)(qn−1+1)/(q+1) and we need to show that 2(qn − 1)(qn−1 + 1)(q− 1) > qn+1(q + 1).
We easily see that this inequality is satisfied for n ≥ 5. As before, one verifies that the
inequality also holds for n = 4 and for n = 2 and q ≥ 4. It is easy to see that [a, b] and
[a, c] exceed qn+1/q−1 in all cases.

Cn(q) = PSp2n(q), n ≥ 2
Since Cn(2k) = Bn(2k) and as we analyzed the spectrum of Bn(q) already, we only
need to consider the case that q is odd. By [But10, Corollary 2] we can then choose the
following element orders:

a = qn + 1
2

b = qn − 1
2

c = p(qn−1 + 1)

We evaluate (a, b) = 1/2 · (qn + 1, qn − 1) = 1. Then (q−1)[a, b] = (q−1/2)2 · (qn+1)(qn−
1) ≥ (q−1/2)2 · (qn + 1) · qn−1 > q2n−1 ≥ qn+1 for n ≥ 2.

We have (a, c) ≤
(
qn + 1, qn−1 + 1

)
≤ 2. Then (q−1) [a, c] ≥ p(q−1)/4·(qn+1)(qn−1+1) >

q2n−1 ≥ qn+1 for n ≥ 2.

Note that (b, c) ≤
(
qn − 1, qn−1 + 1

)
≤ q + 1, so that [b, c] ≥ p/2 · (qn−1)(qn−1+1)/q+1.

Observe that (q − 1)(qn − 1)(qn−1 + 1) > qn+1(q + 1) for n ≥ 4 as (q − 1)(qn − 1) ≥ qn
for q ≥ 3 and qn+1(q + 1) ≤ qn+3. A slightly more careful analysis shows that the
inequality also holds for n = 3. Suppose now that n = 2. As q is odd, we have p ≥ 3.
One then shows that 3/2 · (q − 1)(qn − 1)(qn−1 + 1) > qn+1(q + 1) for q ≥ 4. If n = 2
and q = 3, we can explicitly compute µ(PSp(4, 3)) = {5, 9, 12}.

Dn(q) = P Ω+
2n(q), n > 3

The spectrum has been determined in [But10, Corollary 8, Corollary 9] for q odd and
in [But10, Corollary 4] for q even. A computation with GAP shows that µ(PΩ+

8 (3)) =
{8, 12, 13, 14, 15, 18, 20}. We will first consider the case that q is odd. The center
of Ω+

2n(q) is non-trivial if and only if (4, qn − 1) = 4. For example, if n = 4, then(
4, q4 − 1

)
= 4 as q4 − 1 = (q2 − 1)(q2 + 1). If q ≥ 5, then [KS09, Table A.5] yields for

the largest element order m1 = (q4−1)/4.
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Suppose now that n and q are such that (4, qn − 1) = 4. Then we can choose the
following element orders according to [But10, Corollary 9]:

a = qn − 1
4

b = [q − 1, qn−1 − 1]
d

= qn−1 − 1
d

c = p · q
n−2 + 1

2
Here, d = 2 if (q − 1)(2) = (qn−1 − 1)(2) and d = 1 otherwise. Note that(

qn − 1, qn−2 + 1
)

=
{
q2 + 1 if (n, 4) = 4
2 else

So, if (n, 4) = 4, then (a, c) ≤ q2+1/2 thus [a, c] ≥ p/4 · (qn−1)(qn−2+1/q2+1. It is easy to see
that [a, c] > qn+1/q−1 for n ≥ 7. As (6, 4) = 2 and (5, 4) = 1 we only need to consider
the case that n = 4. But then, for q ≥ 5, m1 = (q4−1)/q−1 is the maximal order element
and it is again not hard to verify that [a, c] > m1. If (n, 4) 6= 4, we know that (a, c) = 1
and thus [a, c] = p(qn−1)(qn−2+1)/8 > qn+1/q−1 for all n ≥ 5.

As
(
qn − 1, qn−1 − 1

)
= q− 1 we have (a, b) ≤ q− 1 so that [a, b] ≥ (qn−1)(qn−1−1)/8(q−1).

We show that [a, b] > qn+1/q−1 or equivalently (qn − 1)(qn−1 − 1) > 8qn+1. The
claim follows for n ≥ 5 from the fact that (qn − 1)(qn−1 − 1) > q2n−2 for q ≥ 2 and
8 · qn+1 ≤ qn+3 since q ≥ 3. One also easily checks that the inequality holds for n = 4.

Observe that
(
qn−1 − 1, qn−2 + 1

)
equals q+1 if n is odd an equals 2 if n is even. Thus, for

n odd, we have (b, c) ≤ q+1 so that [b, c] ≥ (qn−1−1)(qn−2+1)/4(q+1) which exceeds qn+1/q−1
for n ≥ 7. If n = 5 and q ≥ 6 we still have (qn−1−1)(qn−2+1)/4(q+1) > qn+1/q−1. For n = 5
and q ∈ {3, 5} one verifies that [b, c] > qn+1/q−1 by a direct computation. If n is even
we can assume that n ≤ 7. If n = 6 one shows that [b, c] ≥ (qn−1−1)(qn−2+1)/8 > qn+1/q−1.
If n = 4 and q ≥ 5 we know the maximal element order m1 explicitly and we can easily
show that [b, c] > (q4−1)/4 = m1. For n = 4 and q = 3 we know the spectrum completely.

We now consider the case that (4, qn − 1) 6= 4, so that PΩ+
2n(q) = Ω+

2n(q) and thus
[But10, Corollary 8] applies. Also note that in this case n ≥ 5. By [But10, Corollary 8]
we can choose the following element orders:

a = qn − 1
2

b = qn−1 − 1

c = p ·
[
q − 1, q

n−2 − 1
2

]
= p

(n, 2) · (q
n−2 − 1)

Since
(
qn−1 − 1, qn−2 − 1

)
= q − 1, we have (b, c) ≤ q − 1, and thus we obtain that

[b, c] ≥ p/2 · (qn−1−1)(qn−2−1)/q−1. As (qn−1 − 1)(qn−2 − 1) > q2n−4 it follows that
[b, c] > qn+1/q−1 for all n ≥ 5.

We have (a, b) ≤
(
qn − 1, qn−1 − 1

)
= q − 1, so that [a, b] ≥ (qn−1)(qn−1−1/2(q−1). It is

then easy to see that (q − 1)[a, b] > qn+1. It is also straightforward to verify that
(q − 1)[a, c] > qn+1 using that (a, c) ≤ q2 − 1.
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We now consider the case that q is even. Then we choose the following element orders
according to [But10, Corollary 4].

a = qn − 1
b = qn−1 − 1
c = 2(qn−2 − 1)

One sees that (a, b) = q − 1 = (b, c) and (a, c) = q(n,2) − 1. By Lemma A.0.14 we know
that the element orders are bounded by qn+1/q−1. It is now straightforward to check
that [a, b], [a, c] and [b, c] each exceed the maximal element order. For example, if n is
even we show that [a, c] = 2(qn−1)(qn−2−1)/q2−1 > qn+1/q−1 if n 6= 4 or q 6= 2. If n ≥ 7, the
inequality follows since (qn−1)(qn−2−1) > qn−1 ·qn−3 = q2n−4 ≥ qn+3 ≥ qn+1 · (q2−1).
For n = 6 and q ≥ 2 and for n = 4 and q ≥ 4 a more careful analysis shows that the
inequality holds. For n = 4 and q = 2 we can determine the spectrum explicitly:

µ(PΩ+
8 (2)) = {7, 8, 9, 10, 12, 15}

Let us consider the exceptional Chevalley groups:

E6(q)
Let d = (3, q−1). By [KS02, Section 2] there are semisimple elements in E6(q) of orders
a′ = a/d, b′ = b/d, c′ = c/d where

a = (q + 1)(q5 − 1)
b = (q2 + q + 1)(q4 − q2 + 1)
c = q6 + q3 + 1 .

In the following we show that (a, b) = (a, c) = (b, c) = (3, q − 1) = d. We first compute
that

(q2 + q + 1, q4 − q2 + 1) = (q2 + q + 1, 2(q + 1)) = (q2 + q + 1, q + 1) = 1

as q2 + q + 1 is odd for all q ∈ N. Thus

(a, b) = (a, q2 + q + 1) · (a, q4 − q2 + 1)

Observe that
(a, q4 − q2 + 1) = (q, q2 + 2q + 1) = (q, 1) = 1

And (
a, q2 + q + 1

)
=
(
−a+ (q4 − q2 + q) · (q2 + q + 1), q2 + q + 1

)
=
(
2q + 1, q2 + q + 1

)
= (2q + 1, q(q − 1))
= (2q + 1, q) · (2q + 1, q − 1)
= (3, q − 1)
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Hence we see that (a, b) = (3, q − 1). A direct computation also shows that (a, c) =
(3, q − 1). We now compute

(q2 + q + 1, c) =
(
q2 + q + 1, c+ (−q4 + q3 − 2q + 2)(q2 + q + 1)

)
= (q2 + q + 1, 3)
= (q2 − 2q + 1, 3)

=
(
(q − 1)2, 3

)
= (q − 1, 3)

Another direct computation shows that (q4 − q2 + 1, c) = (q, 1) = 1. Since q2 + q + 1
and q4− q2 + 1 are coprime by the above computation, we obtain that (b, c) = (q− 1, 3).
Thus it follows that a′, b′ and c′ are pairwise coprime.

By Lemma A.0.14 the maximum element order is at most q7/q−1. Note that a > q5, b > q4

and c > q6. If we let d = (q − 1, 3) then note that q/d > 1 for any prime number q. It
follows that [a′, b′] = a′ · b′ = ab/d2 > q2/d2 · q7, which exceeds the maximum element
order. Similarly, also [a′, c′] and [b′, c′] are larger than maximum element order.

E7(q)
Let us choose the following numbers

a = q7 − 1
b = (q − 1)(q6 + q3 + 1)
c = (q5 − 1)(q2 + q + 1) .

According to [KS02, Section 2] these are element orders of semisimple elements in
E7(q) up to a scaling factor of (2, q − 1). A straightforward computation shows
that (a, b) =

(
q2 − 1, q − 1

)
= q − 1. Moreover, one sees that (a, c) = (q − 1) ·(

2q2 + 3q + 2, (q + 1)(q2 + q + 1)
)
. As

(
q + 1, q2 + q + 1

)
= 1 it follows that(

2q2 + 3q + 2, (q + 1)(q2 + q + 1)
)

=
(
2q2 + 3q + 2, q + 1

)
·
(
2q2 + 3q + 2, q2 + q + 1

)
= (q + 2, q + 1) ·

(
q, q2 + q + 1

)
= 1

Hence (a, c) = q − 1. Note that
(
(q5−1)/q−1, q2 + q + 1

)
= (q5−1/q−1, q3−1/q−1) =

(q5−1,q3−1)/q−1 = 1. since
(
q5 − 1, q3 − 1

)
= q(5,3) − 1 = q − 1. Thus (b, c) = (q − 1) ·(

q6 + q3 + 1, (q5−1)/q−1
)
·
(
q6 + q3 + 1, q2 + q + 1

)
. We have

(
q6 + q3 + 1, (q5−1)/q−1

)
=(

q, 1 + q3) = 1. Moreover,(
q6 + q3 + 1, q2 + q + 1

)
=
(
q6 + q3 + 1 + (−q4 + q3 − 2q + 2)(q2 + q + 1), q2 + q + 1

)
=
(
3, q2 + q + 1

)
=
(
3, q2 − 2q + 1

)
= (3, q − 1) .
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Hence (b, c) = (q − 1) · (3, q − 1).

Observe that the product of any two elements of {a, b, c} exceeds q12. By Lemma A.0.14
the maximum element order is bounded by q8/q−1. However, the least common
multiple of any two semisimple element orders corresponding to a, b or c exceeds
q12/(2,q−1)·(3,q−1)·(q−1), which is strictly larger than q8/q−1.

E8(q)
By [VGM09, Lemma 1.3 (2)] we know that the element orders are bounded by q+1/q−1 ·
q8 ≤ q10. We choose the following element orders according to the table of [KS02,
Section 2]:

a = q8 − 1
b = q8 − q4 + 1
c = q6 + q3 + 1 .

By Lemma A.0.6 we obtain that (a, b) = 1. A direct computation using Euclid’s
algorithm yields that (b, c) =

(
q3 + q2 + q + 1, q3) = 1 and (a, c) = (3, q − 1). Moreover,

a > q7, b > q4 and c > q6, so the least common multiple of any two of {a, b, c} exceeds
the maximum order of E8(q).

F4(q)
We choose the following semisimple element orders [KS02, Section 2]

a = (q3 − 1)(q + 1)
b = q4 + 1
c = q4 − q2 + 1 .

Note that according to [KS09] the element a is even of largest order as soon as q is
composite. In any way by Lemma A.0.14 we know that the element orders are bounded
by q5/q−1.

It is easy to see that for all n ∈ N we have
(
q2n + 1, q2n − qn + 1

)
= 1. In particular,

(b, c) = 1. We have (a, b) =
(
2q, q2 + 1

)
=
(
2q, (q − 1)2) = (2, q − 1). Using Euclid’s

algorithm we also compute that (a, c) =
(
2, 1 + q + q2) = 1.

We have ab = (q4 + 1)(q − 1)(q2 + q + 1)(q + 1) > q7, and thus [a, b] > q6. Certainly
q4− q2 + 1 ≥ q2, hence ac = (q− 1)(q2 + q+ 1)(q+ 1)(q4− q2 + 1) > q2 · q · q2 = q5 and
bc > q6. So [a, b], [a, c] and [b, c] all exceed the maximum element order. One also easily
checks that a, b, c are pairwise distinct for all q.

It is also noteworthy that the reduced spectrum of F4(2m) has been completely deter-
mined in [Cao+04], here q = 2m:

µ(F4(2m)) = {16, 8(q − 1), 8(q + 1), 4(q2 − 1), 4(q2 + 1), 4(q2 − q + 1),
4(q2 + q + 1), 2(q − 1)(q2 + 1), 2(q + 1)(q2 + 1), 2(q3 − 1), 2(q3 + 1),
(q2 − 1)(q2 − q + 1), (q2 − 1)(q2 + q + 1), q4 − 1, q4 + 1, q4 − q2 + 1}

G2(q)
First note that G2(q) is not simple for q = 2. However, its derived subgroup G2(2)′ ∼=
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3A2(3) is simple. By [Con+] or a direct computation with GAP we obtain

µ(G2(2)′) = {7, 8, 12} .

So in the following we suppose that q > 2. As G2 has rank 2, Lemma A.0.14 yields that
the element orders are bounded by q3/q−1 ≤ q3. There are semisimple elements of the
following orders by [KS02, Section 2]:

a = q2 + q + 1
b = q2 − q + 1
c = q2 − 1 .

Note that according to [KS09, Table A.7] the element a is of largest order, at least if
q is odd. By Lemma A.0.7 it follows that (a, b) = 1. A straightforward computation
shows that (a, c) = (3, q − 1) and (b, c) = (3, q − 2).

One also observes that [a, b] = a · b > q3 as b ≥ q and a > q2. Since c > q and
(3, q − 1) ≤ q − 1 we obtain that [a, c] = ac/(3,q−1) > q3/q−1. Moreover, one sees that
bc > q3 for all q ≥ 2 and (3, q − 2) ≤ q − 2 ≤ q − 1. Thus [b, c] > q3/q−1. Also note that
the elements a, b, c are not distinct if and only if q = 2, in which case b = c.

Let us now consider the Steinberg groups:
2An−1(q) = PSUn(q), n > 2 In [But08, Corollary 3] the spectrum was determined, where

the notation PSUn(q) = PSL−(n, q) was used. An explicit computation shows that

µ(PSU4(2)) = {5, 9, 12}
µ(PSU4(3)) = {5, 7, 8, 9, 12}

Also, by Lemma A.0.14 we know that the maximum element order is bounded by
qn/q−1. For n even, so n ≥ 4 and p = 2 we choose the following element orders, where
d = (n, q + 1).

a = qn − 1
d(q + 1)

b =
[
q − 1, qn−1 + 1

]
d

= (q − 1)(qn−1 + 1)
d

c = p
qn−2 − 1

d

The second equality follows from Lemma A.0.5 since
(
q − 1, qn−1 + 1

)
= (2, q + 1) = 1

as q is even. We then obtain

(b, c) =
(
(q − 1)(qn−1 + 1), p(qn−2 − 1)

)
d

=
(
(q − 1)(qn−1 + 1), (qn−2 − 1)

)
d

=
(
q − 1, qn−2 − 1

)
·
(
qn−1 + 1, qn−2 − 1

)
d

= (q − 1)(q + 1)
d
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where we have again used Lemma A.0.5. Hence we get that

[b, c] = p
(qn−1 + 1)(qn−2 − 1)

d(q + 1)

Now we compute using Lemma A.0.9

(a, c) =
(
(qn−1)/q+1, p(qn−2 − 1)

)
d

=
(
(qn−1)/q+1, qn−2 − 1

)
d

= q − 1
d
·
(
q + 1, n2

)
It follows that

[a, c] = p
(qn − 1)(qn−2 − 1)

d(q + 1)(q − 1)(n2 , q + 1)

Moreover, again using Lemma A.0.9,

(a, b) =
(
(qn−1)/q+1, (q − 1) · (qn−1 + 1)

)
d

= ((qn−1)/q+1, q − 1) ·
(
(qn−1)/q+1, qn−1 + 1

)
d

= (q − 1) · (n, q + 1)
d

= q − 1

Thus
[a, b] = (qn − 1) · (qn−1 + 1)

d2 · (q + 1)

We now show that [a, b] > qn/q−1, which is equivalent to showing that (q − 1)(qn −
1)(qn−1+1) > qnd2(q+1). Observe that (q−1)(qn−1)(qn−1+1) > qn−1 ·qn−1 = q2n−2.
And d = (n, q + 1) ≤ q + 1 ≤ 2q ≤ q2, hence qnd2(q + 1) ≤ qn+6. For n ≥ 8 we
have q2n−2 ≥ qn+6 so that the claim follows in this case. If n = 6 and q ≥ 4, then
d = (3, q + 1) ≤ 3 ≤ q. So qnd2(q + 1) ≤ 2q9 ≤ q10 = q2n−2. If n = 6 and q = 2,
then a direct computation shows the inequality. The remaining case is n = 4. Then
d = (4, q + 1) = 1 since q is even, hence qnd2(q + 1) ≤ 2q5 ≤ q6 = q2n−2.

In a similar fashion one shows that [b, c] and [a, c] also exceed qn/q−1.

Suppose now that n is even, but p is odd. We choose the same values for a, b, c as
above. However note that

(
q − 1, qn−1 + 1

)
= (2, q + 1) = 2, so that

a = qn − 1
d(q + 1)

b = [q − 1, qn−1 + 1]
d

= (q − 1)(qn−1 + 1)
2d

c = p
qn−2 − 1

d
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We then compute

(b, c) = 2
d

(
q − 1

2 · q
n−1 + 1

2 ,
qn−2 − 1

2

)
= (q − 1)(q + 1)

2d

so that

[b, c] = p(qn−1 + 1)(qn−2 − 1)
d(q + 1)

The previous computation for [a, c] is unchanged, so

[a, c] = p
(qn − 1)(qn−2 − 1)

d(q + 1)(q − 1)(n2 , q + 1)

Note that since n is even and q is odd, we know that qn−1/q+1 is divisible by 2. It
follows that

(a, b) = 1
d
·
(
qn − 1
q + 1 ,

(q − 1)(qn−1 + 1)
2

)

= 2
d
·
(
qn − 1

2(q + 1) ,
(q − 1)

2 · (qn−1 + 1)
2

)

= 2
d
·
(
qn − 1

2(q + 1) ,
(q − 1)

2

)
·
(
qn − 1

2(q + 1) ,
qn−1 + 1

2

)

= (qn−1/q+1, q − 1) ·
(
qn−1/q+1, qn−1 + 1

)
2d

= q − 1
2

Hence we obtain

[a, b] = (qn − 1) · (qn−1 + 1)
d2 · (q + 1)

We now show that for n 6= 4 and q 6= 3 the least common multiple [a, b] exceeds qn/q−1.
As noted above, we have to show that (q − 1)(qn − 1)(qn−1 + 1) > qnd2(q + 1) where
d = (n, q + 1). We know that (q − 1)(qn − 1)(qn−1 + 1) > q2n−2 and as above we can
argue in the case that n ≥ 8. If n = 6, then qnd2(q + 1) ≤ qn+2d2 ≤ 62q8 which is at
most q10 = q2n−2 if q ≥ 6. If q = 3, then d = 2 ≤ q and qnd2(q+ 1) ≤ q10 and if q = 5
then d = 6 and q6d2(q + 1) = q6(q + 1)3 ≤ q10. We are left to show the claim if n = 4.
Note that (q−1)(qn−1)(qn−1+1)/q+1 = (q − 1)2(q2 + 1)(q3 + 1) > q6 for all q ≥ 3. It thus
suffices to show that q2 ≥ d2. Now d = (4, q + 1) ≤ 4, so the claim follows for q > 3.
Similar arguments show that also [b, c] and [a, c] exceed qn/q−1 in the same cases. If
n = 4 and q = 3, we computed the spectrum of PSU4(3) explicitly, see above.

In the following we deal with the case that n is odd. Note that PSU3(2) is not simple
and hence will be excluded. According to [But08, Corollary 3] there are elements of
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A. Spectra of Finite Simple Groups

the following orders if n is odd, where again d = (n, q + 1):

a = qn + 1
d(q + 1)

b =
[
q + 1, qn−1 − 1

]
d

= qn−1 − 1
d

c = p
qn−2 + 1

d

Here we have used that
(
q + 1, qn−1 − 1

)
= q + 1 as n is odd. Using Lemma A.0.9 we

compute (a, b) = 1 = (a, c) and (b, c) = q+1/d. We obtain that

[b, c] = p(qn−1−1)·(qn−2+1)/d(q+1) .

In the following we will show that [b, c] > qn/q−1 or equivalently that p(q − 1)(qn−1 −
1)(qn−2 + 1) > qn · d · (q + 1) except in the case that p = 2 and n = 3. Observe that
p(q − 1)(qn−1 − 1)(qn−2 + 1) > q2(n−2) and qn · d · (q + 1) ≤ qn · (q + 1)2 ≤ qn+4. For
n ≥ 8 we have q2(n−2) > qn+4. If n = 7 and (n, q + 1) = 1, then qn · d · (q + 1) ≤
q7 · q2 = q9 ≤ q10 = q2(n−2). If d = (n, q + 1) = (7, q + 1) = 7, then we must have
q ≥ 7 so that d ≤ q. Then qn · q · (q + 1) ≤ q8 · (q + 1) ≤ q10. If n = 5, note that as
above (q−1)(q4−1)(q3+1)/q+1 = (q − 1)2(q2 + 1)(q3 + 1) > q6. If q ≥ 5, then q ≥ d and
we are done. If q ∈ {2, 3, 4} we can show the inequality by a direct computation. We
are thus left to show the inequality for n = 3. A more careful analysis shows that
2(q2 − 1)(q − 1) > q3 for q ≥ 3, which implies that the inequality holds for n = 3 and
those q ≥ 3 such that d = (3, q + 1) = 1. If n = 3 and p ≥ 7 then we also see that
p(q2 − 1)(q − 1) > 3 · qn ≥ d · qn. So we are left to verify the inequality in the case
that p ∈ {2, 3, 5} and q is such that d = (3, q + 1) = 3. Note that we excluded the
case n = 3 and p = 2 in the beginning and also observe that p = 3 and (3, q + 1) = 3
is never simultaneously possible. Hence the only case remaining is p = 5, which again
can be checked easily.

In the following we prove that [a, b] > qn/q−1 or equivalently (qn+1)(qn−1−1)(q−1) >
qnd2(q+ 1). Note that (qn+ 1)(qn−1− 1)(q− 1) > qn · qn−2 = q2n−2 and qnd2(q+ 1) ≤
qn · q4 · q2 = qn+6. For n ≥ 8 we have 2n− 2 ≥ n+ 6 so that the inequality is satisfied.
If n = 7 and d = (n, q + 1) = 1, then qnd2(q + 1) ≤ q7 · q2 = q9 < q12 = q2n−2. If
d = 7, then q ≥ 7 so that d = 7 ≤ q and thus qnd2(q + 1) ≤ q11 < q12 as desired. If
n = 5, one checks that (qn + 1)(qn−1 − 1)(q − 1) > qn · 52 · (q + 1) ≥ qnd2(q + 1) for
all q ≥ 3. If n = 5 and q = 2, d = (n, q + 1) = 1 and an explicit computation yields
that the inequality is satisfied. If n = 3 we have q > 2 and a computation shows that
(qn + 1)(qn−1 − 1)(q − 1) > qn · 32 · (q + 1) ≥ qnd2(q + 1) for all q ≥ 4. If q = 3, then
d = (3, q + 1) = 1, and again one checks that the inequality is satisfied by a direct
computation.

Now we are left to show that [a, c] = p(qn+1)(qn−2+1)/d2(q+1) > qn/q−1 or equivalently
p(qn + 1)(qn−2 + 1)(q− 1) > qnd2(q+ 1). Note that p(qn + 1)(qn−2 + 1)(q− 1) > q2n−2

and qnd2(q + 1) ≤ qn(q + 1)3 ≤ qn+5 as (q + 1)3 ≤ q5 for q ≥ 5. As 2n − 2 ≥
n + 5 for n ≥ 7, the inequality is satisfied in this case. If n = 5, one checks that
p(qn+1)(qn−2 +1)(q−1) ≥ 2(qn+1)(qn−2+1)(q−1) > qn52(q+1) ≥ qnd2(q+1) for all
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q ≥ 3. An explicit computation yields the claim for n = 5 and q = 2. If n = 3, one sees
that p(qn+1)(qn−2+1)(q−1) ≥ 2(qn+1)(qn−2+1)(q−1) > qn ·32 ·(q+1) ≥ qnd2(q+1)
for all q ≥ 6. If q ∈ {3, 4, 5} a direct computation shows that (q − 1)[a, c] > qn.

We thus have completed the proof that |µ(PSU(n, q))| ≥ 3 except in the case that
n = 3 and p = 2. By [But08, Corollary 3] there exists an element of order 4. We
choose a and b as above and we let c = 4. Then [a, c] = 4a and [b, c] = 4b. But
again according to [But08, Corollary 3] the spectrum of PSU(3, q) does not contain
elements 4a or 4b. Moreover, the computation above shows that [a, b] = a · b exceeds
the maximum element order. Hence the claim also holds in this case.

2Dn(q) = P Ω−2n(q), n > 3 The group 2Dn(q) is also known as PΩ−2n(q). We first analyze
the spectrum in the case that q is odd and (4, qn + 1) = 4. It is not hard to see that(
4, q4 + 1

)
= 2, so that we can assume in the following that n ≥ 5.

According to [But10, Corollary 9] there are elements in PΩ−2n(q) of the following
orders:

a = qn + 1
4

b = [q − 1, qn−1 + 1]
d

= (q − 1)(qn−1 + 1)
2d

c = p · q
n−2 + 1

2

Here, d = 2 if (q − 1)(2) = (qn−1 + 1)(2) and d = 1 otherwise. We have (b, c) ≤
1/2 ·

(
q − 1, qn−2 + 1

)
·
(
qn−1 + 1, qn−2 + 1

)
= 2. We can now estimate [b, c] ≥ p/8d ·

(q − 1)(qn−1 + 1)(qn−2 + 1) ≥ 1/q2 · (q − 1)(qn−1 + 1)(qn−2 + 1). For n ≥ 6 one easily
sees that (q − 1)2(qn−1 + 1)(qn−2 + 1) > qn+3 and with a bit more one can show that
the inequality also holds if n = 5. This implies that [b, c] > qn+1/q−1.

We now estimate [a, c]. First observe that (a, c) ≤ 1/2 ·
(
qn + 1, qn−2 + 1

)
≤ 1/2 · (q2 +

1). Thus [a, c] ≥ p/4 · (qn+1)(qn−2+1)/q2+1. Further estimating p ≥ 2, we show that
q−1/2(qn + 1)(qn−2 + 1) > qn+1(q2 + 1) for n ≥ 5. If n = 5, one sees that inequality
holds for q ≥ 4. If n = 5 and q = 3 an explicit computation shows that [a, c] > qn+1/q−1.
If n ≥ 6, we estimate q−1/2(qn + 1)(qn−2 + 1) > q2n−2 and qn+1(q2 + 1) ≤ qn+4, which
is enough to show the inequality. Hence in all cases [a, c] > qn+1/q−1.

Next, we compute

(a, b) = 1/2 · (qn+1/2, (q−1)(qn−1+1)/d) ≤ 1/2 · (qn + 1, q − 1) ·
(
qn + 1, qn−1 + 1

)
= 2 .

Now, using that d ≤ 2, observe that (q − 1)[a, b] ≥ (q−1)2/32 · (qn + 1)(qn−1 + 1) ≥
1/8·(qn+1)(qn−1+1) ≥ 1/q2·(qn+1)(qn−1+1). We then easily see that (q−1)[a, b] > qn+1

for n ≥ 4.

Now suppose that q is odd and (qn + 1, 4) = 2. Then the center of Ω−2n(q) is trivial,
i.e. PΩ−2n(q) = Ω−2n(q). We can then choose the following element orders according to
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[But10, Corollary 8]:

a = qn + 1
2

b =
[
q + 1, qn−1 − 1

]
c = p

[
q + 1, q

n−2 + 1
2

]

Suppose in the following that n is odd. Then
(
q + 1, qn−1 − 1

)
= q + 1 and hence

b = qn−1 − 1. Moreover, (q + 1, (qn−2+1)/2) = (q+1)/2 by Lemma A.0.12, so that
c = p · (qn−2 + 1). We then obtain that (b, c) = q + 1, (a, c) ≤ q(n,2) = q + 1 and
(a, b) ≤

(
qn + 1, qn−1 − 1

)
= q + 1. A quick computation shows that [a, b], [a, c] and

[b, c] each are larger than qn+1/q−1.

If n is even, then
(
q − 1, qn−1 + 1

)
= 2 and (q + 1, (qn−2+1)/2) = 1 so that b =

(q−1)(qn−1+1)/2 and c = p/2 · (q + 1)(qn−2 + 1). We then compute (b, c) = q + 1,
(a, b) = 1 since ((qn+1)/2, (q+1)/2) = 1 and ((qn+1)/2, q + 1) = 1 and (a, c) = 1 as(
qn + 1, qn−2 + 1

)
= 2. With these results it is then easy to verify that [a, b], [a, c] and

[b, c] exceed qn+1/q−1.

Finally, we analyze the spectrum if q is even. According to [But10, Corollary 4] we
can choose the following element orders:

a = qn + 1
b = [q − 1, qn−1 + 1] = (q − 1) · (qn−1 + 1)
c = 2(qn−2 + 1)

One now easily verifies using Lemma A.0.5 that a, b and c are pairwise coprime and
[a, b], [a, c] and [b, c] exceed qn+1/q−1.

2E6(q) According to [KS02, Section 2.8] the maximal tori for 2E6(q) can be obtained from
those of E6(q) by replacing q by −q. This way we obtain the following orders of
semisimple elements up to multiplication by (3, q + 1):

a = (q − 1)(q5 + 1)
b = (q2 − q + 1)(q4 − q2 + 1)
c = q6 − q3 + 1

As before, we obtain (a, b) = (a, c) = (b, c) = (3, q + 1). A simple calculation shows
that ac/3, ab/3 and bc/3 each exceed q7 for q ≥ 2.

3D4(q) By [KS02, Section 2] there are semisimple elements of orders a, b, c where

a = (q3 + 1)(q − 1)
b = (q3 − 1)(q + 1)
c = q4 − q2 + 1 .
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Note that by Lemma A.0.14 we have that the element orders in 3D4(q) are bounded
by q5/q−1 ≤ q5 since 3D4 is of rank 4.

Also for abitrary integers q we have(
q4 − q2 + 1, (q3 + 1)(q − 1)

)
= (2, q2 − q − 1) = 1(

q4 − q2 + 1, (q3 − 1)(q + 1)
)

= (2, q2 + q − 1) = 1(
(q3 + 1)(q − 1), (q3 − 1)(q + 1)

)
= (q − 1) · (q + 1)

The first and second equations follow as q2 − q = q(q − 1) and q2 + q = q(q + 1) are
always even, so that (2, q2 − q − 1) = 1 = (2, q2 + q − 1). The last equation follows
from the fact that q3 − 1 = (q− 1) · (q2 + q+ 1) and q3 + 1 = (q+ 1) · (q2 − q+ 1) and
(q2 + q+ 1, q2− q+ 1) = (2q, q2− q+ 1) = 1 as q2− q+ 1 is odd and (q, q2− q+ 1) = 1.
We then obtain

[a, b] = ab

(a, b) = (q3 + 1)(q3 − 1) > q5

[a, c] = ac > q5

[b, c] = bc > q5

Finally, we deal with the Ree and Suzuki groups:

Suzuki groups 2B2(q) where q = 22n+1 for n ≥ 1
In [HBb, XI Theorem 3.10] it was shown that

µ(2B2(22n+1)) = {4, 22n+1 − 1, 22n+1 − 2n+1 + 1, 22n+1 + 2n+1 + 1} ,

thus |µ(2B2(22n+1))| = 4.

Tits group 2F4(2)′
By the ATLAS [Con+] this group of order 17971200 has µ(2F4(2)′) = {10, 12, 13, 16}.

Ree groups of type 2F4(q) for q = 22n+1, n ≥ 1
The element orders of these groups have been determined in [DS99, Lemma 3]. The
two largest element orders are

m1 = q2 +
√

2q3/2 + q +
√

2q + 1
m2 = (q − 1)(q +

√
2q + 1)

whereas the largest order of a 2-element equals 24. Note that m1 and m2 are odd and
m2 does not divide m1. These facts imply that |µ(2F4(q))| ≥ 3.

Ree group 2G2(3)′
We compute via GAP or consult [Con+] and obtain µ(2G2(3)′) = {2, 3, 7, 9}.

Ree groups of type 2G2(32n+1) for n ≥ 1
By [KS09, Table A.7] the two largest element orders are given by

m1 = 32n+1 + 3n+1 + 1
m2 = 32n+1 − 1 .

We see thatm2 - m1 and neitherm1 norm2 are divisible by 3, so that |µ(2G2(32n+1)| ≥ 3.
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A. Spectra of Finite Simple Groups

A.1. Sporadic Simple Groups

In order to determine the (reduced) spectrum of the sporadic simple groups, we rely on the
ATLAS [Con+] resp. GAP [GAP]. If the group order is not too big we also calculate the
number of conjugacy classes of maximal subgroups with the help of GAP.
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A.1. Sporadic Simple Groups

µ(−) |µ(−)| γ(−)
M11 5, 6, 8, 11 4 4
M12 6, 8, 10, 11 4 6
M22 5, 6, 7, 8, 11 5 6
M23 6, 8, 11, 14, 15, 23 6 6
M24 8, 10, 11, 12, 14, 15, 21, 23 8 9

Table A.2.: Spectra and number of conjugacy classes of maximal cyclic subgroups of the
Mathieu groups

µ(−) |µ(−)| γ(−)
J1 6, 7, 10, 11, 15, 19 6 6
J2 7, 8, 10, 12, 15 5 7
J3 8, 9, 10, 12, 15, 17, 19 7 ?
J4 16, 23, 24, 28, 29, 30, 31, 35, 37, 40, 42, 43, 44, 66 14 ?

Table A.3.: Spectra and number of conjugacy classes of maximal cyclic subgroups of the
Janko groups

µ(−) |µ(−)|
Co1 16, 22, 23, 24, 26, 28, 33, 35, 36, 39, 40, 42, 60 13
Co2 11, 16, 18, 20, 23, 24, 28, 30 8
Co3 14, 18, 20, 21, 22, 23, 24, 30 8

Table A.4.: Spectra of the Conway groups
µ(−) |µ(−)|

Fi22 13, 14, 16, 18, 20, 21, 22, 24, 30 9
Fi23 16, 17, 22, 23, 24, 26, 27, 28, 35, 36, 39, 42, 60 13
Fi′24 16, 17, 22, 23, 24, 26, 27, 28, 29, 33, 35, 36, 39, 42, 45, 60 16

Table A.5.: Spectra of the Fischer groups
µ(−) |µ(−)|

Higman-Sims group HS 7, 8, 11, 12, 15, 20 6
McLaughlin group McL 8, 9, 11, 12, 14, 30 6
Held group He 8, 10, 12, 15, 17, 21, 28 7
Rudvalis group Ru 14, 15, 16, 20, 24, 26, 29 7
Suzuki sporadic group Sz 11, 13, 14, 15, 18, 20, 21, 24 8
O’Nan group O′N 11, 12, 15, 16, 19, 20, 28, 31 8
Harada-Norton group HN 9, 12, 14, 19, 21, 22, 25, 30, 35, 40 10
Lyons group Ly 18, 22, 24, 25, 28, 30, 31, 33, 37, 40, 42, 67 12
Thomspon group Th 19, 20, 21, 24, 27, 28, 30, 31, 36, 39 10
Baby Monster group B 25, 27, 31, 32, 34, 36, 38, 39, 40, 42, 44, 46, 47, 48,

52, 55, 56, 60, 66, 70
20

Monster group M 32, 36, 38, 40, 41, 45, 48, 50, 51, 54, 56 57, 59, 60,
62, 66, 68, 69, 70, 71, 78, 84, 87, 88, 92, 93, 94, 95,
104, 105, 110, 119

32

Table A.6.: Spectra of the remaining sporadic groups
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B. Computer Algebra with GAP

We used the computer algebra system GAP [GAP] at the beginning of the work on
understanding the groups in the class Γ2, i.e. the finite groups with two conjugacy classes
of maximal cyclic subgroups, by listing all those groups of order at most 2000 that belong
to Γ2 and formulating suitable conjectures regarding the structure of those groups. We were
able to verify these conjectures afterwards, see Section 5.2.3. The function NumWitnesses
computes the number of conjugacy classes of maximal cyclic subgroups of a finite group. The
function Witnesses returns representatives of the conjugacy classes of the maximal cyclic
subgroups of a finite group. For the computation of the (reduced) spectra in Appendix A
we sometimes relied on the function ReducedSpectrum. These functions and the functions
that they depend on are defined as follows:

# Given a list of orbits of cyclic subgroups (under the
# conjugation action) removes an orbit if it corresponds to
# a non-maximal cyclic subgroup
RemoveNonMaximalOrbit := function(orbs)

local n, m, pivot, cyclic;

for n in [1..Size(orbs)] do
for m in [1..Size(orbs)] do

if n = m then
continue;

fi;
# pick a cyclic in orbs[n] and see whether it
# is containd in a cyclic in orbs[m]
pivot := orbs[n][1];
for cyclic in orbs[m] do

if IsSubgroup(cyclic, pivot) then
Remove(orbs, n);
return orbs;

fi;
od;

od;
od;

return orbs;
end;
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# Given a list of orbits of cyclic subgroups (under the
# conjugation action) remove those orbits that do not
# correspond to maximal cyclic subgroups
RemoveNonMaximalOrbits := function(orbs)

local s;

s := Size(orbs);

while s > Size(RemoveNonMaximalOrbit(orbs)) do
s := Size(orbs);

od;

return orbs;
end;

# Given a finite group, returns a list of representatives of the
# conjugacy classes of maximal cyclic subgroups
Witnesses := function(group)

local cl, cyclic_subgroups, action, orbits, maximal_orbits;

cl := List(ConjugacyClasses(group), Representative);
cyclic_subgroups := Set(cl, g -> Subgroup(group, [g]));

action := function(subgroup, g)
return ConjugateSubgroup(subgroup, g); end;

orbits := Orbits(group, cyclic_subgroups, action);
maximal_orbits := ShallowCopy(orbits);

RemoveNonMaximalOrbits(maximal_orbits);

# pick a representative in each orbit
return List(maximal_orbits, o -> o[1]);

end;

# Given a finite group, returns the number of conjugacy classes
# of maximal cyclic subgroups
NumWitnesses := function(group)

return Size(Witnesses(group));
end;
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B. Computer Algebra with GAP

# Given a list of natural numbers, returns a list of those
# numbers that are maximal with respect to the divisbility
# relation
MaximalNumbers := function(li)

local maximals, non_maximal, i, j;

maximals := [];

for i in li do
non_maximal := false;

for j in li do
if i = j then

continue;
fi;

if RemInt(j,i) = 0 then
non_maximal := true;
break;

fi;
od;

if not non_maximal then
Add(maximals, i);

fi;
od;

return Unique(maximals);
end;

# Computes the maximal element orders of a group
# with respect to the divisbility relation
ReducedSpectrum := function(group)

return MaximalNumbers( Set(ConjugacyClasses(group),
c -> Order(Representative(c))) );

end;
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