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Abstract

This thesis consists of two projects in equivariant stable homotopy theory. In the first

we study the rational homotopy groups of symmetric products of the G-sphere spec-

trum and show that they are naturally isomorphic to the rational homology groups of

certain subcomplexes of the subgroup lattice of G. In the second we investigate global

equivariant versions of spectrum level filtrations introduced by Arone and Lesh which in-

terpolate between topological/algebraic K-theory and the Eilenberg-MacLane spectrum

for the integers. We determine the global homotopy type of the subquotients and use

this description to obtain algebraic formulas for filtrations of representation rings that

arise on 0-th homotopy groups.
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Chapter 1

Introduction

This thesis takes place in the field of algebraic topology, the study of topological spaces

and continuous maps via algebraic invariants such as homotopy or homology groups,

vector bundles or bordism groups of manifolds.

It is a fundamental phenomenon that many of these invariants stabilize as one lets

the dimension go to infinity. For example, given a (reasonable) compact space X, the

following two invariants eventually become independent of n:

• The set of isomorphism classes of n-dimensional complex vector bundles over X.

• The set of homotopy classes of continuous maps [ΣnX,ΣnY ], where Y is a fixed

space and Σn denotes the n-fold suspension.

Moreover, the invariants which lie in the stable range have more structure and better

properties: They define generalized cohomology theories in X and are therefore con-

siderably easier to compute. The idea of stable homotopy theory is to disregard the

unstable information and package the stable invariants into a new category. The new

objects, stable generalizations of spaces, are called spectra and correspond to cohomol-

ogy theories. This approach to homotopy theory has been very successful and has led

to considerable advances, both in algebraic and geometric topology.

In this thesis we are concerned with symmetries of these stable objects. We consider

spectra that come equipped with an action of a compact Lie or finite group G. Such

objects are called G-spectra, which again assemble to a stable category. In fact, there

are several variants on how to define a G-spectrum and the G-stable homotopy category,

and we work in the most structured one (called ‘genuine G-spectra’), which is stable with

respect to all spheres with linear G-action and which allows the construction of transfer

maps between fixed point spectra. For example, the spectrum representing stable com-

plex vector bundles has an action of the cyclic group C2 via complex conjugation and

forms a genuine C2-spectrum. Its spectrum of fixed points represents stable real vector

bundles, and the transfer map takes a complex bundle to its underlying real one. This

highly structured form of symmetry for spectra has had many applications in topology,

an important example being the recent proof of Hill, Hopkins and Ravenel [HHR14] that

every framed manifold of dimension ≥ 127 is framed cobordant to a homotopy sphere.

On the other hand, the category of genuine G-spectra is also intrinsically interesting: It
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reflects properties of the group G, it is related to representation theory and forms the

natural home of cohomology theories for G-spaces.

This work is roughly divided into two projects in equivariant stable homotopy theory,

the first of which makes up Part II, while the second makes up Parts III and IV. In the

following we first give an overview over these two projects and then discuss the results

and organization of this thesis in detail.

Symmetric products and subgroup lattices

Classical, ordinary (co-)homology is represented by the Eilenberg-MacLane spectrum

HZ. On the other hand, the sphere spectrum S represents stable (co-)homotopy, which

is very interesting but extremely difficult to compute. For every n ∈ N there is a

spectrum Spn, made up of the n-th symmetric products (Sk)×n/Σn of spheres, which

sits in between the two. Together they assemble to a filtration

S = Sp1 → Sp2 → . . .→ Sp∞ ' HZ.

This passage from stable homotopy to ordinary homology has been much studied and

has interesting properties: For example, the cohomology of the Spn realizes the filtra-

tion by length of admissible sequences on the Steenrod algebra [Nak58] and the sub-

quotients Spn/Spn−1 are suspension spectra related to partition complexes and Tits

buildings [AD01].

Now we take G to be a finite group. For a finite dimensional real G-representation V

we denote by SV its associated representation sphere, i.e., the one-point compactification

of V . The symmetric products (SV )×n/Σn of representation spheres give rise to a genuine

G-spectrum, which we denote by SpnG. Again one obtains a filtration

SG = Sp1
G → Sp2

G → . . .→ Sp∞G ' HZ,

this time interpolating between the G-sphere spectrum and an Eilenberg-MacLane spec-

trum for the constant Mackey functor Z [dS03].

This project is about the study of one of the central invariants of equivariant sym-

metric products, their homotopy groups πGk (SpnG). Of course, a full computation is

out of reach, as this would in particular include the stable homotopy groups of spheres

πk(S), which despite enormous effort are only known up to k ∼ 60. However, in stable

homotopy theory there are various ways of localization that allow to concentrate on one

- hopefully computable - part of a homotopy group and disregard the rest. Perhaps

the most drastic such localization is given by rationalization, i.e., tensoring with Q. It

still allows one to recover the rank of a maximal free abelian subgroup, but one loses

all torsion information. For the non-equivariant symmetric product filtration this lo-

calization is too drastic: After tensoring with Q, there is no difference between S and

HZ, and in fact all the Spn are equivalent to one another. However, it turns out that

the rationalization of their equivariant analogs SpnG still contains interesting information

about G: We show that the rationalized homotopy groups πGk (SpnG) ⊗ Q are closely
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related to the topology of the subgroup lattice of G, i.e., the simplicial complex whose

vertices are the subgroups of G and whose higher simplices are associated to chains of

subgroup inclusions. More precisely, each SpnG is modeled by a certain subcomplex of

the subgroup lattice, and one obtains πGk (SpnG)⊗Q by computing the rational homology

of this subcomplex.

Example. The subgroup lattice of the cyclic group G = C30 is a cube, and the subcom-

plexes which model the SpnC30
rationally are given by

n = 1 2 3, 4 5 6− 9 10− 14 15− 29 ≥ 30

from which one can read off the following homotopy groups:

n 1 2 3, 4 5 6− 9 10− 14 15− 29 ≥ 30

πC30
2 (SpnC30

)⊗Q 0 0 0 0 0 0 Q 0

πC30
1 (SpnC30

)⊗Q 0 0 Q2 Q5 Q3 Q 0 0

πC30
0 (SpnC30

)⊗Q Q8 Q4 Q2 Q Q Q Q Q

For small G as above this makes it an easy exercise to compute all πGk (SpnG) ⊗ Q
explicitly and we do so in various other examples.

Filtrations of global K-theory

Another important example of a spectrum is given by connective K-theory ku, which

represents the cohomology theory of stable complex vector bundles. In [AL07], Arone

and Lesh showed that there exists a sequence of spectra

ku = Au0 → Au1 → Au2 → . . .→ Au∞ ' HZ,

interpolating between connective K-theory and the Eilenberg-MacLane spectrum for

the integers, with similar properties as the symmetric product filtration considered in

the previous section. For example, the subquotients are again suspension spectra, this

time related to decomposition lattices of finite dimensional complex vector spaces. In

fact, the authors showed that both filtrations arise as special cases of a more general

construction, which also produces similar filtrations for real topological K-theory ko

and for kR, the free algebraic K-theory of a discrete (reasonable) ring R. We call the

filtrations constructed this way complexity filtrations, based on the usage of that term

in [Les00]. In a later paper [AL10], the authors showed that complexity filtrations are

linked to filtrations of the K-theory spectra themselves, which they call modified rank

filtrations.
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In this project we set up and investigate equivariant versions of both the modified

rank and complexity filtration. We work with the following equivariant generalizations

of the spectra involved:

• Topological K-theory is replaced by equivariant K-theory in the sense of Segal

([Seg68a]), the K-theory of equivariant vector bundles on G-spaces.

• Free algebraic K-theory of a discrete ring R is replaced by a G-spectrum whose

H-fixed points (for H a subgroup of G) represent the direct sum K-theory of R[H]-

modules that are finitely generated free as R-modules, so-called R[H]-lattices. In

particular, πH0 (kR) is the group completion of the monoid of isomorphism classes

of R[H]-lattices, denoted RepR(H).

• The Eilenberg-MacLane spectrum HZ is replaced by the Eilenberg-MacLane spec-

trum for the constant Mackey functor Z.

The first and last item make sense for all compact Lie groups, but for non-discrete

groups our results have to be taken with a grain of salt, as we discuss later. Equivariant

algebraic K-theory is only defined for finite groups.

In Part III, which is joint work with Dominik Ostermayr, we lift the modified rank

and complexity filtration to the equivariant context and determine the equivariant ho-

motopy type of the subquotients, generalizing results of Arone and Lesh. In Part IV we

then apply these results to demonstrate a further similarity to the symmetric product

filtration, through the effect on the 0-th equivariant homotopy group πG0 . In [Sch14],

Schwede showed that, loosely speaking, πG0 (Spn) is obtained from the Burnside ring of G

by forgetting all information at G-sets of order at most n. When replacing the sphere

spectrum by ku, the role of the Burnside ring is played by the representation ring. So,

by analogy, this suggests that πG0 ((Aun)G) should be obtained from the representation

ring of G by forgetting all information at G-representations of dimension at most n,

and this is what we show. A similar result holds for the real and algebraic analogs.

These slogans are best made precise by working in the global equivariant framework,

i.e., by considering all compact Lie or finite groups simultaneously instead of focusing

on a single G. We now recall this framework.

Global equivariant homotopy theory

All the equivariant spectra that have appeared so far are defined uniformly over all

compact Lie or at least finite groups, they are not specific to a single group G. Moreover,

they are related by various restriction and transfer maps. Global equivariant homotopy

theory is a framework to capture this rich functoriality and to focus on the constructions

and operations that are natural for all G. To achieve this, one assembles equivariant

spectra for varying compact Lie groups G into one global spectrum. For example, the

global sphere spectrum S is now just one object, but it encodes all the information of

G-sphere spectra SG for all compact Lie groups G.

There have been various approaches to formalizing this idea, for example in [LMS86,

Chapter 2], [GM97, Section 5] and [Boh14]. We work with a recent model due to Schwede
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[Sch15], who showed that a category of global spectra can be obtained by looking at

the well-known category of orthogonal spectra from another angle: Every orthogonal

spectrum gives rise to aG-orthogonal spectrum for any compact Lie groupG by endowing

it with the trivial G-action and, classically, changing from the trivial to a complete G-

universe, but this change of universe is an equivalence of categories on the point-set

level. The fundamental observation used in [Sch15] is that the G-homotopy type of such

a G-orthogonal spectrum with trivial action is not determined by its non-equivariant

homotopy type. There are maps of orthogonal spectra that are a non-equivariant stable

equivalence but not a G-stable equivalence when given the trivial G-action. Taking

these G-homotopy types for varying G into account gives rise to a much finer notion of

weak equivalence called global equivalence and thereby to the global stable homotopy

category, which splits each non-equivariant homotopy type into many global variants. It

turns out that all spectra mentioned in the previous sections fit into this framework or

its symmetric spectrum analog, which was developed in [Hau15].

The reason for us to work in the setup of global homotopy is twofold. On the one

hand it seems to be the right framework to capture the full functoriality of the situation

and hence yield the strongest results. On the other hand, and more importantly, it

puts us in the position to use universal properties and describe phenomena that are

not present over a single group. One essential feature of global spectra is that their

equivariant homotopy groups assemble to a so-called global functor, meaning they allow

restrictions for arbitrary group homomorphisms and transfers for subgroup inclusions.

It turns out that various equivariant homotopy groups that we encounter in this thesis

carry universal properties when viewed as global functors, but no longer carry them as

G-Mackey functors if one focuses on a single group G. This implies that some of our

results would be harder to describe and appear less natural in the non-global context.

Statement of results

We now describe the content of this thesis in more detail.

Symmetric products and subgroup lattices

Let Spn(X) = X×n/Σn denote the n-th symmetric product of a space X and Spn =

{Spn(Sk)} the spectrum consisting of the various n-th symmetric products of spheres.

Insertion of basepoints yields maps Spn → Spn+1 and hence the symmetric product

filtration

S = Sp1 → Sp2 → . . .→ Sp∞.

All the Spn form orthogonal spectra. We think of them as global spectra and write

πG∗ (Spn) for what was denoted πG∗ (SpnG) before. We are interested in a computation of

the rationalized πG∗ (Spn) for finite groups G.

For this we denote by L(G) the subgroup lattice of G, i.e., the nerve of the poset of

subgroups of G. We define a filtration

∅ = L(G)0 ⊆ L(G)1 ⊆ L(G)2 ⊆ . . . ⊆ L(G)∞ = L(G)
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on this subgroup lattice by declaring a simplex H0 ≤ . . . ≤ Hk to lie in L(G)n if and

only if the index [Hk : H0] is at most n. The lattice L(G) carries an action by G through

conjugation, which preserves the subcomplexes L(G)n. Then the main result is the

following, where H∗(−,Q) denotes the ordinary homology of a space with coefficients

in Q:

Theorem A (Theorem 4.1.1). For all finite groups G and n ∈ N ∪ {∞} there are

isomorphisms

πG∗ (Spn)⊗Q ∼= H∗(L(G)n,Q)/G.

Hence, the process of adding the n-th coordinate in the symmetric products of G-

spheres can be modeled rationally by adding all chains of total index n in the subgroup

lattice of G. The subcomplexes L(G)n can have arbitrarily high non-trivial rational

homology, though of course for every fixed G the homology is bounded since L(G) is a

finite complex.

The 0-th homotopy groups πG0 (Spn) were computed previously by Schwede [Sch14],

even integrally, as we recall later. However, the following holds:

Proposition (Proposition 8.0.18). The only finite groups G for which all πG∗ (Spn)⊗Q
are concentrated in degree 0 are the cyclic p-groups.

This is perhaps surprising, because πG∗ (Sp1)⊗Q and πG∗ (Sp∞)⊗Q are always con-

centrated in degree 0.

Furthermore, we investigate the global properties of the rationalized SpnQ. Theorem A

implies that the assignment

G 7→ Hk(L(G)n,Q)/G

must extend to a global functor, and we describe this functoriality on the side of subgroup

lattices. In fact, this structure already exists on the level of chains, yielding a chain

complex of global functors. We then explain how one can reconstruct the full global

homotopy type of the rationalized symmetric products from this global chain complex,

which uses an explicit equivalence between the homotopy category of rational global

spectra and the derived category of rational global functors due to Wimmer [Wim16].

This yields a stronger version of Theorem A, which allows us to deduce:

Theorem B (Theorem 8.0.17). The rationalized symmetric product SpnQ is not a product

of global Eilenberg-MacLane spectra unless n is 1 or ∞.

Over a fixed finite groupG this phenomenon is not visible: Every rationalG-spectrum

decomposes as a product of Eilenberg-MacLane spectra. Theorem B can be interpreted

as saying that these decompositions cannot be chosen compatibly for all finite groups.

Remark. One ingredient in the proof of Theorem A is a global equivariant version of

the theorem by Arone and Dwyer [AD01, Theorem 1.11] which relates Spn/Spn−1 to

the partition complex Πn of the set {1, . . . , n}. The equivariant case is Theorem 6.6.1

and might be of independent interest. It also gives rise to a short proof that the integral

Fin-global Steenrod algebra is given by a single copy of Z concentrated in degree 0, cf.

Theorem 6.6.9.
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Filtrations of global K-theory I: Subquotients

All results in this section are joint work with Dominik Ostermayr. For now we write kX

to mean either of the following global spectra:

• connective global complex K-theory ku

• connective global real K-theory ko

• connective global algebraic K-theory kR of a discrete ring R satisfying dimension

invariance

All these are defined in work of Schwede ([Sch15] and [Sch16]) and come with a natural

global generalization of the modified rank filtration, which we denote by

∗ → kX1 → kX2 → . . .→ kX.

We describe the subquotients of these filtrations. For this we let Lun denote the topolog-

ical poset of proper decompositions of Cn as an orthogonal sum of subspaces, ordered

by refinement. Here, ‘proper’ means that the trivial decomposition into one summand

is excluded. The poset carries a U(n)-action by applying the isometry to each summand

in the decomposition. Similarly, Lon denotes the O(n)-poset of proper decompositions

of Rn, and PRn denotes the GLn(R)-poset of proper decompositions of Rn as a direct

sum of free submodules. We show:

Theorem C (Theorems 11.1.5, 11.2.8 and 13.1.6). There are global equivalences

kun/kun−1 ' Σ∞(EglU(n)+ ∧U(n) |Lun|�)
kon/kon−1 ' Σ∞(EglO(n)+ ∧O(n) |Lon|�)

kRn/kRn−1 ' Σ∞(EglGLn(R)+ ∧GLn(R) |PRn |�).

The underlying non-equivariant statement of this theorem is due to Arone and Lesh

(cf. [AL10, Section 2.2] for the case of topological K-theory). The expression Σ∞ denotes

the suspension spectrum of a global space (in the framework we use: an orthogonal space)

and (−)� stands for the unreduced suspension. The global spaces that appear here are

part of a general construction that takes a based K-space X for some topological groupK

and produces a global space EglK+ ∧K X, its global homotopy orbits. Given a compact

Lie group G, the underlying G-homotopy type of this construction is EGK+ ∧K X,

where EGK is a universal space for principal K-bundles in G-spaces. In particular,

the underlying non-equivariant homotopy type agrees with the usual homotopy orbits.

However, global homotopy orbits depend on the ‘genuine’ equivariant homotopy type of

X at all compact subgroups of G, while the usual homotopy orbits only depend on the

‘naive’ K-homotopy type. So, in a sense, the global subquotients kXn/kXn−1 see even

more of the decomposition lattice than the non-equivariant ones.

Remark (Global Barratt-Priddy-Quillen Theorem, Theorem 12.0.11). Our methods

can also be applied to a rank filtration kFin1 → kFin2 → . . . → kFin of the global
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K-theory of finite sets kFin, yielding an easy proof of the global Barratt-Priddy-Quillen

Theorem: The unit S→ kFin is a global equivalence.

We proceed by considering complexity filtrations

kX ' AX0 → AX1 → . . .→ AX∞ ' Sp∞.

We define these as suitable homotopy pushouts that involve the modified rank and

symmetric product filtration, generalizing the non-equivariant description of [AL10]. In

[AL07, Corollary 8.3] it is shown that the n-th subquotient of the complexity filtration

can be non-equivariantly described as the suspension spectrum of a classifying space for

the collection of so-called standard subgroups of U(n) (respectively O(n) or GLn(R)).

We denote these collections by CXn . There are natural global equivariant generaliza-

tions of classifying spaces for collections (similarly to the global homotopy orbits dis-

cussed above), which we denote by BglCXn . Generalizing the non-equivariant statement

in [AL07], we then show:

Theorem D (Theorems 11.2.3 and 13.2.1). There are global equivalences

Aun/A
u
n−1 ' Σ∞(BglCun)�

Aon/A
o
n−1 ' Σ∞(BglCon)�

and if R is an integral domain with 2 6= 0 also

ARn /A
R
n−1 ' Σ∞(BglCRn )�.

The conditions on R were also required in [AL07], and in fact it can be shown that

the statement is false in full generality.

Remark. The methods we use to obtain these descriptions of the subquotients are quite

different from those of [AL07] and [AL10]. While Arone and Lesh perform categorical

constructions, we work with an explicit Γ-space model for connective K-theory and

decompose it geometrically. It turns out that with this model the quotients are in fact

isomorphic to suspension spectra of global spaces. Hence the main work lies in examining

the global equivariant homotopy type of those and identifying them as geometric models

of classifying spaces or lattices.

Filtrations of global K-theory II: Induced filtrations on representation

rings

Afterwards, we apply our global description of the filtration subquotients to show another

formal similarity between complexity filtrations and the symmetric product filtration.

For this we recall a result of Schwede [Sch14] on the symmetric product filtration. On

0-th homotopy, the map S → HZ induces the augmentation from the Burnside ring

global functor A(−) ∼= π0(S) to the constant functor Z, sending a finite G-set to its

number of elements. Applying π0 to the symmetric product filtration gives a filtration

π0(S)→ π0(Sp2)→ . . .→ π0(HZ) ∼= Z

14



of this augmentation. Schwede showed that this algebraic filtration allows a compact

description when considered in the global context. For this we let τΣ
n denote the tauto-

logical n-element Σn-set, thought of as an element in πΣn
0 (S) ∼= A(Σn).

Theorem (Schwede, [Sch14, Theorem 3.13]). The map π0(S)→ π0(Spn) is surjective for

all n ∈ N, with kernel generated as a global functor by the element (τΣ
n −n ·1) ∈ πΣn

0 (S).

In particular,

π0(Spn) ∼= A(−)/(τΣ
n − n · 1)

as global functors.

The Σn-set τΣ
n is the universal n-element G-set, in the sense that for every n-element

G-set X there is a unique up to conjugacy group homomorphism α : G→ Σn such that

α∗(τΣ
n ) ∼= X. So dividing out by (τΣ

n − n · 1) can be loosely interpreted as forgetting all

G-actions on sets with size at most n, though it is in fact more complicated, due to the

presence of transfers.

In our case the complexity filtration induces a filtration of the augmentation from

the complex representation ring global functor RU(−) (or RO(−) in the case of ko

and RepR(−) in the case of kR) to the constant functor with value Z, sending a G-

representation to its dimension or rank. There is a natural replacement for the universal

Σn-set τΣ
n in this context: The n-th unitary group U(n) acts tautologically on Cn (respec-

tively O(n) on Rn and GLn(R) on Rn), and every n-dimensional G-representation can

be obtained by pulling this representation back along a homomorphism which is unique

up to conjugacy. We let these universal representations be denoted by τun ∈ πU(n)
0 (ku)

respectively τ on ∈ πO(n)
0 (ko) and τRn ∈ πGLn(R)

0 (kR) if R is finite. Then we have:

Theorem E (Complexity filtration on π0, Theorems 15.1.1, 15.1.2 and 15.1.3). The

maps π0(ku) → π0(Aun), π0(ko) → π0(Aon) and π0(kR) → π0(Aun) are surjective for all

n ∈ N. The kernel is generated as a global functor by the elements (τun −n ·1), (τ on−n ·1)

respectively (τRn − n · 1) for finite R. In particular, there are isomorphisms of global

functors:

π0(Aun) ∼= π0(ku)/(τun − n · 1)

π0(Aon) ∼= π0(ko)/(τ on − n · 1)

π0(ARn ) ∼= π0(kR)/(τRn − n · 1)

Hence, π0(AXn ) can be interpreted as the representation ring global functor modulo

forgetting all group actions on vector spaces/free modules of dimension/rank n. This

theorem reduces an explicit calculation of πG0 (AXn ) to an algebraic exercise in represen-

tation theory, for which we give examples in Section 16. The reason why R has to be

finite in Theorem E is that otherwise the general linear groups are not finite and so are

not part of the global theory. There is also a description of π0(ARn ) when R is not finite

(Proposition 15.1.4) but it is no longer simplified by the global framework.

Moreover, we compute an algebraic description of the filtration on the representation

ring itself that is induced from the modified rank filtration:
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Theorem F (Modified rank filtration on π0). The global functor π0(kun) (and similarly

π0(kon) and π0(kRn) for finite R) is the free global functor on the classes τu1 , τ
u
2 , . . . , τ

u
n

modulo finitely many universal relations that identify

• homotopy-theoretic sums with direct sums of representations

• transfers with induction of representations

as long as the total dimension is at most n.

A precise formulation is given in Theorems 14.1.3, 14.1.5 and 14.1.6. The proof

uses an elementary examination of the fixed points of decomposition lattices of G-

representations and the construction of an explicit geometric representative of a certain

stable map, which allows us to identify its effect on π0. We note that this is only a

filtration in the sense that the colimit gives the representation ring, as the connecting

maps are in general neither injective nor surjective. Again there is also a description for

non-finite R (Proposition 14.1.7), but it is in general not finitely generated as a global

functor.

Organization

This thesis is organized as follows:

Chapter 2 deals with unstable global homotopy theory based on the models of or-

thogonal spaces and I-spaces, with a focus on two classes of examples: Global classifying

spaces associated to a collection of subgroups of a fixed Lie group K, and global homo-

topy orbits of K-spaces. In Chapter 3 we move on to the stable version and discuss

basic definitions and properties of the global homotopy theory of orthogonal and sym-

metric spectra, in particular global equivariant homotopy groups and global functors.

We then recall models for symmetric products of spheres, global topological K-theory,

global algebraic K-theory and the global K-theory of finite sets in this context.

In Part II we discuss the relation between rational symmetric products and subgroup

lattices. Chapter 4 contains a statement of the main theorem and how it relates to

Schwede’s result on π0. In Chapter 5 we recall basics of rational global homotopy

theory, explain how the main theorem can be stated in terms of geometric instead of

categorical fixed points and state the stronger version via chain complexes of global

functors. In Chapter 6 we then construct explicit maps from the suspension spectra of

the L(G)n into the geometric fixed points of Spn and show that they induce equivalences

on subquotients, by first showing that the effect on rational homology is split injective

and then abstractly checking that the homology groups are of the same dimension.

Chapter 7 contains some examples for small G. Finally, in Chapter 8 we prove that

the SpnQ do not split as products of global Eilenberg-MacLane spectra and that the

πG∗ (Spn)⊗Q are only concentrated in degree 0 when G is a cyclic p-group.

Part III is concerned with a computation of the global homotopy of the subquotients

in modified rank and complexity filtrations, whose global versions are defined in Chap-

ter 9. In Chapter 11 we first focus on the case of global topological K-theory and later

in Chapter 13 translate the methods to the algebraic case. In between, we give a proof
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of the global Barratt-Priddy-Quillen theorem (Chapter 12). Part III concludes with two

rather technical appendices. In the first we provide a proof that the maps relating the

filtration terms are cofibrations, in the second we show that the orthogonal spaces that

appear in the filtration quotients are sufficiently cofibrant.

Finally, in Part IV we compute the effect of the modified rank filtrations (Chapter

14) and complexity filtrations (Chapter 15) on π0 and give examples for various finite

groups (Chapter 16).
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Chapter 2

Unstable global homotopy theory

In this chapter we discuss two models for unstable global homotopy theory, as developed

by Schwede in [Sch15]. We begin with orthogonal spaces, which model the full global

theory over all compact Lie groups, and later deal with the more combinatorial I-spaces,

which only give rise to equivariant homotopy types over finite groups. Both models are

needed later on. We further discuss two classes of examples that are central to Part III:

Global classifying spaces of collections and global homotopy orbits.

2.1 Orthogonal spaces

2.1.1 Definition and global equivalences

Let LR be the topological category of finite dimensional real inner product spaces with

linear isometric embeddings.

Definition 2.1.1. An orthogonal space is a continuous functor from LR to the category

of spaces.

All orthogonal spaces that occur in this thesis have the following additional property:

Definition 2.1.2. An orthogonal space X is closed if for every linear isometric embed-

ding ϕ : V ↪→W the structure map X(ϕ) : X(V )→ X(W ) is a closed embedding.

Equivariance comes into play as follows: Let G be a compact Lie group and V a real

G-representation, by which we throughout this thesis mean a real inner product space

with a G-action through linear isometries. Then the evaluation X(V ) of any orthogonal

space X on V inherits a G-action via the homomorphism G→ O(V ). Moreover, if W is

another G-representation and ϕ : V ↪→ W is a G-equivariant inner product map, then

the structure map X(ϕ) : X(V )→ X(W ) is G-equivariant.

The evaluation can be extended further to infinite dimensional G-representations via

the formula

X(W ) = colim
f.d.V⊆W

X(V )

where the colimit is taken over the poset of finite dimensional G-subrepresentations V of

W . In particular this is used to evaluate orthogonal spaces on a complete G-universe UG,
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a countably infinite dimensional representation in which every finite dimensional repre-

sentation embeds.

An important invariant for an orthogonal space X is the 0-th homotopy set functor,

i.e., the collection of the sets

πG0 (X) = colim
f.d.V⊆UG

π0(X(V )G)

for all compact Lie groups G. Given a continuous group homomorphism ψ : K → G

there is an induced restriction map ψ∗ : πG0 (X)→ πK0 (X) constructed as follows: Every

G-fixed point x ∈ X(V ) for some V also represents a K-fixed point in X(ψ∗(V )), where

ψ∗(V ) denotes the restricted representation. While ψ∗(V ) might not be contained in

the chosen K-universe UK , there exists a K-embedding ψ∗(V ) ↪→ UK which we can use

to obtain an element ψ∗([x]) in πK0 (X). In [Sch15, Proposition I.6.5] it is shown that

this element does not depend on the chosen embedding and that, furthermore, inner

automorphisms act as the identity.

Definition 2.1.3. Let Rep denote the category of compact Lie groups and conjugacy

classes of continuous group homomorphisms.

Then the restrictions defined above turn

π0(X) : G 7→ πG0 (X)

into a contravariant functor from Rep to the category of sets.

Remark 2.1.4. If X is closed, πG0 (X) can be naturally identified with π0(X(UG)G), as

in this case π0 commutes with the colimit.

Taking into account the equivariant evaluations of an orthogonal space leads to a

notion of weak equivalence called global equivalence. It is easiest to state if the involved

orthogonal spaces are closed:

Definition 2.1.5 (cf. [Sch15, Proposition I.1.14]). A morphism f : X → Y of closed

orthogonal spaces is called a global equivalence if the induced map

f(UG)G : X(UG)G → Y (UG)G

on G-fixed points is a weak equivalence of spaces for every compact Lie group G .

The evaluation X(UG) should be thought of as the G-space underlying X. In this

sense a map of orthogonal spaces is a global equivalence if and only if it is a G-weak

equivalence on underlying G-spaces for all compact Lie groups G. For general orthogonal

spaces the colimit definingX(UG) needs to be replaced by a homotopy colimit (cf. [Sch15,

Proposition I.1.6]). In [Sch15, Section I.5] it is also shown that the class of global

equivalences takes part in several model structures and hence the localized homotopy

category can be dealt with by methods of homotopical algebra.
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2.1.2 Fin-global version

Instead of taking into account information at all compact Lie groups, one can restrict to

smaller global families of groups. In particular, one can work with respect to the family

Fin of finite groups.

Definition 2.1.6. A morphism f : X → Y of closed orthogonal spaces is a Fin-global

equivalence if for all finite groups G the map

f(UG)G : X(UG)G → Y (UG)G

is a weak equivalence of spaces.

Again, for non-closed orthogonal spaces one needs to work with the homotopy colimit.

This notion of equivalence is also part of a model structure, as shown by Schwede in

[Sch15, Section I.7].

2.2 Global universal and classifying spaces of collections

In this section we discuss a class of examples of orthogonal spaces, so-called global uni-

versal and global classifying spaces, associated to a collection of subgroups of a (not

necessarily compact) Lie group K.

Definition 2.2.1. Let K be a Lie group. A set of closed subgroups of K is called a

collection if it is closed under conjugation.

A universal space EC for a collection C is a cofibrant K-space with the property that

all isotropy groups lie in C and for every subgroup H in C the H-fixed points ECH are

contractible. Here and throughout this thesis we say that a K-space is cofibrant if it is

the retract of a K-cell complex. Every collection possesses a universal space, which is

unique up to K-homotopy equivalence. The quotient of such a universal space by the

K-action is called a classifying space of C and denoted BC.
Given a collection C of subgroups of a Lie group K together with an additional Lie

group G, the set of those closed subgroups of K ×G whose intersection with K × 1 lies

in C also forms a collection, which we denote by C〈G〉.

Example 2.2.2. An important example is the collection 1K which only contains the

trivial subgroup of K. A subgroup of K × G lies in 1K〈G〉 if and only if it is the

graph Γ(ψ) of a continuous group homomorphism ψ from a closed subgroup of G to K.

This gives rise to the following global notion:

Definition 2.2.3. Let C be a collection of subgroups of a Lie group K. A closed K-

orthogonal space X is called a global universal space for C if for every compact Lie group

G the (K × G)-space X(UG) is a universal space for the collection C〈G〉. The quotient

of a global universal space by the K-action is called a global classifying space of C.

A global universal space for C will be denoted EglC, a global classifying space BglC.
The following example of a global classifying space is fundamental to global equivariant

homotopy theory:
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Example 2.2.4. A global universal space Egl1K (respectively global classifying space

Bgl1K) associated to the collection 1K is called a global universal space (respectively

global classifying space) of K. We also use the notation EglK (respectively BglK) for

this global homotopy type. If K is compact, a model for EglK is given by the K-

orthogonal space

W 7→ LR(V,W ) (2.2.1)

for a fixed faithful K-representation V (cf. [Sch15, Section I.2]).

The Repop-functor π0(BglK) is naturally isomorphic to the one which sends a com-

pact Lie group G to the set of conjugacy classes of continuous group homomorphisms

from G to K, with functoriality through precomposition. This is proved in [Sch14, The-

orem 1.7] if K is compact and follows from Corollary 2.3.2 below in the general case.

Hence, it is representable if K is compact.

Global classifying spaces of compact Lie groups are the fundamental building blocks

of global homotopy theory. As shown in [Sch15, Proposition I.6.12], BglK represents

the functor πK0 (−) in the global homotopy category. In the model (2.2.1) above, a

fundamental class is given by the class of the identity of V , as an element in LR(V, V )K .

2.2.1 Existence of global universal and classifying spaces

We explain a construction of a global universal space for an arbitrary collection C of

subgroups of a Lie group K, hence showing that these always exist.

We first recall a model for non-global universal spaces. For this we think of C as

a topological poset under inclusion, with K-action via conjugation. The topology on

the object and morphism sets of C is the finest one which makes this action continuous,

i.e., the objects and morphisms are disjoint unions of K-orbits. Furthermore, given a

subgroup H of K, we denote by H\K its space of right cosets and by |E(H\K)| the

geometric realization of the nerve of the topological category with object space H\K
and exactly one morphism between any two elements. Then the assignment

H 7→ |E(H\K)| (2.2.2)

defines a continuous functor from C to spaces. Every element k ∈ K induces a conju-

gation map |E(H\K)| → |E(kHk−1\K)| via Hk̃ 7→ (kHk−1)kk̃ = kHk̃, which turns

(2.2.2) into a K-functor (in the sense of [JS01] or [DM14]). This implies that the homo-

topy colimit (by which we mean the topological bar construction)

EC = hocolim
H∈C

(|E(H\K)|)

inherits a K-action. The K-space EC is a model for a universal space for C.

Remark 2.2.5. This model is for example discussed in [AD01, Section 2], but it is pre-

sented slightly differently there. The K-space EC can also be described as the geometric

realization of the nerve of the category whose objects are pairs (H̃ ∈ C, kH̃ ∈ K/H̃)

and whose morphisms are equivariant maps of orbits which preserve the chosen left

cosets. It carries a K-action which fixes the first component H̃ and permutes the
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cosets in the second component. This category is isomorphic to the category of pairs

(H ∈ C, Hk ∈ H\K) with exactly one morphism from (H,Hk) to (H ′, H ′k′) if H

is contained in H ′, and no morphism otherwise. The isomorphism sends (H̃, kH̃) to

(kH̃k−1, (kH̃k−1)k). This second description leads to the definition we gave above.

To obtain the global version, we now combine the construction of EC with a functor

called b in [Sch15], which assigns to every space X an orthogonal space bX given by

bX(V ) = map(LR(V,R∞), X).

The assignment

H 7→ b(|E(H\K)|) = map(LR(−,R∞), |E(H\K)|)

yields a K-functor from C to orthogonal spaces. We define EglC as the homotopy colimit

of this K-functor.

Proposition 2.2.6. The K-orthogonal space EglC is a global universal space for C.

In fact we show something stronger, which will also be useful later on: Each level

(EglC)(V ) is already a universal space for C〈O(V )〉.

Proof. We first check that the K-isotropy lies in C. A point x in (EglC)(V ) is represented

by a chain of subgroups H0 ≤ . . . ≤ Hk in C, a continuous map LR(V,R∞)→ |E(H0\K)|
and simplex coordinates (t0, . . . , tk) ∈ ∆k. We claim that the isotropy of x is given

by H0. To see this, first note that any element of K which fixes x must in particular

fix H0 and hence lies in the normalizer of H0. The normalizer of H0 acts on |E(H0\K)|
by multiplication from the left. The isotropy of any point in |E(H0\K)| under this action

is H0, and so it follows that the NK(H0)-isotropy of the map L(V,R∞) → |E(H0\K)|
is also H0. So the isotropy of x can be at most H0. Since H0 also fixes the chain

H0 ≤ . . . ≤ Hk, we are done.

Now let P ≤ K ×O(V ) be an element of C〈O(V )〉. We want to show that the fixed

point space (EglC(V ))P is weakly contractible, for which we need the following notation:

Let L ≤ K be the intersection of P with K × 1, L′ ≤ K the image of P under the

projection to K and J the image of P under the projection to O(V ). For every j ∈ J
let (ψ(j), j) ∈ P be a preimage under the projection. Then the element ψ(j) ∈ K lies

in L′ and is unique up to multiplication with L. Finally, we note that L′ is contained in

the normalizer of L.

Now we determine the fixed points (EglC(V ))P . They are given by

hocolim
H∈CP

(map(LR(V,R∞), |E(H\K)|))IsoP (H) , (2.2.3)

where IsoP (H) denotes the P -isotropy of H ∈ C. A subgroup H ∈ C is P -fixed if and

only if L′ lies in the normalizer of H. Given such a subgroup H, the L-fixed points of

|E(H\K)| are empty unless L is contained in H, hence so are the fixed points for the

larger group IsoP (H). If L is contained in H, it acts trivially on |E(H\K)|. So we find
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that we can rewrite (2.2.3) as

hocolim
L≤H∈C

L′≤NK(H)

(map(LR(V,R∞), |E(H\K)|))J ,

where J acts on |E(H\K)| through its morphism to the Weyl group WK(H) given

by j 7→ [ψ(j)]. The J-space LR(V,R∞) is a model for the universal space EJ , hence

(map(LR(V,R∞), |E(H\K)|))J computes the homotopy fixed points of |E(H\K)|. Since

|E(H\K)| is non-equivariantly contractible, these homotopy fixed points are weakly

contractible. This shows that the fixed points (EglC(V ))P are weakly equivalent to

the nerve of the topological poset of those subgroups in C which contain L and whose

normalizer contains L′. This topological poset has L as a minimal element and hence

its nerve is contractible, which finishes the proof that (EglC)(V ) is a universal space

for C〈O(V )〉.
Hence, the restriction of (EglC)(V ) along an injective homomorphism G ↪→ O(V ) is

a universal space for C〈G〉. So we find that in the colimit

colim
f.d.V⊆UG

(EglC)(V )

defining (EglC)(UG), all terms at faithful representations are universal spaces for C〈G〉.
It follows that the colimit is also a universal space, which proves the claim.

Remark 2.2.7. Strictly speaking, we still have to show that the levels (EglC)(V ) are

sufficiently (K × O(V ))-cofibrant. In fact we are not sure whether this is the case,

but it can be corrected easily: For every K-orthogonal space X there is a replacement

X ′ → X up to levelwise (K×O(V ))-weak equivalence, for which each evaluation X ′(V )

is (K × O(V ))-cofibrant. For example, X ′ can be taken to be a K-flat replacement

of X, as is briefly discussed in the next section. It then follows that such a cofibrant

replacement of EglC is a global universal space for C.

2.2.2 Relation to collection as a poset

There is a forgetful map from EglC to the constant K-orthogonal space |C| which collapses

each b(|E(K/H)|) to a point. We now show that the V -th level of this map is a weak

equivalence on all fixed points of graph subgroups of K ×O(V ).

Let Γ(ψ) be the graph of a homomorphism ψ : J → K, where J is a closed subgroup

of O(V ). Then the Γ(ψ)-fixed points of EglC are given by

hocolim
H∈Cim(ψ)

(map(LR(V,R∞), |E(H\K)|))J .

As we argued before in the proof of Proposition 2.2.6, the space

(map(LR(V,R∞), |E(H\K)|))J
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is weakly contractible and so the projection to the point induces a weak equivalence to

|C|Γ(ψ) = hocolim
H∈Cim(ψ)

∗.

This implies the following:

Proposition 2.2.8. The forgetful map induces a global equivalence

EglK ×K EglC ' EglK ×K |C|.

Using the uniqueness result proved in the next section, it follows that such a global

equivalence exists for any global universal space EglC. The orthogonal space EglK×K |C|
is called the global homotopy orbit space of |C|, which is further discussed in Section 2.3.

2.2.3 Uniqueness

One can further show that any two global universal spaces EglC and E′glC are connected

by a zig-zag of morphisms of K-orthogonal spaces

EglC → Z1 ← Z2 → . . .← Zn → E′glC, (2.2.4)

where each Zi is also a global universal space for C. Every map in (2.2.4) necessarily

induces (K × G)-homotopy equivalences when evaluated on complete G-universes UG.

Hence, in particular, the global homotopy type of global classifying spaces is well-defined.

If the collection C is closed under intersection (for example, this holds when C is a

family), this is easy to see: In this case the product of two global universal spaces is

again a global universal space, and the two projections

EC ← EC × E′C → E′C

yield the zig-zag.

In general it is a bit more complicated, and we only give a sketch of the proof. First

of all we recall from [Sch15, Section I.4] that for every orthogonal space X there are

functorially defined latching spaces Ln(X) which

• only depend on the restriction of X to subspaces of dimension smaller than n,

• carry an action of O(n), and

• come with natural O(n)-maps νn(X) : Ln(X)→ X(Rn).

Furthermore, L0(X) is the empty set. Whenever all maps νn are O(n)-cofibrations, X is

called flat. Similarly, we say that a K-orthogonal space is K-flat if these maps are even

(K × O(n))-cofibrations, where the K-action on Ln(X) is through functoriality. Every

K-orthogonal space can be replaced - up to levelwise weak (K × O(V ))-equivalence -

by a K-flat one (which one can see similarly as in the proof of the factorization axiom

in [Sch15, Proposition A.3.28]). A K-flat orthogonal space is in particular closed, so

it follows that the K-flat replacement of any global universal space is again a global
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universal space. Hence, we can restrict ourselves to global universal spaces which are

K-flat.

We claim that every K-flat universal space EglC allows a map f to the model EglC
constructed in the previous section, finishing the proof of the existence of a zig-zag. For

the construction of f , we can restrict ourselves to the skeleton of LR given by the Rn.

The definition is then inductively: We let n ∈ N and assume f to already be defined

on Rm for all m < n. Since Ln(−) only depends on these smaller-dimensional subspaces,

one obtains a (K ×O(n))-map

Ln(EglC)
Ln(f)−−−→ Ln(EglC)

and hence by composition with νn(EglC) a map

Ln(EglC)→ EglC(Rn).

The latching map νn(EglC) : Ln(EglC) → EglC(Rn) is a (K × O(n))-cofibration whose

relative K-isotropy necessarily lies in C, since EglC(Rn) embeds into EglC(UG) which we

assumed to have isotropy in C. Furthermore, by the results of Section 2.2.1 we know that

EglC(Rn) is a universal space for C〈O(n)〉, and so there exists a lift fn in the diagram

Ln(EglC) //

��

νn(EglC)
��

EglC(Rn)

EglC(Rn)

fn

88

and we have extended the map to dimension n. This finishes the sketch of the proof.

2.3 Global homotopy orbits

Let K be a Lie group, X a K-space. There is an associated orthogonal space EglK×KX,

the global homotopy orbits of X, defined via

(EglK ×K X)(V ) = (EglK)(V )×K X.

This gives rise to a large class of examples. To understand the underlying G-spaces of

global homotopy orbits, we need the following lemma:

Lemma 2.3.1. Let K and G be Lie groups of which G is compact, and Y be a cofibrant

(K ×G)-space such that the K-action is free. Then there is a natural homeomorphism

(Y/K)G ∼=
⊔

〈α:G→K〉

Y Γ(α)/C(α)

where α ranges through a set of representatives of conjugacy classes of continuous group

homomorphisms from G to K, C(α) denotes the centralizer of the image of α and Γ(α) ⊆
K ×G is the graph of α.
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Proof. The statement is the same as [Sch15, Proposition A.1.28], where the Lie group

K is also required to be compact. This is not necessary, as one only needs the space of

continuous group homomorphisms from G to K modulo conjugation to be discrete to

see that the topology on the union of the Y Γ(α)/C(α) is indeed that of a disjoint union.

For this it suffices that the source G is compact ([CF64, Lemma 38.1]).

Applying this to Y = X(UG) we see:

Corollary 2.3.2. For K a Lie group, X a cofibrant K-space and G a compact Lie group

there is a natural homeomorphism

(EglK ×K X)(UG)G ∼=
⊔

〈α:G→K〉

EC(α)×C(α) X
im(α).

This shows that the global homotopy orbits depend on the fixed points XH for all

compact subgroups H of K, or more precisely on the functor on the orbit category of K

with compact isotropy that is associated to X. This stands in contrast to the underlying

space of EglK ×K X, the usual homotopy orbits, which only depend on X up to ‘naive’

K-equivalence.

Remark 2.3.3. The unstable global homotopy category is equivalent to the homotopy

category of stacks, in the sense introduced in [GH08] (the equivalence follows from the

results in [GH08, Section 4.4] together with [Sch15, Theorem 8.37]). In this language,

EglK ×K X corresponds to the quotient stack X �K.

There is also a pointed version of global homotopy orbits, defined as EglK+ ∧K X.

2.4 I-spaces

If one restricts to finite groups, there is a more combinatorial model for unstable global

homotopy theory, called I-spaces. It is needed in Chapter 13 to describe the subquo-

tients in the rank and complexity filtration of global algebraic K-theory. Like orthogo-

nal spaces, I-spaces were originally considered as a symmetric monoidal model for the

usual homotopy theory of spaces. They have the convenient property that commutative

monoids correspond to E∞-spaces (see, for example, [SS12], [SS13] and [Lin13]). In

[Sch15, Section I.7], Schwede describes a global equivariant point of view on I-spaces,

which we quickly recall.

2.4.1 Definition and global equivalences

Let I denote the category of finite sets and injective maps.

Definition 2.4.1. An I-space is a functor from I to the category of spaces.

Equivariance enters in a similar way as for orthogonal spaces, with G-representations

replaced by G-sets. Let A be an I-space. By functoriality, if a finite set M comes

equipped with an action of a finite group G, the evaluation A(M) becomes a G-space.

Every injection of G-sets M ↪→ N induces a G-equivariant map A(M)→ A(N). There is
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a level model structure on I-spaces where the weak equivalences and fibrations are those

morphisms that become G-weak equivalences respectively G-fibrations on evaluations

−(M) for all finite groups G and finite G-sets M (cf. [Sch15, Proposition I.7.17]).

An I-space A is called static if for every injection M ↪→ N of faithful finite G-sets

the induced map A(M)G → A(N)G is a weak equivalence. A morphism of I-spaces is a

global equivalence if it induces bijections on all hom-sets into static I-spaces in the level

homotopy category. Together with the cofibrations of the level model structure, these

form the global model structure for I-spaces introduced in [Sch15, Theorem I.7.19].

For a static I-space A, the evaluation A(M) at a faithful finite G-set M should be

thought of as the G-space underlying A. By the definition of static, its G-homotopy type

does not depend on the choice of M . The G-space underlying an arbitrary I-space A

is not as easy to describe directly, but it can be defined by first replacing by a globally

equivalent static I-space QA and then taking the underlying G-space of QA. This is

the main technical difference to orthogonal spaces, where the underlying G-space can

always be obtained by forming a (homotopy) colimit along the finite subrepresentations

of a complete G-universe, cf. Section 2.1.

2.4.2 Quillen equivalence to Fin-global orthogonal spaces

There is a natural embedding i : I ↪→ LR which sends a finite set to its R-linearization

together with the inner product for which the canonical basis is orthonormal. This gives

rise to a forgetful functor U from orthogonal spaces to I-spaces with left adjoint L given

by left Kan extension along i.

Proposition 2.4.2 ([Sch15, Theorem I.7.26 and Proposition I.7.25]). The adjunction

L : I− spaces � orth. spaces : U

is a Quillen equivalence between the global model structure on I-spaces and the Fin-global

model structure on orthogonal spaces.

Moreover, a morphism f of orthogonal spaces is a Fin-global equivalence if and only

if U(f) is a global equivalence of I-spaces.

Using this Quillen equivalence we can transport the global homotopy types intro-

duced in Sections 2.2 and 2.3 to I-spaces: An I-space is a global classifying space for

a collection C if it is globally equivalent to U(BglC), where BglC is a global classifying

space for C in orthogonal spaces.

Example 2.4.3 (Global classifying spaces for finite groups). Let G be a finite group

and M a finite G-set. This data gives rise to an I-space I(M,−)/G whose evaluation

on a finite set N is the set of injective maps from M to N , modulo the G-action by

pre-composition. Giving a morphism from I(M,−)/G to an I-space A is equivalent to

picking a G-fixed point in the evaluation A(M). By adjunction, this shows that L maps

I(M,−)/G to the orthogonal space LR(R[M ],−)/G of Example 2.2.4. Since I(M,−)/G

is also cofibrant in the model structure mentioned above, this means that it is a global

classifying space for G.
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This model for BglG is an example of an I-space for which it is difficult to read off

the underlying H-spaces directly. For example for H the trivial group, the underlying

H-space is the usual BG. On the other hand, each evaluation I(M,N)/G is a discrete

finite set.
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Chapter 3

Stable global homotopy theory

In this chapter we give the relevant definitions and results for global homotopy theory

based on orthogonal spectra (the stable version of orthogonal spaces) and symmetric

spectra (the stable version of I-spaces). We also introduce the global spectra which are

studied in Parts II, III and IV. Symmetric products of spheres and global topological K-

theory are modeled on orthogonal spectra, while the model for global algebraic K-theory

only forms a symmetric spectrum.

3.1 Orthogonal spectra, global functors and global equiv-

alences

We quickly give the relevant definitions of orthogonal spectra from the perspective of

global equivariance, for details we refer to [Sch15, Chapter III].

3.1.1 Definition

Definition 3.1.1. An orthogonal spectrum consists of

• a collection of based spaces X(V ) for every real inner product space V

• based structure maps ϕ∗ : X(V ) ∧ SW−ϕ(V ) → SW for every linear isometric

embedding ϕ : V ↪→W .

Here, W −ϕ(V ) denotes the orthogonal complement of ϕ(V ) in W . The structure maps

have to be unital, associative and ‘vary continuously in ϕ’. The latter is made precise

in the following way: We let V and W be two real inner product spaces and recall that

LR(V,W ) denotes the spaces of linear isometric embeddings between them. Then the

subspace

{(ϕ,w) | w ∈ (W − ϕ(V ))} ⊆ LR(V,W )×W

defines a vector bundle over LR(V,W ). Let Th(V,W ) denote the Thom space of this

bundle. As a set, Th(V,W ) is the based union of all SW−ϕ(V ), hence the structure maps

assemble to a based map

X(V ) ∧ Th(V,W )→ X(W )

and the requirement is that this map be continuous.
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A morphism f : X → Y of orthogonal spectra is a sequence of based maps f(V ) :

X(V )→ Y (V ) which commute with the structure maps.

We note that, in particular, each level X(V ) of an orthogonal spectrum carries a

based action of O(V ).

Example 3.1.2 (Suspension spectra). Any based orthogonal space X gives rise to an

orthogonal spectrum Σ∞X, its suspension spectrum, via

(Σ∞X)(V ) = X(V ) ∧ SV ,

where the structure maps are the smash product of the maps X(ϕ) : X(V ) → X(W )

with the homeomorphisms SV ∧ SW−ϕ(V ) ∼= SW sending (v ∧ w) to (ϕ(v) + w).

For an unbased orthogonal space X we denote by Σ∞+ X the suspension spectrum of

the based orthogonal space X+. In particular, Σ∞+ ∗ gives the sphere spectrum S.

3.1.2 Global homotopy groups and global equivalences

If V comes equipped with an action of a compact Lie group G, the evaluation X(V )

also inherits a G-action through the homomorphism G → O(V ), just like for ortho-

gonal spaces. Furthermore, for any other G-representation W and G-equivariant linear

isometric embedding ϕ : V ↪→W , the structure map

ϕ∗ : X(V ) ∧ SW−ϕ(V ) → X(W )

is G-equivariant. Fixing a complete G-universe UG for every compact Lie group G, one

defines the equivariant homotopy groups of an orthogonal spectrum X via

πGk (X) = colim
f.d.V⊆UG

[Sk+V , X(V )]G∗

where the connecting maps in the colimit system are induced by the equivariant struc-

ture maps. For k < 0, the colimit system is indexed over all finite dimensional G-

subrepresentations V ⊆ UG which contain a chosen trivial copy of R−k ⊆ (UG)G, in

which case the expression Sk+V means SV−R
−k

. Since the space of linear isometric

embeddings R−k ↪→ (UG)G is connected (even contractible), the group πGk (X) is inde-

pendent of this choice up to canonical isomorphism.

Remark 3.1.3. If G is finite, πGk (X) can be defined more directly as the colimit

colim
n∈N

[Sk+n·ρG , X(n · ρG)]G

over the values at multiples of the regular representation ρG of G.

It is an important feature of the global equivariant homotopy theory of orthogonal

spectra that for each fixed k ∈ N the collection of homotopy groups

πk(X) = {πGk (X)}G compact Lie group
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has a rich natural functoriality, it forms a so-called global functor. Concretely this means

that there are

• contravariantly functorial restriction maps ψ∗ : πGk (X)→ πKk (X) for every contin-

uous group homomorphism ψ : K → G, and

• covariantly functorial transfer maps trGH : πHk (X) → πGk (X) for every closed sub-

group inclusion H ≤ G.

The restrictions are defined in the same manner as for orthogonal spaces in Section 2.1.

If ψ is the inclusion of a closed subgroup H of G, we also use the notation resGH instead

of ψ∗.

We quickly recall the construction of the transfer in the case where H is of finite

index in G, as we need it explicitly in Section 14.2:

Example 3.1.4 (Finite index transfers). Let X be an orthogonal spectrum and x an

element of πH0 (X) (the construction for other degrees is similar). Then x is represented

by an H-map f : SV → X(V ) for some H-representation V , which we can without

loss of generality assume to be the restriction of a G-representation that also allows

an embedding of the G-set G/H. This embedding can be extended to a G-equivariant

embedding G/H × D(V ) ↪→ V (where D(V ) denotes the unit disc in V ). Collapsing

everything outside the interiors of the discs to a point (the ‘Thom-Pontryagin construc-

tion’) gives a G-map SV → G/H+ ∧ SV , from which one obtains a representative for

the transfer trGH(x) of x by postcomposing with the map G/H+ ∧ SV → X(V ) sending

a tuple ([g] ∧ v) to gf(g−1v).

Restrictions and transfers satisfy the double coset formula (cf. [Sch15, III.4.15]).

Furthermore, the restriction along an inner automorphism of a compact Lie group is

always the identity, and transfers along subgroup inclusions with infinite Weyl group are

trivial.

For every orthogonal space X, the group πG0 (Σ∞+ X) can be expressed in terms of the

Repop-functor π0(X). Every element [x] of πG0 (X) is represented by a point x ∈ X(V )G

for some G-representation V contained in the chosen G-universe UG and gives rise to an

element (also denoted [x]) in πG0 (Σ∞+ X) represented by the G-map

SV → X(V )+ ∧ SV

v 7→ x ∧ v.

This construction commutes with restrictions along group homomorphisms. Based on

the tom Dieck-splitting, Schwede shows:

Proposition 3.1.5 ([Sch15, Proposition III.4.8]). Let G be a compact Lie group and

X an orthogonal space. Then the 0-th homotopy group πG0 (Σ∞+ X) is free with basis

{trGH([x])}, where H ranges through conjugacy classes of subgroups of G with finite Weyl

group WG(H) and [x] ranges through a set of representatives of WG(H)-orbits of πH0 (X).

Example 3.1.6. Applying this to X a global classifying space BglK (cf. Example

2.2.4) we see that πG0 (Σ∞+ (BglK)) has a basis {trGH([α])}, where (H,α : H → K) ranges
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through (G ×K)-conjugacy classes of pairs of a closed subgroup H of G together with

a continuous group homomorphism to K. If K is compact, we call π0(Σ∞+ (BglK)) the

free global functor in degree K. Giving a morphism of global functors

π0(Σ∞+ (BglK))→ F

to some global functor F is equivalent to specifying an element in F (K).

Equivariant homotopy groups also give rise to the notion of global equivalence:

Definition 3.1.7. A morphism f : X → Y of orthogonal spectra is a global equivalence

if it induces an isomorphism on πGk for all integers k and every compact Lie group G.

The localization of the category of orthogonal spectra at the class of global equiva-

lences gives rise to the global stable homotopy category. There is a model structure on

orthogonal spectra with weak equivalences the global equivalences, and so this localiza-

tion can be studied via homotopical algebra (cf. [Sch15, Section IV.1]).

3.1.3 Fin-global version

Like for orthogonal spaces, there is also a global theory of orthogonal spectra which only

takes finite groups into account. In this case, the collection

{πGk (X)}G finite group

forms a Fin-global functor, i.e., the restriction of the structure of a global functor to

the class of finite groups. Fin-global functors can be interpreted as functors on a Fin-

global Burnside category defined via (G,K)-bisets, cf. [Sch15, Remark III.3.28] and

have previously been considered in an algebraic setup by Webb [Web93], where they are

called ‘inflation functors’.

A map of orthogonal spectra is called a Fin-global equivalence if it induces isomor-

phisms on πG∗ for all finite groups G. The localization of orthogonal spectra at Fin-global

equivalences yields the Fin-global homotopy category. Again, there are model structures

available (cf. [Sch15, Section IV.4]).

3.1.4 Comparison to G-spectra

We quickly recall how the global theory relates to stable equivariant homotopy theory

for a fixed compact Lie group G.

Every orthogonal spectrum X gives rise to a G-orthogonal spectrum XG indexed on a

complete universe, in the sense of Mandell-May [MM02], by equipping it with the trivial

action. Morally this means that one forgets all evaluations at representations of groups

other than G. This is not strictly true, since these can be reconstructed from the O(V )-

actions, as we argued before. The cleaner statement is that these other evaluations no

longer play a role for the homotopy theory and hence do not carry over to the homotopy

category.

Given a closed subgroup H of G, the homotopy groups πH∗ (XG) of the G-orthogonal

spectrum agree with the global homotopy groups πH∗ (X) of X itself. Since G-stable
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equivalences of G-orthogonal spectra are defined as those morphisms which induce iso-

morphisms on all homotopy groups πH∗ , it follows that the functor X 7→ XG takes global

equivalences to G-stable equivalences. Hence, every global homotopy type determines a

G-homotopy type for all compact Lie groups G.

This means in particular that every global homotopy type determines a cohomology

theory on based G-spaces. Using the global homotopy orbits construction of Section 2.3,

this cohomology theory can be read off more directly: There are natural isomorphisms

[Σ∞((EglG)+ ∧G A), X]gl
∗
∼= [Σ∞A,XG]G∗

∼= X−∗G (A)

for all based G-spaces A. In words, X determines a cohomology theory on based or-

thogonal spaces, and applying it to the global homotopy orbits of G-spaces yields the

G-cohomology theory associated to the underlying G-spectrum XG.

One consequence of this factorization is that the G-cohomology theories that arise

from global spectra have more structure and special properties: Every map of based

orthogonal spaces

(EglG)+ ∧G A→ (EglG)+ ∧G B

induces a map X∗G(B) → X∗G(A). For example, on coefficients this yields the existence

of restriction maps for arbitrary group homomorphisms, while general G-cohomology

theories only allow restrictions for subgroup inclusions and conjugation maps.

3.2 Global symmetric products of spheres

In this section we recall the definition and some properties of symmetric products of the

sphere spectrum, a class of orthogonal spectra that is central to this thesis. We also

recall Schwede’s result on the 0-th equivariant homotopy groups of symmetric products.

3.2.1 Definition and the Dold-Thom theorem

Let X be a topological space and n a natural number. The n-th symmetric product

Spn(X) of X is defined as X×n/Σn, the n-fold cartesian product modulo the Σn-action

which permutes the coordinates. In other words, an element of Spn(X) is an unordered

n-tuple of elements in X. If X is based, there are comparison maps Spn−1(X)→ Spn(X)

obtained by adding a basepoint to every tuple. This allows one to form the colimit over

all n, the infinite symmetric product Sp∞(X). By a famous theorem of Dold-Thom

[DT58], the construction Sp∞(−) turns homology into homotopy, i.e., there are natural

isomorphisms

π∗(Sp
∞(X), ∗) ∼= H̃∗(X,Z) (3.2.1)

for every connected CW complex X. Moreover, under this isomorphism the map X →
Sp∞(X) induces the Hurewicz map on homotopy groups. So one can think of the

sequence

X = Sp1(X)→ Sp2(X)→ Sp3(X)→ . . .→ Sp∞(X)

as a natural filtration of the Hurewicz map.
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Figure 3.1: An element of Sp34(S2)

Remark 3.2.1. Elements of the infinite symmetric product Sp∞(X) of a space X can be

visualized as configurations in X with labels in the natural numbers, cf. Figure 3.1. The

label on a point indicates how often it occurs in the tuple. Since this is not well-defined

for the basepoint, its label is set to ∞. The topology on this labeled configuration

space is such that if two points collide, their corresponding labels are added. Under

this identification, a point lies in the subspace Spn(X) if and only if the sum of the

non-basepoint labels is at most n.

3.2.2 The orthogonal spectra Spn

This construction has a stable version: Let Spn denote the orthogonal spectrum with

V -th level Spn(SV ), the n-th symmetric product of the V -sphere, and with structure

maps

Spn(SV ) ∧ SW−ϕ(V ) ϕ∗−→ Spn(SW )

[v1, . . . , vn] ∧ w 7→ [ϕ(v1) ∧ w, . . . , ϕ(vn) ∧ w].

Inserting a basepoint yields the orthogonal spectrum level symmetric product filtration

Sp1 i1−→ Sp2 i2−→ . . .→ Sp∞.

For n = 1 and n =∞, the spectra Spn are known under different names. The spectrum

Sp1 is isomorphic to the sphere spectrum S. In Proposition 3.1.5 we saw that πG0 (S)

is a free abelian group with basis {trGH(1)}, where H ranges through conjugacy classes

of subgroups H of G with finite Weyl group. This abelian group is also known as the

Burnside ring of G and sometimes denoted A(G). If G is finite, A(G) has a simpler

description as the group completion of the commutative monoid of isomorphism classes

of finite G-sets with disjoint union. In particular, it is a free abelian group with basis

the isomorphism classes of transitive G-sets G/H. The isomorphism to πG0 (S) is given

by sending G/H to trGH(1).

By the Dold-Thom theorem, Sp∞(Sk) is an Eilenberg-MacLane space of typeK(Z, k).

The naturality of the isomorphism (3.2.1) further implies that the structure maps

πk(Sp
∞(Sk))→ πk+1(Sp∞(Sk+1))
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are isomorphisms, and so Sp∞ is non-equivariantly a model for the Eilenberg-MacLane

spectrum HZ. In [dS03] it is shown that something similar is true for finite G: The

homotopy groups πG∗ (Sp∞) are a copy of Z concentrated in degree 0. Moreover, all

restriction maps

ψ∗ : πK0 (Sp∞)→ πG0 (Sp∞)

associated to group homomorphisms ψ : G → K are isomorphisms, and the transfer

maps

trGH : πH0 (Sp∞)→ πG0 (Sp∞)

are given by multiplication with the index [G : H]. In other words, on finite groups,

π0(Sp∞) is the constant Fin-global functor with value Z and Sp∞ is an Eilenberg-

MacLane spectrum for this Fin-global functor. This is no longer true for non-discrete

compact Lie groups G. Neither is πG0 (Sp∞) always isomorphic to Z, nor are the higher

homotopy groups πGk (Sp∞) always trivial (cf. [Sch15, Construction V.3.21]).

3.2.3 Schwede’s computation of πG0 (Sp
n)

For finite G, the map

A(G) ∼= πG0 (S)→ πG0 (Sp∞) ∼= Z

is the augmentation which sends a finite G-set to its number of elements. Applying

πG0 (−) to the symmetric products gives rise to a filtration

πG0 (S)→ πG0 (Sp2)→ πG0 (Sp3)→ . . .→ πG0 (Sp∞)

of this augmentation. In [Sch14], Schwede has given the following algebraic description

of this filtration: Let τΣ
n ∈ A(Σn) denote the (isomorphism class of the) Σn-set Σn/Σn−1.

Theorem 3.2.2 ([Sch15, Theorem 3.13]). The maps

A(−) ∼= π0(S)→ π0(Spn)

are surjective for all n ∈ N. As a global functor, the kernel is generated by the single

element

τΣ
n − n · 1 ∈ A(Σn).

In particular, there are isomorphisms of global functors

π0(Spn) ∼= A(−)/(τΣ
n − n · 1).

The Σn-set τΣ
n is isomorphic to n = {1, . . . , n} with its tautological Σn-action. It

is the universal n-element G-set, in the sense that for every n-element G-set X there

exists a homomorphism ψ : G → Σn, unique up to conjugacy, such that X ∼= ψ∗(τΣ
n ).

In particular, restricting (τΣ
n − n · 1) along this group homomorphism gives the relation

X − n · 1 ∈ A(G). So we see that all n-element G-sets become identified with n · 1 in

πG0 (Spn). However, this is not all that happens, because in order to determine πG0 (Spn)

concretely one also needs to apply transfers to such relations for subgroups of G. It
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becomes an algebraic computation in the Burnside ring global functor - more and more

complex as the order of G increases - and the result is often not very enlightening.

This demonstrates the philosophy behind global homotopy theory: When viewed in the

full context, various objects (spectra or their homotopy groups) enjoy natural universal

properties which they lose after evaluation at a single group.

In Part II we compute the higher homotopy groups πG∗ (Spn) after tensoring with Q.

In Part IV we are concerned with finding similar global formulas for the effect of the

rank and complexity filtrations of global K-theory on π0.

3.3 Global topological K-theory

We describe a model for global connective complex K-theory, as introduced in [Sch15,

Section V.6].

For this we recall that a Γ-space (in the sense of Segal [Seg74]) is a functor from the

category of finite based sets to spaces. We write n+ for the set {1, . . . , n} with an added

basepoint. For simplicity, we further assume that our Γ-spaces take 0+ to a point. Every

Γ-space X can be evaluated on based spaces A via the formula

X(A) =

∫ n+

X(n+)×A×n

= coeq

 ⊔
n1+

,n2+

hom(n1+
, n2+

)×X(n1+
)×A×n2 ⇒

⊔
n+

X(n+)×A×n


with basepoint X(0+) × A×0 ∼= ∗. Here, hom(−,−) denotes the morphism sets in the

category of finite based sets. Given another based space B, there are assembly maps

X(A) ∧B → X(A ∧B)

which send a tuple (x, a1, . . . , an) ∧ b to (x, a1 ∧ b, . . . , an ∧ b).
In particular, the evaluations X(SV ) of a Γ-space X on all spheres form an orthogonal

spectrum denoted by X(S), with structure maps

ϕ∗ : X(SV ) ∧ SW−ϕ(V ) → X(SV ∧ SW−ϕ(V )) ∼= X(SW ).

The orthogonal spectrum X(S) is called the spectrum realization of X. The functor

−(S) is the left adjoint of a Quillen equivalence between Γ-spaces and (non-equivariant)

connective spectra, i.e., spectra with homotopy groups concentrated in non-negative

degrees, cf. [BF78].

Now we come to the model for topological K-theory. For every complex inner product

space W and a finite based set A+ we define ku(W,A+) to be the space of tuples (Wa)a∈A

of finite dimensional pairwise orthogonal subspaces of W indexed on A, or in other words

the space ⊔
(na∈N)a∈A

(
LC(

⊕
a∈A

Cna ,W )/
∏
a∈A

U(na)

)
.
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Every based map α : A+ → B+ induces a map ku(W,α) : ku(W,A+)→ ku(W,B+) via

ku(W,α)((Wa)a∈A) = (
⊕

a∈α−1(b)

Wa)b∈B.

This turns ku(W,−) into a Γ-space.

For W = C∞, the realization ku(C∞, S) is a non-equivariant model for connective

topological K-theory. However, it does not have the right equivariant homotopy type.

In principle, to obtain a model for connective G-equivariant K-theory, one should use

W = UCG, a complete complex G-universe. However, the resulting orthogonal spectrum

has a non-trivial G-action and hence does not represent a global homotopy type.

Schwede showed that this issue can be resolved by letting W vary functorially in

the levels V of an orthogonal spectrum. For this we let Sym(W ) denote the symmetric

algebra on W , equipped with an inner product as explained in [Sch15, Proposition V.6.7].

Further, let VC denote the complexification of a real inner product space V . Then the

assignment

V 7→ ku(Sym(VC),−)

defines a functor from LR to the category of Γ-spaces, or in other words an orthogonal

Γ-space. From this orthogonal Γ-space one forms the orthogonal spectrum ku via

ku(V ) ··= ku(Sym(VC), SV ). (3.3.1)

The structure maps are the composites

ku(Sym(VC), SV ) ∧ SW−ϕ(V ) → ku(Sym(VC), SW )→ ku(Sym(WC), SW ),

where the first map is the structure map for the spectrum associated to the Γ-space

ku(Sym(VC),−), and the second one is induced from the embedding

Sym(ϕC) : Sym(VC) ↪→ Sym(WC).

Remark 3.3.1. In fact it would suffice to take ku(VC, S
V ) in Definition (3.3.1), in the

sense that it would yield the same global homotopy type. Schwede uses the symmetric

algebra because it turns ku into a commutative orthogonal ring spectrum (from the

point of view of global homotopy theory: an ultracommutative ring spectrum). We do

not make use of the highly structured multiplication in this thesis. The reason for using

Sym(−) nonetheless is that for global algebraic K-theory it will help us to identify the

global homotopy type of a certain associated I-space more easily, and we prefer to use

uniform definitions for the topological and algebraic case.

Remark 3.3.2. The levels ku(V ) can be visualized in a similar manner as symmetric

products of spheres, cf. Figure 3.2. Every point in ku(V ) is represented by a finite

configuration [(W1, x1), . . . , (Wk, xk)], where the xi are points in SV and the Wi are

pairwise orthogonal complex subspaces of Sym(VC). This representation becomes unique

up to a permutation of labels if one requires all the xi to be distinct elements of V and

all the Wi to be non-zero. Again, the topology is such that if two points collide their
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labels are added up, and all labeled points which move to the basepoint vanish.

In [Sch15, Construction V.6.11], Schwede shows that for finite groups G, the or-

thogonal spectrum ku models the connective cover of global equivariant K-theory. In

particular, the 0-th K-group ku0
G(A) of a based G-space A is given by isomorphism

classes of stable equivariant complex vector bundles on A, in the sense of Segal [Seg77].

This means that πG0 (ku) is isomorphic to the complex representation ring RU(G). The

isomorphism can be made explicit as follows: Let W be a finite dimensional complex

G-representation. We choose a real G-representation V together with a G-embedding

ϕ : W ↪→ Sym(VC). Then we obtain a G-map

SV → ku(V )

by sending v to the tuple (ϕ(W ), v) and let [W ] ∈ πG0 (ku) denote its associated stable

class. A different way to view the assignment W 7→ [W ] is given by the following: Let

L(Cn) denote the orthogonal space LC(Cn, Sym(−C)). Then there are maps

αn : Σ∞+ (L(Cn)/U(n))→ kun

which in level V send a pair (ϕ, v) to the configuration (ϕ(Cn), v). The orthogonal space

L(Cn) is a model for a global universal space EglU(n) of U(n), which follows from the

fact that the space of equivariant linear isometric embeddings of any G-representation

into a complete complex G-universe is contractible (cf. Example 2.2.4). Hence there are

isomorphisms

πG0 (L(Cn)/U(n)) ∼= Rep(G,U(n)) ∼= {isom. classes of n-dim. G-representations}.

The assignment W 7→ [W ] is then the composite

πG0 (L(Cn)/U(n))→ πG0 (Σ∞+ (L(Cn)/U(n)))
(αn)∗−−−→ πG0 (ku).

In particular, this shows that [W ] only depends on the isomorphism type of W and not

on the choice of V and ϕ.

The following properties are shown in [Sch15, Corollary V.6.9], and also follow from

the results of Chapter 14:

∞

V1

V2
V3

V4

1

Figure 3.2: An element of ku(V )
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• The map W 7→ [W ] is additive and induces a homomorphism

[−] : RU(G)→ πG0 (ku).

• For finite G, [−] is an isomorphism.

• [−] takes restrictions of representations to homotopy theoretic restrictions.

• For a finite index subgroup H of G and an H-representation W , [−] takes the

induced representation IndGH(W ) to the homotopy theoretic transfer trGH([W ]).

That is, on finite groups, [−] induces an isomorphism from the representation ring global

functor RU(−) to π0(ku).

The map [−] : RU(G) → πG0 (ku) above also makes sense for non-discrete compact

Lie groups, but in general it fails to be an isomorphism. In particular, this shows

that ku does not represent a connective cover of equivariant K-theory for non-discrete

groups. One problem is that [−] does not take Segal’s smooth transfers for infinite

index inclusions ([Seg68b]) to homotopy-theoretic transfers, which are added on freely

in π0(ku). Ultimately, these issues are related to the problem that there is no clean

theory of equivariant Γ-spaces over non-discrete compact Lie groups. Because the rank

filtration and also our proofs in Part III rely on point-set level models arising through

Γ-spaces, we work with this version of ku despite these flaws. Interestingly though, it

turns out that the description of the filtration quotients in the rank and complexity

filtration as well as the global formulas for the behavior on π0 work for all compact Lie

groups, and the universal classes even lie at non-discrete groups. We say a few more

words about this in Remark 14.1.4.

There is a natural morphism from ku to the infinite symmetric product Sp∞, ob-

tained by sending a complex subspace of Sym(VC) to its dimension. This morphism is

used in the definition of the rank and complexity filtrations in Part III.

3.3.1 Global real K-theory

There is also a real version of connective global K-theory, called ko. It is given by

ko(V ) = ko(Sym(V ), SV ),

where ko(Sym(V ),−) is the Γ-space parametrizing orthogonal real subspaces of Sym(V ),

analogously to the complex case. Again, ko represents connective real equivariant K-

theory on finite groups, but differs in general for non-discrete compact Lie groups.

3.4 Global K-theory of finite sets

We recall a model for the K-theory of finite sets kFin.

For a finite pointed set A+ and a real inner product space W we let kFin(W,A+)

denote the space of tuples (Ma)a∈A of pairwise orthogonal finite orthonormal systems
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Ma of vectors of W , or in other words the space

⊔
(na∈N)a∈A

(
LR(

⊕
a∈A

Rna ,W )/
∏
a∈A

Σna

)
.

For a fixed W , the spaces kFin(W,A+) carry a Γ-space structure via

kFin(W,α)((Ma)a∈A) = (
⊔

a∈α−1(b)

Ma)b∈B.

Again we let W vary in order to implement equivariance and obtain an orthogonal

Γ-space

(V,A+) 7→ kFin(Sym(V ), A+).

We write kFin for the realization of this orthogonal Γ-space.

There is a unit map S → kFin given by the 1-tuple with value 1 ∈ R ∼= Sym(0).

In Chapter 12 we use the modified rank filtration to give a short proof of the global

version of the Barratt-Priddy-Quillen theorem: The morphism S → kFin is a global

equivalence.

Finally, we note that there is also a morphism kFin → Sp∞ which sends a finite

orthonormal system Ma to its number of elements.

3.5 Global homotopy theory of symmetric spectra

In this section we quickly recall the definition of another model for global homotopy

theory, the category of symmetric spectra. Symmetric spectra are the stable analog of

I-spaces (cf. Section 2.4) and similarly only model equivariant homotopy types over

finite groups. Symmetric spectra were originally introduced in [HSS00] as a symmetric

monoidal model for the non-equivariant stable homotopy category. Their global homo-

topy theory is developed in [Hau15], to which we refer for more details.

Symmetric spectra are a more combinatorial version of orthogonal spectra, with

orthogonal groups replaced by symmetric groups.

Definition 3.5.1 (Symmetric spectrum). A symmetric spectrum is a collection of based

spaces X(M) for every finite set M , together with associative and unital structure maps

ϕ∗ : X(M) ∧ SN−ϕ(M) → X(N)

for injections ϕ : M ↪→ N .

In this case there is no condition on ‘varying continuously in ϕ’, since the set of

injective maps between two finite sets is discrete.

Example 3.5.2. Every based I-space A gives rise to its suspension symmetric spectrum

Σ∞A defined via (Σ∞A)(M) = A(M) ∧ SM .

Like for I-spaces, the evaluation of a symmetric spectrum X on a finite G-set M

carries an induced G-action through functoriality. For the definition of homotopy groups,
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we say that a countable G-set is a complete G-set universe if it allows an embedding of

every finite G-set. Unlike for orthogonal spectra, it turns out that the definition of the

homotopy groups depends on the choice of a complete G-set universe UG, so it is part

of the notation.

Definition 3.5.3. Let n ∈ Z be an integer and UG a complete G-set universe. Then the

n-th G-equivariant homotopy group πG,UGn (X) of a symmetric spectrum of spaces X is

defined as the colimit

πG,UGk (X) ··= colim
finite M⊆UG

[SktM , X(M)]G.

For negative k, one makes the same adjustments as for orthogonal spectra, cf. Section

3.1.

The dependance on the choice of universe is as follows: Every G-isomorphism UG
∼=−→

U ′G gives rise to a natural isomorphism πG,UG∗ ∼= π
G,U ′G
∗ , and two different isomorphisms of

universes will in general give rise to two different isomorphisms of homotopy groups. This

stands in contrast to the situation for orthogonal spectra. It means that any two notions

of homotopy group are isomorphic, but not canonically so, and hence it is misleading to

leave UG out of the notation.

In particular, the homotopy group functor πG,UG∗ has a natural action of the G-

automorphisms of UG (in fact, this action extends to an action of the monoid of G-self

injections of UG, cf. [Hau15, Section 4]). Since no such action exists on the homotopy

groups of orthogonal spectra, this is an indication that the homotopy groups of symmetric

spectra defined in the way above are ‘not the right thing’. This phenomenon is already

present non-equivariantly (cf. [HSS00], [Sch08]). Globally it has another consequence:

The Aut(UG)-actions interact non-trivially with restrictions and transfers. In fact it

turns out that the collection of equivariant homotopy groups of a symmetric spectrum

does in general not form a Fin-global functor but inherits a more complicated structure

(cf. [Hau15, Section 4]).

In summary, global equivalences need to be defined by other means. This is done

similarly as for I-spaces by considering maps into global Ω-spectra (the stable analog

of static I-spaces) in a suitable level homotopy category. We do not need the general

definition of global equivalence of symmetric spectra in this thesis, and refer to [Hau15,

Section 2.2].

The reason why we do not need the general notion is the following: There is a

class of symmetric spectra - called globally semistable - whose global homotopy theory

behaves like that of orthogonal spectra. We first note that every orthogonal spectrum

Y has an underlying symmetric spectrum U(Y ) defined via U(Y )(M) = Y (R[M ]). The

linearization R[UG] is a complete G-universe (in the sense of representations) and so it

is not hard to see that there is a natural isomorphism

πG,UG∗ (U(Y )) ∼= πG∗ (Y ).

In particular, the homotopy groups of symmetric spectra which underlie an orthogonal

spectrum do not depend on the G-set universe up to canonical isomorphism.
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Definition 3.5.4. A symmetric spectrum is called globally semistable if there exists a

zig-zag of global π∗-isomorphisms to U(Y ) for some orthogonal spectrum Y .

Various other characterizations of global semistability are given in [Hau15, Proposi-

tion 4.13]. There it is also shown that globally semistable symmetric spectra have the

following properties:

• A morphism between globally semistable symmetric spectra is a global equivalence

if and only if it induces an isomorphism on equivariant homotopy groups.

• For every globally semistable X, the homotopy groups πG,UG∗ (X) are independent

of UG up to canonical isomorphism and will hence be denoted πG∗ (X).

• The equivariant homotopy groups of a globally semistable symmetric spectrum

naturally form a Fin-global functor, which for restrictions of orthogonal spectra

agrees with the one described in Section 3.1.

All symmetric spectra we encounter in this thesis are globally semistable, so we can

treat them like orthogonal spectra.

Finally, we note:

Theorem 3.5.5 ([Hau15, Theorems 2.18 and 5.3]). The global equivalences are part of

a model structure on the category of symmetric spectra, which is Quillen equivalent to

orthogonal spectra with the Fin-global model structure of [Sch15].

More precisely, the functor U is the right adjoint of a Quillen equivalence.

3.6 Global algebraic K-theory

We recall the construction of the free global algebraic K-theory of a ring R, as introduced

in [Sch16], which only forms a symmetric spectrum. More precisely, we describe a slight

modification of Schwede’s construction, as explained in [Hau15, Section 6.3].

Let W be a free R-module and A+ a finite pointed set. We define kR(W,A+) to be

the nerve of the following category: Objects are tuples of the form (Wa)a∈A where the

Wa are finite rank free R-submodules of W such that their sum
∑

a∈AWa in W is direct

and splits off from W as a direct summand (but no such splitting is part of the data).

Morphisms are tuples of abstract R-module isomorphisms, again indexed by A. This

category can also be described as the quotient category

⊔
(na)a∈A

(
E(EmbR(

⊕
a∈A

Rna ,W ))/
∏
a∈A

GLna(R)

)
,

where E(−) of a set is the category with objects the set and exactly one morphism be-

tween any two objects and Emb(−,−) is the set of splittable R-module monomorphisms

between two R-modules.

For fixedW , the assignment A+ 7→ kR(W,A+) possesses the structure of a Γ-space by

forming the inner direct sum of objects and morphisms, similarly to the topological case.
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For W = R∞, the realization kR(R∞,S) - which even forms an orthogonal spectrum

- is non-equivariantly a model for the free algebraic K-theory of R. To implement

equivariance we again need to vary the free R-module functorially, and this forces us to

use the more combinatorial category of symmetric spectra.

We obtain an I-Γ-space via

(M,A+) 7→ kR(Sym(R[M ]), A+)

where Sym(R[M ]) = R ⊗ Sym(Z[M ]) denotes the polynomial ring with commuting

variable set M . We note that this is well-defined even if R is not commutative, even

though the symmetric algebra on a general R-module does not make sense. The global

algebraic K-theory spectrum kR of R is the realization of this I-Γ-space, i.e.,

kR(M) = kR(Sym(R[M ]), SM )

with diagonal ΣM -action. The structure maps are defined analogously to those for the

realization of an orthogonal Γ-space.

Remark 3.6.1. The levels kR(M) can be interpreted similarly to the topological case.

Each kR(M) is the geometric realization of a simplicial space whose 0-simplices are

labeled configurations [(W1, x1), . . . , (Wk, xk)] of the following kind:

• The xi are points in the sphere SM .

• The Wi are finitely generated free submodules of the polynomial ring Sym(R[M ])

with variable set M , such that their sum is direct and the inclusion W1⊕. . .⊕Wk ↪→
Sym(R[M ]) allows an R-linear splitting.

These configurations are considered up to the equivalence relation that a labeled point

(Wi, xi) can be left out if either Wi is zero or xi the basepoint, and that if two xi are

equal they can be replaced by a single one with label the sum of the previous labels. In

other words, the 0-simplices are the direct algebraic analog of the spaces ku(V ). The

difference is that while complex subspaces can vary continuously, there is in general no

topology on the set of free submodules of an R-module which has the right properties.

Instead one uses higher simplices to implement isomorphisms of free modules.

In [Sch16], Schwede shows the following:

• The symmetric spectrum kR is globally semistable.

• Its G-fixed point spectrum (cf. [Sch16, Section 6]) represents the direct sum K-

theory of R[G]-lattices, i.e., R[G]-modules that are finitely-generated free as R-

modules. In particular, the equivariant homotopy groups πG∗ (kR) are the K-groups

of R[G]-lattices.

The second item implies that πG0 (kR) is isomorphic to the representation ring RepR(G),

i.e., the group completion of the monoid of isomorphism classes of R[G]-lattices. Again

we will need an explicit description of how to assign elements in πG0 (kR) to R[G]-lattices,

which we now recall.
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Lemma 3.6.2. Let M be a faithful non-empty G-set and W an R[G]-lattice. Then there

exists a G-embedding

W ↪→ Sym(R[M ]),

which splits non-equivariantly.

Proof. Since the canonical map from induction to coinduction is an isomorphism, we

obtain a G-map

W
coev−−−→ map(G, resG{e}W )

∼=←−
⊕
G

resG{e}W

which is R-linearly (though not R[G]-linearly) split by the projection onto the component

of the neutral element of G. In particular, W allows a G-equivariant embedding into the

permutation representation
⊕

G resG{e}W . Hence it suffices to show that this permutation

representation in turn sits inside Sym(R[M ]) as a direct summand. But this follows from

the observation that any monomial
∏
m∈M mim with all im pairwise different spans a

free G-subset, since M is faithful. This finishes the proof, since we assumed that M is

non-empty.

Hence, every R[G]-lattice W gives rise to an element [W ] ∈ πG0 (kR), the class of

SM → kR(M)

x 7→ (ϕ(W ), x)

for some choice of faithful finite G-set M and splittable embedding ϕ : W ↪→ Sym(R[M ]).

That this assignment does not depend on the choices follows similarly as for topo-

logical K-theory: Let I(Rn) be the GLn(R)-I-space

|E(I(Rn,Sym(R[−])))|.

The quotient I(Rn)/GLn(R) is the I-space which assigns to every finite set M the nerve

of the category of splittable rank n free submodules of Sym(R[M ]) and isomorphisms

between such. So one obtains a morphism

αn : Σ∞+ (I(Rn)/GLn(R))→ kR

by sending x ∈ SM and W ⊆ Sym(R[M ]) to the configuration (W,x).

Lemma 3.6.3. Let M be a faithful non-empty G-set. Then I(Rn)(M) is a univer-

sal space for the family of graph subgroups of GLn(R) × G. Moreover, the quotient

I(Rn)/GLn(R) is a global classifying space for GLn(R).

Proof. Since I(Rn)(M) carries a free GLn(R)-action, it follows that all fixed-points for

non-graph subgroups are empty. Now let Γ(ψ) ≤ GLn(R)×G be a graph subgroup for

a homomorphism ψ : H → GLn(R). There is a homeomorphism

I(Rn)(M)Γ(ψ) = |E(I(Rn,Sym(R[−])))|Γ(ψ) ∼= |E(I(Rn, Sym(R[−]))Γ(ψ))|,

48



so it suffices to show that the fixed points I(Rn,Sym(R[−]))Γ(ψ) are non-empty. Let W

denote the R[H]-lattice obtained by restricting the R[GLn(R)]-lattice Rn along ψ. By

Lemma 3.6.2 above, if M is non-empty, there exists a splittable H-embedding W ↪→
Sym(R[M ]), and hence a fixed point for Γ(ψ), proving that I(Rn)(M) is a universal

space.

This implies that there is a zig-zag of positive levelwise weak (GLn(R) × ΣM )-

equivalences

U(EGLn(R))← U(EGLn(R))× I(Rn)→ I(Rn),

where EGLn(R) is the orthogonal space model for the global universal space of GLn(R)

introduced in Section 2.2. So it follows that on quotients we obtain a zig-zag of positive

strong level equivalences of I-spaces, and hence I(Rn)/GLn(R) is globally equivalent to

U((EGLn(R))/GLn(R)), which is a global classifying space for GLn(R).

Hence we can again view the assignment [−] as the composites

πG0 (I(Rn)/GLn(R))→ πG0 (Σ∞+ (I(Rn)/GLn(R)))
(αn)∗−−−→ πG0 (kR).

If R satisfies dimension invariance, i.e., if Rn ∼= Rm implies n = m, there is a natural

map to the underlying symmetric spectrum of the infinite symmetric product Sp∞ given

by mapping every free R-module to its rank.
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Part II

Symmetric products and

subgroup lattices
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Chapter 4

Rational symmetric products of

G-spheres

In this part we are concerned with the rational properties of the Fin-global symmetric

products Spn, in particular a computation of their rational homotopy groups. We re-

call what we already discussed in Section 3.2. The first term Sp1 is the global sphere

spectrum S with 0-th homotopy group π0(S) the Burnside ring Fin-global functor. By

the tom Dieck splitting (cf. [tD75, Satz 2]) and the Adams isomorphism (cf. [Ada84,

Theorem 5.4]), the higher equivariant homotopy groups decompose as

πG∗ (S) ∼=
⊕

(H≤G)

π∗(Σ
∞
+ BWG(H)),

where the sum is taken over representatives of conjugacy classes of subgroups H of G.

Since all Weyl groups WG(H) are finite, it follows that the higher homotopy groups

are rationally trivial. The last term Sp∞ is an Eilenberg-MacLane spectrum for the

constant global functor Z, so its equivariant homotopy groups are constant Z in degree

0 and trivial in other degrees. Hence, their rationalization is a constant Q concentrated

in degree 0.

As we recalled in Section 3.2.3, Schwede gave a formula for the 0-th homotopy groups

π0(Spn) and hence in particular for their rationalization. This leaves the question

whether the rational homotopy of the Spn is always concentrated in degree 0, as it

is the case for Sp1 and Sp∞. It turns out that the answer is a strong ‘no’: As G and n

vary there are arbitrarily high non-trivial rational πGk (Spn). Moreover, these groups are

closely connected to the topology of the subgroup lattice of G.

In the next sections we give the statement of the theorem, relate it to Schwede’s

result and then discuss the Fin-global functoriality. Throughout Part II we will only

be talking about finite groups, so for the sake of brevity we will write ‘global’ to mean

‘Fin-global’ and always assume that G is finite.
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4.1 Subgroup lattices and their filtration

Let L(G) denote the (nerve of the) subgroup lattice of G, and L(G)n ⊆ L(G) the sub-

simplicial set of chains H0 ≤ . . . ≤ Hk of total index [Hk : H0] at most n. The group G

acts on each L(G)n via conjugation. Furthermore, we let H∗(−,Q) denote the ordinary

singular homology groups of a space with coefficients in Q. Then the main theorem of

this part says:

Theorem 4.1.1. For every n ∈ N there are isomorphisms

πG∗ (Spn)⊗Q ∼= H∗(L(G)n,Q)/G.

We observe that this result matches the previously known values πG∗ (S) ⊗ Q and

πG∗ (Sp∞) ⊗ Q, since L(G)1 is the discrete set of subgroups of G and L(G)∞ = L(G) is

contractible for the lattice has a minimal and a maximal element.

4.2 Motivation and relation to Schwede’s result

We give some motivation for the appearance of the subgroup lattice in Theorem 4.1.1.

For this we recall from Section 3.2.3 that Schwede [Sch14] gave the following description

of the 0-th global homotopy group π0(Spn), where τΣ
n ∈ A(Σn) is the tautological n-

element Σn-set:

(i) The map A(−) ∼= π0(S)→ π0(Spn) is surjective.

(ii) The kernel is generated as a global functor by the class (τΣ
n − n · 1) ∈ A(Σn).

This result is purely about 0-th homotopy groups, but it can also be used as a starting

point to construct elements in higher homotopy. We consider the example G = Σ3, whose

subgroup lattice modulo conjugation is depicted in Figure 4.1.

In πΣ3
0 (Sp3), the classes [Σ3/{e}] and 6 · 1 become equal for two reasons: Their

difference can on the one hand be written as

trΣ3
Σ2

(τ2 − 2 · 1) + 2 · (τ3 − 3 · 1)

and on the other hand as

trΣ3
A3

(resΣ3
A3

(τ3 − 3 · 1)) + 3 · sgn∗(τ2 − 2 · 1),

Σ3

A3

2

Σ2

3

{e}2

3

Figure 4.1: The subgroup lattice of Σ3 modulo conjugation
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where sgn : Σ3 → Σ3/A3
∼= Σ2 denotes the sign homomorphism. These two reasons

correspond to the two paths in the subgroup lattice from {e} to Σ3 and use that all

of the edges in these paths are associated to subgroup inclusions of index at most 3.

Moreover, Schwede’s proof yields explicit null-homotopies of (τ2 − 2 · 1) and (τ3 − 3 · 1)

in Sp3, and so one obtains two explicit homotopies between [Σ3/{e}] and 6 · 1. These

can be glued together to form a loop and hence give an element in πΣ3
1 (Sp3). If we pass

on to stage 6 of the filtration, there is another reason that [Σ3/{e}] and 6 · 1 become

equal: Their difference is the restriction of (τ6−6 ·1) under the homomorphism Σ3 → Σ6

corresponding to the free transitive Σ3-set. We will see that this direct homotopy is itself

homotopic to the two homotopies above in an explicit way and hence our constructed

element becomes trivial in πΣ3
1 (Sp6). In groups that allow longer chains of subgroups,

one can now start gluing these explicit homotopies of homotopies together to obtain

maps from the 2-sphere, and so on.

Theorem 4.1.1 can be loosely interpreted as saying that the above construction yields

all elements of πG∗ (Spn) up to torsion, and that the non-triviality of these classes (again

up to torsion) can also be decided purely in terms of the subgroup lattice of G.

4.3 Global functor structure

As written in the introduction, we will prove a more highly structured version of Theorem

4.1.1. We start by describing the global functor structure on the side of lattices.

Since we aim to show that H∗(L(G)n,Q)/G is isomorphic to πG∗ (Spn)⊗Q for every

finite group G, the assignment

G 7→ H∗(L(G)n,Q)/G

must have the functoriality of a graded global functor. In fact, this structure already

exists on rational chains, i.e., the assignment

G 7→ C∗(L(G)n)/G

extends to a chain complex of rational global functors, where C∗ denotes the reduced

rational chain complex of a simplicial set. The transfers and restrictions work out as

follows:

Transfers: The transfer along a subgroup inclusion H ≤ G sends a chain of sub-

groups of H to [G : H] times the same chain thought of as subgroups of G.

Restriction maps: The restriction along a group homomorphism ψ : G → K is a

bit more complicated, it takes the class of a chain H0 ≤ . . . ≤ Hm to

∑
[k]∈Gψ\K/H0

(
[G : ψ−1(kH0k

−1)]

[K : H0]
· [ψ−1(kH0k

−1) ≤ . . . ≤ ψ−1(kHmk
−1)]

)
. (4.3.1)

The sum is taken over a set of coset representatives of the (G×Hop
0 )-action on K given

by (g, h) · k = ψ(g)kh.
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Remark 4.3.1. To explain the factor [G : H] in the definition of the transfer and the

fractions [G:ϕ−1(kH0k−1)]
[K:H0] in that of the restrictions, we consider the case n = 1, where

L(G)1 is the discrete set of subgroups of G and πG0 (Sp1)⊗Q is the rationalized Burnside

ring of G, a vector space with basis the isomorphism classes of transitive G-sets G/H.

It is clear that H0(L(G)1,Q)/G and πG0 (Sp1) ⊗ Q are abstractly isomorphic, and one

isomorphism would be given by simply mapping H ∈ L(G)1 to [G/H] ∈ πG0 (Sp1) ⊗ Q.

However, this isomorphism cannot be compatible with any choice of isomorphism

H0(L(G)∞,Q)/G ∼= πG0 (Sp∞)⊗Q,

which are both isomorphic to Q. Any two subgroups of G represent the same element

in H0(L(G)∞,Q), since the lattice is connected. On the other hand, the augmentation

πG0 (Sp1)→ πG0 (Sp∞) sends a finite G-set to its number of elements, so the orbits [G/H]

generally have different images. This can be corrected by sending H ∈ L(G)1 to 1
[G:H] ·

[G/H] - which has augmentation 1 - instead. So, in the case n = 1, the formulas above

express transfers and restrictions in the rationalized Burnside ring global functor written

in terms of the basis { 1
[G:H] · [G/H]} instead of the usual basis {[G/H]}, which leads to

the appearance of the factors and fractions.

We claim that these transfers and restrictions turn Q[L(−)n]/− into a simplicial

global functor. The proof that each simplicial degree is a global functor is very similar

to the Burnside ring global functor (the case n = 1, cf. Remark 4.3.1 above), since

the main role in the restrictions (4.3.1) is played by the smallest subgroup H0 and the

higher Hi are carried along. The proof that the global structure maps commute with

the simplicial operators is straightforward, except for the face d0 and a restriction along

a group homomorphism ψ. There we have to show that

∑
[k]∈Gψ\K/H0

(
[G : ψ−1(kH0k

−1)]

[K : H0]
· [ψ−1(kH1k

−1) ≤ . . . ≤ ψ−1(kHmk
−1)]

)
(4.3.2)

and ∑
[k̃]∈Gψ\K/H1

(
[G : ψ−1(k̃H1k̃

−1)]

[K : H1]
· [ψ−1(k̃H1k̃

−1) ≤ . . . ≤ ψ−1(k̃Hmk̃
−1)]

)
(4.3.3)

are the same. The class [ψ−1(kH1k
−1) ≤ . . . ≤ ψ−1(kHmk

−1)] only depends on the

(G×Hop
1 )-orbit of k, and so we can rewrite (4.3.2) as

∑
[k̃]∈Gψ\K/H1


 ∑

[k]∈Gψ\K/H0

k∈Gψ k̃H1

[G : ψ−1(kH0k
−1)]

[K : H0]

 · [ψ−1(k̃H1k̃
−1) ≤ . . . ≤ ψ−1(k̃Hmk̃

−1)]

 .

Hence, it suffices to show that

∑
[k]∈Gψ\K/H0

k∈Gψ k̃H1

[G : ψ−1(kH0k
−1)]

[K : H0]
=

[G : ψ−1(k̃H1k̃
−1)]

[K : H1]
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for every k̃ ∈ K. This equality can be deduced from counting the number of elements

in the (G ×Hop
1 )-orbit of k̃ ∈ K in two different ways: The (G ×Hop

1 )-isotropy of k̃ is

given by the graph subgroup

{(g, k̃−1ψ(g)−1k̃) | g ∈ ψ−1(k̃H1k̃
−1)},

so the order of this orbit is |G| × |H1|
|ψ−1(k̃H1k̃−1)|

.

On the other hand, decomposing the orbit Gψk̃H1 into (G×Hop
0 )-orbits yields the sum

∑
[k]∈Gψ\K/H0

k∈Gψ k̃H1

|G| × |H0|
|ψ−1(kH1k−1)| ,

and so dividing by |K| gives the desired result.

Hence, the reduced chains of Q[L(−)n]/− become a complex of global functors, which

we denote by CLn. Then a more functorial version of Theorem 4.1.1 is the following:

Theorem 4.3.2. There is an isomorphism of global functors

π∗(Sp
n)⊗Q ∼= H∗(CLn).

This theorem will be implied by Theorem 5.2.2, a further strengthening, which is

proved in Chapter 6.
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Chapter 5

Geometric fixed points and

rational global homotopy theory

In this chapter we describe how to reformulate Theorem 4.3.2 in terms of geometric

fixed point homotopy groups, which turn out to be more directly accessible for the

symmetric products Spn. Afterwards we explain a further strengthening of our main

result, which allows to reconstruct the full global homotopy type of the rationalized SpnQ
from subgroup lattice data.

5.1 Geometric fixed points

Geometric fixed point homotopy groups are a different notion of homotopy groups for

equivariant spectra. Rationally, they determine the usual (categorical) homotopy groups

πG∗ (−) and vice versa. We recall their definition:

Definition 5.1.1 (Geometric fixed points). The geometric fixed point homotopy groups

of an orthogonal spectrum X are defined as

ΦG
k (X) = colim

n∈N
[Sk+n, X(n · ρG)G]

for every finite group G and k ∈ Z, where the colimit is taken over the maps

[Sk+n, X(n · ρG)G]
∧S1

−−→ [Sk+n+1, X(n · ρG)G ∧ S1]
(σ
ρG
n·ρG )G∗−−−−−−→ [Sk+n+1, X((n+ 1) · ρG)G],

using that the G-fixed points of SρG are homeomorphic to S1.

The collection of geometric fixed point homotopy groups does not form a global

functor, but it carries restrictions along surjective group homomorphisms ([Sch15, Con-

struction III.7.8]). Again, inner conjugations act trivially. In other words, if we denote

the category of finite groups and conjugacy classes of surjective group homomorphisms

by Out, the collection Φ∗(X) forms a functor Outop → Ab, an Outop-module. Moreover,

one can show that a morphism of orthogonal spectra is a global equivalence if and only

if it induces an isomorphism on all geometric fixed point homotopy groups (by applying

[Sch15, Proposition III.7.20] for all finite groups G and trivial G-action on the spectra).
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There is a natural comparison map γX : πGk (X) → ΦG
k (X), which is easiest to

describe if one defines πGk (X) as the colimit over the [Sk+n·ρG , X(n · ρG)]G, cf. Remark

3.1.3. Then γX takes a G-map

Sk+n·ρG → X(n · ρG)

to the induced map on fixed points

Sk+n ∼= (Sk+n·ρG)G → X(n · ρG)G.

The map γX has the following properties:

(i) It commutes with restrictions along surjective group homomorphisms.

(ii) It takes all elements of the form trGH(x) for H a proper subgroup of G to 0.

Given a global functor F and a finite group G we let τ(F )(G) denote the quotient

of F (G) by all transfers from proper subgroups. Then the assignment G 7→ τ(F )(G) no

longer forms a global functor, but it inherits restrictions along surjective group homo-

morphisms, since these commute with transfers. In these terms, the two properties above

mean that γX factors through a morphism of Outop-modules γ̃X : τ(π∗(X)) → Φ∗(X).

It turns out that for rational global functors the construction τ can be reversed and that

in this case γ̃X is an isomorphism:

Proposition 5.1.2 ([Sch15, Propositions IV.5.7 and IV.5.10]). The functor

τ : (Q− global functors) → (Q[Outop]−mod)

is an equivalence of categories. Moreover, for every orthogonal spectrum X the map

γ̃X : τ(π∗(X)⊗Q)→ Φ∗(X)⊗Q

is an isomorphism.

Remark 5.1.3. When working over a fixed finite group G, the analogous statement

is the equivalence of categories between rational G-Mackey functors and products of

Q[WG(H)]-modules, where H ranges through a set of conjugacy class representatives

and WG(H) = NG(H)/H denotes the Weyl group of H, cf. [GM95, Appendix A].

This means that instead of proving that π∗(Sp
n) ⊗ Q is isomorphic to H∗(CLn) as

global functors (Theorem 4.3.2), we can equivalently show:

Theorem 5.1.4. There is an isomorphism of Outop-modules

Φ∗(Sp
n)⊗Q ∼= τ(H∗(CLn)).

The Outop-module τ(H∗(CLn)) can be described as follows. Since τ is an equivalence,

it is in particular exact. So there is a natural isomorphism

τ(H∗(CLn)) ∼= H∗(τ(CLn)).
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By the description given above, the transfers of CLn(G) are generated by all chains

of subgroups that end in a proper subgroup of G. This process can be carried out

geometrically:

Definition 5.1.5 (Reduced lattice). We define the reduced subgroup lattice L̃(G) as

the quotient of L(G) by all chains that do not end in G, and similarly L̃(G)n.

So we find that there are isomorphisms

τ(CLn)(G) ∼= C∗(L̃(G)n)/G ∼= C∗(L̃(G)n/G),

for every finite group G. Under this isomorphism, the restriction along a surjection

ϕ : G� K sends a class [H0 ≤ . . . ≤ Hm] to [ϕ∗(H0) ≤ . . . ≤ ϕ∗(Hm)]. In other words,

the Outop-complex τ(CLn) arises by applying reduced rational chains to the simplicial

set valued Outop-functor G 7→ L̃(G)n/G. For this reason we from now on write CL̃n
for τ(CLn).

5.2 Rational global homotopy theory and Wimmer’s con-

struction

We recall some rational global homotopy theory, again with respect to all finite groups.

A morphism of orthogonal spectra is called a rational global equivalence if it induces an

isomorphism on all π∗(−)⊗Q. The localization of orthogonal spectra at rational global

equivalences forms the rational global homotopy category. As in the non-equivariant

case, the passage from the global homotopy category to the rational global homotopy

category is a left Bousfield localization. It has a fully faithful right adjoint with essen-

tial image those orthogonal spectra whose categorical homotopy groups form Q-vector

spaces. Given an orthogonal spectrum X, its rationalization XQ can be constructed as

the homotopy colimit of the sequence

X
·2−→ X

·3−→ X
·4−→ . . . ,

or as the smash product with the rational global sphere SQ. Furthermore, the unit

X → XQ induces an isomorphism π∗(X)⊗Q ∼= π∗(XQ).

As an application of Morita theory for stable model categories (cf. [SS03]), the

category of orthogonal spectra with rational global equivalences is Quillen equivalent to

the derived category of rational global functors ([Sch15, Theorem IV.5.2]). The latter in

turn – using Proposition 5.1.2 above – is equivalent to the derived category of rational

Outop-modules. In his PhD thesis [Wim16], Christian Wimmer constructs an explicit

equivalence T between the rational global homotopy category and this derived category.

We quickly recall his construction.

Let Epi denote the category of finite groups and surjective group homomorphisms.

Then the equivalence T is constructed as a chain of three functors

orth. spectra
Φ−→ (orth. spectra)Epiop cEpiop

−−−−→ ChEpiop

Q
q!−→ ChOutop

Q .
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We go through each one individually: The first functor Φ is the geometric fixed point

spectrum functor. It sends a finite group G and an orthogonal spectrum X to the

orthogonal spectrum ΦG(X) with

ΦG(X)(V ) = X(V ⊗ ρG)G

and structure maps

X(V ⊗ ρG)G ∧ SW−ϕ(V ) → X(W ⊗ ρG)G

the induced map on G-fixed points of the structure map (ϕ⊗ ρG)∗ for X.

Given a surjection ψ : G � K, the induced morphism Φψ(X) : ΦK(X)→ ΦG(X) is

defined in level V by

X(V ⊗ ρK)K = X(V ⊗ ψ∗(ρK))G
X(V⊗iψ)G−−−−−−−→ X(V ⊗ ρG)G.

Here, ψ∗(ρK) denotes the restriction of ρK to a G-representation along ψ, and iψ :

ψ∗(ρK) ↪→ ρG is the G-equivariant linear isometry which sends a basis element ek to

1√
| ker(ψ)|

∑
g∈ψ−1(k)

eg.

To avoid confusion, one should no longer think of ΦG(X) as a global spectrum, only the

non-equivariant homotopy type is important. Almost by definition, there is a natural

isomorphism between ΦG
∗ (X) and the non-equivariant homotopy groups π∗(Φ

G(X)).

Moreover, the restriction maps on Φ(X) induce the restriction maps of Φ∗(X) under

this isomorphism.

The second functor cEpiop is given by postcomposition with a certain functor

c : orth. spectra→ ChQ.

We do not need the definition of c, but only the following properties:

• There is a natural isomorphism between π∗(X)⊗Q and H∗(c(X)). Hence, c takes

rational equivalences to quasi-isomorphisms.

• For all based spaces A there is a natural quasi-isomorphism C∗(A) ' c(Σ∞A). In

other words, for suspension spectra of spaces the associated rational chain complex

c(Σ∞A) is equivalent to the usual rational singular chains.

Finally, q : Epi � Out is the projection and we write q! : ChEpiop

Q → ChOutop

Q for

the left Kan extension along q. Concretely, q! divides out all inner conjugations. This

process does not change the homology of complexes of the form c(Φ(X)), since inner

conjugations already act trivially on the homology of those.

Hence, the composite T has the property that it turns rational geometric fixed

point homotopy groups of an orthogonal spectrum into homology groups of the as-

sociated Outop-chain complex. In particular, it takes rational global equivalences to
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quasi-isomorphisms of Outop-chain complexes.

Theorem 5.2.1 ([Wim16]). The induced functor on homotopy categories

T : orth. spectra[Q− global eq.−1]→ D(Q[Outop]−mod)

is an equivalence.

Recall that by CL̃n we denote the reduced rational chains on the Outop-functor

G 7→ L̃(G)n/G. Then the strongest version of the main result in Part II is the following:

Theorem 5.2.2. There is a quasi-isomorphism of chain complexes of Q[Outop]-modules

T (Spn) ' CL̃n.

This implies Theorem 5.1.4 (and hence also Theorem 4.3.2) by taking homology.

Remark 5.2.3. For a fixed finite group G, the category of rational G-spectra is Quillen-

equivalent to the derived category of rational G-Mackey functors (which in turn is iso-

morphic to the product of the derived categories of rational WG(H)-modules, cf. Remark

5.1.3). The category of rational G-Mackey functors is semisimple, hence a chain com-

plex of such is determined up to quasi-isomorphism by its homology. Consequently, a

rational G-spectrum is determined by its G-Mackey functor homotopy groups. Hence,

for a fixed group G, the analogous statements of Theorem 5.1.4 and Theorem 5.2.2 are

equivalent. However, since rational Outop-modules are not semisimple, these theorems

are not equivalent globally. In Section 8 we use Theorem 5.2.2 to show that SpnQ is not

a product of global Eilenberg-MacLane spectra.
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Chapter 6

Proof of the main theorem

Now we come to the proof of Theorem 5.2.2. Let | − | denote the geometric realization

of a simplicial set. We show that there exists a transformation of spectrum-level Epiop-

functors

α̃ : Σ∞|L̃(−)n| → Φ(Spn)

which induces an isomorphism of Outop-modules on rational homology modulo conjuga-

tion. Since rational homology is naturally isomorphic to rational stable homotopy, we

see that this implies quasi-isomorphisms

CL̃n = q!(C∗(L̃(−)n)) ' q!(c(Σ
∞
+ |L̃(−)n|)) ' q!(c(Φ(Spn))) = T (Spn) (6.0.1)

of Outop-complexes and hence yields Theorem 5.2.2. Here, the second and third quasi-

isomorphisms make use of the properties of the chain functor c described in the previous

section.

More precisely, α̃ is a zig-zag, as we have to modify both L̃(G)n and Φ(Spn) a little

to be able to construct an honest map. First we note that by adjunction, spectrum maps

Σ∞|L̃(G)n| → ΦG(Spn)

stand in bijection with maps of spaces

|L̃(G)n| → (Spn(S0))G.

The target is just a discrete set of points, so there are no interesting maps on the

point-set level. This can be resolved by stabilizing once, which we do via the following

construction: The shift shX of an orthogonal spectrum X is defined via

(shX)(V ) = X(R⊕ V ).

It allows a natural map λX : S1 ∧X → shX given in level V by the composite

S1 ∧X(V ) ∼= X(V ) ∧ S1 σ1
V−−→ X(V ⊕ R)

X(τR,V )−−−−−→ X(R⊕ V ).

Its adjoint is a morphism λ̃X : X → Ω shX. Both λX and λ̃X induce isomorphisms on
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homotopy groups (cf. [Sch15, Proposition III.2.25]). Hence, instead of Φ(Spn) we can

equivalently consider the Epiop-diagram Ω sh Φ(Spn). Morphisms

Σ∞|L̃(G)n| → Ω sh ΦG(Spn)

now correspond to maps of spaces

|L̃(G)n| → Ω(Spn(SρG))G.

This one copy of the regular representation turns out to be enough to define α̃, though

it only becomes a rational equivalence after further stabilization.

6.1 Geometric idea

We first focus on the case n = |G| and start by describing a map

α1 : |L(G)| → Ω(Sp|G|(SρG))G

from the non-reduced subgroup lattice. The regular representation ρG decomposes as

R⊕ρG, where ρG is the reduced regular representation of tuples that add up to 0, and R
denotes the trivial diagonal copy. To be explicit, we work with the splitting that sends

an element x =
∑
xg · eg to its trivial component

t(x) = (
1

|G|
∑
g∈G

xg) · (
∑
g∈G

eg)

and its reduced component r(x) = x− t(x). This decomposition also induces a map

(σ̃1
ρG

)G : (Sp|G|(SρG))G → Ω(Sp|G|(SρG))G,

the induced map on fixed points of the adjoint structure map σ̃1
ρG

of the orthogonal

spectrum Sp|G|. Throughout this section we abbreviate (σ̃1
ρG

)G by σ̃G. Our map α1 is

the composition of a map

α1 : |L(G)| → (Sp|G|(SρG))G

with this adjoint structure map. To define α1, we need one more piece of notation:

Given a non-empty subset M ⊆ G, we denote by eM ∈ ρG the element 1√
|M |

∑
g∈M eg.

Then α1 is defined by sending a chain of subgroups H0 ≤ . . . ≤ Hk and (t0, . . . , tk) ∈ ∆k

to the class

[(r(

k∑
i=0

ti · egHi))g∈G] ∈ (Sp|G|(SρG))G.

We shall explain this formula briefly: For each g ∈ G, the map

(α1)g : (H0 ≤ . . . ≤ Hk; t0, . . . , tk) 7→ r(

k∑
i=0

ti · egHi)
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defines an embedding of the subgroup lattice into ρG. These different embeddings are

permuted via the G-action, as an element g′ takes (α1)g to (α1)g′g. So α1, the product

of all (α1)g, is G-fixed in Sp|G|(SρG).

C3

{e}
3

1

1

1

1

1
1

Example 6.1. Elements in a symmetric product

Spn(X) of a space X can be visualized as config-

urations in X with labels in the natural numbers,

cf. Remark 3.2.1. We use this to depict α1 in the

case where G is a cyclic group of order 3 or 4. For

G = C3 the reduced regular representation is iso-

morphic to R2 with rotation by 120 degrees. The image of the vertex {e} in the subgroup

lattice is the configuration of the three corners of an equilateral triangle with center 0,

each equipped with the label 1. As one moves along the edge {e} ≤ C3, these points

move straight towards the center at the same speed. Finally, the vertex C3 is mapped

to the zero vector with label 3.

C4

{e}

C2 1
1

1

1

2

4
2

1

1

1

1

1

1
1

1

2

2

The reduced regular representation of

C4 is three-dimensional and permutes the

corners of a regular tetrahedron. The im-

age of the vertex {e} under α1 is the con-

figuration of these corners with label 1,

and the images of the other simplices are

as depicted in the figure on the left. De-

noting a generator of C4 by t, the rightmost corner corresponds to r(e1), the left one to

r(et), the upper one to r(et2) and the lower one to r(et3).

This is the basic geometric idea, but some adjustments are necessary in order to make

it have all the properties and compatibilities that we need. One problem is that α1 does

not yet factor through the reduced lattice L̃(G), i.e., it does not send chains which end

in a proper subgroup of G to the basepoint. This problem can be resolved: Note that

the full group G is the only vertex that is sent to the 0-vector. So if we choose a ball

around 0 of small enough radius and push everything that lies outside of it to ∞, the

resulting map will send all proper subgroups H of G and the simplices connecting them

to the basepoint.

In formulas, this is done as follows: Let p : SρG → SρG be a map of the form

p(v) = µ(|v|) · v, where µ is a fixed continuous self-map of [0,∞] that restricts to an

orientation-preserving homeomorphism [0, 1√
2
] ∼= [0,∞] and sends [ 1√

2
,∞] to ∞. In

other words, p collapses the hemisphere of vectors of length at least 1√
2

to a point and

identifies the resulting quotient with SρG again. Furthermore, we let

q : (ρG − {0})→ S(ρG)

denote the projection to the unit sphere and

r : (ρG − {0})→ ρG
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the composite of q and r. For every g ∈ G we obtain a new map (α2)g : |L(G)| → SρG

via the formula

(H0 ≤ . . . ≤ Hk; t0, . . . , tk) 7→ p(r(
k∑
i=0

ti · egHi))

and again let

α2 : |L(G)| → (Sp|G|(SρG))G

be the tuple of all (α2)g for g ∈ G. In words, we have made two changes: We project

each of the lattices inside ρG to the unit sphere before passing to the reduced ρG, and

in the end we quotient out all vectors of length at least 1√
2
. This has the desired effect:

Lemma 6.1.1. The map α2 : |L(G)| → (Sp|G|(SρG))G factors through the reduced

lattice |L̃(G)|.

Proof. It suffices to see that the square of the norm of

q(
k∑
i=0

(ti · egHi)) + t · eG

is at least 1/2 for any chain H0 ≤ . . . ≤ Hk, (t0, . . . , tk) ∈ ∆k and t ∈ R, provided

that Hk is a proper subgroup of G. Dividing ρG into the span of the basis elements of

the form eghk with hk ∈ Hk and the span of the other basis elements, we see that this

square is given by

|q(
k∑
i=0

(ti · egHi)) + t ·
√
|Hk|
|G| · egHk |

2 + |t ·
√
|G| − |Hk|
|G| · e(G−gHk)|2.

Using that |egHk | = 1 = |e(G−gHk)| and applying the triangle inequality yields that this

square is at least as large as(
|q(

k∑
i=0

(ti · egHi))| − |t| ·
√
|Hk|
|G|

)2

+

(
|t| ·

√
|G| − |Hk|
|G|

)2

.

Since q(−) by definition always has norm 1 and |G|− |Hk| is at least |Hk|, we obtain the

lower bound (
1− |t| ·

√
|Hk|
|G|

)2

+

(
|t| ·

√
|Hk|
|G|

)2

.

The minimum of this quadratic function equals 1
2 , which proves the claim.

Example 6.1.2. The effect of α2 is depicted in Figure 6.1 below for G = C3. The first

image illustrates the area of ρC3
that is quotiened out and the second the resulting map

to Sp3(SρC3 ).

However, there is a problem that is more complicated to resolve: We need the re-

striction to the subcomplex L̃(G)n to take image in (Spn(SρG))G. This is simply not the

case for α2, as one already sees in Figure 6.1: The image of the 0-chain with value C3
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3

1

1

1

1

1 1

3

31

1

1

Figure 6.1: The map α2 for G = C3

(which lies in L̃(G)1) is the tuple [(0, 0, 0)]. It has three non-basepoint components and

hence does not lie in any smaller symmetric product. The idea to rectify this is to use

that [(0, 0, 0)] is stably the same as ‘three times the element [(0, ∗, ∗)]’, which does lie in

the image of Sp1.

We now make this precise and more generally let H0 ≤ . . . ≤ Hk be a chain of total

index n and ending in Hk = G. We write

(α2)g({Hi},−) : ∆k
+ → SρG

for the restriction of (α2)g to the k-simplex corresponding to this chain, and

α2({Hi},−) : ∆k
+ → (Sp|G|(SρG))G

for the analogous restriction of α2. These have the following properties:

• Each (α2)g({Hi},−) only depends on the coset gH0, since multiplication with

h0 ∈ H0 leaves all eHi fixed. Hence there are only n different components in

α2({Hi},−), each repeated |H0| times.

• Let g1, . . . , gn be a system of coset representatives of G/H0. Then the tuple

(α2)G/H0
({Hi},−) ··= [((α2)gj ({Hi},−))j=1,...,n]

defines a map ∆k
+ → (Spn(SρG))G.

In other words, α2({Hi},−) factors through the diagonal

(Spn(SρG))G
∆−→ (Sp|G|(SρG))G

that repeats each entry |H0| times, while we want it to factor through the standard

inclusion i
|G|
n . In (Sp|G|(SρG))G there is no direct way to pass between ∆ and i

|G|
n , but

there is after stabilizing once, i.e., after postcomposing with

σ̃G : (Sp|G|(SρG))G → Ω(Sp|G|(SρG))G.

To see this, we consider the following modified construction of the diagonal: We

assume given |H0| closed subintervals [ai, bi] of [−∞,∞] and for each of these let c(ai, bi)

denote the self-map of S1 which collapses everything outside (ai, bi) to the basepoint and

identifies [ai, bi] with [−∞,∞] in some fixed orientation-preserving way. To each such
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data one can associate a map

∆{[ai,bi]} : Ω(Spn(SρG))G → Ω(Sp|G|(SρG))G

by sending ϕ ∈ Ω(Spn(SρG))G to

[(ϕ ◦ c(ai, bi))1≤i≤|H0|].

So, instead of simply repeating it |H0| times, ϕ is precomposed with every c(ai, bi). If all

of the [ai, bi] are equal to [−∞,∞], this construction gives back the usual diagonal Ω(∆).

If on the other hand the interiors of the [ai, bi] are pairwise disjoint, the map ∆{[ai,bi]}

factors through the standard inclusion Ω(i
|G|
|G/H|). Indeed, in this case there is at most one

i such that c(ai, bi)(t) is not the basepoint, for any fixed t ∈ R. So each loop ∆{[ai,bi]}(ϕ)

has at most n non-trivial components at every t. This means that it has at most n non-

trivial components globally and hence lies in the image of Ω(i
|G|
n ), since we can always

move the non-trivial components to the first n entries. The self-map of ΩSpn(SρG)

obtained this way can also be described differently: It is given by precomposition with

the self-map of S1 that collapses everything outside the open intervals (ai, bi) to the

basepoint and identifies each [ai, bi]/(ai ∼ bi) with S1. In particular, the homotopy class

of ∆{[ai,bi]}(ϕ) is the |H0|-fold sum of ϕ with itself.

Any choice of homotopies from the c(ai, bi) to the identity of S1 induces a homotopy

between Ω(∆) and ∆{[ai,bi]}. So we see that, up to reparametrization of loops and in

particular up to homotopy, σ̃G ◦ α2 does map the simplex associated to H0 ≤ . . . ≤ Hk

to the image of ΩSpn(SρG) under Ω(i
|G|
n ). To turn this into honest maps from L̃(−)n to

Ω(Spn(Sρ−))−, we need to make choices of reparametrizations that are coherent for all

chains H0 ≤ . . . ≤ Hk, all n ∈ N and all finite groups G. We deal with this by defining

a modification of the subgroup lattice that contains a contractible choice of intervals as

part of the data.

6.2 Fattening of the lattice

For this it turns out to be more convenient to work with subintervals of [0, 1] instead

of [−∞,∞]. Whenever we need to switch between the two, we use the homeomorphism

that maps t ∈ [0, 1] to 2t−1
t(1−t) ∈ [−∞,∞].

Let J denote the space of closed subintervals [a, b] of [0, 1] (with a < b), topologized

as a subspace of [0, 1] × [0, 1]. We let Lf (G) denote the following topological category:

The object space is given by ⊔
H≤G

Sp|H|(J),

i.e., subgroups H of G together with an unordered |H|-tuple of subintervals of [0, 1]. The

morphism space from a component Sp|H|(J) to Sp|K|(J) is empty if H is not contained

in K and is otherwise given by Sp|H|(J) again. In this case the target map

Sp|H|(J)→ Sp|K|(J)
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is the diagonal which repeats each subinterval [K : H] times, and the source map is the

identity. Hence, a k-simplex in the topological nerve of Lf (G) - which we also denote

by Lf (G) - is given by a chain of subgroups H0 ≤ . . . ≤ Hk together with |H0| many

subintervals [ai, bi] of [0, 1]. We filter this nerve by saying that such a k-simplex lies in

Lf (G)n if

(i) the total index [Hk : H0] is at most n, and

(ii) the intervals {[ai, bi]} have at most n
[Hk:H0] -fold intersections, i.e., every t ∈ (0, 1)

lies in the interior of at most n
[Hk:H0] -many [ai, bi].

There is an obvious forgetful functor µ : Lf (G)→ L(G) to the usual subgroup lattice

of G, whose nerve maps Lf (G)n into L(G)n.

Lemma 6.2.1. The maps µ : Lf (G)n → L(G)n induce homotopy equivalences on geo-

metric realizations.

Proof. Given l,m ∈ N, let J lm denote the subspace of Spl(J) of tuples of intervals with

at most m-fold intersections. Then the space of k-simplices of Lf (G)n is given by the

disjoint union ⊔
H0≤...≤Hk;[Hk:H0]≤n

J
|H0|
b n

[Hk:H0]
c, (6.2.1)

where b n
[Hk:H0]c denotes the largest integer smaller than or equal to n

[Hk:H0] . We first claim

that each J lm is contractible and hence Lf (G)n → L(G)n forms a degreewise homotopy

equivalence. Since we have divided out the symmetric group action, every element of J lm
has a unique representative ([a1, b1], . . . , [al, bl]) for which the (ai, bi) are lexicographically

ordered, i.e., ai ≤ ai+1 and if ai = ai+1 then bi ≤ bi+1. In fact, J lm is homeomorphic

to the space of such ordered tuples with at most m-fold intersections. But this space is

star-shaped, it can be linearly contracted onto the tuple ([0, 1
l ], [

1
l ,

2
l ], . . . , [

l−1
l , 1]). This

proves the claim.

Hence it suffices to see that both Lf (G)n and L(G)n are Reedy cofibrant simplicial

spaces (cf. [Hir03, Chapter 15]) with respect to the Strøm model structure on topological

spaces ([Str72]). For L(G)n this is clear, since it is a discrete simplicial space. For

Lf (G)n, the k-th latching map is the inclusion of those components in the disjoint union

(6.2.1) above which are associated to chains H0 ≤ . . . ≤ Hk for which at least one

containment is not proper. Every topological space is Strøm cofibrant, so this inclusion

is a Strøm cofibration, which finishes the proof.

Hence, the Lf (G)n indeed form a fattening of the L(G)n, but we still need to explain

their functoriality in surjective group homomorphisms. For this we let ψ : G � K be a

surjection and denote by k the order of the kernel. Then we define

ψ∗ : Lf (K)→ Lf (G)

to send a subgroup L of K to ψ−1(L), and the associated collection of intervals ([ai, bi])

to

(rkj ([ai, bi]))i=1,...,l;j=0,...,k−1,
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where rkj : [0, 1] ↪→ [0, 1] is the unique oriented affine embedding with image [ jk ,
j+1
k ]. In

other words, ψ∗ splits [0, 1] into k parts of equal size and copies each [ai, bi] into every one

of them, yielding |L| · k = |ϕ−1(L)| subintervals, as needed. This definition turns Lf (−)

into a functor from Epiop to topological categories. After applying the nerve, it restricts

to functors Lf (−)n from Epiop to simplicial spaces and hence after geometric realization

to functors |Lf (−)n| : Epiop → Top. The forgetful functor |Lf (−)n| → |L(−)n| is natural

for this Epiop-functoriality and a homotopy equivalence for all finite groups G.

Finally, we again define a reduced version |L̃f (G)n| by quotiening out all simplices

associated to chains that do not end in the full group G. The |L̃f (G)n| again assemble

to a functor Epiop → Top and the forgetful map |L̃f (G)n| → |L̃(G)n| defines a natural

levelwise based homotopy equivalence.

6.3 Definition of α̃

Given an interval [a, b] of [0, 1], we from now on let c(a, b) denote the self-map of

[0, 1]/{0, 1} (or S1 = R ∪ {∞}, using the fixed homeomorphism between the two) ob-

tained by collapsing everything outside (a, b) to a point and using the identification

[a, b] ∼= [0, 1] that sends x to x−a
b−a .

We are now ready to define the map

α : |Lf (G)| → Ω(Sp|G|(SρG))G

by sending a simplex associated to a chain H0 ≤ . . . ≤ Hk together with intervals

[a1, b1], . . . , [a|H0|, b|H0|] to the composite

∆k
(α2)G/H0

({Hi},−)
−−−−−−−−−−−→ (Sp|G/H0|(SρG))G

σ̃G−−→ Ω(Sp|G/H0|(SρG))G
∆{[ai,bi]}−−−−−−→ Ω(Sp|G|(SρG))G.

(6.3.1)

The maps (α2)G/H0
({Hi},−) and ∆{[ai,bi]} are explained on page 69 (using the specific

c(ai, bi) defined above to construct the diagonal). If the [aj , bj ] are all equal to [0, 1], we

get back σ̃G ◦ α2({Hi},−).

In order for the maps (6.3.1) to glue to a map from the geometric realization, we

need to check that they are still compatible with the simplicial structure maps. This

is a consequence of the fact that the (α2)g({Hi},−) have this compatibility, except for

the boundary d0, since it changes the smallest subgroup H0. We recall that d∗0 of a

tuple (H0 ≤ . . . ≤ Hk, {[ai, bi]}) is the chain H1 ≤ . . . ≤ Hk together with the intervals

∆({[ai, bi]}), i.e., each interval repeated |H1/H0| times. So the compatibility for d0

follows from the commutativity of the diagram:

∆k
(α2)G/H0 // (Sp|G/H0|(SρG))G

σ̃G // Ω(Sp|G/H0|(SρG))G
∆{[ai,bi]} // Ω(Sp|G|(SρG))G

∆k−1

d0

OO

(α2)G/H1 // (Sp|G/H1|(SρG))G
σ̃G //

∆

OO

Ω(Sp|G/H1|(SρG))G
∆∆({[ai,bi]}) //

Ω(∆)

OO

Ω(Sp|G|(SρG))G

=

OO

Since (α2)G/H0
({Hi},−) sends all chains that do not end in the full group G to the
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basepoint (Lemma 6.1.1), it follows that α again factors through the reduced fat lattice,

yielding a map α̃ : |L̃f (G)| → Ω(Sp|G|(SρG))G. In addition, we now have:

Proposition 6.3.1. The restriction of α̃ to |L̃f (G)n| factors through

Ω(i|G|n ) : Ω(Spn(SρG))G ↪→ Ω(Sp|G|(SρG))G.

Proof. Let H0 ≤ · · · ≤ Hk be a chain with Hk = G and [G : H0] ≤ n, together with

|H0| intervals [ai, bi] with at most n
[G:H0] -fold intersections. Then at any point t ∈ (0, 1),

at most n
[G:H0] -many values c(ai, bi)(t) are not equal to the basepoint. Each one of them

appears exactly [G : H0] times in the definition of ∆{[ai,bi]}, so it follows that the diagonal

Ω(Sp|G/H0|(SρG))G
∆{[ai,bi]}−−−−−−→ Ω(Sp|G|(SρG))G

factors through Ω(i
|G|
n ), which proves the claim.

6.4 Naturality

By adjunction, we obtain maps α̃ : Σ∞|L̃f (G)n| → Ω sh ΦG(Spn), compatible with the

respective inclusions from n to n + 1. We now check their naturality with respect to

surjective group homomorphisms ψ : G� K.

First of all, we assume given a subset M of K. Then the linear isometry iψ :

ψ∗(ρK) ↪→ ρG (defined in Section 5.2 to describe the Epiop-functoriality of geometric

fixed points) sends the element eM to eψ−1(M). This implies that for every chain of

subgroups H0 ≤ . . . ≤ Hk of K, the composite

∆k
(α2)K/H0

({Hi},−)
−−−−−−−−−−−→ (Sp|K/H0|(SρK ))K

(iψ)∗−−−→ (Sp|G/ψ
−1(H0)|(SρG))G

equals the map (α2)G/ψ−1(H0)({ψ−1(Hi)},−). To compute the effect of (Ω sh Φψ) ◦ α̃
on the tuple (H0 ≤ . . . ≤ Hk, {[ai, bi]}), we then have to postcompose with the diag-

onal ∆{[ai,bi]}. On the other hand, in order to compute the effect of α̃ on the tuple

ψ∗(H0 ≤ . . . ≤ Hk, {[ai, bi]}) we have to postcompose with the diagonal ∆{[rlk(ai),rlk(bi)]},

where k denotes the order of the kernel of ψ. The diagonal ∆{[rlk(ai),rlk(bi)]} can be written

as the composite

∆{[ l−1
k
, l
k

]} ◦∆{[ai,bi]}.

A priori, this composite takes image in Ω(Sp|G|(SρG))G, but since the intervals ( l−1
k ,

l
k )

are pairwise disjoint, the diagonal ∆{[ l−1
k
, l
k

]} factors as

Ω(Sp|K|(SρG))G
∆
{[ l−1

k
, l
k

]}
//

lk
��

Ω(Sp|G|(SρG))G

Ω(Sp|K|(SρG))G
Ω(i
|G|
|K|)

44

where lk is the selfmap of [0, 1]/{0, 1} which takes x to kx− bkxc (cf. page 69).
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So, in summary, α̃ is natural for a different Epiop-functoriality on Ω sh Φ(Spn) that

sends a surjection ψ : G� K to

Ω sh ΦK(Spn)
Ω shψ−−−→ Ω sh ΦG(Spn)

l∗k−→ Ω sh ΦG(Spn),

where l∗k is the self-map of Ω sh ΦG(Spn) which precomposes each loop with lk. This

difference in the functoriality can be corrected: The self-maps

l∗|G| : Ω sh ΦG(Spn)→ Ω sh ΦG(Spn)

assemble to a transformation from the usual Epiop-functor Ω sh Φ to the twisted one.

Since l|G| induces multiplication with |G| on homotopy, this transformation is a rational

equivalence.

Remark 6.4.1. This ‘defect’ of α̃ can be explained: Recall from Remark 4.3.1 that on

π0 we should be sending a vertex H of the subgroup lattice to the element 1
[G:H] ·[G/H] in

the rationalized Burnside ring. But this is impossible, since α is geometrically defined to

land in the not yet rationalized spectrum Ω sh Φ(Spn). Instead it sends H to |H| · [G/H],

which needs to be corrected by dividing by |G| afterwards.

So we obtain a zig-zag of natural transformations of Epiop-functors

Σ∞|L̃(−)n| '←− Σ∞|L̃f (−)n| α̃−→ (Ω sh Φ(Spn))twisted 'Q←−− Ω sh Φ(Spn).

In order to prove Theorem 5.2.2 it now remains to show that for all n and G the map α̃

induces an isomorphism

H∗(|L̃f (G)n|,Q)/G
∼=−→ H∗(Ω sh ΦG(Spn),Q).

Via an induction on n and the five-lemma, this in turn can be reduced to showing that

α̃ induces isomorphisms

H∗(|L̃f (G)n/L̃f (G)n−1|,Q)/G
∼=−→ H∗(Ω sh ΦG(Spn/Spn−1),Q), (6.4.1)

and this is what we will do.

6.5 Rational splitting on subquotients

Our first aim is to show:

Proposition 6.5.1. For all n ∈ N the map (6.4.1) above is split injective.

We produce this splitting geometrically. Let [(x1, . . . , xn)] ∈ Spn(Sk·ρG) be a G-fixed

point. Then the subset {x1, . . . , xn} ⊆ Sk·ρG is closed under the G-action. Let Cn be the

subspectrum of ΦG(Spn) consisting of those tuples for which this G-set is not transitive

or contains less than n elements. In particular, Cn contains Φ(Spn−1) and so we can

consider the composite

Σ∞|L̃f (G)n/L̃f (G)n−1| α̃−→ Ω sh ΦG(Spn/Spn−1)→ Ω sh(ΦG(Spn)/Cn).
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Our aim is to show that this composite induces an isomorphism

H∗(|L̃f (G)n/L̃f (G)n−1|,Q)/G
∼=−→ H∗(Ω sh(ΦG(Spn)/Cn),Q),

which proves Proposition 6.5.1.

Every non-basepoint element of (ΦG(Spn)/Cn)k is determined by any of its compo-

nents xi ∈ Sk·ρG , and the isotropy of such a point is necessarily an index n subgroup

of G. Given an index n subgroup H, we let S(k,H) denote the space

(Sk·ρG)H/

(
colim
H�K≤G

(Sk·ρG)K
)
,

i.e., the H-fixed points of the G-space Sk·ρG modulo all fixed points of larger subgroups.

The spaces S(k,H) assemble to an orthogonal spectrum S(H), with structure map

sending (x∧ t) ∈ (Sk·ρG)H ∧S1 to the class of the element (x+ t · eG) ∈ S(k+1)·ρG . There

are morphisms

S(H)→ ΦG(Spn)/Cn

sending x to [(x, g1 · x, . . . , gn−1 · x)[gi]∈G/H ]. As we just argued, every element x =

[(x1, . . . , xn)] ∈ Sk·ρG lies in the image of one of these, by choosing a component xi.

Moreover, the choice of a different component amounts to multiplying with some element

g ∈ G, since the G-set {x1, . . . , xn} is assumed to be transitive. So we find that there is

an isomorphism of orthogonal spectra

ΦG(Spn)/Cn ∼=

 ∨
H≤G,[G:H]=n

S(H)

 /G, (6.5.1)

where the modded out G-action is given by translation, it sends x ∈ (Sk·ρG)H to g · x ∈
(Sk·ρG)gHg

−1
.

Remark 6.5.2. This translation action should not be confused with the conjugation

action on ΦG(Spn)/Cn that comes from the Epiop-functoriality of geometric fixed points

(as described in Section 5.2). The conjugation action sends an element x ∈ (Sk·ρG)H to

g ·x·g−1 ∈ (Sk·ρG)gHg
−1

, using that ρG is both a left and a right module over G. Together

the conjugation action and the translation action assemble to an action of the semi-direct

product GnG on
∨
S(H). Under the isomorphism (6.5.1) above, the conjugation action

on ΦG(Spn)/Cn is the induced one on translation orbits. To make clear which action we

are talking about, we write −/tG for the quotient by the translation action and −/cG
for the one by the conjugation action.

We again use the decomposition ρG ∼= R ⊕ ρG to rewrite each (Sk·ρG)K as Sk ∧
(Sk·ρG)K . This induces a decomposition S(k,H) ∼= Sk ∧ S(k,H) with S(k,H) defined

similarly to S(k,H), replacing each ρG by ρG. Through this identification, the structure

map of S(H) becomes the smash product of the associativity isomorphism Sk∧S1 ∼= Sk+1

and the closed inclusion S(k,H) ↪→ S(k + 1, H). Hence, the inclusions S(k,H) ↪→
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S(∞, H) assemble to a morphism of spectra

S(H)→ Σ∞S(∞, H). (6.5.2)

By cofinality, this morphism induces an isomorphism on homotopy groups and is hence

a stable equivalence.

We now turn to L̃f (G)n/L̃f (G)n−1, or rather its non-fat version L̃(G)n/L̃(G)n−1.

Non-basepoint simplices in this quotient are given by chains which go from an index n

subgroup H to G. So we find that there is an isomorphism

L̃(G)n/L̃(G)n−1
∼=

∨
H≤G

[G:H]=n

(
L(G)[H,G]/{non-max. chains}

)
, (6.5.3)

where we write L(G)[H,G] for the poset of subgroups of G which contain H and the

subcomplex {non-max. chains} is given by the chains that do not start in H or do not

end in G. The homotopy equivalence Lf (G)
[H,G]
n

'−→ L(G)[H,G] is split by the func-

tor which sends a subgroup K between H and G to itself together with the intervals

[0, 1
|H| ], [

1
|H| ,

2
|H| ], . . . , [

|H|−1
|H| , 1], each repeated [K : H] times. Taking the wedge over

these, we obtain a homotopy equivalence

|L̃(G)n/L̃(G)n−1| ∼=
∨
H≤G

[G:H]=n

(
|L(G)[H,G]|/{non-max. chains}

)
'−→ |L̃f (G)n/L̃f (G)n−1|.

Composing this equivalence with the morphism

Σ∞|L̃f (G)n/L̃f (G)n−1| → Ω sh(Φ(Spn)/Cn)

and using (6.5.1), (6.5.2) and (6.5.3), we obtain a morphism

∨
H≤G

[G:H]=n

Σ∞
(
L(G)[H,G]/{non-max. chains}

)
→ Ω sh


 ∨

H≤G
[G:H]=n

Σ∞S(∞, H)

 /tG

 .

(6.5.4)

It suffices to show that this morphism induces an isomorphism on rational homology,

modulo conjugation in the domain. In formulas, (6.5.4) sends a chain H0 ≤ . . . ≤ Hk

(lieing between H and G) together with coordinates (t0, . . . , tk) ∈ ∆k to the loop

[σ̃G((α2)e({Hi}, {ti})) ◦ l|H|] ∈ Ω(S1 ∧ S(∞, H)). (6.5.5)

Here, we have again used that the diagonal (in the sense of page 69) formed with re-

spect to the intervals [ l−1
|H| ,

l
|H| ] corresponds to precomposition with l|H|, cf. Section 6.3.

Multiplication by l|H| is a rational equivalence, and

σ̃G :
(
Σ∞S(∞, H)

)
/tG→ Ω

((
Σ∞S1 ∧ S(∞, H)

)
/tG

)
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is a stable equivalence (as it agrees with the map λ̃(Σ∞S(∞,H))/tG, cf. the beginning of

Section 6). So we can leave both out of the formula. What remains is given by applying

the suspension spectrum functor Σ∞ to a wedge of space level maps

βH : L(G)[H,G]/{non-max. chains} → S(∞, H)

(Hi, ti) 7→ [(α2)e(Hi, ti)] = [p(r(
k∑
i=0

ti · eHi)))]

followed by the projection to the translation G-orbits
∨
S(∞, H) →

(∨
S(∞, H)

)
/tG.

We first show:

Lemma 6.5.3. Each

βH : L(G)[H,G]/{non-max. chains} → S(∞, H)

is a weak equivalence of spaces.

Proof. If H is equal to G and hence n = 1, both sides consist of two points and βH is

a bijection. So from now on we assume that H is a proper subgroup of G and consider

the map

βH : L(G)[H,G] → (S∞ρG)H (6.5.6)

(Hi, ti) 7→ r(
k∑
i=0

ti · eHi).

The map βH in the statement of the lemma is obtained from βH by quotiening out by all

non-maximal chains in the domain and the subspace A of the target given by all vectors

which are either fixed by a larger subgroup than H or have norm at least 1√
2
. Since both

L(G)[H,G] and (S∞ρG)H are contractible and the inclusions of the respective subspaces

are cofibrations, it suffices to show that βH induces a weak equivalence between the

complex of non-maximal chains and A. We note that the former is given by the pushout

L(G)(H,G] ∪L(G)(H,G) L(G)[H,G)

of half-closed respectively open subintervals of the subgroup lattice. The space A can

be expressed in a similar way: Let A1 ≤ A be the subspace of vectors that have norm at

most 1 and are fixed by a subgroup properly containing H, and A2 ≤ A the subspace of

all vectors of length at least 1√
2
. Together, the two cover A. Then βH maps L(G)(H,G]

into A1 and, by the same proof as for Lemma 6.1.1, L(G)[H,G) into A2. Since all of the

spaces L(G)(H,G], L(G)[H,G), A1 and A2 are contractible (the latter two can be contracted

onto 0 respectively ∞), we are left to show that βH induces a weak equivalence from

L(G)(H,G) to the intersection of A1 and A2. This intersection is the space of vectors of

(S∞ρG)H that have norm in the interval [ 1√
2
, 1] and are fixed by a larger subgroup. It

deformation retracts onto

S(G)(H,G) ··= colim
H�K�G

(
S(∞ρG)K

)
.
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We now consider the following commutative square:

L(G)(H,G) = colimH�K�G
(
L(G)[K,G)

)
// colimH�K�G

(
S(∞ρG)K

)
= S(G)(H,G)

hocolimH�K�G
(
L(G)[K,G)

)
//

OO

hocolimH�K�G
(
S(∞ρG)K

)
OO

Both vertical maps are the respective canonical map from the homotopy colimit to

the colimit, and the lower horizontal map is induced from the restriction of βH to the

intervals [K,G). Since each (S∞ρG)K is contractible and so is L(G)[K,G), it follows

by homotopy-invariance of homotopy colimits that the lower horizontal map is a weak

equivalence. We claim that both vertical maps are also weak equivalences. For the left

one, this can be seen by noting that it is split by the map

L(G)(H,G) = hocolim
H�K�G

∗ → hocolim
H�K�G

(
L(G)[K,G)

)
induced from the inclusions ∗ 7→ K ∈ (L(G)[K,G))0. Again by homotopy-invariance of

homotopy colimits, this splitting is a weak equivalence and hence so is the left vertical

map. Finally, to derive that the right vertical map is a weak equivalence one can use

a G-CW structure on S∞ρG to apply a general statement: For every G-cell complex X

the colimit over the XK with K ∈ (H,G) is also a homotopy colimit. This can be seen

by checking it for the orbits G/L and using that cell attachments are both colimits and

homotopy colimits.

Finally, we consider the following commutative diagram:

H∗(
∨
L(G)[H,G]/{non-max. chains},Q)

∼= //

��

H∗(
∨
S(∞, H),Q)

��

H∗(
∨
L(G)[H,G]/{non-max. chains},Q)/cG

∼= //

(∗) ++

H∗(
∨
S(∞, H),Q)/cG

��

H∗((
∨
S(∞, H))/tG,Q)

We want to show that the map (∗) is an isomorphism. The middle horizontal map is

an isomorphism, since the wedge of the βH is equivariant for the conjugation actions.

Furthermore,
∨
S(∞, H) is a cofibrant G-space under the translation action, so there is

a natural isomorphism

H∗(
(∨

S(∞, H)
)
/tG,Q) ∼= H∗(

∨
S(∞, H),Q)/tG.

Hence it suffices to see that conjugation and translation induce the same action on

rational homology. This comes out of the proof of Lemma 6.5.3 above: Up to equivalence

we can replace
∨
S(∞, H) by the suspension of the unreduced suspension of

∨
H

(
hocolim
H�K�G

(S∞ρG)K
)
.
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Collapsing all (S∞ρG)K to a point yields a weak equivalence to

∨
H

(
hocolim
H�K�G

∗
)

=
∨
H

L(G)(H,G).

This equivalence turns both the translation and the conjugation action on the (S∞ρG)K

into the conjugation action on the wedge of subgroup intervals. So the two actions agree

on homology, which finishes the proof of Proposition 6.5.1.

6.6 Abstract rational equivalence of the subquotients

We now show that there is an abstract rational equivalence

ΦG(Spn/Spn−1) 'Q Σ∞
(
|L̃(G)n/L̃(G)n−1|/G

)
. (6.6.1)

Since the latter is a finite complex, it has finite dimensional rational homology. So our

map

H∗(|L̃f (G)n/L̃f (G)n−1|,Q)/G
α̃∗−→ H∗(Ω sh ΦG(Spn/Spn−1),Q)

from the previous section must also be surjective, hence an isomorphism, proving The-

orem 5.2.2.

To deduce the equivalence (6.6.1) we combine work of Arone [Aro15], Arone-Dwyer

[AD01], Brantner [Bra16] and Schwede [Sch14]. In [Sch14, Proposition 1.11], Schwede

showed that there is a global equivalence

Spn/Spn−1 ' Σ∞(BglFn)�.

Here, Fn is the family of subgroups of Σn that do not act transitively on n = {1, . . . , n}
and BglFn denotes a global classifying space in the sense of Section 2.2. Furthermore, the

superscript (−)� denotes the unreduced suspension of a space. We will recall Schwede’s

proof in Chapter 10.

The non-equivariant version of this statement was previously shown by Lesh in

[Les00]. In [AD01, Section 7], also for the case G = {e}, Arone and Dwyer gave another

description of this suspension spectrum, which we now mimic in the global equivariant

context. For this we denote by Πn the Σn-poset of non-trivial proper partitions of the

set n, and by EglΣn a global universal space for Σn. Our aim is to show:

Theorem 6.6.1. The based orthogonal spaces (BglFn)� and (EglΣn)+ ∧Σn (|Πn|� ∧Sn),

i.e., the global homotopy orbits of |Πn|�∧Sn, are globally equivalent after one suspension.

Hence, there is a global equivalence

Spn/Spn−1 ' Σ∞ ((EglΣn)+ ∧Σn (|Πn|� ∧ Sn)) .

Here, Σn acts on Sn by permuting the coordinates. This statement is even true in

the full global category, i.e., with respect to all compact Lie groups.

The following pages are devoted to proving Theorem 6.6.1. The arguments are global

equivariant adaptions of the arguments in [AD01, Section 7]. Let Sing(EglFn) denote the
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sub-orthogonal space of the global universal space EglFn consisting of the points with

non-trivial Σn-isotropy. We note that Sing(EglFn) is a global universal space for F◦n,

the collection of non-transitive subgroups minus the trivial subgroup. Then there is a

cofiber sequence

EGΣn+ ∧ (Sing(EGFn))� → Sing(EGFn)� → (EGΣn ∗ Sing(EGFn))� ' (EGFn)�

of Σn-orthogonal spaces, where ∗ denotes the join. Smashing with the Σn-equivariant

diagonal inclusion i : S1 ↪→ Sn yields a commutative diagram

EglΣn+ ∧ Sing(EglFn)� ∧ S1 //

��

Sing(EglFn)� ∧ S1 //

��

(EglFn)� ∧ S1

��

EglΣn+ ∧ Sing(EglFn)� ∧ Sn // Sing(EglFn)� ∧ Sn // (EglFn)� ∧ Sn.

We have:

Lemma 6.6.2. The map

(EglFn)� ∧ i : (EglFn)� ∧ S1 → (EglFn)� ∧ Sn

is a based (Σn×G)-homotopy equivalence when evaluated on any complete G-universe UG.

Lemma 6.6.3. The quotient (Sing(EglFn)� ∧ Sn)/Σn is based globally contractible.

The proofs of these lemmas are given below. Hence, dividing out the Σn-action in the

lower cofiber sequence yields a cofiber sequence of orthogonal spaces, which by Lemma

6.6.3 exhibits ((EglFn)�∧Sn)/Σn as the suspension of (EglΣn)+∧Σn (Sing(EglFn)�∧Sn).

By Lemma 6.6.2, the former is globally equivalent to (BglFn)� ∧ S1, so we obtain:

Corollary 6.6.4. There are global equivalences

(BglFn)� ∧ S1 ' ((EglΣn)+ ∧Σn (Sing(EglFn)� ∧ Sn)) ∧ S1

' ((EglΣn)+ ∧Σn ((EglF◦n)� ∧ Sn)) ∧ S1.

Proof of Lemma 6.6.2. Since both sides are cofibrant based (Σn×G)-spaces when evalu-

ated on UG, it suffices to show that ((EglFn)�∧ i)(UG) induces a weak equivalence on all

fixed point spaces. Let H be a subgroup of Σn×G. If the intersection H ∩ (Σn× 1) acts

non-transitively on n, the H-fixed points of (EglFn)�(UG) are contractible and hence

the map is necessarily a weak equivalence. If H ∩ (Σn × 1) does act transitively, the

inclusion iH : S1 → (Sn)H is even a homeomorphism (in fact for this it would suffice

that the projection of H to Σn acts transitively). So ((EglFn)� ∧ i)(UG) induces a weak

equivalence on fixed points for all subgroups of Σn ×G, which finishes the proof.

Proof of Lemma 6.6.3. For this we make use of the specific model for EglFn that comes

out of [Sch14, Proposition 1.11] (cf. Chapter 10). It is given by the Σn-orthogonal

space S(Rn ⊗ −), the unit sphere in the tensor product with the reduced natural Σn-

representation. What we need from this model is the property that all the Σn-isotropy
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lies in complete subgroups, i.e., subgroups of Σn that are conjugate to one of the form

Σn1× . . .×Σnk with all ni > 0,
∑
ni = n and k > 1. Hence, the isotropy of Sing(S(Rn⊗

−)) lies in non-trivial complete subgroups.

We now evaluate on a complete G-universe UG and prove that more generally, the

quotient (X ∧ Sn)/Σn is based G-contractible for any based cofibrant (Σn × G)-space

with all Σn-isotropy non-trivial and complete, or possibly the whole group Σn (which we

have to include because of the cone points of Sing(EglΠn)�). Without loss of generality

we can assume that X is a (Σn × G)-cell complex. Via induction over the cells and

passing to the sequential colimit we can reduce to showing that

((Σn ×G)/H+ ∧A ∧ Sn) /Σn

is based G-weakly contractible for any space A with trivial (Σn × G)-action and H ≤
Σn × G a subgroup for which H ∩ (Σn × 1) is non-trivial and complete or equal to

Σn. We denote this intersection by H ′ and the image of H under the projection to

G by K. For every k ∈ K we choose an element ψ(k) ∈ Σn such that (ψ(k), k) lies

in H. This property uniquely characterizes ψ(k) up to multiplication with an element

in H ′, and every ψ(k) automatically lies in the normalizer of H ′. Altogether, k 7→ [ψ(k)]

defines a homomorphism ψ : K → WΣnH
′ into the Weyl group. Then there is a G-

homeomorphism

((Σn ×G)/H+ ∧A ∧ Sn)/Σn
∼= GnK (A ∧ (Sn/H ′)),

with K acting on Sn/H ′ via restriction along ψ. So it suffices to see that Sn/H ′ is

(WΣnH
′)-equivariantly contractible. Up to conjugacy, H ′ is of the form Σ×i1n1

× . . . ×
Σ×iknk

with all nj pairwise different and
∑

(ij · nj) = n. The Weyl group is given by

Σi1 × . . .× Σik . Then, Sn/H ′ is homeomorphic to

(Sn1/Σi1)∧i1 ∧ . . . ∧ (Snk/Σnk)∧ik ,

with the Weyl group permuting the smash factors in each (Snj/Σnj )
∧ij . By [AD01,

Lemma 7.10], Snj/Σnj is contractible whenever nj is greater than 1. Since H ′ is non-

trivial, this has to be the case for some nj , which finishes the proof.

Remark 6.6.5. A more conceptual way to phrase the first part of the above proof

would be to say that the global universal space for the collection of complete subgroups

is Σn-globally equivalent to the global universal space for the family of non-transitive

subgroups EglFn. This follows directly from the fact that S(Rn⊗−) is a global universal

space for both, but could also be proved along the lines of [AD01, Lemma 4.3].

In Corollary 6.6.4 one can further simplify EglF◦n. For this we think of F◦n as a

Σn-poset, ordered by inclusion, and let |F◦n| denote its nerve (or the associated constant

Σn-orthogonal space).

Lemma 6.6.6. There is a zig-zag of morphisms of Σn-orthogonal spaces from EglF◦n
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to |F◦n| which induces a global equivalence

EglΣn ×Σn EglF◦n
'−→ EglΣn ×Σn |F◦n|,

and hence also a global equivalence

(EglΣn)+ ∧Σn ((EglF◦n)� ∧ Sn))
'−→ (EglΣn)+ ∧Σn (|F◦n|� ∧ Sn)

Proof. This is a general fact about global universal spaces for collections of subgroups,

as we discussed in Section 2.2.2.

Finally we relate F◦n to the partition poset Πn. There is an equivariant map of posets

j : Πn → F◦n which sends a partition n = M1 t . . .tMk to the associated non-transitive

subgroup ΣM1 × . . .× ΣMk
.

Lemma 6.6.7. The map j : Πn → F◦n induces a Σn-weak equivalence after applying the

nerve.

Proof. An equivariant left adjoint is given by the map of posets that associates to every

non-transitive and non-trivial subgroup H ≤ Σn the partition of n into H-orbits.

Combining these two lemmas with Corollary 6.6.4, we see that (BglFn)� is globally

equivalent to (EglΣn)+ ∧Σn (|Πn|� ∧Sn), after one suspension. This finishes the proof of

Theorem 6.6.1.

In particular, the underlying G-homotopy type of Spn/Spn−1 is given by the suspen-

sion spectrum

Σ∞((EGΣn)+ ∧Σn (|Πn|� ∧ Sn)).

Since there are natural isomorphisms ΦG(Σ∞X) ∼= Σ∞XG for based G-spaces X, Theo-

rem 6.6.1 reduces the computation of ΦG(Spn/Spn−1) to the computation of the G-fixed

points of the G-space (EGΣn)+ ∧Σn (|Πn|� ∧ Sn). By Corollary 2.3.2, these are given by

((EGΣn)+ ∧Σn (|Πn|� ∧ Sn))G ∼=
∨

(α:G→Σn)

EC(α)+ ∧C(α)

(
(|Πn|� ∧ Sn)im(α)

)
.

Each α : G → Σn defines a G-set structure on n. The centralizer C(α) is given by the

automorphisms of that G-set, and the fixed points (Sn)im(α) are a sphere of dimension

the number of its G-orbits. So, written in a more coordinate free way, we obtain a

homeomorphism

((EGΣn)+ ∧Σn (|Πn|� ∧ Sn))G ∼=
∨

G-sets M
|M |=n

EAutG(M)+ ∧AutG(M)

(
|ΠG

M |� ∧ SM/G
)
,

where the wedge is taken over isomorphism classes of G-sets of order n. The fixed

point sets |ΠG
M | of partition posets that appear here have been studied by Arone [Aro15]

and Brantner [Bra16]. We can make use of their results to see that a lot of the wedge

summands are (rationally) contractible, simplifying the expression for ((EGΣn)+ ∧Σn
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(|Πn|� ∧ Sn))G. A finite G-set is called isotypical if the isotropy groups of all of its

elements are conjugate.

Proposition 6.6.8 (Fixed points of partition posets). We have:

(i) If M is not isotypical, the fixed points |ΠG
M | are contractible.

(ii) If M is isotypical but not transitive, the space

(EAutG(M))+ ∧AutG(M)

(
|ΠG

M |� ∧ SM/G
)

is rationally contractible.

(iii) If M = G/H for a subgroup H of G, then ΠG
M is isomorphic to L(G)(H,G).

Proof. (i): This is [Aro15, Lemma 7.1].

(ii): Let M =
⊔
mG/H with m ≥ 2. Then the automorphism group of M is given

by the wreath product Σm oWG(H). By [Aro15, Proposition 9.1], there is a WG(H)m-

equivariant map

WG(H)m nWG(H) (|Πm| ∗ |ΠG
G/H |�)

'−→ |ΠG
M | (6.6.2)

that is a non-equivariant equivalence, where WG(H) sits inside WG(H)m diagonally. Di-

rect inspection of its definition shows that the adjoint (|Πm|∗|ΠG
G/H |�)→ |ΠG

M | (basically

given by the cartesian product of partitions) is not only equivariant over the Weyl group,

but also over the symmetric group Σm, if one lets it act on ΠM by permuting the m copies

of G/H. In other words, we can also think of (6.6.2) as a (Σm oWG(H))-equivariant map

(Σm oWG(H))nΣm×WG(H) (|Πm| ∗ |ΠG
G/H |�)

'−→ |ΠG
M |

that is a non-equivariant equivalence. Hence, we find that

EAut(M)+ ∧Aut(M)

(
|ΠG

M |� ∧ SM/G
)

is weakly equivalent to

((EΣm)+ ∧Σm (|Πm|� ∧ Sm)) ∧
(
EWG(H)+ ∧WG(H) |ΠG

G/H |�
)
∧ S1.

Here, we used that

|Πm| ∗ |ΠG
G/H |� ' |Πm|� ∧ |ΠG

G/H |�,

as described in [Aro15, Lemma 2.5]. So it suffices to note that (EΣm)+∧Σm (|Πm|�∧Sm)

is rationally contractible for m ≥ 2. For this in turn it is enough to see that the strict

quotient (|Πm|� ∧ Sm)/Σm is contractible. Via an induction over the cells we can again

reduce to showing that Sm/K is contractible for any subgroup K ≤ Σm which appears

as an isotropy group of |Πm|�. The isotropy of the cone points are given by the full Σm

and we know that Sm/Σm is contractible. All other isotropy groups are given by those

of |Πm|, so let P = P0 ⊆ . . . ⊆ Pk be a chain of non-trivial proper partitions of m.

Then the subgroup K0 of Σm of those elements which fix P0 strongly (i.e., which fix

every set in the partition) is complete. The subgroup K0 also fixes all larger partitions

83



Pi and is hence a subgroup of the isotropy group Iso(P) of the chain. Moreover, Iso(P)

is contained in the normalizer of K0, which is the isotropy of the 0-simplex P0. In the

proof of Lemma 6.6.3 we saw that the quotient Sm/K0 is equivariantly contractible over

the Weyl group of K0, hence also over the subgroup Iso(P)/K0. It follows that

Sm/ Iso(P) ∼= (Sm/K0)/(Iso(P)/K0)

is contractible. which finishes the proof of item (ii).

(iii) : This follows from the fact that a G-fixed partition of G/H is determined by

its summand containing H/H and that this summand has to be of the form K/H for a

subgroup H � K � G (cf. [Aro15, Lemma 7.2]).

So we see that there is a rational equivalence

((EGΣn)+ ∧Σn (|Πn|� ∧ Sn))G 'Q
∨

(H≤G)
[G:H]=n

(
EWG(H)+ ∧WG(H) (|L(G)(H,G)|� ∧ S1)

)
.

We claim that the right hand side is rationally equivalent to |L̃n(G)/L̃n−1(G)|/G. In

fact, we already saw in the proof of Lemma 6.5.3 that |L̃n(G)/L̃n−1(G)| is isomorphic

to the wedge over all index n subgroups H of the spaces

|L(G)[H,G]|/
(
|L(G)[H,G)| ∪|L(G)(H,G)| |L(G)(H,G]|

)
' |L(G)(H,G)|� ∧ S1.

After taking G-orbits, we can equivalently form the wedge over representatives of con-

jugacy classes of such subgroups H, and quotient each summand by the Weyl-group

action. Since orbits and homotopy orbits are rationally equivalent for finite groups, the

claim follows.

So together with Theorem 6.6.1 and the fact that geometric fixed points commute

with suspension spectra, this shows that there is a rational equivalence

ΦG(Spn/Spn−1) 'Q Σ∞(|L̃(G)n/L̃(G)n−1|/G),

which finishes the proof of Theorem 5.2.2.

6.6.1 The Fin-global Steenrod algebra

We digress a little to show another application of Theorem 6.6.1, since it follows almost

directly from what we have seen. We define the Fin-global Steenrod algebra as the

graded endomorphisms of the Eilenberg-MacLane spectrum HZ (for the constant Fin-

global functor Z) in the Fin-global homotopy category. As we recalled in Section 3.2.2,

a model for HZ is given by the infinite symmetric product Sp∞.

Theorem 6.6.9. The Fin-global Steenrod algebra is a single copy of Z concentrated in

degree 0.

In other words, there are no global operations of positive degree on the cohomology

theory represented by HZ (and none of negative degree, but this is easier to see). The
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theorem also implies that more generally there are isomorphisms

[HA,HB]gl∗
∼= Ext−∗Z (A,B)

for all finitely generated abelian groups A and B. In particular, the mod-p Fin-global

Steenrod algebra is two-dimensional, generated by the identity and the Bockstein.

The Cp-equivariant mod-p Steenrod algebra was studied by Caruso in [Car99]. He

showed that the forgetful map to the non-equivariant Steenrod algebra only hits the

identity and the Bockstein, but that there is a large kernel given by shifted copies of the

cohomology of BCp. Caruso’s result already implies that none of the higher Steenrod

squares can lift to the Fin-global category. By Theorem 6.6.9, the exotic Cp-equivariant

operations which become trivial non-equivariantly are not part of a global family.

Proof of Theorem 6.6.9. We claim that the map S→ Sp∞ induces an isomorphism

[Sp∞, Sp∞]gl
∗
∼= [S, Sp∞]gl

∗ ,

which proves the theorem since the non-equivariant homotopy of Sp∞ are a copy of Z
concentrated in degree 0. For this it suffices to see that the graded morphism groups

[Spn/Spn−1, Sp∞]gl
∗ are trivial for all n ≥ 2. Using Theorem 6.6.1 and the adjunction

mentioned in Section 3.1.4, we find that these agree with

[Σ∞((EGΣn)+ ∧Σn (|Πn|� ∧ Sn)), Sp∞]gl
∗
∼= [Σ∞(|Πn|� ∧ Sn), Sp∞Σn ]Σn∗ .

The latter term is naturally isomorphic to the Bredon cohomology of the Σn-space

|Πn|� ∧ Sn with coefficients in the constant Σn-Mackey functor Z, or in other words the

ordinary cohomology of the quotient (|Πn|� ∧ Sn)/Σn. But, as we saw in the proof of

item (ii) of Proposition 6.6.8, this quotient is contractible for n ≥ 2, which finishes the

proof.
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Chapter 7

Examples

In this section we go through some examples, where we describe the respective filtra-

tions on subgroup lattices and read off the rational equivariant homotopy groups of the

symmetric products. In all the cases we discuss, the quotient L(G)/G is isomorphic to

the nerve of the poset of conjugacy classes of subgroups of G (while in general there is

only a natural surjection from the former to the latter).

Example 7.0.10 (Symmetric group Σ3). We start with the symmetric group on 3

letters. On the left we depict the subgroup lattice modulo conjugation, on the right

the filtration by the L(Σ3)n/Σ3 and the resulting Σ3-homotopy groups of the symmetric

products.

Σ3

A3

2

Σ2

3

{e}2

3

n 1 2 3− 5 ≥ 6

L(Σ3)n/Σ3

πΣ3
1 (Spn)⊗Q 0 0 Q 0

πΣ3
0 (Spn)⊗Q Q4 Q2 Q Q

Example 7.0.11 (Dihedral group D8). For the dihedral group with 16 elements the

filtration stabilizes, up to homotopy, at n = 4. All minimal subgroup inclusions are of

index 2.

D8

D
(1)
4 C8 D

(2)
4

D
(1)
2 C4 D

(2)
2

D
(1)
1 C2 D

(2)
1

{e}

n 1 2, 3 ≥ 4

L(D8)n/D8

πD8
1 (Spn)⊗Q 0 Q6 0

πD8
0 (Spn)⊗Q Q11 Q Q

Example 7.0.12 (SL2(F3)). The figure below depicts the filtration for the special linear

group SL2(F3), the semi-direct product of the quaternion group Q8 with the cyclic
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group C3. The subgroup lattice modulo conjugation is given by

SL2(F3)

C6

4

Q8

3

C3

2
C4

2

C2

3

2

{e}
3

2

and the filtration works out as:

n 1 2 3 4, 5 6− 11 ≥ 12

L(SL2(F3))n/SL2(F3)

π
SL2(F3)
1 (Spn)⊗Q 0 0 Q Q2 Q 0

π
SL2(F3)
0 (Spn)⊗Q Q7 Q3 Q Q Q Q

Example 7.0.13 (Cyclic groups). For cyclic groups Cm, the subgroups correspond to

divisors of m ordered by divisibility. If m is the product of k different primes, the

subgroup lattice is a k-dimensional cube. In particular, the subcomplex L(Cm)m−1 is

the boundary of the cube and hence isomorphic to Sk−1. This shows that for every

k ∈ N there exists an n ∈ N and a finite group G such that πGk (Spn)⊗Q is non-trivial.

Below is the 3-dimensional cube for the example m = 30 = 2 · 3 · 5, where the elements

at the top are those divisible by 2, the ones on the right those divisible by 3 and the

ones at the back those divisible by 5.

1 2 3, 4 5 6− 9 10− 14 15− 29 ≥ 30

0 0 0 0 0 0 Q 0

0 0 Q2 Q5 Q3 Q 0 0

Q8 Q4 Q2 Q Q Q Q Q

Example 7.0.14 (Symmetric group Σ4). The last example we draw explicitly is for the

symmetric group on four letters. The subgroup lattice modulo conjugation is depicted

below:

Σ4

Σ3 A4 D4

V4 C2
2 C4

A3 (12) (12)(34)

{e}
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For example, one can imagine all vertices to lie in the plane, except for the one associated

to a transposition (12), which is placed below the rest. The indices of the subgroup

inclusions are left out for better readability. The filtration then works out as follows:

1 2 3 4, 5 6, 7 8− 11 12− 23 ≥ 24

0 0 0 0 0 0 Q 0

0 Q3 Q5 Q4 Q2 Q 0 0

Q11 Q3 Q Q Q Q Q Q

We close this section with a few general remarks on the complexes of the form

L(G)|G|−1, the last non-trivial stage in the filtration. They can be identified with the

unreduced suspension of the lattice L(G)(1,G) of proper non-trivial subgroups of G, about

which there are various results in the literature. For example, in [KT85] it is shown that

if G is solvable, then L(G)(1,G) is homotopy-equivalent to a wedge of spheres of dimension

two less than the chief length c(G) of G. By [Thé85], the top homology

Hc(G)−2(L(G)(1,G),Z)

is a permutation representation under the conjugation G-action. The quotient

Hc(G)−2(L(G)(1,G),Z)/G

is still acted on by the outer automorphism group Out(G) of G. As we saw (Theorem

4.3.2), after tensoring with Q this corresponds to the action of Out(G) on

πGc(G)−1(Sp|G|−1)⊗Q

which is part of the structure of a global functor. These actions can be interesting

representation-theoretically:

Example 7.0.15 ((Z/p)n and the Steinberg module). When G = (Z/p)n, the complex

L(G)(1,G) is the Tits building for Out(G) = GLn(Fp). So, by a theorem of Solomon

([Sol69]), its homology

Hn−2(L(G)(1,G),Q)

(and hence also πGn−1(Spp
n−1) ⊗ Q) is isomorphic to the rational Steinberg module, a

distinguished irreducible GLn(Fp)-representation of dimension p
n(n−1)

2 . For example,

when p = n = 2, the Steinberg module is the reduced natural representation of Σ3
∼=

GL2(F2).

A different relation between symmetric products of spheres and the Steinberg module

- over Fp instead of Q - plays a major role in [AD01].

89



90



Chapter 8

Global properties of SpnQ

In this final section of Part II we describe homological properties of the Outop-complex

models CL̃n for the rational symmetric products. We first show that they are degreewise

projective and then use this to prove that for 1 < n < ∞ they are not formal, i.e.,

not quasi-isomorphic to their homology with trivial differential. As a consequence, the

rationalization SpnQ is not a product of Eilenberg-MacLane spectra for any n except

1 and ∞. This is a truly global phenomenon, since over a fixed finite group G every

rational G-spectrum is determined by its Mackey functor homotopy groups. Finally, we

give a proof that the cyclic p-groups are the only groups for which πG∗ (Spn)⊗Q is always

concentrated in degree 0.

Proposition 8.0.16. Each CL̃n is degreewise projective as a Q[Outop]-module.

Proof. We need the following notion: A chain of subgroup inclusions H0 ≤ . . . ≤ Hk is

called simple if H0 does not contain a non-trivial normal subgroup of Hk, i.e., if this

chain cannot be obtained via pull-back along a surjective group homomorphism that is

not an isomorphism.

Now recall that the k-th level of CL̃n(G) is given by the Q-linearization of the set of

conjugacy classes of chains of proper subgroup inclusions which end in G, are of length

k and have total index at most n. The map ⊔
H0�...�Hk simple,[Hk:H0]≤n

Epi(G,Hk)

 /iso→ {k-chains of index ≤ n in G}/conj

(ψ : G� Hk) 7→ [ψ−1(H0) � . . . � ψ−1(Hk) = G]

defines a natural bijection. On the left hand side, two pairs

(H0 � . . . � Hk;ψ : G� Hk)

and

(H ′0 � . . . � H ′k;ψ
′ : G� H ′k)

are considered isomorphic if there exists an isomorphism ϕ : Hk

∼=−→ H ′k that takes the

first chain to the second and which satisfies ϕ◦ψ = ψ′. For the inverse map one associates
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to a k-chain H0 � . . . � Hk = G the simple k-chain

H0/H � . . . � Hk/H = G/H

together with the projection G� G/H, where H is the intersection of all G-conjugates

of H0, or in other words the maximal subgroup of H0 that is normal in G. Hence, we

find that there is an isomorphism of Outop-modules

(CL̃n)k ∼=
⊕

[H0�...�Hk simple,[Hk:H0]≤n]

Q[Out(−, Hk)]/Out(H0 � . . . � Hk), (8.0.1)

with Out(H0 � . . . � Hk) denoting the group of conjugacy classes of automorphisms

of Hk which map the chain H0 � . . . � Hk to a conjugate of itself. The functors

Q[Out(−, Hk)] are by definition representable, hence projective. Furthermore, the orbits

of a projective functor under any action of a finite group K are again projective, since

the projection is split by the map [x] 7→ 1
|K|
∑

k∈K(k · x). This finishes the proof.

The proof also applies to n =∞ and hence CL̃ itself, showing that it gives a projective

resolution of the Outop-module that sends the trivial group to Q and all other finite

groups to 0. Using once more that the functor τ of Section 5.1 is an equivalence, this

shows that CL is a projective resolution of the constant global functor Q.

We can use our algebraic model to see:

Theorem 8.0.17. The only n for which the rationalization SpnQ is a product of global

Eilenberg-MacLane spectra are 1 and ∞.

Proof. Using the equivalence between the rational global stable homotopy category and

the derived category of rational Outop-modules (Theorem 5.2.1) together with Theorem

5.2.2, the statement is equivalent to the Outop-complex CL̃n not being quasi-isomorphic

to its homology with trivial differential.

Each CL̃n with n <∞ is concentrated in finitely many degrees

0, . . . , blog2(n)c = a(n).

We show that if n > 1, the highest possible k-invariant is non-trivial, i.e., the map

ΣanHa(n)(CL̃n)→ CL̃n

does not have a section in the derived category. Since CL̃n is degreewise projective, this

is equivalent to the inclusion

Ha(n)(CL̃n) ↪→ (CL̃n)a(n)

of Outop-modules not having a section. In fact we claim that any Outop-map

(CL̃n)a(n) → Ha(n)(CL̃n)

is necessarily zero on all abelian groups. To see this we use the decomposition (8.0.1) of
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(CL̃n)a(n) above. When restricted to abelian groups, only the summands associated to

chains K0 � . . . � Ka(n) for which Ka(n) is abelian play a role, since there is no surjective

map from an abelian group to a non-abelian one. In the abelian case, the simpleness

implies that K0 is the trivial group, and so the order of Ka(n) is at most n. So, over

abelian groups, (CL̃n)a(n) is a quotient of a direct sum of representables for groups K

of order at most n. It now suffices to see that any map from these representables to

Ha(n)(CL̃n) is trivial. By the Yoneda Lemma, such maps correspond to homology classes

Ha(n)(CL̃n)(K). Since L̃(K)n is contractible for groups K of order ≤ n (unless K is the

trivial group, which can only appear if a(n) = 0 and hence n = 1), this homology is

trivial. This proves the claim.

Hence it suffices to show that there exists an abelian groupG for whichHa(n)(CL̃n)(G)

is non-trivial. By Example 7.0.15, such a G is given by (Z/2)a(n)+1.

Using similar arguments for other classes of groups, one can show the non-vanishing

of many more k-invariants of CL̃n. Finally, we have:

Proposition 8.0.18. For a finite group G the following are equivalent:

(i) For all n ∈ N the graded vector space πG∗ (Spn)⊗Q is concentrated in degree 0.

(ii) G ∼= Cpn for some prime p and n ∈ N.

Proof. If G ∼= Cpn , the subgroup lattice of G is linear, and it is not hard to see that

all subcomplexes L(G)n are either discrete (for n < p) or contractible. So, by Theorem

4.3.2, πG∗ (Spn)⊗Q is concentrated in degree 0.

For the other direction we fix a finite group G that is not cyclic of prime power order.

It suffices to show that some ΦG
k (Spn)⊗Q with k > 0 is non-trivial, since it is a quotient

of πGk (Spn) ⊗ Q. We now see that k can in fact always be taken to be 1. For this we

choose two non-conjugate maximal subgroups H and H ′ of G, which is possible since G

is not cyclic of prime power order. For example, their existence follows from the fact

that the union of all conjugates of a proper subgroup can never be all of G. Let n denote

the index of H in G, which we can without loss of generality assume to be at least as

large as that of H ′. Then the formal difference

[H ≤ G]− [H ′ ≤ G] ∈ CL̃n(G)1

is a non-trivial 1-cycle. Since any proper subgroup of H has index larger than n in G

and G is the only subgroup containing H, there are no non-degenerate 2-simplices of

L̃(G)n/G that have H ≤ G or any of its conjugates as a face. Hence, [H ≤ G]− [H ′ ≤ G]

cannot be a boundary and thus defines a non-trivial element in

H1(CL̃n(G)) ∼= ΦG
1 (Spn)⊗Q.

This finishes the proof.
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Part III

Filtrations of global K-theory I:

Subquotients
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Chapter 9

Rank and complexity filtrations

In this part we give a definition of the modified rank and complexity filtration in the

global context and then determine the global homotopy type of the filtration subquo-

tients of these filtrations. The results are joint work with Dominik Ostermayr.

9.1 Arone and Lesh’s construction

We recall Arone and Lesh’s non-equivariant construction of the rank and complexity

filtrations as well as some of their results.

In [AL07], the authors start with a permutative category C which is augmented over

the permutative category N, i.e., the category whose objects are the natural numbers,

whose morphisms are only the identities and whose monoidal structure is addition. Their

main examples for C are given by the (topological) category of finite dimensional real or

complex vector spaces, the category of finitely generated free R-modules over a discrete

ring R satisfying dimension invariance and the category of finite sets.

Out of this data the authors construct a sequence of permutative categories

C = K0C → K1C → K2C → . . .→ K∞C ' N

by inductively ‘killing the bottom non-trivial component’ via a homotopy pushout in

permutative categories. Through Segal’s delooping machine (i.e., first forming the Γ-

space associated to a permutative category and then realizing to spectra), this yields a

sequence of spectra

kC = AC0 → AC1 → AC2 → . . .→ AC∞ ' HZ. (9.1.1)

The authors did not attach a name to this construction. We call it the complexity filtra-

tion for C, based on the usage of that term in [Les00]. For C the category of finite sets,

the complexity filtration gives back the symmetric product filtration of Section 3.2.2

(as shown in [AL07, Corollary 8.4]). Hence, the authors suggest to view the filtrations

(9.1.1) as kC-analogs of symmetric products. They back this claim up by showing that

many formal properties of symmetric products carry over to general complexity filtra-

tions. In particular, the authors prove that the quotients are suspension spectra and
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determine their homotopy type.

In a later paper [AL10] Arone and Lesh show that there is a different - and perhaps

simpler - route to obtain the spectra ACn, which involves a filtration of the K-theory

spectra kC themselves, the so-called modified rank filtration. It is constructed as follows:

The evaluation of the Γ-space associated to N is isomorphic to Sp∞, because the infinite

symmetric product of a based set/space can be identified with its reduced N-linearization.

Then the n-th level kCn in the modified rank filtration is defined as the pullback

kCn //

��

J

kC

��

Spn // Sp∞.

(9.1.2)

In other words, the modified rank filtration is obtained by pulling back the symmetric

product filtration along the augmentation. Here, it is important to note that one forms

the point-set pullback and not a homotopy pullback.

Remark 9.1.1. The assignment

k+ 7→ Spn(k+)

yields a Γ-space whose spectrum realization is isomorphic to Spn. The modified rank

filtration can alternatively be defined by forming the (again strict) pullback as above in

the category of Γ-spaces and then realizing to a spectrum. This yields the same result

because at the level of Γ-spaces the pullback amounts to picking out certain components.

As Arone and Lesh show, one can get back the complexity filtration by forming the

homotopy pushout in Diagram (9.1.2) above. For simplicity, let us assume that the

preimage of 1 ∈ N under the augmentation of C consists of a single isomorphism class.

This is the case in all our examples. Then there exists an essentially unique functor

of augmented permutative categories from the category of finite sets to C. Hence, the

complexity filtration of C receives a map from the complexity filtration for the K-theory

of finite sets, which is equivalent to the symmetric product filtration by [AL07, Corollary

8.4]. Hence one can consider the diagram

kCn //

��

kC

��

Spn // ACn.

(9.1.3)

Theorem 9.1.2 ([AL10, Theorem 4.4]). The square (9.1.3) is homotopy cocartesian.

Note that if Diagram (9.1.2) above was a homotopy pullback, ACn and Sp∞ would be

equivalent by stability, which is usually not the case.

In the case of topological K-theory, Arone and Lesh also examine the modified rank

filtration itself and show that the subquotients again turn out to be suspension spectra,

related to the lattice of decompositions of finite dimensional complex vector spaces as
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an orthogonal sum of subspaces. We generalize this to the global equivariant context in

Chapter 11.

Remark 9.1.3 (Relation to Rognes’ stable rank filtration). In [Rog92], Rognes con-

structs a different spectrum level rank filtration of connective K-theory and uses it to

prove that the K-group K4(Z) is trivial. Arone and Lesh show that there exists a nat-

ural map from their modified rank filtration to Rognes’ stable rank filtration [AL10,

Section 4.2]. For topological K-theory (complex and real) this map is an equivalence,

and Arone and Lesh use this to prove a conjecture by Rognes on the connectivity of the

subquotients in his rank filtration. For algebraic K-theory, the comparison map is in

general not an equivalence and the two filtrations are different.

We do not know whether there exists a global version of Rognes’ stable rank filtration.

9.2 Global versions

In this thesis we follow the route of the later paper [AL10] to construct global gener-

alizations of the modified rank and complexity filtrations. For now we let kX denote

either one of the orthogonal spectra ku, ko, kFin of Sections 3.3 and 3.4 or the symmet-

ric spectrum kR for a ring satisfying dimension invariance of Section 3.6. We recall that

each kX comes with a natural morphism to Sp∞.

Definition 9.2.1 (Global modified rank filtration). The n-th level of the modified rank

filtration for kX is defined as the strict pullback

kXn

J

//

��

kX

��

Spn // Sp∞.

Again, the pullback could also be performed on the level of orthogonal Γ-spaces (re-

spectively I-Γ-spaces), where it picks out certain components. In the geometric picture of

Remark 3.3.2, a labeled configuration [(x1,W1), . . . , (xl,Wl)] - with all xi non-basepoint

elements of some sphere SV - lies in kun(V ) if and only if the sum of the dimensions of

the Wi is at most n. Similar descriptions work for kon, kFinn and kRn.

Inspired by Theorem 9.1.2 above, we further define:

Definition 9.2.2 (Global complexity filtration). The n-th term AXn of the complexity

filtration for kX is defined as the homotopy pushout

kXn //

��

kX

��

Spn // AXn .
R

h

Concretely, we let AXn be the spectrum

([0, 1]+ ∧ Spn) ∨kXn kX,
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where the embedding Spn → [0, 1]+∧Spn is via the endpoint 1. The inclusions kXn−1 ↪→
kXn and Spn−1 ↪→ Spn induce comparison morphisms AXn−1

pn−1−−−→ AXn and give rise to

the complexity filtration

kX ∼= AX0
p0−→ AX1

p1−→ . . .→ AX∞ ' Sp∞.

Since the morphism kXn → kX is always a levelwise cofibration (cf. Appendix A.1), AXn
could also be defined as the strict pushout. We use the mapping cylinder construction

to ensure that the induced maps AXn
pn−→ AXn+1 are level-cofibrations. This will make it

easier to describe the filtration quotients.
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Chapter 10

Rank filtration of HZ/Symmetric

product filtration

We now begin to study the subquotients in the modified rank and complexity filtrations.

Our first example is the symmetric product filtration, or in other words the rank filtration

for the K-theory of the permutative category N. As Arone and Lesh show in [AL07], the

symmetric product filtration is also equivalent to the complexity filtration for the K-

theory of finite sets. This is also true globally, as follows from the results of Chapter 12.

The symmetric product filtration has been much studied non-equivariantly, in par-

ticular the homotopy type of the filtration quotients was determined by Lesh in [Les00].

As explained in Section 3.2.3, Schwede examined the behavior of the global Spn on π0 in

[Sch14], for which he also gave a description of the global filtration quotients Spn/Spn−1.

This description already appeared in Section 6.6. In this section we recall his proof, be-

cause the symmetric products are the universal example of a rank filtration and because

we need it later to describe subquotients in complexity filtrations.

Recall that the V -th level of the orthogonal spectrum Spn is the n-th symmetric

product Spn(V ) of the sphere SV . So the quotient Spn/Spn−1 is given by

(Spn/Spn−1)(V ) = (SV )∧n/Σn,

or in other words the Σn-orbit space of the one-point compactification of the (Σn×O(V ))-

representation Rn ⊗ V . The natural Σn-representation Rn decomposes as

Rn = Rn ⊕ R,

where Rn is the reduced natural representation of vectors whose entries sum to zero and

R the trivial representation which sits inside Rn via

t 7→ t · ( 1√
n

n∑
i=1

ei).
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Using this decomposition, we see that

(Spn/Spn−1)(V ) ∼=
(
SR

n⊗V /Σn

)
∧ SV ∼=

(
S(Rn ⊗ V )�/Σn

)
∧ SV .

Here, S(−) denotes the sphere of vectors of length one in an inner product space and

the notation X� stands for the unreduced suspension of a space X equipped with the

basepoint X × 1. Moreover, under this homeomorphism the structure map

(Spn/Spn−1)(V ) ∧ SW−ϕ(V ) → (Spn/Spn−1)(W )

associated to a linear isometric embedding ϕ : V ↪→W corresponds to the smash product

of the inclusion

S(Rn ⊗ V )�/Σn
ϕ∗−→ S(Rn ⊗W )�/Σn

and the homeomorphism SV ∧SW−ϕ(V ) ∼= SW induced by ϕ. In other words, Spn/Spn−1

is isomorphic (!) to the suspension spectrum of the based orthogonal space

V 7→ S(Rn ⊗ V )�/Σn.

Let Tn denote the collection of non-transitive subgroups of Σn, i.e., those subgroups

whose tautological action on the set n is not transitive. Further we denote by CΣ
n

the collection of complete subgroups of Σn, i.e., those conjugate to one of the form

Σn1 × Σn2 × . . .× Σnk with n1 + n2 + . . .+ nk = n, all ni ≥ 1 and k > 1. We note that

a subgroup of Σn is non-transitive if and only if it is contained in a complete subgroup.

Proposition 10.0.3. The Σn-orthogonal space S(Rn⊗−) is a global universal space for

both Tn and CΣ
n .

The notion of a global universal space for a collection is explained in Section 2.2.

Proof. Clearly, all structure maps S(Rn ⊗ V )→ S(Rn ⊗W ) are closed inclusions. Now

let G be a compact Lie group and UG a complete G-universe. As a consequence of a

theorem of Illman (cf. [Ill83]), all (Σn ×G)-spheres S(Rn ⊗ V ) are (Σn ×G)-cofibrant.

We are now going to show that all Σn-isotropy of S(Rn ⊗ UG) lies in complete

subgroups and that the fixed points for a subgroup H of Σn×G are contractible whenever

the intersection H∩ (Σn×1) is non-transitive, implying universality for both collections.

An element of Rn ⊗ UG can be represented by an n-tuple (v1, . . . , vn) of vectors of UG
which sum up to zero, with Σn acting by permuting the coordinates. Every such element

defines a partition of the set n by the equivalence relation that i ∼ j if vi = vj . Let

the equivalence classes be denoted by A1, . . . , Ak. Then a permutation in Σn fixes the

element (v1, . . . , vn) if and only if it maps each Ai into itself, i.e., if and only if it lies

in the subgroup Σ(A1) × . . . × Σ(Ak). Since the vi’s add up to zero and are of total

length one, they cannot all be the same and hence k is greater than 1 and the isotropy

subgroup is complete.

Now let H be an element of CΣ
n 〈G〉, i.e., a subgroup of Σn × G whose intersection

102



K := H ∩ (Σn × 1) acts non-transitively. There is a short exact sequence of groups

1→ K → H → prG(H)→ 1,

where prG(H) denotes the image of H under the projection to G. Hence, the H-fixed

points of S(Rn ⊗ UG) equal the prG(H)-fixed points of

S(Rn ⊗ UG)K = S((Rn)K ⊗ UG) = S(Rn/K ⊗ UG).

The prG(H)-action on the latter representation is the tensor product of the action on

Rn/K induced from the short exact sequence above and the restricted action on UG. Since

UG is a complete prG(H)-universe, it in particular contains an infinite direct sum of copies

of the dual of Rn/K (which is again isomorphic to Rn/K). The tensor product of any

finite dimensional representation with its dual always contains a trivial representation,

so it follows that the prH(G)-fixed points of S(Rn/K⊗UG) are a unit sphere in an infinite

dimensional vector space and hence contractible. So we are done.

Thus one obtains:

Theorem 10.0.4 ([Sch14, Proposition 1.11]). The quotient Spn/Spn−1 is globally equiv-

alent (in fact, isomorphic) to the suspension spectrum of the unreduced suspension of a

global classifying space for both the collection of non-transitive and complete subgroups

of Σn, or in short:

Spn/Spn−1 ' Σ∞(BglTn)� ' Σ∞(BglCΣ
n )�
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Chapter 11

Filtrations associated to global

topological K-theory

In this section we describe the global homotopy type of the filtration subquotients of

the modified rank and complexity filtration for connective global topological K-theory

ku and ko.

11.1 Quotients in the modified rank filtration

We recall from Section 3.3 that kun is given by the realization of the orthogonal Γ-space

(V,A+) 7→
⊔

(na)a∈A,
∑
na≤n

LC(
⊕
a∈A

Cna ,Sym(VC))/
∏
a∈A

U(na),

or in short (V,A+) 7→ kun(Sym(VC), A).

In Appendix A.1, we argue that the maps kun−1 → kun are levelwise equivari-

ant cofibrations, so we can consider the strict quotient kun/kun−1 as a model for

the homotopy cofiber. The first step consists of rewriting the quotient Γ-spaces in a

slightly different way. For a complex vector space W and a finite set A the space

kun(W,A+)/kun−1(W,A+) is given by

∨
(na)a∈A,Σna=n

(
LC(

⊕
a∈A

Cna ,W )/
∏
a∈A

U(na)

)
+

.

Using that composition defines a homeomorphism

LC(Cn,W )+ ∧U(n) LC(
⊕
a∈A

Cna ,Cn)+
∼=−→ LC(

⊕
a∈A

Cna ,W )+,

we obtain that this quotient is isomorphic to

LC(Cn,W )+ ∧U(n)

 ∨
(na)a∈A,Σna=n

(
LC(

⊕
a∈A

Cna ,Cn)/
∏
a∈A

U(na)

)
+

 .
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Applying this to W = Sym(VC), we see that we have rewritten the orthogonal Γ-space

kun(Sym(−C),−)/kun−1(Sym(−C),−)

as a balanced smash product of two parts. The first – LC(Cn, Sym(−C))+– is constant

in the Γ-space direction and equals the U(n)-orthogonal space L(Cn) that appeared in

Section 3.3. As we argued there, it is a global universal space for U(n).

The second smash factor is constant in the orthogonal space direction. It is given

by the U(n)-Γ-space of decompositions of Cn into a direct sum of orthogonal sub-vector

spaces. We give it the shorter notation

L(n,A+) =
∨

(na)a∈A,Σna=n

(
LC(

⊕
a∈A

Cna ,Cn)/
∏
a∈A

U(na)

)
+

.

We consider the evaluation of this U(n)-Γ-space on a representation sphere SV for some

compact Lie group G and G-representation V . Every element is represented by a tuple

(Wi, xi)i∈I for some finite indexing set I, where the Wi form an orthogonal decomposition

of Cn into complex subspaces and the xi are elements of SV . (Again, this representative

becomes unique up to a change of labels if we require all the xi to be distinct elements

of V and all the Wi to be non-zero.) The action of U(n) is through the partition, that

of G through the points xi.

Sitting inside L(n, SV ) we have a copy of SV (with trivial U(n)-action) as elements of

the form (Cn, x). In fact we can mimic the construction in Chapter 10 for the symmetric

products to see that SV splits off (U(n)×G)-equivariantly as a smash factor. The other

factor is given by the subspace of L(n, SV ) consisting of elements represented by tuples

(Wi, xi)i∈I (with xi ∈ V ) that satisfy the relation∑
i∈I

(dim(Wi) · xi) = 0

as elements of V (this property is independent of the representing tuple). We denote

this ‘reduced’ subspace by L(n, SV ). Then the (U(n)×G)-homeomorphism

L(n, SV )
∼=−→ L(n, SV ) ∧ SV

is given by [(Wi, xi)i∈I ] 7→ [(Wi, xi − x)] ∧ x, where x = 1
n

∑
i∈I(dim(Wi) · xi).

Under this identification, for a linear isometric embedding ϕ : V ↪→W the structure

map

L(n, SV ) ∧ SV ∧ SW−ϕ(V ) → L(n, SW ) ∧ SW

becomes the smash product of the inclusion

L(n, SV )
ϕ∗−→ L(n, SV⊕V ′)

with the homeomorphism SV ∧ SW−ϕ(V ) ∼= SW induced by ϕ. Thus we see that the

orthogonal spectrum realization of L(n,−) (with induced U(n)-action) is isomorphic to
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the suspension spectrum of the based U(n)-orthogonal space sending V to L(n, SV ).

Finally, like in the symmetric product filtration, this based orthogonal space is itself

the unreduced suspension of the subspace of ‘norm 1 elements’: Let L|.|=1(n, SV ) be

the subspace of L(n, SV ) consisting of those elements that are represented by a tuple

(Wi, xi)i∈I (with xi ∈ V ) satisfying the relation
∑m

i=1(dim(Wi)|xi|2) = 1. Then there is

a (U(n)×G)-homeomorphism

L(n, SV )→ L|.|=1(n, SV )
�

[(Wi, xi)i∈I ] 7→ ([(Wi,
1

|x| · xi)i∈I ],
|x|

1 + |x|),

where |x| =
√∑m

i=1 dim(Wi)|xi|2 and the image of the basepoint is understood to be

the endpoint at 1. Hence we obtain:

Corollary 11.1.1. The quotient kun/kun−1 is isomorphic to the suspension spectrum

of the based orthogonal space

L(Cn)+ ∧U(n) (L|.|=1(n, S−)
�
).

It remains to determine the global homotopy type of the U(n)-orthogonal space

L|.|=1(n, S−), which we from now on abbreviate by Ln. We introduce two collections of

subgroups of U(n):

Definition 11.1.2. A subgroup of U(n) is called

• complete if it is conjugate to one of the form U(n1) × . . . × U(nk) with each ni

positive, n1 + . . .+ nk = n and k > 1.

• non-isotypical if its tautological action on Cn is not isotypical, i.e., if Cn is not the

direct sum of copies of one irreducible representation.

The collection of complete subgroups is denoted by Cun, that of non-isotypical subgroups

by Iun .

We note that to every (unordered) decomposition Cn =
⊕

i∈IWi into at least

two pairwise orthogonal non-trivial subspaces we can associate a complete subgroup∏
i∈I U(Wi) of U(n). This assignment is bijective, the inverse maps a complete sub-

group to the decomposition of Cn into the isotypical components of its action. Note also

that every complete subgroup is non-isotypical. Then we have:

Proposition 11.1.3. The U(n)-orthogonal space Ln is a global universal space for both

Cun and Iun .

Proof. Let G be a compact Lie group and UG a complete G-universe. In Appendix A.2 it

is proved that Ln(UG) is (U(n)×G)-cofibrant. We now show that all the U(n)-isotropy of

Ln(UG) lies in complete subgroups and that the H-fixed points are contractible whenever

H lies in Iun〈G〉. Since complete subgroups are non-isotypical, this implies universality

for both collections. Any point x in Ln(UG) is represented by a tuple (Wi, xi)i∈I sat-

isfying the relations
∑

i∈I dim(Wi) · xi = 0 and
∑

i∈I dim(Wi)|xi|2 = 1. Without loss
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of generality we can assume that all the xi are distinct. Since an element ϕ of U(n)

only acts through the Wi and the presentation of x as such a tuple is unique up to a

permutation, ϕ fixes x if and only if it fixes each of the Wi. In other words, the isotropy

group of x is the product
∏
i∈I U(Wi). The two relations force |I| to be larger than 1

(the only element would have to be zero by the ‘reduced’ condition, contradicting that

the tuple has norm 1) and hence this product is complete.

We move on to show that the relevant fixed point spaces are contractible. First let

K ⊆ U(n) be any subgroup and denote by W1,W2, . . . ,Wk the isotypical components of

its action on Cn. Since every K-representation decomposes canonically into isotypical

subrepresentations, we see that

L(n, SUG)K ∼=
k∧
i=1

L(Wi, S
UG)K .

Here, the notation L(Wi, S
UG) is used to denote the evaluation of the Γ-space of decom-

positions of the complex vector space Wi on UG, i.e., L(n, SUG) with Cn replaced by

Wi.

We can perform the manipulations of this section to each smash factor separately and

obtain k smash copies of SUG , of which the diagonal corresponds to the one of L(Cn, SUG)

used as the suspension spectrum coordinate. Hence we have an isomorphism

L(n, SUG)
K ∼= (SR

k⊗UG) ∧
k∧
i=1

L(Wi, SUG)
K
.

Finally we make use of the fact that a smash product of unreduced suspensions is (based)

homeomorphic to the unreduced suspension of the join (denoted by − ∗ −) and obtain

Ln(UG)K ∼= S(Rk ⊗ UG)K ∗ L|.|=1(W1, SUG)
K ∗ . . . ∗ L|.|=1(WK , SUG)

K
.

Now let H be a subgroup of U(n) × G such that K := H ∩ (U(n) × 1) acts non-

isotypically. We have to show that the H-fixed points of Ln(UG) are contractible. Again

we make use of the short exact sequence

1→ K → H → prG(H)→ 1

to write these H-fixed points as the prG(H)-fixed points of Ln(UG)K . But by the home-

omorphism above, these are given (prG(H)-equivariantly) by the join of S(Rk⊗UG) with

another space. Here, the prG(H)-action on S(Rk ⊗ UG) comes from the fact that any

element of U(n) which normalizes H permutes its isotypical components and hence acts

on the set k. But we have seen in the proof of Proposition 10.0.3 that the prG(H)-fixed

points of S(Rk ⊗ UG) under such an action are contractible if k > 1. Hence, so is the

join and we are done.

Putting everything together:
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Theorem 11.1.4. There are global equivalences

kun/kun−1 ' Σ∞(EglU(n)+ ∧U(n) (EglCun)�)

' Σ∞(EglU(n)+ ∧U(n) (EglIun)�).

The underlying non-equivariant statement of this theorem is due to Arone and Lesh

[AL10, Section 2.2].

This can be simplified by relating EglCun to the collection Cun viewed as a topological

poset, as explained in Section 2.2. By Proposition 2.2.8 and the uniqueness of global

universal spaces shown in Section 2.2.3, there is a zig-zag of U(n)-maps from EglCun to

the constant orthogonal space |Cun|, which induces a global equivalence

EglU(n)×U(n) EglCun
'−→ EglU(n)×U(n) |Cun|

to the global homotopy orbits of |Cun|. The collection Cun is isomorphic to the lattice Ln
of proper decompositions of Cn into an orthogonal sum of complex subspaces, ordered

by refinement. So we find:

Theorem 11.1.5. There is a global equivalence

kun/kun−1 ' Σ∞(EglU(n)+ ∧U(n) |Ln|�).

11.2 Quotients in the complexity filtration

Now we turn to the complexity filtration. We recall that its n-th level Aun is defined as

([0, 1]+ ∧ Spn) ∨kun ku.

Since we know the filtration quotients of the modified rank filtration and the symmetric

product filtration, it is not difficult to obtain a description for the filtration quotients

of the complexity filtration. By forming termwise quotients in the pushout diagram

defining Aun, we see that the sequence

kun/kun−1 → Spn/Spn−1 → Aun/A
u
n−1 (11.2.1)

is a mapping cone sequence. Using the results and notation of the previous sections we

can identify the first two terms with the suspension spectra of the orthogonal spaces

L(Cn)+ ∧U(n) L
�
n respectively S(Rn ⊗ −)�/Σn. Moreover, the map is induced from the

map of orthogonal spaces which collapses L(Cn) to a point and sends an element in Ln
represented by a tuple (Wi, xi)i∈I to the element of S(Rn ⊗−)/Σn represented by

(xi1 , . . . , xi1︸ ︷︷ ︸
dimWi1

, xi2 , . . . , xi2︸ ︷︷ ︸
dimWi2

, . . . , xij , . . . , xij︸ ︷︷ ︸
dimWij

)
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for some enumeration i1, i2, . . . , ij of I, on which it does not depend since the Σn-action

is quotiened out. In fact, the map Ln → S(Rn ⊗−)/Σn induces an isomorphism

Ln/U(n)
∼=−→ S(Rn ⊗−)/Σn

(and in particular, the global classifying space of complete subgroups of U(n) is globally

equivalent to the global classifying space of complete subgroups of Σn). In other words,

the map kun/kun−1 → Spn/Spn−1 is induced – by forming U(n)-orbits and applying

the suspension spectrum functor – from the map of U(n)-orthogonal spaces

L(Cn)+ ∧ L�n → L
�
n

that collapses L(Cn) to a point. So we have:

Corollary 11.2.1. The quotient Aun/A
u
n−1 is isomorphic to the suspension spectrum of

the based orthogonal space L(Cn)� ∧U(n) L
�
n.

Since the smash product of two unreduced suspensions is isomorphic to the unreduced

suspension of the join ∗, this based orthogonal space can be rewritten as

(L(Cn) ∗ Ln)�/U(n).

From Section 11.1 we know that the first join factor is a global universal space for

U(n) and that the second is a global universal space for the collection of complete (or

non-isotypical) subgroups of U(n).

The global homotopy type of this join can then be determined by the following easy

lemma:

Lemma 11.2.2. Let F be any collection of subgroups of a Lie group K, EglF a global

universal space for F and EglK be a global universal space for K. Then the join EglF ∗
EglK is a global universal space for the collection F , i.e., F with the trivial subgroup

added.

Proof. This follows directly from the fact that the join commutes with taking fixed

points.

Hence, denoting the collection of complete and trivial subgroups of U(n) by Cun and

the collection of non-isotypical and trivial subgroups by Iun, we obtain:

Theorem 11.2.3 (Subquotients in the complexity filtration). There are global equiva-

lences

Aun/A
u
n−1 ' Σ∞(Bgl(Cun)�) ' Σ∞(Bgl(Iun)�).

There is a different description of these filtration quotients, which is specific to the

case of topological K-theory. Also, it turns out that the map from the quotients of the

symmetric product filtration to the quotients of the complexity filtrations is globally null-

homotopic. Both of these statements are a straightforward equivariant generalization of

[AL07, Section 9].
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We consider the tautological complex U(n)-representation Cn. By smashing the

cofiber sequence

L(Cn)+ ∧ L�n → L
�
n → (L(Cn) ∗ Ln)�

described above with the U(n)-representation sphere SC
n

we obtain a commutative di-

agram of based U(n)-orthogonal spaces

L(Cn)+ ∧ L�n //

��

L�n //

��

(L(Cn) ∗ Ln)�

��

L(Cn)+ ∧ L�n ∧ SC
n

// L�n ∧ SC
n

// (L(Cn) ∗ Ln)� ∧ SCn

where the vertical arrows are induced by including S0 as the fixed point sphere of SC
n
.

This diagram has the following two properties:

Lemma 11.2.4. The U(n)-orbits of L�n ∧ SC
n

are globally contractible.

Lemma 11.2.5. The map (L(Cn) ∗ Ln)� → (L(Cn) ∗ Ln)� ∧ SCn is a (U(n) × G)-

equivalence when evaluated on a complete G-universe, for any compact Lie group G. In

particular, the map on U(n)-quotients is a global equivalence.

So we see:

Corollary 11.2.6. The map

S(Rn ⊗−)/Σn
∼= (Ln)�/U(n)→ (L(Cn) ∗ Ln)�/U(n)

is based globally null-homotopic and hence so is Spn/Spn−1 → Aun/A
u
n−1.

Corollary 11.2.7. There is a global equivalence

S1 ∧ (L(Cn)+ ∧U(n) (Ln)� ∧ SCn)) ' (L(Cn) ∗ Ln)�/U(n).

Putting in what we know about the global homotopy of these orthogonal spaces from

Proposition 11.1.3, Theorem 11.2.3 and Proposition 2.2.8, we hence find that there are

the following global equivalences of orthogonal spectra:

Aun/A
n
n−1 ' Σ∞(S1 ∧ EglU(n)+ ∧U(n) (Egl(Iun)� ∧ SCn))

' Σ∞(S1 ∧ EglU(n)+ ∧U(n) (Egl(Cun)� ∧ SCn))

' Σ∞(S1 ∧ EglU(n)+ ∧U(n) (|Ln|� ∧ SC
n
)).

In words, Aun/A
u
n−1 is globally equivalent to the suspension spectrum of the global

homotopy orbits of the based U(n)-space S1 ∧ |Ln|� ∧ SCn .

Proof of Lemma 11.2.4, cf. [AL07, Proposition 9.13]. Let G be a compact Lie group

and UG a complete G-universe. The evaluation Ln(UG) is a (U(n) × G)-cell complex

with all the U(n)-isotropy in complete subgroups (cf. Proposition 11.1.3). Hence,

Ln(UG)� can be built from two points by attaching cells of the form Dk× (U(n)×G)/H

with H ∩ (U(n) × 1) complete. It follows that L�n(UG) ∧U(n) S
Cn can be built from
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SC
n
/U(n) ∼= [0, 1] ' ∗ by attaching spaces of the form (Dk× (U(n)×G)/H)+∧U(n)S

Cn .

We observe that for any space A there is a G-homeomorphism

(A× (U(n)×G)/H)+ ∧U(n) S
Cn ∼= (A×G)+ ∧prG(H) S

Cn/(H ∩ (U(n)× 1)),

where the prG(H)-action on SC
n
/(H ∩ (U(n) × 1)) is the restriction along the induced

homomorphism prG(H)→WU(n)(H ∩ (U(n)× 1)), cf. the proof of Lemma 6.6.3. Since

the quotient of SC
n

by a complete subgroup is homeomorphic to the smash product

of intervals, it is (Weyl-group equivariantly) contractible and hence so is this G-space.

Thus it follows by induction on the cells of Ln(UG)� that the quotient is contractible.

Proof of Lemma 11.2.5, cf. [AL07, Theorem 9.4]. LetG be a compact Lie group and UG
a complete G-universe. We have to show that for every closed subgroup H of U(n)×G
the induced map on H-fixed points is a weak equivalence. Let K be the intersection of

H with U(n)× 1. If the action of K on Cn has no non-trivial fixed points then neither

has that of H and so the map (S0)H → (SC
n
)H is even a homeomorphism. If the action

of K on Cn does have non-trivial fixed points, K is either the trivial subgroup of U(n) or

it acts non-isotypically. In both cases the space (L(Cn) ∗ Ln)�(UG)H is contractible and

hence the map on H-fixed points is necessarily a weak equivalence, so we are done.

11.2.1 Real version

Let Con denote the collection of complete subgroups of O(n), Ion the collection of sub-

groups of O(n) which act non-isotypically on Rn and Lon the topological lattice of proper

decompositions of Rn as an orthogonal sum of subspaces. Then all proofs of the previous

sections go through verbatim in the real case to give the following:

Theorem 11.2.8 (Quotients in the modified rank filtration for ko). There are global

equivalences

kon/kon−1 ' Σ∞(EglO(n)+ ∧O(n) (EglCon)�)

' Σ∞(EglO(n)+ ∧O(n) (EglIon)�)

' Σ∞(EglO(n)+ ∧O(n) |Lon|�).

Again, we let Cun and Iun be the collections obtained by adding the trivial group to

Cun respectively Iun and denote by Rn the tautological O(n)-representation.

Theorem 11.2.9 (Quotients in the complexity filtration for ko). There are global equiv-

alences

Aon/A
o
n−1 ' Σ∞(BglCon)�

' Σ∞(BglCon)�

' Σ∞(S1 ∧ EglO(n)+ ∧O(n) (|Lon|� ∧ SR
n
)).

Moreover, the morphism Spn/Spn−1 → Aon/A
o
n−1 is globally null-homotopic.
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Chapter 12

The rank filtration for the

category of finite sets and the

global Barratt-Priddy-Quillen

theorem

In this section we use the modified rank filtration to prove a global version of the Barratt-

Priddy-Quillen theorem, which says that the global K-theory of finite sets is globally

equivalent to the sphere spectrum.

The quotient kFinn/kFinn−1 is the realization of the orthogonal Γ-space which

sends (V,A+) to the space∨
(na∈N)a∈A,

∑
na=n

(LR(
⊕
a∈A

Rna ,Sym(V ))/
∏
a∈A

Σna)+.

By the same trick as in Section 11.1, this can be rewritten as

LR(Rn, Sym(V ))+ ∧Σn (
∨

(na∈N)a∈A,
∑
na=n

Bij(
⊔
a∈A

na, n)+).

The first smash factor L(Rn, Sym(−)) is untouched by the Γ-space structure. Since the

permutation representation Rn of Σn is faithful, this first factor is a global universal

space for Σn. The second smash factor is the Σn-Γ-space of partitions of the set n. But

this Γ-space can be described in an easier way, it is isomorphic to the one that sends a

finite pointed set A+ to its n-fold smash product (A+)∧n. Hence its realization is given

in level V by (SV )∧n, the n-th quotient of the symmetric product filtration before taking

orbits under the Σn-action. By Proposition 10.0.3, this is the suspension spectrum of the

unreduced suspension of a global universal space for the collection of complete subgroups

CΣ
n of Σn. So we obtain:

Proposition 12.0.10. The quotient kFinn/kFinn−1 is globally equivalent to

Σ∞(EglΣn+ ∧Σn (EglCΣ
n )�).
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But for n > 1 the collection of complete subgroups of Σn contains the trivial subgroup

(unlike the collection of complete subgroups of U(n) that appeared in the filtration

quotients of ku). Hence the map from EglCΣ
n to a point induces a global equivalence

after taking Σn-homotopy orbits. In other words, all filtration quotients kFinn/kFinn−1

for n > 1 are globally trivial. Furthermore, the spectrum kFin1 is isomorphic to the

suspension spectrum of the based orthogonal space V 7→ S(Sym(V ))+. Since the unit

sphere in a complete G-universe is equivariantly contractible, we see that the unit map

S0 → S(Sym(V )) is a global equivalence. Hence we obtain:

Corollary 12.0.11 (Global Barratt-Priddy-Quillen Theorem). The unit

S→ kFin

is a global equivalence.

We note that this proof shows more generally that the maps Spn → AFinn are global

equivalences for all n ≥ 1. Hence, the complexity filtration for the K-theory of finite sets

is globally equivalent to the symmetric product filtration, generalizing [AL07, Corollary

8.4].
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Chapter 13

Filtrations associated to global

algebraic K-theory

In this chapter we describe the subquotients in the modified rank and complexity fil-

tration for global algebraic K-theory of a ring R satisfying the dimension invariance

property. These, again, turn out to be suspension spectra, this time in the symmetric

spectrum context. The way to see this is very similar to the topological case, but some

differences arise in determining the global homotopy type of the relevant I-spaces.

13.1 Quotients in the modified rank filtration

We begin with the modified rank filtration. The quotient kRn/kRn−1 is the realization

of the I-Γ-space which maps (M,A+) to the space

∨
(na)a∈A,

∑
na=n

(
|E(EmbR(

⊕
a∈A

Rna , Sym(R[M ])))|/
∏
a∈A

GLnaR

)
+

.

Here, EmbR(−,−) denotes the set of R-linear split injections and E(−) of a set is the

category with objects the set and exactly one morphism between any two objects.

Once more, these spaces can be rewritten as

|E(EmbR(Rn,Sym(R[M ])))|+ ∧GLn(R)

 ∨
(na)a∈A,

∑
na=n

Iso(
⊕
a∈A

Rna , Rn)+

 .

The first factor E(EmbR(Rn,Sym(R[−]))) is constant in the Γ-space direction and as we

argued in Section 3.6 (where it is denoted I(Rn)) a global universal space for GLn(R).

The second factor is constant in the I-space direction and forms the GLn(R)-Γ-space

of partitions of Rn, we denote it by PR(n,−). Its realization even forms a GLn(R)-

orthogonal spectrum, so we see:

Corollary 13.1.1. Both the quotients kRn/kRn−1 and the kRn are globally semistable

symmetric spectra.
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Proof. It follows from Section 3.6 that

I(Rn)+ ∧GLn(R) U(PR(n,−)(S))

is π∗-isomorphic to

U(EglGLn(R))+ ∧GLn(R) U(PR(n,−)(S)),

which underlies an orthogonal spectrum.

The statement for the kRn then follows by induction on n.

We proceed by examining PR(n,−). A point in the M -th level of the realization

of this Γ-space is represented by a tuple (Wi, xi)i∈I where the xi are elements of RM

and the Wi are free submodules of Rn whose inner sum is direct and all of Rn. In

other words, it is the direct algebraic analog of L(n, SM ) of Section 11.1. Many of

the arguments we used there can also be applied here by formally replacing complex

subspaces by free R-submodules. We define two subspaces (where rk(−) denotes the

rank of a free R-module):

PR(n, SV ) = {[(Wi, xi)i∈I ] |
∑

rk(Wi) · xi = 0}

and

PR|.|=1(n, SV ) = {[(Wi, xi)i∈I ] |
∑

rk(Wi) · xi = 0,
∑

rk(Wi)|xi|2 = 1}.

The same arguments as in Section 11.1 show that the realization of PR(n,−) is GLn(R)-

isomorphic to the suspension spectrum of the unreduced suspension of the GLn(R)-I-

space PR|.|=1(n, S−), which we abbreviate by PRn . Again we remark that this GLn(R)-I-

space is in fact the restriction of a GLn(R)-orthogonal space and hence can be examined

by the means of Section 2.1. It turns out that not all descriptions from Section 11.1 for

ku can be carried over to this setting.

We now discuss in which cases PRn is a universal space of a collection of subgroups,

for which we have to make assumptions on the ring R. Let CRn denote the collection

of complete subgroups of GLn(R), i.e., those that are conjugate to one of the form

GLn1(R) × . . . × GLnk(R) with n1 + . . . + nk = n and k > 1. Then the following still

holds for all rings R:

Lemma 13.1.2. The GLn(R)-I-space PRn is closed and has all isotropy in complete

subgroups.

Proof (cf. Proposition 11.1.3). An element of GLn(R) fixes each Wi in a partition Rn =⊕
Wi if and only if it lies in the product of the GL(Wi), which is a complete subgroup.

One might guess that PRn is in fact a universal space for the collection of complete

subgroups, but this is not true in general. The issue is the following: Assume given a

complete subgroup H =
∏
GL(Wi) and a decomposition Rn =

⊕
W ′j that is (strongly)
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fixed by H. Over the complex numbers this implies that each Wi must be contained

in some W ′j , or in other words that the decomposition
⊕
Wi is a refinement of

⊕
W ′j .

This allowed an easy description of the H-fixed point space and led to the proof that

it is contractible. However, for general R this is not the case, as the following example

shows:

Example 13.1.3. Let R = F2 be the field with two elements and consider the de-

composition F2
2 = F2 ⊕ F2. Then the associated complete subgroup of GL2(F2) is

GL1(F2) × GL1(F2) and hence trivial. So it fixes all three decompositions of F2
2 as

a sum of two 1-dimensional subspaces, not only the one it was associated to.

Arone and Lesh show that this phenomenon cannot occur under the following as-

sumptions on R:

Lemma 13.1.4 ([AL07, Lemma 8.8]). Let R be an integral domain with 2 6= 0, and

further be given two proper decompositions Rn =
⊕
Wi and Rn =

⊕
W ′j into free

submodules. Then the subgroup
∏
GL(Wi) fixes all of the W ′j if and only if

⊕
Wi is a

refinement of
⊕
W ′j.

Under these conditions we see:

Proposition 13.1.5. Let R be an integral domain with 2 6= 0. Then PRn is a global

universal space for the collection of complete subgroups of GLn(R).

Proof. We have already seen that all the GLn(R)-isotropy lies in complete subgroups.

Now let G be a finite group and UG a complete G-set universe. In Appendix A.2 we show

that (PRn )(UG) is a (GLn(R) × G)-cell complex. Let H ≤ GLn(R) × G be a subgroup

whose intersection with GLn(R)×1 (which we denote by K) is complete. Making use of

Lemma 13.1.4, we can associate to K the unique minimal partition Rn = W1⊕ . . .⊕Wk

that is fixed by it and it follows that K = GL(W1) × . . . × GL(Wk). We have to show

that the H-fixed points (PRn )(UG)H are contractible. By the short exact sequence

1→ K → H → prG(H)→ 1

these H-fixed points are the prG(H)-fixed points of the action on (PRn )(UG)K which is

induced from the associated group homomorphism prGH → WGLn(R)K. By Lemma

13.1.4, a partition is fixed by K if and only if it refines Rn =
⊕
Wi. Refinements

of this partition stand in bijection to partitions of the set {1, . . . , k}. Via this corre-

spondence we see that the K-fixed points (PRn )(UG)K are in fact homeomorphic to the

(ΣdimW1 × . . . × ΣdimWk
)-fixed points of S(Rn ⊗ R[UG]). Moreover, the Weyl-groups

WGLn(R)K and WΣn(ΣdimW1 × . . .×ΣdimWk
) are canonically isomorphic and the home-

omorphism is equivariant under this isomorphism. Hence the statement follows from the

fact that S(Rn ⊗R[UG]) is a universal space for the collection CΣ
n 〈G〉, which was proved

in Proposition 10.0.3.

Let PRn denote the poset of proper decompositions of Rn into direct sums of free

R-submodules. Lemma 13.1.4 implies that if R is an integral domain with 2 6= 0, the
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map of posets

PRn → CRn
(Rn =

⊕
Wi) 7→

∏
GL(Wi)

is an isomorphism. So, again using Proposition 2.2.8, we can also replace EglCRn by PRn
and summarize:

Theorem 13.1.6 (Quotients in the modified rank filtration). Let R be an integral do-

main with 2 6= 0. Then there are global equivalences

kRn/kRn−1 ' Σ∞(EglGLn(R)+ ∧GLn(R) (EglCRn )�)

' Σ∞(EglGLn(R)+ ∧GLn(R) |PRn |�).

Remark 13.1.7. In fact, it turns out that the description in terms of the decomposition

lattice PRn always holds, i.e., for every ring R satisfying dimension invariance there is a

global equivalence

kRn/kRn−1 ' (EglGLn(R)+ ∧GLn(R) |PRn |�). (13.1.1)

On the other hand, the description in terms of EglCRn does not hold in full generality,

as one can see in the example R = F2 above. This is not a contradiction, because

for general R the posets CRn and PRn are not isomorphic. This means that one cannot

use Proposition 2.2.8 to prove the global equivalence (13.1.1) and instead one has to

relate the GLn(R)-orthogonal space PRn to PRn directly. Since the gain is relatively small

compared to the length of the proof, we decided to leave it out of this thesis.

13.2 Quotients in the complexity filtration

There is a cofiber sequence

kRn/kRn−1 → Spn/Spn−1 → ARn /A
R
n−1

of symmetric spectra. As in the topological case, the first morphism arises by applying

GLn(R)-orbits and the suspension spectrum functor to the map

I(Rn)+ ∧ (PRn )� → (PRn )�

which collapses I(Rn) to a point. So we find that there is an isomorphism

ARn /A
R
n−1
∼= Σ∞((I(Rn) ∗ PRn )/GLn(R))�.

Under the same hypotheses as in the previous section we obtain the following:

Theorem 13.2.1. Let R be an integral domain with 2 6= 0. Then there is a global

equivalence

ARn /A
R
n−1 ' Σ∞(Bgl(CRn )�),
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where CRn denotes the collection of complete subgroups of GLn(R) plus the trivial sub-

group.

Proof. Using Lemma 11.2.2, this follows from the fact that I(Rn) is a global universal

space for GLn(R) together with Proposition 13.1.5.
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Appendix A

A.1 Cofibrancy properties of the rank filtration

In this appendix we show that the V -th level of the inclusions kun−1 → kun is an O(V )-

cofibration, guaranteeing that the quotient kun/kun−1 has the global homotopy type of

the homotopy cofiber. For instance, this was used in the proof of Theorem 14.1.3. For

finite subgroups of O(V ) (and hence for the Fin-global homotopy type of the quotient)

this would follow quite directly from the results of [Ost14], but we need the general

statement. In this and the next appendix we repeatedly make use of a theorem due

to Illman (cf. [Ill83]), which says that every smooth manifold equipped with a smooth

action by a compact Lie group allows the structure of an equivariant CW complex.

We recall from [Lyd99, Section 3] that the evaluation X(A) of a Γ-space X on a

based space A is naturally filtered by skeleta skm(X(A)). The m-skeleton is obtained

from the (m−1)-st by forming a certain pushout ([Lyd99, Theorem 3.10]). Furthermore,

given a map i : X → Y of Γ-spaces, one can define relative skeleta skm[i](A) by

skm(Y (A)) ∪skm(X(A)) X(A)

and it follows that these are related by a similar pushout square. The colimit over the

skm[i](A) gives back Y (A) and the map from X(A) = sk0[i](A) agrees with i. Now let

V be a finite dimensional real inner product space. We are interested in the case where

A is equal to SV and i is the inclusion

kun−1(Sym(VC),−) ↪→ kun(Sym(VC),−).

Here, the connecting pushout takes the form

(
∨
ni

(LC(
⊕
Cni , Sym(VC))/

∏
U(ni))+)×Σm F ((SV )×m) //

��

skm−1[i](SV )

��

(
∨
ni

(LC(
⊕
Cni ,Sym(VC))/

∏
U(ni))+)×Σm (SV )×m // skm[i](SV ),

R

(A.1.1)

where the wedge is indexed over all m-tuples (n1, . . . , nm) which add up to n, with all

ni larger than 0. The notation F ((SV )×m) stands for the subspace of (SV )×m of tuples
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which contain two equal entries or a basepoint. It suffices to show that

skm−1[i](SV )→ skm[i](SV )

is an O(V )-cofibration for all m ∈ N, since the sequential colimit of O(V )-cofibrations is

again an O(V )-cofibration. This follows from:

Lemma A.1.1. The left hand vertical map in Diagram (A.1.1) is an O(V )-cofibration.

Proof. We first argue that∨
n1+...+nm=n

(LC(
⊕

Cni ,Sym(VC))/
∏

U(ni))+

is (Σm ×O(V ))-cofibrant. This would follow directly from Illman’s theorem for

Wk =
⊕

i=0,...,k

Symi(VC)

instead of the full Sym(VC), since each LC(
⊕
Cni ,Wk) is a smooth manifold with a

smooth action by U(Wk)× (NU(n)

∏
U(ni)). The subspace LC(

⊕
Cni ,Wk−1) is exactly

the space of U(Symk(VC))-fixed points under this action. Since O(V ) fixes Symk(VC),

it normalizes the subgroup U(Symk(VC)). This implies that if we forget any (U(Wk)×
(NU(n)

∏
U(ni)))-CW structure to an (O(V )×(NU(n)

∏
U(ni)))-cell structure, the space

LC(
⊕
Cni ,Wk−1) is necessarily a subcomplex and hence the inclusion a cofibration. By

dividing out the
∏
U(ni)-actions and passing to the colimit we see that the wedge is

(Σm ×O(V ))-cofibrant, as claimed.

Hence it suffices to show that

F ((SV )×m)→ (SV )×m

is a (Σm×O(V ))-cofibration. By once more applying Illman’s theorem we see that SV is

an O(V )-CW complex, containing the basepoint∞ as a 0-cell. This O(V )-CW structure

induces a (Σm oO(V ))-CW structure on the m-fold cartesian product (SV )×m and thus

in particular a (Σm ×O(V ))-cell structure by choosing (Σm ×O(V ))-CW structures on

the (Σm o O(V ))-orbits. We now claim that F ((SV )×m) is a (Σm × O(V ))-subcomplex

for this cell structure. By definition, F ((SV )×m) is the union of two subspaces: The

space of tuples containing a basepoint and the space of tuples containing two equal

entries. By definition, the former is even a (Σm o O(V ))-CW subcomplex of (SV )×m,

since the basepoint is a 0-cell. But the latter is given precisely by those points that have

non-trivial Σm-isotropy, hence it is an equivariant subcomplex for any (Σm×O(V ))-cell

structure. This finishes the proof.

A.2 Equivariant CW structures

The content of this appendix is to show that the U(n)-orthogonal spaces Ln that

appeared in Section 11.1 give (U(n) × G)-cell complexes when evaluated on any G-

representation V (at most countably infinite dimensional). This property was needed in
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Proposition 11.1.3 for Ln to be a global universal space for the family of complete/non-

isotypical subgroups of U(n). The same proof also shows that the spaces PRn (M) arising

in the filtrations of algebraic K-theory are (GLn(R)×G)-cell complexes.

The proof is similar to that of the previous section. This time we consider the

(absolute) skeleta filtration for the U(n)-Γ-space L(n,−), where the relating pushouts

take the form∨
n1+...+nm=n(LC(

⊕
Cni ,Cn)/

∏
U(ni))+ ×Σm F ((SV )×m) //

��

skm−1(L(n, SV ))

��∨
n1+...+nm=n(LC(

⊕
Cni ,Cn)/

∏
U(ni))+ ×Σm (SV )×m // skm(L(n, SV )).

R

The wedge is taken over the same indexing system as in the previous section. We recall

that the closed subspace Ln(V ) of L(n, SV ) was defined to contain those elements that

can be represented by a tuple (Wi, xi)i∈I with all xi non-equal to the basepoint and

satisfying the equations
∑

dim(Wi) · xi = 0 and
∑

dim(Wi)|xi|2 = 1. Intersection

with skm(L(n, SV )) gives subspaces skm(Ln(V )) whose colimit over m is isomorphic to

Ln(V ). Likewise, for fixed n1, . . . , nm we define closed subspaces

S{ni}((S
V )×m) ⊆ (SV )×m

as those tuples satisfying
∑
ni · xi = 0 and

∑
ni|xi|2 = 1. With these definitions an

element of (
L(
⊕

Cni ,Cn)/
∏

U(ni)
)
× (SV )×m

is mapped to skm(Ln(V )) if and only if it lies in(
L(
⊕

Cni ,Cn)/
∏

U(ni)
)
× S{ni}((SV )×m).

So we obtain a new pushout square(⊔
n1+...+nm=n (L(

⊕
Cni ,Cn)/

∏
U(ni))

)
×Σm F (S{ni}((S

V )×m)) //

��

skm−1(Ln(V ))

��(⊔
n1+...+nm=n (L(

⊕
Cni ,Cn)/

∏
U(ni))

)
×Σm S{ni}((S

V )×m) // skm(Ln(V )).
R

(A.2.1)

Hence it suffices to show:

Lemma A.2.1. The left hand vertical map Diagram (A.2.1) above is a (U(n) × G)-

cofibration.

Proof. The proof is very similar to that of Lemma A.1.1. Again it suffices to see that⊔
{ni 6=0}0≤i≤m

∑
ni=n

(
L(
⊕

Cni ,Cn)/
∏

U(ni)
)
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is a (U(n)× Σm)-CW complex and that the map

F (S{ni}((S
V )×m)))→ S{ni}((S

V )×m)

is a (Σm × G)-cofibration. The former is easy to see, because each summand is U(n)-

isomorphic to U(n)/
∏
U(ni) and these summands are permuted by the Σm-action. For

the latter we note that by a transformation of variables each S{ni}((S
V )×m) is home-

omorphic to the usual unit sphere S(V ⊗ Rm), which – by Illman’s theorem for finite

dimensional V and the same trick as in Lemma A.1.1 for the infinite case – is a (Σm×G)-

CW complex. Since F (S{ni}((S
V )×m)) no longer contains any basepoints, it is exactly

the subspace of elements with non-trivial Σm-isotropy, and hence always a (Σm × G)-

subcomplex. This finishes the proof.
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Part IV

Filtrations of global K-theory II:

Induced filtrations on

representation rings
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Chapter 14

Modified rank filtrations on 0-th

homotopy

In this chapter we describe global formulas for the filtrations of representation rings that

are induced from the modified rank filtration of global K-theory.

14.1 Statement of results

In this introduction we let kX stand for the orthogonal spectra ku or ko of Section 3.3

or for the symmetric spectrum kR for a discrete ring R of Section 3.6. By RepX(G) we

denote the associated representation ring. For now we neglect the difference between

πG0 (kX) and the representation ring RepX(G) that exists for non-discrete compact Lie

groups G and ku or ko. We will be precise in the following sections and discuss this

issue in Remark 14.1.4.

Applying πG0 to the modified rank filtration yields a sequence of groups

πG0 (kX1)→ πG0 (kX2)→ . . .→ πG0 (kX) ∼= RepX(G).

By Theorems 11.1.4, 11.2.8 and 13.1.6, kX1 is globally equivalent to the suspension

spectrum of a global classifying space of X×. Here X× is understood as U(1) if kX = ku,

as O(1) if kX = ko and as the group of units R× if kX = kR. So, by Proposition 3.1.5,

πG0 (kX1) is a free abelian group with basis

{trGH([ψ])}(H,ψ),

where (H,ψ) ranges through representatives of conjugacy classes of subgroups H of G

together with a character ψ : H → X×. The map

πG0 (kX1)→ πG0 (kX) ∼= RepX(G) (14.1.1)

sends such a basis element trGH([ψ]) to IndGH(Wψ), where Wψ is the 1-dimensional repre-

sentation associated to ψ.

Example 14.1.1. By Brauer’s induction theorem (cf. [Ser77, Theorem 18, Section
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10.2]), the complex representation ring is always generated by transfers of 1-dimensional

representations, hence in that case the map (14.1.1) is surjective.

The 0-th homotopy group πG0 (kX1) can be interpreted as the ‘free global functor

on the 1-dimensional part of the representation ring global functor’. It is generated

by 1-dimensional representations but does not yet see any representation-theoretic sum

or induction, since these operations lead to representations of dimension at least 2.

So, instead, sums and transfers are added on freely. As a consequence, 1-dimensional

representations satisfy relations in the representation ring global functor that are not

yet visible in πG0 (kX1).

Example 14.1.2. We consider the case G = Cp with p a prime, kX = ku and let ηp be

a primitive p-th root of unity in C. Then π
Cp
0 (ku1) is free with basis

{[η1
p], [η

2
p], . . . , [η

p
p]} ∪ {tr

Cp
1 [1]}.

The elements [ηip] also form a basis of the representation ring of G and hence the only

difference between π
Cp
0 (ku1) and π

Cp
0 (ku) lies in the element tr

Cp
1 [1], which is equal to

the sum of the [ηip] in π
Cp
0 (ku).

We show that something similar is true for higher n: π0(kXn) is the free global

functor on the at most n-dimensional part of the representation ring global functor. It

is generated by at most n-dimensional representations, and the homotopy-theoretic sum

and transfers model the representation-theoretic sum and induction whenever the latter

operation does not lead to a representation of dimension larger than n. Otherwise the

sum and transfer are added on freely.

14.1.1 Global complex K-theory

We now make this precise and first concentrate on the case kX = ku. We recall from

Section 3.3 the morphisms

αm : Σ∞+ (L(Cm)/U(m))→ ku

which we used to assign elements in πG0 (ku) to G-representations. If m ≤ n, the mor-

phism αm takes image in kun. Hence every m-dimensional G-representation W already

defines an element [W ] in πG0 (kun) which only depends on its isomorphism type. We will

see that πG0 (kun) is additively generated by transfers of these elements. To understand

the relations, we observe: If W is n-dimensional, the class [W ] does not make sense in

πG0 (kun−1) yet, but it might already secretly live there in the following sense:

• If W = W1⊕W2 is (non-trivially) decomposable, then the classes [W1], [W2] already

live in πG0 (kun−1) and hence so does their homotopy theoretic sum [W1] + [W2].

• If W = IndGHW
′ is induced up from a proper finite index subgroup H, then [W ′] is

an element in πH0 (kun−1) and hence one can form the homotopy theoretic transfer

trGH [W ′] ∈ πG0 (kun−1).
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We will see that both elements map to [W ] under πG0 (kun−1)→ πG0 (kun) and that [W ]

lies in the image if and only if one of those two conditions is satisfied. Furthermore, if

[W ] does lie in the image, then it might be so for different reasons: It could both be

decomposable and induced, or it could be induced up in different ways. It turns out

that direct sums and induction are reflected in certain fixed points of the decomposition

poset Ln and that it is exactly these different reasons that are identified via the boundary

map

∂ : πG1 (kun/kun−1)→ πG0 (kun−1).

In global equivariant homotopy theory, all this can be phrased via universal examples:

If an n-dimensional G-representation W is the direct sum of two subrepresentations W1

and W2 of dimensions k and l, then – up to conjugation – the associated homomorphism

β : G → U(n) factors through the embedding U(k) × U(l) ↪→ U(k + l = n). For t ≥ 1

let τut denote the tautological complex t-dimensional representation of U(t). Then the

fact that [W ] = [W1] + [W2] in RU(G) is the restriction along β̃ : G → U(k) × U(l) of

the relation

(res
U(k+l)
U(k)×U(l))

∗(τCk+l) = (p1)∗(τuk ) + (p2)∗(τul ), (14.1.2)

where p1 and p2 denote the projections from U(k)×U(l) to U(k) respectively U(l). We

denote this relation by a(k, l).

Likewise, if W is the induction of a j-dimensional representation W ′ of a subgroup H

of index i, the associated group homomorphism β : G→ U(n) takes image in the wreath

product ΣioU(j), i.e., the semidirect product of U(j)×i and Σi via the permutation action

on the product coordinates. Then the relation [W ] = trGH [W ′] in the representation ring

global functor is the restriction along β̃ : G→ Σi o U(j) of

res
U(i·j)
ΣioU(j)(τ

u
i·j) = tr

ΣioU(j)
U(j)×Σi−1oU(j)(p

∗(τuj )). (14.1.3)

Here, p stands for the projection from U(j) × (Σi−1 o U(j)) to U(j). Let b(i, j) denote

this relation.

In these terms the intermediate homotopy groups can be described as follows:

Theorem 14.1.3. The global functor π0(kun) is the free global functor generated by the

elements

τu1 , τ
u
2 , . . . , τ

u
n

modulo the relations a(k, l) for all k + l ≤ n and b(i, j) for all i · j ≤ n.

We try to make clear what this means at a fixed group G in a few examples of these

filtrations in Chapter 16. However, the result at a specific group is often a lot more

complicated than the global formula.

Remark 14.1.4. The formula in Theorem 14.1.3 is true as stated for all compact Lie

groups, not only finite ones. In particular, we see that π0(ku) is the free global functor

on the elements τui modulo the relations a(k, l) and b(i, j), with no restrictions on i, j, k

or l. This shows that the only difference between π0(ku) and the representation ring

global functor are infinite index transfers, since these are not encoded in the b(i, j).
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We do not know whether Segal’s smooth infinite index transfers can be modeled by

universal relations.

14.1.2 Global real K-theory

The real case is completely analogous to the complex one. We denote by τ on the class

of the tautological n-dimensional real representation of O(n) and define relations a(k, l)

and b(i, j) by

res
O(k+l)
O(k)×O(l)(τ

o
n) = p∗1(τ ok ) + (p2)∗(τ ol ),

respectively

res
O(i+j)
ΣioO(j)(τ

o
i·j) = tr

ΣioO(j)
O(j)×(Σi−1oO(j))(p

∗(τ oj )).

Then we have:

Theorem 14.1.5. The global functor π0(kon) is the free global functor generated by the

elements

τ o1 , τ
o
2 , . . . , τ

o
n

modulo the relations a(k, l) for all k + l ≤ n and b(i, j) for all i · j ≤ n.

14.1.3 Global algebraic K-theory

We first treat the case where R is a finite ring. Let τRn be the tautological R[GLn(R)]-

lattice of rank n. Then analogously to above one defines universal relations a(k, l) and

b(i, j) by

res
GLk+l(R)
GLk(R)×GLl(R)(τ

R
n ) = p∗1(τRk ) + (p2)∗(τRl ),

respectively

res
GLi·j(R)

ΣioGLj(R)(τ
R
i·j) = tr

ΣioGLj(R)

GLj(R)×(Σi−1oGLj(R))(p
∗(τRj )).

And we obtain:

Theorem 14.1.6 (Modified rank filtration on π0). Let R be a finite ring. Then the

Fin-global functor π0(kRn) is the free Fin-global functor generated by the elements

τR1 , . . . , τ
R
n

modulo the relations a(k, l) for all k + l ≤ n and b(i, j) for all i · j ≤ n.

The problem with infinite R is that its general linear groups are not finite. Hence

the universal elements above do not make sense, as the theory is ‘not global enough’ to

include infinite discrete groups. One can still give the following concrete description:

Proposition 14.1.7 (Description for arbitrary rings). Let R be a ring satisfying di-

mension invariance. Then π0(kRn) is generated as a Fin-global functor by the elements

[W ] ∈ πG0 (kR), where (G,W ) runs through a system of representatives of isomorphism

classes of a finite group G together with an R[G]-lattice of rank ≤ n. The relations are

generated by:

• [W ⊕W ′] = [W ]⊕ [W ′] with dimR(W ) + dimR(W ′) ≤ n.
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• [IndGH(W )] = trGH [W ] with dimR(W ) · [G : H] ≤ n.

In this case both the generators and the relations are already closed under restric-

tions, so it suffices to apply transfers to obtain the concrete value at a given finite group.

In this sense the global formula is no easier than the one for a specific group.

14.2 Proof

In this section we prove the results stated in the previous section. We concentrate on the

proof for complex topological K-theory, as the arguments for orthogonal and algebraic

K-theory are analogous. For infinite discrete rings R, one needs to replace the universal

classes at each step by the set of all representations of the respective dimension, and

similarly for the relations. This makes the notation and statements less clean, but

otherwise the proofs can be carried out in the same way.

The proof proceeds by comparing the cofiber sequence

kun−1 → kun → kun/kun−1

to another one with the same cofiber, namely

Σ∞+
(
L(Cn)×U(n) Ln

) p
//

ψn

��

Σ∞+ (L(Cn)/U(n)) //

αn

��

Σ∞
(
L(Cn)+ ∧U(n) L

�
n

)
∼=
��

kun−1
in

// kun // kun/kun−1,

(14.2.1)

where the vertical isomorphism on the right is the one explained in Section 11.1. The

map ψn could be obtained (at least as a stable map) via the triangulated structure on

the homotopy category, but we make it explicit below in order to understand its effect

on π0.

The map of cofiber sequences exhibits the left square as a homotopy pushout, giving

rise to a Mayer-Vietoris sequence on homotopy groups. In particular:

Corollary 14.2.1. The sequence

π0(Σ∞+ (L(Cn)×U(n)Ln))
(p∗,−(ψn)∗)−−−−−−−→ π0(Σ∞+ (L(Cn)/U(n)))⊕π0(kun−1)

((αn)∗
(in)∗ )−−−−→ π0(kun)→ 0

is exact.

We recall from Section 3.3 that L(Cn) is a global universal space for U(n), and hence

L(Cn)/U(n) is a global classifying space for U(n). The image of the fundamental class

under αn is by definition τun , so via induction one sees that π0(kun) is globally generated

by the τu1 , . . . , τ
u
n . Hence, the main work goes into understanding the relations, which is

divided into the following two parts:

1. A description of π0(Σ∞+ (L(Cn)×U(n) Ln)).

2. Constructing ψn and determining its effect on π0.
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We start with number (1). Applying Lemma 2.3.1 to Y = (L(Cn)×U(n)Ln)(UG) and

K = U(n), we see that the G-fixed points of the quotient decompose as⊔
〈α:G→U(n)〉

EC(α)×C(α) ((Ln)(UG))Γ(α).

A tuple (Wi, xi)i∈I ∈ Ln(UG) (with pairwise different xi) is Γ(α)-fixed if and only

if each pair (α(g)(Wi), g · xi) is equal to some (Wj , xj) in the tuple. Hence, any such

fixed point in particular gives rise to a non-trivial decomposition Cn =
⊕

i∈IWi that

is weakly fixed by α(G). Here, weakly fixed means that not necessarily every Wi is

fixed itself, but they may be permuted in a way encoded by a G-action on the indexing

set I. The path-component of (Wi, xi)i∈I in the Γ(α)-fixed points only depends on this

associated decomposition and every weakly fixed decomposition is realized. Furthermore,

if one decomposition refines another, the associated fixed points lie in the same path-

component. Written in a more coordinate-free way we get:

Proposition 14.2.2. The set πG0 ((L(Cn) ×U(n) Ln)) stands in natural bijection to the

set of pairs

{(W,⊕i∈IWi) | W n-dim G-rep.,W =
⊕
i∈I

Wi non-trivial and weakly G-fixed}

modulo isomorphisms of representations and refinement of decompositions.

In this description, the induced map to

πG0 (L(Cn)/U(n)) ∼= {isom. classes of n-dim G-rep.}

is given by forgetting the decompositions.

Let W =
⊕

i∈IWi be such a weakly G-fixed partition and denote by A1, . . . , Ak the

orbits of the induced G-action on I. Then the decomposition

W =
⊕

j=1,...k

(
⊕
i∈Aj

Wi)

is strongly fixed. It is non-trivial if I is not transitive, in which case it refines a strongly

fixed decomposition with two summands. So we see:

Corollary 14.2.3. Every point in πG0 (L(Cn)×U(n)Ln) is represented by a weakly G-fixed

decomposition of at least one of the following two types:

1. W = W1 ⊕W2 and W1,W2 are G-subrepresentations.

2. W = W1 ⊕ . . .⊕Wk and the Wi are permuted transitively by the G-action.

Decompositions of the second type can be interpreted in the following way: Let H

be the isotropy subgroup of W1 under the G-action on the set {Wi}i=1,...,k. Then H is

a subgroup of index k in G, W1 is an H-representation and the map IndGH(W1) → W

adjoint to the inclusion gives an isomorphism of G-representations. Vice versa, every
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induced representation IndGHW
′ (where H has finite index in G) possesses the weakly

G-fixed decomposition IndGHW
′ =

⊕
gH∈G/H gW

′. Hence, a general G-fixed point of the

decomposition poset can be interpreted as exhibiting W as a combination of sums and

inductions.

Remark 14.2.4. This also lets us determine πG0 of the cone L(Cn)+∧U(n)L
�
n (and hence

of the quotient kun/kun−1 via Proposition 3.1.5) explicitly. It is given by isomorphism

classes of irreducible n-dimensional G-representations which are not the induction of

a representation from a proper finite index subgroup. The smallest finite group for

which there exists such a representation of dimension greater than 1 is SL2(F3). The

tautological U(n)-representation τun always has this property, so we see that the maps

π0(kun−1)→ π0(kun) are never globally surjective.

The decompositions of Corollary 14.2.3 have universal representatives: Given k, l > 0

with k + l = n, the (U(k) × U(l))-representation obtained by restricting τun along the

embedding U(k)× U(l) ↪→ U(n) decomposes as τuk ⊕ τul . We denote by

α̃(k, l) ∈ πU(k)×U(l)
0 (L(Cn)×U(n) Ln)

the element associated to this decomposition. Likewise, given i, j ∈ N with i · j = n,

the restriction of τun along Σi o U(j) ↪→ U(n) is the induction of p∗(τuj ), where p is the

projection to U(j). Hence there is an associated weakly G-fixed decomposition of type

(2) above, which we denote by β̃(i, j). We obtain:

Corollary 14.2.5. The Rep-functor

π0(L(Cn)×U(n) Ln)

is generated by the elements {α̃(k, l)}k+l=n and {β̃(i, j)}i·j=n. Hence, by Proposition

3.1.5, so is π0(Σ∞+ (L(Cn)×U(n) Ln)) as a global functor.

So it remains to show that ψn indeed maps the α̃′ and β̃′s to the right hand sides of

Equations (14.1.2) and (14.1.3) respectively. For this we require an explicit construction

of ψn, which we now explain.

We quickly recall the objects involved: An element of L(Cn)(V ) is a linear isometric

embedding Cn ↪→ Sym(VC). Points in Ln are represented by tuples (Wi, xi)i∈I indexed

on a finite set I, where the xi are elements of V and the Wi are pairwise orthogonal

subspaces of Cn which add up to all of Cn. Furthermore, these tuples are required to

satisfy the two conditions
∑

dim(Wi) ·xi = 0 and
∑

dim(Wi)|xi|2 = 1. Finally, elements

of kun(V ) are also represented by tuples (Wi, xi)i∈I , but this time the Wi are orthogonal

subspaces of Sym(VC) and the only requirement is that the sum of the dimensions is at

most n.

Now we come to the construction of ψn. We would like to define each level

(L(Cn)×U(n) Ln)(V )+ ∧ SV → kun−1(V )

by sending (ϕ, (Wi, xi)i∈I , v) to the tuple (ϕ(Wi), xi + v)i∈I . However, even though all

the Wi necessarily have smaller dimension than n, their sum is still n-dimensional. So
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for fixed v this tuple does not represent an element in kun−1. The idea is to shrink the

domain of each of the coordinate functions v 7→ (ϕ(Wi), xi+v), so that they become equal

to the basepoint outside a certain neighborhood of −xi. For this let s : [0,∞] → [0,∞]

be a map which induces a homeomorphism [0, 1/(2n2)]
∼=−→ [0,∞] and is constant ∞

on [1/(2n2),∞]. Furthermore, given a finite tuple x = (xi)i∈I of vectors of a (finite

dimensional) real inner product space V we let px : V → 〈{xi}i∈I〉 ⊆ V denote the linear

map defined by

px(v) =
∑
i∈I
〈v, xi〉 · xi.

We need the following properties of this map:

Lemma 14.2.6. The value px(v) only depends on the orthogonal projection of v onto

the span of the xi and is an automorphism when restricted to this span. Furthermore, it

satisfies the inequality

|px(xj)| ≥ |xj |3

for every j in I.

Remark 14.2.7. The reason for using px instead of the orthogonal projection onto the

span of the xi is that the latter is not continuous in the xi. However, the linear homotopy

from the identity to px restricts to an isotopy on this span and hence for a fixed tuple x

there is essentially no difference.

Proof. If a vector is orthogonal to each of the xi it is sent to 0 under px and hence

the value only depends on the orthogonal projection onto the span. For the other two

statements we note that the scalar product of px(v) and v is equal to the sum of the

squares 〈v, xi〉2. Hence, if v is a non-zero vector in the span of the xi, this scalar product

is non-zero and in particular px(v) is non-zero, so the restriction of px to the span is

injective. Finally, the stated inequality follows from

|px(xj)| · |xj | ≥ 〈px(xj), xj〉 =
∑
i∈I
〈xj , xi〉2 ≥ 〈xj , xj〉2 = |xj |4,

where the first step is the Cauchy-Schwarz inequality.

We use this to obtain a selfmap sVx : SV → SV via the formula

sVx (v) = (s(|px(v)|)− |pxv|) · px(v) + v.

This map sends every vector v for which px(v) has length larger than 1/(2n2) to the

basepoint and is the identity on the orthogonal complement of the span of the xi. Finally,

for an element (ϕ, (Wi, xi)i∈I , v) of (L(Cn)×U(n) Ln)(V ) we set

ψn(ϕ, (Wi, xi)i∈I , v) = (ϕ(Wi), s
V
x (xi + v))i∈I .

This gives a map of orthogonal spectra: It commutes with the action of elements A

of O(V ) because of the equality A(〈v, xi〉 · xi) = 〈Av,Axi〉 · Axi. Furthermore, if W is
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another vector space and w an element, then

sV⊕Wx (xi + v + w) = sVx (xi + v) + w

since w is orthogonal to all the xi and hence ψn also commutes with the structure map.

In fact, assuring this equality was the reason for introducing the projections into the

formula.

Finally, we have to show that ψn does indeed take image in kun−1. Each component

function

(v 7→ (ϕ(Wi), s
V
x (xi + v))

is equal to the basepoint on all points v for which px(v) is more than 1/(2n2) away from

−px(xi). We claim that for every fixed v there is at least one i such that this is the case.

If this was not true, it would imply that all the px(xi) are less than 1/n2 away from each

other. Now the conditions for the xi come into play. Since
∑

dim(Wi)|xi|2 = 1, there is

at least one j such that |xj |2 ≥ 1/n and hence, by Lemma 14.2.6, we have

|px(xj)| ≥ 1/n3/2 ≥ 1/n2.

The equality ∑
dim(Wi) · px(xj − xi) +

∑
dim(Wi) · px(xi) = n · px(xj)

implies that

|
∑

dim(Wi) · px(xi)| ≥ n · |px(xj)| −
∑

dim(Wi)|px(xi − xj)| > 1/n− 1/n = 0,

which contradicts the condition
∑

dim(Wi) · xi = 0. Hence, for every (ϕ; (Wi, xi)i∈I)

the tuple (ϕ(Wi), s
V
x (xi + v))i∈I contains at least one basepoint and thus represents an

element in kun−1, as the total dimension of the remaining ϕ(Wi) is strictly less than n.

Some justification is also needed that ψn indeed turns Diagram (14.2.1) into a map

of cofiber sequences, but we outsource this to Appendix B.1.

Now we let (ϕ, (Wi, xi)i∈I) be a G-fixed point of (L(Cn)×U(n) Ln)(V ), assume that

the balls of radius 1/(2n2) around the px(xi) are pairwise disjoint and denote the span

of the xi by V ′. As noted before, the set {xi}i∈I is permuted by the G-action. Then

the induced G-map SV → kun−1(V ) given by v 7→ ψn(ϕ, (Wi, xi)i∈I , v) is equal to the

composite

SV
′ ∧ SV−V ′ px∧id−−−→ SV

′ ∧ SV−V ′ → ({xi}+ ∧ SV
′
) ∧ SV−V ′ ∼=

∨
i∈I

SV
∨
ϕ(Wi)−−−−−→ kun−1(V ),

where the second map is the smash product of SV−V
′
with the pinch map which collapses

everything outside the balls of radius 1/(2n2) around the xi to a point, and ϕ(Wi) maps

v to the configuration (ϕ(Wi), v). Up to homotopy, the first map can be replaced by the

identity.

This lets us prove:
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Proposition 14.2.8. If an element y ∈ πG0 (L(Cn) ×U(n) Ln) is associated to W =

W1 ⊕W2 and W1,W2 are G-fixed, then

(ψn)∗(y) = [W1] + [W2] ∈ πG0 (kun−1).

If y is associated to W = W1⊕ . . .⊕Wk and the Wi are permuted transitively by G, then

(ψn)∗(y) = trGH [W1] ∈ πG0 (kun−1),

where H is the subgroup of elements fixing W1. In particular,

(ψn)∗(α̃(k, l)) = p∗1(τuk ) + p∗2(τul )

and

(ψn)∗(β̃(i, j)) = tr
ΣioU(j)
Σi−1oU(j)(p

∗(τuj )).

Proof. Without loss of generality we can assume that W is equal to Cn with some G-

action. We start with the first case. Let

(ϕ : Cn ↪→ Sym(VC), (W1, x1), (W2, x2)) ∈ (L(Cn)×U(n) Ln)(V )

be a fixed point giving rise to such a decomposition, for some finite dimensional G-

representation V . Let V ′ be the (one-dimensional) span of the xi. It carries the trivial

G-action, since the xi are fixed by assumption. Furthermore, as there are only two points

it is automatic that the intervals of radius 1/(2n2) around them (or their images under

px) are disjoint and thus the description above shows that (ψn)∗(y) is the class of the

composition

SV
′ ∧ SV−V ′ → ({x1, x2}+ ∧ SV

′
) ∧ SV−V ′ ∼= SV ∧ SV ϕ(W1)∨ϕ(W2)−−−−−−−−−→ kun−1(V ).

Since G acts trivially on the set {x1, x2}, the first map is just the usual pinch map and

the second one is the wedge of two G-equivariant maps. Hence, this composite represents

their sum

[ϕ(W1)] + [ϕ(W2)] = [W1] + [W2] ∈ πG0 (kun−1).

Now we let y correspond to a decomposition of type two, i.e., Cn = W1⊕. . .⊕Wk and

the Wi are permuted transitively by G. Let (ϕ, (Wi, xi)i=1,...,k) be a representative for

this fixed point, chosen in a way that the xi have distance larger than 1/(2n2) from each

other. We again denote by V ′ their span. Then, as seen above, (ψn)∗(y) is represented

by the composite

SV ∧ SV−V ′ → ({x1, . . . , xk}+ ∧ SV
′
) ∧ SV−V ′ ∼=

∨
i=1,...,k

SV
∨
ϕ(Wi)−−−−−→ kun−1(V ).

Using that the G-set {x1, . . . , xk} is isomorphic to G/H, we see that this is precisely the

definition of the transfer of the class [ϕ(W1)] = [W1] ∈ πH0 (kun−1) recalled in Section
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3.1: The first map is the ‘transfer pinch map’ and each wedge summand of the second

equals the composite

SV
g−1

−−→ SV
ϕ(W1)−−−−→ kun−1 g·−→ kun−1.

This finishes the proof.

Now we are ready for:

Proof of Theorem 14.1.3. We proceed by induction on n, the case n = 0 being clear.

So now let n be a positive natural number and assume the statement to be true for

n − 1. Together with the induction hypothesis and the fact that π0(Σ∞+ (L(Cn)/U(n)))

is generated by the tautological U(n)-representation, the exact sequence

π0(Σ∞+ (L(Cn)×U(n) Ln))→ π0(Σ∞+ (L(Cn)/U(n)))⊕ π0(kun−1)→ π0(kun)→ 0

of Corollary 14.2.1 shows that the global functor π0(kun) is generated by the elements

τu1 , . . . , τ
u
n . It further shows that the relations are generated by the ones of π0(kun−1),

which we know by induction, and the image of π0(Σ∞+ (L(Cn)×U(n) Ln)) in

π0(Σ∞+ (L(Cn)/U(n)))⊕ π0(kun−1).

By Corollary 14.2.5, the global functor π0(Σ∞+ (L(Cn) ×U(n) Ln)) is generated by the

elements {α̃(k, l)}k+l=n and {β̃(i, j)}i·j=n, which are sent to the relations α(k, l) and

β(i, j) by Proposition 14.2.8, so we are done.
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Chapter 15

Complexity filtrations on 0-th

homotopy

In this chapter we deal with the effect of complexity filtrations on π0. The global formula

turns out to be similar to the one for the symmetric product filtration, with the Burnside

ring replaced by the representation ring.

The map

RepX(G) ∼= πG0 (kX)→ πG0 (AX∞) ∼= Z

is the augmentation which sends a representation to its dimension respectively rank.

This is again said with the usual caveat for ku and ko and non-discrete compact Lie

groups G, where it restricts to the augmentation on the representation ring as a subgroup

of πG0 (kX).

The complexity filtration induces a sequence of global functors

π0(kX)→ π0(AX1 )→ π0(AX2 )→ . . .→ π0(AX∞)

which factor this augmentation.

Again we begin by listing the results.

15.1 Statement of results

15.1.1 Global complex K-theory

We recall that τun denotes the tautological n-dimensional complex U(n)-representation.

We show:

Theorem 15.1.1 (Complexity filtration on π0). For all n ∈ N the map qn : ku → Aun
induces a surjection on π0 and the kernel is generated as a global functor by the single

element

τun − n · [1] ∈ πU(n)
0 (ku).

In particular, there is an isomorphism of global functors

π0(Aun) ∼= π0(ku)/(τun − n · [1]).
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It turns out that if G is finite, this filtration already stabilizes at πG0 (Au1), for alge-

braic reasons closely related to Brauer’s induction theorem, which says that the complex

representation ring is generated by inductions of 1-dimensional representations. The

fastest way to see that the filtration stabilizes is to make use of the fact that the rep-

resentation rings form a global functor also for compact Lie groups, via Segal’s smooth

induction [Seg68b]. The smooth transfer takes on the following values:

Ind
U(n)
U(1)×U(n−1)(p

∗(τu1 )) = τun

Ind
U(n)
U(1)×U(n−1)([1]) = n · [1]

These equalities follow from the character formula (cf. [Seg68b, page 119] and [Oli98,

Proposition 2.3]). Hence, the class τun − n · [1] can be obtained by applying restriction

and induction to the class τu1 − [1] and thus lies in the global functor generated by it.

Since πG0 (ku) agrees with the representation ring global functor on finite groups, this

shows that all restrictions of τun − n · [1] to finite groups already lie in the global functor

generated by τu1 − [1]. In addition, this shows that if πG0 (ku) was the representation ring

also for infinite compact Lie groups, the filtration would stabilize at stage 1 globally.

As it stands it does not, τun is identified with the trivial n-dimensional representation

exactly in the n-th step, since U(n) has no proper finite index subgroups.

15.1.2 Global real K-theory

We have the analogous result for real K-theory ko:

Theorem 15.1.2 (Complexity filtration on π0). For all n ∈ N the map qn : ko → Aon
induces a surjection on π0 and the kernel is generated as a global functor by the single

element

τ on − n · [1] ∈ πO(n)
0 (ko).

In particular, there is an isomorphism of global functors

π0(Aon) ∼= π0(ko)/(τ on − n · [1]).

This time the filtration does not stabilize at Ao1 for all finite groups. One can see this

by considering the cyclic group C3, for which no subgroup has a non-trivial 1-dimensional

real representation (cf. Example 16.0.10).

However, it stabilizes one step later. One can show the induction formulas

Ind
O(2k)
O(2)×O(2k−2)(p

∗(τ o2 )) = τ o2k

Ind
O(2k)
O(2)×O(2k−2)([1]) = k · [1]

for all k ∈ N, again using the character formula. Hence, τ on − n · [1] lies in the global

functor generated by τ o2 − 2 · [1] for all even n and thus for all n.
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15.1.3 Global algebraic K-theory

We again start with the case of finite R, where the formula is analogous to the topological

case.

Theorem 15.1.3 (Complexity filtration on π0). Let R be a finite ring and n ∈ N. Then

the map (qn)∗ : RepR(−) ∼= π0(kR) → π0(ARn ) is surjective with kernel generated as a

Fin-global functor by the element

τRn − n · [1] ∈ πGLn(R)
0 (kR) ∼= RepR(GLn(R)).

In particular, there is an isomorphism of Fin-global functors

π0(ARn ) ∼= RepR(−)/(τRn − n · [1]).

For general R these universal elements are again not part of the theory and hence

there is no such compact description. The result then reads as follows:

Proposition 15.1.4 (Description for arbitrary rings). Let R be a ring satisfying di-

mension invariance and n ∈ N. Then the map (qn)∗ : RepR(−) ∼= π0(kR) → π0(ARn ) is

surjective with kernel generated as a Fin-global functor by the elements

[W ]− n · [1] ∈ πG0 (kR) ∼= RepR(G)

where (G,W ) runs through isomorphism classes of pairs with W an n-dimensional G-

representation over R.

In contrast to complex and real topological K-theory, the sequence of the πG0 (ARn )

can take arbitrarily long to stabilize. For instance this is the case for R = Q or a finite

field, as the examples in Chapter 16 show.

15.2 Proof

We give two proofs and again concentrate on the case of topological complex K-theory.

The first proof makes use of the construction of a homotopy pushout square that de-

scribes the passage from Aun−1 to Aun. The second proof is an elementary computation

in global functors which assumes Schwede’s result for the symmetric product filtration

as well as the description for the modified rank filtration of the previous chapter.

15.2.1 Geometric proof

The method is similar to that of the last section, but shorter as we can use the con-

structions we made there. The proof makes use of an exact sequence associated to a

homotopy-cocartesian square, which this time takes the form

Σ∞+ ((L(Cn) ∗ Ln)/U(n))
p
//

γn

��

S

i

��

Aun−1

pn
// Aun,
R

h

(15.2.1)
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where p is induced from the constant map ((L(Cn) ∗ Ln)/U(n) → ∗. This homotopy-

cocartesian square is established by forming the homotopy-pushout of three homotopy-

cocartesian squares:

Σ∞+ (L(Cn)×U(n) Ln)+
//

ψn
��

Σ∞+ (L(Cn)/U(n))

αn =============⇒
��

Σ∞+ (Ln/U(n)) //

ψn
��

S

��

kun−1 in //

��

kun Spn−1 in // Spn

Σ∞+ (L(Cn)/U(n))
id

//

αn
��

Σ∞+ (L(Cn)/U(n))

αn
��

ku
id // ku

The fact that the first square is a homotopy-pushout (and in particular the construction

of a homotopy between the two composites) is treated in Appendix B.1. The square

on the right hand side can be dealt with by the same formulas, replacing complex

subspaces by natural numbers, making the upper double arrow a homotopy-coherent

natural transformation between the two squares. Finally, the lower square of course

commutes on the nose and the vertical double arrow can be made a homotopy-coherent

transformation by using the same homotopy as in the upper square. Hence we see that

there exists a cocartesian square of the form (15.2.1) above.

A comparison of the associated long exact sequences shows:

Corollary 15.2.1. There is an exact sequence of global functors

ker(p∗)
(γn)∗−−−→ π0(Aun−1)

(pn)∗−−−→ π0(Aun)→ π0(Aun/A
u
n−1) ∼= coker(p∗)→ 0.

We now consider the inclusion

kn : L(Cn)/U(n) ↪→ (L(Cn) ∗ Ln)/U(n).

By the definition of γn above, it fits into the following homotopy-commutative square:

Σ∞+ (L(Cn)/U(n))
Σ∞+ kn

//

αn

��

Σ∞+ ((L(Cn) ∗ Ln)/U(n))

γn

��

ku qn−1

// An−1

(15.2.2)

Furthermore, we have:

Lemma 15.2.2. For every compact Lie group G the induced map

πG0 (L(Cn)/U(n))
(kn)∗−−−→ πG0 ((L(Cn) ∗ Ln)/U(n))

is surjective.
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Proof. Since the square

πG0 (L(Cn)×U(n) Ln) //

��

πG0 (L(Cn)/U(n))

��

πG0 (Ln/U(n)) // πG0 ((L(Cn) ∗ Ln)/U(n))

is a pushout of sets (it arises from applying π0 to a homotopy pushout of spaces), it

suffices to show that the projection

L(Cn)×U(n) Ln → Ln/U(n)

induces a surjection on πG0 . An element of Ln/U(n) is represented by a tuple (Wi, xi)i∈I ,

where the xi are elements of a complete G-universe UG and the Wi form an orthogonal

decomposition of Cn (such that the equalities
∑

dimWi · xi = 0 and
∑

dimWi|xi|2 =

1 are satisfied). Since the U(n)-action is modded out, the represented element only

depends on the xi and the dimensions of the Wi. That the tuple (Wi, xi)i∈I is a G-fixed

point means that every element of G maps each xi to an element xg(i) such that dimWi =

dimWg(i). Now let α : G→ U(n) be any homomorphism such that α(G)·Wi = Wg(i). For

example one can choose orthonormal bases {ai,k} of theWi and define α(g)(ai,k) = ag(i),k.

Furthermore, let ϕ : Cn ↪→ UG be a linear isometric embedding which is equivariant for

the action on Cn induced by α. Then the tuple (ϕ, (Wi, xi)i∈I) ∈ (L(Cn)×Ln)(UG) is a

fixed point for the graph Γ(α) and hence a G-fixed point of the quotient. Its projection

to Ln/U(n) gives back the tuple we started with, which hence lies in the image, and so

we are done.

Remark 15.2.3. Conceptually, the main input in the proof of the previous lemma is

that for every complete subgroup L of U(n) the projection NU(n)L→WU(n)L splits.

Corollary 15.2.4. The global functor

π0(Σ∞+ ((L(Cn) ∗ Ln)/U(n)))

is generated by the element (kn)∗(τ
u
n ). Hence, the kernel of γn is generated as a global

functor by the element (kn)∗(τ
u
n − n · [1]).

Now we are ready for:

Proof of Theorem 15.1.1. We make use of the exact sequence of Corollary 15.2.1. Since

(L(Cn) ∗ Ln)/U(n) is not the empty orthogonal space, the projection to a point splits

and hence p∗ is surjective. It follows that π0(Aun/A
u
n−1) is zero and we see that all the

maps

(pn)∗ : π0(Aun−1)→ π0(Aun)

are surjective. Hence so is the composition (qn)∗ : π0(ku)→ π0(Aun) and we have proved

the first statement.

It remains to show that the kernel of (qn)∗ : π0(ku) → π0(Aun) is generated by the

element τun − n · [1] ∈ π
U(n)
0 (ku). We proceed by induction on n. For n = 0 there is
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nothing to show. Now let n ≥ 1 and assume the statement to be proved for n − 1. By

Corollary 15.2.4, the kernel of (pn)∗ : π0(Aun−1)→ π0(Aun) is generated by the element

(γn)∗((kn)∗(τ
u
n − n · [1]))

which by the commutativity of Square (15.2.2) above is equal to (qn−1)∗(τ
u
n − n · [1]).

Thus, by induction hypothesis we see that the kernel of (qn)∗ is generated as a global

functor by the elements (τun −n · [1]) and (τun−1− (n− 1) · [1]). But the latter is obtained

from the former by restriction along the inclusion U(n− 1) ↪→ U(n) and it follows that

(τun − n · [1]) generates the whole kernel. This finishes the proof.

15.2.2 Computation in global functors

For this proof we assume Schwede’s result explained in Section 3.2.3 and recall the

following homotopy-pushout defining Aun:

kun
i(n)

//

q′n
��

ku

qn
��

Spn
j(n)

// Aun
R

h

All the spectra involved are connective, so the associated Mayer-Vietoris sequence gives

rise to a short exact sequence

π0(kun)
(−(q′n)∗,i

(n)
∗ )−−−−−−−−→ π0(Spn)⊕ π0(ku)

( j
(n)
∗

(qn)∗)−−−−→ π0(Aun)→ 0. (15.2.3)

By Theorem 3.2.2, we know that π0(S)→ π0(Spn) is surjective. Since the map π0(ku1)→
π0(S) is also surjective (the unit map S → ku1 induces a section), we find that so is

π0(kun) → π0(Spn) and hence also π0(ku) → π0(Aun). So, by a diagram chase we see

that the exact sequence (15.2.3) induces another short exact sequence

ker((q′n)∗)
i
(n)
∗−−→ π0(ku)

(qn)∗−−−→ π0(Aun)→ 0. (15.2.4)

Hence we need to study the map (q′n)∗ : π0(kun)→ π0(Spn).

Lemma 15.2.5. For 1 ≤ i ≤ n we have

(q′n)∗(τ
u
i ) = i · [1] ∈ πU(n)

0 (Spn).

Proof. The class τui ∈ π0(kun) is represented by the U(i)-map

SC
i → kun(Ci)

v 7→ (v,Ci),
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so we see that (q′n)∗(τ
u
i ) is represented by the U(i)-map

SC
i → Spn(SC

i
)

v 7→ (v, i),

or in other words, the Ci-fold suspension of the map

S0 → Spn(S0) ∼= N

0 7→ i.
(15.2.5)

In particular, (q′n)∗(τ
u
i ) is the restriction of the non-equivariant class associated to the

same map (15.2.5). Hence it suffices to see that this class represents i · [1] ∈ π{e}0 (Spn).

Since the map π
{e}
0 (Spn) → π

{e}
0 (Sp∞) is an isomorphism, we can equivalently check

this in Sp∞. But there it is clear, since Sp∞ is the realization of a special Γ-space and

N ∼= π
{e}
0 (N)→ π

{e}
0 (Sp∞) ∼= Z

is the group completion map.

So we see that τun − n · [1] lies in the kernel of (q′n)∗. Hence, by the short exact

sequence (15.2.4), this relation also holds in π
U(n)
0 (Aun). We are left to show that there

are no further relations, or in other words:

Proposition 15.2.6. The kernel of (q′n)∗ is generated as a global functor by the element

τun − n · [1].

Proof. We claim that the induced map

π0(kun)/(τun − n · [1])→ π0(Spn) (15.2.6)

is an isomorphism, which proves the proposition.

The global functor π0(S) is the free global functor on the class [1] ∈ π
{e}
0 (S) (cf.

Example 3.1.6). So there is a unique map of global functors

π0(S)→ π0(kun)/(τun − n · [1]) (15.2.7)

sending [1] ∈ π{e}0 (S) to [1] ∈ π{e}0 (kun)/(τun −n · [1]). It takes the element τΣ
n −n · [1] to

trΣn
Σn−1

([1])− n · [1]

which equals

IndΣn
Σn−1

[1]− n · [1] (15.2.8)

because of the relation b(n, 1) in π0(kun) (cf. Theorem 14.1.3). The Σn-representation

IndΣn
Σn−1

[1] is n-dimensional, so the class (15.2.8) can be obtained as a restriction of
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τun − n · [1]. Hence, by Theorem 3.2.2, the map (15.2.7) factors as

π0(Spn)→ π0(kun)/(τun − n · [1]).

We claim that this map is an inverse to (15.2.6). It is clear that one composite is the

identity of π0(Spn), since it sends the generator [1] to [1].

The other composite takes the class of each τui to i · [1]. The difference τui − i · [1]

equals the restriction of τun − n · [1] along the embedding U(i) ↪→ U(n), making use of

relation a(i, n − i). Hence, each τui is mapped to itself. Since these classes generate

π0(kun) by Theorem 14.1.3, we are done.

This finishes the proof of Theorem 15.1.1.
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Chapter 16

Examples

In this final chapter we give examples for the effect on πG0 of the modified rank and

complexity filtrations for various finite groups G and topological or discrete rings. The

purpose is twofold: On the one hand we want to explain how one computes specific

values πG0 (X) for the global spectra X that appeared in this thesis, using the global

formulas we gave in the previous sections. On the other hand we try to demonstrate

that the behavior at a specific group is often quite complicated, while the global formula

is not.

Remark 16.0.7. All the homotopy groups we compute turn out to be torsion-free. We

do not know whether this is true in general. It does not hold for symmetric products of

spheres, cf. [Sch14, Example 4.6].

Example 16.0.8 (The symmetric group Σ3, over C). We begin by going through the

example G = Σ3 in detail. In order to compute the values of the modified rank and

complexity filtration for Σ3, we need to know its subgroups, their complex representation

rings (together with the conjugation action) and the induction maps between them. The

conjugacy classes of subgroups are given by the trivial group {e}, the cyclic groups C2

(represented by any transposition) and C3 (the normal subgroup of 3-cycles), and the

whole group Σ3. Their representation rings are

RU({e}) ∼= Z{[1]}
RU(C2) ∼= Z{[1], [−1]}
RU(C3) ∼= Z{[1], [η3], [η2

3]}
RU(Σ3) ∼= Z{[1], [sgn], [ν3]},

where ν3 is the 2-dimensional reduced natural representation and η3 is a primitive third

root of unity. The C3-representations η3 and η2
3 are conjugate under the Weyl-group

action. Furthermore, we have the following formulas for induction:

IndC2

{e}([1]) = [1] + [−1]

IndC3

{e}([1]) = [1] + [η3] + [η2
3]

IndΣ3

{e}([1]) = [1] + [sgn] + 2 · [ν3]
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IndΣ3
C2

([1]) = [1] + [ν3]

IndΣ3
C2

([−1]) = [sgn] + [ν3]

IndΣ3
C3

([1]) = [1] + [sgn]

IndΣ3
C3

([η3]) = [ν3]

To compute the first term πΣ3
0 (ku1) we need to consider all transfers of 1-dimensional

representations (modulo the respective Weyl group actions) so we see that it is given by

the free abelian group

Z{[1], [sgn], trΣ3
C3

([1]), trΣ3
C3

([η3]), trΣ3
C2

([1]), trΣ3
C2

([−1]), trΣ3

{e}([1])}.

For the second stage we add on everything that comes from a 2-dimensional irreducible

representation (since, using the relation a(1, 1) of Theorem 14.1.3, we can replace a

non-irreducible representation by the homotopy-theoretic sum of its summands). In this

case there is only one 2-dimensional irreducible representation, the Σ3-representation

ν3. Taking into account the relation b(2, 1) we furthermore have to identify all represen-

tations that are at most 2-dimensional and an induction over a proper subgroup with

the homotopy-theoretic transfer of that respective representation, transferred up to the

whole group Σ3 if necessary. Considering the formulas for induction above, this means

that we have to identify the following:

trΣ3

{e}([1]) = trΣ3
C2

(trC2

{e}([1])) ∼ trΣ3
C2

([1]) + trΣ3
C2

([−1])

trΣ3
C3

([1]) ∼ [1] + [sgn]

trΣ3
C2

([η3]) ∼ [ν3]

So we see that πΣ3
0 (ku2) is a free group with basis

{[1], [sgn], [ν3], trΣ3
C2

([1]), trΣ3
C2

([−1])}.

Since there are no irreducible representations of dimension 3 or higher for any of the

subgroups of Σ3, we from now on do not add any new generators but only have to take

into account new relations. In the third step the universal relation b(3, 1) shows that

trΣ3
C2

([1]) is identified with [1] + [ν3] and trΣ3
C2

([−1]) with [sgn] + [ν3]. Hence, πΣ3
0 (ku3)

is isomorphic to Z{[1], [sgn], [ν3]}, which is the representation ring of Σ3, and the rank

filtration is constant from then on.

Hence, recording only the isomorphism types, we summarize:

n 1 2 ≥ 3

πΣ3
0 (kun) Z7 Z5 Z3

For every finite group G the complexity filtration over C stabilizes on πG0 (−) at stage

1, as noted in Section 15.1.1. For Σ3 this can be seen concretely as follows: Recall that

we start with πΣ3
0 (ku), the representation ring, a free group on the classes [1], [sgn] and

[ν3]. As the sign representation is one-dimensional, it is identified with [1] in πΣ3
0 (Au1).
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Furthermore, ν3 is the induction of the 1-dimensional C3-representation η3. So, since

[η3] is identified with the trivial representation, application of IndΣ3
C3

(−) shows that [ν3]

is identified with [1] + [sgn]. We already argued that [sgn] is identified with [1], so this

shows that [ν3] becomes 2 · [1] in πΣ3
0 (Au1), which is hence isomorphic to Z.

Example 16.0.9 (The symmetric group Σ3, over R). We again discuss the symmetric

group on 3 letters, this time over R. Even though every complex Σ3-representation is

induced up from a real one and hence the representation rings are isomorphic, the effect

of the modified rank and complexity filtrations on πΣ3
0 differ. Again we have to start

with the representation rings over all subgroups, and the only difference to the complex

case is at the subgroup C3, where RO(C3) only has rank 2 with basis [1] and the reduced

regular representation [ρC3
]. Consequently, we find that πC3

0 (ko1) has one basis element

less, it is the free group on

{[1], [sgn], trΣ3
C3

([1]), trΣ3
C2

([1]), trΣ3
C2

([−1]), trΣ3

{e}([1])}.

In the next step the irreducible representations [ν3] and trΣ3
C3

[ρC3
] are added, and again

trΣ3

{e}([1]) is identified with trΣ3
C2

([1])+trΣ3
C2

([−1)), as well as trΣ3
C3

([1]) with [1]+[sgn]. This

gives

πΣ3
0 (ko2) ∼= Z{[1], [sgn], [ν3], trΣ3

C3
[ρC3

], trΣ3
C2

([1]), trΣ3
C2

([−1])}.

In the third step the latter two classes are identified with [1] + [ν3] and [−1] + [ν3]

respectively, hence they become algebraically dependent of the first three. Furthermore,

applying trΣ3
C3

(−) to the relation trC3

{e}([1]) = [1] + [ρC3
] (plus using earlier relations)

shows that trΣ3
C3

([ρ3]) represents the same class as 2 · [ν3], so πΣ3
0 (ko3) is isomorphic to

the representation ring RO(Σ3).

So we get:

n 1 2 ≥ 3

πΣ3
0 (kon) Z6 Z6 Z3

We note, however, that the map πΣ3
0 (ko1)→ πΣ3

0 (ko2) is not an isomorphism.

The complexity filtration is also different to the complex one: In the first step [1]

and [sgn] are identified, but this time there are no further relations. This is because

applying IndΣ3
C2

to the identification [1] ∼ [−1] contributes nothing new, and there is

only one 1-dimensional representation of C3 over R. So

πΣ3
0 (Ao1) ∼= Z{[1], [ν3]}.

In the second step [ν] is identified with 2 · [1] and hence πΣ3
0 (Ao2) ∼= Z, which is true for

all πG0 (Ao2) with G finite.

Example 16.0.10 (Cyclic groups of prime order). Having seen the general algorithm,

we now go back to the easiest example and use it to illustrate the behavior over various

rings. Let p be a prime and Cp the cyclic group with p elements.

Over C: The irreducible C[Cp]-representations are given by η1
p, η

2
p, . . . , η

p
p, where ηp
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is a primitive p-th root of unity. So we find that

π
Cp
0 (kun) ∼=

Z{[η1
p], [η

2
p], . . . , [η

p
p], tr

Z/p
1 [1]} for 0 < n < p

Z{[η1
p], [η

2
p], . . . , [η

p
p]} for n ≥ p.

As mentioned before, πG0 (Aun) is isomorphic to Z for all n ≥ 1 and any finite group G.

Over R: If p is 2, all complex representations are already defined over the reals, so

the filtrations are the same. If p is odd, there are (p − 1)/2 isomorphism classes of 2-

dimensional indecomposable representations, which can be expressed as the underlying

real representations of η1
p, . . . , η

(p−1)/2
p , plus the trivial 1-dimensional one. So we find

that

π
Cp
0 (kon) ∼=


Z{[1], tr

Cp
{e}[1]} for n = 1

Z{[1], resCR(η1
p), . . . , resCR(η

(p−1)/2
p ), tr

Cp
{e}[1]} for 1 < n < p

Z{[1], resCR(η1
p), . . . , resCR(η

(p−1)/2
p )} for n ≥ p.

Furthermore, π
Cp
0 (Ao1) ∼= π

Cp
0 (ko) ∼= RO(Cp) since there are no non-trivial 1-dimensional

representations, and π
Cp
0 (Aon) ∼= Z for all n > 1.

Over Q: There are only two isomorphism classes of irreducible Cp-representations

over Q, the trivial 1-dimensional representation and the reduced regular representation

ρCp of dimension p− 1. Hence we find that

π
Cp
0 (kQn) ∼=


Z{[1], tr

Cp
{e}[1]} for 0 < n < p− 1

Z{[1], [ρCp ], tr
Cp
{e}[1]} for n = p− 1

Z{[1], [ρCp ]} for n ≥ p.

Furthermore, we see that

π
Cp
0 (AQn ) ∼=

Z{[1], [ρCp ]} for 0 ≤ n ≤ p− 1

Z for n ≥ p.

In particular, the complexity filtration over Q does not stabilize globally on π0.

Over Fp: Unlike in characteristic 0 the group ring

Fp[Cp] ∼= Fp[t]/(tp − 1) ∼= Fp[t]/(t− 1)p ∼= Fp[t]/(tp)

is no longer semisimple. Up to isomorphism, there is exactly one indecomposable rep-

resentation Vi in every dimension 1 ≤ i ≤ p (and none in higher dimensions) and every

representation decomposes uniquely as a sum of these. So we see that

π
Cp
0 ((kFp)n) ∼=

Z{[V1], . . . , [Vn], tr
Cp
{e}[1]} for n = 1, . . . , p− 1

Z{[V1], . . . , [Vp]} for n ≥ p,
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where the cases p− 1 and p are only notationally different, since the map

π
Cp
0 ((kFp)p−1)→ π

Cp
0 ((kFp)p)

sends tr
Cp
{e}[1] to [Vp]. For the complexity filtration we obtain:

π
Cp
0 (A

Fp
n ) ∼=

Z{[Vn+1], . . . , [Vp]} n = 0, . . . , p− 1

Z n ≥ p

So, in summary, for p odd the modified rank filtrations work out as:

n 1 2, . . . , p− 2 p− 1 ≥ p
π
Cp
0 (kun) Zp+1 Zp+1 Zp+1 Zp

π
Cp
0 (kon) Z2 Z

p+3
2 Z

p+3
2 Z

p+1
2

π
Cp
0 (kQn) Z2 Z2 Z3 Z2

π
Cp
0 ((kFp)n) Z2 Zn+1 Zp Zp

And the complexity filtrations as:

n 0 1 2, . . . , p− 1 ≥ p
π
Cp
0 (Aun) Zp Z Z Z

π
Cp
0 (Aon) Z

p+1
2 Z

p+1
2 Z Z

π
Cp
0 (AQn ) Z2 Z2 Z Z

π
Cp
0 (A

Fp
n ) Zp Zp Zp+1−n Z

Finally we compute the complexity filtration of the alternating group A5 over Q. To

achieve this we first need two preparatory examples:

Example 16.0.11 (Complexity filtration of the alternating group A4 over Q). The

representation ring is given by

RepQ(A4) ∼= Z{[1], [η], [ν4]},

where η is of dimension 2 and ν4 is of dimension 3. There are two conjugacy classes

of maximal subgroups, the alternating group A3 and the Klein four-group K, with

representation rings

RepQ(A3) ∼= Z{[1], [ρA3 ]}

respectively

RepQ(K) ∼= Z{[1], [ϕ1], [ϕ2], [ϕ3]}.

The ϕi are all 1-dimensional and conjugate under the action of the Weyl group in A4.
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We have the inductions

IndA4
K ([1]) = [1] + [η]

IndA4
K ([ϕi]) = [ν4].

So [ν4] is identified with [1] + [η] in πA4
0 (AQ1 ) and this is the only relation (since A3 has

only one 1-dimensional representation). Hence

πA4
0 (AQ1 ) ∼= Z{[1], [η], [ν4]}/([1] + [η]− [ν4]) ∼= Z{[1], [η]}.

In πA4
0 (AQ2 ) the representation [η] is identified with 2 · [1], so the filtration becomes

constant Z from then on. This yields:

n 0 1 ≥ 2

πA4
0 (AQn ) Z3 Z2 Z

Example 16.0.12 (Complexity filtration of the dihedral group D5 over Q). The repre-

sentation ring of D5 is given by

RepQ(D5) ∼= Z{[1], [−1], [ψ], [(−1) · ψ]},

where [−1] is restricted from the projection D5 → D5/C5
∼= C2. The 4-dimensional

irreducible representations [ψ] and [(−1) · ψ] are characterized by

IndD5
C2

([1]) = [1] + [ψ] and IndD5
C2

([−1]) = [−1] + [(−1) · ψ].

Hence we see that the kernel of

RepQ(D5)→ πD5
0 (AQ1 )

is generated by [1] − [−1] and [1] + [ψ] − [−1] − [(−1) · ψ], which can be simplified to

[1] − [−1] and [ψ] − [(−1) · ψ]. So πD5
0 (AQ1 ) is free of rank 2 with basis the classes of

[1] and [ψ]. Since there are no 2- or 3-dimensional irreducible representations for any

subgroup of D5, this is also the case for πD5
0 (AQ2 ) and πD5

0 (AQ3 ). In πD5
0 (AQ4 ) we have

the relation [ψ]− 4 · [1], so the filtration stabilizes. We obtain:

n 0 1, 2, 3 ≥ 4

πD5
0 (AQn ) Z4 Z2 Z

Example 16.0.13 (Complexity filtration of the alternating group A5 over Q). The

representation ring is given by

RepQ(A5) ∼= Z{[1], [ν5], [ψ], [Λ2ν5]},

where ν5 is the restriction of the reduced natural Σ5-representation, Λ2ν5 is its 6-

dimensional exterior square and [ψ] is 5-dimensional. There are 3 conjugacy classes
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of maximal subgroups given by A4, Σ3 (generated by (123) and (12)(45)) and D5 (gen-

erated by (1234) and (13)). We note that the rational complexity filtration for Σ3 is

the same as the one over R, since all real representations of its subgroups are already

defined rationally. Using the notation from the previous examples, we have

IndA5
A4

([1]) = [1] + [ν5]

IndA5
A4

([η]) = 2 · [ψ]

IndA5
A4

(ν4) = [ν5] + [ψ] + [Λ2ν5]

IndA5
Σ3

([1]) = [1] + [ν5] + [ψ]

IndA5
Σ3

([sgn]) = [ν5] + [Λ2ν5]

IndA5
Σ3

([ν3]) = [ν5] + 2 · [ψ] + [Λ2ν5]

IndA5
D5

([1]) = [1] + [ψ]

IndA5
D5

([−1]) = [Λ2ν5]

IndA5
D5

([ψ]) = 2 · [ν5] + 2 · [ψ] + [Λ2ν5]

IndA5
D5

([(−1) · ψ]) = 2 · [ν5] + 2 · [ψ] + [Λ2ν5].

From our previous calculations we know that the relations in πG0 (AQ1 ) are generated by

[1]+[η]−[ν4] for G = A4, by [1]−[sgn] for G = Σ3 and by [1]−[−1] and [ψ]−[(−1)·ψ] for

G = D5. Applying inductions to these relations, we see that they only give the relation

([ψ] + [1]− [Λ2ν5]) in πA5
0 (AQ1 ). From this we can read off that

πA5
0 (AQ1 ) ∼= RepQ(A5)/([ψ] + [1]− [Λ2ν5]),

hence it is free with basis [1], [ν5] and [ψ]. In step 2 we have to add the inductions of

the relations 2 · [1] − [η] for A4 and 2 · [1] − [ν3] for Σ3. This yields the new relation

[1] + [ν5]− [ψ], so

πA5
0 (AQ2 ) ∼= RepQ(A5)/([ψ] + [1]− [Λ2ν5], [1] + [ν5]− [ψ])

is free with basis [1] and [ν5]. In the third step nothing happens, because A5 has no 3-

dimensional irreducible representation and we have seen that there are no new relations

for any of the maximal subgroups. At step 4 the element [ν5] is identified with 4 · [1], so

πA5
0 (AQn ) ∼= Z for all n ≥ 4, and we find:

n 0 1 2, 3 ≥ 4

πA5
0 (AQn ) Z4 Z3 Z2 Z
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Appendix B

B.1 Verification of cofiber sequence

In this appendix we give the proof that the map

ψn : Σ∞+ (L(Cn)×U(n) Ln)→ kun−1

constructed in Section 14.2 makes the following diagram a morphism of triangles in the

global homotopy category:

Σ∞+ (L(Cn)×U(n) Ln) //

ψn
��

Σ∞+ (L(Cn)/U(n))

αn

��

// Σ∞(L(Cn)+ ∧U(n) (Ln)�)

∼=
��

kun−1 in−1
// kun // kun/kun−1

(B.1.1)

In order to establish this we turn the upper sequence into a strict quotient sequence by

replacing L(Cn)/U(n) with L(Cn)×U(n) CLn, where CLn denotes the cone on Ln. We

construct a morphism

ψn : Σ∞+ (L(Cn)×U(n) CLn)→ kun

with the following three properties:

1. The square

Σ∞+ (L(Cn)×U(n) Ln) //

ψn
��

Σ∞+ (L(Cn)×U(n) CLn)

ψn
��

kun−1 in−1
// kun

commutes.

2. The restriction of ψn to the copy of Σ∞+ (L(Cn)/U(n)) at the cone point is equal

to αn.

3. The induced map

Σ∞(L(Cn)+ ∧ (Ln)�)→ kun/kun−1,

obtained by quotiening out Σ∞+ (L(Cn) ×U(n) Ln) and kun−1, is homotopic to the

isomorphism constructed in Section 11.1.
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The first two properties show that ψn induces a homotopy between the two composites

in the first square of Diagram B.1.1. The third property implies that there is a homotopy

between the two composites in the square

Σ∞(L(Cn)+ ∧U(n) (Ln)�) //

∼=
��

S1 ∧ Σ∞+ (L(Cn)×U(n) Ln)

S1∧ψn
��

kun/kun−1 // S1 ∧ (kun/kun−1)

and so we are done. The map ψn is also used in Section 15.2 to determine the effect of

the complexity filtration on π0.

In order to construct ψn we quickly recall the objects involved: An element of

L(Cn)(V ) is a linear isometry Cn ↪→ Sym(VC). Points in Ln(V ) are represented by

tuples (Wi, xi)i∈I where the xi are elements of V and the Wi are pairwise orthogonal

subspaces of Cn which add up to all of Cn. Furthermore, these tuples have to be reduced

and of norm 1 (cf. Section 11.1). Finally, elements of kun(V ) are also represented by

tuples (Wi, xi)i∈I , but this time the Wi are orthogonal subspaces of Sym(VC) and the

only requirement is that the sum of the dimensions is at most n.

We recall also that the definition of ψn made use of a function s : [0,∞] → [0,∞]

which maps the interval [0, 1
2n2 ] homeomorphically onto [0,∞] and is constant on the

rest. Finally, given a finite tuple of vectors x = (xi)i∈I of a real inner product space V

we defined a map px : V → 〈{xi}i∈I〉 ⊆ V by px(v) =
∑

I〈v, xi〉 · xi.

Now let H : [0,∞]×[0, 1]→ [0,∞] be a homotopy relative endpoints from the identity

to s. Given a real inner product space V with a finite tuple of vectors x = (xi)i∈I as

above, we define a map HV
x : SV × [0, 1]→ SV via

HV
x (v, t) = (H(|pxv|, t)− |pxv|) · pxv + v.

This gives a homotopy from the identity to the map sVx used in the definition of ψn.

Now we can define ψn by the formula

(ϕ, (Wi, xi)i∈I , t) ∧ v 7→

(ϕ(Wi),
t

1−t · xi + v)i∈I if 0 ≤ t ≤ 1/2

(ϕ(Wi), H
V
x (xi + v, 2t− 1))i∈I if 1/2 ≤ t ≤ 1

where x is short for the tuple of the xi. Since Hx(xi + v, 0) is equal to xi + v, these

two definitions agree on the intersection and glue to a well-defined map. By definition,

setting t equal to 1 gives back ψn, thus property (1) is satisfied. Furthermore, the

elements (ϕ, (Wi, xi)i∈I , 0) are mapped to the tuple (ϕ(Wi), v)i∈I , which is equal to

(ϕ(Cn), v). Hence it is independent of the Wi and xi and the induced map

Σ∞+ (L(Cn)/U(n))→ kun

equals αn, yielding property (2).
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It remains to prove property (3), i.e., that the induced map

ψ
′
n : Σ∞(L(Cn)+ ∧ L�n)→ kun/kun−1

obtained by quotiening out Σ∞+ (L(Cn)×U(n)Ln) and kun−1 is homotopic to the isomor-

phism from Section 11.1. For t ≤ 1/2 the two maps are in fact equal and hence it suffices

to construct a homotopy on the part where t ≥ 1/2, relative to t = 1/2. This is achieved

by the formula

(ϕ, (Wi, xi)i∈I , t, s) ∧ v 7→ [(HV
x ((

(1− s)t
1− (1− s)t +

s− 1

s+ 1
+ 1) · xi + v, s(2t− 1)), ϕ(Wi))i∈I ]

for s ∈ [0, 1]. Continuity is only unclear at points for which t = 1 and s = 0, which are

mapped to the basepoint. However, by the same estimate as in Section 14.2 one sees

that the expression (HV
x (( (1−s)t

1−(1−s)t + s−1
s+1 + 1) · xi + v, s(2t− 1)), ϕ(Wi))i∈I lies in kun−1

already for all t close enough to 1 and s close enough to 0. So the homotopy is actually

constant around s = 0 and t = 1, hence we are done.
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Zusammenfassung

In dieser Dissertation beschäftigen wir uns mit verschiedenen Filtrierungen äquivarianter

Spektren.

Zunächst betrachten wir die symmetrischen Produkte Spn des G-Sphärenspektrums

über einer endlichen Gruppe G, welche zwischen dem G-Sphärenspektrum und dem

Eilenberg-MacLane Spektrum für den konstanten Mackey-Funktor Z interpolieren. Die

symmetrischen Produkte der Sphäre sind – vor allem unäquivariant – viel untersucht

worden, beispielsweise haben sie Verbindungen zu Tits Gebäuden und dem Goodwillie

Turm der Identität [AD01].

Wir zeigen, dass sich mit Hilfe von Untergruppenverbänden ein rationales Modell

der symmetrischen Produkte konstruieren lässt. Der Untergruppenverband einer Grup-

pe G ist der Komplex, dessen Eckpunkte die Untergruppen H von G sind und dessen

höherdimensionale Simplizes zu Ketten von Untergruppen H0 ≤ . . . ≤ Hk korrespondie-

ren. Insbesondere impliziert unser Resultat, dass die rationalenG-äquivarianten Homoto-

piegruppen der Spn natürlich isomorph zu den rationalen Homologiegruppen bestimmter

Unterkomplexe des Untergruppenverbandes von G sind, was in vielen Fällen eine konkre-

te Berechnung ermöglicht. Es lässt sich mithilfe des Resultats auch leicht einsehen, dass

die symmetrischen Produkte beliebig hohe nicht-triviale rationale Homotopiegruppen

besitzen (wenn man n und G variieren lässt). Dies steht im Kontrast zu den Grenzfällen

Sp1 und Sp∞, deren rationale Homotopiegruppen bereits bekannt waren und stets im

Grad 0 konzentriert sind. Ein wichtiger Zwischenschritt im Beweis ist eine äquivariante

Version eines Satzes von Arone und Dwyer [AD01], in welchem der Quotient Spn/Spn−1

mit dem Partitionskomplex der Menge {1, . . . n} in Verbindung gesetzt wird.

Wir zeigen zudem, dass die rationalisierten symmetrischen Produkte interessante

Eigenschaften haben, wenn man sie in einem global äquivarianten Kontext, welcher von

Schwede in seinem Buchprojekt [Sch15] eingeführt wurde, auffasst. Sofern n nicht 1

oder∞ ist, zerfällt SpnQ nicht als Produkt globaler Eilenberg-MacLane Spektren, obwohl

so eine Zerlegung für jede fixierte Gruppe G existiert.

Im zweiten Projekt befassen wir uns mit einer äquivarianten Verallgemeinerung

zweier Arten von Filtrierungen, welche von Arone und Lesh in den Artikeln [AL07]

und [AL10] eingeführt wurden. Die erste, genannt Rang-Filtrierung, filtriert konnek-

tive äquivariante topologische/algebraische K-Theoriespektren mittels der Dimension

von Vektorräumen beziehungsweise dem Rang freier Moduln. Sie ist nahe verwandt mit

der von Rognes [Rog92] konstruierten Rangfiltrierung, aber im allgemeinen nicht dazu

äquivalent. Die zweite, welche wir als Komplexitätsfiltrierung bezeichnen, liefert eine In-

terpolation zwischen dem K-Theorie Spektrum und dem Eilenberg-MacLane Spektrum
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des konstanten Mackey-Funktors Z und hat ähnliche Eigenschaften wie die symmetri-

schen Produkte der Sphäre.

Nach der Konstruktion der Filtrierungen bestimmen wir den äquivarianten Homo-

topietyp der Unterquotienten. Es stellt sich heraus, dass diese Einhängungsspektren

äquivarianter Räume sind, welche in enger Beziehung zu der Kombinatorik von Zer-

legungen endlich dimensionaler Vektoräume als orthogonale Summe von Unterräumen

(beziehungsweise Zerlegungen freier Moduln im algebraischen Kontext) stehen. Dieser

Teil ist aus gemeinsamer Arbeit mit Dominik Ostermayr enstanden und verallgemeinert

Ergebnisse von Arone und Lesh.

Die Beschreibung der Subquotienten nutzen wir daraufhin für die Bestimmung al-

gebraischer Filtrierungen, welche von den Rang- und Komplexitätsfiltrierungen durch

Anwenden des Funktors πG0 induziert werden. Genauer gesagt liefert die Rangfiltrierung

eine Filtrierung des Darstellungsrings von G und die Komplexitätsfiltrierung eine Fil-

trierung des Augmentationsideals dieses Darstellungsrings. Wir zeigen, dass sich diese

algebraischen Filtrierungen einfach beschreiben lassen, wenn man alle endlichen oder

kompakten Lie Gruppen simultan betrachtet und die Einschränkungs- und Transferab-

bildungen verwendet, welche die verschiedenen Darstellungsringe miteinander verbinden.

Mittels dieser Strukturen ist etwa jede Stufe der Filtrierung des Augmentationsideals

durch ein einzelnes Element bestimmt, und auch die Filtrierung des Darstellungsrings

lässt sich durch endlich viele universelle Elemente beschreiben. Um dies präzise zu ma-

chen, nutzen wir erneut den global äquivarianten Kontext. Diese Vorgehensweise ist

durch einen Satz von Schwede [Sch14] motiviert, in welchem er analoge Formeln für die

0-te äquvariante Homotopiegruppe der symmetrischen Produkte von Sphären bewiesen

hat.
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