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Abstract

In this thesis we consider models of last passage percolation on Z2. These models belong
to the Kardar–Parisi–Zhang universality class, a class of stochastic growth models that
have been widely studied in the last 30 years.

Last passage percolation models provide a “physical” description of combinatoric prob-
lems, such as the Ulam’s problem, in terms of zero temperature directed polymers, but
also a geometrical interpretation of an interacting particle system, the totally asymmetric
simple exclusion process (TASEP). Moreover, in the large time limit, they share statistical
features with certain ensembles of random matrices.

We investigate the universality of the limit distributions of the last passage time for
different settings. First, we study TASEP starting from a periodic configuration and
show the universality of the GOE Tracy-Widom distribution for generic particle density.
This result is proved in the last passage percolation framework and is obtained with
soft probabilistic arguments, as the convergence of the last passage time to a variational
formula involving the limit Airy2 process.

Then, we analyze the correlations of two last passage times for different ending points
in a neighbourhood of the characteristic. For the standard settings (step, flat and station-
ary), using similar techniques, we prove the converge of the covariance of the last passage
times to the covariance of the limiting processes. For a more general class of random
initial conditions, we prove the universality of the first order correction when the two
observation times are close and provide a rigorous bound of the error term.

Finally, we consider a model of last passage percolation on half-space. We show that
the stationary initial condition can be realized by adding weights on the axis and on the
diagonal, and we obtain the distribution of the last passage time for this configuration.
The limit distribution is analogous to the Baik–Rains distribution from the case of sta-
tionary full-space last passage percolation, but in our case, it depends on a parameter,
the strength of the weights on the diagonal.
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Introduction

The objects of study of this thesis are last passage percolation models. Last passage
percolation (LPP) was introduced by Hammersley [Ham66] to answer the following ques-
tion: given n points uniformly and independently distributed in [0,1]2, what is the max-
imal number of points that can be collected by an up-right path? A solution to this
inquiry provides an answer to an equivalent combinatorial problem, known as Ulam’s
problem [Ula61], of the longest increasing subsequence of a random permutation.

Last passage percolation has been extensively investigated, also unrelatedly to the
combinatorics starting point. Indeed, last passage percolation is connected to a particle
system on the integers line, the totally asymmetric simple exclusion process (TASEP).
TASEP is a particular case of the asymmetric simple exclusion process (ASEP), introduced
by Spitzer in [Spi70], a continuous-time Markov process on {0, 1}Z, where the 1s represent
particles and the 0s holes. In ASEP each particle waits an exponential time and then
attempts a jump, to the neighbouring right site with probability p and to the neighbouring
left site with probability q = 1 − p. The jump is performed only if there is no particle
on the chosen site. In TASEP particles can jump only to the right (corresponding to the
p = 1 case). (T)ASEP is exactly solvable: many exact results on ASEP can be achieved
using techniques inspired by quantum mechanics, such as the Bethe Ansatz [Sch00]; for
TASEP a Fredholm determinant formula for the joint distribution of particle positions
have been obtained by Borodin and Ferrari [BF08]. Moreover, this model belongs to the
so-called Kardar–Parisi–Zhang (KPZ) universality class.

The concept of KPZ universality class was defined after Kardar, Parisi and Zhang
[KPZ86] proposed a non-linear stochastic partial differential equation as a model for the
evolution of a growing interface. The KPZ equation is given by

∂h

∂t
= ν∆h+

λ

2
(∇h)2 + η(x, t),

where h(x, t) ∈ R is the value of the height function describing the modeled interface at
position x and at time t. On the right hand side of the equation, the first is a relaxation
term with surface tension ν; the second is a non-linear term due to the later growth of
the interface; the last term is a space-time white noise.

The KPZ universality class includes interface growth models in 1+1 dimension, which
indicates one-space dimension and one-time dimension; in general, they are described in
terms of a height function h(x, t). Models in the KPZ class evolve according to a dynamics,
which is characterized by locality of growth (which means that there are no long-range
interactions entering the growth rules), a smoothing mechanism and lateral growth (this
means that the speed of growth depends non-linearly on slope). The presence of the
Laplacian ensures the existence of a law of large numbers for the height function and
leads to a deterministic interface for large times, defined as the limit of the interface for a
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large parameter L going to infinity when space, time and height function are scaled by L,

hmacro(x, t) := lim
L→∞

h(Lt, Lt)

L
. (0.0.1)

Models in this class are expected to show large time universality under an appropriate
scaling, which is determined by the order of fluctuations and spatial correlations: fluctu-
ations around the limit shape scale as t1/3, as spatial correlations occur on the scale t2/3

(this means that two points are non-trivially correlated if they are at distance of order
t2/3). For ε > 0, we define the rescaled height function

hε(x, t) = εβh(ε−1x, ε−zt)− Cεt, (0.0.2)

where β = 1/2 is the fluctuation exponent imposed by the Brownian motion and z = 3/2
is the dynamic scaling exponent. These exponents correspond to scaling time : space :
fluctuations as 3 : 2 : 1 and define the so-called KPZ scaling. The universality conjecture
states that, if we take the ε → 0 limit of the rescaled height function, we observe a uni-
versal field, known as the KPZ fixed point [MQR17], which does not depend on the model
itself. This limit object is indeed universal, but whithin subclasses of initial/boundary
conditions. For more on models in the KPZ universality class, see Chapter 1.

The Hammersley last passage percolation was one the first models for which the be-
longing to the KPZ class was proved [Joh00a,BDJ99a]. In the Hammersley LPP points
are distributed according to a Poisson point process on the plane.

(x, t)

R+

R+

Figure 1: Hammersley last passage perco-
lation on R2

+. The red path moves from
the origin to the point (x, t) maximizing the
number of Poisson points on the positive
real plane.

Z+

Z+
(N,N)

Figure 2: Last passage percolation on Z2
+.

The red path moves from the origin to the
point (N,N) maximizing the weights on
the positive integer plane. The weights are
given by independent exponential random
variables.

In this work we consider a different version of LPP, defined on the lattice Z2, where
on each site an independent exponentially distributed random variable is placed. The
length of a path is defined as the sum of the random variables along the path and the
last passage time is given by the length of the path maximizing the values of the random
variables. The simplest version of LPP is given by paths between two fixed points, but its
definition can be extended considering paths between sets of points in Z2. Beyond this
setting, here we focus on LPP between a point and a set of points along a line, which
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is a “line-to-point” problem, considering deterministic, stationary and a general family
of random initial conditions. For further details on last passage percolation models, see
Chapter 2.

In this thesis all chapters are intented to be self-contained; each one containes a short
review on the models and previous results that are used for the proofs.

In Chapter 1 we give a brief introduction to universality in random systems and present
some integrable models in the KPZ universality class that are relevant for this thesis.

In Chapter 2 we describe in more details the last passage percolation models, which
are the main objects studied here, and define their limit processes and distributions de-
pending on the initial setting. Moreover, we include a short presentation of the results
proved in the following chapters.

The three final chapters are based on the works [FO18], [FO19] and [BFO19].

In Chapter 3 we consider TASEP in continuous time with non-random initial con-
ditions and arbitrary fixed density of particles ρ ∈ (0, 1). We show that the one-point
fluctuations of the associated height function are given by the GOE Tracy-Widom distri-
bution function. This distribution was first observed in the context of random matrices
as the limit distribution of the largest eigenvalue for a matrix in Gaussian orthogonal
ensemble. In previous works [Joh05,BFP07] it was proved that the GOE Tracy-Widom
distribution describes the fluctuations of the height function for specific values of the den-
sity, ρ = 1/d, d = 2, 3, 4, . . .. Thus, showing that the same holds for ρ ∈ (0, 1) provides
a universality result for TASEP starting from flat initial conditions, i.e. with particles
starting with a periodic configuration. The proof of the result is phrased in last passage
percolation language and it shows the universality for a line-to-point problem where the
line has an arbitrary slope.

In Chapter 4 we consider time correlations for KPZ growth in 1+1 dimensions in
neighbourhoods of the characteristics. The latter are the characteristic curves of the
associated large time limit partial differential equation (in this case, the Burgers equation),
the lines along which a PDE becomes an ordinary differential equation. For last passage
percolation the characteristic is given by a straight line connecting the starting and the
ending point of the maximizing path.

Here we study the time-time covariance of LPP with droplet (point-to-point), flat
(line-to-point), stationary and random non-stationary initial profiles. We prove the con-
vergence of the covariance for the first three profiles. In particular, this provides a rigorous
proof of the exact formula of the covariance for the stationary case obtained in [FS16].
Furthermore, we analyze the behaviour of the covariance when the two times are close to
each other on a macroscopic scale. At first approximation, on a small scale, we observe
the stationary state and recover a universal formula for the covariance up to the first or-
der correction. This result holds also for random initial profiles which are not necessarily
stationary.

In Chapter 5 we study last passage percolation with a different geometric setting, a
LPP on the half-space quadrant of integers. This is equivalent to the full-space model with
weights symmetric with respect to the diagonal. The half-space last passage percolation
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is the geometric counterpart of the Ulam’s problem for random involution, i.e. for permu-
tations consisting only of transpositions and fixed points. The permutation matrices of
involutions are indeed symmetric.

Here we study stationary half-space last passage percolation with exponential weights.
We use integrable probability (Pfaffian) techniques, analytic continuation, and asymptotic
analysis to obtain the N1/3 fluctuation limit for the last passage time. We observe that
in the critical scaling regime the half-space LPP obeys a law analogous to the Baik–Rains
distribution law from the case of stationary full space LPP [BR00]. This limit distribu-
tion is described in terms of Fredholm pfaffians, which are a generalization of Fredholm
determinants for anti-symmetric matrix kernels. Unlike the Baik–Rains distribution, our
distribution depends on a parameter giving the strength of the diagonal bounding the
half-space.

4



Chapter 1

The KPZ universality class

1.1 Universality in random systems

The concept of universality arose in the context of statistical mechanics as a consequence
of the study of critical phenomena. To understand what a critical phenomenon is, we
consider the classical example of equilibrium statistical mechanics, the Ising model. This
is a mathematical model of ferromagnetism that consists of discrete variables represent-
ing magnetic dipole moments of atomic spins (that can take only two values, ±1) on a
regular lattice. On the microscopic level, the evolution of the magnetic moments is the
consequence of the interactions of many atoms. Macroscopically, one observes a change
in the ferromagnet behaviour, which is dependant on external conditions, such as the
temperature or the magnetic field. This happens suddenly in correspondence with critical
values of the temperature or the magnetic field, which determine a phase transition from
one state to another. Two types of transitions are possible. If the two states coexist at
the critical point and the transition involves discontinuous behaviour of thermodynamic
properties, we talk about “first-order” phase transition. If the transition is continuous, we
talk about “second-order” phase transition. In this case, the two phases on either side of
the transition must be identical at the critical point and the magnetization goes to zero.

The singular behaviour near the critical point is characterized by critical exponents.
These exponents describe the non-analyticity of various thermodynamic observables. In
the Ising model, we describe the magnetization with an order parameter M . As we
heat the system, M decreases and eventually, at a certain critical temperature Tc , it
reaches zero. The closer the parameter is to its critical value, the less sensitively the order
parameter depends on the details of the system. The order parameter is well approximated
by

M ∼ |T − Tc|α, (1.1.1)

where the exponent α is the critical exponent. Remarkably, it was found empirically that
different systems such as the liquid/gas and ferromagnetic transition can be described by
the same set of critical exponents. Such systems are said to belong to the same universality
class.

In the last decade, the concept of universality class has been investigated and exploited,
and now it plays a central role in probability and mathematical physics. In particular,
mathematicians and physicists are interested in finding the “scaling exponents” of a sys-
tem and the relations between them. Two scaling exponents are mostly considered: the
fluctuation exponent χ, which quantifies the order of the fluctuations of the observable
quantity from its typical value, and the wandering exponent, which quantifies the transver-
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6 Chapter 1. The KPZ universality class

sal fluctuations, the order of the maximal deviation. The Ising model is an example of
critical phenomenon at equilibrium. But one might ask if there exist such a description
for systems driven out of equilibrium.

1.1.1 Gaussian universality class

If we move away from statistical mechanics, we realize that the concept of universality
class is more familiar than we thought. The simplest and historically first example of
universality is provided by the Central Limit Theorem.

Consider a sample (i.e. a collection of data) obtained by a large number of randomly
and independently generated observations, and compute the average of the observed val-
ues. Repeating the computation many times, one will notice that the computed averages
are distributed according to a normal distribution: this is the content of the Central Limit
Theorem.

Theorem 1.1.1. Let X1, . . . , Xn be a sequence of independent, identically distributed
random variables with mean µ and variance σ2 <∞. Let Sn := 1

n

∑n
k=1Xk be the sample

average. Then

lim
n→∞

P
(
Sn − µn
σ
√
n
≤ s
)

=

ˆ s

−∞

e−x
2/2

√
2π

dx. (1.1.2)

This means that, despite model dependent features, such as the mean and the variance,
any sum of i. i. d. random variables with finite mean and variance will demonstrate the
same limiting behaviour, described by the normal distribution, and fluctuations around
the mean value of order n1/2. Physical and mathematical systems accurately described in
terms of Gaussian statistics are said to be in the Gaussian universality class.

1.1.2 Random and ballistic deposition

We present two models of randomly growing one-dimensional interface that show different
limiting behaviours. The random deposition model consists of unit blocks falling indepen-
dently and in parallel on Z after an exponentially distributed waiting time of parameter
1 (see Figure 1.1). Due to the memoryless property of the exponential distribution, this
model is a Markov process and its evolution depends only on the present, not on the
history. Each column evolves independently and is a sum of i. i. d. random variables. We
indicate with h(x, t) the height function, a function that gives the value of the height of
the column on the site x at time t.

Figure 1.1: The random deposition model. Blocks fall from above each site with independent
exponentially distributed waiting times and land at the top of each column.



1.2. KPZ Universality Class 7

By the Law of Large Numbers and the Central Limit Theorem, for any x ∈ Z,

lim
t→∞

h(x, t)

t
= 1,

h(x, t)− t√
t

⇒ N (x),

(1.1.3)

where the double arrow symbol indicates convergence in distribution and N the Gaussian
distribution. The model shows linear growth speed and lack of spatial correlations, and
the fluctuations belong to the Gaussian universality class, since they grow as t1/2 and
have Gaussian limit distribution.

If we modify the rules of the growth of the interface, we lose the Gaussian behaviour.
Consider the same model, but now, instead of falling on the ground or the interface, a
new block sticks to the first edge (see Figure 1.2): this is known as the ballistic deposition
model, introduced by Vold in 1959.

Figure 1.2: The ballistic deposition model. Blocks fall from above each site with independent
exponentially distributed waiting times and stick to the first edge to which they become incident.

This change in the evolution rules turns into large time effects: the interface grows
faster than in the random deposition model (the value of the velocity is still unknown).
Simulations show that the height function has smaller fluctuations, on the scale t1/3,
and demonstrates non-trivial correlations on the transversal scale of t2/3 (see Figure 1.5).
Moreover, the rescaled height does not converge anymore to the Gaussian distribution.

1.2 KPZ Universality Class

The hypothesis of independence is essential for belonging to the Gaussian universality
class. Nevertheless, we have seen that this class cannot exhaust all cases. There exists
a group of systems that belongs to a different universality class, the so-called Kardar–
Parisi–Zhang (KPZ) universality class. The features that a model is supposed to share
to be a member of the KPZ class are:

• Locality: the dynamics depends only locally on the configuration of the interface.

• Smoothing: deep holes in the configuration are rapidly filled to smooth the inter-
face; this ensures that there exists a macroscopic limit shape hma = limt→∞

h(ξt,t)
t .

• Rotationally invariant, slope dependent, growth speed: vertical effective
growth rate depends non-linearly on the local slope, which implies v(∇h) 6= 0.

• Space-time uncorrelated noise: growth is driven by noise which quickly decor-
relates in space and time and does not show heavy tails.

The ballistic deposition model presents these properties, since the modification in the dy-
namics breaks the independence of the column heights and introduces spatial correlations.



8 Chapter 1. The KPZ universality class

1.2.1 The KPZ equation

The KPZ universality class was introduced in the context of studying the motion of
growing interfaces. In 1986 Kardar, Parisi and Zhang [KPZ86] presented a model to
describe the evolution of a continuum stochastically growing height function h(x, t), given
in terms of a stochastic PDE, known as the KPZ equation:

∂h

∂t
(x, t) = ν

∂2h

∂x2
(x, t) +

1

2
λ

(
∂h

∂x
(x, t)

)2

+
√
Dξ(x, t), (1.2.1)

where λ, ν ∈ R, D > 0 are physical constant and ξ(x, t) is a Gaussian space-time white
noise, which is a distribution valued Gaussian field with correlation function

E [ξ(x, t)ξ(y, s)] = δ(t− s)δ(x− y). (1.2.2)

The equation contains, of course, the key features for KPZ membership, in fact the growth
is local and the time derivative of the height function depends on three factors: the
Laplacian, responsible for the smoothing mechanism, the square of the gradient, which
leads to rotationally invariant, slope dependent, growth speed, and the white noise (space-
time uncorrelated noise).

The presence of the non-linear term is justified by the fact that growth occurs locally
along the direction normal to the interface. To understand this, we consider the Eden
model, a model of cellular growth introduced by Eden [Ede61] in 1961. A finite connected
subset of Z2 grows by adding sites in its exterior boundary at rate 1. Since the growth is
normal to the surface h, when a particle is added, the projection of the increment on the
h axis is

δh =
√

(vδt)2 + (vδt∂xh)2

≈vδt+
v

2
δt(∂xh)2 + . . .

(1.2.3)

However, the KPZ equation has a problem of well-posedness. Because of the white
noise term the solution should have the same regularity as Brownian notion, whose derivate
has negative Hölder regularity, so the non-linearity has a priori no sense. The first question
that arises naturally is: what does it mean to solve the KPZ equation? Later, we will
see that the solutions can be written in terms of a classical well-posed stochastic partial
differential equation. On the other hand, since the solution of the equation should be
random, we are interested in the distribution of the solution and its dependence on the
initial data. In other words, we ask if there is a limiting growth velocity

v = lim
t→∞

h(x, t)

t
, (1.2.4)

what is the scale χ of the fluctuations under which we observe a non-trivial distribution
for large times

F (s) = lim
t→∞

P
(
h(x, t)− vt

tχ
≤ s
)
, s ∈ R, (1.2.5)

what is the order of transversal fluctuations tξ, and what is the exact form of this distri-
bution. A conjecture on the scaling exponents χ and ξ is that, although they may depend
on the dimension, they always satisfy the relation

2ξ = χ+ 1. (1.2.6)

This was formulated for two-dimensional systems in [KPZ86], but it is believed to hold
for any dimension [WK87,Kes93]. For a wider introduction to KPZ and exact solutions
to the KPZ equation, we refer the interested reader to [Qua11] and [Cor18].
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Rescaling the KPZ equation

We look for a scaling of the solution of (1.2.1) under which we expect to observe a non-
trivial behaviour on large space and time scales. Without loss of generality we can consider
the special case λ = ν = 1

2 and D = 1. We define the rescaled solution

hε(x, t) = εβh(ε−1x, ε−zt). (1.2.7)

Under this scaling,
∂th = εz−β∂th

ε,

∂xh = ε1−β∂xh
ε,

(∂xh)2 = ε2(1−β)(∂xh
ε)2,

ξ(x, t) = ε−(z+1/2)ξ(ε−1x, ε−2t)

(1.2.8)

in distribution. Plugging (1.2.7) in (1.2.1), we have

∂th
ε =

1

2
ε2−z∂2

xh
ε +

1

2
ε2−z−β(∂xh

ε)2 + εβ−
1
2
z+ 1

2 ξ. (1.2.9)

If we linearize the KPZ equation, we get

∂th = ν∂2
xh+

√
Dξ, (1.2.10)

which is solved by the Ornstein-Uhlenbeck process, a two-sided stationary Gaussian
Markov process. A two-sided Brownian motion is invariant not only for this process, but
also for (1.2.1), with the difference that, for the KPZ equation, it will be globally shifted
in height as time proceeds. The invariance of Brownian motion imposes the scaling

β = 1/2, (1.2.11)

and, to avoid divergence of the non-linear term, we have to take the dynamic scaling
exponent

z = 3/2. (1.2.12)

Thus, we observe non-trivial fluctuations at the scale

hε(x, t) = ε1/2h(ε−1x, ε−3/2t). (1.2.13)

The scaling β = 1/2 and z = 3/2 is called KPZ scaling.
A fundamental question regarding the KPZ class is whether there is an universal object

such that, under the KPZ scaling, all models converge to it. It is also natural to ask if
this object can be the KPZ equation. The answer to the second question is no. In fact,
the KPZ equation is not invariant under the KPZ scaling and it was predicted [FNS77,
BKS85,KPZ86] that, under the KPZ scaling, the KPZ equation should converge to some
non-trivial process, called the KPZ fixed point [MQR17].

However, the KPZ equation is fixed by other scalings, defined weak scalings: in ad-
dition to scale space, time and fluctuation, a tuning parameter, depending on ε, is intro-
duced. There are two weak scalings:

• Weak non-linearity scaling: take β = 1/2, z = 2 and multiply the non-linear term
by λε = ε1/2.

• Weak noise scaling: take β = 0, z = 2 and multiply the noise term by βε = ε1/2.
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KPZ fixed point

KPZ equation

ASEP

TASEP

LPP
PNG

Ballistic deposition

Directed polymers
β = 1/2, z = 3/2

β = 0, z = 2
β = 1/2, z = 2

Figure 1.3: Scalings for the KPZ equation. The KPZ equation is invariant under weak noise (in
blue) and weak non-linearity (in green) scaling, as it is supposed to converge (with other model
within the class) to the KPZ fixed point under the KPZ scaling (in red).

Solution to the KPZ equation

We said that Brownian motion is an invariant measure for the KPZ equation; moreover,
starting from any initial data, at any time, the solution will be locally Brownian. These
are the reason why the non-linear term makes no sense and needs a sort of “infinite
renormalization”,

∂th = −
[

1

2
(∂xh)2 −∞

]
+

1

2
∂2
xh+ ξ. (1.2.14)

An attempt to solve this problem was made in [Cha00], introducing a weak ordered version
of the non linearity, : (∂xh)2 :, but it led to non-physical solutions.

In 1997 L. Bertini and G. Giacomin [BG97] provided a physically relevant solution
(indeed, they proved that the equation is the scaling limit of a growth model), known as
the Cole-Hopf solution. They proposed that the solution of the KPZ equation is

h(x, t) = − log z(x, t), (1.2.15)

where z(x, t) is the solution of the stochastic heat equation (SHE)

∂tz(x, t) =
1

2
∂2
xz(x, t)− z(x, t)ξ(x, t) (1.2.16)

with initial data z(x, 0) = e−h(x,0). This equation is well-posed in the Îto sense and its
solution is strictly positive for t > 0, so taking the logarithm makes sense.

The Cole-Hopf transform of z is the solution to the equation (1.2.14), in the sense that
z is the ε → 0 limit of a sequence of approximating solutions zε to the stochastic heat
equation with smoothed noise

∂tzε =
1

2
∂2
xzε − zεξε, (1.2.17)

and hε = − log zε solves

∂thε = −
[

1

2
(∂xhε)

2 − Cε
]

+
1

2
∂2
xhε + ξε, (1.2.18)

where Cε is a divergent term.
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In [BG97] the Cole-Hopf solution was obtained by approximating the KPZ equation
by the height function of a weakly asymmetric exclusion process, but it can be also be
obtained by the free energy of directed random polymers (see Section 1.2.2).

It was Hairer [Hai13] to prove that (1.2.14) is well-posed. Using the theory of rough
paths [Gub04], he introduced a new concept of solution to the KPZ equation which extends
the classical Cole-Hopf solution, obtaining new regularity results about the solution and
its derivative with respect to the initial condition. Gonçalves and Jara [GJ14] introduced
the notion of energy solution of the equation, based on a martingale problem approach
to the stationary KPZ equation. Using a second-order Boltzmann-Gibbs principle (which
allows to replace local functionals of a conservative, one-dimensional stochastic process
by a function of the conserved quantity), they prove that the density fluctuations of a
one-dimensional, stationary, weakly asymmetric, conservative particle system converge to
the energy solutions of the stochastic Burgers equation and that the Cole-Hopf solution
is the energy solutions of the KPZ equation. Later, the concept of energy solution was
redefined by Gubinelli and Jara [GJ13], who gave a different definition of the generalized
martingale problem with a forward-backward decomposition of the drift. Uniqueness of
the energy solution was proved by Gubinelli and Perkowski [GP18]. More recently, they
also provided an alternative point of view on Hairer’s result, analyzing the KPZ equation
in the language of paracontrolled distributions [GP17].

1.2.2 Directed polymers in random environment

Using Feynman-Kac formula, the solution to the SHE (1.2.16) with initial condition z(x, 0)
can be written as

z(x, t) = Ex
[
e
´ t
0 ξ(b(s),s)dsz(b(0), 0)

]
, (1.2.19)

where Ex[·] is the expectation w.r.t. a standard Brownian motion b(s), 0 ≤ s ≤ t, with
b(t) = x. In the seminal paper [BG97], it was observed that, if we choose the initial
condition z(x, 0) = δx

1, then b(s), 0 ≤ s ≤ t, can be considered a directed polymer
starting at time 0 at 0 and ending at time t at x with (random) energy

ˆ t

0
ξ(b(s), s)ds, (1.2.20)

given by the sum over the potential ξ along the path b(s). Thus, it is possible to interpret
the solution to the SHE as the partition function of what is called a continuous directed
random polymer (CDRP). The free energy, i.e. the logarithm of the partition function, of
the CDRP corresponds to the Cole-Hopf solution of the KPZ equation.

Continuous directed random polymers represent a one-dimensional prototype of a
wider class of polymers, the directed polymers in random media (DPRM), introduced
by Huse and Henley [HH85] in the study of an Ising ferromagnet with randomly placed
impurities. The term “directed” is referred to the time direction, as the polymers are free
to move in the other d spatial directions. Formally, they are defined as follows [Com05].

1Using the Feynman-Kac formula for the SHE with initial data z(x, 0), it is possible to find a polymer
interpretation for other initial conditions beyond wedge (z(x, 0) = δx), corresponding to a point-to-point-
polymer. For example, flat initial condition (z(x, 0) = 1) corresponds to a point-to-line polymer, which
starts from a fixed point and ends at a fixed time without a fixed endpoint; stationary initial condition
(z(x, 0) = eB(x) with B(x) a two-sided Brownian motion) corresponds to a point-to-Brownian polymer,
which starts at a fixed point and ends at the first point (y, s) where it meets a random walk started at t.
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Consider a random environment ω = {ω(n, x), n ∈ N, x ∈ Zd}, a sequence of real-valued,
non-constant, i. i. d. random variables defined on a probability space (Ω,G,P) such that

P
(
eβω(n,x)

)
<∞ for all β ∈ R. (1.2.21)

Let (S = {Sn}n≥0, Px) be a simple random walk on Zd starting from x ∈ Zd. For any
n ≥ 0, the polymer measure is defined as the probability measure P β,ωn on the path space
(Ωtraj,F) by

P β,ωn (dx) =
1

Zn(ω, β)
eβHn(x)P (dx), (1.2.22)

where β > 0 is an inverse temperature and

Hn(x) = Hω
n (x) =

∑
1≤j≤n

ω(j, xj) (1.2.23)

is the energy of the path x in the random environment ω and

Zn = Zn(ω, β) = P

exp

β ∑
1≤j≤n

ω(j, Sj)

 (1.2.24)

is the normalizing constant. So, P β,ωn is the Gibbs measure with weights eβHn and partition
function Zn.

Directed polymers can be seen as a generalization of percolation models at positive
temperature. For fixed n, if we take the zero-temperature limit β → ∞, then, the free
energy 1

β lnZn(ω, β) converges to maxxHn(x), called last passage time, and the polymer
measure P β,ωn concentrates on the paths maximizing the energy. In this case, the term
“directed” must be intended as oriented, site percolation. The polymer measure interpo-
lates between the path measure for a standard simple random walk (β = 0) and geodesics
for last passage percolation (β = ∞). For a more substantial overview on last passage
percolation problems, see Chapter 2.

1.3 Integrable systems in the KPZ universality class

While the ballistic deposition and the Eden model cannot be investigated except with
simulation, there is a rich class of systems that can be studied with analytic and alge-
braic methods. We refer to these models as “solvable” or integrable. For an integrable
probabilistic system, it is possible to compute concise formulas for averages of a class of
observables. In this sense, De Moivre (1738) and Laplace (1816) considered the first inte-
grable system, studying the asymptotic distribution of a sum of i. i. d. random variables
for Bernoulli trials. Furthermore, taking limits of the system, observables and formulas,
it is possible to access detailed descriptions of universal classes. We will focus on a few
examples in the Kardar-Parisi-Zhang class in the case of one space dimension.

1.3.1 The corner growth model

Consider an interface modeled by a height function h(x, t), continuous, piecewise linear
and made of line increments of length

√
2 and slope ±1. The dynamics evolves as follows:

each local minimum turns into a local maximum after an exponentially distributed waiting



1.3. Integrable systems in the KPZ universality class 13

x x

Figure 1.4: Evolution of the height function. A local minimum can grow into a local maximum
after an exponential waiting time of parameter 1.

time of parameter 1, independently from each other (see Figure 1.4). This model is known
as the corner growth model.

Particularly interesting are the cases of two initial configurations: wedge initial condi-
tion, which means that h(x, 0) = |x|, and flat initial condition, which means that h(x, 0)
is a sawtooth function between 0 an 1.
For wedge initial condition, if we rescale time and space by a large parameter L, the
macroscopic limit shape is a parabola continued by two straight lines [Ros81].

hma(x, t) := lim
L→∞

h(Lx,Lt)

L
=

{
t1+(x/t)2

2 for |x| ≤ t,
|x| for |x| > t.

Fluctuations of the height function around the limit shape are universal in the following
sense. For ε > 0, define the rescaled height function

hε(x, t) := εβh(ε−1x, ε−zt)− ε−1t

2
, (1.3.1)

where z = 3/2 is the dynamic scaling exponent and b = 1/2 is the fluctuation exponent.
In [Joh00b] Johansson proved large time results for the rescaled height function: for fixed
t, as ε→ 0, hε(x, t) converges to a random variable, in particular,

lim
ε→∞

P(hε(x, 1) ≥ −21/3s) = FGUE(s), (1.3.2)

where the function FGUE is known as the GUE Tracy-Widom distribution, first dis-
covered in random matrices [TW94] (see Section 1.4).
For flat initial condition, the macroscopic shape is constantly equal to 1/2. Sasamoto
[Sas05] proved for this case a result analogous to (1.3.2) for the fluctuations around the
limit shape:

lim
ε→0

P (hε(x, 1) ≥ −s) = FGOE(2s), (1.3.3)

where FGOE is known as GOE Tracy-Widom distribution, first observed in the random
matrix context (see Section 1.4).

An interesting fact to observe is that, although the scaling exponent are invariant, the
limit distribution depends on the initial condition.

1.3.2 Directed polymers and Last Passage Percolation

Consider the above introduced model of growing interface starting from wedge initial
configuration. There is an alternative way to describe the evolution of the height function
with model of a randomly growing cluster B(t) that over time invades the entire first
quadrant of the plane N2, rotated by 45◦. Each point (i, j) ∈ N2 is assigned a weight
ωi,j , which is a non-negative random variable and represents the “waiting time” for the
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Figure 1.5: A simulation of the height function fluctuations starting from wedge initial condi-
tion [Fer]. The curve in red represents the limit shape (a parabola) while the piecewise linear line
represents the height function. Fluctuations live on the t1/3 scale and are correlated spatially in
the t2/3 scale.

local valley at (i, j) to become a local maximum, in other words, it is the time it takes
to occupy point (i, j), but only after its two neighbours to the left and below are either
occupied or lie outside N2. Once occupied, a point remains occupied: the growing cluster
can only add points. Such a model is called totally asymmetric.

The evolution is described in terms of the times when points join the interface. Let
Li,j for i, j ∈ N denote the time when the point (i, j) becomes occupied. Since a point
can be added only once the points (i − 1, j) and (i, j − 1) are in the cluster, Li,j must
satisfy the recursive relation

Li,j = Li−1,j ∨ Li,j−1 + ωi,j , for (i, j) ∈ N2. (1.3.4)

Iterating (1.3.4) backwards until we reach the corner (1, 1), we get the formula

Li,j = max
π:(1,1)→(i,j)

∑
(k,l)∈π

ωk,l, (1.3.5)

where π are all steps made of consecutive steps of (1, 0) or (0, 1). This model is called
directed last-passage percolation model: “directed” because of the restrictions on admissible
paths, “last-passage” because the occupation time Li,j is determined by the slowest path
to (i, j).

In terms of the last passage times, the growing cluster at time t is given by

B(t) = {(i, j) ∈ N2 : Li,j ≤ t}. (1.3.6)

When the weights ωi,j have exponential or geometric distribution, B(t) becomes a
Markov chain in the state space of possible finite clusters in N2. In the latter case, the
model degenerates in the following problem: we consider a (homogeneous) Poisson point
process with density 1 in R2

+ and look for the directed path that maximizes the number of
Poisson points. Baik, Deift and Johansson [BDJ99b] showed that the behaviour of these
models is typical of the KPZ class, using the connection of the corner growth model to a
combinatorial one, known as Ulam’s problem [Ula61]. Let SN be the permutation group
of {1, . . . , N}. For σ ∈ SN , we say that the sequence (σ(1), . . . , σ(N)) has an increasing
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subsequence of length k, (n1, . . . , nk) ⊂ (σ(1), . . . , σ(k)), if 1 ≤ n1 < n2 < · · · < nk ≤ N .
We denote with `N (σ) the length of the longest increasing subsequence for the permutation
σ. The Ulam’s problem studies the asymptotic law of LN for uniform distributions on SN .
In 1961 it was conjectured that E [`N ] ≈ c

√
N . Hammersley [Ham66] proved the existence

of c = limN→∞ E[`N ]/N , but only in 1968 the fact that the right value was c = 2 was
pointed out via numeric simulations [BB68]. The final proof that c = 2 was completed in
1977 by Vershik and Kerov [VK77]. In [BDJ99b] it was proved that the fluctuations of
the length of the longest increasing subsequence of a uniformly distributed permutation
σ of {1, . . . , n} are GUE Tracy-Widom distributed, i.e.

lim
n→∞

P
(
`n(σ)− 2

√
n

n1/6
≤ s
)

= FGUE(s). (1.3.7)

They studied a Poissonized version of the problem: instead of fixing the length of the
permutations to N , they assigned the probability e−NkN/N ! that a sequence is of length
k. The Poissonized Ulam’s problem is related to directed polymers on Poisson points.

For a more detailed and exhaustive description of last passage percolation models we
refer the reader to Chapter 2.

ij
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Figure 1.6: An example of last passage percolation with exponential weights.

1.3.3 Interacting particle systems: the Totally Asymmetric Simple Ex-
clusion Process

The last passage model can be related to a particle process on Z in discrete time, in the
case of geometric weights, or in continuos time, in the exponential case. This process is
called totally asymmetric simple exclusion process (TASEP).

TASEP is a Markov process that describes the motion of particles on the integer
lattice Z with the constraint that two particles cannot occupy the same site at the same
time (exclusion rule). We can label the particles from right to left and denote with
xi(t), i ∈ I ⊂ Z the position of the i-th particle at time t. Because of the constraint, the
ordering of particles is preserved: if initially

. . . < x2(0) < x1(0) < 0 ≤ x0(0) < x−1(0) < · · · ,

then, for all times t ≥ 0, also xn+1(t) < xn(t), n ∈ Z.
In discrete time particles evolve with the following rules. Let {xi(0)}i∈I be the initial

particles configuration. For each t ∈ N,

• if site xi(t) + 1 is occupied at time t, then xi(t+ 1) = xi(t);
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• if site xi(t) + 1 is vacant at time t, then

xi(t+ 1) =

{
xi(t) + 1 with probability p,
xi(t) with probability 1− p.

(1.3.8)

This defines a Markov process in discrete time, since particle positions at time t depend
only on the configuration at time t− 1 and all jumps occur independently.

To run the process in continuous time, we equip each particle with a “Poisson clock”,
a Poisson process with rate 1 on the positive real line: whenever the Poisson clock of a
particle “rings”, the particle attempts to jump to the right, compatibly with the exclusion
rule.

Now, we consider TASEP with “step” initial condition: at time 0 all particles are on
the left of the origin, occupying all negative integer sites, xi(0) = −i. In this case, the
particles determine a growing cluster in N2,

A(t) = {(i, j) ∈ N2 : 1 ≤ j ≤ xi(t) + i}, (1.3.9)

such that the height of the column above i is the number of steps taken by the particle i up
to time t, xi(t)−xi(0). Then, the processes A(t) and B(t), t ≥ 0 are equal in distribution.
This is true for both discrete time/geometric weights and continuous time/exponential
weights. For last passage percolation with geometric and exponential weights, ωi,j can be
interpreted as the waiting time of particle j to jump from site i− j − 1 to site i− j

1.3.4 The polynuclear growth model

The discrete polynuclear growth model (PNG) is a growth model with discrete space,
x ∈ Z, and discrete time, t ∈ Z+. The height function is integer-valued, h(x, t) ∈ Z for
any x ∈ Z, t ∈ Z+.

x

t
ij

Figure 1.7: Setting for the PNG model. Representation of the weights: a black dot is drawn on
sites where ω̃(x, t) 6= 0.

We consider the PNG model in the so-called “droplet” geometry, corresponding to the
wedge initial configuration for the corner growth model introduced in Section 1.3.1. Fix
the initial condition h(x, 0) = 0, for any x ∈ Z, and define the dynamics as

h(x, t+ 1) = max{h(x− 1, t), h(x, t), h(x+ 1, t)}+ ω̃(x, t+ 1), (1.3.10)

where ω̃(x, t) are independent random variables such that ω̃(x, t) = 0 if x − t is odd
or |x| > t. Then, ω̃(x, t) 6= 0 in the discrete lattice rotated by π/4 (see Figure 1.7).
We indicate the vertices with i = (x + t)/2 and j = (t − x)/2 and denote ω(i, j) =
ω̃(i − j, i + j − 1). In Figure 1.8 an example of the evolution of the PNG model is
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Figure 1.8: Evolution of the PNG model. The height function is represented with a continuous
line, but it is defined only on Z + 1

2 . In figure (a) the values of the random variables ω are
represented on the plane (i, j). From (b) to (e) the first three iterations of the height function:
we start from h(x, 0) = 0, then we add two “boxes” on the site 0, since ω(1, 1)=2; at the next
step we move all the points of the previous configuration of one step to the left and to the right,
corresponding to taking the maximum in (1.3.10), and we add a number of boxes on the sites 1,-1
indicated by the values of ω(1, 2), ω(2, 1), and so on. At the third step two “islands” meet and we
observe the formation of an overlap.

represented up to the first three steps2. In the case when ω(i, j) are geometric random
variables, i.e. P (ω(i, j) = k) = (1−aibj)(aibj)k, k ≥ 0, with ai, bj ∈ (0, 1), ∀i, j ∈ Z+, the

2In Figure 1.8 we can observe that until time t = 2 we can recover from the graph of the height
function the values of the ω(i, j)’s, but at time t = 3 this is no longer possible due to the overlap, that
makes lose the initial information. So, given {h(x, t), |x| ≤ t}, we cannot recover the values {ω(i, j)}:
even a nice measure on the ω(i, j) will not translate to a simple measure on {h(x, t), |x| ≤ t}. The answer
to the question about how to recover this information is to extend this model to a set of height functions
which are bijective with the ω(i, j)’s. To solve this problem Imamura and Sasamoto [IS05] introduced
the multilayer PNG model, which defines a 1:1 map between {h(x, t), |x| ≤ t} and {ω(x, t), |x| ≤ t}, by
keeping track of the overlaps during the evolution. This is defined as follows: let h1(x, t) := h(x, t) and
introduce a set of height functions {h`(x, t), x ∈ Z, t ∈ Z+, ` ≥ 1} with initial condition h`(x, 0) = −`+1,
for any x ∈ Z, ` ≥ 1. The dynamics of h1(x, t) is the same as in the discrete PNG, as for ` ≥ 2,
h`(x, t+1) = max {h`(x− 1, t), h`(x, t), h`(x+ 1, t)}+w`(x, t+1), where w`(x, t+1) is given by the overlap
on the site x at level `− 1. The lines {h`(x, t), x ∈ Z, t ∈ Z+, ` ≥ 1} are non-intersecting by construction.
They can be seen as the trajectories of fermions, particles which can not occupy simultaneously the same
position (state).
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model is integrable and is a generalization of a last passage percolation, which is recovered
for ai = bi =

√
q, q ∈ (0, 1) with the relation

h(x, t) = Lx+t
2
, t−x

2
, (1.3.11)

where L is defined in (1.3.5). In [Joh03] Johansson proved that the fluctuations of the
height function are governed by the GUE Tracy-Widom distribution: for τ ∈ [0, 1), we
define γ = (1− τ)/(1 + τ) and

µ(γ, q) =
1

1 + γ

(
(1−√qγ)2

1− q
− 1

)
,

σ(γ, q) =
q1/6γ−1/6

(1− q)(1 + γ)1/3

(
(
√
γ +
√
q)2/3(1 +

√
q)2/3

)
.

(1.3.12)

Then,
lim
t→∞

P
(
h(τt, t) ≤ µ(γ, q)t+ σ(γ, q)t1/3s

)
= FGUE(s). (1.3.13)

We can obtain a continuous version of the PNG taking the limit q → 0 with lattice
spacing √q. The dynamics is constructed from a space-time Poisson process of intensity 2
of nucleation events. At points of the Poisson process the height is increased by 1, creating
an adjacent pair of up-step and down-step. Up-steps move to the left with velocity −1,
down-steps move to the right with velocity +1 and steps disappear upon coalescence. As
for the discrete case, it was proved [PS00] that the fluctuations of the height function are
distrubuted according to the GUE Tracy-Widom distribution.

The polynuclear growth model on a flat substrate, i.e. h(x, 0) = 0, was firstly con-
sidered in [BR01c] and in [PS00], where it was shown that the one-point distribution is
the GOE Tracy-Widom distribution (see Section 1.4.2). In the attempt to study the joint
distribution of the full process with respect to x, Ferrari [Fer04] extended the connection
between the GOE Tracy-Widom distribution and the PNG model: he considered the mul-
tilayer PNG, which is a stack of non-intersecting lines, the top one being the PNG height,
and proved that the edge statistics of this point process is described by FGOE for large
times.

1.4 Random matrices

In Section 1.3.1 we introduced the distributions FGUE and FGOE and mentioned that they
were first observed in the context of random matrices. In this section we explain in which
framework they appear, introducing the classical Gaussian ensemble of random matrices.
The interested reader can refer to [AGZ10] or [Meh91] for standard books on random
matrices.

1.4.1 Gaussian Unitary Ensemble

The Gaussian Unitary Ensemble (GUE) of random matrices consists of Hermitian matrices
H of size n× n distributed according to the probability measure

pGUE(H)dH =
1

Zn
exp

(
− 1

2n
Tr(H2)

)
dH, (1.4.1)

where dH =
∏n
i=1 dHi,i

∏
1≤i<j≤n dRe(Hi,j)dIm(Hi,j) is the reference measure and Zn the

normalization constant. Or, equivalently, it consists of matrices with entries distributed
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according to complex gaussians, i.e. Hi,j ∼ N (0, n2 )+iN (0, n2 ), Hi,i ∼ N (0, n). Denote by
λGUE
n,max the largest eigenvalue of a n× n GUE matrix. Tracy and Widom [TW94] proved

that the asymptotic distribution of the (properly rescaled) largest eigenvalue is FGUE (see
Figure 1.9):

lim
n→∞

P

(
λGUE
n,max − 2n

n1/3
≤ s

)
= FGUE(s). (1.4.2)

The GUE Tracy-Widom distribution is given by

FGUE(s) = exp

(
−
ˆ ∞
s

(x− s)q2(x)dx

)
, (1.4.3)

where q is the unique solution of the Painlevé II equation q′′ = sq + 2q3 satisfying the
asymptotic condition q(s) ∼ Ai(s) for s→∞, with Ai(s) the Airy function

Ai(s) =
1

2π

ˆ ∞
−∞

dze
i(z−iw)3

3
−is(z−iw), (1.4.4)

where w > 0 is arbitrary. FGUE can also be written as Fredholm determinant of the Airy
operator (see Section 1.5.2). Consider the Airy kernel

A(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
, (1.4.5)

as an integral kernel on L2[s,∞). Then,

FGUE(s) = det(1−A)|L2[s,∞) =
∞∑
k=0

(−1)k

k!

ˆ
[s,∞)k

det(A(xi, xj))
k
i,j=1d

kx. (1.4.6)

GUE is invariant under unitary conjugation. If C ∈ Cn×n is unitary (i.e. CC? = I), then
C?HC has the same distribution as H. If we translate the invariance of the matrices into
space-time symmetries for physical system, this describes a system which is not invariant
with respect to time-inversion, e.g. in the presence of an external magnetic field.

-4 -2 2 4

0.1

0.2

0.3

0.4

Figure 1.9: The densities of the GUE Tracy–Widom distribution (in blue) and the GOE Tracy–
Widom distribution (in yellow).
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1.4.2 Gaussian Orthogonal Ensemble.

The Gaussian Orthogonal Ensemble (GOE) of random matrices consists of symmetric
matrices H of size n× n distributed according to the probability measure

pGOE(H)dH =
1

Zn
exp

(
− 1

4n
Tr(H2)

)
dH, (1.4.7)

where dH =
∏

1≤i<j≤n dHi,j is the reference measure and Zn the normalization constant.
Or, equivalently, of matrices with entries Hi,j ∼ N (0, n) and Hi,i ∼ N (0, 2n). Denote by
λGOE
n,max the largest eigenvalue of a n× n GOE matrix. The asymptotic distribution of the

(properly rescaled) largest eigenvalue is FGOE [TW96] (see Figure 1.9):

lim
n→∞

P

(
λGOE
n,max − 2n

n1/3
≤ s

)
= FGOE(s). (1.4.8)

The GOE Tracy-Widom distribution is defined as

FGOE(s) = exp

(
−1

2

ˆ ∞
s

q(x)dx

)
FGUE(s)1/2, (1.4.9)

with q as above. GOE is invariant under orthogonal conjugation. If C ∈ Rn×n is orthogo-
nal (i.e. CCT = I), then CTHC has the same distribution as H. This ensemble describes
systems which are invariant with respect to time-inversion and with integer total angular
momentum.

In [FS05] it was proved that the GOE Tracy-Widom distribution can be expressed
with a determinantal formula involving the Airy function. Let Bs be the operator with
kernel

Bs(x, y) = Ai(x+ y + s). (1.4.10)

Then,
FGOE(s) = det(1−Bs)L2(R+). (1.4.11)

FGOE can be also written as a Fredholm pfaffian [BBCS18] (see Section 1.5.3 for the
definition of Fredholm pfaffian)

FGOE(s) = pf(J −KGOE)L2(s,∞), (1.4.12)

where J =
(

0 1
−1 0

)
is the symplectic matrix and Cφa is the union of two semi-infinite rays

departing from a ∈ C with angles φ and −φ, oriented from a+ e−iφ to a+ e+iφ.
KGOE is the 2× 2 matrix valued kernel defined by

KGOE
11 (x, y) =

1

(2πi)2

ˆ
Cπ/31

dz

ˆ
Cπ/31

dw
z − w
z + w

ez
3/3+w3/3−xz−yw,

KGOE
12 (x, y) =−KGOE

21 (x, y) =
1

(2πi)2

ˆ
Cπ/31

dz

ˆ
Cπ/3−1/2

dw
w − z

2w(z + w)
ez

3/3+w3/3−xz−yw,

KGOE
22 (x, y) =

1

(2πi)2

ˆ
Cπ/31

dz

ˆ
Cπ/31

dw
z − w

4zw(z + w)
ez

3/3+w3/3−xz−yw

+
1

(2πi)2

ˆ
Cπ/31

dz

4z
ez

3/3−xz −
ˆ
Cπ/31

dz

4z
ez

3/3−yz − sgn(x− y)

4
.

(1.4.13)
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The joint distributions of the eigenvalues of these matrix ensembles are contained in
the following one-parameter family of densities:

f(λ1, . . . , λn) =
1

Zβ

∏
i<j

|λj − λi|βe−
β
4n

∑n
i=1 λ

2
i . (1.4.14)

For a given β > 0, the resulting distribution (on ordered n-tuples in R) is called Dyson’s
β-ensemble. For β = 1 one gets the eigenvalue density of GOE, for β = 2 the GUE.
The β = 4 case is also special: it is related another classical random matrix model, the
Gaussian Symplectic Ensemble (GSE), which can be defined using quaternions. This
is invariant under symplectic unitary transformation: if J =

(
0 1
−1 0

)
be the symplectic

matrix, then, JHJ−1 = H. This ensemble describes physical systems which are invariant
with respect to time-inversion and have half-integer total angular momentum.

The limit distribution of the largest eigenvalue of a n×n GSE matrix is also a Fredholm
pfaffian and is known as the GSE Tracy-Widom distribution FGSE.

1.5 Determinantal and Pfaffian processes

In the previous section we gave a description of the limit distributions of the rescaled
eigenvalues of Gaussian ensembles of random matrices in terms of Fredholm determinants
and pfaffians. Here we introduce these concepts to the reader, giving a brief overview on
determinantal and Pfaffian point processes.

1.5.1 On determinants and point processes

Consider a complete separable metric space Λ equipped with its Borel σ-algebra B(Λ).
Let Ω be the set of locally finite particle configurations: a point configuration x = (xi)i∈I ,
xi ∈ Λ, I ⊂ N is locally finite if, for every bounded set B ⊂ Λ, ξ(B) = #{xi ∈ B} < ∞.
Let F be the σ-algebra generated by the cylinder sets CBn = {ξ ∈ Ω | ξ(B) = n}, n ≥ 0,
B ⊂ Λ bounded, and let P be a probability measure on (Ω,Λ).

A point measure on Λ is a positive measure ν on (Λ,B(Λ)), which is a locally finite
sum of Dirac measures, i.e. ν =

∑
i∈I δxi , I ⊂ N, and for every bounded set B ⊂ Λ,

ν(1B) = #{xi ∈ B} <∞. Denote with Mp(Λ) the set of all positive measures on Λ and
withMp(Λ) the σ-algebra generated by the mappings fromMp(Λ) to N∪{∞}, ν 7→ ν(f),
when f spans B(Λ).

Definition 1.5.1. A point process η in Λ is a measurable mapping from (Ω,F ,P) to
(Mp(Λ),Mp(Λ)). The law of η is P ◦ η−1.

We say that η is a simple point process if P(η({x}) ≤ 1, ∀x ∈ Λ) = 1. Given a set
A ⊂ Λ, we denote the measure of the set as η(A) := η(1A). A point process is usually
described in terms of correlation functions. For any A1, . . . , An disjoint Borel sets of Λ,
define

Mn(A1, . . . , An) = E

[
n∏
i=1

η(1Ai)

]
. (1.5.1)

For generic A1, . . . , An ∈ B(Λ),

Mn(A1, . . . , An) = E

 ∑
(x1,...,xn)∈supp(η)

xi 6=xj ,∀i,j

n∏
i=1

1Ai(xi)

 . (1.5.2)
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If Mn is absolutely continuous with respect to a reference measure µ⊗n on Λ, i.e. if for
any A1, . . . , An ∈ B(Λ), there exists a function of the configuration ρ(n) such that

Mn(A1, . . . , An) =

ˆ
A1×···×An

dµ(x1) · · · dµ(xn)ρ(n)(x1, . . . , xn), (1.5.3)

then ρ(n) is called the n-point correlation function. It is immediate to see that ρ(n) is
symmetric in its arguments.

We often consider random point processes with fixed number of particles N , described
by a joint probability distribution PN (dx1, . . . , dxN ) symmetric with respect to permuta-
tions of the xi’s, In this case, the correlation measures assume a simplified form.

Proposition 1.5.2. Let PN be a symmetric density on ΛN w.r.t. µ⊗N , i.e. the probability
measure on ΛN is given by PN (x1, . . . , xN )dµ(x1) . . . dµ(xN ). Then,

ρ(n)(x1, . . . , xn)dµ(x1) · · · dµ(xn) =

{
N !

(N−n)!

´
ΛN PN (x1, . . . , xN )dµ(xn+1) . . . dµ(xN ), n ≤ N

0, n > N.

(1.5.4)

Correlation functions are particularly useful to characterize the measures of “empty
sets”. The distribution of a height function is often formulated in terms of a gap probability,
P(h0 ≤ a) = P(η(1(a,∞)) = 0), which is the probability that there are no particles above
a level a.

Proposition 1.5.3. Let B ∈ B(Λ). Then

P(η(1B) = 0) =
∑
n≥0

(−1)n

n!

ˆ
Bn
dµ(x1) · · · dµ(xn)ρ(n)(x1, . . . , xn). (1.5.5)

An important class of simple point processes are the determinantal point processes.

Definition 1.5.4. A point process in Λ is said to be determinantal if there exists a func-
tion K(x, y) on Λ× Λ such that the correlation functions (with respect to some reference
measure) are given by the determinantal formula

ρ(n)(x1, . . . , xn) = det [K(xi, xj)]1≤i,j≤n (1.5.6)

for n = 1, 2, . . . . The function K is called correlation kernel and is the kernel of an
integral operator K : L2(Λ, dµ)→ L2(Λ, dµ).

This means that

ρ(1)(x) = K(x, x),

ρ(2)(x1, x2) = det

[
K(x1, x1) K(x1, x2)
K(x2, x1) K(x2, x2)

]
,

. . .

The correlation kernel is a single function of two variables while the correlation func-
tions form an infinite sequence of functions of growing number of variables. Thus, if a
point process happens to be determinantal, it can be described by a substantially reduced
amount of data. As a consequence of Proposition 1.5.3, we can express the gap probability
of a set as follows.
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Proposition 1.5.5. Let B ∈ B(Λ). For a determinantal point process with correlation
kernel K(x, y),

P(η(1B) = 0) =
∑
n≥0

(−1)n

n!

ˆ
Bn
dµ(x1) · · · dµ(xn) det [K(xi, xj)]1≤i,j≤n

=: det [1−K]L2(B,dµ) .

(1.5.7)

The determinant defined in (1.5.7) is called Fredholm determinant of the operator K
on the space L2(B, dµ).
Notice that the correlation kernel is not unique, indeed the process is invariant for gauge
transformations of the kernel of the form

K(x, y) 7→ f(x)

f(y)
K(x, y) (1.5.8)

for non-vanishing f : Λ→ C.

1.5.2 Fredholm determinants

The theory of Fredholm determinants started with the study of the integral equation

(1 +K)u = f, (1.5.9)

where K is the integral operator Kf(x) =
´
Y K(x, y)f(y)dy mapping functions on Y to

functions on X, with X,Y compact metric spaces. If K : [0, 1]2 → C is continuous and
f ∈ C[0, 1], by Riesz’ theorem, the equation

u(x) +

ˆ 1

0
K(x, y)u(y)dy = f(x) (1.5.10)

admits solutions on C[0, 1] iff the integral operator K is injective on the space. Fred-
holm’s idea to solve the equation was to take advantage of linear algebra discretizing the
integral equation, and then take the limit. This introduced the object known as Fredholm
determinant, which determines whether the given integral equation is solvable. Here we
discuss Fredholm determinants for operators on Hilbert spaces and state the fundamental
properties. For a more detailed discussion we refer to [Sim00].

Let H be a separable Hilbert space on C. Let T be a compact operator on H and
T ? its adjoint. Then, T ?T is a non-negative self-adjoint operator and both T ?T and
A =

√
T ?T are compact operators with non-negative eigenvalues. The singular values of

T are the positive eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0 of A, counting with multiplicity. We say
that T is a trace class operator if the sum of its singular values is finite (counting with
multiplicity). In this case, the trace norm of T is defined as the sum of its singular values,

‖T‖tr =
∑
i

λi. (1.5.11)

For a trace class operator T the following properties hold:

i. Let T ? denote the adjoint of T . Then, ‖T‖tr = ‖T ?‖tr;

ii. For any bounded operator B on H, BT and TB are trace class. Moreover

‖TB‖tr ≤ ‖T‖HS‖B‖HS,

‖TB‖tr ≤ ‖T‖tr‖B‖op,
(1.5.12)

where ‖ · ‖op is the operator norm and ‖ · ‖HS is the Hilbert-Schimdt norm.
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iii. ‖T1 + T2‖tr ≤ ‖T1‖tr + ‖T2‖tr.

Moreover, one can prove the following equivalent characterization of the trace norm.

Proposition 1.5.6. For any trace class operator T ,

‖T‖tr = sup
fn,en

∑
n

|〈Tfn, en〉|, (1.5.13)

where {fn} and {en} are orthonormal bases of H.

Given a trace class operator, one can define the linear functional

Tr(T ) =
∑
n

〈Tfn, fn〉, (1.5.14)

where {fn} is an orthonormal basis of H. This is called the trace of T . Lidskii’s trace
formula says that, if T is a trace class operator on a separable Hilbert space, then

Tr(T ) =
∑
i

λi, (1.5.15)

where λi are the eigenvalues of T . Since T is compact, it has a countable set of nonzero
eigenvalues.

Now we define an inner product on Hk by

〈(w1, . . . , wk), (v1, . . . , vk)〉 = det(〈wi, vj〉)i,j . (1.5.16)

Then, T extends to a trace class operator Tk on Hk, defined by Tk(w1, . . . , wk) =
(Tw1, . . . , Twk). Thus, we can define

det(1 + T ) =
∑
k≥0

Tr(Tk). (1.5.17)

This is known as the Fredholm determinant of T . It can be shown that

det(1 + T ) =
∏
i

(1 + λi), (1.5.18)

where λi are the eigenvalues of T . Moreover, it satisfies the following properties:

i. | det(1 + T1)− det(1 + T2)| ≤ ‖T1 − T2‖tr exp(‖T1‖tr + ‖T2‖tr + 1);

ii. det(1 + T1 + T2 + T1T2) = det(1 + T1) det(1 + T2);

iii. det(1 + T1T2) = det(1 + T2T1),

for any T1, T2 trace class operators. In this context, we deal with integral operators.
We say that T is an integral operator on the space L2(X), if there exists a function
K : X ×X → R such that

(Tf)(x) =

ˆ
X
K(x, y)f(y)dy. (1.5.19)

We callK the integral kernel. The Hilbert-Schmidt norm of an integral operator is defined
as

‖T‖2HS =

ˆ
X×X

|K(x, y)|2dxdy. (1.5.20)

The Fredholm determinant of T is given by

det(1 + T )L2(X) =
∑
n≥0

1

n!

ˆ
Xn

dx1 . . . dxn det
1≤i,j≤n

[K(xi, xj)]. (1.5.21)
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1.5.3 On Pfaffian processes

Given an anti-symmetric 2n× 2n matrix (ai,j), its pfaffian is defined as:

pf
i<j

ai,j =
1

2nn!

∑
σ∈S2n

sgn(σ)aσ(1),σ(2)aσ(3),σ(4) · · · aσ(2n−1),σ(2n) (1.5.22)

where S2n is the permutation group on 2n letters and we write pfi<j to emphasize the
fact that our matrices are skew-symmetric (and thus determined entirely by the upper
triangular part). One can show that(

pf
i<j

ai,j

)2

= det
i,j
ai,j . (1.5.23)

Suppose that one has a 2× 2 anti-symmetric matrix kernel K(x, y), i.e. K is a 2× 2
matrix function of (x, y) satisfying K(x, y) = −Kt(y, x) with t denoting transposition.
Notice the interchange of x and y. Given such a kernel and points x1, . . . , xn, one can
define a 2n × 2n anti-symmetric matrix K(n) block-wise as follows: its 2 × 2 block (i, j)
for 1 ≤ i, j ≤ n is given by the matrix K(xi, xj). Because K(x, y) = −Kt(y, x), K(n) thus
defined is even-dimensional anti-symmetric and its pfaffian well-defined.

A point process (measure)3 on a configuration space X is called Pfaffian with 2 × 2
matrix correlation kernel K if there exists a 2×2 matrix K satisfying K(x, y) = −Kt(y, x)
such that, for all n ≥ 1, the n-point correlation functions ρ(n)(x1, x2, . . . , xn) := P(S :
x1 ∈ S, . . . , xn ∈ S) of the process are pfaffians of the associated 2n× 2n matrix K(n):

ρ(n)(x1, x2, . . . , xn) = pf
i<j

K(n)(xi, xj). (1.5.24)

A simple observation says that if this is the case, the one-point function is the K12 entry:
P(S : x ∈ S) = ρ1(x) = K12(x, x).

Given a 2 × 2 anti-symmetric matrix kernel K defined on a configuration space X
equipped with a measure dx, the Fredholm pfaffian of K restricted to the subspace Y ⊂ X
is defined as

pf(J + λK)L2(Y ) :=

∞∑
n=0

λn

n!

ˆ
Y n

pf
i<j

K(n)(xi, xj)

n∏
i=1

dxi. (1.5.25)

Here J is the anti-symmetric matrix kernel J(x, y) = δx,y
(

0 1
−1 0

)
, but as is oftentimes

the case in the literature, this technicality is overlooked and we think of J just as the
corresponding 2× 2 matrix.

Technically speaking, the Fredholm pfaffian pf(J + λK)L2(Y ) is finite whenever K (or
rather its entries) is a (are) trace-class operator(s) on L2(Y ). Moreover, Fredholm pfaffians
are defined up to conjugation, in the following sense. Suppose K̃ is the anti-symmetric
matrix kernel

K̃(x, y) :=
(
ef(x) 0

0 e−f(x)

)
K(x, y)

(
ef(y) 0

0 e−f(y)

)
(1.5.26)

for a dx-measurable function f . Then it is not hard to check that pfi<jK
(n)(xi, xj) =

pfi<j K̃
(n)(xi, xj) and so pf(J + λK)L2(Y ) = pf(J + λK̃)L2(Y ) whenever both are defined.

Importantly, we can use this to define pf(J+λK)L2(Y ) even ifK is not trace-class provided
we find an appropriate f which makes K̃ trace-class.

3For more on point processes in general and determinantal ones in particular, see e.g. [Joh06]
or [BOO00]
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Owing to identity (1.5.23), we have the following relation between Fredholm pfaffians
with 2× 2 matrix kernels K and block Fredholm determinants with related kernel J−1K:

pf(J + λK)2
L2(Y ) = det(1 + λJ−1K)L2(Y ) (1.5.27)

The Fredholm determinant on the right hand side is defined in (1.5.21).
Finally, for any two bounded operators A : L2(Y ) → L2(Z), B : L2(Z) → L2(Y ) we

have
pf(J + λJAB)L2(Z) = pf(J + λJBA)L2(Y ), (1.5.28)

whenever both sides are defined. We note that oftentimes AB is infinite dimensional,
while BA is finite dimensional. This fact is immediately implied by the corresponding
Fredholm determinant identity det(1 + λAB)L2(Z) = det(1 + λBA)L2(Y ) and (1.5.27).

For more on pfaffians, the reader is referred to the the Appendix of [OQR17] for the
analytic side and to [Ste90] for the algebraic and combinatorial ones.



Chapter 2

Last Passage Percolation models

In 1957 [BH57] Broadbent and Hammersley gave a mathematical formulation of per-
colation theory, analyzing the influence of the random properties of a medium on the
percolation of a fluid passing through it. Their work led to the study of first passage
percolation problems. First passage percolation is now one of the most classical areas
in probability theory, but it was introduced in 1965 by Morgan and Welsh, who consid-
ered a two-dimensional Poisson growth process. The following year Hammersley [Ham66]
generalized their setting, considering a generic distribution function.

First passage percolation theory considers the following problem. Let G be a con-
nected graph. Let {t(e)}e∈G be non-negative independent, identically distributed random
variables, placed at each nearest-neighbour edge e of the graph G. The random variable
t(e) is called passage time of the edge e and is interpreted as the time or the cost needed
to traverse the edge e. Since each edge in first passage percolation has an independent
weight, we can write the total time of a path γ on G as the summation of weights of each
edge in the path,

T (γ) =
∑
e∈γ

t(e). (2.0.1)

Given two vertices x, y ∈ G, the first passage time is defined as the shortest time of travel
between x and y,

T (x, y) = min
γ∈G
γ:x→y

T (γ). (2.0.2)

It was conjectured that the fluctuation exponent χ (which gives the order of the length
fluctuations of the first passage time around its mean) and the wandering exponent ξ
(which quantifies the magnitude of the maximal deviation of the minimizing path between
two vertices from the straight line connecting the vertices) satisfy the KPZ relation 2ξ =
χ + 1. This result was rigorously proved by Chatterjee [Cha13] for a general version of
this model on Zd under assumptions on the weights and the existence of the exponents.

It was Rost [Ros81] to connect for the first time a corner growth model to a simple
exclusion jump process on Z studying its limit density profile. Even if he did not use this
formulation to prove his results, he was the first one to give a geometric interpretation
of the profile as the asymptotic shape of a subset of R2

+. This opened the way to an
extensive study of last passage percolation problems.

Last passage percolation is the counterpart of the first passage percolation, where we
take the max instead of the min and it is defined as follows. Let {ωi,j}(i,j)∈Z2 be non-
negative, independent random variables. Let L, E be disjoint subsets of Z2. An up-right
path π = (π(0), π(1), . . . , π(n)) on Z2 between L and E is a sequence of points in Z2 with

27
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π(k + 1) − π(k) ∈ {(0, 1), (1, 0)} and π(0) ∈ L and π(n) ∈ E . The number of points n is
called the length `(π) of π. We define the last passage time from L to E as

LL→E = max
π:A→E
A∈L,E∈E

∑
1≤k≤`(π)

ωπ(k). (2.0.3)

We denote by πmax
L→E any maximizer of the last passage time LL→E . For continuous random

variables, the maximizer is a.s. unique.
Here we presented the most general case, where L and E are two sets of points. If

L and E are both lines, we speak of “line-to-line” problem; if L and E are points, we
speak of “point-to-point” problem; if L is line and E a point (or viceversa), we speak of
“line-to-point” (or point-to-line) problem (see Figure 2.1). We denote with L(k,`)→(m,n)

the point-to-point last passage time between (k, `) and (m,n), but for the special case
(k, `) = (1, 1), we use the notation L(m,n).

E

L

L

E

Figure 2.1: An example of point-to-point and line-to-point last passage percolation.

2.1 LPP as a queuing model

Consider a series of m single-server queues and n customers visiting the servers in order
and then leaving the system. The queues follow the first-in-first-out (FIFO) discipline: at
each server one customer at a time is served in the order of arrival and, if there are no
customers waiting to be served, the server rests.

Let X(n, k) be the service time of customer n at queue k and let G(n, k) be the time
at which customer n finishes service at queue k. Before customer n starts the service at
queue k, customer n must complete the service at queue k − 1 and customer n− 1 must
complete service at queue k; thus, the time at which customer n is served at queue k is
max{G(n, k − 1), G(n− 1, k)} and

G(n, k) = X(n, k) + max{G(n, k − 1), G(n− 1, k)}. (2.1.1)

If we start from the situation where all the customers are waiting at queue 0, and at
time 0 customer 0 moves to queue 1, then, using induction on (2.1.1), we have that
G(n, k) = L(n,k). Indeed, a directed path to (n, k) is the union of a directed path to
(n, k− 1) or to (n− 1, k). This give a correspondence between queues in tandem and last
passage percolation, first observed by [Mut79].

If X(n, k) are i. i. d. exponential random variables, then the queueing system evolves
as a Markov process. This is known in queueing theory as M/M/1 queues, where the
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two M ’s describes the Markov (or memoryless) property of the distribution of durations
between each arrival to the queue and of the distribution of service times for jobs, and
1 is the number of servers at the node. In this case, there is a correspondence with a
particle exclusion process, the totally asymmetric simple exclusion process (TASEP) in
continuous time. In TASEP, particles on Z try to jump to the neighbouring right site
after an exponential waiting time of rate 1; a jump succeeds only if the right site is empty.
If we label the particles from right to left and the holes from left to right, particles play
the role of servers, the holes between particle k and k − 1 the role of customers in the
queue of server k, and G(n, k) is the time at which the particle n occupies the hole k.

2.2 LPP as an interacting particle system: TASEP

Here we explain the connection between LPP and TASEP, mentioned in Section 1.3.3.
TASEP is an interacting particle system on Z with state space Ω = {0, 1}Z. For a
configuration η ∈ Ω, η = {ηj , j ∈ Z}, ηj is the occupation variable at site j, and ηj = 1
if and only if j is occupied by a particle. TASEP is a Markov process with generator L
given by [Lig99]

Lf(η) =
∑
j∈Z

ηj(1− ηj+1)
(
f(ηj,j+1)− f(η)

)
, (2.2.1)

where f are local functions (depending only on finitely many sites) and ηj,j+1 denotes the
configuration η with the occupations at sites j and j + 1 interchanged,

ηj,j+1(z) =


η(z) if z 6= j, j + 1,

η(j + 1) if z = j,

η(j) if z = j + 1.

(2.2.2)

TASEP can be also described as a growth process by introducing the height function
h(j, t) as

h(j, t) =


2J(t) +

∑j
i=1(1− 2ηi(t)) for j ≥ 1,

2J(t) for j = 0,

2J(t)−
∑0

i=j+1(1− 2ηi(t)) for j ≤ −1,

(2.2.3)

for j ∈ Z, t ≥ 0, where J(t) is the current on the bond 0-1, the number of jumps from
site 0 to site 1 during the time-span [0, t].

Denote with xk(t) the position of the k-th particle at time t, with particles labeled
from right to left (if there is a left- or rightmost particles, k runs over an interval of
Z). Consider TASEP in continuous time with initial configuration {xk(0), k ∈ Z}. The
j-th particle attempts to jump after an exponential waiting time of parameter µj . Now,
consider a line-to-point last passage percolation from

L = {(k + xk(0), k), k ∈ Z} (2.2.4)

to (m,n), and choose weights
ωi,j ∼ exp(µj). (2.2.5)

Then, the following relation between TASEP and LPP holds:

P(LL→(m,n) ≤ t) = P(xn(t) ≥ m− n). (2.2.6)
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This correspondence can be expressed also with the height function, as follows.

P(LL→(m,n) ≤ t) = P(h(m− n, t) ≥ m+ n). (2.2.7)

Throughout this work, we consider always the case µj = 1.

2.3 Point-to-point LPP

Now we consider point-to-point last passage percolation with i. i. d. weights. As we ex-
plained in the previous chapter, it is one of the possible description of growth models, like
the corner growth model, introduced in Section 1.3.1, or the polynuclear growth model
in the droplet geometry, introduced in Section 1.3.4. It is also related to the interacting
particle system {ηx}x∈Z on Z called TASEP (see Sections 1.3.3 and 2.2) starting from
step initial condition, when all the particles are on the left of the origin at time 0, i.e.
ηx(0) = 1 for x ≤ 0 and ηx(0) = 0 for x > 0; in terms of height function, this translate to
h(x, 0) = |x| (see Figure 2.2).

Figure 2.2: Height function for TASEP with step initial condition.

We are interested in understanding the deterministic limit on large scales for this
model. Thus, we analyze the behaviour of the random variables L(m,n) for large values of
m and n. The first result is a law of large number.

Theorem 2.3.1 (Theorem 2.1 in [Sep09]). Consider the point-to-point LPP model with
i. i. d. weights {ωi,j , i, j ≥ 1}. Then, there exists a deterministic function Ψ : (0,∞)2 →
[0,∞] such that, for all (x, y) ∈ (0,∞)2,

Ψ(x, y) = lim
N→∞

1

N
L(bNxc,bNyc) a.s. (2.3.1)

Either Ψ =∞ or Ψ <∞ on all (0,∞)2. In the latter case, Ψ is continuous, superadditive,
i.e. for (x1, y1), (x2, y2) ∈ (0,∞)2,

Ψ(x1, y1) + Ψ(x2, y2) ≤ Ψ(x1 + x2, y1 + y2), (2.3.2)

concave, i.e. for s ∈ (0, 1)

sΨ(x1, y1) + (1− s)Ψ(x2, y2) ≤ Ψ(s(x1, y1) + (1− s)(x2, y2)), (2.3.3)

homogeneous, i.e. for c > 0, Ψ(cx, cy) = cΨ(x, y), and symmetric, i.e. Ψ(x, y) = Ψ(y, x).
Moreover, Ψ in non-decreasing in both arguments and Ψ(x+ h, y) ≥ Ψ(x, y) + hE[ω1,1].

Using the subadditivity of the last passage time

L(nx,ny) ≥ L(mx,my) + L(mx,my)→(nx,ny), m < n, (2.3.4)
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the existence of the limit shape is ensured by Liggett’s subadditive ergodic theorem
[Lig8511] (in a modified version).

This theorem says that asymptotically L(bnxc,bnyc) grows linearly in n. However, we
are interested in computing the limit shape explicitly. This turns out to be possible only
for special cases, when the weights ω are geometric or exponential random variables.

In the former case, given a parameter p ∈ (0, 1), the weights have probability distri-
bution given by

P(ω1,1 = k) = p(1− p)k, k ∈ Z+. (2.3.5)

The law of large number was proved by Johansson [Joh00a].

Theorem 2.3.2. Consider the point-to-point last passage percolation Lgeom with weights
geometrically distributed of parameter p. Then, for (x, y) ∈ (0,∞)2,

Ψ(x, y) = p−1
(

(1− p)x+ (1− p)y +
√

(1− p)xy
)
. (2.3.6)

This says that the boundary curve of the limit shape is an arc of a circonference
tangent to the x- and y-axis at the points (1 − p, 0) and (0, 1 − p). The limit for the
geometric case satisfies

Ψ(x, y) = µ(x+ y) + 2
√
σ2xy, (2.3.7)

where µ = E[ω1,1] and σ2 = Var[ω1,1] are the mean and the variance of the weights
distribution. Johansson considered a slightly different version of the model, defining the
random variable

L?(m,n) = max
π:(1,1)→(m,n)

∑
(i,j)∈π

ω?i,j , (2.3.8)

where ω?i,j = ωi,j + 1 so that P(ω?i,j = k) = p(1− p)k−1, k ≥ 1. It holds

L?(m,n) = Lgeom
(m,n) +m+ n− 1, (2.3.9)

since all paths have the same length. Using this random variable, he could define, for each
t ≥ 0, a random subset of the first quadrant by

A(t) = {(m,n) ∈ Z2
+ : L?(m,n) ≤ t}+ [−1, 0]2. (2.3.10)

Then, he proved that A(t)
t has an asymptotic shape A0 as t → ∞, in the sense that, for

any ε > 0,

(1− ε)A0 ⊆
1

t
A(t) ⊆ (1 + ε)A0 (2.3.11)

for all sufficiently large t.
For the latter case, Rost [Ros81] proved an analogous statement.

Theorem 2.3.3. Consider the point-to-point last passage percolation Lexp with weights
exponentially distributed of parameter 1. Then, for (x, y) ∈ (0,∞)2,

Ψ(x, y) =
(√
x+
√
y
)2
. (2.3.12)

In [Joh00a] Johansson proved also a result about the fluctuations of A(t) around its
asymptotic shape A0, i.e. the fluctuations of L

geom
(bnxc,bnyc) around nΨ(x, y). Fix a parameter

0 < p < 1 and q = 1 − p. Theorem 2.3.2 gives an explicit formula for the limit shape of
Lgeom

(bnwc,n)
, given by

Ψ(w, 1) = p−1(qw + q + 2
√
qw). (2.3.13)

Then, set
σ = p−1q1/6w−1/6(

√
w +
√
q)2/3(

√
wq + 1)2/3. (2.3.14)
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Theorem 2.3.4 (Theorem 1.2 of [Joh00a]). For w ≥ 1 and s ∈ R

lim
n→∞

P

(
Lgeom

(bnwc,n)
− nΨ(w, 1)

σn1/3
≤ s

)
= FGUE(s). (2.3.15)

FGUE is the GUE Tracy-Widom distribution [TW94], the distribution function of the
appropriately scaled largest eigenvalue of an n × n random matrix from the Gaussian
Unitary Ensemble (GUE) in the limit n→∞ (see Section 1.4.1).

Johansson also pointed out the connection of A(t) with a particle system {xk(t),
k ∈ Z}, the totally asymmetric simple exclusion process with step initial condition, i.e.
with starting configuration xk(0) = 1(−∞,0](0). Here xk(t) = 1 means that there is a
particle at k, as xk(t) = 0 means that there is no particle at k. The stochastic growth
of A(t) corresponds to the following stochastic dynamics of the particle system. At time
t each particle independently moves to the right-neighbouring site with probability p,
provided there is no particle, otherwise it does not move. In this particle model L?(m,n) = k

means that the particle initially at position −(n− 1) has moved m steps at time k. This
simple exclusion process is exactly the one considered by Rost [Ros81]. So, taking the limit
p → 1, it is possible to obtain the fluctuations of the last passage time with exponential
weights1.

Theorem 2.3.5 (Theorem 1.6 of [Joh00a]). Consider the point-to-point LPP with weights
exponentially distributed of parameter 1. Assume an = O(n1/3) as n→∞ and choose dn
so that dn − (1 + 1/

√
w)an = o(n1/3) as n→∞. Then, for each w ≥ 1,

lim
n→∞

P

(
Lexp

(wn+an,n) − (1 +
√
w)2n

w−1/6(1 +
√
w)4/3n1/3

≤ s

)
= FGUE(s). (2.3.16)

From now on, we will consider only the last passage percolation with exponential
weights and we will omit the apex “exp”.

Given the law of large numbers for the LPP from the origin to (wn, n), as in Theo-
rem 2.3.3, we can define a rescaled last passage time under the KPZ scaling, considering
ending points at distance of order O(n2/3) from the characteristic line, given by the line
with direction (w, 1),

Lresc
n (u) =

L(wn+β1un2/3,n) − n
(

1 +
√
w + β1un−1/3

)2

β2n1/3
. (2.3.17)

Thus, we have a process u 7→ Lresc
n (u). With the choice β1 = 2(1 +

√
w)2/3w2/3, we

obtain the convergence in distribution to a GUE Tracy-Widom random variable, as in
Theorem 2.3.5. If we choose β2 = (1 +

√
w)4/3w−1/6, then,

lim
n→∞

Lresc
n (u) = A2(u)− u2, (2.3.18)

in the sense of finite-dimensional distribution. The process A2 is the Airy2 process (see
Section 2.3.1).

Last passage percolation is linked to the ensemble of complex Gaussian sample co-
variance matrices [BBP06]. Given π1, . . . , πn positive numbers, if the weights ωi,j are

1If X` is a random variable geometrically distributed with parameter 1 − 1/`, then, as ` → ∞, X`/`
converges in distribution to an exponential random variable with parameter 1.
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exponential random variables of mean 1
πim

, then L(m,n) has the same distribution of the
complex Gaussian sample covariance matrix of m sample vectors of n variables, where
the πi’s are the inverse of the eigenvalues of the covariance matrix of the Gaussian sample
vectors. Using this connection and estimates on the kernel of the Fredholm determinant
of the distribution of the matrix ensemble (Proposition 3.1 of [BBP06]), one can prove
that the upper tail of the distribution of the rescaled LPP has an exponential decay, more
precisely, there exist constants s0, n0 and C, c uniform in n such that

P(Lresc
n ≥ s) ≤ Ce−cs, (2.3.19)

for all n ≥ n0 and s ≥ s0. An estimate on the lower tail was found in [BFP14]; in
particular, there exist constants s0, n0 and C, c uniform in n such that

P(Lresc
n < s) ≤ Ce−c|s|3/2 , (2.3.20)

for all n ≥ n0 and s ≤ −s0.
Beyond the one-point distribution, it is object of wide interest the correlation in time,

Cov(L(n,n), L(τn,τn)) = E[L(n,n)L(τn,τn)]− E[L(n,n)]E[L(τn,τn)], (2.3.21)

for 0 ≤ τ ≤ 1, but less results are available on this. Johansson [Joh16] obtained the long
time asymptotics for the joint distribution of point-to-point semi-discrete directed poly-
mers. In [Tak12, Tak13, TS10], the authors measured the temporal correlation function
in a turbulent liquid crystal (here expressed in terms of height function) and determined
that, for large n and τ � 1,

lim
n→∞

Cov(L(n,n), L(τn,τn)) = Θ(τ2/3). (2.3.22)

A conjecture on the behaviour of the correlation for large time has also been made by
Ferrari and Spohn [FS16] on the basis of heuristic arguments and numerical simulations.
They obtained the power laws of the covariance for short and large time differences: for
τ → 0, consistently with Takeuchi’s experiments, limn→∞Cov(L(n,n), L(τn,τn)) = Θ(τ2/3),
as for τ → 1, they observed at first approximation the variance of the stationary process
with a correction of order O(1 − τ). The strategy is the following. They decompose the
LPP from the origin to (n, n) in the sum of two independent LPPs, the first ending in
I(u) = (τn, τn) + u(2n)2/3u(1,−1), the second starting from I(u) and ending in (n, n).
We know that, as n→∞,

L(0,0)→(τn,τn) − 4τn

24/3n1/3
≈τ1/3A2(0),

L(0,0)→I(u) − 4τn

24/3n1/3
≈τ1/3[A2(u)− u2],

LI(u)→(n,n) − 4(1− τ)n

24/3n1/3
≈(1− τ)1/3

[
Ã2

(
u
(

τ
1−τ

)2/3
)
−
(
u
(

τ
1−τ

)2/3
)2
]
,

(2.3.23)

where A2 and Ã2 are independent Airy2 processes. Then, using the relation

L(0,0)→(n,n) = max
u∈R
{L(0,0)→I(u) + LI(u)→(n,n)}, (2.3.24)

one has

lim
n→∞

Lresc
n (0) = max

u∈R

{
A2(u)− u2 −

(
1−τ
τ

)1/3 Ã2

(
u
(

τ
1−τ

)2/3
)}

. (2.3.25)
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To give an estimate on the behaviour of the covariance, they use the fact that the Airy2

process converges to Brownian motion, in the sense that, as τ → 0,(
1−τ
τ

)1/3 [Astat

((
τ

1−τ

)2/3
u

)
−Astat(0)

]
≈
√

2B(u), (2.3.26)

where B is a standard Brownian motion. Therefore, as τ → 0, the covariance of the limit
processes becomes

τ2/3 Cov

(
A2(0),max

u∈R

{
A2(u)− u2 +

√
2B(u)

}
+
(

1−τ
τ

)1/3 Ã2(0)

)
=τ2/3 Cov

(
A2(0),max

u∈R

{
A2(u)− u2 +

√
2B(u)

})
,

(2.3.27)

since A2 and Ã2 are independent. Finally, they rewrite the covariance as the expectation
of the conditional expectation with respect to the Brownian motion B and they conclude
the Θ(τ2/3) behaviour, since for typical realizations of B, the maximum is attained for
u = Θ(1).

When τ → 1, by the symmetry of the point-to-point LPP, the maximum is attained

for u = Θ((1− τ)2/3). Therefore, they set v =
(

τ
1−τ

)2/3
u so that

lim
n→∞

Lresc
(0,0)→(n,n) = (1− τ)1/3 max

v∈R

{(
τ

1−τ

)1/3
A2

(
v
(

1−τ
τ

)2/3)− v2 1−τ
τ + Ã2(v)− v2

}
.

(2.3.28)
Using the elementary identity

Cov (X1, X2) = 1
2 Var (X1) + 1

2 Var (X2)− 1
2 Var(X2 −X1), (2.3.29)

for any two random variables X1, X2, they reduce the problem to an estimate on the
variance of the difference of the limit processes

lim
n→∞

(Lresc
(0,0)→(n,n) − L

resc
(0,0)→(τn,τn))

=(1− τ)1/3 max
v∈R

{(
τ

1−τ

)1/3 [
A2

(
v
(

1−τ
τ

)2/3)−A2(0) + Ã2(v)− v2τ−1
]}

.
(2.3.30)

The first term in (2.3.30), given by the increment of the Airy2 process, converges to√
2B(v) as τ → 1 and, since the maximum is reached for v = Θ(1), (2.3.30) will give the

variance of the process maxv∈R
{
A2(v)− v2 +

√
2B(v)

}
(which is the stationary process)

plus a correction of order O(1− τ).
To turn this reasoning into rigorous statements, one should have control on the conver-

gence of the Airy process to the Brownian motion and on the convergence of the covariance
of the last passage times. This argument has been formalized and generalized in [FO19],
where it is proved the convergence of the covariance of the LPP with ending points out the
diagonal to the covariance of the respective limit processes (Theorem 4.2.2) and precise
bounds are made on the error term for τ → 1.

Theorem 2.3.6 (see Theorem 4.2.5). Consider the last percolation from the origin to
Eτ = (τn, τn) + (2n)2/3wτ (1,−1), for 0 < τ ≤ 1. Let us scale w1 = w̃1(1 − τ)2/3 and
wτ = w̃τ (1− τ)2/3. Then, as τ → 1 we have

lim
n→∞

Cov
(
Lresc

(0,0)→E1
, Lresc

(0,0)→Eτ

)
=

1

2
Var (ξ(w1)) +

τ2/3

2
Var

(
ξ(wττ

−2/3)
)

− (1− τ)2/3

2
Var (ξstat,w̃1−w̃τ ) +O(1− τ)1−δ,

(2.3.31)
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for any δ > 0. Here ξ(w) + w2 is distributed according to a GUE Tracy-Widom law and
ξstat,w has distribution given by

P(ξstat,w ≤ s) = P
(

max
v∈R
{
√

2B(v) +A2(v)− (v − w)2} ≤ s
)
. (2.3.32)

2.3.1 The Airy2 process

The Airy2 process was introduced by Prähofer and Spohn [PS02b] as the limit of the
top layer in the polynuclear growth model (see Section 1.3.4). In the same work, they
also proved that the process is almost surely continuous, stationary and invariant under
time-reversal. Its one-point distribution is the GUE Tracy-Widom distribution and has
super-exponential decay,

P(A2(u) > s) ≈ e−
4
3
s3/2 as s→∞,

P(A2(u) < s) ≈ e−|s|3/12 as s→ −∞.
(2.3.33)

The correlations of the process E[A2(u)A2(0)] − E[A2(u)]E[A2(0)] decay as u−2 and, in
particular,

E[A2(u)A2(0)]− E[A2(u)]E[A2(0)] =

{
c(∞)− u+O(u2) for |u| small,
u−2 +O(u−4) for |u| large,

(2.3.34)

with c(∞) = Var(A2(0)) = 1.6264 . . . .
The Airy2 process is defined by its finite-dimensional distributions [Joh05]. It is the

process with n-point joint distribution at u1 < u2 < · · · < un given by the Fredholm
determinant

P

(
n⋂
k=1

{A2(uk) ≤ sk}

)
= det(1− χsKA2χs)L2({u1,...,un}×R), (2.3.35)

where χs(uk, x) = 1x>uk . The correlation kernel KA2 is given by

KA2(s1, u1; s2, u2) = −Vu1,u2(s1, s2)1u1<u2 +Ku1,u2(s1, s2), (2.3.36)

with

Vu1,u2(s1, s2) =
e

2
3
u3

2+u2s2

e
2
3
u3

1+u1s1

ˆ
R
dxe−x(u1−u2)Ai(u2

1 + s1 + x)Ai(u2
2 + s2 + x),

Ku1,u2(s1, s2) =

{´∞
0 dx e−x(u1−u2)Ai(s1 + x)Ai(s2 + x) for u1 ≥ u2,

−
´ 0
−∞ dx e

−x(u1−u2)Ai(s1 + x)Ai(s2 + x) for u1 < u2,

(2.3.37)

Using the Fredholm determinant description of the Airy process, Hägg [Häg08] proved
that the Airy2 process behaves locally like a Brownian motion, in the sense of finite-
dimensional distributions, i. e.

lim
ε→0

ε−1/2(A2(εu)−A2(0))
dist.
=
√

2B(u). (2.3.38)

Corwin and Hammond [CH13] proved that its sample paths are locally absolutely contin-
uous with respect to Brownian motion. Using the fact that the Airy line process, of which
the top line corresponds to the Airy2 process, can be seen as a limit of non-intersecting
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Brownian bridges, they showed that the local Brownian behaviour of the Airy2 process
holds in a stronger functional sense: the convergence (2.3.38) holds in the sense of weak
convergence of probability measures in the space of continuous functions. The same result
was proved by Cator and Pimentel [CP15], but in a different setting. They used the fact
that the Airy process is a limiting process for the Hammersley last-passage percolation
model (see Section 2.3.2), and showed that local fluctuations can be controlled by equi-
librium versions of this model, which are simply Poisson processes.

We said before that the last passage time and the largest eigenvalue of a random matrix
in the Gaussian unitary ensemble have the same limit distribution, namely the GUE
Tracy-Widom distribution. The analogy between point-to-point last passage percolation
and random matrices extends to the process defined in (2.3.17) and the point process
associated to the ordered eigenvalue of a GUE matrix.

Consider a n × n GUE matrix H(t) evolving according to the stationary Ornstein–
Uhlenbeck process

dH(t) = −γH(t)dt+B(t), (2.3.39)

where γ > 0 and B(t) is a Brownian motion on the space of hermitian matrices. Then,
the eigenvalues of H(t) evolve according to a Dyson’s Brownian, motion [Dys62]

dλj(t) =

−γλj(t) +
β

2

∑
i 6=j

1

λj(t)− λi(t)

 dt+ dbj(t), j = 1, . . . , n, (2.3.40)

where bj(t) are independent standard Brownian motions. Dyson’s Brownian motion de-
scribes the diffusion of n particles with positions λj(t), j = 1, . . . , n, at time t on the real
line in a harmonic potential. For β = 2 we can associate a (determinantal) point process
to the eigenvalues λj(t) of H(t). Under the scaling

λnj (u) =
√

2γn1/6
(
λj(u/(γn

1/3))−
√

2n/γ
)
, (2.3.41)

as n→∞, the kernel converges to the Airy kernel (2.3.36). This means that the rescaled
largest eigenvalue λnn(u) converges to the Airy2 process,

lim
n→∞

λnn(u) = A2(u), (2.3.42)

in the sense of finite-dimensional distributions [Joh03].

2.3.2 Hammersley LPP

The Hammersley model [AD95] is a model of last passage percolation on R2 introduced
by Aldous and Diaconis to investigate the problem of finding the length `n of longest
increasing subsequence in a random n-permutation [Ham72]. By studying the hydrody-
namic limit for the Hammersley’s process, they showed that n−1/2E[`n]→ 2, as n→∞,
considerably simplifying the approach of [LS77,VK77], which relied on hard analysis of
combinatorial asymptotics.

The Hammersley last passage percolation model is the continuous space analogue of
the LPP on Z2 and is constructed from a two-dimensional homogeneous Poisson point
process of intensity 1. The presentation of the model follows [AD95]. Consider n points
(xi, ti) in the rectangle [0, x]× [0, t] with distinct coordinates. The set of points specifies
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a permutation σ: the point with i-th smallest t-coordinate has the σ(i)-th smallest x-
coordinate. The length `n(σ) of the longest increasing subsequence of σ is the maximal
length of a sequence (ik) such that

xi1 < xi2 < · · · < xi`n , ti1 < ti2 < · · · < ti`n . (2.3.43)

This defines an up-right path π from (0, 0) to (x, t). If we take a Poisson process of rate
1 on R2 and, for x, t ≥ 0, we define L(x,t) as the maximal number of points on π, then,
the number of points M(x, t) in the rectangle [0, x]× [0, t] has Poisson distribution and

L(x,t)
dist
= `M(x,t). (2.3.44)

x

t

Figure 2.3: Hammersley’s last passage percolation associated to the permutation σ =
(7 2 8 1 3 4 10 6 9 5). The longest increasing subsequence is (1 3 4 6 9) with length `(σ) = 5.

In [BDJ99b], Baik, Deift and Johansson showed that the fluctuations of the length of
a maximal path from (0,0) to (n, n) are of order nχ with χ = 1/3. In [Joh00c] Johansson
proved that the transversal fluctuations of a maximizing path are of order nξ with ξ = 2/3.
By transversal fluctuations we mean the typical deviations of a maximal path from the
diagonal (0, 0)(n, n). These scaling exponents are consistent with the conjectured relation
between the fluctuation exponent χ and the wandering exponent ξ,

χ = 2ξ − 1. (2.3.45)

We present the heuristic argument of [Joh00c]. We know from [AD95] that the length of
the maximal path from the origin to (x, y) is ∼ √xy. If we consider the maximizing path
from the origin to (N,N) that passes through (N(t− δ), N(t+ δ)), where 0 < t < 1 and
δ is small, it will be shorter than the maximizer from the origin to (N,N) without the
constraint by the amount

2N
√

(t− δ)(t+ δ) + 2N
√

(1− t+ δ)(1− t− δ)− 2N. (2.3.46)

This should have the same order as the length fluctuations, which are O(Nχ). This gives
δ2 = O(Nχ−1) and, thus, N ξ ∼ Nδ ∼ N

1
2

(χ+1), leading to 2ξ = χ+ 1.

2.4 Point-to-line LPP

A point-to-line last passage percolation is defined as in (2.0.3) with L = {(i, j) ∈ Z2 | i+j =
0}. This is equivalent to the polynuclear growth model with flat geometry, a continuous
version of the growth model h(x, t) presented in Section 1.3.4 with weights distributed
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Figure 2.4: Height function for TASEP with flat initial condition.

according to a Poisson process of intensity ρ = 2 in R×R+ and starting from h(x, 0) = 0.
In terms of particle systems, it represents the geometric interpretation of TASEP starting
from flat initial condition, i.e. ηx(0) = 1 for x even and ηx(0) = 0 for x odd; the height
function at time 0 is saw-tooth function between 0 and 1 (see Figure 2.4).
More generally, we can consider k-periodic initial data for TASEP, for which particles have
positions

xn(0) = −kn, n ∈ Z, k ∈ {2, 3, . . . }. (2.4.1)

The density of particle is ρ = 1/k. In this case, we can still provide a last passage percola-
tion picture by choosing the starting line Lflat

ρ = {
(
bρ−1

ρ nc, n
)
, n ∈ Z}. By universality,

fluctuations of particle positions/limit shape should be governed by the GOE Tracy-
Widom distribution, as proved in [FS05,Sas05] for the 2-periodic case and in [BFP07] for
k > 2. More recently, we proved the same result for generic density ρ ∈ (0, 1).

Theorem 2.4.1 (see Theorem 3.2.1). Let ρ ∈ (0, 1) and consider the last passage perco-
lation from Lflat

ρ to (n, n). Set a0 = 1/(ρ(1− ρ)) and a1 = 1/(ρ(1− ρ))2/3. Then, for any
s ∈ R,

lim
N→∞

P
(
LLflat

ρ →(n,n) ≤ a0n+ a1sn
1/3
)

= FGOE(22/3s), (2.4.2)

where FGOE is the GOE Tracy-Widom distribution function.

To prove this result, we used the variational formula [Joh05]

FGOE(22/3s) = P
(

max
v∈R
{A2(v)− v2} ≤ s

)
, (2.4.3)

where A2 is the Airy2 process [PS02b,Joh03] (see Section 2.3.1), and showed convergence
of the rescaled last passage time to the variational problem. First, we proved convergence
of a restricted LPP to the formula (2.4.3) with |v| ≤ M for a positive M . Then, we
obtained bounds on the probability that the maximizing path is not localized in a region
of orderMN2/3. The quadratic term provides localization for the position of the maximum
of A2(v)− v2: bounds can be found in [CH13,QR15].

As for the point-to-point LPP, we can define a process u 7→ LLflat→E(u) choosing the
ending point E = (n, n) + 22/3u(1,−1). The rescaled process

Lresc
n (u) =

LLflat→E − 4n

24/3n1/3
(2.4.4)

converges, as n→∞, to the Airy1 process (see Section 2.4.1)

lim
n→∞

Lresc
n (u) = 21/3A1(2−2/3u), (2.4.5)

in the sense of finite-dimensional distribution. The distribution of the Airy1 process
is expressed in terms of Fredholm determinants. The result in (2.4.5) was proved in
terms of particle positions for TASEP. In [BFP07] Borodin, Ferrari and Prähofer showed
convergence of Fredholm determinants of the kernels for discrete time TASEP with k-
periodic initial condition. Later, they proved the result for continuous time TASEP in
the 2-periodic case [BFPS07].
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Also for the point-to-line LPP, the tails of the distribution have exponential de-
cay. An estimate on the lower tail can be immediately obtained from (2.3.20). Since
P(LLflat→(n,n) ≤ s) ≤ P(L(0,0)→(n,n)), we have

P(Lresc
n (0) ≤ s) . e−|s|

3/2
, s < 0 (2.4.6)

For the upper tail we have

P(Lresc
n (0) ≥ s) . e−s, s > 0. (2.4.7)

In [FS16] heuristic arguments similar to the ones for the point-to-point case are used
to study the time covariance for flat initial conditions: in this case, the absence of the
quadratic term, that provided the localization of the maximizer, is responsible for a dif-
ferent behaviour of the covariance of L(n,n) and L(τn,τn) for small τ : as τ → 0,

lim
n→∞

Cov
(
L(n,n), L(τn,τn)

)
= Θ(τ4/3). (2.4.8)

Instead, for τ → 1, we showed a universal behaviour of the covariance, confirming Ferrari
and Spohn’s conjecture.

Theorem 2.4.2 (see Theorem 4.2.5). Consider the last percolation from Lflat to Eτ =
(τn, τn) + (2n)2/3wτ (1,−1), for 0 < τ ≤ 1. Let us scale w1 = w̃1(1 − τ)2/3 and wτ =
w̃τ (1− τ)2/3. Then, as τ → 1 we have

lim
n→∞

Cov
(
Lresc
Lflat→(n,n), L

resc
Lflat→(τn,τn)

)
=

1

2
Var (ξ(w1)) +

τ2/3

2
Var

(
ξ(wττ

−2/3)
)

− (1− τ)2/3

2
Var (ξstat,w̃1−w̃τ ) +O(1− τ)1−δ,

(2.4.9)
for any δ > 0. Here 22/3ξ(w) is distributed according to a GOE Tracy-Widom law and
ξstat,w is given in (2.3.32).

2.4.1 The Airy1 process

The Airy1 process was discovered by Sasamoto [Sas05] as limit process for TASEP with
flat initial condition. It is the analogue of the Airy2 process for flat growth and also this
process is stationary and has sample paths with locally Brownian fluctuations, as proved
in [QR13]. In [BFS08] it was proved that the Airy1 process is also the limit process for
the PNG model with flat initial conditions. It was conjectured in [Sas05] and proved
in [FS05] that its one-point distribution is the GOE Tracy-Widom distribution. It was
shown in [BBD08] that the lower tail decays as

P(A1(0) < s) ≈ e−|s|3/24 as s→ −∞. (2.4.10)

As shown in Figure 2.5, the correlation of the process decay much faster than the
correlation for the Airy2: in [BFP08] it was shown that Cov(A1(0),A1(u)) ≈ c(∞) −
u+O(u2) for u small, where c(∞) = Var(A1(0)) = 0.402 . . . , as it has super-exponential
decay for u large.

The Airy1 process is defined in terms of its finite-dimensional distribution. It is the
process with n-point distribution at u1 < u2 < · · · < un given by the Fredholm determi-
nant

P

(
n⋂
k=1

{A1(uk) ≤ sk}

)
= det(1− χsKA1χs)L2({u1,...,un}×R), (2.4.11)
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Figure 2.5: With dashed line Cov(A2(0),A2(u)) and with solid line Cov(A1(0),A1(u)) obtained
in [BFP08] by numerical evaluation of Fredholm determinants.

where χs(uk, x) = 1x>uk . The correlation kernel KA1 is

KA1(s1, u1; s2, u2) =− Vu1,u2(s1, s2)1u1<u2

+ Ai(s1 + s2 + (u2 − u1)2)e(u2−u1)(s1+s2)+ 2
3

(u2−u1)3
,

(2.4.12)

where Vu1,u2(s1, s2) was defined in (2.3.37).
As for the Airy2 process, it seems natural to expect that the Airy1 process is also the

limit of the largest eigenvalue in GOE matrix diffusion. This was conjectured in [BFPS07],
but later refuted by [BFP08]: they compared with numerical evaluation the joint distribu-
tion functions for the Airy1 processes (given in terms of Fredholm determinants of integral
operators) and the correlation function for GOE matrix diffusion and showed that they
differ in the limit of large matrices.

2.5 Stationary LPP

The stationary last passage percolation can be realized choosing the following setting: the
starting line L = {(i, j) ∈ Z2|i+ j = 0} and a set of random variables h0 given by

h0(x,−x) =


∑x

k=1(Xk − Yk), for x ≥ 1,

0, for x = 0,

−
∑0

k=x+1(Xk − Yk), for x ≤ −1,

(2.5.1)

where {Xk}k∈Z and {Yk}k∈Z are independent random variables with Xk ∼ Exp(1 − ρ)
and Yk ∼ Exp(ρ).

The statistics of growth models in the equilibrium situation was first observed by Baik
and Rains [BR00] as a result of the study of a polynuclear growth model with two external
sources, considered by Prähofer and Spohn in [PS00]. They constructed a set of points in
[0, 1] × [0, 1] ⊂ R2 in the following way. Given three parameters t > 0 and α± ≥ 0, they
selected points in (0, 1) × (0, 1) from a Poisson point process P (t2) of density t2, on the
open bottom edge (0, 1) × {0} from P (α−t) and on the open left edge {0} × (0, 1) from
P (α+t). They studied the statistics of the length L(t) of the longest up-right path in
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this random configuration of points. This process can be alternatively seen as a Poisson
process of intensity 1 in R2

+, together with a Poisson process of intensity α+ on the open
half-line R+ × {0} and a Poisson process of intensity α− on the open half-line {0} × R+.
Then, L(t) is equal to the length of the longest up-right path from (0, 0) to (t, t).

When α± = 0, the limiting fluctuations of L(t) are described by the GUE Tracy-
Widom distribution. When α± > 0, before entering the bulk, the longest path follows one
of the edges, the time spent being proportional to α±: if α± is small, one expects GUE
fluctuations, similar to the α± = 0 case; if α± is large, then most of the time is spent on
one of the edges, giving Gaussian fluctuations. They distinguished four cases:

– If α± < 1, we observe FGUE fluctuations;

– If α+ > 1 or α− > 1, we observe Gaussian fluctuations;

– If α+ = 1 and α− < 1, or viceversa, we observe F 2
GOE fluctuations. The F 2

GOE

describes the limiting fluctuations of the largest of the superimposition of the eigen-
values of two random matrices in the Gaussian orthogonal ensemble;

– If α± = 1, we are in the critical case and observe fluctuations distributed according
to the distribution FBR that we will define later.

Summarizing, we have the following results.

Theorem 2.5.1 (Theorem 1.1 of [BR00]). For each fixed α±, as t→∞, we have:

i. When 0 ≤ α± ≤ 1,

lim
t→∞

P
(
L(t)− 2t

t1/3
≤ x

)
=


FGUE(x), 0 ≤ α± < 1,

FGOE(x)2, α+ = 1, 0 ≤ α− < 1

or α− = 1, 0 ≤ α+ < 1

FBR(x), α± = 1.

(2.5.2)

ii. When at least of the α± is greater than 1, setting α = max{α+, α−},

lim
t→∞

P
(
L(t)− (α+ α−1)t√

α+ α−1t1/2
≤ x

)
=

{
erf(x), α+ 6= α−,

erf(x)2, α+ = α−.
(2.5.3)

The limiting distribution FBR of the critical case α± = 1 is defined as

FBR(x) = {1− (x+ 2u′(x) + 2u(x)2)v(x)}
(
e

1
2

´∞
x u(s)ds

)4
FGUE(x), (2.5.4)

where u is the solution of the Painlevé II equation,

uxx = 2u3 + xu, (2.5.5)

with the boundary condition u(x) ∼ −Ai(x) as x→ +∞. The distribution was renamed
after the authors as Baik–Rains distribution.

In [FS06] Ferrari and Spohn obtained analogous results for TASEP starting from
Bernoulli-ρ measure, 0 < ρ < 1, which is the stationary measure. Here they used a
mapping to a directed polymer problem. In the initial configuration of TASEP, let ζ+ + 1
be the location of the first particle to the right of 1 and let −ζ− be the location of the
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first hole to the left of 0. The random variables ζ+, ζ− are independent and geometrically
distributed, P(ζ+ = k) = ρ(1 − ρ)k, P(ζ− = k) = ρk(1 − ρ). Consider a family of
independent random variables wi,j , i, j ≥ 0,

wi,0 ∼ Exp(1− ρ), i ≥ 1,

w0,j ∼ Exp(ρ), j ≥ 1,

wi,j ∼ Exp(1), i, j ≥ 1,

w0,0 = 0.

(2.5.6)

The random variable wi,j represents the j-th waiting time of the i-th particle; in particular,
wζ++k,0 is the k-th waiting time of the first particle to the right of 0 and w0,ζ−+k is the k-th
waiting time of the first hole to the left of 0. If we consider the last passage percolation
with weights

ωi,j =


0 1 ≤ i ≤ ζ+, j = 0,

0 i = 0, 1 ≤ j ≤ ζ−,
wi,j otherwise,

(2.5.7)

then, (2.2.7) holds.
By means of the same translation in terms of LPP, in [BFP10] it was determined the

limiting multi-point distribution of the current fluctuations of TASEP. In analogy with
the other two cases, the limit process was renamed Airystat process (see Section 2.5.1).

However, the above described setting looks quite unnatural if one wants to work in a
last passage percolation picture. In [BCS06], Balász, Cator and Seppäläinen constructed
a last passage growth model with exponential weights with boundary conditions that
represent the equilibrium exclusion process as seen from a particle right after its jump. The
equilibrium distribution of a particle system as seen from a “typical” particle is the Palm
distribution. For TASEP the Palm distribution is the Bernoulli-ρ equilibrium conditioned
on having a particle in 0. The stationarity of the initial measure is attained by a theorem
from queuing theory.

Theorem 2.5.2 (Burke’s Theorem, Theorem 3.1 of [BCS06]). Consider TASEP started
from the Palm distribution (i.e. a particle at the origin, Bernoulli measure elsewhere).
Then, the position of the particle started at the origin is marginally a Poisson process with
jump rate 1− ρ.

The last passage percolation with weights given by (2.5.6) corresponds to TASEP
started from Bernoulli-ρ measure, conditioned on having a hole at the origin and a particle
at site one. Despite this small alteration of the Palm distribution, a version of Burke’s
Theorem still holds.

Proposition 2.5.3 (Corollary 3.2 of [BCS06]). Let Pj(t) be the position of the j-th particle
at time t and let Hi(t) be the position of the i-th hole at time t. Marginally, P0(t)− 1 and
−H0(t) are two independent Poisson processes with respective jump rates 1− ρ and ρ.

TASEP can be interpreted as a queuing system, if we represents the particles as servers
and the holes between the j-th and the (j− 1)-th particles as customers waiting at server
j. In the LPP, the occupation of the point (i, j) corresponds to the customer i being
served by server j. This can formulated in the following way. Let Ii,j be the time it takes
for the j-th particle to jump to site i− j and let Ji,j be the time it takes for the i-th hole
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Exp(1)

Exp(1− ρ)

Exp(ρ)

0

Figure 2.6: Stationary last passage percolation with boundary conditions (2.5.6). The random
variables are exponentially distributed of parameter 1 in the bulk (white squares), of parameter
ρ on the horizontal axis (green squares) and of parameter 1− ρ on the vertical axis (red squares).
The weight in the origin is identically zero.

to jump to site i− j + 1. Then

Ii,j =L(i,j) − L(i−1,j)

Ji,j =L(i,j) − L(i,j−1)

(2.5.8)

The connection with LPP with boundary condition (2.5.6) is established, if we show
that Burke’s Theorem holds for every hole and particle in the last-passage picture. Let
Σ be the set of down-right paths in the first quadrant and define the interior of the set
enclosed by σ ∈ Σ as

I(σ) = {(i, j) : 0 ≤ i < pk, 0 ≤ j < qk for some (pk, qk) ∈ σ}. (2.5.9)

Proposition 2.5.4 (Lemma 4.2 of [BCS06]). For any σ ∈ Σ, the collections of random
variables {Ii,j , (i, j) ∈ I(σ)} and {Ji,j , (i, j) ∈ I(σ)} are mutually independent exponen-
tials with parameters 1− ρ and ρ respectively.

This means that the increments along a down-right path are sums of independent
random variables, Exp(1− ρ) for horizontal steps and Exp(ρ) for vertical steps.

By Proposition 2.5.4, the stationary situation can be equivalently realized considering
a point-to-line LPP with L = {(i, j) ∈ Z2 | i+ j = 0} and randomness h0 on the boundary
given by a two-sided random walk

h0(x,−x) =


∑x

k=1(Xk − Yk), for x ≥ 1,

0, for x = 0,

−
∑0

k=x+1(Xk − Yk), for x ≤ −1,

(2.5.10)

where {Xk}k∈Z and {Yk}k∈Z are independent random variables with Xk ∼ Exp(1 − ρ)
and Yk ∼ Exp(ρ).

At page 32 we explained the link between LPP and the ensemble of complex Gaussian
sample covariance matrices. The stationary LPP can be expressed as the maximum of
two LPPs

LLstat→(n,n) = max{L|(0,0)→(n,n), L
−
(0,0)→(n,n)}, (2.5.11)
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where L|(0,0)→(n,n) and L−(0,0)→(n,n) are rank-one perturbations of the point-to-point LPP
with weights only on the boundary i = 0 and j = 0 respectively. Using this fact, we obtain
the exponential decay of the upper tail of the distribution of the rescaled stationary
LPP. An estimate like (2.3.20) for the lower tail can be immediately obtained, since
P(LLstat→(n,n) ≤ s) ≤ P(L(0,0)→(n,n) ≤ s).

With an argument similar to the one made for the point-to-point LPP, in [FS16] it
was made a prediction on the behaviour of the covariance for the stationary case,

Cov(LLstat→(n,n), LLstat→(τn,τn)), (2.5.12)

for 0 ≤ τ ≤ 1. Close to τ = 0, in the limit n → ∞, they predicted the same Θ(τ2/3)
behaviour of the step case. But, in this case, it is due to the randomness of the initial
conditions, not to the correlations generated at small times. For the stationary case, it is
possible to obtain an exact expression for the covariance for τ in the entire interval [0,1].
This is due to the fact that the increments of the limit Airystat process are not only locally
Brownian, but exactly Brownian, namely(

τ
1−τ

)1/3 [
Astat

(
1−τ
τ v
)2/3 −Astat(0)

]
dist
=
√

2B(v), (2.5.13)

where B is a standard Brownian motion. In [FS16] this was obtained in the special case
of ending points on the diagonal. For the general case, we consider the LPP with ending
point Eτ = (τn, τn) + (2n)2/3wτ (1,−1), for 0 ≤ τ ≤ 1 and wτ ∈ R.

Theorem 2.5.5 (see Corollary 4.2.4). For the stationary LPP, the covariance of the
limiting height function for all τ ∈ (0, 1) can be expressed as

lim
n→∞

Cov
(
Lresc
Lstat→(n,n), L

resc
Lstat→(τn,τn)

)
=
τ2/3

2
Var

(
ξstat,τ−2/3wτ

)
+

1

2
Var (ξstat,w1)

− (1− τ)2/3

2
Var

(
ξstat,(1−τ)−2/3(w1−wτ )

)
.

(2.5.14)
Here ξstat,w has distribution given by (2.3.32).

2.5.1 The Airystat process

The Airystat process arises as limit process for models started from stationary initial
condition. Unlike the Airy1 and Airy2 processes, this process is not stationary, in spite of
its name. Studying the limiting distribution functions for a polynuclear growth model with
two external sources, previously considered by Prähofer and Spohn [PS00], Baik and Rains
identified the one-point distribution of the Airystat process, subsequently baptized Baik–
Rains distribution. Baik, Ferrari and Péché [BFP14] obtained the multi-point distribution
for TASEP with Bernoulli measure as initial condition.

The increments of the Airystat process have exactly the statistics of a Brownian motion.
This follows from the model directly, since the stationary initial condition is realized as
a random walk, which converges to a Brownian motion. A proof of this property can be
found in Section 8 of [FSW15a]. Moreover, the Baik–Rains distribution has zero mean
(Proposition 2.1 of [BR00]). This fact was suggested by numerical simulations in [PS00],
where also a justification is provided: with an indirect argument for the PNG with α± = 1,
they show that the average of the length L(t) of the longest up-right path in a random
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configuration of Poisson points is 2t, which implies the zero mean property of FBR. To
see this formally, we write (2.5.4) as

FBR(s) =

{
1− E(s)−4

ˆ s

∞
E(x)4dx

}
E(s)4FGUE(s), (2.5.15)

where E(s) = e
1
2

´∞
s u(x)dx. The identity is verified, since y(s) := s+ 2u′ + 2u2 satisfies

y′(s) = 1 + 2u(s)y(s), y(s) =
1√
−2s

(1 + o(1)), s→ −∞. (2.5.16)

Then, we have

FBR(s) =
d

ds

{
FGUE(s)

ˆ s

−∞
E(t)4dt

}
, (2.5.17)

and integrating, ˆ s

−∞
FBR(x)dx = FGUE(s)

ˆ s

−∞
E(t)4dt

= FGUE(s)E(s)4(s+ 2u′(s) + 2u(s)2).

(2.5.18)

Now, the mean is given byˆ ∞
−∞

x
d

dx
FBR(x)dx = lim

s→∞

[
sFBR(s)−

ˆ s

−∞
FBR(y)dy

]
. (2.5.19)

Subtracting (2.5.18) from sFBR(s) and performing the s→∞ limit, we obtainˆ ∞
−∞

xFBR(x)dx = 0. (2.5.20)

In [BFP14] the Airystat process is defined in terms of its finite-dimensional distributions
given by Fredholm determinants. For real numbers u1 < u2 < · · · < un and s1, . . . , sn,
define

R =s1 + e−
2
3
u3

1

ˆ ∞
s1

dx

ˆ ∞
0

dyAi(x+ y + u2
1)e−u1(x+y),

Ψj(y) =e
2
3
u3
j+ujy −

ˆ ∞
0

dxAi(x+ y + u2
j )e
−ujx,

Φi(x) =e−
2
3
u3

1

ˆ ∞
0

dλ

ˆ ∞
s1

dye−λ(u1−ui)e−u1yAi(x+ u2
i + λ)Ai(y + u2

1 + λ)

+ 1[i≥2]
e−

2
3
u3
i−uix√

4π(ui − u1)

ˆ s1−x

−∞
dye
− y2

4(ui−u1) −
ˆ ∞

0
dyAi(x+ y + u2

i )e
τiy.

(2.5.21)
Then, the n-point distribution at u1 < u2 < · · · < un is given by

P

(
n⋂
k=1

{Astat(uk) ≤ sk}

)
=

n∑
k=1

∂

∂sk

(
gn(~u,~s) det

(
1− χsK̂Aiχs

)
L2({u1,...,un}×R)

)
,

(2.5.22)
where χs(uk, x) = 1x>uk and the function gn(~u,~s) is defined by

gn(~u,~s) = R− 〈ρχsΦ, χsΨ〉

= R−
n∑

i,j=1

ˆ ∞
si

dx

ˆ ∞
sj

dyΨj(y)ρj,i(y, x)Φi(x),
(2.5.23)
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with
ρ := (1− χsK̂Aiχs)

−1, ρj,i(y, x) := ρ((j, y), (i, x)),

Φ((i, x)) := Φi(x), Ψ((j, y)) := Ψj(y).
(2.5.24)

The correlation kernel K̂Ai is the so-called extended Airy kernel with entries defined by

K̂Ai((i, x), (j, y)) := [K̂Ai]i,j(x, y)

=

{´∞
0 dλAi(x+ λ+ u2

i )Ai(y + λ+ u2
j )e
−λ(uj−ui) if ui ≤ uj

−
´ 0
−∞ dλAi(x+ λ+ u2

i )Ai(y + λ+ u2
j )e
−λ(uj−ui) if ui > uj .

(2.5.25)

2.6 Half-space LPP

So far we presented models of last passage percolation defined on the positive quadrant
of Z2 or R2 or on full spaces. However, beyond these cases, it is possible to define models
with different geometries, like the last passage percolation in the half-quadrant of integers.
The so-called half-space last passage percolation is a variant of Johansson’s full-quadrant
corner growth model and, as for the full-space case, it is integrable when the weights are
geometric or exponential (or come from a Poisson process of constant intensity). Consider

Geom(ax4)

Geom(x4x7)

x1 x2 x3 x4 x5 x6 x7 x8

x1

x2

x3

x4

x5

x6

x7

x8

(N,N)

Figure 2.7: A possible LPP path (polymer) starting at the origin to the point (N,N − n), for
n ≥ 0. The types of geometric random variables are assigned according to the row and column x
parameters, and the diagonal has an extra parameter a.

a sequence of independent geometric random variables

wn,m ∼

{
Geom(xnxm), n ≥ m+ 1,

Geom(axn), n = m,
(2.6.1)

where a, x1, . . . , xN are real parameters satisfying

0 ≤ a < min
i

1
xi
, 0 < x1, . . . , xN < 1 (2.6.2)

and a random variable X is geometric Geom(q) if P(X = k) = (1 − q)qk,∀k ∈ N. We
depict this in Figure 2.7. It is helpful to visualize the x’s as indexing the rows and columns
of the half-space. Consider up-right paths π from (0, 0) to (n,m) with n ≥ m. The last
passage time on the half-quadrant, denoted by Hgeom(n,m), is defined as

Hgeom(n,m) = max
π:(0,0)→(n,m)

∑
(i,j)∈π

wi,j (2.6.3)
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and satisfies the recurrence relation

Hgeom(n,m) = wn,m +

{
max{Hgeom(n− 1,m), Hgeom(n,m− 1)}, if n ≥ m+ 1,

Hgeom(n,m− 1), if n = m.

(2.6.4)
In the exponential case, the definition is identical with weights given by

ωn,m ∼

{
Exp(1), n ≥ m+ 1,

Exp(α), n = m,
(2.6.5)

for α > 0. This model is also known as symmetric last passage percolation, since it is
equivalent to a model of LPP in the full-quadrant where the weights are symmetric with
respect to the diagonal, i.e.ωi,j = ωj,i.

As the full-space last passage percolation was introduced to study the asymptotic
distribution of the size of the longest increasing subsequence in a uniformly random per-
mutation [BDJ99b], the half-space LPP is related to the problem of the longest increasing
subsequence in a random involution. A random involution σ ∈ Sn is a random permuta-
tion that does not contain any permutation cycle of length greater than 2, so it consists
only of fixed points and transpositions. The description with the half-space model is jus-
tified by the fact that the permutation matrix of an involution is symmetric and its graph
i 7→ σ(i) is symmetric with respect to the diagonal.

The problem of the longest increasing subsequence in a random involution was initially
studied in [BR01a,BR01c,BR01b] together with the symmetrized last passage percolation
with geometric weights. In [Rai00] it was proved that the half-space LPP is a Pfaffian point
process (see Section 1.5.3) and in [BR01b] the asymptotic of the last passage time H(n,m)
was obtained as n,m → ∞. In particular, it was shown that the limiting fluctuations
depend on the end point (n,m) and on choice of the parameters xn, a. These results have
been proved many times in different contexts and with different techniques [Rai00,BR01b,
IS04,BR06,FR07,BBNV18]. Here we present them as in [BBNV18] for an end point on
the diagonal and for xn =

√
q, q ∈ (0, 1).

1

1

1

2

0

0

10021

10

9

7

2

1

3

5 8

2

5 2

1

30

15

2

5

3213

0 1

8

Figure 2.8: Last passage percolation for a 6×6 symmetric matrix.

Theorem 2.6.1 (Special case of Theorem 2.7 of [BBNV18]). The distribution of the last
passage time Hgeom(n, n) is a pfaffian

P(Hgeom(n, n) < s) = pf(J −K)`2{s+ 1
2
,s+ 3

2
,s+ 5

2
,... } (2.6.6)
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with 2× 2 matrix correlation kernel K :
(
Z+ 1

2

)2 → Mat2(R) given by

K11(k, `) =
1

(2πi)2

˛
dz

zk+1

˛
dw

w`+1
F (z)F (w)

√
zw(z − w)(z − a)(w − a)

(z2 − 1)(w2 − 1)(zw − 1)
,

K12(k, `) = −K21(`, k) =
1

(2πi)2

˛
dz

zk+1

˛
dw

w−`+1

F (z)

F (w)

√
zw(zw − 1)(z − a)

(z − w)(z2 − 1)(w − a)
,

K22(k, `) =
1

(2πi)2

˛
dz

z−k+1

˛
dw

w−`+1

1

F (z)F (w)

√
zw(z − w)

(zw − 1)(z − a)(w − a)
,

(2.6.7)

where

F (z) :=
N∏
i=1

1− xk/z
1− xkz

(2.6.8)

and where the contours are positively oriented circles centered around the origin satisfying
the following conditions:

– for K11, 1 < |z|, |w| < mini
1
xi
;

– for K12, max{maxi xi, a} < |w| < |z| and 1 < |z| < mini
1
xi
;

– for K22, max{maxi xi, a} < |w|, |z| and 1 < |zw|.

With a suitable choice of a and of the end point we obtain a limiting crossover regime.

Theorem 2.6.2 (Theorem 2.8 of [BBNV18]). Consider the geometric half-space LPP with
xj =

√
q, q ∈ (0, 1), j ≥ 1 and a = 1− 2cqn

−1/3, where cq =
1−√q

q1/6(1+
√
q)1/3 , v ∈ R. Then

lim
n→∞

P

(
Hgeom(n− bun2/3c, n) ≤

2
√
qn

1−√q
− u
√
qn2/3

1−√q
+ c−1

q sn−1/3

)
= Fu,v(s), (2.6.9)

where Fu,v(s) performs a crossover between the classical distributions from random matrix
theory. One has

F0,0(s) = FGOE(s),

lim
v→∞

F0,v(s) = FGSE(s),

lim
u→∞

Fu,v(s− u2d2
q) = FGUE(s),

where dq = q1/6

2(1+
√
q)2/3 .

An analogue theorem for the exponential last passage time was stated and proved
in [BBCS18]. They show that the limiting fluctuations depend on the strength of the
weights on the diagonal and that a transition in the behaviour of the fluctuations occurs
at α = 1/2.

Theorem 2.6.3 (Theorem 1.4 of [BBCS18]). Consider the half-space last passage time
on the diagonal H(n, n) with exponential weights.

a) For α > 1/2,

lim
n→∞

P
(
Hexp(n, n)− 4n

24/3n1/3
< s

)
= FGSE(s).
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b) For α = 1/2,

lim
n→∞

P
(
Hexp(n, n)− 4n

24/3n1/3
< s

)
= FGOE(s).

c) For α < 1/2,

lim
n→∞

P

(
Hexp(n, n)− n

α(1−α)

σn1/2
< s

)
= G(s),

where G(s) is the standard Gaussian distribution function and σ = (1−2α)1/2

α(1−α) .

Moreover, if we consider end points far away from the diagonal, the last passage time
H(n,m) satisfies the same limit theorem of the full-space model.

Theorem 2.6.4 (Theorem 1.5 of [BBCS18]). For any κ ∈ (0, 1) and α >
√
κ

1+
√
κ
,

lim
n→∞

P
(
Hexp(n, κn)− (1 +

√
κ)2n

σn1/3
< s

)
= FGUE(s),

where σ = (1+
√
κ)4/3

κ1/6 .

We can give an heuristic explanation of the phase transition of the limit fluctuations
for α varying in (0,∞). As α goes to infinity, the weights on the diagonal go to 0, so the
maximizing path to (n, n) will tend to avoid the diagonal. Then, the last passage time to
(n, n) is the last passage time from (1,0) to (n, n− 1) and this is equal in distribution to
H(n−1, n−1) with α = 1. This implies that the fluctuations behave in the same way for
α ∈ (1,∞). On the contrary, if α is very small, the weights on the diagonal will be much
more relevant than the ones in the bulk and the path will stick to the diagonal; thus, the
last passage time will be a sum of O(n) i. i. d. random variables and we expect fluctuations
of order n1/2. The critical value α = 1/2 is due to symmetries in the underlying Pfaffian
process.

In [BFO19] we studied the stationary version of the half-space LPP with exponential
weights. Here stationarity has to be interpreted in the sense of [BCS06], as it refers to the
stationarity of the increments of the last passage time along the vertical and the horizontal
directions. It is realized choosing the weights as follows:

ωi,j =


Exp

(
1
2 + α

)
, i = j > 1,

Exp
(

1
2 − α

)
, j = 1, i > 1,

0, if i = j = 1,

Exp(1), otherwise

(2.6.10)

where α ∈ (−1/2, 1/2).
We considered the last passage percolation from the origin to a point (N,N − n) not

necessarily on the characteristic and obtained an exact formula for the distribution of the
last passage time, denoted LN,N−n for simplicity, together with asymptotic results for the
distribution under the KPZ scaling. The method to approach the stationary half-space
LPP was inspired by the works of Baik–Rains [BR00] in the study of the PNG with
external sources, that lead to the definition of the distribution of the stationary LPP in
the full-space, and of Baik–Ferrari–Péché [BFP10], that generalized the previous approach
to obtain the multi-point distribution of stationary TASEP. Since no useful formulas are
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available to study the statistics of LN,N−n, first we consider a slightly different version of
the model, which turns out to be more manageable: an half-space LPP with weights

ω̃i,j =


Exp

(
1
2 + α

)
, i = j > 1,

Exp
(

1
2 + β

)
, j = 1, i > 1,

Exp (α+ β) , i = j = 1,

Exp(1), otherwise,

(2.6.11)

where α ∈ (−1/2, 1/2), β ∈ (−1/2, 1/2) are parameters satisfying α+β > 0. As a corollary
of [Rai00] and Theorem 2.6.1, the distribution of the last passage time is integrable and
is given by a Fredholm Pfaffian. For this reason, we denote the last passage time with
Lpf
N,N−n.

Theorem 2.6.5. Let β ∈ (0, 1/2) and α ∈ (−1/2, 1/2). Then, for s ∈ R+,

P(Lpf
N,N−n ≤ s) = pf(J −K)L2(s,∞) (2.6.12)

where K = K(x, y) is defined in Theorem 5.3.1.

To recover the desired distribution, we need to find an expression that links the dis-
tribution of LN,N−n and Lpf

N,N−n. The difference between the two models is given by the
random variable ω̃1,1 and the parameter β. We can remove ω̃1,1 using a standard shift
argument.

Lemma 2.6.6. Let α, β ∈ (−1/2, 1/2) with α+ β > 0. Then(
1 +

1

α+ β
∂s

)
P(Lpf

N,N−n ≤ s) = P(L̃N,N−n ≤ s). (2.6.13)

Then, we take the β → −α limit. To do this, we need to find a decomposition of
1

α+βP(Lpf
N,N−n ≤ s) which is well-defined when we take the limit as α+ β → 0. Using the

residue theorem for the integral kernels, we obtain the following decomposition.

Proposition 2.6.7. Let α ∈ (−1/2, 1/2), β > 0. Then the kernel K splits as

K = K + (α+ β)R (2.6.14)

where

K11(x, y) =−
˛

Γ1/2

dz

2πi

˛

Γ−1/2

dw

2πi

Φ(x, z)

Φ(y, w)

[
(1

2 − z)(
1
2 + w)

]n (z + β)(w − β)

(z − β)(w + β)
·

· (z + α)(w − α)(z + w)

4zw(z − w)
,

K12(x, y) =−
˛

Γ1/2

dz

2πi

˛

Γ−1/2,−α,−β

dw

2πi

Φ(x, z)

Φ(y, w)

[
(1

2 − z)
(1

2 − w)

]n
z + α

w + α

z + β

z − β
w − β
w + β

z + w

2z(z − w)

=−K21(y, x),

K22(x, y) =ε(x, y) +

˛
dz

2πi

˛
dw

2πi

Φ(x, z)

Φ(y, w)

1[
(1

2 + z)(1
2 − w)

]n 1

(z − α)(w + α)
·

· z + β

z − β
w − β
w + β

z + w

z − w
(2.6.15)
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and where the integration contours for K22 are, for (z, w), the union of Γ1/2,α,β × Γ−1/2,
Γ1/2,β × Γ−α, and Γ1/2,α × Γ−β.

The operator R is of rank two and given by

R =

(
g1(x)fβ+(y)− fβ+(x)g1(y) fβ+(x)g̃2(y)

−g̃2(x)fβ+(y) 0

)
. (2.6.16)

With ΓI we indicate a counter-clockwise contour around a set of points I. The func-
tions g1, g̃2, f

β
+ are defined in (5.3.18) and (5.3.19).

Once the analyticity of 1
α+βP(Lpf

N,N−n ≤ s) is determined (details are carried out in
Section 5.3.3), taking the α + β → 0 limit, we recover the distribution of the stationary
model.

Theorem 2.6.8. Let α ∈ (−1/2, 1/2) be a real number and 1 ≤ N , 0 ≤ n ≤ N − 1 be
positive integers. Let LN,N−n be the stationary LPP time from (1, 1) to (N,N −n) in the
model of weights given by (2.6.10). Then

P(LN,N−n ≤ s) = ∂s

{
pf(J − K) ·

[
eα(s)−

〈
−g1 g̃2

∣∣∣∣(1− J−1K)−1

(
−h1

h2

)〉 ]}
(2.6.17)

where the Fredholm pfaffian is taken over L2(s,∞).

The functions eα, h1 and h2 are defined in (5.2.12) and (5.2.16).
To obtain the limit distribution, we recover the appropriate scaling by computing the

limit shape for the last passage time. Since this can be separated into two contributions
as LN,N−ηN = LN,1 +(LN,N−ηN − LN,1), where each of the terms is a sum of independent
random variables, we get

N−1LN,N−ηN '
1

1
2 − α

+
(1− η)
1
2 + α

=
1

1
4 − α2

− η
1
2 + α

' 4N − 2u25/3N2/3 + δ(2u+ δ)24/3N1/3,

(2.6.18)

after setting α = δ2−4/3N−1/3 and ηN = n = u25/3N2/3. Thus, we consider the scaling

(s, x, y) = 4N − 2u25/3N2/3 + (S,X, Y ) 24/3N1/3. (2.6.19)

Here we got rid of the quadratic term in δ, since it effects the limit distribution only
cosmetically, but it plays a role in the analysis of the kernels asymptotics for δ → ±∞.
Accordingly, we scale the variables z = ζ/(24/3N1/3) and w = ω/(24/3N1/3). Under this
scaling,

lim
N→∞

K
resc
ij (X,Y ) = Aij(X,Y ), i, j ∈ {1, 2}, (2.6.20)



52 Chapter 2. Last Passage Percolation models

where the limit kernels are

A11(X,Y ) = −
ˆ

0

dζ

2πi

ˆ

0,ζ

dω

2πi

e
ζ3

3
−ζ2u−ζX

e
ω3

3
+ω2u−ωY

(ζ − δ)(ω + δ)
ζ + ω

4ζω(ζ − ω)
,

A12(X,Y ) = −
ˆ

0

dζ

2πi

ˆ

δ ζ

dω

2πi

e
ζ3

3
−ζ2u−ζX

e
ω3

3
−ω2u−ωY

ζ − δ
ω − δ

ζ + ω

2ζ(ζ − ω)

= −A21(Y,X),

A22(X,Y ) = E(X,Y ) +

ˆ
dζ

2πi

ˆ
dω

2πi

e
ζ3

3
+ζ2u−ζX

e
ω3

3
−ω2u−ωY

1

ζ − ω

(
1

ζ + δ
+

1

ω − δ

)
.

(2.6.21)

For two sets of points I, J , we indicated with I J and I J the typical Airy contours, as in
Figure 5.3. In A22 the integration contours, for (ζ, ω), are −δ× ζ for the term 1/(ζ+ δ),
and × δ ζ for the term 1/(ω − δ). We have denoted E = E0 + E1 with

E0(X,Y ) = − sgn(X − Y )eδ|X−Y |+2δ2u,

E1(X,Y ) = − sgn(X − Y )

ˆ

±δ〈

dζ

2πi
e−ζ|X−Y |+2ζ2u 2ζ

ζ2 − δ2
. (2.6.22)

i1 `1

i1,i2〉j1,j2 j1,j2〈`1

i2 j1 j2

Figure 2.9: The two Airy integration contours 〉, 〈 with acute angles of π/3 with the horizontal
axis. Note they have opposite orientations.

Denoting with eδ,uhδ,u1 , hδ,u1 , gδ,u1 , g̃δ,u2 the limits of the rescaled functions appearing in
Theorem 2.6.8, we obtain a formula for the limit distribution of LN,N−n when N →∞.

Theorem 2.6.9. Let δ ∈ R, u > 0. Consider the stationary LPP time LN,N−n from
(1, 1) to (N,N − n) and the scaling

n = u25/3N2/3, α = δ2−4/3N−1/3. (2.6.23)

Then,

lim
N→∞

P

(
LN,N−n − 4N + 4u(2N)2/3

24/3N1/3
≤ S

)
= F

(δ,u)
0, half(S) (2.6.24)

with

F
(δ,u)
0, half(S) = ∂S

{
pf(J −A) ·

[
eδ,u(S)−

〈
−gδ,u1 g̃δ,u2

∣∣∣∣∣(1− J−1A)−1

(
−hδ,u1

hδ,u2

)〉 ]}
(2.6.25)

where the Fredholm pfaffian is taken over L2(S,∞).
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The distribution F
(δ,u)
0, half(S) depends on the parameter δ, which gives the limiting

strength of the weights on the boundaries and it interpolates between two Gaussian distri-
bution, obtained in the limiting cases δ → ±∞. To see this, we need to take into account
also the O(N1/3) term in the limit shape approximation, but, in the limit kernels, this
results only in a linear shift of δ(2u+ δ) in the variables S,X, Y . Moreover, one can guess
that for large values of the parameter u, it will be possible to recover the distribution of
the full-space case, i.e. the Baik–Rains distribution (see (2.5.22) for n = 1 with u1 = τ),
since (as in the point-to-point problem) the path will not be influenced too much by the
simmetry of the system when the ending point is far enough from the diagonal. This is
indeed proved in Theorem 5.2.10

2.7 Slow decorrelation

We have seen that the exact form of the statistics for LPP and, in general, for models
in the KPZ class depends on the initial geometry of the process. These results have
been proved only for a group of solvable models such as LPP, TASEP, PNG, that we
presented in Chapter 1. Moreover, most of the results deal only with the spatial process
at a fixed time and not with the time evolution of the process. Here we discuss a property
of KPZ models that allows us to obtain the scale of time correlations. It was shown
in [Fer08a] that non-trivial correlations survive on the macroscopic time scale, if one
considers space-time points along special directions. This phenomenon is called “slow
decorrelation”. As a consequence, the space-time is non-trivially fibred, but there exist
directions along which the decorrelation exponent is 1 and not 2/3. These directions are
given by the characteristic lines of the PDE associated to the macroscopic evolution of
the height function.

The slow decorrelation phenomenon was first shown and proved for the PNG model
[Fer08a] and for TASEP with stationary initial distribution [BFP10]. This was proved
in [CFP12] for a generalized LPP model that includes many KPZ models; moreover,
sufficient conditions under which such LPP models display slow decorrelation have been
given. They considered a growth model in Rd+1, for d ≥ 1, on a regular lattice or on a
Poisson point process. A directed LPP model is defined as an almost surely sigma-finite
random non-negative measure µ ∈ Rd+1. They studied the directed half-line to point last
passage time, where the half-line is given by

HL = {p : p1 = · · · = pd+1 ≤ 0}. (2.7.1)

A directed path is a curve π ∈ Rd+1 such that Rπ is a 1-Lipschitz function of t, where
R is the rotation matrix that takes HL to the real half-line R≤0. The passage time of a
directed path is defined as the measure of the curve π,

T (π) = µ(π). (2.7.2)

The last passage time from HL to a point p is

LHL(p) = sup
π:HL→p

T (π). (2.7.3)

The following theorem states that slow decorrelation can be observed for any model
that can be phrased in terms of this LPP model under certain conditions on the height
function.
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Theorem 2.7.1 (Theorem 2.1 of [BFP10]). Consider a last passage model in dimension
d + 1 with d ≥ 1 with a specific distribution of the random variables in the environment.
Consider a point p ∈ Rd+1 and a time-like direction u ∈ Rd+1

+ . If there exist constants
(depending on p, u and the model) `HL, `PP ≥ 0, γHL, γPP ∈ (0, 1), ν ∈ (0, γHL/γPP),
distributions D,D′, and scaling constants cHL, cPP such that

LHL(tp)− t`HL

cHLtγHL

(d)→ D,

LHL(tp+ tνu)− tν`HL − tν`PP

cHLtγHL

(d)→ D t→∞,

LPP(tp+ tνu)− tν`PP

cPPtγPP

(d)→ D′,

(2.7.4)

then we have slow decorrelation of the half-line to point last passage time at tp in the
direction u with scaling exponents ν, which means that for all ε > 0,

lim
t→∞

P(|LHL(tp+ tνu)− LHL(tp)− tν`PP| ≥ εtγHL) = 0. (2.7.5)

This theorem says that, given the existence of a law of large numbers and a central
limit theorem, the height function at time tp + tνu, scaled by t1/3 and in a spatial scale
of t2/3, will be asymptotically the same as at time tp.

Slow decorrelation has been widely used, since it represents a technical tool to translate
results on the limit processes from one observable to another and to extend known results
on limit processes for more general initial condition, as we did in the following chapters.

Here we state the one-point slow decorrelation theorem in the setting of point-to-
point LPP with homogeneous waiting times, since it is what we employ in our proofs.
The application to finitely many points is straightforward using union bound and it was
already used for instance in [CFP10,BFP10].

Theorem 2.7.2 (One-point slow decorrelation). Let p ∈ R2
+ be a direction. Assume that

there exist constants µ = µ(p), α ∈ (0, 1) and ν ∈ (0, 1), and a distribution D, such that

L(0,0)→[p`] − µ`
`α

⇒ D, as t goes to infinity. (2.7.6)

Then, for any ε > 0,

lim
`→∞

P
(
|L(0,0)→[p(`+`ν)] − L(0,0)→[p`] − µ`ν | ≥ ε`α

)
= 0. (2.7.7)

This pointwise property can be extended to a finite interval [−M,M ] and it is possible
to formulate a uniform slow decorrelation property [CLW16], as stated in Theorem 3.4.1.



Chapter 3

Universality of the GOE
Tracy-Widom distribution for
TASEP with arbitrary particle
density

This chapter is based on [FO18]. In this work we consider TASEP in continuous time with
non-random initial conditions and arbitrary fixed density of particles ρ ∈ (0, 1). We show
GOE Tracy-Widom universality of the one-point fluctuations of the associated height
function. The result phrased in last passage percolation language is the universality for
the point-to-line problem where the line has an arbitrary slope.

3.1 Introduction

We consider the totally asymmetric simple exclusion process (TASEP) in continuous time
on Z. It is an interacting particle system with the constraint that there is at most one
particle per site. Particles jump to their right-neighbouring site with rate 1, provided the
arrival site is empty. A very natural and important observable is the integrated current
at (for example) the origin, that is,

J(t) = # particles which jumped from site 0 to site 1 during time [0, t]. (3.1.1)

TASEP is a model in the Kardar-Parisi-Zhang (KPZ) universality class and thus one
expects that for some model-dependent constants, c1, c2,

t 7→ J(t)− c1t

c2t1/3
(3.1.2)

has in the t → ∞ limit a non-trivial distribution function, say D. It is well-known
that for KPZ models the distribution D depends on classes of initial conditions [BR01c,
BR01b, PS00] (see also the reviews [Fer08b, Cor12]). In particular, consider the case of
non-random initial condition with density ρ = 1/2, realized by placing at time 0 particles
on every even sites. The joint distribution of the current at different points has been
studied [Sas05,BFPS07]. As a particular case, the one-point distribution is given by the
Fredholm determinant, which is shown to be equal to the GOE Tracy-Widom distribution
in [FS05],

lim
t→∞

P
(
J(t) ≥ 1

4 t− s2
−2/3t1/3

)
= FGOE(22/3s), (3.1.3)
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where FGOE denotes the GOE Tracy-Widom distribution function discovered first in ran-
dom matrix theory [TW96]. The analogue result was previously known for discrete time
TASEP with parallel update and for a combinatorial model of longest increasing subse-
quences with involutions [BR01c,BR01b]. This latter model was brought in connection
to the KPZ world in [PS00], where it was reinterpreted as a stochastic growth model (the
so-called polynuclear growth model).

From [Joh05] we also have the variational formula

FGOE(22/3s) = P
(

max
v∈R
{A2(v)− v2} ≤ s

)
, (3.1.4)

where A2 is called the Airy2 process [PS02b, Joh03]. There are many more variational
formulas related with the Airy2 process, see e.g. [BL13] and the review [QR14].

By universality one expects that the GOE Tracy-Widom distribution describes the
fluctuations of J(t) in the large time limit for any non-random initial condition with
density ρ ∈ (0, 1). Beyond the case of ρ = 1/2, this was proven for densities ρ = 1/d,
d = 2, 3, 4, . . . in [BFP07], and for the low-density limit of reflecting Brownian motions
in [FSW15b] (in these works also the joint distribution of the current have been analyzed).
In these papers, the results are achieved by exact formulas for a correlation kernel which
describes the system. However, beyond the d = 2 case, the asymptotic analysis in these
special cases turned out to be quite involved. An exact formula has very recently been
derived for arbitrary initial condition as well [MQR17]. Formulas for the system with
periodic boundary condition are also know only for densities 1/2, 1/3, . . . [BL16,BL17].

In this paper we prove that for any ρ ∈ (0, 1),

lim
t→∞

P
(
J(t) ≥ ρ(1− ρ)t− s(ρ(1− ρ))2/3t1/3

)
= FGOE(22/3s); (3.1.5)

compare this with Corollary 3.2.8. The proof of our result is in his core probabilistic,
where the only input from exactly solvable cases is the convergence to the Airy2 process
for the so-called step initial condition and bounds on the tails of its one-point distribution.
We prove the convergence to the variational problem (3.1.4), which does not depend on ρ.
For ρ = 1/2 the limiting distribution function was already known to be given by FGOE.
The method allows for more general, including random initial conditions, we first prove
convergence to a more generic variational process in Theorem 3.2.7.

To show the convergence to the variational problem, we work in the last passage per-
colation (LPP) framework (see Section 3.2.1 for definitions and details). In that language
we need to study a “line-to-point” problem with the line having arbitrary slopes. Using a
tightness result for the “point-to-point” problem (see Theorem 3.2.3) and a slow decorrela-
tion result (see Theorem 2.7.2) (which is then extended to a functional slow decorrelation
theorem (see Theorem 3.4.1)) we can show, analogously to [CLW16], the convergence of
a restricted “line-to-point” LPP problem to the variational problem (3.1.4) with |u| ≤M .
The second step of the proof consists in showing that the original LPP is localized, which
is obtained by obtaining a bound on the probability that the maximizer of the LPP is not
localized on a O(Mt2/3) region. In particular, for the flat initial condition case, we obtain
a Gaussian bound in M , see Lemma 3.4.3 (for an analogue bound on the limit process,
see Proposition 4.4 of [CH13]).

The strategy to prove the convergence for the restricted was first developed by Corwin,
Liu and Wang in [CLW16]. In that paper, for generic initial conditions (possibly random)
they obtained universal results showing that the distribution converges to a variational
problem (which depends on how the initial condition scales under diffusive scaling), for
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cases which are macroscopically at density 1/2. In the continuous time setting, this was
studied in [CFS18]. In particular, if the initial condition “scales subdiffusively”, then for
ρ = 1/2 one still sees FGOE fluctuations. This fact was predicted in the context of the
KPZ equation in [QR19].

The main technical novelty of our proof concerns the localization. In particular, unlike
in [CLW16,CFS18], we do not require any extra input from solvable models beyond the
ones which are used to prove convergence in the restricted LPP problem. All we need is a
good control on the point-to-point process along a horizontal line. The key idea is to bound
the increment of the process by the ones of two stationary initial conditions, with densities
slightly higher/lower than ρ, which are chosen such that the inequality holds on a set of
high probability. This probability is given in terms of some exit point probabilities. This
comparison was used first by Cator and Pimentel in [CP15] (see also [Pim17b]) to show
tightness for the Hammersley process and the point-to-point LPP along a characteristic
direction with ”speed” 0. In Lemma 3.2.5 we obtain much stronger exit point probabilities
than in [Pim17b]. More importantly, we use the inequality in two ways: (a) to extend
the tightness result to any characteristic direction (which is needed to the analysis any
density ρ), and (b) to control the fluctuations of the process over large distances (of order
Mt2/3).

The control of the fluctuations over large distances is indeed a key ingredient to obtain
the localization bound. This reduces the input from exactly solvable models with respect
to [CLW16, CFS18]. In [CLW16] they introduced a non-intersecting line ensemble and
the bound followed using its Gibbs-Brownian property in a smart way. In [CFS18] the
bound was obtained using an explicit correlation kernel for the so-called ”half-flat” initial
condition. This approach allowed to simplify [CLW16], but it has the drawback that it is
restricted to the case ρ = 1/2.

The main problem in analyzing directly ρ 6∈ {1/2, 1/3, 1/4, . . .} was that an explicit
expression for the correlation kernel was not known. In the recent paper on KPZ fixed
point by Matetski, Quastel and Remenik [MQR17] they found an explicit representation
of it which could be used to obtain our result (and also the convergence to the Airy1

process). However, the analysis has been made only for ρ = 1/2, since it was enough for
answering the question on the KPZ fixed-point considered in the paper.

Although the method in this paper allows to get convergence only for the one-point
distribution, its strategy could be used also for other models in the KPZ universality
class. For instance, for the partially asymmetric simple exclusion process (PASEP), where
an analogue of the work [MQR17] seems out of reach (an exact formula allowing the
asymptotic analysis for PASEP even with ρ = 1/2 is not known, although heavy efforts
have been made in particular by Ortmann, Quastel and Remenik [OQR16, OQR17]).
On the other hand, ingredients like slow decorrelation hold also for PASEP using basic
coupling [CFP12]. Furthermore, as shown in [Fer18], the mapping to LPP is actually not
needed to analyze TASEP. This observation is relevant since for PASEP this mapping
does not exist anymore. The main missing ingredient for an extension to PASEP is the
convergence to the Airy2 process for step initial condition. This is an open problem, but
it looks easier than the analysis of PASEP with general densities ρ through exact formulas
(compare with the formulas for ρ = 1/2 of [OQR16,OQR17]).

Outline. In Section 3.2 we define TASEP, LPP and present the main results. Sec-
tion 3.3 contains the proof of tightness and the derivation of a bound needed to control
localization as well. Finally, we prove the main theorem for LPP and TASEP in Sec-
tion 3.4.
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3.2 Main results

3.2.1 LPP and TASEP

A last passage percolation (LPP) model on Z2 with independent random variables ωi,j ,
i, j ∈ Z is the following. An up-right path π on Z2 from a point A to a point E is a
sequence of points (π(0), π(1), . . . , π(n)) in Z2 with π(k+ 1)−π(k) ∈ {(0, 1), (1, 0)}, with
π(0) = A and π(n) = E, and where n is called the length `(π) of π. Now, given a set of
points SA and E, one defines the last passage time LSA→E as

LSA→E = max
π:A→E
A∈SA

∑
1≤k≤`(π)

ωπ(k). (3.2.1)

Finally, we denote by πmax
SA→E any maximizer of the last passage time LSA→E . For contin-

uous random variables, the maximizer is a.s. unique.
TASEP is an interacting particle system on Z with state space Ω = {0, 1}Z. For a

configuration η ∈ Ω, η = (ηj , j ∈ Z), ηj is the occupation variable at site j, which is 1 if
and only if j is occupied by a particle. TASEP has generator L given by [Lig99]

Lf(η) =
∑
j∈Z

ηj(1− ηj+1)
(
f(ηj,j+1)− f(η)

)
, (3.2.2)

where f are local functions (depending only on finitely many sites) and ηj,j+1 denotes
the configuration η with the occupations at sites j and j + 1 interchanged. Notice that
for the TASEP the ordering of particles is preserved. That is, if initially one orders from
right to left as

. . . < x2(0) < x1(0) < 0 ≤ x0(0) < x−1(0) < · · · ,

then for all times t ≥ 0 also xn+1(t) < xn(t), n ∈ Z.
TASEP can be also though as a growth process by introducing the height function

h(j, t) as

h(j, t) =


2J(t) +

∑j
i=1(1− 2ηi(t)) for j ≥ 1,

2J(t) for j = 0,

2J(t)−
∑0

i=j+1(1− 2ηi(t)) for j ≤ −1,

(3.2.3)

for j ∈ Z, t ≥ 0, where J(t) counts the number of jumps from site 0 to site 1 during the
time-span [0, t].

The connection between TASEP and LPP is as follows. Take ωi,j to be the waiting
time of particle j to jump from site i−j−1 to site i−j. Then ωi,j are Exp(1) i. i. d. random
variables. Further, setting the set SA = {(u, k) ∈ Z2 : u = k+xk(0), k ∈ Z}, we have that

P
(
LSA→(m,n) ≤ t

)
= P (xn(t) ≥ m− n) = P (h(m− n, t) ≥ m+ n) . (3.2.4)

3.2.2 Universality for LPP

For any fixed ρ ∈ (0, 1), we consider the LPP model with SA corresponding to TASEP
with initial condition xflat

k (0) = −bk/ρc, k ∈ Z. We denote this initial set by

Lflat
ρ =

{(
bρ−1

ρ kc, k
)
, k ∈ Z

}
(3.2.5)

and we are interested in the LPP from Lflat
ρ to EN (w) in the limit N →∞ illustrated in

Figure 3.1. However, the approach used in the proof allows to consider more general (also
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random) initial conditions. Thus we consider TASEP with initial condition close to the
flat initial condition with density ρ as well. Denote by

uk = xk(0)− xflat
k (0) (3.2.6)

the deviation of the particle position with respect to the flat initial condition with density
ρ. In this setting, in the LPP setting, we need to consider the initial set

Lρ =
{(
bρ−1

ρ kc+ uk, k
)
, k ∈ Z

}
. (3.2.7)

We also denote
χ = ρ(1− ρ). (3.2.8)

Let
Aflat(v) =

(
−2(1− ρ)χ−1/3vN2/3, 2ρχ−1/3vN2/3

)
(3.2.9)

and define by A(v) the closest point on Lρ to the characteristic line with direction eρ =
((1− ρ)2, ρ2) passing by Aflat(v). Then define λ(v) by

A(v) = Aflat(v) + λ(v)eρ (3.2.10)

To avoid that the randomness in the initial condition dominates the bulk ones, we assume
Assumption A:

lim
N→∞

λ(v)

χ−2/3N1/3
= R(v) =

√
2σB(v), (3.2.11)

weakly on the space of continuous functions on bounded sets, where B is a two-sided
Brownian motion and σ ≥ 0 a coefficient. The stationary initial condition is σ = 1, while
the flat initial condition is σ = 0.

Furthermore, we assume that globally the starting height function (or particle posi-
tions) are not deviating too much from the flat case, so that the maximization problem is
non-trivially correlated only with the randomness in a N2/3-neighbourhood of the origin.
Assumption B: For any given δ > 0 and M > 0, there exists a N0 such that for all
N ≥ N0,

P(λ(v) ≥ −δv2N1/3 for all |v| ≥M) ≥ 1−Q(M), lim
M→∞

Q(M) = 0, (3.2.12)

where v are restricted to those such that A(v) is connected to the end-point of the LPP
by an up-right path.

These assumptions clearly holds for LPP corresponding to flat initial conditions, but
also to the case where the deviation of the initial height function scales diffusively like in
the stationary initial conditions. Under these assumptions we show the following univer-
sality result.

Theorem 3.2.1. Let ρ ∈ (0, 1), χ = ρ(1− ρ). Set the end-point of the LPP as EN (w) =
(mN (w), nN (w)) with

mN (w) = 1−ρ
ρ N − 2w(1− ρ)χ−1/3N2/3,

nN (w) = ρ
1−ρN + 2wρχ−1/3N2/3,

(3.2.13)

Under Assumptions A and B, for any s ∈ R,

lim
N→∞

P

(
LLρ→EN (w) ≤

N

χ
+
sN1/3

χ2/3

)
= P

(
max
v∈R
{A2(v)− (v − w)2 +R(v)} ≤ s

)
.

(3.2.14)
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Figure 3.1: The last passage percolation setting considered in Theorem 3.2.1. The maximizer π
from Lρ (red) to EN (w) starts in a O(N2/3)-neighbourhood of the origin. The straight thick line
represents Lflat

ρ .

where A2 is the Airy2 process [PS02b]. In particular, for LPP from Lflat
ρ , for which R = 0,

we have

lim
N→∞

P
(
LLflat

ρ →EN (w) ≤ N/χ+ sN1/3/χ2/3
)

= FGOE(22/3s), (3.2.15)

where FGOE is the GOE Tracy-Widom distribution function [TW96].

In [BLS12] the distribution of the position where the maximum of A2(v) − v2 is
attained has been derived. Due to the quadratic term it is localized and bounds can be
found in [CH13,QR15]. These bounds can be compared with our Lemma 3.4.3, where we
obtain a Gaussian bound in M of the probability that the maximizers is not in a main
region of order O(MN2/3) (uniformly for all N large enough).

Remark 3.2.2. From the work on KPZ equation of Remenik and Quastel [QR19] it is
conjectured that for KPZ growth models, if the initial configuration is flat with subdiffu-
sive scaling, then the limiting distribution is the same as for the flat case (see Theorem 1.5
and subsequent remarks in [QR19]). In the LPP framework this corresponds to have Lρ
replaced by a (possibly random) down-right line, which at distance X from the origin
has fluctuations at most O(|X|δ) for some δ < 1/2. Theorem 3.2.1 confirms it for general
densities (since in that case R = 0); compare with [CFS18,CLW16] for the analogue result
at ρ = 1/2.

The proof of the main theorem (Theorem 3.2.1) is in his core probabilistic and it is
based on the comparison of the LPP problem from a horizontal line to EN (w), where the
line is around the region where the LPP from Lρ to EN (w) is achieved. If we look the
maximizers from the EN (w) position backwards, this is equivalent to consider the LPP
from (0, 0) to a horizontal line crossing (γ2n, n) for some γ ∈ (0,∞) with n proportional
to N . Therefore consider the following LPP setting: for i, j ≥ 1, let ωi,j be i. i. d.Exp(1)
random variables, ωi,j = 0 for i ≤ 0 or j ≤ 0.

The estimate from law of large numbers for the LPP from the origin to (M,N) is
given by (

√
M +

√
N)2 (as shown by Rost [Ros81] in the TASEP setting). Due to KPZ

scaling we define the rescaled last passage time1

Lresc,h
n (u) :=

L(0,0)→(γ2n+β1un2/3,n) − n(1 +
√
γ2 + β1un−1/3)2

β2n1/3
, (3.2.16)

1Here and below we will not write the integer parts explicitly in the entries of the LPP.
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where we set β1 = 2(1 + γ)2/3γ4/3 and β2 = (1 + γ)4/3γ−1/3. The coefficient β2 is chosen
to have the one-point distribution given by the GUE Tracy-Widom distribution [TW94],
as shown by Johansson in Theorem 1.6 of [Joh00b]. The coefficient β1 is chosen such
that the limit process converges to the Airy2 process [PS02b], A2. The finite-dimensional
convergence to the Airy2 process is a special case of [BF08,BP08, IS07]. Note that since

n(1 +

√
γ2 + β1un−1/3)2 = (1 + γ)2n+ 2u(1 + γ)5/3γ1/3n2/3− β2u

2n1/3 +O(1) (3.2.17)

we can replace in (3.2.16) also the approximation of the LLN until the order n1/3 only
without any relevant changes.

Theorem 3.2.3. Fix any M ∈ (0,∞). Then, u 7→ Lresc
n (u) is tight in the space of

continuous functions on [−M,M ], C([−M,M ]).

As a direct consequence of the convergence of finite-dimensional distributions and
tightness we have:

Corollary 3.2.4. For any given finite M > 0, u 7→ Lresc
n (u) converges weakly to an Airy2

process u 7→ A2(u) in C([−M,M ]).

The next result which is in itself interesting is a bound of the exit point probability
for the stationary situation, which can be achieved (see more details in Section 3.3.1) if
we consider the LPP as before but with extra random variables if i = 0 or j = 0, namely
with

ωi,j =


0 i = 0, j = 0,

Exp(1− ρ) i ≥ 1, j = 0,

Exp(ρ) i = 0, j ≥ 1,

Exp(1) i ≥ 1, j ≥ 1.

(3.2.18)

Here Exp(a) denotes exponential random variables with parameter a (thus average 1/a).
For the LPP with boundary conditions (3.2.18) we define the exit point as the last point
of a path π(0,0)→(m,n) on the x-axis or the y-axis. Since we need to distinguish whether
the exit point is on the x- or on the y-axis, we introduce a random variable Zρ(m,n) ∈ Z
such that, if Zρ(m,n) > 0, then the exit point is (Zρ(m,n), 0), as if Zρ(m,n) < 0, then
the exit point is (0,−Zρ(m,n)).

Lemma 3.2.5 (Exit point probability). Let κ > 0 be given and set

ρ± = ρ0 ± κn−1/3 with ρ0 =
1

γ + 1
. (3.2.19)

Then there exists a n0 such that for all n ≥ n0,

P(Zρ+(γ2n, n) > 0) ≥ 1− C exp(−cκ2),

P(Zρ−(γ2n, n) < 0) ≥ 1− C exp(−cκ2),
(3.2.20)

for some constants C, c independent of κ (and which can be taken uniform for γ in a
bounded set).

A simple change of variables gives the following result.

Corollary 3.2.6. In the settings of Lemma 3.2.5, for any given M > 0 and κ satisfying

κ̃ = κ−Mγ1/3(1 + γ)−4/3 > 0 (3.2.21)

it holds
P(Zρ+(γ2n− β1Mn2/3, n) ≥ 0) ≥ 1− C exp(−cκ̃2),

P(Zρ−(γ2n+ β1Mn2/3, n) ≥ 0) ≥ 1− C exp(−cκ̃2).
(3.2.22)
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3.2.3 Universality for TASEP

The LPP with Lflat
ρ as initial set corresponds to TASEP in continuous time with initial

condition xk(0) = −bk/ρc, k ∈ Z. We have the following universality result for the one-
point fluctuations for TASEP with flat initial conditions for any density ρ ∈ (0, 1). For
the more general initial condition, in terms of height Assumptions A and B rewrite as
follows.
Assumption A:

lim
L→∞

h(2vχ1/3L2/3, 0)− 2v(1− 2ρ)χ1/3L2/3

2χ2/3L1/3
= R(v) =

√
2σB(v), (3.2.23)

weakly on the space of continuous functions on bounded sets, where B is a two-sided
Brownian motion and σ ≥ 0 a coefficient. The stationary initial condition is σ = 1, while
the flat initial condition is σ = 0.
Assumption B: For any given δ > 0 and M > 0, there exists a L0 such that for all
L ≥ L0,

P(h(2vχ1/3L2/3, 0)− 2v(1− 2ρ)χ1/3L2/3 ≥ −δv2L1/3 for all |v| ≥M) ≥ 1−Q(M),
(3.2.24)

with Q independent on L and limM→∞Q(M) = 0.

Theorem 3.2.7. Let ρ ∈ (0, 1) and set χ = ρ(1− ρ). Then, for any s ∈ R,

lim
t→∞

P
(
h((1− 2ρ)t+ 2wχ1/3t2/3, t) ≥ (1− 2χ)t+ 2w(1− 2ρ)χ1/3t2/3 − 2sχ2/3t1/3

)
= P

(
max
v∈R
{A2(v)− (v − w)2 +R(v)} ≤ s

)
.

(3.2.25)

Proof. The first equality follows from (3.2.3). The rest is a direct consequence of Theo-
rem 3.2.1 and the relation (3.2.4).

The flat TASEP is the special case R = 0 and the result is independent of w since the
Airy2 process is stationary. Thus we have proven the following result, which motivated
the study of this paper.

Corollary 3.2.8. Consider TASEP with flat initial condition and density ρ ∈ (0, 1), and
set χ = ρ(1− ρ). Then, for any s ∈ R,

lim
t→∞

P
(
J(t) ≥ χt− sχ2/3t1/3

)
= lim

t→∞
P
(
h((1− 2ρ)t, t) ≥ (1− 2χ)t− 2sχ2/3t1/3

)
= P

(
max
v∈R
{A2(v)− v2} ≤ s

)
= FGOE(22/3s).

(3.2.26)

3.3 Comparison with stationary LPP and proof of Theo-
rem 3.2.3

In this section we will prove tightness of the process Lresc,h
n . This mainly follows the

approach of Cator and Pimentel [CP15]. The key observation in [CP15] is that the incre-
ments of the LPP with end-points on a horizontal line can be bounded by the increments
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of the LPP for the stationary case on the set of events where the “exit point” is on the
right or the left of the origin. Then the idea is to consider stationary LPP with slightly
higher/lower density so that the given exit point events are highly probable and at the
same time the increments of the LPP are controlled by the ones in the stationary LPPs.
In [CP15] the case of the Hammersley process was studied in details and it was stated the
result for the exponential random variable along the diagonal only, i.e. γ = 1. The proof
of the latter is left to the reader as it was mentioned that it is similar to the case of the
Hammersley.

We have a few reasons to present the details for the result with generic densities:

(a) here we consider the space of continuous functions instead of the càdlàg functions
and there are some minor twists which have to be taken into account for generic density
ρ 6= 1/2;

(b) we get a much stronger bound for the exit point distributions with respect to [CP15]
(see Lemma 3.2.5);

(c) we derive an estimate on the increments, which is not needed for proving tightness,
but it is the key for the control of the probability that the maximizer of the LPP from Lρ
to EN (w) is localized: the derivation of this result is noticeably simplified with respect to
the previous papers [CLW16] (they made use of a Brownian-Gibbs property) and [CFS18]
(an ad-hoc comparison with half-line problem with slope −1 was used).

3.3.1 Stationary LPP and exit points

Let us now explain what we mean with stationary LPP with density ρ ∈ (0, 1) and
report a result of Balázs, Cator and Seppäläinen [BCS06]. Consider the LPP as given by
(3.2.18). We denote by Lρ(m,n) the last passage percolation from (0, 0) to (m,n) in this
setting, while we use L(m,n) for the last passage percolation from (0, 0) to (m,n) if we
set ωi,0 = ω0,j = 0.

The boundary conditions (3.2.18) correspond to a TASEP starting from the stationary
Bernoulli(ρ) measure, conditioned on η0(0) = 0 and η1(0) = 1. Let P0(t) be the position
at time t of the particle which started in 1 at time 0, and H0(t) be the position at time
t of the hole which started in 0 at time 0. It was shown in Corollary 3.2 of [BCS06] (as
a corollary of Burke’s theorem [Bur56]) that P0(t) − 1 and −H0(t) are two independent
Poisson processes with jump rates 1−ρ and ρ. They extended the result to get independent
increments also in the bulk of the system. The result we will use is the following:

Lemma 3.3.1 (Special case of Lemma 4.2 of [BCS06]). Fix any n ≥ 1. Then the incre-
ments

{Lρ(m+ 1, n)− Lρ(m,n),m ≥ 1} (3.3.1)

are i. i. d. exponential random variables with parameter 1− ρ.

With this definition we have the following lower and upper bounds in the increments
of the process m 7→ L(m,n) that we want to study:

Lemma 3.3.2 (Lemma 1 of [CP15]). Let 0 ≤ m1 ≤ m2. Then if Zρ(m1, n) ≥ 0, it holds

L(m2, n)− L(m1, n) ≤ Lρ(m2, n)− Lρ(m1, n), (3.3.2)

while, if Zρ(m2, n) ≤ 0, then we have

L(m2, n)− L(m1, n) ≥ Lρ(m2, n)− Lρ(m1, n). (3.3.3)
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From the law of large numbers results one easily obtains that Zρ(γ2n, n) is typically
around 0 (it will fluctuates over a n2/3 scale), if one chooses ρ = 1/(γ + 1). Therefore we
set

ρ± = ρ0 ± κn−1/3 with ρ0 =
1

γ + 1
. (3.3.4)

The choice of n−1/3 is due to the fact that the increments of the scaled process are
just increased/decreased by a finite amount (proportional to κ), but on the other hand
P(Zρ+(γ2n, n) > 0) and P(Zρ−(γ2n, n) < 0) goes to 1 as κ→∞. The first step is to get
an estimate on these probabilities.

3.3.2 Bounds on exit points

Now we want to derive a bound on P(Zρ+(γ2n, n) > 0) and on P(Zρ−(γ2n, n) < 0). The
last passage time Lρ is the maximum between the last passage time from (0, 1) and the
one from (1, 0), since any up-right path from (0, 0) has to go through one of these points.
These LPP are denoted by

Lρ−(m,n) = L(0,0)→(1,0)→(m,n), Lρ| (m,n) = L(0,0)→(0,1)→(m,n). (3.3.5)

In terms of these two random variables, we have

P(Zρ+(γ2n, n) > 0) = P
(
L
ρ+
− (γ2n, n) > L

ρ+

| (γ2n, n)
)
,

P(Zρ−(γ2n, n) < 0) = P
(
L
ρ−
| (γ2n, n) > L

ρ−
− (γ2n, n)

)
.

(3.3.6)

Now we are ready to prove Lemma 3.2.5 and Corollary 3.2.6.

Proof of Lemma 3.2.5. By symmetry of the problem under the exchanges γ → 1/γ and
ρ → 1 − ρ it is enough to deal with the first estimate. We are going to prove that
P(Zρ+(γ2n, n) < 0) ≤ C exp(−cκ2).

First notice that for any x ∈ R we have

P(Zρ+(γ2n, n) < 0) = P
(
L
ρ+
− (γ2n, n) < L

ρ+

| (γ2n, n)
)

≤ P
(
L
ρ+
− (γ2n, n) ≤ x

)
+ P

(
L
ρ+

| (γ2n, n) > x
)
.

(3.3.7)

Further, since for κ > 0 we have ρ+ > ρ0, and thus E(ω0,i) = 1/ρ+ < 1/ρ0, implying

P
(
L
ρ+

| (γ2n, n) > x
)
≤ P

(
Lρ0

| (γ2n, n) > x
)
. (3.3.8)

The bounds of Lemma 3.3.3 below with x = (1 + γ)2n+ aκ2β2n
1/3 (where we can choose

any value a ∈ (0, (1 + γ)8/3γ−2/3)) together with (3.3.7) and (3.3.8) give the desired
result.

Proof of Corollary 3.2.6. Setting γ̃2n = γ2n±β1Mn2/3 and 1
1+γ ±κn

−1/3 = 1
1+γ̃ ± κ̃n

−1/3

we find the value of κ̃. Then the bound follows by Lemma 3.2.5.

Lemma 3.3.3. Let x = (1 + γ)2n + aκ2β2n
1/3 with a ∈ (0, (1 + γ)8/3γ−2/3). Then,

uniformly for n large enough, we have

P
(
Lρ0

| (γ2n, n) > x
)
≤ Ce−cκ2

,

P
(
L
ρ+
− (γ2n, n) ≤ x

)
≤ Ce−cκ3

,
(3.3.9)

for some κ-independent constants C, c ∈ (0,∞) (c is depending on a).
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Proof. Denoting Lρ0,resc :=
L
ρ0
| (γ2n,n)−(1+γ)2n

β2n1/3 , the first inequality becomes an estimate
on 1− P(Lρ0,resc ≤ aκ2). The distribution of Lρ0,resc has been studied in [BBP06] in the
framework of sample covariance matrices. One can use the connection of this LPP to a
rank-one problem in sample covariance matrices (see Section 6 of [BBP06]) to recover the
result. Let us explain how it goes.

From (62) of [BBP06] we have that

P(Lρ0,resc ≤ ξ) = det (1−Kn)L2(R+) (3.3.10)

where Kn is a trace-class operator acting on L2(R+). The integral kernel of Kn can be
expressed as

Kn(u, v) =

ˆ
R+

dλHn(u, λ)Jn(λ, v), (3.3.11)

where Hn(u, v) = H(ξ + u + v) and Jn(u, v) = J (ξ + u + v) with H, J given in (93)-
(96) of [BBP06]. Using the triangular inequality and a standard inequality on Fredholm
determinants (see e.g. Theorem 3.4 of [Sim00]) we have

|1− det(1−Kn)| ≤ |1− det(1−K∞)|+ | det(1−K∞)− det(1−Kn)|
≤ (‖K∞‖1 + ‖K∞ −Kn‖1) exp(‖K∞‖1 + ‖Kn‖1 + 1).

(3.3.12)

The limits of H and J are denoted by H∞ and J∞ and they are given in (120) and (122)
of [BBP06]. For k = 1 H∞(u) = e−εu

´
R+

Ai(ξ + λ + u)dλ and J∞(u) = eεuAi′(ξ + u)
with ε > 0 being any small constant. Using triangular inequalities and the identity
‖AB‖1 ≤ ‖A‖HS‖B‖HS (see e.g. Theorem VI.22 of [RS78]) we can bound each of the
norms in (3.3.12) by a finite sum of product of two of the following Hilbert-Schmidt
norms,

‖H∞‖HS, ‖J∞‖HS, ‖H∞ −Hn‖HS, ‖J∞ − Jn‖HS, (3.3.13)

As a function of ξ, the latter two have exponential bounds (see Proposition 3.1 of [BBP06])
uniformly for n large enough, while the first two have (super-)exponential decay from the
known asymptotics of the Airy functions (e.g., |Ai(x)| ≤ e−x and |Ai′(x)| ≤ e−x, for all
x ∈ R).

To prove the second inequality, it is enough to have a bound on the probability for a
lower bound for Lρ+

− . For any choice of ξ0 > 0, we have

L
ρ+
− (γ2n, n) ≥ Lρ+(ξ0n

2/3, 0) + L
ρ+

(ξ0n2/3,0)→(γ2n,n)

≥ Lρ+(ξ0n
2/3, 0) + L(ξ0n2/3,0)→(γ2n,n),

(3.3.14)

where the L without ρ+ means the LPP with all ω’s to be Exp(1). Then

P
(
L
ρ+
− (γ2n, n) ≤ x

)
≤ P

(
Lρ+(ξ0n

2/3, 0) + L(ξ0n2/3,0)→(γ2n,n) ≤ x
)
. (3.3.15)

Let us see what is a good choice for ξ0. The estimate from the law of large numbers gives

Lρ+(ξ0n
2/3, 0) ' ξ0n

2/3/(1− ρ+) = 1+γ
γ ξ0n

2/3 + (1+γ)2

γ2 ξ0κn
1/3 +O(1) (3.3.16)

and

L(ξ0n2/3,0)→(γ2n,n) '
(√

n+

√
γ2n− ξ0n2/3

)2

= (1+γ)2n− 1+γ
γ ξ0n

2/3− ξ2
0

4γ3
n1/3 +O(1).

(3.3.17)
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The sum of (3.3.16) and (3.3.17) (up to O(n1/3)) is maximal for ξ0 = 2γ(1 + γ)2κ, which
is the value that we choose. Let us define the rescaled LPP by

Lresc
− =

Lρ+(ξ0n
2/3, 0)−

(
1+γ
γ ξ0n

2/3 + (1+γ)2

γ2 ξ0κn
1/3
)

n1/3
,

Lresc
bulk =

L(ξ0n2/3,0)→(γ2n,n) −
(

(1 + γ)2n− 1+γ
γ ξ0n

2/3 − ξ2
0

4γ3n
1/3
)

n1/3

(3.3.18)

Since x = (1 + γ)2n+ aκ2β2n
1/3, we have that

(3.3.15) ≤ P
(
Lresc
− + Lresc

bulk ≤ −s̃
)
≤ P

(
Lresc
− ≤ −s̃/2

)
+ P (Lresc

bulk ≤ −s̃/2) (3.3.19)

with s̃ =
(
(1 + γ)4/γ − aβ2

)
κ2.

For any a ∈ (0, (1 + γ)8/3γ−2/3) we have s̃ > 0. Then, uniformly for n large enough,
by Proposition A.1.1(c) we have2

P (Lresc
bulk ≤ −s̃/2) ≤ Ce−cs̃3/2 = Ce−c̃κ

3
(3.3.20)

for some constants C, c, c̃ ∈ (0,∞).
To bound the distribution of Lresc

− , note that Lρ+(ξ0n
2/3, 0) is a sum of bξ0n

2/3c
i. i. d. random variables Exp(1−ρ+). Let Xi i. i. d.Exp(1−ρ+) random variables. Consider
the centered random variables Yi = 1/(1− ρ+)−Xi. Set ŝ = s̃n1/3/2 and N = bξ0n

2/3c.
Then by the exponential Tchebishev inequality,

P
(
Lresc
− ≤ −s̃/2

)
= P

( N∑
i=1

Yi ≥ ŝ
)
≤ inf

t≥0
e−ŝt

(
E
(
etY1

))N
. (3.3.21)

We have E
(
etY1

)
= et/(1−ρ+)/(1 + t/(1 − ρ+)) and thus (3.3.21) ≤ exp(inft≥0 I(t)) with

I(t) = Nt/(1− ρ+) +N ln((1− ρ+)/(t+ 1− ρ+))− ŝt. A simple computation gives

inf
t≥0

I(t) = ŝ(1− ρ+) +N ln(1− ŝ(1− ρ+)/N)

= − s̃2γ2

8ξ0(1 + γ)2
+O(n−1/3) ≤ −ĉκ3,

(3.3.22)

for some constant ĉ (which can be taken independent on n ≥ n0, n0 large enough), since
ξ0 ∼ κ and s̃ ∼ κ2 as well.

3.3.3 Tightness

Now we prove tightness of the rescaled process Lresc,h
n (see (3.2.16)). Following the ideas

in [CP15] we prove it using the bounds of Lemma 3.3.2 together with the estimates of
Lemma 3.2.5 and of the fluctuations of sums of i. i. d. random variables.

First let us see what Lemma 3.3.2 becomes for the rescaled processes. This bounds will
be used to show tightness, but also to control the fluctuations beyond the central region
of the maximisation problem (see Lemma 3.4.3). Let us shortly recall the scaling (3.2.16)

2The constant c is not the same as in Proposition A.1.1(c), due to the 1/2 term and the fact that Lresc
bulk

converges to a GUE Tracy-Widom distribution once divided by β2.
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under which Lresc,h
n converges in the sense of finite-dimensional distributions [BF08,BP08,

IS07] to the Airy2 process, A2,

Lresc,h
n (u) :=

L(0,0)→(γ2n+β1un2/3,n) −
(
(1 + γ)2n+ 2u(1 + γ)5/3γ1/3n2/3 − β2u

2n1/3
)

β2n1/3
,

(3.3.23)
with β1 = 2(1 + γ)2/3γ4/3 and β2 = (1 + γ)4/3γ−1/3.

Lemma 3.3.4. Let us define

Bρ±
n (u) :=

Lρ±(γ2n+ β1un
2/3, n)− (Lρ±(γ2n, n) + 1

1−ρ±β1un
2/3)

β2n1/3
. (3.3.24)

For any fixed constants M1,M2, consider any two points satisfying −M1 ≤ v ≤ u ≤ M2.
Then we have:
(a) If Zρ+(γ2n− β1M1n

2/3, n) ≥ 0, then

Lresc,h
n (u)−Lresc,h

n (v) ≤ Bρ+
n (u)−Bρ+

n (v) + (u2− v2) + 2β2κ(u− v) +O(n−1/3). (3.3.25)

(b) If Zρ−(γ2n+ β1M2n
2/3, n) ≤ 0, then

Lresc,h
n (u)−Lresc,h

n (v) ≥ Bρ−
n (u)−Bρ−

n (v) + (u2− v2)− 2β2κ(u− v) +O(n−1/3). (3.3.26)

Here O(n−1/3) is uniformly for κ and γ in bounded sets of (0,∞).

Proof. We wrote the conditions on the left-most and right-most point, since by monotonic-
ity they imply the conditions needed to apply Lemma 3.3.2 for the full interval [−M1,M2].
By Lemma 3.3.2 and the definition of the scalings (3.3.23) and (3.3.24) we have

Lresc,h
n (u)− Lresc,h

n (v) ≤ Bρ+
n (u)−Bρ+

n (v) + (u2 − v2)

+

(
β1

1− ρ+
− 2(1 + γ)5/3γ1/3

)
(u− v)

β2
n1/3.

(3.3.27)

Using the explicit expressions for β1, β2, and ρ+ we get (3.3.25).
Similarly, we have

Lresc,h
n (u)− Lresc,h

n (v) ≥ Bρ−
n (u)−Bρ−

n (v) + (u2 − v2)

+

(
β1

1− ρ−
− 2(1 + γ)5/3γ1/3

)
(u− v)

β2
n1/3,

(3.3.28)

giving (3.3.26).

Let us denote the modulus of continuity for the rescaled process Lresc,h
n in the interval

[−M,M ] by $n(δ):

$n(δ) = sup
|u|,|v|≤M
|u−v|≤δ

|Lresc,h
n (u)− Lresc,h

n (v)|. (3.3.29)

Proof of Theorem 3.2.3. First of all, notice that the random variable Lresc,h
n (0) is tight, see

the upper and lower tail estimates in Proposition A.1.1. Thus to show tightness it remains
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to control the modulus of continuity, namely we need to prove that for any ε, ε̃ > 0, there
exists a δ > 0 and a n0 such that

P($n(δ) ≥ ε) ≤ ε̃, (3.3.30)

for all n ≥ n0.
For any ε > 0, for n large enough, by Lemma 3.2.5 it holds

P($n(δ) ≥ ε) ≤ 2Ce−cκ
2

+ P({$n(δ) ≥ ε} ∩ {Zρ+

M > 0} ∩ {Zρ−M < 0}), (3.3.31)

where we shorten Z
ρ+

M = Zρ+(γ2n − β1Mn2/3, n) and Z
ρ−
M = Zρ−(γ2n + β1Mn2/3, n).

From Lemma 3.3.4, for |u|, |v| ≤ M and |u− v| ≤ δ, if we choose n large enough so that
the O(n−1/3) are smaller than δ, then on the set {Zρ+

M > 0} ∩ {Zρ−M < 0} we have

|Lresc
n (u)− Lresc

n (v)| ≤ |Bρ+
n (u)−Bρ+

n (v)|+ |Bρ−
n (u)−Bρ−

n (v)|+K(δ,M, κ) (3.3.32)

withK(δ,M, κ) = (2M+1+2β2κ)δ. Now choose δ small enough so thatK(δ,M, κ) < ε/2.
Then, for all n large enough,

P({$n(δ) ≥ ε} ∩ {Zρ+

M > 0} ∩ {Zρ−M < 0})

≤ P
(

sup
|u|,|v|≤M
|u−v|≤δ

|Bρ+
n (u)−Bρ+

n (v)| ≥ ε/4
)

+ P
(

sup
|u|,|v|≤M
|u−v|≤δ

|Bρ−
n (u)−Bρ−

n (v)| ≥ ε/4
)
.

(3.3.33)

Dividing the interval [−M,M ] into pieces of length δ and using stationarity of the incre-
ments of Bρ± (and Bρ±(0) = 0) we readily have

P
(

sup
|u|,|v|≤M
|u−v|≤δ

|Bρ±
n (u)−Bρ±

n (v)| ≥ ε/4
)
≤ 2M

δ
P
(

sup
0≤u≤δ

|Bρ±
n (u)| ≥ ε/12

)
, (3.3.34)

compare e.g. with sentence around (5.60) in [Joh03]. A short computation and the use of
Donsker’s invariance principle theorem imply that the processes u 7→ B

ρ±
n (u) converges

weakly in C([−M,M ]) to u 7→ σB(u), where B is a standard Brownian motion and σ =
σ(γ) =

√
2γ/(1 + γ). This implies that for n large enough,

r.h.s. of (3.3.34) ≤ 8M

δ
P
(

sup
0≤u≤δ

|B(u)| ≥ ε/12
)
≤ 8M

δ
exp

(
− ε2

288 δσ2

)
, (3.3.35)

where we use the bound P
(

supt∈[0,T ] |B(t)| > λ
)
≤ e−λ2/2T .

To resume, we have obtained that for any ε > 0 and n large enough, it holds for
κ̃ = κ−Mγ1/3(1 + γ)−4/3 > 0,

P($n(δ) ≥ ε) ≤ 2Ce−cκ̃
2

+
8M

δ
exp

(
− ε2

288 δσ2

)
. (3.3.36)

For any fixed ε̃ > 0, we choose κ large enough such that 2Ce−cκ̃
2 ≤ ε̃/2 and then δ small

enough such that 8M
δ exp(−ε2/(288 δσ2)) ≤ ε̃/2 for any n large enough. This proves

(3.3.30).
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3.4 Proof of Theorem 3.2.1

In this section we prove the main theorem of LPP. The proof consists in showing that
the LPP converges to a variational process. One essentially shows that (a) the LPP from
Lρ to EN (w) is with high probability the same as the LPP from a subset of Lρ of size
O(MN2/3), and (b) that in that region the LPP converges to the variational process of
the theorem restricted to |u| ≤M . The most important novelty of our proof, with respect
to the works in [CLW16, CFS18], is part (a). In [CLW16] they first needed to prove a
Brownian-Gibbs property for an associated non-intersecting line ensemble. In [CFS18] one
bounded a Fredholm determinant of a half-line problem corresponding to density ρ = 1/2
for TASEP (and this approach can not be extended to the generic ρ ∈ (0, 1) case).

Proof of Theorem 3.2.1. Let us recall that we study the LPP from Lρ and Lflat
ρ to EN (w).

From the law of large numbers of the point-to-point LPP, see Proposition A.1.1(a), by
optimizing over the positions on Lflat

ρ we obtain that the maximizer starts around 0 (in a
O(N2/3) neighbourhood). Remember the definition of the points Aflat(v) and A(v) given
in (3.2.9) and (3.2.10). For a fixed M > 0, define the following LPP problems:

LM = max
|v|≤M

LA(v)→EN (w) and LMc = max
|v|>M

LA(v)→EN (w). (3.4.1)

According to (3.2.14) we need to determine the N →∞ limit of

P (max{LM , LMc} ≤ S(s)) , S(s) = N/χ+ sχ−2/3N1/3. (3.4.2)

For large M (as we will show) one expects that LM > LMc with high probability. Thus
we define the events

RM = {LMc > S(s)}, GM = {LM ≤ S(s)}. (3.4.3)

With these definitions we have

(3.4.2) = P (RcM ∩GM ) = P (GM )− P (RM ∩GM ) . (3.4.4)

In Lemma 3.4.3 we show that, P(RM ∩ GM ) ≤ Ce−cM
2

+ Q(M) uniformly in N , where
the function Q is the one in Assumption B. This implies that

lim
M→∞

lim
N→∞

P (RM ∩GM ) = 0. (3.4.5)

Thus it remains to determine limM→∞ limN→∞ P(GM ).
The limit is obtained by first considering the last passage percolation problem from

points on the horizontal line crossing (0, 0), see Figure 3.2, for which the finite-dimensional
distribution is known, and then using the functional slow decorrelation result of Theo-
rem 3.4.1 we transport the fluctuations to the line Lρ. We define

Ã(v) = (−α1vN
2/3, 0), α1 = 2

(1− ρ)2/3

ρ4/3
, (3.4.6)

and

G̃M =
{

max
|v|≤M

L
Ã(v)→EN (w)

− α2vN
2/3 ≤ S(s)

}
, α2 =

2

ρ4/3(1− ρ)1/3
. (3.4.7)
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Figure 3.2: Zoom of the LPP around the line relevant region of Lρ (red line) where the maximizers
starts. For a given v, Ã±(v), Ã(v), and A(v) are on the same line, the line parallel to (0, 0), EN (w).

In [BP08] it is shown3 the convergence of finite dimensional distributions of the rescaled
process:

L̃resc
N (v) :=

L
Ã(v)→EN (w)

− (N/χ+ α2vN
2/3)

χ−2/3N1/3
→ A2(v)− (v − w)2 (3.4.8)

as N → ∞, with A2 an Airy2 process. In Theorem 3.2.3 we show that as a process
v 7→ L̃resc

N (v) is tight in the set of continuous functions with supremum norm, C([−M,M ]),
extending the sense of convergence to the weak*-convergence.

The rescaled process we want to study is

Lresc
N (v) :=

LA(v)→EN (w) −N/χ
χ−2/3N1/3

. (3.4.9)

In terms of the rescaled process, we indeed have

P(GM ) = P
(

max
|v|≤M

Lresc
N (v) ≤ s

)
. (3.4.10)

For any realization of initial condition, the random line Lρ passes in a neighbourhood of
the origin. Restricted to a MN2/3-neighbourood of the origin, by Assumption A we have
that the points on Lρ are given by

A(v) = Aflat(v) + λ(v)eρ, with λ(v) ' χ−2/3N1/3R(v) (3.4.11)

as N →∞. Define the set

Fε =
{

max
|v|≤M

|Lresc
N (v)− L̃resc

N (v)| ≤ ε
}
. (3.4.12)

By Theorem 3.4.1, for any ε > 0, limN→∞ P(Fε) = 1. Thus, for any ε > 0,

lim
M→∞

lim
N→∞

P(GM ) = lim
M→∞

lim
N→∞

P(GM ∩ Fε). (3.4.13)

3The convergence of finite dimensional distributions can be also obtained from the finite-dimensional
distributions along other lines using slow decorrelation [CFP12, Fer08b]. For instance it can be ob-
tained starting from the analogue result for the joint distributions of TASEP particle positions [BF08];
see [BFP10] for an application of this technique.
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The centerings in Lresc
N (v) and L̃resc

N (v) are the law of large number approximation from
Aflat(v) and Ã(v) respectively. Define µ(m,n) = (

√
m +

√
n)2 (see Proposition A.1.1),

then we define

∆N (v) :=
µ(EN (w)−A(v))− µ(EN (w)−Aflat(v))

χ−2/3N1/3
. (3.4.14)

Then
P(GM ∩ Fε) ≤ P

({
max
|v|≤M

[L̃resc
N (v) + ∆N (v)] ≤ s+ ε

}
∩ Fε

)
. (3.4.15)

A lower bound on P(GM ∩ Fε) is obtained with −ε instead of ε.
By Assumption A, limN→∞∆N (v) = R(v) =

√
2σB(v) weakly. Together with the

weak convergence of (3.4.6), we obtain

lim
M→∞

lim
N→∞

P(GM ∩ Fε) ≤ lim
M→∞

P
(

max
|v|≤M

[A2(v)− (v − w)2 +R(v)] ≤ s+ ε
)

= P
(

max
v∈R

[A2(v)− (v − w)2 +R(v)] ≤ s+ ε
)
.

(3.4.16)

The last inequality holds since both the maximum of the Airy2 minus a parabola and of
R(v) minus a parabola are tight. For the special case of flat initial condition, i.e., when
R = 0,

P
(

max
v∈R

[A2(v)− (v − w)2] ≤ s
) (d)

= P
(

max
v∈R

[A2(v)− v2] ≤ s
)

= FGOE(22/3s), (3.4.17)

where we used the fact that the Airy2 process is stationary, and the last equality was
proven in [Joh03]. This ends the proof of Theorem 3.2.1.

Theorem 3.4.1 (Functional slow decorrelation). Consider any down-right path L passing
a.s. at a finite-distance from the origin. Let Ã(v) be as in (3.4.6) and let B(v) be the closest
point on L to the line from Ã(v) to EN (w). Consider the rescaled processes (defined for
any v ∈ R through linear interpolation)

Lresc,B
N (v) :=

LB(v)→EN (w) − µ(EN (w)−B(v))

χ−2/3N1/3
, µ(m,n) = (

√
m+

√
n)2 (3.4.18)

as well as L̃resc
N given in (3.4.8). Then Lresc,B

N − L̃resc
N converges in probability to 0 in

C([−M,M ]) as N → ∞. More precisely, for any ε, ε̃ > 0 there is a N0 such that for all
N ≥ N0,

P
(

max
|v|≤M

|Lresc,B
N (v)− L̃resc

N (v)| ≥ ε
)
≤ ε̃. (3.4.19)

Proof. The proof is almost identical to the one of Theorem 2.10 in [CFS18], see also
Theorem 2.15 of [CLW16] (which is two pages long) and therefore we do not repeat
it. Let us just mention the strategy and on the way the inputs which are needed. Using
Theorem 3.2.3 one knows that the processes along the horizontal lines L± crossing A(±M)
are tight. One defines the rescaled processes L̃resc,±

N (v) to be the analogues of L̃resc
N (v) but

with starting points on L±, which we call Ã±(v), see Figure 3.2. Using tightness of L̃resc
N

(see Theorem 3.2.3) and one-point slow decorrelation (see Theorem 2.7.2) one bounds
max|v|≤M |L̃

resc,±
N (v)− L̃resc

N (v)|. Finally one needs to control for example the increments
of L̃resc,+

N (v) − Lresc
N (v). For this one employs use of the subadditivity property of LPP,

L
Ã+(v)→EN (w)

≥ L
Ã+(v)→A(v)

+LA(v)→EN (w), and the bound on the left tail of L
Ã+(v)→A(v)

provided in Proposition A.1.1.
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A direct consequence of tightness of L̃resc
N and the functional slow decorrelation result

(Theorem 3.4.1) is the following.

Corollary 3.4.2. Fix anyM ∈ (0,∞). Then the rescaled LPP process from Lρ to EN (w),
v 7→ Lresc

N (v) defined in (3.4.9), is tight in the space of continuous functions on [−M,M ],
C([−M,M ]). It converges weakly to an Airy2 process u 7→ A2(u).

Lemma 3.4.3. Define GM = {max|v|≤M LA(v)→EN (w) ≤ a0N + a1sN
1/3} and RM =

{max|v|>M LA(v)→EN (w) > a0N + a1sN
1/3}, with a0 = 1/χ and a1 = 1/χ2/3. Under

Assumption B, there exists a finite M0 such that for any given M ≥M0,

P (GM ∩RM ) ≤ Ce−cM2
+Q(M) (3.4.20)

for some constants C, c > 0 which are uniform in N . In particular, for flat initial condi-
tions (where Q = 0),

P(the LPP maximizer starts from Aflat(v) with |v| ≤M) ≥ 1− 2Ce−cM
2
. (3.4.21)

Proof. For s ≤ −1
4M

2, we have

P(GM ∩RM ) ≤ P(GM ) ≤ P(L(0,0)→EN (w) ≤ a0N + a1sN
1/3)

≤ Ce−c|s|3/2 ≤ Ce−cM2/8,
(3.4.22)

where we used the lower tail estimate of the point-to-point LPP from Proposition A.1.1.
Thus we consider below any s ≥ −1

4M
2. Let us define a set of points L̂ and we say

that L̂ ≺ Lρ if each point in Lρ ∩ {A(v), |v| > M} can be reached by an up-right paths
from a point in L̂. Then

P(GM ∩RM ) ≤ P(RM ) ≤ P
(

max
|v|>M

LA(v)→EN (w) > a0N − 1
4a1M

2N1/3
)

≤ P(L
L̂→EN (w)

> a0N − 1
4a1M

2N1/3) + P(L̂ 6≺ Lρ).
(3.4.23)

Our choice for L̂ will be such that P(L̂ 6≺ Lρ) ≤ Q(M) for all N large enough. To realize
it, it is enough to take any L̂ such that it stays to the left of a parabola close enough to
Lflat
ρ . In Figure 3.3 we illustrate L̂. For a δ > 0, we define the points

Â(v) = Aflat(v)− δv2N1/3eρ, eρ = ((1− ρ)2, ρ2), (3.4.24)

the segments Dk = Â(kM)Â((k + 1)M) and D̃` = Â(−`M)Â(−(`+ 1)M), and the points
C+ = (−(1+ 1−ρ

16 ), ρ
1−ρ(1− ρ

16))N and C− = (1−ρ
ρ (1− 1−ρ

16 ),−(1− ρ
16))N . Then, we define

L̂ = C+ ∪ C−
⋃

|v|≥Nν/3

Â(v)

Nν/3⋃
k=1

Dk
Nν/3⋃
`=1

D̃`, (3.4.25)

with ν ∈ (0, 1/2) (ν < 1/2 is needed only in the last estimate of this lemma), and the
union A(v) is for v up to the v such that A(v) is reachable by an up-right path from
C+ or C− (there are O(N1/3) of such v). The constant δ is now chosen small enough
such that taking v+ = χ1/3

2(1−ρ)N
1/3, which corresponds to Aflat(v+) = (−N, ρ

1−ρN), then

C+ ≺ Â(v+), and similarly for side close to C−.
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Figure 3.3: The setting used to control the LPP outside the central part. The thick black line is
L̂.

With the L̂ defined as above, we can apply Assumption B to bound P(L̂ 6≺ Lρ). It
thus remains to get a bound for P(L

L̂→EN (w)
> a0N− 1

4a1M
2N1/3). This can be bounded

by

P(LC+→EN (w) > a0N − a1M2

4 N1/3) +

Nν/3∑
k=1

P(LDk→EN (w) > a0N − a1M2

4 N1/3)

+ P(LC−→EN (w) > a0N − a1M2

4 N1/3) +
Nν/3∑
`=1

P(LD̃`→EN (w)
> a0N − a1M2

4 N1/3)

+
∑

Nν/3≤|v|≤O(N1/3)

P(L
Â(v)→EN (w)

> a0N − a1M2

4 N1/3).

(3.4.26)
For the point-to-point estimates we can use the bounds of Proposition A.1.1, which

are uniform for the slopes η in a bounded set of (0,∞). To avoid slopes which are close
to 0 or ∞, we need to restrict the use of the point-to-point estimates for the LPP from
Â(v) and add the LPP from the starting points C± as well.

1st bound. The points C± are chosen such that from the law of large numbers ap-
proximation of LC±→EN (w) is less then a0N − N/2 for any ρ ∈ (0, 1). This means that
a deviation of −a1M2

4 N1/3 from a0N of LC+→EN (w) corresponds to look at the right tail
at a value at least N/2 − O(M2N1/3). Thus for any given M , for all N large enough,
Proposition A.1.1 implies

P(LC+→EN (w) > a0N − a1M2

4 N1/3) ≤ Ce−cN2/3
(3.4.27)

for some constants C, c which depend only on ρ. Similarly one has the estimate for
P(LC−→EN (w) > a0N − 1

4a1M
2N1/3).

2nd bound. In a similar way, using the bound of Proposition A.1.1, for any N large
enough,

P(L
Â(v)→EN (w)

> a0N − 1
4a1M

2N1/3) ≤ Ce−cN2ν/3
(3.4.28)
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for any v ∈ [Nν/3,O(N1/3)], and thus∑
Nν/3≤|v|≤O(N1/3)

P(L
Â(v)→EN (w)

> a0N − 1
4a1M

2N1/3) ≤ CN1/3e−cN
2ν/3 ≤ Ce−

1
2 cN

2ν/3

(3.4.29)
for N � 1.

3rd bound. Finally we need a bound for P(LDk→EN (w) > a0N − 1
4a1M

2N1/3) uniform
in N , which is summable in k and such that its sum is going to zero as M → ∞. The
bound for P(LD̃`→EN (w)

> a0N− 1
4a1M

2N1/3) is completely analogue and thus we present
in details only the first one.

For a given v, we define the point D̂(v) such that its second coordinate equals the one
of Â(kM) and the segment D̂(v), Â(v) has direction eρ. We have

D̂(v) = Aflat(v)− θeρ, θ = δ(kM)2N1/3 +
2(v − kM)N2/3

ρχ1/3
. (3.4.30)

Then, for any k ≥ 1 and M ,

P
(
LDk→EN (w) > a0N − a1M2

4 N1/3
)
≤ P

(
L
Â(kM)→EN (w)

> a0N − 3a1k2M2

4 N1/3
)

+ P
(

max
kM≤v≤(k+1)M

{L
Â(v)→EN (w)

− L
D̂(v)→EN (w)

+ βN2/3} ≥ a1k2M2

4 N1/3

)
+ P

(
max

kM≤v≤(k+1)M
{L

D̂(v)→EN (w)
− L

Â(kM)→EN (w)
− βN2/3} ≥ a1k2M2

4 N1/3

)
,

(3.4.31)
where β = 2(v−kM)

ρχ1/3 − δ(v2− (kM)2)N−1/3 (which is positive for all N large enough, since

v ∈ [kM, (k + 1)M ] with k ∈ [1,O(Nν/3)]).
Bound on first term of (3.4.31). The law of large numbers estimate of L

Â(kM)→EN (w)

is a0N + N1/3(δ(kM)2 − a1(kM − w)2). Thus for any δ < χ2/3/8 and M large enough,
we can use again the point-to-point estimate and obtain

P
(
L
Â(kM)→EN (w)

> a0N − 3
4a1k

2M2N1/3
)
≤ Ce−ck2M2/8. (3.4.32)

Bound on second term of (3.4.31). Using L
D̂(v)→EN (w)

≥ L
D̂(v)→Â(v)

+ L
Â(v)→EN (w)

we have

P
(

max
kM≤v≤(k+1)M

{L
Â(v)→EN (w)

− L
D̂(v)→EN (w)

+ βN2/3} ≥ a1k2M2

4 N1/3

)
≤

∑
kM≤v≤(k+1)M

P
(
L
Â(v)→EN (w)

− L
D̂(v)→EN (w)

+ βN2/3 ≥ a1k2M2

4 N1/3
)

≤
∑

kM≤v≤(k+1)M

P
(
L
D̂(v)→Â(v)

− βN2/3 ≤ −a1k2M2

4 N1/3
)
.

(3.4.33)

Since L
D̂(v)→Â(v)

centered by βN2/3 and scaled by O(N2/9) converges to a FGUE dis-
tributed random variable, by the lower tail estimate of Proposition A.1.1 we get

P(L
D̂(v)→Â(v)

− βN2/3 ≤ −a1kMN1/3) ≤ Ce−ck2M2N1/9
(3.4.34)



3.4. Proof of Theorem 3.2.1 75

for some constants C, c which can be taken independent of v ∈ [kM, (k+ 1)M ]. Since the
sum in (3.4.33) is over a number of terms O(N2/3) we get

(3.4.33) ≤ Ce−
1
2
ck2M2N1/9

(3.4.35)

for all N large enough.
Bound on third term of (3.4.31). For this bound we will employ, between other results,

Lemma 3.3.4. Let us first reformulate what we need to prove in terms of Lresc,h
n . One

looks the picture from the point EN (w), which becomes the origin. The point Â(kM) as
seen from EN (w) becomes the point (γ2n, n) and the point D̂(v) is (γ2n+β1u(v)n2/3, n).
This means that we need to take

n =
ρ

1− ρ
N − 2ρ(kM − w)

χ1/3
N2/3 + δρ2(kM)2N1/3,

γ =
1− ρ
ρ

(
1 +

kM − w
χ1/3

N−1/3 +
(kM − w)2(3− 4ρ)

2χ2/3
N−2/3 +O(N−1)

)
,

u(v) = (v − kM)(1 +O(N−2/3)).

(3.4.36)

We have, in distribution,

L
D̂(v)→EN (w)

d
= L(0,0)→(γ2n+β1u(v)n2/3,n). (3.4.37)

Recall that D̂(kM) = Â(kM). Furthermore, the difference between the laws of large
numbers of L

D̂(v)→EN (w)
and L

Â(kM)→EN (w)
is given by

βN2/3 − χ−2/3N1/3
[
(v − kM)2(1 + δχ2/3) + (v − kM)(2w + 2kM(1 + δχ2/3))

]
≤βN2/3 − χ−2/3N1/3u(v)2(1 +O(N−2/3)),

(3.4.38)
for all M large enough.

As a consequence, the third term of (3.4.31) can be rewritten as

P
(

max
kM≤v≤(k+1)M

{Lresc,h
n (u(v))− Lresc,h

n (0)− u(v)2 +O(n−2/3)} ≥ 1
4k

2M2

)
. (3.4.39)

Applying the upper bound of Lemma 3.3.4 we obtain

(3.4.39) ≤ P(Zρ+(γ2n, n) < 0)

+ P
(

max
u∈IM

{Bρ+
n (u(v)) + 2β2κu(v) +O(n−2/3)} ≥ 1

4k
2M2

)
,

(3.4.40)

where IM = [0,M(1+O(n−2/3))]. With the choice κ = ε0kM and, takingM large enough
so that we get to use Lemma 3.2.5, we have

(3.4.40) = Ce−cε
2
0k

2M2
+ P

(
max
u∈IM

{Bρ+
n (u) + 2β2κu+O(n−2/3)} ≥ 1

4k
2M2

)
(3.4.41)

We choose ε0 small enough such that for any M,k ≥ 1, maxu∈IM 2β2κu + O(n−2/3) is
bounded by 1

8k
2M2 (uniformly for large n). Then

(3.4.41) ≤ Ce−cε20k2M2
+ P

(
max
u∈IM

Bρ+
n (u) ≥ 1

8k
2M2

)
. (3.4.42)
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In the stationary setting, recall that we defined ρ0 = ρ0(γ) := 1/(1 + γ). By stationarity

Bρ+
n (u) =

1

β2n1/3

β1un2/3∑
m=1

(Xm − (1− ρ+)−1), (3.4.43)

where X1, X2, . . . are i. i. d. random variables Exp(1 − ρ+) with ρ+ = ρ0 + ε0kMn−1/3.
Denote by Ym = Xm− (1− ρ+)−1. Then T 7→ ZT =

∑T
m=1 Ym is a martingale. Using the

generic maximal inequality for martingale P(max1≤t≤T Zt ≥ S) ≤ E(f(ZT ))
f(S)) with f(x) =

eλx, λ > 0, we have

P
(

max
u∈IM

Bρ+
n (u) ≥ 1

8k
2M2

)
≤ min

λ>0

(E(eλY1))T

eλS
= e−S(1−ρ+)+T ln[1+(1−ρ+)S/T ], (3.4.44)

with S = 1
8k

2M2β2n
1/3 and T = β1u(M)n2/3 = 2Mβ1n

2/3(1+O(n−1/3)). A computation
then leads to

(3.4.44) = exp

(
−k

4M3

512
(1 +O(k2n−1/3))

)
. (3.4.45)

Remember that the range of k is from 1 to O(nν/3). Thus the error term is in the worst
case O(n(2ν−1)/3). Therefore we can now set the value of ν to be any number in (0, 1/2),
e.g., ν = 1/3. With this choice, for n large enough, the error term is not larger than 1
and thus for any k,M ,

(3.4.45) ≤ exp(−ck2M2). (3.4.46)

Summing up the estimates we have∑
k≥1

P
(
LDk→EN (w) > a0N − a1M2

4 N1/3
)
≤
∑
k≥1

(
(3.4.32) + (3.4.35) + (3.4.46)

)
≤ Ce−cM2

(3.4.47)
for all N large enough. Here the constants C, c are uniform in N and M .

Finally we need to prove (3.4.21). Notice that for flat initial condition we have Q = 0
and thus

P(the LPP maximizer starts from Aflat(v) with |v| ≤M)

=P
(

max
|v|≤M

LA(v)→EN (w) > max
|v|>M

LA(v)→EN (w)

)
≥ P(GcM ∩RcM )

≥1− P(GM )− P(RM ),

(3.4.48)

for any choice of s. With the choice s = −M2/4, the bounds obtained above lead to the
claimed result.



Chapter 4

Time-time covariance for last
passage percolation with generic
initial profile

This chapter is based on [FO19]. In this work we consider time correlation for KPZ growth
in 1+1 dimensions in a neighborhood of a characteristic. We prove convergence of the
covariance with droplet, flat and stationary initial profile. In particular, this provides
a rigorous proof of the exact formula of the covariance for the stationary case obtained
in [FS16]. Furthermore, we prove the universality of the first order correction when the
two observation times are close and provide a rigorous bound of the error term. This
result holds also for random initial profiles which are not necessarily stationary.

4.1 Introduction

Stochastic growth models in the Kardar-Parisi-Zhang (KPZ) universality class [KPZ86]
on a one-dimensional substrate are described by a height function h(x, t) with x denoting
space and t time. The height function evolves microscopically according to a random and
local dynamics, while on a macroscopic scale the evolution is a deterministic PDE and
the limit shape is non-random. In particular, if the speed of growth as a function of the
gradient of the interface is a strictly convex or concave function, then the model is in the
KPZ universality class. One expects large time universality under an appropriate scaling
limit.

By studying special models in the KPZ class, the law of the one-point fluctuations and
of the spatial statistics are well-known. In particular, the fluctuations scales as t1/3 and
the correlation length as t2/3 (see surveys and lecture notes [FS11, Cor12, QS15, BG12,
Qua11,Fer10,Tak16])1. Furthermore, it is known that non-trivial correlations survive on
the macroscopic time scale if one considers space-time points along characteristic lines of
the PDE for the macroscopic evolution [Fer08a,CFP12]. This phenomenon is called slow-
decorrelation and it indicates that non-trivial processes in a spatial t2/3-neighbourhood of
a characteristic and for macroscopic temporal scale is to be expected. The limit process
depends on the initial condition, since this is already the case for the processes at a fixed
time.

1This holds true around point with smooth limit shape. Around shocks there are some differences, see
e.g. [FN15,FN17,FF94].
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The study of the time-time process started much more recently. On the experimental
and numerical simulation side observables like the persistence probability or the covariance
of an appropriately rescaled height function have been studied [TS12,Tak13,TA16,Tak12].
On the analytic and rigorous side, the two-time joint distribution of the height function
is known for special initial conditions: Johansson analyzed a model on full space [Joh16,
Joh18], while Baik and Liu considered a model on a torus [BL16,BL19]. There are also
non-rigorous works on the time-time covariance and on the upper tail of distributions
using replica approach [ND17, ND18, NDT17]. For general (random) initial conditions
exact formulas on the joint distributions are not yet available. Also, the analysis of the
covariance starting from the available formulas [Joh18,BL19] seems to be a difficult task.

In [FS16] Ferrari and Spohn made some predictions for the behavior of the two-time
covariance for three typical initial conditions based on a last passage percolation (LPP)
picture. In particular, for the stationary case, an exact formula for the covariance of
two points along a characteristic has been derived. Furthermore, the behavior when the
macroscopic times were either close or far from each others were provided. However, the
work is not mathematically rigorous since the exchange of the large time limit and maxi-
mum over sums of Airy processes as well as justification for convergence of the covariances
are not provided. The work by Corwin, Liu and Wang [CLW16] showed the way to obtain
a rigorous convergence of distribution in terms of the variational process used in [FS16], by
lifting the finite-dimensional slow-decorrelation result of [Fer08a,CFP12] to a functional
slow-decorrelation statement.

In this paper we consider a last passage percolation model, which can be also seen as
a (version of the) polynuclear growth model. As initial condition we consider the three
standard cases (called droplet, flat and stationary) as in [FS16], but we extend the study
to random but not stationary initial profiles (see [CFS18] for a related model). In the
first three cases by the method of [CLW16] (simplified in some aspects in [CFS18,FO18])
one knows that the limiting distributions of (rescaled) LPP times can be expressed as a
variational problem in terms of some Airy processes. The first result proven in this paper
is the convergence of the covariance of the LPP time to the covariance of the limiting
processes, see Theorem 4.2.2. As a corollary, this provides a proof for the exact formula of
the covariance for the stationary case of [FS16]. We actually extend the result by taking
points not exactly on the characteristics, but in a t2/3-neighbourhood of it.

Our second result concerns the behavior of the covariance when the two times are
close to each other on a macroscopic scale. Physically we expect to see the signature of
the stationary state as first approximation. This was noticed also in numerical experi-
ments [Tak13]. This is proven in Theorem 4.2.5 for all the initial conditions considered.
We also provide a rigorous error term, which is compatible with the experiments2. To
obtain the result, we need to control the spatial process at fixed time on small scales.
This is achieved by comparing with stationary cases on sets of high probability. The
idea goes back to Cator and Pimentel [CP15] for the droplet case (extended to general
case in [Pim17b]). The control on the high probability sets requires bounds on exit point
probabilities, which has to be obtained for each initial profile. In particular, to achieve
a good control in the error term, one can not use soft bounds as in [BCS06, Pim17b].
Finally, for droplet initial condition we derive a result also when times are far apart, see

2The next order correction is sensitive to the scaling used to define the process. For the scaling used
in this paper the error term seems to be optimal. However, if one scales the random variables to have the
same one-point distribution function, then experimentally the error term is smaller: instead of an error
term with exponent 1−, one gets an exponent min{5/3, 2/3+α}, where α is the exponent controlling the
convergence of the variance of the height difference to that of the Baik-Rains distribution [Tak18].
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Theorem 4.2.6.

Outline. In Section 4.2 we introduce the model, state some known limiting results
necessary for the rest of the paper and provide the main results. In Section 4.3 we recall
the stationary LPP and the comparison lemmas. In Section 4.4 we prove Theorem 4.2.2
on the convergence of the covariance. In Section 4.5 we prove Theorem 4.2.5 on the close
time behaviour, while in Section 4.6 we sketch the proof of Theorem 4.2.6. The appendix
contains several bounds on the one-point distribution or on increments, which are used in
the proofs.

4.2 Model and results

4.2.1 LPP and polynuclear growth

Consider a collection of i.i.d. random variables ωi,j , i, j ∈ Z with exponential distribution
of parameter one. An up-right path π = (π(0), π(1), . . . , π(n)) on Z2 from a point A to a
point E is a sequence of points in Z2 with π(k+1)−π(k) ∈ {(0, 1), (1, 0)}, with π(0) = A
and π(n) = E, and n is called the length `(π) of π. Given a set of points SA with some
random variables (not necessarily independent) h0 on SA, but independent of the ω’s, and
given a point E, one defines the last passage time LSA→E as

LSA→E = max
π:A→E
A∈SA

(
h0(π(0)) +

∑
1≤k≤n

ωπ(k)

)
. (4.2.1)

Also, for two points P,Q which are not on the initial set SA, we define LP→Q as above
but without the term h0(π(0)). πmaxSA→E indicates the maximizer of the last passage time.
For continuous random variables, the maximizer is a.s. unique3.

LPP can be though as a stochastic growth model, a version of the polynuclear growth
model, as follows. Let SA = L := {(i, j) ∈ Z2 | i + j = 0} and let h0 represents a height
function at time t = 0. Then one defines the height function at time t by the relation

h(x, t) = LL→((x+t)/2,(t−x)/2) (4.2.2)

for all x− t being even numbers (and set h(x, t) = LL→((x+t−1)/2,(t−x−1)/2) for x− t odd).
The dynamics of the height function is

h(x, t) = max{h(x− 1, t− 1), h(x, t− 1), h(x+ 1, t− 1)}+ ω(x+t)/2,(t−x)/2 (4.2.3)

with initial conditions h(x, 0) = h0(x/2,−x/2) (here ω(x+t)/2,(t−x)/2 = 0 if x− t is odd).
We are interested in the scaling limit of the height function

(w, τ) 7→ lim
t→∞

h(w21/3t2/3, τ t)− τt
22/3t1/3

(4.2.4)

or, equivalently, setting E = (τN, τN) + w(2N)2/3(1,−1),

(w, τ) 7→ lim
N→∞

LSA→E − 4τN

24/3N1/3
, (4.2.5)

3The only exception will be if h0 is not random, since then the maximizer is unique up to the initial
point, which has weight 0 and thus it is irrelevant.
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for different initial conditions4

1. Droplet case. In this case one sets h0 = 0 and further set ω(i, j) = 0 whenever
(i, j) 6∈ Z2

+. In terms of LPP this is equivalent to take SA = (0, 0) and h0 = 0.

2. Flat with zero-slope. This means that we take h0 = 0.

3. Stationary with zero-slope. Let {Xk, Yk}k∈Z be i.i.d. random variable Exp(1/2)-
distributed. Then define

h0(x,−x) =


∑x

k=1(Xk − Yk), for x ≥ 1,

0, for x = 0,

−
∑0

k=x+1(Xk − Yk), for x ≤ −1.

(4.2.6)

4. A family of random initial conditions. We consider the case where for a given σ ≥ 0,
h0 is given by (4.2.6) multiplied by σ. Clearly, the cases σ = 0 and σ = 1 correspond
to the flat and to the stationary cases.

Remark 4.2.1. In the setting of TASEP, a random initial condition maps to a LPP
starting from a random line. Due to functional slow-decorrelation, the weight h0 should
be taken to reflect the first order LPP from a point on the line to its projection onto the
antidiagonal. Thus a-priori one could try to start with the random line used in [CFS18,
FO18], but since in the scaling limit the result is identical to the one of our choice, we did
not attempt to use this precise mapping.

Limiting variational formulas

For 0 < τ ≤ 1, we set5 Eτ = (τN, τN) + (2N)2/3wτ (1,−1) and define the LPP and its
limit as

L?N (τ) =
L?SA→Eτ − 4τN

24/3N1/3
, χ?(τ) := lim

N→∞
L?N (τ), (4.2.7)

where the superscript ? denotes the different configurations, point-to-point (•), point-to-
line (�), stationary (B) and random (σ).

The convergence in distribution of the random variables L?N (τ) are well-known. Recall
that for LPP we have the identity

L?SA→E1
= max

u∈R
{L?SA→I(u) + LI(u)→E1

} (4.2.8)

with
I(u) = (τN, τN) + u(2N)2/3(1,−1). (4.2.9)

Provided that the limit N → ∞ and maxu∈R can be exchanged (which is the case in
all the cases considered here, see [CLW16,FO18,CFS18] for related works), the limiting
processes can be written in terms of Airy processes as follows.

1. Droplet case. Let A2 and Ã2 be two independent Airy2 processes. Then

χ•(τ) = τ1/3
[
Ã2( wτ

τ2/3 )− w2
τ

τ4/3

]
,

χ•(1) = max
u∈R

{
τ1/3

[
Ã2( u

τ2/3 )− u2

τ4/3

]
+ (1− τ)1/3

[
A2

(
u−w1

(1−τ)2/3

)
− (u−w1)2

(1−τ)4/3

]}
,

(4.2.10)
4The choice of zero-slope is just for convenience as it avoids to introduce a further parameter in the

scaling. However, the inputs used in the proofs are available for non-zero slopes as well.
5Throughout the paper we do not write explicitly integer parts.
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The Airy2 process has been discovered in a related polynuclear growth model set-
ting [PS02b] (see [Joh03] for the case of geometric random variables, or [BP08] for a
two-parameter generalization). Tightness in this setting was shown in [FO18], build-
ing on the approach of [CP15] (while for the geometric case tightness was shown
already in [Joh03]).

2. Flat case. Let A1 be an Airy1 process and A2 an Airy2 process, independent of each
other. Then

χ�(τ) = (2τ)1/3A1( wτ
(2τ)2/3 ),

χ�(1) = max
u∈R

{
(2τ)1/3A1( u

(2τ)2/3 ) + (1− τ)1/3
[
A2

(
u−w1

(1−τ)2/3

)
− (u−w1)2

(1−τ)4/3

]}
.

(4.2.11)
The Airy1 process has been discovered in the framework of the totally asymmet-
ric simple exclusion process [Sas05,BFPS07], equivalent to the LPP through slow-
decorrelation [CFP10,CFP12,Fer08a].

3. Stationary case. Let A2 be an Airy2 process and Astat an Airystat process, indepen-
dent of each other. Then

χB(τ) = τ1/3Astat(
wτ
τ2/3 ),

χB(1) = max
u∈R

{
τ1/3Astat(

u
τ2/3 ) + (1− τ)1/3

[
A2

(
u−w1

(1−τ)2/3

)
− (u−w1)2

(1−τ)4/3

]}
.

(4.2.12)

The limit process Airystat (which, in spite of the name, is not stationary) was ob-
tained in [BFP10].

4. Random initial conditions. For this case, the one-point distribution is given by the
following expression6

P(χσ(1) ≤ s) = P
(

max
u∈R
{A2(u)− u2 +

√
2σB(u)} ≤ s

)
, (4.2.13)

where the Airy2 process and the two-sided standard Brownian motion B are inde-
pendent of each other. Furthermore, we could write formulas similar to the one of
the first three cases in terms of an Airy sheet [MQR17]. However uniqueness in law
of Airy sheet is so-far not proven [MQR17,Pim17a]. Therefore we state the conver-
gence of the covariance to the covariance of its limit process only for the other cases.
However, the proof could be adapted to the general σ as well, once uniqueness of
the limit is established.

4.2.2 Main results

Convergence of the covariance

As our first result we give a rigorous proof of the convergence of the covariances.

Theorem 4.2.2. We have

lim
N→∞

Cov (L?N (τ), L?N (1)) = Cov (χ?(τ), χ?(1)) , (4.2.14)

for ? ∈ {•,�,B}.
6This was actually proven for the LPP model where instead of the random function on the antidiagonal

one has a random line in [CFS18], see also [FO18] for general slope. These works were based on the
approach in the geometric random variables case of [CLW16]. Adapting the proof of [FO18] to this
setting to get the variational formula is straightforward (it is actually even slightly simpler).
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Remark 4.2.3. The motivation of this paper is the study of the covariance. However,
by inspecting the proof, one sees that one can generalize the proof to get convergence of
any joint moments of L?N (τ) and L?N (1) without the need to new ideas and bounds.

For the stationary process Astat(w)
(d)
= maxv∈R{

√
2B(v) + A2(v) − (v − w)2} where

the Airy2 process, A2, and the two-sided standard Brownian motion, B(v), are indepen-
dent [QR14]. We denote

Fw(s) = P
(

max
v∈R
{
√

2B(v) +A2(v)− (v − w)2} ≤ s
)

(4.2.15)

and use the notation ξstat,w for a random variable distributed according to Fw. Due to
stationarity one has the property [PS02a,BR00] E(Astat(w)) = 0, which implies

Var(ξstat,w̃) = E
(

max
v∈R
{
√

2B(v) +A2(v)− (v − w)2} ≤ s
)2
. (4.2.16)

For the stationary case, an exact expression for the covariance has been obtained
in [FS16] for τ in the entire interval [0,1], in the special case wτ = w1 = 0. For general
values of wτ and w1, we obtain

Corollary 4.2.4. For the stationary LPP, the covariance of the limiting height function
for all τ ∈ (0, 1) can be expressed as

Cov
(
χB(τ), χB(1)

)
=
τ2/3

2
Var

(
ξstat,τ−2/3wτ

)
+

1

2
Var (ξstat,w1)

− (1− τ)2/3

2
Var

(
ξstat,(1−τ)−2/3(w1−wτ )

)
.

(4.2.17)

Universal behavior for τ → 1

In [FS16] there is a conjecture on the behaviour of the covariance of the limit process for
τ → 1 for the other initial profiles as well. Our second goal is to provide a proof of such
statements together with a rigorous error bound. We also extend the result to all initial
conditions 1-4. Recall that for any random variables X1, X2 it holds

Cov (X1, X2) = 1
2 Var (X1) + 1

2 Var (X2)− 1
2 Var(X2 −X1). (4.2.18)

Theorem 4.2.5. Let us scale w1 = w̃1(1− τ)2/3 and wτ = w̃τ (1− τ)2/3. Then as τ → 1
we have7

Var (χ?(τ)− χ?(1)) = (1− τ)2/3 Var (ξstat,w̃1−w̃τ ) +O(1− τ)1−δ, (4.2.19)

for any δ > 0. In particular, by (4.2.18), for ? = {•,�,B}, we can rewrite

Cov (χ?(τ), χ?(1)) =
1

2
Var (ξ?(w1)) +

τ2/3

2
Var

(
ξ?(wττ

−2/3)
)

− (1− τ)2/3

2
Var (ξstat,w̃1−w̃τ ) +O(1− τ)1−δ.

(4.2.20)

Here ξ•(w) +w2 (resp. 22/3ξ�(w)) is distributed according to a GUE (resp. GOE) Tracy-
Widom law and ξB(w) = ξstat,w.

7One could also reformulate the result by saying that the error term is O((1− τ)/ ln(1− τ)).
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Small τ behavior for droplet initial conditions

Theorem 4.2.6. For point-to-point LPP, let wτ = ŵττ
2/3. Then the covariance of the

limiting height function for τ → 0 can be expressed as

Cov (χ•(τ), χ•(1)) = τ2/3E(A2(ŵτ ) max
u∈R
{A2(u)− u2 +

√
2B(u)}) +O(τ1−δ). (4.2.21)

4.3 The stationary LPP and its comparison lemmas

As shown in [BCS06] the stationary situation can be realized in different ways. For the
purpose of this paper, we will consider the following situations

• On Z2
+: consider the LPP from SA = {(0, 0)} with

ωi,j =


0 for i = 0, j = 0,

Exp(1− ρ) for i ≥ 1, j = 0,

Exp(ρ) for i = 0, j ≥ 1,

Exp(1) for i ≥ 1, j ≥ 1.

(4.3.1)

This is called stationary LPP with density ρ since the increments of the LPP along
horizontal lines are still sums of iid.Exp(1− ρ) random variables, as a special case
of Lemma 4.2 of [BCS06]. More generically, the increments along a down-right path
are sums of independent random variables, Exp(1 − ρ) for horizontal steps, and
−Exp(ρ) for vertical steps.

• Consider SA = L = {(i, j) ∈ Z2 | i+ j = 0} and with boundary terms

h0(x,−x) =


∑x

k=1(Xk − Yk), for x ≥ 1,

0, for x = 0,

−
∑0

k=x+1(Xk − Yk), for x ≤ −1,

(4.3.2)

where {Xk}k∈Z and {Yk}k∈Z are independent random variables withXk ∼ Exp(1−ρ)
and Yk ∼ Exp(ρ). Then by Lemma 4.2 of [BCS06] the increments of the LPP in
this model are as in the first case.

We will call a stationary LPP model either of this two settings, depending on the cases.
When we consider the point-to-point problem, we will refer to the stationary case as the
first setting, while, when considering the other initial conditions, the stationary LPP will
be the second setting.

To prove Theorem 4.2.5 we are going to use a comparison with the stationary model
of density slightly higher or lower than 1/2. The comparison idea was first used in [CP15]
and then generalized in [Pim17b], with applications in [Pim17a,FGN17,FO18,Nej18]. For
that purpose, we need to introduce the notion of exit point, which is the location where
the maximizer of the LPP exits its boundary terms. Let us define it for both stationary
settings.

Definition 4.3.1. • The exit point for the stationary LPP to (m,n) with boundary
(4.3.1) is the last point on the x-axis or the y-axis of the maximizer ending at (m,n).
We introduce the random variable Zρ(m,n) ∈ Z such that, if Zρ(m,n) > 0, then the
exit point is (Zρ(m,n), 0), as if Zρ(m,n) < 0, then the exit point is (0,−Zρ(m,n)).
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• The exit point for the stationary LPP to (m,n) with boundary (4.3.2) is the starting
point of the maximizer ending at (m,n). We use the notation Z̃ρ(m,n) ∈ Z such
that the exit point is (Z̃ρ(m,n),−Z̃ρ(m,n)).

• The exit point for the LPP from L with initial condition h0 is the starting point of the
maximizer ending at (m,n). We use the notation Zh0(m,n) ∈ Z such that the exit
point is (Zh0(m,n),−Zh0(m,n)). For the random initial condition with parameter
σ, we denote Zh0 = Zσ, and for flat initial condition Zh0 = Z�.

Now we state the two comparison lemmas which we are going to use in the proof of
Theorem 4.2.5.

Lemma 4.3.2. Denote by Lρ the LPP (4.3.1) and L• the LPP in the droplet case. Let
0 ≤ m1 ≤ m2 and n1 ≥ n2 ≥ 0. Then if Zρ(m1, n1) ≥ 0, it holds

L•(m2, n2)− L•(m1, n1) ≤ Lρ(m2, n2)− Lρ(m1, n1), (4.3.3)

while, if Zρ(m2, n2) ≤ 0, then we have

L•(m2, n2)− L•(m1, n1) ≥ Lρ(m2, n2)− Lρ(m1, n1). (4.3.4)

Lemma 4.3.3. Denote by Lρ the LPP (4.3.2) and L? be the LPP from L with boundary
term h0. Let 0 ≤ m1 ≤ m2 and n1 ≥ n2 ≥ 0. Then if Z̃ρ(m1, n1) ≥ Z̃h0(m2, n2), it holds

L?(m2, n2)− L?(m1, n1) ≤ Lρ(m2, n2)− Lρ(m1, n1), (4.3.5)

while, if Z̃ρ(m2, n2) ≤ Z̃h0(m1, n1), then we have

L?(m2, n2)− L?(m1, n1) ≥ Lρ(m2, n2)− Lρ(m1, n1). (4.3.6)

For n1 = n2, Lemma 4.3.2 is in Lemma 1 of [CP15], while Lemma 4.3.3 is Lemma 2.1
of [Pim17b]. The generalization to points on a down-right path is straightforward. It was
made for instance in the LPP setting (4.3.2) in Lemma 3.5 of [FGN17].

4.4 Convergence of the covariance

4.4.1 Preliminaries and notations

A law of large number for point-to-point LPP was proven in [Ros81], namely, for large
(m,n), L(0,0)→(m,n) ≈ (

√
m+

√
n)2. From this we can estimate

L?(0,0)→Eτ ≈ 4τN − w2
ττ
−124/3N1/3,

L?(0,0)→I(u) ≈ 4τN − u2τ−124/3(τN)1/3,

LI(u)→E1
≈ 4(1− τ)N − (u− w1)2

1− τ
24/3N1/3.

(4.4.1)

Denote the rescaled LPP by

L?N (u, τ) :=
L?SA→I(u) − 4(1− τ)N

24/3N1/3
, (4.4.2)

with I(u) = (τN, τN) + u(2N)2/3(1,−1) and

Lpp
N (u, τ) :=

LI(u)→E1
− 4(1− τ)N

24/3N1/3
, (4.4.3)
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where we recall that E1 = (N,N) + w1(2N)2/3(1,−1). Then, (4.2.7) and (4.2.8) become

L?N (τ) ≡ L?N (wτ , τ),

L?N (1) ≡ L?N (w1, 1) = max
u∈R
{L?N (u, τ) + Lpp

N (u, τ)}. (4.4.4)

Furthermore,

lim
N→∞

Lpp
N (u, τ) = (1− τ)1/3

[
A2

(
u−w1

(1−τ)2/3

)
− (u−w1)2

(1−τ)4/3

]
, (4.4.5)

and
lim
N→∞

L?N (u, τ) = τ1/3A?
(

u
τ2/3

)
, ? ∈ {•,�,B}, (4.4.6)

where

A•(u) = Ã2(u)− u2, A�(u) = 21/3A1(u2−2/3), AB(u) = Astat(u). (4.4.7)

4.4.2 Localization of the maximizer at time τN

The maximizer of the process L?N (u, τ) +Lpp
N (u, τ) is confined in the region with |u| ≤M

if the following event holds

ΩG
M =

{
max
|u|≤M

{L?N (u, τ) + Lpp
N (u, τ)} > max

|u|>M
{L?N (u, τ) + Lpp

N (u, τ)}
}
. (4.4.8)

Thus we need to estimate P(ΩG
M ). For any choice of s ∈ R we can write

P(ΩG
M ) ≥ P

(
max
|u|≤M

{L?N (u, τ) + Lpp
N (u, τ)} > s > max

|u|>M
{L?N (u, τ) + Lpp

N (u, τ)}
)

≥ 1− P(GM )− P(BM ),

(4.4.9)

where we defined
GM = {max

|u|≤M
{L?N (u, τ) + Lpp

N (u, τ)} ≤ s},

BM = {max
|u|>M

{L?N (u, τ) + Lpp
N (u, τ)} > s}.

(4.4.10)

The right hand side of (4.4.9) is estimated using the following lemma.

Lemma 4.4.1. Let s = −M2c̃ with c̃ = 1/(16(1 − τ)). Then, there exists a finite M0

such that for any M ≥M0

P (GM ) ≤ Ce−cM2

P (BM ) ≤ Ce−cM2
(4.4.11)

for some constants C, c > 0 uniform in N .

As a direct consequence we have the following localization result.

Corollary 4.4.2. For any M ≥M0,

P
(
the maximizer of L?N (u, τ) + Lpp

N (u, τ) passes by I(u) with |u| > M
)
≤ 2Ce−cM

2

(4.4.12)
uniformly in N .
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Denote by

χ?M (1) = max
|u|≤M

{
τ1/3A?(τ−2/3u) + (1− τ)1/3

[
A2

(
u−w1

(1−τ)2/3

)
− (u−w1)2

(1−τ)4/3

]}
(4.4.13)

and recall
χ?(τ) = τ1/3A?(τ−2/3wτ ). (4.4.14)

Lemma 4.4.3. We have the convergence of joint distributions

lim
N→∞

P
(

max
|u|≤M

{L?N (u, τ) + Lpp
N (u, τ)} ≤ s1;L?N (wτ , τ) ≤ s2

)
=P (χ?M (1) ≤ s1;χ?(τ) ≤ s2) .

(4.4.15)

Proof. It is enough to have weak convergence of the two rescaled process to the terms in
the rhs. As mentioned above, the point-wise convergence have been already proven. So
we need tightness in the space of continuous functions of [−M,M ]. Tightness Lpp

N (u, τ)
and L•N (u, τ) can be found in Corollary 4.2 of [FO18], for LBN (u, τ) it is a direct a direct
consequence of Lemma 4.2 of [BCS06] and the standard Donsker’s theorem. Finally,
tightness for L�N (u, τ) has been established in [Pim17b].

Localization of the process

Let us prove Lemma 4.4.1 and Corollary 4.4.2.

Proof of Lemma 4.4.1. Recall that to prove this lemma, we take s = s0, with the choice
s0 = −M2c̃ = −M2/(16(1− τ)).

(1) Bound on P(GM ).
We have

P(GM ) =P
(

max
|u|≤M

{L?N (u, τ) + Lpp
N (u, τ)} ≤ s0

)
≤P
(
L•N (0, τ) + Lpp

N (0, τ) ≤ s0

)
≤P (L•N (0, τ) ≤ s0/2) + P

(
Lpp
N (0, τ) ≤ s0/2

)
.

(4.4.16)

Now we can use standard estimates on the lower tail of the point-to-point LPP (see
Prop. A.1.1 in Appendix A.1) to obtain that (4.4.16) is bounded by Ce−cM3 uniformly in
N , for some constants C, c.

(2) Bound on P(BM ). Since similar estimates will be used to derive another result, we add
an extra variable ŝ ≥ 0 in the following computations. The case ŝ = 0 is the one relevant
for the present proof.
We have

P(BM ) = P
(

max
|u|>M

{
L?N (u, τ) + Lpp

N (u, τ)
}
> s0 + ŝ

)
≤ P

(
max
|u|>M

{
L?N (u, τ)− u2

2(1− τ)

}
>
s0 + ŝ

2

)
+ P

(
max
|u|>M

{
Lpp
N (u, τ) +

u2

2(1− τ)

}
>
s0 + ŝ

2

)
.

(4.4.17)

We study separately the two terms of (4.4.17) and rename them P
(
B1
M

)
and P

(
B2
M

)
respectively. Remark that the maximum over u is actually a maximum over M < |u| ≤
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O(N1/3), since I(u) need to stay in the backward light cone of the end-point E1. We will
not write this explicitly all the time.
(a) Estimate of P

(
B2
M

)
:

P
(
B2
M

)
= P

(
max
|u|>M

{
Lpp
N (u, τ) +

u2

2(1− τ)

}
>
s0 + ŝ

2

)
(4.4.18)

The bound can be obtained through the decay of the kernel for half-flat initial condition.
The bound on the Fredholm determinant and the kernel are given as in Theorem 2.6 and
Lemma 2.7 of [CFS18] to get

P
(
B2
M

)
≤ Ce−cM2(1−τ)−4/3

e−c̃ŝ. (4.4.19)

Alternatively, one could adapt the proof of Lemma 4.3 of [FO18] to get the same result.
(b) Estimate of P

(
B1
M

)
:

P
(
B1
M

)
= P

(
max
|u|>M

{
L?N (u, τ)− u2

2(1− τ)

}
>
s0 + ŝ

2

)
. (4.4.20)

• Droplet initial condition: for this case, one can estimate it like we made for (4.4.18)
(with minor changes in the terms depending on τ). However, since L•N (u, τ) ≤
L�N (u, τ), the droplet upper tail is simply bounded by the upper tail of the flat
initial condition case.

• Flat initial condition: the bound is obtained in Lemma 4.4.4 below.

• Stationary initial condition: the bounds for the maximum over u > M and for
u < −M are similar and thus we present the details only for the first one.

P
(

max
u>M

{
L?N (u, τ)− u2

2(1− τ)

}
>
s0 + ŝ

2

)
≤P
(

max
u>M

{
L?N (u, τ)− L?N (M, τ)− u2

2(1− τ)

}
> s0 +

ŝ

4

)
+ P

(
L?N (0, τ) > −s0

4
+
ŝ

8

)
+ P

(
L?N (M, τ)− L?N (0, τ) > −s0

4
+
ŝ

8

)
.

(4.4.21)

We study separately the three terms of the last line of (4.4.21). The first term is
bounded using (A.1.20), the second with (A.1.16) and the third one with (A.1.19),
with the final result

P(B1
M ) ≤ Ce−cM2−c̃ŝ (4.4.22)

for some c, c̃ depending on τ , but uniform for all N large enough.

Proof of Corollary 4.4.2. By (4.4.16), (4.4.22), (4.4.19) we can conclude that

P
(

max
|u|≤M

{
L?N (u, τ) + Lpp

N (u, τ)
}
> max
|u|>M

{
L?N (u, τ) + Lpp

N (u, τ)
})
≥ 1− 2Ce−cM

2
,

(4.4.23)
which implies that the probability that the maximizer of L?N (u, τ) + Lpp

N (u, τ) passes
through I(u) with |u| > M goes to zero as 2Ce−cM

2 , for some constants C, c > 0.
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Here for simplicity of notation we rename ŝ as s.

Lemma 4.4.4. For flat initial condition, there exist N0,M0 large enough such that for
all N ≥ N0 and M ≥M0 it holds

P
(

max
M<|u|<O(N1/3)

{
L�N (u, τ)− u2

2(1− τ)

}
>
s0 + s

2

)
≤ Ce−cse−c̃M2

, (4.4.24)

for some constants C, c, c̃ independent of N and M .

Proof. By symmetry we can consider only the case u > M , since the bounds for u < −M
are similar. Fix an ε ∈ (0, 1/6). Then,

P
(

max
M<u<O(N1/3)

{
L�N (u, τ)− u2

2(1− τ)

}
>
s0 + s

2

)
≤

Nε∑
`=1

P
(

max
u∈[`M,(`+1)M ]

{
L�N (u, τ)− u2

2(1− τ)

}
>
s0 + s

2

)
+

∑
u∈[Nε,O(N2/3)]

P
(
L�N (u, τ)− u2

2(1− τ)
>
s0 + s

2

)
.

(4.4.25)

Notice that v 7→ L�N (u + v, τ) and v 7→ L�N (v, τ) have the same law for any u. Thus,
we can simply bound (using also (A.1.7))

P
(
L�N (u, τ)− u2

2(1− τ)
>
s0 + s

2

)
≤ P

(
L�N (0, τ) >

s

2
− M2

32(1− τ)
+

N2ε

2(1− τ)

)
≤ Ce−cs/2+cM2/(32(1−τ))−cN2ε/(2(1−τ))

≤ Ce−c̃s−ĉM2
e−cN

2ε/(4(1−τ)),

(4.4.26)

for some constants C, c, c̃, ĉ, where the last inequality holds for all N ≥ N0(M). From
this it immediately follows that∑

u∈[Nε,O(N2/3)]

P
(
L�N (u, τ)− u2

2(1− τ)
>
s0 + s

2

)
≤ Ce−c̃s−ĉM2

. (4.4.27)

Now we evaluate the first term in (4.4.25). Using translation-invariance in u we get

P
(

max
u∈[`M,(`+1)M ]

{
L�N (u, τ)− u2

2(1− τ)

}
>
s0 + s

2

)
≤ P

(
max
u∈[0,M ]

L�N (u, τ) >
s

2
− M2

32(1− τ)
+

`2M2

2(1− τ)

)
≤ P

(
max
u∈[0,M ]

L�N (u, τ) >
s

2
+

`2M2

4(1− τ)

) (4.4.28)

(a) The first case is s ≥ N2ε. We can still just use the union bound and the exponential
decay to get

(4.4.28) ≤ N2/3 exp

(
−c `2M2

4(1− τ)
− cs

2

)
≤ N2/3 exp

(
−c `2M2

4(1− τ)
− cs

4
− cN

2ε

4

)
≤ exp(−c1`

2M2 − c2s),
(4.4.29)
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for some constants c1, c2 > 0 and all N large enough.
(b) The second case is s ∈ (0, N2ε). Since also ` ≤ N ε we have that x := s

2 + `2M2

8(1−τ) =

O(N2ε) � N1/3. The idea is to bound the process in terms of the increments of a
stationary case. For that reason we first need to get a formula including the increments
of the rescaled LPP, namely we get

(4.4.50) ≤ P
(
L�N (0, τ) >

s

4
+

`2M2

8(1− τ)

)
+ P

(
max
u∈[0,M ]

{
L�N (u, τ)− L�N (0, τ)

}
>
s

2
+

`2M2

8(1− τ)

)
.

(4.4.30)

For the first term, we just use (A.1.7) and obtain

P
(
L�N (0, τ) >

s

4
+

`2M2

8(1− τ)

)
≤ Ce−cs/4−c`2M2/(8(1−τ)). (4.4.31)

The sum of this bound over ` ≥ 1 leads to a bound C̃e−cs/4−cM2/(8(1−τ)). For the second
term in (4.4.30), define ρ+ = 1

2 + κN−1/3 and the event

ΩN,κ = {Z̃ρ+(I(0)) > Z̃�(I(u)), for all u ∈ [0,M ]}. (4.4.32)

On this event, by Lemma 4.3.3, we have

L�N (u, τ)− L�N (0, τ) ≤ Lρ+

N (u, τ)− Lρ+

N (0, τ), (4.4.33)

which in turns gives

P
(

max
u∈[0,M ]

{
L�N (u, τ)− L�N (0, τ)

}
>
s

2
+

`2M2

8(1− τ)

)
≤ P

(
max
u∈[0,M ]

{
L
ρ+

N (u, τ)− Lρ+

N (0, τ)
}
>
s

2
+

`2M2

8(1− τ)

)
+ P(Ωc

N,κ).

(4.4.34)

By stationarity of the increments we have

L
ρ+

N (u, τ)− Lρ+

N (0, τ) =
1

24/3N1/3

buN2/3c∑
i=1

Zi, (4.4.35)

where Zi = Xi − Yi with Xi’s i.i.d. Exp(1− ρ+) and Yi’s i.i.d. Exp(ρ+) random variables.
Since Mu =

∑buN2/3c
i=1 Zi is a submartingale, so it is exp(tMu) for t > 0 (at least for t

small enough) and we can use Doob’s inequality for submartingales,

P
(

max
u∈[0,M ]

Mu ≥ x
)
≤ inf

t≥0

E
[
etMM

]
etx

= inf
t≥0

E
[
etZ1

]bMN2/3c

etx
. (4.4.36)

For and ρ+ = 1
2 + κN−1/3. An explicit computation gives, for κ ∈ (0, x/(25/3M)),

(4.4.36) ≤ exp

(
−(21/3x− 4Mκ)2

4M
+O(x4N−2/3;κ4N−2/3)

)
. (4.4.37)
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Thus, with the choice κ = x/(28/3M), we find

P
(

max
u∈[0,M ]

{
L
ρ+

N (u, τ)− Lρ+

N (0, τ)
}
>
s

2
+

`2M2

8(1− τ)

)
≤ exp

(
− x2

16M

)
≤ exp

(
−c1s

2 − c2`
4M3

)
,

(4.4.38)

for some constants c1, c2 > 0 and all N large enough. Summing this bound over ` ≥ 1 we
get Ce−c1s2−c2M3 for some constants C, completing the proof of (4.4.24).

Lemma 4.4.5. Let ρ± = 1
2 ± κN

−1/3. Define the event

ΩN,κ =
{
Z̃ρ+(I(0)) ≥ Z̃�(I(u)),∀u ∈ [0,M ]

}
∩{

Z̃ρ−(I(0)) ≤ Z̃�(I(u)),∀u ∈ [−M, 0]
}
, (4.4.39)

where the exit points are as in Definition 4.3.1. Then, for all N large enough and all
κ > 0 with κ = o(N1/3),

P(Ωc
N,κ) ≤ Ce−cκ2

. (4.4.40)

Proof. We need to estimate the complement of the probabilities of the two terms in
(4.4.39), for instance

P(Z̃�(I(u)) > Z̃ρ+(I(0))), for some u ∈ [0,M ]). (4.4.41)

The estimates are completely analogous, thus we provide the details only for the first one.
Since Z̃�(I(u)) ≤ Z̃�(I(M)) for all u ∈ [0,M ], we have

(4.4.41) ≤ P(Z̃�(I(M)) > Z̃ρ+(I(0)))

≤ P(Z̃�(I(M)) > α(2N)2/3) + P(Z̃ρ+(I(0))) < α(2N)2/3).
(4.4.42)

By Lemma 4.3 of [FO18], we have that P(Z̃�(I(M)) > α(2N)2/3) ≤ Ce−cα2 , for some
constants C, c ∈ (0,∞). Using stationarity of the increments along the antidiagonal, we
have

Z̃ρ+(n− k, n+ k)
d
= Z̃ρ+(n, n)− k. (4.4.43)

Thus,

P(Z̃ρ+(I(0)) < α(2N)2/3) = P(Z̃ρ+(I(0))− α(2N)2/3 ≤ 0)

= P(Z̃ρ+(I(−α)) < 0) = P(Zρ+(I(−α)) < 0).
(4.4.44)

The last equality follows from the fact that we can construct the two models on the same
randomness (define the random variables in the model (4.3.1) as image of the ones of
(4.3.2) by [BCS06]), for which Z̃ρ+(m,n) < 0 iff Zρ+(m,n) < 0 by simple geometric
considerations.

Setting (γ2n, n) = I(−α), and writing ρ+ = 1/(1 + γ) + κ̃n−1/3, we deduce that
κ̃ = τ2/3κ− 2−4/3ατ−1/3 +O(κN−1/3). Lemma 2.5 of [FO18] states8 that if κ̃ > 0, then
P(Zρ+(γ2n, n) < 0) ≤ Ce−cκ̃2 for some constants C, c > 0. We choose α = 21/3τκ, which
gives κ̃ = 1

2κτ
2/3(1 +O(κ/N1/3)). Then, for all N large enough, we obtain

(4.4.44) ≤ Ce−c̃κ2
(4.4.45)

for some constants C, c > 0.
8By inspecting the proof of Lemma 2.5 of [FO18], one sees that it actually holds true not only for any

given κ, but also for all κ ∈ [0, o(n1/3)].
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Convergence of the covariance

To prove Theorem 4.2.2, first we show that the N →∞ limit of the covariance of L?N (τ)
and max|u|≤M

{
L?N (u, τ) + Lpp

N (u, τ)
}

is the covariance of χ?(τ) and χ?M (1), for fixed
M > 0. Now that we have proved the localization of the process, we need to show that
the covariance of χ?(τ) and χ?(1) is the M → ∞ limit of the covariance of the LPP
restricted to the region |u| ≤M .

Proposition 4.4.6. For any fixed M > 0,

lim
N→∞

Cov

(
L?N (wτ , τ), max

|u|≤M
{L?N (u, τ) + Lpp

N (u, τ)}
)

= Cov (χ?(τ), χ?M (1)) . (4.4.46)

Proof. Let us denote

L?N ;M (1) = max
|u|≤M

{L?N (u, τ) + Lpp
N (u, τ)}. (4.4.47)

By Lemma 4.4.15 we already have the convergence of joint distributions of L?N ;M (1) and
L?N (τ) ≡ L?N (wτ , τ) to χ?M (1) and ξ?(τ). By Cauchy-Schwarz it is enough to show the
convergence of the second moments of L?N ;M (1) and L?N (τ).

For a random variable XN with distribution function FN (s) = P(XN ≤ s), we can
write

E(X2
N ) = 2

ˆ
R+

s(1− FN (s))ds− 2

ˆ
R−

sFN (s)ds. (4.4.48)

If we know that XN → X in distribution, to show convergence of the second moment we
need only to find g(s) independent ofN such that 1−FN (s) ≤ g(s) for s ≥ 0, FN (s) ≤ g(s)
for s < 0 and that g ∈ L1(R). Then dominated convergence allows to take the limit in
the integrals and obtain E(X2

N ) → E(X2). Thus our task is to find such bounds. Since
FN (s) ∈ [0, 1], it is enough to get bounds for the tails, i.e., a bound for 1 − FN (s) for
s ≥ s0 and for FN (s) for s ≤ −s0 for some s0.

(1) limN→∞ E[(L?N (τ))2] = E[(χ?(τ))2].

• bound on lower tails: due to L?N (τ) ≥ L•N (τ), we can use for all cases the lower
bound for the droplet initial condition, which is in Proposition A.1.1 (by appropriate
change of variables).

• bound on upper tails: (a) for the droplet initial condition, this is in Proposi-
tion A.1.1, (b) for the flat initial condition, this is given in Proposition A.1.2, (c)
for the stationary initial condition9, we have

P(LBN (τ) ≤ s) ≤ P(LBN (0) ≤ s/2) + P(LBN (τ)− LBN (0) ≤ s/2). (4.4.49)

The first term is bounded using Proposition A.1.4, while the second using Proposi-
tion A.1.5.

In all cases we have at least exponential decay of the both the upper and lower tails. This
implies the convergence of the second moment as well.

(2) limN→∞ E[(L?N ;M (1))2] = E[(χ?M (1))2].

9For stationary initial condition, the convergence of all moments was already proven in [BFP14].
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• bound on lower tails: we have

P(L?N ;M (1) ≤ s) ≤ P(L?N (0, τ) ≤ s/2) + P(Lpp
N (0, τ) ≤ s/2)

≤ P(L•N (0, τ) ≤ s/2) + P(Lpp
N (0, τ) ≤ s/2) ≤ Ce−c|s|3/2

(4.4.50)

by Proposition A.1.1.

• bound on upper tails: we have L?N ;M (1) ≤ L?N (1) and thus by the estimates used
already in part (1) we have

P(L?N (1) ≥ s) ≤ Ce−cs. (4.4.51)

These bounds implies convergence of the second moment as well.

What remains to prove Theorem 4.2.2 is a control on the contribution to the covariance
from the events when the maximizer passed by I(u) for some |u| > M . We have the
decomposition

Cov (L?N (τ), L?N (1))

= Cov
(
L?N (τ), L?N ;M (1)

)
+ Cov

(
L?N (τ), L?N (1)− L?N ;M (1)

)
.

(4.4.52)

Given the convergence of the second moments for fixed M by Proposition 4.4.6, there is
one term left to study:

|Cov
(
L?N (τ), L?N (1)− L?N ;M (1)

)
|

= |E
[
L?N (τ)

(
L?N (1)− L?N ;M (1)

)]
− E [L?N (τ)]E

[
L?N (1)− L?N ;M (1)

]
|

≤ 2
(
E
[
(L?N (τ))2

]
E
[
(L?N (1)− L?N ;M (1))2

])1/2
,

(4.4.53)

where we used Cauchy-Schwarz to control the second term.

Lemma 4.4.7. For any M > 0,

lim
N→∞

E
[
(L?N (1)− L?N ;M (1))2

]
≤ Ce−cM2

(4.4.54)

as well as
E[(χ?(1)− χ?M (1))2] ≤ Ce−cM2

. (4.4.55)

where C, c > 0 are positive constants, uniformly in N .

Proof. Let us denote

L?N ;Mc(1) = max
|u|>M

{L?N (u, τ) + Lpp
N (u, τ)}. (4.4.56)

Since L?N (1) = max{L?N ;M (1), L?N ;Mc(1)}, we can write

L?N (1)− L?N ;M (1) = max{0, L?N ;Mc(1)− L?N ;M (1)}. (4.4.57)

Integrating by parts, we obtain

E
[(
L?N (1)− L?N ;M (1)

)2]
= 2

ˆ
R+

sP
(
L?N ;Mc(1)− L?N ;M (1) > s

)
. (4.4.58)
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The probability in the r.h.s. of (4.4.58) can be bounded as

P
(
L?N ;Mc(1)− L?N ;M (1) > s

)
≤ P

(
L?N ;Mc(1) >

s+ α

2

)
+ P

(
L?N ;M (1) ≤ α− s

2

)
(4.4.59)

for any choice of α.
(a) We use the first inequality in (4.4.28) and obtain

P
(
L?N ;M (1) <

α− s
2

)
≤ P

(
L•N (0, τ) <

α− s
4

)
+ P

(
Lpp(0, τ) <

α− s
4

)
. (4.4.60)

For any α < 0 and s ≥ 0, by Proposition A.1.1 we get

P
(
L?N ;M (1) <

α− s
2

)
≤ Ce−c(s−α)3/2

(4.4.61)

for some constants C, c. Thus it is enough to choose α = −γM2 for some γ > 0.
(b) Next we bound P

(
L?N ;Mc(1) > s+α

2

)
. Choosing α = − M2

16(1−τ) and using the
bounds for P(BM ) in the proof of Lemma 4.4.1, we obtain

P
(
L?N ;Mc(1) >

s+ α

2

)
≤ Ce−cM2

e−c̃s. (4.4.62)

Plugging the bounds (4.4.61) and (4.4.62) into (4.4.58) leads (4.4.54).
Finally, (4.4.55) is proven as follows. By dominated convergence we have that

E[(χ?(1)− χ?M (1))2] = 2

ˆ
R+

sP (χ?Mc(1)− χ?M (1) > s)

= lim
N→∞

2

ˆ
R+

sP
(
L?N ;Mc(1)− L?N ;M (1) > s

)
≤ Ce−cM2

(4.4.63)

where the last inequality follows from (4.4.54).

Proof of Theorem 4.2.2. We have

lim
N→∞

Cov (L?N (τ), L?N (1))

= lim
M→∞

lim
N→∞

Cov
(
L?N (τ), L?N,M (1)

)
+ lim
M→∞

lim
N→∞

Cov
(
L?N (τ), L?N (1)− L?N,M (1)

)
.

(4.4.64)
By Proposition 4.4.6, the first term equals Cov(χ?(τ), χ?M (1)). By Lemma 4.4.7, the
second term is 0. Thus what remains is to show that

Cov(χ?(τ), χ?(1)) = lim
M→∞

Cov(χ?(τ), χ?M (1)). (4.4.65)

This is obtained once we prove that

lim
M→∞

E[(χ?(1)− χ?M (1))2] = 0, (4.4.66)

which is also part of Lemma 4.4.7.
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4.4.3 Formula for the stationary case

Now we prove the claimed formula for the stationary case. It follows by a simple compu-
tation using the result of Theorem 4.2.2 for the stationary case and the identity (4.2.18).

Proof of Corollary 4.2.4. Setting X1 = χB(τ) and X2 = χB(1) in (4.2.18) we get

Cov
(
χB(τ), χB(1)

)
= 1

2 Var(χB(τ)) + 1
2 Var(χB(1))− 1

2 Var(χB(1)− χB(τ)). (4.4.67)

The first two terms in (4.2.17) are an immediate consequence of the convergence of mo-
ments, see proof of Proposition 4.4.6. For the last term, we have

χB(1)− χB(τ) = max
u∈R

{
(1− τ)1/3

[
A2

(
u−w1

(1−τ)2/3

)
− (u−w1)2

(1−τ)4/3

]
+τ1/3[Astat(τ

−2/3u)−Astat(τ
−2/3wτ )]

}
.

(4.4.68)

Changing the variable u = wτ + z(1− τ)2/3, and calling ξ = w1−wτ
(1−τ)2/3 , it gives

χB(1)− χB(τ) =(1− τ)1/3 max
z∈R

{
A2

(
z − ξ

)
− (z − ξ)2

+
τ1/3

(1− τ)1/3

[
Astat(τ

−2/3(wτ + z(1− τ)2/3))−Astat(τ
−2/3wτ )

]}
.

(4.4.69)

Next we use the facts: (a) A2(z− ξ) (d)
= A2(z), (b) Astat(a+x)−Astat(a)

(d)
=
√

2B(x) with
B a standard Brownian motion, and (c) the scaling of Brownian motion, to get

χB(1)− χB(τ)
(d)
= (1− τ)1/3 max

z∈R

{√
2B(z) +A2(z)− (z − ξ)2

}
(d)
= (1− τ)1/3Astat(ξ).

(4.4.70)

4.5 Behavior around τ = 1

What we have to prove is

Var [χ?(1)− χ?(τ)] = (1− τ)2/3 Var (ξstat,w̃) +O(1− τ)1−δ, (4.5.1)

as τ → 1 for all the initial conditions. Clearly the flat and stationary are special case of
the more generic random initial conditions. Define

χ?M = lim
N→∞

max
|u|≤(1−τ)2/3M

(L?N (u, τ) + Lpp
N (u, τ))

= lim
N→∞

max
|v|≤M

(L?N ((1− τ)2/3v, τ) + Lpp
N ((1− τ)2/3v, τ)).

(4.5.2)

In particular, for droplet, flat, stationary initial conditions, we have

χ?M = (1− τ)1/3 max
|v|≤M

((
τ

1−τ

)1/3
A?
(
v
(

1−τ
τ

)2/3)
+A2(v − w̃1)− (v − w̃1)2

)
, (4.5.3)

with A? being the Airy2, Airy1 or Airystat process for ? = •,�,B respectively. Also, recall
the notation

χ?(τ) = lim
N→∞

L?N ((1− τ)2/3w̃τ , τ) = (1− τ)1/3
(

τ
1−τ

)1/3
A?
(
ṽ(τ)

(
1−τ
τ

)2/3)
. (4.5.4)
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On short scales, A? is expected to behave similar to the stationary state, which is
a two-sided Brownian motion with diffusion coefficient 2. Since the Airy2 process is
stationary, for τ → 1, χ?M − χ?(τ) should be close to the following expression

ξM,w̃τ ,w̃1 := (1− τ)1/3 max
|v|≤M

{√
2B(v − w̃τ ) +A2(v)− (v − w̃1)2

}
. (4.5.5)

In this proof we set
w̃ = w̃1 − w̃τ . (4.5.6)

For M =∞, replacing v − w̃τ → ṽ and using the stationarity of A2 we obtain

ξ∞,w̃τ ,w̃1

(d)
= (1− τ)1/3 max

ṽ∈R
{
√

2B(ṽ) +A2(ṽ)− (ṽ − w̃)2} = (1− τ)1/3ξstat,w̃. (4.5.7)

Note that in distribution

(1− τ)1/3(ξGUE − w̃2) ≤ ξM,w̃τ ,w̃1 ≤ (1− τ)1/3ξstat,w̃ (4.5.8)

and therefore we know that the mth moment of ξM,w̃τ ,w̃1 is finite and of order (1− τ)m/3.
To control the error term, the idea is to take M depending on τ such that M →∞ as

τ goes to 1. Then the task is to prove that the difference between the second moment of
χ?M (1)− χ?(τ) and the second moment of ξM,w̃τ ,w̃1 goes to zero as τ → 1.

Lemma 4.5.1. Let M = 1
(1−τ)δ/2

with δ > 0. Then∣∣∣E [(χ?M (1)− χ?(τ))2
]
− E

[
ξ2
M,w̃τ ,w̃1

] ∣∣∣ = O(1− τ)1−δ. (4.5.9)

We need to control how close the increments of the process over distances of order
(1− τ)2/3 at time τ are with respect to the increments of Brownian motion.

We present a short technical lemma that will be used in the proof of Lemma 4.5.1.
Recall Definition 4.3.1 of the exit point for a LPP with boundary conditions (4.3.1) (for
the droplet case) or (4.3.2) (for the random case) and define ρ± = 1

2 ± κN
−1/3. Denote

by Lρ± its associated LPP.

Lemma 4.5.2. There is an event Ωκ with P(Ωκ) ≥ 1− C exp
(
−cκ̃2

)
, with

(a) for droplet initial condition, κ̃ = κ− M(1−τ)2/3

24/3τ
,

(b) for random initial condition, κ̃ = κ− 2M(1−τ)2/3

24/3τ
,

and constants C, c,M0 ∈ (0,∞), such that on Ωκ the inequalities

ξM,w̃τ ,w̃1 − ε0 ≤ χ?M (1)− χ?(τ) ≤ ξM,w̃τ ,w̃1 + ε0, (4.5.10)

hold in distribution, for all M ≥ M0 with ε0 = O(κM(1 − τ)2/3), under the condition
κ̃ > 0.

Proof. Let us define

∆•N (u) =
L(0,0)→I(u) − L(0,0)→Eτ

24/3N1/3
, ∆σ

N (u) =
LσL→I(u) − L

σ
L→Eτ

24/3N1/3
, (4.5.11)

and recall the definitions

L•N (u, τ) =
L(0,0)→I(u) − 4τN

24/3N1/3
, LσN (u, τ) =

LσL→I(u) − 4τN

24/3N1/3
,

Lpp
N (u, τ) =

LI(u)→E1
− 4(1− τ)N

24/3N1/3
.

(4.5.12)
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Then we have
L?N (u, τ) = L?N (0, τ) + ∆?

N (u). (4.5.13)

Also, recall that we will use the notation u = v(1− τ)2/3 and M̃ = M(1− τ)2/3.
Define the event

ΩN,κ =

{
{Zρ+(I(−M̃)) > 0, Zρ−(I(M̃)) < 0}, for droplet IC,
{Z̃ρ+(I(−M̃)) > Zσ(I(M̃)), Z̃ρ−(I(M̃)) < Zσ(I(−M̃))}, for random IC.

(4.5.14)
Then, on the event ΩN,κ we can bound ∆?

N (u) with the increments of the stationary LPP
with density ρ±, defined as

B±(u) =
Lρ±(I(u))− Lρ±(I(0))−mρ±u(2N)2/3

24/3N1/3
, (4.5.15)

where mρ± = 1
1−ρ± −

1
ρ± = 8κN−1/3 + O(N−1). Indeed a minimal modification of

Lemma 4.3.2 implies, for −M̃ ≤ w < u ≤ M̃ ,[
B−(u)−B−(w)

]
− 4(u− w)κ ≤ L?N (u, τ)− L?N (w, τ)

≤
[
B+(u)−B+(w)

]
+ 4(u− w)κ

(4.5.16)

for N large enough. Furthermore, Var(B±(u)) = u21/2(1 + O(N−2/3)) and B±(0) = 0.
Thus by Donsker’s theorem, limN→∞B

±(u) =
√

2B(u), with B(u) a standard two-sided
Brownian motion in the space of continuous functions on bounded sets.

Recall that

χ?M (1)−χ?(τ) = lim
N→∞

max
|v|≤M

{
L?N
(
v(1−τ)2/3, τ

)
−L?N (w̃τ (1−τ)2/3, τ)+Lpp

N (v(1−τ)2/3, τ)
}

(4.5.17)
and also that v 7→ Lpp

N (v(1− τ)2/3, τ) converges weakly to (1− τ)1/3[A2(v)− (v − w̃1)2].
Thus, taking the N →∞ limit and using the inequalities (4.5.16) we obtain

P
(
χ?M (1)− χ?(τ) ≤ (1− τ)1/3s

)
≤ P

(
max
|v|≤M

{√
2(B(v)−B(w̃τ ) +A2(v)− (v − w̃1)2 − 4κ(v − w̃τ )(1− τ)1/3

}
≤ s
)
.

(4.5.18)

Denoting ε = max|v|≤M |4κ(v − w)(1− τ)1/3| = 6κM(1− τ)1/3 we obtain

P
(
χ?M (1)− χ?(τ) ≤ (1− τ)1/3s

)
≤ P

(
max
|v|≤M

{√
2B(v − w̃τ ) +A2(v)− (v − w̃1)2

}
≤ s+ ε

)
= P

(
ξM,w̃τ ,w̃1 ≤ (1− τ)1/3s+ ε0

) (4.5.19)

with ε0 = (1− τ)1/3ε.
Similarly for the lower bound we get

P
(
χ?M (1)− χ?(τ) > (1− τ)1/3s

)
≤ P

(
ξM,w̃τ ,w̃1 > (1− τ)1/3s+ ε0

)
. (4.5.20)



4.5. Behavior around τ = 1 97

To conclude the proof, we need to estimate P(ΩN,κ).
(a) Droplet initial condition: For this case, we apply Lemma 2.5 of [FO18]. To estimate
P(Zρ±(I(∓M̃)) > 0), we need to set I(∓M̃) = (γ2n, n). This gives

ρ± =
1

2
± M̃

24/3τN1/3
± κ̃

τ2/3N1/3
. (4.5.21)

Then, Lemma 2.5 of [FO18] gives

P(Zρ±(I(∓M̃)) > 0) ≥ 1− Ce−cκ̃2
= 1− Ce−c(τ2/3κ−2−4/3M̃τ−1/3)2

. (4.5.22)

The estimates are uniform for all N large enough. Renaming cτ4/3 as a new constant c,
and 2C by C, we get

P(ΩN,κ) ≥ 1− C exp

(
−c
(
κ− M(1− τ)2/3

24/3τ

)2
)
. (4.5.23)

(b) Random initial condition: We derive a bound only for P(Z̃ρ+(I(−M̃)) < Zσ(I(M̃))),
since bounding P(Z̃ρ−(I(M̃)) < Zσ(I(−M̃))) is completely analogue.

The probability we want to bound is smaller than

P(Z̃ρ+(I(−M̃)) ≤ α(2N)2/3) + P(Zσ(I(M̃)) > α(2N)2/3), (4.5.24)

and we choose α = 21/3τκ. Exactly as in (4.4.44), we have

P(Z̃ρ+(I(−M̃)) ≤ α(2N)2/3) = P(Zρ+(I(−M̃ − α)) < 0) ≤ Ce−cκ̃2
(4.5.25)

with κ̃ = 2τ2/3
(
κ− (1−τ)2/3M

21/3τ

)
, provided κ̃ > 0.

Now we bound P(Zσ(I(M̃)) > α(2N)2/3). Let J(v) = v(2N)2/3(1,−1), define the
scaled variables

LN (v) =
LJ(v)→I(M̃) − 4(1− τ)N

24/3N1/3
, WN (v) =

h0(J(v))

24/3N1/3
. (4.5.26)

Then,

P(Zσ(I(M̃)) > α(2N)2/3) ≤ P
(

max
v≤α

(LN (v) +WN (v)) ≤ −s
)

+ P
(

max
v>α

(LN (v) +WN (v)) ≥ −s
)
.

(4.5.27)

Since LN (v) ∼ −(v − M̃)2/(τ), we choose s = (α− M̃)2/4.
The first term in (4.5.27) is bounded by

P (LN (α) +WN (α) ≤ −s) ≤ P
(
LN (α) ≤ −3

2s
)

+ P
(
WN (α) ≤ 1

2s
)
. (4.5.28)

The first term bounded by C1e
−c2(α−M̃)3 by (A.1.4). Since WN is a (rescaled) sum of iid.

random variables, we can use the the exponential Chebyshev inequality (see e.g. the proof
of (A.1.19)) and obtain a bound C2e

−c2(α−M̃)4/α.
The second term in (4.5.27) is bounded by

P
(

max
v≥α

(
LN (v) + 1

2(v − M̃)2
)
≥ −1

2s

)
+ P

(
max
v≥α

(
WN (v)− 1

2(v − M̃)2
)
≥ −1

2s

)
.

(4.5.29)
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The first term is estimated similarly to (4.4.18) and leads to a bound C3e
−c3(α−M̃)2 . The

second term is bounded using Doob’s maximal inequality (see e.g. the proof of (A.1.20)
leading to a bound C4e

−c4(α−M̃)4/α).
Combining these bounds we get P(Zσ(I(M̃)) > α(2N)2/3) ≤ Ce−cκ̃2 , provided κ̃ > 0,

for some constants C, c ∈ (0,∞) uniformly for all τ in a compact subset of (0, 1]. Up to
renaming cτ4/3 to c and the constant 2C to C we get the claimed result.

Now we can prove Lemma 4.5.1.

Proof of Lemma 4.5.1. By Lemma 4.5.2 we have, on a event Ωκ with P(Ωc
κ) ≤ Ce−cκ̃

2 ,
with

κ̃ = κ− M(1− τ)2/3

24/3τ
. (4.5.30)

the inequality
(χ?M (1)− χ?(τ))1Ωκ = ξM,w̃τ ,w̃11Ωκ + ζ1Ωκ , (4.5.31)

for some random variables ζ with |ζ| ≤ ε0. Thus

E[(χ?M (1)− χ?(τ))2] = E[(χ?M (1)− χ?(τ))2
1Ωκ ] + E[(χ?M (1)− χ?(τ))2

1Ωcκ ]. (4.5.32)

Using (4.5.31) we get

E[(χ?M (1)−χ?(τ))2
1Ωκ ] = E(ξ2

M,w̃τ ,w̃1
)−E(ξ2

M,w̃τ ,w̃1
1Ωcκ)+2E(ζξM,w̃τ ,w̃11Ωκ)+E(ζ2

1Ωκ).
(4.5.33)

Using Cauchy-Schwarz and the fact that |ζ| ≤ ε0, we get the bounds

E(ξ2
M,w̃τ ,w̃1

1Ωcκ) ≤
√
E(ξ4

M,w̃τ ,w̃1
)P(Ωc

κ) ≤ C1(1− τ)2/3e−cκ̃
2/2,

|E(ζξM,w̃τ ,w̃11Ωκ)| ≤ ε0

√
E(ξ2

M,w̃τ ,w̃1
) ≤ C2(1− τ)1/3ε0,

E(ζ2
1Ωκ) ≤ ε2

0,

(4.5.34)

for some constants C1, C2 (since, as already mentioned, the mth moment of ξM,w̃τ ,w̃1 is of
order (1− τ)m/3).

It remains to bound the last term of (4.5.32). Let Λ = {|χ?M (1)− χ?(τ)| ≤ λ} and
decompose (χ?M (1)− χ?(τ))1Ωcκ as (χ?M (1)− χ?(τ))1Ωcκ(1Λ + 1Λc). Then,

E[(χ?M (1)− χ?(τ))2
1Ωcκ ] ≤ E[(χ?M (1)− χ?(τ))2

1Λc ] + λ2P(Ωc
κ). (4.5.35)

Integration by parts gives

E
[
(χ?M (1)− χ?(τ))2

1Λc
]

= λ2P(|χ?M (1)− χ?(τ)| > λ)

+ 2

ˆ ∞
λ

sP(χ?M (1)− χ?(τ) > s)ds− 2

ˆ −λ
−∞

sP(χ?M (1)− χ?(τ) ≤ s)ds.
(4.5.36)

Now, for s > 0,

P(χ?M (1)− χ?(τ) > s) ≤ P(χ?M (1) ≥ s/2) + P(χ?(τ) ≤ −s/2), (4.5.37)

and for s < 0,

P(χ?M (1)− χ?(τ) ≤ s) ≤ P(χ?M (1) ≤ s/2) + P(χ?(τ) ≥ −s/2). (4.5.38)
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Recall that

P(χ?M (1) > s) ≤ P(χ?(1) > s),

P(χ?M (1)) ≤ s) ≤ P((1− τ)1/3Ã2(0) ≤ s) = FGUE(s/(1− τ)1/3).
(4.5.39)

Since both tails of χ?(1) and of the GUE Tracy-Widom distributions have (at least)
exponential decay (see Prop. A.1.3 and A.1.4 in Appendix A.1), it then follows that

E
[
(χ?M (1)− χ?(τ))2

1Λc
]
≤ Cλ2e−cλ/(1−τ)1/3

(4.5.40)

for some constants C, c.
Summing up we have obtained

E[(χ?M (1)− χ?(τ))2]− E(ξ2
M,w̃τ ,w̃1

)

= O
(

(1− τ)2/3e−cκ̃
2/2; (1− τ)1/3ε0; ε2

0;λ2e−cκ̃
2
;λ2e−cλ/(1−τ)1/3

)
, (4.5.41)

with ε0 = O(κM(1−τ)2/3). Now we chooseM,κ, λ. Let δ ∈ (0, 1/3) be any fixed number
and choose

M =
1

(1− τ)δ/2
, κ =

1

(1− τ)δ/2
, λ = 1. (4.5.42)

Then, the error term in (4.5.41) is just of order O((1− τ)1−δ).

Now we are ready to prove Theorem 4.2.5.

Proof of Theorem 4.2.5. We have

E
[
(χ?(1)− χ?(τ))2

]
= E

[
(χ?(1)− χ?M (1))2

]
+ E

[
(χ?M (1)− χ?(τ))2

]
+ 2E [(χ?(1)− χ?M (1))(χ?M (1)− χ?(τ))]

(4.5.43)

With the choice M = (1− τ)−δ/2, by Lemma 4.5.1 we have

E
[
(χ?M (1)− χ?(τ))2

]
= E[ξ2

M,w̃τ ,w̃1
] +O(1− τ)1−δ. (4.5.44)

By Lemma 4.4.7, the Cauchy-Schwarz inequality, and ξ∞,w̃ = (1− τ)1/3ξstat,w̃, we obtain

E
[
(χ?(1)− χ?(τ))2

]
= (1− τ)2/3E[ξstat,w̃]2 +O((1− τ)1−δ). (4.5.45)

Since E[ξstat,w̃] = 0 the claimed result is proven.

4.6 Behavior around τ = 0 for droplet initial conditions

Let us finally explain the asymptotic for τ → 0. The details are simple modifications
of what we made for the case τ → 1. By Theorem 1 of [Pim17b], we have local weak
convergence of the Airy2 process to a Brownian motion for τ → 0,

lim
τ→0

(
τ

1−τ

)−1/3
(
Ã2

((
τ

1−τ

)2/3
v

)
− Ã2(0)

)
=
√

2B(v). (4.6.1)
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Lemma 4.5.1 and Lemma 4.5.2 can be easily readjusted for this case. Let us call wτ =
τ2/3ŵτ . Then, by Theorem 4.2.2, renaming u = zτ2/3,

Cov (χ•(τ), χ•(1))

= Cov

(
τ1/3[Ã2(ŵτ )− ŵ2

τ ], τ1/3 max
u∈R

{
Ã2(z)− z2 +

(
1−τ
τ

)1/3A2(z τ2/3

(1−τ)2/3 )− z2 τ
1−τ

})
=τ2/3 Cov

(
Ã2(ŵτ ),max

z∈R

{
Ã2(z)− z2 +

√
2B(z)

}
+
(

1−τ
τ

)1/3A2(0)

)
+O(τ1−δ)

=τ2/3 Cov

(
Ã2(ŵτ ),max

z∈R

{
Ã2(z)− z2 +

√
2B(z)

})
+O(τ1−δ),

(4.6.2)
for any δ > 0, where the covariance of Ã2(ŵτ ) andA2(0) is zero, since they are independent
processes. The second term in the covariance has the same distribution as ξstat,0, which
is has expected value 0. This leads to the claimed result of Theorem 4.2.6.



Chapter 5

Stationary half-space last passage
percolation

This chapter is based on [BFO19]. In this paper we study stationary last passage perco-
lation (LPP) in half-space geometry. We determine the limiting distribution of the last
passage time in a critical window close to the origin. The result is a new two-parameter
family of distributions: one parameter for the strength of the diagonal bounding the half-
space (strength of the source at the origin in the equivalent TASEP language) and the
other for the distance of the point of observation from the origin. It should be compared
with the one-parameter family giving the Baik–Rains distributions for full-space geome-
try. We finally show that far enough away from the characteristic line, our distributions
indeed converge to the Baik–Rains family. We derive our results using a related integrable
model having Pfaffian structure together with careful analytic continuation and steepest
descent analysis.

5.1 Introduction

Background and motivation. A stochastic growth model in the one-dimensional
Kardar–Parisi–Zhang (KPZ) universality class [KPZ86] describes the evolution of a height
function h(x, t) at position x and time t subject to a stochastic and local microscopic evo-
lution. On a macroscopic scale, that is with space of order t, the evolution of the height
function evolves according to a certain PDE and one has a non-random limit shape.

The following, among others, belong to the the KPZ class: the KPZ equation; directed
random polymer models (where the free energy plays the role of the height function);
their zero-temperature limits known as last passage percolation; and interacting particle
systems like the exclusion process. Some of these models have been analyzed in the
last two decades for many classes of initial conditions and/or boundary conditions. The
fluctuations of the height function are of order t1/3 and the correlation length scales as
t2/3, as conjectured in [FNS77,BKS85]1.

In particular, it is known that the limiting processes depend on subclasses of initial
conditions. In full-space, that is for x ∈ R or x ∈ Z, one sees the Airy2 process around
curved limit shape points [PS02b, Joh03, BF08], with one-point distribution the GUE
Tracy–Widom distribution [TW94], discovered in [BDJ99b] and shown later to hold for a
variety of models in the KPZ class [Joh00b, SS10b,ACQ11, SS10a,FV15,BCF14,Bar14].

1This holds true around points with smooth limit shape. Around shocks there are some differences,
see e.g. [FN15,FN17,FF94,FGN17,Nej18].
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For flat limit shapes and non-random initial conditions, the limit process is known as
the Airy1 process [Sas05, BFPS07] with the GOE Tracy–Widom as one-point distribu-
tion [TW96]—see [BR01c,BR01b,PS00]. Finally, stationary initial conditions also lead to
flat limit shapes and the Airystat process [BFP10], having the Baik–Rains distribution as
the one-point distribution [BR00,FS06,BCFV15, IS13,Agg16, IS19, IS17]. The stationary
model is obtained as a limit of some specific two-sided random initial condition2.

For further details and recent developments around the KPZ universality class, see also
the following surveys and lecture notes: [FS11,Cor12,QS15,BG12,Qua11,Fer10,Tak16].

In this paper we consider a stationary model in half-space, where the latter means
having a height function h(x, t) defined only on x ∈ N (or x ∈ R+). Our model, called
stationary half-space last passage percolation (LPP), is defined in Section 5.2.1. In this
geometry there are considerably fewer results compared to the case of full-space geom-
etry. Of course, one has to prescribe the dynamics at site x = 0. If the influence on
the height function of the growth mechanism at x = 0 is very strong, then close to the
origin one will essentially see fluctuations induced by it, and since the dynamics in KPZ
models has to be local (in space but also in time), one will observe Gaussian fluctua-
tions. If the influence of the origin is small, then it will not be seen in the asymptotic
behaviour. Between the two situations there is typically a critical value where a third
different distribution function is observed. Furthermore, under a critical scaling, one
obtains a family of distributions interpolating between the two extremes. For some ver-
sions of half-space LPP and related stochastic growth models (with non-random initial
conditions) this has indeed been proven: one has a transition of the one-point distribu-
tion from Gaussian to GOE Tracy–Widom at the critical value, and GSE Tracy–Widom
distribution [BR01b, SI04, BBC18,KD19]3 Furthermore, the limit process under critical
scaling around the origin is also analyzed and the transition processes have been charac-
terized [SI04,BBCS18,BBNV18,BBCS17].

However, the limiting distribution of the stationary LPP in half-space remained unre-
solved. In this paper we close this gap: in Theorem 5.2.3 we determine the distribution
function of the stationary LPP for the finite size system and in Theorem 5.2.6 we deter-
mine the large time limiting distribution under critical scaling. A second reason for the
study of the stationary case is the following. In the full-space case, it was shown in [FO19]
that the first order correction of the time-time covariance for times close to each others on
a macroscopic scale is governed by the variance of the Baik–Rains distribution. The rea-
son is that the system locally converges to equilibrium. Thus, for any comparable study in
half-space geometry, the knowledge of the stationary limiting distribution and/or process
is necessary.

However, the limiting distribution of the stationary LPP in half-space remained unre-
solved. In this paper we close this gap: in Theorem 5.2.3 we determine the distribution
function of the stationary LPP for the finite size system and in Theorem 5.2.6 we deter-
mine the large time limiting distribution under critical scaling.

The physical difference with the full-space problem is the source at the origin, and this
makes the half-space problem richer. The influence of the boundary process is still visible
in the limiting distribution: we have a new two-parameter family of distribution functions,
one parameter for the strength of the source at the origin, the second for the distance
from the diagonal. As a comparison, in the full-space analogue it was a one-parameter

2The random initial condition on the two sides is recovered using boundary sources, by the use of some
Burke-type property [Bur56,DMO05], as shown for the exclusion process in [PS04].

3The results are obtained through a description in terms of Pfaffian structures [BR01a,BR06,Rai00,
FR07,Gho17,BBCW18,BBNV18].
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family of distributions with the parameter describing the distance from the characteristic
line.

The limiting distribution we observe should be universal within the KPZ universality
class to the same extent that the Baik–Rains distribution is for the case of full-space. By
choosing the observation position far from the diagonal and setting the strength of the
source to stay around a characteristic line from the origin, we furthermore recover, in the
limit, the aforementioned Baik–Rains distribution from full-space. See Theorem 5.2.10.

A second reason for the study of the stationary case is the following. In the full-space
case, it was shown in [FO18] that the first order correction of the time-time covariance
for times close to each others on a macroscopic scale is governed by the variance of the
Baik–Rains distribution. The reason is that the system locally converges to equilibrium.
Thus, for any comparable study in half-space geometry, the knowledge of the stationary
limiting distribution and/or process is necessary.

Concerning the methods used in this paper, there are some similarities but also im-
portant differences with respect to the full-space situation studied in [FS06,BFP10]. To
identify the stationary model, it has been useful to start from the exclusion process anal-
ogy, for which the stationary measures in half-space were obtained in [Lig77]. Next we
observe that, as in full-space, the desired distribution function can be obtained in a two-
step procedure. First we study a two-parameter integrable model which has a Pfaffian
structure. By a so-called shift argument, we can write the two-parameter distribution
function in terms of the distribution function of the Pfaffian model. Finally we need
to perform a limit when the sum of the two parameters goes to zero. This is achieved
through analytic continuation. This last step turned out to be considerably more com-
plicated that in the full-space case [FS06] as some exact cancellations of diverging terms
happened only using the 2× 2 structure of the Pfaffian kernel. Such issues did not show
up in the full-space analysis.

Outline. In Section 5.2 we define the model and state the two main results of this paper.
The finite-time formula for the stationary LPP in half-space, Theorem 5.2.3, is derived in
Section 5.3, while in Section 5.4 we prove the asymptotic result of Theorem 5.2.6.

Notations. Throughout this work we handle numerous complex integrals. To simplify
matters, we choose the following special notation for types of contours we will often
encounter. First, ΓI will indicate any simple counter-clockwise contour around the set
of points I. We remark that sometimes such a contour will just be a disjoint union of
simple counter-clockwise contours each encircling one of the points in I. In the large time
asymptotics sections we use the following notation for the typical Airy contours, denoting
with I J a down-oriented contour coming in a straight line from exp(πi/3)∞ to a point
on the real line to the right of I and to the left of J , and continuing in a straight line to
exp(5πi/3)∞, and with I J an up-oriented contour from exp(4πi/3)∞ to exp(2πi/3)∞.
Examples are depicted in Figure 5.3.

For two functions f, g we use (the usual) bra-ket notation as follows: the scalar product
on L2(s,∞) (or (S,∞) depending on the section) is denoted by

〈f |g〉 =

ˆ ∞
s

f(x)g(x)dx (5.1.1)

while by |f〉 〈g| we denote the outer product kernel

|f〉 〈g| (x, y) = f(x)g(y). (5.1.2)
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5.2 Model and main results

5.2.1 Last passage percolation

Before going to the specific model studied in this paper, let us recall the more generic last
passage percolation (LPP) model on Z2 and explain where the denomination half-space
comes from.

Consider independent random variables {ωi,j , i, j ∈ Z}. An up-right path π on Z2

from a point A to a point E is a sequence of points (π(0), π(1), . . . , π(n)) in Z2 such that
π(k + 1)− π(k) ∈ {(0, 1), (1, 0)}, with π(0) = A and π(n) = E, and where n is called the
length `(π) of π. Now, given a set of points SA and E, one defines the last passage time
LSA→E as

LSA→E = max
π:A→E
A∈SA

∑
1≤k≤`(π)

ωπ(k). (5.2.1)

Finally, we denote by πmax
SA→E any maximizer of the last passage time LSA→E . For contin-

uous random variables, the maximizer is a.s. unique. In this paper we consider exponen-
tially distributed random variables, which give the well-known connection with the totally
asymmetric simple exclusion process (TASEP).

TASEP is an interacting particle system on Z with state space Ω = {0, 1}Z. For a
configuration η ∈ Ω, η = (ηj , j ∈ Z), ηj is the occupation variable at site j, which is 1 if
and only if j is occupied by a particle. TASEP has generator L given by [Lig99]

Lf(η) =
∑
j∈Z

ηj(1− ηj+1)
(
f(ηj,j+1)− f(η)

)
(5.2.2)

where f are local functions (depending only on finitely many sites) and ηj,j+1 denotes
the configuration η with occupations at sites j and j + 1 interchanged. Notice that for
TASEP the ordering of particles is preserved. That is, if initially one orders particles from
right to left as

. . . < x2(0) < x1(0) < 0 ≤ x0(0) < x−1(0) < · · · (5.2.3)

then for all times t ≥ 0 also xn+1(t) < xn(t), n ∈ Z.
The connection between TASEP and LPP is as follows. Take ωi,j to be the waiting

time of particle j to jump from site i − j − 1 to site i − j. Then ωi,j are exponential
random variables. Further, choosing the set SA = {(u, k) ∈ Z2 : u = k + xk(0), k ∈ Z},
we have that

P
(
LSA→(m,n) ≤ t

)
= P (xn(t) ≥ m− n) = P (h(m− n, t) ≥ m+ n) . (5.2.4)

The denomination full-space (respectively half-space) LPP comes from the fact that
the height function and particles live on Z (respectively N). The relation (5.2.4) implies
that the random variables in LPP are restricted to {(m,n)|m ≥ n} (equivalently, we can
think that the other random variables are set to be 0).

In the framework of some interacting particle systems, with TASEP being the simplest
case, Liggett studied the invariant measures for the full-space geometry—see Theorem 1.1
of [Lig77]. To achieve his result, he first considered a finite system from which the half-
space model is a simple limiting case. In particular, for TASEP defined on N with particles
entering at the origin with a given rate λ ∈ [0, 1], i.e. the origin playing the role of a
reservoir of particles, he showed that the stationary measure with particle density ρ = λ
on N is a product measure. For this reason, the LPP analogue is obtained by considering
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weights on the diagonal as being exponentially distributed of parameter ρ (below set ρ =
1
2 +α), while the random initial condition in N can be replaced by Burke’s theorem [Bur56]
with a first row in the LPP geometry having exponentially distributed random variables
of parameter 1− ρ.

It is worth mentioning that for half-space TASEP with input rate higher than 1, there
are stationary measures different from blocking measures, and which are not product
measures. A representation using matrix product ansatz is given in [?Theorem3.2, Gro04].
The mapping between LPP and TASEP would imply that the ωij of the corresponding
LPP are not independent random variables anymore. Our techniques do not apply however
in such cases.

5.2.2 The stationary half-space model

Let us now focus on the half-space LPP model. On the set D = {(i, j) ∈ Z2|1 ≤ j ≤ i} we
consider independent non-negative random variables {ωi,j}(i,j)∈D. Then, the half-space
LPP time to the point (n,m) (for m ≤ n), denoted Ln,m, is given by

Ln,m = max
π:(1,1)→(n,m)

∑
(i,j)∈π

ωi,j (5.2.5)

where the maximum is over up-right paths in D from (1, 1) to (m,n), i.e. paths with
increments in {(0, 1), (1, 0)}.

We are interested in the stationary version of this model, which as we will see, can
be obtained as follows. Let us write Exp(a) for an exponential random variable with
parameter a > 0. Then, the stationary version is given by setting

ωi,j =


Exp

(
1
2 + α

)
, i = j > 1,

Exp
(

1
2 − α

)
, j = 1, i > 1,

0, if i = j = 1,

Exp(1), otherwise

(5.2.6)

where α ∈ (−1/2, 1/2) is a fixed parameter. A schematic depiction is drawn in Figure 5.1.
This model is stationary in the sense of [BCS06], i.e. it has stationary increments as

stated in the following lemma.

Lemma 5.2.1. (Half-space version of Lemma 4.2 of [BCS06]) For any j ≥ 1, the incre-
ments along the horizontal direction

{Li+1,j − Li,j , i ≥ 1} (5.2.7)

are i.i.d.Exp
(

1
2 − α

)
random variables; those along the vertical direction

{Lj,i+1 − Lj,i, i ≥ 1} (5.2.8)

are i.i.d.Exp
(

1
2 + α

)
random variables; finally, the increments along the anti-diagonal

direction
{Li,j − Li+1,j−1, i, j ≥ 1} (5.2.9)

are i.i.d.Exp(1) random variables.
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0

Exp(12 + α)

Exp(12 − α)

Exp(1)

(N,N − n)

(N,N)

Figure 5.1: A possible LPP path (polymer) starting at the origin to the point (N,N − n). The
dots are independent random variables: deterministically 0 at the origin, Exp( 1

2 +α) (respectively
Exp( 1

2 − α)) on the rest of the diagonal (respectively the bottom line), and Exp(1) everywhere
else in the bulk.

Proof. The result for the increments along the vertical and the horizontal directions is
an immediate consequence of Lemma 4.1 of [BCS06] for the full-space model. For the
increments along the anti-diagonal, we just have to observe that, in distribution, Li,j −
Li+1,j−1 = X − Y , with X ∼ Exp(1

2 + α) and Y ∼ Exp(1
2 − α).

Remark 5.2.2. For the stationary model, we do not have a good formula to study the
statistics of LN,N−n. However, as it was already the case for the full-space stationary
LPP, there is a way to recover it in a two-step procedure. First we consider a related LPP
model, with two parameters, α, β, for which we have an explicit formula of the distribution
in terms of a Fredholm pfaffian. The distribution of the original model is recovered by
a standard shift argument and an analytic continuation. This last step turns out to be
far from trivial and different from both the one for the full-space stationary model [FS06]
and its multi-point extension [BFP10].

5.2.3 Finite time distribution for the stationary LPP

The first result of this paper is a formula for the distribution of the stationary LPP time
L = LN,N−n. In order to state the result, we need to introduce a few functions and kernels,
which are going to be in the final expression. Let us define the following f functions

f−α+ (x) = Φ(x,−α)
(

1
2 + α

)n
, f−α− (x) =

Φ(x,−α)(
1
2 − α

)n (5.2.10)

where Φ(x, z) =

[ 1
2 +z

1
2−z

]N−1

e−xz, the following g functions

g1(x) =

˛

Γ1/2

dz

2πi
Φ(x, z)

(
1
2 − z

)n z + α

2z
, g̃2(x) =

˛

Γ1/2,α

dz

2πi

Φ(x, z)(
1
2 + z

)n 1

z − α
,

g3(x) =

˛

Γ1/2

dz

2πi
Φ(x, z)

(
1
2 − z

)n 1

z + α
, g̃4(x) =

˛

Γ1/2,±α

dz

2πi

Φ(x, z)(
1
2 + z

)n 2z

(z − α)(z + α)2

(5.2.11)
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and finally let

eα(s) = −
˛

Γ1/2,α

dz

2πi

Φ(s, z)

Φ(s, α)

(1
2 + α)n

(1
2 + z)n

1

(z − α)2
. (5.2.12)

Also, define the following anti-symmetric kernel K:

K11(x, y) =−
˛

Γ1/2

dz

2πi

˛

Γ−1/2

dw

2πi

Φ(x, z)

Φ(y, w)

[
(1

2 − z)(
1
2 + w)

]n (z − α)(w + α)(z + w)

4zw(z − w)
,

K12(x, y) =−
˛

Γ1/2

dz

2πi

˛

Γ−1/2,α

dw

2πi

Φ(x, z)

Φ(y, w)

[
1
2 − z
1
2 − w

]n
z − α
w − α

z + w

2z(z − w)

=− K21(y, x),

K22(x, y) =ε(x, y) +

˛
dz

2πi

˛
dw

2πi

Φ(x, z)

Φ(y, w)

1[
(1

2 + z)(1
2 − w)

]n 1

z − w

(
1

z + α
+

1

w − α

)
(5.2.13)

where the integration contours for K22 are Γ1/2,−α × Γ−1/2 for the term with 1/(z + α)
and Γ1/2 × Γ−1/2,α for the term with 1/(w − α), and where ε = ε0 + ε1 with

ε0(x, y) = − sgn(x−y)
e−α|x−y|(
1
4 − α2

)n , ε1(x, y) = − sgn(x−y)

˛

Γ1/2

dz

2πi

2ze−z|x−y|

(z2 − α2)
(

1
4 − z2

)n .
(5.2.14)

Finally, define

K̃12(x, y) = −
˛

Γ1/2

dz

2πi

˛

Γ−1/2

dw

2πi

Φ(x, z)

Φ(y, w)

[
(1

2 − z)
(1

2 − w)

]n
z − α
w − α

z + w

2z(z − w)
,

K̃22(x, y) =

˛

Γ1/2,−α

dz

2πi

˛

Γ−1/2

dw

2πi

Φ(x, z)

Φ(y, w)

1[
(1

2 + z)(1
2 − w)

]n 1

(z + α)(w − α)

z + w

z − w

(5.2.15)
and

h1 = K̃22f
−α
+ + ε1f

−α
+ − g̃4 + jα(s, ·),

h2 = K̃12f
−α
+ + g3

(5.2.16)

with
jα(s, y) =

(
sinhα(s− y)

α
+ (s− y)eα(s−y)

)
f−α− (s). (5.2.17)

Our first main theorem, a finite size result, is as follows.

Theorem 5.2.3. Let α ∈ (−1/2, 1/2) be a real number and 1 ≤ N , 0 ≤ n ≤ N − 1 be
positive integers. Let LN,N−n be the stationary LPP time from (1, 1) to (N,N −n) in the
model of weights given by (5.2.6). Then

P(LN,N−n ≤ s) = ∂s

{
pf(J − K) ·

[
eα(s)−

〈
−g1 g̃2

∣∣∣∣(1− J−1K)−1

(
−h1

h2

)〉 ]}
(5.2.18)

where the Fredholm pfaffian is taken over L2(s,∞) and where J =
(

0 1
−1 0

)
.
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The proof of Theorem 5.2.3 is carried out in Section 5.3.

Remark 5.2.4. We remark that our kernel K with parameter α and size N is identical to
the integrable kernel K of Section 5.3.1 with parameters −α and β = 1/2 and size N − 1.
The latter corresponds to a model that has been studied in [BBCS18]. As a consequence,
the pfaffian pf(J −K) on L2(s,∞) is the distribution of the corresponding LPP and is in
(0, 1) for any fixed s.

5.2.4 Asymptotic result

In order to discuss the scaling limit, we first have to determine: (a) the limit shape
approximation; and (b) the position of the end-point (N,N − n) which is connected with
the origin by the characteristic line. The reason is that if one does not take a point in a
N2/3 neighborhood of the characteristic leaving from the origin, then one will not see the
N1/3 fluctuations typical for KPZ models; rather one will only see Gaussian fluctuations
whose origin is in the boundary terms—the polymer spend a time much larger that N2/3

either on the diagonal or in the first row.
Concerning the limit shape, notice that LN,N−ηN = LN,1 + (LN,N−ηN − LN,1). The

two terms are not independent, but individually are sums of independent random variables
(see Lemma 5.2.1). Thus, one expects that for N � 1,

LN,N−ηN '
N

1
2 − α

+
(1− η)N

1
2 + α

=
N

1
4 − α2

− ηN
1
2 + α

. (5.2.19)

For a stationary situation in TASEP with particle density ρ, the characteristic line
has speed 1−2ρ. In terms of last passage percolation, the density ρ becomes a parameter
α = ρ− 1/2 (see e.g. [PS02a]) and the speed 1− 2ρ becomes a slope in the LPP geometry
given by y/x = ρ2/(1 − ρ)2 (see e.g. [BFP10]). Thus, with x = N and y = N − ηN we
have

n = ηN = − 2α

(1
2 − α)2

N. (5.2.20)

Therefore, to obtain a non-trivial scaling limit, given the value of α, one needs to choose
n in a O(N2/3)-neighborhood of (5.2.20) and to consider fluctuations on a N1/3-scale
around (5.2.19). Choosing an end-point order N away from (5.2.20) leads to Gaussian
behaviour in the N1/2 scale, for the maximizer will spend O(N) of its time either in the
first row or on the diagonal in that case. Recalling that n ≥ 0, (5.2.20) cannot hold for
α > 0. In that case, the polymer will spend a macroscopic portion of its time on the
diagonal and will have Gaussian fluctuations.

In this paper we consider the critical scaling where α is close to 0, namely we set

α = δ2−4/3N−1/3, ηN = n = u25/3N2/3. (5.2.21)

With this choice we have

LN,N−ηN ' 4N − 2u25/3N2/3 + δ(2u+ δ)24/3N1/3 (5.2.22)

and

− 2α

(1
2 − α)2

N = −δ25/3N2/3 +O(N1/3). (5.2.23)
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Remark 5.2.5. We decided not to include theO(N1/3) term δ(2u+δ)24/3N1/3 of the limit
shape approximation in our calculations below, since many formulas are more compact
without it. That is, we consider the scaling

s = 4N − 2u25/3N2/3 + S 24/3N1/3. (5.2.24)

However, it has to be taken into account if one wants to determine various limits, e.g.u→
∞ and/or δ → ±∞. In these limits, we first have to replace S by S + δ(2u + δ). Also,
when taking u → ∞, by (5.2.23), we will have to set u = −δ + τ and take δ → −∞
to get a non-Gaussian limit. This is performed in Section 5.2.5, where we recover the
Baik–Rains distribution.

As for the finite N case, the main theorem in the N →∞ limit requires definitions of
various objects. Let us define the functions

f −δ,u(X) = e−
δ3

3
−δ2u+δX ,

eδ,u(S) = −
ˆ

δ

dζ

2πi

e
ζ3

3
+ζ2u−ζS

e
δ3

3
+δ2u−δS

1

(ζ − δ)2
,

j δ,u(S,X) =

[
sinh δ(X − S)

δ
+ (X − S)eδ(X−S)

]
f −δ,−u(S)

(5.2.25)

as well as

gδ,u1 (X) =

ˆ

0

dζ

2πi
e
ζ3

3
−ζ2u−ζX ζ + δ

2ζ
, g̃δ,u2 (X) =

ˆ

δ

dζ

2πi
e
ζ3

3
+ζ2u−ζX 1

ζ − δ
,

gδ,u3 (X) =

ˆ

−δ

dζ

2πi
e
ζ3

3
−ζ2u−ζX 1

ζ + δ
, g̃δ,u4 (X) =

ˆ

±δ

dζ

2πi
e
ζ3

3
+ζ2u−ζX 2ζ

(ζ − δ)(ζ + δ)2
.

(5.2.26)

The limit of K is the following anti-symmetric kernel A:

A11(X,Y ) = −
ˆ

0

dζ

2πi

ˆ

0,ζ

dω

2πi

e
ζ3

3
−ζ2u−ζX

e
ω3

3
+ω2u−ωY

(ζ − δ)(ω + δ)
ζ + ω

4ζω(ζ − ω)
,

A12(X,Y ) = −
ˆ

0

dζ

2πi

ˆ

δ ζ

dω

2πi

e
ζ3

3
−ζ2u−ζX

e
ω3

3
−ω2u−ωY

ζ − δ
ω − δ

ζ + ω

2ζ(ζ − ω)

= −A21(Y,X),

A22(X,Y ) = E(X,Y ) +

ˆ
dζ

2πi

ˆ
dω

2πi

e
ζ3

3
+ζ2u−ζX

e
ω3

3
−ω2u−ωY

1

ζ − ω

(
1

ζ + δ
+

1

ω − δ

)
(5.2.27)

where in A22 the integration contours, for (ζ, ω), are −δ × ζ for the term 1/(ζ + δ), and
× δ ζ for the term 1/(ω − δ). We have denoted E = E0 + E1 with

E0(X,Y ) = − sgn(X − Y )eδ|X−Y |+2δ2u,

E1(X,Y ) = − sgn(X − Y )

ˆ

±δ

dζ

2πi
e−ζ|X−Y |+2ζ2u 2ζ

ζ2 − δ2
. (5.2.28)
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Finally, we also set

Ã12(X,Y ) = −
ˆ

0

dζ

2πi

ˆ

δ,ζ

dω

2πi

e
ζ3

3
−ζ2u−ζX

e
ω3

3
−ω2u−ωY

ζ − δ
ω − δ

ζ + ω

2ζ(ζ − ω)
,

Ã22(X,Y ) =

ˆ

−δ

dζ

2πi

ˆ

δ,ζ

dω

2πi

e
ζ3

3
+ζ2u−ζX

e
ω3

3
−ω2u−ωY

1

(ζ + δ)(ω − δ)
ζ + ω

ζ − ω

(5.2.29)

and

hδ,u1 (Y ) =

ˆ ∞
S

dV Ã22(Y, V )f −δ,u(V ) +

ˆ ∞
S

dV E1(Y, V )f −δ,u(V )− g̃δ,u4 (Y ) + j δ,u(S, Y ),

hδ,u2 (Y ) =

ˆ ∞
S

dV Ã12(Y, V )f −δ,u(V ) + gδ,u3 (Y ).

(5.2.30)
Then, the limiting distribution of the rescaled last passage percolation in the stationary

case is given as follows.

Theorem 5.2.6. Let δ ∈ R, u > 0 be parameters. Consider the stationary LPP time
LN,N−n from (1, 1) to (N,N − n) and the scaling

n = u25/3N2/3, α = δ2−4/3N−1/3. (5.2.31)

We have that

lim
N→∞

P

(
LN,N−n − 4N + 4u(2N)2/3

24/3N1/3
≤ S

)
= F

(δ,u)
0, half(S) (5.2.32)

with

F
(δ,u)
0, half(S) = ∂S

{
pf(J −A) ·

[
eδ,u(S)−

〈
−gδ,u1 g̃δ,u2

∣∣∣∣∣(1− J−1A)−1

(
−hδ,u1

hδ,u2

)〉 ]}
(5.2.33)

where the Fredholm pfaffian is taken over L2(S,∞) and where J =
(

0 1
−1 0

)
.

Remark 5.2.7. The origin of the terms Ã12 and Ã22 in lieu of A12 and A22 stems from
the fact that for δ ≥ 0, the product of the latter with f −δ,u is not well-defined. However,
for δ < 0 this is not the case and so using the tilde kernels is not necessary. For that
reason and for δ < 0, we can thus simplify the expression of the hδ,uk entering equation
(5.2.33) as follows.

Lemma 5.2.8. For δ < 0, the formula (5.2.33) holds also for hδ,uk replaced by h̃δ,uk ,
k = 1, 2, with the latter defined by

h̃δ,u1 (Y ) =

ˆ ∞
S

dVA22(Y, V )f −δ,u(V )− g̃δ,u4 (Y ),

h̃δ,u2 (Y ) =

ˆ ∞
S

dVA12(Y, V )f −δ,u(V ) + gδ,u3 (Y ).

(5.2.34)

Remark 5.2.9. The kernel A with parameter δ corresponds to the limiting crossover ker-
nel from [BBCS18,BBNV18,SI04] after matching the δ parameter with notations therein.
This arises when considering LPP in half-space with boundary term only along the diago-
nal. The respective distribution, for u = 0, is the interpolating GOE to GSE distribution
of Baik and Rains [BR01b]. Similar to Remark 5.2.4, the Pfaffian pf(J −A) on L2(S,∞)
is in (0, 1) for any fixed S.
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5.2.5 Limit transition to the Baik–Rains distribution

One might wonder if the Baik–Rains distribution with parameter τ arises in some appro-
priate limit4. The answer is affirmative. Heuristically, when u is increasing (the end-point
of the LPP is moving away from the diagonal), the path maximizing the polymer will visit
the diagonal a distance of O(N2/3) away from the origin less and less frequently. Thus, in
the u→∞ limit, the geometry is similar to the full-space problem and one might expect
to recover the Baik–Rains distribution. This is the result presented in this section.

To state the theorem, we need to introduce a few functions and a limiting kernel. Let
us define5

Rτ (s) = −e−
2
3
τ3−sτ

ˆ

−τ

dz

2πi
e
z3

3
−z(s+τ2) 1

(z + τ)2
,

Ψτ (x) =

ˆ

−τ

dz

2πi
e
z3

3
−z(x+τ2) 1

z + τ
,

Φτ (y) = e−
2
3
τ3−sτ

ˆ
dz

2πi

ˆ

τ z

dw

2πi

e
z3

3
−z(y+τ2)

e
w3

3
−w(s+τ2)

1

(z − w)(w − τ)

(5.2.35)

and the shifted Airy kernel6

K Ai,τ (x, y) = −
ˆ

dz

2πi

ˆ

z

dw

2πi

e
z3

3
−z(x+τ2)

e
w3

3
−w(y+τ2)

1

(z − w)
. (5.2.36)

Theorem 5.2.10. Let S = s+ δ(2u+ δ) and u+ δ = τ fixed. Then we have:

lim
u→∞

F
(δ,u)
0, half(S) = FBR,τ (s) (5.2.37)

where FBR,τ (s) is the extended Baik–Rains distribution, defined by

FBR,τ (s) = ∂s
[
FGUE(s+ τ2) ·

(
Rτ −

〈
Ψτ

∣∣(1− K Ai,τ )−1Φτ

〉)]
(5.2.38)

with the operators in the scalar product being on L2(s,∞) and with FGUE the Tracy–
Widom distribution.

5.3 Finite system stationary model: proof of Theorem 5.2.3

5.3.1 The integrable model

In this section we consider the slightly modified LPP model with weights

ω̃i,j =


Exp

(
1
2 + α

)
, i = j > 1,

Exp
(

1
2 + β

)
, j = 1, i > 1,

Exp (α+ β) , i = j = 1,

Exp(1), otherwise

(5.3.1)

4The Baik–Rains distribution away from the characteristic line is given in [BR00], formula (3.35).
5Here we use notation as in [FS06,BFP10] with one exception: for the functions involved, we keep their

contour integral representations instead of rewriting them in terms of (integrals of) Airy and exponential
functions. The original expression in [BR00] looks quite different, but as is shown in [?AppendixA, FS05a],
gives the same distribution.

6The reason for the minus sign in front is that our z contour is oriented downwards.
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Exp(12 + α)

Exp(12 + β)

Exp(1)

Exp(α + β)

(N,N − n)

(N,N)

Figure 5.2: A possible LPP path (polymer) starting at the origin to the point (N,N−n). The dots
are independent exponential random variables: Exp(α+β) at the origin, Exp( 1

2 +α) (respectively
Exp( 1

2 + β)) on rest of the diagonal (respectively the bottom line), and Exp(1) everywhere else
in the bulk.

where α ∈ (−1/2, 1/2), β ∈ (−1/2, 1/2) are parameters satisfying α + β > 0—see Fig-
ure 5.2 for an illustration. We denote by Lpf

N,N−n the LPP with weights ω̃ to the point
(N,N − n).

For the case of β > 0, it has been shown that the distribution of Lpf
N,N−n is given by

a Fredholm pfaffian. The next theorem, which is the starting point of our analysis, is a
simple corollary of the work of Baik–Barraquand–Corwin–Suidan [BBCS18] and Betea–
Bouttier–Nejjar–Vuletić [BBNV18].

Theorem 5.3.1. Let β ∈ (0, 1/2) and α ∈ (−1/2, 1/2). Then, for s ∈ R+,

P(Lpf
N,N−n ≤ s) = pf(J −K)L2(s,∞), (5.3.2)

where K = K(x, y) is the following 2× 2 matrix kernel:

K11(x, y) =−
˛

Γ1/2,β

dz

2πi

˛

Γ−1/2,−β

dw

2πi

Φ(x, z)

Φ(y, w)

[
(1

2 − z)(
1
2 + w)

]n θ(z)
θ(w)

(z + α)(w − α)(z + w)

4zw(z − w)
,

K12(x, y) =−
˛

Γ1/2,β

dz

2πi

˛

Γ−1/2,−α,−β

dw

2πi

Φ(x, z)

Φ(y, w)

[
1
2 − z
1
2 − w

]n
θ(z)

θ(w)

z + α

w + α

z + w

2z(z − w)

=−K21(y, x),

K22(x, y) =

˛

Γ1/2,α,β

dz

2πi

˛

Γ−1/2,−α,−β

dw

2πi

Φ(x, z)

Φ(y, w)

1[
(1

2 + z)(1
2 − w)

]n θ(z)θ(w)

(z + w)(z − w)−1

(z − α)(w + α)

+ ε̃(x, y).

(5.3.3)

Here we have denoted

θ(z) =
z + β

z − β
,

Φ(x, z) = e−xzφ(z), with φ(z) =

(
1
2 + z
1
2 − z

)N−1 (5.3.4)
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and ε̃ = ε1 + ε2 with

ε1(x, y) = − sgn(x− y)

˛

Γ1/2

dz

2πi

2ze−z|x−y|

(z2 − α2)
(

1
4 − z2

)n , ε2(x, y) = − sgn(x− y)
e−α|x−y|(
1
4 − α2

)n .
(5.3.5)

Proof. We now explain how we obtained the kernel representation above. We start from
the kernel of Theorem 2.6.1 for the analogous model with geometric weights and take the
geometric to exponential limit. More precisely, in the statement of Theorem 2.6.1 we take
x1 = b, x2 = · · · = xN =

√
q for parameters b, q < 1 and then take the limit ε→ 0 while

scaling the parameters as

(a, b) = (1− εα, 1− εβ), q = 1− ε, (k, `) = ε−1(x, y). (5.3.6)

The resulting kernel is the following:

K11(x, y) =
1

(2πi)2

ˆ

0 β

dz

ˆ

0 β

dwF (z)F (w)
z − w

4zw(z + w)
,

K12(x, y) = −K21(y, x) =
1

(2πi)2

ˆ

0,w β

dz

ˆ

−α,−β z

dw
F (z)

F (w)

z + w

2z(z − w)
,

K22(x, y) =
1

(2πi)2

ˆ

0

dz

ˆ

0

dw
1

F (z)F (w)

z − w
z + w

,

(5.3.7)

where

F (z) = e−xzφn(z)
(α+ z)(β + z)

β − z
, φn(z) =

(
1
2 + z

)N−1(
1
2 − z

)N−1−n = φ(z)
(

1
2 − z

)n
. (5.3.8)

The contours become bottom-to-top oriented vertical lines parallel to the imaginary axis.
In addition, they need to satisfy the following conditions:

• for K11, both the z and the w contours need to satisfy

0 < Rez,Rew < min{β, 1/2} = β; (5.3.9)

• for K12,

max{−1/2,−α,−β} = max{−α,−β} < Rew < Rez, for w,
0 < Rez < min{β, 1/2} = β, for z;

(5.3.10)

• for K22, we need

Rez + Rew > 0 and Rez,Rew > max{−1/2,−α,−β} = max{−α,−β}. (5.3.11)

Recalling that α ∈ (−1/2, 1/2), β ∈ (0, 1/2), our choices satisfy these conditions.
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We next do the change of variables w → −w in K11 from (5.3.7) and z → −z in K22.
This leads to

K11(x, y) =

ˆ
dz

2πi

ˆ
dw

2πi

φ(z)

φ(w)

[(
1
2 − z

) (
1
2 + w

)]n θ(z)
θ(w)

(z + α)(w − α)
z + w

4zw(z − w)

eyw

exz
,

K12(x, y) =

ˆ
dz

2πi

ˆ
dw

2πi

φ(z)

φ(w)

[
1
2 − z
1
2 + w

]n
θ(z)

θ(w)

z + α

w + α

z + w

2z(z − w)

eyw

exz
,

K22(x, y) =−
ˆ

dz

2πi

ˆ
dw

2πi

φ(z)

φ(w)

1[(
1
2 + z

) (
1
2 − w

)]n θ(z)θ(w)

1

(z − α)(w + α)

z + w

z − w
eyw

exz

=−
ˆ

dz

2πi

ˆ
dw

2πi

φ(z)

φ(w)

1[(
1
2 + z

) (
1
2 − w

)]n θ(z)θ(w)

1

(z − α)(w + α)

z + w

z − w
eyw

exz

+ ε̃(x, y),

(5.3.12)

with appropriate integration contours, i.e. the images of the ones in (5.3.7). The last line
of K22 comes from switching the two contours and picking up the residue at w → z which
is the ε(x, y) term.

Finally, since the LPP time is non-negative, we only need to consider x, y > 0. The
exponential term e−xz in φ(z) (respectively eyw in 1/φ(w)) allows us to close the z contours
to the right of 1/2 (respectively the w contour to the left of −1/2). Closing them as
indicated and reversing the direction of z to make it counter-clockwise, we arrive at (5.3.3).

Remark 5.3.2. We remark the following trivial but useful identities

φ(−z) = φ(z)−1, Φ(x,−z) = Φ(x, z)−1, (5.3.13)

which we shall use throughout many times without explicit reference. Further, note that
for n = 0, ε̃ simplifies to ε̃(x, y) = − sgn(x−y)e−α|x−y| since the pole at z = 1/2 vanishes.

5.3.2 From integrable to stationary

Shift argument

To recover the desired distribution, we need to remove ω̃1,1 and then take the β → −α
limit. The former is achieved by a standard shift argument, used already in the full-
space stationary LPP problem [BR00, FS06, BFP10, IS04]7. We present the short proof
for completeness.

We recall that Lpf
N,N−n denotes the LPP time for the random variables ω̃i,j of (5.3.1).

Denote by L̃N,N−n = Lpf
N,N−n − ω̃1,1 and recall that LN,N−n is the β → −α limit of

L̃N,N−n. The shift argument captured in the following lemma.

Lemma 5.3.3. Let α, β ∈ (−1/2, 1/2) with α+ β > 0. Then(
1 +

1

α+ β
∂s

)
P(Lpf

N,N−n ≤ s) = P(L̃N,N−n ≤ s). (5.3.14)

7Baik–Rains [BR00] treat the Poisson case instead of the exponential one but the shift argument is
similar.
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Proof. Due to the independence of L̃N,N−n and ω̃1,1, we have

P(Lpf
N,N−n ≤ s) = P(ω̃1,1 + L̃N,N−n ≤ s) = (α+ β)

ˆ ∞
0

dλe−λ(α+β)P(L̃N,N−n ≤ s− λ).

(5.3.15)
Performing the Laplace transform and the change of variable s− λ = u, we obtainˆ ∞

0
dse−tsP(Lpf

N,N−n ≤ s) =

ˆ ∞
0

du

ˆ ∞
0

dλ(α+ β)e−tse−λ(α+β)P(L̃N,N−n ≤ s− λ)

= (α+ β)

ˆ ∞
0

dλe−λ(α+β+t)

ˆ ∞
0

due−tuP(L ≤ u).

(5.3.16)
Computing the first integral on the right-hand side of (5.3.16), and then integrating by
parts, we obtainˆ ∞

0
dse−tsP(L̃N,N−n ≤ s) =

(
1 +

t

α+ β

)ˆ ∞
0

dse−tsP(Lpf
N,N−n ≤ s)

=

ˆ ∞
0

dse−tsP(Lpf
N,N−n ≤ s) +

1

α+ β
e−tsP(Lpf

N,N−n ≤ s)
∣∣∞
0

+
1

α+ β

ˆ ∞
0

dse−ts
d

ds
P(Lpf

N,N−n ≤ s),

(5.3.17)
which gives (5.3.14) since the first term is 0.

Kernel decomposition

From Lemma 5.3.3, we need to find a decomposition of 1
α+βP(Lpf

N,N−n ≤ s) which has
a well-defined limit as α + β → 0. For that purpose, we first decompose the kernel by
separating the contributions of the different poles in a way that will be convenient for
future computations. The result will be given in terms of the following functions:

fβ+(x) = Φ(x, β)
(

1
2 − β

)n
, fβ−(x) =

Φ(x, β)(
1
2 + β

)n , (5.3.18)

and

g1(x) =

˛

Γ1/2

dz

2πi
Φ(x, z)

(
1
2 − z

)n z + α

2z
,

g̃2(x) =

˛

Γ1/2,α

dz

2πi

Φ(x, z)(
1
2 + z

)n 1

z − α
,

g3(x) =

˛

Γ1/2

dz

2πi
Φ(x, z)

(
1
2 − z

)n 1

z − β
,

g̃4(x) =

˛

Γ1/2,±α,β

dz

2πi

Φ(x, z)(
1
2 + z

)n 2z

(z − α)(z + α)(z − β)
,

g5(x) =

˛

Γ1/2

dz

2πi
Φ(x, z)

(
1
2 − z

)n (z − α)(z + β)

2z(z − β)
,

g6(x) =

˛

Γ1/2

dz

2πi

Φ(x, z)(
1
2 + z

)n z + β

(z + α)(z − β)
.

(5.3.19)
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We use the letter g for functions where the integration contour encloses only 1/2, and
symbol g̃ for those whose integration contour encloses 1/2 and some other poles.

With these notations we can now write the kernel decomposition used later.

Proposition 5.3.4. Let α ∈ (−1/2, 1/2), β > 0. Then the kernel K splits as

K = K + (α+ β)R (5.3.20)

where

K11(x, y) =−
˛

Γ1/2

dz

2πi

˛

Γ−1/2

dw

2πi

Φ(x, z)

Φ(y, w)

[
(1

2 − z)(
1
2 + w)

]n θ(z)
θ(w)

(z + α)(w − α)(z + w)

4zw(z − w)
,

K12(x, y) =−
˛

Γ1/2

dz

2πi

˛

Γ−1/2,−α,−β

dw

2πi

Φ(x, z)

Φ(y, w)

[
(1

2 − z)
(1

2 − w)

]n
θ(z)

θ(w)

z + α

w + α

z + w

2z(z − w)

=−K21(y, x),

K22(x, y) =ε̃(x, y) +

˛
dz

2πi

˛
dw

2πi

Φ(x, z)

Φ(y, w)

1[
(1

2 + z)(1
2 − w)

]n θ(z)θ(w)

1

(z − α)(w + α)

z + w

z − w
(5.3.21)

and where the integration contours for K22 are, for (z, w), the union of Γ1/2,α,β × Γ−1/2,
Γ1/2,β × Γ−α, and Γ1/2,α × Γ−β.

The operator R is of rank two and given by

R =

|g1〉
〈
fβ+

∣∣∣− ∣∣∣fβ+〉 〈g1|
∣∣∣fβ+〉 〈g̃2|

− |g̃2〉
〈
fβ+

∣∣∣ 0

 . (5.3.22)

Proof. The proof amounts to residue computations. In K11 the terms coming into R are
the residue at (z = β,w = −1/2) and at (z = 1/2, w = −β). Furthermore, the residue at
(z = β,w = −β) is identically zero. For K12, the residue at (z = β,w = −β) is zero as
well, and the terms in R are the residues from (z = β,w = −1/2) and (z = β,w = −α).
Finally, for K22, there is no contribution to R and the residues at (z = β,w = −β) and
(z = α,w = −α) are also zero.

Decomposition of the rank-two perturbation R

Since we are going to work with Fredholm determinants instead of pfaffians for a while,
we define

G = J−1K, G = J−1K, T = J−1R (5.3.23)

where J(x, y) = δx,y
(

0 1
−1 0

)
so that, for instance, the matrix kernel G is given by

G(x, y) =

(
−K21(x, y) −K22(x, y)
K11(x, y) K12(x, y)

)
(5.3.24)

while T is given by
T = |X1〉 〈Y1|+ |X2〉 〈Y2| (5.3.25)

with

X1 =

∣∣∣∣ g̃2

g1

〉
, X2 =

∣∣∣∣ 0

fβ+

〉
, (5.3.26)
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Y1 =
〈
fβ+ 0

∣∣∣ , Y2 = 〈−g1 g̃2| . (5.3.27)

Since all Fredholm determinants/pfaffians as well as (scalar) products will be on L2(s,∞),
we consider all operators to be in L2(s,∞) and omit the latter from the notation for
brevity. Recall also that pf(J −K) =

√
det(1−G).

From the shift argument Lemma 5.3.3, we need to determine the α+ β → 0 limit of

1

α+ β
pf(J −G) =

1

(α+ β)

√
det(1−G) (5.3.28)

where
det(1−G) = det(1−G) · det(1− (α+ β)(1−G)−1T ). (5.3.29)

Setting
Zi = (1−G)−1Xi, i = 1, 2, (5.3.30)

we get

(1− (α+ β)(1−G)−1S) = det

(
1− (α+ β)

(
〈Y1 |Z1〉 〈Y2 |Z1〉
〈Y1 |Z2〉 〈Y2 |Z2〉

))
= det(1−G)(1− (α+ β) 〈Y2 |Z2〉)2.

(5.3.31)

In (5.3.31), the first equality is just a rewriting and holds in any inner product space
and for any vectors Yi, Zi, i = 1, 2—see for instance [TW96] for more details—and for the
second we used the equalities

〈Y1 |Z2〉 = 〈Y2 |Z1〉 = 0, 〈Y1 |Z1〉 = 〈Y2 |Z2〉 (5.3.32)

proven in Section 5.6.
Summarizing, we need to determine the β → −α limit of

1

α+ β
pf(J −K) = pf(J −K)

(
1

α+ β
− 〈Y2 |Z2〉

)
= pf(J −K)

(
1

α+ β
− 〈Y2 |X2〉 −

〈
Y2

∣∣(1−G)−1GX2

〉)
.

(5.3.33)

5.3.3 Analytic continuation

Recall that we started with our kernels defined for β > 0 only. Now we have to deal with
the analyticity of the right-hand side of (5.3.33) and determine the desired limit.

Throughout, when we say that a function is analytic in α, β ∈ (−1/2, 1/2), we mean
that for any 0 < ε� 1, the function is analytic in α, β ∈ [−1/2 + ε, 1/2− ε].

Remark 5.3.5. Hereinafter we will denote, in up-right sans-serif font, the limits as β →
−α of the various kernels and functions we use and which depend explicitly on β. The
ones that are independent of β we leave unchanged. Thus by definition:

(g3, g̃4, g5, g6) = lim
β→−α

(g3, g̃4, g5, g6), (K, K̃, Ĝ) = lim
β→−α

(K, K̃, Ĝ) (5.3.34)

where the g’s are defined in (5.3.19), K in (5.3.21), and K̃, Ĝ will be defined below.
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Analyticity of the Fredholm pfaffian

Lemma 5.3.6. The kernel K is analytic for α, β ∈ (−1/2, 1/2). The limit kernel K =
limβ→−αK has the following entries:

K11(x, y) =−
˛

Γ1/2

dz

2πi

˛

Γ−1/2

dw

2πi

Φ(x, z)

Φ(y, w)

[
(1

2 − z)(
1
2 + w)

]n (z − α)(w + α)(z + w)

4zw(z − w)
,

K12(x, y) =−
˛

Γ1/2

dz

2πi

˛

Γ−1/2,α

dw

2πi

Φ(x, z)

Φ(y, w)

[
1
2 − z
1
2 − w

]n
z − α
w − α

z + w

2z(z − w)

=− K21(y, x),

K22(x, y) =ε(x, y) +

˛
dz

2πi

˛
dw

2πi

Φ(x, z)

Φ(y, w)

1[
(1

2 + z)(1
2 − w)

]n 1

z − w

(
1

z + α
+

1

w − α

)
(5.3.35)

where the integration contours for K22 are Γ1/2,−α × Γ−1/2 for the term with 1/(z + α)
and Γ1/2 × Γ−1/2,α for the term with 1/(w − α).

Proof. Analyticity for K11 (respectively K12) is obvious since we can take the integration
contour for z as close to 1/2 as desired and the contour for w to include −1/2 (respectively
−1/2,−α,−β) without crossing z. For K22, we can decompose the kernel using the
identities

θ(z)

θ(w)

1

z − w
=

(z + β)(w − β)

(z − β)(w + β)(z − w)
=

1

z − w
+

2β

(w + β)(z − β)
, (5.3.36)

z + w

(z − α)(w + α)
=

1

z − α
+

1

w + α
. (5.3.37)

We get that the double integral part K22 − ε becomes the sum of˛
dz

2πi

˛
dw

2πi

Φ(x, z)

Φ(y, w)

1[
(1

2 + z)(1
2 − w)

]n 1

z − w

(
1

z − α
+

1

w + α

)
(5.3.38)

and˛
dz

2πi

˛
dw

2πi

Φ(x, z)

Φ(y, w)

1[
(1

2 + z)(1
2 − w)

]n 2β

(w + β)(z − β)

(
1

z − α
+

1

w + α

)
. (5.3.39)

The integration contour for the term in (5.3.38) with 1/(z−α) is Γ1/2,α×Γ−1/2, while the
one for the term with 1/(w+α) is Γ1/2×Γ−1/2,−α. These can be chosen non-intersecting
for all α in any subset of [−1/2 + ε, 1/2 − ε] for 0 < ε � 1. The contours for the term
in (5.3.39) with 1/(z − α) are Γ1/2,α,β × Γ−1/2,−β , while the one with 1/(w + α) are
Γ1/2,β × Γ−1/2,−α,−β . Notice that since the term 1/(z − w) is absent, the contours can
cross without problems. Thus this term is also clearly analytic.

Comparing (5.3.35) with (5.3.21) one notices the change of ε̃ into ε, which corresponds
to replacing ε2 with ε0. Let us start with (5.3.21). The contribution of the poles at
(z, w) = (1/2,−α) and from (z, w) = (α,−1/2) vanishes as β → −α. The contributions
from (z, w) = (1/2,−1/2), (z, w) = (1/2,−β) and (z, w) = (β,−1/2) give, in the limit
β → −α, the double integral in (5.3.35). Finally, the contributions from (z, w) = (α,−β)
and (z, w) = (β,−α) become, in the β → −α limit, as follows:

e−α(x−y) − eα(x−y)

(1
4 − α2)n

= sgn(x− y)
e−α|x−y| − eα|x−y|

(1
4 − α2)n

. (5.3.40)
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Summing this term with ε2 gives ε0.

Proposition 5.3.7. pf(J −K) is analytic in α, β ∈ (−1/2, 1/2) and with a well-defined
limit

lim
β→−α

pf(J −K) = pf(J − K). (5.3.41)

Proof. Fix a 0 < ε � 1 and consider α, β ∈ [−1/2 + ε, 1/2 − ε]. Take µ = 1/2 − 3ε/4.
Then, for some constant C independent of x, y, we have the bounds

|K11(x, y)| ≤ Ce−(1/2−ε/2)xe−(1/2−ε/2)y = Ce−µ(x+y)e−ε(x+y)/4,

|K12(x, y)| ≤ Ce−(1/2−ε/2)xe(1/2−ε)y = Ce−µ(x−y)e−ε(x+y)/4,

|K21(x, y)| ≤ Ce(1/2−ε)xe−(1/2−ε/2)y = Ceµ(x−y)e−ε(x+y)/4,

|K22(x, y)| ≤ Ce(1/2−ε)xe(1/2−ε)y = Ceµ(x+y)e−ε(x+y)/4.

(5.3.42)

This is achieved as follows: for K11, choose the contours as |z−1/2| = ε/2 and |w+1/2| =
ε/2; forK12, take |z−1/2| = ε/2 and the poles at w = −α,−β gives the leading asymptotic
behaviour in y, namely e−min{α,β}y. This is controlled by the e−µy from the conjugation.
For K22 it is similar. In this case the leading behaviour is given by the residues a ±α and
±β.

Then,

pf(J −K) =
∑
n≥0

(−1)n

n!

ˆ ∞
s

dx1 · · ·
ˆ ∞
s

dxn pf[K(xi, xj)]1≤i,j≤n

=
∑
n≥0

(−1)n

n!

ˆ ∞
s

dx1 · · ·
ˆ ∞
s

dxn
(
det[G(xi, xj)]1≤i,j≤n

)1/2
.

(5.3.43)

Using the standard Hadamard bound on the 2n × 2n determinant together with the
estimates (5.3.42), we have that the Fredholm expansion of pf(J −K) is absolutely con-
vergent. Furthermore, each entry of the series is analytic in the claimed domain, so is
pf(J −K).

Analyticity of the term 1
α+β − 〈Y2|X2〉

The analyticity of the term 1
α+β − 〈Y2 |X2〉 is relatively easy.

Lemma 5.3.8. The term 1
α+β − 〈Y2 |X2〉 is analytic for α, β ∈ (−1/2, 1/2), with

lim
β→−α

(
1

α+ β
− 〈Y2 |X2〉

)
= −

˛

Γ1/2,α

dz

2πi

Φ(s, z)

Φ(s, α)

(1
2 + α)n

(1
2 + z)n

1

(z − α)2
. (5.3.44)

Proof. We have

〈Y2 |X2〉 =
〈
g̃2

∣∣∣fβ+〉 =

˛

Γ1/2,α

dz

2πi

Φ(s, z)

Φ(s,−β)

(1
2 − β)n

(1
2 + z)n

1

(z − α)(z + β)

=

˛

Γ1/2,α,β

dz

2πi

Φ(s, z)

Φ(s,−β)

(1
2 − β)n

(1
2 + z)n

1

(z − α)(z + β)
+

1

α+ β

(5.3.45)
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where the last term is the residue at z = −β chosen so that the first term is analytic. The
residue exactly cancels the 1/(α + β) in 1

α+β − 〈Y2 |X2〉 . The latter is therefore analytic
with limit

lim
β→−α

1

α+ β
− 〈Y2 |X2〉 = −

˛

Γ1/2,α

dz

2πi

Φ(s, z)

Φ(s, α)

(1
2 + α)n

(1
2 + z)n

1

(z − α)2
. (5.3.46)

Analyticity of the 〈Y2|(1−G)−1GX2〉

Finding an analytic decomposition of
〈
Y2

∣∣(1−G)−1GX2

〉
turns out to be more intricate

than in the full-space stationary case. Let us explain first where the problems are. We
have

G |X2〉 =

∣∣∣∣∣ −K22f
β
+

K12f
β
+

〉
. (5.3.47)

The issues are the following:

(a) The pole at w = −β of K22 leads to a term of the form |a〉
〈
fβ−

∣∣∣ for some explicit

function a, and similarly for K12. When these terms are multiplied by
∣∣∣fβ+〉, they

give terms proportional to
´∞
s dye−2βy <∞ iff β > 0 whereas the model is defined

for any α, β with α+ β > 0.

(b) The pole at w = −α of K22 leads to terms of the form |a〉
〈
fα−
∣∣, and similarly for

K12. When multiplied with
∣∣∣fβ+〉, and taking into account the prefactors, one gets

a term proportional to 1/(β − α). This is well-defined in the β → −α limit, except
when α = 0. Also, the single terms in 1/(β − α) are not analytic at α = β. This
would not be a serious problem if we did not want to consider also the α = β = 0
case, which we of course do.

Thus what we have to prove is that the terms in (a) give a zero contribution, within
the product

〈
Y2

∣∣(1−G)−1GX2

〉
for any β > 0; we also need to rewrite (b) such that

we do not have divergent terms for β = α. These issues did not occur in the full-space
stationary problem, but can be put under control using the 2× 2 structure of our kernels.

The idea to overcome this issue is the following. We decompose

G = Ĝ+O, with O =

∣∣∣∣ g̃2

g1

〉
〈a b| (5.3.48)

for some functions a, b to be written down in the sequel. The following Lemma tells us
that the matrix kernel O is irrelevant in

〈
Y2

∣∣(1−G)−1GX2

〉
.

Lemma 5.3.9. We have:〈
Y2

∣∣(1−G)−1GX2

〉
=
〈
Y2

∣∣∣(1−G)−1ĜX2

〉
. (5.3.49)

Proof. First of all, notice that

(1−G)−1G− (1−G)−1Ĝ = (1−G)−1O. (5.3.50)
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Therefore

〈
Y2

∣∣(1−G)−1GX2

〉
−
〈
Y2

∣∣∣(1−G)−1ĜX2

〉
= const

〈
−g1 g̃2

∣∣∣∣(1−G)−1

(
g̃2

g1

)〉
(5.3.51)

with const = 〈a b |X2〉 . Multiplying the 2× 2 matrices we have that the scalar product
without the constant is given by

−
〈
g1

∣∣(1−G)−1
11 g̃2

〉
+
〈
g̃2

∣∣(1−G)−1
22 g1

〉
−
〈
g1

∣∣(1−G)−1
12 g1

〉
+
〈
g̃2

∣∣(1−G)−1
21 g̃2

〉
.

(5.3.52)
The property K12(x, y) = −K21(y, x) translates into G11(x, y) = G22(y, x) and so into
(1−G)−1

11 (x, y) = (1−G)−1
22 (y, x)—see Proposition 5.6.1 for details—implying the first two

terms cancels each other. The anti-symmetry of K11 and K22 implies the anti-symmetry
of G21 and G12 which in turn implies the same for the respective (1−G)−1 entries. Thus
the last two terms are each equal to zero and this finishes the proof.

We now state the announced further decomposition of K.

Proposition 5.3.10. Let α ∈ (−1/2, 1/2), β > 0. Then the kernel K splits as

K = K̃ +

(
0 0
0 ε̃

)
+ Õ + P̃ (5.3.53)

where

K̃11 = K11, K̃21 = K21,

K̃12(x, y) = −
˛

Γ1/2

dz

2πi

˛

Γ−1/2

dw

2πi

Φ(x, z)

Φ(y, w)

[
(1

2 − z)
(1

2 − w)

]n
θ(z)

θ(w)

z + α

w + α

z + w

2z(z − w)
,

K̃22(x, y) =

˛

Γ1/2,α,β

dz

2πi

˛

Γ−1/2

dw

2πi

Φ(x, z)

Φ(y, w)

1[
(1

2 + z)(1
2 − w)

]n θ(z)θ(w)

1

(z − α)(w + α)

z + w

z − w

(5.3.54)
and

Õ =

∣∣∣∣ −g1

g̃2

〉〈
0 2β

β−αf
β
− −

α+β
β−αf

α
−

∣∣∣ ,
P̃ =

∣∣∣∣ (α+ β)g3

−(α+ β)g̃4 − f−α−

〉〈
0 fα−

∣∣ . (5.3.55)

Proof. We first have to compute the (12) and (22) components of Õ+ P̃ and then divide
up accordingly. We have

Õ12 + P̃12 =

˛

Γ1/2

˛

Γ−α,−β

· · · . (5.3.56)

The residue computations at w = −α and w = −β lead to

Õ12 + P̃12 = − 2β

β − α
|g1〉

〈
fβ−

∣∣∣+
α+ β

β − α
|g5〉

〈
fα−
∣∣

= − 2β

β − α
|g1〉

〈
fβ−

∣∣∣+
α+ β

β − α
|g1〉

〈
fα−
∣∣+ (α+ β) |g3〉

〈
fα−
∣∣ (5.3.57)
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where in the second equality we used Lemma 5.3.11. Similarly,

Õ22 + P̃22 =

˛

Γ1/2,α

˛

Γ−β

· · ·+
˛

Γ1/2,β

˛

Γ−α

· · · . (5.3.58)

Computing the residues at w = −α and w = −β we get

Õ22 + P̃22 =
2β

β − α
|g̃2〉

〈
fβ−

∣∣∣− 2β

β − α

∣∣∣fβ−〉 〈fα−∣∣− α+ β

β − α
|g6〉

〈
fα−
∣∣

=
2β

β − α
|g̃2〉

〈
fβ−

∣∣∣− α+ β

β − α
|g̃2〉

〈
fα−
∣∣− (α+ β) |g̃4〉

〈
fα−
∣∣− ∣∣f−α− 〉 〈

fα−
∣∣ .

(5.3.59)
Recombining the terms leads to the claimed result, provided we prove the two equalities
used in equations (5.3.57) and (5.3.59). We do this in the next lemma.

Now we prove the two identities used in the proof of Proposition 5.3.10.

Lemma 5.3.11. We have the following identities:

g5(x) = g1(x) + (β − α)g3(x),

g6(x) +
2β

α+ β
fβ−(x) = g̃2(x) + (β − α)

(
g̃4(x) +

1

α+ β
f−α− (x)

)
.

(5.3.60)

Proof. The first identity follows directly from the relation (z−α)(z+β)/(z−β)−(z+α) =
(β − α)/(z − β). To prove the second, first rewrite

g6(x) +
2β

α+ β
fβ−(x) =

˛

Γ1/2,β

dz

2πi

Φ(x, z)

(1
2 + z)n

z + β

(z + α)(z − β)
(5.3.61)

and recall
g̃2(x) =

˛

Γ1/2,α

dz

2πi

Φ(x, z)

(1
2 + z)n

1

z − α
. (5.3.62)

Taking the same contours (i.e. including 1/2, α, β inside both) and then computing the
difference (5.3.61)−(5.3.62) leads to (β − α)g̃4(x) minus the pole coming from z = −α in
g̃4(x). The latter is − 1

α+β f
−α
− (x) and this finishes the proof.

Coming back to the decomposition (5.3.48), namely

G = Ĝ+O (5.3.63)

with O = J−1Õ, we notice the latter has exactly the form to apply Lemma 5.3.9. We also
explicitly have

Ĝ =

(
−K̃21 −K̃22 − ε̃
K̃11 K̃12

)
+

(
0
∣∣(α+ β)g̃4 + f−α−

〉 〈
fα−
∣∣

0 (α+ β) |g3〉
〈
fα−
∣∣ )

. (5.3.64)

What remains to be done is to show that
〈
Y2

∣∣∣(1−G)−1ĜX2

〉
is analytic for α, β ∈

(−1/2, 1/2) and determine its β → −α limit. This will be accomplished in Proposi-
tion 5.3.15, itself following from the following three lemmas.
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Lemma 5.3.12. The vector Y2(x) = (−g1(x) g̃2(x)) is independent of β. Furthermore,
for any α ∈ [−1/2 + ε, 1/2− ε],

|g1(x)| ≤ Ce−x(1/2−ε/2),

|g̃2(x)| ≤ Ce(1/2−ε)x,
(5.3.65)

for some constants C uniform in x.

Proof. The bound on g1 is simply obtained by taking the integration contour |z − 1/2| =
ε/2, while for g̃2, the leading asymptotics comes from the pole at z = α.

Lemma 5.3.13. ĜX2 analytic in α, β ∈ (−1/2, 1/2) and, for any α, β ∈ [−1/2 + ε, 1/2−
ε], we have the following bounds:∣∣∣(ĜX2)1(y)

∣∣∣ ≤ Cey(1/2−ε),∣∣∣(ĜX2)2(y)
∣∣∣ ≤ Ce−y(1/2−ε/2)

(5.3.66)

for some constant C independent of y. Moreover we have

lim
β→−α

Ĝ |X2〉 =

∣∣∣∣ −h1

h2

〉
(5.3.67)

where

h1 = K̃22f
−α
+ + ε1f

−α
+ − g̃4 + jα(s, ·),

h2 = K̃12f
−α
+ + g3

(5.3.68)

with
jα(s, y) = f−α− (s)

[
sinh(α(y − s))

α
+ (y − s)eα(y−s)

]
. (5.3.69)

Proof. We start with

Ĝ |X2〉 =

(
∗ a
∗ b

) ∣∣∣∣ 0

fβ+

〉
=

∣∣∣∣∣ afβ+bfβ+

〉
, (5.3.70)

where the kernels a, b are read from the decomposition (5.3.64), namely

a = −K̃22 − ε1 − ε2 + (α+ β) |g̃4〉
〈
fα−
∣∣+
∣∣f−α− 〉 〈

fα−
∣∣ , b = K̃12 + (α+ β) |g3〉

〈
fα−
∣∣ .

(5.3.71)
The term which in the y-variable have a decay like e−y(1−ε)/2, i.e., the ones for which

in the integral representation we integrate only around the pole at w = −1/2, are clearly
analytic when multiplied by fβ+ and its limits are straightforward, namely

lim
β→−α

K̃12f
β
+ = K̃12f

−α
+ ,

lim
β→−α

−(K̃22f
β
+ + ε1f

β
+) = −(K̃22f

−α
+ + ε1f

−α
+ ).

(5.3.72)

Next we compute
〈
fα−

∣∣∣fβ+〉 with the result

〈
fα−

∣∣∣fβ+〉 = φ(α)φ(β)

[
1
2 − β
1
2 + α

]n ˆ ∞
s

e−(α+β)xdx

= φ(α)φ(β)

[
1
2 − β
1
2 + α

]n
e−(α+β)s

α+ β
=
fα−(s)fβ+(s)

α+ β
.

(5.3.73)
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Since fα−, f
β
+, g3, g̃4 are clearly analytic—see their representations in (5.3.18) and (5.3.19),

then also the two terms involving g3 and g̃4 are analytic as the α + β prefactor cancels
with the one in (5.3.73). Their limits are given by

lim
β→−α

(α+ β)g̃4

∣∣fα−〉 〈fβ+∣∣∣ = g̃4,

lim
β→−α

(α+ β)g3

∣∣fα−〉 〈fβ+∣∣∣ = g̃3.
(5.3.74)

Finally, it remains to analyze the term −ε2 +
∣∣f−α− 〉 〈

fα−
∣∣ applied to fβ+. We have〈

fα−

∣∣∣fβ+〉 f−α− (y)−ε2f
β
+(y) =

φ(β)(1
2 − β)n

(1
4 − α2)n

[
e−(α+β)s+αy

α+ β
+

ˆ ∞
s

sgn(y − u)e−α|y−u|−βudu

]

=
φ(β)(1

2 − β)n

(1
4 − α2)n

[
e−(α+β)s+αy

α+ β
+
e−βy − e(α−β)s−αy

α− β
− e−βy

α+ β

]

=
φ(β)(1

2 − β)ne−βs

(1
4 − α2)n

[
eβ(s−y) − eα(s−y)

α− β
+
eα(y−s)−e−β(y−s)

α+ β

]
(5.3.75)

where in the second line inside the brackets the second and third terms come from ex-
plicitly integrating

´ y
s du · · · and

´∞
y du · · · respectively. The β → −α of this last term

is

lim
β→−α

〈
fα−

∣∣∣fβ+〉 f−α− (y)− ε2f
β
+(y) =

φ(−α)eαs

(1
2 − α)n

[
sinh(α(y − s))

α
+ (y − s)eα(y−s)

]
.

(5.3.76)
It remains to discuss the decay properties. For bound in the first component follows

directly by the fact that in the representation of K̃−12 and g3 we can take the contour as
|z − 1/2| = 1/2− ε/2. This decay is also correct for the term involving ε1. Furthermore,
the asymptotic behaviour of K̃22 is coming from the poles at z = α, β, thus e−min{α,β}y.
Similarly, for g̃4 the behaviour is e−min{α,±β}y. Finally, the behaviour of (5.3.75) is clear
from its final form. Thus, by choosing α, β ∈ [−1/2 + ε, 1/2 − ε] the claimed bounds
holds.

Lemma 5.3.14. The kernel G is analytic for α, β ∈ (−1/2, 1/2). Moreover, for any
α, β ∈ [−1/2 + ε, 1/2− ε] we have the following bounds:

|G11(x, y)| ≤ Ce(1/2−ε)xe−(1/2−ε/2)y,

|G12(x, y)| ≤ Ce(1/2−ε)xe(1/2−ε)y,

|G21(x, y)| ≤ Ce−(1/2−ε/2)xe−(1/2−ε/2)y,

|G22(x, y)| ≤ Ce−(1/2−ε/2)xe(1/2−ε)y,

(5.3.77)

for some constant C independent of x, y.

Proof. It is a rewriting of the results of Lemma 5.3.6 and Proposition 5.3.7.

Proposition 5.3.15. The term
〈
Y2

∣∣∣(1−G)−1ĜX2

〉
is analytic for α, β ∈ (−1/2, 1/2).

Its β → −α limit is given by

lim
β→−α

〈
Y2

∣∣∣(1−G)−1ĜX2

〉
=

〈
−g1 g̃2

∣∣∣∣(R11 R12

R21 R22

)(
−h1

h2

)〉
(5.3.78)



5.4. Large time asymptotics: proof of Theorem 5.2.6 125

where for brevity we denoted R = (1− G)−1 and where h1, h2 are as in (5.3.68).

Proof. Due to the bounds of Lemma 5.3.12, 5.3.13, and 5.3.14, when multiplying the
different terms, in each integral we have a integrals on (s,∞) of integrands bounded
for instance by e−εx/2, thus the product is well-defined. Analyticity follows from the
analyticity of the different entries of the scalar product.

Remark 5.3.16. The formula we obtained might not look very practical to get numerical
results, due to the (1−G)−1 = (1−J−1K)−1 term. However, we can always write pf(1−
K)
〈
Y2

∣∣∣(1− J−1K)−1ĜX2

〉
as a difference of two Fredholm pfaffians, see Lemma 5.3.17.

This kind of property has been noticed already in Imamura–Sasamoto paper [IS13] in the
context of the stationary KPZ. Thus one does not strictly speaking never needs to verify
that the inverse is well-defined, and the formulation with the inverse can be though as
well as a compact notation for (5.3.79).

Lemma 5.3.17. Let K be a 2 × 2 anti-symmetric kernel and J(x, y) = δx,y
(

0 1
−1 0

)
. Let

a, b, c, d be functions such that the scalar products in the following formulas are well-
defined. Then,

pf (J −K) 〈c d| (1− J−1K)−1

∣∣∣∣ ab
〉

= pf (J −K)− pf

(
J −K −

∣∣∣∣ ab
〉
〈c d| −

∣∣∣∣ −dc
〉
〈−b a|

)
. (5.3.79)

Proof. The proof consists in computations as in the derivation of (5.3.31).

Proof of Theorem 5.2.3. The shift argument, Lemma 5.3.3, together with Theorem 5.3.1,
gives a formula for the distribution for α, β with β > 0. The analytic continuation and
their limits provided in Proposition 5.3.7, Lemma 5.3.8, and Proposition 5.3.15 imply to
the claimed result.

5.4 Large time asymptotics: proof of Theorem 5.2.6

In this section we prove our main asymptotic result. Let us recall the scaling (5.2.24),
namely

s = 4N − 2u25/3N2/3 + S 24/3N1/3. (5.4.1)

Accordingly, in the functions and/or kernels, we need to scale x, y in the same way, i.e.

(x, y) = 4N − 2u25/3N2/3 + (X,Y )24/3N1/3. (5.4.2)

Also, in the integrals we will consider the change of variables

z = ζ/(24/3N1/3), w = ω/(24/3N1/3). (5.4.3)

Furthermore, the m-point correlation function has to be multiplied by the volume element
(24/3N1/3)m in order to make sense. As our Pfaffian kernel has a 2× 2 structure, not all
the kernel elements have to be multiplied by the same volume element. Indeed, in our
case, the rescaled and conjugated kernel elements are as follows:

Kresc
11 (X,Y ) =(24/3N1/3)222nK11(x, y),

Kresc
12 (X,Y ) =24/3N1/3K12(x, y),

Kresc
22 (X,Y ) =2−2nK22(x, y)

(5.4.4)
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±δ ∓δ

ω ζ

Figure 5.3: The two Airy integration contours 〉, 〈 with acute angles of π/3 with the horizontal
axis. Note they have opposite orientations.

where K can stand for K or for K̃. We also set Eresc
k (X,Y ) = 2−2nEk(x, y), k = 1, 2 or

empty. Similarly, we rescale the functions

f−δ,resc
+ (X) = 2nf−α+ (x), hresc

1 (X) = 2−4/3N−1/32−nh1(x), hresc
2 (X) = 2nh2(x)

(5.4.5)
as well as

eδ,resc(S) = 2−4/3N−1/3eα(s), jδ,resc(S,X) = 2−4/3N−1/32−njδ(s, x),

gresc
1 (X) = 24/3N1/32−ng1(x) g̃resc

2 (X) = 2−ng̃2(x), (5.4.6)

gresc
3 (X) = 24/3N1/32−ng3(x), g̃resc

4 (X) = 2−ng̃4(x).

Both the functions and the kernels have a similar structure to the ones of the full-
space stationary case, analyzed in great detail in [BFP10]. The integrals have terms of
the form eNf0(z)+N2/3f1(z)+N1/3f2(z)—and similarly for w in the case of double integrals,
and a finite product of terms independent of N . Since the function f0 is the same as the
one in [BFP10], the steepest descent paths used for the asymptotics and for the uniform
bounds are the same. The only minor differences are in the functions f1 and f2 and in the
N -independent terms, but these do not generate any issues in the asymptotic analysis.
For this reason we are not going to repeat all the details of the asymptotic analysis, but
rather indicate which Lemmas in [BFP10] we are using analogously. A detailed description
on the general approach in the asymptotic of single integrals having Airy-type behaviours
can be found for instance in Section 6.1 of [BF14]. This follows the scheme introduced in
our field by Gravner–Tracy–Widom in [GTW01].

The limits of the functions entering in the statement of Theorem 5.2.3 are the following.

Lemma 5.4.1. For any given L > 0, the following limits holds uniformly for X ∈ [−L,L]:

lim
N→∞

f−δ,resc
+ (X)= f −δ,u(X), lim

N→∞
eδ,resc(S)= eδ,u(X), lim

N→∞
jδ,resc(S,X)= j δ,u(S,X)

(5.4.7)
as well as

lim
N→∞

gresc
1 (X) = gδ,u1 (X), lim

N→∞
g̃resc

2 (X) = g̃δ,u2 (X),

lim
N→∞

gresc
3 (X) = gδ,u3 (X), lim

N→∞
gresc

4 (X) = g̃δ,u4 (X).
(5.4.8)

Furthermore, for any X ≥ −L, we have the following bounds which holds uniformly in N :

|f−δ,resc
+ (X)| ≤ CeδX , |j δ,u(S,X)| ≤ C|X|e|δX| (5.4.9)
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for some constant C. For any κ > 0 we have

|gresc
1 (X)| ≤ Ce−κX , |g̃resc

2 (X)| ≤ C(e−δX + e−κX),

|gresc
3 (X)| ≤ Ce−κX , |gresc

4 (X)| ≤ C(|X|e|δX| + e−κX).
(5.4.10)

Proof. Inserting the new variables, we have f−δ,resc
+ (X) = eδXeQN with QN independent

of X and with QN → −δ3/3− δ2u as N →∞. The limit of eδ,resc(S) follows the patterns
of Lemma 4.6 of [BFP10]. For jδ,resc(S,X) we have

jδ,resc(S,X) =

[
sinh δ(X − S)

δ
+ (X − S)eδ(X−S)

]
2−nf−α− (s) (5.4.11)

and the last term is analyzed as f−δ,resc
+ .

The limits of the g functions and their bounds are obtained as in Lemma 4.7 of
[BFP10]. The terms Ce−κX comes from the integrals with the contours to the right of
the poles ±α (if present), since the real decay is Airy-like, i.e. e−cX3/2 . The contributions
of the poles at α are bounded by Ce−αX , while the pole of order 2 in −α is bounded by
C|X|eαX .

The limits of the kernels are the following.

Lemma 5.4.2. For any given L > 0, the following limits hold uniformly for X,Y ∈
[−L,L]:

lim
N→∞

K
resc
ij (X,Y ) = Aij(X,Y ), i, j ∈ {1, 2}. (5.4.12)

Furthermore, for any X,Y ≥ −L and κ > 0, we have the following bounds which hold
uniformly in N :

|Kresc

11 (X,Y )| ≤ Ce−κ(X+Y ), |Kresc

12 (X,Y )| ≤ C(e−κ(X+Y ) + e−κXeδY ),

|Kresc

21 (X,Y )| ≤ C(e−κ(X+Y ) + eδXe−κY ), |Kresc

22 (X,Y )| ≤ |Eresc(X,Y )|+C(e−κXeδY +eδXe−κY ),

|Eresc
1 (X,Y )| ≤ Ce−(|δ|+κ)|X−Y |, |Eresc

2 (X,Y )| ≤ Ce−δ|X−Y | (5.4.13)

for some constant C.

Proof. The asymptotics of the double integrals is as in Lemma 4.4 of [BFP10] and the
uniform bounds as in Lemma 4.5 of [BFP10]. To get the bounds, we first compute
explicitly the poles at ±α—if they are inside the integration contours—while the rest has
an Airy-like decay in both variables, from which we have the terms e−κX and e−κY . For
Eresc

1 (X,Y ), we take a contour passing on the right of |α| by an amount κ2−4/3N−1/3,
which can be deformed to become vertical, as the convergence comes from the quadratic
term in Z.

Finally, in order to define the limits of hresc
1 and hresc

2 we need the limits of K̃resc
12 and

K̃resc
22 , which are as follows.

Lemma 5.4.3. For any given L > 0, the following limits hold uniformly for X,Y ∈
[−L,L]:

lim
N→∞

K̃resc
12 (X,Y ) = Ã12(X,Y ), lim

N→∞
K̃resc

22 (X,Y ) = Ã22(X,Y ). (5.4.14)

Furthermore, for any X,Y ≥ −L and κ > 0, we have the following bounds which hold
uniformly in N :

|K̃resc
12 (X,Y )| ≤ Ce−κ(X+Y ), |K̃resc

22 (X,Y )| ≤ C(e−κX + eδX)e−κY , (5.4.15)

for some constant C.
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Proof. The proof is similar to that of Lemma 5.4.2, with the only difference being that
some poles are not present anymore.

Corollary 5.4.4. For any given S ∈ R, we have

lim
N→∞

pf(J − K
resc

)L2(S,∞) = pf(J −A)L2(S,∞). (5.4.16)

Proof. We write the Fredholm expansion as in the proof of Proposition 5.3.7. Then,
taking κ > |δ|, the bounds of Lemma 5.4.2 allow us to exchange the N → ∞ limit with
the sums/integrals by dominated convergence. The result follows.

Corollary 5.4.5. For any given L > 0, the following limits hold uniformly for Y ∈
[−L,L]:

lim
N→∞

hresc
1 (Y ) = hδ,u1 (Y ), lim

N→∞
hresc

2 (Y ) = hδ,u2 (Y ). (5.4.17)

Furthermore, for any Y ≥ −L and κ > 0, we have the following bounds which hold
uniformly in N :

|hresc
1 (Y )| ≤ C|Y |e|δY |, |hresc

2 (Y )| ≤ Ce−κY (5.4.18)

for some constant C.

Proof. The bounds of Lemmas 5.4.1, 5.4.2, and 5.4.3 imply that, taking κ > |δ|, we can
take N →∞ inside

´∞
S dV K̃resc

22 (Y, V )f−δ,resc
+ (V ) and inside

´∞
S dV Eresc

1 (Y, V )f−δ,resc
+ (V ).

Together with the bounds on the remaining terms we get the stated result.

With the above results, we are now ready to finish the proof of Theorem 5.2.6.

Proof of Theorem 5.2.6. The result is now a direct consequence of Corollary 5.4.4; the
bounds and their limits on the rescaled kernel of Lemma 5.4.2; of Lemma 5.4.1 for the
functions gresc

1 (X) and g̃resc
2 (X) entering in left hand side of the scalar product; and of

Corollary 5.4.5 for the functions hresc
1 (Y ) and hresc

2 (Y ) entering in the right hand side of the
scalar product. The bounds indeed imply that we can take the N →∞ inside the integrals
which appear when writing the scalar product explicitly by use of dominated convergence.
This leads to the claimed result. We remark that it is not really needed to worry about
the inverse operator, since when multiplied by the Fredholm pfaffian in front, it can be
rewritten as linear combination of two Fredholm pfaffians—see Remark 5.3.16.

5.5 Limit to the Baik–Rains distribution: proof of Theo-
rem 5.2.10

In the u → ∞ limit, we want to take δ = −u + τ with τ fixed. Thus for u large enough
we also have δ < 0. In this case, i.e. for u > 0 and δ < 0, there are some simplifications in
the expression of the distribution.

Lemma 5.5.1. Consider u > 0 and δ < 0. Then the following equality holds:

A22(X,Y ) = −
ˆ

−µ+iR

dζ

2πi

ˆ

µ+iR

dω

2πi

e
ζ3

3
+ζ2u−ζX

e
ω3

3
−ω2u−ωY

1

ζ − ω

(
1

ζ + δ
+

1

ω − δ

)
(5.5.1)

for any choice of 0 < µ < min{−δ, u} (the contours for ζ, ω are oriented with increasing
imaginary parts).
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Furthermore we have:

Ã22(X,Y ) + E1(X,Y ) =A22(X,Y )− g̃δ,u2 (X)e−
δ3

3
+δ2u+δY

+ 1X>Y e
2δ2u(eδ(X−Y ) + e−δ(X−Y )).

(5.5.2)

As a consequence of this representation we have:ˆ ∞
S

dV 1Y >V e
2δ2u(eδ(Y−V ) + e−δ(Y−V ))f −δ,u(V ) = j δ,u(S, Y ). (5.5.3)

Finally we also have:

Ã12(X,Y ) = A12(X,Y ) + gδ,u1 (X)e−
δ3

3
+δ2u+δY . (5.5.4)

Proof. First notice that for δ < 0, the contours in the double integral of (5.2.27) can be
chosen to be the same for the two cases, with δ < Re(ω) < Re(ζ) < −δ. Next, notice that
we can deform the contours to be vertical provided Re(ζ) > −u and Re(ω) < u. Finally,
we exchange the positions of ζ and ω, so now Re(ζ) < Re(ω), which is the formula (5.5.1),
minus the pole at ω = ζ. This pole gives as residue

−
ˆ

iR

dζ

2πi
e2ζ2u−ζ(X−Y ) 2ζ

(ζ + δ)(ζ − δ)
(5.5.5)

which is equal to −E(X,Y ). To verify this identity, it is enough by anti-symmetry to
consider X > Y . Extracting the pole at ζ = −δ leads to −E0(X,Y ), while the remaining
integral is −E1(X,Y ). Finally, (5.5.3) is an elementary computation and (5.5.4) follows
by taking the residue at ω = δ.

With the above decomposition we can prove Lemma 5.2.8.

Proof of Lemma 5.2.8. Using the representations (5.5.2)—(5.5.4), our claim holds if we
can show that 〈

−gδ,u1 g̃δ,u2

∣∣∣∣∣(1− J−1A)−1

(
g̃δ,u2

〈
f −δ,−u

∣∣f −δ,u〉
gδ,u1

〈
f −δ,−u

∣∣f −δ,u〉
)〉

= 0. (5.5.6)

The proof of this is the same as proving that (5.3.51) = 0 in Lemma 5.3.9. Notice that
for δ < 0 (but not for δ ≥ 0) the scalar product

〈
f −δ,−u

∣∣f −δ,u〉 is well-defined.

In order to analyze the u → ∞ limit with u + δ = τ constant, we need to consider a
conjugation in the kernel entries, but also to shift the positions by δ(2u+ δ) as discussed
above in Remark 5.2.5. Finally, to clearly see the limit u→∞, we shift the ζ, ω integration
variables to remove the ζ2, ω2 terms in the exponential.

Lemma 5.5.2. Let us consider u > 0, δ < 0 and u + δ = τ . Shifting the positions as
X = x+ δ(2u+ δ) and Y = y + δ(2u+ δ), we have:

e
2
3
u3+uX

e−
2
3
u3−uY

A11(X,Y ) = −
ˆ

−u

dz

2πi

ˆ

u,z+2u

dw

2πi

e
z3

3
−z(x+τ2)

e
w3

3
−w(y+τ2)

(w + z)(w + τ − 2u)(z − τ + 2u)

4(w − u)(z + u)(z − w + 2u)
,

e
2
3
u3+uX

e
2
3
u3+uY

A12(X,Y ) = −
ˆ

−u

dz

2πi

ˆ

τ−2u z

dw

2πi

e
z3

3
−z(x+τ2)

e
w3

3
−w(y+τ2)

(w + z + 2u)(z − τ + 2u)

2(z + u)(z − w)(w − τ + 2u)
,

(5.5.7)
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e−
2
3
u3−uX

e
2
3
u3+uY

A22(X,Y ) = −
ˆ

r+iR

dz

2πi

ˆ

r+iR

dw

2πi

e
z3

3
−z(x+τ2)

e
w3

3
−w(y+τ2)

z + w

(w − τ + 2u)(z − w − 2u)(z + τ − 2u)

where for A22 the integration contours for z, w are oriented with increasing imaginary part
and 0 < r < min{u, 2u− τ}.

Proof. The first equality is obtained by the change of variables ζ = z+ u and ω = w− u;
the second is obtained by the change of variables ζ = z + u and ω = w + u; finally, the
third comes from substituting ζ = z − u and ω = w+ u in the representation (5.5.1).

We have a similar result for eδ,u1 , gδ,u1 , g̃δ,u2 , h̃δ,u1 , and h̃δ,u2 .

Lemma 5.5.3. Let us consider u > 0, δ < 0 and u + δ = τ . Shifting the positions as
X = x+ δ(2u+ δ), Y = y + δ(2u+ δ), and S = s+ δ(2u+ δ), we have:

eδ,u(S) = R−τ (s),

e
2
3
u3+uXgδ,u1 (X) =

ˆ

−u

dz

2πi
e
z3

3
−z(x+τ2) z + τ

2(z + u)
,

e−
2
3
u3−uX g̃δ,u2 (X) =

ˆ

τ

dz

2πi
e
z3

3
−z(x+τ2) 1

z − τ

(5.5.8)

as well as

e−
2
3
u3−uY h̃δ,u1 (Y ) = e

2
3
τ3+sτ

ˆ

r+iR

dz

2πi

ˆ

−r+iR

dw

2πi

e
z3

3
−z(y+τ2)

e
w3

3
−w(s+τ2)

1

(w − τ + 2u)(z + τ − 2u)

× (z + w)

(z − w − 2u)(w + τ)

−
ˆ

τ,2u−τ

dz

2πi
e
z3

3
−z(y+τ2) 2(z − u)

(z − τ)(z − 2u+ τ)
,

e
2
3
u3+uY h̃δ,u2 (Y ) = e

2
3
τ3+sτ

ˆ

−u

dz

2πi

ˆ

τ−2u z,−τ

dw

2πi

e
z3

3
−z(y+τ2)

e
w3

3
−w(s+τ2)

(w + z + 2u)

2(z + u)

× (z − τ + 2u)

(z − w)(w − τ + 2u)(w + τ)

+

ˆ

−τ

dz

2πi
e
z3

3
−z(y+τ2) 1

z + τ

(5.5.9)

where 0 < r < min{u, 2u− τ}.

Proof. The proofs for eδ,u, gδ,u1 and g̃δ,u2 consist, as above, respectively in the following
changes of variables: ζ = z − u, ζ = z + u and ζ = z − u. The last two also work for gδ,u3
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and g̃δ,u4 respectively, as summands for h̃δ,u2 and h̃δ,u1 :

e
2
3
u3+uY gδ,u3 (Y ) =

ˆ

−τ

dz

2πi
e
z3

3
−z(y+τ2) 1

z + τ
,

e−
2
3
u3−uY g̃δ,u4 (Y ) =

ˆ

τ,2u−τ

dz

2πi
e
z3

3
−z(y+τ2) 2(z − u)

(z − τ)(z − 2u+ τ)
.

(5.5.10)

For the term A12f −δ,u we have:

e
2
3
u3+uY

(
A12f −δ,u

)
(Y ) =

= e
2
3
τ3+sτ

ˆ

−u

dz

2πi

ˆ

τ−2u z,−τ

dw

2πi

e
z3

3
−z(y+τ2)

e
w3

3
−w(s+τ2)

(w + z + 2u)(z − τ + 2u)

2(z + u)(z − w)(w − τ + 2u)(w + τ)

(5.5.11)

which can be obtained by explicitly performing the integration
´∞
S dV e(δ+ω)V in the

product and then changing variables (ζ, ω) = (z + u,w + u). The computation for
e−

2
3
u3−uYA22f −δ,u is similar. Combining them with the gδ,u3 term, respectively the g̃δ,u4

term, we obtain the result for h̃δ,u2 and respectively h̃δ,u1 .

Proof of Theorem 5.2.10. The finiteness of the Fredholm Pfaffian and of the scalar prod-
ucts depends on the behavior in x, y in the above expressions. The u dependence is only
marginal and, with the chosen conjugation, all the terms remain bounded as u→∞. By
dominated convergence we can take the u→∞ limit inside both the Fredholm Pfaffians
and the scalar product. We have the following limits:

lim
u→∞

e
2
3
u3+uX

e−
2
3
u3−uY

A11(X,Y ) = lim
u→∞

e−
2
3
u3−uX

e
2
3
u3+uY

A22(X,Y ) = 0 (5.5.12)

and

lim
u→∞

e
2
3
u3+uX

e
2
3
u3+uY

A12(X,Y ) = K Ai,τ (x, y). (5.5.13)

Dominated convergence then implies that

lim
u→∞

pf(J −A)L2(S,∞) = det(1− K Ai,τ )L2(s,∞) = FGUE(s+ τ2) (5.5.14)

and that

lim
u→∞

J−1A(X,Y ) =

(
K Ai,τ (x, y) 0

0 K Ai,τ (x, y)

)
. (5.5.15)

The latter limit extends to resolvents as well.
The g and h̃ functions have the following limits:

lim
u→∞

e
2
3
u3+uXgδ,u1 (X) = 0, lim

u→∞
e−

2
3
u3−uX g̃δ,u2 (X) = Ψ−τ (x) (5.5.16)

and

lim
u→∞

e−
2
3
u3−uY h̃δ,u1 (Y ) = −Ψ−τ (y),

lim
u→∞

e
2
3
u3+uY h̃δ,u2 (Y ) = e

2
3
τ3+sτ

ˆ
dz

2πi

ˆ

z,−τ

dw

2πi

e
z3

3
−z(y+τ2)

e
w3

3
−w(s+τ2)

1

(z − w)(w + τ)

+

ˆ

−τ

dz

2πi
e
z3

3
−z(y+τ2) 1

z + τ
= Φ−τ (y)

(5.5.17)
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where the last equality is obtained by computing the residue at w = −τ .
To conclude, the inner product on the right of (5.2.33) collapses, in the limit u →

∞, to
〈
Ψ−τ

∣∣(1− K Ai,τ )−1Φ−τ
〉
: as gδ,u1 → 0 with h̃δ,u1 staying finite, the respective

inner product is zero in the limit; moreover g̃δ,u2 , h̃δ,u2 and J−1A converge to the desired
quantities. Combining with eδ,u → R−τ , we conclude that

lim
u→∞

F
(δ,u)
0, half(S) = FBR,−τ (s) = FBR,τ (s) (5.5.18)

with the last equality coming from the fact that the Baik–Rains distribution is symmetric
under τ → −τ .

5.6 Some determinantal computations

In this section we prove (5.3.31). For this we need to show that

〈Y1 |Z2〉 = 〈Y2 |Z1〉 = 0 and 〈Y1 |Z1〉 = 〈Y2 |Z2〉 (5.6.1)

where Zi, Yi, i = 1, 2 are defined in (5.3.26). For brevity and consistency, let us rename

A = (1−G)−1, h1 = g1, h2 = g̃2, f1 = fβ+. (5.6.2)

We have
〈Y1 |Z2〉 = 〈f1 |A12f1〉 (5.6.3)

and

〈Y2 |Z1〉 =

〈
−h1 h2

∣∣∣∣ A11h2 +A12h1

A21h2 +A22h1

〉
. (5.6.4)

To show that both are zero, we need the following result.

Proposition 5.6.1. We have:

A12(x, y) = −A12(y, x), A21(x, y) = −A21(x, y), A11(x, y) = A22(y, x). (5.6.5)

Proof. Assume for now that we know the norm of G is less than 1. Then we can expand
A as a Neumann series (1−G)−1 = 1 +G+G

2
+G

3
+ . . . . We will prove by induction

that, for any n ≥ 1

G
n
12(x, y) = −Gn12(y, x), G

n
21(x, y) = −Gn21(x, y), G

n
11(x, y) = G

n
22(x, y). (5.6.6)

The base case is true by the definition of G = J−1K and by the fact that

K12(x, y) = −K21(y, x), K11(x, y) = −K11(y, x), K22(x, y) = −K22(y, x).
(5.6.7)

Now we proceed with the inductive step: assuming that (5.6.6) holds for B = G
n, for

C = G
n+1 we have

C11(x, y) =
(
B11G11 +B12G21

)
(x, y)

=

ˆ ∞
s

dzB11(x, z)G11(z, y) +

ˆ ∞
s

dzB12(x, z)G21(z, y)

=

ˆ ∞
s

dzB22(z, x)G22(y, z) +

ˆ ∞
s

dzB12(z, x)G21(y, z)

= C22(y, x).

(5.6.8)
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Moreover,

C12(x, y) =
(
B11G12 +B12G22

)
(x, y)

=

ˆ ∞
s

dzB11(x, z)G12(z, y) +

ˆ ∞
s

dzB12(x, z)G22(z, y)

= −
ˆ ∞
s

dzB22(z, x)G12(y, z)−
ˆ ∞
s

dzB12(z, x)G11(y, z)

= −C12(y, x)

(5.6.9)

where we have used that C = BG = GB. An analogous computation holds for C21.
Now it may happen that the norm of G, of which we remain ignorant, is ≥ 1. We then

replace G by ωG for ω > 0 small enough to make ωG of subunit norm. The argument
above applies to the corresponding A(ω) = (1−ωG)−1. We then analytically continue in
ω, as the spectrum of any trace class operator (and in particular of G) is discrete without
non-zero accumulation points.

Using Proposition 5.6.1 in equation (5.6.3), we have

〈Y1 |Z2〉 =

ˆ ∞
s

ˆ ∞
s

dxdyf1(x)A12(x, y)f1(y)

= −
ˆ ∞
s

ˆ ∞
s

dxdyf1(x)A12(y, x)f1(y)

= 0.

(5.6.10)

For the same reason, (5.6.4) becomes:

〈Y1 |Z2〉 = −〈h1 |A11h2〉 − 〈h1 |A12h1〉 + 〈h2 |A22h1〉 + 〈h2 |A21h2〉 = 0 (5.6.11)

since the last two terms are zero, and the first two are equal by Proposition 5.6.1:

〈h2 |A22h1〉 =

ˆ ∞
s

ˆ ∞
s

dxdyh2(x)A22(x, y)h1(y)

=

ˆ ∞
s

ˆ ∞
s

dxdyh2(x)A11(y, x)h1(y)

= 〈h1 |A11h2〉 .

(5.6.12)

Now, we show that 〈Y1 |Z1〉 = 〈Y2 |Z2〉 . The two are explicitly given by

〈Y1 |Z1〉 = 〈f1 |A11h2〉 + 〈f1 |A12h1〉 , 〈Y2 |Z2〉 = −〈h1 |A12f1〉 + 〈h2 |A22f1〉 .
(5.6.13)

By Proposition 5.6.1, as A11(x, y) = A22(y, x) and A12(x, y) = −A12(y, x), it follows
that 〈f1 |A11h2〉 = 〈h2 |A22f1〉 and that 〈f1 |A12h1〉 = −〈h1 |A12f1〉 proving the desired
equality.





Appendix

A.1 Bounds on LPP distribution

In the proofs we use known results for the point-to-point and point-to-line LPP with
exponential random variables, which we recall here.

Bounds on point-to-point LPP

Proposition A.1.1. For η ∈ (0,∞) define µ = (
√
η`+

√
`)2, σ = η−1/6(1 +

√
η)4/3, and

the rescaled random variable

Lresc
` :=

L(0,0)→(η`,`) − µ
σ`1/3

. (A.1.1)

(a) Limit law
lim
`→∞

P(Lresc
` ≤ s) = FGUE(s), (A.1.2)

with FGUE the GUE Tracy-Widom distribution function.
(b) Bound on upper tail: there exist constants s0, `0, C, c such that

P(Lresc
` ≥ s) ≤ Ce−cs (A.1.3)

for all ` ≥ `0 and s ≥ s0.
(c) Bound on lower tail: there exist constants s0, `0, C, c such that

P(Lresc
` ≤ s) ≤ Ce−c|s|3/2 (A.1.4)

for all ` ≥ `0 and s ≤ −s0. The constants C, c can be chosen uniformly for η in a bounded
set.

(a) was proven in Theorem 1.6 of [Joh00b]. Using the relation with the Laguerre
ensemble of random matrices (Proposition 6.1 of [BBP06]), or to TASEP described above,
the distribution is given by a Fredholm determinant. An exponential decay of its kernel
leads directly to (b). See e.g. Proposition 4.2 of [FN15] or Lemma 1 of [BFP14] for an
explicit statement. (c) was proven in [BFP14] (Proposition 3 together with (56)). In the
present language it is reported in Proposition 4.3 of [FN15] as well.

Bounds for point-to-line LPP

Proposition A.1.2. Let L = {(k,−k), k ∈ Z}. Consider the rescaled LPP from L to
(`, `) given by

LL,resc
` =

LL→(`,`) − 4`

24/3`1/3
. (A.1.5)
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(a) Limit law
lim
`→∞

P(LL,resc
` ≤ s) = FGOE(22/3s). (A.1.6)

(b) Bound on upper tail: there exists constants s0, `0, C, c such that

P(LL,resc
` ≥ s) ≤ Ce−cs (A.1.7)

for all ` ≥ `0 and s ≥ s0.
(c) Bound on lower tail: there exists constants s0, `0, C, c such that

P(LL,resc
` ≤ s) ≤ Ce−c|s|3/2 (A.1.8)

for all ` ≥ `0 and s ≤ −s0.

(a) was obtained in [Sas05,BFPS07] in terms of TASEP, which can be directly rewrit-
ten in term of LPP (the complete proof is present in [BF08]). For general slopes of L it was
shown in [FO18]. (b) this tails follows from the asymptotic analysis on the correlation ker-
nel made in [BF08]. (c) It follows from (A.1.4) since P(LL→(`,`) ≤ x) ≤ P(L(0,0)→(`,`) ≤ x).

Here we state and give short proofs for the bounds on the tails of the one-point distribu-
tion of the point-to-random-line and stationary LPP with ρ = 1/2, used in Theorem 4.2.5.

Bounds on LPP with random initial condition

Proposition A.1.3. Define LσL→(`,`) = maxk{L(k,−k)→(`,`) + h0(k,−k)} with h0 as in
(4.2.6), and consider the rescaled LPP time

Lσ,resc
` =

LσL→(`,`) − 4`

24/3`1/3
. (A.1.9)

Then, there exists constants s0, `0, C, c such that:
(a) Bound on upper tail:

P(Lσ,resc
` ≥ s) ≤ Ce−cs (A.1.10)

for all ` ≥ `0 and s ≥ s0.
(b) Tail on lower tail:

P(Lσ,resc
` ≤ s) ≤ Ce−c|s|3/2 (A.1.11)

for all ` ≥ `0 and s ≤ −s0.

Proof. (a) Define J(u) = u(2`)2/3(1,−1) and W`(u) = h0(J(u))/(24/3`1/3). By Donsker’s
theorem, u 7→ B`(u) converges weakly to a two-sided Brownian motion with diffusion
coefficient 2σ2. Further, define

Lpp
` (u) :=

LJ(u)→(`,`) − 4`

24/3`1/3
. (A.1.12)

Then, we can write

Lσ,resc
` = max

u
{Lpp

` (u) +W`(u)} ≤ max
u
{Lpp

` (u) + u2/2}+ max
u
{B`(u)− u2/2}. (A.1.13)

Thus,

P(Lσ,resc
` ≥ s) ≤ P(max

u
{Lpp

` (u)+u2/2} ≥ s/2)+P(max
u
{B`(u)−u2/2} ≥ s/2). (A.1.14)
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By computations based ob Doob maximal inequality (used for instance in (4.4.36)), one
obtains P(maxu{B`(u) − u2/2} ≥ s/2) ≤ Ce−cs

2 for some constants C, c > 0. To bound
the first term without new estimates, remark that for any M we can bound

P(max
u
{Lpp

` (u) + u2/2} ≥ s/2) ≤ P(max
u

Lpp
` (u) ≥ s/4−M2/2)

+ P( max
|u|>M

{Lpp
` (u) + u2/2} ≥ s/4)

(A.1.15)

The exponential decay in s for the second term is just a special case of (4.4.19) (set τ = 0)
and it holds for all M ≥ M0, for some finite M0. We fix M = M0 and then, using the
fact that maxu L

pp
` (u) = LL,resc

` , by (A.1.7) we have exponential decay in s for the first
term as well.

(b) It follows from (A.1.4) since P(LσL→(`,`) ≤ x) ≤ P(L(0,0)→(`,`) ≤ x).

Bounds on stationary LPP

Proposition A.1.4. Let ρ = 1/2. Then there exists constants s0, `0, C, c such that:
(a) Bound on upper tail:

P(LB(0,0)→(`,`) ≥ 4`+ 24/3s`1/3) ≤ Ce−cs (A.1.16)

for all ` ≥ `0 and s ≥ s0.
(b) Bound on lower tail:

P(LB(0,0)→(`,`) ≤ 4`+ 24/3s`1/3) ≤ Ce−c|s|3/2 (A.1.17)

for all ` ≥ `0 and s ≤ −s0.

Proof. (a) One can write LB(0,0)→(`,`) = max{L|,ρ(`, `), L−,ρ(`, `)}, where L|,ρ(`, `) (resp.
L−,ρ(`, `)) are the LPP with one-sided perturbation only on i = 0 (resp. j = 0). Then,

P(LB(0,0)→(`,`) ≥ x) ≤ P(L|,ρ(`, `) ≥ x) + P(L−,ρ(`, `) ≥ x). (A.1.18)

By choosing x = 4` + s24/3`1/3, Lemma 3.3 of [FO18] (based on the estimates on the
correlation kernel in [BBP06]) gives exponential decay in s for all s ≥ s0.

(b) It follows from (A.1.4), since P(LB(0,0)→(`,`) ≤ x) ≤ P(L(0,0)→(`,`) ≤ x).

Lemma A.1.5. Let ρ = 1/2 and define I(u) = (` − 2u`2/3, ` + 2u`2/3). Then, for any
α > 0, we have

P(|LB(0,0)→I(K) − L
B
(0,0)→I(0)| ≥ α`

1/3) ≤ 4e−α
2/(16K) (A.1.19)

for all ` large enough. Furthermore,

P(max
u≥K

LB(0,0)→I(u) − L
B
(0,0)→I(K) − βu

2`1/3 ≥ α`1/3) ≤ Ce−
(α+βK2)2

16K , (A.1.20)

for a constant C and for all β > 0 and α > −βK2 and ` large enough.
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Proof. The process K 7→ YK := LB(0,0)→I(K)−L
B
(0,0)→I(0) is a martingale [BCS06] given by

a sum of i.i.d. zero mean random variables Zj−2, with Zj ∼ Exp(1/2). By the exponential
Chebyshev inequality,

P(|YK | ≥ α`1/3) ≤ P(YK ≥ α`1/3) + P(−YK ≥ α`1/3)

≤ inf
t≥0

e−tα`
1/3
E(et(Z1−2))2K`2/3 + inf

t′≥0
e−t

′α`1/3E(e−t
′(Z1−2))2K`2/3 .

(A.1.21)
Using E(et(Z1−2)) = e−2t

1−2t for t ∈ (0, 1/2) and E(e−t
′(Z1−2)) = e2t

′

1+2t′ for all t
′ ≥ 0, after the

minimization we obtain

P(|YK | ≥ α`1/3) ≤ 2e−α
2/(16K)(1+O(αK−1`−1/3) ≤ 4e−α

2/(16K) (A.1.22)

for all ` large enough.
For the second estimate, from the inequality

P(max
u≥K

LB(0,0)→I(u) − L
B
(0,0)→I(K) − βu

2`1/3 ≥ α`1/3)

≤
∑
m≥1

P( max
u∈[Km,K(m+1)]

LB(0,0)→I(u) − L
B
(0,0)→I(K) ≥ (α+ βK2m2)`1/3)

≤
∑
m≥1

inf
t>0

e−t(α+βK2m2)`1/3E(et(Z1−2))2Km`2/3 .

(A.1.23)

Maximising over t and taking the sum we finally get8

P
(

max
u≥K

LB(0,0)→I(u) − L
B
(0,0)→I(−K) − βu

2`1/3 ≥ α`1/3
)
≤ Ce−

(α+βK2)2

16K (A.1.24)

for a constant C and for all β > 0 and α > −βK2 and ` large enough.

Bounds for point-to-half line LPP

Proposition A.1.6. Let I(u) = (τN, τN) + u(2N)2/3(1,−1). Then,

P
(

max
|u|>M

LI(u)→(N,N) > 4(1− τ)N + 24/3(s− γM2)N1/3
)
≤ Ce−cM2(1−τ)−4/3

e−c̃s(1−τ)−1/3

(A.1.25)
for some constants C, c, c̃ > 0, which can be taken uniform in N and uniform for γ in a
compact subset of (0, 1/(1− τ)).

Proof. By symmetry, it is enough to get the bound on the distribution of
maxu<−M LI(u)→(N,N). By first shifting I(−M) to the origin, and then using the mapping
between LPP and TASEP, the distribution function is the same as the distribution of
TASEP particle number n = t/4 + τ̃(t/2)2/3 at time t = 4(1− τ)N + 24/3N1/3(s− γM2),
starting at xk(0) = −2k, k ≥ 0.

From Proposition 3 of [BFS08] we have an explicit expression in terms of Fredholm
determinant. The upper tail estimate is standard. Using Hadamard’s bound it is enough
to have a bound on the correlation kernel. In Section 4 of [BFS08] exponential decay of
the rescaled correlation kernel has been proven. Then, simple algebraic computations give
the claimed result.

8To be precise, for ε > 0 small, one can bound P(LB(0,0)→I(u) − LB(0,0)→I(K) ≥ (α + βK2u2)`1/3) for
all u ≥ εK`1/3 using (A.1.23) and for m ∈ {1, . . . , ε`1/3} we can minimize over t and compute the series
expansion in the exponent for large `.
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