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CHAPTER 1

Introduction

1.1 General Overview

The main topic of study in this work is the properties of light propagation and transport in
random and possibly nonconservative media. Thematically, the work is to be divided into three
main subtopics: first, we develop a formalism to describe the diffusive behaviour of light in a
dielectrically random, conservative medium. Within this scope we show that our formalism is
able to calculate physically relevant quantities like the full counting statistics for such a medium.

Secondly, we then extend our description to the case of nonconservative media, where we show
how to calculate photonic distribution functions from our formalism. Speaking more descriptively,
we wish to consider the distribution statistics of a random laser, which has been studied since
its postulation by Letokhov in 1969. All these quantities have been obtained under a unified
framework which is known as the nonlinear sigma model, which is a powerful field theoretical
method for the description of random systems, and in addition, in the particular case of the
Keldysh sigma model, is equipped to deal with situations in which the system is driven out of
equilibrium, such as in the case of lasing. Hence, our formalism is able to deal with the interplay
of disorder and nonconservation on an equal footing.

On the other hand, the formalism described above deals only with the case of scalar wave
propagation, i.e., we neglect effects from the polarization degree of freedom of light from our
considerations. For most quantities under consideration in these chapters, this is fully appropriate.
However, it turns out that the polarization does affect light transport in quite nontrivial ways
in that it causes the effect which is better known as antilocalization, which acts to reverse the
localizing tendencies of the random potential. The fact that a random potential tends to localize
extended waves in real space is well-known under the term Anderson localization. This is of
course a nontrivial result as it could explain the difficulty in experimental realizations of full
Anderson localization in optical systems. In this work we are able to consider such systems via a
different method than that of the Keldysh sigma model; we have used a combined diagrammatic-
numerical method which is known as the self-consistent theory of Anderson localization pioneered
by Vollhardt-Woelfle in the eighties. The polarization degree of freedom was mapped onto a
“pseudospin” structure and we were able to simplify the resulting tensorial structure of various
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Chapter 1 Introduction

vertices that enter into the theory.
In the following sections we divide the introduction into several parts, each of which deals

with one particular aspect of the work. We first describe our idea of random photonic media,
in particular in the context of random lasing media. We then introduce in simple words the
formalism which we use to describe such random systems, after which we mention the idea of
full counting statistics of photons in passing since we calculate this quantity using our formalism
in Chapter 3. We then mention the role of the polarization degree of freedom in the transport
behaviour of photons, and we finally describe how we treat nonconservative systems in our
formalism in the context of lasing.
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1.1 General Overview

1.1.1 Random Photonic Medium

The main system of study in this work is that of a random photonic medium, which we imagine
as a random collection of dielectric scatterers described by a space dependent disorder potential
V(r). V(r) is in turn distributed according the a prescribed functional distribution P[V(r)]. Given
that V(r) is a spatially dependent random variable, it is always possible to define a distribution
P[V(r)]; this can be seen from the fact that the random function V(r) dictates that we need to
contend with a ensemble of different realizations of V(r), and these different realizations should
then obey a certain distribution function. The main difficulty lies in dealing with the complexity
of P[V(r)].

Each configuration of V will be microscopically distinct and thus be characterized by different
sets of physical properties. In order to obtain meaningful physical quantities from this ensemble
of configurations one needs to average measured or calculated physical quantities over P[V(r)].
In this work we employ two different types of probability distributions, which have been chosen
for ease of application in the respective formalisms: a Gaussian distributed disorder potential
for calculations involving the sigma model, and a binary distributed disorder for calculations
involving the effects of polarization on light propagation.

ZnO clusters from [1] Photonic glass from [2]

Due to the interest in physical properties of random photonic media, a multitude of random
photonic medium has been studied experimentally. It is particularly easy to find materials that are
photonically random enough such that light waves are strongly scattered; air is our most common
example. However, it is much more difficult to obtain materials with strong enough scattering
such that the physically interesting regime of small mean free paths can be reached. However,
these materials can be synthesized in the laboratory, and these have ranged from powders of
titanium oxide [3] to alumina spheres [4]. More examples of such random photonic materials can
be found in the review articles [5] and [6].

In most of these materials, the medium is conservative and does not change the intensity of light
propagating in the medium. However, it has been long known that randomness in nonconservative
medium leads to interesting effects [7], and the interest in such random photonic systems was
rekindled when lasing in a zinc oxide powder was discovered [1]. This led to the discovery
of many more random lasing materials, from metallic powder to paint. Two examples of such
seemingly innocous random lasing materials are shown in 1.1.1.

3



Chapter 1 Introduction

In addition, there have also been proposals to construct disordered photonic crystals [8], where
the scatterers are still arranged such as to retain spatial uniformity, but the values of the dielectric
constant (which acts as the scattering potential for photons) on each scattering site should vary
randomly. We use this model of disorder in our chapter on the effects of light polarization on
Anderson localization of light.

1.1.2 Disorder formalism

In order to describe both disorder and nonequilibrium (and also nonlinearity), we use the Keldysh
nonlinear sigma model ( [9], [10], [11], [12]). In general, the nonlinear sigma model comes in
three flavors, depending on the formalism used to perform the disorder averaging: the replica [13],
supersymmetric [14], [15] and the Keldysh sigma models.

In simple terms, the nonlinear sigma model [16], [17] is a field-theoretical formalism which
defines an action describing the dynamics of the so-called Q̂-matrices, which are the remaining
degrees of freedom left after one performs averaging with respect to a particular distribution
of disorder potential P[V(r)]. These Q̂ matrices can then be suitably parameterized in order
to obtain physical quantities of interest. In this work we have consistently used a particular
parameterization that enables us to describe the diffusive modes which are the main propagating
modes in a disordered medium; however, a different parameterization could also be used to obtain
other quantities, for example, the Boltzmann-Langevin equation.

In addition to performing the disorder averaging, the Keldysh formalism allows us to treat
systems which are driven out of equilibrium, which is the case in random lasing systems. In fact,
the particular characteristic of the Keldysh formalism which enable it to treat nonequilibrium
systems is the same property which is exploited in order to enable the calculation of disorder
averages in the functional formalism. It is clear to see that in the Keldysh nonlinear sigma model
we have a versatile tool which enables us to treat disorder and nonequilibrium, in addition to
nonlinearity, on the same footing.

1.1.3 Full Counting Statistics

The method developed in order to perform the disorder averaging in the functional formalism can
be adapted to calculate transport statistics of a disordered optical waveguide. This is a concept
borrowed from the study of similar quantities in electronic transport through a disordered wire.
Counting statistics of photons in a disordered environment have been studied previously, but not
in the context of the nonlinear sigma model, and not including the effects of gain. Our formalism
enables us to take this into account, and we show that it does not affect the transmission statistics
as compared to a disordered conservative waveguide.

Experimental measurement of transport statistics for photons is difficult, but conceptually
simple to understand. Such a possible setup is shown in Fig. 1.1:

4



1.1 General Overview

Figure 1.1: Experimental setup for photon counting experiment. From [18]

Here photons are made to propagate through a waveguide with disordered nonconservative
dielectric medium, and photon counts can be registered by placing a photodetector at the end. In
this manner it is possible to determine the statistics governing, for example, the arrival time of
photons at the counter.

In this work we have calculated, in the field theoretical formalism, the cumulants of arbitrary
order of light waves propagating through a disordered photonic waveguide. We could include
the effects of static absorption / gain in our theory, and thus we could obtain corrections to the
values of the bare cumulants due to these effects. Hence, we believe that our calculations will
be able to shed light on the effect of energy nonconservation on transport properties in general.
In addition, the study of nonlinear effects on these properties could also be straightforwardly
performed, although we have left these studies for future work.

1.1.4 Role of Polarization Degree of Freedom

It has been long known that the spin degree of freedom of electrons serves as an extra channel
through which coherence can be destroyed, and such decoherence effects play an important role
in the studies of Anderson localization, where waves propagating in random media have been
shown to display a change of behaviour from extended plane wave functions to spatially localized,
peaked functions with increasing disorder strength. This change in behaviour is driven by wave
interference effects, where diagrams favouring a return to the origin of the propagating wave
dominates the behaviour of the overall system. Hence it is intuitive to see that effects which
destroy this coherence will also be detrimental to the localizing contributions to the transport
properties.

We show in this work that the polarization degree of freedom, analogously to that of the spin of
electrons, provides such an extra channel through which decoherence occurs. Specifically, taking
into account the polarization causes the probability of return back to the origin to be reduced by
a factor of 2 compared to the case where only scalar waves were considered. This reduction in
the return probability is commonly known as antilocalization. This phenomena is illustrated in
Fig. 1.2 below.

1.1.5 Random Lasing

We also consider in this work the case of a system which is externally pumped such as to produce
gain, i.e., a laser. Due to the external pumping a laser is an intrinsically nonequilibrium system,
and the Keldysh formalism is the ideal computational tool for such systems which are driven out
of equilibrium. In our case, we have an added complication in that the gain medium in the laser
is random, which implies that wave transport through the system takes place via diffusion due to

5



Chapter 1 Introduction

Figure 1.2: Visualization of antilocalization. On the left-hand side the probability of return to origin
p(0, r, t) is enhanced in the absence of polarization; on the right-hand side it is decreased due to taking
polarization into account. From [19]

multiple scattering of photons. This is an important point which forms the basis for the study of
random lasers since it is the diffusive motion which enables photons to stay in the laser cavity
long enough to produce gain.

Using the formalism to be developed here, we could derive a set of equations which describe
the distribution function of photons in a random laser. This is analogous to Fokker-Planck
equations which describe similar distribution functions in a regular laser, where the difference lie
in the source of the randomness.

1.2 Outline of the Thesis

This thesis is divided into 6 chapters. The first chapter gives an overview of the work and intro-
duces the main subthemes individually. Chapter 2 is a technical introduction to the mathematical
formalism used in this work. Chapter 3 then starts with the first application of the formalism to a
conservative disordered photonic system. We show how the nonlinear sigma model including
dissipation can be derived and how to calculate correlation functions from the sigma model.
In Chapter 4 we apply the previously derived sigma model to the calculation of transmission
statistics of a disordered nonconservative photonic waveguide. In Chapter 5 we extend the model
to include nonlinearity, which corresponds physically to an external source of energy input. This
is of course crucial for the description of a random laser. In Chapter 6 we study the effects of
light polarization on possible localization of light waves, using a different formalism compared to
the rest of the thesis. Hence this chapter represents a significant departure compared to the rest of
the thesis. The final section contains some Appendices which outline in detail certain omitted
calculations in the text.
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CHAPTER 2

Mathematical Formalism

The description of an intrinsically nonequilibrium system such as a laser, whose characteristics
have been described in detail in Chapter 1, requires the use of different tools than those applied
for equilibrium systems. These tools usually come under the rubric “Keldysh techniques”, which
actually describes a large set of field theoretical ideas custom-made to deal with the fact that a
physical system evolves into states which might not be the same as those it initially started from.
In this chapter we will introduce these ideas and explain how, in the context of our work, they are
also simultaneously appropriate for the description of disordered systems.

In what follows, our system of interest denotes one which initially finds itself in a particular
initial state. In principle, the specification of this state is unimportant, although it is usually
assumed to be one which is trivially describable e.g., noninteracting and in a state of equilibrium.
We also assume that the point of time in which this system finds itself in this state lies far back in
the past (or at t = −∞). This is to ensure that whatever structure or complexities of the system
can be assumed to be “smoothed out” and we can assume an equilibrium initial state. We then
evolve our system “slowly” enough such that during the evolution the system is only brought
out of its state of equilibrium incrementally, i.e., the system evolves infinitesimally slowly. The
purpose of this evolution is to bring the system to another state which is of interest, e.g., in which
the constituents of the systems are interacting with one another. This new state is necessarily
different from the one the system started with.
We then assume that at a specific time point (e.g., at t = t0) we perform our observation
(measurement) of the properties of our system. At this specific time the system is then assumed to
possess the full complexity which is of interest. After this time point the system is then evolved
backwards towards its starting time, at t = −∞. This backward evolution is again assumed to
proceed infinitesimally slowly, in the exact same manner as the forward evolution. Hence we
end up in the same state as we started from, which mathematically enables the calculation of
quantities of interest, since the initial and final states are assumed known.

The implication of this “adiabatic” evolution is that when the system is evolved from an initial
to a final state, and then back to the initial state, the only net change can be the acquiring of a
constant phase. This is a nontrivial statement and will be explored more carefully below.
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Chapter 2 Mathematical Formalism

2.0.1 Mathematical Justification

We quantify the hand-waving argumentation above in the following [12]. We assume that in the
initial state, at t = −∞, our system is specified by the density matrix ρ̂(−∞). The evolution of ρ̂(t)
is governed by the (possibly time-dependent) Hamiltonian Ĥ(t). Hence we can characterize the
initial state of our system with the Hamiltonian Ĥ(−∞), which we assume to be noninteracting.

The evolution of the system can be described by the usual von Neumann equation

∂ρ̂(t)
∂t

= −i
[
Ĥ(t), ρ̂(t)

]
(2.1)

where ~ = 1. (2.1) can be formally solved by use of the unitary evolution operator Ût1,t2 which
works to propagate the system from time point t1 to time point t2. The formal solution has the
form

ρ̂(t) = Ût,−∞ρ̂(−∞)
[
Ût,−∞

]†
= Ût,−∞ρ̂(−∞)Û−∞,t (2.2)

where † denotes Hermitian conjugation. Ût1,t2 obeys the evolution equations

∂tÛt,t′ = −iĤ(t)Ût,t′ ; ∂t′Ût,t′ = iÛt,t′ Ĥ(t′) (2.3)

which can be solved formally by iterative evolution by infinitesimal time steps δt = t−t′
N

Ût,t′ = lim
N→∞

e−iĤ(t−δt)δt e−iĤ(t−2δt)δt . . . e−iĤ(t−Nδt)δt e−iĤ(t′)δt

= T exp
−i

∫ t′

t
Ĥ(t) dt

 , (2.4)

where T denotes the time-ordering operator which is needed in this case because in general the
Hamiltonian at different times do not commute with one another.
In order to obtain physical quantities in general one needs to perform averages of the form

〈Ô(t)〉 ≡
Tr

{
Ôρ̂(t)

}
Tr {ρ̂(t)}

=
1

Tr {ρ̂(t)}
Tr

{
Û−∞,tÔÛt,−∞ρ̂(−∞)

}
(2.5)

and in (2.5) one can clearly see where the various quantities defined above come into play. In
words, this expression describes evolution of the density matrix ρ̂(−∞) at t = −∞ to a state at time
t via the operator Ût,−∞, at which point the observable is measured, and subsequent evolution
from time t to time t = −∞. In other words, this description of time evolution is equivalent to that
of time evolution in the Heisenberg picture.

In the case of equilibrium, this forward-backward evolution of the system is avoided by a
simple assumption: that the infinitesimal (or “adiabatic”) evolution which was described above
has only the trivial effect of leaving a phase difference [20] when the system is evolved from the
initial to the final and back again to the intial state. More concretely, for T = 0 we denote the
ground state of the full interacting system as |GS〉, which for the purpose of this explanation is
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assumed to be the end state of the adiabatic evolution described above, we then have

|GS〉 = Ût,−∞|0〉 (2.6)

where |0〉 is the noninteracting ground state, or in other words, the initial state from which we
started. Hence in this notation, the type of expectation values which need to be computed in order
to evaluate expressions like (2.5) have the common form

〈GS|Ô|GS〉 = 〈0|Û−∞,tÔÛt,−∞|0〉 (2.7)

For adiabatic time evolution we have in addition the relation

Û+∞,−∞|0〉 = eiL|0〉 (2.8)

As already mentioned above, physical idea behind this expression is that, although evolving, the
system is assumed to be in its evolving ground state at all times, and given the normalization 〈0|0〉
the only effect of this evolution is an additional phase factor eiΦ. The Hermitian conjugated (2.6)
holds in addition: 〈0|Û+∞,−∞ = 〈0|eiΦ, and one can proceed to deduce that

〈GS |Ô|GS 〉 = 〈0|Û−∞,tÔÛt,−∞|0〉

= e−iΦ〈0|eiLÛ−∞,tÔÛt,−∞|0〉

= e−iΦ〈0|Û+∞,−∞Û−∞,tÔÛt,−∞|0〉

=
〈0|Û+∞,tÔÛt,−∞|0〉

〈0|Û+∞,−∞|0〉

(2.9)

(2.9) describes the evolution of a system in an adiabatic manner from t = −∞ up to a certain
point at time t, at which point the system is measured and quantities calculated. Evolution of
the system then proceeds further towards t = +∞. In this manner we need only to consider the
evolution of the system in one time direction. However, the elimination of the backward part of
the time evolution implies two significant limitations of the procedure:

1. The denominator in (2.9) presents a difficulty when applying the procedure to disordered
systems. Physical quantities in a disordered system are disorder realization dependent,
i.e., they depend sensitively on the particular realization, out of an infinite number of
them, of the disorder potential. Hence meaningful values are only obtained when ensemble
averaging is performed on the relevant quantities, e.g., the matrix element in (2.9). However,
the presence of the denominator in the expression complicates the procedure of disorder
averaging in a considerable manner, and hence for a disordered system this way of obtaining
physical quantities is not the best one.

2. Also more importantly, this procedure is not extendible to systems which are driven out of
equilibrium. This can be trivially seen by the fact that a Hamiltonian with non-adiabatic
time dependence Ĥ(t) (from external fields, for example) or arbitrary boundary conditions
will in general be driven away from equilibrium, and hence the assumption of adiabatic
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Chapter 2 Mathematical Formalism

time-evolution does not hold. In addition, even if we assume that the fields are switched off

at some point in the future and we can wait an arbitrarily long time, there is no guarantee
that the final state reached by the system would be the same as that from which it started
from. Hence a description in the way of (2.9) would not be valid.

From the above it can be seen that leaving out the backward evolution might not be the best idea
in dealing with the important cases of disorder and nonequilibrium. The obvious solution to this
is of course to explicitly take the backward evolution into account, but this requires a systematic
reconsideration of the formalism shown above.
We start by reinserting the backward evolution into the expression (2.9). This can be done
by using the trivial identities Ût,+∞Û+∞,t = 1̂ and Û−∞,tÛt,+∞ = Û−∞,+∞. Inserting the first
into (2.9) and using the second yields

〈Ô〉(t) =
1

Tr ρ̂(−∞)
Tr

{
Û−∞,+∞Û+∞,tÔÛt,−∞ρ̂(−∞)

}
(2.10)

(2.10) exactly corresponds to a time evolution of the form shown in Fig. 2.1 The central quantity

Figure 2.1: Keldysh time evolution. From [12]

in (2.10) is the evolution operator along the closed loop ÛC = Û−∞,+∞Û+∞,−∞. If we assume that
the Hamiltonian is the same on both the forward and backward contours then a backward-forward
evolution brings the system back to the exact same initial state, since intuitively any changes that
are accunulated on the forward evolution (a phase, for example) is then directly unwound on the
backward evolution. Mathematically, this means that the partition function Z has the property that

Z ≡
Tr {ÛCρ̂(−∞)}

Tr {ρ̂(−∞)}
(2.11)

is identically equal to 1. Of course, we are interested not in the bare partition function, but
in calculating physical quantities. In terms of the partition function, this can be achieved by
breaking the similarity between the forward and backward evolution paths by inserting a source
term to the Hamiltonian Ĥ±V (t) ≡ Ĥ(t) ± ÔV(t), where the plus (minus) signs refer to the forward
(backward) contour directions. Since the partition function is now different between the forward
and backward propagating contours, Z , 1 and we obtain from the definition (2.11) the generating
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function

Z[V] ≡
Tr {ÛC[V]ρ̂(−∞)}

Tr {ρ̂(−∞)}
(2.12)

from which physical quantities can be obtained via the differentiation

〈Ô〉 =
i
2
δZ[V]
δV(t)

∣∣∣∣∣
V=0

(2.13)

2.1 Functional Formalism

In this section we will outline the construction of a functional integral formalism in the Keldysh
formalism. This is particularly necessary if we want to average over realizations of disorder in
some manner, as is done in the nonlinear sigma model. Starting from bosonic coherent states,
we construct the partition function defined on the Keldysh contour and show how to derive the
noninteracting Green’s function. Due to the particular form of the evolution contour we see that
the Green’s function also possess special structures such that additional information relating to
nonequilibrium distribution functions can be obtained. At the end of the chapter we will then
show how the Keldysh action can be derived from the Green’s functions and how external source
terms can be incorporated into the action.

2.1.1 Partition function

As a simple example we consider the case of bosonic particles occupying a single quantum state
ω0 in this section. The Hamiltonian reads

Ĥ(b̂†, b̂) = ω0b̂†b̂

where the operators b̂† and b̂ are the usual bosonic creation and annihilation operators. The central
quantity in the functional formalism is the partition function. Its usual definition is simple and
was given in (2.11); We note that the initial density matrix ρ̂ can be chosen to be the equilibrium
one, having the form ρ̂0 = exp{−β(Ĥ − µN̂)} = exp{β(ω0 − µ)b̂†b̂} which then yields the simple
form for the denominator

Tr ρ̂0 =

∞∑
n=0

e−β(ω0−µ)n =
[
1 − ρ(ω0)

]−1 (2.14)

which is a simple arithmetic sum. Here the factor ρ(ω0) = e−β(ω0−µ). (2.14) is a time-independent
constant and normalizes the partition function in the case of no interactions and / or disorder,
since these are assumed to be turned on (off) adiabatically as the system is evolved forward
(backward) via the time evolution operator. As mentioned in (2.12) and (2.13), in order to obtain
observables we need to include a source term in the Hamiltonian, and computation of observables
amounts, in the functional language, to the differentiation of the partition function with respect
to the source term, and finally setting the source term to zero. We imagine this in more colorful

11



Chapter 2 Mathematical Formalism

language to the attaching of a “handle” to the black box of the partition function, with which such
required observables can then cranked out.

It is simple to see why such a procedure would give us the required physical quantities. If we
assume the partition function with the form of the Hamiltonian including source term written
in the form ÔV̂(t) as stated above (2.13) then differentiating with respect to V̂(t) “brings down”
the observable operator Ô inside the trace of the partition function due to the presence of the
exponential; subsequently setting the source term to zero then gives an expression corresponding
to the thermal average of the physical quantity with respect to the sourceless Hamiltonian.
However, in the Keldysh formalism, we need to be aware of certain subtleties in the structure of
the source term.

2.1.2 Partition function on the Keldysh contour

Having defined our contour and the peculiarities associated with it, we will now see how to
perform time evolution upon the contour and how to relate this to the mechanics of performing
functional integration. For this purpose an important concept from the functional formalism, that
of bosonic coherent states will be employed and we will see how to apply it to the problem of
calculating the partition function in the Keldysh framework.

Bosonic coherent states

A set of bosonic coherent states are defined in the usual manner as a right eigenstate of the
(bosonic) annihilation operator b̂ [12]

b̂ |φ〉 = φ |φ〉 ; 〈φ| b̂† = φ̄ 〈φ| (2.15)

where the complex number φ parameterizes the state and also denotes the complex eigenvalue of
the b̂ operator, and the overbar denotes complex conjugation. Consequently, the matrix element
of a normal-ordered sequence of operators Ĥ(b̂†, b̂) is then given by

〈φ| Ĥ(b̂†, b̂) |φ〉 = H(φ̄, φ′)〈φ|φ〉 (2.16)

It can additionally be shown that the coherent states can be defined in the following way [21]

|φ〉 =

∞∑
n=0

φn

√
n!
|n〉 =

∞∑
n=0

φn

n!
(b̂†)n|0〉 = eφb̂† |0〉 (2.17)

where |0〉 is the vacuum state, in which b̂|0〉 = 0. Another striking feature of the coherent states
are that they are not mutually orthogonal and form an overcomplete basis [21] which can be seen
from the overlap

〈φ|φ′〉 =

∞∑
n,n′=0

φ̄nφ′n
′

√
n!n′!

〈n|n′〉 =

∞∑
n=0

(φ̄φ′)n

n!
= eφ̄φ

′

(2.18)
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which follows from the orthonormality of the pure number states. A final important characteristic
of the boson coherent states is that the resolution of unity can be written in terms of them in the
form

1̂ =

∫
d[φ̄, φ]e−|φ|

2
|φ〉〈φ| (2.19)

Finally, we mention that the trace of an arbitrary operator Ô can be simply expressed in terms of
the coherent states

Tr {Ô} ≡
∞∑

n=0

〈n|Ô|n〉 =

∞∑
n=0

∫
d[φ̄, φ]e−|φ|

2
〈n|Ô|φ〉〈φ|n〉

=

∫
d[φ̄, φ]e−|φ|

2
∞∑

n=0

〈φ|n〉〈n|Ô|φ〉 =

∫
d[φ̄, φ]e−|φ|

2
〈φ|Ô|φ〉

(2.20)

Partition function in the Keldysh formalism

In this section we will give an overview of how to include the Keldysh time contour into the usual
formalism of functional integration. In principle, this task is quite trivial since the main ideas
involved in the original formulation of the functional integral can be adapted to the case in which
the Keldysh time contour needs to be taken into account. To start, we state an important point in
the construction of the Keldysh functional integral: that the interactions and disorder are switched
on (and off) on the forward (and backward) part of the contour sometime after (before) t = −∞.
This is of course the same assumption implicit in the usual Murray-Gell-Mann construction of
field theory, with the difference that no assumption needs to be made on the switching off the
interactions and disorder part of the time evolution, since, by construction, the system is forced
to return to its initial state. We recall the diagram of the Keldysh contour C as presented in the
previous section (Fig. 2.1). We divide C into (2N − 2) time intervals of length δt such that t1 =

t2N = −∞ and tN = tN+1 = +∞ (Fig. 2.1). Using the resolution of unity, one can proceed, as is
done in the usual formulation of the functional integral, by first splitting up the contour into a
finite number of discrete time slices and then inserting the resolution of unity (2.19) at each point
of separation between one time slice with another; these points are then labeled with the integers
j = 1, 2, . . . , 2N along the contour. Here we will illustrate this point with a particular term of
order N = 3 originating the partition function, Zdenom = Tr

{
ÛCρ̂

}
:

〈φ6|Û−δt|φ5〉〈φ5|Û−δt|φ4〉〈φ4|1̂|φ3〉〈φ3|Û+δt|φ2〉〈φ2|Û+δt|φ1〉〈φ1|ρ̂0|φ6〉 (2.21)

where Û±δt is the time evolution operator as defined in (2.4) for the time interval δt in the positive
(negative) time direction and |φi〉 are the bosonic coherent states defined in the previous secion.
For infinitesimal time interval δt we perform an expansion of the exponentials of the partition
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function in powers of δt; concretely, for any arbitrary factor in (2.21) we can write

〈φ j|Û±δt |φ j−1〉 ≡ 〈φ j|eiĤ(b†,b)δt |φ j−1〉 ≈ 〈φ j|
(
1 ∓ iĤ(b†, b )δt

)
|φ j−1〉

= 〈φ j|φ j−1〉
(
1 ∓ iH(φ̄ j, φ j−1)δt

)
≈ eφ̄ jφ j−1e∓iH(φ̄ j,φ j−1)δt

(2.22)

which holds up to linear order in δt and for any normal-ordered Hamiltonian. For simplicity we
can again specialize to a simple Hamiltonian describing a single bosonic level

Ĥ(b̂†, b̂) = ω0b̂†b̂ . (2.23)

Employing the particular identity of the coherent states [12] we obtain then

〈φ1|e−β(ω0−µ)b̂†b̂|φ2N〉 = exp
{
φ̄1φ2Nρ(ω0)

}
, (2.24)

and collecting all the exponential factors along the contour one finds then for the partition function

Z =
1

Tr {ρ̂0}

∫ 2N∏
j=1

d[φ̄ j, φ j] exp

i 2N∑
j, j′=1

φ̄ jG−1
j j′φ j′

 (2.25)

where for the case of N = 3 one obtains the 2N × 2N matrix iG−1
j j′

iG−1
j j′ ≡



−1 ρ(ω0)
h− −1

h− −1
1 −1

h+ −1
h+ −1


(2.26)

and h∓ ≡ 1 ∓ iω0δt. The discrete matrix form of the propagator in the exponent of the partition
function is required in order to employ the Gaussian integration identity

Z[J̄, J] =

∫ N∏
j=1

d[z̄ j, z j]e
−

∑N
i j z̄iÂi jz j+

∑N
j [z̄ j J j+J̄ jz j] =

e
∑N

i j J̄i( ˆA−1)i j J j

det Â
. (2.27)

We see that if we associate Â = −iĜ−1, then the determinant in the denominator of (2.27) of the
matrix (2.26) has the form

det
[
−iĜ−1

]
= 1−ρ(ω0)(h−h+)N−1 = 1−ρ(ω0)(1+ω2

0δ
2
t )N−1 ≈ 1−ρ(ω0)eω

2
0δ

2
t (N−1) N→∞

−−−−→ 1−ρ(ω0)
(2.28)
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which then leads to the normalization

Z =
1

Tr ρ̂0

1

det
[
−iĜ−1

] = 1 (2.29)

The formal expression for the partition function, obtained from taking the limit N → ∞ of (2.25)
can be written analogously by first writing down the explicit discrete form of the action

S [φ̄, φ] =

2N∑
j=2

δt j
[
iφ̄ j

φ j − φ j−1

δt j
− ω0φ̄φ j−1

]
+ iφ̄1

[
φ1 − iρ(ω0)φ2N

]
(2.30)

where δt j ≡ t j − t j−1 = ±δt corresponding to time differences on the forward and backward
branches. Then the continuum corresponds to writing φ j → φ(t) and the action acquires the form

S [φ̄, φ] =

∫
C

dt φ̄(t)Ĝ−1φ(t) (2.31)

Note that the above representation is valid for any type of continuous fields, in particular for
electromagnetic fields, which are the quantities of interest in this work. In addition, although
the Maxwell equations are usually expressed in the original electromagnetic fields, we will
express our equations frequently in terms of the vector potential A(r, ω). Their relationship, in
the Coulomb gauge and in the frequency representation, takes the simple form

E(r, ω) = iωA(r, ω) (2.32)

We will also ignore the vector nature of the fields in this work, except for Chapter 6. Specifically,
in general the polarization of electromagnetic waves represents an additional degree of freedom
which for certain cases should be taken into account. However, for our work, which mainly
deals with the diffusive nature of wave propagation in the absence of any time-reversal symmetry
breaking scattering potentials, we shall ignore this additional degree of freedom and represent
all our fields as scalar quantities, hence E(r, ω) ⇒ E(r, ω) and A(r, ω) ⇒ A(r, ω). However,
Chapter 4 contains material which is thematically-wise orthogonal to the rest of the thesis, since
in that chapter we deal specifically with the effect of the polarization degree of freedom on
transport properties, namely the diffusion coefficient.
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CHAPTER 3

The Photonic Dissipative Nonlinear Sigma
Model

3.1 Introduction

The transport of waves through disordered matter has been a topic of recurring interest ever since
the discovery of the Anderson localization in electronic systems [22]. Analogous phenomena
have been subsequently studied for the transport of classical [23–26], matter [27, 28], and even
seismic waves [29].

The research on classical-wave propagation in disordered media has been motivated by the
conjectured possibility of the localization of light. The results, such as the enhancement of
dwell times due to resonant scatterers and, hence, lower energy-transport velocities [30] and the
correction term in the Ward identity due to frequency-dependent scattering potentials [31], have
shown that, while retaining many similarities, the behavior of light in disordered media differs
from that of electrons in several important aspects. One of these aspects concerns the propagation
of light in nonconservative disordered media. Such systems can be physically realized, for
example, as random lasers [5, 32, 33], which have received much attention recently. A promising
research direction in this context are theories that combine description of wave propagation
through disordered medium with the nonlinear laser equations [34–36].

The properties of light diffusion in absorbing media was studied using the photon transport
equation [37–39]. In particular, it was argued that, in the parameter range of validity of the
diffusion equation, the diffusion coefficient is close to its value in the conservative medium. The
treatment of light propagation starting from the wave equation has been mainly conducted via
the self-consistent diagrammatic theory [40, 41]. Interesting results, such as corrections to the
bare diffusion coefficient due to the additional terms in the Ward identity [42, 43] and dynamics
of Anderson localization in quasi-one-dimensional geometry [44] and open three-dimensional
media [45] have been obtained by these methods. An alternative description of classical wave
propagation is provided by the so called effective models of disordered systems, commonly
known as the nonlinear sigma model [16, 17] (NLSM). Being originally developed for electronic
systems, the (supersymmetric) NLSM describing light propagation in a conservative disordered
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medium was derived in Refs. [23, 46]. Later, the effects of an open boundary on the diffusion
coefficient were studied [47] by using a similar model. Unlike the self-consistent theory of
transport, effective models have not yet been applied to optical systems with absorption or gain.
The effective models can be useful, e.g., in describing special properties of light localization in
such systems [48–50].

In this chapter we formulate the Keldysh nonlinear sigma model [11] for the propagation of
electromagnetic waves in nonconservative disordered media in the diffusive regime. Systems
with absorption or gain are relatively simple to treat in the Keldysh formalism, which makes it
possible to define an action needed for the field-theoretical description. By following the general
scheme as outlined in Ref. [11] for electronic systems, we derive an effective NLSM action where
we obtain a term due to nonconservativeness of the medium. A similar contribution was found in
Ref. [47]; in that case the term originated from the openness of the system.

Furthermore, by using the standard methods [11], we show that the light propagation can be
described by a diffusion equation for a nonconservative medium. The conditions under which
the NLSM yields the diffusion equation are found to be equivalent to the restrictions imposed in
the theory of transport equation [37]. Similarly, the diffusion coefficient that we derive is almost
independent of the absorption or gain under these conditions. For the amplifying medium, we
discuss the applicability of the linear-gain approximation and determine the threshold of random
lasing.

3.2 Equations of light propagation in disordered media

We start this chapter with an elementary derivation of the equation of motion for classical
electromagnetic waves in a statically nonconservative and disordered medium. In such media the
dielectric constant has the following form:

ε(r, ω) = ε̄(ω) + δε(r)

= ε̄′(ω) + iε̄′′(ω) + δε(r)
(3.1)

where we write our complex dielectric constant in two parts: a complex but homogenous part, ε̄,
where the overhead bar denotes a background value of the dielectric constant which is independent
of the spatial variable r. This part of ε is divided into real ε̄′ and imaginary parts ε̄′′, respectively.
The spatially varying, random part of the dielectric constant is denoted by δε(r). For each position
r it is drawn from a known probability distribution P(δε(r)).

3.2.1 Helmholtz equation

In order to describe the dynamics of wave propagation, we will write down the Helmholtz
equation for the medium in question. The material in this section can be found from several
sources; we use the presentation in [19].

We first assume a source-free situation, ~∇ · E = 0 and ~∇ · B = 0 in which Maxwell’s equations
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for fields oscillating at frequency ω then read

∇ × Eω(r) = iωBω(r) (3.2)

∇ ×Hω(r) = −iωDω(r) (3.3)

where the fields obey the usual relations

Dω(r) = ε(r, ω)Eω(r) = [ε̄(ω) + δε(r)]Eω(r) (3.4)

Bω(r) = µ0Hω(r) (3.5)

Substitution of (3.4) into (3.2) yields the usual form of the Helmholtz equation

− ∇2Eω(r) −
ω2

c2

δε(r)
ε0

Eω(r) =
ε̄

ε0

ω2

c2 Eω(r) (3.6)

Hence in what follows we write the electric field as a scalar quantity Eω(r). The term proportional
to δε(r) gives rise to multiple, random scattering. Rewriting (3.6) slightly we can write it as a
wave equation for Eω(r):

∆Eω(r) + k2
0(1 + µ(r))Eω(r) = 0 (3.7)

where µ(r) = δε(r)/ε̄ is the normalized fluctuation of the dielectric constant, and k0 = n̄ω/c,
n̄ =
√
ε̄/ε0.

A very important characteristic of (3.7), common to all second order wave equations, is the
energy dependence of the scattering potential V(r) = −k2

0µ(r) on the square of the frequency.
In electronic systems, when the electron energy is decreased localization is enhanced; however,
from the frequency dependence of the scattering potential for scalar waves we see that at low
frequencies the scattering strength is decreased, while at high frequencies, we are in the regime
of geometric optics, in which interference effects are less relevant (Rayleigh regime). Hence the
frequency dependence results in a decrease of the disorder scattering strength with decreasing
frequency, which translates to weaker disorder and hence reduction of localization.

3.3 Keldysh approach to light propagation

Our emphasis in this chapter will be to understand how to deal with the inhomogeneity represented
by the random scattering potential in (3.7). As explained in the previous chapter, an important
characteristic of the Keldysh formalism enables us to write the partition function starting from
the classical wave equation in a disordered medium in a simple manner. We will exploit this
fact to derive the disorder-averaged partition function, and then demonstrate its use to derive
various physical quantities of interest. We also show how linear loss can be taken into account in
a natural way.
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Chapter 3 The Photonic Dissipative Nonlinear Sigma Model

3.3.1 Partition function for non-conservative medium

We consider the two-dimensional wave equation

[∇2 + ε(r, ω)ω2]Aω(r) = 0, (3.8)

where ε(r, ω) is the complex, random dielectric function For real ε(r, ω), this equation, and its
complex conjugate, can be obtained by setting to zero the functional derivatives

δS
δA

= 0,
δS
δA∗

= 0 (3.9)

of the action

S [A, A∗] =
1

16π

∫
dr

dω
2π

[
ε(r, ω)ω2|Aω(r)|2 − |∇Aω(r)|2

]
=

1
16π

∫
dr

dω
2π

A∗ω(r)
[
ε(r, ω)ω2 + ∇2

]
Aω(r)

,

treating A and A∗ as independent functions. The action can be rewritten in the representation-free
operator notation as

S [A, A†] =
1

16π
A†G−1A, (3.10)

where the inverse Green function operator G−1 = ε(r, ω)ω2 + ∇2 in the (r, ω) representation and
A (A†) is the Hilbert-space vector Aω(r) [A∗ω(r)].

In order to construct the quantum Hamiltonian, one expresses the energy of the system in terms
of the vector potential. Aω(r) and A∗ω(r) are then expanded in the normal modes of the system,
the expansion coefficients become the photon annihilation and creation operators.

The partition function can be written in the form of a functional integral over the fields (i.e.,
the classical functions) A and A†. To this end, we represent the classical action along the Keldysh
contour as

S C =
1

16π
[A†+ G−1A+ − A†−G−1A−]

=
1

16π
[(Acl)†G−1Aq + (Aq)†G−1Acl]

, (3.11)

where the subscripts “±” denote the fields on the forward and backward branches of the contour
and the so called classical and quantum fields are defined by

Acl =
1
√

2
(A+ + A−), Aq =

1
√

2
(A+ − A−). (3.12)

The minus sign in front of the A†−G−1A− term in Eq. (3.11) takes care of the time reversal on the
backward branch, whereas A− is the representation-free (vector) notation for the function A−(r, t)
with the forward time ordering. It is convenient to consider Acl and Aq as components of a single
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3.3 Keldysh approach to light propagation

field

Â =

(
Acl

Aq

)
(3.13)

in the Keldysh space, which is twice the size of the original Hilbert space. (We will furnish the
vectors and operators in this space with a hat.) Then the contour action can be written in the form
(dropping the subscript “C”)

S [Â, Â†] =
1

16π
Â† Ĝ−1Â, (3.14)

where Ĝ−1 has a 2×2 matrix structure with zeros on the diagonal and equal off-diagonal elements.

In order to use S [Â, Â†] in the functional integral for Z, the operator Ĝ−1 has to be regular-
ized [11] by imposing the causality structure on its matrix:

Ĝ−1 =

(
0 (G−1)A

(G−1)R (G−1)K

)
, (3.15)

(G−1)R,A
ω (r) = ε(r, ω)ω2 + ∇2 ± i0+, (3.16)

(G−1)K = (G−1)RF − F(G−1)A. (3.17)

Here, (G−1)R,A,K are the retarded, advanced, and Keldysh components of the inverse Green
function operator. The operator F that parameterizes (G−1)K depends on the thermal distribution.
Eq. (3.16) is written under assumption of real ε(r, ω). In the medium with absorption, it is
generalized to

(G−1)R,A
ω (r) = ε′(r, ω)ω2 + ∇2 ± iε′′(r, ω)ω2, (3.18)

ε′(r, ω) = Re [ε(r, ω)], ε′′(r, ω) = Im [ε(r, ω)], (3.19)

where ε′′ > 0. In the case of the gain medium, ε′′ < 0, the time-dependent Green function
is exponentially diverging, and its Fourier transform to the frequency domain does not exist.
The frequency representation can be defined with the help of the Laplace transform, which is
equivalent to introducing a fictitious absorption to the system. When the results of a calculation are
transformed back to the time representation, they should not depend on the fictitious absorption.
This means that one can perform the calculations in the frequency domain assuming ε′′ > 0, and
obtain the final results by analytic continuation to ε′′ < 0.

The functional-integral representation of the partition function becomes

Z = N

∫
D[Â, Â†] eiS [Â,Â†], (3.20)

whereN is a nonessential normalization constant that ensures Z = 1 and the measure is defined by

D[Â, Â†] =
∏
r,ω,

j=cl,q

d
(
Re A j

ω(r)
)

d
(
Im A j

ω(r)
)

π
. (3.21)
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Chapter 3 The Photonic Dissipative Nonlinear Sigma Model

Here and below we set to unity the step size for the grid used to discretize the integral.
We note that the Keldysh formalism is especially appropriate for the description of systems

with absorption or gain as it naturally takes into account the finite ε′′(r, ω) in the causality
structure of the inverse Green function, Eqs. (3.15), (3.16), and (3.17).

3.3.2 Disorder average

We shall study the effect of disorder in the refractive index and assume the absorption or gain in
the system to be spatially uniform. Hence, we represent the dielectric constant in the form

ε(r, ω) = ε′(ω) + ∆ε′(r, ω) + iε′′(ω) (3.22)

with the averages over disorder realizations 〈∆ε′(r, ω)〉 = 0 and 〈∆ε′(r, ω) ∆ε′(r′, ω)〉 ∝ δ(r − r′).
In order to define the scattering time τ, let us, for a moment, neglect ε′′(ω). The wave

equation (3.8) can be interpreted as a time-independent Schrödinger equation with the energy
E(ω) = ε′(ω)ω2 and the potential energy V(r, ω) = −∆ε′(r, ω)ω2. The scattering time τ and
other characteristic time scales of the system are assumed to be much larger than ω−1

0 , where ω0

is the typical optical frequency. The slowly varying amplitude Ã(r, t) = A(r, t) exp(iω0t) satisfy
the approximate equation

ĩ~
∂Ã
∂t

= [−∇2 + V(r, ω0) − E(ω0)]Ã, (3.23)

which is the time-dependent Schrödinger equation with the “optical Planck constant”

~̃ =
dE(ω0)

dω0
. (3.24)

The scattering time can now be defined by analogy with the quantum scattering time via the
correlation function [19]

〈V(r, ω0) V(r′, ω0)〉 =
~̃

2πντ
δ(r − r′), (3.25)

where ν = dn/dE is the quantum density of states (per unit volume). Note that ν = ν0/̃~, where
ν0 = dn/dω is the standard optical density of modes.

A disorder average of the partition function can be obtained by evaluating the functional
integral

〈Z〉 =

∫
D[V] Z exp

[
−
πντ

~̃

∫
dr V2(r, ω0)

]
, (3.26)

D[V] =
∏

r

√
ντ

~̃
dV(r, ω0). (3.27)
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3.4 Nonlinear sigma model

The disorder-dependent part of the action is

∆S [Â, Â†,V] = −
1

16π
Â†Vγ̂Â, γ̂ ≡

(
0 1
1 0

)
, (3.28)

where V(r, ω0) appears as an operator V diagonal in r; F is assumed to be diagonal in r, as well.
By completing the square, we obtain the disorder contribution to the partition function

〈ei∆S 〉 = exp

− ~̃4πντ

∫
dr

(
1

16π
Â†(r)γ̂Â(r)

)2 . (3.29)

The short-hand notation Â(r) is used for the Keldysh-space vector Â with the fixed index r, i.e., it
is a vector in the space with the reduced dimensionality; in this notation, Â†(r)Â(r) involves a
summation over the remaining indices, e.g., ω and the Keldysh index.

The negative sign in the exponent (3.29) is essential for the properties of nonlinear sigma
model in the optical medium. In contrast to a fermionic system, the sign cannot be changed by
commuting the fields.

3.4 Nonlinear sigma model

3.4.1 Hubbard-Stratonovich transformation. Saddle point

The term of the fourth-order in the fields in Eq. (3.29) can be converted to a second-order term
with the help of the Hubbard-Stratonovich transformation yielding

exp

− ~̃4πντ

∫
dr

(
1

16π
Â†(r)γ̂Â(r)

)2 = NQ

∫
D[Q̂] exp

−πν̃~4τ
Tr Q̂2 + i

~̃

32πτ
Â†γ̂Q̂Â

 ,
Tr f̂ ≡

∑
j=cl,q

∫
dr

dω
2π

f j j
ωω(r)

.

(3.30)

The auxiliary field Q̂ is the Hermitian operator diagonal in r. The measure D[Q̂] is defined over
the independent matrix elements by analogy to Eq. (3.21). The normalization constant NQ is
determined by setting Â = 0 and Â† = 0. The negative coefficient in front of Tr Q̂2 determines
the scale of Q̂ and can be chosen freely. The present choice leads to the simple form of matrix Λ̂

introduced in (3.37). In order to prove Eq. (D.50) more easily, one can define the matrix
Â(r) = Â(r) ⊗ Â†(r) where the tensor product applies to the Keldysh and ω subspaces. Then one
represents

Â†γ̂Q̂Â = Tr (Q Â γ̂). (3.31)

Now the field Q̂ can be integrated out after completing the square.
Using Eqs. (3.29) and (D.50) in Eq. (3.20) and integrating out the fields Â and Â†, we obtain
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Chapter 3 The Photonic Dissipative Nonlinear Sigma Model

the disorder-averaged partition function

〈Z〉 = ÑQ

∫
D[Q̂] eiS [Q̂], (3.32)

iS [Q̂] ≡ −Tr
πν̃~4τ

Q̂2 + ln
Ĝ−1

0 +
~̃

2τ
γ̂Q̂

 , (3.33)

where Ĝ−1
0 is the inverse Green function operator that does not include the disordered part of the

dielectric constant and all Q̂-independent factors are included in the normalization constant ÑQ.

In the limit of large scattering time, the main contribution to 〈Z〉 comes from the neighborhood
of a saddle point. The saddle-point equation

Q̂(r)γ̂ = −
1
πν

Ĝ−1
0 +

~̃

2τ
γ̂Q̂

−1

rr
(3.34)

follows from the condition of stationary variation of S [Q̂] with respect to γ̂Q̂. In the (k, ω)
representation,

(G−1
0 )R,A

ω (k) = E(ω) − k2 ± iε′′(ω)ω2 (3.35)

is diagonal. We will look for the solutions QR,A
ω in the (cl, cl) and (q, q) blocks of Q̂, respectively,

which are uniform in r and diagonal in ω. Equation (3.34) yields for these blocks:

QR,A
ω = −

1
πν

∑
k

1

E(ω) − k2 ± iε′′(ω)ω2 + ~̃
2τQR,A

ω

. (3.36)

The sum over the modes can be converted into an integral over ν dE, where E = k2. In the limit
ωτ � 1 and ε′′ � ε′, the lower integration limit can be extended to −∞. Then (QR,A

0 )ω = ±i is
the solution. The full matrix can be written in the form

Q̂0 = iΛ̂, Λ̂ =

(
1R 2F
0 −1A

)
, (3.37)

which includes the regularization in 1R,A
ω = e±iω0+

and the Keldysh block. The regularization
leads to an important property Tr Q̂2

0 = 0.

We note that the saddle point Q̂0 lies outside of the manifold of Hermitian matrices Q̂. The
diagonal part of Q̂0 is anti-Hermitian; this property can be traced back to the negative sign in the
exponent in Eq. (3.29). The Q̂ manifold can be continuously deformed to pass through the saddle
point by making the transformation Q̂ 7→ eiφQ̂ in the neighborhood of Q̂ = Λ̂. As φ changes
from 0 to π/2, the logarithm argument in Eq. (3.33) has no zero eigenvalues if ε′′ > 0. Thus, no
singularities are crossed by exp(iS [Q̂]) during the deformation.
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3.4 Nonlinear sigma model

3.4.2 Effective action

The main contribution to 〈Z〉 arises from the fluctuations about the saddle point that satisfy the
condition Tr Q̂2 = 0. Such fluctuations produce weak variations of the action S [Q̂] (3.33). The
matrices Q̂ having the above property can be represented in the general form

Q̂(r) = iR̂−1(r) Λ̂R̂(r), (3.38)

where R̂ is diagonal in the r representation. In what follows we present the results of the calcula-
tion and refer the reader to the Appendix for details. After substituting the parameterization (3.38)
in Eq. (3.33) and omitting the Q̂-independent contribution, we arrive at

iS [Q̂] = −Tr ln
(
1̂ + Ĝγ̂R̂[γ̂Ĝ−1

0 , R̂−1]
)

≈ −Tr
(
Ĝγ̂R̂[γ̂Ĝ−1

0 , R̂−1]
)

+
1
2

Tr
(
Ĝγ̂R̂[γ̂Ĝ−1

0 , R̂−1]
)2 (3.39)

where

Ĝ =

Ĝ−1
0 + i

~̃

2τ
γ̂Λ̂

−1

(3.40)

is the disorder-dependent Green function operator [see Sec. 3.5.2]. The action is expanded in the
fluctuations about the saddle point, which are described by the commutator [γ̂Ĝ−1

0 , R̂−1]; at the
saddle point R̂ = 1̂ the commutator vanishes. The disorder-free inverse Green function consists
of the conservative and nonconservative parts:

γ̂ (Ĝ−1
0 )ω(k) = [E(ω) − k2]1̂ + iε′′(ω)ω2Λ̂. (3.41)

The latter results in a nontrivial contribution to the commutator due to the Keldysh structure of Λ̂.
There are three leading-order contributions to S [Q̂]. Using the E(ω) part of γ̂Ĝ−1

0 in the linear
term in Eq. (3.39) we arrive at

iS 1[Q̂] ' iπν̃~Tr (∂tQ̂), (∂tQ̂)tt ≡ (∂tQ̂tt′)t′=t. (3.42)

The contribution of the k2 part of γ̂Ĝ−1
0 to the linear term of Eq. (3.39) is neglected compared to

its contribution to the second-order term, which gives

iS 2[Q̂] ' −
π

4
ν̃~D̄ Tr (∂rQ̂)2. (3.43)

To derive this result, we used the property [19]

~̃

2πν

∑
k
GR
ω0

(k)GA
ω0

(k) '

1
τ

+
2ε′′ω2

0

~̃

−1

≡ τ̄ (3.44)
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Chapter 3 The Photonic Dissipative Nonlinear Sigma Model

yielding the effective scattering time τ̄ and defined the effective diffusion coefficient in two
dimensions,

D̄ =
1
2
v2τ̄ =

2ε′ω2
0

~̃2
τ̄, (3.45)

where v is the group velocity of light in the medium. In Sec. 3.5 we show that τ̄ and D̄ are
the relevant parameters to describe the diffusive light propagation [see Eq. (3.77)]. Finally, the
nonconservative part of γ̂Ĝ−1

0 yields, in the linear order in the commutator,

iS 3[Q̂] = πνε′′ω2
0 Tr (iΛ̂Q̂ + Λ̂2). (3.46)

The contributions S 1,2,3[Q̂] sum up to yield the NLSM effective action

iS [Q̂] = −πν0Tr

−i∂tQ̂ +
D̄
4

(∂rQ̂)2 −
ε′′ω2

0

~̃
(iΛ̂Q̂ + Λ̂2)

 . (3.47)

The action vanishes at the saddle point, S [iΛ̂] = 0. The key assumption behind the NLSM is the
smallness of the action for fluctuations of Q̂ restricted to the manifold Tr Q̂2 = 0, compared the
action for arbitrary fluctuations about the saddle point. The terms S 1,2[Q̂], which also appear in
the NLSM for disordered fermionic systems [11], depend only on the derivatives of Q̂. Therefore,
the dominant contribution to the partition function comes from the fluctuations Q̂tt′(r) [or R̂tt′(r)]
that are slowly varying functions of r and (t + t′)/2. These “massless modes” are associated with
the diffusive light propagation. The assumption of slow variation justifies the neglection of higher-
order terms in the expansion (3.39). The contribution S 3[Q̂] results from the nonconservative
nature of the medium. It is, in general, comparable to the to the “massive” Tr Q̂2 term, unless the
rate of absorption or gain is smaller than the scattering rate:

|ε′′|ω2
0

~̃
�

1
τ
. (3.48)

This condition specifies the regime when the light propagation is diffusive. If this requirement is
not fulfilled, the massive fluctuations beyond the NLSM have to be taken into account.

3.5 Light diffusion

In this section we calculate the disorder-averaged Green-function correlator. In particular, we
consider the contribution that arises from the fluctuations of the field Q̂ in the neighborhood of
the saddle point. The correlator possesses a diffusion-pole structure modified by finite correlation
length due to absorption or gain.
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3.5 Light diffusion

3.5.1 Fluctuations about the saddle point

We consider the parameterization

Q̂ = iÛe−Ŵ/2σ̂zeŴ/2Û−1, Û = Û−1 =

(
1 F
0 −1

)
, (3.49)

where σ̂z is the Pauli matrix. Because Λ̂ = Ûσ̂zÛ−1 (if the regularization of unit operators is
neglected), this parameterization is equivalent to Eq. (3.38) with R̂ = Û exp(Ŵ/2) Û−1. It can be
verified by explicit calculation that the diagonal blocks of Ŵ do not contribute to S [Q̂] and the
Green-function correlator, at least, up to the second order in Ŵ. We, therefore, represent this field
in the form

Ŵ =

(
0 w

w† 0

)
. (3.50)

The specific choice of Ŵ as a Hermitian matrix is justified by the requirement of convergence of
the functional integral for the partition function (see below). The operator w is diagonal in the
r representation. By expanding the parameterization (3.49) in the powers of Ŵ we find the first-
and second-order deviations from the saddle point,

δQ̂(1) = i
(
−Fw† −w − Fw†F
w† w†F

)
, (3.51)

δQ̂(2) =
i
2

(
ww† ww†F + Fww†

0 −ww†

)
. (3.52)

We note that only the latter matrix has the causality structure; however, the fluctuations of Q̂ are
not required to obey causality. By using δQ̂(1,2) in Eq. (3.47) we can calculate fluctuations of the
effective action. The first-order variation of S [Q̂] depends on the derivatives 1 of the distribution
function F generated by the first two terms in Eq. (3.47); the third term yields an identically
vanishing first-order contribution. The saddle-point equation (3.36) determines the retarded and
advanced sectors of Q̂. By setting to zero the variation of the effective action near the saddle
point, we obtain the Usadel equation

(−∂t̄ + D̄∂2
r) Fω0(r, t̄) = 0 (3.53)

for Ftt′(r) in the mixed representation of the slow time variable t̄ = (t + t′)/2 and the large
frequency ω, conjugate to t − t′. The second-order variation is

iδS (2)[w, w†] = −πν0Tr

−i∂t δQ̂(2) +
D̄
4

(∂r δQ̂(1))2 + i
D̄
2

(∂rΛ̂)(∂r δQ̂(2)) − i
ε′′ω2

0

~̃
Λ̂δQ̂(2)


= −

πν0

2

∑
ωω′k
|wωω′(k)|2

−i(ω − ω′) + D̄k2 +
2ε′′ω2

0

~̃

, (3.54)

1 To transfer the differentiation from w and w† to F, integration by parts can be used.
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Chapter 3 The Photonic Dissipative Nonlinear Sigma Model

where w(k) is the Fourier transform of w(r). Of the two terms with spatial gradients, the second
term has a zero trace. The first term yields the D̄k2 contribution to δS (2), as well as the additional
correction

iδS (2)
F [w†] = −

πν0

2
D̄ tr[w†(∂rF)]2, (3.55)

where “tr” denotes the trace of operators that do not have the Keldysh matrix structure. This
correction vanishes when F(r) is uniform, which we will assume. With the help of Eq. (3.54), the
disorder-averaged partition function can be approximated by the functional integral

〈Z〉 ≈ Nw

∫
D[w, w†] eiδS (2)[w,w†], (3.56)

where Nw is a normalization constant. For a medium with gain, the divergence of the integral for
the modes with

k < kmin ≡

√
−

2ε′′ω2
0

~̃D̄
(3.57)

indicates that the long-scale fluctuations become unstable due to onset of lasing (see Sec. 3.5.3).
Thus, in the long-wavelength limit the linear-gain theory breaks down and the nonlinear effects
have to be taken into account [35, 36].

3.5.2 Disorder-averaged correlator

Green functions and their combinations can be expressed in terms of derivatives of the partition
function with respect to the source fields:

G jk(1, 2) = −
i

16π
δ2Z[Ĵ, Ĵ†]

δ[J j(1)]∗ δJk(2)

∣∣∣∣∣∣
Ĵ=Ĵ†=0

, (3.58)

G jk(1, 2) Glm(3, 4) + G jm(1, 4) Glk(3, 2) = −
1

(16π)2

δ4Z[Ĵ, Ĵ†]
δ[J j(1)]∗ δJk(2) δ[Jl(3)]∗ δJm(4)

∣∣∣∣∣∣
Ĵ=Ĵ†=0

,

Z[Ĵ, Ĵ†] = N

∫
D[Â, Â†] eiS [Â,Â†]+Ĵ†Â+Â† Ĵ , (3.59)

where j, k, l,m = cl, q and 1, 2, . . . are full sets of coordinates in some representation, e.g.,
1 = (k1, ω1), etc. By inverting the matrix (4.11), we identify the sectors of the Green function as
Gcl,q = GR, Gq,cl = GA, Gcl,cl = GK , [(G−1)K]−1, and Gq,q = 0.

The disorder-averaged Green functions and correlators are obtained by using the above expres-
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3.5 Light diffusion

sions with the disorder-averaged partition function 2

〈Z[Ĵ, Ĵ†]〉 = ÑQ

∫
D[Q̂] exp

(
iS [Q̂] + 16πiĴ†ĜQ̂ Ĵ

)
, (3.60)

ĜQ̂ ≡

Ĝ−1
0 +

~̃

2τ
γ̂Q̂

−1

. (3.61)

We find, in particular,

〈GR,A,K(1, 2)〉 = 〈G
R,A,K
Q̂

(1, 2)〉Q̂, (3.62)

〈GR(1, 2) GA(3, 4)〉 = 〈GR
Q̂

(1, 2)GA
Q̂

(3, 4) + GK
Q̂

(1, 4)GQ
Q̂

(3, 2)〉Q̂, (3.63)

where the average 〈· · · 〉Q̂ over Q̂ is performed with the exponential weight exp(iS [Q̂]). Equa-
tion (3.62) shows that Ĝ = ĜiΛ̂ [Eq. (3.40)] is the disorder-averaged Green function in the
lowest-order saddle-point approximation. The component GQ

Q̂
≡ G

q,q
Q̂

in Eq. (3.63) is, in general,

non-zero when Q̂ does not have the causality structure. This observation is essential for the
following calculation.

We calculate the Green-function correlator

R(1, 2, 3, 4) ≡ 〈GR(1, 2) GA(3, 4)〉 − 〈GR(1, 2)〉〈GA(3, 4)〉 (3.64)

by expansion about the saddle point. The lowest-order correction to the Green function (3.61) is

ĜQ̂ − Ĝ ' −
~̃

2τ
Ĝγ̂δQ̂(1)Ĝ = i

~̃

2τ

(
GRwGA + FGAw†GRF FGAw†GR

−GAw†GRF −GAw†GR

)
. (3.65)

The Gaussian averages with the action (3.54) are as follows:

〈w〉w = 〈w†〉w = 0, 〈w†(1, 2)w†(3, 4)〉w = 0 (3.66)

〈w(1, 2)w†(3, 4)〉w =
2
πν0

δk1−k2,k4−k3δω1,ω4δω2,ω3

D̄(k1 − k2)2 − i(ω1 − ω2) +
2ε′′ω2

0

~̃

. (3.67)

Therefore, the leading contribution to the correlator comes from the K-Q term in Eq. (3.63),
which is given by the product of diagonal blocks in Eq. (3.65). We find

R(1, 2, 3, 4) =
~̃

2πντ2G
R(1)GR(2)GA(3)GA(4)

δk1−k4,k2−k3δω1,ω2δω4,ω3

D̄(k1 − k4)2 − i(ω1 − ω4) +
2ε′′ω2

0

~̃

. (3.68)

The correlator has a diffusion pole with the diffusion coefficient D̄. The pole is modified by the
ε′′ term that arises from the corresponding contribution in the effective action (4.25). This term

2 Equation (3.60) is derived analogously to Eq. (3.32) by adding the source terms, as in Eq. (3.59), before integrating
out the fields Â and Â†.
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defines the absorption rate
1
τa
≡

2ε′′ω2
0

~̃
, (3.69)

negative for gain.

3.5.3 Discussion

The pole structure of the correlator implies that the light intensity I in the medium satisfies the
diffusion equation with the nonconservative term:(

∂t − D̄∇2 + τ−1
a

)
I = 0, (3.70)

D̄ =
1
2
v2τ̄ =

1
2
v2

(
1
τ

+
1
τa

)−1

. (3.71)

We compare this equation with[
τ

1 + 2τ/τa
∂2

t + ∂t − D′∇2 + τ−1
a

1 + τ/τa

1 + 2τ/τa

]
I = 0, (3.72)

D′ ≡
1
2
v2

(
1
τ

+
2
τa

)−1

, (3.73)

that follows from the photon transport equation (see Eq. (15) of Ref. [37]). According to Ref. [37],
the light propagation is diffusive if the second derivative with respect to time in Eq. (3.72) can be
neglected. This is the case when

τ � ∆t, (3.74)

where ∆t is the characteristic time scale of intensity variation. The reaction of the medium on
a fluctuation of intensity will be determined by the shortest time scale, so that ∆t . |τa| can
be assumed. Therefore, when neglecting the corrections of the order of τ/∆t in Eq. (3.72), we
also have to neglect the contributions of the order of τ/τa. In particular, it is consistent with the
diffusion approximation to set

D′ ' D ≡
1
2
v2τ. (3.75)

The independence of absorption for the diffusion coefficient was also supported by the numerical
evidence in Ref. [37]. It is worth commenting on the claim [38, 39] that the diffusion coefficient in
the medium with absorption must be equal to D even for τ/τa ∼ 1. A closer look at the derivation
of the diffusion coefficient from the transport equation in Ref. [38] reveals that the time-derivative
terms neglected in Eqs. (A9) and (A11) of that article would yield the diffusion coefficient

D′′ =
1
2
v2τ

(
1 − 2

τ

τa

)
' D′ (3.76)

were they taken into account. Thus, the (approximate) independence of the diffusion coefficient
of absorption is a consequence of the self-consistent application of the diffusion-approximation
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conditions (3.48) and (3.74).
The NLSM effective action (3.47) is derived under the condition (3.74) as well. This condition

guarantees the slow variation of Q̂, and makes it possible to neglect the contribution of E(ω) part
of γ̂Ĝ−1

0 [Eq. (3.41)] to the second-order term in Eq. (3.39). This contribution would result in a
second-time-derivative term in the effective action. Again, the diffusion approximation requires
that we set

D̄ ' D, τ̄ ' τ (3.77)

in the NLSM expressions. Thus, the NLSM and the theory of transport equation agree in the
diffusive regime.

In the medium with gain, the the diffusive relaxation competes with the amplification. Because
the long-scale intensity fluctuations disperse slower, they become unstable, and the random lasing
sets in. The cutoff wavenumber kmin (3.57) determines the critical sample size

l =
√

D |τa| (3.78)

above which the system is lasing and the linear-gain theory does not apply. Alternatively, the
above expression yields the lasing-threshold value of |τa| if l is given.

3.6 Conclusions

We obtained the functional-integral form of the partition function for an optical medium with linear
absorption or gain. Keldysh technique is particularly suitable for description of nonconservative
systems because it provides a natural representation for the action. The disorder-averaged
partition function is expressed as a functional integral over the auxiliary matrix field Q̂. Within
the framework of nonlinear sigma model, we considered the fluctuations about the saddle point
that fulfill the condition Tr Q̂2 = 0. We found that the effective action S [Q̂] for these fluctuations
contains an extra term due to absorption or gain.

With the help of the nonlinear-sigma-model partition function, we computed the disorder-
averaged Green-function correlator. The leading contribution from the vicinity of the saddle point
has the diffusion-pole structure modified by a finite absorption/gain rate. The diffusion coefficient
is found to be approximately independent of the absorption or gain in agreement with the theory
of photon transport equation. In the medium with gain, the linear theory is not applicable in the
long-wavelength limit. If the sample size exceeds a certain critical length, the random lasing sets
in.
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CHAPTER 4

Application of the Nonlinear σ-Model: Full
Counting Statistics

4.1 Introduction

Physics of disordered mesoscopic conductors [51, 52] made a strong impact on the research on
light propagation in disordered media because of the well-known analogy between the scalar
wave equation and the Schrödinger equation. Important information about the system can be
gained by studying fluctuations of charge current (or energy current in optical medium), which
are usually described via the current cumulants [53]. The calculation of these quantities normally
require the knowledge of the full statistical distribution of transmission eigenvalues [54, 55].

The theory for electronic charge transmission has a long history and is well developed. Various
methods were employed to compute the full counting statistics of electronic conduction through
disordered wires, among them the semiclassical formalism [56], random matrix theory [57],
and the Green’s function formalism [58]. In particular, it was found in all these works that the
electronic shot noise in disordered conductors is reduced below the Poissonian (uncorrelated)
value by a universal factor of 1

3 . This reduction is a result of the existence in a disordered conductor
of a fraction of non-weakly transmitting (“open”) channels with transmission coefficients close
to 1, with the remainder being weakly conducting (“closed”) channels with small transmission
coefficients. This property is reflected in the distribution of transmission coefficients originally
derived by Dorokhov [59]. Although shot noise is not present in the transmission of classical
electromagnetic waves, the transmission statistics is still governed by the Dorokhov’s distribution,
as we show below.

In the field of optics, transmission statistics in disordered channels was extensively studied ex-
perimentally [60–64] and slightly less theoretically [65, 66]. We are not aware of similar research
done on dissipative or amplifying systems, which can be relevant for practical applications, such
as random lasers [32].

In the present work we rederive the Keldysh nonlinear σ model for nonconservative me-
dium [67] in the form that allows one to calculate the energy current fluctuations. Specifically,
we include the source term in the action and follow the steps outlined in Ref. [12]. In the
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stationary-phase approximation one obtains the Usadel equation which admits an exact solution
for a one-dimensional conservative system [12, 58]. We solve the Usadel equation in the weakly
nonconservative system by a perturbation expansion and calculate the action at the stationary
point. The action generates the cumulants of the energy transmitted during a fixed time interval.
We apply the general theory in the special cases of thermal fluctuations in equilibrium and fluctu-
ations over disorder realizations in the pumped system at zero temperature. The latter are related
to the fluctuations of the transmission coefficients described by the Dorokhov’s distribution. We
also find quantitative agreement with previous diagrammatic calculations [65] of the second- and
third-order cumulants in the conservative medium.

4.2 Full Counting Statistics

4.2.1 General theory of counting statistics

In this section we give an elementary introduction to the theory of counting statistics. We note
that the formalism to be presented below was originally written down to describe transport of
electrons. What we have done is to attempt to apply the same formalism to the transport of
photons, i.e., elementary excitations of the electromagnetic field. Hence, in this section we will
give a simple overview of the theory of counting statistics which is independent of the physical
quantities it applies to, i.e., electrons or photons. We imagine a conductor of length L. This could
be a common copper wire, in the case of electrons, or a length of fibre optic cable with dielectric
inhomogeneities for photons. For purpose of this section we will collectively call the excitations
which propagate through these objects, “particles”. We are interested in obtaining a quantity like
the number of particles N passing through a certain point on the conductor in a time interval ∆t.
This number Nr is, of course, a random quantity, since the particle transfer is a stochastic process,
potentially influenced by imperfections of the measuring device, irregularities in the conductor,
or even intrinsically, due to the quantum mechanical nature of the process. For the moment we
assume that the conductor is still essentially a “clean” one, i.e., its physical characteristics is not
dominated by the amount of “irregularities” present in the system beyond what is practically
achievable.

For an experimentalist, there are hence two ways to proceed: on the one hand, he can take many
measurements, and calculate the average number 〈Nr〉, where 〈. . . 〉 denotes averaging over the
various values obtained from the different experimental realizations. Although also an interesting
quantity, we will not be concerned with the computation of this quantity in this chapter.

On the other hand, he can try to characterize this stochasticity via the calculation of its statistics,
i.e., by trying to determine the probability of measuring a certain value of Nr. This quantity is
concerned with the distribution of measured values PNr , which can be obtained, in principle, by
making a number of identical measurements (say, Mtot times) and counting the number of times
the measurement yields the value Nr, say MN times. In the limit MN → ∞ one obtains PN from
which important quantities can be calculated, for example the usual average

〈N〉 =
∑

N

NPN (4.1)
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but also some information about the statistics of the the process, for example the variance, or in
more descriptive language, the second cumulant of Nr, which measures the degree of deviation
from the average

〈〈N2〉〉 =
〈

(N − 〈N〉)2
〉

=
∑

N

N2PN −

∑
N

NPN

2

(4.2)

However, the quantities defined in (4.1) and (4.2) are still only a partial picture of the information
which can be derived from a study of the statistics. Let us define the characteristic function

Λ(χ) =
〈
eiχN

〉
(4.3)

(4.3) is especially suited for characterizing statistics of the distribution pn. Specifically, we can
express the irreducible correlators (or cumulants) in terms of (4.3) by simply writing

ln χ(λ) =

∞∑
k=1

mk
(iλ)k

k!
, mk ≡ 〈〈N − N〉〉 (4.4)

and noticing that the action of successively differentiating ln Λ(χ) with respect to iχ (the “counting
field”) will generate expressions (4.1) and (4.2) in succession. Hence we see that (4.3) is a useful
quantity for the characterization of the statistics of particle transfer. In the following section (and
indeed, in the rest of the chapter) we will be concerned with the calculation of various versions
of (4.3).

In the following, we will specialize to the case of electronic transport, by way of illustration. We
further motivate the presentation of the characteristic function via two well-understood examples.
We consider first a Poisson process, which describes, among other stochastic processes, charge
transport at very low transmission with uncorrelated transmission events [68]. This process is
described by the Poisson distribution

pk =

{
e−n̄n̄k/k!, k ≤ 0,

0, k < 0.
(4.5)

and we obtain for the characteristic function

χ(λ) = exp
(
(eiλ − 1)n̄

)
, (4.6)

where n̄ = It/e is the average number of particles transmitted during time t, with I the time-
averaged current and e the elementary charge. We see also that all cumulants of the Poisson
distribution are identical: mk = n̄. Physically, the Poisson distribution describes the transfer of
particles across a channel in one direction from one reservoir to another in a fully uncorrelated
manner. Transmission is assumed to be very low, such that one can restrict to single particle
transfers for any time interval δt under consideration.

Another example is the well known binomial statistics. A binomial distribution represents a
process in which a fixed number N attempts are made of a particular trial, with the probabilities p
of a “successful” and q = 1− p of an “unsuccessful” trial. It is known for the binomial distribution
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that the probability of obtaining k successes out of N attempts is given by the combinatorial
number Ck

N = N!/(N − k)!k!. Hence similarly to (4.5) we can write the distribution and hence the
characteristic function for the binomial process as

pk = Ck
N pkqN−k and χ(λ) = (peiλ + q)N (4.7)

The binomial distribution describes an ideally transmitting channel at zero temperature, which
means that the electrons are in ideal wave states and hence the momentum in the transport
direction is a well-defined quantum number, which is constant. This picture then describes
particle transfer in a fully correlated state.

This concludes the introductory section in which the general concept of FCS and its role in
characterizing transport properties was explained. In the following sections we will concentrate
on the application of the photonic sigma model in the calculation of the FCS and how this in
turn is able to yield information on the energy transport through a disordered, one-dimensional
waveguide.

4.3 Nonlinear sigma model with source

4.3.1 Keldysh field theory

In this subsection we will recall some notation first presented in the previous chapter in order
to show how to correctly include a source term in the original action. We consider a classical
electromagnetic wave with transverse magnetic (TM) polarization in a two-dimensional medium.
Following the previous chapter, we introduce two complex fields, Aω(r) and A∗ω(r), whose real
parts correspond to the normal component of vector potential at the position r and frequency ω.
The physically relevant frequencies for the fields are restricted to the neighborhood of the typical
optical frequency ω = ω0 > 0, which is assumed to be the largest frequency scale in the system.
Within the Keldysh formalism [9, 10], each field acquires two components as A± and A†± for the
positive (+) and negative (−) time directions.

To access the full counting statistics we will again derive the functional-integral form of the
partition function,

Z =

∫
D[Â, Â†] eiS [Â,Â†], ~ = 1, (4.8)

with the measure

D[Â, Â†] = N
∏
r,ω,

j=cl,q

d
(
Re A j

ω(r)
)

d
(
Im A j

ω(r)
)

π
. (4.9)

All information about the system is contained in the action

S [Â, Â†] =
1

16π
Â† Ĝ−1Â, (4.10)

36



4.3 Nonlinear sigma model with source

where the inverse Green’s function operator has the form

Ĝ−1 =

(
0 (G−1)A

(G−1)R (G−1)K

)
(4.11)

(we remind that matrix products involve integration over continuous variables). The retarded,
advanced, and Keldysh components of Ĝ−1 are given by (we set the velocity of light c = 1)

(G−1)R,A
ω (r) = ε′(r, ω)ω2 + ∂2

r ± iε′′(r, ω)ω2, (4.12)

(G−1)K = (G−1)RF0 − F0 (G−1)A, (4.13)

ε′(r, ω) ≡ Re [ε(r, ω)], ε′′(r, ω) ≡ Im [ε(r, ω)], (4.14)

where ε(r, ω) is the dielectric constant of the medium and

F0 = 2n0 + 1 = coth
ω

2T
(kB = 1) (4.15)

is related to the photon occupation number n0, which is given here for the thermal equilibrium
at temperature T . The normalization constant N in Eq. (4.9) depends on the discretization of
continuous variables and ensures the property Z = 1, which reflects the fact that the system
arrives to its initial state as a result of the forward-backward evolution.

Till now we have only put previously defined quantities in context of the further addition of
a source term, which is necessary ion order to compute averages of physical observables. The
source term for the energy current density is (cf. Ref. [12])

∆S = Tr
(
λ · jcl

)
, (4.16)

where jcl is the classical field component of the current

j(r, t) = −
1

16π
[(
∂rA∗

)
(∂tA) +

(
∂tA∗

)
(∂rA)

]
(4.17)

and the source field λ(r, t) is the quantum component of the field (0, λ)T with the zero classical
component in the Keldysh space. Here and below the trace includes integration over continuous
variables. The average current is then given by the functional derivative of the (logarithm of)
partition function with respect to the source,

〈j(r, t)〉 = −i
δ ln Z[λ]
δλ(r, t)

∣∣∣∣∣
λ≡0

= −i
δZ[λ]
δλ(r, t)

∣∣∣∣∣
λ≡0

. (4.18)

The fact that λ is a quantum field is responsible for Z[λ] , 1, in general, whereas Z[λ = 0] = 1
by construction.

Performing the Fourier transform we approximate ∂tA 7→ −iωA ≈ −iω0A and ∂rA 7→ ikA ≈
iω0
√
ε′κ(k)A, where κ(k) = k/|k|. Then the sum of contributions (4.10) and (4.16) yields the
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total action
S [Â, Â†, λ] =

1
16π

Â†
(
Ĝ−1 +

√
2ε′ω2

0κ · λ1̂
)

Â, (4.19)

where 1̂ is the unit operator in the Keldysh space. (4.19) is derived in detail in Appendix A.1.1.

4.3.2 Nonlinear sigma model

We neglect the dispersion of the dielectric constant

ε(r, ω) ' ε′ + ∆ε′(r) + iε′′ (4.20)

and assume that its real part has a random component with 〈∆ε′(r)〉 = 0 and

〈∆ε′(r) ∆ε′(r′)〉 =
2ε′2

πν0ω
2
0τ
δ(r − r′), (4.21)

where ν0 is the optical density of modes at the frequency ω0, τ is the scattering time, and the
averages are taken over disorder realizations. The disorder-averaged partition function including
the source term has now the form

〈Z[λ]〉 =

∫
D[Q̂] eiS [Q̂,λ],

iS [Q̂, λ] = −Tr
[
πν0

4τ
Q̂2 + ln

(
Ĝ−1

0 +
ε′ω0

τ
γ̂Q̂ +

√
2ε′ω2

0κ · λ1̂
)]
, γ̂ ≡

(
0 1
1 0

)
.

(4.22)

We see from (4.22) that the partition function is again expressed via the functional integral over
the field Q̂ which has a 2×2 matrix structure in the Keldysh space; here Ĝ−1

0 is the inverse Green’s
function operator in a medium with dielectric constant ε′ without disorder. The random ∆ε′(r)
was neglected in the source term of Eq. (4.19), because its contribution to S [Q̂, λ] would be small
compared to the disorder-free source term in the limit ω0τ � 1.

We find that the stationary point of the action (4.22) has the form

Q̂ = iΛ̂, Λ̂ =

(
1R 1RF + F 1A

0 −1A

)
. (4.23)

As in the previous chapter, the operator F is the so called distribution function and is to be
determined later. In thermal equilibrium, F = F0 [Eq. (4.15)] is uniform in space. The retarded
and advanced unit operators, 1R,A

ω = e±iωε, where ε � ω−1
0 is an arbitrary constant, oscillate at

high frequencies ω & ε−1, which leads to the property Tr Q̂2 = 0. Note that Q̂2 = −1̂.

The dominant contribution to 〈Z[λ]〉 arises from the trace-preserving fluctuations of Q̂ about
the stationary point that satisfy the conditions

Tr Q̂2 = 0, Q̂2 = −1̂. (4.24)
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Fluctuations of this type are the “massless” modes which do not affect the Q̂2 term in S [Q̂, λ],
and result in a weaker variation of the action compared to arbitrary, “massive” fluctuations. The
massless modes describe the diffusive light propagation. Following the general prescription in
Ref. [12], we generalize the expression for the effective action of massless modes [67] in the
presence of source:

iS [Q̂, λ] ' −πν0Tr
[
−i∂tQ̂ +

D
4

(∂̂rQ̂)2 −
i

2τa
Q̂Λ̂0

]
, (4.25)

where (∂tQ̂)tt ≡ (∂tQ̂tt′)t′=t,
D =

τ

2ε′
(4.26)

is the diffusion coefficient, the covariant derivative is defined as

∂̂rQ̂ = ∂rQ̂ − i
ω0
√

2
[λγ̂, Q̂]− (4.27)

([ , ]− being the commutator), the absorption rate (negative for amplification) is

1
τa

=
ε′′ω0

ε′
, (4.28)

and Λ̂0 is given by Λ̂ [Eq. (4.23)] with F = F0. Explicit derivations of the covariant derivative
occuring in (4.25) is given in Appendix B.3.

We note that the disorder-free inverse Green function can be written as

γ̂Ĝ−1
0 = (ε′ω2 + ∂2

r) 1̂ + iε′′ω2
0 Λ̂0, (4.29)

i.e., Λ̂0 describes the thermal bath responsible for dissipation (if ε′′ > 0). This expression is
slightly different from the one derived in the previous chapter 1. The Q̂-independent contributions
to the action are omitted. (4.25), which is the nonlinear σ model in the presence of sources, is
derived under the assumptions of weak variation of Q̂ in time and space and weak absorption,

τ

|τa|
� 1. (4.30)

Corrections to the diffusion coefficient D due to absorption are neglected within this order of
approximation (see the discussion in Ref. [67]).

1 In Ref. [67] we did not discriminate between Λ̂ and Λ̂0, hence, the results of this reference are valid only in the case
of thermal equilibrium.
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4.4 Transmission statistics

4.4.1 Stationary-phase approximation

We apply the general method to compute fluctuatons of energy transmitted through a quasi-one-
dimensional disordered system. Let the light be continuously pumped into the channel at one end,
x = 0, and the outgoing energy E = t0 j(L) accumulated during a time interval t0 be measured
at the other end, x = L. [In the stationary regime the one-dimensional current j(x) has no time
dependence.] The source field

λ(x, t) =

 η
√

2l
, L − l ≤ x ≤ L and 0 ≤ t ≤ t0

0, otherwise
, l→ 0, (4.31)

is constructed in such a way that it couples to the current averaged over a narrow interval of
length l near the channel’s end during the time t0 2. This form of the source field generalizes
the uniform field of Ref. [12], which was sufficient for a lossless medium where j(x) = const.
The disorder-averaged partition function 〈Z(η)〉 defines the cumulants Cm of energy E via the
expansion of its logarithm in the counting variable η:

ln 〈Z(η)〉 =

∞∑
m=1

(iη)m

m!
Cm. (4.32)

In particular, C1 = 〈E〉 and for m = 2, 3 the cumulants are equal to the central moments,
Cm =

〈
(E − 〈E〉)m〉

. For m ≥ 4 the mth central moment can be expressed in terms of Cm′’s with
m′ ≤ m.

With the help of the gauge transformation

Q̂η(x) =

{
Q̂(x), 0 ≤ x ≤ L − l
e−iα(x)γ̂ Q̂(x) eiα(x)γ̂, L − l ≤ x ≤ L

, (4.33)

α(x) =
x − L + l

2l
ω0η, α ≡ α(L) =

ω0

2
η, (4.34)

having the property ∂̂xQ̂ = ∂xQ̂η, the explicit source contribution is eliminated from the ac-
tion (4.25), which now reads

iS [Q̂η] = −πν0Tr
[
−i∂tQ̂η +

D
4

(∂rQ̂η)2 −
i

2τa
Q̂η(Λ̂0)η

]
. (4.35)

By allowing Q̂η to fluctuate under the constraints (4.24) and setting the linear variation of S [Q̂η]
to zero we obtain the Usadel equation

−i(∂t + ∂t′)
(
Q̂
η

)
tt′ + D ∂x

(
Q̂
η
∂xQ̂

η

)
−

i
2τa

[
(Λ̂0)η, Q̂

η

]
− = 0 (4.36)

2 Note that jcl/
√

2 = ( j+ + j−)/2
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for the stationary-point configuration Q̂
η
. Without the source (η = 0), the Usadel equation reduces

to the equation (
−∂t + D∂2

x
)
F − τ−1

a (F − F0) = 0 (4.37)

for the distribution function Fω(x, t) obtained from the matrix Ft′t′′(x) by making the Fourier
transform in the fast variable t′ − t′′ and keeping the slow variable t = (t′ + t′′)/2.

In general, Q̂
η

is not of the form (4.23). The source enters the Usadel equation via the
boundary conditions. We will model the pump at x = 0 by the time-independent non-equilibrium
distribution function within the frequency band of width ∆ω � ω0:

Fω(0) =

{
F∗, |ω − ω0| < ∆ω/2
F0, |ω − ω0| > ∆ω/2

, (4.38)

where F∗ ≥ F0 and F0 is the equilibrium distribution (4.15) at ω = ω0. At the other end, x = L,
the channel is assumed to be in contact with the thermal bath. Thus, the boundary conditions are

Q̂
η
(0) = Q̂(0) = iΛ∗,

Q̂
η
(L) = i(Λ0)η(L) = ie−iαγ̂Λ0 eiαγ̂,

(4.39)

where Λ∗ depends on Fω(0).

We evaluate the functional integral for 〈Z(η)〉 by the stationary-phase approximation:

〈Z(η)〉 ' a(η) eiS (η) ' eiS (η), S (η) ≡ S
[
Q̂
η

]
, (4.40)

where we neglect the η dependence of the prefactor and the normalization 〈Z(0)〉 = 1 is guaranteed
by the form of Q̂

η=0
(4.23). Thus, to obtain the cumulants we need to find the time-independent

solution of the Usadel equation with boundary conditions (4.39), and calculate the action S (η).

4.4.2 Weakly nonconservative medium

We solve the Usadel equation in the limit of small absorption/amplification retaining only the
leading order in the small parameter L2/l2a , where the absorption length squared (negative for
amplification) is defined as

l2a = D τa. (4.41)

The second-order Usadel equation is equivalent to the system of two first-order equations:

∂x Ĵ =
i

2τa

[
(Λ̂0)η, Q̂

η

]
−,

Ĵ = Q̂
η
∂xQ̂

η

[
= −(∂xQ̂

η
) Q̂

η

], (4.42)
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where the last equality follows from the property ∂x
(
Q̂2
η

)
= 0. Equation (4.42) can be formally

integrated to yield

Q̂
η
(x) = Q̂

η
(0)

[
e
∫ x

0 dx′ Ĵ(x′)
]
, (4.43)

where the exponential is ordered in x′ increasingly from left to right. In the zeroth order in
absorption one finds Ĵ(x) = const, which leads to [12]

Q̂(0)
η

(x) = Q̂
η
(0) eĴ0 x, (4.44)

Ĵ0 ≡ L−1 ln
[
−Q̂

η
(0) Q̂

η
(L)

]
. (4.45)

In the next order we write Ĵ(x) = Ĵ0 + ∆Ĵ(x) and Q̂
η
(x) = Q̂(0)

η
(x) + Q̂(1)

η
(x). By expanding the

ordered exponential in Eq. (4.43) in ∆Ĵ(x) we obtain

Q̂(1)
η

(x) ' Q̂
η
(0)

∫ x

0
dx′ eĴ0 x′∆Ĵ(x′) eĴ0(x−x′). (4.46)

The requirement Q̂(1)
η

(L) = 0, that follows from the boundary conditions, yields the property

∫ L

0
dx eĴ0 x ∆Ĵ(x) e−Ĵ0 x = 0. (4.47)

The gradient contribution to the action contains

Tr
(
∂xQ̂

η

)2
= −Tr

[(
∂xQ̂

η

)
Q̂2
η
∂xQ̂

η

]
= Tr Ĵ2

' Tr Ĵ2
0 + 2Tr

(
Ĵ0∆Ĵ

)
= Tr Ĵ2

0 , (4.48)

according to the property (4.47). Thus, ∆Ĵ(x) does not contribute to the action, which now takes
the form

iS (η) ' −πν0Tr
[
D
4

Ĵ2
0 −

i
2τa

(Λ̂0)η Q̂(0)
η

]
. (4.49)

The nonconcervative part of the action can be simplified in the limit l → 0 by tracing over x
explicitly and disregarding the interval L − l ≤ x ≤ L; the remaining integral can be evaluated
with l = 0 (note that Ĵ0 does not depend on l) yielding

iS nc(η) =
iπν0

2τa
Tr ω,K

[
Λ̂0 Q̂(0) Ĵ−1

0

(
eĴ0L − 1̂

)]
, (4.50)

where the trace is performed in the ω and Keldysh subspaces. Below we apply the general
expressions in the cases of thermal equilibrium and transport at zero temperature.
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4.4.3 Special cases

Thermal fluctuations

We consider the fluctuations of transmitted energy in the absence of pumping, F∗ = F0, at finite
temperature T . The leading contribution to the action (4.49) is

iS 0(η) = −
πν0Dt0

4L

∫ ∞

0

dω
2π

2(ln λ)2, (4.51)

where λ is one of the two eigenvalues

λ1,2 = 1 + X ±
√

X(X + 2), λ1λ2 = 1, (4.52)

X ≡ 2 (F2
0 − 1) sin2 α, (4.53)

of the matrix Λ̂0 e−iαγ̂Λ̂0 eiαγ̂ appearing in the logarithm in Eq. (4.45). According to Eq. (4.15)
only frequencies ω . T contribute to the integral (4.51) 3. The nonconcervative contribution
reads

iS nc(η) = −
πν0

2τa
t0L

∫ ∞

0

dω
2π

2
[ √

X(X + 2)
ln λ1

− 1
]
, (4.54)

where the unity is subtracted in order to account for the high-frequency regularization due to 1R,A.
To justify this result, let us, first, set T = 0 (F0 = 1). In this case the matrix Ĵ0 cannot be
diagonalized, but can be brought to the upper triangular form with 1R,A on the diagonal by the
rotation P̂−1 Ĵ0P̂, where

P̂ =
1
√

2

(
1 1
−1 1

)
, P̂−1 = P̂T. (4.55)

The regularization makes the trace in Eq. (4.50) vanish, which results in S nc(η; T = 0) = 0. For
finite temperature we can write

S nc(η; T ) = S nc(η; T ) − S nc(η; T = 0)

= S̃ nc(η; T ) − S̃ nc(η; T = 0),
(4.56)

where the tilde indicates that the regularization is ignored when the action is calculated. The
second equality is based on the fact that the regularization is only important at frequencies ω � T ,
but the high-frequency contribution to the action does not depend on T , because F0 → 1 for
ω→ ∞. Equation (4.54) then follows from Eq. (4.56)

It can be easily seen that the expansion of ln 〈Z(η)〉 ' iS (η) contains only even powers of η.
Hence, the odd-order cumulants vanish in thermal equilibrium, which is a consequence of the
equivalence of positive and negative direction of the current. The odd-order cumulants are useful
for studying the nonequilibrium properties at finite temperatures, because they are not obscured
by thermal fluctuations [69].

3 To regularize the integral at low frequencies we should avoid fixing ω in α = ωη/2.
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Transport at zero temperature

For the medium at zero temperature in the presence of pumping (F∗ > F0 = 1) the leading
contribution to the action becomes

iS 0(η) = −
ν0Dt0∆ω

4L
(ln λ)2. (4.57)

Here λ is one of the eigenvalues

λ1,2 = 1 − Y ±
√

Y(Y − 2),

Y ≡ (F∗ − 1)(e2iα − 1)
, (4.58)

of the matrix
B̂ ≡ Λ̂∗ e−iαγ̂Λ̂0 eiαγ̂. (4.59)

It is convenient to calculate the nonconservative part (4.50) by diagonalizing the matrix Ĵ0. This
is achieved with the transformation R̂−1 Ĵ0R̂, where the rotation matrices

R̂ =
(
R̂(1), R̂(2)), R̂−1 =

(
(L̂(1))†

(L̂(2))†

)
(4.60)

are defined by the biorthogonal right and left eigenvectors of matrix B̂, R̂( j) and L̂( j), corresponding
to the eigenvalue λ j. After some algebra we arrive at

iS nc(η) = −
ν0t0∆ωL

4τa

2∑
j=1

{
λ j − 1
ln λ j

[
1 + 2(F∗ − 1)

(
L( j)

1

)∗
R( j)

2

]
− 1

}
, (4.61)

where, again, the regularization makes it necessary to subtract unity.

The linear contribution in the S (η) expansion yields the first-order cumulant, the average
transmitted energy, which is proportional to the average current

〈 j〉 ' 〈 j0〉
(
1 −

L2

6l2a

)
. (4.62)

The average current in conservative medium,

〈 j0〉 = ν0 ∆ωω0Dn∗L−1, (4.63)

is linear with the photon occupation number (pump intensity) n∗ = (F∗ − 1)/2 and inversely
proportional to the length of the channel. To clarify the meaning of these expressions, we derive
them, alternatively, from the nonconservative diffusion equation (4.37), which, in the stationary
regime, takes the form

∂2
xn − l−2

a n = 0. (4.64)

The solution for the occupation number satisfying the boundary conditions n(0) = n∗ and
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n(L) = 0 is

n(x) = n∗
sinh [(L − x)/la]

sinh (L/la)
. (4.65)

Expanding the energy current j(L) = −ω0Dn′(L) in L/la we obtain Eqs. (4.62) and (4.63) (up to
the number of modes ν0 ∆ω).

Higher-order cumulants can be calculated by expanding Eqs. (4.57) and (4.61) in iη, possibly,
with the help of a symbolic manipulation software. Specifically, we find

C2/ω
2
0

C(0)
1 /ω0

'
2
3

n∗

(
1 −

11
10

L2

l2a

)
, (4.66)

C3/ω
3
0

C(0)
1 /ω0

'
16
15

n2
∗

(
1 −

191
336

L2

l2a

)
, (4.67)

where C(0)
1 = 〈 j0〉 t0 and we take into account that n∗ � 1 for a classical electromagnetic wave.

The ratios Cm/ω
m
0 describe fluctuations of the number of transmitted photons E/ω0. The principal

terms in Eqs. (4.66) and (4.67) agree with the results of diagrammatic calculation for the square
pump profile incident on a disordered slab [65]. The absorption (amplification) leads to decrease
(increase) of fluctuations.

The results for the conservative medium (l−2
a = 0) are in agreement with the Dorokhov’s

distribution [59] of the transmission coefficients,

P(T ) '
P0

T
√

1 − T
, (4.68)

for sufficiently narrow pumping bandwidth ∆ω and short measuring time t0. The distribution was
used to derive the average shot noise for electron transport [57]. P(T ) needs to be regularized at
T → 0 to be normalizable, but can be used directly to calculate the moments of T and, hence, of
the transmitted energy E = n∗ ω0T . The constant

P0 =
ν0∆ωDt0

2L
(4.69)

can be determined by comparing the average 〈E〉 = n∗ ω0〈T 〉 with C(0)
1 . Then, for P0 �

1, averaging with P(T ) reproduces the leading-order terms in Eqs. (4.66) and (4.67). After
estimating the one-dimensional density of modes as ν0 ∼ 1, we can recast the condition of
small P0 in the form

∆kl0
l0
L
∼ ∆kL

t0
tTh
� 1, (4.70)

where ∆k = ∆ω is the wave number pumping bandwidth, l0 =
√

Dt0 is the distance that the
energy diffuses in time t0, and the Thouless time tTh = L2/D is the time that it takes to diffuse the
distance L.

Despite the similarities, the fluctuations of transmitted energy of the classical wave and the
fluctuations of transmitted electron charge (shot noise) are of different origin. In the latter case,
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the number of transmitted electrons fluctuates for a given realization of T , and the average noise
is obtained after integrating with P(T ). In the classical case, the energy fluctuations result from
the fluctuations of T , whereas no fluctuations occur for a given disorder realization.

4.5 Conclusions

In the framework of Keldysh nonlinear σ model for classical electromagnetic waves in non-
conservative disordered medium we derived an action that includes the source term for the
energy current. Within the stationary-phase approximation we obtained a generating function for
the cumulants of the energy transmitted through the weakly nonconservative one-dimensional
disordered system. The odd-order cumulants for thermal fluctuations vanish in the absence of
pumping, which is a consequence of the symmetry of the system. In the pumped system the
fluctuations over the ensemble of disorder realizations can be related to the Dorokhov’s distribu-
tion of transmition coefficients. Our results for a conservative medium quantitatively agree with
previous diagrammatic calculations of the low-order cumulants. The absorption (amplification)
causes reduction (increase) of fluctuations. The photon concentration, or energy density, in
the nonconservative medium is shown to obey the diffusion equation with relaxation term; the
gradient of the concentration determines the average current.
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CHAPTER 5

Application of the Nonlinear σ-Model:
Random Lasing

5.1 Description of laser systems

In this appendix we will present detailed derivations of equations describing the dynamics of
laser systems. In general, a “laser system” consists of a multitude of “subsystems” which interact
with one another, which interplay then conspires to produce highly-coherent electromagnetic
radiation. These subsystems can be easily distinguished: an external pump, a “gain” medium,
a confined volume from which photons might escape (the “resonator”). We will not give a full
detailed description of all these components and how they work together (for good references
we refer to standard references like [70, 71]), in the experimental sense; instead, we will simply
summarize, in a concise manner, the corresponding facts about each subsystem which is relevant
to our presentation of the theory.

5.1.1 Gain and amplification

The gain material is the most important part of a lasing system as the output from a laser depends
crucially on the spectral properties of the lasing medium in the resonator. Gain media of typical
laser systems are made up of atoms with very particular configurations of energy levels; this is
required in order to support a state of population inversion in the different atomic energy levels,
the maintenance of which constitutes the most important requirement of continuous laser output.
Population inversion is the situation in which, effectively, more atoms have been excited to some
higher energy state than which remained in a lower energy one. In principle, for this purpose
we might imagine a simple two-level scheme, and then assume a large enough pumping strength
such that more atoms are excited to the second (higher) energy level than which remains in the
ground level.

This operating scheme is however not feasible because of stimulated emission. Specifically,
as the higher energy level is populated more and more, it is to be expected that the intensity of
radiation from atoms de-excited again into the lower energy level will increase. However, this
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picture only takes into account spontaneous emission; it is known that via stimulated emission,
there exists another channel for radiation which is actually instigated by stimulation from radiation
which actively interacts with the atom; one can get a good physical picture by imagining the atom
as a miniature passive resonant antenna that is set oscillating by the applied signal itself [70].
This channel of radiation will of course deplete the occupation of higher energy levels in direct
proportionality to the radiation intensity, which means that one would expect that at some point
the radiated intensity and the input energy would saturate and no further increase in relative
difference of occupation numbers between the higher and lower energy levels is possible.

This difference in occupation between higher and lower energy states can be obtained by
carefully constructing atomic energy level schemes in which lifetimes of atoms in a higher-energy
state is much longer compared to the rate at which the population is depleted; this effect can
be achieved in many different ways, but two of the most common ones for achieving lasing in
solid-state lasers is the scheme with three- or four-level atoms. A scheme involving three atomic
energy levels is schematically shown in Fig. 5.1 while a four-level system in Fig. 5.2 [71] In the

Figure 5.1: Energy level scheme for a 3-level
laser. From [71].

Figure 5.2: Energy level scheme for a 4-level
laser. From [71]

three-level system [71], some pumping process acts between the lowest (first) and the third level;
this fills up the third level. However, as mentioned before the same pumping process that fills
up the third level can also depopulate it directly back to the first level via stimulated emission.
However, atoms excited to the third level are also able to depopulate via other mechanisms, such
as spontaneous emission or collisions with the lattice (which usually results in the generation of a
phonon [70]; this second type of population decay of the higher energy level does not radiate in
the electromagnetic spectrum and is termed nonradiative relaxation). These alternative channels
for relaxation then tend to start filling up the second atomic level, which has the characteristic
that it has a particularly long lifetime as compared to atomic lifetime in the third level. Hence an
effective population inversion is achieved between the second and first levels. For this system it
can be shown that in order to maintain a steady-state population inversion the pumping rate into
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level three must simply be larger than the decay rate between the second and first level:

P > Γ12 (5.1)

The four-level laser system works in a similar manner, but in this case the pumping induces
population of the third atomic level, from which the atoms then undergo fast decay to the second
level. The second level has a relatively long lifetime and hence provides the population difference
between the first and second levels for a steady-state population inversion. The fact that the decay
from the first to ground (0) level is also fast contributes to the magnitude of the inversion.

5.1.2 Pumping of medium atoms

The operation of a laser requires first and foremost an external energy source, or the external
“pump”. This represents the energy input to the system which is required to energetically excite
atoms of the gain material; these excited atoms are then responsible for the light output from the
cavity when they are eventually de-excited leading to radiation in the form of both spontaneous
and stimulated emission. A term corresponding to the pumping appears in the laser equations,
which strength is a function of various physical parameters particular to the system under
consideration.

Another notable characteristic which is important and is currently a main topic of research into
random lasing is possible spatial inhomoegeneity of the pumping which is represented, in our
formalism, by a strong spatial dependence of the population inversion parameter ∆nω(r). The
question of spatially dependent pumping [72] has arisen as an active field of research in recent
years (for a comprehensive review see [73]), and is also experimentally important due to the
impossibility of achieving full homogeneity in the pump profile in experimental situations.

It has been shown in numerical simulations [72] that relatively localized pumping spots yields
an output intensity profile that is also sharply peaked. We show in this chapter that we are able to
capture the physics of spatially dependent pumping via a position dependent population inversion
parameter. In addition, by exploiting known solutions of the equation that we obtain from our
theory, we expect that if we allow for such a possibility we will be able to mimic the experimental
observations. This is still a work in progress.

5.1.3 Randomness of medium

The main feature of note, from which arises most of the interesting properties of random lasers,
is the medium. In a random laser the medium is spatially disordered, i.e., light waves propagate
through a volume which contains a randomly-distributed ensemble of scattering centers (for light
waves these correspond to a spatially random distributed of dielectric coefficients). Hence as
light propagates through this volume its direction of propagation is multiply changed in a random
manner, and hence we say that light waves in a random medium is multiply scattered.

A direct result of multiple scattering is that is translates to motion which is diffusive in nature.
It is exactly this diffusion of light in random lasers, coupled with external amplification, which
provides the mechanism of lasing. Letokhov [7] showed already in the sixties that in a diffusive
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medium with amplification the total gain is proportional to the volume (since it is of order O(L3))
whereas the loss is proportional to the area (O(L2)). Hence large order increases in the light
intensity characteristic of laser gain can be achieved in such media.

Despite of the obvious apparent differences between the gain mechanisms governing a regular
and a random laser it has been found that generally there exists a significant number of similarities
between regular and random lasers, especially with respect to properties like photon statistics and
noise emission. In the latter, it is known that regular lasers exhibit excess noise originating from
interference between spontaneous and stimulated emission (“Petermann factor”) ][70]; it was
shown by Beenakker and coworker [18] via a random matrix calculation that the same noise can
also be expected for a random laser. Another interesting calculation involved the second-order
coherence in [74] ; there it was shown that, as compared to other chaotic sources of light, which
commonly display Bose-Einstein statistics (strictly speaking, they display “bunching” behavior),
the output from a random laser display Poissonnian statstics, just like in the case of a regular
laser, despite a random laser also being a “chaotic” light source.

Of course, due to the random nature of the medium in which the generated light intensity
propagates, there are also some differences in other aspects of the laser emission as compared
to those from a regular laser. The main neglected aspect in all the calculations mentioned
above is that of coherence effects, i.e., coherent interactions between modes of the random
laser. In a regular laser, the mode structure consists of standing-wave patterns consistent with
a regular cavity; in a random laser, the spatial profile of the modes is dominated by a speckle
pattern, which manifests as a granular distribution of intensity. A related phenomena is of
course the possibility of Anderson localization, in which coherent interference of light results
in the formation of randomly shaped but closed modes with exponentially decaying amplitudes.
However, localization is only expected to occur in strongly scattering medium, and no conclusive
evidence for localization of light has been found thus far.

5.1.4 Semiclassical Theory of Random Lasing

In this section, for completeness, we will derive in a concise manner the form of the wave equation
which we need for a description of the laser. We start from the set of Maxwell’s equations

∇ × E = −Ḃ (5.2)

∇ ×H = j + Ḋ (5.3)

where the usual symbols have been applied: E: electric field strength, B: magnetic induction, H
magnetic field strength, j: external current and finally D: displacement vector. the derivation of
the lasing action starting from the Maxwell’s equations. The expressions displayed in this section
are given in [33], section 3.1. We will (mostly) work in the ω representation. We start from the
equation of motion of the electric field

− ε(r, ω)ω2Eω(r) − ∇2Eω(r) = 4πω2Pω, (5.4)
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where Eω(r) is the electric field in medium, Pω(r) the polarization function which acts as a source
which generates the field. (5.4) is in turn coupled to the matter fields via further expressions
governing the polarization Pω(r) and population inversion of the laser system (here it is assumed
that we have the simplest model of a 2-level atomic system):

Pω(r) = i
d2

~γ⊥
D(ω)

1
2π

∫ ∞

0
dω′ Eω(r)∆nω−ω′ , (5.5)

∆nω(r) = 2π∆n0(r)δ(ω) − i
D‖(ω)
~γ‖

∫ ∞

0
dω′

(
E∗ω′−ωPω′ − Eω′+ωP∗ω′

)
, (5.6)

In the matter equations (5.5) and (5.6) one finds the parameters that define the (effective) lasing
system. Here ∆nω(r) is the population inversion, ∆n0(r) the unsaturated population inversion,
which is directly proportional to the pump strength, ε(r, ω) is the dielectric constant (includes
disorder and absorption), and d is the magnitude of the atomic dipole matrix element. D(ω) and
D‖(ω) are combinations of the following matter parameters:

D(ω) ≡
1

1 − iω−νγ⊥

, (5.7)

D‖(ω) ≡
1

1 − i ωγ‖
, (5.8)

We give a short description of the different matter parameters which appear in (5.7) and (5.8).

• ν is the atomic transition frequency; this is the resonant frequency of the 2-level atomic
system (here homogeneous broadening is assumed; “homogeneous broadening” is where
the level broadening due to atomic lifetime of the different levels behave the same way
for all atoms in the system [75]. Hence the atomic transition frequency defines a lifetime
of the higher energy level of the form τ = 1/ν). In the following it is assumed that the
time dependence of the field and polarization is determined by fast oscillations which are
close to the atomic frequency ν and residual slow time dependence; for practical purposes
this means that only the Fourier components Eω(r) and Pω(r) in the close vicinity of ν
contribute significantly to the dynamics [33].

• γ⊥ and γ‖ are the polarization and population inversion relaxation rates, respectively.
Specifically, the population decay rate γ‖ is the rate of relaxation of the population inversion
(see eq. (34) of [33] and the text below it), or in other words the relaxation of the quantity
ρbb − ρaa, where ρab are the density matrix elements corresponding to the two-level atom
with levels a and b, a being the lower and b the upper levels in our case ; in this picture it
is easy to see that ρaa (ρbb) and ρab are the probability of the atom being in the level a(b)
and the complex dipole moment, respectively. On this note we say that the polarization
relaxation rate γ⊥ is defined as the decay rate of the quantity ρab.

Given the form of the wave and matter equations (5.4), (5.5) and (5.6) we can see that a cubic-in-
Eω(r) term can be generated by suitably cutting off the self-consistency in (5.5) and (5.6) and

51



Chapter 5 Application of the Nonlinear σ-Model: Random Lasing

substituting the resulting expresion into (5.6). This procedure is outlined in the following. We
first take only the first term on the r.h.s of (5.6) as the simplest approximation to ∆nω(r); this
corresponds to an initial, constant population inversion as caused by the pump. This is substituted
into (5.5) to give the 1st order (in Eω(r)) approximation to Pω(r):

P(1)
ω (r) = −i

d2

~γ⊥
D(ω)∆n0Eω(r). (5.9)

Substitution of (5.9) into the 2nd term on the r.h.s of (5.5) yields the 2nd order in Eω(r) term for
the population inversion:

∆n(2)
ω (r) = −

d2∆n0

~2γ⊥γ‖
D‖(ω)

1
π

∫ ∞

0
dω′

[
E∗ω′−ωEω′D(ω′) + Eω′+ωE∗ω′D

∗(ω′)
]
. (5.10)

Finally, substitution of (5.10) back into r.h.s of (5.6) yields the required cubic order in Eω(r) term
for the polarization

P(3)
ω (r) = i

(
d2

~γ⊥

)2
∆n0

~γ‖
D(ω)

1
2π2

∫ ∞

0
dω′

∫ ∞

0
dω′′ Eω′D‖(ω − ω′)

×
[
D(ω′′)E∗ω′′+ω′−ωEω′′ + D∗(ω′′)Eω′′−ω′+ωE∗ω′′

]
(5.11)

and the substitution of (5.11) into the r.h.s. of (5.4) gives finally the desired equation for the
dynamics to 3rd order in Eω(r)

− ε(r)ω2Eω(r) − ∇2Eω(r) = −i4π
d2

~γ⊥
ω2D(ω)

1
2π2

∫ ∞

0
dω′

∫ ∞

0
dω′′ Eω′D‖(ω − ω′)

×
[
D(ω′′)E∗ω′′+ω′−ωEω′′ + D∗(ω′′)Eω′′−ω′+ωE∗ω′′

]
, (5.12)

In order to obtain a clean expression for the nonlinearity, an additional approximation has
been made. This is the constant inversion approximation ([33], sec. VI.C). This involves the
assumption of small population pulsations, or |D||(ω − ω′)| << 1. Since the difference ω − ω′ is
typically of order γ⊥, the constant inversion approximation implies that γ⊥ >> γ‖. In practical
terms this means for the function D‖(ω) the following simplification:

D‖(ω) ≈ γ‖

[
πδ(ω) + iP

1
ω

]
, (5.13)
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can be made, and we neglect the principal value part of the expression (5.13). This simpli-
fies (5.12) such that we can write it in the following manner:

−ε(r)ω2Eω(r) − ∇2Eω(r) = − i4π
d2

~γ⊥
∆n0(r)ω2D(ω)Eω(r)+ (5.14)

+ i4π
(

d2

~γ⊥

)2
∆n0(r)
~

ω2D(ω)Eω(r)
1
π

∫ ∞

0
dω′ L(ω′)|Eω′ |

2,

(5.15)

where
L(ω) ≡ Re(D(ω)) =

1

1 +
(ω−ν)2

γ2
⊥

(5.16)

In order to simplify further calculations we define the quantities

Ẽω(r) ≡ D(ω)Eω(r) (5.17)

Ẽ∗ω(r) ≡ D∗(ω)E∗ω(r) (5.18)

which enables us to write (5.15) in the slightly different form

−ε(r)ω2Eω(r)−∇2Eω(r) = −i4π
d2

~γ⊥
∆n0(r)ω2Ẽω(r)+i4π

(
d2

~γ⊥

)2
∆n0(r)
~

ω2Ẽω(r)
1
π

∫ ∞

0
dω′ |Ẽω′ |

2,

(5.19)
Further defining the “generalized” dielectric constant:

ε̃(r, ω) ≡ ε(r) − i4π
d2

~γ⊥
∆n0(r)D(ω), (5.20)

with which we can rewrite (5.14)

− ε̃(r, ω)ω2Eω(r) − ∇2Eω(r) = i
4
~

(
d2

~γ⊥

)2

∆n0(r)Ẽω(r)
∫ ∞

0
dω′|Ẽ′ω(r)|2 (5.21)

We note that in the Coulomb gauge the electric field is related to the vector potential as Eω(r) =

iωAω(r), which translates similarly to the tilded quantities: Ẽω(r) = iωÃω(r), where similarly

Ãω(r) ≡ D(ω)Aω(r) (5.22)

Ã∗ω(r) ≡ D∗(ω)Aω(r). (5.23)
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From the considerations above we can then write down the action of the fields Ẽω(r)

S =
1

8π

∫
dr

∫ ∞

0

dω
π

{
Ẽ∗ω(r)

[̃
ε(r, ω)ω2 + ∇2

]
Eω(r)

}
+

+ i
1

4~

(
d2

~γ⊥

)2 ∫
dr∆n0(r)

∫ ∞

0

dω
π

∫ ∞

0

dω′

π
|Ẽω(r)|2|Ẽω′(r)|2 (5.24)

or in terms of the “modified” vector potential Ãω(r)

S =
1

8π

∫
dr

∫ ∞

0

dω
π

{
Ã∗ω(r)

[̃
ε(r, ω)ω2 + ∇2

]
Aω(r)

}
+

+ i
1

4~

(
d2

~γ⊥

)2 ∫
dr∆n0(r)

∫ ∞

0

dω
π

∫ ∞

0

dω′

π
ω2|Ãω(r)|2ω′2|Ãω′(r)|2 (5.25)

The action (5.25) will be the starting point for the derivation of the nonlinear sigma model. We
recall that the disorder is contained in the random dielectric constant. Physically, (5.25) describes
the behavior of a laser in a disordered medium, operating in the multimode regime. Pumping
of the system is given by the population inversion ∆n0(r), and multimodality is seen from the
integral over ω on the right hand side of (5.25). There the quartic term gives the saturation which
ensures that energy in the system saturates at some point and the laser operates in a steady-state
regime.
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5.2 Hubbard Stratonovich transformation

5.2 Hubbard Stratonovich transformation

From the previous section we have seen that it is possible to obtain a quartic term in the equation
of motion describing the electric field E(r, t). We first note that we will again work in the Coulomb
gauge, i.e., we will write the electric fields in terms of the vector potential fields Aω(r), where
Eω(r) = iωAω(r). Writing the quartic action in terms of Aω(r) then yields

S =
1

8π

∫
dr

∫ ∞

0

dω
π

{
Ã∗ω(r)

[̃
ε(r, ω)ω2 + ∇2

]
Aω(r)

}
+

+ i
1

4~

(
d2

~γ⊥

)2 ∫
dr ∆n0(r)

∫ ∞

0

dω
π

∫ ∞

0

dω′

π
ω2 ω′2 |Ãω(r)|2|Ãω′(r)|2. (5.26)

On the right-hand side, there appears the product L(ω)L(ω), where L(ω) is the real part of the
atomic propagator.

L(ω) ≡ Re(D(ω)) =
1

1 +
(ω−ν)2

γ2
⊥

(5.27)

We see that (5.26) contains a term which is of quartic order in the modified vector potential Ãω(r),
in the form

S int = i
1

4~

(
d2

~γ⊥

)2 ∫
dr ∆n0(r)

∫ ∞

0

dω
π

∫ ∞

0

dω′

π
ω2 ω′2 |Ãω(r)|2|Ãω′(r)|2 (5.28)

We can deal with this term by performing a Hubbard-Stratonovich (HS) transformation; the
details are given in Appendix D. As stated there, we assume homogeneous external pumping in
this work. This procedure then yields the quadratic action (we set ~ = 1)

S int = −
d2 √∆n0

2γ⊥

∫
dr

∫
dωdω′

π2 Ãω(r)ωΦωω′(r)ω′Ã∗ω′(r) (5.29)

≡ −α̃

∫
dr

∫
dωdω′

π2 D(ω)Aω(r)ωΦωω′(r)ω′Ã∗ω′(r) (5.30)

The Hubbard-Stratonovich transformed action will have the form

S =
1

8π

∫
dr

∫
dω
π

dω
π

Ã∗ω(r)
(
gωω′(r) − α(ω)Φωω′(r)

)
Aω′(r) (5.31)

where we have defined
gωω′(r) ≡ δ(ω − ω′)

[̃
ε(r, ω)ω2 + ∇2

]
(5.32)

and

α(ω) ≡ D(ω)α̃ (5.33)

=
d2ν2

γ⊥

√
∆n0D(ω) (5.34)
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Chapter 5 Application of the Nonlinear σ-Model: Random Lasing

The definition of (5.32) follows that as given in the second chapter. We have also approximated
ω,ω′ by the value of the atomic transition frequency ν. In the case of inhomegeneous population
inversion, we can show (in Appendix D) that in this case the quadratic action is given by

S int = −
d2

2
√
Pγ⊥

∫
dr

∫
dωdω′

π2 ∆n0(r)Ãω(r)ωΦωω′(r)ω′Ã∗ω′(r) (5.35)

≡ −

∫
dr

∫
dωdω′

π2 Aω(r)αih(r, ω)Ã∗ω′(r) (5.36)

where P is a constant normalization factor proportional to the integral of ∆n0(r) over all space,
and

αih(r, ω) ≡
d2ν2

2
√
Pγ⊥
D(ω)∆n0(r) (5.37)

and we can write our action in the form

S =
1

8π

∫
dr

∫
dω
π

∫
dω′

π
Ã∗ω(r)

(
gωω′(r) − α(r, ω)Φωω′(r)

)
Aω′(r) (5.38)

5.3 Disordered action

In the previous section we have derived, via the use of a Hubbard-Stratonovich transformation, the
disordered action including nonlinearity. For simplicity we will consider the case of homogeneous
pumping (population inversion), which is then given by the action

iS [Q̂] ≡ −
πν̃~

4τ
Tr [Q̂2] − Tr [Φ̂†γ̂Φ̂] + Tr ln

[
Ĝ−1

0 +
~̃

2τ
γ̂Q̂ − αΦ̂

]
, (5.39)

where

Φ̂ωω′(r) =

(
φ

q
ωω′(r) φcl

ωω′(r)
φcl
ωω′(r) φ

q
ωω′(r)

)
(5.40)

is the explict form of the Hubbard-Stratonovich field used in the decoupling of the interaction
term. The derivation of (5.39) follows closely to that of the linear action derived in Chapter 2; the
additional term αΦ̂ is derived in detail in Appendix D. Using (5.39) we can derive the diffusive
form of the sigma model. The derivation of this action is very similar to that of the linear case,
which has been treated in Chapter 2. The derivation of the diffusive σ-model including the HS
field is done in Appendix D and we obtain, finally

iS [Q̂, Φ̂] =
iν
2

Tr [Φ̂γ̂Φ̂] −
πν

4
Tr

{
D(∇rQ̂)2 − 4∂tQ̂ + βQ̂Λ̂0 − 4αΦ̂Q̂

}
(5.41)

where

Φ̂ωω′(r) =

(
φcl
ωω′(r) φ

q
ωω′(r)

φ
q
ωω′(r) φcl

ωω′(r)

)
(5.42)
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where we note the “correct” structure of Φ̂. β is the strength of the pumping, given by the
combination of physical coefficients defined in (5.20). We note that for the derivation of (5.41)
we have discarded its dependence on both ω and r; hereafter the pump strength will be a constant
parameter describing the strength of the external driving of the laser. Similar simplifications have
been performed on the saturation parameter α.

(5.41) is the diffusive nonlinear sigma model of a random laser. This expression is now the
starting point of a multitude of possible computations; in this work we will only touch upon one
(calculation of the nonequlibrium distribution function). The task which then follows is then to
find the effects of fluctuations away from the saddlepoint (4.23). This requires the choosing of
a suitable parameterization of the Q̂ matrix according to the physics of the system. In general,
since we have multiple elastic scattering in our disordered medium, we mainly want to look at
the diffusive modes of the system. These modes, called diffusons, can be studied by the following
parameterization of the Q̂ matrix

Q̂ = Û ◦ eŴ/2 ◦ σ̂3 ◦ e
ˆ−W/2 ◦ Û−1 (5.43)

where

Ŵ =

(
0 w

w† 0

)
, Û = Û

−1
=

(
1 F
0 −1

)
, (5.44)

and w, w† represent diffusion modes of the system.

5.4 Stationary saddlepoint in presence of nonlinearity

Before we consider the diffusive fluctuations in presence of nonlinearity we need to determine
the how the stationary saddlepoint (4.23) is modified by nonlinearity. In this section we will
perform sketches of computations to illustrate the procedure; the explict calculations are to be
found in Appendix D. We start with the form of the action including the Hubbard-Stratonovich
field (5.41). Varying with respect to the classical and quantum components of the HS field φcl
and φq we obtain the following set of equations1

i
δS [Q̂, φcl, φq]

δφcl
!
= 0⇒ −2

¯
φq − α

(
1 − αĜclγ̂

¯
φq

)−1
◦

(
δ

δφcl Ĝclγ̂

)
◦

¯
φq = 0 (5.45)

i
δS [Q̂, φcl, φq]

δφq
!
= 0⇒ −2

¯
φcl − α

(
1 − αĜclγ̂

¯
φq

)−1
◦ Ĝclγ̂ = 0 (5.46)

where the notation Ĝclγ̂ =


{
[G−1

0 ]R + ~̃
2τ ¯

QR − φcl
}−1

GK
0

0
{
[G−1

0 ]A + ~̃
2τ ¯

QA − φcl
}−1

 ≡
(

¯̄
GR

cl ¯̄
GK

cl
0

¯̄
GA

cl

)
and we have used that the partition function in the absence of the quantum component of the HS
field is unity Z[φcl, φq = 0] = 1. We note that the Keldysh component of the Green’s function

1 The notation A ◦ B denotes convolution over time and space coordinates of fields A and B.
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¯̄
GK

cl can be parameterized in the usual way as
¯̄
GK

cl =
¯̄
GR

cl ◦ F − F ◦
¯̄
GA

cl, and in the case with
nonlinearity the Green’s functions

¯̄
G(R,A)

cl are functionals of the classical component of the HS
field,

¯̄
G(R,A)

cl ≡
¯̄
G(R,A)

cl [
¯
φcl]

Evaluating the second term of (5.45) explicitly we have

−2
¯
φq −

[
1

det(. . . )
◦

(
1

¯
φq

¯̄
GR

cl

¯
φq

¯̄
GA

cl 1 −
¯
φq

¯̄
GK

cl

)]
◦

(
0

¯
φq

¯
φq 0

)
!
= 0

−

[
1

det(. . . )
◦

(
¯
φq

¯̄
GR

cl �

⊗
¯
φq

¯̄
GA

cl

)]
◦

¯
φq !

= 2
¯
φq

−

[
1

det(. . . )
◦

¯
φq ◦

(
¯̄
GR

cl +
¯̄
GA

cl

)]
◦

¯
φq !

= 2
¯
φq

(5.47)

The structure of (5.47) is important since, written out explicitly, the l.h.s. has the form[
1

det(. . . )
◦

¯
φq ◦

(
¯̄
GR

cl +
¯̄
GA

cl

)]
◦

¯
φq =

=

∫
dr

∫
dt

[
1

[det(. . . )] tt ¯
φq(r, t)

(
¯̄
GR

cl(r, r; t, t) +
¯̄
Gcl(r, r; t, t)

)
¯
φq(r, t)

]
(5.48)

where the equality in the time dependencies are due to the requirements of the trace (integration
over temporal and spatial variables). Specifically, the determinant, being a operation in the space
of the 2 × 2 Keldysh space will retain the same time dependence as the original matrix, while all
the other quantities in the square brackets will have their time dependencies imposed by the trace.
Since it is a known fact that due to the time causal characteristics of the retarded and advanced
Green’s functions, we have the relation GR(t, t) + GA(t, t) = 0, the φq(r, t) at saddlepoint vanishes.

The classical component of the HS field φcl can be determined similarly. We look at (5.46) and
writing out everything explicitly we obtain

2
¯
φcl = −α

[
1

det(. . . )
◦

(
1

¯
φq

¯̄
GR

cl

¯
φq

¯̄
GA

cl 1 −
¯
φq

¯̄
GK

cl ¯
φq

)]
◦

(
¯̄
GR

cl ¯̄
GK

cl
0

¯̄
GA

cl

) (
0 1
1 0

)
= −α

[
1

det(. . . )

(
1 0
0 1

)]
◦

(
¯̄
GK

cl ¯̄
GR

cl

¯̄
GA

cl 0

)
= −α

¯̄
GK

cl(r, r; t, t)⇒
¯
φcl(r; t) = −

α

2 ¯̄
GK

cl(r, r; t, t)

, (5.49)

Hence we obtain the value of the classical component of the HS field. We note that due to the fact
that the Green’s functions

¯̄
GR

cl
[φq] and

¯̄
GA

cl
[φq] are functionals of the saddlepoint value of the HS

field, (5.49) is actually a self-consistent expression for
¯
φcl. Written out in full, (5.49) is given by

¯
φcl(r, t) = −

α

2

∫
dt′

[
GR

0 (t, t′; r, r; [
¯
φcl])F(t′, t; r, r) − F(t, t′; r, r)GA

0 (t′, t; r, r; [
¯
φcl])

]
(5.50)
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(5.50) can then be Wigner transformed2 into the usual form

¯
φcl(R,T ) = −

α

2

∑
k

∫
dε

[
GR

e (R,T ; k, ε) −GA
e (R,T ; k, ε)

]
F(R,T ; ε) (5.52)

where the “effective” Green’s functions are defined as

GR,A
e (R,T ; k, ε) ≡

1
ε − ε(k) ± i

2τ − ¯
φcl(R,T )

. (5.53)

To be able to determine
¯
φcl, we need a second equation that relates F(r, r′; t, t′) and

¯
φcl; this

can be obtained by choosing a suitable parameterization of the diffusive fluctuations around
saddlepoint and varying; this expression is called the Usadel equation.

5.5 Diffusive motion

In order to obtain the diffusive motion of light in disordered media we expand the action (5.41)
up to 2nd order in the diffusive modes. To facilitate this expansion we proceed as follows: the
matrix Q̂, in the parameterization (5.43), can be expanded in powers of the modes d, d̄ up to
quadratic order in these modes to obtain:

Q̂ ≈ iΛ̂ + δQ̂(1) + δQ̂(2) (5.54)

where the superscripts denote the powers of the d, d̄ modes in each term. This expansion in the
diffusive modes has already been discussed in an earlier chapter. The expressions δQ̂(1) and δQ̂(2)

are as follows:

δQ̂(1) = iÛσ̂zŴÛ
−1 = i

(
−F ◦ w† −w − F ◦ w† ◦ F

d̄ w† ◦ F

)
(5.55)

and

δQ̂(2) =
i
2
ÛŴ2σ̂zÛ

−1 =
i
2

(
w ◦ w w ◦ w† ◦ F + F ◦ w† ◦ w

0 −w† ◦ w

)
(5.56)

Keeping both orders we perform a systematic expansion. The explicit calculations are shown in
Appendix D and we will only show the final result in this section. The total action to 2nd order in

2 A Wigner transform is defined as the following transformation of a field depending on one spatial variable r and
two time variables t, t′:

Ftt′ (r) =

∫
dε
2π

Fε(r,T )e−iε(t−t′) (5.51)

where T (and also R, in our case) are “slowly-varying” quantities and hence represent our actual physical variables.
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the diffusons is given by

iS [w, w†, ˆ
¯
Φ] =

πν

4
tr

{
D

[
2w†∇2

rw + w†(∇rF)w†(∇rF)
]

+ 8
[
(∂tw)w†

]
− i

[
ww†F + Fww†

]
¯
φq+

+
[
ww† − w†w

]
¯
φcl − −2D(∇rF)(∇rw

†) + 2[w†(∂tF)] + 4i[
¯
φq

[
(w† − w) + 2F − Fw†F

]
+

+
¯
φcl(w†F − Fw†)]

}
(5.57)

To obtain the usual form of the diffusion pole we neglect the term w†(∇rF)w†(∇rF). In this form,
we note that the expansion in powers of w, w† has been done around the saddlepoint value iΛ̂, i.e.,
the stationary saddlepoint, at which the saddlepoint values of φcl and φq have been determined.
In other words, we should regard (5.57) as a formal expression. In order to obtain the complete
correct expression of (5.57), we need to find equations which determine the saddlepoint values

¯
φcl and

¯
φq. We note that this has been partially done above in a previous section; there we see

that by varying the original (non-diffusive) action we obtain the following values

¯
φcl(r, t) = −

α

2 ¯̄
GK(r, r; t, t) (5.58)

¯
φq(r, t) = 0 (5.59)

We will show below that the values of
¯
φcl and

¯
φq do not change in the presence of fluctuations; in

other words, at the common saddlpoint manifold of φcl and φq we find that the saddlepoint values
of the φ fields are unaltered (however, if we allow for different saddlepoint manifolds, i.e., if we
allow, for example, that the diffusive fluctuations are at saddlepoint while those of the HS are
not, then this might change the fact that the saddlepoint values of φ are unaltered, but we did not
examine this possibility).

5.5.1 Action for the lifetime term

The Usadel equation is derived by taking into account the action expanded to first order in the
diffusive modes which we are interested in and varying with respect to them in order to find the
most probable fluctuations around the stationary saddlepoint; these fluctuations are now (weakly)
spatial and temporal dependent. We proceed by substituting (5.55) into the action (5.41) and
keeping only terms which are of first order in the diffusive modes. This expression is then varied
w.r.t. d, d̄, φq and φcl. This procedure yields 4 equations which determine these quantities in the
most probable configuration. The action expanded up to the correct order is as follows:

iS (1)[w, w†, Φ̂] = −
πν

4
tr

{
2D(∇rF)(∇rw

†) − 2[w†(∂tF)] + τ−1
p (w† − w)F−

− 4i[
¯
φq

[
(w† − w) + 2F − Fw†F

]
−

¯
φcl(w†F − Fw†)]

}
(5.60)
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The 4 determining equations are then obtained as follows:

i
δS (1)[Q̂, d, d̄]

δw†ττ′
= −2D

(
∇2

r Fττ′(r, r)
)

+ 2∂τFττ′(r, r) − τ−1
p Fττ′(r, r)−

− 4i
[(

¯
φcl(τ) −

¯
φcl(τ′)

)
Fττ′(r, r) −

¯
φq(τ)δττ′ − F ◦

¯
φq ◦ F

] !
= 0

⇒ D(∇2
r Fττ′(r)) − ∂τFττ′(r) + τ−1

p F = 4i
(
¯
φcl(τ) −

¯
φcl(τ′)

)
Fττ′(r)

(5.61)

i
δS (1)[d, d̄, Φ̂]

δwττ′
= 4i

¯
φq(τ)δττ′

!
= 0

⇒
¯
φq(τ) = 0

(5.62)

For the saddlepoint equations determining the HS fields φcl(r, t) and φq(r, t) we need to take the
term in the action which is quadratic in the φs. Doing this, we obtain the last 2 equations

i
δS (1)[w, w†, Φ̂]

δφcl
!
= 0

⇒
2
α ¯
φq(r, τ) = −4i

∫
dt′ (

˜
w†τt′(r)Ft′τ(r) − Fτt′(r)

˜
w†t′τ(r)) = 0

(5.63)

i
δS (1)[w, w†, Φ̂]

δφq
!
= 0

⇒
2
α ¯
φcl(r, τ) = −4i(

˜
w†ττ(r) −

˜
wττ(r) + 2Fττ(r)) −

∫
dt′ dt′′ Fτt′(r)

˜
w†t′t′′(r)Ft′′τ(r) = 2Fττ(r)

(5.64)

In (5.63) we see that the the quantum component of the HS field
¯
φq is indeed zero, since we have

expanded around the saddle point value at
˜
w†,

˜
w = 0. From the (5.63) and (5.64) we see that the

saddlepoint values for φcl and φq even in the presence of diffusive fluctuations retains their same
value as obtained in the absence of fluctuations (the saddlepoint value

¯
φcl has the form indicated

because we have expanded the diffusive fluctuations around the stationary saddlepoint, at which
the parameterization for the Keldysh component of the Λ̂ matrix is given by ΛK = ΛR◦F−F ◦ΛA,
and where ΛR = −ΛA = 1). Using the result from (5.61) we see that the interaction will affect the
form of the Usadel equation only via the classical component of the HS field ˆ

¯
Φ; hence, we obtain

an equation describing the dynamics of the field F(r, r; t, t′)

D∇2
r F(r, r; t, t′) −

1
2

(
∂tF(r, r; t, t′) + ∂t′F(r, r; t, t′)

)
+ τ−1

p F(r, r; t, t′) =

=
(
¯
φcl(r, t) +

¯
φcl(r, t′)

)
F(r, r; t, t′)

(5.65)

(5.65) is the kinetic equation determining the dynamics of the function F(r, r; t, t′) and the
classical component of the HS field

¯
φcl(r, t). In order for F to yield a physically meaningful

quantity we need to transform it in the Wigner representation, but since (5.65) is coupled to the
HS field φ(r, t) we will proceed by first writing down the integro-differential equation.
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5.6 Nonlinear integro-differential equation for the laser
distribution function

5.6.1 Introduction

In this section we outline our attempt at a solution of the set of coupled nonlinear equations (5.50)
and (5.65). However, before that we need to introduce some simplifications and additional details
which are crucial for their solution.

First, we write (5.50) and (5.65) for the physical quantity F(z, z; t, t′) as a single nonlinear
integro-differential equation and transform this in the Wigner representation, which has then the
functional dependence F̃(R,T ; ε). In this representation we are able to deduce the behavior of
the photonic occupation as a function of the energy ε, which is important for the determination of
linewidth. In addition, the dependence of F on the spatial variable also contains information on
the size of the lasing spot, which we show how to obtain analytically in the next section.

Secondly, we note that we will restrict our considerations to one dimension, i.e., our equations
will describe only dynamics in the z-direction. Space in the x − y plane will be assumed to be
translationally invariant, i.e., we can perform a Fourier transform in those directions. In doing
this we introduce an additional variable q‖ into the problem , which has the meaning of the
parallel momentum in the x − y plane. Hence physically, our system of consideration consists of
a thin slab which stretches indefinitely in the x − y directions, and has a fixed thickness in the
z-direction.

Finally, we need to impose boundary conditions in order to obtain solutions to our equations. In
our problem we impose boundary conditions similar to conventional Neumann conditions, where
instead of the value of the solution (u(x = 0) = a, u(x = L) = b) is provided at the boundaries (as
in Dirichlet boundary conditions), the values of the derivative (u′(x = 0) = a, u′(x = L) = b) at
the boundaries are provided instead. In our case, we impose a slightly different version of the
Neumann conditions, where instead of specifying the values of the derivatives at the boundaries,
we require that the derivatives at the boundaries are proportional to the solution itself at the
boundaries.

5.6.2 Wigner transform and first approximation of coupled set of
integro-differential equations

In this section we will perform further analytical simplification on the coupled set of equa-
tions (5.50) and (5.65). Specfically, we will write these as a single integro-differential equation
which we then transform in the Wigner representation.

We first simplify the problem to 1D, because later we adopt a particular spatial form for our
system which assumes homogeneity in both x, y-directions, and diffusive motion only in the
z-direction. We will write this 1D version of the distribution function as F̃(z, z; t, t′), or the
Wigner-transformed version f̃ (z, q; T, ε), where q ≡ |q‖|, and q‖ is the wave vector in the x − y
plane.
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5.6 Nonlinear integro-differential equation for the laser distribution function

In 1D (5.65) and (5.50) take the forms

D∂2
z F̃(z, z; t, t′) −

1
2

(
∂tF̃(z, z; t, t′) + ∂t′ F̃(z, z; t, t′)

)
+ τ−1

p F(r, r; t, t′) =

=
(
¯
φcl(z, t) +

¯
φcl(z, t′)

)
F̃(z, z; t, t′)

(5.66)

and

¯
φcl(z, t) = −

α

2

∫
dt′

[
GR(z, z; t, t′)F̃(z, z; t′, t) − F̃(z, z; t, t′)GA(z, z; t′, t)

]
(5.67)

where
¯
φcl(z, t) is the saddlepoint value of the classical component of the Hubbard-Stratonovich

matrix field Φ(z, t). We have shown that the quantum component of Φ(z, t) is identically zero, at
least within the saddlepoint manifold. In order to separate out the physically relevant time and
length scales, which are typically much longer and slowly varying as compared to “microscopic”
scales of the system (atomic transition frequency between energy levels, frequency of light
oscillations, etc), we turn to the Wigner representation of our quantities.

The Wigner transformation involves the rewriting the time and length scales present in our
system in terms of sums and differences:

Z ≡
z + z′

2
, ∆z ≡ z′ − z (5.68)

T ≡
t + t′

2
, ∆t ≡ t′ − t (5.69)

We can then perform Fourier transform with respect to the “fast” variables, where the transform
has the form

F̃(z, z; t, t′) = F̃T− ∆t
2 ,T+ ∆t

2
(z, z) (5.70)

=

∫
dε
2π

f (Z; T, ε) e−iεt (5.71)

where we have suppressed the dependence of f̃ on the difference of z. We note that since f (Z; T, ε)
is a spatially local quantity, we have, with respect to the spatial variable Z the simple relation
Z = z (however, in the following we will keep the capitalized notation in order to emphasize what
we are working with Wigner variables). We obtain for (5.66)

D∂2
Z f (Z; T, ε)−∂T f (Z; T, ε)+τ−1

p f (Z; T, ε) =

∫
dε′

[
f (Z; T, ε +

1
2
ε′) − f (Z; T, ε −

1
2
ε′)

]
¯
φcl(Z, ε′)eiε′T

(5.72)
and for the 2nd equation

¯
φcl(Z, ε) = −

α

2

∫
dT

∫
dε′

[
GR(Z; T, ε′ −

1
2
ε) −GA(Z; T, ε′ +

1
2
ε)

]
f (Z; T, ε′) (5.73)
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where the retarded / advanced Green’s functions have the form(s)

GR(A)(Z; T, ε) ≡
1

ε − ξk ±
i

2τ − ¯
φcl(Z,T )

(5.74)

Substituting (5.73) into (5.72) yields the nonlinear integro-differential equation of our problem,
expressed in terms of the Wigner variables

D∂2
Z f (Z; T,Ω) − ∂T f (Z; T,Ω) + τ−1

p f (Z; T,Ω) =

=

∫
dω′

2π

∫
dT

∫
dΩ

2π
eiεT

[
GR(z, z; T + T ′,Ω+) −GA(z, z; T + T ′,−Ω+)

]
×

× f (Z; T,Ω)
(

f (Z; T, ω − ω′) − f (Z; T, ω′ − ω)
)

(5.75)

As have been mentioned before, the point of performing a Wigner transformation is to separate
the “fast” and “slow” variables of the problem such that we can study the typically macroscopic
quantities while getting rid of small rapid fluctuations. In terms of the equations under study this
translates to expansions of our functions GR(A)(z, z; T,Ω ± 1

2ω) and f (z, z; T,Ω ± 1
2ω) in powers

of ω and retaining terms up to the appropriate order. The details of this calculation can be found
in Appendix D. Here we will simply give the final expression below

D
∂2

∂Z2 f (Z; T, ω) −
∂

∂T
f (Z; T, ω) + τ−1

p f (Z; T, ω) =

=
α

2

∫
dΩ

2π

{[
f (Z; T,Ω) ImGR(Z; T,Ω)

][
f (Z; T, ω) + f (Z; T,−ω)

]
+

+

[(
∂

∂T
f (Z; T,Ω)

) (
ImGR(Z; T,Ω)

)] ∂

∂ω

[
f (Z; T, ω) + f (Z; T,−ω)

]}
(5.76)

We note that (5.76) can be written in the usual finite differential form as described above, but
in this work we will only take into account the first term on the right-hand side (term with
no differential operators) in order to make the connection with the nonlocal Fisher equation
stemming from the set of equations expressed in the original variables.

Alternative approach to approximation of integro-differential equation

In this section we mention an additional simplification of our problem. We again look at (5.76).
If we now proceed to discard terms which are of second order in the derivatives with respect to
the slowly varying variables, we obtained the simple expression

D
∂2

∂Z2 f (Z; T, ω) −
∂

∂T
f (Z; T, ω) + τ−1

p f (Z; T, ω) =

=
α

2

∫
dΩ

2π

[
f (Z; T,Ω) ImGR(Z; T,Ω)

][
f (Z; T, ω) + f (Z; T,−ω)

]
(5.77)
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5.6 Nonlinear integro-differential equation for the laser distribution function

Keeping in mind that our final expressions must be functions of the slow, or macroscopic variables,
we can now assume that our distribution functions are independent of the fast, or microscopic
variables, i.e.,

f (Z; T,Ω) ≈ f (Z; T ). (5.78)

In this approximation we can then write (5.77) in the form of a local Fisher equation, i.e.,

D
∂2

∂Z2 f (Z; T ) −
∂

∂T
f (Z; T ) + τ−1

p f (Z; T ) = α

(∫
dΩ

2π
ImGR(Z; T,Ω)

)
f (Z; T )2 . (5.79)

which now presents the form of a simple local Fisher equation with a (Z,T ) dependent prefactor
which can be interpreted as the spectral function.

5.6.3 Diffusive motion in a thin slab

Fourier transform in the parallel direction

The description of transport as presented in previous sections applies to the diffusive behavior of
the distribution function f (Z,T ; ε), which applies only in the single dimension z. In a realistic
situation we will also need to know how to deal with the other two dimensions and to correctly
include the dynamics in the x − y plane in our expressions; this issue will be dealt with in this
section. The simplest possible configuration is the thin slab, which is a particularly simple
high-dimensional physical configuration. Our spatial dimension of interest is aligned along the
z-axis, leaving the space translational invariance unbroken in the x− y direction. This implies that
we can perform a straightforward Fourier transform along both the x- and y-axes but leave the
z-axis in its original form, where we expect our solution for f (z,q‖,T ; ε) will show the relevant
dynamics, where here q‖ is the momentum vector in the x − y plane.

We can see how to include the effect of the spatial homogeneity in the x − y direction by going
back to the diffusion equation in three-dimensional space and including the “collision integral”
from the right-hand side of (5.86)

D∇R f̃ (R,T ; ε) − ∂T f̃ (R,T ; ε) + β f̃ (R,T ; ε) = I[ f̃ (R,T ; ε)2] (5.80)

where here we temporarily denote the full 3-dimensional spatial vector as R ≡ (X,Y,Z); we will
then move to more appropriate notation as necessary. The ∇R operator in (5.80) can be trivially
rewritten as

∇R f̃ (R,T ; ε) ≡
(
∇2
‖

+
∂2

∂Z2

)
f̃ (Z, ~X,T ; ε) (5.81)

where on the right-hand side of (5.81) we have rewritten the function f̃ (R,T ; k.ε) as depending
on the Z-coordinate and a ~X vector which we assume to point in the x − y plane only. The
nabla-operator in the parallel direction is space translational invariant, i.e., it admits of a Fourier
transform of the form

∇2
‖

F.T.
−−−→ −|~q‖|2 (5.82)
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Both the neglect of the time dependence and the taking of the Fourier transform in the x − y axes
results in the following modification to the diffusion equation, (5.80)

− Dq2
‖

f (Z, q‖,T ; ε) + D∂2
Z f (Z, q‖,T ; ε) = I[ f (Z, q‖,T ; ε)2] (5.83)

which yields for (5.65) and (??):

− Dq2
‖

f (Z, q‖,T ; ε) + D∂2
Z f (q‖,Z,T ; ε) − ∂T f (Z, q‖,T ; ε) + β f (Z, q‖,T ; ε) =

=
(
¯
φcl(Z,T ) −

¯
φcl(Z,T ′)

)
f (Z, q‖,T ; ε) (5.84)

and

¯
φcl(Z,T ) = −

α

2

∫
dε

∑
k

[
GR

e (Z,T ; k, ε) −GA
e (Z,T ; k, ε)

]
f (Z, q‖,T ; ε). (5.85)

here written in the original space and time variables. Substituting (5.85) into (5.84) gives the
single equation

− Dq2
‖

f (Z, q‖,T ; ε) + D∂2
Z f (q‖,Z,T ; ε) − ∂T f (Z, q‖,T ; ε) + β f (Z, q‖,T ; ε) =

= −α

∫
dω

∑
k

(
Im GR

e (R,T ; k, ω) f (q‖,Z,T ;ω)
)(

f (q‖,Z,T ; ε) + f (q‖,Z,T ;−ε)
)
. (5.86)

where Im GR
e (Z,T ; k, ε) ≡ GR

e (R,T ; k, ε) − GA
e (R,T ; k, ε). We can perform the additional sim-

plification mentioned in the last subsection by discarding the frequency dependence of the f
functions (Eq. (5.78)) to obtain the final expression

−Dq2
‖

f (Z, q‖,T ) + D∂2
Z f (q‖,Z,T ) − ∂T f (Z, q‖,T ) + β f (Z, q‖,T ) =

= −α

∫
dω

(∑
k

Im GR
e (R,T ; k, ω)

)
f (q‖,Z,T )2.

(5.87)

(5.87) is a general form of an equation usually called the nonlocal Fisher-Kolmogorov-Petrovskii-
Piskunov (Fisher-KPP) equation ([76], [77]). This is a well-studied equation which has been
applied to the theory of population growth in ecology, econophysics and pattern formation in
bacterial cultures [78]. In general, it is suited to the description of effects of competition between
enhancement and depletion of resources which are required for sustained growth of a population
(of individual animals, value of stocks, or modes in a multimode random laser).

The first term in (5.87) has the form of a constant prefactor multiplied by the solution f (Z, q‖,T ),
which is now a function of three variables. The second and third terms, along with the right-
hand side, corresponds to the original three-dimensional diffusion equation (5.80), but now
with dynamics in only the dimension z dimension. In the next section we will describe how
we combine the solution of the 1D version of (5.80) (which of course gives a solution with
the functional dependence f (R,T )) with the first term in (5.83) to obtain the overall solution
f (Z, q‖,T ).
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5.6 Nonlinear integro-differential equation for the laser distribution function

Boundary conditions

As for the solution of any second-order differential equation, boundary conditions are required. In
our problem we impose a particular form of the usual Neumann boundary conditions: whereas in
the usual case the Neumann conditions states that, at the boundaries x = 0 and x = L (assuming a
one-dimensional domain x ∈ [0, L])

d
dx

u(x, t)
∣∣∣∣∣
x=0

= 0,
d
dx

u(x, t)
∣∣∣∣∣
x=L

= 0, (5.88)

in our problem the coupling of the system at the boundaries should be proportional to the solution
for the system at the boundaries, i.e.,

d
dx

u(x, t)
∣∣∣∣∣
x=0

= αu(x = 0, t),
d
dx

u(x, t)
∣∣∣∣∣
x=L

= βu(x = L, t), (5.89)

where α and β are physical parameters describing the strength of coupling of the system to the
environment. In physical terms, our boundary conditions enforces that the loss of energy from
our system must always be proportional to the actual energy intensity in the system. This is
then important to ensure the existence of stable solutions to our integro-differential equation.
Numerically, this set of boundary conditions are also simple to implement, and we will do so in
the next section.

5.6.4 Numerical approach to solve the nonlinear integro-differential equation

Crank-Nicolson scheme

We employ a usual Crank-Nicolson (CN) scheme for the solution of (5.87). This method is of
second order in the spatial and first order in the time coordinates, respectively. In this section we
will see how to write down a CN method involving a integral term on the right hand side. In finite
differentiation, the 2nd order spatial differential operator (in 1-dimension) can be approximated
as

∂2

∂Z2 f (q‖,Z,T ) ≈
w

j,k
i+1 − 2w j,k

i + w
j, j
i−1

h2 (5.90)

and the first order in the time derivative is then approximated by

∂

∂T
f (q‖,Z,T ) ≈

w
j+1,k
i − w

j,k
i

k
(5.91)

where w j,k
i denotes the value of the required solution at time, space and energy discretization

step (xi, t j, εk). Note that the k-index is not affected in the dicretization of the spatial and time
derivative operators; in (5.90) and (5.91) it is a simple index. However, the k-index comes into
play in the right-hand side of (5.86) due to the presence of the convolution term.

In the Crank-Nicolson procedure one combines the time stepping in the form of (5.90) (usually
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called the forward differencing scheme) with the alternative (backward differencing) form

∂2

∂Z2 f (q‖,Z,T ) ≈
w

j+1,k
i+1 − 2w j+1,k

i + w
j+1,k
i−1

h2 (5.92)

to yield the expression

w
j+1,k
i − w

j,k
i = λ

[
w

j,k
i+1 − 2w j,k

i + w
j,k
i−1 + w

j+1,k
i+1 − 2w j+1,k

i + w
j+1,k
i−1

]
(5.93)

where λ ≡ Dk
2h2 . Up till now we have not taken the nonlinear term into account. We implemented

a simple trapezoidal qudrature rule, which we can write as∫ b

a
dx f (x) ≈

1
2

hI

N−1∑
I=0

f (xI) (5.94)

where hI ≡
b−a

Nx−1 , where N is the number of discretization points. Hence the integral part of the
equation can be discretized as∫ +∞

−∞

dω Im GR
e (R,T ; k, ω) ≈

1
2

mI

Nω−1∑
k=0

Im GR
e (Ri,T j; k, ωk) (5.95)

where mI = b−a
Nt−1 . Putting together everything we see that for values of i = 1, 2, . . . ,Nx − 2,

j = 1, 2, . . . ,Nt − 2 and k = 0, 1, . . . ,Nω − 1 we obtain the discretized form of (5.86) including
nonlinearity and also pumping in the CN scheme:1 + λ +

1
2

kmIβ

Nω−1∑
K=0

(ImG) j,K
i w

j,K
i

 − 1
2
γk

w j+1,k
i −

1
2
λ
(
w

j+1,k
i+1 + w

j+1,k
i−1

)
−

−


1 − λ − 1

2
kmIβ

Nω−1∑
K=0

(ImG) j,K
i +

1
2
γk

w j,k
i +

1
2
λ
(
w

j,k
i+1 + w

j,k
i−1

) = 0 (5.96)

In order to solve for w j,k
i at arbitrary space, time and energy discretization points (xi, t j), we

need to provide initial and boundary conditions. We will explain the finite discretization of
the (“Neumann”) boundary conditions in the next subsection, but the necessity of the initial
conditions can be seen as follows. We start from an Ansatz to the solution at initial time point
t = t0

w0 =
(
w0,k

0 w0,k
1 w0,k

2 . . . w0,k
Nx−1

)
(5.97)

and substituting this into the term in the second curly brackets in (5.96), on obtains a coupled set
of nonlinear equations which can be solved using a root-finding algorithm. Doing this yields a
solution at time point t = t1, which we again substitute in the part in the curly brackets in (5.96).
Performing this operation for successive time steps yields the solution vector wi at an arbitrary
time step i.
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Boundary conditions

In order to be able to solve the set of coupled equations in (5.66) and (5.67) correctly, we need
to impose initial and boundary conditions. We have already mentioned how the Ansatz to the
solution at time point t = t0 is essential to obtaining a solution w j

i in the CN scheme. On the
other hand, in order to obtain physically meaningful solutions, we also need to impose boundary
conditions. In a previous section we have explained and physically motivated our particular
choice of boundary conditions; these were defined in (5.88). In this section we will explain how
to include (5.88) into our finite differencing scheme.

In order to incorporate (5.88) into our discretized equations, we first note that our equa-
tions (5.96) at space coodinates x = x0 and x = xNx−1 involves the quantities w = w

j,k
−1 and

w = w
j,k
Nx

, respectively, which lie outside of our vector of solutions (which carry space indices in
the range i = 0, 1, . . . ,Nx − 1). The values w−1 and wNx are hence to be determined additionally
from the boundary conditions. To do this we first discretize (5.88). This yields

∂

∂x
w

∣∣∣∣∣∣
i=0

≈
w

j,k
1 − w

j,k
−1

2h
= αw

j,k
0 (5.98)

∂

∂x
w

∣∣∣∣∣∣
i=Nx−1

≈
w

j,k
Nx
− w

j,k
Nx−2

2h
= βw

j,k
Nx−1 (5.99)

We can then solve for the unknown values w j,k
−1 and w j,k

Nx
in terms of known quantities, i.e.,

w
j,k
−1 = w

j,k
1 − 2hαw j,k

0 (5.100)

w
j,k
Nx

= w
j,k
Nx−2 + 2hβw j,k

Nx−1 (5.101)

The finite difference equations at the points i = 0 and i = Nx − 1 are, after taking (5.100)
and (5.101) into account are, respectively:1 + λ (1 + hα) +

1
2

kmIβ

Nω−1∑
K=0

(ImG) j,K
i −

1
2
γk +

1
2

Dq2
‖
k

w j+1
0 − λw

j+1
0 −

−


1 − λ (1 + hα) −

1
2

kmIβ

Nω−1∑
K=0

(ImG) j,K
i +

1
2
γk −

1
2

Dq2
‖
k

w j
0 + λw

j
1

 = 0 (5.102)

and1 + λ (1 − hβ) +
1
2

kmIβ

Nω−1∑
K=0

(ImG) j,K
i −

1
2
γk +

1
2

Dq2
‖
k

w j+1
Nx−1 − λw

j+1
Nx−2−

−


1 − λ (1 − hβ) −

1
2

kmIβ

Nω−1∑
K=0

(ImG) j,K
i +

1
2
γk −

1
2

Dq2
‖
k

w j
Nx−1 + λw

j
Nx−2

 = 0 (5.103)
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where we have also inserted the dependence on the momentum in the x − y plane (q‖) in the
discretized equations. The set of equations (5.102), (5.96) and (5.103) form a set of Nx − 1
coupled nonlinear equations which then needs to be solved numerically.

For our problem, we want to study the behavior of the solutions w j,k
i in the steady-state regime,

which translates to the solution at t → +∞. In the CN scheme, this can be implemented rather
trivially by performing the time-stepping up to a point where the solution does not change.

5.7 Comments and Future Work

In this section we would like to comment on the nonlocal Fisher equation which we have derived
in the previous sections. We note that this equation yields interesting solutions when different
assumptions are made on the gain (pump) and the nonlocal terms. All solutions in this section
have been taken from [79].

First, we see that if we allow for a nonlocal pumping coefficient (which, as is described in
Appendix D, can be included in our derivation of the Fisher equation) and impose a specific
pump profile, we can expect to obtain solutions which are of the form described in [72], hence in
agreement with numerical simulations in 1D. This can be seen in Fig. 5.3, where the x-dependent
pumping coefficient is given by the bimodal form

b(x) =
1

(1 + 50(x − 15)2)10 +
0.9

(1 + 50(x − 85)2)5 (5.104)

Figure 5.3: Solution of the Fisher equation (right-most figure) for a particular form of pump function a(x)
(left-most figure). This result is to be compared with numerical simulations from [73]. Figure from [79].

Although (5.104) looks like a very specific pump profile which is not reproducible, it has
been proven in [79] that the Fisher equation with a local pump profile is able to yield “spike”
solutions, which would explain the observation of spatially narrow output spectrum in numerical
simulations.

In addition, treating the nonlocal term carefully, we can expect a solution of the form shown in
Fig. 5.4, where we see a striking visualization of lasing spots, which are localized regions of large
output intensity. We note that this solution of the Fisher equation only depends on the nonlocality
of the saturation term, and hence does not require the presence of a spatially dependent pumping.
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Figure 5.4: Spatial pattern formation due to nonlocal Fisher equation. Expected lasing spots can be clearly
seen. Figure on the right shows spot pattern for very small diffusion constant D. Figure from [79].

This of course points at a universal feature of random lasers, which we could then reveal as being
the solution of a particular form of Fisher’s equation.
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5.8 Conclusion

In this chapter we have described in detail the derivation of the photonic distribution function
f (q‖,Z,T ) for random lasers via the nonlinear sigma model. This function is characterized by the
wavevector q‖ originating from the Fourier transform of in the x − y plane, where translational
invariance is assumed. In addition, it is also assumed to vary slowly in space and time, which
behavior is described by its dependence on the slow variables (Z,T ). The calculation of this
quantity is a nice demonstration of the kind of nonequilibrium quantities which can be obtained
from the Keldysh nonlinear sigma model. f (q‖,Z,T ) results from the solution of a set of coupled
equations relating f (q‖,Z,T ) and the Hubbard Stratonovich field

¯
φcl(Z, ε), (5.72) and (5.73).

These equations are derived from the saddlepoint equations for the diffusive modes w†, w and
the HS field φcl(Z, ε), which are in turn arrived at from the diffusive nonlinear sigma model
including nonlinearity, (5.41). The solution of (5.72) and (5.73) has to be done numerically,
and we outlined our computational strategy. Unfortunately, due to complexity of the occuring
equations, no numerical results have yet been obtained. The equation to be evaluated, well-known
in other contexts as the Fisher equation, shows a rich variety of solutions [79] and work is
continuing to extract numerically the solutions corresponding to our regime of interest.
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CHAPTER 6

Effects of Light Polarization on Localization
of Light

6.1 Introduction

Propagation of classical waves in a disordered medium has been the focus of intensive theoretical
and experimental investigations since the publication of the paper [80] by John in which the
existence of photon mobility edges in systems with disorder was postulated. This was followed by
the equally seminal 1987 paper [81] (similar work was done independently by Yablonovitch [82])
where the possibility of localization of electromagnetic waves in systems with interplay of "order
and disorder" ("disordered superlattice microstructures") was first discussed. The most important
property of such structures is the possibility to restrict phase space for photon propagation near
critical frequencies demarcating the the photonic "pseudogap" region [81]. In other words, these
could be seen as the electromagnetic analogue of electronic bandgaps in anomalous semiconduct-
ors [83]. Experimentally, such systems have also been comprehensively studied in recent years [8,
84] and the important physical quantity, the diffusion coefficient D(ω) of propagating light waves,
measured and shown to exhibit localization characteristics [3, 4, 85–89]. Theoretical studies
of this problem have mainly consisted of diagrammatic self-consistent [40, 41] calculations of
D(ω) [26, 35, 36, 42, 43] and field theoretical descriptions of light transport which in addition
takes into account the effects of absorption [67] and openness of media [47]; in most of these
works the the additional degree of freedom represented by light polarization was not considered,
usually due to reasons of simplicity. Hence, the effect of the vector nature of light on its transport
properties has not been fully understood.

We show in this chapter that polarization actually plays an important role in the transport
of light through random dielectric medium, i.e., it accounts for the difficulty to conclusively
account for strong localization of light in experiments. Although other dephasing mechanisms
like absorption play important roles, we find that, due to it being an intrinsic property of light
waves, polarization represents an intrinsic channel for dephasing which is not easily subtracted
from in experiments. We show that this can be clearly seen by drawing a formal analogy with
the electronic phenomena of antilocalization [19, 90–92]. In systems with spin, application of
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Chapter 6 Effects of Light Polarization on Localization of Light

an external magnetic field will cause coupling of the spin degrees of freedom to the applied
field, which yields an additional term in the Hamiltonian of the system [19] This additional
term incorporates the spin structure of the problem. Properly diagonalized in the singlet-triplet
eigenvector space, it has been shown [90, 91] to induce attenuation in the diffusion probability by
a factor of 2 at the origin. This phenomena has been confirmed in various experiments [93–95],
perturbative [90, 96, 97] and renormalization group [98–100] calculations.

We propose a suitable model of a disordered photonic crystal which is tractable numerically
via a diagrammatic self-consistent calculation [40, 41] with additional suitable formalism which
to take into account the vectorial degrees of freedom for electromagnetic waves. Setting up the
self-consistent equations in this formalism yields a set of complicated matrix equations which
needs to be solved. Fortunately the matrix structure can be simplified considerably using a
averaging procedure, and as a result we obtain scalar equations for all quantities except for
the important two-particle interaction vertices. These could however be diagonalised in their
respective eigenbases, namely the singlet and triplet bases. We have then essentially three coupled
equations which we then solve numerically for the diffusion coefficient. We show some numerical
results at the end and our conclusions.

6.2 Formalism

6.2.1 Helmholtz equation

We again start from the Helmholtz equation in frequency and real space ( (3.7))

∇ × ∇ × Enk(r) =
ω2

nk

c2 ε(r)Enk(r), (6.1)

where we have retained the full vectorial structure of the equation, unlike in the previous chapters
where we have only considered the scalar version of (6.1) Enkσ(r) is the electric field in the
medium, and the additional subscripts n and k denotes the band index and wavevector, respectively.
Here we restrict our model to take the form of a translational invariant crystal lattice, where
randomness will be introduced via the values of the dielectric constant on each lattice site.

We again write the random, real-valued dielectric function ε(r) as the sum of a periodic
εp(r) and a random (disordered) ∆ε(r) part. εp(r) shares the periodicity of the crystal lattice
and only contributes to the background dielectric constant of the crystal. The wavefunction of
electromagnetic waves in such a system is described by the usual Bloch wavefunctions [83]
Enk(r) which obeys (6.1) with ε(r) replaced by εp(r).

To take into account the additional degree of freedom due to the different polarizations, we
exploit the transverse nature of light polarization, in which

k · Dnk = 0 (6.2)

where Dnk is the electric displacement field which is related to the electric field E(r, t) in a linear,
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conservative system in the following manner

D(r, t) = ε0ε(r)E(r, t) (6.3)

(6.2) and (6.3) effectively means that only 2 components of the 3-dimensional polarization vector
is linearly independent in a perfect crystal. This allows us to establish an analogy between the
polarization and electronic spin degrees of freedom, or in other words, to impose a “pseudospin”
structure to single-particle quantities, which includes, for example, the Green’s function [42, 101].
In what follows we will denote this additional degree of freedom via an additional index σ.

Randomness is introduced as a perturbation to the periodicity of the Helmholtz equation, or in
other words, the disordered Helmholtz equation is given by:(

ω2

c2 εp(r) − ∇ × ∇×
)

Eω(r) +
ω2

c2 ∆ε(r)Eω(r) = 0. (6.4)

Hence disorder is introduced substitutionally, i.e., the crystal lattice keeps its structural order,
but the basis changes from site to site in a random fashion. We note that the squared frequency
dependence of the disorder term is probably the most important characteristic of light propagation
in disordered systems and also the source of new effects which are unknown to electronic systems.
In particular, it leads to vanishing disorder effects for frequencies ω→ 0, whereas in contrast for
electronic systems they play a major role in the low energy region.

6.2.2 Photonic Wannier basis

The set of electric Bloch functions which takes into account the additional mode/pseudospin
index, fulfills the following orthogonality relation,∫

dr E∗nkσ(r) εp(r) En′k′σ′(r) =
(2π)3

u
δnn′δ(k − k′)δσσ′ , (6.5)

where u is the volume of one unit cell in the crystal. In the case of a disordered crystal, one would
expect that the electromagnetic wave functions would be primarily localized and in such a case
the extended nature of the Bloch wavefunctions are then not suitable for their description. We use
instead the Wannier wavefunctions, obtained from the Bloch wavefunctions via a simple Fourier
transform with respect to k [102],

Wiσ(r) =
u

(2π)3

∫
BZ

dk e−ikRi Ekσ(r). (6.6)

Owing to the unitarity of the Fourier transform, the Wannier functions will obey the same
orthogonality relation as the Bloch functions,∫

dr W∗iσ(r)εp(r)W jσ′(r) = δi j δ
σσ′ . (6.7)
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Chapter 6 Effects of Light Polarization on Localization of Light

We remark that due to the local nature of the disorder the Wannier functions forms a natural set of
basis functions upon which we can act with our disorder Hamiltonian. We also note that the use
of the Wannier basis also simplifies matters as we will then assume nearest neighbour hopping
of the polarization modes, which is in itself a small restriction since the dispersion relation of a
disordered crystal in three dimensions is very close to that of the ordered one, and moreover one
expects that the main contribution to transport would come from the |~k + ~k′| contribution of the
Cooperon.

In contrast to the case of the perfectly periodic crystal, we note that the addition of disorder
implies one important fact: the Wannier functions now couple different pseudospin indices on
different sites, which implies that the hopping process would be able to change the polarization.
We can see this if we look at the form of the Hamiltonian of our system. We first note that the
form of (6.4) implies that we can write this in the form

H = H0 + V ≡ ∇ × ∇ × −
ω2

c2 ∆ε (6.8)

where H0 denotes the part of the Hamiltonian containing only the periodic potential εp, and V
denotes then part which contains the disorder. The crux of the description above is that we will
then write the operator equation (6.8) in the Wannier basis which then has the form

H = −t
∑
〈i, j〉
σ

|i, σ〉〈 j, σ| +
∑

i
σσ′

Vσσ′

ii |i, σ〉〈i, σ
′|, (6.9)

where |i, σ〉 is the Wannier basis vectors in the bracket formalism, with the appropriate indices
i, σ; t is the usual hopping parameter, 〈i, j〉 denotes nearest neighbour hopping, and Vσσ′

ii are
matrix elements of the following scattering matrix

Vi = −
ω2

c2 ∆εi

(
V1 T

T ∗ V2

)
, (6.10)

with the scattering parametersVi and T are matrix elements of of the Hamiltonian in the Wannier
basis corresponding to the spin conserving and nonconserving channels, respectively.

6.3 Analytical Approaches

The particular nature of our model and the accompanying formalism developed to describe it will
be detailed in the following sections. These approaches deals with several different aspects of the
problem:

1. Taking into account the effects of disorder via the coherent potential approximation in
which the self-energy resulting from multiple scattering of propagating waves off our
disorder potential, is seen to modify the wave behavior via the Green’s function. The
self-energy can then be obtained via CPA.

2. Deriving a transport theory which describes these propagating waves in a random medium,
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6.4 Coherent Potential Approximation

while taking into account the vector structure of the waves. This step is performed by
writing down the quantity which is important for our case, namely the intensity propagator
I(r, r′; t, t′) and from there, obtaining the well-known Boltzmann equation.

3. As our waves propagate in a random medium, we expect diffusive behavior to arise from
our transport theory calculations. We keep this physical Ansatz in mind to derive, applying
various standard approximations, a self-consistent expression for the diffusion coefficient,
more commonly known under the label Vollhardt-Woelfle theory of localization.

4. Taking into account the vector nature of propagating waves means that for all our previous
mentioned quantities there will be an associated matrix structure in the vectorial (polariza-
tion) space. In order to derive physical quantities we need to deal with this matrix structure.
For this purpose we apply a mode averaging procedure to our equations, which subsquently
simplifies such that they can be diagonalized and physical quantities extracted from them.

6.4 Coherent Potential Approximation

6.4.1 Green’s Function Formalism

In order to analyze the transport properties of a disordered crystal, we first define our vectorial
Green’s functions. Starting from the periodic operator H0 of Eq. (6.8) (where only the periodic
part of the dielectric constant εp(r) is present), the defining equation is given by(

ω2

c2 ε̄ − ∇ × ∇×

)
G0(ω, r, r′) = δ(r − r′), (6.11)

where we defined ε̄ ≡ 1
V

∫
dr εp(r) as the the average dielectric constant of the ordered medium.

The imaginary part of G0(ω, r, r′) is directly related to the system’s density of states [103].

By switching to momentum (or Bloch) basis |k, σ〉, one is able to find an expression for the
periodic Green’s function

G0(ω) =

(
ω2

c2 ε̄ −H0

)−1

1 =

(
ω2

c2 ε̄ −H0

)−1 ∑
k,σ

εp|k, σ〉〈k, σ|εp

≈
∑
k,σ

εp|k, σ〉〈k, σ|εp

ω2ε̄/c2 − ω2
kσε̄/c

2
,

(6.12)

where we used the completeness of the electric Bloch states and their eigenfunction character
with respect to H0. In the last step, we made the approximation H0|k, σ〉 ≈ ω2

c2 ε̄ to get rid of the
position dependence of the dielectric function inside the denominator.
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Chapter 6 Effects of Light Polarization on Localization of Light

From eq. (6.12), the matrix elements of G0 can be calculated in a straightforward way to be

(G0)σσ
′

kk′ (ω) ≡ 〈k, σ|G0|k′, σ′〉 =
1

ω2ε̄/c2 − ω2
kσε̄/c

2

(2π)3

u
δ(k − k′) δσσ

′

≡ (G0)σk
(2π)3

u
δ(k − k′) δσσ

′

.

(6.13)

One can see from eqs. (6.12) and (6.13) that the Green’s function exhibits poles at the positions
of the eigenvalues. This behavior can be used to extract the density of states from the Green’s
function. The density of states N(ω) for the photonic crystal with a continuous eigenvalue
spectrum ωkσ is defined as

Nσ(ω) =
u

(2π)3

∫
dk δ(ω − ωkσ), (6.14)

so that the number of states in a frequency interval [ω,ω + dω] is given by N(ω) dω.
Consider now the k-summation over (G0)k from eq. (6.12), and neglect the pseudospin σ

without loss of generality. One can transform the integral over the pole by introducing a small
imaginary part iη in the denominator and then using the identity

lim
η→0

1
ω2 − ω2

kσ + iη
= P

1
ω2 − ω2

kσ
− iπ δ(ω2 − ω2

kσ), (6.15)

where P denotes Cauchy’s principal value. One obtains∫
dk (G0)σk = lim

η→0

∫
dk

c2/ε̄

ω2 − ω2
kσ + iη

= P

∫
dk

c2/ε̄

ω2 − ω2
kσ
− iπ

c2

ε̄

∫
dk δ(ω2 − ω2

kσ).
(6.16)

If one now transforms the delta function as δ(ω2 − ω2
kσ) = δ(ω − ωkσ)/2ω (excluding negative

frequencies), one can relate the density of states from eq. (6.14) to the imaginary part of the
Green’s function by

Nσ(ω) = −
2ωε̄
πc2

u
(2π)3

∫
dk Im Gσσ

k (ω). (6.17)

The additional ω-factor is a consequence of the ω2-dependence of our equations.

6.4.2 Configurational Averaging

It was shown in sec. 6.2 that for the disordered crystal it is possible to separate the Hamiltonian
in the form H = H0 + V. When the eigenvalues for the periodic problem H0 are known, Green’s
functions provide a method to calculate the disordered system properties from the ordered ones.
Using the Green’s function G0 of the periodic problem H0, i.e. (z − H0)G0 = 1, then using
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6.4 Coherent Potential Approximation

eq. (6.1) we can easily solve for G,

G = G0 + G0VG = G0 + G0TG0, (6.18)

where we introduced the scattering matrix T as

T = V + VG0V + VG0VG0V + . . .

= V[1 −G0V]−1.
(6.19)

From the above equation it can be seen that the scattering matrix describes all possible sequences
of wave scatterings and propagations inside the crystal. Being functions of the disorder potential V,
the scattering matrix T and the Green’s functions G are hence random quantities; as has been done
in the previous chapters, the usual procedure in this case is to perform a configurational average
over V, or concretely over possible realizations of the disorder potential, which are however
identical from a macroscopic point of view (see Fig. 6.1). Taking the Green’s function for the
disordered system G, which will originally depend on the whole set of {εi}, its configurationally
averaged counterpart is given by

〈G〉c ≡
∫

dε1

∫
dε2 · · ·

∫
dεN P(ε1, ε2, . . . , εN) G(ε1, ε2, . . . , εN), (6.20)

where the probability function P(ε1, . . . , εN) describes the distribution of dielectric values on
every site. We will be interested in the special case of independently and identically distributed
ε-values, i.e. we neglect any correlation between the sites. The probability then factorizes into
the product of single site probabilities,

P(ε1, ε2, . . . , εN) =

N∏
i

P(εi). (6.21)

If one applies configurational averaging to eq. (6.18), one obtains the Dyson equation

〈G〉 = G0 + G0〈VG〉 ≡ G0 + G0Σ〈G. (6.22)

Figure 6.1: Three different possible disorder configurations with identical probability distributions of
scatterer types.
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With the introduction of the self-energy Σ, there exists a useful relation between the periodic and
disordered Green’s functions and the self-energy which can be derived from eq. (6.22):

〈G〉−1 = G−1
0 − Σ. (6.23)

6.4.3 The Effective Potential

From (6.23) we see that to obtain the configurationally averaged Green’s function 〈G〉−1 one
simply needs to compute the self energy Σ. A method to calculate the self-energy Σ in disordered
systems is given by the coherent potential approximation (CPA), which is based on the concepts
of an effective medium and the single site approximation. The effective medium approach
assumes that wave propagation in an disordered medium can be locally (i.e., within the coherence
length, fig. 6.2) described, as if it propagates in an ordered, so-called effective medium. This
effective medium is derived from the periodic medium by a shift by a coherent potential Σi(ω).
We refer to [101], [104] for more in-depth expositions of these concepts. Here we will only state
the expressions appropriate for our problem.

The Hamiltonian of the effective medium is then He = H0 + Σ and its Green’s function can be
determined from the ordered one by

Ge = G0 + G0Σ(ω)Ge =
[
G−1

0 − Σ(ω)
]−1

. (6.24)

The disorder potential V of the disordered crystal is now expressed relative to this effective
medium, V̄ ≡ V−Σ. The right choice of Σ is determined such that the configurationally averaged
scattering matrix relative to the effective medium T̄ vanishes (CPA condition):

〈T̄(Σ)〉 !
= 0. (6.25)

If this is achieved, performing the average on eq. (6.18) yields

〈G〉 = 〈Ge〉 + 〈GeT̄Ge〉

= Ge + Ge〈T̄〉Ge

= Ge.

(6.26)

Here, we exploited that the effective Green’s function Ge itself describes an periodic medium and
therefore is not affected by configuration averaging. One can see that with condition (6.25) the

Figure 6.2: Effective medium: Within the wave’s coherence length, the disorded photonic crystal can be
described by a periodic crystal.
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configurationally averaged full Green’s function is equivalent to the effective Green’s function
and the coherent potential is identical to the self-energy. Eventually, this procedure placed the
focus on finding an expression for the total scattering matrix T̄, so that from eq. (6.25) a value for
the self-energy Σ can be obtained. Expanding the total scattering matrix in terms of the single
site scattering ti, which comprise all successive scatterings at a single site i, and performing the
configurational averaging, one obtains the CPA equation for the self-energy Σ,

〈t̄〉c =

∫
dεi P(εi) (Vi(εi) − Σ)

[
1 −GD

e (Σ) (Vi(εi) − Σ)
]−1 !

= 0. (6.27a)

or, more conviniently for numerical work,

Σ
!
=

∫
dεi P(εi) Vi(εi)

[
1 −GD

e (Σ) (Vi(εi) − Σ)
]−1

. (6.27b)

If one includes (pseudo)spin into the CPA, the disorder potential Vi has a 2×2 matrix structure,
which will be adopted by the self-energy and by the effective Green’s function eventually. To be
more specific, using the disorder potential from eq. (6.10) the expression Vi − Σ becomes

Vi − Σ = −
ω2

c2 ∆εi

(
V1 T

T ∗ V2

)
−

(
Σ11 Σ12

Σ21 Σ22

)
. (6.28)

The diagonal part of the effective Green’s function has to be rewritten as

GD
e (ω,Σ) ≡

u2

(2π)6

∫
dk

∫
dk′eikRi (Ge)kk′(ω,Σ) e−ik′Ri

=
u

(2π)3

∫
dk

∫
dk′eikRi (Ge)k(ω,Σ) δ(k − k′) e−ik′Ri

=
u

(2π)3

∫
dk

[
(G0)−1

k − Σ(ω)
]−1

=
u

(2π)3

∫
dk

[
ε̄

c2

(
ω2 − ω2

k1 0
0 ω2 − ω2

k2

)
−

(
Σ11(ω) Σ12(ω)
Σ21(ω) Σ22(ω)

)]−1

,

(6.29)

where eqs. (6.13) and (6.24) have been used. From the local effective Green’s function one can
calculate the density of states via

N(ω) = −
2ωε̄
πc2 Im GD

e (ω), (6.30)

also showing a 2 × 2-matrix structure.

6.5 Transport Theory

We are concerned with intensity transport of light in disordered photonic crystals. Such a quantity
can be obtained via the two-point correlation function, which in our system is a 4th-rank tensor
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given by
I(r, r′; t, t′) ≡ 〈G(r, r′, t) ⊗G∗(r, r′, t)〉c, (6.31)

where G(r, r′, t) is a 2 × 2 matrix propagator and 〈. . . 〉c indicates mode averaging (see next
section) in addition to the usual configurational average. We show in the Appendix C.1 that the
quantity (6.31) can be rewritten to reflect, in a diagrammatical manner, the infinite sequence of
wave propagation and scattering describing the dynamics of wave motion in a random medium,
and this dynamics can be correctly extracted in a diagrammatic fashion from the Bethe-Salpeter
(BS) equation in K and frequency Ω space

Φω
k (Ω, K) =

(
(Ge)+

k ⊗ (Ge)−k
) [

1 ⊗ 1 +
u

(2π)3

∫
dk′′γkk′′Φ

ω
k′′(Ω, K)

]
. (6.32)

where Φk,k′ ≡ 〈G+
k ⊗ G−k′〉c and Φk ≡

u
(2π)3

∫
dk′Φω

kk′ . However, in the form (6.32) the BS
equation is physically not very relevant, since it is difficult to interpret what physical quantities
are described by Φω

k (Ω, K). It is however, possible to derive from (6.32) a much more well-known
quantity which directly provides us with information about the nature of wave transport in our
medium, namely the diffusion coefficient D(ω). The framework which allows the computation
of D(ω) from Φω

k (Ω, K) is commonly known as the self-consistent theory, since the required
quantity D(ω) can be obtained from solving a self-consistent integral equation. We sketch below
the steps involved in the derivation of D(ω) from Φω

k (Ω, K). An illustrative rewriting of the BS
equation can be performed by use of the following matrix identity (only valid for commuting
matrices) to rewrite the tensor product of the effective Green’s functions in terms of single particle
quantities:

G+ ⊗G− =
[
1 ⊗ (G−)−1 − (G+)−1 ⊗ 1

]−1︸                               ︷︷                               ︸
≡[−∆(G−1)]−1

[
(G+) ⊗ 1 − 1 ⊗ (G−)

]︸                      ︷︷                      ︸
≡∆G

. (6.33)

Using this identity and bringing its first factor to the left hand side, the BS equation can be
rewritten as

−∆
(
G−1

k (Ω, K)
)
Φω

k (Ω, K) = ∆Gk(Ω, K)
[
1 ⊗ 1 +

u
(2π)3

∫
dk′′γωkk′′(Ω, K)Φω

k′′(Ω, K)
]
. (6.34)

Due to the similar structure with the Boltzmann equation known from kinetic theory, the above
equation is often called a generalized Boltzmann equation. It governs the transport of the intensity
tensor component Φω

k (Ω, K). The BS equation is solved in the usual way of expanding the
intensity tensor component Φω

k (Ω, K) up to first order in the current vertex (otherwise known as
the moment expansion) [41, 105], from which we obtain the important transport equations: the
continuity equation,

− iΩSω(Ω, K) − i|K|Jω(Ω, K) = j(Ω, K), (6.35)

governing the relationship between the energy density Sω(Ω, K) = u
(2π)3

∫
dk Φω

k (Ω, K) and the

energy density flux Jω(Ω, K) ≡ u
(2π)3

∫
dk

(
K̂ · uk

)
Φω

k (Ω, K), where j(Ω, K) denotes a possible
source term. The derivation of (6.35) required the use of a Ward identity for classical waves [42],
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which has a nontrivial right-hand side due to the fact that the conserved quantity for classical
waves is energy instead of particle number. The form of this equation is detailed in the subsection
below.

The other required equation is the diffusion equation, or Fick’s law, commonly written in the
form

− i|K|D(ω)Sω(Ω, K) + Jω(Ω, K) = 0. (6.36)

Here, D(ω) denotes a quantity which can be interpreted as the diffusion constant. Taking the
hydrodynamic limit (Ω, K → 0), Eq. (6.35) and (6.36) can be solved for the quantity Sω(Ω, K),
which in turn yields D(ω) in the form

D(ω) = [1 ⊗ 1 + M(ω)]−1DL ≡
DL

1 ⊗ 1 + M(ω)
, (6.37)

where DL is the so-called ladder diffusion constant originating from incoherent transport

DL =
iD̃
2ω

[1 ⊗ 1 + δ]−1

=
i

4ω

∫
k
(
K̂ · uk

)2
∆G2

k(0, 0)∫
k′′ ∆Gk′′(0, 0)

[1 ⊗ 1 + δ]−1 .

(6.38)

and
δ ≡ −

1
2ω

∂

∂Ω
f(Ω)

∣∣∣∣∣
Ω=0

[
ΠΣ(0) 1 ⊗ 1 + ΠG0γL(0)

]
. (6.39)

is a renormalization factor stemming from the nonzero right-hand side of the Ward identity.
M(ω) is called the relaxation kernel and has the form

M(ω) ∝
∫

dk
∫

dk′
(
K̂ · uk

)
Im Gk γ

ω
kk′(Im Gk′)

2 (
K̂ · uk′

)
. (6.40)

From the form of (6.40) we can see that the presence of the relaxation kernel M(ω) renormalizes
the quantity DL. Physically, DL should be interpreted as the “bare” diffusion constant, i.e., the
quantity which can be calculated by using classical expressions, e.g., the Einstein relation. In
other words, DL does not take into account coherent effects which are important in the studies of
wave localization.

The relaxation kernel M(ω) represents the correction to DL. As can be seen from the explicit
expression (6.40) M(ω) is strongly influenced by the irreducible vertex γωkk′ . In priciple, γωkk′
incorporates all possible wave scattering events since it is diagrammatically an infinite sum of
terms, each corresponding to a particular configuration of such events. Hence it is impossible to
obtain in its entirety. However, by chooses particular terms which are physically relevant, the
integral in (6.40) can be solved (at least numerically) and we can then obtain the values for (6.37)
corresponding to these terms. In the studies of wave localization account is taken usually of
two particular choices for γωkk′ : the so-called ladder γL and crossed γC

kk′ diagrams. We refer to
Appendix C.3 for further information on these quantities, but we point out that the ladder vertex
γL is independent of momenta k, k′; i.e., it is homogeneous in momentum space. In addition,
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we also refer to Appendix C.5 for the computational details regarding the derivation of (6.38)
and (6.40).

From presentation of the formalism till now we see that we work with quantities that possess
degrees of freedom in our “pseudospin” space which manifests via the 2 × 2 matrix structure of
the Green’s function and self-energy, for example. However, as seen in the next section, γωkk′ has
the form of a tensor product of two 2 × 2 quantities, thus making it a 4 × 4 matrix, thus making
the solution of (6.37), even in the usual approximations a particularly difficult task. In the next
section we will describe our method for reducing the dimensionality of these quantities.

6.5.1 Self-Consistent Theory of Localization

It is well known from standard sources [41, 105] that even taking into account both the ladder γL

and crossed vertices γC
kk′ is only an adequate choice if we work in the weak scattering limit, i.e.,

the limit when the mean free path l between two scatterings is much larger than the wavelength
λ. Only then configurational averaging will cancel all interference contributions except those
coming from coherent backscattering.

However, for the opposite case, the strong scattering limit (l � λ), many other interference
contribution are possible, since two waves will not accumulate phase differences that quickly and
hence are more resistant to averaging. Analytical approaches are unable to access this regime
of scattering strength and numerical methods are needed. The most well-known of these is the
so-called self-consistent theory of Vollhardt and Woelfle [40]. A short description will be given
below.

The authors of [40] extended the crossed vertex by all diagrams which are double crossed
with maximally crossed diagrams (figure 6.3). It can be shown [41] that this new vertex γSC is
given by a similar expression as the crossed vertex, only now the Diffusion constant DL has to be
replaced with the full diffusion constant D,

γSC
kk′ = γL S(Ω, k + k′)γL ∝

1
−iΩ + D|k + k′|2

. (6.41)

If this is inserted into the relaxation kernel M, one obtains a self-consistent equation for the
Diffusion constant D via eq. (6.37), hence the name self-consistent theory of localization.

Figure 6.3: Constituent parts of the self-consistent irreducible vertex. Γ̃ contains all diagrams, which are
not entirely crossed by an interaction line.
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6.6 Disorder and Mode Averaging Procedure

In our model, we will treat all polarization modes equally with respect to their scattering strength
and their dispersion inside the crystal. That is why it is reasonable to expect that we can average
over the modes without losing important information. In order to define mode averaging 〈. . . 〉σ,
we use the fact that we can expand any hermitian 2× 2 matrix in a basis made of the unit matrix 1
and the Pauli matrices σi, which are defined by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (6.42)

With the help of the Pauli matrices, we can expand a 2 × 2 matrix A, which describes single
particle effects, as follows,

A = A0 1 + A1σ1 + A2σ2 + A3σ3 ≡ A01 + A · ~σ. (6.43)

Here, ~σ denotes a three-dimensional vector containing the Pauli matrices as its entries and
A = (A1, A2, A3)T. The term A · ~σ contains the information about the anisotropy in mode space
and will be dropped after mode averaging:

〈A〉σ = 〈A0 1 + A · ~σ〉σ ≡ A0 1 =
1
2

tr(A) 1 (6.44)

As one can see, the obtained result is just the averge of the matrix’ diagonal elements multiplied
by the unit matrix. This implies that, in principle, it can be treated as a scalar quantity. We apply
the same reasoning to all our equations, with the result that we obtain scalar equations for most
of the quantities, with the exception of the irreducible scattering vertex tensors, which we need to
treat separately. These are not reducible to scalar equations as they couple different pseudospin
modes. However, due to the fact that they are concrete representations of the S U(2) algebra
which govern the symmetries of electronic spins, they can be diagonalized in the same eigenbases
which are used in the study of spin-orbit scattering in disordered semiconductor systems [96, 97],
namely the singlet and triplet bases.
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6.7 Singlet/Triplet Structure of the Interaction Vertex

We recap the central logic of our ideas up to now: that the polarization of light, which we have
mapped onto a pseudospin model resulting in a 2 × 2-matrix structure of the effective Green’s
function Ge and the self-energy Σ in polarization mode space, can be shown to affect the transport
properties of light in random media. Quantitatively, this effect manifests itself in the different
values of the diffusion coefficient in different “pseudospin” channels. In this section we show
how to decouple the previously obtained matrix quantities such that the correct matrix form of
the diffusion coefficient in the different channels can be obtained. We recall that the equations
describing intensity transport were then derived by considering the tensor product of two Green’s
functions, G ⊗G∗. Thus, the resulting equations and quantities will have a 4 × 4 matrix structure
in polarization mode space. Performing the tensor product gives us matrices in the product space
|στ〉 of two modes, with a standard choice of basis vectors |11〉, |12〉, |21〉, |22〉. We will then
diagonalize these 4 × 4 matrix quantities by employing the appropriate choice of eigenbases.

6.7.1 Vertex Diagonalization

The diagonalization of interaction vertices or other two-particle quantities with a 4 × 4 matrix
structure has to be done in consistency with the mode averaging. For that, we consider an
interaction vertex γ which is built from two scattering potential matrices u, i.e., γ = u ⊗ u∗. The
mode averaged vertex 〈γ〉σ is then given by

〈γ〉σ = 〈v ⊗ v〉σ = 〈(v0 1 + u · ~σ) ⊗ (v∗0 1 + u∗ · ~σ∗)〉σ
= |v0|

21 ⊗ 1 + |u|2~σ ⊗ ~σ∗
(6.45)

Obviously, elements proportional toσi⊗σ
∗
j , i , j, which represent some type of mode anisotropy,

have been dropped by this procedure. This is not the case for terms proportional to σi ⊗ σ
∗
i ,

which are mode-isotropic, as it is indicated by the Pauli matrix identity (σi)2 = 1. As it turns out,
the pseudospin structure in eq. (6.45) is identical to the spin structure in the problem of spin-orbit
coupling in disordered electronic systems [19]. We can take advantage of this correspondence and
switch to the more suitable singlet/triplet basis, in which the mode averaged quantites become
diagonal. This will now be done for the ladder vertex γL and the crossed vertex γC

kk′ .
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Ladder Vertex

We start with the mode-averaged ladder vertex γL in the product basis and then change to its
eigenbasis:

〈γL〉σ = γ0
L 1 ⊗ 1 + γm

L ~σ ⊗ ~σ
∗

= γ0
L


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 + γm
L


1 0 0 2
0 −1 0 0
0 0 −1 0
2 0 0 1


=


γS

L 0 0 0
0 γT

L 0 0
0 0 γT

L 0
0 0 0 γT

L


L

,

(6.46)

where the subscript “L” on the matrix denotes the eigenbasis of the ladder vertex given by

singlet: |S L〉 =
1
√

2

(
|11〉 + |22〉

)
, with γS

L = γ0
L + 3γm

L (6.47)

triplet: |TL〉 =


|12〉
|21〉

1√
2

(
|22〉 − |11〉

) , with γT
L = γ0

L − γ
m
L . (6.48)

The singlet eigenvalue γS
L always describes the so-called Goldstone mode of the system and

accounts for energy conservation. The effects of polarization mode flipping will be contained in
the triplet eigenvalue γT

L instead, whose triple degeneracy is a consequence of the isotropy of the
configurationally averaged crystal.
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Cooperon Vertex

In sec. 6.5.1, it has been shown that the cooperon vertex γC can be expressed in terms of ladder
vertices after performing time-reversal. During this transformation, however, the mode indices
of the lower channel line have also been flipped. As a result, the eigenbasis of this vertex is
a different one as in the ladder case. More precisely, exchanging the mode indices τ ↔ τ′ in
figure C.4 affects the Pauli vector product as follows:

(~σ ⊗ ~σ∗)σσ
′ττ′ twist
−→ (~σ ⊗ ~σ∗)σσ

′τ′τ = (~σ ⊗ ~σ)σσ
′ττ′ .

With this slight modification, the mode structure of the cooperon vertex reads

〈γC〉σ = γ0
C 1 ⊗ 1 + γm

C ~σ ⊗ ~σ (6.49)

= γ0
C


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 + γm
C


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

 (6.50)

=


γS

C 0 0 0
0 γT

C 0 0
0 0 γT

C 0
0 0 0 γT

C


C

. (6.51)

Here, the subscript "C" denotes the eigenbasis of the cooperon vertex given by

singlet: |S C〉 =
1
√

2

(
|12〉 − |21〉

)
, with γS

C = γ0
C − 3γm

C (6.52)

triplet: |TC〉 =


|11〉
|22〉

1√
2

(
|12〉 + |21〉

) , with γT
C = γ0

C + γm
C . (6.53)

As we will see in the next section, the possibility to diagonalize our two-particle quantities will
considerably simplify the solution of the Bethe-Salpeter equation.
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6.8 Numerical Results

In this section we shall present various numerical results of expressions previously described. In
section 6.8.1 we present waterfall plots of the density of modes as calculated using the coherent
potential approximation described in Sec. 6.4 via the expression

N(ω) = −
2ω
π

ImG (6.54)

where the Green’s function refers to the expression given in (6.29). In Sec. 6.8.2 we then show
the results for the central quantity in our work: the diffusion constant D. Results are given for D
in three different channels: onefrom the singlet, and two corresponding to different eigenvalues
from the triplet channel. These are denoted as DS , DT0 and DT1, respectively.

6.8.1 Density of Modes

T = 0

The density of modes, obtained from (6.30) via the CPA, is shown in Fig. 6.4 in the form of a
waterfall plot. The DOMs at different values of the disorder strength, here represented by the
concentration of one of the sphere types, say pA, as a fraction of the total scatterer concentration
at fixed values of the dielectric constants of the A and B scatterers (εA and εB, respectively),
are plotted against the light frequency ω. Hence in this plot a fraction of pA = 0.5 represents
the one with the largest disorder strength. Most importantly, in Fig. 6.4 we set the pseudospin
flipping parameter T = 0. This corresponds in our model to purely “potential scattering” of the
light fields, able to alter the intensity but not polarization degrees of freedom. We first note that
for the ordered case in which pA = 1.0 or pA = 0.0 the DOM shows clearly visible van Hove
singularities which are to be expected for ordered systems. On the other hand, introduction of
disorder leads to broadening of the DOM until a dip appears at a certain value of ω. This dip
eventually develops into a full gap, in the range of which light fields do not propagate.
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Figure 6.4: Waterfall plot of the density of modes.

T , 0

Now we can study the effect of a finite pseudospin flipping parameter, T , 0, on the density of
modes. The behavior of the DOM with varying values of T is shown in 6.5. The behavior of
the DOM can be summarized in the following manner: the increase in magnitude of T implies a
corresponding increase in the disorder strength. This increase brings about a general broadening
of the DOM. In addition, we see that a finite T gives a upper band edge value which is generally
smaller than that at zero T .
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Figure 6.5: Density of modes in presence of finite T .
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6.8.2 Diffusion constant

We now move onto the results for the diffusion constant, which is the central physical quantity
of interest. For the diffusion constant we differentiate between contributions from “classical”
diffusion, i.e., that comes from the ladder (Diffuson) diagrams, and those coming from coherence
effects, which are due to contributions from the so-called maximally crossed or Cooperon
diagrams. It is precisely in this second set of contributions that the most significant effects of
light polarization appears, as we see below. Hence in this section we first look at results of the
classical diffusion constant, and then move onto those for the crossed diagrams.

Classical diffusion constant

As follows from our analytical analysis above, once we enable pseudospin flipping, we need
to consider the diffusion constant in both the singlet, here denoted DS and triplet DT

i , i = 0, 1
channels, where i differentiates the two values of the energy eigenvalues in the triplet channel. We
start from the ladder diffusion constant, DL. This is shown in Fig. 6.6 We discern several expected

Figure 6.6: Classical diffusion constant.

features in the plot above: at low frequencies the curve follows an expected ω−4 behavior, which is
in the regime of Rayleigh scattering. Since the disorder potential in the wave equation for classical
waves at smaller frequencies will be scattered less and hence obeys nearly free propagation,
which yields the Rayleigh regime. At higher frequencies we encounter a pseudogap region at
frequency ω/B ≈ 0.7 where a minimum of the diffusion constant appears, where diffusion drops
to a very low but nonzero value. The diffusion constant then stays a low values until vanishing at
around ω/B ≈ 1.2, which is the value of the band edge in our model.
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Full diffusion constant

We first look at results showing the behavior of the diffusion constant in the singlet channel, DS ,
as a function of the flipping parameter T . This is shown in the figures below. Starting with the
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Figure 6.7: Diffusion constant in the singlet channel.

diffusion constant in the singlet channel, we can compare figure 6.7 with 6.6 and conclude that
the inclusion of coherent effects correctly leads to an overall reduction of the diffusion constant
in comparison with the ladder diffusion DL. A striking observation here is the appearance of
vanishing values of DS in the frequency range 0.7 < ω/B < 0.75, which now implies localized
states in this region. We note however that the singlet mode represents actually the Goldstone
mode of the system, and hence represents conservation of intensity (particle number). Given that
T is certainly particle-number conserving, we do not actually expect large deviations between the
behavior of DL and DS , and this is confirmed from 6.7 for the range of frequencies ω/B < 1.0.
Some deviations are seen for frequencies outside of this range, which still needs to be explained
in full.

We now move onto the diffusion constant in the triplet channel. As already noted in previous
sections, in the triplet channel the diffusion constant takes on different values corresponding to
the two different eigenvalues resulting from the diagonalization of the scattering vertex in the
triplet channel, here denoted DT0 and DT1. These are shown in the plots below:

We see that in the absence of mode flipping, both values of DT are identical to that of DS ,
which is to be expected since in this case there is also conservation of polarization (pseudospin)
in addition to that of intensity. However, in the presence of mode flipping, it can be seen that the
diffusion constant increases as compared to that of DS which is a signature of anti-localization,
in which the localizing effects of the disorder potential is decrease overall. For the case of vector
waves (as we have tried to model in this work) the observed anti-localization effect can be thought
to result from the randomizing of polarizations due to mode flipping. As (weak) localization
is due to coherent interference between electromagnetic waves, we expect that by introducing
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Figure 6.8: DT0 as a function of T .
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Figure 6.9: DT1 as a function of T .

an external “handle” to increase decoherence effects in the system we will decrease effects of
localization. For vector waves, mode flipping is exactly such a handle, which can be introduced
experimentally via materials with polarization-dependent optical scattering probabilities. A
summary of the results plotted above at a fixed value of δε and pA is shown in 6.10. This is the
main result of this work.

6.8.3 Phase diagram

Taking into account all the results above we can plot a phase diagram representing the transport
behavior of the system for various values of the parameter T across a range of frequencies
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Figure 6.10: Behavior of diffusion constants in different channels.

ω/B. This is shown in 6.11 below: In order to have an experimentally realizable system where
transport of light waves can be controlled, to some extent, via the effect of disorder, the phase
diagram in Fig. 6.11 is very useful. It shows that a gap appears around the range of frequencies
0.70 < ω/B < 0.75, which is confirmed by the lower plot in Fig. 6.10. In experimental studies
of light propagation in disordered media, one would hope to be able to accurately locate the
frequencies of interest in the near region of the gap, in order that localization properties could be
enhanced. On the other hand, due to the frequency-dependence of the disorder potential, one is
restricted to a range of frequencies not too near to ω = 0. In our model we see that we are able
to control various regimes of transport properties via changing the value of the mode flipping
parameter T around the frequency range of interest (red and green curves in Fig. 6.11). It is
also clearly visible from the phase diagram that the switching on of the mode flipping parameter
decreases the range of frequencies in which modes of the light field are localized.
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6.9 Connection to Experiments: Classical Intensity

6.9.1 Introduction

Conclusions derived from the analytical and numerical results shown above can be applied as
a useful tool in the experimental search for strong Anderson localization of electromagnetic
waves in random dielectric media. Specifically, they can play a role as a definitive signature for
differentiating between absorption and localization of waves in such media. This is an important
point because current experimental studies often face difficulties to conclusively establish the
existence (or not) of Anderson localization in obtained data. In this section we will sketch how
our results can help to overcome this difficulty.

6.9.2 Classical Intensity

In this section we introduce the basic quantity measured in experiments to determine transport
properties of a particular medium: the classical wave intensity. Traditionally, for classical
waves including polarization we associate this quantity with the sum of diagrams of the form
shown in the Appendix (C.2) where α, β, γ, δ represent the pseudospin directions carried by
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each propagating line. As was discussed in section E these are ladder (Diffuson) diagrams,
which we can represent in the singlet-triplet eigenbasis. The formalism in Sec. (6.5) carries
through completely, now with the requirement that we need to form the irreducible vertex of the
Bethe-Salpeter equation ( (6.32)) with a particular set of polarization indices, corresponding to
the diagram C.2. (6.32) thus has the tensorial component structure of the form

ΦL
αα,ββ(Ω, K) =

(
(Ge)+

k ⊗ (Ge)−k
) 1 ⊗ 1 +

u
(2π)3

∑
µ

∫
dk′′γL

αα,µµΦ
L
µµ,ββ(Ω, K)

 . (6.55)

for the Diffuson, and for the Cooperon has a similar equation with the corresponding index
structure ΦC

αβ,βα(q). We note that in “matching” the pairings of identical pseudospin indices
between scattering events to calculate the probability of classical diffusion, the dimensions of our
vertices are reduced from 4 to 2; for example, the matched vertices of the Diffuson have the form

〈γL〉(σ) = γ0
L

(
1 0
0 1

)
+ γm

L

(
1 2
2 1

)
(6.56)

in the original product basis. One can apply a similar reasoning as detailed above and diag-
onalize (6.56) in the singlet-triplet basis. Doing this, it can be shown [19] that by taking into
proper account of sums over pseudospin components in the Diffuson and Cooperon BS equations,
one can conclude that the diffusion probability away from the origin is reduced by a factor of
2 compared to the situation in which the pseudospin structure is not taken into account (scalar
diffusion). Absorption, on the other hand, affects both coherent and incoherent parts of the
diffusion probability equally [19]. Hence it is tempting, especially in experiments, to set up
measurements such that the polarization is taken into account correctly, in the sense that the
diffusion probability in the singlet-triplet channels be measured and compared with the diffusion
probability of incoherent scalar waves.

6.10 Conclusion

In this chapter we examined propagation of light in random dielectric material of binary type.
We take into account the polarization degree of freedom of light by a mapping to a fictitious
“pseudospin” space, which is allowed due to the transverse nature of vectorial light propagation.
Our ultimate aim is a calculation of the diffusion coefficient D(ω) using the self-consistent form-
alism of Vollhardt-Woelfle. For this purpose we need to evaluate several important quantities: the
self-energy Σ(ω), and the ladder and crossed irreducible vertices, γL

kk′ and γC
kk′ )(corresponding

to diagrams in Appendix C.3), respectively. We simplify the complexity resulting from the
polarization structure by means of mode averaging, which renders unimportant quantities scalar
while preserving the important tensor structure of the vertices. These are then diagonalized in the
appropriate subspaces and the eigenvalues then used in the calculation of D(ω). We discover that,
as expected, the inclusion of coherent effects (crossed vertices) radically modifies the transport
behaviour as compared to the pure diffusive (ladder vertices) case. In addition, when we take into
account the effect of different polarization channels on the diffusion coefficient (we call these
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different channels the singlet and triplet channels) we see that in the singlet channel the diffusive
behavior is unaffected since there is conservation of polarization in this channel [106], while in
the triplet channel we can show a marked increase in the diffusion coefficient as compared to the
singlet case, which is a signature of antilocalization. Hence we show that by properly addressing
the polarization degree of freedom, we are able to explain the difficulty of experimental realization
of full localization of light in random media. We discuss some experimental implications of this
at the end.
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CHAPTER 7

Conclusion

In this thesis we considered the behavior of light propagating in dielectrically disordered and
energetically nonconservative material. The two main physical attributes of interest in this
problem, namely disorder and energy nonconservation, can be dealt with in one stroke via the use
of the mathematical formalism commonly known as the Keldysh technique. We have approached
the work described in this thesis in a systematic, stepwise fashion, and this is reflected in the
ordering of chapters.

First, we derived in the Keldysh formalism a field theory of light propagation in disordered,
nonconservative media. In this early part of the work the nonconservation is provided by simple
static absorption. This field theoretical formulation is commonly known as the nonlinear sigma
model. We also show how to calculate physical quantities like correlation functions from the
sigma model, and how a source term can be included in the action of the field theory. This
represents the contents of Chapter 3.

In the next part, represented in the thesis by Chapter 4 we applied the derived field theory to a
nontrivial application: the calculation of full counting statistics. We derived within the framework
of the nonlinear sigma model a generating functional for the cumulants of energy transmitted
through a weakly nonconservative one-dimensional disordered system. We find fluctuations of
transmittance which is in accordance to Dorokhov’s distribution of transmission coefficients.
Our numerical results also agree quantitatively with previous diagrammatic results of low order
cumulants.

In Chapter 5 we come to the main part of the work, namely the application of the field theoretical
formalism to random lasing. Here the emphasis is on description of a pumped photonic system
which undergoes gain via the mechanism of spontaneous and stimulated emission of photons. We
are able to calculate, again in the context of the field theory, the photonic distribution function
f (z,q,T ) as a function of spatial coordinate z, wavevector q and Wigner time coordinate T .
f (z,q,T ) also depends crucially on the pumping strength α and the imposed boundary conditions.
We find that the resulting equation governing f (z,q,T ), at the saddlepoint of our nonlinear sigma
model, takes the form of a nonlocal Fisher equation, which is a nonlinear reaction-diffusion
equation describing the interplay of birth / pumping and competition / saturation. The Fisher
equation allows for a variety of solutions, depending on the specifics of the problem. We are
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presently evaluating this equation numerically.
In the final Chapter 6 we depart from the methodology of the previous chapters, which were

concerned with the consideration of scalar waves in which the vector nature of light waves do
not play a role. In this chapter we specifically consider the effect of the vector nature of light
on wave properties, specifically whether polarization increases or decreases the propensity of
light waves in disordered dielectric media to become localized (Anderson localization). In this
study we map the light polarization to a “pseudospin” degree of freedom which we then treat
with techniques adapted from classical studies of electronic spin. We find that the polarization of
light waves does in fact contribution to a diminished probability of return to the origin, the value
of which determines of course the ease for the occurrence of Anderson localization.
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APPENDIX A

Photonic Dissipative Nonlinear σ-Model

A.1 Derivation of the effective action

A.1.1 Derivation of Eq. (3.39)

After substitution of the parameterization (3.38) in Eq. (3.33) we obtain

iS [Q̂] = −Tr ln
R̂γ̂R̂−1

R̂γ̂Ĝ−1
0 R̂−1 + i

~̃

2τ
Λ̂


= −Tr ln γ̂ − Tr ln

(
γ̂Ĝ−1 + R̂[γ̂Ĝ−1

0 , R̂−1]
).

By separating Tr ln(γ̂Ĝ−1) and dropping the Q̂-independent terms we arrive at Eq. (3.39).

A.1.2 Derivation of Eq. (3.42)

The conservative part of γ̂Ĝ−1
0 , when substituted in the first trace in Eq. (3.39), yields

iS 1[Q̂] = −Tr
∑
ω,ω′

k,k′

Ĝω(k)γ̂R̂ωω′(k − k′) R̂−1
ω′ω(k′ − k)

[
E(ω′) − E(ω) − k′2 + k2

]
' −Tr

∑
ω,∆ω
k,∆k

Ĝω(k)γ̂R̂ω,ω+∆ω(−∆k) R̂−1
ω+∆ω,ω(∆k)

[̃
~∆ω − (2k + ∆k) · ∆k

],

where ∆ω = ω′ − ω and ∆k = k′ − k. We note that R̂ is peaked at small wave vectors in the
k representation. The sum ∑

k
Ĝω(k)γ̂ = −iπνΛ̂ (A.1)
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follows from the saddle-point condition; furthermore,
∑

k Ĝω(k) k = 0 due to the symmetry. After
calculating the ∆k sum we arrive at

iS 1[Q̂] = iπνTr
∑
ω,∆ω

∫
dr Λ̂R̂ω,ω+∆ω(r)

[̃
~∆ω + ∂2

r
]

R̂−1
ω+∆ω,ω(r)

= πνTr
∫

dr dt dt′ iΛ̂R̂t′t(r)
[
ĩ~∂t + ∂2

r
]

R̂−1
tt′ (r)

.

Applying the representation (3.38) we obtain Eq. (3.42) from the ∂t part. The ∂2
r part is neglected

compared to iS 2[Q̂]; the latter contribution is multiplied by ~̃D̄ ∼ ω0τ̄ � 1.

A.1.3 Derivation of Eq. (3.43)

We substitute the k2 part of γ̂Ĝ−1
0 in the second trace in Eq. (3.39) to get

iS 2[Q̂] =
1
2

Tr
∑

k1...k4

Ĝ(k1)γ̂ R̂(k1 − k2) R̂−1(k2 − k3)Ĝ(k3)γ̂ R̂(k3 − k4) R̂−1(k4 − k1)(k2
2 − k2

3)(k2
4 − k2

1)

' 2Tr
∑
k̄ ∆k̄

∆k ∆k′

Ĝ(k̄)γ̂ R̂
(
∆k̄ −

∆k + ∆k′

2

)
R̂−1(∆k′)Ĝ(k̄)γ̂ R̂

(
−∆k̄ −

∆k + ∆k′

2

)
×

× R̂−1(∆k)(k̄ · ∆k)(k̄ · ∆k′)

,

where k̄ =
∑4

i=1 ki/4 and we neglected the contributions of higher order in ∆k̄ = (k1 + k4 − k2 −

k3)/2, ∆k = k4 − k1, and ∆k′ = k2 − k3. We use the representation

Ĝγ̂ =
1
2
GR (1̂ + Λ̂) +

1
2

(1̂ − Λ̂)GA (A.2)

and the well-known relations [see Eqs. (3.45) and (3.44)]∑
k
GR
ω(k)GA

ω′(k) kαkβ '
1
2
πν̃~D̄δαβ, (A.3)∑

k
G

R(A)
ω (k)GR(A)

ω′ (k) kαkβ ' 0, (A.4)

to find

iS 2[Q̂] = −
1
2
πν̃~D̄ Tr

[
(1̂ + Λ̂)R̂ (∂rR̂−1) · (1̂ − Λ̂)R̂ (∂rR̂−1)

]
=

1
4
πν̃~D̄ Tr

[
∂r(R̂−1Λ̂R̂)

]2
, (A.5)

from which Eq. (3.43) follows.
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A.1.4 Derivation of Eq. (3.46)

The nonconservative part of γ̂Ĝ−1
0 , being substituted in the first trace in Eq. (3.39) yields

iS 3[Q̂] ' − iε′′ω2
0 Tr

∑
kk′
Ĝ(k)γ̂R̂(k − k′)

[
Λ̂R̂−1(k′ − k) − R̂−1(k′ − k) Λ̂

]
. (A.6)

We change the variable k′ = k + ∆k and apply Eq. (A.1). After cyclically moving the operators
under the trace we obtain Eq. (3.46).
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APPENDIX B

Appplication of the Nonlinear σ-Model: Full
Counting Statistics

B.1 Introduction

In this appendix we give the explicit calculations for the full counting statistics paper. We will
fill in some derivation details not given in the main text, and in particular, the full derivation of
the nonlinear σ-model action including a current source term will be given. The inclusion of the
source term is necessary as a “handle” with which the moments of the current can be generated
from the action.

B.2 Disordered action with current

The current can be written classically as follows (we set c = 1)

j =
1

4π
E ×H (B.1)

For simplicity, we align our electric field in the z-direction such that

Ez = −Ȧ (B.2)

which then restricts the magnetic field such that

H = ∇ × A⇒ Hx = ∂yA, Hy = −∂xA (B.3)

In terms of the above-defined quantities we can write the current:

j = −
1

4π
Ȧ∂⊥A : jx = −

1
4π

Ȧ∂xA, jy = −
1

4π
Ȧ∂yA (B.4)
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Using the definition of the Fourier transform

AR(t) = Re
{∫ +∞

−∞

dω
2π

Aω e−iωt
}

︸                     ︷︷                     ︸
A(t)

(B.5)

and from here on we use complex A(t). We also assume that relevant frequencies are in a narrow
interval around the atomic transition frequency ν = ω0. We can thus define the current using the
complex A(t):

j = −
1

16π

(
Ȧ∗(t)∇⊥A(t) +

(
∇⊥A∗

)
Ȧ
)

(B.6)

and the addtional term to the action coupling the source term has the form

S j =

∫
C

dt
∫

dr λ(r, t) · j(r, t) (B.7)

where here λ(r, t) is the source term, here representing an analog to the vector potential in the
case of electrons. The

∫
C

integration can be rewritten in a familiar way,

S j = −
1

16π

∫ ∞

−∞

dt
∫

dr
{
λ+ ·

[
Ȧ∗+

(
∂⊥A+

)
+
(
∂⊥A∗+

)
A+

]
−λ− ·

[
Ȧ∗−∂⊥A−+

(
∂⊥A∗−

)
A−

]}
(B.8)

Performing the Keldysh change of variables

λ± =
λcl ± λq

√
2

, A± =
Acl ± Aq

√
2

(B.9)

gives the integrand in (B.8) in the Keldysh (cl, q) space as

I =
1
√

2

(
Acl Aq

)︸         ︷︷         ︸
˙̂A†

(
~λq ~λcl

~λcl ~λq

)
︸        ︷︷        ︸

~̂λ

(
Acl

Aq

)
︸  ︷︷  ︸

Â

+
1
√

2
(∇⊥Â)† · ~̂λ · Â (B.10)

≈ −
√

2ω2
0

√
ε′Â†(~κ · ~̂λ)Â (B.11)

where we made the following approximations

∂t ≈ ∓iω0 (B.12)

∇⊥ ≈ ±iω0
√
ε′~κ, |~κ| = 1 (B.13)

We can represent ~̂λ as

~̂λ = ~λq
1̂ + ~λcl̂γ, γ̂ =

(
0 1
1 0

)
(B.14)
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and we have finally, analogously to the simple free action described in the first chapter, the
following action including external sources

S = S 0 + S j =
1

16π
Â†

(
Ĝ−1

0 +
√

2ω2
0

√
ε′(~κ · ~̂λ)

)
Â (B.15)

B.3 Keldysh sigma model with current source term

In this section we will derive in detail the Keldysh sigma model action including source term
as was shown in Chapter 4. We start from the original Tr ln action as was derived in Chapter 3,
Eq. (3.33). Including the source term, the term has the form

Tr ln
(
Ĝ−1

0 +
~̃

2τ
+
√

2ω2
0

√
ε′(~κ · ~̂λ)

)
(B.16)

and using the usual parameterization of the Q̂ matrix

Q̂ = iR̂−1Λ̂R̂ (B.17)

we can rewrite (B.18) such to obtain

Tr ln
(
Ĝ−1

0 +
~̃

2τ
+
√

2ω2
0

√
ε′(~κ·̂~λ)

)
= Tr ln

(
R̂[γ̂Ĝ−1

0 , R̂−1]+γ̂Ĝ−1+
√

2ω2
0

√
ε′R̂γ̂(~κ·̂~λ)R̂−1

)
(B.18)

where γ̂Ĝ−1 = γ̂Ĝ−1
0 + i ~̃2τ Λ̂. Now if we pull out the Q̂-independent γ̂Ĝ−1 and expand the ln we

obtain the following sequence of expressions

Tr ln
(
1 + Ĝγ̂R̂

[
γ̂Ĝ−1

0 , R̂−1
]︸              ︷︷              ︸

(... )0

+
√

2ω2
0

√
ε′Ĝγ̂R̂γ̂(~κ · ~̂λ)R̂−1

)
≈ (. . . )0 +

+
√

2ω2
0

√
ε′Tr

(
Ĝγ̂R̂γ̂(~κ · ~̂λ)R̂−1

)︸                                 ︷︷                                 ︸
1

−ω4
0ε
′Tr

(
Ĝγ̂R̂γ̂(~̂κ · ~̂λ)R̂−1

)2︸                           ︷︷                           ︸
2

−
√

2ω2
0

√
ε′Tr

(
Ĝγ̂R̂[γ̂Ĝ−1

0 , R̂−1]Ĝγ̂R̂γ̂(~κ · ~̂λ)R̂−1
)︸                                                        ︷︷                                                        ︸

3
(B.19)

We will look at the individual terms in (B.19).

B.3.1 Term 1

We first write out the expression in term 1 in Fourier transformed form

√
2ω2

0

√
ε′Tr

(
Ĝγ̂R̂γ̂(~κ · ~̂λ)R̂−1

)
= Tr

∑
k1,k2

Ĝ(k1)γ̂R̂(k1 − k2)γ̂~κ(k2) · (~̂λR̂−1)(k1 − k2)

≈ Tr
∑

k
Ĝ(k)~κ(k) ·

∑
∆k

γ̂R̂(∆k)γ̂(~̂λR̂−1)(−∆k) = 0
, (B.20)
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since the sum over ~κ(k) gives zero. We have used the notation k =
k1+k2

2 , ∆k = k1 − k2, and
neglected ∆k in Ĝ and ~κ.

B.3.2 Term 2

For term 2 we again make use of the decomposition first introduced in Chapter 3

Ĝγ̂ =
1
2
GR(1 + Λ̂) +

1
2

(1 − Λ̂)ĜA (B.21)

In which case the terms which contain the products GRGA and GAGR1 will yield the expression

Tr
(
Ĝγ̂R̂γ̂(~κ · ~̂λ)R̂−1

)2
=

=
1
2

Tr
∑

k1,...,k4

GR(k1)(1 + Λ̂)R̂(k1 − k2)γ̂~κ(~k2) · (~̂λR̂−1)(k2 − k3)GA(k3)(1 − λ̂)R̂(k3 − k4)γ̂~κ(k4)·

· (~̂λR̂−1)(k4 − k1)

≈
1
2

∑
k
GR(k)κα(k)GA(k)κβ(k)Tr

[
R̂γ̂λ̂αR̂−1R̂γ̂λ̂βR̂−1 − Λ̂R̂γ̂λ̂αR̂−1Λ̂R̂γ̂λ̂βR̂−1

]
,

(B.22)

Using the fact that2 ∑
k
GRκαG

Aκβ =
2πντ̄
~̃

δαβ

d
=

πν~̃

2ε′ω2
0

D̄δαβ (B.23)

where D̄ = v2τ̄
d and the group velocity is given by v = dω

dk = dω
d
√
ε′ω2

= 2
√
ε′ω2

~̃
, we then arrive at the

final form for Term 2
πν~̃

4ε′ω2
0

D̄Tr
[
(γ̂~̂λ) · (γ̂~̂λ) + (γ̂~̂λQ̂) · (γ̂~̂λQ̂)

]
(B.24)

B.3.3 Term 3

For term 3 we use the fact that

γ̂(Ĝ0)ω(k) =
[
ε(ω) − k2

]
1 + iε′′(ω)ω2Λ̂ (B.25)

1 Terms containing products of the form GRGR and GAGA will integrate out to zero due to placement of poles on the
same sides of the complex plane

2 These expressions have been proven and used in Chapter 3
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B.3 Keldysh sigma model with current source term

where ε(ω) = ε′ω2. We look at (B.25) excluding the ε(ω) term, which contributes to the time
derivative. Hence

Tr Ĝγ̂R̂
[
γ̂Ĝ−1

0 , R̂−1
]
Ĝγ̂R̂γ̂(~κ · ~̂γ)R̂−1 →

→Tr
∑

k1,...,k4

Ĝ(k1)γ̂R̂(k1 − k2)
[
− k2

2R̂−1(k2 − k3) + R̂−1(k2 − k3)k2
3+

+ iε′′ω2
0

(
Λ̂R̂(k2 − k3) − R̂−1(k2 − k3)Λ̂

)]
Ĝ(k3)γ̂R̂(k3 − k4)γ̂~κ(k4) · (~̂λR̂−1(k4 − k1))

, (B.26)

and using the same decomposition as above,

Ĝ(ki) =
1
2
GR(ki)(1 + Λ̂) +

1
2

(1 − Λ̂)ĜA(ki) (B.27)

while discarding terms that integrate to zero gives the approximate expression

≈
1
2

∑
k
GR(k)kαGA(k)κβ(k)

∑
±

Tr
(
1 ± Λ̂

)
R̂(i∂xαR̂−1)(1 ∓ Λ̂)R̂γ̂λ̂βR̂−1 =

= i
πν~̃D̄

2
√
ε′ω2

0

Tr
[
γ̂~̂λ ·

(
(∂rR̂−1)R̂ + Q̂∂rQ̂ + R̂−1Λ̂2(∂rR̂)

)]
= i

πν~̃D̄

2
√
ε′ω2

0

Tr
[
γ̂~̂λ · Q̂∂rQ̂

] , (B.28)

where we have used that
∑

k Ĝ
R(k)ĜA(k)κβ(k) = 0 and Tr (~λ · Q̂R̂−1∂rΛ̂R̂) = 0 to obtain the

second line.

B.3.4 Final action with current source

We can now combine our previously obtained free action (in absence of current source term) with
the terms 1, 2 and 3 to obtain a covariant derivative in the disordered action of the form

iS [Q̂] = iS̃ [Q̂] − πν0
D̄
4

Tr
[
(∂rQ̂)2 − ω2

0

(
γ̂~̂λ

)2
− ω2

0

(
γ̂~̂λQ̂

)2
− 2i
√

2ω0γ̂~̂λ · Q̂∂rQ̂
]

=
(
∂rQ̂ − i

ω0
√

2
[γ̂~̂λ, Q̂]

)(
∂rQ̂ − i

ω0
√

2
[γ̂~̂λ, Q̂]

)
≡

(
∂̂rQ̂

)2

. (B.29)
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APPENDIX C

Effect of Light Polarization on Light
Localization

C.1 Mathematical Description of Intensity Transport

In this section we give a short description of how (pulse) light intensity can be described in a
mathematically correct manner with the help of diagrammatics. Due to the electric field’s vector
nature, the Green’s function will have a 2nd-rank tensor structure. The corresponding intensity
tensor I(r, r′, t) of the field is a measure of its energy density and given by the tensor product of
two Green’s functions, resulting in a 4th-rank tensor

I(r, r′, t) ≡ 〈G(r, r′, t) ⊗G∗(r, r′, t)〉c, (C.1)

where 〈. . . 〉c indicates the configurational average. For further analysis, the intensity tensor can be
transformed into frequency domain and expressed in terms of spectral Green’s functions (position
dependence is suppressed for simplicity during argument)

I(ω′) ≡
∫

dt eiω′t I(t) =

∫
dt eiω′t〈G(t) ⊗ G∗(t)〉c

=

∫
dt

∫
dω1

2π

∫
dω2

2π
eiω′te−iω1teiω2t〈G(ω1) ⊗G∗(ω2)〉c

=

∫
dω1

2π

∫
dω2

2π
2πδ(ω′ −Ω) 〈G(ω1) ⊗G∗(ω2)〉c

=

∫
dω
2π

〈
G

(
ω + Ω

2

)
⊗G∗

(
ω − Ω

2

)〉
c
≡

∫
dω
2π

Sω(Ω, r, r′).

(C.2)

After writing out the Fourier transforms of the Green’s functions, we introduced the center-of-
mass frequency ω ≡ (ω1 + ω2)/2 and relative frequency Ω ≡ ω1 − ω2, and eventually performed
the time integration. The intensity tensor Sω is often called density-density correlation function,
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and will be transformed to momentum space in order to allow a diagrammatic analysis [101]:

Sω(Ω, r, r′) =
〈
G

(
ω + Ω

2 , r, r
′
)
⊗G∗

(
ω − Ω

2 , r, r
′
)〉

c

=
u3

(2π)9

∫
dK eiK(r−r′)

∫
dk

∫
dk′

〈
G+

kk′(Ω, K) ⊗G−k′k(Ω, K)
〉

c

≡
u

(2π)3

∫
dK eiK(r−r′) Sω(Ω, K)

(C.3)

where u denotes the crystal’s unit cell volume. Here we introduced the retarded Green’s function
G+ and the advanced Green’s function G− as

G+
kk′(Ω, K) ≡ G

(
ω + Ω

2︸︷︷︸
ω+

, k + K
2︸︷︷︸

k+

, k′ + K
2︸ ︷︷ ︸

k′+

)
(C.4)

G−k′k(Ω, K) ≡ G∗
(
ω − Ω

2︸︷︷︸
ω−

, k − K
2︸︷︷︸

k−

, k′ − K
2︸ ︷︷ ︸

k′−

)
(C.5)

The density-density correlation function Sω(Ω, K) describes the intensity component which is
modulated with frequency Ω and wave vector K. As it can be seen from the corresponding
Fourier transforms, these are conjugate variables to the propagation time t and the distance |r− r′|,
respectively. Since diffusive transport is expected on large time and length scales, we will be
interested in the case Ω, |K| → 0, the so-called hydrodynamic limit. Using eq. (6.18), one can
express the averaged tensor product of two Green’s functions product in terms of the effective
Green’s functions

〈G+ ⊗G−〉c = 〈(G+
e + G+

e T̄+G+
e ) ⊗ (G−e + G−e T̄−G−e )〉c

= G+
e ⊗G−e + G+

e 〈T̄
+G+

e ⊗G−e T̄−〉cG−e
= G+

e ⊗G−e + (G+
e ⊗G−e )〈T̄+

⊗ T̄−〉c(G+
e ⊗G−e )

≡ G+
e ⊗G−e + (G+

e ⊗G−e )Γ(G+
e ⊗G−e ).

(C.6)

Here, T̄ denotes again the total scattering matrix relative to the effective medium and the su-
perscripts label the considered frequency, i.e., T̄+

≡ T̄(ω + Ω/2) and T̄− ≡ T̄∗(ω − Ω/2). Ge
describes propagation in the effective medium, which is periodic and, hence, not affected by
disorder averaging. Also the identity (AB) ⊗ (CD) = (A ⊗ C)(B ⊗ D) of the tensor product has
been exploited. The new quantity Γ is called total interaction vertex and includes all possible
interferences between two waves. It can always be written as a sum of sequences of a irreducible
scattering vertex γ. These contain all interaction diagrams which cannot be turned into separate
diagrams by cutting two propagator lines vertically. Then, the total vertex Γ can be decomposed
as follows,

Γ = γ + γ(G+
e ⊗G−e )γ + γ(G+

e ⊗G−e )γ(G+
e ⊗G−e )γ + . . .

= γ + γ(G+
e ⊗G−e )Γ.

(C.7)
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Plugging this into eq. (C.6) yields

〈G+ ⊗G−〉c = G+
e ⊗G−e + (G+

e ⊗G−e )γ(G+
e ⊗G−e ) + (G+

e ⊗G−e )γ(G+
e ⊗G−e )Γ(G+

e ⊗G−e )

= G+
e ⊗G−e + (G+

e ⊗G−e )γ
[
G+

e ⊗G−e + (G+
e ⊗G−e )Γ(G+

e ⊗G−e )
]

= G+
e ⊗G−e + (G+

e ⊗G−e )γ〈G+ ⊗G−〉c. (C.8)

Introducing Φk,k′ ≡ 〈G+
kk′ ⊗G−k′k〉c and using the fact that the effective Green’s function Ge is

diagonal in momentum space (eq. (6.29)), the above equation can be written as

Φω
kk′(Ω, K) =

(
(Ge)+

k ⊗ (Ge)−k
) [ (2π)3

u
δ(k − k′) +

u
(2π)3

∫
dk′′γωkk′′(Ω, K)Φω

k′′k′(Ω, K)
]
.

(C.9)
This equation is known as the Bethe-Salpeter equation (BS) and can be understood as the two-
particle equivalent of the Dyson equation (6.22). It is an integral equation for the intensity tensor’s
spectral components Φω

kk′ , taking only the effective Green’s function Ge and the irreducible vertex
γ as inputs. The Bethe-Salpeter equation can be depicted diagrammatically as seen in figure C.1.
For our purposes it will be useful to transform the BS equation by integrating over k′ first. With
the notation Φk ≡

u
(2π)3

∫
dk′Φω

kk′ the Bethe-Salpeter equation then reads

Φω
k (Ω, K) =

(
(Ge)+

k ⊗ (Ge)−k
) [

1 ⊗ 1 +
u

(2π)3

∫
dk′′γkk′′Φ

ω
k′′(Ω, K)

]
. (C.10)

C.2 Ward Identity

In the evaluation of the Boltzmann equation, we made use of the Ward Identity. The Ward
identity is a consequence of energy conservation and establishes a useful connection between
single particle quantities like Green’s functions and self-energies on one hand, the two-particle
interaction vertex γ on the other hand. The expression for the Ward identity in nonconservative
media was first derived some time ago [42]. For our special case of the disordered photonic
medium with a pseudospin structure in the disorder potential, the Ward Identity was derived in a
later work [107] and reads:

∆Σ(Ω) −
∫

k′
∆Gk′(Ω, K)γk′k(Ω, K) = f(Ω)

[
ΠΣ(Ω) −

∫
k′

ΠGk′(Ω, K)γk′k(Ω, K)
]
, (C.11)

Figure C.1: Bethe-Salpeter equation in diagrammatic form.
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where the appearing quantities are defined as follows:

∆Gk(Ω, K) ≡ (G+
e )k ⊗ 1 − 1 ⊗ (G−e )k (C.12)

∆Σ(Ω) ≡ Σ(ω+) ⊗ 1 − 1 ⊗ Σ∗(ω−) (C.13)

ΠGk(Ω, K) ≡ (G+
e )k ⊗ 1 + 1 ⊗ (G−e )k (C.14)

ΠΣ(Ω) ≡ Σ(ω+) ⊗ 1 + 1 ⊗ Σ∗(ω−) (C.15)

f(Ω) ≡
[
V(ω+) ⊗ 1 + 1 ⊗ V∗(ω−)

]−1[V(ω+) ⊗ 1 − 1 ⊗ V∗(ω−)
]
. (C.16)

Here(G±e )k denotes the effective Green’s function, with the subscript and ± in the superscript
denoting k ± K

2 and ω± ≡ ω ± Ω
2 , respectively. This has been calculated in Sec. 6.4.3. The

right hand side of the Ward Identity does not appear when considering electronic systems and
is an outcome of the squared frequency dependence of our disorder potential. In the ladder
approximation γkk′ ≈ γL and the limit Ω, |K| → 0, the Ward Identity reads

∆Σ − ∆G0γL(0) = f(Ω)
[
ΠΣ + ΠG0γL(0)

]
, (C.17)

with the integrated Green’s functions ∆G0 ≡
∫

k∆Gk and ΠG0 ≡
∫

kΠGk. From eq. (C.17), one
can easily derive an expression for the interaction vertex in ladder approximation γL in terms of
known single particle quantities:

γL(Ω) =
[
∆G0 + f(Ω)ΠG0

]−1[
∆Σ − f(Ω)ΠΣ

]
(C.18)

The prefactor f(Ω) can be expanded for frequencies Ω � ω and diagonalized according to the
procedure explained in Sec. 6.6. We obtain for the singlet/triplet eigenvalues f S/T

f S/T (Ω) ≈
Ω

ω

(
1 ±
T 2

V2

)
+ O

(
Ω3

)
. (C.19)
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C.3 Evaluation of the Irreducible Vertex

C.3 Evaluation of the Irreducible Vertex

C.3.1 Ladder Approximation

In order to estimate an expression for the irreducible vertex γ which was introduced in the
previous chapter, we start at the definition of the total vertex Γ from eq. (C.6) and expanding in
terms of single-site scattering events, we have

Γ = 〈T̄+
⊗ T̄−〉c

=

〈[∑
i

t̄+
i +

∑
i

∑
j,i

t̄+
i G+

e t̄+
j + . . .

]
⊗

[∑
k

t̄−k +
∑

k

∑
l,k

t̄−k G−e t̄−l + . . .
]〉

c

=

〈[∑
i

t̄+
i

(
1 +

∑
j,i

G+
e t̄+

j + . . .
)]
⊗

[∑
k

t̄−k
(
1 +

∑
l,k

t̄−l G−e + . . .
)]〉

c

≡
∑

i

∑
k

Γik.

(C.20)

In this form the total vertex Γ is written as the sum of all possible two-wave interaction events.
Since we are working within the CPA, we know that the single site scattering matrices vanish,
〈t̄±i 〉c = 0 (CPA condition). However, this will in general not be true for higher moments like
〈t̄+

i ⊗ t̄−i 〉c or 〈(t̄+
i ⊗ t̄−k )(G+

e ⊗G−e )(t̄+
i ⊗ t̄−j )〉c. If one again neglects correlations between different

scatterings at different sites, one can express the configurationally averaged products as the
product of averaged scattering tensors,

〈(t̄+
i ⊗ t̄−k )(G+

e ⊗G−e )(t̄+
j ⊗ t̄−l )〉c ≈ 〈t̄

+
i ⊗ t̄−k 〉c(G+

e ⊗G−e )〈t̄+
j ⊗ t̄−l 〉c. (C.21)

This is of course identical with the single-site approximation used in the derivation of the CPA
in sec. 6.4.3. Furthermore, one can drop all terms with an odd number of scattering matrices t̄,
since in the averaging process there will always be an isolated matrix which averages to zero.
The total vertex components Γik, which describe all scattering sequences starting at site i and k
for the retarded wave and the advanced wave, respectively, can then be written as

Γik =

〈[
t̄+
i + t̄+

i

∑
j,i

G+
e t̄+

j + . . .
]
⊗

[
t̄−k + t̄−k

∑
l,k

G−e t̄−l + . . .
]〉

c
SSA
≈ 〈t̄+

i ⊗ t̄−k 〉c + 〈t̄+
i ⊗ t̄−k 〉c

∑
j,i

∑
l,k

(G+
e ⊗G−e )〈t̄+

i ⊗ t̄−k 〉c + . . .

= 〈t̄+
i ⊗ t̄−i 〉c δik

[
1 ⊗ 1 +

∑
j,i

∑
l,k

(G+
e ⊗G−e )Γ jl

]
.

(C.22)
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Figure C.2: The total interaction vertex Γ in the ladder approximation.

To get rid of the summation restrictions in the above expression, we can add the missing term
on both sides of the equation and obtain[

1 ⊗ 1 + 〈t̄+
i ⊗ t̄−i 〉c(G+

e ⊗G−e )
]
(ΓL)ik = 〈t̄+

i ⊗ t̄−i 〉c δik

[
1 ⊗ 1 +

∑
j

∑
l

(G+
e ⊗G−e )(ΓL) jl

]
⇔ (ΓL)ik = (γL)iδik

[
1 ⊗ 1 +

∑
j

∑
l

(G+
e ⊗G−e )(ΓL) jl

]
,

with (γL)i ≡
[
1 ⊗ 1 + 〈t̄+

i ⊗ t̄−i 〉c(G+
e ⊗G−e )

]−1
〈t̄+

i ⊗ t̄−i 〉c.

Comparing above result with the decomposition of the total vertex Γ in eq. (C.7), it is possible
to identify γL with the irreducible scattering vertex within the single-site approximation. In
this regime all scattering elements 〈t̄+

i ⊗ t̄−i 〉c have the same strength, resulting in a completely
isotropic irreducible vertex (γL)kk′ = γL. This isotropy leads to a vanishing relaxation kernel
M(ω), thus γL describes classical diffusive (i.e. incoherent) transport. For this reason it is called
diffuson.

The total scattering vertex ΓL can then easily be written in terms of diffusons, as seen in fig. C.2.
Due to their similarity with ladders lying on the side, this group of diagrams is called ladder
diagrams, and the corresponding approximation which takes only these diagrams into account is
called ladder approximation.

C.3.2 Coherent Backscattering and the Cooperon Vertex

Staying within the ladder approximation is not that interesting, since the characteristic property of
waves – their ability to interfere with each other – is completely neglected in that case. As it turns
out, interference effects play a role, especially the phenomenon called coherent backscattering
has a considerable localizing influence on wave transport.

Coherent backscattering is caused by the fact that all scattering paths which scatter waves
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Figure C.3: The cooperon vertex γC comprises all maximally crossed diagrams.

opposite to their incident direction can have the same phase relation, resulting in constructive
interference in the backwards direction. This effected is expected to slow down the diffusion
process and thus is also known as weak localization. The corresponding diagrams contain only
interaction lines which are maximally crossed (see figure ??).

To include coherent backscattering into our theory, we have to add all of these maximally
crossed diagrams (fig. C.3) to our irreducible vertex [108]. The modified vertex will be denoted
by γC (and a zigzag line in diagrams) and is often called cooperon, in reference to similar
diagrams which describe cooper pairs in superconductivity [109]. If the considered system is
invariant under a time-reversal operation, one can express the cooperon vertex completely in
terms of ladder diagrams. As a result, one can use quantities calculated within the incoherent
ladder approximation to include coherent backscattering. The individual steps needed for this
transformation are depicted in figure C.4, If one performs the transformation on every constituent
of the cooperon vertex, one will obtain the total vertex for the ladder approximation ΓL with K
replaced by k + k′

γC
kk′ = ΓL(Ω, k + k′) ∝

1
−iΩ + DL|k + k′|2

(C.23)

Apparently, the contribution from the cooperon vertex diverges in the case k = −k′, showing the
effect of coherent backscattering. The cooperon vertex can now be inserted into equation (6.40)
to calculate its effects on the diffusion process.

C.4 Mode Structure of the Diffusion Constant

As we will show in this section, it is possible to overcome the incovenient matrix structure of
eq. (6.40) in polarization mode space by consequent diagonalization of the tensor quantities. For
this we will make use of the methods developed in section 6.7.1, i.e., we will switch from the
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Figure C.4: Transformation of a maximally crossed diagram into a ladder diagram.

original product basis to a more suitable singlet/triplet basis. Most of these calculations have
been first performed in [106].

In our case, the mode structure of the ladder diffusion constant DL is adopted from the
renormalization factor δ, which in turn contains the ladder vertex γL and a factor f(Ω), see
eq. (6.38) and (6.39). These can be diagonalized in the same basis with eigenvalues γS/T

L
(eq. (6.47) and (6.48)) and f S/T (eq. (C.19)). This structure is carried over to DL, so that we have
a diagonal singlet/triplet structure for the ladder diffusion constant in the ladder eigenbasis (6.47)
and (6.48):

DL =


DS

L 0 0 0
0 DT

L 0 0
0 0 DT

L 0
0 0 0 DT

L


L

, with DS/T
L =

i
4

∫
k
(
K̂ · uk

)2
∆G2

k(0, 0)

ω (1 + δS/T )∆G0
. (C.24)

The mode structure of the renormalizing factor R ≡ 1 ⊗ 1 + M is determined by the irreducible
vertex γkk′ inside the relaxation kernel M. In the case of the cooperon vertex γC

kk′ , it has been
shown in sec. 6.7.1 that the vertex can be diagonalized with singlet and triplet eigenvalues,
however only in a different eigenbasis than the ladder vertex.

For further considerations, it is necessary to have both constituents of eq. (6.40) available in
the same basis. If we choose to work in the ladder eigenbasis (6.47) and (6.48), we will have to
transform the cooperon-diagonal quantity R into the ladder eigenbasis. To do this, consider the
change of basis matrices UL and UC, which perform the change from the pseudospin product
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basis to the ladder eigenbasis or cooperon eigenbasis, respectively,

UL =


1√
2

0 0 1√
2

0 1 0 0
0 0 1 0
− 1√

2
0 0 1√

2

 , UC =


0 1√

2
− 1√

2
0

1 0 0 0
0 0 0 1
0 1√

2
1√
2

0

 . (C.25)

The change of basis matrix UC2L which transforms from the cooperon eigenbasis to the ladder
eigenbasis is hence given by

UC2L ≡ ULU−1
C =


0 1√

2
1√
2

0
1√
2

0 0 1√
2

− 1√
2

0 0 1√
2

0 − 1√
2

1√
2

0

 . (C.26)

With the help of UC2L and some basic linear algebra we can find out how the quantity R, which
is diagonal in the cooperon eigenbasis with a singlet eigenvalue RS and a triplet eigenvalue RT ,
will appear in the ladder eigenbasis:

UC2LRU−1
C2L = UC2L


RS 0 0 0
0 RT 0 0
0 0 RT 0
0 0 0 RT


C

U−1
C2L =


RT 0 0 0
0 RT +RS

2
RT−RS

2 0
0 RT−RS

2
RT +RS

2 0
0 0 0 RT


L

. (C.27)

As we can see, the singlet eigenvalue RS is now mixed with the triplet eigenvalue RT inside
the space which actually belongs to the ladder triplet eigenstates. A nice feature of this kind of
structure is the fact that it commutes with ladder diagonal quantities, i.e, RDL = DLR. We can
therefore understand eq. (??) as the product of a singlet/triplet diagonal quantity DL and another
quantity R with a structure as in eq. (C.27). However, the product of both quantities can also be
diagonalized, resulting in three different values for the full diffusion constant D:

D =


DS 0 0 0
0 DT0 0 0
0 0 DT1 0
0 0 0 DT1


LC

=


DT

LRS 0 0 0
0 DS

LRT 0 0
0 0 DT

LRT 0
0 0 0 DT

LRT


LC

. (C.28)
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Here, the subscript "LC" denotes the new eigenbasis with the corresponding eigenstates

|S D〉 =
1
√

2

(
|21〉 − |12〉

)
with DS = DT

LRS , (C.29)

|T 0
D〉 =

1
√

2

(
|11〉 + |22〉

)
with DT0 = DS

LRT , (C.30)

|T±1
D 〉 =


1√
2

(
|22〉 − |11〉

)
1√
2

(
|12〉 + |21〉

) with DT1 = DT
LRT . (C.31)

Equation (C.28) displays three scalar equations which can be solved iteratively to obtain three
diffusion constants DS ,DT0 and DT1.

The appearance of a third eigenvalue for the diffusion constant can be understood using
symmetry arguments. As was mentioned in section 6.7, the threefold degeneracy of the triplet
eigenvalue can be seen as a consequence of the ladder approximation’s isotropic character.
Including coherent backscattering into our theory, however, allows constructive interference only
to happen in a certain direction and thus breaks the isotropic symmetry of our system. This
symmetry breaking then reduces the threefold degeneracy to a twofold one. Since coherent
backscattering does not break the inversion symmetry of the system, some degeneracy is still
conserved. Our choice of superscripts for the diffusion constants is influenced by the analogy to
the quantum mechanical spin coupling, where the triplet eigenstates can be further characterized
by the magnetic quantum number m which can take on values m ∈ {−1, 0,+1}. Since states
with m = ±1 are degenerate in systems with inversion symmetry, we also denote the degenerate
diffusion constant with DT1.

C.5 Diffusion Constant Calculation

Once we obtained the self-energies from CPA, we can move on to calculate the transport quantities
derived in chapter 6. In particular, we are interested in the set of full diffusion constants DS ,DT0

and DT1. Most of these calculations have been performed in [106].

C.5.1 Implementation

Irreducible Ladder Vertex & Green’s Functions

For their calculation, we need an expression for the irreducible ladder vertex γL which appears
inside the renormalization factor δ (eq. (6.39)) and the relaxation kernel M (eq. (6.40)). In the
case Ω → 0, it can be obtained via the Ward Identity (eq. (C.17)) from the CPA self-energy Σ

and Green’s function GD
e by

γL(0) =
〈 [

GD
e ⊗ 1 − 1 ⊗GD∗

e

]−1 [
Σ ⊗ 1 − 1 ⊗ Σ∗

] 〉
σ. (C.32)
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If we diagonalize γL(0) as described in section 6.7.1, we obtain (using Mathematica) for its
singlet and triplet eigenvalues γS/T

L the following expressions:

γS
L =

(Im G)3Im Σ − (Im G)2(Re G′ Re Σ′ + 2Im G′ Im Σ′
)

+ Im G Im Σ
(
2(Re G′)2 + (Im G′)2)(

(Im G)2 + (Re G′)2)((Im G)2 − (Im G′)2)
γT

L =
Im G Im Σ + Re G′ Re Σ′

(Im G)2 + (Re G′)2 , (C.33)

where G denotes the diagonal component of GD
e and G′ the off-diagonal one. One can easily

check that both eigenvalues become identical to γL = Im Σ
Im G for disabled mode flipping (G′,Σ′ = 0),

in consistency with the scalar theory [].

Besides the irreducible vertex γL, the Green’s functions ∆Gk(0, 0) and ∆G2
k(0, 0) also appear

several times, their exact structure shall be discussed now.

From its definition in eq. (C.12), we can see that ∆Gk(0, 0) has the following form

∆Gk(0, 0) =
1
2

(
1

ω2 − e(k) − Σ1
−

1
ω2 − e(k) − Σ∗1

)
+

1
2

(
1

ω2 − e(k) − Σ2
−

1
ω2 − e(k) − Σ∗2

)
=

1
2

2i Im Σ1

(ω2 − e(k) − Re Σ1)2 + (Im Σ1)2 +
1
2

2i Im Σ2

(ω2 − e(k) − Re Σ2)2 + (Im Σ2)2 ,

where Σ1/2 ≡ Σ±Σ′ have been defined. Apparently, ∆Gk(0, 0) describes the sum of two Lorentzian
functions centered at e(k) = ω2 − Re Σ1/2 and with a peak width given by Im Σ1/2. Also, its
integrated quantity ∆G0 appears in the calculation, it can be evaluated as

∆G0 ≡
1

(2π)3

∫
dk ∆Gk(0, 0)

= i
∫ 1

0
de Ñ(e)

(
Im Σ1

(ω2 − e − Re Σ1)2 + (Im Σ1)2 +
Im Σ2

(ω2 − e − Re Σ2)2 + (Im Σ2)2

)
.

(C.34)

The three-dimensional integration can be reduced to a one-dimensional one with the help of Ñ(e),
since ∆Gk(0, 0) only depends on the momentum k via the squared dispersion e(k).

The exact form of the squared Green’s function ∆G2
k(0, 0) can be derived from eq. (??), and is

given by

∆G2
k(0, 0) =

1
2

(
2i Im Σ1

(ω2 − e(k) − Re Σ1)2 + (Im Σ1)2

)2

+
1
2

(
2i Im Σ2

(ω2 − e(k) − Re Σ2)2 + (Im Σ2)2

)2

.

(C.35)
This expression obviously contains the sum of two squared Lorentzians, with the same peak
center and width as in the case of ∆Gk(0, 0).

The singlet and triplet values for the ladder diffusion constant are then calculated from
eq. (C.24). The expressions again comprise three-dimensional momentum integrals, but this time
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over the squared Green’s function ∆G2
k(0, 0) with a squared current term

(
K̂ · uk

)2:

DS/T
L =

i
4ω (1 + δS/T )∆G0

1
(2π)3

∫
dk

(
K̂ · uk

)2
∆G2

k(0, 0)

=
i

4ω (1 + δS/T )∆G0

∫ 1

0
de ∆G2

e(k)(0, 0)F(e).
(C.36)

Once again, the problem can be reduced to a one-dimensional integration, if we have access to
the special function F(e), defined via

F(e) ≡
1

(2π)3

∫
dk

(
K̂ · uk

)2δ(e − e(k)). (C.37)

More information about the appearance and evaluation of the auxiliary function F(e) can be
found in appendix B.

Relaxation Kernel

In order to calculate the full diffusion constant D from eq. (6.37), it is crucial to evaluate the
integral Mint inside the relaxation kernel M in an efficient way. In our case the relaxation kernel
has the structure

Mint(Ω) ≡
∫

dk
∫

dk′
(
K̂ · uk

)∆Gk(0, 0)∆G2
k′(0, 0)

−iΩ/D + |k + k′|2
(
K̂ · uk′

)
, (C.38)

where D is one of the interesting diffusion constants. This presents a six-dimensional momentum
integration of a quite complicated function, which can exhibit singular behavior either caused
by the Lorentz-shaped Green’s functions ∆Gk,∆G2

k or, more importantly, by values of momenta
k ≈ −k′. In the above form, an accurate numerical calculation is not possible in reasonable time.
Fortunately, with some approximations it can be reduced to a two-dimensional integration as we
will show now (idea taken from [101]).

To begin with, one can always execute the full k-integral in two steps. First, we perform an
integral over the surface S (e) in k-space, which is given by all k-points that yield the same value
for e(k). The result can then be integrated over all possible e-values. Thus, we replace∫

dk→
∫ 1

0
de

∫
e

dS
|uk|

. (C.39)

The constant frequency surface area S 0(e) for a given value of e would then be calculated from

S 0(e) ≡
∫

e
dS =

∫
dk |uk| δ

(
e − e(k)

)
. (C.40)

In order to benefit from this procedure, one needs an inverse relation of the squared dispersion
e(k). Since the dispersion is not an injective function, an exact inversion is generally not possible.
However, one can give an approximation by defining the average momentum length k̄(e) for a
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given value e by

k̄(e) ≡

∫
edS |k|
S 0(e)

. (C.41)

Again, both functions k̄(e) and S 0(e) have to be calculated and stored only once, so they can
be accessed when required. Furthermore we use a linear approximation for the gradient of the
squared dispersion,

uk ≡ ∇ke(k) =
1
6

 sin kx

sin ky
sin ky

 ≈ 1
6

 kx

ky
kz

 =
1
6

k. (C.42)

Within this approximation, the current terms in the relaxation kernel yield
(
K̂ · uk

)
= |uk| cos θKk

and
(
K̂ · uk′

)
= |uk′ | cos θKk′ , since K̂ denotes a unit vector. Here, θKk and θKk′ denote the angles

between K and k or K and k′, respectively.
Putting everything together, we end up with the following integral∫ 1

0
de

∫ 1

0
de′

∫
e
dS

∫
e′

dS ′
∆Ge(k)(0, 0) ∆G2

e′(k)(0, 0) cos θKk cos θKk′

−iΩ/D +
(
k̄2(e) + k̄2(e′) + 2k̄(e)k̄(e′) cos θkk′

) , (C.43)

where we introduced another angle θkk′ as the angle between the in- and outgoing momenta k
and k′. In eq. (C.43), we approximate the constant-e surface integrations by integrations over
spherical surfaces: ∫

e
dS →

S 0(e)
4π

∫ π

0
dθ

∫ 2π

0
dφ. (C.44)

With that, the angular part of eq. (C.43) for a fixed relative momentum direction K reads

S 0(e)S 0(e′)
(4π)2

∫ π

0
dθKk

∫ 2π

0
dφKk

∫ π

0
dθKk′

∫ 2π

0
dφKk′

cos θKk cos θKk′

−iΩ/D + k̄2(e) + k̄2(e′) + 2k̄(e)k̄(e′) cos θkk′
.

The result of above integral does not depend on which one of the three momenta k, k′ or K is
fixed. That is why we can choose to fix the direction of k instead of K and then integrate over the
angles θkk′ , φkk′ instead of θKk′ , φKk′ . Additionally, we can express the cos θKk′ in the numerator
in terms of the new integration variables with cos θKk′ = cos θKk cos θkk′ + sin θKk sin θkk′ cos φkk′ ,
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and arrive at

S 0(e)S 0(e′)
(4π)2

∫ π

0
dθKk

∫ 2π

0
dφKk

∫ π

0
dθkk′

∫ 2π

0
dφkk′

cos θKk(cos θKk cos θkk′ + sin θKk sin θkk′ cos φkk′)
−iΩ/D + k̄2(e) + k̄2(e′) + 2k̄(e)k̄(e′) cos θkk′

=
S 0(e)S 0(e′)

4

∫ π

0
dθKk

∫ π

0
dθkk′

cos2 θKk cos θkk′

−iΩ/D + k̄2(e) + k̄2(e′) + 2k̄(e)k̄(e′) cos θkk′

=
S 0(e)S 0(e′)

6

∫ π

0
dθkk′

cos θkk′

−iΩ/D + k̄2(e) + k̄2(e′) + 2k̄(e)k̄(e′) cos θkk′

=
S 0(e)S 0(e′)
6k̄(e)k̄(e′)

[
1 −

k̄2(e) + k̄2(e′) − iΩ/D
4k̄(e)k̄(e′)

ln
(
(k̄(e) + k̄(e′))2 − iΩ/D
(k̄(e) − k̄(e′))2 − iΩ/D

)]
.

(C.45)

Here, we first performed both φ-integrations, followed by the integration over θKk. The remaining
integral then was evaluated by substituting x = cos θkk′ and using the formula∫ 1

−1
dx

x
a + bx

=
2
b
−

a
b2 ln

(
a + b
a − b

)
, (C.46)

where we identified a = k̄2(e) + k̄2(e′) − iΩ/D and b = 2k̄(e)k̄(e′).
After all these considerations we are finally left with a two-dimensional integral Mint inside

the relaxation kernel M,

Mint(Ω) =

∫ 1

0
de

∫ 1

0
de′ ∆Ge(k)(0, 0) ∆G2

e′(k)(0, 0)
S 0(e)S 0(e′)
6k̄(e)k̄(e′)

×

[
1 −

k̄2(e) + k̄2(e′) − iΩ/D
4k̄(e)k̄(e′)

ln
(
(k̄(e) + k̄(e′))2 − iΩ/D
(k̄(e) − k̄(e′))2 − iΩ/D

)]
. (C.47)

Even now, the evaluation of Mint is anything but an easy task. In our calculations, we created
for every parameter set {ω,Σ,Σ′} different two-dimensional integration grids and weights, which
were then customized for the occuring Lorentzian and logarithmic peaks.

Diffusion Constant

Now we want to find an expression for the diffusion constant in the special case of Ω = 0. Using
matrix multiplications, we first bring eq. (6.37) to the following form:

D(Ω) = DL[1 ⊗ 1 + M(Ω)]−1

⇔ D(Ω)[1 ⊗ 1 + DD−1M(Ω)] = D(Ω)L

⇔ D(Ω) = DL + D(Ω)M(Ω)

(C.48)

In the eigenbasis of the full diffusion constant and for Ω = 0, we can factor the inverse full
diffusion constant D−1(0) out of the relaxation kernel M(0), which then cancels with the diffusion
constant D in the above equation. One can then derive the following equations for the three
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different eigenvalues of the full diffusion constant D(0):

DS = DT
L −

i∆G0

∆Σ(0)
γS

L

2ω(1 + δS )
Mint(0)∫ 1

0 de ∆G2
e F(e)

DT0 = DS
L −

i∆G0

∆Σ(0)
γT

L

2ω(1 + δT )
Mint(0)∫ 1

0 de ∆G2
e F(e)

DT1 = DT
L −

i∆G0

∆Σ(0)
γT

L

2ω(1 + δT )
Mint(0)∫ 1

0 de ∆G2
e F(e)

.

(C.49)
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APPENDIX D

Application of the Nonlinear σ-Model:
Random Lasing

D.1 Quantum theory of the laser

D.1.1 Introduction

The semiclassical theory of lasing, as illustrated in Chapter 5, describes major features of lasing
very well, while at the same time maintaining the relative simplicity of the classical description.
However, a major shortcoming of the semiclassical theory is that it can best describe lasing
strictly above the lasing threshold, or strictly below it. The transition from a nonlasing situation
to a lasing one cannot be fit into the semiclassical framework since all expressions derived
from this theory are deterministic in nature, and the one important ingredient missing from the
deterministic description is noise, an intrinsically stochastic quantity. Laser noise is responsible
for spontaneous emission, which ensures that even in the absence of pumping (and hence at a
point far below the lasing threshold), there will still be spontaneous excitation and decay of atoms
to and from different energy levels. Radiation originating from these transitions are responsible
for light emitted from normal lamps, for example. In other words, without the inclusion of
spontaneous emission, a nonlasing system will remaing nonlasing for all times, and to study
dynamics of lasing we would have to assume that we are already in the lasing regime.

Hence, it is then important that one sees how the full quantum mechanical derivation of the
lasing equation can be done. In our work we restricted ourselves to the semiclassical case, where
there are no noise terms, but for sake of completeness we will detail in the following the complete
derivation of the lasing equations and thereafter restrict ourselves to the relevant regime. The
entirety of this section has been adapted from the relevant sections in [75].

D.1.2 The laser Hamiltonian

In order to have a full quantum mechanical description we need to write down the Hamiltonian
for our system. For that it is important to understand how the laser system can be physically
modeled.
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In general the laser system can be seen as being made up of an enclosed volume (the “reson-
ator”), containing the gain material, and an outside source of energy (the “pump”) to excite the
gain electrons. The resonator is assumed to be leaky, i.e., energy can be dissipated out into an
infinite continuum via the coupling of the resonator to heat baths. Radiation inside the reson-
ator couples to the atoms of the gain medium, in the sense that each different mode (assuming
multimode operation of the laser) couples to a different bath. The atoms are also assumed to be
coupled to their own baths. In addition, we also need to deal with the randomness in the gain
medium.

There are some subtleties associated with the description above: assuming coupling of each
radiating mode in the resonator to its own bath implies absence of bath-bath coupling, which
simplifies the analysis although it is known that this effect is known to incorrect for resonators
with arbitrary values of the Q-factor [18]. In addition, it is also of course important to ensure that
the losses from the cavity are not so large as to destroy the discrete mode structure of the fields
inside the resonator [18].

The Hamiltonian which we have described above will have the following form:

H = H f + HA + HB1 + HB2 + HA− f + HB1− f + HB2−A (D.1)

A derivation of this Hamiltonian (quantization procedure) is given below. Here we first give and
explain the individual terms in detail:

1. The first two terms comprises the “free” part of the Hamiltonian.

a) H f is the part of the Hamiltonian describing the propagation of free field modes. For
simplicity here we can assume a regularly shaped cavity; the specific shape does not
matter for our purposes as long as it supports a mode structure of the waves inside the
cavity. This term also contains the coupling of the field to the disorder potentialV,
which characteristics will be clarified in a later chapter. H f hence takes the simple
form

H f = ~
∑
ν

ωνb
†
νbν + ~

∑
ν

Vνb†νbν (D.2)

where b†ν, bν are field creation and annihilation operators, and we have dropped the
zero point energy.

b) HA describes the atomic Hamiltonian. We remind that lasing action requires the
presence of a gain medium in which propagating light can be amplified. The behavior
of this medium is described by this term HA. The physical picture of such a gain
medium has been elucidated in Sec. 5.1.4, in particular the required configurations of
atomic energy levels. From there we summarize that the simplest possible picture of a
gain medium is the 2-level atom; in such a picture population inversion is assumed to
occur only between these two levels and no other transitions are possible. In general
lasing action requires more complicated atomic structures, but for the purpose of
a “toy” model it is sufficient. The 2-level atom located at r0 is described by the
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Hamiltonian
HA =

1
2
~ωσ̂z(r0) (D.3)

where ω is the frequency difference between the 1st and 2nd atomic levels, measured
with respect to the 1st level, assuming that the energy of the 1st level can be set to
0. This is the energy of the atomic transition, and is the largest energy scale in the
system under consideration. σ̂z(r0) is the z Pauli matrix describing the occupation of
the atom at r0. Of course, this term can be trivially generalized to the situation of a
collection of atoms (which is usually the case) by summing (D.3) over an additional
index

HA =
1
2
~ω

∑
µ

σ̂z(rµ) (D.4)

or, in second-quantized form,

HA = ~ω
∑
µ

a†2,µa2,µ, (D.5)

where the operators a†2,µ, a2,µ create (annihilate) an atom at the second (higher) energy
level.

c) The first bath term HB1 denotes the bath to which the atomic levels are coupled. As
this bath will have only the role of a dissipative bath we will assume that it takes the
simple form of a bath of harmonic oscillators, which thus have the usual form

HB1 =
∑
ω

~ωB†ωBω (D.6)

The bath modes have a continuum of frequencies.

d) The second bath couples to the field modes of the resonator; we can also assume the
dynamics of a harmonic oscillator Hamiltonian for this bath,

HB2 =
∑

m

∫
dω ~ω B†m(ω)Bm(ω) (D.7)

The bath modes are characterized by a discrete index m as they are assumed to couple
to discrete modes of the laser resonator.

2. The term HA− f is the coupling between the field modes and the atomic levels. It has the
form

HA− f =
∑
µ

∑
λ

(
A∗µλσ̂

+
µbλ + Aµλb†λσ̂

−
µ

)
(D.8)

where the atom-field coupling strength is given by Aµλ in the form

Aµλ = −i

√
ω

2~ε0

∫
d3x uλ(xµ)ϕ∗1(xµ) exϕ2(xµ)
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where ϕi(x) is the eigenfunction of the atomic level i, while uλ(xµ) denotes the field
eigenmode λ at position xµ of the atom. For the general case of a multi-atomic medium
laser operating in the multimode regime, the indices µ and λ are then summed over.

3. The terms HB2 + HB2− f provides for the bath-field mode coupling. This is the term which
allows for coupling of resonator modes with the external continuum. There is an inherent
subtlety in quantizing such “leaky” modes since it is not a priori clear what are the suitable
eigenmodes to use in the expansion of the field operators during the quantization process.
It has been shown in [110] that the bath B1 and indeed its coupling to the resonator modes
can be derived for a quantum description of the system in an exact manner, and it can be
shown that the field Hamiltonian then reduces to a usual “system-bath” coupling.

HB2 + HB2− f =
∑

m

∫
dω ~ω B†m(ω)Bm(ω)+

+ ~
∑
λ

∑
m

∫
dω

[
Wλ,m(ω)b†λBm(ω) +W∗

λ,mB†m(ω)bλ

]
(D.9)

The first term describes the dynamics of the bath modes, which corresponds to set of
independent harmonic oscillators. The second term very closely resemble a typical “system-
bath” coupling term, where the a(†)

λ operators correspond “resonator” creation / annihilation
operators, while B(†)

m (ω) are the bath operators, now frequency dependent.

4. The final terms HB1 + HB1−A are the terms corresponding to the 2nd (distinct) bath and the
coupling of this bath to the atomic levels. This coupling induces an additional decay of the
population inversion in the system. Since this bath only plays the role of a dissipative bath
we will assume that it takes the simplest configuration of a harmonic oscillator bath. This
also means that the atom-bath coupling term will take the usual form, as shown below

HB1 + HB1−A = ~
∑
ω′

ω′B†ω′Bω′ + ~
∑

k′

(
gAB

k′ (r0)σ̂+Bk′ + H.c.
)

(D.10)

The coupling constant gAB
k (r0) is local at the location of our single two-level atom; in the

case where we assume a collection of gain atoms there will be an additional sum over
atomic positions in the second term in (D.10). At the level of this work the effect of HB2− f

would be simply to contribute to the total noise content of the lasing system.

D.1.3 Equations of motion of quantities

Having defined the Hamiltonian of our system of interest, the next task is to find an expression
describing the field modes of the resonator. This will involve the elimination of the various atomic
and bath modes, and in the approach of Haken this is done via the equations of motion for the
field modes and atomic modes. Specifically, we will derive equations of motion for the following
quantities:
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1. The field modes b†ν, bν;

2. The atomic dipole moments σ̂+ and σ̂−;

3. The inversion σ̂z.

Equation of motion for the field modes in the presence of field-bath and field-atom
coupling

Since we have the explicit Hamiltonian terms for the various parts required the equation of motion
for b†ν, bν can be derived simply. We consider the equation

ḃν =
i
~

[(
H f + HA− f + HB2− f

)
, bν

]
(D.11)

= −iωνbν − iVνbν + i
∑
µ

Aµνσ̂−µ − i
∑

m

∫
dωWν,m(ω)Bm(ω) (D.12)

In order to write (D.12) in terms of field modes bν, b†ν only we can correspondingly derive an
equation of motion for the bath modes of B2, which is

Ḃ†m(ω) = iωB†m(ω) + i
∑
λ

Wλ,m(ω)b†λ (D.13)

(D.13) allows immediately solution in the form

B†m(ω, t) = i
∑
ν

∫ t

0
dτWν,m(ω)b†νe

iω(t−τ) + B†m(ω, t = 0)eiωt (D.14)

and substitution of (D.14) into (D.12) gives the solution

ḃν = −iωνbν − iVνbν + i
∑
µ

Aµνσ̂−µ − i
∑

m

∫
dωWν,m(ω)Bm(ω, t = 0)e−iωt

−
∑
ν

∑
m

∫
dω

∫ t

t0
dτ

{
Wν,m(ω)W∗

ν,m(ω) b†ν(τ)e−iω(t−τ)
}

(D.15)

We can simplify (D.15) via several simplifications:

1. We separate the time dependence of the field modes b†ν(t) as follows:

b†ν(t) = eiωνtb̃†ν(t) (D.16)

where the time dependence of the factor bν(t) is much slower than that of the exponential
factor.

2. In addition, we replace the summation over m in the 2nd term on the r.h.s of (D.15) by an
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integral over ωm such that∑
m

|Wν,m(ω)|2 ⇒
∫ ∞

0
dωm |W̃ν,ωm |

2 exp [iωm(t − τ)] exp [iων(t − τ)] (D.17)

where the W̃ν,ωm differ fromWνωm by a factor stemming from the numeration of the ωms
Given that the coupling factors W̃ν,ωm are associated with a continuum of bath modes,
we make the simplification that they are independent of ωm and ν. We can also shift the
integration variable such that ω→ ω′ such that

ωm − ων = ω′ (D.18)

which renders the lower limit of integration to be at −ων, which we replace by −∞. Hence
the integral can be carried out such that∫ +∞

−∞

dω |W̃|2 exp [iω(t − τ)] = 2κδ(t − t′) (D.19)

where κ = π|W̃|2. Putting all parts together we see that the equation of motion for the field modes
can now be written in the form

ḃν = −i
[(
ων +Vν

)
+ iκ

]
bν + i

∑
µ

Aµ,νσ̂−µ − i
∑

m

∫
dωWν,m(ω)Bm(ω, t = 0)e−iωt

︸                                            ︷︷                                            ︸
Fν(t)

(D.20)

F(t), which involves the bath modes Bω at t = 0, is a fluctuating force. The correlation functions
of this term can be determined. I will just list these here and do not derive them (they are similarly
derived in the book of Haken): 〈

Fλ(t)
〉

=
〈
F†λ(t)

〉
= 0 (D.21)〈

Fλ(t)Fλ′(t
′)
〉

=
〈
F†λ(t)F†λ′(t

′)
〉

= 0 (D.22)〈
F†λ(t)Fλ′(t

′)
〉

= nλ(T )2κλδ(t − t′)δλλ′ (D.23)〈
Fλ(t)F†λ′(t

′)
〉

=
(
nλ(T ) + 1

)
2κλδ(t − t′)δλλ′ (D.24)

where nλ(T ) is the mean number of modes with frequency λ at temperature T .

Equation of motion for the atomic modes in the presence of atom-bath

EOM for the inversion σ̂z
In this section we derive the equation of motion for the atomic inversion σ̂z. This involves the
calculation of the expression

˙̂σz
µ =

i
~

[
HA + HA− f + HB1−A, σ̂

z
µ

]
(D.25)
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Using the commutation relations [
σ̂−µ , σ̂

+
µ′
]

= −σ̂z
µδµ,µ′ (D.26)[

σ̂−µ , σ̂
z
µ′
]

= 2σ̂−µδµ,µ′ (D.27)

we can calculate (D.25) easily.

˙̂σz
µ = −2i

∑
λ

(
A∗µ,λσ̂

+
µbλ − Aµ,λb†λσ̂

−
µ

)
− 2i

∑
k′

(
gAB

k′ (r0)Bk′σ̂
+
µ −

(
gAB

k′ (r0)
)∗

B†k′σ̂
−
µ

)
(D.28)

We can also derive the equation of motion for the bath operators, which takes the familiar form

Bk(ω, t) = e−iω(t−t0)Bk(ω, t0) − i
∫ t

t0
dt′

(
gAB

k (r0)
)∗

exp(−iω(t′ − t0)) σ̂−µ (D.29)

which we substitute back into the noise term to obtain, for the noise (third) term in (D.30) the
expression

˙̂σz
µ = −2i

∑
λ

(
A∗µλσ̂

+
µbλ − Aµλb†λσ̂

−
µ

)
−

− 2i
∑

k′

[
gAB

k′ (r0)e−iω′(t−t0)Bk′(ω, t0)σ̂+
µ −

(
gAB

k′ (r0)
)∗

eiω′(t−t0)B†k′(ω, t0)σ̂−µ
]

︸                                                                                         ︷︷                                                                                         ︸
Γd
µ

+

+ 4i
∑

k′

∫ t

t0

[
|gAB

k′ (r0)|2
(
e−iω′(t−t0) − eiω′(t−t0))]σ̂z

µ︸                                                      ︷︷                                                      ︸
−4iγ‖

(
σ̂z
µ(t=t0)−σ̂z

µ(t)
)

(D.30)

EOM for the atomic dipole moments σ̂±
The coupling of the atomic variables to their respective baths and to the field modes will also affect
the variables σ̂±, which in turn influences the transition between atomic levels. The equation of
motion for these variables has the form

˙̂σ+
µ =

i
~

[
HA +HA−B1 +HA− f , σ̂+

]
(D.31)

The various commutators in the above expression is quite similar to various quantities already
calculated above, and hence we will use them in and show directly the final expression,

˙̂σ+
µ = iωσ+

µ−i
∑

k

(
gAB

k (r0)
)∗

B†k(ω, t0)σz
µeiω(t−t0)

︸                                       ︷︷                                       ︸
Γµ

+
∑

k

∫ t

t0
dτ |gAB

k (r0)|2eiω(t−t0)σ̂+
µ︸                                 ︷︷                                 ︸

γ

−i
∑
λ

Aµ,λb†λσ̂
z
µ

(D.32)
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D.1.4 Nonlinearity and multimode operation

Having derived the equations determining the operation of the laser in (D.20), (D.30) and (D.32)
we can now eliminate the atomic variables σ̂±µ , σ̂z

µ in order to obtain an equation for the field
modes alone. We will do this again as described in Haken, for the case of multimode operation,
up to cubic order in the mode operators b†ν, bν. To do this we first assume that the field modes
can be written in the form bν(t) = Bν(τ) exp(−iΩνt), b†ν(t) = B∗ν(τ) exp(iΩνt) where the time
dependence of the envelope Bν(τ), B∗ν(τ) is slow compared to the atomic relaxation time scales γ
and γ‖. Technically, we assume Bν(τ) to be time-independent within the individual steps of this
derivation. We recap here the form of the expressions we will use for the derivation below

ḃν = −i
[(
ων +Vν

)
+ iκν

]
bν + i

∑
µ

Aµ,νσ̂−µ + Fν(t) (D.33)

˙̂σz
µ = −2i

∑
λ

(
A∗µλσ̂

+
µbλ − Aµλb†λσ̂

−
µ

)
− 4γ‖

(
σ̂z
µ(t0) − σ̂z

µ(t)
)

+ Γd
µ (D.34)

˙̂σ+
µ = i

(
ω̄µ − iγ

)
σ̂+
µ − i

∑
λ

Aλ,µb†λσ̂
z
µ + Γµ (D.35)

In the first step we first assume that due to pump and relaxation processes the inversion σ̂z
µ has

reached an initial value σz
(0),µ. With the values of bν(t) and σ̂z

(0),µ we insert these values in (D.32).
Since we see that on the r.h.s. of this expression there is a sum of exponentials due to the presence
of exp(−iΩνt) and exp(iΩνt), we assume a similar ansazt for the values of the dipole moment at
the first step, which we denote σ̂+

(1),µ(t): σ̂+
(1),µ(t) =

∑
ν B̂ν,µeiΩνt. This yields the form of (D.32) as∑

ν

(iΩν) B̂ν,µeiΩνt = i(ωµ − iγ)
∑
ν

B̂ν,µeiΩνt − i
∑
λ

(
Aλ,µB̂∗λ(τ)eiΩλtσz

(0),µ

)
(D.36)

Comparing the coefficients of the exponentials on both sides we obtain the following expression
for σ̂+

(1),µ(t):

σ̂+
(1),µ(t) =

∑
ν

σz
(0),µ

ωµ −Ων − iγ
Aν,µb†ν (D.37)

Having the expression for σ̂+
(1),µ(t) we can now compute an “improved” version of the inversion,

σ̂z
(1),µ. We can do this by assuming the a form of the inversion of the form

σ̂z
(1),µ =

∑
ν,ν′

[
Cν,ν′ei(Ων′−Ων)t + Dν,ν′e−i(Ω′ν−Ων)t] (D.38)

We however first look at the substitution of σ̂±(1),µ on the r.h.s. of (D.30) by (D.37). This yields
the expression

˙̂σz
(1),µ(t) = 4γ‖σ̂z

(1),µ − 2i
{∑

λ,ν

[ A∗µ,λAν,µ
ωµ −Ων − iγ

b†νbλ −
Aµ,λA∗ν,µ

ωµ −Ων + iγ
b†λbν

]}
(D.39)
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Performing the time derivative on the l.h.s on (D.38) and comparing coefficients on both sides
yields the coefficients Cν,ν′ and Dν,ν′

Cν,ν′ =
1

i(Ων′ −Ων) − 4γ‖

A∗µ,λAν,µ
ωµ −Ων − iγ

B∗ν(τ)Bλ(τ) (D.40)

Similarly, we can also obtain the coefficients Dk′′K

Dν,ν′ =
1

i(Ων′ −Ων) + 4γ‖

A∗ν,µAλ,µ
ωµ −Ων + iγ

B∗λ(τ)Bν(τ) (D.41)

Using the explicit solution for σ̂z
(1),µ(t) we will obtain an “improved” version of the dipole

moment, hence denoted σ̂+
(2),µ(t). This can be obtained from the general expression

˙̂σ+
(2),µ(t) = −i (ω − iγ) σ̂+

(2),µ −
∑
λ

Aλ,µb†λσ̂
z
(1),µ + Γµ (D.42)

= −i (ω − iγ) σ̂+
(2),µ − i

∑
λ

∑
ν,ν′

Aλ,µb†λ

{ A∗µ,λAν,µ
i(Ων′ −Ων) − 4γ‖

B∗ν(τ)Bλ(τ)
ωµ −Ων − iγ

ei(Ων′−Ων)t+

+
A∗ν,µAλ,µ

i(Ων′ −Ων) + 4γ‖

B∗λ(τ)Bν(τ)
ωµ −Ων + iγ

ei(Ων′−Ων)t
}

+ Γµ

(D.43)

and using the following Ansatz for σ̂+
(2)

σ̂+
(2),µ(t) =

∑
i, j,k

(
Xi jkei(Ωi+Ω j−Ωk)t +Yi jkei(Ωi−Ω j+Ωk)t

)
(D.44)

where the coefficients Xi jk and Yi jk are to be determined. Differentiating the left-hand side
of (D.44) and comparing with the right-hand side of (D.43) we obtain for these coefficients

Xi jk =
−i

i
(
Ωi + Ω j −Ωk − ωµ

)
− γ

Ai,µA∗j,µAk,µ

i(Ω j −Ωk) − 4γ‖

B∗i (τ)B j(τ)B∗k(τ)

ωµ −Ωk − iγ
(D.45)

Yi jk =
−i

i
(
Ωi −Ω j + Ωk − ωµ

)
− γ

Ai,µA j,µA∗k,µ
i(Ωi −Ωk) + 4γ‖

B∗i (τ)B∗j(τ)Bk(τ)

ωµ −Ωk + iγ
(D.46)

The expansion of σ̂µ(t) up to second order in the field operators b̂ , b̂† is given in total then as

σ̂+
µ (t) =

∑
ν

σz
(0),µ

ωµ −Ων − iγ
Aν,µb†ν−2

∑
i, j,k

σz
(0),µ

i
(
Ωi + Ω j −Ωk − ωµ

)
− γ

Ai,µA∗j,µAk,µ

i(Ω j −Ωk) − 4γ‖

b̂†i b̂†j b̂k

ωµ −Ωk + iγ
+c.c.

(D.47)
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We can now substitute (D.47) into (D.15) to yield the equation of motion for the field amplitudes
up to 3rd order

ḃν = −i
[(
ων +Vν

)
+ iκν

]
bν + i

∑
µ

Aµ,νσ̂−µ + Fν(t)

= −i
[(
ων +Vν

)
+ iκν

]
bν + i

∑
µ

Aµ,ν
(∑

ν

σz
(0),µ

ωµ −Ων − iγ
Aν,µb†ν−

− 2
∑
i, j,k

σz
(0),µ

i
(
Ωi + Ω j −Ωk − ωµ

)
− γ

Ai,µA∗j,µAk,µ

i(Ω j −Ωk) − 4γ‖

b̂†i b̂†j b̂k

ωµ −Ωk + iγ
+ c.c.

)†
+ Fν(t)

= −i
[(
ων +Vν

)
+ iκν

]
bν + i

∑
µ

Aµ,ν
(∑

ν

σz
(0),µ

ωµ −Ων + iγ
A∗ν,µbν

− 2
∑
i, j,k

σz
(0),µ

i
(
Ωi + Ω j −Ωk − ωµ

)
− γ

A∗i,µA j,µA∗k,µ
i(Ω j −Ωk) − 4γ‖

b̂i b̂ j b̂
†

k

ωµ −Ωk − iγ
+ c.c.

)
+ Fν(t)

(D.48)

From (D.48) we see that we obtain again a cubic nonlinearity similar to the one derived in the
semiclassical formalism in (5.21). We also see that the correct form of the generalized dielectric
constant (5.20) can also be obtained by including the second term in (D.48) into the first term.
The cubic nonlinearity is proportional to the initial population inversion, denoted ∆n0(r) in
the semiclassical theory and σ̂z

(0),µ in the quantum one. One minor difference consists of the
multimodal form of (D.48), which is to be contrasted with the semiclassical theory; however this
difference can be negated by setting the mode indices i = j = k in (D.48).

The one major difference between (5.21) and (D.48) is actually present in the form of the
noise term Fν(t), which is completely absent from (5.21). As was clear from the derivation, these
terms arise from the coupling of our system components (field modes, medium atoms) to external
baths, and serve to drive spontaneous emission and in addition provides a lifetime atoms in the
higher energy states. Hence we see that in the semiclassical theory we are unable to account for
the lifetime of atoms due to spontaneous emission; as is well known [111] the reduction to the
semiclassical picture eliminates terms that lead to a nonzero laser linewidth; however, in the our
study of random lasers, we are interested in the finite linewidth generated by multiple scattering,
which is of course still finite in the semiclassical picture. Hence in derive the formalism which
follows we will concentrate on the semiclassical formulation as presented in Sec. 5.1.4 and leave
the quantum equation of motion for the field modes (D.48) for future work.
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D.2 Hubbard-Stratonovich Transformation

In this section of the Appendix we will give a more detailed derivation of the Hubbard-Stratonovich
(HS) transformation which was used to decouple the interaction term of the action. Specifically,
here we derive the parameters αx and αs. We start from the interacting term as shown in (D.49)
and reproduced below

S int = i
1

4~

(
d2

~γ⊥

)2 ∫
dr ∆n0(r)

∫ ∞

0

dω
π

∫ ∞

0

dω′

π
ω2 ω′2 |Ãω(r)|2|Ãω′(r)|2 (D.49)

and with the associated HS identity

eiS int = exp
{
−

1
4~

(
d2

~γ⊥

)2 ∫
dr ∆n0(r)

∫ ∞

0

dω
π

∫ ∞

0

dω′

π
ω2 ω′2 |Ãω(r)|2|Ãω′(r)|2

}
(D.50)

= Nφ̄,φ

∫
D[φ̄, φ] exp

{
− α2

s

∫
dr ∆n0(r)

∫
dωdω′

π2

[
φ̄ωω′(r)φω′ω(r)+

+ αxωω
′Ã∗ω(r)φωω′(r)Ãω′(r)

]} (D.51)

We note that the form of the HS identity is slightly different depending on whether the population
inversion (external pumping) ∆n0(r) is considered homogeneous (∆n0(r) = ∆n0) or retains
its full spatial dependence. In both cases, however, the most important factor is to find fields
φ̄ωω′(r), φωω′(r) that satisfies the condition

Nφ̄,φ

∫
D[φ̄, φ] exp

{
− α2

s

∫
dr ∆n0(r)

∫
dωdω′

π2 φ̄ωω′(r)φω′ω(r)
} !

= 1 (D.52)

where φ̄, φ are generally independent fields. We would like to cancel the quartic term (D.49).
For the time being let us assume a spatially-independent population inversion. Then it is easy to
see via simple substitution that this can be achieved if we shift the fields φ̄ω′,ω(r), φω′,ω(r) in the
following manner

φ̄ωω′(r) 7→ φ̄ωω′(r) + iαxÃω(r)ωω′Ã∗ω′(r) (D.53)

φω′ω(r) 7→ φω′ω(r) + iαxÃω′(r)ω′ωÃ∗ω′(r) (D.54)

with the condition

α2
xα

2
s =

∆n0

4~

(
d2

~γ⊥

)2

(D.55)

We see in this case, provided that suitable values of αx and αs could be found, we only need
to introduce one HS field. We first determine the coefficient αs, as this is associated with the
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normalization condition (D.52). As is usually done, we can discretize (D.52):

Nφ̄,φ

∫
D[φ̄, φ] exp

{
− α2

s

∫
dr

∫
dωdω′

π2 φ̄ωω′(r)φω′ω(r)
}

= Nφ̄,φ

∫
D[φ̄i

ω,ω′ , φ
i
ω,ω′] exp

{
− α2

s

∑
ω,ω′

∑
i

φ̄i
ωω′φ

i
ω′ω

}
= Nφ̄,φ

∏
ω,ω′

∏
i

∫
D[φ̄i

ω,ω′ , φ
i
ω,ω′] exp

{
− α2

s φ̄
i
ωω′φ

i
ω′ω

}
∝ Nφ̄,φ det(2α2

s)−1/2 !
= 1

(D.56)

where the normalization constant Nφ̄,φ can be freely chosen to satisfy (D.56). Hence we choose
it such that αs = 1, and in this manner we can determine this parameter. Once αs is fixed, we can
then find αx from (D.55), which can then be trivially determined to be

αx =
d2 √∆n0

2~γ⊥
(D.57)

In the case where the spatial dependence of the pumping is not constant, we can use considerations
similar to the above to derive the coefficients αx and αs. In this case, we obtain

αx =
1

2
√
P

(
d2

γ⊥

)
(D.58)

αs = ±
√
P (D.59)

However these values are only approximate and more study is needed to convince of the validity
of this approach. For the work in this thesis a homogeneous pumping is thus assumed.
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D.3 Derivation of term containing the Hubbard-Stratonovich
field

In this section we will give a short derivation of the term containing the Hubbard-Stratonovich
field in the diffusive action, starting from (D.60). The first two terms on the right-hand side
of (D.60) correspond to the free Green’s function and Q-field contributions resulting from disorder
averaging, respectively. These terms have been described in Chapter 2 and we have seen that we
can derive a diffusive form of the action. Including the contribution from the HS field is relatively
straightforward, and we see that from the last term in (D.60) we obtain

−αTr ln[Φ̂] = −αTr ln
{
γ̂R̂−1

[
R̂γ̂Φ̂R̂−1

]
R̂
}

⇒ −αTr ln
[
Ĝγ̂R̂γ̂Φ̂R̂−1

]
⇒ −iπναtr ln

[
Λ̂R̂γ̂Φ̂R̂−1

]
= −iπναtr ln

[
γ̂Φ̂R̂−1Λ̂R̂

]
= −iπναtr ln

[
γ̂Φ̂Q̂

]
≡ −iπναtr ln

[
Φ̂Q̂

]
D.4 Calculation of the saddlepoint equations in presence of

nonlinearity

In this section we will perform a detailed calculation of the saddle point equations including the
nonlinearity. We start from the full action containing the Hubbard-Stratonovich field Φ̂ωω′(r),
which has the form

iS [Q̂] ≡ −
πν̃~

4τ
Tr [Q̂2] − Tr [Φ̂†γ̂Φ̂] + Tr ln

[
Ĝ−1

0 +
~̃

2τ
γ̂Q̂ − α Φ̂

]
, (D.60)

We concentrate on the third term on the right-hand side. This term can be written explicitly as

Tr ln
[
Ĝ−1

0 +
~̃

2τ
γ̂Q̂ − α Φ̂

]
= Tr ln


 0

[
GA

0

]−1[
GR

0

]−1 [
GK

0

]−1

 +
~̃

2τ

(
0 QA

QR QK

)
− α

(
φq φcl

φcl φq

)
= Tr ln

[  0
[
GA

0

]−1
+ ~̃

2τQA − αφcl[
GR

0

]−1
+ ~̃

2τQR − αφcl ~̃
2τQK

︸                                                              ︷︷                                                              ︸
γ̂Ĝ−1

cl

−α

(
φq 0
0 φq

)
︸       ︷︷       ︸

Φ̂q

]

= Tr ln
[
γ̂Ĝ−1

cl

(
1 − αĜclγ̂Φ̂q

)]
= Tr lnγ̂Ĝ−1

cl ∓ Tr ln
(
1 − αĜclγ̂Φ̂q

)

(D.61)
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We look at the second term in the expression above (the first term is proportional to the de-
terminant of the inverse Green’s function containing only the classical components of the
Hubbard-Stratonovich field, and is hence unity. Taking the log gives zero). Written out explicitly
this term is

S′ = Tr ln
(
1 − αĜclΦ̂

q
)

≡ ∓trK
{ ∫

dr dr′
∫

dt dt′ ln
(
δr,r′δ(t − t′) − αĜcl(r, r′; t, t′)γ̂Φ̂q(r′, r; t′, t)

)}
= ∓trK

{ ∫
dr dr′

∫
dt dt′ ln

(
δr,r′δ(t − t′) − αĜcl(r, r′; t, t′)γ̂Φ̂q(r′, t′)δr,r′δ(t − t′)

)}
= ∓trK

{ ∫
dr

∫
dt ln

(
δr,r′δ(t − t′) − αĜcl(r, r; t, t)γ̂Φ̂q(r, t)

)}
where we imposed that Φ̂q(r, r′; t, t′) = Φ̂q(r, t)δr,r′δ(t − t′). Taking the functional derivative
of (D.62) with respect to φcl(x, τ) gives

δS′

δφcl(x, τ)

= ∓trK
{ ∫

dr
∫

dt
[
(±iα)

(
1 − αĜcl(r, r; t, t)Φ̂q(r, t)

)−1︸                               ︷︷                               ︸
f̂ −1(r,t;r,t)


[
GR

cl

]′ [
GK

cl

]′
0

[
GA

cl

]′  ( 0 φq(r, t)
φq(r, t) 0

) ]}

= ∓trK
{ ∫

dr
∫

dt
[ (±iα̃)

det f̂ (r, t; r, t)

(
1 ∓αGR

cl ◦ φ
q

∓iαGA
cl ◦ φ

q 1 ± iαGK
cl ◦ φ

q

) 
[
GR

cl

]′ [
GK

cl

]′
0

[
GA

cl

]′ ×
×

(
0 φq(r, t)

φq(r, t) 0

) ]}
= ∓trK

{ ∫
dr

∫
dt

[ (±iα)

det f̂ (r, t; r, t)


[
GK

cl

]′
◦ φq ∓ iαGR

cl ◦ φ
q ◦

[
GR

cl

]′
◦ φq ⊕

⊗ iαGR
cl ◦ φ

q ◦
[
GR

cl

]′
◦ φq

 ]}
= ∓

∫
dr

∫
dt

[ (±iα)

det f̂ (r, t; r, t)

( [
GK

cl

]′
◦ φq︸      ︷︷      ︸

A

∓ iαGR
cl ◦ φ

q ◦
[
GA

cl

]′
◦ φq + iαGA

cl ◦ φ
q ◦

[
GR

cl

]′
◦ φq︸                                                           ︷︷                                                           ︸

B

)]
(D.62)

We first look at the term A. Let us parameterize the Keldysh component of the Green’s function
matrix by the distribution function F in the usual manner: GK

cl = GR
cl ◦ F − F ◦GA

cl. Hence term A
can be interpreted in the following manner (the prime should be intepreted as the operation of
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δ
δφ(x,τ) ):∫

dr
∫

dt
(±iα)

det f̂ (r, t; r, t)

[
GK

cl

]′
◦ φq

≡

∫
dr

∫
dt dt′

(±iα)

det f̂ (r, t; r, t)

[
GR

cl(r, t; r′, t′)F(r′, t′; r, t) − F(r, t; r′, t′)GA
cl(r
′, t′; r, t)

]′
φq(r, t)

=

∫
dr

∫
dt

(±iα)

det f̂ (r, t; r, t)

[
−
(
GR

cl(r, t; r, t)
)2

F(r, t; r, t) + F(r, t; r′, t′)
(
GA

cl(r, t; r, t)
)2]

φq(r, t)

But since in the development of the formalism we have demanded that GR
cl(t, t) + GA

cl(t, t) = 0 (at
equal times!), it is easy to see that the last expression in (D.63) vanishes. Term B can be treated
in a similar manner. We write this down explicitly∫

dr
∫

dt
[ (±iα)2

det f̂ (r, t; r, t)

(
GR

cl ◦ φ̃
q ◦

[
GA

cl

]′
◦ φ̃q + GA

cl ◦ φ
q ◦

[
GR

cl

]′
◦ φq

)]
=

∫
dr

∫
dt

∫
dt′

∫
dt′′

[
−

(±iα)2

det f̂ (r, t; r, t)

(
GR

cl ◦ φ
q ◦

(
GA

cl

)2
◦ φq + GA

cl ◦ φ
q ◦

(
GR

cl

)2
◦ φq

)]
=

∫
dr

∫
dt

[
−

(±iα)2

det f̂ (r, t; r, t)
GR

cl ◦ φ
q ◦GA

cl ◦
(
GA

cl + GR
cl

)
◦ φq

]
= 0

(D.63)

where in the last step we have used the fact that for equal times GR
cl(t, t) +GA

cl(t, t) = 0 to exchange
GR

cl → −GA
cl and GA

cl → −GR
cl. In the last step we have simply extracted the common factors.

The resulting sum in the brackets is then zero. From the above calculations we see that at the
saddlepoint the quantum component of the Hubbard-Stratonovich field vanishes φ̃q

cl(r, t) = 0
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D.5 Diffusive motion

In this section we will derive explicitly the action up to the 2nd power of the diffusive modes w†

and w . We remind that these quantities have the functional dependencies

w† = w†tt′(r) (D.64)

w = wtt′(r) (D.65)

The action including nonlinearity has the form

iS [Q̂, Φ̂] =
iν
2

Tr
[
Φ̂σ̂xΦ̂

]
−
πν

4
Tr

{
D(∇rQ̂)2 − 4i∂tQ̂ − 4iα̃ ˆ̃

ΦQ̂
}

(D.66)

Since we need to express the action in both first and second order in w , w† we first write down
the expressions that contribute respectively at those orders. The expansion of the Q̂ matrix up to
second order in the diffusive modes can be written symbolically as

Q̂ ≈ iΛ̂ + δQ̂(1) + δQ̂(2) (D.67)

We first look at contributions coming from the terms 1A and 2A to the respective actions
iS (1)[Q̂, Φ̂] and iS (2)[Q̂, Φ̂]. Substituting (D.67) into the spatial derivative term of (D.66) yields

D Tr (∇rQ̂)2 = D Tr
{
∇r

[
îΛ + δQ̂(1) + δQ̂(2)

]}2

= D Tr
{[

i∇rΛ̂ + ∇rδQ̂(1) + ∇rδQ̂(2)
]2}

= D Tr
{
−

(
∇rΛ̂

)2
+ 2i

(
∇rΛ̂

) (
∇rδQ̂(1)

)
+

+ 2i
(
∇rΛ̂

) (
∇rδQ̂(2)

)
+

(
∇rδQ̂(1)

)2
+ 2

(
∇rδQ̂(1)

) (
∇rδQ̂(2)

)
+

(
δQ̂(2)

)2 }
(D.68)

To first order in diffusive modes the action has the form

iS (1)[Q̂, Φ̂] =
iν
2

Tr
[
Φ̂σ̂xΦ̂

]
−
πν

4
Tr

{
2iD(∇rδQ̂(1))(∇rΛ̂)︸                   ︷︷                   ︸

1A

− 4i∂tδQ̂(1)︸    ︷︷    ︸
1B

− 4iα̃ ˆ̃
ΦδQ̂(1)︸      ︷︷      ︸
1C

}
(D.69)

while the same quantity to second order is

iS (2)[Q̂, Φ̂] =
iν
2

Tr
[
Φ̂σ̂xΦ̂

]
−
πν

4
Tr

{
D(∇rδQ̂(1))2 + 2iD(∇rδQ̂(2))(∇rΛ̂)︸                                       ︷︷                                       ︸

2A

− 4i∂tδQ̂(2)︸    ︷︷    ︸
2B

−

− 4iα̃ ˆ̃
ΦδQ̂(2)︸      ︷︷      ︸
2C

}
(D.70)
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In Keldysh space, each term in (D.68) has the following forms

Tr
(
i∇rΛ̂

)2
= Tr

[(
0 −4 (∇rF)2

0 0

)]
= 0 (D.71)

2iTr
[(
∇rΛ̂

) (
∇rδQ̂(1)

)]
= −2Tr

 2 (∇rF)
(
∇rw

†
)

2F
(
(∇rw

†)F + w†(∇rF)
)

0 0


= −4 tr

[
(∇rF)

(
∇rw

†
) ]

= −4 tr
[ (
∇2

r F
)
w†

] (D.72)

2i Tr
[(
∇rΛ̂

) (
∇rδQ̂(2)

)]
= −2 Tr

 0 −2(∇rF)
(
(∇rw

†)w + w†(∇rw)
)

0 0

 = 0 (D.73)

The first and third terms in the sequence of equations above do not contribute to the trace,
while the second term proportional to ∇rδQ̂(1) is of 1st order in the diffusive modes. This term
then contributes to 1A of iS (1)[Q̂, Φ̂]. The final term in the series which contribute to (D.70),
proportional to (∇rδQ̂(1))2 is calculated below

Tr
[(
∇rδQ̂(1)

)2
]

=

= −Tr

 [
∇r(Fw†)

]2
−

(
∇rw + ∇r(Fw†F)

)
(∇rw

†) ⊕

� −(∇rw
†)(∇rw + ∇r(Fw†F)) + [∇r(w†F)]2


= −tr

[
2(∇rF)(∇rw

†) + [∇r(Fw†)]2 + [∇r(w†F)]2−

− 2(∇rw
†)

[
∇rw + ((∇rF)w†F + F(∇rw

†)F + Fw†(∇rF))
] ]

Performing partial integrations we are then left with the following expression (reinstating the
diffusion constant D)

−2 D tr
[(
∇rδQ̂(1)

)2
]

= −2 D tr
[
(∇rF)(∇rw

†) − (∇rw
†)(∇rw) + (∇rw

†)F(∇rw
†)F

]
=⇒ −2 D tr

[
w†∇2

rw
] (D.74)

This term1 contributes to 2A of iS (2)[Q̂, Φ̂]. We now look at the time derivative terms 1B and 2B.
The former results in

−4i Tr
[
∂tδQ̂(1)

]
= 4 tr

[
−∂tFtt′w

†

t′t + (∂tw
†

tt′)Ft′t
]

= −4 tr
[
w†t′t

(
∂t + ∂′t

)
Ftt′

] (D.75)

1 In calculating this term we have discarded a term which is of the form tr
[
w†(∂rF)w†(∂rF)

]
.
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while the term in 2B has the form

−4i Tr
[
∂t

(
δQ̂(2)

)]
= 2 tr

[
(∂twtt′)w

†

t′t − (∂tw
†

tt′)wt′t

]
= 2 tr

[
w†t′t(∂t + ∂′t)wtt′

] (D.76)

The final term in the expansion in powers of the diffusive modes come from the last term in (D.66).
The complete contribution has the form

iπνα̃Tr
[
Q̂ ˆ̃

Φ

]
= iπνα̃Tr

[(
iΛ̂ + δQ̂(1) + δQ̂(2)

) ˆ̃
Φ

]
= iπνα̃Tr

[
i
(

1R 2F
0 −1A

)
◦

(
φ̃cl φ̃q

φ̃q φ̃cl

)
+ i

(
1R 2F
0 −1A

)
◦

(
−Fw† −w − Fw†F
w† w†F

)
+

+
i
2

(
w w† ww†F + Fw†w

0 −w†w

)
◦

(
φ̃cl φ̃q

φ̃q φ̃cl

) ]
= −πνα̃ tr

[(
2F − (d + Fw†F) + w† +

1
2

(
ww†F + Fww†

) )
φq+

+
(
− Fw† + w†F +

1
2

(
ww† − w†w

) )
φcl

]
Hence the total action in 1st order in w, w† is given by

iS (1)[w, w†, φ̃cl, φ̃q] =
iν0

2
Tr

[
Φ̂σ̂xΦ̂

]
+ πν0tr

{
D

(
∇2

r F
)
w† + w† (∂t + ∂t′) F−

− α̃
[ (

2F −
(
w − w†

)
− Fw†F

)
φ̃q +

(
−Fw† + w†F

)
φ̃cl

]}
(D.77)

and in 2nd order

iS (2)[w, w†, φ̃cl, φ̃q] =
iν0

2
Tr

[
Φ̂σ̂xΦ̂

]
+ πν0tr

{
Dw†∇2

rw − w
† (∂t + ∂t′)w−

− α̃
[ (
ww†F + Fww†

)
φ̃q +

(
ww† + w†w

)
φ̃cl

]}
(D.78)
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D.6 Saddlepoint action

We look at the prefactor of the φ̃q(r, t) term in the previous expression. The lower case trace is
given explicitly by

− πνα̃ tr
[(

2F − (d + Fw†F) + w† +
1
2

(
ww†F + Fww†

) )
φq

]
= −πνα̃

{ ∫
dr

∫
dt dt′

[
2Ftt′(r)φq

t (r) − wtt′(r)φq(r)−

−

∫
dt′′Ftt′(r)w†t′t′′(r)Ft′′t(r)φq

t (r) + w†tt(r)φq
t (r)+

+
1
2

∫
dt′′

(
wtt′(r)w†t′t′′(r)Ft′′t(r)φq

t (r) + Ftt′(r)wt′t′′(r)w†t′′t(r)φq
t

) ]}
≡ X

(D.79)

The lower case trace for the prefactor of the φ̃cl(r, t) can be similarly written

− πνα̃ tr
[(
− Fw† + w†F +

1
2

(
ww† − w†w

) )
φcl

]
= − πνα̃

{ ∫
dr

∫
dt dt′

[
− Ftt′w

†

t′t(r)φcl
t (r) + w†tt′(r)Ft′t(r)φcl

t (r)+

+ wtt′(r)w†t′t(r)φcl
t (r) − w†tt′(r)wt′t(r)φcl

t (r)
]}

≡Y

(D.80)

Performing the functional derivative of (D.79) with respect to w†ττ′(r) gives the expression

δ

δw†ττ′(x)
X = −πνα̃

[
−

∫
dtFτ′t(x)φq

t (x)Ftτ(x) − φq
τ(x)δττ′+

+
1
2

∫
dt

(
Fτ′t(x)φq

t (x)wtτ(x) + φ
q
τ′(x)Fτ′t(x)dtτ(x)

) ]
(D.81)

and of (D.80) yields

δ

δw†ττ′(x)
Y = −πνα̃

[
Fτ′τ(x)

(
φcl
τ (x) − φcl

τ (x)
)

+ wτ′τ(x)
(
φcl
τ′(x) − φcl

τ (x)
) ]

(D.82)

We note that due to the vanishing of φq(r, t) at the saddlepoint, the right-hand side of (D.81)
vanishes as well. As for (D.82), the vanishing of the fluctuations at saddlepoint renders the second
term on the right-hand side to be zero, and hence we are left with the first term, which is the
source term.

Finally, we also need to differentiate with respect to wττ′(x). For both X and Y terms, we obtain
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the combined expression

δ

δwττ′(x)
(X +Y) = −πνα̃

[
− φ

q
τ′τ(x)+

+ w†τ′τ(x)(φcl
τ (x) − φcl

τ′(x)) +

∫
dtw†τ′t(x)

(
φ

q
t (x)Ftτ(x) + Ftτ(x)φq

τ(x)
) ]

(D.83)

It is then easy to see from the vanishing of φq(r, t) and of the fluctuations at saddlepoint that the
right-hand side of (D.83) vanishes and hence does not contribute to the evolution equation for
Fττ′(x, x).
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D.7 Derivation of the Wigner-transformed nonlinear
integro-differential equation

In this appendix we record the full explicit calculation of the Wigner transform for the two main
expressions, to be given below.

D.7.1 General expressions for the Wigner transformation

In this section we will fix notation and display some elementary steps in the calculation of the
Wigner transformation. In the following sections we will apply the relations derived in this section
to our own expressions. We consider a function depending on 2 sets of spatial-time variables
f (x1, t1; x2, t2). The Wigner or mixed variables are the sums and differences of the respective
spatial and time variables

R=
x1 + x2

2
r = x1 − x2 (D.84)

T =
t1 + t2

2
t = t1 − t2. (D.85)

and hence we can rewrite our function in the equivalent forms

f (x1, t1; x2, t2) = f
(
R +

1
2

r,T +
1
2

t; R −
1
2

r,T −
1
2

t
)

= f̃ (R,T ; r, t)
(D.86)

We can now perform a Fourier transform with respect to the “fast” variables r, t. To do this it is
often convenient to introduce the following abbreviation

X ≡ (T,R), x ≡ (t, r) (D.87)

such that we can write the transform in the following way

F(X, p) =

∫
e−ipx f

(
X +

1
2

x, X −
1
2

x
)

(D.88)

For the case of a convolution calculation, the following steps will then be performed

G(x1, x′1) ≡
∫

dx2 A(x1, x2) B(x2, x′1) (D.89)
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which can be written then in Wigner coordinates as

G̃(X, x) =

∫
dx2 A

(
X +

1
2

x, x2

)
B

(
x2, X −

1
2

x
)

=

∫
dx2 Ã

(
1
2

(
X +

1
2

x + x2

)
, X +

1
2

x − x2

)
B̃

(
1
2

(
x2 + X −

1
2

x
)
, x2 −

(
X −

1
2

x
))

(D.90)
Performing a shift x2 ⇒ x2 −

(
X − 1

2 x
)

we obtain the expression

G̃(X, x) =

∫
dx2Ã

(
X +

1
2

x2, x − x2

)
B̃

(
X −

1
2

x +
1
2

x2, x2

)
(D.91)

and the Fourier transform with respect to (x, t) can be performed, resulting in the expression

G(X, p) =

∫
dx e−ixp

∫
dx2 Ã

(
X +

1
2

x2, x − x2

)
B̃

(
X −

1
2

x +
1
2

x2, x2

)
=

∫
dx e−ixp

∫
dx2

∫
dp′

(2π)4 e−ip′(x−x2)A
(
X +

1
2

x2, p′
)

×

∫
dp′′

(2π)4 e−ip′′x2 B
(
X −

1
2

x +
1
2

x2, p′′
) (D.92)
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D.7.2 WT for 1st Equation

We begin with the differential equation with source term, reproduced below:

D∂2
Z ftt′(Z) − ∂T ftt′(Z) =

(
¯
φcl

t (z) +
¯
φcl

t′ (z)
)

ftt′(Z). (D.93)

To simplify the calculation of the Wigner transform we write the sum
(
φcl

t (z) + φcl
t′ (z)

)
≡ Ψ(z, t; z, t′),

which then yields for (D.93) the total expression

D∂2
Z ftt′(Z) − ∂T ftt′(Z) = Ψ(z, t; z, t′) ftt′(Z). (D.94)

The Wigner transformation involves the rewriting the time and length scales present in our system
in terms of sums and differences:

Z ≡
z + z′

2
, ∆z ≡ z − z′ (D.95)

T ≡
t + t′

2
, ∆t ≡ t − t′ (D.96)

We can then perform Fourier transform with respect to the “fast” variables, where the transform
has the form

ftt′(Z) = fT+ ∆t
2 ,T−

∆t
2

(Z)

=

∫
dε
2π

f̃ε(Z,T ) e−iε∆t
(D.97)

where we have written f̃ε(Z,T ) ≡ f̃ (Z, ε,T ). We note that since ftt′(z) is a spatially local quantity,
we have, with respect to the spatial variable Z the simple relation Z = z. We first look at the
right-hand side of (D.94). We perform the Wigner transform by first multiplying (D.94) by eiΩ∆t

and integrating over ε. Then
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i
∫

d∆t eiω∆tΨ(z, t; z, t′) ftt′(Z)

= i
∫

d∆t eiω∆tΨ̃(z,T ; z,∆t) f̃ (z,T ; z,∆t)

= i
∫

dω′dω′′

(2π)2

∫
d∆t eiω∆t

{ [
e−iω′∆tΨ̃(z, z; T, ω′)

]
×

×
[
e−iω′′∆t f̃ (z, z; T, ω′′) + e−iω′′(−∆t) f̃ (z, z; T, ω′′)

] }
= i

∫
dω′dω′′

2π

∫
d∆t e−iω′∆teiω∆tΨ̃(z, z; T, ω′)×

×

{
e−i(−ω+ω′+ω′′)∆t f̃ (z, z; T, ω′′) + e−i(−ω+ω′−ω′′)∆t f̃ (z, z; T, ω′′)

}
= i

∫
dω′dω′′

2π
Ψ̃(z, z; T, ω′)×

×

{
δ(−ω + ω′ + ω′′) f̃ (z, z; T, ω′′) + δ(−ω + ω′ − ω′′) f̃ (z, z; T, ω′′)

}
= i

∫
dω′

2π
Ψ̃(z, z; T, ω′)

{
f̃ (z, z; T, ω − ω′) + f̃ (z, z; T, ω′ − ω)

}

(D.98)

On the left-hand side, one can proceed analogously. We write∫
d∆t eiω∆t

(
D∂2

Z ftt′(Z) − ∂T ftt′(Z)
)

=

∫
d∆t eiω∆t

(
D∂2

Z f̃T,∆t(Z) − ∂T f̃T,∆t(Z)
)

= D∂2
Z f̃T,Ω(Z) − ∂T f̃T,Ω(Z)

(D.99)

Hence one obtains for the complete expression

D∂2
X fT,Ω(Z) − ∂T fT,Ω(Z) = i

∫
dω′

2π
Ψ̃(z, z; T, ω′)

{
f̃ (z, z; T, ω − ω′) + f̃ (z, z; T, ω′ − ω)

}
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The function Ψ(z, z; T, ω) in ω-space is given generically as

Ψ̃(z, z; T, ω) =

∫
d∆teiω′∆tΨ̃(z, z; T,∆t)

=

∫
d∆teiω′∆t

(
φ̃cl(z, t) + φ̃cl(z, t′)

)
=

∫
d∆teiω′∆t

(
φ̃cl(z,T +

1
2

∆t) + φ̃cl(z,T −
1
2

∆t)
)

=

∫
d∆teiω′∆t

{[ ∫ dΩ

2π
e−iΩ(T+ 1

2 ∆t)φ̃(z,Ω)
]

+

[ ∫ dΩ

2π
e−iΩ(T− 1

2 ∆t)φ̃(z,Ω)
]}

=

∫
dΩ

2π
e−iΩT

∫
d∆t

[
e−i(Ω−ω′)∆tφ̃(z,Ω) + e−i(−Ω−ω′)∆tφ̃(z,Ω)

]
=

∫
dΩ

2π
e−iΩT

(
φ̃(z,Ω)δ(Ω − ω′)(2π) + φ̃(z,Ω)δ(−Ω − ω′)(2π)

)
= e−iω′T φ̃(z, ω′) + eiω′T φ̃(z,−ω′) ≡ Ψ̃(z, z; T, ω′)

(D.100)
and hence to continue we have to find φ̃(z, z; T, ω).
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D.7.3 WT for 2nd Equation

The second equation in our set of equations to be solved is the integral equation

¯
φcl

t (z) = −
α

2

∫
dt′

[
GR(z, z; t, t′) f (z; t′, t) − f (z; t, t′)GA(z, z; t′, t)

]
, (D.101)

which can be transformed in a similar manner: on the left hand side we multiply by eiεt and
integrate over t ∫

dε
2π

eiεtφt(Z) = φε(Z)

which gives for the right-hand side∫
dt

∫
dt′ eiωt

{
GR(z, z; t, t′) f (z; t′, t) − f (z; t, t′)GA(z, z; t′, t)

}
=

∫
dT

∫
d∆t eiωt

{
GR(z, z; T,∆t) f (z; T,∆t) − f (z; T,∆t)GA(z, z; T,∆t)

}
=

∫
dT d∆t eiωt

{ [∫
dΩ

2π
e−i∆tΩGR(z, z; T,Ω)

] [∫
dΩ′

2π
ei∆tΩ′ f (z; T,Ω′)

]
−

−

[∫
dΩ

2π
e−i∆tΩ f (Z; T,Ω)

] [∫
dΩ′

2π
ei∆tΩ′GA(z, z; T,Ω′)

] }
=

∫
dT d∆t

∫
dΩ

2π
dΩ′

2π
eiω(T+ 1

2 )∆t
{
ei
(
Ω′−Ω

)
∆tGR(z, z; T,Ω) f (Z; T,Ω′)−

− e−i∆t
(
Ω′+Ω

)
f (Z; T,Ω)GA(z, z; T,Ω′)

}
=

∫
dT d∆t

∫
dΩ

2π
dΩ′

2π
eiωT

{
ei
(
Ω′−Ω+ 1

2ω
)
∆tGR(z, z; T,Ω) f (Z; T,Ω′)−

− e−i
(
Ω′+Ω− 1

2ω
)
∆t f (Z; T,Ω)GA(z, z; T,Ω′)

}
=

∫
dT

∫
dΩ

2π
eiωT

{
GR(z, z; T,Ω) f (Z; T,Ω −

1
2
ω) − f (Z; T,Ω)GA(z, z; T,−Ω +

1
2
ω)

}
=

∫
dt

∫
dΩ

2π
eiωT

(
GR(z, z; T,Ω +

1
2
ε) f (Z; T,Ω) − f (Z; T,Ω)GA(z, z; T,Ω +

1
2
ε)

)
=

∫
dt

∫
dΩ

2π
eiωT

(
GR(z, z; T,Ω +

1
2
ω) −GA(z, z; T,−Ω +

1
2
ω)

)
f (Z; T,Ω)
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D.7.4 WT for full expression

We will now combine the WT results from the previous 2 sections to obtain the full Wigner
transformed expression. From the previous sections we have

D∂2
X fT,Ω(Z) − ∂T fT,Ω(Z) =

∫
dε
2π

φcl
ε (Z)

(
fT,Ω− 1

2 ε
(Z) − fT,Ω+ 1

2 ε
(Z)

)
e−iεT (D.102)

and

φcl
ε (Z) =

∫
dT

∫
dΩ

2π
eiεT

[
GR(z, z; T,Ω −

1
2
ε) −GA(z, z; T,Ω +

1
2
ε)

]
f (Z; T,Ω) (D.103)

Substituting (D.103) into (D.102) we obtain the full expression

D∂2
X fT,Ω(Z) − ∂T fT,Ω(Z) =

=

∫
dω′

2π

∫
dT

∫
dΩ

2π
eiεT

[
GR(z, z; T + T ′,Ω+) −GA(z, z; T + T ′,−Ω+)

]
×

× fT,Ω(Z)
(

fT,ω−ω′(Z) − fT,ω′−ω(Z)
)

(D.104)

where we have defined Ω± ≡ Ω ± 1
2ω To proceed further we can expand the Green’s functions in

powers of the “small” frequency ω, i.e. we have the following relations:

GR(z, z; T ′ + T,Ω +
1
2
ω) =

∞∑
n=0

1
n!

(
1
2
ω

)n
∂n

∂Ωn GR(z, z; T ′ + T,Ω) (D.105)

GA(z, z; T ′ + T,−Ω +
1
2
ω) =

∞∑
n=0

1
n!

(−1)n
(
1
2
ω

)n
∂n

∂Ωn GA(z, z; T ′ + T,−Ω) (D.106)

f (z, z; T, ω − ω′) =

∞∑
n=0

1
n!

(−1)nω′n
∂n

∂ωn f (z, z; T, ω) (D.107)

f (z, z; T,−ω + ω′) =

∞∑
n=0

1
n!

(−1)nω′n
∂n

∂ωn f (z, z; T,−ω) (D.108)
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Putting everything together one we obtain the following expression on the right hand side:

α

2

∫
dω′

2π

∫
dT

∫
dΩ

2π
eiω′T f (z, z; T ′ + T, ω)

{ ∞∑
n=0

1
n!

(
1
2
ω′

)n

×

×
∂n

∂Ωn

[
GR(z, z; T ′ + T,Ω) − (−1)nGA(z, z; T ′ + T,−Ω)

]
×

×

∞∑
m=0

1
m!

(−1)m (
ω′

)m ∂m

∂ωm

[
f (z, z; T, ω) + f (z, z; T, ω)

]}
δ(T )

(D.109)

=
α

2

∫
dω′

2π

∫
dT

∫
dΩ

2π
eiω′T ∂m

∂T m f (z, z; T ′ + T, ω)×

×

{ ∞∑
n,m=0

1
n!m!

(
−

1
2

)n

(−i)n+m ∂m

∂ωm

[
f (z, z; T, ω) + f (z, z; T, ω)

]
×

×
∂n

∂T n
∂n

∂Ωn

[
GR(z, z; T ′ + T,Ω) − (−1)nGA(z, z; T ′ + T,−Ω)

]}
δ(T )

(D.110)

=
α

2

∫
dω′

2π

∫
dT

∫
dΩ

2π
eiω′T

{ ∞∑
n,m=0

1
n!m!

(
−

1
2

)n

(−i)n+m ∂m

∂ωm

[
f (z, z; T, ω) + f (z, z; T, ω)

]
×

×
∂n

∂T n
∂n

∂Ωn

{ ∞∑
j=0

1
j!

T j ∂ j

∂T ′ j

[
GR(z, z; T ′,Ω) − (−1)nGA(z, z; T ′,−Ω)

]}}
δ(T )×

×
∂m

∂T m

[ ∞∑
l=0

1
l!

T l ∂l

∂T ′l
f (z, z; T ′,Ω)

]
(D.111)

From the final expression above it is easy to see that when the following is fulfilled:

m > l or n > j (D.112)

m < l or n < j (D.113)

then all terms except of the one corresponding to m = l and n = j vanishes. If we now keep only
up to first order in the “slow” derivatives ∂

∂Ω
, ∂
∂Ω

and ∂
∂ω , then we obtain the final expression for

the nonlinear integro-differential equation

D
∂2

∂z2 f (z, z; T, ω) −
∂

∂T
f (z, z; T, ω) =

=
α

2

∫
dΩ

2π

{[
f (z, z; T,Ω)ImGR(z, z; T,Ω)

][
f (z, z; T, ω) + f (z, z; T,−ω)

]
+

+

[(
∂

∂T
f (z, z; T,Ω)

) (
ImGR(z, z; T,Ω)

)] ∂

∂ω

[
f (z, z; T, ω) + f (z, z; T,−ω)

]}
(D.114)
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