
Exact Gate Decompositions For Photonic Quantum Computers

Timjan Kalajdzievski

A Dissertation submitted to the Faculty of Graduate Studies in Partial Fulfillment of

the Requirements for the Degree of Doctor of Philosophy

Graduate program in Physics and Astronomy, York University, Toronto, Ontario

October, 2019

c© Timjan Kalajdzievski, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by YorkSpace

https://core.ac.uk/display/322837954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The purpose of this work is to examine the use of decompositions on a continuous-

variable quantum computer by both implementing and examining known methods, as

well as to expand on them by developing my own. I detail the usage of known and new

techniques for gate decompositions in some useful quantum algorithms such as simulating

bosonic particles in a optical lattice, and solving differential equations with broad

applications in other scientific fields. The new methods detailed in this work provide

decompositions for continuous variable quantum computers which no longer require

approximations. These methods rely on strategically using unitary conjugation and a

lemma to the Baker-Campbell-Hausdorff formula to derive new exact decompositions

from previously known ones, leading to exact decompositions for a large class of gates.

I also demonstrate how exact decompositions can be employed in a wide range of

algorithms, while requiring much fewer gates (sometimes as many as order-of-magnitude

less) than equivalent decompositions with other methods. This work can potentially

further bridge the gap between what is required to perform algorithms on a quantum

computer and what can be done experimentally.

ii

Acknowledgements

The author would like to thank his wife Liz, and parents Sasho and Nina for

their support.

The author would also like to express gratitude toward long time mentor and supervisor

Christian Weedbrook, as well as Juan Miguel Arrazola, Nathan Killoran, Tom Kirchner,

Rene Fournier, and Marko Horbatsch for all of their help along the way.

iii

Contents

Abstract ii

Acknowledgements iii

Table of Content iv

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Continuous-Variable Quantum Computing . 4

1.2 Gate Decomposition . 5

1.3 Optical Implementation . 11

2 Methods for Exact Decompositions 15

2.1 Single-Mode Gates . 19

2.2 Multi-Mode Gates . 22

2.2.1 Multi-Mode Gates With More Than Two Modes 22

2.2.2 Two-Mode Gates With Higher Powers . 27

iv

3 The Bose-Hubbard Model 33

3.1 Gate Decomposition of Bose-Hubbard Hamiltonian . 35

3.1.1 Dipole Interaction . 38

3.2 Circuit Implementations and Gate Counts . 42

3.2.1 1-D Lattice Circuits . 43

3.2.2 2-D Lattice Circuits . 46

3.3 Implementation and Errors . 49

4 Other Applications 52

4.1 Quantum Algorithm for Non-Homogeneous Linear Partial Differential Equations 52

4.2 Photonic Quantum Algorithm for Monte Carlo Integration 60

5 Discussion and Conclusions 65

Appendix 69

References 74

v

List of Tables

1 Gate counts for decompositions of some common operations, using the standard commuta-

tor approximation as well as the exact decompositions described in this chapter. The gate

counts neglect any Fourier transforms used by either method as they are inexpensive to

implement experimentally. The final column includes counts of cubic phase gates needed

in each exact decomposition. 31

2 Algorithms which require a decomposition for gates covered by the exact method. The

second column shows the operator or Hamiltonian that appears in the algorithm as well as

the portion which is covered by the exact method. The final column gives the gate count

of the portion which can be decomposed exactly. 32

3 Exact decomposition gate counts for the unitary operators needed in the quantum Monte-

Carlo integration algorithm. The upper gate in each row corresponds to the controlled

unitary needed to perform amplitude estimation, and the lower unitary imprints the func-

tion f(~x) which represents a random variable of outcomes distributed by p(~x) needed to

approximate the desired integral. 64

vi

List of Figures

1 (a) A visualization of the effects of the terms in the Bose-Hubbard Hamiltonian. Here,

J is the tunneling coefficient which dictates the movement of particles from one site to a

neighboring site, U is the on-site interaction between two particles, and Vdip is the leading

term of a dipole interaction between particles in neighboring sites. Also shown are two

simple examples of lattices for which the circuit implementations are examined, (b) a

one-dimensional four-node lattice and (c) a two-dimensional four-node lattice. 41

2 Circuit diagram for the J terms of the Bose-Hubbard Hamiltonian in Eq. (60) applied to

a two-dimensional, n× n lattice. The dipole interaction term as in Eq. (69) will also have

the same pattern, but will have gates notated with Vnn 48

3 (Left) Charge distribution ρ(x, y) = e−
x2

2 e−
y2

2 which is equivalent, up to normalization,

to the wavefunction of a two-mode Gaussian input state. (Right) Electric field lines recon-

structed from the output state of the quantum algorithm. 58

4 (Left) Charge distribution ρ(x, y) = (4x2 − 2)(4y2 − 2)e−
x2

2 e−
y2

2 which is equivalent, up

to normalization, to the wavefunction of the two-mode input state |f〉 = |2〉 |2〉 with two

photons in each state. Green quadrants are regions of positive charge and red are regions

of negative charge. (Right) Electric field lines reconstructed from the output state of the

quantum algorithm. 59

vii

1 Introduction

A practical quantum computer must be able to perform one or more quantum algorithms given to

it. In order to do this, the operations of the algorithm must be translated into the logical operations

directly implemented on the quantum computer. Theoretical methods to perform this translation have

been extensively studied, but more so for some types of quantum computers than others [1–5]. The

continued development of these methods has been the subject of my research leading up to this work.

I started my research in this subject with a publication looking into the simulation on a quantum

computer of a Bose-Hubbard system of bosonic particles trapped in an optical lattice [6]. I then worked

on my own method for implementing quantum algorithms in terms of the logical operations on a quantum

computer [4], and demonstrated the use of my method in a quantum algorithm for solving partial differ-

ential equations [7]. This work is structured to follow closely my publications and starts with a general

introduction to the topic in the rest of this Chapter, followed by a detailed overview of my method in

Chapter 2. Chapter 3 then follows closely with my publication on simulating the Bose-Hubbard system

using a mix of my method and others. Chapter 4 discusses two examples of algorithms for which my

method is useful, the first of which is the quantum algorithm for solving partial differential equations

detailed in [7]. Finally I provide a brief summary and discussion of the topic in Chapter 5.

To start, some definitions and overview on the implementation of quantum algorithms is needed. A

quantum algorithm is an algorithm which is designed to run on a quantum computer. It is usually specified

1

by a sequence of high-level unitary transformations [6–11]. Unitary transformations are bounded linear

operators that satisfy the following relation:

U†U = UU† = I, (1)

where U† is the adjoint of U , and I is the identity operator. A physical quantum computer, on the other

hand, is only capable of performing a small set of elementary unitary operations which are referred to as

gates. These physically implemented unitary operations, or gates, are the quantum computing analogue

to the logical gates which are hardwired into a classical computer. The challenge of programming a

quantum computer is to find combinations of elementary gates that can reproduce the operation of a

desired quantum algorithm. It is known that specific sets of quantum logical gates exist such that any

arbitrary unitary operation can be expressed as a finite product of gates from the set, to any desired

precision [1, 2, 12–15]. Given their ability to reproduce any desired transformation, these are referred to

as universal gates sets. Programming a quantum computer to perform a desired algorithm thus requires

a method to decompose high-level unitaries in terms of universal gate sets. Ideally, a decomposition

method will reproduce the algorithm with high precision while requiring as few gates as possible.

The qubit model of quantum computing uses two-state quantum systems called qubits as the basic

units of information. Some physical examples include: vertical and horizontal polarized photons, or spin

up and spin down electrons. The quantum gates acting on qubits are often represented as 2× 2 unitary

2

matrices, and gate decompositions in this model of quantum computing have been well studied. For

example, the Solovay-Kitaev theorem [5, 10] states that if a set of qubit gates generates a dense subset

of SU(2) (special unitary group of degree 2, which is the group of 2 × 2 unitary matrices with unit

determinant), then it can approximate any SU(2) unitary using a number of gates that is logarithmic

in the precision. Stated informally, this means that any single-qubit operation can be approximated to

high precision using a sequence of only a few gates. These results have been strengthened to even more

efficient decompositions for single-qubit operations [16–19] and general multi-qubit operations [11].

In the continuous-variable (CV) model of quantum computing, registers are infinite-dimensional quan-

tum systems – namely quantum harmonic oscillators – and the logic gates are unitaries acting on the

infinite-dimensional Hilbert space [6–9,14,20–22]. This presents unique challenges for the task of decom-

posing arbitrary operations in CV photonic quantum computers, where comparatively less progress has

been made thus far. Ref. [14] introduced the notion of universality in CV quantum systems based on

the commutator algebra of quadrature operators. Following this, Ref. [3] presented the first systematic

approach for decomposing arbitrary CV transformations, while Refs. [6–9] deal with decompositions for

specific tasks. All these methods are approximate in the sense that the resulting sequence of gates from

the universal set only implements the desired unitary up to a certain error, which can be decreased arbi-

trarily by employing longer circuits [3,23,24]. However, this can lead to very large circuit depths even if

a modest precision is desired. Exact decompositions are known for a few specific cases [3, 7, 8], but it is

not well understood what transformations allow exact decompositions nor how they can be derived.

3

1.1 Continuous-Variable Quantum Computing

In the CV model of quantum computing, each register is a quantum harmonic oscillator with corre-

sponding creation and annihilation operators â†j and âj , where the subscript refers to the mode they

act upon. For definiteness, we henceforth assume that these registers are modes of the quantized elec-

tromagnetic field. The annihilation and creation operators satisfy the bosonic commutation relations

[âj , â
†
k] = δjk, and [âj , âk] = [â†j , â

†
k] = 0. An equivalent operator description of a bosonic system uses the

quadrature field operators x̂ and p̂, which are related to the annihilation and creation operators as

x̂j =
1

2

(
â†j + âj

)
, (2)

p̂j =
i

2

(
â†j − âj

)
, (3)

with commutator [x̂j , p̂j] = i
2 . This representation is equivalent to the choice of ~ = 1

2 . The quadrature

field operators represent dimensionless observables and are analogous to the position and momentum

operators of a quantum harmonic oscillator. They each have corresponding eigenstates

x̂ |x〉 = x |x〉 , p̂ |p〉 = p |p〉 , (4)

4

with real and continuous eigenvalues x and p. It is important to note that the eigenstates of x̂ and p̂ form

two basis sets which are Fourier transforms of one another. On an arbitrary wavefunction in position

space the quadrature operators have the following action

x̂k |f〉 = x̂k

∫
dxnf(x) |x〉 =

∫
dxnxkf(x) |x〉 (5)

p̂k |f〉 = p̂k

∫
dxnf(x) |x〉 =

−i
2

∫
dxn

∂

∂xk
f(x) |x〉 , (6)

for all k = 1, . . . , n. Note that the action of the momentum operator is equivalent to differentiation with

respect to position when acting on a position state.

Quantum computing using quadrature operators to form some logic gates was first proposed by Seth

Lloyd and Samuel L. Braunstein [14]. These logic gates were formed using Hamiltonians which were poly-

nomial in the quadrature operators. For example, applying the Hamiltonian x̂1x̂2p̂3 will add the product

of x̂1x̂2 to the x̂3 register. To form more arbitrary logic gates and examine their optical implementation,

operations can be expressed as an exponential of quadrature operators.

1.2 Gate Decomposition

A universal gate set is a collection of gates such that any arbitrary unitary operation can be expressed

as a finite series of gates from the universal set, to any chosen approximation. We focus on the universal

5

set specified by the gates

{eiπ2 (x̂2
j+p̂

2
j), eit1x̂j , eit2x̂

2
j , eit3x̂

3
j , eiτx̂j x̂k}, (7)

where t1, t2, t3, and τ are real parameters. This particular universal set is chosen for mathematical

convenience in our method. Four of the gates in the set have powers in the quadrature operators which

are two or less. These, as well as operations of similar order, are referred to as Gaussian. The gate

eit3x̂
3
j is the only non-Gaussian element in the universal set, the gate eiτx̂1x̂2 allows for decompositions of

multiple modes, while the Fourier transform gate F = ei
π
2 (x̂2+p̂2) has the effect of mapping between the

quadrature operators:

F†x̂F = −p̂, (8)

F†p̂F = x̂, (9)

where these mappings follow directly from a lemma to the Baker-Campbell-Hausdorff formula, given in

Eq. (28).

6

To simplify circuits used in later sections we can introduce the following notation:

P (t) = eitx̂
2

V (t) = eitx̂
3 (10)

F = ei
π
2 (x̂2+p̂2)

Q(t) = eitx̂
4 ,

where the final gate is refered to as the quartic gate and is not included in the universal set, but will be

decomposed in terms of gates that are in a later section. The two-mode Cz or C-PHASE gate is given by

•
eiτx̂1x̂2τ =

•

(11)

with tunable strength parameter τ .

An example of an equivalent universal set is one where the choice of non-Gaussian gate eit3x̂
3

, is

replaced by the Kerr gate eit3(x̂
2+p̂2)

2

. In fact it is possible to replace the non-Gaussian gate with any

other and retain universality, as well as removing one of the chosen Gaussian gates by showing that it can

be expressed as a decomposition of another in the set [3]. A possible concern in either of these cases is

whether the gates in the chosen set are costly to implement experimentally. It may be beneficial to keep

a gate included in the set if its decomposition includes multiples of another, harder to implement gate.

7

For example the gate eit2x̂
2

can be expressed in terms of the gate eit3x̂
3

which eliminates the need for it

in the set. But as the gate eit3x̂
3

is much more complex to implement experimentally, it is commonplace

to still include eit2x̂
2

.

For convenience, we express an arbitrary unitary as U = eitĤ with Ĥ =
∑N
j=1 Ĥj a Hermitian operator.

When decomposing gates into a universal set, it is often necessary to express this sum of operators in the

exponent as a product of exponential operators. More specifically, for Ĥ = Â + B̂ where Â and B̂ are

Hermitian operators, the Zassenhaus formula [25] states that

eit(Â+B̂) = eitÂeitB̂e
t2

2 [Â,B̂]e
−it3

6 (2[B̂,[Â,B̂]]+[Â,[Â,B̂]]) · · · (12)

In the trivial case where [Â, B̂] = 0 the product ends immediately after the first two operations. In

general, however, it is possible that this product never terminates, resulting in a decomposition that is no

longer finite. In this case, it is possible to truncate the product at a designated stage in the expansion and

neglect the remaining commutators. This strategy is referred to as a Trotter-Suzuki approximation [26],

which can be stated in the general case as

eitĤ =

 N∏
j=1

ei
t
K Ĥj

K

+O(t2/K), (13)

where Ĥ =
∑N
j=1 Ĥj . This approximation requires K = O(1/ε) gates to achieve precision ε for fixed t.

8

Note that the subscript j on Ĥj is only an index and does not refer to a mode, as each Ĥj may contain

any number of modes.

In general, the unitaries of the form eitĤj are not part of the universal set, so the task remains

to decompose them. One way to achieve this is via the commutator approximation method detailed in

Ref. [3]. This technique expresses sums and products of the quadrature operators in terms of commutators

and then approximates the exponentials of these commutators as repeated products of their arguments.

More specifically, given two Hermitian operators Â and B̂, it holds that [27]

et
2[Â,B̂] =

(
ei

t
K B̂ei

t
K Âe−i

t
K B̂e−i

t
K Â
)K2

+O(t4/K). (14)

For fixed t, K = O(1/ε) gates are required to achieve an error of ε in the approximation, but the resulting

circuit will have a depth of O(1/ε2). This means that very large circuits are required for even a modest

precision. To illustrate the use of the commutator approximation technique, consider an example where

we wish to decompose the operator eit(x̂
2p̂+p̂x̂2). First, using the equality x̂2p̂ + p̂x̂2 = 2

3 [x̂3, p̂2] from

Ref. [3], we have

eit(x̂
2p̂+p̂x̂2) = e

2t
3 [x̂3,p̂2]. (15)

9

Using Eq. (14) with Â = x̂3 and B̂ = p̂2 leads to

e
2t
3 [x̂3,p̂2] =

(
ei
√

2t
3

K p̂2ei
√

2t
3

K x̂3

e−i
√

2t
3

K p̂2e−i
√

2t
3

K x̂3

)K2

+O

[(
2t

3

)2

/K

]
. (16)

Each of the gates on the right-hand side are contained within the universal set up to Fourier transforms,

but in order to obtain a precision of O(1/K), the product must be repeated O(K2) times. For instance,

for t = 1, if the goal is to impose a precision of 10−3, the product of four gates needs to be repeated

approximately 105 times.

In fact, Ref. [28] examines the experimental error of implementing a sequence of gates on a qubit

quantum computer. The results show that as the number of gates is increased, the accumulated physical

implementation error eventually supersedes the precision gain from the repetitions. Thus, at some point,

more repetitions do not lead to lower errors. This problem remains on a CV quantum computer and

further study is required to determine the optimal trade-off between physical error in implementation

and precision error in the decomposition. However, if it is possible to find an exact decomposition, then

there is no longer any need for this trade-off.

In the literature on CV decompositions there are specific examples where the commutator approxi-

mation and even sometimes Trotter-Suzuki can be bypassed [3, 7, 8]. These cases are desirable, but no

general framework has been proposed to characterize the set of gates admitting exact decompositions.

10

1.3 Optical Implementation

The most basic operations on a photonic quantum computer can be implemented directly by using

linear optics, whereas higher-order operations are more complex and contain probabilistic elements. The

universal set as in Eq. (7) has five elements, four of which have powers in the quadrature operators

which are less then three. These gates, as well as other gates of similar order, can all be represented

as combinations of optical rotations (or phase shifts), displacements, either squeezing or shearing, and if

acting on multiple modes then also beamsplitters [21]. These optical elements are given by the following:

R(θ) = eiθ(x̂
2+p̂2)/2, (17)

rotates a state in phase space by θ. When θ = π we have the Fourier transform gate from the universal

set.

Z(s) = eisx̂, (18)

11

a quadrature displacement of s
2 in momentum. When s = t1 we have the second gate in our universal

set. Note that a quadrature displacement of s
2 in position is the action of the operator X(s) = e−isp̂.

S(r) = eir(x̂p̂+p̂x̂), (19)

squeezes the position quadrature by r, while stretching the momentum quadrature by 1/r.

P (s) = eisx̂
2/2, (20)

shears a state along the position quadrature by a factor of s. When s = 2t2 in the shearing operation we

retrieve the third gate in the universal set.

B(θ) = eiθ(x̂1p̂2−p̂1x̂2), (21)

is a beamsplitter which acts on two modes and allows for multi-mode Gaussian operations. The final

Gaussian element of the universal set in Eq. (7) is the Cz gate given by eiτx̂1x̂2 . This operation can be

expressed as a combination of squeezing and beamsplitting in the following configuration:

• S

BS=

• S

(22)

12

where squeezing is denoted by S gates, and beam splitters by BS gates.

In order to implement higher-order gates we require an addition to the set of optical elements. The cubic

phase operators are denoted by V (t) gates in circuits, and are an example of these higher-order operations.

To implement the cubic phase gate a photon counting measurement is needed, which introduces the

higher-order non-linearity. The full implementation involves a displaced two-mode squeezed state for

which R̂†n̂R̂ (photon counting in a rotated basis) is measured on one arm. The desired cubic operation is

then collapsed onto the second unmeasured mode [29]. This procedure is demonstrated in the following

circuit:

|0〉 • X(s) n̂ n

|0〉 • ≈ eiγ(n)x̂3 |0〉p

(23)

where the initial states in both modes are squeezed momentum states. The states are entangled with a

Cz gate and then a displacement operation is performed on the upper mode before a photon number mea-

surement is made to collapse the cubic operation onto the bottom mode. This cubic state is approximate

and depends on the measurement result n. The full implementation has also been demonstrated using

repeat-until-success photon subtractions and Gaussian operations [30], as well as by using quadrature

detection for feed-forward manipulation of parameters to produce nonlinear interaction [31].

While a photonic implementation of a CV quantum computer can operate at room temperature, the

addition of sensitive detectors such as a photon counting measurement may require the use of refrigeration

systems to improve accuracy. For example, an inaccurate detector might signal that it has detected a

13

photon when there were none, or miss the detection of a photon altogether. Other challenges and sources

of error on a CV quantum computer include signal loss over larger distances, where the creation and use

of a quantum repeater to is an ongoing challenge [22, 32], and the propagation of error due to the use

of finite squeezing. For example the Cz gate implementation as in Eq. (22) assumes infinite squeezing

and will retain additional error depending on the squeezing factor r in a realistic case where squeezing is

finite. The addition of noise or error to a quantum system needs to be addressed in a practical quantum

computer in order for it to be fault tolerant. This is done with sophisticated error correction schemes

which have been studied extensively on CV quantum computers [20,21,33].

14

2 Methods for Exact Decompositions

This chapter follows closely and expands on the publication [4], for which I was the primary author.

Here I describe a method to decompose multi-mode gates eitĤ , where the operator Ĥ is of the form

Ĥ =

N−1∏
j=1

x̂j

 x̂nN , (24)

or

Ĥ = x̂n1
1 x̂n2

2 , (25)

for n, n1, and n2 positive integers. As well as single-mode gates eitĤ with

Ĥ = x̂N . (26)

The label of the modes in Eq. (24) is arbitrary: the method works for any product where at most one

operator has an exponent n > 1. In each case we require that N is divisible by either 2 or 3, and in the

multi-mode case, the product nN must also be divisible by 2 or 3, as well as n1 and n2 divisible by 2.

These gates can be extended to include momentum quadrature operators p̂j by Fourier transforms acting

on individual modes. As demonstrated in later sections and chapters, this set of gates for which exact

15

decompositions can be obtained encompasses a large class of operators arising in several CV quantum

algorithms and simulations of bosonic systems.

The method relies on strategically employing: (i) unitary conjugation

UeitĤU† = eitUĤU
†
, (27)

(ii) a lemma to the Baker-Campbell-Hausdorff (BCH) formula

eÂB̂e−Â = B̂ + [Â, B̂]+
1

2!
[Â, [Â, B̂]] + · · · , (28)

and (iii), the identity

ei3α
2tp̂kx̂

2
j = ei2αx̂j x̂keitp̂

3
ke−iαx̂j x̂ke−itp̂

3
ke−i2αx̂j x̂keitp̂

3
keiαx̂j x̂ke−itp̂

3
keiα

3t 34 x̂
3
j , (29)

with α and t real parameters. The proof of Eq. (29) uses both (i) and (ii) and follows closely the proof

of Eq. (37) in the appendix. Before outlining the method in detail, some simple examples can be studied

to illustrate the main idea behind the approach.

Suppose that the goal is to derive an exact decomposition for the unitary eiαx̂j x̂kx̂l . The first step of

16

the method is to express the operator x̂j x̂kx̂l as a linear combination of polynomials of degree three in

the quadrature operators x̂j , x̂k, and x̂l. Namely, one can employ the identity

x̂j x̂kx̂l = 1
6 [(x̂j + x̂k + x̂l)

3 − (x̂j + x̂k)3 − (x̂j + x̂l)
3 − (x̂k + x̂l)

3 + x̂3j + x̂3k + x̂3l], (30)

which implies the identity

eiαx̂j x̂kx̂l = e
iα
6 (x̂j+x̂k+x̂l)

3

e
−iα
6 (x̂j+x̂k)

3

e
−iα
6 (x̂j+x̂l)

3

e
−iα
6 (x̂k+x̂l)

3

e
iα
6 x̂

3
j e

iα
6 x̂

3
ke

iα
6 x̂

3
l , (31)

since all the terms in the exponent commute. The right-hand side of this equation includes gates of the

form e
iα
6 x̂

3

that are part of the universal set, but it is still necessary to decompose the remaining terms.

To do this, employ the decompositions

eiα(x̂j+x̂k)
3

= e2ip̂j x̂keiαx̂
3
j e−2ip̂j x̂k (32)

eiα(x̂j+x̂k+x̂l)
3

= e2ip̂j x̂leiα(x̂j+x̂k)
3

e−2ip̂j x̂l , (33)

which can be derived from Eqs. (27) and (28) using U = e2ip̂j x̂k as the unitary of conjugation. In

summary, an exact decomposition can be derived by expressing x̂j x̂kx̂l as a linear combination of

polynomials of operators, allowing one to write the target gate eiαx̂j x̂kx̂l in terms of a product of gates,

each of which can be exactly decomposed.

17

Now suppose that the goal is to derive an exact decomposition for the higher-order single-mode gate

eiαx̂
4
j . Following the previous strategy, the operator x̂4j can be expressed as a linear combination of

degree-four polynomials. More specifically, the identity

x̂4j = (x̂2j + x̂k)2 − x̂2k − 2x̂2j x̂k, (34)

implies the relation

eiαx̂
4
j = eiα(x̂

2
j+x̂k)

2

e−iαx̂
2
ke−2iαx̂

2
j x̂k . (35)

Here, the gate e−iαx̂
2
k is part of the universal set, while Eq. (29) gives an exact decomposition for e−iαx̂

2
j x̂k

up to a Fourier transform. As before, the remaining term can be decomposed using unitary conjugation:

eiα(x̂
2
j+x̂k)

2

= e2ip̂kx̂
2
j eiαx̂

2
ke−2ip̂kx̂

2
j , (36)

leading to a full decomposition for the target gate eiαx̂
4
j . Note that an additional ancillary mode k was

required in this decomposition.

To extend this method to a more general setting, the same basic strategy can be employed: express the

target gate in terms of a linear combination of polynomials and decompose the resulting gates in terms

of unitary conjugation or previously derived decompositions.

18

2.1 Single-Mode Gates

The following describes the method for decomposing single-mode gates of the form eiαx̂
N

with N an

integer divisible by 2 or 3. In the previous example, we showed how Eq. (29) could be employed to

decompose eiαx̂
4

. Generalizing Eq. (29) to higher order similarly enables decompositions of single-mode

gates with larger exponents. It can be shown that such a general form exists, given by the expression

e2iα
2p̂kx̂

N
j = e2iαx̂

N−2
j x̂ke−iαx̂

2
j p̂

2
ke−2iαx̂

N−2
j x̂keiαx̂

2
j p̂

2
keiα

3x̂
2(N−1)
j , (37)

for N ≥ 2. The proof of this formula can be found in the Appendix. This formula holds with the addition

of another mode and can be proven in a similar manner.

e2iα
2p̂kp̂lx̂

n
j = e2iαx̂

n−2
j x̂kx̂le−iαx̂

2
j p̂

2
ke−2iαx̂

n−2
j x̂kx̂leiαx̂

2
j p̂

2
keiα

3x̂
2(n−1)
j p̂l . (38)

These decompositions require the gate eiαx̂
2
j x̂

2
k , which is not part of the universal set. However, an exact

decomposition also holds for this gate (see the Appendix for a proof):

eiαx̂
2
j x̂

2
k = ei2p̂j x̂kei

α
12 x̂

4
j e−i4p̂j x̂kei

α
12 x̂

4
j ei2p̂j x̂ke−i

α
6 x̂

4
j e−i

α
6 x̂

4
k , (39)

19

where we can employ the previously derived decomposition for eix̂
4
j . The form of Eq. (39) can be expanded

to create more arbitrary two-mode gates with higher order as in Eq. (25), the details of which will be

shown in the following section on multi-mode decompositions. To obtain a general form for single-mode

decompositions, Eq. (39) is used as well as the fourth-order single-mode decomposition in Eq. (35) to

first obtain a higher-order version of Eq. (29):

e2iα
2p̂kx̂

3
j = e2iαx̂j x̂ke−iαx̂

2
j p̂

2
ke−2iαx̂j x̂keiαx̂

2
j p̂

2
ke−2iα

3x̂4
j . (40)

This can then be used to create a decomposition for eix̂
6
j in a similar way to the decomposition of the

gate eix̂
4
j . The decomposition for eix̂

6
j can once more be combined with Eq. (39) to derive an exact

decomposition for the next highest power of the two-mode gate, namely e2iα
2p̂kx̂

4
j . This process can be

continued until the general recursive form in Eq. (37) is reached, as well as a more general decomposition

of single-mode operations:

eiαx̂
N
k = e2ip̂j x̂

N/2
k eiαx̂

2
j e−2ip̂j x̂

N/2
k e−iαx̂

2
j e−2iαx̂j x̂

N/2
k , (41)

that holds when N is even. The proof of this equation is detailed in the Appendix, but follows similar steps

to the fourth-order single-mode gate in Eq. (35). If N is odd and a multiple of three, exact decompositions

20

can also be derived by noting the following relation:

2x̂Nk =2
(
x̂j + x̂

N/3
k

)3
− 3

(
x̂l + x̂2j + x̂

N/3
k

)2
− 2x̂3j + 3x̂4j + 3x̂

2N/3
k − 6x̂j x̂

2N/3
k + 6x̂2j x̂l + 6x̂

N/3
k x̂l + 3x̂2l .

(42)

Therefore, for N odd and divisible by 3, we can decompose the single-mode operation as

ei2αx̂
N
k = e

i2α
(
x̂j+x̂

N/3
k

)3

e
−i3α

(
x̂l+x̂

2
j+x̂

N/3
k

)2

e−i2αx̂
3
j ei3αx̂

4
j ei3αx̂

2N/3
k e−i6αx̂j x̂

2N/3
k ei6αx̂

2
j x̂lei6αx̂

N/3
k x̂lei3αx̂

2
l .

(43)

Here, the gates e
i2α

(
x̂j+x̂

N/3
k

)3

and e
−i3α

(
x̂l+x̂

2
j+x̂

N/3
k

)2

can be decomposed using the expressions

e
i2α

(
x̂j+x̂

N/3
k

)3

= e2ip̂j x̂
N/3
k ei2αx̂

3
j e−2ip̂j x̂

N/3
k , (44)

e
−i3α

(
x̂l+x̂

2
j+x̂

N/3
k

)2

= e2ip̂lx̂
N/3
k e2ip̂lx̂

2
j e−i3αx̂

2
l e−2ip̂lx̂

2
j e−2ip̂lx̂

N/3
k , (45)

which as before are obtained using unitary conjugation. The other gates in Eq. (43) can be decomposed

with the previous general formulas Eq. (41) and Eq. (37). It is important to note that for even N only

one ancillary mode is needed, whereas for N odd and a multiple of three, two additional ancillary modes

are needed. In the case of multi-mode gates the number of ancillary modes depends only on the number

of single-mode gates in the decomposition which further need to be decomposed with Eq.(41) or Eq.(43).

21

In either case only one or two ancillary modes are needed because these modes may be repurposed for

each single-mode gate that appears in the multi-mode decomposition.

2.2 Multi-Mode Gates

The multi-mode case is studied where Ĥ is given by

Ĥ =

N∏
j=1

x̂
nj
j , (46)

where the nj are positive integers. It is discussed later why restrictions are necessary on the exponents

nj , leading to exact decompositions for operators as in Eq. (24), as well as how to form decompostions

as in Eq. (25).

2.2.1 Multi-Mode Gates With More Than Two Modes

As discussed previously, the first step to decompose a multi-mode gate eitĤ is to express Ĥ as a linear

combination of operators. Let [N]k be the set of all k-subsets of {1, 2, . . . , N}, i.e., all subsets containing

k elements. For example, [3]2 = {{1, 2}, {1, 3}, {2, 3}}. The goal is to find coefficients c1, c2, . . . , cN such

22

that [34]

N∏
j=1

x̂
nj
j =

N∑
k=1

ck
∑

S∈[N]k

(
k∑
i=1

x̂
nSi
Si

)N
, (47)

where S ∈ [N]k = {S1, S2, . . . , Sk}. When expanded, the term on the right-hand side contains several

monomials of the position operators, including the desired term
∏N
j=1 x̂

nj
j . Each monomial is multiplied

by a factor that is a linear combination of the coefficients ck, and the goal is to set these factors to zero for

all monomials except
∏N
j=1 x̂

nj
j . As shown in the Appendix, this gives rise to a linear system of equations

for the coefficients ck such that Eq. (47) holds whenever the coefficients ~c = (cN , cN−1, . . . , c1) satisfy the

linear system A~c = 0. The matrix A is a rectangular matrix which is independent of the exponents nj

and is given by

A =

1 1 0 0 . . . 0

1 2 1 0 . . . 0

1 3 3 1 . . . 0

...
...

...
...

. . .
...

(
N−1
0

) (
N−1
1

) (
N−1
2

) (
N−1
3

)
. . .

(
N−1
N−1

)

, (48)

23

i.e., the coefficients of A follow the structure of Pascal’s triangle. The formula for each element of matrix

A is

Ai,j = 0, if i < j − 1

=
i!

(j − 1)!(i− j + 1)!
, otherwise. (49)

Note that because this linear system is underdetermined since there are N − 1 equations for N variables.

However, by fixing cN , it is possible to find a specific non-trivial solution, as shown in the following

observation.

Observation 1. A solution to the linear system A~c = 0 with ~c = (cN , cN−1, . . . , c1) and A as in Eq. (48)

is given by cN−k = (−1)kcN .

Proof. For simplicity and without loss of generality, let cN = 1. The base case for N = 2 is trivially true;

it is simply c2 + c1 = 0 =⇒ c1 = −1. Now examine the general structure for the case with N = k.

Assume that the claimed solution cN−k = (−1)k with k = 0, 1, . . . , N − 2 is true for N = K − 1, i.e., the

system when the last row and last column are omitted from the matrix A. For the case N = K, the last

24

row of A determines an equation for the remaining coefficient c1. We then have

K−1∑
k=0

(
K − 1

k

)
ck = 0 (50)

=

K−1∑
`=0

(
K − 1

K − `

)
cK−`

=c1 +

K−2∑
`=0

(
K − 1

K − `

)
(−1)` = 0. (51)

We want to show that c1 = (−1)K−1 is a solution to this equation. This yields

(−1)K−1 +

K−2∑
`=0

(
K − 1

K − `

)
(−1)` =

K−1∑
`=0

(
K − 1

K − `

)
(−1)`

= (−1 + 1)K−1 = 0 (52)

as desired, where the last line follows from the binomial theorem.

The solution cN−k = (−1)kcN is valid for any value of cN . In order to satisfy Eq. (47) exactly, we

simply fix cN = 1/N !. With this choice of coefficients ck, the sum of polynomials on the right-hand

side of Eq. (47) is exactly equal to the multi-mode product of operators on the left-hand side. Thus,

the process for decomposing multi-mode gates is to find an exact decomposition for each polynomial

appearing on the right-hand side of Eq. (47). As done before, specifically in Eqs. (32), (33), (36), (44),

and (45), decomposition of polynomials is performed using unitary conjugation with the gate e2ip̂1x̂
nj
j –

25

with decomposition in Eq. (37) – and the lemma to the BCH formula. More precisely, we employ the

following identity to decompose an arbitrary polynomial:

eit(x̂1+x̂
n2
2 +x̂

n3
3 +···+x̂nmm)N = e2ip̂1x̂

nm
m · · · e2ip̂1x̂

n3
3 e2ip̂1x̂

n2
2 eitx̂

N
1 e−2ip̂1x̂

n2
2 e−2ip̂1x̂

n3
3 · · · e−2ip̂1x̂

nm
m . (53)

Using Eq. (53), it is not possible to find exact decompositions for all operators
∏N
j=1 x̂

nj
j in Eq. (46), as

there are restrictions on the exponents nj . The restrictions are as follows:

1. There can exist at most one j such that nj 6= 1. This restriction arises from the fact that the

central operator in Eq. (53), namely x̂1, must have an exponent equal to one. Therefore, in order to

use Eq. (53) to decompose every polynomial
(∑k

i=1 x̂
nSi
Si

)N
on the right-hand side of Eq. (47), all

k-subsets S with k > 1 must contain at least one element Si ∈ S such that nSi = 1. This is only

possible if there exists at most one j such that nj 6= 1.

2. The product Nnj must be divisible by either 2 or 3 for all j. This arises because the k = 1 terms in

Eq. (47) produce monomials that include only single-mode operators to the power of Nnj . As shown

in the previous section, the method only produces exact decompositions for single-mode operations

with power divisible by 2 or 3.

To summarize, we employ Eq. (47) to express a multi-mode operator as a linear combination of polyno-

mials. Each polynomial can then be exactly decomposed using Eq. (53) and single-mode decompositions

from the previous section. This yields a method for constructing exact decompositions of operators of the

26

form eitĤ , for Ĥ =
(∏N−1

j=1 x̂j

)
x̂nN , with both Nn and N divisible by either 2 or 3. In order to construct

multi-mode gates where more then one mode has its power raised to an integer greater then one, as in

Eq. (25), an iterative process can be used that follows from the construction of Eq. (39).

2.2.2 Two-Mode Gates With Higher Powers

As shown in the appendix, Eq. (39) is constructed by using unitary conjugation to create the polynomials

(x̂j + x̂k)
4

+ (x̂j − x̂k)
4

which when added together cancel all of the terms with odd powers in x̂k. This

structure can be exploited even when Eq. (37) is used in unitary conjugation to raise the power of x̂k in

the brackets. For example, note the following equation

(
x̂j + x̂

b/2
k

)4
+
(
x̂j − x̂b/2k

)4
= 2x̂4j + 12x̂2j x̂

b
k + 2x̂2bk (54)

where b is an even number. This implies an exact decomposition for eitx̂
2
j x̂
b
k can be derived, as both

e
it
(
x̂j+x̂

b/2
k

)4

and e
it
(
x̂j−x̂b/2k

)4

can be decomposed using Eq. (37) in unitary conjugation:

e
it
(
x̂j+x̂

b/2
k

)4

= e2ip̂j x̂
b/2
k eitx̂

4
j e−2ip̂j x̂

b/2
k , (55)

e
it
(
x̂j−x̂b/2k

)4

= e−2ip̂j x̂
b/2
k eitx̂

4
j e2ip̂j x̂

b/2
k . (56)

27

Therefore, the exact decomposition for eitx̂
2
j x̂
b
k is given by

eitx̂
2
j x̂
b
k = e2ip̂j x̂

b/2
k ei

t
12 x̂

4
j e−2ip̂j x̂

b/2
k e−2ip̂j x̂

b/2
k ei

t
12 x̂

4
j e2ip̂j x̂

b/2
k e−i

t
6 x̂

4
j e−i

t
6 x̂

2b
k , (57)

where the decompositions for the single mode gates are given in Eq. (41). This result can be further

generalized to gates of the form eitx̂
a
j x̂
b
k , with a and b even, by increasing the power of the jth mode.

Note the following polynomial equation

(
x̂j + x̂

b/2
k

)a+2

+
(
x̂j − x̂b/2k

)a+2

= 2x̂a+2
j +2

(
a+ 2

a

)
x̂aj x̂

b
k+2

(
a+ 2

a− 2

)
x̂a−2j x̂2bk +2

(
a+ 2

a− 4

)
x̂a−4j x̂3bk +· · ·+2x̂

(a+2)b/2
k ,

(58)

which implies the operator relation

eit2(
a+2
a)x̂aj x̂

b
k = e

it
(
x̂j+x̂

b/2
k

)a+2

e
it
(
x̂j−x̂b/2k

)a+2

e−it2x̂
a+2
j e−it2(

a+2
a−2)x̂

a−2
j x̂2b

k e−it2(
a+2
a−4)x̂

a−4
j x̂3b

k

· · · e−it2(
a+2
2)x̂2

j x̂
ab/2
k e−it2x̂

ab/2+b
k . (59)

The gates e
it
(
x̂j+x̂

b/2
k

)a+2

and e
it
(
x̂j−x̂b/2k

)a+2

are decomposed similarly to Eq. (55) but with the jth mode

raised to the power a+ 2 instead of 4 on the right hand side. The single mode gates are all raised to even

powers and as such can be decomposed exactly with Eq. (41). The decompositions for the multi-mode

gates on the right hand side follow recursively starting with the rightmost gate. e−it2(
a+2
2)x̂2

j x̂
ab/2
k can

28

be decomposed with the less general form in Eq. (57) as both a and b are even. The next gate in the

sequence, namely, e−it2(
a+2
4)x̂4

j x̂
ab/2−b
k can be decomposed with the above equation by substituting a′ = 4

and b′ = ab/2− b. Each multi-mode gate up to e−it2(
a+2
a−2)x̂

a−2
j x̂2b

k can be substituted back into Eq. (59) in

this way and will only need decompositions of the multi-mode gates to the right of itself, as well as gates

covered by Eq. (57).

For example, to decompose eitx̂
6
j x̂

6
k from Eq. (59) we would need multi-mode decompositions for eitx̂

4
j x̂

12
k

and eitx̂
2
j x̂

18
k , where substituting eitx̂

4
j x̂

12
k back into Eq. (59) also needs a multi-mode decomposition for

eitx̂
2
j x̂

24
k . Both eitx̂

2
j x̂

18
k and eitx̂

2
j x̂

24
k can then be decomposed by using Eq. (57). In every case the remaining

single mode gates will have even power and as such can be decomposed.

Note that the recursion in decompositions of this form can form much higher order single mode gates.

As a result the gate counts for this part of the method may scale poorly with respect to the power of

each mode. For example the gate count for the exact decomposition of the sixth order gate eitx̂
2
j x̂

4
k is 3320

gates from the universal set, whereas the single mode sixth order gate eitx̂
6

requires almost four times

fewer.

Table 1 shows a comparison of gate counts for a variety of gates which can be decomposed using

the methods described in this chapter. It also includes a comparison of exact decompositions with the

standard commutator approximation, where the gate counts for the commutator approximations are

taken to a precision of 10−3. The two gates in the table with the lowest gate counts in the exact method

are the third-order three-mode gate and the fourth-order single-mode gate, with 17 and 29 gates in their

29

respective decompositions. This is in contrast to the commutator approximation where the addition of

the third mode greatly increases the circuit depth. The structure of each method seems to indicate that

the exact decompositions scale better under addition of more modes. Also, the need to repeat the set

of gates to improve precision in the commutator approximation produces several orders-of-magnitudes

increase in the resulting circuit depths.

Table 2 demonstrates the applicability of the operations shown in Table 1 by providing example al-

gorithms for which they appear in the decomposition. In some cases, only part of a desired operation

might be decomposed exactly, but as demonstrated in Table 1, the exact decompositions even for these

portions can produce a significant decrease in circuit depth. The final entry in the table contains a general

operation that depends on the choice of h(x̂1), which is chosen to be a polynomial in x̂1. This operation

will be covered by the exact decomposition method regardless of the choice of h(x̂1) because there are

four total modes. Assuming h(x̂1) = x̂n1 , then Nn = 4n is always even and therefore the single mode

operation eitx̂
4n
1 can be decomposed exactly. Also, since the final three modes are all to unit power, any

one of them may be used as the exponent of the central operator in unitary conjugation. Therefore both

of the restrictions of the method have been met regardless of n. By linearity, the same holds for a general

polynomial h(x̂1) =
∑
n anx̂

n
1 .

30

Target gate Commutator approx. Exact decomposition Cubic phase gates
(10−3 precision) in each exact decomp.

eitx̂
4

1.8× 104 gates 29 gates 15 gates

eitx̂
2
j x̂

2
k 2.8× 104 gates 119 gates 60 gates

eitx̂j x̂
3
k 2.9× 108 gates 269 gates 135 gates

eitx̂j x̂kx̂l 4.2× 108 gates 17 gates 7 gates

eitx̂
2
j x̂kx̂l 1.4× 109 gates 249 gates 125 gates

eitx̂j x̂kx̂lx̂m 6.9× 1013 gates 440 gates 225 gates

eitx̂
6

1.2× 1013 gates 809 gates 405 gates

eitx̂
2
j x̂

4
k 2.4× 1013 gates 3320 gates 1670 gates

Table 1: Gate counts for decompositions of some common operations, using the standard commutator
approximation as well as the exact decompositions described in this chapter. The gate counts neglect
any Fourier transforms used by either method as they are inexpensive to implement experimentally. The
final column includes counts of cubic phase gates needed in each exact decomposition.

31

Algorithm Hamiltonian and Circuit depth
Operators covered by method of operator

Vibrational dynamics Ĥ = ~
∑

i≤j
xij
2

√
ωiωj

(
â†i âi + â†j âj + 2â†i â

†
j âiâj

)
119 gates

of molecules, Ref. [35] eitĤ contains operator eitx̂
2
j x̂

2
k

Non-homogeneous linear Ĥ =
∑N

j=1

(
aj x̂j + bj p̂j + αj x̂

2
j + βj p̂

2
j

)
x̂kx̂l 17 gates and

PDEs, Ref. [7] eitĤ contains eitx̂j x̂kx̂l and eitx̂
2
j x̂kx̂l 249 gates

Dipole interaction term of Ĥ = V
∑
i≤j â

†
i âiâ

†
j âj 119 gates

Bose Hubbard, Ref. [6] eitĤ contains the operator eitx̂
2
i x̂

2
j

One particle tunneling of Ĥ = −T
∑
i≤j â

†
i (n̂i + n̂j) âj 125 gates

Bose Hubbard, Ref. [36] eitĤ contains the operator eitx̂ix̂
3
j

Nearest-neighbor tunneling of Ĥ = P
2

∑
i≤j â

†
i â
†
i âj âj 119 gates

Bose Hubbard, Ref. [36] eitĤ contains the operator eitx̂
2
i x̂

2
j

Cross-Kerr Hamiltonian, Ĥ =
(
x̂2i + p̂2i

)
⊗
(
x̂2j + p̂2j

)
119 gates

Ref. [3] eitĤ contains the operator eitx̂
2
i x̂

2
j

Principal component analysis, R(p̂R) = eiδp̂R(â1â
†
2+â

†
1â2) 17 gates

Ref. [8] R(p̂R) contains the operator eiδx̂Rx̂1x̂2

Matrix inversion algorithm, R(p̂Rp̂S) = eiγp̂Rp̂S(â1â
†
2+â

†
1â2) 440 gates

Ref. [8] R(p̂Rp̂S) contains the operator eiγx̂Rx̂S x̂1x̂2

Monte Carlo integration, eih(x̂1)p̂2p̂3p̂φ , decomposed exactly (see Table 3)
Ref. [37] for any h(x̂1) polynomial in x̂1

Table 2: Algorithms which require a decomposition for gates covered by the exact method. The second
column shows the operator or Hamiltonian that appears in the algorithm as well as the portion which
is covered by the exact method. The final column gives the gate count of the portion which can be
decomposed exactly.

32

3 The Bose-Hubbard Model

In order to demonstrate the use of known decomposition techniques as well as some exact decomposi-

tions, we will look at an example of a quantum simulation of a physical system. Quantum simulation of

physical systems constitutes an important application for early quantum computing devices [2,38,39]. A

quantum computer can be used for the purpose of observing properties of that system which may be hard

to obtain from direct experiments or classical computing. For example, such simulations may be used to

determine the ground state energies of certain molecules or to simulate systems of molecules, which can

be difficult to determine using a classical computer [40–42].

Usually, the starting point is a reasonable model for the Hamiltonian of the physical system and

mapping of that Hamiltonian into the degrees of freedom of the quantum simulator. Once a suitable

mapping from the physical system has been found, the Hamiltonian time evolution operator is simulated

by applying specific operations on the quantum device. The domain of Hamiltonian simulation examines

the efficient implementation of Hamiltonians by considering their properties such as locality or sparsity.

Often such simulations are performed efficiently, that is polylogarithmically in the size of the Hilbert space

and close to linear in the simulation time. For qubit quantum computers, such Hamiltonian simulations

have been discussed in detail in [27,43–50].

In this chapter I follow closely the publication [6] which examines the Bose-Hubbard system in the

context of quantum simulation. The Bose-Hubbard model is one that has been studied extensively,

33

describing a system of bosonic particles trapped in an optical lattice [36]. This model is simulated

using various methods such as quantum Monte Carlo simulations [51–55]. The purpose of most of these

simulations has been to examine state transitions between a superfluid and a Mott insulator [36,52,54–56].

The Bose-Hubbard model also has applications in examining the generation of entanglement [57] and the

creation of quantum magnetic insulators [58]. It has been shown that the one-dimensional Bose-Hubbard

may be easily simulated classically [59,60]. However, the general problem of finding the ground state of a

quantum system, including the Bose-Hubbard quantum system, is part of the QMA-complete (quantum

Merlin Arthur) complexity class. This is the set of decision problems on a quantum computer for which

there exists a polynomial-time quantum verifier, and that every QMA problem can be reduced to it.

This is the quantum analogue to the NP (non-deterministic polynomial time) class of problems. As

well, simulating the time evolution operator of the Bose-Hubbard system is BQP-complete (bounded-

error polynomial time) when formalized as a decision problem [50, 61–63]. Analogous to the classical

complexity class P (polynomial time), BQP problems, are decision problems which can be solved by a

quantum computer in polynomial time. Similarly BQP-complete means that a problem is in BQP and

every BQP problem can be reduced to it. For the Bose-Hubbard system this means that there exists

an efficient quantum algorithm that can accurately determine whether or not a given output was one

produced from the system itself, whereas it is believed that no such efficient classical algorithm exists.

Here, ’efficient’ means that the algorithm scales as a polynomial in the size of the system.

For the Bose-Hubbard Hamiltonian, I show that a CV system allows for a straightforward mathematical

34

decomposition into the required logic gates, as well as a circuit topology that allows for advantages in

implementation. I present the exact resource counts required to simulate the Bose-Hubbard Hamiltonian

on a CV quantum computer as well as the circuits that implement 1-D and 2-D Bose-Hubbard models

of variable sizes.

3.1 Gate Decomposition of Bose-Hubbard Hamiltonian

The Bose-Hubbard Hamiltonian describes a system of bosonic particles trapped in an optical lattice of

N sites. Using notation from [36], it is given by

H = −J
2

∑
{i,j}

â†i âj +
U

2

N∑
i=1

n̂i(n̂i − 1), (60)

where the two terms with the factors J and U represent the tunneling of a particle from one site to

a neighboring site, and the on-site interaction, respectively (see Fig. 1 for a schematic). The bosonic

creation (annihilation) operators are given by â†i (âi) and the number operator is n̂i = â†i âi. The sum

∑
{i,j} spans neighboring sites. Additional terms may be added to the Hamiltonian which come from

dipole interactions [36], but first the terms in Eq. (60) are examined in detail. The objective of the

gate decomposition is to find an appropriate implementation of quantum gates which can be used to

simulate the evolution of this Hamiltonian eitH for a time t. In order to do this, eitH is decomposed into

more elementary time evolution operators. Note that the physical time evolution operator here would be

35

e−2itH to be consistent with the choice of ~, but for simplicity I will use eitH throughout this chapter. In

the Hamiltonian, the J terms as well as part of the U terms are of Gaussian order, therefore they may

be efficiently implemented with linear optics. The non-Gaussian U term may be further broken down

using the exact decomposition techniques in the previous section. This decomposition is now examined

more precisely. First, the operators â†i , âi and n̂i are expanded in terms of position operators x̂i and

momentum operators p̂i via Eqs. (2), (3)

âi = x̂i + ip̂i,

â†i = x̂i − ip̂i, (61)

â†i âi = x̂2i + p̂2i + i[x̂i, p̂i],

where as before [x̂i, p̂i] = i
2 . Considering these relations and neglecting a constant energy shift an

expanded Hamiltonian is then written as

H = −J
∑

{i,j}:i<j

(x̂ix̂j + p̂ip̂j) +
U

2

∑
i

((
x̂4i + x̂2i p̂

2
i + p̂2i x̂

2
i + p̂4i − x̂2i − p̂2i

)
+
(
−x̂2i − p̂2i

))
. (62)

We can simplify x̂2i p̂
2
i + p̂2i x̂

2
i with a relation from [3]

x̂2i p̂
2
i + p̂2i x̂

2
i = −4

9
i[x̂3i , p̂

3
i]. (63)

36

As the time evolution to be simulated is eitH , we can use the Trotter-Suzuki formula as in Eq. (13) where

we refer to the remainder term as R. The choice of K controls the size of the remainder R and thus gives

the accuracy of the decomposition. The size of the remainder can be bounded by [27]

‖R‖ = O

(
N2t2Λ2

K

)
, (64)

where Λ := maxj ‖Hj‖ is the largest Hamiltonian norm. In our case, we can write

eitH =

(∏
{i,j}:i<j

e−i
t
K Jx̂ix̂je−i

t
K Jp̂ip̂j

∏
i

ei
t
K
U
2 x̂

4
i e

t
K

2U
9 [x̂3

i ,p̂
3
i]ei

t
K
U
2 p̂

4
i e−i

t
KUx̂

2
i e−i

t
KUp̂

2
i

)K
+R. (65)

The largest Hamiltonian norm here is at most Λ = O(poly(J, U)), taken to be O(1), as all terms involve

the position and momentum operators [3].

We can rotate every momentum operator into the position basis by a Fourier transform. For every

polynomial g we have

g(p̂i) = g(Fix̂iF†i) = Fig(x̂i)F†i . (66)

In addition, we can use the standard commutator approximation via the relation [3]

e[A,B]τ2

= eiBτeiAτe−iBτe−iAτeiBτeiAτe−iBτe−iAτ +O(τ4), (67)

37

to partition e
t
K

2U
9 [x̂3

i ,p̂
3
i] into terms involving ei(

t
K

2U
9)

1/2
x̂3
i and Fiei(

t
K

2U
9)

1/2
x̂3
iF†i . Note that in Eq. (67),

τ is proportional to (t/K)1/2, thus the error is proportional to (t/K)2. The expanded form of the

time-evolution operator is given by

eitH =

(∏
{i,j}:i<j

e−i
t
K Jx̂ix̂jFiFje−i

t
K Jx̂ix̂jF†jF

†
i

∏
i

ei
t
K
U
2 x̂

4
iFiei(

t
K

2U
9)

1/2
x̂3
iF†i e

i(t
K

2U
9)

1/2
x̂3
iFie−i(

t
K

2U
9)

1/2
x̂3
i

F†i e
−i(t

K
2U
9)

1/2
x̂3
iFiei(

t
K

2U
9)

1/2
x̂3
iF†i e

i(t
K

2U
9)

1/2
x̂3
iFie−i(

t
K

2U
9)

1/2
x̂3
iF†i

e−i(
t
K

2U
9)

1/2
x̂3
iFiei

t
K
U
2 x̂

4
iF†i e

−i tKUx̂
2
iFie−i

t
KUx̂

2
iF†i

)K
+O(R). (68)

The error term that arises from Eq. (67) accumulates K times, thus the contribution to the error in the

final expression is proportional to K · t
2

K2 = t2

K and can be absorbed into the existing error term. The

quartic term in the expansion, ei
t
K
U
2 x̂

4
i , can be decomposed exactly as shown in Eq. (35).

3.1.1 Dipole Interaction

The Bose-Hubbard Hamiltonian can be extended in the case where dipolar bosons are trapped in the

optical lattice. An external electric field can be applied to polarize the particles in a certain orientation,

and the resulting system will have dipolar interactions leading to additional terms in the Hamiltonian.

Truncating these interactions to the dominating term adds a dipole-dipole nearest neighbor interaction

38

[36], that is given by

Hnn = Vdip
∑

{i,j}:i<j

n̂in̂j . (69)

Other nearest neighbor terms arising from this interaction represent one-particle tunneling and pair

tunneling, but in this work I will focus on the dominant Vdip as above.

Following the procedure from before, we can expand the Hamiltonian in terms of p̂ and x̂ operators,

then rotate the p̂s into x̂s, and decompose into gates from the universal set. Again to error O(N2t2/K),

the sequence of gates includes the sequence of four Gaussian gates given by

e−i
t
K

Vdip
2 x̂2

iFie−i
t
K

Vdip
2 x̂2

iF†i e
−i tK

Vdip
2 x̂2

jFje−i
t
K

Vdip
2 x̂2

jF†j , (70)

and four quartic terms given by

ei
t
K Vdipx̂

2
i x̂

2
jFjei

t
K Vdipx̂

2
i x̂

2
jF†jFie

i tK Vdipx̂
2
i x̂

2
jF†i FiFje

i tK Vdipx̂
2
i x̂

2
jF†jF

†
i . (71)

Each of these two-mode quartic operators involving x̂2i x̂
2
j can be decomposed exactly as shown in Eq. (39).

This leads to the following relation

ei
t
K Vdipx̂

2
i x̂

2
j = Fiei2x̂ix̂jF†i e

i tK
Vdip
12 x̂4

iFie−i4x̂ix̂jF†i e
i tK

Vdip
12 x̂4

iFiei2x̂ix̂jF†i e
−i tK

Vdip
6 x̂4

i e−i
t
K

Vdip
6 x̂4

j , (72)

39

where again the single-mode quartic operations can be decomposed as in Eq. (35).

40

(a)

j

J

i 00 U j i

(c)(b)

Vdip

Figure 1: (a) A visualization of the effects of the terms in the Bose-Hubbard Hamiltonian. Here, J is
the tunneling coefficient which dictates the movement of particles from one site to a neighboring site,
U is the on-site interaction between two particles, and Vdip is the leading term of a dipole interaction
between particles in neighboring sites. Also shown are two simple examples of lattices for which the
circuit implementations are examined, (b) a one-dimensional four-node lattice and (c) a two-dimensional
four-node lattice.

41

3.2 Circuit Implementations and Gate Counts

In this section, I show the quantum circuits implementing the time evolution of the Bose-Hubbard

model. I start by examining the circuit for a one-dimensional four-node lattice, and then examine the

additional circuit of the dipole interaction term. This is then generalized to two-dimensional lattices of

size n× n.

The notation used in the circuits follows from the notations introduced in Eq. (10) and Eq. (11). Note

that the quartic gates in each circuit, denoted by Q(t), can be decomposed in terms of gates from the

universal set as in Eq. (35). This decomposition utilizes multiple modes and is demonstrated by the

circuit

F
L(2)

F† P (α) F
L(−2)

F† P (−α)
L(−2α)

//

⇒ Q(α)

(73)

Acting upon the two wires with this sequence of gates is equivalent to acting on the bottom wire by

the desired quartic gate. The top wire acts as an ancillary mode used in the decomposition and can be

re-purposed afterwards [4]. The L gate is a multimode sequence of gates as in Eq. (29) with circuit given

42

by

L(t)

• F† V (t3) F • F† V (− t
3) F • F† V (t3) F • F† V (− t

3) F

= 2 −1 −2 1

• • • • V (t4)

(74)

In total one quartic gate contributes 28 Fourier transform gates, 2 quadratic gates, 15 cubic gates, and

12 Cz gates.

3.2.1 1-D Lattice Circuits

To present an example circuit for a single time step as in Eq. (68), we consider a 1-D lattice with four

nodes as in Fig. 1(b). The circuit is given by

J
U

J
U

J
U

U

(75)

Here, the gate J is given by

J(g)

F† • F •

= g g

F† • F •

(76)

43

The Cz gate is performed in between each pair of Fourier transform gates and g is taken to be g =

tJ/K =: gJ . To simplify the U gate we introduce a series of cubic and Fourier transform gates notated

by C, given by the circuit

C(t) = V (t) F† V (t) F (77)

The U gate is then given by the circuit, with gU = tU
K and gC = (tK

2U
9)1/2,

U(gU , gc) = F† P (gU) F P (gU) F† Q
(
gU
2

)
F C(gC)4 Q

(
gU
2

)
(78)

The gates from the universal set needed for this circuit will be denoted in the form (F , P, V,Cz). In the

present case, we have (F , P, V,Cz) = (284, 24, 152, 102). Thus, for one time step, we need 284 Fourier

gates, 24 quadratic gates (squeezers and rotations), 152 cubic gates, and 102 Cz gates, with the given

gate times g, gU , and gC .

The additional dipole term may also be implemented in a circuit for a single time step in a 1-D lattice

of 4 nodes. This circuit is given by

Vnn

Vnn

Vnn

(79)

To expand the Vnn gate, the decomposition of the two-mode quartic gate in Eq. (39) can be denoted by

44

W , which has the circuit

W =

Q
(
gV
3

)
F† • F Q

(
gV
6

)
F† • F Q

(
gV
6

)
F† • F

2 −4 2

Q
(
gV
3

)
• • •

(80)

Here, gV = tVdip/2K. The Vnn gate is then given by

P (gV) F† P (gV) F
W W

F†
W

F F†
W

F

P (gV) F† P (gV) F F† F F† F
(81)

Using a similar gate count notation as before, the dipole part of the circuit for the 1-D lattice will have

a gate count of (F , P, V,Cz) = (1452, 108, 720, 612). This means the total circuit including all of the U

and J terms will have a gate count of (F , P, V,Cz) = (1736, 132, 872, 714) for a single time step.

45

3.2.2 2-D Lattice Circuits

In this section, two-dimensional lattices of size n × n are examined. First, consider a 2 × 2 lattice with

four total nodes as in Fig. 1(c). The circuit has the form

J
J U

Vnn
Vnn

J U Vnn

J
U

Vnn
U

(82)

Here, a new notation has been introduced for the two-mode J and Vnn gates over two non-neighboring

wires. This can be implemented on a circuit with only nearest neighbor coupling by swapping neighboring

modes, applying the J or Vnn gates and then swapping back. For example,

1 J 1
J

2 = 2 × ×
3 3 × ×

(83)

Note that the square box on the circuit indicates the other qumode that is being acted upon, and the

wires connected by crosses denote a swap operation between two modes which can be performed with

a beamsplitter. This can similarly be done for an n × n lattice where, if the Bose-Hubbard model has

nearest neighbor couplings, at most n swaps are needed on either side of a gate. For an n× n lattice the

first part of the circuit, which is the nearest neighbor pattern involving the J gates, is given in Fig. 2.

46

The final gate count for the n × n lattice can now be totaled. Following the notation as before,

we also include a count for the number of swaps needed. For each J gate the count is (F ,Cz) =

(4, 2), and for the n × n lattice there are 2(n2 − n) J gates and 2(n3 − n2) swaps, which gives us a

gate count of (F ,Cz,SWAP) =
(
8(n2 − n), 4(n2 − n), 2(n3 − n2)

)
. As shown above, each U gate has a

count of (F , P, V,Cz) = (68, 6, 38, 0) and in the lattice we have n2 of them, giving a total count for the

U gates of (F , P, V,Cz) = (68n2, 6n2, 38n2, 0). Finally, each Vnn gate has a count of (F , P, V,Cz) =

(484, 36, 240, 204), and in the lattice the Vnn gates follow the same pattern as the J gates, so we have

a total contribution from the Vnn gates of (F , P, V,Cz,SWAP) =
(
968(n2 − n), 72(n2 − n), 480(n2 −

n), 408(n2 − n), 2(n3 − n2)
)
.

Therefore, the final gate count for our n× n lattice is

(F , P, V,Cz,SWAP) =
(
1044n2 − 976n, 78n2 − 72n, 518n2 − 480n, 412(n2 − n), 4(n3 − n2)

)
. (84)

Note that this is the gate count for each time step of length t/K in the series of gates simulating eiHt,

as in Eq. (68) and Eqs. (70) to (72).

47

1
J

J

2
J

J · · ·

3
J

J

4
·
·
·

n+ 1

n+ 2 · · ·
n+ 3

·
·
·

2n+ 1
J

J

· · · 2n+ 2
J

J · · ·

2n+ 3
J

J

2n+ 4

·
·
·

3n+ 1
· · · 3n+ 2 · · ·

3n+ 3

· ·
· ·
· ·

J n2 − n− 2

· · · J n2 − n− 1

J n2 − n

·
·
·

J
n2 − 2

· · ·
J

n2 − 1

n2

Figure 2: Circuit diagram for the J terms of the Bose-Hubbard Hamiltonian in Eq. (60) applied to a
two-dimensional, n×n lattice. The dipole interaction term as in Eq. (69) will also have the same pattern,
but will have gates notated with Vnn

48

3.3 Implementation and Errors

Note that, as discussed in Section 1.3, the Gaussian elements of the circuits outlined in this chapter

can be implemented deterministically with linear optics whereas the higher-order gates are more complex

and contain probabilistic elements.

Examining the J gate as in Eq. (76). This circuit element consists of Fourier transforms and Cz gates

which are single-mode Gaussian and multi-mode Gaussian operations and as such can be implemented

with linear optics. For the J gate, the Fourier transforms are implemented simply with rotations of

π
2 , whereas the Cz gates require squeezers and the multi-mode transformation of beamsplitters. More

precisely, the J gate can be optically implemented in the following way

J(g)

R(−π2) S(g)

BS

R(π2) S(g)

BS=

R(−π2) S(g) R(π2) S(g)

(85)

where squeezing operations are denoted by S, beamsplitters by BS, and rotations by R.

In order to implement higher-order gates we require more than the set of linear optical elements.

The cubic phase operators denoted by the V (t) gates in the above circuits, are an example of these

higher-order operations. To implement the cubic phase gate we add to the set of optical elements a

photon counting measurement, which introduces the non-linearity needed. The process for creating a

49

cubic phase operation in terms of these elements is discussed in Section 1.3, and the circuit is shown in

Eq. (23). Note that in the case where a Kerr interaction is available, given by eitn̂
2
i , it may be added to

the universal set and used to directly implement the non-linear parts of the U gates [3, 64,65].

When performing the gate decomposition and analyzing the makeup of example circuits, note that all

gate counts are given for a single Trotter time step. Let the desired accuracy of simulating eitH be given

by ε. The accuracy is dependent on the choice of number of time slices K, the total simulation time t,

and the number of sites N . From Eq. (64), we can determine K to achieve a given accuracy. Such a K

is given by

K = O

(
N2t2

ε

)
. (86)

The commutator simulation from Eq. (67) contributes at most in the same order as the sum formula

Eq. (64). Our final product of operations for the Bose-Hubbard Hamiltonian is raised to the power of K,

therefore we must repeat each circuit presented in this work K times in order to get the desired error of

ε.

Another important source of error is the effect of finite squeezing. As discussed in Section 1.3, the optical

implementation of the gates in each circuit will require the use of squeezing. In any experimental setup the

squeezing will be finite and the end result with be dependent on a squeezing factor s [20,21]. For example,

consider an optical implementation of the cubic phase gate where a photon counting measurement is made

on a displaced two-mode squeezed state. To construct the two-mode squeezed state, two squeezed states,

50

which ideally are zero-momentum eigenstates, are entangled. However, realistically the quadratures can

only be finitely squeezed, in for example the momentum quadrature

|0〉p →
∫
dp e−(p)

2/(2s) |p〉 . (87)

The cubic phase gate is then modulated by a Gaussian envelope with zero mean and variance that depends

on the squeezing factor s [20]. The result of this is a distortion effect which is inversely proportional to

the amount of squeezing applied.

51

4 Other Applications

In this Chapter I examine two algorithms which were designed for photonic quantum computers. Both

of the algorithms require the implementation of an operator in the form eitĤ , which is covered by the

exact decomposition method described in Chapter 2. As such, the implementation of these algorithms

may benefit greatly from the use of exact decompositions. Table 2 also compiles a list of other quantum

algorithms that may benefit from exact gate decompositions.

The first algorithm describes a method for solving non-homogeneous partial differential equations by

adapting a mathematical method to efficiently invert differential operators [7]. The subsection describing

this algorithm as well as its decomposition follows from the publication, for which I was a co-author.

The second is an algorithm which performs Monte Carlo evaluation of multi-dimensional integrals in the

continuous-variable setting [37].

4.1 Quantum Algorithm for Non-Homogeneous Linear Partial Differential

Equations

It has been shown in various articles how quantum computers can excel at solving systems of linear

equations [66–70]. In these examples, given a sparse N ×N matrix A and a vector b = (b1, . . . , bN), the

goal is to find a vector x = (x1, . . . , xN) satisfying the equation Ax = b. These quantum algorithms take

52

as input the quantum state |b〉 =
∑N
i=1 bi |i〉 and efficiently perform matrix inversion to prepare the state

|x〉 = A−1 |b〉 encoding the solution of the linear system of equations.

In the CV version of this problem the inputs are a function f(x) over RN as well as a differential

operator A. In general, A is expressed as a function of the variables and their partial derivatives: A =

A(x1, . . . , xN ,
∂
∂x1

, . . . , ∂
∂xN

). The goal of the algorithm in this case is to find a function ψ(x) satisfying

the linear partial differential equation Aψ(x) = f(x). This differential equation is non-homogeneous

whenever f(x) 6= 0. Similar to the quantum algorithms for solving a linear system of equations, the

non-homogeneous differential equation problem can be solved by first finding the inverse operator A−1

and then using it to compute the function ψ(x) = A−1f(x). Note that on a physical quantum computer

the full wavefuntion ψ(x) cannot be accessed, only measurement outcomes on the resulting output state

|Ψ〉.

In order to find the inverse operator A−1 a Fourier decomposition technique from Ref. [69] is used:

Â−1 =
i√
2π

∫ ∞
−∞

dxdyΘ(x) ye−y
2/2e−iÂxy, (88)

where Θ(x) is the heaviside step function, which is approximated by a step function quantum state with

finite width. The resulting output state is given by

|Ψ〉 =
i√
2π

∫ ∞
−∞

dxdyΘ(x) ye−y
2/2e−iÂxy |f〉 |x〉 |y〉 , (89)

53

which is equivalent to having applied the operation e−iÂX̂Ŷ to the three modes, |f〉, |x〉, and |y〉. Here,

X̂ and Ŷ are position operators acting on their respective modes. Performing a measurement and post-

selecting on observing p = 0 on the x and y modes results in having acted with Â−1 on state |f〉. In

order to implement the algorithm a suitable operator Â must be chosen and the operator e−iÂX̂Ŷ must

be decomposed in terms of operators contained in the universal set.

As shown in Eq. (5), the momentum operator p̂ acting on any arbitrary position space wavefuntion

will act as a partial derivative (note that p̂ ≡ ~̂p as it is defined in Eq. (5)). Therefore choosing a general

operator Â that includes a linear combination of p̂ and p̂2 will encompass a large class of differential

operators. These include Poisson’s equation, the heat equation, and the wave equation. More specifically

let Â have the form

Â = λ1 +

N∑
j=1

aj x̂j + bj p̂j + αj x̂
2
j + βj p̂

2
j , (90)

where λ, aj , bj , αj , and βj are real constants. After performing a Trotter-Suzuki decomposition (Eq. (13))

on e−iÂx̂kx̂l the operators left to be decomposed will have the forms eitx̂j x̂k , eitx̂j x̂kx̂l or eitx̂
2
j x̂kx̂l , up to

Fourier transform, where the subindices denote which mode the operators act on. The operator eitx̂j x̂k

is already an element of the chosen universal set in Eq. (7) so it remains to decompose the second two

operations. The process for decomposing eitx̂j x̂kx̂l is shown in Eq. (30 - 32) in Chapter 2, and will result

54

in the following decomposition

ei2δx̂j x̂kx̂l = ei2p̂j x̂kei2p̂j x̂le
iδ
3 x̂

3
j e−i2p̂j x̂le−i2p̂j x̂kei2p̂kx̂le

−iδ
3 x̂3

ke−i2p̂kx̂l

ei2p̂lx̂je
−iδ
3 x̂3

l e−i2p̂lx̂jei2p̂j x̂ke
−iδ
3 x̂3

j e−i2p̂j x̂ke
iδ
3 x̂

3
j e

iδ
3 x̂

3
ke

iδ
3 x̂

3
l . (91)

This decomposition can also be expressed as the circuit

• • V (δ3) • • • • • V (−δ3) • V (δ3)

• • • V (−δ3) • • • V (δ3)

• • • • • V (−δ3) • V (δ3)

(92)

where each Cz gate strength parameter is either 2 or −2, and also each of the Fourier transform gates

that would surround the Cz gates have been neglected for the purpose of readability.

The decomposition for the gate eitx̂
2
j x̂kx̂l follows from Eq. (38) with n = 2, and is given by

e2iα
2x̂2
j p̂kp̂l = e2iαx̂kx̂le−iαx̂

2
j p̂

2
ke−2iαx̂kx̂leiαx̂

2
j p̂

2
keiα

3x̂2
j p̂l . (93)

where the decompositions, up to Fourier transform for e−iαx̂
2
j p̂

2
k and eiα

3x̂2
j p̂l are given in Eq. (39) and

55

Eq. (29). The circuit for this gate is given by:

W W
L(α3)

• F† F • F† F
2α −2α

• •

(94)

where the circuits for the W and L gates are as in Eq. (80) and Eq. (74). Neglecting Fourier transform

gates which are very inexpensive to implement, the exact decompositions require 17 and 249 gates from

the universal set respectively, whereas the standard commutator approximation method [3] would require

about 108 and 109 gates for a precision of 10−3.

Figures 3 and 4 show the outputs of a simulation of the algorithm for solving Poisson’s equation. A

charge distribution corresponding to the wavefunction of the input state is given to the algorithm which

then calculates the electric potential. Since the simulation is done on a classical computer this involves

calculating the integral of the corresponding inverse operator dictated by the algorithm to find a function

corresponding to the electric potential. The electric field can then be calculated from the gradiant of

the potential function. The electric field lines are plotted in each figure. Note that the simulation may

run with any input function for the charge distribution but on a physical quantum computer the inputs

must be states that can be prepared in advance. Also, on a quantum computer the output state of the

algorithm must be repeatedly measured to reveal areas of large electrostatic potential. Figures 3 and 4

demonstrate two input charge distributions for which the input states are not difficult to prepare.

56

This quantum algorithm has a polynomial run time in the dimension of A, which is an exponential

improvement over classical algorithms which compute full solutions to partial differential equations.

57

2 0 2
x

3

2

1

0

1

2

3

y

0.000

0.104

0.208

0.312

0.416

0.520

0.624

0.728

0.832

0.936

2 0 2
x

3

2

1

0

1

2

3

y

Figure 3: (Left) Charge distribution ρ(x, y) = e−
x2

2 e−
y2

2 which is equivalent, up to normalization, to
the wavefunction of a two-mode Gaussian input state. (Right) Electric field lines reconstructed from the
output state of the quantum algorithm.

58

2 0 2
x

3

2

1

0

1

2

3

y

4

3

2

1

0

1

2

3

4

5

2 0 2
x

3

2

1

0

1

2

3

y

Figure 4: (Left) Charge distribution ρ(x, y) = (4x2 − 2)(4y2 − 2)e−
x2

2 e−
y2

2 which is equivalent, up to
normalization, to the wavefunction of the two-mode input state |f〉 = |2〉 |2〉 with two photons in each
state. Green quadrants are regions of positive charge and red are regions of negative charge. (Right)
Electric field lines reconstructed from the output state of the quantum algorithm.

59

4.2 Photonic Quantum Algorithm for Monte Carlo Integration

Monte Carlo methods are computational methods which rely on repeated random sampling to provide

numerical solutions to a problem. These methods have a broad use in many applications such as finance,

machine learning, database search, optimization, and sampling [71–74]. Quantum algorithms for Monte-

Carlo methods have been described in both the qubit setting [75, 76] and continuous-variable setting

[37,77].

More specifically Ref. [37] presents a continuous-variable quantum algorithm which performs Monte-

Carlo integrations. This algorithm provides a solution to the integral

I =

∫
IRn

d~x p(~x)f(~x), (95)

where f(~x) : IRn → IR is a real function, bounded as 0 < f(~x) ≤ 1 for all ~x, which represents a random

variable of outcomes distributed by a multidimensional probability distribution p(~x) : IRn → IR.

The algorithm requires the following steps on four modes and imprints the final result proportional to

I in the final mode:

1. Prepare a state according to the probability distribution p(~x) in the first mode. This is done by

60

applying a unitary operation to a vaccum state:

G |vac〉 =

∫
dx
√
p(x) |x〉1 (96)

For example, for a Gaussian probability density the unitary operation G can be implemented with

linear optics. In other cases G may need to be decomposed into operations from a universal set,

using either approximate methods or if possible with an exact decomposition from Chapter 2.

2. The random variable function f(x) is imprinted by applying a three mode operator

H = e
−i

(
1/
√
f(x̂1)

)
p̂2p̂3 , (97)

on the mode that has been prepared with G as well as two other squeezed ancillary modes. In

order to implement this operator, the function 1/
√
f(x̂1) is approximated by a polynomial function

h(x̂1) which is a polynomial in x̂1. Note that as f(x̂1) → 0 the approximation h(x̂1) → ∞ and as

a result it may no longer be possible to find a good approximation which the algorithm relies on

for implementation. In this case even if a good approximation can be found it may also no longer

be practical to implement such a large polynomial in x̂1. I will assume for practicality that we

are then sufficiently far from this region. The resulting operation H can be decomposed with the

general equation (38) after splitting each of the terms in the polynomial with the Trotter-Suzuki

61

approximation as in Eq. (13).

3. The algorithm then provides a speedup over its classical analog through the use of a CV amplitude

estimation. This involves a phase estimation operator that uses an additional fourth resource mode

denoted with φ, and is given by

Q = e
−i

(
1/
√
f(x̂1)

)
p̂2p̂3p̂φ = e−ih(x̂1)p̂2p̂3p̂φ , (98)

where again the function 1/
√
f(x̂1) is approximated with a polynomial h(x̂1). This operator again

depends on the choice of h(x̂1), but regardless of this choice the operation will be covered by the

exact decomposition method as detailed in Section 2.2.1. Assuming h(x̂1) = x̂n1 , then because there

are four total modes, Nn = 4n is always even and therefore the single mode operation eitx̂
4n
1 can be

decomposed exactly with Eq.(41). Also, since the final three modes are all to unit power, any one of

them may be used as the exponent of the central operator in unitary conjugation. Therefore both of

the restrictions of this portion of the method have been met regardless of n. By linearity, the same

holds for a general polynomial h(x̂1) =
∑
n anx̂

n
1 . Finally, postselecting on the resource modes gives

a success probability which is proportional to the desired integral I.

Table 3 shows the gates counts of the operations in step 2. and 3. for h(x̂1) a polynomial of order five

or less. If h(x̂1) is a more general polynomial with multiple terms, then Trotter-Suzuki approximation

can be used to split the operation into the terms shown on the table. At higher order these gate counts

62

do not surpass those of the commutator approximation method for the first row (as shown in Table 1).

Although, they do seem to scale poorly as the power of the first mode is increased. If a higher order

polynomial h(x̂) is needed then the gate counts may become intractable both with an exact decomposition

and with the commutator approximation.

This quantum algorithm claims a potential quadratic speedup in estimating integrals on a CV quantum

computer. Although, note that because the function f(~x) is bounded as 0 < f(~x) ≤ 1, then the integral

I that is returned by the algorithm is also bounded by I ≤ 1.

63

h(x̂1) Target gate Exact decomposition gate count

x̂1 eitx̂1p̂2p̂3p̂φ 440 gates
eitx̂1p̂2p̂3 17 gates

x̂21 eitx̂
2
1p̂2p̂3p̂φ 3749 gates

eitx̂
2
1p̂2p̂3 249 gates

x̂31 eitx̂
3
1p̂2p̂3p̂φ 47061 gates

eitx̂
3
1p̂2p̂3 1337 gates

x̂41 eitx̂
4
1p̂2p̂3p̂φ 5.6× 105 gates

eitx̂
4
1p̂2p̂3 4462 gates

x̂51 eitx̂
5
1p̂2p̂3p̂φ 7.0× 106 gates

eitx̂
5
1p̂2p̂3 15289 gates

Table 3: Exact decomposition gate counts for the unitary operators needed in the quantum Monte-
Carlo integration algorithm. The upper gate in each row corresponds to the controlled unitary needed
to perform amplitude estimation, and the lower unitary imprints the function f(~x) which represents a
random variable of outcomes distributed by p(~x) needed to approximate the desired integral.

64

5 Discussion and Conclusions

In this work I have detailed a systematic method for performing exact gate decompositions on a pho-

tonic quantum computer. In essence, the method works by expressing a target Hamiltonian as a linear

combination of polynomials, then finding exact decompositions of these polynomials using unitary con-

jugation in combination with the lemma to Baker-Campbell-Hausdorff. The unitary operations covered

by this method are a large set of operations arising in photonic quantum algorithms and the simulation

of bosonic systems. Compared to previous techniques such as the standard commutator approximation,

these methods can yield reductions in gate count of several orders of magnitude, with the added advan-

tage that the target unitaries are decomposed exactly. Chapter 2 provides a detailed description of the

method as well as comparisons of gate counts with the standard commutator approximation.

Despite its wide applicability, the method does not produce exact decompositions for all possible

bosonic gates. Notably, Hamiltonians that contain products of both x̂ and p̂ quadrature operators – for

instance operators of the form Ĥ = x̂np̂m + p̂mx̂n – are not covered by the method. Operators of the

form (Ĥ = x̂np̂m + p̂mx̂n) are challenging because the method relies on commutation relations to form

polynomials in x̂. Having a mixture of x̂ and p̂ operators acting on the same mode in the desired gate may

mean the commutators no longer simplify or terminate to zero in the Baker-Campbell-Hausdorff (28) or

Zassenhaus formula (12). I have found that this can lead to systems of equations which are no longer

linear, unlike the systems dealt with in Section 2.2.1. An outstanding open question resulting from this

65

work is to fully characterize the set of operations that can be decomposed exactly using the techniques

presented here, using the chosen universal set or otherwise. As well, given any arbitrary operation it is

not clear whether an exact decomposition may exist in general.

As the decomposition method presented here applies to photonic quantum computers, a natural ap-

plication would be to examine a system of bosonic particles. In Chapter 3, I presented a thorough

examination of the Bose-Hubbard Hamiltonian, which describes a system of bosonic particles trapped

in an optical lattice. Using the exact decomposition methods as in Chapter 2, as well as approximate

methods, I provided circuit diagrams and gate counts for the implementation of the time-evolution of the

Bose-Hubbard Hamiltonian. The circuits discussed include a simple four-node, one-dimensional optical

lattice for the Bose-Hubbard model and general two-dimensional lattices of size n × n. The final gate

count for a n×n lattice is given in Eq. (84) in terms of the number of gates of each type needed from the

universal set. The procedure used in this case can be extended to other similar Hamiltonians. An effi-

ciently simulable subclass of the Bose-Hubbard Hamiltonian is the bosonic tight-binding Hamiltonian [78]

with applications in condensed matter and solid state physics. The tight-binding Hamiltonian coupled

to a bath of harmonic oscillators appears also in the study of exciton dynamics in photosynthetic com-

plexes [79]. Simulating such systems can provide another application for continuous-variable photonic

quantum processors.

In Chapter 4, I provided a description of two quantum algorithms designed for a photonic quantum

computer. Namely a method for solving non-homogeneous partial differential equations by adapting a

66

mathematical method to efficiently invert differential operators [7], and an algorithm which performs

Monte-Carlo evaluation of multi-dimensional integrals in the continuous-variable setting [37]. Both of

these algorithms require the implementation of unitary operators of the form eitĤ that can be decom-

posed with the exact decomposition methods in Chapter 2. The quantum algorithm for solving partial

differential equations required two types of unitaries for the choice of operator Â as in Eq. (90) with

gate counts of 17 and 249 respectively. These unitaries allowed for first and second derivative to be

expressed in the algorithm, and while higher-order derivatives would require more complicated unitaries,

the form they would take would still be covered by the decomposition in Eq. (38). The gate counts for the

required operators of the Monte-Carlo integration algorithm are given in Table 3. Note that these gate

counts assume that a fifth order polynomial h(x̂1) is sufficient in approximating the function 1/
√
f(x̂1).

Although a higher-order polynomial would lead to operators that are still decomposable with the exact

method, the decompositions seem to scale very poorly in this case.

Going forward the challenge remains to fully characterize which decompositions can be done exactly,

and if new approximate methods will be discovered that scale better with the total order of the gates. For

CV quantum computers it would be useful to completely characterize the commutator algebra to allow

for a general method of creating higher order operations following the work from [14]. Experimentally

the implementation of non-linear gates remains a problem and as such even small decompositions for

lower order gates may not see use in the short term. For example eitx̂
4

was exactly decomposed into 29

gates, 15 of which were cubic phase gates. While this is substantially better then standard approximate

67

methods, it may still be some time before multiple cubic phase gates can be implemented reliably in a

circuit. Implementing a large number of optical elements in a small space is another ongoing challenge

for CV quantum computing, with the main setback in this case again being non-linear gates which may

require some sort of refrigeration system to implement accurate detectors. Another problem is signal loss

over large distances and the need for a quantum analogue of signal repeaters [32]. While these problems

are not addressed in this work, the techniques for my exact decomposition method still hold under the

addition of imperfect gates and external errors.

68

Appendix A: Proofs and Derivations

Proof of Eq. (37)

Here I prove the identity

e2iα
2p̂kx̂

N
j = e2iαx̂

N−2
j x̂ke−iαx̂

2
j p̂

2
ke−2iαx̂

N−2
j x̂keiαx̂

2
j p̂

2
keiα

3x̂
2(N−1)
j . (99)

The middle three operators on the right-hand side can be expanded with unitary conjugation as

e−iαx̂
2
j p̂

2
ke−2iαx̂

N−2
j x̂keiαx̂

2
j p̂

2
k = e

−2iα
(
e
−iαx̂2j p̂

2
k x̂N−2

j e
iαx̂2j p̂

2
k

)(
e
−iαx̂2j p̂

2
k x̂ke

iαx̂2j p̂
2
k

)
. (100)

Then using the lemma to BCH, the two factors in the exponent can be simplified to get

e−iαx̂
2
j p̂

2
k x̂N−2j eiαx̂

2
j p̂

2
k = x̂N−2j , (101)

and

e−iαx̂
2
j p̂

2
k x̂ke

iαx̂2
j p̂

2
k = x̂k − αx̂2j p̂k. (102)

69

The resulting two terms in the exponent are then separated using the Zassenhaus formula of Eq. (12):

e−2iαx̂
N−2
j (x̂k−αx̂2

j p̂k) = e−2iαx̂
N−2
j x̂ke2iα

2x̂Nj p̂ke−
1
2 [−2iαx̂

N−2
j p̂k, 2iα

2x̂Nj p̂k]

= e−2iαx̂
N−2
j x̂ke2iα

2x̂Nj p̂ke−iα
3x̂

2(N−1)
j . (103)

The two outside operators, e−2iαx̂
N−2
j x̂k and e−iα

3x̂
2(N−1)
j then cancel with the remaining two operators

in Eq. (37), leaving the desired operator e2iα
2x̂Nj p̂k .

Proof of Eq. (39)

Here I prove the following exact decomposition formula for the gate eiαx̂
2
j x̂

2
k :

eiαx̂
2
j x̂

2
k = ei2p̂j x̂kei

α
12 x̂

4
j e−i4p̂j x̂kei

α
12 x̂

4
j ei2p̂j x̂ke−i

α
6 x̂

4
j e−i

α
6 x̂

4
k . (104)

We begin by expressing the operator x̂2j x̂
2
k as a linear combination of polynomials:

x̂2j x̂
2
k = 1

12 (x̂j + x̂k)
4

+ 1
12 (x̂j − x̂k)

4 − 1
6 x̂

4
j − 1

6 x̂
4
k, (105)

which leads to the identity

eiαx̂
2
j x̂

2
k = ei

α
12 (x̂j+x̂k)

4

ei
α
12 (x̂j−x̂k)

4

e−i
α
6 x̂

4
j e−i

α
6 x̂

4
k . (106)

70

Finally, from unitary conjugation it holds that

ei2p̂j x̂kei
α
12 x̂

4
j e−i4p̂j x̂kei

α
12 x̂

4
j ei2p̂j x̂k = ei

α
12 (x̂j+x̂k)

4

ei
α
12 (x̂j−x̂k)

4

, (107)

which gives Eq. (104) when replaced in Eq. (106).

Proof of Eq. (41)

Here I show the recursive decomposition for single-mode gates eiαx̂
N
k :

eiαx̂
N
k = e2ip̂j x̂

N/2
k eiαx̂

2
j e−2ip̂j x̂

N/2
k e−iαx̂

2
j e−2iαx̂j x̂

N/2
k . (108)

As usual, begin by expressing the target operator as a linear combination of polynomials:

x̂Nk =
(
x̂j + x̂

N/2
k

)2
− x̂2j − x̂j x̂

N/2
k (109)

which leads to the identity

eiαx̂
N
k = e

iα
(
x̂j+x̂

N/2
k

)2

e−iαx̂
2
j e−2iαx̂j x̂

N/2
k . (110)

71

From unitary conjugation it holds that

e2ip̂j x̂
N/2
k eiαx̂

2
j e−2ip̂j x̂

N/2
k = e

iα
(
x̂j+x̂

N/2
k

)2

, (111)

which leads to Eq. (108) when replaced in Eq. (110).

Derivation of the linear system of equations

Here I show that finding coefficients ck such that the relation

N∏
j=1

x̂
nj
j =

N∑
k=1

ck
∑

S∈[N]k

(
k∑
i=1

x̂
nSi
Si

)N
(112)

holds is equivalent to solving the linear system A~c = 0, with ~c = (cN , cN−1, . . . , c1) and A given by

A =

1 1 0 0 . . . 0

1 2 1 0 . . . 0

1 3 3 1 . . . 0

...
...

...
...

. . .
...

(
N−1
0

) (
N−1
1

) (
N−1
2

) (
N−1
3

)
. . .

(
N−1
N−1

)

. (113)

72

Define Yj := x
nj
j such that Eq. (112) becomes

N∏
j=1

Ŷj =

N∑
k=1

ck
∑

S∈[N]k

(
k∑
i=1

ŶSi

)N
. (114)

The expansion of the right-hand side of Eq. (114) produces monomials of the form
∏N
j=1 Y

mj
j , where

∑N
j=1mj = N and the exponents mj ≥ 0 are non-negative integers. Each monomial can be uniquely

labelled by the vector of exponents ~m = (m1,m2, . . . ,mN). For each polynomial
(∑k

i=1 ŶSi

)N
, it follows

from the multinomial theorem that the coefficient in front of the monomial
∏N
j=1 Y

mj
j is always the

same, namely the multinomial coefficient
(

N
m1,m2,...,mN

)
. For example, the polynomials (Y1 + Y2)

3
and

(Y1 + Y2 + Y3)
3

both produce a monomial Y1Y
2
2 with coefficient

(
3

1,1,0

)
= 3. Therefore, the overall

coefficient χ~m accompanying the monomial
∏N
j=1 Y

mj
j is given by

χ~m =

(
N

m1,m2, . . . ,mN

) N∑
k=1

ckfk(~m), (115)

where fk(~m) is the number of times the monomial
∏N
j=1 Y

mj
j appears in polynomials of k variables. The

goal is to find coefficients ck such that χ~m = 0 for all ~m except the target case ~m = (1, 1, . . . , 1). This

leads to the equations

N∑
k=1

ckfk(~m) = 0. (116)

73

Suppose that ~m has ` non-zero elements, i.e., the monomial
∏N
j=1 Y

mj
j contains ` variables. The quantity

fk(~m) is then equal to the number of ways in which the remaining k−` variables can be selected from the

remaining N − ` ones, which is simply
(
N−`
k−`
)
. Thus, fk(~m) =

(
N−`
k−`
)
, which depends only on `, leading

to N − 1 equations for each ` = 1, 2, . . . , N − 1:

N∑
k=1

ck

(
N − `
k − `

)
=: A~c = 0, (117)

with A as in Eq. (113).

References

[1] Seth Lloyd. Almost any quantum logic gate is universal. Phys. Rev. Lett., 75(2):346, 1995.

[2] Seth Lloyd. Universal quantum simulators. Science, 273:1073, 1996.

[3] Seckin Sefi and Peter van Loock. How to decompose arbitrary continuous-variable quantum opera-

tions. Phys. Rev. Lett., 107:170501, 2011.

[4] Timjan Kalajdzievski and Juan Miguel Arrazola. Exact gate decompositions for photonic quantum

computing. Phys. Rev. A, 99:022341, 2019.

[5] A Yu Kitaev. Quantum computations: algorithms and error correction. Russian Mathematical

Surveys, 52(6):1191–1249, 1997.

74

[6] Timjan Kalajdzievski, Christian Weedbrook, and Patrick Rebentrost. Continuous-variable gate

decomposition for the bose-hubbard model. Phys. Rev. A, 97(6):062311, 2018.

[7] Juan Miguel Arrazola, Timjan Kalajdzievski, Christian Weedbrook, and Seth Lloyd. Quantum

algorithm for non-homogeneous linear partial differential equations. Phys. Rev. A, 100:032306, 2019.

[8] Hoi-Kwan Lau, Raphael Pooser, George Siopsis, and Christian Weedbrook. Quantum machine

learning over infinite dimensions. Phys. Rev. Lett, 118:080501, 2017.

[9] Seckin Sefi, Vishal Vaibhav, and Peter van Loock. A measurement-induced optical kerr interaction.

Phys. Rev. A, 88:012303, 2013.

[10] Christopher M. Dawson and Michael A. Nielsen. The solovay-kiteav algorithm. arXiv:quant-

ph/0505030v2, 2005.

[11] Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler. A meet-in-the-middle algo-

rithm for fast synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 32(6):818–830, 2013.

[12] David P DiVincenzo. Two-bit gates are universal for quantum computation. Phys. Rev. A,

51(2):1015, 1995.

75

[13] Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVincenzo, Norman Margolus, Pe-

ter Shor, Tycho Sleator, John A Smolin, and Harald Weinfurter. Elementary gates for quantum

computation. Phys. Rev. A, 52(5):3457, 1995.

[14] Seth Lloyd and Samuel L. Braunstein. Quantum computation over continuous variables. Phys. Rev.

Lett, 82:1784, 1999.

[15] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal clifford gates and noisy

ancillas. Phys. Rev. A, 71(2):022316, 2005.

[16] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. Asymptotically optimal approximation of

single qubit unitaries by clifford and t circuits using a constant number of ancillary qubits. Phys.

Rev. Lett., 110(19):190502, 2013.

[17] Vadym Kliuchnikov, Alex Bocharov, and Krysta M Svore. Asymptotically optimal topological quan-

tum compiling. Phys. Rev. Lett., 112(14):140504, 2014.

[18] Vadym Kliuchnikov and Jon Yard. A framework for exact synthesis. arXiv:1504.04350, 2015.

[19] Alex Bocharov, Martin Roetteler, and Krysta M Svore. Efficient synthesis of universal repeat-until-

success quantum circuits. Phys. rev. lett., 114(8):080502, 2015.

76

[20] Nicolas C. Menicucci, Peter van Loock, Mile Gu, Christian Weedbrook, Timothy C. Ralph, and

Michael A. Nielsen. Universal quantum computation with continuous-variable cluster states. Phys.

Rev. Lett, 97:110501, 2006.

[21] Mile Gu, Christian Weedbrook, Nicolas C. Menicucci, Timothy C. Ralph, and Peter van Loock.

Quantum computing with continuous-variable clusters. Phys. Rev. A, 79:062318, 2009.

[22] Christian Weedbrook, Stefano Pirandola, Raul Garcıa Patron, Nicolas J. Cerf, Timothy C. Ralph,

Jeffrey H. Shapiro, and Seth Lloyd. Gaussian quantum information. Rev. Mod. Phys., 84:621, 2012.

[23] Naomichi Hatano and Masuo Suzuki. Finding exponential product formulas of higher orders. Quan-

tum Annealing and Other Optimization Methods (Springer, Berlin), page 37, 2005.

[24] Nathan Wiebe, Dominic W. Berry, Peter Hoyer, and Barry C. Sanders. Higher order decompositions

of ordered operator exponentials. J. Phys. A: Math. Theor., 43:065203, 2010.

[25] Wilhelm Magnus. On the exponential solution of differential equations for a linear operator. Com-

munications on pure and applied mathematics, 7(4):649–673, 1954.

[26] Masuo Suzuki. Generalized trotter’s formula and systematic approximants of exponential operators

and inner derivations with applications to many-body problems. Commun. math. Phys., 51:183,

1976.

77

[27] Andrew M Childs, Dmitri Maslov, Yunseong Nam, Neil J Ross, and Yuan Su. Toward the first

quantum simulation with quantum speedup. arXiv:1711.10980, 2017.

[28] Suguru Endo, Qi Zhao, Ying Li, Simon Benjamin, and Xiao Yuan. Mitigating algorithmic errors in

hamiltonian simulation. arXiv:1808.03623, 2018.

[29] Daniel Gottesman, Alexei Kitaev, and John Preskill. Encoding a qubit in an oscillator. Phys. Rev.

A, 64:012310, 2001.

[30] Kevin Marshall, Raphael Pooser, George Siopsis, and Christian Weedbrook. Repeat-until-success

cubic phase gate for universal continuous-variable quantum computation. Phys. Rev. A, 91:032321,

2015.

[31] Petr Marek, Radim Filip, Hisashi Ogawa, Atsushi Sakaguchi, Shuntaro Takeda, Jun ichi Yoshikawa,

and Akira Furusawa. General implementation of arbitrary nonlinear quadrature phase gates. Phys.

Rev. A, 97:022329, 2018.

[32] Koji Azuma, Kiyoshi Tamaki, and Hoi-Kwong Lo. All-photonic quantum repeaters. Nat. Comm.,

6:6787, 2015.

[33] Nicolas C. Menicucci. Fault-tolerant measurement-based quantum computing with continuous-

variable cluster states. Phys. Rev. Lett, 112:120504, 2014.

78

[34] Raymond Kan. From moments of sum to moments of product. Journal of Multivariate Analysis,

99(3):542–554, 2008.

[35] Chris Sparrow, Enrique Mart́ın-López, Nicola Maraviglia, Alex Neville, Christopher Harrold, Jacques

Carolan, Yogesh N Joglekar, Toshikazu Hashimoto, Nobuyuki Matsuda, Jeremy L O’Brien, et al.

Simulating the vibrational quantum dynamics of molecules using photonics. Nature, 557(7707):660,

2018.

[36] Tomasz Sowiński, Omjyoti Dutta, Philipp Hauke, Luca Tagliacozzo, and Maciej Lewenstein. Dipolar

molecules in optical lattices. Phys. Rev. Lett., 108:115301, 2012.

[37] Patrick Rebentrost, Brajesh Gupt, and Thomas R. Bromley. Photonic quantum algorithm for monte

carlo integration. arXiv:1809.02579, 2018.

[38] R.P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics,

21:467, 1982.

[39] D.S. Abrams and S. Lloyd. Simulation of many-body fermi systems on a universal quantum computer.

Phys. Rev. Lett., 79:4, 1997.

[40] Alan Aspuru-Guzik, Anthony D. Dutoi, Peter J. Love, and Martin Head-Gordon. Simulated quantum

computation of molecular energies. Science, 309:1704, 2005.

79

[41] James D. Whitfield, Jacob Biamonte, and Alán Aspuru-Guzik. Simulation of electronic structure

hamiltonians using quantum computers. Molecular Phys., 109:735, 2011.

[42] Ryan Babbush, Dominic W. Berry, Yuval R. Sanders, Ian D. Kivlichan, Artur Scherer, Annie Y. Wei,

Peter J. Love, and Alan Aspuru-Guzik. Exponentially more precise quantum simulation of fermions

in the configuration interaction representation. Quantum Science and Technology, 3:015006, 2018.

[43] Andrew M. Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann, and Daniel A.

Spielman. Exponential algorithmic speedup by quantum walk. Proc. 35th ACM Symposium on

Theory of Computing (STOC 2003), page 59, 2003.

[44] Dominic W. Berry, Graeme Ahokas, Richard Cleve, and Barry C. Sanders. Efficient quantum al-

gorithms for simulating sparse hamiltonians. Communications in Mathematical Physics, 270:359,

2007.

[45] Dominic W. Berry and Andrew M. Childs. Black-box hamiltonian simulation and unitary imple-

mentation. Quantum Information and Computation, 12:29, 2012.

[46] Andrew M. Childs and Nathan Wiebe. Hamiltonian simulation using linear combinations of unitary

operations. Quantum Information and Computation, 12:901, 2012.

[47] Stephen P. Jordan, Keith S. M. Lee, and John Preskill. Quantum algorithms for quantum field

theories. Science, 336:1130, 2012.

80

[48] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma.

Exponential improvement in precision for simulating sparse hamiltonians. ACM Symposium on

Theory of Computing, 46:283, 2014.

[49] Guang Hao Low and Isaac L. Chuang. Hamiltonian simulation by uniform spectral amplification.

arXiv:1707.05391, 2017.

[50] Jeongwan Haah, Matthew B. Hastings, Robin Kothari, and Guang Hao Low. Quantum algorithm

for simulating real time evolution of lattice hamiltonians. arXiv:1801.03922, 2018.

[51] F. Bemani, R. Roknizadeh, and M. H. Naderi. Quantum simulation of discrete curved space-

time by the bose-hubbard model: from analog acoustic black hole to quantum phase transition.

arXiv:1612.09094, 2017.

[52] Keima Kawaki, Yoshihito Kuno, and Ikuo Ichinose. Phase diagrams of the extended bose-hubbard

model in one dimension by monte-carlo simulation with the help of a stochastic-series expansion.

Phys. Rev. B, 95:195101, 2017.

[53] Yasuyuki Kato and Naoki Kawashima. Quantum monte carlo method for the bose-hubbard model

with harmonic confining potential. Phys. Rev. E, 79:021104, 2009.

[54] B. Capogrosso-Sansone, N.V. Prokof’ev, and B.V. Svistunov. Phase diagram and thermodynamics

of the three-dimensional bose-hubbard model. Phys. Rev. B, 75:134302, 2007.

81

[55] Barbara Capogrosso-Sansone, Sebnem Gunes Soyler, Nikolay Prokof’ev, and Boris Svistunov. Monte

carlo study of the two-dimensional bose-hubbard model. Phys. Rev. A, 77:015602, 2008.

[56] Masanori Kohno. Mott transition in the two-dimensional hubbard model. Phys. Rev. Lett.,

108:076401, 2012.

[57] O. Romero-Isart, K. Eckert, C. Rodo, and A. Sanpera. Transport and entanglement generation in

the bose-hubbard model. J. Phys. A: Math. Theor., 40:8019, 2007.

[58] Thierry Giamarchi, Christian Ruegg, and Oleg Tchernyshyov. Bose-einstein condensation in mag-

netic insulators. Nat. Phys., 4:198, 2008.

[59] Valentin Murg. Classical and Quantum Simulations of Many-Body Systems. (doctoral dissertation)

Technische Universität München Max-Planck-Institut fur Quantenoptik, 2008.

[60] Werner Krauth. Bethe ansatz for the one-dimensional boson hubbard model. Phys. Rev. B, 44:17,

1991.

[61] Yi Kai Liu, Matthias Christandl, and F. Verstraete. Quantum computational complexity of the

n-representability problem: Qma complete. Phys. Rev. Lett., 98:110503, 2007.

[62] Tzu Chieh Wei, Michele Mosca, and Ashwin Nayak. Interacting boson problems can be qma hard.

Phys. Rev. Lett., 104:040501, 2010.

82

[63] Andrew M. Childs, David Gosset, and Zak Webb. The bose-hubbard model is qma-complete. Pro-

ceedings of the 41st International Colloquium on Automata, Languages, and Programming (ICALP),

page 308, 2014.

[64] Samuel L. Braunstein and Peter van Loock. Quantum information with continuous variables. Rev.

Mod. Phys., 77:513, 2005.

[65] Daniel J. Brod and Joshua Combes. Passive cphase gate via cross-kerr nonlinearities. Phys. Rev.

Lett., 117:080502, 2016.

[66] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of

equations. Phys. Rev. Lett., 103(15):150502, 2009.

[67] Nathan Wiebe, Daniel Braun, and Seth Lloyd. Quantum algorithm for data fitting. Physical Review

Letters, 109(5):050505, 2012.

[68] B. D. Clader, B. C. Jacobs, and C. R. Sprouse. Preconditioned quantum linear system algorithm.

Phys. Rev. Lett., 110:250504, Jun 2013.

[69] A. Childs, R. Kothari, and R. Somma. Quantum algorithm for systems of linear equations with

exponentially improved dependence on precision. SIAM Journal on Computing, 46(6):1920–1950,

2017.

83

[70] Leonard Wossnig, Zhikuan Zhao, and Anupam Prakash. Quantum linear system algorithm for dense

matrices. Physical Review Letters, 120(5):050502, 2018.

[71] Lov K. Grover. A fast quantum mechanical algorithm for database search. Proceedings, 28th Annual

ACM Symposium on the Theory of Computing, 28:212, 1996.

[72] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification

and estimation. AMS Contemporary Mathematics, 305:53, 2002.

[73] Patrick Rebentrost, Brajesh Gupt, and Thomas R. Bromley. Quantum computational finance: Monte

carlo pricing of financial derivatives. Phys. Rev. A, 98:022321, 2018.

[74] M. Szegedy. Quantum speed-up of markov chain based algorithms. FOCS 04 Proceedings of the 45th

Annual IEEE Symposium on Foundations of Computer Science, 45:32, 2004.

[75] Ashley Montanaro. Quantum speedup of monte carlo methods. Proc. Roy. Soc. Ser. A, 471:2181,

2015.

[76] G. Xu, A. J. Daley, P. Givi, and R. D. Somma. Turbulent mixing simulation via a quantum algorithm.

AIAA Journal, 56:687, 2018.

[77] Arun K. Pati, Samuel L. Braunstein, and Seth Lloyd. Quantum searching with continuous variables.

arXiv:quant-ph/0002082, 2000.

84

[78] Yariv Yanay and Aashish A. Clerk. Reservoir engineering of bosonic lattices using chiral symmetry

and localized dissipation. Phys. Rev. A, 98:043615, 2018.

[79] Sarah Mostame, Patrick Rebentrost, Alexander Eisfeld, Andrew J Kerman, Dimitris I Tsomokos,

and Alán Aspuru-Guzik. Quantum simulator of an open quantum system using superconducting

qubits: exciton transport in photosynthetic complexes. New Journal of Physics, 14(10):105013,

2012.

85

	Abstract
	Acknowledgements
	Table of Content
	List of Tables
	List of Figures
	Introduction
	Continuous-Variable Quantum Computing
	Gate Decomposition
	Optical Implementation

	Methods for Exact Decompositions
	Single-Mode Gates
	Multi-Mode Gates
	Multi-Mode Gates With More Than Two Modes
	Two-Mode Gates With Higher Powers

	The Bose-Hubbard Model
	Gate Decomposition of Bose-Hubbard Hamiltonian
	Dipole Interaction

	Circuit Implementations and Gate Counts
	1-D Lattice Circuits
	2-D Lattice Circuits

	Implementation and Errors

	Other Applications
	Quantum Algorithm for Non-Homogeneous Linear Partial Differential Equations
	Photonic Quantum Algorithm for Monte Carlo Integration

	Discussion and Conclusions
	Appendix
	References

