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Spastic paraplegia type 7 (SPG7), which represents one of the most common forms

of autosomal recessive spastic paraplegia (MIM#607259), often manifests with a

complicated phenotype, characterized by progressive spastic ataxia with evidence of

cerebellar atrophy on brain MRI. Recent studies have documented the presence of

peculiar dentate nucleus hyperintensities on T2-weighted images and frontal executive

dysfunction in neuropsychological tests in SPG7 patients. Therefore, we decided to

assess whether any particular MRI pattern might be specifically associated with SPG7

mutations and possibly correlated with patients’ cognitive profiles. For this purpose, we

evaluated six SPG7 patients, studying the cerebello-cortical network by MRI voxel-based

morphometry and functional connectivity techniques, compared to 30 healthy control

subjects. In parallel, we investigated the cognitive and social functioning of the SPG7

patients. Our results document specific cognitive alterations in language, verbal memory,

and executive function in addition to an impairment of social task and emotional

functions. The MRI scans showed a diffuse symmetric reduction in the cerebellar

gray matter of the right lobule V, right Crus I, and bilateral lobule VI, together with a

cerebral gray matter reduction in the lingual gyrus, precuneus, thalamus, and superior

frontal gyrus. The evidence of an over-connectivity pattern between both the right and

left cerebellar dentate nuclei and specific cerebral regions (the lateral occipital cortex,

precuneus, left supramarginal gyrus, and left superior parietal lobule) confirms the

presence of cerebello-cortical dysregulation in different networks involved in cognition

and social functioning in SPG7 patients.
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INTRODUCTION

Mutations in the spastic paraplegia type 7 (SPG7) gene,
encoding the mitochondrial protein paraplegin (MIM∗602783),
are responsible for a rare form of hereditary spastic paraplegia
(1, 2) and are usually transmitted as an autosomal recessive
trait, which can cause both pure and complex phenotypes (1).
The most common clinical presentation of SPG7 is spastic-
ataxia, which is often associated with optic atrophy, ptosis, and
ophthalmoparesis, and brain MRI usually shows the presence of
mild or moderate cerebellar atrophy (3–6).

Despite the fact that cerebellar degeneration is a hallmark of
the SPG7 complex phenotype, to date, only a few studies have
attempted to characterize the pattern of cerebellar involvement
in correlation with other brain structures. In this regard,
Hewamadduma et al. (7) proposed cerebellar vermis atrophy
associated with an increase in the T2 signal on MRI images of
the dentate nucleus (DN) as a possible specific MRI pattern in
SPG7 (7). The DN alteration is of particular interest, given the
cerebellar anatomy. Indeed, the DN is themajor cerebellar output
channel connecting to the cerebral cortex (8), and modifications
in functional connectivity (FC) within specific cerebello-cortical
networks have already been described in patients affected by
other forms of cerebellar atrophy (9–12) and linked to motor,
cognitive, and behavioral symptoms (13–22).

In addition to the recognized role in motor functions,
many research studies have assessed an important role for the
cerebellum in cognition, with a related specific cognitive pattern
known as cerebellar cognitive affective syndrome (CCAS) or
Schmahmann’s syndrome. Interestingly, in addition to spastic
ataxia, a peculiar cognitive/behavioral phenotype characterized
by “emotional disconnection” has recently been described in an
SPG7 patient (23).

On the basis of this evidence, we set up a preliminary study
on the structural and functional cerebellar networks of six SPG7
patients to identify a potential MRI pattern underlying clinical
alterations in specific cognitive and affective functions.

MATERIALS AND METHODS

Participants
Six adult male patients (mean age/SD= 46.33/12.93) with spastic
ataxia and diagnosis of SPG7 were recruited for this study by
the Neurology Department of Fondazione Policlinico Gemelli,
IRCCS. All of them showed cerebellar atrophy on their diagnostic
brain MRI. The study protocol, including MRI acquisition and
clinical and cognitive assessment of patients, was performed at
the IRCCS Fondazione Santa Lucia. Confirmation of the presence
of macroscopic cerebellar alterations on T2-weighted brain MRI
scans was given by an expert neuro-radiologist and represented
a major inclusion criterion. At the time of enrolment, none of
the SPG7 patients presented with any current or past diagnosis
of other neurological/psychiatric disorders. Cerebellar motor
deficits were assessed using the International Cooperative Ataxia
Rating Scale (ICARS) (24), which has a global score ranging
from 0 (absence of any motor deficits) to 100 (presence of motor
deficits at the highest degree). The patients’ genetic, clinic, and

demographic data are reported in Table 1. For the MRI analysis,
30 healthy subjects (HS), matched for age and sex (mean age
/SD= 38.43/13.64; M/F= 30/0), were recruited from the IRCCS
Fondazione Santa Lucia as a control group. For the HS group,
conventional MRI was inspected to exclude any pathological
conditions according to the inclusion criteria.

The experimental protocol, designed according to theHelsinki
Declaration, was approved by the Ethics Committee of the IRCCS
Fondazione Santa Lucia.Written, informed consent was obtained
from each subject per the Helsinki Declaration.

Behavioral Assessments
All patients underwent neuropsychological evaluation to
investigate their cognitive profiles and social cognition abilities.
Moreover, the Schmahmann’s syndrome scale (SSS) was used
(25) to evaluate the presence of cerebellar cognitive affective
syndrome CCAS (15).

The neuropsychological assessment included the
following tasks:

Intellectual level: Wechsler Adult Intelligence Scale (WAIS-
IV) (26); Raven’s Progressive Matrices ’47 test (27).
Verbal Memory: immediate and delayed recall of prose
memory (28); short- and long-term Rey’s 15 words test (29);
forward and backward digit span (30, 31).
Visuospatial Memory: Rey-Osterrieth Complex Figure Test
(recall) (28); forward and backward Corsi (32).
Visuospatial abilities: Rey-Osterrieth Complex Figure Test
(copy) (28).
Language: naming objects, naming verbs, and naming objects
described by the examiner (33); generation of sentences (34).
Executive Functions: Stroop Test (“time effect” and “error
effect”) (35); phonological fluency (36); verbal fluency (37);
Wisconsin Card Sorting Test (WCST) (number of errors
and perseverative errors) (38); Tower of London procedure
(TOL) (39).
Attention: Multiple Features Target Cancellation task (40),
and the Trail Making Test B-A (TMT B-A) (41).

To evaluate social cognition abilities, patients underwent the
following tasks (see Appendix in Supplementary Material

for details):

The Reading the Mind in the Eyes test (RME) (42, 43) was
used to assess the first stage (automatic) of attributing relevant
mental states to others regardless of the context.
The EmotionAttribution test (EA) (44, 45) was used to assess
the ability to attribute emotions to others in a social context.
The Theory of Mind (ToM) task (44–47) was used to assess
the more advanced concepts of the ToM, such as double bluff,
white lies, and persuasion.

MRI Acquisition Protocol
All patients and HSs underwent MRI examination at 3 T
(Magnetom Allegra, Siemens, Erlangen, Germany) that included
the following acquisitions: (1) dual-echo turbo spin-echo [TSE]
(TR = 6,190ms, TE = 12/109ms); (2) fast-FLAIR (TR =

8,170ms, 204TE = 96ms, TI = 2,100ms); (3) T1-weighted 3D

Frontiers in Neurology | www.frontiersin.org 2 February 2020 | Volume 11 | Article 82



Lupo et al. Cerebello-Cortical Functional Dysregulation in SPG7 Mutation

TABLE 1 | Demographic, molecular, and clinical characteristics of SPG7 patients.

Group Age Age at

onset

Mutation Protein ICARS

CB_1 54 25 c.1779+1G>T + c.184_286del Splice site +

Exon 2 deletion

56

CB_2 53 45 c.1450-1del]_[c.1450_1457del] +

c.1931C>A

Splice site +

p.Thr644Asn

27

CB_3 55 45 c.637 C>T/– p.Arg213*/– 9

CB_4 54 43 c.637C>T + c.1529C>T p.Arg213* +

p.Ala510Val

35

CB_5 23 C c.1013G>T/– p.Gly338Val/- 17

CB_6 39 A c.1369C>T + c.1617delC p. Arg457* + p.Val540CfsX52 7

Mean

(sd)

46.33

(12.93)

35.33

(10.86)

– – 25.17

(18.49)

SD, standard deviations; C, childhood; A, adolescence.

high-resolution scan (3D modified driven equilibrium Fourier
transform (MDEFT) (TR= 1,338ms, TE= 2.4ms, matrix= 256
× 224× 176, in-plane FOV= 250× 250 mm2, slice thickness=
1mm); (4) T2∗-weighted echo-planar imaging (EPI) sensitized
to blood oxygenation-level dependent imaging (BOLD) contrast
(TR= 2,080ms, TE= 30ms, 32 axial slices parallel to the AC-PC
line, matrix 64× 64, pixel size 3×3 mm2, slice thickness 2.5mm,
flip angle 70◦) for resting-state fMRI. BOLD echo-planar images
were collected during rest for a 7min and 20 s period, resulting
in a total of 220 volumes. During this acquisition, subjects were
instructed to keep their eyes closed, not to think of anything in
particular, and not to fall asleep.

Statistical Analysis
Behavioral Assessments
To evaluate the general neuropsychological and social cognition
profiles, the raw scores obtained in each task were corrected
for age and educational values according to the corresponding
published normative data.

Image Processing and Data Analysis
An independent two-sample T-test ensured that SPG7 patients
and HS did not differ in terms of age (t =−1.30, p < 0.05).

Cerebellar Gray Matter Analysis
Voxel-based morphometry (VBM) was used to identify
differences in regional cerebellar volume between SPG7 and
HS. The cerebellum was pre-processed individually using the
Spatially Unbiased Infratentorial Template (SUIT) toolbox
(48) implemented in Statistical Parametric Mapping version
8 [Wellcome Department of Imaging Neuroscience; SPM-8
(http://www.fil.ion.ucl.ac.uk/spm/)]. The procedure involved
is as follows: cropping and isolating the cerebellum from the
T1 anatomical images, normalizing each cropped image into
SUIT space, and reslicing the probabilistic cerebellar atlas into
individual subject spaces using the deformation parameters from
normalization. The modulated gray matter (GM) probability
maps were finally smoothed using an 8-mm FWHM Gaussian
kernel, and statistical analyses were performed on the resulting

GM maps with a voxel-wise two-sample t-test analysis for
assessments of between-group differences in regional GM
cerebellar volumes. The results were considered significant at P
< 0.05 after FWE cluster-level correction (clusters formed with
P < 0.005 at the uncorrected level).

Whole-Brain Gray Matter Analysis
To control for the effect of the accompanying cortical atrophy in
SPG7 patients, whole-brain VBM was also performed. MDEFT
T1 volumes were segmented into gray GMmaps and registered to
the Montreal Neurological Institute (MNI) space by means of the
“New Segment” and “DARTEL” routines in SPM8 (http://www.
fil.ion.ucl.ac.uk/spm/,Wellcome Trust Center for Neuroimaging,
Institute of Neurology, University College London, UK) (49).
VBM statistical analysis was performed to compare the GMmaps
between the patients andHS, entered as independent groups. The
analysis excluded voxels in the cerebellum and was restricted to
the cerebrum, which was entered as an explicit mask. For this
analysis, intracranial volume was set as a covariate of no interest.
T-contrasts were evaluated with voxel significance set at p< 0,001
and corrected for family-wise error (FWE) at the cluster level
with the significance level set at p < 0.05.

Resting-State fMRI Data Pre-processing
fMRI data were pre-processed using SPM8 (http://www.fil.ion.
ucl.ac.uk/spm/) and in-house software implemented in Matlab
(The Mathworks Inc., Natick, MA, USA). For each subject,
the first four volumes of the fMRI series were discarded to
allow for T1 equilibration effects. The pre-processing steps
included correction for head motion, compensation for slice-
dependent time shifts, normalization to the EPI template in
MNI coordinates provided with SPM8 and smoothing with a
3D Gaussian kernel with 8 mm3 full-width-at-half-maximum.
For each data set, motion correction was checked to ensure
that the maximum absolute shift did not exceed 2mm and
the maximum absolute rotation did not exceed 1.5◦. Global
temporal drift was removed using a third-order polynomial fit,
the signal was regressed against the realignment parameters,
and the signal was averaged over whole brain voxels to remove
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other potential sources of bias. All images were then filtered
by a phase-insensitive band-pass filter (pass band 0.01–0.08Hz)
to reduce the effect of low-frequency drift and high-frequency
physiological noise. Considering that GM atrophy may affect FC
(50), every participant’s total GM volume (absolute value) was
also calculated and set as a nuisance variable for this analysis.

Definition of Regions of Interest and Seed-Based

Analyses
The cerebellar DNs were chosen as regions of interest (ROIs)
to test cerebello-cerebral FC differences in patients compared
to controls. The choice of the DNs as ROIs was linked both to
their role as the major cerebellar output channels to the cerebral
cortex and to the DN alteration on MRI T2 sequences described
in SPG7 patients (7). Left and right DN masks were separately
extracted according to the SUIT atlas (48) and resliced in EPI
standard space. A first-level SPM model was used to estimate the
correlation between each voxel in the brain and the seed regions.
The mean time course within each seed region of interest was
extracted for every participant and used as a regressor in a first-
level SPM analysis. The resulting beta images are thus equivalent
to the Fisher z-transformed maps of the correlation coefficient.
These images were taken to the second level for group analysis.
At the second level, the group-level main effect of seed-to-voxel
connectivity was tested by means of the F-test of significance
for both left and right DNs. A two-sample t-test model was
then used to explore differences in connectivity between patients
and controls in each ROI. Between-group statistical significance
was set at p < 0.05, FWE-corrected at the cluster level
(clusters formed with uncorrected voxels; p < 0.005 at the
voxel level).

RESULTS

Behavioral Assessments
The scores of the performances obtained by SPG7 patients
in the neuropsychological evaluation are reported in
Supplementary Table 1. The assessments revealed the presence
of CCAS according to the pathological scores obtained in at
least three out of 10 subtests of the SSS. Moreover, the SPG7
group returned pathological results in specific verbal, language,
and executive tasks of the neuropsychological assessment;
specifically, 66% of SPG7 patients (four subjects) failed in both
immediate and delayed recall of prose memory, naming objects
described by the examiner, and phonological fluency; moreover,
83% of patients (five subjects) had problems in the naming verbs
task and a poor time score in the Stroop task. Additionally,
three patients had problems in the naming objects task, the
long-term Rey’s 15 words test, and the Rey-Osterrieth Figure
(copy condition) (see Supplementary Table 1).

Regarding social cognition evaluation, the SPG7 group return
pathological results in the ToM (66% of SPG7 patients), the RME
total scores (83% of patients), and the “embarrassed” emotion of
the EA test (100% of patients), while no differences compared
to normative data were observed in the other emotions (see
Supplementary Table 2).

MRI Analysis
No subject was excluded due tomotion artifacts in theMRI scans.

Cerebellar VBM
Voxel-wise analysis of the cerebellar GM, comparing the SPG7
patients vs. HS, revealed a specific pattern of GM atrophy in the
cerebellar cortex of SPG7 patients; indeed, VBM showed a large
cluster of significantly decreased GM volume involving the right
lobule V and bilateral lobule VI with extension in the right Crus
I. No regions of increased cerebellar GM volume compared to
HS were found in SPG7 patients. Detailed statistics and peak
voxels showing the greatest significant difference in the cluster
are reported in Table 2A. The results of cerebellar VBM are
shown in Figure 1A.

Cerebral VBM
Voxel-wise analysis of the cerebral GM maps revealed a
significant pattern of GM atrophy in the cerebral cortex of
SPG7 patients compared to controls. More specifically, the VBM
analysis showed different clusters of significantly decreased GM
volume involving cortical and subcortical regions in the left and
right cerebral hemispheres, such as the bilateral lingual gyrus, the
bilateral thalamus, the right precuneus and cingulate gyrus, and
the left superior frontal gyrus and frontal pole. Detailed statistics
and peak voxels showing the greatest significant differences in
the clusters are reported in Table 2B. The results of cerebral
voxel-based morphometry are shown in Figure 1B.

Seed-Based Analysis of Dentate-Cerebral
Functional Connectivity
The left and right DN masks used as ROIs for the FC analysis
are shown in Figure 2A. The seed-based analysis revealed
significant FC alterations in SPG7 patients vs. HS: specifically,
a significant cluster of increased FC was found between the
left DN and ipsilateral cerebral regions, including the lateral
occipital cortex, the supramarginal gyrus, and the superior
parietal lobule (Figure 2B). Similarly, a significant cluster of
increased FC was found between the right DN and ipsilateral
cerebral regions, including the lateral occipital cortex and the
precuneus (Figure 2C). No regions of significantly decreased FC
with the left and right DNs were found. Detailed statistics and
peak voxels showing the greatest significant difference in the
clusters are reported in Supplementary Table 3.

DISCUSSION

The present preliminary study provides the first evidence of
specific cerebellar modifications that affect long-distance regions
of the brain in a cohort of SPG7 patients, showing a link between
the anatomical alterations and the clinical symptoms found in
terms of cognitive and social ability impairments.

Our cohort of SPG7 patients, all of whom showed signs of
cerebellar atrophy on the diagnostic brain MRI, was assessed
by means of high-resolution brain MRI techniques, in parallel
with neuropsychological and social tasks for scoring the patients’
cognitive and emotional performances.
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TABLE 2 | Statistics of cerebellar (A) and cerebral (B) GM differences (SPG7 < HS).

Cluster size

(NoV)

Coordinates

x y z

Cluster peak Z-score Cerebellar regions

(A) 31665 16 −48 −11 3.84 R-Lobule V

21 −40 −17 3.69 R-Lobule VI

−23 −58 −14 3.62 L-Lobule VI

Cerebral regions

(B) 1229 9 −63 −6 5.15 R-Lingual Gyrus

−21 −64 −9 4.96 L-Lingual Gyrus

−8 −66 −6 4.91

603 2 −67 42 4.66 R-Precuneus

6 −55 22 4.20

760 9 −15 15 4.65 R-Thalamus

−9 −18 12 4.13 L-Thalamus

−6 −21 1 3.89

588 −4 29 57 4.18 L-Superior Frontal Gyrus

−4 44 39 3.87

−15 30 57 3.65

MNI coordinates (x, y, z) in Montreal Neurological Institute Space and peak Z-score of the peak voxels showing greatest statistical differences in the clusters are reported. Only regions

that survived after correction for multiple comparisons (FWE corrected p < 0.05) have been considered. NoV, number of voxels; L, left; R, right.

FIGURE 1 | (A) Between-group voxel-based comparison of cerebellar GM volumes. Cerebellar regions showing patterns of significantly reduced GM in SPG7

compared to HS are reported and superimposed on sagittal (x = 37), coronal (y = −48), and axial (z = −33) sections of the Spatially Unbiased Infratentorial Template

(SUIT; 41). Statistical significance was found at the cluster level (FWE = 0.05; cluster size: 31665), with peak voxels centered in the right lobule V and bilateral lobule VI

with extension in the right Crus I. Images are shown according to neurological conventions. (B) Between-group voxel-based comparison of cerebral GM volumes.

Cerebral regions showing patterns of significantly reduced GM compared to HS in SPG7 patients are reported in sagittal (x = 6), coronal (y = −64), and axial (z = −2)

coordinates in Montreal Neurological Institute space. Left and right hemispheres are according to neurological conventions. See Tables 2A,B for detailed statistics.

In agreement with previous data obtained in patients with
various cerebellar pathologies (11, 16, 51–56), the results of
the neuropsychological assessments indicated the presence of
CCAS and serious impairments in specific verbal, language, and
executive tasks in our SPG7 cohort.

Additionally, the in-depth investigation of social skills
indicated specific difficulties in the attribution of the
“embarrassed” emotion, in the automatic attribution of
relevant mental states regardless of the context (RME), and in
theory of mind. Interestingly, a recent study by Clausi et al. (9)
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FIGURE 2 | (A) Seed regions in the cerebellar dentate nuclei. Coronal (y) and axial (z) views of the generated left (blue) and right (green) dentate nuclei used as regions

of interest for assessing cerebello-cerebral FC. The left and right cerebellar DNs are superimposed on the Spatially Unbiased Infratentorial Template of the cerebellum

and brainstem (SUIT, 41). (B,C) Patterns of DN functional connectivity with the cerebral cortex. Patterns of increased dentate–cerebral FC are shown for the left (B)

and right (C) DN in different colors (blue and green, respectively). Sagittal (x), coronal (y), and axial slices (z) in Montreal Neurological Institute space. Clusters of

increased dentate-cerebral FC were considered significant after correction for multiple comparisons (FWE corrected p < 0.05). Images are shown according to

neurological conventions. See Supplementary Table 3 for detailed statistics.

described a similar impairment in patients affected by cerebellar
atrophy. Indeed, they were characterized by a lack of ability
to “tune in” to the mental state of another person both at an
unconscious and an automatic level, as assessed by RME, and
at a more complex and conscious level, as assessed by ToM.
In the same way, the low score specifically obtained in the
“embarrassed” emotion is consistent with the high level of social
interaction implied by this complex emotion (57). Altogether,
our results not only confirm executive dysfunctions and
impairment in facial emotional expressions, already described
in a single SPG7 case (23, 58), but also allow us to delineate
a multifaceted cognitive and social profile as part of the SPG7
complex phenotype.

Importantly, the neuroimaging studies suggested the
association of characteristic structural brain alterations with
such cognitive/emotional features, as cerebellar VBM showed
GM reduction in the right lobule V and Crus I and the bilateral
lobule VI. Interestingly, while the anterior lobule V is more
involved in somatosensory and motor aspects, both the postero-
lateral cerebellum lobule VI and Crus I are associated with the

processing of cognitive and emotional information (21, 59),
and Crus I is also involved in the mentalizing network of
social abilities (60). Furthermore, cerebral VBM indicated GM
reduction in the lingual gyrus, precuneus, thalamus, and superior
frontal gyrus. It must be noted that the lingual gyrus plays a
role in the identification and recognition of words, while the
precuneus and superior frontal gyrus are involved in different
aspects of social interactions and are included in the default
mode network (DMN) (61–65).

Thus, in view of these data, the verbal memory and language
impairment shown by our SPG7 patients might be related to
the atrophy in the cerebellar posterior lobules and in the lingual
gyrus, while the “theory of mind” alterations might be linked
to the atrophy in the precuneus and superior frontal gyrus,
supporting the relevance of the functional alteration of cerebello-
cerebral networks implicated in different cognitive and social
functions (10, 12, 66).

In this regard, our functional connectivity results support
this hypothesis. Indeed, an abnormal pattern of FC was found
between both the right and left DNs and specific cortical areas
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in our SPG7 patients, characterized by an increased FC of the
right DN with ipsilateral regions of the lateral occipital cortex,
known to be involved in somatosensory processing, and the
precuneus, which is part of the DMN and is involved in social
cognition ability. The left DN showed an increased FC with
the ipsilateral occipital cortex, the left supramarginal gyrus, and
the left superior parietal lobule. In particular, the supramarginal
gyrus is involved not only in retrieval and episodic memory but
also in social interaction, similar to the left superior parietal
lobe (61–65), confirming the cerebello-cortical dysregulation in
different networks involved in social functioning (9, 12, 61, 64).

We hypothesize that hyperconnectivity is the pathological
manifestation of altered functional interaction between the
DN and cerebral regions. This dysregulation is conceivable
considering cerebellar cortical degeneration. Indeed, as a result
of the degenerative process, the increased FC evidenced in
the present study suggests a release of the inhibitory control
that is normally exerted by the cerebellar cortex on the
DNs. As a consequence, the DNs increase their excitatory
outputs to the cerebral cortex, thus resulting in a pattern of
overconnectivity that impairs the optimization of functions in the
dentate-thalamo-cortical tract subserving cognitive and social
functioning (12, 67).

CONCLUSION

This study reported a preliminary characterization of the
cognitive and emotional profile of the SPG7 complex phenotype,
which might be explained by cerebellar and cortical structural
alterations and the functional dysregulation of specific cerebello-
cortical networks.

Moreover, in the current study, the cerebello-cortical
overconnectivity results were strictly ipsilateral, in
agreement with previous studies showing a similar altered
connection pattern between the cerebellum and cerebral
cortex (8, 11, 68, 69). In this regard, we emphasize that
although the majority of cerebello-cerebral anatomical
connections are known to be contralateral (70), functional
connectivity can be independent from the underlying
structural (anatomical) connectivity (71) since FC typically
refers to the neural synchronization between separated brain
regions (72).

Overall, it is important to note that the combined use of
structural and functional connectivity investigations has been
fundamental to characterizing, for the first time, the anatomical
specificity of SPG7 pathology.

The major limitation of this study is the small sample of SPG7
patients, which is a product of the rarity of this neurogenetic
condition, and the presence of only male subjects. Moreover,
considering that the cluster-extent based threshold should be

ideally set at 0.001 (73), another limitation to consider is that
FC cerebellar VBM and FC analysis gave significant results only
when using a more permissive p threshold (0,005).

In spite of these limitations, the present results give
a preliminary profile of the general cognitive and social
alterations associated with this pathology. Hopefully, these
issues will be addressed in future studies including larger
SPG7 cohorts.
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