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Abstract 

Musculoskeletal injuries and defects are considered globally as some of the most critical types 

of injury in orthopaedic field and it often requires surgical intervention to deal with these 

problems. These injuries may occur in different way such as tumor resection, traumatic bone 

injury, and osteitis. Bone trauma or defect can significantly deteriorate on the status of human’s 

life. The design of tissue engineering materials for both orthopaedic and dental implants is a 

great challenge in terms of desirable mechanical properties, biocompatibility, and improved 

osseo-integration. Titanium has been an effective implant material due to its excellent strength 

to weight ratio, corrosion resistance, toughness, and bio-inert oxide surface. Due to the recent 

progress of additive manufacturing technique it is possible to make patient-specific implants. 

Therefore, additive manufacturing has the huge potentiality to disrupt traditional orthopaedic 

implants to met up the demand of increasing population.  

Selective laser melting (SLM) is an additive manufacturing process that fabricates constructs 

based on CAD design by scanning powdered materials using the thermal energy supplied by a 

focused and computer-controlled laser beam. SLM allows the generation of complex 3D parts 

by a layer-wise material addition technique that selectively melts successive layers of metal 

powder on top of each other.  

There have been several reports existed in the current literature which showed the relationship 

between different process parameters of additive manufacturing with its different surface 

properties, mechanical properties and microstructure. There have been also reported that there 

are several ways to improve the interface of additively manufactured by different surface 

treatments such as anodization, alkali treatment, surface modifications by coating, grafting and 

polishing. There has been only limited research has been carried out that how the build 

inclination angle can be used to improve the bio-interface of additively manufactured titanium 



vi 
 

implant surface for better osseo-integration without changing any process parameter of additive 

manufacturing.  

Therefore, understanding and investigating the relationship between as manufactured parts and 

its different surface profile properties (surface texture both 2D and 3D), surface roughness (Ra, 

Rq), surface morphology, and surface wettability are so essential prior to successful clinical 

application. At the initial stage, we have manufactured Ti6Al4V parts by selective laser melting 

process (SLM) with different inclination angle with respect to the build plane from 5 to 90 

degrees with 5 degrees interval. The upward and downward faces of as-manufactured parts 

have been investigated profoundly using optical microscopy (OM), profilometer scanning 

electron microscopy (SEM). Herein, we demonstrated how the surface roughness, surface 

morphology, and surface wettability are changed with the alteration of inclination angle of SLM 

parts. There is much more percentage of correlation of arithmetic average of roughness (Ra) 

value for 5 average data points is found on lower surface on the linear, exponential and 

logarithmic regression line than the upper surface of SLM plates in the change of inclination 

angle. This study provides us a deep insight in terms of understanding how the surface 

properties are influenced by the design angle of additive manufacture when the processing 

parameters are constant. 

In the next stage, we have manufactured Ti6Al4V implants with three inclination angles (0 

degree, 45 degrees and 90 degrees) and tried to establish a relationship between mammalian 

cell attachment with the surface properties of different inclination angle. It has been found that 

during the SLM process there is an increasing trend of partially melted particles with the 

increase of inclination angle which greatly influence the surface topography, surface chemistry 

and surface roughness. It has been found from the mammalian cell (CHO-GHP) attachment on 

different inclined surface that higher inclination angle induces the better cell attachment on 
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implant surface with higher amount of spindle like shape with higher spindle dimension than 

lower inclination angle.   

Implant associated infection is also a major concern among orthopaedic research community. 

Different coating, grafting, surface modification approaches have been carried out on metallic 

implant surface in order to prevent against biofilm formation. In this study, we have printed 

three different inclination angle 10, 45, and 90 degrees and Staphylococcus aureus (S.aureus) 

were grown on all these samples. After 48 hours of incubation, it has been found that lower 

inclination angle 10 degrees surface can inhibit biofilm formation due to its lower 

hydrophobicity, lower roughness, higher surface energy, and fewer partially melted metal 

particles than 45, and 90 degrees surface. In addition, the bulk chemistry was not altered in 

both lower and higher inclination angle and mammalian cell growth was not compromised in 

any of the inclination angle. This work demonstrates us a novel one step method at additive 

manufacturing that without using any surface modification approach we can develop additively 

manufactured surface which can shield against implant associated infection with superior 

surface functionality. 

In final stage, we have manufactured Ti6Al4V cylindrical single at three different inclination 

angles (30 degrees, 60 degrees and 90 degrees) with 0.2 mm, 0.6 mm, 1.0 mm diameter struts 

by selective laser melting process as a proof of concept of orthopaedic lattice implants. The 

surface properties (surface roughness) of individual cylindrical strut is dependent both with the 

inclination angle and diameter. In detailed porosity analysis of individual cylindrical strut has 

been conducted to understand how the pore size and pore orientation are changed with the 

inclination angle and strut diameter along the build height. The stress analysis and buckling 

behaviour have also been analysed for individual single strut. After that, rat primary osteoblast 

cells were grown on individual struts to understand how the bone cells are attached on strut 

surface after 3 & 7 days of incubation by scanning electron microscope. This work gives us the 
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deep understanding of utilising SLM technology for the development of customized metallic 

implants for orthopaedic application specially where lattice geometry is required for healing 

the bone trauma.  

Keywords: additive manufacturing, surface roughness, surface morphology, surface 

wettability, build inclination angle, selective laser melting, partially melted particles, Ti-6Al-

4V alloy, mammalian cell (Chinese Hamster Ovarian), Staphylococcus aureus, biofilm 

formation, cell attachment, rat primary bone cell, cylindrical strut, strut diameter, strut 

inclination angle. 
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Chapter One: Introduction 

1.1 Problem Statement 

Musculoskeletal injuries are regarded as some of the most critical types of injury known and 

can lead to severe long-term effects without surgical intervention[1]. These injuries may occur 

via traumatic bone injury, osteitis, and tumor resection. Trauma or degenerative diseases 

incurred to bone can significantly impact the condition of life of individuals. Cost of treatment 

in the US alone exceeded $17 billion in 2005 and is predicted to rise to $25 billion per year by 

2025[2]. Importantly, it is quite prominent from the demographic data that the bone defect or 

trauma will increase over the coming years among the population due to the ageing population 

and modern lifestyle[3]. Therefore, it is quite inevitable to introduce the latest technologies to 

address the patient-specific implants by the orthopaedic surgeons to assist bone repair. The 

global orthopaedic market was valued at $29.2 billion in 2012 and expected to reach $41.2 

billion by 2019[4].The market is expected to grow at a compound annual growth rate of 4.9 per 

cent over the next five years, according to the Transparency Market Research report[5]. In 

2012-13, 2.5 million hospital admissions involved surgery in Australia[5]. 1 in 7 of hospital 

patients was admitted for orthopaedic surgery on bones, joints, ligaments and tendons, 

including knee and hip replacements[4]. From a statistics, it has been found that by the year 

2030 the total number of hip replacements would rise to 572,000 procedures[6]. Also, the 

number of total knee replacement procedures is expected to rise to 3.48 million[7]. Therefore, 

it is quite expected that there will be a huge demand to develop novel metallic implants with 

superior functionality. In case of large bone defect, the tissue’s endogenous regeneration is 

very much limited, so bone tissue engineering is essential for healing the defect zone[8]. 

Recently additive manufacturing technology has been introduced in orthopaedic regenerative 

medicine field to develop customized bone implants. In Belgium Dr. Jules Poukens and his 
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team implanted the world's first additively manufactured mandible in a patient by in 2012[9]. 

SLM technology has established a reliable approach for fabricating different types of solid 

titanium alloys in comparison with other additive manufacturing technologies because of their 

superior mechanical properties than the conventional technique. 

1.2 Motivation and Scope 

In 2014, Prof. Peter Choong, an Australian surgeon from St Vincent's Hospital, together with 

scientists from the Commonwealth Scientific and Industrial Research Organization (CSIRO) 

and Anatomics, successfully implanted the world's first 3Dprinted titanium heel bone into a 

patient. In 2015 Prof. Milan Brandt and his team from RMIT led research on Australia’s first 

locally- made additively manufactured spinal implant which was successfully delivered to 

Amanda Gorvin in a local hospital named Saint Vincent hospital[10]. After few weeks later, 

she was reported to be completely pain free.  

 

 

 

 

 

 

  

 

Figure 1. 1: 3D-printed titanium cage to fit perfectly into the spine[10]. 

 

AM facilitates the manufacture of  metallic bone implant that mimics patient specific 

geometries and associated mechanical response[11]. In addition, AM enables indirect control 

of biologically relevant parameters such as porosity, pore size, shape and permeability, on the 
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biological performance of metallic bone grafts. AM enables economic production of small 

production volumes and medical alloys (notably Ti64) are widely used for orthopaedic are 

compatible with AM.  

Being inspired from the RMIT project that led the research to develop additively manufactured 

lattice spinal implant, I started my PhD research to improve the interface of 3D printed titanium 

implant. There have been several reports which show the relationship between additive 

manufacturing processing parameters with the manufactured part’s surface properties, 

microstructure and mechanical properties. There have been also existing literature which show 

that there are several ways we can improve the interface of additively manufactured implants 

by applying different surface treatments such as hot isostatic pressure treatment[12], 

anodization[13, 14], surface modification by nano-diamond coating[15], polymer grafting[16], 

nano-particle immobilising[17].  But there has been limited research carried out that if the 

design angle of additive manufacturing process is altered how the implant surface can exhibit 

different surface properties and how the biological properties are associated with the change of 

build inclination angle. It opens up a huge opportunity for us to improve the interface of 

additively manufactured implants from the additive manufacturing processing stage for better 

osseo-integration without applying any surface modification approach.  In addition, improving 

interface from the manufacturing stage would provide a deep insight for biomedical 

manufacturers to commercialise metallic implants because of the reduced cost and easy FDA 

approval process as there is no secondary material is being applied.  

 

 

 

 

 



4 
 

1.3 Research Objectives 

The main aim of this research is to develop the relationship between the surface properties such 

as surface roughness, surface wettability, surface chemistry with different inclined SLM 

implants with respect to the building plane. Afterwards, to understand how these surface 

properties influence the behaviour of cell-material interaction and biofilm formation. This aim 

can be accomplished by accumulating the following objectives.  

1. To manufacture different inclined SLM Ti6Al4V implants with respect to the build plane.  

2. To establish a relationship between the surface properties, such as surface topography, 

surface roughness, and surface wettability with different inclined SLM Ti6Al4V implant for 

both upward and downward surface. 

3. To observe how the mammalian cell attachment behaviour can be altered with the inclination 

angle of SLM Ti6Al4V implants.  

4. To control the Staphylococcus aureus biofilm formation on SLM implants from the additive 

manufacturing processing stage without applying any surface modification approach.  

5. To establish a relationship between bone cell attachment with the alteration of strut 

inclination angle along with strut diameter of cylindrical struts as a proof concept in lattice 

implant for better osseointegration for successful orthopaedic applications. 
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1.4 Research Questions and Rationale 

At the very first stage of our project, we focused on the evaluation of the surface texture of 3D 

SLM plates of different inclination angles varying 5 degrees to 90 degrees with 5 degrees 

interval for both upward and downward surface. The upward and downward faces of as-

fabricated Ti6Al4V samples have been investigated profoundly using profilometer, optical 

microscopy (OM), scanning electron microscopy (SEM). As the growing demand for patient 

specific implants are increasing day by day, understanding and investigating the relationship 

between the implants design with its different properties such as surface profile properties 

(surface texture both 2D and 3D), surface roughness (Ra, Rq), surface morphology and surface 

wettability are so essential prior to successful clinical application because those properties have 

direct link with the osseo-integration.  

1. How the surface morphology and surface texture of different inclination angle of 

Ti6Al4V SLM plates for both upper and lower surface is changed with the increase of 

the inclination angle?  

2. How the surface roughness and surface wettability of different inclination angle of 

Ti6Al4V SLM plates for both upper and lower surface is changed with the increase of 

the inclination angle and establish a correlation between roughness and build inclination 

angle?  

Among these inclination angles, we will choose 0, 10, 45, & 90 degrees growth angles in order 

to make the relationship between the mammalian cell attachment (by Chinese hamster ovarian) 

and biofilm formation (Staphylococcus aureus).  
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1. How does surface topography of different build inclined SLM specimens influence 

mammalian cells morphology and spindle dimension? 

2. Is there any relationship between the biofilm formation and different inclination 

angle of SLM plates and how biofilm formation is controlled by altering the build 

inclination angle of SLM plates? 

At the 3rd stage of our work, different cylindrical specimens varying two variables (strut 

inclination angle and strut diameter) (30 degrees, 60 degrees, 90 degrees with 0.2 mm, 0.6 mm, 

1.0 mm) were manufactured mimicking the actual sturts located into lattice structure. This time 

we have seeded the rat primary osteoblasts cells on different cylindrical samples to observe the 

osteoblast cells proliferation over 3, and 7 days.  

1. How cylindrical specimens with different strut inclination angle and diameter of 

Ti6Al4V samples will be printed by SLM? 

2. How rat primary osteoblasts cells attachment and proliferation happened with the 

alteration of inclination angle along with strut diameter? 

1.5 Thesis Outlines 

The research work presented in this thesis is divided into eight chapters. The thesis chapter has 

been outlined as follows:  

Chapter one highlights the significance of the development of additively manufactured 

metallic implant for orthopaedic applications. In this chapter the overall background, problem 

statement, motivation and scope, the rationale of this project, research questions and research 

objectives have been presented in this chapter.  

Chapter two investigates the available metallic powder bed additive manufacturing 

technologies with their basic principles and their capabilities in terms of developing 

orthopaedic implants. Detailed description of commonly used metallic and titanium-based 
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alloys employed in additive manufacturing technologies for orthopaedic applications using 

different geometric topography has also been presented. This chapter provides a 

comprehensive review of different surface properties of metallic implants and their relationship 

with cellular attachment and bacterial colonies formation. This chapter also shows how 

different surface modification techniques have been applied to improve the bio-interface of 

metallic implants for better osseo-integration and control biofilm formation to protect against 

implant associated infection. This review helps to engineer and design the surface of metallic 

implants by additive manufacturing process for improved cellular attachment and control the 

biofilm formation for next generation patient-specific orthopaedic implants. 

Chapter three presents all experimental procedures and the details of the materials used for 

this project. This chapter briefly describes the fabrication of different build inclined SLM 

Ti6Al4V implants and their characterization techniques. The details process of cell and 

bacterial study has also been presented.  

Chapter four shows the manufacture of different build inclined AM TI6Al4V implants. This 

chapter investigates the relationship between different build inclination angle of Ti6Al4V SLM 

plates and their different surface properties such as surface roughness, surface topography, 

surface wettability.  This chapter also compares the change of surface roughness, surface 

topography and surface wettability between upward and downward surface of Ti6Al4V SLM 

plates.  

Chapter five shows how the alteration of build inclination angle of SLM Ti6Al4V implant can 

switch the interface between titanium and mammalian cell attachment. The detailed surface 

roughness, surface topography, surface wettability and surface chemistry of three different 

inclined implant surface have been investigated. The higher inclination angle with increased 

surface roughness adhering higher amount of partially melted particles triggered the 

mammalian cells to be more elongated than lower inclination angle. The cell viability of each 
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inclination angle has also been evaluated. The morphology of mammalian cells adhered on 

different inclined surface of SLM plates have also been observed and semi-automated matlab 

script has been applied to quantity the spherical and spindle shaped cells on implant surface.   

Chapter six shows the relationship between different inclined SLM implant surface with 

biofilm formation. The detailed surface roughness, surface topography, surface wettability, 

surface energy has been investigated and how the build inclination angle can be used for 

controlling implant associated infection without using any surface modification from the 

additive manufacturing processing stage has been clearly stated.  

Chapter seven shows the design and manufacturability of different inclined cylindrical struts 

with different strut diameter and the detailed surface profile properties were analysed for 

individual strut with specific strut diameter. How the bone cell attachment happens on 

individual strut surface has also been observed by in-vitro experiment.   

Chapter eight summarises the major findings of this PhD research project and indicates the 

major contribution of this project to the body of knowledge in orthopaedic field to improve the 

interface of additively manufactured titanium-based implants. Finally, the perspective of 

further investigations in this area is outlined. 
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Chapter Two: Literature Review 

2.1 Chapter overview 

This chapter investigates the available metallic powder bed additive manufacturing 

technologies with their basic principles and their capabilities in terms of developing 

orthopaedic implants. Detailed description of commonly used metallic and titanium-based 

alloys employed in additive manufacturing technologies for orthopaedic applications using 

different geometric topography has also been presented. This chapter provides a 

comprehensive review of different surface properties of metallic implants and their relationship 

with cellular attachment and bacterial colonies formation. This chapter also shows how 

different surface modification techniques have been applied to improve the bio-interface of 

metallic implants for better osseo-integration and control biofilm formation to protect against 

implant associated infection. To address these problems in addition to structural modifications 

many surface engineering approaches are explored such as surface chemistry, 

hydrophobicity/hydrophilicity, charge have been discussed. This review helps to engineer and 

design the surface of metallic implants by additive manufacturing process for improved cellular 

attachment and control the biofilm formation for next generation patient-specific orthopaedic 

implants. 

2.2 Additive Manufacturing  

Additive manufacturing (AM) enables manufacturers to build up any complex structure or part 

by depositing material layer by layer using computer-aided design (CAD) with excellent 

engineering properties [18-20]. The term “3D printing” is also used as a synonym for Additive 

Manufacturing. The addition of material is occurred in additive manufacturing by adding the 

successive layer of deposition which makes it fundamentally different than traditional 
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manufacturing technologies [21]. Additive manufacturing (AM) field has gained a lot of 

traction and popularity among different industries in recent years because of its capability to 

present innovative application opportunities for the technology to expand beyond a prototyping 

tool. Different alloy compositions are being used for making additively manufactured final 

parts or component for applying in aerospace[22, 23], automotive[24], medical[4, 5], and 

military industries[6].  

In recent time, AM has received huge interest from industry’s perspective not only for 

prototyping, but also for serial production because of the improvement of production rate and 

raw materials used for additive manufacturing process. AM can set new standard of economic 

and technical production tool for automotive, aerospace and biomedical industries with 

excellent level of precision and enhanced technical performance [25-28]. Both stereo-

lithography (STL) or Additive Manufacturing Format (AMF) is used as the digital 

representation of desired geometry for AM. This digital representation of AM opens huge level 

of opportunities and challenges for design engineers to create generative design for ensuring 

the compatibility with manufacturability[29].Generative design enables high complexity 

outcomes and low-cost fabrication at small production volumes, such as for example in the 

case of cost-effective design and fabrication of orthopaedic implants that mimic patient-

specific geometry and mechanical properties.Additive manufacturing (AM) enables different 

type of engineering design structure with highly geometric complexity which offers us huge 

opportunities and challenges to optimize the design and processing parameter for the desired 

superior technical outcome than traditional manufacturing process[30].Additive manufacturing 

is an important production tool that facilitates the investigation of individual parameters such 

as porosity, pore size, shape and permeability, on the biological performance of synthetic bone 

grafts[31]. 

https://www.sciencedirect.com/topics/engineering/orthopedics
https://www.sciencedirect.com/topics/engineering/patient-specific
https://www.sciencedirect.com/topics/engineering/patient-specific
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In comparison with conventional production techniques, AM offers combined technologies for 

building components in an additive and layer-by-layer design. These technologies can broadly 

be grouped into one of seven major classes based on the mechanism in which each layer is 

formed: photo-polymerization, extrusion, sheet lamination, beam deposition, direct write and 

printing, powder bed binder jet printing, and powder bed fusion [32]. Figure 2.1 shows the 

classification of different additive manufacturing techniques. It has been found from Fig 2.1 

that additive manufacturing is broadly categorised as two parts, i.e. laser based additive 

manufacturing and non-laser based additive manufacturing. SLS, SLM, EBM are classified as 

powder bed fusion technology. LMD, LENS have been categorised under directed energy 

deposition category.   

 

 

 

 

 

 

 

 

 

 

Figure 2. 1: Classification of additive manufacturing [33] 

AM offers the unique capability to control the microstructure of a material to design mechanical 

properties for a specific application while building a complex part layer-by-layer. Therefore, 

real life application for AM requires the integrated knowledge between specific material, 

process optimization and design topology. Topology optimization plays crucial role in AM of 
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reducing cost with minimal mass allowing maximum stress under different load conditions [34-

36]. Topology optimization is an applied technique which ensures the efficient designs with 

minimal a priori decisions. Because of the complexity and intricacy of the solutions obtained, 

topology optimization was often constrained to research and theoretical studies. Additive 

manufacturing, a rapidly evolving field, fills the gap between topology optimization and 

application. Additive manufacturing has minimal limitations on the shape and complexity of 

the design, and is currently evolving towards new materials, higher precision and larger build 

sizes. Simulation process is required for optimizing the processing parameters for required 

mechanical properties showing great structural efficacy.  

2.3. Metal additive manufacture (MAM) 

Metal additive manufacturing comprises of electron beam melting (EBM), selective laser 

sintering (SLS), selective laser melting (SLM), laser engineered net shaping (LENS), direct 

metal laser sintering (DMLS) and laser aided additive manufacturing (LAAM) process. With 

the advent of electron beam melting (EBM), selective laser sintering (SLS), selective laser 

melting (SLM), laser engineered net shaping (LENS), direct metal laser sintering (DMLS) and 

laser aided additive manufacturing (LAAM) process direct replication of metallic structures 

has become a reality. SLM and EBM both used different source of energy beam to fuse powder 

particles together on a layer-by-layer basis. SLM used the laser beam with tunable wavelength 

and EBM used electron beam. The main advantage of SLM/SLS process over EBM is that 

SLM/SLS can process polymers, ceramics and metal whereas EBM can process only 

conductive metals and limited feature size [37]. In recent time, metallic AM has received huge 

interest from industry’s perspective not only for prototyping, but also for serial production 

because of the improvement of production rate and raw materials used for additive 

manufacturing process. In comparison with conventional production techniques, metallic 
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powder-bed AM technology offers a wide diversified freedom for its design space so that it 

enables the production of different parts with innovative design.  

2.3.1. Selective Laser Melting (SLM)  

Selective laser melting (SLM) is an additive manufacturing process that creates parts by 

scanning powdered materials using the thermal energy supplied by a focused and computer-

controlled laser beam based on CAD Files[20, 26]. SLM is a complex multi-physics system of 

layer-wise material addition technique that allows the generation of complex 3D parts by 

selectively melting successive layers of metal powder on top of each other. Among different 

MAM technologies, selective laser melting (SLM) is a powder bed fusion technology which is 

capable of fabricating high complex geometric parts with enough robust mechanical properties. 

With reference to commercial MAM technologies, SLM is characterized by good repeatability, 

medium productivity and medium to [21].Despite the associated commercial opportunities, 

SLM is a highly dimensional process[38] that is subjective to complex geometries[39],complex 

multi-physics interactions[40], transient heat transfer paths[41],and material properties that are 

stochastic in nature and poorly documented [42].  

SLM system often requires process optimization due to its inherent complexity and uncertainty.  

For laser based MAM, process optimisation is typically made with reference to the laser energy 

density, E; defined according to the laser power, P, scanning speed, v, hatch spacing, h, 

and layer thickness, t (Eq. (1)). 

𝐸 =
𝑃

𝑣
∗ ℎ ∗ 𝑡……………………………(1) 

where, E: energy density (J/mm3), P: laser power (W), v: laser scanning speed (mm/s), h: 

hatching distance (mm), t: layer thickness (mm). 

Fig. 2.2 shows the schematic diagram of SLM process. The SLM system comprises of a fibre 

laser, galvanometer, F-theta lens, protective lens, powder re-coater, build specimen and build 

platform. A typical fibre laser which can operate up to 1 kW depending on the laser module 

https://www.sciencedirect.com/topics/engineering/repeatability
https://www.sciencedirect.com/topics/engineering/productivity
https://www.sciencedirect.com/topics/engineering/transients
https://www.sciencedirect.com/topics/materials-science/materials-property
https://www.sciencedirect.com/topics/engineering/laser-energy-density
https://www.sciencedirect.com/topics/engineering/laser-energy-density
https://www.sciencedirect.com/topics/engineering/laser-power
https://www.sciencedirect.com/topics/engineering/scanning-speed
https://www.sciencedirect.com/topics/engineering/hatches
https://www.sciencedirect.com/topics/engineering/layer-thickness
https://www.sciencedirect.com/science/article/pii/S0264127518304763#fo0005
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installed in the system. Galvanometer is used for controlling the beam focus and the movement 

of the beam is controlled by the F-theta lens. Normally a part is built by SLM process using a 

layer of powder with 20–100 μm thickness. The powder is carried and spread by the powder 

re-coater across the build table. The preheating temperature can be up to 200°C on build table. 

CAD file is used for defining the geometry of build parts and based on that the layer of powder 

is selectively melted. In SLM process, each layer of a part is built in two steps. At first the outer 

boundary of the part is built which is known as contouring and the powder within the contour 

is melted subsequently to complete one layer. This entire process is only completed once the 

desired three-dimensional part is entirely built based on the provided CAD geometry.  

 

 

 

 

 

 

  

 

Figure 2.2: Schematic diagram of SLM-process [43, 44] 

SLM process is also suitable for applying in orthopaedic and dental applications because of 

patient specific design, complex geometry and high aggregate price. Moreover, the 

manufacturing of multiple unique parts in a single production run enables mass customization. 

The SLM process was reported to be capable of fabricating implants of several pure titanium 

and titanium based alloys for implants such as Ti6Al7Nb[45], Ti-24Nb-4Zr-8Sn[44],Ni-Ti[46], 

Ti-13Nb-13Zr[47] other β titanium alloys[48] and most importantly Ti6Al4V[49, 50]. 

Recently, it was reported that SLM has the ability to fabricate porous bio-inert Ti6Al4V 
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structures with high control and reproducibility in terms of their morphological and mechanical 

properties[51] and showed excellent biocompatibility [52]. A group of Japanese researchers 

showed that SLM can be a great method of manufacturing porous titanium metal with a 

structure analogous to human cancellous bone using the optimum operating conditions[53]. 

Fig. 2.3 (a) represents a CT image which shows the trabecular bone structure of a man aged 53 

years. In Fig. 2.3 (i) shows a porous titanium body manufactured by the assembly of multiple 

unit cells from Fig. 2.3 (a). Fig. 2.3 (b) shows a CT image of the cancellous bone of a 48-year-

old female, and the porous structure of titanium mimicking the cancellous bone structure has 

been shown in Fig. 2.3(ii). Fig.2.3 (c) shows a hollow cubic unit cell and its stacking, while 

(iii) is a porous body produced from (c). 

 

Figure 2.3: Titanium porous structure fabricated by SLM (i–iii) based on micro-CT images of 

human cancellous bones (a, b) and stacked hollow cubes (c). Specimen size: (a) 15 × 15 × 15 

mm; (b, c) 6 mm diameter, 10 mm length. Notation: (ii) CBS; (iii) IPS[53]. 

2.3.2. Laser Metal Deposition (LMD)  

Laser Metal Deposition (LMD) also formerly called laser cladding is a promising additive 

manufacturing(AM) technique which utilises laser heat source to melt a stream of powder 

feedstock[43, 54, 55] to build any complex near-net shape component. The technology was 
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advanced by the group of researchers from Sandia National Laboratories in US in nineties and 

the process was names Laser Engineered Net Shaping (LENS)[56]. This advanced laser metal 

deposition technology called LENS is now the most widely used LMD technology in the 

academia and in the industries. A unique feature of LMD is the inherent anisotropy in 

microstructure and resultant mechanical properties. Various studies have been conducted to 

evaluate the factors responsible for this anisotropy [57].  LMD can provide the modifications 

of chemical composition and produce a large number of small-scale samples [58, 59]. Fig. 2.4 

shows the experimental set up of LMD process. In LMD, centre of coaxial nozzle is used to 

deliver high energy laser beam and then it is focused by a lens which is then applied to a 

substrate to repair it or build a new part based on the computer aided design (CAD). This laser 

energy beam generates a melt pool formation into which the powder feedstock is deposited. 

These complex phenomena of melt pool formation by LMD depends on powder attributes 

(composition, size distribution, shape, flow rate, etc.) and processing parameters like laser 

properties (power, type, spot size scan speed, etc.). In order to achieve desired microstructure 

and mechanical properties these parameters need to be effectively controlled. These parameters 

need to be effectively controlled to achieve powder consolidation and the desired 

microstructure and mechanical properties[60, 61] . 

Argon/nitrogen/helium inert gas is normally flowed through the nozzle shown in Fig.2.4 not 

only delivers powder but also provides the shield from oxygen deposition. Three-dimensional 

component is produced by depositing consecutive layers additively one above the other. This 

is achieved by either moving the deposition head with respect to a stationary work piece, or 

moving the work piece with respect to a stationary head[62]. 
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Figure 2.4: Experimental set up of LMD process[63] 

LMD can manufacture a wide range of metallic alloys. Laser direct metal deposition (LDMD) 

is one of the few available AM techniques which is capable of producing a structure with 

graded porosity and/or composition from different biomaterials including, Ti–6Al–4V, 

titanium, and shape memory alloys and stainless steel[64].  It can generate implants with more 

flexible geometric verities than other AM techniques, however it is quite cumbersome process 

to predict the desired outcome from a combination of LDMD input parameters because of the 

complex nature of the process which involves with a lot of ‘trial-and-error’ method.    

2.3.3. Electron Beam Melting (EBM) 

Electron beam melting (EBM) is another metallic powder bed technology which uses high 

energy electron beam to induce fusion between metal powders[65-68]. This AM process shows 

its exceptional potentiality to make medical devices and industrial components via great shape 

control and strength to weight ratio[69]. Electron beam melting (EBM) is originally technology 

developed by Arcam AB in Sweden which is now commercially available with 60 systems 

globally. The minimum resolution, feature size and surface finish of an EBM process is 
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typically larger than for a SLM process. Fig. 2.5 shows the typical EBM system consists of an 

electron gun which is similar to an electron beam welding machine or an electron gun in a 

scanning electron microscope and the operating power is 60 KW to generate a focused beam 

of energy density above 100kW/cm2. The beam focus is controlled by the electromagnetic 

lenses and the movement of the beam on the build table is controlled by deflection coils shown 

in Fig. 2.5[44]. A powder layer consisting of 100 µm thickness is spread over the table for 

building the part. The powder is supplied from two hoppers kept inside the build chamber. A 

moving rake fetches powder from both sides and spread over the table. The electron beams first 

pre-heats the powder layer with a higher scan speed, followed by melting the powder layer 

based on the geometry defined by the CAD file. In EBM, every layer of a part is built in two 

steps. The outer boundary of the part is built first which is referred as contouring and the 

powder within the contour is melted subsequently to complete one layer. 

Figure 2.5:Schematic of EBM system. The system includes an electron beam system (electron 

gun assembly, electron beam focusing lens and deflection coils used to control the electron 

beam) and the mechanical system (movable powder rake and fixed powder cassettes). A view 

of electron beam scanning the powder bed is also shown[44].  
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EBM has been applied for producing different orthopaedic implants such as hip[70], knee, 

jaw[71], spinal fusion cages [72], and maxillofacial plates[70, 73]. EBM has widely been used 

for producing Ti-6Al-4V based implants with different lattice topology[50, 70]. A great variety 

of metallic alloys has been introduced in EBM technology because of the high energy density 

which can melt different alloy powders. Fig 2.6 demonstrates the feature of complex, patient-

specific, functional orthopaedic implants manufactured by EBM which is not only 

mechanically compatible but also it can allow normal bone ingrowth and regrowth, 

vascularization and nutrient delivery. It has also been found from Fig.2.6 that EBM structure 

shows interconnected porous structure which is generally required for cellular penetration and 

vascular tissue growth. 

Figure 2.6: Functional mesh/mesh and mesh/foam bone shaft stem or rod device prototypes 

manufactured by EBM.(a) Femoral component with mesh/mesh rod section inset.(b) Femoral 

rod software model half-section (mesh/foam). (c) EBM-built prototype[74] 
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2.4. Titanium Based Alloy for Tissue Engineering and Orthopaedic 

Applications 

Tissue engineering is a vast field which aims to develop biological substitutes for restoring, 

improving, maintaining tissue or organ functions utilizing the combined principles of 

engineering and life sciences[75]. It is clearly understood from its definition that it is a 

comprehensive multidisciplinary research. Therefore, integrating biology, biochemistry and 

clinical medicine with materials science, physics and engineering disciplines is imperative to 

achieve clinical applications[76].Among the vast field of tissue engineering, bone tissue 

engineering is a promising therapeutic technique to regenerate the bone tissue for faster healing 

in case of bone defects caused by traumatic bone injury, tumor resection, and osteitis[8]. In 

case of large bone defect, the tissue’s endogenous regeneration is very much limited[77], so 

bone tissue engineering is essential for healing the defect zone. Bone tissue engineering is a 

complex and dynamic process which has the ability of proliferating, differentiating, forming 

matrix of osteo-progenitor cells along with the remodelling of the bone[78]. Implanting 

scaffolds into the defect zone in order to guide and stimulate bone formation is the most popular 

approach in the bone tissue engineering field. Scaffolds play a crucial role in bone tissue 

engineering, facilitating ingrowth of mineralized tissue into the porous network and mechanical 

support[79]. These scaffolds require the optimum pore size, shape and interconnected networks 

for facilitating nutrient and oxygen diffusion ensuring the desired bone growth into the defect 

zone[80]. Porous scaffolds made with biopolymers and bio-ceramics are very popular approach 

in the recent time in order to promote bone or tissue ingrowth into pores in the bone tissue 

engineering field[81]. Despite having good biocompatibility and relative faster degradation 

properties of these polymers and ceramics, they have the limitation in case of load bearing 

application in hard tissue engineering [82, 83]. This limits their application as a potential bone 

graft because of their soft and weak mechanical properties. 
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Figure 2.7 shows the representation of additively manufactured Porous scaffolds were used for 

compression tests and in vivo experiments and exhibited a height and diameter of 30 and 

10mm, respectively (Fig. 3a). The microstructure, pore size and pore morphology of the 

fabricated porous Ti6Al4V alloy scaffolds were visualized using SEM (SU8220, HITACHI, 

Japan; imaging mode of low magnification; accelerating voltage of 3.0 kV; working distance 

of 8.7mm or 10.6mm) and analyzed by Image J 1.48 (National Institutes of Health; USA). The 

porosity of the samples was determined using the gravimetric method30 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Additively manufactured Ti6Al4V scaffolds used for in-vivo experiment with a 

height and diameter of 30 and 10 mm (a) gross specimens at different time points (3 months, 6 

months and 12 months) (b)[84]. 

 

 

 

 

 



22 
 

Metals and alloys have a long history of application as bone implants [73, 85, 86]. Metal and 

metal alloys including titanium, tantalum, titanium-nickel, stainless steels, cobalt (Co) based 

alloys (CoCrMo) have been applied as potential bone graft because of their good mechanical 

properties [87-90].  However, implants made from some of these materials despite having good 

biocompatibility usually exhibit higher modulus of elasticity than the host bone which lead to 

stress shielding effect. Stress shielding effect is the primary reason for bone resorption and 

eventual failure of such implants [5]. Cortical bone (compact bone) has elastic moduli ranging 

from 3 to 30 GPa, while trabecular or cancellous bone has significantly lower elastic moduli of 

0.02e2 GPa. Titanium alloys, particularly Ti-6Al-4V, are widely used as orthopaedic and dental 

implants because of their excellent biocompatibility, corrosion resistance, high strength to 

weight ratio, and modulus of elasticity relatively lower modulus of elasticity than cobalt(Co) 

based alloy(CoCrMo) and stainless steel.[91-94] Several techniques have been developed in 

order to introduce a degree of porosity in titanium and titanium based alloy scaffolds including 

combustion synthesis, solid state foaming by expansion of argon-filled pores, electron beam 

melting, polymeric sponge replication, selective laser melting process [95-97]. Fig.2.7 

represents the repair of trabecular bone using porous Ti scaffold[98].  It has been found from 

this figure that the void in the trabecular region was created during the surgery with the drill 

which has been unable to regenerate without bone graft and the areas of incomplete bone 

regeneration observed below the scaffold. Bone histomorphometry was applied on to quantify 

the amount of bone ingrowth in scaffold and control groups. It has been found from Fig. 2.8 

that the BV/TV was significantly higher (𝑝 = 0.01) in the scaffold group compared to the 

control group.  



23 
 

Figure 2.8: Bone ingrowth into Ti matrix. 𝜇CT images show bone formation within the Ti 

scaffold; ∗ shows significantly higher bone volume formation in the scaffold compared to 

control (𝑝 = 0.01)[98] 

2.4.1. Power Bed Additive Manufacture of Titanium Based Implants 

Powder bed additive manufacturing enables to manufacture any complex shaped titanium- 

based implants based on CAD design.  SLM, EBM and LMD are the most popular metallic 

powder bed additive manufacturing technologies for generating complex design topology of 

titanium-based implant.  In our research among different powder bed fusion technology SLM 

has been used because of fabricating porous, bio-inert Ti6Al4V structures with complex and 

reproducible morphological and mechanical properties [51, 99] yet retained their excellent 

biocompatibility[52].  In addition, SLM can create smaller feature size compared to competing 

AM technologies and its mechanical response is quite well understood[100]. Several reports 

show that porous Ti6Al4V structures can be very effective in terms of supporting cell growth 

and new bone formation due to the cytocompatibility of Ti6Al4V structures[53, 101-103]. 

Figure 2.9 shows addiitvely manufactured lattice structure of Ti6Al4V spinal implants 

consisting different topology for optimum bone growth. Fig. 2.9(a) shows the  different spinal 

interbody case strucure manufactured by K2M, USA. Fig.2.9(b) and Fig.2.9(c) respectively 
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shows the spinal structure manufactured by 4WEB Medical, USA and EIT, Germany [104]. 

Fig. 2.10 shows the world’s first additively manufactured mandible implanted by a group of 

surgeons in Belgium in 2012[9].  

 Figure 2.9: Examples of FDA-approved additively manufactured Ti-6Al-4V lattice implants, 

(a) By K2M, USA[105], (b) By 4WEB Medical, USA[104], (c) By EIT, Germany [104]  
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Figure 2.10: In Belgium Dr.Jules Poukens and his team implanted the world’s 1st additively 

manufactured mandible in a patient in 2012[9]. 

2.5. The implant Interface 

One of the biggest health related concerns across the world among the population is due to 

musculoskeletal disorders. From a statistics, it has been found that around 310,800 hip 

replacements were performed in US alone in 2010 at age between 45 and up[106]. Patients 

under 40 years have been also found receiving hip implants are anticipated to increase which 

indicates that shorter implant life is expected due to their higher activity lifestyle. There are 

several factors which are directly responsible for limiting life of metallic load-bearing implants 

such as poor osseointegration, stress shielding, or implant loosening. The term ‘implant 

interface’ is defined as the surface of the implant which gets direct contact with the host bone. 

When an implant is placed into the defect site, within nanoseconds there is formation of water 

molecule layer around it where implant surface is reported to play the most crucial role[107]. 

The term ‘Osseointegration’ is often used to explain about implant interface which is an 

ongoing process of formation and adaptation to function and repair, which takes place due to 

osteoblastic and osteoclastic activity of bone, also known as coupling[108, 109]. Several 

factors of implant surface are directly related to osseointegration. Among different factors 

surface roughness and surface topography are the key parameter which directly influence 

osseointegration[110, 111]. The size and number of gap between implant with the host tissue 

can be effectively reduced by increasing bone-implant contact. Small micromotion over the 

https://www.sciencedirect.com/topics/medicine-and-dentistry/osseointegration
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time with implant use can help to progress implant failure. Aseptic loosening which is one of 

the primary reasons of implant failure can be occurred due to creating polymeric and metallic 

wear particles into bone-implant interface. In addition, cells in bone-implant interface can 

experience inflammatory state due wear particles which are easily phagocytosed by 

macrophages, in which they secrete a series of cytokines[112]. These cytokines, such as tumor 

necrosis factor a (TNF-a), can lead to the generation of osteoclasts and the local resorption of 

bone tissue, effectively forming and enlarging gaps at the prosthetic tissue interface [23]. 

2.6. Effect of Surface Properties on Titanium Based implants for Bone 

Growth and Biofilm Formation 

Several studies show that bone growth and osseo-integration are highly dependent on implant 

surface topography, surface roughness, surface chemistry[113-115]. The final implant surface 

properties manufactured by additive manufacturing can be greatly influenced by different 

process parameters such as laser power, scanning speed, hatch spacing, layer thickness, powder 

bed temperature [116].   

Even though rough surfaces have been reported as beneficiary for bone integration [117, 118] 

but there is also existing controversy in the literature based on optimal roughness for cell 

attachment. For example, some studies suggest that smooth surfaces  favour  cell attachment 

(Ra<1 μm)[119, 120]; whereas some other studies show that higher roughness values (Ra=3-

5μm) even more favours cell attachment. It has also been reported that implant surface with 

hierachical surfaces with nano/submicron roughness are more favourable for cell growth and 

fraction. There are several features which can be introduced simultaneously by increased 

surface roughness such as surface area, improved cell attachment and migration. Extensive 

studies have been carried out in order to understand the role of implant surface roughness with 

cellular attachment, proliferation and differentiation [119]. Most of the literature investigated 

the traditionally manufactured titanium implant surface properties and their relationship with 
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cell attachment and biofilm formation. However, implants manufactured by additive 

manufacturing and their relationship with the change of their design parameter has not been 

explored thoroughly. In addition, the relationship between the cell attachment and biofilm 

formation with these additively manufactured surface properties is fairly unknown. Therefore, 

thoroughly investigating the surface profile properties, surface morphology, and surface 

wettability of additively manufactured part is highly essential to design the clinically desired 

successful implant.  

Staphylococcus aureus (S. aureus) is a very common grown bacteria on implant surface; these 

bacteria are capable of forming polysaccharide on implant surface which is quite difficult to 

control with conventional antibiotics[121, 122]. Implant associated infections are directly 

corelated with loosening which often requires revision surgery. As a result, it causes longer 

hospital-stay for patients. It also brings significant cost to the patients and higher mortality 

rates.[123]  

There has been extensive research effort has been carried out in terms of developing anti-

biofilm implant surface by several means such as adding antimicrobial agent to the implant 

surface by grafting, coating, or immobilising. Much research effort has therefore been focused 

on developing anti-biofilm implant surfaces, which are typically achieved by adding an 

antimicrobial agent, such as silver compounds, to the surfaces through secondary processes 

such as coating, immobilising, or grafting [124-129]. Even though some of these techniques 

are suitable for both additively manufactured titanium and traditionally manufactured titanium 

implants but there are some limitations of these approaches which is a great concern among 

orthopaedic research community. Delamination of antibacterial coating from metallic surface 

can cause off target arising from the toxicity or carcinogenicity of the antimicrobial agents[130, 

131], associated high cost, and often slow and cumbersome processing [132]. In addition, the 
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concern for bacterial resistance against traditional antibacterial agents is rising globally which 

poses a great medical threat.  

To address this problem being motivated by the need for a simple approach, we show for the 

first time to control biofilm formation on additively manufactured titanium implant surface 

without applying any antibacterial agent or surface modification approach.  Instead, the surface 

topographies of selective laser melted Ti6Al4V parts were controlled by adjusting the build 

inclination angle which is the design parameter of SLM where no other process parameter was 

altered. It has been shown that both chemical and surface topographical modification can 

inhibit biofilm formation[133, 134]. However, the control of biofilm formation just from the 

inherent processing stage from topographical feature changing without using secondary 

chemical agent receiving huge interest[135, 136]. Mechanisms of manipulating the surface 

topography have been achieved; both bio-inspired[132, 137], nature inspired[136], or by 

introducing both micro and nano-scale surface features[138]. Here, we showed that single one 

step method changing the design build angle of Ti6Al4V parts, in-situ SLM manufacturing 

process retain the desirable surface chemistry and mechanical strength without affecting 

mammalian cell viability and attachment. Further analysis however, revealed the inclination 

angle allowed markedly significant control over the surface topography, area, roughness, 

wettability, and surface energy; these differences enable significant control over the level of 

Staphylococcus aureus (S.aureus) biofilm formation.  

2.7. Conclusions 

A literature review of different powder bed metallic additive manufacturing techniques has 

been applied in terms of developing next generation customized orthopaedic implants. 

Substantial developments have been made in last one-decade in terms of developing metallic 

implants including its design, manufacture and surface modifications for successful clinical 

outcome.  
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The literature concludes the following:  

1. Additive manufacturing (AM) enables to design any complex structure with extreme 

geometric fidelity and superior mechanical properties than traditional manufacturing process.  

2. Metallic powder bed additive manufacturing technique enables to manufacture patient-

specific orthopaedic implants with superior mechanical properties and complex geometric 

topology.  

3. In comparison with other metallic additive manufacturing techniques SLM is characterized 

by good repeatability, high surface quality and medium productivity. The main advantage of 

SLM process over other additive manufacturing(EBM) technique is that SLM has the ability 

to process polymers, ceramics and metal whereas EBM can process only conductive 

metals[37]. 

4. Titanium based alloy is the most popular metallic alloy for orthopaedic application because 

of its some exceptional properties than other metallic alloy.  

5.Additive manufacturing techniques enable to develop Ti6Al4V implant with highly complex 

geometry for orthopaedic application with great clinical success. However, the surface 

properties of additively manufactured titanium implants can be altered based on its design 

parameters. Implants surface properties highly influence the cellular attachment and biofilm 

formation.  

6. Several studies came up with different outcomes in terms of the relationship between surface 

roughness and cellular attachment. Some studies suggest that lower surface roughness creates 

favourable environment for cell attachment (Ra<1 μm)[119, 120]; whereas some other studies 

show that higher roughness values (Ra=3-5μm) even more favours cell attachment. Some 

literature also showed that nano/submicron rough implant surface showing hierarchical 

structure are more favourable for cell growth and fraction.  

https://www.sciencedirect.com/topics/engineering/repeatability
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7. Extensive research has been carried out to develop anti-biofilm implant surface by different 

approaches such as coating, grafting, immobilising antibacterial agent. Some research groups 

showed that the manipulation of surface topography  by nature inspired[136] bio-inspired[132, 

137], or by introducing both micro and nano-scale surface features[138] can be effective way 

to prevent biofilm. However, limited research has been carried out in terms of manipulating 

additively manufactured titanium implants for prevent against implant associated infection. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

Chapter Three: Materials and Methods 

3.1 Chapter Overview 

This chapter describes the materials and methods section that have been used to characterize 

different build inclined Ti6Al4V implants manufactured by selective melting process and 

observe the biological response on these Ti6Al4V implants. This chapter has been divided into 

eight key sections. Section 3.1 outlines the chapter overview, introduction. Section 3.2 

discusses the details of the material that has been used in this PhD project. Section 3.3 illustrates 

the details of the fabrication of different inclined Ti6Al4V samples by SLM. Section 3.4 

explains the overall experimental techniques used for characterization of Ti6Al4V implant 

surfaces. Section 3.5 highlights the in-vitro response of Ti6Al4V samples by Chinese Hamster 

Ovarian and Rat Primary Bone cell. Section 3.6 describes about Staphylococcus aureus biofilm 

formation behaviour on different build inclined Ti6Al4V samples. 

3.2 Materials 

3.2.1. Ti6Al4V powder 

Ti6Al4V powder with 25-45 µm size (ASTM Grade 23, ELI, TLS Technik GmbH & Co., 

BitterfeldWolfen, Germany), size, was used to manufacture different build inclined SLM 

implants. The composition of Ti6Al4V powder is presented in Table 3.1. 

Chemical composition (wt.%) 

Ti Al V Fe C N O H 

balanced 6.47 4.08 0.17 0.008 0.009 0.1 0.002 

Table 3.1: The chemical composition of ELI Ti6Al4V powder. 
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3.3. Sample Preparation for Different Inclined Support Free Ti6Al4V 

Implants from 5 to 90 degrees with 5 Degrees Interval 

Inclination samples (thickness =0.5 mm, length=5 mm, depth=2.5 mm) were fabricated by 

selective laser melting (SLM) with a SLM250HL machine (SLM Solutions, Germany) with a 

variable power 400 W fibre laser. The SLM powder was titanium alloy Ti-6Al-4V, with 

average particle size of approximately 40 μm. Test specimens were manufactured with the 

following process parameters: laser power, P=100W, scanning speed, v=375mm/s, layer 

thickness, t=30 μm, hatch spacing, h=0.12 mm and focal offset, f=0 mm. These parameters 

correspond to: volumetric energy density, Ev= 68.5 J/ mm3 where 𝐸𝑣 = 𝑃/𝑣ℎ𝑡  and provide 

high geometric quality with fully dense structure. These parameters were used in the 

manufacture of implants with inclination angles of 0 to 90 degrees. The support structures were 

removed from the struts using plyer and struts were cleaned using standard cleaning 

methodology of sequential sonication in acetone, methanol and isopropanol and dried under a 

steady flow of nitrogen gas.  

Figure 3.1: Optical view of different inclined support-free Ti6Al4V SLM parts varying from 0 

to 90 degrees 
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3.3.1. Sample preparation for Different Inclined (0, 10, 45, & 90 degrees) Ti6Al4V 

Samples with Support Structure  

Inclination samples (10 x 10 x 2 mm3) were fabricated by selective laser melting (SLM) with 

a SLM250HL machine (SLM Solutions, Germany) shown in Figure 3.2 based on CAD 

geometry (Fig. 3.3) with a variable power 400 W fibre laser. The SLM powder was titanium 

alloy Ti-6Al-4V, with average particle size of approximately 40 μm. Test specimens were 

manufactured with the following process parameters: laser power, P=100 W, scanning speed, 

v=375 mm/s, layer thickness, t=30 μm, hatch spacing, h=0.12 mm and focal offset, f=0 mm.  

Figure 3.2: SLM250HL machine (SLM Solutions, Germany) 

These parameters correspond to: volumetric energy density, Ev= 68.5 J/ mm3 where 𝐸𝑣 =

𝑃/𝑣ℎ𝑡  and provide high geometric quality with fully dense structure. These parameters were 

used in the manufacture of implants with inclination angles of 0, 45, and 90 degrees. Support 

structures were removed from the struts and struts were cleaned using standard cleaning 

methodology of sequential sonication in acetone, methanol and isopropanol and dried under a 

steady flow of nitrogen gas.  
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Figure 3.3:CAD design of inclined support-free Ti6Al4V SLM parts varying from 0 to 90 

degrees 

3.3.2. Cylindrical Strut Inclined (30, 45, & 90 degrees) Ti6Al4V Samples with Support 

Structure  

Struts are cylindrical in shape with 10 mm length with 30, 60, & 90 degrees inclination angle 

with 0.2, 0.6, and 1.0 mm diameter manufactured by selective laser melting (SLM) with a 

SLM250HL machine (SLM Solutions, Germany) with a variable power 400 W fibre laser. The 

SLM powder was titanium alloy Ti-6Al-4V, with average particle size of approximately 40 

μm. Test specimens were manufactured with the following process parameters: laser power, 

P=100W, scanning speed, v=375mm/s, layer thickness, t=30 μm, hatch spacing, h=0.12 mm 

and focal offset, f=0 mm. These parameters correspond to: volumetric energy density, Ev= 68.5 

J/mm3, where   = 𝑃/𝑣ℎ𝑡   and provide high geometric quality with fully dense structure. These 

parameters were used in the manufacture of implants with inclination angles of 0, 45 and 90 

degrees. Support structures were removed from the struts and struts were cleaned using standard 

cleaning methodology of sequential sonication in acetone, methanol and isopropanol and dried 

under a steady flow of nitrogen gas. 

3.4. Characterization  

3.4.1. CT scan  

The SLM built inclined surfaces at different angles were analysed using General Electric 

Phoenix v|tome|x s 240 X-ray Computed Tomography (CT). Key feature of interest is the 

surface finish of the parts. The CT scanned parts were of 10 x10 x2.0 mm³ and the CT scans 
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were performed using 190 KV and 50 μA for X-ray generation, including beam filters of 1 mm 

tin and 0.1mm copper, at a resolution of 9 μm. To reduce the beam hardening effect, two copper 

filters of 0.1 mm in thickness were used which block the low energy beams. The projected X-

ray images were acquired at 333ms per image, with 2000 images in stepwise rotation of the 

sample. 

3.4.2. Micro-CT 

High-resolution micro-CT (Bruker Skyscan 1275 Micro CT) uses multiple angular views and 

provides information on how much X-ray absorption occurs within each cubic voxel element 

of the scanned volume. Image data are acquired, reconstructed, and analysed using the Skyscan 

software (Skyscan 1076, Antwerp, Belgium) which displays the data as 3D reconstructed SLM 

samples images.  

Micro-CT scanning was repeated 5 times. Data was analysed using Gwyddion image 

processing software(Department of Nanometrology, Czech Metrology Institute).Internal pore 

defects from SLM built inclined struts at different angles were examined using Micro-

Computed Tomography (μCT) (Bruker 1275) shown in Fig. 3.4 where a voltage source of 100 

kV and a current source of 100 μA were used. A 1 mm Aluminium (Al) filter was used to 

minimize beam hardening effects whilst conserving optimal attenuations. Furthermore, 

scanning results were improved utilizing a pixel size of 7 μm covering most of the strut 

specimen’s length of 10 mm. For μCT reconstruction, post-processing procedures were used 

to further minimize imaging noises such as ring artefacts and beam hardening effects. Scanning 

parameters are listed in Table 3.2. 
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Figure 3.4: Micro-Computed Tomography (μCT) (Bruker 1275) 

For preparing reconstructed models for analysis, a lower grey threshold (95) and an upper grey 

threshold (255) were used to define regions of air and solid material, respectively. A 

despeckling method was further implemented to exclude unnecessary white speckles 

surrounding the strut specimens. For consistency, margins of 0.5 mm were removed from 

bottom and top section of each strut specimens to allow strut porosity comparison. 

Parameter Value 

Voltage source (kV) 100 

Current source (μA) 100 

Filter 1 mm Al 

Pixel size (μm) 7 

Rotation step (deg) 0.2 

Frame averaging  2 

Table 3.2: μCT scanning and reconstruction parameters 
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3.4.3. Surface Profile Analysis  

Digital Microscope VHX-500 (Keyence, Japan) was used for optical photos, 2D profile and 

3D profile analysis. 

3.4.4. Surface Roughness Analysis  

Roughness was assessed using a XP-2 Stylus Profiler (Ambios Technology, Inc,USA) shown 

in Fig. 3.5 of 3D scanning at a force 1.0 mg, scan speed of 50 µm/s with X scan size 1000 µm, 

Y scan size 200 µm with 5 traces having 50 µm Y spacing. Each sample was repeated 5 times. 

Data was analysed using Gwyddion image processing software. Tencor profilometer was also 

used to measure the average surface roughness of the sample.  

 

 

 

 

 

 

Figure 3. 5:  XP-2 Stylus Profiler (Ambios Technology, Inc, USA) 

3.4.5. Surface Wettability Analysis  

Contact angle instrument (Data Physics OCA20) was used to measure the contact angle on 

different inclined Ti6Al4V samples [177]. The 2µL drop was used for each measurement. A 

droplet of 2µL was deposited by a syringe which was positioned above the sample surface. The 

measurement was done once the stable value was achieved. A high-resolution camera was used 

to capture the image from the side view. The image was then analysed using image analysis 
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software SCA software, USA). Measurements were done on various areas of the samples to 

confirm the uniformity of the surface. 

3.4.6. Surface Morphology by SEM  

SEM micrographs were acquired using a scanning electron microscope (Philips XL30 SEM, 

Japan) shown in Fig.3.6(a). Topographical imaging of samples was performed at an 

acceleration voltage of 30 KV with spot size 5. FEI Quanta 200 ESEM (2002) shown in 

Fig.3.6(b) was also used to compare the morphology of different inclined Ti6Al4V samples 

manufactured by selective laser melting. Samples were mounted on an aluminium stub using 

carbon tape to attach firmly during imaging so that it cannot move during SEM scanning. 

Constant acceleration voltage, spot size and magnification were maintained before collecting 

the images. 

Figure 3.6: (a) Philips XL30 SEM, Japan and FEI Quanta 200 ESEM (2002) 

3.4.7. EDX Analysis   

EDX analysis was performed with 30 KV accelerating voltage applying primary X-max type 

detector model 66868-X020 for 2048 channels. FEI Quanta 200 ESEM (2002) with Oxford X-

MaxN 20 EDXS detector (2014) was used to analyse the elemental analysis of SLM Ti6Al4V 

surfaces. 5 KV to 15 KV was applied to determine the EDX spectra. The scanning was 

continued until a stable value was achieved. Each EDX mapping procedure was performed up 

(a) (b) 



39 
 

to 30 minutes on each sample to identify the elemental composition of the micro-level thickness 

of the surface. The line mapping continued until a stable value was achieved. Each sample was 

repeated 5 times at different scanning areas for better accuracy in results. The Aztec software 

(Oxford Instruments,UK) was used to analyse the EDX data. 

3.4.8. Surface free energy determination 

The total apparent surface free energy values were calculated applying Owens-Wendt (O-W) 

and Neumann Equation of State (Eq.State) using appropriate equations[139, 140]. The surface 

free energy components were obtained using a contact angle instrument (Data Physics 

OCA20).  

3.4.9. Phase identification – X-ray diffraction (XRD) 

Phase identification by X-ray diffraction (XRD) shown in Fig.3.7 was performed on the cross 

section at the height of 5 mm (middle) of each selected Ti–6Al–4V cube using a X-ray 

diffractometer (Cu Kα; Bruker D4 ENDEAVOR with Lynx-Eye PSD), operated at 30 kV and 

35 mA with a step size of 0.02° and a dwelling time of 1 s per step.  

Figure 3.7: Cu Kα; Bruker D4 ENDEAVOR with Lynx-Eye PSD 

https://www.sciencedirect.com/topics/materials-science/x-ray-diffraction
https://www.sciencedirect.com/topics/materials-science/x-ray-diffraction
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3.4.10. Chemical Composition – X-ray Photon Spectroscopy  

Analysis of the samples was performed by XPS (Thermo- Fisher K-Alpha, USA) shown in 

Fig.3.8, using an Mg Kα radiation source at a power of 300 W. The spot size of analysis was 

400 µm. Sample scanning was performed using the flood gun to compensate for charging and 

auto height to determine optimal distance between the X-ray beam and the sample. In a constant 

analyser energy mode, survey spectra were collected at a pass energy of 50 eV. 

Figure 3.8: XPS (Thermo- Fisher K-Alpha, USA) 

The XPS binding energy (BE) values from high-resolution scans of elemental signals (pass 

energy 50 eV) were not charge-corrected with respect to that of adventitious carbon at 284. eV 

due to scanning being undertaken using the flood gun. In particularly, high-resolution XPS 

spectra were collected for the key elements carbon, oxygen and titanium identified from the 

survey spectra. High resolution scanning was undertaken with a step size of 0.1 eV and a dwell 

time of 50 ms. Depth profiles were obtained by sputtering the specimen at a rate of 1.35 Å/s 

using a 3 K eV argon ion gun. The relative intensity of the detected elements was plotted 

against binding energy and the chemical composition of the surface was characterised. Peak 

deconvolution was performed using Gaussian-Lorentzian curves to obtain the chemical states 
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of the elements present in the surface. Avantage 5.52 Chemical Profile data system (Thermo 

Fisher Scientific, USA) was used for data acquisition and processing. Statistical analysis of the 

XPS results was performed by analysing three areas of each 0, 45, and 90 degrees sample. 

3.5. Cellular Response 

3.5.1. Chinese Ovarian Hamster Cells expressing GFP Cell Viability Assay 

For MTS assay, approximately 4*104 cell/cm2 CHO cells were seeded on SLM fabricated 

Ti6Al4V plates of 10*10 mm2 size in a 24-well plate. Chinese Ovarian Hamster Cells 

expressing GFP (CHO: ATCC CCL-061, kindly provided by T.Himton, CSRIO) were grown 

in MEMα modification. The media was supplemented with 10% Fetal Bovine Serum, and 1% 

penicillin and streptomycin. Cells were grown at 370 C with 5% CO2.The plate was incubated 

for 24, 72, and 96 hrs at 370 C. Then, 200 µL of [3-(4, 5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS(a)] (Promega, 

Cell Tilter96) aqueous solution was added to the wells and the plate was incubated for 

additional 3 hours. 100µL medium of each well was transferred to a 96-well plate, and 

absorbance at 490nm was recorded using a plate reader (Spectramax paradism-molecular 

device, USA).  

3.5.2. Cell Morphology Analysis 

CHO-GHP cells were seeded onto the Ti6Al4V SLM plates at a concentration of 

4*104cells/cm2. After 24 and 72 hours of incubation at 370C, the samples were rinsed with PBS 

twice and fixed in 4% paraformaldehyde (Sigma-Aldrich) for 15 min at room temperature. The 

samples were then rinsed with PBS twice. The cells were visualized with a confocal fluorescent 

microscope (N-Storm SuperResolution, Nikon) using GFP filter. 

Cell morphology and attachment was also studied using FEI Quanta 200 ESEM (2002), USA. 

The cells were seeded on Ti6Al4V struts similar to aforementioned methods. After 24 hrs of 
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incubation, the samples were fixed with 2.5% v/v glutaraldehyde, pH 7.3, for 30 mins at room 

temperature and were then rinsed three times with PBS. Fixed specimens were then dehydrated 

through a series of 50%, 70%, 90%, 95% and 100% ethanol and were incubated for 10 min 

between each change. The specimens were then critical point-dried (Denton Vacuum, 

Moorestown, NJ, USA) and gold-coated in a SC500 Bio-Rad sputter coater (Bio-Rad) with 20 

nm thickness before examination using an FEI Quanta 200 scanning electron microscope (FEI, 

Hillsboro, OR, USA). 

3.5.3. Visualization of F-actin 

F-actin was stained by rhodamine phalloidin to assess the cytoskeletal organization of CHO-

GHP cells on the Ti6Al4V struts of all three inclination angles (0, 45 and 90 degrees). The cells 

were seeded at the same density as in MTS assay experiments.  After 72 hrs of incubation, the 

samples were rinsed twice using PBS and then fixed by 4% formaldehyde solution for 15 min 

at room temperature and after that washed with PBS three times. The fixed cells were further 

permeabilized in 1% Triton X-100 for 15 mins before rinsed with PBS three times. 5µL 

rhodamine phalloidin working solution (Cytoskeleton Inc., USA), 100uL DAPI, 100 µL PBS 

were added to the samples at room temperature in dark for 15 min. After a thorough washing 

with PBS, cells on samples were visualized with a confocal fluorescent microscope (N-Storm 

SuperResolution, Nikon) using Cy5 and DAPI filters. 

Matlab Simulation for Cell Type Counting and Dimension Measurement 

The code was developed on Matlab R2014b software (Mathworks, USA) and applied for 

counting the cell type and dimension measurement. 

3.5.4. In-vitro assay by Rat Calvariae Primary Osteoblasts 

The cell densities of rat calvariae primary osteoblasts (OBs) (ROst-583, Lonza, Walkersville) 

grown on the surface of cylindrical strut with 30, 60, 90 degree inclined with 0.2, 0.6, and 1.0 
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mm diameter were determined using fluorescence microscopy and an MTS assay (CellTiter 96 

Aqueous One Solution (Promega) according to the manufacturer’s suggested protocol). OB 

cells were selected as they are bone-forming cells. These cells are particularly important to 

determine the osseointegration with the samples for orthopaedic applications. Prior to cell 

seeding, all of the samples were autoclaved to ensure that surfaces were sterile. For 

fluorescence microscopy, the samples were placed into a 24-well plate and seeded with OB 

cells in DMEM with 4.5 g/L glucose (Lonza No. 12-604F) supplemented with the rat MSCGM 

SingleQuots kit (Lonza No. 00192820). The rat MSCGMTM SingleQuots kit contains 50 mL 

of FBS (10% final concentration in media), Lglutamine, and GA-1000. The rMSC osteogenic 

SingleQuots kit contains 20 mL of FBS (10% final concentration in media), Lglutamine, GA-

1000, ascorbate, dexamethasone, and β-glycerophosphate (all obtained from Lonza) at a 

density of 5000 cells/cm2. The well plate was incubated for 3 days at a temperature of 37 °C 

under 5% CO2. After incubation, cells were rinsed with phosphate-buffered saline (PBS). 

Then, paraformaldehyde was applied for 30 min to fix the cells. The cells were permeabilized 

and blocked with 0.3% Triton X-100 and 1% BSA, respectively, and were washed three times 

with PBS. The actin filaments were then stained with Alexa Fluor 594 Phalloidin (1:40 dilution, 

Thermo Fisher Scientific, Scoresby, VIC, Australia) and incubated for 2 h at room temperature. 

Then, 1 μL of 300 nM 4′,6-diamidino-2-phenylindole (DAPI, dihydrochloride) (Thermo Fisher 

Scientific) was added to the cells for 5 min to stain the nucleus. The samples were washed with 

PBS and stored with 1 mL of PBS at 4 °C for fluorescent microscopy imaging (Olympus 

confocal microscope FV1200).  

3.5.5. In vitro Hemocompatibility Evaluation 

The whole human blood in hemocompatibility tests was obtained from Australian Red Cross 

Blood Service in agreement with Queensland University of Technology (approval NO. 18-

03QLD-04).  
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3.6. Staphylococcus aureus biofilm formation  

Staphylococcus aureus (S. aureus) ATCC 25923 was purchased from In Vitro Technologies 

(Noble Park, VIC, Australia). S. aureus was streaked on tryptone soya agar (TSA) plates and 

incubated at 37oC overnight. A single colony was selected using a disposable loop and mixed 

into 10 mL of tryptone soya broth (TSB) in a centrifuge tube. The tube was placed in a shaking 

incubator at 200 rpm and 37oC overnight. The bacteria solution was diluted to 106 cfu/mL with 

TSB for seeding on titanium substrates. The 3D printed titanium substrates (10, 45, and 90 

degrees build inclination) were placed in each well of a 24-well plate. 1 mL of bacterial solution 

was added to each well and the plate was incubated at 37oC. After 24 hr, the samples were 

removed and placed into another 24-well plate with 1 mL of fresh TSB in each well. This 

bacterial growth on inclined samples were done by our collaborator from RMIT named Dr. 

Nhiem Tran. The samples were incubated for another 24 hr before they were prepared for SEM 

analysis, fluorescent confocal microscopy imaging, and a crystal violet assay. 

For SEM analysis, the substrates were washed with PBS three times to remove non-adherent 

bacteria. 500 µL of a 4% formaldehyde solution was then added to each well to fix the bacteria. 

The plate was left for 15 min at room temperature before formaldehyde was removed and the 

samples were rinsed with PBS twice. The samples were then dehydrated by submerged in a 

series of ethanol solutions with increasing alcohol content (50%, 70%, 90%, 100%, 100%, 

100%). The samples were then dried and coated with gold by gold sputter for SEM (FEI Quanta 

200 ESEM) observation. 

For fluorescent confocal microscopy analysis, the biofilm samples were also rinsed with PBS 

three times to remove non-adherent bacteria and were fixed with 4% formaldehyde solution 

for 15 min. The samples were rinsed with PBS and added with 500 µL of Triton X-100 solution 

to enhance the permeability of the cell membrane for subsequent fluorescent staining. Triton 

X-100 solution was removed after 15 min and the samples were rinsed with PBS twice before 
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500 µL of blocking solution containing 1% bovine serum albumin (BSA) was added to each 

sample to prevent non-specific binding of the dye. After 30 minutes, BSA was removed and 

the samples were rinsed with PBS. 300 µL of nucleus dye Hoechst 33258 (10 µg/mL) was 

added to each sample. The substrates were covered at room temperature for 15 min before 

finally rinsed with PBS twice to remove the excess dye. The samples were kept in PBS and at 

4oC until examined by using a confocal fluorescent microscope (Olympus IX83). For this, at 

least three random fields on each sample were captured using a Hoechst 33258 filter 

(352nm/461nm). S. aureus biofilm surface coverage was analysed using Fiji software (ImageJ, 

NIH).  

For measuring the biomass of the biofilms, a crystal violet assay established by George 

O’Toole was modified and used[141]. Briefly, the S. aureus biofilm samples that were grown 

for 48 hr were rinsed with PBS twice to remove non-adherent bacteria. The samples were then 

transferred to a new 24-well plate and 250 µL of 0.1% crystal violet solution was added to each 

sample. The samples were incubated for 15 min and then were rinsed with water three times to 

remove excess dye. The samples were then dried in the air at room temperature before 

photographs were taken to show the visual difference of crystal violet stained biofilm sample. 

For quantifying the amount of crystal violet on each sample, 250 µL of 30% acetic acid was 

added to each well to solubilise the dye. 125 µL of the solubilised crystal violet was transferred 

to a well of a 96-well plate and the absorbance at 550 nm was measured using a 

spectrophotometer.  
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Chapter Four: Understanding the Relationship between 

Additively Manufactured Different Inclined Support Free as- 

Manufactured Ti6Al4V parts and their Surface Properties for 

Biomedical Applications 

4.1. Chapter Overview 

Support free structures design are the recent most interest in metallic additive manufacturing 

for both aerospace and medical industries because of its capacity to reduce cost, manufacture 

time and minimise hassle for removing the support part which could damage the original part. 

The demand for manufacturing metallic part by additive manufacturing with customized 

design, tuneable geometry and desired mechanical properties for aerospace industries and 

patient specific implants with required porosity and pore size for medical industries is 

increasing day by day. Therefore, understanding and investigating the relationship between as 

manufactured parts and its different surface profile properties (surface texture both 2D and 3D), 

surface roughness (Ra, Rq), surface morphology, and surface wettability are so essential prior 

to successful practical application. In this work, we have manufactured Ti6Al4V parts by 

selective laser melting process (SLM) with different inclination angle with respect to the build 

plane from 5 to 90 degrees with 5 degrees interval. The upward and downward faces of as-

manufactured parts have been investigated profoundly using profilometer, optical microscopy 

(OM), scanning electron microscopy (SEM). Herein, we demonstrated how the surface 

roughness, surface morphology, and surface wettability are changed with the alteration of 

inclination angle of SLM parts. There is much more percentage of correlation of arithmetic 

average of roughness (Ra) value for 5 average data points is found on lower surface on the 

linear, exponential and logarithmic regression line than the upper surface of SLM plates in the 

change of inclination angle. It is also clearly observed from the surface morphology that there 

is a corresponding increase in the number of partially melted particles on the upward SLM 

support-free part from 5 to 90 degrees whereas there is no regular trend was observed in terms 
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of partially melted particles on downward surface. Highest contact angle value 130.1500 is 

found in 75 degrees inclination and lowest contact angle value 80.810 is found in 35 degrees 

inclination for upper surface. In case of lower surface, the contact angle value observed for all 

inclined SLM plates > 90 degrees which means the lower surface of SLM plates reveal the 

hydrophobic surface. This work demonstrates a deep insight in terms of understanding the 

relationship between different inclined additively manufactured titanium parts with their 

surface properties for aerospace and medical applications. 

4.2. Introduction  

Fabrication of support-free part by additive manufacturing are the recent most interest to get 

rid of increasing surface roughness, longer manufacture time, and damaging part when the 

support is required to be removed [142-144]. For the SLM/SLS process, there are over 50 

different SLM/SLS process parameters that impact the ultimate quality of the finished part, 

creating a significant challenge in understanding process physics and developing an effective 

process and control strategy. Laser power, scanning rate, scanning direction, hatch distance, 

exposure time, building plate temperature, power size and shape, point distance are the most 

critical processing parameters for SLM process and all those parameters have the influence on 

the parts’ quality [145-147]. But there is limited research has been carried on how the design 

parameter such as inclination angle can influence the surface properties of additively 

manufactured titanium implants.  

In biomedical industries, there is a direct link between the additively manufactured implants’ 

final surface topography (roughness, surface profile properties), surface morphology, and 

surface wettability with the host tissue [148-151]. The success or failure of an implant has the 

direct link with the surface roughness reported by different research groups [157-159]. Usually 

the parts fabricated by additive manufacturing process come with the higher surface roughness 

value because of the inherent stair-step and ball milling effect. In this work we have profoundly 
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analysed the surface roughness for both upper and lower surface of SLM plates with the change 

of inclination angle maintaining the same powder size, layer thickness, hatch spacing, scanning 

strategy even though all those parameters have direct effect on roughness. 

Generally, rough surfaces have been reported as beneficial for bone integration [117, 118] but 

the literature lacks agreement on optimal roughness for cell attachment. For example, some 

studies suggest higher roughness values (Ra=3-5μm); while others favour more smooth 

surfaces (Ra<1 μm)[119, 120]; and, other studies suggest that surfaces with nano roughness or 

a hierachical nano/submicron roughness are more favourable for cell growth and fraction. 

Increased roughness can simultaneously increase the surface area of the implant, improve cell 

migration and attachment to the implant [26, 152, 153]. Extensive studies have been carried 

out so far to understand the relationship between roughness and cell attachment, proliferation 

and differentiation[119]. Previously, we have reported that build orientation of additively 

manufactured titanium implants can influence the surface topography and roughness of the 

surface and plays crucial role in terms of mammalian cell attachment[26] and biofilm 

formation[153]. Therefore, thoroughly investigating the surface profile properties, surface 

morphology, and surface wettability of additively manufactured part is highly essential to 

design the clinically desired successful implant. We have previously shown that the mechanical 

properties of SLM manufactured Ti-6Al-4V & AlSi12Mg lattice structures can be effectively 

manipulated to match tissue specific parameters [154, 155]. 

In this work, we fabricated support free Ti6Al4V SLM part varying the inclination angle from 

5 degrees to 90 degrees with 5 degrees interval. As there are lot of controversies about the 

surface roughness of the implant with the osseo-integration in the existing literature, a profound 

roughness analysis is essential prior to the implantation. Because of the stair effect due to the 

layer wise production, surface roughness of a sloping plane depends on the sloping angle. In 

addition, roughness of top surfaces differs strongly from roughness of bottom surfaces. This 
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paper discusses the relationship of the surface profile properties (surface texture, surface 

roughness), surface morphology, and surface wettability of SLM part with the change of the 

build inclination angle for the both upward and downward surface. This work will, we believe, 

have significant impact on the design and fabrication of these materials for both aerospace and 

biomedical applications. 

4.3. Experimental Set up 

The samples were fabricated according to chapter-3 – Materials and Methods section outlined 

in 3.2, fabrication according to 3.3 and characterized according to section 3.4.  

4.4. Results & Discussion 

4.4.1. Surface Texture Analysis of Different Inclined SLM parts 

The 2D and 3D surface texture of support-free Ti6Al4V parts inclined from 0 to 90 degrees 

with 5 degrees interval are shown in Figure. 4.1.1- 4.1.4 and Fig. 4.2.1- 4.2.4 by optical 

microscope using focus variation measurement false colour height map. The partially melted 

particles are observed for all inclination angles for both upward and downward surface on SLM 

plates. It is clearly observed that the number of partially melted titanium particles increases 

with the increase of the inclination angle from 5 degrees to 90 degrees for the upward surface 

of the Ti6Al4V parts but there is no common trend found in terms of partially melted particles 

for downward surfaces. In case of lower inclination angle from 5 to 15 degrees on downward 

surface partially melted particles are observed to be stuck in an agglomerate fashion. It is 

observed that the step edge border from both 2D and 3D surface profile from 5 degrees to 45 

degrees and there are no step edge borders are observed in case of 50 degrees to 90 degrees for 

upward surface. In case of downward surface, there is no step edge border is observed from 

any of the inclination angle of SLM parts. The bullet-shaped like appearance is also noticed on 

the surface of 5 degrees inclined upward surface. In case of the surface texture from the upper 



50 
 

face of SLM part, the step edge border is also observed to prominent in case of 5 and 10 degrees 

and the sharpness of step edge border is observed to be dim gradually from 15 degrees to 45 

degrees. The distance between step edges of the 5 degrees inclination angle is higher than the 

45 degrees angle. In case of the higher inclination angle starting from 50 degrees to 90 degree 

inclination angle, the step edge border is due to the discontinuities along step edges and higher 

concentration of partially melted particles stuck at edge[156].  
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Figure 4.1.1: 2D surface profile of different inclined support-free SLM parts of both upward 

and downward surface from 30 to 50 degrees obtained by the digital microscope showing 

topographical changes as the angle increases 
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Figure 4.1.2: 2D surface profile of different inclined support-free SLM parts of both upward 

and downward surface from 55 to 75 degrees obtained by the digital microscope showing 

topographical changes as the angle increases.  
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Figure 4.1.3: 2D surface profile of different inclined support-free SLM parts of both upward 

and downward surface from 55 to 75 degrees obtained by the digital microscope showing 

topographical changes as the angle increases.  
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Figure 4.1.4: 2D surface profile of different inclined support-free SLM parts of both upward 

and downward surface from 80 to 90 degrees obtained by the digital microscope showing 

topographical changes as the angle increases.  
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Figure 4.2.1: 3D surface profile of different inclined support-free SLM parts of both upward 

and downward surface from 5 to 25 degrees obtained by the digital microscope showing 

topographical changes as the angle increases.  
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Figure 4.2.2: 3D surface profile of different inclined support-free SLM parts of both upward 

and downward surface from 30 to 50 degrees obtained by the digital microscope showing 

topographical changes as the angle increases.  
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Figure 4.2.3: 3D surface profile of different inclined support-free SLM parts of both upward 

and downward surface from 55 to 75 degrees obtained by the digital microscope showing 

topographical changes as the angle increases.  
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Figure 4.2.4:3D surface profile of different inclined support-free SLM parts of both upward 

and downward surface from 80 to 90 degrees obtained by the digital microscope showing 

topographical changes as the angle increases 

 

 

 

 

 



59 
 

4.4.2. Surface Roughness Analysis of Different Inclined SLM parts 

Titanium based implants used currently in clinical purpose for both orthopaedic and dental 

implant vary with its roughness and composition. In dentistry, commercially pure titanium (Ti) 

has become one of the most commonly used implant materials whereas in orthopaedics Ti 

alloys have virtually replaced Ti because of strength requirements [18, 19]. Implant surface 

topography is normally characterized by two most common roughness parameters: surface 

arithmetic average of roughness profile (Ra), root mean square deviation of the roughness 

profile (Rq). Arithmetic average of roughness profile (Ra) which is regarded as the most 

universally used parameter is as the average absolute deviation of the roughness irregularities 

from the mean line over one sampling length [156, 160, 161]. To be compatible with other 

contributions in this field, the arithmetic average roughness, Ra, is used; where Ra measures the 

arithmetic average deviation of the measured profile from the centreline of the measured profile 

(Equation 1). Where yi is the vertical distance from the mean line to the ith data point, and i 

refers to the facet of interest and Rq measures the root mean square average of the roughness 

profile ordinates (Equation 2).  

𝑅𝑎 =
1

𝑛
∑ |𝑦𝑖|

𝑛
𝑖=1 …………………………………….(1) 

𝑅𝑞 = √
1

𝑛
∑ 𝑦𝑖

2𝑛
𝑖=1 ………………………………….. (2) 

 

 

Ra,i [μm] Average roughness of facet i 

Rq [μm] Root mean square average of the roughness profile ordinates. 

t [m] Layer thickness 

l [m] Overhang distance 

Yj [m] Vertical distance from the mean line to the data point 

Norient - Number of assessed orientations 

p - Unit vector oriented vertically downward to the plate  
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Fig.4.3.1 and Fig.4.3.2 shows the surface arithmetic average of roughness profile (Ra) of SLM 

plates for upward and downward surface respectively with the change of the inclination angle 

from 5 degrees to 90 degrees obtained by stylus profilometer. In both figures (a) linear 

regression analysis, (b) exponential regression analysis, (c) logarithmic regression analysis 

were shown by plotting into graph for both upward and downward surface of SLM plates from 

10 degrees to 90 degrees with 5 degrees interval. We can observe the highest surface arithmetic 

average of roughness profile (Ra) for 10 degrees in all occasions 1 data point (Ra=10.7μm), 

mean value of 3 data points (Ra=10.06μm) and mean value of 5 data points (Ra=10.32μm). The 

relative higher surface roughness of SLM plates up to 45 degrees could be explained by the 

narrowing of the step edges, and the associated concentration of partially melted particles at 

step edges. Lowest surface arithmetic average of roughness profile is found for 5 degrees in 

case of 1 data point (Ra=5.44μm), 3 average data points (Ra=5.18 μm) and 5 average data points 

(Ra=4.90 μm) respectively. The coefficient of determination (R2) was determined for all linear 

regression, exponential regression, and logarithmic regression analysis plot for both upper and 

lower surface for 1, 3 and 5 average data points respectively. The coefficient of determination 

(R2) shows the percentage variation in surface arithmetic average of roughness profile (Ra) by 

inclination angles. The R2 coefficient of determination is a statistical measure of how well the 

regression line approximates the real data points. We can see from the linear regression analysis 

plot in Fig.4.3.1(a) that the value of R2 is 0.0015, 0.0497 and 0.0267 respectively where red 

linear regression line is denoted for accounting 1 data point, blue is for 3 average data points 

and black is for 5 average data points. That means only 0.15 %, 4.97 % and 2.67 % Ra data 

points fall within the red (1 data point), blue (3 average data points), and black (5 data points) 

linear regression line. Fig. 4.3.1(b) shows the plot for exponential regression analysis where 

the value of R2 is 0.0002, 0.0695 and 0.0495 for 1, 3 average and 5 average data points of Ra. 

That means only 0.02 %, 6.95 % and 4.95 % data points fit within the red (1 data point), blue 
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(3 average data points), and black (5 average data points) exponential regression line. In case 

of logarithmic regression analysis shown in Fig. 4.3.1(c) for 0.27%, 3.46% and 5.46 % Ra value 

fits on the logarithmic regression line consisting the red (1 data point), blue (3 average data 

points), and black (5 average data points) respectively. That means much more data points fit 

on exponential regression line than linear and exponential line for upper Ra. 

We can observe the highest surface arithmetic average of roughness profile (Ra) for lower 

surface for 5 degrees in 1 data point (Ra=12.8μm), 15 degrees in case of 3 average data points 

(Ra=12.8μm) and 85 degrees in case of 5 average data points (Ra=12.7μm). Lowest surface 

arithmetic average of roughness profile is found for 50 degrees in case of 1 data point 

(Ra=6.1μm), 70 degrees in case of 3 average data points (Ra=7.47μm) and 70 degrees in case 

of 5 average data points (Ra=7.79μm) respectively. From the plot for linear regression analysis 

of arithmetic average of roughness (Ra) shown in Fig. 4.3.2(a) for lower surface of SLM plates 

that 0.15%, 4.97%, 2.67% Ra data points fall within the red (1 data point), blue (3 average data 

points), and black (5 average data points) linear regression line 3.31%, 13.14% and 39.6% data 

points fit within the red (1 data point), blue (3 average data points), and black(5 average data 

points) exponential regression line. In case of logarithmic regression analysis shown in 

Fig.4.3.2(c) for 10.38%, 15.19% and 40.06% Ra value fits on the logarithmic regression line 

consisting the red (1 data point), blue (3 average data points), and black (5 average data points) 

respectively. We can see in case of lower surface of arithmetic average of roughness (Ra) value 

for 5 average data points there is much more percentage of data points exist on the linear, 

exponential and logarithmic regression line than the upper surface of SLM plates in the change 

of inclination angle. In case of lower surface of SLM plates from the plots for 5 average data 

points highest Ra value is found for 15 degrees (Ra=12.34μm) inclination angle whereas highest 

Ra value is found for 10 degrees (Ra=10.32μm) for the upward surface. Lowest Ra value exists 

(5 degrees) for upward (Ra=4.906μm) and 70 degrees (Ra=7.79μm) for downward surface. 
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Figure 4.3.1:Surface arithmetic average of roughness profile (Ra) analysis by stylus 

profilometer for the upward surface with the function of inclination angle varying from 5 

degrees to 90 degrees with 5 degrees interval for 1, 3 average and 5 average data points (a) 

showing the linear regression analysis, (b) showing the exponential regression analysis, 

(c)showing the logarithmic regression analysis.  
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Figure 4.3.2:Surface arithmetic average of roughness profile (Ra) analysis by stylus 

profilometer for the downward surface with the function of inclination angle varying from 5 

degrees to 90 degrees with 5 degrees interval for 1, 3 and 5 data points (a) showing the linear 
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regression analysis, (b) showing the exponential regression analysis, (c) showing the 

logarithmic regression analysis.  

 

Fig.4.3.3 and Fig.4.3.4 shows the root mean square deviation of the roughness profile (Rq) for 

(a) linear regression analysis, (b) exponential regression analysis, (c) logarithmic regression 

analysis of SLM plates for upward and downward surface respectively with the change of the 

inclination angle from 5 degrees to 90 degrees with 5 degrees interval obtained by stylus 

profilometer. We can observe the highest root mean square deviation of the roughness profile 

(Rq) for 10 degrees 1 data point (Rq=13.5μm), mean value of 3 data points for 15 degrees 

(Rq=12.4μm) and mean value of 5 data points (Rq=12.7μm) for 15 degrees for the upward 

surface. Lowest root mean square deviation of the roughness profile is found for 50 degrees in 

case of 1 data point (Rq=6.91μm), 10 degrees in case of 3 average data points (Rq=7.07μm) and 

5 average data points (Rq=6.938μm) respectively. The coefficient of determination (R2) was 

determined for all linear regression, exponential regression, and logarithmic regression analysis 

plot for both upper and lower surface for 1, 3 and 5 average data points respectively. We can 

see from the linear regression analysis plot in Fig.4.3.3(a) that the value of R2 is 0.0008, 0.029 

and 0.0097 respectively. That means only 0.08 %, 2.9 % and 0.97% Rq data points fall within 

the red (1 data point), blue (3 average data points), and black (5 average data points) linear 

regression line. Fig. 4.3.3(b) shows the plot for exponential regression analysis where the value 

of R2 is 0.0002, 0.0414 and 0.0173 for 1, 3 average and 5 average data points of Rq. That means 

only 0.02%, 4.14% and 1.7 % data points fit within the red (1 data point), blue (3 average data 

points), and black (5 average data points) exponential regression line. In case of logarithmic 

regression analysis shown in Fig. 4.3.3(c) for 0.42%, 1.41% and 2% Rq value fits on the 

logarithmic regression line consisting the red (1 data point), blue (3 average data points), and 

black (5 average data points) respectively. 
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We can observe the highest root mean square deviation of the roughness profile (Rq) for lower 

surface for 5 degrees in 1 data point (Rq=15.5μm), 15 degrees in case of 3 average data points 

(Rq=15.3μm) and 15 degrees in case of 5 average data points (Rq=14.66μm). Lowest surface 

arithmetic average of roughness profile is found for 50 degrees in case of 1 data point (Rq=7.75 

μm), 70 degrees in case of 3 average data points (Rq=8.89μm) and 70 degrees in case of 5 

average data points (Rq=9.49μm) respectively. From the plot for linear regression analysis of 

root mean square deviation of the roughness profile (Rq) shown in Fig. 4.3.4(a) for lower 

surface of SLM plates that 6.64%, 21.01%, 42.77% data points data points fall within the red 

(1 data point), blue (3 average data points), and black (5 average data points) linear regression 

line. 0.62%, 20.49% and 42.1% data points fit within the red (1 data point), blue (3 average 

data points), and black (5 average data points) exponential regression line. In case of 

logarithmic regression analysis shown in Fig. 4.3.4 (c) for 15.63%, 24.86% and 41.16% Rq 

value fits on the logarithmic regression line consisting the red (1 data point), blue (3 average 

data points), and black (5 average data points) respectively. We can see in case of lower surface 

of arithmetic average of roughness (Rq) value for 5 average data points there is much more 

percentage of data points exist on the linear, exponential and logarithmic regression line than 

the upper surface of SLM plates in the change of inclination angle. In case of lower surface of 

SLM plates from the plots for 5 average data points highest Rq value is found for 15 

degrees(Rq=14.66 μm) inclination angle whereas highest Rq value is found for 10 

degrees(Rq=12.7μm) for the upward surface e. Lowest Rq value exists in 5 degrees inclination 

angle of upward (Rq=6.93 μm) and 70 degrees of downward (Rq=9.49μm) surface.  

Surface profile properties such as maximum peak height (Rp), maximum valley depth (Rv), 

skewness of the roughness profile (Rsk), kurtosis of the roughness profile (Rku) are also obtained 

using a profilometer (shown in supplementary figures). 
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Figure 4.3.3:Root mean square deviation of the roughness profile (Rq) analysis by stylus 

profilometer for the upward surface with the function of inclination angle varying from 5 

degrees to 90 degrees with 5 degrees’ interval for 1, 3 and 5 data points (a) showing the linear 

regression analysis, (b) showing the exponential regression analysis, (c) showing the 

logarithmic regression analysis.  
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Figure 4.3.4: Root mean square deviation of the roughness profile (Rq) analysis by stylus 

profilometer for the downward surface with the function of inclination angle varying from 5 

degrees to 90 degrees with 5 degrees’ interval for 1, 3 and 5 data points (a) showing the linear 
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regression analysis, (b) showing the exponential regression analysis, (c) showing the 

logarithmic regression analysis.  

4.4.3. Surface Morphology Analysis of Different Inclined SLM parts 

Surface morphology plays a critical role for the bone cells growth [162, 163]. Extensive level 

of researches has been carried out so far to understand the role of surface morphology for bone 

regeneration for titanium implants mostly on traditional titanium implants manufactured by 

casting process[164-167]. Even though some different research groups they have investigated 

the additively manufactured titanium implants pore geometry’s effect on in-vitro[168],  

changing the surface morphology by chemical treatment[169, 170], but still it is not so much 

explored for additively manufactured titanium surface morphology role without doing post-

processing treatment and getting rid of partially melted particles for orthopaedic implants as 

the surface topography can be manipulated easily by changing the build inclination angle. 

Therefore prior to clinical application, it is so essential to observe the surface morphology of 

different inclined SLM plates for both upward and downward surface. 

Fig.4.4.1 and Fig.4.4.2 represent the surface morphology of Ti6Al4V SLM plates of upper and 

lower surface from 5 degrees to 90 degrees incliantion angle varying 5 degrees by SEM images 

for lower and higher magnification respectively. In all occasions for both upward and 

downward surface we can observe the partially melted particles stuck on the SLM plates.The 

phenomena of partially melted particles occurs by three mechanisms:(1) thermal diffusion 

occurs due to the significant temperature difference between loose powder and solidified 

material, leading to local fusion of powder to the edge of the scan track of the SLM surface[171, 

172]; (2) balling phenomenon in SLM process which is responsible for forming particles on 

the laser melted surface[144]; (3)the stair-stepping effect of the implant of varying inclination 

angles are partially built on the loose powder; and thus some metal particles below each layer 

will be totally or partially melted and then bonded on the bottom of the layer[173]. 



69 
 

The phenomena for balling is defined as its ability of breaking up the melt pool into smaller 

entities when the total surface of a molten pool becomes larger than that of a sphere with the 

same volume which causes several impediments on interlayer connection[174]. Marangoni 

convection theory supports the balling phenomena by explaining the thermal gradient which 

occurs due to balling and create a thermos-capillary flow of fluid within the melt pool from 

low surface tension region to high surface tension region[175]. Balling is the breakup of the 

melt pool into small spheres. It occurs when molten material does not wet well to the underlying 

substrate or material due to high surface tension differences generated as a result of variations 

in thermal properties within the melt pool [176-178].Balling is a severe impediment on 

interlayer connection, it decreases part density and increases top surface roughness and side 

roughness. However, the balling effect more dominantly affects the side roughness of parts due 

to the direction of balling scattering to either side of the melt pool rather than settling on the 

top surface. 
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Figure 4.4.1: SEM micrograph shows the surface morphology of Ti6Al4V SLM plates of both 

upper and lower surface 5 to   25 degrees inclination angle with 5 degrees interval for lower 

(63X) magnitude.  
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Figure 4.4.2: SEM micrograph shows the surface morphology of Ti6Al4V SLM plates of both 

upper and lower surface 30 to 50 degrees inclination angle with 5 degrees interval for lower 

(63X) magnitude.  
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Figure 4.4.3: SEM micrograph shows the surface morphology of Ti6Al4V SLM plates of both 

upper and lower surface 55 to 75 degrees inclination angle with 5 degrees interval for lower 

(63X) magnitude.  



73 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.4: SEM micrograph shows the surface morphology of Ti6Al4V SLM plates of both 

upper and lower surface 80 to 90 degrees inclination angle with 5 degrees interval for lower 

(63X) magnitude.  

It is observed from Fig.4.4.1 that with the increase of the inclination angle, there is a 

corresponding increase in the number of partially melted particles on the upward SLM support-

free part from 5 to 90 degrees, and there is no regular trend was observed in terms of partially 

melted particles on downward surface. It is apparently seen from Fig.8 that there are some 

distinguishable spaces between particles melted particles from 5 degrees to 70 degrees whereas 

75 to 90 degrees the partially melted particles are in dense fashion on the upper surface. We 

can clearly see that in case of 10 degrees inclination, powders are less densely located on the 
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SLM plate but in case of 90 degree inclination, powders are quite densely located on the SLM 

plate. In case of lower surface, it observed that the particially melted particles are located in 

agglomerate fashion from 5 degrees to 35 degrees where 5 to 15 degrees are particularly highly 

agglomerated. From 40 to 90 degrees it can be observed that the partially melted particles 

located densly on SLM plates but there the aglomeration of particles are almost negligible.  

It is also observed from Fig.4.4.2 that the sharpness of step edge border is dimmed with the 

increase of the inclination angle for upper surface of SLM plates from 5 to 45 degrees and no 

step edge border was found from 50 to 90 degrees. From 5 to 20 degrees the step edge border 

is completely prominent. In case of lower surface of SLM plates no step- edge border is found 

in any of the inclination angle. We can also observe that the distance between two step edge 

borders are also shrinking from 10 degrees to 30 degrees for the upper SLM parts shown by 

red line in SEM images. The distance between two step edge borders is 335 µm, 235 µm, 

219.28 µm, 191.21 µm, 136.84 µm for 10,15, 20,25,30 degrees inclination angle respectively.  

 



75 
 

Figure 4.4.5: SEM micrograph shows the surface morphology of Ti6Al4V SLM plates of both 

upper and lower surface 5to 90 degrees inclination angle with 5 degrees interval for higher 
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(500X) magnitude.  

4.5. Surface Wettability Analysis of Different Inclined SLM parts 

Surface wettability has been reported to play a crucial role in terms of biological interaction 

between implant surface and surrounding host tissue including blood[179]. For example, 

surface wettability has been found to have the direct link with the osseo-integration 

process[180]. Surface wettability is measured by the formation of contact angle by a liquid at 

an interface. However, it is quite difficult to determine the specific contribution of wettability 

as the solid surface of wettability is directly linked with other features such as surface free 

energy, surface roughness, surface chemistry, surface geometrical structures[181]. Fig. 4.5.1 

(a) and 4.5.1(b) showed the contact angle measurement of the implants for 5 to 90 degrees 

SLM plate for both upper and lower surface. The figure demonstrates irregularities of SLM 

plates for both upper and lower surface. Without some exceptions in most of the inclined SLM 

parts shows hydrophobic surface. The surface wettability of titanium implants fabricated by 

SLM has previously been reported to have a more hydrophilic contact angle of < 90 

degrees[119]. In this case, the contact angle measurements reported for the 5 degrees and 90 

degrees of upper SLM parts completely differ from each other due to the geometrical 

dissimilarity of the surface for the upper surface of SLM plates.  In the case of the 90 degrees 

inclination, a larger number of partially melted particles induces hydrophobicity on the implant 

surface resulting in an average contact angle of 1220 whereas 10 degrees case the value of 

contact angle is 85.660.  Highest contact angle value 130.1500 is found in 75 degrees inclination 

and lowest contact angle value 80.810 is found in 10 degrees inclination for upper surface. In 

case of lower surface, the contact angle value observed for all inclined SLM plates > 90 degrees 

which means the lower surface of SLM plates reveal the hydrophobic surface. The highest 

hydrophobicity value 126.150 for lower SLM plates is found in 65 degrees inclination angle 

and lowest hydrophobicity value 101.960 is found in 40 degrees inclination angle. 
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Figure 4.5.1: Surface wettability of 5 to 90 degrees inclination of SLM plated for both upper 

and lower surface by the contact angle measurement 
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4.6. Conclusions 

1. There is much more percentage of correlation of arithmetic average of roughness (Ra) value 

for 5 average data points is found on lower surface on the linear, exponential and 

logarithmic regression line than the upper surface of SLM plates in the change of inclination 

angle. 

2. In case of lower surface of SLM plates from the plots for 5 average data points, the highest 

Ra value is found for 15 degrees (Ra=12.34μm) inclination angle whereas highest Ra value 

is found for 10 degrees (Ra=10.32μm) for the upward surface. Lowest Ra value exists (5 

degrees) for upward (Ra=4.906μm) and 70 degrees (Ra=7.79μm) for downward surface. 

3. In case of lower surface of SLM plates from the plots for 5 average data points, the highest 

Rq value is found for 15 degrees (Rq=14.66 μm) inclination angle whereas highest Rq value 

is found for 10 degrees (Rq=12.7μm) for the upward surface. Lowest Rq value exists in 5 

degrees inclination angle of upward (Rq=6.93 μm) and 70 degrees of downward 

(Rq=9.49μm) surface. 

4. It is clearly observed from the surface morphology that there is a corresponding increase in 

the number of partially melted particles on the upward SLM support-free part from 5 to 90 

degrees and there is no regular trend was observed in terms of partially melted particles on 

downward surface. 

5. Partially melted particles are in agglomerate fashion from 5 degrees to 35 degrees on 

downward surface where 5 to 15 degrees are particularly highly agglomerated. From 40 to 

90 degrees it can be observed that the partially melted particles located densely on SLM 

plates but there is not so much agglomeration of partially melted particles. 
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6. The step edge borders look clearly visible from 5 to 20 degrees and dimmed from 25 to 45 

degrees on the upward surface of SLM plates whereas there is no existence of step edge 

border on any of the inclined downward surface from 5 degrees to 90 degrees. 

7. Highest contact angle value 130.1500 is found in 75 degrees inclination and lowest contact 

angle value 80.810 is found in 35 degrees inclination for upper surface.  

8. In case of lower surface, the contact angle value observed for all inclined SLM plates > 90 

degrees which means the lower surface of SLM plates reveal the hydrophobic surface. The 

highest hydrophobicity value 126.150 for lower SLM plates is found in 65 degrees 

inclination angle and lowest hydrophobicity value 101.960 is found in 40 degrees 

inclination angle. 
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Chapter-Five: Angle defines attachment: Switching the biological 

response to titanium interfaces by modifying the inclination angle 

during selective laser melting 

5.1. Chapter overview 

In the previous chapter, the comprehensive analysis of different surface properties of Ti6Al4V 

SLM implants with the change of the inclination angle from 5 degrees to 90 degrees for both 

upward and downward surface has been reported.    

As selective laser melted (SLM) metallic additive manufactured implants become common, a 

key, but overlooked design parameter influencing the surface properties and implant 

biocompatibility is its inclination angle. In this study, we have fabricated Ti6Al4V implants at 

three different inclination angles (0 degree, 45 degrees, and 90 degrees) reporting the 

relationship between cell attachment, surface topography and surface chemistry at each 

inclination angle. During the SLM process, we show that as the inclination angles increase, 

there is a corresponding increase in the number of partially melted particles adhering to the 

surface, greatly affecting the surface topography, morphology, roughness, chemistry, and 

wettability of the implant. In order to validate the approach, the effect of the surface properties 

on cell fate was determined. In each case, the overall viability of Chinese hamster ovarian cells 

(CHO) was found to be statistically indistinguishable; however, the number of spindle cells 

and their dimension were found to increase significantly at higher inclination angles by 

applying matlab based program. 1 

 

 

 
*The part of these research findings has been published in Materials & Design. 

A. Sarker, N. Tran, A. Rifai, J. Elambasseril, M. Brandt, R. Williams, M. Leary, K. Fox, “Angle defines 

attachment: Switching the biological response to titanium interfaces by modifying the inclination angle during 

selective laser melting”, Materials & Design 154 (2018) 326-339. 
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5.2. Introduction 

Metals and metal-alloys have a long history of application as bone, cardiovascular implants 

[73, 85, 86, 182, 183]. Metal and metal alloys including magnesium, iron, titanium, tantalum, 

titanium-nickel, stainless steels, cobalt (Co) based alloys (CoCrMo) have been applied as 

potential bone graft, cardiovascular stents [87-90, 184, 185]. Among a wide variety of different 

metals used for biomedical implants, titanium and its alloy has been used as an effective 

implant material due to its excellent biocompatibility, strength to weight ratio, corrosion 

resistance, toughness, and bio-inert oxide surface [91, 186-189]. The titanium alloy presented 

this paper Ti6Al4V covers about 50% industrial applications of all titanium [190]. 

Rapid prototyping or additive manufacturing (AM) makes possible the fabrication of 

biomedical implants with hitherto unprecedented structural complexity and prescribed 

microstructure and macrostructure [21, 67, 82, 95]. Additive manufacturing offers numerous 

commercial technologies for the fabrication of robust components via a layer-by-layer design 

associated with a computer model [37, 44, 191]. This control over the shape, size and 

mechanical properties enables the investigation of individual implant parameters such as 

porosity, pore size, shape and permeability [31]. Metal based AM is being widely used for 

tissue engineering applications for manufacturing patient-specific orthopaedic, cardiac 

implants, [73, 192-198] and the biological performance of synthetic bone grafts [31].  

Selective laser melting (SLM) is a Metallic AM (MAM) process that creates parts by scanning 

powdered materials using the thermal energy supplied by a focused and computer-controlled 

laser beam based on a digital representation of the intended implant geometry. SLM is a layer-

by-layer material addition technique that allows the generation of complex 3D parts by 

selectively melting successive layers of metal powder [37]. With reference to commercial 

MAM technologies, SLM is characterized by medium productivity, good repeatability and 
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medium to high surface quality [21]. The SLM process was reported to be capable of 

fabricating implants of several pure titanium and titanium based alloys for implants such as 

Ti6Al7Nb [45], Ti-24Nb-4Zr-8Sn [44],Ni-Ti [46], Ti-13Nb-13Zr [47] other β titanium alloys 

[48] and most importantly Ti6Al4V [49, 50]. Recently, it was reported that SLM has the ability 

to fabricate porous bio-inert Ti6Al4V structures with high control and reproducibility in terms 

of their morphological and mechanical properties [51] and showed excellent biocompatibility 

[52].   

Significant research on the design of cellular lattice structures has shown potential for 

controlling dimensional accuracy, mechanical properties and associated biocompatibility [44, 

173, 199, 200]. The final surface topography, morphology, chemistry, and wettability of the 

implants can be altered to adjust the interaction between the implant and the host tissue [148-

151, 201]. These properties are dependent on the associated SLM process parameters [202-

205]. Laser power, scanning speed, scanning pattern, hatch spacing, layer thickness, powder 

bed temperature and working atmosphere are the most critical processing parameters for the 

SLM process, and several groups focused their research on optimizing these parameters for the 

final desired parts [145-147, 206].  

Cellular lattice structures fabricated by SLM process are the combination of numerous strut 

elements, each with specific inclination angle to the SLM platen. Here, for the first time, we 

report the relationship of the inclination angle of the implant of 0, 45 and 90 degrees with their 

surface morphology, surface wettability, and surface chemistry; and, demonstrate that these 

parameters have a direct relationship with biocompatibility, cell attachment and cell 

morphology. This work will have significant impact on the design and fabrication of these 

materials for biomedical applications and the fabrication of the next generation of just-in-time, 

patient specific implants. 
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5.3. Experimental Section 

The samples were fabricated according to chapter-3.3 – Materials and Methods section outlined 

in 3.2, characterized according to section 3.4, mammalian cell culture and cell morphology 

analysis according to section 3.5.  

5.4. Results and Discussion 

5.4.1. Design and Fabrication of SLM Ti6Al4V Alloy with Different Inclination Angles 

Figure 5.1(a) shows the SLM laser scanning strategy for a single layer of the 10×10 mm cross-

section specimen. The scanning strategy consists of a perimeter laser scan which is then in-

filled using a raster scan. Fig. 5.1(b) shows the stairstep effect inherent to SLM process due to 

the effect of layer-wise manufacture and the associated inclination to the build plate, α. Where 

a reduction in α tends to increase the associated step size. Particle size distribution of the 

Ti6Al4V powder used to fabricate test specimens, Fig. 5.1(c), has parameters: D10=35.1, 

D50=48.9, D90=69.7 µm; and displays a surface morphology that is spherical in shape with some 

irregularities, Figure 5.1(d), as is typical for gas atomized powders. SLM Ti6Al4V implant 

specimens were fabricated with inclination angle α of 0, 45, and 90 degrees, and are supported 

by frangible support structures shown in Fig. 5.1(e). SLM process parameters are defined in 

the materials and method section. SLM manufacture results in specific geometric defects, 

including raised edge features associated with perimeter laser scan, and partially fused powder 

shown in Fig. 5.1(f) by CT scanning.  
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Figure 5.1: (a) Perimeter laser scan (solid line). Raster (fill) laser scan (broken line), circle 

indicates laser path initiation. Arrow head indicates laser trajectory, (b) stair-step effect on 

inclination angle, (c) Size distribution of Ti6Al4V raw powder, (d) SEM micrograph shows the 

surface morphology of raw Ti6Al4V powder, (e) Design of SLM printed Ti6Al4V Alloy of 0, 

45 and 90 degrees inclination showing the part and its support structure, (f) CT-scanned images 

of 0, 45 and 90 degrees inclined part. Legend: 1). Fabricated component, 2). Supporting 

structure, 3). Geometric defect associated with perimeter laser scan, 4). Adhered powder 

particles.    
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5.4.2. Surface Topography and Surface Wettability of Selective Laser Melted Ti6Al4V 

of Different Inclinations 

The 2D and 3D surface texture of Ti6Al4V implants of 0, 45, and 90 inclination angles are 

shown in Fig.5.2(a). It is clearly observed that the number of partially melted titanium particles 

increases with the increase of the inclination angle(α) on the implant surface. In case of 0 

degree, the rippling effect is found from the surface texture during the selective laser melting 

process. The bullet-shaped like appearance is also noticed on the surface of 0-degree inclination 

which is marked by white arrow in Fig.5.2(a). In case of 45 degrees inclination, we can observe 

very dim step edge border due to the stair-step effect and no step edge is observed in 90 degrees 

as there is no effect of stair-step [156].  

It is clearly observed that in the case of 0degree inclination angle only few partially melted 

titanium particles are adhered on the sample. With the increase of inclination angle, 

considerably more partially melted particles are visible on the surface of the implants. The 90 

degrees inclination angle part reveals the dense population of partially melted particles on the 

implant surface.  

Surface profile properties such as maximum peak height (Rp), maximum valley depth (Rv), 

arithmetic average of roughness profile (Ra), root mean square deviation of the roughness 

profile (Rq), skewness of the roughness profile (Rsk), kurtosis of the roughness profile (Rku) are 

obtained using a profilometer which are shown in Figure 5.2(b) based on Figure 5.3.1, 5.3.2 & 

5.3.3. For the 0degree inclination, it is found that the average peak height (Rp) is 10.48 μm and 

average depth of the valley (Rv) is 7.70 μm. For 45, and 90 degrees inclination, the average 

peak heights are 20.3 μm, 24.8 μm respectively and the average depth of the valley is 18.28 

μm and 26.18 μm respectively. The increase of the average peak height and valley depth with 

the increase of the inclination angle can be explained by the increasing number of partially 

melted particles on the implant surface.  
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The surface arithmetic average of roughness profile (Ra), root mean square deviation of the 

roughness profile (Rq) for the 0, 45, and 90 degrees inclination angles are shown in Fig. 5.2(b). 

Both Ra and Rq values increase with increasing inclination angle(α). The highest arithmetic 

average of roughness (7.25 μm) and root mean square deviation of the roughness profile (8.83 

μm) have been found for 90 degrees inclination. The trend of increasing roughness with the 

inclination may be explained by the increasing concentration of partially melted particles and 

stair-step effect[156]. In case of the 0degree inclination, few partially melted particles adhered 

on the surface; consequently, the surface morphology and roughness, Ra value for the 0degree 

inclination is 2.53 μm, remains largely uninfluenced by these few particles. In the case of 90 

degrees, Ra value is 7.25 μm which is higher than observed at 45 degrees (Ra=5.96) and 0 

degree (2.53 μm), respectively, because of no stairstep effect and higher amount of partially 

melted particles on the surface of the implant which is shown by white arrow in Fig. 5.2(a). 

Skewness of the roughness profile describes the asymmetry of the profile relative to the mean 

plane. From the Fig. 5.2(b), it is observed that the skewness of the roughness profile (Rsk) is 

greater than 0 for all inclination angles, indicating that peaks predominate over the valleys on 

surface. Finally, kurtosis of the roughness profile has been used to describe the sharpness of 

the surface, i.e. sharpness of the peaks and valleys [207, 208]. When the kurtosis is higher than 

3, the surface is defined as 

spiky, meaning that the peaks and valleys are very high and if the kurtosis is lower than 3 that 

means the surface is bumpy [209]. In this case, the 0, and 45 degrees inclination angle are 

associated with a spiky surface as Rku value is 3.33 and 3.26 respectively, whereas the surface 

of 90 degrees inclination angle is bumpy, as Rku is 2.43.  The bumpy surface for 90 degrees 

inclination angle implant is associated with the densely located partially melted titanium 

particles.  
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Figure 5.2: (a) 2D surface profile and 3D  surface profile of 0, 45 and 90 degrees inclined 

implant obtained by the digital microscope showing topographical changes as the angle 

increases, (b) Surface profile properties such as surface maximum peak height (Rp), maximum 

valley depth (Rv), arithmetic average of roughness profile (Ra), root mean square deviation of 

the roughness profile (Rq), skewness of the roughness profile (Rsk), kurtosis of the roughness 

profile (Rku) obtained by profilometer, (c) Surface wettability of 0, 45 and 90 degrees 

inclination by the contact angle measurement suggesting that the samples become more 

hydrophobic as the inclination angle increases. 
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Figure 5.3.1: Surface profile properties for 0 degree inclination such as maximum peak height 

(Rp), maximum valley depth (Rv), arithmetic average of roughness profile (Ra), root mean 

square deviation of the roughness profile (Rq), skewness of the roughness profile (Rsk), kurtosis 

of the roughness profile (Rku) obtained by profilometer for 5 consecutive scans 
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 Figure 5.3.2: Surface profile properties for 45 degrees inclination such as maximum peak 

height (Rp), maximum valley depth (Rv), arithmetic average of roughness profile (Ra), root 

mean square deviation of the roughness profile (Rq), skewness of the roughness profile (Rsk), 

kurtosis of the roughness profile (Rku) obtained by profilometer for 5 consecutive scans.  
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Figure 5.3.3: Surface profile properties for 90 degrees inclination such as maximum peak 

height (Rp), maximum valley depth (Rv), arithmetic average of roughness profile (Ra), root 

mean square deviation of the roughness profile (Rq), skewness of the roughness profile (Rsk), 

kurtosis of the roughness profile (Rku) obtained by profilometer for 5 consecutive scans. 

Surface wettability has been reported to play a crucial role in terms of biological interaction 

between implant surface and surrounding host tissue including blood [179]. For example, 

surface wettability has been found to have the direct link with the osseo-integration process. 

[180] Surface wettability is measured by the formation of contact angle by a liquid at an 

interface. However, it is quite difficult to determine the specific contribution of wettability as 

the solid surface of wettability is directly linked with other features such as surface free energy, 

surface roughness, surface chemistry, surface geometrical structures [181]. Fig. 5.2(c) showed 

the contact angle measurement of the implants for 0, 45, and 90 degrees inclination. The 
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0degree inclination specimen demonstrates an average contact angle of 74 degrees, with the 45 

degree and 90 degrees parts progressively more hydrophobic with average contact angles of 92 

and 102 degrees, respectively. The surface wettability of titanium implants fabricated by SLM 

has previously been reported to have a more hydrophilic contact angle of < 90 degrees [119]. 

In this case, the contact angle measurements reported for the 0, 45, and 90 degrees inclined 

implants differ from each other due to the geometrical dissimilarity of the surface. In the case 

of the 90 degrees inclination, a larger number of partially melted particles induces 

hydrophobicity on the implant surface resulting in an average contact angle of 102 degrees.  

Fig. 5.4.1(a) shows obtained surface morphologies of the implants of various inclination angles 

(0, 45, and 90 degrees). It is clearly observed that with the increase of inclination angle(α) there 

is an increase in the number of partially melted particles adhered to the implant surface. The 

quantification of partially melted particles number is shown in Fig. 5.4.1(c) based on the same 

depth of field SEM image of 500X magnifications. A custom Matlab script was applied based 

on Fig. 5.4.1(a) to quantify the numbers of partially melted particles. For the 0, 45, and 90 

degrees inclination angles, the number of partially melted particles is 5, 52 and 71, respectively; 

and the associated average size of partially melted particles is 27.76, 35.79, 38.40 µm, 

respectively. The surface areas of 0, 45, and 90 degrees inclined implants are shown in 

Fig.5.4.1(d) based on the same depth of field SEM image of 500X magnification from Fig. 

5.4.1(a). It was observed that with the increase of the inclination, there is a corresponding 

increase in the number of partially melted particles. For 0degree inclination, bullet shaped 

appearance is observed presumably due to slower cooling in the centre of each track which can 

be confirmed from SEM image of high magnification (500X) which is shown by white arrow. 

From the 45 degrees inclined surface morphology, we can observe the step edge due to stairstep 

effect which is shown by white arrow. However, in the case of the implant surface for the 90 

degrees inclination angle, we can see the surface is almost covered with partially melted 
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particles having no step edge border as there is no effect of stair-step. From the high 

magnification images, we can see the sizes and shape of the partially melted particle are not in 

uniform for all inclination angles (0, 45, and 90 degrees).  

The phenomena of partially melted particles occurs by three mechanisms: (1) thermal diffusion 

occurs due to the significant temperature difference between loose powder and solidified 

material, leading to local fusion of powder to the edge of the scan track of the implant surface; 

[171, 172] (2) balling phenomenon in SLM process which is responsible for forming particles 

on the laser melted surface; [144] (3) the stair-stepping effect of the implant of varying 

inclination angles are partially built on the loose powder; and thus some metal particles below 

each layer will be totally or partially melted and then bonded on the bottom of the layer [173].   

Fig. 5.4.1(b) shows the EDX spectrum of Ti6Al4V of 0, 45, and 90 degrees inclination angle. 

The EDX spectrum confirms the presence of metal titanium, aluminium, vanadium on the 

surface of Ti6Al4V implants for all inclinations which has also been shown in the Fig. 5.5.1, 

Fig.5.5.2, Fig. 5.5.3 by EDX mapping. 
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Figure 5.4.1: (a) SEM micrograph shows the surface morphology of 0, 45 and 90 degrees 

inclination angle upward surface for both low (100X) and high magnitude (500X) 

magnification, partially melted titanium particles are indicated by an arrow on the high 

magnification (500X) image, (b) EDX spectra for 0, 45, and 90 degrees inclination confirms 

the presence of Ti, Al and V on the surface, (c) Quantification and average size measurement 

of partially melted particles by image analysis of high magnification SEM images for same 

field of view (Figure 5.4.2), (d) Surface area measurement of 0, 45 and 90 degrees inclination 

for the high magnification SEM image. 
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Figure 5.4.2 : Quantification and average size measurement of partially melted particles for 0, 

45, and 90 degrees inclination inclinations by Matlab programming 
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Figure 5.5.1: EDX Mapping for 0degree inclined part showing SEM image (a), superimposed 

image (b), Titanium colour map(c), Aluminium colour map (d), Vanadium colour map(e).  
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Figure 5.5.2: EDX Mapping for 45 degrees inclined part showing SEM image (a), 

superimposed image (b), Titanium colour map(c), Aluminium colour map (d), Vanadium 

colour map(e).  
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Figure 5.5.3: EDX Mapping for 90 degrees inclined part showing SEM image (a), 

superimposed image (b), Titanium colour map(c), Aluminium colour map(d), Vanadium colour 

map(e).  
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5.4.3. Surface Chemistry Analysis of Inclination angles of SLM Ti6Al4V Implants 

Fig. 5.6.1(a) shows the XPS survey spectra of the detected elements for 0, 45, and 90 degrees 

inclined implants which confirmed the presence of carbon, nitrogen, oxygen and metals 

(titanium and aluminium). Vanadium was not detected on any surface which might be 

explained with the rough nature of implant surface which retarded the signal by reducing the 

electron counts reaching the detector during XPS characterisation. Fig. 5.6.1(b) shows the 

average relative atomic percentage of the detected elements from the high-resolution spectra 

for five different spots on 0, 45, and 90 degrees inclination samples. The extensive percentage 

of carbon element is detected which is related to the environment maintained at SLM machine 

and the collection process of sample from the machine. The samples exhibited the dominant 

signals from Ti, O and C with the weak contribution from Al, V and N. The ratios of Ti/O for 

0, 45, and 90 degrees inclination are 0.2071, 0.2100 and 0.6598 respectively. The higher 

magnitude of Ti/O ratio for 90 degrees could be explained with the increasing amount of 

partially melted particles on the sample. The ratio for Al/O is 0.1440, 0.0982, and 0.1519 for 

0, 45, and 90 degrees inclined samples. Fig. 5.6.1(c) shows the high-resolution spectra of 

Titanium (Ti2p) for all three implants (0, 45 and 90 degrees).  The spectra can be fitted with 

sets of binding energies that confirm the presence of several oxidation states of Ti2p. These are 

TiO2, TiO, Ti2O3 and Ti metallic state with TiO2 being the most dominant. The binding energies 

(E) values are listed into the Table 5.1. 

Ti2p State Binding 
Energy(eV) for 0 

degree 

Binding 
Energy(eV) for 

45 degrees 

Binding 
Energy(eV) for 

90 degrees 

TiO2(Ti4+) 458.31, 464.07 458.19, 464.05 458.22, 464.18 

TiO(Ti2+) 455.11, 461.26 455.09, 461.57 455.64, 462.15 

Ti2O3 ((Ti3+) 456.35, 462.64 456.59, 462.48 456.73, 462.79 

Ti metallic state 453.73, 458.61 453.64, 459.64 453.87, 459.87 

Table 5.1: Binding Energy of Ti2p for different inclination inclined implants 
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Fig. 5.6.2 depicts the depth profile for titanium and oxygen, respectively.  Fig. 5.6.1(d) shows 

the average relative atomic percentage of different oxides (TiO2, TiO and Ti2O3) and Ti 

metallic state. It is clearly found that TiO2 is the most dominating among different titanium 

oxides for all samples. The relative atomic percentage of TiO2 for 0, 45, and 90 degrees 

inclinations are 67.80%, 73.00% and 72.57% respectively. The relative atomic percentage of 

TiO for 0, 45, and 90 degrees inclinations are 7.23%, 11.45%, 5.77%. Higher amount of Ti2O3 

have been found for 0degree (8.52%) than 45 degrees (5.11%) and 90 degrees (6.23%) 

inclination inclinations. The relative atomic percentage of Ti metallic state for 0, 45, and 90 

degrees inclination inclinations are 16.44%, 10.44% and 15.43% respectively. Figure 5.6.1(e) 

shows the graph for TiO2 layer thickness. The thickness of the TiO2 oxide film on the 0, 45 and 

90 degrees inclinations is calculated using the Strohmeier equation: [210] 

 𝑑𝑜(𝑛𝑚) = λ𝑜𝑥𝑖𝑑𝑒 sinθ ln [ (
Ioxide∗λmetal∗ Nm

Imetal∗λoxide∗N0
) + 1] 

where do is TiO2 layer thickness; θ is the photoelectron output angle; λoxide (1.73nm) and λmetal 

(3.08) are the mean free paths of photoelectrons in the substrate and the oxide layer,  Imetal and 

Ioxide are the intensities of the titanium components in the metallic state and as Ti from the Ti2p 

peak, Nm and No are the volume densities of titanium atoms in metal and oxide. [211] The 

thickness of TiO2 layer is found to be 3.92 nm, 6.08 nm and 5.26 nm, respectively, for 0, 45, 

and 90 degrees inclined part.  
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Figure 5.6.1: (a) Survey spectra of 0, 45 and 90 degree inclinations of Ti6Al4V implants 

showing Ti, Al, C, N and O, (b) Relative atomic percentage of elements detected using XPS 

for 0, 45 and 90 degrees inclination for five different spots, (c) High resolution spectra of Ti2p 

region for each representative spot of 0, 45 and 90 degrees inclination inclinations,(d) Relative 

atomic percentage of different titanium oxides(TiO2,TiO, Ti2O3) and Ti metallic state detected 

using XPS for 0, 45 and 90 degrees inclinations, (e) Average TiO2 layer thickness measurement 

from the high resolution spectra of Ti2p.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6.2 : Depth Profiles of Ti2p and O1s regions for 0, 45, and 90 degrees inclination 

inclinations, depth profiling was performed at every 15.031 seconds from 0 to 586.73s.A clear 

transformation of oxide to pure metal can be observed for all inclination inclinations. 
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5.4.4. Cellular Viability and Attachment Behaviour with Inclined Ti6Al4V Implants  

Fig. 5.7.1(a) demonstrates the cell viability of 0, 45, and 90 degrees inclination of Ti6Al4V 

implants after 24 hours, 72 hours and 96 hours of incubation using the MTS assay. CHO cells 

were selected because they were a cell line that is regular used to test material 

cytotoxicity[212].  CHO cells were seeded on three inclinations at a density of 4*104cell/cm2 

and was noted that after 24 hours, the number of cells had exceeded the number in the initial 

stage in all three inclinations. There was no statistical significance found in terms of the cell 

viability for 0, 45, and 90 degrees inclinations than control after 24 hours. The number of viable 

cells present on 0, 45, and 90 degrees implants are not statistically significant different than the 

control after 72 hours and 96 hours of incubation. This indicates that the substrates, regardless 

of the inclination angle pose no adverse effect on cell viability. 

Fig. 5.7.1(b) shows the SEM images of the cell attachment on the surface of 0, 45, and 90 

degrees inclination after 24 hours. Cells have been found to be well adhered for all inclinations. 

CHO cells, as shown in Fig. 5.7.1(b) displayed almost rounded shape which can be confirmed 

from both 2000X and 4000X magnification of SEM micrographs in the case of the 0degree 

sample. For the 45 degrees and 90 degrees inclined implants, the cells appeared elongated and 

exhibited a spindle shaped appearance especially across the partially melted particles. Fig. 

5.7.1(c) shows the confocal images of the morphology of CHO cells on the surface of 0, 45, 

and 90 degrees inclinations after 72 hours of incubation. The CHO cells on 0-degree inclined 

surface exhibited spherical morphology. On the 45, and 90 degrees inclined parts, there 

appeared to be more filopodia, indicating better spreading on these samples. Several groups 

have reported that SLM manufactured Ti6Al4V implants are biocompatible and exhibited well 

in-vitro cell attachment and cell proliferation behaviour. [52, 168, 213]  The increased surface 

roughness and amount of spherical shaped partially melted particles on the surface of the 
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implants with the increase of inclination may have influenced the cells morphology and 

responsible for spindled like appearance. [119, 184, 214-217] 
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Figure 5.7.1: (a) CHO cell viability after 24hrs, 72hrs and 96 hrs of incubation on 0, 45 and 90 

degrees inclined implants as measured by MTS assays, (b) SEM micrographs of (both 2000X 

and 4000X magnification) CHO cells attachments shown by yellow arrow on 0, 45 and 90 

degrees inclined implant after 24 hrs of incubation, (c) Confocal laser scanning micrographs of 

CHO cells after 72 hours of incubation. Actin and nucleus were stained with Rhodamine and 

DAPI respectively. 
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5.4.5. Cell Proliferation and Morphology Analysis on Inclination Angles of SLM Implants 

Fig. 5.8.1(a) and (b) shows the morphology of CHO cells by confocal microscopy cultured on 

the struts for 0, 45, and 90 degrees inclinations after 24 hours and 72 hours of incubation 

respectively. The cell proliferation behaviour for all inclination angles after 24 hours of 

incubation is similar as observed in Fig. 5.8.1(a) from both lower and higher magnification. 

The cells strongly adhered to all inclinations after 24 hours. It is clearly visible with increase 

of incubation time, there is an increasing trend of cell proliferation behaviour for all 

inclinations. After 72 hours of incubation CHO cells appeared to fully cover all types of 

surfaces shown in Fig. 5.8.1(b). In the case of 0-degree inclined implant, the cells are uniformly 

distributed, but mostly present rounded morphologies, indicating the cells are sitting on the 

surface, rather than attached and spreading. However, in the case of 45, and 90 degrees 

inclination, the cells are appeared as mostly spindle-like morphology, suggesting better 

spreading. From the higher magnification confocal image in Figure 5.8.1(b), we can also 

observe that the spindle shape cells are significantly elongated on 90 degrees inclination as 

compared to the 45 degrees implant.  

For calculating the percentage of spherical and spindle shaped cells, the same field of view 

image has been used as for Fig. 5.8.1(b), with results shown in the (Fig. 5.8.2(a)-(c)), where 

red plus mark was used for spherical cells and blue line mark for spindle cells. It was revealed 

clearly from Fig. 5.8.1(c) that with the increase of the inclination angle, the percentage of 

spherical cells decreases and spindle like cells increases. For 0degree inclination, 58.09% cells 

are found to be spherical in shape whereas only 41.9 % cells are spindle shaped. On the surface 

of 45 degrees and 90 degrees inclined implants; the percentage of spindle cells increases, with 

82.29% and 91.92% cells being spindle shaped, respectively. That means only 17.7% and 

8.08% cells are spherical in shape for 45, and 90 degrees inclination which are significantly 

less than 0degree inclination. The mean spindle cells dimension has also been reported in Fig. 
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5.8.1(c).  With the increase of the inclination angle, spindle like CHO cells appear in a more 

elongated fashion. There is a clear increasing trend of spindle CHO cells from 0 degree to 90 

degrees inclination where the mean spindle dimension for 0, 45 and 90 degrees are 13.0 μm, 

14.8 μm, 21.1 μm respectively even though the standard deviation of spindle dimension is 

pretty high for each case.   

The higher percentage of spindle cells compared to spherical cells on the surface of 45, and 90 

degrees implants than 0-degree implant may be explained by the increasing surface roughness 

due to the increasing number of partially melted particles. Mean roughness Ra was 2.532 μm, 

5.962 μm, 7.246 μm respectively for 0, 45, and 90 degrees implant. Extensive studies have 

been carried out so far to understand the relationship between roughness and cell attachment, 

proliferation and differentiation. [119] Generally, rough surfaces have been reported as 

beneficial for bone integration [117, 118] but the literature lacks agreement on optimal 

roughness for cell attachment. For example, some studies suggest higher roughness values 

(Ra=3-5μm); while others favour more smooth surfaces (Ra<1 μm); [119, 120] and, other 

studies suggest that surfaces with nano roughness or a hierarchical nano/submicron roughness 

are more favourable for cell growth and fraction. Increased roughness can simultaneously 

increase the surface area of the implant, improve cell migration and attachment to the implant. 

[152] The surface topography has also been identified as a crucial factor for cell attachment 

and cell proliferation on implants. [218-221] It has been found from Fig. 5.8.1(c) that with the 

increase of the inclination, the number of partially melted particles increased on the implant 

surface. In case of 90 degree inclination angle implant, it was found that the implant surface is 

almost completely covered with the partially melted particles that create a porous surface 

structure which may influence the spindled CHO cells to be more elongated by the infiltration 

and enhancement of cells attachment, than for the 45 degree inclination specimens, where the 

partially melted particles are not located densely. [222] Spherical shaped particles on the 
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surface of the implant have been reported to enhance cell migration and extracellular matrix 

growth. [8, 223] In case of 0degree inclined implant, only few partially melted particles exist 

on the surface, resulting in fewer spindle-like cells and with lower average length than for 45 

degrees and 90 degrees. 
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 Figure 5.8.1 : Confocal images of CHO cells after 24 hrs(a) and 72 hrs(b) of incubation on 0, 

45, and 90 degrees inclinations, (c) percentage of cell type and mean spindle dimension 

measurement on 0, 45 and 90 degrees inclined implants using same field of view high 

magnitude image based on matlab programming.  
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Figure 5.8.2 :Cell type counting and mean spindle dimension measurement by Matlab 

simulation for (a) 0 degree; (b) 45 degrees; and (c) 90 degrees inclined implant (spherical cells 

are marked by red plus sign and spindle like cells are marked by blue straight line) Scale bar 

50 µm 

5.5. Conclusion 

Previously, it was suggested by other research groups that the surface modification of SLM 

manufactured implants by polishing or chemical etching can improve the biological interaction 

of the implant. Here, we demonstrate that minimal surface treatment is required if the 

inclination angle is used to functionalise the surface. From the surface morphology of each 

inclination, it was observed that a larger number of partially melted particles were observed to 

be adhered to the surface of 90 degrees inclined implants than for the 45 degrees and 0degree 

case, there are only few partially melted particles existed. Thus, the roughness from 0 degree 

to 90 degrees are increased. From the surface chemistry analysis, it has been revealed that TiO2 

is the most predominating oxide among different titanium oxides for each inclined implant. 

Although the overall cell viability was found to be same on implants with inclination angles of 

0, 45 and 90 degrees, the morphology and spreading were observed to change significantly. On 

the 45, and 90 degrees inclination angle implants, a higher percentage of spindle like shape 

cells was found in a more elongated fashion than for the 0degree inclined implant. From an 

implant design perspective, implants with higher inclinations could be useful for improving 

(a) (b) (c) 
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cell attachment, whereas low inclination angles may induce low adherent surface. The 90 

degrees inclination angle implants could also be an appropriate choice as a higher corrosion 

resistant implant because of their ability to diffuse higher amount of oxygen on the metal 

surface which has been confirmed by the depth profile analysis of XPS. We suggest the finding 

reported here will be beneficial for rapidly fabricating, functionalising and implanting 

personalised, just-in-time biomedical devices in a single process, without the need for post-

processing treatments. The findings of this study also established a missing link between 

additively manufactured relatively high rough surface part and attached cells behaviour and 

gives us new insights in the field of biomaterial-aided tissue regeneration.    
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Chapter Six: Engineering the Bio-interface: Rational Design of 

Additively Manufactured Ti6Al4V Implants to 

Control Staphylococcus aureus Biofilm Formation 

6.1. Chapter Overview:  

In the previous chapter, the author of this thesis has shown that how the alteration of inclination 

angle of SLM Ti6Al4V implants can change different surface properties, and how these surface 

properties are directly corelated with mammalian cell attachment behaviour. In this current 

chapter how the rational design of build inclination angle of implant surface by additive 

manufacturing process can successfully inhibit biofilm formation on implant surface has been 

discussed.   

Here, we for the first time, we report on how the SLM build inclination angle can be utilised 

to modify the surface topography of metallic implants for directed Staphylococcus aureus 

biofilm formation. From an initial build inclination angle of 90°, lowering the angle gave 

metallic surfaces with lower roughness, lower hydrophobicity, higher surface energy, and 

fewer partially melted metal particles without altering the bulk surface chemistry. This directly 

correlated with significantly lower biofilm coverage and an associated reduction in biomass 

without compromising mammalian cell attachment. This work provides a facile single step 

method at the manufacturing stage for the development of additively manufactured metallic 

implants with superior, inherent protection against implant associated infection.2 

 

 

 

 
*The part of these research findings has been published in Materialia. 

 A. Sarker, N. Tran, A. Rifai, M. Brandt, P.A. Tran, M. Leary, K. Fox, R. Williams, “Rational design of additively 

manufactured Ti6Al4V implants to control Staphylococcus aureus biofilm formation”, Materialia 5 (2019) 

100250. 
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6.2. Introduction 

Metal and metal alloys including titanium, tantalum, titanium-nickel, stainless steels, cobalt 

(Co) based alloys (CoCrMo) have been extensively utilised to fabricate bone implants because 

of their favorable mechanical properties and associated biocompatibility [87-90].  However, 

implants made from these metallic materials usually exhibit higher modulus of elasticity than 

the host bone which can lead to a stress shielding effect [224]. This effect leads to a reduction 

in bone density and is the primary reason for bone resorption and eventual failure of such 

implants [5]. Cortical bone (compact bone) has elastic moduli ranging from 3 to 30 GPa, while 

trabecular or cancellous bone has significantly lower elastic moduli of 0.02 to 5 GPa [70, 225]. 

Titanium alloys, particularly Ti-6Al-4V, are widely used as orthopaedic and dental implants 

because of their excellent biocompatibility, corrosion resistance, high strength to weight ratio, 

and modulus of elasticity relatively lower modulus of elasticity than cobalt (Co) based 

alloy(CoCrMo) and stainless steel [91-94].  

With the advent of additive techniques such as electron beam melting (EBM), selective laser 

sintering (SLS), selective laser melting (SLM), laser engineered net shaping (LENS), direct 

metal laser sintering (DMLS) and laser aided additive manufacturing (LAAM), the direct 

replication of biological structures has become increasingly feasible. Moreover, the desired 

mechanical properties of local bone can be easily achieved using additive manufacturing 

process by different ways such as manipulating the volume fraction and size distribution of the 

pore structures [224]. SLM and EBM utilize laser-beam and electron beam, respectively, to 

fuse powder particles on a layer-by-layer basis. SLM uses a laser beam with a tunable 

wavelength and EBM an electron beam. The main advantage of SLM process over EBM is that 

SLM can process polymers, ceramics and metal whereas EBM can process only conductive 

metals and minimum feature size[37, 70]. Selective laser melting (SLM) is an emerging 

metallic additive manufacturing process, which can create complex three-dimensional (3D) 
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parts by selectively melting successive layers of Ti6Al4V powder. The SLM process provides 

a unique approach to manufacture new generations of orthopaedic implants allowing  highly 

customizable, patient specific designs, such as hitherto unavailable lattice structures offering 

controlled mechanical properties, and precise dimensional accuracy[44, 226, 227]. The SLM 

process is capable of fabricating implants of pure titanium and titanium based alloys such as 

Ti6Al7Nb[45], Ti-24Nb-4Zr-8Sn[44],Ni-Ti[46], Ti-13Nb-13Zr[47] other β titanium 

alloys[48] and most importantly Ti6Al4V[49, 50]. Recently, SLM has been used to fabricate 

porous, bio-inert Ti6Al4V structures with complex and reproducible morphological and 

mechanical properties [51, 99] yet retained their excellent biocompatibility [52].    

However, despite these advances, implant failure due to bacterial infection during implantation 

is still one of the greatest concerns for SLM produced implants; indeed bacterial infection may 

be of greater concern for complex printed structures due to the large surface area compared to 

traditional metallic implants[17, 123, 228, 229]. Another thing is that often it is very 

challenging to clean properly of additively manufactured implants. Common implant infections 

are associated with pathogens such as Staphylococcus aureus (S. aureus); these bacteria are 

able to form polysaccharide based biofilms on implant surfaces, making control with 

conventional antibiotics extremely difficult [121, 122]. Implant associated infections are 

associated with loosening; usually require revision surgery, resulting in longer hospital stays, 

significant cost to the patients and higher mortality rates[123].  

Much research effort has therefore been focused on developing anti-biofilm implant surfaces, 

which are typically achieved by adding an antimicrobial agent, such as silver compounds, to 

the surfaces through secondary processes such as coating, immobilising, or grafting[124-129]. 

Although some of these techniques are suitable for both traditionally manufactured and 3D 

printed implants, there are concerns regarding their risk;  such as delamination of the functional 

layers, off target effects arising from the toxicity or carcinogenicity of the antimicrobial 
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agents[130, 131], associated high cost, and often slow and cumbersome processing [132]. In 

addition, the concern for bacterial resistance against traditional antibacterial agents is rising 

globally which poses a great medical threat.  

Motivated by the need for a simple approach, we report for the first time a method to limit 

biofilm growth on titanium surfaces without the use of antibacterial agents or expensive surface 

modification processes. Instead, the surface topographies of selective laser melted Ti6Al4V 

parts were controlled by adjusting the build inclination angle which is the design parameter of 

SLM where no other process parameter was altered. It has been shown that both chemical and 

surface topographical modification can inhibit biofilm formation [133, 134]. However, 

changing only the surface topography for controlling biofilm formation without the need for 

an additional chemical agent or process is receiving increasing interest [135, 136] due to its 

low cost and less risk of cytotoxicity. Mechanisms of manipulating the surface topography 

have been achieved; both nature inspired[136], bio-inspired[132, 137] or by introducing both 

micro and nano-scale surface features [138]. Here, we report the methodology where Ti6Al4V 

parts produced from a single step, in-situ SLM manufacturing process retain the desirable 

surface chemistry and mechanical strength without affecting mammalian cell viability and 

attachment. Further analysis however, revealed the inclination angle allowed markedly 

significant control over the surface topography, area, roughness, wettability, and surface 

energy; these differences enable significant control over the level of Staphylococcus aureus 

(S.aureus) biofilm formation.  
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6.3. Experimental Section 

The samples were fabricated according to chapter-3.3 – Materials and Methods section outlined 

in 3.2, characterized according to section 3.4, Staphylococcus aureus bacterial culture 

according to section 3.6.  

6.4. Results and discussion 

6.4.1. Fabrication and surface topography of different inclined (10, 45, and 90 degrees) 

SLM samples 

Ti6Al4V specimens were manufactured by an SLM process with build inclination angle α (the 

most acute measurable angle to platen) of 10, 45, and 90 degrees with respect to the building 

plane as shown in Figure 6.1. The size of the Ti6Al4V powders was ~ 30µm. Briefly, the laser 

scanning strategy used here consisted of a perimetric scan then subsequently filled with a raster 

scan. The parameters of the SLM process are provided in the supporting information. Fig. 

6.1(a) shows the CAD design part of 10, 45 and 90 degrees build inclined part with frangible 

support structure. Fig. 6.1(b) reveals the micro-CT reconstructed design part of 10, 45, and 90 

degrees build inclined part with frangible support structure where the laser scanning track edges 

are clearly visible for 10 degrees whereas there is no visible scanning track edge is found for 

45 degrees and 90 degrees.  Fig. 6.1(c) shows the sliced top section of micro-CT generated 

image processed by Magics software taking consideration of 4.28 mm diameter of circle area 

out of 5*5 mm2 samples surface.  Fig. 6.1(d) shows the 
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bar diagram of effective measured surface area from sliced section of reconstructed micro-CT 

image. The measured effective surface area of 10, 45, and 90 degrees build inclination surface 

is 20.72, 19.24, 19.61 mm2. respectively. The higher surface area has been found at lower 

inclinations (10 degrees) than at 45 degrees and 90 degrees because of its unique topographical 

feature with fewer partially melted particles along with the scanning track edge bumpy border. 

This phenomenon is only applicable for 10 degrees and not for 45 degrees or for 90 degrees as 

it has been found that the 90 degrees surface area is higher due to the greater amount of partially 

melted particles present on the surface. There is no observation of a scanning track edge border 

on either the 45 degrees or 90 degrees sample.  
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Figure 6.1: (a) Illustration of SLM printed Ti6Al4V implants with build inclination angle of 

10, 45 and 90 degrees from CAD design with support structure, (b) Illustration of SLM printed 

Ti6Al4V implants with build inclination angle of 10, 45 and 90 degrees from reconstructed 

micro-CT image with support structure, (c) Upper sliced surface of 10, 45, and 90 degrees 

inclined surface from micro-CT generated .STL file, (d) Surface area measurement of 10, 45 

and 90 degrees build inclination from upper sliced SLM part of micro-CT reconstructed image, 

(e) Optical images of 10, 45, and 90 degrees inclined implant obtained by the optical digital 

microscope showing the topographical changes as the inclination angle change.  

Fig. 6.1.(e) shows surface topography of Ti6Al4V implants of 10, 45 and 90 inclination angles. 

It is clearly observed that the number of partially melted titanium particles increases with the 

increase of the inclination angle(α) on the implant surface. In the case of 10 degrees, the laser 

scanning track edge border is clearly visible with fewer partially melted particles. In case of 45 

degrees inclination, we can observe very dim step edge border with  relatively higher partially 

melted particles than 10 degrees due to the stair-step effect and no step edge is observed with 

90 degrees  with high densely located partially melted particles due to having no effect of stair-

step[26]. 

Fig. 6.3(a) shows the surface morphology of SLM printed Ti6Al4V samples obtained by a 

scanning electron microscope (SEM). As is typical of an SLM produced part, partially melted 

Ti6Al4V particles are clearly observed on all specimens. Lower magnification SEM 

micrographs show that with the increasing inclination angle there is an increased number of 

partially melted particles. However, from the high magnification SEM images, it can be 

observed that the partially melted particles are not uniform in shape and size; the particles are 

distributed between spherical and semi-spherical morphologies. The phenomena of partially 

melted particles occurs via two main mechanisms: (1) thermal diffusion occurs due to the 

significant temperature difference between the loose powder and the solidified material leading 

to local fusion of powder to the edge of the scan track of the implant surface; (2) the stair-

stepping effect of the implant of varying inclination angles are partially built on the loose 

https://www-sciencedirect-com.ezproxy.lib.rmit.edu.au/topics/materials-science/titanium
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powder. Through one or a combination of these mechanisms, some metal particles below each 

layer will be totally or partially melted and then bonded on the bottom of the layer[26]. It is 

also observed from low magnification SEM micrographs (Fig. 6.3) that the step-edge borders 

clearly visible (refer to the yellow line).  

Figure 6.2: Confocal microscope shows the topology of 10, 45, and 90 degrees inclined surface, 

scale bar = 200 µm 

Fig. 6.2. shows the confocal images of different build inclination angles revealing the same 

topography shown by both optical and SEM images. Fig. 6.3(b) shows the graph for 

quantifying the number of partially melted particles and measuring the average diameter of 

partially melted particles for 10, 45 and 90 degrees build inclination surface. A custom Matlab 

script was developed to measure the average diameter and number of partially melted particles 

from the lower magnification(250X) SEM images shown in Fig.6.4. The average diameter of 

partially melted particles is 42.97, 34.03, 38.40 μm for 10, 45, and 90 degrees inclinations 

respectively with higher standard deviation (15.24, 16.01, 15.30). The chart also shows that 

there is an increasing trend of partially melted particles from 10 degrees to 90 degrees. The 

number of partially melted particles with the field of view increased significantly, with 61, 218 

and 383 counted for 10, 45 and 90 degrees respectively.  
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Figure 6.3: (a) SEM micrographs showing the surface morphology of SLM prepared samples 

(10, 45, and 90 degrees inclined) at low (250X) magnification and high (2000X) magnification, 

scale bar (20µm). Selected partially melted particles are indicated by arrows, (b) Quantification 

and average diameter measurement of partially melted particles by semi-automated matlab 

script (shown in Figure 6.4) from low magnification(250X) SEM images for 10, 45, and 90 

degrees inclined samples, N=1. 
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        10 degrees                                        45 degrees                                           90 degrees 

Figure 6.4 : Quantification and average diameter measurement of partially melted particles by 

semi-automated Matlab script from low magnification (250X) SEM images for 10, 45, and 90 

degrees inclined samples. 

6.4.2. Surface wettability, surface roughness, surface energy of different inclined SLM 

samples 

Surface wettability and surface roughness are crucial in governing implant-bacteria interactions 

[179, 230]. Fig. 6.5(a) shows the water contact angles of samples printed at 10, 45 and 90 

degrees build inclination angles. All samples were found to be hydrophobic, with the contact 

angles of 10, 45, and 90 degrees inclined samples found to be 95.3o, 108.5o and 114.5o 

respectively. The increase in hydrophobicity with inclination angle is most likely due to the 

increasing number of partially melted particles on the specimens. The increase in 

hydrophobicity with inclination angle is most likely due to the presence of air pockets created 

by the increasing number of partially melted particles, as suggested by the Cassie Baxter model 

for composite surfaces[231, 232]. Fig. 6.5(b) shows the profilometry measurements of the 

arithmetic mean deviation (Ra), root mean square deviation (Rq) for SLM printed samples with 

different inclination angles. It is found that with an increase of inclination angle, both Ra and 

Rq values also increase. The highest Ra and Rq values were 8.17 μm and 9.84 μm respectively, 

which were measured on the 90 degrees inclined sample. We suggest the increase in roughness 

is due to the increasing concentration of partially melted particles and the stair-step effect[156]. 

Fig. 6.5(c) demonstrates the surface topographical features of different inclined implant 

surfaces. Here, it is evident that the partially melted particles are most densely located on the 
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90 degrees surface. Fig. 6.5(c) also shows the colour mapping of SLM substrates of the 

different inclinations (10, 45 and 90 degrees). It should be noted that the SLM process with 

different build angles only affect the surface roughness, topography, and wettability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 : (a) Water contact angle measurements of SLM printed substrates with different 

build inclination angles suggest that the surfaces become more hydrophobic as the inclination 
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angle increases. The contact angles for substrates printed with 10, 45, and 90 degrees 

inclination are 95.3, 108.5, and 114.5 respectively. Data = Mean ± SD from measurements 

performed in triplicate. (b, c) Surface roughness measurements and surface topography of SLM 

printed samples as measured by a profilometer. Arithmetic mean deviation (Ra) and root mean 

square deviation (Rq) were measured and averaged from at least four different locations, Data 

= Mean ± SD. * p< 0.05. 

Fig. 6.6 shows the measured surface energy for 10, 45 and 90 degrees build inclination for three 

different solvents (water, ethelyene glycol and glycerol) from the contact angle measurement 

applying both the Owens-Wandt-Kaelble and equation of state methods[139, 140, 233]. From 

10 degrees to 90 degrees a decreasing trend was observed in surface energy by both methods, 

for all solvents. The measured surface energy for 10 ,45 and 90 degrees are 13.81, 9.13 and 

7.76 mJ/m2 respectively for water (Owens-Wandt-Kaelble). The highest surface energy for 10 

degrees could be explained by the lowest wettability for 10 degrees which correlates to fewer 

partially melted particles on the surface. The measured surface energy for 10 ,45 and 90 degrees 

are 26.45, 23.44 and 22.79 mJ/m2 for water by Equation of State method shown in figure 7.6. 

The same trend was found for other two solvents (ethelyene glycol and glycerol).  

 

Figure 6.6 : (a) Surface Energy measurement of SLM-manufactured Ti–6Al–4V samples of 

10, 45 and 90degrees inclination angle from contact angle measurement for three different 

solvents (water, ethelyene glycol and glycerol) by Owens-Wandt-Kaelble method, (b) Surface 

(a) (b) 
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Energy measurement of SLM-manufactured Ti–6Al–4V samples of 10, 45, and 90 degrees 

inclination angle from contact angle measurement for three different solvents (water, ethelyene 

glycol and glycerol) by equation of method. 

6.4.3. XRD and XPS analysis of different inclined (10, 45, and 90 degrees) SLM samples 

Fig.6.7 shows the XRD patterns of different inclined Ti64 SLM specimens and the spectra 

obtained from the middle cross section (6 mm high) of each cube. All inclination angles reveal 

the same microstructure, consisting of complete martensite α′ (100), α′ (002), α′ (101), α′ (102), 

α′ (110) position on 35.080, 38.390, 40.160, 52.980, 62.940 respectively. There are several 

reports that show that SLM Ti64 results in a complete martensite phase formation[234, 235] 

when no post-heat treatment is applied.  

 

Figure 6.7 :XRD patterns of SLM-manufactured Ti–6Al–4V samples of 10, 45, and 90 degrees 

inclination angle showing martensite phase formation.  

https://www.sciencedirect.com/science/article/pii/S1359645414008817#f0030
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Fig. 6.8(a) represents the presence of carbon, nitrogen, oxygen and metals (titanium, 

aluminium, vanadium) for the 10, 45, and 90 degrees inclined SLM samples. A very weak 

signal was detected for vanadium, possibly due to the rough implant surface reducing the 

electron counts reaching the detector. There is no difference in the elemental presence by XPS 

survey spectra of 10, 45, and 90 degrees inclination. Fig. 6.8(b) shows the fitted high- resolution 

spectra for titanium (Ti2p) for different inclination angle (10, 45, and 90 degrees).  The peak 

fitting was performed based on the existing literature[236]. From Fig. 6.8(b), it is observed that 

Ti2p consisted of different oxides TiO2(Ti4+), TiO(Ti2+), Ti2O3(Ti3+) and the pure metallic state 

which always appears in a doublet fashion. Table 1 shows the binding energy(eV) position for 

TiO2(Ti4+), TiO(Ti2+), Ti2O3(Ti3+), and pure metallic state of Ti2p3/2 and Ti2p1/2. The binding 

energy gap(Δ) between Ti2p3/2 and Ti2p1/2 for TiO2(Ti4+), TiO(Ti2+), Ti2O3(Ti3+), and the 

pure metallic state is 5.72 eV, 5.7 eV, 5.6 eV, and 6.10 eV respectively for each of the 

inclination angles (10 ,45 and 90 degrees).  The binding energies found for Ti2p3/2 and Ti2p1/2 

and TiO2(Ti4+) are 458.38 and 464.1 for 10 degrees; 458.1 and 463.82 for 45 degrees; and 

458.18and 463.9 for 90 degrees. It is clearly visible from Table 6.1 that all the titanium Ti2p 

oxides level and pure metallic state of Ti64 SLM samples have located into same binding 

energy which reveals that the surface chemistry of different inclined SLM samples almost 

same[236].  

Table 6.2 represents the relative atomic percentage of TiO2(Ti4+), TiO(Ti2+), Ti2O3(Ti3+), and 

pure metallic state. It is clear from Table 2 that TiO2(Ti4+) is the most predominating oxides 

among other oxides for all inclination angles (10, 45 and 90 degrees) and values are 73.49 ± 

2.30%, 79.48 ± 4.35%, 74.68 ± 3.24% respectively for 10, 45, and 90 degrees inclination angle. 

The lowest atomic percentage was found for pure metallic state and it is 1.63 ± 1.12%, 1.62 ± 

1.45%, 5.54 ± 2.24%. The ratio between TiO2 to pure Ti metal state for 10, 45 and 90 degrees 

build inclination are 45.08, 49.06 and 13.48 respectively.  

https://www.sciencedirect.com/science/article/pii/S0264127518304283#f0020
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Figure 6.8:(a) XPS survey spectra showing the presence of elements of different build 

inclinations, (b) High resolution spectra of Ti2p region for each representative spot of 10, 45, 

and 90 degrees inclinations. 
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Inclination 

Angle 

Binding Energy 

position Ti2p3/2 

& Ti2p1/2 for 

TiO2(Ti4+) eV 

Binding Energy 

position Ti2p3/2 

& Ti2p1/2 for 

TiO(Ti2+) eV 

Binding Energy 

position Ti2p3/2 & 

Ti2p1/2 for 

Ti2O3(Ti3+) eV 

Binding Energy 

position Ti2p3/2 & 

Ti2p1/2 for Ti pure 

metallic state eV 

10 degrees 458.38, 464.1 455.31, 461.01 457.37, 463.33 453.58, 459.68 

45 degrees 458.1, 463.82 455.51,461.21 457.3,462.9 453.26, 459.36 

90 degrees 458.18, 463.9 455.4, 461.1 457.27, 462.87 453.6, 459.7 

Table 6.1: Binding energy position of different oxide levels of titanium and pure metal for 10, 

45, and 90 degrees build inclination angle. 

Inclination 

Angle 

Relative 

Atomic 

Percentage 

(%) for 

TiO2(Ti4+) 

Relative 

Atomic 

Percentage 

(%) for 

TiO(Ti2+) 

Relative 

Atomic 

Percentage 

(%) for 

Ti2O3(Ti3+) 

Relative 

Atomic 

Percentage 

(%) for Ti 

pure metal 

10 degrees 73.49 ± 2.30 10.51 ± 1.36 14.37 ± 4.34 1.63 ± 1.12 

45 degrees 79.48 ± 4.35 10.00 ± 2.21 8.90 ± 2.56 1.62 ± 1.45 

90 degrees 74.68 ± 3.24 11.19 ± 2.56 8.58 ± 1.24 5.54 ± 2.24 

Table 6.2: Relative atomic percentage of different oxide levels of titanium and pure metal for 

10, 45, and 90 degrees build inclination angle 
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6.4.4. Biofilm growth on different inclined (10, 45, and 90 degrees) SLM samples 

Figure 6.9 : Representative SEM images at lower(1000x) and higher(8000x) magnification of 

10, 45, and 90 degrees SLM printed samples after 48 hrs incubation with S. aureus showing an 

increase of biofilm as the inclination angle is increased.  

Fig. 6.9 and Fig. 6.10 show the formation of S. aureus biofilm on these SLM printed samples 

after 48 hours of incubation as observed by SEM (Figure 6.9) and confocal fluorescent 

microscopy (Figure 6.10), respectively. It is clearly visible from the SEM images that the 

higher the sample inclination angle, the more S. aureus are attached to the samples’ surfaces. 

On the sample printed at 90 degrees, we observe that the surface is almost entirely covered 

with S. aureus, whereas only sporadic colonies of bacteria are found on the 10 degrees sample. 

In the confocal fluorescent microscopy images, individual S. aureus were stained with DAPI 

dye and appear blue (Figure 6.10). A similar trend is observed in these fluorescent images; 

more extensive biofilm coverage was found on 90 degrees printed substrates as compared to 

the 10, and 45 degrees samples. Notably, most bacteria are observed to grow around, rather 

than upon, the partially melted particles. We confirm that the large number of partially melted 
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particles in the 90 degrees sample correlates to the highest number of bacterial colonies formed. 

Image analyses were performed to quantify the surface coverage of biofilm on each of the SLM 

printed substrates. From this, surface coverage of biofilm from the low magnification images 

on 10 and 45 degrees samples was measured as 11.5% and 13.6% respectively, which is 

significantly less than that observed on the 90 degrees sample (20.3%).Even though 10 degrees 

sample case, the number of partially melted particles is fewer than 45 degrees but the biofilm 

formation percentage is close to 45 degrees because of the unique bumpy topographical feature 

of sample which comes from the scanning track edge border which also contributed biofilm 

formation along with fewer partially melted particles on surface.  
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Figure 6.10 : Representative fluorescent images of S. aureus biofilm on SLM samples after 

incubation period of 48 hrs. S. aureus were stained with Hoechst 33258 (Blue) for both low 

magnification(a), Scale bar 100μm and high magnification(b), scale bar 200μm, (c) Surface 

coverage of biofilm obtained from fluorescent images via analysis using ImageJ (NIH). The 

biofilm coverage was calculated from at least three random locations on three separated 

samples, Data = Mean ± SD, n ≥ 4, * p<0.05, ** p<0.01. 

Fig. 6.11. shows the quantitative crystal violet staining of different inclined substrates. 

Quantitative crystal violet staining was performed to compare the relative biomass of the 

biofilms on the substrates with different build inclination angles. The substrates were 
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challenged with S. aureus and the biofilms were allowed to grow for 48 hours at 37oC. Figure 

6.11(a) and Figure 6.11(b) show the crystal violet stained substrates, and the absorbance value 

(OD550) of the dissolved crystal violet from these substrates which directly correlates to 

biomass. The crystal violet assay result shows significantly lower biomass on samples with 

lower build inclination angles. These results further confirm the SEM and fluorescent imaging 

observations that the reduction in build inclination angle directly reduces the formation of a S. 

aureus biofilm. 

 

Figure 6. 11 : (a) Images of SLM printed substrates with S. aureus biofilms stained with crystal 

violet. Higher crystal violet stain was observed on 90 degrees build angle samples compared 

to 10, and 45 degrees samples. (b) Absorbance of crystal violet stain read at 550 nm shows 

higher biomass of biofilm grown on substrates with higher build inclination angle, Data = Mean 

± SD, n ≥ 5, * p<0.05, ** p<0.01. 

The surface chemistry has not been altered in any of the inclined SLM samples, so the surface 

topography played the entire role in terms of bacterial attachment and subsequent biofilm 

formation. There is likely more than one factor that contributes to the increase in S. aureus 

biofilm formation on SLM substrates manufactured with increased inclination angles.  

We suggest that these factors involve (1) the amount of partially melted particles on surface; 

(2) the surface wettability[237]; (3) the surface roughness[132, 230, 238] ; (4) surface free 
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energy[239], (5) surface area[239]. There are substantially more partially melted particles (383) 

found on 90 degrees samples shown in figure 6.3(b) than 45 degrees (218) and 10 degrees (61) 

samples. The large number of these particles contributes the higher surface roughness for 90 

degrees surface than 45 degrees and 10 degrees, triggering the bacteria to form a biofilm. The 

higher surface roughness found in samples built at higher inclination angles correlates to more 

extensive S. aureus biofilm colonisation. Previous studies have demonstrated that a rougher 

surface with more peaks and valleys tend to promote bacterial growth. S. aureus, a species of 

bacteria with relatively low motility, have the tendency to grow in valleys[240].  

Regarding the surface wettability, the Derjaguin-Landau-verwey-overbeek theory supports the 

mechanism of increased bacterial adhesion on rough titanium substrates; the initial attachment 

of bacteria on substrates is due to a combination of forces such as van der Waals (vdW) and 

electrostatic repulsive[241]. In the case of the 45 degrees and the 90 degrees specimens, the 

surfaces are more hydrophobic than 10 degrees. The increase in hydrophobicity with 

inclination angle is most likely due to the presence of air pockets created by the increasing 

number of partially melted particles, as suggested by the Cassie Baxter model for composite 

surfaces[231, 232].  

Since S. aureus biofilms have been reported to be hydrophobic[242], the more hydrophobic a 

surface is, the stronger S. aureus will adhere to it, leading to more extensive and stable biofilm 

formation. It has been shown by a thermodynamic model that hydrophobic bacteria tend to 

grow more colonies on materials which show hydrophobic properties and vice versa[243, 244]. 

It has been also reported that  hydrophobic titanium surfaces have a greater tendency to form 

colonies than hydrophilic equivalents[237]. It has been shown that the surface free energy can 

play also provide a contribution (albeit to a lesser extent than roughness and wettability) [135, 

245]. Surface energy is directly correlated with surface wettability.  We show that with the 

increase of the inclination angle, there is a reduction in the surface free energy. Therefore, the 
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lowest inclination (10 degrees) has the highest surface free energy; providing fewer 

hydrophobic interactions limiting the biofilm formation. In the high inclination case (90 

degrees), the lowest surface free energy was observed, enabling significantly more 

hydrophobic interactions and a corresponding increase in the biofilm formation[246, 247].  

Surface area of different inclination angle perhaps has also played role in terms of biofilm 

formation[239] even though there is no correlation found between surface area and build 

inclination angle. The higher surface area has been found in case of lower inclination (10 

degrees) than 45 degrees and 90 degrees because of its unique topographical feature with fewer 

partially melted particles along with scanning track edge bumpy border which might exhibit 

recalcitrance towards S.aureus biofilm formation[247]. But this phenomenon is only applicable 

for 10 degrees not for 45 degrees and 90 degrees as it has been found that 90 degrees’ surface 

area is higher than 45 degrees because of its greater amount of partially melted particles 

presence on surface where the effect of scanning track edge border has not observed for both 

45 degrees and 90 degrees.  
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Figure 6.12: A proposed mechanism for S. aureus biofilm formation on SLM surfaces. S. 

aureus (orange circles) are overlaid on the surface roughness profiles of SLM substrates printed 

with 10, 45, and 90 degrees inclination angle. 90 degrees sample, being the roughest with more 

peaks and valleys among the three samples, promotes the attachment of S. aureus and the 

formation of the largest biofilm. 
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Figure 6.13: Confocal fluorescent images of Chinese hamster ovarian (CHO) cells grown on 

different inclined (10, 45, and 90 degrees) surfaces after 24 hrs of incubation, scale bars= 

200μm. 

However, in order to form an effective substrate for integration into the surrounding tissue, a 

substrate must encourage growth of the surrounding host cells. In order to test the change in 

angle of fabrication on the overall biocompatibility of the surfaces, we cultured an attachment 

dependant mammalian cell line on the surfaces[26].  Here, Chinese hamster ovarian (CHO) 

cells were seeded on SLM substrates and incubated for 24 hr before analysed using a 

fluorescent confocal microscope. The result shows that CHO cells adhered well to all SLM 

substrates in Fig. 6.13. Interestingly, despite having significantly different biofilm support, 

these SLM substrates appear to support mammalian cell growth equally across all three 

inclination angles.  

6.5. Conclusion 

In conclusion, we report that SLM printed substrates’ topography, roughness, and wettability 

were highly dependent on the build inclination angle. It was found that for the lowest build 

inclination angle (10 degrees), only few partially melted particles were observed, whereas the 

surface printed at a higher inclination angle (90 degrees) was densely covered with partially 

melted particles. As a result, the substrates printed at 90 degrees were both rougher and more 

hydrophobic than the samples printed at 10 and 45 degrees. The build angle, however, did not 
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alter the bulk surface chemistry. More importantly, we found that the substrate printed with the 

lowest inclination angle (10 degrees) exhibited the least amount of biofilm formation, which 

was evident from both SEM and fluorescent imaging observations and a crystal violet biomass 

assay. Importantly, this capacity for reduced biofilm formation did not come at the expense of 

biocompatibility, as confirmed by mammalian cell viability. We, therefore, suggest the 

implementation of a low build angle to future SLM printed implants is a facile yet effective 

mechanism to minimise the colonisation of S. aureus, one of the most common pathogens 

associated with the majority of implant related infections.  
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Chapter-Seven: Bone Cell Response on Additively Manufactured 

Single Struts with Different Inclination Angle, Diameter in 

Lattice Implant 

7.1. Chapter Overview  

In the previous chapter, the author of this thesis has shown how the rational design of additively 

manufactured surface can control biofilm formation and prevent against implant associated 

infection. In this chapter, the manufacture and design of single cylindrical strut with the 

alteration of both inclination angle and strut diameter have been described. In addition, the 

behaviour of primary bone cell attachment on individual cylindrical strut with different 

inclination angle and strut diameter has been observed. 

In this study, we have manufactured Ti6Al4V cylindrical single struts by selective laser melting 

process at three different inclination angles (30 degrees, 60 degrees and 90 degrees) with 0.2 

mm, 0.6 mm, 1.0 mm diameter as a proof of concept of orthopaedic lattice implants. For 30° 

and 90° specimens, stress concentration reduced with increasing strut diameter. For 90° 

specimens, the stress concentration factor was the greatest for 0.6 mm diameter, whereas they 

were very similar for 0.2 mm and 1.0 mm diameters. It has been found from the roughness 

profile for 30 deg inclination angle that the profile angle is varied significantly. The roughness 

has been maximum for the downward facing surface and the thinner struts (0.2mm, 0.6mm) 

show their minimum at the upward facing surface. The 1mm strut has minimums at the sides 

with an increased roughness at the upward facing surface. For the 60 deg and 90 deg cases the 

roughness shows less variation around the strut.  

The effect of the surface property such as surface roughness for cylindrical strut on cell fate 

was determined. In each case, rat primary osteoblasts (r-POB) was found to be well adhered; 

however, primary osteoblasts appeared to be more filopodia, indicating better spreading on 60 
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degrees samples with 0.2, 0.6, and 1.0 mm strut diameter as the neighbouring two partially 

melted particles. This work gives us a novel insight in terms of developing additively 

manufactured cylindrical strut with different inclination angle with strut diameter for the next 

generation orthopaedic lattice implant.  

7.2. Introduction 

Musculoskeletal disorders are one of the biggest health related concerns across the world with 

over in excess of 1 million patients per year undergoing joint replacement surgery in the United 

States of America[248] with 310,800 hip replacements were performed in US alone in patients 

above the age of 45[249]. Due to an active lifestyle, the age of recipients is decreasing with an 

increased incidence of patients under 40 years receiving hip implants. As a result, implant 

lifetime often means that patients are undertaking revision surgery as they outlive their total 

joint replacement and replacement is becoming the norm [112, 250]. There are several factors 

which are directly responsible for limiting life of load-bearing implants such as poor 

osseointegration, stress shielding, or implant loosening. Metallic implants are widely used to 

address different musculoskeletal disorders because of their high mechanical properties, high 

corrosion resistance, toughness, high durability, and superior biocompatibility [251-254]. 

Around 70-80% of medical implants are made from metallic biomaterials [255] for different 

purposes in orthopaedic field such as bone repair, fracture fixation, load-bearing [256, 257]. 

Metal and metal alloys including stainless steels, tantalum, titanium, cobalt based alloys 

(CoCrMo), titanium–nickel, have been extensively utilised in metallic implants [258] [90] 

[259] [260]. Among different metallic alloy used as biomedical implants, titanium and its alloy 

has been used as a proven implant material due to its excellent biocompatibility, corrosion 

resistance, toughness, strength to weight ratio, and bio-inert oxide surface [261]. Rapid 

prototyping or additive manufacturing (AM) enables to make patient specific orthopaedic 

implants with the greatest precision and complex architecture with prescribed microstructure 
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and macrostructure [262].Additive manufacturing introduces several commercial technologies 

for the fabrication of robust component using layer-by-layer depositing material based on a 

computer model. Metallic additive manufacturing is being used widely for different tissue 

engineering application such as bone grafts, cardiovascular implants, cartilage regeneration 

[263, 264].  

Selective laser melting (SLM) is a Metallic AM (MAM) process where a layer- by-layer 

material addition technique is applied to create complex 3D parts by selectively melting 

successive layers of metal powder [19]. In comparison with other metallic additive 

manufacturing technique, SLM is characterized by good repeatability, medium productivity, 

and medium to high surface quality [26]. The SLM process was reported to be capable of 

fabricating implants of several pure titanium and titanium-based alloys for implants such as Ti-

24Nb-4Zr-8Sn, Ni-Ti, Ti6Al7Nb, Ti-13Nb-13Zr and other β titanium alloys and most 

importantly Ti6Al4V [44]. Recently, different literatures show that SLM has the capability to 

make any complex Ti6Al4V structure with great reproducibility with excellent mechanical 

properties and biocompatibility[73]. These properties are highly dependent on the associated 

SLM process parameters such as laser power, scanning pattern, scanning speed, layer 

thickness, hatch spacing, powder bed temperature and working atmosphere [44].  

Cellular lattice structures fabricated by SLM process are the combination of numerous strut 

elements, each with specific inclination angle to the SLM platen. It has been shown previously 

that the mechanical properties of SLM manufactured Ti-6Al-4V lattice can be manipulated by 

the alteration of the strut build inclination angle, strut diameter [19, 265]. Different groups have 

also shown how the surface topography and surface roughness of Ti6Al4V implants 

manufactured by SLM played role on cellular attachment and growth[266, 267].Previously we 

have shown that how the build inclination angle during SLM manufacturing process can 

influence the surface properties and associated biological response of Ti6Al4V implant[8]. But 
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there has been limited research carried out showing how the both design parameter of 

cylindrical strut such as strut inclination angle and strut diameter can influence the surface 

properties of Ti6Al4V implants and how primary bone cell respond on individual strut. In order 

to validate the approach different cylindrical implants with inclination angle 30, 45, and 90 

degrees with 0.2, 0.6, and 1.0 mm strut diameter were successfully manufactured and their 

surface morphology, surface roughness were investigated; and, demonstrate that these 

parameters have a direct relationship with biocompatibility, bone cell attachment and 

morphology. This work will have significant impact on the design and fabrication of future 

AM lattice implants with desirable strut geometry for successful orthopaedic applications. 

7.3. Experimental Section 

The samples were fabricated according to chapter-3.3 – Materials and Methods section outlined 

in 3.2, characterized according to section 3.4, rat calvariae cell culture and cell morphology 

analysis according to section 3.5.6.  

7.4. Results & Discussion 

7.4.1. Fabrication and surface topography of different inclined (30, 45, and 90 degrees) 

Cylindrical Specimen with 0.2, 0.6, & 1.0 mm strut diameter 

Fig.7.1 (a) represents the graphical representation of (Ti6Al4V) lattice implants manufactured 

by SLM implanted into bone defect model(femur) as a proof of concept. Ti6Al4V single 

cylindrical struts were fabricated using SLM process with build inclination angle α of 30, 45, 

and 90 degrees with 0.2, 0.6 and, 1.0 mm strut diameter with respect to the building plane as 

shown in Fig.7.1 (b). It has been previously shown that porous Ti6Al4V cage with computer 

designed macro- and micro-architecture was reproduced by selective laser melting 

(SLM)[267]. They have shown that dense Ti6Al4V discs with six different angles were 

fabricated to investigate the effects of additive angle (inevitable in SLM manufacturing) on 
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surface properties and biocompatibility. It has also been reported that functionally graded 

Ti6Al4V Porous Scaffolds manufactured by additive manufacturing can be an effective 

apporach to enhance cell penetration and proliferation[268]. However there has been limited 

research carried out to understand how the individual cylindrical struts are manufactured and 

what is their associated biological response for orthopaedic application. From the optical image 

of Fig 7.1 (b), all the cylindrical struts with 30, 60 and 90 degrees build inclination with 0.2,0.6, 

and 1.0 mm strut diameter were manufactured robustly without any failure and deformation. 

The size of the Ti6Al4V powders was ~ 30µm. Briefly, the laser scanning strategy used here 

consisted of a perimetric scan then subsequently filled with a raster scan.  
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Figure 7.1: (a) Demonstration of (Ti6Al4V) lattice implants manufactured by SLM implanted 

into bone defect model(femur) as a proof of concept, (b) Optical view of titanium (Ti6Al4V) 

implants manufactured by SLM by 90, 60, and 30 degrees build inclination angle with 1.0, 0.6, 

and 0.2 mm diameter with respect to the build plane. 

 

7.4.2. Micro-Computed Tomography results of different inclined (30, 45, and 90 degrees) 

Cylindrical Specimen with 0.2, 0.6, & 1.0 mm strut diameter 

Number of pores and porosity distribution (%) for each strut diameter at build orientation 

angles are presented in Fig. 7.2. Further investigation of pore sizes and pore orientations are 

presented in Fig.7.3 and 7.4. 

Initial μCT results are reported for the number of pores and porosity (%) extracted within each 

strut specimens at different inclination angles. Presence of pores are not observed from strut 

specimens with diameter of 0.2 mm, therefore are not included for further analysis: 

1. Minimal porosity percentage and number of pores were observed for the 1 mm strut 

specimen inclined at 60-degree angle when compared to strut specimens of 1mm diameter 

inclined at 30 and 90-degree angles. Minimal changes were also observed when comparing 

0.6 mm strut diameters at 30,60 and 90-degree inclined angles.  

2. The highest porosity percentage and number of pores were observed from the 1 mm strut 

specimen inclined at 90-degree angle, followed by strut specimen of 1 mm diameter 

inclined at 30-degree angle. High distribution of these pores is illustrated in Figure 7.2 (b). 
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Figure 7. 2: (a) Micro-CT results: reconstructed 3D models iso-view, (b) reconstructed 3D 

models and their associated pores (red), and (c) Number of pores and porosity, sample size 

N=1.  

The strut specimen’s pore sizes (mm3) shown in Fig.7.3(a) and pore orientations (theta) shown 

in Fig.7.3(b) were also investigated to further investigate manufacturability: 

1. Regarding the pore size distributions along each SLM strut specimens, there exists no linear 

correlation between pore sizes and specimen height. 

2. From linear regression line, pore orientations tend to stay within the range of 30 to 100-

degree angle (along the scan direction). Only three strut specimens were observed to 

produce pore orientations lower than 30 degrees, 1 and 0.6mm for 30-degree strut specimen 
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and the 1 mm strut specimen inclined at 90-degree angle. No valid relationship can be 

observed with both pore orientations and specimen height. 
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Figure 7. 3: (a) Distribution of pore size of different inclined cylindrical strut with different 

strut diameter along build height, (b) Distribution of pore orientation of different inclined 

cylindrical strut with different strut diameter along build height. 

 

(a) 

(b) 
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7.4.3. Surface morphology of different inclined (30, 45, and 90 degrees) Cylindrical 

Specimen with 0.2, 0.6, & 1.0 mm strut diameter 

Fig.7.4 and Fig.7.5 show the surface morphology of 30, 60, and 90 degrees inclined cylindrical 

strut with 0.2, 0.6, 1.0 mm diameter for lower magnification((150x) and higher magnification 

(1200x) by scanning electron microscopy. It has been found from the lower magnification 

image that strut diameter is not varied across the length of strut in case of 0.6 and 1.0 mm 

dimeter of 30, 60 and 90 degrees build inclination but the strut diameter is changed around the 

length of strut for 0.2 mm diameter of 30, 60 and 90 degrees.  

Figure 7.4: (a) SEM micrograph shows the surface morphology of 30, 60, and 90 degrees 

inclination angle with 0.2, 0.6, & 1.0 mm strut dimeter of low (150X) magnification. 
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Fig.7.5 shows that each inclined cylindrical strut surface with 0.2, 0.6, and 1.0 mm diameter is 

covered with randomly fashioned partially melted particles. It has also been observed that 

partially melted are in different size and spherical in shape.  

Figure 7.5: (a) SEM micrograph shows the surface morphology of 30, 60, and 90 degrees 

inclination angle with 0.2, 0.6, & 1.0 mm strut diameter of high (1200X) magnification. 
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7.4.4. Surface roughness analysis of different inclined (30, 45, and 90 degrees) Cylindrical 

Specimen with 0.2, 0.6, & 1.0 mm strut diameter 

Fig.7.6 shows the roughness (Ra) along the strut with profiles taken at different angles around 

the strut axis. The alignment of the struts is based on determining the principal axes of inertia, 

and an assumption is made that the minimum principal axes resolves into the strut axis while 

another will align with the direction of the upward/downward facing surface. This appears to 

work reasonably well for the 30deg strut but is less reliable at 60deg. To confirm/improve the 

angle alignment it would be ideal to have the support strut visible within the image stack. 

We are seeing significant difference in roughness with profile angle for the struts fabricated 

with 30deg inclination angle. The roughness maximum for the downward facing surface. The 

thinner struts (0.2mm, 0.6mm) show their minimum at the upward facing surface. The 1mm 

strut has minimums at the sides with an increased roughness at the upward facing surface. For 

the 60deg and 90deg cases the roughness shows less variation around the strut. For the 60deg 

struts the support is only visible in the 1mm case, and the angle has been shifted to match. For 

the other diameters we are uncertain of the angle for the downward facing surface and relying 

on the determination of principle axes and a best guess as to which axis might be aligned with 

the downward surface. 
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Figure 7.6: Roughness (Ra) along the strut with profiles taken at different angles with different 

strut diameter around the strut axis. 

7.4.5. Finite Element (FE) Stress analysis of different inclined (30, 45, and 90 degrees) 

Cylindrical Specimen with 0.2, 0.6, & 1.0 mm strut diameter  

It has been found from Figure 7.7 that the effect of build orientation angle on the maximum 

stress is most significant for the 0.2 mm struts. This is clear from the difference in maximum 

stress between the different build orientation angles, with 30° struts having the largest stress, 

and 90° having the least. As diameter increases this effect reduces, with only minor 

discrepancies between the maximum stress within the 1 mm struts. Low build orientation 
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angles lead to distortion of struts due to manufacturability limitations of the SLM process [20]. 

This effect is more pronounced for smaller strut diameters as there is less material to offset 

these effects.  

The minimum manufacturable build orientation angle for SLM struts is related to material 

properties and processing parameters, but is usually approximated as 45° [269]. As a result, it 

would be expected that the 60° and 90° struts would behave more similarly than the 30° struts 

as they are above this threshold. However, the maximum stress was more similar between the 

30° and 60° struts most prominently for 0.2 mm diameter specimens. This phenomenon may 

be related to geometries of these cylindrical specimens, and analysis of a larger population of 

specimens is required for greater confidence in the characterisation of this behaviour. 

The distribution of stress across the models shown in Fig.7.8 differed depending on build angle 

and strut diameter. For the 30° and 60° 0.2 mm diameter struts there are large blue areas, which 

would suggest the stress is concentrated in a certain region of the struts. Conversely, the 60° 1 

mm strut is mostly green, meaning stress is evenly distributed within it. The 90°, 1 mm strut is 

mostly blue, suggesting a region of high stress, though the end of this strut where the boundary 

condition was applied was tapered, leading to stress concentration.  

 

 

 

 

 

 

          Figure 7. 7: Maximum stress for each build orientation angle and strut diameter. 
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 D = 0.2mm D = 0.6mm D = 1mm 

Build angle 

= 30° 

 
  

Build angle 

= 60° 

   

Build angle 

= 90° 

   

Figure 7. 8: Stress (MPa) contours for different strut diameters and build orientations. 
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7.4.6. Rat Primary Osteoblast (r-POB) Cell attachment of Different Inclined (30, 45, and 

90 degrees) Cylindrical Specimen with 0.2, 0.6, & 1.0 mm Strut Diameter 

 

Fig.7.9 (a), (b), & (c) respectively shows the SEM images (5000x magnification) of the primary 

osteoblast cell attachment on the surface of 30, 45, and 90 degrees inclination with 0.2, 0.6, 

and 1.0 mm strut diameter after 3 days and 7 days of incubation. It has been found that primary 

bone cells have been well adhered for all cylindrical struts irrespective of its build inclination 

angle and strut diameter. It is also visible that the bone cell is well connected from one partially 

melted particle to another partially melted particle in case of all cylindrical struts. The primary 

bone cells appeared elongated and exhibited a more spindled appearance after 7 days of 

incubation on all cylindrical struts than after 3 days of incubation. There have been several 

literatures show that SLM manufactured Ti6Al4V implants are highly biocompatible and 

exhibited well in-vitro cell attachment and cell proliferation behaviour [52, 168, 213]. It has 

been observed that rather than the surface roughness the bone cell attachment behaviour is 

mostly influenced by the surface topography of all single cylindrical strut which has been 

confirmed from all SEM images of Fig.7.9 (a), (b) & (c). The location of partially melted 

particles on single cylindrical strut influences directly the morphology of bone cell. It has been 

found from Fig. 7.9 (a) and 7.9 (c) that 30 degrees and 90 degrees inclined cylindrical strut 

surface with 0.2, 0.6, and 1.0 mm strut diameter that the cells appeared not to be elongated 

enough after 3 days of incubation due to the small distance between two partially melted 

particles. Primary osteoblasts appeared to be more filopodia, indicating better spreading on 60 

degrees samples shown in Fig. 7.9 (b) with 0.2, 0.6, and 1.0 mm strut diameter as the 

neighbouring two partially melted particles have higher distance from each other which 

indicates that osteoblast get enough space to be stretched with elongated morphology.  
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(b) 

(a) 
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Figure 7.9: (a) SEM micrographs of rat primary cell (r-POB) attachments shown by yellow 

arrow on 30 degrees cylindrical inclined  with 0.2, 0.6, and 1.0 mm strut diameter after 3 days 

and 7 days of incubation, scale bar=20 µm (b) SEM micrographs of rat primary cell (r-POB) 

attachments shown by yellow arrow on 60 degrees cylindrical inclined  with 0.2, 0.6, and 1.0 

mm strut diameter after 3 days and 7 days of incubation, scale bar=20 µm (c) SEM micrographs 

of rat primary cell (r-POB) attachments shown by yellow arrow on 90 degrees cylindrical 

inclined  with 0.2, 0.6, and 1.0 mm strut diameter after 3 days and 7 days of incubation, scale 

bar=20 µm.  

7.5. Conclusion 

In this study, Ti6Al4V cylindrical single strut of different inclination angles (30 degrees, 60 

degrees, and 90 degrees) with 0.2 mm, 0.6 mm, 1.0 mm diameter was manufactured 

successfully by SLM process as a proof of concept for applying as orthopaedic lattice implant. 

Micro-CT results show us that the highest porosity percentage and number of pores has been 

observed from the 1 mm strut specimen inclined at 90-degrees angle, followed by strut 

specimen of 1 mm diameter inclined at 30-degrees angle. It has been found that for 90° 

specimens, the stress concentration factor was the greatest for 0.6 mm diameter, whereas they 

(c) 
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were very similar for 0.2 mm and 1.0 mm diameters. The surface profile property (surface 

roughness) results show us that the roughness has been maximum for the downward facing 

surface and the thinner struts (0.2mm, 0.6mm) show their minimum at the upward facing 

surface. From the in-vitro result, it has been found that rat primary osteoblasts (r-POB) was 

found to be well adhered irrespective of strut build inclination angle and strut diameter ; 

however, primary osteoblasts appeared to be more filopodia, indicating better spreading on 60 

degrees samples with 0.2, 0.6, and 1.0 mm strut diameter as the neighbouring two partially 

melted particles are located far from each other. This work provides us a novel insight in terms 

of developing next- generation additively manufactured cylindrical strut with required design 

geometry.  
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Chapter Eight: Conclusions and Future Study 

8.1. Conclusion 

Metallic patient-specific orthopaedic implant manufactured by additive manufacturing has 

shown its incredible potentiality for matching desired mechanical properties with host bone, 

structural efficacy, dimensional accuracy, and osseointegration. For the successful clinical 

outcome of orthopaedic implants for patients, it is quite essential to integrate the knowledge 

between materials science, manufacturing with bone biology. The precision, personalisation 

and superior functionality of additive manufacturing techniques, such as selective laser melting 

(SLM), enables the fabrication of metallic implants with patient specific customisation.   

The following conclusions have been made from this thesis: 

1. At the initial stage of this research, Ti6Al4V SLM implants with support-free structure with 

different build inclinations from 5 degrees to 90 degrees were manufactured with 5 degrees 

interval and after that the detailed surface profile properties such as surface roughness, 

surface morphology and surface wettability were investigated. It has been found from the 

roughness study that with the change of the inclination angle higher percentage of 

correlation with Ra is found on lower surface of SLM plates on the linear, exponential and 

logarithmic regression line than the upper surface of SLM plates.  

2. It is  also found from the surface morphology that with the increase of the build inclination 

that there is a corresponding increase in the number of partially melted particles on the 

upward SLM support-free part from 5 to 90 degrees and there is no regular trend was 

observed in terms of partially melted particles on downward surface. It has been found from 

the surface wettability that the highest and lowest contact angle value for upward surface 

is 130.1500 and 80.810 respectively for 75 and 35 degrees build inclined SLM samples. In 

case of lower surface all different inclined SLM plates reveal the hydrophobic surface.  
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3. After getting through investigation of 5 to 90 degrees inclined surface, we have chosen 

three different inclination angles (0, 45, & 90 degrees) to grow mammalian cell (Chinese 

hamster ovarian). It has been found from 0 to 90 degrees that the surface roughness is 

increased due to the increasing amount of partially melted particles. The surface chemistry 

(TiO2) of all different inclination angle has not been altered. In spite of having similar cell 

viability on all inclined SLM samples, the attachment behaviour of mammalian cells is 

quite different. Higher amount of spindle like cells have been found in 45 degrees and 90 

degrees with less spherical type cells than 0 degrees. In addition, mammalian cells were 

found to be more elongated shape on 45, and 90 degrees than 0degree inclined implant. 

4.  It is quite evident from implant’s design perspective that implants manufactured in higher 

inclination angle could be more useful than lower inclination angle because of improved 

cell adhesion behaviour. The finding of this study will help to design additively 

manufactured implants with appropriate inclination angle for improved bio-interface 

without the need for any post-processing treatment from a single manufacturing stage. In 

the next stage of study, we tried to understand if the additively manufactured implants can 

prevent biofilm formation if the design angle of inclination is rationally chosen as bacterial 

attachment and subsequent biofilm formation on medical implants is a serious infection 

risk. An unexpected outcome of this process, however, is a hitherto unachievable fine 

control over the bio-interface in a single manufacturing step. It was found that the lowest 

printing angle (10 degrees) implant surface has only few partially melted particles, whereas 

the surface printed at a higher inclination angle (90 degrees) was densely covered with 

partially melted particles. So that the implant surface printed at 90 degrees exhibit rougher 

and hydrophobic than 10 and 45 degrees.  

5. The bulk surface chemistry of implant surface with different inclination angle remain 

unchanged. After 48 hours of incubation with Staphylococcus aureus bacteria, it has been 
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found that the lowest build inclination angle(10 degrees) inducing the surface which can 

significantly  inhibit biofilm formation than 45 degrees and 90 degrees which has been 

confirmed from both SEM and fluorescent imaging observations and a crystal violet 

biomass assay. Herein, we suggest that the implementation of a low inclination angle to 

future SLM printed implants is a facile yet effective mechanism to minimise the 

colonisation of S. aureus, one of the most common pathogens associated with the majority 

of implant related infections.  

6. In the final stage of our research we have manufactured single cylindrical struts with 30, 

60, and 90 degrees with 0.2, 0.6, 1.0 mm strut diameter as a proof of concept in lattice 

implants. Micro-CT results show us that the highest porosity percentage and number of 

pores has been observed from the 1 mm strut specimen inclined at 90-degrees angle, 

followed by strut specimen of 1 mm diameter inclined at 30-degrees angle. It has been 

found that for 90° specimens, the stress concentration factor was the greatest for 0.6 mm 

diameter, whereas they were very similar for 0.2 mm and 1.0 mm diameters. The surface 

roughness has been measured for all cylindrical struts around the strut diameter from the 

micro-CT reconstructed image. It has been found from the roughness study that the 

roughness has been maximum for the downward facing surface and the thinner struts 

(0.2mm, 0.6mm) show their minimum at the upward facing surface.   

7. Rat primary osteoblast cells were grown over 3 days and 7 days on all single struts to 

understand the adhesion behaviour of bone cells on individual strut. From in-vitro result it 

has been found that rat primary osteoblasts (r-POB) was found to be well adhered 

irrespective of strut build inclination angle and strut diameter ; however, primary 

osteoblasts appeared to be more filopodia, indicating better spreading on 60 degrees 

samples with 0.2, 0.6, and 1.0 mm strut diameter as the neighbouring two partially melted 

particles are located far from each other. This study has given us a huge insight to develop 
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and design next-generation patient-specific lattice implant choosing the appropriate strut 

design (inclination angle and diameter) proving better osseo-integration for successful 

clinical outcome.  

8.2. Recommendations for future work 

Further studies are required to address some advanced level of experimental design to develop 

next generation customized orthopaedic implants with improved bio-interface by powder-bed 

metallic additive manufacturing process. These include:  

• As manufactured additively manufactured implants surface exhibits higher surface roughness 

adhering groove patterned partially melted particles. It is important to know how the surface 

properties of as-manufactured implant triggers the osteogenic differentiation and 

mineralization. Therefore, further studies can be carried out running RT-PCR and western blot 

to see the gene expression of osteogenic marker such as ALP, OPN, OCN and collagen-II. It is 

also important to observe if there is any upregulation of RANKL gene expression which can 

trigger the osteoclastogenisis over osteogenesis. 

• As additively manufactured implant surface exhibit partially melted particles on its surface. 

Some of these particles are loosely adhered on implant surface due to weak Van der Wales 

force which needs to be properly cleaned prior to any clinical trial as loosely adhered particles 

can cause osteolysis which is one of the reasons for implant failures due to aseptic loosening. 

Therefore, it is very essential to develop proper cleaning protocol particularly for complex 

geometric lattice topology prior to clinical trial making sure no loosely adhered particles remain 

on implant surface.  

• Further studies are required to evaluate the performance of additively manufactured titanium 

with different build inclination angle running in-vivo. Therefore, it is important to observe the 

new bone growth into animal defect model after implanting different inclined additively 

manufactured titanium implants after certain period of time. In-vivo bone tissue regeneration 
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evaluation by immunohistochemistry (H & E Staining Analysis, Masson’s Trichrome Staining) 

and 3D Micro-CT reconstructed model can provide us the detailed information about the 

percentage of new bone formation by implanting different inclined additively manufactured 

titanium implant into animal defect model.  

• Surface modification of additively manufactured titanium implant can improve the osseo-

integration and prevent against biofilm formation than as manufactured surface. Therefore, 

creating nano-surface topography by surface modification on additively manufactured implant 

surface could be a great approach altering different surface properties to improve the interface 

between host bone and implant to ensure better osseo-integration and faster bone healing.  
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