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Abstract 

In present work, the three-dimensional modified Klein-Gordon equation (MKGE) is analytically solved under 

modified Coulomb potential plus inverse-square–root potential, in the symmetries of noncommutative 

quantum mechanics (NCQM), using the generalized Bopp’s shift method. The new energy shift (ground state, 

first excited state and 
thn excited state) is obtained via first-order perturbation theory in the 3-dimensional 

noncommutative real space (NC: 3D-RS) symmetries instead of solving MKGE with the Weyl Moyal star 

product. It is found that the perturbative solutions of discrete spectrum for studied potential depended on the 

parabolic cylinder functions, the Gamma function, the discreet atomic quantum numbers ( )mslj ,,,  and the 

potential parameters ( a and b ), in addition to noncommutativity parameters ( and ).  

Keywords: Klein-Gordon equation, Coulomb potential plus inverse-square–root potential, noncommutative 

space phase, and Bopp’s shift method. 

Introduction 

It is well known that the search for solutions of the three fundamental dynamical (Schrödinger, Klein-Gordon, 

and Dirac) equations plays important role in various fields such as nuclear, molecular, heavy-quarkonium 

mesons and so on. This is achieved, using various potentials schemes such as the Coulombic potential, the 

pseudoharmonic potential, the Kratzer potential, and the inverse-square-root potential, which has both 

scattering states and bound states [1-5]. Furthermore, when a particle is in a strong potential field, the 

relativistic effects are needed to generate corrections on the non-relativistic bound state in relativistic 

quantum mechanics. Thus, the Klein-Gordon and Dirac equations become a reality. The Shi-Hai Dong [6] in 

their work solved the relativistic Schrödinger equation (the Klein-Gordon equation) with Coulomb potential 

plus inverse-square–root potential 
r

b

r

a
rV +−=)( , using the Ansatz method and obtained energy 

eigenvalues and the wave functions, he has obtained the relativistic closed-form solutions both in 3-

dimensions and in two dimensions. Recently, there has been an increased interest in finding exact solutions of 

Schrödinger, Klein-Gordon and Dirac equations for various potential schemes in a large symmetry known by 

noncommutative quantum mechanics NCQM for the purpose of obtaining more explanations that are 

accurate and finding other new applications at non-sciences scales. The main objective is to develop the 

research article [6] and expanding it in the new space phase NCQM in order to achieve a more accurate 

physical vision so that this study becomes valid in the field of nanotechnology. On the other hand, to explore 

the possibility of creating new applications and more profound interpretations in the sub-atomics and nano 

scales using new version the modified Coulomb potential plus inverse-square–root potential, which has the 

following form: 

( ) ( )
( )

( ) ( )
( )

( ) L


















−+−

+
+=→

+
+








+−+= −−− 2/5342

1

2

1
ˆ

1
2

r

b

r

a
ME

r

ll
rVrV

r

ll

r

b

r

a
MErV cseffcseffcseff

  (1) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PURKH (E-Journals)

https://core.ac.uk/display/322551579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:abmaireche@gmail.com


To Physics Journal Vol 3 (2019) ISSN: 2581-7396                                    http://www.purkh.com/index.php/tophy 

187 

It should be noted that, the noncommutativity was introduced firstly by Heisenberg W. in 1930 [7] and then 

formulated by Syndre H.  in 1947 [8]. The algebraic structure of new space-phase (NCQM) is based on new 

canonical commutations relations, in both Schrödinger picture and Heisenberg picture, respectively, as follows 

(the natural units 1== c  are employed throughout this paper) [9-18]: 
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The indices 3,1,  . This means that the principle of uncertainty for Heisenberg generalized to include 

another new uncertainty related to the positions ( ) xx ˆ,ˆ  in addition to the ordinary uncertainty of ( ) px ˆ,ˆ . 

The very small parameter 
  (compared to the energy) has elements of the antisymmetric real matrix and 

( )  denote to the Weyl Moyal star product, which is generalized between two arbitrary functions 

( )( ) ( )( )xgfxgf ˆˆ,ˆ , →  to the new form ( ) ( ) ( )( )xgfxgxf ˆˆˆˆ  in (NC: 3D-RS) symmetries [17-25]:       
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In which ( )2O  stands for the second and higher-order term of . The second and the third terms in the 

above equation represent the effects of (space-space) noncommutativity properties. However, the new 

operators ( ) ( )( )tpxt  ˆˆˆ =   in the Heisenberg picture depend on the corresponding new operators  

 px ˆˆˆ =  in the Schrödinger picture from the following projections relations:   

( ) ( ) ( ) ( ) ( ) ( ))ˆexp(*ˆ*)ˆexp(ˆ)ˆexp()ˆexp( 0000 ttHittHitttHittHit csnccsnccscs −−−=−−−= −−                      

(4) 

Here  px =  and ( ) ( )( )tpxt  = , while the dynamics of new systems 
( )

dt

d t
 are described from 

the following motion equations in NCQM: 
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Here csĤ is the quantum Hamiltonian operator for Coulomb potential plus inverse-square–root potential in the 

relativistic quantum mechanics while csncH −
ˆ is the new Hamiltonian operator in NRCQM for modified 

Coulomb potential plus inverse-square–root potential. This paper consists of four sections and the 

organization scheme is given as follows: In next section, the theory part, we briefly review the Klein-Gordon 

equation with modified Coulomb potential plus inverse-square–root potential on based to ref. [6]. The Section 

3 is devoted to studying the MKGE by applying the Bopp's shift method and obtained the effective potential. 

Then, we apply the standard perturbation theory to find the energy shift of ground state, first excited state 

and the 
thn excited state which produced by the effects of modified spin-orbital and modified Zeeman 

interactions and we discuss some particulars cases. Finally, in the last section, summary and conclusions are 

presented. 
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Materials and Methods 

Overview of the eigenfunctions and the energy eigenvalues for the Coulomb potential plus inverse-

square–root potential in RQM 

As already mentioned, our aim is to obtain the spectrum of the Coulomb potential plus inverse-square–root 

potential
r

b

r

a
rV +−=)(  in three-dimensional relativistic noncommutative quantum mechanics 3DRQM. To 

achieve the goal, it is useful to summarize, the Klein-Gordon (KG) equation with equal scalar and vector 

potentials )()( rSrV = for a particle of rest mass M  in three-dimensional relativistic quantum mechanics 

3DRQM [6]: 
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 (6)   

Where ( ) ( ) ( ) ,,, m

ll YrRr =  denote to the complete wave function. For removing the derivation of the 

first order, we introduce ( )
( )
r

rU
rR l

l = , thus Eq. (6) become:  
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Based in ref. [6], the complete wave function is given by: 
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Where ia  can be determined by the normalization condition, 
22

pp EM −=  , 
22

p

p

p

EM

bE

−
=  and 

( ) 22
2/12/1 al −++−= .  In addition, the energy pE  of the relativistic Coulomb potential plus inverse-

square–root potential is obtained from the following relation [6]: 

( ) ( )( ) 22222222 22 pppp EMEMpEMaEMb −−++=−+                                    (9) 

Solution of MKG for modified Coulomb potential plus inverse-square–root potential 

In this section, we shall give an overview or a brief preliminary for modified Coulomb potential plus inverse-

square–root potential in (NC: 3D-RS) symmetries. To perform this task the physical form of modified Klein-

Gordon equation (MKGE), it is necessary to apply the notion of the Weyl Moyal star product on the differential 

equation satisfied by the radial wave function ( )rU l  in Eq. (7), thus, the radial wave function ( )rU l  in (NC: 

3D-RS) symmetries becomes, see refs. [10-11]:  
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The Bopp’s shift method has been successfully applied to RNCQM and NRNCQM problems using modified 

Dirac equation MDE, MKGE, and modified Schrödinger equation MSE. This method has produced very 

promising results for a number of situations having physical, chemical interest. The method reduces three 

modified fundamental equations (MDE, MKGE, and MSE) to the (DE, KGE, and SE), respectively, under the 

similtaniously translation in space. It based on the following new commutator [24-29]: 

  ( ) ( )   itxtxxx == ˆ,ˆˆ,ˆ                                                                 (11) 

The new generalized positions and momentum coordinates  ( ) px ˆ,ˆ   in (NC: 3D-RS) are defined in terms of 

the commutative counterparts ( ) px ,  in QM via, respectively [26-33]: 

( ) ( ) 









−= 






ppxpxpx ,

2
ˆ,ˆ,                                                       (12)  

The above equation allows us to obtain the operator     ˆ 222 −=


Lrrr   in (NC-3D: RS) symmetries. The 

two couplings 


L  equal ( )
132312 ++ zyx LLL  and ( xL ,  yL and

zL ) are the three components of angular 

momentum operator L


 while 2/ = .  Thus, the reduced like Schrödinger equation (without star 

product) can be written as: 

( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( ) 0
ˆ

1
ˆ20*

1
2

2

22

2

2

2

22

2

2

=






 +

−+−−+=






 +

−+−−+ rU
r

ll
rVMEME

dr

d
rU

r

ll
rVMEME

dr

d
ll

 (13) 

The new operator of ( )rVcs
ˆ  can be expressed as [10-11]: 

( ) ( )2)(

2
)(

22
ˆ 










 O
r

rV

r
rVpxpxVrV cs

cscscs +



−=

























−










−

L


                            (14)  

We have 
2/32

1

2

)(

r

b

r

a

r

rVcs −=



and ( )2

422 ˆ

1

ˆ

1



O

rrr
++

L


, this allow us to write the modified radial part 

of KGE in (NC: 3D-RS) symmetries: 
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Moreover, to illustrate this equation in a simple mathematical way, it is useful to enter the following symbols 
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The additive part of effective potential is proportional to the infinitesimal vector zyx eee 31211  ++= .     Thus, 

we can consider ( )rV scpert−  as a perturbation terms compared with the parent potential (effective potential 

operator) ( )rV cseff −  in (NC: 3D-RS) symmetries.  The purpose here is to give a complete prescription to 

determine the energy level of ground state, first excited state, and 
thn excited state, by applying the 

perturbative theory, in the case of NRRQM. In the first-order perturbation theory the expectation value of
3−r , 

2/5−r  and 
4−r  with respect to the exact solution of Eq. (15), are given by: 
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Now, we introduce a new variable
2=r . This, allow us to simplify Eqs. (18) and (19) to the form: 
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We have used the orthogonality property of the spherical harmonics ( ) ( ) ( ) = ''
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We have two principals cases, the first one, correspond to replace L


 by 
→→

SL  with (
2
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23

2

12  ++= ), 

we have chosen the vector    parallel to the spin
→

S , then, we replace 
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SL by 
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. The set 

( ( ),rH csso− ,
2J , 

2L , 
2S and )zJ  forms a complete set of conserved quantities, the eigenvalues of the spin 

orbital coupling operator are  1()1()1(
2
1)( +−+−+ sslljjlk , with sljsl +− . This, allow us to obtain the 

energy shift ( )sljnE ,,,0= , ( )sljnE ,,,1=  and ( )sljnE ,,,  due to the spin-orbital complying induced 

by  ( )rV scpert−  in (NC: 3D-RS) symmetries as follows: 
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The second case corresponds to replacing both ( L


 and 12 ) by ( zBL12  and B12 ) in addition to 

use nmz mmLn =  (with lml +− ). This, allow us to obtain the energy shift ( )mnE ,0= , 

( )mnE ,1=  and ( )mnE ,  due to the modified Zeeman effect induced by  ( )rV scpert−  in (NC: 3D-RS) 

symmetries as follows: 
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Results and Discussion 

The superposition principal permitted to deduce the additive energy shift ( )msljnE ,,,,0= , 

( )msljnE ,,,,1=  and ( )msljnE ,,,,  of ground state, first excited state and the 
thn excited state due to 

the spin-orbital complying and modified Zeeman effect which induced by  ( )rV scpert−  in (NC: 3D-RS) 

symmetries as follows: 
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On the other hand, it is evident to consider the quantum number m  takes ( 12 +l ) values and we have also 

two values for a fermionic particle with 2/1=s ( 2/1= lj ). Thus every state in usually three-dimensional 

space of energy for fermionic particle under modified Coulomb potential plus inverse-square–root potential 

will be ( )( )122 +l sub-states. To obtain the total complete degeneracy of energy level of the modified internal 

energy potential in (NC-3D: RS) symmetries, we need to sum for all allowed values of l . Total degeneracy is 

thus, 
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                                            (29)                                             

Let us now look at two special cases, the first one correspond 02 = Zea and 0=b , which give the 

effective Colombian  potential in (NC-3D: RS) symmetries ( )0,, =− barV scpert  and the corresponding like 

radial Schrödinger equation which is exactly compatible with the results of [10]: 
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While the second special case 0=a and 0b , which correspond the effective inverse-square–root potential 

in (NC-3D: RS) symmetries ( )barV scpert ,0, =−  and the like radial Schrödinger equation: 
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If we consider ( ) ( )0,0, → , we recover the results of relativistic commutative quantum mechanics 

obtained in ref. [6] for the Coulomb potential plus inverse-square–root potential, which means that our 

calculations are correct. 

Conclusions 

In this paper, we have investigated the MKGE for the modified Coulomb potential plus inverse-square–root 

potential in the (NC-3D: RS) symmetries. The energy shift for ground state ( )msljnE ,,,,0= , first excited 

state ( )msljnE ,,,,1= and 
thn  excited ( )msljnE ,,,, due to the noncommutativity property is obtained 

via first-order perturbation theory and expressed by parabolic cylinder functions, Gamma function, the 

discreet atomic quantum numbers ( )mslj ,,,  and the potential parameters ( a and b ), in addition to 

noncommutativity parameters ( and ). This behavior is similar to the Zeeman effect and spin-orbital 

coupling in which a magnetic field is applied locally to the system and the spin-orbital couplings which are 

automatically induced with the perturbed potential shift in (NC: 3D-RS) symmetries. Therefore, we can 

conclude that the MKGE, in the symmetries of RNCQM, can be extended to describe a dynamic state of a 

particle with spin non-null. 
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