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Abstract 

In this paper a mean reverting stochastic process (MRSP) model is presented for generating intravalues of time  

series. The deterministic or mean part of the process is forecasted by an autoregressive of order n, AR(n), model. 

The unobservable AR(n) coefficients are calculated by a Kalman Filter using n time series observations. The 

stochastic part of the process is a Brownian motion multiplied by a volatility term. Measures of the Kalman filter 

covariance matrix along with the process itself are used to capture the volatility dynamics for the intravalues of 

the time-series. The MRSP model also provides for the evolution of the intravalues of the time series. The 

applicability of the model is demonstrated using the daily Dow Jones Industrial Average (DJIA) time series. 

Keywords: -Mean reverting stochastic process, Autoregressive model, Kalman filter, Time-series, Intravalues, 

Process evolution, Dow Jones Industrial Average 

1 Introduction 

A time series is a set of data points or observations  ,  0,1,2,..., Ntx t   measured generally at equally spaced 

time intervals. The values of the time series tx  fluctuate up-and-down as time  0 , Nt t t  progresses. These up-

and-down fluctuations is termed the high frequency data of the time series. A center value of these fluctuations  

is termed the volatility of the time series. Within the last decades the estimation of volatility is of major concern. 

It is of enormous value since it provides information for the future dispersion of the time series.  

One volatility measure, regarding say a time series of a stock, is the “breakout volatility”, that is, the difference 

between the high and low values of the previous day. A 70% of this value is considered a volatility estimate. 

Another measure, is to look into a number of past high and low values along with open and close values and 

calculate a deterministic value for the volatility [1, 2, 3]. In addition, it is well known that the distribution of the 

volatility has fat tails, that is, it has very high or low values with high probability [4, 5]. Also , it may have long 

range dependency, meaning that a value in the long past, say 20 days ago for a stock, may still have an impact 

in future values. Thus, an additional approach for volatility estimation is to use heterogeneous autoregressive 

models [4] utilizing past data. Yet, in the daily volatility forecasts higher statistics such as skewness and kurtosis 

may also be considered based say on a per minute time series. Other approaches consider volatility clustering; 

the phenomenon of calm periods (relatively no change in values) and periods of high volatility of the time series. 

Here the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models [5] are very prominent. 

These approaches since they are autoregressive depend on past square observations and past variances to 

model current and future variances. 

The intraday volatility aspects of time series have been studied extensively [6,7, 8, 9, 10]. In [6] a time -

inhomogeneous diffusion model was adopted and using log penalized splines the volatility was estimated for 

the high-frequency intraday five-minute Shanghai Stock Exchange Composite Index (SHCI). In [7] the long 

memory and periodicity in intraday volatility was considered through the parameterization of the Fractionally 

Integrated Periodic EGARCH and the Seasonal Fractional Integrated Periodic EGARCH. In [8] new empirical 

evidence was provided for intraday scaling behaviour of stock market returns utilizing a 5-minute stock market 

index (the Dow Jones Industrial Average) from the New York Stock Exchange, showing that the return time se ries 

has a multifractal nature during the day. In [9] the volatility in the Japanese stock market based on a 4-year 
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sample of 5-minute Nikkei 225 returns from 1994 through 1997 was considered, showing that the intraday 

volatility exhibits a doubly U-shaped pattern associated with the opening and closing of the separate morning 

and afternoon trading sessions on the Tokyo Stock Exchange. In [10] the intraday behaviour of stock returns 

and trading volume using the data on OMXS 30 stocks was analyzed. They found that returns follow a reverse 

J-shaped pattern with the peak at the beginning of the trading day, while trading volume attains its maximum 

towards the market closure. The highest volatility and kurtosis are observed at 09:30-10:00 and 11:30-12:00 daily 

periods, when the macroeconomic news is released. 

Volatility though does not provide the evolution of the time series but the dispersion of the up -and-down 

changes around a level value. In addition, this paper is concerned with the evolution of the intravalues of a time 

series. It focuses on a model to provide intravalues or high frequency (tick) forecasts of a time-series using a 

combination of four algorithmic techniques: (a) A mean reverting stochastic process, (b) a volatility measure, (c) 

an AR(n) autoregressive model, and (d) a Kalman filter. The mean reverting stochastic model consists of two 

parts: (i) The deterministic part, giving the evolution of the time series. It is the difference between a mean value 

the process reverts to and the current value of the process itself. In addition, this difference is multiplied by a 

positive constant or a positive time dependent function called speed of reversion. (ii) The other part, called 

stochastic, consists of a Brownian motion multiplied by some volatility term of the time series. This volatility 

term may be a positive constant, a positive time dependent function or envelop, and/or even a positive function 

of the process itself. For the estimation of the process mean reverting value, an autoregr essive model of order 

n, [AR(n)], is used based on a sample of n past values. The AR(n) model is formalized in state space. Its 

unobservable coefficients are realized using a Kalman filter. The trace and/or the determinant of the Kalman 

filter covariance matrix is used along with the evolution of the process itself to capture the evolution dynamics  

of the volatility of the time series. Experimental results are presented demonstrating the applicability of the 

model using the Dow Jones Industrial Average (DJIA) time series. 

This paper is organized as follows: Section 2 gives the mathematical preliminaries for the mean reverting 

stochastic process, the state space formulation of the autoregressive model and the discrete Kalman Filter  

equations. Section 3 provides the framework for the discretization of the mean reverting stochastic process, and 

gives possible deterministic and/or stochastic volatility functions which could be used in the model to forecast 

high frequency values (intravalues, intraday or tick values) of the time-series. Section 4 gives simulation results 

for the intravalues of the time-series data of Dow Jones Industrial Average (DJIA) along with their assessment. 

Finally, section 5 provides the conclusions of this work and gives possible further d irections. 

2 Mathematical Preliminaries 

2.1 Description of the Mean Reverting Stochastic Process 

The differential equation of the general mean reverting stochastic process tS , formally, has the form [11, 12]: 

   

0

( ) ( ) ,  

 

t t t tdS A t t S dt G t S dB

S initial condition

  


      (1) 

The parameter ( )A t  is a constant or a deterministic function of time t  but always a positive quantity and 

denotes the rate (speed or strength) of reversion. The parameter ( )t  is allowed to be a constant or a 

deterministic function of t  or even a stochastic process and denotes the mean value (also called long term 

mean) around which the process tends to oscillate. The stochastic term  ,
t t

G t S dB  consists of two parts. The 

diffusion-coefficient  , 0
t

G t S  , which is a deterministic or even a stochastic positive function of time, and the 

continuous scalar constant-diffusion  ,tB   , being the Brownian motion (or Wiener or Wiener-Levy) process 

having the following properties: 
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Property 1: It is a process with independent increments, that is, the set of N  random variables 

      1
, ,

i i i
B t B t


     , for 0,1,...,i N , are mutually independent for any partition 0 1 ... Nt t t    of 

the time interval 0 0t   and Nt T . 

Property 2: At time 0t ,  0 , 0iB t   , for all i   (  is the probability sample space consisting of all possible 

outcomes of an experiment and i  is an outcome), except possibly at a set i  of probability zero (by 

convention). 

Property 3: The process independent increments are Gaussian random variables, such that, for any time instants  

it  and 1it  in T , the mean is     1
0

i i
E B t B t


  , and the variance is        

2

1 1
 

i i i i
E B t B t q t t

 
   . The 

parameter 0q   is the diffusion of the process  ,B   . 

Usually, the scalar Brownian motion process  0,tB t t , is assumed to be of unit variance 1q  . This 

assumption is without loss of generality, since 1q   can be absorbed in the diffusion-coefficient  , tG t S , that 

is,  , tG t S  can be replaced with  , tqG t S . 

The behaviour of the deterministic part of the process is that when ( )tS t , the so called drift term 

 ( ) ( ) tA t t S   is negative, which results in a pull of the process tS  back down toward the equilibrium level. 

Conversely, if ( )tS t , the drift term  ( ) ( ) tA t t S   is positive, which pulls the process tS  back up to a 

higher equilibrium value. For the stochastic term  , t tG t S dB , since  ,iB t   for a given it T  is a random 

variable composed of a sum of independent Gaussian increments, it is also Gaussian with mean value 

    0
i

iB t
m E B t     and variance      

2

1
i

i i iB t
V E B t q t t


   

 
. Thus, q  indicates how fast the mean 

square value of  ,B    diverges from its initial zero value at 0t . 

Because the coefficients of the linear equation (1) are measurable (in other words, the random process is 

completely determined by the realization of tS ) and bounded on the interval  0 ,t T , there exists a unique 

continuous solution for 0t t T   taking the form [12]: 

     0

0

( ) (s)

0 ( ) (s)
tA t t t A t s

t s
t

S e S e t ds dB 
   

       (2) 

The solution (2) has the characteristic that fluctuates randomly, but tends to revert to some fundamental level 

( )t  with some reversion behavior, which depends upon the choices of the speed of the reversion parameter 

( ) 0A t  , and the nonrandom or random but continuous function  , 0tG t S  . 

2.2 State space - Autoregressive model - Discrete-time Kalman Filter 

A linear, discrete-time, finite-dimensional system with noisy input and noisy output is described with the 

following state-space equations [13, 14]: 

1k k k kx F x w          (3) 

T

k k k k k kz y v H x v          (4) 
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In equations (3) and (4) the unobserved variables of interest are the system state kx  at discrete-time 0k   and 

ky  is the system output. Since this usually is noisy, a noise process  kv  is added to it resulting in the observed 

measurement process  kz . The matrices kF  and kH  are of proper dimensions and known. The system input 

noise process  kw  and the measurement output noise process  kv , are independent of each other and 

individually each being a Gaussian white (uncorrelated from instant to instant and stationary) noise with zero 

mean and known covariance, i.e.,    ~ 0,k k ksw WN Q   and    ~ 0,k k ksv WN R  , where 
ks  denotes the 

Kronecker delta which is 1 for k s  and zero otherwise. We assume that the initial state 0x  is a Gaussian random 

variable with known mean  0 0E x x  and known covariance    2

0 0 0 0 0E x x x x P   , and also that it is 

independent of kw  and kv , for any k . 

Now a model that expresses a univariate time-series system output ky  as a linear combination of past 

observations k ny   and white noise kv  (which is the observed measurements kz ) is referred to as an 

autoregressive model of order n  [or ( )AR n ] model and is given by the following equation: 

(1) (2) ( )

1 2 ... n

k k k k k k k n ky a y a y a y v             (5) 

In (5) the unknown parameters 
(1) ( ),..., n

k ka a  are referred to as the ( )AR n  coefficients, which in case they are 

constant, with sufficient ky  measurements, can be found by solving a set of linear equations. Due to random 

errors in ky  though, it is more realistic to consider the coefficients 
( ) ,  1,...,i

ka i n , as being noisy. Thus, it is 

assumed that they are of the form 
( ) ( ) ( )

1

i i i

k k ka a w   , where each  ( )i

kw  is a zero mean, white, Gaussian random 

process, independent of  ( )j

kw  for i j , and also independent of  kv . Defining now all these unknown noisy 

( )AR n  coefficients as an n -dimensional state vector (1) (2) ( ) (1) (2) ( )
T T

n n

k k k k k k kx x x x a a a       L @ L  and 

defining an n -dimensional, white, zero mean, Gaussian process  kw  as the vector process formed from the 

 ( )i

kw , we get the following system state equation: 

1k k kx x w           (6) 

Also, by defining the row vector of observations: 

 1 2

T

k k k k nH y y y     L      (7) 

and the process  kz  by 
k kz y , then Eq. (5) using (7) becomes the observed state measurements equation: 

T

k k k k kz y H x v          (8) 

Thus, with the above definitions, the ( )AR n  model has been transformed into a linear, discrete-time, finite-

dimensional noisy input state space Eq. (6) with Eq. (8) being the noisy output. 

Remark 1: In this state space formulation of the ( )AR n  model, it is not required for the time series data to be 

stationary. This is in contrast to the classical formulation of ARMA and ARIMA models, where it is necessary for 

the time series data to be transformed by differencing or by removing trend and seasonal components before 
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processing [15, 16]. Also, ARMA and ARIMA models need a lot of past (historical) data (usually more than 50) in 

order to produce predictions. A third reason for not considering the classical ARMA and ARIMA models is that 

the more than 50 past observations in no way can indicate the time series behavior in the next time interval.  

With these in mind, a reasonable value of n = 3 to 5 historical data values are sufficient.  

The one-step prediction problem now is to produce an estimate at time 1k   of the system states 1/ 1
ˆ

k kx    

(which are the ( )AR n  coefficients) using n  noisy measured time-series data 1 2, ,...,k k k nz z z   , and from (8) the 

predicted 
1 1

ˆ
k kz y   can be calculated. In this case, the solution to the problem, is given by the discrete-time 

Kalman filter recursive equations [13, 14] as follows: 

(a) Time update (or prediction equations): 

1/ /
ˆ ˆ

k k k kx x          (9) 

1/ /k k k k kP P Q          (10) 

(b) Measurement update (or correction) equations: 

1

1 1/ 1 1 1/ 1 1

T

k k k k k k k k k
K P H H P H R



      
         (11) 

11/ 1 1/ 1 1 1/
ˆ ˆ ˆ

k

T

k k k k k k k k
x x K z H x

     
          (12) 

   
11/ 1 1 1 1/ 1 1 1 1 k

T
nxn T nxn T T

k k k k k k k k k k
P I K H P I K H K R K

        
        (13) 

with the matrices being 
2

k kR E v    , 
T

k k kQ E w w    , and 
nxnI  is the nxn  identity matrix (all 1’s in the main 

diagonal and zeros elsewhere). 

Equation (12) is initialized with 1/0x̂  set equal to the vector of a priori estimates of the coefficients. The term 

1 1/
ˆ

k

T

k kH x
   is one step predicted output ˆ

kz  and the quantity 
11 1/
ˆ

k

T

k k kz H x
 

    is one step prediction sequence, 

usually called innovation or residual, 
11 1 1/
ˆ

k

T

k k k kr z H x
  

    . 

Eq. (13) is initialized with 1/0P  set equal to the a priori covariance matrix of the error in the estimate of these 

coefficients. 

The matrix 
1kK 
 is called the Kalman filter gain. Notice that the gain matrix 1kK   depends inversely on 1kR   - 

the larger the variance of the measurement error, the lower the weight is given to the measurement in making 

the forecast for the next period, given the current information set. 

The matrix kQ  describes the confidence in the system state equation (3) or (6); an increase in this matrix means 

that we trust less the process model and more the measurements.  kQ  can be estimated using the Maximum 

Likelihood Estimation method [13, 14], but often is picked by simulations to be 
nxn

kQ I , with 0   being a 

scalar. 

The error covariance matrix 
1/ 1k kP  

 in (13) depends on the measurements via 
1kK 
. As the k  measurements 

are processed, it is desirable for the covariance to be 1/ 1

nxn

k k kP I   , where the scalar 0k   approaches 
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zero or a small number  , as k  . Then, for almost all the measurements the mean square parameter 

estimation error will approach zero, or some small quantity [13]. 

3 Forecasting high frequency (intravalues) time-series data using Mean Reverting Stochastic Process 

and Kalman filter daily closing predictions 

3.1 Discrete time Mean Reverting Stochastic Process 

Since the time-series data is available at discrete time intervals, we need to discretize the mean reverting 

stochastic process (1). For the discretization, we consider the interval  0,  T . The required step in the interval 

dt , can then be /dt T N , for some integer N . Now, for 1,2,...,i N , with iB  denoting 
it

B , where it idt , 

from Property 2 (see Subsection 2.1), the Brownian motion gives 0 0B   with probability 1, and from Properties 

2 and 3, we get 1i i iB B dB  , where each idB  is an independent random variable of the form (0,1)qdtN , 

where (0,1)N  is the normal distribution with mean zero and variance 1. 

Now, in order to solve numerically Eq. (1) in the interval  0,  T , we apply the method of Euler–Maruyama [17], 

and obtain an approximation for the proposed mean reverting stochastic process 
it

S , denoted by iS , for 

1,2,...,i N , as follows: 

   1

0

( ) ( ) , ;

(0,1),   

i i i i i i

i i

S A t T S dt G t S dB

dB qdtN S initial condition

   

 
    (14) 

The behavior of the discretized mean reverting stochastic process iS  remains the same as for the continuous 

case tS , described in Subsection 2.1. That is, once the speed of the reversion parameter (t ) 0iA  , and the 

random or nonrandom discrete function  , 0i iG t S   have been chosen, the process would evolve randomly 

to reach the specified long term mean ( )T . 

We can allow now the long term mean ( )T  to be ˆ ˆˆ( ) T

k k k kT y z H x     (8), with 
T

kH  known from the 

measurements and ˆ
kx  as being estimated by the discrete Kalman filter (Eqs. (9)-(13)). Choosing, for example, 

1 minutedt  , then within a daily interval of 6.5 hoursT  , the solution of (15) would provide 390N   

estimated intravalues. For the random evolution (or trajectory) of these intravalues though, we have to specify 

the volatility function  , 0i iG t S   at each instant of time 1,2,..., 390i N  . 

3.2 Volatility choices for the mean reverting stochastic process 

The choices for the volatility function, as described in Section 2.1, are deterministic and/or stochastic and vary 

according to different behaviours one might select for the process to evolve throughout the interval instances  

1,2,..., 390i N  . That is, one might select a specific discrete determinist or a specific discrete stochastic or 

even both deterministic and stochastic discrete volatility function  , 0i iG t S  , for all the time instances, or 

segment the time interval instances 1,2,..., 390i N   within the day and choose different volatility functions  

for each segment. 

A few possible choices for the volatility function  , 0i iG t S    are as follows: 
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• With iH , iL , iC , and iO  denoting the high, low, close, and open values of the time series, respectively,  

possible deterministic volatilities for the whole interval are: 

i) Average of high and low values of the previous day, or n  previous days. 

ii) Previous day closing value, or average of n  previous closing values. 

iii) Variance of n  previous closing values. 

iv) Parkinson [1]:    
2

1

1

4 ln(2)

n

Parkinson i i

i

H L
n




   

v) Garman Klass [2]:       
2 2

1

1
2ln(2) 1

2

n

GK i i i i

i

H L C O
n




      

vi) Rogers and Satchell [3]:         
1

1 n

RS i i i i i i i i

i

H C H O L C L O
n




       

vii) Yang-Zhang [18]:  
2 2 2

(1 )
Close to Open Open to Close RS

k k   
   

    with 

1
1

0.34 1.34
1

n
k

n




 


 
 
 

 

• Another choice used in this work is to use the Kalman filter covariance matrix which provides information 

for the spread of error in the estimation of the ( )AR n  coefficients for the one day ahead predicted 

measurement. That is, for the estimate 
1/

ˆ
k kx 

 of the unobservable system state 
1/k kx 

, the error covariance 

is    1/ 1/ 1/ 1/ 1/
ˆ ˆ

T

k k k k k k k k k kP E x x x x       . The rows of this error covariance matrix span the error 

space of the ( )AR n  coefficients. Since this matrix is positive definite, different possibilities of volatility 

measures may include  1/det 0k kP   ,  1/ 0k keigenvalues P   ,  1/ 0k ktrace P   , 

 1/ 0k knorm P   , or combinations of these. As the order of the autoregressive model increases though, 

so are these measures of the Kalman filter covariance matrix (which all give constant volatility for the whole 

interval). 

The determinant of the Kalman filter covariance matrix,  1/det 0k kP   , can be thought as an estimate of 

volatility spanning the error space, since from linear algebra it is known that for a set of linearly independent 

vectors 
1 2, , , nu u uL  in 

nR , the absolute value of the determinant of the matrix M  with rows 
1 2, , , nu u uL  

indicates the volume    V det M   of the parallelepiped 

 1 1 2 2 ... : 0 1 ,  1,2,...,n n ia u a u a u a i n         formed by these vectors. When 2n  ,   is a 

parallelogram and  V   denotes the area of  . In general,   0V    if and only if the vectors 

1 2, , , nu u uL  are linearly dependent (i.e., if and only if the vectors do not form a coordinate system in 
nR ). 

The trace of the Kalman filter covariance matrix,  1/ 0k ktrace P   , gives another estimate of volatility, since 

the trace is the sum of the diagonal elements of a matrix, and for the error covariance the trace is the sum 

of the mean square errors, which is a performance index for the estimation. 
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Similar volatility measures are provided by the real part of eigenvalues and the norm of the Kalman filter 

covariance matrix since the eigenvalues and the norm are interrelated for a positive definite matrix.  

• Another choice is to use the stochastic process 0iS   itself, at each instance 1,2,..., 390i N  , and/or 

any of the above constants multiplied by the process 0iS   at each instance 1,2,..., 390i N   (gives 

stochastic volatility not constant but varying throughout the interval). 

• Additionally, another choice is to use any of the above constant volatilities multiplied by a uniform 

distribution of some level at each instance 1,2,..., 390i N   (gives stochastic volatility varying 

throughout the interval). 

• Yet another choice is to use any of the above volatilities multiplied by a binomial distribution at each 

instance 1,2,..., 390i N   to model possible instances of inactivities (gives stochastic volatility varying 

throughout the interval). 

4 MRSP structure, parameters, simulations, and assessment of results 

The general structure of the time series mean reverting stochastic process (MRSP) predictions and evolution of 

intravalues is presented in Fig. 1. 

In Fig. 1 the bottom part represents the time series data values  , 0,1,2,..., Ntz t  . The part above it 

represents the AR(n)-Kalman filter predicted values ky  based on a set of n previous time series data values

 1 2, ,... nz z z . The top part represents the mean reverting stochastic process (MRSP) intravalues iS  generated 

while the process evolves to reach the predicted values ky . 

 

Fig. 1: Time Series Mean Reverting Stochastic Process (MRSP) Predictions and evolution of intravalues 
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The parameters of the mean reverting stochastic model chosen for simulation are as follows:  

• The strength of the mean reversion is calculated adaptively as ( ) ( ) 0iA i i dt T S      for 

1,2,..., 390i N   with (1)A  being some small positive number, e.g., (1) 0.001A  . This adaptive 

calculation of ( )A i  keeps track of the deviations of 
iS  as it evolves toward its end AR(n)-Kalman filter  

estimated value ( )T . As this deviation increases the ( )A i  values increase as well to bring the process as 

close as possible to ( )T . 

• The volatility term as previously stated can be both deterministic and stochastic as well as a function of the 

process itself. Here it is chosen as       1/ 1/ 1/, deti k i k k k k iG k S tr P P S    . This choice stems from the 

Cox-Ingersoll-Ross model [19] which captures the mean reverting phenomenon and avoids the possibility 

of negative values for all values of ( ) 0A t   and ( ) 0T   once the condition 

    1/ 1/
2 ( ) ( ) det

k k k k
A t T tr P P

 
   is satisfied. The stochastic part of this MRSP has the standard deviation 

    1/ 1/detk k k ktr P P  and is proportional to 
iS . According to [19] this is significant because it states 

that as the short-rate increases, the standard deviation will decrease. 

• The mean reverting term ( )T  is the AR(n)-Kalman filter estimate ˆ ˆˆ( ) T

k k k kT y z H x    . The daily time 

interval is 6.5 T hours  (Dow Jones Industrial Average (DJIA) trading hours per day), which gives the per 

minute intraday time instances 1,2,..., 390i N  . The order of the autoregressive model is chosen as 

(3)AR , indicating regression over the past three ( 3n  ) daily closing values. 

• The initial conditions, 
1S , of the mean reverting stochastic model is chosen to be the current daily Open 

value. 

• The Kalman filter initial covariance matrix is picked arbitrar ily as 
(

1/0

)1.5* *n nxnn IP  . 

• The covariance matrix kQ  describes the confidence in the system state equation (2.3); an increase in this 

matrix means that we trust less the process model and more the measurements. The traditiona l adaptation 

method proposed [in 20] is used to adaptively calculate kQ  using the residuals and the Kalman filter gain,

1 11 1

1
k k

T T

k k k
Q K r r K

n   


 
 
 

. 

• The measurement covariance kR  is set equal to the variance of the n observations vector 

 1 2

T

k k k k nH y y y     L . 

• The initial condition for the state is chosen   1

1/0
ˆ 0.35* 1 1 1

T
nx

x   L . 

For the simulation of mean reverting stochastic model the DJIA daily data is used. Specifically,  a sample of 21 

trading days from 4 April, 2017 until 4 May, 2017. 

Fig. 2 presents this time series data sample with the corresponding High, Low, and Close values. This sample is 

considered to be adequate for our purposes as it possesses enough variability in the values as shown. 
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Fig. 2: DJIA index values for Close, High, and Low from 4 April, 2017 until 4 May, 2017 

The simulation results are presented and described in the following figures:  

Fig.3 presents the Root-Mean-Square (RMS) errors between the (3)AR -Kalman filter predictions and the 

corresponding daily close values (top), between the (3)AR -Kalman and the mean reverting stochastic process 

(MRSP) predictions (middle),and between the MRSP predictions and the corresponding daily close values 

(bottom). It is observed that these RMS errors are relatively small, considering the data values which a re in the 

order of 20 thousand. Mean Square Error (MSE) measures are scale dependent and address model performance, 

i.e.,  
2

1

1 n

k k

k

MSE z y
n 

  . Thus, the MSE can only provide a relative comparison between different models. 

These measures are zero if and only if the values are identical.  

 

Fig. 3: RMS errors between: AR(3)-Kalman filter predictions and DJIA Close values (top), AR(3)-Kalman 

filter and MRSP predictions (middle), and MRSP predictions and data measurements (bottom)  

Fig.4 presents the Mean-Absolute-Percentage-Error (MAPE) errors between the (3)AR -Kalman filter predictions 

and the corresponding daily close values (top), between the (3)AR -Kalman and the mean reverting stochastic 

process (MRSP) predictions (middle), and between the MRSP predictions and the corresponding daily clo se 

values (bottom). 
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Fig. 4: MAPE errors between: AR(3)-Kalman filter predictions and DJIA Close values (top), AR(3)-

Kalman filter and MRSP predictions (middle), and MRSP predictions and data measurements (bottom) 

It is observed that these MAPE errors are extremely small, considering the data values which are in the order of 

20 thousand. MAPE is the average value of the absolute values of errors expressed in percentage terms. We 

consider data to be in a relative scale if they are strictly positive and the importance of the difference is given 

by the ratio and not by the arithmetic itself, i.e., 

1

100 n
k k

t k

z y
MAPE

n z


  .The MAPE cannot be determined if 

the measured values are equal to zero and it tends to infinity if measurements are small or near to zero. This is 

a typical behavior, when relative errors are considered. 

Next Fig. 5, Fig. 6, Fig. 7 and Fig. 8, present the MRSP intravalues in blue starting from the daily Open value 

indicated with the red square in the left-hand side of the plot. At the right-hand side of the plot the 

corresponding daily Close values are shown with a magenta square and the predicted values with the green 

square. The plots correspond to the DJIA trading days 28 April, 2017 until 3 May, 2017 (excluding the weekend), 

with corresponding Close values 2.0940x104, 2.0913x104, 2.0949x104, and 2.0957x104. 

 

Fig. 5: MRSP Intravalues for day 28 April, 2017. Close value 2.0940x104 



Computer Reviews Journal Vol 3 (2019) ISSN: 2581-6640                            http://purkh.com/index.php/tocomp 

99 

 

Fig. 6: MRSP Intravalues for day 1 May, 2017. Close value 2.0913x104 

 

Fig. 7: MRSP Intravalues for day 2 May, 2017. Close value 2.0949x104 

 

Fig. 8: MRSP Intravalues for day 3 May, 2017. Close value 2.0957x104 
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Fig.9 presents the MRSP intravalues for day 4 May, 2017 with Close value 2.0951x104. 

 

Fig. 9: MRSP Intravalues for day 4 May, 2017. Close value 2.0951x104 

Next Fig. 10 and Fig. 11 present the adaptive values of the MRSP strength coefficient A for the last day and the 

last+1 day, respectively, from the starting value 0.001 as the intravalues  evolve. 

 

Fig.10: MRSP Adaptive Strength A values for last day as intravalues evolve 

 

Fig. 11: MRSP Adaptive Strength A values for last+1 day as intravalues evolve 
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Next Fig. 12 and Fig.13 show the volatility values       1/ 1/, deti i k k k k iG t S tr P P S    for last day and last+1 

day, respectively, as MRSP intravalues evolve. 

 

Fig. 12: MRSP Volatility values for last day as intravalues evolve 

 

Fig. 13: MRSP Volatility values for last+1 day as intravalues evolve 

Comments: From Fig. 5, Fig. 6, Fig. 7, and Fig. 8 it can be deduced that the intravalues produced by the proposed 

MRSP model starting from the Open values do not end far away from their corresponding actual Close values. 

Similar results were obtained for all the previous simulated DJIA data values (too many to be presented here). 

Also, from the same figures the following observations come out: 

• When the Open value is high enough or low enough relative to the close value, the MRSP evolves quite 

fast in the beginning of the time interval in such a way to reach the estimated level of the Close value, and 

then from there, it “cruises” towards this Close value for the rest of the time interval (see Fig. 5, Fig. 6, and 

Fig. 7). 
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• On the other hand, when the Open and estimated Close values are relatively in the same level, then the 

MRSP wanders towards the Close value throughout the whole-time interval (see Fig. 8). This behavior of 

the MRSP model seems most often to be similar to the actual evolution of the time series during the day.  

• In addition, since the MRSP model by construction ends up close to the daily Close value starting from an 

Open value, the evolution of the intravalues it produces, exhibits the U-shaped patterns [9] as well as the 

reverse J-shaped patterns [10] as reported in the literature (see Fig. 5, Fig. 6, Fig. 8 and Fig. 9). 

Thus, based on these observations, the MRSP model can be used for trading purposes throughout the time 

interval from the actual Open and its estimated Close values, since it provides a stochastic evolution of 

intravalues of a time series, within of course, the chosen values for its parameters and the volatility measure 

implemented. 

Remark 2: The sensitivity of the model depends on the “seed” value of the MATLAB random number generator 

routine rng(.). For the simulations here, using a few runs with the command rng('shuffle'), the seed value was 

chosen as rng(1111414785). The other parameter having an impact on the model’s results is the Kalman filter 

initial error covariance
1/0P . This though did not have a large of an impact, since after a few iterations its value is 

regulated with the incoming covariance of the observations. Also, from simulations, the AR(n) model of order 

n=3 seemed to provide more acceptable results, since more past historical data does not necessarily indicate 

the time series behavior in the next time interval. The used in the simulations volatility term 

      1/ 1/
, det

i i k k k k i
G t S tr P P S

 
  , consisting of the trace and the determinant of the Kalman filter 

covariance matrix multiplied by the process itself, for all time instants 1,2,..., 390i N  , gave values which 

are not far apart from the corresponding values calculated with Parkinson’s [1] volatility formula. 

5 Conclusion and further research 

In this paper a MRSP model has been presented for generating intravalues (or tick data) of a time series along 

with their evolution. The theoretical and practical aspects of the model have been described in details. The 

proposed MRSP uses a combination of four algorithmic techniques : (a) A deterministic part providing the 

directional evolution and a stochastic part giving the up-and-down fluctuations, (b) a volatility measure for the 

size of the fluctuations, (c) a state space formalized AR(n) model for estimating the final value of the process 

direction, and (d) a Kalman filter providing for the coefficients of the AR(n) model as well as contributing through 

the trace and/or determinant of its covariance matrix for the process volatility term. 

Acceptable simulation results have been presented for the DJIA time series demonstrating the applicability of 

the model. That is, the proposed MRSP model starting from the daily Open values evolves within an acceptable 

error towards the predicted daily Close value, giving during the day high frequency (intravalues or every minute 

tick data) forecast values based on the chosen volatility measure for the time series and the values of its 

parameters. 

Based on these results, some further research direction would be the examination of various advanced  stochastic 

control theory techniques to adaptively determine the ( ) 0A i  parameter for the evolution of the MRSP 

throughout the interval of interest. 

A second direction is to examine the results of an additive Jump-Diffusion term to the mean reverting stochastic 

process to account for fat tails which are present in the tick data. Moreover, s ince the intravalues exhibit small 

and/or larger jumps, and for some instances do not change at all, it is realistic to consider any of the above 

deterministic and/or stochastic volatilities, but in addition, it is realistic to use an additive Jump-Diffusion term 

to the mean reverting stochastic process to account for fat tails. Then, such a model would be 

   ( ) ( ) ,t t t t tdS A t t S dt G t S dB dJ     [21, 22], where the jumps are defined as 
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( )

( )

1

( ) ,   ( ) ( )
P t

j P t

j

J t Y dJ t Y dP t


  , with ( )P t  being a Poisson process with intensity  , and with jY  being 

independent identically distributed (iid) random variables modeling the size of the -j th  jump, independent of 

P  and B . 
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