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Abstract  

Infertility is a worldwide problem, affecting 8% – 15% of the couples in their reproductive age. WHO estimates 

that there are 60 - 80 million infertile couples worldwide with the highest incidence in some regions of Sub-

Saharan Africa also infertility rate may reach 50% compared to 20% in Eastern Mediterranean Region and 11% 

in the developed world. Infertility has caused considerable social, emotional and psychological stress between 

couples, among families, within the individual concerned and the society at large. Historical data constituting 

information describing the risk factors of infertility alongside the respective infertility likelihood status of women 

was collected from Obafemi Awolowo University Teaching Hospital Complex (OAUTHC).  The predictive model 

was formulated using naïve Bayes’, decision trees and multi-layer perceptron algorithm – supervised machine 

learning algorithms.  The formulated model was simulated using the Waikato Environment for Knowledge 

Analysis (WEKA) environment.  The results of the performance evaluation of the machine learning algorithms 

showed that the C4.5 decision trees and the multi-layer perceptron with an accuracy of 74.4% each 

outperformed the naïve Bayes’ algorithm.  In addition, the decision trees algorithm recognized variables relevant 

to predicting infertility and a rule that can be applied on patient risk factor records for infertility likelihood 

prediction was deduced from the tree structure.  This showed how effective machine learning algorithms can be 

used in predicting the likelihood of infertility in Nigerian women. 

Keywords: prediction model, infertility in women, multi-layer perceptron, decision trees, naïve bayes. 

Introduction 

While there is no universal definition of infertility, a couple is generally considered clinically infertile when 

pregnancy has not occurred after at least twelve months of regular sexual activity without the use of 

contraceptives [1]. Primary infertility is defined as childlessness and secondary infertility as the inability to have 

an additional live birth for a parous woman. Although women's infertility is of greater research consideration, 

health care attention and social blame, male conditions cause or contribute to around half of all cases of 

infertility [2]. According to World Health Organization, infertility is defined as one year of frequent, unprotected 

intercourse during which pregnancy has not occurred [3]. In another definition, infertility is the inability of a 

sexually active woman who is not practicing contraception to have a live birth [4]. 

Early exposures (e.g. in utero or in childhood) could permanently reprogram men and women for fecundity or 

biologic capacity (e.g. gynecologic and urologic health or gravid health during pregnancy) and fertility outcomes 

(e.g. multiple births or gestational age at delivery), which could affect later adult on set diseases [5]. Thus, 

infertility could have public health implications beyond simply the inability to have children. Infertility can be 

attributed to any abnormality in the female or male reproductive system [3]. The etiology is mostly distributed 

fairly equally among the male and female with factors ranging from ovarian dysfunction, tubal factors amongst 

others. A smaller percentage of cases are attributed to endometriosis, uterine or cervical factors, or other causes. 

In approximately, one fourth of couples, the cause is uncertain and is referred to as unexplained infertility, while 

etiology is multifactorial for some couples [6]. 

In general, an infertility evaluation is initiated after 12 months of unprotected intercourse during which 

pregnancy has not been achieved. Earlier investigation  may be considered when  historical factors, such as  

previous pelvic inflammatory  disease  or amenorrhea suggest infertility, although physicians should be aware 
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that earlier evaluation may lead to unnecessary testing  and treatment  in  some  cases. Evaluation also may be 

initiated earlier when the female partner is older than 35 years, because fertility rates decrease and spontaneous 

miscarriage and chromosomal abnormality rates increase with advancing maternal age [7]. Partners should be 

evaluated together and separately, because each person may want to reveal information about which their 

partner is unaware, such as previous pregnancy or sexually transmitted disease.  

The risk factors for infertility can be classified into: genital, endocrinal, developmental and general factors. Pelvic 

inflame ematory disease (PID) due to sexually transmitted diseases, unsafe abortion, or puerperal infection is 

the main cause of tubal infertility caused mainly by chlamydial infection. Polycystic ovarian syndrome (PCOS) is 

thought to be the commonest cause of an ovulatory infertility [8]. Several lifestyle factors may affect 

reproduction, including habits of diet, clothing, exercise, and the use of alcohol, tobacco and recreational drugs. 

Exposure to textile dyes, lead, mercury and cadmium, volatile organic solvents and pesticides has been also 

associated with infertility [9]. Estimates of the proportion of infertility cases attributable to male or female 

specific factors in developed countries were derived in the 1980s by the WHO: 8% of infertility cases were 

attributable to male factors, 37 % to female factors, 35 % to both the male and female, and 5 % to an unknown 

cause (the remaining 15 % became pregnant) [10]. 

Prediction involves some variables or fields in the data set to predict unknown or future values of other variables 

of interest. On the other hand, description focuses on finding patterns describing the data that can be 

interpreted by humans. Machine learning plays an important role in disease prediction by identifying related 

pattern that exists between the risk factors associated with the likelihood of infertility in women.  This will 

improve the level of decision-support offered to the expert gynecologist during the course of diagnosis. 

This study presents a comparative analysis between three (3) supervised machine learning model used to 

develop predictive models for the likelihood of infertility in women in order to propose the most effective and 

efficient model. Where possible, variables that are relevant to predicting the likelihood of infertility in women 

alongside their underlying relationship will also be proposed. 

Related Works 

There are different types of diseases whose likelihood or survival had been predicted using data mining 

technique namely Hepatitis and other liver disorders, Breast cancer, Thyroid disease, Diabetes, HIV/AIDS and 

Tuberculosis etc., for the purpose of this research, the prediction of likelihood of infertility in women, research 

work that are related to fertility were reviewed. There existed a number of research areas concerning   infertility 

but none attempts to predict its likelihood in women using data mining technique, further to its prediction is 

the usage of a graphical user interface or rather a software system. 

Durairaj and Kumar [11] worked on Selection of Influential Parameters on Fertility using a data mining method 

of data analysis, as classification is proposed for the In-Vitro Fertilization (IVF) data analysis, and multilayer 

perceptron network for classification or prediction. From the experiments, the observation was made in the 

attribute selection analysis and it helped to identify the most influential IVF parameters to predict the successful 

rate of IVF treatment. The proposed technique was useful for finding the minimum set of influential parameters 

in order to predict a success rate of IVF, which enabled the gynecologists to prescribe the treatment to the 

couples. By knowing the success rate prior to the treatment, the couples get psychological boost, which 

increases their chances of getting successful pregnancy. 

Saith et al. [12] used decision trees to investigate the relationship of the features of the embryo, oocyte and 

follicle to the successful outcome of the embryo transfer. Although 53 features were studied, only 4 had 

predictive capabilities, embryo grade, cell number, follicle size and follicular fluid volume. This study used 200 

IVF records and significantly differs from our study in that it did not consider any clinical data on the female and 

male patients involved in the procedure. 
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Shen et al [13] used statistical analysis to examine factors involved in IVF procedures. This study, however, only 

considered fertilizations accomplished with Intracytoplasmic Sperm Injection (ICSI). Statistical approaches were 

used to find that sperm motility and ICSI operator were the two most important predictors for the success of an 

IVF procedure. Sperm motility and ICSI technician were also features considered in the study. The data set was 

drastically different because the ICSI method of fertilization was used in only 44 % of their records. 

Methods 

Data Collection 

For the purpose of this study, it was necessary to identify and collect the data needed for identifying infertility 

in women from gynecologist located at the Obafemi Awolowo University Teaching Hospital Complex (OAUTHC) 

and the Faculty of Health Sciences of Obafemi Awolowo University, Ile-Ife.  The variables identified include: age 

of menarche, age of marriage, family history of infertility, menstrual cycle, diabetes mellitus, hypertension, 

thyroid disease, pelvi-abdominal operation, endometriosis, fibroid disease, polycystic ovary, genital infection, 

previous termination of pregnancy, Sexually Transmitted Infection (STI) and the likelihood of infertility (identified 

using the labels: Likely, Unlikely and Probably) (Table 1).  Data was collected from a total of 39 patients with a 

description of the variables in the dataset stated as follows: 

a. Age of Menarche: is the identification of the age of the patient at first menstruation; it is recorded as a 

nominal value which determines the age category in years identified as equal or less than 15 years and greater 

than 15 years.  

b. Age of marriage: is the identification of the patient’s age of marriage; it is recorded as a nominal value 

less than or equal to 30 years and greater than 30 years.  

c. Menstrual cycle: is the identification of the regularity of the patient’s menstrual cycle; it is a nominal 

value identified as Regular or Irregular. 

d. Family history of Infertility: is the identification of an existing history of infertility in the family; it is a 

nominal value identified as either Yes or No. 

Table 1:  Identified variables for determining infertility 

S/N Class of Risk Risk Factors/Considered 

Parameters (Points) 

Labels (Points) 

1. Personal Profiles Age of Menarche ≤15 yrs  or >15 yrs 

2. Age of Marriage ≤30 yrs  or >30 yrs  

3. Family History of infertility Yes or No  

4. Menstrual cycle Regular or Irregular  

 

5. 

 

Medical and Surgical 

history 

 

 

Diabetes Mellitus 

 

Yes or No  

6. Hypertension Yes or No  

7. Thyroid Yes or No  

8. Pelvi-abdominal operation 

had 

Yes or No  
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9. Gynecological history 

 

Endometriosis No or Yes   

10. Fibroid No or Yes   

11. Polycystic Ovary No or Yes   

12. Genital Infection No or Yes   

13. Sexually transmitted Infection 

(STI) 

No or Yes 

14. Previous termination of 

pregnancy 

No or Yes 

 

e. Diabetes Mellitus: is the identification of the existence of diabetes disease in the patient; it is a nominal 

value identified as either Yes or No.   

f. Hypertension: is the identification of if the patient has hypertension before or presently or not; it is a 

nominal value identified as either Yes or No. 

g. Thyroid Disease: is the identification of the existence of thyroid disease in the patient; it is a nominal 

value identified as either Yes or No. 

h. Pelvi-abdominal operation had: is the identification of the existence of pelvi-abdominal operation on 

the patient; it is a nominal value identified as either Yes or No. 

i. Endometriosis: is the identification of the existence of Endometriosis in the patient; it is a nominal value 

identified as either Yes or No. 

j. Fibroid disease: is the identification of the existence of fibroid disease in the patient; it is a nominal value 

identified as either Yes or No. 

k. Polycystic ovary: is the identification of the patient having a polycystic ovary; it is a nominal value 

identified as either Yes or No. 

l. Genital infection: is the identification of a genital infection in the patient; it is a nominal value identified 

as either Yes or No. 

m. Previous termination of pregnancy: is the identification of the patient having a previous termination of 

pregnancy; it is a nominal value identified as either Yes or No. 

Data-Preprocessing 

Following the collection of data from the required respondents; 39 patients with their respective attributes (14 

infertility risk indicators) alongside the likelihood of infertility was identified. In addition, the task of data cleaning 

for noise removal (errors, misspellings etc.) and missing data were performed on the information collected from 

the health records.  Following this process, all data cells describing the attributes (fields) of each patient were 

found to be filled.  No missing data were found in the repository and all misspellings were corrected.   

In order for the dataset collected to be fit for the simulation environment; the dataset was converted to a more 

compactible data storage format.  This would make the dataset fit for all the necessary machine learning 

operations performed by the simulation environment.  Important to the study is the ability of the machine 

learning techniques to identify the most important combination of features that are more likely to improve the 

predicting the likelihood of infertility.  
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The dataset collected was converted to the required format needed for simulation; the Waikato Environment for 

Knowledge Analysis (WEKA) called the attribute relation file format (.arff) – a light-weight java application with 

a number of supervised and unsupervised machine learning tools.  This format allows for the formal 

identification of the file name, attribute names and labels alongside the dataset that correspond to each attribute 

expressed using their respective labels.  Figure 1 shows the format of the .arff file format chosen for the formal 

representation of the dataset using the 39 patient data collected. 

 

Figure 1:  arff file containing identified attributes 

Model Formulation 

Systems that construct classifiers are one of the commonly used tools in data mining. Such systems take as input 

a collection of cases, each belonging to one of a small number of classes and described by its values for a fixed 

set of attributes, and output a classifier that can accurately predict the class to which a new case belongs. 

Supervised machine learning algorithms make it possible to assign a set of records (infertility risk indicators) to 

a target classes – the risk of infertility (Unlikely, Likely and Benign). 

Supervised machine learning algorithms are Black-boxed models, thus it is not possible to give an exact 

description of the mathematical relationship existing among the independent variables (input variables) with 

respect to the target variable (output variable – risk of infertility).  Cost functions are used by supervised machine 

learning algorithms to estimate the error in prediction during the training of data for model development.  

Gradient decent and other related algorithms are used to reduce the error by estimating cost function 

parameters.   

Naïve Baye’s Classifier 

Naive Bayes Classifier is a probabilistic model based on Baye’s theorem. It is defined as a statistical classifier. It 

is one of the frequently used methods for supervised learning.  It provides an efficient way of handling any 

number of attributes or classes which is purely based on probabilistic theory.  Bayesian classification provides 

practical learning algorithms and prior knowledge on observed data.   
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If X is a data sample containing instances, Xi where each instances are the infertility likelihood risk factors.  Let 

H be a hypothesis that X belongs to class C which contains likely, probable and unlikely cases.  Classification 

requires the determination of the following: 

• P(Hj|X) – the posteriori probability: the probability that  the hypothesis, Hj (unlikely, benign or likely) 

holds given the observed data sample X. 

• P(Hj) - prior probability: the initial probability of the class, j; 

• P(Xi): probability that sample data is observed for each attribute, i; 

• P(Xi|H) - likelihood:  the  probability  of  observing the sample’s attribute, Xi given that the hypothesis 

holds in the training   data   X; and 

The posteriori   probability   of   a hypothesis Hj defined as either of unlikely, likely or benign, P(H j|Xi), follows 

the Baye’s theorem as follows: 

𝑃(𝐻𝑗|𝑋) =  
∏ 𝑃(𝑋𝑖|𝐻𝑗)𝑃(𝑋𝑖)

𝑛
𝑖=1

𝑃(𝐻𝑗)
 𝑓𝑜𝑟 𝑗 = 1,2,3                                                 (1) 

Where 𝑋 = {𝑋1, 𝑋2, 𝑋3 … … . . 𝑋𝑛} is the set of risk factors for infertility likelihood of each patient, X and 𝐻𝑗 = {𝐻1 =

𝑙𝑖𝑘𝑒𝑙𝑦, 𝐻2 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒, 𝐻3 = 𝑢𝑛𝑙𝑖𝑘𝑒𝑙𝑦} is the target class set. 

The breast cancer risk output class is thus: 

𝑚𝑎𝑥. [𝑃(𝐻𝑗|𝑋)]    𝑓𝑜𝑟 𝑗 = 1, 2, 3.                                                                (2) 

Decision Trees Algorithm 

The theory of a decision tree has the following parts: a root node is the starting point of the tree; branches 

connect nodes showing the flow from question to answer.  Nodes that have child nodes are called interior nodes.  

Leaf or terminal nodes are nodes that do not have child nodes and represent a possible value of target variable 

given the variables represented by the path from the root.  The rules are inducted by definition from each 

respective node to branch to leaf.14  

Splitting points attribute variables and values of chosen variables are chosen based on Gini impurity (eqn. 3) 

and Gini gain (eqn. 4) as expressed below by Chaurasia et al.14: 

𝑖(𝑡) = 1 −  ∑ 𝑓(𝑡, 𝑖)2 =  ∑ 𝑓(𝑡, 𝑖)𝑓(𝑡, 𝑗)

𝑖≠𝑗

𝑚

𝑖=1

                                              (3) 

∆𝑖(𝑠, 𝑡) = 𝑖(𝑡) − 𝑃𝐿 ∙ 𝑖(𝑡𝐿) −  𝑃𝑅 ∙ 𝑖(𝑡𝑅)                                                     (4) 

Where 𝑓(𝑡, 𝑖) is the probability of getting i in node t, and the target variable takes values in {1, 2, 3… m}.  𝑃𝐿 is 

the proportion of cases in node t divided to the left child node and 𝑃𝑅 is the proportion of cases in t sent to the 

right child node.  If the target variable is continuous, the split criterion is used with the Least Squares Deviation 

(LSD) as impurity measure.  If there is no Gini gain or the preset stopping rule are satisfied, the splitting process 

stops. 

Given a set S of cases, C4.5 first grows an initial tree using the divide-and-conquer algorithm as follows: 

• If all the cases in S belong to the same class or S is small, the tree is a leaf labeled with the most frequent 

class in S. 
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• Otherwise, choose a test based on a single attribute with two or more outcomes. Make this test the root 

of the tree with one branch for each outcome of the test, partition S into corresponding subsetsS1, 

S2,...according to the outcome for each case, and apply the same procedure recursively to each subset. 

ID3 (Iterative Dichotomiser 3) developed by Ross Quinlian15 is a classification tree used in the concept of 

information entropy.  This provides a method to measure the number of bits each attribute can provide, and 

the attribute that yields the most information gain becomes the most important attribute and it should go at 

the top of the tree.  Repeat this procedure until all the instances in the node are in the same category. 

In this study, there are three outcomes, namely: Likely (u1), Unlikely (u2) and probably (u3) in the root node T of 

target variable.  Let u1, u2 and u3 denote the number of probable, unlikely and likely records, respectively.  The 

initial information entropy is given by equation 5 as: 

𝐼(𝑢1, 𝑢2, 𝑢3) =  − ∑
𝑢𝑖

𝑢1 + 𝑢2 + 𝑢3

log2

𝑢𝑖

𝑢1 + 𝑢2 + 𝑢3

3

𝑖=1
                               (5) 

If attribute X (a risk indicator of infertility) with values {x1 and x2} is chosen to be the split predictor and partition 

the initial node into {T1, T2, T3… TN}, and u1, u2 and u3 denote the number of probable, unlikely and likely records 

in the child node j.  The expected information entropy, EI(X) and information gain, G(X) are given by: 

𝐸𝐼(𝑋) =  ∑
𝑢1𝑗 + 𝑢2𝑗 + 𝑢3𝑗

𝑢1 + 𝑢2 + 𝑢3

 ∙ 𝐼(𝑢1, 𝑢2, 𝑢3)

𝑁

𝑗=1

,                                                     (6) 

𝐺(𝑋) = 𝐼(𝑢1, 𝑢2, 𝑢3) − 𝐸𝐼(𝑋)                                                                                 (7) 

In 1993, Ross Quinlan made several improvements to ID.3 and extended it to C4.515. Unlike ID.3 which deals with 

discrete attributes, C4.5 handles both continuous and discrete attributes by creating a threshold to split the 

attribute into two groups, those above the threshold and those that are up to and including the threshold.  C4.5 

also deals with records that have unknown attribute values. C4.5 algorithm used normalized information gain 

or gain ratio as a modified splitting criterion of information gain which is the ratio of information gain divided 

by the information due to the split of a node on the basis of the value of a specific attribute. The reason of this 

modification is that the information gain tends to favor attributes that have a large number of values. 

Multi-layer Perceptron Architecture 

Multi-layer perception (MLP) is a natural extension of the single layer perception network of the class of artificial 

neural networks used in artificial intelligence. It is characterized by a forward flow of a set of inputs passing 

through subsequent hidden and computational layers composed by perception neurons using the feed-forward 

algorithm (Figure 3). The usage of MLPs is defended by the fact that they are able to predict and detect more 

complicated patterns in data.  This is because multi-layer perceptron uses an additional algorithm which is called 

the back-propagation algorithm. 
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Figure 3:  Structure of the multi-layer perceptron architecture 

The back-propagation algorithm used in this study to train the network consists of two steps: 

i.Step 1 - Forward  pass:  the  inputs  are  passed  through  the  network  layer  by  layer  and an output is 

produced. During this step, the synaptic weights are fixed; and 

ii.Step 2 - Backward pass: the output from step 1 is compared to the target producing an error signal. That is 

propagated backwards. The aim of this step is to reduce the error in a statistical sense by adjusting the synaptic 

weights according to a defined scheme. 

The multilayer perception has the following characteristics:   

i.At  all  neurons  within  the  network  feature,  a  nonlinear  activation  function that is differentiable is present 

everywhere; 

ii.The  network  has  one  or  more  hidden  layers  made  up  of  neurons  that  are removed from direct contact 

with input and output. These neurons calculate a signal expressed as a nonlinear function of its input with 

synaptic weights and an estimate of the gradient vector; and 

iii.There is a high degree of interconnectivity within the network. 

The mathematical model of the multi-layer perceptron in Figure 3 is as follows: 

• The Input Layer 

In this part of the multi-layer perception (MLP) the input values, Xn (factors responsible for infertility in women) 

are entered into the MLP system where n is the number of attributes (n=14 in this study) and the weights, Wi of 

each input, Xi produce a summation, Uk which is added to a bias variable, X0 (takes a value of 0 or 1) all equal to 

Vk is sent to the hidden layer for the activation function, φ to take effect where k is the hidden layer.  The 

Summation Uk has the expression as follows: 

𝑈𝑘 =  𝑤1𝑥1  +  𝑤2𝑥2  +  𝑤3𝑥3  +  𝑤4𝑥4  +  ⋯ + 𝑤𝑛𝑥𝑛                                   (8𝑎) 

𝑇ℎ𝑢𝑠, 𝑉𝑘 =  𝑈𝑘  +  𝑥0                                                                                                (8𝑏) 

Where 𝑋𝑛 = {𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛} is the patient’s record containing the factors considered predictive for the 

prediction of infertility in women. 
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And n = 14 attributes (input variables, xn) 

• The Hidden Layer 

At this part of the MLP the summation of the input variables are all sent to the activation function which is fired 

through all the hidden layers (for the purpose of this study 20 layers was used) using the activation function 

called the sigmoid function.  The sigmoid function is expressed as: 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝜑 =  
1

1 +  𝑒−𝑎𝑣
                                                                  (9) 

Where 𝑎𝜖ℝ is a shape parameter of the sigmoid function 

And 𝑣 =  𝑉𝑘 

• The Output Layer 

At this point, the value of the output (infertility status) is determined with the error rate as low as possible. Also, 

the back-propagation algorithm is applied which tries to reduce the error rate, of the model via gradient descent 

by adjusting the values of the synaptic weights before the neuron fires the next set of inputs. At iteration m (the 

mth row in the training set) which in this case is 39, the error for neurons in the output layer is calculated in 

order to determine the error in computation.  The error is calculated thus: 

𝑒𝑟𝑟𝑜𝑟, 𝜀 =  𝑦𝑝𝑖 − 𝑦𝑎𝑖                                                                                                    (10) 

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑑𝑒𝑠𝑐𝑒𝑛𝑡 𝑖𝑠 lim
𝑡=𝑘

𝑑𝜀

𝑑𝑡
= 0 𝑤ℎ𝑒𝑟𝑒 𝑡 = 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 =  
1

2𝑚
 ∙  ∑ (𝑦𝑝𝑖 −  𝑦𝑎𝑖)

2𝑚

𝑖=1
                                              (11) 

Where ypi and yai are the predicted and actual output for patient, i 

And m is the total patient data (m = 39) 

Performance Evaluation 

Following the development of the predictive model using all the proposed methods, the performance of the 

model was evaluated using the confusion matrix to determine the value of the performance metric chosen for 

this study.  A confusion matrix contains information about actual and predicted classification done by a 

classification system and its performance is commonly evaluated using the data in the matrix (Figure 4). In this 

study, the likely cases are the positive cases while the probable and unlikely cases are the negative cases. Also, 

correctly classified cases are placed in the true cells (positive and negative) while incorrect classifications are 

placed in the false cells (positive and negative) and this has generated the rule (i) to (iv), below:  

i.True positives (TP) are correctly classified positive cases;  

ii.False positives (FP) are incorrectly classified positive cases;  

iii.True negatives (TN) are correctly classified negative cases; and  

iv.False negatives (FN) are incorrectly classified negative cases.  
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Figure 4:  Diagram of a Confusion Matrix 

From a confusion matrix, different measures of the performance of a prediction model can be determined using 

the values of the true positive/negatives and false positives/negatives.  For the purpose of this study, the positive 

cases are the Likely Cases of infertility while the negative cases are probably and Unlikely cases. 

a. True Positive rates (TP rates/Recall) – proportion of positive cases correctly classified 

𝑇𝑃 𝑟𝑎𝑡𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                 (12) 

b. False Positive rates (FP rates/False alarms) – proportion of negative cases incorrectly classified as 

positives 

𝐹𝑃 𝑟𝑎𝑡𝑒 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
                                                                                  (13) 

c. Precision – proportion of predicted positive cases that were correct 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                                (14) 

d. Accuracy – proportion of the total predictions that was correct. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                          (15) 

Results 

Data Description 

The data containing information about the attributes and the respective infertility status for 39 patients is shown 

in Table 2 alongside the distribution of the data shown in Figure 5.  It was observed that out of the 39 patients, 

19 were likely infertile, 3 were probably infertile and 17 were unlikely infertile.  The highest distribution was: 23 

with age of menacre less than or equal to 15 years, 23 had thyroid disease, 22 had no family history of infertility, 

20 had no previous terminated pregnancy, 21 had irregular menstrual cycle, 21 had diabetes mellitus, 21 had 

hypertension, 21 had polycyctic ovary and 21 had no genital infection. 
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The lowest distribution was: 16 had age of menacre more than 15 years, 16 had no thyroid disease, 17 had family 

history of infertility, 17 had previously terminated pregnancy, 18 had irregular menstrual cycle, 18 had no 

diabetes mellitus, 18 had no hypertension, 18 had no polycyctic ovary and 18 had genital infection. 

Table 2:  Description of the identified variables 

Variable Type Attributes Labels Values 

I 

 

 

N 

 

 

P 

 

 

U 

 

 

T 

Age of Menacre <=15 years 23 

>15 years 16 

Age of Marriage <=30 years 20 

>30 years 19 

Family History of Infertility No 22 

Yes 17 

Menstrual Cycle Irregular 21 

Regular 18 

Diabetes Mellitus No 18 

Yes 21 

Hypertension No 18 

Yes 21 

Thyroid Disease No 16 

Yes 23 

Pelvi-Abdominal Operation No 20 

Yes 19 

Endometriosis No 19 

Yes 20 

Fibroid No 20 

Yes 19 

Polycyctic Ovary No 18 

Yes 21 

Genital Infection No 21 

Yes 18 

Previous Terminated Pregnancy No 22 

Yes 17 

OUTPUT Infertility Status Likely 19 

Probably 3 

Unlikely 17 

    

 

Simulation Results 

Three different supervised machine learning algorithms were used to formulate the predictive model for the 

likelihood of infertility; they were used to train the development of the prediction model using the dataset 

containing 39 patients’ risk factor records.  The simulation of the prediction models was done using the Waikato 

Environment for Knowledge Analysis (WEKA).  The C4.5 decision trees algorithm was implemented using the J48 

decision trees algorithm available in the trees class, the naïve Bayes’ algorithm was implemented using the naïve 

Bayes’ classifier available in the Bayes class while the Multi-layer perceptron was implemented using the multi-

layer perceptron classifier available in the functions class all available on the WEKA environment of classification 

tools.  The models were trained using the 10-fold cross validation method which splits the dataset into 10 

subsets of data – while 9 parts are used for training the remaining one is used for testing; this process is repeated 

until the remaining 9 parts take their turn for testing the model. 
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Results of the naïve Bayes’ classifier 

Using the naïve Bayes’ classifier to train the predictive model developed using the training data via the 10-fold 

cross validation method, it was discovered that there were 28 (71.79%) correct classifications and 11 (28.21%) 

incorrect classifications – showing an accuracy of 71.8% (Figure 5).   

 

Figure 5:  Simulation results for naïve Bayes’ classifier 

Using the confusion matrix, it was discovered that out of 19 likely cases there were 15 correct classifications 

while1 misclassified for probable and 3 for unlikely.  Out of 3 probable cases there were no correct classifications 

while 1 misclassified for likely and 2 for unlikely.  Out of 17 unlikely cases there were 13 correct classifications 

with 3 misclassified for likely and 1 for probable (Figure 6 – left).  Figure 7 shows a graphical plot of the correct 

and incorrect classifications – correct classifications are crosses while incorrect classifications are boxes. 

 

Figure 6:  Confusion matrix of each machine learning algorithm results 
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Figure 7:  Graphical plot of simulation results for naïve Bayes’ 

Results of the C4.5 decision trees classifier 

Using the C4.5 decision trees classifier to train the predictive model developed using the training data via the 

10-fold cross validation method, it was discovered that there were 29 (74.36%) correct classifications and 10 

(25.64%) incorrect classifications – showing an accuracy of 74.4% (Figure 8).  Using the confusion matrix, it was 

discovered that out of 19 likely cases there were 15 correct classifications while1 misclassified for probable and 

3 for unlikely.  Out of 3 probable cases there were no correct classifications while 2 misclassified for likely and 1 

for unlikely.  Out of 17 unlikely cases there were 14 correct classifications with 3 misclassified for likely (Figure 6 

– middle).  Figure 9 shows a graphical plot of the correct and incorrect classifications – correct classifications are 

crosses while incorrect classifications are boxes. 
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Figure 8:  Simulation results for C4.5 decision trees classifier 

 

Figure 9:  Graphical plot of simulation results for C4.5 decision trees 

For every decision trees algorithm there is always a hierarchical tree with an attributes at each node form the 

parent node all the way to the child node to the leave - the target class.  The tree can be coverted to a rule by 

following the patten from the parent ode at the top all the way to the child node until the bottom leaf is achieved 

where the necessary classification is defined.  Figure 10 shows the decision trees constructed during the model 

development; it can be seen that a number of variables were identified as been relevant for infertility likelihood 

prediction. It can also be discovered that the size of the tree is 6 and the number of leaves plotted are 5. The 

variables identified are: 

• Prevous termination of pregnancy 

• Menstrual Cycle 

• Age of Manacre and 

• Genital Infection 
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Figure 10:  Graphical plot of the decision tree for infrtility likelihood 

Using the decision tree in Figure 10, the following rule can be used to predict the likelihood of infertility in 

women given the values of the four identified risk factors.  The rule can be read as follows: 

IF Previous Termination of Pregnancy = “Yes” THEN infertility likelihood = “Likely” 

Else IF Previous Termination of Pregnancy = “No” THEN 

 IF Menstrual Cycle = “Regular” THEN infertility likelihood = “Unlikely” 

 Else IF Menstrual Cycle = “Irregular” THEN 

  IF Age of Menacre = “>15 years” THEN infertility likelihood = “Probable” 

  Else If Age of Menacre = “<=15 years” THEN 

   IF Genital Infection = “Yes” THEN infertility likelihood = “Likely” 

   Else IF Genital Infection = “No” THEN infertility likelihood =  

“Unlikely” 

Results of the Multi-Layer Perceptron (MLP) classifier 

Using the Multi-layer perceptron classifier to train the predictive model developed using the training data via 

the 10-fold cross validation method, it was discovered that there were 29 (74.36%) correct classifications and 10 

(25.64%) incorrect classifications – showing an accuracy of 74.4% (Figure 11).  Using the confusion matrix, it was 

discovered that out of 19 likely cases there were 16 correct classifications while 2 misclassified for probable and 

1 for unlikely.  Out of 3 probable cases there were no correct classifications while 1 misclassified for likely and 2 

for unlikely.  Out of 17 unlikely cases there were 13 correct classifications with 1 misclassified for likely and 3 for 

probable (Figure 6 – right).  Figure 12 shows a graphical plot of the correct and incorrect classifications – correct 

classifications are crosses while incorrect classifications are boxes. 
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Figure 11:  Simulation results for C4.5 decision trees classifier 

 

Figure 12:  Graphical plot of simulation results for C4.5 decision trees 

Discussions 

Table 3 gives a summary of the simulation results by presenting the average value of each performance metrics 

that was evaluated for the machine learning techniques used.  The True positive rate (recall/sensitivity), false 

positive rate (false alarm/1-specificity), precision, accuracy and the area under the receiver operating 

characteristics (ROC) curve were used.  From the table, it was discovered that the decision trees and the MLP 

algorithms showed the highest accuracy due to the ability to predict 29 out of the 39 records correctly.  The true 

positive rate was also highest for the decision trees and the MLP algorithms with an equal value of 0.744 – which 

implies that 74.4% of the actual positive cases (likely) were correctly classified.  The MLP showed the lowest 

value for the false positive rate with a value of 0.119 – which implies that 11.9% of the actual negative classes 

(probable or unlikely) were misclassified for positive cases.  The MLP also had the highest value for the precision 

with a value of 0.787 – which implies that 78.7% of the positive classifications made were actually positive classes.  

The decision trees algorithm was observed to have the lowest area under the receiver operating characteristics 

(ROC) curve – a graph of the TP rate against the FP rate which had a value of 0.722.  The area under the graph 

is used to identify the level of relevance that can be given to the machine learning algorithm at making 

predictions – thus, the higher the value then the lower the bias of the model. 

Table 3:  Summary of simulation results 

Metrics Accuracy (%) TP rate 

(recall) 

FP rate (False 

alarm) 

Precision Area under 

ROC Curve 

(AUC) 

Naïve Bayes’ 71.795 0.718 0.201 0.699 0.855 

Decision 

Trees 

74.359 0.744 0.203 0.704 0.722 
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Multi-layer 

Perceptron 

74.359 0.744 0.119 0.787 0.862 

 

From the simulation results, it can be inferred that the most effective supervised machine learning algorithm is 

the multi-layer perceptron (MLP) due to its high accuracy, TP rate and Precision with lower value for the FP rate.  

The variables identified and the rule deduced from the variables using the decision trees algorithm can also be 

used to support decision made by gynecologist concerning infertility likelihood in women. 

Conclusions 

In this paper, the development of a predictive model for determining the likelihood of infertility in Nigerian 

women was proposed using dataset collected from patients in Obafemi Awolowo University Teaching Hospital 

Complex (OAUTHC), Ile-Ife, Osun State in Nigeria.  14 variables were identified by gynecologist to be necessary 

in predicting infertility in women for which a dataset containing information of 39 patients alongside their 

respective infertility status (likely, unlikely and probably) was also provided with 14 attributes following the 

identification of the required variables.   

After the process of data collection and pre-processing, three supervised machine learning algorithms were 

used to develop the predictive model for the likelihood of infertility in women using  the historical dataset from 

which the training and testing dataset was collected.  The 10-fold cross validation method was used to train the 

predictive model developed using the machine learning algorithms and the performance of the models 

evaluated. 

The multi-layer perceptron proved to be an effective algorithm for predicting infertility in women given the 

attributes identified but it is believed that higher accuracy could be attained by increasing the number of records 

used and be identifying other relevant attributes which could help predict infertility in women.  Rule induced 

algorithms can also be used to plot the relationship between the selected attributes identified with respect to 

determining the likelihood of infertility in women using the decision trees algorithm. 
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