On special FC_{n}-cell modules

Ahmed B. Hussein
Department of Mathematics, College of Basic Education, Mustansiriyah University, Baghdad, Iraq
ahmedbaqer@uomustansiriyah.edu.iq
(Received: February/2020, Accepted: April/2020)

Abstract

In this paper, we study a specified family of Fuss-Catalan algebra cell modules. We define the set of the basis diagrams and we give the general form for the Gram matrix related to this family. In addition, we state when these modules are irreducible by finding the determinant of the Gram matrices.Finally, we define a homomorphism between certain cell modules.

1 Introduction

Bisch and Jones [2] was first introduced the Fuss-Catalan algebras as a generalization of the Temperley-Lieb algebras. They proved that the Fuss-Catalan algebra which is denoted by $\mathrm{FC}_{n}(a, b)$ is generically semisimple when a and b are complex numbers [1, Corollary 2.2.5]. In addition, they computed the structure of these algebras when they are semisimple. In [7], the author prove some interesting results related to $\mathrm{FC}_{n}(a, b)$. Firstly, this family of algebras satisfies the definition of cellular algebras that have been given by Graham and Leher [5] and defining their cell modules. Secondly, it satisfies the axioms of tower of recollement that has been defined by Cox, Martin, Parker and Xi [3], moreover, $\mathrm{FC}_{n}(a, b)$ are quasi-hereditary when a and b are non-zero complex numbers.

The set of generators for $\mathrm{FC}_{n}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ and the isomorphism between the abstract definition and the diagram definition has been given by Landau [8]. Furthermore, Francesco [4], has used the Fuss-Catalan algebras to introduce new integrable lattice models and new hyperbolic solutions to the Yang-Baxter equation. The dimension of $\mathrm{FC}_{n}(a, b)$ is the Fuss-Catalan numbers so the name.

We give a brief summary of this paper. In section 2, we review the definition of the Fuss-Catalan algebras and some known results when it is semi-simple. In section 3 , we discuss the cellularity of $\mathrm{FC}_{n}(a, b)$ and we define the Fuss-Catalan algebra cell modules, moreover, the dimension of the cell modules and the definition of the bilinear form corresponding to each cell module has been given. In section 4, we give the theorem that state FC_{n} is a tower of recollement and defining the indexing set for the simple FC_{n}-modules. In section 5 , we introduce a collection of cell modules $\Delta_{n}\left(\mu_{n}\right)$ with certain label μ_{n} and their dimensions. We describe the basis diagrams and we define a bilinear form related to each cell module. Further, the values of a and b such that these modules are irreducible have been determined by constructing the Gram matrices and calculating their determinants. In section 6 , using the theory of tower of recollement from section 4, we define homomorphisms between two sets of cell modules. Finally, in section 7, we define a family of cell modules, $\Delta_{n}\left(\hat{\mu}_{n}\right)$, such that their basis are basis of $\Delta_{n}\left(\mu_{n}\right)$ after rotating them about the y-axis, so, all results for $\Delta_{n}\left(\mu_{n}\right)$ can be passed to $\Delta_{n}\left(\hat{\mu}_{n}\right)$.

2 Fuss-Catalan algebras.

In this section, we shall introduce some definitions.
Definition 2.1 ([1, p.96]). An (n, n)-planar diagram D is a diagram consisting of two horizontal, parallel lines with n vertices drawn on each line. The vertices are connected by strings either to vertices on the same line or to vertices on the parallel line provided that D has no crossings and strings do not leave the strip in the plane defined by the top and the bottom lines of the diagram.

Definition 2.2 (1, p.97]). A colouring of a $(k n, k n)$-planar diagram D is an identical assignment of colours a_{1}, a_{2}, \ldots, a_{k} to each of the top and the bottom vertices of D such that the colouring is of the form

$$
\begin{aligned}
& \left(a_{1} a_{2} \cdots a_{k}\right)\left(a_{k} a_{k-1} \cdots a_{1}\right) \cdots\left(a_{1} a_{2} \cdots a_{k}\right) \text { if } \mathrm{n} \text { is odd } \\
& \left(a_{1} a_{2} \cdots a_{k}\right)\left(a_{k} a_{k-1} \cdots a_{1}\right) \cdots\left(a_{k} a_{k-1} \cdots a_{1}\right) \text { if } \mathrm{n} \text { is even. }
\end{aligned}
$$

In addition, only vertices with the same colours have connecting strings.

Let $\mathcal{B}_{k, n}$ be the set of all coloured planar $(n k, n k)$-diagrams, since diagrams in $\mathcal{B}_{k, n}$ have same number of vertices and same colouring, thus multiplication on $\mathcal{B}_{k, n}$ is defined by the concatenation of diagrams. That is, for $D_{1}, D_{2} \in \mathcal{B}_{k, n}$, the diagram $D_{1} D_{2}=\left(a_{1}\right)^{r_{1}}\left(a_{2}\right)^{r_{2}} \ldots\left(a_{k}\right)^{r_{k}} D_{3}$ where $a_{1}, a_{2}, \ldots, a_{k}$ are complex numbers, D_{3} is a diagram in $\mathcal{B}_{k, n}$ obtained by placing D_{1} above D_{2} and removing the r_{i} closed loops formed by strings with colour a_{i} from the new diagram. In general, multiplication on $\mathcal{B}_{k, n}$ is not commutative.

Definition 2.3 ([1, Definition 2.1.2]). Fix k complex numbers (the colours) $a_{1}, a_{2}, \ldots, a_{k}, k \geq 1$, and denote by $\mathrm{FC}_{k, n}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ the complex linear span of $\mathcal{B}_{k, n}, n \geq 1$. We set $\mathrm{FC}_{k, 0}=\mathbb{C}$. Clearly, $\mathrm{FC}_{k, n}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is then an associative algebra over \mathbb{C} with multiplication being the multiplication of diagrams as explained above, extended linearly and respecting the distributivity law to all of $\mathrm{FC}_{k, n}\left(a_{1}, a_{2}, \ldots, a_{k}\right)$.

There is another definition of the Fuss-Catalan algebras which is defined by the generators and relations [8, Definition 1], and an isomorphism between these two definitions is introduced in [8, Theorem 6].

The dimension of the Fuss-Catalan algebras $\mathrm{FC}_{k, n}$ is the number of elements in the set $\mathcal{B}_{k, n}$ and it is given by the Fuss-Catalan numbers.

Proposition 2.4 ([1, Corollary 2.1.7]). We have

$$
\operatorname{dim} \mathrm{FC}_{k, n}=\frac{1}{k n+1}\binom{(k+1) n}{n}
$$

for $k \geq 1$ and $n \geq 1$.

In this paper, we interested in the algebras $\mathrm{FC}_{2, n}(a, b)$ such that the parameters a and b are non-zero complex numbers. In addition, we use the notations FC_{n} for $\mathrm{FC}_{2, n}(a, b)$ and \mathcal{B}_{n} for $\mathcal{B}_{2, n}$.

Proposition 2.5 ([1, Proposition 4.1.3]). The algebra FC_{n} is generated by the diagrams $1,{ }_{1} U_{i}$ and ${ }_{2} U_{i}$, where $1 \leq i \leq n-1$, and

Definition 2.6 ([1) p.106]). The colouring of a basis diagram in FC_{n} is $a(y x)^{\frac{n}{2}-1} y a$ for n even, and $a(y x)^{\frac{n-1}{2}} b$ for n odd, where $x=a a$ and $y=b b$.

We introduce some notations, for a diagram $D \in \mathcal{B}_{n}$, a string that connects two vertices in apposite lines is called a through string, whereas a string that connects two vertices in the same line is called a non-through string. We denote by $\ell(D)$ the number of through strings in D. The label of D is a well defined word on a and b represents the associated colours of the through strings reading from left to right. The upper half diagram of D that represents the vertices in the top line with their strings is called the initial part of D, while the lower half diagram that represents the vertices in the bottom line with their strings is called the final part of D. The initial and the final parts of D have label similar to the label of D, and they are uniquely determined by D.

Example 2.7. The label of the diagram $D \in \mathrm{FC}_{5}$ is $a b b b=a b^{3}$, and $\ell(D)=4$.

The initial part of D is the diagram

and the final part of D is the diagram

Lemma 2.8 ([1, Lemma 3.1.4]). A label of a diagram $D \in \mathcal{B}_{n}$ is either empty (only possible if n is even) or of the form $a w(x, y) a$ if n is even and $a w(x, y) b$ if n is odd, where w is a word on $x=a a$ and $y=b b$.

Definition 2.9 ([1, Definition 3.1.12]). If λ is a word on a and b, we define $\left[\begin{array}{l}n \\ \lambda\end{array}\right]$ to be the number of distinct initial parts of the diagrams in FC_{n} having label λ with the convention that $\left[\begin{array}{l}n \\ \lambda\end{array}\right]=0$ if λ is not a label.
Theorem 2.10 (1, Theorem 3.1.15]). If a and b are such that $\mathrm{FC}_{n}(a, b)$ is semi-simple, we have

$$
\mathrm{FC}_{n}(a, b) \cong \bigoplus_{\lambda:\left[\begin{array}{l}
n \\
\lambda
\end{array}\right]>0} M_{\left[\begin{array}{l}
n \\
\lambda
\end{array}\right]}(\mathbb{C}),
$$

where the sum is over all labels λ of diagrams in FC_{n}.

Let $D, D^{\prime} \in \mathrm{FC}_{n}$, and let M be the initial part of D. The multiplication of D^{\prime} with M is defined to be the initial part of the diagram $D^{\prime} D$.

Definition 2.11 ([1, Definition 3.1.16]). Let λ be a word in a and b with $\left[\begin{array}{l}n \\ \lambda\end{array}\right]>0$ and let ℓ be number of letters in λ. Let V_{λ} be the complex vector space of dimension $\left[\begin{array}{l}n \\ \lambda\end{array}\right]$ having the distinct initial parts M of diagrams in \mathcal{B}_{n} with label λ as a basis. Let $D \in \mathcal{B}_{n}$ and define a representation π_{λ} of $\mathrm{FC}_{n}(a, b)$ on V_{λ} by

$$
\pi_{\lambda}(D) M= \begin{cases}D M, & \text { if } D M \text { has } \ell \text { through strings } \\ 0, & \text { otherwise }\end{cases}
$$

for $M \in V_{\lambda}$ (where we replace closed loops in $D M$ with a or b as usual).
Theorem 2.12 ([1] Theorem 3.1.17]). If a and b are such that $\mathrm{FC}_{n}(a, b)$ is semi-simple, then all representations π_{λ} as defined above are irreducible and any irreducible representation of $\mathrm{FC}_{n}(a, b)$ is equivalent to $a \pi_{\lambda}$.

3 Cellularity of $\mathrm{FC}_{n}(a, b)$

For a given cellular algebra, the theory of cellular algebras, that introduced by Graham and Lehrer [5], determine the full set of irreducible modules.

Definition 3.1 ([5, Definition 1.1]). Let R be a commutative ring with identity. A cellular algebra over R is an associative (unital) algebra A, together with cell datum $(\Lambda, \mathcal{W}, \mathcal{B}, *)$ where
(C1) Λ is a partially ordered set and for each $\lambda \in \Lambda$ there is a finite set $\mathcal{W}(\lambda)$ such that $\mathcal{B}=\left\{C_{S, T}^{\lambda} \mid \lambda \in \Lambda\right.$ and $S, T \in$ $\mathcal{W}(\lambda)\}$ is an R-basis of A.
(C2) If $\lambda \in \Lambda$ and $S, T \in \mathcal{W}(\lambda)$. Then $*$ is an R-linear anti-isomorphism of A such that $\left(C_{S, T}^{\lambda}\right)^{*}=C_{T, S}^{\lambda}$.
(C3) If $\lambda \in \Lambda$ and $S, T \in \mathcal{W}(\lambda)$ then for any element $a \in A$ we have

$$
a C_{S, T}^{\lambda}=\left(\sum_{S^{\prime} \in \mathcal{W}(\lambda)} r_{a}\left(S^{\prime}, S\right) C_{S^{\prime}, T}^{\lambda}\right)+r^{\prime}
$$

where $r_{a}\left(S^{\prime}, S\right) \in R$ is independent of T, and r^{\prime} is a linear combination of basis elements with upper label $\mu<\lambda$.

If A is a cellular algebra, then the basis \mathcal{B} in Definition 3.1 is called a cellular basis.
Definition 3.2 ([5, Definition 2.1]). Let A be a cellular algebra with cell datum ($\Lambda, \mathcal{W}, \mathcal{B}, *)$. For each $\lambda \in \Lambda$ define the left A-module $\Delta(\lambda)$ as a free R-module with basis $\left\{C_{S} \mid S \in \mathcal{W}(\lambda)\right\}$ and A-action defined by

$$
a C_{S}=\sum_{S^{\prime} \in \mathcal{W}(\lambda)} r_{a}\left(S^{\prime}, S\right) C_{S^{\prime}} \quad(a \in A, S \in \mathcal{W}(\lambda))
$$

where $r_{a}\left(S^{\prime}, S\right) \in R$ as defined in definition 3.1. This module called the cell module of A labelled by λ.

Defining the action of A on $\Delta(\lambda)$ by $C_{S} a=\sum_{S^{\prime} \in \mathcal{W}(\lambda)} r_{a^{*}}\left(S^{\prime}, S\right) C_{S^{\prime}}$, then the cell module $\Delta(\lambda)$ is a right A-module.
Definition 3.3. For each $\lambda \in \Lambda$, define A^{λ} to be the R-submodule of A with basis

$$
\left\{C_{S, T}^{\mu} \mid \mu \in \Lambda, \mu<\lambda \text { and } S, T \in \mathcal{W}(\mu)\right\}
$$

Definition 3.4 ([5] Definition 2.3]). For $\lambda \in \Lambda$, define a bilinear form $\Phi_{\lambda}: \Delta(\lambda) \times \Delta(\lambda) \rightarrow R$ by the equation

$$
C_{S_{1}, T_{1}}^{\lambda} C_{S_{2}, T_{2}}^{\lambda} \equiv \Phi_{\lambda}\left(C_{T_{1}}, C_{S_{2}}\right) C_{S_{1}, T_{2}}^{\lambda} \quad \bmod A^{\lambda}
$$

where $S_{1}, S_{2}, T_{1}, T_{2} \in \mathcal{W}(\lambda)$.
Proposition 3.5 ([5, Proposition 2.4]). Let $\lambda \in \Lambda$, and $x, y \in \Delta(\lambda)$. Then
(i) The form Φ_{λ} is symmetric, i.e. we have $\Phi_{\lambda}(x, y)=\Phi_{\lambda}(y, x)$.
(ii) For all $a \in A$, we have $\Phi_{\lambda}\left(a^{*} x, y\right)=\Phi_{\lambda}(x, a y)$.

Definition 3.6 ([5, Definition 3.1]). Let A be a cellular algebra with cell datum $(\Lambda, \mathcal{W}, \mathcal{B}, *)$. For $\lambda \in \Lambda$, define

$$
\operatorname{rad}(\lambda)=\left\{x \in \Delta(\lambda) \mid \Phi_{\lambda}(x, y)=0 \text { for all } y \in \Delta(\lambda)\right\}
$$

Proposition 3.7 ([5, Proposition 3.2]). Let $\lambda \in \Lambda$. Then
(i) $\operatorname{rad}(\lambda)$ is an A-submodule of $\Delta(\lambda)$.
(ii) If $\Phi_{\lambda} \neq 0$, the quotient $\Delta(\lambda) / \operatorname{rad}(\lambda)$ is absolutely irreducible.
(iii) If $\Phi_{\lambda} \neq 0, \operatorname{rad}(\lambda)$ is the Jacobson radical of the cell module $\Delta(\lambda)$.

For a cellular algebra A, the following theorem, that was introduced by Graham and Lehrer [5], classify the irreducible cell modules.

Theorem 3.8 ([5, Theorem 3.4]). Let R be a field and let $(\Lambda, \mathcal{W}, \mathcal{B}, *)$ be a cell datum for the R-algebra A. For each $\lambda \in \Lambda$ define the cell module $\Delta(\lambda)$ and bilinear form Φ_{λ} on $\Delta(\lambda)$ as in definitions 3.2 and 3.4 respectively. Suppose $\Lambda_{0}=\left\{\lambda \in \Lambda \mid \Phi_{\lambda} \neq 0\right\}$. Then the set $\left\{L_{\lambda}=\Delta(\lambda) / \operatorname{rad}(\lambda) \mid \lambda \in \Lambda_{0}\right\}$ is a complete set of non-isomorphic irreducible A-modules.

Theorem 3.9 ([5, Theorem 3.8]). Let R be a field and let $(\Lambda, \mathcal{W}, \mathcal{B}, *)$ be a cell datum for the R-algebra A. Then the following are equivalent:
(i) The algebra A is semisimple.
(ii) The non-zero cell modules of A are irreducible and pairwise inequivalent.
(iii) The form Φ_{λ} is non-degenerate, that is, $\operatorname{rad}(\lambda)=0$ for each $\lambda \in \Lambda$.

Now, we identify a cell datum $(\Lambda, \mathcal{W}, \mathcal{B}, *)$ such that $\mathrm{FC}_{n}(a, b)$ are cellular.
Definition 3.10 ([1, Definition 3.1.5]). If λ and λ^{\prime} are words on an alphabet, we say $\lambda \leq \lambda^{\prime}$ if λ is obtained from λ^{\prime} by removing some (or no) letters of λ^{\prime}.

For example, we have $a b b a \leq a b b b b a$.
Definition 3.11. A cell datum $\left(\Lambda, \mathcal{W}_{n}(\lambda), \mathcal{B}_{n}, *\right)$ is defined as following: the label set for the diagrams in \mathcal{B}_{n} is denoted by Λ, and the set of all distinct initial parts for diagrams in \mathcal{B}_{n} having label λ is denoted by $\mathcal{W}_{n}(\lambda)$. Define $\mathcal{B}_{n}=\left\{C_{S, T}^{\lambda} \mid \lambda \in \Lambda\right.$ and $\left.S, T \in \mathcal{W}_{n}(\lambda)\right\}$ where $C_{S, T}^{\lambda}$ is a diagram obtained by replacing S above T after turning T upside down. Furthermore, define $*$ on FC_{n} to be the function that flips a diagram upside down.

The author [7] Lemmas 4.3 and 4.4] show that the pair (Λ, \leq) forms a partially ordered set and $*$ is an anti-isomorphism.
Theorem 3.12 ([7, Theorem 4.5]). The Fuss-Catalan algebras $\mathrm{FC}_{n}(a, b)$ are cellular algebras with cell datum $\left(\Lambda, \mathcal{W}_{n}(\lambda), \mathcal{B}_{n}, *\right)$ that defined in Definition 3.11 .

Definition 3.13. For each $\lambda \in \Lambda$, there is a cell module $\Delta_{n}(\lambda)$ with basis $\mathcal{W}_{n}(\lambda)$ such that for all $D \in \mathrm{FC}_{n}$ and $M \in \mathcal{W}_{n}(\lambda)$, the action is defined by

$$
D \cdot M= \begin{cases}D M, & \text { if } \ell(D M)=\ell(M) \\ 0, & \text { otherwise }\end{cases}
$$

Comparing the bases and the actions in Definitions 3.13 and 2.11 we get
Proposition 3.14 ([2, Section 2]). Suppose that $\Delta_{n}(\lambda)$ be a cell module with $\lambda=a^{l_{1}} b^{l_{2}} \cdots z^{l_{p}}$ where $z=a$ if n even and $z=b$ if n odd. The dimension of $\Delta_{n}(\lambda)$ is $\left[\begin{array}{l}n \\ \lambda\end{array}\right]$, (defined in Definition 2.9., and is equal to:

$$
\left[\begin{array}{l}
n \\
\lambda
\end{array}\right]= \begin{cases}\frac{s}{3(m-r)+s}\left(\begin{array}{c}
3\binom{m-r)+s}{m-r} \\
0
\end{array}\right. & \text { if } m \geq r \\
0 & \text { if }<r\end{cases}
$$

where $s=\frac{3 l-2 p+4}{2}$, and $r=\frac{l-p+1}{2}$ if $n=2 m$ while $r=\frac{l-p}{2}$ if $n=2 m+1$.

4 Towers of algebras

For $n \geq 0$, let e_{n} be idempotents in finite dimensional algebras A_{n}. A labeling set for the simple A_{n}-modules is denoted by Λ_{n}, and a labeling set for the simple $A_{n} / A_{n} e_{n} A_{n}$-modules is denoted by Λ^{n}. In addition, we define $\Lambda_{n}^{m}=\Lambda^{m} \subset \Lambda_{n}$ if $n \geq m$, and $\Lambda_{n}^{m}=\emptyset$ If $n<m$, where $m, n \in \mathbb{N}$ and $n-m$ is even.

Proposition 4.1. Let $\Delta_{n}(\lambda)$ be a cell module for the algebra FC_{n}. Then the following are equivalent:
(i) $\operatorname{dim} \Delta_{n}(\lambda)=1$.
(ii) No basis diagram for $\Delta_{n}(\lambda)$ has the patterns $\cup \vee$ and
(iii) $\Delta_{n-2}(\lambda)=0$.

See [1. Proposition 3.2.5].
Theorem 4.2 ([6, Theorem 6.2g]). Let $\{L(\lambda) \mid \lambda \in \Lambda\}$ be a full set of simple A-modules, and set $\Lambda^{e}=\{\lambda \in \Lambda \mid$ $e L(\lambda) \neq 0\}$. Then $\left\{e L(\lambda) \mid \lambda \in \Lambda^{e}\right\}$ is a full set of simple eAe-modules. Further, the simple modules $L(\lambda)$ with $\lambda \in \Lambda \backslash \Lambda^{e}$ are a full set of simple $A / A e A$-modules.

Remark 4.3. From Theorem 4.2, we have $\Lambda^{e}=\Lambda_{n-2}$ and $\Lambda^{n}=\Lambda_{n} \backslash \Lambda_{n-2}$. By Proposition 4.1, if $\operatorname{dim} \Delta_{n}(\lambda)=1$ then $\operatorname{dim} \Delta_{n-2}(\lambda)=0$ and $\Delta_{n}(\lambda)$ is simple. Thus $\lambda \in \Lambda_{n}$ and $\lambda \notin \Lambda_{n-2}$, so, $\lambda \in \Lambda^{n}$.

Theorem 4.4 ([7] Theorem 6.16]). The Fuss-Catalan algebras FC_{n} form a tower of recollement.

A family of algebras A_{n} that satisfied the axioms introduced by Cox, Martin, Parker and Xi 3], to study the representation theory of towers of algebras, is called a tower of recollement. These axioms are powerful technique to determine the simple A_{n}-modules and when the algebra is semi-simple. In addition, finding morphisms for A_{n}-modules can be reduced to the case when one of them is simple as stated in this theorem.

Theorem 4.5 ([3, Theorem 1.1]). Let A_{n} be a tower of recollement.
(i) For all pairs of weights $\lambda \in \Lambda_{n}^{m}$ and $\mu \in \Lambda_{n}^{l}$ we have

$$
\operatorname{Hom}\left(\Delta_{n}(\lambda), \Delta_{n}(\mu)\right) \cong \begin{cases}\operatorname{Hom}\left(\Delta_{m}(\lambda), \Delta_{m}(\mu)\right) & \text { if } l \leq m \\ 0 & \text { otherwise }\end{cases}
$$

(ii) Suppose that for all $n \geq 0$ and pairs of weights $\lambda \in \Lambda_{n}^{n}$ and $\mu \in \Lambda_{n}^{n-2}$ we have $\operatorname{Hom}\left(\Delta_{n}(\lambda), \Delta_{n}(\mu)\right)=0$ then each of the algebras A_{n} is semisimple.

5 Gram determinant

For $n \geq 4$, we study a certain family of $\mathrm{FC}_{n}(a, b)$ - cell modules, namely $\Delta_{n}\left(\mu_{n}\right)$ such that

$$
\mu_{n}= \begin{cases}a^{2}(a b b a)^{m-2} & \text { if } n=2 m \tag{1}\\ a^{2}(a b b a)^{m-2} a b & \text { if } n=2 m+1\end{cases}
$$

For this family, we describe the bases diagrams with the dimensions. Moreover, we define a bilinear form to construct the Gram matrices and we calculate their Gram determinants to specify for which values of a and b these modules are irreducible. For the first values of n, we listed the label μ_{n} in Table 1 .

n	4	5	6	7	8
μ_{n}	a^{2}	$a^{2}(a b)$	$a^{2}\left(a b^{2} a\right)$	$a^{2}\left(a b^{2} a^{2} b\right)$	$a^{2}\left(a b^{2} a^{2} b^{2} a\right)$

Table 1: The label μ_{n}

Proposition 5.1. Consider the label μ_{n} that defined in (1). Then, for $n \geq 4$, we have

$$
\operatorname{dim} \Delta_{n}\left(\mu_{n}\right)=2 n-4
$$

Proof. We have two cases the even and the odd case for μ_{n}.
Case I: Let $n=2 m$ where $m \geq 2$. Then $\mu_{n}=a^{2}(a b b a)^{m-2}$, and the length of μ_{n} is $l\left(\mu_{n}\right)=4(m-2)+2$. We can write μ_{n} in the form $\mu_{n}=a w a$, where $w=\left(a^{2} b^{2}\right)^{m-2}$. Suppose that w_{a} is the number of a^{2} 's in w and w_{b} is the number of b^{2} 's in w. We can see that $w_{a}=w_{b}=m-2$, thus the number of parts, p, of μ_{n} is $p=w_{a}+w_{b}+1=2 m-3$. Now, we use Theorem 3.14 to calculate the dimension of $\Delta_{n}\left(\mu_{n}\right)$. We have

$$
r=m-1 \quad \text { and } \quad s=4 m-4=2 n-4
$$

Hence,

$$
\left[\begin{array}{c}
n \\
\mu_{n}
\end{array}\right]=\frac{s}{3+s}\binom{3+s}{1}=2 n-4 .
$$

Case II: Suppose that $n=2 m+1$ where $m \geq 2$. Then $\mu_{n}=a^{2}(a b b a)^{m-2} a b$, and the length of μ_{n} is $l\left(\mu_{n}\right)=4(m-2)+4$. We can write μ_{n} in the form $\mu_{n}=a^{3} w b$, where $w=\left(b^{2} a^{2}\right)^{m-2}$. Suppose that w_{a} is the number of a^{2} 's in w and w_{b} is the number of b^{2} 's in w. We can see that $w_{a}=w_{b}=m-2$, thus the number of parts of μ_{n} is $p=1+w_{a}+w_{b}+1=2 m-2$. By using Theorem 3.14 to calculate the dimension of $\Delta_{n}\left(\mu_{n}\right)$, we have

$$
r=m-1 \quad \text { and } \quad s=4 m-2=2 n-4
$$

Hence,

$$
\left[\begin{array}{c}
n \\
\mu_{n}
\end{array}\right]=\frac{s}{3+s}\binom{3+s}{1}=s=2 n-4 .
$$

Definition 5.2. For $i=0,1, \ldots, 2 n-5$, we define the half diagrams M_{i} as following:

$$
\text { if } i=2,4, \ldots, 2 n-6 \text {, }
$$

if $i=3,5, \ldots, 2 n-5$.
Remark 5.3. Since the identity diagram of FC_{n} has $2 n$ through strings, thus its label is $(a b b a)^{\frac{n}{2}}$ if n even, while its label is $(a b b a)^{\frac{n-1}{2}} a b$ if n odd.

Proposition 5.4. Let μ_{n} be as defined in (1), then, for $n \geq 4$, the basis diagrams for the cell module $\Delta_{n}\left(\mu_{n}\right)$ is the set $\left\{M_{i} \mid i=0,1, \ldots, 2 n-5\right\}$, where the diagrams M_{i} are as defined in Definition 5.2.

Proof. The number of diagrams in the set $\left\{M_{i} \mid i=0,1, \ldots, 2 n-5\right\}$ is $2 n-4$, and all diagrams are distinct. So, it sufficient to show that, for all $i=0,1, \ldots, 2 n-5$, the diagrams M_{i} has label μ_{n}. For the diagrams M_{0} and M_{1}, the subdiagrams
 and
 of M_{0} and M_{1} respectively, have label a^{2}. The subdiagram of M_{0} and M_{1} that have $2 n-8$ through strings can be considered as the identity diagram of FC_{n-4}, so, by Remark 5.3 , this subdiagram has label ($a b b a)^{\frac{n-4}{2}}$ if n even, and it has label ($\left.a b b a\right)^{\frac{n-5}{2}} a b$ if n odd. Hence, the label of M_{0} and M_{1} is μ_{n}. For the diagrams M_{i} where $i=2,4, \ldots, 2 n-6$, if $i=2$ then

has label equivalent to the label of M_{0} and M_{1}, thus the label of M_{2} is μ_{n}. If $i>2$ then

Since the four vertices of the two consecutive non-through strings in M_{i} have coloring either ($a a b b$) or (bbaa), thus if we remove these four vertices with their non-through strings then we get a subdiagram of M_{i} with $i-3+2 n-5-i=2 n-8$ through strings and its label is the label of the identity diagram for FC_{n-4}. Hence, the label of M_{i} is μ_{n}. For the diagrams M_{i} where $i=3,5, \ldots, 2 n-5$, we can arguing as for the case i is even to show that the label of M_{i} is μ_{n}.

Since FC_{n} are cellular algebras, thus we can define a bilinear form associated to each cell module. Furthermore, by Theorem 3.9, a cell module is irreducible if its Gram matrix is non-degenerate. That is, if the determinant of the Gram matrix is non-zero.

Definition 5.5. Let M_{1} and M_{2} be basis diagrams for a cell module $\Delta_{n}(\lambda)$. We may define a bilinear form $\langle-,-\rangle$: $\Delta_{n}(\lambda) \times \Delta_{n}(\lambda) \rightarrow \mathbb{C}$ as follows: connecting the corresponding vertices of M_{1} and M_{2} after flipping M_{2} upside down and placing it over M_{1}. If number of through strings in this connecting equals $\ell\left(M_{1}\right)$ then $\left\langle M_{1}, M_{2}\right\rangle=a^{r_{1}} b^{r_{2}}$ where r_{1} and r_{2} are number of a and b-loops that be formed, otherwise, $\left\langle M_{1}, M_{2}\right\rangle=0$. We extend bilinearly to all of $\Delta_{n}(\lambda)$.

Notice that, for $D_{1}=C_{S_{1}, T_{1}}^{\lambda}, D_{2}=C_{S_{2}, T_{2}}^{\lambda} \in \mathrm{FC}_{n}$, if $D_{3}=D_{1} D_{2}$, then by Definition 3.4 the bilinear form $\Phi_{\lambda}\left(C_{T_{1}}, C_{S_{2}}\right)=c$ if D_{3} has label λ and $\Phi_{\lambda}\left(C_{T_{1}}, C_{S_{2}}\right)=0$ if D_{3} has label $\lambda^{\prime}<\lambda$, where $c \in \mathbb{C}$ is product of $a^{\prime} s$ and $b^{\prime} s$ that obtained from the connecting of T_{1} with S_{2}. Thus, our bilinear form $\langle-,-\rangle$ is equivalent to Φ_{λ}, and Proposition 3.5 can be stated as following

Lemma 5.6. For all basis diagrams $M_{1}, M_{2} \in \Delta_{n}(\lambda)$ and $D \in \mathrm{FC}_{n}$, we have
(i) $\left\langle M_{1}, M_{2}\right\rangle=\left\langle M_{2}, M_{1}\right\rangle$
(ii) $\left\langle M_{1}, D M_{2}\right\rangle=\left\langle D^{*} M_{1}, M_{2}\right\rangle$
where D^{*} is the reflection of D about a horizontal line which was defined in Definition 3.11.
Definition 5.7. The Gram matrix corresponding to the cell module $\Delta_{n}(\lambda)$ that has ordered basis $\left(M_{1}, M_{2}, \ldots, M_{r}\right)$ is defined by, for $i, j=1,2, \ldots, r$,

$$
G_{n}(\lambda)_{i, j}=\left\langle M_{i}, M_{j}\right\rangle
$$

Proposition 5.8. Let μ_{n} be as defined in 11). The Gram matrix $G\left(\mu_{n}\right)$ for the cell module $\Delta_{n}\left(\mu_{n}\right)$ subject to the ordered basis $\left(M_{0}, M_{1}, \ldots, M_{2 n-5}\right)$ has the following form
(i) $G\left(\mu_{n}\right)=\left(\begin{array}{cccc}a b^{2} & b^{2} & b & 0 \\ b^{2} & a b^{2} & a b & b^{2} \\ b & a b & a b^{2} & b \\ 0 & b^{2} & b & a b^{2}\end{array}\right) \quad$ if $n=4$.
(ii) $G\left(\mu_{n}\right)=\left(\begin{array}{cc}G\left(\mu_{n-1}\right) & Q_{s} \\ Q_{s}^{T} & D_{t}\end{array}\right)$ ifn >4,
where $Q_{s}^{T}=\left(\begin{array}{lllc}0 & \ldots & 0 & b s \\ 0 & \ldots & 0 & b\end{array}\right)_{2 \times(2 n-6)}, D_{t}=\left(\begin{array}{cc}a b^{2} & b t \\ b t & a b^{2}\end{array}\right)$, and $(s, t)=(a, b)$ if n even while $(s, t)=(b, a)$ if n odd.

Proof. We will construct the Gram matrix of $\Delta_{n}\left(\mu_{n}\right)$ subject to the ordered basis $\left(M_{0}, M_{1}, \ldots, M_{2 n-5}\right)$ that defined in Proposition 5.4.
(i) For $n=4$, we have $G\left(\mu_{4}\right)=\left(M_{i j}\right)=\left\langle M_{i}, M_{j}\right\rangle$ where $i, j=0,1,2,3$. Hence, the result.
(ii) For $n>4$, we have

$$
G\left(\mu_{n}\right)=\begin{array}{c|ccccc|cc|}
\langle-,-\rangle & M_{0} & M_{1} & \ldots & M_{2 n-8} & M_{2 n-7} & M_{2 n-6} & M_{2 n-5} \\
\hline M_{0} & & & & & & \\
M_{1} & & & & & & \\
\vdots & & & & G_{11} & & G_{12} \\
M_{2 n-8} & & & & & \\
M_{2 n-7} & & & & & \\
\hline M_{2 n-6} & & & G_{21} & G_{22} \\
M_{2 n-5} & & & &
\end{array}
$$

Let H be the set of basis diagrams of $\Delta_{n}\left(\mu_{n}\right)$ that have at least two through strings at the right end, that is, $H=\left\{M_{0}, M_{1}, \ldots, M_{2 n-7}\right\}$. For $i=0,1, \ldots, 2 n-7$, let M_{i}^{\prime} be the diagram that obtained by removing the last two through strings from M_{i} in H. So, by Proposition 5.4. $H^{\prime}=\left\{M_{0}^{\prime}, M_{1}^{\prime}, \ldots, M_{2 n-7}^{\prime}\right\}$ is the set of basis diagrams for $\Delta_{n-1}\left(\mu_{n-1}\right)$. In addition, the last two through strings in the diagrams of H are not contribute to the inner product. Thus $\left\langle M_{i}, M_{j}\right\rangle=\left\langle M_{i}^{\prime}, M_{j}^{\prime}\right\rangle$ for all $0 \leq i, j \leq 2 n-7$, and hence, $G_{11}=G\left(\mu_{n-1}\right)$. By using diagram multiplication, we can deduce that
$\left\langle M_{2 n-6}, M_{i}\right\rangle=\left\langle M_{2 n-5}, M_{i}\right\rangle=0$ for all $0 \leq i \leq 2 n-8$,
$\left\langle M_{2 n-6}, M_{2 n-7}\right\rangle=b^{2} s,\left\langle M_{2 n-5}, M_{2 n-7}\right\rangle=b,\left\langle M_{2 n-5}, M_{2 n-6}\right\rangle=b^{2} t$
$\left\langle M_{2 n-6}, M_{2 n-6}\right\rangle=\left\langle M_{2 n-5}, M_{2 n-5}\right\rangle=a b^{2}$,
where $(s, t)=(a, b)$ if n even while $(s, t)=(b, a)$ if n odd. Finally, we get $G_{21}=G_{12}^{T}=Q_{s}^{T}$ and $G_{22}=D_{t}$.
Proposition 5.9. Let μ_{n} be as defined in 11). For $n \geq 5$, the determinant of the Gram matrix $G\left(\mu_{n}\right)$ for the cell module $\Delta_{n}\left(\mu_{n}\right)$ is

$$
\operatorname{det} G\left(\mu_{n}\right)=\alpha \begin{cases}b\left(a^{2}-1\right)\left(a^{2}-2\right)^{\frac{n-6}{2}}\left(b^{2}-2\right)^{\frac{n-4}{2}}, & \text { if } n \text { even } \tag{2}\\ a\left(b^{2}-1\right)\left[\left(a^{2}-2\right)\left(b^{2}-2\right)\right]^{\frac{n-5}{2}}, & \text { if } n \text { odd }\end{cases}
$$

where $\alpha=a^{n-4} b^{3 n-7}\left(b^{2}-1\right)\left(a^{2}+a-1\right)\left(a^{2}-a-1\right)$.

Proof. We use the induction on n. By using Proposition 5.8, for $n=5$, we have

$$
G\left(\mu_{5}\right)=b \cdot\left(\begin{array}{cccccc}
a b & b & 1 & 0 & 0 & 0 \\
b & a b & a & b & 0 & 0 \\
1 & a & a b & 1 & 0 & 0 \\
0 & b & 1 & a b & b & 1 \\
0 & 0 & 0 & b & a b & a \\
0 & 0 & 0 & 1 & a & a b
\end{array}\right),
$$

and

$$
\operatorname{det} G\left(\mu_{5}\right)=a^{2} b^{8}\left(b^{2}-1\right)^{2}\left(a^{2}+a-1\right)\left(a^{2}-a-1\right)
$$

Suppose that this claim is true for all $m<n$. By Proposition 5.8, we have

$$
G\left(\mu_{n}\right)=\left(\begin{array}{cc}
G\left(\mu_{n-1}\right) & Q_{s} \\
Q_{s}^{T} & D_{t}
\end{array}\right)=\left(\begin{array}{cc|c}
G\left(\mu_{n-2}\right) & Q_{t} & \\
Q_{t}^{T} & D_{s} & \\
\hline & & \\
Q_{s}^{T} & D_{t}
\end{array}\right)
$$

Substituting the block matrices $Q_{s}, Q_{t}^{T}, D_{s}, Q_{s}^{T}$ and D_{t}, we get

$$
\operatorname{det} G\left(\mu_{n}\right)=\operatorname{det}\left(\right) \begin{gathered}
R_{4} \\
R_{3} \\
R_{2} \\
R_{1}
\end{gathered}
$$

If we replace R_{4} by $(-t) R_{3}+R_{4}$ and R_{2} by $(-s) R_{1}+R_{2}$, we get

$$
\operatorname{det} G\left(\mu_{n}\right)=\operatorname{det}\left(\right) \begin{gathered}
\\
R_{4} \\
R_{3} \\
R_{2} \\
R_{1}
\end{gathered}
$$

where $x=b(s-t a b)$ and $y=b(t-s a b)$. Replacing $\left(R_{1}\right)$ by $\frac{-b}{x} R_{4}+R_{1}$, we get

$$
\begin{equation*}
\left.\operatorname{det} G_{(} \mu_{n}\right)=\operatorname{det}\left(\right) \tag{3}
\end{equation*}
$$

where $D^{\prime}=\left(\begin{array}{cc}0 & b(t-s a b) \\ t b\left(\frac{2 s-t a b}{s-t a b}\right) & \left(\begin{array}{cc}\frac{t b}{s-t a b}+a b^{2}\end{array}\right)\end{array}\right)$. The matrix in 3 3 can be written in block form as following

$$
P=\left(\begin{array}{cc}
A & B \\
C & D^{\prime}
\end{array}\right)
$$

Now, $\operatorname{det} P=\operatorname{det} G\left(\mu_{n}\right)=\operatorname{det}\left(A-B\left(D^{\prime}\right)^{-1} C\right) \operatorname{det}\left(D^{\prime}\right)$, but C is zero matrix then $\operatorname{det} G\left(\mu_{n}\right)=\operatorname{det} A \operatorname{det} D^{\prime}$. Notice that $\operatorname{det} A=\operatorname{det} G\left(\mu_{n-1}\right)$, so, by the induction hypothesis, $\operatorname{det} A$ is as in $\sqrt{2}$ with replacing n by $n-1$. Furthermore, $a b=s t$ then $\operatorname{det} D^{\prime}=t^{2} b^{2}\left(s^{2}-1\right)\left(\frac{t^{2}-2}{t^{2}-1}\right)$. Finally, the result follows by multiplying the determinant of A by the determinant of D^{\prime} in the even and the odd case.

From Theorem 3.9, we have

Proposition 5.10. The cell module $\Delta_{n}\left(\mu_{n}\right)$ is irreducible if the values of a and b are such that equation 2 that given in Proposition 5.9 is non-zero.

6 Homomorphism

We shall define a homomorphism between a one dimensional cell module and $\Delta_{n}\left(\mu_{n}\right)$, and then we use Theorem 4.5 to generalize our result.

Proposition 6.1. Let ${ }_{1} U_{i},{ }_{2} U_{i}$ be the generators of $\mathrm{FC}_{n}(a, b)$, and consider the cell module $\Delta_{n}\left(\mu_{n}\right)$ that is spanned by the set $\left\{M_{j} \mid j=0,1, \ldots, M_{2 n-5}\right\}$, where μ_{n} is as defined in (1). Then, for $j=1,2$, the multiplication of ${ }_{j} U_{i}$ with M_{j} when $i=1,2,3$ is as following

	M_{1}	M_{2}				
${ }_{1} U_{1}$	M_{2}	$b M_{2}$				
${ }_{1} U_{2}$	$a M_{1}$	$a M_{2}$				
${ }_{1} U_{3}$	M_{2}	$b M_{2}$	\quad		M_{1}	M_{2}
:---:	:---:	:---:				
${ }_{2} U_{1}$	M_{0}	$b M_{0}$				
${ }_{2} U_{2}$	$a b M_{1}$	$a M_{1}$				
${ }_{2} U_{3}$	M_{3}	$b M_{3}$				

and when $i>3$, we have ${ }_{j} U_{i} M_{j}=0$.

Proof. By using diagram multiplication, we can show the results for $i=1,2,3$. For $i>3$, the diagram ${ }_{j} U_{i} M_{j}$, where $j=1,2$, contains four non-through strings while each basis diagram for $\Delta_{n}\left(\mu_{n}\right)$ has only three non-through strings. Hence, these diagrams equal to zero in $\Delta_{n}\left(\mu_{n}\right)$.

Theorem 6.2. Let $\Delta_{n}(\lambda)$ be the one dimensional cell module that spanned by the initial part v of ${ }_{1} U_{2}$ with label λ, and consider the cell module $\Delta_{n}\left(\mu_{n}\right)$ that spanned by the set $\left\{M_{i} \mid i=0,1, \ldots, M_{2 n-5}\right\}$, where μ_{n} is as defined in (1). Then $\theta: \Delta_{n}(\lambda) \rightarrow \Delta_{n}\left(\mu_{n}\right)$ defined by $\theta(v)=M_{2}-b M_{1}$, is a non-zero module homomorphism when $b^{2}=1$.

Proof. Let $U=\left\{{ }_{1} U_{1},{ }_{1} U_{2}, \ldots,{ }_{1} U_{n-1},{ }_{2} U_{1},{ }_{2} U_{2}, \ldots,{ }_{2} U_{n-1}\right\}$ be the set of the generators of $\mathrm{FC}_{n}(a, b)$. In $\Delta_{n}(\lambda)$, for $i=1,2, \ldots, n-1$, we can see that,

$$
{ }_{r} U_{i} v= \begin{cases}a v & \text { if } i=2 \text { and } r=1 \\ 0 & \text { otherwise }\end{cases}
$$

To show that θ is a homomorphism, we need to prove that $\theta(u v)=u \theta(v)$ for all $u \in U$. If $0 \neq u v \in \Delta_{n}(\lambda)$, then $u={ }_{1} U_{2}$, and $\theta\left({ }_{1} U_{2} v\right)=\theta(a v)=a \theta(v)$. On the other hand, by Proposition 6.1. we get

$$
\begin{aligned}
{ }_{1} U_{2} \theta(v) & ={ }_{1} U_{2}\left(M_{2}-b M_{1}\right) \\
& =a\left(M_{2}-b M_{1}\right) \\
& =a \theta(v) .
\end{aligned}
$$

Now we turn to the case when $0=u v \in \Delta_{n}(\lambda)$, this happens only when $u={ }_{1} U_{i}$ with $i \neq 2$ or when $u={ }_{2} U_{i}$. Let us discuss these two cases:
(i) For $i \neq 2$, we have ${ }_{1} U_{i} v=0$. Therefore we need to show that ${ }_{1} U_{i} \theta(v)=0$ when $i \neq 2$. We have ${ }_{1} U_{i} \theta(v)=$ ${ }_{1} U_{i}\left(M_{2}-b M_{1}\right)$. By Proposition 6.1, we get ${ }_{1} U_{i} \theta(v)=0$ for all $1 \leq i \leq n-1$ and $i \neq 2$.
(ii) For all $i=1,2, \ldots, n-1$, we have ${ }_{2} U_{i} v=0$. Thus we need to show that ${ }_{2} U_{i} \theta(v)=0$ as well. We have ${ }_{2} U_{i} \theta(v)={ }_{2} U_{i}\left(M_{2}-b M_{1}\right)$, by Proposition 6.1, ${ }_{2} U_{i} \theta(v)=0$ for all $1 \leq i \leq n-1$. Notice that, for $i=2$, we have

$$
\begin{aligned}
{ }_{2} U_{2} \theta(v) & ={ }_{2} U_{2}\left(M_{2}-b M_{1}\right) \\
& =a M_{1}-a b^{2} M_{1} \\
& =a\left(1-b^{2}\right) M_{1}
\end{aligned}
$$

but $b^{2}=1$ then ${ }_{2} U_{2} \theta(v)=0$.

From Theorem 4.5, we have
Corollary 6.3. Let λ be the label of ${ }_{1} U_{2}$ and μ_{n} is as defined in (1). Then for all $m \geq n$ such that $m-n$ is even we have a non-zero homomorphism $\theta: \Delta_{m}(\lambda) \rightarrow \Delta_{m}\left(\mu_{n}\right)$ when $b^{2}=1$.

7 The cell module $\Delta_{n}\left(\hat{\mu}_{n}\right)$

In this section, we introduce another family of cell modules that spanned by diagrams obtained by rotating the basis diagrams for $\Delta_{n}\left(\mu_{n}\right)$ about the y-axis.

Definition 7.1. For $D \in \mathrm{FC}_{n}$, we define \hat{D} to be the diagram that represents the rotation of D about the y-axis.

For example, if

then

Let λ be label of D and let $\hat{\lambda}$ be the label obtained by reading λ from right to left. Notice that, if n even then the label of \hat{D} is $\hat{\lambda}$, but if n odd then the label of \hat{D} is $\hat{\lambda}$ after swapping a with b and b with a. For example, if n even and $\lambda=a b^{2} a^{4} b^{4} a$ then $\hat{\lambda}=a b^{4} a^{4} b^{2} a$, and if n odd and $\lambda=a b^{4} a^{2} b^{3}$ then $\hat{\lambda}=a^{3} b^{2} a^{4} b$. Define $\Delta_{n}\left(\hat{\mu}_{n}\right)$ to be the cell module that spanned by diagrams with label $\hat{\mu}_{n}$. It is clear that $\Delta_{n}\left(\mu_{n}\right)$ and $\Delta_{n}\left(\hat{\mu}_{n}\right)$ have same dimension and Definition 7.1 define a FC_{n} - module homomorphism, thus $\Delta_{n}\left(\mu_{n}\right) \cong \Delta_{n}\left(\hat{\mu}_{n}\right)$ and all results that we have for $\Delta_{n}\left(\mu_{n}\right)$ can be applied for $\Delta_{n}\left(\hat{\mu}_{n}\right)$.

Proposition 7.2. Consider the cell module $\Delta_{n}\left(\hat{\mu}_{n}\right)$, then we have
(i) $\operatorname{dim} \Delta_{n}\left(\hat{\mu}_{n}\right)=2 n-4$.
(ii) Let $\left\{M_{i} \mid i=0,1, \ldots, 2 n-5\right\}$ be the basis of $\Delta_{n}\left(\mu_{n}\right)$ that defined in Definition 5.2, then $\Delta_{n}\left(\hat{\mu}_{n}\right)$ spanned by $\left\{\hat{M}_{i} \mid i=0,1, \ldots, 2 n-5\right\}$.
(iii) For $n \geq 5$, the Gram determinants for $\Delta_{n}\left(\hat{\mu}_{n}\right)$ is

$$
\operatorname{det} G\left(\mu_{n}\right)=\alpha \begin{cases}b\left(a^{2}-1\right)\left(a^{2}-2\right)^{\frac{n-6}{2}}\left(b^{2}-2\right)^{\frac{n-4}{2}}, & \text { if } n \text { even } \tag{4}\\ b\left(a^{2}-1\right)\left[\left(a^{2}-2\right)\left(b^{2}-2\right)\right]^{\frac{n-5}{2}}, & \text { if } n \text { odd }\end{cases}
$$

where $\alpha=s^{n-4} t^{3 n-7}\left(t^{2}-1\right)\left(s^{2}+s-1\right)\left(s^{2}-s-1\right)$ and $(s, t)=(a, b)$ if n even, while $(s, t)=(b, a)$ if n odd.
(iv) $\Delta_{n}\left(\hat{\mu}_{n}\right)$ is irreducible if a and b are such that equation 4 is non-zero.
(v) Let v be the initial part of the generator ${ }_{1} U_{n-2}$ for FC_{n} with label λ. There is a non-zero homomorphism $\theta: \Delta_{n}(\lambda) \rightarrow \Delta_{n}\left(\hat{\mu}_{n}\right)$ defined by $\theta(v)=\hat{M}_{2}-c \hat{M}_{1}$ with $c^{2}=b^{2}=1$ if n even, and $c^{2}=a^{2}=1$ if n odd.
(vi) Let λ be the label of ${ }_{1} U_{n-2}$. Then there is a non-zero homomorphism $\theta: \Delta_{n}(\lambda) \rightarrow \Delta_{n}\left(\hat{\mu}_{n}\right)$ when $b^{2}=1$ if n even, and $a^{2}=1$ if n odd.

Proof. (i) and (ii) are clear.
(iii) If n even then every a-string (resp. b-string) in M_{i} it becomes a-string, (resp. b-string) in \hat{M}_{i}, so, $\left\langle M_{i}, M_{j}\right\rangle=\left\langle\hat{M}_{i}, \hat{M}_{j}\right\rangle$ for all $0 \leq i, j \leq 2 n-5$, and hence, $\operatorname{det} G\left(\hat{\mu}_{n}\right)=\operatorname{det} G\left(\mu_{n}\right)$. If n odd then every a-string (resp. b-string) in M_{i} it becomes b-string, (resp. a-string) in \hat{M}_{i}, so, if $\left\langle M_{i}, M_{j}\right\rangle=a^{r_{1}} b^{r_{2}}$ for some integers r_{1}, r_{2}, then $\left\langle\hat{M}_{i}, \hat{M}_{j}\right\rangle=b^{r_{1}} a^{r_{2}}$ for all $0 \leq i, j \leq 2 n-5$, and hence, $\operatorname{det} G\left(\hat{\mu}_{n}\right)$ is equal to $\operatorname{det} G\left(\mu_{n}\right)$ after swapping a with b and b with a.
(iv) By using Theorem 3.9 .
(v) Notice that ${ }_{1} U_{n-3}={ }_{1} \hat{U}_{3},{ }_{1} U_{n-2}={ }_{1} \hat{U}_{2}$, and ${ }_{1} U_{n-1}={ }_{1} \hat{U}_{1}$. In addition, for $j=1,2$, we have ${ }_{j} U_{i} \hat{M}_{j} \neq 0$ if $i=n-3, n-2, n-1$ and ${ }_{j} U_{i} \hat{M}_{j}=0$ if $1 \leq i \leq n-4$. We can argue as in the proof of Theorem 6.2 to get the result.
(vi) The result follow from Theorem 4.5 .

References

[1] D. Bisch and V. Jones. Algebras associated to intermediate subfactors. Invent. Math., 128(1):89-157, 1997.
[2] D. Bisch and V. Jones. A note on free composition of subfactors. "Geometry and Physics", vol. 184, Marcel Dekker, Lecture Notes in Pure and Appl. Math.,, pages 339-361, 1997.
[3] A. G. Cox, P. P. Martin, A. E. Parker, and C. Xi. Representation theory of towers of recollement: theory, notes, and examples. J. Algebra, 302:340-360, 2006.
[4] P. Di Francesco. New integrable lattice models from Fuss-Catalan algebras. Nuclear Phys. B, 532(3):609-634, 1998.
[5] J. J. Graham and G. I. Lehrer. Cellular algebras. Invent. Math., 123:1-34, 1996.
[6] J. A. Green. Polynomial Representations of GL_{n}, volume 830 of Lecture Notes in Mathematics. Springer-Verlag, Berlin/Heidelberg/New York, 1980.
[7] Ahmed B. Hussein. On representations of Fuss-Catalan algebras. Journal of Algebra, 519:398-423, 2019.
[8] Z. A. Landau. Fuss-Catalan algebras and chains of intermediate subfactors. Pacific J. Math., 197(2):325-367, 2001.

