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Abstract

In this work we study the global solution, uniqueness and asymptotic behaviour of the nonlinear equation

utt −∆pu−∆put = |u|r−1u

where ∆pu is the nonlinear p-Laplacian operator, 2 ≤ p <∞. The global solutions are constructed by means of the
Faedo-Galerkin approximations and the asymptotic behavior is obtained by Nakao method.

Keywords: p-Laplacian, global solution, asymptotic behaviour, p-Laplacian damping.

1 Introduction

We use the Sobolev Space with its properties as in R. A. Adams [1]. Throughout this paper we omit the space variable
x of u(x, t) and simply denote u(x, t) by u(t) when no confusion arises. C denotes various positive constants depending
on the known constants and may be different at each appearance. Let Ω ∈ Rn be a bounded open set with sufficiently
smooth boundary ∂Ω, 2 ≤ p <∞ and q such that

1

p
+

1

q
= 1. The duality pairing between W−1,q(Ω) and W 1,p

0 (Ω),

D′(0, T ) and D(0, T ), T > 0, will be denoted using the simple notation 〈 · , · 〉.

According to Poincaré’s inequality, the standard norm ‖ · ‖W 1,p
0 (Ω) is equivalent to the norm ‖∇ · ‖p on W 1,p

0 (Ω).
Henceforth, we put ‖ · ‖W 1,p

0 (Ω) = ‖∇ · ‖p. We denote ‖ · ‖L2(Ω) = | · |2 and the usual inner product by ( · , · ).
We denote the p-Laplacian operator by ∆pu = div

(
|∇u|p−2∇u

)
, which can be extended to a monotone, bounded,

hemicontinuos and coercive operator between the spaces W 1,p
0 (Ω) and its dual by

−∆p : W 1,p
0 (Ω)→W−1,q(Ω)

〈−∆pu, v〉 =

∫
Ω

|∇u|p−2∇u .∇v dx

The existence of a global solution for wave equation of p-Laplacian type

u′′ −∆pu = 0 (1)

without any additional dissipation term is an open problem. For n = 1 M. Derher [13] proved the local in time existence
of solution and showed by a generic counter-example that the global in time solution can not use expected. Adding a
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strong damping (−∆u′) in (1) the well-posedness and asymptotic behavior was studied by J. M. Greenberg [15]. In
fact, the strong damping plays an important role on the existence and stability for p-Laplacian wave equation see for
instance for n ≥ 2 [4, 5, 6, 11, 14, 18, 21, 22, 25]. Nevertheless, if the strong damping is replaced by a weaker damping
(u′), then global existence and uniqueness are only know for n = 1, 2. See [8, 27]. In this work we consider a p-Laplacian
damping. We have interested in to prove existence and uniqueness of solution and energy decay to the problem

u′′ −∆pu−∆pu
′ = |u|r−1u, x ∈ Ω, R+, (2)

u(x, 0) = u0(x), u′(x, 0) = u1(x), x ∈ Ω, (3)

u(x, t) = 0 on ∂Ω, t ≥ 0. (4)

When p = 2 we obtain the strong damping (−∆u′), that provides the very strong dissipation. However, for p > 2 this
effect is diminished by the fact that such a damping term is quasilinear and is, in some sense, degenerate. In addition,
the degenerate nature of the p-Laplacian as an elliptic operator is known to cause serious difficulties, see [12].

The outline of the paper is as follows. In the Section, 2 we introduce some notations and the stability set created from
Nehari Manifold. In the Section 3 we prove the existence of solution by Faedo-Galerkin method. By result of M. Nakao
[20], energy decay in a appropriate set of stability will be given in Section 4. Finally we present the final comments.

2 The Potential Well

Is well known that the energy of a PDE system is, in some sense, split into kinetic and potential energy. Following
the idea of Y. Ye [25] we are able to construct a set of stability as follows. We will prove that there is a valley or a
“well” of depth d created in the potential energy. If this height d is strictly positive, we find that, for solutions with
initial data in the “good part” of the well, the potential energy of the solution can never escape the well. In general, it
is possible for the energy from the source term to cause the blow-up in finite time. However in the good part of the well
it remains bounded. As a result, the total energy of the solution remains finite on any time interval [0, T ), providing
the global existence of the solution. We started by introducing the functional J : W 1,p

0 (Ω) ∩W 1,2(p−1)(Ω)→ R by

J(u) =
1

p

∫
Ω

|∇u|p dx− 1

r + 1

∫
Ω

|u|r+1 dx. (5)

For u ∈W 1,p
0 (Ω) we define the functional

J(λu) =
λp

p

∫
Ω

|∇u|p dx− λr+1

r + 1

∫
Ω

|u|r+1 dx, 0 < λ. (6)

The total energy of the problem (2)-(4) is defined by

E(t) =
1

2

∫
Ω

|u′(t)|2 dx+
1

p

∫
Ω

|∇u|p dx− 1

r + 1

∫
Ω

|u|r+1 dx

=
1

2

∫
Ω

|u′(t)|2 dx+ J(u(t)).

With this notation, we point out that the critical points of the functional J are the weak solutions of the elliptic
problem

−∆pu = |u|r−1u in Ω,

u = 0 on ∂Ω.
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Associated with the J we have the well known Nehari Manifold given by

N def
=

{
u ∈W 1

0 (Ω) ∩W 1,2(p−1)(Ω)/{0} :

[
d

dλ
J(λu)

]
λ=1

= 0

}
.

Equivalently,

N =

{
u ∈W 1

0 (Ω) ∩W 1,2(p−1)(Ω)/{0} :

∫
Ω

|∇u|p dx =

∫
Ω

|u|r+1 dx

}
.

We define as in the Mountain Pass theorem due to Ambrosetti and Rabinowitz [2],

d
def
= inf

u∈W 1
0 (Ω)∩W 1,2(p−1)(Ω)/{0}

sup
0≤λ

J(λu).

It is well-known that for 1 < r ≤ 5 the depth of the well d is a real constant strictly positive (e.g. [[24], Theorem 4.2])
and

d = inf
u∈N

J(u).

We now introduce the potential well

W = {u ∈W 1
0 (Ω) ∩W 1,2(p−1)(Ω) : J(u) < d} ∪ {0}

and partition it into two sets

W1 = {u ∈W 1
0 (Ω) ∩W 1,2(p−1)(Ω) :

1

p

∫
Ω

|∇u|p dx >
1

r + 1

∫
Ω

|u|r+1 dx} ∪ {0},

W2 = {u ∈W 1
0 (Ω) ∩W 1,2(p−1)(Ω) :

1

p

∫
Ω

|∇u|p dx <
1

r + 1

∫
Ω

|u|r+1 dx}.

We will refer to W1 as the “good” part of the well and W2 as the “bad” part of the well. Then we define by W1 the set
of stability for the problem (2)-(4).

3 Global Solution

3.1 Existence

Theorem 3.1. Let 1 < r ≤ 5. Suppose the E(0) < d. Given u0 ∈ W1, u1 ∈ W 1,p
0 (Ω) there exists a function

u : Ω× (0, T )→ R such that

u ∈ L∞(0, T ;Lr+1(Ω)) ∩ L∞(0, T ;W 1,p
0 (Ω)),

u′ ∈ L∞(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)),

u(x, 0) = u0(x), u′(x, 0) = u1(x) a.e. in Ω,
d

dt
(u′, v) + 〈−∆pu, v〉+ 〈−∆pu

′, v〉 − (|u|r−1u, v) = 0, ∀ v ∈W 1
0 (Ω) ∩W 1,2(p−1)(Ω) in D′(0, T ).

Proof. Denote by

Kj = {K ⊂ {u ∈ L2(Ω) : ||u||2 = 1} : K is compact, symmetric and γ(K) ≥ j},

where γ(G) = inf{m : ∃φ : G → R/{0}, φ odd continuous function} denotes the Krasnoselski genus. In [10] it is
proved that

λj = inf
G∈Kj

sup
u∈G
||∇u||22
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is a sequence of eigenvalue of the p-Laplacian. −∆p : W 1,p
0 (Ω)→W−1,q(Ω) is a monotone, coercive and hemicontinuos

operator. Minty-Browder theorem, see [26], guarantees the existence of a basis (wj)
∞
j=1 given by the solution of the

stationary problem
−∆pwj = λjwj ,

wj(0) = w0j ,

that can be extended as a basis of Galerkin, orthogonal in W 1,p
0 (Ω) and orthonormal in L2(Ω). Now, for each m ∈ N,

let us put Vm = Span{w1, w2, . . . , wm}. We search for a function um(t) =

m∑
j=1

kjm(t)wj such that for any v ∈ Vm, um(t)

satisfies the approximate equation

(u′′m(t), v) + 〈−∆pum(t), v〉+ 〈−∆pu
′
m(t), v〉 − (|um(t)|r−1um(t), v) = 0, (7)

with the initial conditions um(0) = u0m and u′m(0) = u1m, where u0m e u1m are choose in Vm so that

w0m → u0 ∈ W 1
0 (Ω) ∩W 1,2(p−1)(Ω) and u1m → u1 in W

1
0 (Ω). (8)

Putting v = wi, i = 1, 2, . . . ,m, and using

u′′m(t) =

m∑
j=1

k′′jm(t)wj(x),

∆pum(t) =

m∑
j=1

kjm(t)∆pwj(x),

∆pu
′
m(t) =

m∑
j=1

k′jm(t)∆pwj(x),

we observe that (7) is a system of ODEs in the variable t and has a local solution um(t) in a interval [0, tm), by virtue
of Carathéodory’s theorem, see [9]. In the next step we obtain the a priori estimates for the solution um(t) so that it
can be extended to the whole interval [0, T ], T > 0.

A Priori Estimates: We replace v = u′m(t) in the approximate equation (7) and we get

(u′′m(t), u′m(t))− 〈∆pum(t), u′m(t)〉 − 〈∆pu
′
m(t), u′m(t)〉 −

(
|um(t)|r−1um(t), u′m(t)

)
= 0 (9)

Let θ(t) ∈ D(0, tm). So we have,

〈(u′′m(t), u′m(t)), θ(t)〉 =

〈
d

dt

1

2

∫
Ω

|u′m(t)|2 dx, θ(t)

〉
(10)

〈〈−∆pum(t), u′m(t)〉p, θ(t)〉 =

〈
d

dt

1

p

∫
Ω

|∇um(t)|p dx, θ(t)

〉
(11)

〈(−∆pu
′
m(t), u′m(t)) , θ(t)〉 =

〈∫
Ω

|∇u′m(t)|p dx, θ(t)

〉
(12)

〈
〈|um(t)|r−1um(t), u′m(t)〉p, θ(t)

〉
=

〈
d

dt

1

r + 1

∫
Ω

|um(t)|r+1 dx, θ(t)

〉
(13)

Replacing (10), (11), (12), (13) in (9) we obtain in D′(0, tm)

d

dt

{
1

2

∫
Ω

|u′m(t)|2 dx+
1

p

∫
Ω

|∇um(t)|p dx− 1

r + 1

∫
Ω

|um(t)|r+1 dx

}
= −

∫
Ω

|∇u′m(t)|p dx (14)

The approximate energy

Em(t) =
1

2

∫
Ω

|u′m(t)|2 dx+
1

p

∫
Ω

|∇um(t)|p dx− 1

r + 1

∫
Ω

|um(t)|r+1 dx
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satisfies

Em(t) ≤ Em(0)

=
1

2

∫
Ω

|u′m(0)|2 dx+ J(um(0)).

We have that J(um(0)) < d. By to convergence of initial data (8), there exists a constant C > 0 independent of t and
m such that

1

2

∫
Ω

|u′m(0)|2 dx ≤ C.

With the estimate Em(t) ≤ Em(0) ≤ C , that is,

1

2

∫
Ω

|u′m(t)|2 dx+
1

p

∫
Ω

|∇um(t)|p dx− 1

r + 1

∫
Ω

|um(t)|r+1 dx ≤ C

and so we can extend the approximate solutions um(t) to the interval [0, T ], T > 0, see [16]. Note that∫ T

0

∫
Ω

|∇u′m(t)|p dxdt ≤
∫ T

0

∫
Ω

|∇u′m(t)|p dx dt+ Em(T ) ≤ Em(0) ≤ C. (15)

and then we have

um(t) is bounded in L∞(0, T ;Lr+1(Ω)) ∩ L∞(0, T ;W 1,p
0 (Ω)), (16)

u′m(t) is bounded in L∞(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)), (17)

−∆pum(t) is bounded in L∞(0, T ;W−1,q(Ω)), (18)

−∆pu
′
m(t) is bounded in Lq(0, T ;W−1,q(Ω)), (19)

|um(t)|r−1um(t) is bounded in L∞(0, T ;L
r+1
r (Ω)). (20)

Now we are going to obtain an estimate for u′′m(t). Since our Galerkin basis was taken in the Hilbert space L2(Ω) we
can use the standard projection arguments as described in Lions [17]. Then from the approximate equation and the
estimates (16)-(18) we get

u′′m(t) is bounded in L∞(0, T ;L2(Ω)), (21)

Passage to the Limit: From (16)-(20) going to the suitable subsequence if necessary (which we continue to denote
in the same way), there exists u such that

um(t) ⇀ u(t) weakly star in L∞(0, T ;Lr+1(Ω)) ∩ L∞(0, T ;W 1,p
0 (Ω)), (22)

u′m(t) ⇀ u′(t) weakly star in L∞(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)), (23)

−∆pum(t) ⇀ X1(t) weakly star in L∞(0, T ;W−1,q(Ω)), (24)

−∆pu
′
m(t) ⇀ X2(t) weakly star in Lq(0, T ;W−1,q(Ω)), (25)

|um(t)|r−1um(t) ⇀ X3(t) weakly star in L∞(0, T ;L
r+1
r (Ω)). (26)

Applying the Lions-Aubin compactness lemma [17], we get respectively from (22)-(23) and (23)-(21),

um(t) → u(t) strongly in L2(0, T ;L2(Ω)), (27)

u′m(t) → u′(t) strongly in L2(0, T ;L2(Ω)). (28)

We need to prove that X1(t) = −∆pu(t). We denote

Γ =

∣∣∣∣∣
∫ T

0

〈−∆pum(t), v〉p − 〈−∆pu(t), v〉pθ(t) dt

∣∣∣∣∣ .

39



MathLAB Journal Vol 5 (2020) ISSN: 2582-0389 http://www.purkh.com/index.php/mathlab

Consider ∀ x, y ∈ Rn, 2 ≤ p the elementary inequality that is a consequence of the mean value theorem∣∣|x|p−2x− |y|p−2y
∣∣ ≤ c (|x|p−2 + |y|p−2

)
|x− y|. (29)

Applying (29) and Hölder generalized inequality with

p− 2

2(p− 1)
+

1

2
+

1

2(p− 1)
= 1

we deduce

Γ =

∣∣∣∣∣
∫ T

0

〈(−∆pum(t))− (−∆pu(t)), v〉pθ(t) dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

∫
Ω

(
∇um(t)|p−2∇um(t)− |∇u(t)|p−2∇u(t)

)
∇v dx θ(t) dt

∣∣∣∣∣
≤ c||θ||∞

∫ T

0

∫
Ω

(
|∇um(t)|p−2 + |∇u(t)|p−2

)
|∇um(t)−∇u(t)||∇v|dx dt

≤ C
∫ T

0

(
‖∇um(t)‖p−2

2(p−1) + ‖∇u(t)‖p−2
2(p−1)

)
|∇um(t)−∇u(t)|2‖∇v‖2(p−1) dt.

From
Em(t) +

∫ t

0

||∇u′m||pp = Em(0),

we get Em(t) < d for all t ∈ [0, T ], T > 0. We will to prove that um(t) ∈ W1 on [0, T ], T > 0. By contradiction
argument, suppose that there exists t0 ∈ (0, t) such that um(t0) /∈ W1. Since W =W1 ∪W2 and W1 ∩W2 = { }, then
u(t0) ∈ W2 so

1

p
||∇um(t0)||pp <

1

r + 1
||um(t0)||r+1

r+1. The initial data u0 ∈ W1 implies
1

p
||∇um(0)||pp >

1

r + 1
||um(0)||r+1

r+1

and so, there exists s ∈ (0, t0) such that
1

p
||∇um(s)||pp =

1

r + 1
||um(s)||r+1

r+1. Consider

τ = sup

{
s ∈ (0, t0) :

1

p
||∇um(s)||pp =

1

r + 1
||um(s)||r+1

r+1

}
.

We have um(t) ∈ W2 for all τ < t ≤ t0. On the one hand, if ||∇um(τ)||pp 6= 0, then um(τ) ∈ N the Nehari Manifold and

Em(τ) =
1

2
|u′m(τ)|22 + J(um(τ)) ≥ J(um(τ)) ≥ inf

um∈N
J(um) = d,

that is a contradiction with Em(t) < d. Applying Sobolev imbedding with p ≥ r + 1 and Poincarè inequality we get

1

p
||∇um(t)||pp <

1

r + 1
||um(t)||r+1

r+1 ≤ C||um(t)||r+1
p ≤ C||∇um(t)||r+1

p , for all τ < t ≤ t0.

On the other hand, if ||∇um(τ)||pp = 0, we have

0 < lim
t→τ+

C||∇um(t)||r+1
p = C||∇um(τ)||r+1

p

and we obtain a contradiction again. Then um(t) ∈ W1 and in particular um(t) ∈W 1,2(p−1) from where follows that∣∣∣∣∣
∫ T

0

〈−∆pum(t), v〉p − 〈−∆pu(t), v〉pθ(t) dt

∣∣∣∣∣ ≤ C
∫ T

0

|∇um(t)−∇u(t)|2 dt.

Using (27) we get that um(t)→ u(t) almost everewhere in Ω× (0, T ) which leads to X1(t) = −∆pu(t).

Applying (29), Hölder generalized inequality as before and (28) we obtain∣∣∣∣∣
∫ T

0

〈−∆pu
′
m(t), v〉p − 〈−∆pu

′(t), v〉pθ(t) dt

∣∣∣∣∣ ≤ c
∫ T

0

|∇u′m(t)−∇u′(t)|2 dt → 0.
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from where follows by the same argument before, X2(t) = −∆pu
′(t).

To prove that X3(t) = |u(t)|r−1u(t) observe that,∫ T

0

∫
Ω

∣∣|um(t)|r−1um(t)
∣∣ r+1
r dx =

∫ T

0

∫
Ω

|um(t)|r+1
dx ≤ c

so |um(t)|r−1um(t)→ |u(t)|r−1u(t) almost everywhere in Ω× [0, t). Therefore from [17] Lemma 1.3, we infer that

|um(t)|r−1um(t)→ |u(t)|r−1u(t) weakly in in L
r+1
r (0, T ;L

r+1
r (Ω)) (30)

so we have from (26) and (30) that X3 = |u(t)|r−1u(t).

Now, with the convergences (23),(24),(25) and (26) we can pass to the limit in the approximate equation (7) and we
have

d

dt
(u′(t), v) + 〈−∆pu(t), v〉+ 〈−∆u′(t), v〉p − (|u(t)|r−1u(t), v) = 0

for all v ∈ W 1,p
0 (Ω) ∩W 1,2(p−1)(Ω) in D′(0, T ) at the sense of distributions. The verification of the initial data is a

routine procedure. The prove of existence is complete.

4 Asymptotic behaviour

We use the following result due to M. Nakao, see [[20], Lemma 2].

Lemma 4.1. Suppose that φ(t) is a bounded nonnegative function on R, satisfying

sup ess
t≤s≤t+1

φ(s)1+α ≤ C0[φ(t)− φ(t+ 1)] for t ≥ 0,

where C0 and α are positive constants. Then

φ(t) ≤ C(1 + t)−
1
α , ∀t ≥ 0,

where C is a positive constants.

Theorem 4.1. Under the hypothesis of Theorem 3.1, the solution u(t) of problem (2)-(4) satisfies

E(t) ≤ C0(1 + t)−
1
α , ∀t ≥ 0,

where C0 and α are positive constants.

Proof. Multiplying (2) by u′(t) and integrating by over Ω we have

d

dt

[
1

2

∫
Ω

|u′(t)|22 +
1

p
||∇u(t)||pp −

1

r + 1
|um(t)|r+1

r+1 + ||∇u′(t)||pp
]

= 0

that is
d

dt
E(t) + ||∇u′(t)||pp = 0.

Integrating from t to t+ 1, t ≥ 0, we obtain

E(t+ 1) +

∫ t+1

t

||∇u′(s)||pp ds = E(t). (31)
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So, ∫ t+1

t

|u′(s)|22 ds ≤ C
∫ t+1

t

||∇u′(s)||pp ds = C[E(t)− E(t+ 1)]
def
= F 2(t). (32)

Thus, there exist t1 ∈ [t, t+
1

4
], t2 ∈ [

3

4
, t+ 1] such that

|u′(ti)|2 ≤ 2F (ti), i = 1, 2. (33)

Multiplying (2) by u(t) and integrating by over Ω we have

d

dt
(u′(t), u(t))− |u′(t)|22 + ||∇u(t)||pp − |u(t)|r+1

r+1 +

∫
Ω

|∇u′(s)|p−2∇u′(s) .∇u(s) ds = 0. (34)

Using the Cauchy-Schwarz inequality we obtain∫
Ω

|∇u′(s)|p−2∇u′(s) .∇u(s) ds ≤ C||∇u′(s)||p−1
p ||∇u(s)||p

≤ Cq

q
||∇u′(s)||(p−1)q

p +
1

p
||∇u(s)||pp

= C1||∇u′(s)||pp +
1

p
||∇u(s)||pp. (35)

Integrating (34) from t1 to t2 and using (32),(33) and (35) we get

∫ t2

t1

[
||∇u(s)||pp − |∇u(s)|r+1

r+1

]
ds ≤ C|u′(t1)|2||∇u(t1)||p + C|u′(t2)|2||∇u(t2)||p

+F 2(t) + C1

∫ t2

t1

||∇u′(s)||pp ds+
1

p

∫ t2

t1

||∇u(s)||pp ds

≤ F 2(t) + 4CF (t) sup ess
t≤s≤t+1

p
√
E(s) +

1

p

∫ t2

t1

||∇u(s)||pp ds.

(36)

Therefore, ∫ t2

t1

[
(1− 1

p
)||∇u(s)||pp − |∇u(s)|(r+1

r+1

]
ds ≤ C2F

2(t) + 4CF (t) sup ess
t≤s≤t+1

p
√
E(s)

def
= G2(t).

(37)

From (32) and (38) follows that ∫ t2

t1

E(s) ds ≤ C3[F 2(t) +G2(t)].

Then, there exists t∗ ∈ [t1, t2] such that
E(t∗) ≤ C4[F 2(t) +G2(t)].

From (31) we have

sup ess
t≤s≤t+1

E(s) ≤ E(t∗) +

∫ t+1

t

||∇u′(s)||pp ds,
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so,

sup ess
t≤s≤t+1

E(s) ≤ C5[F 2(t) +G2(t)]

= C6

[
F 2(t) + 4F (t) sup ess

t≤s≤t+1

p
√
E(s)

]
≤ C6F

2(t) + C7F
q(t) +

1

p
sup ess
t≤s≤t+1

E(s)

≤ C8F
q(t)[F 2−q(t) + 1].

Then, we have

F 2(t)
def
=

∫ t+1

t

||∇u′(s)||pp ds ≤
∫ t+1

0

||∇u′(s)||pp ds = E(0)− E(t+ 1) ≤ E(0),

whence

F 2−q(t) =
(
F 2(t)

) 2−q
2 ≤ (E(0))

2−q
2 = C(E(0)).

Therefore,

sup ess
t≤s≤t+1

E(s) ≤ C(E(0))(F (t))q = C(E(0))
(
F 2(t)

) q
2

sup ess
t≤s≤t+1

E
2
q (s) ≤ C0[E(t)− E(t+ 1)].

Observe that p ≥ 2 implies
2

q
> 1, that is,

2

q
= 1 + α, with, α > 0.

Finally,

sup ess
t≤s≤t+1

E1+α(s) ≤ C0[E(t)− E(t+ 1)].

The proof is complete.

Final comments

The force term can be more general that |u|r−1u, type f ∈ C1(R) with |f(u)| ≤ c|u|r for all |u| ≥ 1, where 1 ≤ r < 6

with the suitable Sobolev imbeddings. For instance, for n = 3 we have H1
0 (Ω) ↪→ L6(Ω) and the Nemytskii operator f(u)

is locally Lipschitz continuous from H1
0 (Ω) into L2(Ω) for 1 ≤ r ≤ 3. We call the source sub-critical when 1 ≤ r < 3,

critical if r = 3 and supercritical for 3 < r ≤ 5. When 5 < r < 6 the source is super-supercritical, see [7] and is the
situation where the potential energy may not be defined in the finite energy space, so the problem itself is no longer in
the framework of the potential well theory.
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