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Abstract 

In this study, we deal with the numerical solution of the mathematical model for an adiabatic tubular chemical 

reactor which processes an irreversible exothermic chemical reaction. For steady state solutions, the model can 

be reduced to the following nonlinear ordinary differential equation [1]: 

𝑢′′ − 𝜆𝑢′ + 𝜆𝜇(𝛽 − 𝑢)exp(𝑢) = 0, (1) 

where 𝜆, 𝜇 and 𝛽 are Péclet number, Damköhler number and adiabatic temperature rise, respectively. 

Boundary conditions of Eq. (1) are 

𝑢′(0) = 𝜆𝑢(0), 𝑢′(1) = 0. (2) 

Differential transform method [2] is used to solve the problem (1)-(2) for some values of the considered 

parameters. Residual error computation is adopted to confirm the accuracy of the results. In addition, the 

obtained results are compared with those obtained by other existing numerical approach [3]. 

1. Introduction 

In chemical engineering, chemical reactors are vessels designed to contain chemical reactions. These reactors 

are of importance because of their several industrial applications. Some areas of usage of tubular reactors are 

Algae production, biological treatment and gasoline production. In this study, an adiabatic tubular chemical 

reactor which processes an irreversible exothermic chemical reaction will be discussed. In particular, we obtain 

a positive solution 𝑢(𝑥), namely the solution 𝑢(𝑥) of Eq.(1), to the system represents the steady state 

temperature of the reaction. 

Existence of solution to the problem (1)-(2) has been studied in [4] and [5]. Existence of multiple solutions was 

proved in [1]. Some numerical methods  were applied to tackle the problem under investigation. For example, 

in [6], the Green’s function is first utilized to convert the problem into Hammerstein integral equation. And then, 

the resulting equation was  solved via Adomian’s decomposition method. In [7], the method of Chebyshev finite 

difference was used to handle the problem. The authors of [3] approached the problem using a strategy which 

is based on embedding Green’s function into Krasnoselskii–Mann’s fixed point iteration scheme. 

In this paper, we apply differential transform method (in short, DTM) as an alternative to existing methods to 

solve the problem (1)-(2) for some values of the considered parameters. The concept of differential transform 
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method was first introduced in [8], which is solved linear and nonlinear initial value problems in electric circuit 

analysis. This method is useful to obtain the exact and approximate solutions of  linear and nonlinear differential 

equations and does not require linearization or discretization. 

2. The method of solution and the solution to the problem (1)-(2) 

In this section, the fundamental idea of one dimensional differential transform method is concisely introduced 

[2]. 

2.1. One dimensional differential transform method 

We assume that 𝑢(𝑥) is an analytic function in domain  𝑇 and 𝑥0 is any point in 𝑇. Then the function 𝑢(𝑥)  can 

be expanded about 𝑥0  using the Taylor expansion for every point  𝑥  in 𝑇 as follows: 

𝑢(𝑥) =∑
1

𝑘!

∞

𝑘=0

[
𝑑𝑘𝑢(𝑥)

𝑑𝑥𝑘
]
𝑥=𝑥0

(𝑥 − 𝑥0). (3) 

The differential transformation of the function 𝑢(𝑥) is stated as: 

𝑈(𝑘) =
1

𝑘!
[
𝑑𝑘𝑢(𝑥)

𝑑𝑥𝑘
]
𝑥=𝑥0

. (4) 

Here, 𝑢(𝑥) is the original function and 𝑈(𝑘) is the transformed function, respectively. Based on Eqs.(3) and (4), 

we are able to establish the correlation between 𝑢(𝑥) and 𝑈(𝑘): 

𝑢(𝑥) = ∑𝑈(𝑘)(𝑥 − 𝑥0)
𝑘

∞

𝑘=0

. (5) 

In real applications, function 𝑢(𝑥) is expressed by a finite series and Eq.(5) can be written as 

𝑢(𝑥) =∑𝑈(𝑘)(𝑥 − 𝑥0)
𝑘

𝑁

𝑘=0

. (6) 

It is obvious that the differential transform method is build upon on the basis of Taylor series expansion. Hence 

the corresponding derivatives can be obtained by way of a recurrence relation that is described by the 

transformed equations of the original functions. In practical applications, the fucntion 𝑢(𝑥) is usually truncated 

at a certain order 𝑁 and the residual error 

𝑢𝑟(𝑥) = ∑ 𝑈(𝑘)(𝑥 − 𝑥0)
𝑘

∞

𝑘=𝑁+1

.  

is negligible small. Usually, the value of 𝑁 is such chosen that the error is less than a prescribed value. Some 

fundamentally mathematical operations that are used in the transformation of the differential equations are 

listed in Table 1. 
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Table 1. The fundamental operations of one dimensional differential transform method. 

Original function Transformed function 

𝑓(𝑥) = 𝑔(𝑥) ± ℎ(𝑥) 𝐹(𝑘) = 𝐺(𝑘) ± 𝐻(𝑘) 

𝑓(𝑥) = 𝑐𝑔(𝑥) 𝐹(𝑘) = 𝑐𝐺(𝑘) 

𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥) 𝐹(𝑘) =∑𝐺(𝑙)𝐻(𝑘 − 𝑙)

𝑘

𝑙=0

 

𝑓(𝑥) =
𝑑𝑚𝑔(𝑥)

𝑑𝑥𝑚
 )(

!

)!(
)( mkG

k

mk
kF +

+
=  

From the definitions of equations (4) and (5), it is easily proven that the transformed functions comply with the 

fundamental operations shown in Table 1. Now we prove some theorems given in Table I, which are essential 

to solving the problem (1)-(2). 

Theorem I 

If 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥), then 𝐹(𝑘) = ∑ 𝐺(𝑙)𝐻(𝑘 − 𝑙).𝑘
𝑙=0  

Proof. 

Starting with the 𝑘-th order derivative of the product of two functions like 

𝑑𝑘

𝑑𝑥𝑘
[𝑔(𝑥)ℎ(𝑥)] =∑(

𝑘

𝑖
)
𝑑𝑖

𝑑𝑥𝑖
[ℎ(𝑥)]

𝑘

𝑖=0

𝑑𝑘−𝑖

𝑑𝑥𝑘−𝑖
[𝑔(𝑥)] 

                   = ℎ(𝑥)
𝑑𝑘

𝑑𝑥𝑘
[𝑔(𝑥)] + (

𝑘

1
)
𝑑

𝑑𝑥
[ℎ(𝑥)]

𝑑𝑘−1

𝑑𝑥𝑘−1
[𝑔(𝑥)] + (

𝑘

2
)
𝑑2

𝑑𝑥2
[ℎ(𝑥)]

𝑑𝑘−2

𝑑𝑥𝑘−2
[𝑔(𝑥)] 

                   +⋯+ ( 𝑘
𝑘−1

)
𝑑𝑘−1

𝑑𝑥𝑘−1
[ℎ(𝑥)]

𝑑

𝑑𝑥
[𝑔(𝑥)] + (

𝑑𝑘

𝑑𝑥𝑘
[ℎ(𝑥)]) 𝑔(𝑥),  

the differential transform of the 𝑘-th order derivative of the product of the two functions can be obtained as 

follows: 

                𝐹(𝑘) =
1

𝑘!
[
𝑑𝑘

𝑑𝑥𝑘
[𝑔(𝑥)ℎ(𝑥)]]

𝑥=𝑥0

=
1

𝑘!
[{ℎ(𝑥)

𝑑𝑘

𝑑𝑥𝑘
[𝑔(𝑥)] + (

𝑘

1
)
𝑑

𝑑𝑥
[ℎ(𝑥)]

𝑑𝑘−1

𝑑𝑥𝑘−1
[𝑔(𝑥)] + (

𝑘

2
)
𝑑2

𝑑𝑥2
[ℎ(𝑥)]

𝑑𝑘−2

𝑑𝑥𝑘−2
[𝑔(𝑥)] + ⋯

+ (
𝑘

𝑘 − 1
)
𝑑𝑘−1

𝑑𝑥𝑘−1
[ℎ(𝑥)]

𝑑

𝑑𝑥
[𝑔(𝑥)] + (

𝑑𝑘

𝑑𝑥𝑘
[ℎ(𝑥)])𝑔(𝑥)}]

𝑥=𝑥0

. 

The last expression can also be rewritten as 

𝐹(𝑘)=
1

𝑘!
[ℎ(𝑥)

𝑑𝑘

𝑑𝑥𝑘
[𝑔(𝑥)]]

𝑥=𝑥0

+
1

(𝑘−1)!
[
𝑑

𝑑𝑥
[ℎ(𝑥)]

𝑑𝑘−1

𝑑𝑥𝑘−1
[𝑔(𝑥)]]

𝑥=𝑥0
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+
1

2(𝑘 − 2)!
[
𝑑2

𝑑𝑥2
[ℎ(𝑥)]

𝑑𝑘−2

𝑑𝑥𝑘−2
[𝑔(𝑥)]]

𝑥=𝑥0

+⋯+
1

(𝑘 − 1)!
[
𝑑𝑘−1

𝑑𝑥𝑘−1
[ℎ(𝑥)]

𝑑

𝑑𝑥
[𝑔(𝑥)]]

𝑥=𝑥0

 

+
1

𝑘!
[(
𝑑𝑘

𝑑𝑥𝑘
[ℎ(𝑥)]) 𝑔(𝑥)]

𝑥=𝑥0

 

As a result, it can be rewritten as 

                 𝐹(𝑘) = 𝐺(𝑘)𝐻(0) + 𝐺(𝑘 − 1)𝐻(1) + 𝐺(𝑘 − 2)𝐻(2) 

+⋯𝐺(1)𝐻(𝑘 − 1) + 𝐺(0)𝐻(𝑘) 

                                                      = ∑ 𝐺(𝑙)𝐻(𝑘 − 𝑙).𝑘
𝑙=0  

Theorem II 

Let  be 𝑚 ∈ ℕ. If 𝑓(𝑥) = 𝑥𝑚, then  

𝐹(𝑘) =

{
 
 

 
     (

𝑚

𝑘
) 𝑥0

𝑚−𝑘,   𝑘 < 𝑚 

             1,            𝑘 = 𝑚

                 0,             𝑘 > 𝑚

 

,where 𝐹(𝑘) is the differential transform of 𝑓(𝑥). 

Proof. 

First of all, in terms of the sign of 𝑘 − 𝑚, let us examine the derivative of 𝑓(𝑥) as follows: 

Case 1 

If 𝑘 > 𝑚, then 𝑚 − 𝑘 is strictly negative integer. For this reason, (𝑚
𝑘
) = 0. Furthermore, we know that  

𝑑𝑘

𝑑𝑥𝑘
(𝑥𝑚) =

𝑚!

(𝑚 − 𝑘)!
𝑥𝑚−𝑘. 

From Eq.(4), the differential transform of the 𝑘-th order derivative of 𝑓(𝑥) can be obtained as follows: 

𝐹(𝑘) =
1

𝑘!
[
𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘
]
𝑥=𝑥0

=
1

𝑘!
[
𝑑𝑘

𝑑𝑥𝑘
(𝑥𝑚)]

𝑥=𝑥0

 

=
1

𝑘!
[

𝑚!

(𝑚 − 𝑘)!
𝑥𝑚−𝑘]

𝑥=𝑥0

=
𝑚!

𝑘! (𝑚 − 𝑘)!
𝑥0

𝑚−𝑘 

        = (𝑚
𝑘
)𝑥0

𝑚−𝑘 = 0. 𝑥0
𝑚−𝑘 = 0. 

Case 2 

If 𝑘 = 𝑚,  

𝐹(𝑘) =
1

𝑘!
[
𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘
]
𝑥=𝑥0

=
1

𝑘!
[
𝑑𝑘

𝑑𝑥𝑘
(𝑥𝑚)]

𝑥=𝑥0
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=
1

𝑘!
[

𝑚!

(𝑚 − 𝑘)!
𝑥𝑚−𝑘]

𝑥=𝑥0

=
𝑚!

𝑘! (𝑚 − 𝑘)!
𝑥0

𝑚−𝑘 

        = (𝑚
𝑘
)𝑥0

𝑚−𝑘 = (𝑚
𝑚
)𝑥0

𝑚−𝑚 = 1.1 = 1. 

Case 3 

If 𝑘 < 𝑚, then  

𝐹(𝑘) =
1

𝑘!
[
𝑑𝑘𝑓(𝑥)

𝑑𝑥𝑘
]
𝑥=𝑥0

=
1

𝑘!
[
𝑑𝑘

𝑑𝑥𝑘
(𝑥𝑚)]

𝑥=𝑥0

 

=
1

𝑘!
[

𝑚!

(𝑚 − 𝑘)!
𝑥𝑚−𝑘]

𝑥=𝑥0

=
𝑚!

𝑘! (𝑚 − 𝑘)!
𝑥0

𝑚−𝑘 

        = (𝑚
𝑘
)𝑥0

𝑚−𝑘 . 

Thus, from Cases (1)-(3) we have 

𝐹(𝑘) =

{
 
 

 
     (

𝑚

𝑘
) 𝑥0

𝑚−𝑘,   𝑘 < 𝑚 

             1,            𝑘 = 𝑚

                 0,             𝑘 > 𝑚.

 

In the case of 𝑥0 = 0, from the previous one we have 

𝐹(𝑘) = 𝛿(𝑘 − 𝑚), 

where 

𝛿(𝑘 − 𝑚) = {
1    
0    

𝑘 = 𝑚
𝑘 ≠ 𝑚.

 

Theorem III 

If 𝑤(𝑢(𝑥)) = exp (𝑢(𝑥)), then  

𝑊(𝑘) = {

exp(𝑈(0)) ,                                      𝑘 = 0

∑
𝑚 + 1

𝑘
𝑈(𝑚 + 1)𝑊(𝑘 −𝑚 − 1),      𝑘 ≥ 1.          

𝑘−1

𝑚=0

 

Proof. 

Choosing 𝑥0 = 0, from Eq.(4), for  𝑘 = 0, we get 

𝑊(0) =
1

0!
[
𝑑0exp (𝑢(𝑥))

𝑑𝑥0
]
𝑥0=0

= exp(𝑢(0)) and 𝑈(0) =
1

0!
[
𝑑0𝑢(𝑥)

𝑑𝑥0
]
𝑥0=0

= 𝑢(0). 

Thus, for 𝑘 = 0, we get 

𝑊(0) = exp( 𝑈(0)). (7) 

Now, taking the differentiation of 𝑤(𝑢(𝑥)) = exp (𝑢(𝑥)) with respect to 𝑥, we get: 
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𝑑𝑤(𝑢(𝑥))

𝑑𝑥
= exp(𝑢(𝑥))

𝑑

𝑑𝑥
(𝑢(𝑥)) = 𝑤(𝑢(𝑥))

𝑑

𝑑𝑥
(𝑢(𝑥)). (8) 

Application of the differential transform to both sides of Eq. (8) gives: 

(𝑘 + 1)𝑊(𝑘 + 1) = ∑(𝑚 + 1)𝑈(𝑚 + 1)𝑊(𝑘 − 𝑚).

𝑘

𝑚=0

 

Replacing 𝑘 + 1 by 𝑘 gives: 

𝑊(𝑘) = ∑
(𝑚 + 1)

𝑘
𝑈(𝑚 + 1)𝑊(𝑘 − 𝑚 − 1),     𝑘 ≥ 1.

𝑘−1

𝑚=0

 (9) 

Combining Eqs. (7) and (9), we obtain the recursive relationship for calculating the 𝑇-function of  𝑤(𝑢(𝑥)) =

exp (𝑢(𝑥)): 

𝑊(𝑘) = {

exp𝑈(0) ,                                             𝑘 = 0

∑
𝑚 + 1

𝑘
𝑈(𝑚 + 1)𝑊(𝑘 −𝑚 − 1),      𝑘 ≥ 1.          

𝑘−1

𝑚=0

 

2.2. The solution to the problem (1)-(2) 

Taking the differential transform of both sides of Eq. (1), the following recurrence relation is obtained: 

(𝑘 + 2)!

𝑘!
𝑈(𝑘 + 2) − 𝜆

(𝑘 + 1)!

𝑘!
𝑈(𝑘 + 1) + 𝜆𝜇∑[𝛽𝛿(𝑙) − 𝑈(𝑙))𝑊(𝑘 − 𝑙)]

𝑘

𝑙=0

= 0 

or  

(𝑘 + 1)(𝑘 + 2)𝑈(𝑘 + 2) − 𝜆(𝑘 + 1)𝑈(𝑘 + 1) + 𝜆𝜇∑[𝛽𝛿(𝑙) − 𝑈(𝑙))𝑊(𝑘 − 𝑙)]

𝑘

𝑙=0

= 0. 

The former one is rewritten as follows: 

𝑈(𝑘 + 2) =
1

(𝑘 + 1)(𝑘 + 2)
× 

               (𝜆(𝑘 + 1)𝑈(𝑘 + 1) + 𝜆𝜇∑[𝑈(𝑙) − 𝛽𝛿(𝑙))𝑊(𝑘 − 𝑙)]

𝑘

𝑙=0

) , 𝑘 ≥ 0, 

(10) 

where 𝛿(𝑙) is a function such that 𝛿(𝑙) = {
1    
0    

𝑙 = 0
𝑙 ≠ 0

,  the differential transform of 𝛽 = 𝛽. 𝑥0, 𝑈(𝑘) is the differential 

transform of 𝑢(𝑥),  and 𝑊(𝑘) is the differential transform of exp(𝑢(𝑥)) are given as follows: 

𝑊(𝑘) = {

exp 𝑈(0) ,                                             𝑘 = 0

∑
𝑚+ 1

𝑘
𝑈(𝑚 + 1)𝑊(𝑘 − 𝑚 − 1),      𝑘 ≥ 1.          

𝑘−1

𝑚=0

   

Choosing 𝑥0 = 0 and using Eq.4, the differential transform of the first one of  boundary conditions given in Eq. 

(2) is given as follows: 

                                        𝑢′(0) = 𝜆𝑢(0) ⇒ [
𝑑𝑢(𝑥)

𝑑𝑥
]
𝑥0=0

= 1!𝑈(1) = 𝜆[𝑢(𝑥)]𝑥0=0 = 𝜆0! 𝑈(0) 
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⇒ 𝑈(1) − 𝜆𝑈(0) = 0 

As to the differential transform of the second one of  boundary conditions given in Eq. (2), choosing 𝑥0 = 0 and 

taking the first derivative of Eq.(6), we get 

𝑢′(𝑥) = ∑𝑘𝑈(𝑘)

𝑁

𝑘=1

𝑥𝑘 ⇒ 𝑢′(1) = ∑𝑘𝑈(𝑘) = 0

𝑁

𝑘=1

⇒∑𝑘𝑈(𝑘) = 0

𝑁

𝑘=1

 

That is, the differential transform of the conditions given in Eq.(2) are as follows 

𝑈(1) − 𝜆𝑈(0) = 0,∑𝑘𝑈(𝑘) = 0.

𝑁

𝑘=1

 (11) 

Furthermore, from Eq.(4), 

𝑈(0) =
1

0!
[
𝑑0𝑢(𝑥)

𝑑𝑥0
]
𝑥0=0

= [𝑢(𝑥)]𝑥0=0 = 𝑢(0). 

Now, since u(0) is not known, called missing initial condition, put 

𝑈(0) = 𝐴. (12) 

For this reason, from the first one of  Eq. (11), we find that 

𝑈(1) = 𝜆𝐴. (13) 

At 𝑘 = 0 and substituting Eq.(12) and Eq.(13) into Eq.(10), we have 

𝑈(2) =
𝐴𝜆2

2
+
1

2
𝐴ⅇ𝐴𝜆𝜇 −

1

2
ⅇ𝐴𝛽𝜆𝜇. (14) 

At 𝑘 = 1 and substituting Eqs.(12),(13) and (14) into Eq.(10), we have 

𝑈(3) =
𝐴𝜆3

6
+
1

3
𝐴ⅇ𝐴𝜆2𝜇 +

1

6
𝐴2ⅇ𝐴𝜆2𝜇 −

1

6
ⅇ𝐴𝛽𝜆2𝜇 −

1

6
𝐴ⅇ𝐴𝛽𝜆2𝜇.  

Following the same procedure, we calculate up to 𝑁-th term 𝑈(𝑁) and substituting from 𝑈(0) to 𝑈(𝑁) into Eq. 

(6), we obtain a few-term solution as follows: 

                                                 𝑢(𝑥) = 𝐴 + 𝐴𝑥𝜆 + 𝑥2 (
𝐴𝜆2

2
+
1

2
𝐴ⅇ𝐴𝜆𝜇 −

1

2
ⅇ𝐴𝛽𝜆𝜇) 

                                                 +𝑥3 (
𝐴𝜆3

6
+

1

3
𝐴ⅇ𝐴𝜆2𝜇 +

1

6
𝐴2ⅇ𝐴𝜆2𝜇 −

1

6
ⅇ𝐴𝛽𝜆2𝜇 −

1

6
𝐴ⅇ𝐴𝛽𝜆2𝜇) + ⋯ , 

 

(15) 

Similarly, substituting from 𝑈(0) to 𝑈(𝑁) into the second one of  Eq. (11), we obtain 

𝑈(1) + 2𝑈(2) + 3𝑈(3) +⋯ = 0, 

namely,  
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𝐴𝜆 + 𝐴𝜆2 + 𝐴ⅇ𝐴𝜆𝜇 − ⅇ𝐴𝛽𝜆𝜇 +
𝐴𝜆3

3
+

2

3
𝐴ⅇ𝐴𝜆2𝜇 +

1

3
𝐴2ⅇ𝐴𝜆2𝜇 −

1

3
ⅇ𝐴𝛽𝜆2𝜇 −

1

3
𝐴ⅇ𝐴𝛽𝜆2𝜇 + ⋯ = 0.  

 

(16) 

The constant 𝐴 can be evaluated  from Eq. (16), numerically for the selected values of 𝜆, 𝜇 and 𝛽. If the values of 

𝜆, 𝜇 and 𝛽 are taken to be 5, 0.05 and 0.53, respectively, the constant 𝐴 was found to be 0.00521611 by 

taking  𝑁 = 20. Therefore, we get the following series solution 

𝑢(𝑥) = 0.00521611 + 0.0260805𝑥 − 0.000739718𝑥2 − 0.00071375𝑥3 − 0.000889043𝑥4 − 0.00089357𝑥5

− 0.000748412𝑥6 − 0.000537325𝑥7 − 0.000337575𝑥8 − 0.00018529𝑥9 − 0.0000947654𝑥10

− 0.0000433045𝑥11 − 0.0000181387𝑥12 − 7.0119 × 10−6𝑥13 − 2.51586 × 10−6𝑥14

− 8.41679 × 10−7𝑥15 − 2.63443 × 10−7𝑥16 − 7.7279 × 10−8𝑥17 − 2.12247 × 10−8𝑥18

− 5.42369 × 10−9𝑥19 − 1.26638 × 10−9𝑥20 + 𝑂(𝑥21). 

3. Numerical Results 

This section includes our numerical experiments for the solution of the problem (1)–(2) based on the present 

method. In particular, we consider appropriate selections of the parameters 𝜆, 𝜇 and 𝛽, in order to guarantee 

the existence of a unique solution. We start by reporting the results for the case 𝜆 = 5, 𝜇 = 0.7, 𝛽 = 0.8 whose 

existence and uniqueness of solutions are shown in [5]. 

Table II. Numerical solutions for 𝜆 = 5, 𝜇 = 0.7, 𝛽 = 0.8 using 𝑁 = 21 

𝑥 Present method Method of [3] 

0.0 0.10164624270973075803 0.10164623106412275851 

0.1 0.15160802174765053429 0.15160800244418513970 

0.2 0.19969085827917187892 0.19969082598774598630 

0.3 0.24564769362604130242 0.24564763919882120986 

0.4 0.28919561887003542022 0.28919552652683175159 

0.5 0.32997403262441354909 0.32997387500728383184 

0.6 0.36746695397036449604 0.36746668342588013969 

0.7 0.40086194130361912924 0.40086147462729197629 

0.8 0.42879644411667916515 0.42879563852127257524 

0.9 0.4489041236159168613 0.44890277089707031201 

1.0 0.45700728808538226833 0.45700543763742257810 

 

In Table II, we display our numerical results using 21 iterations and compare them with that of the obtained 

results in [3] for the same iteration number. The second case that we will consider is 𝜆 = 5, 𝜇 = 0.05, 𝛽 = 0.53  

whose existence and uniqueness of the solution are discussed in [5]. Table III depicts our results for this case 

and compare them with that of the obtained results in [3] for 9 iterations. 
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Table III. Numerical solutions for 𝜆 = 5, 𝜇 = 0.05, 𝛽 = 0.53  using 𝑁 = 9 

𝑥 Present method Method of [3] 

0.0 0.00521358107832754769 0.00521610631917866806 

0.1 0.00781178436241308435 0.00781594990560462475 

0.2 0.01038827332747585021 0.01039514976995603891 

0.3 0.01293300159161900505 0.01294435771748241589 

0.4 0.01542939714475057879 0.01544814585192753329 

0.5 0.01785016461112156824 0.01788103688272135216 

0.6 0.02015055366278014487 0.02020094227138412933 

0.7 0.02225781839224119998 0.02233831543368271460 

0.8 0.02405515194132944526 0.02417822175475618635 

0.9 0.02535786662489987117 0.02553069994644663735 

1.0 0.02587900218297151111 0.02508176937417854529 

For the first case, our results match with, at least, five decimal places of the values obtained in [3] while our 

results match with, at least, three decimal places of the values obtained in [3] for the second case. 

Table IV. Numerical solutions and comparison for 𝜆 = 10, 𝜇 = 0.02, 𝛽 = 3  using 𝑁 = 11 

𝑥 Present method Method of [3] Method of [6] Method of [7] 

0.0 0.0060481652730214469 0.0060483739097476077 0.006048 0.006048 

0.2 0.0181914018945969064 0.0181929364878594473 0.018192 0.018192 

0.4 0.0304134413420211330 0.0304246702566782983 0.030424 0.030424 

0.6 0.0425905527398581715 0.0426691183249326775 0.042669 0.042669 

0.8 0.054280015400578142 0.0543716533646849943 0.054371 0.054371 

1.0 0.061404146374997812 0.0614587374322116238 0.061458 0.061458 

Finally, we consider one more case that is available for comparison in the literature with various numerical 

methods. Table IV reports our results for the case 𝜆 = 10, 𝜇 = 0.02, 𝛽 = 3.  Existence and uniqueness of the 

solution are guaranteed by contraction mapping principle [6]. Table IV depicts our results for this case and 

compare them with those of the obtained results in [3] for 11 iterations and the solutions obtained in [6] and 

[7]. For this case, our results match with, at least, three decimal places of the values obtained in [3]. 

In Figure 1, we present the convergence of calculated missing condition 𝐴 with increasing 𝑁. 
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Fig.1. Variation of 𝐴 with 𝑁 for the case 𝜆 = 5, 𝜇 = 0.05, 𝛽 = 0.53. 

Moreover, since there is no exact solution of this problem, we instead investigate the absolute residual error 

function, which is the measure of how well the numerical solution satisfies the original problem (1)-(2). The 

absolute residual error function is 

|ER𝑁(𝑥)| = |𝑢𝑁
′′(𝑥) − 𝜆𝑢𝑁

′ (𝑥) + 𝜆𝜇(𝛽 − 𝑢𝑁(𝑥))exp(𝑢𝑁(𝑥))|, 0 ≤ 𝑥 ≤ 1. 

In Figure 2, we present the absolute residual error function |ER20(𝑥)| for the case 𝜆 = 5, 𝜇 = 0.05, 𝛽 = 0.53. 

 

Fig.2. Absolute residual error function |ER20(𝑥)|. 

Conclusions 

In this work, differential transform method is implemented to estimate the steady-state solution of the 

irreversible exothermic chemical reaction that occurs in adiabatic tubular chemical reactor. One main advantage 

of the present method is that the  nonlinear structure is handled without the need for restrictive assumptions. 
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The convergence of the present method is shown numerically. The computed residual error function 

demonstrates the accuracy of the suggested method. 
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