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Abstract

In this paper, we define anti fuzzy subrings by using t-conorm C and study some of their algebraic properties. We
consider properties of intersection, direct product and homomorphisms for anti fuzzy subbrings with respect to t-
conorm C. Thereafter, we define anti fuzzy quotient subrings over t -conorm C.
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1 Introduction

In 1965, L. Zadeh first introduced the theory of fuzzy sets in his pioneer paper [36]. After the birth of fuzzy set theory
it has achieved manifold applications than the ordinary set theory. From the beginning of fuzzy set theory it was clear
that this theory was an extra ordinary tool for representing human knowledge. However, L. Zadeh himself established
that sometimes, in decision-making processes, knowledge is better represented by means of some generalizations of
fuzzy sets. Many researchers have centered on giving an algebraic structure to the universe space, defining the classic
algebraic topics on a fuzzy environment and studying their properties. For instance, the reader may consult the papers
[6] or [7] about fuzzy semigroups; [5], [4], [9], [34] or [37] about fuzzy ideals and fuzzy rings; [8] or [13] about fuzzy
modules; [10] about fuzyy vector spaces; [3] about fuzzy coalgebras over a field; [35] about Lie algebras, and so on.
The author by using norms, investigated some properties of fuzzy algebraic structures [14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. The aim of this paper is to introduce the concept of anti fuzzy subrings
by using t-conorm C. By using t-conorm C, we consider the relationship between subrings and anti fuzzy subrings
and we prove that the intersection and direct product of two anti fuzzy subrings are also anti fuzzy subring. Also
we obtain some results for anti fuzzy subrings under the ring homomorphisms. Finally, we show that anti fuzzy of
quotient subring is also an anti fuzzy subring with respect to t-conorm C.

2 Preliminaries

In this section, some basic definitions and resuls that are essential for this paper are assembled.

Definition 2.1. (See [11]) A fuzzy subset of a set X, is a function from X into [0, 1]. The set of all fuzzy subsets of
X is called the [0, 1]-power set of X and is denoted [0, 1]X .
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Definition 2.2. (See [2]) A t-conorm C is a function C : [0, 1]× [0, 1]→ [0, 1] having the following four properties:
(C1) C(x, 0) = x

(C2) C(x, y) ≤ C(x, z) if y ≤ z
(C3) C(x, y) = C(y, x)

(C4) C(x,C(y, z)) = C(C(x, y), z) ,
for all x, y, z ∈ [0, 1].

Example 2.3. The basic t-conorms are Cm(x, y) = max{x, y},Cb(x, y) = min{1, x+ y} and Cp(x, y) = x+ y− xy for
all x, y ∈ [0, 1].

Cm is standard union, Cb is bounded sum, Cp is algebraic sum.

Recall that t-conorm C is idempotent if for all x ∈ [0, 1], C(x, x) = x.

Lemma 2.4. (See [1]) Let C be a t-conorm. Then

C(C(x, y), C(w, z)) = C(C(x,w), C(y, z)),

for all x, y, w, z ∈ [0, 1].

Definition 2.5. (See [11]) Let f be a mapping from ring R into S, µ ∈ [0, 1]R and ν ∈ [0, 1]S . Define f(µ) ∈ [0, 1]S

and f−1(ν) ∈ [0, 1]R, such that ∀y ∈ S,

f(µ)(y) =

{
sup{µ(x) | x ∈ R, f(x) = y} if f−1(y) 6= ∅

0 if f−1(y) = ∅.

Also ∀x ∈ R, f−1(ν)(x) = ν(f(x)).

Theorem 2.6. (See [12]) Let R be a ring. A nonempty subset S of R is a subring of R if and only if x− y ∈ S and
xy ∈ S for all x, y ∈ S.

Definition 2.7. (See [12]) Let R be a ring and I be a nonempty subset of R. We say that I is a left(right) ideal of R
if for all x, y ∈ I and for all r ∈ R, x− y ∈ I, rx ∈ I (x− y ∈ I, xr ∈ I).

3 Main Results

Definition 3.1. Let µ be a fuzzy subset of a ring R. Then µ is called an anti fuzzy subring of R under a t-conorm C

iff for all x, y ∈ R
(1) µ(x− y) ≤ C(µ(x), µ(y))
(2) µ(xy) ≤ C(µ(x), µ(y)).
Denote by AF (R), the set of all anti fuzzy subrings of R under a t-conorm C.

Definition 3.2. Let µ1, µ2 ∈ AF (R) and x ∈ R. We define
(1) µ1 ⊆ µ2 iff µ1(x) ≤ µ2(x),

(2) µ1 = µ2 iff µ1(x) = µ2(x),

(3)(µ1 ∩µ2)(x) = C(µ1(x), µ2(x)). Also µ1 ∩µ2 = µ2 ∩µ1 and µ1 ∩µ2 ∩µ3 = (µ1 ∩µ2)∩µ3 = µ1 ∩ (µ2 ∩µ3) (property
(C3 and C4)).
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Proposition 3.3. Let µ1, µ2 ∈ AF (R). Then µ1 ∩ µ2 ∈ AF (R).

Proof. Let x, y ∈ R.
(µ1 ∩ µ2)(x− y) = C(µ1(x− y), µ2(x− y))

≤ C(C(µ1(x), µ1(y)), C(µ2(x), µ2(y)))

= C(C(µ1(x), µ2(x)), C(µ1(y), µ2(y)))

= C((µ1 ∩ µ2)(x), (µ1 ∩ µ2)(y)).

Also
(µ1 ∩ µ2)(xy) = C(µ1(xy), µ2(xy))

≤ C(C(µ1(x), µ1(y)), C(µ2(x), µ2(y)))

= C(C(µ1(x), µ2(x)), C(µ1(y), µ2(y)))

= C((µ1 ∩ µ2)(x), (µ1 ∩ µ2)(y)).

Thus µ1 ∩ µ2 ∈ AF (R).

Corollary 3.4. Let In = {1, 2, ..., n}. If {µi | i ∈ In} ⊆ AF (R), Then µ = ∩i∈Inµi ∈ AF (R).

Example 3.5. Let R = (Z,+, .) be a ring of integers. Define fuzzy subset µ ∈ [0, 1]R as

µ(x) =

{
0.7 if x ∈ {±1,±3, ...}
0.5 if x ∈ {0,±2,±4, ...}.

Let Cp(x, y) = x+ y − xy for all x, y ∈ R, then µ ∈ AF (R).

Proposition 3.6. Let µ ∈ AF (R) and C be idempotent. Then for all t ∈ [0, 1], Rt = {x ∈ R | µ(x) ≤ t} is a subring
of R.

Proof. Let x, y ∈ Rt. Then
µ(x− y) ≤ C(µ(x), µ(y)) ≤ C(t, t) = t.

Hence x− y ∈ Rt. Also
µ(xy) ≤ C(µ(x), µ(y)) ≤ C(t, t) = t.

Hence xy ∈ Rt and then Rt is a subring of R.

Proposition 3.7. Let µ be a fuzzy subset of ring R and C be idempotent, such that µ(x − y) ≤ C(µ(x), µ(y)) and
µ(rx) ≤ µ(x) for all x, y, r ∈ R. Then
(1) µ(0) ≤ µ(x) for all x ∈ R;
(2) µ(x) = µ(−x) for all x ∈ R;
(3) for all t ∈ [0, 1], Rt = {x ∈ R | µ(x) ≤ t} is a left ideal of R;
(4) R0 = {x ∈ R | µ(x) = µ(0)} is a left ideal of R.
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Proof. Let x ∈ R. Then
(1) µ(0) = µ(x− x) ≤ C(µ(x), µ(x)) = µ(x).

(2)
µ(x) = µ(0− (−x))

≤ C(µ(0), µ(−x)) ≤ C(µ(−x), µ(−x))

= µ(−x) = µ(0− x)

≤ C(µ(0), µ(x)) ≤ C(µ(x), µ(x)) = µ(x)

and then µ(x) = µ(−x).
(3) If x, y ∈ Rt, r ∈ R, then

µ(x− y) ≤ C(µ(x), µ(y)) ≤ C(t, t) = t

and µ(rx) ≤ µ(x) ≤ t. Hence Rt is a left ideal of R.
(4) Let x, y ∈ R0 and r ∈ R. We have

µ(x− y) ≤ C(µ(x), µ(y)) = C(µ(0), µ(0)) = µ(0)

and µ(rx) ≤ µ(x) = µ(0).Thus R0 is a left ideal of R.

Proposition 3.8. Let µ ∈ AF (R) and C be idempotent. Then µ(x − y) = µ(−y) if and only if µ(x) = µ(0) for all
x, y ∈ R.

Proof. Let x, y ∈ R and µ(x− y) = µ(−y). Then by letting y = 0, we get that µ(x) = µ(0). Conversely, suppose that
µ(x) = µ(0) then from Proposition 3.7 (1) we get µ(x) ≤ µ(x− y), µ(−y). Now

µ(x− y) ≤ C(µ(x), µ(y)) ≤ C(µ(−y), µ(y)) =

C(µ(−y), µ(−y)) = µ(−y) = µ(x− y − x))

≤ C(µ(x− y), µ(x)) ≤ C(µ(x− y), µ(x− y)) = µ(x− y)

and so µ(x− y) = µ(−y).

Proposition 3.9. Let µ ∈ AF (R) and S be a ring. Suppose that f is onto homomorphism of R into S. Then
f(µ) ∈ AF (S).

Proof. Let s1, s2 ∈ S then there exist x, y ∈ R such that s1 = f(x) and s2 = f(y). Now

f(µ)(s1 − s2) = sup{µ(x− y) | s1 = f(x), s2 = f(y)}

≤ sup{C(µ(x), µ(y)) | s1 = f(x), s2 = f(y)}

= C(sup{µ(x) | s1 = f(x)}, sup{µ(y) | s2 = f(y)})

= C(f(µ)(s1), f(µ)(s2)).

Also
f(µ)(s1s2) = sup{µ(xy) | s1 = f(x), s2 = f(y)}

≤ sup{C(µ(x), µ(y)) | s1 = f(x), s2 = f(y)}
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= C(sup{µ(x) | s1 = f(x)}, sup{µ(y) | s2 = f(y)})

= C(f(µ)(s1), f(µ)(s2)).

Therefore f(µ) ∈ AF (S).

Proposition 3.10. Let S be a ring and ν ∈ AF (S). If f be a homomorphism of R into S, then f−1(ν) ∈ AF (R).

Proof. Let x, y ∈ R. Then
f−1(ν)(x− y) = ν(f(x− y)) = ν(f(x)− f(y))

≤ C(ν(f(x)), ν(f(y))) = C(f−1(ν)(x), f−1(ν)(y)).

Also
f−1(ν)(xy) = ν(f(xy)) = ν(f(x)f(y))

≤ C(ν(f(x)), ν(f(y))) = C(f−1(ν)(x), f−1(ν)(y)).

Hence f−1(ν) ∈ AF (R).

Definition 3.11. Let R and S be two rings such that µ ∈ AF (R) and ν ∈ AF (S). The direct product of µ and ν,
denoted by µ × ν, is the fuzzy subset of ring R × S such that for all x ∈ R and y ∈ S defined by (µ × ν)(x, y) =

C(µ(x), ν(y)).

Now we prove that the direct product of two anti fuzzy subrings is also an anti fuzzy subring.

Proposition 3.12. If µi ∈ AF (Ri) for i = 1, 2, then µ1 × µ2 ∈ AF (R1 ×R2).

Proof. Let (x1, y1), (x2, y2) ∈ R1 ×R2. Then

(µ1 × µ2)((x1, y1)− (x2, y2))

= (µ1 × µ2)(x1 − x2, y1 − y2)

= C(µ1(x1 − x2), µ2(y1 − y2))

≤ C(C(µ1(x1), µ1(x2)), C(µ2(y1), µ2(y2)))

= C(C(µ1(x1), µ2(y1), C(µ1(x2), µ2(y2))

= C((µ1 × µ2)(x1, y1), (µ1 × µ2)(x2, y2)).

Also
(µ1 × µ2)((x1, y1)(x2, y2))

= (µ1 × µ2)(x1x2, y1b2)

= C(µ1(x1x2), µ2(y1y2))

≤ C(C(µ1(x1), µ1(x2)), C(µ2(y1), µ2(y2)))

= C(C(µ1(x1), µ2(y1), C(µ1(x2), µ2(y2))

= C((µ1 × µ2)(x1, y1), (µ1 × µ2)(x2, y2)).
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Corollary 3.13. Let µi ∈ AF (Ri) for i = 1, 2, ..., n. Then

µ1 × µ2 × ...× µn ∈ AF (R1 ×R2 × ...×Rn).

The following definition introduces the concept of anti fuzzy quotient subrings.

Definition 3.14. Let R be a ring, I be an ideal of R and µI ∈ AF (R). Define µ : R/I → [0, 1] by

µ(x+ I) =

{
C(µI(x), µI(i)) if x 6= i

1 if x = i.

for all x ∈ R and i ∈ I.

Proposition 3.15. If C be idempotent, then µ ∈ AF (R/I).

Proof. Let x+ I, y + I ∈ R/I, i ∈ I and µI ∈ AF (I) such that x 6= i 6= y.

µ((x+ I)− (y + I))

= µ((x− y) + I)

= C(µI(x− y), µI(i))

≤ C(C(µI(x), µI(y)), µI(i))

= C(C(µI(x), µI(y)), C(µI(i), µI(i)))

= C(C(µI(x), µI(i)), C(µI(y), µI(i)))

= C(µ(x+ I), µ(y + I)).

Also
µ((x+ I)(y + I))

= µ(xy + I)

= C(µI(xy), µI(i)) ≤ C(C(µI(x), µI(y)), µI(i))

= C(C(µI(x), µI(y)), C(µI(i), µI(i)))

= C(C(µI(x), µI(i)), C(µI(y), µI(i)))

= C(µ(x+ I), µ(y + I)).

4 Conclusions

The concept of anti fuzzy in rings setting has been extended by t-conorms. We lucidly exemplified intersection,
direct product and homomorphisms for anti fuzzy subbrings with respect to t-conorm C and deduced several results.
Finally, homomorphism and some of its properties were proposed in the context of anti fuzzy subbrings with respect
to t-conorms.
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