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Abstract

This work uses the Riccati-Bernoulli sub-ODE method in constructing various new optical soliton solutions to the
resonant nonlinear Schrödinger equation with both spatio-temporal dispersion and inter-modal dispersion. Actually,
the proposed method is effective tool to solve many other nonlinear partial differential equations in mathematical
physics. Moreover this method can give a new infinite sequence of solutions. These solutions are expressed by
hyperbolic functions, trigonometric functions and rational functions. Finally, with the aid of Matlab release 15, some
graphical simulations were designed to see the behavior of these solutions.
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Introduction

Over the years, many complex nonlinear aspects arising in various fields of nonlinear sciences, such as; plasma physics,
biology, optical fibers, fluid dynamics, physics, chemical kinematics, quantum mechanics, see [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12]. Thus, many new methods have been proposed to investigate these equations, such as the tanh-sech method
[13, 14, 15], Jacobi elliptic function method [16, 17, 18], exp-function method [19, 20], sine-cosine method [21, 22, 23],
homogeneous balance method [24, 25], F-expansion method [26, 27], extended tanh-method [28, 29], (G

′

G )− expansion
method [30, 31] and so on.

This paper concerned with the resonant nonlinear Schrödinger equation [32, 33, 34] given by

i(ψt − δψx) + αψxx + βψxt + λF
(
| ψ |2

)
ψ + γ

(
| ψ |xx
| ψ |

)
ψ = 0, (0.1)

where ψ(x, t) is the complex wave profile, x and t are the spatial and temporal variables, respectively. Here, α and β
represent the coefficients of group-velocity dispersion and spatio-temporal (STD), respectively, while λ and γ are the
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coefficients of non-Kerr law nonlinearity and resonant nonlinearity, respectively. Moreover δ represents the coefficient
of inter-modal dispersions (IMD). Obviously, this system is a strongly nonlinear and it is quiet difficult to obtain its
solitary wave solutions. In this paper, we use the Riccati-Bernoulli sub-ODE method [10, 11, 35, 36, 37], to construct
exact solutions, solitary wave solutions of nonlinear partial differential equations (NPDEs). We choose the resonant
nonlinear Schrödinger equation in order to illustrate the validity of the proposed method. Actually the solutions of this
equation turn out to be very useful in order to prescribe physical interpretation in a completely unified way. Indeed
the proposed method can be used to solve so many other NPDEs.

The rest of the paper is arranged as follows. The Riccati-Bernoulli sub-ODE method is described in Section 1. In
Section 2, some exact solutions for the resonant nonlinear Schrödinger equation are given. In Section 3 we compare
our results with other results in order to show that the proposed methods in this paper are efficacious, robust and
adequate. Namely, we clarify that the Riccati-Bernoulli sub-ODE method superior to other methods. Conclusion will
appear in Section 4.

1 Description of the method

Consider the following nonlinear evolution equation

P (φ, φt, φx, φtt, φxx, ....) = 0, (1.1)

where P is a polynomial in φ(x, t) and its partial derivatives with respect to x or t. We review the steps of this method
[37] as follows:

Step 1. Substituting the traveling wave transformation

φ(x, t) = φ(ξ), ξ = k(x+ vt), (1.2)

into Eq. (1.1), gives the following nonlinear ordinary differential equations (NODE):

H(φ, φ′, φ′′, φ′′′, .....) = 0, (1.3)

where H is a polynomial in φ(ξ) and its total derivatives with respect to ξ.
Step 2. We assume that Eq. (1.3) has the formal solution in the following form:

φ′ = aφ2−n + bφ+ cφn, (1.4)

where a, b, c and n are constants to be calculated in sequel . From equation (1.4), we have

φ′′ = ab(3− n)φ2−n + a2(2− n)φ3−2n + nc2φ2n−1 + bc(n+ 1)φn + (2ac+ b2)φ, (1.5)

φ′′′ = (ab(3− n)(2− n)φ1−n + a2(2− n)(3− 2n)φ2−2n

+n(2n− 1)c2φ2n−2 + bcn(n+ 1)φn−1 + (2ac+ b2))φ′.
(1.6)

Remark 1.1. Eq. (1.4) is called the Riccati-Bernoulli equation. At ac 6= 0 and n = 0, Eq. (1.4) is called a Riccati
equation. At a 6= 0, c = 0, and n 6= 0, Eq. (1.4) is called a Bernoulli equation.
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The solutions for the Riccati-Bernoulli Eq. (1.4) are:

Case 1: When n = 1, the solution is
φ(ξ) = µe(a+b+c)ξ . (1.7)

Case 2: When n 6= 1, b = 0 and c = 0, the solution is

φ(ξ) = (a(n− 1)(ξ + µ))
1

n−1 . (1.8)

Case 3: When n 6= 1, b 6= 0 and c = 0, the solution is

φ(ξ) =

(
−a
b

+ µeb(n−1)ξ
) r

n−1

. (1.9)

Case 4: When n 6= 1, a 6= 0 and b2 − 4ac < 0, the solution is

φ(ξ) =

(
−b
2a

+

√
4ac− b2
2a

tan

(
(1− n)

√
4ac− b2
2

(ξ + µ)

)) 1
1−n

(1.10)

and

φ(ξ) =

(
−b
2a
−
√
4ac− b2
2a

cot

(
(1− n)

√
4ac− b2
2

(ξ + µ)

)) 1
1−n

(1.11)

Case 5: When n 6= 1,a 6= 0 and b2 − 4ac > 0, the solution of Eq. (1.4) is

φ(ξ) =

(
−b
2a
−
√
b2 − 4ac

2a
coth

(
(1− n)

√
b2 − 4ac

2
(ξ + µ)

)) 1
1−n

(1.12)

and

φ(ξ) =

(
−b
2a
−
√
b2 − 4ac

2a
tanh

(
(1− n)

√
b2 − 4ac

2
(ξ + µ)

)) 1
1−n

(1.13)

Case 6: When n 6= 1, a 6= 0 and b2 − 4ac = 0, the solution of Eq. (1.4) is

φ(ξ) =

(
1

a(n− 1)(ξ + µ)
− b

2a

) 1
1−n

. (1.14)

Here µ is an arbitrary constant.

Step 3. Superseding the derivatives of φ into Eq. (1.3) gives an algebraic equations of φ. Using the symmetry of
the right-hand item of equation (1.4) and setting the highest power exponents of φ to equivalence in Eq. (1.3), n can
be determined. Comparing the coefficients of φi gives algebraic equations of a, b, c, and v. Solving these equations and
substituting n, a, b, c, v and ξ = k(x+ vt) into Eqs. (1.7)-(1.14)), give the traveling wave solutions for Eq. (1.1).

1.1 Bäcklund transformation

When φm(ξ) and φm+1(ξ)(φm+1(ξ) = φm+1(φm(ξ))) are the solutions of Eq. (1.4), we get

dφm+1(ξ)

dξ
=
dφm+1(ξ)

dφm(ξ)

dφm(ξ)

dξ
=
dφm+1(ξ)

dφm(ξ)
(aφ2−nm + bφm + cφnm),
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namely
dφm+1(ξ)

aφ2−nm+1 + bφm+1 + cφnm+1

=
dφm+1(ξ)

aφ2−nm + bφm + cφnm
. (1.15)

Integrating equation (1.15) once with respect to ξ, we get

φm+1(ξ) =

(
−cA1 + aA2 (φm(ξ))

1−n

bA1 + aA2 + aA1 (φm(ξ))
1−n

) 1
1−n

, (1.16)

where A1 and A2 are arbitrary constants.

Eq. (1.16) is a Bäcklund transformation of Eq. (1.4). If we get a solution of this equation, we use Eq. (1.16) to
obtain infinite sequence of solutions of Eq. (1.4), and like wise of Eq. (1.1).

2 Application

Here, the application of the Riccati-Bernoulli sub-ODE method to Eq. (0.1) is introduced. We first use the following
complex wave transformation:

ψ(x, t) = eiω(x,t)φ(ξ), ω = −ϑx+ wt+ h, ξ = x− κt, (2.1)

where, φ(ξ) represents the shape of the traveling wave, ω(x, t) is the phase component of the wave, while ϑ, w, h and
κ are real constants.

Substituting Eq. (2.1) into Eq. (0.1) and separating the real and the imaginary parts, respectively, we have:

c =
δ + 2αϑ− βw

βϑ− 1
. (2.2)

Eφ′′ +Hφ+ λF (φ2)φ = 0, (2.3)

where E = α− βκ+ γ, H = w(βϑ− 1)− δϑ− αϑ2.

Eq. (2.2) gives the velocity of the traveling wave, while Eq. (2.3) will be solved in the following subsections by
using the Riccati-Bernoulli sub-ODE method.

For Kerr law nonlinearity, F (φ2) = φ2, then Eq. (2.3) reduces to

Eφ′′ +Hφ+ λφ3 = 0 . (2.4)

Substituting Eq. (1.5) into Eq. (2.4), we obtain

E
(
ab(3−m)φ2−m+a2(2−m)φ3−2m+mc2φ2m−1+bc(m+1)φm+(2ac+ b2)φ

)
+Hφ+λφ3=0 (2.5)

Setting m = 0, equation (2.5) is reduced to

E(3abφ2 + 2a2φ3 + bc+ (2ac+ b2)φ) +Hφ+ λφ3 = 0 . (2.6)
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Figure 1: The solution ψ2(x, t) in (2.18) for ϑ = 2.4, h = 1.4, w = 2, α = 1.2, β = 2, γ = 0.6, δ = 1.5, κ = 3, λ = 3,
µ = 1, and −5 ≤ t, x ≤ 5 .

Setting each coefficient of φi(i = 0, 1, 2, 3) to zero, we get

E bc = 0 , (2.7)

E (2ac+ b2) +H = 0 , (2.8)

3E ab = 0 , (2.9)

2E a2 + λ = 0 . (2.10)

Solving equations (2.7)-(2.10), we get
b = 0 , (2.11)

ac =
−H
2E

, (2.12)

a = ±
√
−λ
2E

. (2.13)

Hence, we give the cases of solutions for the equations (2.4) and (0.1), respectively

1. When b = 0 and c = 0, the solution of equation (2.4) is

φ1(x, t) = (−a(x− κt+ µ))
−1

. (2.14)

Using equations (2.14), and (2.1) the solutions of equation (0.1) take the forms:

ψ1(x, t) = ei(−ϑx+wt+h) (−a(x− κt+ µ))
−1

. (2.15)

where ϑ,w, h, κ and µ are arbitrary constants.
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Figure 2: The solution ψ6(x, t) in (2.22) for ϑ = 1.6, h = 2.1, w = 2.3, α = 1.5, β = 1.1, γ = 0.3, δ = 1.4, κ = 2,
λ = 1.5, µ = 1, and −5 ≤ t, x ≤ 5 .

2. When w(βϑ−1)−δϑ−αϑ2

α−βκ+γ < 0, substituting equation (2.11)-(2.13) and (2.1) into equations (1.10) and (1.11), we
obtain traveling wave solutions of equation (0.1),

φ2,3(x, t) = ±
√
w(βϑ− 1)− δϑ− αϑ2

λ
tan

(√
w(βϑ− 1)− δϑ− αϑ2

2(βκ− α− γ)
(x− κt+ µ)

)
(2.16)

and

φ4,5(x, t) = ±
√
w(βϑ− 1)− δϑ− αϑ2

λ
cot

(√
w(βϑ− 1)− δϑ− αϑ2

2(βκ− α− γ)
(x− κt+ µ)

)
. (2.17)

Using equations (2.16), (2.17) and (2.1) the solutions of equation (0.1) take the forms:

ψ2,3(x, t) = ±ei(−ϑx+wt+h)
(√

w(βϑ− 1)− δϑ− αϑ2
λ

tan

(√
w(βϑ− 1)− δϑ− αϑ2

2(βκ− α− γ)
(x− κt+ µ)

))
(2.18)

and

ψ4,5(x, t) = ±ei(−ϑx+wt+h)
(√

w(βϑ− 1)− δϑ− αϑ2
λ

cot

(√
w(βϑ− 1)− δϑ− αϑ2

2(βκ− α− γ)
(x− κt+ µ)

))
, (2.19)

where ϑ,w, h, β, α, γ, κ and µ are arbitrary constants. Figure 1 illustrated the solution ψ2 with some certain
values of the parameters. This figure give the behaviour of this solution.

3. When w(βϑ−1)−δϑ−αϑ2

α−βκ+γ > 0, substituting equations (2.11)-(2.13) and (2.1) into equations (1.12) and (1.13), we
obtain traveling wave solutions of equation (0.1),
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φ6,7(x, t) = ±
√
δϑ+ αϑ2 − w(βϑ− 1)

λ
tanh

(√
w(βϑ− 1)− δϑ− αϑ2

2(α− βκ+ γ)
(x− κt+ µ)

)
(2.20)

and

φ8,9(x, t) = ±
√
w(βϑ− 1)− δϑ− αϑ2

λ
coth

(√
w(βϑ− 1)− δϑ− αϑ2

2(βκ− α− γ)
(x− κt+ µ)

)
. (2.21)

Using equations (2.20), (2.21) and (2.1) the solutions of equation (0.1) take the forms:

ψ6,7(x, t) = ±ei(−ϑx+wt+h)
√
δϑ+ αϑ2 − w(βϑ− 1)

λ
tanh

(√
w(βϑ− 1)− δϑ− αϑ2

2(α− βκ+ γ)
(x− κt+ µ)

)
(2.22)

and

ψ8,9(x, t) = ±ei(−ϑx+wt+h)
√
w(βϑ− 1)− δϑ− αϑ2

λ
coth

(√
w(βϑ− 1)− δϑ− αϑ2

2(βκ− α− γ)
(x− κt+ µ)

)
, (2.23)

where ϑ,w, h, β, α, γ, κ and µ are arbitrary constants. Figure 2 illustrated the solution ψ6 with some certain
values of the parameters. This figure give the behaviour of this solution.

Remark 2.1. Applying equation (1.16) to Ei(x, t), i =1,2,...,8,9, we obtain an infinite sequence of solutions of
equation (0.1). For illustration, by applying equation (1.16) to Ei(x, t), i =1,2,...,9, once, we have new solutions of
equation (0.1)

φ?1(x, t) =
B3

−aB3 (x− κt+ µ)± 1
, (2.24)

φ?2,3(x, t) =
±w(βϑ−1)−δϑ−αϑ2√

2λ(βκ−α−γ)
±B3

√
w(βϑ−1)−δϑ−αϑ2

λ tan
(√

w(βϑ−1)−δϑ−αϑ2

2(βc−α−γ) (x− κt+ µ)
)

B3 ±
√

w(βϑ−1)−δϑ−αϑ2

λ tan
(√

w(βϑ−1)−δϑ−αϑ2

2(βc−α−γ) (x− κt+ µ)
) , (2.25)

φ?4,5(x, t) =
±w(βϑ−1)−δϑ−αϑ2√

2λ(βκ−α−γ)
±B3

√
w(βϑ−1)−δϑ−αϑ2

λ cot
(√

w(βϑ−1)−δϑ−αϑ2

2(βκ−α−γ) (x− κt+ µ)
)

B3 ±
√

w(βϑ−1)−δϑ−αϑ2

λ cot
(√

w(βϑ−1)−δϑ−αϑ2

2(βκ−α−γ) (x− κt+ µ)
) , (2.26)

φ?6,7(x, t) =
±w(βϑ−1)−δϑ−αϑ2√

2λ(βκ−α−γ)
±B3

√
δϑ+αϑ2−w(βϑ−1)

λ tanh
(√

w(βϑ−1)−δϑ−αϑ2

2(α−βκ+γ) (x− κt+ µ)
)

B3 ±
√

δϑ+αϑ2−w(βϑ−1)
λ tanh

(√
w(βϑ−1)−δϑ−αϑ2

2(α−βκ+γ) (x− κt+ µ)
) , (2.27)

φ?8,9(x, t) =
±w(βϑ−1)−δϑ−αϑ2√

2λ(βκ−α−γ)
±B3

√
δϑ+αϑ2−w(βϑ−1)

λ coth
(√

w(βϑ−1)−δϑ−αϑ2

2(α−βκ+γ) (x− κt+ µ)
)

B3 ±
√

δϑ+αϑ2−w(βϑ−1)
λ coth

(√
w(βϑ−1)−δϑ−αϑ2

2(α−βκ+γ) (x− κt+ µ)
) , (2.28)

where B3, ϑ, w, h, β, α, γ, κ and µ are arbitrary constants.
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3 Comparisons

Here we compare our results with other results in order to show that the our methods are robust, adequate and
efficient. Namely, we compare between our solutions and the solutions given in [32, 34]. Indeed, we clarify that the
Riccati-Bernoulli sub-ODE method superior to other methods. Zhou et al. [32] have introduced only three solutions
for the resonant nonlinear Schrödinger equation, using the (G

′

G )- expansion method. Whereas Bulut et al. [34] given
twelve solutions of the resonant nonlinear Schrödinger equation, using the extended sinh-Gordon equation expansion
method. Indeed his proposed method is simple, flexible and easy to use and produces very accurate results. His result
is better than the Zhou’s result [32]. In this article, we given new and so many solutions, using the Riccati-Bernoulli
sub-ODE method. It can be seen that by choosing suitable values for the parameters of the solutions given in [32, 34],
similar solutions can be verified. The main interesting feature of the Riccati-Bernoulli sub-ODE method over the other
methods is that it produce many new exact traveling wave solutions with additional free parameters. Another positive
side, that the Riccati-Bernoulli sub-ODE technique is more effective in providing many new solutions than these
methods. Above the all, the Riccati-Bernoulli sub-ODE method has a very important characteristic, that provides
infinite sequence of solutions of equation. In fact, this feature has never given for any another method. Consequently,
this method is efficient, robust and proper to solve other nonlinear problems in mathematical physics and nonlinear
science.

Remark 3.1. The Riccati-Bernoulli sub-ODE technique can easily applied to solve nonlinear fractional differential
equations, see [35, 36, 38, 39].

4 Conclusions

In this work we consider the solution of the resonant nonlinear Schrödinger equation with both spatio-temporal dis-
persion and inter-modal dispersion, using the Riccati-Bernoulli sub-ODE technique. As a result, some new exact
solutions for this equation have successfully been gained. Indeed, this method can give an infinite sequence of solu-
tions, which is consider an interesting feature of this method. Currently, work is in progress on the applications of the
Riccati-Bernoulli sub-ODE technique to other NPDEs in nonlinear science.

Acknowledgments: The authors thank the editor and anonymous reviewers for their useful comments and sug-
gestions.
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